1 // SPDX-License-Identifier: GPL-2.0 2 #include <sys/mman.h> 3 #include <inttypes.h> 4 #include <asm/bug.h> 5 #include <errno.h> 6 #include <string.h> 7 #include <linux/ring_buffer.h> 8 #include <linux/perf_event.h> 9 #include <perf/mmap.h> 10 #include <perf/event.h> 11 #include <perf/evsel.h> 12 #include <internal/mmap.h> 13 #include <internal/lib.h> 14 #include <linux/kernel.h> 15 #include <linux/math64.h> 16 #include <linux/stringify.h> 17 #include "internal.h" 18 19 void perf_mmap__init(struct perf_mmap *map, struct perf_mmap *prev, 20 bool overwrite, libperf_unmap_cb_t unmap_cb) 21 { 22 map->fd = -1; 23 map->overwrite = overwrite; 24 map->unmap_cb = unmap_cb; 25 refcount_set(&map->refcnt, 0); 26 if (prev) 27 prev->next = map; 28 } 29 30 size_t perf_mmap__mmap_len(struct perf_mmap *map) 31 { 32 return map->mask + 1 + page_size; 33 } 34 35 int perf_mmap__mmap(struct perf_mmap *map, struct perf_mmap_param *mp, 36 int fd, struct perf_cpu cpu) 37 { 38 map->prev = 0; 39 map->mask = mp->mask; 40 map->base = mmap(NULL, perf_mmap__mmap_len(map), mp->prot, 41 MAP_SHARED, fd, 0); 42 if (map->base == MAP_FAILED) { 43 map->base = NULL; 44 return -1; 45 } 46 47 map->fd = fd; 48 map->cpu = cpu; 49 return 0; 50 } 51 52 void perf_mmap__munmap(struct perf_mmap *map) 53 { 54 if (map && map->base != NULL) { 55 munmap(map->base, perf_mmap__mmap_len(map)); 56 map->base = NULL; 57 map->fd = -1; 58 refcount_set(&map->refcnt, 0); 59 } 60 if (map && map->unmap_cb) 61 map->unmap_cb(map); 62 } 63 64 void perf_mmap__get(struct perf_mmap *map) 65 { 66 refcount_inc(&map->refcnt); 67 } 68 69 void perf_mmap__put(struct perf_mmap *map) 70 { 71 BUG_ON(map->base && refcount_read(&map->refcnt) == 0); 72 73 if (refcount_dec_and_test(&map->refcnt)) 74 perf_mmap__munmap(map); 75 } 76 77 static inline void perf_mmap__write_tail(struct perf_mmap *md, u64 tail) 78 { 79 ring_buffer_write_tail(md->base, tail); 80 } 81 82 u64 perf_mmap__read_head(struct perf_mmap *map) 83 { 84 return ring_buffer_read_head(map->base); 85 } 86 87 static bool perf_mmap__empty(struct perf_mmap *map) 88 { 89 struct perf_event_mmap_page *pc = map->base; 90 91 return perf_mmap__read_head(map) == map->prev && !pc->aux_size; 92 } 93 94 void perf_mmap__consume(struct perf_mmap *map) 95 { 96 if (!map->overwrite) { 97 u64 old = map->prev; 98 99 perf_mmap__write_tail(map, old); 100 } 101 102 if (refcount_read(&map->refcnt) == 1 && perf_mmap__empty(map)) 103 perf_mmap__put(map); 104 } 105 106 static int overwrite_rb_find_range(void *buf, int mask, u64 *start, u64 *end) 107 { 108 struct perf_event_header *pheader; 109 u64 evt_head = *start; 110 int size = mask + 1; 111 112 pr_debug2("%s: buf=%p, start=%"PRIx64"\n", __func__, buf, *start); 113 pheader = (struct perf_event_header *)(buf + (*start & mask)); 114 while (true) { 115 if (evt_head - *start >= (unsigned int)size) { 116 pr_debug("Finished reading overwrite ring buffer: rewind\n"); 117 if (evt_head - *start > (unsigned int)size) 118 evt_head -= pheader->size; 119 *end = evt_head; 120 return 0; 121 } 122 123 pheader = (struct perf_event_header *)(buf + (evt_head & mask)); 124 125 if (pheader->size == 0) { 126 pr_debug("Finished reading overwrite ring buffer: get start\n"); 127 *end = evt_head; 128 return 0; 129 } 130 131 evt_head += pheader->size; 132 pr_debug3("move evt_head: %"PRIx64"\n", evt_head); 133 } 134 WARN_ONCE(1, "Shouldn't get here\n"); 135 return -1; 136 } 137 138 /* 139 * Report the start and end of the available data in ringbuffer 140 */ 141 static int __perf_mmap__read_init(struct perf_mmap *md) 142 { 143 u64 head = perf_mmap__read_head(md); 144 u64 old = md->prev; 145 unsigned char *data = md->base + page_size; 146 unsigned long size; 147 148 md->start = md->overwrite ? head : old; 149 md->end = md->overwrite ? old : head; 150 151 if ((md->end - md->start) < md->flush) 152 return -EAGAIN; 153 154 size = md->end - md->start; 155 if (size > (unsigned long)(md->mask) + 1) { 156 if (!md->overwrite) { 157 WARN_ONCE(1, "failed to keep up with mmap data. (warn only once)\n"); 158 159 md->prev = head; 160 perf_mmap__consume(md); 161 return -EAGAIN; 162 } 163 164 /* 165 * Backward ring buffer is full. We still have a chance to read 166 * most of data from it. 167 */ 168 if (overwrite_rb_find_range(data, md->mask, &md->start, &md->end)) 169 return -EINVAL; 170 } 171 172 return 0; 173 } 174 175 int perf_mmap__read_init(struct perf_mmap *map) 176 { 177 /* 178 * Check if event was unmapped due to a POLLHUP/POLLERR. 179 */ 180 if (!refcount_read(&map->refcnt)) 181 return -ENOENT; 182 183 return __perf_mmap__read_init(map); 184 } 185 186 /* 187 * Mandatory for overwrite mode 188 * The direction of overwrite mode is backward. 189 * The last perf_mmap__read() will set tail to map->core.prev. 190 * Need to correct the map->core.prev to head which is the end of next read. 191 */ 192 void perf_mmap__read_done(struct perf_mmap *map) 193 { 194 /* 195 * Check if event was unmapped due to a POLLHUP/POLLERR. 196 */ 197 if (!refcount_read(&map->refcnt)) 198 return; 199 200 map->prev = perf_mmap__read_head(map); 201 } 202 203 /* When check_messup is true, 'end' must points to a good entry */ 204 static union perf_event *perf_mmap__read(struct perf_mmap *map, 205 u64 *startp, u64 end) 206 { 207 unsigned char *data = map->base + page_size; 208 union perf_event *event = NULL; 209 int diff = end - *startp; 210 211 if (diff >= (int)sizeof(event->header)) { 212 size_t size; 213 214 event = (union perf_event *)&data[*startp & map->mask]; 215 size = event->header.size; 216 217 if (size < sizeof(event->header) || diff < (int)size) 218 return NULL; 219 220 /* 221 * Event straddles the mmap boundary -- header should always 222 * be inside due to u64 alignment of output. 223 */ 224 if ((*startp & map->mask) + size != ((*startp + size) & map->mask)) { 225 unsigned int offset = *startp; 226 unsigned int len = min(sizeof(*event), size), cpy; 227 void *dst = map->event_copy; 228 229 do { 230 cpy = min(map->mask + 1 - (offset & map->mask), len); 231 memcpy(dst, &data[offset & map->mask], cpy); 232 offset += cpy; 233 dst += cpy; 234 len -= cpy; 235 } while (len); 236 237 event = (union perf_event *)map->event_copy; 238 } 239 240 *startp += size; 241 } 242 243 return event; 244 } 245 246 /* 247 * Read event from ring buffer one by one. 248 * Return one event for each call. 249 * 250 * Usage: 251 * perf_mmap__read_init() 252 * while(event = perf_mmap__read_event()) { 253 * //process the event 254 * perf_mmap__consume() 255 * } 256 * perf_mmap__read_done() 257 */ 258 union perf_event *perf_mmap__read_event(struct perf_mmap *map) 259 { 260 union perf_event *event; 261 262 /* 263 * Check if event was unmapped due to a POLLHUP/POLLERR. 264 */ 265 if (!refcount_read(&map->refcnt)) 266 return NULL; 267 268 /* non-overwirte doesn't pause the ringbuffer */ 269 if (!map->overwrite) 270 map->end = perf_mmap__read_head(map); 271 272 event = perf_mmap__read(map, &map->start, map->end); 273 274 if (!map->overwrite) 275 map->prev = map->start; 276 277 return event; 278 } 279 280 #if defined(__i386__) || defined(__x86_64__) 281 static u64 read_perf_counter(unsigned int counter) 282 { 283 unsigned int low, high; 284 285 asm volatile("rdpmc" : "=a" (low), "=d" (high) : "c" (counter)); 286 287 return low | ((u64)high) << 32; 288 } 289 290 static u64 read_timestamp(void) 291 { 292 unsigned int low, high; 293 294 asm volatile("rdtsc" : "=a" (low), "=d" (high)); 295 296 return low | ((u64)high) << 32; 297 } 298 #elif defined(__aarch64__) 299 #define read_sysreg(r) ({ \ 300 u64 __val; \ 301 asm volatile("mrs %0, " __stringify(r) : "=r" (__val)); \ 302 __val; \ 303 }) 304 305 static u64 read_pmccntr(void) 306 { 307 return read_sysreg(pmccntr_el0); 308 } 309 310 #define PMEVCNTR_READ(idx) \ 311 static u64 read_pmevcntr_##idx(void) { \ 312 return read_sysreg(pmevcntr##idx##_el0); \ 313 } 314 315 PMEVCNTR_READ(0); 316 PMEVCNTR_READ(1); 317 PMEVCNTR_READ(2); 318 PMEVCNTR_READ(3); 319 PMEVCNTR_READ(4); 320 PMEVCNTR_READ(5); 321 PMEVCNTR_READ(6); 322 PMEVCNTR_READ(7); 323 PMEVCNTR_READ(8); 324 PMEVCNTR_READ(9); 325 PMEVCNTR_READ(10); 326 PMEVCNTR_READ(11); 327 PMEVCNTR_READ(12); 328 PMEVCNTR_READ(13); 329 PMEVCNTR_READ(14); 330 PMEVCNTR_READ(15); 331 PMEVCNTR_READ(16); 332 PMEVCNTR_READ(17); 333 PMEVCNTR_READ(18); 334 PMEVCNTR_READ(19); 335 PMEVCNTR_READ(20); 336 PMEVCNTR_READ(21); 337 PMEVCNTR_READ(22); 338 PMEVCNTR_READ(23); 339 PMEVCNTR_READ(24); 340 PMEVCNTR_READ(25); 341 PMEVCNTR_READ(26); 342 PMEVCNTR_READ(27); 343 PMEVCNTR_READ(28); 344 PMEVCNTR_READ(29); 345 PMEVCNTR_READ(30); 346 347 /* 348 * Read a value direct from PMEVCNTR<idx> 349 */ 350 static u64 read_perf_counter(unsigned int counter) 351 { 352 static u64 (* const read_f[])(void) = { 353 read_pmevcntr_0, 354 read_pmevcntr_1, 355 read_pmevcntr_2, 356 read_pmevcntr_3, 357 read_pmevcntr_4, 358 read_pmevcntr_5, 359 read_pmevcntr_6, 360 read_pmevcntr_7, 361 read_pmevcntr_8, 362 read_pmevcntr_9, 363 read_pmevcntr_10, 364 read_pmevcntr_11, 365 read_pmevcntr_13, 366 read_pmevcntr_12, 367 read_pmevcntr_14, 368 read_pmevcntr_15, 369 read_pmevcntr_16, 370 read_pmevcntr_17, 371 read_pmevcntr_18, 372 read_pmevcntr_19, 373 read_pmevcntr_20, 374 read_pmevcntr_21, 375 read_pmevcntr_22, 376 read_pmevcntr_23, 377 read_pmevcntr_24, 378 read_pmevcntr_25, 379 read_pmevcntr_26, 380 read_pmevcntr_27, 381 read_pmevcntr_28, 382 read_pmevcntr_29, 383 read_pmevcntr_30, 384 read_pmccntr 385 }; 386 387 if (counter < ARRAY_SIZE(read_f)) 388 return (read_f[counter])(); 389 390 return 0; 391 } 392 393 static u64 read_timestamp(void) { return read_sysreg(cntvct_el0); } 394 395 #else 396 static u64 read_perf_counter(unsigned int counter __maybe_unused) { return 0; } 397 static u64 read_timestamp(void) { return 0; } 398 #endif 399 400 int perf_mmap__read_self(struct perf_mmap *map, struct perf_counts_values *count) 401 { 402 struct perf_event_mmap_page *pc = map->base; 403 u32 seq, idx, time_mult = 0, time_shift = 0; 404 u64 cnt, cyc = 0, time_offset = 0, time_cycles = 0, time_mask = ~0ULL; 405 406 if (!pc || !pc->cap_user_rdpmc) 407 return -1; 408 409 do { 410 seq = READ_ONCE(pc->lock); 411 barrier(); 412 413 count->ena = READ_ONCE(pc->time_enabled); 414 count->run = READ_ONCE(pc->time_running); 415 416 if (pc->cap_user_time && count->ena != count->run) { 417 cyc = read_timestamp(); 418 time_mult = READ_ONCE(pc->time_mult); 419 time_shift = READ_ONCE(pc->time_shift); 420 time_offset = READ_ONCE(pc->time_offset); 421 422 if (pc->cap_user_time_short) { 423 time_cycles = READ_ONCE(pc->time_cycles); 424 time_mask = READ_ONCE(pc->time_mask); 425 } 426 } 427 428 idx = READ_ONCE(pc->index); 429 cnt = READ_ONCE(pc->offset); 430 if (pc->cap_user_rdpmc && idx) { 431 s64 evcnt = read_perf_counter(idx - 1); 432 u16 width = READ_ONCE(pc->pmc_width); 433 434 evcnt <<= 64 - width; 435 evcnt >>= 64 - width; 436 cnt += evcnt; 437 } else 438 return -1; 439 440 barrier(); 441 } while (READ_ONCE(pc->lock) != seq); 442 443 if (count->ena != count->run) { 444 u64 delta; 445 446 /* Adjust for cap_usr_time_short, a nop if not */ 447 cyc = time_cycles + ((cyc - time_cycles) & time_mask); 448 449 delta = time_offset + mul_u64_u32_shr(cyc, time_mult, time_shift); 450 451 count->ena += delta; 452 if (idx) 453 count->run += delta; 454 } 455 456 count->val = cnt; 457 458 return 0; 459 } 460