1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * numa.c 4 * 5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance 6 */ 7 8 #include <inttypes.h> 9 /* For the CLR_() macros */ 10 #include <pthread.h> 11 12 #include <subcmd/parse-options.h> 13 #include "../util/cloexec.h" 14 15 #include "bench.h" 16 17 #include <errno.h> 18 #include <sched.h> 19 #include <stdio.h> 20 #include <assert.h> 21 #include <malloc.h> 22 #include <signal.h> 23 #include <stdlib.h> 24 #include <string.h> 25 #include <unistd.h> 26 #include <sys/mman.h> 27 #include <sys/time.h> 28 #include <sys/resource.h> 29 #include <sys/wait.h> 30 #include <sys/prctl.h> 31 #include <sys/types.h> 32 #include <linux/kernel.h> 33 #include <linux/time64.h> 34 #include <linux/numa.h> 35 #include <linux/zalloc.h> 36 37 #include <numa.h> 38 #include <numaif.h> 39 40 #ifndef RUSAGE_THREAD 41 # define RUSAGE_THREAD 1 42 #endif 43 44 /* 45 * Regular printout to the terminal, suppressed if -q is specified: 46 */ 47 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0) 48 49 /* 50 * Debug printf: 51 */ 52 #undef dprintf 53 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0) 54 55 struct thread_data { 56 int curr_cpu; 57 cpu_set_t bind_cpumask; 58 int bind_node; 59 u8 *process_data; 60 int process_nr; 61 int thread_nr; 62 int task_nr; 63 unsigned int loops_done; 64 u64 val; 65 u64 runtime_ns; 66 u64 system_time_ns; 67 u64 user_time_ns; 68 double speed_gbs; 69 pthread_mutex_t *process_lock; 70 }; 71 72 /* Parameters set by options: */ 73 74 struct params { 75 /* Startup synchronization: */ 76 bool serialize_startup; 77 78 /* Task hierarchy: */ 79 int nr_proc; 80 int nr_threads; 81 82 /* Working set sizes: */ 83 const char *mb_global_str; 84 const char *mb_proc_str; 85 const char *mb_proc_locked_str; 86 const char *mb_thread_str; 87 88 double mb_global; 89 double mb_proc; 90 double mb_proc_locked; 91 double mb_thread; 92 93 /* Access patterns to the working set: */ 94 bool data_reads; 95 bool data_writes; 96 bool data_backwards; 97 bool data_zero_memset; 98 bool data_rand_walk; 99 u32 nr_loops; 100 u32 nr_secs; 101 u32 sleep_usecs; 102 103 /* Working set initialization: */ 104 bool init_zero; 105 bool init_random; 106 bool init_cpu0; 107 108 /* Misc options: */ 109 int show_details; 110 int run_all; 111 int thp; 112 113 long bytes_global; 114 long bytes_process; 115 long bytes_process_locked; 116 long bytes_thread; 117 118 int nr_tasks; 119 bool show_quiet; 120 121 bool show_convergence; 122 bool measure_convergence; 123 124 int perturb_secs; 125 int nr_cpus; 126 int nr_nodes; 127 128 /* Affinity options -C and -N: */ 129 char *cpu_list_str; 130 char *node_list_str; 131 }; 132 133 134 /* Global, read-writable area, accessible to all processes and threads: */ 135 136 struct global_info { 137 u8 *data; 138 139 pthread_mutex_t startup_mutex; 140 pthread_cond_t startup_cond; 141 int nr_tasks_started; 142 143 pthread_mutex_t start_work_mutex; 144 pthread_cond_t start_work_cond; 145 int nr_tasks_working; 146 bool start_work; 147 148 pthread_mutex_t stop_work_mutex; 149 u64 bytes_done; 150 151 struct thread_data *threads; 152 153 /* Convergence latency measurement: */ 154 bool all_converged; 155 bool stop_work; 156 157 int print_once; 158 159 struct params p; 160 }; 161 162 static struct global_info *g = NULL; 163 164 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset); 165 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset); 166 167 struct params p0; 168 169 static const struct option options[] = { 170 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"), 171 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"), 172 173 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"), 174 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"), 175 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"), 176 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"), 177 178 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"), 179 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"), 180 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"), 181 182 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via reads (can be mixed with -W)"), 183 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"), 184 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"), 185 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"), 186 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"), 187 188 189 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"), 190 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"), 191 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"), 192 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"), 193 194 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"), 195 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"), 196 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"), 197 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, " 198 "convergence is reached when each process (all its threads) is running on a single NUMA node."), 199 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"), 200 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"), 201 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"), 202 203 /* Special option string parsing callbacks: */ 204 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]", 205 "bind the first N tasks to these specific cpus (the rest is unbound)", 206 parse_cpus_opt), 207 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]", 208 "bind the first N tasks to these specific memory nodes (the rest is unbound)", 209 parse_nodes_opt), 210 OPT_END() 211 }; 212 213 static const char * const bench_numa_usage[] = { 214 "perf bench numa <options>", 215 NULL 216 }; 217 218 static const char * const numa_usage[] = { 219 "perf bench numa mem [<options>]", 220 NULL 221 }; 222 223 /* 224 * To get number of numa nodes present. 225 */ 226 static int nr_numa_nodes(void) 227 { 228 int i, nr_nodes = 0; 229 230 for (i = 0; i < g->p.nr_nodes; i++) { 231 if (numa_bitmask_isbitset(numa_nodes_ptr, i)) 232 nr_nodes++; 233 } 234 235 return nr_nodes; 236 } 237 238 /* 239 * To check if given numa node is present. 240 */ 241 static int is_node_present(int node) 242 { 243 return numa_bitmask_isbitset(numa_nodes_ptr, node); 244 } 245 246 /* 247 * To check given numa node has cpus. 248 */ 249 static bool node_has_cpus(int node) 250 { 251 struct bitmask *cpumask = numa_allocate_cpumask(); 252 bool ret = false; /* fall back to nocpus */ 253 int cpu; 254 255 BUG_ON(!cpumask); 256 if (!numa_node_to_cpus(node, cpumask)) { 257 for (cpu = 0; cpu < (int)cpumask->size; cpu++) { 258 if (numa_bitmask_isbitset(cpumask, cpu)) { 259 ret = true; 260 break; 261 } 262 } 263 } 264 numa_free_cpumask(cpumask); 265 266 return ret; 267 } 268 269 static cpu_set_t bind_to_cpu(int target_cpu) 270 { 271 cpu_set_t orig_mask, mask; 272 int ret; 273 274 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); 275 BUG_ON(ret); 276 277 CPU_ZERO(&mask); 278 279 if (target_cpu == -1) { 280 int cpu; 281 282 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 283 CPU_SET(cpu, &mask); 284 } else { 285 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus); 286 CPU_SET(target_cpu, &mask); 287 } 288 289 ret = sched_setaffinity(0, sizeof(mask), &mask); 290 BUG_ON(ret); 291 292 return orig_mask; 293 } 294 295 static cpu_set_t bind_to_node(int target_node) 296 { 297 cpu_set_t orig_mask, mask; 298 int cpu; 299 int ret; 300 301 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); 302 BUG_ON(ret); 303 304 CPU_ZERO(&mask); 305 306 if (target_node == NUMA_NO_NODE) { 307 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 308 CPU_SET(cpu, &mask); 309 } else { 310 struct bitmask *cpumask = numa_allocate_cpumask(); 311 312 BUG_ON(!cpumask); 313 if (!numa_node_to_cpus(target_node, cpumask)) { 314 for (cpu = 0; cpu < (int)cpumask->size; cpu++) { 315 if (numa_bitmask_isbitset(cpumask, cpu)) 316 CPU_SET(cpu, &mask); 317 } 318 } 319 numa_free_cpumask(cpumask); 320 } 321 322 ret = sched_setaffinity(0, sizeof(mask), &mask); 323 BUG_ON(ret); 324 325 return orig_mask; 326 } 327 328 static void bind_to_cpumask(cpu_set_t mask) 329 { 330 int ret; 331 332 ret = sched_setaffinity(0, sizeof(mask), &mask); 333 BUG_ON(ret); 334 } 335 336 static void mempol_restore(void) 337 { 338 int ret; 339 340 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1); 341 342 BUG_ON(ret); 343 } 344 345 static void bind_to_memnode(int node) 346 { 347 struct bitmask *node_mask; 348 int ret; 349 350 if (node == NUMA_NO_NODE) 351 return; 352 353 node_mask = numa_allocate_nodemask(); 354 BUG_ON(!node_mask); 355 356 numa_bitmask_clearall(node_mask); 357 numa_bitmask_setbit(node_mask, node); 358 359 ret = set_mempolicy(MPOL_BIND, node_mask->maskp, node_mask->size + 1); 360 dprintf("binding to node %d, mask: %016lx => %d\n", node, *node_mask->maskp, ret); 361 362 numa_bitmask_free(node_mask); 363 BUG_ON(ret); 364 } 365 366 #define HPSIZE (2*1024*1024) 367 368 #define set_taskname(fmt...) \ 369 do { \ 370 char name[20]; \ 371 \ 372 snprintf(name, 20, fmt); \ 373 prctl(PR_SET_NAME, name); \ 374 } while (0) 375 376 static u8 *alloc_data(ssize_t bytes0, int map_flags, 377 int init_zero, int init_cpu0, int thp, int init_random) 378 { 379 cpu_set_t orig_mask; 380 ssize_t bytes; 381 u8 *buf; 382 int ret; 383 384 if (!bytes0) 385 return NULL; 386 387 /* Allocate and initialize all memory on CPU#0: */ 388 if (init_cpu0) { 389 int node = numa_node_of_cpu(0); 390 391 orig_mask = bind_to_node(node); 392 bind_to_memnode(node); 393 } 394 395 bytes = bytes0 + HPSIZE; 396 397 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0); 398 BUG_ON(buf == (void *)-1); 399 400 if (map_flags == MAP_PRIVATE) { 401 if (thp > 0) { 402 ret = madvise(buf, bytes, MADV_HUGEPAGE); 403 if (ret && !g->print_once) { 404 g->print_once = 1; 405 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n"); 406 } 407 } 408 if (thp < 0) { 409 ret = madvise(buf, bytes, MADV_NOHUGEPAGE); 410 if (ret && !g->print_once) { 411 g->print_once = 1; 412 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n"); 413 } 414 } 415 } 416 417 if (init_zero) { 418 bzero(buf, bytes); 419 } else { 420 /* Initialize random contents, different in each word: */ 421 if (init_random) { 422 u64 *wbuf = (void *)buf; 423 long off = rand(); 424 long i; 425 426 for (i = 0; i < bytes/8; i++) 427 wbuf[i] = i + off; 428 } 429 } 430 431 /* Align to 2MB boundary: */ 432 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1)); 433 434 /* Restore affinity: */ 435 if (init_cpu0) { 436 bind_to_cpumask(orig_mask); 437 mempol_restore(); 438 } 439 440 return buf; 441 } 442 443 static void free_data(void *data, ssize_t bytes) 444 { 445 int ret; 446 447 if (!data) 448 return; 449 450 ret = munmap(data, bytes); 451 BUG_ON(ret); 452 } 453 454 /* 455 * Create a shared memory buffer that can be shared between processes, zeroed: 456 */ 457 static void * zalloc_shared_data(ssize_t bytes) 458 { 459 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random); 460 } 461 462 /* 463 * Create a shared memory buffer that can be shared between processes: 464 */ 465 static void * setup_shared_data(ssize_t bytes) 466 { 467 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 468 } 469 470 /* 471 * Allocate process-local memory - this will either be shared between 472 * threads of this process, or only be accessed by this thread: 473 */ 474 static void * setup_private_data(ssize_t bytes) 475 { 476 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 477 } 478 479 /* 480 * Return a process-shared (global) mutex: 481 */ 482 static void init_global_mutex(pthread_mutex_t *mutex) 483 { 484 pthread_mutexattr_t attr; 485 486 pthread_mutexattr_init(&attr); 487 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED); 488 pthread_mutex_init(mutex, &attr); 489 } 490 491 /* 492 * Return a process-shared (global) condition variable: 493 */ 494 static void init_global_cond(pthread_cond_t *cond) 495 { 496 pthread_condattr_t attr; 497 498 pthread_condattr_init(&attr); 499 pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED); 500 pthread_cond_init(cond, &attr); 501 } 502 503 static int parse_cpu_list(const char *arg) 504 { 505 p0.cpu_list_str = strdup(arg); 506 507 dprintf("got CPU list: {%s}\n", p0.cpu_list_str); 508 509 return 0; 510 } 511 512 static int parse_setup_cpu_list(void) 513 { 514 struct thread_data *td; 515 char *str0, *str; 516 int t; 517 518 if (!g->p.cpu_list_str) 519 return 0; 520 521 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 522 523 str0 = str = strdup(g->p.cpu_list_str); 524 t = 0; 525 526 BUG_ON(!str); 527 528 tprintf("# binding tasks to CPUs:\n"); 529 tprintf("# "); 530 531 while (true) { 532 int bind_cpu, bind_cpu_0, bind_cpu_1; 533 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul; 534 int bind_len; 535 int step; 536 int mul; 537 538 tok = strsep(&str, ","); 539 if (!tok) 540 break; 541 542 tok_end = strstr(tok, "-"); 543 544 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 545 if (!tok_end) { 546 /* Single CPU specified: */ 547 bind_cpu_0 = bind_cpu_1 = atol(tok); 548 } else { 549 /* CPU range specified (for example: "5-11"): */ 550 bind_cpu_0 = atol(tok); 551 bind_cpu_1 = atol(tok_end + 1); 552 } 553 554 step = 1; 555 tok_step = strstr(tok, "#"); 556 if (tok_step) { 557 step = atol(tok_step + 1); 558 BUG_ON(step <= 0 || step >= g->p.nr_cpus); 559 } 560 561 /* 562 * Mask length. 563 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4', 564 * where the _4 means the next 4 CPUs are allowed. 565 */ 566 bind_len = 1; 567 tok_len = strstr(tok, "_"); 568 if (tok_len) { 569 bind_len = atol(tok_len + 1); 570 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus); 571 } 572 573 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 574 mul = 1; 575 tok_mul = strstr(tok, "x"); 576 if (tok_mul) { 577 mul = atol(tok_mul + 1); 578 BUG_ON(mul <= 0); 579 } 580 581 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul); 582 583 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) { 584 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus); 585 return -1; 586 } 587 588 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0); 589 BUG_ON(bind_cpu_0 > bind_cpu_1); 590 591 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) { 592 int i; 593 594 for (i = 0; i < mul; i++) { 595 int cpu; 596 597 if (t >= g->p.nr_tasks) { 598 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu); 599 goto out; 600 } 601 td = g->threads + t; 602 603 if (t) 604 tprintf(","); 605 if (bind_len > 1) { 606 tprintf("%2d/%d", bind_cpu, bind_len); 607 } else { 608 tprintf("%2d", bind_cpu); 609 } 610 611 CPU_ZERO(&td->bind_cpumask); 612 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) { 613 BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus); 614 CPU_SET(cpu, &td->bind_cpumask); 615 } 616 t++; 617 } 618 } 619 } 620 out: 621 622 tprintf("\n"); 623 624 if (t < g->p.nr_tasks) 625 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 626 627 free(str0); 628 return 0; 629 } 630 631 static int parse_cpus_opt(const struct option *opt __maybe_unused, 632 const char *arg, int unset __maybe_unused) 633 { 634 if (!arg) 635 return -1; 636 637 return parse_cpu_list(arg); 638 } 639 640 static int parse_node_list(const char *arg) 641 { 642 p0.node_list_str = strdup(arg); 643 644 dprintf("got NODE list: {%s}\n", p0.node_list_str); 645 646 return 0; 647 } 648 649 static int parse_setup_node_list(void) 650 { 651 struct thread_data *td; 652 char *str0, *str; 653 int t; 654 655 if (!g->p.node_list_str) 656 return 0; 657 658 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 659 660 str0 = str = strdup(g->p.node_list_str); 661 t = 0; 662 663 BUG_ON(!str); 664 665 tprintf("# binding tasks to NODEs:\n"); 666 tprintf("# "); 667 668 while (true) { 669 int bind_node, bind_node_0, bind_node_1; 670 char *tok, *tok_end, *tok_step, *tok_mul; 671 int step; 672 int mul; 673 674 tok = strsep(&str, ","); 675 if (!tok) 676 break; 677 678 tok_end = strstr(tok, "-"); 679 680 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 681 if (!tok_end) { 682 /* Single NODE specified: */ 683 bind_node_0 = bind_node_1 = atol(tok); 684 } else { 685 /* NODE range specified (for example: "5-11"): */ 686 bind_node_0 = atol(tok); 687 bind_node_1 = atol(tok_end + 1); 688 } 689 690 step = 1; 691 tok_step = strstr(tok, "#"); 692 if (tok_step) { 693 step = atol(tok_step + 1); 694 BUG_ON(step <= 0 || step >= g->p.nr_nodes); 695 } 696 697 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 698 mul = 1; 699 tok_mul = strstr(tok, "x"); 700 if (tok_mul) { 701 mul = atol(tok_mul + 1); 702 BUG_ON(mul <= 0); 703 } 704 705 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step); 706 707 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) { 708 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes); 709 return -1; 710 } 711 712 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0); 713 BUG_ON(bind_node_0 > bind_node_1); 714 715 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) { 716 int i; 717 718 for (i = 0; i < mul; i++) { 719 if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) { 720 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node); 721 goto out; 722 } 723 td = g->threads + t; 724 725 if (!t) 726 tprintf(" %2d", bind_node); 727 else 728 tprintf(",%2d", bind_node); 729 730 td->bind_node = bind_node; 731 t++; 732 } 733 } 734 } 735 out: 736 737 tprintf("\n"); 738 739 if (t < g->p.nr_tasks) 740 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 741 742 free(str0); 743 return 0; 744 } 745 746 static int parse_nodes_opt(const struct option *opt __maybe_unused, 747 const char *arg, int unset __maybe_unused) 748 { 749 if (!arg) 750 return -1; 751 752 return parse_node_list(arg); 753 } 754 755 #define BIT(x) (1ul << x) 756 757 static inline uint32_t lfsr_32(uint32_t lfsr) 758 { 759 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31); 760 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps); 761 } 762 763 /* 764 * Make sure there's real data dependency to RAM (when read 765 * accesses are enabled), so the compiler, the CPU and the 766 * kernel (KSM, zero page, etc.) cannot optimize away RAM 767 * accesses: 768 */ 769 static inline u64 access_data(u64 *data, u64 val) 770 { 771 if (g->p.data_reads) 772 val += *data; 773 if (g->p.data_writes) 774 *data = val + 1; 775 return val; 776 } 777 778 /* 779 * The worker process does two types of work, a forwards going 780 * loop and a backwards going loop. 781 * 782 * We do this so that on multiprocessor systems we do not create 783 * a 'train' of processing, with highly synchronized processes, 784 * skewing the whole benchmark. 785 */ 786 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val) 787 { 788 long words = bytes/sizeof(u64); 789 u64 *data = (void *)__data; 790 long chunk_0, chunk_1; 791 u64 *d0, *d, *d1; 792 long off; 793 long i; 794 795 BUG_ON(!data && words); 796 BUG_ON(data && !words); 797 798 if (!data) 799 return val; 800 801 /* Very simple memset() work variant: */ 802 if (g->p.data_zero_memset && !g->p.data_rand_walk) { 803 bzero(data, bytes); 804 return val; 805 } 806 807 /* Spread out by PID/TID nr and by loop nr: */ 808 chunk_0 = words/nr_max; 809 chunk_1 = words/g->p.nr_loops; 810 off = nr*chunk_0 + loop*chunk_1; 811 812 while (off >= words) 813 off -= words; 814 815 if (g->p.data_rand_walk) { 816 u32 lfsr = nr + loop + val; 817 int j; 818 819 for (i = 0; i < words/1024; i++) { 820 long start, end; 821 822 lfsr = lfsr_32(lfsr); 823 824 start = lfsr % words; 825 end = min(start + 1024, words-1); 826 827 if (g->p.data_zero_memset) { 828 bzero(data + start, (end-start) * sizeof(u64)); 829 } else { 830 for (j = start; j < end; j++) 831 val = access_data(data + j, val); 832 } 833 } 834 } else if (!g->p.data_backwards || (nr + loop) & 1) { 835 /* Process data forwards: */ 836 837 d0 = data + off; 838 d = data + off + 1; 839 d1 = data + words; 840 841 for (;;) { 842 if (unlikely(d >= d1)) 843 d = data; 844 if (unlikely(d == d0)) 845 break; 846 847 val = access_data(d, val); 848 849 d++; 850 } 851 } else { 852 /* Process data backwards: */ 853 854 d0 = data + off; 855 d = data + off - 1; 856 d1 = data + words; 857 858 for (;;) { 859 if (unlikely(d < data)) 860 d = data + words-1; 861 if (unlikely(d == d0)) 862 break; 863 864 val = access_data(d, val); 865 866 d--; 867 } 868 } 869 870 return val; 871 } 872 873 static void update_curr_cpu(int task_nr, unsigned long bytes_worked) 874 { 875 unsigned int cpu; 876 877 cpu = sched_getcpu(); 878 879 g->threads[task_nr].curr_cpu = cpu; 880 prctl(0, bytes_worked); 881 } 882 883 /* 884 * Count the number of nodes a process's threads 885 * are spread out on. 886 * 887 * A count of 1 means that the process is compressed 888 * to a single node. A count of g->p.nr_nodes means it's 889 * spread out on the whole system. 890 */ 891 static int count_process_nodes(int process_nr) 892 { 893 char *node_present; 894 int nodes; 895 int n, t; 896 897 node_present = (char *)malloc(g->p.nr_nodes * sizeof(char)); 898 BUG_ON(!node_present); 899 for (nodes = 0; nodes < g->p.nr_nodes; nodes++) 900 node_present[nodes] = 0; 901 902 for (t = 0; t < g->p.nr_threads; t++) { 903 struct thread_data *td; 904 int task_nr; 905 int node; 906 907 task_nr = process_nr*g->p.nr_threads + t; 908 td = g->threads + task_nr; 909 910 node = numa_node_of_cpu(td->curr_cpu); 911 if (node < 0) /* curr_cpu was likely still -1 */ { 912 free(node_present); 913 return 0; 914 } 915 916 node_present[node] = 1; 917 } 918 919 nodes = 0; 920 921 for (n = 0; n < g->p.nr_nodes; n++) 922 nodes += node_present[n]; 923 924 free(node_present); 925 return nodes; 926 } 927 928 /* 929 * Count the number of distinct process-threads a node contains. 930 * 931 * A count of 1 means that the node contains only a single 932 * process. If all nodes on the system contain at most one 933 * process then we are well-converged. 934 */ 935 static int count_node_processes(int node) 936 { 937 int processes = 0; 938 int t, p; 939 940 for (p = 0; p < g->p.nr_proc; p++) { 941 for (t = 0; t < g->p.nr_threads; t++) { 942 struct thread_data *td; 943 int task_nr; 944 int n; 945 946 task_nr = p*g->p.nr_threads + t; 947 td = g->threads + task_nr; 948 949 n = numa_node_of_cpu(td->curr_cpu); 950 if (n == node) { 951 processes++; 952 break; 953 } 954 } 955 } 956 957 return processes; 958 } 959 960 static void calc_convergence_compression(int *strong) 961 { 962 unsigned int nodes_min, nodes_max; 963 int p; 964 965 nodes_min = -1; 966 nodes_max = 0; 967 968 for (p = 0; p < g->p.nr_proc; p++) { 969 unsigned int nodes = count_process_nodes(p); 970 971 if (!nodes) { 972 *strong = 0; 973 return; 974 } 975 976 nodes_min = min(nodes, nodes_min); 977 nodes_max = max(nodes, nodes_max); 978 } 979 980 /* Strong convergence: all threads compress on a single node: */ 981 if (nodes_min == 1 && nodes_max == 1) { 982 *strong = 1; 983 } else { 984 *strong = 0; 985 tprintf(" {%d-%d}", nodes_min, nodes_max); 986 } 987 } 988 989 static void calc_convergence(double runtime_ns_max, double *convergence) 990 { 991 unsigned int loops_done_min, loops_done_max; 992 int process_groups; 993 int *nodes; 994 int distance; 995 int nr_min; 996 int nr_max; 997 int strong; 998 int sum; 999 int nr; 1000 int node; 1001 int cpu; 1002 int t; 1003 1004 if (!g->p.show_convergence && !g->p.measure_convergence) 1005 return; 1006 1007 nodes = (int *)malloc(g->p.nr_nodes * sizeof(int)); 1008 BUG_ON(!nodes); 1009 for (node = 0; node < g->p.nr_nodes; node++) 1010 nodes[node] = 0; 1011 1012 loops_done_min = -1; 1013 loops_done_max = 0; 1014 1015 for (t = 0; t < g->p.nr_tasks; t++) { 1016 struct thread_data *td = g->threads + t; 1017 unsigned int loops_done; 1018 1019 cpu = td->curr_cpu; 1020 1021 /* Not all threads have written it yet: */ 1022 if (cpu < 0) 1023 continue; 1024 1025 node = numa_node_of_cpu(cpu); 1026 1027 nodes[node]++; 1028 1029 loops_done = td->loops_done; 1030 loops_done_min = min(loops_done, loops_done_min); 1031 loops_done_max = max(loops_done, loops_done_max); 1032 } 1033 1034 nr_max = 0; 1035 nr_min = g->p.nr_tasks; 1036 sum = 0; 1037 1038 for (node = 0; node < g->p.nr_nodes; node++) { 1039 if (!is_node_present(node)) 1040 continue; 1041 nr = nodes[node]; 1042 nr_min = min(nr, nr_min); 1043 nr_max = max(nr, nr_max); 1044 sum += nr; 1045 } 1046 BUG_ON(nr_min > nr_max); 1047 1048 BUG_ON(sum > g->p.nr_tasks); 1049 1050 if (0 && (sum < g->p.nr_tasks)) { 1051 free(nodes); 1052 return; 1053 } 1054 1055 /* 1056 * Count the number of distinct process groups present 1057 * on nodes - when we are converged this will decrease 1058 * to g->p.nr_proc: 1059 */ 1060 process_groups = 0; 1061 1062 for (node = 0; node < g->p.nr_nodes; node++) { 1063 int processes; 1064 1065 if (!is_node_present(node)) 1066 continue; 1067 processes = count_node_processes(node); 1068 nr = nodes[node]; 1069 tprintf(" %2d/%-2d", nr, processes); 1070 1071 process_groups += processes; 1072 } 1073 1074 distance = nr_max - nr_min; 1075 1076 tprintf(" [%2d/%-2d]", distance, process_groups); 1077 1078 tprintf(" l:%3d-%-3d (%3d)", 1079 loops_done_min, loops_done_max, loops_done_max-loops_done_min); 1080 1081 if (loops_done_min && loops_done_max) { 1082 double skew = 1.0 - (double)loops_done_min/loops_done_max; 1083 1084 tprintf(" [%4.1f%%]", skew * 100.0); 1085 } 1086 1087 calc_convergence_compression(&strong); 1088 1089 if (strong && process_groups == g->p.nr_proc) { 1090 if (!*convergence) { 1091 *convergence = runtime_ns_max; 1092 tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC); 1093 if (g->p.measure_convergence) { 1094 g->all_converged = true; 1095 g->stop_work = true; 1096 } 1097 } 1098 } else { 1099 if (*convergence) { 1100 tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC); 1101 *convergence = 0; 1102 } 1103 tprintf("\n"); 1104 } 1105 1106 free(nodes); 1107 } 1108 1109 static void show_summary(double runtime_ns_max, int l, double *convergence) 1110 { 1111 tprintf("\r # %5.1f%% [%.1f mins]", 1112 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0); 1113 1114 calc_convergence(runtime_ns_max, convergence); 1115 1116 if (g->p.show_details >= 0) 1117 fflush(stdout); 1118 } 1119 1120 static void *worker_thread(void *__tdata) 1121 { 1122 struct thread_data *td = __tdata; 1123 struct timeval start0, start, stop, diff; 1124 int process_nr = td->process_nr; 1125 int thread_nr = td->thread_nr; 1126 unsigned long last_perturbance; 1127 int task_nr = td->task_nr; 1128 int details = g->p.show_details; 1129 int first_task, last_task; 1130 double convergence = 0; 1131 u64 val = td->val; 1132 double runtime_ns_max; 1133 u8 *global_data; 1134 u8 *process_data; 1135 u8 *thread_data; 1136 u64 bytes_done, secs; 1137 long work_done; 1138 u32 l; 1139 struct rusage rusage; 1140 1141 bind_to_cpumask(td->bind_cpumask); 1142 bind_to_memnode(td->bind_node); 1143 1144 set_taskname("thread %d/%d", process_nr, thread_nr); 1145 1146 global_data = g->data; 1147 process_data = td->process_data; 1148 thread_data = setup_private_data(g->p.bytes_thread); 1149 1150 bytes_done = 0; 1151 1152 last_task = 0; 1153 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1) 1154 last_task = 1; 1155 1156 first_task = 0; 1157 if (process_nr == 0 && thread_nr == 0) 1158 first_task = 1; 1159 1160 if (details >= 2) { 1161 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n", 1162 process_nr, thread_nr, global_data, process_data, thread_data); 1163 } 1164 1165 if (g->p.serialize_startup) { 1166 pthread_mutex_lock(&g->startup_mutex); 1167 g->nr_tasks_started++; 1168 /* The last thread wakes the main process. */ 1169 if (g->nr_tasks_started == g->p.nr_tasks) 1170 pthread_cond_signal(&g->startup_cond); 1171 1172 pthread_mutex_unlock(&g->startup_mutex); 1173 1174 /* Here we will wait for the main process to start us all at once: */ 1175 pthread_mutex_lock(&g->start_work_mutex); 1176 g->start_work = false; 1177 g->nr_tasks_working++; 1178 while (!g->start_work) 1179 pthread_cond_wait(&g->start_work_cond, &g->start_work_mutex); 1180 1181 pthread_mutex_unlock(&g->start_work_mutex); 1182 } 1183 1184 gettimeofday(&start0, NULL); 1185 1186 start = stop = start0; 1187 last_perturbance = start.tv_sec; 1188 1189 for (l = 0; l < g->p.nr_loops; l++) { 1190 start = stop; 1191 1192 if (g->stop_work) 1193 break; 1194 1195 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val); 1196 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val); 1197 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val); 1198 1199 if (g->p.sleep_usecs) { 1200 pthread_mutex_lock(td->process_lock); 1201 usleep(g->p.sleep_usecs); 1202 pthread_mutex_unlock(td->process_lock); 1203 } 1204 /* 1205 * Amount of work to be done under a process-global lock: 1206 */ 1207 if (g->p.bytes_process_locked) { 1208 pthread_mutex_lock(td->process_lock); 1209 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val); 1210 pthread_mutex_unlock(td->process_lock); 1211 } 1212 1213 work_done = g->p.bytes_global + g->p.bytes_process + 1214 g->p.bytes_process_locked + g->p.bytes_thread; 1215 1216 update_curr_cpu(task_nr, work_done); 1217 bytes_done += work_done; 1218 1219 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs) 1220 continue; 1221 1222 td->loops_done = l; 1223 1224 gettimeofday(&stop, NULL); 1225 1226 /* Check whether our max runtime timed out: */ 1227 if (g->p.nr_secs) { 1228 timersub(&stop, &start0, &diff); 1229 if ((u32)diff.tv_sec >= g->p.nr_secs) { 1230 g->stop_work = true; 1231 break; 1232 } 1233 } 1234 1235 /* Update the summary at most once per second: */ 1236 if (start.tv_sec == stop.tv_sec) 1237 continue; 1238 1239 /* 1240 * Perturb the first task's equilibrium every g->p.perturb_secs seconds, 1241 * by migrating to CPU#0: 1242 */ 1243 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) { 1244 cpu_set_t orig_mask; 1245 int target_cpu; 1246 int this_cpu; 1247 1248 last_perturbance = stop.tv_sec; 1249 1250 /* 1251 * Depending on where we are running, move into 1252 * the other half of the system, to create some 1253 * real disturbance: 1254 */ 1255 this_cpu = g->threads[task_nr].curr_cpu; 1256 if (this_cpu < g->p.nr_cpus/2) 1257 target_cpu = g->p.nr_cpus-1; 1258 else 1259 target_cpu = 0; 1260 1261 orig_mask = bind_to_cpu(target_cpu); 1262 1263 /* Here we are running on the target CPU already */ 1264 if (details >= 1) 1265 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu); 1266 1267 bind_to_cpumask(orig_mask); 1268 } 1269 1270 if (details >= 3) { 1271 timersub(&stop, &start, &diff); 1272 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC; 1273 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC; 1274 1275 if (details >= 0) { 1276 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n", 1277 process_nr, thread_nr, runtime_ns_max / bytes_done, val); 1278 } 1279 fflush(stdout); 1280 } 1281 if (!last_task) 1282 continue; 1283 1284 timersub(&stop, &start0, &diff); 1285 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC; 1286 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC; 1287 1288 show_summary(runtime_ns_max, l, &convergence); 1289 } 1290 1291 gettimeofday(&stop, NULL); 1292 timersub(&stop, &start0, &diff); 1293 td->runtime_ns = diff.tv_sec * NSEC_PER_SEC; 1294 td->runtime_ns += diff.tv_usec * NSEC_PER_USEC; 1295 secs = td->runtime_ns / NSEC_PER_SEC; 1296 td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0; 1297 1298 getrusage(RUSAGE_THREAD, &rusage); 1299 td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC; 1300 td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC; 1301 td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC; 1302 td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC; 1303 1304 free_data(thread_data, g->p.bytes_thread); 1305 1306 pthread_mutex_lock(&g->stop_work_mutex); 1307 g->bytes_done += bytes_done; 1308 pthread_mutex_unlock(&g->stop_work_mutex); 1309 1310 return NULL; 1311 } 1312 1313 /* 1314 * A worker process starts a couple of threads: 1315 */ 1316 static void worker_process(int process_nr) 1317 { 1318 pthread_mutex_t process_lock; 1319 struct thread_data *td; 1320 pthread_t *pthreads; 1321 u8 *process_data; 1322 int task_nr; 1323 int ret; 1324 int t; 1325 1326 pthread_mutex_init(&process_lock, NULL); 1327 set_taskname("process %d", process_nr); 1328 1329 /* 1330 * Pick up the memory policy and the CPU binding of our first thread, 1331 * so that we initialize memory accordingly: 1332 */ 1333 task_nr = process_nr*g->p.nr_threads; 1334 td = g->threads + task_nr; 1335 1336 bind_to_memnode(td->bind_node); 1337 bind_to_cpumask(td->bind_cpumask); 1338 1339 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t)); 1340 process_data = setup_private_data(g->p.bytes_process); 1341 1342 if (g->p.show_details >= 3) { 1343 printf(" # process %2d global mem: %p, process mem: %p\n", 1344 process_nr, g->data, process_data); 1345 } 1346 1347 for (t = 0; t < g->p.nr_threads; t++) { 1348 task_nr = process_nr*g->p.nr_threads + t; 1349 td = g->threads + task_nr; 1350 1351 td->process_data = process_data; 1352 td->process_nr = process_nr; 1353 td->thread_nr = t; 1354 td->task_nr = task_nr; 1355 td->val = rand(); 1356 td->curr_cpu = -1; 1357 td->process_lock = &process_lock; 1358 1359 ret = pthread_create(pthreads + t, NULL, worker_thread, td); 1360 BUG_ON(ret); 1361 } 1362 1363 for (t = 0; t < g->p.nr_threads; t++) { 1364 ret = pthread_join(pthreads[t], NULL); 1365 BUG_ON(ret); 1366 } 1367 1368 free_data(process_data, g->p.bytes_process); 1369 free(pthreads); 1370 } 1371 1372 static void print_summary(void) 1373 { 1374 if (g->p.show_details < 0) 1375 return; 1376 1377 printf("\n ###\n"); 1378 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n", 1379 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus); 1380 printf(" # %5dx %5ldMB global shared mem operations\n", 1381 g->p.nr_loops, g->p.bytes_global/1024/1024); 1382 printf(" # %5dx %5ldMB process shared mem operations\n", 1383 g->p.nr_loops, g->p.bytes_process/1024/1024); 1384 printf(" # %5dx %5ldMB thread local mem operations\n", 1385 g->p.nr_loops, g->p.bytes_thread/1024/1024); 1386 1387 printf(" ###\n"); 1388 1389 printf("\n ###\n"); fflush(stdout); 1390 } 1391 1392 static void init_thread_data(void) 1393 { 1394 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1395 int t; 1396 1397 g->threads = zalloc_shared_data(size); 1398 1399 for (t = 0; t < g->p.nr_tasks; t++) { 1400 struct thread_data *td = g->threads + t; 1401 int cpu; 1402 1403 /* Allow all nodes by default: */ 1404 td->bind_node = NUMA_NO_NODE; 1405 1406 /* Allow all CPUs by default: */ 1407 CPU_ZERO(&td->bind_cpumask); 1408 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 1409 CPU_SET(cpu, &td->bind_cpumask); 1410 } 1411 } 1412 1413 static void deinit_thread_data(void) 1414 { 1415 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1416 1417 free_data(g->threads, size); 1418 } 1419 1420 static int init(void) 1421 { 1422 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0); 1423 1424 /* Copy over options: */ 1425 g->p = p0; 1426 1427 g->p.nr_cpus = numa_num_configured_cpus(); 1428 1429 g->p.nr_nodes = numa_max_node() + 1; 1430 1431 /* char array in count_process_nodes(): */ 1432 BUG_ON(g->p.nr_nodes < 0); 1433 1434 if (g->p.show_quiet && !g->p.show_details) 1435 g->p.show_details = -1; 1436 1437 /* Some memory should be specified: */ 1438 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str) 1439 return -1; 1440 1441 if (g->p.mb_global_str) { 1442 g->p.mb_global = atof(g->p.mb_global_str); 1443 BUG_ON(g->p.mb_global < 0); 1444 } 1445 1446 if (g->p.mb_proc_str) { 1447 g->p.mb_proc = atof(g->p.mb_proc_str); 1448 BUG_ON(g->p.mb_proc < 0); 1449 } 1450 1451 if (g->p.mb_proc_locked_str) { 1452 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str); 1453 BUG_ON(g->p.mb_proc_locked < 0); 1454 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc); 1455 } 1456 1457 if (g->p.mb_thread_str) { 1458 g->p.mb_thread = atof(g->p.mb_thread_str); 1459 BUG_ON(g->p.mb_thread < 0); 1460 } 1461 1462 BUG_ON(g->p.nr_threads <= 0); 1463 BUG_ON(g->p.nr_proc <= 0); 1464 1465 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads; 1466 1467 g->p.bytes_global = g->p.mb_global *1024L*1024L; 1468 g->p.bytes_process = g->p.mb_proc *1024L*1024L; 1469 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L; 1470 g->p.bytes_thread = g->p.mb_thread *1024L*1024L; 1471 1472 g->data = setup_shared_data(g->p.bytes_global); 1473 1474 /* Startup serialization: */ 1475 init_global_mutex(&g->start_work_mutex); 1476 init_global_cond(&g->start_work_cond); 1477 init_global_mutex(&g->startup_mutex); 1478 init_global_cond(&g->startup_cond); 1479 init_global_mutex(&g->stop_work_mutex); 1480 1481 init_thread_data(); 1482 1483 tprintf("#\n"); 1484 if (parse_setup_cpu_list() || parse_setup_node_list()) 1485 return -1; 1486 tprintf("#\n"); 1487 1488 print_summary(); 1489 1490 return 0; 1491 } 1492 1493 static void deinit(void) 1494 { 1495 free_data(g->data, g->p.bytes_global); 1496 g->data = NULL; 1497 1498 deinit_thread_data(); 1499 1500 free_data(g, sizeof(*g)); 1501 g = NULL; 1502 } 1503 1504 /* 1505 * Print a short or long result, depending on the verbosity setting: 1506 */ 1507 static void print_res(const char *name, double val, 1508 const char *txt_unit, const char *txt_short, const char *txt_long) 1509 { 1510 if (!name) 1511 name = "main,"; 1512 1513 if (!g->p.show_quiet) 1514 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short); 1515 else 1516 printf(" %14.3f %s\n", val, txt_long); 1517 } 1518 1519 static int __bench_numa(const char *name) 1520 { 1521 struct timeval start, stop, diff; 1522 u64 runtime_ns_min, runtime_ns_sum; 1523 pid_t *pids, pid, wpid; 1524 double delta_runtime; 1525 double runtime_avg; 1526 double runtime_sec_max; 1527 double runtime_sec_min; 1528 int wait_stat; 1529 double bytes; 1530 int i, t, p; 1531 1532 if (init()) 1533 return -1; 1534 1535 pids = zalloc(g->p.nr_proc * sizeof(*pids)); 1536 pid = -1; 1537 1538 if (g->p.serialize_startup) { 1539 tprintf(" #\n"); 1540 tprintf(" # Startup synchronization: ..."); fflush(stdout); 1541 } 1542 1543 gettimeofday(&start, NULL); 1544 1545 for (i = 0; i < g->p.nr_proc; i++) { 1546 pid = fork(); 1547 dprintf(" # process %2d: PID %d\n", i, pid); 1548 1549 BUG_ON(pid < 0); 1550 if (!pid) { 1551 /* Child process: */ 1552 worker_process(i); 1553 1554 exit(0); 1555 } 1556 pids[i] = pid; 1557 1558 } 1559 1560 if (g->p.serialize_startup) { 1561 bool threads_ready = false; 1562 double startup_sec; 1563 1564 /* 1565 * Wait for all the threads to start up. The last thread will 1566 * signal this process. 1567 */ 1568 pthread_mutex_lock(&g->startup_mutex); 1569 while (g->nr_tasks_started != g->p.nr_tasks) 1570 pthread_cond_wait(&g->startup_cond, &g->startup_mutex); 1571 1572 pthread_mutex_unlock(&g->startup_mutex); 1573 1574 /* Wait for all threads to be at the start_work_cond. */ 1575 while (!threads_ready) { 1576 pthread_mutex_lock(&g->start_work_mutex); 1577 threads_ready = (g->nr_tasks_working == g->p.nr_tasks); 1578 pthread_mutex_unlock(&g->start_work_mutex); 1579 if (!threads_ready) 1580 usleep(1); 1581 } 1582 1583 gettimeofday(&stop, NULL); 1584 1585 timersub(&stop, &start, &diff); 1586 1587 startup_sec = diff.tv_sec * NSEC_PER_SEC; 1588 startup_sec += diff.tv_usec * NSEC_PER_USEC; 1589 startup_sec /= NSEC_PER_SEC; 1590 1591 tprintf(" threads initialized in %.6f seconds.\n", startup_sec); 1592 tprintf(" #\n"); 1593 1594 start = stop; 1595 /* Start all threads running. */ 1596 pthread_mutex_lock(&g->start_work_mutex); 1597 g->start_work = true; 1598 pthread_mutex_unlock(&g->start_work_mutex); 1599 pthread_cond_broadcast(&g->start_work_cond); 1600 } else { 1601 gettimeofday(&start, NULL); 1602 } 1603 1604 /* Parent process: */ 1605 1606 1607 for (i = 0; i < g->p.nr_proc; i++) { 1608 wpid = waitpid(pids[i], &wait_stat, 0); 1609 BUG_ON(wpid < 0); 1610 BUG_ON(!WIFEXITED(wait_stat)); 1611 1612 } 1613 1614 runtime_ns_sum = 0; 1615 runtime_ns_min = -1LL; 1616 1617 for (t = 0; t < g->p.nr_tasks; t++) { 1618 u64 thread_runtime_ns = g->threads[t].runtime_ns; 1619 1620 runtime_ns_sum += thread_runtime_ns; 1621 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min); 1622 } 1623 1624 gettimeofday(&stop, NULL); 1625 timersub(&stop, &start, &diff); 1626 1627 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT); 1628 1629 tprintf("\n ###\n"); 1630 tprintf("\n"); 1631 1632 runtime_sec_max = diff.tv_sec * NSEC_PER_SEC; 1633 runtime_sec_max += diff.tv_usec * NSEC_PER_USEC; 1634 runtime_sec_max /= NSEC_PER_SEC; 1635 1636 runtime_sec_min = runtime_ns_min / NSEC_PER_SEC; 1637 1638 bytes = g->bytes_done; 1639 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC; 1640 1641 if (g->p.measure_convergence) { 1642 print_res(name, runtime_sec_max, 1643 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge"); 1644 } 1645 1646 print_res(name, runtime_sec_max, 1647 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime"); 1648 1649 print_res(name, runtime_sec_min, 1650 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime"); 1651 1652 print_res(name, runtime_avg, 1653 "secs,", "runtime-avg/thread", "secs average thread-runtime"); 1654 1655 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0; 1656 print_res(name, delta_runtime / runtime_sec_max * 100.0, 1657 "%,", "spread-runtime/thread", "% difference between max/avg runtime"); 1658 1659 print_res(name, bytes / g->p.nr_tasks / 1e9, 1660 "GB,", "data/thread", "GB data processed, per thread"); 1661 1662 print_res(name, bytes / 1e9, 1663 "GB,", "data-total", "GB data processed, total"); 1664 1665 print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks), 1666 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime"); 1667 1668 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max, 1669 "GB/sec,", "thread-speed", "GB/sec/thread speed"); 1670 1671 print_res(name, bytes / runtime_sec_max / 1e9, 1672 "GB/sec,", "total-speed", "GB/sec total speed"); 1673 1674 if (g->p.show_details >= 2) { 1675 char tname[14 + 2 * 10 + 1]; 1676 struct thread_data *td; 1677 for (p = 0; p < g->p.nr_proc; p++) { 1678 for (t = 0; t < g->p.nr_threads; t++) { 1679 memset(tname, 0, sizeof(tname)); 1680 td = g->threads + p*g->p.nr_threads + t; 1681 snprintf(tname, sizeof(tname), "process%d:thread%d", p, t); 1682 print_res(tname, td->speed_gbs, 1683 "GB/sec", "thread-speed", "GB/sec/thread speed"); 1684 print_res(tname, td->system_time_ns / NSEC_PER_SEC, 1685 "secs", "thread-system-time", "system CPU time/thread"); 1686 print_res(tname, td->user_time_ns / NSEC_PER_SEC, 1687 "secs", "thread-user-time", "user CPU time/thread"); 1688 } 1689 } 1690 } 1691 1692 free(pids); 1693 1694 deinit(); 1695 1696 return 0; 1697 } 1698 1699 #define MAX_ARGS 50 1700 1701 static int command_size(const char **argv) 1702 { 1703 int size = 0; 1704 1705 while (*argv) { 1706 size++; 1707 argv++; 1708 } 1709 1710 BUG_ON(size >= MAX_ARGS); 1711 1712 return size; 1713 } 1714 1715 static void init_params(struct params *p, const char *name, int argc, const char **argv) 1716 { 1717 int i; 1718 1719 printf("\n # Running %s \"perf bench numa", name); 1720 1721 for (i = 0; i < argc; i++) 1722 printf(" %s", argv[i]); 1723 1724 printf("\"\n"); 1725 1726 memset(p, 0, sizeof(*p)); 1727 1728 /* Initialize nonzero defaults: */ 1729 1730 p->serialize_startup = 1; 1731 p->data_reads = true; 1732 p->data_writes = true; 1733 p->data_backwards = true; 1734 p->data_rand_walk = true; 1735 p->nr_loops = -1; 1736 p->init_random = true; 1737 p->mb_global_str = "1"; 1738 p->nr_proc = 1; 1739 p->nr_threads = 1; 1740 p->nr_secs = 5; 1741 p->run_all = argc == 1; 1742 } 1743 1744 static int run_bench_numa(const char *name, const char **argv) 1745 { 1746 int argc = command_size(argv); 1747 1748 init_params(&p0, name, argc, argv); 1749 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1750 if (argc) 1751 goto err; 1752 1753 if (__bench_numa(name)) 1754 goto err; 1755 1756 return 0; 1757 1758 err: 1759 return -1; 1760 } 1761 1762 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk" 1763 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1" 1764 1765 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1" 1766 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1" 1767 1768 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1" 1769 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1" 1770 1771 /* 1772 * The built-in test-suite executed by "perf bench numa -a". 1773 * 1774 * (A minimum of 4 nodes and 16 GB of RAM is recommended.) 1775 */ 1776 static const char *tests[][MAX_ARGS] = { 1777 /* Basic single-stream NUMA bandwidth measurements: */ 1778 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1779 "-C" , "0", "-M", "0", OPT_BW_RAM }, 1780 { "RAM-bw-local-NOTHP,", 1781 "mem", "-p", "1", "-t", "1", "-P", "1024", 1782 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP }, 1783 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1784 "-C" , "0", "-M", "1", OPT_BW_RAM }, 1785 1786 /* 2-stream NUMA bandwidth measurements: */ 1787 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1788 "-C", "0,2", "-M", "0x2", OPT_BW_RAM }, 1789 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1790 "-C", "0,2", "-M", "1x2", OPT_BW_RAM }, 1791 1792 /* Cross-stream NUMA bandwidth measurement: */ 1793 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1794 "-C", "0,8", "-M", "1,0", OPT_BW_RAM }, 1795 1796 /* Convergence latency measurements: */ 1797 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV }, 1798 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV }, 1799 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV }, 1800 { " 2x3-convergence,", "mem", "-p", "2", "-t", "3", "-P", "1020", OPT_CONV }, 1801 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1802 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV }, 1803 { " 4x4-convergence-NOTHP,", 1804 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1805 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV }, 1806 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV }, 1807 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV }, 1808 { " 8x4-convergence-NOTHP,", 1809 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1810 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV }, 1811 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV }, 1812 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV }, 1813 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV }, 1814 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV }, 1815 1816 /* Various NUMA process/thread layout bandwidth measurements: */ 1817 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW }, 1818 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW }, 1819 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW }, 1820 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW }, 1821 { " 8x1-bw-process-NOTHP,", 1822 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP }, 1823 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW }, 1824 1825 { " 1x4-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW }, 1826 { " 1x8-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW }, 1827 { "1x16-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW }, 1828 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW }, 1829 1830 { " 2x3-bw-process,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW }, 1831 { " 4x4-bw-process,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW }, 1832 { " 4x6-bw-process,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW }, 1833 { " 4x8-bw-process,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW }, 1834 { " 4x8-bw-process-NOTHP,", 1835 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP }, 1836 { " 3x3-bw-process,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW }, 1837 { " 5x5-bw-process,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW }, 1838 1839 { "2x16-bw-process,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW }, 1840 { "1x32-bw-process,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW }, 1841 1842 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW }, 1843 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP }, 1844 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW }, 1845 { "numa01-bw-thread-NOTHP,", 1846 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP }, 1847 }; 1848 1849 static int bench_all(void) 1850 { 1851 int nr = ARRAY_SIZE(tests); 1852 int ret; 1853 int i; 1854 1855 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'"); 1856 BUG_ON(ret < 0); 1857 1858 for (i = 0; i < nr; i++) { 1859 run_bench_numa(tests[i][0], tests[i] + 1); 1860 } 1861 1862 printf("\n"); 1863 1864 return 0; 1865 } 1866 1867 int bench_numa(int argc, const char **argv) 1868 { 1869 init_params(&p0, "main,", argc, argv); 1870 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1871 if (argc) 1872 goto err; 1873 1874 if (p0.run_all) 1875 return bench_all(); 1876 1877 if (__bench_numa(NULL)) 1878 goto err; 1879 1880 return 0; 1881 1882 err: 1883 usage_with_options(numa_usage, options); 1884 return -1; 1885 } 1886