1perf.data format
2
3Uptodate as of v4.7
4
5This document describes the on-disk perf.data format, generated by perf record
6or perf inject and consumed by the other perf tools.
7
8On a high level perf.data contains the events generated by the PMUs, plus metadata.
9
10All fields are in native-endian of the machine that generated the perf.data.
11
12When perf is writing to a pipe it uses a special version of the file
13format that does not rely on seeking to adjust data offsets.  This
14format is described in "Pipe-mode data" section. The pipe data version can be
15augmented with additional events using perf inject.
16
17The file starts with a perf_header:
18
19struct perf_header {
20	char magic[8];		/* PERFILE2 */
21	uint64_t size;		/* size of the header */
22	uint64_t attr_size;	/* size of an attribute in attrs */
23	struct perf_file_section attrs;
24	struct perf_file_section data;
25	struct perf_file_section event_types;
26	uint64_t flags;
27	uint64_t flags1[3];
28};
29
30The magic number identifies the perf file and the version. Current perf versions
31use PERFILE2. Old perf versions generated a version 1 format (PERFFILE). Version 1
32is not described here. The magic number also identifies the endian. When the
33magic value is 64bit byte swapped compared the file is in non-native
34endian.
35
36A perf_file_section contains a pointer to another section of the perf file.
37The header contains three such pointers: for attributes, data and event types.
38
39struct perf_file_section {
40	uint64_t offset;	/* offset from start of file */
41	uint64_t size;		/* size of the section */
42};
43
44Flags section:
45
46For each of the optional features a perf_file_section it placed after the data
47section if the feature bit is set in the perf_header flags bitset. The
48respective perf_file_section points to the data of the additional header and
49defines its size.
50
51Some headers consist of strings, which are defined like this:
52
53struct perf_header_string {
54       uint32_t len;
55       char string[len]; /* zero terminated */
56};
57
58Some headers consist of a sequence of strings, which start with a
59
60struct perf_header_string_list {
61     uint32_t nr;
62     struct perf_header_string strings[nr]; /* variable length records */
63};
64
65The bits are the flags bits in a 256 bit bitmap starting with
66flags. These define the valid bits:
67
68	HEADER_RESERVED		= 0,	/* always cleared */
69	HEADER_FIRST_FEATURE	= 1,
70	HEADER_TRACING_DATA	= 1,
71
72Describe me.
73
74	HEADER_BUILD_ID = 2,
75
76The header consists of an sequence of build_id_event. The size of each record
77is defined by header.size (see perf_event.h). Each event defines a ELF build id
78for a executable file name for a pid. An ELF build id is a unique identifier
79assigned by the linker to an executable.
80
81struct build_id_event {
82	struct perf_event_header header;
83	pid_t			 pid;
84	uint8_t			 build_id[24];
85	char			 filename[header.size - offsetof(struct build_id_event, filename)];
86};
87
88	HEADER_HOSTNAME = 3,
89
90A perf_header_string with the hostname where the data was collected
91(uname -n)
92
93	HEADER_OSRELEASE = 4,
94
95A perf_header_string with the os release where the data was collected
96(uname -r)
97
98	HEADER_VERSION = 5,
99
100A perf_header_string with the perf user tool version where the
101data was collected. This is the same as the version of the source tree
102the perf tool was built from.
103
104	HEADER_ARCH = 6,
105
106A perf_header_string with the CPU architecture (uname -m)
107
108	HEADER_NRCPUS = 7,
109
110A structure defining the number of CPUs.
111
112struct nr_cpus {
113       uint32_t nr_cpus_available; /* CPUs not yet onlined */
114       uint32_t nr_cpus_online;
115};
116
117	HEADER_CPUDESC = 8,
118
119A perf_header_string with description of the CPU. On x86 this is the model name
120in /proc/cpuinfo
121
122	HEADER_CPUID = 9,
123
124A perf_header_string with the exact CPU type. On x86 this is
125vendor,family,model,stepping. For example: GenuineIntel,6,69,1
126
127	HEADER_TOTAL_MEM = 10,
128
129An uint64_t with the total memory in bytes.
130
131	HEADER_CMDLINE = 11,
132
133A perf_header_string_list with the perf arg-vector used to collect the data.
134
135	HEADER_EVENT_DESC = 12,
136
137Another description of the perf_event_attrs, more detailed than header.attrs
138including IDs and names. See perf_event.h or the man page for a description
139of a struct perf_event_attr.
140
141struct {
142       uint32_t nr; /* number of events */
143       uint32_t attr_size; /* size of each perf_event_attr */
144       struct {
145	      struct perf_event_attr attr;  /* size of attr_size */
146	      uint32_t nr_ids;
147	      struct perf_header_string event_string;
148	      uint64_t ids[nr_ids];
149       } events[nr]; /* Variable length records */
150};
151
152	HEADER_CPU_TOPOLOGY = 13,
153
154String lists defining the core and CPU threads topology.
155The string lists are followed by a variable length array
156which contains core_id and socket_id of each cpu.
157The number of entries can be determined by the size of the
158section minus the sizes of both string lists.
159
160struct {
161       struct perf_header_string_list cores; /* Variable length */
162       struct perf_header_string_list threads; /* Variable length */
163       struct {
164	      uint32_t core_id;
165	      uint32_t socket_id;
166       } cpus[nr]; /* Variable length records */
167};
168
169Example:
170	sibling cores   : 0-3
171	sibling threads : 0-1
172	sibling threads : 2-3
173
174	HEADER_NUMA_TOPOLOGY = 14,
175
176	A list of NUMA node descriptions
177
178struct {
179       uint32_t nr;
180       struct {
181	      uint32_t nodenr;
182	      uint64_t mem_total;
183	      uint64_t mem_free;
184	      struct perf_header_string cpus;
185       } nodes[nr]; /* Variable length records */
186};
187
188	HEADER_BRANCH_STACK = 15,
189
190Not implemented in perf.
191
192	HEADER_PMU_MAPPINGS = 16,
193
194	A list of PMU structures, defining the different PMUs supported by perf.
195
196struct {
197       uint32_t nr;
198       struct pmu {
199	      uint32_t pmu_type;
200	      struct perf_header_string pmu_name;
201       } [nr]; /* Variable length records */
202};
203
204	HEADER_GROUP_DESC = 17,
205
206	Description of counter groups ({...} in perf syntax)
207
208struct {
209         uint32_t nr;
210         struct {
211		struct perf_header_string string;
212		uint32_t leader_idx;
213		uint32_t nr_members;
214	 } [nr]; /* Variable length records */
215};
216
217	HEADER_AUXTRACE = 18,
218
219Define additional auxtrace areas in the perf.data. auxtrace is used to store
220undecoded hardware tracing information, such as Intel Processor Trace data.
221
222/**
223 * struct auxtrace_index_entry - indexes a AUX area tracing event within a
224 *                               perf.data file.
225 * @file_offset: offset within the perf.data file
226 * @sz: size of the event
227 */
228struct auxtrace_index_entry {
229	u64			file_offset;
230	u64			sz;
231};
232
233#define PERF_AUXTRACE_INDEX_ENTRY_COUNT 256
234
235/**
236 * struct auxtrace_index - index of AUX area tracing events within a perf.data
237 *                         file.
238 * @list: linking a number of arrays of entries
239 * @nr: number of entries
240 * @entries: array of entries
241 */
242struct auxtrace_index {
243	struct list_head	list;
244	size_t			nr;
245	struct auxtrace_index_entry entries[PERF_AUXTRACE_INDEX_ENTRY_COUNT];
246};
247
248	HEADER_STAT = 19,
249
250This is merely a flag signifying that the data section contains data
251recorded from perf stat record.
252
253	HEADER_CACHE = 20,
254
255Description of the cache hierarchy. Based on the Linux sysfs format
256in /sys/devices/system/cpu/cpu*/cache/
257
258	u32 version	Currently always 1
259	u32 number_of_cache_levels
260
261struct {
262	u32	level;
263	u32	line_size;
264	u32	sets;
265	u32	ways;
266	struct perf_header_string type;
267	struct perf_header_string size;
268	struct perf_header_string map;
269}[number_of_cache_levels];
270
271	HEADER_SAMPLE_TIME = 21,
272
273Two uint64_t for the time of first sample and the time of last sample.
274
275        HEADER_BPF_PROG_INFO = 25,
276
277struct bpf_prog_info_linear, which contains detailed information about
278a BPF program, including type, id, tag, jited/xlated instructions, etc.
279
280        HEADER_BPF_BTF = 26,
281
282Contains BPF Type Format (BTF). For more information about BTF, please
283refer to Documentation/bpf/btf.rst.
284
285struct {
286	u32	id;
287	u32	data_size;
288	char	data[];
289};
290
291        HEADER_COMPRESSED = 27,
292
293struct {
294	u32	version;
295	u32	type;
296	u32	level;
297	u32	ratio;
298	u32	mmap_len;
299};
300
301Indicates that trace contains records of PERF_RECORD_COMPRESSED type
302that have perf_events records in compressed form.
303
304	other bits are reserved and should ignored for now
305	HEADER_FEAT_BITS	= 256,
306
307Attributes
308
309This is an array of perf_event_attrs, each attr_size bytes long, which defines
310each event collected. See perf_event.h or the man page for a detailed
311description.
312
313Data
314
315This section is the bulk of the file. It consist of a stream of perf_events
316describing events. This matches the format generated by the kernel.
317See perf_event.h or the manpage for a detailed description.
318
319Some notes on parsing:
320
321Ordering
322
323The events are not necessarily in time stamp order, as they can be
324collected in parallel on different CPUs. If the events should be
325processed in time order they need to be sorted first. It is possible
326to only do a partial sort using the FINISHED_ROUND event header (see
327below). perf record guarantees that there is no reordering over a
328FINISHED_ROUND.
329
330ID vs IDENTIFIER
331
332When the event stream contains multiple events each event is identified
333by an ID. This can be either through the PERF_SAMPLE_ID or the
334PERF_SAMPLE_IDENTIFIER header. The PERF_SAMPLE_IDENTIFIER header is
335at a fixed offset from the event header, which allows reliable
336parsing of the header. Relying on ID may be ambiguous.
337IDENTIFIER is only supported by newer Linux kernels.
338
339Perf record specific events:
340
341In addition to the kernel generated event types perf record adds its
342own event types (in addition it also synthesizes some kernel events,
343for example MMAP events)
344
345	PERF_RECORD_USER_TYPE_START		= 64,
346	PERF_RECORD_HEADER_ATTR			= 64,
347
348struct attr_event {
349	struct perf_event_header header;
350	struct perf_event_attr attr;
351	uint64_t id[];
352};
353
354	PERF_RECORD_HEADER_EVENT_TYPE		= 65, /* deprecated */
355
356#define MAX_EVENT_NAME 64
357
358struct perf_trace_event_type {
359	uint64_t	event_id;
360	char	name[MAX_EVENT_NAME];
361};
362
363struct event_type_event {
364	struct perf_event_header header;
365	struct perf_trace_event_type event_type;
366};
367
368
369	PERF_RECORD_HEADER_TRACING_DATA		= 66,
370
371Describe me
372
373struct tracing_data_event {
374	struct perf_event_header header;
375	uint32_t size;
376};
377
378	PERF_RECORD_HEADER_BUILD_ID		= 67,
379
380Define a ELF build ID for a referenced executable.
381
382       struct build_id_event;   /* See above */
383
384	PERF_RECORD_FINISHED_ROUND		= 68,
385
386No event reordering over this header. No payload.
387
388	PERF_RECORD_ID_INDEX			= 69,
389
390Map event ids to CPUs and TIDs.
391
392struct id_index_entry {
393	uint64_t id;
394	uint64_t idx;
395	uint64_t cpu;
396	uint64_t tid;
397};
398
399struct id_index_event {
400	struct perf_event_header header;
401	uint64_t nr;
402	struct id_index_entry entries[nr];
403};
404
405	PERF_RECORD_AUXTRACE_INFO		= 70,
406
407Auxtrace type specific information. Describe me
408
409struct auxtrace_info_event {
410	struct perf_event_header header;
411	uint32_t type;
412	uint32_t reserved__; /* For alignment */
413	uint64_t priv[];
414};
415
416	PERF_RECORD_AUXTRACE			= 71,
417
418Defines auxtrace data. Followed by the actual data. The contents of
419the auxtrace data is dependent on the event and the CPU. For example
420for Intel Processor Trace it contains Processor Trace data generated
421by the CPU.
422
423struct auxtrace_event {
424	struct perf_event_header header;
425	uint64_t size;
426	uint64_t offset;
427	uint64_t reference;
428	uint32_t idx;
429	uint32_t tid;
430	uint32_t cpu;
431	uint32_t reserved__; /* For alignment */
432};
433
434struct aux_event {
435	struct perf_event_header header;
436	uint64_t	aux_offset;
437	uint64_t	aux_size;
438	uint64_t	flags;
439};
440
441	PERF_RECORD_AUXTRACE_ERROR		= 72,
442
443Describes an error in hardware tracing
444
445enum auxtrace_error_type {
446	PERF_AUXTRACE_ERROR_ITRACE  = 1,
447	PERF_AUXTRACE_ERROR_MAX
448};
449
450#define MAX_AUXTRACE_ERROR_MSG 64
451
452struct auxtrace_error_event {
453	struct perf_event_header header;
454	uint32_t type;
455	uint32_t code;
456	uint32_t cpu;
457	uint32_t pid;
458	uint32_t tid;
459	uint32_t reserved__; /* For alignment */
460	uint64_t ip;
461	char msg[MAX_AUXTRACE_ERROR_MSG];
462};
463
464	PERF_RECORD_HEADER_FEATURE		= 80,
465
466Describes a header feature. These are records used in pipe-mode that
467contain information that otherwise would be in perf.data file's header.
468
469	PERF_RECORD_COMPRESSED 			= 81,
470
471struct compressed_event {
472	struct perf_event_header	header;
473	char				data[];
474};
475
476The header is followed by compressed data frame that can be decompressed
477into array of perf trace records. The size of the entire compressed event
478record including the header is limited by the max value of header.size.
479
480Event types
481
482Define the event attributes with their IDs.
483
484An array bound by the perf_file_section size.
485
486	struct {
487		struct perf_event_attr attr;   /* Size defined by header.attr_size */
488		struct perf_file_section ids;
489	}
490
491ids points to a array of uint64_t defining the ids for event attr attr.
492
493Pipe-mode data
494
495Pipe-mode avoid seeks in the file by removing the perf_file_section and flags
496from the struct perf_header. The trimmed header is:
497
498struct perf_pipe_file_header {
499	u64				magic;
500	u64				size;
501};
502
503The information about attrs, data, and event_types is instead in the
504synthesized events PERF_RECORD_ATTR, PERF_RECORD_HEADER_TRACING_DATA,
505PERF_RECORD_HEADER_EVENT_TYPE, and PERF_RECORD_HEADER_FEATURE
506that are generated by perf record in pipe-mode.
507
508
509References:
510
511include/uapi/linux/perf_event.h
512
513This is the canonical description of the kernel generated perf_events
514and the perf_event_attrs.
515
516perf_events manpage
517
518A manpage describing perf_event and perf_event_attr is here:
519http://web.eece.maine.edu/~vweaver/projects/perf_events/programming.html
520This tends to be slightly behind the kernel include, but has better
521descriptions.  An (typically older) version of the man page may be
522included with the standard Linux man pages, available with "man
523perf_events"
524
525pmu-tools
526
527https://github.com/andikleen/pmu-tools/tree/master/parser
528
529A definition of the perf.data format in python "construct" format is available
530in pmu-tools parser. This allows to read perf.data from python and dump it.
531
532quipper
533
534The quipper C++ parser is available at
535http://github.com/google/perf_data_converter/tree/master/src/quipper
536
537