1perf.data format
2
3Uptodate as of v4.7
4
5This document describes the on-disk perf.data format, generated by perf record
6or perf inject and consumed by the other perf tools.
7
8On a high level perf.data contains the events generated by the PMUs, plus metadata.
9
10All fields are in native-endian of the machine that generated the perf.data.
11
12When perf is writing to a pipe it uses a special version of the file
13format that does not rely on seeking to adjust data offsets.  This
14format is described in "Pipe-mode data" section. The pipe data version can be
15augmented with additional events using perf inject.
16
17The file starts with a perf_header:
18
19struct perf_header {
20	char magic[8];		/* PERFILE2 */
21	uint64_t size;		/* size of the header */
22	uint64_t attr_size;	/* size of an attribute in attrs */
23	struct perf_file_section attrs;
24	struct perf_file_section data;
25	struct perf_file_section event_types;
26	uint64_t flags;
27	uint64_t flags1[3];
28};
29
30The magic number identifies the perf file and the version. Current perf versions
31use PERFILE2. Old perf versions generated a version 1 format (PERFFILE). Version 1
32is not described here. The magic number also identifies the endian. When the
33magic value is 64bit byte swapped compared the file is in non-native
34endian.
35
36A perf_file_section contains a pointer to another section of the perf file.
37The header contains three such pointers: for attributes, data and event types.
38
39struct perf_file_section {
40	uint64_t offset;	/* offset from start of file */
41	uint64_t size;		/* size of the section */
42};
43
44Flags section:
45
46The header is followed by different optional headers, described by the bits set
47in flags. Only headers for which the bit is set are included. Each header
48consists of a perf_file_section located after the initial header.
49The respective perf_file_section points to the data of the additional
50header and defines its size.
51
52Some headers consist of strings, which are defined like this:
53
54struct perf_header_string {
55       uint32_t len;
56       char string[len]; /* zero terminated */
57};
58
59Some headers consist of a sequence of strings, which start with a
60
61struct perf_header_string_list {
62     uint32_t nr;
63     struct perf_header_string strings[nr]; /* variable length records */
64};
65
66The bits are the flags bits in a 256 bit bitmap starting with
67flags. These define the valid bits:
68
69	HEADER_RESERVED		= 0,	/* always cleared */
70	HEADER_FIRST_FEATURE	= 1,
71	HEADER_TRACING_DATA	= 1,
72
73Describe me.
74
75	HEADER_BUILD_ID = 2,
76
77The header consists of an sequence of build_id_event. The size of each record
78is defined by header.size (see perf_event.h). Each event defines a ELF build id
79for a executable file name for a pid. An ELF build id is a unique identifier
80assigned by the linker to an executable.
81
82struct build_id_event {
83	struct perf_event_header header;
84	pid_t			 pid;
85	uint8_t			 build_id[24];
86	char			 filename[header.size - offsetof(struct build_id_event, filename)];
87};
88
89	HEADER_HOSTNAME = 3,
90
91A perf_header_string with the hostname where the data was collected
92(uname -n)
93
94	HEADER_OSRELEASE = 4,
95
96A perf_header_string with the os release where the data was collected
97(uname -r)
98
99	HEADER_VERSION = 5,
100
101A perf_header_string with the perf user tool version where the
102data was collected. This is the same as the version of the source tree
103the perf tool was built from.
104
105	HEADER_ARCH = 6,
106
107A perf_header_string with the CPU architecture (uname -m)
108
109	HEADER_NRCPUS = 7,
110
111A structure defining the number of CPUs.
112
113struct nr_cpus {
114       uint32_t nr_cpus_online;
115       uint32_t nr_cpus_available; /* CPUs not yet onlined */
116};
117
118	HEADER_CPUDESC = 8,
119
120A perf_header_string with description of the CPU. On x86 this is the model name
121in /proc/cpuinfo
122
123	HEADER_CPUID = 9,
124
125A perf_header_string with the exact CPU type. On x86 this is
126vendor,family,model,stepping. For example: GenuineIntel,6,69,1
127
128	HEADER_TOTAL_MEM = 10,
129
130An uint64_t with the total memory in bytes.
131
132	HEADER_CMDLINE = 11,
133
134A perf_header_string with the perf command line used to collect the data.
135
136	HEADER_EVENT_DESC = 12,
137
138Another description of the perf_event_attrs, more detailed than header.attrs
139including IDs and names. See perf_event.h or the man page for a description
140of a struct perf_event_attr.
141
142struct {
143       uint32_t nr; /* number of events */
144       uint32_t attr_size; /* size of each perf_event_attr */
145       struct {
146	      struct perf_event_attr attr;  /* size of attr_size */
147	      uint32_t nr_ids;
148	      struct perf_header_string event_string;
149	      uint64_t ids[nr_ids];
150       } events[nr]; /* Variable length records */
151};
152
153	HEADER_CPU_TOPOLOGY = 13,
154
155String lists defining the core and CPU threads topology.
156
157struct {
158       struct perf_header_string_list cores; /* Variable length */
159       struct perf_header_string_list threads; /* Variable length */
160};
161
162Example:
163	sibling cores   : 0-3
164	sibling threads : 0-1
165	sibling threads : 2-3
166
167	HEADER_NUMA_TOPOLOGY = 14,
168
169	A list of NUMA node descriptions
170
171struct {
172       uint32_t nr;
173       struct {
174	      uint32_t nodenr;
175	      uint64_t mem_total;
176	      uint64_t mem_free;
177	      struct perf_header_string cpus;
178       } nodes[nr]; /* Variable length records */
179};
180
181	HEADER_BRANCH_STACK = 15,
182
183Not implemented in perf.
184
185	HEADER_PMU_MAPPINGS = 16,
186
187	A list of PMU structures, defining the different PMUs supported by perf.
188
189struct {
190       uint32_t nr;
191       struct pmu {
192	      uint32_t pmu_type;
193	      struct perf_header_string pmu_name;
194       } [nr]; /* Variable length records */
195};
196
197	HEADER_GROUP_DESC = 17,
198
199	Description of counter groups ({...} in perf syntax)
200
201struct {
202         uint32_t nr;
203         struct {
204		struct perf_header_string string;
205		uint32_t leader_idx;
206		uint32_t nr_members;
207	 } [nr]; /* Variable length records */
208};
209
210	HEADER_AUXTRACE = 18,
211
212Define additional auxtrace areas in the perf.data. auxtrace is used to store
213undecoded hardware tracing information, such as Intel Processor Trace data.
214
215/**
216 * struct auxtrace_index_entry - indexes a AUX area tracing event within a
217 *                               perf.data file.
218 * @file_offset: offset within the perf.data file
219 * @sz: size of the event
220 */
221struct auxtrace_index_entry {
222	u64			file_offset;
223	u64			sz;
224};
225
226#define PERF_AUXTRACE_INDEX_ENTRY_COUNT 256
227
228/**
229 * struct auxtrace_index - index of AUX area tracing events within a perf.data
230 *                         file.
231 * @list: linking a number of arrays of entries
232 * @nr: number of entries
233 * @entries: array of entries
234 */
235struct auxtrace_index {
236	struct list_head	list;
237	size_t			nr;
238	struct auxtrace_index_entry entries[PERF_AUXTRACE_INDEX_ENTRY_COUNT];
239};
240
241	other bits are reserved and should ignored for now
242	HEADER_FEAT_BITS	= 256,
243
244Attributes
245
246This is an array of perf_event_attrs, each attr_size bytes long, which defines
247each event collected. See perf_event.h or the man page for a detailed
248description.
249
250Data
251
252This section is the bulk of the file. It consist of a stream of perf_events
253describing events. This matches the format generated by the kernel.
254See perf_event.h or the manpage for a detailed description.
255
256Some notes on parsing:
257
258Ordering
259
260The events are not necessarily in time stamp order, as they can be
261collected in parallel on different CPUs. If the events should be
262processed in time order they need to be sorted first. It is possible
263to only do a partial sort using the FINISHED_ROUND event header (see
264below). perf record guarantees that there is no reordering over a
265FINISHED_ROUND.
266
267ID vs IDENTIFIER
268
269When the event stream contains multiple events each event is identified
270by an ID. This can be either through the PERF_SAMPLE_ID or the
271PERF_SAMPLE_IDENTIFIER header. The PERF_SAMPLE_IDENTIFIER header is
272at a fixed offset from the event header, which allows reliable
273parsing of the header. Relying on ID may be ambiguous.
274IDENTIFIER is only supported by newer Linux kernels.
275
276Perf record specific events:
277
278In addition to the kernel generated event types perf record adds its
279own event types (in addition it also synthesizes some kernel events,
280for example MMAP events)
281
282	PERF_RECORD_USER_TYPE_START		= 64,
283	PERF_RECORD_HEADER_ATTR			= 64,
284
285struct attr_event {
286	struct perf_event_header header;
287	struct perf_event_attr attr;
288	uint64_t id[];
289};
290
291	PERF_RECORD_HEADER_EVENT_TYPE		= 65, /* deprecated */
292
293#define MAX_EVENT_NAME 64
294
295struct perf_trace_event_type {
296	uint64_t	event_id;
297	char	name[MAX_EVENT_NAME];
298};
299
300struct event_type_event {
301	struct perf_event_header header;
302	struct perf_trace_event_type event_type;
303};
304
305
306	PERF_RECORD_HEADER_TRACING_DATA		= 66,
307
308Describe me
309
310struct tracing_data_event {
311	struct perf_event_header header;
312	uint32_t size;
313};
314
315	PERF_RECORD_HEADER_BUILD_ID		= 67,
316
317Define a ELF build ID for a referenced executable.
318
319       struct build_id_event;   /* See above */
320
321	PERF_RECORD_FINISHED_ROUND		= 68,
322
323No event reordering over this header. No payload.
324
325	PERF_RECORD_ID_INDEX			= 69,
326
327Map event ids to CPUs and TIDs.
328
329struct id_index_entry {
330	uint64_t id;
331	uint64_t idx;
332	uint64_t cpu;
333	uint64_t tid;
334};
335
336struct id_index_event {
337	struct perf_event_header header;
338	uint64_t nr;
339	struct id_index_entry entries[nr];
340};
341
342	PERF_RECORD_AUXTRACE_INFO		= 70,
343
344Auxtrace type specific information. Describe me
345
346struct auxtrace_info_event {
347	struct perf_event_header header;
348	uint32_t type;
349	uint32_t reserved__; /* For alignment */
350	uint64_t priv[];
351};
352
353	PERF_RECORD_AUXTRACE			= 71,
354
355Defines auxtrace data. Followed by the actual data. The contents of
356the auxtrace data is dependent on the event and the CPU. For example
357for Intel Processor Trace it contains Processor Trace data generated
358by the CPU.
359
360struct auxtrace_event {
361	struct perf_event_header header;
362	uint64_t size;
363	uint64_t offset;
364	uint64_t reference;
365	uint32_t idx;
366	uint32_t tid;
367	uint32_t cpu;
368	uint32_t reserved__; /* For alignment */
369};
370
371struct aux_event {
372	struct perf_event_header header;
373	uint64_t	aux_offset;
374	uint64_t	aux_size;
375	uint64_t	flags;
376};
377
378	PERF_RECORD_AUXTRACE_ERROR		= 72,
379
380Describes an error in hardware tracing
381
382enum auxtrace_error_type {
383	PERF_AUXTRACE_ERROR_ITRACE  = 1,
384	PERF_AUXTRACE_ERROR_MAX
385};
386
387#define MAX_AUXTRACE_ERROR_MSG 64
388
389struct auxtrace_error_event {
390	struct perf_event_header header;
391	uint32_t type;
392	uint32_t code;
393	uint32_t cpu;
394	uint32_t pid;
395	uint32_t tid;
396	uint32_t reserved__; /* For alignment */
397	uint64_t ip;
398	char msg[MAX_AUXTRACE_ERROR_MSG];
399};
400
401	PERF_RECORD_HEADER_FEATURE		= 80,
402
403Describes a header feature. These are records used in pipe-mode that
404contain information that otherwise would be in perf.data file's header.
405
406Event types
407
408Define the event attributes with their IDs.
409
410An array bound by the perf_file_section size.
411
412	struct {
413		struct perf_event_attr attr;   /* Size defined by header.attr_size */
414		struct perf_file_section ids;
415	}
416
417ids points to a array of uint64_t defining the ids for event attr attr.
418
419Pipe-mode data
420
421Pipe-mode avoid seeks in the file by removing the perf_file_section and flags
422from the struct perf_header. The trimmed header is:
423
424struct perf_pipe_file_header {
425	u64				magic;
426	u64				size;
427};
428
429The information about attrs, data, and event_types is instead in the
430synthesized events PERF_RECORD_ATTR, PERF_RECORD_HEADER_TRACING_DATA,
431PERF_RECORD_HEADER_EVENT_TYPE, and PERF_RECORD_HEADER_FEATURE
432that are generated by perf record in pipe-mode.
433
434
435References:
436
437include/uapi/linux/perf_event.h
438
439This is the canonical description of the kernel generated perf_events
440and the perf_event_attrs.
441
442perf_events manpage
443
444A manpage describing perf_event and perf_event_attr is here:
445http://web.eece.maine.edu/~vweaver/projects/perf_events/programming.html
446This tends to be slightly behind the kernel include, but has better
447descriptions.  An (typically older) version of the man page may be
448included with the standard Linux man pages, available with "man
449perf_events"
450
451pmu-tools
452
453https://github.com/andikleen/pmu-tools/tree/master/parser
454
455A definition of the perf.data format in python "construct" format is available
456in pmu-tools parser. This allows to read perf.data from python and dump it.
457
458quipper
459
460The quipper C++ parser is available at
461https://chromium.googlesource.com/chromiumos/platform2
462
463It is under the chromiumos-wide-profiling/ subdirectory. This library can
464convert a perf data file to a protobuf and vice versa.
465
466Unfortunately this parser tends to be many versions behind and may not be able
467to parse data files generated by recent perf.
468