xref: /openbmc/linux/tools/perf/bench/numa.c (revision 8dda2eac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * numa.c
4  *
5  * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
6  */
7 
8 #include <inttypes.h>
9 /* For the CLR_() macros */
10 #include <pthread.h>
11 
12 #include <subcmd/parse-options.h>
13 #include "../util/cloexec.h"
14 
15 #include "bench.h"
16 
17 #include <errno.h>
18 #include <sched.h>
19 #include <stdio.h>
20 #include <assert.h>
21 #include <malloc.h>
22 #include <signal.h>
23 #include <stdlib.h>
24 #include <string.h>
25 #include <unistd.h>
26 #include <sys/mman.h>
27 #include <sys/time.h>
28 #include <sys/resource.h>
29 #include <sys/wait.h>
30 #include <sys/prctl.h>
31 #include <sys/types.h>
32 #include <linux/kernel.h>
33 #include <linux/time64.h>
34 #include <linux/numa.h>
35 #include <linux/zalloc.h>
36 
37 #include <numa.h>
38 #include <numaif.h>
39 
40 #ifndef RUSAGE_THREAD
41 # define RUSAGE_THREAD 1
42 #endif
43 
44 /*
45  * Regular printout to the terminal, suppressed if -q is specified:
46  */
47 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
48 
49 /*
50  * Debug printf:
51  */
52 #undef dprintf
53 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
54 
55 struct thread_data {
56 	int			curr_cpu;
57 	cpu_set_t		bind_cpumask;
58 	int			bind_node;
59 	u8			*process_data;
60 	int			process_nr;
61 	int			thread_nr;
62 	int			task_nr;
63 	unsigned int		loops_done;
64 	u64			val;
65 	u64			runtime_ns;
66 	u64			system_time_ns;
67 	u64			user_time_ns;
68 	double			speed_gbs;
69 	pthread_mutex_t		*process_lock;
70 };
71 
72 /* Parameters set by options: */
73 
74 struct params {
75 	/* Startup synchronization: */
76 	bool			serialize_startup;
77 
78 	/* Task hierarchy: */
79 	int			nr_proc;
80 	int			nr_threads;
81 
82 	/* Working set sizes: */
83 	const char		*mb_global_str;
84 	const char		*mb_proc_str;
85 	const char		*mb_proc_locked_str;
86 	const char		*mb_thread_str;
87 
88 	double			mb_global;
89 	double			mb_proc;
90 	double			mb_proc_locked;
91 	double			mb_thread;
92 
93 	/* Access patterns to the working set: */
94 	bool			data_reads;
95 	bool			data_writes;
96 	bool			data_backwards;
97 	bool			data_zero_memset;
98 	bool			data_rand_walk;
99 	u32			nr_loops;
100 	u32			nr_secs;
101 	u32			sleep_usecs;
102 
103 	/* Working set initialization: */
104 	bool			init_zero;
105 	bool			init_random;
106 	bool			init_cpu0;
107 
108 	/* Misc options: */
109 	int			show_details;
110 	int			run_all;
111 	int			thp;
112 
113 	long			bytes_global;
114 	long			bytes_process;
115 	long			bytes_process_locked;
116 	long			bytes_thread;
117 
118 	int			nr_tasks;
119 	bool			show_quiet;
120 
121 	bool			show_convergence;
122 	bool			measure_convergence;
123 
124 	int			perturb_secs;
125 	int			nr_cpus;
126 	int			nr_nodes;
127 
128 	/* Affinity options -C and -N: */
129 	char			*cpu_list_str;
130 	char			*node_list_str;
131 };
132 
133 
134 /* Global, read-writable area, accessible to all processes and threads: */
135 
136 struct global_info {
137 	u8			*data;
138 
139 	pthread_mutex_t		startup_mutex;
140 	pthread_cond_t		startup_cond;
141 	int			nr_tasks_started;
142 
143 	pthread_mutex_t		start_work_mutex;
144 	pthread_cond_t		start_work_cond;
145 	int			nr_tasks_working;
146 	bool			start_work;
147 
148 	pthread_mutex_t		stop_work_mutex;
149 	u64			bytes_done;
150 
151 	struct thread_data	*threads;
152 
153 	/* Convergence latency measurement: */
154 	bool			all_converged;
155 	bool			stop_work;
156 
157 	int			print_once;
158 
159 	struct params		p;
160 };
161 
162 static struct global_info	*g = NULL;
163 
164 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
165 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
166 
167 struct params p0;
168 
169 static const struct option options[] = {
170 	OPT_INTEGER('p', "nr_proc"	, &p0.nr_proc,		"number of processes"),
171 	OPT_INTEGER('t', "nr_threads"	, &p0.nr_threads,	"number of threads per process"),
172 
173 	OPT_STRING('G', "mb_global"	, &p0.mb_global_str,	"MB", "global  memory (MBs)"),
174 	OPT_STRING('P', "mb_proc"	, &p0.mb_proc_str,	"MB", "process memory (MBs)"),
175 	OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
176 	OPT_STRING('T', "mb_thread"	, &p0.mb_thread_str,	"MB", "thread  memory (MBs)"),
177 
178 	OPT_UINTEGER('l', "nr_loops"	, &p0.nr_loops,		"max number of loops to run (default: unlimited)"),
179 	OPT_UINTEGER('s', "nr_secs"	, &p0.nr_secs,		"max number of seconds to run (default: 5 secs)"),
180 	OPT_UINTEGER('u', "usleep"	, &p0.sleep_usecs,	"usecs to sleep per loop iteration"),
181 
182 	OPT_BOOLEAN('R', "data_reads"	, &p0.data_reads,	"access the data via reads (can be mixed with -W)"),
183 	OPT_BOOLEAN('W', "data_writes"	, &p0.data_writes,	"access the data via writes (can be mixed with -R)"),
184 	OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,	"access the data backwards as well"),
185 	OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
186 	OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,	"access the data with random (32bit LFSR) walk"),
187 
188 
189 	OPT_BOOLEAN('z', "init_zero"	, &p0.init_zero,	"bzero the initial allocations"),
190 	OPT_BOOLEAN('I', "init_random"	, &p0.init_random,	"randomize the contents of the initial allocations"),
191 	OPT_BOOLEAN('0', "init_cpu0"	, &p0.init_cpu0,	"do the initial allocations on CPU#0"),
192 	OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,	"perturb thread 0/0 every X secs, to test convergence stability"),
193 
194 	OPT_INCR   ('d', "show_details"	, &p0.show_details,	"Show details"),
195 	OPT_INCR   ('a', "all"		, &p0.run_all,		"Run all tests in the suite"),
196 	OPT_INTEGER('H', "thp"		, &p0.thp,		"MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
197 	OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
198 		    "convergence is reached when each process (all its threads) is running on a single NUMA node."),
199 	OPT_BOOLEAN('m', "measure_convergence",	&p0.measure_convergence, "measure convergence latency"),
200 	OPT_BOOLEAN('q', "quiet"	, &p0.show_quiet,	"quiet mode"),
201 	OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
202 
203 	/* Special option string parsing callbacks: */
204         OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
205 			"bind the first N tasks to these specific cpus (the rest is unbound)",
206 			parse_cpus_opt),
207         OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
208 			"bind the first N tasks to these specific memory nodes (the rest is unbound)",
209 			parse_nodes_opt),
210 	OPT_END()
211 };
212 
213 static const char * const bench_numa_usage[] = {
214 	"perf bench numa <options>",
215 	NULL
216 };
217 
218 static const char * const numa_usage[] = {
219 	"perf bench numa mem [<options>]",
220 	NULL
221 };
222 
223 /*
224  * To get number of numa nodes present.
225  */
226 static int nr_numa_nodes(void)
227 {
228 	int i, nr_nodes = 0;
229 
230 	for (i = 0; i < g->p.nr_nodes; i++) {
231 		if (numa_bitmask_isbitset(numa_nodes_ptr, i))
232 			nr_nodes++;
233 	}
234 
235 	return nr_nodes;
236 }
237 
238 /*
239  * To check if given numa node is present.
240  */
241 static int is_node_present(int node)
242 {
243 	return numa_bitmask_isbitset(numa_nodes_ptr, node);
244 }
245 
246 /*
247  * To check given numa node has cpus.
248  */
249 static bool node_has_cpus(int node)
250 {
251 	struct bitmask *cpumask = numa_allocate_cpumask();
252 	bool ret = false; /* fall back to nocpus */
253 	int cpu;
254 
255 	BUG_ON(!cpumask);
256 	if (!numa_node_to_cpus(node, cpumask)) {
257 		for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
258 			if (numa_bitmask_isbitset(cpumask, cpu)) {
259 				ret = true;
260 				break;
261 			}
262 		}
263 	}
264 	numa_free_cpumask(cpumask);
265 
266 	return ret;
267 }
268 
269 static cpu_set_t bind_to_cpu(int target_cpu)
270 {
271 	cpu_set_t orig_mask, mask;
272 	int ret;
273 
274 	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
275 	BUG_ON(ret);
276 
277 	CPU_ZERO(&mask);
278 
279 	if (target_cpu == -1) {
280 		int cpu;
281 
282 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
283 			CPU_SET(cpu, &mask);
284 	} else {
285 		BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
286 		CPU_SET(target_cpu, &mask);
287 	}
288 
289 	ret = sched_setaffinity(0, sizeof(mask), &mask);
290 	BUG_ON(ret);
291 
292 	return orig_mask;
293 }
294 
295 static cpu_set_t bind_to_node(int target_node)
296 {
297 	cpu_set_t orig_mask, mask;
298 	int cpu;
299 	int ret;
300 
301 	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
302 	BUG_ON(ret);
303 
304 	CPU_ZERO(&mask);
305 
306 	if (target_node == NUMA_NO_NODE) {
307 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
308 			CPU_SET(cpu, &mask);
309 	} else {
310 		struct bitmask *cpumask = numa_allocate_cpumask();
311 
312 		BUG_ON(!cpumask);
313 		if (!numa_node_to_cpus(target_node, cpumask)) {
314 			for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
315 				if (numa_bitmask_isbitset(cpumask, cpu))
316 					CPU_SET(cpu, &mask);
317 			}
318 		}
319 		numa_free_cpumask(cpumask);
320 	}
321 
322 	ret = sched_setaffinity(0, sizeof(mask), &mask);
323 	BUG_ON(ret);
324 
325 	return orig_mask;
326 }
327 
328 static void bind_to_cpumask(cpu_set_t mask)
329 {
330 	int ret;
331 
332 	ret = sched_setaffinity(0, sizeof(mask), &mask);
333 	BUG_ON(ret);
334 }
335 
336 static void mempol_restore(void)
337 {
338 	int ret;
339 
340 	ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
341 
342 	BUG_ON(ret);
343 }
344 
345 static void bind_to_memnode(int node)
346 {
347 	struct bitmask *node_mask;
348 	int ret;
349 
350 	if (node == NUMA_NO_NODE)
351 		return;
352 
353 	node_mask = numa_allocate_nodemask();
354 	BUG_ON(!node_mask);
355 
356 	numa_bitmask_clearall(node_mask);
357 	numa_bitmask_setbit(node_mask, node);
358 
359 	ret = set_mempolicy(MPOL_BIND, node_mask->maskp, node_mask->size + 1);
360 	dprintf("binding to node %d, mask: %016lx => %d\n", node, *node_mask->maskp, ret);
361 
362 	numa_bitmask_free(node_mask);
363 	BUG_ON(ret);
364 }
365 
366 #define HPSIZE (2*1024*1024)
367 
368 #define set_taskname(fmt...)				\
369 do {							\
370 	char name[20];					\
371 							\
372 	snprintf(name, 20, fmt);			\
373 	prctl(PR_SET_NAME, name);			\
374 } while (0)
375 
376 static u8 *alloc_data(ssize_t bytes0, int map_flags,
377 		      int init_zero, int init_cpu0, int thp, int init_random)
378 {
379 	cpu_set_t orig_mask;
380 	ssize_t bytes;
381 	u8 *buf;
382 	int ret;
383 
384 	if (!bytes0)
385 		return NULL;
386 
387 	/* Allocate and initialize all memory on CPU#0: */
388 	if (init_cpu0) {
389 		int node = numa_node_of_cpu(0);
390 
391 		orig_mask = bind_to_node(node);
392 		bind_to_memnode(node);
393 	}
394 
395 	bytes = bytes0 + HPSIZE;
396 
397 	buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
398 	BUG_ON(buf == (void *)-1);
399 
400 	if (map_flags == MAP_PRIVATE) {
401 		if (thp > 0) {
402 			ret = madvise(buf, bytes, MADV_HUGEPAGE);
403 			if (ret && !g->print_once) {
404 				g->print_once = 1;
405 				printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
406 			}
407 		}
408 		if (thp < 0) {
409 			ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
410 			if (ret && !g->print_once) {
411 				g->print_once = 1;
412 				printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
413 			}
414 		}
415 	}
416 
417 	if (init_zero) {
418 		bzero(buf, bytes);
419 	} else {
420 		/* Initialize random contents, different in each word: */
421 		if (init_random) {
422 			u64 *wbuf = (void *)buf;
423 			long off = rand();
424 			long i;
425 
426 			for (i = 0; i < bytes/8; i++)
427 				wbuf[i] = i + off;
428 		}
429 	}
430 
431 	/* Align to 2MB boundary: */
432 	buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
433 
434 	/* Restore affinity: */
435 	if (init_cpu0) {
436 		bind_to_cpumask(orig_mask);
437 		mempol_restore();
438 	}
439 
440 	return buf;
441 }
442 
443 static void free_data(void *data, ssize_t bytes)
444 {
445 	int ret;
446 
447 	if (!data)
448 		return;
449 
450 	ret = munmap(data, bytes);
451 	BUG_ON(ret);
452 }
453 
454 /*
455  * Create a shared memory buffer that can be shared between processes, zeroed:
456  */
457 static void * zalloc_shared_data(ssize_t bytes)
458 {
459 	return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
460 }
461 
462 /*
463  * Create a shared memory buffer that can be shared between processes:
464  */
465 static void * setup_shared_data(ssize_t bytes)
466 {
467 	return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
468 }
469 
470 /*
471  * Allocate process-local memory - this will either be shared between
472  * threads of this process, or only be accessed by this thread:
473  */
474 static void * setup_private_data(ssize_t bytes)
475 {
476 	return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
477 }
478 
479 /*
480  * Return a process-shared (global) mutex:
481  */
482 static void init_global_mutex(pthread_mutex_t *mutex)
483 {
484 	pthread_mutexattr_t attr;
485 
486 	pthread_mutexattr_init(&attr);
487 	pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
488 	pthread_mutex_init(mutex, &attr);
489 }
490 
491 /*
492  * Return a process-shared (global) condition variable:
493  */
494 static void init_global_cond(pthread_cond_t *cond)
495 {
496 	pthread_condattr_t attr;
497 
498 	pthread_condattr_init(&attr);
499 	pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
500 	pthread_cond_init(cond, &attr);
501 }
502 
503 static int parse_cpu_list(const char *arg)
504 {
505 	p0.cpu_list_str = strdup(arg);
506 
507 	dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
508 
509 	return 0;
510 }
511 
512 static int parse_setup_cpu_list(void)
513 {
514 	struct thread_data *td;
515 	char *str0, *str;
516 	int t;
517 
518 	if (!g->p.cpu_list_str)
519 		return 0;
520 
521 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
522 
523 	str0 = str = strdup(g->p.cpu_list_str);
524 	t = 0;
525 
526 	BUG_ON(!str);
527 
528 	tprintf("# binding tasks to CPUs:\n");
529 	tprintf("#  ");
530 
531 	while (true) {
532 		int bind_cpu, bind_cpu_0, bind_cpu_1;
533 		char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
534 		int bind_len;
535 		int step;
536 		int mul;
537 
538 		tok = strsep(&str, ",");
539 		if (!tok)
540 			break;
541 
542 		tok_end = strstr(tok, "-");
543 
544 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
545 		if (!tok_end) {
546 			/* Single CPU specified: */
547 			bind_cpu_0 = bind_cpu_1 = atol(tok);
548 		} else {
549 			/* CPU range specified (for example: "5-11"): */
550 			bind_cpu_0 = atol(tok);
551 			bind_cpu_1 = atol(tok_end + 1);
552 		}
553 
554 		step = 1;
555 		tok_step = strstr(tok, "#");
556 		if (tok_step) {
557 			step = atol(tok_step + 1);
558 			BUG_ON(step <= 0 || step >= g->p.nr_cpus);
559 		}
560 
561 		/*
562 		 * Mask length.
563 		 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
564 		 * where the _4 means the next 4 CPUs are allowed.
565 		 */
566 		bind_len = 1;
567 		tok_len = strstr(tok, "_");
568 		if (tok_len) {
569 			bind_len = atol(tok_len + 1);
570 			BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
571 		}
572 
573 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
574 		mul = 1;
575 		tok_mul = strstr(tok, "x");
576 		if (tok_mul) {
577 			mul = atol(tok_mul + 1);
578 			BUG_ON(mul <= 0);
579 		}
580 
581 		dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
582 
583 		if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
584 			printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
585 			return -1;
586 		}
587 
588 		BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
589 		BUG_ON(bind_cpu_0 > bind_cpu_1);
590 
591 		for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
592 			int i;
593 
594 			for (i = 0; i < mul; i++) {
595 				int cpu;
596 
597 				if (t >= g->p.nr_tasks) {
598 					printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
599 					goto out;
600 				}
601 				td = g->threads + t;
602 
603 				if (t)
604 					tprintf(",");
605 				if (bind_len > 1) {
606 					tprintf("%2d/%d", bind_cpu, bind_len);
607 				} else {
608 					tprintf("%2d", bind_cpu);
609 				}
610 
611 				CPU_ZERO(&td->bind_cpumask);
612 				for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
613 					BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
614 					CPU_SET(cpu, &td->bind_cpumask);
615 				}
616 				t++;
617 			}
618 		}
619 	}
620 out:
621 
622 	tprintf("\n");
623 
624 	if (t < g->p.nr_tasks)
625 		printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
626 
627 	free(str0);
628 	return 0;
629 }
630 
631 static int parse_cpus_opt(const struct option *opt __maybe_unused,
632 			  const char *arg, int unset __maybe_unused)
633 {
634 	if (!arg)
635 		return -1;
636 
637 	return parse_cpu_list(arg);
638 }
639 
640 static int parse_node_list(const char *arg)
641 {
642 	p0.node_list_str = strdup(arg);
643 
644 	dprintf("got NODE list: {%s}\n", p0.node_list_str);
645 
646 	return 0;
647 }
648 
649 static int parse_setup_node_list(void)
650 {
651 	struct thread_data *td;
652 	char *str0, *str;
653 	int t;
654 
655 	if (!g->p.node_list_str)
656 		return 0;
657 
658 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
659 
660 	str0 = str = strdup(g->p.node_list_str);
661 	t = 0;
662 
663 	BUG_ON(!str);
664 
665 	tprintf("# binding tasks to NODEs:\n");
666 	tprintf("# ");
667 
668 	while (true) {
669 		int bind_node, bind_node_0, bind_node_1;
670 		char *tok, *tok_end, *tok_step, *tok_mul;
671 		int step;
672 		int mul;
673 
674 		tok = strsep(&str, ",");
675 		if (!tok)
676 			break;
677 
678 		tok_end = strstr(tok, "-");
679 
680 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
681 		if (!tok_end) {
682 			/* Single NODE specified: */
683 			bind_node_0 = bind_node_1 = atol(tok);
684 		} else {
685 			/* NODE range specified (for example: "5-11"): */
686 			bind_node_0 = atol(tok);
687 			bind_node_1 = atol(tok_end + 1);
688 		}
689 
690 		step = 1;
691 		tok_step = strstr(tok, "#");
692 		if (tok_step) {
693 			step = atol(tok_step + 1);
694 			BUG_ON(step <= 0 || step >= g->p.nr_nodes);
695 		}
696 
697 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
698 		mul = 1;
699 		tok_mul = strstr(tok, "x");
700 		if (tok_mul) {
701 			mul = atol(tok_mul + 1);
702 			BUG_ON(mul <= 0);
703 		}
704 
705 		dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
706 
707 		if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
708 			printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
709 			return -1;
710 		}
711 
712 		BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
713 		BUG_ON(bind_node_0 > bind_node_1);
714 
715 		for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
716 			int i;
717 
718 			for (i = 0; i < mul; i++) {
719 				if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
720 					printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
721 					goto out;
722 				}
723 				td = g->threads + t;
724 
725 				if (!t)
726 					tprintf(" %2d", bind_node);
727 				else
728 					tprintf(",%2d", bind_node);
729 
730 				td->bind_node = bind_node;
731 				t++;
732 			}
733 		}
734 	}
735 out:
736 
737 	tprintf("\n");
738 
739 	if (t < g->p.nr_tasks)
740 		printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
741 
742 	free(str0);
743 	return 0;
744 }
745 
746 static int parse_nodes_opt(const struct option *opt __maybe_unused,
747 			  const char *arg, int unset __maybe_unused)
748 {
749 	if (!arg)
750 		return -1;
751 
752 	return parse_node_list(arg);
753 }
754 
755 #define BIT(x) (1ul << x)
756 
757 static inline uint32_t lfsr_32(uint32_t lfsr)
758 {
759 	const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
760 	return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
761 }
762 
763 /*
764  * Make sure there's real data dependency to RAM (when read
765  * accesses are enabled), so the compiler, the CPU and the
766  * kernel (KSM, zero page, etc.) cannot optimize away RAM
767  * accesses:
768  */
769 static inline u64 access_data(u64 *data, u64 val)
770 {
771 	if (g->p.data_reads)
772 		val += *data;
773 	if (g->p.data_writes)
774 		*data = val + 1;
775 	return val;
776 }
777 
778 /*
779  * The worker process does two types of work, a forwards going
780  * loop and a backwards going loop.
781  *
782  * We do this so that on multiprocessor systems we do not create
783  * a 'train' of processing, with highly synchronized processes,
784  * skewing the whole benchmark.
785  */
786 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
787 {
788 	long words = bytes/sizeof(u64);
789 	u64 *data = (void *)__data;
790 	long chunk_0, chunk_1;
791 	u64 *d0, *d, *d1;
792 	long off;
793 	long i;
794 
795 	BUG_ON(!data && words);
796 	BUG_ON(data && !words);
797 
798 	if (!data)
799 		return val;
800 
801 	/* Very simple memset() work variant: */
802 	if (g->p.data_zero_memset && !g->p.data_rand_walk) {
803 		bzero(data, bytes);
804 		return val;
805 	}
806 
807 	/* Spread out by PID/TID nr and by loop nr: */
808 	chunk_0 = words/nr_max;
809 	chunk_1 = words/g->p.nr_loops;
810 	off = nr*chunk_0 + loop*chunk_1;
811 
812 	while (off >= words)
813 		off -= words;
814 
815 	if (g->p.data_rand_walk) {
816 		u32 lfsr = nr + loop + val;
817 		int j;
818 
819 		for (i = 0; i < words/1024; i++) {
820 			long start, end;
821 
822 			lfsr = lfsr_32(lfsr);
823 
824 			start = lfsr % words;
825 			end = min(start + 1024, words-1);
826 
827 			if (g->p.data_zero_memset) {
828 				bzero(data + start, (end-start) * sizeof(u64));
829 			} else {
830 				for (j = start; j < end; j++)
831 					val = access_data(data + j, val);
832 			}
833 		}
834 	} else if (!g->p.data_backwards || (nr + loop) & 1) {
835 		/* Process data forwards: */
836 
837 		d0 = data + off;
838 		d  = data + off + 1;
839 		d1 = data + words;
840 
841 		for (;;) {
842 			if (unlikely(d >= d1))
843 				d = data;
844 			if (unlikely(d == d0))
845 				break;
846 
847 			val = access_data(d, val);
848 
849 			d++;
850 		}
851 	} else {
852 		/* Process data backwards: */
853 
854 		d0 = data + off;
855 		d  = data + off - 1;
856 		d1 = data + words;
857 
858 		for (;;) {
859 			if (unlikely(d < data))
860 				d = data + words-1;
861 			if (unlikely(d == d0))
862 				break;
863 
864 			val = access_data(d, val);
865 
866 			d--;
867 		}
868 	}
869 
870 	return val;
871 }
872 
873 static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
874 {
875 	unsigned int cpu;
876 
877 	cpu = sched_getcpu();
878 
879 	g->threads[task_nr].curr_cpu = cpu;
880 	prctl(0, bytes_worked);
881 }
882 
883 /*
884  * Count the number of nodes a process's threads
885  * are spread out on.
886  *
887  * A count of 1 means that the process is compressed
888  * to a single node. A count of g->p.nr_nodes means it's
889  * spread out on the whole system.
890  */
891 static int count_process_nodes(int process_nr)
892 {
893 	char *node_present;
894 	int nodes;
895 	int n, t;
896 
897 	node_present = (char *)malloc(g->p.nr_nodes * sizeof(char));
898 	BUG_ON(!node_present);
899 	for (nodes = 0; nodes < g->p.nr_nodes; nodes++)
900 		node_present[nodes] = 0;
901 
902 	for (t = 0; t < g->p.nr_threads; t++) {
903 		struct thread_data *td;
904 		int task_nr;
905 		int node;
906 
907 		task_nr = process_nr*g->p.nr_threads + t;
908 		td = g->threads + task_nr;
909 
910 		node = numa_node_of_cpu(td->curr_cpu);
911 		if (node < 0) /* curr_cpu was likely still -1 */ {
912 			free(node_present);
913 			return 0;
914 		}
915 
916 		node_present[node] = 1;
917 	}
918 
919 	nodes = 0;
920 
921 	for (n = 0; n < g->p.nr_nodes; n++)
922 		nodes += node_present[n];
923 
924 	free(node_present);
925 	return nodes;
926 }
927 
928 /*
929  * Count the number of distinct process-threads a node contains.
930  *
931  * A count of 1 means that the node contains only a single
932  * process. If all nodes on the system contain at most one
933  * process then we are well-converged.
934  */
935 static int count_node_processes(int node)
936 {
937 	int processes = 0;
938 	int t, p;
939 
940 	for (p = 0; p < g->p.nr_proc; p++) {
941 		for (t = 0; t < g->p.nr_threads; t++) {
942 			struct thread_data *td;
943 			int task_nr;
944 			int n;
945 
946 			task_nr = p*g->p.nr_threads + t;
947 			td = g->threads + task_nr;
948 
949 			n = numa_node_of_cpu(td->curr_cpu);
950 			if (n == node) {
951 				processes++;
952 				break;
953 			}
954 		}
955 	}
956 
957 	return processes;
958 }
959 
960 static void calc_convergence_compression(int *strong)
961 {
962 	unsigned int nodes_min, nodes_max;
963 	int p;
964 
965 	nodes_min = -1;
966 	nodes_max =  0;
967 
968 	for (p = 0; p < g->p.nr_proc; p++) {
969 		unsigned int nodes = count_process_nodes(p);
970 
971 		if (!nodes) {
972 			*strong = 0;
973 			return;
974 		}
975 
976 		nodes_min = min(nodes, nodes_min);
977 		nodes_max = max(nodes, nodes_max);
978 	}
979 
980 	/* Strong convergence: all threads compress on a single node: */
981 	if (nodes_min == 1 && nodes_max == 1) {
982 		*strong = 1;
983 	} else {
984 		*strong = 0;
985 		tprintf(" {%d-%d}", nodes_min, nodes_max);
986 	}
987 }
988 
989 static void calc_convergence(double runtime_ns_max, double *convergence)
990 {
991 	unsigned int loops_done_min, loops_done_max;
992 	int process_groups;
993 	int *nodes;
994 	int distance;
995 	int nr_min;
996 	int nr_max;
997 	int strong;
998 	int sum;
999 	int nr;
1000 	int node;
1001 	int cpu;
1002 	int t;
1003 
1004 	if (!g->p.show_convergence && !g->p.measure_convergence)
1005 		return;
1006 
1007 	nodes = (int *)malloc(g->p.nr_nodes * sizeof(int));
1008 	BUG_ON(!nodes);
1009 	for (node = 0; node < g->p.nr_nodes; node++)
1010 		nodes[node] = 0;
1011 
1012 	loops_done_min = -1;
1013 	loops_done_max = 0;
1014 
1015 	for (t = 0; t < g->p.nr_tasks; t++) {
1016 		struct thread_data *td = g->threads + t;
1017 		unsigned int loops_done;
1018 
1019 		cpu = td->curr_cpu;
1020 
1021 		/* Not all threads have written it yet: */
1022 		if (cpu < 0)
1023 			continue;
1024 
1025 		node = numa_node_of_cpu(cpu);
1026 
1027 		nodes[node]++;
1028 
1029 		loops_done = td->loops_done;
1030 		loops_done_min = min(loops_done, loops_done_min);
1031 		loops_done_max = max(loops_done, loops_done_max);
1032 	}
1033 
1034 	nr_max = 0;
1035 	nr_min = g->p.nr_tasks;
1036 	sum = 0;
1037 
1038 	for (node = 0; node < g->p.nr_nodes; node++) {
1039 		if (!is_node_present(node))
1040 			continue;
1041 		nr = nodes[node];
1042 		nr_min = min(nr, nr_min);
1043 		nr_max = max(nr, nr_max);
1044 		sum += nr;
1045 	}
1046 	BUG_ON(nr_min > nr_max);
1047 
1048 	BUG_ON(sum > g->p.nr_tasks);
1049 
1050 	if (0 && (sum < g->p.nr_tasks)) {
1051 		free(nodes);
1052 		return;
1053 	}
1054 
1055 	/*
1056 	 * Count the number of distinct process groups present
1057 	 * on nodes - when we are converged this will decrease
1058 	 * to g->p.nr_proc:
1059 	 */
1060 	process_groups = 0;
1061 
1062 	for (node = 0; node < g->p.nr_nodes; node++) {
1063 		int processes;
1064 
1065 		if (!is_node_present(node))
1066 			continue;
1067 		processes = count_node_processes(node);
1068 		nr = nodes[node];
1069 		tprintf(" %2d/%-2d", nr, processes);
1070 
1071 		process_groups += processes;
1072 	}
1073 
1074 	distance = nr_max - nr_min;
1075 
1076 	tprintf(" [%2d/%-2d]", distance, process_groups);
1077 
1078 	tprintf(" l:%3d-%-3d (%3d)",
1079 		loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1080 
1081 	if (loops_done_min && loops_done_max) {
1082 		double skew = 1.0 - (double)loops_done_min/loops_done_max;
1083 
1084 		tprintf(" [%4.1f%%]", skew * 100.0);
1085 	}
1086 
1087 	calc_convergence_compression(&strong);
1088 
1089 	if (strong && process_groups == g->p.nr_proc) {
1090 		if (!*convergence) {
1091 			*convergence = runtime_ns_max;
1092 			tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1093 			if (g->p.measure_convergence) {
1094 				g->all_converged = true;
1095 				g->stop_work = true;
1096 			}
1097 		}
1098 	} else {
1099 		if (*convergence) {
1100 			tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1101 			*convergence = 0;
1102 		}
1103 		tprintf("\n");
1104 	}
1105 
1106 	free(nodes);
1107 }
1108 
1109 static void show_summary(double runtime_ns_max, int l, double *convergence)
1110 {
1111 	tprintf("\r #  %5.1f%%  [%.1f mins]",
1112 		(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1113 
1114 	calc_convergence(runtime_ns_max, convergence);
1115 
1116 	if (g->p.show_details >= 0)
1117 		fflush(stdout);
1118 }
1119 
1120 static void *worker_thread(void *__tdata)
1121 {
1122 	struct thread_data *td = __tdata;
1123 	struct timeval start0, start, stop, diff;
1124 	int process_nr = td->process_nr;
1125 	int thread_nr = td->thread_nr;
1126 	unsigned long last_perturbance;
1127 	int task_nr = td->task_nr;
1128 	int details = g->p.show_details;
1129 	int first_task, last_task;
1130 	double convergence = 0;
1131 	u64 val = td->val;
1132 	double runtime_ns_max;
1133 	u8 *global_data;
1134 	u8 *process_data;
1135 	u8 *thread_data;
1136 	u64 bytes_done, secs;
1137 	long work_done;
1138 	u32 l;
1139 	struct rusage rusage;
1140 
1141 	bind_to_cpumask(td->bind_cpumask);
1142 	bind_to_memnode(td->bind_node);
1143 
1144 	set_taskname("thread %d/%d", process_nr, thread_nr);
1145 
1146 	global_data = g->data;
1147 	process_data = td->process_data;
1148 	thread_data = setup_private_data(g->p.bytes_thread);
1149 
1150 	bytes_done = 0;
1151 
1152 	last_task = 0;
1153 	if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1154 		last_task = 1;
1155 
1156 	first_task = 0;
1157 	if (process_nr == 0 && thread_nr == 0)
1158 		first_task = 1;
1159 
1160 	if (details >= 2) {
1161 		printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1162 			process_nr, thread_nr, global_data, process_data, thread_data);
1163 	}
1164 
1165 	if (g->p.serialize_startup) {
1166 		pthread_mutex_lock(&g->startup_mutex);
1167 		g->nr_tasks_started++;
1168 		/* The last thread wakes the main process. */
1169 		if (g->nr_tasks_started == g->p.nr_tasks)
1170 			pthread_cond_signal(&g->startup_cond);
1171 
1172 		pthread_mutex_unlock(&g->startup_mutex);
1173 
1174 		/* Here we will wait for the main process to start us all at once: */
1175 		pthread_mutex_lock(&g->start_work_mutex);
1176 		g->start_work = false;
1177 		g->nr_tasks_working++;
1178 		while (!g->start_work)
1179 			pthread_cond_wait(&g->start_work_cond, &g->start_work_mutex);
1180 
1181 		pthread_mutex_unlock(&g->start_work_mutex);
1182 	}
1183 
1184 	gettimeofday(&start0, NULL);
1185 
1186 	start = stop = start0;
1187 	last_perturbance = start.tv_sec;
1188 
1189 	for (l = 0; l < g->p.nr_loops; l++) {
1190 		start = stop;
1191 
1192 		if (g->stop_work)
1193 			break;
1194 
1195 		val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,	l, val);
1196 		val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,	l, val);
1197 		val += do_work(thread_data,  g->p.bytes_thread,  0,          1,		l, val);
1198 
1199 		if (g->p.sleep_usecs) {
1200 			pthread_mutex_lock(td->process_lock);
1201 			usleep(g->p.sleep_usecs);
1202 			pthread_mutex_unlock(td->process_lock);
1203 		}
1204 		/*
1205 		 * Amount of work to be done under a process-global lock:
1206 		 */
1207 		if (g->p.bytes_process_locked) {
1208 			pthread_mutex_lock(td->process_lock);
1209 			val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,	l, val);
1210 			pthread_mutex_unlock(td->process_lock);
1211 		}
1212 
1213 		work_done = g->p.bytes_global + g->p.bytes_process +
1214 			    g->p.bytes_process_locked + g->p.bytes_thread;
1215 
1216 		update_curr_cpu(task_nr, work_done);
1217 		bytes_done += work_done;
1218 
1219 		if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1220 			continue;
1221 
1222 		td->loops_done = l;
1223 
1224 		gettimeofday(&stop, NULL);
1225 
1226 		/* Check whether our max runtime timed out: */
1227 		if (g->p.nr_secs) {
1228 			timersub(&stop, &start0, &diff);
1229 			if ((u32)diff.tv_sec >= g->p.nr_secs) {
1230 				g->stop_work = true;
1231 				break;
1232 			}
1233 		}
1234 
1235 		/* Update the summary at most once per second: */
1236 		if (start.tv_sec == stop.tv_sec)
1237 			continue;
1238 
1239 		/*
1240 		 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1241 		 * by migrating to CPU#0:
1242 		 */
1243 		if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1244 			cpu_set_t orig_mask;
1245 			int target_cpu;
1246 			int this_cpu;
1247 
1248 			last_perturbance = stop.tv_sec;
1249 
1250 			/*
1251 			 * Depending on where we are running, move into
1252 			 * the other half of the system, to create some
1253 			 * real disturbance:
1254 			 */
1255 			this_cpu = g->threads[task_nr].curr_cpu;
1256 			if (this_cpu < g->p.nr_cpus/2)
1257 				target_cpu = g->p.nr_cpus-1;
1258 			else
1259 				target_cpu = 0;
1260 
1261 			orig_mask = bind_to_cpu(target_cpu);
1262 
1263 			/* Here we are running on the target CPU already */
1264 			if (details >= 1)
1265 				printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1266 
1267 			bind_to_cpumask(orig_mask);
1268 		}
1269 
1270 		if (details >= 3) {
1271 			timersub(&stop, &start, &diff);
1272 			runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1273 			runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1274 
1275 			if (details >= 0) {
1276 				printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1277 					process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1278 			}
1279 			fflush(stdout);
1280 		}
1281 		if (!last_task)
1282 			continue;
1283 
1284 		timersub(&stop, &start0, &diff);
1285 		runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1286 		runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1287 
1288 		show_summary(runtime_ns_max, l, &convergence);
1289 	}
1290 
1291 	gettimeofday(&stop, NULL);
1292 	timersub(&stop, &start0, &diff);
1293 	td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1294 	td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1295 	secs = td->runtime_ns / NSEC_PER_SEC;
1296 	td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
1297 
1298 	getrusage(RUSAGE_THREAD, &rusage);
1299 	td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1300 	td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1301 	td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1302 	td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1303 
1304 	free_data(thread_data, g->p.bytes_thread);
1305 
1306 	pthread_mutex_lock(&g->stop_work_mutex);
1307 	g->bytes_done += bytes_done;
1308 	pthread_mutex_unlock(&g->stop_work_mutex);
1309 
1310 	return NULL;
1311 }
1312 
1313 /*
1314  * A worker process starts a couple of threads:
1315  */
1316 static void worker_process(int process_nr)
1317 {
1318 	pthread_mutex_t process_lock;
1319 	struct thread_data *td;
1320 	pthread_t *pthreads;
1321 	u8 *process_data;
1322 	int task_nr;
1323 	int ret;
1324 	int t;
1325 
1326 	pthread_mutex_init(&process_lock, NULL);
1327 	set_taskname("process %d", process_nr);
1328 
1329 	/*
1330 	 * Pick up the memory policy and the CPU binding of our first thread,
1331 	 * so that we initialize memory accordingly:
1332 	 */
1333 	task_nr = process_nr*g->p.nr_threads;
1334 	td = g->threads + task_nr;
1335 
1336 	bind_to_memnode(td->bind_node);
1337 	bind_to_cpumask(td->bind_cpumask);
1338 
1339 	pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1340 	process_data = setup_private_data(g->p.bytes_process);
1341 
1342 	if (g->p.show_details >= 3) {
1343 		printf(" # process %2d global mem: %p, process mem: %p\n",
1344 			process_nr, g->data, process_data);
1345 	}
1346 
1347 	for (t = 0; t < g->p.nr_threads; t++) {
1348 		task_nr = process_nr*g->p.nr_threads + t;
1349 		td = g->threads + task_nr;
1350 
1351 		td->process_data = process_data;
1352 		td->process_nr   = process_nr;
1353 		td->thread_nr    = t;
1354 		td->task_nr	 = task_nr;
1355 		td->val          = rand();
1356 		td->curr_cpu	 = -1;
1357 		td->process_lock = &process_lock;
1358 
1359 		ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1360 		BUG_ON(ret);
1361 	}
1362 
1363 	for (t = 0; t < g->p.nr_threads; t++) {
1364                 ret = pthread_join(pthreads[t], NULL);
1365 		BUG_ON(ret);
1366 	}
1367 
1368 	free_data(process_data, g->p.bytes_process);
1369 	free(pthreads);
1370 }
1371 
1372 static void print_summary(void)
1373 {
1374 	if (g->p.show_details < 0)
1375 		return;
1376 
1377 	printf("\n ###\n");
1378 	printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1379 		g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1380 	printf(" #      %5dx %5ldMB global  shared mem operations\n",
1381 			g->p.nr_loops, g->p.bytes_global/1024/1024);
1382 	printf(" #      %5dx %5ldMB process shared mem operations\n",
1383 			g->p.nr_loops, g->p.bytes_process/1024/1024);
1384 	printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1385 			g->p.nr_loops, g->p.bytes_thread/1024/1024);
1386 
1387 	printf(" ###\n");
1388 
1389 	printf("\n ###\n"); fflush(stdout);
1390 }
1391 
1392 static void init_thread_data(void)
1393 {
1394 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1395 	int t;
1396 
1397 	g->threads = zalloc_shared_data(size);
1398 
1399 	for (t = 0; t < g->p.nr_tasks; t++) {
1400 		struct thread_data *td = g->threads + t;
1401 		int cpu;
1402 
1403 		/* Allow all nodes by default: */
1404 		td->bind_node = NUMA_NO_NODE;
1405 
1406 		/* Allow all CPUs by default: */
1407 		CPU_ZERO(&td->bind_cpumask);
1408 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1409 			CPU_SET(cpu, &td->bind_cpumask);
1410 	}
1411 }
1412 
1413 static void deinit_thread_data(void)
1414 {
1415 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1416 
1417 	free_data(g->threads, size);
1418 }
1419 
1420 static int init(void)
1421 {
1422 	g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1423 
1424 	/* Copy over options: */
1425 	g->p = p0;
1426 
1427 	g->p.nr_cpus = numa_num_configured_cpus();
1428 
1429 	g->p.nr_nodes = numa_max_node() + 1;
1430 
1431 	/* char array in count_process_nodes(): */
1432 	BUG_ON(g->p.nr_nodes < 0);
1433 
1434 	if (g->p.show_quiet && !g->p.show_details)
1435 		g->p.show_details = -1;
1436 
1437 	/* Some memory should be specified: */
1438 	if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1439 		return -1;
1440 
1441 	if (g->p.mb_global_str) {
1442 		g->p.mb_global = atof(g->p.mb_global_str);
1443 		BUG_ON(g->p.mb_global < 0);
1444 	}
1445 
1446 	if (g->p.mb_proc_str) {
1447 		g->p.mb_proc = atof(g->p.mb_proc_str);
1448 		BUG_ON(g->p.mb_proc < 0);
1449 	}
1450 
1451 	if (g->p.mb_proc_locked_str) {
1452 		g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1453 		BUG_ON(g->p.mb_proc_locked < 0);
1454 		BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1455 	}
1456 
1457 	if (g->p.mb_thread_str) {
1458 		g->p.mb_thread = atof(g->p.mb_thread_str);
1459 		BUG_ON(g->p.mb_thread < 0);
1460 	}
1461 
1462 	BUG_ON(g->p.nr_threads <= 0);
1463 	BUG_ON(g->p.nr_proc <= 0);
1464 
1465 	g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1466 
1467 	g->p.bytes_global		= g->p.mb_global	*1024L*1024L;
1468 	g->p.bytes_process		= g->p.mb_proc		*1024L*1024L;
1469 	g->p.bytes_process_locked	= g->p.mb_proc_locked	*1024L*1024L;
1470 	g->p.bytes_thread		= g->p.mb_thread	*1024L*1024L;
1471 
1472 	g->data = setup_shared_data(g->p.bytes_global);
1473 
1474 	/* Startup serialization: */
1475 	init_global_mutex(&g->start_work_mutex);
1476 	init_global_cond(&g->start_work_cond);
1477 	init_global_mutex(&g->startup_mutex);
1478 	init_global_cond(&g->startup_cond);
1479 	init_global_mutex(&g->stop_work_mutex);
1480 
1481 	init_thread_data();
1482 
1483 	tprintf("#\n");
1484 	if (parse_setup_cpu_list() || parse_setup_node_list())
1485 		return -1;
1486 	tprintf("#\n");
1487 
1488 	print_summary();
1489 
1490 	return 0;
1491 }
1492 
1493 static void deinit(void)
1494 {
1495 	free_data(g->data, g->p.bytes_global);
1496 	g->data = NULL;
1497 
1498 	deinit_thread_data();
1499 
1500 	free_data(g, sizeof(*g));
1501 	g = NULL;
1502 }
1503 
1504 /*
1505  * Print a short or long result, depending on the verbosity setting:
1506  */
1507 static void print_res(const char *name, double val,
1508 		      const char *txt_unit, const char *txt_short, const char *txt_long)
1509 {
1510 	if (!name)
1511 		name = "main,";
1512 
1513 	if (!g->p.show_quiet)
1514 		printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1515 	else
1516 		printf(" %14.3f %s\n", val, txt_long);
1517 }
1518 
1519 static int __bench_numa(const char *name)
1520 {
1521 	struct timeval start, stop, diff;
1522 	u64 runtime_ns_min, runtime_ns_sum;
1523 	pid_t *pids, pid, wpid;
1524 	double delta_runtime;
1525 	double runtime_avg;
1526 	double runtime_sec_max;
1527 	double runtime_sec_min;
1528 	int wait_stat;
1529 	double bytes;
1530 	int i, t, p;
1531 
1532 	if (init())
1533 		return -1;
1534 
1535 	pids = zalloc(g->p.nr_proc * sizeof(*pids));
1536 	pid = -1;
1537 
1538 	if (g->p.serialize_startup) {
1539 		tprintf(" #\n");
1540 		tprintf(" # Startup synchronization: ..."); fflush(stdout);
1541 	}
1542 
1543 	gettimeofday(&start, NULL);
1544 
1545 	for (i = 0; i < g->p.nr_proc; i++) {
1546 		pid = fork();
1547 		dprintf(" # process %2d: PID %d\n", i, pid);
1548 
1549 		BUG_ON(pid < 0);
1550 		if (!pid) {
1551 			/* Child process: */
1552 			worker_process(i);
1553 
1554 			exit(0);
1555 		}
1556 		pids[i] = pid;
1557 
1558 	}
1559 
1560 	if (g->p.serialize_startup) {
1561 		bool threads_ready = false;
1562 		double startup_sec;
1563 
1564 		/*
1565 		 * Wait for all the threads to start up. The last thread will
1566 		 * signal this process.
1567 		 */
1568 		pthread_mutex_lock(&g->startup_mutex);
1569 		while (g->nr_tasks_started != g->p.nr_tasks)
1570 			pthread_cond_wait(&g->startup_cond, &g->startup_mutex);
1571 
1572 		pthread_mutex_unlock(&g->startup_mutex);
1573 
1574 		/* Wait for all threads to be at the start_work_cond. */
1575 		while (!threads_ready) {
1576 			pthread_mutex_lock(&g->start_work_mutex);
1577 			threads_ready = (g->nr_tasks_working == g->p.nr_tasks);
1578 			pthread_mutex_unlock(&g->start_work_mutex);
1579 			if (!threads_ready)
1580 				usleep(1);
1581 		}
1582 
1583 		gettimeofday(&stop, NULL);
1584 
1585 		timersub(&stop, &start, &diff);
1586 
1587 		startup_sec = diff.tv_sec * NSEC_PER_SEC;
1588 		startup_sec += diff.tv_usec * NSEC_PER_USEC;
1589 		startup_sec /= NSEC_PER_SEC;
1590 
1591 		tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1592 		tprintf(" #\n");
1593 
1594 		start = stop;
1595 		/* Start all threads running. */
1596 		pthread_mutex_lock(&g->start_work_mutex);
1597 		g->start_work = true;
1598 		pthread_mutex_unlock(&g->start_work_mutex);
1599 		pthread_cond_broadcast(&g->start_work_cond);
1600 	} else {
1601 		gettimeofday(&start, NULL);
1602 	}
1603 
1604 	/* Parent process: */
1605 
1606 
1607 	for (i = 0; i < g->p.nr_proc; i++) {
1608 		wpid = waitpid(pids[i], &wait_stat, 0);
1609 		BUG_ON(wpid < 0);
1610 		BUG_ON(!WIFEXITED(wait_stat));
1611 
1612 	}
1613 
1614 	runtime_ns_sum = 0;
1615 	runtime_ns_min = -1LL;
1616 
1617 	for (t = 0; t < g->p.nr_tasks; t++) {
1618 		u64 thread_runtime_ns = g->threads[t].runtime_ns;
1619 
1620 		runtime_ns_sum += thread_runtime_ns;
1621 		runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1622 	}
1623 
1624 	gettimeofday(&stop, NULL);
1625 	timersub(&stop, &start, &diff);
1626 
1627 	BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1628 
1629 	tprintf("\n ###\n");
1630 	tprintf("\n");
1631 
1632 	runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1633 	runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1634 	runtime_sec_max /= NSEC_PER_SEC;
1635 
1636 	runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1637 
1638 	bytes = g->bytes_done;
1639 	runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1640 
1641 	if (g->p.measure_convergence) {
1642 		print_res(name, runtime_sec_max,
1643 			"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1644 	}
1645 
1646 	print_res(name, runtime_sec_max,
1647 		"secs,", "runtime-max/thread",	"secs slowest (max) thread-runtime");
1648 
1649 	print_res(name, runtime_sec_min,
1650 		"secs,", "runtime-min/thread",	"secs fastest (min) thread-runtime");
1651 
1652 	print_res(name, runtime_avg,
1653 		"secs,", "runtime-avg/thread",	"secs average thread-runtime");
1654 
1655 	delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1656 	print_res(name, delta_runtime / runtime_sec_max * 100.0,
1657 		"%,", "spread-runtime/thread",	"% difference between max/avg runtime");
1658 
1659 	print_res(name, bytes / g->p.nr_tasks / 1e9,
1660 		"GB,", "data/thread",		"GB data processed, per thread");
1661 
1662 	print_res(name, bytes / 1e9,
1663 		"GB,", "data-total",		"GB data processed, total");
1664 
1665 	print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1666 		"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1667 
1668 	print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1669 		"GB/sec,", "thread-speed",	"GB/sec/thread speed");
1670 
1671 	print_res(name, bytes / runtime_sec_max / 1e9,
1672 		"GB/sec,", "total-speed",	"GB/sec total speed");
1673 
1674 	if (g->p.show_details >= 2) {
1675 		char tname[14 + 2 * 10 + 1];
1676 		struct thread_data *td;
1677 		for (p = 0; p < g->p.nr_proc; p++) {
1678 			for (t = 0; t < g->p.nr_threads; t++) {
1679 				memset(tname, 0, sizeof(tname));
1680 				td = g->threads + p*g->p.nr_threads + t;
1681 				snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1682 				print_res(tname, td->speed_gbs,
1683 					"GB/sec",	"thread-speed", "GB/sec/thread speed");
1684 				print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1685 					"secs",	"thread-system-time", "system CPU time/thread");
1686 				print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1687 					"secs",	"thread-user-time", "user CPU time/thread");
1688 			}
1689 		}
1690 	}
1691 
1692 	free(pids);
1693 
1694 	deinit();
1695 
1696 	return 0;
1697 }
1698 
1699 #define MAX_ARGS 50
1700 
1701 static int command_size(const char **argv)
1702 {
1703 	int size = 0;
1704 
1705 	while (*argv) {
1706 		size++;
1707 		argv++;
1708 	}
1709 
1710 	BUG_ON(size >= MAX_ARGS);
1711 
1712 	return size;
1713 }
1714 
1715 static void init_params(struct params *p, const char *name, int argc, const char **argv)
1716 {
1717 	int i;
1718 
1719 	printf("\n # Running %s \"perf bench numa", name);
1720 
1721 	for (i = 0; i < argc; i++)
1722 		printf(" %s", argv[i]);
1723 
1724 	printf("\"\n");
1725 
1726 	memset(p, 0, sizeof(*p));
1727 
1728 	/* Initialize nonzero defaults: */
1729 
1730 	p->serialize_startup		= 1;
1731 	p->data_reads			= true;
1732 	p->data_writes			= true;
1733 	p->data_backwards		= true;
1734 	p->data_rand_walk		= true;
1735 	p->nr_loops			= -1;
1736 	p->init_random			= true;
1737 	p->mb_global_str		= "1";
1738 	p->nr_proc			= 1;
1739 	p->nr_threads			= 1;
1740 	p->nr_secs			= 5;
1741 	p->run_all			= argc == 1;
1742 }
1743 
1744 static int run_bench_numa(const char *name, const char **argv)
1745 {
1746 	int argc = command_size(argv);
1747 
1748 	init_params(&p0, name, argc, argv);
1749 	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1750 	if (argc)
1751 		goto err;
1752 
1753 	if (__bench_numa(name))
1754 		goto err;
1755 
1756 	return 0;
1757 
1758 err:
1759 	return -1;
1760 }
1761 
1762 #define OPT_BW_RAM		"-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1763 #define OPT_BW_RAM_NOTHP	OPT_BW_RAM,		"--thp", "-1"
1764 
1765 #define OPT_CONV		"-s", "100", "-zZ0qcm", "--thp", " 1"
1766 #define OPT_CONV_NOTHP		OPT_CONV,		"--thp", "-1"
1767 
1768 #define OPT_BW			"-s",  "20", "-zZ0q",   "--thp", " 1"
1769 #define OPT_BW_NOTHP		OPT_BW,			"--thp", "-1"
1770 
1771 /*
1772  * The built-in test-suite executed by "perf bench numa -a".
1773  *
1774  * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1775  */
1776 static const char *tests[][MAX_ARGS] = {
1777    /* Basic single-stream NUMA bandwidth measurements: */
1778    { "RAM-bw-local,",     "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1779 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1780    { "RAM-bw-local-NOTHP,",
1781 			  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1782 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1783    { "RAM-bw-remote,",    "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1784 			  "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1785 
1786    /* 2-stream NUMA bandwidth measurements: */
1787    { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1788 			   "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1789    { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1790 		 	   "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1791 
1792    /* Cross-stream NUMA bandwidth measurement: */
1793    { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1794 		 	   "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1795 
1796    /* Convergence latency measurements: */
1797    { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1798    { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1799    { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1800    { " 2x3-convergence,", "mem",  "-p",  "2", "-t",  "3", "-P", "1020", OPT_CONV },
1801    { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1802    { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1803    { " 4x4-convergence-NOTHP,",
1804 			  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1805    { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1806    { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1807    { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1808    { " 8x4-convergence-NOTHP,",
1809 			  "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1810    { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1811    { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1812    { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1813    { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1814    { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1815 
1816    /* Various NUMA process/thread layout bandwidth measurements: */
1817    { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1818    { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1819    { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1820    { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1821    { " 8x1-bw-process-NOTHP,",
1822 			  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1823    { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1824 
1825    { " 1x4-bw-thread,",   "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1826    { " 1x8-bw-thread,",   "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1827    { "1x16-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1828    { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1829 
1830    { " 2x3-bw-process,",  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1831    { " 4x4-bw-process,",  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1832    { " 4x6-bw-process,",  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1833    { " 4x8-bw-process,",  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1834    { " 4x8-bw-process-NOTHP,",
1835 			  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1836    { " 3x3-bw-process,",  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1837    { " 5x5-bw-process,",  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1838 
1839    { "2x16-bw-process,",  "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1840    { "1x32-bw-process,",  "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1841 
1842    { "numa02-bw,",        "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1843    { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1844    { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1845    { "numa01-bw-thread-NOTHP,",
1846 			  "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1847 };
1848 
1849 static int bench_all(void)
1850 {
1851 	int nr = ARRAY_SIZE(tests);
1852 	int ret;
1853 	int i;
1854 
1855 	ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1856 	BUG_ON(ret < 0);
1857 
1858 	for (i = 0; i < nr; i++) {
1859 		run_bench_numa(tests[i][0], tests[i] + 1);
1860 	}
1861 
1862 	printf("\n");
1863 
1864 	return 0;
1865 }
1866 
1867 int bench_numa(int argc, const char **argv)
1868 {
1869 	init_params(&p0, "main,", argc, argv);
1870 	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1871 	if (argc)
1872 		goto err;
1873 
1874 	if (p0.run_all)
1875 		return bench_all();
1876 
1877 	if (__bench_numa(NULL))
1878 		goto err;
1879 
1880 	return 0;
1881 
1882 err:
1883 	usage_with_options(numa_usage, options);
1884 	return -1;
1885 }
1886