xref: /openbmc/linux/tools/lib/rbtree.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2   Red Black Trees
3   (C) 1999  Andrea Arcangeli <andrea@suse.de>
4   (C) 2002  David Woodhouse <dwmw2@infradead.org>
5   (C) 2012  Michel Lespinasse <walken@google.com>
6 
7   This program is free software; you can redistribute it and/or modify
8   it under the terms of the GNU General Public License as published by
9   the Free Software Foundation; either version 2 of the License, or
10   (at your option) any later version.
11 
12   This program is distributed in the hope that it will be useful,
13   but WITHOUT ANY WARRANTY; without even the implied warranty of
14   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15   GNU General Public License for more details.
16 
17   You should have received a copy of the GNU General Public License
18   along with this program; if not, write to the Free Software
19   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20 
21   linux/lib/rbtree.c
22 */
23 
24 #include <linux/rbtree_augmented.h>
25 #include <linux/export.h>
26 
27 /*
28  * red-black trees properties:  http://en.wikipedia.org/wiki/Rbtree
29  *
30  *  1) A node is either red or black
31  *  2) The root is black
32  *  3) All leaves (NULL) are black
33  *  4) Both children of every red node are black
34  *  5) Every simple path from root to leaves contains the same number
35  *     of black nodes.
36  *
37  *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
38  *  consecutive red nodes in a path and every red node is therefore followed by
39  *  a black. So if B is the number of black nodes on every simple path (as per
40  *  5), then the longest possible path due to 4 is 2B.
41  *
42  *  We shall indicate color with case, where black nodes are uppercase and red
43  *  nodes will be lowercase. Unknown color nodes shall be drawn as red within
44  *  parentheses and have some accompanying text comment.
45  */
46 
47 /*
48  * Notes on lockless lookups:
49  *
50  * All stores to the tree structure (rb_left and rb_right) must be done using
51  * WRITE_ONCE(). And we must not inadvertently cause (temporary) loops in the
52  * tree structure as seen in program order.
53  *
54  * These two requirements will allow lockless iteration of the tree -- not
55  * correct iteration mind you, tree rotations are not atomic so a lookup might
56  * miss entire subtrees.
57  *
58  * But they do guarantee that any such traversal will only see valid elements
59  * and that it will indeed complete -- does not get stuck in a loop.
60  *
61  * It also guarantees that if the lookup returns an element it is the 'correct'
62  * one. But not returning an element does _NOT_ mean it's not present.
63  *
64  * NOTE:
65  *
66  * Stores to __rb_parent_color are not important for simple lookups so those
67  * are left undone as of now. Nor did I check for loops involving parent
68  * pointers.
69  */
70 
71 static inline void rb_set_black(struct rb_node *rb)
72 {
73 	rb->__rb_parent_color |= RB_BLACK;
74 }
75 
76 static inline struct rb_node *rb_red_parent(struct rb_node *red)
77 {
78 	return (struct rb_node *)red->__rb_parent_color;
79 }
80 
81 /*
82  * Helper function for rotations:
83  * - old's parent and color get assigned to new
84  * - old gets assigned new as a parent and 'color' as a color.
85  */
86 static inline void
87 __rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
88 			struct rb_root *root, int color)
89 {
90 	struct rb_node *parent = rb_parent(old);
91 	new->__rb_parent_color = old->__rb_parent_color;
92 	rb_set_parent_color(old, new, color);
93 	__rb_change_child(old, new, parent, root);
94 }
95 
96 static __always_inline void
97 __rb_insert(struct rb_node *node, struct rb_root *root,
98 	    bool newleft, struct rb_node **leftmost,
99 	    void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
100 {
101 	struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
102 
103 	if (newleft)
104 		*leftmost = node;
105 
106 	while (true) {
107 		/*
108 		 * Loop invariant: node is red.
109 		 */
110 		if (unlikely(!parent)) {
111 			/*
112 			 * The inserted node is root. Either this is the
113 			 * first node, or we recursed at Case 1 below and
114 			 * are no longer violating 4).
115 			 */
116 			rb_set_parent_color(node, NULL, RB_BLACK);
117 			break;
118 		}
119 
120 		/*
121 		 * If there is a black parent, we are done.
122 		 * Otherwise, take some corrective action as,
123 		 * per 4), we don't want a red root or two
124 		 * consecutive red nodes.
125 		 */
126 		if(rb_is_black(parent))
127 			break;
128 
129 		gparent = rb_red_parent(parent);
130 
131 		tmp = gparent->rb_right;
132 		if (parent != tmp) {	/* parent == gparent->rb_left */
133 			if (tmp && rb_is_red(tmp)) {
134 				/*
135 				 * Case 1 - node's uncle is red (color flips).
136 				 *
137 				 *       G            g
138 				 *      / \          / \
139 				 *     p   u  -->   P   U
140 				 *    /            /
141 				 *   n            n
142 				 *
143 				 * However, since g's parent might be red, and
144 				 * 4) does not allow this, we need to recurse
145 				 * at g.
146 				 */
147 				rb_set_parent_color(tmp, gparent, RB_BLACK);
148 				rb_set_parent_color(parent, gparent, RB_BLACK);
149 				node = gparent;
150 				parent = rb_parent(node);
151 				rb_set_parent_color(node, parent, RB_RED);
152 				continue;
153 			}
154 
155 			tmp = parent->rb_right;
156 			if (node == tmp) {
157 				/*
158 				 * Case 2 - node's uncle is black and node is
159 				 * the parent's right child (left rotate at parent).
160 				 *
161 				 *      G             G
162 				 *     / \           / \
163 				 *    p   U  -->    n   U
164 				 *     \           /
165 				 *      n         p
166 				 *
167 				 * This still leaves us in violation of 4), the
168 				 * continuation into Case 3 will fix that.
169 				 */
170 				tmp = node->rb_left;
171 				WRITE_ONCE(parent->rb_right, tmp);
172 				WRITE_ONCE(node->rb_left, parent);
173 				if (tmp)
174 					rb_set_parent_color(tmp, parent,
175 							    RB_BLACK);
176 				rb_set_parent_color(parent, node, RB_RED);
177 				augment_rotate(parent, node);
178 				parent = node;
179 				tmp = node->rb_right;
180 			}
181 
182 			/*
183 			 * Case 3 - node's uncle is black and node is
184 			 * the parent's left child (right rotate at gparent).
185 			 *
186 			 *        G           P
187 			 *       / \         / \
188 			 *      p   U  -->  n   g
189 			 *     /                 \
190 			 *    n                   U
191 			 */
192 			WRITE_ONCE(gparent->rb_left, tmp); /* == parent->rb_right */
193 			WRITE_ONCE(parent->rb_right, gparent);
194 			if (tmp)
195 				rb_set_parent_color(tmp, gparent, RB_BLACK);
196 			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
197 			augment_rotate(gparent, parent);
198 			break;
199 		} else {
200 			tmp = gparent->rb_left;
201 			if (tmp && rb_is_red(tmp)) {
202 				/* Case 1 - color flips */
203 				rb_set_parent_color(tmp, gparent, RB_BLACK);
204 				rb_set_parent_color(parent, gparent, RB_BLACK);
205 				node = gparent;
206 				parent = rb_parent(node);
207 				rb_set_parent_color(node, parent, RB_RED);
208 				continue;
209 			}
210 
211 			tmp = parent->rb_left;
212 			if (node == tmp) {
213 				/* Case 2 - right rotate at parent */
214 				tmp = node->rb_right;
215 				WRITE_ONCE(parent->rb_left, tmp);
216 				WRITE_ONCE(node->rb_right, parent);
217 				if (tmp)
218 					rb_set_parent_color(tmp, parent,
219 							    RB_BLACK);
220 				rb_set_parent_color(parent, node, RB_RED);
221 				augment_rotate(parent, node);
222 				parent = node;
223 				tmp = node->rb_left;
224 			}
225 
226 			/* Case 3 - left rotate at gparent */
227 			WRITE_ONCE(gparent->rb_right, tmp); /* == parent->rb_left */
228 			WRITE_ONCE(parent->rb_left, gparent);
229 			if (tmp)
230 				rb_set_parent_color(tmp, gparent, RB_BLACK);
231 			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
232 			augment_rotate(gparent, parent);
233 			break;
234 		}
235 	}
236 }
237 
238 /*
239  * Inline version for rb_erase() use - we want to be able to inline
240  * and eliminate the dummy_rotate callback there
241  */
242 static __always_inline void
243 ____rb_erase_color(struct rb_node *parent, struct rb_root *root,
244 	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
245 {
246 	struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
247 
248 	while (true) {
249 		/*
250 		 * Loop invariants:
251 		 * - node is black (or NULL on first iteration)
252 		 * - node is not the root (parent is not NULL)
253 		 * - All leaf paths going through parent and node have a
254 		 *   black node count that is 1 lower than other leaf paths.
255 		 */
256 		sibling = parent->rb_right;
257 		if (node != sibling) {	/* node == parent->rb_left */
258 			if (rb_is_red(sibling)) {
259 				/*
260 				 * Case 1 - left rotate at parent
261 				 *
262 				 *     P               S
263 				 *    / \             / \
264 				 *   N   s    -->    p   Sr
265 				 *      / \         / \
266 				 *     Sl  Sr      N   Sl
267 				 */
268 				tmp1 = sibling->rb_left;
269 				WRITE_ONCE(parent->rb_right, tmp1);
270 				WRITE_ONCE(sibling->rb_left, parent);
271 				rb_set_parent_color(tmp1, parent, RB_BLACK);
272 				__rb_rotate_set_parents(parent, sibling, root,
273 							RB_RED);
274 				augment_rotate(parent, sibling);
275 				sibling = tmp1;
276 			}
277 			tmp1 = sibling->rb_right;
278 			if (!tmp1 || rb_is_black(tmp1)) {
279 				tmp2 = sibling->rb_left;
280 				if (!tmp2 || rb_is_black(tmp2)) {
281 					/*
282 					 * Case 2 - sibling color flip
283 					 * (p could be either color here)
284 					 *
285 					 *    (p)           (p)
286 					 *    / \           / \
287 					 *   N   S    -->  N   s
288 					 *      / \           / \
289 					 *     Sl  Sr        Sl  Sr
290 					 *
291 					 * This leaves us violating 5) which
292 					 * can be fixed by flipping p to black
293 					 * if it was red, or by recursing at p.
294 					 * p is red when coming from Case 1.
295 					 */
296 					rb_set_parent_color(sibling, parent,
297 							    RB_RED);
298 					if (rb_is_red(parent))
299 						rb_set_black(parent);
300 					else {
301 						node = parent;
302 						parent = rb_parent(node);
303 						if (parent)
304 							continue;
305 					}
306 					break;
307 				}
308 				/*
309 				 * Case 3 - right rotate at sibling
310 				 * (p could be either color here)
311 				 *
312 				 *   (p)           (p)
313 				 *   / \           / \
314 				 *  N   S    -->  N   sl
315 				 *     / \             \
316 				 *    sl  Sr            S
317 				 *                       \
318 				 *                        Sr
319 				 *
320 				 * Note: p might be red, and then both
321 				 * p and sl are red after rotation(which
322 				 * breaks property 4). This is fixed in
323 				 * Case 4 (in __rb_rotate_set_parents()
324 				 *         which set sl the color of p
325 				 *         and set p RB_BLACK)
326 				 *
327 				 *   (p)            (sl)
328 				 *   / \            /  \
329 				 *  N   sl   -->   P    S
330 				 *       \        /      \
331 				 *        S      N        Sr
332 				 *         \
333 				 *          Sr
334 				 */
335 				tmp1 = tmp2->rb_right;
336 				WRITE_ONCE(sibling->rb_left, tmp1);
337 				WRITE_ONCE(tmp2->rb_right, sibling);
338 				WRITE_ONCE(parent->rb_right, tmp2);
339 				if (tmp1)
340 					rb_set_parent_color(tmp1, sibling,
341 							    RB_BLACK);
342 				augment_rotate(sibling, tmp2);
343 				tmp1 = sibling;
344 				sibling = tmp2;
345 			}
346 			/*
347 			 * Case 4 - left rotate at parent + color flips
348 			 * (p and sl could be either color here.
349 			 *  After rotation, p becomes black, s acquires
350 			 *  p's color, and sl keeps its color)
351 			 *
352 			 *      (p)             (s)
353 			 *      / \             / \
354 			 *     N   S     -->   P   Sr
355 			 *        / \         / \
356 			 *      (sl) sr      N  (sl)
357 			 */
358 			tmp2 = sibling->rb_left;
359 			WRITE_ONCE(parent->rb_right, tmp2);
360 			WRITE_ONCE(sibling->rb_left, parent);
361 			rb_set_parent_color(tmp1, sibling, RB_BLACK);
362 			if (tmp2)
363 				rb_set_parent(tmp2, parent);
364 			__rb_rotate_set_parents(parent, sibling, root,
365 						RB_BLACK);
366 			augment_rotate(parent, sibling);
367 			break;
368 		} else {
369 			sibling = parent->rb_left;
370 			if (rb_is_red(sibling)) {
371 				/* Case 1 - right rotate at parent */
372 				tmp1 = sibling->rb_right;
373 				WRITE_ONCE(parent->rb_left, tmp1);
374 				WRITE_ONCE(sibling->rb_right, parent);
375 				rb_set_parent_color(tmp1, parent, RB_BLACK);
376 				__rb_rotate_set_parents(parent, sibling, root,
377 							RB_RED);
378 				augment_rotate(parent, sibling);
379 				sibling = tmp1;
380 			}
381 			tmp1 = sibling->rb_left;
382 			if (!tmp1 || rb_is_black(tmp1)) {
383 				tmp2 = sibling->rb_right;
384 				if (!tmp2 || rb_is_black(tmp2)) {
385 					/* Case 2 - sibling color flip */
386 					rb_set_parent_color(sibling, parent,
387 							    RB_RED);
388 					if (rb_is_red(parent))
389 						rb_set_black(parent);
390 					else {
391 						node = parent;
392 						parent = rb_parent(node);
393 						if (parent)
394 							continue;
395 					}
396 					break;
397 				}
398 				/* Case 3 - left rotate at sibling */
399 				tmp1 = tmp2->rb_left;
400 				WRITE_ONCE(sibling->rb_right, tmp1);
401 				WRITE_ONCE(tmp2->rb_left, sibling);
402 				WRITE_ONCE(parent->rb_left, tmp2);
403 				if (tmp1)
404 					rb_set_parent_color(tmp1, sibling,
405 							    RB_BLACK);
406 				augment_rotate(sibling, tmp2);
407 				tmp1 = sibling;
408 				sibling = tmp2;
409 			}
410 			/* Case 4 - right rotate at parent + color flips */
411 			tmp2 = sibling->rb_right;
412 			WRITE_ONCE(parent->rb_left, tmp2);
413 			WRITE_ONCE(sibling->rb_right, parent);
414 			rb_set_parent_color(tmp1, sibling, RB_BLACK);
415 			if (tmp2)
416 				rb_set_parent(tmp2, parent);
417 			__rb_rotate_set_parents(parent, sibling, root,
418 						RB_BLACK);
419 			augment_rotate(parent, sibling);
420 			break;
421 		}
422 	}
423 }
424 
425 /* Non-inline version for rb_erase_augmented() use */
426 void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
427 	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
428 {
429 	____rb_erase_color(parent, root, augment_rotate);
430 }
431 
432 /*
433  * Non-augmented rbtree manipulation functions.
434  *
435  * We use dummy augmented callbacks here, and have the compiler optimize them
436  * out of the rb_insert_color() and rb_erase() function definitions.
437  */
438 
439 static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
440 static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
441 static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
442 
443 static const struct rb_augment_callbacks dummy_callbacks = {
444 	.propagate = dummy_propagate,
445 	.copy = dummy_copy,
446 	.rotate = dummy_rotate
447 };
448 
449 void rb_insert_color(struct rb_node *node, struct rb_root *root)
450 {
451 	__rb_insert(node, root, false, NULL, dummy_rotate);
452 }
453 
454 void rb_erase(struct rb_node *node, struct rb_root *root)
455 {
456 	struct rb_node *rebalance;
457 	rebalance = __rb_erase_augmented(node, root,
458 					 NULL, &dummy_callbacks);
459 	if (rebalance)
460 		____rb_erase_color(rebalance, root, dummy_rotate);
461 }
462 
463 void rb_insert_color_cached(struct rb_node *node,
464 			    struct rb_root_cached *root, bool leftmost)
465 {
466 	__rb_insert(node, &root->rb_root, leftmost,
467 		    &root->rb_leftmost, dummy_rotate);
468 }
469 
470 void rb_erase_cached(struct rb_node *node, struct rb_root_cached *root)
471 {
472 	struct rb_node *rebalance;
473 	rebalance = __rb_erase_augmented(node, &root->rb_root,
474 					 &root->rb_leftmost, &dummy_callbacks);
475 	if (rebalance)
476 		____rb_erase_color(rebalance, &root->rb_root, dummy_rotate);
477 }
478 
479 /*
480  * Augmented rbtree manipulation functions.
481  *
482  * This instantiates the same __always_inline functions as in the non-augmented
483  * case, but this time with user-defined callbacks.
484  */
485 
486 void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
487 			   bool newleft, struct rb_node **leftmost,
488 	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
489 {
490 	__rb_insert(node, root, newleft, leftmost, augment_rotate);
491 }
492 
493 /*
494  * This function returns the first node (in sort order) of the tree.
495  */
496 struct rb_node *rb_first(const struct rb_root *root)
497 {
498 	struct rb_node	*n;
499 
500 	n = root->rb_node;
501 	if (!n)
502 		return NULL;
503 	while (n->rb_left)
504 		n = n->rb_left;
505 	return n;
506 }
507 
508 struct rb_node *rb_last(const struct rb_root *root)
509 {
510 	struct rb_node	*n;
511 
512 	n = root->rb_node;
513 	if (!n)
514 		return NULL;
515 	while (n->rb_right)
516 		n = n->rb_right;
517 	return n;
518 }
519 
520 struct rb_node *rb_next(const struct rb_node *node)
521 {
522 	struct rb_node *parent;
523 
524 	if (RB_EMPTY_NODE(node))
525 		return NULL;
526 
527 	/*
528 	 * If we have a right-hand child, go down and then left as far
529 	 * as we can.
530 	 */
531 	if (node->rb_right) {
532 		node = node->rb_right;
533 		while (node->rb_left)
534 			node=node->rb_left;
535 		return (struct rb_node *)node;
536 	}
537 
538 	/*
539 	 * No right-hand children. Everything down and left is smaller than us,
540 	 * so any 'next' node must be in the general direction of our parent.
541 	 * Go up the tree; any time the ancestor is a right-hand child of its
542 	 * parent, keep going up. First time it's a left-hand child of its
543 	 * parent, said parent is our 'next' node.
544 	 */
545 	while ((parent = rb_parent(node)) && node == parent->rb_right)
546 		node = parent;
547 
548 	return parent;
549 }
550 
551 struct rb_node *rb_prev(const struct rb_node *node)
552 {
553 	struct rb_node *parent;
554 
555 	if (RB_EMPTY_NODE(node))
556 		return NULL;
557 
558 	/*
559 	 * If we have a left-hand child, go down and then right as far
560 	 * as we can.
561 	 */
562 	if (node->rb_left) {
563 		node = node->rb_left;
564 		while (node->rb_right)
565 			node=node->rb_right;
566 		return (struct rb_node *)node;
567 	}
568 
569 	/*
570 	 * No left-hand children. Go up till we find an ancestor which
571 	 * is a right-hand child of its parent.
572 	 */
573 	while ((parent = rb_parent(node)) && node == parent->rb_left)
574 		node = parent;
575 
576 	return parent;
577 }
578 
579 void rb_replace_node(struct rb_node *victim, struct rb_node *new,
580 		     struct rb_root *root)
581 {
582 	struct rb_node *parent = rb_parent(victim);
583 
584 	/* Copy the pointers/colour from the victim to the replacement */
585 	*new = *victim;
586 
587 	/* Set the surrounding nodes to point to the replacement */
588 	if (victim->rb_left)
589 		rb_set_parent(victim->rb_left, new);
590 	if (victim->rb_right)
591 		rb_set_parent(victim->rb_right, new);
592 	__rb_change_child(victim, new, parent, root);
593 }
594 
595 void rb_replace_node_cached(struct rb_node *victim, struct rb_node *new,
596 			    struct rb_root_cached *root)
597 {
598 	rb_replace_node(victim, new, &root->rb_root);
599 
600 	if (root->rb_leftmost == victim)
601 		root->rb_leftmost = new;
602 }
603 
604 static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
605 {
606 	for (;;) {
607 		if (node->rb_left)
608 			node = node->rb_left;
609 		else if (node->rb_right)
610 			node = node->rb_right;
611 		else
612 			return (struct rb_node *)node;
613 	}
614 }
615 
616 struct rb_node *rb_next_postorder(const struct rb_node *node)
617 {
618 	const struct rb_node *parent;
619 	if (!node)
620 		return NULL;
621 	parent = rb_parent(node);
622 
623 	/* If we're sitting on node, we've already seen our children */
624 	if (parent && node == parent->rb_left && parent->rb_right) {
625 		/* If we are the parent's left node, go to the parent's right
626 		 * node then all the way down to the left */
627 		return rb_left_deepest_node(parent->rb_right);
628 	} else
629 		/* Otherwise we are the parent's right node, and the parent
630 		 * should be next */
631 		return (struct rb_node *)parent;
632 }
633 
634 struct rb_node *rb_first_postorder(const struct rb_root *root)
635 {
636 	if (!root->rb_node)
637 		return NULL;
638 
639 	return rb_left_deepest_node(root->rb_node);
640 }
641