xref: /openbmc/linux/tools/perf/bench/numa.c (revision 2db13a9b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * numa.c
4  *
5  * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
6  */
7 
8 #include <inttypes.h>
9 /* For the CLR_() macros */
10 #include <pthread.h>
11 
12 #include <subcmd/parse-options.h>
13 #include "../util/cloexec.h"
14 
15 #include "bench.h"
16 
17 #include <errno.h>
18 #include <sched.h>
19 #include <stdio.h>
20 #include <assert.h>
21 #include <malloc.h>
22 #include <signal.h>
23 #include <stdlib.h>
24 #include <string.h>
25 #include <unistd.h>
26 #include <sys/mman.h>
27 #include <sys/time.h>
28 #include <sys/resource.h>
29 #include <sys/wait.h>
30 #include <sys/prctl.h>
31 #include <sys/types.h>
32 #include <linux/kernel.h>
33 #include <linux/time64.h>
34 #include <linux/numa.h>
35 #include <linux/zalloc.h>
36 
37 #include <numa.h>
38 #include <numaif.h>
39 
40 #ifndef RUSAGE_THREAD
41 # define RUSAGE_THREAD 1
42 #endif
43 
44 /*
45  * Regular printout to the terminal, supressed if -q is specified:
46  */
47 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
48 
49 /*
50  * Debug printf:
51  */
52 #undef dprintf
53 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
54 
55 struct thread_data {
56 	int			curr_cpu;
57 	cpu_set_t		bind_cpumask;
58 	int			bind_node;
59 	u8			*process_data;
60 	int			process_nr;
61 	int			thread_nr;
62 	int			task_nr;
63 	unsigned int		loops_done;
64 	u64			val;
65 	u64			runtime_ns;
66 	u64			system_time_ns;
67 	u64			user_time_ns;
68 	double			speed_gbs;
69 	pthread_mutex_t		*process_lock;
70 };
71 
72 /* Parameters set by options: */
73 
74 struct params {
75 	/* Startup synchronization: */
76 	bool			serialize_startup;
77 
78 	/* Task hierarchy: */
79 	int			nr_proc;
80 	int			nr_threads;
81 
82 	/* Working set sizes: */
83 	const char		*mb_global_str;
84 	const char		*mb_proc_str;
85 	const char		*mb_proc_locked_str;
86 	const char		*mb_thread_str;
87 
88 	double			mb_global;
89 	double			mb_proc;
90 	double			mb_proc_locked;
91 	double			mb_thread;
92 
93 	/* Access patterns to the working set: */
94 	bool			data_reads;
95 	bool			data_writes;
96 	bool			data_backwards;
97 	bool			data_zero_memset;
98 	bool			data_rand_walk;
99 	u32			nr_loops;
100 	u32			nr_secs;
101 	u32			sleep_usecs;
102 
103 	/* Working set initialization: */
104 	bool			init_zero;
105 	bool			init_random;
106 	bool			init_cpu0;
107 
108 	/* Misc options: */
109 	int			show_details;
110 	int			run_all;
111 	int			thp;
112 
113 	long			bytes_global;
114 	long			bytes_process;
115 	long			bytes_process_locked;
116 	long			bytes_thread;
117 
118 	int			nr_tasks;
119 	bool			show_quiet;
120 
121 	bool			show_convergence;
122 	bool			measure_convergence;
123 
124 	int			perturb_secs;
125 	int			nr_cpus;
126 	int			nr_nodes;
127 
128 	/* Affinity options -C and -N: */
129 	char			*cpu_list_str;
130 	char			*node_list_str;
131 };
132 
133 
134 /* Global, read-writable area, accessible to all processes and threads: */
135 
136 struct global_info {
137 	u8			*data;
138 
139 	pthread_mutex_t		startup_mutex;
140 	int			nr_tasks_started;
141 
142 	pthread_mutex_t		startup_done_mutex;
143 
144 	pthread_mutex_t		start_work_mutex;
145 	int			nr_tasks_working;
146 
147 	pthread_mutex_t		stop_work_mutex;
148 	u64			bytes_done;
149 
150 	struct thread_data	*threads;
151 
152 	/* Convergence latency measurement: */
153 	bool			all_converged;
154 	bool			stop_work;
155 
156 	int			print_once;
157 
158 	struct params		p;
159 };
160 
161 static struct global_info	*g = NULL;
162 
163 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
164 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
165 
166 struct params p0;
167 
168 static const struct option options[] = {
169 	OPT_INTEGER('p', "nr_proc"	, &p0.nr_proc,		"number of processes"),
170 	OPT_INTEGER('t', "nr_threads"	, &p0.nr_threads,	"number of threads per process"),
171 
172 	OPT_STRING('G', "mb_global"	, &p0.mb_global_str,	"MB", "global  memory (MBs)"),
173 	OPT_STRING('P', "mb_proc"	, &p0.mb_proc_str,	"MB", "process memory (MBs)"),
174 	OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
175 	OPT_STRING('T', "mb_thread"	, &p0.mb_thread_str,	"MB", "thread  memory (MBs)"),
176 
177 	OPT_UINTEGER('l', "nr_loops"	, &p0.nr_loops,		"max number of loops to run (default: unlimited)"),
178 	OPT_UINTEGER('s', "nr_secs"	, &p0.nr_secs,		"max number of seconds to run (default: 5 secs)"),
179 	OPT_UINTEGER('u', "usleep"	, &p0.sleep_usecs,	"usecs to sleep per loop iteration"),
180 
181 	OPT_BOOLEAN('R', "data_reads"	, &p0.data_reads,	"access the data via reads (can be mixed with -W)"),
182 	OPT_BOOLEAN('W', "data_writes"	, &p0.data_writes,	"access the data via writes (can be mixed with -R)"),
183 	OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,	"access the data backwards as well"),
184 	OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
185 	OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,	"access the data with random (32bit LFSR) walk"),
186 
187 
188 	OPT_BOOLEAN('z', "init_zero"	, &p0.init_zero,	"bzero the initial allocations"),
189 	OPT_BOOLEAN('I', "init_random"	, &p0.init_random,	"randomize the contents of the initial allocations"),
190 	OPT_BOOLEAN('0', "init_cpu0"	, &p0.init_cpu0,	"do the initial allocations on CPU#0"),
191 	OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,	"perturb thread 0/0 every X secs, to test convergence stability"),
192 
193 	OPT_INCR   ('d', "show_details"	, &p0.show_details,	"Show details"),
194 	OPT_INCR   ('a', "all"		, &p0.run_all,		"Run all tests in the suite"),
195 	OPT_INTEGER('H', "thp"		, &p0.thp,		"MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
196 	OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
197 		    "convergence is reached when each process (all its threads) is running on a single NUMA node."),
198 	OPT_BOOLEAN('m', "measure_convergence",	&p0.measure_convergence, "measure convergence latency"),
199 	OPT_BOOLEAN('q', "quiet"	, &p0.show_quiet,	"quiet mode"),
200 	OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
201 
202 	/* Special option string parsing callbacks: */
203         OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
204 			"bind the first N tasks to these specific cpus (the rest is unbound)",
205 			parse_cpus_opt),
206         OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
207 			"bind the first N tasks to these specific memory nodes (the rest is unbound)",
208 			parse_nodes_opt),
209 	OPT_END()
210 };
211 
212 static const char * const bench_numa_usage[] = {
213 	"perf bench numa <options>",
214 	NULL
215 };
216 
217 static const char * const numa_usage[] = {
218 	"perf bench numa mem [<options>]",
219 	NULL
220 };
221 
222 /*
223  * To get number of numa nodes present.
224  */
225 static int nr_numa_nodes(void)
226 {
227 	int i, nr_nodes = 0;
228 
229 	for (i = 0; i < g->p.nr_nodes; i++) {
230 		if (numa_bitmask_isbitset(numa_nodes_ptr, i))
231 			nr_nodes++;
232 	}
233 
234 	return nr_nodes;
235 }
236 
237 /*
238  * To check if given numa node is present.
239  */
240 static int is_node_present(int node)
241 {
242 	return numa_bitmask_isbitset(numa_nodes_ptr, node);
243 }
244 
245 /*
246  * To check given numa node has cpus.
247  */
248 static bool node_has_cpus(int node)
249 {
250 	struct bitmask *cpumask = numa_allocate_cpumask();
251 	bool ret = false; /* fall back to nocpus */
252 	int cpu;
253 
254 	BUG_ON(!cpumask);
255 	if (!numa_node_to_cpus(node, cpumask)) {
256 		for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
257 			if (numa_bitmask_isbitset(cpumask, cpu)) {
258 				ret = true;
259 				break;
260 			}
261 		}
262 	}
263 	numa_free_cpumask(cpumask);
264 
265 	return ret;
266 }
267 
268 static cpu_set_t bind_to_cpu(int target_cpu)
269 {
270 	cpu_set_t orig_mask, mask;
271 	int ret;
272 
273 	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
274 	BUG_ON(ret);
275 
276 	CPU_ZERO(&mask);
277 
278 	if (target_cpu == -1) {
279 		int cpu;
280 
281 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
282 			CPU_SET(cpu, &mask);
283 	} else {
284 		BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
285 		CPU_SET(target_cpu, &mask);
286 	}
287 
288 	ret = sched_setaffinity(0, sizeof(mask), &mask);
289 	BUG_ON(ret);
290 
291 	return orig_mask;
292 }
293 
294 static cpu_set_t bind_to_node(int target_node)
295 {
296 	cpu_set_t orig_mask, mask;
297 	int cpu;
298 	int ret;
299 
300 	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
301 	BUG_ON(ret);
302 
303 	CPU_ZERO(&mask);
304 
305 	if (target_node == NUMA_NO_NODE) {
306 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
307 			CPU_SET(cpu, &mask);
308 	} else {
309 		struct bitmask *cpumask = numa_allocate_cpumask();
310 
311 		BUG_ON(!cpumask);
312 		if (!numa_node_to_cpus(target_node, cpumask)) {
313 			for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
314 				if (numa_bitmask_isbitset(cpumask, cpu))
315 					CPU_SET(cpu, &mask);
316 			}
317 		}
318 		numa_free_cpumask(cpumask);
319 	}
320 
321 	ret = sched_setaffinity(0, sizeof(mask), &mask);
322 	BUG_ON(ret);
323 
324 	return orig_mask;
325 }
326 
327 static void bind_to_cpumask(cpu_set_t mask)
328 {
329 	int ret;
330 
331 	ret = sched_setaffinity(0, sizeof(mask), &mask);
332 	BUG_ON(ret);
333 }
334 
335 static void mempol_restore(void)
336 {
337 	int ret;
338 
339 	ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
340 
341 	BUG_ON(ret);
342 }
343 
344 static void bind_to_memnode(int node)
345 {
346 	unsigned long nodemask;
347 	int ret;
348 
349 	if (node == NUMA_NO_NODE)
350 		return;
351 
352 	BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
353 	nodemask = 1L << node;
354 
355 	ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
356 	dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
357 
358 	BUG_ON(ret);
359 }
360 
361 #define HPSIZE (2*1024*1024)
362 
363 #define set_taskname(fmt...)				\
364 do {							\
365 	char name[20];					\
366 							\
367 	snprintf(name, 20, fmt);			\
368 	prctl(PR_SET_NAME, name);			\
369 } while (0)
370 
371 static u8 *alloc_data(ssize_t bytes0, int map_flags,
372 		      int init_zero, int init_cpu0, int thp, int init_random)
373 {
374 	cpu_set_t orig_mask;
375 	ssize_t bytes;
376 	u8 *buf;
377 	int ret;
378 
379 	if (!bytes0)
380 		return NULL;
381 
382 	/* Allocate and initialize all memory on CPU#0: */
383 	if (init_cpu0) {
384 		int node = numa_node_of_cpu(0);
385 
386 		orig_mask = bind_to_node(node);
387 		bind_to_memnode(node);
388 	}
389 
390 	bytes = bytes0 + HPSIZE;
391 
392 	buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
393 	BUG_ON(buf == (void *)-1);
394 
395 	if (map_flags == MAP_PRIVATE) {
396 		if (thp > 0) {
397 			ret = madvise(buf, bytes, MADV_HUGEPAGE);
398 			if (ret && !g->print_once) {
399 				g->print_once = 1;
400 				printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
401 			}
402 		}
403 		if (thp < 0) {
404 			ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
405 			if (ret && !g->print_once) {
406 				g->print_once = 1;
407 				printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
408 			}
409 		}
410 	}
411 
412 	if (init_zero) {
413 		bzero(buf, bytes);
414 	} else {
415 		/* Initialize random contents, different in each word: */
416 		if (init_random) {
417 			u64 *wbuf = (void *)buf;
418 			long off = rand();
419 			long i;
420 
421 			for (i = 0; i < bytes/8; i++)
422 				wbuf[i] = i + off;
423 		}
424 	}
425 
426 	/* Align to 2MB boundary: */
427 	buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
428 
429 	/* Restore affinity: */
430 	if (init_cpu0) {
431 		bind_to_cpumask(orig_mask);
432 		mempol_restore();
433 	}
434 
435 	return buf;
436 }
437 
438 static void free_data(void *data, ssize_t bytes)
439 {
440 	int ret;
441 
442 	if (!data)
443 		return;
444 
445 	ret = munmap(data, bytes);
446 	BUG_ON(ret);
447 }
448 
449 /*
450  * Create a shared memory buffer that can be shared between processes, zeroed:
451  */
452 static void * zalloc_shared_data(ssize_t bytes)
453 {
454 	return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
455 }
456 
457 /*
458  * Create a shared memory buffer that can be shared between processes:
459  */
460 static void * setup_shared_data(ssize_t bytes)
461 {
462 	return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
463 }
464 
465 /*
466  * Allocate process-local memory - this will either be shared between
467  * threads of this process, or only be accessed by this thread:
468  */
469 static void * setup_private_data(ssize_t bytes)
470 {
471 	return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
472 }
473 
474 /*
475  * Return a process-shared (global) mutex:
476  */
477 static void init_global_mutex(pthread_mutex_t *mutex)
478 {
479 	pthread_mutexattr_t attr;
480 
481 	pthread_mutexattr_init(&attr);
482 	pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
483 	pthread_mutex_init(mutex, &attr);
484 }
485 
486 static int parse_cpu_list(const char *arg)
487 {
488 	p0.cpu_list_str = strdup(arg);
489 
490 	dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
491 
492 	return 0;
493 }
494 
495 static int parse_setup_cpu_list(void)
496 {
497 	struct thread_data *td;
498 	char *str0, *str;
499 	int t;
500 
501 	if (!g->p.cpu_list_str)
502 		return 0;
503 
504 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
505 
506 	str0 = str = strdup(g->p.cpu_list_str);
507 	t = 0;
508 
509 	BUG_ON(!str);
510 
511 	tprintf("# binding tasks to CPUs:\n");
512 	tprintf("#  ");
513 
514 	while (true) {
515 		int bind_cpu, bind_cpu_0, bind_cpu_1;
516 		char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
517 		int bind_len;
518 		int step;
519 		int mul;
520 
521 		tok = strsep(&str, ",");
522 		if (!tok)
523 			break;
524 
525 		tok_end = strstr(tok, "-");
526 
527 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
528 		if (!tok_end) {
529 			/* Single CPU specified: */
530 			bind_cpu_0 = bind_cpu_1 = atol(tok);
531 		} else {
532 			/* CPU range specified (for example: "5-11"): */
533 			bind_cpu_0 = atol(tok);
534 			bind_cpu_1 = atol(tok_end + 1);
535 		}
536 
537 		step = 1;
538 		tok_step = strstr(tok, "#");
539 		if (tok_step) {
540 			step = atol(tok_step + 1);
541 			BUG_ON(step <= 0 || step >= g->p.nr_cpus);
542 		}
543 
544 		/*
545 		 * Mask length.
546 		 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
547 		 * where the _4 means the next 4 CPUs are allowed.
548 		 */
549 		bind_len = 1;
550 		tok_len = strstr(tok, "_");
551 		if (tok_len) {
552 			bind_len = atol(tok_len + 1);
553 			BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
554 		}
555 
556 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
557 		mul = 1;
558 		tok_mul = strstr(tok, "x");
559 		if (tok_mul) {
560 			mul = atol(tok_mul + 1);
561 			BUG_ON(mul <= 0);
562 		}
563 
564 		dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
565 
566 		if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
567 			printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
568 			return -1;
569 		}
570 
571 		BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
572 		BUG_ON(bind_cpu_0 > bind_cpu_1);
573 
574 		for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
575 			int i;
576 
577 			for (i = 0; i < mul; i++) {
578 				int cpu;
579 
580 				if (t >= g->p.nr_tasks) {
581 					printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
582 					goto out;
583 				}
584 				td = g->threads + t;
585 
586 				if (t)
587 					tprintf(",");
588 				if (bind_len > 1) {
589 					tprintf("%2d/%d", bind_cpu, bind_len);
590 				} else {
591 					tprintf("%2d", bind_cpu);
592 				}
593 
594 				CPU_ZERO(&td->bind_cpumask);
595 				for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
596 					BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
597 					CPU_SET(cpu, &td->bind_cpumask);
598 				}
599 				t++;
600 			}
601 		}
602 	}
603 out:
604 
605 	tprintf("\n");
606 
607 	if (t < g->p.nr_tasks)
608 		printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
609 
610 	free(str0);
611 	return 0;
612 }
613 
614 static int parse_cpus_opt(const struct option *opt __maybe_unused,
615 			  const char *arg, int unset __maybe_unused)
616 {
617 	if (!arg)
618 		return -1;
619 
620 	return parse_cpu_list(arg);
621 }
622 
623 static int parse_node_list(const char *arg)
624 {
625 	p0.node_list_str = strdup(arg);
626 
627 	dprintf("got NODE list: {%s}\n", p0.node_list_str);
628 
629 	return 0;
630 }
631 
632 static int parse_setup_node_list(void)
633 {
634 	struct thread_data *td;
635 	char *str0, *str;
636 	int t;
637 
638 	if (!g->p.node_list_str)
639 		return 0;
640 
641 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
642 
643 	str0 = str = strdup(g->p.node_list_str);
644 	t = 0;
645 
646 	BUG_ON(!str);
647 
648 	tprintf("# binding tasks to NODEs:\n");
649 	tprintf("# ");
650 
651 	while (true) {
652 		int bind_node, bind_node_0, bind_node_1;
653 		char *tok, *tok_end, *tok_step, *tok_mul;
654 		int step;
655 		int mul;
656 
657 		tok = strsep(&str, ",");
658 		if (!tok)
659 			break;
660 
661 		tok_end = strstr(tok, "-");
662 
663 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
664 		if (!tok_end) {
665 			/* Single NODE specified: */
666 			bind_node_0 = bind_node_1 = atol(tok);
667 		} else {
668 			/* NODE range specified (for example: "5-11"): */
669 			bind_node_0 = atol(tok);
670 			bind_node_1 = atol(tok_end + 1);
671 		}
672 
673 		step = 1;
674 		tok_step = strstr(tok, "#");
675 		if (tok_step) {
676 			step = atol(tok_step + 1);
677 			BUG_ON(step <= 0 || step >= g->p.nr_nodes);
678 		}
679 
680 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
681 		mul = 1;
682 		tok_mul = strstr(tok, "x");
683 		if (tok_mul) {
684 			mul = atol(tok_mul + 1);
685 			BUG_ON(mul <= 0);
686 		}
687 
688 		dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
689 
690 		if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
691 			printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
692 			return -1;
693 		}
694 
695 		BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
696 		BUG_ON(bind_node_0 > bind_node_1);
697 
698 		for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
699 			int i;
700 
701 			for (i = 0; i < mul; i++) {
702 				if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
703 					printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
704 					goto out;
705 				}
706 				td = g->threads + t;
707 
708 				if (!t)
709 					tprintf(" %2d", bind_node);
710 				else
711 					tprintf(",%2d", bind_node);
712 
713 				td->bind_node = bind_node;
714 				t++;
715 			}
716 		}
717 	}
718 out:
719 
720 	tprintf("\n");
721 
722 	if (t < g->p.nr_tasks)
723 		printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
724 
725 	free(str0);
726 	return 0;
727 }
728 
729 static int parse_nodes_opt(const struct option *opt __maybe_unused,
730 			  const char *arg, int unset __maybe_unused)
731 {
732 	if (!arg)
733 		return -1;
734 
735 	return parse_node_list(arg);
736 
737 	return 0;
738 }
739 
740 #define BIT(x) (1ul << x)
741 
742 static inline uint32_t lfsr_32(uint32_t lfsr)
743 {
744 	const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
745 	return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
746 }
747 
748 /*
749  * Make sure there's real data dependency to RAM (when read
750  * accesses are enabled), so the compiler, the CPU and the
751  * kernel (KSM, zero page, etc.) cannot optimize away RAM
752  * accesses:
753  */
754 static inline u64 access_data(u64 *data, u64 val)
755 {
756 	if (g->p.data_reads)
757 		val += *data;
758 	if (g->p.data_writes)
759 		*data = val + 1;
760 	return val;
761 }
762 
763 /*
764  * The worker process does two types of work, a forwards going
765  * loop and a backwards going loop.
766  *
767  * We do this so that on multiprocessor systems we do not create
768  * a 'train' of processing, with highly synchronized processes,
769  * skewing the whole benchmark.
770  */
771 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
772 {
773 	long words = bytes/sizeof(u64);
774 	u64 *data = (void *)__data;
775 	long chunk_0, chunk_1;
776 	u64 *d0, *d, *d1;
777 	long off;
778 	long i;
779 
780 	BUG_ON(!data && words);
781 	BUG_ON(data && !words);
782 
783 	if (!data)
784 		return val;
785 
786 	/* Very simple memset() work variant: */
787 	if (g->p.data_zero_memset && !g->p.data_rand_walk) {
788 		bzero(data, bytes);
789 		return val;
790 	}
791 
792 	/* Spread out by PID/TID nr and by loop nr: */
793 	chunk_0 = words/nr_max;
794 	chunk_1 = words/g->p.nr_loops;
795 	off = nr*chunk_0 + loop*chunk_1;
796 
797 	while (off >= words)
798 		off -= words;
799 
800 	if (g->p.data_rand_walk) {
801 		u32 lfsr = nr + loop + val;
802 		int j;
803 
804 		for (i = 0; i < words/1024; i++) {
805 			long start, end;
806 
807 			lfsr = lfsr_32(lfsr);
808 
809 			start = lfsr % words;
810 			end = min(start + 1024, words-1);
811 
812 			if (g->p.data_zero_memset) {
813 				bzero(data + start, (end-start) * sizeof(u64));
814 			} else {
815 				for (j = start; j < end; j++)
816 					val = access_data(data + j, val);
817 			}
818 		}
819 	} else if (!g->p.data_backwards || (nr + loop) & 1) {
820 		/* Process data forwards: */
821 
822 		d0 = data + off;
823 		d  = data + off + 1;
824 		d1 = data + words;
825 
826 		for (;;) {
827 			if (unlikely(d >= d1))
828 				d = data;
829 			if (unlikely(d == d0))
830 				break;
831 
832 			val = access_data(d, val);
833 
834 			d++;
835 		}
836 	} else {
837 		/* Process data backwards: */
838 
839 		d0 = data + off;
840 		d  = data + off - 1;
841 		d1 = data + words;
842 
843 		for (;;) {
844 			if (unlikely(d < data))
845 				d = data + words-1;
846 			if (unlikely(d == d0))
847 				break;
848 
849 			val = access_data(d, val);
850 
851 			d--;
852 		}
853 	}
854 
855 	return val;
856 }
857 
858 static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
859 {
860 	unsigned int cpu;
861 
862 	cpu = sched_getcpu();
863 
864 	g->threads[task_nr].curr_cpu = cpu;
865 	prctl(0, bytes_worked);
866 }
867 
868 #define MAX_NR_NODES	64
869 
870 /*
871  * Count the number of nodes a process's threads
872  * are spread out on.
873  *
874  * A count of 1 means that the process is compressed
875  * to a single node. A count of g->p.nr_nodes means it's
876  * spread out on the whole system.
877  */
878 static int count_process_nodes(int process_nr)
879 {
880 	char node_present[MAX_NR_NODES] = { 0, };
881 	int nodes;
882 	int n, t;
883 
884 	for (t = 0; t < g->p.nr_threads; t++) {
885 		struct thread_data *td;
886 		int task_nr;
887 		int node;
888 
889 		task_nr = process_nr*g->p.nr_threads + t;
890 		td = g->threads + task_nr;
891 
892 		node = numa_node_of_cpu(td->curr_cpu);
893 		if (node < 0) /* curr_cpu was likely still -1 */
894 			return 0;
895 
896 		node_present[node] = 1;
897 	}
898 
899 	nodes = 0;
900 
901 	for (n = 0; n < MAX_NR_NODES; n++)
902 		nodes += node_present[n];
903 
904 	return nodes;
905 }
906 
907 /*
908  * Count the number of distinct process-threads a node contains.
909  *
910  * A count of 1 means that the node contains only a single
911  * process. If all nodes on the system contain at most one
912  * process then we are well-converged.
913  */
914 static int count_node_processes(int node)
915 {
916 	int processes = 0;
917 	int t, p;
918 
919 	for (p = 0; p < g->p.nr_proc; p++) {
920 		for (t = 0; t < g->p.nr_threads; t++) {
921 			struct thread_data *td;
922 			int task_nr;
923 			int n;
924 
925 			task_nr = p*g->p.nr_threads + t;
926 			td = g->threads + task_nr;
927 
928 			n = numa_node_of_cpu(td->curr_cpu);
929 			if (n == node) {
930 				processes++;
931 				break;
932 			}
933 		}
934 	}
935 
936 	return processes;
937 }
938 
939 static void calc_convergence_compression(int *strong)
940 {
941 	unsigned int nodes_min, nodes_max;
942 	int p;
943 
944 	nodes_min = -1;
945 	nodes_max =  0;
946 
947 	for (p = 0; p < g->p.nr_proc; p++) {
948 		unsigned int nodes = count_process_nodes(p);
949 
950 		if (!nodes) {
951 			*strong = 0;
952 			return;
953 		}
954 
955 		nodes_min = min(nodes, nodes_min);
956 		nodes_max = max(nodes, nodes_max);
957 	}
958 
959 	/* Strong convergence: all threads compress on a single node: */
960 	if (nodes_min == 1 && nodes_max == 1) {
961 		*strong = 1;
962 	} else {
963 		*strong = 0;
964 		tprintf(" {%d-%d}", nodes_min, nodes_max);
965 	}
966 }
967 
968 static void calc_convergence(double runtime_ns_max, double *convergence)
969 {
970 	unsigned int loops_done_min, loops_done_max;
971 	int process_groups;
972 	int nodes[MAX_NR_NODES];
973 	int distance;
974 	int nr_min;
975 	int nr_max;
976 	int strong;
977 	int sum;
978 	int nr;
979 	int node;
980 	int cpu;
981 	int t;
982 
983 	if (!g->p.show_convergence && !g->p.measure_convergence)
984 		return;
985 
986 	for (node = 0; node < g->p.nr_nodes; node++)
987 		nodes[node] = 0;
988 
989 	loops_done_min = -1;
990 	loops_done_max = 0;
991 
992 	for (t = 0; t < g->p.nr_tasks; t++) {
993 		struct thread_data *td = g->threads + t;
994 		unsigned int loops_done;
995 
996 		cpu = td->curr_cpu;
997 
998 		/* Not all threads have written it yet: */
999 		if (cpu < 0)
1000 			continue;
1001 
1002 		node = numa_node_of_cpu(cpu);
1003 
1004 		nodes[node]++;
1005 
1006 		loops_done = td->loops_done;
1007 		loops_done_min = min(loops_done, loops_done_min);
1008 		loops_done_max = max(loops_done, loops_done_max);
1009 	}
1010 
1011 	nr_max = 0;
1012 	nr_min = g->p.nr_tasks;
1013 	sum = 0;
1014 
1015 	for (node = 0; node < g->p.nr_nodes; node++) {
1016 		if (!is_node_present(node))
1017 			continue;
1018 		nr = nodes[node];
1019 		nr_min = min(nr, nr_min);
1020 		nr_max = max(nr, nr_max);
1021 		sum += nr;
1022 	}
1023 	BUG_ON(nr_min > nr_max);
1024 
1025 	BUG_ON(sum > g->p.nr_tasks);
1026 
1027 	if (0 && (sum < g->p.nr_tasks))
1028 		return;
1029 
1030 	/*
1031 	 * Count the number of distinct process groups present
1032 	 * on nodes - when we are converged this will decrease
1033 	 * to g->p.nr_proc:
1034 	 */
1035 	process_groups = 0;
1036 
1037 	for (node = 0; node < g->p.nr_nodes; node++) {
1038 		int processes;
1039 
1040 		if (!is_node_present(node))
1041 			continue;
1042 		processes = count_node_processes(node);
1043 		nr = nodes[node];
1044 		tprintf(" %2d/%-2d", nr, processes);
1045 
1046 		process_groups += processes;
1047 	}
1048 
1049 	distance = nr_max - nr_min;
1050 
1051 	tprintf(" [%2d/%-2d]", distance, process_groups);
1052 
1053 	tprintf(" l:%3d-%-3d (%3d)",
1054 		loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1055 
1056 	if (loops_done_min && loops_done_max) {
1057 		double skew = 1.0 - (double)loops_done_min/loops_done_max;
1058 
1059 		tprintf(" [%4.1f%%]", skew * 100.0);
1060 	}
1061 
1062 	calc_convergence_compression(&strong);
1063 
1064 	if (strong && process_groups == g->p.nr_proc) {
1065 		if (!*convergence) {
1066 			*convergence = runtime_ns_max;
1067 			tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1068 			if (g->p.measure_convergence) {
1069 				g->all_converged = true;
1070 				g->stop_work = true;
1071 			}
1072 		}
1073 	} else {
1074 		if (*convergence) {
1075 			tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1076 			*convergence = 0;
1077 		}
1078 		tprintf("\n");
1079 	}
1080 }
1081 
1082 static void show_summary(double runtime_ns_max, int l, double *convergence)
1083 {
1084 	tprintf("\r #  %5.1f%%  [%.1f mins]",
1085 		(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1086 
1087 	calc_convergence(runtime_ns_max, convergence);
1088 
1089 	if (g->p.show_details >= 0)
1090 		fflush(stdout);
1091 }
1092 
1093 static void *worker_thread(void *__tdata)
1094 {
1095 	struct thread_data *td = __tdata;
1096 	struct timeval start0, start, stop, diff;
1097 	int process_nr = td->process_nr;
1098 	int thread_nr = td->thread_nr;
1099 	unsigned long last_perturbance;
1100 	int task_nr = td->task_nr;
1101 	int details = g->p.show_details;
1102 	int first_task, last_task;
1103 	double convergence = 0;
1104 	u64 val = td->val;
1105 	double runtime_ns_max;
1106 	u8 *global_data;
1107 	u8 *process_data;
1108 	u8 *thread_data;
1109 	u64 bytes_done, secs;
1110 	long work_done;
1111 	u32 l;
1112 	struct rusage rusage;
1113 
1114 	bind_to_cpumask(td->bind_cpumask);
1115 	bind_to_memnode(td->bind_node);
1116 
1117 	set_taskname("thread %d/%d", process_nr, thread_nr);
1118 
1119 	global_data = g->data;
1120 	process_data = td->process_data;
1121 	thread_data = setup_private_data(g->p.bytes_thread);
1122 
1123 	bytes_done = 0;
1124 
1125 	last_task = 0;
1126 	if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1127 		last_task = 1;
1128 
1129 	first_task = 0;
1130 	if (process_nr == 0 && thread_nr == 0)
1131 		first_task = 1;
1132 
1133 	if (details >= 2) {
1134 		printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1135 			process_nr, thread_nr, global_data, process_data, thread_data);
1136 	}
1137 
1138 	if (g->p.serialize_startup) {
1139 		pthread_mutex_lock(&g->startup_mutex);
1140 		g->nr_tasks_started++;
1141 		pthread_mutex_unlock(&g->startup_mutex);
1142 
1143 		/* Here we will wait for the main process to start us all at once: */
1144 		pthread_mutex_lock(&g->start_work_mutex);
1145 		g->nr_tasks_working++;
1146 
1147 		/* Last one wake the main process: */
1148 		if (g->nr_tasks_working == g->p.nr_tasks)
1149 			pthread_mutex_unlock(&g->startup_done_mutex);
1150 
1151 		pthread_mutex_unlock(&g->start_work_mutex);
1152 	}
1153 
1154 	gettimeofday(&start0, NULL);
1155 
1156 	start = stop = start0;
1157 	last_perturbance = start.tv_sec;
1158 
1159 	for (l = 0; l < g->p.nr_loops; l++) {
1160 		start = stop;
1161 
1162 		if (g->stop_work)
1163 			break;
1164 
1165 		val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,	l, val);
1166 		val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,	l, val);
1167 		val += do_work(thread_data,  g->p.bytes_thread,  0,          1,		l, val);
1168 
1169 		if (g->p.sleep_usecs) {
1170 			pthread_mutex_lock(td->process_lock);
1171 			usleep(g->p.sleep_usecs);
1172 			pthread_mutex_unlock(td->process_lock);
1173 		}
1174 		/*
1175 		 * Amount of work to be done under a process-global lock:
1176 		 */
1177 		if (g->p.bytes_process_locked) {
1178 			pthread_mutex_lock(td->process_lock);
1179 			val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,	l, val);
1180 			pthread_mutex_unlock(td->process_lock);
1181 		}
1182 
1183 		work_done = g->p.bytes_global + g->p.bytes_process +
1184 			    g->p.bytes_process_locked + g->p.bytes_thread;
1185 
1186 		update_curr_cpu(task_nr, work_done);
1187 		bytes_done += work_done;
1188 
1189 		if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1190 			continue;
1191 
1192 		td->loops_done = l;
1193 
1194 		gettimeofday(&stop, NULL);
1195 
1196 		/* Check whether our max runtime timed out: */
1197 		if (g->p.nr_secs) {
1198 			timersub(&stop, &start0, &diff);
1199 			if ((u32)diff.tv_sec >= g->p.nr_secs) {
1200 				g->stop_work = true;
1201 				break;
1202 			}
1203 		}
1204 
1205 		/* Update the summary at most once per second: */
1206 		if (start.tv_sec == stop.tv_sec)
1207 			continue;
1208 
1209 		/*
1210 		 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1211 		 * by migrating to CPU#0:
1212 		 */
1213 		if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1214 			cpu_set_t orig_mask;
1215 			int target_cpu;
1216 			int this_cpu;
1217 
1218 			last_perturbance = stop.tv_sec;
1219 
1220 			/*
1221 			 * Depending on where we are running, move into
1222 			 * the other half of the system, to create some
1223 			 * real disturbance:
1224 			 */
1225 			this_cpu = g->threads[task_nr].curr_cpu;
1226 			if (this_cpu < g->p.nr_cpus/2)
1227 				target_cpu = g->p.nr_cpus-1;
1228 			else
1229 				target_cpu = 0;
1230 
1231 			orig_mask = bind_to_cpu(target_cpu);
1232 
1233 			/* Here we are running on the target CPU already */
1234 			if (details >= 1)
1235 				printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1236 
1237 			bind_to_cpumask(orig_mask);
1238 		}
1239 
1240 		if (details >= 3) {
1241 			timersub(&stop, &start, &diff);
1242 			runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1243 			runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1244 
1245 			if (details >= 0) {
1246 				printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1247 					process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1248 			}
1249 			fflush(stdout);
1250 		}
1251 		if (!last_task)
1252 			continue;
1253 
1254 		timersub(&stop, &start0, &diff);
1255 		runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1256 		runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1257 
1258 		show_summary(runtime_ns_max, l, &convergence);
1259 	}
1260 
1261 	gettimeofday(&stop, NULL);
1262 	timersub(&stop, &start0, &diff);
1263 	td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1264 	td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1265 	secs = td->runtime_ns / NSEC_PER_SEC;
1266 	td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
1267 
1268 	getrusage(RUSAGE_THREAD, &rusage);
1269 	td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1270 	td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1271 	td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1272 	td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1273 
1274 	free_data(thread_data, g->p.bytes_thread);
1275 
1276 	pthread_mutex_lock(&g->stop_work_mutex);
1277 	g->bytes_done += bytes_done;
1278 	pthread_mutex_unlock(&g->stop_work_mutex);
1279 
1280 	return NULL;
1281 }
1282 
1283 /*
1284  * A worker process starts a couple of threads:
1285  */
1286 static void worker_process(int process_nr)
1287 {
1288 	pthread_mutex_t process_lock;
1289 	struct thread_data *td;
1290 	pthread_t *pthreads;
1291 	u8 *process_data;
1292 	int task_nr;
1293 	int ret;
1294 	int t;
1295 
1296 	pthread_mutex_init(&process_lock, NULL);
1297 	set_taskname("process %d", process_nr);
1298 
1299 	/*
1300 	 * Pick up the memory policy and the CPU binding of our first thread,
1301 	 * so that we initialize memory accordingly:
1302 	 */
1303 	task_nr = process_nr*g->p.nr_threads;
1304 	td = g->threads + task_nr;
1305 
1306 	bind_to_memnode(td->bind_node);
1307 	bind_to_cpumask(td->bind_cpumask);
1308 
1309 	pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1310 	process_data = setup_private_data(g->p.bytes_process);
1311 
1312 	if (g->p.show_details >= 3) {
1313 		printf(" # process %2d global mem: %p, process mem: %p\n",
1314 			process_nr, g->data, process_data);
1315 	}
1316 
1317 	for (t = 0; t < g->p.nr_threads; t++) {
1318 		task_nr = process_nr*g->p.nr_threads + t;
1319 		td = g->threads + task_nr;
1320 
1321 		td->process_data = process_data;
1322 		td->process_nr   = process_nr;
1323 		td->thread_nr    = t;
1324 		td->task_nr	 = task_nr;
1325 		td->val          = rand();
1326 		td->curr_cpu	 = -1;
1327 		td->process_lock = &process_lock;
1328 
1329 		ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1330 		BUG_ON(ret);
1331 	}
1332 
1333 	for (t = 0; t < g->p.nr_threads; t++) {
1334                 ret = pthread_join(pthreads[t], NULL);
1335 		BUG_ON(ret);
1336 	}
1337 
1338 	free_data(process_data, g->p.bytes_process);
1339 	free(pthreads);
1340 }
1341 
1342 static void print_summary(void)
1343 {
1344 	if (g->p.show_details < 0)
1345 		return;
1346 
1347 	printf("\n ###\n");
1348 	printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1349 		g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1350 	printf(" #      %5dx %5ldMB global  shared mem operations\n",
1351 			g->p.nr_loops, g->p.bytes_global/1024/1024);
1352 	printf(" #      %5dx %5ldMB process shared mem operations\n",
1353 			g->p.nr_loops, g->p.bytes_process/1024/1024);
1354 	printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1355 			g->p.nr_loops, g->p.bytes_thread/1024/1024);
1356 
1357 	printf(" ###\n");
1358 
1359 	printf("\n ###\n"); fflush(stdout);
1360 }
1361 
1362 static void init_thread_data(void)
1363 {
1364 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1365 	int t;
1366 
1367 	g->threads = zalloc_shared_data(size);
1368 
1369 	for (t = 0; t < g->p.nr_tasks; t++) {
1370 		struct thread_data *td = g->threads + t;
1371 		int cpu;
1372 
1373 		/* Allow all nodes by default: */
1374 		td->bind_node = NUMA_NO_NODE;
1375 
1376 		/* Allow all CPUs by default: */
1377 		CPU_ZERO(&td->bind_cpumask);
1378 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1379 			CPU_SET(cpu, &td->bind_cpumask);
1380 	}
1381 }
1382 
1383 static void deinit_thread_data(void)
1384 {
1385 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1386 
1387 	free_data(g->threads, size);
1388 }
1389 
1390 static int init(void)
1391 {
1392 	g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1393 
1394 	/* Copy over options: */
1395 	g->p = p0;
1396 
1397 	g->p.nr_cpus = numa_num_configured_cpus();
1398 
1399 	g->p.nr_nodes = numa_max_node() + 1;
1400 
1401 	/* char array in count_process_nodes(): */
1402 	BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1403 
1404 	if (g->p.show_quiet && !g->p.show_details)
1405 		g->p.show_details = -1;
1406 
1407 	/* Some memory should be specified: */
1408 	if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1409 		return -1;
1410 
1411 	if (g->p.mb_global_str) {
1412 		g->p.mb_global = atof(g->p.mb_global_str);
1413 		BUG_ON(g->p.mb_global < 0);
1414 	}
1415 
1416 	if (g->p.mb_proc_str) {
1417 		g->p.mb_proc = atof(g->p.mb_proc_str);
1418 		BUG_ON(g->p.mb_proc < 0);
1419 	}
1420 
1421 	if (g->p.mb_proc_locked_str) {
1422 		g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1423 		BUG_ON(g->p.mb_proc_locked < 0);
1424 		BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1425 	}
1426 
1427 	if (g->p.mb_thread_str) {
1428 		g->p.mb_thread = atof(g->p.mb_thread_str);
1429 		BUG_ON(g->p.mb_thread < 0);
1430 	}
1431 
1432 	BUG_ON(g->p.nr_threads <= 0);
1433 	BUG_ON(g->p.nr_proc <= 0);
1434 
1435 	g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1436 
1437 	g->p.bytes_global		= g->p.mb_global	*1024L*1024L;
1438 	g->p.bytes_process		= g->p.mb_proc		*1024L*1024L;
1439 	g->p.bytes_process_locked	= g->p.mb_proc_locked	*1024L*1024L;
1440 	g->p.bytes_thread		= g->p.mb_thread	*1024L*1024L;
1441 
1442 	g->data = setup_shared_data(g->p.bytes_global);
1443 
1444 	/* Startup serialization: */
1445 	init_global_mutex(&g->start_work_mutex);
1446 	init_global_mutex(&g->startup_mutex);
1447 	init_global_mutex(&g->startup_done_mutex);
1448 	init_global_mutex(&g->stop_work_mutex);
1449 
1450 	init_thread_data();
1451 
1452 	tprintf("#\n");
1453 	if (parse_setup_cpu_list() || parse_setup_node_list())
1454 		return -1;
1455 	tprintf("#\n");
1456 
1457 	print_summary();
1458 
1459 	return 0;
1460 }
1461 
1462 static void deinit(void)
1463 {
1464 	free_data(g->data, g->p.bytes_global);
1465 	g->data = NULL;
1466 
1467 	deinit_thread_data();
1468 
1469 	free_data(g, sizeof(*g));
1470 	g = NULL;
1471 }
1472 
1473 /*
1474  * Print a short or long result, depending on the verbosity setting:
1475  */
1476 static void print_res(const char *name, double val,
1477 		      const char *txt_unit, const char *txt_short, const char *txt_long)
1478 {
1479 	if (!name)
1480 		name = "main,";
1481 
1482 	if (!g->p.show_quiet)
1483 		printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1484 	else
1485 		printf(" %14.3f %s\n", val, txt_long);
1486 }
1487 
1488 static int __bench_numa(const char *name)
1489 {
1490 	struct timeval start, stop, diff;
1491 	u64 runtime_ns_min, runtime_ns_sum;
1492 	pid_t *pids, pid, wpid;
1493 	double delta_runtime;
1494 	double runtime_avg;
1495 	double runtime_sec_max;
1496 	double runtime_sec_min;
1497 	int wait_stat;
1498 	double bytes;
1499 	int i, t, p;
1500 
1501 	if (init())
1502 		return -1;
1503 
1504 	pids = zalloc(g->p.nr_proc * sizeof(*pids));
1505 	pid = -1;
1506 
1507 	/* All threads try to acquire it, this way we can wait for them to start up: */
1508 	pthread_mutex_lock(&g->start_work_mutex);
1509 
1510 	if (g->p.serialize_startup) {
1511 		tprintf(" #\n");
1512 		tprintf(" # Startup synchronization: ..."); fflush(stdout);
1513 	}
1514 
1515 	gettimeofday(&start, NULL);
1516 
1517 	for (i = 0; i < g->p.nr_proc; i++) {
1518 		pid = fork();
1519 		dprintf(" # process %2d: PID %d\n", i, pid);
1520 
1521 		BUG_ON(pid < 0);
1522 		if (!pid) {
1523 			/* Child process: */
1524 			worker_process(i);
1525 
1526 			exit(0);
1527 		}
1528 		pids[i] = pid;
1529 
1530 	}
1531 	/* Wait for all the threads to start up: */
1532 	while (g->nr_tasks_started != g->p.nr_tasks)
1533 		usleep(USEC_PER_MSEC);
1534 
1535 	BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1536 
1537 	if (g->p.serialize_startup) {
1538 		double startup_sec;
1539 
1540 		pthread_mutex_lock(&g->startup_done_mutex);
1541 
1542 		/* This will start all threads: */
1543 		pthread_mutex_unlock(&g->start_work_mutex);
1544 
1545 		/* This mutex is locked - the last started thread will wake us: */
1546 		pthread_mutex_lock(&g->startup_done_mutex);
1547 
1548 		gettimeofday(&stop, NULL);
1549 
1550 		timersub(&stop, &start, &diff);
1551 
1552 		startup_sec = diff.tv_sec * NSEC_PER_SEC;
1553 		startup_sec += diff.tv_usec * NSEC_PER_USEC;
1554 		startup_sec /= NSEC_PER_SEC;
1555 
1556 		tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1557 		tprintf(" #\n");
1558 
1559 		start = stop;
1560 		pthread_mutex_unlock(&g->startup_done_mutex);
1561 	} else {
1562 		gettimeofday(&start, NULL);
1563 	}
1564 
1565 	/* Parent process: */
1566 
1567 
1568 	for (i = 0; i < g->p.nr_proc; i++) {
1569 		wpid = waitpid(pids[i], &wait_stat, 0);
1570 		BUG_ON(wpid < 0);
1571 		BUG_ON(!WIFEXITED(wait_stat));
1572 
1573 	}
1574 
1575 	runtime_ns_sum = 0;
1576 	runtime_ns_min = -1LL;
1577 
1578 	for (t = 0; t < g->p.nr_tasks; t++) {
1579 		u64 thread_runtime_ns = g->threads[t].runtime_ns;
1580 
1581 		runtime_ns_sum += thread_runtime_ns;
1582 		runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1583 	}
1584 
1585 	gettimeofday(&stop, NULL);
1586 	timersub(&stop, &start, &diff);
1587 
1588 	BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1589 
1590 	tprintf("\n ###\n");
1591 	tprintf("\n");
1592 
1593 	runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1594 	runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1595 	runtime_sec_max /= NSEC_PER_SEC;
1596 
1597 	runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1598 
1599 	bytes = g->bytes_done;
1600 	runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1601 
1602 	if (g->p.measure_convergence) {
1603 		print_res(name, runtime_sec_max,
1604 			"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1605 	}
1606 
1607 	print_res(name, runtime_sec_max,
1608 		"secs,", "runtime-max/thread",	"secs slowest (max) thread-runtime");
1609 
1610 	print_res(name, runtime_sec_min,
1611 		"secs,", "runtime-min/thread",	"secs fastest (min) thread-runtime");
1612 
1613 	print_res(name, runtime_avg,
1614 		"secs,", "runtime-avg/thread",	"secs average thread-runtime");
1615 
1616 	delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1617 	print_res(name, delta_runtime / runtime_sec_max * 100.0,
1618 		"%,", "spread-runtime/thread",	"% difference between max/avg runtime");
1619 
1620 	print_res(name, bytes / g->p.nr_tasks / 1e9,
1621 		"GB,", "data/thread",		"GB data processed, per thread");
1622 
1623 	print_res(name, bytes / 1e9,
1624 		"GB,", "data-total",		"GB data processed, total");
1625 
1626 	print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1627 		"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1628 
1629 	print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1630 		"GB/sec,", "thread-speed",	"GB/sec/thread speed");
1631 
1632 	print_res(name, bytes / runtime_sec_max / 1e9,
1633 		"GB/sec,", "total-speed",	"GB/sec total speed");
1634 
1635 	if (g->p.show_details >= 2) {
1636 		char tname[14 + 2 * 10 + 1];
1637 		struct thread_data *td;
1638 		for (p = 0; p < g->p.nr_proc; p++) {
1639 			for (t = 0; t < g->p.nr_threads; t++) {
1640 				memset(tname, 0, sizeof(tname));
1641 				td = g->threads + p*g->p.nr_threads + t;
1642 				snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1643 				print_res(tname, td->speed_gbs,
1644 					"GB/sec",	"thread-speed", "GB/sec/thread speed");
1645 				print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1646 					"secs",	"thread-system-time", "system CPU time/thread");
1647 				print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1648 					"secs",	"thread-user-time", "user CPU time/thread");
1649 			}
1650 		}
1651 	}
1652 
1653 	free(pids);
1654 
1655 	deinit();
1656 
1657 	return 0;
1658 }
1659 
1660 #define MAX_ARGS 50
1661 
1662 static int command_size(const char **argv)
1663 {
1664 	int size = 0;
1665 
1666 	while (*argv) {
1667 		size++;
1668 		argv++;
1669 	}
1670 
1671 	BUG_ON(size >= MAX_ARGS);
1672 
1673 	return size;
1674 }
1675 
1676 static void init_params(struct params *p, const char *name, int argc, const char **argv)
1677 {
1678 	int i;
1679 
1680 	printf("\n # Running %s \"perf bench numa", name);
1681 
1682 	for (i = 0; i < argc; i++)
1683 		printf(" %s", argv[i]);
1684 
1685 	printf("\"\n");
1686 
1687 	memset(p, 0, sizeof(*p));
1688 
1689 	/* Initialize nonzero defaults: */
1690 
1691 	p->serialize_startup		= 1;
1692 	p->data_reads			= true;
1693 	p->data_writes			= true;
1694 	p->data_backwards		= true;
1695 	p->data_rand_walk		= true;
1696 	p->nr_loops			= -1;
1697 	p->init_random			= true;
1698 	p->mb_global_str		= "1";
1699 	p->nr_proc			= 1;
1700 	p->nr_threads			= 1;
1701 	p->nr_secs			= 5;
1702 	p->run_all			= argc == 1;
1703 }
1704 
1705 static int run_bench_numa(const char *name, const char **argv)
1706 {
1707 	int argc = command_size(argv);
1708 
1709 	init_params(&p0, name, argc, argv);
1710 	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1711 	if (argc)
1712 		goto err;
1713 
1714 	if (__bench_numa(name))
1715 		goto err;
1716 
1717 	return 0;
1718 
1719 err:
1720 	return -1;
1721 }
1722 
1723 #define OPT_BW_RAM		"-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1724 #define OPT_BW_RAM_NOTHP	OPT_BW_RAM,		"--thp", "-1"
1725 
1726 #define OPT_CONV		"-s", "100", "-zZ0qcm", "--thp", " 1"
1727 #define OPT_CONV_NOTHP		OPT_CONV,		"--thp", "-1"
1728 
1729 #define OPT_BW			"-s",  "20", "-zZ0q",   "--thp", " 1"
1730 #define OPT_BW_NOTHP		OPT_BW,			"--thp", "-1"
1731 
1732 /*
1733  * The built-in test-suite executed by "perf bench numa -a".
1734  *
1735  * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1736  */
1737 static const char *tests[][MAX_ARGS] = {
1738    /* Basic single-stream NUMA bandwidth measurements: */
1739    { "RAM-bw-local,",     "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1740 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1741    { "RAM-bw-local-NOTHP,",
1742 			  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1743 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1744    { "RAM-bw-remote,",    "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1745 			  "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1746 
1747    /* 2-stream NUMA bandwidth measurements: */
1748    { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1749 			   "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1750    { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1751 		 	   "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1752 
1753    /* Cross-stream NUMA bandwidth measurement: */
1754    { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1755 		 	   "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1756 
1757    /* Convergence latency measurements: */
1758    { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1759    { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1760    { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1761    { " 2x3-convergence,", "mem",  "-p",  "2", "-t",  "3", "-P", "1020", OPT_CONV },
1762    { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1763    { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1764    { " 4x4-convergence-NOTHP,",
1765 			  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1766    { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1767    { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1768    { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1769    { " 8x4-convergence-NOTHP,",
1770 			  "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1771    { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1772    { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1773    { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1774    { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1775    { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1776 
1777    /* Various NUMA process/thread layout bandwidth measurements: */
1778    { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1779    { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1780    { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1781    { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1782    { " 8x1-bw-process-NOTHP,",
1783 			  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1784    { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1785 
1786    { " 1x4-bw-thread,",   "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1787    { " 1x8-bw-thread,",   "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1788    { "1x16-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1789    { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1790 
1791    { " 2x3-bw-process,",  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1792    { " 4x4-bw-process,",  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1793    { " 4x6-bw-process,",  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1794    { " 4x8-bw-process,",  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1795    { " 4x8-bw-process-NOTHP,",
1796 			  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1797    { " 3x3-bw-process,",  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1798    { " 5x5-bw-process,",  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1799 
1800    { "2x16-bw-process,",  "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1801    { "1x32-bw-process,",  "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1802 
1803    { "numa02-bw,",        "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1804    { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1805    { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1806    { "numa01-bw-thread-NOTHP,",
1807 			  "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1808 };
1809 
1810 static int bench_all(void)
1811 {
1812 	int nr = ARRAY_SIZE(tests);
1813 	int ret;
1814 	int i;
1815 
1816 	ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1817 	BUG_ON(ret < 0);
1818 
1819 	for (i = 0; i < nr; i++) {
1820 		run_bench_numa(tests[i][0], tests[i] + 1);
1821 	}
1822 
1823 	printf("\n");
1824 
1825 	return 0;
1826 }
1827 
1828 int bench_numa(int argc, const char **argv)
1829 {
1830 	init_params(&p0, "main,", argc, argv);
1831 	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1832 	if (argc)
1833 		goto err;
1834 
1835 	if (p0.run_all)
1836 		return bench_all();
1837 
1838 	if (__bench_numa(NULL))
1839 		goto err;
1840 
1841 	return 0;
1842 
1843 err:
1844 	usage_with_options(numa_usage, options);
1845 	return -1;
1846 }
1847