1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * numa.c 4 * 5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance 6 */ 7 8 #include <inttypes.h> 9 /* For the CLR_() macros */ 10 #include <pthread.h> 11 12 #include "../perf.h" 13 #include "../builtin.h" 14 #include "../util/util.h" 15 #include <subcmd/parse-options.h> 16 #include "../util/cloexec.h" 17 18 #include "bench.h" 19 20 #include <errno.h> 21 #include <sched.h> 22 #include <stdio.h> 23 #include <assert.h> 24 #include <malloc.h> 25 #include <signal.h> 26 #include <stdlib.h> 27 #include <string.h> 28 #include <unistd.h> 29 #include <sys/mman.h> 30 #include <sys/time.h> 31 #include <sys/resource.h> 32 #include <sys/wait.h> 33 #include <sys/prctl.h> 34 #include <sys/types.h> 35 #include <linux/kernel.h> 36 #include <linux/time64.h> 37 #include <linux/numa.h> 38 39 #include <numa.h> 40 #include <numaif.h> 41 42 /* 43 * Regular printout to the terminal, supressed if -q is specified: 44 */ 45 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0) 46 47 /* 48 * Debug printf: 49 */ 50 #undef dprintf 51 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0) 52 53 struct thread_data { 54 int curr_cpu; 55 cpu_set_t bind_cpumask; 56 int bind_node; 57 u8 *process_data; 58 int process_nr; 59 int thread_nr; 60 int task_nr; 61 unsigned int loops_done; 62 u64 val; 63 u64 runtime_ns; 64 u64 system_time_ns; 65 u64 user_time_ns; 66 double speed_gbs; 67 pthread_mutex_t *process_lock; 68 }; 69 70 /* Parameters set by options: */ 71 72 struct params { 73 /* Startup synchronization: */ 74 bool serialize_startup; 75 76 /* Task hierarchy: */ 77 int nr_proc; 78 int nr_threads; 79 80 /* Working set sizes: */ 81 const char *mb_global_str; 82 const char *mb_proc_str; 83 const char *mb_proc_locked_str; 84 const char *mb_thread_str; 85 86 double mb_global; 87 double mb_proc; 88 double mb_proc_locked; 89 double mb_thread; 90 91 /* Access patterns to the working set: */ 92 bool data_reads; 93 bool data_writes; 94 bool data_backwards; 95 bool data_zero_memset; 96 bool data_rand_walk; 97 u32 nr_loops; 98 u32 nr_secs; 99 u32 sleep_usecs; 100 101 /* Working set initialization: */ 102 bool init_zero; 103 bool init_random; 104 bool init_cpu0; 105 106 /* Misc options: */ 107 int show_details; 108 int run_all; 109 int thp; 110 111 long bytes_global; 112 long bytes_process; 113 long bytes_process_locked; 114 long bytes_thread; 115 116 int nr_tasks; 117 bool show_quiet; 118 119 bool show_convergence; 120 bool measure_convergence; 121 122 int perturb_secs; 123 int nr_cpus; 124 int nr_nodes; 125 126 /* Affinity options -C and -N: */ 127 char *cpu_list_str; 128 char *node_list_str; 129 }; 130 131 132 /* Global, read-writable area, accessible to all processes and threads: */ 133 134 struct global_info { 135 u8 *data; 136 137 pthread_mutex_t startup_mutex; 138 int nr_tasks_started; 139 140 pthread_mutex_t startup_done_mutex; 141 142 pthread_mutex_t start_work_mutex; 143 int nr_tasks_working; 144 145 pthread_mutex_t stop_work_mutex; 146 u64 bytes_done; 147 148 struct thread_data *threads; 149 150 /* Convergence latency measurement: */ 151 bool all_converged; 152 bool stop_work; 153 154 int print_once; 155 156 struct params p; 157 }; 158 159 static struct global_info *g = NULL; 160 161 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset); 162 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset); 163 164 struct params p0; 165 166 static const struct option options[] = { 167 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"), 168 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"), 169 170 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"), 171 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"), 172 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"), 173 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"), 174 175 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"), 176 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"), 177 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"), 178 179 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via reads (can be mixed with -W)"), 180 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"), 181 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"), 182 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"), 183 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"), 184 185 186 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"), 187 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"), 188 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"), 189 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"), 190 191 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"), 192 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"), 193 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"), 194 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, " 195 "convergence is reached when each process (all its threads) is running on a single NUMA node."), 196 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"), 197 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"), 198 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"), 199 200 /* Special option string parsing callbacks: */ 201 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]", 202 "bind the first N tasks to these specific cpus (the rest is unbound)", 203 parse_cpus_opt), 204 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]", 205 "bind the first N tasks to these specific memory nodes (the rest is unbound)", 206 parse_nodes_opt), 207 OPT_END() 208 }; 209 210 static const char * const bench_numa_usage[] = { 211 "perf bench numa <options>", 212 NULL 213 }; 214 215 static const char * const numa_usage[] = { 216 "perf bench numa mem [<options>]", 217 NULL 218 }; 219 220 /* 221 * To get number of numa nodes present. 222 */ 223 static int nr_numa_nodes(void) 224 { 225 int i, nr_nodes = 0; 226 227 for (i = 0; i < g->p.nr_nodes; i++) { 228 if (numa_bitmask_isbitset(numa_nodes_ptr, i)) 229 nr_nodes++; 230 } 231 232 return nr_nodes; 233 } 234 235 /* 236 * To check if given numa node is present. 237 */ 238 static int is_node_present(int node) 239 { 240 return numa_bitmask_isbitset(numa_nodes_ptr, node); 241 } 242 243 /* 244 * To check given numa node has cpus. 245 */ 246 static bool node_has_cpus(int node) 247 { 248 struct bitmask *cpu = numa_allocate_cpumask(); 249 unsigned int i; 250 251 if (cpu && !numa_node_to_cpus(node, cpu)) { 252 for (i = 0; i < cpu->size; i++) { 253 if (numa_bitmask_isbitset(cpu, i)) 254 return true; 255 } 256 } 257 258 return false; /* lets fall back to nocpus safely */ 259 } 260 261 static cpu_set_t bind_to_cpu(int target_cpu) 262 { 263 cpu_set_t orig_mask, mask; 264 int ret; 265 266 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); 267 BUG_ON(ret); 268 269 CPU_ZERO(&mask); 270 271 if (target_cpu == -1) { 272 int cpu; 273 274 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 275 CPU_SET(cpu, &mask); 276 } else { 277 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus); 278 CPU_SET(target_cpu, &mask); 279 } 280 281 ret = sched_setaffinity(0, sizeof(mask), &mask); 282 BUG_ON(ret); 283 284 return orig_mask; 285 } 286 287 static cpu_set_t bind_to_node(int target_node) 288 { 289 int cpus_per_node = g->p.nr_cpus / nr_numa_nodes(); 290 cpu_set_t orig_mask, mask; 291 int cpu; 292 int ret; 293 294 BUG_ON(cpus_per_node * nr_numa_nodes() != g->p.nr_cpus); 295 BUG_ON(!cpus_per_node); 296 297 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); 298 BUG_ON(ret); 299 300 CPU_ZERO(&mask); 301 302 if (target_node == NUMA_NO_NODE) { 303 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 304 CPU_SET(cpu, &mask); 305 } else { 306 int cpu_start = (target_node + 0) * cpus_per_node; 307 int cpu_stop = (target_node + 1) * cpus_per_node; 308 309 BUG_ON(cpu_stop > g->p.nr_cpus); 310 311 for (cpu = cpu_start; cpu < cpu_stop; cpu++) 312 CPU_SET(cpu, &mask); 313 } 314 315 ret = sched_setaffinity(0, sizeof(mask), &mask); 316 BUG_ON(ret); 317 318 return orig_mask; 319 } 320 321 static void bind_to_cpumask(cpu_set_t mask) 322 { 323 int ret; 324 325 ret = sched_setaffinity(0, sizeof(mask), &mask); 326 BUG_ON(ret); 327 } 328 329 static void mempol_restore(void) 330 { 331 int ret; 332 333 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1); 334 335 BUG_ON(ret); 336 } 337 338 static void bind_to_memnode(int node) 339 { 340 unsigned long nodemask; 341 int ret; 342 343 if (node == NUMA_NO_NODE) 344 return; 345 346 BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8); 347 nodemask = 1L << node; 348 349 ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8); 350 dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret); 351 352 BUG_ON(ret); 353 } 354 355 #define HPSIZE (2*1024*1024) 356 357 #define set_taskname(fmt...) \ 358 do { \ 359 char name[20]; \ 360 \ 361 snprintf(name, 20, fmt); \ 362 prctl(PR_SET_NAME, name); \ 363 } while (0) 364 365 static u8 *alloc_data(ssize_t bytes0, int map_flags, 366 int init_zero, int init_cpu0, int thp, int init_random) 367 { 368 cpu_set_t orig_mask; 369 ssize_t bytes; 370 u8 *buf; 371 int ret; 372 373 if (!bytes0) 374 return NULL; 375 376 /* Allocate and initialize all memory on CPU#0: */ 377 if (init_cpu0) { 378 orig_mask = bind_to_node(0); 379 bind_to_memnode(0); 380 } 381 382 bytes = bytes0 + HPSIZE; 383 384 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0); 385 BUG_ON(buf == (void *)-1); 386 387 if (map_flags == MAP_PRIVATE) { 388 if (thp > 0) { 389 ret = madvise(buf, bytes, MADV_HUGEPAGE); 390 if (ret && !g->print_once) { 391 g->print_once = 1; 392 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n"); 393 } 394 } 395 if (thp < 0) { 396 ret = madvise(buf, bytes, MADV_NOHUGEPAGE); 397 if (ret && !g->print_once) { 398 g->print_once = 1; 399 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n"); 400 } 401 } 402 } 403 404 if (init_zero) { 405 bzero(buf, bytes); 406 } else { 407 /* Initialize random contents, different in each word: */ 408 if (init_random) { 409 u64 *wbuf = (void *)buf; 410 long off = rand(); 411 long i; 412 413 for (i = 0; i < bytes/8; i++) 414 wbuf[i] = i + off; 415 } 416 } 417 418 /* Align to 2MB boundary: */ 419 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1)); 420 421 /* Restore affinity: */ 422 if (init_cpu0) { 423 bind_to_cpumask(orig_mask); 424 mempol_restore(); 425 } 426 427 return buf; 428 } 429 430 static void free_data(void *data, ssize_t bytes) 431 { 432 int ret; 433 434 if (!data) 435 return; 436 437 ret = munmap(data, bytes); 438 BUG_ON(ret); 439 } 440 441 /* 442 * Create a shared memory buffer that can be shared between processes, zeroed: 443 */ 444 static void * zalloc_shared_data(ssize_t bytes) 445 { 446 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random); 447 } 448 449 /* 450 * Create a shared memory buffer that can be shared between processes: 451 */ 452 static void * setup_shared_data(ssize_t bytes) 453 { 454 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 455 } 456 457 /* 458 * Allocate process-local memory - this will either be shared between 459 * threads of this process, or only be accessed by this thread: 460 */ 461 static void * setup_private_data(ssize_t bytes) 462 { 463 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 464 } 465 466 /* 467 * Return a process-shared (global) mutex: 468 */ 469 static void init_global_mutex(pthread_mutex_t *mutex) 470 { 471 pthread_mutexattr_t attr; 472 473 pthread_mutexattr_init(&attr); 474 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED); 475 pthread_mutex_init(mutex, &attr); 476 } 477 478 static int parse_cpu_list(const char *arg) 479 { 480 p0.cpu_list_str = strdup(arg); 481 482 dprintf("got CPU list: {%s}\n", p0.cpu_list_str); 483 484 return 0; 485 } 486 487 static int parse_setup_cpu_list(void) 488 { 489 struct thread_data *td; 490 char *str0, *str; 491 int t; 492 493 if (!g->p.cpu_list_str) 494 return 0; 495 496 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 497 498 str0 = str = strdup(g->p.cpu_list_str); 499 t = 0; 500 501 BUG_ON(!str); 502 503 tprintf("# binding tasks to CPUs:\n"); 504 tprintf("# "); 505 506 while (true) { 507 int bind_cpu, bind_cpu_0, bind_cpu_1; 508 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul; 509 int bind_len; 510 int step; 511 int mul; 512 513 tok = strsep(&str, ","); 514 if (!tok) 515 break; 516 517 tok_end = strstr(tok, "-"); 518 519 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 520 if (!tok_end) { 521 /* Single CPU specified: */ 522 bind_cpu_0 = bind_cpu_1 = atol(tok); 523 } else { 524 /* CPU range specified (for example: "5-11"): */ 525 bind_cpu_0 = atol(tok); 526 bind_cpu_1 = atol(tok_end + 1); 527 } 528 529 step = 1; 530 tok_step = strstr(tok, "#"); 531 if (tok_step) { 532 step = atol(tok_step + 1); 533 BUG_ON(step <= 0 || step >= g->p.nr_cpus); 534 } 535 536 /* 537 * Mask length. 538 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4', 539 * where the _4 means the next 4 CPUs are allowed. 540 */ 541 bind_len = 1; 542 tok_len = strstr(tok, "_"); 543 if (tok_len) { 544 bind_len = atol(tok_len + 1); 545 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus); 546 } 547 548 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 549 mul = 1; 550 tok_mul = strstr(tok, "x"); 551 if (tok_mul) { 552 mul = atol(tok_mul + 1); 553 BUG_ON(mul <= 0); 554 } 555 556 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul); 557 558 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) { 559 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus); 560 return -1; 561 } 562 563 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0); 564 BUG_ON(bind_cpu_0 > bind_cpu_1); 565 566 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) { 567 int i; 568 569 for (i = 0; i < mul; i++) { 570 int cpu; 571 572 if (t >= g->p.nr_tasks) { 573 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu); 574 goto out; 575 } 576 td = g->threads + t; 577 578 if (t) 579 tprintf(","); 580 if (bind_len > 1) { 581 tprintf("%2d/%d", bind_cpu, bind_len); 582 } else { 583 tprintf("%2d", bind_cpu); 584 } 585 586 CPU_ZERO(&td->bind_cpumask); 587 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) { 588 BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus); 589 CPU_SET(cpu, &td->bind_cpumask); 590 } 591 t++; 592 } 593 } 594 } 595 out: 596 597 tprintf("\n"); 598 599 if (t < g->p.nr_tasks) 600 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 601 602 free(str0); 603 return 0; 604 } 605 606 static int parse_cpus_opt(const struct option *opt __maybe_unused, 607 const char *arg, int unset __maybe_unused) 608 { 609 if (!arg) 610 return -1; 611 612 return parse_cpu_list(arg); 613 } 614 615 static int parse_node_list(const char *arg) 616 { 617 p0.node_list_str = strdup(arg); 618 619 dprintf("got NODE list: {%s}\n", p0.node_list_str); 620 621 return 0; 622 } 623 624 static int parse_setup_node_list(void) 625 { 626 struct thread_data *td; 627 char *str0, *str; 628 int t; 629 630 if (!g->p.node_list_str) 631 return 0; 632 633 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 634 635 str0 = str = strdup(g->p.node_list_str); 636 t = 0; 637 638 BUG_ON(!str); 639 640 tprintf("# binding tasks to NODEs:\n"); 641 tprintf("# "); 642 643 while (true) { 644 int bind_node, bind_node_0, bind_node_1; 645 char *tok, *tok_end, *tok_step, *tok_mul; 646 int step; 647 int mul; 648 649 tok = strsep(&str, ","); 650 if (!tok) 651 break; 652 653 tok_end = strstr(tok, "-"); 654 655 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 656 if (!tok_end) { 657 /* Single NODE specified: */ 658 bind_node_0 = bind_node_1 = atol(tok); 659 } else { 660 /* NODE range specified (for example: "5-11"): */ 661 bind_node_0 = atol(tok); 662 bind_node_1 = atol(tok_end + 1); 663 } 664 665 step = 1; 666 tok_step = strstr(tok, "#"); 667 if (tok_step) { 668 step = atol(tok_step + 1); 669 BUG_ON(step <= 0 || step >= g->p.nr_nodes); 670 } 671 672 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 673 mul = 1; 674 tok_mul = strstr(tok, "x"); 675 if (tok_mul) { 676 mul = atol(tok_mul + 1); 677 BUG_ON(mul <= 0); 678 } 679 680 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step); 681 682 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) { 683 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes); 684 return -1; 685 } 686 687 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0); 688 BUG_ON(bind_node_0 > bind_node_1); 689 690 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) { 691 int i; 692 693 for (i = 0; i < mul; i++) { 694 if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) { 695 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node); 696 goto out; 697 } 698 td = g->threads + t; 699 700 if (!t) 701 tprintf(" %2d", bind_node); 702 else 703 tprintf(",%2d", bind_node); 704 705 td->bind_node = bind_node; 706 t++; 707 } 708 } 709 } 710 out: 711 712 tprintf("\n"); 713 714 if (t < g->p.nr_tasks) 715 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 716 717 free(str0); 718 return 0; 719 } 720 721 static int parse_nodes_opt(const struct option *opt __maybe_unused, 722 const char *arg, int unset __maybe_unused) 723 { 724 if (!arg) 725 return -1; 726 727 return parse_node_list(arg); 728 729 return 0; 730 } 731 732 #define BIT(x) (1ul << x) 733 734 static inline uint32_t lfsr_32(uint32_t lfsr) 735 { 736 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31); 737 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps); 738 } 739 740 /* 741 * Make sure there's real data dependency to RAM (when read 742 * accesses are enabled), so the compiler, the CPU and the 743 * kernel (KSM, zero page, etc.) cannot optimize away RAM 744 * accesses: 745 */ 746 static inline u64 access_data(u64 *data, u64 val) 747 { 748 if (g->p.data_reads) 749 val += *data; 750 if (g->p.data_writes) 751 *data = val + 1; 752 return val; 753 } 754 755 /* 756 * The worker process does two types of work, a forwards going 757 * loop and a backwards going loop. 758 * 759 * We do this so that on multiprocessor systems we do not create 760 * a 'train' of processing, with highly synchronized processes, 761 * skewing the whole benchmark. 762 */ 763 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val) 764 { 765 long words = bytes/sizeof(u64); 766 u64 *data = (void *)__data; 767 long chunk_0, chunk_1; 768 u64 *d0, *d, *d1; 769 long off; 770 long i; 771 772 BUG_ON(!data && words); 773 BUG_ON(data && !words); 774 775 if (!data) 776 return val; 777 778 /* Very simple memset() work variant: */ 779 if (g->p.data_zero_memset && !g->p.data_rand_walk) { 780 bzero(data, bytes); 781 return val; 782 } 783 784 /* Spread out by PID/TID nr and by loop nr: */ 785 chunk_0 = words/nr_max; 786 chunk_1 = words/g->p.nr_loops; 787 off = nr*chunk_0 + loop*chunk_1; 788 789 while (off >= words) 790 off -= words; 791 792 if (g->p.data_rand_walk) { 793 u32 lfsr = nr + loop + val; 794 int j; 795 796 for (i = 0; i < words/1024; i++) { 797 long start, end; 798 799 lfsr = lfsr_32(lfsr); 800 801 start = lfsr % words; 802 end = min(start + 1024, words-1); 803 804 if (g->p.data_zero_memset) { 805 bzero(data + start, (end-start) * sizeof(u64)); 806 } else { 807 for (j = start; j < end; j++) 808 val = access_data(data + j, val); 809 } 810 } 811 } else if (!g->p.data_backwards || (nr + loop) & 1) { 812 813 d0 = data + off; 814 d = data + off + 1; 815 d1 = data + words; 816 817 /* Process data forwards: */ 818 for (;;) { 819 if (unlikely(d >= d1)) 820 d = data; 821 if (unlikely(d == d0)) 822 break; 823 824 val = access_data(d, val); 825 826 d++; 827 } 828 } else { 829 /* Process data backwards: */ 830 831 d0 = data + off; 832 d = data + off - 1; 833 d1 = data + words; 834 835 /* Process data forwards: */ 836 for (;;) { 837 if (unlikely(d < data)) 838 d = data + words-1; 839 if (unlikely(d == d0)) 840 break; 841 842 val = access_data(d, val); 843 844 d--; 845 } 846 } 847 848 return val; 849 } 850 851 static void update_curr_cpu(int task_nr, unsigned long bytes_worked) 852 { 853 unsigned int cpu; 854 855 cpu = sched_getcpu(); 856 857 g->threads[task_nr].curr_cpu = cpu; 858 prctl(0, bytes_worked); 859 } 860 861 #define MAX_NR_NODES 64 862 863 /* 864 * Count the number of nodes a process's threads 865 * are spread out on. 866 * 867 * A count of 1 means that the process is compressed 868 * to a single node. A count of g->p.nr_nodes means it's 869 * spread out on the whole system. 870 */ 871 static int count_process_nodes(int process_nr) 872 { 873 char node_present[MAX_NR_NODES] = { 0, }; 874 int nodes; 875 int n, t; 876 877 for (t = 0; t < g->p.nr_threads; t++) { 878 struct thread_data *td; 879 int task_nr; 880 int node; 881 882 task_nr = process_nr*g->p.nr_threads + t; 883 td = g->threads + task_nr; 884 885 node = numa_node_of_cpu(td->curr_cpu); 886 if (node < 0) /* curr_cpu was likely still -1 */ 887 return 0; 888 889 node_present[node] = 1; 890 } 891 892 nodes = 0; 893 894 for (n = 0; n < MAX_NR_NODES; n++) 895 nodes += node_present[n]; 896 897 return nodes; 898 } 899 900 /* 901 * Count the number of distinct process-threads a node contains. 902 * 903 * A count of 1 means that the node contains only a single 904 * process. If all nodes on the system contain at most one 905 * process then we are well-converged. 906 */ 907 static int count_node_processes(int node) 908 { 909 int processes = 0; 910 int t, p; 911 912 for (p = 0; p < g->p.nr_proc; p++) { 913 for (t = 0; t < g->p.nr_threads; t++) { 914 struct thread_data *td; 915 int task_nr; 916 int n; 917 918 task_nr = p*g->p.nr_threads + t; 919 td = g->threads + task_nr; 920 921 n = numa_node_of_cpu(td->curr_cpu); 922 if (n == node) { 923 processes++; 924 break; 925 } 926 } 927 } 928 929 return processes; 930 } 931 932 static void calc_convergence_compression(int *strong) 933 { 934 unsigned int nodes_min, nodes_max; 935 int p; 936 937 nodes_min = -1; 938 nodes_max = 0; 939 940 for (p = 0; p < g->p.nr_proc; p++) { 941 unsigned int nodes = count_process_nodes(p); 942 943 if (!nodes) { 944 *strong = 0; 945 return; 946 } 947 948 nodes_min = min(nodes, nodes_min); 949 nodes_max = max(nodes, nodes_max); 950 } 951 952 /* Strong convergence: all threads compress on a single node: */ 953 if (nodes_min == 1 && nodes_max == 1) { 954 *strong = 1; 955 } else { 956 *strong = 0; 957 tprintf(" {%d-%d}", nodes_min, nodes_max); 958 } 959 } 960 961 static void calc_convergence(double runtime_ns_max, double *convergence) 962 { 963 unsigned int loops_done_min, loops_done_max; 964 int process_groups; 965 int nodes[MAX_NR_NODES]; 966 int distance; 967 int nr_min; 968 int nr_max; 969 int strong; 970 int sum; 971 int nr; 972 int node; 973 int cpu; 974 int t; 975 976 if (!g->p.show_convergence && !g->p.measure_convergence) 977 return; 978 979 for (node = 0; node < g->p.nr_nodes; node++) 980 nodes[node] = 0; 981 982 loops_done_min = -1; 983 loops_done_max = 0; 984 985 for (t = 0; t < g->p.nr_tasks; t++) { 986 struct thread_data *td = g->threads + t; 987 unsigned int loops_done; 988 989 cpu = td->curr_cpu; 990 991 /* Not all threads have written it yet: */ 992 if (cpu < 0) 993 continue; 994 995 node = numa_node_of_cpu(cpu); 996 997 nodes[node]++; 998 999 loops_done = td->loops_done; 1000 loops_done_min = min(loops_done, loops_done_min); 1001 loops_done_max = max(loops_done, loops_done_max); 1002 } 1003 1004 nr_max = 0; 1005 nr_min = g->p.nr_tasks; 1006 sum = 0; 1007 1008 for (node = 0; node < g->p.nr_nodes; node++) { 1009 if (!is_node_present(node)) 1010 continue; 1011 nr = nodes[node]; 1012 nr_min = min(nr, nr_min); 1013 nr_max = max(nr, nr_max); 1014 sum += nr; 1015 } 1016 BUG_ON(nr_min > nr_max); 1017 1018 BUG_ON(sum > g->p.nr_tasks); 1019 1020 if (0 && (sum < g->p.nr_tasks)) 1021 return; 1022 1023 /* 1024 * Count the number of distinct process groups present 1025 * on nodes - when we are converged this will decrease 1026 * to g->p.nr_proc: 1027 */ 1028 process_groups = 0; 1029 1030 for (node = 0; node < g->p.nr_nodes; node++) { 1031 int processes; 1032 1033 if (!is_node_present(node)) 1034 continue; 1035 processes = count_node_processes(node); 1036 nr = nodes[node]; 1037 tprintf(" %2d/%-2d", nr, processes); 1038 1039 process_groups += processes; 1040 } 1041 1042 distance = nr_max - nr_min; 1043 1044 tprintf(" [%2d/%-2d]", distance, process_groups); 1045 1046 tprintf(" l:%3d-%-3d (%3d)", 1047 loops_done_min, loops_done_max, loops_done_max-loops_done_min); 1048 1049 if (loops_done_min && loops_done_max) { 1050 double skew = 1.0 - (double)loops_done_min/loops_done_max; 1051 1052 tprintf(" [%4.1f%%]", skew * 100.0); 1053 } 1054 1055 calc_convergence_compression(&strong); 1056 1057 if (strong && process_groups == g->p.nr_proc) { 1058 if (!*convergence) { 1059 *convergence = runtime_ns_max; 1060 tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC); 1061 if (g->p.measure_convergence) { 1062 g->all_converged = true; 1063 g->stop_work = true; 1064 } 1065 } 1066 } else { 1067 if (*convergence) { 1068 tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC); 1069 *convergence = 0; 1070 } 1071 tprintf("\n"); 1072 } 1073 } 1074 1075 static void show_summary(double runtime_ns_max, int l, double *convergence) 1076 { 1077 tprintf("\r # %5.1f%% [%.1f mins]", 1078 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0); 1079 1080 calc_convergence(runtime_ns_max, convergence); 1081 1082 if (g->p.show_details >= 0) 1083 fflush(stdout); 1084 } 1085 1086 static void *worker_thread(void *__tdata) 1087 { 1088 struct thread_data *td = __tdata; 1089 struct timeval start0, start, stop, diff; 1090 int process_nr = td->process_nr; 1091 int thread_nr = td->thread_nr; 1092 unsigned long last_perturbance; 1093 int task_nr = td->task_nr; 1094 int details = g->p.show_details; 1095 int first_task, last_task; 1096 double convergence = 0; 1097 u64 val = td->val; 1098 double runtime_ns_max; 1099 u8 *global_data; 1100 u8 *process_data; 1101 u8 *thread_data; 1102 u64 bytes_done, secs; 1103 long work_done; 1104 u32 l; 1105 struct rusage rusage; 1106 1107 bind_to_cpumask(td->bind_cpumask); 1108 bind_to_memnode(td->bind_node); 1109 1110 set_taskname("thread %d/%d", process_nr, thread_nr); 1111 1112 global_data = g->data; 1113 process_data = td->process_data; 1114 thread_data = setup_private_data(g->p.bytes_thread); 1115 1116 bytes_done = 0; 1117 1118 last_task = 0; 1119 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1) 1120 last_task = 1; 1121 1122 first_task = 0; 1123 if (process_nr == 0 && thread_nr == 0) 1124 first_task = 1; 1125 1126 if (details >= 2) { 1127 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n", 1128 process_nr, thread_nr, global_data, process_data, thread_data); 1129 } 1130 1131 if (g->p.serialize_startup) { 1132 pthread_mutex_lock(&g->startup_mutex); 1133 g->nr_tasks_started++; 1134 pthread_mutex_unlock(&g->startup_mutex); 1135 1136 /* Here we will wait for the main process to start us all at once: */ 1137 pthread_mutex_lock(&g->start_work_mutex); 1138 g->nr_tasks_working++; 1139 1140 /* Last one wake the main process: */ 1141 if (g->nr_tasks_working == g->p.nr_tasks) 1142 pthread_mutex_unlock(&g->startup_done_mutex); 1143 1144 pthread_mutex_unlock(&g->start_work_mutex); 1145 } 1146 1147 gettimeofday(&start0, NULL); 1148 1149 start = stop = start0; 1150 last_perturbance = start.tv_sec; 1151 1152 for (l = 0; l < g->p.nr_loops; l++) { 1153 start = stop; 1154 1155 if (g->stop_work) 1156 break; 1157 1158 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val); 1159 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val); 1160 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val); 1161 1162 if (g->p.sleep_usecs) { 1163 pthread_mutex_lock(td->process_lock); 1164 usleep(g->p.sleep_usecs); 1165 pthread_mutex_unlock(td->process_lock); 1166 } 1167 /* 1168 * Amount of work to be done under a process-global lock: 1169 */ 1170 if (g->p.bytes_process_locked) { 1171 pthread_mutex_lock(td->process_lock); 1172 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val); 1173 pthread_mutex_unlock(td->process_lock); 1174 } 1175 1176 work_done = g->p.bytes_global + g->p.bytes_process + 1177 g->p.bytes_process_locked + g->p.bytes_thread; 1178 1179 update_curr_cpu(task_nr, work_done); 1180 bytes_done += work_done; 1181 1182 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs) 1183 continue; 1184 1185 td->loops_done = l; 1186 1187 gettimeofday(&stop, NULL); 1188 1189 /* Check whether our max runtime timed out: */ 1190 if (g->p.nr_secs) { 1191 timersub(&stop, &start0, &diff); 1192 if ((u32)diff.tv_sec >= g->p.nr_secs) { 1193 g->stop_work = true; 1194 break; 1195 } 1196 } 1197 1198 /* Update the summary at most once per second: */ 1199 if (start.tv_sec == stop.tv_sec) 1200 continue; 1201 1202 /* 1203 * Perturb the first task's equilibrium every g->p.perturb_secs seconds, 1204 * by migrating to CPU#0: 1205 */ 1206 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) { 1207 cpu_set_t orig_mask; 1208 int target_cpu; 1209 int this_cpu; 1210 1211 last_perturbance = stop.tv_sec; 1212 1213 /* 1214 * Depending on where we are running, move into 1215 * the other half of the system, to create some 1216 * real disturbance: 1217 */ 1218 this_cpu = g->threads[task_nr].curr_cpu; 1219 if (this_cpu < g->p.nr_cpus/2) 1220 target_cpu = g->p.nr_cpus-1; 1221 else 1222 target_cpu = 0; 1223 1224 orig_mask = bind_to_cpu(target_cpu); 1225 1226 /* Here we are running on the target CPU already */ 1227 if (details >= 1) 1228 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu); 1229 1230 bind_to_cpumask(orig_mask); 1231 } 1232 1233 if (details >= 3) { 1234 timersub(&stop, &start, &diff); 1235 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC; 1236 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC; 1237 1238 if (details >= 0) { 1239 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n", 1240 process_nr, thread_nr, runtime_ns_max / bytes_done, val); 1241 } 1242 fflush(stdout); 1243 } 1244 if (!last_task) 1245 continue; 1246 1247 timersub(&stop, &start0, &diff); 1248 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC; 1249 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC; 1250 1251 show_summary(runtime_ns_max, l, &convergence); 1252 } 1253 1254 gettimeofday(&stop, NULL); 1255 timersub(&stop, &start0, &diff); 1256 td->runtime_ns = diff.tv_sec * NSEC_PER_SEC; 1257 td->runtime_ns += diff.tv_usec * NSEC_PER_USEC; 1258 secs = td->runtime_ns / NSEC_PER_SEC; 1259 td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0; 1260 1261 getrusage(RUSAGE_THREAD, &rusage); 1262 td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC; 1263 td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC; 1264 td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC; 1265 td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC; 1266 1267 free_data(thread_data, g->p.bytes_thread); 1268 1269 pthread_mutex_lock(&g->stop_work_mutex); 1270 g->bytes_done += bytes_done; 1271 pthread_mutex_unlock(&g->stop_work_mutex); 1272 1273 return NULL; 1274 } 1275 1276 /* 1277 * A worker process starts a couple of threads: 1278 */ 1279 static void worker_process(int process_nr) 1280 { 1281 pthread_mutex_t process_lock; 1282 struct thread_data *td; 1283 pthread_t *pthreads; 1284 u8 *process_data; 1285 int task_nr; 1286 int ret; 1287 int t; 1288 1289 pthread_mutex_init(&process_lock, NULL); 1290 set_taskname("process %d", process_nr); 1291 1292 /* 1293 * Pick up the memory policy and the CPU binding of our first thread, 1294 * so that we initialize memory accordingly: 1295 */ 1296 task_nr = process_nr*g->p.nr_threads; 1297 td = g->threads + task_nr; 1298 1299 bind_to_memnode(td->bind_node); 1300 bind_to_cpumask(td->bind_cpumask); 1301 1302 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t)); 1303 process_data = setup_private_data(g->p.bytes_process); 1304 1305 if (g->p.show_details >= 3) { 1306 printf(" # process %2d global mem: %p, process mem: %p\n", 1307 process_nr, g->data, process_data); 1308 } 1309 1310 for (t = 0; t < g->p.nr_threads; t++) { 1311 task_nr = process_nr*g->p.nr_threads + t; 1312 td = g->threads + task_nr; 1313 1314 td->process_data = process_data; 1315 td->process_nr = process_nr; 1316 td->thread_nr = t; 1317 td->task_nr = task_nr; 1318 td->val = rand(); 1319 td->curr_cpu = -1; 1320 td->process_lock = &process_lock; 1321 1322 ret = pthread_create(pthreads + t, NULL, worker_thread, td); 1323 BUG_ON(ret); 1324 } 1325 1326 for (t = 0; t < g->p.nr_threads; t++) { 1327 ret = pthread_join(pthreads[t], NULL); 1328 BUG_ON(ret); 1329 } 1330 1331 free_data(process_data, g->p.bytes_process); 1332 free(pthreads); 1333 } 1334 1335 static void print_summary(void) 1336 { 1337 if (g->p.show_details < 0) 1338 return; 1339 1340 printf("\n ###\n"); 1341 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n", 1342 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus); 1343 printf(" # %5dx %5ldMB global shared mem operations\n", 1344 g->p.nr_loops, g->p.bytes_global/1024/1024); 1345 printf(" # %5dx %5ldMB process shared mem operations\n", 1346 g->p.nr_loops, g->p.bytes_process/1024/1024); 1347 printf(" # %5dx %5ldMB thread local mem operations\n", 1348 g->p.nr_loops, g->p.bytes_thread/1024/1024); 1349 1350 printf(" ###\n"); 1351 1352 printf("\n ###\n"); fflush(stdout); 1353 } 1354 1355 static void init_thread_data(void) 1356 { 1357 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1358 int t; 1359 1360 g->threads = zalloc_shared_data(size); 1361 1362 for (t = 0; t < g->p.nr_tasks; t++) { 1363 struct thread_data *td = g->threads + t; 1364 int cpu; 1365 1366 /* Allow all nodes by default: */ 1367 td->bind_node = NUMA_NO_NODE; 1368 1369 /* Allow all CPUs by default: */ 1370 CPU_ZERO(&td->bind_cpumask); 1371 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 1372 CPU_SET(cpu, &td->bind_cpumask); 1373 } 1374 } 1375 1376 static void deinit_thread_data(void) 1377 { 1378 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1379 1380 free_data(g->threads, size); 1381 } 1382 1383 static int init(void) 1384 { 1385 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0); 1386 1387 /* Copy over options: */ 1388 g->p = p0; 1389 1390 g->p.nr_cpus = numa_num_configured_cpus(); 1391 1392 g->p.nr_nodes = numa_max_node() + 1; 1393 1394 /* char array in count_process_nodes(): */ 1395 BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0); 1396 1397 if (g->p.show_quiet && !g->p.show_details) 1398 g->p.show_details = -1; 1399 1400 /* Some memory should be specified: */ 1401 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str) 1402 return -1; 1403 1404 if (g->p.mb_global_str) { 1405 g->p.mb_global = atof(g->p.mb_global_str); 1406 BUG_ON(g->p.mb_global < 0); 1407 } 1408 1409 if (g->p.mb_proc_str) { 1410 g->p.mb_proc = atof(g->p.mb_proc_str); 1411 BUG_ON(g->p.mb_proc < 0); 1412 } 1413 1414 if (g->p.mb_proc_locked_str) { 1415 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str); 1416 BUG_ON(g->p.mb_proc_locked < 0); 1417 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc); 1418 } 1419 1420 if (g->p.mb_thread_str) { 1421 g->p.mb_thread = atof(g->p.mb_thread_str); 1422 BUG_ON(g->p.mb_thread < 0); 1423 } 1424 1425 BUG_ON(g->p.nr_threads <= 0); 1426 BUG_ON(g->p.nr_proc <= 0); 1427 1428 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads; 1429 1430 g->p.bytes_global = g->p.mb_global *1024L*1024L; 1431 g->p.bytes_process = g->p.mb_proc *1024L*1024L; 1432 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L; 1433 g->p.bytes_thread = g->p.mb_thread *1024L*1024L; 1434 1435 g->data = setup_shared_data(g->p.bytes_global); 1436 1437 /* Startup serialization: */ 1438 init_global_mutex(&g->start_work_mutex); 1439 init_global_mutex(&g->startup_mutex); 1440 init_global_mutex(&g->startup_done_mutex); 1441 init_global_mutex(&g->stop_work_mutex); 1442 1443 init_thread_data(); 1444 1445 tprintf("#\n"); 1446 if (parse_setup_cpu_list() || parse_setup_node_list()) 1447 return -1; 1448 tprintf("#\n"); 1449 1450 print_summary(); 1451 1452 return 0; 1453 } 1454 1455 static void deinit(void) 1456 { 1457 free_data(g->data, g->p.bytes_global); 1458 g->data = NULL; 1459 1460 deinit_thread_data(); 1461 1462 free_data(g, sizeof(*g)); 1463 g = NULL; 1464 } 1465 1466 /* 1467 * Print a short or long result, depending on the verbosity setting: 1468 */ 1469 static void print_res(const char *name, double val, 1470 const char *txt_unit, const char *txt_short, const char *txt_long) 1471 { 1472 if (!name) 1473 name = "main,"; 1474 1475 if (!g->p.show_quiet) 1476 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short); 1477 else 1478 printf(" %14.3f %s\n", val, txt_long); 1479 } 1480 1481 static int __bench_numa(const char *name) 1482 { 1483 struct timeval start, stop, diff; 1484 u64 runtime_ns_min, runtime_ns_sum; 1485 pid_t *pids, pid, wpid; 1486 double delta_runtime; 1487 double runtime_avg; 1488 double runtime_sec_max; 1489 double runtime_sec_min; 1490 int wait_stat; 1491 double bytes; 1492 int i, t, p; 1493 1494 if (init()) 1495 return -1; 1496 1497 pids = zalloc(g->p.nr_proc * sizeof(*pids)); 1498 pid = -1; 1499 1500 /* All threads try to acquire it, this way we can wait for them to start up: */ 1501 pthread_mutex_lock(&g->start_work_mutex); 1502 1503 if (g->p.serialize_startup) { 1504 tprintf(" #\n"); 1505 tprintf(" # Startup synchronization: ..."); fflush(stdout); 1506 } 1507 1508 gettimeofday(&start, NULL); 1509 1510 for (i = 0; i < g->p.nr_proc; i++) { 1511 pid = fork(); 1512 dprintf(" # process %2d: PID %d\n", i, pid); 1513 1514 BUG_ON(pid < 0); 1515 if (!pid) { 1516 /* Child process: */ 1517 worker_process(i); 1518 1519 exit(0); 1520 } 1521 pids[i] = pid; 1522 1523 } 1524 /* Wait for all the threads to start up: */ 1525 while (g->nr_tasks_started != g->p.nr_tasks) 1526 usleep(USEC_PER_MSEC); 1527 1528 BUG_ON(g->nr_tasks_started != g->p.nr_tasks); 1529 1530 if (g->p.serialize_startup) { 1531 double startup_sec; 1532 1533 pthread_mutex_lock(&g->startup_done_mutex); 1534 1535 /* This will start all threads: */ 1536 pthread_mutex_unlock(&g->start_work_mutex); 1537 1538 /* This mutex is locked - the last started thread will wake us: */ 1539 pthread_mutex_lock(&g->startup_done_mutex); 1540 1541 gettimeofday(&stop, NULL); 1542 1543 timersub(&stop, &start, &diff); 1544 1545 startup_sec = diff.tv_sec * NSEC_PER_SEC; 1546 startup_sec += diff.tv_usec * NSEC_PER_USEC; 1547 startup_sec /= NSEC_PER_SEC; 1548 1549 tprintf(" threads initialized in %.6f seconds.\n", startup_sec); 1550 tprintf(" #\n"); 1551 1552 start = stop; 1553 pthread_mutex_unlock(&g->startup_done_mutex); 1554 } else { 1555 gettimeofday(&start, NULL); 1556 } 1557 1558 /* Parent process: */ 1559 1560 1561 for (i = 0; i < g->p.nr_proc; i++) { 1562 wpid = waitpid(pids[i], &wait_stat, 0); 1563 BUG_ON(wpid < 0); 1564 BUG_ON(!WIFEXITED(wait_stat)); 1565 1566 } 1567 1568 runtime_ns_sum = 0; 1569 runtime_ns_min = -1LL; 1570 1571 for (t = 0; t < g->p.nr_tasks; t++) { 1572 u64 thread_runtime_ns = g->threads[t].runtime_ns; 1573 1574 runtime_ns_sum += thread_runtime_ns; 1575 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min); 1576 } 1577 1578 gettimeofday(&stop, NULL); 1579 timersub(&stop, &start, &diff); 1580 1581 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT); 1582 1583 tprintf("\n ###\n"); 1584 tprintf("\n"); 1585 1586 runtime_sec_max = diff.tv_sec * NSEC_PER_SEC; 1587 runtime_sec_max += diff.tv_usec * NSEC_PER_USEC; 1588 runtime_sec_max /= NSEC_PER_SEC; 1589 1590 runtime_sec_min = runtime_ns_min / NSEC_PER_SEC; 1591 1592 bytes = g->bytes_done; 1593 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC; 1594 1595 if (g->p.measure_convergence) { 1596 print_res(name, runtime_sec_max, 1597 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge"); 1598 } 1599 1600 print_res(name, runtime_sec_max, 1601 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime"); 1602 1603 print_res(name, runtime_sec_min, 1604 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime"); 1605 1606 print_res(name, runtime_avg, 1607 "secs,", "runtime-avg/thread", "secs average thread-runtime"); 1608 1609 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0; 1610 print_res(name, delta_runtime / runtime_sec_max * 100.0, 1611 "%,", "spread-runtime/thread", "% difference between max/avg runtime"); 1612 1613 print_res(name, bytes / g->p.nr_tasks / 1e9, 1614 "GB,", "data/thread", "GB data processed, per thread"); 1615 1616 print_res(name, bytes / 1e9, 1617 "GB,", "data-total", "GB data processed, total"); 1618 1619 print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks), 1620 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime"); 1621 1622 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max, 1623 "GB/sec,", "thread-speed", "GB/sec/thread speed"); 1624 1625 print_res(name, bytes / runtime_sec_max / 1e9, 1626 "GB/sec,", "total-speed", "GB/sec total speed"); 1627 1628 if (g->p.show_details >= 2) { 1629 char tname[14 + 2 * 10 + 1]; 1630 struct thread_data *td; 1631 for (p = 0; p < g->p.nr_proc; p++) { 1632 for (t = 0; t < g->p.nr_threads; t++) { 1633 memset(tname, 0, sizeof(tname)); 1634 td = g->threads + p*g->p.nr_threads + t; 1635 snprintf(tname, sizeof(tname), "process%d:thread%d", p, t); 1636 print_res(tname, td->speed_gbs, 1637 "GB/sec", "thread-speed", "GB/sec/thread speed"); 1638 print_res(tname, td->system_time_ns / NSEC_PER_SEC, 1639 "secs", "thread-system-time", "system CPU time/thread"); 1640 print_res(tname, td->user_time_ns / NSEC_PER_SEC, 1641 "secs", "thread-user-time", "user CPU time/thread"); 1642 } 1643 } 1644 } 1645 1646 free(pids); 1647 1648 deinit(); 1649 1650 return 0; 1651 } 1652 1653 #define MAX_ARGS 50 1654 1655 static int command_size(const char **argv) 1656 { 1657 int size = 0; 1658 1659 while (*argv) { 1660 size++; 1661 argv++; 1662 } 1663 1664 BUG_ON(size >= MAX_ARGS); 1665 1666 return size; 1667 } 1668 1669 static void init_params(struct params *p, const char *name, int argc, const char **argv) 1670 { 1671 int i; 1672 1673 printf("\n # Running %s \"perf bench numa", name); 1674 1675 for (i = 0; i < argc; i++) 1676 printf(" %s", argv[i]); 1677 1678 printf("\"\n"); 1679 1680 memset(p, 0, sizeof(*p)); 1681 1682 /* Initialize nonzero defaults: */ 1683 1684 p->serialize_startup = 1; 1685 p->data_reads = true; 1686 p->data_writes = true; 1687 p->data_backwards = true; 1688 p->data_rand_walk = true; 1689 p->nr_loops = -1; 1690 p->init_random = true; 1691 p->mb_global_str = "1"; 1692 p->nr_proc = 1; 1693 p->nr_threads = 1; 1694 p->nr_secs = 5; 1695 p->run_all = argc == 1; 1696 } 1697 1698 static int run_bench_numa(const char *name, const char **argv) 1699 { 1700 int argc = command_size(argv); 1701 1702 init_params(&p0, name, argc, argv); 1703 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1704 if (argc) 1705 goto err; 1706 1707 if (__bench_numa(name)) 1708 goto err; 1709 1710 return 0; 1711 1712 err: 1713 return -1; 1714 } 1715 1716 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk" 1717 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1" 1718 1719 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1" 1720 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1" 1721 1722 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1" 1723 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1" 1724 1725 /* 1726 * The built-in test-suite executed by "perf bench numa -a". 1727 * 1728 * (A minimum of 4 nodes and 16 GB of RAM is recommended.) 1729 */ 1730 static const char *tests[][MAX_ARGS] = { 1731 /* Basic single-stream NUMA bandwidth measurements: */ 1732 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1733 "-C" , "0", "-M", "0", OPT_BW_RAM }, 1734 { "RAM-bw-local-NOTHP,", 1735 "mem", "-p", "1", "-t", "1", "-P", "1024", 1736 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP }, 1737 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1738 "-C" , "0", "-M", "1", OPT_BW_RAM }, 1739 1740 /* 2-stream NUMA bandwidth measurements: */ 1741 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1742 "-C", "0,2", "-M", "0x2", OPT_BW_RAM }, 1743 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1744 "-C", "0,2", "-M", "1x2", OPT_BW_RAM }, 1745 1746 /* Cross-stream NUMA bandwidth measurement: */ 1747 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1748 "-C", "0,8", "-M", "1,0", OPT_BW_RAM }, 1749 1750 /* Convergence latency measurements: */ 1751 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV }, 1752 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV }, 1753 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV }, 1754 { " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1755 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1756 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV }, 1757 { " 4x4-convergence-NOTHP,", 1758 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1759 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV }, 1760 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV }, 1761 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV }, 1762 { " 8x4-convergence-NOTHP,", 1763 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1764 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV }, 1765 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV }, 1766 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV }, 1767 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV }, 1768 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV }, 1769 1770 /* Various NUMA process/thread layout bandwidth measurements: */ 1771 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW }, 1772 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW }, 1773 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW }, 1774 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW }, 1775 { " 8x1-bw-process-NOTHP,", 1776 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP }, 1777 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW }, 1778 1779 { " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW }, 1780 { " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW }, 1781 { "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW }, 1782 { "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW }, 1783 1784 { " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW }, 1785 { " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW }, 1786 { " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW }, 1787 { " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW }, 1788 { " 4x8-bw-thread-NOTHP,", 1789 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP }, 1790 { " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW }, 1791 { " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW }, 1792 1793 { "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW }, 1794 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW }, 1795 1796 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW }, 1797 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP }, 1798 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW }, 1799 { "numa01-bw-thread-NOTHP,", 1800 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP }, 1801 }; 1802 1803 static int bench_all(void) 1804 { 1805 int nr = ARRAY_SIZE(tests); 1806 int ret; 1807 int i; 1808 1809 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'"); 1810 BUG_ON(ret < 0); 1811 1812 for (i = 0; i < nr; i++) { 1813 run_bench_numa(tests[i][0], tests[i] + 1); 1814 } 1815 1816 printf("\n"); 1817 1818 return 0; 1819 } 1820 1821 int bench_numa(int argc, const char **argv) 1822 { 1823 init_params(&p0, "main,", argc, argv); 1824 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1825 if (argc) 1826 goto err; 1827 1828 if (p0.run_all) 1829 return bench_all(); 1830 1831 if (__bench_numa(NULL)) 1832 goto err; 1833 1834 return 0; 1835 1836 err: 1837 usage_with_options(numa_usage, options); 1838 return -1; 1839 } 1840