1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2019 Facebook */ 3 4 #include <stdio.h> 5 #include <string.h> 6 #include <errno.h> 7 #include <ctype.h> 8 #include <linux/err.h> 9 10 #include "libbpf.h" 11 #include "bpf.h" 12 #include "btf.h" 13 #include "str_error.h" 14 #include "libbpf_internal.h" 15 16 #define BPF_CORE_SPEC_MAX_LEN 64 17 18 /* represents BPF CO-RE field or array element accessor */ 19 struct bpf_core_accessor { 20 __u32 type_id; /* struct/union type or array element type */ 21 __u32 idx; /* field index or array index */ 22 const char *name; /* field name or NULL for array accessor */ 23 }; 24 25 struct bpf_core_spec { 26 const struct btf *btf; 27 /* high-level spec: named fields and array indices only */ 28 struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN]; 29 /* original unresolved (no skip_mods_or_typedefs) root type ID */ 30 __u32 root_type_id; 31 /* CO-RE relocation kind */ 32 enum bpf_core_relo_kind relo_kind; 33 /* high-level spec length */ 34 int len; 35 /* raw, low-level spec: 1-to-1 with accessor spec string */ 36 int raw_spec[BPF_CORE_SPEC_MAX_LEN]; 37 /* raw spec length */ 38 int raw_len; 39 /* field bit offset represented by spec */ 40 __u32 bit_offset; 41 }; 42 43 static bool is_flex_arr(const struct btf *btf, 44 const struct bpf_core_accessor *acc, 45 const struct btf_array *arr) 46 { 47 const struct btf_type *t; 48 49 /* not a flexible array, if not inside a struct or has non-zero size */ 50 if (!acc->name || arr->nelems > 0) 51 return false; 52 53 /* has to be the last member of enclosing struct */ 54 t = btf__type_by_id(btf, acc->type_id); 55 return acc->idx == btf_vlen(t) - 1; 56 } 57 58 static const char *core_relo_kind_str(enum bpf_core_relo_kind kind) 59 { 60 switch (kind) { 61 case BPF_FIELD_BYTE_OFFSET: return "byte_off"; 62 case BPF_FIELD_BYTE_SIZE: return "byte_sz"; 63 case BPF_FIELD_EXISTS: return "field_exists"; 64 case BPF_FIELD_SIGNED: return "signed"; 65 case BPF_FIELD_LSHIFT_U64: return "lshift_u64"; 66 case BPF_FIELD_RSHIFT_U64: return "rshift_u64"; 67 case BPF_TYPE_ID_LOCAL: return "local_type_id"; 68 case BPF_TYPE_ID_TARGET: return "target_type_id"; 69 case BPF_TYPE_EXISTS: return "type_exists"; 70 case BPF_TYPE_SIZE: return "type_size"; 71 case BPF_ENUMVAL_EXISTS: return "enumval_exists"; 72 case BPF_ENUMVAL_VALUE: return "enumval_value"; 73 default: return "unknown"; 74 } 75 } 76 77 static bool core_relo_is_field_based(enum bpf_core_relo_kind kind) 78 { 79 switch (kind) { 80 case BPF_FIELD_BYTE_OFFSET: 81 case BPF_FIELD_BYTE_SIZE: 82 case BPF_FIELD_EXISTS: 83 case BPF_FIELD_SIGNED: 84 case BPF_FIELD_LSHIFT_U64: 85 case BPF_FIELD_RSHIFT_U64: 86 return true; 87 default: 88 return false; 89 } 90 } 91 92 static bool core_relo_is_type_based(enum bpf_core_relo_kind kind) 93 { 94 switch (kind) { 95 case BPF_TYPE_ID_LOCAL: 96 case BPF_TYPE_ID_TARGET: 97 case BPF_TYPE_EXISTS: 98 case BPF_TYPE_SIZE: 99 return true; 100 default: 101 return false; 102 } 103 } 104 105 static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind) 106 { 107 switch (kind) { 108 case BPF_ENUMVAL_EXISTS: 109 case BPF_ENUMVAL_VALUE: 110 return true; 111 default: 112 return false; 113 } 114 } 115 116 /* 117 * Turn bpf_core_relo into a low- and high-level spec representation, 118 * validating correctness along the way, as well as calculating resulting 119 * field bit offset, specified by accessor string. Low-level spec captures 120 * every single level of nestedness, including traversing anonymous 121 * struct/union members. High-level one only captures semantically meaningful 122 * "turning points": named fields and array indicies. 123 * E.g., for this case: 124 * 125 * struct sample { 126 * int __unimportant; 127 * struct { 128 * int __1; 129 * int __2; 130 * int a[7]; 131 * }; 132 * }; 133 * 134 * struct sample *s = ...; 135 * 136 * int x = &s->a[3]; // access string = '0:1:2:3' 137 * 138 * Low-level spec has 1:1 mapping with each element of access string (it's 139 * just a parsed access string representation): [0, 1, 2, 3]. 140 * 141 * High-level spec will capture only 3 points: 142 * - intial zero-index access by pointer (&s->... is the same as &s[0]...); 143 * - field 'a' access (corresponds to '2' in low-level spec); 144 * - array element #3 access (corresponds to '3' in low-level spec). 145 * 146 * Type-based relocations (TYPE_EXISTS/TYPE_SIZE, 147 * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their 148 * spec and raw_spec are kept empty. 149 * 150 * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access 151 * string to specify enumerator's value index that need to be relocated. 152 */ 153 static int bpf_core_parse_spec(const struct btf *btf, 154 __u32 type_id, 155 const char *spec_str, 156 enum bpf_core_relo_kind relo_kind, 157 struct bpf_core_spec *spec) 158 { 159 int access_idx, parsed_len, i; 160 struct bpf_core_accessor *acc; 161 const struct btf_type *t; 162 const char *name; 163 __u32 id; 164 __s64 sz; 165 166 if (str_is_empty(spec_str) || *spec_str == ':') 167 return -EINVAL; 168 169 memset(spec, 0, sizeof(*spec)); 170 spec->btf = btf; 171 spec->root_type_id = type_id; 172 spec->relo_kind = relo_kind; 173 174 /* type-based relocations don't have a field access string */ 175 if (core_relo_is_type_based(relo_kind)) { 176 if (strcmp(spec_str, "0")) 177 return -EINVAL; 178 return 0; 179 } 180 181 /* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */ 182 while (*spec_str) { 183 if (*spec_str == ':') 184 ++spec_str; 185 if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1) 186 return -EINVAL; 187 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 188 return -E2BIG; 189 spec_str += parsed_len; 190 spec->raw_spec[spec->raw_len++] = access_idx; 191 } 192 193 if (spec->raw_len == 0) 194 return -EINVAL; 195 196 t = skip_mods_and_typedefs(btf, type_id, &id); 197 if (!t) 198 return -EINVAL; 199 200 access_idx = spec->raw_spec[0]; 201 acc = &spec->spec[0]; 202 acc->type_id = id; 203 acc->idx = access_idx; 204 spec->len++; 205 206 if (core_relo_is_enumval_based(relo_kind)) { 207 if (!btf_is_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t)) 208 return -EINVAL; 209 210 /* record enumerator name in a first accessor */ 211 acc->name = btf__name_by_offset(btf, btf_enum(t)[access_idx].name_off); 212 return 0; 213 } 214 215 if (!core_relo_is_field_based(relo_kind)) 216 return -EINVAL; 217 218 sz = btf__resolve_size(btf, id); 219 if (sz < 0) 220 return sz; 221 spec->bit_offset = access_idx * sz * 8; 222 223 for (i = 1; i < spec->raw_len; i++) { 224 t = skip_mods_and_typedefs(btf, id, &id); 225 if (!t) 226 return -EINVAL; 227 228 access_idx = spec->raw_spec[i]; 229 acc = &spec->spec[spec->len]; 230 231 if (btf_is_composite(t)) { 232 const struct btf_member *m; 233 __u32 bit_offset; 234 235 if (access_idx >= btf_vlen(t)) 236 return -EINVAL; 237 238 bit_offset = btf_member_bit_offset(t, access_idx); 239 spec->bit_offset += bit_offset; 240 241 m = btf_members(t) + access_idx; 242 if (m->name_off) { 243 name = btf__name_by_offset(btf, m->name_off); 244 if (str_is_empty(name)) 245 return -EINVAL; 246 247 acc->type_id = id; 248 acc->idx = access_idx; 249 acc->name = name; 250 spec->len++; 251 } 252 253 id = m->type; 254 } else if (btf_is_array(t)) { 255 const struct btf_array *a = btf_array(t); 256 bool flex; 257 258 t = skip_mods_and_typedefs(btf, a->type, &id); 259 if (!t) 260 return -EINVAL; 261 262 flex = is_flex_arr(btf, acc - 1, a); 263 if (!flex && access_idx >= a->nelems) 264 return -EINVAL; 265 266 spec->spec[spec->len].type_id = id; 267 spec->spec[spec->len].idx = access_idx; 268 spec->len++; 269 270 sz = btf__resolve_size(btf, id); 271 if (sz < 0) 272 return sz; 273 spec->bit_offset += access_idx * sz * 8; 274 } else { 275 pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n", 276 type_id, spec_str, i, id, btf_kind_str(t)); 277 return -EINVAL; 278 } 279 } 280 281 return 0; 282 } 283 284 /* Check two types for compatibility for the purpose of field access 285 * relocation. const/volatile/restrict and typedefs are skipped to ensure we 286 * are relocating semantically compatible entities: 287 * - any two STRUCTs/UNIONs are compatible and can be mixed; 288 * - any two FWDs are compatible, if their names match (modulo flavor suffix); 289 * - any two PTRs are always compatible; 290 * - for ENUMs, names should be the same (ignoring flavor suffix) or at 291 * least one of enums should be anonymous; 292 * - for ENUMs, check sizes, names are ignored; 293 * - for INT, size and signedness are ignored; 294 * - any two FLOATs are always compatible; 295 * - for ARRAY, dimensionality is ignored, element types are checked for 296 * compatibility recursively; 297 * - everything else shouldn't be ever a target of relocation. 298 * These rules are not set in stone and probably will be adjusted as we get 299 * more experience with using BPF CO-RE relocations. 300 */ 301 static int bpf_core_fields_are_compat(const struct btf *local_btf, 302 __u32 local_id, 303 const struct btf *targ_btf, 304 __u32 targ_id) 305 { 306 const struct btf_type *local_type, *targ_type; 307 308 recur: 309 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 310 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 311 if (!local_type || !targ_type) 312 return -EINVAL; 313 314 if (btf_is_composite(local_type) && btf_is_composite(targ_type)) 315 return 1; 316 if (btf_kind(local_type) != btf_kind(targ_type)) 317 return 0; 318 319 switch (btf_kind(local_type)) { 320 case BTF_KIND_PTR: 321 case BTF_KIND_FLOAT: 322 return 1; 323 case BTF_KIND_FWD: 324 case BTF_KIND_ENUM: { 325 const char *local_name, *targ_name; 326 size_t local_len, targ_len; 327 328 local_name = btf__name_by_offset(local_btf, 329 local_type->name_off); 330 targ_name = btf__name_by_offset(targ_btf, targ_type->name_off); 331 local_len = bpf_core_essential_name_len(local_name); 332 targ_len = bpf_core_essential_name_len(targ_name); 333 /* one of them is anonymous or both w/ same flavor-less names */ 334 return local_len == 0 || targ_len == 0 || 335 (local_len == targ_len && 336 strncmp(local_name, targ_name, local_len) == 0); 337 } 338 case BTF_KIND_INT: 339 /* just reject deprecated bitfield-like integers; all other 340 * integers are by default compatible between each other 341 */ 342 return btf_int_offset(local_type) == 0 && 343 btf_int_offset(targ_type) == 0; 344 case BTF_KIND_ARRAY: 345 local_id = btf_array(local_type)->type; 346 targ_id = btf_array(targ_type)->type; 347 goto recur; 348 default: 349 pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n", 350 btf_kind(local_type), local_id, targ_id); 351 return 0; 352 } 353 } 354 355 /* 356 * Given single high-level named field accessor in local type, find 357 * corresponding high-level accessor for a target type. Along the way, 358 * maintain low-level spec for target as well. Also keep updating target 359 * bit offset. 360 * 361 * Searching is performed through recursive exhaustive enumeration of all 362 * fields of a struct/union. If there are any anonymous (embedded) 363 * structs/unions, they are recursively searched as well. If field with 364 * desired name is found, check compatibility between local and target types, 365 * before returning result. 366 * 367 * 1 is returned, if field is found. 368 * 0 is returned if no compatible field is found. 369 * <0 is returned on error. 370 */ 371 static int bpf_core_match_member(const struct btf *local_btf, 372 const struct bpf_core_accessor *local_acc, 373 const struct btf *targ_btf, 374 __u32 targ_id, 375 struct bpf_core_spec *spec, 376 __u32 *next_targ_id) 377 { 378 const struct btf_type *local_type, *targ_type; 379 const struct btf_member *local_member, *m; 380 const char *local_name, *targ_name; 381 __u32 local_id; 382 int i, n, found; 383 384 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 385 if (!targ_type) 386 return -EINVAL; 387 if (!btf_is_composite(targ_type)) 388 return 0; 389 390 local_id = local_acc->type_id; 391 local_type = btf__type_by_id(local_btf, local_id); 392 local_member = btf_members(local_type) + local_acc->idx; 393 local_name = btf__name_by_offset(local_btf, local_member->name_off); 394 395 n = btf_vlen(targ_type); 396 m = btf_members(targ_type); 397 for (i = 0; i < n; i++, m++) { 398 __u32 bit_offset; 399 400 bit_offset = btf_member_bit_offset(targ_type, i); 401 402 /* too deep struct/union/array nesting */ 403 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 404 return -E2BIG; 405 406 /* speculate this member will be the good one */ 407 spec->bit_offset += bit_offset; 408 spec->raw_spec[spec->raw_len++] = i; 409 410 targ_name = btf__name_by_offset(targ_btf, m->name_off); 411 if (str_is_empty(targ_name)) { 412 /* embedded struct/union, we need to go deeper */ 413 found = bpf_core_match_member(local_btf, local_acc, 414 targ_btf, m->type, 415 spec, next_targ_id); 416 if (found) /* either found or error */ 417 return found; 418 } else if (strcmp(local_name, targ_name) == 0) { 419 /* matching named field */ 420 struct bpf_core_accessor *targ_acc; 421 422 targ_acc = &spec->spec[spec->len++]; 423 targ_acc->type_id = targ_id; 424 targ_acc->idx = i; 425 targ_acc->name = targ_name; 426 427 *next_targ_id = m->type; 428 found = bpf_core_fields_are_compat(local_btf, 429 local_member->type, 430 targ_btf, m->type); 431 if (!found) 432 spec->len--; /* pop accessor */ 433 return found; 434 } 435 /* member turned out not to be what we looked for */ 436 spec->bit_offset -= bit_offset; 437 spec->raw_len--; 438 } 439 440 return 0; 441 } 442 443 /* 444 * Try to match local spec to a target type and, if successful, produce full 445 * target spec (high-level, low-level + bit offset). 446 */ 447 static int bpf_core_spec_match(struct bpf_core_spec *local_spec, 448 const struct btf *targ_btf, __u32 targ_id, 449 struct bpf_core_spec *targ_spec) 450 { 451 const struct btf_type *targ_type; 452 const struct bpf_core_accessor *local_acc; 453 struct bpf_core_accessor *targ_acc; 454 int i, sz, matched; 455 456 memset(targ_spec, 0, sizeof(*targ_spec)); 457 targ_spec->btf = targ_btf; 458 targ_spec->root_type_id = targ_id; 459 targ_spec->relo_kind = local_spec->relo_kind; 460 461 if (core_relo_is_type_based(local_spec->relo_kind)) { 462 return bpf_core_types_are_compat(local_spec->btf, 463 local_spec->root_type_id, 464 targ_btf, targ_id); 465 } 466 467 local_acc = &local_spec->spec[0]; 468 targ_acc = &targ_spec->spec[0]; 469 470 if (core_relo_is_enumval_based(local_spec->relo_kind)) { 471 size_t local_essent_len, targ_essent_len; 472 const struct btf_enum *e; 473 const char *targ_name; 474 475 /* has to resolve to an enum */ 476 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id); 477 if (!btf_is_enum(targ_type)) 478 return 0; 479 480 local_essent_len = bpf_core_essential_name_len(local_acc->name); 481 482 for (i = 0, e = btf_enum(targ_type); i < btf_vlen(targ_type); i++, e++) { 483 targ_name = btf__name_by_offset(targ_spec->btf, e->name_off); 484 targ_essent_len = bpf_core_essential_name_len(targ_name); 485 if (targ_essent_len != local_essent_len) 486 continue; 487 if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) { 488 targ_acc->type_id = targ_id; 489 targ_acc->idx = i; 490 targ_acc->name = targ_name; 491 targ_spec->len++; 492 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 493 targ_spec->raw_len++; 494 return 1; 495 } 496 } 497 return 0; 498 } 499 500 if (!core_relo_is_field_based(local_spec->relo_kind)) 501 return -EINVAL; 502 503 for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) { 504 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, 505 &targ_id); 506 if (!targ_type) 507 return -EINVAL; 508 509 if (local_acc->name) { 510 matched = bpf_core_match_member(local_spec->btf, 511 local_acc, 512 targ_btf, targ_id, 513 targ_spec, &targ_id); 514 if (matched <= 0) 515 return matched; 516 } else { 517 /* for i=0, targ_id is already treated as array element 518 * type (because it's the original struct), for others 519 * we should find array element type first 520 */ 521 if (i > 0) { 522 const struct btf_array *a; 523 bool flex; 524 525 if (!btf_is_array(targ_type)) 526 return 0; 527 528 a = btf_array(targ_type); 529 flex = is_flex_arr(targ_btf, targ_acc - 1, a); 530 if (!flex && local_acc->idx >= a->nelems) 531 return 0; 532 if (!skip_mods_and_typedefs(targ_btf, a->type, 533 &targ_id)) 534 return -EINVAL; 535 } 536 537 /* too deep struct/union/array nesting */ 538 if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 539 return -E2BIG; 540 541 targ_acc->type_id = targ_id; 542 targ_acc->idx = local_acc->idx; 543 targ_acc->name = NULL; 544 targ_spec->len++; 545 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 546 targ_spec->raw_len++; 547 548 sz = btf__resolve_size(targ_btf, targ_id); 549 if (sz < 0) 550 return sz; 551 targ_spec->bit_offset += local_acc->idx * sz * 8; 552 } 553 } 554 555 return 1; 556 } 557 558 static int bpf_core_calc_field_relo(const char *prog_name, 559 const struct bpf_core_relo *relo, 560 const struct bpf_core_spec *spec, 561 __u32 *val, __u32 *field_sz, __u32 *type_id, 562 bool *validate) 563 { 564 const struct bpf_core_accessor *acc; 565 const struct btf_type *t; 566 __u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id; 567 const struct btf_member *m; 568 const struct btf_type *mt; 569 bool bitfield; 570 __s64 sz; 571 572 *field_sz = 0; 573 574 if (relo->kind == BPF_FIELD_EXISTS) { 575 *val = spec ? 1 : 0; 576 return 0; 577 } 578 579 if (!spec) 580 return -EUCLEAN; /* request instruction poisoning */ 581 582 acc = &spec->spec[spec->len - 1]; 583 t = btf__type_by_id(spec->btf, acc->type_id); 584 585 /* a[n] accessor needs special handling */ 586 if (!acc->name) { 587 if (relo->kind == BPF_FIELD_BYTE_OFFSET) { 588 *val = spec->bit_offset / 8; 589 /* remember field size for load/store mem size */ 590 sz = btf__resolve_size(spec->btf, acc->type_id); 591 if (sz < 0) 592 return -EINVAL; 593 *field_sz = sz; 594 *type_id = acc->type_id; 595 } else if (relo->kind == BPF_FIELD_BYTE_SIZE) { 596 sz = btf__resolve_size(spec->btf, acc->type_id); 597 if (sz < 0) 598 return -EINVAL; 599 *val = sz; 600 } else { 601 pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n", 602 prog_name, relo->kind, relo->insn_off / 8); 603 return -EINVAL; 604 } 605 if (validate) 606 *validate = true; 607 return 0; 608 } 609 610 m = btf_members(t) + acc->idx; 611 mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id); 612 bit_off = spec->bit_offset; 613 bit_sz = btf_member_bitfield_size(t, acc->idx); 614 615 bitfield = bit_sz > 0; 616 if (bitfield) { 617 byte_sz = mt->size; 618 byte_off = bit_off / 8 / byte_sz * byte_sz; 619 /* figure out smallest int size necessary for bitfield load */ 620 while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) { 621 if (byte_sz >= 8) { 622 /* bitfield can't be read with 64-bit read */ 623 pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n", 624 prog_name, relo->kind, relo->insn_off / 8); 625 return -E2BIG; 626 } 627 byte_sz *= 2; 628 byte_off = bit_off / 8 / byte_sz * byte_sz; 629 } 630 } else { 631 sz = btf__resolve_size(spec->btf, field_type_id); 632 if (sz < 0) 633 return -EINVAL; 634 byte_sz = sz; 635 byte_off = spec->bit_offset / 8; 636 bit_sz = byte_sz * 8; 637 } 638 639 /* for bitfields, all the relocatable aspects are ambiguous and we 640 * might disagree with compiler, so turn off validation of expected 641 * value, except for signedness 642 */ 643 if (validate) 644 *validate = !bitfield; 645 646 switch (relo->kind) { 647 case BPF_FIELD_BYTE_OFFSET: 648 *val = byte_off; 649 if (!bitfield) { 650 *field_sz = byte_sz; 651 *type_id = field_type_id; 652 } 653 break; 654 case BPF_FIELD_BYTE_SIZE: 655 *val = byte_sz; 656 break; 657 case BPF_FIELD_SIGNED: 658 /* enums will be assumed unsigned */ 659 *val = btf_is_enum(mt) || 660 (btf_int_encoding(mt) & BTF_INT_SIGNED); 661 if (validate) 662 *validate = true; /* signedness is never ambiguous */ 663 break; 664 case BPF_FIELD_LSHIFT_U64: 665 #if __BYTE_ORDER == __LITTLE_ENDIAN 666 *val = 64 - (bit_off + bit_sz - byte_off * 8); 667 #else 668 *val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8); 669 #endif 670 break; 671 case BPF_FIELD_RSHIFT_U64: 672 *val = 64 - bit_sz; 673 if (validate) 674 *validate = true; /* right shift is never ambiguous */ 675 break; 676 case BPF_FIELD_EXISTS: 677 default: 678 return -EOPNOTSUPP; 679 } 680 681 return 0; 682 } 683 684 static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo, 685 const struct bpf_core_spec *spec, 686 __u32 *val) 687 { 688 __s64 sz; 689 690 /* type-based relos return zero when target type is not found */ 691 if (!spec) { 692 *val = 0; 693 return 0; 694 } 695 696 switch (relo->kind) { 697 case BPF_TYPE_ID_TARGET: 698 *val = spec->root_type_id; 699 break; 700 case BPF_TYPE_EXISTS: 701 *val = 1; 702 break; 703 case BPF_TYPE_SIZE: 704 sz = btf__resolve_size(spec->btf, spec->root_type_id); 705 if (sz < 0) 706 return -EINVAL; 707 *val = sz; 708 break; 709 case BPF_TYPE_ID_LOCAL: 710 /* BPF_TYPE_ID_LOCAL is handled specially and shouldn't get here */ 711 default: 712 return -EOPNOTSUPP; 713 } 714 715 return 0; 716 } 717 718 static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo, 719 const struct bpf_core_spec *spec, 720 __u32 *val) 721 { 722 const struct btf_type *t; 723 const struct btf_enum *e; 724 725 switch (relo->kind) { 726 case BPF_ENUMVAL_EXISTS: 727 *val = spec ? 1 : 0; 728 break; 729 case BPF_ENUMVAL_VALUE: 730 if (!spec) 731 return -EUCLEAN; /* request instruction poisoning */ 732 t = btf__type_by_id(spec->btf, spec->spec[0].type_id); 733 e = btf_enum(t) + spec->spec[0].idx; 734 *val = e->val; 735 break; 736 default: 737 return -EOPNOTSUPP; 738 } 739 740 return 0; 741 } 742 743 struct bpf_core_relo_res 744 { 745 /* expected value in the instruction, unless validate == false */ 746 __u32 orig_val; 747 /* new value that needs to be patched up to */ 748 __u32 new_val; 749 /* relocation unsuccessful, poison instruction, but don't fail load */ 750 bool poison; 751 /* some relocations can't be validated against orig_val */ 752 bool validate; 753 /* for field byte offset relocations or the forms: 754 * *(T *)(rX + <off>) = rY 755 * rX = *(T *)(rY + <off>), 756 * we remember original and resolved field size to adjust direct 757 * memory loads of pointers and integers; this is necessary for 32-bit 758 * host kernel architectures, but also allows to automatically 759 * relocate fields that were resized from, e.g., u32 to u64, etc. 760 */ 761 bool fail_memsz_adjust; 762 __u32 orig_sz; 763 __u32 orig_type_id; 764 __u32 new_sz; 765 __u32 new_type_id; 766 }; 767 768 /* Calculate original and target relocation values, given local and target 769 * specs and relocation kind. These values are calculated for each candidate. 770 * If there are multiple candidates, resulting values should all be consistent 771 * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity. 772 * If instruction has to be poisoned, *poison will be set to true. 773 */ 774 static int bpf_core_calc_relo(const char *prog_name, 775 const struct bpf_core_relo *relo, 776 int relo_idx, 777 const struct bpf_core_spec *local_spec, 778 const struct bpf_core_spec *targ_spec, 779 struct bpf_core_relo_res *res) 780 { 781 int err = -EOPNOTSUPP; 782 783 res->orig_val = 0; 784 res->new_val = 0; 785 res->poison = false; 786 res->validate = true; 787 res->fail_memsz_adjust = false; 788 res->orig_sz = res->new_sz = 0; 789 res->orig_type_id = res->new_type_id = 0; 790 791 if (core_relo_is_field_based(relo->kind)) { 792 err = bpf_core_calc_field_relo(prog_name, relo, local_spec, 793 &res->orig_val, &res->orig_sz, 794 &res->orig_type_id, &res->validate); 795 err = err ?: bpf_core_calc_field_relo(prog_name, relo, targ_spec, 796 &res->new_val, &res->new_sz, 797 &res->new_type_id, NULL); 798 if (err) 799 goto done; 800 /* Validate if it's safe to adjust load/store memory size. 801 * Adjustments are performed only if original and new memory 802 * sizes differ. 803 */ 804 res->fail_memsz_adjust = false; 805 if (res->orig_sz != res->new_sz) { 806 const struct btf_type *orig_t, *new_t; 807 808 orig_t = btf__type_by_id(local_spec->btf, res->orig_type_id); 809 new_t = btf__type_by_id(targ_spec->btf, res->new_type_id); 810 811 /* There are two use cases in which it's safe to 812 * adjust load/store's mem size: 813 * - reading a 32-bit kernel pointer, while on BPF 814 * size pointers are always 64-bit; in this case 815 * it's safe to "downsize" instruction size due to 816 * pointer being treated as unsigned integer with 817 * zero-extended upper 32-bits; 818 * - reading unsigned integers, again due to 819 * zero-extension is preserving the value correctly. 820 * 821 * In all other cases it's incorrect to attempt to 822 * load/store field because read value will be 823 * incorrect, so we poison relocated instruction. 824 */ 825 if (btf_is_ptr(orig_t) && btf_is_ptr(new_t)) 826 goto done; 827 if (btf_is_int(orig_t) && btf_is_int(new_t) && 828 btf_int_encoding(orig_t) != BTF_INT_SIGNED && 829 btf_int_encoding(new_t) != BTF_INT_SIGNED) 830 goto done; 831 832 /* mark as invalid mem size adjustment, but this will 833 * only be checked for LDX/STX/ST insns 834 */ 835 res->fail_memsz_adjust = true; 836 } 837 } else if (core_relo_is_type_based(relo->kind)) { 838 err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val); 839 err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val); 840 } else if (core_relo_is_enumval_based(relo->kind)) { 841 err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val); 842 err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val); 843 } 844 845 done: 846 if (err == -EUCLEAN) { 847 /* EUCLEAN is used to signal instruction poisoning request */ 848 res->poison = true; 849 err = 0; 850 } else if (err == -EOPNOTSUPP) { 851 /* EOPNOTSUPP means unknown/unsupported relocation */ 852 pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n", 853 prog_name, relo_idx, core_relo_kind_str(relo->kind), 854 relo->kind, relo->insn_off / 8); 855 } 856 857 return err; 858 } 859 860 /* 861 * Turn instruction for which CO_RE relocation failed into invalid one with 862 * distinct signature. 863 */ 864 static void bpf_core_poison_insn(const char *prog_name, int relo_idx, 865 int insn_idx, struct bpf_insn *insn) 866 { 867 pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n", 868 prog_name, relo_idx, insn_idx); 869 insn->code = BPF_JMP | BPF_CALL; 870 insn->dst_reg = 0; 871 insn->src_reg = 0; 872 insn->off = 0; 873 /* if this instruction is reachable (not a dead code), 874 * verifier will complain with the following message: 875 * invalid func unknown#195896080 876 */ 877 insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */ 878 } 879 880 static int insn_bpf_size_to_bytes(struct bpf_insn *insn) 881 { 882 switch (BPF_SIZE(insn->code)) { 883 case BPF_DW: return 8; 884 case BPF_W: return 4; 885 case BPF_H: return 2; 886 case BPF_B: return 1; 887 default: return -1; 888 } 889 } 890 891 static int insn_bytes_to_bpf_size(__u32 sz) 892 { 893 switch (sz) { 894 case 8: return BPF_DW; 895 case 4: return BPF_W; 896 case 2: return BPF_H; 897 case 1: return BPF_B; 898 default: return -1; 899 } 900 } 901 902 /* 903 * Patch relocatable BPF instruction. 904 * 905 * Patched value is determined by relocation kind and target specification. 906 * For existence relocations target spec will be NULL if field/type is not found. 907 * Expected insn->imm value is determined using relocation kind and local 908 * spec, and is checked before patching instruction. If actual insn->imm value 909 * is wrong, bail out with error. 910 * 911 * Currently supported classes of BPF instruction are: 912 * 1. rX = <imm> (assignment with immediate operand); 913 * 2. rX += <imm> (arithmetic operations with immediate operand); 914 * 3. rX = <imm64> (load with 64-bit immediate value); 915 * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64}; 916 * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64}; 917 * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}. 918 */ 919 static int bpf_core_patch_insn(const char *prog_name, struct bpf_insn *insn, 920 int insn_idx, const struct bpf_core_relo *relo, 921 int relo_idx, const struct bpf_core_relo_res *res) 922 { 923 __u32 orig_val, new_val; 924 __u8 class; 925 926 class = BPF_CLASS(insn->code); 927 928 if (res->poison) { 929 poison: 930 /* poison second part of ldimm64 to avoid confusing error from 931 * verifier about "unknown opcode 00" 932 */ 933 if (is_ldimm64_insn(insn)) 934 bpf_core_poison_insn(prog_name, relo_idx, insn_idx + 1, insn + 1); 935 bpf_core_poison_insn(prog_name, relo_idx, insn_idx, insn); 936 return 0; 937 } 938 939 orig_val = res->orig_val; 940 new_val = res->new_val; 941 942 switch (class) { 943 case BPF_ALU: 944 case BPF_ALU64: 945 if (BPF_SRC(insn->code) != BPF_K) 946 return -EINVAL; 947 if (res->validate && insn->imm != orig_val) { 948 pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n", 949 prog_name, relo_idx, 950 insn_idx, insn->imm, orig_val, new_val); 951 return -EINVAL; 952 } 953 orig_val = insn->imm; 954 insn->imm = new_val; 955 pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n", 956 prog_name, relo_idx, insn_idx, 957 orig_val, new_val); 958 break; 959 case BPF_LDX: 960 case BPF_ST: 961 case BPF_STX: 962 if (res->validate && insn->off != orig_val) { 963 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %u -> %u\n", 964 prog_name, relo_idx, insn_idx, insn->off, orig_val, new_val); 965 return -EINVAL; 966 } 967 if (new_val > SHRT_MAX) { 968 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n", 969 prog_name, relo_idx, insn_idx, new_val); 970 return -ERANGE; 971 } 972 if (res->fail_memsz_adjust) { 973 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. " 974 "Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n", 975 prog_name, relo_idx, insn_idx); 976 goto poison; 977 } 978 979 orig_val = insn->off; 980 insn->off = new_val; 981 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n", 982 prog_name, relo_idx, insn_idx, orig_val, new_val); 983 984 if (res->new_sz != res->orig_sz) { 985 int insn_bytes_sz, insn_bpf_sz; 986 987 insn_bytes_sz = insn_bpf_size_to_bytes(insn); 988 if (insn_bytes_sz != res->orig_sz) { 989 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n", 990 prog_name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz); 991 return -EINVAL; 992 } 993 994 insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz); 995 if (insn_bpf_sz < 0) { 996 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n", 997 prog_name, relo_idx, insn_idx, res->new_sz); 998 return -EINVAL; 999 } 1000 1001 insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code); 1002 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n", 1003 prog_name, relo_idx, insn_idx, res->orig_sz, res->new_sz); 1004 } 1005 break; 1006 case BPF_LD: { 1007 __u64 imm; 1008 1009 if (!is_ldimm64_insn(insn) || 1010 insn[0].src_reg != 0 || insn[0].off != 0 || 1011 insn[1].code != 0 || insn[1].dst_reg != 0 || 1012 insn[1].src_reg != 0 || insn[1].off != 0) { 1013 pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n", 1014 prog_name, relo_idx, insn_idx); 1015 return -EINVAL; 1016 } 1017 1018 imm = insn[0].imm + ((__u64)insn[1].imm << 32); 1019 if (res->validate && imm != orig_val) { 1020 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %u -> %u\n", 1021 prog_name, relo_idx, 1022 insn_idx, (unsigned long long)imm, 1023 orig_val, new_val); 1024 return -EINVAL; 1025 } 1026 1027 insn[0].imm = new_val; 1028 insn[1].imm = 0; /* currently only 32-bit values are supported */ 1029 pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %u\n", 1030 prog_name, relo_idx, insn_idx, 1031 (unsigned long long)imm, new_val); 1032 break; 1033 } 1034 default: 1035 pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n", 1036 prog_name, relo_idx, insn_idx, insn->code, 1037 insn->src_reg, insn->dst_reg, insn->off, insn->imm); 1038 return -EINVAL; 1039 } 1040 1041 return 0; 1042 } 1043 1044 /* Output spec definition in the format: 1045 * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>, 1046 * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b 1047 */ 1048 static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec) 1049 { 1050 const struct btf_type *t; 1051 const struct btf_enum *e; 1052 const char *s; 1053 __u32 type_id; 1054 int i; 1055 1056 type_id = spec->root_type_id; 1057 t = btf__type_by_id(spec->btf, type_id); 1058 s = btf__name_by_offset(spec->btf, t->name_off); 1059 1060 libbpf_print(level, "[%u] %s %s", type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s); 1061 1062 if (core_relo_is_type_based(spec->relo_kind)) 1063 return; 1064 1065 if (core_relo_is_enumval_based(spec->relo_kind)) { 1066 t = skip_mods_and_typedefs(spec->btf, type_id, NULL); 1067 e = btf_enum(t) + spec->raw_spec[0]; 1068 s = btf__name_by_offset(spec->btf, e->name_off); 1069 1070 libbpf_print(level, "::%s = %u", s, e->val); 1071 return; 1072 } 1073 1074 if (core_relo_is_field_based(spec->relo_kind)) { 1075 for (i = 0; i < spec->len; i++) { 1076 if (spec->spec[i].name) 1077 libbpf_print(level, ".%s", spec->spec[i].name); 1078 else if (i > 0 || spec->spec[i].idx > 0) 1079 libbpf_print(level, "[%u]", spec->spec[i].idx); 1080 } 1081 1082 libbpf_print(level, " ("); 1083 for (i = 0; i < spec->raw_len; i++) 1084 libbpf_print(level, "%s%d", i == 0 ? "" : ":", spec->raw_spec[i]); 1085 1086 if (spec->bit_offset % 8) 1087 libbpf_print(level, " @ offset %u.%u)", 1088 spec->bit_offset / 8, spec->bit_offset % 8); 1089 else 1090 libbpf_print(level, " @ offset %u)", spec->bit_offset / 8); 1091 return; 1092 } 1093 } 1094 1095 /* 1096 * CO-RE relocate single instruction. 1097 * 1098 * The outline and important points of the algorithm: 1099 * 1. For given local type, find corresponding candidate target types. 1100 * Candidate type is a type with the same "essential" name, ignoring 1101 * everything after last triple underscore (___). E.g., `sample`, 1102 * `sample___flavor_one`, `sample___flavor_another_one`, are all candidates 1103 * for each other. Names with triple underscore are referred to as 1104 * "flavors" and are useful, among other things, to allow to 1105 * specify/support incompatible variations of the same kernel struct, which 1106 * might differ between different kernel versions and/or build 1107 * configurations. 1108 * 1109 * N.B. Struct "flavors" could be generated by bpftool's BTF-to-C 1110 * converter, when deduplicated BTF of a kernel still contains more than 1111 * one different types with the same name. In that case, ___2, ___3, etc 1112 * are appended starting from second name conflict. But start flavors are 1113 * also useful to be defined "locally", in BPF program, to extract same 1114 * data from incompatible changes between different kernel 1115 * versions/configurations. For instance, to handle field renames between 1116 * kernel versions, one can use two flavors of the struct name with the 1117 * same common name and use conditional relocations to extract that field, 1118 * depending on target kernel version. 1119 * 2. For each candidate type, try to match local specification to this 1120 * candidate target type. Matching involves finding corresponding 1121 * high-level spec accessors, meaning that all named fields should match, 1122 * as well as all array accesses should be within the actual bounds. Also, 1123 * types should be compatible (see bpf_core_fields_are_compat for details). 1124 * 3. It is supported and expected that there might be multiple flavors 1125 * matching the spec. As long as all the specs resolve to the same set of 1126 * offsets across all candidates, there is no error. If there is any 1127 * ambiguity, CO-RE relocation will fail. This is necessary to accomodate 1128 * imprefection of BTF deduplication, which can cause slight duplication of 1129 * the same BTF type, if some directly or indirectly referenced (by 1130 * pointer) type gets resolved to different actual types in different 1131 * object files. If such situation occurs, deduplicated BTF will end up 1132 * with two (or more) structurally identical types, which differ only in 1133 * types they refer to through pointer. This should be OK in most cases and 1134 * is not an error. 1135 * 4. Candidate types search is performed by linearly scanning through all 1136 * types in target BTF. It is anticipated that this is overall more 1137 * efficient memory-wise and not significantly worse (if not better) 1138 * CPU-wise compared to prebuilding a map from all local type names to 1139 * a list of candidate type names. It's also sped up by caching resolved 1140 * list of matching candidates per each local "root" type ID, that has at 1141 * least one bpf_core_relo associated with it. This list is shared 1142 * between multiple relocations for the same type ID and is updated as some 1143 * of the candidates are pruned due to structural incompatibility. 1144 */ 1145 int bpf_core_apply_relo_insn(const char *prog_name, struct bpf_insn *insn, 1146 int insn_idx, 1147 const struct bpf_core_relo *relo, 1148 int relo_idx, 1149 const struct btf *local_btf, 1150 struct bpf_core_cand_list *cands) 1151 { 1152 struct bpf_core_spec local_spec, cand_spec, targ_spec = {}; 1153 struct bpf_core_relo_res cand_res, targ_res; 1154 const struct btf_type *local_type; 1155 const char *local_name; 1156 __u32 local_id; 1157 const char *spec_str; 1158 int i, j, err; 1159 1160 local_id = relo->type_id; 1161 local_type = btf__type_by_id(local_btf, local_id); 1162 if (!local_type) 1163 return -EINVAL; 1164 1165 local_name = btf__name_by_offset(local_btf, local_type->name_off); 1166 if (!local_name) 1167 return -EINVAL; 1168 1169 spec_str = btf__name_by_offset(local_btf, relo->access_str_off); 1170 if (str_is_empty(spec_str)) 1171 return -EINVAL; 1172 1173 err = bpf_core_parse_spec(local_btf, local_id, spec_str, relo->kind, &local_spec); 1174 if (err) { 1175 pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n", 1176 prog_name, relo_idx, local_id, btf_kind_str(local_type), 1177 str_is_empty(local_name) ? "<anon>" : local_name, 1178 spec_str, err); 1179 return -EINVAL; 1180 } 1181 1182 pr_debug("prog '%s': relo #%d: kind <%s> (%d), spec is ", prog_name, 1183 relo_idx, core_relo_kind_str(relo->kind), relo->kind); 1184 bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec); 1185 libbpf_print(LIBBPF_DEBUG, "\n"); 1186 1187 /* TYPE_ID_LOCAL relo is special and doesn't need candidate search */ 1188 if (relo->kind == BPF_TYPE_ID_LOCAL) { 1189 targ_res.validate = true; 1190 targ_res.poison = false; 1191 targ_res.orig_val = local_spec.root_type_id; 1192 targ_res.new_val = local_spec.root_type_id; 1193 goto patch_insn; 1194 } 1195 1196 /* libbpf doesn't support candidate search for anonymous types */ 1197 if (str_is_empty(spec_str)) { 1198 pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n", 1199 prog_name, relo_idx, core_relo_kind_str(relo->kind), relo->kind); 1200 return -EOPNOTSUPP; 1201 } 1202 1203 1204 for (i = 0, j = 0; i < cands->len; i++) { 1205 err = bpf_core_spec_match(&local_spec, cands->cands[i].btf, 1206 cands->cands[i].id, &cand_spec); 1207 if (err < 0) { 1208 pr_warn("prog '%s': relo #%d: error matching candidate #%d ", 1209 prog_name, relo_idx, i); 1210 bpf_core_dump_spec(LIBBPF_WARN, &cand_spec); 1211 libbpf_print(LIBBPF_WARN, ": %d\n", err); 1212 return err; 1213 } 1214 1215 pr_debug("prog '%s': relo #%d: %s candidate #%d ", prog_name, 1216 relo_idx, err == 0 ? "non-matching" : "matching", i); 1217 bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec); 1218 libbpf_print(LIBBPF_DEBUG, "\n"); 1219 1220 if (err == 0) 1221 continue; 1222 1223 err = bpf_core_calc_relo(prog_name, relo, relo_idx, &local_spec, &cand_spec, &cand_res); 1224 if (err) 1225 return err; 1226 1227 if (j == 0) { 1228 targ_res = cand_res; 1229 targ_spec = cand_spec; 1230 } else if (cand_spec.bit_offset != targ_spec.bit_offset) { 1231 /* if there are many field relo candidates, they 1232 * should all resolve to the same bit offset 1233 */ 1234 pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n", 1235 prog_name, relo_idx, cand_spec.bit_offset, 1236 targ_spec.bit_offset); 1237 return -EINVAL; 1238 } else if (cand_res.poison != targ_res.poison || cand_res.new_val != targ_res.new_val) { 1239 /* all candidates should result in the same relocation 1240 * decision and value, otherwise it's dangerous to 1241 * proceed due to ambiguity 1242 */ 1243 pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %u != %s %u\n", 1244 prog_name, relo_idx, 1245 cand_res.poison ? "failure" : "success", cand_res.new_val, 1246 targ_res.poison ? "failure" : "success", targ_res.new_val); 1247 return -EINVAL; 1248 } 1249 1250 cands->cands[j++] = cands->cands[i]; 1251 } 1252 1253 /* 1254 * For BPF_FIELD_EXISTS relo or when used BPF program has field 1255 * existence checks or kernel version/config checks, it's expected 1256 * that we might not find any candidates. In this case, if field 1257 * wasn't found in any candidate, the list of candidates shouldn't 1258 * change at all, we'll just handle relocating appropriately, 1259 * depending on relo's kind. 1260 */ 1261 if (j > 0) 1262 cands->len = j; 1263 1264 /* 1265 * If no candidates were found, it might be both a programmer error, 1266 * as well as expected case, depending whether instruction w/ 1267 * relocation is guarded in some way that makes it unreachable (dead 1268 * code) if relocation can't be resolved. This is handled in 1269 * bpf_core_patch_insn() uniformly by replacing that instruction with 1270 * BPF helper call insn (using invalid helper ID). If that instruction 1271 * is indeed unreachable, then it will be ignored and eliminated by 1272 * verifier. If it was an error, then verifier will complain and point 1273 * to a specific instruction number in its log. 1274 */ 1275 if (j == 0) { 1276 pr_debug("prog '%s': relo #%d: no matching targets found\n", 1277 prog_name, relo_idx); 1278 1279 /* calculate single target relo result explicitly */ 1280 err = bpf_core_calc_relo(prog_name, relo, relo_idx, &local_spec, NULL, &targ_res); 1281 if (err) 1282 return err; 1283 } 1284 1285 patch_insn: 1286 /* bpf_core_patch_insn() should know how to handle missing targ_spec */ 1287 err = bpf_core_patch_insn(prog_name, insn, insn_idx, relo, relo_idx, &targ_res); 1288 if (err) { 1289 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 1290 prog_name, relo_idx, relo->insn_off / 8, err); 1291 return -EINVAL; 1292 } 1293 1294 return 0; 1295 } 1296