1 /* 2 * numa.c 3 * 4 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance 5 */ 6 7 /* For the CLR_() macros */ 8 #include <pthread.h> 9 10 #include "../perf.h" 11 #include "../builtin.h" 12 #include "../util/util.h" 13 #include <subcmd/parse-options.h> 14 #include "../util/cloexec.h" 15 16 #include "bench.h" 17 18 #include <errno.h> 19 #include <sched.h> 20 #include <stdio.h> 21 #include <assert.h> 22 #include <malloc.h> 23 #include <signal.h> 24 #include <stdlib.h> 25 #include <string.h> 26 #include <unistd.h> 27 #include <sys/mman.h> 28 #include <sys/time.h> 29 #include <sys/resource.h> 30 #include <sys/wait.h> 31 #include <sys/prctl.h> 32 #include <sys/types.h> 33 34 #include <numa.h> 35 #include <numaif.h> 36 37 /* 38 * Regular printout to the terminal, supressed if -q is specified: 39 */ 40 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0) 41 42 /* 43 * Debug printf: 44 */ 45 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0) 46 47 struct thread_data { 48 int curr_cpu; 49 cpu_set_t bind_cpumask; 50 int bind_node; 51 u8 *process_data; 52 int process_nr; 53 int thread_nr; 54 int task_nr; 55 unsigned int loops_done; 56 u64 val; 57 u64 runtime_ns; 58 u64 system_time_ns; 59 u64 user_time_ns; 60 double speed_gbs; 61 pthread_mutex_t *process_lock; 62 }; 63 64 /* Parameters set by options: */ 65 66 struct params { 67 /* Startup synchronization: */ 68 bool serialize_startup; 69 70 /* Task hierarchy: */ 71 int nr_proc; 72 int nr_threads; 73 74 /* Working set sizes: */ 75 const char *mb_global_str; 76 const char *mb_proc_str; 77 const char *mb_proc_locked_str; 78 const char *mb_thread_str; 79 80 double mb_global; 81 double mb_proc; 82 double mb_proc_locked; 83 double mb_thread; 84 85 /* Access patterns to the working set: */ 86 bool data_reads; 87 bool data_writes; 88 bool data_backwards; 89 bool data_zero_memset; 90 bool data_rand_walk; 91 u32 nr_loops; 92 u32 nr_secs; 93 u32 sleep_usecs; 94 95 /* Working set initialization: */ 96 bool init_zero; 97 bool init_random; 98 bool init_cpu0; 99 100 /* Misc options: */ 101 int show_details; 102 int run_all; 103 int thp; 104 105 long bytes_global; 106 long bytes_process; 107 long bytes_process_locked; 108 long bytes_thread; 109 110 int nr_tasks; 111 bool show_quiet; 112 113 bool show_convergence; 114 bool measure_convergence; 115 116 int perturb_secs; 117 int nr_cpus; 118 int nr_nodes; 119 120 /* Affinity options -C and -N: */ 121 char *cpu_list_str; 122 char *node_list_str; 123 }; 124 125 126 /* Global, read-writable area, accessible to all processes and threads: */ 127 128 struct global_info { 129 u8 *data; 130 131 pthread_mutex_t startup_mutex; 132 int nr_tasks_started; 133 134 pthread_mutex_t startup_done_mutex; 135 136 pthread_mutex_t start_work_mutex; 137 int nr_tasks_working; 138 139 pthread_mutex_t stop_work_mutex; 140 u64 bytes_done; 141 142 struct thread_data *threads; 143 144 /* Convergence latency measurement: */ 145 bool all_converged; 146 bool stop_work; 147 148 int print_once; 149 150 struct params p; 151 }; 152 153 static struct global_info *g = NULL; 154 155 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset); 156 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset); 157 158 struct params p0; 159 160 static const struct option options[] = { 161 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"), 162 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"), 163 164 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"), 165 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"), 166 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"), 167 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"), 168 169 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"), 170 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"), 171 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"), 172 173 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via writes (can be mixed with -W)"), 174 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"), 175 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"), 176 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"), 177 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"), 178 179 180 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"), 181 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"), 182 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"), 183 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"), 184 185 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"), 186 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"), 187 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"), 188 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"), 189 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"), 190 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"), 191 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"), 192 193 /* Special option string parsing callbacks: */ 194 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]", 195 "bind the first N tasks to these specific cpus (the rest is unbound)", 196 parse_cpus_opt), 197 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]", 198 "bind the first N tasks to these specific memory nodes (the rest is unbound)", 199 parse_nodes_opt), 200 OPT_END() 201 }; 202 203 static const char * const bench_numa_usage[] = { 204 "perf bench numa <options>", 205 NULL 206 }; 207 208 static const char * const numa_usage[] = { 209 "perf bench numa mem [<options>]", 210 NULL 211 }; 212 213 static cpu_set_t bind_to_cpu(int target_cpu) 214 { 215 cpu_set_t orig_mask, mask; 216 int ret; 217 218 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); 219 BUG_ON(ret); 220 221 CPU_ZERO(&mask); 222 223 if (target_cpu == -1) { 224 int cpu; 225 226 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 227 CPU_SET(cpu, &mask); 228 } else { 229 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus); 230 CPU_SET(target_cpu, &mask); 231 } 232 233 ret = sched_setaffinity(0, sizeof(mask), &mask); 234 BUG_ON(ret); 235 236 return orig_mask; 237 } 238 239 static cpu_set_t bind_to_node(int target_node) 240 { 241 int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes; 242 cpu_set_t orig_mask, mask; 243 int cpu; 244 int ret; 245 246 BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus); 247 BUG_ON(!cpus_per_node); 248 249 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); 250 BUG_ON(ret); 251 252 CPU_ZERO(&mask); 253 254 if (target_node == -1) { 255 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 256 CPU_SET(cpu, &mask); 257 } else { 258 int cpu_start = (target_node + 0) * cpus_per_node; 259 int cpu_stop = (target_node + 1) * cpus_per_node; 260 261 BUG_ON(cpu_stop > g->p.nr_cpus); 262 263 for (cpu = cpu_start; cpu < cpu_stop; cpu++) 264 CPU_SET(cpu, &mask); 265 } 266 267 ret = sched_setaffinity(0, sizeof(mask), &mask); 268 BUG_ON(ret); 269 270 return orig_mask; 271 } 272 273 static void bind_to_cpumask(cpu_set_t mask) 274 { 275 int ret; 276 277 ret = sched_setaffinity(0, sizeof(mask), &mask); 278 BUG_ON(ret); 279 } 280 281 static void mempol_restore(void) 282 { 283 int ret; 284 285 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1); 286 287 BUG_ON(ret); 288 } 289 290 static void bind_to_memnode(int node) 291 { 292 unsigned long nodemask; 293 int ret; 294 295 if (node == -1) 296 return; 297 298 BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8); 299 nodemask = 1L << node; 300 301 ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8); 302 dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret); 303 304 BUG_ON(ret); 305 } 306 307 #define HPSIZE (2*1024*1024) 308 309 #define set_taskname(fmt...) \ 310 do { \ 311 char name[20]; \ 312 \ 313 snprintf(name, 20, fmt); \ 314 prctl(PR_SET_NAME, name); \ 315 } while (0) 316 317 static u8 *alloc_data(ssize_t bytes0, int map_flags, 318 int init_zero, int init_cpu0, int thp, int init_random) 319 { 320 cpu_set_t orig_mask; 321 ssize_t bytes; 322 u8 *buf; 323 int ret; 324 325 if (!bytes0) 326 return NULL; 327 328 /* Allocate and initialize all memory on CPU#0: */ 329 if (init_cpu0) { 330 orig_mask = bind_to_node(0); 331 bind_to_memnode(0); 332 } 333 334 bytes = bytes0 + HPSIZE; 335 336 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0); 337 BUG_ON(buf == (void *)-1); 338 339 if (map_flags == MAP_PRIVATE) { 340 if (thp > 0) { 341 ret = madvise(buf, bytes, MADV_HUGEPAGE); 342 if (ret && !g->print_once) { 343 g->print_once = 1; 344 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n"); 345 } 346 } 347 if (thp < 0) { 348 ret = madvise(buf, bytes, MADV_NOHUGEPAGE); 349 if (ret && !g->print_once) { 350 g->print_once = 1; 351 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n"); 352 } 353 } 354 } 355 356 if (init_zero) { 357 bzero(buf, bytes); 358 } else { 359 /* Initialize random contents, different in each word: */ 360 if (init_random) { 361 u64 *wbuf = (void *)buf; 362 long off = rand(); 363 long i; 364 365 for (i = 0; i < bytes/8; i++) 366 wbuf[i] = i + off; 367 } 368 } 369 370 /* Align to 2MB boundary: */ 371 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1)); 372 373 /* Restore affinity: */ 374 if (init_cpu0) { 375 bind_to_cpumask(orig_mask); 376 mempol_restore(); 377 } 378 379 return buf; 380 } 381 382 static void free_data(void *data, ssize_t bytes) 383 { 384 int ret; 385 386 if (!data) 387 return; 388 389 ret = munmap(data, bytes); 390 BUG_ON(ret); 391 } 392 393 /* 394 * Create a shared memory buffer that can be shared between processes, zeroed: 395 */ 396 static void * zalloc_shared_data(ssize_t bytes) 397 { 398 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random); 399 } 400 401 /* 402 * Create a shared memory buffer that can be shared between processes: 403 */ 404 static void * setup_shared_data(ssize_t bytes) 405 { 406 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 407 } 408 409 /* 410 * Allocate process-local memory - this will either be shared between 411 * threads of this process, or only be accessed by this thread: 412 */ 413 static void * setup_private_data(ssize_t bytes) 414 { 415 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 416 } 417 418 /* 419 * Return a process-shared (global) mutex: 420 */ 421 static void init_global_mutex(pthread_mutex_t *mutex) 422 { 423 pthread_mutexattr_t attr; 424 425 pthread_mutexattr_init(&attr); 426 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED); 427 pthread_mutex_init(mutex, &attr); 428 } 429 430 static int parse_cpu_list(const char *arg) 431 { 432 p0.cpu_list_str = strdup(arg); 433 434 dprintf("got CPU list: {%s}\n", p0.cpu_list_str); 435 436 return 0; 437 } 438 439 static int parse_setup_cpu_list(void) 440 { 441 struct thread_data *td; 442 char *str0, *str; 443 int t; 444 445 if (!g->p.cpu_list_str) 446 return 0; 447 448 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 449 450 str0 = str = strdup(g->p.cpu_list_str); 451 t = 0; 452 453 BUG_ON(!str); 454 455 tprintf("# binding tasks to CPUs:\n"); 456 tprintf("# "); 457 458 while (true) { 459 int bind_cpu, bind_cpu_0, bind_cpu_1; 460 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul; 461 int bind_len; 462 int step; 463 int mul; 464 465 tok = strsep(&str, ","); 466 if (!tok) 467 break; 468 469 tok_end = strstr(tok, "-"); 470 471 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 472 if (!tok_end) { 473 /* Single CPU specified: */ 474 bind_cpu_0 = bind_cpu_1 = atol(tok); 475 } else { 476 /* CPU range specified (for example: "5-11"): */ 477 bind_cpu_0 = atol(tok); 478 bind_cpu_1 = atol(tok_end + 1); 479 } 480 481 step = 1; 482 tok_step = strstr(tok, "#"); 483 if (tok_step) { 484 step = atol(tok_step + 1); 485 BUG_ON(step <= 0 || step >= g->p.nr_cpus); 486 } 487 488 /* 489 * Mask length. 490 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4', 491 * where the _4 means the next 4 CPUs are allowed. 492 */ 493 bind_len = 1; 494 tok_len = strstr(tok, "_"); 495 if (tok_len) { 496 bind_len = atol(tok_len + 1); 497 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus); 498 } 499 500 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 501 mul = 1; 502 tok_mul = strstr(tok, "x"); 503 if (tok_mul) { 504 mul = atol(tok_mul + 1); 505 BUG_ON(mul <= 0); 506 } 507 508 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul); 509 510 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) { 511 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus); 512 return -1; 513 } 514 515 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0); 516 BUG_ON(bind_cpu_0 > bind_cpu_1); 517 518 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) { 519 int i; 520 521 for (i = 0; i < mul; i++) { 522 int cpu; 523 524 if (t >= g->p.nr_tasks) { 525 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu); 526 goto out; 527 } 528 td = g->threads + t; 529 530 if (t) 531 tprintf(","); 532 if (bind_len > 1) { 533 tprintf("%2d/%d", bind_cpu, bind_len); 534 } else { 535 tprintf("%2d", bind_cpu); 536 } 537 538 CPU_ZERO(&td->bind_cpumask); 539 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) { 540 BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus); 541 CPU_SET(cpu, &td->bind_cpumask); 542 } 543 t++; 544 } 545 } 546 } 547 out: 548 549 tprintf("\n"); 550 551 if (t < g->p.nr_tasks) 552 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 553 554 free(str0); 555 return 0; 556 } 557 558 static int parse_cpus_opt(const struct option *opt __maybe_unused, 559 const char *arg, int unset __maybe_unused) 560 { 561 if (!arg) 562 return -1; 563 564 return parse_cpu_list(arg); 565 } 566 567 static int parse_node_list(const char *arg) 568 { 569 p0.node_list_str = strdup(arg); 570 571 dprintf("got NODE list: {%s}\n", p0.node_list_str); 572 573 return 0; 574 } 575 576 static int parse_setup_node_list(void) 577 { 578 struct thread_data *td; 579 char *str0, *str; 580 int t; 581 582 if (!g->p.node_list_str) 583 return 0; 584 585 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 586 587 str0 = str = strdup(g->p.node_list_str); 588 t = 0; 589 590 BUG_ON(!str); 591 592 tprintf("# binding tasks to NODEs:\n"); 593 tprintf("# "); 594 595 while (true) { 596 int bind_node, bind_node_0, bind_node_1; 597 char *tok, *tok_end, *tok_step, *tok_mul; 598 int step; 599 int mul; 600 601 tok = strsep(&str, ","); 602 if (!tok) 603 break; 604 605 tok_end = strstr(tok, "-"); 606 607 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 608 if (!tok_end) { 609 /* Single NODE specified: */ 610 bind_node_0 = bind_node_1 = atol(tok); 611 } else { 612 /* NODE range specified (for example: "5-11"): */ 613 bind_node_0 = atol(tok); 614 bind_node_1 = atol(tok_end + 1); 615 } 616 617 step = 1; 618 tok_step = strstr(tok, "#"); 619 if (tok_step) { 620 step = atol(tok_step + 1); 621 BUG_ON(step <= 0 || step >= g->p.nr_nodes); 622 } 623 624 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 625 mul = 1; 626 tok_mul = strstr(tok, "x"); 627 if (tok_mul) { 628 mul = atol(tok_mul + 1); 629 BUG_ON(mul <= 0); 630 } 631 632 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step); 633 634 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) { 635 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes); 636 return -1; 637 } 638 639 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0); 640 BUG_ON(bind_node_0 > bind_node_1); 641 642 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) { 643 int i; 644 645 for (i = 0; i < mul; i++) { 646 if (t >= g->p.nr_tasks) { 647 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node); 648 goto out; 649 } 650 td = g->threads + t; 651 652 if (!t) 653 tprintf(" %2d", bind_node); 654 else 655 tprintf(",%2d", bind_node); 656 657 td->bind_node = bind_node; 658 t++; 659 } 660 } 661 } 662 out: 663 664 tprintf("\n"); 665 666 if (t < g->p.nr_tasks) 667 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 668 669 free(str0); 670 return 0; 671 } 672 673 static int parse_nodes_opt(const struct option *opt __maybe_unused, 674 const char *arg, int unset __maybe_unused) 675 { 676 if (!arg) 677 return -1; 678 679 return parse_node_list(arg); 680 681 return 0; 682 } 683 684 #define BIT(x) (1ul << x) 685 686 static inline uint32_t lfsr_32(uint32_t lfsr) 687 { 688 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31); 689 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps); 690 } 691 692 /* 693 * Make sure there's real data dependency to RAM (when read 694 * accesses are enabled), so the compiler, the CPU and the 695 * kernel (KSM, zero page, etc.) cannot optimize away RAM 696 * accesses: 697 */ 698 static inline u64 access_data(u64 *data __attribute__((unused)), u64 val) 699 { 700 if (g->p.data_reads) 701 val += *data; 702 if (g->p.data_writes) 703 *data = val + 1; 704 return val; 705 } 706 707 /* 708 * The worker process does two types of work, a forwards going 709 * loop and a backwards going loop. 710 * 711 * We do this so that on multiprocessor systems we do not create 712 * a 'train' of processing, with highly synchronized processes, 713 * skewing the whole benchmark. 714 */ 715 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val) 716 { 717 long words = bytes/sizeof(u64); 718 u64 *data = (void *)__data; 719 long chunk_0, chunk_1; 720 u64 *d0, *d, *d1; 721 long off; 722 long i; 723 724 BUG_ON(!data && words); 725 BUG_ON(data && !words); 726 727 if (!data) 728 return val; 729 730 /* Very simple memset() work variant: */ 731 if (g->p.data_zero_memset && !g->p.data_rand_walk) { 732 bzero(data, bytes); 733 return val; 734 } 735 736 /* Spread out by PID/TID nr and by loop nr: */ 737 chunk_0 = words/nr_max; 738 chunk_1 = words/g->p.nr_loops; 739 off = nr*chunk_0 + loop*chunk_1; 740 741 while (off >= words) 742 off -= words; 743 744 if (g->p.data_rand_walk) { 745 u32 lfsr = nr + loop + val; 746 int j; 747 748 for (i = 0; i < words/1024; i++) { 749 long start, end; 750 751 lfsr = lfsr_32(lfsr); 752 753 start = lfsr % words; 754 end = min(start + 1024, words-1); 755 756 if (g->p.data_zero_memset) { 757 bzero(data + start, (end-start) * sizeof(u64)); 758 } else { 759 for (j = start; j < end; j++) 760 val = access_data(data + j, val); 761 } 762 } 763 } else if (!g->p.data_backwards || (nr + loop) & 1) { 764 765 d0 = data + off; 766 d = data + off + 1; 767 d1 = data + words; 768 769 /* Process data forwards: */ 770 for (;;) { 771 if (unlikely(d >= d1)) 772 d = data; 773 if (unlikely(d == d0)) 774 break; 775 776 val = access_data(d, val); 777 778 d++; 779 } 780 } else { 781 /* Process data backwards: */ 782 783 d0 = data + off; 784 d = data + off - 1; 785 d1 = data + words; 786 787 /* Process data forwards: */ 788 for (;;) { 789 if (unlikely(d < data)) 790 d = data + words-1; 791 if (unlikely(d == d0)) 792 break; 793 794 val = access_data(d, val); 795 796 d--; 797 } 798 } 799 800 return val; 801 } 802 803 static void update_curr_cpu(int task_nr, unsigned long bytes_worked) 804 { 805 unsigned int cpu; 806 807 cpu = sched_getcpu(); 808 809 g->threads[task_nr].curr_cpu = cpu; 810 prctl(0, bytes_worked); 811 } 812 813 #define MAX_NR_NODES 64 814 815 /* 816 * Count the number of nodes a process's threads 817 * are spread out on. 818 * 819 * A count of 1 means that the process is compressed 820 * to a single node. A count of g->p.nr_nodes means it's 821 * spread out on the whole system. 822 */ 823 static int count_process_nodes(int process_nr) 824 { 825 char node_present[MAX_NR_NODES] = { 0, }; 826 int nodes; 827 int n, t; 828 829 for (t = 0; t < g->p.nr_threads; t++) { 830 struct thread_data *td; 831 int task_nr; 832 int node; 833 834 task_nr = process_nr*g->p.nr_threads + t; 835 td = g->threads + task_nr; 836 837 node = numa_node_of_cpu(td->curr_cpu); 838 if (node < 0) /* curr_cpu was likely still -1 */ 839 return 0; 840 841 node_present[node] = 1; 842 } 843 844 nodes = 0; 845 846 for (n = 0; n < MAX_NR_NODES; n++) 847 nodes += node_present[n]; 848 849 return nodes; 850 } 851 852 /* 853 * Count the number of distinct process-threads a node contains. 854 * 855 * A count of 1 means that the node contains only a single 856 * process. If all nodes on the system contain at most one 857 * process then we are well-converged. 858 */ 859 static int count_node_processes(int node) 860 { 861 int processes = 0; 862 int t, p; 863 864 for (p = 0; p < g->p.nr_proc; p++) { 865 for (t = 0; t < g->p.nr_threads; t++) { 866 struct thread_data *td; 867 int task_nr; 868 int n; 869 870 task_nr = p*g->p.nr_threads + t; 871 td = g->threads + task_nr; 872 873 n = numa_node_of_cpu(td->curr_cpu); 874 if (n == node) { 875 processes++; 876 break; 877 } 878 } 879 } 880 881 return processes; 882 } 883 884 static void calc_convergence_compression(int *strong) 885 { 886 unsigned int nodes_min, nodes_max; 887 int p; 888 889 nodes_min = -1; 890 nodes_max = 0; 891 892 for (p = 0; p < g->p.nr_proc; p++) { 893 unsigned int nodes = count_process_nodes(p); 894 895 if (!nodes) { 896 *strong = 0; 897 return; 898 } 899 900 nodes_min = min(nodes, nodes_min); 901 nodes_max = max(nodes, nodes_max); 902 } 903 904 /* Strong convergence: all threads compress on a single node: */ 905 if (nodes_min == 1 && nodes_max == 1) { 906 *strong = 1; 907 } else { 908 *strong = 0; 909 tprintf(" {%d-%d}", nodes_min, nodes_max); 910 } 911 } 912 913 static void calc_convergence(double runtime_ns_max, double *convergence) 914 { 915 unsigned int loops_done_min, loops_done_max; 916 int process_groups; 917 int nodes[MAX_NR_NODES]; 918 int distance; 919 int nr_min; 920 int nr_max; 921 int strong; 922 int sum; 923 int nr; 924 int node; 925 int cpu; 926 int t; 927 928 if (!g->p.show_convergence && !g->p.measure_convergence) 929 return; 930 931 for (node = 0; node < g->p.nr_nodes; node++) 932 nodes[node] = 0; 933 934 loops_done_min = -1; 935 loops_done_max = 0; 936 937 for (t = 0; t < g->p.nr_tasks; t++) { 938 struct thread_data *td = g->threads + t; 939 unsigned int loops_done; 940 941 cpu = td->curr_cpu; 942 943 /* Not all threads have written it yet: */ 944 if (cpu < 0) 945 continue; 946 947 node = numa_node_of_cpu(cpu); 948 949 nodes[node]++; 950 951 loops_done = td->loops_done; 952 loops_done_min = min(loops_done, loops_done_min); 953 loops_done_max = max(loops_done, loops_done_max); 954 } 955 956 nr_max = 0; 957 nr_min = g->p.nr_tasks; 958 sum = 0; 959 960 for (node = 0; node < g->p.nr_nodes; node++) { 961 nr = nodes[node]; 962 nr_min = min(nr, nr_min); 963 nr_max = max(nr, nr_max); 964 sum += nr; 965 } 966 BUG_ON(nr_min > nr_max); 967 968 BUG_ON(sum > g->p.nr_tasks); 969 970 if (0 && (sum < g->p.nr_tasks)) 971 return; 972 973 /* 974 * Count the number of distinct process groups present 975 * on nodes - when we are converged this will decrease 976 * to g->p.nr_proc: 977 */ 978 process_groups = 0; 979 980 for (node = 0; node < g->p.nr_nodes; node++) { 981 int processes = count_node_processes(node); 982 983 nr = nodes[node]; 984 tprintf(" %2d/%-2d", nr, processes); 985 986 process_groups += processes; 987 } 988 989 distance = nr_max - nr_min; 990 991 tprintf(" [%2d/%-2d]", distance, process_groups); 992 993 tprintf(" l:%3d-%-3d (%3d)", 994 loops_done_min, loops_done_max, loops_done_max-loops_done_min); 995 996 if (loops_done_min && loops_done_max) { 997 double skew = 1.0 - (double)loops_done_min/loops_done_max; 998 999 tprintf(" [%4.1f%%]", skew * 100.0); 1000 } 1001 1002 calc_convergence_compression(&strong); 1003 1004 if (strong && process_groups == g->p.nr_proc) { 1005 if (!*convergence) { 1006 *convergence = runtime_ns_max; 1007 tprintf(" (%6.1fs converged)\n", *convergence/1e9); 1008 if (g->p.measure_convergence) { 1009 g->all_converged = true; 1010 g->stop_work = true; 1011 } 1012 } 1013 } else { 1014 if (*convergence) { 1015 tprintf(" (%6.1fs de-converged)", runtime_ns_max/1e9); 1016 *convergence = 0; 1017 } 1018 tprintf("\n"); 1019 } 1020 } 1021 1022 static void show_summary(double runtime_ns_max, int l, double *convergence) 1023 { 1024 tprintf("\r # %5.1f%% [%.1f mins]", 1025 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max/1e9 / 60.0); 1026 1027 calc_convergence(runtime_ns_max, convergence); 1028 1029 if (g->p.show_details >= 0) 1030 fflush(stdout); 1031 } 1032 1033 static void *worker_thread(void *__tdata) 1034 { 1035 struct thread_data *td = __tdata; 1036 struct timeval start0, start, stop, diff; 1037 int process_nr = td->process_nr; 1038 int thread_nr = td->thread_nr; 1039 unsigned long last_perturbance; 1040 int task_nr = td->task_nr; 1041 int details = g->p.show_details; 1042 int first_task, last_task; 1043 double convergence = 0; 1044 u64 val = td->val; 1045 double runtime_ns_max; 1046 u8 *global_data; 1047 u8 *process_data; 1048 u8 *thread_data; 1049 u64 bytes_done; 1050 long work_done; 1051 u32 l; 1052 struct rusage rusage; 1053 1054 bind_to_cpumask(td->bind_cpumask); 1055 bind_to_memnode(td->bind_node); 1056 1057 set_taskname("thread %d/%d", process_nr, thread_nr); 1058 1059 global_data = g->data; 1060 process_data = td->process_data; 1061 thread_data = setup_private_data(g->p.bytes_thread); 1062 1063 bytes_done = 0; 1064 1065 last_task = 0; 1066 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1) 1067 last_task = 1; 1068 1069 first_task = 0; 1070 if (process_nr == 0 && thread_nr == 0) 1071 first_task = 1; 1072 1073 if (details >= 2) { 1074 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n", 1075 process_nr, thread_nr, global_data, process_data, thread_data); 1076 } 1077 1078 if (g->p.serialize_startup) { 1079 pthread_mutex_lock(&g->startup_mutex); 1080 g->nr_tasks_started++; 1081 pthread_mutex_unlock(&g->startup_mutex); 1082 1083 /* Here we will wait for the main process to start us all at once: */ 1084 pthread_mutex_lock(&g->start_work_mutex); 1085 g->nr_tasks_working++; 1086 1087 /* Last one wake the main process: */ 1088 if (g->nr_tasks_working == g->p.nr_tasks) 1089 pthread_mutex_unlock(&g->startup_done_mutex); 1090 1091 pthread_mutex_unlock(&g->start_work_mutex); 1092 } 1093 1094 gettimeofday(&start0, NULL); 1095 1096 start = stop = start0; 1097 last_perturbance = start.tv_sec; 1098 1099 for (l = 0; l < g->p.nr_loops; l++) { 1100 start = stop; 1101 1102 if (g->stop_work) 1103 break; 1104 1105 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val); 1106 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val); 1107 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val); 1108 1109 if (g->p.sleep_usecs) { 1110 pthread_mutex_lock(td->process_lock); 1111 usleep(g->p.sleep_usecs); 1112 pthread_mutex_unlock(td->process_lock); 1113 } 1114 /* 1115 * Amount of work to be done under a process-global lock: 1116 */ 1117 if (g->p.bytes_process_locked) { 1118 pthread_mutex_lock(td->process_lock); 1119 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val); 1120 pthread_mutex_unlock(td->process_lock); 1121 } 1122 1123 work_done = g->p.bytes_global + g->p.bytes_process + 1124 g->p.bytes_process_locked + g->p.bytes_thread; 1125 1126 update_curr_cpu(task_nr, work_done); 1127 bytes_done += work_done; 1128 1129 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs) 1130 continue; 1131 1132 td->loops_done = l; 1133 1134 gettimeofday(&stop, NULL); 1135 1136 /* Check whether our max runtime timed out: */ 1137 if (g->p.nr_secs) { 1138 timersub(&stop, &start0, &diff); 1139 if ((u32)diff.tv_sec >= g->p.nr_secs) { 1140 g->stop_work = true; 1141 break; 1142 } 1143 } 1144 1145 /* Update the summary at most once per second: */ 1146 if (start.tv_sec == stop.tv_sec) 1147 continue; 1148 1149 /* 1150 * Perturb the first task's equilibrium every g->p.perturb_secs seconds, 1151 * by migrating to CPU#0: 1152 */ 1153 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) { 1154 cpu_set_t orig_mask; 1155 int target_cpu; 1156 int this_cpu; 1157 1158 last_perturbance = stop.tv_sec; 1159 1160 /* 1161 * Depending on where we are running, move into 1162 * the other half of the system, to create some 1163 * real disturbance: 1164 */ 1165 this_cpu = g->threads[task_nr].curr_cpu; 1166 if (this_cpu < g->p.nr_cpus/2) 1167 target_cpu = g->p.nr_cpus-1; 1168 else 1169 target_cpu = 0; 1170 1171 orig_mask = bind_to_cpu(target_cpu); 1172 1173 /* Here we are running on the target CPU already */ 1174 if (details >= 1) 1175 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu); 1176 1177 bind_to_cpumask(orig_mask); 1178 } 1179 1180 if (details >= 3) { 1181 timersub(&stop, &start, &diff); 1182 runtime_ns_max = diff.tv_sec * 1000000000; 1183 runtime_ns_max += diff.tv_usec * 1000; 1184 1185 if (details >= 0) { 1186 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n", 1187 process_nr, thread_nr, runtime_ns_max / bytes_done, val); 1188 } 1189 fflush(stdout); 1190 } 1191 if (!last_task) 1192 continue; 1193 1194 timersub(&stop, &start0, &diff); 1195 runtime_ns_max = diff.tv_sec * 1000000000ULL; 1196 runtime_ns_max += diff.tv_usec * 1000ULL; 1197 1198 show_summary(runtime_ns_max, l, &convergence); 1199 } 1200 1201 gettimeofday(&stop, NULL); 1202 timersub(&stop, &start0, &diff); 1203 td->runtime_ns = diff.tv_sec * 1000000000ULL; 1204 td->runtime_ns += diff.tv_usec * 1000ULL; 1205 td->speed_gbs = bytes_done / (td->runtime_ns / 1e9) / 1e9; 1206 1207 getrusage(RUSAGE_THREAD, &rusage); 1208 td->system_time_ns = rusage.ru_stime.tv_sec * 1000000000ULL; 1209 td->system_time_ns += rusage.ru_stime.tv_usec * 1000ULL; 1210 td->user_time_ns = rusage.ru_utime.tv_sec * 1000000000ULL; 1211 td->user_time_ns += rusage.ru_utime.tv_usec * 1000ULL; 1212 1213 free_data(thread_data, g->p.bytes_thread); 1214 1215 pthread_mutex_lock(&g->stop_work_mutex); 1216 g->bytes_done += bytes_done; 1217 pthread_mutex_unlock(&g->stop_work_mutex); 1218 1219 return NULL; 1220 } 1221 1222 /* 1223 * A worker process starts a couple of threads: 1224 */ 1225 static void worker_process(int process_nr) 1226 { 1227 pthread_mutex_t process_lock; 1228 struct thread_data *td; 1229 pthread_t *pthreads; 1230 u8 *process_data; 1231 int task_nr; 1232 int ret; 1233 int t; 1234 1235 pthread_mutex_init(&process_lock, NULL); 1236 set_taskname("process %d", process_nr); 1237 1238 /* 1239 * Pick up the memory policy and the CPU binding of our first thread, 1240 * so that we initialize memory accordingly: 1241 */ 1242 task_nr = process_nr*g->p.nr_threads; 1243 td = g->threads + task_nr; 1244 1245 bind_to_memnode(td->bind_node); 1246 bind_to_cpumask(td->bind_cpumask); 1247 1248 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t)); 1249 process_data = setup_private_data(g->p.bytes_process); 1250 1251 if (g->p.show_details >= 3) { 1252 printf(" # process %2d global mem: %p, process mem: %p\n", 1253 process_nr, g->data, process_data); 1254 } 1255 1256 for (t = 0; t < g->p.nr_threads; t++) { 1257 task_nr = process_nr*g->p.nr_threads + t; 1258 td = g->threads + task_nr; 1259 1260 td->process_data = process_data; 1261 td->process_nr = process_nr; 1262 td->thread_nr = t; 1263 td->task_nr = task_nr; 1264 td->val = rand(); 1265 td->curr_cpu = -1; 1266 td->process_lock = &process_lock; 1267 1268 ret = pthread_create(pthreads + t, NULL, worker_thread, td); 1269 BUG_ON(ret); 1270 } 1271 1272 for (t = 0; t < g->p.nr_threads; t++) { 1273 ret = pthread_join(pthreads[t], NULL); 1274 BUG_ON(ret); 1275 } 1276 1277 free_data(process_data, g->p.bytes_process); 1278 free(pthreads); 1279 } 1280 1281 static void print_summary(void) 1282 { 1283 if (g->p.show_details < 0) 1284 return; 1285 1286 printf("\n ###\n"); 1287 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n", 1288 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus); 1289 printf(" # %5dx %5ldMB global shared mem operations\n", 1290 g->p.nr_loops, g->p.bytes_global/1024/1024); 1291 printf(" # %5dx %5ldMB process shared mem operations\n", 1292 g->p.nr_loops, g->p.bytes_process/1024/1024); 1293 printf(" # %5dx %5ldMB thread local mem operations\n", 1294 g->p.nr_loops, g->p.bytes_thread/1024/1024); 1295 1296 printf(" ###\n"); 1297 1298 printf("\n ###\n"); fflush(stdout); 1299 } 1300 1301 static void init_thread_data(void) 1302 { 1303 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1304 int t; 1305 1306 g->threads = zalloc_shared_data(size); 1307 1308 for (t = 0; t < g->p.nr_tasks; t++) { 1309 struct thread_data *td = g->threads + t; 1310 int cpu; 1311 1312 /* Allow all nodes by default: */ 1313 td->bind_node = -1; 1314 1315 /* Allow all CPUs by default: */ 1316 CPU_ZERO(&td->bind_cpumask); 1317 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 1318 CPU_SET(cpu, &td->bind_cpumask); 1319 } 1320 } 1321 1322 static void deinit_thread_data(void) 1323 { 1324 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1325 1326 free_data(g->threads, size); 1327 } 1328 1329 static int init(void) 1330 { 1331 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0); 1332 1333 /* Copy over options: */ 1334 g->p = p0; 1335 1336 g->p.nr_cpus = numa_num_configured_cpus(); 1337 1338 g->p.nr_nodes = numa_max_node() + 1; 1339 1340 /* char array in count_process_nodes(): */ 1341 BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0); 1342 1343 if (g->p.show_quiet && !g->p.show_details) 1344 g->p.show_details = -1; 1345 1346 /* Some memory should be specified: */ 1347 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str) 1348 return -1; 1349 1350 if (g->p.mb_global_str) { 1351 g->p.mb_global = atof(g->p.mb_global_str); 1352 BUG_ON(g->p.mb_global < 0); 1353 } 1354 1355 if (g->p.mb_proc_str) { 1356 g->p.mb_proc = atof(g->p.mb_proc_str); 1357 BUG_ON(g->p.mb_proc < 0); 1358 } 1359 1360 if (g->p.mb_proc_locked_str) { 1361 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str); 1362 BUG_ON(g->p.mb_proc_locked < 0); 1363 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc); 1364 } 1365 1366 if (g->p.mb_thread_str) { 1367 g->p.mb_thread = atof(g->p.mb_thread_str); 1368 BUG_ON(g->p.mb_thread < 0); 1369 } 1370 1371 BUG_ON(g->p.nr_threads <= 0); 1372 BUG_ON(g->p.nr_proc <= 0); 1373 1374 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads; 1375 1376 g->p.bytes_global = g->p.mb_global *1024L*1024L; 1377 g->p.bytes_process = g->p.mb_proc *1024L*1024L; 1378 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L; 1379 g->p.bytes_thread = g->p.mb_thread *1024L*1024L; 1380 1381 g->data = setup_shared_data(g->p.bytes_global); 1382 1383 /* Startup serialization: */ 1384 init_global_mutex(&g->start_work_mutex); 1385 init_global_mutex(&g->startup_mutex); 1386 init_global_mutex(&g->startup_done_mutex); 1387 init_global_mutex(&g->stop_work_mutex); 1388 1389 init_thread_data(); 1390 1391 tprintf("#\n"); 1392 if (parse_setup_cpu_list() || parse_setup_node_list()) 1393 return -1; 1394 tprintf("#\n"); 1395 1396 print_summary(); 1397 1398 return 0; 1399 } 1400 1401 static void deinit(void) 1402 { 1403 free_data(g->data, g->p.bytes_global); 1404 g->data = NULL; 1405 1406 deinit_thread_data(); 1407 1408 free_data(g, sizeof(*g)); 1409 g = NULL; 1410 } 1411 1412 /* 1413 * Print a short or long result, depending on the verbosity setting: 1414 */ 1415 static void print_res(const char *name, double val, 1416 const char *txt_unit, const char *txt_short, const char *txt_long) 1417 { 1418 if (!name) 1419 name = "main,"; 1420 1421 if (!g->p.show_quiet) 1422 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short); 1423 else 1424 printf(" %14.3f %s\n", val, txt_long); 1425 } 1426 1427 static int __bench_numa(const char *name) 1428 { 1429 struct timeval start, stop, diff; 1430 u64 runtime_ns_min, runtime_ns_sum; 1431 pid_t *pids, pid, wpid; 1432 double delta_runtime; 1433 double runtime_avg; 1434 double runtime_sec_max; 1435 double runtime_sec_min; 1436 int wait_stat; 1437 double bytes; 1438 int i, t, p; 1439 1440 if (init()) 1441 return -1; 1442 1443 pids = zalloc(g->p.nr_proc * sizeof(*pids)); 1444 pid = -1; 1445 1446 /* All threads try to acquire it, this way we can wait for them to start up: */ 1447 pthread_mutex_lock(&g->start_work_mutex); 1448 1449 if (g->p.serialize_startup) { 1450 tprintf(" #\n"); 1451 tprintf(" # Startup synchronization: ..."); fflush(stdout); 1452 } 1453 1454 gettimeofday(&start, NULL); 1455 1456 for (i = 0; i < g->p.nr_proc; i++) { 1457 pid = fork(); 1458 dprintf(" # process %2d: PID %d\n", i, pid); 1459 1460 BUG_ON(pid < 0); 1461 if (!pid) { 1462 /* Child process: */ 1463 worker_process(i); 1464 1465 exit(0); 1466 } 1467 pids[i] = pid; 1468 1469 } 1470 /* Wait for all the threads to start up: */ 1471 while (g->nr_tasks_started != g->p.nr_tasks) 1472 usleep(1000); 1473 1474 BUG_ON(g->nr_tasks_started != g->p.nr_tasks); 1475 1476 if (g->p.serialize_startup) { 1477 double startup_sec; 1478 1479 pthread_mutex_lock(&g->startup_done_mutex); 1480 1481 /* This will start all threads: */ 1482 pthread_mutex_unlock(&g->start_work_mutex); 1483 1484 /* This mutex is locked - the last started thread will wake us: */ 1485 pthread_mutex_lock(&g->startup_done_mutex); 1486 1487 gettimeofday(&stop, NULL); 1488 1489 timersub(&stop, &start, &diff); 1490 1491 startup_sec = diff.tv_sec * 1000000000.0; 1492 startup_sec += diff.tv_usec * 1000.0; 1493 startup_sec /= 1e9; 1494 1495 tprintf(" threads initialized in %.6f seconds.\n", startup_sec); 1496 tprintf(" #\n"); 1497 1498 start = stop; 1499 pthread_mutex_unlock(&g->startup_done_mutex); 1500 } else { 1501 gettimeofday(&start, NULL); 1502 } 1503 1504 /* Parent process: */ 1505 1506 1507 for (i = 0; i < g->p.nr_proc; i++) { 1508 wpid = waitpid(pids[i], &wait_stat, 0); 1509 BUG_ON(wpid < 0); 1510 BUG_ON(!WIFEXITED(wait_stat)); 1511 1512 } 1513 1514 runtime_ns_sum = 0; 1515 runtime_ns_min = -1LL; 1516 1517 for (t = 0; t < g->p.nr_tasks; t++) { 1518 u64 thread_runtime_ns = g->threads[t].runtime_ns; 1519 1520 runtime_ns_sum += thread_runtime_ns; 1521 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min); 1522 } 1523 1524 gettimeofday(&stop, NULL); 1525 timersub(&stop, &start, &diff); 1526 1527 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT); 1528 1529 tprintf("\n ###\n"); 1530 tprintf("\n"); 1531 1532 runtime_sec_max = diff.tv_sec * 1000000000.0; 1533 runtime_sec_max += diff.tv_usec * 1000.0; 1534 runtime_sec_max /= 1e9; 1535 1536 runtime_sec_min = runtime_ns_min/1e9; 1537 1538 bytes = g->bytes_done; 1539 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / 1e9; 1540 1541 if (g->p.measure_convergence) { 1542 print_res(name, runtime_sec_max, 1543 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge"); 1544 } 1545 1546 print_res(name, runtime_sec_max, 1547 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime"); 1548 1549 print_res(name, runtime_sec_min, 1550 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime"); 1551 1552 print_res(name, runtime_avg, 1553 "secs,", "runtime-avg/thread", "secs average thread-runtime"); 1554 1555 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0; 1556 print_res(name, delta_runtime / runtime_sec_max * 100.0, 1557 "%,", "spread-runtime/thread", "% difference between max/avg runtime"); 1558 1559 print_res(name, bytes / g->p.nr_tasks / 1e9, 1560 "GB,", "data/thread", "GB data processed, per thread"); 1561 1562 print_res(name, bytes / 1e9, 1563 "GB,", "data-total", "GB data processed, total"); 1564 1565 print_res(name, runtime_sec_max * 1e9 / (bytes / g->p.nr_tasks), 1566 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime"); 1567 1568 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max, 1569 "GB/sec,", "thread-speed", "GB/sec/thread speed"); 1570 1571 print_res(name, bytes / runtime_sec_max / 1e9, 1572 "GB/sec,", "total-speed", "GB/sec total speed"); 1573 1574 if (g->p.show_details >= 2) { 1575 char tname[32]; 1576 struct thread_data *td; 1577 for (p = 0; p < g->p.nr_proc; p++) { 1578 for (t = 0; t < g->p.nr_threads; t++) { 1579 memset(tname, 0, 32); 1580 td = g->threads + p*g->p.nr_threads + t; 1581 snprintf(tname, 32, "process%d:thread%d", p, t); 1582 print_res(tname, td->speed_gbs, 1583 "GB/sec", "thread-speed", "GB/sec/thread speed"); 1584 print_res(tname, td->system_time_ns / 1e9, 1585 "secs", "thread-system-time", "system CPU time/thread"); 1586 print_res(tname, td->user_time_ns / 1e9, 1587 "secs", "thread-user-time", "user CPU time/thread"); 1588 } 1589 } 1590 } 1591 1592 free(pids); 1593 1594 deinit(); 1595 1596 return 0; 1597 } 1598 1599 #define MAX_ARGS 50 1600 1601 static int command_size(const char **argv) 1602 { 1603 int size = 0; 1604 1605 while (*argv) { 1606 size++; 1607 argv++; 1608 } 1609 1610 BUG_ON(size >= MAX_ARGS); 1611 1612 return size; 1613 } 1614 1615 static void init_params(struct params *p, const char *name, int argc, const char **argv) 1616 { 1617 int i; 1618 1619 printf("\n # Running %s \"perf bench numa", name); 1620 1621 for (i = 0; i < argc; i++) 1622 printf(" %s", argv[i]); 1623 1624 printf("\"\n"); 1625 1626 memset(p, 0, sizeof(*p)); 1627 1628 /* Initialize nonzero defaults: */ 1629 1630 p->serialize_startup = 1; 1631 p->data_reads = true; 1632 p->data_writes = true; 1633 p->data_backwards = true; 1634 p->data_rand_walk = true; 1635 p->nr_loops = -1; 1636 p->init_random = true; 1637 p->mb_global_str = "1"; 1638 p->nr_proc = 1; 1639 p->nr_threads = 1; 1640 p->nr_secs = 5; 1641 p->run_all = argc == 1; 1642 } 1643 1644 static int run_bench_numa(const char *name, const char **argv) 1645 { 1646 int argc = command_size(argv); 1647 1648 init_params(&p0, name, argc, argv); 1649 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1650 if (argc) 1651 goto err; 1652 1653 if (__bench_numa(name)) 1654 goto err; 1655 1656 return 0; 1657 1658 err: 1659 return -1; 1660 } 1661 1662 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk" 1663 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1" 1664 1665 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1" 1666 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1" 1667 1668 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1" 1669 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1" 1670 1671 /* 1672 * The built-in test-suite executed by "perf bench numa -a". 1673 * 1674 * (A minimum of 4 nodes and 16 GB of RAM is recommended.) 1675 */ 1676 static const char *tests[][MAX_ARGS] = { 1677 /* Basic single-stream NUMA bandwidth measurements: */ 1678 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1679 "-C" , "0", "-M", "0", OPT_BW_RAM }, 1680 { "RAM-bw-local-NOTHP,", 1681 "mem", "-p", "1", "-t", "1", "-P", "1024", 1682 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP }, 1683 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1684 "-C" , "0", "-M", "1", OPT_BW_RAM }, 1685 1686 /* 2-stream NUMA bandwidth measurements: */ 1687 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1688 "-C", "0,2", "-M", "0x2", OPT_BW_RAM }, 1689 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1690 "-C", "0,2", "-M", "1x2", OPT_BW_RAM }, 1691 1692 /* Cross-stream NUMA bandwidth measurement: */ 1693 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1694 "-C", "0,8", "-M", "1,0", OPT_BW_RAM }, 1695 1696 /* Convergence latency measurements: */ 1697 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV }, 1698 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV }, 1699 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV }, 1700 { " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1701 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1702 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV }, 1703 { " 4x4-convergence-NOTHP,", 1704 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1705 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV }, 1706 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV }, 1707 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV }, 1708 { " 8x4-convergence-NOTHP,", 1709 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1710 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV }, 1711 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV }, 1712 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV }, 1713 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV }, 1714 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV }, 1715 1716 /* Various NUMA process/thread layout bandwidth measurements: */ 1717 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW }, 1718 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW }, 1719 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW }, 1720 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW }, 1721 { " 8x1-bw-process-NOTHP,", 1722 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP }, 1723 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW }, 1724 1725 { " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW }, 1726 { " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW }, 1727 { "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW }, 1728 { "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW }, 1729 1730 { " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW }, 1731 { " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW }, 1732 { " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW }, 1733 { " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW }, 1734 { " 4x8-bw-thread-NOTHP,", 1735 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP }, 1736 { " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW }, 1737 { " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW }, 1738 1739 { "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW }, 1740 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW }, 1741 1742 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW }, 1743 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP }, 1744 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW }, 1745 { "numa01-bw-thread-NOTHP,", 1746 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP }, 1747 }; 1748 1749 static int bench_all(void) 1750 { 1751 int nr = ARRAY_SIZE(tests); 1752 int ret; 1753 int i; 1754 1755 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'"); 1756 BUG_ON(ret < 0); 1757 1758 for (i = 0; i < nr; i++) { 1759 run_bench_numa(tests[i][0], tests[i] + 1); 1760 } 1761 1762 printf("\n"); 1763 1764 return 0; 1765 } 1766 1767 int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused) 1768 { 1769 init_params(&p0, "main,", argc, argv); 1770 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1771 if (argc) 1772 goto err; 1773 1774 if (p0.run_all) 1775 return bench_all(); 1776 1777 if (__bench_numa(NULL)) 1778 goto err; 1779 1780 return 0; 1781 1782 err: 1783 usage_with_options(numa_usage, options); 1784 return -1; 1785 } 1786