xref: /openbmc/linux/tools/perf/bench/numa.c (revision 3213486f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * numa.c
4  *
5  * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
6  */
7 
8 #include <inttypes.h>
9 /* For the CLR_() macros */
10 #include <pthread.h>
11 
12 #include "../perf.h"
13 #include "../builtin.h"
14 #include "../util/util.h"
15 #include <subcmd/parse-options.h>
16 #include "../util/cloexec.h"
17 
18 #include "bench.h"
19 
20 #include <errno.h>
21 #include <sched.h>
22 #include <stdio.h>
23 #include <assert.h>
24 #include <malloc.h>
25 #include <signal.h>
26 #include <stdlib.h>
27 #include <string.h>
28 #include <unistd.h>
29 #include <sys/mman.h>
30 #include <sys/time.h>
31 #include <sys/resource.h>
32 #include <sys/wait.h>
33 #include <sys/prctl.h>
34 #include <sys/types.h>
35 #include <linux/kernel.h>
36 #include <linux/time64.h>
37 #include <linux/numa.h>
38 
39 #include <numa.h>
40 #include <numaif.h>
41 
42 /*
43  * Regular printout to the terminal, supressed if -q is specified:
44  */
45 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
46 
47 /*
48  * Debug printf:
49  */
50 #undef dprintf
51 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
52 
53 struct thread_data {
54 	int			curr_cpu;
55 	cpu_set_t		bind_cpumask;
56 	int			bind_node;
57 	u8			*process_data;
58 	int			process_nr;
59 	int			thread_nr;
60 	int			task_nr;
61 	unsigned int		loops_done;
62 	u64			val;
63 	u64			runtime_ns;
64 	u64			system_time_ns;
65 	u64			user_time_ns;
66 	double			speed_gbs;
67 	pthread_mutex_t		*process_lock;
68 };
69 
70 /* Parameters set by options: */
71 
72 struct params {
73 	/* Startup synchronization: */
74 	bool			serialize_startup;
75 
76 	/* Task hierarchy: */
77 	int			nr_proc;
78 	int			nr_threads;
79 
80 	/* Working set sizes: */
81 	const char		*mb_global_str;
82 	const char		*mb_proc_str;
83 	const char		*mb_proc_locked_str;
84 	const char		*mb_thread_str;
85 
86 	double			mb_global;
87 	double			mb_proc;
88 	double			mb_proc_locked;
89 	double			mb_thread;
90 
91 	/* Access patterns to the working set: */
92 	bool			data_reads;
93 	bool			data_writes;
94 	bool			data_backwards;
95 	bool			data_zero_memset;
96 	bool			data_rand_walk;
97 	u32			nr_loops;
98 	u32			nr_secs;
99 	u32			sleep_usecs;
100 
101 	/* Working set initialization: */
102 	bool			init_zero;
103 	bool			init_random;
104 	bool			init_cpu0;
105 
106 	/* Misc options: */
107 	int			show_details;
108 	int			run_all;
109 	int			thp;
110 
111 	long			bytes_global;
112 	long			bytes_process;
113 	long			bytes_process_locked;
114 	long			bytes_thread;
115 
116 	int			nr_tasks;
117 	bool			show_quiet;
118 
119 	bool			show_convergence;
120 	bool			measure_convergence;
121 
122 	int			perturb_secs;
123 	int			nr_cpus;
124 	int			nr_nodes;
125 
126 	/* Affinity options -C and -N: */
127 	char			*cpu_list_str;
128 	char			*node_list_str;
129 };
130 
131 
132 /* Global, read-writable area, accessible to all processes and threads: */
133 
134 struct global_info {
135 	u8			*data;
136 
137 	pthread_mutex_t		startup_mutex;
138 	int			nr_tasks_started;
139 
140 	pthread_mutex_t		startup_done_mutex;
141 
142 	pthread_mutex_t		start_work_mutex;
143 	int			nr_tasks_working;
144 
145 	pthread_mutex_t		stop_work_mutex;
146 	u64			bytes_done;
147 
148 	struct thread_data	*threads;
149 
150 	/* Convergence latency measurement: */
151 	bool			all_converged;
152 	bool			stop_work;
153 
154 	int			print_once;
155 
156 	struct params		p;
157 };
158 
159 static struct global_info	*g = NULL;
160 
161 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
162 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
163 
164 struct params p0;
165 
166 static const struct option options[] = {
167 	OPT_INTEGER('p', "nr_proc"	, &p0.nr_proc,		"number of processes"),
168 	OPT_INTEGER('t', "nr_threads"	, &p0.nr_threads,	"number of threads per process"),
169 
170 	OPT_STRING('G', "mb_global"	, &p0.mb_global_str,	"MB", "global  memory (MBs)"),
171 	OPT_STRING('P', "mb_proc"	, &p0.mb_proc_str,	"MB", "process memory (MBs)"),
172 	OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
173 	OPT_STRING('T', "mb_thread"	, &p0.mb_thread_str,	"MB", "thread  memory (MBs)"),
174 
175 	OPT_UINTEGER('l', "nr_loops"	, &p0.nr_loops,		"max number of loops to run (default: unlimited)"),
176 	OPT_UINTEGER('s', "nr_secs"	, &p0.nr_secs,		"max number of seconds to run (default: 5 secs)"),
177 	OPT_UINTEGER('u', "usleep"	, &p0.sleep_usecs,	"usecs to sleep per loop iteration"),
178 
179 	OPT_BOOLEAN('R', "data_reads"	, &p0.data_reads,	"access the data via reads (can be mixed with -W)"),
180 	OPT_BOOLEAN('W', "data_writes"	, &p0.data_writes,	"access the data via writes (can be mixed with -R)"),
181 	OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,	"access the data backwards as well"),
182 	OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
183 	OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,	"access the data with random (32bit LFSR) walk"),
184 
185 
186 	OPT_BOOLEAN('z', "init_zero"	, &p0.init_zero,	"bzero the initial allocations"),
187 	OPT_BOOLEAN('I', "init_random"	, &p0.init_random,	"randomize the contents of the initial allocations"),
188 	OPT_BOOLEAN('0', "init_cpu0"	, &p0.init_cpu0,	"do the initial allocations on CPU#0"),
189 	OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,	"perturb thread 0/0 every X secs, to test convergence stability"),
190 
191 	OPT_INCR   ('d', "show_details"	, &p0.show_details,	"Show details"),
192 	OPT_INCR   ('a', "all"		, &p0.run_all,		"Run all tests in the suite"),
193 	OPT_INTEGER('H', "thp"		, &p0.thp,		"MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
194 	OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
195 		    "convergence is reached when each process (all its threads) is running on a single NUMA node."),
196 	OPT_BOOLEAN('m', "measure_convergence",	&p0.measure_convergence, "measure convergence latency"),
197 	OPT_BOOLEAN('q', "quiet"	, &p0.show_quiet,	"quiet mode"),
198 	OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
199 
200 	/* Special option string parsing callbacks: */
201         OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
202 			"bind the first N tasks to these specific cpus (the rest is unbound)",
203 			parse_cpus_opt),
204         OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
205 			"bind the first N tasks to these specific memory nodes (the rest is unbound)",
206 			parse_nodes_opt),
207 	OPT_END()
208 };
209 
210 static const char * const bench_numa_usage[] = {
211 	"perf bench numa <options>",
212 	NULL
213 };
214 
215 static const char * const numa_usage[] = {
216 	"perf bench numa mem [<options>]",
217 	NULL
218 };
219 
220 /*
221  * To get number of numa nodes present.
222  */
223 static int nr_numa_nodes(void)
224 {
225 	int i, nr_nodes = 0;
226 
227 	for (i = 0; i < g->p.nr_nodes; i++) {
228 		if (numa_bitmask_isbitset(numa_nodes_ptr, i))
229 			nr_nodes++;
230 	}
231 
232 	return nr_nodes;
233 }
234 
235 /*
236  * To check if given numa node is present.
237  */
238 static int is_node_present(int node)
239 {
240 	return numa_bitmask_isbitset(numa_nodes_ptr, node);
241 }
242 
243 /*
244  * To check given numa node has cpus.
245  */
246 static bool node_has_cpus(int node)
247 {
248 	struct bitmask *cpu = numa_allocate_cpumask();
249 	unsigned int i;
250 
251 	if (cpu && !numa_node_to_cpus(node, cpu)) {
252 		for (i = 0; i < cpu->size; i++) {
253 			if (numa_bitmask_isbitset(cpu, i))
254 				return true;
255 		}
256 	}
257 
258 	return false; /* lets fall back to nocpus safely */
259 }
260 
261 static cpu_set_t bind_to_cpu(int target_cpu)
262 {
263 	cpu_set_t orig_mask, mask;
264 	int ret;
265 
266 	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
267 	BUG_ON(ret);
268 
269 	CPU_ZERO(&mask);
270 
271 	if (target_cpu == -1) {
272 		int cpu;
273 
274 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
275 			CPU_SET(cpu, &mask);
276 	} else {
277 		BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
278 		CPU_SET(target_cpu, &mask);
279 	}
280 
281 	ret = sched_setaffinity(0, sizeof(mask), &mask);
282 	BUG_ON(ret);
283 
284 	return orig_mask;
285 }
286 
287 static cpu_set_t bind_to_node(int target_node)
288 {
289 	int cpus_per_node = g->p.nr_cpus / nr_numa_nodes();
290 	cpu_set_t orig_mask, mask;
291 	int cpu;
292 	int ret;
293 
294 	BUG_ON(cpus_per_node * nr_numa_nodes() != g->p.nr_cpus);
295 	BUG_ON(!cpus_per_node);
296 
297 	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
298 	BUG_ON(ret);
299 
300 	CPU_ZERO(&mask);
301 
302 	if (target_node == NUMA_NO_NODE) {
303 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
304 			CPU_SET(cpu, &mask);
305 	} else {
306 		int cpu_start = (target_node + 0) * cpus_per_node;
307 		int cpu_stop  = (target_node + 1) * cpus_per_node;
308 
309 		BUG_ON(cpu_stop > g->p.nr_cpus);
310 
311 		for (cpu = cpu_start; cpu < cpu_stop; cpu++)
312 			CPU_SET(cpu, &mask);
313 	}
314 
315 	ret = sched_setaffinity(0, sizeof(mask), &mask);
316 	BUG_ON(ret);
317 
318 	return orig_mask;
319 }
320 
321 static void bind_to_cpumask(cpu_set_t mask)
322 {
323 	int ret;
324 
325 	ret = sched_setaffinity(0, sizeof(mask), &mask);
326 	BUG_ON(ret);
327 }
328 
329 static void mempol_restore(void)
330 {
331 	int ret;
332 
333 	ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
334 
335 	BUG_ON(ret);
336 }
337 
338 static void bind_to_memnode(int node)
339 {
340 	unsigned long nodemask;
341 	int ret;
342 
343 	if (node == NUMA_NO_NODE)
344 		return;
345 
346 	BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
347 	nodemask = 1L << node;
348 
349 	ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
350 	dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
351 
352 	BUG_ON(ret);
353 }
354 
355 #define HPSIZE (2*1024*1024)
356 
357 #define set_taskname(fmt...)				\
358 do {							\
359 	char name[20];					\
360 							\
361 	snprintf(name, 20, fmt);			\
362 	prctl(PR_SET_NAME, name);			\
363 } while (0)
364 
365 static u8 *alloc_data(ssize_t bytes0, int map_flags,
366 		      int init_zero, int init_cpu0, int thp, int init_random)
367 {
368 	cpu_set_t orig_mask;
369 	ssize_t bytes;
370 	u8 *buf;
371 	int ret;
372 
373 	if (!bytes0)
374 		return NULL;
375 
376 	/* Allocate and initialize all memory on CPU#0: */
377 	if (init_cpu0) {
378 		orig_mask = bind_to_node(0);
379 		bind_to_memnode(0);
380 	}
381 
382 	bytes = bytes0 + HPSIZE;
383 
384 	buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
385 	BUG_ON(buf == (void *)-1);
386 
387 	if (map_flags == MAP_PRIVATE) {
388 		if (thp > 0) {
389 			ret = madvise(buf, bytes, MADV_HUGEPAGE);
390 			if (ret && !g->print_once) {
391 				g->print_once = 1;
392 				printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
393 			}
394 		}
395 		if (thp < 0) {
396 			ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
397 			if (ret && !g->print_once) {
398 				g->print_once = 1;
399 				printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
400 			}
401 		}
402 	}
403 
404 	if (init_zero) {
405 		bzero(buf, bytes);
406 	} else {
407 		/* Initialize random contents, different in each word: */
408 		if (init_random) {
409 			u64 *wbuf = (void *)buf;
410 			long off = rand();
411 			long i;
412 
413 			for (i = 0; i < bytes/8; i++)
414 				wbuf[i] = i + off;
415 		}
416 	}
417 
418 	/* Align to 2MB boundary: */
419 	buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
420 
421 	/* Restore affinity: */
422 	if (init_cpu0) {
423 		bind_to_cpumask(orig_mask);
424 		mempol_restore();
425 	}
426 
427 	return buf;
428 }
429 
430 static void free_data(void *data, ssize_t bytes)
431 {
432 	int ret;
433 
434 	if (!data)
435 		return;
436 
437 	ret = munmap(data, bytes);
438 	BUG_ON(ret);
439 }
440 
441 /*
442  * Create a shared memory buffer that can be shared between processes, zeroed:
443  */
444 static void * zalloc_shared_data(ssize_t bytes)
445 {
446 	return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
447 }
448 
449 /*
450  * Create a shared memory buffer that can be shared between processes:
451  */
452 static void * setup_shared_data(ssize_t bytes)
453 {
454 	return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
455 }
456 
457 /*
458  * Allocate process-local memory - this will either be shared between
459  * threads of this process, or only be accessed by this thread:
460  */
461 static void * setup_private_data(ssize_t bytes)
462 {
463 	return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
464 }
465 
466 /*
467  * Return a process-shared (global) mutex:
468  */
469 static void init_global_mutex(pthread_mutex_t *mutex)
470 {
471 	pthread_mutexattr_t attr;
472 
473 	pthread_mutexattr_init(&attr);
474 	pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
475 	pthread_mutex_init(mutex, &attr);
476 }
477 
478 static int parse_cpu_list(const char *arg)
479 {
480 	p0.cpu_list_str = strdup(arg);
481 
482 	dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
483 
484 	return 0;
485 }
486 
487 static int parse_setup_cpu_list(void)
488 {
489 	struct thread_data *td;
490 	char *str0, *str;
491 	int t;
492 
493 	if (!g->p.cpu_list_str)
494 		return 0;
495 
496 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
497 
498 	str0 = str = strdup(g->p.cpu_list_str);
499 	t = 0;
500 
501 	BUG_ON(!str);
502 
503 	tprintf("# binding tasks to CPUs:\n");
504 	tprintf("#  ");
505 
506 	while (true) {
507 		int bind_cpu, bind_cpu_0, bind_cpu_1;
508 		char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
509 		int bind_len;
510 		int step;
511 		int mul;
512 
513 		tok = strsep(&str, ",");
514 		if (!tok)
515 			break;
516 
517 		tok_end = strstr(tok, "-");
518 
519 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
520 		if (!tok_end) {
521 			/* Single CPU specified: */
522 			bind_cpu_0 = bind_cpu_1 = atol(tok);
523 		} else {
524 			/* CPU range specified (for example: "5-11"): */
525 			bind_cpu_0 = atol(tok);
526 			bind_cpu_1 = atol(tok_end + 1);
527 		}
528 
529 		step = 1;
530 		tok_step = strstr(tok, "#");
531 		if (tok_step) {
532 			step = atol(tok_step + 1);
533 			BUG_ON(step <= 0 || step >= g->p.nr_cpus);
534 		}
535 
536 		/*
537 		 * Mask length.
538 		 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
539 		 * where the _4 means the next 4 CPUs are allowed.
540 		 */
541 		bind_len = 1;
542 		tok_len = strstr(tok, "_");
543 		if (tok_len) {
544 			bind_len = atol(tok_len + 1);
545 			BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
546 		}
547 
548 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
549 		mul = 1;
550 		tok_mul = strstr(tok, "x");
551 		if (tok_mul) {
552 			mul = atol(tok_mul + 1);
553 			BUG_ON(mul <= 0);
554 		}
555 
556 		dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
557 
558 		if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
559 			printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
560 			return -1;
561 		}
562 
563 		BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
564 		BUG_ON(bind_cpu_0 > bind_cpu_1);
565 
566 		for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
567 			int i;
568 
569 			for (i = 0; i < mul; i++) {
570 				int cpu;
571 
572 				if (t >= g->p.nr_tasks) {
573 					printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
574 					goto out;
575 				}
576 				td = g->threads + t;
577 
578 				if (t)
579 					tprintf(",");
580 				if (bind_len > 1) {
581 					tprintf("%2d/%d", bind_cpu, bind_len);
582 				} else {
583 					tprintf("%2d", bind_cpu);
584 				}
585 
586 				CPU_ZERO(&td->bind_cpumask);
587 				for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
588 					BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
589 					CPU_SET(cpu, &td->bind_cpumask);
590 				}
591 				t++;
592 			}
593 		}
594 	}
595 out:
596 
597 	tprintf("\n");
598 
599 	if (t < g->p.nr_tasks)
600 		printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
601 
602 	free(str0);
603 	return 0;
604 }
605 
606 static int parse_cpus_opt(const struct option *opt __maybe_unused,
607 			  const char *arg, int unset __maybe_unused)
608 {
609 	if (!arg)
610 		return -1;
611 
612 	return parse_cpu_list(arg);
613 }
614 
615 static int parse_node_list(const char *arg)
616 {
617 	p0.node_list_str = strdup(arg);
618 
619 	dprintf("got NODE list: {%s}\n", p0.node_list_str);
620 
621 	return 0;
622 }
623 
624 static int parse_setup_node_list(void)
625 {
626 	struct thread_data *td;
627 	char *str0, *str;
628 	int t;
629 
630 	if (!g->p.node_list_str)
631 		return 0;
632 
633 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
634 
635 	str0 = str = strdup(g->p.node_list_str);
636 	t = 0;
637 
638 	BUG_ON(!str);
639 
640 	tprintf("# binding tasks to NODEs:\n");
641 	tprintf("# ");
642 
643 	while (true) {
644 		int bind_node, bind_node_0, bind_node_1;
645 		char *tok, *tok_end, *tok_step, *tok_mul;
646 		int step;
647 		int mul;
648 
649 		tok = strsep(&str, ",");
650 		if (!tok)
651 			break;
652 
653 		tok_end = strstr(tok, "-");
654 
655 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
656 		if (!tok_end) {
657 			/* Single NODE specified: */
658 			bind_node_0 = bind_node_1 = atol(tok);
659 		} else {
660 			/* NODE range specified (for example: "5-11"): */
661 			bind_node_0 = atol(tok);
662 			bind_node_1 = atol(tok_end + 1);
663 		}
664 
665 		step = 1;
666 		tok_step = strstr(tok, "#");
667 		if (tok_step) {
668 			step = atol(tok_step + 1);
669 			BUG_ON(step <= 0 || step >= g->p.nr_nodes);
670 		}
671 
672 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
673 		mul = 1;
674 		tok_mul = strstr(tok, "x");
675 		if (tok_mul) {
676 			mul = atol(tok_mul + 1);
677 			BUG_ON(mul <= 0);
678 		}
679 
680 		dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
681 
682 		if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
683 			printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
684 			return -1;
685 		}
686 
687 		BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
688 		BUG_ON(bind_node_0 > bind_node_1);
689 
690 		for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
691 			int i;
692 
693 			for (i = 0; i < mul; i++) {
694 				if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
695 					printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
696 					goto out;
697 				}
698 				td = g->threads + t;
699 
700 				if (!t)
701 					tprintf(" %2d", bind_node);
702 				else
703 					tprintf(",%2d", bind_node);
704 
705 				td->bind_node = bind_node;
706 				t++;
707 			}
708 		}
709 	}
710 out:
711 
712 	tprintf("\n");
713 
714 	if (t < g->p.nr_tasks)
715 		printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
716 
717 	free(str0);
718 	return 0;
719 }
720 
721 static int parse_nodes_opt(const struct option *opt __maybe_unused,
722 			  const char *arg, int unset __maybe_unused)
723 {
724 	if (!arg)
725 		return -1;
726 
727 	return parse_node_list(arg);
728 
729 	return 0;
730 }
731 
732 #define BIT(x) (1ul << x)
733 
734 static inline uint32_t lfsr_32(uint32_t lfsr)
735 {
736 	const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
737 	return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
738 }
739 
740 /*
741  * Make sure there's real data dependency to RAM (when read
742  * accesses are enabled), so the compiler, the CPU and the
743  * kernel (KSM, zero page, etc.) cannot optimize away RAM
744  * accesses:
745  */
746 static inline u64 access_data(u64 *data, u64 val)
747 {
748 	if (g->p.data_reads)
749 		val += *data;
750 	if (g->p.data_writes)
751 		*data = val + 1;
752 	return val;
753 }
754 
755 /*
756  * The worker process does two types of work, a forwards going
757  * loop and a backwards going loop.
758  *
759  * We do this so that on multiprocessor systems we do not create
760  * a 'train' of processing, with highly synchronized processes,
761  * skewing the whole benchmark.
762  */
763 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
764 {
765 	long words = bytes/sizeof(u64);
766 	u64 *data = (void *)__data;
767 	long chunk_0, chunk_1;
768 	u64 *d0, *d, *d1;
769 	long off;
770 	long i;
771 
772 	BUG_ON(!data && words);
773 	BUG_ON(data && !words);
774 
775 	if (!data)
776 		return val;
777 
778 	/* Very simple memset() work variant: */
779 	if (g->p.data_zero_memset && !g->p.data_rand_walk) {
780 		bzero(data, bytes);
781 		return val;
782 	}
783 
784 	/* Spread out by PID/TID nr and by loop nr: */
785 	chunk_0 = words/nr_max;
786 	chunk_1 = words/g->p.nr_loops;
787 	off = nr*chunk_0 + loop*chunk_1;
788 
789 	while (off >= words)
790 		off -= words;
791 
792 	if (g->p.data_rand_walk) {
793 		u32 lfsr = nr + loop + val;
794 		int j;
795 
796 		for (i = 0; i < words/1024; i++) {
797 			long start, end;
798 
799 			lfsr = lfsr_32(lfsr);
800 
801 			start = lfsr % words;
802 			end = min(start + 1024, words-1);
803 
804 			if (g->p.data_zero_memset) {
805 				bzero(data + start, (end-start) * sizeof(u64));
806 			} else {
807 				for (j = start; j < end; j++)
808 					val = access_data(data + j, val);
809 			}
810 		}
811 	} else if (!g->p.data_backwards || (nr + loop) & 1) {
812 
813 		d0 = data + off;
814 		d  = data + off + 1;
815 		d1 = data + words;
816 
817 		/* Process data forwards: */
818 		for (;;) {
819 			if (unlikely(d >= d1))
820 				d = data;
821 			if (unlikely(d == d0))
822 				break;
823 
824 			val = access_data(d, val);
825 
826 			d++;
827 		}
828 	} else {
829 		/* Process data backwards: */
830 
831 		d0 = data + off;
832 		d  = data + off - 1;
833 		d1 = data + words;
834 
835 		/* Process data forwards: */
836 		for (;;) {
837 			if (unlikely(d < data))
838 				d = data + words-1;
839 			if (unlikely(d == d0))
840 				break;
841 
842 			val = access_data(d, val);
843 
844 			d--;
845 		}
846 	}
847 
848 	return val;
849 }
850 
851 static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
852 {
853 	unsigned int cpu;
854 
855 	cpu = sched_getcpu();
856 
857 	g->threads[task_nr].curr_cpu = cpu;
858 	prctl(0, bytes_worked);
859 }
860 
861 #define MAX_NR_NODES	64
862 
863 /*
864  * Count the number of nodes a process's threads
865  * are spread out on.
866  *
867  * A count of 1 means that the process is compressed
868  * to a single node. A count of g->p.nr_nodes means it's
869  * spread out on the whole system.
870  */
871 static int count_process_nodes(int process_nr)
872 {
873 	char node_present[MAX_NR_NODES] = { 0, };
874 	int nodes;
875 	int n, t;
876 
877 	for (t = 0; t < g->p.nr_threads; t++) {
878 		struct thread_data *td;
879 		int task_nr;
880 		int node;
881 
882 		task_nr = process_nr*g->p.nr_threads + t;
883 		td = g->threads + task_nr;
884 
885 		node = numa_node_of_cpu(td->curr_cpu);
886 		if (node < 0) /* curr_cpu was likely still -1 */
887 			return 0;
888 
889 		node_present[node] = 1;
890 	}
891 
892 	nodes = 0;
893 
894 	for (n = 0; n < MAX_NR_NODES; n++)
895 		nodes += node_present[n];
896 
897 	return nodes;
898 }
899 
900 /*
901  * Count the number of distinct process-threads a node contains.
902  *
903  * A count of 1 means that the node contains only a single
904  * process. If all nodes on the system contain at most one
905  * process then we are well-converged.
906  */
907 static int count_node_processes(int node)
908 {
909 	int processes = 0;
910 	int t, p;
911 
912 	for (p = 0; p < g->p.nr_proc; p++) {
913 		for (t = 0; t < g->p.nr_threads; t++) {
914 			struct thread_data *td;
915 			int task_nr;
916 			int n;
917 
918 			task_nr = p*g->p.nr_threads + t;
919 			td = g->threads + task_nr;
920 
921 			n = numa_node_of_cpu(td->curr_cpu);
922 			if (n == node) {
923 				processes++;
924 				break;
925 			}
926 		}
927 	}
928 
929 	return processes;
930 }
931 
932 static void calc_convergence_compression(int *strong)
933 {
934 	unsigned int nodes_min, nodes_max;
935 	int p;
936 
937 	nodes_min = -1;
938 	nodes_max =  0;
939 
940 	for (p = 0; p < g->p.nr_proc; p++) {
941 		unsigned int nodes = count_process_nodes(p);
942 
943 		if (!nodes) {
944 			*strong = 0;
945 			return;
946 		}
947 
948 		nodes_min = min(nodes, nodes_min);
949 		nodes_max = max(nodes, nodes_max);
950 	}
951 
952 	/* Strong convergence: all threads compress on a single node: */
953 	if (nodes_min == 1 && nodes_max == 1) {
954 		*strong = 1;
955 	} else {
956 		*strong = 0;
957 		tprintf(" {%d-%d}", nodes_min, nodes_max);
958 	}
959 }
960 
961 static void calc_convergence(double runtime_ns_max, double *convergence)
962 {
963 	unsigned int loops_done_min, loops_done_max;
964 	int process_groups;
965 	int nodes[MAX_NR_NODES];
966 	int distance;
967 	int nr_min;
968 	int nr_max;
969 	int strong;
970 	int sum;
971 	int nr;
972 	int node;
973 	int cpu;
974 	int t;
975 
976 	if (!g->p.show_convergence && !g->p.measure_convergence)
977 		return;
978 
979 	for (node = 0; node < g->p.nr_nodes; node++)
980 		nodes[node] = 0;
981 
982 	loops_done_min = -1;
983 	loops_done_max = 0;
984 
985 	for (t = 0; t < g->p.nr_tasks; t++) {
986 		struct thread_data *td = g->threads + t;
987 		unsigned int loops_done;
988 
989 		cpu = td->curr_cpu;
990 
991 		/* Not all threads have written it yet: */
992 		if (cpu < 0)
993 			continue;
994 
995 		node = numa_node_of_cpu(cpu);
996 
997 		nodes[node]++;
998 
999 		loops_done = td->loops_done;
1000 		loops_done_min = min(loops_done, loops_done_min);
1001 		loops_done_max = max(loops_done, loops_done_max);
1002 	}
1003 
1004 	nr_max = 0;
1005 	nr_min = g->p.nr_tasks;
1006 	sum = 0;
1007 
1008 	for (node = 0; node < g->p.nr_nodes; node++) {
1009 		if (!is_node_present(node))
1010 			continue;
1011 		nr = nodes[node];
1012 		nr_min = min(nr, nr_min);
1013 		nr_max = max(nr, nr_max);
1014 		sum += nr;
1015 	}
1016 	BUG_ON(nr_min > nr_max);
1017 
1018 	BUG_ON(sum > g->p.nr_tasks);
1019 
1020 	if (0 && (sum < g->p.nr_tasks))
1021 		return;
1022 
1023 	/*
1024 	 * Count the number of distinct process groups present
1025 	 * on nodes - when we are converged this will decrease
1026 	 * to g->p.nr_proc:
1027 	 */
1028 	process_groups = 0;
1029 
1030 	for (node = 0; node < g->p.nr_nodes; node++) {
1031 		int processes;
1032 
1033 		if (!is_node_present(node))
1034 			continue;
1035 		processes = count_node_processes(node);
1036 		nr = nodes[node];
1037 		tprintf(" %2d/%-2d", nr, processes);
1038 
1039 		process_groups += processes;
1040 	}
1041 
1042 	distance = nr_max - nr_min;
1043 
1044 	tprintf(" [%2d/%-2d]", distance, process_groups);
1045 
1046 	tprintf(" l:%3d-%-3d (%3d)",
1047 		loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1048 
1049 	if (loops_done_min && loops_done_max) {
1050 		double skew = 1.0 - (double)loops_done_min/loops_done_max;
1051 
1052 		tprintf(" [%4.1f%%]", skew * 100.0);
1053 	}
1054 
1055 	calc_convergence_compression(&strong);
1056 
1057 	if (strong && process_groups == g->p.nr_proc) {
1058 		if (!*convergence) {
1059 			*convergence = runtime_ns_max;
1060 			tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1061 			if (g->p.measure_convergence) {
1062 				g->all_converged = true;
1063 				g->stop_work = true;
1064 			}
1065 		}
1066 	} else {
1067 		if (*convergence) {
1068 			tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1069 			*convergence = 0;
1070 		}
1071 		tprintf("\n");
1072 	}
1073 }
1074 
1075 static void show_summary(double runtime_ns_max, int l, double *convergence)
1076 {
1077 	tprintf("\r #  %5.1f%%  [%.1f mins]",
1078 		(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1079 
1080 	calc_convergence(runtime_ns_max, convergence);
1081 
1082 	if (g->p.show_details >= 0)
1083 		fflush(stdout);
1084 }
1085 
1086 static void *worker_thread(void *__tdata)
1087 {
1088 	struct thread_data *td = __tdata;
1089 	struct timeval start0, start, stop, diff;
1090 	int process_nr = td->process_nr;
1091 	int thread_nr = td->thread_nr;
1092 	unsigned long last_perturbance;
1093 	int task_nr = td->task_nr;
1094 	int details = g->p.show_details;
1095 	int first_task, last_task;
1096 	double convergence = 0;
1097 	u64 val = td->val;
1098 	double runtime_ns_max;
1099 	u8 *global_data;
1100 	u8 *process_data;
1101 	u8 *thread_data;
1102 	u64 bytes_done, secs;
1103 	long work_done;
1104 	u32 l;
1105 	struct rusage rusage;
1106 
1107 	bind_to_cpumask(td->bind_cpumask);
1108 	bind_to_memnode(td->bind_node);
1109 
1110 	set_taskname("thread %d/%d", process_nr, thread_nr);
1111 
1112 	global_data = g->data;
1113 	process_data = td->process_data;
1114 	thread_data = setup_private_data(g->p.bytes_thread);
1115 
1116 	bytes_done = 0;
1117 
1118 	last_task = 0;
1119 	if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1120 		last_task = 1;
1121 
1122 	first_task = 0;
1123 	if (process_nr == 0 && thread_nr == 0)
1124 		first_task = 1;
1125 
1126 	if (details >= 2) {
1127 		printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1128 			process_nr, thread_nr, global_data, process_data, thread_data);
1129 	}
1130 
1131 	if (g->p.serialize_startup) {
1132 		pthread_mutex_lock(&g->startup_mutex);
1133 		g->nr_tasks_started++;
1134 		pthread_mutex_unlock(&g->startup_mutex);
1135 
1136 		/* Here we will wait for the main process to start us all at once: */
1137 		pthread_mutex_lock(&g->start_work_mutex);
1138 		g->nr_tasks_working++;
1139 
1140 		/* Last one wake the main process: */
1141 		if (g->nr_tasks_working == g->p.nr_tasks)
1142 			pthread_mutex_unlock(&g->startup_done_mutex);
1143 
1144 		pthread_mutex_unlock(&g->start_work_mutex);
1145 	}
1146 
1147 	gettimeofday(&start0, NULL);
1148 
1149 	start = stop = start0;
1150 	last_perturbance = start.tv_sec;
1151 
1152 	for (l = 0; l < g->p.nr_loops; l++) {
1153 		start = stop;
1154 
1155 		if (g->stop_work)
1156 			break;
1157 
1158 		val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,	l, val);
1159 		val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,	l, val);
1160 		val += do_work(thread_data,  g->p.bytes_thread,  0,          1,		l, val);
1161 
1162 		if (g->p.sleep_usecs) {
1163 			pthread_mutex_lock(td->process_lock);
1164 			usleep(g->p.sleep_usecs);
1165 			pthread_mutex_unlock(td->process_lock);
1166 		}
1167 		/*
1168 		 * Amount of work to be done under a process-global lock:
1169 		 */
1170 		if (g->p.bytes_process_locked) {
1171 			pthread_mutex_lock(td->process_lock);
1172 			val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,	l, val);
1173 			pthread_mutex_unlock(td->process_lock);
1174 		}
1175 
1176 		work_done = g->p.bytes_global + g->p.bytes_process +
1177 			    g->p.bytes_process_locked + g->p.bytes_thread;
1178 
1179 		update_curr_cpu(task_nr, work_done);
1180 		bytes_done += work_done;
1181 
1182 		if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1183 			continue;
1184 
1185 		td->loops_done = l;
1186 
1187 		gettimeofday(&stop, NULL);
1188 
1189 		/* Check whether our max runtime timed out: */
1190 		if (g->p.nr_secs) {
1191 			timersub(&stop, &start0, &diff);
1192 			if ((u32)diff.tv_sec >= g->p.nr_secs) {
1193 				g->stop_work = true;
1194 				break;
1195 			}
1196 		}
1197 
1198 		/* Update the summary at most once per second: */
1199 		if (start.tv_sec == stop.tv_sec)
1200 			continue;
1201 
1202 		/*
1203 		 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1204 		 * by migrating to CPU#0:
1205 		 */
1206 		if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1207 			cpu_set_t orig_mask;
1208 			int target_cpu;
1209 			int this_cpu;
1210 
1211 			last_perturbance = stop.tv_sec;
1212 
1213 			/*
1214 			 * Depending on where we are running, move into
1215 			 * the other half of the system, to create some
1216 			 * real disturbance:
1217 			 */
1218 			this_cpu = g->threads[task_nr].curr_cpu;
1219 			if (this_cpu < g->p.nr_cpus/2)
1220 				target_cpu = g->p.nr_cpus-1;
1221 			else
1222 				target_cpu = 0;
1223 
1224 			orig_mask = bind_to_cpu(target_cpu);
1225 
1226 			/* Here we are running on the target CPU already */
1227 			if (details >= 1)
1228 				printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1229 
1230 			bind_to_cpumask(orig_mask);
1231 		}
1232 
1233 		if (details >= 3) {
1234 			timersub(&stop, &start, &diff);
1235 			runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1236 			runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1237 
1238 			if (details >= 0) {
1239 				printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1240 					process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1241 			}
1242 			fflush(stdout);
1243 		}
1244 		if (!last_task)
1245 			continue;
1246 
1247 		timersub(&stop, &start0, &diff);
1248 		runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1249 		runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1250 
1251 		show_summary(runtime_ns_max, l, &convergence);
1252 	}
1253 
1254 	gettimeofday(&stop, NULL);
1255 	timersub(&stop, &start0, &diff);
1256 	td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1257 	td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1258 	secs = td->runtime_ns / NSEC_PER_SEC;
1259 	td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
1260 
1261 	getrusage(RUSAGE_THREAD, &rusage);
1262 	td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1263 	td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1264 	td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1265 	td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1266 
1267 	free_data(thread_data, g->p.bytes_thread);
1268 
1269 	pthread_mutex_lock(&g->stop_work_mutex);
1270 	g->bytes_done += bytes_done;
1271 	pthread_mutex_unlock(&g->stop_work_mutex);
1272 
1273 	return NULL;
1274 }
1275 
1276 /*
1277  * A worker process starts a couple of threads:
1278  */
1279 static void worker_process(int process_nr)
1280 {
1281 	pthread_mutex_t process_lock;
1282 	struct thread_data *td;
1283 	pthread_t *pthreads;
1284 	u8 *process_data;
1285 	int task_nr;
1286 	int ret;
1287 	int t;
1288 
1289 	pthread_mutex_init(&process_lock, NULL);
1290 	set_taskname("process %d", process_nr);
1291 
1292 	/*
1293 	 * Pick up the memory policy and the CPU binding of our first thread,
1294 	 * so that we initialize memory accordingly:
1295 	 */
1296 	task_nr = process_nr*g->p.nr_threads;
1297 	td = g->threads + task_nr;
1298 
1299 	bind_to_memnode(td->bind_node);
1300 	bind_to_cpumask(td->bind_cpumask);
1301 
1302 	pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1303 	process_data = setup_private_data(g->p.bytes_process);
1304 
1305 	if (g->p.show_details >= 3) {
1306 		printf(" # process %2d global mem: %p, process mem: %p\n",
1307 			process_nr, g->data, process_data);
1308 	}
1309 
1310 	for (t = 0; t < g->p.nr_threads; t++) {
1311 		task_nr = process_nr*g->p.nr_threads + t;
1312 		td = g->threads + task_nr;
1313 
1314 		td->process_data = process_data;
1315 		td->process_nr   = process_nr;
1316 		td->thread_nr    = t;
1317 		td->task_nr	 = task_nr;
1318 		td->val          = rand();
1319 		td->curr_cpu	 = -1;
1320 		td->process_lock = &process_lock;
1321 
1322 		ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1323 		BUG_ON(ret);
1324 	}
1325 
1326 	for (t = 0; t < g->p.nr_threads; t++) {
1327                 ret = pthread_join(pthreads[t], NULL);
1328 		BUG_ON(ret);
1329 	}
1330 
1331 	free_data(process_data, g->p.bytes_process);
1332 	free(pthreads);
1333 }
1334 
1335 static void print_summary(void)
1336 {
1337 	if (g->p.show_details < 0)
1338 		return;
1339 
1340 	printf("\n ###\n");
1341 	printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1342 		g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1343 	printf(" #      %5dx %5ldMB global  shared mem operations\n",
1344 			g->p.nr_loops, g->p.bytes_global/1024/1024);
1345 	printf(" #      %5dx %5ldMB process shared mem operations\n",
1346 			g->p.nr_loops, g->p.bytes_process/1024/1024);
1347 	printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1348 			g->p.nr_loops, g->p.bytes_thread/1024/1024);
1349 
1350 	printf(" ###\n");
1351 
1352 	printf("\n ###\n"); fflush(stdout);
1353 }
1354 
1355 static void init_thread_data(void)
1356 {
1357 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1358 	int t;
1359 
1360 	g->threads = zalloc_shared_data(size);
1361 
1362 	for (t = 0; t < g->p.nr_tasks; t++) {
1363 		struct thread_data *td = g->threads + t;
1364 		int cpu;
1365 
1366 		/* Allow all nodes by default: */
1367 		td->bind_node = NUMA_NO_NODE;
1368 
1369 		/* Allow all CPUs by default: */
1370 		CPU_ZERO(&td->bind_cpumask);
1371 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1372 			CPU_SET(cpu, &td->bind_cpumask);
1373 	}
1374 }
1375 
1376 static void deinit_thread_data(void)
1377 {
1378 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1379 
1380 	free_data(g->threads, size);
1381 }
1382 
1383 static int init(void)
1384 {
1385 	g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1386 
1387 	/* Copy over options: */
1388 	g->p = p0;
1389 
1390 	g->p.nr_cpus = numa_num_configured_cpus();
1391 
1392 	g->p.nr_nodes = numa_max_node() + 1;
1393 
1394 	/* char array in count_process_nodes(): */
1395 	BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1396 
1397 	if (g->p.show_quiet && !g->p.show_details)
1398 		g->p.show_details = -1;
1399 
1400 	/* Some memory should be specified: */
1401 	if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1402 		return -1;
1403 
1404 	if (g->p.mb_global_str) {
1405 		g->p.mb_global = atof(g->p.mb_global_str);
1406 		BUG_ON(g->p.mb_global < 0);
1407 	}
1408 
1409 	if (g->p.mb_proc_str) {
1410 		g->p.mb_proc = atof(g->p.mb_proc_str);
1411 		BUG_ON(g->p.mb_proc < 0);
1412 	}
1413 
1414 	if (g->p.mb_proc_locked_str) {
1415 		g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1416 		BUG_ON(g->p.mb_proc_locked < 0);
1417 		BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1418 	}
1419 
1420 	if (g->p.mb_thread_str) {
1421 		g->p.mb_thread = atof(g->p.mb_thread_str);
1422 		BUG_ON(g->p.mb_thread < 0);
1423 	}
1424 
1425 	BUG_ON(g->p.nr_threads <= 0);
1426 	BUG_ON(g->p.nr_proc <= 0);
1427 
1428 	g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1429 
1430 	g->p.bytes_global		= g->p.mb_global	*1024L*1024L;
1431 	g->p.bytes_process		= g->p.mb_proc		*1024L*1024L;
1432 	g->p.bytes_process_locked	= g->p.mb_proc_locked	*1024L*1024L;
1433 	g->p.bytes_thread		= g->p.mb_thread	*1024L*1024L;
1434 
1435 	g->data = setup_shared_data(g->p.bytes_global);
1436 
1437 	/* Startup serialization: */
1438 	init_global_mutex(&g->start_work_mutex);
1439 	init_global_mutex(&g->startup_mutex);
1440 	init_global_mutex(&g->startup_done_mutex);
1441 	init_global_mutex(&g->stop_work_mutex);
1442 
1443 	init_thread_data();
1444 
1445 	tprintf("#\n");
1446 	if (parse_setup_cpu_list() || parse_setup_node_list())
1447 		return -1;
1448 	tprintf("#\n");
1449 
1450 	print_summary();
1451 
1452 	return 0;
1453 }
1454 
1455 static void deinit(void)
1456 {
1457 	free_data(g->data, g->p.bytes_global);
1458 	g->data = NULL;
1459 
1460 	deinit_thread_data();
1461 
1462 	free_data(g, sizeof(*g));
1463 	g = NULL;
1464 }
1465 
1466 /*
1467  * Print a short or long result, depending on the verbosity setting:
1468  */
1469 static void print_res(const char *name, double val,
1470 		      const char *txt_unit, const char *txt_short, const char *txt_long)
1471 {
1472 	if (!name)
1473 		name = "main,";
1474 
1475 	if (!g->p.show_quiet)
1476 		printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1477 	else
1478 		printf(" %14.3f %s\n", val, txt_long);
1479 }
1480 
1481 static int __bench_numa(const char *name)
1482 {
1483 	struct timeval start, stop, diff;
1484 	u64 runtime_ns_min, runtime_ns_sum;
1485 	pid_t *pids, pid, wpid;
1486 	double delta_runtime;
1487 	double runtime_avg;
1488 	double runtime_sec_max;
1489 	double runtime_sec_min;
1490 	int wait_stat;
1491 	double bytes;
1492 	int i, t, p;
1493 
1494 	if (init())
1495 		return -1;
1496 
1497 	pids = zalloc(g->p.nr_proc * sizeof(*pids));
1498 	pid = -1;
1499 
1500 	/* All threads try to acquire it, this way we can wait for them to start up: */
1501 	pthread_mutex_lock(&g->start_work_mutex);
1502 
1503 	if (g->p.serialize_startup) {
1504 		tprintf(" #\n");
1505 		tprintf(" # Startup synchronization: ..."); fflush(stdout);
1506 	}
1507 
1508 	gettimeofday(&start, NULL);
1509 
1510 	for (i = 0; i < g->p.nr_proc; i++) {
1511 		pid = fork();
1512 		dprintf(" # process %2d: PID %d\n", i, pid);
1513 
1514 		BUG_ON(pid < 0);
1515 		if (!pid) {
1516 			/* Child process: */
1517 			worker_process(i);
1518 
1519 			exit(0);
1520 		}
1521 		pids[i] = pid;
1522 
1523 	}
1524 	/* Wait for all the threads to start up: */
1525 	while (g->nr_tasks_started != g->p.nr_tasks)
1526 		usleep(USEC_PER_MSEC);
1527 
1528 	BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1529 
1530 	if (g->p.serialize_startup) {
1531 		double startup_sec;
1532 
1533 		pthread_mutex_lock(&g->startup_done_mutex);
1534 
1535 		/* This will start all threads: */
1536 		pthread_mutex_unlock(&g->start_work_mutex);
1537 
1538 		/* This mutex is locked - the last started thread will wake us: */
1539 		pthread_mutex_lock(&g->startup_done_mutex);
1540 
1541 		gettimeofday(&stop, NULL);
1542 
1543 		timersub(&stop, &start, &diff);
1544 
1545 		startup_sec = diff.tv_sec * NSEC_PER_SEC;
1546 		startup_sec += diff.tv_usec * NSEC_PER_USEC;
1547 		startup_sec /= NSEC_PER_SEC;
1548 
1549 		tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1550 		tprintf(" #\n");
1551 
1552 		start = stop;
1553 		pthread_mutex_unlock(&g->startup_done_mutex);
1554 	} else {
1555 		gettimeofday(&start, NULL);
1556 	}
1557 
1558 	/* Parent process: */
1559 
1560 
1561 	for (i = 0; i < g->p.nr_proc; i++) {
1562 		wpid = waitpid(pids[i], &wait_stat, 0);
1563 		BUG_ON(wpid < 0);
1564 		BUG_ON(!WIFEXITED(wait_stat));
1565 
1566 	}
1567 
1568 	runtime_ns_sum = 0;
1569 	runtime_ns_min = -1LL;
1570 
1571 	for (t = 0; t < g->p.nr_tasks; t++) {
1572 		u64 thread_runtime_ns = g->threads[t].runtime_ns;
1573 
1574 		runtime_ns_sum += thread_runtime_ns;
1575 		runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1576 	}
1577 
1578 	gettimeofday(&stop, NULL);
1579 	timersub(&stop, &start, &diff);
1580 
1581 	BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1582 
1583 	tprintf("\n ###\n");
1584 	tprintf("\n");
1585 
1586 	runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1587 	runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1588 	runtime_sec_max /= NSEC_PER_SEC;
1589 
1590 	runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1591 
1592 	bytes = g->bytes_done;
1593 	runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1594 
1595 	if (g->p.measure_convergence) {
1596 		print_res(name, runtime_sec_max,
1597 			"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1598 	}
1599 
1600 	print_res(name, runtime_sec_max,
1601 		"secs,", "runtime-max/thread",	"secs slowest (max) thread-runtime");
1602 
1603 	print_res(name, runtime_sec_min,
1604 		"secs,", "runtime-min/thread",	"secs fastest (min) thread-runtime");
1605 
1606 	print_res(name, runtime_avg,
1607 		"secs,", "runtime-avg/thread",	"secs average thread-runtime");
1608 
1609 	delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1610 	print_res(name, delta_runtime / runtime_sec_max * 100.0,
1611 		"%,", "spread-runtime/thread",	"% difference between max/avg runtime");
1612 
1613 	print_res(name, bytes / g->p.nr_tasks / 1e9,
1614 		"GB,", "data/thread",		"GB data processed, per thread");
1615 
1616 	print_res(name, bytes / 1e9,
1617 		"GB,", "data-total",		"GB data processed, total");
1618 
1619 	print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1620 		"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1621 
1622 	print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1623 		"GB/sec,", "thread-speed",	"GB/sec/thread speed");
1624 
1625 	print_res(name, bytes / runtime_sec_max / 1e9,
1626 		"GB/sec,", "total-speed",	"GB/sec total speed");
1627 
1628 	if (g->p.show_details >= 2) {
1629 		char tname[14 + 2 * 10 + 1];
1630 		struct thread_data *td;
1631 		for (p = 0; p < g->p.nr_proc; p++) {
1632 			for (t = 0; t < g->p.nr_threads; t++) {
1633 				memset(tname, 0, sizeof(tname));
1634 				td = g->threads + p*g->p.nr_threads + t;
1635 				snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1636 				print_res(tname, td->speed_gbs,
1637 					"GB/sec",	"thread-speed", "GB/sec/thread speed");
1638 				print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1639 					"secs",	"thread-system-time", "system CPU time/thread");
1640 				print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1641 					"secs",	"thread-user-time", "user CPU time/thread");
1642 			}
1643 		}
1644 	}
1645 
1646 	free(pids);
1647 
1648 	deinit();
1649 
1650 	return 0;
1651 }
1652 
1653 #define MAX_ARGS 50
1654 
1655 static int command_size(const char **argv)
1656 {
1657 	int size = 0;
1658 
1659 	while (*argv) {
1660 		size++;
1661 		argv++;
1662 	}
1663 
1664 	BUG_ON(size >= MAX_ARGS);
1665 
1666 	return size;
1667 }
1668 
1669 static void init_params(struct params *p, const char *name, int argc, const char **argv)
1670 {
1671 	int i;
1672 
1673 	printf("\n # Running %s \"perf bench numa", name);
1674 
1675 	for (i = 0; i < argc; i++)
1676 		printf(" %s", argv[i]);
1677 
1678 	printf("\"\n");
1679 
1680 	memset(p, 0, sizeof(*p));
1681 
1682 	/* Initialize nonzero defaults: */
1683 
1684 	p->serialize_startup		= 1;
1685 	p->data_reads			= true;
1686 	p->data_writes			= true;
1687 	p->data_backwards		= true;
1688 	p->data_rand_walk		= true;
1689 	p->nr_loops			= -1;
1690 	p->init_random			= true;
1691 	p->mb_global_str		= "1";
1692 	p->nr_proc			= 1;
1693 	p->nr_threads			= 1;
1694 	p->nr_secs			= 5;
1695 	p->run_all			= argc == 1;
1696 }
1697 
1698 static int run_bench_numa(const char *name, const char **argv)
1699 {
1700 	int argc = command_size(argv);
1701 
1702 	init_params(&p0, name, argc, argv);
1703 	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1704 	if (argc)
1705 		goto err;
1706 
1707 	if (__bench_numa(name))
1708 		goto err;
1709 
1710 	return 0;
1711 
1712 err:
1713 	return -1;
1714 }
1715 
1716 #define OPT_BW_RAM		"-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1717 #define OPT_BW_RAM_NOTHP	OPT_BW_RAM,		"--thp", "-1"
1718 
1719 #define OPT_CONV		"-s", "100", "-zZ0qcm", "--thp", " 1"
1720 #define OPT_CONV_NOTHP		OPT_CONV,		"--thp", "-1"
1721 
1722 #define OPT_BW			"-s",  "20", "-zZ0q",   "--thp", " 1"
1723 #define OPT_BW_NOTHP		OPT_BW,			"--thp", "-1"
1724 
1725 /*
1726  * The built-in test-suite executed by "perf bench numa -a".
1727  *
1728  * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1729  */
1730 static const char *tests[][MAX_ARGS] = {
1731    /* Basic single-stream NUMA bandwidth measurements: */
1732    { "RAM-bw-local,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1733 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1734    { "RAM-bw-local-NOTHP,",
1735 			  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1736 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1737    { "RAM-bw-remote,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1738 			  "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1739 
1740    /* 2-stream NUMA bandwidth measurements: */
1741    { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1742 			   "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1743    { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1744 		 	   "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1745 
1746    /* Cross-stream NUMA bandwidth measurement: */
1747    { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1748 		 	   "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1749 
1750    /* Convergence latency measurements: */
1751    { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1752    { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1753    { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1754    { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1755    { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1756    { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1757    { " 4x4-convergence-NOTHP,",
1758 			  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1759    { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1760    { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1761    { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1762    { " 8x4-convergence-NOTHP,",
1763 			  "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1764    { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1765    { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1766    { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1767    { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1768    { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1769 
1770    /* Various NUMA process/thread layout bandwidth measurements: */
1771    { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1772    { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1773    { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1774    { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1775    { " 8x1-bw-process-NOTHP,",
1776 			  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1777    { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1778 
1779    { " 4x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1780    { " 8x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1781    { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1782    { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1783 
1784    { " 2x3-bw-thread,",	  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1785    { " 4x4-bw-thread,",	  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1786    { " 4x6-bw-thread,",	  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1787    { " 4x8-bw-thread,",	  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1788    { " 4x8-bw-thread-NOTHP,",
1789 			  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1790    { " 3x3-bw-thread,",	  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1791    { " 5x5-bw-thread,",	  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1792 
1793    { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1794    { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1795 
1796    { "numa02-bw,",	  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1797    { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1798    { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1799    { "numa01-bw-thread-NOTHP,",
1800 			  "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1801 };
1802 
1803 static int bench_all(void)
1804 {
1805 	int nr = ARRAY_SIZE(tests);
1806 	int ret;
1807 	int i;
1808 
1809 	ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1810 	BUG_ON(ret < 0);
1811 
1812 	for (i = 0; i < nr; i++) {
1813 		run_bench_numa(tests[i][0], tests[i] + 1);
1814 	}
1815 
1816 	printf("\n");
1817 
1818 	return 0;
1819 }
1820 
1821 int bench_numa(int argc, const char **argv)
1822 {
1823 	init_params(&p0, "main,", argc, argv);
1824 	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1825 	if (argc)
1826 		goto err;
1827 
1828 	if (p0.run_all)
1829 		return bench_all();
1830 
1831 	if (__bench_numa(NULL))
1832 		goto err;
1833 
1834 	return 0;
1835 
1836 err:
1837 	usage_with_options(numa_usage, options);
1838 	return -1;
1839 }
1840