1 /* 2 * numa.c 3 * 4 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance 5 */ 6 7 #include "../perf.h" 8 #include "../builtin.h" 9 #include "../util/util.h" 10 #include "../util/parse-options.h" 11 12 #include "bench.h" 13 14 #include <errno.h> 15 #include <sched.h> 16 #include <stdio.h> 17 #include <assert.h> 18 #include <malloc.h> 19 #include <signal.h> 20 #include <stdlib.h> 21 #include <string.h> 22 #include <unistd.h> 23 #include <pthread.h> 24 #include <sys/mman.h> 25 #include <sys/time.h> 26 #include <sys/resource.h> 27 #include <sys/wait.h> 28 #include <sys/prctl.h> 29 #include <sys/types.h> 30 31 #include <numa.h> 32 #include <numaif.h> 33 34 /* 35 * Regular printout to the terminal, supressed if -q is specified: 36 */ 37 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0) 38 39 /* 40 * Debug printf: 41 */ 42 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0) 43 44 struct thread_data { 45 int curr_cpu; 46 cpu_set_t bind_cpumask; 47 int bind_node; 48 u8 *process_data; 49 int process_nr; 50 int thread_nr; 51 int task_nr; 52 unsigned int loops_done; 53 u64 val; 54 u64 runtime_ns; 55 u64 system_time_ns; 56 u64 user_time_ns; 57 double speed_gbs; 58 pthread_mutex_t *process_lock; 59 }; 60 61 /* Parameters set by options: */ 62 63 struct params { 64 /* Startup synchronization: */ 65 bool serialize_startup; 66 67 /* Task hierarchy: */ 68 int nr_proc; 69 int nr_threads; 70 71 /* Working set sizes: */ 72 const char *mb_global_str; 73 const char *mb_proc_str; 74 const char *mb_proc_locked_str; 75 const char *mb_thread_str; 76 77 double mb_global; 78 double mb_proc; 79 double mb_proc_locked; 80 double mb_thread; 81 82 /* Access patterns to the working set: */ 83 bool data_reads; 84 bool data_writes; 85 bool data_backwards; 86 bool data_zero_memset; 87 bool data_rand_walk; 88 u32 nr_loops; 89 u32 nr_secs; 90 u32 sleep_usecs; 91 92 /* Working set initialization: */ 93 bool init_zero; 94 bool init_random; 95 bool init_cpu0; 96 97 /* Misc options: */ 98 int show_details; 99 int run_all; 100 int thp; 101 102 long bytes_global; 103 long bytes_process; 104 long bytes_process_locked; 105 long bytes_thread; 106 107 int nr_tasks; 108 bool show_quiet; 109 110 bool show_convergence; 111 bool measure_convergence; 112 113 int perturb_secs; 114 int nr_cpus; 115 int nr_nodes; 116 117 /* Affinity options -C and -N: */ 118 char *cpu_list_str; 119 char *node_list_str; 120 }; 121 122 123 /* Global, read-writable area, accessible to all processes and threads: */ 124 125 struct global_info { 126 u8 *data; 127 128 pthread_mutex_t startup_mutex; 129 int nr_tasks_started; 130 131 pthread_mutex_t startup_done_mutex; 132 133 pthread_mutex_t start_work_mutex; 134 int nr_tasks_working; 135 136 pthread_mutex_t stop_work_mutex; 137 u64 bytes_done; 138 139 struct thread_data *threads; 140 141 /* Convergence latency measurement: */ 142 bool all_converged; 143 bool stop_work; 144 145 int print_once; 146 147 struct params p; 148 }; 149 150 static struct global_info *g = NULL; 151 152 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset); 153 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset); 154 155 struct params p0; 156 157 static const struct option options[] = { 158 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"), 159 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"), 160 161 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"), 162 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"), 163 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"), 164 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"), 165 166 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run"), 167 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run"), 168 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"), 169 170 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via writes (can be mixed with -W)"), 171 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"), 172 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"), 173 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"), 174 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"), 175 176 177 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"), 178 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"), 179 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"), 180 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"), 181 182 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"), 183 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"), 184 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"), 185 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"), 186 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"), 187 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "bzero the initial allocations"), 188 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"), 189 190 /* Special option string parsing callbacks: */ 191 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]", 192 "bind the first N tasks to these specific cpus (the rest is unbound)", 193 parse_cpus_opt), 194 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]", 195 "bind the first N tasks to these specific memory nodes (the rest is unbound)", 196 parse_nodes_opt), 197 OPT_END() 198 }; 199 200 static const char * const bench_numa_usage[] = { 201 "perf bench numa <options>", 202 NULL 203 }; 204 205 static const char * const numa_usage[] = { 206 "perf bench numa mem [<options>]", 207 NULL 208 }; 209 210 static cpu_set_t bind_to_cpu(int target_cpu) 211 { 212 cpu_set_t orig_mask, mask; 213 int ret; 214 215 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); 216 BUG_ON(ret); 217 218 CPU_ZERO(&mask); 219 220 if (target_cpu == -1) { 221 int cpu; 222 223 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 224 CPU_SET(cpu, &mask); 225 } else { 226 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus); 227 CPU_SET(target_cpu, &mask); 228 } 229 230 ret = sched_setaffinity(0, sizeof(mask), &mask); 231 BUG_ON(ret); 232 233 return orig_mask; 234 } 235 236 static cpu_set_t bind_to_node(int target_node) 237 { 238 int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes; 239 cpu_set_t orig_mask, mask; 240 int cpu; 241 int ret; 242 243 BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus); 244 BUG_ON(!cpus_per_node); 245 246 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); 247 BUG_ON(ret); 248 249 CPU_ZERO(&mask); 250 251 if (target_node == -1) { 252 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 253 CPU_SET(cpu, &mask); 254 } else { 255 int cpu_start = (target_node + 0) * cpus_per_node; 256 int cpu_stop = (target_node + 1) * cpus_per_node; 257 258 BUG_ON(cpu_stop > g->p.nr_cpus); 259 260 for (cpu = cpu_start; cpu < cpu_stop; cpu++) 261 CPU_SET(cpu, &mask); 262 } 263 264 ret = sched_setaffinity(0, sizeof(mask), &mask); 265 BUG_ON(ret); 266 267 return orig_mask; 268 } 269 270 static void bind_to_cpumask(cpu_set_t mask) 271 { 272 int ret; 273 274 ret = sched_setaffinity(0, sizeof(mask), &mask); 275 BUG_ON(ret); 276 } 277 278 static void mempol_restore(void) 279 { 280 int ret; 281 282 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1); 283 284 BUG_ON(ret); 285 } 286 287 static void bind_to_memnode(int node) 288 { 289 unsigned long nodemask; 290 int ret; 291 292 if (node == -1) 293 return; 294 295 BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)); 296 nodemask = 1L << node; 297 298 ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8); 299 dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret); 300 301 BUG_ON(ret); 302 } 303 304 #define HPSIZE (2*1024*1024) 305 306 #define set_taskname(fmt...) \ 307 do { \ 308 char name[20]; \ 309 \ 310 snprintf(name, 20, fmt); \ 311 prctl(PR_SET_NAME, name); \ 312 } while (0) 313 314 static u8 *alloc_data(ssize_t bytes0, int map_flags, 315 int init_zero, int init_cpu0, int thp, int init_random) 316 { 317 cpu_set_t orig_mask; 318 ssize_t bytes; 319 u8 *buf; 320 int ret; 321 322 if (!bytes0) 323 return NULL; 324 325 /* Allocate and initialize all memory on CPU#0: */ 326 if (init_cpu0) { 327 orig_mask = bind_to_node(0); 328 bind_to_memnode(0); 329 } 330 331 bytes = bytes0 + HPSIZE; 332 333 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0); 334 BUG_ON(buf == (void *)-1); 335 336 if (map_flags == MAP_PRIVATE) { 337 if (thp > 0) { 338 ret = madvise(buf, bytes, MADV_HUGEPAGE); 339 if (ret && !g->print_once) { 340 g->print_once = 1; 341 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n"); 342 } 343 } 344 if (thp < 0) { 345 ret = madvise(buf, bytes, MADV_NOHUGEPAGE); 346 if (ret && !g->print_once) { 347 g->print_once = 1; 348 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n"); 349 } 350 } 351 } 352 353 if (init_zero) { 354 bzero(buf, bytes); 355 } else { 356 /* Initialize random contents, different in each word: */ 357 if (init_random) { 358 u64 *wbuf = (void *)buf; 359 long off = rand(); 360 long i; 361 362 for (i = 0; i < bytes/8; i++) 363 wbuf[i] = i + off; 364 } 365 } 366 367 /* Align to 2MB boundary: */ 368 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1)); 369 370 /* Restore affinity: */ 371 if (init_cpu0) { 372 bind_to_cpumask(orig_mask); 373 mempol_restore(); 374 } 375 376 return buf; 377 } 378 379 static void free_data(void *data, ssize_t bytes) 380 { 381 int ret; 382 383 if (!data) 384 return; 385 386 ret = munmap(data, bytes); 387 BUG_ON(ret); 388 } 389 390 /* 391 * Create a shared memory buffer that can be shared between processes, zeroed: 392 */ 393 static void * zalloc_shared_data(ssize_t bytes) 394 { 395 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random); 396 } 397 398 /* 399 * Create a shared memory buffer that can be shared between processes: 400 */ 401 static void * setup_shared_data(ssize_t bytes) 402 { 403 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 404 } 405 406 /* 407 * Allocate process-local memory - this will either be shared between 408 * threads of this process, or only be accessed by this thread: 409 */ 410 static void * setup_private_data(ssize_t bytes) 411 { 412 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 413 } 414 415 /* 416 * Return a process-shared (global) mutex: 417 */ 418 static void init_global_mutex(pthread_mutex_t *mutex) 419 { 420 pthread_mutexattr_t attr; 421 422 pthread_mutexattr_init(&attr); 423 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED); 424 pthread_mutex_init(mutex, &attr); 425 } 426 427 static int parse_cpu_list(const char *arg) 428 { 429 p0.cpu_list_str = strdup(arg); 430 431 dprintf("got CPU list: {%s}\n", p0.cpu_list_str); 432 433 return 0; 434 } 435 436 static int parse_setup_cpu_list(void) 437 { 438 struct thread_data *td; 439 char *str0, *str; 440 int t; 441 442 if (!g->p.cpu_list_str) 443 return 0; 444 445 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 446 447 str0 = str = strdup(g->p.cpu_list_str); 448 t = 0; 449 450 BUG_ON(!str); 451 452 tprintf("# binding tasks to CPUs:\n"); 453 tprintf("# "); 454 455 while (true) { 456 int bind_cpu, bind_cpu_0, bind_cpu_1; 457 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul; 458 int bind_len; 459 int step; 460 int mul; 461 462 tok = strsep(&str, ","); 463 if (!tok) 464 break; 465 466 tok_end = strstr(tok, "-"); 467 468 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 469 if (!tok_end) { 470 /* Single CPU specified: */ 471 bind_cpu_0 = bind_cpu_1 = atol(tok); 472 } else { 473 /* CPU range specified (for example: "5-11"): */ 474 bind_cpu_0 = atol(tok); 475 bind_cpu_1 = atol(tok_end + 1); 476 } 477 478 step = 1; 479 tok_step = strstr(tok, "#"); 480 if (tok_step) { 481 step = atol(tok_step + 1); 482 BUG_ON(step <= 0 || step >= g->p.nr_cpus); 483 } 484 485 /* 486 * Mask length. 487 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4', 488 * where the _4 means the next 4 CPUs are allowed. 489 */ 490 bind_len = 1; 491 tok_len = strstr(tok, "_"); 492 if (tok_len) { 493 bind_len = atol(tok_len + 1); 494 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus); 495 } 496 497 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 498 mul = 1; 499 tok_mul = strstr(tok, "x"); 500 if (tok_mul) { 501 mul = atol(tok_mul + 1); 502 BUG_ON(mul <= 0); 503 } 504 505 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul); 506 507 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) { 508 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus); 509 return -1; 510 } 511 512 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0); 513 BUG_ON(bind_cpu_0 > bind_cpu_1); 514 515 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) { 516 int i; 517 518 for (i = 0; i < mul; i++) { 519 int cpu; 520 521 if (t >= g->p.nr_tasks) { 522 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu); 523 goto out; 524 } 525 td = g->threads + t; 526 527 if (t) 528 tprintf(","); 529 if (bind_len > 1) { 530 tprintf("%2d/%d", bind_cpu, bind_len); 531 } else { 532 tprintf("%2d", bind_cpu); 533 } 534 535 CPU_ZERO(&td->bind_cpumask); 536 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) { 537 BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus); 538 CPU_SET(cpu, &td->bind_cpumask); 539 } 540 t++; 541 } 542 } 543 } 544 out: 545 546 tprintf("\n"); 547 548 if (t < g->p.nr_tasks) 549 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 550 551 free(str0); 552 return 0; 553 } 554 555 static int parse_cpus_opt(const struct option *opt __maybe_unused, 556 const char *arg, int unset __maybe_unused) 557 { 558 if (!arg) 559 return -1; 560 561 return parse_cpu_list(arg); 562 } 563 564 static int parse_node_list(const char *arg) 565 { 566 p0.node_list_str = strdup(arg); 567 568 dprintf("got NODE list: {%s}\n", p0.node_list_str); 569 570 return 0; 571 } 572 573 static int parse_setup_node_list(void) 574 { 575 struct thread_data *td; 576 char *str0, *str; 577 int t; 578 579 if (!g->p.node_list_str) 580 return 0; 581 582 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 583 584 str0 = str = strdup(g->p.node_list_str); 585 t = 0; 586 587 BUG_ON(!str); 588 589 tprintf("# binding tasks to NODEs:\n"); 590 tprintf("# "); 591 592 while (true) { 593 int bind_node, bind_node_0, bind_node_1; 594 char *tok, *tok_end, *tok_step, *tok_mul; 595 int step; 596 int mul; 597 598 tok = strsep(&str, ","); 599 if (!tok) 600 break; 601 602 tok_end = strstr(tok, "-"); 603 604 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 605 if (!tok_end) { 606 /* Single NODE specified: */ 607 bind_node_0 = bind_node_1 = atol(tok); 608 } else { 609 /* NODE range specified (for example: "5-11"): */ 610 bind_node_0 = atol(tok); 611 bind_node_1 = atol(tok_end + 1); 612 } 613 614 step = 1; 615 tok_step = strstr(tok, "#"); 616 if (tok_step) { 617 step = atol(tok_step + 1); 618 BUG_ON(step <= 0 || step >= g->p.nr_nodes); 619 } 620 621 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 622 mul = 1; 623 tok_mul = strstr(tok, "x"); 624 if (tok_mul) { 625 mul = atol(tok_mul + 1); 626 BUG_ON(mul <= 0); 627 } 628 629 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step); 630 631 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) { 632 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes); 633 return -1; 634 } 635 636 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0); 637 BUG_ON(bind_node_0 > bind_node_1); 638 639 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) { 640 int i; 641 642 for (i = 0; i < mul; i++) { 643 if (t >= g->p.nr_tasks) { 644 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node); 645 goto out; 646 } 647 td = g->threads + t; 648 649 if (!t) 650 tprintf(" %2d", bind_node); 651 else 652 tprintf(",%2d", bind_node); 653 654 td->bind_node = bind_node; 655 t++; 656 } 657 } 658 } 659 out: 660 661 tprintf("\n"); 662 663 if (t < g->p.nr_tasks) 664 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 665 666 free(str0); 667 return 0; 668 } 669 670 static int parse_nodes_opt(const struct option *opt __maybe_unused, 671 const char *arg, int unset __maybe_unused) 672 { 673 if (!arg) 674 return -1; 675 676 return parse_node_list(arg); 677 678 return 0; 679 } 680 681 #define BIT(x) (1ul << x) 682 683 static inline uint32_t lfsr_32(uint32_t lfsr) 684 { 685 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31); 686 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps); 687 } 688 689 /* 690 * Make sure there's real data dependency to RAM (when read 691 * accesses are enabled), so the compiler, the CPU and the 692 * kernel (KSM, zero page, etc.) cannot optimize away RAM 693 * accesses: 694 */ 695 static inline u64 access_data(u64 *data __attribute__((unused)), u64 val) 696 { 697 if (g->p.data_reads) 698 val += *data; 699 if (g->p.data_writes) 700 *data = val + 1; 701 return val; 702 } 703 704 /* 705 * The worker process does two types of work, a forwards going 706 * loop and a backwards going loop. 707 * 708 * We do this so that on multiprocessor systems we do not create 709 * a 'train' of processing, with highly synchronized processes, 710 * skewing the whole benchmark. 711 */ 712 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val) 713 { 714 long words = bytes/sizeof(u64); 715 u64 *data = (void *)__data; 716 long chunk_0, chunk_1; 717 u64 *d0, *d, *d1; 718 long off; 719 long i; 720 721 BUG_ON(!data && words); 722 BUG_ON(data && !words); 723 724 if (!data) 725 return val; 726 727 /* Very simple memset() work variant: */ 728 if (g->p.data_zero_memset && !g->p.data_rand_walk) { 729 bzero(data, bytes); 730 return val; 731 } 732 733 /* Spread out by PID/TID nr and by loop nr: */ 734 chunk_0 = words/nr_max; 735 chunk_1 = words/g->p.nr_loops; 736 off = nr*chunk_0 + loop*chunk_1; 737 738 while (off >= words) 739 off -= words; 740 741 if (g->p.data_rand_walk) { 742 u32 lfsr = nr + loop + val; 743 int j; 744 745 for (i = 0; i < words/1024; i++) { 746 long start, end; 747 748 lfsr = lfsr_32(lfsr); 749 750 start = lfsr % words; 751 end = min(start + 1024, words-1); 752 753 if (g->p.data_zero_memset) { 754 bzero(data + start, (end-start) * sizeof(u64)); 755 } else { 756 for (j = start; j < end; j++) 757 val = access_data(data + j, val); 758 } 759 } 760 } else if (!g->p.data_backwards || (nr + loop) & 1) { 761 762 d0 = data + off; 763 d = data + off + 1; 764 d1 = data + words; 765 766 /* Process data forwards: */ 767 for (;;) { 768 if (unlikely(d >= d1)) 769 d = data; 770 if (unlikely(d == d0)) 771 break; 772 773 val = access_data(d, val); 774 775 d++; 776 } 777 } else { 778 /* Process data backwards: */ 779 780 d0 = data + off; 781 d = data + off - 1; 782 d1 = data + words; 783 784 /* Process data forwards: */ 785 for (;;) { 786 if (unlikely(d < data)) 787 d = data + words-1; 788 if (unlikely(d == d0)) 789 break; 790 791 val = access_data(d, val); 792 793 d--; 794 } 795 } 796 797 return val; 798 } 799 800 static void update_curr_cpu(int task_nr, unsigned long bytes_worked) 801 { 802 unsigned int cpu; 803 804 cpu = sched_getcpu(); 805 806 g->threads[task_nr].curr_cpu = cpu; 807 prctl(0, bytes_worked); 808 } 809 810 #define MAX_NR_NODES 64 811 812 /* 813 * Count the number of nodes a process's threads 814 * are spread out on. 815 * 816 * A count of 1 means that the process is compressed 817 * to a single node. A count of g->p.nr_nodes means it's 818 * spread out on the whole system. 819 */ 820 static int count_process_nodes(int process_nr) 821 { 822 char node_present[MAX_NR_NODES] = { 0, }; 823 int nodes; 824 int n, t; 825 826 for (t = 0; t < g->p.nr_threads; t++) { 827 struct thread_data *td; 828 int task_nr; 829 int node; 830 831 task_nr = process_nr*g->p.nr_threads + t; 832 td = g->threads + task_nr; 833 834 node = numa_node_of_cpu(td->curr_cpu); 835 node_present[node] = 1; 836 } 837 838 nodes = 0; 839 840 for (n = 0; n < MAX_NR_NODES; n++) 841 nodes += node_present[n]; 842 843 return nodes; 844 } 845 846 /* 847 * Count the number of distinct process-threads a node contains. 848 * 849 * A count of 1 means that the node contains only a single 850 * process. If all nodes on the system contain at most one 851 * process then we are well-converged. 852 */ 853 static int count_node_processes(int node) 854 { 855 int processes = 0; 856 int t, p; 857 858 for (p = 0; p < g->p.nr_proc; p++) { 859 for (t = 0; t < g->p.nr_threads; t++) { 860 struct thread_data *td; 861 int task_nr; 862 int n; 863 864 task_nr = p*g->p.nr_threads + t; 865 td = g->threads + task_nr; 866 867 n = numa_node_of_cpu(td->curr_cpu); 868 if (n == node) { 869 processes++; 870 break; 871 } 872 } 873 } 874 875 return processes; 876 } 877 878 static void calc_convergence_compression(int *strong) 879 { 880 unsigned int nodes_min, nodes_max; 881 int p; 882 883 nodes_min = -1; 884 nodes_max = 0; 885 886 for (p = 0; p < g->p.nr_proc; p++) { 887 unsigned int nodes = count_process_nodes(p); 888 889 nodes_min = min(nodes, nodes_min); 890 nodes_max = max(nodes, nodes_max); 891 } 892 893 /* Strong convergence: all threads compress on a single node: */ 894 if (nodes_min == 1 && nodes_max == 1) { 895 *strong = 1; 896 } else { 897 *strong = 0; 898 tprintf(" {%d-%d}", nodes_min, nodes_max); 899 } 900 } 901 902 static void calc_convergence(double runtime_ns_max, double *convergence) 903 { 904 unsigned int loops_done_min, loops_done_max; 905 int process_groups; 906 int nodes[MAX_NR_NODES]; 907 int distance; 908 int nr_min; 909 int nr_max; 910 int strong; 911 int sum; 912 int nr; 913 int node; 914 int cpu; 915 int t; 916 917 if (!g->p.show_convergence && !g->p.measure_convergence) 918 return; 919 920 for (node = 0; node < g->p.nr_nodes; node++) 921 nodes[node] = 0; 922 923 loops_done_min = -1; 924 loops_done_max = 0; 925 926 for (t = 0; t < g->p.nr_tasks; t++) { 927 struct thread_data *td = g->threads + t; 928 unsigned int loops_done; 929 930 cpu = td->curr_cpu; 931 932 /* Not all threads have written it yet: */ 933 if (cpu < 0) 934 continue; 935 936 node = numa_node_of_cpu(cpu); 937 938 nodes[node]++; 939 940 loops_done = td->loops_done; 941 loops_done_min = min(loops_done, loops_done_min); 942 loops_done_max = max(loops_done, loops_done_max); 943 } 944 945 nr_max = 0; 946 nr_min = g->p.nr_tasks; 947 sum = 0; 948 949 for (node = 0; node < g->p.nr_nodes; node++) { 950 nr = nodes[node]; 951 nr_min = min(nr, nr_min); 952 nr_max = max(nr, nr_max); 953 sum += nr; 954 } 955 BUG_ON(nr_min > nr_max); 956 957 BUG_ON(sum > g->p.nr_tasks); 958 959 if (0 && (sum < g->p.nr_tasks)) 960 return; 961 962 /* 963 * Count the number of distinct process groups present 964 * on nodes - when we are converged this will decrease 965 * to g->p.nr_proc: 966 */ 967 process_groups = 0; 968 969 for (node = 0; node < g->p.nr_nodes; node++) { 970 int processes = count_node_processes(node); 971 972 nr = nodes[node]; 973 tprintf(" %2d/%-2d", nr, processes); 974 975 process_groups += processes; 976 } 977 978 distance = nr_max - nr_min; 979 980 tprintf(" [%2d/%-2d]", distance, process_groups); 981 982 tprintf(" l:%3d-%-3d (%3d)", 983 loops_done_min, loops_done_max, loops_done_max-loops_done_min); 984 985 if (loops_done_min && loops_done_max) { 986 double skew = 1.0 - (double)loops_done_min/loops_done_max; 987 988 tprintf(" [%4.1f%%]", skew * 100.0); 989 } 990 991 calc_convergence_compression(&strong); 992 993 if (strong && process_groups == g->p.nr_proc) { 994 if (!*convergence) { 995 *convergence = runtime_ns_max; 996 tprintf(" (%6.1fs converged)\n", *convergence/1e9); 997 if (g->p.measure_convergence) { 998 g->all_converged = true; 999 g->stop_work = true; 1000 } 1001 } 1002 } else { 1003 if (*convergence) { 1004 tprintf(" (%6.1fs de-converged)", runtime_ns_max/1e9); 1005 *convergence = 0; 1006 } 1007 tprintf("\n"); 1008 } 1009 } 1010 1011 static void show_summary(double runtime_ns_max, int l, double *convergence) 1012 { 1013 tprintf("\r # %5.1f%% [%.1f mins]", 1014 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max/1e9 / 60.0); 1015 1016 calc_convergence(runtime_ns_max, convergence); 1017 1018 if (g->p.show_details >= 0) 1019 fflush(stdout); 1020 } 1021 1022 static void *worker_thread(void *__tdata) 1023 { 1024 struct thread_data *td = __tdata; 1025 struct timeval start0, start, stop, diff; 1026 int process_nr = td->process_nr; 1027 int thread_nr = td->thread_nr; 1028 unsigned long last_perturbance; 1029 int task_nr = td->task_nr; 1030 int details = g->p.show_details; 1031 int first_task, last_task; 1032 double convergence = 0; 1033 u64 val = td->val; 1034 double runtime_ns_max; 1035 u8 *global_data; 1036 u8 *process_data; 1037 u8 *thread_data; 1038 u64 bytes_done; 1039 long work_done; 1040 u32 l; 1041 struct rusage rusage; 1042 1043 bind_to_cpumask(td->bind_cpumask); 1044 bind_to_memnode(td->bind_node); 1045 1046 set_taskname("thread %d/%d", process_nr, thread_nr); 1047 1048 global_data = g->data; 1049 process_data = td->process_data; 1050 thread_data = setup_private_data(g->p.bytes_thread); 1051 1052 bytes_done = 0; 1053 1054 last_task = 0; 1055 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1) 1056 last_task = 1; 1057 1058 first_task = 0; 1059 if (process_nr == 0 && thread_nr == 0) 1060 first_task = 1; 1061 1062 if (details >= 2) { 1063 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n", 1064 process_nr, thread_nr, global_data, process_data, thread_data); 1065 } 1066 1067 if (g->p.serialize_startup) { 1068 pthread_mutex_lock(&g->startup_mutex); 1069 g->nr_tasks_started++; 1070 pthread_mutex_unlock(&g->startup_mutex); 1071 1072 /* Here we will wait for the main process to start us all at once: */ 1073 pthread_mutex_lock(&g->start_work_mutex); 1074 g->nr_tasks_working++; 1075 1076 /* Last one wake the main process: */ 1077 if (g->nr_tasks_working == g->p.nr_tasks) 1078 pthread_mutex_unlock(&g->startup_done_mutex); 1079 1080 pthread_mutex_unlock(&g->start_work_mutex); 1081 } 1082 1083 gettimeofday(&start0, NULL); 1084 1085 start = stop = start0; 1086 last_perturbance = start.tv_sec; 1087 1088 for (l = 0; l < g->p.nr_loops; l++) { 1089 start = stop; 1090 1091 if (g->stop_work) 1092 break; 1093 1094 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val); 1095 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val); 1096 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val); 1097 1098 if (g->p.sleep_usecs) { 1099 pthread_mutex_lock(td->process_lock); 1100 usleep(g->p.sleep_usecs); 1101 pthread_mutex_unlock(td->process_lock); 1102 } 1103 /* 1104 * Amount of work to be done under a process-global lock: 1105 */ 1106 if (g->p.bytes_process_locked) { 1107 pthread_mutex_lock(td->process_lock); 1108 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val); 1109 pthread_mutex_unlock(td->process_lock); 1110 } 1111 1112 work_done = g->p.bytes_global + g->p.bytes_process + 1113 g->p.bytes_process_locked + g->p.bytes_thread; 1114 1115 update_curr_cpu(task_nr, work_done); 1116 bytes_done += work_done; 1117 1118 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs) 1119 continue; 1120 1121 td->loops_done = l; 1122 1123 gettimeofday(&stop, NULL); 1124 1125 /* Check whether our max runtime timed out: */ 1126 if (g->p.nr_secs) { 1127 timersub(&stop, &start0, &diff); 1128 if ((u32)diff.tv_sec >= g->p.nr_secs) { 1129 g->stop_work = true; 1130 break; 1131 } 1132 } 1133 1134 /* Update the summary at most once per second: */ 1135 if (start.tv_sec == stop.tv_sec) 1136 continue; 1137 1138 /* 1139 * Perturb the first task's equilibrium every g->p.perturb_secs seconds, 1140 * by migrating to CPU#0: 1141 */ 1142 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) { 1143 cpu_set_t orig_mask; 1144 int target_cpu; 1145 int this_cpu; 1146 1147 last_perturbance = stop.tv_sec; 1148 1149 /* 1150 * Depending on where we are running, move into 1151 * the other half of the system, to create some 1152 * real disturbance: 1153 */ 1154 this_cpu = g->threads[task_nr].curr_cpu; 1155 if (this_cpu < g->p.nr_cpus/2) 1156 target_cpu = g->p.nr_cpus-1; 1157 else 1158 target_cpu = 0; 1159 1160 orig_mask = bind_to_cpu(target_cpu); 1161 1162 /* Here we are running on the target CPU already */ 1163 if (details >= 1) 1164 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu); 1165 1166 bind_to_cpumask(orig_mask); 1167 } 1168 1169 if (details >= 3) { 1170 timersub(&stop, &start, &diff); 1171 runtime_ns_max = diff.tv_sec * 1000000000; 1172 runtime_ns_max += diff.tv_usec * 1000; 1173 1174 if (details >= 0) { 1175 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n", 1176 process_nr, thread_nr, runtime_ns_max / bytes_done, val); 1177 } 1178 fflush(stdout); 1179 } 1180 if (!last_task) 1181 continue; 1182 1183 timersub(&stop, &start0, &diff); 1184 runtime_ns_max = diff.tv_sec * 1000000000ULL; 1185 runtime_ns_max += diff.tv_usec * 1000ULL; 1186 1187 show_summary(runtime_ns_max, l, &convergence); 1188 } 1189 1190 gettimeofday(&stop, NULL); 1191 timersub(&stop, &start0, &diff); 1192 td->runtime_ns = diff.tv_sec * 1000000000ULL; 1193 td->runtime_ns += diff.tv_usec * 1000ULL; 1194 td->speed_gbs = bytes_done / (td->runtime_ns / 1e9) / 1e9; 1195 1196 getrusage(RUSAGE_THREAD, &rusage); 1197 td->system_time_ns = rusage.ru_stime.tv_sec * 1000000000ULL; 1198 td->system_time_ns += rusage.ru_stime.tv_usec * 1000ULL; 1199 td->user_time_ns = rusage.ru_utime.tv_sec * 1000000000ULL; 1200 td->user_time_ns += rusage.ru_utime.tv_usec * 1000ULL; 1201 1202 free_data(thread_data, g->p.bytes_thread); 1203 1204 pthread_mutex_lock(&g->stop_work_mutex); 1205 g->bytes_done += bytes_done; 1206 pthread_mutex_unlock(&g->stop_work_mutex); 1207 1208 return NULL; 1209 } 1210 1211 /* 1212 * A worker process starts a couple of threads: 1213 */ 1214 static void worker_process(int process_nr) 1215 { 1216 pthread_mutex_t process_lock; 1217 struct thread_data *td; 1218 pthread_t *pthreads; 1219 u8 *process_data; 1220 int task_nr; 1221 int ret; 1222 int t; 1223 1224 pthread_mutex_init(&process_lock, NULL); 1225 set_taskname("process %d", process_nr); 1226 1227 /* 1228 * Pick up the memory policy and the CPU binding of our first thread, 1229 * so that we initialize memory accordingly: 1230 */ 1231 task_nr = process_nr*g->p.nr_threads; 1232 td = g->threads + task_nr; 1233 1234 bind_to_memnode(td->bind_node); 1235 bind_to_cpumask(td->bind_cpumask); 1236 1237 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t)); 1238 process_data = setup_private_data(g->p.bytes_process); 1239 1240 if (g->p.show_details >= 3) { 1241 printf(" # process %2d global mem: %p, process mem: %p\n", 1242 process_nr, g->data, process_data); 1243 } 1244 1245 for (t = 0; t < g->p.nr_threads; t++) { 1246 task_nr = process_nr*g->p.nr_threads + t; 1247 td = g->threads + task_nr; 1248 1249 td->process_data = process_data; 1250 td->process_nr = process_nr; 1251 td->thread_nr = t; 1252 td->task_nr = task_nr; 1253 td->val = rand(); 1254 td->curr_cpu = -1; 1255 td->process_lock = &process_lock; 1256 1257 ret = pthread_create(pthreads + t, NULL, worker_thread, td); 1258 BUG_ON(ret); 1259 } 1260 1261 for (t = 0; t < g->p.nr_threads; t++) { 1262 ret = pthread_join(pthreads[t], NULL); 1263 BUG_ON(ret); 1264 } 1265 1266 free_data(process_data, g->p.bytes_process); 1267 free(pthreads); 1268 } 1269 1270 static void print_summary(void) 1271 { 1272 if (g->p.show_details < 0) 1273 return; 1274 1275 printf("\n ###\n"); 1276 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n", 1277 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus); 1278 printf(" # %5dx %5ldMB global shared mem operations\n", 1279 g->p.nr_loops, g->p.bytes_global/1024/1024); 1280 printf(" # %5dx %5ldMB process shared mem operations\n", 1281 g->p.nr_loops, g->p.bytes_process/1024/1024); 1282 printf(" # %5dx %5ldMB thread local mem operations\n", 1283 g->p.nr_loops, g->p.bytes_thread/1024/1024); 1284 1285 printf(" ###\n"); 1286 1287 printf("\n ###\n"); fflush(stdout); 1288 } 1289 1290 static void init_thread_data(void) 1291 { 1292 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1293 int t; 1294 1295 g->threads = zalloc_shared_data(size); 1296 1297 for (t = 0; t < g->p.nr_tasks; t++) { 1298 struct thread_data *td = g->threads + t; 1299 int cpu; 1300 1301 /* Allow all nodes by default: */ 1302 td->bind_node = -1; 1303 1304 /* Allow all CPUs by default: */ 1305 CPU_ZERO(&td->bind_cpumask); 1306 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 1307 CPU_SET(cpu, &td->bind_cpumask); 1308 } 1309 } 1310 1311 static void deinit_thread_data(void) 1312 { 1313 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1314 1315 free_data(g->threads, size); 1316 } 1317 1318 static int init(void) 1319 { 1320 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0); 1321 1322 /* Copy over options: */ 1323 g->p = p0; 1324 1325 g->p.nr_cpus = numa_num_configured_cpus(); 1326 1327 g->p.nr_nodes = numa_max_node() + 1; 1328 1329 /* char array in count_process_nodes(): */ 1330 BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0); 1331 1332 if (g->p.show_quiet && !g->p.show_details) 1333 g->p.show_details = -1; 1334 1335 /* Some memory should be specified: */ 1336 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str) 1337 return -1; 1338 1339 if (g->p.mb_global_str) { 1340 g->p.mb_global = atof(g->p.mb_global_str); 1341 BUG_ON(g->p.mb_global < 0); 1342 } 1343 1344 if (g->p.mb_proc_str) { 1345 g->p.mb_proc = atof(g->p.mb_proc_str); 1346 BUG_ON(g->p.mb_proc < 0); 1347 } 1348 1349 if (g->p.mb_proc_locked_str) { 1350 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str); 1351 BUG_ON(g->p.mb_proc_locked < 0); 1352 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc); 1353 } 1354 1355 if (g->p.mb_thread_str) { 1356 g->p.mb_thread = atof(g->p.mb_thread_str); 1357 BUG_ON(g->p.mb_thread < 0); 1358 } 1359 1360 BUG_ON(g->p.nr_threads <= 0); 1361 BUG_ON(g->p.nr_proc <= 0); 1362 1363 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads; 1364 1365 g->p.bytes_global = g->p.mb_global *1024L*1024L; 1366 g->p.bytes_process = g->p.mb_proc *1024L*1024L; 1367 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L; 1368 g->p.bytes_thread = g->p.mb_thread *1024L*1024L; 1369 1370 g->data = setup_shared_data(g->p.bytes_global); 1371 1372 /* Startup serialization: */ 1373 init_global_mutex(&g->start_work_mutex); 1374 init_global_mutex(&g->startup_mutex); 1375 init_global_mutex(&g->startup_done_mutex); 1376 init_global_mutex(&g->stop_work_mutex); 1377 1378 init_thread_data(); 1379 1380 tprintf("#\n"); 1381 if (parse_setup_cpu_list() || parse_setup_node_list()) 1382 return -1; 1383 tprintf("#\n"); 1384 1385 print_summary(); 1386 1387 return 0; 1388 } 1389 1390 static void deinit(void) 1391 { 1392 free_data(g->data, g->p.bytes_global); 1393 g->data = NULL; 1394 1395 deinit_thread_data(); 1396 1397 free_data(g, sizeof(*g)); 1398 g = NULL; 1399 } 1400 1401 /* 1402 * Print a short or long result, depending on the verbosity setting: 1403 */ 1404 static void print_res(const char *name, double val, 1405 const char *txt_unit, const char *txt_short, const char *txt_long) 1406 { 1407 if (!name) 1408 name = "main,"; 1409 1410 if (g->p.show_quiet) 1411 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short); 1412 else 1413 printf(" %14.3f %s\n", val, txt_long); 1414 } 1415 1416 static int __bench_numa(const char *name) 1417 { 1418 struct timeval start, stop, diff; 1419 u64 runtime_ns_min, runtime_ns_sum; 1420 pid_t *pids, pid, wpid; 1421 double delta_runtime; 1422 double runtime_avg; 1423 double runtime_sec_max; 1424 double runtime_sec_min; 1425 int wait_stat; 1426 double bytes; 1427 int i, t, p; 1428 1429 if (init()) 1430 return -1; 1431 1432 pids = zalloc(g->p.nr_proc * sizeof(*pids)); 1433 pid = -1; 1434 1435 /* All threads try to acquire it, this way we can wait for them to start up: */ 1436 pthread_mutex_lock(&g->start_work_mutex); 1437 1438 if (g->p.serialize_startup) { 1439 tprintf(" #\n"); 1440 tprintf(" # Startup synchronization: ..."); fflush(stdout); 1441 } 1442 1443 gettimeofday(&start, NULL); 1444 1445 for (i = 0; i < g->p.nr_proc; i++) { 1446 pid = fork(); 1447 dprintf(" # process %2d: PID %d\n", i, pid); 1448 1449 BUG_ON(pid < 0); 1450 if (!pid) { 1451 /* Child process: */ 1452 worker_process(i); 1453 1454 exit(0); 1455 } 1456 pids[i] = pid; 1457 1458 } 1459 /* Wait for all the threads to start up: */ 1460 while (g->nr_tasks_started != g->p.nr_tasks) 1461 usleep(1000); 1462 1463 BUG_ON(g->nr_tasks_started != g->p.nr_tasks); 1464 1465 if (g->p.serialize_startup) { 1466 double startup_sec; 1467 1468 pthread_mutex_lock(&g->startup_done_mutex); 1469 1470 /* This will start all threads: */ 1471 pthread_mutex_unlock(&g->start_work_mutex); 1472 1473 /* This mutex is locked - the last started thread will wake us: */ 1474 pthread_mutex_lock(&g->startup_done_mutex); 1475 1476 gettimeofday(&stop, NULL); 1477 1478 timersub(&stop, &start, &diff); 1479 1480 startup_sec = diff.tv_sec * 1000000000.0; 1481 startup_sec += diff.tv_usec * 1000.0; 1482 startup_sec /= 1e9; 1483 1484 tprintf(" threads initialized in %.6f seconds.\n", startup_sec); 1485 tprintf(" #\n"); 1486 1487 start = stop; 1488 pthread_mutex_unlock(&g->startup_done_mutex); 1489 } else { 1490 gettimeofday(&start, NULL); 1491 } 1492 1493 /* Parent process: */ 1494 1495 1496 for (i = 0; i < g->p.nr_proc; i++) { 1497 wpid = waitpid(pids[i], &wait_stat, 0); 1498 BUG_ON(wpid < 0); 1499 BUG_ON(!WIFEXITED(wait_stat)); 1500 1501 } 1502 1503 runtime_ns_sum = 0; 1504 runtime_ns_min = -1LL; 1505 1506 for (t = 0; t < g->p.nr_tasks; t++) { 1507 u64 thread_runtime_ns = g->threads[t].runtime_ns; 1508 1509 runtime_ns_sum += thread_runtime_ns; 1510 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min); 1511 } 1512 1513 gettimeofday(&stop, NULL); 1514 timersub(&stop, &start, &diff); 1515 1516 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT); 1517 1518 tprintf("\n ###\n"); 1519 tprintf("\n"); 1520 1521 runtime_sec_max = diff.tv_sec * 1000000000.0; 1522 runtime_sec_max += diff.tv_usec * 1000.0; 1523 runtime_sec_max /= 1e9; 1524 1525 runtime_sec_min = runtime_ns_min/1e9; 1526 1527 bytes = g->bytes_done; 1528 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / 1e9; 1529 1530 if (g->p.measure_convergence) { 1531 print_res(name, runtime_sec_max, 1532 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge"); 1533 } 1534 1535 print_res(name, runtime_sec_max, 1536 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime"); 1537 1538 print_res(name, runtime_sec_min, 1539 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime"); 1540 1541 print_res(name, runtime_avg, 1542 "secs,", "runtime-avg/thread", "secs average thread-runtime"); 1543 1544 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0; 1545 print_res(name, delta_runtime / runtime_sec_max * 100.0, 1546 "%,", "spread-runtime/thread", "% difference between max/avg runtime"); 1547 1548 print_res(name, bytes / g->p.nr_tasks / 1e9, 1549 "GB,", "data/thread", "GB data processed, per thread"); 1550 1551 print_res(name, bytes / 1e9, 1552 "GB,", "data-total", "GB data processed, total"); 1553 1554 print_res(name, runtime_sec_max * 1e9 / (bytes / g->p.nr_tasks), 1555 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime"); 1556 1557 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max, 1558 "GB/sec,", "thread-speed", "GB/sec/thread speed"); 1559 1560 print_res(name, bytes / runtime_sec_max / 1e9, 1561 "GB/sec,", "total-speed", "GB/sec total speed"); 1562 1563 if (g->p.show_details >= 2) { 1564 char tname[32]; 1565 struct thread_data *td; 1566 for (p = 0; p < g->p.nr_proc; p++) { 1567 for (t = 0; t < g->p.nr_threads; t++) { 1568 memset(tname, 0, 32); 1569 td = g->threads + p*g->p.nr_threads + t; 1570 snprintf(tname, 32, "process%d:thread%d", p, t); 1571 print_res(tname, td->speed_gbs, 1572 "GB/sec", "thread-speed", "GB/sec/thread speed"); 1573 print_res(tname, td->system_time_ns / 1e9, 1574 "secs", "thread-system-time", "system CPU time/thread"); 1575 print_res(tname, td->user_time_ns / 1e9, 1576 "secs", "thread-user-time", "user CPU time/thread"); 1577 } 1578 } 1579 } 1580 1581 free(pids); 1582 1583 deinit(); 1584 1585 return 0; 1586 } 1587 1588 #define MAX_ARGS 50 1589 1590 static int command_size(const char **argv) 1591 { 1592 int size = 0; 1593 1594 while (*argv) { 1595 size++; 1596 argv++; 1597 } 1598 1599 BUG_ON(size >= MAX_ARGS); 1600 1601 return size; 1602 } 1603 1604 static void init_params(struct params *p, const char *name, int argc, const char **argv) 1605 { 1606 int i; 1607 1608 printf("\n # Running %s \"perf bench numa", name); 1609 1610 for (i = 0; i < argc; i++) 1611 printf(" %s", argv[i]); 1612 1613 printf("\"\n"); 1614 1615 memset(p, 0, sizeof(*p)); 1616 1617 /* Initialize nonzero defaults: */ 1618 1619 p->serialize_startup = 1; 1620 p->data_reads = true; 1621 p->data_writes = true; 1622 p->data_backwards = true; 1623 p->data_rand_walk = true; 1624 p->nr_loops = -1; 1625 p->init_random = true; 1626 p->mb_global_str = "1"; 1627 p->nr_proc = 1; 1628 p->nr_threads = 1; 1629 p->nr_secs = 5; 1630 p->run_all = argc == 1; 1631 } 1632 1633 static int run_bench_numa(const char *name, const char **argv) 1634 { 1635 int argc = command_size(argv); 1636 1637 init_params(&p0, name, argc, argv); 1638 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1639 if (argc) 1640 goto err; 1641 1642 if (__bench_numa(name)) 1643 goto err; 1644 1645 return 0; 1646 1647 err: 1648 return -1; 1649 } 1650 1651 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk" 1652 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1" 1653 1654 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1" 1655 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1" 1656 1657 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1" 1658 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1" 1659 1660 /* 1661 * The built-in test-suite executed by "perf bench numa -a". 1662 * 1663 * (A minimum of 4 nodes and 16 GB of RAM is recommended.) 1664 */ 1665 static const char *tests[][MAX_ARGS] = { 1666 /* Basic single-stream NUMA bandwidth measurements: */ 1667 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1668 "-C" , "0", "-M", "0", OPT_BW_RAM }, 1669 { "RAM-bw-local-NOTHP,", 1670 "mem", "-p", "1", "-t", "1", "-P", "1024", 1671 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP }, 1672 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1673 "-C" , "0", "-M", "1", OPT_BW_RAM }, 1674 1675 /* 2-stream NUMA bandwidth measurements: */ 1676 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1677 "-C", "0,2", "-M", "0x2", OPT_BW_RAM }, 1678 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1679 "-C", "0,2", "-M", "1x2", OPT_BW_RAM }, 1680 1681 /* Cross-stream NUMA bandwidth measurement: */ 1682 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1683 "-C", "0,8", "-M", "1,0", OPT_BW_RAM }, 1684 1685 /* Convergence latency measurements: */ 1686 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV }, 1687 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV }, 1688 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV }, 1689 { " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1690 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1691 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV }, 1692 { " 4x4-convergence-NOTHP,", 1693 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1694 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV }, 1695 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV }, 1696 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV }, 1697 { " 8x4-convergence-NOTHP,", 1698 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1699 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV }, 1700 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV }, 1701 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV }, 1702 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV }, 1703 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV }, 1704 1705 /* Various NUMA process/thread layout bandwidth measurements: */ 1706 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW }, 1707 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW }, 1708 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW }, 1709 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW }, 1710 { " 8x1-bw-process-NOTHP,", 1711 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP }, 1712 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW }, 1713 1714 { " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW }, 1715 { " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW }, 1716 { "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW }, 1717 { "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW }, 1718 1719 { " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW }, 1720 { " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW }, 1721 { " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW }, 1722 { " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW }, 1723 { " 4x8-bw-thread-NOTHP,", 1724 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP }, 1725 { " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW }, 1726 { " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW }, 1727 1728 { "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW }, 1729 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW }, 1730 1731 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW }, 1732 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP }, 1733 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW }, 1734 { "numa01-bw-thread-NOTHP,", 1735 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP }, 1736 }; 1737 1738 static int bench_all(void) 1739 { 1740 int nr = ARRAY_SIZE(tests); 1741 int ret; 1742 int i; 1743 1744 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'"); 1745 BUG_ON(ret < 0); 1746 1747 for (i = 0; i < nr; i++) { 1748 run_bench_numa(tests[i][0], tests[i] + 1); 1749 } 1750 1751 printf("\n"); 1752 1753 return 0; 1754 } 1755 1756 int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused) 1757 { 1758 init_params(&p0, "main,", argc, argv); 1759 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1760 if (argc) 1761 goto err; 1762 1763 if (p0.run_all) 1764 return bench_all(); 1765 1766 if (__bench_numa(NULL)) 1767 goto err; 1768 1769 return 0; 1770 1771 err: 1772 usage_with_options(numa_usage, options); 1773 return -1; 1774 } 1775