xref: /openbmc/linux/tools/perf/bench/numa.c (revision 29c37341)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * numa.c
4  *
5  * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
6  */
7 
8 #include <inttypes.h>
9 /* For the CLR_() macros */
10 #include <pthread.h>
11 
12 #include <subcmd/parse-options.h>
13 #include "../util/cloexec.h"
14 
15 #include "bench.h"
16 
17 #include <errno.h>
18 #include <sched.h>
19 #include <stdio.h>
20 #include <assert.h>
21 #include <malloc.h>
22 #include <signal.h>
23 #include <stdlib.h>
24 #include <string.h>
25 #include <unistd.h>
26 #include <sys/mman.h>
27 #include <sys/time.h>
28 #include <sys/resource.h>
29 #include <sys/wait.h>
30 #include <sys/prctl.h>
31 #include <sys/types.h>
32 #include <linux/kernel.h>
33 #include <linux/time64.h>
34 #include <linux/numa.h>
35 #include <linux/zalloc.h>
36 
37 #include <numa.h>
38 #include <numaif.h>
39 
40 #ifndef RUSAGE_THREAD
41 # define RUSAGE_THREAD 1
42 #endif
43 
44 /*
45  * Regular printout to the terminal, supressed if -q is specified:
46  */
47 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
48 
49 /*
50  * Debug printf:
51  */
52 #undef dprintf
53 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
54 
55 struct thread_data {
56 	int			curr_cpu;
57 	cpu_set_t		bind_cpumask;
58 	int			bind_node;
59 	u8			*process_data;
60 	int			process_nr;
61 	int			thread_nr;
62 	int			task_nr;
63 	unsigned int		loops_done;
64 	u64			val;
65 	u64			runtime_ns;
66 	u64			system_time_ns;
67 	u64			user_time_ns;
68 	double			speed_gbs;
69 	pthread_mutex_t		*process_lock;
70 };
71 
72 /* Parameters set by options: */
73 
74 struct params {
75 	/* Startup synchronization: */
76 	bool			serialize_startup;
77 
78 	/* Task hierarchy: */
79 	int			nr_proc;
80 	int			nr_threads;
81 
82 	/* Working set sizes: */
83 	const char		*mb_global_str;
84 	const char		*mb_proc_str;
85 	const char		*mb_proc_locked_str;
86 	const char		*mb_thread_str;
87 
88 	double			mb_global;
89 	double			mb_proc;
90 	double			mb_proc_locked;
91 	double			mb_thread;
92 
93 	/* Access patterns to the working set: */
94 	bool			data_reads;
95 	bool			data_writes;
96 	bool			data_backwards;
97 	bool			data_zero_memset;
98 	bool			data_rand_walk;
99 	u32			nr_loops;
100 	u32			nr_secs;
101 	u32			sleep_usecs;
102 
103 	/* Working set initialization: */
104 	bool			init_zero;
105 	bool			init_random;
106 	bool			init_cpu0;
107 
108 	/* Misc options: */
109 	int			show_details;
110 	int			run_all;
111 	int			thp;
112 
113 	long			bytes_global;
114 	long			bytes_process;
115 	long			bytes_process_locked;
116 	long			bytes_thread;
117 
118 	int			nr_tasks;
119 	bool			show_quiet;
120 
121 	bool			show_convergence;
122 	bool			measure_convergence;
123 
124 	int			perturb_secs;
125 	int			nr_cpus;
126 	int			nr_nodes;
127 
128 	/* Affinity options -C and -N: */
129 	char			*cpu_list_str;
130 	char			*node_list_str;
131 };
132 
133 
134 /* Global, read-writable area, accessible to all processes and threads: */
135 
136 struct global_info {
137 	u8			*data;
138 
139 	pthread_mutex_t		startup_mutex;
140 	int			nr_tasks_started;
141 
142 	pthread_mutex_t		startup_done_mutex;
143 
144 	pthread_mutex_t		start_work_mutex;
145 	int			nr_tasks_working;
146 
147 	pthread_mutex_t		stop_work_mutex;
148 	u64			bytes_done;
149 
150 	struct thread_data	*threads;
151 
152 	/* Convergence latency measurement: */
153 	bool			all_converged;
154 	bool			stop_work;
155 
156 	int			print_once;
157 
158 	struct params		p;
159 };
160 
161 static struct global_info	*g = NULL;
162 
163 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
164 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
165 
166 struct params p0;
167 
168 static const struct option options[] = {
169 	OPT_INTEGER('p', "nr_proc"	, &p0.nr_proc,		"number of processes"),
170 	OPT_INTEGER('t', "nr_threads"	, &p0.nr_threads,	"number of threads per process"),
171 
172 	OPT_STRING('G', "mb_global"	, &p0.mb_global_str,	"MB", "global  memory (MBs)"),
173 	OPT_STRING('P', "mb_proc"	, &p0.mb_proc_str,	"MB", "process memory (MBs)"),
174 	OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
175 	OPT_STRING('T', "mb_thread"	, &p0.mb_thread_str,	"MB", "thread  memory (MBs)"),
176 
177 	OPT_UINTEGER('l', "nr_loops"	, &p0.nr_loops,		"max number of loops to run (default: unlimited)"),
178 	OPT_UINTEGER('s', "nr_secs"	, &p0.nr_secs,		"max number of seconds to run (default: 5 secs)"),
179 	OPT_UINTEGER('u', "usleep"	, &p0.sleep_usecs,	"usecs to sleep per loop iteration"),
180 
181 	OPT_BOOLEAN('R', "data_reads"	, &p0.data_reads,	"access the data via reads (can be mixed with -W)"),
182 	OPT_BOOLEAN('W', "data_writes"	, &p0.data_writes,	"access the data via writes (can be mixed with -R)"),
183 	OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,	"access the data backwards as well"),
184 	OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
185 	OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,	"access the data with random (32bit LFSR) walk"),
186 
187 
188 	OPT_BOOLEAN('z', "init_zero"	, &p0.init_zero,	"bzero the initial allocations"),
189 	OPT_BOOLEAN('I', "init_random"	, &p0.init_random,	"randomize the contents of the initial allocations"),
190 	OPT_BOOLEAN('0', "init_cpu0"	, &p0.init_cpu0,	"do the initial allocations on CPU#0"),
191 	OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,	"perturb thread 0/0 every X secs, to test convergence stability"),
192 
193 	OPT_INCR   ('d', "show_details"	, &p0.show_details,	"Show details"),
194 	OPT_INCR   ('a', "all"		, &p0.run_all,		"Run all tests in the suite"),
195 	OPT_INTEGER('H', "thp"		, &p0.thp,		"MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
196 	OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
197 		    "convergence is reached when each process (all its threads) is running on a single NUMA node."),
198 	OPT_BOOLEAN('m', "measure_convergence",	&p0.measure_convergence, "measure convergence latency"),
199 	OPT_BOOLEAN('q', "quiet"	, &p0.show_quiet,	"quiet mode"),
200 	OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
201 
202 	/* Special option string parsing callbacks: */
203         OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
204 			"bind the first N tasks to these specific cpus (the rest is unbound)",
205 			parse_cpus_opt),
206         OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
207 			"bind the first N tasks to these specific memory nodes (the rest is unbound)",
208 			parse_nodes_opt),
209 	OPT_END()
210 };
211 
212 static const char * const bench_numa_usage[] = {
213 	"perf bench numa <options>",
214 	NULL
215 };
216 
217 static const char * const numa_usage[] = {
218 	"perf bench numa mem [<options>]",
219 	NULL
220 };
221 
222 /*
223  * To get number of numa nodes present.
224  */
225 static int nr_numa_nodes(void)
226 {
227 	int i, nr_nodes = 0;
228 
229 	for (i = 0; i < g->p.nr_nodes; i++) {
230 		if (numa_bitmask_isbitset(numa_nodes_ptr, i))
231 			nr_nodes++;
232 	}
233 
234 	return nr_nodes;
235 }
236 
237 /*
238  * To check if given numa node is present.
239  */
240 static int is_node_present(int node)
241 {
242 	return numa_bitmask_isbitset(numa_nodes_ptr, node);
243 }
244 
245 /*
246  * To check given numa node has cpus.
247  */
248 static bool node_has_cpus(int node)
249 {
250 	struct bitmask *cpumask = numa_allocate_cpumask();
251 	bool ret = false; /* fall back to nocpus */
252 	int cpu;
253 
254 	BUG_ON(!cpumask);
255 	if (!numa_node_to_cpus(node, cpumask)) {
256 		for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
257 			if (numa_bitmask_isbitset(cpumask, cpu)) {
258 				ret = true;
259 				break;
260 			}
261 		}
262 	}
263 	numa_free_cpumask(cpumask);
264 
265 	return ret;
266 }
267 
268 static cpu_set_t bind_to_cpu(int target_cpu)
269 {
270 	cpu_set_t orig_mask, mask;
271 	int ret;
272 
273 	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
274 	BUG_ON(ret);
275 
276 	CPU_ZERO(&mask);
277 
278 	if (target_cpu == -1) {
279 		int cpu;
280 
281 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
282 			CPU_SET(cpu, &mask);
283 	} else {
284 		BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
285 		CPU_SET(target_cpu, &mask);
286 	}
287 
288 	ret = sched_setaffinity(0, sizeof(mask), &mask);
289 	BUG_ON(ret);
290 
291 	return orig_mask;
292 }
293 
294 static cpu_set_t bind_to_node(int target_node)
295 {
296 	cpu_set_t orig_mask, mask;
297 	int cpu;
298 	int ret;
299 
300 	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
301 	BUG_ON(ret);
302 
303 	CPU_ZERO(&mask);
304 
305 	if (target_node == NUMA_NO_NODE) {
306 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
307 			CPU_SET(cpu, &mask);
308 	} else {
309 		struct bitmask *cpumask = numa_allocate_cpumask();
310 
311 		BUG_ON(!cpumask);
312 		if (!numa_node_to_cpus(target_node, cpumask)) {
313 			for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
314 				if (numa_bitmask_isbitset(cpumask, cpu))
315 					CPU_SET(cpu, &mask);
316 			}
317 		}
318 		numa_free_cpumask(cpumask);
319 	}
320 
321 	ret = sched_setaffinity(0, sizeof(mask), &mask);
322 	BUG_ON(ret);
323 
324 	return orig_mask;
325 }
326 
327 static void bind_to_cpumask(cpu_set_t mask)
328 {
329 	int ret;
330 
331 	ret = sched_setaffinity(0, sizeof(mask), &mask);
332 	BUG_ON(ret);
333 }
334 
335 static void mempol_restore(void)
336 {
337 	int ret;
338 
339 	ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
340 
341 	BUG_ON(ret);
342 }
343 
344 static void bind_to_memnode(int node)
345 {
346 	unsigned long nodemask;
347 	int ret;
348 
349 	if (node == NUMA_NO_NODE)
350 		return;
351 
352 	BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
353 	nodemask = 1L << node;
354 
355 	ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
356 	dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
357 
358 	BUG_ON(ret);
359 }
360 
361 #define HPSIZE (2*1024*1024)
362 
363 #define set_taskname(fmt...)				\
364 do {							\
365 	char name[20];					\
366 							\
367 	snprintf(name, 20, fmt);			\
368 	prctl(PR_SET_NAME, name);			\
369 } while (0)
370 
371 static u8 *alloc_data(ssize_t bytes0, int map_flags,
372 		      int init_zero, int init_cpu0, int thp, int init_random)
373 {
374 	cpu_set_t orig_mask;
375 	ssize_t bytes;
376 	u8 *buf;
377 	int ret;
378 
379 	if (!bytes0)
380 		return NULL;
381 
382 	/* Allocate and initialize all memory on CPU#0: */
383 	if (init_cpu0) {
384 		int node = numa_node_of_cpu(0);
385 
386 		orig_mask = bind_to_node(node);
387 		bind_to_memnode(node);
388 	}
389 
390 	bytes = bytes0 + HPSIZE;
391 
392 	buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
393 	BUG_ON(buf == (void *)-1);
394 
395 	if (map_flags == MAP_PRIVATE) {
396 		if (thp > 0) {
397 			ret = madvise(buf, bytes, MADV_HUGEPAGE);
398 			if (ret && !g->print_once) {
399 				g->print_once = 1;
400 				printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
401 			}
402 		}
403 		if (thp < 0) {
404 			ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
405 			if (ret && !g->print_once) {
406 				g->print_once = 1;
407 				printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
408 			}
409 		}
410 	}
411 
412 	if (init_zero) {
413 		bzero(buf, bytes);
414 	} else {
415 		/* Initialize random contents, different in each word: */
416 		if (init_random) {
417 			u64 *wbuf = (void *)buf;
418 			long off = rand();
419 			long i;
420 
421 			for (i = 0; i < bytes/8; i++)
422 				wbuf[i] = i + off;
423 		}
424 	}
425 
426 	/* Align to 2MB boundary: */
427 	buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
428 
429 	/* Restore affinity: */
430 	if (init_cpu0) {
431 		bind_to_cpumask(orig_mask);
432 		mempol_restore();
433 	}
434 
435 	return buf;
436 }
437 
438 static void free_data(void *data, ssize_t bytes)
439 {
440 	int ret;
441 
442 	if (!data)
443 		return;
444 
445 	ret = munmap(data, bytes);
446 	BUG_ON(ret);
447 }
448 
449 /*
450  * Create a shared memory buffer that can be shared between processes, zeroed:
451  */
452 static void * zalloc_shared_data(ssize_t bytes)
453 {
454 	return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
455 }
456 
457 /*
458  * Create a shared memory buffer that can be shared between processes:
459  */
460 static void * setup_shared_data(ssize_t bytes)
461 {
462 	return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
463 }
464 
465 /*
466  * Allocate process-local memory - this will either be shared between
467  * threads of this process, or only be accessed by this thread:
468  */
469 static void * setup_private_data(ssize_t bytes)
470 {
471 	return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
472 }
473 
474 /*
475  * Return a process-shared (global) mutex:
476  */
477 static void init_global_mutex(pthread_mutex_t *mutex)
478 {
479 	pthread_mutexattr_t attr;
480 
481 	pthread_mutexattr_init(&attr);
482 	pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
483 	pthread_mutex_init(mutex, &attr);
484 }
485 
486 static int parse_cpu_list(const char *arg)
487 {
488 	p0.cpu_list_str = strdup(arg);
489 
490 	dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
491 
492 	return 0;
493 }
494 
495 static int parse_setup_cpu_list(void)
496 {
497 	struct thread_data *td;
498 	char *str0, *str;
499 	int t;
500 
501 	if (!g->p.cpu_list_str)
502 		return 0;
503 
504 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
505 
506 	str0 = str = strdup(g->p.cpu_list_str);
507 	t = 0;
508 
509 	BUG_ON(!str);
510 
511 	tprintf("# binding tasks to CPUs:\n");
512 	tprintf("#  ");
513 
514 	while (true) {
515 		int bind_cpu, bind_cpu_0, bind_cpu_1;
516 		char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
517 		int bind_len;
518 		int step;
519 		int mul;
520 
521 		tok = strsep(&str, ",");
522 		if (!tok)
523 			break;
524 
525 		tok_end = strstr(tok, "-");
526 
527 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
528 		if (!tok_end) {
529 			/* Single CPU specified: */
530 			bind_cpu_0 = bind_cpu_1 = atol(tok);
531 		} else {
532 			/* CPU range specified (for example: "5-11"): */
533 			bind_cpu_0 = atol(tok);
534 			bind_cpu_1 = atol(tok_end + 1);
535 		}
536 
537 		step = 1;
538 		tok_step = strstr(tok, "#");
539 		if (tok_step) {
540 			step = atol(tok_step + 1);
541 			BUG_ON(step <= 0 || step >= g->p.nr_cpus);
542 		}
543 
544 		/*
545 		 * Mask length.
546 		 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
547 		 * where the _4 means the next 4 CPUs are allowed.
548 		 */
549 		bind_len = 1;
550 		tok_len = strstr(tok, "_");
551 		if (tok_len) {
552 			bind_len = atol(tok_len + 1);
553 			BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
554 		}
555 
556 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
557 		mul = 1;
558 		tok_mul = strstr(tok, "x");
559 		if (tok_mul) {
560 			mul = atol(tok_mul + 1);
561 			BUG_ON(mul <= 0);
562 		}
563 
564 		dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
565 
566 		if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
567 			printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
568 			return -1;
569 		}
570 
571 		BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
572 		BUG_ON(bind_cpu_0 > bind_cpu_1);
573 
574 		for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
575 			int i;
576 
577 			for (i = 0; i < mul; i++) {
578 				int cpu;
579 
580 				if (t >= g->p.nr_tasks) {
581 					printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
582 					goto out;
583 				}
584 				td = g->threads + t;
585 
586 				if (t)
587 					tprintf(",");
588 				if (bind_len > 1) {
589 					tprintf("%2d/%d", bind_cpu, bind_len);
590 				} else {
591 					tprintf("%2d", bind_cpu);
592 				}
593 
594 				CPU_ZERO(&td->bind_cpumask);
595 				for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
596 					BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
597 					CPU_SET(cpu, &td->bind_cpumask);
598 				}
599 				t++;
600 			}
601 		}
602 	}
603 out:
604 
605 	tprintf("\n");
606 
607 	if (t < g->p.nr_tasks)
608 		printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
609 
610 	free(str0);
611 	return 0;
612 }
613 
614 static int parse_cpus_opt(const struct option *opt __maybe_unused,
615 			  const char *arg, int unset __maybe_unused)
616 {
617 	if (!arg)
618 		return -1;
619 
620 	return parse_cpu_list(arg);
621 }
622 
623 static int parse_node_list(const char *arg)
624 {
625 	p0.node_list_str = strdup(arg);
626 
627 	dprintf("got NODE list: {%s}\n", p0.node_list_str);
628 
629 	return 0;
630 }
631 
632 static int parse_setup_node_list(void)
633 {
634 	struct thread_data *td;
635 	char *str0, *str;
636 	int t;
637 
638 	if (!g->p.node_list_str)
639 		return 0;
640 
641 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
642 
643 	str0 = str = strdup(g->p.node_list_str);
644 	t = 0;
645 
646 	BUG_ON(!str);
647 
648 	tprintf("# binding tasks to NODEs:\n");
649 	tprintf("# ");
650 
651 	while (true) {
652 		int bind_node, bind_node_0, bind_node_1;
653 		char *tok, *tok_end, *tok_step, *tok_mul;
654 		int step;
655 		int mul;
656 
657 		tok = strsep(&str, ",");
658 		if (!tok)
659 			break;
660 
661 		tok_end = strstr(tok, "-");
662 
663 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
664 		if (!tok_end) {
665 			/* Single NODE specified: */
666 			bind_node_0 = bind_node_1 = atol(tok);
667 		} else {
668 			/* NODE range specified (for example: "5-11"): */
669 			bind_node_0 = atol(tok);
670 			bind_node_1 = atol(tok_end + 1);
671 		}
672 
673 		step = 1;
674 		tok_step = strstr(tok, "#");
675 		if (tok_step) {
676 			step = atol(tok_step + 1);
677 			BUG_ON(step <= 0 || step >= g->p.nr_nodes);
678 		}
679 
680 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
681 		mul = 1;
682 		tok_mul = strstr(tok, "x");
683 		if (tok_mul) {
684 			mul = atol(tok_mul + 1);
685 			BUG_ON(mul <= 0);
686 		}
687 
688 		dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
689 
690 		if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
691 			printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
692 			return -1;
693 		}
694 
695 		BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
696 		BUG_ON(bind_node_0 > bind_node_1);
697 
698 		for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
699 			int i;
700 
701 			for (i = 0; i < mul; i++) {
702 				if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
703 					printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
704 					goto out;
705 				}
706 				td = g->threads + t;
707 
708 				if (!t)
709 					tprintf(" %2d", bind_node);
710 				else
711 					tprintf(",%2d", bind_node);
712 
713 				td->bind_node = bind_node;
714 				t++;
715 			}
716 		}
717 	}
718 out:
719 
720 	tprintf("\n");
721 
722 	if (t < g->p.nr_tasks)
723 		printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
724 
725 	free(str0);
726 	return 0;
727 }
728 
729 static int parse_nodes_opt(const struct option *opt __maybe_unused,
730 			  const char *arg, int unset __maybe_unused)
731 {
732 	if (!arg)
733 		return -1;
734 
735 	return parse_node_list(arg);
736 }
737 
738 #define BIT(x) (1ul << x)
739 
740 static inline uint32_t lfsr_32(uint32_t lfsr)
741 {
742 	const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
743 	return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
744 }
745 
746 /*
747  * Make sure there's real data dependency to RAM (when read
748  * accesses are enabled), so the compiler, the CPU and the
749  * kernel (KSM, zero page, etc.) cannot optimize away RAM
750  * accesses:
751  */
752 static inline u64 access_data(u64 *data, u64 val)
753 {
754 	if (g->p.data_reads)
755 		val += *data;
756 	if (g->p.data_writes)
757 		*data = val + 1;
758 	return val;
759 }
760 
761 /*
762  * The worker process does two types of work, a forwards going
763  * loop and a backwards going loop.
764  *
765  * We do this so that on multiprocessor systems we do not create
766  * a 'train' of processing, with highly synchronized processes,
767  * skewing the whole benchmark.
768  */
769 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
770 {
771 	long words = bytes/sizeof(u64);
772 	u64 *data = (void *)__data;
773 	long chunk_0, chunk_1;
774 	u64 *d0, *d, *d1;
775 	long off;
776 	long i;
777 
778 	BUG_ON(!data && words);
779 	BUG_ON(data && !words);
780 
781 	if (!data)
782 		return val;
783 
784 	/* Very simple memset() work variant: */
785 	if (g->p.data_zero_memset && !g->p.data_rand_walk) {
786 		bzero(data, bytes);
787 		return val;
788 	}
789 
790 	/* Spread out by PID/TID nr and by loop nr: */
791 	chunk_0 = words/nr_max;
792 	chunk_1 = words/g->p.nr_loops;
793 	off = nr*chunk_0 + loop*chunk_1;
794 
795 	while (off >= words)
796 		off -= words;
797 
798 	if (g->p.data_rand_walk) {
799 		u32 lfsr = nr + loop + val;
800 		int j;
801 
802 		for (i = 0; i < words/1024; i++) {
803 			long start, end;
804 
805 			lfsr = lfsr_32(lfsr);
806 
807 			start = lfsr % words;
808 			end = min(start + 1024, words-1);
809 
810 			if (g->p.data_zero_memset) {
811 				bzero(data + start, (end-start) * sizeof(u64));
812 			} else {
813 				for (j = start; j < end; j++)
814 					val = access_data(data + j, val);
815 			}
816 		}
817 	} else if (!g->p.data_backwards || (nr + loop) & 1) {
818 		/* Process data forwards: */
819 
820 		d0 = data + off;
821 		d  = data + off + 1;
822 		d1 = data + words;
823 
824 		for (;;) {
825 			if (unlikely(d >= d1))
826 				d = data;
827 			if (unlikely(d == d0))
828 				break;
829 
830 			val = access_data(d, val);
831 
832 			d++;
833 		}
834 	} else {
835 		/* Process data backwards: */
836 
837 		d0 = data + off;
838 		d  = data + off - 1;
839 		d1 = data + words;
840 
841 		for (;;) {
842 			if (unlikely(d < data))
843 				d = data + words-1;
844 			if (unlikely(d == d0))
845 				break;
846 
847 			val = access_data(d, val);
848 
849 			d--;
850 		}
851 	}
852 
853 	return val;
854 }
855 
856 static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
857 {
858 	unsigned int cpu;
859 
860 	cpu = sched_getcpu();
861 
862 	g->threads[task_nr].curr_cpu = cpu;
863 	prctl(0, bytes_worked);
864 }
865 
866 #define MAX_NR_NODES	64
867 
868 /*
869  * Count the number of nodes a process's threads
870  * are spread out on.
871  *
872  * A count of 1 means that the process is compressed
873  * to a single node. A count of g->p.nr_nodes means it's
874  * spread out on the whole system.
875  */
876 static int count_process_nodes(int process_nr)
877 {
878 	char node_present[MAX_NR_NODES] = { 0, };
879 	int nodes;
880 	int n, t;
881 
882 	for (t = 0; t < g->p.nr_threads; t++) {
883 		struct thread_data *td;
884 		int task_nr;
885 		int node;
886 
887 		task_nr = process_nr*g->p.nr_threads + t;
888 		td = g->threads + task_nr;
889 
890 		node = numa_node_of_cpu(td->curr_cpu);
891 		if (node < 0) /* curr_cpu was likely still -1 */
892 			return 0;
893 
894 		node_present[node] = 1;
895 	}
896 
897 	nodes = 0;
898 
899 	for (n = 0; n < MAX_NR_NODES; n++)
900 		nodes += node_present[n];
901 
902 	return nodes;
903 }
904 
905 /*
906  * Count the number of distinct process-threads a node contains.
907  *
908  * A count of 1 means that the node contains only a single
909  * process. If all nodes on the system contain at most one
910  * process then we are well-converged.
911  */
912 static int count_node_processes(int node)
913 {
914 	int processes = 0;
915 	int t, p;
916 
917 	for (p = 0; p < g->p.nr_proc; p++) {
918 		for (t = 0; t < g->p.nr_threads; t++) {
919 			struct thread_data *td;
920 			int task_nr;
921 			int n;
922 
923 			task_nr = p*g->p.nr_threads + t;
924 			td = g->threads + task_nr;
925 
926 			n = numa_node_of_cpu(td->curr_cpu);
927 			if (n == node) {
928 				processes++;
929 				break;
930 			}
931 		}
932 	}
933 
934 	return processes;
935 }
936 
937 static void calc_convergence_compression(int *strong)
938 {
939 	unsigned int nodes_min, nodes_max;
940 	int p;
941 
942 	nodes_min = -1;
943 	nodes_max =  0;
944 
945 	for (p = 0; p < g->p.nr_proc; p++) {
946 		unsigned int nodes = count_process_nodes(p);
947 
948 		if (!nodes) {
949 			*strong = 0;
950 			return;
951 		}
952 
953 		nodes_min = min(nodes, nodes_min);
954 		nodes_max = max(nodes, nodes_max);
955 	}
956 
957 	/* Strong convergence: all threads compress on a single node: */
958 	if (nodes_min == 1 && nodes_max == 1) {
959 		*strong = 1;
960 	} else {
961 		*strong = 0;
962 		tprintf(" {%d-%d}", nodes_min, nodes_max);
963 	}
964 }
965 
966 static void calc_convergence(double runtime_ns_max, double *convergence)
967 {
968 	unsigned int loops_done_min, loops_done_max;
969 	int process_groups;
970 	int nodes[MAX_NR_NODES];
971 	int distance;
972 	int nr_min;
973 	int nr_max;
974 	int strong;
975 	int sum;
976 	int nr;
977 	int node;
978 	int cpu;
979 	int t;
980 
981 	if (!g->p.show_convergence && !g->p.measure_convergence)
982 		return;
983 
984 	for (node = 0; node < g->p.nr_nodes; node++)
985 		nodes[node] = 0;
986 
987 	loops_done_min = -1;
988 	loops_done_max = 0;
989 
990 	for (t = 0; t < g->p.nr_tasks; t++) {
991 		struct thread_data *td = g->threads + t;
992 		unsigned int loops_done;
993 
994 		cpu = td->curr_cpu;
995 
996 		/* Not all threads have written it yet: */
997 		if (cpu < 0)
998 			continue;
999 
1000 		node = numa_node_of_cpu(cpu);
1001 
1002 		nodes[node]++;
1003 
1004 		loops_done = td->loops_done;
1005 		loops_done_min = min(loops_done, loops_done_min);
1006 		loops_done_max = max(loops_done, loops_done_max);
1007 	}
1008 
1009 	nr_max = 0;
1010 	nr_min = g->p.nr_tasks;
1011 	sum = 0;
1012 
1013 	for (node = 0; node < g->p.nr_nodes; node++) {
1014 		if (!is_node_present(node))
1015 			continue;
1016 		nr = nodes[node];
1017 		nr_min = min(nr, nr_min);
1018 		nr_max = max(nr, nr_max);
1019 		sum += nr;
1020 	}
1021 	BUG_ON(nr_min > nr_max);
1022 
1023 	BUG_ON(sum > g->p.nr_tasks);
1024 
1025 	if (0 && (sum < g->p.nr_tasks))
1026 		return;
1027 
1028 	/*
1029 	 * Count the number of distinct process groups present
1030 	 * on nodes - when we are converged this will decrease
1031 	 * to g->p.nr_proc:
1032 	 */
1033 	process_groups = 0;
1034 
1035 	for (node = 0; node < g->p.nr_nodes; node++) {
1036 		int processes;
1037 
1038 		if (!is_node_present(node))
1039 			continue;
1040 		processes = count_node_processes(node);
1041 		nr = nodes[node];
1042 		tprintf(" %2d/%-2d", nr, processes);
1043 
1044 		process_groups += processes;
1045 	}
1046 
1047 	distance = nr_max - nr_min;
1048 
1049 	tprintf(" [%2d/%-2d]", distance, process_groups);
1050 
1051 	tprintf(" l:%3d-%-3d (%3d)",
1052 		loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1053 
1054 	if (loops_done_min && loops_done_max) {
1055 		double skew = 1.0 - (double)loops_done_min/loops_done_max;
1056 
1057 		tprintf(" [%4.1f%%]", skew * 100.0);
1058 	}
1059 
1060 	calc_convergence_compression(&strong);
1061 
1062 	if (strong && process_groups == g->p.nr_proc) {
1063 		if (!*convergence) {
1064 			*convergence = runtime_ns_max;
1065 			tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1066 			if (g->p.measure_convergence) {
1067 				g->all_converged = true;
1068 				g->stop_work = true;
1069 			}
1070 		}
1071 	} else {
1072 		if (*convergence) {
1073 			tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1074 			*convergence = 0;
1075 		}
1076 		tprintf("\n");
1077 	}
1078 }
1079 
1080 static void show_summary(double runtime_ns_max, int l, double *convergence)
1081 {
1082 	tprintf("\r #  %5.1f%%  [%.1f mins]",
1083 		(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1084 
1085 	calc_convergence(runtime_ns_max, convergence);
1086 
1087 	if (g->p.show_details >= 0)
1088 		fflush(stdout);
1089 }
1090 
1091 static void *worker_thread(void *__tdata)
1092 {
1093 	struct thread_data *td = __tdata;
1094 	struct timeval start0, start, stop, diff;
1095 	int process_nr = td->process_nr;
1096 	int thread_nr = td->thread_nr;
1097 	unsigned long last_perturbance;
1098 	int task_nr = td->task_nr;
1099 	int details = g->p.show_details;
1100 	int first_task, last_task;
1101 	double convergence = 0;
1102 	u64 val = td->val;
1103 	double runtime_ns_max;
1104 	u8 *global_data;
1105 	u8 *process_data;
1106 	u8 *thread_data;
1107 	u64 bytes_done, secs;
1108 	long work_done;
1109 	u32 l;
1110 	struct rusage rusage;
1111 
1112 	bind_to_cpumask(td->bind_cpumask);
1113 	bind_to_memnode(td->bind_node);
1114 
1115 	set_taskname("thread %d/%d", process_nr, thread_nr);
1116 
1117 	global_data = g->data;
1118 	process_data = td->process_data;
1119 	thread_data = setup_private_data(g->p.bytes_thread);
1120 
1121 	bytes_done = 0;
1122 
1123 	last_task = 0;
1124 	if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1125 		last_task = 1;
1126 
1127 	first_task = 0;
1128 	if (process_nr == 0 && thread_nr == 0)
1129 		first_task = 1;
1130 
1131 	if (details >= 2) {
1132 		printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1133 			process_nr, thread_nr, global_data, process_data, thread_data);
1134 	}
1135 
1136 	if (g->p.serialize_startup) {
1137 		pthread_mutex_lock(&g->startup_mutex);
1138 		g->nr_tasks_started++;
1139 		pthread_mutex_unlock(&g->startup_mutex);
1140 
1141 		/* Here we will wait for the main process to start us all at once: */
1142 		pthread_mutex_lock(&g->start_work_mutex);
1143 		g->nr_tasks_working++;
1144 
1145 		/* Last one wake the main process: */
1146 		if (g->nr_tasks_working == g->p.nr_tasks)
1147 			pthread_mutex_unlock(&g->startup_done_mutex);
1148 
1149 		pthread_mutex_unlock(&g->start_work_mutex);
1150 	}
1151 
1152 	gettimeofday(&start0, NULL);
1153 
1154 	start = stop = start0;
1155 	last_perturbance = start.tv_sec;
1156 
1157 	for (l = 0; l < g->p.nr_loops; l++) {
1158 		start = stop;
1159 
1160 		if (g->stop_work)
1161 			break;
1162 
1163 		val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,	l, val);
1164 		val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,	l, val);
1165 		val += do_work(thread_data,  g->p.bytes_thread,  0,          1,		l, val);
1166 
1167 		if (g->p.sleep_usecs) {
1168 			pthread_mutex_lock(td->process_lock);
1169 			usleep(g->p.sleep_usecs);
1170 			pthread_mutex_unlock(td->process_lock);
1171 		}
1172 		/*
1173 		 * Amount of work to be done under a process-global lock:
1174 		 */
1175 		if (g->p.bytes_process_locked) {
1176 			pthread_mutex_lock(td->process_lock);
1177 			val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,	l, val);
1178 			pthread_mutex_unlock(td->process_lock);
1179 		}
1180 
1181 		work_done = g->p.bytes_global + g->p.bytes_process +
1182 			    g->p.bytes_process_locked + g->p.bytes_thread;
1183 
1184 		update_curr_cpu(task_nr, work_done);
1185 		bytes_done += work_done;
1186 
1187 		if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1188 			continue;
1189 
1190 		td->loops_done = l;
1191 
1192 		gettimeofday(&stop, NULL);
1193 
1194 		/* Check whether our max runtime timed out: */
1195 		if (g->p.nr_secs) {
1196 			timersub(&stop, &start0, &diff);
1197 			if ((u32)diff.tv_sec >= g->p.nr_secs) {
1198 				g->stop_work = true;
1199 				break;
1200 			}
1201 		}
1202 
1203 		/* Update the summary at most once per second: */
1204 		if (start.tv_sec == stop.tv_sec)
1205 			continue;
1206 
1207 		/*
1208 		 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1209 		 * by migrating to CPU#0:
1210 		 */
1211 		if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1212 			cpu_set_t orig_mask;
1213 			int target_cpu;
1214 			int this_cpu;
1215 
1216 			last_perturbance = stop.tv_sec;
1217 
1218 			/*
1219 			 * Depending on where we are running, move into
1220 			 * the other half of the system, to create some
1221 			 * real disturbance:
1222 			 */
1223 			this_cpu = g->threads[task_nr].curr_cpu;
1224 			if (this_cpu < g->p.nr_cpus/2)
1225 				target_cpu = g->p.nr_cpus-1;
1226 			else
1227 				target_cpu = 0;
1228 
1229 			orig_mask = bind_to_cpu(target_cpu);
1230 
1231 			/* Here we are running on the target CPU already */
1232 			if (details >= 1)
1233 				printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1234 
1235 			bind_to_cpumask(orig_mask);
1236 		}
1237 
1238 		if (details >= 3) {
1239 			timersub(&stop, &start, &diff);
1240 			runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1241 			runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1242 
1243 			if (details >= 0) {
1244 				printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1245 					process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1246 			}
1247 			fflush(stdout);
1248 		}
1249 		if (!last_task)
1250 			continue;
1251 
1252 		timersub(&stop, &start0, &diff);
1253 		runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1254 		runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1255 
1256 		show_summary(runtime_ns_max, l, &convergence);
1257 	}
1258 
1259 	gettimeofday(&stop, NULL);
1260 	timersub(&stop, &start0, &diff);
1261 	td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1262 	td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1263 	secs = td->runtime_ns / NSEC_PER_SEC;
1264 	td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
1265 
1266 	getrusage(RUSAGE_THREAD, &rusage);
1267 	td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1268 	td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1269 	td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1270 	td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1271 
1272 	free_data(thread_data, g->p.bytes_thread);
1273 
1274 	pthread_mutex_lock(&g->stop_work_mutex);
1275 	g->bytes_done += bytes_done;
1276 	pthread_mutex_unlock(&g->stop_work_mutex);
1277 
1278 	return NULL;
1279 }
1280 
1281 /*
1282  * A worker process starts a couple of threads:
1283  */
1284 static void worker_process(int process_nr)
1285 {
1286 	pthread_mutex_t process_lock;
1287 	struct thread_data *td;
1288 	pthread_t *pthreads;
1289 	u8 *process_data;
1290 	int task_nr;
1291 	int ret;
1292 	int t;
1293 
1294 	pthread_mutex_init(&process_lock, NULL);
1295 	set_taskname("process %d", process_nr);
1296 
1297 	/*
1298 	 * Pick up the memory policy and the CPU binding of our first thread,
1299 	 * so that we initialize memory accordingly:
1300 	 */
1301 	task_nr = process_nr*g->p.nr_threads;
1302 	td = g->threads + task_nr;
1303 
1304 	bind_to_memnode(td->bind_node);
1305 	bind_to_cpumask(td->bind_cpumask);
1306 
1307 	pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1308 	process_data = setup_private_data(g->p.bytes_process);
1309 
1310 	if (g->p.show_details >= 3) {
1311 		printf(" # process %2d global mem: %p, process mem: %p\n",
1312 			process_nr, g->data, process_data);
1313 	}
1314 
1315 	for (t = 0; t < g->p.nr_threads; t++) {
1316 		task_nr = process_nr*g->p.nr_threads + t;
1317 		td = g->threads + task_nr;
1318 
1319 		td->process_data = process_data;
1320 		td->process_nr   = process_nr;
1321 		td->thread_nr    = t;
1322 		td->task_nr	 = task_nr;
1323 		td->val          = rand();
1324 		td->curr_cpu	 = -1;
1325 		td->process_lock = &process_lock;
1326 
1327 		ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1328 		BUG_ON(ret);
1329 	}
1330 
1331 	for (t = 0; t < g->p.nr_threads; t++) {
1332                 ret = pthread_join(pthreads[t], NULL);
1333 		BUG_ON(ret);
1334 	}
1335 
1336 	free_data(process_data, g->p.bytes_process);
1337 	free(pthreads);
1338 }
1339 
1340 static void print_summary(void)
1341 {
1342 	if (g->p.show_details < 0)
1343 		return;
1344 
1345 	printf("\n ###\n");
1346 	printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1347 		g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1348 	printf(" #      %5dx %5ldMB global  shared mem operations\n",
1349 			g->p.nr_loops, g->p.bytes_global/1024/1024);
1350 	printf(" #      %5dx %5ldMB process shared mem operations\n",
1351 			g->p.nr_loops, g->p.bytes_process/1024/1024);
1352 	printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1353 			g->p.nr_loops, g->p.bytes_thread/1024/1024);
1354 
1355 	printf(" ###\n");
1356 
1357 	printf("\n ###\n"); fflush(stdout);
1358 }
1359 
1360 static void init_thread_data(void)
1361 {
1362 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1363 	int t;
1364 
1365 	g->threads = zalloc_shared_data(size);
1366 
1367 	for (t = 0; t < g->p.nr_tasks; t++) {
1368 		struct thread_data *td = g->threads + t;
1369 		int cpu;
1370 
1371 		/* Allow all nodes by default: */
1372 		td->bind_node = NUMA_NO_NODE;
1373 
1374 		/* Allow all CPUs by default: */
1375 		CPU_ZERO(&td->bind_cpumask);
1376 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1377 			CPU_SET(cpu, &td->bind_cpumask);
1378 	}
1379 }
1380 
1381 static void deinit_thread_data(void)
1382 {
1383 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1384 
1385 	free_data(g->threads, size);
1386 }
1387 
1388 static int init(void)
1389 {
1390 	g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1391 
1392 	/* Copy over options: */
1393 	g->p = p0;
1394 
1395 	g->p.nr_cpus = numa_num_configured_cpus();
1396 
1397 	g->p.nr_nodes = numa_max_node() + 1;
1398 
1399 	/* char array in count_process_nodes(): */
1400 	BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1401 
1402 	if (g->p.show_quiet && !g->p.show_details)
1403 		g->p.show_details = -1;
1404 
1405 	/* Some memory should be specified: */
1406 	if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1407 		return -1;
1408 
1409 	if (g->p.mb_global_str) {
1410 		g->p.mb_global = atof(g->p.mb_global_str);
1411 		BUG_ON(g->p.mb_global < 0);
1412 	}
1413 
1414 	if (g->p.mb_proc_str) {
1415 		g->p.mb_proc = atof(g->p.mb_proc_str);
1416 		BUG_ON(g->p.mb_proc < 0);
1417 	}
1418 
1419 	if (g->p.mb_proc_locked_str) {
1420 		g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1421 		BUG_ON(g->p.mb_proc_locked < 0);
1422 		BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1423 	}
1424 
1425 	if (g->p.mb_thread_str) {
1426 		g->p.mb_thread = atof(g->p.mb_thread_str);
1427 		BUG_ON(g->p.mb_thread < 0);
1428 	}
1429 
1430 	BUG_ON(g->p.nr_threads <= 0);
1431 	BUG_ON(g->p.nr_proc <= 0);
1432 
1433 	g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1434 
1435 	g->p.bytes_global		= g->p.mb_global	*1024L*1024L;
1436 	g->p.bytes_process		= g->p.mb_proc		*1024L*1024L;
1437 	g->p.bytes_process_locked	= g->p.mb_proc_locked	*1024L*1024L;
1438 	g->p.bytes_thread		= g->p.mb_thread	*1024L*1024L;
1439 
1440 	g->data = setup_shared_data(g->p.bytes_global);
1441 
1442 	/* Startup serialization: */
1443 	init_global_mutex(&g->start_work_mutex);
1444 	init_global_mutex(&g->startup_mutex);
1445 	init_global_mutex(&g->startup_done_mutex);
1446 	init_global_mutex(&g->stop_work_mutex);
1447 
1448 	init_thread_data();
1449 
1450 	tprintf("#\n");
1451 	if (parse_setup_cpu_list() || parse_setup_node_list())
1452 		return -1;
1453 	tprintf("#\n");
1454 
1455 	print_summary();
1456 
1457 	return 0;
1458 }
1459 
1460 static void deinit(void)
1461 {
1462 	free_data(g->data, g->p.bytes_global);
1463 	g->data = NULL;
1464 
1465 	deinit_thread_data();
1466 
1467 	free_data(g, sizeof(*g));
1468 	g = NULL;
1469 }
1470 
1471 /*
1472  * Print a short or long result, depending on the verbosity setting:
1473  */
1474 static void print_res(const char *name, double val,
1475 		      const char *txt_unit, const char *txt_short, const char *txt_long)
1476 {
1477 	if (!name)
1478 		name = "main,";
1479 
1480 	if (!g->p.show_quiet)
1481 		printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1482 	else
1483 		printf(" %14.3f %s\n", val, txt_long);
1484 }
1485 
1486 static int __bench_numa(const char *name)
1487 {
1488 	struct timeval start, stop, diff;
1489 	u64 runtime_ns_min, runtime_ns_sum;
1490 	pid_t *pids, pid, wpid;
1491 	double delta_runtime;
1492 	double runtime_avg;
1493 	double runtime_sec_max;
1494 	double runtime_sec_min;
1495 	int wait_stat;
1496 	double bytes;
1497 	int i, t, p;
1498 
1499 	if (init())
1500 		return -1;
1501 
1502 	pids = zalloc(g->p.nr_proc * sizeof(*pids));
1503 	pid = -1;
1504 
1505 	/* All threads try to acquire it, this way we can wait for them to start up: */
1506 	pthread_mutex_lock(&g->start_work_mutex);
1507 
1508 	if (g->p.serialize_startup) {
1509 		tprintf(" #\n");
1510 		tprintf(" # Startup synchronization: ..."); fflush(stdout);
1511 	}
1512 
1513 	gettimeofday(&start, NULL);
1514 
1515 	for (i = 0; i < g->p.nr_proc; i++) {
1516 		pid = fork();
1517 		dprintf(" # process %2d: PID %d\n", i, pid);
1518 
1519 		BUG_ON(pid < 0);
1520 		if (!pid) {
1521 			/* Child process: */
1522 			worker_process(i);
1523 
1524 			exit(0);
1525 		}
1526 		pids[i] = pid;
1527 
1528 	}
1529 	/* Wait for all the threads to start up: */
1530 	while (g->nr_tasks_started != g->p.nr_tasks)
1531 		usleep(USEC_PER_MSEC);
1532 
1533 	BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1534 
1535 	if (g->p.serialize_startup) {
1536 		double startup_sec;
1537 
1538 		pthread_mutex_lock(&g->startup_done_mutex);
1539 
1540 		/* This will start all threads: */
1541 		pthread_mutex_unlock(&g->start_work_mutex);
1542 
1543 		/* This mutex is locked - the last started thread will wake us: */
1544 		pthread_mutex_lock(&g->startup_done_mutex);
1545 
1546 		gettimeofday(&stop, NULL);
1547 
1548 		timersub(&stop, &start, &diff);
1549 
1550 		startup_sec = diff.tv_sec * NSEC_PER_SEC;
1551 		startup_sec += diff.tv_usec * NSEC_PER_USEC;
1552 		startup_sec /= NSEC_PER_SEC;
1553 
1554 		tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1555 		tprintf(" #\n");
1556 
1557 		start = stop;
1558 		pthread_mutex_unlock(&g->startup_done_mutex);
1559 	} else {
1560 		gettimeofday(&start, NULL);
1561 	}
1562 
1563 	/* Parent process: */
1564 
1565 
1566 	for (i = 0; i < g->p.nr_proc; i++) {
1567 		wpid = waitpid(pids[i], &wait_stat, 0);
1568 		BUG_ON(wpid < 0);
1569 		BUG_ON(!WIFEXITED(wait_stat));
1570 
1571 	}
1572 
1573 	runtime_ns_sum = 0;
1574 	runtime_ns_min = -1LL;
1575 
1576 	for (t = 0; t < g->p.nr_tasks; t++) {
1577 		u64 thread_runtime_ns = g->threads[t].runtime_ns;
1578 
1579 		runtime_ns_sum += thread_runtime_ns;
1580 		runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1581 	}
1582 
1583 	gettimeofday(&stop, NULL);
1584 	timersub(&stop, &start, &diff);
1585 
1586 	BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1587 
1588 	tprintf("\n ###\n");
1589 	tprintf("\n");
1590 
1591 	runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1592 	runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1593 	runtime_sec_max /= NSEC_PER_SEC;
1594 
1595 	runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1596 
1597 	bytes = g->bytes_done;
1598 	runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1599 
1600 	if (g->p.measure_convergence) {
1601 		print_res(name, runtime_sec_max,
1602 			"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1603 	}
1604 
1605 	print_res(name, runtime_sec_max,
1606 		"secs,", "runtime-max/thread",	"secs slowest (max) thread-runtime");
1607 
1608 	print_res(name, runtime_sec_min,
1609 		"secs,", "runtime-min/thread",	"secs fastest (min) thread-runtime");
1610 
1611 	print_res(name, runtime_avg,
1612 		"secs,", "runtime-avg/thread",	"secs average thread-runtime");
1613 
1614 	delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1615 	print_res(name, delta_runtime / runtime_sec_max * 100.0,
1616 		"%,", "spread-runtime/thread",	"% difference between max/avg runtime");
1617 
1618 	print_res(name, bytes / g->p.nr_tasks / 1e9,
1619 		"GB,", "data/thread",		"GB data processed, per thread");
1620 
1621 	print_res(name, bytes / 1e9,
1622 		"GB,", "data-total",		"GB data processed, total");
1623 
1624 	print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1625 		"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1626 
1627 	print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1628 		"GB/sec,", "thread-speed",	"GB/sec/thread speed");
1629 
1630 	print_res(name, bytes / runtime_sec_max / 1e9,
1631 		"GB/sec,", "total-speed",	"GB/sec total speed");
1632 
1633 	if (g->p.show_details >= 2) {
1634 		char tname[14 + 2 * 10 + 1];
1635 		struct thread_data *td;
1636 		for (p = 0; p < g->p.nr_proc; p++) {
1637 			for (t = 0; t < g->p.nr_threads; t++) {
1638 				memset(tname, 0, sizeof(tname));
1639 				td = g->threads + p*g->p.nr_threads + t;
1640 				snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1641 				print_res(tname, td->speed_gbs,
1642 					"GB/sec",	"thread-speed", "GB/sec/thread speed");
1643 				print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1644 					"secs",	"thread-system-time", "system CPU time/thread");
1645 				print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1646 					"secs",	"thread-user-time", "user CPU time/thread");
1647 			}
1648 		}
1649 	}
1650 
1651 	free(pids);
1652 
1653 	deinit();
1654 
1655 	return 0;
1656 }
1657 
1658 #define MAX_ARGS 50
1659 
1660 static int command_size(const char **argv)
1661 {
1662 	int size = 0;
1663 
1664 	while (*argv) {
1665 		size++;
1666 		argv++;
1667 	}
1668 
1669 	BUG_ON(size >= MAX_ARGS);
1670 
1671 	return size;
1672 }
1673 
1674 static void init_params(struct params *p, const char *name, int argc, const char **argv)
1675 {
1676 	int i;
1677 
1678 	printf("\n # Running %s \"perf bench numa", name);
1679 
1680 	for (i = 0; i < argc; i++)
1681 		printf(" %s", argv[i]);
1682 
1683 	printf("\"\n");
1684 
1685 	memset(p, 0, sizeof(*p));
1686 
1687 	/* Initialize nonzero defaults: */
1688 
1689 	p->serialize_startup		= 1;
1690 	p->data_reads			= true;
1691 	p->data_writes			= true;
1692 	p->data_backwards		= true;
1693 	p->data_rand_walk		= true;
1694 	p->nr_loops			= -1;
1695 	p->init_random			= true;
1696 	p->mb_global_str		= "1";
1697 	p->nr_proc			= 1;
1698 	p->nr_threads			= 1;
1699 	p->nr_secs			= 5;
1700 	p->run_all			= argc == 1;
1701 }
1702 
1703 static int run_bench_numa(const char *name, const char **argv)
1704 {
1705 	int argc = command_size(argv);
1706 
1707 	init_params(&p0, name, argc, argv);
1708 	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1709 	if (argc)
1710 		goto err;
1711 
1712 	if (__bench_numa(name))
1713 		goto err;
1714 
1715 	return 0;
1716 
1717 err:
1718 	return -1;
1719 }
1720 
1721 #define OPT_BW_RAM		"-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1722 #define OPT_BW_RAM_NOTHP	OPT_BW_RAM,		"--thp", "-1"
1723 
1724 #define OPT_CONV		"-s", "100", "-zZ0qcm", "--thp", " 1"
1725 #define OPT_CONV_NOTHP		OPT_CONV,		"--thp", "-1"
1726 
1727 #define OPT_BW			"-s",  "20", "-zZ0q",   "--thp", " 1"
1728 #define OPT_BW_NOTHP		OPT_BW,			"--thp", "-1"
1729 
1730 /*
1731  * The built-in test-suite executed by "perf bench numa -a".
1732  *
1733  * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1734  */
1735 static const char *tests[][MAX_ARGS] = {
1736    /* Basic single-stream NUMA bandwidth measurements: */
1737    { "RAM-bw-local,",     "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1738 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1739    { "RAM-bw-local-NOTHP,",
1740 			  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1741 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1742    { "RAM-bw-remote,",    "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1743 			  "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1744 
1745    /* 2-stream NUMA bandwidth measurements: */
1746    { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1747 			   "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1748    { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1749 		 	   "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1750 
1751    /* Cross-stream NUMA bandwidth measurement: */
1752    { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1753 		 	   "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1754 
1755    /* Convergence latency measurements: */
1756    { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1757    { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1758    { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1759    { " 2x3-convergence,", "mem",  "-p",  "2", "-t",  "3", "-P", "1020", OPT_CONV },
1760    { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1761    { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1762    { " 4x4-convergence-NOTHP,",
1763 			  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1764    { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1765    { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1766    { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1767    { " 8x4-convergence-NOTHP,",
1768 			  "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1769    { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1770    { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1771    { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1772    { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1773    { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1774 
1775    /* Various NUMA process/thread layout bandwidth measurements: */
1776    { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1777    { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1778    { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1779    { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1780    { " 8x1-bw-process-NOTHP,",
1781 			  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1782    { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1783 
1784    { " 1x4-bw-thread,",   "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1785    { " 1x8-bw-thread,",   "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1786    { "1x16-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1787    { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1788 
1789    { " 2x3-bw-process,",  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1790    { " 4x4-bw-process,",  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1791    { " 4x6-bw-process,",  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1792    { " 4x8-bw-process,",  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1793    { " 4x8-bw-process-NOTHP,",
1794 			  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1795    { " 3x3-bw-process,",  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1796    { " 5x5-bw-process,",  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1797 
1798    { "2x16-bw-process,",  "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1799    { "1x32-bw-process,",  "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1800 
1801    { "numa02-bw,",        "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1802    { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1803    { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1804    { "numa01-bw-thread-NOTHP,",
1805 			  "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1806 };
1807 
1808 static int bench_all(void)
1809 {
1810 	int nr = ARRAY_SIZE(tests);
1811 	int ret;
1812 	int i;
1813 
1814 	ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1815 	BUG_ON(ret < 0);
1816 
1817 	for (i = 0; i < nr; i++) {
1818 		run_bench_numa(tests[i][0], tests[i] + 1);
1819 	}
1820 
1821 	printf("\n");
1822 
1823 	return 0;
1824 }
1825 
1826 int bench_numa(int argc, const char **argv)
1827 {
1828 	init_params(&p0, "main,", argc, argv);
1829 	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1830 	if (argc)
1831 		goto err;
1832 
1833 	if (p0.run_all)
1834 		return bench_all();
1835 
1836 	if (__bench_numa(NULL))
1837 		goto err;
1838 
1839 	return 0;
1840 
1841 err:
1842 	usage_with_options(numa_usage, options);
1843 	return -1;
1844 }
1845