1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * numa.c 4 * 5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance 6 */ 7 8 #include <inttypes.h> 9 /* For the CLR_() macros */ 10 #include <pthread.h> 11 12 #include "../perf.h" 13 #include "../builtin.h" 14 #include "../util/util.h" 15 #include <subcmd/parse-options.h> 16 #include "../util/cloexec.h" 17 18 #include "bench.h" 19 20 #include <errno.h> 21 #include <sched.h> 22 #include <stdio.h> 23 #include <assert.h> 24 #include <malloc.h> 25 #include <signal.h> 26 #include <stdlib.h> 27 #include <string.h> 28 #include <unistd.h> 29 #include <sys/mman.h> 30 #include <sys/time.h> 31 #include <sys/resource.h> 32 #include <sys/wait.h> 33 #include <sys/prctl.h> 34 #include <sys/types.h> 35 #include <linux/kernel.h> 36 #include <linux/time64.h> 37 38 #include <numa.h> 39 #include <numaif.h> 40 41 /* 42 * Regular printout to the terminal, supressed if -q is specified: 43 */ 44 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0) 45 46 /* 47 * Debug printf: 48 */ 49 #undef dprintf 50 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0) 51 52 struct thread_data { 53 int curr_cpu; 54 cpu_set_t bind_cpumask; 55 int bind_node; 56 u8 *process_data; 57 int process_nr; 58 int thread_nr; 59 int task_nr; 60 unsigned int loops_done; 61 u64 val; 62 u64 runtime_ns; 63 u64 system_time_ns; 64 u64 user_time_ns; 65 double speed_gbs; 66 pthread_mutex_t *process_lock; 67 }; 68 69 /* Parameters set by options: */ 70 71 struct params { 72 /* Startup synchronization: */ 73 bool serialize_startup; 74 75 /* Task hierarchy: */ 76 int nr_proc; 77 int nr_threads; 78 79 /* Working set sizes: */ 80 const char *mb_global_str; 81 const char *mb_proc_str; 82 const char *mb_proc_locked_str; 83 const char *mb_thread_str; 84 85 double mb_global; 86 double mb_proc; 87 double mb_proc_locked; 88 double mb_thread; 89 90 /* Access patterns to the working set: */ 91 bool data_reads; 92 bool data_writes; 93 bool data_backwards; 94 bool data_zero_memset; 95 bool data_rand_walk; 96 u32 nr_loops; 97 u32 nr_secs; 98 u32 sleep_usecs; 99 100 /* Working set initialization: */ 101 bool init_zero; 102 bool init_random; 103 bool init_cpu0; 104 105 /* Misc options: */ 106 int show_details; 107 int run_all; 108 int thp; 109 110 long bytes_global; 111 long bytes_process; 112 long bytes_process_locked; 113 long bytes_thread; 114 115 int nr_tasks; 116 bool show_quiet; 117 118 bool show_convergence; 119 bool measure_convergence; 120 121 int perturb_secs; 122 int nr_cpus; 123 int nr_nodes; 124 125 /* Affinity options -C and -N: */ 126 char *cpu_list_str; 127 char *node_list_str; 128 }; 129 130 131 /* Global, read-writable area, accessible to all processes and threads: */ 132 133 struct global_info { 134 u8 *data; 135 136 pthread_mutex_t startup_mutex; 137 int nr_tasks_started; 138 139 pthread_mutex_t startup_done_mutex; 140 141 pthread_mutex_t start_work_mutex; 142 int nr_tasks_working; 143 144 pthread_mutex_t stop_work_mutex; 145 u64 bytes_done; 146 147 struct thread_data *threads; 148 149 /* Convergence latency measurement: */ 150 bool all_converged; 151 bool stop_work; 152 153 int print_once; 154 155 struct params p; 156 }; 157 158 static struct global_info *g = NULL; 159 160 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset); 161 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset); 162 163 struct params p0; 164 165 static const struct option options[] = { 166 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"), 167 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"), 168 169 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"), 170 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"), 171 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"), 172 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"), 173 174 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"), 175 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"), 176 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"), 177 178 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via writes (can be mixed with -W)"), 179 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"), 180 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"), 181 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"), 182 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"), 183 184 185 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"), 186 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"), 187 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"), 188 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"), 189 190 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"), 191 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"), 192 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"), 193 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, " 194 "convergence is reached when each process (all its threads) is running on a single NUMA node."), 195 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"), 196 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"), 197 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"), 198 199 /* Special option string parsing callbacks: */ 200 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]", 201 "bind the first N tasks to these specific cpus (the rest is unbound)", 202 parse_cpus_opt), 203 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]", 204 "bind the first N tasks to these specific memory nodes (the rest is unbound)", 205 parse_nodes_opt), 206 OPT_END() 207 }; 208 209 static const char * const bench_numa_usage[] = { 210 "perf bench numa <options>", 211 NULL 212 }; 213 214 static const char * const numa_usage[] = { 215 "perf bench numa mem [<options>]", 216 NULL 217 }; 218 219 static cpu_set_t bind_to_cpu(int target_cpu) 220 { 221 cpu_set_t orig_mask, mask; 222 int ret; 223 224 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); 225 BUG_ON(ret); 226 227 CPU_ZERO(&mask); 228 229 if (target_cpu == -1) { 230 int cpu; 231 232 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 233 CPU_SET(cpu, &mask); 234 } else { 235 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus); 236 CPU_SET(target_cpu, &mask); 237 } 238 239 ret = sched_setaffinity(0, sizeof(mask), &mask); 240 BUG_ON(ret); 241 242 return orig_mask; 243 } 244 245 static cpu_set_t bind_to_node(int target_node) 246 { 247 int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes; 248 cpu_set_t orig_mask, mask; 249 int cpu; 250 int ret; 251 252 BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus); 253 BUG_ON(!cpus_per_node); 254 255 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); 256 BUG_ON(ret); 257 258 CPU_ZERO(&mask); 259 260 if (target_node == -1) { 261 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 262 CPU_SET(cpu, &mask); 263 } else { 264 int cpu_start = (target_node + 0) * cpus_per_node; 265 int cpu_stop = (target_node + 1) * cpus_per_node; 266 267 BUG_ON(cpu_stop > g->p.nr_cpus); 268 269 for (cpu = cpu_start; cpu < cpu_stop; cpu++) 270 CPU_SET(cpu, &mask); 271 } 272 273 ret = sched_setaffinity(0, sizeof(mask), &mask); 274 BUG_ON(ret); 275 276 return orig_mask; 277 } 278 279 static void bind_to_cpumask(cpu_set_t mask) 280 { 281 int ret; 282 283 ret = sched_setaffinity(0, sizeof(mask), &mask); 284 BUG_ON(ret); 285 } 286 287 static void mempol_restore(void) 288 { 289 int ret; 290 291 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1); 292 293 BUG_ON(ret); 294 } 295 296 static void bind_to_memnode(int node) 297 { 298 unsigned long nodemask; 299 int ret; 300 301 if (node == -1) 302 return; 303 304 BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8); 305 nodemask = 1L << node; 306 307 ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8); 308 dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret); 309 310 BUG_ON(ret); 311 } 312 313 #define HPSIZE (2*1024*1024) 314 315 #define set_taskname(fmt...) \ 316 do { \ 317 char name[20]; \ 318 \ 319 snprintf(name, 20, fmt); \ 320 prctl(PR_SET_NAME, name); \ 321 } while (0) 322 323 static u8 *alloc_data(ssize_t bytes0, int map_flags, 324 int init_zero, int init_cpu0, int thp, int init_random) 325 { 326 cpu_set_t orig_mask; 327 ssize_t bytes; 328 u8 *buf; 329 int ret; 330 331 if (!bytes0) 332 return NULL; 333 334 /* Allocate and initialize all memory on CPU#0: */ 335 if (init_cpu0) { 336 orig_mask = bind_to_node(0); 337 bind_to_memnode(0); 338 } 339 340 bytes = bytes0 + HPSIZE; 341 342 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0); 343 BUG_ON(buf == (void *)-1); 344 345 if (map_flags == MAP_PRIVATE) { 346 if (thp > 0) { 347 ret = madvise(buf, bytes, MADV_HUGEPAGE); 348 if (ret && !g->print_once) { 349 g->print_once = 1; 350 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n"); 351 } 352 } 353 if (thp < 0) { 354 ret = madvise(buf, bytes, MADV_NOHUGEPAGE); 355 if (ret && !g->print_once) { 356 g->print_once = 1; 357 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n"); 358 } 359 } 360 } 361 362 if (init_zero) { 363 bzero(buf, bytes); 364 } else { 365 /* Initialize random contents, different in each word: */ 366 if (init_random) { 367 u64 *wbuf = (void *)buf; 368 long off = rand(); 369 long i; 370 371 for (i = 0; i < bytes/8; i++) 372 wbuf[i] = i + off; 373 } 374 } 375 376 /* Align to 2MB boundary: */ 377 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1)); 378 379 /* Restore affinity: */ 380 if (init_cpu0) { 381 bind_to_cpumask(orig_mask); 382 mempol_restore(); 383 } 384 385 return buf; 386 } 387 388 static void free_data(void *data, ssize_t bytes) 389 { 390 int ret; 391 392 if (!data) 393 return; 394 395 ret = munmap(data, bytes); 396 BUG_ON(ret); 397 } 398 399 /* 400 * Create a shared memory buffer that can be shared between processes, zeroed: 401 */ 402 static void * zalloc_shared_data(ssize_t bytes) 403 { 404 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random); 405 } 406 407 /* 408 * Create a shared memory buffer that can be shared between processes: 409 */ 410 static void * setup_shared_data(ssize_t bytes) 411 { 412 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 413 } 414 415 /* 416 * Allocate process-local memory - this will either be shared between 417 * threads of this process, or only be accessed by this thread: 418 */ 419 static void * setup_private_data(ssize_t bytes) 420 { 421 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 422 } 423 424 /* 425 * Return a process-shared (global) mutex: 426 */ 427 static void init_global_mutex(pthread_mutex_t *mutex) 428 { 429 pthread_mutexattr_t attr; 430 431 pthread_mutexattr_init(&attr); 432 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED); 433 pthread_mutex_init(mutex, &attr); 434 } 435 436 static int parse_cpu_list(const char *arg) 437 { 438 p0.cpu_list_str = strdup(arg); 439 440 dprintf("got CPU list: {%s}\n", p0.cpu_list_str); 441 442 return 0; 443 } 444 445 static int parse_setup_cpu_list(void) 446 { 447 struct thread_data *td; 448 char *str0, *str; 449 int t; 450 451 if (!g->p.cpu_list_str) 452 return 0; 453 454 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 455 456 str0 = str = strdup(g->p.cpu_list_str); 457 t = 0; 458 459 BUG_ON(!str); 460 461 tprintf("# binding tasks to CPUs:\n"); 462 tprintf("# "); 463 464 while (true) { 465 int bind_cpu, bind_cpu_0, bind_cpu_1; 466 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul; 467 int bind_len; 468 int step; 469 int mul; 470 471 tok = strsep(&str, ","); 472 if (!tok) 473 break; 474 475 tok_end = strstr(tok, "-"); 476 477 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 478 if (!tok_end) { 479 /* Single CPU specified: */ 480 bind_cpu_0 = bind_cpu_1 = atol(tok); 481 } else { 482 /* CPU range specified (for example: "5-11"): */ 483 bind_cpu_0 = atol(tok); 484 bind_cpu_1 = atol(tok_end + 1); 485 } 486 487 step = 1; 488 tok_step = strstr(tok, "#"); 489 if (tok_step) { 490 step = atol(tok_step + 1); 491 BUG_ON(step <= 0 || step >= g->p.nr_cpus); 492 } 493 494 /* 495 * Mask length. 496 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4', 497 * where the _4 means the next 4 CPUs are allowed. 498 */ 499 bind_len = 1; 500 tok_len = strstr(tok, "_"); 501 if (tok_len) { 502 bind_len = atol(tok_len + 1); 503 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus); 504 } 505 506 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 507 mul = 1; 508 tok_mul = strstr(tok, "x"); 509 if (tok_mul) { 510 mul = atol(tok_mul + 1); 511 BUG_ON(mul <= 0); 512 } 513 514 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul); 515 516 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) { 517 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus); 518 return -1; 519 } 520 521 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0); 522 BUG_ON(bind_cpu_0 > bind_cpu_1); 523 524 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) { 525 int i; 526 527 for (i = 0; i < mul; i++) { 528 int cpu; 529 530 if (t >= g->p.nr_tasks) { 531 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu); 532 goto out; 533 } 534 td = g->threads + t; 535 536 if (t) 537 tprintf(","); 538 if (bind_len > 1) { 539 tprintf("%2d/%d", bind_cpu, bind_len); 540 } else { 541 tprintf("%2d", bind_cpu); 542 } 543 544 CPU_ZERO(&td->bind_cpumask); 545 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) { 546 BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus); 547 CPU_SET(cpu, &td->bind_cpumask); 548 } 549 t++; 550 } 551 } 552 } 553 out: 554 555 tprintf("\n"); 556 557 if (t < g->p.nr_tasks) 558 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 559 560 free(str0); 561 return 0; 562 } 563 564 static int parse_cpus_opt(const struct option *opt __maybe_unused, 565 const char *arg, int unset __maybe_unused) 566 { 567 if (!arg) 568 return -1; 569 570 return parse_cpu_list(arg); 571 } 572 573 static int parse_node_list(const char *arg) 574 { 575 p0.node_list_str = strdup(arg); 576 577 dprintf("got NODE list: {%s}\n", p0.node_list_str); 578 579 return 0; 580 } 581 582 static int parse_setup_node_list(void) 583 { 584 struct thread_data *td; 585 char *str0, *str; 586 int t; 587 588 if (!g->p.node_list_str) 589 return 0; 590 591 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 592 593 str0 = str = strdup(g->p.node_list_str); 594 t = 0; 595 596 BUG_ON(!str); 597 598 tprintf("# binding tasks to NODEs:\n"); 599 tprintf("# "); 600 601 while (true) { 602 int bind_node, bind_node_0, bind_node_1; 603 char *tok, *tok_end, *tok_step, *tok_mul; 604 int step; 605 int mul; 606 607 tok = strsep(&str, ","); 608 if (!tok) 609 break; 610 611 tok_end = strstr(tok, "-"); 612 613 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 614 if (!tok_end) { 615 /* Single NODE specified: */ 616 bind_node_0 = bind_node_1 = atol(tok); 617 } else { 618 /* NODE range specified (for example: "5-11"): */ 619 bind_node_0 = atol(tok); 620 bind_node_1 = atol(tok_end + 1); 621 } 622 623 step = 1; 624 tok_step = strstr(tok, "#"); 625 if (tok_step) { 626 step = atol(tok_step + 1); 627 BUG_ON(step <= 0 || step >= g->p.nr_nodes); 628 } 629 630 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 631 mul = 1; 632 tok_mul = strstr(tok, "x"); 633 if (tok_mul) { 634 mul = atol(tok_mul + 1); 635 BUG_ON(mul <= 0); 636 } 637 638 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step); 639 640 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) { 641 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes); 642 return -1; 643 } 644 645 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0); 646 BUG_ON(bind_node_0 > bind_node_1); 647 648 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) { 649 int i; 650 651 for (i = 0; i < mul; i++) { 652 if (t >= g->p.nr_tasks) { 653 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node); 654 goto out; 655 } 656 td = g->threads + t; 657 658 if (!t) 659 tprintf(" %2d", bind_node); 660 else 661 tprintf(",%2d", bind_node); 662 663 td->bind_node = bind_node; 664 t++; 665 } 666 } 667 } 668 out: 669 670 tprintf("\n"); 671 672 if (t < g->p.nr_tasks) 673 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 674 675 free(str0); 676 return 0; 677 } 678 679 static int parse_nodes_opt(const struct option *opt __maybe_unused, 680 const char *arg, int unset __maybe_unused) 681 { 682 if (!arg) 683 return -1; 684 685 return parse_node_list(arg); 686 687 return 0; 688 } 689 690 #define BIT(x) (1ul << x) 691 692 static inline uint32_t lfsr_32(uint32_t lfsr) 693 { 694 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31); 695 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps); 696 } 697 698 /* 699 * Make sure there's real data dependency to RAM (when read 700 * accesses are enabled), so the compiler, the CPU and the 701 * kernel (KSM, zero page, etc.) cannot optimize away RAM 702 * accesses: 703 */ 704 static inline u64 access_data(u64 *data, u64 val) 705 { 706 if (g->p.data_reads) 707 val += *data; 708 if (g->p.data_writes) 709 *data = val + 1; 710 return val; 711 } 712 713 /* 714 * The worker process does two types of work, a forwards going 715 * loop and a backwards going loop. 716 * 717 * We do this so that on multiprocessor systems we do not create 718 * a 'train' of processing, with highly synchronized processes, 719 * skewing the whole benchmark. 720 */ 721 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val) 722 { 723 long words = bytes/sizeof(u64); 724 u64 *data = (void *)__data; 725 long chunk_0, chunk_1; 726 u64 *d0, *d, *d1; 727 long off; 728 long i; 729 730 BUG_ON(!data && words); 731 BUG_ON(data && !words); 732 733 if (!data) 734 return val; 735 736 /* Very simple memset() work variant: */ 737 if (g->p.data_zero_memset && !g->p.data_rand_walk) { 738 bzero(data, bytes); 739 return val; 740 } 741 742 /* Spread out by PID/TID nr and by loop nr: */ 743 chunk_0 = words/nr_max; 744 chunk_1 = words/g->p.nr_loops; 745 off = nr*chunk_0 + loop*chunk_1; 746 747 while (off >= words) 748 off -= words; 749 750 if (g->p.data_rand_walk) { 751 u32 lfsr = nr + loop + val; 752 int j; 753 754 for (i = 0; i < words/1024; i++) { 755 long start, end; 756 757 lfsr = lfsr_32(lfsr); 758 759 start = lfsr % words; 760 end = min(start + 1024, words-1); 761 762 if (g->p.data_zero_memset) { 763 bzero(data + start, (end-start) * sizeof(u64)); 764 } else { 765 for (j = start; j < end; j++) 766 val = access_data(data + j, val); 767 } 768 } 769 } else if (!g->p.data_backwards || (nr + loop) & 1) { 770 771 d0 = data + off; 772 d = data + off + 1; 773 d1 = data + words; 774 775 /* Process data forwards: */ 776 for (;;) { 777 if (unlikely(d >= d1)) 778 d = data; 779 if (unlikely(d == d0)) 780 break; 781 782 val = access_data(d, val); 783 784 d++; 785 } 786 } else { 787 /* Process data backwards: */ 788 789 d0 = data + off; 790 d = data + off - 1; 791 d1 = data + words; 792 793 /* Process data forwards: */ 794 for (;;) { 795 if (unlikely(d < data)) 796 d = data + words-1; 797 if (unlikely(d == d0)) 798 break; 799 800 val = access_data(d, val); 801 802 d--; 803 } 804 } 805 806 return val; 807 } 808 809 static void update_curr_cpu(int task_nr, unsigned long bytes_worked) 810 { 811 unsigned int cpu; 812 813 cpu = sched_getcpu(); 814 815 g->threads[task_nr].curr_cpu = cpu; 816 prctl(0, bytes_worked); 817 } 818 819 #define MAX_NR_NODES 64 820 821 /* 822 * Count the number of nodes a process's threads 823 * are spread out on. 824 * 825 * A count of 1 means that the process is compressed 826 * to a single node. A count of g->p.nr_nodes means it's 827 * spread out on the whole system. 828 */ 829 static int count_process_nodes(int process_nr) 830 { 831 char node_present[MAX_NR_NODES] = { 0, }; 832 int nodes; 833 int n, t; 834 835 for (t = 0; t < g->p.nr_threads; t++) { 836 struct thread_data *td; 837 int task_nr; 838 int node; 839 840 task_nr = process_nr*g->p.nr_threads + t; 841 td = g->threads + task_nr; 842 843 node = numa_node_of_cpu(td->curr_cpu); 844 if (node < 0) /* curr_cpu was likely still -1 */ 845 return 0; 846 847 node_present[node] = 1; 848 } 849 850 nodes = 0; 851 852 for (n = 0; n < MAX_NR_NODES; n++) 853 nodes += node_present[n]; 854 855 return nodes; 856 } 857 858 /* 859 * Count the number of distinct process-threads a node contains. 860 * 861 * A count of 1 means that the node contains only a single 862 * process. If all nodes on the system contain at most one 863 * process then we are well-converged. 864 */ 865 static int count_node_processes(int node) 866 { 867 int processes = 0; 868 int t, p; 869 870 for (p = 0; p < g->p.nr_proc; p++) { 871 for (t = 0; t < g->p.nr_threads; t++) { 872 struct thread_data *td; 873 int task_nr; 874 int n; 875 876 task_nr = p*g->p.nr_threads + t; 877 td = g->threads + task_nr; 878 879 n = numa_node_of_cpu(td->curr_cpu); 880 if (n == node) { 881 processes++; 882 break; 883 } 884 } 885 } 886 887 return processes; 888 } 889 890 static void calc_convergence_compression(int *strong) 891 { 892 unsigned int nodes_min, nodes_max; 893 int p; 894 895 nodes_min = -1; 896 nodes_max = 0; 897 898 for (p = 0; p < g->p.nr_proc; p++) { 899 unsigned int nodes = count_process_nodes(p); 900 901 if (!nodes) { 902 *strong = 0; 903 return; 904 } 905 906 nodes_min = min(nodes, nodes_min); 907 nodes_max = max(nodes, nodes_max); 908 } 909 910 /* Strong convergence: all threads compress on a single node: */ 911 if (nodes_min == 1 && nodes_max == 1) { 912 *strong = 1; 913 } else { 914 *strong = 0; 915 tprintf(" {%d-%d}", nodes_min, nodes_max); 916 } 917 } 918 919 static void calc_convergence(double runtime_ns_max, double *convergence) 920 { 921 unsigned int loops_done_min, loops_done_max; 922 int process_groups; 923 int nodes[MAX_NR_NODES]; 924 int distance; 925 int nr_min; 926 int nr_max; 927 int strong; 928 int sum; 929 int nr; 930 int node; 931 int cpu; 932 int t; 933 934 if (!g->p.show_convergence && !g->p.measure_convergence) 935 return; 936 937 for (node = 0; node < g->p.nr_nodes; node++) 938 nodes[node] = 0; 939 940 loops_done_min = -1; 941 loops_done_max = 0; 942 943 for (t = 0; t < g->p.nr_tasks; t++) { 944 struct thread_data *td = g->threads + t; 945 unsigned int loops_done; 946 947 cpu = td->curr_cpu; 948 949 /* Not all threads have written it yet: */ 950 if (cpu < 0) 951 continue; 952 953 node = numa_node_of_cpu(cpu); 954 955 nodes[node]++; 956 957 loops_done = td->loops_done; 958 loops_done_min = min(loops_done, loops_done_min); 959 loops_done_max = max(loops_done, loops_done_max); 960 } 961 962 nr_max = 0; 963 nr_min = g->p.nr_tasks; 964 sum = 0; 965 966 for (node = 0; node < g->p.nr_nodes; node++) { 967 nr = nodes[node]; 968 nr_min = min(nr, nr_min); 969 nr_max = max(nr, nr_max); 970 sum += nr; 971 } 972 BUG_ON(nr_min > nr_max); 973 974 BUG_ON(sum > g->p.nr_tasks); 975 976 if (0 && (sum < g->p.nr_tasks)) 977 return; 978 979 /* 980 * Count the number of distinct process groups present 981 * on nodes - when we are converged this will decrease 982 * to g->p.nr_proc: 983 */ 984 process_groups = 0; 985 986 for (node = 0; node < g->p.nr_nodes; node++) { 987 int processes = count_node_processes(node); 988 989 nr = nodes[node]; 990 tprintf(" %2d/%-2d", nr, processes); 991 992 process_groups += processes; 993 } 994 995 distance = nr_max - nr_min; 996 997 tprintf(" [%2d/%-2d]", distance, process_groups); 998 999 tprintf(" l:%3d-%-3d (%3d)", 1000 loops_done_min, loops_done_max, loops_done_max-loops_done_min); 1001 1002 if (loops_done_min && loops_done_max) { 1003 double skew = 1.0 - (double)loops_done_min/loops_done_max; 1004 1005 tprintf(" [%4.1f%%]", skew * 100.0); 1006 } 1007 1008 calc_convergence_compression(&strong); 1009 1010 if (strong && process_groups == g->p.nr_proc) { 1011 if (!*convergence) { 1012 *convergence = runtime_ns_max; 1013 tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC); 1014 if (g->p.measure_convergence) { 1015 g->all_converged = true; 1016 g->stop_work = true; 1017 } 1018 } 1019 } else { 1020 if (*convergence) { 1021 tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC); 1022 *convergence = 0; 1023 } 1024 tprintf("\n"); 1025 } 1026 } 1027 1028 static void show_summary(double runtime_ns_max, int l, double *convergence) 1029 { 1030 tprintf("\r # %5.1f%% [%.1f mins]", 1031 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0); 1032 1033 calc_convergence(runtime_ns_max, convergence); 1034 1035 if (g->p.show_details >= 0) 1036 fflush(stdout); 1037 } 1038 1039 static void *worker_thread(void *__tdata) 1040 { 1041 struct thread_data *td = __tdata; 1042 struct timeval start0, start, stop, diff; 1043 int process_nr = td->process_nr; 1044 int thread_nr = td->thread_nr; 1045 unsigned long last_perturbance; 1046 int task_nr = td->task_nr; 1047 int details = g->p.show_details; 1048 int first_task, last_task; 1049 double convergence = 0; 1050 u64 val = td->val; 1051 double runtime_ns_max; 1052 u8 *global_data; 1053 u8 *process_data; 1054 u8 *thread_data; 1055 u64 bytes_done; 1056 long work_done; 1057 u32 l; 1058 struct rusage rusage; 1059 1060 bind_to_cpumask(td->bind_cpumask); 1061 bind_to_memnode(td->bind_node); 1062 1063 set_taskname("thread %d/%d", process_nr, thread_nr); 1064 1065 global_data = g->data; 1066 process_data = td->process_data; 1067 thread_data = setup_private_data(g->p.bytes_thread); 1068 1069 bytes_done = 0; 1070 1071 last_task = 0; 1072 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1) 1073 last_task = 1; 1074 1075 first_task = 0; 1076 if (process_nr == 0 && thread_nr == 0) 1077 first_task = 1; 1078 1079 if (details >= 2) { 1080 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n", 1081 process_nr, thread_nr, global_data, process_data, thread_data); 1082 } 1083 1084 if (g->p.serialize_startup) { 1085 pthread_mutex_lock(&g->startup_mutex); 1086 g->nr_tasks_started++; 1087 pthread_mutex_unlock(&g->startup_mutex); 1088 1089 /* Here we will wait for the main process to start us all at once: */ 1090 pthread_mutex_lock(&g->start_work_mutex); 1091 g->nr_tasks_working++; 1092 1093 /* Last one wake the main process: */ 1094 if (g->nr_tasks_working == g->p.nr_tasks) 1095 pthread_mutex_unlock(&g->startup_done_mutex); 1096 1097 pthread_mutex_unlock(&g->start_work_mutex); 1098 } 1099 1100 gettimeofday(&start0, NULL); 1101 1102 start = stop = start0; 1103 last_perturbance = start.tv_sec; 1104 1105 for (l = 0; l < g->p.nr_loops; l++) { 1106 start = stop; 1107 1108 if (g->stop_work) 1109 break; 1110 1111 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val); 1112 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val); 1113 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val); 1114 1115 if (g->p.sleep_usecs) { 1116 pthread_mutex_lock(td->process_lock); 1117 usleep(g->p.sleep_usecs); 1118 pthread_mutex_unlock(td->process_lock); 1119 } 1120 /* 1121 * Amount of work to be done under a process-global lock: 1122 */ 1123 if (g->p.bytes_process_locked) { 1124 pthread_mutex_lock(td->process_lock); 1125 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val); 1126 pthread_mutex_unlock(td->process_lock); 1127 } 1128 1129 work_done = g->p.bytes_global + g->p.bytes_process + 1130 g->p.bytes_process_locked + g->p.bytes_thread; 1131 1132 update_curr_cpu(task_nr, work_done); 1133 bytes_done += work_done; 1134 1135 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs) 1136 continue; 1137 1138 td->loops_done = l; 1139 1140 gettimeofday(&stop, NULL); 1141 1142 /* Check whether our max runtime timed out: */ 1143 if (g->p.nr_secs) { 1144 timersub(&stop, &start0, &diff); 1145 if ((u32)diff.tv_sec >= g->p.nr_secs) { 1146 g->stop_work = true; 1147 break; 1148 } 1149 } 1150 1151 /* Update the summary at most once per second: */ 1152 if (start.tv_sec == stop.tv_sec) 1153 continue; 1154 1155 /* 1156 * Perturb the first task's equilibrium every g->p.perturb_secs seconds, 1157 * by migrating to CPU#0: 1158 */ 1159 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) { 1160 cpu_set_t orig_mask; 1161 int target_cpu; 1162 int this_cpu; 1163 1164 last_perturbance = stop.tv_sec; 1165 1166 /* 1167 * Depending on where we are running, move into 1168 * the other half of the system, to create some 1169 * real disturbance: 1170 */ 1171 this_cpu = g->threads[task_nr].curr_cpu; 1172 if (this_cpu < g->p.nr_cpus/2) 1173 target_cpu = g->p.nr_cpus-1; 1174 else 1175 target_cpu = 0; 1176 1177 orig_mask = bind_to_cpu(target_cpu); 1178 1179 /* Here we are running on the target CPU already */ 1180 if (details >= 1) 1181 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu); 1182 1183 bind_to_cpumask(orig_mask); 1184 } 1185 1186 if (details >= 3) { 1187 timersub(&stop, &start, &diff); 1188 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC; 1189 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC; 1190 1191 if (details >= 0) { 1192 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n", 1193 process_nr, thread_nr, runtime_ns_max / bytes_done, val); 1194 } 1195 fflush(stdout); 1196 } 1197 if (!last_task) 1198 continue; 1199 1200 timersub(&stop, &start0, &diff); 1201 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC; 1202 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC; 1203 1204 show_summary(runtime_ns_max, l, &convergence); 1205 } 1206 1207 gettimeofday(&stop, NULL); 1208 timersub(&stop, &start0, &diff); 1209 td->runtime_ns = diff.tv_sec * NSEC_PER_SEC; 1210 td->runtime_ns += diff.tv_usec * NSEC_PER_USEC; 1211 td->speed_gbs = bytes_done / (td->runtime_ns / NSEC_PER_SEC) / 1e9; 1212 1213 getrusage(RUSAGE_THREAD, &rusage); 1214 td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC; 1215 td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC; 1216 td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC; 1217 td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC; 1218 1219 free_data(thread_data, g->p.bytes_thread); 1220 1221 pthread_mutex_lock(&g->stop_work_mutex); 1222 g->bytes_done += bytes_done; 1223 pthread_mutex_unlock(&g->stop_work_mutex); 1224 1225 return NULL; 1226 } 1227 1228 /* 1229 * A worker process starts a couple of threads: 1230 */ 1231 static void worker_process(int process_nr) 1232 { 1233 pthread_mutex_t process_lock; 1234 struct thread_data *td; 1235 pthread_t *pthreads; 1236 u8 *process_data; 1237 int task_nr; 1238 int ret; 1239 int t; 1240 1241 pthread_mutex_init(&process_lock, NULL); 1242 set_taskname("process %d", process_nr); 1243 1244 /* 1245 * Pick up the memory policy and the CPU binding of our first thread, 1246 * so that we initialize memory accordingly: 1247 */ 1248 task_nr = process_nr*g->p.nr_threads; 1249 td = g->threads + task_nr; 1250 1251 bind_to_memnode(td->bind_node); 1252 bind_to_cpumask(td->bind_cpumask); 1253 1254 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t)); 1255 process_data = setup_private_data(g->p.bytes_process); 1256 1257 if (g->p.show_details >= 3) { 1258 printf(" # process %2d global mem: %p, process mem: %p\n", 1259 process_nr, g->data, process_data); 1260 } 1261 1262 for (t = 0; t < g->p.nr_threads; t++) { 1263 task_nr = process_nr*g->p.nr_threads + t; 1264 td = g->threads + task_nr; 1265 1266 td->process_data = process_data; 1267 td->process_nr = process_nr; 1268 td->thread_nr = t; 1269 td->task_nr = task_nr; 1270 td->val = rand(); 1271 td->curr_cpu = -1; 1272 td->process_lock = &process_lock; 1273 1274 ret = pthread_create(pthreads + t, NULL, worker_thread, td); 1275 BUG_ON(ret); 1276 } 1277 1278 for (t = 0; t < g->p.nr_threads; t++) { 1279 ret = pthread_join(pthreads[t], NULL); 1280 BUG_ON(ret); 1281 } 1282 1283 free_data(process_data, g->p.bytes_process); 1284 free(pthreads); 1285 } 1286 1287 static void print_summary(void) 1288 { 1289 if (g->p.show_details < 0) 1290 return; 1291 1292 printf("\n ###\n"); 1293 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n", 1294 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus); 1295 printf(" # %5dx %5ldMB global shared mem operations\n", 1296 g->p.nr_loops, g->p.bytes_global/1024/1024); 1297 printf(" # %5dx %5ldMB process shared mem operations\n", 1298 g->p.nr_loops, g->p.bytes_process/1024/1024); 1299 printf(" # %5dx %5ldMB thread local mem operations\n", 1300 g->p.nr_loops, g->p.bytes_thread/1024/1024); 1301 1302 printf(" ###\n"); 1303 1304 printf("\n ###\n"); fflush(stdout); 1305 } 1306 1307 static void init_thread_data(void) 1308 { 1309 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1310 int t; 1311 1312 g->threads = zalloc_shared_data(size); 1313 1314 for (t = 0; t < g->p.nr_tasks; t++) { 1315 struct thread_data *td = g->threads + t; 1316 int cpu; 1317 1318 /* Allow all nodes by default: */ 1319 td->bind_node = -1; 1320 1321 /* Allow all CPUs by default: */ 1322 CPU_ZERO(&td->bind_cpumask); 1323 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 1324 CPU_SET(cpu, &td->bind_cpumask); 1325 } 1326 } 1327 1328 static void deinit_thread_data(void) 1329 { 1330 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1331 1332 free_data(g->threads, size); 1333 } 1334 1335 static int init(void) 1336 { 1337 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0); 1338 1339 /* Copy over options: */ 1340 g->p = p0; 1341 1342 g->p.nr_cpus = numa_num_configured_cpus(); 1343 1344 g->p.nr_nodes = numa_max_node() + 1; 1345 1346 /* char array in count_process_nodes(): */ 1347 BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0); 1348 1349 if (g->p.show_quiet && !g->p.show_details) 1350 g->p.show_details = -1; 1351 1352 /* Some memory should be specified: */ 1353 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str) 1354 return -1; 1355 1356 if (g->p.mb_global_str) { 1357 g->p.mb_global = atof(g->p.mb_global_str); 1358 BUG_ON(g->p.mb_global < 0); 1359 } 1360 1361 if (g->p.mb_proc_str) { 1362 g->p.mb_proc = atof(g->p.mb_proc_str); 1363 BUG_ON(g->p.mb_proc < 0); 1364 } 1365 1366 if (g->p.mb_proc_locked_str) { 1367 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str); 1368 BUG_ON(g->p.mb_proc_locked < 0); 1369 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc); 1370 } 1371 1372 if (g->p.mb_thread_str) { 1373 g->p.mb_thread = atof(g->p.mb_thread_str); 1374 BUG_ON(g->p.mb_thread < 0); 1375 } 1376 1377 BUG_ON(g->p.nr_threads <= 0); 1378 BUG_ON(g->p.nr_proc <= 0); 1379 1380 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads; 1381 1382 g->p.bytes_global = g->p.mb_global *1024L*1024L; 1383 g->p.bytes_process = g->p.mb_proc *1024L*1024L; 1384 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L; 1385 g->p.bytes_thread = g->p.mb_thread *1024L*1024L; 1386 1387 g->data = setup_shared_data(g->p.bytes_global); 1388 1389 /* Startup serialization: */ 1390 init_global_mutex(&g->start_work_mutex); 1391 init_global_mutex(&g->startup_mutex); 1392 init_global_mutex(&g->startup_done_mutex); 1393 init_global_mutex(&g->stop_work_mutex); 1394 1395 init_thread_data(); 1396 1397 tprintf("#\n"); 1398 if (parse_setup_cpu_list() || parse_setup_node_list()) 1399 return -1; 1400 tprintf("#\n"); 1401 1402 print_summary(); 1403 1404 return 0; 1405 } 1406 1407 static void deinit(void) 1408 { 1409 free_data(g->data, g->p.bytes_global); 1410 g->data = NULL; 1411 1412 deinit_thread_data(); 1413 1414 free_data(g, sizeof(*g)); 1415 g = NULL; 1416 } 1417 1418 /* 1419 * Print a short or long result, depending on the verbosity setting: 1420 */ 1421 static void print_res(const char *name, double val, 1422 const char *txt_unit, const char *txt_short, const char *txt_long) 1423 { 1424 if (!name) 1425 name = "main,"; 1426 1427 if (!g->p.show_quiet) 1428 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short); 1429 else 1430 printf(" %14.3f %s\n", val, txt_long); 1431 } 1432 1433 static int __bench_numa(const char *name) 1434 { 1435 struct timeval start, stop, diff; 1436 u64 runtime_ns_min, runtime_ns_sum; 1437 pid_t *pids, pid, wpid; 1438 double delta_runtime; 1439 double runtime_avg; 1440 double runtime_sec_max; 1441 double runtime_sec_min; 1442 int wait_stat; 1443 double bytes; 1444 int i, t, p; 1445 1446 if (init()) 1447 return -1; 1448 1449 pids = zalloc(g->p.nr_proc * sizeof(*pids)); 1450 pid = -1; 1451 1452 /* All threads try to acquire it, this way we can wait for them to start up: */ 1453 pthread_mutex_lock(&g->start_work_mutex); 1454 1455 if (g->p.serialize_startup) { 1456 tprintf(" #\n"); 1457 tprintf(" # Startup synchronization: ..."); fflush(stdout); 1458 } 1459 1460 gettimeofday(&start, NULL); 1461 1462 for (i = 0; i < g->p.nr_proc; i++) { 1463 pid = fork(); 1464 dprintf(" # process %2d: PID %d\n", i, pid); 1465 1466 BUG_ON(pid < 0); 1467 if (!pid) { 1468 /* Child process: */ 1469 worker_process(i); 1470 1471 exit(0); 1472 } 1473 pids[i] = pid; 1474 1475 } 1476 /* Wait for all the threads to start up: */ 1477 while (g->nr_tasks_started != g->p.nr_tasks) 1478 usleep(USEC_PER_MSEC); 1479 1480 BUG_ON(g->nr_tasks_started != g->p.nr_tasks); 1481 1482 if (g->p.serialize_startup) { 1483 double startup_sec; 1484 1485 pthread_mutex_lock(&g->startup_done_mutex); 1486 1487 /* This will start all threads: */ 1488 pthread_mutex_unlock(&g->start_work_mutex); 1489 1490 /* This mutex is locked - the last started thread will wake us: */ 1491 pthread_mutex_lock(&g->startup_done_mutex); 1492 1493 gettimeofday(&stop, NULL); 1494 1495 timersub(&stop, &start, &diff); 1496 1497 startup_sec = diff.tv_sec * NSEC_PER_SEC; 1498 startup_sec += diff.tv_usec * NSEC_PER_USEC; 1499 startup_sec /= NSEC_PER_SEC; 1500 1501 tprintf(" threads initialized in %.6f seconds.\n", startup_sec); 1502 tprintf(" #\n"); 1503 1504 start = stop; 1505 pthread_mutex_unlock(&g->startup_done_mutex); 1506 } else { 1507 gettimeofday(&start, NULL); 1508 } 1509 1510 /* Parent process: */ 1511 1512 1513 for (i = 0; i < g->p.nr_proc; i++) { 1514 wpid = waitpid(pids[i], &wait_stat, 0); 1515 BUG_ON(wpid < 0); 1516 BUG_ON(!WIFEXITED(wait_stat)); 1517 1518 } 1519 1520 runtime_ns_sum = 0; 1521 runtime_ns_min = -1LL; 1522 1523 for (t = 0; t < g->p.nr_tasks; t++) { 1524 u64 thread_runtime_ns = g->threads[t].runtime_ns; 1525 1526 runtime_ns_sum += thread_runtime_ns; 1527 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min); 1528 } 1529 1530 gettimeofday(&stop, NULL); 1531 timersub(&stop, &start, &diff); 1532 1533 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT); 1534 1535 tprintf("\n ###\n"); 1536 tprintf("\n"); 1537 1538 runtime_sec_max = diff.tv_sec * NSEC_PER_SEC; 1539 runtime_sec_max += diff.tv_usec * NSEC_PER_USEC; 1540 runtime_sec_max /= NSEC_PER_SEC; 1541 1542 runtime_sec_min = runtime_ns_min / NSEC_PER_SEC; 1543 1544 bytes = g->bytes_done; 1545 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC; 1546 1547 if (g->p.measure_convergence) { 1548 print_res(name, runtime_sec_max, 1549 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge"); 1550 } 1551 1552 print_res(name, runtime_sec_max, 1553 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime"); 1554 1555 print_res(name, runtime_sec_min, 1556 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime"); 1557 1558 print_res(name, runtime_avg, 1559 "secs,", "runtime-avg/thread", "secs average thread-runtime"); 1560 1561 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0; 1562 print_res(name, delta_runtime / runtime_sec_max * 100.0, 1563 "%,", "spread-runtime/thread", "% difference between max/avg runtime"); 1564 1565 print_res(name, bytes / g->p.nr_tasks / 1e9, 1566 "GB,", "data/thread", "GB data processed, per thread"); 1567 1568 print_res(name, bytes / 1e9, 1569 "GB,", "data-total", "GB data processed, total"); 1570 1571 print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks), 1572 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime"); 1573 1574 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max, 1575 "GB/sec,", "thread-speed", "GB/sec/thread speed"); 1576 1577 print_res(name, bytes / runtime_sec_max / 1e9, 1578 "GB/sec,", "total-speed", "GB/sec total speed"); 1579 1580 if (g->p.show_details >= 2) { 1581 char tname[14 + 2 * 10 + 1]; 1582 struct thread_data *td; 1583 for (p = 0; p < g->p.nr_proc; p++) { 1584 for (t = 0; t < g->p.nr_threads; t++) { 1585 memset(tname, 0, sizeof(tname)); 1586 td = g->threads + p*g->p.nr_threads + t; 1587 snprintf(tname, sizeof(tname), "process%d:thread%d", p, t); 1588 print_res(tname, td->speed_gbs, 1589 "GB/sec", "thread-speed", "GB/sec/thread speed"); 1590 print_res(tname, td->system_time_ns / NSEC_PER_SEC, 1591 "secs", "thread-system-time", "system CPU time/thread"); 1592 print_res(tname, td->user_time_ns / NSEC_PER_SEC, 1593 "secs", "thread-user-time", "user CPU time/thread"); 1594 } 1595 } 1596 } 1597 1598 free(pids); 1599 1600 deinit(); 1601 1602 return 0; 1603 } 1604 1605 #define MAX_ARGS 50 1606 1607 static int command_size(const char **argv) 1608 { 1609 int size = 0; 1610 1611 while (*argv) { 1612 size++; 1613 argv++; 1614 } 1615 1616 BUG_ON(size >= MAX_ARGS); 1617 1618 return size; 1619 } 1620 1621 static void init_params(struct params *p, const char *name, int argc, const char **argv) 1622 { 1623 int i; 1624 1625 printf("\n # Running %s \"perf bench numa", name); 1626 1627 for (i = 0; i < argc; i++) 1628 printf(" %s", argv[i]); 1629 1630 printf("\"\n"); 1631 1632 memset(p, 0, sizeof(*p)); 1633 1634 /* Initialize nonzero defaults: */ 1635 1636 p->serialize_startup = 1; 1637 p->data_reads = true; 1638 p->data_writes = true; 1639 p->data_backwards = true; 1640 p->data_rand_walk = true; 1641 p->nr_loops = -1; 1642 p->init_random = true; 1643 p->mb_global_str = "1"; 1644 p->nr_proc = 1; 1645 p->nr_threads = 1; 1646 p->nr_secs = 5; 1647 p->run_all = argc == 1; 1648 } 1649 1650 static int run_bench_numa(const char *name, const char **argv) 1651 { 1652 int argc = command_size(argv); 1653 1654 init_params(&p0, name, argc, argv); 1655 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1656 if (argc) 1657 goto err; 1658 1659 if (__bench_numa(name)) 1660 goto err; 1661 1662 return 0; 1663 1664 err: 1665 return -1; 1666 } 1667 1668 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk" 1669 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1" 1670 1671 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1" 1672 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1" 1673 1674 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1" 1675 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1" 1676 1677 /* 1678 * The built-in test-suite executed by "perf bench numa -a". 1679 * 1680 * (A minimum of 4 nodes and 16 GB of RAM is recommended.) 1681 */ 1682 static const char *tests[][MAX_ARGS] = { 1683 /* Basic single-stream NUMA bandwidth measurements: */ 1684 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1685 "-C" , "0", "-M", "0", OPT_BW_RAM }, 1686 { "RAM-bw-local-NOTHP,", 1687 "mem", "-p", "1", "-t", "1", "-P", "1024", 1688 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP }, 1689 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1690 "-C" , "0", "-M", "1", OPT_BW_RAM }, 1691 1692 /* 2-stream NUMA bandwidth measurements: */ 1693 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1694 "-C", "0,2", "-M", "0x2", OPT_BW_RAM }, 1695 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1696 "-C", "0,2", "-M", "1x2", OPT_BW_RAM }, 1697 1698 /* Cross-stream NUMA bandwidth measurement: */ 1699 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1700 "-C", "0,8", "-M", "1,0", OPT_BW_RAM }, 1701 1702 /* Convergence latency measurements: */ 1703 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV }, 1704 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV }, 1705 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV }, 1706 { " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1707 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1708 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV }, 1709 { " 4x4-convergence-NOTHP,", 1710 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1711 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV }, 1712 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV }, 1713 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV }, 1714 { " 8x4-convergence-NOTHP,", 1715 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1716 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV }, 1717 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV }, 1718 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV }, 1719 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV }, 1720 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV }, 1721 1722 /* Various NUMA process/thread layout bandwidth measurements: */ 1723 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW }, 1724 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW }, 1725 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW }, 1726 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW }, 1727 { " 8x1-bw-process-NOTHP,", 1728 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP }, 1729 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW }, 1730 1731 { " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW }, 1732 { " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW }, 1733 { "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW }, 1734 { "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW }, 1735 1736 { " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW }, 1737 { " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW }, 1738 { " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW }, 1739 { " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW }, 1740 { " 4x8-bw-thread-NOTHP,", 1741 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP }, 1742 { " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW }, 1743 { " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW }, 1744 1745 { "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW }, 1746 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW }, 1747 1748 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW }, 1749 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP }, 1750 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW }, 1751 { "numa01-bw-thread-NOTHP,", 1752 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP }, 1753 }; 1754 1755 static int bench_all(void) 1756 { 1757 int nr = ARRAY_SIZE(tests); 1758 int ret; 1759 int i; 1760 1761 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'"); 1762 BUG_ON(ret < 0); 1763 1764 for (i = 0; i < nr; i++) { 1765 run_bench_numa(tests[i][0], tests[i] + 1); 1766 } 1767 1768 printf("\n"); 1769 1770 return 0; 1771 } 1772 1773 int bench_numa(int argc, const char **argv) 1774 { 1775 init_params(&p0, "main,", argc, argv); 1776 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1777 if (argc) 1778 goto err; 1779 1780 if (p0.run_all) 1781 return bench_all(); 1782 1783 if (__bench_numa(NULL)) 1784 goto err; 1785 1786 return 0; 1787 1788 err: 1789 usage_with_options(numa_usage, options); 1790 return -1; 1791 } 1792