xref: /openbmc/linux/tools/perf/bench/numa.c (revision 64fc2a94)
1 /*
2  * numa.c
3  *
4  * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
5  */
6 
7 /* For the CLR_() macros */
8 #include <pthread.h>
9 
10 #include "../perf.h"
11 #include "../builtin.h"
12 #include "../util/util.h"
13 #include <subcmd/parse-options.h>
14 #include "../util/cloexec.h"
15 
16 #include "bench.h"
17 
18 #include <errno.h>
19 #include <sched.h>
20 #include <stdio.h>
21 #include <assert.h>
22 #include <malloc.h>
23 #include <signal.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <unistd.h>
27 #include <sys/mman.h>
28 #include <sys/time.h>
29 #include <sys/resource.h>
30 #include <sys/wait.h>
31 #include <sys/prctl.h>
32 #include <sys/types.h>
33 #include <linux/time64.h>
34 
35 #include <numa.h>
36 #include <numaif.h>
37 
38 /*
39  * Regular printout to the terminal, supressed if -q is specified:
40  */
41 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
42 
43 /*
44  * Debug printf:
45  */
46 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
47 
48 struct thread_data {
49 	int			curr_cpu;
50 	cpu_set_t		bind_cpumask;
51 	int			bind_node;
52 	u8			*process_data;
53 	int			process_nr;
54 	int			thread_nr;
55 	int			task_nr;
56 	unsigned int		loops_done;
57 	u64			val;
58 	u64			runtime_ns;
59 	u64			system_time_ns;
60 	u64			user_time_ns;
61 	double			speed_gbs;
62 	pthread_mutex_t		*process_lock;
63 };
64 
65 /* Parameters set by options: */
66 
67 struct params {
68 	/* Startup synchronization: */
69 	bool			serialize_startup;
70 
71 	/* Task hierarchy: */
72 	int			nr_proc;
73 	int			nr_threads;
74 
75 	/* Working set sizes: */
76 	const char		*mb_global_str;
77 	const char		*mb_proc_str;
78 	const char		*mb_proc_locked_str;
79 	const char		*mb_thread_str;
80 
81 	double			mb_global;
82 	double			mb_proc;
83 	double			mb_proc_locked;
84 	double			mb_thread;
85 
86 	/* Access patterns to the working set: */
87 	bool			data_reads;
88 	bool			data_writes;
89 	bool			data_backwards;
90 	bool			data_zero_memset;
91 	bool			data_rand_walk;
92 	u32			nr_loops;
93 	u32			nr_secs;
94 	u32			sleep_usecs;
95 
96 	/* Working set initialization: */
97 	bool			init_zero;
98 	bool			init_random;
99 	bool			init_cpu0;
100 
101 	/* Misc options: */
102 	int			show_details;
103 	int			run_all;
104 	int			thp;
105 
106 	long			bytes_global;
107 	long			bytes_process;
108 	long			bytes_process_locked;
109 	long			bytes_thread;
110 
111 	int			nr_tasks;
112 	bool			show_quiet;
113 
114 	bool			show_convergence;
115 	bool			measure_convergence;
116 
117 	int			perturb_secs;
118 	int			nr_cpus;
119 	int			nr_nodes;
120 
121 	/* Affinity options -C and -N: */
122 	char			*cpu_list_str;
123 	char			*node_list_str;
124 };
125 
126 
127 /* Global, read-writable area, accessible to all processes and threads: */
128 
129 struct global_info {
130 	u8			*data;
131 
132 	pthread_mutex_t		startup_mutex;
133 	int			nr_tasks_started;
134 
135 	pthread_mutex_t		startup_done_mutex;
136 
137 	pthread_mutex_t		start_work_mutex;
138 	int			nr_tasks_working;
139 
140 	pthread_mutex_t		stop_work_mutex;
141 	u64			bytes_done;
142 
143 	struct thread_data	*threads;
144 
145 	/* Convergence latency measurement: */
146 	bool			all_converged;
147 	bool			stop_work;
148 
149 	int			print_once;
150 
151 	struct params		p;
152 };
153 
154 static struct global_info	*g = NULL;
155 
156 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
157 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
158 
159 struct params p0;
160 
161 static const struct option options[] = {
162 	OPT_INTEGER('p', "nr_proc"	, &p0.nr_proc,		"number of processes"),
163 	OPT_INTEGER('t', "nr_threads"	, &p0.nr_threads,	"number of threads per process"),
164 
165 	OPT_STRING('G', "mb_global"	, &p0.mb_global_str,	"MB", "global  memory (MBs)"),
166 	OPT_STRING('P', "mb_proc"	, &p0.mb_proc_str,	"MB", "process memory (MBs)"),
167 	OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
168 	OPT_STRING('T', "mb_thread"	, &p0.mb_thread_str,	"MB", "thread  memory (MBs)"),
169 
170 	OPT_UINTEGER('l', "nr_loops"	, &p0.nr_loops,		"max number of loops to run (default: unlimited)"),
171 	OPT_UINTEGER('s', "nr_secs"	, &p0.nr_secs,		"max number of seconds to run (default: 5 secs)"),
172 	OPT_UINTEGER('u', "usleep"	, &p0.sleep_usecs,	"usecs to sleep per loop iteration"),
173 
174 	OPT_BOOLEAN('R', "data_reads"	, &p0.data_reads,	"access the data via writes (can be mixed with -W)"),
175 	OPT_BOOLEAN('W', "data_writes"	, &p0.data_writes,	"access the data via writes (can be mixed with -R)"),
176 	OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,	"access the data backwards as well"),
177 	OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
178 	OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,	"access the data with random (32bit LFSR) walk"),
179 
180 
181 	OPT_BOOLEAN('z', "init_zero"	, &p0.init_zero,	"bzero the initial allocations"),
182 	OPT_BOOLEAN('I', "init_random"	, &p0.init_random,	"randomize the contents of the initial allocations"),
183 	OPT_BOOLEAN('0', "init_cpu0"	, &p0.init_cpu0,	"do the initial allocations on CPU#0"),
184 	OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,	"perturb thread 0/0 every X secs, to test convergence stability"),
185 
186 	OPT_INCR   ('d', "show_details"	, &p0.show_details,	"Show details"),
187 	OPT_INCR   ('a', "all"		, &p0.run_all,		"Run all tests in the suite"),
188 	OPT_INTEGER('H', "thp"		, &p0.thp,		"MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
189 	OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"),
190 	OPT_BOOLEAN('m', "measure_convergence",	&p0.measure_convergence, "measure convergence latency"),
191 	OPT_BOOLEAN('q', "quiet"	, &p0.show_quiet,	"quiet mode"),
192 	OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
193 
194 	/* Special option string parsing callbacks: */
195         OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
196 			"bind the first N tasks to these specific cpus (the rest is unbound)",
197 			parse_cpus_opt),
198         OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
199 			"bind the first N tasks to these specific memory nodes (the rest is unbound)",
200 			parse_nodes_opt),
201 	OPT_END()
202 };
203 
204 static const char * const bench_numa_usage[] = {
205 	"perf bench numa <options>",
206 	NULL
207 };
208 
209 static const char * const numa_usage[] = {
210 	"perf bench numa mem [<options>]",
211 	NULL
212 };
213 
214 static cpu_set_t bind_to_cpu(int target_cpu)
215 {
216 	cpu_set_t orig_mask, mask;
217 	int ret;
218 
219 	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
220 	BUG_ON(ret);
221 
222 	CPU_ZERO(&mask);
223 
224 	if (target_cpu == -1) {
225 		int cpu;
226 
227 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
228 			CPU_SET(cpu, &mask);
229 	} else {
230 		BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
231 		CPU_SET(target_cpu, &mask);
232 	}
233 
234 	ret = sched_setaffinity(0, sizeof(mask), &mask);
235 	BUG_ON(ret);
236 
237 	return orig_mask;
238 }
239 
240 static cpu_set_t bind_to_node(int target_node)
241 {
242 	int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes;
243 	cpu_set_t orig_mask, mask;
244 	int cpu;
245 	int ret;
246 
247 	BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus);
248 	BUG_ON(!cpus_per_node);
249 
250 	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
251 	BUG_ON(ret);
252 
253 	CPU_ZERO(&mask);
254 
255 	if (target_node == -1) {
256 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
257 			CPU_SET(cpu, &mask);
258 	} else {
259 		int cpu_start = (target_node + 0) * cpus_per_node;
260 		int cpu_stop  = (target_node + 1) * cpus_per_node;
261 
262 		BUG_ON(cpu_stop > g->p.nr_cpus);
263 
264 		for (cpu = cpu_start; cpu < cpu_stop; cpu++)
265 			CPU_SET(cpu, &mask);
266 	}
267 
268 	ret = sched_setaffinity(0, sizeof(mask), &mask);
269 	BUG_ON(ret);
270 
271 	return orig_mask;
272 }
273 
274 static void bind_to_cpumask(cpu_set_t mask)
275 {
276 	int ret;
277 
278 	ret = sched_setaffinity(0, sizeof(mask), &mask);
279 	BUG_ON(ret);
280 }
281 
282 static void mempol_restore(void)
283 {
284 	int ret;
285 
286 	ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
287 
288 	BUG_ON(ret);
289 }
290 
291 static void bind_to_memnode(int node)
292 {
293 	unsigned long nodemask;
294 	int ret;
295 
296 	if (node == -1)
297 		return;
298 
299 	BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
300 	nodemask = 1L << node;
301 
302 	ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
303 	dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
304 
305 	BUG_ON(ret);
306 }
307 
308 #define HPSIZE (2*1024*1024)
309 
310 #define set_taskname(fmt...)				\
311 do {							\
312 	char name[20];					\
313 							\
314 	snprintf(name, 20, fmt);			\
315 	prctl(PR_SET_NAME, name);			\
316 } while (0)
317 
318 static u8 *alloc_data(ssize_t bytes0, int map_flags,
319 		      int init_zero, int init_cpu0, int thp, int init_random)
320 {
321 	cpu_set_t orig_mask;
322 	ssize_t bytes;
323 	u8 *buf;
324 	int ret;
325 
326 	if (!bytes0)
327 		return NULL;
328 
329 	/* Allocate and initialize all memory on CPU#0: */
330 	if (init_cpu0) {
331 		orig_mask = bind_to_node(0);
332 		bind_to_memnode(0);
333 	}
334 
335 	bytes = bytes0 + HPSIZE;
336 
337 	buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
338 	BUG_ON(buf == (void *)-1);
339 
340 	if (map_flags == MAP_PRIVATE) {
341 		if (thp > 0) {
342 			ret = madvise(buf, bytes, MADV_HUGEPAGE);
343 			if (ret && !g->print_once) {
344 				g->print_once = 1;
345 				printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
346 			}
347 		}
348 		if (thp < 0) {
349 			ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
350 			if (ret && !g->print_once) {
351 				g->print_once = 1;
352 				printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
353 			}
354 		}
355 	}
356 
357 	if (init_zero) {
358 		bzero(buf, bytes);
359 	} else {
360 		/* Initialize random contents, different in each word: */
361 		if (init_random) {
362 			u64 *wbuf = (void *)buf;
363 			long off = rand();
364 			long i;
365 
366 			for (i = 0; i < bytes/8; i++)
367 				wbuf[i] = i + off;
368 		}
369 	}
370 
371 	/* Align to 2MB boundary: */
372 	buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
373 
374 	/* Restore affinity: */
375 	if (init_cpu0) {
376 		bind_to_cpumask(orig_mask);
377 		mempol_restore();
378 	}
379 
380 	return buf;
381 }
382 
383 static void free_data(void *data, ssize_t bytes)
384 {
385 	int ret;
386 
387 	if (!data)
388 		return;
389 
390 	ret = munmap(data, bytes);
391 	BUG_ON(ret);
392 }
393 
394 /*
395  * Create a shared memory buffer that can be shared between processes, zeroed:
396  */
397 static void * zalloc_shared_data(ssize_t bytes)
398 {
399 	return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
400 }
401 
402 /*
403  * Create a shared memory buffer that can be shared between processes:
404  */
405 static void * setup_shared_data(ssize_t bytes)
406 {
407 	return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
408 }
409 
410 /*
411  * Allocate process-local memory - this will either be shared between
412  * threads of this process, or only be accessed by this thread:
413  */
414 static void * setup_private_data(ssize_t bytes)
415 {
416 	return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
417 }
418 
419 /*
420  * Return a process-shared (global) mutex:
421  */
422 static void init_global_mutex(pthread_mutex_t *mutex)
423 {
424 	pthread_mutexattr_t attr;
425 
426 	pthread_mutexattr_init(&attr);
427 	pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
428 	pthread_mutex_init(mutex, &attr);
429 }
430 
431 static int parse_cpu_list(const char *arg)
432 {
433 	p0.cpu_list_str = strdup(arg);
434 
435 	dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
436 
437 	return 0;
438 }
439 
440 static int parse_setup_cpu_list(void)
441 {
442 	struct thread_data *td;
443 	char *str0, *str;
444 	int t;
445 
446 	if (!g->p.cpu_list_str)
447 		return 0;
448 
449 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
450 
451 	str0 = str = strdup(g->p.cpu_list_str);
452 	t = 0;
453 
454 	BUG_ON(!str);
455 
456 	tprintf("# binding tasks to CPUs:\n");
457 	tprintf("#  ");
458 
459 	while (true) {
460 		int bind_cpu, bind_cpu_0, bind_cpu_1;
461 		char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
462 		int bind_len;
463 		int step;
464 		int mul;
465 
466 		tok = strsep(&str, ",");
467 		if (!tok)
468 			break;
469 
470 		tok_end = strstr(tok, "-");
471 
472 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
473 		if (!tok_end) {
474 			/* Single CPU specified: */
475 			bind_cpu_0 = bind_cpu_1 = atol(tok);
476 		} else {
477 			/* CPU range specified (for example: "5-11"): */
478 			bind_cpu_0 = atol(tok);
479 			bind_cpu_1 = atol(tok_end + 1);
480 		}
481 
482 		step = 1;
483 		tok_step = strstr(tok, "#");
484 		if (tok_step) {
485 			step = atol(tok_step + 1);
486 			BUG_ON(step <= 0 || step >= g->p.nr_cpus);
487 		}
488 
489 		/*
490 		 * Mask length.
491 		 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
492 		 * where the _4 means the next 4 CPUs are allowed.
493 		 */
494 		bind_len = 1;
495 		tok_len = strstr(tok, "_");
496 		if (tok_len) {
497 			bind_len = atol(tok_len + 1);
498 			BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
499 		}
500 
501 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
502 		mul = 1;
503 		tok_mul = strstr(tok, "x");
504 		if (tok_mul) {
505 			mul = atol(tok_mul + 1);
506 			BUG_ON(mul <= 0);
507 		}
508 
509 		dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
510 
511 		if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
512 			printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
513 			return -1;
514 		}
515 
516 		BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
517 		BUG_ON(bind_cpu_0 > bind_cpu_1);
518 
519 		for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
520 			int i;
521 
522 			for (i = 0; i < mul; i++) {
523 				int cpu;
524 
525 				if (t >= g->p.nr_tasks) {
526 					printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
527 					goto out;
528 				}
529 				td = g->threads + t;
530 
531 				if (t)
532 					tprintf(",");
533 				if (bind_len > 1) {
534 					tprintf("%2d/%d", bind_cpu, bind_len);
535 				} else {
536 					tprintf("%2d", bind_cpu);
537 				}
538 
539 				CPU_ZERO(&td->bind_cpumask);
540 				for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
541 					BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
542 					CPU_SET(cpu, &td->bind_cpumask);
543 				}
544 				t++;
545 			}
546 		}
547 	}
548 out:
549 
550 	tprintf("\n");
551 
552 	if (t < g->p.nr_tasks)
553 		printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
554 
555 	free(str0);
556 	return 0;
557 }
558 
559 static int parse_cpus_opt(const struct option *opt __maybe_unused,
560 			  const char *arg, int unset __maybe_unused)
561 {
562 	if (!arg)
563 		return -1;
564 
565 	return parse_cpu_list(arg);
566 }
567 
568 static int parse_node_list(const char *arg)
569 {
570 	p0.node_list_str = strdup(arg);
571 
572 	dprintf("got NODE list: {%s}\n", p0.node_list_str);
573 
574 	return 0;
575 }
576 
577 static int parse_setup_node_list(void)
578 {
579 	struct thread_data *td;
580 	char *str0, *str;
581 	int t;
582 
583 	if (!g->p.node_list_str)
584 		return 0;
585 
586 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
587 
588 	str0 = str = strdup(g->p.node_list_str);
589 	t = 0;
590 
591 	BUG_ON(!str);
592 
593 	tprintf("# binding tasks to NODEs:\n");
594 	tprintf("# ");
595 
596 	while (true) {
597 		int bind_node, bind_node_0, bind_node_1;
598 		char *tok, *tok_end, *tok_step, *tok_mul;
599 		int step;
600 		int mul;
601 
602 		tok = strsep(&str, ",");
603 		if (!tok)
604 			break;
605 
606 		tok_end = strstr(tok, "-");
607 
608 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
609 		if (!tok_end) {
610 			/* Single NODE specified: */
611 			bind_node_0 = bind_node_1 = atol(tok);
612 		} else {
613 			/* NODE range specified (for example: "5-11"): */
614 			bind_node_0 = atol(tok);
615 			bind_node_1 = atol(tok_end + 1);
616 		}
617 
618 		step = 1;
619 		tok_step = strstr(tok, "#");
620 		if (tok_step) {
621 			step = atol(tok_step + 1);
622 			BUG_ON(step <= 0 || step >= g->p.nr_nodes);
623 		}
624 
625 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
626 		mul = 1;
627 		tok_mul = strstr(tok, "x");
628 		if (tok_mul) {
629 			mul = atol(tok_mul + 1);
630 			BUG_ON(mul <= 0);
631 		}
632 
633 		dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
634 
635 		if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
636 			printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
637 			return -1;
638 		}
639 
640 		BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
641 		BUG_ON(bind_node_0 > bind_node_1);
642 
643 		for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
644 			int i;
645 
646 			for (i = 0; i < mul; i++) {
647 				if (t >= g->p.nr_tasks) {
648 					printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
649 					goto out;
650 				}
651 				td = g->threads + t;
652 
653 				if (!t)
654 					tprintf(" %2d", bind_node);
655 				else
656 					tprintf(",%2d", bind_node);
657 
658 				td->bind_node = bind_node;
659 				t++;
660 			}
661 		}
662 	}
663 out:
664 
665 	tprintf("\n");
666 
667 	if (t < g->p.nr_tasks)
668 		printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
669 
670 	free(str0);
671 	return 0;
672 }
673 
674 static int parse_nodes_opt(const struct option *opt __maybe_unused,
675 			  const char *arg, int unset __maybe_unused)
676 {
677 	if (!arg)
678 		return -1;
679 
680 	return parse_node_list(arg);
681 
682 	return 0;
683 }
684 
685 #define BIT(x) (1ul << x)
686 
687 static inline uint32_t lfsr_32(uint32_t lfsr)
688 {
689 	const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
690 	return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
691 }
692 
693 /*
694  * Make sure there's real data dependency to RAM (when read
695  * accesses are enabled), so the compiler, the CPU and the
696  * kernel (KSM, zero page, etc.) cannot optimize away RAM
697  * accesses:
698  */
699 static inline u64 access_data(u64 *data __attribute__((unused)), u64 val)
700 {
701 	if (g->p.data_reads)
702 		val += *data;
703 	if (g->p.data_writes)
704 		*data = val + 1;
705 	return val;
706 }
707 
708 /*
709  * The worker process does two types of work, a forwards going
710  * loop and a backwards going loop.
711  *
712  * We do this so that on multiprocessor systems we do not create
713  * a 'train' of processing, with highly synchronized processes,
714  * skewing the whole benchmark.
715  */
716 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
717 {
718 	long words = bytes/sizeof(u64);
719 	u64 *data = (void *)__data;
720 	long chunk_0, chunk_1;
721 	u64 *d0, *d, *d1;
722 	long off;
723 	long i;
724 
725 	BUG_ON(!data && words);
726 	BUG_ON(data && !words);
727 
728 	if (!data)
729 		return val;
730 
731 	/* Very simple memset() work variant: */
732 	if (g->p.data_zero_memset && !g->p.data_rand_walk) {
733 		bzero(data, bytes);
734 		return val;
735 	}
736 
737 	/* Spread out by PID/TID nr and by loop nr: */
738 	chunk_0 = words/nr_max;
739 	chunk_1 = words/g->p.nr_loops;
740 	off = nr*chunk_0 + loop*chunk_1;
741 
742 	while (off >= words)
743 		off -= words;
744 
745 	if (g->p.data_rand_walk) {
746 		u32 lfsr = nr + loop + val;
747 		int j;
748 
749 		for (i = 0; i < words/1024; i++) {
750 			long start, end;
751 
752 			lfsr = lfsr_32(lfsr);
753 
754 			start = lfsr % words;
755 			end = min(start + 1024, words-1);
756 
757 			if (g->p.data_zero_memset) {
758 				bzero(data + start, (end-start) * sizeof(u64));
759 			} else {
760 				for (j = start; j < end; j++)
761 					val = access_data(data + j, val);
762 			}
763 		}
764 	} else if (!g->p.data_backwards || (nr + loop) & 1) {
765 
766 		d0 = data + off;
767 		d  = data + off + 1;
768 		d1 = data + words;
769 
770 		/* Process data forwards: */
771 		for (;;) {
772 			if (unlikely(d >= d1))
773 				d = data;
774 			if (unlikely(d == d0))
775 				break;
776 
777 			val = access_data(d, val);
778 
779 			d++;
780 		}
781 	} else {
782 		/* Process data backwards: */
783 
784 		d0 = data + off;
785 		d  = data + off - 1;
786 		d1 = data + words;
787 
788 		/* Process data forwards: */
789 		for (;;) {
790 			if (unlikely(d < data))
791 				d = data + words-1;
792 			if (unlikely(d == d0))
793 				break;
794 
795 			val = access_data(d, val);
796 
797 			d--;
798 		}
799 	}
800 
801 	return val;
802 }
803 
804 static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
805 {
806 	unsigned int cpu;
807 
808 	cpu = sched_getcpu();
809 
810 	g->threads[task_nr].curr_cpu = cpu;
811 	prctl(0, bytes_worked);
812 }
813 
814 #define MAX_NR_NODES	64
815 
816 /*
817  * Count the number of nodes a process's threads
818  * are spread out on.
819  *
820  * A count of 1 means that the process is compressed
821  * to a single node. A count of g->p.nr_nodes means it's
822  * spread out on the whole system.
823  */
824 static int count_process_nodes(int process_nr)
825 {
826 	char node_present[MAX_NR_NODES] = { 0, };
827 	int nodes;
828 	int n, t;
829 
830 	for (t = 0; t < g->p.nr_threads; t++) {
831 		struct thread_data *td;
832 		int task_nr;
833 		int node;
834 
835 		task_nr = process_nr*g->p.nr_threads + t;
836 		td = g->threads + task_nr;
837 
838 		node = numa_node_of_cpu(td->curr_cpu);
839 		if (node < 0) /* curr_cpu was likely still -1 */
840 			return 0;
841 
842 		node_present[node] = 1;
843 	}
844 
845 	nodes = 0;
846 
847 	for (n = 0; n < MAX_NR_NODES; n++)
848 		nodes += node_present[n];
849 
850 	return nodes;
851 }
852 
853 /*
854  * Count the number of distinct process-threads a node contains.
855  *
856  * A count of 1 means that the node contains only a single
857  * process. If all nodes on the system contain at most one
858  * process then we are well-converged.
859  */
860 static int count_node_processes(int node)
861 {
862 	int processes = 0;
863 	int t, p;
864 
865 	for (p = 0; p < g->p.nr_proc; p++) {
866 		for (t = 0; t < g->p.nr_threads; t++) {
867 			struct thread_data *td;
868 			int task_nr;
869 			int n;
870 
871 			task_nr = p*g->p.nr_threads + t;
872 			td = g->threads + task_nr;
873 
874 			n = numa_node_of_cpu(td->curr_cpu);
875 			if (n == node) {
876 				processes++;
877 				break;
878 			}
879 		}
880 	}
881 
882 	return processes;
883 }
884 
885 static void calc_convergence_compression(int *strong)
886 {
887 	unsigned int nodes_min, nodes_max;
888 	int p;
889 
890 	nodes_min = -1;
891 	nodes_max =  0;
892 
893 	for (p = 0; p < g->p.nr_proc; p++) {
894 		unsigned int nodes = count_process_nodes(p);
895 
896 		if (!nodes) {
897 			*strong = 0;
898 			return;
899 		}
900 
901 		nodes_min = min(nodes, nodes_min);
902 		nodes_max = max(nodes, nodes_max);
903 	}
904 
905 	/* Strong convergence: all threads compress on a single node: */
906 	if (nodes_min == 1 && nodes_max == 1) {
907 		*strong = 1;
908 	} else {
909 		*strong = 0;
910 		tprintf(" {%d-%d}", nodes_min, nodes_max);
911 	}
912 }
913 
914 static void calc_convergence(double runtime_ns_max, double *convergence)
915 {
916 	unsigned int loops_done_min, loops_done_max;
917 	int process_groups;
918 	int nodes[MAX_NR_NODES];
919 	int distance;
920 	int nr_min;
921 	int nr_max;
922 	int strong;
923 	int sum;
924 	int nr;
925 	int node;
926 	int cpu;
927 	int t;
928 
929 	if (!g->p.show_convergence && !g->p.measure_convergence)
930 		return;
931 
932 	for (node = 0; node < g->p.nr_nodes; node++)
933 		nodes[node] = 0;
934 
935 	loops_done_min = -1;
936 	loops_done_max = 0;
937 
938 	for (t = 0; t < g->p.nr_tasks; t++) {
939 		struct thread_data *td = g->threads + t;
940 		unsigned int loops_done;
941 
942 		cpu = td->curr_cpu;
943 
944 		/* Not all threads have written it yet: */
945 		if (cpu < 0)
946 			continue;
947 
948 		node = numa_node_of_cpu(cpu);
949 
950 		nodes[node]++;
951 
952 		loops_done = td->loops_done;
953 		loops_done_min = min(loops_done, loops_done_min);
954 		loops_done_max = max(loops_done, loops_done_max);
955 	}
956 
957 	nr_max = 0;
958 	nr_min = g->p.nr_tasks;
959 	sum = 0;
960 
961 	for (node = 0; node < g->p.nr_nodes; node++) {
962 		nr = nodes[node];
963 		nr_min = min(nr, nr_min);
964 		nr_max = max(nr, nr_max);
965 		sum += nr;
966 	}
967 	BUG_ON(nr_min > nr_max);
968 
969 	BUG_ON(sum > g->p.nr_tasks);
970 
971 	if (0 && (sum < g->p.nr_tasks))
972 		return;
973 
974 	/*
975 	 * Count the number of distinct process groups present
976 	 * on nodes - when we are converged this will decrease
977 	 * to g->p.nr_proc:
978 	 */
979 	process_groups = 0;
980 
981 	for (node = 0; node < g->p.nr_nodes; node++) {
982 		int processes = count_node_processes(node);
983 
984 		nr = nodes[node];
985 		tprintf(" %2d/%-2d", nr, processes);
986 
987 		process_groups += processes;
988 	}
989 
990 	distance = nr_max - nr_min;
991 
992 	tprintf(" [%2d/%-2d]", distance, process_groups);
993 
994 	tprintf(" l:%3d-%-3d (%3d)",
995 		loops_done_min, loops_done_max, loops_done_max-loops_done_min);
996 
997 	if (loops_done_min && loops_done_max) {
998 		double skew = 1.0 - (double)loops_done_min/loops_done_max;
999 
1000 		tprintf(" [%4.1f%%]", skew * 100.0);
1001 	}
1002 
1003 	calc_convergence_compression(&strong);
1004 
1005 	if (strong && process_groups == g->p.nr_proc) {
1006 		if (!*convergence) {
1007 			*convergence = runtime_ns_max;
1008 			tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1009 			if (g->p.measure_convergence) {
1010 				g->all_converged = true;
1011 				g->stop_work = true;
1012 			}
1013 		}
1014 	} else {
1015 		if (*convergence) {
1016 			tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1017 			*convergence = 0;
1018 		}
1019 		tprintf("\n");
1020 	}
1021 }
1022 
1023 static void show_summary(double runtime_ns_max, int l, double *convergence)
1024 {
1025 	tprintf("\r #  %5.1f%%  [%.1f mins]",
1026 		(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1027 
1028 	calc_convergence(runtime_ns_max, convergence);
1029 
1030 	if (g->p.show_details >= 0)
1031 		fflush(stdout);
1032 }
1033 
1034 static void *worker_thread(void *__tdata)
1035 {
1036 	struct thread_data *td = __tdata;
1037 	struct timeval start0, start, stop, diff;
1038 	int process_nr = td->process_nr;
1039 	int thread_nr = td->thread_nr;
1040 	unsigned long last_perturbance;
1041 	int task_nr = td->task_nr;
1042 	int details = g->p.show_details;
1043 	int first_task, last_task;
1044 	double convergence = 0;
1045 	u64 val = td->val;
1046 	double runtime_ns_max;
1047 	u8 *global_data;
1048 	u8 *process_data;
1049 	u8 *thread_data;
1050 	u64 bytes_done;
1051 	long work_done;
1052 	u32 l;
1053 	struct rusage rusage;
1054 
1055 	bind_to_cpumask(td->bind_cpumask);
1056 	bind_to_memnode(td->bind_node);
1057 
1058 	set_taskname("thread %d/%d", process_nr, thread_nr);
1059 
1060 	global_data = g->data;
1061 	process_data = td->process_data;
1062 	thread_data = setup_private_data(g->p.bytes_thread);
1063 
1064 	bytes_done = 0;
1065 
1066 	last_task = 0;
1067 	if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1068 		last_task = 1;
1069 
1070 	first_task = 0;
1071 	if (process_nr == 0 && thread_nr == 0)
1072 		first_task = 1;
1073 
1074 	if (details >= 2) {
1075 		printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1076 			process_nr, thread_nr, global_data, process_data, thread_data);
1077 	}
1078 
1079 	if (g->p.serialize_startup) {
1080 		pthread_mutex_lock(&g->startup_mutex);
1081 		g->nr_tasks_started++;
1082 		pthread_mutex_unlock(&g->startup_mutex);
1083 
1084 		/* Here we will wait for the main process to start us all at once: */
1085 		pthread_mutex_lock(&g->start_work_mutex);
1086 		g->nr_tasks_working++;
1087 
1088 		/* Last one wake the main process: */
1089 		if (g->nr_tasks_working == g->p.nr_tasks)
1090 			pthread_mutex_unlock(&g->startup_done_mutex);
1091 
1092 		pthread_mutex_unlock(&g->start_work_mutex);
1093 	}
1094 
1095 	gettimeofday(&start0, NULL);
1096 
1097 	start = stop = start0;
1098 	last_perturbance = start.tv_sec;
1099 
1100 	for (l = 0; l < g->p.nr_loops; l++) {
1101 		start = stop;
1102 
1103 		if (g->stop_work)
1104 			break;
1105 
1106 		val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,	l, val);
1107 		val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,	l, val);
1108 		val += do_work(thread_data,  g->p.bytes_thread,  0,          1,		l, val);
1109 
1110 		if (g->p.sleep_usecs) {
1111 			pthread_mutex_lock(td->process_lock);
1112 			usleep(g->p.sleep_usecs);
1113 			pthread_mutex_unlock(td->process_lock);
1114 		}
1115 		/*
1116 		 * Amount of work to be done under a process-global lock:
1117 		 */
1118 		if (g->p.bytes_process_locked) {
1119 			pthread_mutex_lock(td->process_lock);
1120 			val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,	l, val);
1121 			pthread_mutex_unlock(td->process_lock);
1122 		}
1123 
1124 		work_done = g->p.bytes_global + g->p.bytes_process +
1125 			    g->p.bytes_process_locked + g->p.bytes_thread;
1126 
1127 		update_curr_cpu(task_nr, work_done);
1128 		bytes_done += work_done;
1129 
1130 		if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1131 			continue;
1132 
1133 		td->loops_done = l;
1134 
1135 		gettimeofday(&stop, NULL);
1136 
1137 		/* Check whether our max runtime timed out: */
1138 		if (g->p.nr_secs) {
1139 			timersub(&stop, &start0, &diff);
1140 			if ((u32)diff.tv_sec >= g->p.nr_secs) {
1141 				g->stop_work = true;
1142 				break;
1143 			}
1144 		}
1145 
1146 		/* Update the summary at most once per second: */
1147 		if (start.tv_sec == stop.tv_sec)
1148 			continue;
1149 
1150 		/*
1151 		 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1152 		 * by migrating to CPU#0:
1153 		 */
1154 		if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1155 			cpu_set_t orig_mask;
1156 			int target_cpu;
1157 			int this_cpu;
1158 
1159 			last_perturbance = stop.tv_sec;
1160 
1161 			/*
1162 			 * Depending on where we are running, move into
1163 			 * the other half of the system, to create some
1164 			 * real disturbance:
1165 			 */
1166 			this_cpu = g->threads[task_nr].curr_cpu;
1167 			if (this_cpu < g->p.nr_cpus/2)
1168 				target_cpu = g->p.nr_cpus-1;
1169 			else
1170 				target_cpu = 0;
1171 
1172 			orig_mask = bind_to_cpu(target_cpu);
1173 
1174 			/* Here we are running on the target CPU already */
1175 			if (details >= 1)
1176 				printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1177 
1178 			bind_to_cpumask(orig_mask);
1179 		}
1180 
1181 		if (details >= 3) {
1182 			timersub(&stop, &start, &diff);
1183 			runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1184 			runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1185 
1186 			if (details >= 0) {
1187 				printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1188 					process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1189 			}
1190 			fflush(stdout);
1191 		}
1192 		if (!last_task)
1193 			continue;
1194 
1195 		timersub(&stop, &start0, &diff);
1196 		runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1197 		runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1198 
1199 		show_summary(runtime_ns_max, l, &convergence);
1200 	}
1201 
1202 	gettimeofday(&stop, NULL);
1203 	timersub(&stop, &start0, &diff);
1204 	td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1205 	td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1206 	td->speed_gbs = bytes_done / (td->runtime_ns / NSEC_PER_SEC) / 1e9;
1207 
1208 	getrusage(RUSAGE_THREAD, &rusage);
1209 	td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1210 	td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1211 	td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1212 	td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1213 
1214 	free_data(thread_data, g->p.bytes_thread);
1215 
1216 	pthread_mutex_lock(&g->stop_work_mutex);
1217 	g->bytes_done += bytes_done;
1218 	pthread_mutex_unlock(&g->stop_work_mutex);
1219 
1220 	return NULL;
1221 }
1222 
1223 /*
1224  * A worker process starts a couple of threads:
1225  */
1226 static void worker_process(int process_nr)
1227 {
1228 	pthread_mutex_t process_lock;
1229 	struct thread_data *td;
1230 	pthread_t *pthreads;
1231 	u8 *process_data;
1232 	int task_nr;
1233 	int ret;
1234 	int t;
1235 
1236 	pthread_mutex_init(&process_lock, NULL);
1237 	set_taskname("process %d", process_nr);
1238 
1239 	/*
1240 	 * Pick up the memory policy and the CPU binding of our first thread,
1241 	 * so that we initialize memory accordingly:
1242 	 */
1243 	task_nr = process_nr*g->p.nr_threads;
1244 	td = g->threads + task_nr;
1245 
1246 	bind_to_memnode(td->bind_node);
1247 	bind_to_cpumask(td->bind_cpumask);
1248 
1249 	pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1250 	process_data = setup_private_data(g->p.bytes_process);
1251 
1252 	if (g->p.show_details >= 3) {
1253 		printf(" # process %2d global mem: %p, process mem: %p\n",
1254 			process_nr, g->data, process_data);
1255 	}
1256 
1257 	for (t = 0; t < g->p.nr_threads; t++) {
1258 		task_nr = process_nr*g->p.nr_threads + t;
1259 		td = g->threads + task_nr;
1260 
1261 		td->process_data = process_data;
1262 		td->process_nr   = process_nr;
1263 		td->thread_nr    = t;
1264 		td->task_nr	 = task_nr;
1265 		td->val          = rand();
1266 		td->curr_cpu	 = -1;
1267 		td->process_lock = &process_lock;
1268 
1269 		ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1270 		BUG_ON(ret);
1271 	}
1272 
1273 	for (t = 0; t < g->p.nr_threads; t++) {
1274                 ret = pthread_join(pthreads[t], NULL);
1275 		BUG_ON(ret);
1276 	}
1277 
1278 	free_data(process_data, g->p.bytes_process);
1279 	free(pthreads);
1280 }
1281 
1282 static void print_summary(void)
1283 {
1284 	if (g->p.show_details < 0)
1285 		return;
1286 
1287 	printf("\n ###\n");
1288 	printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1289 		g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus);
1290 	printf(" #      %5dx %5ldMB global  shared mem operations\n",
1291 			g->p.nr_loops, g->p.bytes_global/1024/1024);
1292 	printf(" #      %5dx %5ldMB process shared mem operations\n",
1293 			g->p.nr_loops, g->p.bytes_process/1024/1024);
1294 	printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1295 			g->p.nr_loops, g->p.bytes_thread/1024/1024);
1296 
1297 	printf(" ###\n");
1298 
1299 	printf("\n ###\n"); fflush(stdout);
1300 }
1301 
1302 static void init_thread_data(void)
1303 {
1304 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1305 	int t;
1306 
1307 	g->threads = zalloc_shared_data(size);
1308 
1309 	for (t = 0; t < g->p.nr_tasks; t++) {
1310 		struct thread_data *td = g->threads + t;
1311 		int cpu;
1312 
1313 		/* Allow all nodes by default: */
1314 		td->bind_node = -1;
1315 
1316 		/* Allow all CPUs by default: */
1317 		CPU_ZERO(&td->bind_cpumask);
1318 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1319 			CPU_SET(cpu, &td->bind_cpumask);
1320 	}
1321 }
1322 
1323 static void deinit_thread_data(void)
1324 {
1325 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1326 
1327 	free_data(g->threads, size);
1328 }
1329 
1330 static int init(void)
1331 {
1332 	g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1333 
1334 	/* Copy over options: */
1335 	g->p = p0;
1336 
1337 	g->p.nr_cpus = numa_num_configured_cpus();
1338 
1339 	g->p.nr_nodes = numa_max_node() + 1;
1340 
1341 	/* char array in count_process_nodes(): */
1342 	BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1343 
1344 	if (g->p.show_quiet && !g->p.show_details)
1345 		g->p.show_details = -1;
1346 
1347 	/* Some memory should be specified: */
1348 	if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1349 		return -1;
1350 
1351 	if (g->p.mb_global_str) {
1352 		g->p.mb_global = atof(g->p.mb_global_str);
1353 		BUG_ON(g->p.mb_global < 0);
1354 	}
1355 
1356 	if (g->p.mb_proc_str) {
1357 		g->p.mb_proc = atof(g->p.mb_proc_str);
1358 		BUG_ON(g->p.mb_proc < 0);
1359 	}
1360 
1361 	if (g->p.mb_proc_locked_str) {
1362 		g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1363 		BUG_ON(g->p.mb_proc_locked < 0);
1364 		BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1365 	}
1366 
1367 	if (g->p.mb_thread_str) {
1368 		g->p.mb_thread = atof(g->p.mb_thread_str);
1369 		BUG_ON(g->p.mb_thread < 0);
1370 	}
1371 
1372 	BUG_ON(g->p.nr_threads <= 0);
1373 	BUG_ON(g->p.nr_proc <= 0);
1374 
1375 	g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1376 
1377 	g->p.bytes_global		= g->p.mb_global	*1024L*1024L;
1378 	g->p.bytes_process		= g->p.mb_proc		*1024L*1024L;
1379 	g->p.bytes_process_locked	= g->p.mb_proc_locked	*1024L*1024L;
1380 	g->p.bytes_thread		= g->p.mb_thread	*1024L*1024L;
1381 
1382 	g->data = setup_shared_data(g->p.bytes_global);
1383 
1384 	/* Startup serialization: */
1385 	init_global_mutex(&g->start_work_mutex);
1386 	init_global_mutex(&g->startup_mutex);
1387 	init_global_mutex(&g->startup_done_mutex);
1388 	init_global_mutex(&g->stop_work_mutex);
1389 
1390 	init_thread_data();
1391 
1392 	tprintf("#\n");
1393 	if (parse_setup_cpu_list() || parse_setup_node_list())
1394 		return -1;
1395 	tprintf("#\n");
1396 
1397 	print_summary();
1398 
1399 	return 0;
1400 }
1401 
1402 static void deinit(void)
1403 {
1404 	free_data(g->data, g->p.bytes_global);
1405 	g->data = NULL;
1406 
1407 	deinit_thread_data();
1408 
1409 	free_data(g, sizeof(*g));
1410 	g = NULL;
1411 }
1412 
1413 /*
1414  * Print a short or long result, depending on the verbosity setting:
1415  */
1416 static void print_res(const char *name, double val,
1417 		      const char *txt_unit, const char *txt_short, const char *txt_long)
1418 {
1419 	if (!name)
1420 		name = "main,";
1421 
1422 	if (!g->p.show_quiet)
1423 		printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1424 	else
1425 		printf(" %14.3f %s\n", val, txt_long);
1426 }
1427 
1428 static int __bench_numa(const char *name)
1429 {
1430 	struct timeval start, stop, diff;
1431 	u64 runtime_ns_min, runtime_ns_sum;
1432 	pid_t *pids, pid, wpid;
1433 	double delta_runtime;
1434 	double runtime_avg;
1435 	double runtime_sec_max;
1436 	double runtime_sec_min;
1437 	int wait_stat;
1438 	double bytes;
1439 	int i, t, p;
1440 
1441 	if (init())
1442 		return -1;
1443 
1444 	pids = zalloc(g->p.nr_proc * sizeof(*pids));
1445 	pid = -1;
1446 
1447 	/* All threads try to acquire it, this way we can wait for them to start up: */
1448 	pthread_mutex_lock(&g->start_work_mutex);
1449 
1450 	if (g->p.serialize_startup) {
1451 		tprintf(" #\n");
1452 		tprintf(" # Startup synchronization: ..."); fflush(stdout);
1453 	}
1454 
1455 	gettimeofday(&start, NULL);
1456 
1457 	for (i = 0; i < g->p.nr_proc; i++) {
1458 		pid = fork();
1459 		dprintf(" # process %2d: PID %d\n", i, pid);
1460 
1461 		BUG_ON(pid < 0);
1462 		if (!pid) {
1463 			/* Child process: */
1464 			worker_process(i);
1465 
1466 			exit(0);
1467 		}
1468 		pids[i] = pid;
1469 
1470 	}
1471 	/* Wait for all the threads to start up: */
1472 	while (g->nr_tasks_started != g->p.nr_tasks)
1473 		usleep(USEC_PER_MSEC);
1474 
1475 	BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1476 
1477 	if (g->p.serialize_startup) {
1478 		double startup_sec;
1479 
1480 		pthread_mutex_lock(&g->startup_done_mutex);
1481 
1482 		/* This will start all threads: */
1483 		pthread_mutex_unlock(&g->start_work_mutex);
1484 
1485 		/* This mutex is locked - the last started thread will wake us: */
1486 		pthread_mutex_lock(&g->startup_done_mutex);
1487 
1488 		gettimeofday(&stop, NULL);
1489 
1490 		timersub(&stop, &start, &diff);
1491 
1492 		startup_sec = diff.tv_sec * NSEC_PER_SEC;
1493 		startup_sec += diff.tv_usec * NSEC_PER_USEC;
1494 		startup_sec /= NSEC_PER_SEC;
1495 
1496 		tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1497 		tprintf(" #\n");
1498 
1499 		start = stop;
1500 		pthread_mutex_unlock(&g->startup_done_mutex);
1501 	} else {
1502 		gettimeofday(&start, NULL);
1503 	}
1504 
1505 	/* Parent process: */
1506 
1507 
1508 	for (i = 0; i < g->p.nr_proc; i++) {
1509 		wpid = waitpid(pids[i], &wait_stat, 0);
1510 		BUG_ON(wpid < 0);
1511 		BUG_ON(!WIFEXITED(wait_stat));
1512 
1513 	}
1514 
1515 	runtime_ns_sum = 0;
1516 	runtime_ns_min = -1LL;
1517 
1518 	for (t = 0; t < g->p.nr_tasks; t++) {
1519 		u64 thread_runtime_ns = g->threads[t].runtime_ns;
1520 
1521 		runtime_ns_sum += thread_runtime_ns;
1522 		runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1523 	}
1524 
1525 	gettimeofday(&stop, NULL);
1526 	timersub(&stop, &start, &diff);
1527 
1528 	BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1529 
1530 	tprintf("\n ###\n");
1531 	tprintf("\n");
1532 
1533 	runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1534 	runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1535 	runtime_sec_max /= NSEC_PER_SEC;
1536 
1537 	runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1538 
1539 	bytes = g->bytes_done;
1540 	runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1541 
1542 	if (g->p.measure_convergence) {
1543 		print_res(name, runtime_sec_max,
1544 			"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1545 	}
1546 
1547 	print_res(name, runtime_sec_max,
1548 		"secs,", "runtime-max/thread",	"secs slowest (max) thread-runtime");
1549 
1550 	print_res(name, runtime_sec_min,
1551 		"secs,", "runtime-min/thread",	"secs fastest (min) thread-runtime");
1552 
1553 	print_res(name, runtime_avg,
1554 		"secs,", "runtime-avg/thread",	"secs average thread-runtime");
1555 
1556 	delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1557 	print_res(name, delta_runtime / runtime_sec_max * 100.0,
1558 		"%,", "spread-runtime/thread",	"% difference between max/avg runtime");
1559 
1560 	print_res(name, bytes / g->p.nr_tasks / 1e9,
1561 		"GB,", "data/thread",		"GB data processed, per thread");
1562 
1563 	print_res(name, bytes / 1e9,
1564 		"GB,", "data-total",		"GB data processed, total");
1565 
1566 	print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1567 		"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1568 
1569 	print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1570 		"GB/sec,", "thread-speed",	"GB/sec/thread speed");
1571 
1572 	print_res(name, bytes / runtime_sec_max / 1e9,
1573 		"GB/sec,", "total-speed",	"GB/sec total speed");
1574 
1575 	if (g->p.show_details >= 2) {
1576 		char tname[32];
1577 		struct thread_data *td;
1578 		for (p = 0; p < g->p.nr_proc; p++) {
1579 			for (t = 0; t < g->p.nr_threads; t++) {
1580 				memset(tname, 0, 32);
1581 				td = g->threads + p*g->p.nr_threads + t;
1582 				snprintf(tname, 32, "process%d:thread%d", p, t);
1583 				print_res(tname, td->speed_gbs,
1584 					"GB/sec",	"thread-speed", "GB/sec/thread speed");
1585 				print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1586 					"secs",	"thread-system-time", "system CPU time/thread");
1587 				print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1588 					"secs",	"thread-user-time", "user CPU time/thread");
1589 			}
1590 		}
1591 	}
1592 
1593 	free(pids);
1594 
1595 	deinit();
1596 
1597 	return 0;
1598 }
1599 
1600 #define MAX_ARGS 50
1601 
1602 static int command_size(const char **argv)
1603 {
1604 	int size = 0;
1605 
1606 	while (*argv) {
1607 		size++;
1608 		argv++;
1609 	}
1610 
1611 	BUG_ON(size >= MAX_ARGS);
1612 
1613 	return size;
1614 }
1615 
1616 static void init_params(struct params *p, const char *name, int argc, const char **argv)
1617 {
1618 	int i;
1619 
1620 	printf("\n # Running %s \"perf bench numa", name);
1621 
1622 	for (i = 0; i < argc; i++)
1623 		printf(" %s", argv[i]);
1624 
1625 	printf("\"\n");
1626 
1627 	memset(p, 0, sizeof(*p));
1628 
1629 	/* Initialize nonzero defaults: */
1630 
1631 	p->serialize_startup		= 1;
1632 	p->data_reads			= true;
1633 	p->data_writes			= true;
1634 	p->data_backwards		= true;
1635 	p->data_rand_walk		= true;
1636 	p->nr_loops			= -1;
1637 	p->init_random			= true;
1638 	p->mb_global_str		= "1";
1639 	p->nr_proc			= 1;
1640 	p->nr_threads			= 1;
1641 	p->nr_secs			= 5;
1642 	p->run_all			= argc == 1;
1643 }
1644 
1645 static int run_bench_numa(const char *name, const char **argv)
1646 {
1647 	int argc = command_size(argv);
1648 
1649 	init_params(&p0, name, argc, argv);
1650 	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1651 	if (argc)
1652 		goto err;
1653 
1654 	if (__bench_numa(name))
1655 		goto err;
1656 
1657 	return 0;
1658 
1659 err:
1660 	return -1;
1661 }
1662 
1663 #define OPT_BW_RAM		"-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1664 #define OPT_BW_RAM_NOTHP	OPT_BW_RAM,		"--thp", "-1"
1665 
1666 #define OPT_CONV		"-s", "100", "-zZ0qcm", "--thp", " 1"
1667 #define OPT_CONV_NOTHP		OPT_CONV,		"--thp", "-1"
1668 
1669 #define OPT_BW			"-s",  "20", "-zZ0q",   "--thp", " 1"
1670 #define OPT_BW_NOTHP		OPT_BW,			"--thp", "-1"
1671 
1672 /*
1673  * The built-in test-suite executed by "perf bench numa -a".
1674  *
1675  * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1676  */
1677 static const char *tests[][MAX_ARGS] = {
1678    /* Basic single-stream NUMA bandwidth measurements: */
1679    { "RAM-bw-local,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1680 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1681    { "RAM-bw-local-NOTHP,",
1682 			  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1683 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1684    { "RAM-bw-remote,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1685 			  "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1686 
1687    /* 2-stream NUMA bandwidth measurements: */
1688    { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1689 			   "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1690    { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1691 		 	   "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1692 
1693    /* Cross-stream NUMA bandwidth measurement: */
1694    { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1695 		 	   "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1696 
1697    /* Convergence latency measurements: */
1698    { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1699    { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1700    { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1701    { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1702    { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1703    { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1704    { " 4x4-convergence-NOTHP,",
1705 			  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1706    { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1707    { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1708    { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1709    { " 8x4-convergence-NOTHP,",
1710 			  "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1711    { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1712    { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1713    { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1714    { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1715    { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1716 
1717    /* Various NUMA process/thread layout bandwidth measurements: */
1718    { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1719    { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1720    { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1721    { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1722    { " 8x1-bw-process-NOTHP,",
1723 			  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1724    { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1725 
1726    { " 4x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1727    { " 8x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1728    { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1729    { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1730 
1731    { " 2x3-bw-thread,",	  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1732    { " 4x4-bw-thread,",	  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1733    { " 4x6-bw-thread,",	  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1734    { " 4x8-bw-thread,",	  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1735    { " 4x8-bw-thread-NOTHP,",
1736 			  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1737    { " 3x3-bw-thread,",	  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1738    { " 5x5-bw-thread,",	  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1739 
1740    { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1741    { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1742 
1743    { "numa02-bw,",	  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1744    { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1745    { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1746    { "numa01-bw-thread-NOTHP,",
1747 			  "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1748 };
1749 
1750 static int bench_all(void)
1751 {
1752 	int nr = ARRAY_SIZE(tests);
1753 	int ret;
1754 	int i;
1755 
1756 	ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1757 	BUG_ON(ret < 0);
1758 
1759 	for (i = 0; i < nr; i++) {
1760 		run_bench_numa(tests[i][0], tests[i] + 1);
1761 	}
1762 
1763 	printf("\n");
1764 
1765 	return 0;
1766 }
1767 
1768 int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused)
1769 {
1770 	init_params(&p0, "main,", argc, argv);
1771 	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1772 	if (argc)
1773 		goto err;
1774 
1775 	if (p0.run_all)
1776 		return bench_all();
1777 
1778 	if (__bench_numa(NULL))
1779 		goto err;
1780 
1781 	return 0;
1782 
1783 err:
1784 	usage_with_options(numa_usage, options);
1785 	return -1;
1786 }
1787