xref: /openbmc/linux/tools/lib/bpf/relo_core.c (revision a9d85efb)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2019 Facebook */
3 
4 #include <stdio.h>
5 #include <string.h>
6 #include <errno.h>
7 #include <ctype.h>
8 #include <linux/err.h>
9 
10 #include "libbpf.h"
11 #include "bpf.h"
12 #include "btf.h"
13 #include "str_error.h"
14 #include "libbpf_internal.h"
15 
16 #define BPF_CORE_SPEC_MAX_LEN 64
17 
18 /* represents BPF CO-RE field or array element accessor */
19 struct bpf_core_accessor {
20 	__u32 type_id;		/* struct/union type or array element type */
21 	__u32 idx;		/* field index or array index */
22 	const char *name;	/* field name or NULL for array accessor */
23 };
24 
25 struct bpf_core_spec {
26 	const struct btf *btf;
27 	/* high-level spec: named fields and array indices only */
28 	struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN];
29 	/* original unresolved (no skip_mods_or_typedefs) root type ID */
30 	__u32 root_type_id;
31 	/* CO-RE relocation kind */
32 	enum bpf_core_relo_kind relo_kind;
33 	/* high-level spec length */
34 	int len;
35 	/* raw, low-level spec: 1-to-1 with accessor spec string */
36 	int raw_spec[BPF_CORE_SPEC_MAX_LEN];
37 	/* raw spec length */
38 	int raw_len;
39 	/* field bit offset represented by spec */
40 	__u32 bit_offset;
41 };
42 
43 static bool is_flex_arr(const struct btf *btf,
44 			const struct bpf_core_accessor *acc,
45 			const struct btf_array *arr)
46 {
47 	const struct btf_type *t;
48 
49 	/* not a flexible array, if not inside a struct or has non-zero size */
50 	if (!acc->name || arr->nelems > 0)
51 		return false;
52 
53 	/* has to be the last member of enclosing struct */
54 	t = btf__type_by_id(btf, acc->type_id);
55 	return acc->idx == btf_vlen(t) - 1;
56 }
57 
58 static const char *core_relo_kind_str(enum bpf_core_relo_kind kind)
59 {
60 	switch (kind) {
61 	case BPF_FIELD_BYTE_OFFSET: return "byte_off";
62 	case BPF_FIELD_BYTE_SIZE: return "byte_sz";
63 	case BPF_FIELD_EXISTS: return "field_exists";
64 	case BPF_FIELD_SIGNED: return "signed";
65 	case BPF_FIELD_LSHIFT_U64: return "lshift_u64";
66 	case BPF_FIELD_RSHIFT_U64: return "rshift_u64";
67 	case BPF_TYPE_ID_LOCAL: return "local_type_id";
68 	case BPF_TYPE_ID_TARGET: return "target_type_id";
69 	case BPF_TYPE_EXISTS: return "type_exists";
70 	case BPF_TYPE_SIZE: return "type_size";
71 	case BPF_ENUMVAL_EXISTS: return "enumval_exists";
72 	case BPF_ENUMVAL_VALUE: return "enumval_value";
73 	default: return "unknown";
74 	}
75 }
76 
77 static bool core_relo_is_field_based(enum bpf_core_relo_kind kind)
78 {
79 	switch (kind) {
80 	case BPF_FIELD_BYTE_OFFSET:
81 	case BPF_FIELD_BYTE_SIZE:
82 	case BPF_FIELD_EXISTS:
83 	case BPF_FIELD_SIGNED:
84 	case BPF_FIELD_LSHIFT_U64:
85 	case BPF_FIELD_RSHIFT_U64:
86 		return true;
87 	default:
88 		return false;
89 	}
90 }
91 
92 static bool core_relo_is_type_based(enum bpf_core_relo_kind kind)
93 {
94 	switch (kind) {
95 	case BPF_TYPE_ID_LOCAL:
96 	case BPF_TYPE_ID_TARGET:
97 	case BPF_TYPE_EXISTS:
98 	case BPF_TYPE_SIZE:
99 		return true;
100 	default:
101 		return false;
102 	}
103 }
104 
105 static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind)
106 {
107 	switch (kind) {
108 	case BPF_ENUMVAL_EXISTS:
109 	case BPF_ENUMVAL_VALUE:
110 		return true;
111 	default:
112 		return false;
113 	}
114 }
115 
116 /*
117  * Turn bpf_core_relo into a low- and high-level spec representation,
118  * validating correctness along the way, as well as calculating resulting
119  * field bit offset, specified by accessor string. Low-level spec captures
120  * every single level of nestedness, including traversing anonymous
121  * struct/union members. High-level one only captures semantically meaningful
122  * "turning points": named fields and array indicies.
123  * E.g., for this case:
124  *
125  *   struct sample {
126  *       int __unimportant;
127  *       struct {
128  *           int __1;
129  *           int __2;
130  *           int a[7];
131  *       };
132  *   };
133  *
134  *   struct sample *s = ...;
135  *
136  *   int x = &s->a[3]; // access string = '0:1:2:3'
137  *
138  * Low-level spec has 1:1 mapping with each element of access string (it's
139  * just a parsed access string representation): [0, 1, 2, 3].
140  *
141  * High-level spec will capture only 3 points:
142  *   - intial zero-index access by pointer (&s->... is the same as &s[0]...);
143  *   - field 'a' access (corresponds to '2' in low-level spec);
144  *   - array element #3 access (corresponds to '3' in low-level spec).
145  *
146  * Type-based relocations (TYPE_EXISTS/TYPE_SIZE,
147  * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their
148  * spec and raw_spec are kept empty.
149  *
150  * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access
151  * string to specify enumerator's value index that need to be relocated.
152  */
153 static int bpf_core_parse_spec(const struct btf *btf,
154 			       __u32 type_id,
155 			       const char *spec_str,
156 			       enum bpf_core_relo_kind relo_kind,
157 			       struct bpf_core_spec *spec)
158 {
159 	int access_idx, parsed_len, i;
160 	struct bpf_core_accessor *acc;
161 	const struct btf_type *t;
162 	const char *name;
163 	__u32 id;
164 	__s64 sz;
165 
166 	if (str_is_empty(spec_str) || *spec_str == ':')
167 		return -EINVAL;
168 
169 	memset(spec, 0, sizeof(*spec));
170 	spec->btf = btf;
171 	spec->root_type_id = type_id;
172 	spec->relo_kind = relo_kind;
173 
174 	/* type-based relocations don't have a field access string */
175 	if (core_relo_is_type_based(relo_kind)) {
176 		if (strcmp(spec_str, "0"))
177 			return -EINVAL;
178 		return 0;
179 	}
180 
181 	/* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */
182 	while (*spec_str) {
183 		if (*spec_str == ':')
184 			++spec_str;
185 		if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1)
186 			return -EINVAL;
187 		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
188 			return -E2BIG;
189 		spec_str += parsed_len;
190 		spec->raw_spec[spec->raw_len++] = access_idx;
191 	}
192 
193 	if (spec->raw_len == 0)
194 		return -EINVAL;
195 
196 	t = skip_mods_and_typedefs(btf, type_id, &id);
197 	if (!t)
198 		return -EINVAL;
199 
200 	access_idx = spec->raw_spec[0];
201 	acc = &spec->spec[0];
202 	acc->type_id = id;
203 	acc->idx = access_idx;
204 	spec->len++;
205 
206 	if (core_relo_is_enumval_based(relo_kind)) {
207 		if (!btf_is_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t))
208 			return -EINVAL;
209 
210 		/* record enumerator name in a first accessor */
211 		acc->name = btf__name_by_offset(btf, btf_enum(t)[access_idx].name_off);
212 		return 0;
213 	}
214 
215 	if (!core_relo_is_field_based(relo_kind))
216 		return -EINVAL;
217 
218 	sz = btf__resolve_size(btf, id);
219 	if (sz < 0)
220 		return sz;
221 	spec->bit_offset = access_idx * sz * 8;
222 
223 	for (i = 1; i < spec->raw_len; i++) {
224 		t = skip_mods_and_typedefs(btf, id, &id);
225 		if (!t)
226 			return -EINVAL;
227 
228 		access_idx = spec->raw_spec[i];
229 		acc = &spec->spec[spec->len];
230 
231 		if (btf_is_composite(t)) {
232 			const struct btf_member *m;
233 			__u32 bit_offset;
234 
235 			if (access_idx >= btf_vlen(t))
236 				return -EINVAL;
237 
238 			bit_offset = btf_member_bit_offset(t, access_idx);
239 			spec->bit_offset += bit_offset;
240 
241 			m = btf_members(t) + access_idx;
242 			if (m->name_off) {
243 				name = btf__name_by_offset(btf, m->name_off);
244 				if (str_is_empty(name))
245 					return -EINVAL;
246 
247 				acc->type_id = id;
248 				acc->idx = access_idx;
249 				acc->name = name;
250 				spec->len++;
251 			}
252 
253 			id = m->type;
254 		} else if (btf_is_array(t)) {
255 			const struct btf_array *a = btf_array(t);
256 			bool flex;
257 
258 			t = skip_mods_and_typedefs(btf, a->type, &id);
259 			if (!t)
260 				return -EINVAL;
261 
262 			flex = is_flex_arr(btf, acc - 1, a);
263 			if (!flex && access_idx >= a->nelems)
264 				return -EINVAL;
265 
266 			spec->spec[spec->len].type_id = id;
267 			spec->spec[spec->len].idx = access_idx;
268 			spec->len++;
269 
270 			sz = btf__resolve_size(btf, id);
271 			if (sz < 0)
272 				return sz;
273 			spec->bit_offset += access_idx * sz * 8;
274 		} else {
275 			pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n",
276 				type_id, spec_str, i, id, btf_kind_str(t));
277 			return -EINVAL;
278 		}
279 	}
280 
281 	return 0;
282 }
283 
284 /* Check two types for compatibility for the purpose of field access
285  * relocation. const/volatile/restrict and typedefs are skipped to ensure we
286  * are relocating semantically compatible entities:
287  *   - any two STRUCTs/UNIONs are compatible and can be mixed;
288  *   - any two FWDs are compatible, if their names match (modulo flavor suffix);
289  *   - any two PTRs are always compatible;
290  *   - for ENUMs, names should be the same (ignoring flavor suffix) or at
291  *     least one of enums should be anonymous;
292  *   - for ENUMs, check sizes, names are ignored;
293  *   - for INT, size and signedness are ignored;
294  *   - any two FLOATs are always compatible;
295  *   - for ARRAY, dimensionality is ignored, element types are checked for
296  *     compatibility recursively;
297  *   - everything else shouldn't be ever a target of relocation.
298  * These rules are not set in stone and probably will be adjusted as we get
299  * more experience with using BPF CO-RE relocations.
300  */
301 static int bpf_core_fields_are_compat(const struct btf *local_btf,
302 				      __u32 local_id,
303 				      const struct btf *targ_btf,
304 				      __u32 targ_id)
305 {
306 	const struct btf_type *local_type, *targ_type;
307 
308 recur:
309 	local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
310 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
311 	if (!local_type || !targ_type)
312 		return -EINVAL;
313 
314 	if (btf_is_composite(local_type) && btf_is_composite(targ_type))
315 		return 1;
316 	if (btf_kind(local_type) != btf_kind(targ_type))
317 		return 0;
318 
319 	switch (btf_kind(local_type)) {
320 	case BTF_KIND_PTR:
321 	case BTF_KIND_FLOAT:
322 		return 1;
323 	case BTF_KIND_FWD:
324 	case BTF_KIND_ENUM: {
325 		const char *local_name, *targ_name;
326 		size_t local_len, targ_len;
327 
328 		local_name = btf__name_by_offset(local_btf,
329 						 local_type->name_off);
330 		targ_name = btf__name_by_offset(targ_btf, targ_type->name_off);
331 		local_len = bpf_core_essential_name_len(local_name);
332 		targ_len = bpf_core_essential_name_len(targ_name);
333 		/* one of them is anonymous or both w/ same flavor-less names */
334 		return local_len == 0 || targ_len == 0 ||
335 		       (local_len == targ_len &&
336 			strncmp(local_name, targ_name, local_len) == 0);
337 	}
338 	case BTF_KIND_INT:
339 		/* just reject deprecated bitfield-like integers; all other
340 		 * integers are by default compatible between each other
341 		 */
342 		return btf_int_offset(local_type) == 0 &&
343 		       btf_int_offset(targ_type) == 0;
344 	case BTF_KIND_ARRAY:
345 		local_id = btf_array(local_type)->type;
346 		targ_id = btf_array(targ_type)->type;
347 		goto recur;
348 	default:
349 		pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n",
350 			btf_kind(local_type), local_id, targ_id);
351 		return 0;
352 	}
353 }
354 
355 /*
356  * Given single high-level named field accessor in local type, find
357  * corresponding high-level accessor for a target type. Along the way,
358  * maintain low-level spec for target as well. Also keep updating target
359  * bit offset.
360  *
361  * Searching is performed through recursive exhaustive enumeration of all
362  * fields of a struct/union. If there are any anonymous (embedded)
363  * structs/unions, they are recursively searched as well. If field with
364  * desired name is found, check compatibility between local and target types,
365  * before returning result.
366  *
367  * 1 is returned, if field is found.
368  * 0 is returned if no compatible field is found.
369  * <0 is returned on error.
370  */
371 static int bpf_core_match_member(const struct btf *local_btf,
372 				 const struct bpf_core_accessor *local_acc,
373 				 const struct btf *targ_btf,
374 				 __u32 targ_id,
375 				 struct bpf_core_spec *spec,
376 				 __u32 *next_targ_id)
377 {
378 	const struct btf_type *local_type, *targ_type;
379 	const struct btf_member *local_member, *m;
380 	const char *local_name, *targ_name;
381 	__u32 local_id;
382 	int i, n, found;
383 
384 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
385 	if (!targ_type)
386 		return -EINVAL;
387 	if (!btf_is_composite(targ_type))
388 		return 0;
389 
390 	local_id = local_acc->type_id;
391 	local_type = btf__type_by_id(local_btf, local_id);
392 	local_member = btf_members(local_type) + local_acc->idx;
393 	local_name = btf__name_by_offset(local_btf, local_member->name_off);
394 
395 	n = btf_vlen(targ_type);
396 	m = btf_members(targ_type);
397 	for (i = 0; i < n; i++, m++) {
398 		__u32 bit_offset;
399 
400 		bit_offset = btf_member_bit_offset(targ_type, i);
401 
402 		/* too deep struct/union/array nesting */
403 		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
404 			return -E2BIG;
405 
406 		/* speculate this member will be the good one */
407 		spec->bit_offset += bit_offset;
408 		spec->raw_spec[spec->raw_len++] = i;
409 
410 		targ_name = btf__name_by_offset(targ_btf, m->name_off);
411 		if (str_is_empty(targ_name)) {
412 			/* embedded struct/union, we need to go deeper */
413 			found = bpf_core_match_member(local_btf, local_acc,
414 						      targ_btf, m->type,
415 						      spec, next_targ_id);
416 			if (found) /* either found or error */
417 				return found;
418 		} else if (strcmp(local_name, targ_name) == 0) {
419 			/* matching named field */
420 			struct bpf_core_accessor *targ_acc;
421 
422 			targ_acc = &spec->spec[spec->len++];
423 			targ_acc->type_id = targ_id;
424 			targ_acc->idx = i;
425 			targ_acc->name = targ_name;
426 
427 			*next_targ_id = m->type;
428 			found = bpf_core_fields_are_compat(local_btf,
429 							   local_member->type,
430 							   targ_btf, m->type);
431 			if (!found)
432 				spec->len--; /* pop accessor */
433 			return found;
434 		}
435 		/* member turned out not to be what we looked for */
436 		spec->bit_offset -= bit_offset;
437 		spec->raw_len--;
438 	}
439 
440 	return 0;
441 }
442 
443 /*
444  * Try to match local spec to a target type and, if successful, produce full
445  * target spec (high-level, low-level + bit offset).
446  */
447 static int bpf_core_spec_match(struct bpf_core_spec *local_spec,
448 			       const struct btf *targ_btf, __u32 targ_id,
449 			       struct bpf_core_spec *targ_spec)
450 {
451 	const struct btf_type *targ_type;
452 	const struct bpf_core_accessor *local_acc;
453 	struct bpf_core_accessor *targ_acc;
454 	int i, sz, matched;
455 
456 	memset(targ_spec, 0, sizeof(*targ_spec));
457 	targ_spec->btf = targ_btf;
458 	targ_spec->root_type_id = targ_id;
459 	targ_spec->relo_kind = local_spec->relo_kind;
460 
461 	if (core_relo_is_type_based(local_spec->relo_kind)) {
462 		return bpf_core_types_are_compat(local_spec->btf,
463 						 local_spec->root_type_id,
464 						 targ_btf, targ_id);
465 	}
466 
467 	local_acc = &local_spec->spec[0];
468 	targ_acc = &targ_spec->spec[0];
469 
470 	if (core_relo_is_enumval_based(local_spec->relo_kind)) {
471 		size_t local_essent_len, targ_essent_len;
472 		const struct btf_enum *e;
473 		const char *targ_name;
474 
475 		/* has to resolve to an enum */
476 		targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id);
477 		if (!btf_is_enum(targ_type))
478 			return 0;
479 
480 		local_essent_len = bpf_core_essential_name_len(local_acc->name);
481 
482 		for (i = 0, e = btf_enum(targ_type); i < btf_vlen(targ_type); i++, e++) {
483 			targ_name = btf__name_by_offset(targ_spec->btf, e->name_off);
484 			targ_essent_len = bpf_core_essential_name_len(targ_name);
485 			if (targ_essent_len != local_essent_len)
486 				continue;
487 			if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) {
488 				targ_acc->type_id = targ_id;
489 				targ_acc->idx = i;
490 				targ_acc->name = targ_name;
491 				targ_spec->len++;
492 				targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
493 				targ_spec->raw_len++;
494 				return 1;
495 			}
496 		}
497 		return 0;
498 	}
499 
500 	if (!core_relo_is_field_based(local_spec->relo_kind))
501 		return -EINVAL;
502 
503 	for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) {
504 		targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id,
505 						   &targ_id);
506 		if (!targ_type)
507 			return -EINVAL;
508 
509 		if (local_acc->name) {
510 			matched = bpf_core_match_member(local_spec->btf,
511 							local_acc,
512 							targ_btf, targ_id,
513 							targ_spec, &targ_id);
514 			if (matched <= 0)
515 				return matched;
516 		} else {
517 			/* for i=0, targ_id is already treated as array element
518 			 * type (because it's the original struct), for others
519 			 * we should find array element type first
520 			 */
521 			if (i > 0) {
522 				const struct btf_array *a;
523 				bool flex;
524 
525 				if (!btf_is_array(targ_type))
526 					return 0;
527 
528 				a = btf_array(targ_type);
529 				flex = is_flex_arr(targ_btf, targ_acc - 1, a);
530 				if (!flex && local_acc->idx >= a->nelems)
531 					return 0;
532 				if (!skip_mods_and_typedefs(targ_btf, a->type,
533 							    &targ_id))
534 					return -EINVAL;
535 			}
536 
537 			/* too deep struct/union/array nesting */
538 			if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
539 				return -E2BIG;
540 
541 			targ_acc->type_id = targ_id;
542 			targ_acc->idx = local_acc->idx;
543 			targ_acc->name = NULL;
544 			targ_spec->len++;
545 			targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
546 			targ_spec->raw_len++;
547 
548 			sz = btf__resolve_size(targ_btf, targ_id);
549 			if (sz < 0)
550 				return sz;
551 			targ_spec->bit_offset += local_acc->idx * sz * 8;
552 		}
553 	}
554 
555 	return 1;
556 }
557 
558 static int bpf_core_calc_field_relo(const char *prog_name,
559 				    const struct bpf_core_relo *relo,
560 				    const struct bpf_core_spec *spec,
561 				    __u32 *val, __u32 *field_sz, __u32 *type_id,
562 				    bool *validate)
563 {
564 	const struct bpf_core_accessor *acc;
565 	const struct btf_type *t;
566 	__u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id;
567 	const struct btf_member *m;
568 	const struct btf_type *mt;
569 	bool bitfield;
570 	__s64 sz;
571 
572 	*field_sz = 0;
573 
574 	if (relo->kind == BPF_FIELD_EXISTS) {
575 		*val = spec ? 1 : 0;
576 		return 0;
577 	}
578 
579 	if (!spec)
580 		return -EUCLEAN; /* request instruction poisoning */
581 
582 	acc = &spec->spec[spec->len - 1];
583 	t = btf__type_by_id(spec->btf, acc->type_id);
584 
585 	/* a[n] accessor needs special handling */
586 	if (!acc->name) {
587 		if (relo->kind == BPF_FIELD_BYTE_OFFSET) {
588 			*val = spec->bit_offset / 8;
589 			/* remember field size for load/store mem size */
590 			sz = btf__resolve_size(spec->btf, acc->type_id);
591 			if (sz < 0)
592 				return -EINVAL;
593 			*field_sz = sz;
594 			*type_id = acc->type_id;
595 		} else if (relo->kind == BPF_FIELD_BYTE_SIZE) {
596 			sz = btf__resolve_size(spec->btf, acc->type_id);
597 			if (sz < 0)
598 				return -EINVAL;
599 			*val = sz;
600 		} else {
601 			pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n",
602 				prog_name, relo->kind, relo->insn_off / 8);
603 			return -EINVAL;
604 		}
605 		if (validate)
606 			*validate = true;
607 		return 0;
608 	}
609 
610 	m = btf_members(t) + acc->idx;
611 	mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id);
612 	bit_off = spec->bit_offset;
613 	bit_sz = btf_member_bitfield_size(t, acc->idx);
614 
615 	bitfield = bit_sz > 0;
616 	if (bitfield) {
617 		byte_sz = mt->size;
618 		byte_off = bit_off / 8 / byte_sz * byte_sz;
619 		/* figure out smallest int size necessary for bitfield load */
620 		while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) {
621 			if (byte_sz >= 8) {
622 				/* bitfield can't be read with 64-bit read */
623 				pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n",
624 					prog_name, relo->kind, relo->insn_off / 8);
625 				return -E2BIG;
626 			}
627 			byte_sz *= 2;
628 			byte_off = bit_off / 8 / byte_sz * byte_sz;
629 		}
630 	} else {
631 		sz = btf__resolve_size(spec->btf, field_type_id);
632 		if (sz < 0)
633 			return -EINVAL;
634 		byte_sz = sz;
635 		byte_off = spec->bit_offset / 8;
636 		bit_sz = byte_sz * 8;
637 	}
638 
639 	/* for bitfields, all the relocatable aspects are ambiguous and we
640 	 * might disagree with compiler, so turn off validation of expected
641 	 * value, except for signedness
642 	 */
643 	if (validate)
644 		*validate = !bitfield;
645 
646 	switch (relo->kind) {
647 	case BPF_FIELD_BYTE_OFFSET:
648 		*val = byte_off;
649 		if (!bitfield) {
650 			*field_sz = byte_sz;
651 			*type_id = field_type_id;
652 		}
653 		break;
654 	case BPF_FIELD_BYTE_SIZE:
655 		*val = byte_sz;
656 		break;
657 	case BPF_FIELD_SIGNED:
658 		/* enums will be assumed unsigned */
659 		*val = btf_is_enum(mt) ||
660 		       (btf_int_encoding(mt) & BTF_INT_SIGNED);
661 		if (validate)
662 			*validate = true; /* signedness is never ambiguous */
663 		break;
664 	case BPF_FIELD_LSHIFT_U64:
665 #if __BYTE_ORDER == __LITTLE_ENDIAN
666 		*val = 64 - (bit_off + bit_sz - byte_off  * 8);
667 #else
668 		*val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8);
669 #endif
670 		break;
671 	case BPF_FIELD_RSHIFT_U64:
672 		*val = 64 - bit_sz;
673 		if (validate)
674 			*validate = true; /* right shift is never ambiguous */
675 		break;
676 	case BPF_FIELD_EXISTS:
677 	default:
678 		return -EOPNOTSUPP;
679 	}
680 
681 	return 0;
682 }
683 
684 static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo,
685 				   const struct bpf_core_spec *spec,
686 				   __u32 *val)
687 {
688 	__s64 sz;
689 
690 	/* type-based relos return zero when target type is not found */
691 	if (!spec) {
692 		*val = 0;
693 		return 0;
694 	}
695 
696 	switch (relo->kind) {
697 	case BPF_TYPE_ID_TARGET:
698 		*val = spec->root_type_id;
699 		break;
700 	case BPF_TYPE_EXISTS:
701 		*val = 1;
702 		break;
703 	case BPF_TYPE_SIZE:
704 		sz = btf__resolve_size(spec->btf, spec->root_type_id);
705 		if (sz < 0)
706 			return -EINVAL;
707 		*val = sz;
708 		break;
709 	case BPF_TYPE_ID_LOCAL:
710 	/* BPF_TYPE_ID_LOCAL is handled specially and shouldn't get here */
711 	default:
712 		return -EOPNOTSUPP;
713 	}
714 
715 	return 0;
716 }
717 
718 static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo,
719 				      const struct bpf_core_spec *spec,
720 				      __u32 *val)
721 {
722 	const struct btf_type *t;
723 	const struct btf_enum *e;
724 
725 	switch (relo->kind) {
726 	case BPF_ENUMVAL_EXISTS:
727 		*val = spec ? 1 : 0;
728 		break;
729 	case BPF_ENUMVAL_VALUE:
730 		if (!spec)
731 			return -EUCLEAN; /* request instruction poisoning */
732 		t = btf__type_by_id(spec->btf, spec->spec[0].type_id);
733 		e = btf_enum(t) + spec->spec[0].idx;
734 		*val = e->val;
735 		break;
736 	default:
737 		return -EOPNOTSUPP;
738 	}
739 
740 	return 0;
741 }
742 
743 struct bpf_core_relo_res
744 {
745 	/* expected value in the instruction, unless validate == false */
746 	__u32 orig_val;
747 	/* new value that needs to be patched up to */
748 	__u32 new_val;
749 	/* relocation unsuccessful, poison instruction, but don't fail load */
750 	bool poison;
751 	/* some relocations can't be validated against orig_val */
752 	bool validate;
753 	/* for field byte offset relocations or the forms:
754 	 *     *(T *)(rX + <off>) = rY
755 	 *     rX = *(T *)(rY + <off>),
756 	 * we remember original and resolved field size to adjust direct
757 	 * memory loads of pointers and integers; this is necessary for 32-bit
758 	 * host kernel architectures, but also allows to automatically
759 	 * relocate fields that were resized from, e.g., u32 to u64, etc.
760 	 */
761 	bool fail_memsz_adjust;
762 	__u32 orig_sz;
763 	__u32 orig_type_id;
764 	__u32 new_sz;
765 	__u32 new_type_id;
766 };
767 
768 /* Calculate original and target relocation values, given local and target
769  * specs and relocation kind. These values are calculated for each candidate.
770  * If there are multiple candidates, resulting values should all be consistent
771  * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity.
772  * If instruction has to be poisoned, *poison will be set to true.
773  */
774 static int bpf_core_calc_relo(const char *prog_name,
775 			      const struct bpf_core_relo *relo,
776 			      int relo_idx,
777 			      const struct bpf_core_spec *local_spec,
778 			      const struct bpf_core_spec *targ_spec,
779 			      struct bpf_core_relo_res *res)
780 {
781 	int err = -EOPNOTSUPP;
782 
783 	res->orig_val = 0;
784 	res->new_val = 0;
785 	res->poison = false;
786 	res->validate = true;
787 	res->fail_memsz_adjust = false;
788 	res->orig_sz = res->new_sz = 0;
789 	res->orig_type_id = res->new_type_id = 0;
790 
791 	if (core_relo_is_field_based(relo->kind)) {
792 		err = bpf_core_calc_field_relo(prog_name, relo, local_spec,
793 					       &res->orig_val, &res->orig_sz,
794 					       &res->orig_type_id, &res->validate);
795 		err = err ?: bpf_core_calc_field_relo(prog_name, relo, targ_spec,
796 						      &res->new_val, &res->new_sz,
797 						      &res->new_type_id, NULL);
798 		if (err)
799 			goto done;
800 		/* Validate if it's safe to adjust load/store memory size.
801 		 * Adjustments are performed only if original and new memory
802 		 * sizes differ.
803 		 */
804 		res->fail_memsz_adjust = false;
805 		if (res->orig_sz != res->new_sz) {
806 			const struct btf_type *orig_t, *new_t;
807 
808 			orig_t = btf__type_by_id(local_spec->btf, res->orig_type_id);
809 			new_t = btf__type_by_id(targ_spec->btf, res->new_type_id);
810 
811 			/* There are two use cases in which it's safe to
812 			 * adjust load/store's mem size:
813 			 *   - reading a 32-bit kernel pointer, while on BPF
814 			 *   size pointers are always 64-bit; in this case
815 			 *   it's safe to "downsize" instruction size due to
816 			 *   pointer being treated as unsigned integer with
817 			 *   zero-extended upper 32-bits;
818 			 *   - reading unsigned integers, again due to
819 			 *   zero-extension is preserving the value correctly.
820 			 *
821 			 * In all other cases it's incorrect to attempt to
822 			 * load/store field because read value will be
823 			 * incorrect, so we poison relocated instruction.
824 			 */
825 			if (btf_is_ptr(orig_t) && btf_is_ptr(new_t))
826 				goto done;
827 			if (btf_is_int(orig_t) && btf_is_int(new_t) &&
828 			    btf_int_encoding(orig_t) != BTF_INT_SIGNED &&
829 			    btf_int_encoding(new_t) != BTF_INT_SIGNED)
830 				goto done;
831 
832 			/* mark as invalid mem size adjustment, but this will
833 			 * only be checked for LDX/STX/ST insns
834 			 */
835 			res->fail_memsz_adjust = true;
836 		}
837 	} else if (core_relo_is_type_based(relo->kind)) {
838 		err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val);
839 		err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val);
840 	} else if (core_relo_is_enumval_based(relo->kind)) {
841 		err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val);
842 		err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val);
843 	}
844 
845 done:
846 	if (err == -EUCLEAN) {
847 		/* EUCLEAN is used to signal instruction poisoning request */
848 		res->poison = true;
849 		err = 0;
850 	} else if (err == -EOPNOTSUPP) {
851 		/* EOPNOTSUPP means unknown/unsupported relocation */
852 		pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n",
853 			prog_name, relo_idx, core_relo_kind_str(relo->kind),
854 			relo->kind, relo->insn_off / 8);
855 	}
856 
857 	return err;
858 }
859 
860 /*
861  * Turn instruction for which CO_RE relocation failed into invalid one with
862  * distinct signature.
863  */
864 static void bpf_core_poison_insn(const char *prog_name, int relo_idx,
865 				 int insn_idx, struct bpf_insn *insn)
866 {
867 	pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n",
868 		 prog_name, relo_idx, insn_idx);
869 	insn->code = BPF_JMP | BPF_CALL;
870 	insn->dst_reg = 0;
871 	insn->src_reg = 0;
872 	insn->off = 0;
873 	/* if this instruction is reachable (not a dead code),
874 	 * verifier will complain with the following message:
875 	 * invalid func unknown#195896080
876 	 */
877 	insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */
878 }
879 
880 static int insn_bpf_size_to_bytes(struct bpf_insn *insn)
881 {
882 	switch (BPF_SIZE(insn->code)) {
883 	case BPF_DW: return 8;
884 	case BPF_W: return 4;
885 	case BPF_H: return 2;
886 	case BPF_B: return 1;
887 	default: return -1;
888 	}
889 }
890 
891 static int insn_bytes_to_bpf_size(__u32 sz)
892 {
893 	switch (sz) {
894 	case 8: return BPF_DW;
895 	case 4: return BPF_W;
896 	case 2: return BPF_H;
897 	case 1: return BPF_B;
898 	default: return -1;
899 	}
900 }
901 
902 /*
903  * Patch relocatable BPF instruction.
904  *
905  * Patched value is determined by relocation kind and target specification.
906  * For existence relocations target spec will be NULL if field/type is not found.
907  * Expected insn->imm value is determined using relocation kind and local
908  * spec, and is checked before patching instruction. If actual insn->imm value
909  * is wrong, bail out with error.
910  *
911  * Currently supported classes of BPF instruction are:
912  * 1. rX = <imm> (assignment with immediate operand);
913  * 2. rX += <imm> (arithmetic operations with immediate operand);
914  * 3. rX = <imm64> (load with 64-bit immediate value);
915  * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64};
916  * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64};
917  * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}.
918  */
919 static int bpf_core_patch_insn(const char *prog_name, struct bpf_insn *insn,
920 			       int insn_idx, const struct bpf_core_relo *relo,
921 			       int relo_idx, const struct bpf_core_relo_res *res)
922 {
923 	__u32 orig_val, new_val;
924 	__u8 class;
925 
926 	class = BPF_CLASS(insn->code);
927 
928 	if (res->poison) {
929 poison:
930 		/* poison second part of ldimm64 to avoid confusing error from
931 		 * verifier about "unknown opcode 00"
932 		 */
933 		if (is_ldimm64_insn(insn))
934 			bpf_core_poison_insn(prog_name, relo_idx, insn_idx + 1, insn + 1);
935 		bpf_core_poison_insn(prog_name, relo_idx, insn_idx, insn);
936 		return 0;
937 	}
938 
939 	orig_val = res->orig_val;
940 	new_val = res->new_val;
941 
942 	switch (class) {
943 	case BPF_ALU:
944 	case BPF_ALU64:
945 		if (BPF_SRC(insn->code) != BPF_K)
946 			return -EINVAL;
947 		if (res->validate && insn->imm != orig_val) {
948 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n",
949 				prog_name, relo_idx,
950 				insn_idx, insn->imm, orig_val, new_val);
951 			return -EINVAL;
952 		}
953 		orig_val = insn->imm;
954 		insn->imm = new_val;
955 		pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n",
956 			 prog_name, relo_idx, insn_idx,
957 			 orig_val, new_val);
958 		break;
959 	case BPF_LDX:
960 	case BPF_ST:
961 	case BPF_STX:
962 		if (res->validate && insn->off != orig_val) {
963 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %u -> %u\n",
964 				prog_name, relo_idx, insn_idx, insn->off, orig_val, new_val);
965 			return -EINVAL;
966 		}
967 		if (new_val > SHRT_MAX) {
968 			pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n",
969 				prog_name, relo_idx, insn_idx, new_val);
970 			return -ERANGE;
971 		}
972 		if (res->fail_memsz_adjust) {
973 			pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. "
974 				"Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n",
975 				prog_name, relo_idx, insn_idx);
976 			goto poison;
977 		}
978 
979 		orig_val = insn->off;
980 		insn->off = new_val;
981 		pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n",
982 			 prog_name, relo_idx, insn_idx, orig_val, new_val);
983 
984 		if (res->new_sz != res->orig_sz) {
985 			int insn_bytes_sz, insn_bpf_sz;
986 
987 			insn_bytes_sz = insn_bpf_size_to_bytes(insn);
988 			if (insn_bytes_sz != res->orig_sz) {
989 				pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n",
990 					prog_name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz);
991 				return -EINVAL;
992 			}
993 
994 			insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz);
995 			if (insn_bpf_sz < 0) {
996 				pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n",
997 					prog_name, relo_idx, insn_idx, res->new_sz);
998 				return -EINVAL;
999 			}
1000 
1001 			insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code);
1002 			pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n",
1003 				 prog_name, relo_idx, insn_idx, res->orig_sz, res->new_sz);
1004 		}
1005 		break;
1006 	case BPF_LD: {
1007 		__u64 imm;
1008 
1009 		if (!is_ldimm64_insn(insn) ||
1010 		    insn[0].src_reg != 0 || insn[0].off != 0 ||
1011 		    insn[1].code != 0 || insn[1].dst_reg != 0 ||
1012 		    insn[1].src_reg != 0 || insn[1].off != 0) {
1013 			pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n",
1014 				prog_name, relo_idx, insn_idx);
1015 			return -EINVAL;
1016 		}
1017 
1018 		imm = insn[0].imm + ((__u64)insn[1].imm << 32);
1019 		if (res->validate && imm != orig_val) {
1020 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %u -> %u\n",
1021 				prog_name, relo_idx,
1022 				insn_idx, (unsigned long long)imm,
1023 				orig_val, new_val);
1024 			return -EINVAL;
1025 		}
1026 
1027 		insn[0].imm = new_val;
1028 		insn[1].imm = 0; /* currently only 32-bit values are supported */
1029 		pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %u\n",
1030 			 prog_name, relo_idx, insn_idx,
1031 			 (unsigned long long)imm, new_val);
1032 		break;
1033 	}
1034 	default:
1035 		pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n",
1036 			prog_name, relo_idx, insn_idx, insn->code,
1037 			insn->src_reg, insn->dst_reg, insn->off, insn->imm);
1038 		return -EINVAL;
1039 	}
1040 
1041 	return 0;
1042 }
1043 
1044 /* Output spec definition in the format:
1045  * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>,
1046  * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b
1047  */
1048 static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec)
1049 {
1050 	const struct btf_type *t;
1051 	const struct btf_enum *e;
1052 	const char *s;
1053 	__u32 type_id;
1054 	int i;
1055 
1056 	type_id = spec->root_type_id;
1057 	t = btf__type_by_id(spec->btf, type_id);
1058 	s = btf__name_by_offset(spec->btf, t->name_off);
1059 
1060 	libbpf_print(level, "[%u] %s %s", type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s);
1061 
1062 	if (core_relo_is_type_based(spec->relo_kind))
1063 		return;
1064 
1065 	if (core_relo_is_enumval_based(spec->relo_kind)) {
1066 		t = skip_mods_and_typedefs(spec->btf, type_id, NULL);
1067 		e = btf_enum(t) + spec->raw_spec[0];
1068 		s = btf__name_by_offset(spec->btf, e->name_off);
1069 
1070 		libbpf_print(level, "::%s = %u", s, e->val);
1071 		return;
1072 	}
1073 
1074 	if (core_relo_is_field_based(spec->relo_kind)) {
1075 		for (i = 0; i < spec->len; i++) {
1076 			if (spec->spec[i].name)
1077 				libbpf_print(level, ".%s", spec->spec[i].name);
1078 			else if (i > 0 || spec->spec[i].idx > 0)
1079 				libbpf_print(level, "[%u]", spec->spec[i].idx);
1080 		}
1081 
1082 		libbpf_print(level, " (");
1083 		for (i = 0; i < spec->raw_len; i++)
1084 			libbpf_print(level, "%s%d", i == 0 ? "" : ":", spec->raw_spec[i]);
1085 
1086 		if (spec->bit_offset % 8)
1087 			libbpf_print(level, " @ offset %u.%u)",
1088 				     spec->bit_offset / 8, spec->bit_offset % 8);
1089 		else
1090 			libbpf_print(level, " @ offset %u)", spec->bit_offset / 8);
1091 		return;
1092 	}
1093 }
1094 
1095 /*
1096  * CO-RE relocate single instruction.
1097  *
1098  * The outline and important points of the algorithm:
1099  * 1. For given local type, find corresponding candidate target types.
1100  *    Candidate type is a type with the same "essential" name, ignoring
1101  *    everything after last triple underscore (___). E.g., `sample`,
1102  *    `sample___flavor_one`, `sample___flavor_another_one`, are all candidates
1103  *    for each other. Names with triple underscore are referred to as
1104  *    "flavors" and are useful, among other things, to allow to
1105  *    specify/support incompatible variations of the same kernel struct, which
1106  *    might differ between different kernel versions and/or build
1107  *    configurations.
1108  *
1109  *    N.B. Struct "flavors" could be generated by bpftool's BTF-to-C
1110  *    converter, when deduplicated BTF of a kernel still contains more than
1111  *    one different types with the same name. In that case, ___2, ___3, etc
1112  *    are appended starting from second name conflict. But start flavors are
1113  *    also useful to be defined "locally", in BPF program, to extract same
1114  *    data from incompatible changes between different kernel
1115  *    versions/configurations. For instance, to handle field renames between
1116  *    kernel versions, one can use two flavors of the struct name with the
1117  *    same common name and use conditional relocations to extract that field,
1118  *    depending on target kernel version.
1119  * 2. For each candidate type, try to match local specification to this
1120  *    candidate target type. Matching involves finding corresponding
1121  *    high-level spec accessors, meaning that all named fields should match,
1122  *    as well as all array accesses should be within the actual bounds. Also,
1123  *    types should be compatible (see bpf_core_fields_are_compat for details).
1124  * 3. It is supported and expected that there might be multiple flavors
1125  *    matching the spec. As long as all the specs resolve to the same set of
1126  *    offsets across all candidates, there is no error. If there is any
1127  *    ambiguity, CO-RE relocation will fail. This is necessary to accomodate
1128  *    imprefection of BTF deduplication, which can cause slight duplication of
1129  *    the same BTF type, if some directly or indirectly referenced (by
1130  *    pointer) type gets resolved to different actual types in different
1131  *    object files. If such situation occurs, deduplicated BTF will end up
1132  *    with two (or more) structurally identical types, which differ only in
1133  *    types they refer to through pointer. This should be OK in most cases and
1134  *    is not an error.
1135  * 4. Candidate types search is performed by linearly scanning through all
1136  *    types in target BTF. It is anticipated that this is overall more
1137  *    efficient memory-wise and not significantly worse (if not better)
1138  *    CPU-wise compared to prebuilding a map from all local type names to
1139  *    a list of candidate type names. It's also sped up by caching resolved
1140  *    list of matching candidates per each local "root" type ID, that has at
1141  *    least one bpf_core_relo associated with it. This list is shared
1142  *    between multiple relocations for the same type ID and is updated as some
1143  *    of the candidates are pruned due to structural incompatibility.
1144  */
1145 int bpf_core_apply_relo_insn(const char *prog_name, struct bpf_insn *insn,
1146 			     int insn_idx,
1147 			     const struct bpf_core_relo *relo,
1148 			     int relo_idx,
1149 			     const struct btf *local_btf,
1150 			     struct bpf_core_cand_list *cands)
1151 {
1152 	struct bpf_core_spec local_spec, cand_spec, targ_spec = {};
1153 	struct bpf_core_relo_res cand_res, targ_res;
1154 	const struct btf_type *local_type;
1155 	const char *local_name;
1156 	__u32 local_id;
1157 	const char *spec_str;
1158 	int i, j, err;
1159 
1160 	local_id = relo->type_id;
1161 	local_type = btf__type_by_id(local_btf, local_id);
1162 	if (!local_type)
1163 		return -EINVAL;
1164 
1165 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
1166 	if (!local_name)
1167 		return -EINVAL;
1168 
1169 	spec_str = btf__name_by_offset(local_btf, relo->access_str_off);
1170 	if (str_is_empty(spec_str))
1171 		return -EINVAL;
1172 
1173 	err = bpf_core_parse_spec(local_btf, local_id, spec_str, relo->kind, &local_spec);
1174 	if (err) {
1175 		pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n",
1176 			prog_name, relo_idx, local_id, btf_kind_str(local_type),
1177 			str_is_empty(local_name) ? "<anon>" : local_name,
1178 			spec_str, err);
1179 		return -EINVAL;
1180 	}
1181 
1182 	pr_debug("prog '%s': relo #%d: kind <%s> (%d), spec is ", prog_name,
1183 		 relo_idx, core_relo_kind_str(relo->kind), relo->kind);
1184 	bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec);
1185 	libbpf_print(LIBBPF_DEBUG, "\n");
1186 
1187 	/* TYPE_ID_LOCAL relo is special and doesn't need candidate search */
1188 	if (relo->kind == BPF_TYPE_ID_LOCAL) {
1189 		targ_res.validate = true;
1190 		targ_res.poison = false;
1191 		targ_res.orig_val = local_spec.root_type_id;
1192 		targ_res.new_val = local_spec.root_type_id;
1193 		goto patch_insn;
1194 	}
1195 
1196 	/* libbpf doesn't support candidate search for anonymous types */
1197 	if (str_is_empty(spec_str)) {
1198 		pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n",
1199 			prog_name, relo_idx, core_relo_kind_str(relo->kind), relo->kind);
1200 		return -EOPNOTSUPP;
1201 	}
1202 
1203 
1204 	for (i = 0, j = 0; i < cands->len; i++) {
1205 		err = bpf_core_spec_match(&local_spec, cands->cands[i].btf,
1206 					  cands->cands[i].id, &cand_spec);
1207 		if (err < 0) {
1208 			pr_warn("prog '%s': relo #%d: error matching candidate #%d ",
1209 				prog_name, relo_idx, i);
1210 			bpf_core_dump_spec(LIBBPF_WARN, &cand_spec);
1211 			libbpf_print(LIBBPF_WARN, ": %d\n", err);
1212 			return err;
1213 		}
1214 
1215 		pr_debug("prog '%s': relo #%d: %s candidate #%d ", prog_name,
1216 			 relo_idx, err == 0 ? "non-matching" : "matching", i);
1217 		bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec);
1218 		libbpf_print(LIBBPF_DEBUG, "\n");
1219 
1220 		if (err == 0)
1221 			continue;
1222 
1223 		err = bpf_core_calc_relo(prog_name, relo, relo_idx, &local_spec, &cand_spec, &cand_res);
1224 		if (err)
1225 			return err;
1226 
1227 		if (j == 0) {
1228 			targ_res = cand_res;
1229 			targ_spec = cand_spec;
1230 		} else if (cand_spec.bit_offset != targ_spec.bit_offset) {
1231 			/* if there are many field relo candidates, they
1232 			 * should all resolve to the same bit offset
1233 			 */
1234 			pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n",
1235 				prog_name, relo_idx, cand_spec.bit_offset,
1236 				targ_spec.bit_offset);
1237 			return -EINVAL;
1238 		} else if (cand_res.poison != targ_res.poison || cand_res.new_val != targ_res.new_val) {
1239 			/* all candidates should result in the same relocation
1240 			 * decision and value, otherwise it's dangerous to
1241 			 * proceed due to ambiguity
1242 			 */
1243 			pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %u != %s %u\n",
1244 				prog_name, relo_idx,
1245 				cand_res.poison ? "failure" : "success", cand_res.new_val,
1246 				targ_res.poison ? "failure" : "success", targ_res.new_val);
1247 			return -EINVAL;
1248 		}
1249 
1250 		cands->cands[j++] = cands->cands[i];
1251 	}
1252 
1253 	/*
1254 	 * For BPF_FIELD_EXISTS relo or when used BPF program has field
1255 	 * existence checks or kernel version/config checks, it's expected
1256 	 * that we might not find any candidates. In this case, if field
1257 	 * wasn't found in any candidate, the list of candidates shouldn't
1258 	 * change at all, we'll just handle relocating appropriately,
1259 	 * depending on relo's kind.
1260 	 */
1261 	if (j > 0)
1262 		cands->len = j;
1263 
1264 	/*
1265 	 * If no candidates were found, it might be both a programmer error,
1266 	 * as well as expected case, depending whether instruction w/
1267 	 * relocation is guarded in some way that makes it unreachable (dead
1268 	 * code) if relocation can't be resolved. This is handled in
1269 	 * bpf_core_patch_insn() uniformly by replacing that instruction with
1270 	 * BPF helper call insn (using invalid helper ID). If that instruction
1271 	 * is indeed unreachable, then it will be ignored and eliminated by
1272 	 * verifier. If it was an error, then verifier will complain and point
1273 	 * to a specific instruction number in its log.
1274 	 */
1275 	if (j == 0) {
1276 		pr_debug("prog '%s': relo #%d: no matching targets found\n",
1277 			 prog_name, relo_idx);
1278 
1279 		/* calculate single target relo result explicitly */
1280 		err = bpf_core_calc_relo(prog_name, relo, relo_idx, &local_spec, NULL, &targ_res);
1281 		if (err)
1282 			return err;
1283 	}
1284 
1285 patch_insn:
1286 	/* bpf_core_patch_insn() should know how to handle missing targ_spec */
1287 	err = bpf_core_patch_insn(prog_name, insn, insn_idx, relo, relo_idx, &targ_res);
1288 	if (err) {
1289 		pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
1290 			prog_name, relo_idx, relo->insn_off / 8, err);
1291 		return -EINVAL;
1292 	}
1293 
1294 	return 0;
1295 }
1296