1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * numa.c 4 * 5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance 6 */ 7 8 #include <inttypes.h> 9 /* For the CLR_() macros */ 10 #include <pthread.h> 11 12 #include "../perf.h" 13 #include "../builtin.h" 14 #include <subcmd/parse-options.h> 15 #include "../util/cloexec.h" 16 17 #include "bench.h" 18 19 #include <errno.h> 20 #include <sched.h> 21 #include <stdio.h> 22 #include <assert.h> 23 #include <malloc.h> 24 #include <signal.h> 25 #include <stdlib.h> 26 #include <string.h> 27 #include <unistd.h> 28 #include <sys/mman.h> 29 #include <sys/time.h> 30 #include <sys/resource.h> 31 #include <sys/wait.h> 32 #include <sys/prctl.h> 33 #include <sys/types.h> 34 #include <linux/kernel.h> 35 #include <linux/time64.h> 36 #include <linux/numa.h> 37 #include <linux/zalloc.h> 38 39 #include <numa.h> 40 #include <numaif.h> 41 42 #ifndef RUSAGE_THREAD 43 # define RUSAGE_THREAD 1 44 #endif 45 46 /* 47 * Regular printout to the terminal, supressed if -q is specified: 48 */ 49 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0) 50 51 /* 52 * Debug printf: 53 */ 54 #undef dprintf 55 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0) 56 57 struct thread_data { 58 int curr_cpu; 59 cpu_set_t bind_cpumask; 60 int bind_node; 61 u8 *process_data; 62 int process_nr; 63 int thread_nr; 64 int task_nr; 65 unsigned int loops_done; 66 u64 val; 67 u64 runtime_ns; 68 u64 system_time_ns; 69 u64 user_time_ns; 70 double speed_gbs; 71 pthread_mutex_t *process_lock; 72 }; 73 74 /* Parameters set by options: */ 75 76 struct params { 77 /* Startup synchronization: */ 78 bool serialize_startup; 79 80 /* Task hierarchy: */ 81 int nr_proc; 82 int nr_threads; 83 84 /* Working set sizes: */ 85 const char *mb_global_str; 86 const char *mb_proc_str; 87 const char *mb_proc_locked_str; 88 const char *mb_thread_str; 89 90 double mb_global; 91 double mb_proc; 92 double mb_proc_locked; 93 double mb_thread; 94 95 /* Access patterns to the working set: */ 96 bool data_reads; 97 bool data_writes; 98 bool data_backwards; 99 bool data_zero_memset; 100 bool data_rand_walk; 101 u32 nr_loops; 102 u32 nr_secs; 103 u32 sleep_usecs; 104 105 /* Working set initialization: */ 106 bool init_zero; 107 bool init_random; 108 bool init_cpu0; 109 110 /* Misc options: */ 111 int show_details; 112 int run_all; 113 int thp; 114 115 long bytes_global; 116 long bytes_process; 117 long bytes_process_locked; 118 long bytes_thread; 119 120 int nr_tasks; 121 bool show_quiet; 122 123 bool show_convergence; 124 bool measure_convergence; 125 126 int perturb_secs; 127 int nr_cpus; 128 int nr_nodes; 129 130 /* Affinity options -C and -N: */ 131 char *cpu_list_str; 132 char *node_list_str; 133 }; 134 135 136 /* Global, read-writable area, accessible to all processes and threads: */ 137 138 struct global_info { 139 u8 *data; 140 141 pthread_mutex_t startup_mutex; 142 int nr_tasks_started; 143 144 pthread_mutex_t startup_done_mutex; 145 146 pthread_mutex_t start_work_mutex; 147 int nr_tasks_working; 148 149 pthread_mutex_t stop_work_mutex; 150 u64 bytes_done; 151 152 struct thread_data *threads; 153 154 /* Convergence latency measurement: */ 155 bool all_converged; 156 bool stop_work; 157 158 int print_once; 159 160 struct params p; 161 }; 162 163 static struct global_info *g = NULL; 164 165 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset); 166 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset); 167 168 struct params p0; 169 170 static const struct option options[] = { 171 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"), 172 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"), 173 174 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"), 175 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"), 176 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"), 177 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"), 178 179 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"), 180 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"), 181 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"), 182 183 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via reads (can be mixed with -W)"), 184 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"), 185 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"), 186 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"), 187 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"), 188 189 190 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"), 191 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"), 192 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"), 193 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"), 194 195 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"), 196 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"), 197 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"), 198 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, " 199 "convergence is reached when each process (all its threads) is running on a single NUMA node."), 200 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"), 201 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"), 202 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"), 203 204 /* Special option string parsing callbacks: */ 205 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]", 206 "bind the first N tasks to these specific cpus (the rest is unbound)", 207 parse_cpus_opt), 208 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]", 209 "bind the first N tasks to these specific memory nodes (the rest is unbound)", 210 parse_nodes_opt), 211 OPT_END() 212 }; 213 214 static const char * const bench_numa_usage[] = { 215 "perf bench numa <options>", 216 NULL 217 }; 218 219 static const char * const numa_usage[] = { 220 "perf bench numa mem [<options>]", 221 NULL 222 }; 223 224 /* 225 * To get number of numa nodes present. 226 */ 227 static int nr_numa_nodes(void) 228 { 229 int i, nr_nodes = 0; 230 231 for (i = 0; i < g->p.nr_nodes; i++) { 232 if (numa_bitmask_isbitset(numa_nodes_ptr, i)) 233 nr_nodes++; 234 } 235 236 return nr_nodes; 237 } 238 239 /* 240 * To check if given numa node is present. 241 */ 242 static int is_node_present(int node) 243 { 244 return numa_bitmask_isbitset(numa_nodes_ptr, node); 245 } 246 247 /* 248 * To check given numa node has cpus. 249 */ 250 static bool node_has_cpus(int node) 251 { 252 struct bitmask *cpu = numa_allocate_cpumask(); 253 unsigned int i; 254 255 if (cpu && !numa_node_to_cpus(node, cpu)) { 256 for (i = 0; i < cpu->size; i++) { 257 if (numa_bitmask_isbitset(cpu, i)) 258 return true; 259 } 260 } 261 262 return false; /* lets fall back to nocpus safely */ 263 } 264 265 static cpu_set_t bind_to_cpu(int target_cpu) 266 { 267 cpu_set_t orig_mask, mask; 268 int ret; 269 270 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); 271 BUG_ON(ret); 272 273 CPU_ZERO(&mask); 274 275 if (target_cpu == -1) { 276 int cpu; 277 278 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 279 CPU_SET(cpu, &mask); 280 } else { 281 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus); 282 CPU_SET(target_cpu, &mask); 283 } 284 285 ret = sched_setaffinity(0, sizeof(mask), &mask); 286 BUG_ON(ret); 287 288 return orig_mask; 289 } 290 291 static cpu_set_t bind_to_node(int target_node) 292 { 293 int cpus_per_node = g->p.nr_cpus / nr_numa_nodes(); 294 cpu_set_t orig_mask, mask; 295 int cpu; 296 int ret; 297 298 BUG_ON(cpus_per_node * nr_numa_nodes() != g->p.nr_cpus); 299 BUG_ON(!cpus_per_node); 300 301 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); 302 BUG_ON(ret); 303 304 CPU_ZERO(&mask); 305 306 if (target_node == NUMA_NO_NODE) { 307 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 308 CPU_SET(cpu, &mask); 309 } else { 310 int cpu_start = (target_node + 0) * cpus_per_node; 311 int cpu_stop = (target_node + 1) * cpus_per_node; 312 313 BUG_ON(cpu_stop > g->p.nr_cpus); 314 315 for (cpu = cpu_start; cpu < cpu_stop; cpu++) 316 CPU_SET(cpu, &mask); 317 } 318 319 ret = sched_setaffinity(0, sizeof(mask), &mask); 320 BUG_ON(ret); 321 322 return orig_mask; 323 } 324 325 static void bind_to_cpumask(cpu_set_t mask) 326 { 327 int ret; 328 329 ret = sched_setaffinity(0, sizeof(mask), &mask); 330 BUG_ON(ret); 331 } 332 333 static void mempol_restore(void) 334 { 335 int ret; 336 337 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1); 338 339 BUG_ON(ret); 340 } 341 342 static void bind_to_memnode(int node) 343 { 344 unsigned long nodemask; 345 int ret; 346 347 if (node == NUMA_NO_NODE) 348 return; 349 350 BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8); 351 nodemask = 1L << node; 352 353 ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8); 354 dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret); 355 356 BUG_ON(ret); 357 } 358 359 #define HPSIZE (2*1024*1024) 360 361 #define set_taskname(fmt...) \ 362 do { \ 363 char name[20]; \ 364 \ 365 snprintf(name, 20, fmt); \ 366 prctl(PR_SET_NAME, name); \ 367 } while (0) 368 369 static u8 *alloc_data(ssize_t bytes0, int map_flags, 370 int init_zero, int init_cpu0, int thp, int init_random) 371 { 372 cpu_set_t orig_mask; 373 ssize_t bytes; 374 u8 *buf; 375 int ret; 376 377 if (!bytes0) 378 return NULL; 379 380 /* Allocate and initialize all memory on CPU#0: */ 381 if (init_cpu0) { 382 int node = numa_node_of_cpu(0); 383 384 orig_mask = bind_to_node(node); 385 bind_to_memnode(node); 386 } 387 388 bytes = bytes0 + HPSIZE; 389 390 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0); 391 BUG_ON(buf == (void *)-1); 392 393 if (map_flags == MAP_PRIVATE) { 394 if (thp > 0) { 395 ret = madvise(buf, bytes, MADV_HUGEPAGE); 396 if (ret && !g->print_once) { 397 g->print_once = 1; 398 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n"); 399 } 400 } 401 if (thp < 0) { 402 ret = madvise(buf, bytes, MADV_NOHUGEPAGE); 403 if (ret && !g->print_once) { 404 g->print_once = 1; 405 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n"); 406 } 407 } 408 } 409 410 if (init_zero) { 411 bzero(buf, bytes); 412 } else { 413 /* Initialize random contents, different in each word: */ 414 if (init_random) { 415 u64 *wbuf = (void *)buf; 416 long off = rand(); 417 long i; 418 419 for (i = 0; i < bytes/8; i++) 420 wbuf[i] = i + off; 421 } 422 } 423 424 /* Align to 2MB boundary: */ 425 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1)); 426 427 /* Restore affinity: */ 428 if (init_cpu0) { 429 bind_to_cpumask(orig_mask); 430 mempol_restore(); 431 } 432 433 return buf; 434 } 435 436 static void free_data(void *data, ssize_t bytes) 437 { 438 int ret; 439 440 if (!data) 441 return; 442 443 ret = munmap(data, bytes); 444 BUG_ON(ret); 445 } 446 447 /* 448 * Create a shared memory buffer that can be shared between processes, zeroed: 449 */ 450 static void * zalloc_shared_data(ssize_t bytes) 451 { 452 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random); 453 } 454 455 /* 456 * Create a shared memory buffer that can be shared between processes: 457 */ 458 static void * setup_shared_data(ssize_t bytes) 459 { 460 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 461 } 462 463 /* 464 * Allocate process-local memory - this will either be shared between 465 * threads of this process, or only be accessed by this thread: 466 */ 467 static void * setup_private_data(ssize_t bytes) 468 { 469 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 470 } 471 472 /* 473 * Return a process-shared (global) mutex: 474 */ 475 static void init_global_mutex(pthread_mutex_t *mutex) 476 { 477 pthread_mutexattr_t attr; 478 479 pthread_mutexattr_init(&attr); 480 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED); 481 pthread_mutex_init(mutex, &attr); 482 } 483 484 static int parse_cpu_list(const char *arg) 485 { 486 p0.cpu_list_str = strdup(arg); 487 488 dprintf("got CPU list: {%s}\n", p0.cpu_list_str); 489 490 return 0; 491 } 492 493 static int parse_setup_cpu_list(void) 494 { 495 struct thread_data *td; 496 char *str0, *str; 497 int t; 498 499 if (!g->p.cpu_list_str) 500 return 0; 501 502 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 503 504 str0 = str = strdup(g->p.cpu_list_str); 505 t = 0; 506 507 BUG_ON(!str); 508 509 tprintf("# binding tasks to CPUs:\n"); 510 tprintf("# "); 511 512 while (true) { 513 int bind_cpu, bind_cpu_0, bind_cpu_1; 514 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul; 515 int bind_len; 516 int step; 517 int mul; 518 519 tok = strsep(&str, ","); 520 if (!tok) 521 break; 522 523 tok_end = strstr(tok, "-"); 524 525 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 526 if (!tok_end) { 527 /* Single CPU specified: */ 528 bind_cpu_0 = bind_cpu_1 = atol(tok); 529 } else { 530 /* CPU range specified (for example: "5-11"): */ 531 bind_cpu_0 = atol(tok); 532 bind_cpu_1 = atol(tok_end + 1); 533 } 534 535 step = 1; 536 tok_step = strstr(tok, "#"); 537 if (tok_step) { 538 step = atol(tok_step + 1); 539 BUG_ON(step <= 0 || step >= g->p.nr_cpus); 540 } 541 542 /* 543 * Mask length. 544 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4', 545 * where the _4 means the next 4 CPUs are allowed. 546 */ 547 bind_len = 1; 548 tok_len = strstr(tok, "_"); 549 if (tok_len) { 550 bind_len = atol(tok_len + 1); 551 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus); 552 } 553 554 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 555 mul = 1; 556 tok_mul = strstr(tok, "x"); 557 if (tok_mul) { 558 mul = atol(tok_mul + 1); 559 BUG_ON(mul <= 0); 560 } 561 562 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul); 563 564 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) { 565 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus); 566 return -1; 567 } 568 569 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0); 570 BUG_ON(bind_cpu_0 > bind_cpu_1); 571 572 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) { 573 int i; 574 575 for (i = 0; i < mul; i++) { 576 int cpu; 577 578 if (t >= g->p.nr_tasks) { 579 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu); 580 goto out; 581 } 582 td = g->threads + t; 583 584 if (t) 585 tprintf(","); 586 if (bind_len > 1) { 587 tprintf("%2d/%d", bind_cpu, bind_len); 588 } else { 589 tprintf("%2d", bind_cpu); 590 } 591 592 CPU_ZERO(&td->bind_cpumask); 593 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) { 594 BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus); 595 CPU_SET(cpu, &td->bind_cpumask); 596 } 597 t++; 598 } 599 } 600 } 601 out: 602 603 tprintf("\n"); 604 605 if (t < g->p.nr_tasks) 606 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 607 608 free(str0); 609 return 0; 610 } 611 612 static int parse_cpus_opt(const struct option *opt __maybe_unused, 613 const char *arg, int unset __maybe_unused) 614 { 615 if (!arg) 616 return -1; 617 618 return parse_cpu_list(arg); 619 } 620 621 static int parse_node_list(const char *arg) 622 { 623 p0.node_list_str = strdup(arg); 624 625 dprintf("got NODE list: {%s}\n", p0.node_list_str); 626 627 return 0; 628 } 629 630 static int parse_setup_node_list(void) 631 { 632 struct thread_data *td; 633 char *str0, *str; 634 int t; 635 636 if (!g->p.node_list_str) 637 return 0; 638 639 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 640 641 str0 = str = strdup(g->p.node_list_str); 642 t = 0; 643 644 BUG_ON(!str); 645 646 tprintf("# binding tasks to NODEs:\n"); 647 tprintf("# "); 648 649 while (true) { 650 int bind_node, bind_node_0, bind_node_1; 651 char *tok, *tok_end, *tok_step, *tok_mul; 652 int step; 653 int mul; 654 655 tok = strsep(&str, ","); 656 if (!tok) 657 break; 658 659 tok_end = strstr(tok, "-"); 660 661 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 662 if (!tok_end) { 663 /* Single NODE specified: */ 664 bind_node_0 = bind_node_1 = atol(tok); 665 } else { 666 /* NODE range specified (for example: "5-11"): */ 667 bind_node_0 = atol(tok); 668 bind_node_1 = atol(tok_end + 1); 669 } 670 671 step = 1; 672 tok_step = strstr(tok, "#"); 673 if (tok_step) { 674 step = atol(tok_step + 1); 675 BUG_ON(step <= 0 || step >= g->p.nr_nodes); 676 } 677 678 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 679 mul = 1; 680 tok_mul = strstr(tok, "x"); 681 if (tok_mul) { 682 mul = atol(tok_mul + 1); 683 BUG_ON(mul <= 0); 684 } 685 686 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step); 687 688 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) { 689 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes); 690 return -1; 691 } 692 693 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0); 694 BUG_ON(bind_node_0 > bind_node_1); 695 696 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) { 697 int i; 698 699 for (i = 0; i < mul; i++) { 700 if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) { 701 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node); 702 goto out; 703 } 704 td = g->threads + t; 705 706 if (!t) 707 tprintf(" %2d", bind_node); 708 else 709 tprintf(",%2d", bind_node); 710 711 td->bind_node = bind_node; 712 t++; 713 } 714 } 715 } 716 out: 717 718 tprintf("\n"); 719 720 if (t < g->p.nr_tasks) 721 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 722 723 free(str0); 724 return 0; 725 } 726 727 static int parse_nodes_opt(const struct option *opt __maybe_unused, 728 const char *arg, int unset __maybe_unused) 729 { 730 if (!arg) 731 return -1; 732 733 return parse_node_list(arg); 734 735 return 0; 736 } 737 738 #define BIT(x) (1ul << x) 739 740 static inline uint32_t lfsr_32(uint32_t lfsr) 741 { 742 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31); 743 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps); 744 } 745 746 /* 747 * Make sure there's real data dependency to RAM (when read 748 * accesses are enabled), so the compiler, the CPU and the 749 * kernel (KSM, zero page, etc.) cannot optimize away RAM 750 * accesses: 751 */ 752 static inline u64 access_data(u64 *data, u64 val) 753 { 754 if (g->p.data_reads) 755 val += *data; 756 if (g->p.data_writes) 757 *data = val + 1; 758 return val; 759 } 760 761 /* 762 * The worker process does two types of work, a forwards going 763 * loop and a backwards going loop. 764 * 765 * We do this so that on multiprocessor systems we do not create 766 * a 'train' of processing, with highly synchronized processes, 767 * skewing the whole benchmark. 768 */ 769 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val) 770 { 771 long words = bytes/sizeof(u64); 772 u64 *data = (void *)__data; 773 long chunk_0, chunk_1; 774 u64 *d0, *d, *d1; 775 long off; 776 long i; 777 778 BUG_ON(!data && words); 779 BUG_ON(data && !words); 780 781 if (!data) 782 return val; 783 784 /* Very simple memset() work variant: */ 785 if (g->p.data_zero_memset && !g->p.data_rand_walk) { 786 bzero(data, bytes); 787 return val; 788 } 789 790 /* Spread out by PID/TID nr and by loop nr: */ 791 chunk_0 = words/nr_max; 792 chunk_1 = words/g->p.nr_loops; 793 off = nr*chunk_0 + loop*chunk_1; 794 795 while (off >= words) 796 off -= words; 797 798 if (g->p.data_rand_walk) { 799 u32 lfsr = nr + loop + val; 800 int j; 801 802 for (i = 0; i < words/1024; i++) { 803 long start, end; 804 805 lfsr = lfsr_32(lfsr); 806 807 start = lfsr % words; 808 end = min(start + 1024, words-1); 809 810 if (g->p.data_zero_memset) { 811 bzero(data + start, (end-start) * sizeof(u64)); 812 } else { 813 for (j = start; j < end; j++) 814 val = access_data(data + j, val); 815 } 816 } 817 } else if (!g->p.data_backwards || (nr + loop) & 1) { 818 819 d0 = data + off; 820 d = data + off + 1; 821 d1 = data + words; 822 823 /* Process data forwards: */ 824 for (;;) { 825 if (unlikely(d >= d1)) 826 d = data; 827 if (unlikely(d == d0)) 828 break; 829 830 val = access_data(d, val); 831 832 d++; 833 } 834 } else { 835 /* Process data backwards: */ 836 837 d0 = data + off; 838 d = data + off - 1; 839 d1 = data + words; 840 841 /* Process data forwards: */ 842 for (;;) { 843 if (unlikely(d < data)) 844 d = data + words-1; 845 if (unlikely(d == d0)) 846 break; 847 848 val = access_data(d, val); 849 850 d--; 851 } 852 } 853 854 return val; 855 } 856 857 static void update_curr_cpu(int task_nr, unsigned long bytes_worked) 858 { 859 unsigned int cpu; 860 861 cpu = sched_getcpu(); 862 863 g->threads[task_nr].curr_cpu = cpu; 864 prctl(0, bytes_worked); 865 } 866 867 #define MAX_NR_NODES 64 868 869 /* 870 * Count the number of nodes a process's threads 871 * are spread out on. 872 * 873 * A count of 1 means that the process is compressed 874 * to a single node. A count of g->p.nr_nodes means it's 875 * spread out on the whole system. 876 */ 877 static int count_process_nodes(int process_nr) 878 { 879 char node_present[MAX_NR_NODES] = { 0, }; 880 int nodes; 881 int n, t; 882 883 for (t = 0; t < g->p.nr_threads; t++) { 884 struct thread_data *td; 885 int task_nr; 886 int node; 887 888 task_nr = process_nr*g->p.nr_threads + t; 889 td = g->threads + task_nr; 890 891 node = numa_node_of_cpu(td->curr_cpu); 892 if (node < 0) /* curr_cpu was likely still -1 */ 893 return 0; 894 895 node_present[node] = 1; 896 } 897 898 nodes = 0; 899 900 for (n = 0; n < MAX_NR_NODES; n++) 901 nodes += node_present[n]; 902 903 return nodes; 904 } 905 906 /* 907 * Count the number of distinct process-threads a node contains. 908 * 909 * A count of 1 means that the node contains only a single 910 * process. If all nodes on the system contain at most one 911 * process then we are well-converged. 912 */ 913 static int count_node_processes(int node) 914 { 915 int processes = 0; 916 int t, p; 917 918 for (p = 0; p < g->p.nr_proc; p++) { 919 for (t = 0; t < g->p.nr_threads; t++) { 920 struct thread_data *td; 921 int task_nr; 922 int n; 923 924 task_nr = p*g->p.nr_threads + t; 925 td = g->threads + task_nr; 926 927 n = numa_node_of_cpu(td->curr_cpu); 928 if (n == node) { 929 processes++; 930 break; 931 } 932 } 933 } 934 935 return processes; 936 } 937 938 static void calc_convergence_compression(int *strong) 939 { 940 unsigned int nodes_min, nodes_max; 941 int p; 942 943 nodes_min = -1; 944 nodes_max = 0; 945 946 for (p = 0; p < g->p.nr_proc; p++) { 947 unsigned int nodes = count_process_nodes(p); 948 949 if (!nodes) { 950 *strong = 0; 951 return; 952 } 953 954 nodes_min = min(nodes, nodes_min); 955 nodes_max = max(nodes, nodes_max); 956 } 957 958 /* Strong convergence: all threads compress on a single node: */ 959 if (nodes_min == 1 && nodes_max == 1) { 960 *strong = 1; 961 } else { 962 *strong = 0; 963 tprintf(" {%d-%d}", nodes_min, nodes_max); 964 } 965 } 966 967 static void calc_convergence(double runtime_ns_max, double *convergence) 968 { 969 unsigned int loops_done_min, loops_done_max; 970 int process_groups; 971 int nodes[MAX_NR_NODES]; 972 int distance; 973 int nr_min; 974 int nr_max; 975 int strong; 976 int sum; 977 int nr; 978 int node; 979 int cpu; 980 int t; 981 982 if (!g->p.show_convergence && !g->p.measure_convergence) 983 return; 984 985 for (node = 0; node < g->p.nr_nodes; node++) 986 nodes[node] = 0; 987 988 loops_done_min = -1; 989 loops_done_max = 0; 990 991 for (t = 0; t < g->p.nr_tasks; t++) { 992 struct thread_data *td = g->threads + t; 993 unsigned int loops_done; 994 995 cpu = td->curr_cpu; 996 997 /* Not all threads have written it yet: */ 998 if (cpu < 0) 999 continue; 1000 1001 node = numa_node_of_cpu(cpu); 1002 1003 nodes[node]++; 1004 1005 loops_done = td->loops_done; 1006 loops_done_min = min(loops_done, loops_done_min); 1007 loops_done_max = max(loops_done, loops_done_max); 1008 } 1009 1010 nr_max = 0; 1011 nr_min = g->p.nr_tasks; 1012 sum = 0; 1013 1014 for (node = 0; node < g->p.nr_nodes; node++) { 1015 if (!is_node_present(node)) 1016 continue; 1017 nr = nodes[node]; 1018 nr_min = min(nr, nr_min); 1019 nr_max = max(nr, nr_max); 1020 sum += nr; 1021 } 1022 BUG_ON(nr_min > nr_max); 1023 1024 BUG_ON(sum > g->p.nr_tasks); 1025 1026 if (0 && (sum < g->p.nr_tasks)) 1027 return; 1028 1029 /* 1030 * Count the number of distinct process groups present 1031 * on nodes - when we are converged this will decrease 1032 * to g->p.nr_proc: 1033 */ 1034 process_groups = 0; 1035 1036 for (node = 0; node < g->p.nr_nodes; node++) { 1037 int processes; 1038 1039 if (!is_node_present(node)) 1040 continue; 1041 processes = count_node_processes(node); 1042 nr = nodes[node]; 1043 tprintf(" %2d/%-2d", nr, processes); 1044 1045 process_groups += processes; 1046 } 1047 1048 distance = nr_max - nr_min; 1049 1050 tprintf(" [%2d/%-2d]", distance, process_groups); 1051 1052 tprintf(" l:%3d-%-3d (%3d)", 1053 loops_done_min, loops_done_max, loops_done_max-loops_done_min); 1054 1055 if (loops_done_min && loops_done_max) { 1056 double skew = 1.0 - (double)loops_done_min/loops_done_max; 1057 1058 tprintf(" [%4.1f%%]", skew * 100.0); 1059 } 1060 1061 calc_convergence_compression(&strong); 1062 1063 if (strong && process_groups == g->p.nr_proc) { 1064 if (!*convergence) { 1065 *convergence = runtime_ns_max; 1066 tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC); 1067 if (g->p.measure_convergence) { 1068 g->all_converged = true; 1069 g->stop_work = true; 1070 } 1071 } 1072 } else { 1073 if (*convergence) { 1074 tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC); 1075 *convergence = 0; 1076 } 1077 tprintf("\n"); 1078 } 1079 } 1080 1081 static void show_summary(double runtime_ns_max, int l, double *convergence) 1082 { 1083 tprintf("\r # %5.1f%% [%.1f mins]", 1084 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0); 1085 1086 calc_convergence(runtime_ns_max, convergence); 1087 1088 if (g->p.show_details >= 0) 1089 fflush(stdout); 1090 } 1091 1092 static void *worker_thread(void *__tdata) 1093 { 1094 struct thread_data *td = __tdata; 1095 struct timeval start0, start, stop, diff; 1096 int process_nr = td->process_nr; 1097 int thread_nr = td->thread_nr; 1098 unsigned long last_perturbance; 1099 int task_nr = td->task_nr; 1100 int details = g->p.show_details; 1101 int first_task, last_task; 1102 double convergence = 0; 1103 u64 val = td->val; 1104 double runtime_ns_max; 1105 u8 *global_data; 1106 u8 *process_data; 1107 u8 *thread_data; 1108 u64 bytes_done, secs; 1109 long work_done; 1110 u32 l; 1111 struct rusage rusage; 1112 1113 bind_to_cpumask(td->bind_cpumask); 1114 bind_to_memnode(td->bind_node); 1115 1116 set_taskname("thread %d/%d", process_nr, thread_nr); 1117 1118 global_data = g->data; 1119 process_data = td->process_data; 1120 thread_data = setup_private_data(g->p.bytes_thread); 1121 1122 bytes_done = 0; 1123 1124 last_task = 0; 1125 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1) 1126 last_task = 1; 1127 1128 first_task = 0; 1129 if (process_nr == 0 && thread_nr == 0) 1130 first_task = 1; 1131 1132 if (details >= 2) { 1133 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n", 1134 process_nr, thread_nr, global_data, process_data, thread_data); 1135 } 1136 1137 if (g->p.serialize_startup) { 1138 pthread_mutex_lock(&g->startup_mutex); 1139 g->nr_tasks_started++; 1140 pthread_mutex_unlock(&g->startup_mutex); 1141 1142 /* Here we will wait for the main process to start us all at once: */ 1143 pthread_mutex_lock(&g->start_work_mutex); 1144 g->nr_tasks_working++; 1145 1146 /* Last one wake the main process: */ 1147 if (g->nr_tasks_working == g->p.nr_tasks) 1148 pthread_mutex_unlock(&g->startup_done_mutex); 1149 1150 pthread_mutex_unlock(&g->start_work_mutex); 1151 } 1152 1153 gettimeofday(&start0, NULL); 1154 1155 start = stop = start0; 1156 last_perturbance = start.tv_sec; 1157 1158 for (l = 0; l < g->p.nr_loops; l++) { 1159 start = stop; 1160 1161 if (g->stop_work) 1162 break; 1163 1164 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val); 1165 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val); 1166 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val); 1167 1168 if (g->p.sleep_usecs) { 1169 pthread_mutex_lock(td->process_lock); 1170 usleep(g->p.sleep_usecs); 1171 pthread_mutex_unlock(td->process_lock); 1172 } 1173 /* 1174 * Amount of work to be done under a process-global lock: 1175 */ 1176 if (g->p.bytes_process_locked) { 1177 pthread_mutex_lock(td->process_lock); 1178 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val); 1179 pthread_mutex_unlock(td->process_lock); 1180 } 1181 1182 work_done = g->p.bytes_global + g->p.bytes_process + 1183 g->p.bytes_process_locked + g->p.bytes_thread; 1184 1185 update_curr_cpu(task_nr, work_done); 1186 bytes_done += work_done; 1187 1188 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs) 1189 continue; 1190 1191 td->loops_done = l; 1192 1193 gettimeofday(&stop, NULL); 1194 1195 /* Check whether our max runtime timed out: */ 1196 if (g->p.nr_secs) { 1197 timersub(&stop, &start0, &diff); 1198 if ((u32)diff.tv_sec >= g->p.nr_secs) { 1199 g->stop_work = true; 1200 break; 1201 } 1202 } 1203 1204 /* Update the summary at most once per second: */ 1205 if (start.tv_sec == stop.tv_sec) 1206 continue; 1207 1208 /* 1209 * Perturb the first task's equilibrium every g->p.perturb_secs seconds, 1210 * by migrating to CPU#0: 1211 */ 1212 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) { 1213 cpu_set_t orig_mask; 1214 int target_cpu; 1215 int this_cpu; 1216 1217 last_perturbance = stop.tv_sec; 1218 1219 /* 1220 * Depending on where we are running, move into 1221 * the other half of the system, to create some 1222 * real disturbance: 1223 */ 1224 this_cpu = g->threads[task_nr].curr_cpu; 1225 if (this_cpu < g->p.nr_cpus/2) 1226 target_cpu = g->p.nr_cpus-1; 1227 else 1228 target_cpu = 0; 1229 1230 orig_mask = bind_to_cpu(target_cpu); 1231 1232 /* Here we are running on the target CPU already */ 1233 if (details >= 1) 1234 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu); 1235 1236 bind_to_cpumask(orig_mask); 1237 } 1238 1239 if (details >= 3) { 1240 timersub(&stop, &start, &diff); 1241 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC; 1242 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC; 1243 1244 if (details >= 0) { 1245 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n", 1246 process_nr, thread_nr, runtime_ns_max / bytes_done, val); 1247 } 1248 fflush(stdout); 1249 } 1250 if (!last_task) 1251 continue; 1252 1253 timersub(&stop, &start0, &diff); 1254 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC; 1255 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC; 1256 1257 show_summary(runtime_ns_max, l, &convergence); 1258 } 1259 1260 gettimeofday(&stop, NULL); 1261 timersub(&stop, &start0, &diff); 1262 td->runtime_ns = diff.tv_sec * NSEC_PER_SEC; 1263 td->runtime_ns += diff.tv_usec * NSEC_PER_USEC; 1264 secs = td->runtime_ns / NSEC_PER_SEC; 1265 td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0; 1266 1267 getrusage(RUSAGE_THREAD, &rusage); 1268 td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC; 1269 td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC; 1270 td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC; 1271 td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC; 1272 1273 free_data(thread_data, g->p.bytes_thread); 1274 1275 pthread_mutex_lock(&g->stop_work_mutex); 1276 g->bytes_done += bytes_done; 1277 pthread_mutex_unlock(&g->stop_work_mutex); 1278 1279 return NULL; 1280 } 1281 1282 /* 1283 * A worker process starts a couple of threads: 1284 */ 1285 static void worker_process(int process_nr) 1286 { 1287 pthread_mutex_t process_lock; 1288 struct thread_data *td; 1289 pthread_t *pthreads; 1290 u8 *process_data; 1291 int task_nr; 1292 int ret; 1293 int t; 1294 1295 pthread_mutex_init(&process_lock, NULL); 1296 set_taskname("process %d", process_nr); 1297 1298 /* 1299 * Pick up the memory policy and the CPU binding of our first thread, 1300 * so that we initialize memory accordingly: 1301 */ 1302 task_nr = process_nr*g->p.nr_threads; 1303 td = g->threads + task_nr; 1304 1305 bind_to_memnode(td->bind_node); 1306 bind_to_cpumask(td->bind_cpumask); 1307 1308 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t)); 1309 process_data = setup_private_data(g->p.bytes_process); 1310 1311 if (g->p.show_details >= 3) { 1312 printf(" # process %2d global mem: %p, process mem: %p\n", 1313 process_nr, g->data, process_data); 1314 } 1315 1316 for (t = 0; t < g->p.nr_threads; t++) { 1317 task_nr = process_nr*g->p.nr_threads + t; 1318 td = g->threads + task_nr; 1319 1320 td->process_data = process_data; 1321 td->process_nr = process_nr; 1322 td->thread_nr = t; 1323 td->task_nr = task_nr; 1324 td->val = rand(); 1325 td->curr_cpu = -1; 1326 td->process_lock = &process_lock; 1327 1328 ret = pthread_create(pthreads + t, NULL, worker_thread, td); 1329 BUG_ON(ret); 1330 } 1331 1332 for (t = 0; t < g->p.nr_threads; t++) { 1333 ret = pthread_join(pthreads[t], NULL); 1334 BUG_ON(ret); 1335 } 1336 1337 free_data(process_data, g->p.bytes_process); 1338 free(pthreads); 1339 } 1340 1341 static void print_summary(void) 1342 { 1343 if (g->p.show_details < 0) 1344 return; 1345 1346 printf("\n ###\n"); 1347 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n", 1348 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus); 1349 printf(" # %5dx %5ldMB global shared mem operations\n", 1350 g->p.nr_loops, g->p.bytes_global/1024/1024); 1351 printf(" # %5dx %5ldMB process shared mem operations\n", 1352 g->p.nr_loops, g->p.bytes_process/1024/1024); 1353 printf(" # %5dx %5ldMB thread local mem operations\n", 1354 g->p.nr_loops, g->p.bytes_thread/1024/1024); 1355 1356 printf(" ###\n"); 1357 1358 printf("\n ###\n"); fflush(stdout); 1359 } 1360 1361 static void init_thread_data(void) 1362 { 1363 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1364 int t; 1365 1366 g->threads = zalloc_shared_data(size); 1367 1368 for (t = 0; t < g->p.nr_tasks; t++) { 1369 struct thread_data *td = g->threads + t; 1370 int cpu; 1371 1372 /* Allow all nodes by default: */ 1373 td->bind_node = NUMA_NO_NODE; 1374 1375 /* Allow all CPUs by default: */ 1376 CPU_ZERO(&td->bind_cpumask); 1377 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 1378 CPU_SET(cpu, &td->bind_cpumask); 1379 } 1380 } 1381 1382 static void deinit_thread_data(void) 1383 { 1384 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1385 1386 free_data(g->threads, size); 1387 } 1388 1389 static int init(void) 1390 { 1391 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0); 1392 1393 /* Copy over options: */ 1394 g->p = p0; 1395 1396 g->p.nr_cpus = numa_num_configured_cpus(); 1397 1398 g->p.nr_nodes = numa_max_node() + 1; 1399 1400 /* char array in count_process_nodes(): */ 1401 BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0); 1402 1403 if (g->p.show_quiet && !g->p.show_details) 1404 g->p.show_details = -1; 1405 1406 /* Some memory should be specified: */ 1407 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str) 1408 return -1; 1409 1410 if (g->p.mb_global_str) { 1411 g->p.mb_global = atof(g->p.mb_global_str); 1412 BUG_ON(g->p.mb_global < 0); 1413 } 1414 1415 if (g->p.mb_proc_str) { 1416 g->p.mb_proc = atof(g->p.mb_proc_str); 1417 BUG_ON(g->p.mb_proc < 0); 1418 } 1419 1420 if (g->p.mb_proc_locked_str) { 1421 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str); 1422 BUG_ON(g->p.mb_proc_locked < 0); 1423 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc); 1424 } 1425 1426 if (g->p.mb_thread_str) { 1427 g->p.mb_thread = atof(g->p.mb_thread_str); 1428 BUG_ON(g->p.mb_thread < 0); 1429 } 1430 1431 BUG_ON(g->p.nr_threads <= 0); 1432 BUG_ON(g->p.nr_proc <= 0); 1433 1434 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads; 1435 1436 g->p.bytes_global = g->p.mb_global *1024L*1024L; 1437 g->p.bytes_process = g->p.mb_proc *1024L*1024L; 1438 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L; 1439 g->p.bytes_thread = g->p.mb_thread *1024L*1024L; 1440 1441 g->data = setup_shared_data(g->p.bytes_global); 1442 1443 /* Startup serialization: */ 1444 init_global_mutex(&g->start_work_mutex); 1445 init_global_mutex(&g->startup_mutex); 1446 init_global_mutex(&g->startup_done_mutex); 1447 init_global_mutex(&g->stop_work_mutex); 1448 1449 init_thread_data(); 1450 1451 tprintf("#\n"); 1452 if (parse_setup_cpu_list() || parse_setup_node_list()) 1453 return -1; 1454 tprintf("#\n"); 1455 1456 print_summary(); 1457 1458 return 0; 1459 } 1460 1461 static void deinit(void) 1462 { 1463 free_data(g->data, g->p.bytes_global); 1464 g->data = NULL; 1465 1466 deinit_thread_data(); 1467 1468 free_data(g, sizeof(*g)); 1469 g = NULL; 1470 } 1471 1472 /* 1473 * Print a short or long result, depending on the verbosity setting: 1474 */ 1475 static void print_res(const char *name, double val, 1476 const char *txt_unit, const char *txt_short, const char *txt_long) 1477 { 1478 if (!name) 1479 name = "main,"; 1480 1481 if (!g->p.show_quiet) 1482 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short); 1483 else 1484 printf(" %14.3f %s\n", val, txt_long); 1485 } 1486 1487 static int __bench_numa(const char *name) 1488 { 1489 struct timeval start, stop, diff; 1490 u64 runtime_ns_min, runtime_ns_sum; 1491 pid_t *pids, pid, wpid; 1492 double delta_runtime; 1493 double runtime_avg; 1494 double runtime_sec_max; 1495 double runtime_sec_min; 1496 int wait_stat; 1497 double bytes; 1498 int i, t, p; 1499 1500 if (init()) 1501 return -1; 1502 1503 pids = zalloc(g->p.nr_proc * sizeof(*pids)); 1504 pid = -1; 1505 1506 /* All threads try to acquire it, this way we can wait for them to start up: */ 1507 pthread_mutex_lock(&g->start_work_mutex); 1508 1509 if (g->p.serialize_startup) { 1510 tprintf(" #\n"); 1511 tprintf(" # Startup synchronization: ..."); fflush(stdout); 1512 } 1513 1514 gettimeofday(&start, NULL); 1515 1516 for (i = 0; i < g->p.nr_proc; i++) { 1517 pid = fork(); 1518 dprintf(" # process %2d: PID %d\n", i, pid); 1519 1520 BUG_ON(pid < 0); 1521 if (!pid) { 1522 /* Child process: */ 1523 worker_process(i); 1524 1525 exit(0); 1526 } 1527 pids[i] = pid; 1528 1529 } 1530 /* Wait for all the threads to start up: */ 1531 while (g->nr_tasks_started != g->p.nr_tasks) 1532 usleep(USEC_PER_MSEC); 1533 1534 BUG_ON(g->nr_tasks_started != g->p.nr_tasks); 1535 1536 if (g->p.serialize_startup) { 1537 double startup_sec; 1538 1539 pthread_mutex_lock(&g->startup_done_mutex); 1540 1541 /* This will start all threads: */ 1542 pthread_mutex_unlock(&g->start_work_mutex); 1543 1544 /* This mutex is locked - the last started thread will wake us: */ 1545 pthread_mutex_lock(&g->startup_done_mutex); 1546 1547 gettimeofday(&stop, NULL); 1548 1549 timersub(&stop, &start, &diff); 1550 1551 startup_sec = diff.tv_sec * NSEC_PER_SEC; 1552 startup_sec += diff.tv_usec * NSEC_PER_USEC; 1553 startup_sec /= NSEC_PER_SEC; 1554 1555 tprintf(" threads initialized in %.6f seconds.\n", startup_sec); 1556 tprintf(" #\n"); 1557 1558 start = stop; 1559 pthread_mutex_unlock(&g->startup_done_mutex); 1560 } else { 1561 gettimeofday(&start, NULL); 1562 } 1563 1564 /* Parent process: */ 1565 1566 1567 for (i = 0; i < g->p.nr_proc; i++) { 1568 wpid = waitpid(pids[i], &wait_stat, 0); 1569 BUG_ON(wpid < 0); 1570 BUG_ON(!WIFEXITED(wait_stat)); 1571 1572 } 1573 1574 runtime_ns_sum = 0; 1575 runtime_ns_min = -1LL; 1576 1577 for (t = 0; t < g->p.nr_tasks; t++) { 1578 u64 thread_runtime_ns = g->threads[t].runtime_ns; 1579 1580 runtime_ns_sum += thread_runtime_ns; 1581 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min); 1582 } 1583 1584 gettimeofday(&stop, NULL); 1585 timersub(&stop, &start, &diff); 1586 1587 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT); 1588 1589 tprintf("\n ###\n"); 1590 tprintf("\n"); 1591 1592 runtime_sec_max = diff.tv_sec * NSEC_PER_SEC; 1593 runtime_sec_max += diff.tv_usec * NSEC_PER_USEC; 1594 runtime_sec_max /= NSEC_PER_SEC; 1595 1596 runtime_sec_min = runtime_ns_min / NSEC_PER_SEC; 1597 1598 bytes = g->bytes_done; 1599 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC; 1600 1601 if (g->p.measure_convergence) { 1602 print_res(name, runtime_sec_max, 1603 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge"); 1604 } 1605 1606 print_res(name, runtime_sec_max, 1607 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime"); 1608 1609 print_res(name, runtime_sec_min, 1610 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime"); 1611 1612 print_res(name, runtime_avg, 1613 "secs,", "runtime-avg/thread", "secs average thread-runtime"); 1614 1615 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0; 1616 print_res(name, delta_runtime / runtime_sec_max * 100.0, 1617 "%,", "spread-runtime/thread", "% difference between max/avg runtime"); 1618 1619 print_res(name, bytes / g->p.nr_tasks / 1e9, 1620 "GB,", "data/thread", "GB data processed, per thread"); 1621 1622 print_res(name, bytes / 1e9, 1623 "GB,", "data-total", "GB data processed, total"); 1624 1625 print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks), 1626 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime"); 1627 1628 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max, 1629 "GB/sec,", "thread-speed", "GB/sec/thread speed"); 1630 1631 print_res(name, bytes / runtime_sec_max / 1e9, 1632 "GB/sec,", "total-speed", "GB/sec total speed"); 1633 1634 if (g->p.show_details >= 2) { 1635 char tname[14 + 2 * 10 + 1]; 1636 struct thread_data *td; 1637 for (p = 0; p < g->p.nr_proc; p++) { 1638 for (t = 0; t < g->p.nr_threads; t++) { 1639 memset(tname, 0, sizeof(tname)); 1640 td = g->threads + p*g->p.nr_threads + t; 1641 snprintf(tname, sizeof(tname), "process%d:thread%d", p, t); 1642 print_res(tname, td->speed_gbs, 1643 "GB/sec", "thread-speed", "GB/sec/thread speed"); 1644 print_res(tname, td->system_time_ns / NSEC_PER_SEC, 1645 "secs", "thread-system-time", "system CPU time/thread"); 1646 print_res(tname, td->user_time_ns / NSEC_PER_SEC, 1647 "secs", "thread-user-time", "user CPU time/thread"); 1648 } 1649 } 1650 } 1651 1652 free(pids); 1653 1654 deinit(); 1655 1656 return 0; 1657 } 1658 1659 #define MAX_ARGS 50 1660 1661 static int command_size(const char **argv) 1662 { 1663 int size = 0; 1664 1665 while (*argv) { 1666 size++; 1667 argv++; 1668 } 1669 1670 BUG_ON(size >= MAX_ARGS); 1671 1672 return size; 1673 } 1674 1675 static void init_params(struct params *p, const char *name, int argc, const char **argv) 1676 { 1677 int i; 1678 1679 printf("\n # Running %s \"perf bench numa", name); 1680 1681 for (i = 0; i < argc; i++) 1682 printf(" %s", argv[i]); 1683 1684 printf("\"\n"); 1685 1686 memset(p, 0, sizeof(*p)); 1687 1688 /* Initialize nonzero defaults: */ 1689 1690 p->serialize_startup = 1; 1691 p->data_reads = true; 1692 p->data_writes = true; 1693 p->data_backwards = true; 1694 p->data_rand_walk = true; 1695 p->nr_loops = -1; 1696 p->init_random = true; 1697 p->mb_global_str = "1"; 1698 p->nr_proc = 1; 1699 p->nr_threads = 1; 1700 p->nr_secs = 5; 1701 p->run_all = argc == 1; 1702 } 1703 1704 static int run_bench_numa(const char *name, const char **argv) 1705 { 1706 int argc = command_size(argv); 1707 1708 init_params(&p0, name, argc, argv); 1709 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1710 if (argc) 1711 goto err; 1712 1713 if (__bench_numa(name)) 1714 goto err; 1715 1716 return 0; 1717 1718 err: 1719 return -1; 1720 } 1721 1722 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk" 1723 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1" 1724 1725 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1" 1726 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1" 1727 1728 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1" 1729 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1" 1730 1731 /* 1732 * The built-in test-suite executed by "perf bench numa -a". 1733 * 1734 * (A minimum of 4 nodes and 16 GB of RAM is recommended.) 1735 */ 1736 static const char *tests[][MAX_ARGS] = { 1737 /* Basic single-stream NUMA bandwidth measurements: */ 1738 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1739 "-C" , "0", "-M", "0", OPT_BW_RAM }, 1740 { "RAM-bw-local-NOTHP,", 1741 "mem", "-p", "1", "-t", "1", "-P", "1024", 1742 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP }, 1743 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1744 "-C" , "0", "-M", "1", OPT_BW_RAM }, 1745 1746 /* 2-stream NUMA bandwidth measurements: */ 1747 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1748 "-C", "0,2", "-M", "0x2", OPT_BW_RAM }, 1749 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1750 "-C", "0,2", "-M", "1x2", OPT_BW_RAM }, 1751 1752 /* Cross-stream NUMA bandwidth measurement: */ 1753 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1754 "-C", "0,8", "-M", "1,0", OPT_BW_RAM }, 1755 1756 /* Convergence latency measurements: */ 1757 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV }, 1758 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV }, 1759 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV }, 1760 { " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1761 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1762 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV }, 1763 { " 4x4-convergence-NOTHP,", 1764 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1765 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV }, 1766 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV }, 1767 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV }, 1768 { " 8x4-convergence-NOTHP,", 1769 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1770 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV }, 1771 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV }, 1772 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV }, 1773 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV }, 1774 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV }, 1775 1776 /* Various NUMA process/thread layout bandwidth measurements: */ 1777 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW }, 1778 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW }, 1779 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW }, 1780 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW }, 1781 { " 8x1-bw-process-NOTHP,", 1782 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP }, 1783 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW }, 1784 1785 { " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW }, 1786 { " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW }, 1787 { "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW }, 1788 { "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW }, 1789 1790 { " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW }, 1791 { " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW }, 1792 { " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW }, 1793 { " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW }, 1794 { " 4x8-bw-thread-NOTHP,", 1795 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP }, 1796 { " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW }, 1797 { " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW }, 1798 1799 { "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW }, 1800 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW }, 1801 1802 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW }, 1803 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP }, 1804 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW }, 1805 { "numa01-bw-thread-NOTHP,", 1806 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP }, 1807 }; 1808 1809 static int bench_all(void) 1810 { 1811 int nr = ARRAY_SIZE(tests); 1812 int ret; 1813 int i; 1814 1815 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'"); 1816 BUG_ON(ret < 0); 1817 1818 for (i = 0; i < nr; i++) { 1819 run_bench_numa(tests[i][0], tests[i] + 1); 1820 } 1821 1822 printf("\n"); 1823 1824 return 0; 1825 } 1826 1827 int bench_numa(int argc, const char **argv) 1828 { 1829 init_params(&p0, "main,", argc, argv); 1830 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1831 if (argc) 1832 goto err; 1833 1834 if (p0.run_all) 1835 return bench_all(); 1836 1837 if (__bench_numa(NULL)) 1838 goto err; 1839 1840 return 0; 1841 1842 err: 1843 usage_with_options(numa_usage, options); 1844 return -1; 1845 } 1846