1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2019 Facebook */ 3 4 #ifdef __KERNEL__ 5 #include <linux/bpf.h> 6 #include <linux/btf.h> 7 #include <linux/string.h> 8 #include <linux/bpf_verifier.h> 9 #include "relo_core.h" 10 11 static const char *btf_kind_str(const struct btf_type *t) 12 { 13 return btf_type_str(t); 14 } 15 16 static bool is_ldimm64_insn(struct bpf_insn *insn) 17 { 18 return insn->code == (BPF_LD | BPF_IMM | BPF_DW); 19 } 20 21 static const struct btf_type * 22 skip_mods_and_typedefs(const struct btf *btf, u32 id, u32 *res_id) 23 { 24 return btf_type_skip_modifiers(btf, id, res_id); 25 } 26 27 static const char *btf__name_by_offset(const struct btf *btf, u32 offset) 28 { 29 return btf_name_by_offset(btf, offset); 30 } 31 32 static s64 btf__resolve_size(const struct btf *btf, u32 type_id) 33 { 34 const struct btf_type *t; 35 int size; 36 37 t = btf_type_by_id(btf, type_id); 38 t = btf_resolve_size(btf, t, &size); 39 if (IS_ERR(t)) 40 return PTR_ERR(t); 41 return size; 42 } 43 44 enum libbpf_print_level { 45 LIBBPF_WARN, 46 LIBBPF_INFO, 47 LIBBPF_DEBUG, 48 }; 49 50 #undef pr_warn 51 #undef pr_info 52 #undef pr_debug 53 #define pr_warn(fmt, log, ...) bpf_log((void *)log, fmt, "", ##__VA_ARGS__) 54 #define pr_info(fmt, log, ...) bpf_log((void *)log, fmt, "", ##__VA_ARGS__) 55 #define pr_debug(fmt, log, ...) bpf_log((void *)log, fmt, "", ##__VA_ARGS__) 56 #define libbpf_print(level, fmt, ...) bpf_log((void *)prog_name, fmt, ##__VA_ARGS__) 57 #else 58 #include <stdio.h> 59 #include <string.h> 60 #include <errno.h> 61 #include <ctype.h> 62 #include <linux/err.h> 63 64 #include "libbpf.h" 65 #include "bpf.h" 66 #include "btf.h" 67 #include "str_error.h" 68 #include "libbpf_internal.h" 69 #endif 70 71 static bool is_flex_arr(const struct btf *btf, 72 const struct bpf_core_accessor *acc, 73 const struct btf_array *arr) 74 { 75 const struct btf_type *t; 76 77 /* not a flexible array, if not inside a struct or has non-zero size */ 78 if (!acc->name || arr->nelems > 0) 79 return false; 80 81 /* has to be the last member of enclosing struct */ 82 t = btf_type_by_id(btf, acc->type_id); 83 return acc->idx == btf_vlen(t) - 1; 84 } 85 86 static const char *core_relo_kind_str(enum bpf_core_relo_kind kind) 87 { 88 switch (kind) { 89 case BPF_CORE_FIELD_BYTE_OFFSET: return "byte_off"; 90 case BPF_CORE_FIELD_BYTE_SIZE: return "byte_sz"; 91 case BPF_CORE_FIELD_EXISTS: return "field_exists"; 92 case BPF_CORE_FIELD_SIGNED: return "signed"; 93 case BPF_CORE_FIELD_LSHIFT_U64: return "lshift_u64"; 94 case BPF_CORE_FIELD_RSHIFT_U64: return "rshift_u64"; 95 case BPF_CORE_TYPE_ID_LOCAL: return "local_type_id"; 96 case BPF_CORE_TYPE_ID_TARGET: return "target_type_id"; 97 case BPF_CORE_TYPE_EXISTS: return "type_exists"; 98 case BPF_CORE_TYPE_SIZE: return "type_size"; 99 case BPF_CORE_ENUMVAL_EXISTS: return "enumval_exists"; 100 case BPF_CORE_ENUMVAL_VALUE: return "enumval_value"; 101 default: return "unknown"; 102 } 103 } 104 105 static bool core_relo_is_field_based(enum bpf_core_relo_kind kind) 106 { 107 switch (kind) { 108 case BPF_CORE_FIELD_BYTE_OFFSET: 109 case BPF_CORE_FIELD_BYTE_SIZE: 110 case BPF_CORE_FIELD_EXISTS: 111 case BPF_CORE_FIELD_SIGNED: 112 case BPF_CORE_FIELD_LSHIFT_U64: 113 case BPF_CORE_FIELD_RSHIFT_U64: 114 return true; 115 default: 116 return false; 117 } 118 } 119 120 static bool core_relo_is_type_based(enum bpf_core_relo_kind kind) 121 { 122 switch (kind) { 123 case BPF_CORE_TYPE_ID_LOCAL: 124 case BPF_CORE_TYPE_ID_TARGET: 125 case BPF_CORE_TYPE_EXISTS: 126 case BPF_CORE_TYPE_SIZE: 127 return true; 128 default: 129 return false; 130 } 131 } 132 133 static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind) 134 { 135 switch (kind) { 136 case BPF_CORE_ENUMVAL_EXISTS: 137 case BPF_CORE_ENUMVAL_VALUE: 138 return true; 139 default: 140 return false; 141 } 142 } 143 144 /* 145 * Turn bpf_core_relo into a low- and high-level spec representation, 146 * validating correctness along the way, as well as calculating resulting 147 * field bit offset, specified by accessor string. Low-level spec captures 148 * every single level of nestedness, including traversing anonymous 149 * struct/union members. High-level one only captures semantically meaningful 150 * "turning points": named fields and array indicies. 151 * E.g., for this case: 152 * 153 * struct sample { 154 * int __unimportant; 155 * struct { 156 * int __1; 157 * int __2; 158 * int a[7]; 159 * }; 160 * }; 161 * 162 * struct sample *s = ...; 163 * 164 * int x = &s->a[3]; // access string = '0:1:2:3' 165 * 166 * Low-level spec has 1:1 mapping with each element of access string (it's 167 * just a parsed access string representation): [0, 1, 2, 3]. 168 * 169 * High-level spec will capture only 3 points: 170 * - intial zero-index access by pointer (&s->... is the same as &s[0]...); 171 * - field 'a' access (corresponds to '2' in low-level spec); 172 * - array element #3 access (corresponds to '3' in low-level spec). 173 * 174 * Type-based relocations (TYPE_EXISTS/TYPE_SIZE, 175 * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their 176 * spec and raw_spec are kept empty. 177 * 178 * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access 179 * string to specify enumerator's value index that need to be relocated. 180 */ 181 int bpf_core_parse_spec(const char *prog_name, const struct btf *btf, 182 const struct bpf_core_relo *relo, 183 struct bpf_core_spec *spec) 184 { 185 int access_idx, parsed_len, i; 186 struct bpf_core_accessor *acc; 187 const struct btf_type *t; 188 const char *name, *spec_str; 189 __u32 id; 190 __s64 sz; 191 192 spec_str = btf__name_by_offset(btf, relo->access_str_off); 193 if (str_is_empty(spec_str) || *spec_str == ':') 194 return -EINVAL; 195 196 memset(spec, 0, sizeof(*spec)); 197 spec->btf = btf; 198 spec->root_type_id = relo->type_id; 199 spec->relo_kind = relo->kind; 200 201 /* type-based relocations don't have a field access string */ 202 if (core_relo_is_type_based(relo->kind)) { 203 if (strcmp(spec_str, "0")) 204 return -EINVAL; 205 return 0; 206 } 207 208 /* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */ 209 while (*spec_str) { 210 if (*spec_str == ':') 211 ++spec_str; 212 if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1) 213 return -EINVAL; 214 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 215 return -E2BIG; 216 spec_str += parsed_len; 217 spec->raw_spec[spec->raw_len++] = access_idx; 218 } 219 220 if (spec->raw_len == 0) 221 return -EINVAL; 222 223 t = skip_mods_and_typedefs(btf, relo->type_id, &id); 224 if (!t) 225 return -EINVAL; 226 227 access_idx = spec->raw_spec[0]; 228 acc = &spec->spec[0]; 229 acc->type_id = id; 230 acc->idx = access_idx; 231 spec->len++; 232 233 if (core_relo_is_enumval_based(relo->kind)) { 234 if (!btf_is_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t)) 235 return -EINVAL; 236 237 /* record enumerator name in a first accessor */ 238 acc->name = btf__name_by_offset(btf, btf_enum(t)[access_idx].name_off); 239 return 0; 240 } 241 242 if (!core_relo_is_field_based(relo->kind)) 243 return -EINVAL; 244 245 sz = btf__resolve_size(btf, id); 246 if (sz < 0) 247 return sz; 248 spec->bit_offset = access_idx * sz * 8; 249 250 for (i = 1; i < spec->raw_len; i++) { 251 t = skip_mods_and_typedefs(btf, id, &id); 252 if (!t) 253 return -EINVAL; 254 255 access_idx = spec->raw_spec[i]; 256 acc = &spec->spec[spec->len]; 257 258 if (btf_is_composite(t)) { 259 const struct btf_member *m; 260 __u32 bit_offset; 261 262 if (access_idx >= btf_vlen(t)) 263 return -EINVAL; 264 265 bit_offset = btf_member_bit_offset(t, access_idx); 266 spec->bit_offset += bit_offset; 267 268 m = btf_members(t) + access_idx; 269 if (m->name_off) { 270 name = btf__name_by_offset(btf, m->name_off); 271 if (str_is_empty(name)) 272 return -EINVAL; 273 274 acc->type_id = id; 275 acc->idx = access_idx; 276 acc->name = name; 277 spec->len++; 278 } 279 280 id = m->type; 281 } else if (btf_is_array(t)) { 282 const struct btf_array *a = btf_array(t); 283 bool flex; 284 285 t = skip_mods_and_typedefs(btf, a->type, &id); 286 if (!t) 287 return -EINVAL; 288 289 flex = is_flex_arr(btf, acc - 1, a); 290 if (!flex && access_idx >= a->nelems) 291 return -EINVAL; 292 293 spec->spec[spec->len].type_id = id; 294 spec->spec[spec->len].idx = access_idx; 295 spec->len++; 296 297 sz = btf__resolve_size(btf, id); 298 if (sz < 0) 299 return sz; 300 spec->bit_offset += access_idx * sz * 8; 301 } else { 302 pr_warn("prog '%s': relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n", 303 prog_name, relo->type_id, spec_str, i, id, btf_kind_str(t)); 304 return -EINVAL; 305 } 306 } 307 308 return 0; 309 } 310 311 /* Check two types for compatibility for the purpose of field access 312 * relocation. const/volatile/restrict and typedefs are skipped to ensure we 313 * are relocating semantically compatible entities: 314 * - any two STRUCTs/UNIONs are compatible and can be mixed; 315 * - any two FWDs are compatible, if their names match (modulo flavor suffix); 316 * - any two PTRs are always compatible; 317 * - for ENUMs, names should be the same (ignoring flavor suffix) or at 318 * least one of enums should be anonymous; 319 * - for ENUMs, check sizes, names are ignored; 320 * - for INT, size and signedness are ignored; 321 * - any two FLOATs are always compatible; 322 * - for ARRAY, dimensionality is ignored, element types are checked for 323 * compatibility recursively; 324 * - everything else shouldn't be ever a target of relocation. 325 * These rules are not set in stone and probably will be adjusted as we get 326 * more experience with using BPF CO-RE relocations. 327 */ 328 static int bpf_core_fields_are_compat(const struct btf *local_btf, 329 __u32 local_id, 330 const struct btf *targ_btf, 331 __u32 targ_id) 332 { 333 const struct btf_type *local_type, *targ_type; 334 335 recur: 336 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 337 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 338 if (!local_type || !targ_type) 339 return -EINVAL; 340 341 if (btf_is_composite(local_type) && btf_is_composite(targ_type)) 342 return 1; 343 if (btf_kind(local_type) != btf_kind(targ_type)) 344 return 0; 345 346 switch (btf_kind(local_type)) { 347 case BTF_KIND_PTR: 348 case BTF_KIND_FLOAT: 349 return 1; 350 case BTF_KIND_FWD: 351 case BTF_KIND_ENUM: { 352 const char *local_name, *targ_name; 353 size_t local_len, targ_len; 354 355 local_name = btf__name_by_offset(local_btf, 356 local_type->name_off); 357 targ_name = btf__name_by_offset(targ_btf, targ_type->name_off); 358 local_len = bpf_core_essential_name_len(local_name); 359 targ_len = bpf_core_essential_name_len(targ_name); 360 /* one of them is anonymous or both w/ same flavor-less names */ 361 return local_len == 0 || targ_len == 0 || 362 (local_len == targ_len && 363 strncmp(local_name, targ_name, local_len) == 0); 364 } 365 case BTF_KIND_INT: 366 /* just reject deprecated bitfield-like integers; all other 367 * integers are by default compatible between each other 368 */ 369 return btf_int_offset(local_type) == 0 && 370 btf_int_offset(targ_type) == 0; 371 case BTF_KIND_ARRAY: 372 local_id = btf_array(local_type)->type; 373 targ_id = btf_array(targ_type)->type; 374 goto recur; 375 default: 376 return 0; 377 } 378 } 379 380 /* 381 * Given single high-level named field accessor in local type, find 382 * corresponding high-level accessor for a target type. Along the way, 383 * maintain low-level spec for target as well. Also keep updating target 384 * bit offset. 385 * 386 * Searching is performed through recursive exhaustive enumeration of all 387 * fields of a struct/union. If there are any anonymous (embedded) 388 * structs/unions, they are recursively searched as well. If field with 389 * desired name is found, check compatibility between local and target types, 390 * before returning result. 391 * 392 * 1 is returned, if field is found. 393 * 0 is returned if no compatible field is found. 394 * <0 is returned on error. 395 */ 396 static int bpf_core_match_member(const struct btf *local_btf, 397 const struct bpf_core_accessor *local_acc, 398 const struct btf *targ_btf, 399 __u32 targ_id, 400 struct bpf_core_spec *spec, 401 __u32 *next_targ_id) 402 { 403 const struct btf_type *local_type, *targ_type; 404 const struct btf_member *local_member, *m; 405 const char *local_name, *targ_name; 406 __u32 local_id; 407 int i, n, found; 408 409 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 410 if (!targ_type) 411 return -EINVAL; 412 if (!btf_is_composite(targ_type)) 413 return 0; 414 415 local_id = local_acc->type_id; 416 local_type = btf_type_by_id(local_btf, local_id); 417 local_member = btf_members(local_type) + local_acc->idx; 418 local_name = btf__name_by_offset(local_btf, local_member->name_off); 419 420 n = btf_vlen(targ_type); 421 m = btf_members(targ_type); 422 for (i = 0; i < n; i++, m++) { 423 __u32 bit_offset; 424 425 bit_offset = btf_member_bit_offset(targ_type, i); 426 427 /* too deep struct/union/array nesting */ 428 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 429 return -E2BIG; 430 431 /* speculate this member will be the good one */ 432 spec->bit_offset += bit_offset; 433 spec->raw_spec[spec->raw_len++] = i; 434 435 targ_name = btf__name_by_offset(targ_btf, m->name_off); 436 if (str_is_empty(targ_name)) { 437 /* embedded struct/union, we need to go deeper */ 438 found = bpf_core_match_member(local_btf, local_acc, 439 targ_btf, m->type, 440 spec, next_targ_id); 441 if (found) /* either found or error */ 442 return found; 443 } else if (strcmp(local_name, targ_name) == 0) { 444 /* matching named field */ 445 struct bpf_core_accessor *targ_acc; 446 447 targ_acc = &spec->spec[spec->len++]; 448 targ_acc->type_id = targ_id; 449 targ_acc->idx = i; 450 targ_acc->name = targ_name; 451 452 *next_targ_id = m->type; 453 found = bpf_core_fields_are_compat(local_btf, 454 local_member->type, 455 targ_btf, m->type); 456 if (!found) 457 spec->len--; /* pop accessor */ 458 return found; 459 } 460 /* member turned out not to be what we looked for */ 461 spec->bit_offset -= bit_offset; 462 spec->raw_len--; 463 } 464 465 return 0; 466 } 467 468 /* 469 * Try to match local spec to a target type and, if successful, produce full 470 * target spec (high-level, low-level + bit offset). 471 */ 472 static int bpf_core_spec_match(struct bpf_core_spec *local_spec, 473 const struct btf *targ_btf, __u32 targ_id, 474 struct bpf_core_spec *targ_spec) 475 { 476 const struct btf_type *targ_type; 477 const struct bpf_core_accessor *local_acc; 478 struct bpf_core_accessor *targ_acc; 479 int i, sz, matched; 480 481 memset(targ_spec, 0, sizeof(*targ_spec)); 482 targ_spec->btf = targ_btf; 483 targ_spec->root_type_id = targ_id; 484 targ_spec->relo_kind = local_spec->relo_kind; 485 486 if (core_relo_is_type_based(local_spec->relo_kind)) { 487 return bpf_core_types_are_compat(local_spec->btf, 488 local_spec->root_type_id, 489 targ_btf, targ_id); 490 } 491 492 local_acc = &local_spec->spec[0]; 493 targ_acc = &targ_spec->spec[0]; 494 495 if (core_relo_is_enumval_based(local_spec->relo_kind)) { 496 size_t local_essent_len, targ_essent_len; 497 const struct btf_enum *e; 498 const char *targ_name; 499 500 /* has to resolve to an enum */ 501 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id); 502 if (!btf_is_enum(targ_type)) 503 return 0; 504 505 local_essent_len = bpf_core_essential_name_len(local_acc->name); 506 507 for (i = 0, e = btf_enum(targ_type); i < btf_vlen(targ_type); i++, e++) { 508 targ_name = btf__name_by_offset(targ_spec->btf, e->name_off); 509 targ_essent_len = bpf_core_essential_name_len(targ_name); 510 if (targ_essent_len != local_essent_len) 511 continue; 512 if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) { 513 targ_acc->type_id = targ_id; 514 targ_acc->idx = i; 515 targ_acc->name = targ_name; 516 targ_spec->len++; 517 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 518 targ_spec->raw_len++; 519 return 1; 520 } 521 } 522 return 0; 523 } 524 525 if (!core_relo_is_field_based(local_spec->relo_kind)) 526 return -EINVAL; 527 528 for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) { 529 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, 530 &targ_id); 531 if (!targ_type) 532 return -EINVAL; 533 534 if (local_acc->name) { 535 matched = bpf_core_match_member(local_spec->btf, 536 local_acc, 537 targ_btf, targ_id, 538 targ_spec, &targ_id); 539 if (matched <= 0) 540 return matched; 541 } else { 542 /* for i=0, targ_id is already treated as array element 543 * type (because it's the original struct), for others 544 * we should find array element type first 545 */ 546 if (i > 0) { 547 const struct btf_array *a; 548 bool flex; 549 550 if (!btf_is_array(targ_type)) 551 return 0; 552 553 a = btf_array(targ_type); 554 flex = is_flex_arr(targ_btf, targ_acc - 1, a); 555 if (!flex && local_acc->idx >= a->nelems) 556 return 0; 557 if (!skip_mods_and_typedefs(targ_btf, a->type, 558 &targ_id)) 559 return -EINVAL; 560 } 561 562 /* too deep struct/union/array nesting */ 563 if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 564 return -E2BIG; 565 566 targ_acc->type_id = targ_id; 567 targ_acc->idx = local_acc->idx; 568 targ_acc->name = NULL; 569 targ_spec->len++; 570 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 571 targ_spec->raw_len++; 572 573 sz = btf__resolve_size(targ_btf, targ_id); 574 if (sz < 0) 575 return sz; 576 targ_spec->bit_offset += local_acc->idx * sz * 8; 577 } 578 } 579 580 return 1; 581 } 582 583 static int bpf_core_calc_field_relo(const char *prog_name, 584 const struct bpf_core_relo *relo, 585 const struct bpf_core_spec *spec, 586 __u32 *val, __u32 *field_sz, __u32 *type_id, 587 bool *validate) 588 { 589 const struct bpf_core_accessor *acc; 590 const struct btf_type *t; 591 __u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id; 592 const struct btf_member *m; 593 const struct btf_type *mt; 594 bool bitfield; 595 __s64 sz; 596 597 *field_sz = 0; 598 599 if (relo->kind == BPF_CORE_FIELD_EXISTS) { 600 *val = spec ? 1 : 0; 601 return 0; 602 } 603 604 if (!spec) 605 return -EUCLEAN; /* request instruction poisoning */ 606 607 acc = &spec->spec[spec->len - 1]; 608 t = btf_type_by_id(spec->btf, acc->type_id); 609 610 /* a[n] accessor needs special handling */ 611 if (!acc->name) { 612 if (relo->kind == BPF_CORE_FIELD_BYTE_OFFSET) { 613 *val = spec->bit_offset / 8; 614 /* remember field size for load/store mem size */ 615 sz = btf__resolve_size(spec->btf, acc->type_id); 616 if (sz < 0) 617 return -EINVAL; 618 *field_sz = sz; 619 *type_id = acc->type_id; 620 } else if (relo->kind == BPF_CORE_FIELD_BYTE_SIZE) { 621 sz = btf__resolve_size(spec->btf, acc->type_id); 622 if (sz < 0) 623 return -EINVAL; 624 *val = sz; 625 } else { 626 pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n", 627 prog_name, relo->kind, relo->insn_off / 8); 628 return -EINVAL; 629 } 630 if (validate) 631 *validate = true; 632 return 0; 633 } 634 635 m = btf_members(t) + acc->idx; 636 mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id); 637 bit_off = spec->bit_offset; 638 bit_sz = btf_member_bitfield_size(t, acc->idx); 639 640 bitfield = bit_sz > 0; 641 if (bitfield) { 642 byte_sz = mt->size; 643 byte_off = bit_off / 8 / byte_sz * byte_sz; 644 /* figure out smallest int size necessary for bitfield load */ 645 while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) { 646 if (byte_sz >= 8) { 647 /* bitfield can't be read with 64-bit read */ 648 pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n", 649 prog_name, relo->kind, relo->insn_off / 8); 650 return -E2BIG; 651 } 652 byte_sz *= 2; 653 byte_off = bit_off / 8 / byte_sz * byte_sz; 654 } 655 } else { 656 sz = btf__resolve_size(spec->btf, field_type_id); 657 if (sz < 0) 658 return -EINVAL; 659 byte_sz = sz; 660 byte_off = spec->bit_offset / 8; 661 bit_sz = byte_sz * 8; 662 } 663 664 /* for bitfields, all the relocatable aspects are ambiguous and we 665 * might disagree with compiler, so turn off validation of expected 666 * value, except for signedness 667 */ 668 if (validate) 669 *validate = !bitfield; 670 671 switch (relo->kind) { 672 case BPF_CORE_FIELD_BYTE_OFFSET: 673 *val = byte_off; 674 if (!bitfield) { 675 *field_sz = byte_sz; 676 *type_id = field_type_id; 677 } 678 break; 679 case BPF_CORE_FIELD_BYTE_SIZE: 680 *val = byte_sz; 681 break; 682 case BPF_CORE_FIELD_SIGNED: 683 /* enums will be assumed unsigned */ 684 *val = btf_is_enum(mt) || 685 (btf_int_encoding(mt) & BTF_INT_SIGNED); 686 if (validate) 687 *validate = true; /* signedness is never ambiguous */ 688 break; 689 case BPF_CORE_FIELD_LSHIFT_U64: 690 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 691 *val = 64 - (bit_off + bit_sz - byte_off * 8); 692 #else 693 *val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8); 694 #endif 695 break; 696 case BPF_CORE_FIELD_RSHIFT_U64: 697 *val = 64 - bit_sz; 698 if (validate) 699 *validate = true; /* right shift is never ambiguous */ 700 break; 701 case BPF_CORE_FIELD_EXISTS: 702 default: 703 return -EOPNOTSUPP; 704 } 705 706 return 0; 707 } 708 709 static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo, 710 const struct bpf_core_spec *spec, 711 __u32 *val, bool *validate) 712 { 713 __s64 sz; 714 715 /* by default, always check expected value in bpf_insn */ 716 if (validate) 717 *validate = true; 718 719 /* type-based relos return zero when target type is not found */ 720 if (!spec) { 721 *val = 0; 722 return 0; 723 } 724 725 switch (relo->kind) { 726 case BPF_CORE_TYPE_ID_TARGET: 727 *val = spec->root_type_id; 728 /* type ID, embedded in bpf_insn, might change during linking, 729 * so enforcing it is pointless 730 */ 731 if (validate) 732 *validate = false; 733 break; 734 case BPF_CORE_TYPE_EXISTS: 735 *val = 1; 736 break; 737 case BPF_CORE_TYPE_SIZE: 738 sz = btf__resolve_size(spec->btf, spec->root_type_id); 739 if (sz < 0) 740 return -EINVAL; 741 *val = sz; 742 break; 743 case BPF_CORE_TYPE_ID_LOCAL: 744 /* BPF_CORE_TYPE_ID_LOCAL is handled specially and shouldn't get here */ 745 default: 746 return -EOPNOTSUPP; 747 } 748 749 return 0; 750 } 751 752 static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo, 753 const struct bpf_core_spec *spec, 754 __u32 *val) 755 { 756 const struct btf_type *t; 757 const struct btf_enum *e; 758 759 switch (relo->kind) { 760 case BPF_CORE_ENUMVAL_EXISTS: 761 *val = spec ? 1 : 0; 762 break; 763 case BPF_CORE_ENUMVAL_VALUE: 764 if (!spec) 765 return -EUCLEAN; /* request instruction poisoning */ 766 t = btf_type_by_id(spec->btf, spec->spec[0].type_id); 767 e = btf_enum(t) + spec->spec[0].idx; 768 *val = e->val; 769 break; 770 default: 771 return -EOPNOTSUPP; 772 } 773 774 return 0; 775 } 776 777 /* Calculate original and target relocation values, given local and target 778 * specs and relocation kind. These values are calculated for each candidate. 779 * If there are multiple candidates, resulting values should all be consistent 780 * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity. 781 * If instruction has to be poisoned, *poison will be set to true. 782 */ 783 static int bpf_core_calc_relo(const char *prog_name, 784 const struct bpf_core_relo *relo, 785 int relo_idx, 786 const struct bpf_core_spec *local_spec, 787 const struct bpf_core_spec *targ_spec, 788 struct bpf_core_relo_res *res) 789 { 790 int err = -EOPNOTSUPP; 791 792 res->orig_val = 0; 793 res->new_val = 0; 794 res->poison = false; 795 res->validate = true; 796 res->fail_memsz_adjust = false; 797 res->orig_sz = res->new_sz = 0; 798 res->orig_type_id = res->new_type_id = 0; 799 800 if (core_relo_is_field_based(relo->kind)) { 801 err = bpf_core_calc_field_relo(prog_name, relo, local_spec, 802 &res->orig_val, &res->orig_sz, 803 &res->orig_type_id, &res->validate); 804 err = err ?: bpf_core_calc_field_relo(prog_name, relo, targ_spec, 805 &res->new_val, &res->new_sz, 806 &res->new_type_id, NULL); 807 if (err) 808 goto done; 809 /* Validate if it's safe to adjust load/store memory size. 810 * Adjustments are performed only if original and new memory 811 * sizes differ. 812 */ 813 res->fail_memsz_adjust = false; 814 if (res->orig_sz != res->new_sz) { 815 const struct btf_type *orig_t, *new_t; 816 817 orig_t = btf_type_by_id(local_spec->btf, res->orig_type_id); 818 new_t = btf_type_by_id(targ_spec->btf, res->new_type_id); 819 820 /* There are two use cases in which it's safe to 821 * adjust load/store's mem size: 822 * - reading a 32-bit kernel pointer, while on BPF 823 * size pointers are always 64-bit; in this case 824 * it's safe to "downsize" instruction size due to 825 * pointer being treated as unsigned integer with 826 * zero-extended upper 32-bits; 827 * - reading unsigned integers, again due to 828 * zero-extension is preserving the value correctly. 829 * 830 * In all other cases it's incorrect to attempt to 831 * load/store field because read value will be 832 * incorrect, so we poison relocated instruction. 833 */ 834 if (btf_is_ptr(orig_t) && btf_is_ptr(new_t)) 835 goto done; 836 if (btf_is_int(orig_t) && btf_is_int(new_t) && 837 btf_int_encoding(orig_t) != BTF_INT_SIGNED && 838 btf_int_encoding(new_t) != BTF_INT_SIGNED) 839 goto done; 840 841 /* mark as invalid mem size adjustment, but this will 842 * only be checked for LDX/STX/ST insns 843 */ 844 res->fail_memsz_adjust = true; 845 } 846 } else if (core_relo_is_type_based(relo->kind)) { 847 err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val, &res->validate); 848 err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val, NULL); 849 } else if (core_relo_is_enumval_based(relo->kind)) { 850 err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val); 851 err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val); 852 } 853 854 done: 855 if (err == -EUCLEAN) { 856 /* EUCLEAN is used to signal instruction poisoning request */ 857 res->poison = true; 858 err = 0; 859 } else if (err == -EOPNOTSUPP) { 860 /* EOPNOTSUPP means unknown/unsupported relocation */ 861 pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n", 862 prog_name, relo_idx, core_relo_kind_str(relo->kind), 863 relo->kind, relo->insn_off / 8); 864 } 865 866 return err; 867 } 868 869 /* 870 * Turn instruction for which CO_RE relocation failed into invalid one with 871 * distinct signature. 872 */ 873 static void bpf_core_poison_insn(const char *prog_name, int relo_idx, 874 int insn_idx, struct bpf_insn *insn) 875 { 876 pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n", 877 prog_name, relo_idx, insn_idx); 878 insn->code = BPF_JMP | BPF_CALL; 879 insn->dst_reg = 0; 880 insn->src_reg = 0; 881 insn->off = 0; 882 /* if this instruction is reachable (not a dead code), 883 * verifier will complain with the following message: 884 * invalid func unknown#195896080 885 */ 886 insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */ 887 } 888 889 static int insn_bpf_size_to_bytes(struct bpf_insn *insn) 890 { 891 switch (BPF_SIZE(insn->code)) { 892 case BPF_DW: return 8; 893 case BPF_W: return 4; 894 case BPF_H: return 2; 895 case BPF_B: return 1; 896 default: return -1; 897 } 898 } 899 900 static int insn_bytes_to_bpf_size(__u32 sz) 901 { 902 switch (sz) { 903 case 8: return BPF_DW; 904 case 4: return BPF_W; 905 case 2: return BPF_H; 906 case 1: return BPF_B; 907 default: return -1; 908 } 909 } 910 911 /* 912 * Patch relocatable BPF instruction. 913 * 914 * Patched value is determined by relocation kind and target specification. 915 * For existence relocations target spec will be NULL if field/type is not found. 916 * Expected insn->imm value is determined using relocation kind and local 917 * spec, and is checked before patching instruction. If actual insn->imm value 918 * is wrong, bail out with error. 919 * 920 * Currently supported classes of BPF instruction are: 921 * 1. rX = <imm> (assignment with immediate operand); 922 * 2. rX += <imm> (arithmetic operations with immediate operand); 923 * 3. rX = <imm64> (load with 64-bit immediate value); 924 * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64}; 925 * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64}; 926 * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}. 927 */ 928 int bpf_core_patch_insn(const char *prog_name, struct bpf_insn *insn, 929 int insn_idx, const struct bpf_core_relo *relo, 930 int relo_idx, const struct bpf_core_relo_res *res) 931 { 932 __u32 orig_val, new_val; 933 __u8 class; 934 935 class = BPF_CLASS(insn->code); 936 937 if (res->poison) { 938 poison: 939 /* poison second part of ldimm64 to avoid confusing error from 940 * verifier about "unknown opcode 00" 941 */ 942 if (is_ldimm64_insn(insn)) 943 bpf_core_poison_insn(prog_name, relo_idx, insn_idx + 1, insn + 1); 944 bpf_core_poison_insn(prog_name, relo_idx, insn_idx, insn); 945 return 0; 946 } 947 948 orig_val = res->orig_val; 949 new_val = res->new_val; 950 951 switch (class) { 952 case BPF_ALU: 953 case BPF_ALU64: 954 if (BPF_SRC(insn->code) != BPF_K) 955 return -EINVAL; 956 if (res->validate && insn->imm != orig_val) { 957 pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n", 958 prog_name, relo_idx, 959 insn_idx, insn->imm, orig_val, new_val); 960 return -EINVAL; 961 } 962 orig_val = insn->imm; 963 insn->imm = new_val; 964 pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n", 965 prog_name, relo_idx, insn_idx, 966 orig_val, new_val); 967 break; 968 case BPF_LDX: 969 case BPF_ST: 970 case BPF_STX: 971 if (res->validate && insn->off != orig_val) { 972 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %u -> %u\n", 973 prog_name, relo_idx, insn_idx, insn->off, orig_val, new_val); 974 return -EINVAL; 975 } 976 if (new_val > SHRT_MAX) { 977 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n", 978 prog_name, relo_idx, insn_idx, new_val); 979 return -ERANGE; 980 } 981 if (res->fail_memsz_adjust) { 982 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. " 983 "Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n", 984 prog_name, relo_idx, insn_idx); 985 goto poison; 986 } 987 988 orig_val = insn->off; 989 insn->off = new_val; 990 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n", 991 prog_name, relo_idx, insn_idx, orig_val, new_val); 992 993 if (res->new_sz != res->orig_sz) { 994 int insn_bytes_sz, insn_bpf_sz; 995 996 insn_bytes_sz = insn_bpf_size_to_bytes(insn); 997 if (insn_bytes_sz != res->orig_sz) { 998 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n", 999 prog_name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz); 1000 return -EINVAL; 1001 } 1002 1003 insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz); 1004 if (insn_bpf_sz < 0) { 1005 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n", 1006 prog_name, relo_idx, insn_idx, res->new_sz); 1007 return -EINVAL; 1008 } 1009 1010 insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code); 1011 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n", 1012 prog_name, relo_idx, insn_idx, res->orig_sz, res->new_sz); 1013 } 1014 break; 1015 case BPF_LD: { 1016 __u64 imm; 1017 1018 if (!is_ldimm64_insn(insn) || 1019 insn[0].src_reg != 0 || insn[0].off != 0 || 1020 insn[1].code != 0 || insn[1].dst_reg != 0 || 1021 insn[1].src_reg != 0 || insn[1].off != 0) { 1022 pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n", 1023 prog_name, relo_idx, insn_idx); 1024 return -EINVAL; 1025 } 1026 1027 imm = insn[0].imm + ((__u64)insn[1].imm << 32); 1028 if (res->validate && imm != orig_val) { 1029 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %u -> %u\n", 1030 prog_name, relo_idx, 1031 insn_idx, (unsigned long long)imm, 1032 orig_val, new_val); 1033 return -EINVAL; 1034 } 1035 1036 insn[0].imm = new_val; 1037 insn[1].imm = 0; /* currently only 32-bit values are supported */ 1038 pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %u\n", 1039 prog_name, relo_idx, insn_idx, 1040 (unsigned long long)imm, new_val); 1041 break; 1042 } 1043 default: 1044 pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n", 1045 prog_name, relo_idx, insn_idx, insn->code, 1046 insn->src_reg, insn->dst_reg, insn->off, insn->imm); 1047 return -EINVAL; 1048 } 1049 1050 return 0; 1051 } 1052 1053 /* Output spec definition in the format: 1054 * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>, 1055 * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b 1056 */ 1057 int bpf_core_format_spec(char *buf, size_t buf_sz, const struct bpf_core_spec *spec) 1058 { 1059 const struct btf_type *t; 1060 const struct btf_enum *e; 1061 const char *s; 1062 __u32 type_id; 1063 int i, len = 0; 1064 1065 #define append_buf(fmt, args...) \ 1066 ({ \ 1067 int r; \ 1068 r = snprintf(buf, buf_sz, fmt, ##args); \ 1069 len += r; \ 1070 if (r >= buf_sz) \ 1071 r = buf_sz; \ 1072 buf += r; \ 1073 buf_sz -= r; \ 1074 }) 1075 1076 type_id = spec->root_type_id; 1077 t = btf_type_by_id(spec->btf, type_id); 1078 s = btf__name_by_offset(spec->btf, t->name_off); 1079 1080 append_buf("<%s> [%u] %s %s", 1081 core_relo_kind_str(spec->relo_kind), 1082 type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s); 1083 1084 if (core_relo_is_type_based(spec->relo_kind)) 1085 return len; 1086 1087 if (core_relo_is_enumval_based(spec->relo_kind)) { 1088 t = skip_mods_and_typedefs(spec->btf, type_id, NULL); 1089 e = btf_enum(t) + spec->raw_spec[0]; 1090 s = btf__name_by_offset(spec->btf, e->name_off); 1091 1092 append_buf("::%s = %u", s, e->val); 1093 return len; 1094 } 1095 1096 if (core_relo_is_field_based(spec->relo_kind)) { 1097 for (i = 0; i < spec->len; i++) { 1098 if (spec->spec[i].name) 1099 append_buf(".%s", spec->spec[i].name); 1100 else if (i > 0 || spec->spec[i].idx > 0) 1101 append_buf("[%u]", spec->spec[i].idx); 1102 } 1103 1104 append_buf(" ("); 1105 for (i = 0; i < spec->raw_len; i++) 1106 append_buf("%s%d", i == 0 ? "" : ":", spec->raw_spec[i]); 1107 1108 if (spec->bit_offset % 8) 1109 append_buf(" @ offset %u.%u)", spec->bit_offset / 8, spec->bit_offset % 8); 1110 else 1111 append_buf(" @ offset %u)", spec->bit_offset / 8); 1112 return len; 1113 } 1114 1115 return len; 1116 #undef append_buf 1117 } 1118 1119 /* 1120 * Calculate CO-RE relocation target result. 1121 * 1122 * The outline and important points of the algorithm: 1123 * 1. For given local type, find corresponding candidate target types. 1124 * Candidate type is a type with the same "essential" name, ignoring 1125 * everything after last triple underscore (___). E.g., `sample`, 1126 * `sample___flavor_one`, `sample___flavor_another_one`, are all candidates 1127 * for each other. Names with triple underscore are referred to as 1128 * "flavors" and are useful, among other things, to allow to 1129 * specify/support incompatible variations of the same kernel struct, which 1130 * might differ between different kernel versions and/or build 1131 * configurations. 1132 * 1133 * N.B. Struct "flavors" could be generated by bpftool's BTF-to-C 1134 * converter, when deduplicated BTF of a kernel still contains more than 1135 * one different types with the same name. In that case, ___2, ___3, etc 1136 * are appended starting from second name conflict. But start flavors are 1137 * also useful to be defined "locally", in BPF program, to extract same 1138 * data from incompatible changes between different kernel 1139 * versions/configurations. For instance, to handle field renames between 1140 * kernel versions, one can use two flavors of the struct name with the 1141 * same common name and use conditional relocations to extract that field, 1142 * depending on target kernel version. 1143 * 2. For each candidate type, try to match local specification to this 1144 * candidate target type. Matching involves finding corresponding 1145 * high-level spec accessors, meaning that all named fields should match, 1146 * as well as all array accesses should be within the actual bounds. Also, 1147 * types should be compatible (see bpf_core_fields_are_compat for details). 1148 * 3. It is supported and expected that there might be multiple flavors 1149 * matching the spec. As long as all the specs resolve to the same set of 1150 * offsets across all candidates, there is no error. If there is any 1151 * ambiguity, CO-RE relocation will fail. This is necessary to accomodate 1152 * imprefection of BTF deduplication, which can cause slight duplication of 1153 * the same BTF type, if some directly or indirectly referenced (by 1154 * pointer) type gets resolved to different actual types in different 1155 * object files. If such situation occurs, deduplicated BTF will end up 1156 * with two (or more) structurally identical types, which differ only in 1157 * types they refer to through pointer. This should be OK in most cases and 1158 * is not an error. 1159 * 4. Candidate types search is performed by linearly scanning through all 1160 * types in target BTF. It is anticipated that this is overall more 1161 * efficient memory-wise and not significantly worse (if not better) 1162 * CPU-wise compared to prebuilding a map from all local type names to 1163 * a list of candidate type names. It's also sped up by caching resolved 1164 * list of matching candidates per each local "root" type ID, that has at 1165 * least one bpf_core_relo associated with it. This list is shared 1166 * between multiple relocations for the same type ID and is updated as some 1167 * of the candidates are pruned due to structural incompatibility. 1168 */ 1169 int bpf_core_calc_relo_insn(const char *prog_name, 1170 const struct bpf_core_relo *relo, 1171 int relo_idx, 1172 const struct btf *local_btf, 1173 struct bpf_core_cand_list *cands, 1174 struct bpf_core_spec *specs_scratch, 1175 struct bpf_core_relo_res *targ_res) 1176 { 1177 struct bpf_core_spec *local_spec = &specs_scratch[0]; 1178 struct bpf_core_spec *cand_spec = &specs_scratch[1]; 1179 struct bpf_core_spec *targ_spec = &specs_scratch[2]; 1180 struct bpf_core_relo_res cand_res; 1181 const struct btf_type *local_type; 1182 const char *local_name; 1183 __u32 local_id; 1184 char spec_buf[256]; 1185 int i, j, err; 1186 1187 local_id = relo->type_id; 1188 local_type = btf_type_by_id(local_btf, local_id); 1189 local_name = btf__name_by_offset(local_btf, local_type->name_off); 1190 if (!local_name) 1191 return -EINVAL; 1192 1193 err = bpf_core_parse_spec(prog_name, local_btf, relo, local_spec); 1194 if (err) { 1195 const char *spec_str; 1196 1197 spec_str = btf__name_by_offset(local_btf, relo->access_str_off); 1198 pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n", 1199 prog_name, relo_idx, local_id, btf_kind_str(local_type), 1200 str_is_empty(local_name) ? "<anon>" : local_name, 1201 spec_str ?: "<?>", err); 1202 return -EINVAL; 1203 } 1204 1205 bpf_core_format_spec(spec_buf, sizeof(spec_buf), local_spec); 1206 pr_debug("prog '%s': relo #%d: %s\n", prog_name, relo_idx, spec_buf); 1207 1208 /* TYPE_ID_LOCAL relo is special and doesn't need candidate search */ 1209 if (relo->kind == BPF_CORE_TYPE_ID_LOCAL) { 1210 /* bpf_insn's imm value could get out of sync during linking */ 1211 memset(targ_res, 0, sizeof(*targ_res)); 1212 targ_res->validate = false; 1213 targ_res->poison = false; 1214 targ_res->orig_val = local_spec->root_type_id; 1215 targ_res->new_val = local_spec->root_type_id; 1216 return 0; 1217 } 1218 1219 /* libbpf doesn't support candidate search for anonymous types */ 1220 if (str_is_empty(local_name)) { 1221 pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n", 1222 prog_name, relo_idx, core_relo_kind_str(relo->kind), relo->kind); 1223 return -EOPNOTSUPP; 1224 } 1225 1226 for (i = 0, j = 0; i < cands->len; i++) { 1227 err = bpf_core_spec_match(local_spec, cands->cands[i].btf, 1228 cands->cands[i].id, cand_spec); 1229 if (err < 0) { 1230 bpf_core_format_spec(spec_buf, sizeof(spec_buf), cand_spec); 1231 pr_warn("prog '%s': relo #%d: error matching candidate #%d %s: %d\n ", 1232 prog_name, relo_idx, i, spec_buf, err); 1233 return err; 1234 } 1235 1236 bpf_core_format_spec(spec_buf, sizeof(spec_buf), cand_spec); 1237 pr_debug("prog '%s': relo #%d: %s candidate #%d %s\n", prog_name, 1238 relo_idx, err == 0 ? "non-matching" : "matching", i, spec_buf); 1239 1240 if (err == 0) 1241 continue; 1242 1243 err = bpf_core_calc_relo(prog_name, relo, relo_idx, local_spec, cand_spec, &cand_res); 1244 if (err) 1245 return err; 1246 1247 if (j == 0) { 1248 *targ_res = cand_res; 1249 *targ_spec = *cand_spec; 1250 } else if (cand_spec->bit_offset != targ_spec->bit_offset) { 1251 /* if there are many field relo candidates, they 1252 * should all resolve to the same bit offset 1253 */ 1254 pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n", 1255 prog_name, relo_idx, cand_spec->bit_offset, 1256 targ_spec->bit_offset); 1257 return -EINVAL; 1258 } else if (cand_res.poison != targ_res->poison || 1259 cand_res.new_val != targ_res->new_val) { 1260 /* all candidates should result in the same relocation 1261 * decision and value, otherwise it's dangerous to 1262 * proceed due to ambiguity 1263 */ 1264 pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %u != %s %u\n", 1265 prog_name, relo_idx, 1266 cand_res.poison ? "failure" : "success", cand_res.new_val, 1267 targ_res->poison ? "failure" : "success", targ_res->new_val); 1268 return -EINVAL; 1269 } 1270 1271 cands->cands[j++] = cands->cands[i]; 1272 } 1273 1274 /* 1275 * For BPF_CORE_FIELD_EXISTS relo or when used BPF program has field 1276 * existence checks or kernel version/config checks, it's expected 1277 * that we might not find any candidates. In this case, if field 1278 * wasn't found in any candidate, the list of candidates shouldn't 1279 * change at all, we'll just handle relocating appropriately, 1280 * depending on relo's kind. 1281 */ 1282 if (j > 0) 1283 cands->len = j; 1284 1285 /* 1286 * If no candidates were found, it might be both a programmer error, 1287 * as well as expected case, depending whether instruction w/ 1288 * relocation is guarded in some way that makes it unreachable (dead 1289 * code) if relocation can't be resolved. This is handled in 1290 * bpf_core_patch_insn() uniformly by replacing that instruction with 1291 * BPF helper call insn (using invalid helper ID). If that instruction 1292 * is indeed unreachable, then it will be ignored and eliminated by 1293 * verifier. If it was an error, then verifier will complain and point 1294 * to a specific instruction number in its log. 1295 */ 1296 if (j == 0) { 1297 pr_debug("prog '%s': relo #%d: no matching targets found\n", 1298 prog_name, relo_idx); 1299 1300 /* calculate single target relo result explicitly */ 1301 err = bpf_core_calc_relo(prog_name, relo, relo_idx, local_spec, NULL, targ_res); 1302 if (err) 1303 return err; 1304 } 1305 1306 return 0; 1307 } 1308