xref: /openbmc/linux/tools/lib/bpf/relo_core.c (revision e2ad626f)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2019 Facebook */
3 
4 #ifdef __KERNEL__
5 #include <linux/bpf.h>
6 #include <linux/btf.h>
7 #include <linux/string.h>
8 #include <linux/bpf_verifier.h>
9 #include "relo_core.h"
10 
11 static const char *btf_kind_str(const struct btf_type *t)
12 {
13 	return btf_type_str(t);
14 }
15 
16 static bool is_ldimm64_insn(struct bpf_insn *insn)
17 {
18 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
19 }
20 
21 static const struct btf_type *
22 skip_mods_and_typedefs(const struct btf *btf, u32 id, u32 *res_id)
23 {
24 	return btf_type_skip_modifiers(btf, id, res_id);
25 }
26 
27 static const char *btf__name_by_offset(const struct btf *btf, u32 offset)
28 {
29 	return btf_name_by_offset(btf, offset);
30 }
31 
32 static s64 btf__resolve_size(const struct btf *btf, u32 type_id)
33 {
34 	const struct btf_type *t;
35 	int size;
36 
37 	t = btf_type_by_id(btf, type_id);
38 	t = btf_resolve_size(btf, t, &size);
39 	if (IS_ERR(t))
40 		return PTR_ERR(t);
41 	return size;
42 }
43 
44 enum libbpf_print_level {
45 	LIBBPF_WARN,
46 	LIBBPF_INFO,
47 	LIBBPF_DEBUG,
48 };
49 
50 #undef pr_warn
51 #undef pr_info
52 #undef pr_debug
53 #define pr_warn(fmt, log, ...)	bpf_log((void *)log, fmt, "", ##__VA_ARGS__)
54 #define pr_info(fmt, log, ...)	bpf_log((void *)log, fmt, "", ##__VA_ARGS__)
55 #define pr_debug(fmt, log, ...)	bpf_log((void *)log, fmt, "", ##__VA_ARGS__)
56 #define libbpf_print(level, fmt, ...)	bpf_log((void *)prog_name, fmt, ##__VA_ARGS__)
57 #else
58 #include <stdio.h>
59 #include <string.h>
60 #include <errno.h>
61 #include <ctype.h>
62 #include <linux/err.h>
63 
64 #include "libbpf.h"
65 #include "bpf.h"
66 #include "btf.h"
67 #include "str_error.h"
68 #include "libbpf_internal.h"
69 #endif
70 
71 static bool is_flex_arr(const struct btf *btf,
72 			const struct bpf_core_accessor *acc,
73 			const struct btf_array *arr)
74 {
75 	const struct btf_type *t;
76 
77 	/* not a flexible array, if not inside a struct or has non-zero size */
78 	if (!acc->name || arr->nelems > 0)
79 		return false;
80 
81 	/* has to be the last member of enclosing struct */
82 	t = btf_type_by_id(btf, acc->type_id);
83 	return acc->idx == btf_vlen(t) - 1;
84 }
85 
86 static const char *core_relo_kind_str(enum bpf_core_relo_kind kind)
87 {
88 	switch (kind) {
89 	case BPF_CORE_FIELD_BYTE_OFFSET: return "byte_off";
90 	case BPF_CORE_FIELD_BYTE_SIZE: return "byte_sz";
91 	case BPF_CORE_FIELD_EXISTS: return "field_exists";
92 	case BPF_CORE_FIELD_SIGNED: return "signed";
93 	case BPF_CORE_FIELD_LSHIFT_U64: return "lshift_u64";
94 	case BPF_CORE_FIELD_RSHIFT_U64: return "rshift_u64";
95 	case BPF_CORE_TYPE_ID_LOCAL: return "local_type_id";
96 	case BPF_CORE_TYPE_ID_TARGET: return "target_type_id";
97 	case BPF_CORE_TYPE_EXISTS: return "type_exists";
98 	case BPF_CORE_TYPE_MATCHES: return "type_matches";
99 	case BPF_CORE_TYPE_SIZE: return "type_size";
100 	case BPF_CORE_ENUMVAL_EXISTS: return "enumval_exists";
101 	case BPF_CORE_ENUMVAL_VALUE: return "enumval_value";
102 	default: return "unknown";
103 	}
104 }
105 
106 static bool core_relo_is_field_based(enum bpf_core_relo_kind kind)
107 {
108 	switch (kind) {
109 	case BPF_CORE_FIELD_BYTE_OFFSET:
110 	case BPF_CORE_FIELD_BYTE_SIZE:
111 	case BPF_CORE_FIELD_EXISTS:
112 	case BPF_CORE_FIELD_SIGNED:
113 	case BPF_CORE_FIELD_LSHIFT_U64:
114 	case BPF_CORE_FIELD_RSHIFT_U64:
115 		return true;
116 	default:
117 		return false;
118 	}
119 }
120 
121 static bool core_relo_is_type_based(enum bpf_core_relo_kind kind)
122 {
123 	switch (kind) {
124 	case BPF_CORE_TYPE_ID_LOCAL:
125 	case BPF_CORE_TYPE_ID_TARGET:
126 	case BPF_CORE_TYPE_EXISTS:
127 	case BPF_CORE_TYPE_MATCHES:
128 	case BPF_CORE_TYPE_SIZE:
129 		return true;
130 	default:
131 		return false;
132 	}
133 }
134 
135 static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind)
136 {
137 	switch (kind) {
138 	case BPF_CORE_ENUMVAL_EXISTS:
139 	case BPF_CORE_ENUMVAL_VALUE:
140 		return true;
141 	default:
142 		return false;
143 	}
144 }
145 
146 int __bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
147 				const struct btf *targ_btf, __u32 targ_id, int level)
148 {
149 	const struct btf_type *local_type, *targ_type;
150 	int depth = 32; /* max recursion depth */
151 
152 	/* caller made sure that names match (ignoring flavor suffix) */
153 	local_type = btf_type_by_id(local_btf, local_id);
154 	targ_type = btf_type_by_id(targ_btf, targ_id);
155 	if (!btf_kind_core_compat(local_type, targ_type))
156 		return 0;
157 
158 recur:
159 	depth--;
160 	if (depth < 0)
161 		return -EINVAL;
162 
163 	local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
164 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
165 	if (!local_type || !targ_type)
166 		return -EINVAL;
167 
168 	if (!btf_kind_core_compat(local_type, targ_type))
169 		return 0;
170 
171 	switch (btf_kind(local_type)) {
172 	case BTF_KIND_UNKN:
173 	case BTF_KIND_STRUCT:
174 	case BTF_KIND_UNION:
175 	case BTF_KIND_ENUM:
176 	case BTF_KIND_FWD:
177 	case BTF_KIND_ENUM64:
178 		return 1;
179 	case BTF_KIND_INT:
180 		/* just reject deprecated bitfield-like integers; all other
181 		 * integers are by default compatible between each other
182 		 */
183 		return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0;
184 	case BTF_KIND_PTR:
185 		local_id = local_type->type;
186 		targ_id = targ_type->type;
187 		goto recur;
188 	case BTF_KIND_ARRAY:
189 		local_id = btf_array(local_type)->type;
190 		targ_id = btf_array(targ_type)->type;
191 		goto recur;
192 	case BTF_KIND_FUNC_PROTO: {
193 		struct btf_param *local_p = btf_params(local_type);
194 		struct btf_param *targ_p = btf_params(targ_type);
195 		__u16 local_vlen = btf_vlen(local_type);
196 		__u16 targ_vlen = btf_vlen(targ_type);
197 		int i, err;
198 
199 		if (local_vlen != targ_vlen)
200 			return 0;
201 
202 		for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
203 			if (level <= 0)
204 				return -EINVAL;
205 
206 			skip_mods_and_typedefs(local_btf, local_p->type, &local_id);
207 			skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id);
208 			err = __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
209 							  level - 1);
210 			if (err <= 0)
211 				return err;
212 		}
213 
214 		/* tail recurse for return type check */
215 		skip_mods_and_typedefs(local_btf, local_type->type, &local_id);
216 		skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id);
217 		goto recur;
218 	}
219 	default:
220 		pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n",
221 			btf_kind_str(local_type), local_id, targ_id);
222 		return 0;
223 	}
224 }
225 
226 /*
227  * Turn bpf_core_relo into a low- and high-level spec representation,
228  * validating correctness along the way, as well as calculating resulting
229  * field bit offset, specified by accessor string. Low-level spec captures
230  * every single level of nestedness, including traversing anonymous
231  * struct/union members. High-level one only captures semantically meaningful
232  * "turning points": named fields and array indicies.
233  * E.g., for this case:
234  *
235  *   struct sample {
236  *       int __unimportant;
237  *       struct {
238  *           int __1;
239  *           int __2;
240  *           int a[7];
241  *       };
242  *   };
243  *
244  *   struct sample *s = ...;
245  *
246  *   int x = &s->a[3]; // access string = '0:1:2:3'
247  *
248  * Low-level spec has 1:1 mapping with each element of access string (it's
249  * just a parsed access string representation): [0, 1, 2, 3].
250  *
251  * High-level spec will capture only 3 points:
252  *   - initial zero-index access by pointer (&s->... is the same as &s[0]...);
253  *   - field 'a' access (corresponds to '2' in low-level spec);
254  *   - array element #3 access (corresponds to '3' in low-level spec).
255  *
256  * Type-based relocations (TYPE_EXISTS/TYPE_MATCHES/TYPE_SIZE,
257  * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their
258  * spec and raw_spec are kept empty.
259  *
260  * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access
261  * string to specify enumerator's value index that need to be relocated.
262  */
263 int bpf_core_parse_spec(const char *prog_name, const struct btf *btf,
264 			const struct bpf_core_relo *relo,
265 			struct bpf_core_spec *spec)
266 {
267 	int access_idx, parsed_len, i;
268 	struct bpf_core_accessor *acc;
269 	const struct btf_type *t;
270 	const char *name, *spec_str;
271 	__u32 id, name_off;
272 	__s64 sz;
273 
274 	spec_str = btf__name_by_offset(btf, relo->access_str_off);
275 	if (str_is_empty(spec_str) || *spec_str == ':')
276 		return -EINVAL;
277 
278 	memset(spec, 0, sizeof(*spec));
279 	spec->btf = btf;
280 	spec->root_type_id = relo->type_id;
281 	spec->relo_kind = relo->kind;
282 
283 	/* type-based relocations don't have a field access string */
284 	if (core_relo_is_type_based(relo->kind)) {
285 		if (strcmp(spec_str, "0"))
286 			return -EINVAL;
287 		return 0;
288 	}
289 
290 	/* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */
291 	while (*spec_str) {
292 		if (*spec_str == ':')
293 			++spec_str;
294 		if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1)
295 			return -EINVAL;
296 		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
297 			return -E2BIG;
298 		spec_str += parsed_len;
299 		spec->raw_spec[spec->raw_len++] = access_idx;
300 	}
301 
302 	if (spec->raw_len == 0)
303 		return -EINVAL;
304 
305 	t = skip_mods_and_typedefs(btf, relo->type_id, &id);
306 	if (!t)
307 		return -EINVAL;
308 
309 	access_idx = spec->raw_spec[0];
310 	acc = &spec->spec[0];
311 	acc->type_id = id;
312 	acc->idx = access_idx;
313 	spec->len++;
314 
315 	if (core_relo_is_enumval_based(relo->kind)) {
316 		if (!btf_is_any_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t))
317 			return -EINVAL;
318 
319 		/* record enumerator name in a first accessor */
320 		name_off = btf_is_enum(t) ? btf_enum(t)[access_idx].name_off
321 					  : btf_enum64(t)[access_idx].name_off;
322 		acc->name = btf__name_by_offset(btf, name_off);
323 		return 0;
324 	}
325 
326 	if (!core_relo_is_field_based(relo->kind))
327 		return -EINVAL;
328 
329 	sz = btf__resolve_size(btf, id);
330 	if (sz < 0)
331 		return sz;
332 	spec->bit_offset = access_idx * sz * 8;
333 
334 	for (i = 1; i < spec->raw_len; i++) {
335 		t = skip_mods_and_typedefs(btf, id, &id);
336 		if (!t)
337 			return -EINVAL;
338 
339 		access_idx = spec->raw_spec[i];
340 		acc = &spec->spec[spec->len];
341 
342 		if (btf_is_composite(t)) {
343 			const struct btf_member *m;
344 			__u32 bit_offset;
345 
346 			if (access_idx >= btf_vlen(t))
347 				return -EINVAL;
348 
349 			bit_offset = btf_member_bit_offset(t, access_idx);
350 			spec->bit_offset += bit_offset;
351 
352 			m = btf_members(t) + access_idx;
353 			if (m->name_off) {
354 				name = btf__name_by_offset(btf, m->name_off);
355 				if (str_is_empty(name))
356 					return -EINVAL;
357 
358 				acc->type_id = id;
359 				acc->idx = access_idx;
360 				acc->name = name;
361 				spec->len++;
362 			}
363 
364 			id = m->type;
365 		} else if (btf_is_array(t)) {
366 			const struct btf_array *a = btf_array(t);
367 			bool flex;
368 
369 			t = skip_mods_and_typedefs(btf, a->type, &id);
370 			if (!t)
371 				return -EINVAL;
372 
373 			flex = is_flex_arr(btf, acc - 1, a);
374 			if (!flex && access_idx >= a->nelems)
375 				return -EINVAL;
376 
377 			spec->spec[spec->len].type_id = id;
378 			spec->spec[spec->len].idx = access_idx;
379 			spec->len++;
380 
381 			sz = btf__resolve_size(btf, id);
382 			if (sz < 0)
383 				return sz;
384 			spec->bit_offset += access_idx * sz * 8;
385 		} else {
386 			pr_warn("prog '%s': relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n",
387 				prog_name, relo->type_id, spec_str, i, id, btf_kind_str(t));
388 			return -EINVAL;
389 		}
390 	}
391 
392 	return 0;
393 }
394 
395 /* Check two types for compatibility for the purpose of field access
396  * relocation. const/volatile/restrict and typedefs are skipped to ensure we
397  * are relocating semantically compatible entities:
398  *   - any two STRUCTs/UNIONs are compatible and can be mixed;
399  *   - any two FWDs are compatible, if their names match (modulo flavor suffix);
400  *   - any two PTRs are always compatible;
401  *   - for ENUMs, names should be the same (ignoring flavor suffix) or at
402  *     least one of enums should be anonymous;
403  *   - for ENUMs, check sizes, names are ignored;
404  *   - for INT, size and signedness are ignored;
405  *   - any two FLOATs are always compatible;
406  *   - for ARRAY, dimensionality is ignored, element types are checked for
407  *     compatibility recursively;
408  *   - everything else shouldn't be ever a target of relocation.
409  * These rules are not set in stone and probably will be adjusted as we get
410  * more experience with using BPF CO-RE relocations.
411  */
412 static int bpf_core_fields_are_compat(const struct btf *local_btf,
413 				      __u32 local_id,
414 				      const struct btf *targ_btf,
415 				      __u32 targ_id)
416 {
417 	const struct btf_type *local_type, *targ_type;
418 
419 recur:
420 	local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
421 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
422 	if (!local_type || !targ_type)
423 		return -EINVAL;
424 
425 	if (btf_is_composite(local_type) && btf_is_composite(targ_type))
426 		return 1;
427 	if (!btf_kind_core_compat(local_type, targ_type))
428 		return 0;
429 
430 	switch (btf_kind(local_type)) {
431 	case BTF_KIND_PTR:
432 	case BTF_KIND_FLOAT:
433 		return 1;
434 	case BTF_KIND_FWD:
435 	case BTF_KIND_ENUM64:
436 	case BTF_KIND_ENUM: {
437 		const char *local_name, *targ_name;
438 		size_t local_len, targ_len;
439 
440 		local_name = btf__name_by_offset(local_btf,
441 						 local_type->name_off);
442 		targ_name = btf__name_by_offset(targ_btf, targ_type->name_off);
443 		local_len = bpf_core_essential_name_len(local_name);
444 		targ_len = bpf_core_essential_name_len(targ_name);
445 		/* one of them is anonymous or both w/ same flavor-less names */
446 		return local_len == 0 || targ_len == 0 ||
447 		       (local_len == targ_len &&
448 			strncmp(local_name, targ_name, local_len) == 0);
449 	}
450 	case BTF_KIND_INT:
451 		/* just reject deprecated bitfield-like integers; all other
452 		 * integers are by default compatible between each other
453 		 */
454 		return btf_int_offset(local_type) == 0 &&
455 		       btf_int_offset(targ_type) == 0;
456 	case BTF_KIND_ARRAY:
457 		local_id = btf_array(local_type)->type;
458 		targ_id = btf_array(targ_type)->type;
459 		goto recur;
460 	default:
461 		return 0;
462 	}
463 }
464 
465 /*
466  * Given single high-level named field accessor in local type, find
467  * corresponding high-level accessor for a target type. Along the way,
468  * maintain low-level spec for target as well. Also keep updating target
469  * bit offset.
470  *
471  * Searching is performed through recursive exhaustive enumeration of all
472  * fields of a struct/union. If there are any anonymous (embedded)
473  * structs/unions, they are recursively searched as well. If field with
474  * desired name is found, check compatibility between local and target types,
475  * before returning result.
476  *
477  * 1 is returned, if field is found.
478  * 0 is returned if no compatible field is found.
479  * <0 is returned on error.
480  */
481 static int bpf_core_match_member(const struct btf *local_btf,
482 				 const struct bpf_core_accessor *local_acc,
483 				 const struct btf *targ_btf,
484 				 __u32 targ_id,
485 				 struct bpf_core_spec *spec,
486 				 __u32 *next_targ_id)
487 {
488 	const struct btf_type *local_type, *targ_type;
489 	const struct btf_member *local_member, *m;
490 	const char *local_name, *targ_name;
491 	__u32 local_id;
492 	int i, n, found;
493 
494 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
495 	if (!targ_type)
496 		return -EINVAL;
497 	if (!btf_is_composite(targ_type))
498 		return 0;
499 
500 	local_id = local_acc->type_id;
501 	local_type = btf_type_by_id(local_btf, local_id);
502 	local_member = btf_members(local_type) + local_acc->idx;
503 	local_name = btf__name_by_offset(local_btf, local_member->name_off);
504 
505 	n = btf_vlen(targ_type);
506 	m = btf_members(targ_type);
507 	for (i = 0; i < n; i++, m++) {
508 		__u32 bit_offset;
509 
510 		bit_offset = btf_member_bit_offset(targ_type, i);
511 
512 		/* too deep struct/union/array nesting */
513 		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
514 			return -E2BIG;
515 
516 		/* speculate this member will be the good one */
517 		spec->bit_offset += bit_offset;
518 		spec->raw_spec[spec->raw_len++] = i;
519 
520 		targ_name = btf__name_by_offset(targ_btf, m->name_off);
521 		if (str_is_empty(targ_name)) {
522 			/* embedded struct/union, we need to go deeper */
523 			found = bpf_core_match_member(local_btf, local_acc,
524 						      targ_btf, m->type,
525 						      spec, next_targ_id);
526 			if (found) /* either found or error */
527 				return found;
528 		} else if (strcmp(local_name, targ_name) == 0) {
529 			/* matching named field */
530 			struct bpf_core_accessor *targ_acc;
531 
532 			targ_acc = &spec->spec[spec->len++];
533 			targ_acc->type_id = targ_id;
534 			targ_acc->idx = i;
535 			targ_acc->name = targ_name;
536 
537 			*next_targ_id = m->type;
538 			found = bpf_core_fields_are_compat(local_btf,
539 							   local_member->type,
540 							   targ_btf, m->type);
541 			if (!found)
542 				spec->len--; /* pop accessor */
543 			return found;
544 		}
545 		/* member turned out not to be what we looked for */
546 		spec->bit_offset -= bit_offset;
547 		spec->raw_len--;
548 	}
549 
550 	return 0;
551 }
552 
553 /*
554  * Try to match local spec to a target type and, if successful, produce full
555  * target spec (high-level, low-level + bit offset).
556  */
557 static int bpf_core_spec_match(struct bpf_core_spec *local_spec,
558 			       const struct btf *targ_btf, __u32 targ_id,
559 			       struct bpf_core_spec *targ_spec)
560 {
561 	const struct btf_type *targ_type;
562 	const struct bpf_core_accessor *local_acc;
563 	struct bpf_core_accessor *targ_acc;
564 	int i, sz, matched;
565 	__u32 name_off;
566 
567 	memset(targ_spec, 0, sizeof(*targ_spec));
568 	targ_spec->btf = targ_btf;
569 	targ_spec->root_type_id = targ_id;
570 	targ_spec->relo_kind = local_spec->relo_kind;
571 
572 	if (core_relo_is_type_based(local_spec->relo_kind)) {
573 		if (local_spec->relo_kind == BPF_CORE_TYPE_MATCHES)
574 			return bpf_core_types_match(local_spec->btf,
575 						    local_spec->root_type_id,
576 						    targ_btf, targ_id);
577 		else
578 			return bpf_core_types_are_compat(local_spec->btf,
579 							 local_spec->root_type_id,
580 							 targ_btf, targ_id);
581 	}
582 
583 	local_acc = &local_spec->spec[0];
584 	targ_acc = &targ_spec->spec[0];
585 
586 	if (core_relo_is_enumval_based(local_spec->relo_kind)) {
587 		size_t local_essent_len, targ_essent_len;
588 		const char *targ_name;
589 
590 		/* has to resolve to an enum */
591 		targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id);
592 		if (!btf_is_any_enum(targ_type))
593 			return 0;
594 
595 		local_essent_len = bpf_core_essential_name_len(local_acc->name);
596 
597 		for (i = 0; i < btf_vlen(targ_type); i++) {
598 			if (btf_is_enum(targ_type))
599 				name_off = btf_enum(targ_type)[i].name_off;
600 			else
601 				name_off = btf_enum64(targ_type)[i].name_off;
602 
603 			targ_name = btf__name_by_offset(targ_spec->btf, name_off);
604 			targ_essent_len = bpf_core_essential_name_len(targ_name);
605 			if (targ_essent_len != local_essent_len)
606 				continue;
607 			if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) {
608 				targ_acc->type_id = targ_id;
609 				targ_acc->idx = i;
610 				targ_acc->name = targ_name;
611 				targ_spec->len++;
612 				targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
613 				targ_spec->raw_len++;
614 				return 1;
615 			}
616 		}
617 		return 0;
618 	}
619 
620 	if (!core_relo_is_field_based(local_spec->relo_kind))
621 		return -EINVAL;
622 
623 	for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) {
624 		targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id,
625 						   &targ_id);
626 		if (!targ_type)
627 			return -EINVAL;
628 
629 		if (local_acc->name) {
630 			matched = bpf_core_match_member(local_spec->btf,
631 							local_acc,
632 							targ_btf, targ_id,
633 							targ_spec, &targ_id);
634 			if (matched <= 0)
635 				return matched;
636 		} else {
637 			/* for i=0, targ_id is already treated as array element
638 			 * type (because it's the original struct), for others
639 			 * we should find array element type first
640 			 */
641 			if (i > 0) {
642 				const struct btf_array *a;
643 				bool flex;
644 
645 				if (!btf_is_array(targ_type))
646 					return 0;
647 
648 				a = btf_array(targ_type);
649 				flex = is_flex_arr(targ_btf, targ_acc - 1, a);
650 				if (!flex && local_acc->idx >= a->nelems)
651 					return 0;
652 				if (!skip_mods_and_typedefs(targ_btf, a->type,
653 							    &targ_id))
654 					return -EINVAL;
655 			}
656 
657 			/* too deep struct/union/array nesting */
658 			if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
659 				return -E2BIG;
660 
661 			targ_acc->type_id = targ_id;
662 			targ_acc->idx = local_acc->idx;
663 			targ_acc->name = NULL;
664 			targ_spec->len++;
665 			targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
666 			targ_spec->raw_len++;
667 
668 			sz = btf__resolve_size(targ_btf, targ_id);
669 			if (sz < 0)
670 				return sz;
671 			targ_spec->bit_offset += local_acc->idx * sz * 8;
672 		}
673 	}
674 
675 	return 1;
676 }
677 
678 static int bpf_core_calc_field_relo(const char *prog_name,
679 				    const struct bpf_core_relo *relo,
680 				    const struct bpf_core_spec *spec,
681 				    __u64 *val, __u32 *field_sz, __u32 *type_id,
682 				    bool *validate)
683 {
684 	const struct bpf_core_accessor *acc;
685 	const struct btf_type *t;
686 	__u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id;
687 	const struct btf_member *m;
688 	const struct btf_type *mt;
689 	bool bitfield;
690 	__s64 sz;
691 
692 	*field_sz = 0;
693 
694 	if (relo->kind == BPF_CORE_FIELD_EXISTS) {
695 		*val = spec ? 1 : 0;
696 		return 0;
697 	}
698 
699 	if (!spec)
700 		return -EUCLEAN; /* request instruction poisoning */
701 
702 	acc = &spec->spec[spec->len - 1];
703 	t = btf_type_by_id(spec->btf, acc->type_id);
704 
705 	/* a[n] accessor needs special handling */
706 	if (!acc->name) {
707 		if (relo->kind == BPF_CORE_FIELD_BYTE_OFFSET) {
708 			*val = spec->bit_offset / 8;
709 			/* remember field size for load/store mem size */
710 			sz = btf__resolve_size(spec->btf, acc->type_id);
711 			if (sz < 0)
712 				return -EINVAL;
713 			*field_sz = sz;
714 			*type_id = acc->type_id;
715 		} else if (relo->kind == BPF_CORE_FIELD_BYTE_SIZE) {
716 			sz = btf__resolve_size(spec->btf, acc->type_id);
717 			if (sz < 0)
718 				return -EINVAL;
719 			*val = sz;
720 		} else {
721 			pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n",
722 				prog_name, relo->kind, relo->insn_off / 8);
723 			return -EINVAL;
724 		}
725 		if (validate)
726 			*validate = true;
727 		return 0;
728 	}
729 
730 	m = btf_members(t) + acc->idx;
731 	mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id);
732 	bit_off = spec->bit_offset;
733 	bit_sz = btf_member_bitfield_size(t, acc->idx);
734 
735 	bitfield = bit_sz > 0;
736 	if (bitfield) {
737 		byte_sz = mt->size;
738 		byte_off = bit_off / 8 / byte_sz * byte_sz;
739 		/* figure out smallest int size necessary for bitfield load */
740 		while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) {
741 			if (byte_sz >= 8) {
742 				/* bitfield can't be read with 64-bit read */
743 				pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n",
744 					prog_name, relo->kind, relo->insn_off / 8);
745 				return -E2BIG;
746 			}
747 			byte_sz *= 2;
748 			byte_off = bit_off / 8 / byte_sz * byte_sz;
749 		}
750 	} else {
751 		sz = btf__resolve_size(spec->btf, field_type_id);
752 		if (sz < 0)
753 			return -EINVAL;
754 		byte_sz = sz;
755 		byte_off = spec->bit_offset / 8;
756 		bit_sz = byte_sz * 8;
757 	}
758 
759 	/* for bitfields, all the relocatable aspects are ambiguous and we
760 	 * might disagree with compiler, so turn off validation of expected
761 	 * value, except for signedness
762 	 */
763 	if (validate)
764 		*validate = !bitfield;
765 
766 	switch (relo->kind) {
767 	case BPF_CORE_FIELD_BYTE_OFFSET:
768 		*val = byte_off;
769 		if (!bitfield) {
770 			*field_sz = byte_sz;
771 			*type_id = field_type_id;
772 		}
773 		break;
774 	case BPF_CORE_FIELD_BYTE_SIZE:
775 		*val = byte_sz;
776 		break;
777 	case BPF_CORE_FIELD_SIGNED:
778 		*val = (btf_is_any_enum(mt) && BTF_INFO_KFLAG(mt->info)) ||
779 		       (btf_is_int(mt) && (btf_int_encoding(mt) & BTF_INT_SIGNED));
780 		if (validate)
781 			*validate = true; /* signedness is never ambiguous */
782 		break;
783 	case BPF_CORE_FIELD_LSHIFT_U64:
784 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
785 		*val = 64 - (bit_off + bit_sz - byte_off  * 8);
786 #else
787 		*val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8);
788 #endif
789 		break;
790 	case BPF_CORE_FIELD_RSHIFT_U64:
791 		*val = 64 - bit_sz;
792 		if (validate)
793 			*validate = true; /* right shift is never ambiguous */
794 		break;
795 	case BPF_CORE_FIELD_EXISTS:
796 	default:
797 		return -EOPNOTSUPP;
798 	}
799 
800 	return 0;
801 }
802 
803 static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo,
804 				   const struct bpf_core_spec *spec,
805 				   __u64 *val, bool *validate)
806 {
807 	__s64 sz;
808 
809 	/* by default, always check expected value in bpf_insn */
810 	if (validate)
811 		*validate = true;
812 
813 	/* type-based relos return zero when target type is not found */
814 	if (!spec) {
815 		*val = 0;
816 		return 0;
817 	}
818 
819 	switch (relo->kind) {
820 	case BPF_CORE_TYPE_ID_TARGET:
821 		*val = spec->root_type_id;
822 		/* type ID, embedded in bpf_insn, might change during linking,
823 		 * so enforcing it is pointless
824 		 */
825 		if (validate)
826 			*validate = false;
827 		break;
828 	case BPF_CORE_TYPE_EXISTS:
829 	case BPF_CORE_TYPE_MATCHES:
830 		*val = 1;
831 		break;
832 	case BPF_CORE_TYPE_SIZE:
833 		sz = btf__resolve_size(spec->btf, spec->root_type_id);
834 		if (sz < 0)
835 			return -EINVAL;
836 		*val = sz;
837 		break;
838 	case BPF_CORE_TYPE_ID_LOCAL:
839 	/* BPF_CORE_TYPE_ID_LOCAL is handled specially and shouldn't get here */
840 	default:
841 		return -EOPNOTSUPP;
842 	}
843 
844 	return 0;
845 }
846 
847 static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo,
848 				      const struct bpf_core_spec *spec,
849 				      __u64 *val)
850 {
851 	const struct btf_type *t;
852 
853 	switch (relo->kind) {
854 	case BPF_CORE_ENUMVAL_EXISTS:
855 		*val = spec ? 1 : 0;
856 		break;
857 	case BPF_CORE_ENUMVAL_VALUE:
858 		if (!spec)
859 			return -EUCLEAN; /* request instruction poisoning */
860 		t = btf_type_by_id(spec->btf, spec->spec[0].type_id);
861 		if (btf_is_enum(t))
862 			*val = btf_enum(t)[spec->spec[0].idx].val;
863 		else
864 			*val = btf_enum64_value(btf_enum64(t) + spec->spec[0].idx);
865 		break;
866 	default:
867 		return -EOPNOTSUPP;
868 	}
869 
870 	return 0;
871 }
872 
873 /* Calculate original and target relocation values, given local and target
874  * specs and relocation kind. These values are calculated for each candidate.
875  * If there are multiple candidates, resulting values should all be consistent
876  * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity.
877  * If instruction has to be poisoned, *poison will be set to true.
878  */
879 static int bpf_core_calc_relo(const char *prog_name,
880 			      const struct bpf_core_relo *relo,
881 			      int relo_idx,
882 			      const struct bpf_core_spec *local_spec,
883 			      const struct bpf_core_spec *targ_spec,
884 			      struct bpf_core_relo_res *res)
885 {
886 	int err = -EOPNOTSUPP;
887 
888 	res->orig_val = 0;
889 	res->new_val = 0;
890 	res->poison = false;
891 	res->validate = true;
892 	res->fail_memsz_adjust = false;
893 	res->orig_sz = res->new_sz = 0;
894 	res->orig_type_id = res->new_type_id = 0;
895 
896 	if (core_relo_is_field_based(relo->kind)) {
897 		err = bpf_core_calc_field_relo(prog_name, relo, local_spec,
898 					       &res->orig_val, &res->orig_sz,
899 					       &res->orig_type_id, &res->validate);
900 		err = err ?: bpf_core_calc_field_relo(prog_name, relo, targ_spec,
901 						      &res->new_val, &res->new_sz,
902 						      &res->new_type_id, NULL);
903 		if (err)
904 			goto done;
905 		/* Validate if it's safe to adjust load/store memory size.
906 		 * Adjustments are performed only if original and new memory
907 		 * sizes differ.
908 		 */
909 		res->fail_memsz_adjust = false;
910 		if (res->orig_sz != res->new_sz) {
911 			const struct btf_type *orig_t, *new_t;
912 
913 			orig_t = btf_type_by_id(local_spec->btf, res->orig_type_id);
914 			new_t = btf_type_by_id(targ_spec->btf, res->new_type_id);
915 
916 			/* There are two use cases in which it's safe to
917 			 * adjust load/store's mem size:
918 			 *   - reading a 32-bit kernel pointer, while on BPF
919 			 *   size pointers are always 64-bit; in this case
920 			 *   it's safe to "downsize" instruction size due to
921 			 *   pointer being treated as unsigned integer with
922 			 *   zero-extended upper 32-bits;
923 			 *   - reading unsigned integers, again due to
924 			 *   zero-extension is preserving the value correctly.
925 			 *
926 			 * In all other cases it's incorrect to attempt to
927 			 * load/store field because read value will be
928 			 * incorrect, so we poison relocated instruction.
929 			 */
930 			if (btf_is_ptr(orig_t) && btf_is_ptr(new_t))
931 				goto done;
932 			if (btf_is_int(orig_t) && btf_is_int(new_t) &&
933 			    btf_int_encoding(orig_t) != BTF_INT_SIGNED &&
934 			    btf_int_encoding(new_t) != BTF_INT_SIGNED)
935 				goto done;
936 
937 			/* mark as invalid mem size adjustment, but this will
938 			 * only be checked for LDX/STX/ST insns
939 			 */
940 			res->fail_memsz_adjust = true;
941 		}
942 	} else if (core_relo_is_type_based(relo->kind)) {
943 		err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val, &res->validate);
944 		err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val, NULL);
945 	} else if (core_relo_is_enumval_based(relo->kind)) {
946 		err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val);
947 		err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val);
948 	}
949 
950 done:
951 	if (err == -EUCLEAN) {
952 		/* EUCLEAN is used to signal instruction poisoning request */
953 		res->poison = true;
954 		err = 0;
955 	} else if (err == -EOPNOTSUPP) {
956 		/* EOPNOTSUPP means unknown/unsupported relocation */
957 		pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n",
958 			prog_name, relo_idx, core_relo_kind_str(relo->kind),
959 			relo->kind, relo->insn_off / 8);
960 	}
961 
962 	return err;
963 }
964 
965 /*
966  * Turn instruction for which CO_RE relocation failed into invalid one with
967  * distinct signature.
968  */
969 static void bpf_core_poison_insn(const char *prog_name, int relo_idx,
970 				 int insn_idx, struct bpf_insn *insn)
971 {
972 	pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n",
973 		 prog_name, relo_idx, insn_idx);
974 	insn->code = BPF_JMP | BPF_CALL;
975 	insn->dst_reg = 0;
976 	insn->src_reg = 0;
977 	insn->off = 0;
978 	/* if this instruction is reachable (not a dead code),
979 	 * verifier will complain with the following message:
980 	 * invalid func unknown#195896080
981 	 */
982 	insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */
983 }
984 
985 static int insn_bpf_size_to_bytes(struct bpf_insn *insn)
986 {
987 	switch (BPF_SIZE(insn->code)) {
988 	case BPF_DW: return 8;
989 	case BPF_W: return 4;
990 	case BPF_H: return 2;
991 	case BPF_B: return 1;
992 	default: return -1;
993 	}
994 }
995 
996 static int insn_bytes_to_bpf_size(__u32 sz)
997 {
998 	switch (sz) {
999 	case 8: return BPF_DW;
1000 	case 4: return BPF_W;
1001 	case 2: return BPF_H;
1002 	case 1: return BPF_B;
1003 	default: return -1;
1004 	}
1005 }
1006 
1007 /*
1008  * Patch relocatable BPF instruction.
1009  *
1010  * Patched value is determined by relocation kind and target specification.
1011  * For existence relocations target spec will be NULL if field/type is not found.
1012  * Expected insn->imm value is determined using relocation kind and local
1013  * spec, and is checked before patching instruction. If actual insn->imm value
1014  * is wrong, bail out with error.
1015  *
1016  * Currently supported classes of BPF instruction are:
1017  * 1. rX = <imm> (assignment with immediate operand);
1018  * 2. rX += <imm> (arithmetic operations with immediate operand);
1019  * 3. rX = <imm64> (load with 64-bit immediate value);
1020  * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64};
1021  * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64};
1022  * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}.
1023  */
1024 int bpf_core_patch_insn(const char *prog_name, struct bpf_insn *insn,
1025 			int insn_idx, const struct bpf_core_relo *relo,
1026 			int relo_idx, const struct bpf_core_relo_res *res)
1027 {
1028 	__u64 orig_val, new_val;
1029 	__u8 class;
1030 
1031 	class = BPF_CLASS(insn->code);
1032 
1033 	if (res->poison) {
1034 poison:
1035 		/* poison second part of ldimm64 to avoid confusing error from
1036 		 * verifier about "unknown opcode 00"
1037 		 */
1038 		if (is_ldimm64_insn(insn))
1039 			bpf_core_poison_insn(prog_name, relo_idx, insn_idx + 1, insn + 1);
1040 		bpf_core_poison_insn(prog_name, relo_idx, insn_idx, insn);
1041 		return 0;
1042 	}
1043 
1044 	orig_val = res->orig_val;
1045 	new_val = res->new_val;
1046 
1047 	switch (class) {
1048 	case BPF_ALU:
1049 	case BPF_ALU64:
1050 		if (BPF_SRC(insn->code) != BPF_K)
1051 			return -EINVAL;
1052 		if (res->validate && insn->imm != orig_val) {
1053 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %llu -> %llu\n",
1054 				prog_name, relo_idx,
1055 				insn_idx, insn->imm, (unsigned long long)orig_val,
1056 				(unsigned long long)new_val);
1057 			return -EINVAL;
1058 		}
1059 		orig_val = insn->imm;
1060 		insn->imm = new_val;
1061 		pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %llu -> %llu\n",
1062 			 prog_name, relo_idx, insn_idx,
1063 			 (unsigned long long)orig_val, (unsigned long long)new_val);
1064 		break;
1065 	case BPF_LDX:
1066 	case BPF_ST:
1067 	case BPF_STX:
1068 		if (res->validate && insn->off != orig_val) {
1069 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %llu -> %llu\n",
1070 				prog_name, relo_idx, insn_idx, insn->off, (unsigned long long)orig_val,
1071 				(unsigned long long)new_val);
1072 			return -EINVAL;
1073 		}
1074 		if (new_val > SHRT_MAX) {
1075 			pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %llu\n",
1076 				prog_name, relo_idx, insn_idx, (unsigned long long)new_val);
1077 			return -ERANGE;
1078 		}
1079 		if (res->fail_memsz_adjust) {
1080 			pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. "
1081 				"Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n",
1082 				prog_name, relo_idx, insn_idx);
1083 			goto poison;
1084 		}
1085 
1086 		orig_val = insn->off;
1087 		insn->off = new_val;
1088 		pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %llu -> %llu\n",
1089 			 prog_name, relo_idx, insn_idx, (unsigned long long)orig_val,
1090 			 (unsigned long long)new_val);
1091 
1092 		if (res->new_sz != res->orig_sz) {
1093 			int insn_bytes_sz, insn_bpf_sz;
1094 
1095 			insn_bytes_sz = insn_bpf_size_to_bytes(insn);
1096 			if (insn_bytes_sz != res->orig_sz) {
1097 				pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n",
1098 					prog_name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz);
1099 				return -EINVAL;
1100 			}
1101 
1102 			insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz);
1103 			if (insn_bpf_sz < 0) {
1104 				pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n",
1105 					prog_name, relo_idx, insn_idx, res->new_sz);
1106 				return -EINVAL;
1107 			}
1108 
1109 			insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code);
1110 			pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n",
1111 				 prog_name, relo_idx, insn_idx, res->orig_sz, res->new_sz);
1112 		}
1113 		break;
1114 	case BPF_LD: {
1115 		__u64 imm;
1116 
1117 		if (!is_ldimm64_insn(insn) ||
1118 		    insn[0].src_reg != 0 || insn[0].off != 0 ||
1119 		    insn[1].code != 0 || insn[1].dst_reg != 0 ||
1120 		    insn[1].src_reg != 0 || insn[1].off != 0) {
1121 			pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n",
1122 				prog_name, relo_idx, insn_idx);
1123 			return -EINVAL;
1124 		}
1125 
1126 		imm = (__u32)insn[0].imm | ((__u64)insn[1].imm << 32);
1127 		if (res->validate && imm != orig_val) {
1128 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %llu -> %llu\n",
1129 				prog_name, relo_idx,
1130 				insn_idx, (unsigned long long)imm,
1131 				(unsigned long long)orig_val, (unsigned long long)new_val);
1132 			return -EINVAL;
1133 		}
1134 
1135 		insn[0].imm = new_val;
1136 		insn[1].imm = new_val >> 32;
1137 		pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %llu\n",
1138 			 prog_name, relo_idx, insn_idx,
1139 			 (unsigned long long)imm, (unsigned long long)new_val);
1140 		break;
1141 	}
1142 	default:
1143 		pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n",
1144 			prog_name, relo_idx, insn_idx, insn->code,
1145 			insn->src_reg, insn->dst_reg, insn->off, insn->imm);
1146 		return -EINVAL;
1147 	}
1148 
1149 	return 0;
1150 }
1151 
1152 /* Output spec definition in the format:
1153  * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>,
1154  * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b
1155  */
1156 int bpf_core_format_spec(char *buf, size_t buf_sz, const struct bpf_core_spec *spec)
1157 {
1158 	const struct btf_type *t;
1159 	const char *s;
1160 	__u32 type_id;
1161 	int i, len = 0;
1162 
1163 #define append_buf(fmt, args...)				\
1164 	({							\
1165 		int r;						\
1166 		r = snprintf(buf, buf_sz, fmt, ##args);		\
1167 		len += r;					\
1168 		if (r >= buf_sz)				\
1169 			r = buf_sz;				\
1170 		buf += r;					\
1171 		buf_sz -= r;					\
1172 	})
1173 
1174 	type_id = spec->root_type_id;
1175 	t = btf_type_by_id(spec->btf, type_id);
1176 	s = btf__name_by_offset(spec->btf, t->name_off);
1177 
1178 	append_buf("<%s> [%u] %s %s",
1179 		   core_relo_kind_str(spec->relo_kind),
1180 		   type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s);
1181 
1182 	if (core_relo_is_type_based(spec->relo_kind))
1183 		return len;
1184 
1185 	if (core_relo_is_enumval_based(spec->relo_kind)) {
1186 		t = skip_mods_and_typedefs(spec->btf, type_id, NULL);
1187 		if (btf_is_enum(t)) {
1188 			const struct btf_enum *e;
1189 			const char *fmt_str;
1190 
1191 			e = btf_enum(t) + spec->raw_spec[0];
1192 			s = btf__name_by_offset(spec->btf, e->name_off);
1193 			fmt_str = BTF_INFO_KFLAG(t->info) ? "::%s = %d" : "::%s = %u";
1194 			append_buf(fmt_str, s, e->val);
1195 		} else {
1196 			const struct btf_enum64 *e;
1197 			const char *fmt_str;
1198 
1199 			e = btf_enum64(t) + spec->raw_spec[0];
1200 			s = btf__name_by_offset(spec->btf, e->name_off);
1201 			fmt_str = BTF_INFO_KFLAG(t->info) ? "::%s = %lld" : "::%s = %llu";
1202 			append_buf(fmt_str, s, (unsigned long long)btf_enum64_value(e));
1203 		}
1204 		return len;
1205 	}
1206 
1207 	if (core_relo_is_field_based(spec->relo_kind)) {
1208 		for (i = 0; i < spec->len; i++) {
1209 			if (spec->spec[i].name)
1210 				append_buf(".%s", spec->spec[i].name);
1211 			else if (i > 0 || spec->spec[i].idx > 0)
1212 				append_buf("[%u]", spec->spec[i].idx);
1213 		}
1214 
1215 		append_buf(" (");
1216 		for (i = 0; i < spec->raw_len; i++)
1217 			append_buf("%s%d", i == 0 ? "" : ":", spec->raw_spec[i]);
1218 
1219 		if (spec->bit_offset % 8)
1220 			append_buf(" @ offset %u.%u)", spec->bit_offset / 8, spec->bit_offset % 8);
1221 		else
1222 			append_buf(" @ offset %u)", spec->bit_offset / 8);
1223 		return len;
1224 	}
1225 
1226 	return len;
1227 #undef append_buf
1228 }
1229 
1230 /*
1231  * Calculate CO-RE relocation target result.
1232  *
1233  * The outline and important points of the algorithm:
1234  * 1. For given local type, find corresponding candidate target types.
1235  *    Candidate type is a type with the same "essential" name, ignoring
1236  *    everything after last triple underscore (___). E.g., `sample`,
1237  *    `sample___flavor_one`, `sample___flavor_another_one`, are all candidates
1238  *    for each other. Names with triple underscore are referred to as
1239  *    "flavors" and are useful, among other things, to allow to
1240  *    specify/support incompatible variations of the same kernel struct, which
1241  *    might differ between different kernel versions and/or build
1242  *    configurations.
1243  *
1244  *    N.B. Struct "flavors" could be generated by bpftool's BTF-to-C
1245  *    converter, when deduplicated BTF of a kernel still contains more than
1246  *    one different types with the same name. In that case, ___2, ___3, etc
1247  *    are appended starting from second name conflict. But start flavors are
1248  *    also useful to be defined "locally", in BPF program, to extract same
1249  *    data from incompatible changes between different kernel
1250  *    versions/configurations. For instance, to handle field renames between
1251  *    kernel versions, one can use two flavors of the struct name with the
1252  *    same common name and use conditional relocations to extract that field,
1253  *    depending on target kernel version.
1254  * 2. For each candidate type, try to match local specification to this
1255  *    candidate target type. Matching involves finding corresponding
1256  *    high-level spec accessors, meaning that all named fields should match,
1257  *    as well as all array accesses should be within the actual bounds. Also,
1258  *    types should be compatible (see bpf_core_fields_are_compat for details).
1259  * 3. It is supported and expected that there might be multiple flavors
1260  *    matching the spec. As long as all the specs resolve to the same set of
1261  *    offsets across all candidates, there is no error. If there is any
1262  *    ambiguity, CO-RE relocation will fail. This is necessary to accommodate
1263  *    imperfection of BTF deduplication, which can cause slight duplication of
1264  *    the same BTF type, if some directly or indirectly referenced (by
1265  *    pointer) type gets resolved to different actual types in different
1266  *    object files. If such a situation occurs, deduplicated BTF will end up
1267  *    with two (or more) structurally identical types, which differ only in
1268  *    types they refer to through pointer. This should be OK in most cases and
1269  *    is not an error.
1270  * 4. Candidate types search is performed by linearly scanning through all
1271  *    types in target BTF. It is anticipated that this is overall more
1272  *    efficient memory-wise and not significantly worse (if not better)
1273  *    CPU-wise compared to prebuilding a map from all local type names to
1274  *    a list of candidate type names. It's also sped up by caching resolved
1275  *    list of matching candidates per each local "root" type ID, that has at
1276  *    least one bpf_core_relo associated with it. This list is shared
1277  *    between multiple relocations for the same type ID and is updated as some
1278  *    of the candidates are pruned due to structural incompatibility.
1279  */
1280 int bpf_core_calc_relo_insn(const char *prog_name,
1281 			    const struct bpf_core_relo *relo,
1282 			    int relo_idx,
1283 			    const struct btf *local_btf,
1284 			    struct bpf_core_cand_list *cands,
1285 			    struct bpf_core_spec *specs_scratch,
1286 			    struct bpf_core_relo_res *targ_res)
1287 {
1288 	struct bpf_core_spec *local_spec = &specs_scratch[0];
1289 	struct bpf_core_spec *cand_spec = &specs_scratch[1];
1290 	struct bpf_core_spec *targ_spec = &specs_scratch[2];
1291 	struct bpf_core_relo_res cand_res;
1292 	const struct btf_type *local_type;
1293 	const char *local_name;
1294 	__u32 local_id;
1295 	char spec_buf[256];
1296 	int i, j, err;
1297 
1298 	local_id = relo->type_id;
1299 	local_type = btf_type_by_id(local_btf, local_id);
1300 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
1301 	if (!local_name)
1302 		return -EINVAL;
1303 
1304 	err = bpf_core_parse_spec(prog_name, local_btf, relo, local_spec);
1305 	if (err) {
1306 		const char *spec_str;
1307 
1308 		spec_str = btf__name_by_offset(local_btf, relo->access_str_off);
1309 		pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n",
1310 			prog_name, relo_idx, local_id, btf_kind_str(local_type),
1311 			str_is_empty(local_name) ? "<anon>" : local_name,
1312 			spec_str ?: "<?>", err);
1313 		return -EINVAL;
1314 	}
1315 
1316 	bpf_core_format_spec(spec_buf, sizeof(spec_buf), local_spec);
1317 	pr_debug("prog '%s': relo #%d: %s\n", prog_name, relo_idx, spec_buf);
1318 
1319 	/* TYPE_ID_LOCAL relo is special and doesn't need candidate search */
1320 	if (relo->kind == BPF_CORE_TYPE_ID_LOCAL) {
1321 		/* bpf_insn's imm value could get out of sync during linking */
1322 		memset(targ_res, 0, sizeof(*targ_res));
1323 		targ_res->validate = false;
1324 		targ_res->poison = false;
1325 		targ_res->orig_val = local_spec->root_type_id;
1326 		targ_res->new_val = local_spec->root_type_id;
1327 		return 0;
1328 	}
1329 
1330 	/* libbpf doesn't support candidate search for anonymous types */
1331 	if (str_is_empty(local_name)) {
1332 		pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n",
1333 			prog_name, relo_idx, core_relo_kind_str(relo->kind), relo->kind);
1334 		return -EOPNOTSUPP;
1335 	}
1336 
1337 	for (i = 0, j = 0; i < cands->len; i++) {
1338 		err = bpf_core_spec_match(local_spec, cands->cands[i].btf,
1339 					  cands->cands[i].id, cand_spec);
1340 		if (err < 0) {
1341 			bpf_core_format_spec(spec_buf, sizeof(spec_buf), cand_spec);
1342 			pr_warn("prog '%s': relo #%d: error matching candidate #%d %s: %d\n ",
1343 				prog_name, relo_idx, i, spec_buf, err);
1344 			return err;
1345 		}
1346 
1347 		bpf_core_format_spec(spec_buf, sizeof(spec_buf), cand_spec);
1348 		pr_debug("prog '%s': relo #%d: %s candidate #%d %s\n", prog_name,
1349 			 relo_idx, err == 0 ? "non-matching" : "matching", i, spec_buf);
1350 
1351 		if (err == 0)
1352 			continue;
1353 
1354 		err = bpf_core_calc_relo(prog_name, relo, relo_idx, local_spec, cand_spec, &cand_res);
1355 		if (err)
1356 			return err;
1357 
1358 		if (j == 0) {
1359 			*targ_res = cand_res;
1360 			*targ_spec = *cand_spec;
1361 		} else if (cand_spec->bit_offset != targ_spec->bit_offset) {
1362 			/* if there are many field relo candidates, they
1363 			 * should all resolve to the same bit offset
1364 			 */
1365 			pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n",
1366 				prog_name, relo_idx, cand_spec->bit_offset,
1367 				targ_spec->bit_offset);
1368 			return -EINVAL;
1369 		} else if (cand_res.poison != targ_res->poison ||
1370 			   cand_res.new_val != targ_res->new_val) {
1371 			/* all candidates should result in the same relocation
1372 			 * decision and value, otherwise it's dangerous to
1373 			 * proceed due to ambiguity
1374 			 */
1375 			pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %llu != %s %llu\n",
1376 				prog_name, relo_idx,
1377 				cand_res.poison ? "failure" : "success",
1378 				(unsigned long long)cand_res.new_val,
1379 				targ_res->poison ? "failure" : "success",
1380 				(unsigned long long)targ_res->new_val);
1381 			return -EINVAL;
1382 		}
1383 
1384 		cands->cands[j++] = cands->cands[i];
1385 	}
1386 
1387 	/*
1388 	 * For BPF_CORE_FIELD_EXISTS relo or when used BPF program has field
1389 	 * existence checks or kernel version/config checks, it's expected
1390 	 * that we might not find any candidates. In this case, if field
1391 	 * wasn't found in any candidate, the list of candidates shouldn't
1392 	 * change at all, we'll just handle relocating appropriately,
1393 	 * depending on relo's kind.
1394 	 */
1395 	if (j > 0)
1396 		cands->len = j;
1397 
1398 	/*
1399 	 * If no candidates were found, it might be both a programmer error,
1400 	 * as well as expected case, depending whether instruction w/
1401 	 * relocation is guarded in some way that makes it unreachable (dead
1402 	 * code) if relocation can't be resolved. This is handled in
1403 	 * bpf_core_patch_insn() uniformly by replacing that instruction with
1404 	 * BPF helper call insn (using invalid helper ID). If that instruction
1405 	 * is indeed unreachable, then it will be ignored and eliminated by
1406 	 * verifier. If it was an error, then verifier will complain and point
1407 	 * to a specific instruction number in its log.
1408 	 */
1409 	if (j == 0) {
1410 		pr_debug("prog '%s': relo #%d: no matching targets found\n",
1411 			 prog_name, relo_idx);
1412 
1413 		/* calculate single target relo result explicitly */
1414 		err = bpf_core_calc_relo(prog_name, relo, relo_idx, local_spec, NULL, targ_res);
1415 		if (err)
1416 			return err;
1417 	}
1418 
1419 	return 0;
1420 }
1421 
1422 static bool bpf_core_names_match(const struct btf *local_btf, size_t local_name_off,
1423 				 const struct btf *targ_btf, size_t targ_name_off)
1424 {
1425 	const char *local_n, *targ_n;
1426 	size_t local_len, targ_len;
1427 
1428 	local_n = btf__name_by_offset(local_btf, local_name_off);
1429 	targ_n = btf__name_by_offset(targ_btf, targ_name_off);
1430 
1431 	if (str_is_empty(targ_n))
1432 		return str_is_empty(local_n);
1433 
1434 	targ_len = bpf_core_essential_name_len(targ_n);
1435 	local_len = bpf_core_essential_name_len(local_n);
1436 
1437 	return targ_len == local_len && strncmp(local_n, targ_n, local_len) == 0;
1438 }
1439 
1440 static int bpf_core_enums_match(const struct btf *local_btf, const struct btf_type *local_t,
1441 				const struct btf *targ_btf, const struct btf_type *targ_t)
1442 {
1443 	__u16 local_vlen = btf_vlen(local_t);
1444 	__u16 targ_vlen = btf_vlen(targ_t);
1445 	int i, j;
1446 
1447 	if (local_t->size != targ_t->size)
1448 		return 0;
1449 
1450 	if (local_vlen > targ_vlen)
1451 		return 0;
1452 
1453 	/* iterate over the local enum's variants and make sure each has
1454 	 * a symbolic name correspondent in the target
1455 	 */
1456 	for (i = 0; i < local_vlen; i++) {
1457 		bool matched = false;
1458 		__u32 local_n_off, targ_n_off;
1459 
1460 		local_n_off = btf_is_enum(local_t) ? btf_enum(local_t)[i].name_off :
1461 						     btf_enum64(local_t)[i].name_off;
1462 
1463 		for (j = 0; j < targ_vlen; j++) {
1464 			targ_n_off = btf_is_enum(targ_t) ? btf_enum(targ_t)[j].name_off :
1465 							   btf_enum64(targ_t)[j].name_off;
1466 
1467 			if (bpf_core_names_match(local_btf, local_n_off, targ_btf, targ_n_off)) {
1468 				matched = true;
1469 				break;
1470 			}
1471 		}
1472 
1473 		if (!matched)
1474 			return 0;
1475 	}
1476 	return 1;
1477 }
1478 
1479 static int bpf_core_composites_match(const struct btf *local_btf, const struct btf_type *local_t,
1480 				     const struct btf *targ_btf, const struct btf_type *targ_t,
1481 				     bool behind_ptr, int level)
1482 {
1483 	const struct btf_member *local_m = btf_members(local_t);
1484 	__u16 local_vlen = btf_vlen(local_t);
1485 	__u16 targ_vlen = btf_vlen(targ_t);
1486 	int i, j, err;
1487 
1488 	if (local_vlen > targ_vlen)
1489 		return 0;
1490 
1491 	/* check that all local members have a match in the target */
1492 	for (i = 0; i < local_vlen; i++, local_m++) {
1493 		const struct btf_member *targ_m = btf_members(targ_t);
1494 		bool matched = false;
1495 
1496 		for (j = 0; j < targ_vlen; j++, targ_m++) {
1497 			if (!bpf_core_names_match(local_btf, local_m->name_off,
1498 						  targ_btf, targ_m->name_off))
1499 				continue;
1500 
1501 			err = __bpf_core_types_match(local_btf, local_m->type, targ_btf,
1502 						     targ_m->type, behind_ptr, level - 1);
1503 			if (err < 0)
1504 				return err;
1505 			if (err > 0) {
1506 				matched = true;
1507 				break;
1508 			}
1509 		}
1510 
1511 		if (!matched)
1512 			return 0;
1513 	}
1514 	return 1;
1515 }
1516 
1517 /* Check that two types "match". This function assumes that root types were
1518  * already checked for name match.
1519  *
1520  * The matching relation is defined as follows:
1521  * - modifiers and typedefs are stripped (and, hence, effectively ignored)
1522  * - generally speaking types need to be of same kind (struct vs. struct, union
1523  *   vs. union, etc.)
1524  *   - exceptions are struct/union behind a pointer which could also match a
1525  *     forward declaration of a struct or union, respectively, and enum vs.
1526  *     enum64 (see below)
1527  * Then, depending on type:
1528  * - integers:
1529  *   - match if size and signedness match
1530  * - arrays & pointers:
1531  *   - target types are recursively matched
1532  * - structs & unions:
1533  *   - local members need to exist in target with the same name
1534  *   - for each member we recursively check match unless it is already behind a
1535  *     pointer, in which case we only check matching names and compatible kind
1536  * - enums:
1537  *   - local variants have to have a match in target by symbolic name (but not
1538  *     numeric value)
1539  *   - size has to match (but enum may match enum64 and vice versa)
1540  * - function pointers:
1541  *   - number and position of arguments in local type has to match target
1542  *   - for each argument and the return value we recursively check match
1543  */
1544 int __bpf_core_types_match(const struct btf *local_btf, __u32 local_id, const struct btf *targ_btf,
1545 			   __u32 targ_id, bool behind_ptr, int level)
1546 {
1547 	const struct btf_type *local_t, *targ_t;
1548 	int depth = 32; /* max recursion depth */
1549 	__u16 local_k, targ_k;
1550 
1551 	if (level <= 0)
1552 		return -EINVAL;
1553 
1554 recur:
1555 	depth--;
1556 	if (depth < 0)
1557 		return -EINVAL;
1558 
1559 	local_t = skip_mods_and_typedefs(local_btf, local_id, &local_id);
1560 	targ_t = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
1561 	if (!local_t || !targ_t)
1562 		return -EINVAL;
1563 
1564 	/* While the name check happens after typedefs are skipped, root-level
1565 	 * typedefs would still be name-matched as that's the contract with
1566 	 * callers.
1567 	 */
1568 	if (!bpf_core_names_match(local_btf, local_t->name_off, targ_btf, targ_t->name_off))
1569 		return 0;
1570 
1571 	local_k = btf_kind(local_t);
1572 	targ_k = btf_kind(targ_t);
1573 
1574 	switch (local_k) {
1575 	case BTF_KIND_UNKN:
1576 		return local_k == targ_k;
1577 	case BTF_KIND_FWD: {
1578 		bool local_f = BTF_INFO_KFLAG(local_t->info);
1579 
1580 		if (behind_ptr) {
1581 			if (local_k == targ_k)
1582 				return local_f == BTF_INFO_KFLAG(targ_t->info);
1583 
1584 			/* for forward declarations kflag dictates whether the
1585 			 * target is a struct (0) or union (1)
1586 			 */
1587 			return (targ_k == BTF_KIND_STRUCT && !local_f) ||
1588 			       (targ_k == BTF_KIND_UNION && local_f);
1589 		} else {
1590 			if (local_k != targ_k)
1591 				return 0;
1592 
1593 			/* match if the forward declaration is for the same kind */
1594 			return local_f == BTF_INFO_KFLAG(targ_t->info);
1595 		}
1596 	}
1597 	case BTF_KIND_ENUM:
1598 	case BTF_KIND_ENUM64:
1599 		if (!btf_is_any_enum(targ_t))
1600 			return 0;
1601 
1602 		return bpf_core_enums_match(local_btf, local_t, targ_btf, targ_t);
1603 	case BTF_KIND_STRUCT:
1604 	case BTF_KIND_UNION:
1605 		if (behind_ptr) {
1606 			bool targ_f = BTF_INFO_KFLAG(targ_t->info);
1607 
1608 			if (local_k == targ_k)
1609 				return 1;
1610 
1611 			if (targ_k != BTF_KIND_FWD)
1612 				return 0;
1613 
1614 			return (local_k == BTF_KIND_UNION) == targ_f;
1615 		} else {
1616 			if (local_k != targ_k)
1617 				return 0;
1618 
1619 			return bpf_core_composites_match(local_btf, local_t, targ_btf, targ_t,
1620 							 behind_ptr, level);
1621 		}
1622 	case BTF_KIND_INT: {
1623 		__u8 local_sgn;
1624 		__u8 targ_sgn;
1625 
1626 		if (local_k != targ_k)
1627 			return 0;
1628 
1629 		local_sgn = btf_int_encoding(local_t) & BTF_INT_SIGNED;
1630 		targ_sgn = btf_int_encoding(targ_t) & BTF_INT_SIGNED;
1631 
1632 		return local_t->size == targ_t->size && local_sgn == targ_sgn;
1633 	}
1634 	case BTF_KIND_PTR:
1635 		if (local_k != targ_k)
1636 			return 0;
1637 
1638 		behind_ptr = true;
1639 
1640 		local_id = local_t->type;
1641 		targ_id = targ_t->type;
1642 		goto recur;
1643 	case BTF_KIND_ARRAY: {
1644 		const struct btf_array *local_array = btf_array(local_t);
1645 		const struct btf_array *targ_array = btf_array(targ_t);
1646 
1647 		if (local_k != targ_k)
1648 			return 0;
1649 
1650 		if (local_array->nelems != targ_array->nelems)
1651 			return 0;
1652 
1653 		local_id = local_array->type;
1654 		targ_id = targ_array->type;
1655 		goto recur;
1656 	}
1657 	case BTF_KIND_FUNC_PROTO: {
1658 		struct btf_param *local_p = btf_params(local_t);
1659 		struct btf_param *targ_p = btf_params(targ_t);
1660 		__u16 local_vlen = btf_vlen(local_t);
1661 		__u16 targ_vlen = btf_vlen(targ_t);
1662 		int i, err;
1663 
1664 		if (local_k != targ_k)
1665 			return 0;
1666 
1667 		if (local_vlen != targ_vlen)
1668 			return 0;
1669 
1670 		for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
1671 			err = __bpf_core_types_match(local_btf, local_p->type, targ_btf,
1672 						     targ_p->type, behind_ptr, level - 1);
1673 			if (err <= 0)
1674 				return err;
1675 		}
1676 
1677 		/* tail recurse for return type check */
1678 		local_id = local_t->type;
1679 		targ_id = targ_t->type;
1680 		goto recur;
1681 	}
1682 	default:
1683 		pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n",
1684 			btf_kind_str(local_t), local_id, targ_id);
1685 		return 0;
1686 	}
1687 }
1688