xref: /openbmc/linux/tools/perf/bench/numa.c (revision 65ca668f)
1 /*
2  * numa.c
3  *
4  * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
5  */
6 
7 /* For the CLR_() macros */
8 #include <pthread.h>
9 
10 #include "../perf.h"
11 #include "../builtin.h"
12 #include "../util/util.h"
13 #include <subcmd/parse-options.h>
14 #include "../util/cloexec.h"
15 
16 #include "bench.h"
17 
18 #include <errno.h>
19 #include <sched.h>
20 #include <stdio.h>
21 #include <assert.h>
22 #include <malloc.h>
23 #include <signal.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <unistd.h>
27 #include <sys/mman.h>
28 #include <sys/time.h>
29 #include <sys/resource.h>
30 #include <sys/wait.h>
31 #include <sys/prctl.h>
32 #include <sys/types.h>
33 
34 #include <numa.h>
35 #include <numaif.h>
36 
37 /*
38  * Regular printout to the terminal, supressed if -q is specified:
39  */
40 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
41 
42 /*
43  * Debug printf:
44  */
45 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
46 
47 struct thread_data {
48 	int			curr_cpu;
49 	cpu_set_t		bind_cpumask;
50 	int			bind_node;
51 	u8			*process_data;
52 	int			process_nr;
53 	int			thread_nr;
54 	int			task_nr;
55 	unsigned int		loops_done;
56 	u64			val;
57 	u64			runtime_ns;
58 	u64			system_time_ns;
59 	u64			user_time_ns;
60 	double			speed_gbs;
61 	pthread_mutex_t		*process_lock;
62 };
63 
64 /* Parameters set by options: */
65 
66 struct params {
67 	/* Startup synchronization: */
68 	bool			serialize_startup;
69 
70 	/* Task hierarchy: */
71 	int			nr_proc;
72 	int			nr_threads;
73 
74 	/* Working set sizes: */
75 	const char		*mb_global_str;
76 	const char		*mb_proc_str;
77 	const char		*mb_proc_locked_str;
78 	const char		*mb_thread_str;
79 
80 	double			mb_global;
81 	double			mb_proc;
82 	double			mb_proc_locked;
83 	double			mb_thread;
84 
85 	/* Access patterns to the working set: */
86 	bool			data_reads;
87 	bool			data_writes;
88 	bool			data_backwards;
89 	bool			data_zero_memset;
90 	bool			data_rand_walk;
91 	u32			nr_loops;
92 	u32			nr_secs;
93 	u32			sleep_usecs;
94 
95 	/* Working set initialization: */
96 	bool			init_zero;
97 	bool			init_random;
98 	bool			init_cpu0;
99 
100 	/* Misc options: */
101 	int			show_details;
102 	int			run_all;
103 	int			thp;
104 
105 	long			bytes_global;
106 	long			bytes_process;
107 	long			bytes_process_locked;
108 	long			bytes_thread;
109 
110 	int			nr_tasks;
111 	bool			show_quiet;
112 
113 	bool			show_convergence;
114 	bool			measure_convergence;
115 
116 	int			perturb_secs;
117 	int			nr_cpus;
118 	int			nr_nodes;
119 
120 	/* Affinity options -C and -N: */
121 	char			*cpu_list_str;
122 	char			*node_list_str;
123 };
124 
125 
126 /* Global, read-writable area, accessible to all processes and threads: */
127 
128 struct global_info {
129 	u8			*data;
130 
131 	pthread_mutex_t		startup_mutex;
132 	int			nr_tasks_started;
133 
134 	pthread_mutex_t		startup_done_mutex;
135 
136 	pthread_mutex_t		start_work_mutex;
137 	int			nr_tasks_working;
138 
139 	pthread_mutex_t		stop_work_mutex;
140 	u64			bytes_done;
141 
142 	struct thread_data	*threads;
143 
144 	/* Convergence latency measurement: */
145 	bool			all_converged;
146 	bool			stop_work;
147 
148 	int			print_once;
149 
150 	struct params		p;
151 };
152 
153 static struct global_info	*g = NULL;
154 
155 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
156 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
157 
158 struct params p0;
159 
160 static const struct option options[] = {
161 	OPT_INTEGER('p', "nr_proc"	, &p0.nr_proc,		"number of processes"),
162 	OPT_INTEGER('t', "nr_threads"	, &p0.nr_threads,	"number of threads per process"),
163 
164 	OPT_STRING('G', "mb_global"	, &p0.mb_global_str,	"MB", "global  memory (MBs)"),
165 	OPT_STRING('P', "mb_proc"	, &p0.mb_proc_str,	"MB", "process memory (MBs)"),
166 	OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
167 	OPT_STRING('T', "mb_thread"	, &p0.mb_thread_str,	"MB", "thread  memory (MBs)"),
168 
169 	OPT_UINTEGER('l', "nr_loops"	, &p0.nr_loops,		"max number of loops to run (default: unlimited)"),
170 	OPT_UINTEGER('s', "nr_secs"	, &p0.nr_secs,		"max number of seconds to run (default: 5 secs)"),
171 	OPT_UINTEGER('u', "usleep"	, &p0.sleep_usecs,	"usecs to sleep per loop iteration"),
172 
173 	OPT_BOOLEAN('R', "data_reads"	, &p0.data_reads,	"access the data via writes (can be mixed with -W)"),
174 	OPT_BOOLEAN('W', "data_writes"	, &p0.data_writes,	"access the data via writes (can be mixed with -R)"),
175 	OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,	"access the data backwards as well"),
176 	OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
177 	OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,	"access the data with random (32bit LFSR) walk"),
178 
179 
180 	OPT_BOOLEAN('z', "init_zero"	, &p0.init_zero,	"bzero the initial allocations"),
181 	OPT_BOOLEAN('I', "init_random"	, &p0.init_random,	"randomize the contents of the initial allocations"),
182 	OPT_BOOLEAN('0', "init_cpu0"	, &p0.init_cpu0,	"do the initial allocations on CPU#0"),
183 	OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,	"perturb thread 0/0 every X secs, to test convergence stability"),
184 
185 	OPT_INCR   ('d', "show_details"	, &p0.show_details,	"Show details"),
186 	OPT_INCR   ('a', "all"		, &p0.run_all,		"Run all tests in the suite"),
187 	OPT_INTEGER('H', "thp"		, &p0.thp,		"MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
188 	OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"),
189 	OPT_BOOLEAN('m', "measure_convergence",	&p0.measure_convergence, "measure convergence latency"),
190 	OPT_BOOLEAN('q', "quiet"	, &p0.show_quiet,	"quiet mode"),
191 	OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
192 
193 	/* Special option string parsing callbacks: */
194         OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
195 			"bind the first N tasks to these specific cpus (the rest is unbound)",
196 			parse_cpus_opt),
197         OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
198 			"bind the first N tasks to these specific memory nodes (the rest is unbound)",
199 			parse_nodes_opt),
200 	OPT_END()
201 };
202 
203 static const char * const bench_numa_usage[] = {
204 	"perf bench numa <options>",
205 	NULL
206 };
207 
208 static const char * const numa_usage[] = {
209 	"perf bench numa mem [<options>]",
210 	NULL
211 };
212 
213 static cpu_set_t bind_to_cpu(int target_cpu)
214 {
215 	cpu_set_t orig_mask, mask;
216 	int ret;
217 
218 	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
219 	BUG_ON(ret);
220 
221 	CPU_ZERO(&mask);
222 
223 	if (target_cpu == -1) {
224 		int cpu;
225 
226 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
227 			CPU_SET(cpu, &mask);
228 	} else {
229 		BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
230 		CPU_SET(target_cpu, &mask);
231 	}
232 
233 	ret = sched_setaffinity(0, sizeof(mask), &mask);
234 	BUG_ON(ret);
235 
236 	return orig_mask;
237 }
238 
239 static cpu_set_t bind_to_node(int target_node)
240 {
241 	int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes;
242 	cpu_set_t orig_mask, mask;
243 	int cpu;
244 	int ret;
245 
246 	BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus);
247 	BUG_ON(!cpus_per_node);
248 
249 	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
250 	BUG_ON(ret);
251 
252 	CPU_ZERO(&mask);
253 
254 	if (target_node == -1) {
255 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
256 			CPU_SET(cpu, &mask);
257 	} else {
258 		int cpu_start = (target_node + 0) * cpus_per_node;
259 		int cpu_stop  = (target_node + 1) * cpus_per_node;
260 
261 		BUG_ON(cpu_stop > g->p.nr_cpus);
262 
263 		for (cpu = cpu_start; cpu < cpu_stop; cpu++)
264 			CPU_SET(cpu, &mask);
265 	}
266 
267 	ret = sched_setaffinity(0, sizeof(mask), &mask);
268 	BUG_ON(ret);
269 
270 	return orig_mask;
271 }
272 
273 static void bind_to_cpumask(cpu_set_t mask)
274 {
275 	int ret;
276 
277 	ret = sched_setaffinity(0, sizeof(mask), &mask);
278 	BUG_ON(ret);
279 }
280 
281 static void mempol_restore(void)
282 {
283 	int ret;
284 
285 	ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
286 
287 	BUG_ON(ret);
288 }
289 
290 static void bind_to_memnode(int node)
291 {
292 	unsigned long nodemask;
293 	int ret;
294 
295 	if (node == -1)
296 		return;
297 
298 	BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
299 	nodemask = 1L << node;
300 
301 	ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
302 	dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
303 
304 	BUG_ON(ret);
305 }
306 
307 #define HPSIZE (2*1024*1024)
308 
309 #define set_taskname(fmt...)				\
310 do {							\
311 	char name[20];					\
312 							\
313 	snprintf(name, 20, fmt);			\
314 	prctl(PR_SET_NAME, name);			\
315 } while (0)
316 
317 static u8 *alloc_data(ssize_t bytes0, int map_flags,
318 		      int init_zero, int init_cpu0, int thp, int init_random)
319 {
320 	cpu_set_t orig_mask;
321 	ssize_t bytes;
322 	u8 *buf;
323 	int ret;
324 
325 	if (!bytes0)
326 		return NULL;
327 
328 	/* Allocate and initialize all memory on CPU#0: */
329 	if (init_cpu0) {
330 		orig_mask = bind_to_node(0);
331 		bind_to_memnode(0);
332 	}
333 
334 	bytes = bytes0 + HPSIZE;
335 
336 	buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
337 	BUG_ON(buf == (void *)-1);
338 
339 	if (map_flags == MAP_PRIVATE) {
340 		if (thp > 0) {
341 			ret = madvise(buf, bytes, MADV_HUGEPAGE);
342 			if (ret && !g->print_once) {
343 				g->print_once = 1;
344 				printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
345 			}
346 		}
347 		if (thp < 0) {
348 			ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
349 			if (ret && !g->print_once) {
350 				g->print_once = 1;
351 				printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
352 			}
353 		}
354 	}
355 
356 	if (init_zero) {
357 		bzero(buf, bytes);
358 	} else {
359 		/* Initialize random contents, different in each word: */
360 		if (init_random) {
361 			u64 *wbuf = (void *)buf;
362 			long off = rand();
363 			long i;
364 
365 			for (i = 0; i < bytes/8; i++)
366 				wbuf[i] = i + off;
367 		}
368 	}
369 
370 	/* Align to 2MB boundary: */
371 	buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
372 
373 	/* Restore affinity: */
374 	if (init_cpu0) {
375 		bind_to_cpumask(orig_mask);
376 		mempol_restore();
377 	}
378 
379 	return buf;
380 }
381 
382 static void free_data(void *data, ssize_t bytes)
383 {
384 	int ret;
385 
386 	if (!data)
387 		return;
388 
389 	ret = munmap(data, bytes);
390 	BUG_ON(ret);
391 }
392 
393 /*
394  * Create a shared memory buffer that can be shared between processes, zeroed:
395  */
396 static void * zalloc_shared_data(ssize_t bytes)
397 {
398 	return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
399 }
400 
401 /*
402  * Create a shared memory buffer that can be shared between processes:
403  */
404 static void * setup_shared_data(ssize_t bytes)
405 {
406 	return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
407 }
408 
409 /*
410  * Allocate process-local memory - this will either be shared between
411  * threads of this process, or only be accessed by this thread:
412  */
413 static void * setup_private_data(ssize_t bytes)
414 {
415 	return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
416 }
417 
418 /*
419  * Return a process-shared (global) mutex:
420  */
421 static void init_global_mutex(pthread_mutex_t *mutex)
422 {
423 	pthread_mutexattr_t attr;
424 
425 	pthread_mutexattr_init(&attr);
426 	pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
427 	pthread_mutex_init(mutex, &attr);
428 }
429 
430 static int parse_cpu_list(const char *arg)
431 {
432 	p0.cpu_list_str = strdup(arg);
433 
434 	dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
435 
436 	return 0;
437 }
438 
439 static int parse_setup_cpu_list(void)
440 {
441 	struct thread_data *td;
442 	char *str0, *str;
443 	int t;
444 
445 	if (!g->p.cpu_list_str)
446 		return 0;
447 
448 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
449 
450 	str0 = str = strdup(g->p.cpu_list_str);
451 	t = 0;
452 
453 	BUG_ON(!str);
454 
455 	tprintf("# binding tasks to CPUs:\n");
456 	tprintf("#  ");
457 
458 	while (true) {
459 		int bind_cpu, bind_cpu_0, bind_cpu_1;
460 		char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
461 		int bind_len;
462 		int step;
463 		int mul;
464 
465 		tok = strsep(&str, ",");
466 		if (!tok)
467 			break;
468 
469 		tok_end = strstr(tok, "-");
470 
471 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
472 		if (!tok_end) {
473 			/* Single CPU specified: */
474 			bind_cpu_0 = bind_cpu_1 = atol(tok);
475 		} else {
476 			/* CPU range specified (for example: "5-11"): */
477 			bind_cpu_0 = atol(tok);
478 			bind_cpu_1 = atol(tok_end + 1);
479 		}
480 
481 		step = 1;
482 		tok_step = strstr(tok, "#");
483 		if (tok_step) {
484 			step = atol(tok_step + 1);
485 			BUG_ON(step <= 0 || step >= g->p.nr_cpus);
486 		}
487 
488 		/*
489 		 * Mask length.
490 		 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
491 		 * where the _4 means the next 4 CPUs are allowed.
492 		 */
493 		bind_len = 1;
494 		tok_len = strstr(tok, "_");
495 		if (tok_len) {
496 			bind_len = atol(tok_len + 1);
497 			BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
498 		}
499 
500 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
501 		mul = 1;
502 		tok_mul = strstr(tok, "x");
503 		if (tok_mul) {
504 			mul = atol(tok_mul + 1);
505 			BUG_ON(mul <= 0);
506 		}
507 
508 		dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
509 
510 		if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
511 			printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
512 			return -1;
513 		}
514 
515 		BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
516 		BUG_ON(bind_cpu_0 > bind_cpu_1);
517 
518 		for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
519 			int i;
520 
521 			for (i = 0; i < mul; i++) {
522 				int cpu;
523 
524 				if (t >= g->p.nr_tasks) {
525 					printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
526 					goto out;
527 				}
528 				td = g->threads + t;
529 
530 				if (t)
531 					tprintf(",");
532 				if (bind_len > 1) {
533 					tprintf("%2d/%d", bind_cpu, bind_len);
534 				} else {
535 					tprintf("%2d", bind_cpu);
536 				}
537 
538 				CPU_ZERO(&td->bind_cpumask);
539 				for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
540 					BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
541 					CPU_SET(cpu, &td->bind_cpumask);
542 				}
543 				t++;
544 			}
545 		}
546 	}
547 out:
548 
549 	tprintf("\n");
550 
551 	if (t < g->p.nr_tasks)
552 		printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
553 
554 	free(str0);
555 	return 0;
556 }
557 
558 static int parse_cpus_opt(const struct option *opt __maybe_unused,
559 			  const char *arg, int unset __maybe_unused)
560 {
561 	if (!arg)
562 		return -1;
563 
564 	return parse_cpu_list(arg);
565 }
566 
567 static int parse_node_list(const char *arg)
568 {
569 	p0.node_list_str = strdup(arg);
570 
571 	dprintf("got NODE list: {%s}\n", p0.node_list_str);
572 
573 	return 0;
574 }
575 
576 static int parse_setup_node_list(void)
577 {
578 	struct thread_data *td;
579 	char *str0, *str;
580 	int t;
581 
582 	if (!g->p.node_list_str)
583 		return 0;
584 
585 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
586 
587 	str0 = str = strdup(g->p.node_list_str);
588 	t = 0;
589 
590 	BUG_ON(!str);
591 
592 	tprintf("# binding tasks to NODEs:\n");
593 	tprintf("# ");
594 
595 	while (true) {
596 		int bind_node, bind_node_0, bind_node_1;
597 		char *tok, *tok_end, *tok_step, *tok_mul;
598 		int step;
599 		int mul;
600 
601 		tok = strsep(&str, ",");
602 		if (!tok)
603 			break;
604 
605 		tok_end = strstr(tok, "-");
606 
607 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
608 		if (!tok_end) {
609 			/* Single NODE specified: */
610 			bind_node_0 = bind_node_1 = atol(tok);
611 		} else {
612 			/* NODE range specified (for example: "5-11"): */
613 			bind_node_0 = atol(tok);
614 			bind_node_1 = atol(tok_end + 1);
615 		}
616 
617 		step = 1;
618 		tok_step = strstr(tok, "#");
619 		if (tok_step) {
620 			step = atol(tok_step + 1);
621 			BUG_ON(step <= 0 || step >= g->p.nr_nodes);
622 		}
623 
624 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
625 		mul = 1;
626 		tok_mul = strstr(tok, "x");
627 		if (tok_mul) {
628 			mul = atol(tok_mul + 1);
629 			BUG_ON(mul <= 0);
630 		}
631 
632 		dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
633 
634 		if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
635 			printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
636 			return -1;
637 		}
638 
639 		BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
640 		BUG_ON(bind_node_0 > bind_node_1);
641 
642 		for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
643 			int i;
644 
645 			for (i = 0; i < mul; i++) {
646 				if (t >= g->p.nr_tasks) {
647 					printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
648 					goto out;
649 				}
650 				td = g->threads + t;
651 
652 				if (!t)
653 					tprintf(" %2d", bind_node);
654 				else
655 					tprintf(",%2d", bind_node);
656 
657 				td->bind_node = bind_node;
658 				t++;
659 			}
660 		}
661 	}
662 out:
663 
664 	tprintf("\n");
665 
666 	if (t < g->p.nr_tasks)
667 		printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
668 
669 	free(str0);
670 	return 0;
671 }
672 
673 static int parse_nodes_opt(const struct option *opt __maybe_unused,
674 			  const char *arg, int unset __maybe_unused)
675 {
676 	if (!arg)
677 		return -1;
678 
679 	return parse_node_list(arg);
680 
681 	return 0;
682 }
683 
684 #define BIT(x) (1ul << x)
685 
686 static inline uint32_t lfsr_32(uint32_t lfsr)
687 {
688 	const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
689 	return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
690 }
691 
692 /*
693  * Make sure there's real data dependency to RAM (when read
694  * accesses are enabled), so the compiler, the CPU and the
695  * kernel (KSM, zero page, etc.) cannot optimize away RAM
696  * accesses:
697  */
698 static inline u64 access_data(u64 *data __attribute__((unused)), u64 val)
699 {
700 	if (g->p.data_reads)
701 		val += *data;
702 	if (g->p.data_writes)
703 		*data = val + 1;
704 	return val;
705 }
706 
707 /*
708  * The worker process does two types of work, a forwards going
709  * loop and a backwards going loop.
710  *
711  * We do this so that on multiprocessor systems we do not create
712  * a 'train' of processing, with highly synchronized processes,
713  * skewing the whole benchmark.
714  */
715 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
716 {
717 	long words = bytes/sizeof(u64);
718 	u64 *data = (void *)__data;
719 	long chunk_0, chunk_1;
720 	u64 *d0, *d, *d1;
721 	long off;
722 	long i;
723 
724 	BUG_ON(!data && words);
725 	BUG_ON(data && !words);
726 
727 	if (!data)
728 		return val;
729 
730 	/* Very simple memset() work variant: */
731 	if (g->p.data_zero_memset && !g->p.data_rand_walk) {
732 		bzero(data, bytes);
733 		return val;
734 	}
735 
736 	/* Spread out by PID/TID nr and by loop nr: */
737 	chunk_0 = words/nr_max;
738 	chunk_1 = words/g->p.nr_loops;
739 	off = nr*chunk_0 + loop*chunk_1;
740 
741 	while (off >= words)
742 		off -= words;
743 
744 	if (g->p.data_rand_walk) {
745 		u32 lfsr = nr + loop + val;
746 		int j;
747 
748 		for (i = 0; i < words/1024; i++) {
749 			long start, end;
750 
751 			lfsr = lfsr_32(lfsr);
752 
753 			start = lfsr % words;
754 			end = min(start + 1024, words-1);
755 
756 			if (g->p.data_zero_memset) {
757 				bzero(data + start, (end-start) * sizeof(u64));
758 			} else {
759 				for (j = start; j < end; j++)
760 					val = access_data(data + j, val);
761 			}
762 		}
763 	} else if (!g->p.data_backwards || (nr + loop) & 1) {
764 
765 		d0 = data + off;
766 		d  = data + off + 1;
767 		d1 = data + words;
768 
769 		/* Process data forwards: */
770 		for (;;) {
771 			if (unlikely(d >= d1))
772 				d = data;
773 			if (unlikely(d == d0))
774 				break;
775 
776 			val = access_data(d, val);
777 
778 			d++;
779 		}
780 	} else {
781 		/* Process data backwards: */
782 
783 		d0 = data + off;
784 		d  = data + off - 1;
785 		d1 = data + words;
786 
787 		/* Process data forwards: */
788 		for (;;) {
789 			if (unlikely(d < data))
790 				d = data + words-1;
791 			if (unlikely(d == d0))
792 				break;
793 
794 			val = access_data(d, val);
795 
796 			d--;
797 		}
798 	}
799 
800 	return val;
801 }
802 
803 static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
804 {
805 	unsigned int cpu;
806 
807 	cpu = sched_getcpu();
808 
809 	g->threads[task_nr].curr_cpu = cpu;
810 	prctl(0, bytes_worked);
811 }
812 
813 #define MAX_NR_NODES	64
814 
815 /*
816  * Count the number of nodes a process's threads
817  * are spread out on.
818  *
819  * A count of 1 means that the process is compressed
820  * to a single node. A count of g->p.nr_nodes means it's
821  * spread out on the whole system.
822  */
823 static int count_process_nodes(int process_nr)
824 {
825 	char node_present[MAX_NR_NODES] = { 0, };
826 	int nodes;
827 	int n, t;
828 
829 	for (t = 0; t < g->p.nr_threads; t++) {
830 		struct thread_data *td;
831 		int task_nr;
832 		int node;
833 
834 		task_nr = process_nr*g->p.nr_threads + t;
835 		td = g->threads + task_nr;
836 
837 		node = numa_node_of_cpu(td->curr_cpu);
838 		if (node < 0) /* curr_cpu was likely still -1 */
839 			return 0;
840 
841 		node_present[node] = 1;
842 	}
843 
844 	nodes = 0;
845 
846 	for (n = 0; n < MAX_NR_NODES; n++)
847 		nodes += node_present[n];
848 
849 	return nodes;
850 }
851 
852 /*
853  * Count the number of distinct process-threads a node contains.
854  *
855  * A count of 1 means that the node contains only a single
856  * process. If all nodes on the system contain at most one
857  * process then we are well-converged.
858  */
859 static int count_node_processes(int node)
860 {
861 	int processes = 0;
862 	int t, p;
863 
864 	for (p = 0; p < g->p.nr_proc; p++) {
865 		for (t = 0; t < g->p.nr_threads; t++) {
866 			struct thread_data *td;
867 			int task_nr;
868 			int n;
869 
870 			task_nr = p*g->p.nr_threads + t;
871 			td = g->threads + task_nr;
872 
873 			n = numa_node_of_cpu(td->curr_cpu);
874 			if (n == node) {
875 				processes++;
876 				break;
877 			}
878 		}
879 	}
880 
881 	return processes;
882 }
883 
884 static void calc_convergence_compression(int *strong)
885 {
886 	unsigned int nodes_min, nodes_max;
887 	int p;
888 
889 	nodes_min = -1;
890 	nodes_max =  0;
891 
892 	for (p = 0; p < g->p.nr_proc; p++) {
893 		unsigned int nodes = count_process_nodes(p);
894 
895 		if (!nodes) {
896 			*strong = 0;
897 			return;
898 		}
899 
900 		nodes_min = min(nodes, nodes_min);
901 		nodes_max = max(nodes, nodes_max);
902 	}
903 
904 	/* Strong convergence: all threads compress on a single node: */
905 	if (nodes_min == 1 && nodes_max == 1) {
906 		*strong = 1;
907 	} else {
908 		*strong = 0;
909 		tprintf(" {%d-%d}", nodes_min, nodes_max);
910 	}
911 }
912 
913 static void calc_convergence(double runtime_ns_max, double *convergence)
914 {
915 	unsigned int loops_done_min, loops_done_max;
916 	int process_groups;
917 	int nodes[MAX_NR_NODES];
918 	int distance;
919 	int nr_min;
920 	int nr_max;
921 	int strong;
922 	int sum;
923 	int nr;
924 	int node;
925 	int cpu;
926 	int t;
927 
928 	if (!g->p.show_convergence && !g->p.measure_convergence)
929 		return;
930 
931 	for (node = 0; node < g->p.nr_nodes; node++)
932 		nodes[node] = 0;
933 
934 	loops_done_min = -1;
935 	loops_done_max = 0;
936 
937 	for (t = 0; t < g->p.nr_tasks; t++) {
938 		struct thread_data *td = g->threads + t;
939 		unsigned int loops_done;
940 
941 		cpu = td->curr_cpu;
942 
943 		/* Not all threads have written it yet: */
944 		if (cpu < 0)
945 			continue;
946 
947 		node = numa_node_of_cpu(cpu);
948 
949 		nodes[node]++;
950 
951 		loops_done = td->loops_done;
952 		loops_done_min = min(loops_done, loops_done_min);
953 		loops_done_max = max(loops_done, loops_done_max);
954 	}
955 
956 	nr_max = 0;
957 	nr_min = g->p.nr_tasks;
958 	sum = 0;
959 
960 	for (node = 0; node < g->p.nr_nodes; node++) {
961 		nr = nodes[node];
962 		nr_min = min(nr, nr_min);
963 		nr_max = max(nr, nr_max);
964 		sum += nr;
965 	}
966 	BUG_ON(nr_min > nr_max);
967 
968 	BUG_ON(sum > g->p.nr_tasks);
969 
970 	if (0 && (sum < g->p.nr_tasks))
971 		return;
972 
973 	/*
974 	 * Count the number of distinct process groups present
975 	 * on nodes - when we are converged this will decrease
976 	 * to g->p.nr_proc:
977 	 */
978 	process_groups = 0;
979 
980 	for (node = 0; node < g->p.nr_nodes; node++) {
981 		int processes = count_node_processes(node);
982 
983 		nr = nodes[node];
984 		tprintf(" %2d/%-2d", nr, processes);
985 
986 		process_groups += processes;
987 	}
988 
989 	distance = nr_max - nr_min;
990 
991 	tprintf(" [%2d/%-2d]", distance, process_groups);
992 
993 	tprintf(" l:%3d-%-3d (%3d)",
994 		loops_done_min, loops_done_max, loops_done_max-loops_done_min);
995 
996 	if (loops_done_min && loops_done_max) {
997 		double skew = 1.0 - (double)loops_done_min/loops_done_max;
998 
999 		tprintf(" [%4.1f%%]", skew * 100.0);
1000 	}
1001 
1002 	calc_convergence_compression(&strong);
1003 
1004 	if (strong && process_groups == g->p.nr_proc) {
1005 		if (!*convergence) {
1006 			*convergence = runtime_ns_max;
1007 			tprintf(" (%6.1fs converged)\n", *convergence/1e9);
1008 			if (g->p.measure_convergence) {
1009 				g->all_converged = true;
1010 				g->stop_work = true;
1011 			}
1012 		}
1013 	} else {
1014 		if (*convergence) {
1015 			tprintf(" (%6.1fs de-converged)", runtime_ns_max/1e9);
1016 			*convergence = 0;
1017 		}
1018 		tprintf("\n");
1019 	}
1020 }
1021 
1022 static void show_summary(double runtime_ns_max, int l, double *convergence)
1023 {
1024 	tprintf("\r #  %5.1f%%  [%.1f mins]",
1025 		(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max/1e9 / 60.0);
1026 
1027 	calc_convergence(runtime_ns_max, convergence);
1028 
1029 	if (g->p.show_details >= 0)
1030 		fflush(stdout);
1031 }
1032 
1033 static void *worker_thread(void *__tdata)
1034 {
1035 	struct thread_data *td = __tdata;
1036 	struct timeval start0, start, stop, diff;
1037 	int process_nr = td->process_nr;
1038 	int thread_nr = td->thread_nr;
1039 	unsigned long last_perturbance;
1040 	int task_nr = td->task_nr;
1041 	int details = g->p.show_details;
1042 	int first_task, last_task;
1043 	double convergence = 0;
1044 	u64 val = td->val;
1045 	double runtime_ns_max;
1046 	u8 *global_data;
1047 	u8 *process_data;
1048 	u8 *thread_data;
1049 	u64 bytes_done;
1050 	long work_done;
1051 	u32 l;
1052 	struct rusage rusage;
1053 
1054 	bind_to_cpumask(td->bind_cpumask);
1055 	bind_to_memnode(td->bind_node);
1056 
1057 	set_taskname("thread %d/%d", process_nr, thread_nr);
1058 
1059 	global_data = g->data;
1060 	process_data = td->process_data;
1061 	thread_data = setup_private_data(g->p.bytes_thread);
1062 
1063 	bytes_done = 0;
1064 
1065 	last_task = 0;
1066 	if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1067 		last_task = 1;
1068 
1069 	first_task = 0;
1070 	if (process_nr == 0 && thread_nr == 0)
1071 		first_task = 1;
1072 
1073 	if (details >= 2) {
1074 		printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1075 			process_nr, thread_nr, global_data, process_data, thread_data);
1076 	}
1077 
1078 	if (g->p.serialize_startup) {
1079 		pthread_mutex_lock(&g->startup_mutex);
1080 		g->nr_tasks_started++;
1081 		pthread_mutex_unlock(&g->startup_mutex);
1082 
1083 		/* Here we will wait for the main process to start us all at once: */
1084 		pthread_mutex_lock(&g->start_work_mutex);
1085 		g->nr_tasks_working++;
1086 
1087 		/* Last one wake the main process: */
1088 		if (g->nr_tasks_working == g->p.nr_tasks)
1089 			pthread_mutex_unlock(&g->startup_done_mutex);
1090 
1091 		pthread_mutex_unlock(&g->start_work_mutex);
1092 	}
1093 
1094 	gettimeofday(&start0, NULL);
1095 
1096 	start = stop = start0;
1097 	last_perturbance = start.tv_sec;
1098 
1099 	for (l = 0; l < g->p.nr_loops; l++) {
1100 		start = stop;
1101 
1102 		if (g->stop_work)
1103 			break;
1104 
1105 		val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,	l, val);
1106 		val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,	l, val);
1107 		val += do_work(thread_data,  g->p.bytes_thread,  0,          1,		l, val);
1108 
1109 		if (g->p.sleep_usecs) {
1110 			pthread_mutex_lock(td->process_lock);
1111 			usleep(g->p.sleep_usecs);
1112 			pthread_mutex_unlock(td->process_lock);
1113 		}
1114 		/*
1115 		 * Amount of work to be done under a process-global lock:
1116 		 */
1117 		if (g->p.bytes_process_locked) {
1118 			pthread_mutex_lock(td->process_lock);
1119 			val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,	l, val);
1120 			pthread_mutex_unlock(td->process_lock);
1121 		}
1122 
1123 		work_done = g->p.bytes_global + g->p.bytes_process +
1124 			    g->p.bytes_process_locked + g->p.bytes_thread;
1125 
1126 		update_curr_cpu(task_nr, work_done);
1127 		bytes_done += work_done;
1128 
1129 		if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1130 			continue;
1131 
1132 		td->loops_done = l;
1133 
1134 		gettimeofday(&stop, NULL);
1135 
1136 		/* Check whether our max runtime timed out: */
1137 		if (g->p.nr_secs) {
1138 			timersub(&stop, &start0, &diff);
1139 			if ((u32)diff.tv_sec >= g->p.nr_secs) {
1140 				g->stop_work = true;
1141 				break;
1142 			}
1143 		}
1144 
1145 		/* Update the summary at most once per second: */
1146 		if (start.tv_sec == stop.tv_sec)
1147 			continue;
1148 
1149 		/*
1150 		 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1151 		 * by migrating to CPU#0:
1152 		 */
1153 		if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1154 			cpu_set_t orig_mask;
1155 			int target_cpu;
1156 			int this_cpu;
1157 
1158 			last_perturbance = stop.tv_sec;
1159 
1160 			/*
1161 			 * Depending on where we are running, move into
1162 			 * the other half of the system, to create some
1163 			 * real disturbance:
1164 			 */
1165 			this_cpu = g->threads[task_nr].curr_cpu;
1166 			if (this_cpu < g->p.nr_cpus/2)
1167 				target_cpu = g->p.nr_cpus-1;
1168 			else
1169 				target_cpu = 0;
1170 
1171 			orig_mask = bind_to_cpu(target_cpu);
1172 
1173 			/* Here we are running on the target CPU already */
1174 			if (details >= 1)
1175 				printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1176 
1177 			bind_to_cpumask(orig_mask);
1178 		}
1179 
1180 		if (details >= 3) {
1181 			timersub(&stop, &start, &diff);
1182 			runtime_ns_max = diff.tv_sec * 1000000000;
1183 			runtime_ns_max += diff.tv_usec * 1000;
1184 
1185 			if (details >= 0) {
1186 				printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1187 					process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1188 			}
1189 			fflush(stdout);
1190 		}
1191 		if (!last_task)
1192 			continue;
1193 
1194 		timersub(&stop, &start0, &diff);
1195 		runtime_ns_max = diff.tv_sec * 1000000000ULL;
1196 		runtime_ns_max += diff.tv_usec * 1000ULL;
1197 
1198 		show_summary(runtime_ns_max, l, &convergence);
1199 	}
1200 
1201 	gettimeofday(&stop, NULL);
1202 	timersub(&stop, &start0, &diff);
1203 	td->runtime_ns = diff.tv_sec * 1000000000ULL;
1204 	td->runtime_ns += diff.tv_usec * 1000ULL;
1205 	td->speed_gbs = bytes_done / (td->runtime_ns / 1e9) / 1e9;
1206 
1207 	getrusage(RUSAGE_THREAD, &rusage);
1208 	td->system_time_ns = rusage.ru_stime.tv_sec * 1000000000ULL;
1209 	td->system_time_ns += rusage.ru_stime.tv_usec * 1000ULL;
1210 	td->user_time_ns = rusage.ru_utime.tv_sec * 1000000000ULL;
1211 	td->user_time_ns += rusage.ru_utime.tv_usec * 1000ULL;
1212 
1213 	free_data(thread_data, g->p.bytes_thread);
1214 
1215 	pthread_mutex_lock(&g->stop_work_mutex);
1216 	g->bytes_done += bytes_done;
1217 	pthread_mutex_unlock(&g->stop_work_mutex);
1218 
1219 	return NULL;
1220 }
1221 
1222 /*
1223  * A worker process starts a couple of threads:
1224  */
1225 static void worker_process(int process_nr)
1226 {
1227 	pthread_mutex_t process_lock;
1228 	struct thread_data *td;
1229 	pthread_t *pthreads;
1230 	u8 *process_data;
1231 	int task_nr;
1232 	int ret;
1233 	int t;
1234 
1235 	pthread_mutex_init(&process_lock, NULL);
1236 	set_taskname("process %d", process_nr);
1237 
1238 	/*
1239 	 * Pick up the memory policy and the CPU binding of our first thread,
1240 	 * so that we initialize memory accordingly:
1241 	 */
1242 	task_nr = process_nr*g->p.nr_threads;
1243 	td = g->threads + task_nr;
1244 
1245 	bind_to_memnode(td->bind_node);
1246 	bind_to_cpumask(td->bind_cpumask);
1247 
1248 	pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1249 	process_data = setup_private_data(g->p.bytes_process);
1250 
1251 	if (g->p.show_details >= 3) {
1252 		printf(" # process %2d global mem: %p, process mem: %p\n",
1253 			process_nr, g->data, process_data);
1254 	}
1255 
1256 	for (t = 0; t < g->p.nr_threads; t++) {
1257 		task_nr = process_nr*g->p.nr_threads + t;
1258 		td = g->threads + task_nr;
1259 
1260 		td->process_data = process_data;
1261 		td->process_nr   = process_nr;
1262 		td->thread_nr    = t;
1263 		td->task_nr	 = task_nr;
1264 		td->val          = rand();
1265 		td->curr_cpu	 = -1;
1266 		td->process_lock = &process_lock;
1267 
1268 		ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1269 		BUG_ON(ret);
1270 	}
1271 
1272 	for (t = 0; t < g->p.nr_threads; t++) {
1273                 ret = pthread_join(pthreads[t], NULL);
1274 		BUG_ON(ret);
1275 	}
1276 
1277 	free_data(process_data, g->p.bytes_process);
1278 	free(pthreads);
1279 }
1280 
1281 static void print_summary(void)
1282 {
1283 	if (g->p.show_details < 0)
1284 		return;
1285 
1286 	printf("\n ###\n");
1287 	printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1288 		g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus);
1289 	printf(" #      %5dx %5ldMB global  shared mem operations\n",
1290 			g->p.nr_loops, g->p.bytes_global/1024/1024);
1291 	printf(" #      %5dx %5ldMB process shared mem operations\n",
1292 			g->p.nr_loops, g->p.bytes_process/1024/1024);
1293 	printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1294 			g->p.nr_loops, g->p.bytes_thread/1024/1024);
1295 
1296 	printf(" ###\n");
1297 
1298 	printf("\n ###\n"); fflush(stdout);
1299 }
1300 
1301 static void init_thread_data(void)
1302 {
1303 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1304 	int t;
1305 
1306 	g->threads = zalloc_shared_data(size);
1307 
1308 	for (t = 0; t < g->p.nr_tasks; t++) {
1309 		struct thread_data *td = g->threads + t;
1310 		int cpu;
1311 
1312 		/* Allow all nodes by default: */
1313 		td->bind_node = -1;
1314 
1315 		/* Allow all CPUs by default: */
1316 		CPU_ZERO(&td->bind_cpumask);
1317 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1318 			CPU_SET(cpu, &td->bind_cpumask);
1319 	}
1320 }
1321 
1322 static void deinit_thread_data(void)
1323 {
1324 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1325 
1326 	free_data(g->threads, size);
1327 }
1328 
1329 static int init(void)
1330 {
1331 	g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1332 
1333 	/* Copy over options: */
1334 	g->p = p0;
1335 
1336 	g->p.nr_cpus = numa_num_configured_cpus();
1337 
1338 	g->p.nr_nodes = numa_max_node() + 1;
1339 
1340 	/* char array in count_process_nodes(): */
1341 	BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1342 
1343 	if (g->p.show_quiet && !g->p.show_details)
1344 		g->p.show_details = -1;
1345 
1346 	/* Some memory should be specified: */
1347 	if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1348 		return -1;
1349 
1350 	if (g->p.mb_global_str) {
1351 		g->p.mb_global = atof(g->p.mb_global_str);
1352 		BUG_ON(g->p.mb_global < 0);
1353 	}
1354 
1355 	if (g->p.mb_proc_str) {
1356 		g->p.mb_proc = atof(g->p.mb_proc_str);
1357 		BUG_ON(g->p.mb_proc < 0);
1358 	}
1359 
1360 	if (g->p.mb_proc_locked_str) {
1361 		g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1362 		BUG_ON(g->p.mb_proc_locked < 0);
1363 		BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1364 	}
1365 
1366 	if (g->p.mb_thread_str) {
1367 		g->p.mb_thread = atof(g->p.mb_thread_str);
1368 		BUG_ON(g->p.mb_thread < 0);
1369 	}
1370 
1371 	BUG_ON(g->p.nr_threads <= 0);
1372 	BUG_ON(g->p.nr_proc <= 0);
1373 
1374 	g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1375 
1376 	g->p.bytes_global		= g->p.mb_global	*1024L*1024L;
1377 	g->p.bytes_process		= g->p.mb_proc		*1024L*1024L;
1378 	g->p.bytes_process_locked	= g->p.mb_proc_locked	*1024L*1024L;
1379 	g->p.bytes_thread		= g->p.mb_thread	*1024L*1024L;
1380 
1381 	g->data = setup_shared_data(g->p.bytes_global);
1382 
1383 	/* Startup serialization: */
1384 	init_global_mutex(&g->start_work_mutex);
1385 	init_global_mutex(&g->startup_mutex);
1386 	init_global_mutex(&g->startup_done_mutex);
1387 	init_global_mutex(&g->stop_work_mutex);
1388 
1389 	init_thread_data();
1390 
1391 	tprintf("#\n");
1392 	if (parse_setup_cpu_list() || parse_setup_node_list())
1393 		return -1;
1394 	tprintf("#\n");
1395 
1396 	print_summary();
1397 
1398 	return 0;
1399 }
1400 
1401 static void deinit(void)
1402 {
1403 	free_data(g->data, g->p.bytes_global);
1404 	g->data = NULL;
1405 
1406 	deinit_thread_data();
1407 
1408 	free_data(g, sizeof(*g));
1409 	g = NULL;
1410 }
1411 
1412 /*
1413  * Print a short or long result, depending on the verbosity setting:
1414  */
1415 static void print_res(const char *name, double val,
1416 		      const char *txt_unit, const char *txt_short, const char *txt_long)
1417 {
1418 	if (!name)
1419 		name = "main,";
1420 
1421 	if (!g->p.show_quiet)
1422 		printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1423 	else
1424 		printf(" %14.3f %s\n", val, txt_long);
1425 }
1426 
1427 static int __bench_numa(const char *name)
1428 {
1429 	struct timeval start, stop, diff;
1430 	u64 runtime_ns_min, runtime_ns_sum;
1431 	pid_t *pids, pid, wpid;
1432 	double delta_runtime;
1433 	double runtime_avg;
1434 	double runtime_sec_max;
1435 	double runtime_sec_min;
1436 	int wait_stat;
1437 	double bytes;
1438 	int i, t, p;
1439 
1440 	if (init())
1441 		return -1;
1442 
1443 	pids = zalloc(g->p.nr_proc * sizeof(*pids));
1444 	pid = -1;
1445 
1446 	/* All threads try to acquire it, this way we can wait for them to start up: */
1447 	pthread_mutex_lock(&g->start_work_mutex);
1448 
1449 	if (g->p.serialize_startup) {
1450 		tprintf(" #\n");
1451 		tprintf(" # Startup synchronization: ..."); fflush(stdout);
1452 	}
1453 
1454 	gettimeofday(&start, NULL);
1455 
1456 	for (i = 0; i < g->p.nr_proc; i++) {
1457 		pid = fork();
1458 		dprintf(" # process %2d: PID %d\n", i, pid);
1459 
1460 		BUG_ON(pid < 0);
1461 		if (!pid) {
1462 			/* Child process: */
1463 			worker_process(i);
1464 
1465 			exit(0);
1466 		}
1467 		pids[i] = pid;
1468 
1469 	}
1470 	/* Wait for all the threads to start up: */
1471 	while (g->nr_tasks_started != g->p.nr_tasks)
1472 		usleep(1000);
1473 
1474 	BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1475 
1476 	if (g->p.serialize_startup) {
1477 		double startup_sec;
1478 
1479 		pthread_mutex_lock(&g->startup_done_mutex);
1480 
1481 		/* This will start all threads: */
1482 		pthread_mutex_unlock(&g->start_work_mutex);
1483 
1484 		/* This mutex is locked - the last started thread will wake us: */
1485 		pthread_mutex_lock(&g->startup_done_mutex);
1486 
1487 		gettimeofday(&stop, NULL);
1488 
1489 		timersub(&stop, &start, &diff);
1490 
1491 		startup_sec = diff.tv_sec * 1000000000.0;
1492 		startup_sec += diff.tv_usec * 1000.0;
1493 		startup_sec /= 1e9;
1494 
1495 		tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1496 		tprintf(" #\n");
1497 
1498 		start = stop;
1499 		pthread_mutex_unlock(&g->startup_done_mutex);
1500 	} else {
1501 		gettimeofday(&start, NULL);
1502 	}
1503 
1504 	/* Parent process: */
1505 
1506 
1507 	for (i = 0; i < g->p.nr_proc; i++) {
1508 		wpid = waitpid(pids[i], &wait_stat, 0);
1509 		BUG_ON(wpid < 0);
1510 		BUG_ON(!WIFEXITED(wait_stat));
1511 
1512 	}
1513 
1514 	runtime_ns_sum = 0;
1515 	runtime_ns_min = -1LL;
1516 
1517 	for (t = 0; t < g->p.nr_tasks; t++) {
1518 		u64 thread_runtime_ns = g->threads[t].runtime_ns;
1519 
1520 		runtime_ns_sum += thread_runtime_ns;
1521 		runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1522 	}
1523 
1524 	gettimeofday(&stop, NULL);
1525 	timersub(&stop, &start, &diff);
1526 
1527 	BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1528 
1529 	tprintf("\n ###\n");
1530 	tprintf("\n");
1531 
1532 	runtime_sec_max = diff.tv_sec * 1000000000.0;
1533 	runtime_sec_max += diff.tv_usec * 1000.0;
1534 	runtime_sec_max /= 1e9;
1535 
1536 	runtime_sec_min = runtime_ns_min/1e9;
1537 
1538 	bytes = g->bytes_done;
1539 	runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / 1e9;
1540 
1541 	if (g->p.measure_convergence) {
1542 		print_res(name, runtime_sec_max,
1543 			"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1544 	}
1545 
1546 	print_res(name, runtime_sec_max,
1547 		"secs,", "runtime-max/thread",	"secs slowest (max) thread-runtime");
1548 
1549 	print_res(name, runtime_sec_min,
1550 		"secs,", "runtime-min/thread",	"secs fastest (min) thread-runtime");
1551 
1552 	print_res(name, runtime_avg,
1553 		"secs,", "runtime-avg/thread",	"secs average thread-runtime");
1554 
1555 	delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1556 	print_res(name, delta_runtime / runtime_sec_max * 100.0,
1557 		"%,", "spread-runtime/thread",	"% difference between max/avg runtime");
1558 
1559 	print_res(name, bytes / g->p.nr_tasks / 1e9,
1560 		"GB,", "data/thread",		"GB data processed, per thread");
1561 
1562 	print_res(name, bytes / 1e9,
1563 		"GB,", "data-total",		"GB data processed, total");
1564 
1565 	print_res(name, runtime_sec_max * 1e9 / (bytes / g->p.nr_tasks),
1566 		"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1567 
1568 	print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1569 		"GB/sec,", "thread-speed",	"GB/sec/thread speed");
1570 
1571 	print_res(name, bytes / runtime_sec_max / 1e9,
1572 		"GB/sec,", "total-speed",	"GB/sec total speed");
1573 
1574 	if (g->p.show_details >= 2) {
1575 		char tname[32];
1576 		struct thread_data *td;
1577 		for (p = 0; p < g->p.nr_proc; p++) {
1578 			for (t = 0; t < g->p.nr_threads; t++) {
1579 				memset(tname, 0, 32);
1580 				td = g->threads + p*g->p.nr_threads + t;
1581 				snprintf(tname, 32, "process%d:thread%d", p, t);
1582 				print_res(tname, td->speed_gbs,
1583 					"GB/sec",	"thread-speed", "GB/sec/thread speed");
1584 				print_res(tname, td->system_time_ns / 1e9,
1585 					"secs",	"thread-system-time", "system CPU time/thread");
1586 				print_res(tname, td->user_time_ns / 1e9,
1587 					"secs",	"thread-user-time", "user CPU time/thread");
1588 			}
1589 		}
1590 	}
1591 
1592 	free(pids);
1593 
1594 	deinit();
1595 
1596 	return 0;
1597 }
1598 
1599 #define MAX_ARGS 50
1600 
1601 static int command_size(const char **argv)
1602 {
1603 	int size = 0;
1604 
1605 	while (*argv) {
1606 		size++;
1607 		argv++;
1608 	}
1609 
1610 	BUG_ON(size >= MAX_ARGS);
1611 
1612 	return size;
1613 }
1614 
1615 static void init_params(struct params *p, const char *name, int argc, const char **argv)
1616 {
1617 	int i;
1618 
1619 	printf("\n # Running %s \"perf bench numa", name);
1620 
1621 	for (i = 0; i < argc; i++)
1622 		printf(" %s", argv[i]);
1623 
1624 	printf("\"\n");
1625 
1626 	memset(p, 0, sizeof(*p));
1627 
1628 	/* Initialize nonzero defaults: */
1629 
1630 	p->serialize_startup		= 1;
1631 	p->data_reads			= true;
1632 	p->data_writes			= true;
1633 	p->data_backwards		= true;
1634 	p->data_rand_walk		= true;
1635 	p->nr_loops			= -1;
1636 	p->init_random			= true;
1637 	p->mb_global_str		= "1";
1638 	p->nr_proc			= 1;
1639 	p->nr_threads			= 1;
1640 	p->nr_secs			= 5;
1641 	p->run_all			= argc == 1;
1642 }
1643 
1644 static int run_bench_numa(const char *name, const char **argv)
1645 {
1646 	int argc = command_size(argv);
1647 
1648 	init_params(&p0, name, argc, argv);
1649 	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1650 	if (argc)
1651 		goto err;
1652 
1653 	if (__bench_numa(name))
1654 		goto err;
1655 
1656 	return 0;
1657 
1658 err:
1659 	return -1;
1660 }
1661 
1662 #define OPT_BW_RAM		"-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1663 #define OPT_BW_RAM_NOTHP	OPT_BW_RAM,		"--thp", "-1"
1664 
1665 #define OPT_CONV		"-s", "100", "-zZ0qcm", "--thp", " 1"
1666 #define OPT_CONV_NOTHP		OPT_CONV,		"--thp", "-1"
1667 
1668 #define OPT_BW			"-s",  "20", "-zZ0q",   "--thp", " 1"
1669 #define OPT_BW_NOTHP		OPT_BW,			"--thp", "-1"
1670 
1671 /*
1672  * The built-in test-suite executed by "perf bench numa -a".
1673  *
1674  * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1675  */
1676 static const char *tests[][MAX_ARGS] = {
1677    /* Basic single-stream NUMA bandwidth measurements: */
1678    { "RAM-bw-local,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1679 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1680    { "RAM-bw-local-NOTHP,",
1681 			  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1682 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1683    { "RAM-bw-remote,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1684 			  "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1685 
1686    /* 2-stream NUMA bandwidth measurements: */
1687    { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1688 			   "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1689    { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1690 		 	   "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1691 
1692    /* Cross-stream NUMA bandwidth measurement: */
1693    { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1694 		 	   "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1695 
1696    /* Convergence latency measurements: */
1697    { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1698    { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1699    { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1700    { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1701    { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1702    { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1703    { " 4x4-convergence-NOTHP,",
1704 			  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1705    { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1706    { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1707    { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1708    { " 8x4-convergence-NOTHP,",
1709 			  "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1710    { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1711    { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1712    { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1713    { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1714    { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1715 
1716    /* Various NUMA process/thread layout bandwidth measurements: */
1717    { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1718    { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1719    { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1720    { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1721    { " 8x1-bw-process-NOTHP,",
1722 			  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1723    { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1724 
1725    { " 4x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1726    { " 8x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1727    { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1728    { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1729 
1730    { " 2x3-bw-thread,",	  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1731    { " 4x4-bw-thread,",	  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1732    { " 4x6-bw-thread,",	  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1733    { " 4x8-bw-thread,",	  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1734    { " 4x8-bw-thread-NOTHP,",
1735 			  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1736    { " 3x3-bw-thread,",	  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1737    { " 5x5-bw-thread,",	  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1738 
1739    { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1740    { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1741 
1742    { "numa02-bw,",	  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1743    { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1744    { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1745    { "numa01-bw-thread-NOTHP,",
1746 			  "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1747 };
1748 
1749 static int bench_all(void)
1750 {
1751 	int nr = ARRAY_SIZE(tests);
1752 	int ret;
1753 	int i;
1754 
1755 	ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1756 	BUG_ON(ret < 0);
1757 
1758 	for (i = 0; i < nr; i++) {
1759 		run_bench_numa(tests[i][0], tests[i] + 1);
1760 	}
1761 
1762 	printf("\n");
1763 
1764 	return 0;
1765 }
1766 
1767 int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused)
1768 {
1769 	init_params(&p0, "main,", argc, argv);
1770 	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1771 	if (argc)
1772 		goto err;
1773 
1774 	if (p0.run_all)
1775 		return bench_all();
1776 
1777 	if (__bench_numa(NULL))
1778 		goto err;
1779 
1780 	return 0;
1781 
1782 err:
1783 	usage_with_options(numa_usage, options);
1784 	return -1;
1785 }
1786