xref: /openbmc/linux/tools/perf/bench/numa.c (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * numa.c
4  *
5  * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
6  */
7 
8 #include <inttypes.h>
9 /* For the CLR_() macros */
10 #include <pthread.h>
11 
12 #include <subcmd/parse-options.h>
13 #include "../util/cloexec.h"
14 
15 #include "bench.h"
16 
17 #include <errno.h>
18 #include <sched.h>
19 #include <stdio.h>
20 #include <assert.h>
21 #include <malloc.h>
22 #include <signal.h>
23 #include <stdlib.h>
24 #include <string.h>
25 #include <unistd.h>
26 #include <sys/mman.h>
27 #include <sys/time.h>
28 #include <sys/resource.h>
29 #include <sys/wait.h>
30 #include <sys/prctl.h>
31 #include <sys/types.h>
32 #include <linux/kernel.h>
33 #include <linux/time64.h>
34 #include <linux/numa.h>
35 #include <linux/zalloc.h>
36 
37 #include <numa.h>
38 #include <numaif.h>
39 
40 #ifndef RUSAGE_THREAD
41 # define RUSAGE_THREAD 1
42 #endif
43 
44 /*
45  * Regular printout to the terminal, supressed if -q is specified:
46  */
47 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
48 
49 /*
50  * Debug printf:
51  */
52 #undef dprintf
53 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
54 
55 struct thread_data {
56 	int			curr_cpu;
57 	cpu_set_t		bind_cpumask;
58 	int			bind_node;
59 	u8			*process_data;
60 	int			process_nr;
61 	int			thread_nr;
62 	int			task_nr;
63 	unsigned int		loops_done;
64 	u64			val;
65 	u64			runtime_ns;
66 	u64			system_time_ns;
67 	u64			user_time_ns;
68 	double			speed_gbs;
69 	pthread_mutex_t		*process_lock;
70 };
71 
72 /* Parameters set by options: */
73 
74 struct params {
75 	/* Startup synchronization: */
76 	bool			serialize_startup;
77 
78 	/* Task hierarchy: */
79 	int			nr_proc;
80 	int			nr_threads;
81 
82 	/* Working set sizes: */
83 	const char		*mb_global_str;
84 	const char		*mb_proc_str;
85 	const char		*mb_proc_locked_str;
86 	const char		*mb_thread_str;
87 
88 	double			mb_global;
89 	double			mb_proc;
90 	double			mb_proc_locked;
91 	double			mb_thread;
92 
93 	/* Access patterns to the working set: */
94 	bool			data_reads;
95 	bool			data_writes;
96 	bool			data_backwards;
97 	bool			data_zero_memset;
98 	bool			data_rand_walk;
99 	u32			nr_loops;
100 	u32			nr_secs;
101 	u32			sleep_usecs;
102 
103 	/* Working set initialization: */
104 	bool			init_zero;
105 	bool			init_random;
106 	bool			init_cpu0;
107 
108 	/* Misc options: */
109 	int			show_details;
110 	int			run_all;
111 	int			thp;
112 
113 	long			bytes_global;
114 	long			bytes_process;
115 	long			bytes_process_locked;
116 	long			bytes_thread;
117 
118 	int			nr_tasks;
119 	bool			show_quiet;
120 
121 	bool			show_convergence;
122 	bool			measure_convergence;
123 
124 	int			perturb_secs;
125 	int			nr_cpus;
126 	int			nr_nodes;
127 
128 	/* Affinity options -C and -N: */
129 	char			*cpu_list_str;
130 	char			*node_list_str;
131 };
132 
133 
134 /* Global, read-writable area, accessible to all processes and threads: */
135 
136 struct global_info {
137 	u8			*data;
138 
139 	pthread_mutex_t		startup_mutex;
140 	pthread_cond_t		startup_cond;
141 	int			nr_tasks_started;
142 
143 	pthread_mutex_t		start_work_mutex;
144 	pthread_cond_t		start_work_cond;
145 	int			nr_tasks_working;
146 	bool			start_work;
147 
148 	pthread_mutex_t		stop_work_mutex;
149 	u64			bytes_done;
150 
151 	struct thread_data	*threads;
152 
153 	/* Convergence latency measurement: */
154 	bool			all_converged;
155 	bool			stop_work;
156 
157 	int			print_once;
158 
159 	struct params		p;
160 };
161 
162 static struct global_info	*g = NULL;
163 
164 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
165 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
166 
167 struct params p0;
168 
169 static const struct option options[] = {
170 	OPT_INTEGER('p', "nr_proc"	, &p0.nr_proc,		"number of processes"),
171 	OPT_INTEGER('t', "nr_threads"	, &p0.nr_threads,	"number of threads per process"),
172 
173 	OPT_STRING('G', "mb_global"	, &p0.mb_global_str,	"MB", "global  memory (MBs)"),
174 	OPT_STRING('P', "mb_proc"	, &p0.mb_proc_str,	"MB", "process memory (MBs)"),
175 	OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
176 	OPT_STRING('T', "mb_thread"	, &p0.mb_thread_str,	"MB", "thread  memory (MBs)"),
177 
178 	OPT_UINTEGER('l', "nr_loops"	, &p0.nr_loops,		"max number of loops to run (default: unlimited)"),
179 	OPT_UINTEGER('s', "nr_secs"	, &p0.nr_secs,		"max number of seconds to run (default: 5 secs)"),
180 	OPT_UINTEGER('u', "usleep"	, &p0.sleep_usecs,	"usecs to sleep per loop iteration"),
181 
182 	OPT_BOOLEAN('R', "data_reads"	, &p0.data_reads,	"access the data via reads (can be mixed with -W)"),
183 	OPT_BOOLEAN('W', "data_writes"	, &p0.data_writes,	"access the data via writes (can be mixed with -R)"),
184 	OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,	"access the data backwards as well"),
185 	OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
186 	OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,	"access the data with random (32bit LFSR) walk"),
187 
188 
189 	OPT_BOOLEAN('z', "init_zero"	, &p0.init_zero,	"bzero the initial allocations"),
190 	OPT_BOOLEAN('I', "init_random"	, &p0.init_random,	"randomize the contents of the initial allocations"),
191 	OPT_BOOLEAN('0', "init_cpu0"	, &p0.init_cpu0,	"do the initial allocations on CPU#0"),
192 	OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,	"perturb thread 0/0 every X secs, to test convergence stability"),
193 
194 	OPT_INCR   ('d', "show_details"	, &p0.show_details,	"Show details"),
195 	OPT_INCR   ('a', "all"		, &p0.run_all,		"Run all tests in the suite"),
196 	OPT_INTEGER('H', "thp"		, &p0.thp,		"MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
197 	OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
198 		    "convergence is reached when each process (all its threads) is running on a single NUMA node."),
199 	OPT_BOOLEAN('m', "measure_convergence",	&p0.measure_convergence, "measure convergence latency"),
200 	OPT_BOOLEAN('q', "quiet"	, &p0.show_quiet,	"quiet mode"),
201 	OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
202 
203 	/* Special option string parsing callbacks: */
204         OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
205 			"bind the first N tasks to these specific cpus (the rest is unbound)",
206 			parse_cpus_opt),
207         OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
208 			"bind the first N tasks to these specific memory nodes (the rest is unbound)",
209 			parse_nodes_opt),
210 	OPT_END()
211 };
212 
213 static const char * const bench_numa_usage[] = {
214 	"perf bench numa <options>",
215 	NULL
216 };
217 
218 static const char * const numa_usage[] = {
219 	"perf bench numa mem [<options>]",
220 	NULL
221 };
222 
223 /*
224  * To get number of numa nodes present.
225  */
226 static int nr_numa_nodes(void)
227 {
228 	int i, nr_nodes = 0;
229 
230 	for (i = 0; i < g->p.nr_nodes; i++) {
231 		if (numa_bitmask_isbitset(numa_nodes_ptr, i))
232 			nr_nodes++;
233 	}
234 
235 	return nr_nodes;
236 }
237 
238 /*
239  * To check if given numa node is present.
240  */
241 static int is_node_present(int node)
242 {
243 	return numa_bitmask_isbitset(numa_nodes_ptr, node);
244 }
245 
246 /*
247  * To check given numa node has cpus.
248  */
249 static bool node_has_cpus(int node)
250 {
251 	struct bitmask *cpumask = numa_allocate_cpumask();
252 	bool ret = false; /* fall back to nocpus */
253 	int cpu;
254 
255 	BUG_ON(!cpumask);
256 	if (!numa_node_to_cpus(node, cpumask)) {
257 		for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
258 			if (numa_bitmask_isbitset(cpumask, cpu)) {
259 				ret = true;
260 				break;
261 			}
262 		}
263 	}
264 	numa_free_cpumask(cpumask);
265 
266 	return ret;
267 }
268 
269 static cpu_set_t bind_to_cpu(int target_cpu)
270 {
271 	cpu_set_t orig_mask, mask;
272 	int ret;
273 
274 	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
275 	BUG_ON(ret);
276 
277 	CPU_ZERO(&mask);
278 
279 	if (target_cpu == -1) {
280 		int cpu;
281 
282 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
283 			CPU_SET(cpu, &mask);
284 	} else {
285 		BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
286 		CPU_SET(target_cpu, &mask);
287 	}
288 
289 	ret = sched_setaffinity(0, sizeof(mask), &mask);
290 	BUG_ON(ret);
291 
292 	return orig_mask;
293 }
294 
295 static cpu_set_t bind_to_node(int target_node)
296 {
297 	cpu_set_t orig_mask, mask;
298 	int cpu;
299 	int ret;
300 
301 	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
302 	BUG_ON(ret);
303 
304 	CPU_ZERO(&mask);
305 
306 	if (target_node == NUMA_NO_NODE) {
307 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
308 			CPU_SET(cpu, &mask);
309 	} else {
310 		struct bitmask *cpumask = numa_allocate_cpumask();
311 
312 		BUG_ON(!cpumask);
313 		if (!numa_node_to_cpus(target_node, cpumask)) {
314 			for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
315 				if (numa_bitmask_isbitset(cpumask, cpu))
316 					CPU_SET(cpu, &mask);
317 			}
318 		}
319 		numa_free_cpumask(cpumask);
320 	}
321 
322 	ret = sched_setaffinity(0, sizeof(mask), &mask);
323 	BUG_ON(ret);
324 
325 	return orig_mask;
326 }
327 
328 static void bind_to_cpumask(cpu_set_t mask)
329 {
330 	int ret;
331 
332 	ret = sched_setaffinity(0, sizeof(mask), &mask);
333 	BUG_ON(ret);
334 }
335 
336 static void mempol_restore(void)
337 {
338 	int ret;
339 
340 	ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
341 
342 	BUG_ON(ret);
343 }
344 
345 static void bind_to_memnode(int node)
346 {
347 	unsigned long nodemask;
348 	int ret;
349 
350 	if (node == NUMA_NO_NODE)
351 		return;
352 
353 	BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
354 	nodemask = 1L << node;
355 
356 	ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
357 	dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
358 
359 	BUG_ON(ret);
360 }
361 
362 #define HPSIZE (2*1024*1024)
363 
364 #define set_taskname(fmt...)				\
365 do {							\
366 	char name[20];					\
367 							\
368 	snprintf(name, 20, fmt);			\
369 	prctl(PR_SET_NAME, name);			\
370 } while (0)
371 
372 static u8 *alloc_data(ssize_t bytes0, int map_flags,
373 		      int init_zero, int init_cpu0, int thp, int init_random)
374 {
375 	cpu_set_t orig_mask;
376 	ssize_t bytes;
377 	u8 *buf;
378 	int ret;
379 
380 	if (!bytes0)
381 		return NULL;
382 
383 	/* Allocate and initialize all memory on CPU#0: */
384 	if (init_cpu0) {
385 		int node = numa_node_of_cpu(0);
386 
387 		orig_mask = bind_to_node(node);
388 		bind_to_memnode(node);
389 	}
390 
391 	bytes = bytes0 + HPSIZE;
392 
393 	buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
394 	BUG_ON(buf == (void *)-1);
395 
396 	if (map_flags == MAP_PRIVATE) {
397 		if (thp > 0) {
398 			ret = madvise(buf, bytes, MADV_HUGEPAGE);
399 			if (ret && !g->print_once) {
400 				g->print_once = 1;
401 				printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
402 			}
403 		}
404 		if (thp < 0) {
405 			ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
406 			if (ret && !g->print_once) {
407 				g->print_once = 1;
408 				printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
409 			}
410 		}
411 	}
412 
413 	if (init_zero) {
414 		bzero(buf, bytes);
415 	} else {
416 		/* Initialize random contents, different in each word: */
417 		if (init_random) {
418 			u64 *wbuf = (void *)buf;
419 			long off = rand();
420 			long i;
421 
422 			for (i = 0; i < bytes/8; i++)
423 				wbuf[i] = i + off;
424 		}
425 	}
426 
427 	/* Align to 2MB boundary: */
428 	buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
429 
430 	/* Restore affinity: */
431 	if (init_cpu0) {
432 		bind_to_cpumask(orig_mask);
433 		mempol_restore();
434 	}
435 
436 	return buf;
437 }
438 
439 static void free_data(void *data, ssize_t bytes)
440 {
441 	int ret;
442 
443 	if (!data)
444 		return;
445 
446 	ret = munmap(data, bytes);
447 	BUG_ON(ret);
448 }
449 
450 /*
451  * Create a shared memory buffer that can be shared between processes, zeroed:
452  */
453 static void * zalloc_shared_data(ssize_t bytes)
454 {
455 	return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
456 }
457 
458 /*
459  * Create a shared memory buffer that can be shared between processes:
460  */
461 static void * setup_shared_data(ssize_t bytes)
462 {
463 	return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
464 }
465 
466 /*
467  * Allocate process-local memory - this will either be shared between
468  * threads of this process, or only be accessed by this thread:
469  */
470 static void * setup_private_data(ssize_t bytes)
471 {
472 	return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
473 }
474 
475 /*
476  * Return a process-shared (global) mutex:
477  */
478 static void init_global_mutex(pthread_mutex_t *mutex)
479 {
480 	pthread_mutexattr_t attr;
481 
482 	pthread_mutexattr_init(&attr);
483 	pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
484 	pthread_mutex_init(mutex, &attr);
485 }
486 
487 /*
488  * Return a process-shared (global) condition variable:
489  */
490 static void init_global_cond(pthread_cond_t *cond)
491 {
492 	pthread_condattr_t attr;
493 
494 	pthread_condattr_init(&attr);
495 	pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
496 	pthread_cond_init(cond, &attr);
497 }
498 
499 static int parse_cpu_list(const char *arg)
500 {
501 	p0.cpu_list_str = strdup(arg);
502 
503 	dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
504 
505 	return 0;
506 }
507 
508 static int parse_setup_cpu_list(void)
509 {
510 	struct thread_data *td;
511 	char *str0, *str;
512 	int t;
513 
514 	if (!g->p.cpu_list_str)
515 		return 0;
516 
517 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
518 
519 	str0 = str = strdup(g->p.cpu_list_str);
520 	t = 0;
521 
522 	BUG_ON(!str);
523 
524 	tprintf("# binding tasks to CPUs:\n");
525 	tprintf("#  ");
526 
527 	while (true) {
528 		int bind_cpu, bind_cpu_0, bind_cpu_1;
529 		char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
530 		int bind_len;
531 		int step;
532 		int mul;
533 
534 		tok = strsep(&str, ",");
535 		if (!tok)
536 			break;
537 
538 		tok_end = strstr(tok, "-");
539 
540 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
541 		if (!tok_end) {
542 			/* Single CPU specified: */
543 			bind_cpu_0 = bind_cpu_1 = atol(tok);
544 		} else {
545 			/* CPU range specified (for example: "5-11"): */
546 			bind_cpu_0 = atol(tok);
547 			bind_cpu_1 = atol(tok_end + 1);
548 		}
549 
550 		step = 1;
551 		tok_step = strstr(tok, "#");
552 		if (tok_step) {
553 			step = atol(tok_step + 1);
554 			BUG_ON(step <= 0 || step >= g->p.nr_cpus);
555 		}
556 
557 		/*
558 		 * Mask length.
559 		 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
560 		 * where the _4 means the next 4 CPUs are allowed.
561 		 */
562 		bind_len = 1;
563 		tok_len = strstr(tok, "_");
564 		if (tok_len) {
565 			bind_len = atol(tok_len + 1);
566 			BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
567 		}
568 
569 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
570 		mul = 1;
571 		tok_mul = strstr(tok, "x");
572 		if (tok_mul) {
573 			mul = atol(tok_mul + 1);
574 			BUG_ON(mul <= 0);
575 		}
576 
577 		dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
578 
579 		if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
580 			printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
581 			return -1;
582 		}
583 
584 		BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
585 		BUG_ON(bind_cpu_0 > bind_cpu_1);
586 
587 		for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
588 			int i;
589 
590 			for (i = 0; i < mul; i++) {
591 				int cpu;
592 
593 				if (t >= g->p.nr_tasks) {
594 					printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
595 					goto out;
596 				}
597 				td = g->threads + t;
598 
599 				if (t)
600 					tprintf(",");
601 				if (bind_len > 1) {
602 					tprintf("%2d/%d", bind_cpu, bind_len);
603 				} else {
604 					tprintf("%2d", bind_cpu);
605 				}
606 
607 				CPU_ZERO(&td->bind_cpumask);
608 				for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
609 					BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
610 					CPU_SET(cpu, &td->bind_cpumask);
611 				}
612 				t++;
613 			}
614 		}
615 	}
616 out:
617 
618 	tprintf("\n");
619 
620 	if (t < g->p.nr_tasks)
621 		printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
622 
623 	free(str0);
624 	return 0;
625 }
626 
627 static int parse_cpus_opt(const struct option *opt __maybe_unused,
628 			  const char *arg, int unset __maybe_unused)
629 {
630 	if (!arg)
631 		return -1;
632 
633 	return parse_cpu_list(arg);
634 }
635 
636 static int parse_node_list(const char *arg)
637 {
638 	p0.node_list_str = strdup(arg);
639 
640 	dprintf("got NODE list: {%s}\n", p0.node_list_str);
641 
642 	return 0;
643 }
644 
645 static int parse_setup_node_list(void)
646 {
647 	struct thread_data *td;
648 	char *str0, *str;
649 	int t;
650 
651 	if (!g->p.node_list_str)
652 		return 0;
653 
654 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
655 
656 	str0 = str = strdup(g->p.node_list_str);
657 	t = 0;
658 
659 	BUG_ON(!str);
660 
661 	tprintf("# binding tasks to NODEs:\n");
662 	tprintf("# ");
663 
664 	while (true) {
665 		int bind_node, bind_node_0, bind_node_1;
666 		char *tok, *tok_end, *tok_step, *tok_mul;
667 		int step;
668 		int mul;
669 
670 		tok = strsep(&str, ",");
671 		if (!tok)
672 			break;
673 
674 		tok_end = strstr(tok, "-");
675 
676 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
677 		if (!tok_end) {
678 			/* Single NODE specified: */
679 			bind_node_0 = bind_node_1 = atol(tok);
680 		} else {
681 			/* NODE range specified (for example: "5-11"): */
682 			bind_node_0 = atol(tok);
683 			bind_node_1 = atol(tok_end + 1);
684 		}
685 
686 		step = 1;
687 		tok_step = strstr(tok, "#");
688 		if (tok_step) {
689 			step = atol(tok_step + 1);
690 			BUG_ON(step <= 0 || step >= g->p.nr_nodes);
691 		}
692 
693 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
694 		mul = 1;
695 		tok_mul = strstr(tok, "x");
696 		if (tok_mul) {
697 			mul = atol(tok_mul + 1);
698 			BUG_ON(mul <= 0);
699 		}
700 
701 		dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
702 
703 		if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
704 			printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
705 			return -1;
706 		}
707 
708 		BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
709 		BUG_ON(bind_node_0 > bind_node_1);
710 
711 		for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
712 			int i;
713 
714 			for (i = 0; i < mul; i++) {
715 				if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
716 					printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
717 					goto out;
718 				}
719 				td = g->threads + t;
720 
721 				if (!t)
722 					tprintf(" %2d", bind_node);
723 				else
724 					tprintf(",%2d", bind_node);
725 
726 				td->bind_node = bind_node;
727 				t++;
728 			}
729 		}
730 	}
731 out:
732 
733 	tprintf("\n");
734 
735 	if (t < g->p.nr_tasks)
736 		printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
737 
738 	free(str0);
739 	return 0;
740 }
741 
742 static int parse_nodes_opt(const struct option *opt __maybe_unused,
743 			  const char *arg, int unset __maybe_unused)
744 {
745 	if (!arg)
746 		return -1;
747 
748 	return parse_node_list(arg);
749 }
750 
751 #define BIT(x) (1ul << x)
752 
753 static inline uint32_t lfsr_32(uint32_t lfsr)
754 {
755 	const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
756 	return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
757 }
758 
759 /*
760  * Make sure there's real data dependency to RAM (when read
761  * accesses are enabled), so the compiler, the CPU and the
762  * kernel (KSM, zero page, etc.) cannot optimize away RAM
763  * accesses:
764  */
765 static inline u64 access_data(u64 *data, u64 val)
766 {
767 	if (g->p.data_reads)
768 		val += *data;
769 	if (g->p.data_writes)
770 		*data = val + 1;
771 	return val;
772 }
773 
774 /*
775  * The worker process does two types of work, a forwards going
776  * loop and a backwards going loop.
777  *
778  * We do this so that on multiprocessor systems we do not create
779  * a 'train' of processing, with highly synchronized processes,
780  * skewing the whole benchmark.
781  */
782 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
783 {
784 	long words = bytes/sizeof(u64);
785 	u64 *data = (void *)__data;
786 	long chunk_0, chunk_1;
787 	u64 *d0, *d, *d1;
788 	long off;
789 	long i;
790 
791 	BUG_ON(!data && words);
792 	BUG_ON(data && !words);
793 
794 	if (!data)
795 		return val;
796 
797 	/* Very simple memset() work variant: */
798 	if (g->p.data_zero_memset && !g->p.data_rand_walk) {
799 		bzero(data, bytes);
800 		return val;
801 	}
802 
803 	/* Spread out by PID/TID nr and by loop nr: */
804 	chunk_0 = words/nr_max;
805 	chunk_1 = words/g->p.nr_loops;
806 	off = nr*chunk_0 + loop*chunk_1;
807 
808 	while (off >= words)
809 		off -= words;
810 
811 	if (g->p.data_rand_walk) {
812 		u32 lfsr = nr + loop + val;
813 		int j;
814 
815 		for (i = 0; i < words/1024; i++) {
816 			long start, end;
817 
818 			lfsr = lfsr_32(lfsr);
819 
820 			start = lfsr % words;
821 			end = min(start + 1024, words-1);
822 
823 			if (g->p.data_zero_memset) {
824 				bzero(data + start, (end-start) * sizeof(u64));
825 			} else {
826 				for (j = start; j < end; j++)
827 					val = access_data(data + j, val);
828 			}
829 		}
830 	} else if (!g->p.data_backwards || (nr + loop) & 1) {
831 		/* Process data forwards: */
832 
833 		d0 = data + off;
834 		d  = data + off + 1;
835 		d1 = data + words;
836 
837 		for (;;) {
838 			if (unlikely(d >= d1))
839 				d = data;
840 			if (unlikely(d == d0))
841 				break;
842 
843 			val = access_data(d, val);
844 
845 			d++;
846 		}
847 	} else {
848 		/* Process data backwards: */
849 
850 		d0 = data + off;
851 		d  = data + off - 1;
852 		d1 = data + words;
853 
854 		for (;;) {
855 			if (unlikely(d < data))
856 				d = data + words-1;
857 			if (unlikely(d == d0))
858 				break;
859 
860 			val = access_data(d, val);
861 
862 			d--;
863 		}
864 	}
865 
866 	return val;
867 }
868 
869 static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
870 {
871 	unsigned int cpu;
872 
873 	cpu = sched_getcpu();
874 
875 	g->threads[task_nr].curr_cpu = cpu;
876 	prctl(0, bytes_worked);
877 }
878 
879 #define MAX_NR_NODES	64
880 
881 /*
882  * Count the number of nodes a process's threads
883  * are spread out on.
884  *
885  * A count of 1 means that the process is compressed
886  * to a single node. A count of g->p.nr_nodes means it's
887  * spread out on the whole system.
888  */
889 static int count_process_nodes(int process_nr)
890 {
891 	char node_present[MAX_NR_NODES] = { 0, };
892 	int nodes;
893 	int n, t;
894 
895 	for (t = 0; t < g->p.nr_threads; t++) {
896 		struct thread_data *td;
897 		int task_nr;
898 		int node;
899 
900 		task_nr = process_nr*g->p.nr_threads + t;
901 		td = g->threads + task_nr;
902 
903 		node = numa_node_of_cpu(td->curr_cpu);
904 		if (node < 0) /* curr_cpu was likely still -1 */
905 			return 0;
906 
907 		node_present[node] = 1;
908 	}
909 
910 	nodes = 0;
911 
912 	for (n = 0; n < MAX_NR_NODES; n++)
913 		nodes += node_present[n];
914 
915 	return nodes;
916 }
917 
918 /*
919  * Count the number of distinct process-threads a node contains.
920  *
921  * A count of 1 means that the node contains only a single
922  * process. If all nodes on the system contain at most one
923  * process then we are well-converged.
924  */
925 static int count_node_processes(int node)
926 {
927 	int processes = 0;
928 	int t, p;
929 
930 	for (p = 0; p < g->p.nr_proc; p++) {
931 		for (t = 0; t < g->p.nr_threads; t++) {
932 			struct thread_data *td;
933 			int task_nr;
934 			int n;
935 
936 			task_nr = p*g->p.nr_threads + t;
937 			td = g->threads + task_nr;
938 
939 			n = numa_node_of_cpu(td->curr_cpu);
940 			if (n == node) {
941 				processes++;
942 				break;
943 			}
944 		}
945 	}
946 
947 	return processes;
948 }
949 
950 static void calc_convergence_compression(int *strong)
951 {
952 	unsigned int nodes_min, nodes_max;
953 	int p;
954 
955 	nodes_min = -1;
956 	nodes_max =  0;
957 
958 	for (p = 0; p < g->p.nr_proc; p++) {
959 		unsigned int nodes = count_process_nodes(p);
960 
961 		if (!nodes) {
962 			*strong = 0;
963 			return;
964 		}
965 
966 		nodes_min = min(nodes, nodes_min);
967 		nodes_max = max(nodes, nodes_max);
968 	}
969 
970 	/* Strong convergence: all threads compress on a single node: */
971 	if (nodes_min == 1 && nodes_max == 1) {
972 		*strong = 1;
973 	} else {
974 		*strong = 0;
975 		tprintf(" {%d-%d}", nodes_min, nodes_max);
976 	}
977 }
978 
979 static void calc_convergence(double runtime_ns_max, double *convergence)
980 {
981 	unsigned int loops_done_min, loops_done_max;
982 	int process_groups;
983 	int nodes[MAX_NR_NODES];
984 	int distance;
985 	int nr_min;
986 	int nr_max;
987 	int strong;
988 	int sum;
989 	int nr;
990 	int node;
991 	int cpu;
992 	int t;
993 
994 	if (!g->p.show_convergence && !g->p.measure_convergence)
995 		return;
996 
997 	for (node = 0; node < g->p.nr_nodes; node++)
998 		nodes[node] = 0;
999 
1000 	loops_done_min = -1;
1001 	loops_done_max = 0;
1002 
1003 	for (t = 0; t < g->p.nr_tasks; t++) {
1004 		struct thread_data *td = g->threads + t;
1005 		unsigned int loops_done;
1006 
1007 		cpu = td->curr_cpu;
1008 
1009 		/* Not all threads have written it yet: */
1010 		if (cpu < 0)
1011 			continue;
1012 
1013 		node = numa_node_of_cpu(cpu);
1014 
1015 		nodes[node]++;
1016 
1017 		loops_done = td->loops_done;
1018 		loops_done_min = min(loops_done, loops_done_min);
1019 		loops_done_max = max(loops_done, loops_done_max);
1020 	}
1021 
1022 	nr_max = 0;
1023 	nr_min = g->p.nr_tasks;
1024 	sum = 0;
1025 
1026 	for (node = 0; node < g->p.nr_nodes; node++) {
1027 		if (!is_node_present(node))
1028 			continue;
1029 		nr = nodes[node];
1030 		nr_min = min(nr, nr_min);
1031 		nr_max = max(nr, nr_max);
1032 		sum += nr;
1033 	}
1034 	BUG_ON(nr_min > nr_max);
1035 
1036 	BUG_ON(sum > g->p.nr_tasks);
1037 
1038 	if (0 && (sum < g->p.nr_tasks))
1039 		return;
1040 
1041 	/*
1042 	 * Count the number of distinct process groups present
1043 	 * on nodes - when we are converged this will decrease
1044 	 * to g->p.nr_proc:
1045 	 */
1046 	process_groups = 0;
1047 
1048 	for (node = 0; node < g->p.nr_nodes; node++) {
1049 		int processes;
1050 
1051 		if (!is_node_present(node))
1052 			continue;
1053 		processes = count_node_processes(node);
1054 		nr = nodes[node];
1055 		tprintf(" %2d/%-2d", nr, processes);
1056 
1057 		process_groups += processes;
1058 	}
1059 
1060 	distance = nr_max - nr_min;
1061 
1062 	tprintf(" [%2d/%-2d]", distance, process_groups);
1063 
1064 	tprintf(" l:%3d-%-3d (%3d)",
1065 		loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1066 
1067 	if (loops_done_min && loops_done_max) {
1068 		double skew = 1.0 - (double)loops_done_min/loops_done_max;
1069 
1070 		tprintf(" [%4.1f%%]", skew * 100.0);
1071 	}
1072 
1073 	calc_convergence_compression(&strong);
1074 
1075 	if (strong && process_groups == g->p.nr_proc) {
1076 		if (!*convergence) {
1077 			*convergence = runtime_ns_max;
1078 			tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1079 			if (g->p.measure_convergence) {
1080 				g->all_converged = true;
1081 				g->stop_work = true;
1082 			}
1083 		}
1084 	} else {
1085 		if (*convergence) {
1086 			tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1087 			*convergence = 0;
1088 		}
1089 		tprintf("\n");
1090 	}
1091 }
1092 
1093 static void show_summary(double runtime_ns_max, int l, double *convergence)
1094 {
1095 	tprintf("\r #  %5.1f%%  [%.1f mins]",
1096 		(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1097 
1098 	calc_convergence(runtime_ns_max, convergence);
1099 
1100 	if (g->p.show_details >= 0)
1101 		fflush(stdout);
1102 }
1103 
1104 static void *worker_thread(void *__tdata)
1105 {
1106 	struct thread_data *td = __tdata;
1107 	struct timeval start0, start, stop, diff;
1108 	int process_nr = td->process_nr;
1109 	int thread_nr = td->thread_nr;
1110 	unsigned long last_perturbance;
1111 	int task_nr = td->task_nr;
1112 	int details = g->p.show_details;
1113 	int first_task, last_task;
1114 	double convergence = 0;
1115 	u64 val = td->val;
1116 	double runtime_ns_max;
1117 	u8 *global_data;
1118 	u8 *process_data;
1119 	u8 *thread_data;
1120 	u64 bytes_done, secs;
1121 	long work_done;
1122 	u32 l;
1123 	struct rusage rusage;
1124 
1125 	bind_to_cpumask(td->bind_cpumask);
1126 	bind_to_memnode(td->bind_node);
1127 
1128 	set_taskname("thread %d/%d", process_nr, thread_nr);
1129 
1130 	global_data = g->data;
1131 	process_data = td->process_data;
1132 	thread_data = setup_private_data(g->p.bytes_thread);
1133 
1134 	bytes_done = 0;
1135 
1136 	last_task = 0;
1137 	if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1138 		last_task = 1;
1139 
1140 	first_task = 0;
1141 	if (process_nr == 0 && thread_nr == 0)
1142 		first_task = 1;
1143 
1144 	if (details >= 2) {
1145 		printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1146 			process_nr, thread_nr, global_data, process_data, thread_data);
1147 	}
1148 
1149 	if (g->p.serialize_startup) {
1150 		pthread_mutex_lock(&g->startup_mutex);
1151 		g->nr_tasks_started++;
1152 		/* The last thread wakes the main process. */
1153 		if (g->nr_tasks_started == g->p.nr_tasks)
1154 			pthread_cond_signal(&g->startup_cond);
1155 
1156 		pthread_mutex_unlock(&g->startup_mutex);
1157 
1158 		/* Here we will wait for the main process to start us all at once: */
1159 		pthread_mutex_lock(&g->start_work_mutex);
1160 		g->start_work = false;
1161 		g->nr_tasks_working++;
1162 		while (!g->start_work)
1163 			pthread_cond_wait(&g->start_work_cond, &g->start_work_mutex);
1164 
1165 		pthread_mutex_unlock(&g->start_work_mutex);
1166 	}
1167 
1168 	gettimeofday(&start0, NULL);
1169 
1170 	start = stop = start0;
1171 	last_perturbance = start.tv_sec;
1172 
1173 	for (l = 0; l < g->p.nr_loops; l++) {
1174 		start = stop;
1175 
1176 		if (g->stop_work)
1177 			break;
1178 
1179 		val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,	l, val);
1180 		val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,	l, val);
1181 		val += do_work(thread_data,  g->p.bytes_thread,  0,          1,		l, val);
1182 
1183 		if (g->p.sleep_usecs) {
1184 			pthread_mutex_lock(td->process_lock);
1185 			usleep(g->p.sleep_usecs);
1186 			pthread_mutex_unlock(td->process_lock);
1187 		}
1188 		/*
1189 		 * Amount of work to be done under a process-global lock:
1190 		 */
1191 		if (g->p.bytes_process_locked) {
1192 			pthread_mutex_lock(td->process_lock);
1193 			val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,	l, val);
1194 			pthread_mutex_unlock(td->process_lock);
1195 		}
1196 
1197 		work_done = g->p.bytes_global + g->p.bytes_process +
1198 			    g->p.bytes_process_locked + g->p.bytes_thread;
1199 
1200 		update_curr_cpu(task_nr, work_done);
1201 		bytes_done += work_done;
1202 
1203 		if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1204 			continue;
1205 
1206 		td->loops_done = l;
1207 
1208 		gettimeofday(&stop, NULL);
1209 
1210 		/* Check whether our max runtime timed out: */
1211 		if (g->p.nr_secs) {
1212 			timersub(&stop, &start0, &diff);
1213 			if ((u32)diff.tv_sec >= g->p.nr_secs) {
1214 				g->stop_work = true;
1215 				break;
1216 			}
1217 		}
1218 
1219 		/* Update the summary at most once per second: */
1220 		if (start.tv_sec == stop.tv_sec)
1221 			continue;
1222 
1223 		/*
1224 		 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1225 		 * by migrating to CPU#0:
1226 		 */
1227 		if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1228 			cpu_set_t orig_mask;
1229 			int target_cpu;
1230 			int this_cpu;
1231 
1232 			last_perturbance = stop.tv_sec;
1233 
1234 			/*
1235 			 * Depending on where we are running, move into
1236 			 * the other half of the system, to create some
1237 			 * real disturbance:
1238 			 */
1239 			this_cpu = g->threads[task_nr].curr_cpu;
1240 			if (this_cpu < g->p.nr_cpus/2)
1241 				target_cpu = g->p.nr_cpus-1;
1242 			else
1243 				target_cpu = 0;
1244 
1245 			orig_mask = bind_to_cpu(target_cpu);
1246 
1247 			/* Here we are running on the target CPU already */
1248 			if (details >= 1)
1249 				printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1250 
1251 			bind_to_cpumask(orig_mask);
1252 		}
1253 
1254 		if (details >= 3) {
1255 			timersub(&stop, &start, &diff);
1256 			runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1257 			runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1258 
1259 			if (details >= 0) {
1260 				printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1261 					process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1262 			}
1263 			fflush(stdout);
1264 		}
1265 		if (!last_task)
1266 			continue;
1267 
1268 		timersub(&stop, &start0, &diff);
1269 		runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1270 		runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1271 
1272 		show_summary(runtime_ns_max, l, &convergence);
1273 	}
1274 
1275 	gettimeofday(&stop, NULL);
1276 	timersub(&stop, &start0, &diff);
1277 	td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1278 	td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1279 	secs = td->runtime_ns / NSEC_PER_SEC;
1280 	td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
1281 
1282 	getrusage(RUSAGE_THREAD, &rusage);
1283 	td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1284 	td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1285 	td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1286 	td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1287 
1288 	free_data(thread_data, g->p.bytes_thread);
1289 
1290 	pthread_mutex_lock(&g->stop_work_mutex);
1291 	g->bytes_done += bytes_done;
1292 	pthread_mutex_unlock(&g->stop_work_mutex);
1293 
1294 	return NULL;
1295 }
1296 
1297 /*
1298  * A worker process starts a couple of threads:
1299  */
1300 static void worker_process(int process_nr)
1301 {
1302 	pthread_mutex_t process_lock;
1303 	struct thread_data *td;
1304 	pthread_t *pthreads;
1305 	u8 *process_data;
1306 	int task_nr;
1307 	int ret;
1308 	int t;
1309 
1310 	pthread_mutex_init(&process_lock, NULL);
1311 	set_taskname("process %d", process_nr);
1312 
1313 	/*
1314 	 * Pick up the memory policy and the CPU binding of our first thread,
1315 	 * so that we initialize memory accordingly:
1316 	 */
1317 	task_nr = process_nr*g->p.nr_threads;
1318 	td = g->threads + task_nr;
1319 
1320 	bind_to_memnode(td->bind_node);
1321 	bind_to_cpumask(td->bind_cpumask);
1322 
1323 	pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1324 	process_data = setup_private_data(g->p.bytes_process);
1325 
1326 	if (g->p.show_details >= 3) {
1327 		printf(" # process %2d global mem: %p, process mem: %p\n",
1328 			process_nr, g->data, process_data);
1329 	}
1330 
1331 	for (t = 0; t < g->p.nr_threads; t++) {
1332 		task_nr = process_nr*g->p.nr_threads + t;
1333 		td = g->threads + task_nr;
1334 
1335 		td->process_data = process_data;
1336 		td->process_nr   = process_nr;
1337 		td->thread_nr    = t;
1338 		td->task_nr	 = task_nr;
1339 		td->val          = rand();
1340 		td->curr_cpu	 = -1;
1341 		td->process_lock = &process_lock;
1342 
1343 		ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1344 		BUG_ON(ret);
1345 	}
1346 
1347 	for (t = 0; t < g->p.nr_threads; t++) {
1348                 ret = pthread_join(pthreads[t], NULL);
1349 		BUG_ON(ret);
1350 	}
1351 
1352 	free_data(process_data, g->p.bytes_process);
1353 	free(pthreads);
1354 }
1355 
1356 static void print_summary(void)
1357 {
1358 	if (g->p.show_details < 0)
1359 		return;
1360 
1361 	printf("\n ###\n");
1362 	printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1363 		g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1364 	printf(" #      %5dx %5ldMB global  shared mem operations\n",
1365 			g->p.nr_loops, g->p.bytes_global/1024/1024);
1366 	printf(" #      %5dx %5ldMB process shared mem operations\n",
1367 			g->p.nr_loops, g->p.bytes_process/1024/1024);
1368 	printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1369 			g->p.nr_loops, g->p.bytes_thread/1024/1024);
1370 
1371 	printf(" ###\n");
1372 
1373 	printf("\n ###\n"); fflush(stdout);
1374 }
1375 
1376 static void init_thread_data(void)
1377 {
1378 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1379 	int t;
1380 
1381 	g->threads = zalloc_shared_data(size);
1382 
1383 	for (t = 0; t < g->p.nr_tasks; t++) {
1384 		struct thread_data *td = g->threads + t;
1385 		int cpu;
1386 
1387 		/* Allow all nodes by default: */
1388 		td->bind_node = NUMA_NO_NODE;
1389 
1390 		/* Allow all CPUs by default: */
1391 		CPU_ZERO(&td->bind_cpumask);
1392 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1393 			CPU_SET(cpu, &td->bind_cpumask);
1394 	}
1395 }
1396 
1397 static void deinit_thread_data(void)
1398 {
1399 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1400 
1401 	free_data(g->threads, size);
1402 }
1403 
1404 static int init(void)
1405 {
1406 	g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1407 
1408 	/* Copy over options: */
1409 	g->p = p0;
1410 
1411 	g->p.nr_cpus = numa_num_configured_cpus();
1412 
1413 	g->p.nr_nodes = numa_max_node() + 1;
1414 
1415 	/* char array in count_process_nodes(): */
1416 	BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1417 
1418 	if (g->p.show_quiet && !g->p.show_details)
1419 		g->p.show_details = -1;
1420 
1421 	/* Some memory should be specified: */
1422 	if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1423 		return -1;
1424 
1425 	if (g->p.mb_global_str) {
1426 		g->p.mb_global = atof(g->p.mb_global_str);
1427 		BUG_ON(g->p.mb_global < 0);
1428 	}
1429 
1430 	if (g->p.mb_proc_str) {
1431 		g->p.mb_proc = atof(g->p.mb_proc_str);
1432 		BUG_ON(g->p.mb_proc < 0);
1433 	}
1434 
1435 	if (g->p.mb_proc_locked_str) {
1436 		g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1437 		BUG_ON(g->p.mb_proc_locked < 0);
1438 		BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1439 	}
1440 
1441 	if (g->p.mb_thread_str) {
1442 		g->p.mb_thread = atof(g->p.mb_thread_str);
1443 		BUG_ON(g->p.mb_thread < 0);
1444 	}
1445 
1446 	BUG_ON(g->p.nr_threads <= 0);
1447 	BUG_ON(g->p.nr_proc <= 0);
1448 
1449 	g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1450 
1451 	g->p.bytes_global		= g->p.mb_global	*1024L*1024L;
1452 	g->p.bytes_process		= g->p.mb_proc		*1024L*1024L;
1453 	g->p.bytes_process_locked	= g->p.mb_proc_locked	*1024L*1024L;
1454 	g->p.bytes_thread		= g->p.mb_thread	*1024L*1024L;
1455 
1456 	g->data = setup_shared_data(g->p.bytes_global);
1457 
1458 	/* Startup serialization: */
1459 	init_global_mutex(&g->start_work_mutex);
1460 	init_global_cond(&g->start_work_cond);
1461 	init_global_mutex(&g->startup_mutex);
1462 	init_global_cond(&g->startup_cond);
1463 	init_global_mutex(&g->stop_work_mutex);
1464 
1465 	init_thread_data();
1466 
1467 	tprintf("#\n");
1468 	if (parse_setup_cpu_list() || parse_setup_node_list())
1469 		return -1;
1470 	tprintf("#\n");
1471 
1472 	print_summary();
1473 
1474 	return 0;
1475 }
1476 
1477 static void deinit(void)
1478 {
1479 	free_data(g->data, g->p.bytes_global);
1480 	g->data = NULL;
1481 
1482 	deinit_thread_data();
1483 
1484 	free_data(g, sizeof(*g));
1485 	g = NULL;
1486 }
1487 
1488 /*
1489  * Print a short or long result, depending on the verbosity setting:
1490  */
1491 static void print_res(const char *name, double val,
1492 		      const char *txt_unit, const char *txt_short, const char *txt_long)
1493 {
1494 	if (!name)
1495 		name = "main,";
1496 
1497 	if (!g->p.show_quiet)
1498 		printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1499 	else
1500 		printf(" %14.3f %s\n", val, txt_long);
1501 }
1502 
1503 static int __bench_numa(const char *name)
1504 {
1505 	struct timeval start, stop, diff;
1506 	u64 runtime_ns_min, runtime_ns_sum;
1507 	pid_t *pids, pid, wpid;
1508 	double delta_runtime;
1509 	double runtime_avg;
1510 	double runtime_sec_max;
1511 	double runtime_sec_min;
1512 	int wait_stat;
1513 	double bytes;
1514 	int i, t, p;
1515 
1516 	if (init())
1517 		return -1;
1518 
1519 	pids = zalloc(g->p.nr_proc * sizeof(*pids));
1520 	pid = -1;
1521 
1522 	if (g->p.serialize_startup) {
1523 		tprintf(" #\n");
1524 		tprintf(" # Startup synchronization: ..."); fflush(stdout);
1525 	}
1526 
1527 	gettimeofday(&start, NULL);
1528 
1529 	for (i = 0; i < g->p.nr_proc; i++) {
1530 		pid = fork();
1531 		dprintf(" # process %2d: PID %d\n", i, pid);
1532 
1533 		BUG_ON(pid < 0);
1534 		if (!pid) {
1535 			/* Child process: */
1536 			worker_process(i);
1537 
1538 			exit(0);
1539 		}
1540 		pids[i] = pid;
1541 
1542 	}
1543 
1544 	if (g->p.serialize_startup) {
1545 		bool threads_ready = false;
1546 		double startup_sec;
1547 
1548 		/*
1549 		 * Wait for all the threads to start up. The last thread will
1550 		 * signal this process.
1551 		 */
1552 		pthread_mutex_lock(&g->startup_mutex);
1553 		while (g->nr_tasks_started != g->p.nr_tasks)
1554 			pthread_cond_wait(&g->startup_cond, &g->startup_mutex);
1555 
1556 		pthread_mutex_unlock(&g->startup_mutex);
1557 
1558 		/* Wait for all threads to be at the start_work_cond. */
1559 		while (!threads_ready) {
1560 			pthread_mutex_lock(&g->start_work_mutex);
1561 			threads_ready = (g->nr_tasks_working == g->p.nr_tasks);
1562 			pthread_mutex_unlock(&g->start_work_mutex);
1563 			if (!threads_ready)
1564 				usleep(1);
1565 		}
1566 
1567 		gettimeofday(&stop, NULL);
1568 
1569 		timersub(&stop, &start, &diff);
1570 
1571 		startup_sec = diff.tv_sec * NSEC_PER_SEC;
1572 		startup_sec += diff.tv_usec * NSEC_PER_USEC;
1573 		startup_sec /= NSEC_PER_SEC;
1574 
1575 		tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1576 		tprintf(" #\n");
1577 
1578 		start = stop;
1579 		/* Start all threads running. */
1580 		pthread_mutex_lock(&g->start_work_mutex);
1581 		g->start_work = true;
1582 		pthread_mutex_unlock(&g->start_work_mutex);
1583 		pthread_cond_broadcast(&g->start_work_cond);
1584 	} else {
1585 		gettimeofday(&start, NULL);
1586 	}
1587 
1588 	/* Parent process: */
1589 
1590 
1591 	for (i = 0; i < g->p.nr_proc; i++) {
1592 		wpid = waitpid(pids[i], &wait_stat, 0);
1593 		BUG_ON(wpid < 0);
1594 		BUG_ON(!WIFEXITED(wait_stat));
1595 
1596 	}
1597 
1598 	runtime_ns_sum = 0;
1599 	runtime_ns_min = -1LL;
1600 
1601 	for (t = 0; t < g->p.nr_tasks; t++) {
1602 		u64 thread_runtime_ns = g->threads[t].runtime_ns;
1603 
1604 		runtime_ns_sum += thread_runtime_ns;
1605 		runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1606 	}
1607 
1608 	gettimeofday(&stop, NULL);
1609 	timersub(&stop, &start, &diff);
1610 
1611 	BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1612 
1613 	tprintf("\n ###\n");
1614 	tprintf("\n");
1615 
1616 	runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1617 	runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1618 	runtime_sec_max /= NSEC_PER_SEC;
1619 
1620 	runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1621 
1622 	bytes = g->bytes_done;
1623 	runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1624 
1625 	if (g->p.measure_convergence) {
1626 		print_res(name, runtime_sec_max,
1627 			"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1628 	}
1629 
1630 	print_res(name, runtime_sec_max,
1631 		"secs,", "runtime-max/thread",	"secs slowest (max) thread-runtime");
1632 
1633 	print_res(name, runtime_sec_min,
1634 		"secs,", "runtime-min/thread",	"secs fastest (min) thread-runtime");
1635 
1636 	print_res(name, runtime_avg,
1637 		"secs,", "runtime-avg/thread",	"secs average thread-runtime");
1638 
1639 	delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1640 	print_res(name, delta_runtime / runtime_sec_max * 100.0,
1641 		"%,", "spread-runtime/thread",	"% difference between max/avg runtime");
1642 
1643 	print_res(name, bytes / g->p.nr_tasks / 1e9,
1644 		"GB,", "data/thread",		"GB data processed, per thread");
1645 
1646 	print_res(name, bytes / 1e9,
1647 		"GB,", "data-total",		"GB data processed, total");
1648 
1649 	print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1650 		"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1651 
1652 	print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1653 		"GB/sec,", "thread-speed",	"GB/sec/thread speed");
1654 
1655 	print_res(name, bytes / runtime_sec_max / 1e9,
1656 		"GB/sec,", "total-speed",	"GB/sec total speed");
1657 
1658 	if (g->p.show_details >= 2) {
1659 		char tname[14 + 2 * 10 + 1];
1660 		struct thread_data *td;
1661 		for (p = 0; p < g->p.nr_proc; p++) {
1662 			for (t = 0; t < g->p.nr_threads; t++) {
1663 				memset(tname, 0, sizeof(tname));
1664 				td = g->threads + p*g->p.nr_threads + t;
1665 				snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1666 				print_res(tname, td->speed_gbs,
1667 					"GB/sec",	"thread-speed", "GB/sec/thread speed");
1668 				print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1669 					"secs",	"thread-system-time", "system CPU time/thread");
1670 				print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1671 					"secs",	"thread-user-time", "user CPU time/thread");
1672 			}
1673 		}
1674 	}
1675 
1676 	free(pids);
1677 
1678 	deinit();
1679 
1680 	return 0;
1681 }
1682 
1683 #define MAX_ARGS 50
1684 
1685 static int command_size(const char **argv)
1686 {
1687 	int size = 0;
1688 
1689 	while (*argv) {
1690 		size++;
1691 		argv++;
1692 	}
1693 
1694 	BUG_ON(size >= MAX_ARGS);
1695 
1696 	return size;
1697 }
1698 
1699 static void init_params(struct params *p, const char *name, int argc, const char **argv)
1700 {
1701 	int i;
1702 
1703 	printf("\n # Running %s \"perf bench numa", name);
1704 
1705 	for (i = 0; i < argc; i++)
1706 		printf(" %s", argv[i]);
1707 
1708 	printf("\"\n");
1709 
1710 	memset(p, 0, sizeof(*p));
1711 
1712 	/* Initialize nonzero defaults: */
1713 
1714 	p->serialize_startup		= 1;
1715 	p->data_reads			= true;
1716 	p->data_writes			= true;
1717 	p->data_backwards		= true;
1718 	p->data_rand_walk		= true;
1719 	p->nr_loops			= -1;
1720 	p->init_random			= true;
1721 	p->mb_global_str		= "1";
1722 	p->nr_proc			= 1;
1723 	p->nr_threads			= 1;
1724 	p->nr_secs			= 5;
1725 	p->run_all			= argc == 1;
1726 }
1727 
1728 static int run_bench_numa(const char *name, const char **argv)
1729 {
1730 	int argc = command_size(argv);
1731 
1732 	init_params(&p0, name, argc, argv);
1733 	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1734 	if (argc)
1735 		goto err;
1736 
1737 	if (__bench_numa(name))
1738 		goto err;
1739 
1740 	return 0;
1741 
1742 err:
1743 	return -1;
1744 }
1745 
1746 #define OPT_BW_RAM		"-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1747 #define OPT_BW_RAM_NOTHP	OPT_BW_RAM,		"--thp", "-1"
1748 
1749 #define OPT_CONV		"-s", "100", "-zZ0qcm", "--thp", " 1"
1750 #define OPT_CONV_NOTHP		OPT_CONV,		"--thp", "-1"
1751 
1752 #define OPT_BW			"-s",  "20", "-zZ0q",   "--thp", " 1"
1753 #define OPT_BW_NOTHP		OPT_BW,			"--thp", "-1"
1754 
1755 /*
1756  * The built-in test-suite executed by "perf bench numa -a".
1757  *
1758  * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1759  */
1760 static const char *tests[][MAX_ARGS] = {
1761    /* Basic single-stream NUMA bandwidth measurements: */
1762    { "RAM-bw-local,",     "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1763 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1764    { "RAM-bw-local-NOTHP,",
1765 			  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1766 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1767    { "RAM-bw-remote,",    "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1768 			  "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1769 
1770    /* 2-stream NUMA bandwidth measurements: */
1771    { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1772 			   "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1773    { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1774 		 	   "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1775 
1776    /* Cross-stream NUMA bandwidth measurement: */
1777    { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1778 		 	   "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1779 
1780    /* Convergence latency measurements: */
1781    { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1782    { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1783    { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1784    { " 2x3-convergence,", "mem",  "-p",  "2", "-t",  "3", "-P", "1020", OPT_CONV },
1785    { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1786    { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1787    { " 4x4-convergence-NOTHP,",
1788 			  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1789    { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1790    { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1791    { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1792    { " 8x4-convergence-NOTHP,",
1793 			  "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1794    { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1795    { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1796    { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1797    { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1798    { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1799 
1800    /* Various NUMA process/thread layout bandwidth measurements: */
1801    { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1802    { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1803    { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1804    { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1805    { " 8x1-bw-process-NOTHP,",
1806 			  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1807    { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1808 
1809    { " 1x4-bw-thread,",   "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1810    { " 1x8-bw-thread,",   "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1811    { "1x16-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1812    { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1813 
1814    { " 2x3-bw-process,",  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1815    { " 4x4-bw-process,",  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1816    { " 4x6-bw-process,",  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1817    { " 4x8-bw-process,",  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1818    { " 4x8-bw-process-NOTHP,",
1819 			  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1820    { " 3x3-bw-process,",  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1821    { " 5x5-bw-process,",  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1822 
1823    { "2x16-bw-process,",  "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1824    { "1x32-bw-process,",  "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1825 
1826    { "numa02-bw,",        "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1827    { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1828    { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1829    { "numa01-bw-thread-NOTHP,",
1830 			  "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1831 };
1832 
1833 static int bench_all(void)
1834 {
1835 	int nr = ARRAY_SIZE(tests);
1836 	int ret;
1837 	int i;
1838 
1839 	ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1840 	BUG_ON(ret < 0);
1841 
1842 	for (i = 0; i < nr; i++) {
1843 		run_bench_numa(tests[i][0], tests[i] + 1);
1844 	}
1845 
1846 	printf("\n");
1847 
1848 	return 0;
1849 }
1850 
1851 int bench_numa(int argc, const char **argv)
1852 {
1853 	init_params(&p0, "main,", argc, argv);
1854 	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1855 	if (argc)
1856 		goto err;
1857 
1858 	if (p0.run_all)
1859 		return bench_all();
1860 
1861 	if (__bench_numa(NULL))
1862 		goto err;
1863 
1864 	return 0;
1865 
1866 err:
1867 	usage_with_options(numa_usage, options);
1868 	return -1;
1869 }
1870