1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * numa.c 4 * 5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance 6 */ 7 8 #include <inttypes.h> 9 /* For the CLR_() macros */ 10 #include <pthread.h> 11 12 #include <subcmd/parse-options.h> 13 #include "../util/cloexec.h" 14 15 #include "bench.h" 16 17 #include <errno.h> 18 #include <sched.h> 19 #include <stdio.h> 20 #include <assert.h> 21 #include <malloc.h> 22 #include <signal.h> 23 #include <stdlib.h> 24 #include <string.h> 25 #include <unistd.h> 26 #include <sys/mman.h> 27 #include <sys/time.h> 28 #include <sys/resource.h> 29 #include <sys/wait.h> 30 #include <sys/prctl.h> 31 #include <sys/types.h> 32 #include <linux/kernel.h> 33 #include <linux/time64.h> 34 #include <linux/numa.h> 35 #include <linux/zalloc.h> 36 37 #include <numa.h> 38 #include <numaif.h> 39 40 #ifndef RUSAGE_THREAD 41 # define RUSAGE_THREAD 1 42 #endif 43 44 /* 45 * Regular printout to the terminal, supressed if -q is specified: 46 */ 47 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0) 48 49 /* 50 * Debug printf: 51 */ 52 #undef dprintf 53 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0) 54 55 struct thread_data { 56 int curr_cpu; 57 cpu_set_t bind_cpumask; 58 int bind_node; 59 u8 *process_data; 60 int process_nr; 61 int thread_nr; 62 int task_nr; 63 unsigned int loops_done; 64 u64 val; 65 u64 runtime_ns; 66 u64 system_time_ns; 67 u64 user_time_ns; 68 double speed_gbs; 69 pthread_mutex_t *process_lock; 70 }; 71 72 /* Parameters set by options: */ 73 74 struct params { 75 /* Startup synchronization: */ 76 bool serialize_startup; 77 78 /* Task hierarchy: */ 79 int nr_proc; 80 int nr_threads; 81 82 /* Working set sizes: */ 83 const char *mb_global_str; 84 const char *mb_proc_str; 85 const char *mb_proc_locked_str; 86 const char *mb_thread_str; 87 88 double mb_global; 89 double mb_proc; 90 double mb_proc_locked; 91 double mb_thread; 92 93 /* Access patterns to the working set: */ 94 bool data_reads; 95 bool data_writes; 96 bool data_backwards; 97 bool data_zero_memset; 98 bool data_rand_walk; 99 u32 nr_loops; 100 u32 nr_secs; 101 u32 sleep_usecs; 102 103 /* Working set initialization: */ 104 bool init_zero; 105 bool init_random; 106 bool init_cpu0; 107 108 /* Misc options: */ 109 int show_details; 110 int run_all; 111 int thp; 112 113 long bytes_global; 114 long bytes_process; 115 long bytes_process_locked; 116 long bytes_thread; 117 118 int nr_tasks; 119 bool show_quiet; 120 121 bool show_convergence; 122 bool measure_convergence; 123 124 int perturb_secs; 125 int nr_cpus; 126 int nr_nodes; 127 128 /* Affinity options -C and -N: */ 129 char *cpu_list_str; 130 char *node_list_str; 131 }; 132 133 134 /* Global, read-writable area, accessible to all processes and threads: */ 135 136 struct global_info { 137 u8 *data; 138 139 pthread_mutex_t startup_mutex; 140 int nr_tasks_started; 141 142 pthread_mutex_t startup_done_mutex; 143 144 pthread_mutex_t start_work_mutex; 145 int nr_tasks_working; 146 147 pthread_mutex_t stop_work_mutex; 148 u64 bytes_done; 149 150 struct thread_data *threads; 151 152 /* Convergence latency measurement: */ 153 bool all_converged; 154 bool stop_work; 155 156 int print_once; 157 158 struct params p; 159 }; 160 161 static struct global_info *g = NULL; 162 163 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset); 164 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset); 165 166 struct params p0; 167 168 static const struct option options[] = { 169 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"), 170 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"), 171 172 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"), 173 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"), 174 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"), 175 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"), 176 177 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"), 178 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"), 179 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"), 180 181 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via reads (can be mixed with -W)"), 182 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"), 183 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"), 184 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"), 185 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"), 186 187 188 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"), 189 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"), 190 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"), 191 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"), 192 193 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"), 194 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"), 195 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"), 196 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, " 197 "convergence is reached when each process (all its threads) is running on a single NUMA node."), 198 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"), 199 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"), 200 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"), 201 202 /* Special option string parsing callbacks: */ 203 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]", 204 "bind the first N tasks to these specific cpus (the rest is unbound)", 205 parse_cpus_opt), 206 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]", 207 "bind the first N tasks to these specific memory nodes (the rest is unbound)", 208 parse_nodes_opt), 209 OPT_END() 210 }; 211 212 static const char * const bench_numa_usage[] = { 213 "perf bench numa <options>", 214 NULL 215 }; 216 217 static const char * const numa_usage[] = { 218 "perf bench numa mem [<options>]", 219 NULL 220 }; 221 222 /* 223 * To get number of numa nodes present. 224 */ 225 static int nr_numa_nodes(void) 226 { 227 int i, nr_nodes = 0; 228 229 for (i = 0; i < g->p.nr_nodes; i++) { 230 if (numa_bitmask_isbitset(numa_nodes_ptr, i)) 231 nr_nodes++; 232 } 233 234 return nr_nodes; 235 } 236 237 /* 238 * To check if given numa node is present. 239 */ 240 static int is_node_present(int node) 241 { 242 return numa_bitmask_isbitset(numa_nodes_ptr, node); 243 } 244 245 /* 246 * To check given numa node has cpus. 247 */ 248 static bool node_has_cpus(int node) 249 { 250 struct bitmask *cpumask = numa_allocate_cpumask(); 251 bool ret = false; /* fall back to nocpus */ 252 int cpu; 253 254 BUG_ON(!cpumask); 255 if (!numa_node_to_cpus(node, cpumask)) { 256 for (cpu = 0; cpu < (int)cpumask->size; cpu++) { 257 if (numa_bitmask_isbitset(cpumask, cpu)) { 258 ret = true; 259 break; 260 } 261 } 262 } 263 numa_free_cpumask(cpumask); 264 265 return ret; 266 } 267 268 static cpu_set_t bind_to_cpu(int target_cpu) 269 { 270 cpu_set_t orig_mask, mask; 271 int ret; 272 273 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); 274 BUG_ON(ret); 275 276 CPU_ZERO(&mask); 277 278 if (target_cpu == -1) { 279 int cpu; 280 281 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 282 CPU_SET(cpu, &mask); 283 } else { 284 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus); 285 CPU_SET(target_cpu, &mask); 286 } 287 288 ret = sched_setaffinity(0, sizeof(mask), &mask); 289 BUG_ON(ret); 290 291 return orig_mask; 292 } 293 294 static cpu_set_t bind_to_node(int target_node) 295 { 296 cpu_set_t orig_mask, mask; 297 int cpu; 298 int ret; 299 300 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); 301 BUG_ON(ret); 302 303 CPU_ZERO(&mask); 304 305 if (target_node == NUMA_NO_NODE) { 306 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 307 CPU_SET(cpu, &mask); 308 } else { 309 struct bitmask *cpumask = numa_allocate_cpumask(); 310 311 BUG_ON(!cpumask); 312 if (!numa_node_to_cpus(target_node, cpumask)) { 313 for (cpu = 0; cpu < (int)cpumask->size; cpu++) { 314 if (numa_bitmask_isbitset(cpumask, cpu)) 315 CPU_SET(cpu, &mask); 316 } 317 } 318 numa_free_cpumask(cpumask); 319 } 320 321 ret = sched_setaffinity(0, sizeof(mask), &mask); 322 BUG_ON(ret); 323 324 return orig_mask; 325 } 326 327 static void bind_to_cpumask(cpu_set_t mask) 328 { 329 int ret; 330 331 ret = sched_setaffinity(0, sizeof(mask), &mask); 332 BUG_ON(ret); 333 } 334 335 static void mempol_restore(void) 336 { 337 int ret; 338 339 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1); 340 341 BUG_ON(ret); 342 } 343 344 static void bind_to_memnode(int node) 345 { 346 unsigned long nodemask; 347 int ret; 348 349 if (node == NUMA_NO_NODE) 350 return; 351 352 BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8); 353 nodemask = 1L << node; 354 355 ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8); 356 dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret); 357 358 BUG_ON(ret); 359 } 360 361 #define HPSIZE (2*1024*1024) 362 363 #define set_taskname(fmt...) \ 364 do { \ 365 char name[20]; \ 366 \ 367 snprintf(name, 20, fmt); \ 368 prctl(PR_SET_NAME, name); \ 369 } while (0) 370 371 static u8 *alloc_data(ssize_t bytes0, int map_flags, 372 int init_zero, int init_cpu0, int thp, int init_random) 373 { 374 cpu_set_t orig_mask; 375 ssize_t bytes; 376 u8 *buf; 377 int ret; 378 379 if (!bytes0) 380 return NULL; 381 382 /* Allocate and initialize all memory on CPU#0: */ 383 if (init_cpu0) { 384 int node = numa_node_of_cpu(0); 385 386 orig_mask = bind_to_node(node); 387 bind_to_memnode(node); 388 } 389 390 bytes = bytes0 + HPSIZE; 391 392 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0); 393 BUG_ON(buf == (void *)-1); 394 395 if (map_flags == MAP_PRIVATE) { 396 if (thp > 0) { 397 ret = madvise(buf, bytes, MADV_HUGEPAGE); 398 if (ret && !g->print_once) { 399 g->print_once = 1; 400 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n"); 401 } 402 } 403 if (thp < 0) { 404 ret = madvise(buf, bytes, MADV_NOHUGEPAGE); 405 if (ret && !g->print_once) { 406 g->print_once = 1; 407 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n"); 408 } 409 } 410 } 411 412 if (init_zero) { 413 bzero(buf, bytes); 414 } else { 415 /* Initialize random contents, different in each word: */ 416 if (init_random) { 417 u64 *wbuf = (void *)buf; 418 long off = rand(); 419 long i; 420 421 for (i = 0; i < bytes/8; i++) 422 wbuf[i] = i + off; 423 } 424 } 425 426 /* Align to 2MB boundary: */ 427 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1)); 428 429 /* Restore affinity: */ 430 if (init_cpu0) { 431 bind_to_cpumask(orig_mask); 432 mempol_restore(); 433 } 434 435 return buf; 436 } 437 438 static void free_data(void *data, ssize_t bytes) 439 { 440 int ret; 441 442 if (!data) 443 return; 444 445 ret = munmap(data, bytes); 446 BUG_ON(ret); 447 } 448 449 /* 450 * Create a shared memory buffer that can be shared between processes, zeroed: 451 */ 452 static void * zalloc_shared_data(ssize_t bytes) 453 { 454 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random); 455 } 456 457 /* 458 * Create a shared memory buffer that can be shared between processes: 459 */ 460 static void * setup_shared_data(ssize_t bytes) 461 { 462 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 463 } 464 465 /* 466 * Allocate process-local memory - this will either be shared between 467 * threads of this process, or only be accessed by this thread: 468 */ 469 static void * setup_private_data(ssize_t bytes) 470 { 471 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 472 } 473 474 /* 475 * Return a process-shared (global) mutex: 476 */ 477 static void init_global_mutex(pthread_mutex_t *mutex) 478 { 479 pthread_mutexattr_t attr; 480 481 pthread_mutexattr_init(&attr); 482 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED); 483 pthread_mutex_init(mutex, &attr); 484 } 485 486 static int parse_cpu_list(const char *arg) 487 { 488 p0.cpu_list_str = strdup(arg); 489 490 dprintf("got CPU list: {%s}\n", p0.cpu_list_str); 491 492 return 0; 493 } 494 495 static int parse_setup_cpu_list(void) 496 { 497 struct thread_data *td; 498 char *str0, *str; 499 int t; 500 501 if (!g->p.cpu_list_str) 502 return 0; 503 504 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 505 506 str0 = str = strdup(g->p.cpu_list_str); 507 t = 0; 508 509 BUG_ON(!str); 510 511 tprintf("# binding tasks to CPUs:\n"); 512 tprintf("# "); 513 514 while (true) { 515 int bind_cpu, bind_cpu_0, bind_cpu_1; 516 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul; 517 int bind_len; 518 int step; 519 int mul; 520 521 tok = strsep(&str, ","); 522 if (!tok) 523 break; 524 525 tok_end = strstr(tok, "-"); 526 527 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 528 if (!tok_end) { 529 /* Single CPU specified: */ 530 bind_cpu_0 = bind_cpu_1 = atol(tok); 531 } else { 532 /* CPU range specified (for example: "5-11"): */ 533 bind_cpu_0 = atol(tok); 534 bind_cpu_1 = atol(tok_end + 1); 535 } 536 537 step = 1; 538 tok_step = strstr(tok, "#"); 539 if (tok_step) { 540 step = atol(tok_step + 1); 541 BUG_ON(step <= 0 || step >= g->p.nr_cpus); 542 } 543 544 /* 545 * Mask length. 546 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4', 547 * where the _4 means the next 4 CPUs are allowed. 548 */ 549 bind_len = 1; 550 tok_len = strstr(tok, "_"); 551 if (tok_len) { 552 bind_len = atol(tok_len + 1); 553 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus); 554 } 555 556 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 557 mul = 1; 558 tok_mul = strstr(tok, "x"); 559 if (tok_mul) { 560 mul = atol(tok_mul + 1); 561 BUG_ON(mul <= 0); 562 } 563 564 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul); 565 566 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) { 567 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus); 568 return -1; 569 } 570 571 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0); 572 BUG_ON(bind_cpu_0 > bind_cpu_1); 573 574 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) { 575 int i; 576 577 for (i = 0; i < mul; i++) { 578 int cpu; 579 580 if (t >= g->p.nr_tasks) { 581 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu); 582 goto out; 583 } 584 td = g->threads + t; 585 586 if (t) 587 tprintf(","); 588 if (bind_len > 1) { 589 tprintf("%2d/%d", bind_cpu, bind_len); 590 } else { 591 tprintf("%2d", bind_cpu); 592 } 593 594 CPU_ZERO(&td->bind_cpumask); 595 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) { 596 BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus); 597 CPU_SET(cpu, &td->bind_cpumask); 598 } 599 t++; 600 } 601 } 602 } 603 out: 604 605 tprintf("\n"); 606 607 if (t < g->p.nr_tasks) 608 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 609 610 free(str0); 611 return 0; 612 } 613 614 static int parse_cpus_opt(const struct option *opt __maybe_unused, 615 const char *arg, int unset __maybe_unused) 616 { 617 if (!arg) 618 return -1; 619 620 return parse_cpu_list(arg); 621 } 622 623 static int parse_node_list(const char *arg) 624 { 625 p0.node_list_str = strdup(arg); 626 627 dprintf("got NODE list: {%s}\n", p0.node_list_str); 628 629 return 0; 630 } 631 632 static int parse_setup_node_list(void) 633 { 634 struct thread_data *td; 635 char *str0, *str; 636 int t; 637 638 if (!g->p.node_list_str) 639 return 0; 640 641 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 642 643 str0 = str = strdup(g->p.node_list_str); 644 t = 0; 645 646 BUG_ON(!str); 647 648 tprintf("# binding tasks to NODEs:\n"); 649 tprintf("# "); 650 651 while (true) { 652 int bind_node, bind_node_0, bind_node_1; 653 char *tok, *tok_end, *tok_step, *tok_mul; 654 int step; 655 int mul; 656 657 tok = strsep(&str, ","); 658 if (!tok) 659 break; 660 661 tok_end = strstr(tok, "-"); 662 663 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 664 if (!tok_end) { 665 /* Single NODE specified: */ 666 bind_node_0 = bind_node_1 = atol(tok); 667 } else { 668 /* NODE range specified (for example: "5-11"): */ 669 bind_node_0 = atol(tok); 670 bind_node_1 = atol(tok_end + 1); 671 } 672 673 step = 1; 674 tok_step = strstr(tok, "#"); 675 if (tok_step) { 676 step = atol(tok_step + 1); 677 BUG_ON(step <= 0 || step >= g->p.nr_nodes); 678 } 679 680 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 681 mul = 1; 682 tok_mul = strstr(tok, "x"); 683 if (tok_mul) { 684 mul = atol(tok_mul + 1); 685 BUG_ON(mul <= 0); 686 } 687 688 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step); 689 690 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) { 691 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes); 692 return -1; 693 } 694 695 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0); 696 BUG_ON(bind_node_0 > bind_node_1); 697 698 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) { 699 int i; 700 701 for (i = 0; i < mul; i++) { 702 if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) { 703 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node); 704 goto out; 705 } 706 td = g->threads + t; 707 708 if (!t) 709 tprintf(" %2d", bind_node); 710 else 711 tprintf(",%2d", bind_node); 712 713 td->bind_node = bind_node; 714 t++; 715 } 716 } 717 } 718 out: 719 720 tprintf("\n"); 721 722 if (t < g->p.nr_tasks) 723 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 724 725 free(str0); 726 return 0; 727 } 728 729 static int parse_nodes_opt(const struct option *opt __maybe_unused, 730 const char *arg, int unset __maybe_unused) 731 { 732 if (!arg) 733 return -1; 734 735 return parse_node_list(arg); 736 } 737 738 #define BIT(x) (1ul << x) 739 740 static inline uint32_t lfsr_32(uint32_t lfsr) 741 { 742 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31); 743 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps); 744 } 745 746 /* 747 * Make sure there's real data dependency to RAM (when read 748 * accesses are enabled), so the compiler, the CPU and the 749 * kernel (KSM, zero page, etc.) cannot optimize away RAM 750 * accesses: 751 */ 752 static inline u64 access_data(u64 *data, u64 val) 753 { 754 if (g->p.data_reads) 755 val += *data; 756 if (g->p.data_writes) 757 *data = val + 1; 758 return val; 759 } 760 761 /* 762 * The worker process does two types of work, a forwards going 763 * loop and a backwards going loop. 764 * 765 * We do this so that on multiprocessor systems we do not create 766 * a 'train' of processing, with highly synchronized processes, 767 * skewing the whole benchmark. 768 */ 769 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val) 770 { 771 long words = bytes/sizeof(u64); 772 u64 *data = (void *)__data; 773 long chunk_0, chunk_1; 774 u64 *d0, *d, *d1; 775 long off; 776 long i; 777 778 BUG_ON(!data && words); 779 BUG_ON(data && !words); 780 781 if (!data) 782 return val; 783 784 /* Very simple memset() work variant: */ 785 if (g->p.data_zero_memset && !g->p.data_rand_walk) { 786 bzero(data, bytes); 787 return val; 788 } 789 790 /* Spread out by PID/TID nr and by loop nr: */ 791 chunk_0 = words/nr_max; 792 chunk_1 = words/g->p.nr_loops; 793 off = nr*chunk_0 + loop*chunk_1; 794 795 while (off >= words) 796 off -= words; 797 798 if (g->p.data_rand_walk) { 799 u32 lfsr = nr + loop + val; 800 int j; 801 802 for (i = 0; i < words/1024; i++) { 803 long start, end; 804 805 lfsr = lfsr_32(lfsr); 806 807 start = lfsr % words; 808 end = min(start + 1024, words-1); 809 810 if (g->p.data_zero_memset) { 811 bzero(data + start, (end-start) * sizeof(u64)); 812 } else { 813 for (j = start; j < end; j++) 814 val = access_data(data + j, val); 815 } 816 } 817 } else if (!g->p.data_backwards || (nr + loop) & 1) { 818 /* Process data forwards: */ 819 820 d0 = data + off; 821 d = data + off + 1; 822 d1 = data + words; 823 824 for (;;) { 825 if (unlikely(d >= d1)) 826 d = data; 827 if (unlikely(d == d0)) 828 break; 829 830 val = access_data(d, val); 831 832 d++; 833 } 834 } else { 835 /* Process data backwards: */ 836 837 d0 = data + off; 838 d = data + off - 1; 839 d1 = data + words; 840 841 for (;;) { 842 if (unlikely(d < data)) 843 d = data + words-1; 844 if (unlikely(d == d0)) 845 break; 846 847 val = access_data(d, val); 848 849 d--; 850 } 851 } 852 853 return val; 854 } 855 856 static void update_curr_cpu(int task_nr, unsigned long bytes_worked) 857 { 858 unsigned int cpu; 859 860 cpu = sched_getcpu(); 861 862 g->threads[task_nr].curr_cpu = cpu; 863 prctl(0, bytes_worked); 864 } 865 866 #define MAX_NR_NODES 64 867 868 /* 869 * Count the number of nodes a process's threads 870 * are spread out on. 871 * 872 * A count of 1 means that the process is compressed 873 * to a single node. A count of g->p.nr_nodes means it's 874 * spread out on the whole system. 875 */ 876 static int count_process_nodes(int process_nr) 877 { 878 char node_present[MAX_NR_NODES] = { 0, }; 879 int nodes; 880 int n, t; 881 882 for (t = 0; t < g->p.nr_threads; t++) { 883 struct thread_data *td; 884 int task_nr; 885 int node; 886 887 task_nr = process_nr*g->p.nr_threads + t; 888 td = g->threads + task_nr; 889 890 node = numa_node_of_cpu(td->curr_cpu); 891 if (node < 0) /* curr_cpu was likely still -1 */ 892 return 0; 893 894 node_present[node] = 1; 895 } 896 897 nodes = 0; 898 899 for (n = 0; n < MAX_NR_NODES; n++) 900 nodes += node_present[n]; 901 902 return nodes; 903 } 904 905 /* 906 * Count the number of distinct process-threads a node contains. 907 * 908 * A count of 1 means that the node contains only a single 909 * process. If all nodes on the system contain at most one 910 * process then we are well-converged. 911 */ 912 static int count_node_processes(int node) 913 { 914 int processes = 0; 915 int t, p; 916 917 for (p = 0; p < g->p.nr_proc; p++) { 918 for (t = 0; t < g->p.nr_threads; t++) { 919 struct thread_data *td; 920 int task_nr; 921 int n; 922 923 task_nr = p*g->p.nr_threads + t; 924 td = g->threads + task_nr; 925 926 n = numa_node_of_cpu(td->curr_cpu); 927 if (n == node) { 928 processes++; 929 break; 930 } 931 } 932 } 933 934 return processes; 935 } 936 937 static void calc_convergence_compression(int *strong) 938 { 939 unsigned int nodes_min, nodes_max; 940 int p; 941 942 nodes_min = -1; 943 nodes_max = 0; 944 945 for (p = 0; p < g->p.nr_proc; p++) { 946 unsigned int nodes = count_process_nodes(p); 947 948 if (!nodes) { 949 *strong = 0; 950 return; 951 } 952 953 nodes_min = min(nodes, nodes_min); 954 nodes_max = max(nodes, nodes_max); 955 } 956 957 /* Strong convergence: all threads compress on a single node: */ 958 if (nodes_min == 1 && nodes_max == 1) { 959 *strong = 1; 960 } else { 961 *strong = 0; 962 tprintf(" {%d-%d}", nodes_min, nodes_max); 963 } 964 } 965 966 static void calc_convergence(double runtime_ns_max, double *convergence) 967 { 968 unsigned int loops_done_min, loops_done_max; 969 int process_groups; 970 int nodes[MAX_NR_NODES]; 971 int distance; 972 int nr_min; 973 int nr_max; 974 int strong; 975 int sum; 976 int nr; 977 int node; 978 int cpu; 979 int t; 980 981 if (!g->p.show_convergence && !g->p.measure_convergence) 982 return; 983 984 for (node = 0; node < g->p.nr_nodes; node++) 985 nodes[node] = 0; 986 987 loops_done_min = -1; 988 loops_done_max = 0; 989 990 for (t = 0; t < g->p.nr_tasks; t++) { 991 struct thread_data *td = g->threads + t; 992 unsigned int loops_done; 993 994 cpu = td->curr_cpu; 995 996 /* Not all threads have written it yet: */ 997 if (cpu < 0) 998 continue; 999 1000 node = numa_node_of_cpu(cpu); 1001 1002 nodes[node]++; 1003 1004 loops_done = td->loops_done; 1005 loops_done_min = min(loops_done, loops_done_min); 1006 loops_done_max = max(loops_done, loops_done_max); 1007 } 1008 1009 nr_max = 0; 1010 nr_min = g->p.nr_tasks; 1011 sum = 0; 1012 1013 for (node = 0; node < g->p.nr_nodes; node++) { 1014 if (!is_node_present(node)) 1015 continue; 1016 nr = nodes[node]; 1017 nr_min = min(nr, nr_min); 1018 nr_max = max(nr, nr_max); 1019 sum += nr; 1020 } 1021 BUG_ON(nr_min > nr_max); 1022 1023 BUG_ON(sum > g->p.nr_tasks); 1024 1025 if (0 && (sum < g->p.nr_tasks)) 1026 return; 1027 1028 /* 1029 * Count the number of distinct process groups present 1030 * on nodes - when we are converged this will decrease 1031 * to g->p.nr_proc: 1032 */ 1033 process_groups = 0; 1034 1035 for (node = 0; node < g->p.nr_nodes; node++) { 1036 int processes; 1037 1038 if (!is_node_present(node)) 1039 continue; 1040 processes = count_node_processes(node); 1041 nr = nodes[node]; 1042 tprintf(" %2d/%-2d", nr, processes); 1043 1044 process_groups += processes; 1045 } 1046 1047 distance = nr_max - nr_min; 1048 1049 tprintf(" [%2d/%-2d]", distance, process_groups); 1050 1051 tprintf(" l:%3d-%-3d (%3d)", 1052 loops_done_min, loops_done_max, loops_done_max-loops_done_min); 1053 1054 if (loops_done_min && loops_done_max) { 1055 double skew = 1.0 - (double)loops_done_min/loops_done_max; 1056 1057 tprintf(" [%4.1f%%]", skew * 100.0); 1058 } 1059 1060 calc_convergence_compression(&strong); 1061 1062 if (strong && process_groups == g->p.nr_proc) { 1063 if (!*convergence) { 1064 *convergence = runtime_ns_max; 1065 tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC); 1066 if (g->p.measure_convergence) { 1067 g->all_converged = true; 1068 g->stop_work = true; 1069 } 1070 } 1071 } else { 1072 if (*convergence) { 1073 tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC); 1074 *convergence = 0; 1075 } 1076 tprintf("\n"); 1077 } 1078 } 1079 1080 static void show_summary(double runtime_ns_max, int l, double *convergence) 1081 { 1082 tprintf("\r # %5.1f%% [%.1f mins]", 1083 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0); 1084 1085 calc_convergence(runtime_ns_max, convergence); 1086 1087 if (g->p.show_details >= 0) 1088 fflush(stdout); 1089 } 1090 1091 static void *worker_thread(void *__tdata) 1092 { 1093 struct thread_data *td = __tdata; 1094 struct timeval start0, start, stop, diff; 1095 int process_nr = td->process_nr; 1096 int thread_nr = td->thread_nr; 1097 unsigned long last_perturbance; 1098 int task_nr = td->task_nr; 1099 int details = g->p.show_details; 1100 int first_task, last_task; 1101 double convergence = 0; 1102 u64 val = td->val; 1103 double runtime_ns_max; 1104 u8 *global_data; 1105 u8 *process_data; 1106 u8 *thread_data; 1107 u64 bytes_done, secs; 1108 long work_done; 1109 u32 l; 1110 struct rusage rusage; 1111 1112 bind_to_cpumask(td->bind_cpumask); 1113 bind_to_memnode(td->bind_node); 1114 1115 set_taskname("thread %d/%d", process_nr, thread_nr); 1116 1117 global_data = g->data; 1118 process_data = td->process_data; 1119 thread_data = setup_private_data(g->p.bytes_thread); 1120 1121 bytes_done = 0; 1122 1123 last_task = 0; 1124 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1) 1125 last_task = 1; 1126 1127 first_task = 0; 1128 if (process_nr == 0 && thread_nr == 0) 1129 first_task = 1; 1130 1131 if (details >= 2) { 1132 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n", 1133 process_nr, thread_nr, global_data, process_data, thread_data); 1134 } 1135 1136 if (g->p.serialize_startup) { 1137 pthread_mutex_lock(&g->startup_mutex); 1138 g->nr_tasks_started++; 1139 pthread_mutex_unlock(&g->startup_mutex); 1140 1141 /* Here we will wait for the main process to start us all at once: */ 1142 pthread_mutex_lock(&g->start_work_mutex); 1143 g->nr_tasks_working++; 1144 1145 /* Last one wake the main process: */ 1146 if (g->nr_tasks_working == g->p.nr_tasks) 1147 pthread_mutex_unlock(&g->startup_done_mutex); 1148 1149 pthread_mutex_unlock(&g->start_work_mutex); 1150 } 1151 1152 gettimeofday(&start0, NULL); 1153 1154 start = stop = start0; 1155 last_perturbance = start.tv_sec; 1156 1157 for (l = 0; l < g->p.nr_loops; l++) { 1158 start = stop; 1159 1160 if (g->stop_work) 1161 break; 1162 1163 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val); 1164 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val); 1165 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val); 1166 1167 if (g->p.sleep_usecs) { 1168 pthread_mutex_lock(td->process_lock); 1169 usleep(g->p.sleep_usecs); 1170 pthread_mutex_unlock(td->process_lock); 1171 } 1172 /* 1173 * Amount of work to be done under a process-global lock: 1174 */ 1175 if (g->p.bytes_process_locked) { 1176 pthread_mutex_lock(td->process_lock); 1177 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val); 1178 pthread_mutex_unlock(td->process_lock); 1179 } 1180 1181 work_done = g->p.bytes_global + g->p.bytes_process + 1182 g->p.bytes_process_locked + g->p.bytes_thread; 1183 1184 update_curr_cpu(task_nr, work_done); 1185 bytes_done += work_done; 1186 1187 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs) 1188 continue; 1189 1190 td->loops_done = l; 1191 1192 gettimeofday(&stop, NULL); 1193 1194 /* Check whether our max runtime timed out: */ 1195 if (g->p.nr_secs) { 1196 timersub(&stop, &start0, &diff); 1197 if ((u32)diff.tv_sec >= g->p.nr_secs) { 1198 g->stop_work = true; 1199 break; 1200 } 1201 } 1202 1203 /* Update the summary at most once per second: */ 1204 if (start.tv_sec == stop.tv_sec) 1205 continue; 1206 1207 /* 1208 * Perturb the first task's equilibrium every g->p.perturb_secs seconds, 1209 * by migrating to CPU#0: 1210 */ 1211 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) { 1212 cpu_set_t orig_mask; 1213 int target_cpu; 1214 int this_cpu; 1215 1216 last_perturbance = stop.tv_sec; 1217 1218 /* 1219 * Depending on where we are running, move into 1220 * the other half of the system, to create some 1221 * real disturbance: 1222 */ 1223 this_cpu = g->threads[task_nr].curr_cpu; 1224 if (this_cpu < g->p.nr_cpus/2) 1225 target_cpu = g->p.nr_cpus-1; 1226 else 1227 target_cpu = 0; 1228 1229 orig_mask = bind_to_cpu(target_cpu); 1230 1231 /* Here we are running on the target CPU already */ 1232 if (details >= 1) 1233 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu); 1234 1235 bind_to_cpumask(orig_mask); 1236 } 1237 1238 if (details >= 3) { 1239 timersub(&stop, &start, &diff); 1240 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC; 1241 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC; 1242 1243 if (details >= 0) { 1244 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n", 1245 process_nr, thread_nr, runtime_ns_max / bytes_done, val); 1246 } 1247 fflush(stdout); 1248 } 1249 if (!last_task) 1250 continue; 1251 1252 timersub(&stop, &start0, &diff); 1253 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC; 1254 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC; 1255 1256 show_summary(runtime_ns_max, l, &convergence); 1257 } 1258 1259 gettimeofday(&stop, NULL); 1260 timersub(&stop, &start0, &diff); 1261 td->runtime_ns = diff.tv_sec * NSEC_PER_SEC; 1262 td->runtime_ns += diff.tv_usec * NSEC_PER_USEC; 1263 secs = td->runtime_ns / NSEC_PER_SEC; 1264 td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0; 1265 1266 getrusage(RUSAGE_THREAD, &rusage); 1267 td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC; 1268 td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC; 1269 td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC; 1270 td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC; 1271 1272 free_data(thread_data, g->p.bytes_thread); 1273 1274 pthread_mutex_lock(&g->stop_work_mutex); 1275 g->bytes_done += bytes_done; 1276 pthread_mutex_unlock(&g->stop_work_mutex); 1277 1278 return NULL; 1279 } 1280 1281 /* 1282 * A worker process starts a couple of threads: 1283 */ 1284 static void worker_process(int process_nr) 1285 { 1286 pthread_mutex_t process_lock; 1287 struct thread_data *td; 1288 pthread_t *pthreads; 1289 u8 *process_data; 1290 int task_nr; 1291 int ret; 1292 int t; 1293 1294 pthread_mutex_init(&process_lock, NULL); 1295 set_taskname("process %d", process_nr); 1296 1297 /* 1298 * Pick up the memory policy and the CPU binding of our first thread, 1299 * so that we initialize memory accordingly: 1300 */ 1301 task_nr = process_nr*g->p.nr_threads; 1302 td = g->threads + task_nr; 1303 1304 bind_to_memnode(td->bind_node); 1305 bind_to_cpumask(td->bind_cpumask); 1306 1307 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t)); 1308 process_data = setup_private_data(g->p.bytes_process); 1309 1310 if (g->p.show_details >= 3) { 1311 printf(" # process %2d global mem: %p, process mem: %p\n", 1312 process_nr, g->data, process_data); 1313 } 1314 1315 for (t = 0; t < g->p.nr_threads; t++) { 1316 task_nr = process_nr*g->p.nr_threads + t; 1317 td = g->threads + task_nr; 1318 1319 td->process_data = process_data; 1320 td->process_nr = process_nr; 1321 td->thread_nr = t; 1322 td->task_nr = task_nr; 1323 td->val = rand(); 1324 td->curr_cpu = -1; 1325 td->process_lock = &process_lock; 1326 1327 ret = pthread_create(pthreads + t, NULL, worker_thread, td); 1328 BUG_ON(ret); 1329 } 1330 1331 for (t = 0; t < g->p.nr_threads; t++) { 1332 ret = pthread_join(pthreads[t], NULL); 1333 BUG_ON(ret); 1334 } 1335 1336 free_data(process_data, g->p.bytes_process); 1337 free(pthreads); 1338 } 1339 1340 static void print_summary(void) 1341 { 1342 if (g->p.show_details < 0) 1343 return; 1344 1345 printf("\n ###\n"); 1346 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n", 1347 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus); 1348 printf(" # %5dx %5ldMB global shared mem operations\n", 1349 g->p.nr_loops, g->p.bytes_global/1024/1024); 1350 printf(" # %5dx %5ldMB process shared mem operations\n", 1351 g->p.nr_loops, g->p.bytes_process/1024/1024); 1352 printf(" # %5dx %5ldMB thread local mem operations\n", 1353 g->p.nr_loops, g->p.bytes_thread/1024/1024); 1354 1355 printf(" ###\n"); 1356 1357 printf("\n ###\n"); fflush(stdout); 1358 } 1359 1360 static void init_thread_data(void) 1361 { 1362 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1363 int t; 1364 1365 g->threads = zalloc_shared_data(size); 1366 1367 for (t = 0; t < g->p.nr_tasks; t++) { 1368 struct thread_data *td = g->threads + t; 1369 int cpu; 1370 1371 /* Allow all nodes by default: */ 1372 td->bind_node = NUMA_NO_NODE; 1373 1374 /* Allow all CPUs by default: */ 1375 CPU_ZERO(&td->bind_cpumask); 1376 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 1377 CPU_SET(cpu, &td->bind_cpumask); 1378 } 1379 } 1380 1381 static void deinit_thread_data(void) 1382 { 1383 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1384 1385 free_data(g->threads, size); 1386 } 1387 1388 static int init(void) 1389 { 1390 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0); 1391 1392 /* Copy over options: */ 1393 g->p = p0; 1394 1395 g->p.nr_cpus = numa_num_configured_cpus(); 1396 1397 g->p.nr_nodes = numa_max_node() + 1; 1398 1399 /* char array in count_process_nodes(): */ 1400 BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0); 1401 1402 if (g->p.show_quiet && !g->p.show_details) 1403 g->p.show_details = -1; 1404 1405 /* Some memory should be specified: */ 1406 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str) 1407 return -1; 1408 1409 if (g->p.mb_global_str) { 1410 g->p.mb_global = atof(g->p.mb_global_str); 1411 BUG_ON(g->p.mb_global < 0); 1412 } 1413 1414 if (g->p.mb_proc_str) { 1415 g->p.mb_proc = atof(g->p.mb_proc_str); 1416 BUG_ON(g->p.mb_proc < 0); 1417 } 1418 1419 if (g->p.mb_proc_locked_str) { 1420 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str); 1421 BUG_ON(g->p.mb_proc_locked < 0); 1422 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc); 1423 } 1424 1425 if (g->p.mb_thread_str) { 1426 g->p.mb_thread = atof(g->p.mb_thread_str); 1427 BUG_ON(g->p.mb_thread < 0); 1428 } 1429 1430 BUG_ON(g->p.nr_threads <= 0); 1431 BUG_ON(g->p.nr_proc <= 0); 1432 1433 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads; 1434 1435 g->p.bytes_global = g->p.mb_global *1024L*1024L; 1436 g->p.bytes_process = g->p.mb_proc *1024L*1024L; 1437 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L; 1438 g->p.bytes_thread = g->p.mb_thread *1024L*1024L; 1439 1440 g->data = setup_shared_data(g->p.bytes_global); 1441 1442 /* Startup serialization: */ 1443 init_global_mutex(&g->start_work_mutex); 1444 init_global_mutex(&g->startup_mutex); 1445 init_global_mutex(&g->startup_done_mutex); 1446 init_global_mutex(&g->stop_work_mutex); 1447 1448 init_thread_data(); 1449 1450 tprintf("#\n"); 1451 if (parse_setup_cpu_list() || parse_setup_node_list()) 1452 return -1; 1453 tprintf("#\n"); 1454 1455 print_summary(); 1456 1457 return 0; 1458 } 1459 1460 static void deinit(void) 1461 { 1462 free_data(g->data, g->p.bytes_global); 1463 g->data = NULL; 1464 1465 deinit_thread_data(); 1466 1467 free_data(g, sizeof(*g)); 1468 g = NULL; 1469 } 1470 1471 /* 1472 * Print a short or long result, depending on the verbosity setting: 1473 */ 1474 static void print_res(const char *name, double val, 1475 const char *txt_unit, const char *txt_short, const char *txt_long) 1476 { 1477 if (!name) 1478 name = "main,"; 1479 1480 if (!g->p.show_quiet) 1481 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short); 1482 else 1483 printf(" %14.3f %s\n", val, txt_long); 1484 } 1485 1486 static int __bench_numa(const char *name) 1487 { 1488 struct timeval start, stop, diff; 1489 u64 runtime_ns_min, runtime_ns_sum; 1490 pid_t *pids, pid, wpid; 1491 double delta_runtime; 1492 double runtime_avg; 1493 double runtime_sec_max; 1494 double runtime_sec_min; 1495 int wait_stat; 1496 double bytes; 1497 int i, t, p; 1498 1499 if (init()) 1500 return -1; 1501 1502 pids = zalloc(g->p.nr_proc * sizeof(*pids)); 1503 pid = -1; 1504 1505 /* All threads try to acquire it, this way we can wait for them to start up: */ 1506 pthread_mutex_lock(&g->start_work_mutex); 1507 1508 if (g->p.serialize_startup) { 1509 tprintf(" #\n"); 1510 tprintf(" # Startup synchronization: ..."); fflush(stdout); 1511 } 1512 1513 gettimeofday(&start, NULL); 1514 1515 for (i = 0; i < g->p.nr_proc; i++) { 1516 pid = fork(); 1517 dprintf(" # process %2d: PID %d\n", i, pid); 1518 1519 BUG_ON(pid < 0); 1520 if (!pid) { 1521 /* Child process: */ 1522 worker_process(i); 1523 1524 exit(0); 1525 } 1526 pids[i] = pid; 1527 1528 } 1529 /* Wait for all the threads to start up: */ 1530 while (g->nr_tasks_started != g->p.nr_tasks) 1531 usleep(USEC_PER_MSEC); 1532 1533 BUG_ON(g->nr_tasks_started != g->p.nr_tasks); 1534 1535 if (g->p.serialize_startup) { 1536 double startup_sec; 1537 1538 pthread_mutex_lock(&g->startup_done_mutex); 1539 1540 /* This will start all threads: */ 1541 pthread_mutex_unlock(&g->start_work_mutex); 1542 1543 /* This mutex is locked - the last started thread will wake us: */ 1544 pthread_mutex_lock(&g->startup_done_mutex); 1545 1546 gettimeofday(&stop, NULL); 1547 1548 timersub(&stop, &start, &diff); 1549 1550 startup_sec = diff.tv_sec * NSEC_PER_SEC; 1551 startup_sec += diff.tv_usec * NSEC_PER_USEC; 1552 startup_sec /= NSEC_PER_SEC; 1553 1554 tprintf(" threads initialized in %.6f seconds.\n", startup_sec); 1555 tprintf(" #\n"); 1556 1557 start = stop; 1558 pthread_mutex_unlock(&g->startup_done_mutex); 1559 } else { 1560 gettimeofday(&start, NULL); 1561 } 1562 1563 /* Parent process: */ 1564 1565 1566 for (i = 0; i < g->p.nr_proc; i++) { 1567 wpid = waitpid(pids[i], &wait_stat, 0); 1568 BUG_ON(wpid < 0); 1569 BUG_ON(!WIFEXITED(wait_stat)); 1570 1571 } 1572 1573 runtime_ns_sum = 0; 1574 runtime_ns_min = -1LL; 1575 1576 for (t = 0; t < g->p.nr_tasks; t++) { 1577 u64 thread_runtime_ns = g->threads[t].runtime_ns; 1578 1579 runtime_ns_sum += thread_runtime_ns; 1580 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min); 1581 } 1582 1583 gettimeofday(&stop, NULL); 1584 timersub(&stop, &start, &diff); 1585 1586 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT); 1587 1588 tprintf("\n ###\n"); 1589 tprintf("\n"); 1590 1591 runtime_sec_max = diff.tv_sec * NSEC_PER_SEC; 1592 runtime_sec_max += diff.tv_usec * NSEC_PER_USEC; 1593 runtime_sec_max /= NSEC_PER_SEC; 1594 1595 runtime_sec_min = runtime_ns_min / NSEC_PER_SEC; 1596 1597 bytes = g->bytes_done; 1598 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC; 1599 1600 if (g->p.measure_convergence) { 1601 print_res(name, runtime_sec_max, 1602 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge"); 1603 } 1604 1605 print_res(name, runtime_sec_max, 1606 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime"); 1607 1608 print_res(name, runtime_sec_min, 1609 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime"); 1610 1611 print_res(name, runtime_avg, 1612 "secs,", "runtime-avg/thread", "secs average thread-runtime"); 1613 1614 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0; 1615 print_res(name, delta_runtime / runtime_sec_max * 100.0, 1616 "%,", "spread-runtime/thread", "% difference between max/avg runtime"); 1617 1618 print_res(name, bytes / g->p.nr_tasks / 1e9, 1619 "GB,", "data/thread", "GB data processed, per thread"); 1620 1621 print_res(name, bytes / 1e9, 1622 "GB,", "data-total", "GB data processed, total"); 1623 1624 print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks), 1625 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime"); 1626 1627 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max, 1628 "GB/sec,", "thread-speed", "GB/sec/thread speed"); 1629 1630 print_res(name, bytes / runtime_sec_max / 1e9, 1631 "GB/sec,", "total-speed", "GB/sec total speed"); 1632 1633 if (g->p.show_details >= 2) { 1634 char tname[14 + 2 * 10 + 1]; 1635 struct thread_data *td; 1636 for (p = 0; p < g->p.nr_proc; p++) { 1637 for (t = 0; t < g->p.nr_threads; t++) { 1638 memset(tname, 0, sizeof(tname)); 1639 td = g->threads + p*g->p.nr_threads + t; 1640 snprintf(tname, sizeof(tname), "process%d:thread%d", p, t); 1641 print_res(tname, td->speed_gbs, 1642 "GB/sec", "thread-speed", "GB/sec/thread speed"); 1643 print_res(tname, td->system_time_ns / NSEC_PER_SEC, 1644 "secs", "thread-system-time", "system CPU time/thread"); 1645 print_res(tname, td->user_time_ns / NSEC_PER_SEC, 1646 "secs", "thread-user-time", "user CPU time/thread"); 1647 } 1648 } 1649 } 1650 1651 free(pids); 1652 1653 deinit(); 1654 1655 return 0; 1656 } 1657 1658 #define MAX_ARGS 50 1659 1660 static int command_size(const char **argv) 1661 { 1662 int size = 0; 1663 1664 while (*argv) { 1665 size++; 1666 argv++; 1667 } 1668 1669 BUG_ON(size >= MAX_ARGS); 1670 1671 return size; 1672 } 1673 1674 static void init_params(struct params *p, const char *name, int argc, const char **argv) 1675 { 1676 int i; 1677 1678 printf("\n # Running %s \"perf bench numa", name); 1679 1680 for (i = 0; i < argc; i++) 1681 printf(" %s", argv[i]); 1682 1683 printf("\"\n"); 1684 1685 memset(p, 0, sizeof(*p)); 1686 1687 /* Initialize nonzero defaults: */ 1688 1689 p->serialize_startup = 1; 1690 p->data_reads = true; 1691 p->data_writes = true; 1692 p->data_backwards = true; 1693 p->data_rand_walk = true; 1694 p->nr_loops = -1; 1695 p->init_random = true; 1696 p->mb_global_str = "1"; 1697 p->nr_proc = 1; 1698 p->nr_threads = 1; 1699 p->nr_secs = 5; 1700 p->run_all = argc == 1; 1701 } 1702 1703 static int run_bench_numa(const char *name, const char **argv) 1704 { 1705 int argc = command_size(argv); 1706 1707 init_params(&p0, name, argc, argv); 1708 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1709 if (argc) 1710 goto err; 1711 1712 if (__bench_numa(name)) 1713 goto err; 1714 1715 return 0; 1716 1717 err: 1718 return -1; 1719 } 1720 1721 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk" 1722 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1" 1723 1724 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1" 1725 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1" 1726 1727 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1" 1728 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1" 1729 1730 /* 1731 * The built-in test-suite executed by "perf bench numa -a". 1732 * 1733 * (A minimum of 4 nodes and 16 GB of RAM is recommended.) 1734 */ 1735 static const char *tests[][MAX_ARGS] = { 1736 /* Basic single-stream NUMA bandwidth measurements: */ 1737 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1738 "-C" , "0", "-M", "0", OPT_BW_RAM }, 1739 { "RAM-bw-local-NOTHP,", 1740 "mem", "-p", "1", "-t", "1", "-P", "1024", 1741 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP }, 1742 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1743 "-C" , "0", "-M", "1", OPT_BW_RAM }, 1744 1745 /* 2-stream NUMA bandwidth measurements: */ 1746 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1747 "-C", "0,2", "-M", "0x2", OPT_BW_RAM }, 1748 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1749 "-C", "0,2", "-M", "1x2", OPT_BW_RAM }, 1750 1751 /* Cross-stream NUMA bandwidth measurement: */ 1752 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1753 "-C", "0,8", "-M", "1,0", OPT_BW_RAM }, 1754 1755 /* Convergence latency measurements: */ 1756 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV }, 1757 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV }, 1758 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV }, 1759 { " 2x3-convergence,", "mem", "-p", "2", "-t", "3", "-P", "1020", OPT_CONV }, 1760 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1761 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV }, 1762 { " 4x4-convergence-NOTHP,", 1763 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1764 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV }, 1765 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV }, 1766 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV }, 1767 { " 8x4-convergence-NOTHP,", 1768 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1769 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV }, 1770 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV }, 1771 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV }, 1772 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV }, 1773 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV }, 1774 1775 /* Various NUMA process/thread layout bandwidth measurements: */ 1776 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW }, 1777 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW }, 1778 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW }, 1779 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW }, 1780 { " 8x1-bw-process-NOTHP,", 1781 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP }, 1782 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW }, 1783 1784 { " 1x4-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW }, 1785 { " 1x8-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW }, 1786 { "1x16-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW }, 1787 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW }, 1788 1789 { " 2x3-bw-process,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW }, 1790 { " 4x4-bw-process,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW }, 1791 { " 4x6-bw-process,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW }, 1792 { " 4x8-bw-process,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW }, 1793 { " 4x8-bw-process-NOTHP,", 1794 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP }, 1795 { " 3x3-bw-process,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW }, 1796 { " 5x5-bw-process,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW }, 1797 1798 { "2x16-bw-process,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW }, 1799 { "1x32-bw-process,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW }, 1800 1801 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW }, 1802 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP }, 1803 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW }, 1804 { "numa01-bw-thread-NOTHP,", 1805 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP }, 1806 }; 1807 1808 static int bench_all(void) 1809 { 1810 int nr = ARRAY_SIZE(tests); 1811 int ret; 1812 int i; 1813 1814 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'"); 1815 BUG_ON(ret < 0); 1816 1817 for (i = 0; i < nr; i++) { 1818 run_bench_numa(tests[i][0], tests[i] + 1); 1819 } 1820 1821 printf("\n"); 1822 1823 return 0; 1824 } 1825 1826 int bench_numa(int argc, const char **argv) 1827 { 1828 init_params(&p0, "main,", argc, argv); 1829 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1830 if (argc) 1831 goto err; 1832 1833 if (p0.run_all) 1834 return bench_all(); 1835 1836 if (__bench_numa(NULL)) 1837 goto err; 1838 1839 return 0; 1840 1841 err: 1842 usage_with_options(numa_usage, options); 1843 return -1; 1844 } 1845