1perf.data format 2 3Uptodate as of v4.7 4 5This document describes the on-disk perf.data format, generated by perf record 6or perf inject and consumed by the other perf tools. 7 8On a high level perf.data contains the events generated by the PMUs, plus metadata. 9 10All fields are in native-endian of the machine that generated the perf.data. 11 12When perf is writing to a pipe it uses a special version of the file 13format that does not rely on seeking to adjust data offsets. This 14format is described in "Pipe-mode data" section. The pipe data version can be 15augmented with additional events using perf inject. 16 17The file starts with a perf_header: 18 19struct perf_header { 20 char magic[8]; /* PERFILE2 */ 21 uint64_t size; /* size of the header */ 22 uint64_t attr_size; /* size of an attribute in attrs */ 23 struct perf_file_section attrs; 24 struct perf_file_section data; 25 struct perf_file_section event_types; 26 uint64_t flags; 27 uint64_t flags1[3]; 28}; 29 30The magic number identifies the perf file and the version. Current perf versions 31use PERFILE2. Old perf versions generated a version 1 format (PERFFILE). Version 1 32is not described here. The magic number also identifies the endian. When the 33magic value is 64bit byte swapped compared the file is in non-native 34endian. 35 36A perf_file_section contains a pointer to another section of the perf file. 37The header contains three such pointers: for attributes, data and event types. 38 39struct perf_file_section { 40 uint64_t offset; /* offset from start of file */ 41 uint64_t size; /* size of the section */ 42}; 43 44Flags section: 45 46For each of the optional features a perf_file_section it placed after the data 47section if the feature bit is set in the perf_header flags bitset. The 48respective perf_file_section points to the data of the additional header and 49defines its size. 50 51Some headers consist of strings, which are defined like this: 52 53struct perf_header_string { 54 uint32_t len; 55 char string[len]; /* zero terminated */ 56}; 57 58Some headers consist of a sequence of strings, which start with a 59 60struct perf_header_string_list { 61 uint32_t nr; 62 struct perf_header_string strings[nr]; /* variable length records */ 63}; 64 65The bits are the flags bits in a 256 bit bitmap starting with 66flags. These define the valid bits: 67 68 HEADER_RESERVED = 0, /* always cleared */ 69 HEADER_FIRST_FEATURE = 1, 70 HEADER_TRACING_DATA = 1, 71 72Describe me. 73 74 HEADER_BUILD_ID = 2, 75 76The header consists of an sequence of build_id_event. The size of each record 77is defined by header.size (see perf_event.h). Each event defines a ELF build id 78for a executable file name for a pid. An ELF build id is a unique identifier 79assigned by the linker to an executable. 80 81struct build_id_event { 82 struct perf_event_header header; 83 pid_t pid; 84 uint8_t build_id[24]; 85 char filename[header.size - offsetof(struct build_id_event, filename)]; 86}; 87 88 HEADER_HOSTNAME = 3, 89 90A perf_header_string with the hostname where the data was collected 91(uname -n) 92 93 HEADER_OSRELEASE = 4, 94 95A perf_header_string with the os release where the data was collected 96(uname -r) 97 98 HEADER_VERSION = 5, 99 100A perf_header_string with the perf user tool version where the 101data was collected. This is the same as the version of the source tree 102the perf tool was built from. 103 104 HEADER_ARCH = 6, 105 106A perf_header_string with the CPU architecture (uname -m) 107 108 HEADER_NRCPUS = 7, 109 110A structure defining the number of CPUs. 111 112struct nr_cpus { 113 uint32_t nr_cpus_available; /* CPUs not yet onlined */ 114 uint32_t nr_cpus_online; 115}; 116 117 HEADER_CPUDESC = 8, 118 119A perf_header_string with description of the CPU. On x86 this is the model name 120in /proc/cpuinfo 121 122 HEADER_CPUID = 9, 123 124A perf_header_string with the exact CPU type. On x86 this is 125vendor,family,model,stepping. For example: GenuineIntel,6,69,1 126 127 HEADER_TOTAL_MEM = 10, 128 129An uint64_t with the total memory in bytes. 130 131 HEADER_CMDLINE = 11, 132 133A perf_header_string_list with the perf arg-vector used to collect the data. 134 135 HEADER_EVENT_DESC = 12, 136 137Another description of the perf_event_attrs, more detailed than header.attrs 138including IDs and names. See perf_event.h or the man page for a description 139of a struct perf_event_attr. 140 141struct { 142 uint32_t nr; /* number of events */ 143 uint32_t attr_size; /* size of each perf_event_attr */ 144 struct { 145 struct perf_event_attr attr; /* size of attr_size */ 146 uint32_t nr_ids; 147 struct perf_header_string event_string; 148 uint64_t ids[nr_ids]; 149 } events[nr]; /* Variable length records */ 150}; 151 152 HEADER_CPU_TOPOLOGY = 13, 153 154String lists defining the core and CPU threads topology. 155The string lists are followed by a variable length array 156which contains core_id and socket_id of each cpu. 157The number of entries can be determined by the size of the 158section minus the sizes of both string lists. 159 160struct { 161 struct perf_header_string_list cores; /* Variable length */ 162 struct perf_header_string_list threads; /* Variable length */ 163 struct { 164 uint32_t core_id; 165 uint32_t socket_id; 166 } cpus[nr]; /* Variable length records */ 167}; 168 169Example: 170 sibling cores : 0-3 171 sibling threads : 0-1 172 sibling threads : 2-3 173 174 HEADER_NUMA_TOPOLOGY = 14, 175 176 A list of NUMA node descriptions 177 178struct { 179 uint32_t nr; 180 struct { 181 uint32_t nodenr; 182 uint64_t mem_total; 183 uint64_t mem_free; 184 struct perf_header_string cpus; 185 } nodes[nr]; /* Variable length records */ 186}; 187 188 HEADER_BRANCH_STACK = 15, 189 190Not implemented in perf. 191 192 HEADER_PMU_MAPPINGS = 16, 193 194 A list of PMU structures, defining the different PMUs supported by perf. 195 196struct { 197 uint32_t nr; 198 struct pmu { 199 uint32_t pmu_type; 200 struct perf_header_string pmu_name; 201 } [nr]; /* Variable length records */ 202}; 203 204 HEADER_GROUP_DESC = 17, 205 206 Description of counter groups ({...} in perf syntax) 207 208struct { 209 uint32_t nr; 210 struct { 211 struct perf_header_string string; 212 uint32_t leader_idx; 213 uint32_t nr_members; 214 } [nr]; /* Variable length records */ 215}; 216 217 HEADER_AUXTRACE = 18, 218 219Define additional auxtrace areas in the perf.data. auxtrace is used to store 220undecoded hardware tracing information, such as Intel Processor Trace data. 221 222/** 223 * struct auxtrace_index_entry - indexes a AUX area tracing event within a 224 * perf.data file. 225 * @file_offset: offset within the perf.data file 226 * @sz: size of the event 227 */ 228struct auxtrace_index_entry { 229 u64 file_offset; 230 u64 sz; 231}; 232 233#define PERF_AUXTRACE_INDEX_ENTRY_COUNT 256 234 235/** 236 * struct auxtrace_index - index of AUX area tracing events within a perf.data 237 * file. 238 * @list: linking a number of arrays of entries 239 * @nr: number of entries 240 * @entries: array of entries 241 */ 242struct auxtrace_index { 243 struct list_head list; 244 size_t nr; 245 struct auxtrace_index_entry entries[PERF_AUXTRACE_INDEX_ENTRY_COUNT]; 246}; 247 248 HEADER_STAT = 19, 249 250This is merely a flag signifying that the data section contains data 251recorded from perf stat record. 252 253 HEADER_CACHE = 20, 254 255Description of the cache hierarchy. Based on the Linux sysfs format 256in /sys/devices/system/cpu/cpu*/cache/ 257 258 u32 version Currently always 1 259 u32 number_of_cache_levels 260 261struct { 262 u32 level; 263 u32 line_size; 264 u32 sets; 265 u32 ways; 266 struct perf_header_string type; 267 struct perf_header_string size; 268 struct perf_header_string map; 269}[number_of_cache_levels]; 270 271 HEADER_SAMPLE_TIME = 21, 272 273Two uint64_t for the time of first sample and the time of last sample. 274 275 other bits are reserved and should ignored for now 276 HEADER_FEAT_BITS = 256, 277 278Attributes 279 280This is an array of perf_event_attrs, each attr_size bytes long, which defines 281each event collected. See perf_event.h or the man page for a detailed 282description. 283 284Data 285 286This section is the bulk of the file. It consist of a stream of perf_events 287describing events. This matches the format generated by the kernel. 288See perf_event.h or the manpage for a detailed description. 289 290Some notes on parsing: 291 292Ordering 293 294The events are not necessarily in time stamp order, as they can be 295collected in parallel on different CPUs. If the events should be 296processed in time order they need to be sorted first. It is possible 297to only do a partial sort using the FINISHED_ROUND event header (see 298below). perf record guarantees that there is no reordering over a 299FINISHED_ROUND. 300 301ID vs IDENTIFIER 302 303When the event stream contains multiple events each event is identified 304by an ID. This can be either through the PERF_SAMPLE_ID or the 305PERF_SAMPLE_IDENTIFIER header. The PERF_SAMPLE_IDENTIFIER header is 306at a fixed offset from the event header, which allows reliable 307parsing of the header. Relying on ID may be ambiguous. 308IDENTIFIER is only supported by newer Linux kernels. 309 310Perf record specific events: 311 312In addition to the kernel generated event types perf record adds its 313own event types (in addition it also synthesizes some kernel events, 314for example MMAP events) 315 316 PERF_RECORD_USER_TYPE_START = 64, 317 PERF_RECORD_HEADER_ATTR = 64, 318 319struct attr_event { 320 struct perf_event_header header; 321 struct perf_event_attr attr; 322 uint64_t id[]; 323}; 324 325 PERF_RECORD_HEADER_EVENT_TYPE = 65, /* deprecated */ 326 327#define MAX_EVENT_NAME 64 328 329struct perf_trace_event_type { 330 uint64_t event_id; 331 char name[MAX_EVENT_NAME]; 332}; 333 334struct event_type_event { 335 struct perf_event_header header; 336 struct perf_trace_event_type event_type; 337}; 338 339 340 PERF_RECORD_HEADER_TRACING_DATA = 66, 341 342Describe me 343 344struct tracing_data_event { 345 struct perf_event_header header; 346 uint32_t size; 347}; 348 349 PERF_RECORD_HEADER_BUILD_ID = 67, 350 351Define a ELF build ID for a referenced executable. 352 353 struct build_id_event; /* See above */ 354 355 PERF_RECORD_FINISHED_ROUND = 68, 356 357No event reordering over this header. No payload. 358 359 PERF_RECORD_ID_INDEX = 69, 360 361Map event ids to CPUs and TIDs. 362 363struct id_index_entry { 364 uint64_t id; 365 uint64_t idx; 366 uint64_t cpu; 367 uint64_t tid; 368}; 369 370struct id_index_event { 371 struct perf_event_header header; 372 uint64_t nr; 373 struct id_index_entry entries[nr]; 374}; 375 376 PERF_RECORD_AUXTRACE_INFO = 70, 377 378Auxtrace type specific information. Describe me 379 380struct auxtrace_info_event { 381 struct perf_event_header header; 382 uint32_t type; 383 uint32_t reserved__; /* For alignment */ 384 uint64_t priv[]; 385}; 386 387 PERF_RECORD_AUXTRACE = 71, 388 389Defines auxtrace data. Followed by the actual data. The contents of 390the auxtrace data is dependent on the event and the CPU. For example 391for Intel Processor Trace it contains Processor Trace data generated 392by the CPU. 393 394struct auxtrace_event { 395 struct perf_event_header header; 396 uint64_t size; 397 uint64_t offset; 398 uint64_t reference; 399 uint32_t idx; 400 uint32_t tid; 401 uint32_t cpu; 402 uint32_t reserved__; /* For alignment */ 403}; 404 405struct aux_event { 406 struct perf_event_header header; 407 uint64_t aux_offset; 408 uint64_t aux_size; 409 uint64_t flags; 410}; 411 412 PERF_RECORD_AUXTRACE_ERROR = 72, 413 414Describes an error in hardware tracing 415 416enum auxtrace_error_type { 417 PERF_AUXTRACE_ERROR_ITRACE = 1, 418 PERF_AUXTRACE_ERROR_MAX 419}; 420 421#define MAX_AUXTRACE_ERROR_MSG 64 422 423struct auxtrace_error_event { 424 struct perf_event_header header; 425 uint32_t type; 426 uint32_t code; 427 uint32_t cpu; 428 uint32_t pid; 429 uint32_t tid; 430 uint32_t reserved__; /* For alignment */ 431 uint64_t ip; 432 char msg[MAX_AUXTRACE_ERROR_MSG]; 433}; 434 435 PERF_RECORD_HEADER_FEATURE = 80, 436 437Describes a header feature. These are records used in pipe-mode that 438contain information that otherwise would be in perf.data file's header. 439 440Event types 441 442Define the event attributes with their IDs. 443 444An array bound by the perf_file_section size. 445 446 struct { 447 struct perf_event_attr attr; /* Size defined by header.attr_size */ 448 struct perf_file_section ids; 449 } 450 451ids points to a array of uint64_t defining the ids for event attr attr. 452 453Pipe-mode data 454 455Pipe-mode avoid seeks in the file by removing the perf_file_section and flags 456from the struct perf_header. The trimmed header is: 457 458struct perf_pipe_file_header { 459 u64 magic; 460 u64 size; 461}; 462 463The information about attrs, data, and event_types is instead in the 464synthesized events PERF_RECORD_ATTR, PERF_RECORD_HEADER_TRACING_DATA, 465PERF_RECORD_HEADER_EVENT_TYPE, and PERF_RECORD_HEADER_FEATURE 466that are generated by perf record in pipe-mode. 467 468 469References: 470 471include/uapi/linux/perf_event.h 472 473This is the canonical description of the kernel generated perf_events 474and the perf_event_attrs. 475 476perf_events manpage 477 478A manpage describing perf_event and perf_event_attr is here: 479http://web.eece.maine.edu/~vweaver/projects/perf_events/programming.html 480This tends to be slightly behind the kernel include, but has better 481descriptions. An (typically older) version of the man page may be 482included with the standard Linux man pages, available with "man 483perf_events" 484 485pmu-tools 486 487https://github.com/andikleen/pmu-tools/tree/master/parser 488 489A definition of the perf.data format in python "construct" format is available 490in pmu-tools parser. This allows to read perf.data from python and dump it. 491 492quipper 493 494The quipper C++ parser is available at 495http://github.com/google/perf_data_converter/tree/master/src/quipper 496 497