1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/list.h> 35 #include <linux/limits.h> 36 #include <linux/perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <linux/version.h> 39 #include <sys/epoll.h> 40 #include <sys/ioctl.h> 41 #include <sys/mman.h> 42 #include <sys/stat.h> 43 #include <sys/types.h> 44 #include <sys/vfs.h> 45 #include <sys/utsname.h> 46 #include <sys/resource.h> 47 #include <libelf.h> 48 #include <gelf.h> 49 #include <zlib.h> 50 51 #include "libbpf.h" 52 #include "bpf.h" 53 #include "btf.h" 54 #include "str_error.h" 55 #include "libbpf_internal.h" 56 #include "hashmap.h" 57 #include "bpf_gen_internal.h" 58 59 #ifndef BPF_FS_MAGIC 60 #define BPF_FS_MAGIC 0xcafe4a11 61 #endif 62 63 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 64 65 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 66 * compilation if user enables corresponding warning. Disable it explicitly. 67 */ 68 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 69 70 #define __printf(a, b) __attribute__((format(printf, a, b))) 71 72 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 73 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 74 75 static int __base_pr(enum libbpf_print_level level, const char *format, 76 va_list args) 77 { 78 if (level == LIBBPF_DEBUG) 79 return 0; 80 81 return vfprintf(stderr, format, args); 82 } 83 84 static libbpf_print_fn_t __libbpf_pr = __base_pr; 85 86 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 87 { 88 libbpf_print_fn_t old_print_fn = __libbpf_pr; 89 90 __libbpf_pr = fn; 91 return old_print_fn; 92 } 93 94 __printf(2, 3) 95 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 96 { 97 va_list args; 98 99 if (!__libbpf_pr) 100 return; 101 102 va_start(args, format); 103 __libbpf_pr(level, format, args); 104 va_end(args); 105 } 106 107 static void pr_perm_msg(int err) 108 { 109 struct rlimit limit; 110 char buf[100]; 111 112 if (err != -EPERM || geteuid() != 0) 113 return; 114 115 err = getrlimit(RLIMIT_MEMLOCK, &limit); 116 if (err) 117 return; 118 119 if (limit.rlim_cur == RLIM_INFINITY) 120 return; 121 122 if (limit.rlim_cur < 1024) 123 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 124 else if (limit.rlim_cur < 1024*1024) 125 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 126 else 127 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 128 129 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 130 buf); 131 } 132 133 #define STRERR_BUFSIZE 128 134 135 /* Copied from tools/perf/util/util.h */ 136 #ifndef zfree 137 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 138 #endif 139 140 #ifndef zclose 141 # define zclose(fd) ({ \ 142 int ___err = 0; \ 143 if ((fd) >= 0) \ 144 ___err = close((fd)); \ 145 fd = -1; \ 146 ___err; }) 147 #endif 148 149 static inline __u64 ptr_to_u64(const void *ptr) 150 { 151 return (__u64) (unsigned long) ptr; 152 } 153 154 enum kern_feature_id { 155 /* v4.14: kernel support for program & map names. */ 156 FEAT_PROG_NAME, 157 /* v5.2: kernel support for global data sections. */ 158 FEAT_GLOBAL_DATA, 159 /* BTF support */ 160 FEAT_BTF, 161 /* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */ 162 FEAT_BTF_FUNC, 163 /* BTF_KIND_VAR and BTF_KIND_DATASEC support */ 164 FEAT_BTF_DATASEC, 165 /* BTF_FUNC_GLOBAL is supported */ 166 FEAT_BTF_GLOBAL_FUNC, 167 /* BPF_F_MMAPABLE is supported for arrays */ 168 FEAT_ARRAY_MMAP, 169 /* kernel support for expected_attach_type in BPF_PROG_LOAD */ 170 FEAT_EXP_ATTACH_TYPE, 171 /* bpf_probe_read_{kernel,user}[_str] helpers */ 172 FEAT_PROBE_READ_KERN, 173 /* BPF_PROG_BIND_MAP is supported */ 174 FEAT_PROG_BIND_MAP, 175 /* Kernel support for module BTFs */ 176 FEAT_MODULE_BTF, 177 /* BTF_KIND_FLOAT support */ 178 FEAT_BTF_FLOAT, 179 __FEAT_CNT, 180 }; 181 182 static bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id); 183 184 enum reloc_type { 185 RELO_LD64, 186 RELO_CALL, 187 RELO_DATA, 188 RELO_EXTERN_VAR, 189 RELO_EXTERN_FUNC, 190 RELO_SUBPROG_ADDR, 191 }; 192 193 struct reloc_desc { 194 enum reloc_type type; 195 int insn_idx; 196 int map_idx; 197 int sym_off; 198 }; 199 200 struct bpf_sec_def; 201 202 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_sec_def *sec, 203 struct bpf_program *prog); 204 205 struct bpf_sec_def { 206 const char *sec; 207 size_t len; 208 enum bpf_prog_type prog_type; 209 enum bpf_attach_type expected_attach_type; 210 bool is_exp_attach_type_optional; 211 bool is_attachable; 212 bool is_attach_btf; 213 bool is_sleepable; 214 attach_fn_t attach_fn; 215 }; 216 217 /* 218 * bpf_prog should be a better name but it has been used in 219 * linux/filter.h. 220 */ 221 struct bpf_program { 222 const struct bpf_sec_def *sec_def; 223 char *sec_name; 224 size_t sec_idx; 225 /* this program's instruction offset (in number of instructions) 226 * within its containing ELF section 227 */ 228 size_t sec_insn_off; 229 /* number of original instructions in ELF section belonging to this 230 * program, not taking into account subprogram instructions possible 231 * appended later during relocation 232 */ 233 size_t sec_insn_cnt; 234 /* Offset (in number of instructions) of the start of instruction 235 * belonging to this BPF program within its containing main BPF 236 * program. For the entry-point (main) BPF program, this is always 237 * zero. For a sub-program, this gets reset before each of main BPF 238 * programs are processed and relocated and is used to determined 239 * whether sub-program was already appended to the main program, and 240 * if yes, at which instruction offset. 241 */ 242 size_t sub_insn_off; 243 244 char *name; 245 /* sec_name with / replaced by _; makes recursive pinning 246 * in bpf_object__pin_programs easier 247 */ 248 char *pin_name; 249 250 /* instructions that belong to BPF program; insns[0] is located at 251 * sec_insn_off instruction within its ELF section in ELF file, so 252 * when mapping ELF file instruction index to the local instruction, 253 * one needs to subtract sec_insn_off; and vice versa. 254 */ 255 struct bpf_insn *insns; 256 /* actual number of instruction in this BPF program's image; for 257 * entry-point BPF programs this includes the size of main program 258 * itself plus all the used sub-programs, appended at the end 259 */ 260 size_t insns_cnt; 261 262 struct reloc_desc *reloc_desc; 263 int nr_reloc; 264 int log_level; 265 266 struct { 267 int nr; 268 int *fds; 269 } instances; 270 bpf_program_prep_t preprocessor; 271 272 struct bpf_object *obj; 273 void *priv; 274 bpf_program_clear_priv_t clear_priv; 275 276 bool load; 277 bool mark_btf_static; 278 enum bpf_prog_type type; 279 enum bpf_attach_type expected_attach_type; 280 int prog_ifindex; 281 __u32 attach_btf_obj_fd; 282 __u32 attach_btf_id; 283 __u32 attach_prog_fd; 284 void *func_info; 285 __u32 func_info_rec_size; 286 __u32 func_info_cnt; 287 288 void *line_info; 289 __u32 line_info_rec_size; 290 __u32 line_info_cnt; 291 __u32 prog_flags; 292 }; 293 294 struct bpf_struct_ops { 295 const char *tname; 296 const struct btf_type *type; 297 struct bpf_program **progs; 298 __u32 *kern_func_off; 299 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 300 void *data; 301 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 302 * btf_vmlinux's format. 303 * struct bpf_struct_ops_tcp_congestion_ops { 304 * [... some other kernel fields ...] 305 * struct tcp_congestion_ops data; 306 * } 307 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 308 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 309 * from "data". 310 */ 311 void *kern_vdata; 312 __u32 type_id; 313 }; 314 315 #define DATA_SEC ".data" 316 #define BSS_SEC ".bss" 317 #define RODATA_SEC ".rodata" 318 #define KCONFIG_SEC ".kconfig" 319 #define KSYMS_SEC ".ksyms" 320 #define STRUCT_OPS_SEC ".struct_ops" 321 322 enum libbpf_map_type { 323 LIBBPF_MAP_UNSPEC, 324 LIBBPF_MAP_DATA, 325 LIBBPF_MAP_BSS, 326 LIBBPF_MAP_RODATA, 327 LIBBPF_MAP_KCONFIG, 328 }; 329 330 static const char * const libbpf_type_to_btf_name[] = { 331 [LIBBPF_MAP_DATA] = DATA_SEC, 332 [LIBBPF_MAP_BSS] = BSS_SEC, 333 [LIBBPF_MAP_RODATA] = RODATA_SEC, 334 [LIBBPF_MAP_KCONFIG] = KCONFIG_SEC, 335 }; 336 337 struct bpf_map { 338 char *name; 339 int fd; 340 int sec_idx; 341 size_t sec_offset; 342 int map_ifindex; 343 int inner_map_fd; 344 struct bpf_map_def def; 345 __u32 numa_node; 346 __u32 btf_var_idx; 347 __u32 btf_key_type_id; 348 __u32 btf_value_type_id; 349 __u32 btf_vmlinux_value_type_id; 350 void *priv; 351 bpf_map_clear_priv_t clear_priv; 352 enum libbpf_map_type libbpf_type; 353 void *mmaped; 354 struct bpf_struct_ops *st_ops; 355 struct bpf_map *inner_map; 356 void **init_slots; 357 int init_slots_sz; 358 char *pin_path; 359 bool pinned; 360 bool reused; 361 }; 362 363 enum extern_type { 364 EXT_UNKNOWN, 365 EXT_KCFG, 366 EXT_KSYM, 367 }; 368 369 enum kcfg_type { 370 KCFG_UNKNOWN, 371 KCFG_CHAR, 372 KCFG_BOOL, 373 KCFG_INT, 374 KCFG_TRISTATE, 375 KCFG_CHAR_ARR, 376 }; 377 378 struct extern_desc { 379 enum extern_type type; 380 int sym_idx; 381 int btf_id; 382 int sec_btf_id; 383 const char *name; 384 bool is_set; 385 bool is_weak; 386 union { 387 struct { 388 enum kcfg_type type; 389 int sz; 390 int align; 391 int data_off; 392 bool is_signed; 393 } kcfg; 394 struct { 395 unsigned long long addr; 396 397 /* target btf_id of the corresponding kernel var. */ 398 int kernel_btf_obj_fd; 399 int kernel_btf_id; 400 401 /* local btf_id of the ksym extern's type. */ 402 __u32 type_id; 403 } ksym; 404 }; 405 }; 406 407 static LIST_HEAD(bpf_objects_list); 408 409 struct module_btf { 410 struct btf *btf; 411 char *name; 412 __u32 id; 413 int fd; 414 }; 415 416 struct bpf_object { 417 char name[BPF_OBJ_NAME_LEN]; 418 char license[64]; 419 __u32 kern_version; 420 421 struct bpf_program *programs; 422 size_t nr_programs; 423 struct bpf_map *maps; 424 size_t nr_maps; 425 size_t maps_cap; 426 427 char *kconfig; 428 struct extern_desc *externs; 429 int nr_extern; 430 int kconfig_map_idx; 431 int rodata_map_idx; 432 433 bool loaded; 434 bool has_subcalls; 435 436 struct bpf_gen *gen_loader; 437 438 /* 439 * Information when doing elf related work. Only valid if fd 440 * is valid. 441 */ 442 struct { 443 int fd; 444 const void *obj_buf; 445 size_t obj_buf_sz; 446 Elf *elf; 447 GElf_Ehdr ehdr; 448 Elf_Data *symbols; 449 Elf_Data *data; 450 Elf_Data *rodata; 451 Elf_Data *bss; 452 Elf_Data *st_ops_data; 453 size_t shstrndx; /* section index for section name strings */ 454 size_t strtabidx; 455 struct { 456 GElf_Shdr shdr; 457 Elf_Data *data; 458 } *reloc_sects; 459 int nr_reloc_sects; 460 int maps_shndx; 461 int btf_maps_shndx; 462 __u32 btf_maps_sec_btf_id; 463 int text_shndx; 464 int symbols_shndx; 465 int data_shndx; 466 int rodata_shndx; 467 int bss_shndx; 468 int st_ops_shndx; 469 } efile; 470 /* 471 * All loaded bpf_object is linked in a list, which is 472 * hidden to caller. bpf_objects__<func> handlers deal with 473 * all objects. 474 */ 475 struct list_head list; 476 477 struct btf *btf; 478 struct btf_ext *btf_ext; 479 480 /* Parse and load BTF vmlinux if any of the programs in the object need 481 * it at load time. 482 */ 483 struct btf *btf_vmlinux; 484 /* vmlinux BTF override for CO-RE relocations */ 485 struct btf *btf_vmlinux_override; 486 /* Lazily initialized kernel module BTFs */ 487 struct module_btf *btf_modules; 488 bool btf_modules_loaded; 489 size_t btf_module_cnt; 490 size_t btf_module_cap; 491 492 void *priv; 493 bpf_object_clear_priv_t clear_priv; 494 495 char path[]; 496 }; 497 #define obj_elf_valid(o) ((o)->efile.elf) 498 499 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 500 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 501 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 502 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 503 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr); 504 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 505 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 506 507 void bpf_program__unload(struct bpf_program *prog) 508 { 509 int i; 510 511 if (!prog) 512 return; 513 514 /* 515 * If the object is opened but the program was never loaded, 516 * it is possible that prog->instances.nr == -1. 517 */ 518 if (prog->instances.nr > 0) { 519 for (i = 0; i < prog->instances.nr; i++) 520 zclose(prog->instances.fds[i]); 521 } else if (prog->instances.nr != -1) { 522 pr_warn("Internal error: instances.nr is %d\n", 523 prog->instances.nr); 524 } 525 526 prog->instances.nr = -1; 527 zfree(&prog->instances.fds); 528 529 zfree(&prog->func_info); 530 zfree(&prog->line_info); 531 } 532 533 static void bpf_program__exit(struct bpf_program *prog) 534 { 535 if (!prog) 536 return; 537 538 if (prog->clear_priv) 539 prog->clear_priv(prog, prog->priv); 540 541 prog->priv = NULL; 542 prog->clear_priv = NULL; 543 544 bpf_program__unload(prog); 545 zfree(&prog->name); 546 zfree(&prog->sec_name); 547 zfree(&prog->pin_name); 548 zfree(&prog->insns); 549 zfree(&prog->reloc_desc); 550 551 prog->nr_reloc = 0; 552 prog->insns_cnt = 0; 553 prog->sec_idx = -1; 554 } 555 556 static char *__bpf_program__pin_name(struct bpf_program *prog) 557 { 558 char *name, *p; 559 560 name = p = strdup(prog->sec_name); 561 while ((p = strchr(p, '/'))) 562 *p = '_'; 563 564 return name; 565 } 566 567 static bool insn_is_subprog_call(const struct bpf_insn *insn) 568 { 569 return BPF_CLASS(insn->code) == BPF_JMP && 570 BPF_OP(insn->code) == BPF_CALL && 571 BPF_SRC(insn->code) == BPF_K && 572 insn->src_reg == BPF_PSEUDO_CALL && 573 insn->dst_reg == 0 && 574 insn->off == 0; 575 } 576 577 static bool is_ldimm64_insn(struct bpf_insn *insn) 578 { 579 return insn->code == (BPF_LD | BPF_IMM | BPF_DW); 580 } 581 582 static bool is_call_insn(const struct bpf_insn *insn) 583 { 584 return insn->code == (BPF_JMP | BPF_CALL); 585 } 586 587 static bool insn_is_pseudo_func(struct bpf_insn *insn) 588 { 589 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 590 } 591 592 static int 593 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 594 const char *name, size_t sec_idx, const char *sec_name, 595 size_t sec_off, void *insn_data, size_t insn_data_sz) 596 { 597 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 598 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 599 sec_name, name, sec_off, insn_data_sz); 600 return -EINVAL; 601 } 602 603 memset(prog, 0, sizeof(*prog)); 604 prog->obj = obj; 605 606 prog->sec_idx = sec_idx; 607 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 608 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 609 /* insns_cnt can later be increased by appending used subprograms */ 610 prog->insns_cnt = prog->sec_insn_cnt; 611 612 prog->type = BPF_PROG_TYPE_UNSPEC; 613 prog->load = true; 614 615 prog->instances.fds = NULL; 616 prog->instances.nr = -1; 617 618 prog->sec_name = strdup(sec_name); 619 if (!prog->sec_name) 620 goto errout; 621 622 prog->name = strdup(name); 623 if (!prog->name) 624 goto errout; 625 626 prog->pin_name = __bpf_program__pin_name(prog); 627 if (!prog->pin_name) 628 goto errout; 629 630 prog->insns = malloc(insn_data_sz); 631 if (!prog->insns) 632 goto errout; 633 memcpy(prog->insns, insn_data, insn_data_sz); 634 635 return 0; 636 errout: 637 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 638 bpf_program__exit(prog); 639 return -ENOMEM; 640 } 641 642 static int 643 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 644 const char *sec_name, int sec_idx) 645 { 646 Elf_Data *symbols = obj->efile.symbols; 647 struct bpf_program *prog, *progs; 648 void *data = sec_data->d_buf; 649 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 650 int nr_progs, err, i; 651 const char *name; 652 GElf_Sym sym; 653 654 progs = obj->programs; 655 nr_progs = obj->nr_programs; 656 nr_syms = symbols->d_size / sizeof(GElf_Sym); 657 sec_off = 0; 658 659 for (i = 0; i < nr_syms; i++) { 660 if (!gelf_getsym(symbols, i, &sym)) 661 continue; 662 if (sym.st_shndx != sec_idx) 663 continue; 664 if (GELF_ST_TYPE(sym.st_info) != STT_FUNC) 665 continue; 666 667 prog_sz = sym.st_size; 668 sec_off = sym.st_value; 669 670 name = elf_sym_str(obj, sym.st_name); 671 if (!name) { 672 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 673 sec_name, sec_off); 674 return -LIBBPF_ERRNO__FORMAT; 675 } 676 677 if (sec_off + prog_sz > sec_sz) { 678 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 679 sec_name, sec_off); 680 return -LIBBPF_ERRNO__FORMAT; 681 } 682 683 if (sec_idx != obj->efile.text_shndx && GELF_ST_BIND(sym.st_info) == STB_LOCAL) { 684 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 685 return -ENOTSUP; 686 } 687 688 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 689 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 690 691 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 692 if (!progs) { 693 /* 694 * In this case the original obj->programs 695 * is still valid, so don't need special treat for 696 * bpf_close_object(). 697 */ 698 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 699 sec_name, name); 700 return -ENOMEM; 701 } 702 obj->programs = progs; 703 704 prog = &progs[nr_progs]; 705 706 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 707 sec_off, data + sec_off, prog_sz); 708 if (err) 709 return err; 710 711 /* if function is a global/weak symbol, but has restricted 712 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 713 * as static to enable more permissive BPF verification mode 714 * with more outside context available to BPF verifier 715 */ 716 if (GELF_ST_BIND(sym.st_info) != STB_LOCAL 717 && (GELF_ST_VISIBILITY(sym.st_other) == STV_HIDDEN 718 || GELF_ST_VISIBILITY(sym.st_other) == STV_INTERNAL)) 719 prog->mark_btf_static = true; 720 721 nr_progs++; 722 obj->nr_programs = nr_progs; 723 } 724 725 return 0; 726 } 727 728 static __u32 get_kernel_version(void) 729 { 730 __u32 major, minor, patch; 731 struct utsname info; 732 733 uname(&info); 734 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 735 return 0; 736 return KERNEL_VERSION(major, minor, patch); 737 } 738 739 static const struct btf_member * 740 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 741 { 742 struct btf_member *m; 743 int i; 744 745 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 746 if (btf_member_bit_offset(t, i) == bit_offset) 747 return m; 748 } 749 750 return NULL; 751 } 752 753 static const struct btf_member * 754 find_member_by_name(const struct btf *btf, const struct btf_type *t, 755 const char *name) 756 { 757 struct btf_member *m; 758 int i; 759 760 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 761 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 762 return m; 763 } 764 765 return NULL; 766 } 767 768 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 769 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 770 const char *name, __u32 kind); 771 772 static int 773 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 774 const struct btf_type **type, __u32 *type_id, 775 const struct btf_type **vtype, __u32 *vtype_id, 776 const struct btf_member **data_member) 777 { 778 const struct btf_type *kern_type, *kern_vtype; 779 const struct btf_member *kern_data_member; 780 __s32 kern_vtype_id, kern_type_id; 781 __u32 i; 782 783 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 784 if (kern_type_id < 0) { 785 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 786 tname); 787 return kern_type_id; 788 } 789 kern_type = btf__type_by_id(btf, kern_type_id); 790 791 /* Find the corresponding "map_value" type that will be used 792 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 793 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 794 * btf_vmlinux. 795 */ 796 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 797 tname, BTF_KIND_STRUCT); 798 if (kern_vtype_id < 0) { 799 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 800 STRUCT_OPS_VALUE_PREFIX, tname); 801 return kern_vtype_id; 802 } 803 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 804 805 /* Find "struct tcp_congestion_ops" from 806 * struct bpf_struct_ops_tcp_congestion_ops { 807 * [ ... ] 808 * struct tcp_congestion_ops data; 809 * } 810 */ 811 kern_data_member = btf_members(kern_vtype); 812 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 813 if (kern_data_member->type == kern_type_id) 814 break; 815 } 816 if (i == btf_vlen(kern_vtype)) { 817 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 818 tname, STRUCT_OPS_VALUE_PREFIX, tname); 819 return -EINVAL; 820 } 821 822 *type = kern_type; 823 *type_id = kern_type_id; 824 *vtype = kern_vtype; 825 *vtype_id = kern_vtype_id; 826 *data_member = kern_data_member; 827 828 return 0; 829 } 830 831 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 832 { 833 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 834 } 835 836 /* Init the map's fields that depend on kern_btf */ 837 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 838 const struct btf *btf, 839 const struct btf *kern_btf) 840 { 841 const struct btf_member *member, *kern_member, *kern_data_member; 842 const struct btf_type *type, *kern_type, *kern_vtype; 843 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 844 struct bpf_struct_ops *st_ops; 845 void *data, *kern_data; 846 const char *tname; 847 int err; 848 849 st_ops = map->st_ops; 850 type = st_ops->type; 851 tname = st_ops->tname; 852 err = find_struct_ops_kern_types(kern_btf, tname, 853 &kern_type, &kern_type_id, 854 &kern_vtype, &kern_vtype_id, 855 &kern_data_member); 856 if (err) 857 return err; 858 859 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 860 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 861 862 map->def.value_size = kern_vtype->size; 863 map->btf_vmlinux_value_type_id = kern_vtype_id; 864 865 st_ops->kern_vdata = calloc(1, kern_vtype->size); 866 if (!st_ops->kern_vdata) 867 return -ENOMEM; 868 869 data = st_ops->data; 870 kern_data_off = kern_data_member->offset / 8; 871 kern_data = st_ops->kern_vdata + kern_data_off; 872 873 member = btf_members(type); 874 for (i = 0; i < btf_vlen(type); i++, member++) { 875 const struct btf_type *mtype, *kern_mtype; 876 __u32 mtype_id, kern_mtype_id; 877 void *mdata, *kern_mdata; 878 __s64 msize, kern_msize; 879 __u32 moff, kern_moff; 880 __u32 kern_member_idx; 881 const char *mname; 882 883 mname = btf__name_by_offset(btf, member->name_off); 884 kern_member = find_member_by_name(kern_btf, kern_type, mname); 885 if (!kern_member) { 886 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 887 map->name, mname); 888 return -ENOTSUP; 889 } 890 891 kern_member_idx = kern_member - btf_members(kern_type); 892 if (btf_member_bitfield_size(type, i) || 893 btf_member_bitfield_size(kern_type, kern_member_idx)) { 894 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 895 map->name, mname); 896 return -ENOTSUP; 897 } 898 899 moff = member->offset / 8; 900 kern_moff = kern_member->offset / 8; 901 902 mdata = data + moff; 903 kern_mdata = kern_data + kern_moff; 904 905 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 906 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 907 &kern_mtype_id); 908 if (BTF_INFO_KIND(mtype->info) != 909 BTF_INFO_KIND(kern_mtype->info)) { 910 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 911 map->name, mname, BTF_INFO_KIND(mtype->info), 912 BTF_INFO_KIND(kern_mtype->info)); 913 return -ENOTSUP; 914 } 915 916 if (btf_is_ptr(mtype)) { 917 struct bpf_program *prog; 918 919 prog = st_ops->progs[i]; 920 if (!prog) 921 continue; 922 923 kern_mtype = skip_mods_and_typedefs(kern_btf, 924 kern_mtype->type, 925 &kern_mtype_id); 926 927 /* mtype->type must be a func_proto which was 928 * guaranteed in bpf_object__collect_st_ops_relos(), 929 * so only check kern_mtype for func_proto here. 930 */ 931 if (!btf_is_func_proto(kern_mtype)) { 932 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 933 map->name, mname); 934 return -ENOTSUP; 935 } 936 937 prog->attach_btf_id = kern_type_id; 938 prog->expected_attach_type = kern_member_idx; 939 940 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 941 942 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 943 map->name, mname, prog->name, moff, 944 kern_moff); 945 946 continue; 947 } 948 949 msize = btf__resolve_size(btf, mtype_id); 950 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 951 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 952 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 953 map->name, mname, (ssize_t)msize, 954 (ssize_t)kern_msize); 955 return -ENOTSUP; 956 } 957 958 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 959 map->name, mname, (unsigned int)msize, 960 moff, kern_moff); 961 memcpy(kern_mdata, mdata, msize); 962 } 963 964 return 0; 965 } 966 967 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 968 { 969 struct bpf_map *map; 970 size_t i; 971 int err; 972 973 for (i = 0; i < obj->nr_maps; i++) { 974 map = &obj->maps[i]; 975 976 if (!bpf_map__is_struct_ops(map)) 977 continue; 978 979 err = bpf_map__init_kern_struct_ops(map, obj->btf, 980 obj->btf_vmlinux); 981 if (err) 982 return err; 983 } 984 985 return 0; 986 } 987 988 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 989 { 990 const struct btf_type *type, *datasec; 991 const struct btf_var_secinfo *vsi; 992 struct bpf_struct_ops *st_ops; 993 const char *tname, *var_name; 994 __s32 type_id, datasec_id; 995 const struct btf *btf; 996 struct bpf_map *map; 997 __u32 i; 998 999 if (obj->efile.st_ops_shndx == -1) 1000 return 0; 1001 1002 btf = obj->btf; 1003 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 1004 BTF_KIND_DATASEC); 1005 if (datasec_id < 0) { 1006 pr_warn("struct_ops init: DATASEC %s not found\n", 1007 STRUCT_OPS_SEC); 1008 return -EINVAL; 1009 } 1010 1011 datasec = btf__type_by_id(btf, datasec_id); 1012 vsi = btf_var_secinfos(datasec); 1013 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1014 type = btf__type_by_id(obj->btf, vsi->type); 1015 var_name = btf__name_by_offset(obj->btf, type->name_off); 1016 1017 type_id = btf__resolve_type(obj->btf, vsi->type); 1018 if (type_id < 0) { 1019 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1020 vsi->type, STRUCT_OPS_SEC); 1021 return -EINVAL; 1022 } 1023 1024 type = btf__type_by_id(obj->btf, type_id); 1025 tname = btf__name_by_offset(obj->btf, type->name_off); 1026 if (!tname[0]) { 1027 pr_warn("struct_ops init: anonymous type is not supported\n"); 1028 return -ENOTSUP; 1029 } 1030 if (!btf_is_struct(type)) { 1031 pr_warn("struct_ops init: %s is not a struct\n", tname); 1032 return -EINVAL; 1033 } 1034 1035 map = bpf_object__add_map(obj); 1036 if (IS_ERR(map)) 1037 return PTR_ERR(map); 1038 1039 map->sec_idx = obj->efile.st_ops_shndx; 1040 map->sec_offset = vsi->offset; 1041 map->name = strdup(var_name); 1042 if (!map->name) 1043 return -ENOMEM; 1044 1045 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1046 map->def.key_size = sizeof(int); 1047 map->def.value_size = type->size; 1048 map->def.max_entries = 1; 1049 1050 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1051 if (!map->st_ops) 1052 return -ENOMEM; 1053 st_ops = map->st_ops; 1054 st_ops->data = malloc(type->size); 1055 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1056 st_ops->kern_func_off = malloc(btf_vlen(type) * 1057 sizeof(*st_ops->kern_func_off)); 1058 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1059 return -ENOMEM; 1060 1061 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1062 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1063 var_name, STRUCT_OPS_SEC); 1064 return -EINVAL; 1065 } 1066 1067 memcpy(st_ops->data, 1068 obj->efile.st_ops_data->d_buf + vsi->offset, 1069 type->size); 1070 st_ops->tname = tname; 1071 st_ops->type = type; 1072 st_ops->type_id = type_id; 1073 1074 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1075 tname, type_id, var_name, vsi->offset); 1076 } 1077 1078 return 0; 1079 } 1080 1081 static struct bpf_object *bpf_object__new(const char *path, 1082 const void *obj_buf, 1083 size_t obj_buf_sz, 1084 const char *obj_name) 1085 { 1086 struct bpf_object *obj; 1087 char *end; 1088 1089 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1090 if (!obj) { 1091 pr_warn("alloc memory failed for %s\n", path); 1092 return ERR_PTR(-ENOMEM); 1093 } 1094 1095 strcpy(obj->path, path); 1096 if (obj_name) { 1097 strncpy(obj->name, obj_name, sizeof(obj->name) - 1); 1098 obj->name[sizeof(obj->name) - 1] = 0; 1099 } else { 1100 /* Using basename() GNU version which doesn't modify arg. */ 1101 strncpy(obj->name, basename((void *)path), 1102 sizeof(obj->name) - 1); 1103 end = strchr(obj->name, '.'); 1104 if (end) 1105 *end = 0; 1106 } 1107 1108 obj->efile.fd = -1; 1109 /* 1110 * Caller of this function should also call 1111 * bpf_object__elf_finish() after data collection to return 1112 * obj_buf to user. If not, we should duplicate the buffer to 1113 * avoid user freeing them before elf finish. 1114 */ 1115 obj->efile.obj_buf = obj_buf; 1116 obj->efile.obj_buf_sz = obj_buf_sz; 1117 obj->efile.maps_shndx = -1; 1118 obj->efile.btf_maps_shndx = -1; 1119 obj->efile.data_shndx = -1; 1120 obj->efile.rodata_shndx = -1; 1121 obj->efile.bss_shndx = -1; 1122 obj->efile.st_ops_shndx = -1; 1123 obj->kconfig_map_idx = -1; 1124 obj->rodata_map_idx = -1; 1125 1126 obj->kern_version = get_kernel_version(); 1127 obj->loaded = false; 1128 1129 INIT_LIST_HEAD(&obj->list); 1130 list_add(&obj->list, &bpf_objects_list); 1131 return obj; 1132 } 1133 1134 static void bpf_object__elf_finish(struct bpf_object *obj) 1135 { 1136 if (!obj_elf_valid(obj)) 1137 return; 1138 1139 if (obj->efile.elf) { 1140 elf_end(obj->efile.elf); 1141 obj->efile.elf = NULL; 1142 } 1143 obj->efile.symbols = NULL; 1144 obj->efile.data = NULL; 1145 obj->efile.rodata = NULL; 1146 obj->efile.bss = NULL; 1147 obj->efile.st_ops_data = NULL; 1148 1149 zfree(&obj->efile.reloc_sects); 1150 obj->efile.nr_reloc_sects = 0; 1151 zclose(obj->efile.fd); 1152 obj->efile.obj_buf = NULL; 1153 obj->efile.obj_buf_sz = 0; 1154 } 1155 1156 static int bpf_object__elf_init(struct bpf_object *obj) 1157 { 1158 int err = 0; 1159 GElf_Ehdr *ep; 1160 1161 if (obj_elf_valid(obj)) { 1162 pr_warn("elf: init internal error\n"); 1163 return -LIBBPF_ERRNO__LIBELF; 1164 } 1165 1166 if (obj->efile.obj_buf_sz > 0) { 1167 /* 1168 * obj_buf should have been validated by 1169 * bpf_object__open_buffer(). 1170 */ 1171 obj->efile.elf = elf_memory((char *)obj->efile.obj_buf, 1172 obj->efile.obj_buf_sz); 1173 } else { 1174 obj->efile.fd = open(obj->path, O_RDONLY); 1175 if (obj->efile.fd < 0) { 1176 char errmsg[STRERR_BUFSIZE], *cp; 1177 1178 err = -errno; 1179 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1180 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1181 return err; 1182 } 1183 1184 obj->efile.elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1185 } 1186 1187 if (!obj->efile.elf) { 1188 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1189 err = -LIBBPF_ERRNO__LIBELF; 1190 goto errout; 1191 } 1192 1193 if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) { 1194 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1195 err = -LIBBPF_ERRNO__FORMAT; 1196 goto errout; 1197 } 1198 ep = &obj->efile.ehdr; 1199 1200 if (elf_getshdrstrndx(obj->efile.elf, &obj->efile.shstrndx)) { 1201 pr_warn("elf: failed to get section names section index for %s: %s\n", 1202 obj->path, elf_errmsg(-1)); 1203 err = -LIBBPF_ERRNO__FORMAT; 1204 goto errout; 1205 } 1206 1207 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1208 if (!elf_rawdata(elf_getscn(obj->efile.elf, obj->efile.shstrndx), NULL)) { 1209 pr_warn("elf: failed to get section names strings from %s: %s\n", 1210 obj->path, elf_errmsg(-1)); 1211 err = -LIBBPF_ERRNO__FORMAT; 1212 goto errout; 1213 } 1214 1215 /* Old LLVM set e_machine to EM_NONE */ 1216 if (ep->e_type != ET_REL || 1217 (ep->e_machine && ep->e_machine != EM_BPF)) { 1218 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1219 err = -LIBBPF_ERRNO__FORMAT; 1220 goto errout; 1221 } 1222 1223 return 0; 1224 errout: 1225 bpf_object__elf_finish(obj); 1226 return err; 1227 } 1228 1229 static int bpf_object__check_endianness(struct bpf_object *obj) 1230 { 1231 #if __BYTE_ORDER == __LITTLE_ENDIAN 1232 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2LSB) 1233 return 0; 1234 #elif __BYTE_ORDER == __BIG_ENDIAN 1235 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2MSB) 1236 return 0; 1237 #else 1238 # error "Unrecognized __BYTE_ORDER__" 1239 #endif 1240 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1241 return -LIBBPF_ERRNO__ENDIAN; 1242 } 1243 1244 static int 1245 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1246 { 1247 memcpy(obj->license, data, min(size, sizeof(obj->license) - 1)); 1248 pr_debug("license of %s is %s\n", obj->path, obj->license); 1249 return 0; 1250 } 1251 1252 static int 1253 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1254 { 1255 __u32 kver; 1256 1257 if (size != sizeof(kver)) { 1258 pr_warn("invalid kver section in %s\n", obj->path); 1259 return -LIBBPF_ERRNO__FORMAT; 1260 } 1261 memcpy(&kver, data, sizeof(kver)); 1262 obj->kern_version = kver; 1263 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1264 return 0; 1265 } 1266 1267 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1268 { 1269 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1270 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1271 return true; 1272 return false; 1273 } 1274 1275 int bpf_object__section_size(const struct bpf_object *obj, const char *name, 1276 __u32 *size) 1277 { 1278 int ret = -ENOENT; 1279 1280 *size = 0; 1281 if (!name) { 1282 return -EINVAL; 1283 } else if (!strcmp(name, DATA_SEC)) { 1284 if (obj->efile.data) 1285 *size = obj->efile.data->d_size; 1286 } else if (!strcmp(name, BSS_SEC)) { 1287 if (obj->efile.bss) 1288 *size = obj->efile.bss->d_size; 1289 } else if (!strcmp(name, RODATA_SEC)) { 1290 if (obj->efile.rodata) 1291 *size = obj->efile.rodata->d_size; 1292 } else if (!strcmp(name, STRUCT_OPS_SEC)) { 1293 if (obj->efile.st_ops_data) 1294 *size = obj->efile.st_ops_data->d_size; 1295 } else { 1296 Elf_Scn *scn = elf_sec_by_name(obj, name); 1297 Elf_Data *data = elf_sec_data(obj, scn); 1298 1299 if (data) { 1300 ret = 0; /* found it */ 1301 *size = data->d_size; 1302 } 1303 } 1304 1305 return *size ? 0 : ret; 1306 } 1307 1308 int bpf_object__variable_offset(const struct bpf_object *obj, const char *name, 1309 __u32 *off) 1310 { 1311 Elf_Data *symbols = obj->efile.symbols; 1312 const char *sname; 1313 size_t si; 1314 1315 if (!name || !off) 1316 return -EINVAL; 1317 1318 for (si = 0; si < symbols->d_size / sizeof(GElf_Sym); si++) { 1319 GElf_Sym sym; 1320 1321 if (!gelf_getsym(symbols, si, &sym)) 1322 continue; 1323 if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL || 1324 GELF_ST_TYPE(sym.st_info) != STT_OBJECT) 1325 continue; 1326 1327 sname = elf_sym_str(obj, sym.st_name); 1328 if (!sname) { 1329 pr_warn("failed to get sym name string for var %s\n", 1330 name); 1331 return -EIO; 1332 } 1333 if (strcmp(name, sname) == 0) { 1334 *off = sym.st_value; 1335 return 0; 1336 } 1337 } 1338 1339 return -ENOENT; 1340 } 1341 1342 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1343 { 1344 struct bpf_map *new_maps; 1345 size_t new_cap; 1346 int i; 1347 1348 if (obj->nr_maps < obj->maps_cap) 1349 return &obj->maps[obj->nr_maps++]; 1350 1351 new_cap = max((size_t)4, obj->maps_cap * 3 / 2); 1352 new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps)); 1353 if (!new_maps) { 1354 pr_warn("alloc maps for object failed\n"); 1355 return ERR_PTR(-ENOMEM); 1356 } 1357 1358 obj->maps_cap = new_cap; 1359 obj->maps = new_maps; 1360 1361 /* zero out new maps */ 1362 memset(obj->maps + obj->nr_maps, 0, 1363 (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps)); 1364 /* 1365 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin) 1366 * when failure (zclose won't close negative fd)). 1367 */ 1368 for (i = obj->nr_maps; i < obj->maps_cap; i++) { 1369 obj->maps[i].fd = -1; 1370 obj->maps[i].inner_map_fd = -1; 1371 } 1372 1373 return &obj->maps[obj->nr_maps++]; 1374 } 1375 1376 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1377 { 1378 long page_sz = sysconf(_SC_PAGE_SIZE); 1379 size_t map_sz; 1380 1381 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1382 map_sz = roundup(map_sz, page_sz); 1383 return map_sz; 1384 } 1385 1386 static char *internal_map_name(struct bpf_object *obj, 1387 enum libbpf_map_type type) 1388 { 1389 char map_name[BPF_OBJ_NAME_LEN], *p; 1390 const char *sfx = libbpf_type_to_btf_name[type]; 1391 int sfx_len = max((size_t)7, strlen(sfx)); 1392 int pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, 1393 strlen(obj->name)); 1394 1395 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1396 sfx_len, libbpf_type_to_btf_name[type]); 1397 1398 /* sanitise map name to characters allowed by kernel */ 1399 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1400 if (!isalnum(*p) && *p != '_' && *p != '.') 1401 *p = '_'; 1402 1403 return strdup(map_name); 1404 } 1405 1406 static int 1407 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1408 int sec_idx, void *data, size_t data_sz) 1409 { 1410 struct bpf_map_def *def; 1411 struct bpf_map *map; 1412 int err; 1413 1414 map = bpf_object__add_map(obj); 1415 if (IS_ERR(map)) 1416 return PTR_ERR(map); 1417 1418 map->libbpf_type = type; 1419 map->sec_idx = sec_idx; 1420 map->sec_offset = 0; 1421 map->name = internal_map_name(obj, type); 1422 if (!map->name) { 1423 pr_warn("failed to alloc map name\n"); 1424 return -ENOMEM; 1425 } 1426 1427 def = &map->def; 1428 def->type = BPF_MAP_TYPE_ARRAY; 1429 def->key_size = sizeof(int); 1430 def->value_size = data_sz; 1431 def->max_entries = 1; 1432 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1433 ? BPF_F_RDONLY_PROG : 0; 1434 def->map_flags |= BPF_F_MMAPABLE; 1435 1436 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1437 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1438 1439 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1440 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1441 if (map->mmaped == MAP_FAILED) { 1442 err = -errno; 1443 map->mmaped = NULL; 1444 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1445 map->name, err); 1446 zfree(&map->name); 1447 return err; 1448 } 1449 1450 if (data) 1451 memcpy(map->mmaped, data, data_sz); 1452 1453 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1454 return 0; 1455 } 1456 1457 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1458 { 1459 int err; 1460 1461 /* 1462 * Populate obj->maps with libbpf internal maps. 1463 */ 1464 if (obj->efile.data_shndx >= 0) { 1465 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1466 obj->efile.data_shndx, 1467 obj->efile.data->d_buf, 1468 obj->efile.data->d_size); 1469 if (err) 1470 return err; 1471 } 1472 if (obj->efile.rodata_shndx >= 0) { 1473 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1474 obj->efile.rodata_shndx, 1475 obj->efile.rodata->d_buf, 1476 obj->efile.rodata->d_size); 1477 if (err) 1478 return err; 1479 1480 obj->rodata_map_idx = obj->nr_maps - 1; 1481 } 1482 if (obj->efile.bss_shndx >= 0) { 1483 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1484 obj->efile.bss_shndx, 1485 NULL, 1486 obj->efile.bss->d_size); 1487 if (err) 1488 return err; 1489 } 1490 return 0; 1491 } 1492 1493 1494 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1495 const void *name) 1496 { 1497 int i; 1498 1499 for (i = 0; i < obj->nr_extern; i++) { 1500 if (strcmp(obj->externs[i].name, name) == 0) 1501 return &obj->externs[i]; 1502 } 1503 return NULL; 1504 } 1505 1506 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1507 char value) 1508 { 1509 switch (ext->kcfg.type) { 1510 case KCFG_BOOL: 1511 if (value == 'm') { 1512 pr_warn("extern (kcfg) %s=%c should be tristate or char\n", 1513 ext->name, value); 1514 return -EINVAL; 1515 } 1516 *(bool *)ext_val = value == 'y' ? true : false; 1517 break; 1518 case KCFG_TRISTATE: 1519 if (value == 'y') 1520 *(enum libbpf_tristate *)ext_val = TRI_YES; 1521 else if (value == 'm') 1522 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1523 else /* value == 'n' */ 1524 *(enum libbpf_tristate *)ext_val = TRI_NO; 1525 break; 1526 case KCFG_CHAR: 1527 *(char *)ext_val = value; 1528 break; 1529 case KCFG_UNKNOWN: 1530 case KCFG_INT: 1531 case KCFG_CHAR_ARR: 1532 default: 1533 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n", 1534 ext->name, value); 1535 return -EINVAL; 1536 } 1537 ext->is_set = true; 1538 return 0; 1539 } 1540 1541 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1542 const char *value) 1543 { 1544 size_t len; 1545 1546 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1547 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value); 1548 return -EINVAL; 1549 } 1550 1551 len = strlen(value); 1552 if (value[len - 1] != '"') { 1553 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1554 ext->name, value); 1555 return -EINVAL; 1556 } 1557 1558 /* strip quotes */ 1559 len -= 2; 1560 if (len >= ext->kcfg.sz) { 1561 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n", 1562 ext->name, value, len, ext->kcfg.sz - 1); 1563 len = ext->kcfg.sz - 1; 1564 } 1565 memcpy(ext_val, value + 1, len); 1566 ext_val[len] = '\0'; 1567 ext->is_set = true; 1568 return 0; 1569 } 1570 1571 static int parse_u64(const char *value, __u64 *res) 1572 { 1573 char *value_end; 1574 int err; 1575 1576 errno = 0; 1577 *res = strtoull(value, &value_end, 0); 1578 if (errno) { 1579 err = -errno; 1580 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1581 return err; 1582 } 1583 if (*value_end) { 1584 pr_warn("failed to parse '%s' as integer completely\n", value); 1585 return -EINVAL; 1586 } 1587 return 0; 1588 } 1589 1590 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1591 { 1592 int bit_sz = ext->kcfg.sz * 8; 1593 1594 if (ext->kcfg.sz == 8) 1595 return true; 1596 1597 /* Validate that value stored in u64 fits in integer of `ext->sz` 1598 * bytes size without any loss of information. If the target integer 1599 * is signed, we rely on the following limits of integer type of 1600 * Y bits and subsequent transformation: 1601 * 1602 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1603 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1604 * 0 <= X + 2^(Y-1) < 2^Y 1605 * 1606 * For unsigned target integer, check that all the (64 - Y) bits are 1607 * zero. 1608 */ 1609 if (ext->kcfg.is_signed) 1610 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1611 else 1612 return (v >> bit_sz) == 0; 1613 } 1614 1615 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1616 __u64 value) 1617 { 1618 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1619 pr_warn("extern (kcfg) %s=%llu should be integer\n", 1620 ext->name, (unsigned long long)value); 1621 return -EINVAL; 1622 } 1623 if (!is_kcfg_value_in_range(ext, value)) { 1624 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n", 1625 ext->name, (unsigned long long)value, ext->kcfg.sz); 1626 return -ERANGE; 1627 } 1628 switch (ext->kcfg.sz) { 1629 case 1: *(__u8 *)ext_val = value; break; 1630 case 2: *(__u16 *)ext_val = value; break; 1631 case 4: *(__u32 *)ext_val = value; break; 1632 case 8: *(__u64 *)ext_val = value; break; 1633 default: 1634 return -EINVAL; 1635 } 1636 ext->is_set = true; 1637 return 0; 1638 } 1639 1640 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1641 char *buf, void *data) 1642 { 1643 struct extern_desc *ext; 1644 char *sep, *value; 1645 int len, err = 0; 1646 void *ext_val; 1647 __u64 num; 1648 1649 if (strncmp(buf, "CONFIG_", 7)) 1650 return 0; 1651 1652 sep = strchr(buf, '='); 1653 if (!sep) { 1654 pr_warn("failed to parse '%s': no separator\n", buf); 1655 return -EINVAL; 1656 } 1657 1658 /* Trim ending '\n' */ 1659 len = strlen(buf); 1660 if (buf[len - 1] == '\n') 1661 buf[len - 1] = '\0'; 1662 /* Split on '=' and ensure that a value is present. */ 1663 *sep = '\0'; 1664 if (!sep[1]) { 1665 *sep = '='; 1666 pr_warn("failed to parse '%s': no value\n", buf); 1667 return -EINVAL; 1668 } 1669 1670 ext = find_extern_by_name(obj, buf); 1671 if (!ext || ext->is_set) 1672 return 0; 1673 1674 ext_val = data + ext->kcfg.data_off; 1675 value = sep + 1; 1676 1677 switch (*value) { 1678 case 'y': case 'n': case 'm': 1679 err = set_kcfg_value_tri(ext, ext_val, *value); 1680 break; 1681 case '"': 1682 err = set_kcfg_value_str(ext, ext_val, value); 1683 break; 1684 default: 1685 /* assume integer */ 1686 err = parse_u64(value, &num); 1687 if (err) { 1688 pr_warn("extern (kcfg) %s=%s should be integer\n", 1689 ext->name, value); 1690 return err; 1691 } 1692 err = set_kcfg_value_num(ext, ext_val, num); 1693 break; 1694 } 1695 if (err) 1696 return err; 1697 pr_debug("extern (kcfg) %s=%s\n", ext->name, value); 1698 return 0; 1699 } 1700 1701 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1702 { 1703 char buf[PATH_MAX]; 1704 struct utsname uts; 1705 int len, err = 0; 1706 gzFile file; 1707 1708 uname(&uts); 1709 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1710 if (len < 0) 1711 return -EINVAL; 1712 else if (len >= PATH_MAX) 1713 return -ENAMETOOLONG; 1714 1715 /* gzopen also accepts uncompressed files. */ 1716 file = gzopen(buf, "r"); 1717 if (!file) 1718 file = gzopen("/proc/config.gz", "r"); 1719 1720 if (!file) { 1721 pr_warn("failed to open system Kconfig\n"); 1722 return -ENOENT; 1723 } 1724 1725 while (gzgets(file, buf, sizeof(buf))) { 1726 err = bpf_object__process_kconfig_line(obj, buf, data); 1727 if (err) { 1728 pr_warn("error parsing system Kconfig line '%s': %d\n", 1729 buf, err); 1730 goto out; 1731 } 1732 } 1733 1734 out: 1735 gzclose(file); 1736 return err; 1737 } 1738 1739 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1740 const char *config, void *data) 1741 { 1742 char buf[PATH_MAX]; 1743 int err = 0; 1744 FILE *file; 1745 1746 file = fmemopen((void *)config, strlen(config), "r"); 1747 if (!file) { 1748 err = -errno; 1749 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1750 return err; 1751 } 1752 1753 while (fgets(buf, sizeof(buf), file)) { 1754 err = bpf_object__process_kconfig_line(obj, buf, data); 1755 if (err) { 1756 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1757 buf, err); 1758 break; 1759 } 1760 } 1761 1762 fclose(file); 1763 return err; 1764 } 1765 1766 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1767 { 1768 struct extern_desc *last_ext = NULL, *ext; 1769 size_t map_sz; 1770 int i, err; 1771 1772 for (i = 0; i < obj->nr_extern; i++) { 1773 ext = &obj->externs[i]; 1774 if (ext->type == EXT_KCFG) 1775 last_ext = ext; 1776 } 1777 1778 if (!last_ext) 1779 return 0; 1780 1781 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 1782 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1783 obj->efile.symbols_shndx, 1784 NULL, map_sz); 1785 if (err) 1786 return err; 1787 1788 obj->kconfig_map_idx = obj->nr_maps - 1; 1789 1790 return 0; 1791 } 1792 1793 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) 1794 { 1795 Elf_Data *symbols = obj->efile.symbols; 1796 int i, map_def_sz = 0, nr_maps = 0, nr_syms; 1797 Elf_Data *data = NULL; 1798 Elf_Scn *scn; 1799 1800 if (obj->efile.maps_shndx < 0) 1801 return 0; 1802 1803 if (!symbols) 1804 return -EINVAL; 1805 1806 scn = elf_sec_by_idx(obj, obj->efile.maps_shndx); 1807 data = elf_sec_data(obj, scn); 1808 if (!scn || !data) { 1809 pr_warn("elf: failed to get legacy map definitions for %s\n", 1810 obj->path); 1811 return -EINVAL; 1812 } 1813 1814 /* 1815 * Count number of maps. Each map has a name. 1816 * Array of maps is not supported: only the first element is 1817 * considered. 1818 * 1819 * TODO: Detect array of map and report error. 1820 */ 1821 nr_syms = symbols->d_size / sizeof(GElf_Sym); 1822 for (i = 0; i < nr_syms; i++) { 1823 GElf_Sym sym; 1824 1825 if (!gelf_getsym(symbols, i, &sym)) 1826 continue; 1827 if (sym.st_shndx != obj->efile.maps_shndx) 1828 continue; 1829 nr_maps++; 1830 } 1831 /* Assume equally sized map definitions */ 1832 pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n", 1833 nr_maps, data->d_size, obj->path); 1834 1835 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) { 1836 pr_warn("elf: unable to determine legacy map definition size in %s\n", 1837 obj->path); 1838 return -EINVAL; 1839 } 1840 map_def_sz = data->d_size / nr_maps; 1841 1842 /* Fill obj->maps using data in "maps" section. */ 1843 for (i = 0; i < nr_syms; i++) { 1844 GElf_Sym sym; 1845 const char *map_name; 1846 struct bpf_map_def *def; 1847 struct bpf_map *map; 1848 1849 if (!gelf_getsym(symbols, i, &sym)) 1850 continue; 1851 if (sym.st_shndx != obj->efile.maps_shndx) 1852 continue; 1853 1854 map = bpf_object__add_map(obj); 1855 if (IS_ERR(map)) 1856 return PTR_ERR(map); 1857 1858 map_name = elf_sym_str(obj, sym.st_name); 1859 if (!map_name) { 1860 pr_warn("failed to get map #%d name sym string for obj %s\n", 1861 i, obj->path); 1862 return -LIBBPF_ERRNO__FORMAT; 1863 } 1864 1865 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION 1866 || GELF_ST_BIND(sym.st_info) == STB_LOCAL) { 1867 pr_warn("map '%s' (legacy): static maps are not supported\n", map_name); 1868 return -ENOTSUP; 1869 } 1870 1871 map->libbpf_type = LIBBPF_MAP_UNSPEC; 1872 map->sec_idx = sym.st_shndx; 1873 map->sec_offset = sym.st_value; 1874 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n", 1875 map_name, map->sec_idx, map->sec_offset); 1876 if (sym.st_value + map_def_sz > data->d_size) { 1877 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n", 1878 obj->path, map_name); 1879 return -EINVAL; 1880 } 1881 1882 map->name = strdup(map_name); 1883 if (!map->name) { 1884 pr_warn("failed to alloc map name\n"); 1885 return -ENOMEM; 1886 } 1887 pr_debug("map %d is \"%s\"\n", i, map->name); 1888 def = (struct bpf_map_def *)(data->d_buf + sym.st_value); 1889 /* 1890 * If the definition of the map in the object file fits in 1891 * bpf_map_def, copy it. Any extra fields in our version 1892 * of bpf_map_def will default to zero as a result of the 1893 * calloc above. 1894 */ 1895 if (map_def_sz <= sizeof(struct bpf_map_def)) { 1896 memcpy(&map->def, def, map_def_sz); 1897 } else { 1898 /* 1899 * Here the map structure being read is bigger than what 1900 * we expect, truncate if the excess bits are all zero. 1901 * If they are not zero, reject this map as 1902 * incompatible. 1903 */ 1904 char *b; 1905 1906 for (b = ((char *)def) + sizeof(struct bpf_map_def); 1907 b < ((char *)def) + map_def_sz; b++) { 1908 if (*b != 0) { 1909 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n", 1910 obj->path, map_name); 1911 if (strict) 1912 return -EINVAL; 1913 } 1914 } 1915 memcpy(&map->def, def, sizeof(struct bpf_map_def)); 1916 } 1917 } 1918 return 0; 1919 } 1920 1921 const struct btf_type * 1922 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 1923 { 1924 const struct btf_type *t = btf__type_by_id(btf, id); 1925 1926 if (res_id) 1927 *res_id = id; 1928 1929 while (btf_is_mod(t) || btf_is_typedef(t)) { 1930 if (res_id) 1931 *res_id = t->type; 1932 t = btf__type_by_id(btf, t->type); 1933 } 1934 1935 return t; 1936 } 1937 1938 static const struct btf_type * 1939 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 1940 { 1941 const struct btf_type *t; 1942 1943 t = skip_mods_and_typedefs(btf, id, NULL); 1944 if (!btf_is_ptr(t)) 1945 return NULL; 1946 1947 t = skip_mods_and_typedefs(btf, t->type, res_id); 1948 1949 return btf_is_func_proto(t) ? t : NULL; 1950 } 1951 1952 static const char *__btf_kind_str(__u16 kind) 1953 { 1954 switch (kind) { 1955 case BTF_KIND_UNKN: return "void"; 1956 case BTF_KIND_INT: return "int"; 1957 case BTF_KIND_PTR: return "ptr"; 1958 case BTF_KIND_ARRAY: return "array"; 1959 case BTF_KIND_STRUCT: return "struct"; 1960 case BTF_KIND_UNION: return "union"; 1961 case BTF_KIND_ENUM: return "enum"; 1962 case BTF_KIND_FWD: return "fwd"; 1963 case BTF_KIND_TYPEDEF: return "typedef"; 1964 case BTF_KIND_VOLATILE: return "volatile"; 1965 case BTF_KIND_CONST: return "const"; 1966 case BTF_KIND_RESTRICT: return "restrict"; 1967 case BTF_KIND_FUNC: return "func"; 1968 case BTF_KIND_FUNC_PROTO: return "func_proto"; 1969 case BTF_KIND_VAR: return "var"; 1970 case BTF_KIND_DATASEC: return "datasec"; 1971 case BTF_KIND_FLOAT: return "float"; 1972 default: return "unknown"; 1973 } 1974 } 1975 1976 const char *btf_kind_str(const struct btf_type *t) 1977 { 1978 return __btf_kind_str(btf_kind(t)); 1979 } 1980 1981 /* 1982 * Fetch integer attribute of BTF map definition. Such attributes are 1983 * represented using a pointer to an array, in which dimensionality of array 1984 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 1985 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 1986 * type definition, while using only sizeof(void *) space in ELF data section. 1987 */ 1988 static bool get_map_field_int(const char *map_name, const struct btf *btf, 1989 const struct btf_member *m, __u32 *res) 1990 { 1991 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 1992 const char *name = btf__name_by_offset(btf, m->name_off); 1993 const struct btf_array *arr_info; 1994 const struct btf_type *arr_t; 1995 1996 if (!btf_is_ptr(t)) { 1997 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 1998 map_name, name, btf_kind_str(t)); 1999 return false; 2000 } 2001 2002 arr_t = btf__type_by_id(btf, t->type); 2003 if (!arr_t) { 2004 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2005 map_name, name, t->type); 2006 return false; 2007 } 2008 if (!btf_is_array(arr_t)) { 2009 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2010 map_name, name, btf_kind_str(arr_t)); 2011 return false; 2012 } 2013 arr_info = btf_array(arr_t); 2014 *res = arr_info->nelems; 2015 return true; 2016 } 2017 2018 static int build_map_pin_path(struct bpf_map *map, const char *path) 2019 { 2020 char buf[PATH_MAX]; 2021 int len; 2022 2023 if (!path) 2024 path = "/sys/fs/bpf"; 2025 2026 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 2027 if (len < 0) 2028 return -EINVAL; 2029 else if (len >= PATH_MAX) 2030 return -ENAMETOOLONG; 2031 2032 return bpf_map__set_pin_path(map, buf); 2033 } 2034 2035 int parse_btf_map_def(const char *map_name, struct btf *btf, 2036 const struct btf_type *def_t, bool strict, 2037 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2038 { 2039 const struct btf_type *t; 2040 const struct btf_member *m; 2041 bool is_inner = inner_def == NULL; 2042 int vlen, i; 2043 2044 vlen = btf_vlen(def_t); 2045 m = btf_members(def_t); 2046 for (i = 0; i < vlen; i++, m++) { 2047 const char *name = btf__name_by_offset(btf, m->name_off); 2048 2049 if (!name) { 2050 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2051 return -EINVAL; 2052 } 2053 if (strcmp(name, "type") == 0) { 2054 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2055 return -EINVAL; 2056 map_def->parts |= MAP_DEF_MAP_TYPE; 2057 } else if (strcmp(name, "max_entries") == 0) { 2058 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2059 return -EINVAL; 2060 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2061 } else if (strcmp(name, "map_flags") == 0) { 2062 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2063 return -EINVAL; 2064 map_def->parts |= MAP_DEF_MAP_FLAGS; 2065 } else if (strcmp(name, "numa_node") == 0) { 2066 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2067 return -EINVAL; 2068 map_def->parts |= MAP_DEF_NUMA_NODE; 2069 } else if (strcmp(name, "key_size") == 0) { 2070 __u32 sz; 2071 2072 if (!get_map_field_int(map_name, btf, m, &sz)) 2073 return -EINVAL; 2074 if (map_def->key_size && map_def->key_size != sz) { 2075 pr_warn("map '%s': conflicting key size %u != %u.\n", 2076 map_name, map_def->key_size, sz); 2077 return -EINVAL; 2078 } 2079 map_def->key_size = sz; 2080 map_def->parts |= MAP_DEF_KEY_SIZE; 2081 } else if (strcmp(name, "key") == 0) { 2082 __s64 sz; 2083 2084 t = btf__type_by_id(btf, m->type); 2085 if (!t) { 2086 pr_warn("map '%s': key type [%d] not found.\n", 2087 map_name, m->type); 2088 return -EINVAL; 2089 } 2090 if (!btf_is_ptr(t)) { 2091 pr_warn("map '%s': key spec is not PTR: %s.\n", 2092 map_name, btf_kind_str(t)); 2093 return -EINVAL; 2094 } 2095 sz = btf__resolve_size(btf, t->type); 2096 if (sz < 0) { 2097 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2098 map_name, t->type, (ssize_t)sz); 2099 return sz; 2100 } 2101 if (map_def->key_size && map_def->key_size != sz) { 2102 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2103 map_name, map_def->key_size, (ssize_t)sz); 2104 return -EINVAL; 2105 } 2106 map_def->key_size = sz; 2107 map_def->key_type_id = t->type; 2108 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2109 } else if (strcmp(name, "value_size") == 0) { 2110 __u32 sz; 2111 2112 if (!get_map_field_int(map_name, btf, m, &sz)) 2113 return -EINVAL; 2114 if (map_def->value_size && map_def->value_size != sz) { 2115 pr_warn("map '%s': conflicting value size %u != %u.\n", 2116 map_name, map_def->value_size, sz); 2117 return -EINVAL; 2118 } 2119 map_def->value_size = sz; 2120 map_def->parts |= MAP_DEF_VALUE_SIZE; 2121 } else if (strcmp(name, "value") == 0) { 2122 __s64 sz; 2123 2124 t = btf__type_by_id(btf, m->type); 2125 if (!t) { 2126 pr_warn("map '%s': value type [%d] not found.\n", 2127 map_name, m->type); 2128 return -EINVAL; 2129 } 2130 if (!btf_is_ptr(t)) { 2131 pr_warn("map '%s': value spec is not PTR: %s.\n", 2132 map_name, btf_kind_str(t)); 2133 return -EINVAL; 2134 } 2135 sz = btf__resolve_size(btf, t->type); 2136 if (sz < 0) { 2137 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2138 map_name, t->type, (ssize_t)sz); 2139 return sz; 2140 } 2141 if (map_def->value_size && map_def->value_size != sz) { 2142 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2143 map_name, map_def->value_size, (ssize_t)sz); 2144 return -EINVAL; 2145 } 2146 map_def->value_size = sz; 2147 map_def->value_type_id = t->type; 2148 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2149 } 2150 else if (strcmp(name, "values") == 0) { 2151 char inner_map_name[128]; 2152 int err; 2153 2154 if (is_inner) { 2155 pr_warn("map '%s': multi-level inner maps not supported.\n", 2156 map_name); 2157 return -ENOTSUP; 2158 } 2159 if (i != vlen - 1) { 2160 pr_warn("map '%s': '%s' member should be last.\n", 2161 map_name, name); 2162 return -EINVAL; 2163 } 2164 if (!bpf_map_type__is_map_in_map(map_def->map_type)) { 2165 pr_warn("map '%s': should be map-in-map.\n", 2166 map_name); 2167 return -ENOTSUP; 2168 } 2169 if (map_def->value_size && map_def->value_size != 4) { 2170 pr_warn("map '%s': conflicting value size %u != 4.\n", 2171 map_name, map_def->value_size); 2172 return -EINVAL; 2173 } 2174 map_def->value_size = 4; 2175 t = btf__type_by_id(btf, m->type); 2176 if (!t) { 2177 pr_warn("map '%s': map-in-map inner type [%d] not found.\n", 2178 map_name, m->type); 2179 return -EINVAL; 2180 } 2181 if (!btf_is_array(t) || btf_array(t)->nelems) { 2182 pr_warn("map '%s': map-in-map inner spec is not a zero-sized array.\n", 2183 map_name); 2184 return -EINVAL; 2185 } 2186 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2187 if (!btf_is_ptr(t)) { 2188 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2189 map_name, btf_kind_str(t)); 2190 return -EINVAL; 2191 } 2192 t = skip_mods_and_typedefs(btf, t->type, NULL); 2193 if (!btf_is_struct(t)) { 2194 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2195 map_name, btf_kind_str(t)); 2196 return -EINVAL; 2197 } 2198 2199 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2200 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2201 if (err) 2202 return err; 2203 2204 map_def->parts |= MAP_DEF_INNER_MAP; 2205 } else if (strcmp(name, "pinning") == 0) { 2206 __u32 val; 2207 2208 if (is_inner) { 2209 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2210 return -EINVAL; 2211 } 2212 if (!get_map_field_int(map_name, btf, m, &val)) 2213 return -EINVAL; 2214 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2215 pr_warn("map '%s': invalid pinning value %u.\n", 2216 map_name, val); 2217 return -EINVAL; 2218 } 2219 map_def->pinning = val; 2220 map_def->parts |= MAP_DEF_PINNING; 2221 } else { 2222 if (strict) { 2223 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2224 return -ENOTSUP; 2225 } 2226 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2227 } 2228 } 2229 2230 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2231 pr_warn("map '%s': map type isn't specified.\n", map_name); 2232 return -EINVAL; 2233 } 2234 2235 return 0; 2236 } 2237 2238 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2239 { 2240 map->def.type = def->map_type; 2241 map->def.key_size = def->key_size; 2242 map->def.value_size = def->value_size; 2243 map->def.max_entries = def->max_entries; 2244 map->def.map_flags = def->map_flags; 2245 2246 map->numa_node = def->numa_node; 2247 map->btf_key_type_id = def->key_type_id; 2248 map->btf_value_type_id = def->value_type_id; 2249 2250 if (def->parts & MAP_DEF_MAP_TYPE) 2251 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2252 2253 if (def->parts & MAP_DEF_KEY_TYPE) 2254 pr_debug("map '%s': found key [%u], sz = %u.\n", 2255 map->name, def->key_type_id, def->key_size); 2256 else if (def->parts & MAP_DEF_KEY_SIZE) 2257 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2258 2259 if (def->parts & MAP_DEF_VALUE_TYPE) 2260 pr_debug("map '%s': found value [%u], sz = %u.\n", 2261 map->name, def->value_type_id, def->value_size); 2262 else if (def->parts & MAP_DEF_VALUE_SIZE) 2263 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2264 2265 if (def->parts & MAP_DEF_MAX_ENTRIES) 2266 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2267 if (def->parts & MAP_DEF_MAP_FLAGS) 2268 pr_debug("map '%s': found map_flags = %u.\n", map->name, def->map_flags); 2269 if (def->parts & MAP_DEF_PINNING) 2270 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2271 if (def->parts & MAP_DEF_NUMA_NODE) 2272 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2273 2274 if (def->parts & MAP_DEF_INNER_MAP) 2275 pr_debug("map '%s': found inner map definition.\n", map->name); 2276 } 2277 2278 static const char *btf_var_linkage_str(__u32 linkage) 2279 { 2280 switch (linkage) { 2281 case BTF_VAR_STATIC: return "static"; 2282 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2283 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2284 default: return "unknown"; 2285 } 2286 } 2287 2288 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2289 const struct btf_type *sec, 2290 int var_idx, int sec_idx, 2291 const Elf_Data *data, bool strict, 2292 const char *pin_root_path) 2293 { 2294 struct btf_map_def map_def = {}, inner_def = {}; 2295 const struct btf_type *var, *def; 2296 const struct btf_var_secinfo *vi; 2297 const struct btf_var *var_extra; 2298 const char *map_name; 2299 struct bpf_map *map; 2300 int err; 2301 2302 vi = btf_var_secinfos(sec) + var_idx; 2303 var = btf__type_by_id(obj->btf, vi->type); 2304 var_extra = btf_var(var); 2305 map_name = btf__name_by_offset(obj->btf, var->name_off); 2306 2307 if (map_name == NULL || map_name[0] == '\0') { 2308 pr_warn("map #%d: empty name.\n", var_idx); 2309 return -EINVAL; 2310 } 2311 if ((__u64)vi->offset + vi->size > data->d_size) { 2312 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2313 return -EINVAL; 2314 } 2315 if (!btf_is_var(var)) { 2316 pr_warn("map '%s': unexpected var kind %s.\n", 2317 map_name, btf_kind_str(var)); 2318 return -EINVAL; 2319 } 2320 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2321 pr_warn("map '%s': unsupported map linkage %s.\n", 2322 map_name, btf_var_linkage_str(var_extra->linkage)); 2323 return -EOPNOTSUPP; 2324 } 2325 2326 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2327 if (!btf_is_struct(def)) { 2328 pr_warn("map '%s': unexpected def kind %s.\n", 2329 map_name, btf_kind_str(var)); 2330 return -EINVAL; 2331 } 2332 if (def->size > vi->size) { 2333 pr_warn("map '%s': invalid def size.\n", map_name); 2334 return -EINVAL; 2335 } 2336 2337 map = bpf_object__add_map(obj); 2338 if (IS_ERR(map)) 2339 return PTR_ERR(map); 2340 map->name = strdup(map_name); 2341 if (!map->name) { 2342 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2343 return -ENOMEM; 2344 } 2345 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2346 map->def.type = BPF_MAP_TYPE_UNSPEC; 2347 map->sec_idx = sec_idx; 2348 map->sec_offset = vi->offset; 2349 map->btf_var_idx = var_idx; 2350 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2351 map_name, map->sec_idx, map->sec_offset); 2352 2353 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2354 if (err) 2355 return err; 2356 2357 fill_map_from_def(map, &map_def); 2358 2359 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2360 err = build_map_pin_path(map, pin_root_path); 2361 if (err) { 2362 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2363 return err; 2364 } 2365 } 2366 2367 if (map_def.parts & MAP_DEF_INNER_MAP) { 2368 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2369 if (!map->inner_map) 2370 return -ENOMEM; 2371 map->inner_map->fd = -1; 2372 map->inner_map->sec_idx = sec_idx; 2373 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2374 if (!map->inner_map->name) 2375 return -ENOMEM; 2376 sprintf(map->inner_map->name, "%s.inner", map_name); 2377 2378 fill_map_from_def(map->inner_map, &inner_def); 2379 } 2380 2381 return 0; 2382 } 2383 2384 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2385 const char *pin_root_path) 2386 { 2387 const struct btf_type *sec = NULL; 2388 int nr_types, i, vlen, err; 2389 const struct btf_type *t; 2390 const char *name; 2391 Elf_Data *data; 2392 Elf_Scn *scn; 2393 2394 if (obj->efile.btf_maps_shndx < 0) 2395 return 0; 2396 2397 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2398 data = elf_sec_data(obj, scn); 2399 if (!scn || !data) { 2400 pr_warn("elf: failed to get %s map definitions for %s\n", 2401 MAPS_ELF_SEC, obj->path); 2402 return -EINVAL; 2403 } 2404 2405 nr_types = btf__get_nr_types(obj->btf); 2406 for (i = 1; i <= nr_types; i++) { 2407 t = btf__type_by_id(obj->btf, i); 2408 if (!btf_is_datasec(t)) 2409 continue; 2410 name = btf__name_by_offset(obj->btf, t->name_off); 2411 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2412 sec = t; 2413 obj->efile.btf_maps_sec_btf_id = i; 2414 break; 2415 } 2416 } 2417 2418 if (!sec) { 2419 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2420 return -ENOENT; 2421 } 2422 2423 vlen = btf_vlen(sec); 2424 for (i = 0; i < vlen; i++) { 2425 err = bpf_object__init_user_btf_map(obj, sec, i, 2426 obj->efile.btf_maps_shndx, 2427 data, strict, 2428 pin_root_path); 2429 if (err) 2430 return err; 2431 } 2432 2433 return 0; 2434 } 2435 2436 static int bpf_object__init_maps(struct bpf_object *obj, 2437 const struct bpf_object_open_opts *opts) 2438 { 2439 const char *pin_root_path; 2440 bool strict; 2441 int err; 2442 2443 strict = !OPTS_GET(opts, relaxed_maps, false); 2444 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2445 2446 err = bpf_object__init_user_maps(obj, strict); 2447 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2448 err = err ?: bpf_object__init_global_data_maps(obj); 2449 err = err ?: bpf_object__init_kconfig_map(obj); 2450 err = err ?: bpf_object__init_struct_ops_maps(obj); 2451 if (err) 2452 return err; 2453 2454 return 0; 2455 } 2456 2457 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2458 { 2459 GElf_Shdr sh; 2460 2461 if (elf_sec_hdr(obj, elf_sec_by_idx(obj, idx), &sh)) 2462 return false; 2463 2464 return sh.sh_flags & SHF_EXECINSTR; 2465 } 2466 2467 static bool btf_needs_sanitization(struct bpf_object *obj) 2468 { 2469 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2470 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2471 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2472 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2473 2474 return !has_func || !has_datasec || !has_func_global || !has_float; 2475 } 2476 2477 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2478 { 2479 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2480 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2481 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2482 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2483 struct btf_type *t; 2484 int i, j, vlen; 2485 2486 for (i = 1; i <= btf__get_nr_types(btf); i++) { 2487 t = (struct btf_type *)btf__type_by_id(btf, i); 2488 2489 if (!has_datasec && btf_is_var(t)) { 2490 /* replace VAR with INT */ 2491 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2492 /* 2493 * using size = 1 is the safest choice, 4 will be too 2494 * big and cause kernel BTF validation failure if 2495 * original variable took less than 4 bytes 2496 */ 2497 t->size = 1; 2498 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2499 } else if (!has_datasec && btf_is_datasec(t)) { 2500 /* replace DATASEC with STRUCT */ 2501 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2502 struct btf_member *m = btf_members(t); 2503 struct btf_type *vt; 2504 char *name; 2505 2506 name = (char *)btf__name_by_offset(btf, t->name_off); 2507 while (*name) { 2508 if (*name == '.') 2509 *name = '_'; 2510 name++; 2511 } 2512 2513 vlen = btf_vlen(t); 2514 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2515 for (j = 0; j < vlen; j++, v++, m++) { 2516 /* order of field assignments is important */ 2517 m->offset = v->offset * 8; 2518 m->type = v->type; 2519 /* preserve variable name as member name */ 2520 vt = (void *)btf__type_by_id(btf, v->type); 2521 m->name_off = vt->name_off; 2522 } 2523 } else if (!has_func && btf_is_func_proto(t)) { 2524 /* replace FUNC_PROTO with ENUM */ 2525 vlen = btf_vlen(t); 2526 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2527 t->size = sizeof(__u32); /* kernel enforced */ 2528 } else if (!has_func && btf_is_func(t)) { 2529 /* replace FUNC with TYPEDEF */ 2530 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2531 } else if (!has_func_global && btf_is_func(t)) { 2532 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2533 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2534 } else if (!has_float && btf_is_float(t)) { 2535 /* replace FLOAT with an equally-sized empty STRUCT; 2536 * since C compilers do not accept e.g. "float" as a 2537 * valid struct name, make it anonymous 2538 */ 2539 t->name_off = 0; 2540 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2541 } 2542 } 2543 } 2544 2545 static bool libbpf_needs_btf(const struct bpf_object *obj) 2546 { 2547 return obj->efile.btf_maps_shndx >= 0 || 2548 obj->efile.st_ops_shndx >= 0 || 2549 obj->nr_extern > 0; 2550 } 2551 2552 static bool kernel_needs_btf(const struct bpf_object *obj) 2553 { 2554 return obj->efile.st_ops_shndx >= 0; 2555 } 2556 2557 static int bpf_object__init_btf(struct bpf_object *obj, 2558 Elf_Data *btf_data, 2559 Elf_Data *btf_ext_data) 2560 { 2561 int err = -ENOENT; 2562 2563 if (btf_data) { 2564 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2565 if (IS_ERR(obj->btf)) { 2566 err = PTR_ERR(obj->btf); 2567 obj->btf = NULL; 2568 pr_warn("Error loading ELF section %s: %d.\n", 2569 BTF_ELF_SEC, err); 2570 goto out; 2571 } 2572 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2573 btf__set_pointer_size(obj->btf, 8); 2574 err = 0; 2575 } 2576 if (btf_ext_data) { 2577 if (!obj->btf) { 2578 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2579 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2580 goto out; 2581 } 2582 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, 2583 btf_ext_data->d_size); 2584 if (IS_ERR(obj->btf_ext)) { 2585 pr_warn("Error loading ELF section %s: %ld. Ignored and continue.\n", 2586 BTF_EXT_ELF_SEC, PTR_ERR(obj->btf_ext)); 2587 obj->btf_ext = NULL; 2588 goto out; 2589 } 2590 } 2591 out: 2592 if (err && libbpf_needs_btf(obj)) { 2593 pr_warn("BTF is required, but is missing or corrupted.\n"); 2594 return err; 2595 } 2596 return 0; 2597 } 2598 2599 static int bpf_object__finalize_btf(struct bpf_object *obj) 2600 { 2601 int err; 2602 2603 if (!obj->btf) 2604 return 0; 2605 2606 err = btf__finalize_data(obj, obj->btf); 2607 if (err) { 2608 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2609 return err; 2610 } 2611 2612 return 0; 2613 } 2614 2615 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 2616 { 2617 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 2618 prog->type == BPF_PROG_TYPE_LSM) 2619 return true; 2620 2621 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2622 * also need vmlinux BTF 2623 */ 2624 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2625 return true; 2626 2627 return false; 2628 } 2629 2630 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 2631 { 2632 struct bpf_program *prog; 2633 int i; 2634 2635 /* CO-RE relocations need kernel BTF */ 2636 if (obj->btf_ext && obj->btf_ext->core_relo_info.len) 2637 return true; 2638 2639 /* Support for typed ksyms needs kernel BTF */ 2640 for (i = 0; i < obj->nr_extern; i++) { 2641 const struct extern_desc *ext; 2642 2643 ext = &obj->externs[i]; 2644 if (ext->type == EXT_KSYM && ext->ksym.type_id) 2645 return true; 2646 } 2647 2648 bpf_object__for_each_program(prog, obj) { 2649 if (!prog->load) 2650 continue; 2651 if (prog_needs_vmlinux_btf(prog)) 2652 return true; 2653 } 2654 2655 return false; 2656 } 2657 2658 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 2659 { 2660 int err; 2661 2662 /* btf_vmlinux could be loaded earlier */ 2663 if (obj->btf_vmlinux || obj->gen_loader) 2664 return 0; 2665 2666 if (!force && !obj_needs_vmlinux_btf(obj)) 2667 return 0; 2668 2669 obj->btf_vmlinux = libbpf_find_kernel_btf(); 2670 if (IS_ERR(obj->btf_vmlinux)) { 2671 err = PTR_ERR(obj->btf_vmlinux); 2672 pr_warn("Error loading vmlinux BTF: %d\n", err); 2673 obj->btf_vmlinux = NULL; 2674 return err; 2675 } 2676 return 0; 2677 } 2678 2679 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 2680 { 2681 struct btf *kern_btf = obj->btf; 2682 bool btf_mandatory, sanitize; 2683 int i, err = 0; 2684 2685 if (!obj->btf) 2686 return 0; 2687 2688 if (!kernel_supports(obj, FEAT_BTF)) { 2689 if (kernel_needs_btf(obj)) { 2690 err = -EOPNOTSUPP; 2691 goto report; 2692 } 2693 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 2694 return 0; 2695 } 2696 2697 /* Even though some subprogs are global/weak, user might prefer more 2698 * permissive BPF verification process that BPF verifier performs for 2699 * static functions, taking into account more context from the caller 2700 * functions. In such case, they need to mark such subprogs with 2701 * __attribute__((visibility("hidden"))) and libbpf will adjust 2702 * corresponding FUNC BTF type to be marked as static and trigger more 2703 * involved BPF verification process. 2704 */ 2705 for (i = 0; i < obj->nr_programs; i++) { 2706 struct bpf_program *prog = &obj->programs[i]; 2707 struct btf_type *t; 2708 const char *name; 2709 int j, n; 2710 2711 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 2712 continue; 2713 2714 n = btf__get_nr_types(obj->btf); 2715 for (j = 1; j <= n; j++) { 2716 t = btf_type_by_id(obj->btf, j); 2717 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 2718 continue; 2719 2720 name = btf__str_by_offset(obj->btf, t->name_off); 2721 if (strcmp(name, prog->name) != 0) 2722 continue; 2723 2724 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 2725 break; 2726 } 2727 } 2728 2729 sanitize = btf_needs_sanitization(obj); 2730 if (sanitize) { 2731 const void *raw_data; 2732 __u32 sz; 2733 2734 /* clone BTF to sanitize a copy and leave the original intact */ 2735 raw_data = btf__get_raw_data(obj->btf, &sz); 2736 kern_btf = btf__new(raw_data, sz); 2737 if (IS_ERR(kern_btf)) 2738 return PTR_ERR(kern_btf); 2739 2740 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2741 btf__set_pointer_size(obj->btf, 8); 2742 bpf_object__sanitize_btf(obj, kern_btf); 2743 } 2744 2745 if (obj->gen_loader) { 2746 __u32 raw_size = 0; 2747 const void *raw_data = btf__get_raw_data(kern_btf, &raw_size); 2748 2749 if (!raw_data) 2750 return -ENOMEM; 2751 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 2752 /* Pretend to have valid FD to pass various fd >= 0 checks. 2753 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 2754 */ 2755 btf__set_fd(kern_btf, 0); 2756 } else { 2757 err = btf__load(kern_btf); 2758 } 2759 if (sanitize) { 2760 if (!err) { 2761 /* move fd to libbpf's BTF */ 2762 btf__set_fd(obj->btf, btf__fd(kern_btf)); 2763 btf__set_fd(kern_btf, -1); 2764 } 2765 btf__free(kern_btf); 2766 } 2767 report: 2768 if (err) { 2769 btf_mandatory = kernel_needs_btf(obj); 2770 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 2771 btf_mandatory ? "BTF is mandatory, can't proceed." 2772 : "BTF is optional, ignoring."); 2773 if (!btf_mandatory) 2774 err = 0; 2775 } 2776 return err; 2777 } 2778 2779 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 2780 { 2781 const char *name; 2782 2783 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 2784 if (!name) { 2785 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 2786 off, obj->path, elf_errmsg(-1)); 2787 return NULL; 2788 } 2789 2790 return name; 2791 } 2792 2793 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 2794 { 2795 const char *name; 2796 2797 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 2798 if (!name) { 2799 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 2800 off, obj->path, elf_errmsg(-1)); 2801 return NULL; 2802 } 2803 2804 return name; 2805 } 2806 2807 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 2808 { 2809 Elf_Scn *scn; 2810 2811 scn = elf_getscn(obj->efile.elf, idx); 2812 if (!scn) { 2813 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 2814 idx, obj->path, elf_errmsg(-1)); 2815 return NULL; 2816 } 2817 return scn; 2818 } 2819 2820 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 2821 { 2822 Elf_Scn *scn = NULL; 2823 Elf *elf = obj->efile.elf; 2824 const char *sec_name; 2825 2826 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2827 sec_name = elf_sec_name(obj, scn); 2828 if (!sec_name) 2829 return NULL; 2830 2831 if (strcmp(sec_name, name) != 0) 2832 continue; 2833 2834 return scn; 2835 } 2836 return NULL; 2837 } 2838 2839 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr) 2840 { 2841 if (!scn) 2842 return -EINVAL; 2843 2844 if (gelf_getshdr(scn, hdr) != hdr) { 2845 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 2846 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 2847 return -EINVAL; 2848 } 2849 2850 return 0; 2851 } 2852 2853 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 2854 { 2855 const char *name; 2856 GElf_Shdr sh; 2857 2858 if (!scn) 2859 return NULL; 2860 2861 if (elf_sec_hdr(obj, scn, &sh)) 2862 return NULL; 2863 2864 name = elf_sec_str(obj, sh.sh_name); 2865 if (!name) { 2866 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 2867 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 2868 return NULL; 2869 } 2870 2871 return name; 2872 } 2873 2874 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 2875 { 2876 Elf_Data *data; 2877 2878 if (!scn) 2879 return NULL; 2880 2881 data = elf_getdata(scn, 0); 2882 if (!data) { 2883 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 2884 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 2885 obj->path, elf_errmsg(-1)); 2886 return NULL; 2887 } 2888 2889 return data; 2890 } 2891 2892 static bool is_sec_name_dwarf(const char *name) 2893 { 2894 /* approximation, but the actual list is too long */ 2895 return strncmp(name, ".debug_", sizeof(".debug_") - 1) == 0; 2896 } 2897 2898 static bool ignore_elf_section(GElf_Shdr *hdr, const char *name) 2899 { 2900 /* no special handling of .strtab */ 2901 if (hdr->sh_type == SHT_STRTAB) 2902 return true; 2903 2904 /* ignore .llvm_addrsig section as well */ 2905 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 2906 return true; 2907 2908 /* no subprograms will lead to an empty .text section, ignore it */ 2909 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 2910 strcmp(name, ".text") == 0) 2911 return true; 2912 2913 /* DWARF sections */ 2914 if (is_sec_name_dwarf(name)) 2915 return true; 2916 2917 if (strncmp(name, ".rel", sizeof(".rel") - 1) == 0) { 2918 name += sizeof(".rel") - 1; 2919 /* DWARF section relocations */ 2920 if (is_sec_name_dwarf(name)) 2921 return true; 2922 2923 /* .BTF and .BTF.ext don't need relocations */ 2924 if (strcmp(name, BTF_ELF_SEC) == 0 || 2925 strcmp(name, BTF_EXT_ELF_SEC) == 0) 2926 return true; 2927 } 2928 2929 return false; 2930 } 2931 2932 static int cmp_progs(const void *_a, const void *_b) 2933 { 2934 const struct bpf_program *a = _a; 2935 const struct bpf_program *b = _b; 2936 2937 if (a->sec_idx != b->sec_idx) 2938 return a->sec_idx < b->sec_idx ? -1 : 1; 2939 2940 /* sec_insn_off can't be the same within the section */ 2941 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 2942 } 2943 2944 static int bpf_object__elf_collect(struct bpf_object *obj) 2945 { 2946 Elf *elf = obj->efile.elf; 2947 Elf_Data *btf_ext_data = NULL; 2948 Elf_Data *btf_data = NULL; 2949 int idx = 0, err = 0; 2950 const char *name; 2951 Elf_Data *data; 2952 Elf_Scn *scn; 2953 GElf_Shdr sh; 2954 2955 /* a bunch of ELF parsing functionality depends on processing symbols, 2956 * so do the first pass and find the symbol table 2957 */ 2958 scn = NULL; 2959 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2960 if (elf_sec_hdr(obj, scn, &sh)) 2961 return -LIBBPF_ERRNO__FORMAT; 2962 2963 if (sh.sh_type == SHT_SYMTAB) { 2964 if (obj->efile.symbols) { 2965 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 2966 return -LIBBPF_ERRNO__FORMAT; 2967 } 2968 2969 data = elf_sec_data(obj, scn); 2970 if (!data) 2971 return -LIBBPF_ERRNO__FORMAT; 2972 2973 obj->efile.symbols = data; 2974 obj->efile.symbols_shndx = elf_ndxscn(scn); 2975 obj->efile.strtabidx = sh.sh_link; 2976 } 2977 } 2978 2979 scn = NULL; 2980 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2981 idx++; 2982 2983 if (elf_sec_hdr(obj, scn, &sh)) 2984 return -LIBBPF_ERRNO__FORMAT; 2985 2986 name = elf_sec_str(obj, sh.sh_name); 2987 if (!name) 2988 return -LIBBPF_ERRNO__FORMAT; 2989 2990 if (ignore_elf_section(&sh, name)) 2991 continue; 2992 2993 data = elf_sec_data(obj, scn); 2994 if (!data) 2995 return -LIBBPF_ERRNO__FORMAT; 2996 2997 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 2998 idx, name, (unsigned long)data->d_size, 2999 (int)sh.sh_link, (unsigned long)sh.sh_flags, 3000 (int)sh.sh_type); 3001 3002 if (strcmp(name, "license") == 0) { 3003 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3004 if (err) 3005 return err; 3006 } else if (strcmp(name, "version") == 0) { 3007 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3008 if (err) 3009 return err; 3010 } else if (strcmp(name, "maps") == 0) { 3011 obj->efile.maps_shndx = idx; 3012 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3013 obj->efile.btf_maps_shndx = idx; 3014 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3015 btf_data = data; 3016 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3017 btf_ext_data = data; 3018 } else if (sh.sh_type == SHT_SYMTAB) { 3019 /* already processed during the first pass above */ 3020 } else if (sh.sh_type == SHT_PROGBITS && data->d_size > 0) { 3021 if (sh.sh_flags & SHF_EXECINSTR) { 3022 if (strcmp(name, ".text") == 0) 3023 obj->efile.text_shndx = idx; 3024 err = bpf_object__add_programs(obj, data, name, idx); 3025 if (err) 3026 return err; 3027 } else if (strcmp(name, DATA_SEC) == 0) { 3028 obj->efile.data = data; 3029 obj->efile.data_shndx = idx; 3030 } else if (strcmp(name, RODATA_SEC) == 0) { 3031 obj->efile.rodata = data; 3032 obj->efile.rodata_shndx = idx; 3033 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3034 obj->efile.st_ops_data = data; 3035 obj->efile.st_ops_shndx = idx; 3036 } else { 3037 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3038 idx, name); 3039 } 3040 } else if (sh.sh_type == SHT_REL) { 3041 int nr_sects = obj->efile.nr_reloc_sects; 3042 void *sects = obj->efile.reloc_sects; 3043 int sec = sh.sh_info; /* points to other section */ 3044 3045 /* Only do relo for section with exec instructions */ 3046 if (!section_have_execinstr(obj, sec) && 3047 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3048 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3049 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3050 idx, name, sec, 3051 elf_sec_name(obj, elf_sec_by_idx(obj, sec)) ?: "<?>"); 3052 continue; 3053 } 3054 3055 sects = libbpf_reallocarray(sects, nr_sects + 1, 3056 sizeof(*obj->efile.reloc_sects)); 3057 if (!sects) 3058 return -ENOMEM; 3059 3060 obj->efile.reloc_sects = sects; 3061 obj->efile.nr_reloc_sects++; 3062 3063 obj->efile.reloc_sects[nr_sects].shdr = sh; 3064 obj->efile.reloc_sects[nr_sects].data = data; 3065 } else if (sh.sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 3066 obj->efile.bss = data; 3067 obj->efile.bss_shndx = idx; 3068 } else { 3069 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3070 (size_t)sh.sh_size); 3071 } 3072 } 3073 3074 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3075 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3076 return -LIBBPF_ERRNO__FORMAT; 3077 } 3078 3079 /* sort BPF programs by section name and in-section instruction offset 3080 * for faster search */ 3081 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3082 3083 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3084 } 3085 3086 static bool sym_is_extern(const GElf_Sym *sym) 3087 { 3088 int bind = GELF_ST_BIND(sym->st_info); 3089 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3090 return sym->st_shndx == SHN_UNDEF && 3091 (bind == STB_GLOBAL || bind == STB_WEAK) && 3092 GELF_ST_TYPE(sym->st_info) == STT_NOTYPE; 3093 } 3094 3095 static bool sym_is_subprog(const GElf_Sym *sym, int text_shndx) 3096 { 3097 int bind = GELF_ST_BIND(sym->st_info); 3098 int type = GELF_ST_TYPE(sym->st_info); 3099 3100 /* in .text section */ 3101 if (sym->st_shndx != text_shndx) 3102 return false; 3103 3104 /* local function */ 3105 if (bind == STB_LOCAL && type == STT_SECTION) 3106 return true; 3107 3108 /* global function */ 3109 return bind == STB_GLOBAL && type == STT_FUNC; 3110 } 3111 3112 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3113 { 3114 const struct btf_type *t; 3115 const char *tname; 3116 int i, n; 3117 3118 if (!btf) 3119 return -ESRCH; 3120 3121 n = btf__get_nr_types(btf); 3122 for (i = 1; i <= n; i++) { 3123 t = btf__type_by_id(btf, i); 3124 3125 if (!btf_is_var(t) && !btf_is_func(t)) 3126 continue; 3127 3128 tname = btf__name_by_offset(btf, t->name_off); 3129 if (strcmp(tname, ext_name)) 3130 continue; 3131 3132 if (btf_is_var(t) && 3133 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3134 return -EINVAL; 3135 3136 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3137 return -EINVAL; 3138 3139 return i; 3140 } 3141 3142 return -ENOENT; 3143 } 3144 3145 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3146 const struct btf_var_secinfo *vs; 3147 const struct btf_type *t; 3148 int i, j, n; 3149 3150 if (!btf) 3151 return -ESRCH; 3152 3153 n = btf__get_nr_types(btf); 3154 for (i = 1; i <= n; i++) { 3155 t = btf__type_by_id(btf, i); 3156 3157 if (!btf_is_datasec(t)) 3158 continue; 3159 3160 vs = btf_var_secinfos(t); 3161 for (j = 0; j < btf_vlen(t); j++, vs++) { 3162 if (vs->type == ext_btf_id) 3163 return i; 3164 } 3165 } 3166 3167 return -ENOENT; 3168 } 3169 3170 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3171 bool *is_signed) 3172 { 3173 const struct btf_type *t; 3174 const char *name; 3175 3176 t = skip_mods_and_typedefs(btf, id, NULL); 3177 name = btf__name_by_offset(btf, t->name_off); 3178 3179 if (is_signed) 3180 *is_signed = false; 3181 switch (btf_kind(t)) { 3182 case BTF_KIND_INT: { 3183 int enc = btf_int_encoding(t); 3184 3185 if (enc & BTF_INT_BOOL) 3186 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3187 if (is_signed) 3188 *is_signed = enc & BTF_INT_SIGNED; 3189 if (t->size == 1) 3190 return KCFG_CHAR; 3191 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3192 return KCFG_UNKNOWN; 3193 return KCFG_INT; 3194 } 3195 case BTF_KIND_ENUM: 3196 if (t->size != 4) 3197 return KCFG_UNKNOWN; 3198 if (strcmp(name, "libbpf_tristate")) 3199 return KCFG_UNKNOWN; 3200 return KCFG_TRISTATE; 3201 case BTF_KIND_ARRAY: 3202 if (btf_array(t)->nelems == 0) 3203 return KCFG_UNKNOWN; 3204 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3205 return KCFG_UNKNOWN; 3206 return KCFG_CHAR_ARR; 3207 default: 3208 return KCFG_UNKNOWN; 3209 } 3210 } 3211 3212 static int cmp_externs(const void *_a, const void *_b) 3213 { 3214 const struct extern_desc *a = _a; 3215 const struct extern_desc *b = _b; 3216 3217 if (a->type != b->type) 3218 return a->type < b->type ? -1 : 1; 3219 3220 if (a->type == EXT_KCFG) { 3221 /* descending order by alignment requirements */ 3222 if (a->kcfg.align != b->kcfg.align) 3223 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3224 /* ascending order by size, within same alignment class */ 3225 if (a->kcfg.sz != b->kcfg.sz) 3226 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3227 } 3228 3229 /* resolve ties by name */ 3230 return strcmp(a->name, b->name); 3231 } 3232 3233 static int find_int_btf_id(const struct btf *btf) 3234 { 3235 const struct btf_type *t; 3236 int i, n; 3237 3238 n = btf__get_nr_types(btf); 3239 for (i = 1; i <= n; i++) { 3240 t = btf__type_by_id(btf, i); 3241 3242 if (btf_is_int(t) && btf_int_bits(t) == 32) 3243 return i; 3244 } 3245 3246 return 0; 3247 } 3248 3249 static int add_dummy_ksym_var(struct btf *btf) 3250 { 3251 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3252 const struct btf_var_secinfo *vs; 3253 const struct btf_type *sec; 3254 3255 if (!btf) 3256 return 0; 3257 3258 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3259 BTF_KIND_DATASEC); 3260 if (sec_btf_id < 0) 3261 return 0; 3262 3263 sec = btf__type_by_id(btf, sec_btf_id); 3264 vs = btf_var_secinfos(sec); 3265 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3266 const struct btf_type *vt; 3267 3268 vt = btf__type_by_id(btf, vs->type); 3269 if (btf_is_func(vt)) 3270 break; 3271 } 3272 3273 /* No func in ksyms sec. No need to add dummy var. */ 3274 if (i == btf_vlen(sec)) 3275 return 0; 3276 3277 int_btf_id = find_int_btf_id(btf); 3278 dummy_var_btf_id = btf__add_var(btf, 3279 "dummy_ksym", 3280 BTF_VAR_GLOBAL_ALLOCATED, 3281 int_btf_id); 3282 if (dummy_var_btf_id < 0) 3283 pr_warn("cannot create a dummy_ksym var\n"); 3284 3285 return dummy_var_btf_id; 3286 } 3287 3288 static int bpf_object__collect_externs(struct bpf_object *obj) 3289 { 3290 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3291 const struct btf_type *t; 3292 struct extern_desc *ext; 3293 int i, n, off, dummy_var_btf_id; 3294 const char *ext_name, *sec_name; 3295 Elf_Scn *scn; 3296 GElf_Shdr sh; 3297 3298 if (!obj->efile.symbols) 3299 return 0; 3300 3301 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3302 if (elf_sec_hdr(obj, scn, &sh)) 3303 return -LIBBPF_ERRNO__FORMAT; 3304 3305 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3306 if (dummy_var_btf_id < 0) 3307 return dummy_var_btf_id; 3308 3309 n = sh.sh_size / sh.sh_entsize; 3310 pr_debug("looking for externs among %d symbols...\n", n); 3311 3312 for (i = 0; i < n; i++) { 3313 GElf_Sym sym; 3314 3315 if (!gelf_getsym(obj->efile.symbols, i, &sym)) 3316 return -LIBBPF_ERRNO__FORMAT; 3317 if (!sym_is_extern(&sym)) 3318 continue; 3319 ext_name = elf_sym_str(obj, sym.st_name); 3320 if (!ext_name || !ext_name[0]) 3321 continue; 3322 3323 ext = obj->externs; 3324 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3325 if (!ext) 3326 return -ENOMEM; 3327 obj->externs = ext; 3328 ext = &ext[obj->nr_extern]; 3329 memset(ext, 0, sizeof(*ext)); 3330 obj->nr_extern++; 3331 3332 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3333 if (ext->btf_id <= 0) { 3334 pr_warn("failed to find BTF for extern '%s': %d\n", 3335 ext_name, ext->btf_id); 3336 return ext->btf_id; 3337 } 3338 t = btf__type_by_id(obj->btf, ext->btf_id); 3339 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3340 ext->sym_idx = i; 3341 ext->is_weak = GELF_ST_BIND(sym.st_info) == STB_WEAK; 3342 3343 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3344 if (ext->sec_btf_id <= 0) { 3345 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3346 ext_name, ext->btf_id, ext->sec_btf_id); 3347 return ext->sec_btf_id; 3348 } 3349 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3350 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3351 3352 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3353 if (btf_is_func(t)) { 3354 pr_warn("extern function %s is unsupported under %s section\n", 3355 ext->name, KCONFIG_SEC); 3356 return -ENOTSUP; 3357 } 3358 kcfg_sec = sec; 3359 ext->type = EXT_KCFG; 3360 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3361 if (ext->kcfg.sz <= 0) { 3362 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3363 ext_name, ext->kcfg.sz); 3364 return ext->kcfg.sz; 3365 } 3366 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3367 if (ext->kcfg.align <= 0) { 3368 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3369 ext_name, ext->kcfg.align); 3370 return -EINVAL; 3371 } 3372 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3373 &ext->kcfg.is_signed); 3374 if (ext->kcfg.type == KCFG_UNKNOWN) { 3375 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name); 3376 return -ENOTSUP; 3377 } 3378 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3379 if (btf_is_func(t) && ext->is_weak) { 3380 pr_warn("extern weak function %s is unsupported\n", 3381 ext->name); 3382 return -ENOTSUP; 3383 } 3384 ksym_sec = sec; 3385 ext->type = EXT_KSYM; 3386 skip_mods_and_typedefs(obj->btf, t->type, 3387 &ext->ksym.type_id); 3388 } else { 3389 pr_warn("unrecognized extern section '%s'\n", sec_name); 3390 return -ENOTSUP; 3391 } 3392 } 3393 pr_debug("collected %d externs total\n", obj->nr_extern); 3394 3395 if (!obj->nr_extern) 3396 return 0; 3397 3398 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3399 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3400 3401 /* for .ksyms section, we need to turn all externs into allocated 3402 * variables in BTF to pass kernel verification; we do this by 3403 * pretending that each extern is a 8-byte variable 3404 */ 3405 if (ksym_sec) { 3406 /* find existing 4-byte integer type in BTF to use for fake 3407 * extern variables in DATASEC 3408 */ 3409 int int_btf_id = find_int_btf_id(obj->btf); 3410 /* For extern function, a dummy_var added earlier 3411 * will be used to replace the vs->type and 3412 * its name string will be used to refill 3413 * the missing param's name. 3414 */ 3415 const struct btf_type *dummy_var; 3416 3417 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3418 for (i = 0; i < obj->nr_extern; i++) { 3419 ext = &obj->externs[i]; 3420 if (ext->type != EXT_KSYM) 3421 continue; 3422 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3423 i, ext->sym_idx, ext->name); 3424 } 3425 3426 sec = ksym_sec; 3427 n = btf_vlen(sec); 3428 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3429 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3430 struct btf_type *vt; 3431 3432 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3433 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3434 ext = find_extern_by_name(obj, ext_name); 3435 if (!ext) { 3436 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3437 btf_kind_str(vt), ext_name); 3438 return -ESRCH; 3439 } 3440 if (btf_is_func(vt)) { 3441 const struct btf_type *func_proto; 3442 struct btf_param *param; 3443 int j; 3444 3445 func_proto = btf__type_by_id(obj->btf, 3446 vt->type); 3447 param = btf_params(func_proto); 3448 /* Reuse the dummy_var string if the 3449 * func proto does not have param name. 3450 */ 3451 for (j = 0; j < btf_vlen(func_proto); j++) 3452 if (param[j].type && !param[j].name_off) 3453 param[j].name_off = 3454 dummy_var->name_off; 3455 vs->type = dummy_var_btf_id; 3456 vt->info &= ~0xffff; 3457 vt->info |= BTF_FUNC_GLOBAL; 3458 } else { 3459 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3460 vt->type = int_btf_id; 3461 } 3462 vs->offset = off; 3463 vs->size = sizeof(int); 3464 } 3465 sec->size = off; 3466 } 3467 3468 if (kcfg_sec) { 3469 sec = kcfg_sec; 3470 /* for kcfg externs calculate their offsets within a .kconfig map */ 3471 off = 0; 3472 for (i = 0; i < obj->nr_extern; i++) { 3473 ext = &obj->externs[i]; 3474 if (ext->type != EXT_KCFG) 3475 continue; 3476 3477 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3478 off = ext->kcfg.data_off + ext->kcfg.sz; 3479 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3480 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3481 } 3482 sec->size = off; 3483 n = btf_vlen(sec); 3484 for (i = 0; i < n; i++) { 3485 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3486 3487 t = btf__type_by_id(obj->btf, vs->type); 3488 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3489 ext = find_extern_by_name(obj, ext_name); 3490 if (!ext) { 3491 pr_warn("failed to find extern definition for BTF var '%s'\n", 3492 ext_name); 3493 return -ESRCH; 3494 } 3495 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3496 vs->offset = ext->kcfg.data_off; 3497 } 3498 } 3499 return 0; 3500 } 3501 3502 struct bpf_program * 3503 bpf_object__find_program_by_title(const struct bpf_object *obj, 3504 const char *title) 3505 { 3506 struct bpf_program *pos; 3507 3508 bpf_object__for_each_program(pos, obj) { 3509 if (pos->sec_name && !strcmp(pos->sec_name, title)) 3510 return pos; 3511 } 3512 return NULL; 3513 } 3514 3515 static bool prog_is_subprog(const struct bpf_object *obj, 3516 const struct bpf_program *prog) 3517 { 3518 /* For legacy reasons, libbpf supports an entry-point BPF programs 3519 * without SEC() attribute, i.e., those in the .text section. But if 3520 * there are 2 or more such programs in the .text section, they all 3521 * must be subprograms called from entry-point BPF programs in 3522 * designated SEC()'tions, otherwise there is no way to distinguish 3523 * which of those programs should be loaded vs which are a subprogram. 3524 * Similarly, if there is a function/program in .text and at least one 3525 * other BPF program with custom SEC() attribute, then we just assume 3526 * .text programs are subprograms (even if they are not called from 3527 * other programs), because libbpf never explicitly supported mixing 3528 * SEC()-designated BPF programs and .text entry-point BPF programs. 3529 */ 3530 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3531 } 3532 3533 struct bpf_program * 3534 bpf_object__find_program_by_name(const struct bpf_object *obj, 3535 const char *name) 3536 { 3537 struct bpf_program *prog; 3538 3539 bpf_object__for_each_program(prog, obj) { 3540 if (prog_is_subprog(obj, prog)) 3541 continue; 3542 if (!strcmp(prog->name, name)) 3543 return prog; 3544 } 3545 return NULL; 3546 } 3547 3548 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3549 int shndx) 3550 { 3551 return shndx == obj->efile.data_shndx || 3552 shndx == obj->efile.bss_shndx || 3553 shndx == obj->efile.rodata_shndx; 3554 } 3555 3556 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3557 int shndx) 3558 { 3559 return shndx == obj->efile.maps_shndx || 3560 shndx == obj->efile.btf_maps_shndx; 3561 } 3562 3563 static enum libbpf_map_type 3564 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3565 { 3566 if (shndx == obj->efile.data_shndx) 3567 return LIBBPF_MAP_DATA; 3568 else if (shndx == obj->efile.bss_shndx) 3569 return LIBBPF_MAP_BSS; 3570 else if (shndx == obj->efile.rodata_shndx) 3571 return LIBBPF_MAP_RODATA; 3572 else if (shndx == obj->efile.symbols_shndx) 3573 return LIBBPF_MAP_KCONFIG; 3574 else 3575 return LIBBPF_MAP_UNSPEC; 3576 } 3577 3578 static int bpf_program__record_reloc(struct bpf_program *prog, 3579 struct reloc_desc *reloc_desc, 3580 __u32 insn_idx, const char *sym_name, 3581 const GElf_Sym *sym, const GElf_Rel *rel) 3582 { 3583 struct bpf_insn *insn = &prog->insns[insn_idx]; 3584 size_t map_idx, nr_maps = prog->obj->nr_maps; 3585 struct bpf_object *obj = prog->obj; 3586 __u32 shdr_idx = sym->st_shndx; 3587 enum libbpf_map_type type; 3588 const char *sym_sec_name; 3589 struct bpf_map *map; 3590 3591 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 3592 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 3593 prog->name, sym_name, insn_idx, insn->code); 3594 return -LIBBPF_ERRNO__RELOC; 3595 } 3596 3597 if (sym_is_extern(sym)) { 3598 int sym_idx = GELF_R_SYM(rel->r_info); 3599 int i, n = obj->nr_extern; 3600 struct extern_desc *ext; 3601 3602 for (i = 0; i < n; i++) { 3603 ext = &obj->externs[i]; 3604 if (ext->sym_idx == sym_idx) 3605 break; 3606 } 3607 if (i >= n) { 3608 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 3609 prog->name, sym_name, sym_idx); 3610 return -LIBBPF_ERRNO__RELOC; 3611 } 3612 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 3613 prog->name, i, ext->name, ext->sym_idx, insn_idx); 3614 if (insn->code == (BPF_JMP | BPF_CALL)) 3615 reloc_desc->type = RELO_EXTERN_FUNC; 3616 else 3617 reloc_desc->type = RELO_EXTERN_VAR; 3618 reloc_desc->insn_idx = insn_idx; 3619 reloc_desc->sym_off = i; /* sym_off stores extern index */ 3620 return 0; 3621 } 3622 3623 /* sub-program call relocation */ 3624 if (is_call_insn(insn)) { 3625 if (insn->src_reg != BPF_PSEUDO_CALL) { 3626 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 3627 return -LIBBPF_ERRNO__RELOC; 3628 } 3629 /* text_shndx can be 0, if no default "main" program exists */ 3630 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 3631 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3632 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 3633 prog->name, sym_name, sym_sec_name); 3634 return -LIBBPF_ERRNO__RELOC; 3635 } 3636 if (sym->st_value % BPF_INSN_SZ) { 3637 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 3638 prog->name, sym_name, (size_t)sym->st_value); 3639 return -LIBBPF_ERRNO__RELOC; 3640 } 3641 reloc_desc->type = RELO_CALL; 3642 reloc_desc->insn_idx = insn_idx; 3643 reloc_desc->sym_off = sym->st_value; 3644 return 0; 3645 } 3646 3647 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 3648 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 3649 prog->name, sym_name, shdr_idx); 3650 return -LIBBPF_ERRNO__RELOC; 3651 } 3652 3653 /* loading subprog addresses */ 3654 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 3655 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 3656 * local_func: sym->st_value = 0, insn->imm = offset in the section. 3657 */ 3658 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 3659 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 3660 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 3661 return -LIBBPF_ERRNO__RELOC; 3662 } 3663 3664 reloc_desc->type = RELO_SUBPROG_ADDR; 3665 reloc_desc->insn_idx = insn_idx; 3666 reloc_desc->sym_off = sym->st_value; 3667 return 0; 3668 } 3669 3670 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 3671 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3672 3673 /* generic map reference relocation */ 3674 if (type == LIBBPF_MAP_UNSPEC) { 3675 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 3676 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 3677 prog->name, sym_name, sym_sec_name); 3678 return -LIBBPF_ERRNO__RELOC; 3679 } 3680 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3681 map = &obj->maps[map_idx]; 3682 if (map->libbpf_type != type || 3683 map->sec_idx != sym->st_shndx || 3684 map->sec_offset != sym->st_value) 3685 continue; 3686 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 3687 prog->name, map_idx, map->name, map->sec_idx, 3688 map->sec_offset, insn_idx); 3689 break; 3690 } 3691 if (map_idx >= nr_maps) { 3692 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 3693 prog->name, sym_sec_name, (size_t)sym->st_value); 3694 return -LIBBPF_ERRNO__RELOC; 3695 } 3696 reloc_desc->type = RELO_LD64; 3697 reloc_desc->insn_idx = insn_idx; 3698 reloc_desc->map_idx = map_idx; 3699 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 3700 return 0; 3701 } 3702 3703 /* global data map relocation */ 3704 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 3705 pr_warn("prog '%s': bad data relo against section '%s'\n", 3706 prog->name, sym_sec_name); 3707 return -LIBBPF_ERRNO__RELOC; 3708 } 3709 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3710 map = &obj->maps[map_idx]; 3711 if (map->libbpf_type != type) 3712 continue; 3713 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 3714 prog->name, map_idx, map->name, map->sec_idx, 3715 map->sec_offset, insn_idx); 3716 break; 3717 } 3718 if (map_idx >= nr_maps) { 3719 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 3720 prog->name, sym_sec_name); 3721 return -LIBBPF_ERRNO__RELOC; 3722 } 3723 3724 reloc_desc->type = RELO_DATA; 3725 reloc_desc->insn_idx = insn_idx; 3726 reloc_desc->map_idx = map_idx; 3727 reloc_desc->sym_off = sym->st_value; 3728 return 0; 3729 } 3730 3731 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 3732 { 3733 return insn_idx >= prog->sec_insn_off && 3734 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 3735 } 3736 3737 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 3738 size_t sec_idx, size_t insn_idx) 3739 { 3740 int l = 0, r = obj->nr_programs - 1, m; 3741 struct bpf_program *prog; 3742 3743 while (l < r) { 3744 m = l + (r - l + 1) / 2; 3745 prog = &obj->programs[m]; 3746 3747 if (prog->sec_idx < sec_idx || 3748 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 3749 l = m; 3750 else 3751 r = m - 1; 3752 } 3753 /* matching program could be at index l, but it still might be the 3754 * wrong one, so we need to double check conditions for the last time 3755 */ 3756 prog = &obj->programs[l]; 3757 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 3758 return prog; 3759 return NULL; 3760 } 3761 3762 static int 3763 bpf_object__collect_prog_relos(struct bpf_object *obj, GElf_Shdr *shdr, Elf_Data *data) 3764 { 3765 Elf_Data *symbols = obj->efile.symbols; 3766 const char *relo_sec_name, *sec_name; 3767 size_t sec_idx = shdr->sh_info; 3768 struct bpf_program *prog; 3769 struct reloc_desc *relos; 3770 int err, i, nrels; 3771 const char *sym_name; 3772 __u32 insn_idx; 3773 Elf_Scn *scn; 3774 Elf_Data *scn_data; 3775 GElf_Sym sym; 3776 GElf_Rel rel; 3777 3778 scn = elf_sec_by_idx(obj, sec_idx); 3779 scn_data = elf_sec_data(obj, scn); 3780 3781 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 3782 sec_name = elf_sec_name(obj, scn); 3783 if (!relo_sec_name || !sec_name) 3784 return -EINVAL; 3785 3786 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 3787 relo_sec_name, sec_idx, sec_name); 3788 nrels = shdr->sh_size / shdr->sh_entsize; 3789 3790 for (i = 0; i < nrels; i++) { 3791 if (!gelf_getrel(data, i, &rel)) { 3792 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 3793 return -LIBBPF_ERRNO__FORMAT; 3794 } 3795 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 3796 pr_warn("sec '%s': symbol 0x%zx not found for relo #%d\n", 3797 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i); 3798 return -LIBBPF_ERRNO__FORMAT; 3799 } 3800 3801 if (rel.r_offset % BPF_INSN_SZ || rel.r_offset >= scn_data->d_size) { 3802 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 3803 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i); 3804 return -LIBBPF_ERRNO__FORMAT; 3805 } 3806 3807 insn_idx = rel.r_offset / BPF_INSN_SZ; 3808 /* relocations against static functions are recorded as 3809 * relocations against the section that contains a function; 3810 * in such case, symbol will be STT_SECTION and sym.st_name 3811 * will point to empty string (0), so fetch section name 3812 * instead 3813 */ 3814 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && sym.st_name == 0) 3815 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym.st_shndx)); 3816 else 3817 sym_name = elf_sym_str(obj, sym.st_name); 3818 sym_name = sym_name ?: "<?"; 3819 3820 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 3821 relo_sec_name, i, insn_idx, sym_name); 3822 3823 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 3824 if (!prog) { 3825 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 3826 relo_sec_name, i, sec_name, insn_idx); 3827 continue; 3828 } 3829 3830 relos = libbpf_reallocarray(prog->reloc_desc, 3831 prog->nr_reloc + 1, sizeof(*relos)); 3832 if (!relos) 3833 return -ENOMEM; 3834 prog->reloc_desc = relos; 3835 3836 /* adjust insn_idx to local BPF program frame of reference */ 3837 insn_idx -= prog->sec_insn_off; 3838 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 3839 insn_idx, sym_name, &sym, &rel); 3840 if (err) 3841 return err; 3842 3843 prog->nr_reloc++; 3844 } 3845 return 0; 3846 } 3847 3848 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 3849 { 3850 struct bpf_map_def *def = &map->def; 3851 __u32 key_type_id = 0, value_type_id = 0; 3852 int ret; 3853 3854 /* if it's BTF-defined map, we don't need to search for type IDs. 3855 * For struct_ops map, it does not need btf_key_type_id and 3856 * btf_value_type_id. 3857 */ 3858 if (map->sec_idx == obj->efile.btf_maps_shndx || 3859 bpf_map__is_struct_ops(map)) 3860 return 0; 3861 3862 if (!bpf_map__is_internal(map)) { 3863 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size, 3864 def->value_size, &key_type_id, 3865 &value_type_id); 3866 } else { 3867 /* 3868 * LLVM annotates global data differently in BTF, that is, 3869 * only as '.data', '.bss' or '.rodata'. 3870 */ 3871 ret = btf__find_by_name(obj->btf, 3872 libbpf_type_to_btf_name[map->libbpf_type]); 3873 } 3874 if (ret < 0) 3875 return ret; 3876 3877 map->btf_key_type_id = key_type_id; 3878 map->btf_value_type_id = bpf_map__is_internal(map) ? 3879 ret : value_type_id; 3880 return 0; 3881 } 3882 3883 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 3884 { 3885 struct bpf_map_info info = {}; 3886 __u32 len = sizeof(info); 3887 int new_fd, err; 3888 char *new_name; 3889 3890 err = bpf_obj_get_info_by_fd(fd, &info, &len); 3891 if (err) 3892 return err; 3893 3894 new_name = strdup(info.name); 3895 if (!new_name) 3896 return -errno; 3897 3898 new_fd = open("/", O_RDONLY | O_CLOEXEC); 3899 if (new_fd < 0) { 3900 err = -errno; 3901 goto err_free_new_name; 3902 } 3903 3904 new_fd = dup3(fd, new_fd, O_CLOEXEC); 3905 if (new_fd < 0) { 3906 err = -errno; 3907 goto err_close_new_fd; 3908 } 3909 3910 err = zclose(map->fd); 3911 if (err) { 3912 err = -errno; 3913 goto err_close_new_fd; 3914 } 3915 free(map->name); 3916 3917 map->fd = new_fd; 3918 map->name = new_name; 3919 map->def.type = info.type; 3920 map->def.key_size = info.key_size; 3921 map->def.value_size = info.value_size; 3922 map->def.max_entries = info.max_entries; 3923 map->def.map_flags = info.map_flags; 3924 map->btf_key_type_id = info.btf_key_type_id; 3925 map->btf_value_type_id = info.btf_value_type_id; 3926 map->reused = true; 3927 3928 return 0; 3929 3930 err_close_new_fd: 3931 close(new_fd); 3932 err_free_new_name: 3933 free(new_name); 3934 return err; 3935 } 3936 3937 __u32 bpf_map__max_entries(const struct bpf_map *map) 3938 { 3939 return map->def.max_entries; 3940 } 3941 3942 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 3943 { 3944 if (!bpf_map_type__is_map_in_map(map->def.type)) 3945 return NULL; 3946 3947 return map->inner_map; 3948 } 3949 3950 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 3951 { 3952 if (map->fd >= 0) 3953 return -EBUSY; 3954 map->def.max_entries = max_entries; 3955 return 0; 3956 } 3957 3958 int bpf_map__resize(struct bpf_map *map, __u32 max_entries) 3959 { 3960 if (!map || !max_entries) 3961 return -EINVAL; 3962 3963 return bpf_map__set_max_entries(map, max_entries); 3964 } 3965 3966 static int 3967 bpf_object__probe_loading(struct bpf_object *obj) 3968 { 3969 struct bpf_load_program_attr attr; 3970 char *cp, errmsg[STRERR_BUFSIZE]; 3971 struct bpf_insn insns[] = { 3972 BPF_MOV64_IMM(BPF_REG_0, 0), 3973 BPF_EXIT_INSN(), 3974 }; 3975 int ret; 3976 3977 /* make sure basic loading works */ 3978 3979 memset(&attr, 0, sizeof(attr)); 3980 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3981 attr.insns = insns; 3982 attr.insns_cnt = ARRAY_SIZE(insns); 3983 attr.license = "GPL"; 3984 3985 ret = bpf_load_program_xattr(&attr, NULL, 0); 3986 if (ret < 0) { 3987 ret = errno; 3988 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 3989 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 3990 "program. Make sure your kernel supports BPF " 3991 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 3992 "set to big enough value.\n", __func__, cp, ret); 3993 return -ret; 3994 } 3995 close(ret); 3996 3997 return 0; 3998 } 3999 4000 static int probe_fd(int fd) 4001 { 4002 if (fd >= 0) 4003 close(fd); 4004 return fd >= 0; 4005 } 4006 4007 static int probe_kern_prog_name(void) 4008 { 4009 struct bpf_load_program_attr attr; 4010 struct bpf_insn insns[] = { 4011 BPF_MOV64_IMM(BPF_REG_0, 0), 4012 BPF_EXIT_INSN(), 4013 }; 4014 int ret; 4015 4016 /* make sure loading with name works */ 4017 4018 memset(&attr, 0, sizeof(attr)); 4019 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4020 attr.insns = insns; 4021 attr.insns_cnt = ARRAY_SIZE(insns); 4022 attr.license = "GPL"; 4023 attr.name = "test"; 4024 ret = bpf_load_program_xattr(&attr, NULL, 0); 4025 return probe_fd(ret); 4026 } 4027 4028 static int probe_kern_global_data(void) 4029 { 4030 struct bpf_load_program_attr prg_attr; 4031 struct bpf_create_map_attr map_attr; 4032 char *cp, errmsg[STRERR_BUFSIZE]; 4033 struct bpf_insn insns[] = { 4034 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4035 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4036 BPF_MOV64_IMM(BPF_REG_0, 0), 4037 BPF_EXIT_INSN(), 4038 }; 4039 int ret, map; 4040 4041 memset(&map_attr, 0, sizeof(map_attr)); 4042 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 4043 map_attr.key_size = sizeof(int); 4044 map_attr.value_size = 32; 4045 map_attr.max_entries = 1; 4046 4047 map = bpf_create_map_xattr(&map_attr); 4048 if (map < 0) { 4049 ret = -errno; 4050 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4051 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4052 __func__, cp, -ret); 4053 return ret; 4054 } 4055 4056 insns[0].imm = map; 4057 4058 memset(&prg_attr, 0, sizeof(prg_attr)); 4059 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4060 prg_attr.insns = insns; 4061 prg_attr.insns_cnt = ARRAY_SIZE(insns); 4062 prg_attr.license = "GPL"; 4063 4064 ret = bpf_load_program_xattr(&prg_attr, NULL, 0); 4065 close(map); 4066 return probe_fd(ret); 4067 } 4068 4069 static int probe_kern_btf(void) 4070 { 4071 static const char strs[] = "\0int"; 4072 __u32 types[] = { 4073 /* int */ 4074 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4075 }; 4076 4077 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4078 strs, sizeof(strs))); 4079 } 4080 4081 static int probe_kern_btf_func(void) 4082 { 4083 static const char strs[] = "\0int\0x\0a"; 4084 /* void x(int a) {} */ 4085 __u32 types[] = { 4086 /* int */ 4087 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4088 /* FUNC_PROTO */ /* [2] */ 4089 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4090 BTF_PARAM_ENC(7, 1), 4091 /* FUNC x */ /* [3] */ 4092 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4093 }; 4094 4095 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4096 strs, sizeof(strs))); 4097 } 4098 4099 static int probe_kern_btf_func_global(void) 4100 { 4101 static const char strs[] = "\0int\0x\0a"; 4102 /* static void x(int a) {} */ 4103 __u32 types[] = { 4104 /* int */ 4105 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4106 /* FUNC_PROTO */ /* [2] */ 4107 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4108 BTF_PARAM_ENC(7, 1), 4109 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4110 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4111 }; 4112 4113 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4114 strs, sizeof(strs))); 4115 } 4116 4117 static int probe_kern_btf_datasec(void) 4118 { 4119 static const char strs[] = "\0x\0.data"; 4120 /* static int a; */ 4121 __u32 types[] = { 4122 /* int */ 4123 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4124 /* VAR x */ /* [2] */ 4125 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4126 BTF_VAR_STATIC, 4127 /* DATASEC val */ /* [3] */ 4128 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4129 BTF_VAR_SECINFO_ENC(2, 0, 4), 4130 }; 4131 4132 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4133 strs, sizeof(strs))); 4134 } 4135 4136 static int probe_kern_btf_float(void) 4137 { 4138 static const char strs[] = "\0float"; 4139 __u32 types[] = { 4140 /* float */ 4141 BTF_TYPE_FLOAT_ENC(1, 4), 4142 }; 4143 4144 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4145 strs, sizeof(strs))); 4146 } 4147 4148 static int probe_kern_array_mmap(void) 4149 { 4150 struct bpf_create_map_attr attr = { 4151 .map_type = BPF_MAP_TYPE_ARRAY, 4152 .map_flags = BPF_F_MMAPABLE, 4153 .key_size = sizeof(int), 4154 .value_size = sizeof(int), 4155 .max_entries = 1, 4156 }; 4157 4158 return probe_fd(bpf_create_map_xattr(&attr)); 4159 } 4160 4161 static int probe_kern_exp_attach_type(void) 4162 { 4163 struct bpf_load_program_attr attr; 4164 struct bpf_insn insns[] = { 4165 BPF_MOV64_IMM(BPF_REG_0, 0), 4166 BPF_EXIT_INSN(), 4167 }; 4168 4169 memset(&attr, 0, sizeof(attr)); 4170 /* use any valid combination of program type and (optional) 4171 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4172 * to see if kernel supports expected_attach_type field for 4173 * BPF_PROG_LOAD command 4174 */ 4175 attr.prog_type = BPF_PROG_TYPE_CGROUP_SOCK; 4176 attr.expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE; 4177 attr.insns = insns; 4178 attr.insns_cnt = ARRAY_SIZE(insns); 4179 attr.license = "GPL"; 4180 4181 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0)); 4182 } 4183 4184 static int probe_kern_probe_read_kernel(void) 4185 { 4186 struct bpf_load_program_attr attr; 4187 struct bpf_insn insns[] = { 4188 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4189 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4190 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4191 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4192 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4193 BPF_EXIT_INSN(), 4194 }; 4195 4196 memset(&attr, 0, sizeof(attr)); 4197 attr.prog_type = BPF_PROG_TYPE_KPROBE; 4198 attr.insns = insns; 4199 attr.insns_cnt = ARRAY_SIZE(insns); 4200 attr.license = "GPL"; 4201 4202 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0)); 4203 } 4204 4205 static int probe_prog_bind_map(void) 4206 { 4207 struct bpf_load_program_attr prg_attr; 4208 struct bpf_create_map_attr map_attr; 4209 char *cp, errmsg[STRERR_BUFSIZE]; 4210 struct bpf_insn insns[] = { 4211 BPF_MOV64_IMM(BPF_REG_0, 0), 4212 BPF_EXIT_INSN(), 4213 }; 4214 int ret, map, prog; 4215 4216 memset(&map_attr, 0, sizeof(map_attr)); 4217 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 4218 map_attr.key_size = sizeof(int); 4219 map_attr.value_size = 32; 4220 map_attr.max_entries = 1; 4221 4222 map = bpf_create_map_xattr(&map_attr); 4223 if (map < 0) { 4224 ret = -errno; 4225 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4226 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4227 __func__, cp, -ret); 4228 return ret; 4229 } 4230 4231 memset(&prg_attr, 0, sizeof(prg_attr)); 4232 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4233 prg_attr.insns = insns; 4234 prg_attr.insns_cnt = ARRAY_SIZE(insns); 4235 prg_attr.license = "GPL"; 4236 4237 prog = bpf_load_program_xattr(&prg_attr, NULL, 0); 4238 if (prog < 0) { 4239 close(map); 4240 return 0; 4241 } 4242 4243 ret = bpf_prog_bind_map(prog, map, NULL); 4244 4245 close(map); 4246 close(prog); 4247 4248 return ret >= 0; 4249 } 4250 4251 static int probe_module_btf(void) 4252 { 4253 static const char strs[] = "\0int"; 4254 __u32 types[] = { 4255 /* int */ 4256 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4257 }; 4258 struct bpf_btf_info info; 4259 __u32 len = sizeof(info); 4260 char name[16]; 4261 int fd, err; 4262 4263 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4264 if (fd < 0) 4265 return 0; /* BTF not supported at all */ 4266 4267 memset(&info, 0, sizeof(info)); 4268 info.name = ptr_to_u64(name); 4269 info.name_len = sizeof(name); 4270 4271 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4272 * kernel's module BTF support coincides with support for 4273 * name/name_len fields in struct bpf_btf_info. 4274 */ 4275 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4276 close(fd); 4277 return !err; 4278 } 4279 4280 enum kern_feature_result { 4281 FEAT_UNKNOWN = 0, 4282 FEAT_SUPPORTED = 1, 4283 FEAT_MISSING = 2, 4284 }; 4285 4286 typedef int (*feature_probe_fn)(void); 4287 4288 static struct kern_feature_desc { 4289 const char *desc; 4290 feature_probe_fn probe; 4291 enum kern_feature_result res; 4292 } feature_probes[__FEAT_CNT] = { 4293 [FEAT_PROG_NAME] = { 4294 "BPF program name", probe_kern_prog_name, 4295 }, 4296 [FEAT_GLOBAL_DATA] = { 4297 "global variables", probe_kern_global_data, 4298 }, 4299 [FEAT_BTF] = { 4300 "minimal BTF", probe_kern_btf, 4301 }, 4302 [FEAT_BTF_FUNC] = { 4303 "BTF functions", probe_kern_btf_func, 4304 }, 4305 [FEAT_BTF_GLOBAL_FUNC] = { 4306 "BTF global function", probe_kern_btf_func_global, 4307 }, 4308 [FEAT_BTF_DATASEC] = { 4309 "BTF data section and variable", probe_kern_btf_datasec, 4310 }, 4311 [FEAT_ARRAY_MMAP] = { 4312 "ARRAY map mmap()", probe_kern_array_mmap, 4313 }, 4314 [FEAT_EXP_ATTACH_TYPE] = { 4315 "BPF_PROG_LOAD expected_attach_type attribute", 4316 probe_kern_exp_attach_type, 4317 }, 4318 [FEAT_PROBE_READ_KERN] = { 4319 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4320 }, 4321 [FEAT_PROG_BIND_MAP] = { 4322 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4323 }, 4324 [FEAT_MODULE_BTF] = { 4325 "module BTF support", probe_module_btf, 4326 }, 4327 [FEAT_BTF_FLOAT] = { 4328 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4329 }, 4330 }; 4331 4332 static bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4333 { 4334 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4335 int ret; 4336 4337 if (obj->gen_loader) 4338 /* To generate loader program assume the latest kernel 4339 * to avoid doing extra prog_load, map_create syscalls. 4340 */ 4341 return true; 4342 4343 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4344 ret = feat->probe(); 4345 if (ret > 0) { 4346 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4347 } else if (ret == 0) { 4348 WRITE_ONCE(feat->res, FEAT_MISSING); 4349 } else { 4350 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4351 WRITE_ONCE(feat->res, FEAT_MISSING); 4352 } 4353 } 4354 4355 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4356 } 4357 4358 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4359 { 4360 struct bpf_map_info map_info = {}; 4361 char msg[STRERR_BUFSIZE]; 4362 __u32 map_info_len; 4363 4364 map_info_len = sizeof(map_info); 4365 4366 if (bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len)) { 4367 pr_warn("failed to get map info for map FD %d: %s\n", 4368 map_fd, libbpf_strerror_r(errno, msg, sizeof(msg))); 4369 return false; 4370 } 4371 4372 return (map_info.type == map->def.type && 4373 map_info.key_size == map->def.key_size && 4374 map_info.value_size == map->def.value_size && 4375 map_info.max_entries == map->def.max_entries && 4376 map_info.map_flags == map->def.map_flags); 4377 } 4378 4379 static int 4380 bpf_object__reuse_map(struct bpf_map *map) 4381 { 4382 char *cp, errmsg[STRERR_BUFSIZE]; 4383 int err, pin_fd; 4384 4385 pin_fd = bpf_obj_get(map->pin_path); 4386 if (pin_fd < 0) { 4387 err = -errno; 4388 if (err == -ENOENT) { 4389 pr_debug("found no pinned map to reuse at '%s'\n", 4390 map->pin_path); 4391 return 0; 4392 } 4393 4394 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4395 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4396 map->pin_path, cp); 4397 return err; 4398 } 4399 4400 if (!map_is_reuse_compat(map, pin_fd)) { 4401 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4402 map->pin_path); 4403 close(pin_fd); 4404 return -EINVAL; 4405 } 4406 4407 err = bpf_map__reuse_fd(map, pin_fd); 4408 if (err) { 4409 close(pin_fd); 4410 return err; 4411 } 4412 map->pinned = true; 4413 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4414 4415 return 0; 4416 } 4417 4418 static int 4419 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4420 { 4421 enum libbpf_map_type map_type = map->libbpf_type; 4422 char *cp, errmsg[STRERR_BUFSIZE]; 4423 int err, zero = 0; 4424 4425 if (obj->gen_loader) { 4426 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 4427 map->mmaped, map->def.value_size); 4428 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 4429 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 4430 return 0; 4431 } 4432 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4433 if (err) { 4434 err = -errno; 4435 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4436 pr_warn("Error setting initial map(%s) contents: %s\n", 4437 map->name, cp); 4438 return err; 4439 } 4440 4441 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 4442 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 4443 err = bpf_map_freeze(map->fd); 4444 if (err) { 4445 err = -errno; 4446 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4447 pr_warn("Error freezing map(%s) as read-only: %s\n", 4448 map->name, cp); 4449 return err; 4450 } 4451 } 4452 return 0; 4453 } 4454 4455 static void bpf_map__destroy(struct bpf_map *map); 4456 4457 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 4458 { 4459 struct bpf_create_map_attr create_attr; 4460 struct bpf_map_def *def = &map->def; 4461 4462 memset(&create_attr, 0, sizeof(create_attr)); 4463 4464 if (kernel_supports(obj, FEAT_PROG_NAME)) 4465 create_attr.name = map->name; 4466 create_attr.map_ifindex = map->map_ifindex; 4467 create_attr.map_type = def->type; 4468 create_attr.map_flags = def->map_flags; 4469 create_attr.key_size = def->key_size; 4470 create_attr.value_size = def->value_size; 4471 create_attr.numa_node = map->numa_node; 4472 4473 if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) { 4474 int nr_cpus; 4475 4476 nr_cpus = libbpf_num_possible_cpus(); 4477 if (nr_cpus < 0) { 4478 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 4479 map->name, nr_cpus); 4480 return nr_cpus; 4481 } 4482 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 4483 create_attr.max_entries = nr_cpus; 4484 } else { 4485 create_attr.max_entries = def->max_entries; 4486 } 4487 4488 if (bpf_map__is_struct_ops(map)) 4489 create_attr.btf_vmlinux_value_type_id = 4490 map->btf_vmlinux_value_type_id; 4491 4492 create_attr.btf_fd = 0; 4493 create_attr.btf_key_type_id = 0; 4494 create_attr.btf_value_type_id = 0; 4495 if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) { 4496 create_attr.btf_fd = btf__fd(obj->btf); 4497 create_attr.btf_key_type_id = map->btf_key_type_id; 4498 create_attr.btf_value_type_id = map->btf_value_type_id; 4499 } 4500 4501 if (bpf_map_type__is_map_in_map(def->type)) { 4502 if (map->inner_map) { 4503 int err; 4504 4505 err = bpf_object__create_map(obj, map->inner_map, true); 4506 if (err) { 4507 pr_warn("map '%s': failed to create inner map: %d\n", 4508 map->name, err); 4509 return err; 4510 } 4511 map->inner_map_fd = bpf_map__fd(map->inner_map); 4512 } 4513 if (map->inner_map_fd >= 0) 4514 create_attr.inner_map_fd = map->inner_map_fd; 4515 } 4516 4517 if (obj->gen_loader) { 4518 bpf_gen__map_create(obj->gen_loader, &create_attr, is_inner ? -1 : map - obj->maps); 4519 /* Pretend to have valid FD to pass various fd >= 0 checks. 4520 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 4521 */ 4522 map->fd = 0; 4523 } else { 4524 map->fd = bpf_create_map_xattr(&create_attr); 4525 } 4526 if (map->fd < 0 && (create_attr.btf_key_type_id || 4527 create_attr.btf_value_type_id)) { 4528 char *cp, errmsg[STRERR_BUFSIZE]; 4529 int err = -errno; 4530 4531 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4532 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 4533 map->name, cp, err); 4534 create_attr.btf_fd = 0; 4535 create_attr.btf_key_type_id = 0; 4536 create_attr.btf_value_type_id = 0; 4537 map->btf_key_type_id = 0; 4538 map->btf_value_type_id = 0; 4539 map->fd = bpf_create_map_xattr(&create_attr); 4540 } 4541 4542 if (map->fd < 0) 4543 return -errno; 4544 4545 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 4546 if (obj->gen_loader) 4547 map->inner_map->fd = -1; 4548 bpf_map__destroy(map->inner_map); 4549 zfree(&map->inner_map); 4550 } 4551 4552 return 0; 4553 } 4554 4555 static int init_map_slots(struct bpf_object *obj, struct bpf_map *map) 4556 { 4557 const struct bpf_map *targ_map; 4558 unsigned int i; 4559 int fd, err = 0; 4560 4561 for (i = 0; i < map->init_slots_sz; i++) { 4562 if (!map->init_slots[i]) 4563 continue; 4564 4565 targ_map = map->init_slots[i]; 4566 fd = bpf_map__fd(targ_map); 4567 if (obj->gen_loader) { 4568 pr_warn("// TODO map_update_elem: idx %ld key %d value==map_idx %ld\n", 4569 map - obj->maps, i, targ_map - obj->maps); 4570 return -ENOTSUP; 4571 } else { 4572 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 4573 } 4574 if (err) { 4575 err = -errno; 4576 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 4577 map->name, i, targ_map->name, 4578 fd, err); 4579 return err; 4580 } 4581 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 4582 map->name, i, targ_map->name, fd); 4583 } 4584 4585 zfree(&map->init_slots); 4586 map->init_slots_sz = 0; 4587 4588 return 0; 4589 } 4590 4591 static int 4592 bpf_object__create_maps(struct bpf_object *obj) 4593 { 4594 struct bpf_map *map; 4595 char *cp, errmsg[STRERR_BUFSIZE]; 4596 unsigned int i, j; 4597 int err; 4598 4599 for (i = 0; i < obj->nr_maps; i++) { 4600 map = &obj->maps[i]; 4601 4602 if (map->pin_path) { 4603 err = bpf_object__reuse_map(map); 4604 if (err) { 4605 pr_warn("map '%s': error reusing pinned map\n", 4606 map->name); 4607 goto err_out; 4608 } 4609 } 4610 4611 if (map->fd >= 0) { 4612 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 4613 map->name, map->fd); 4614 } else { 4615 err = bpf_object__create_map(obj, map, false); 4616 if (err) 4617 goto err_out; 4618 4619 pr_debug("map '%s': created successfully, fd=%d\n", 4620 map->name, map->fd); 4621 4622 if (bpf_map__is_internal(map)) { 4623 err = bpf_object__populate_internal_map(obj, map); 4624 if (err < 0) { 4625 zclose(map->fd); 4626 goto err_out; 4627 } 4628 } 4629 4630 if (map->init_slots_sz) { 4631 err = init_map_slots(obj, map); 4632 if (err < 0) { 4633 zclose(map->fd); 4634 goto err_out; 4635 } 4636 } 4637 } 4638 4639 if (map->pin_path && !map->pinned) { 4640 err = bpf_map__pin(map, NULL); 4641 if (err) { 4642 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 4643 map->name, map->pin_path, err); 4644 zclose(map->fd); 4645 goto err_out; 4646 } 4647 } 4648 } 4649 4650 return 0; 4651 4652 err_out: 4653 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4654 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 4655 pr_perm_msg(err); 4656 for (j = 0; j < i; j++) 4657 zclose(obj->maps[j].fd); 4658 return err; 4659 } 4660 4661 #define BPF_CORE_SPEC_MAX_LEN 64 4662 4663 /* represents BPF CO-RE field or array element accessor */ 4664 struct bpf_core_accessor { 4665 __u32 type_id; /* struct/union type or array element type */ 4666 __u32 idx; /* field index or array index */ 4667 const char *name; /* field name or NULL for array accessor */ 4668 }; 4669 4670 struct bpf_core_spec { 4671 const struct btf *btf; 4672 /* high-level spec: named fields and array indices only */ 4673 struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN]; 4674 /* original unresolved (no skip_mods_or_typedefs) root type ID */ 4675 __u32 root_type_id; 4676 /* CO-RE relocation kind */ 4677 enum bpf_core_relo_kind relo_kind; 4678 /* high-level spec length */ 4679 int len; 4680 /* raw, low-level spec: 1-to-1 with accessor spec string */ 4681 int raw_spec[BPF_CORE_SPEC_MAX_LEN]; 4682 /* raw spec length */ 4683 int raw_len; 4684 /* field bit offset represented by spec */ 4685 __u32 bit_offset; 4686 }; 4687 4688 static bool str_is_empty(const char *s) 4689 { 4690 return !s || !s[0]; 4691 } 4692 4693 static bool is_flex_arr(const struct btf *btf, 4694 const struct bpf_core_accessor *acc, 4695 const struct btf_array *arr) 4696 { 4697 const struct btf_type *t; 4698 4699 /* not a flexible array, if not inside a struct or has non-zero size */ 4700 if (!acc->name || arr->nelems > 0) 4701 return false; 4702 4703 /* has to be the last member of enclosing struct */ 4704 t = btf__type_by_id(btf, acc->type_id); 4705 return acc->idx == btf_vlen(t) - 1; 4706 } 4707 4708 static const char *core_relo_kind_str(enum bpf_core_relo_kind kind) 4709 { 4710 switch (kind) { 4711 case BPF_FIELD_BYTE_OFFSET: return "byte_off"; 4712 case BPF_FIELD_BYTE_SIZE: return "byte_sz"; 4713 case BPF_FIELD_EXISTS: return "field_exists"; 4714 case BPF_FIELD_SIGNED: return "signed"; 4715 case BPF_FIELD_LSHIFT_U64: return "lshift_u64"; 4716 case BPF_FIELD_RSHIFT_U64: return "rshift_u64"; 4717 case BPF_TYPE_ID_LOCAL: return "local_type_id"; 4718 case BPF_TYPE_ID_TARGET: return "target_type_id"; 4719 case BPF_TYPE_EXISTS: return "type_exists"; 4720 case BPF_TYPE_SIZE: return "type_size"; 4721 case BPF_ENUMVAL_EXISTS: return "enumval_exists"; 4722 case BPF_ENUMVAL_VALUE: return "enumval_value"; 4723 default: return "unknown"; 4724 } 4725 } 4726 4727 static bool core_relo_is_field_based(enum bpf_core_relo_kind kind) 4728 { 4729 switch (kind) { 4730 case BPF_FIELD_BYTE_OFFSET: 4731 case BPF_FIELD_BYTE_SIZE: 4732 case BPF_FIELD_EXISTS: 4733 case BPF_FIELD_SIGNED: 4734 case BPF_FIELD_LSHIFT_U64: 4735 case BPF_FIELD_RSHIFT_U64: 4736 return true; 4737 default: 4738 return false; 4739 } 4740 } 4741 4742 static bool core_relo_is_type_based(enum bpf_core_relo_kind kind) 4743 { 4744 switch (kind) { 4745 case BPF_TYPE_ID_LOCAL: 4746 case BPF_TYPE_ID_TARGET: 4747 case BPF_TYPE_EXISTS: 4748 case BPF_TYPE_SIZE: 4749 return true; 4750 default: 4751 return false; 4752 } 4753 } 4754 4755 static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind) 4756 { 4757 switch (kind) { 4758 case BPF_ENUMVAL_EXISTS: 4759 case BPF_ENUMVAL_VALUE: 4760 return true; 4761 default: 4762 return false; 4763 } 4764 } 4765 4766 /* 4767 * Turn bpf_core_relo into a low- and high-level spec representation, 4768 * validating correctness along the way, as well as calculating resulting 4769 * field bit offset, specified by accessor string. Low-level spec captures 4770 * every single level of nestedness, including traversing anonymous 4771 * struct/union members. High-level one only captures semantically meaningful 4772 * "turning points": named fields and array indicies. 4773 * E.g., for this case: 4774 * 4775 * struct sample { 4776 * int __unimportant; 4777 * struct { 4778 * int __1; 4779 * int __2; 4780 * int a[7]; 4781 * }; 4782 * }; 4783 * 4784 * struct sample *s = ...; 4785 * 4786 * int x = &s->a[3]; // access string = '0:1:2:3' 4787 * 4788 * Low-level spec has 1:1 mapping with each element of access string (it's 4789 * just a parsed access string representation): [0, 1, 2, 3]. 4790 * 4791 * High-level spec will capture only 3 points: 4792 * - intial zero-index access by pointer (&s->... is the same as &s[0]...); 4793 * - field 'a' access (corresponds to '2' in low-level spec); 4794 * - array element #3 access (corresponds to '3' in low-level spec). 4795 * 4796 * Type-based relocations (TYPE_EXISTS/TYPE_SIZE, 4797 * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their 4798 * spec and raw_spec are kept empty. 4799 * 4800 * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access 4801 * string to specify enumerator's value index that need to be relocated. 4802 */ 4803 static int bpf_core_parse_spec(const struct btf *btf, 4804 __u32 type_id, 4805 const char *spec_str, 4806 enum bpf_core_relo_kind relo_kind, 4807 struct bpf_core_spec *spec) 4808 { 4809 int access_idx, parsed_len, i; 4810 struct bpf_core_accessor *acc; 4811 const struct btf_type *t; 4812 const char *name; 4813 __u32 id; 4814 __s64 sz; 4815 4816 if (str_is_empty(spec_str) || *spec_str == ':') 4817 return -EINVAL; 4818 4819 memset(spec, 0, sizeof(*spec)); 4820 spec->btf = btf; 4821 spec->root_type_id = type_id; 4822 spec->relo_kind = relo_kind; 4823 4824 /* type-based relocations don't have a field access string */ 4825 if (core_relo_is_type_based(relo_kind)) { 4826 if (strcmp(spec_str, "0")) 4827 return -EINVAL; 4828 return 0; 4829 } 4830 4831 /* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */ 4832 while (*spec_str) { 4833 if (*spec_str == ':') 4834 ++spec_str; 4835 if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1) 4836 return -EINVAL; 4837 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 4838 return -E2BIG; 4839 spec_str += parsed_len; 4840 spec->raw_spec[spec->raw_len++] = access_idx; 4841 } 4842 4843 if (spec->raw_len == 0) 4844 return -EINVAL; 4845 4846 t = skip_mods_and_typedefs(btf, type_id, &id); 4847 if (!t) 4848 return -EINVAL; 4849 4850 access_idx = spec->raw_spec[0]; 4851 acc = &spec->spec[0]; 4852 acc->type_id = id; 4853 acc->idx = access_idx; 4854 spec->len++; 4855 4856 if (core_relo_is_enumval_based(relo_kind)) { 4857 if (!btf_is_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t)) 4858 return -EINVAL; 4859 4860 /* record enumerator name in a first accessor */ 4861 acc->name = btf__name_by_offset(btf, btf_enum(t)[access_idx].name_off); 4862 return 0; 4863 } 4864 4865 if (!core_relo_is_field_based(relo_kind)) 4866 return -EINVAL; 4867 4868 sz = btf__resolve_size(btf, id); 4869 if (sz < 0) 4870 return sz; 4871 spec->bit_offset = access_idx * sz * 8; 4872 4873 for (i = 1; i < spec->raw_len; i++) { 4874 t = skip_mods_and_typedefs(btf, id, &id); 4875 if (!t) 4876 return -EINVAL; 4877 4878 access_idx = spec->raw_spec[i]; 4879 acc = &spec->spec[spec->len]; 4880 4881 if (btf_is_composite(t)) { 4882 const struct btf_member *m; 4883 __u32 bit_offset; 4884 4885 if (access_idx >= btf_vlen(t)) 4886 return -EINVAL; 4887 4888 bit_offset = btf_member_bit_offset(t, access_idx); 4889 spec->bit_offset += bit_offset; 4890 4891 m = btf_members(t) + access_idx; 4892 if (m->name_off) { 4893 name = btf__name_by_offset(btf, m->name_off); 4894 if (str_is_empty(name)) 4895 return -EINVAL; 4896 4897 acc->type_id = id; 4898 acc->idx = access_idx; 4899 acc->name = name; 4900 spec->len++; 4901 } 4902 4903 id = m->type; 4904 } else if (btf_is_array(t)) { 4905 const struct btf_array *a = btf_array(t); 4906 bool flex; 4907 4908 t = skip_mods_and_typedefs(btf, a->type, &id); 4909 if (!t) 4910 return -EINVAL; 4911 4912 flex = is_flex_arr(btf, acc - 1, a); 4913 if (!flex && access_idx >= a->nelems) 4914 return -EINVAL; 4915 4916 spec->spec[spec->len].type_id = id; 4917 spec->spec[spec->len].idx = access_idx; 4918 spec->len++; 4919 4920 sz = btf__resolve_size(btf, id); 4921 if (sz < 0) 4922 return sz; 4923 spec->bit_offset += access_idx * sz * 8; 4924 } else { 4925 pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n", 4926 type_id, spec_str, i, id, btf_kind_str(t)); 4927 return -EINVAL; 4928 } 4929 } 4930 4931 return 0; 4932 } 4933 4934 static bool bpf_core_is_flavor_sep(const char *s) 4935 { 4936 /* check X___Y name pattern, where X and Y are not underscores */ 4937 return s[0] != '_' && /* X */ 4938 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 4939 s[4] != '_'; /* Y */ 4940 } 4941 4942 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 4943 * before last triple underscore. Struct name part after last triple 4944 * underscore is ignored by BPF CO-RE relocation during relocation matching. 4945 */ 4946 static size_t bpf_core_essential_name_len(const char *name) 4947 { 4948 size_t n = strlen(name); 4949 int i; 4950 4951 for (i = n - 5; i >= 0; i--) { 4952 if (bpf_core_is_flavor_sep(name + i)) 4953 return i + 1; 4954 } 4955 return n; 4956 } 4957 4958 struct core_cand 4959 { 4960 const struct btf *btf; 4961 const struct btf_type *t; 4962 const char *name; 4963 __u32 id; 4964 }; 4965 4966 /* dynamically sized list of type IDs and its associated struct btf */ 4967 struct core_cand_list { 4968 struct core_cand *cands; 4969 int len; 4970 }; 4971 4972 static void bpf_core_free_cands(struct core_cand_list *cands) 4973 { 4974 free(cands->cands); 4975 free(cands); 4976 } 4977 4978 static int bpf_core_add_cands(struct core_cand *local_cand, 4979 size_t local_essent_len, 4980 const struct btf *targ_btf, 4981 const char *targ_btf_name, 4982 int targ_start_id, 4983 struct core_cand_list *cands) 4984 { 4985 struct core_cand *new_cands, *cand; 4986 const struct btf_type *t; 4987 const char *targ_name; 4988 size_t targ_essent_len; 4989 int n, i; 4990 4991 n = btf__get_nr_types(targ_btf); 4992 for (i = targ_start_id; i <= n; i++) { 4993 t = btf__type_by_id(targ_btf, i); 4994 if (btf_kind(t) != btf_kind(local_cand->t)) 4995 continue; 4996 4997 targ_name = btf__name_by_offset(targ_btf, t->name_off); 4998 if (str_is_empty(targ_name)) 4999 continue; 5000 5001 targ_essent_len = bpf_core_essential_name_len(targ_name); 5002 if (targ_essent_len != local_essent_len) 5003 continue; 5004 5005 if (strncmp(local_cand->name, targ_name, local_essent_len) != 0) 5006 continue; 5007 5008 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5009 local_cand->id, btf_kind_str(local_cand->t), 5010 local_cand->name, i, btf_kind_str(t), targ_name, 5011 targ_btf_name); 5012 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5013 sizeof(*cands->cands)); 5014 if (!new_cands) 5015 return -ENOMEM; 5016 5017 cand = &new_cands[cands->len]; 5018 cand->btf = targ_btf; 5019 cand->t = t; 5020 cand->name = targ_name; 5021 cand->id = i; 5022 5023 cands->cands = new_cands; 5024 cands->len++; 5025 } 5026 return 0; 5027 } 5028 5029 static int load_module_btfs(struct bpf_object *obj) 5030 { 5031 struct bpf_btf_info info; 5032 struct module_btf *mod_btf; 5033 struct btf *btf; 5034 char name[64]; 5035 __u32 id = 0, len; 5036 int err, fd; 5037 5038 if (obj->btf_modules_loaded) 5039 return 0; 5040 5041 if (obj->gen_loader) 5042 return 0; 5043 5044 /* don't do this again, even if we find no module BTFs */ 5045 obj->btf_modules_loaded = true; 5046 5047 /* kernel too old to support module BTFs */ 5048 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5049 return 0; 5050 5051 while (true) { 5052 err = bpf_btf_get_next_id(id, &id); 5053 if (err && errno == ENOENT) 5054 return 0; 5055 if (err) { 5056 err = -errno; 5057 pr_warn("failed to iterate BTF objects: %d\n", err); 5058 return err; 5059 } 5060 5061 fd = bpf_btf_get_fd_by_id(id); 5062 if (fd < 0) { 5063 if (errno == ENOENT) 5064 continue; /* expected race: BTF was unloaded */ 5065 err = -errno; 5066 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5067 return err; 5068 } 5069 5070 len = sizeof(info); 5071 memset(&info, 0, sizeof(info)); 5072 info.name = ptr_to_u64(name); 5073 info.name_len = sizeof(name); 5074 5075 err = bpf_obj_get_info_by_fd(fd, &info, &len); 5076 if (err) { 5077 err = -errno; 5078 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5079 goto err_out; 5080 } 5081 5082 /* ignore non-module BTFs */ 5083 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5084 close(fd); 5085 continue; 5086 } 5087 5088 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5089 if (IS_ERR(btf)) { 5090 pr_warn("failed to load module [%s]'s BTF object #%d: %ld\n", 5091 name, id, PTR_ERR(btf)); 5092 err = PTR_ERR(btf); 5093 goto err_out; 5094 } 5095 5096 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5097 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5098 if (err) 5099 goto err_out; 5100 5101 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5102 5103 mod_btf->btf = btf; 5104 mod_btf->id = id; 5105 mod_btf->fd = fd; 5106 mod_btf->name = strdup(name); 5107 if (!mod_btf->name) { 5108 err = -ENOMEM; 5109 goto err_out; 5110 } 5111 continue; 5112 5113 err_out: 5114 close(fd); 5115 return err; 5116 } 5117 5118 return 0; 5119 } 5120 5121 static struct core_cand_list * 5122 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5123 { 5124 struct core_cand local_cand = {}; 5125 struct core_cand_list *cands; 5126 const struct btf *main_btf; 5127 size_t local_essent_len; 5128 int err, i; 5129 5130 local_cand.btf = local_btf; 5131 local_cand.t = btf__type_by_id(local_btf, local_type_id); 5132 if (!local_cand.t) 5133 return ERR_PTR(-EINVAL); 5134 5135 local_cand.name = btf__name_by_offset(local_btf, local_cand.t->name_off); 5136 if (str_is_empty(local_cand.name)) 5137 return ERR_PTR(-EINVAL); 5138 local_essent_len = bpf_core_essential_name_len(local_cand.name); 5139 5140 cands = calloc(1, sizeof(*cands)); 5141 if (!cands) 5142 return ERR_PTR(-ENOMEM); 5143 5144 /* Attempt to find target candidates in vmlinux BTF first */ 5145 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5146 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5147 if (err) 5148 goto err_out; 5149 5150 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5151 if (cands->len) 5152 return cands; 5153 5154 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5155 if (obj->btf_vmlinux_override) 5156 return cands; 5157 5158 /* now look through module BTFs, trying to still find candidates */ 5159 err = load_module_btfs(obj); 5160 if (err) 5161 goto err_out; 5162 5163 for (i = 0; i < obj->btf_module_cnt; i++) { 5164 err = bpf_core_add_cands(&local_cand, local_essent_len, 5165 obj->btf_modules[i].btf, 5166 obj->btf_modules[i].name, 5167 btf__get_nr_types(obj->btf_vmlinux) + 1, 5168 cands); 5169 if (err) 5170 goto err_out; 5171 } 5172 5173 return cands; 5174 err_out: 5175 bpf_core_free_cands(cands); 5176 return ERR_PTR(err); 5177 } 5178 5179 /* Check two types for compatibility for the purpose of field access 5180 * relocation. const/volatile/restrict and typedefs are skipped to ensure we 5181 * are relocating semantically compatible entities: 5182 * - any two STRUCTs/UNIONs are compatible and can be mixed; 5183 * - any two FWDs are compatible, if their names match (modulo flavor suffix); 5184 * - any two PTRs are always compatible; 5185 * - for ENUMs, names should be the same (ignoring flavor suffix) or at 5186 * least one of enums should be anonymous; 5187 * - for ENUMs, check sizes, names are ignored; 5188 * - for INT, size and signedness are ignored; 5189 * - any two FLOATs are always compatible; 5190 * - for ARRAY, dimensionality is ignored, element types are checked for 5191 * compatibility recursively; 5192 * - everything else shouldn't be ever a target of relocation. 5193 * These rules are not set in stone and probably will be adjusted as we get 5194 * more experience with using BPF CO-RE relocations. 5195 */ 5196 static int bpf_core_fields_are_compat(const struct btf *local_btf, 5197 __u32 local_id, 5198 const struct btf *targ_btf, 5199 __u32 targ_id) 5200 { 5201 const struct btf_type *local_type, *targ_type; 5202 5203 recur: 5204 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 5205 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 5206 if (!local_type || !targ_type) 5207 return -EINVAL; 5208 5209 if (btf_is_composite(local_type) && btf_is_composite(targ_type)) 5210 return 1; 5211 if (btf_kind(local_type) != btf_kind(targ_type)) 5212 return 0; 5213 5214 switch (btf_kind(local_type)) { 5215 case BTF_KIND_PTR: 5216 case BTF_KIND_FLOAT: 5217 return 1; 5218 case BTF_KIND_FWD: 5219 case BTF_KIND_ENUM: { 5220 const char *local_name, *targ_name; 5221 size_t local_len, targ_len; 5222 5223 local_name = btf__name_by_offset(local_btf, 5224 local_type->name_off); 5225 targ_name = btf__name_by_offset(targ_btf, targ_type->name_off); 5226 local_len = bpf_core_essential_name_len(local_name); 5227 targ_len = bpf_core_essential_name_len(targ_name); 5228 /* one of them is anonymous or both w/ same flavor-less names */ 5229 return local_len == 0 || targ_len == 0 || 5230 (local_len == targ_len && 5231 strncmp(local_name, targ_name, local_len) == 0); 5232 } 5233 case BTF_KIND_INT: 5234 /* just reject deprecated bitfield-like integers; all other 5235 * integers are by default compatible between each other 5236 */ 5237 return btf_int_offset(local_type) == 0 && 5238 btf_int_offset(targ_type) == 0; 5239 case BTF_KIND_ARRAY: 5240 local_id = btf_array(local_type)->type; 5241 targ_id = btf_array(targ_type)->type; 5242 goto recur; 5243 default: 5244 pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n", 5245 btf_kind(local_type), local_id, targ_id); 5246 return 0; 5247 } 5248 } 5249 5250 /* 5251 * Given single high-level named field accessor in local type, find 5252 * corresponding high-level accessor for a target type. Along the way, 5253 * maintain low-level spec for target as well. Also keep updating target 5254 * bit offset. 5255 * 5256 * Searching is performed through recursive exhaustive enumeration of all 5257 * fields of a struct/union. If there are any anonymous (embedded) 5258 * structs/unions, they are recursively searched as well. If field with 5259 * desired name is found, check compatibility between local and target types, 5260 * before returning result. 5261 * 5262 * 1 is returned, if field is found. 5263 * 0 is returned if no compatible field is found. 5264 * <0 is returned on error. 5265 */ 5266 static int bpf_core_match_member(const struct btf *local_btf, 5267 const struct bpf_core_accessor *local_acc, 5268 const struct btf *targ_btf, 5269 __u32 targ_id, 5270 struct bpf_core_spec *spec, 5271 __u32 *next_targ_id) 5272 { 5273 const struct btf_type *local_type, *targ_type; 5274 const struct btf_member *local_member, *m; 5275 const char *local_name, *targ_name; 5276 __u32 local_id; 5277 int i, n, found; 5278 5279 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 5280 if (!targ_type) 5281 return -EINVAL; 5282 if (!btf_is_composite(targ_type)) 5283 return 0; 5284 5285 local_id = local_acc->type_id; 5286 local_type = btf__type_by_id(local_btf, local_id); 5287 local_member = btf_members(local_type) + local_acc->idx; 5288 local_name = btf__name_by_offset(local_btf, local_member->name_off); 5289 5290 n = btf_vlen(targ_type); 5291 m = btf_members(targ_type); 5292 for (i = 0; i < n; i++, m++) { 5293 __u32 bit_offset; 5294 5295 bit_offset = btf_member_bit_offset(targ_type, i); 5296 5297 /* too deep struct/union/array nesting */ 5298 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 5299 return -E2BIG; 5300 5301 /* speculate this member will be the good one */ 5302 spec->bit_offset += bit_offset; 5303 spec->raw_spec[spec->raw_len++] = i; 5304 5305 targ_name = btf__name_by_offset(targ_btf, m->name_off); 5306 if (str_is_empty(targ_name)) { 5307 /* embedded struct/union, we need to go deeper */ 5308 found = bpf_core_match_member(local_btf, local_acc, 5309 targ_btf, m->type, 5310 spec, next_targ_id); 5311 if (found) /* either found or error */ 5312 return found; 5313 } else if (strcmp(local_name, targ_name) == 0) { 5314 /* matching named field */ 5315 struct bpf_core_accessor *targ_acc; 5316 5317 targ_acc = &spec->spec[spec->len++]; 5318 targ_acc->type_id = targ_id; 5319 targ_acc->idx = i; 5320 targ_acc->name = targ_name; 5321 5322 *next_targ_id = m->type; 5323 found = bpf_core_fields_are_compat(local_btf, 5324 local_member->type, 5325 targ_btf, m->type); 5326 if (!found) 5327 spec->len--; /* pop accessor */ 5328 return found; 5329 } 5330 /* member turned out not to be what we looked for */ 5331 spec->bit_offset -= bit_offset; 5332 spec->raw_len--; 5333 } 5334 5335 return 0; 5336 } 5337 5338 /* Check local and target types for compatibility. This check is used for 5339 * type-based CO-RE relocations and follow slightly different rules than 5340 * field-based relocations. This function assumes that root types were already 5341 * checked for name match. Beyond that initial root-level name check, names 5342 * are completely ignored. Compatibility rules are as follows: 5343 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5344 * kind should match for local and target types (i.e., STRUCT is not 5345 * compatible with UNION); 5346 * - for ENUMs, the size is ignored; 5347 * - for INT, size and signedness are ignored; 5348 * - for ARRAY, dimensionality is ignored, element types are checked for 5349 * compatibility recursively; 5350 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5351 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5352 * - FUNC_PROTOs are compatible if they have compatible signature: same 5353 * number of input args and compatible return and argument types. 5354 * These rules are not set in stone and probably will be adjusted as we get 5355 * more experience with using BPF CO-RE relocations. 5356 */ 5357 static int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5358 const struct btf *targ_btf, __u32 targ_id) 5359 { 5360 const struct btf_type *local_type, *targ_type; 5361 int depth = 32; /* max recursion depth */ 5362 5363 /* caller made sure that names match (ignoring flavor suffix) */ 5364 local_type = btf__type_by_id(local_btf, local_id); 5365 targ_type = btf__type_by_id(targ_btf, targ_id); 5366 if (btf_kind(local_type) != btf_kind(targ_type)) 5367 return 0; 5368 5369 recur: 5370 depth--; 5371 if (depth < 0) 5372 return -EINVAL; 5373 5374 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 5375 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 5376 if (!local_type || !targ_type) 5377 return -EINVAL; 5378 5379 if (btf_kind(local_type) != btf_kind(targ_type)) 5380 return 0; 5381 5382 switch (btf_kind(local_type)) { 5383 case BTF_KIND_UNKN: 5384 case BTF_KIND_STRUCT: 5385 case BTF_KIND_UNION: 5386 case BTF_KIND_ENUM: 5387 case BTF_KIND_FWD: 5388 return 1; 5389 case BTF_KIND_INT: 5390 /* just reject deprecated bitfield-like integers; all other 5391 * integers are by default compatible between each other 5392 */ 5393 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0; 5394 case BTF_KIND_PTR: 5395 local_id = local_type->type; 5396 targ_id = targ_type->type; 5397 goto recur; 5398 case BTF_KIND_ARRAY: 5399 local_id = btf_array(local_type)->type; 5400 targ_id = btf_array(targ_type)->type; 5401 goto recur; 5402 case BTF_KIND_FUNC_PROTO: { 5403 struct btf_param *local_p = btf_params(local_type); 5404 struct btf_param *targ_p = btf_params(targ_type); 5405 __u16 local_vlen = btf_vlen(local_type); 5406 __u16 targ_vlen = btf_vlen(targ_type); 5407 int i, err; 5408 5409 if (local_vlen != targ_vlen) 5410 return 0; 5411 5412 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { 5413 skip_mods_and_typedefs(local_btf, local_p->type, &local_id); 5414 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id); 5415 err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id); 5416 if (err <= 0) 5417 return err; 5418 } 5419 5420 /* tail recurse for return type check */ 5421 skip_mods_and_typedefs(local_btf, local_type->type, &local_id); 5422 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id); 5423 goto recur; 5424 } 5425 default: 5426 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n", 5427 btf_kind_str(local_type), local_id, targ_id); 5428 return 0; 5429 } 5430 } 5431 5432 /* 5433 * Try to match local spec to a target type and, if successful, produce full 5434 * target spec (high-level, low-level + bit offset). 5435 */ 5436 static int bpf_core_spec_match(struct bpf_core_spec *local_spec, 5437 const struct btf *targ_btf, __u32 targ_id, 5438 struct bpf_core_spec *targ_spec) 5439 { 5440 const struct btf_type *targ_type; 5441 const struct bpf_core_accessor *local_acc; 5442 struct bpf_core_accessor *targ_acc; 5443 int i, sz, matched; 5444 5445 memset(targ_spec, 0, sizeof(*targ_spec)); 5446 targ_spec->btf = targ_btf; 5447 targ_spec->root_type_id = targ_id; 5448 targ_spec->relo_kind = local_spec->relo_kind; 5449 5450 if (core_relo_is_type_based(local_spec->relo_kind)) { 5451 return bpf_core_types_are_compat(local_spec->btf, 5452 local_spec->root_type_id, 5453 targ_btf, targ_id); 5454 } 5455 5456 local_acc = &local_spec->spec[0]; 5457 targ_acc = &targ_spec->spec[0]; 5458 5459 if (core_relo_is_enumval_based(local_spec->relo_kind)) { 5460 size_t local_essent_len, targ_essent_len; 5461 const struct btf_enum *e; 5462 const char *targ_name; 5463 5464 /* has to resolve to an enum */ 5465 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id); 5466 if (!btf_is_enum(targ_type)) 5467 return 0; 5468 5469 local_essent_len = bpf_core_essential_name_len(local_acc->name); 5470 5471 for (i = 0, e = btf_enum(targ_type); i < btf_vlen(targ_type); i++, e++) { 5472 targ_name = btf__name_by_offset(targ_spec->btf, e->name_off); 5473 targ_essent_len = bpf_core_essential_name_len(targ_name); 5474 if (targ_essent_len != local_essent_len) 5475 continue; 5476 if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) { 5477 targ_acc->type_id = targ_id; 5478 targ_acc->idx = i; 5479 targ_acc->name = targ_name; 5480 targ_spec->len++; 5481 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 5482 targ_spec->raw_len++; 5483 return 1; 5484 } 5485 } 5486 return 0; 5487 } 5488 5489 if (!core_relo_is_field_based(local_spec->relo_kind)) 5490 return -EINVAL; 5491 5492 for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) { 5493 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, 5494 &targ_id); 5495 if (!targ_type) 5496 return -EINVAL; 5497 5498 if (local_acc->name) { 5499 matched = bpf_core_match_member(local_spec->btf, 5500 local_acc, 5501 targ_btf, targ_id, 5502 targ_spec, &targ_id); 5503 if (matched <= 0) 5504 return matched; 5505 } else { 5506 /* for i=0, targ_id is already treated as array element 5507 * type (because it's the original struct), for others 5508 * we should find array element type first 5509 */ 5510 if (i > 0) { 5511 const struct btf_array *a; 5512 bool flex; 5513 5514 if (!btf_is_array(targ_type)) 5515 return 0; 5516 5517 a = btf_array(targ_type); 5518 flex = is_flex_arr(targ_btf, targ_acc - 1, a); 5519 if (!flex && local_acc->idx >= a->nelems) 5520 return 0; 5521 if (!skip_mods_and_typedefs(targ_btf, a->type, 5522 &targ_id)) 5523 return -EINVAL; 5524 } 5525 5526 /* too deep struct/union/array nesting */ 5527 if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 5528 return -E2BIG; 5529 5530 targ_acc->type_id = targ_id; 5531 targ_acc->idx = local_acc->idx; 5532 targ_acc->name = NULL; 5533 targ_spec->len++; 5534 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 5535 targ_spec->raw_len++; 5536 5537 sz = btf__resolve_size(targ_btf, targ_id); 5538 if (sz < 0) 5539 return sz; 5540 targ_spec->bit_offset += local_acc->idx * sz * 8; 5541 } 5542 } 5543 5544 return 1; 5545 } 5546 5547 static int bpf_core_calc_field_relo(const struct bpf_program *prog, 5548 const struct bpf_core_relo *relo, 5549 const struct bpf_core_spec *spec, 5550 __u32 *val, __u32 *field_sz, __u32 *type_id, 5551 bool *validate) 5552 { 5553 const struct bpf_core_accessor *acc; 5554 const struct btf_type *t; 5555 __u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id; 5556 const struct btf_member *m; 5557 const struct btf_type *mt; 5558 bool bitfield; 5559 __s64 sz; 5560 5561 *field_sz = 0; 5562 5563 if (relo->kind == BPF_FIELD_EXISTS) { 5564 *val = spec ? 1 : 0; 5565 return 0; 5566 } 5567 5568 if (!spec) 5569 return -EUCLEAN; /* request instruction poisoning */ 5570 5571 acc = &spec->spec[spec->len - 1]; 5572 t = btf__type_by_id(spec->btf, acc->type_id); 5573 5574 /* a[n] accessor needs special handling */ 5575 if (!acc->name) { 5576 if (relo->kind == BPF_FIELD_BYTE_OFFSET) { 5577 *val = spec->bit_offset / 8; 5578 /* remember field size for load/store mem size */ 5579 sz = btf__resolve_size(spec->btf, acc->type_id); 5580 if (sz < 0) 5581 return -EINVAL; 5582 *field_sz = sz; 5583 *type_id = acc->type_id; 5584 } else if (relo->kind == BPF_FIELD_BYTE_SIZE) { 5585 sz = btf__resolve_size(spec->btf, acc->type_id); 5586 if (sz < 0) 5587 return -EINVAL; 5588 *val = sz; 5589 } else { 5590 pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n", 5591 prog->name, relo->kind, relo->insn_off / 8); 5592 return -EINVAL; 5593 } 5594 if (validate) 5595 *validate = true; 5596 return 0; 5597 } 5598 5599 m = btf_members(t) + acc->idx; 5600 mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id); 5601 bit_off = spec->bit_offset; 5602 bit_sz = btf_member_bitfield_size(t, acc->idx); 5603 5604 bitfield = bit_sz > 0; 5605 if (bitfield) { 5606 byte_sz = mt->size; 5607 byte_off = bit_off / 8 / byte_sz * byte_sz; 5608 /* figure out smallest int size necessary for bitfield load */ 5609 while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) { 5610 if (byte_sz >= 8) { 5611 /* bitfield can't be read with 64-bit read */ 5612 pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n", 5613 prog->name, relo->kind, relo->insn_off / 8); 5614 return -E2BIG; 5615 } 5616 byte_sz *= 2; 5617 byte_off = bit_off / 8 / byte_sz * byte_sz; 5618 } 5619 } else { 5620 sz = btf__resolve_size(spec->btf, field_type_id); 5621 if (sz < 0) 5622 return -EINVAL; 5623 byte_sz = sz; 5624 byte_off = spec->bit_offset / 8; 5625 bit_sz = byte_sz * 8; 5626 } 5627 5628 /* for bitfields, all the relocatable aspects are ambiguous and we 5629 * might disagree with compiler, so turn off validation of expected 5630 * value, except for signedness 5631 */ 5632 if (validate) 5633 *validate = !bitfield; 5634 5635 switch (relo->kind) { 5636 case BPF_FIELD_BYTE_OFFSET: 5637 *val = byte_off; 5638 if (!bitfield) { 5639 *field_sz = byte_sz; 5640 *type_id = field_type_id; 5641 } 5642 break; 5643 case BPF_FIELD_BYTE_SIZE: 5644 *val = byte_sz; 5645 break; 5646 case BPF_FIELD_SIGNED: 5647 /* enums will be assumed unsigned */ 5648 *val = btf_is_enum(mt) || 5649 (btf_int_encoding(mt) & BTF_INT_SIGNED); 5650 if (validate) 5651 *validate = true; /* signedness is never ambiguous */ 5652 break; 5653 case BPF_FIELD_LSHIFT_U64: 5654 #if __BYTE_ORDER == __LITTLE_ENDIAN 5655 *val = 64 - (bit_off + bit_sz - byte_off * 8); 5656 #else 5657 *val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8); 5658 #endif 5659 break; 5660 case BPF_FIELD_RSHIFT_U64: 5661 *val = 64 - bit_sz; 5662 if (validate) 5663 *validate = true; /* right shift is never ambiguous */ 5664 break; 5665 case BPF_FIELD_EXISTS: 5666 default: 5667 return -EOPNOTSUPP; 5668 } 5669 5670 return 0; 5671 } 5672 5673 static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo, 5674 const struct bpf_core_spec *spec, 5675 __u32 *val) 5676 { 5677 __s64 sz; 5678 5679 /* type-based relos return zero when target type is not found */ 5680 if (!spec) { 5681 *val = 0; 5682 return 0; 5683 } 5684 5685 switch (relo->kind) { 5686 case BPF_TYPE_ID_TARGET: 5687 *val = spec->root_type_id; 5688 break; 5689 case BPF_TYPE_EXISTS: 5690 *val = 1; 5691 break; 5692 case BPF_TYPE_SIZE: 5693 sz = btf__resolve_size(spec->btf, spec->root_type_id); 5694 if (sz < 0) 5695 return -EINVAL; 5696 *val = sz; 5697 break; 5698 case BPF_TYPE_ID_LOCAL: 5699 /* BPF_TYPE_ID_LOCAL is handled specially and shouldn't get here */ 5700 default: 5701 return -EOPNOTSUPP; 5702 } 5703 5704 return 0; 5705 } 5706 5707 static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo, 5708 const struct bpf_core_spec *spec, 5709 __u32 *val) 5710 { 5711 const struct btf_type *t; 5712 const struct btf_enum *e; 5713 5714 switch (relo->kind) { 5715 case BPF_ENUMVAL_EXISTS: 5716 *val = spec ? 1 : 0; 5717 break; 5718 case BPF_ENUMVAL_VALUE: 5719 if (!spec) 5720 return -EUCLEAN; /* request instruction poisoning */ 5721 t = btf__type_by_id(spec->btf, spec->spec[0].type_id); 5722 e = btf_enum(t) + spec->spec[0].idx; 5723 *val = e->val; 5724 break; 5725 default: 5726 return -EOPNOTSUPP; 5727 } 5728 5729 return 0; 5730 } 5731 5732 struct bpf_core_relo_res 5733 { 5734 /* expected value in the instruction, unless validate == false */ 5735 __u32 orig_val; 5736 /* new value that needs to be patched up to */ 5737 __u32 new_val; 5738 /* relocation unsuccessful, poison instruction, but don't fail load */ 5739 bool poison; 5740 /* some relocations can't be validated against orig_val */ 5741 bool validate; 5742 /* for field byte offset relocations or the forms: 5743 * *(T *)(rX + <off>) = rY 5744 * rX = *(T *)(rY + <off>), 5745 * we remember original and resolved field size to adjust direct 5746 * memory loads of pointers and integers; this is necessary for 32-bit 5747 * host kernel architectures, but also allows to automatically 5748 * relocate fields that were resized from, e.g., u32 to u64, etc. 5749 */ 5750 bool fail_memsz_adjust; 5751 __u32 orig_sz; 5752 __u32 orig_type_id; 5753 __u32 new_sz; 5754 __u32 new_type_id; 5755 }; 5756 5757 /* Calculate original and target relocation values, given local and target 5758 * specs and relocation kind. These values are calculated for each candidate. 5759 * If there are multiple candidates, resulting values should all be consistent 5760 * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity. 5761 * If instruction has to be poisoned, *poison will be set to true. 5762 */ 5763 static int bpf_core_calc_relo(const struct bpf_program *prog, 5764 const struct bpf_core_relo *relo, 5765 int relo_idx, 5766 const struct bpf_core_spec *local_spec, 5767 const struct bpf_core_spec *targ_spec, 5768 struct bpf_core_relo_res *res) 5769 { 5770 int err = -EOPNOTSUPP; 5771 5772 res->orig_val = 0; 5773 res->new_val = 0; 5774 res->poison = false; 5775 res->validate = true; 5776 res->fail_memsz_adjust = false; 5777 res->orig_sz = res->new_sz = 0; 5778 res->orig_type_id = res->new_type_id = 0; 5779 5780 if (core_relo_is_field_based(relo->kind)) { 5781 err = bpf_core_calc_field_relo(prog, relo, local_spec, 5782 &res->orig_val, &res->orig_sz, 5783 &res->orig_type_id, &res->validate); 5784 err = err ?: bpf_core_calc_field_relo(prog, relo, targ_spec, 5785 &res->new_val, &res->new_sz, 5786 &res->new_type_id, NULL); 5787 if (err) 5788 goto done; 5789 /* Validate if it's safe to adjust load/store memory size. 5790 * Adjustments are performed only if original and new memory 5791 * sizes differ. 5792 */ 5793 res->fail_memsz_adjust = false; 5794 if (res->orig_sz != res->new_sz) { 5795 const struct btf_type *orig_t, *new_t; 5796 5797 orig_t = btf__type_by_id(local_spec->btf, res->orig_type_id); 5798 new_t = btf__type_by_id(targ_spec->btf, res->new_type_id); 5799 5800 /* There are two use cases in which it's safe to 5801 * adjust load/store's mem size: 5802 * - reading a 32-bit kernel pointer, while on BPF 5803 * size pointers are always 64-bit; in this case 5804 * it's safe to "downsize" instruction size due to 5805 * pointer being treated as unsigned integer with 5806 * zero-extended upper 32-bits; 5807 * - reading unsigned integers, again due to 5808 * zero-extension is preserving the value correctly. 5809 * 5810 * In all other cases it's incorrect to attempt to 5811 * load/store field because read value will be 5812 * incorrect, so we poison relocated instruction. 5813 */ 5814 if (btf_is_ptr(orig_t) && btf_is_ptr(new_t)) 5815 goto done; 5816 if (btf_is_int(orig_t) && btf_is_int(new_t) && 5817 btf_int_encoding(orig_t) != BTF_INT_SIGNED && 5818 btf_int_encoding(new_t) != BTF_INT_SIGNED) 5819 goto done; 5820 5821 /* mark as invalid mem size adjustment, but this will 5822 * only be checked for LDX/STX/ST insns 5823 */ 5824 res->fail_memsz_adjust = true; 5825 } 5826 } else if (core_relo_is_type_based(relo->kind)) { 5827 err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val); 5828 err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val); 5829 } else if (core_relo_is_enumval_based(relo->kind)) { 5830 err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val); 5831 err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val); 5832 } 5833 5834 done: 5835 if (err == -EUCLEAN) { 5836 /* EUCLEAN is used to signal instruction poisoning request */ 5837 res->poison = true; 5838 err = 0; 5839 } else if (err == -EOPNOTSUPP) { 5840 /* EOPNOTSUPP means unknown/unsupported relocation */ 5841 pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n", 5842 prog->name, relo_idx, core_relo_kind_str(relo->kind), 5843 relo->kind, relo->insn_off / 8); 5844 } 5845 5846 return err; 5847 } 5848 5849 /* 5850 * Turn instruction for which CO_RE relocation failed into invalid one with 5851 * distinct signature. 5852 */ 5853 static void bpf_core_poison_insn(struct bpf_program *prog, int relo_idx, 5854 int insn_idx, struct bpf_insn *insn) 5855 { 5856 pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n", 5857 prog->name, relo_idx, insn_idx); 5858 insn->code = BPF_JMP | BPF_CALL; 5859 insn->dst_reg = 0; 5860 insn->src_reg = 0; 5861 insn->off = 0; 5862 /* if this instruction is reachable (not a dead code), 5863 * verifier will complain with the following message: 5864 * invalid func unknown#195896080 5865 */ 5866 insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */ 5867 } 5868 5869 static int insn_bpf_size_to_bytes(struct bpf_insn *insn) 5870 { 5871 switch (BPF_SIZE(insn->code)) { 5872 case BPF_DW: return 8; 5873 case BPF_W: return 4; 5874 case BPF_H: return 2; 5875 case BPF_B: return 1; 5876 default: return -1; 5877 } 5878 } 5879 5880 static int insn_bytes_to_bpf_size(__u32 sz) 5881 { 5882 switch (sz) { 5883 case 8: return BPF_DW; 5884 case 4: return BPF_W; 5885 case 2: return BPF_H; 5886 case 1: return BPF_B; 5887 default: return -1; 5888 } 5889 } 5890 5891 /* 5892 * Patch relocatable BPF instruction. 5893 * 5894 * Patched value is determined by relocation kind and target specification. 5895 * For existence relocations target spec will be NULL if field/type is not found. 5896 * Expected insn->imm value is determined using relocation kind and local 5897 * spec, and is checked before patching instruction. If actual insn->imm value 5898 * is wrong, bail out with error. 5899 * 5900 * Currently supported classes of BPF instruction are: 5901 * 1. rX = <imm> (assignment with immediate operand); 5902 * 2. rX += <imm> (arithmetic operations with immediate operand); 5903 * 3. rX = <imm64> (load with 64-bit immediate value); 5904 * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64}; 5905 * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64}; 5906 * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}. 5907 */ 5908 static int bpf_core_patch_insn(struct bpf_program *prog, 5909 const struct bpf_core_relo *relo, 5910 int relo_idx, 5911 const struct bpf_core_relo_res *res) 5912 { 5913 __u32 orig_val, new_val; 5914 struct bpf_insn *insn; 5915 int insn_idx; 5916 __u8 class; 5917 5918 if (relo->insn_off % BPF_INSN_SZ) 5919 return -EINVAL; 5920 insn_idx = relo->insn_off / BPF_INSN_SZ; 5921 /* adjust insn_idx from section frame of reference to the local 5922 * program's frame of reference; (sub-)program code is not yet 5923 * relocated, so it's enough to just subtract in-section offset 5924 */ 5925 insn_idx = insn_idx - prog->sec_insn_off; 5926 insn = &prog->insns[insn_idx]; 5927 class = BPF_CLASS(insn->code); 5928 5929 if (res->poison) { 5930 poison: 5931 /* poison second part of ldimm64 to avoid confusing error from 5932 * verifier about "unknown opcode 00" 5933 */ 5934 if (is_ldimm64_insn(insn)) 5935 bpf_core_poison_insn(prog, relo_idx, insn_idx + 1, insn + 1); 5936 bpf_core_poison_insn(prog, relo_idx, insn_idx, insn); 5937 return 0; 5938 } 5939 5940 orig_val = res->orig_val; 5941 new_val = res->new_val; 5942 5943 switch (class) { 5944 case BPF_ALU: 5945 case BPF_ALU64: 5946 if (BPF_SRC(insn->code) != BPF_K) 5947 return -EINVAL; 5948 if (res->validate && insn->imm != orig_val) { 5949 pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n", 5950 prog->name, relo_idx, 5951 insn_idx, insn->imm, orig_val, new_val); 5952 return -EINVAL; 5953 } 5954 orig_val = insn->imm; 5955 insn->imm = new_val; 5956 pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n", 5957 prog->name, relo_idx, insn_idx, 5958 orig_val, new_val); 5959 break; 5960 case BPF_LDX: 5961 case BPF_ST: 5962 case BPF_STX: 5963 if (res->validate && insn->off != orig_val) { 5964 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %u -> %u\n", 5965 prog->name, relo_idx, insn_idx, insn->off, orig_val, new_val); 5966 return -EINVAL; 5967 } 5968 if (new_val > SHRT_MAX) { 5969 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n", 5970 prog->name, relo_idx, insn_idx, new_val); 5971 return -ERANGE; 5972 } 5973 if (res->fail_memsz_adjust) { 5974 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. " 5975 "Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n", 5976 prog->name, relo_idx, insn_idx); 5977 goto poison; 5978 } 5979 5980 orig_val = insn->off; 5981 insn->off = new_val; 5982 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n", 5983 prog->name, relo_idx, insn_idx, orig_val, new_val); 5984 5985 if (res->new_sz != res->orig_sz) { 5986 int insn_bytes_sz, insn_bpf_sz; 5987 5988 insn_bytes_sz = insn_bpf_size_to_bytes(insn); 5989 if (insn_bytes_sz != res->orig_sz) { 5990 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n", 5991 prog->name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz); 5992 return -EINVAL; 5993 } 5994 5995 insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz); 5996 if (insn_bpf_sz < 0) { 5997 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n", 5998 prog->name, relo_idx, insn_idx, res->new_sz); 5999 return -EINVAL; 6000 } 6001 6002 insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code); 6003 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n", 6004 prog->name, relo_idx, insn_idx, res->orig_sz, res->new_sz); 6005 } 6006 break; 6007 case BPF_LD: { 6008 __u64 imm; 6009 6010 if (!is_ldimm64_insn(insn) || 6011 insn[0].src_reg != 0 || insn[0].off != 0 || 6012 insn_idx + 1 >= prog->insns_cnt || 6013 insn[1].code != 0 || insn[1].dst_reg != 0 || 6014 insn[1].src_reg != 0 || insn[1].off != 0) { 6015 pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n", 6016 prog->name, relo_idx, insn_idx); 6017 return -EINVAL; 6018 } 6019 6020 imm = insn[0].imm + ((__u64)insn[1].imm << 32); 6021 if (res->validate && imm != orig_val) { 6022 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %u -> %u\n", 6023 prog->name, relo_idx, 6024 insn_idx, (unsigned long long)imm, 6025 orig_val, new_val); 6026 return -EINVAL; 6027 } 6028 6029 insn[0].imm = new_val; 6030 insn[1].imm = 0; /* currently only 32-bit values are supported */ 6031 pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %u\n", 6032 prog->name, relo_idx, insn_idx, 6033 (unsigned long long)imm, new_val); 6034 break; 6035 } 6036 default: 6037 pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n", 6038 prog->name, relo_idx, insn_idx, insn->code, 6039 insn->src_reg, insn->dst_reg, insn->off, insn->imm); 6040 return -EINVAL; 6041 } 6042 6043 return 0; 6044 } 6045 6046 /* Output spec definition in the format: 6047 * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>, 6048 * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b 6049 */ 6050 static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec) 6051 { 6052 const struct btf_type *t; 6053 const struct btf_enum *e; 6054 const char *s; 6055 __u32 type_id; 6056 int i; 6057 6058 type_id = spec->root_type_id; 6059 t = btf__type_by_id(spec->btf, type_id); 6060 s = btf__name_by_offset(spec->btf, t->name_off); 6061 6062 libbpf_print(level, "[%u] %s %s", type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s); 6063 6064 if (core_relo_is_type_based(spec->relo_kind)) 6065 return; 6066 6067 if (core_relo_is_enumval_based(spec->relo_kind)) { 6068 t = skip_mods_and_typedefs(spec->btf, type_id, NULL); 6069 e = btf_enum(t) + spec->raw_spec[0]; 6070 s = btf__name_by_offset(spec->btf, e->name_off); 6071 6072 libbpf_print(level, "::%s = %u", s, e->val); 6073 return; 6074 } 6075 6076 if (core_relo_is_field_based(spec->relo_kind)) { 6077 for (i = 0; i < spec->len; i++) { 6078 if (spec->spec[i].name) 6079 libbpf_print(level, ".%s", spec->spec[i].name); 6080 else if (i > 0 || spec->spec[i].idx > 0) 6081 libbpf_print(level, "[%u]", spec->spec[i].idx); 6082 } 6083 6084 libbpf_print(level, " ("); 6085 for (i = 0; i < spec->raw_len; i++) 6086 libbpf_print(level, "%s%d", i == 0 ? "" : ":", spec->raw_spec[i]); 6087 6088 if (spec->bit_offset % 8) 6089 libbpf_print(level, " @ offset %u.%u)", 6090 spec->bit_offset / 8, spec->bit_offset % 8); 6091 else 6092 libbpf_print(level, " @ offset %u)", spec->bit_offset / 8); 6093 return; 6094 } 6095 } 6096 6097 static size_t bpf_core_hash_fn(const void *key, void *ctx) 6098 { 6099 return (size_t)key; 6100 } 6101 6102 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 6103 { 6104 return k1 == k2; 6105 } 6106 6107 static void *u32_as_hash_key(__u32 x) 6108 { 6109 return (void *)(uintptr_t)x; 6110 } 6111 6112 /* 6113 * CO-RE relocate single instruction. 6114 * 6115 * The outline and important points of the algorithm: 6116 * 1. For given local type, find corresponding candidate target types. 6117 * Candidate type is a type with the same "essential" name, ignoring 6118 * everything after last triple underscore (___). E.g., `sample`, 6119 * `sample___flavor_one`, `sample___flavor_another_one`, are all candidates 6120 * for each other. Names with triple underscore are referred to as 6121 * "flavors" and are useful, among other things, to allow to 6122 * specify/support incompatible variations of the same kernel struct, which 6123 * might differ between different kernel versions and/or build 6124 * configurations. 6125 * 6126 * N.B. Struct "flavors" could be generated by bpftool's BTF-to-C 6127 * converter, when deduplicated BTF of a kernel still contains more than 6128 * one different types with the same name. In that case, ___2, ___3, etc 6129 * are appended starting from second name conflict. But start flavors are 6130 * also useful to be defined "locally", in BPF program, to extract same 6131 * data from incompatible changes between different kernel 6132 * versions/configurations. For instance, to handle field renames between 6133 * kernel versions, one can use two flavors of the struct name with the 6134 * same common name and use conditional relocations to extract that field, 6135 * depending on target kernel version. 6136 * 2. For each candidate type, try to match local specification to this 6137 * candidate target type. Matching involves finding corresponding 6138 * high-level spec accessors, meaning that all named fields should match, 6139 * as well as all array accesses should be within the actual bounds. Also, 6140 * types should be compatible (see bpf_core_fields_are_compat for details). 6141 * 3. It is supported and expected that there might be multiple flavors 6142 * matching the spec. As long as all the specs resolve to the same set of 6143 * offsets across all candidates, there is no error. If there is any 6144 * ambiguity, CO-RE relocation will fail. This is necessary to accomodate 6145 * imprefection of BTF deduplication, which can cause slight duplication of 6146 * the same BTF type, if some directly or indirectly referenced (by 6147 * pointer) type gets resolved to different actual types in different 6148 * object files. If such situation occurs, deduplicated BTF will end up 6149 * with two (or more) structurally identical types, which differ only in 6150 * types they refer to through pointer. This should be OK in most cases and 6151 * is not an error. 6152 * 4. Candidate types search is performed by linearly scanning through all 6153 * types in target BTF. It is anticipated that this is overall more 6154 * efficient memory-wise and not significantly worse (if not better) 6155 * CPU-wise compared to prebuilding a map from all local type names to 6156 * a list of candidate type names. It's also sped up by caching resolved 6157 * list of matching candidates per each local "root" type ID, that has at 6158 * least one bpf_core_relo associated with it. This list is shared 6159 * between multiple relocations for the same type ID and is updated as some 6160 * of the candidates are pruned due to structural incompatibility. 6161 */ 6162 static int bpf_core_apply_relo(struct bpf_program *prog, 6163 const struct bpf_core_relo *relo, 6164 int relo_idx, 6165 const struct btf *local_btf, 6166 struct hashmap *cand_cache) 6167 { 6168 struct bpf_core_spec local_spec, cand_spec, targ_spec = {}; 6169 const void *type_key = u32_as_hash_key(relo->type_id); 6170 struct bpf_core_relo_res cand_res, targ_res; 6171 const struct btf_type *local_type; 6172 const char *local_name; 6173 struct core_cand_list *cands = NULL; 6174 __u32 local_id; 6175 const char *spec_str; 6176 int i, j, err; 6177 6178 local_id = relo->type_id; 6179 local_type = btf__type_by_id(local_btf, local_id); 6180 if (!local_type) 6181 return -EINVAL; 6182 6183 local_name = btf__name_by_offset(local_btf, local_type->name_off); 6184 if (!local_name) 6185 return -EINVAL; 6186 6187 spec_str = btf__name_by_offset(local_btf, relo->access_str_off); 6188 if (str_is_empty(spec_str)) 6189 return -EINVAL; 6190 6191 if (prog->obj->gen_loader) { 6192 pr_warn("// TODO core_relo: prog %ld insn[%d] %s %s kind %d\n", 6193 prog - prog->obj->programs, relo->insn_off / 8, 6194 local_name, spec_str, relo->kind); 6195 return -ENOTSUP; 6196 } 6197 err = bpf_core_parse_spec(local_btf, local_id, spec_str, relo->kind, &local_spec); 6198 if (err) { 6199 pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n", 6200 prog->name, relo_idx, local_id, btf_kind_str(local_type), 6201 str_is_empty(local_name) ? "<anon>" : local_name, 6202 spec_str, err); 6203 return -EINVAL; 6204 } 6205 6206 pr_debug("prog '%s': relo #%d: kind <%s> (%d), spec is ", prog->name, 6207 relo_idx, core_relo_kind_str(relo->kind), relo->kind); 6208 bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec); 6209 libbpf_print(LIBBPF_DEBUG, "\n"); 6210 6211 /* TYPE_ID_LOCAL relo is special and doesn't need candidate search */ 6212 if (relo->kind == BPF_TYPE_ID_LOCAL) { 6213 targ_res.validate = true; 6214 targ_res.poison = false; 6215 targ_res.orig_val = local_spec.root_type_id; 6216 targ_res.new_val = local_spec.root_type_id; 6217 goto patch_insn; 6218 } 6219 6220 /* libbpf doesn't support candidate search for anonymous types */ 6221 if (str_is_empty(spec_str)) { 6222 pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n", 6223 prog->name, relo_idx, core_relo_kind_str(relo->kind), relo->kind); 6224 return -EOPNOTSUPP; 6225 } 6226 6227 if (!hashmap__find(cand_cache, type_key, (void **)&cands)) { 6228 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 6229 if (IS_ERR(cands)) { 6230 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 6231 prog->name, relo_idx, local_id, btf_kind_str(local_type), 6232 local_name, PTR_ERR(cands)); 6233 return PTR_ERR(cands); 6234 } 6235 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL); 6236 if (err) { 6237 bpf_core_free_cands(cands); 6238 return err; 6239 } 6240 } 6241 6242 for (i = 0, j = 0; i < cands->len; i++) { 6243 err = bpf_core_spec_match(&local_spec, cands->cands[i].btf, 6244 cands->cands[i].id, &cand_spec); 6245 if (err < 0) { 6246 pr_warn("prog '%s': relo #%d: error matching candidate #%d ", 6247 prog->name, relo_idx, i); 6248 bpf_core_dump_spec(LIBBPF_WARN, &cand_spec); 6249 libbpf_print(LIBBPF_WARN, ": %d\n", err); 6250 return err; 6251 } 6252 6253 pr_debug("prog '%s': relo #%d: %s candidate #%d ", prog->name, 6254 relo_idx, err == 0 ? "non-matching" : "matching", i); 6255 bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec); 6256 libbpf_print(LIBBPF_DEBUG, "\n"); 6257 6258 if (err == 0) 6259 continue; 6260 6261 err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, &cand_spec, &cand_res); 6262 if (err) 6263 return err; 6264 6265 if (j == 0) { 6266 targ_res = cand_res; 6267 targ_spec = cand_spec; 6268 } else if (cand_spec.bit_offset != targ_spec.bit_offset) { 6269 /* if there are many field relo candidates, they 6270 * should all resolve to the same bit offset 6271 */ 6272 pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n", 6273 prog->name, relo_idx, cand_spec.bit_offset, 6274 targ_spec.bit_offset); 6275 return -EINVAL; 6276 } else if (cand_res.poison != targ_res.poison || cand_res.new_val != targ_res.new_val) { 6277 /* all candidates should result in the same relocation 6278 * decision and value, otherwise it's dangerous to 6279 * proceed due to ambiguity 6280 */ 6281 pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %u != %s %u\n", 6282 prog->name, relo_idx, 6283 cand_res.poison ? "failure" : "success", cand_res.new_val, 6284 targ_res.poison ? "failure" : "success", targ_res.new_val); 6285 return -EINVAL; 6286 } 6287 6288 cands->cands[j++] = cands->cands[i]; 6289 } 6290 6291 /* 6292 * For BPF_FIELD_EXISTS relo or when used BPF program has field 6293 * existence checks or kernel version/config checks, it's expected 6294 * that we might not find any candidates. In this case, if field 6295 * wasn't found in any candidate, the list of candidates shouldn't 6296 * change at all, we'll just handle relocating appropriately, 6297 * depending on relo's kind. 6298 */ 6299 if (j > 0) 6300 cands->len = j; 6301 6302 /* 6303 * If no candidates were found, it might be both a programmer error, 6304 * as well as expected case, depending whether instruction w/ 6305 * relocation is guarded in some way that makes it unreachable (dead 6306 * code) if relocation can't be resolved. This is handled in 6307 * bpf_core_patch_insn() uniformly by replacing that instruction with 6308 * BPF helper call insn (using invalid helper ID). If that instruction 6309 * is indeed unreachable, then it will be ignored and eliminated by 6310 * verifier. If it was an error, then verifier will complain and point 6311 * to a specific instruction number in its log. 6312 */ 6313 if (j == 0) { 6314 pr_debug("prog '%s': relo #%d: no matching targets found\n", 6315 prog->name, relo_idx); 6316 6317 /* calculate single target relo result explicitly */ 6318 err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, NULL, &targ_res); 6319 if (err) 6320 return err; 6321 } 6322 6323 patch_insn: 6324 /* bpf_core_patch_insn() should know how to handle missing targ_spec */ 6325 err = bpf_core_patch_insn(prog, relo, relo_idx, &targ_res); 6326 if (err) { 6327 pr_warn("prog '%s': relo #%d: failed to patch insn #%zu: %d\n", 6328 prog->name, relo_idx, relo->insn_off / BPF_INSN_SZ, err); 6329 return -EINVAL; 6330 } 6331 6332 return 0; 6333 } 6334 6335 static int 6336 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 6337 { 6338 const struct btf_ext_info_sec *sec; 6339 const struct bpf_core_relo *rec; 6340 const struct btf_ext_info *seg; 6341 struct hashmap_entry *entry; 6342 struct hashmap *cand_cache = NULL; 6343 struct bpf_program *prog; 6344 const char *sec_name; 6345 int i, err = 0, insn_idx, sec_idx; 6346 6347 if (obj->btf_ext->core_relo_info.len == 0) 6348 return 0; 6349 6350 if (targ_btf_path) { 6351 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 6352 if (IS_ERR_OR_NULL(obj->btf_vmlinux_override)) { 6353 err = PTR_ERR(obj->btf_vmlinux_override); 6354 pr_warn("failed to parse target BTF: %d\n", err); 6355 return err; 6356 } 6357 } 6358 6359 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 6360 if (IS_ERR(cand_cache)) { 6361 err = PTR_ERR(cand_cache); 6362 goto out; 6363 } 6364 6365 seg = &obj->btf_ext->core_relo_info; 6366 for_each_btf_ext_sec(seg, sec) { 6367 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 6368 if (str_is_empty(sec_name)) { 6369 err = -EINVAL; 6370 goto out; 6371 } 6372 /* bpf_object's ELF is gone by now so it's not easy to find 6373 * section index by section name, but we can find *any* 6374 * bpf_program within desired section name and use it's 6375 * prog->sec_idx to do a proper search by section index and 6376 * instruction offset 6377 */ 6378 prog = NULL; 6379 for (i = 0; i < obj->nr_programs; i++) { 6380 prog = &obj->programs[i]; 6381 if (strcmp(prog->sec_name, sec_name) == 0) 6382 break; 6383 } 6384 if (!prog) { 6385 pr_warn("sec '%s': failed to find a BPF program\n", sec_name); 6386 return -ENOENT; 6387 } 6388 sec_idx = prog->sec_idx; 6389 6390 pr_debug("sec '%s': found %d CO-RE relocations\n", 6391 sec_name, sec->num_info); 6392 6393 for_each_btf_ext_rec(seg, sec, i, rec) { 6394 insn_idx = rec->insn_off / BPF_INSN_SZ; 6395 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 6396 if (!prog) { 6397 pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n", 6398 sec_name, insn_idx, i); 6399 err = -EINVAL; 6400 goto out; 6401 } 6402 /* no need to apply CO-RE relocation if the program is 6403 * not going to be loaded 6404 */ 6405 if (!prog->load) 6406 continue; 6407 6408 err = bpf_core_apply_relo(prog, rec, i, obj->btf, cand_cache); 6409 if (err) { 6410 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 6411 prog->name, i, err); 6412 goto out; 6413 } 6414 } 6415 } 6416 6417 out: 6418 /* obj->btf_vmlinux and module BTFs are freed after object load */ 6419 btf__free(obj->btf_vmlinux_override); 6420 obj->btf_vmlinux_override = NULL; 6421 6422 if (!IS_ERR_OR_NULL(cand_cache)) { 6423 hashmap__for_each_entry(cand_cache, entry, i) { 6424 bpf_core_free_cands(entry->value); 6425 } 6426 hashmap__free(cand_cache); 6427 } 6428 return err; 6429 } 6430 6431 /* Relocate data references within program code: 6432 * - map references; 6433 * - global variable references; 6434 * - extern references. 6435 */ 6436 static int 6437 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 6438 { 6439 int i; 6440 6441 for (i = 0; i < prog->nr_reloc; i++) { 6442 struct reloc_desc *relo = &prog->reloc_desc[i]; 6443 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6444 struct extern_desc *ext; 6445 6446 switch (relo->type) { 6447 case RELO_LD64: 6448 if (obj->gen_loader) { 6449 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 6450 insn[0].imm = relo->map_idx; 6451 } else { 6452 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 6453 insn[0].imm = obj->maps[relo->map_idx].fd; 6454 } 6455 break; 6456 case RELO_DATA: 6457 insn[1].imm = insn[0].imm + relo->sym_off; 6458 if (obj->gen_loader) { 6459 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6460 insn[0].imm = relo->map_idx; 6461 } else { 6462 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6463 insn[0].imm = obj->maps[relo->map_idx].fd; 6464 } 6465 break; 6466 case RELO_EXTERN_VAR: 6467 ext = &obj->externs[relo->sym_off]; 6468 if (ext->type == EXT_KCFG) { 6469 if (obj->gen_loader) { 6470 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6471 insn[0].imm = obj->kconfig_map_idx; 6472 } else { 6473 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6474 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 6475 } 6476 insn[1].imm = ext->kcfg.data_off; 6477 } else /* EXT_KSYM */ { 6478 if (ext->ksym.type_id) { /* typed ksyms */ 6479 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 6480 insn[0].imm = ext->ksym.kernel_btf_id; 6481 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 6482 } else { /* typeless ksyms */ 6483 insn[0].imm = (__u32)ext->ksym.addr; 6484 insn[1].imm = ext->ksym.addr >> 32; 6485 } 6486 } 6487 break; 6488 case RELO_EXTERN_FUNC: 6489 ext = &obj->externs[relo->sym_off]; 6490 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 6491 insn[0].imm = ext->ksym.kernel_btf_id; 6492 break; 6493 case RELO_SUBPROG_ADDR: 6494 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 6495 pr_warn("prog '%s': relo #%d: bad insn\n", 6496 prog->name, i); 6497 return -EINVAL; 6498 } 6499 /* handled already */ 6500 break; 6501 case RELO_CALL: 6502 /* handled already */ 6503 break; 6504 default: 6505 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6506 prog->name, i, relo->type); 6507 return -EINVAL; 6508 } 6509 } 6510 6511 return 0; 6512 } 6513 6514 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6515 const struct bpf_program *prog, 6516 const struct btf_ext_info *ext_info, 6517 void **prog_info, __u32 *prog_rec_cnt, 6518 __u32 *prog_rec_sz) 6519 { 6520 void *copy_start = NULL, *copy_end = NULL; 6521 void *rec, *rec_end, *new_prog_info; 6522 const struct btf_ext_info_sec *sec; 6523 size_t old_sz, new_sz; 6524 const char *sec_name; 6525 int i, off_adj; 6526 6527 for_each_btf_ext_sec(ext_info, sec) { 6528 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 6529 if (!sec_name) 6530 return -EINVAL; 6531 if (strcmp(sec_name, prog->sec_name) != 0) 6532 continue; 6533 6534 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6535 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6536 6537 if (insn_off < prog->sec_insn_off) 6538 continue; 6539 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6540 break; 6541 6542 if (!copy_start) 6543 copy_start = rec; 6544 copy_end = rec + ext_info->rec_size; 6545 } 6546 6547 if (!copy_start) 6548 return -ENOENT; 6549 6550 /* append func/line info of a given (sub-)program to the main 6551 * program func/line info 6552 */ 6553 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6554 new_sz = old_sz + (copy_end - copy_start); 6555 new_prog_info = realloc(*prog_info, new_sz); 6556 if (!new_prog_info) 6557 return -ENOMEM; 6558 *prog_info = new_prog_info; 6559 *prog_rec_cnt = new_sz / ext_info->rec_size; 6560 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6561 6562 /* Kernel instruction offsets are in units of 8-byte 6563 * instructions, while .BTF.ext instruction offsets generated 6564 * by Clang are in units of bytes. So convert Clang offsets 6565 * into kernel offsets and adjust offset according to program 6566 * relocated position. 6567 */ 6568 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6569 rec = new_prog_info + old_sz; 6570 rec_end = new_prog_info + new_sz; 6571 for (; rec < rec_end; rec += ext_info->rec_size) { 6572 __u32 *insn_off = rec; 6573 6574 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6575 } 6576 *prog_rec_sz = ext_info->rec_size; 6577 return 0; 6578 } 6579 6580 return -ENOENT; 6581 } 6582 6583 static int 6584 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6585 struct bpf_program *main_prog, 6586 const struct bpf_program *prog) 6587 { 6588 int err; 6589 6590 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6591 * supprot func/line info 6592 */ 6593 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6594 return 0; 6595 6596 /* only attempt func info relocation if main program's func_info 6597 * relocation was successful 6598 */ 6599 if (main_prog != prog && !main_prog->func_info) 6600 goto line_info; 6601 6602 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6603 &main_prog->func_info, 6604 &main_prog->func_info_cnt, 6605 &main_prog->func_info_rec_size); 6606 if (err) { 6607 if (err != -ENOENT) { 6608 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6609 prog->name, err); 6610 return err; 6611 } 6612 if (main_prog->func_info) { 6613 /* 6614 * Some info has already been found but has problem 6615 * in the last btf_ext reloc. Must have to error out. 6616 */ 6617 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6618 return err; 6619 } 6620 /* Have problem loading the very first info. Ignore the rest. */ 6621 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6622 prog->name); 6623 } 6624 6625 line_info: 6626 /* don't relocate line info if main program's relocation failed */ 6627 if (main_prog != prog && !main_prog->line_info) 6628 return 0; 6629 6630 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6631 &main_prog->line_info, 6632 &main_prog->line_info_cnt, 6633 &main_prog->line_info_rec_size); 6634 if (err) { 6635 if (err != -ENOENT) { 6636 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6637 prog->name, err); 6638 return err; 6639 } 6640 if (main_prog->line_info) { 6641 /* 6642 * Some info has already been found but has problem 6643 * in the last btf_ext reloc. Must have to error out. 6644 */ 6645 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6646 return err; 6647 } 6648 /* Have problem loading the very first info. Ignore the rest. */ 6649 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6650 prog->name); 6651 } 6652 return 0; 6653 } 6654 6655 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6656 { 6657 size_t insn_idx = *(const size_t *)key; 6658 const struct reloc_desc *relo = elem; 6659 6660 if (insn_idx == relo->insn_idx) 6661 return 0; 6662 return insn_idx < relo->insn_idx ? -1 : 1; 6663 } 6664 6665 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6666 { 6667 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6668 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6669 } 6670 6671 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6672 { 6673 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6674 struct reloc_desc *relos; 6675 int i; 6676 6677 if (main_prog == subprog) 6678 return 0; 6679 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6680 if (!relos) 6681 return -ENOMEM; 6682 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6683 sizeof(*relos) * subprog->nr_reloc); 6684 6685 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6686 relos[i].insn_idx += subprog->sub_insn_off; 6687 /* After insn_idx adjustment the 'relos' array is still sorted 6688 * by insn_idx and doesn't break bsearch. 6689 */ 6690 main_prog->reloc_desc = relos; 6691 main_prog->nr_reloc = new_cnt; 6692 return 0; 6693 } 6694 6695 static int 6696 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6697 struct bpf_program *prog) 6698 { 6699 size_t sub_insn_idx, insn_idx, new_cnt; 6700 struct bpf_program *subprog; 6701 struct bpf_insn *insns, *insn; 6702 struct reloc_desc *relo; 6703 int err; 6704 6705 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6706 if (err) 6707 return err; 6708 6709 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6710 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6711 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6712 continue; 6713 6714 relo = find_prog_insn_relo(prog, insn_idx); 6715 if (relo && relo->type == RELO_EXTERN_FUNC) 6716 /* kfunc relocations will be handled later 6717 * in bpf_object__relocate_data() 6718 */ 6719 continue; 6720 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6721 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6722 prog->name, insn_idx, relo->type); 6723 return -LIBBPF_ERRNO__RELOC; 6724 } 6725 if (relo) { 6726 /* sub-program instruction index is a combination of 6727 * an offset of a symbol pointed to by relocation and 6728 * call instruction's imm field; for global functions, 6729 * call always has imm = -1, but for static functions 6730 * relocation is against STT_SECTION and insn->imm 6731 * points to a start of a static function 6732 * 6733 * for subprog addr relocation, the relo->sym_off + insn->imm is 6734 * the byte offset in the corresponding section. 6735 */ 6736 if (relo->type == RELO_CALL) 6737 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6738 else 6739 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6740 } else if (insn_is_pseudo_func(insn)) { 6741 /* 6742 * RELO_SUBPROG_ADDR relo is always emitted even if both 6743 * functions are in the same section, so it shouldn't reach here. 6744 */ 6745 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6746 prog->name, insn_idx); 6747 return -LIBBPF_ERRNO__RELOC; 6748 } else { 6749 /* if subprogram call is to a static function within 6750 * the same ELF section, there won't be any relocation 6751 * emitted, but it also means there is no additional 6752 * offset necessary, insns->imm is relative to 6753 * instruction's original position within the section 6754 */ 6755 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6756 } 6757 6758 /* we enforce that sub-programs should be in .text section */ 6759 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6760 if (!subprog) { 6761 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6762 prog->name); 6763 return -LIBBPF_ERRNO__RELOC; 6764 } 6765 6766 /* if it's the first call instruction calling into this 6767 * subprogram (meaning this subprog hasn't been processed 6768 * yet) within the context of current main program: 6769 * - append it at the end of main program's instructions blog; 6770 * - process is recursively, while current program is put on hold; 6771 * - if that subprogram calls some other not yet processes 6772 * subprogram, same thing will happen recursively until 6773 * there are no more unprocesses subprograms left to append 6774 * and relocate. 6775 */ 6776 if (subprog->sub_insn_off == 0) { 6777 subprog->sub_insn_off = main_prog->insns_cnt; 6778 6779 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6780 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6781 if (!insns) { 6782 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6783 return -ENOMEM; 6784 } 6785 main_prog->insns = insns; 6786 main_prog->insns_cnt = new_cnt; 6787 6788 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6789 subprog->insns_cnt * sizeof(*insns)); 6790 6791 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6792 main_prog->name, subprog->insns_cnt, subprog->name); 6793 6794 /* The subprog insns are now appended. Append its relos too. */ 6795 err = append_subprog_relos(main_prog, subprog); 6796 if (err) 6797 return err; 6798 err = bpf_object__reloc_code(obj, main_prog, subprog); 6799 if (err) 6800 return err; 6801 } 6802 6803 /* main_prog->insns memory could have been re-allocated, so 6804 * calculate pointer again 6805 */ 6806 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6807 /* calculate correct instruction position within current main 6808 * prog; each main prog can have a different set of 6809 * subprograms appended (potentially in different order as 6810 * well), so position of any subprog can be different for 6811 * different main programs */ 6812 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6813 6814 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6815 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6816 } 6817 6818 return 0; 6819 } 6820 6821 /* 6822 * Relocate sub-program calls. 6823 * 6824 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6825 * main prog) is processed separately. For each subprog (non-entry functions, 6826 * that can be called from either entry progs or other subprogs) gets their 6827 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6828 * hasn't been yet appended and relocated within current main prog. Once its 6829 * relocated, sub_insn_off will point at the position within current main prog 6830 * where given subprog was appended. This will further be used to relocate all 6831 * the call instructions jumping into this subprog. 6832 * 6833 * We start with main program and process all call instructions. If the call 6834 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6835 * is zero), subprog instructions are appended at the end of main program's 6836 * instruction array. Then main program is "put on hold" while we recursively 6837 * process newly appended subprogram. If that subprogram calls into another 6838 * subprogram that hasn't been appended, new subprogram is appended again to 6839 * the *main* prog's instructions (subprog's instructions are always left 6840 * untouched, as they need to be in unmodified state for subsequent main progs 6841 * and subprog instructions are always sent only as part of a main prog) and 6842 * the process continues recursively. Once all the subprogs called from a main 6843 * prog or any of its subprogs are appended (and relocated), all their 6844 * positions within finalized instructions array are known, so it's easy to 6845 * rewrite call instructions with correct relative offsets, corresponding to 6846 * desired target subprog. 6847 * 6848 * Its important to realize that some subprogs might not be called from some 6849 * main prog and any of its called/used subprogs. Those will keep their 6850 * subprog->sub_insn_off as zero at all times and won't be appended to current 6851 * main prog and won't be relocated within the context of current main prog. 6852 * They might still be used from other main progs later. 6853 * 6854 * Visually this process can be shown as below. Suppose we have two main 6855 * programs mainA and mainB and BPF object contains three subprogs: subA, 6856 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6857 * subC both call subB: 6858 * 6859 * +--------+ +-------+ 6860 * | v v | 6861 * +--+---+ +--+-+-+ +---+--+ 6862 * | subA | | subB | | subC | 6863 * +--+---+ +------+ +---+--+ 6864 * ^ ^ 6865 * | | 6866 * +---+-------+ +------+----+ 6867 * | mainA | | mainB | 6868 * +-----------+ +-----------+ 6869 * 6870 * We'll start relocating mainA, will find subA, append it and start 6871 * processing sub A recursively: 6872 * 6873 * +-----------+------+ 6874 * | mainA | subA | 6875 * +-----------+------+ 6876 * 6877 * At this point we notice that subB is used from subA, so we append it and 6878 * relocate (there are no further subcalls from subB): 6879 * 6880 * +-----------+------+------+ 6881 * | mainA | subA | subB | 6882 * +-----------+------+------+ 6883 * 6884 * At this point, we relocate subA calls, then go one level up and finish with 6885 * relocatin mainA calls. mainA is done. 6886 * 6887 * For mainB process is similar but results in different order. We start with 6888 * mainB and skip subA and subB, as mainB never calls them (at least 6889 * directly), but we see subC is needed, so we append and start processing it: 6890 * 6891 * +-----------+------+ 6892 * | mainB | subC | 6893 * +-----------+------+ 6894 * Now we see subC needs subB, so we go back to it, append and relocate it: 6895 * 6896 * +-----------+------+------+ 6897 * | mainB | subC | subB | 6898 * +-----------+------+------+ 6899 * 6900 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6901 */ 6902 static int 6903 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6904 { 6905 struct bpf_program *subprog; 6906 int i, err; 6907 6908 /* mark all subprogs as not relocated (yet) within the context of 6909 * current main program 6910 */ 6911 for (i = 0; i < obj->nr_programs; i++) { 6912 subprog = &obj->programs[i]; 6913 if (!prog_is_subprog(obj, subprog)) 6914 continue; 6915 6916 subprog->sub_insn_off = 0; 6917 } 6918 6919 err = bpf_object__reloc_code(obj, prog, prog); 6920 if (err) 6921 return err; 6922 6923 6924 return 0; 6925 } 6926 6927 static void 6928 bpf_object__free_relocs(struct bpf_object *obj) 6929 { 6930 struct bpf_program *prog; 6931 int i; 6932 6933 /* free up relocation descriptors */ 6934 for (i = 0; i < obj->nr_programs; i++) { 6935 prog = &obj->programs[i]; 6936 zfree(&prog->reloc_desc); 6937 prog->nr_reloc = 0; 6938 } 6939 } 6940 6941 static int 6942 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6943 { 6944 struct bpf_program *prog; 6945 size_t i, j; 6946 int err; 6947 6948 if (obj->btf_ext) { 6949 err = bpf_object__relocate_core(obj, targ_btf_path); 6950 if (err) { 6951 pr_warn("failed to perform CO-RE relocations: %d\n", 6952 err); 6953 return err; 6954 } 6955 } 6956 6957 /* Before relocating calls pre-process relocations and mark 6958 * few ld_imm64 instructions that points to subprogs. 6959 * Otherwise bpf_object__reloc_code() later would have to consider 6960 * all ld_imm64 insns as relocation candidates. That would 6961 * reduce relocation speed, since amount of find_prog_insn_relo() 6962 * would increase and most of them will fail to find a relo. 6963 */ 6964 for (i = 0; i < obj->nr_programs; i++) { 6965 prog = &obj->programs[i]; 6966 for (j = 0; j < prog->nr_reloc; j++) { 6967 struct reloc_desc *relo = &prog->reloc_desc[j]; 6968 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6969 6970 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6971 if (relo->type == RELO_SUBPROG_ADDR) 6972 insn[0].src_reg = BPF_PSEUDO_FUNC; 6973 } 6974 } 6975 6976 /* relocate subprogram calls and append used subprograms to main 6977 * programs; each copy of subprogram code needs to be relocated 6978 * differently for each main program, because its code location might 6979 * have changed. 6980 * Append subprog relos to main programs to allow data relos to be 6981 * processed after text is completely relocated. 6982 */ 6983 for (i = 0; i < obj->nr_programs; i++) { 6984 prog = &obj->programs[i]; 6985 /* sub-program's sub-calls are relocated within the context of 6986 * its main program only 6987 */ 6988 if (prog_is_subprog(obj, prog)) 6989 continue; 6990 6991 err = bpf_object__relocate_calls(obj, prog); 6992 if (err) { 6993 pr_warn("prog '%s': failed to relocate calls: %d\n", 6994 prog->name, err); 6995 return err; 6996 } 6997 } 6998 /* Process data relos for main programs */ 6999 for (i = 0; i < obj->nr_programs; i++) { 7000 prog = &obj->programs[i]; 7001 if (prog_is_subprog(obj, prog)) 7002 continue; 7003 err = bpf_object__relocate_data(obj, prog); 7004 if (err) { 7005 pr_warn("prog '%s': failed to relocate data references: %d\n", 7006 prog->name, err); 7007 return err; 7008 } 7009 } 7010 if (!obj->gen_loader) 7011 bpf_object__free_relocs(obj); 7012 return 0; 7013 } 7014 7015 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 7016 GElf_Shdr *shdr, Elf_Data *data); 7017 7018 static int bpf_object__collect_map_relos(struct bpf_object *obj, 7019 GElf_Shdr *shdr, Elf_Data *data) 7020 { 7021 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 7022 int i, j, nrels, new_sz; 7023 const struct btf_var_secinfo *vi = NULL; 7024 const struct btf_type *sec, *var, *def; 7025 struct bpf_map *map = NULL, *targ_map; 7026 const struct btf_member *member; 7027 const char *name, *mname; 7028 Elf_Data *symbols; 7029 unsigned int moff; 7030 GElf_Sym sym; 7031 GElf_Rel rel; 7032 void *tmp; 7033 7034 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 7035 return -EINVAL; 7036 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 7037 if (!sec) 7038 return -EINVAL; 7039 7040 symbols = obj->efile.symbols; 7041 nrels = shdr->sh_size / shdr->sh_entsize; 7042 for (i = 0; i < nrels; i++) { 7043 if (!gelf_getrel(data, i, &rel)) { 7044 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 7045 return -LIBBPF_ERRNO__FORMAT; 7046 } 7047 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 7048 pr_warn(".maps relo #%d: symbol %zx not found\n", 7049 i, (size_t)GELF_R_SYM(rel.r_info)); 7050 return -LIBBPF_ERRNO__FORMAT; 7051 } 7052 name = elf_sym_str(obj, sym.st_name) ?: "<?>"; 7053 if (sym.st_shndx != obj->efile.btf_maps_shndx) { 7054 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 7055 i, name); 7056 return -LIBBPF_ERRNO__RELOC; 7057 } 7058 7059 pr_debug(".maps relo #%d: for %zd value %zd rel.r_offset %zu name %d ('%s')\n", 7060 i, (ssize_t)(rel.r_info >> 32), (size_t)sym.st_value, 7061 (size_t)rel.r_offset, sym.st_name, name); 7062 7063 for (j = 0; j < obj->nr_maps; j++) { 7064 map = &obj->maps[j]; 7065 if (map->sec_idx != obj->efile.btf_maps_shndx) 7066 continue; 7067 7068 vi = btf_var_secinfos(sec) + map->btf_var_idx; 7069 if (vi->offset <= rel.r_offset && 7070 rel.r_offset + bpf_ptr_sz <= vi->offset + vi->size) 7071 break; 7072 } 7073 if (j == obj->nr_maps) { 7074 pr_warn(".maps relo #%d: cannot find map '%s' at rel.r_offset %zu\n", 7075 i, name, (size_t)rel.r_offset); 7076 return -EINVAL; 7077 } 7078 7079 if (!bpf_map_type__is_map_in_map(map->def.type)) 7080 return -EINVAL; 7081 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 7082 map->def.key_size != sizeof(int)) { 7083 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 7084 i, map->name, sizeof(int)); 7085 return -EINVAL; 7086 } 7087 7088 targ_map = bpf_object__find_map_by_name(obj, name); 7089 if (!targ_map) 7090 return -ESRCH; 7091 7092 var = btf__type_by_id(obj->btf, vi->type); 7093 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 7094 if (btf_vlen(def) == 0) 7095 return -EINVAL; 7096 member = btf_members(def) + btf_vlen(def) - 1; 7097 mname = btf__name_by_offset(obj->btf, member->name_off); 7098 if (strcmp(mname, "values")) 7099 return -EINVAL; 7100 7101 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 7102 if (rel.r_offset - vi->offset < moff) 7103 return -EINVAL; 7104 7105 moff = rel.r_offset - vi->offset - moff; 7106 /* here we use BPF pointer size, which is always 64 bit, as we 7107 * are parsing ELF that was built for BPF target 7108 */ 7109 if (moff % bpf_ptr_sz) 7110 return -EINVAL; 7111 moff /= bpf_ptr_sz; 7112 if (moff >= map->init_slots_sz) { 7113 new_sz = moff + 1; 7114 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 7115 if (!tmp) 7116 return -ENOMEM; 7117 map->init_slots = tmp; 7118 memset(map->init_slots + map->init_slots_sz, 0, 7119 (new_sz - map->init_slots_sz) * host_ptr_sz); 7120 map->init_slots_sz = new_sz; 7121 } 7122 map->init_slots[moff] = targ_map; 7123 7124 pr_debug(".maps relo #%d: map '%s' slot [%d] points to map '%s'\n", 7125 i, map->name, moff, name); 7126 } 7127 7128 return 0; 7129 } 7130 7131 static int cmp_relocs(const void *_a, const void *_b) 7132 { 7133 const struct reloc_desc *a = _a; 7134 const struct reloc_desc *b = _b; 7135 7136 if (a->insn_idx != b->insn_idx) 7137 return a->insn_idx < b->insn_idx ? -1 : 1; 7138 7139 /* no two relocations should have the same insn_idx, but ... */ 7140 if (a->type != b->type) 7141 return a->type < b->type ? -1 : 1; 7142 7143 return 0; 7144 } 7145 7146 static int bpf_object__collect_relos(struct bpf_object *obj) 7147 { 7148 int i, err; 7149 7150 for (i = 0; i < obj->efile.nr_reloc_sects; i++) { 7151 GElf_Shdr *shdr = &obj->efile.reloc_sects[i].shdr; 7152 Elf_Data *data = obj->efile.reloc_sects[i].data; 7153 int idx = shdr->sh_info; 7154 7155 if (shdr->sh_type != SHT_REL) { 7156 pr_warn("internal error at %d\n", __LINE__); 7157 return -LIBBPF_ERRNO__INTERNAL; 7158 } 7159 7160 if (idx == obj->efile.st_ops_shndx) 7161 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 7162 else if (idx == obj->efile.btf_maps_shndx) 7163 err = bpf_object__collect_map_relos(obj, shdr, data); 7164 else 7165 err = bpf_object__collect_prog_relos(obj, shdr, data); 7166 if (err) 7167 return err; 7168 } 7169 7170 for (i = 0; i < obj->nr_programs; i++) { 7171 struct bpf_program *p = &obj->programs[i]; 7172 7173 if (!p->nr_reloc) 7174 continue; 7175 7176 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 7177 } 7178 return 0; 7179 } 7180 7181 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 7182 { 7183 if (BPF_CLASS(insn->code) == BPF_JMP && 7184 BPF_OP(insn->code) == BPF_CALL && 7185 BPF_SRC(insn->code) == BPF_K && 7186 insn->src_reg == 0 && 7187 insn->dst_reg == 0) { 7188 *func_id = insn->imm; 7189 return true; 7190 } 7191 return false; 7192 } 7193 7194 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 7195 { 7196 struct bpf_insn *insn = prog->insns; 7197 enum bpf_func_id func_id; 7198 int i; 7199 7200 if (obj->gen_loader) 7201 return 0; 7202 7203 for (i = 0; i < prog->insns_cnt; i++, insn++) { 7204 if (!insn_is_helper_call(insn, &func_id)) 7205 continue; 7206 7207 /* on kernels that don't yet support 7208 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 7209 * to bpf_probe_read() which works well for old kernels 7210 */ 7211 switch (func_id) { 7212 case BPF_FUNC_probe_read_kernel: 7213 case BPF_FUNC_probe_read_user: 7214 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7215 insn->imm = BPF_FUNC_probe_read; 7216 break; 7217 case BPF_FUNC_probe_read_kernel_str: 7218 case BPF_FUNC_probe_read_user_str: 7219 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7220 insn->imm = BPF_FUNC_probe_read_str; 7221 break; 7222 default: 7223 break; 7224 } 7225 } 7226 return 0; 7227 } 7228 7229 static int 7230 load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt, 7231 char *license, __u32 kern_version, int *pfd) 7232 { 7233 struct bpf_prog_load_params load_attr = {}; 7234 char *cp, errmsg[STRERR_BUFSIZE]; 7235 size_t log_buf_size = 0; 7236 char *log_buf = NULL; 7237 int btf_fd, ret; 7238 7239 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 7240 /* 7241 * The program type must be set. Most likely we couldn't find a proper 7242 * section definition at load time, and thus we didn't infer the type. 7243 */ 7244 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 7245 prog->name, prog->sec_name); 7246 return -EINVAL; 7247 } 7248 7249 if (!insns || !insns_cnt) 7250 return -EINVAL; 7251 7252 load_attr.prog_type = prog->type; 7253 /* old kernels might not support specifying expected_attach_type */ 7254 if (!kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE) && prog->sec_def && 7255 prog->sec_def->is_exp_attach_type_optional) 7256 load_attr.expected_attach_type = 0; 7257 else 7258 load_attr.expected_attach_type = prog->expected_attach_type; 7259 if (kernel_supports(prog->obj, FEAT_PROG_NAME)) 7260 load_attr.name = prog->name; 7261 load_attr.insns = insns; 7262 load_attr.insn_cnt = insns_cnt; 7263 load_attr.license = license; 7264 load_attr.attach_btf_id = prog->attach_btf_id; 7265 if (prog->attach_prog_fd) 7266 load_attr.attach_prog_fd = prog->attach_prog_fd; 7267 else 7268 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 7269 load_attr.attach_btf_id = prog->attach_btf_id; 7270 load_attr.kern_version = kern_version; 7271 load_attr.prog_ifindex = prog->prog_ifindex; 7272 7273 /* specify func_info/line_info only if kernel supports them */ 7274 btf_fd = bpf_object__btf_fd(prog->obj); 7275 if (btf_fd >= 0 && kernel_supports(prog->obj, FEAT_BTF_FUNC)) { 7276 load_attr.prog_btf_fd = btf_fd; 7277 load_attr.func_info = prog->func_info; 7278 load_attr.func_info_rec_size = prog->func_info_rec_size; 7279 load_attr.func_info_cnt = prog->func_info_cnt; 7280 load_attr.line_info = prog->line_info; 7281 load_attr.line_info_rec_size = prog->line_info_rec_size; 7282 load_attr.line_info_cnt = prog->line_info_cnt; 7283 } 7284 load_attr.log_level = prog->log_level; 7285 load_attr.prog_flags = prog->prog_flags; 7286 7287 if (prog->obj->gen_loader) { 7288 bpf_gen__prog_load(prog->obj->gen_loader, &load_attr, 7289 prog - prog->obj->programs); 7290 *pfd = -1; 7291 return 0; 7292 } 7293 retry_load: 7294 if (log_buf_size) { 7295 log_buf = malloc(log_buf_size); 7296 if (!log_buf) 7297 return -ENOMEM; 7298 7299 *log_buf = 0; 7300 } 7301 7302 load_attr.log_buf = log_buf; 7303 load_attr.log_buf_sz = log_buf_size; 7304 ret = libbpf__bpf_prog_load(&load_attr); 7305 7306 if (ret >= 0) { 7307 if (log_buf && load_attr.log_level) 7308 pr_debug("verifier log:\n%s", log_buf); 7309 7310 if (prog->obj->rodata_map_idx >= 0 && 7311 kernel_supports(prog->obj, FEAT_PROG_BIND_MAP)) { 7312 struct bpf_map *rodata_map = 7313 &prog->obj->maps[prog->obj->rodata_map_idx]; 7314 7315 if (bpf_prog_bind_map(ret, bpf_map__fd(rodata_map), NULL)) { 7316 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7317 pr_warn("prog '%s': failed to bind .rodata map: %s\n", 7318 prog->name, cp); 7319 /* Don't fail hard if can't bind rodata. */ 7320 } 7321 } 7322 7323 *pfd = ret; 7324 ret = 0; 7325 goto out; 7326 } 7327 7328 if (!log_buf || errno == ENOSPC) { 7329 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, 7330 log_buf_size << 1); 7331 7332 free(log_buf); 7333 goto retry_load; 7334 } 7335 ret = errno ? -errno : -LIBBPF_ERRNO__LOAD; 7336 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7337 pr_warn("load bpf program failed: %s\n", cp); 7338 pr_perm_msg(ret); 7339 7340 if (log_buf && log_buf[0] != '\0') { 7341 ret = -LIBBPF_ERRNO__VERIFY; 7342 pr_warn("-- BEGIN DUMP LOG ---\n"); 7343 pr_warn("\n%s\n", log_buf); 7344 pr_warn("-- END LOG --\n"); 7345 } else if (load_attr.insn_cnt >= BPF_MAXINSNS) { 7346 pr_warn("Program too large (%zu insns), at most %d insns\n", 7347 load_attr.insn_cnt, BPF_MAXINSNS); 7348 ret = -LIBBPF_ERRNO__PROG2BIG; 7349 } else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) { 7350 /* Wrong program type? */ 7351 int fd; 7352 7353 load_attr.prog_type = BPF_PROG_TYPE_KPROBE; 7354 load_attr.expected_attach_type = 0; 7355 load_attr.log_buf = NULL; 7356 load_attr.log_buf_sz = 0; 7357 fd = libbpf__bpf_prog_load(&load_attr); 7358 if (fd >= 0) { 7359 close(fd); 7360 ret = -LIBBPF_ERRNO__PROGTYPE; 7361 goto out; 7362 } 7363 } 7364 7365 out: 7366 free(log_buf); 7367 return ret; 7368 } 7369 7370 static int bpf_program__record_externs(struct bpf_program *prog) 7371 { 7372 struct bpf_object *obj = prog->obj; 7373 int i; 7374 7375 for (i = 0; i < prog->nr_reloc; i++) { 7376 struct reloc_desc *relo = &prog->reloc_desc[i]; 7377 struct extern_desc *ext = &obj->externs[relo->sym_off]; 7378 7379 switch (relo->type) { 7380 case RELO_EXTERN_VAR: 7381 if (ext->type != EXT_KSYM) 7382 continue; 7383 if (!ext->ksym.type_id) { 7384 pr_warn("typeless ksym %s is not supported yet\n", 7385 ext->name); 7386 return -ENOTSUP; 7387 } 7388 bpf_gen__record_extern(obj->gen_loader, ext->name, BTF_KIND_VAR, 7389 relo->insn_idx); 7390 break; 7391 case RELO_EXTERN_FUNC: 7392 bpf_gen__record_extern(obj->gen_loader, ext->name, BTF_KIND_FUNC, 7393 relo->insn_idx); 7394 break; 7395 default: 7396 continue; 7397 } 7398 } 7399 return 0; 7400 } 7401 7402 static int libbpf_find_attach_btf_id(struct bpf_program *prog, int *btf_obj_fd, int *btf_type_id); 7403 7404 int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_ver) 7405 { 7406 int err = 0, fd, i; 7407 7408 if (prog->obj->loaded) { 7409 pr_warn("prog '%s': can't load after object was loaded\n", prog->name); 7410 return -EINVAL; 7411 } 7412 7413 if ((prog->type == BPF_PROG_TYPE_TRACING || 7414 prog->type == BPF_PROG_TYPE_LSM || 7415 prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) { 7416 int btf_obj_fd = 0, btf_type_id = 0; 7417 7418 err = libbpf_find_attach_btf_id(prog, &btf_obj_fd, &btf_type_id); 7419 if (err) 7420 return err; 7421 7422 prog->attach_btf_obj_fd = btf_obj_fd; 7423 prog->attach_btf_id = btf_type_id; 7424 } 7425 7426 if (prog->instances.nr < 0 || !prog->instances.fds) { 7427 if (prog->preprocessor) { 7428 pr_warn("Internal error: can't load program '%s'\n", 7429 prog->name); 7430 return -LIBBPF_ERRNO__INTERNAL; 7431 } 7432 7433 prog->instances.fds = malloc(sizeof(int)); 7434 if (!prog->instances.fds) { 7435 pr_warn("Not enough memory for BPF fds\n"); 7436 return -ENOMEM; 7437 } 7438 prog->instances.nr = 1; 7439 prog->instances.fds[0] = -1; 7440 } 7441 7442 if (!prog->preprocessor) { 7443 if (prog->instances.nr != 1) { 7444 pr_warn("prog '%s': inconsistent nr(%d) != 1\n", 7445 prog->name, prog->instances.nr); 7446 } 7447 if (prog->obj->gen_loader) 7448 bpf_program__record_externs(prog); 7449 err = load_program(prog, prog->insns, prog->insns_cnt, 7450 license, kern_ver, &fd); 7451 if (!err) 7452 prog->instances.fds[0] = fd; 7453 goto out; 7454 } 7455 7456 for (i = 0; i < prog->instances.nr; i++) { 7457 struct bpf_prog_prep_result result; 7458 bpf_program_prep_t preprocessor = prog->preprocessor; 7459 7460 memset(&result, 0, sizeof(result)); 7461 err = preprocessor(prog, i, prog->insns, 7462 prog->insns_cnt, &result); 7463 if (err) { 7464 pr_warn("Preprocessing the %dth instance of program '%s' failed\n", 7465 i, prog->name); 7466 goto out; 7467 } 7468 7469 if (!result.new_insn_ptr || !result.new_insn_cnt) { 7470 pr_debug("Skip loading the %dth instance of program '%s'\n", 7471 i, prog->name); 7472 prog->instances.fds[i] = -1; 7473 if (result.pfd) 7474 *result.pfd = -1; 7475 continue; 7476 } 7477 7478 err = load_program(prog, result.new_insn_ptr, 7479 result.new_insn_cnt, license, kern_ver, &fd); 7480 if (err) { 7481 pr_warn("Loading the %dth instance of program '%s' failed\n", 7482 i, prog->name); 7483 goto out; 7484 } 7485 7486 if (result.pfd) 7487 *result.pfd = fd; 7488 prog->instances.fds[i] = fd; 7489 } 7490 out: 7491 if (err) 7492 pr_warn("failed to load program '%s'\n", prog->name); 7493 zfree(&prog->insns); 7494 prog->insns_cnt = 0; 7495 return err; 7496 } 7497 7498 static int 7499 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7500 { 7501 struct bpf_program *prog; 7502 size_t i; 7503 int err; 7504 7505 for (i = 0; i < obj->nr_programs; i++) { 7506 prog = &obj->programs[i]; 7507 err = bpf_object__sanitize_prog(obj, prog); 7508 if (err) 7509 return err; 7510 } 7511 7512 for (i = 0; i < obj->nr_programs; i++) { 7513 prog = &obj->programs[i]; 7514 if (prog_is_subprog(obj, prog)) 7515 continue; 7516 if (!prog->load) { 7517 pr_debug("prog '%s': skipped loading\n", prog->name); 7518 continue; 7519 } 7520 prog->log_level |= log_level; 7521 err = bpf_program__load(prog, obj->license, obj->kern_version); 7522 if (err) 7523 return err; 7524 } 7525 if (obj->gen_loader) 7526 bpf_object__free_relocs(obj); 7527 return 0; 7528 } 7529 7530 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7531 7532 static struct bpf_object * 7533 __bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7534 const struct bpf_object_open_opts *opts) 7535 { 7536 const char *obj_name, *kconfig; 7537 struct bpf_program *prog; 7538 struct bpf_object *obj; 7539 char tmp_name[64]; 7540 int err; 7541 7542 if (elf_version(EV_CURRENT) == EV_NONE) { 7543 pr_warn("failed to init libelf for %s\n", 7544 path ? : "(mem buf)"); 7545 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7546 } 7547 7548 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7549 return ERR_PTR(-EINVAL); 7550 7551 obj_name = OPTS_GET(opts, object_name, NULL); 7552 if (obj_buf) { 7553 if (!obj_name) { 7554 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7555 (unsigned long)obj_buf, 7556 (unsigned long)obj_buf_sz); 7557 obj_name = tmp_name; 7558 } 7559 path = obj_name; 7560 pr_debug("loading object '%s' from buffer\n", obj_name); 7561 } 7562 7563 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7564 if (IS_ERR(obj)) 7565 return obj; 7566 7567 kconfig = OPTS_GET(opts, kconfig, NULL); 7568 if (kconfig) { 7569 obj->kconfig = strdup(kconfig); 7570 if (!obj->kconfig) 7571 return ERR_PTR(-ENOMEM); 7572 } 7573 7574 err = bpf_object__elf_init(obj); 7575 err = err ? : bpf_object__check_endianness(obj); 7576 err = err ? : bpf_object__elf_collect(obj); 7577 err = err ? : bpf_object__collect_externs(obj); 7578 err = err ? : bpf_object__finalize_btf(obj); 7579 err = err ? : bpf_object__init_maps(obj, opts); 7580 err = err ? : bpf_object__collect_relos(obj); 7581 if (err) 7582 goto out; 7583 bpf_object__elf_finish(obj); 7584 7585 bpf_object__for_each_program(prog, obj) { 7586 prog->sec_def = find_sec_def(prog->sec_name); 7587 if (!prog->sec_def) { 7588 /* couldn't guess, but user might manually specify */ 7589 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7590 prog->name, prog->sec_name); 7591 continue; 7592 } 7593 7594 if (prog->sec_def->is_sleepable) 7595 prog->prog_flags |= BPF_F_SLEEPABLE; 7596 bpf_program__set_type(prog, prog->sec_def->prog_type); 7597 bpf_program__set_expected_attach_type(prog, 7598 prog->sec_def->expected_attach_type); 7599 7600 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING || 7601 prog->sec_def->prog_type == BPF_PROG_TYPE_EXT) 7602 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0); 7603 } 7604 7605 return obj; 7606 out: 7607 bpf_object__close(obj); 7608 return ERR_PTR(err); 7609 } 7610 7611 static struct bpf_object * 7612 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags) 7613 { 7614 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7615 .relaxed_maps = flags & MAPS_RELAX_COMPAT, 7616 ); 7617 7618 /* param validation */ 7619 if (!attr->file) 7620 return NULL; 7621 7622 pr_debug("loading %s\n", attr->file); 7623 return __bpf_object__open(attr->file, NULL, 0, &opts); 7624 } 7625 7626 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr) 7627 { 7628 return __bpf_object__open_xattr(attr, 0); 7629 } 7630 7631 struct bpf_object *bpf_object__open(const char *path) 7632 { 7633 struct bpf_object_open_attr attr = { 7634 .file = path, 7635 .prog_type = BPF_PROG_TYPE_UNSPEC, 7636 }; 7637 7638 return bpf_object__open_xattr(&attr); 7639 } 7640 7641 struct bpf_object * 7642 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7643 { 7644 if (!path) 7645 return ERR_PTR(-EINVAL); 7646 7647 pr_debug("loading %s\n", path); 7648 7649 return __bpf_object__open(path, NULL, 0, opts); 7650 } 7651 7652 struct bpf_object * 7653 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7654 const struct bpf_object_open_opts *opts) 7655 { 7656 if (!obj_buf || obj_buf_sz == 0) 7657 return ERR_PTR(-EINVAL); 7658 7659 return __bpf_object__open(NULL, obj_buf, obj_buf_sz, opts); 7660 } 7661 7662 struct bpf_object * 7663 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz, 7664 const char *name) 7665 { 7666 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7667 .object_name = name, 7668 /* wrong default, but backwards-compatible */ 7669 .relaxed_maps = true, 7670 ); 7671 7672 /* returning NULL is wrong, but backwards-compatible */ 7673 if (!obj_buf || obj_buf_sz == 0) 7674 return NULL; 7675 7676 return bpf_object__open_mem(obj_buf, obj_buf_sz, &opts); 7677 } 7678 7679 int bpf_object__unload(struct bpf_object *obj) 7680 { 7681 size_t i; 7682 7683 if (!obj) 7684 return -EINVAL; 7685 7686 for (i = 0; i < obj->nr_maps; i++) { 7687 zclose(obj->maps[i].fd); 7688 if (obj->maps[i].st_ops) 7689 zfree(&obj->maps[i].st_ops->kern_vdata); 7690 } 7691 7692 for (i = 0; i < obj->nr_programs; i++) 7693 bpf_program__unload(&obj->programs[i]); 7694 7695 return 0; 7696 } 7697 7698 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7699 { 7700 struct bpf_map *m; 7701 7702 bpf_object__for_each_map(m, obj) { 7703 if (!bpf_map__is_internal(m)) 7704 continue; 7705 if (!kernel_supports(obj, FEAT_GLOBAL_DATA)) { 7706 pr_warn("kernel doesn't support global data\n"); 7707 return -ENOTSUP; 7708 } 7709 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7710 m->def.map_flags ^= BPF_F_MMAPABLE; 7711 } 7712 7713 return 0; 7714 } 7715 7716 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7717 { 7718 char sym_type, sym_name[500]; 7719 unsigned long long sym_addr; 7720 const struct btf_type *t; 7721 struct extern_desc *ext; 7722 int ret, err = 0; 7723 FILE *f; 7724 7725 f = fopen("/proc/kallsyms", "r"); 7726 if (!f) { 7727 err = -errno; 7728 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7729 return err; 7730 } 7731 7732 while (true) { 7733 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7734 &sym_addr, &sym_type, sym_name); 7735 if (ret == EOF && feof(f)) 7736 break; 7737 if (ret != 3) { 7738 pr_warn("failed to read kallsyms entry: %d\n", ret); 7739 err = -EINVAL; 7740 goto out; 7741 } 7742 7743 ext = find_extern_by_name(obj, sym_name); 7744 if (!ext || ext->type != EXT_KSYM) 7745 continue; 7746 7747 t = btf__type_by_id(obj->btf, ext->btf_id); 7748 if (!btf_is_var(t)) 7749 continue; 7750 7751 if (ext->is_set && ext->ksym.addr != sym_addr) { 7752 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n", 7753 sym_name, ext->ksym.addr, sym_addr); 7754 err = -EINVAL; 7755 goto out; 7756 } 7757 if (!ext->is_set) { 7758 ext->is_set = true; 7759 ext->ksym.addr = sym_addr; 7760 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr); 7761 } 7762 } 7763 7764 out: 7765 fclose(f); 7766 return err; 7767 } 7768 7769 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7770 __u16 kind, struct btf **res_btf, 7771 int *res_btf_fd) 7772 { 7773 int i, id, btf_fd, err; 7774 struct btf *btf; 7775 7776 btf = obj->btf_vmlinux; 7777 btf_fd = 0; 7778 id = btf__find_by_name_kind(btf, ksym_name, kind); 7779 7780 if (id == -ENOENT) { 7781 err = load_module_btfs(obj); 7782 if (err) 7783 return err; 7784 7785 for (i = 0; i < obj->btf_module_cnt; i++) { 7786 btf = obj->btf_modules[i].btf; 7787 /* we assume module BTF FD is always >0 */ 7788 btf_fd = obj->btf_modules[i].fd; 7789 id = btf__find_by_name_kind(btf, ksym_name, kind); 7790 if (id != -ENOENT) 7791 break; 7792 } 7793 } 7794 if (id <= 0) { 7795 pr_warn("extern (%s ksym) '%s': failed to find BTF ID in kernel BTF(s).\n", 7796 __btf_kind_str(kind), ksym_name); 7797 return -ESRCH; 7798 } 7799 7800 *res_btf = btf; 7801 *res_btf_fd = btf_fd; 7802 return id; 7803 } 7804 7805 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7806 struct extern_desc *ext) 7807 { 7808 const struct btf_type *targ_var, *targ_type; 7809 __u32 targ_type_id, local_type_id; 7810 const char *targ_var_name; 7811 int id, btf_fd = 0, err; 7812 struct btf *btf = NULL; 7813 7814 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &btf_fd); 7815 if (id < 0) 7816 return id; 7817 7818 /* find local type_id */ 7819 local_type_id = ext->ksym.type_id; 7820 7821 /* find target type_id */ 7822 targ_var = btf__type_by_id(btf, id); 7823 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7824 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7825 7826 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7827 btf, targ_type_id); 7828 if (err <= 0) { 7829 const struct btf_type *local_type; 7830 const char *targ_name, *local_name; 7831 7832 local_type = btf__type_by_id(obj->btf, local_type_id); 7833 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7834 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7835 7836 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7837 ext->name, local_type_id, 7838 btf_kind_str(local_type), local_name, targ_type_id, 7839 btf_kind_str(targ_type), targ_name); 7840 return -EINVAL; 7841 } 7842 7843 ext->is_set = true; 7844 ext->ksym.kernel_btf_obj_fd = btf_fd; 7845 ext->ksym.kernel_btf_id = id; 7846 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7847 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7848 7849 return 0; 7850 } 7851 7852 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7853 struct extern_desc *ext) 7854 { 7855 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7856 const struct btf_type *kern_func; 7857 struct btf *kern_btf = NULL; 7858 int ret, kern_btf_fd = 0; 7859 7860 local_func_proto_id = ext->ksym.type_id; 7861 7862 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, 7863 &kern_btf, &kern_btf_fd); 7864 if (kfunc_id < 0) { 7865 pr_warn("extern (func ksym) '%s': not found in kernel BTF\n", 7866 ext->name); 7867 return kfunc_id; 7868 } 7869 7870 if (kern_btf != obj->btf_vmlinux) { 7871 pr_warn("extern (func ksym) '%s': function in kernel module is not supported\n", 7872 ext->name); 7873 return -ENOTSUP; 7874 } 7875 7876 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7877 kfunc_proto_id = kern_func->type; 7878 7879 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7880 kern_btf, kfunc_proto_id); 7881 if (ret <= 0) { 7882 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n", 7883 ext->name, local_func_proto_id, kfunc_proto_id); 7884 return -EINVAL; 7885 } 7886 7887 ext->is_set = true; 7888 ext->ksym.kernel_btf_obj_fd = kern_btf_fd; 7889 ext->ksym.kernel_btf_id = kfunc_id; 7890 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n", 7891 ext->name, kfunc_id); 7892 7893 return 0; 7894 } 7895 7896 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7897 { 7898 const struct btf_type *t; 7899 struct extern_desc *ext; 7900 int i, err; 7901 7902 for (i = 0; i < obj->nr_extern; i++) { 7903 ext = &obj->externs[i]; 7904 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7905 continue; 7906 7907 if (obj->gen_loader) { 7908 ext->is_set = true; 7909 ext->ksym.kernel_btf_obj_fd = 0; 7910 ext->ksym.kernel_btf_id = 0; 7911 continue; 7912 } 7913 t = btf__type_by_id(obj->btf, ext->btf_id); 7914 if (btf_is_var(t)) 7915 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7916 else 7917 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7918 if (err) 7919 return err; 7920 } 7921 return 0; 7922 } 7923 7924 static int bpf_object__resolve_externs(struct bpf_object *obj, 7925 const char *extra_kconfig) 7926 { 7927 bool need_config = false, need_kallsyms = false; 7928 bool need_vmlinux_btf = false; 7929 struct extern_desc *ext; 7930 void *kcfg_data = NULL; 7931 int err, i; 7932 7933 if (obj->nr_extern == 0) 7934 return 0; 7935 7936 if (obj->kconfig_map_idx >= 0) 7937 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7938 7939 for (i = 0; i < obj->nr_extern; i++) { 7940 ext = &obj->externs[i]; 7941 7942 if (ext->type == EXT_KCFG && 7943 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7944 void *ext_val = kcfg_data + ext->kcfg.data_off; 7945 __u32 kver = get_kernel_version(); 7946 7947 if (!kver) { 7948 pr_warn("failed to get kernel version\n"); 7949 return -EINVAL; 7950 } 7951 err = set_kcfg_value_num(ext, ext_val, kver); 7952 if (err) 7953 return err; 7954 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver); 7955 } else if (ext->type == EXT_KCFG && 7956 strncmp(ext->name, "CONFIG_", 7) == 0) { 7957 need_config = true; 7958 } else if (ext->type == EXT_KSYM) { 7959 if (ext->ksym.type_id) 7960 need_vmlinux_btf = true; 7961 else 7962 need_kallsyms = true; 7963 } else { 7964 pr_warn("unrecognized extern '%s'\n", ext->name); 7965 return -EINVAL; 7966 } 7967 } 7968 if (need_config && extra_kconfig) { 7969 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7970 if (err) 7971 return -EINVAL; 7972 need_config = false; 7973 for (i = 0; i < obj->nr_extern; i++) { 7974 ext = &obj->externs[i]; 7975 if (ext->type == EXT_KCFG && !ext->is_set) { 7976 need_config = true; 7977 break; 7978 } 7979 } 7980 } 7981 if (need_config) { 7982 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7983 if (err) 7984 return -EINVAL; 7985 } 7986 if (need_kallsyms) { 7987 err = bpf_object__read_kallsyms_file(obj); 7988 if (err) 7989 return -EINVAL; 7990 } 7991 if (need_vmlinux_btf) { 7992 err = bpf_object__resolve_ksyms_btf_id(obj); 7993 if (err) 7994 return -EINVAL; 7995 } 7996 for (i = 0; i < obj->nr_extern; i++) { 7997 ext = &obj->externs[i]; 7998 7999 if (!ext->is_set && !ext->is_weak) { 8000 pr_warn("extern %s (strong) not resolved\n", ext->name); 8001 return -ESRCH; 8002 } else if (!ext->is_set) { 8003 pr_debug("extern %s (weak) not resolved, defaulting to zero\n", 8004 ext->name); 8005 } 8006 } 8007 8008 return 0; 8009 } 8010 8011 int bpf_object__load_xattr(struct bpf_object_load_attr *attr) 8012 { 8013 struct bpf_object *obj; 8014 int err, i; 8015 8016 if (!attr) 8017 return -EINVAL; 8018 obj = attr->obj; 8019 if (!obj) 8020 return -EINVAL; 8021 8022 if (obj->loaded) { 8023 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 8024 return -EINVAL; 8025 } 8026 8027 if (obj->gen_loader) 8028 bpf_gen__init(obj->gen_loader, attr->log_level); 8029 8030 err = bpf_object__probe_loading(obj); 8031 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 8032 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 8033 err = err ? : bpf_object__sanitize_and_load_btf(obj); 8034 err = err ? : bpf_object__sanitize_maps(obj); 8035 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 8036 err = err ? : bpf_object__create_maps(obj); 8037 err = err ? : bpf_object__relocate(obj, attr->target_btf_path); 8038 err = err ? : bpf_object__load_progs(obj, attr->log_level); 8039 8040 if (obj->gen_loader) { 8041 /* reset FDs */ 8042 btf__set_fd(obj->btf, -1); 8043 for (i = 0; i < obj->nr_maps; i++) 8044 obj->maps[i].fd = -1; 8045 if (!err) 8046 err = bpf_gen__finish(obj->gen_loader); 8047 } 8048 8049 /* clean up module BTFs */ 8050 for (i = 0; i < obj->btf_module_cnt; i++) { 8051 close(obj->btf_modules[i].fd); 8052 btf__free(obj->btf_modules[i].btf); 8053 free(obj->btf_modules[i].name); 8054 } 8055 free(obj->btf_modules); 8056 8057 /* clean up vmlinux BTF */ 8058 btf__free(obj->btf_vmlinux); 8059 obj->btf_vmlinux = NULL; 8060 8061 obj->loaded = true; /* doesn't matter if successfully or not */ 8062 8063 if (err) 8064 goto out; 8065 8066 return 0; 8067 out: 8068 /* unpin any maps that were auto-pinned during load */ 8069 for (i = 0; i < obj->nr_maps; i++) 8070 if (obj->maps[i].pinned && !obj->maps[i].reused) 8071 bpf_map__unpin(&obj->maps[i], NULL); 8072 8073 bpf_object__unload(obj); 8074 pr_warn("failed to load object '%s'\n", obj->path); 8075 return err; 8076 } 8077 8078 int bpf_object__load(struct bpf_object *obj) 8079 { 8080 struct bpf_object_load_attr attr = { 8081 .obj = obj, 8082 }; 8083 8084 return bpf_object__load_xattr(&attr); 8085 } 8086 8087 static int make_parent_dir(const char *path) 8088 { 8089 char *cp, errmsg[STRERR_BUFSIZE]; 8090 char *dname, *dir; 8091 int err = 0; 8092 8093 dname = strdup(path); 8094 if (dname == NULL) 8095 return -ENOMEM; 8096 8097 dir = dirname(dname); 8098 if (mkdir(dir, 0700) && errno != EEXIST) 8099 err = -errno; 8100 8101 free(dname); 8102 if (err) { 8103 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8104 pr_warn("failed to mkdir %s: %s\n", path, cp); 8105 } 8106 return err; 8107 } 8108 8109 static int check_path(const char *path) 8110 { 8111 char *cp, errmsg[STRERR_BUFSIZE]; 8112 struct statfs st_fs; 8113 char *dname, *dir; 8114 int err = 0; 8115 8116 if (path == NULL) 8117 return -EINVAL; 8118 8119 dname = strdup(path); 8120 if (dname == NULL) 8121 return -ENOMEM; 8122 8123 dir = dirname(dname); 8124 if (statfs(dir, &st_fs)) { 8125 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 8126 pr_warn("failed to statfs %s: %s\n", dir, cp); 8127 err = -errno; 8128 } 8129 free(dname); 8130 8131 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 8132 pr_warn("specified path %s is not on BPF FS\n", path); 8133 err = -EINVAL; 8134 } 8135 8136 return err; 8137 } 8138 8139 int bpf_program__pin_instance(struct bpf_program *prog, const char *path, 8140 int instance) 8141 { 8142 char *cp, errmsg[STRERR_BUFSIZE]; 8143 int err; 8144 8145 err = make_parent_dir(path); 8146 if (err) 8147 return err; 8148 8149 err = check_path(path); 8150 if (err) 8151 return err; 8152 8153 if (prog == NULL) { 8154 pr_warn("invalid program pointer\n"); 8155 return -EINVAL; 8156 } 8157 8158 if (instance < 0 || instance >= prog->instances.nr) { 8159 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 8160 instance, prog->name, prog->instances.nr); 8161 return -EINVAL; 8162 } 8163 8164 if (bpf_obj_pin(prog->instances.fds[instance], path)) { 8165 err = -errno; 8166 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 8167 pr_warn("failed to pin program: %s\n", cp); 8168 return err; 8169 } 8170 pr_debug("pinned program '%s'\n", path); 8171 8172 return 0; 8173 } 8174 8175 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, 8176 int instance) 8177 { 8178 int err; 8179 8180 err = check_path(path); 8181 if (err) 8182 return err; 8183 8184 if (prog == NULL) { 8185 pr_warn("invalid program pointer\n"); 8186 return -EINVAL; 8187 } 8188 8189 if (instance < 0 || instance >= prog->instances.nr) { 8190 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 8191 instance, prog->name, prog->instances.nr); 8192 return -EINVAL; 8193 } 8194 8195 err = unlink(path); 8196 if (err != 0) 8197 return -errno; 8198 pr_debug("unpinned program '%s'\n", path); 8199 8200 return 0; 8201 } 8202 8203 int bpf_program__pin(struct bpf_program *prog, const char *path) 8204 { 8205 int i, err; 8206 8207 err = make_parent_dir(path); 8208 if (err) 8209 return err; 8210 8211 err = check_path(path); 8212 if (err) 8213 return err; 8214 8215 if (prog == NULL) { 8216 pr_warn("invalid program pointer\n"); 8217 return -EINVAL; 8218 } 8219 8220 if (prog->instances.nr <= 0) { 8221 pr_warn("no instances of prog %s to pin\n", prog->name); 8222 return -EINVAL; 8223 } 8224 8225 if (prog->instances.nr == 1) { 8226 /* don't create subdirs when pinning single instance */ 8227 return bpf_program__pin_instance(prog, path, 0); 8228 } 8229 8230 for (i = 0; i < prog->instances.nr; i++) { 8231 char buf[PATH_MAX]; 8232 int len; 8233 8234 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 8235 if (len < 0) { 8236 err = -EINVAL; 8237 goto err_unpin; 8238 } else if (len >= PATH_MAX) { 8239 err = -ENAMETOOLONG; 8240 goto err_unpin; 8241 } 8242 8243 err = bpf_program__pin_instance(prog, buf, i); 8244 if (err) 8245 goto err_unpin; 8246 } 8247 8248 return 0; 8249 8250 err_unpin: 8251 for (i = i - 1; i >= 0; i--) { 8252 char buf[PATH_MAX]; 8253 int len; 8254 8255 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 8256 if (len < 0) 8257 continue; 8258 else if (len >= PATH_MAX) 8259 continue; 8260 8261 bpf_program__unpin_instance(prog, buf, i); 8262 } 8263 8264 rmdir(path); 8265 8266 return err; 8267 } 8268 8269 int bpf_program__unpin(struct bpf_program *prog, const char *path) 8270 { 8271 int i, err; 8272 8273 err = check_path(path); 8274 if (err) 8275 return err; 8276 8277 if (prog == NULL) { 8278 pr_warn("invalid program pointer\n"); 8279 return -EINVAL; 8280 } 8281 8282 if (prog->instances.nr <= 0) { 8283 pr_warn("no instances of prog %s to pin\n", prog->name); 8284 return -EINVAL; 8285 } 8286 8287 if (prog->instances.nr == 1) { 8288 /* don't create subdirs when pinning single instance */ 8289 return bpf_program__unpin_instance(prog, path, 0); 8290 } 8291 8292 for (i = 0; i < prog->instances.nr; i++) { 8293 char buf[PATH_MAX]; 8294 int len; 8295 8296 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 8297 if (len < 0) 8298 return -EINVAL; 8299 else if (len >= PATH_MAX) 8300 return -ENAMETOOLONG; 8301 8302 err = bpf_program__unpin_instance(prog, buf, i); 8303 if (err) 8304 return err; 8305 } 8306 8307 err = rmdir(path); 8308 if (err) 8309 return -errno; 8310 8311 return 0; 8312 } 8313 8314 int bpf_map__pin(struct bpf_map *map, const char *path) 8315 { 8316 char *cp, errmsg[STRERR_BUFSIZE]; 8317 int err; 8318 8319 if (map == NULL) { 8320 pr_warn("invalid map pointer\n"); 8321 return -EINVAL; 8322 } 8323 8324 if (map->pin_path) { 8325 if (path && strcmp(path, map->pin_path)) { 8326 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8327 bpf_map__name(map), map->pin_path, path); 8328 return -EINVAL; 8329 } else if (map->pinned) { 8330 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8331 bpf_map__name(map), map->pin_path); 8332 return 0; 8333 } 8334 } else { 8335 if (!path) { 8336 pr_warn("missing a path to pin map '%s' at\n", 8337 bpf_map__name(map)); 8338 return -EINVAL; 8339 } else if (map->pinned) { 8340 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8341 return -EEXIST; 8342 } 8343 8344 map->pin_path = strdup(path); 8345 if (!map->pin_path) { 8346 err = -errno; 8347 goto out_err; 8348 } 8349 } 8350 8351 err = make_parent_dir(map->pin_path); 8352 if (err) 8353 return err; 8354 8355 err = check_path(map->pin_path); 8356 if (err) 8357 return err; 8358 8359 if (bpf_obj_pin(map->fd, map->pin_path)) { 8360 err = -errno; 8361 goto out_err; 8362 } 8363 8364 map->pinned = true; 8365 pr_debug("pinned map '%s'\n", map->pin_path); 8366 8367 return 0; 8368 8369 out_err: 8370 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8371 pr_warn("failed to pin map: %s\n", cp); 8372 return err; 8373 } 8374 8375 int bpf_map__unpin(struct bpf_map *map, const char *path) 8376 { 8377 int err; 8378 8379 if (map == NULL) { 8380 pr_warn("invalid map pointer\n"); 8381 return -EINVAL; 8382 } 8383 8384 if (map->pin_path) { 8385 if (path && strcmp(path, map->pin_path)) { 8386 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8387 bpf_map__name(map), map->pin_path, path); 8388 return -EINVAL; 8389 } 8390 path = map->pin_path; 8391 } else if (!path) { 8392 pr_warn("no path to unpin map '%s' from\n", 8393 bpf_map__name(map)); 8394 return -EINVAL; 8395 } 8396 8397 err = check_path(path); 8398 if (err) 8399 return err; 8400 8401 err = unlink(path); 8402 if (err != 0) 8403 return -errno; 8404 8405 map->pinned = false; 8406 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8407 8408 return 0; 8409 } 8410 8411 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8412 { 8413 char *new = NULL; 8414 8415 if (path) { 8416 new = strdup(path); 8417 if (!new) 8418 return -errno; 8419 } 8420 8421 free(map->pin_path); 8422 map->pin_path = new; 8423 return 0; 8424 } 8425 8426 const char *bpf_map__get_pin_path(const struct bpf_map *map) 8427 { 8428 return map->pin_path; 8429 } 8430 8431 bool bpf_map__is_pinned(const struct bpf_map *map) 8432 { 8433 return map->pinned; 8434 } 8435 8436 static void sanitize_pin_path(char *s) 8437 { 8438 /* bpffs disallows periods in path names */ 8439 while (*s) { 8440 if (*s == '.') 8441 *s = '_'; 8442 s++; 8443 } 8444 } 8445 8446 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8447 { 8448 struct bpf_map *map; 8449 int err; 8450 8451 if (!obj) 8452 return -ENOENT; 8453 8454 if (!obj->loaded) { 8455 pr_warn("object not yet loaded; load it first\n"); 8456 return -ENOENT; 8457 } 8458 8459 bpf_object__for_each_map(map, obj) { 8460 char *pin_path = NULL; 8461 char buf[PATH_MAX]; 8462 8463 if (path) { 8464 int len; 8465 8466 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8467 bpf_map__name(map)); 8468 if (len < 0) { 8469 err = -EINVAL; 8470 goto err_unpin_maps; 8471 } else if (len >= PATH_MAX) { 8472 err = -ENAMETOOLONG; 8473 goto err_unpin_maps; 8474 } 8475 sanitize_pin_path(buf); 8476 pin_path = buf; 8477 } else if (!map->pin_path) { 8478 continue; 8479 } 8480 8481 err = bpf_map__pin(map, pin_path); 8482 if (err) 8483 goto err_unpin_maps; 8484 } 8485 8486 return 0; 8487 8488 err_unpin_maps: 8489 while ((map = bpf_map__prev(map, obj))) { 8490 if (!map->pin_path) 8491 continue; 8492 8493 bpf_map__unpin(map, NULL); 8494 } 8495 8496 return err; 8497 } 8498 8499 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8500 { 8501 struct bpf_map *map; 8502 int err; 8503 8504 if (!obj) 8505 return -ENOENT; 8506 8507 bpf_object__for_each_map(map, obj) { 8508 char *pin_path = NULL; 8509 char buf[PATH_MAX]; 8510 8511 if (path) { 8512 int len; 8513 8514 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8515 bpf_map__name(map)); 8516 if (len < 0) 8517 return -EINVAL; 8518 else if (len >= PATH_MAX) 8519 return -ENAMETOOLONG; 8520 sanitize_pin_path(buf); 8521 pin_path = buf; 8522 } else if (!map->pin_path) { 8523 continue; 8524 } 8525 8526 err = bpf_map__unpin(map, pin_path); 8527 if (err) 8528 return err; 8529 } 8530 8531 return 0; 8532 } 8533 8534 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8535 { 8536 struct bpf_program *prog; 8537 int err; 8538 8539 if (!obj) 8540 return -ENOENT; 8541 8542 if (!obj->loaded) { 8543 pr_warn("object not yet loaded; load it first\n"); 8544 return -ENOENT; 8545 } 8546 8547 bpf_object__for_each_program(prog, obj) { 8548 char buf[PATH_MAX]; 8549 int len; 8550 8551 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8552 prog->pin_name); 8553 if (len < 0) { 8554 err = -EINVAL; 8555 goto err_unpin_programs; 8556 } else if (len >= PATH_MAX) { 8557 err = -ENAMETOOLONG; 8558 goto err_unpin_programs; 8559 } 8560 8561 err = bpf_program__pin(prog, buf); 8562 if (err) 8563 goto err_unpin_programs; 8564 } 8565 8566 return 0; 8567 8568 err_unpin_programs: 8569 while ((prog = bpf_program__prev(prog, obj))) { 8570 char buf[PATH_MAX]; 8571 int len; 8572 8573 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8574 prog->pin_name); 8575 if (len < 0) 8576 continue; 8577 else if (len >= PATH_MAX) 8578 continue; 8579 8580 bpf_program__unpin(prog, buf); 8581 } 8582 8583 return err; 8584 } 8585 8586 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8587 { 8588 struct bpf_program *prog; 8589 int err; 8590 8591 if (!obj) 8592 return -ENOENT; 8593 8594 bpf_object__for_each_program(prog, obj) { 8595 char buf[PATH_MAX]; 8596 int len; 8597 8598 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8599 prog->pin_name); 8600 if (len < 0) 8601 return -EINVAL; 8602 else if (len >= PATH_MAX) 8603 return -ENAMETOOLONG; 8604 8605 err = bpf_program__unpin(prog, buf); 8606 if (err) 8607 return err; 8608 } 8609 8610 return 0; 8611 } 8612 8613 int bpf_object__pin(struct bpf_object *obj, const char *path) 8614 { 8615 int err; 8616 8617 err = bpf_object__pin_maps(obj, path); 8618 if (err) 8619 return err; 8620 8621 err = bpf_object__pin_programs(obj, path); 8622 if (err) { 8623 bpf_object__unpin_maps(obj, path); 8624 return err; 8625 } 8626 8627 return 0; 8628 } 8629 8630 static void bpf_map__destroy(struct bpf_map *map) 8631 { 8632 if (map->clear_priv) 8633 map->clear_priv(map, map->priv); 8634 map->priv = NULL; 8635 map->clear_priv = NULL; 8636 8637 if (map->inner_map) { 8638 bpf_map__destroy(map->inner_map); 8639 zfree(&map->inner_map); 8640 } 8641 8642 zfree(&map->init_slots); 8643 map->init_slots_sz = 0; 8644 8645 if (map->mmaped) { 8646 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8647 map->mmaped = NULL; 8648 } 8649 8650 if (map->st_ops) { 8651 zfree(&map->st_ops->data); 8652 zfree(&map->st_ops->progs); 8653 zfree(&map->st_ops->kern_func_off); 8654 zfree(&map->st_ops); 8655 } 8656 8657 zfree(&map->name); 8658 zfree(&map->pin_path); 8659 8660 if (map->fd >= 0) 8661 zclose(map->fd); 8662 } 8663 8664 void bpf_object__close(struct bpf_object *obj) 8665 { 8666 size_t i; 8667 8668 if (IS_ERR_OR_NULL(obj)) 8669 return; 8670 8671 if (obj->clear_priv) 8672 obj->clear_priv(obj, obj->priv); 8673 8674 bpf_gen__free(obj->gen_loader); 8675 bpf_object__elf_finish(obj); 8676 bpf_object__unload(obj); 8677 btf__free(obj->btf); 8678 btf_ext__free(obj->btf_ext); 8679 8680 for (i = 0; i < obj->nr_maps; i++) 8681 bpf_map__destroy(&obj->maps[i]); 8682 8683 zfree(&obj->kconfig); 8684 zfree(&obj->externs); 8685 obj->nr_extern = 0; 8686 8687 zfree(&obj->maps); 8688 obj->nr_maps = 0; 8689 8690 if (obj->programs && obj->nr_programs) { 8691 for (i = 0; i < obj->nr_programs; i++) 8692 bpf_program__exit(&obj->programs[i]); 8693 } 8694 zfree(&obj->programs); 8695 8696 list_del(&obj->list); 8697 free(obj); 8698 } 8699 8700 struct bpf_object * 8701 bpf_object__next(struct bpf_object *prev) 8702 { 8703 struct bpf_object *next; 8704 8705 if (!prev) 8706 next = list_first_entry(&bpf_objects_list, 8707 struct bpf_object, 8708 list); 8709 else 8710 next = list_next_entry(prev, list); 8711 8712 /* Empty list is noticed here so don't need checking on entry. */ 8713 if (&next->list == &bpf_objects_list) 8714 return NULL; 8715 8716 return next; 8717 } 8718 8719 const char *bpf_object__name(const struct bpf_object *obj) 8720 { 8721 return obj ? obj->name : ERR_PTR(-EINVAL); 8722 } 8723 8724 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8725 { 8726 return obj ? obj->kern_version : 0; 8727 } 8728 8729 struct btf *bpf_object__btf(const struct bpf_object *obj) 8730 { 8731 return obj ? obj->btf : NULL; 8732 } 8733 8734 int bpf_object__btf_fd(const struct bpf_object *obj) 8735 { 8736 return obj->btf ? btf__fd(obj->btf) : -1; 8737 } 8738 8739 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8740 { 8741 if (obj->loaded) 8742 return -EINVAL; 8743 8744 obj->kern_version = kern_version; 8745 8746 return 0; 8747 } 8748 8749 int bpf_object__set_priv(struct bpf_object *obj, void *priv, 8750 bpf_object_clear_priv_t clear_priv) 8751 { 8752 if (obj->priv && obj->clear_priv) 8753 obj->clear_priv(obj, obj->priv); 8754 8755 obj->priv = priv; 8756 obj->clear_priv = clear_priv; 8757 return 0; 8758 } 8759 8760 void *bpf_object__priv(const struct bpf_object *obj) 8761 { 8762 return obj ? obj->priv : ERR_PTR(-EINVAL); 8763 } 8764 8765 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8766 { 8767 struct bpf_gen *gen; 8768 8769 if (!opts) 8770 return -EFAULT; 8771 if (!OPTS_VALID(opts, gen_loader_opts)) 8772 return -EINVAL; 8773 gen = calloc(sizeof(*gen), 1); 8774 if (!gen) 8775 return -ENOMEM; 8776 gen->opts = opts; 8777 obj->gen_loader = gen; 8778 return 0; 8779 } 8780 8781 static struct bpf_program * 8782 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8783 bool forward) 8784 { 8785 size_t nr_programs = obj->nr_programs; 8786 ssize_t idx; 8787 8788 if (!nr_programs) 8789 return NULL; 8790 8791 if (!p) 8792 /* Iter from the beginning */ 8793 return forward ? &obj->programs[0] : 8794 &obj->programs[nr_programs - 1]; 8795 8796 if (p->obj != obj) { 8797 pr_warn("error: program handler doesn't match object\n"); 8798 return NULL; 8799 } 8800 8801 idx = (p - obj->programs) + (forward ? 1 : -1); 8802 if (idx >= obj->nr_programs || idx < 0) 8803 return NULL; 8804 return &obj->programs[idx]; 8805 } 8806 8807 struct bpf_program * 8808 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj) 8809 { 8810 struct bpf_program *prog = prev; 8811 8812 do { 8813 prog = __bpf_program__iter(prog, obj, true); 8814 } while (prog && prog_is_subprog(obj, prog)); 8815 8816 return prog; 8817 } 8818 8819 struct bpf_program * 8820 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj) 8821 { 8822 struct bpf_program *prog = next; 8823 8824 do { 8825 prog = __bpf_program__iter(prog, obj, false); 8826 } while (prog && prog_is_subprog(obj, prog)); 8827 8828 return prog; 8829 } 8830 8831 int bpf_program__set_priv(struct bpf_program *prog, void *priv, 8832 bpf_program_clear_priv_t clear_priv) 8833 { 8834 if (prog->priv && prog->clear_priv) 8835 prog->clear_priv(prog, prog->priv); 8836 8837 prog->priv = priv; 8838 prog->clear_priv = clear_priv; 8839 return 0; 8840 } 8841 8842 void *bpf_program__priv(const struct bpf_program *prog) 8843 { 8844 return prog ? prog->priv : ERR_PTR(-EINVAL); 8845 } 8846 8847 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8848 { 8849 prog->prog_ifindex = ifindex; 8850 } 8851 8852 const char *bpf_program__name(const struct bpf_program *prog) 8853 { 8854 return prog->name; 8855 } 8856 8857 const char *bpf_program__section_name(const struct bpf_program *prog) 8858 { 8859 return prog->sec_name; 8860 } 8861 8862 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy) 8863 { 8864 const char *title; 8865 8866 title = prog->sec_name; 8867 if (needs_copy) { 8868 title = strdup(title); 8869 if (!title) { 8870 pr_warn("failed to strdup program title\n"); 8871 return ERR_PTR(-ENOMEM); 8872 } 8873 } 8874 8875 return title; 8876 } 8877 8878 bool bpf_program__autoload(const struct bpf_program *prog) 8879 { 8880 return prog->load; 8881 } 8882 8883 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8884 { 8885 if (prog->obj->loaded) 8886 return -EINVAL; 8887 8888 prog->load = autoload; 8889 return 0; 8890 } 8891 8892 int bpf_program__fd(const struct bpf_program *prog) 8893 { 8894 return bpf_program__nth_fd(prog, 0); 8895 } 8896 8897 size_t bpf_program__size(const struct bpf_program *prog) 8898 { 8899 return prog->insns_cnt * BPF_INSN_SZ; 8900 } 8901 8902 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances, 8903 bpf_program_prep_t prep) 8904 { 8905 int *instances_fds; 8906 8907 if (nr_instances <= 0 || !prep) 8908 return -EINVAL; 8909 8910 if (prog->instances.nr > 0 || prog->instances.fds) { 8911 pr_warn("Can't set pre-processor after loading\n"); 8912 return -EINVAL; 8913 } 8914 8915 instances_fds = malloc(sizeof(int) * nr_instances); 8916 if (!instances_fds) { 8917 pr_warn("alloc memory failed for fds\n"); 8918 return -ENOMEM; 8919 } 8920 8921 /* fill all fd with -1 */ 8922 memset(instances_fds, -1, sizeof(int) * nr_instances); 8923 8924 prog->instances.nr = nr_instances; 8925 prog->instances.fds = instances_fds; 8926 prog->preprocessor = prep; 8927 return 0; 8928 } 8929 8930 int bpf_program__nth_fd(const struct bpf_program *prog, int n) 8931 { 8932 int fd; 8933 8934 if (!prog) 8935 return -EINVAL; 8936 8937 if (n >= prog->instances.nr || n < 0) { 8938 pr_warn("Can't get the %dth fd from program %s: only %d instances\n", 8939 n, prog->name, prog->instances.nr); 8940 return -EINVAL; 8941 } 8942 8943 fd = prog->instances.fds[n]; 8944 if (fd < 0) { 8945 pr_warn("%dth instance of program '%s' is invalid\n", 8946 n, prog->name); 8947 return -ENOENT; 8948 } 8949 8950 return fd; 8951 } 8952 8953 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog) 8954 { 8955 return prog->type; 8956 } 8957 8958 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8959 { 8960 prog->type = type; 8961 } 8962 8963 static bool bpf_program__is_type(const struct bpf_program *prog, 8964 enum bpf_prog_type type) 8965 { 8966 return prog ? (prog->type == type) : false; 8967 } 8968 8969 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \ 8970 int bpf_program__set_##NAME(struct bpf_program *prog) \ 8971 { \ 8972 if (!prog) \ 8973 return -EINVAL; \ 8974 bpf_program__set_type(prog, TYPE); \ 8975 return 0; \ 8976 } \ 8977 \ 8978 bool bpf_program__is_##NAME(const struct bpf_program *prog) \ 8979 { \ 8980 return bpf_program__is_type(prog, TYPE); \ 8981 } \ 8982 8983 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER); 8984 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM); 8985 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE); 8986 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS); 8987 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT); 8988 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT); 8989 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT); 8990 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP); 8991 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT); 8992 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING); 8993 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS); 8994 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT); 8995 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP); 8996 8997 enum bpf_attach_type 8998 bpf_program__get_expected_attach_type(const struct bpf_program *prog) 8999 { 9000 return prog->expected_attach_type; 9001 } 9002 9003 void bpf_program__set_expected_attach_type(struct bpf_program *prog, 9004 enum bpf_attach_type type) 9005 { 9006 prog->expected_attach_type = type; 9007 } 9008 9009 #define BPF_PROG_SEC_IMPL(string, ptype, eatype, eatype_optional, \ 9010 attachable, attach_btf) \ 9011 { \ 9012 .sec = string, \ 9013 .len = sizeof(string) - 1, \ 9014 .prog_type = ptype, \ 9015 .expected_attach_type = eatype, \ 9016 .is_exp_attach_type_optional = eatype_optional, \ 9017 .is_attachable = attachable, \ 9018 .is_attach_btf = attach_btf, \ 9019 } 9020 9021 /* Programs that can NOT be attached. */ 9022 #define BPF_PROG_SEC(string, ptype) BPF_PROG_SEC_IMPL(string, ptype, 0, 0, 0, 0) 9023 9024 /* Programs that can be attached. */ 9025 #define BPF_APROG_SEC(string, ptype, atype) \ 9026 BPF_PROG_SEC_IMPL(string, ptype, atype, true, 1, 0) 9027 9028 /* Programs that must specify expected attach type at load time. */ 9029 #define BPF_EAPROG_SEC(string, ptype, eatype) \ 9030 BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 1, 0) 9031 9032 /* Programs that use BTF to identify attach point */ 9033 #define BPF_PROG_BTF(string, ptype, eatype) \ 9034 BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 0, 1) 9035 9036 /* Programs that can be attached but attach type can't be identified by section 9037 * name. Kept for backward compatibility. 9038 */ 9039 #define BPF_APROG_COMPAT(string, ptype) BPF_PROG_SEC(string, ptype) 9040 9041 #define SEC_DEF(sec_pfx, ptype, ...) { \ 9042 .sec = sec_pfx, \ 9043 .len = sizeof(sec_pfx) - 1, \ 9044 .prog_type = BPF_PROG_TYPE_##ptype, \ 9045 __VA_ARGS__ \ 9046 } 9047 9048 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 9049 struct bpf_program *prog); 9050 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 9051 struct bpf_program *prog); 9052 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 9053 struct bpf_program *prog); 9054 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 9055 struct bpf_program *prog); 9056 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec, 9057 struct bpf_program *prog); 9058 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec, 9059 struct bpf_program *prog); 9060 9061 static const struct bpf_sec_def section_defs[] = { 9062 BPF_PROG_SEC("socket", BPF_PROG_TYPE_SOCKET_FILTER), 9063 BPF_PROG_SEC("sk_reuseport", BPF_PROG_TYPE_SK_REUSEPORT), 9064 SEC_DEF("kprobe/", KPROBE, 9065 .attach_fn = attach_kprobe), 9066 BPF_PROG_SEC("uprobe/", BPF_PROG_TYPE_KPROBE), 9067 SEC_DEF("kretprobe/", KPROBE, 9068 .attach_fn = attach_kprobe), 9069 BPF_PROG_SEC("uretprobe/", BPF_PROG_TYPE_KPROBE), 9070 BPF_PROG_SEC("classifier", BPF_PROG_TYPE_SCHED_CLS), 9071 BPF_PROG_SEC("action", BPF_PROG_TYPE_SCHED_ACT), 9072 SEC_DEF("tracepoint/", TRACEPOINT, 9073 .attach_fn = attach_tp), 9074 SEC_DEF("tp/", TRACEPOINT, 9075 .attach_fn = attach_tp), 9076 SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT, 9077 .attach_fn = attach_raw_tp), 9078 SEC_DEF("raw_tp/", RAW_TRACEPOINT, 9079 .attach_fn = attach_raw_tp), 9080 SEC_DEF("tp_btf/", TRACING, 9081 .expected_attach_type = BPF_TRACE_RAW_TP, 9082 .is_attach_btf = true, 9083 .attach_fn = attach_trace), 9084 SEC_DEF("fentry/", TRACING, 9085 .expected_attach_type = BPF_TRACE_FENTRY, 9086 .is_attach_btf = true, 9087 .attach_fn = attach_trace), 9088 SEC_DEF("fmod_ret/", TRACING, 9089 .expected_attach_type = BPF_MODIFY_RETURN, 9090 .is_attach_btf = true, 9091 .attach_fn = attach_trace), 9092 SEC_DEF("fexit/", TRACING, 9093 .expected_attach_type = BPF_TRACE_FEXIT, 9094 .is_attach_btf = true, 9095 .attach_fn = attach_trace), 9096 SEC_DEF("fentry.s/", TRACING, 9097 .expected_attach_type = BPF_TRACE_FENTRY, 9098 .is_attach_btf = true, 9099 .is_sleepable = true, 9100 .attach_fn = attach_trace), 9101 SEC_DEF("fmod_ret.s/", TRACING, 9102 .expected_attach_type = BPF_MODIFY_RETURN, 9103 .is_attach_btf = true, 9104 .is_sleepable = true, 9105 .attach_fn = attach_trace), 9106 SEC_DEF("fexit.s/", TRACING, 9107 .expected_attach_type = BPF_TRACE_FEXIT, 9108 .is_attach_btf = true, 9109 .is_sleepable = true, 9110 .attach_fn = attach_trace), 9111 SEC_DEF("freplace/", EXT, 9112 .is_attach_btf = true, 9113 .attach_fn = attach_trace), 9114 SEC_DEF("lsm/", LSM, 9115 .is_attach_btf = true, 9116 .expected_attach_type = BPF_LSM_MAC, 9117 .attach_fn = attach_lsm), 9118 SEC_DEF("lsm.s/", LSM, 9119 .is_attach_btf = true, 9120 .is_sleepable = true, 9121 .expected_attach_type = BPF_LSM_MAC, 9122 .attach_fn = attach_lsm), 9123 SEC_DEF("iter/", TRACING, 9124 .expected_attach_type = BPF_TRACE_ITER, 9125 .is_attach_btf = true, 9126 .attach_fn = attach_iter), 9127 SEC_DEF("syscall", SYSCALL, 9128 .is_sleepable = true), 9129 BPF_EAPROG_SEC("xdp_devmap/", BPF_PROG_TYPE_XDP, 9130 BPF_XDP_DEVMAP), 9131 BPF_EAPROG_SEC("xdp_cpumap/", BPF_PROG_TYPE_XDP, 9132 BPF_XDP_CPUMAP), 9133 BPF_APROG_SEC("xdp", BPF_PROG_TYPE_XDP, 9134 BPF_XDP), 9135 BPF_PROG_SEC("perf_event", BPF_PROG_TYPE_PERF_EVENT), 9136 BPF_PROG_SEC("lwt_in", BPF_PROG_TYPE_LWT_IN), 9137 BPF_PROG_SEC("lwt_out", BPF_PROG_TYPE_LWT_OUT), 9138 BPF_PROG_SEC("lwt_xmit", BPF_PROG_TYPE_LWT_XMIT), 9139 BPF_PROG_SEC("lwt_seg6local", BPF_PROG_TYPE_LWT_SEG6LOCAL), 9140 BPF_APROG_SEC("cgroup_skb/ingress", BPF_PROG_TYPE_CGROUP_SKB, 9141 BPF_CGROUP_INET_INGRESS), 9142 BPF_APROG_SEC("cgroup_skb/egress", BPF_PROG_TYPE_CGROUP_SKB, 9143 BPF_CGROUP_INET_EGRESS), 9144 BPF_APROG_COMPAT("cgroup/skb", BPF_PROG_TYPE_CGROUP_SKB), 9145 BPF_EAPROG_SEC("cgroup/sock_create", BPF_PROG_TYPE_CGROUP_SOCK, 9146 BPF_CGROUP_INET_SOCK_CREATE), 9147 BPF_EAPROG_SEC("cgroup/sock_release", BPF_PROG_TYPE_CGROUP_SOCK, 9148 BPF_CGROUP_INET_SOCK_RELEASE), 9149 BPF_APROG_SEC("cgroup/sock", BPF_PROG_TYPE_CGROUP_SOCK, 9150 BPF_CGROUP_INET_SOCK_CREATE), 9151 BPF_EAPROG_SEC("cgroup/post_bind4", BPF_PROG_TYPE_CGROUP_SOCK, 9152 BPF_CGROUP_INET4_POST_BIND), 9153 BPF_EAPROG_SEC("cgroup/post_bind6", BPF_PROG_TYPE_CGROUP_SOCK, 9154 BPF_CGROUP_INET6_POST_BIND), 9155 BPF_APROG_SEC("cgroup/dev", BPF_PROG_TYPE_CGROUP_DEVICE, 9156 BPF_CGROUP_DEVICE), 9157 BPF_APROG_SEC("sockops", BPF_PROG_TYPE_SOCK_OPS, 9158 BPF_CGROUP_SOCK_OPS), 9159 BPF_APROG_SEC("sk_skb/stream_parser", BPF_PROG_TYPE_SK_SKB, 9160 BPF_SK_SKB_STREAM_PARSER), 9161 BPF_APROG_SEC("sk_skb/stream_verdict", BPF_PROG_TYPE_SK_SKB, 9162 BPF_SK_SKB_STREAM_VERDICT), 9163 BPF_APROG_COMPAT("sk_skb", BPF_PROG_TYPE_SK_SKB), 9164 BPF_APROG_SEC("sk_msg", BPF_PROG_TYPE_SK_MSG, 9165 BPF_SK_MSG_VERDICT), 9166 BPF_APROG_SEC("lirc_mode2", BPF_PROG_TYPE_LIRC_MODE2, 9167 BPF_LIRC_MODE2), 9168 BPF_APROG_SEC("flow_dissector", BPF_PROG_TYPE_FLOW_DISSECTOR, 9169 BPF_FLOW_DISSECTOR), 9170 BPF_EAPROG_SEC("cgroup/bind4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 9171 BPF_CGROUP_INET4_BIND), 9172 BPF_EAPROG_SEC("cgroup/bind6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 9173 BPF_CGROUP_INET6_BIND), 9174 BPF_EAPROG_SEC("cgroup/connect4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 9175 BPF_CGROUP_INET4_CONNECT), 9176 BPF_EAPROG_SEC("cgroup/connect6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 9177 BPF_CGROUP_INET6_CONNECT), 9178 BPF_EAPROG_SEC("cgroup/sendmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 9179 BPF_CGROUP_UDP4_SENDMSG), 9180 BPF_EAPROG_SEC("cgroup/sendmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 9181 BPF_CGROUP_UDP6_SENDMSG), 9182 BPF_EAPROG_SEC("cgroup/recvmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 9183 BPF_CGROUP_UDP4_RECVMSG), 9184 BPF_EAPROG_SEC("cgroup/recvmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 9185 BPF_CGROUP_UDP6_RECVMSG), 9186 BPF_EAPROG_SEC("cgroup/getpeername4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 9187 BPF_CGROUP_INET4_GETPEERNAME), 9188 BPF_EAPROG_SEC("cgroup/getpeername6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 9189 BPF_CGROUP_INET6_GETPEERNAME), 9190 BPF_EAPROG_SEC("cgroup/getsockname4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 9191 BPF_CGROUP_INET4_GETSOCKNAME), 9192 BPF_EAPROG_SEC("cgroup/getsockname6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 9193 BPF_CGROUP_INET6_GETSOCKNAME), 9194 BPF_EAPROG_SEC("cgroup/sysctl", BPF_PROG_TYPE_CGROUP_SYSCTL, 9195 BPF_CGROUP_SYSCTL), 9196 BPF_EAPROG_SEC("cgroup/getsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 9197 BPF_CGROUP_GETSOCKOPT), 9198 BPF_EAPROG_SEC("cgroup/setsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 9199 BPF_CGROUP_SETSOCKOPT), 9200 BPF_PROG_SEC("struct_ops", BPF_PROG_TYPE_STRUCT_OPS), 9201 BPF_EAPROG_SEC("sk_lookup/", BPF_PROG_TYPE_SK_LOOKUP, 9202 BPF_SK_LOOKUP), 9203 }; 9204 9205 #undef BPF_PROG_SEC_IMPL 9206 #undef BPF_PROG_SEC 9207 #undef BPF_APROG_SEC 9208 #undef BPF_EAPROG_SEC 9209 #undef BPF_APROG_COMPAT 9210 #undef SEC_DEF 9211 9212 #define MAX_TYPE_NAME_SIZE 32 9213 9214 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 9215 { 9216 int i, n = ARRAY_SIZE(section_defs); 9217 9218 for (i = 0; i < n; i++) { 9219 if (strncmp(sec_name, 9220 section_defs[i].sec, section_defs[i].len)) 9221 continue; 9222 return §ion_defs[i]; 9223 } 9224 return NULL; 9225 } 9226 9227 static char *libbpf_get_type_names(bool attach_type) 9228 { 9229 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 9230 char *buf; 9231 9232 buf = malloc(len); 9233 if (!buf) 9234 return NULL; 9235 9236 buf[0] = '\0'; 9237 /* Forge string buf with all available names */ 9238 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9239 if (attach_type && !section_defs[i].is_attachable) 9240 continue; 9241 9242 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 9243 free(buf); 9244 return NULL; 9245 } 9246 strcat(buf, " "); 9247 strcat(buf, section_defs[i].sec); 9248 } 9249 9250 return buf; 9251 } 9252 9253 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 9254 enum bpf_attach_type *expected_attach_type) 9255 { 9256 const struct bpf_sec_def *sec_def; 9257 char *type_names; 9258 9259 if (!name) 9260 return -EINVAL; 9261 9262 sec_def = find_sec_def(name); 9263 if (sec_def) { 9264 *prog_type = sec_def->prog_type; 9265 *expected_attach_type = sec_def->expected_attach_type; 9266 return 0; 9267 } 9268 9269 pr_debug("failed to guess program type from ELF section '%s'\n", name); 9270 type_names = libbpf_get_type_names(false); 9271 if (type_names != NULL) { 9272 pr_debug("supported section(type) names are:%s\n", type_names); 9273 free(type_names); 9274 } 9275 9276 return -ESRCH; 9277 } 9278 9279 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 9280 size_t offset) 9281 { 9282 struct bpf_map *map; 9283 size_t i; 9284 9285 for (i = 0; i < obj->nr_maps; i++) { 9286 map = &obj->maps[i]; 9287 if (!bpf_map__is_struct_ops(map)) 9288 continue; 9289 if (map->sec_offset <= offset && 9290 offset - map->sec_offset < map->def.value_size) 9291 return map; 9292 } 9293 9294 return NULL; 9295 } 9296 9297 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 9298 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9299 GElf_Shdr *shdr, Elf_Data *data) 9300 { 9301 const struct btf_member *member; 9302 struct bpf_struct_ops *st_ops; 9303 struct bpf_program *prog; 9304 unsigned int shdr_idx; 9305 const struct btf *btf; 9306 struct bpf_map *map; 9307 Elf_Data *symbols; 9308 unsigned int moff, insn_idx; 9309 const char *name; 9310 __u32 member_idx; 9311 GElf_Sym sym; 9312 GElf_Rel rel; 9313 int i, nrels; 9314 9315 symbols = obj->efile.symbols; 9316 btf = obj->btf; 9317 nrels = shdr->sh_size / shdr->sh_entsize; 9318 for (i = 0; i < nrels; i++) { 9319 if (!gelf_getrel(data, i, &rel)) { 9320 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9321 return -LIBBPF_ERRNO__FORMAT; 9322 } 9323 9324 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 9325 pr_warn("struct_ops reloc: symbol %zx not found\n", 9326 (size_t)GELF_R_SYM(rel.r_info)); 9327 return -LIBBPF_ERRNO__FORMAT; 9328 } 9329 9330 name = elf_sym_str(obj, sym.st_name) ?: "<?>"; 9331 map = find_struct_ops_map_by_offset(obj, rel.r_offset); 9332 if (!map) { 9333 pr_warn("struct_ops reloc: cannot find map at rel.r_offset %zu\n", 9334 (size_t)rel.r_offset); 9335 return -EINVAL; 9336 } 9337 9338 moff = rel.r_offset - map->sec_offset; 9339 shdr_idx = sym.st_shndx; 9340 st_ops = map->st_ops; 9341 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel.r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9342 map->name, 9343 (long long)(rel.r_info >> 32), 9344 (long long)sym.st_value, 9345 shdr_idx, (size_t)rel.r_offset, 9346 map->sec_offset, sym.st_name, name); 9347 9348 if (shdr_idx >= SHN_LORESERVE) { 9349 pr_warn("struct_ops reloc %s: rel.r_offset %zu shdr_idx %u unsupported non-static function\n", 9350 map->name, (size_t)rel.r_offset, shdr_idx); 9351 return -LIBBPF_ERRNO__RELOC; 9352 } 9353 if (sym.st_value % BPF_INSN_SZ) { 9354 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9355 map->name, (unsigned long long)sym.st_value); 9356 return -LIBBPF_ERRNO__FORMAT; 9357 } 9358 insn_idx = sym.st_value / BPF_INSN_SZ; 9359 9360 member = find_member_by_offset(st_ops->type, moff * 8); 9361 if (!member) { 9362 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9363 map->name, moff); 9364 return -EINVAL; 9365 } 9366 member_idx = member - btf_members(st_ops->type); 9367 name = btf__name_by_offset(btf, member->name_off); 9368 9369 if (!resolve_func_ptr(btf, member->type, NULL)) { 9370 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9371 map->name, name); 9372 return -EINVAL; 9373 } 9374 9375 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9376 if (!prog) { 9377 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9378 map->name, shdr_idx, name); 9379 return -EINVAL; 9380 } 9381 9382 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 9383 const struct bpf_sec_def *sec_def; 9384 9385 sec_def = find_sec_def(prog->sec_name); 9386 if (sec_def && 9387 sec_def->prog_type != BPF_PROG_TYPE_STRUCT_OPS) { 9388 /* for pr_warn */ 9389 prog->type = sec_def->prog_type; 9390 goto invalid_prog; 9391 } 9392 9393 prog->type = BPF_PROG_TYPE_STRUCT_OPS; 9394 prog->attach_btf_id = st_ops->type_id; 9395 prog->expected_attach_type = member_idx; 9396 } else if (prog->type != BPF_PROG_TYPE_STRUCT_OPS || 9397 prog->attach_btf_id != st_ops->type_id || 9398 prog->expected_attach_type != member_idx) { 9399 goto invalid_prog; 9400 } 9401 st_ops->progs[member_idx] = prog; 9402 } 9403 9404 return 0; 9405 9406 invalid_prog: 9407 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 9408 map->name, prog->name, prog->sec_name, prog->type, 9409 prog->attach_btf_id, prog->expected_attach_type, name); 9410 return -EINVAL; 9411 } 9412 9413 #define BTF_TRACE_PREFIX "btf_trace_" 9414 #define BTF_LSM_PREFIX "bpf_lsm_" 9415 #define BTF_ITER_PREFIX "bpf_iter_" 9416 #define BTF_MAX_NAME_SIZE 128 9417 9418 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9419 const char **prefix, int *kind) 9420 { 9421 switch (attach_type) { 9422 case BPF_TRACE_RAW_TP: 9423 *prefix = BTF_TRACE_PREFIX; 9424 *kind = BTF_KIND_TYPEDEF; 9425 break; 9426 case BPF_LSM_MAC: 9427 *prefix = BTF_LSM_PREFIX; 9428 *kind = BTF_KIND_FUNC; 9429 break; 9430 case BPF_TRACE_ITER: 9431 *prefix = BTF_ITER_PREFIX; 9432 *kind = BTF_KIND_FUNC; 9433 break; 9434 default: 9435 *prefix = ""; 9436 *kind = BTF_KIND_FUNC; 9437 } 9438 } 9439 9440 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9441 const char *name, __u32 kind) 9442 { 9443 char btf_type_name[BTF_MAX_NAME_SIZE]; 9444 int ret; 9445 9446 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9447 "%s%s", prefix, name); 9448 /* snprintf returns the number of characters written excluding the 9449 * the terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9450 * indicates truncation. 9451 */ 9452 if (ret < 0 || ret >= sizeof(btf_type_name)) 9453 return -ENAMETOOLONG; 9454 return btf__find_by_name_kind(btf, btf_type_name, kind); 9455 } 9456 9457 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9458 enum bpf_attach_type attach_type) 9459 { 9460 const char *prefix; 9461 int kind; 9462 9463 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9464 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9465 } 9466 9467 int libbpf_find_vmlinux_btf_id(const char *name, 9468 enum bpf_attach_type attach_type) 9469 { 9470 struct btf *btf; 9471 int err; 9472 9473 btf = libbpf_find_kernel_btf(); 9474 if (IS_ERR(btf)) { 9475 pr_warn("vmlinux BTF is not found\n"); 9476 return -EINVAL; 9477 } 9478 9479 err = find_attach_btf_id(btf, name, attach_type); 9480 if (err <= 0) 9481 pr_warn("%s is not found in vmlinux BTF\n", name); 9482 9483 btf__free(btf); 9484 return err; 9485 } 9486 9487 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9488 { 9489 struct bpf_prog_info_linear *info_linear; 9490 struct bpf_prog_info *info; 9491 struct btf *btf = NULL; 9492 int err = -EINVAL; 9493 9494 info_linear = bpf_program__get_prog_info_linear(attach_prog_fd, 0); 9495 if (IS_ERR_OR_NULL(info_linear)) { 9496 pr_warn("failed get_prog_info_linear for FD %d\n", 9497 attach_prog_fd); 9498 return -EINVAL; 9499 } 9500 info = &info_linear->info; 9501 if (!info->btf_id) { 9502 pr_warn("The target program doesn't have BTF\n"); 9503 goto out; 9504 } 9505 if (btf__get_from_id(info->btf_id, &btf)) { 9506 pr_warn("Failed to get BTF of the program\n"); 9507 goto out; 9508 } 9509 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9510 btf__free(btf); 9511 if (err <= 0) { 9512 pr_warn("%s is not found in prog's BTF\n", name); 9513 goto out; 9514 } 9515 out: 9516 free(info_linear); 9517 return err; 9518 } 9519 9520 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9521 enum bpf_attach_type attach_type, 9522 int *btf_obj_fd, int *btf_type_id) 9523 { 9524 int ret, i; 9525 9526 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9527 if (ret > 0) { 9528 *btf_obj_fd = 0; /* vmlinux BTF */ 9529 *btf_type_id = ret; 9530 return 0; 9531 } 9532 if (ret != -ENOENT) 9533 return ret; 9534 9535 ret = load_module_btfs(obj); 9536 if (ret) 9537 return ret; 9538 9539 for (i = 0; i < obj->btf_module_cnt; i++) { 9540 const struct module_btf *mod = &obj->btf_modules[i]; 9541 9542 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9543 if (ret > 0) { 9544 *btf_obj_fd = mod->fd; 9545 *btf_type_id = ret; 9546 return 0; 9547 } 9548 if (ret == -ENOENT) 9549 continue; 9550 9551 return ret; 9552 } 9553 9554 return -ESRCH; 9555 } 9556 9557 static int libbpf_find_attach_btf_id(struct bpf_program *prog, int *btf_obj_fd, int *btf_type_id) 9558 { 9559 enum bpf_attach_type attach_type = prog->expected_attach_type; 9560 __u32 attach_prog_fd = prog->attach_prog_fd; 9561 const char *name = prog->sec_name, *attach_name; 9562 const struct bpf_sec_def *sec = NULL; 9563 int i, err = 0; 9564 9565 if (!name) 9566 return -EINVAL; 9567 9568 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9569 if (!section_defs[i].is_attach_btf) 9570 continue; 9571 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 9572 continue; 9573 9574 sec = §ion_defs[i]; 9575 break; 9576 } 9577 9578 if (!sec) { 9579 pr_warn("failed to identify BTF ID based on ELF section name '%s'\n", name); 9580 return -ESRCH; 9581 } 9582 attach_name = name + sec->len; 9583 9584 /* BPF program's BTF ID */ 9585 if (attach_prog_fd) { 9586 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9587 if (err < 0) { 9588 pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9589 attach_prog_fd, attach_name, err); 9590 return err; 9591 } 9592 *btf_obj_fd = 0; 9593 *btf_type_id = err; 9594 return 0; 9595 } 9596 9597 /* kernel/module BTF ID */ 9598 if (prog->obj->gen_loader) { 9599 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9600 *btf_obj_fd = 0; 9601 *btf_type_id = 1; 9602 } else { 9603 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9604 } 9605 if (err) { 9606 pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err); 9607 return err; 9608 } 9609 return 0; 9610 } 9611 9612 int libbpf_attach_type_by_name(const char *name, 9613 enum bpf_attach_type *attach_type) 9614 { 9615 char *type_names; 9616 int i; 9617 9618 if (!name) 9619 return -EINVAL; 9620 9621 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9622 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 9623 continue; 9624 if (!section_defs[i].is_attachable) 9625 return -EINVAL; 9626 *attach_type = section_defs[i].expected_attach_type; 9627 return 0; 9628 } 9629 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9630 type_names = libbpf_get_type_names(true); 9631 if (type_names != NULL) { 9632 pr_debug("attachable section(type) names are:%s\n", type_names); 9633 free(type_names); 9634 } 9635 9636 return -EINVAL; 9637 } 9638 9639 int bpf_map__fd(const struct bpf_map *map) 9640 { 9641 return map ? map->fd : -EINVAL; 9642 } 9643 9644 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map) 9645 { 9646 return map ? &map->def : ERR_PTR(-EINVAL); 9647 } 9648 9649 const char *bpf_map__name(const struct bpf_map *map) 9650 { 9651 return map ? map->name : NULL; 9652 } 9653 9654 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9655 { 9656 return map->def.type; 9657 } 9658 9659 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9660 { 9661 if (map->fd >= 0) 9662 return -EBUSY; 9663 map->def.type = type; 9664 return 0; 9665 } 9666 9667 __u32 bpf_map__map_flags(const struct bpf_map *map) 9668 { 9669 return map->def.map_flags; 9670 } 9671 9672 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9673 { 9674 if (map->fd >= 0) 9675 return -EBUSY; 9676 map->def.map_flags = flags; 9677 return 0; 9678 } 9679 9680 __u32 bpf_map__numa_node(const struct bpf_map *map) 9681 { 9682 return map->numa_node; 9683 } 9684 9685 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9686 { 9687 if (map->fd >= 0) 9688 return -EBUSY; 9689 map->numa_node = numa_node; 9690 return 0; 9691 } 9692 9693 __u32 bpf_map__key_size(const struct bpf_map *map) 9694 { 9695 return map->def.key_size; 9696 } 9697 9698 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9699 { 9700 if (map->fd >= 0) 9701 return -EBUSY; 9702 map->def.key_size = size; 9703 return 0; 9704 } 9705 9706 __u32 bpf_map__value_size(const struct bpf_map *map) 9707 { 9708 return map->def.value_size; 9709 } 9710 9711 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9712 { 9713 if (map->fd >= 0) 9714 return -EBUSY; 9715 map->def.value_size = size; 9716 return 0; 9717 } 9718 9719 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9720 { 9721 return map ? map->btf_key_type_id : 0; 9722 } 9723 9724 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9725 { 9726 return map ? map->btf_value_type_id : 0; 9727 } 9728 9729 int bpf_map__set_priv(struct bpf_map *map, void *priv, 9730 bpf_map_clear_priv_t clear_priv) 9731 { 9732 if (!map) 9733 return -EINVAL; 9734 9735 if (map->priv) { 9736 if (map->clear_priv) 9737 map->clear_priv(map, map->priv); 9738 } 9739 9740 map->priv = priv; 9741 map->clear_priv = clear_priv; 9742 return 0; 9743 } 9744 9745 void *bpf_map__priv(const struct bpf_map *map) 9746 { 9747 return map ? map->priv : ERR_PTR(-EINVAL); 9748 } 9749 9750 int bpf_map__set_initial_value(struct bpf_map *map, 9751 const void *data, size_t size) 9752 { 9753 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9754 size != map->def.value_size || map->fd >= 0) 9755 return -EINVAL; 9756 9757 memcpy(map->mmaped, data, size); 9758 return 0; 9759 } 9760 9761 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9762 { 9763 if (!map->mmaped) 9764 return NULL; 9765 *psize = map->def.value_size; 9766 return map->mmaped; 9767 } 9768 9769 bool bpf_map__is_offload_neutral(const struct bpf_map *map) 9770 { 9771 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 9772 } 9773 9774 bool bpf_map__is_internal(const struct bpf_map *map) 9775 { 9776 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9777 } 9778 9779 __u32 bpf_map__ifindex(const struct bpf_map *map) 9780 { 9781 return map->map_ifindex; 9782 } 9783 9784 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9785 { 9786 if (map->fd >= 0) 9787 return -EBUSY; 9788 map->map_ifindex = ifindex; 9789 return 0; 9790 } 9791 9792 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9793 { 9794 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9795 pr_warn("error: unsupported map type\n"); 9796 return -EINVAL; 9797 } 9798 if (map->inner_map_fd != -1) { 9799 pr_warn("error: inner_map_fd already specified\n"); 9800 return -EINVAL; 9801 } 9802 zfree(&map->inner_map); 9803 map->inner_map_fd = fd; 9804 return 0; 9805 } 9806 9807 static struct bpf_map * 9808 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9809 { 9810 ssize_t idx; 9811 struct bpf_map *s, *e; 9812 9813 if (!obj || !obj->maps) 9814 return NULL; 9815 9816 s = obj->maps; 9817 e = obj->maps + obj->nr_maps; 9818 9819 if ((m < s) || (m >= e)) { 9820 pr_warn("error in %s: map handler doesn't belong to object\n", 9821 __func__); 9822 return NULL; 9823 } 9824 9825 idx = (m - obj->maps) + i; 9826 if (idx >= obj->nr_maps || idx < 0) 9827 return NULL; 9828 return &obj->maps[idx]; 9829 } 9830 9831 struct bpf_map * 9832 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj) 9833 { 9834 if (prev == NULL) 9835 return obj->maps; 9836 9837 return __bpf_map__iter(prev, obj, 1); 9838 } 9839 9840 struct bpf_map * 9841 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj) 9842 { 9843 if (next == NULL) { 9844 if (!obj->nr_maps) 9845 return NULL; 9846 return obj->maps + obj->nr_maps - 1; 9847 } 9848 9849 return __bpf_map__iter(next, obj, -1); 9850 } 9851 9852 struct bpf_map * 9853 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9854 { 9855 struct bpf_map *pos; 9856 9857 bpf_object__for_each_map(pos, obj) { 9858 if (pos->name && !strcmp(pos->name, name)) 9859 return pos; 9860 } 9861 return NULL; 9862 } 9863 9864 int 9865 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9866 { 9867 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9868 } 9869 9870 struct bpf_map * 9871 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset) 9872 { 9873 return ERR_PTR(-ENOTSUP); 9874 } 9875 9876 long libbpf_get_error(const void *ptr) 9877 { 9878 return PTR_ERR_OR_ZERO(ptr); 9879 } 9880 9881 int bpf_prog_load(const char *file, enum bpf_prog_type type, 9882 struct bpf_object **pobj, int *prog_fd) 9883 { 9884 struct bpf_prog_load_attr attr; 9885 9886 memset(&attr, 0, sizeof(struct bpf_prog_load_attr)); 9887 attr.file = file; 9888 attr.prog_type = type; 9889 attr.expected_attach_type = 0; 9890 9891 return bpf_prog_load_xattr(&attr, pobj, prog_fd); 9892 } 9893 9894 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr, 9895 struct bpf_object **pobj, int *prog_fd) 9896 { 9897 struct bpf_object_open_attr open_attr = {}; 9898 struct bpf_program *prog, *first_prog = NULL; 9899 struct bpf_object *obj; 9900 struct bpf_map *map; 9901 int err; 9902 9903 if (!attr) 9904 return -EINVAL; 9905 if (!attr->file) 9906 return -EINVAL; 9907 9908 open_attr.file = attr->file; 9909 open_attr.prog_type = attr->prog_type; 9910 9911 obj = bpf_object__open_xattr(&open_attr); 9912 if (IS_ERR_OR_NULL(obj)) 9913 return -ENOENT; 9914 9915 bpf_object__for_each_program(prog, obj) { 9916 enum bpf_attach_type attach_type = attr->expected_attach_type; 9917 /* 9918 * to preserve backwards compatibility, bpf_prog_load treats 9919 * attr->prog_type, if specified, as an override to whatever 9920 * bpf_object__open guessed 9921 */ 9922 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) { 9923 bpf_program__set_type(prog, attr->prog_type); 9924 bpf_program__set_expected_attach_type(prog, 9925 attach_type); 9926 } 9927 if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) { 9928 /* 9929 * we haven't guessed from section name and user 9930 * didn't provide a fallback type, too bad... 9931 */ 9932 bpf_object__close(obj); 9933 return -EINVAL; 9934 } 9935 9936 prog->prog_ifindex = attr->ifindex; 9937 prog->log_level = attr->log_level; 9938 prog->prog_flags |= attr->prog_flags; 9939 if (!first_prog) 9940 first_prog = prog; 9941 } 9942 9943 bpf_object__for_each_map(map, obj) { 9944 if (!bpf_map__is_offload_neutral(map)) 9945 map->map_ifindex = attr->ifindex; 9946 } 9947 9948 if (!first_prog) { 9949 pr_warn("object file doesn't contain bpf program\n"); 9950 bpf_object__close(obj); 9951 return -ENOENT; 9952 } 9953 9954 err = bpf_object__load(obj); 9955 if (err) { 9956 bpf_object__close(obj); 9957 return err; 9958 } 9959 9960 *pobj = obj; 9961 *prog_fd = bpf_program__fd(first_prog); 9962 return 0; 9963 } 9964 9965 struct bpf_link { 9966 int (*detach)(struct bpf_link *link); 9967 int (*destroy)(struct bpf_link *link); 9968 char *pin_path; /* NULL, if not pinned */ 9969 int fd; /* hook FD, -1 if not applicable */ 9970 bool disconnected; 9971 }; 9972 9973 /* Replace link's underlying BPF program with the new one */ 9974 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9975 { 9976 return bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9977 } 9978 9979 /* Release "ownership" of underlying BPF resource (typically, BPF program 9980 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9981 * link, when destructed through bpf_link__destroy() call won't attempt to 9982 * detach/unregisted that BPF resource. This is useful in situations where, 9983 * say, attached BPF program has to outlive userspace program that attached it 9984 * in the system. Depending on type of BPF program, though, there might be 9985 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9986 * exit of userspace program doesn't trigger automatic detachment and clean up 9987 * inside the kernel. 9988 */ 9989 void bpf_link__disconnect(struct bpf_link *link) 9990 { 9991 link->disconnected = true; 9992 } 9993 9994 int bpf_link__destroy(struct bpf_link *link) 9995 { 9996 int err = 0; 9997 9998 if (IS_ERR_OR_NULL(link)) 9999 return 0; 10000 10001 if (!link->disconnected && link->detach) 10002 err = link->detach(link); 10003 if (link->destroy) 10004 link->destroy(link); 10005 if (link->pin_path) 10006 free(link->pin_path); 10007 free(link); 10008 10009 return err; 10010 } 10011 10012 int bpf_link__fd(const struct bpf_link *link) 10013 { 10014 return link->fd; 10015 } 10016 10017 const char *bpf_link__pin_path(const struct bpf_link *link) 10018 { 10019 return link->pin_path; 10020 } 10021 10022 static int bpf_link__detach_fd(struct bpf_link *link) 10023 { 10024 return close(link->fd); 10025 } 10026 10027 struct bpf_link *bpf_link__open(const char *path) 10028 { 10029 struct bpf_link *link; 10030 int fd; 10031 10032 fd = bpf_obj_get(path); 10033 if (fd < 0) { 10034 fd = -errno; 10035 pr_warn("failed to open link at %s: %d\n", path, fd); 10036 return ERR_PTR(fd); 10037 } 10038 10039 link = calloc(1, sizeof(*link)); 10040 if (!link) { 10041 close(fd); 10042 return ERR_PTR(-ENOMEM); 10043 } 10044 link->detach = &bpf_link__detach_fd; 10045 link->fd = fd; 10046 10047 link->pin_path = strdup(path); 10048 if (!link->pin_path) { 10049 bpf_link__destroy(link); 10050 return ERR_PTR(-ENOMEM); 10051 } 10052 10053 return link; 10054 } 10055 10056 int bpf_link__detach(struct bpf_link *link) 10057 { 10058 return bpf_link_detach(link->fd) ? -errno : 0; 10059 } 10060 10061 int bpf_link__pin(struct bpf_link *link, const char *path) 10062 { 10063 int err; 10064 10065 if (link->pin_path) 10066 return -EBUSY; 10067 err = make_parent_dir(path); 10068 if (err) 10069 return err; 10070 err = check_path(path); 10071 if (err) 10072 return err; 10073 10074 link->pin_path = strdup(path); 10075 if (!link->pin_path) 10076 return -ENOMEM; 10077 10078 if (bpf_obj_pin(link->fd, link->pin_path)) { 10079 err = -errno; 10080 zfree(&link->pin_path); 10081 return err; 10082 } 10083 10084 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 10085 return 0; 10086 } 10087 10088 int bpf_link__unpin(struct bpf_link *link) 10089 { 10090 int err; 10091 10092 if (!link->pin_path) 10093 return -EINVAL; 10094 10095 err = unlink(link->pin_path); 10096 if (err != 0) 10097 return -errno; 10098 10099 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 10100 zfree(&link->pin_path); 10101 return 0; 10102 } 10103 10104 static int bpf_link__detach_perf_event(struct bpf_link *link) 10105 { 10106 int err; 10107 10108 err = ioctl(link->fd, PERF_EVENT_IOC_DISABLE, 0); 10109 if (err) 10110 err = -errno; 10111 10112 close(link->fd); 10113 return err; 10114 } 10115 10116 struct bpf_link *bpf_program__attach_perf_event(struct bpf_program *prog, 10117 int pfd) 10118 { 10119 char errmsg[STRERR_BUFSIZE]; 10120 struct bpf_link *link; 10121 int prog_fd, err; 10122 10123 if (pfd < 0) { 10124 pr_warn("prog '%s': invalid perf event FD %d\n", 10125 prog->name, pfd); 10126 return ERR_PTR(-EINVAL); 10127 } 10128 prog_fd = bpf_program__fd(prog); 10129 if (prog_fd < 0) { 10130 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 10131 prog->name); 10132 return ERR_PTR(-EINVAL); 10133 } 10134 10135 link = calloc(1, sizeof(*link)); 10136 if (!link) 10137 return ERR_PTR(-ENOMEM); 10138 link->detach = &bpf_link__detach_perf_event; 10139 link->fd = pfd; 10140 10141 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 10142 err = -errno; 10143 free(link); 10144 pr_warn("prog '%s': failed to attach to pfd %d: %s\n", 10145 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10146 if (err == -EPROTO) 10147 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 10148 prog->name, pfd); 10149 return ERR_PTR(err); 10150 } 10151 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10152 err = -errno; 10153 free(link); 10154 pr_warn("prog '%s': failed to enable pfd %d: %s\n", 10155 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10156 return ERR_PTR(err); 10157 } 10158 return link; 10159 } 10160 10161 /* 10162 * this function is expected to parse integer in the range of [0, 2^31-1] from 10163 * given file using scanf format string fmt. If actual parsed value is 10164 * negative, the result might be indistinguishable from error 10165 */ 10166 static int parse_uint_from_file(const char *file, const char *fmt) 10167 { 10168 char buf[STRERR_BUFSIZE]; 10169 int err, ret; 10170 FILE *f; 10171 10172 f = fopen(file, "r"); 10173 if (!f) { 10174 err = -errno; 10175 pr_debug("failed to open '%s': %s\n", file, 10176 libbpf_strerror_r(err, buf, sizeof(buf))); 10177 return err; 10178 } 10179 err = fscanf(f, fmt, &ret); 10180 if (err != 1) { 10181 err = err == EOF ? -EIO : -errno; 10182 pr_debug("failed to parse '%s': %s\n", file, 10183 libbpf_strerror_r(err, buf, sizeof(buf))); 10184 fclose(f); 10185 return err; 10186 } 10187 fclose(f); 10188 return ret; 10189 } 10190 10191 static int determine_kprobe_perf_type(void) 10192 { 10193 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 10194 10195 return parse_uint_from_file(file, "%d\n"); 10196 } 10197 10198 static int determine_uprobe_perf_type(void) 10199 { 10200 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 10201 10202 return parse_uint_from_file(file, "%d\n"); 10203 } 10204 10205 static int determine_kprobe_retprobe_bit(void) 10206 { 10207 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 10208 10209 return parse_uint_from_file(file, "config:%d\n"); 10210 } 10211 10212 static int determine_uprobe_retprobe_bit(void) 10213 { 10214 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 10215 10216 return parse_uint_from_file(file, "config:%d\n"); 10217 } 10218 10219 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 10220 uint64_t offset, int pid) 10221 { 10222 struct perf_event_attr attr = {}; 10223 char errmsg[STRERR_BUFSIZE]; 10224 int type, pfd, err; 10225 10226 type = uprobe ? determine_uprobe_perf_type() 10227 : determine_kprobe_perf_type(); 10228 if (type < 0) { 10229 pr_warn("failed to determine %s perf type: %s\n", 10230 uprobe ? "uprobe" : "kprobe", 10231 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10232 return type; 10233 } 10234 if (retprobe) { 10235 int bit = uprobe ? determine_uprobe_retprobe_bit() 10236 : determine_kprobe_retprobe_bit(); 10237 10238 if (bit < 0) { 10239 pr_warn("failed to determine %s retprobe bit: %s\n", 10240 uprobe ? "uprobe" : "kprobe", 10241 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 10242 return bit; 10243 } 10244 attr.config |= 1 << bit; 10245 } 10246 attr.size = sizeof(attr); 10247 attr.type = type; 10248 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 10249 attr.config2 = offset; /* kprobe_addr or probe_offset */ 10250 10251 /* pid filter is meaningful only for uprobes */ 10252 pfd = syscall(__NR_perf_event_open, &attr, 10253 pid < 0 ? -1 : pid /* pid */, 10254 pid == -1 ? 0 : -1 /* cpu */, 10255 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10256 if (pfd < 0) { 10257 err = -errno; 10258 pr_warn("%s perf_event_open() failed: %s\n", 10259 uprobe ? "uprobe" : "kprobe", 10260 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10261 return err; 10262 } 10263 return pfd; 10264 } 10265 10266 struct bpf_link *bpf_program__attach_kprobe(struct bpf_program *prog, 10267 bool retprobe, 10268 const char *func_name) 10269 { 10270 char errmsg[STRERR_BUFSIZE]; 10271 struct bpf_link *link; 10272 int pfd, err; 10273 10274 pfd = perf_event_open_probe(false /* uprobe */, retprobe, func_name, 10275 0 /* offset */, -1 /* pid */); 10276 if (pfd < 0) { 10277 pr_warn("prog '%s': failed to create %s '%s' perf event: %s\n", 10278 prog->name, retprobe ? "kretprobe" : "kprobe", func_name, 10279 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10280 return ERR_PTR(pfd); 10281 } 10282 link = bpf_program__attach_perf_event(prog, pfd); 10283 if (IS_ERR(link)) { 10284 close(pfd); 10285 err = PTR_ERR(link); 10286 pr_warn("prog '%s': failed to attach to %s '%s': %s\n", 10287 prog->name, retprobe ? "kretprobe" : "kprobe", func_name, 10288 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10289 return link; 10290 } 10291 return link; 10292 } 10293 10294 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 10295 struct bpf_program *prog) 10296 { 10297 const char *func_name; 10298 bool retprobe; 10299 10300 func_name = prog->sec_name + sec->len; 10301 retprobe = strcmp(sec->sec, "kretprobe/") == 0; 10302 10303 return bpf_program__attach_kprobe(prog, retprobe, func_name); 10304 } 10305 10306 struct bpf_link *bpf_program__attach_uprobe(struct bpf_program *prog, 10307 bool retprobe, pid_t pid, 10308 const char *binary_path, 10309 size_t func_offset) 10310 { 10311 char errmsg[STRERR_BUFSIZE]; 10312 struct bpf_link *link; 10313 int pfd, err; 10314 10315 pfd = perf_event_open_probe(true /* uprobe */, retprobe, 10316 binary_path, func_offset, pid); 10317 if (pfd < 0) { 10318 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 10319 prog->name, retprobe ? "uretprobe" : "uprobe", 10320 binary_path, func_offset, 10321 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10322 return ERR_PTR(pfd); 10323 } 10324 link = bpf_program__attach_perf_event(prog, pfd); 10325 if (IS_ERR(link)) { 10326 close(pfd); 10327 err = PTR_ERR(link); 10328 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 10329 prog->name, retprobe ? "uretprobe" : "uprobe", 10330 binary_path, func_offset, 10331 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10332 return link; 10333 } 10334 return link; 10335 } 10336 10337 static int determine_tracepoint_id(const char *tp_category, 10338 const char *tp_name) 10339 { 10340 char file[PATH_MAX]; 10341 int ret; 10342 10343 ret = snprintf(file, sizeof(file), 10344 "/sys/kernel/debug/tracing/events/%s/%s/id", 10345 tp_category, tp_name); 10346 if (ret < 0) 10347 return -errno; 10348 if (ret >= sizeof(file)) { 10349 pr_debug("tracepoint %s/%s path is too long\n", 10350 tp_category, tp_name); 10351 return -E2BIG; 10352 } 10353 return parse_uint_from_file(file, "%d\n"); 10354 } 10355 10356 static int perf_event_open_tracepoint(const char *tp_category, 10357 const char *tp_name) 10358 { 10359 struct perf_event_attr attr = {}; 10360 char errmsg[STRERR_BUFSIZE]; 10361 int tp_id, pfd, err; 10362 10363 tp_id = determine_tracepoint_id(tp_category, tp_name); 10364 if (tp_id < 0) { 10365 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 10366 tp_category, tp_name, 10367 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 10368 return tp_id; 10369 } 10370 10371 attr.type = PERF_TYPE_TRACEPOINT; 10372 attr.size = sizeof(attr); 10373 attr.config = tp_id; 10374 10375 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 10376 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10377 if (pfd < 0) { 10378 err = -errno; 10379 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 10380 tp_category, tp_name, 10381 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10382 return err; 10383 } 10384 return pfd; 10385 } 10386 10387 struct bpf_link *bpf_program__attach_tracepoint(struct bpf_program *prog, 10388 const char *tp_category, 10389 const char *tp_name) 10390 { 10391 char errmsg[STRERR_BUFSIZE]; 10392 struct bpf_link *link; 10393 int pfd, err; 10394 10395 pfd = perf_event_open_tracepoint(tp_category, tp_name); 10396 if (pfd < 0) { 10397 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 10398 prog->name, tp_category, tp_name, 10399 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10400 return ERR_PTR(pfd); 10401 } 10402 link = bpf_program__attach_perf_event(prog, pfd); 10403 if (IS_ERR(link)) { 10404 close(pfd); 10405 err = PTR_ERR(link); 10406 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 10407 prog->name, tp_category, tp_name, 10408 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10409 return link; 10410 } 10411 return link; 10412 } 10413 10414 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 10415 struct bpf_program *prog) 10416 { 10417 char *sec_name, *tp_cat, *tp_name; 10418 struct bpf_link *link; 10419 10420 sec_name = strdup(prog->sec_name); 10421 if (!sec_name) 10422 return ERR_PTR(-ENOMEM); 10423 10424 /* extract "tp/<category>/<name>" */ 10425 tp_cat = sec_name + sec->len; 10426 tp_name = strchr(tp_cat, '/'); 10427 if (!tp_name) { 10428 link = ERR_PTR(-EINVAL); 10429 goto out; 10430 } 10431 *tp_name = '\0'; 10432 tp_name++; 10433 10434 link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 10435 out: 10436 free(sec_name); 10437 return link; 10438 } 10439 10440 struct bpf_link *bpf_program__attach_raw_tracepoint(struct bpf_program *prog, 10441 const char *tp_name) 10442 { 10443 char errmsg[STRERR_BUFSIZE]; 10444 struct bpf_link *link; 10445 int prog_fd, pfd; 10446 10447 prog_fd = bpf_program__fd(prog); 10448 if (prog_fd < 0) { 10449 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10450 return ERR_PTR(-EINVAL); 10451 } 10452 10453 link = calloc(1, sizeof(*link)); 10454 if (!link) 10455 return ERR_PTR(-ENOMEM); 10456 link->detach = &bpf_link__detach_fd; 10457 10458 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 10459 if (pfd < 0) { 10460 pfd = -errno; 10461 free(link); 10462 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 10463 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10464 return ERR_PTR(pfd); 10465 } 10466 link->fd = pfd; 10467 return link; 10468 } 10469 10470 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 10471 struct bpf_program *prog) 10472 { 10473 const char *tp_name = prog->sec_name + sec->len; 10474 10475 return bpf_program__attach_raw_tracepoint(prog, tp_name); 10476 } 10477 10478 /* Common logic for all BPF program types that attach to a btf_id */ 10479 static struct bpf_link *bpf_program__attach_btf_id(struct bpf_program *prog) 10480 { 10481 char errmsg[STRERR_BUFSIZE]; 10482 struct bpf_link *link; 10483 int prog_fd, pfd; 10484 10485 prog_fd = bpf_program__fd(prog); 10486 if (prog_fd < 0) { 10487 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10488 return ERR_PTR(-EINVAL); 10489 } 10490 10491 link = calloc(1, sizeof(*link)); 10492 if (!link) 10493 return ERR_PTR(-ENOMEM); 10494 link->detach = &bpf_link__detach_fd; 10495 10496 pfd = bpf_raw_tracepoint_open(NULL, prog_fd); 10497 if (pfd < 0) { 10498 pfd = -errno; 10499 free(link); 10500 pr_warn("prog '%s': failed to attach: %s\n", 10501 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10502 return ERR_PTR(pfd); 10503 } 10504 link->fd = pfd; 10505 return (struct bpf_link *)link; 10506 } 10507 10508 struct bpf_link *bpf_program__attach_trace(struct bpf_program *prog) 10509 { 10510 return bpf_program__attach_btf_id(prog); 10511 } 10512 10513 struct bpf_link *bpf_program__attach_lsm(struct bpf_program *prog) 10514 { 10515 return bpf_program__attach_btf_id(prog); 10516 } 10517 10518 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 10519 struct bpf_program *prog) 10520 { 10521 return bpf_program__attach_trace(prog); 10522 } 10523 10524 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec, 10525 struct bpf_program *prog) 10526 { 10527 return bpf_program__attach_lsm(prog); 10528 } 10529 10530 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec, 10531 struct bpf_program *prog) 10532 { 10533 return bpf_program__attach_iter(prog, NULL); 10534 } 10535 10536 static struct bpf_link * 10537 bpf_program__attach_fd(struct bpf_program *prog, int target_fd, int btf_id, 10538 const char *target_name) 10539 { 10540 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 10541 .target_btf_id = btf_id); 10542 enum bpf_attach_type attach_type; 10543 char errmsg[STRERR_BUFSIZE]; 10544 struct bpf_link *link; 10545 int prog_fd, link_fd; 10546 10547 prog_fd = bpf_program__fd(prog); 10548 if (prog_fd < 0) { 10549 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10550 return ERR_PTR(-EINVAL); 10551 } 10552 10553 link = calloc(1, sizeof(*link)); 10554 if (!link) 10555 return ERR_PTR(-ENOMEM); 10556 link->detach = &bpf_link__detach_fd; 10557 10558 attach_type = bpf_program__get_expected_attach_type(prog); 10559 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 10560 if (link_fd < 0) { 10561 link_fd = -errno; 10562 free(link); 10563 pr_warn("prog '%s': failed to attach to %s: %s\n", 10564 prog->name, target_name, 10565 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 10566 return ERR_PTR(link_fd); 10567 } 10568 link->fd = link_fd; 10569 return link; 10570 } 10571 10572 struct bpf_link * 10573 bpf_program__attach_cgroup(struct bpf_program *prog, int cgroup_fd) 10574 { 10575 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 10576 } 10577 10578 struct bpf_link * 10579 bpf_program__attach_netns(struct bpf_program *prog, int netns_fd) 10580 { 10581 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 10582 } 10583 10584 struct bpf_link *bpf_program__attach_xdp(struct bpf_program *prog, int ifindex) 10585 { 10586 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 10587 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 10588 } 10589 10590 struct bpf_link *bpf_program__attach_freplace(struct bpf_program *prog, 10591 int target_fd, 10592 const char *attach_func_name) 10593 { 10594 int btf_id; 10595 10596 if (!!target_fd != !!attach_func_name) { 10597 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 10598 prog->name); 10599 return ERR_PTR(-EINVAL); 10600 } 10601 10602 if (prog->type != BPF_PROG_TYPE_EXT) { 10603 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 10604 prog->name); 10605 return ERR_PTR(-EINVAL); 10606 } 10607 10608 if (target_fd) { 10609 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 10610 if (btf_id < 0) 10611 return ERR_PTR(btf_id); 10612 10613 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 10614 } else { 10615 /* no target, so use raw_tracepoint_open for compatibility 10616 * with old kernels 10617 */ 10618 return bpf_program__attach_trace(prog); 10619 } 10620 } 10621 10622 struct bpf_link * 10623 bpf_program__attach_iter(struct bpf_program *prog, 10624 const struct bpf_iter_attach_opts *opts) 10625 { 10626 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 10627 char errmsg[STRERR_BUFSIZE]; 10628 struct bpf_link *link; 10629 int prog_fd, link_fd; 10630 __u32 target_fd = 0; 10631 10632 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 10633 return ERR_PTR(-EINVAL); 10634 10635 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 10636 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 10637 10638 prog_fd = bpf_program__fd(prog); 10639 if (prog_fd < 0) { 10640 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10641 return ERR_PTR(-EINVAL); 10642 } 10643 10644 link = calloc(1, sizeof(*link)); 10645 if (!link) 10646 return ERR_PTR(-ENOMEM); 10647 link->detach = &bpf_link__detach_fd; 10648 10649 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 10650 &link_create_opts); 10651 if (link_fd < 0) { 10652 link_fd = -errno; 10653 free(link); 10654 pr_warn("prog '%s': failed to attach to iterator: %s\n", 10655 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 10656 return ERR_PTR(link_fd); 10657 } 10658 link->fd = link_fd; 10659 return link; 10660 } 10661 10662 struct bpf_link *bpf_program__attach(struct bpf_program *prog) 10663 { 10664 const struct bpf_sec_def *sec_def; 10665 10666 sec_def = find_sec_def(prog->sec_name); 10667 if (!sec_def || !sec_def->attach_fn) 10668 return ERR_PTR(-ESRCH); 10669 10670 return sec_def->attach_fn(sec_def, prog); 10671 } 10672 10673 static int bpf_link__detach_struct_ops(struct bpf_link *link) 10674 { 10675 __u32 zero = 0; 10676 10677 if (bpf_map_delete_elem(link->fd, &zero)) 10678 return -errno; 10679 10680 return 0; 10681 } 10682 10683 struct bpf_link *bpf_map__attach_struct_ops(struct bpf_map *map) 10684 { 10685 struct bpf_struct_ops *st_ops; 10686 struct bpf_link *link; 10687 __u32 i, zero = 0; 10688 int err; 10689 10690 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 10691 return ERR_PTR(-EINVAL); 10692 10693 link = calloc(1, sizeof(*link)); 10694 if (!link) 10695 return ERR_PTR(-EINVAL); 10696 10697 st_ops = map->st_ops; 10698 for (i = 0; i < btf_vlen(st_ops->type); i++) { 10699 struct bpf_program *prog = st_ops->progs[i]; 10700 void *kern_data; 10701 int prog_fd; 10702 10703 if (!prog) 10704 continue; 10705 10706 prog_fd = bpf_program__fd(prog); 10707 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 10708 *(unsigned long *)kern_data = prog_fd; 10709 } 10710 10711 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 10712 if (err) { 10713 err = -errno; 10714 free(link); 10715 return ERR_PTR(err); 10716 } 10717 10718 link->detach = bpf_link__detach_struct_ops; 10719 link->fd = map->fd; 10720 10721 return link; 10722 } 10723 10724 enum bpf_perf_event_ret 10725 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 10726 void **copy_mem, size_t *copy_size, 10727 bpf_perf_event_print_t fn, void *private_data) 10728 { 10729 struct perf_event_mmap_page *header = mmap_mem; 10730 __u64 data_head = ring_buffer_read_head(header); 10731 __u64 data_tail = header->data_tail; 10732 void *base = ((__u8 *)header) + page_size; 10733 int ret = LIBBPF_PERF_EVENT_CONT; 10734 struct perf_event_header *ehdr; 10735 size_t ehdr_size; 10736 10737 while (data_head != data_tail) { 10738 ehdr = base + (data_tail & (mmap_size - 1)); 10739 ehdr_size = ehdr->size; 10740 10741 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 10742 void *copy_start = ehdr; 10743 size_t len_first = base + mmap_size - copy_start; 10744 size_t len_secnd = ehdr_size - len_first; 10745 10746 if (*copy_size < ehdr_size) { 10747 free(*copy_mem); 10748 *copy_mem = malloc(ehdr_size); 10749 if (!*copy_mem) { 10750 *copy_size = 0; 10751 ret = LIBBPF_PERF_EVENT_ERROR; 10752 break; 10753 } 10754 *copy_size = ehdr_size; 10755 } 10756 10757 memcpy(*copy_mem, copy_start, len_first); 10758 memcpy(*copy_mem + len_first, base, len_secnd); 10759 ehdr = *copy_mem; 10760 } 10761 10762 ret = fn(ehdr, private_data); 10763 data_tail += ehdr_size; 10764 if (ret != LIBBPF_PERF_EVENT_CONT) 10765 break; 10766 } 10767 10768 ring_buffer_write_tail(header, data_tail); 10769 return ret; 10770 } 10771 10772 struct perf_buffer; 10773 10774 struct perf_buffer_params { 10775 struct perf_event_attr *attr; 10776 /* if event_cb is specified, it takes precendence */ 10777 perf_buffer_event_fn event_cb; 10778 /* sample_cb and lost_cb are higher-level common-case callbacks */ 10779 perf_buffer_sample_fn sample_cb; 10780 perf_buffer_lost_fn lost_cb; 10781 void *ctx; 10782 int cpu_cnt; 10783 int *cpus; 10784 int *map_keys; 10785 }; 10786 10787 struct perf_cpu_buf { 10788 struct perf_buffer *pb; 10789 void *base; /* mmap()'ed memory */ 10790 void *buf; /* for reconstructing segmented data */ 10791 size_t buf_size; 10792 int fd; 10793 int cpu; 10794 int map_key; 10795 }; 10796 10797 struct perf_buffer { 10798 perf_buffer_event_fn event_cb; 10799 perf_buffer_sample_fn sample_cb; 10800 perf_buffer_lost_fn lost_cb; 10801 void *ctx; /* passed into callbacks */ 10802 10803 size_t page_size; 10804 size_t mmap_size; 10805 struct perf_cpu_buf **cpu_bufs; 10806 struct epoll_event *events; 10807 int cpu_cnt; /* number of allocated CPU buffers */ 10808 int epoll_fd; /* perf event FD */ 10809 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 10810 }; 10811 10812 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 10813 struct perf_cpu_buf *cpu_buf) 10814 { 10815 if (!cpu_buf) 10816 return; 10817 if (cpu_buf->base && 10818 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 10819 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 10820 if (cpu_buf->fd >= 0) { 10821 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 10822 close(cpu_buf->fd); 10823 } 10824 free(cpu_buf->buf); 10825 free(cpu_buf); 10826 } 10827 10828 void perf_buffer__free(struct perf_buffer *pb) 10829 { 10830 int i; 10831 10832 if (IS_ERR_OR_NULL(pb)) 10833 return; 10834 if (pb->cpu_bufs) { 10835 for (i = 0; i < pb->cpu_cnt; i++) { 10836 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 10837 10838 if (!cpu_buf) 10839 continue; 10840 10841 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 10842 perf_buffer__free_cpu_buf(pb, cpu_buf); 10843 } 10844 free(pb->cpu_bufs); 10845 } 10846 if (pb->epoll_fd >= 0) 10847 close(pb->epoll_fd); 10848 free(pb->events); 10849 free(pb); 10850 } 10851 10852 static struct perf_cpu_buf * 10853 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 10854 int cpu, int map_key) 10855 { 10856 struct perf_cpu_buf *cpu_buf; 10857 char msg[STRERR_BUFSIZE]; 10858 int err; 10859 10860 cpu_buf = calloc(1, sizeof(*cpu_buf)); 10861 if (!cpu_buf) 10862 return ERR_PTR(-ENOMEM); 10863 10864 cpu_buf->pb = pb; 10865 cpu_buf->cpu = cpu; 10866 cpu_buf->map_key = map_key; 10867 10868 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 10869 -1, PERF_FLAG_FD_CLOEXEC); 10870 if (cpu_buf->fd < 0) { 10871 err = -errno; 10872 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 10873 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10874 goto error; 10875 } 10876 10877 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 10878 PROT_READ | PROT_WRITE, MAP_SHARED, 10879 cpu_buf->fd, 0); 10880 if (cpu_buf->base == MAP_FAILED) { 10881 cpu_buf->base = NULL; 10882 err = -errno; 10883 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 10884 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10885 goto error; 10886 } 10887 10888 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10889 err = -errno; 10890 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 10891 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10892 goto error; 10893 } 10894 10895 return cpu_buf; 10896 10897 error: 10898 perf_buffer__free_cpu_buf(pb, cpu_buf); 10899 return (struct perf_cpu_buf *)ERR_PTR(err); 10900 } 10901 10902 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 10903 struct perf_buffer_params *p); 10904 10905 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 10906 const struct perf_buffer_opts *opts) 10907 { 10908 struct perf_buffer_params p = {}; 10909 struct perf_event_attr attr = { 0, }; 10910 10911 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 10912 attr.type = PERF_TYPE_SOFTWARE; 10913 attr.sample_type = PERF_SAMPLE_RAW; 10914 attr.sample_period = 1; 10915 attr.wakeup_events = 1; 10916 10917 p.attr = &attr; 10918 p.sample_cb = opts ? opts->sample_cb : NULL; 10919 p.lost_cb = opts ? opts->lost_cb : NULL; 10920 p.ctx = opts ? opts->ctx : NULL; 10921 10922 return __perf_buffer__new(map_fd, page_cnt, &p); 10923 } 10924 10925 struct perf_buffer * 10926 perf_buffer__new_raw(int map_fd, size_t page_cnt, 10927 const struct perf_buffer_raw_opts *opts) 10928 { 10929 struct perf_buffer_params p = {}; 10930 10931 p.attr = opts->attr; 10932 p.event_cb = opts->event_cb; 10933 p.ctx = opts->ctx; 10934 p.cpu_cnt = opts->cpu_cnt; 10935 p.cpus = opts->cpus; 10936 p.map_keys = opts->map_keys; 10937 10938 return __perf_buffer__new(map_fd, page_cnt, &p); 10939 } 10940 10941 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 10942 struct perf_buffer_params *p) 10943 { 10944 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 10945 struct bpf_map_info map; 10946 char msg[STRERR_BUFSIZE]; 10947 struct perf_buffer *pb; 10948 bool *online = NULL; 10949 __u32 map_info_len; 10950 int err, i, j, n; 10951 10952 if (page_cnt & (page_cnt - 1)) { 10953 pr_warn("page count should be power of two, but is %zu\n", 10954 page_cnt); 10955 return ERR_PTR(-EINVAL); 10956 } 10957 10958 /* best-effort sanity checks */ 10959 memset(&map, 0, sizeof(map)); 10960 map_info_len = sizeof(map); 10961 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 10962 if (err) { 10963 err = -errno; 10964 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 10965 * -EBADFD, -EFAULT, or -E2BIG on real error 10966 */ 10967 if (err != -EINVAL) { 10968 pr_warn("failed to get map info for map FD %d: %s\n", 10969 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 10970 return ERR_PTR(err); 10971 } 10972 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 10973 map_fd); 10974 } else { 10975 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 10976 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 10977 map.name); 10978 return ERR_PTR(-EINVAL); 10979 } 10980 } 10981 10982 pb = calloc(1, sizeof(*pb)); 10983 if (!pb) 10984 return ERR_PTR(-ENOMEM); 10985 10986 pb->event_cb = p->event_cb; 10987 pb->sample_cb = p->sample_cb; 10988 pb->lost_cb = p->lost_cb; 10989 pb->ctx = p->ctx; 10990 10991 pb->page_size = getpagesize(); 10992 pb->mmap_size = pb->page_size * page_cnt; 10993 pb->map_fd = map_fd; 10994 10995 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 10996 if (pb->epoll_fd < 0) { 10997 err = -errno; 10998 pr_warn("failed to create epoll instance: %s\n", 10999 libbpf_strerror_r(err, msg, sizeof(msg))); 11000 goto error; 11001 } 11002 11003 if (p->cpu_cnt > 0) { 11004 pb->cpu_cnt = p->cpu_cnt; 11005 } else { 11006 pb->cpu_cnt = libbpf_num_possible_cpus(); 11007 if (pb->cpu_cnt < 0) { 11008 err = pb->cpu_cnt; 11009 goto error; 11010 } 11011 if (map.max_entries && map.max_entries < pb->cpu_cnt) 11012 pb->cpu_cnt = map.max_entries; 11013 } 11014 11015 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 11016 if (!pb->events) { 11017 err = -ENOMEM; 11018 pr_warn("failed to allocate events: out of memory\n"); 11019 goto error; 11020 } 11021 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 11022 if (!pb->cpu_bufs) { 11023 err = -ENOMEM; 11024 pr_warn("failed to allocate buffers: out of memory\n"); 11025 goto error; 11026 } 11027 11028 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 11029 if (err) { 11030 pr_warn("failed to get online CPU mask: %d\n", err); 11031 goto error; 11032 } 11033 11034 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 11035 struct perf_cpu_buf *cpu_buf; 11036 int cpu, map_key; 11037 11038 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 11039 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 11040 11041 /* in case user didn't explicitly requested particular CPUs to 11042 * be attached to, skip offline/not present CPUs 11043 */ 11044 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 11045 continue; 11046 11047 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 11048 if (IS_ERR(cpu_buf)) { 11049 err = PTR_ERR(cpu_buf); 11050 goto error; 11051 } 11052 11053 pb->cpu_bufs[j] = cpu_buf; 11054 11055 err = bpf_map_update_elem(pb->map_fd, &map_key, 11056 &cpu_buf->fd, 0); 11057 if (err) { 11058 err = -errno; 11059 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 11060 cpu, map_key, cpu_buf->fd, 11061 libbpf_strerror_r(err, msg, sizeof(msg))); 11062 goto error; 11063 } 11064 11065 pb->events[j].events = EPOLLIN; 11066 pb->events[j].data.ptr = cpu_buf; 11067 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 11068 &pb->events[j]) < 0) { 11069 err = -errno; 11070 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 11071 cpu, cpu_buf->fd, 11072 libbpf_strerror_r(err, msg, sizeof(msg))); 11073 goto error; 11074 } 11075 j++; 11076 } 11077 pb->cpu_cnt = j; 11078 free(online); 11079 11080 return pb; 11081 11082 error: 11083 free(online); 11084 if (pb) 11085 perf_buffer__free(pb); 11086 return ERR_PTR(err); 11087 } 11088 11089 struct perf_sample_raw { 11090 struct perf_event_header header; 11091 uint32_t size; 11092 char data[]; 11093 }; 11094 11095 struct perf_sample_lost { 11096 struct perf_event_header header; 11097 uint64_t id; 11098 uint64_t lost; 11099 uint64_t sample_id; 11100 }; 11101 11102 static enum bpf_perf_event_ret 11103 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 11104 { 11105 struct perf_cpu_buf *cpu_buf = ctx; 11106 struct perf_buffer *pb = cpu_buf->pb; 11107 void *data = e; 11108 11109 /* user wants full control over parsing perf event */ 11110 if (pb->event_cb) 11111 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 11112 11113 switch (e->type) { 11114 case PERF_RECORD_SAMPLE: { 11115 struct perf_sample_raw *s = data; 11116 11117 if (pb->sample_cb) 11118 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 11119 break; 11120 } 11121 case PERF_RECORD_LOST: { 11122 struct perf_sample_lost *s = data; 11123 11124 if (pb->lost_cb) 11125 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 11126 break; 11127 } 11128 default: 11129 pr_warn("unknown perf sample type %d\n", e->type); 11130 return LIBBPF_PERF_EVENT_ERROR; 11131 } 11132 return LIBBPF_PERF_EVENT_CONT; 11133 } 11134 11135 static int perf_buffer__process_records(struct perf_buffer *pb, 11136 struct perf_cpu_buf *cpu_buf) 11137 { 11138 enum bpf_perf_event_ret ret; 11139 11140 ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size, 11141 pb->page_size, &cpu_buf->buf, 11142 &cpu_buf->buf_size, 11143 perf_buffer__process_record, cpu_buf); 11144 if (ret != LIBBPF_PERF_EVENT_CONT) 11145 return ret; 11146 return 0; 11147 } 11148 11149 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 11150 { 11151 return pb->epoll_fd; 11152 } 11153 11154 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 11155 { 11156 int i, cnt, err; 11157 11158 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 11159 for (i = 0; i < cnt; i++) { 11160 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 11161 11162 err = perf_buffer__process_records(pb, cpu_buf); 11163 if (err) { 11164 pr_warn("error while processing records: %d\n", err); 11165 return err; 11166 } 11167 } 11168 return cnt < 0 ? -errno : cnt; 11169 } 11170 11171 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 11172 * manager. 11173 */ 11174 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 11175 { 11176 return pb->cpu_cnt; 11177 } 11178 11179 /* 11180 * Return perf_event FD of a ring buffer in *buf_idx* slot of 11181 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 11182 * select()/poll()/epoll() Linux syscalls. 11183 */ 11184 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 11185 { 11186 struct perf_cpu_buf *cpu_buf; 11187 11188 if (buf_idx >= pb->cpu_cnt) 11189 return -EINVAL; 11190 11191 cpu_buf = pb->cpu_bufs[buf_idx]; 11192 if (!cpu_buf) 11193 return -ENOENT; 11194 11195 return cpu_buf->fd; 11196 } 11197 11198 /* 11199 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 11200 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 11201 * consume, do nothing and return success. 11202 * Returns: 11203 * - 0 on success; 11204 * - <0 on failure. 11205 */ 11206 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 11207 { 11208 struct perf_cpu_buf *cpu_buf; 11209 11210 if (buf_idx >= pb->cpu_cnt) 11211 return -EINVAL; 11212 11213 cpu_buf = pb->cpu_bufs[buf_idx]; 11214 if (!cpu_buf) 11215 return -ENOENT; 11216 11217 return perf_buffer__process_records(pb, cpu_buf); 11218 } 11219 11220 int perf_buffer__consume(struct perf_buffer *pb) 11221 { 11222 int i, err; 11223 11224 for (i = 0; i < pb->cpu_cnt; i++) { 11225 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 11226 11227 if (!cpu_buf) 11228 continue; 11229 11230 err = perf_buffer__process_records(pb, cpu_buf); 11231 if (err) { 11232 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 11233 return err; 11234 } 11235 } 11236 return 0; 11237 } 11238 11239 struct bpf_prog_info_array_desc { 11240 int array_offset; /* e.g. offset of jited_prog_insns */ 11241 int count_offset; /* e.g. offset of jited_prog_len */ 11242 int size_offset; /* > 0: offset of rec size, 11243 * < 0: fix size of -size_offset 11244 */ 11245 }; 11246 11247 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = { 11248 [BPF_PROG_INFO_JITED_INSNS] = { 11249 offsetof(struct bpf_prog_info, jited_prog_insns), 11250 offsetof(struct bpf_prog_info, jited_prog_len), 11251 -1, 11252 }, 11253 [BPF_PROG_INFO_XLATED_INSNS] = { 11254 offsetof(struct bpf_prog_info, xlated_prog_insns), 11255 offsetof(struct bpf_prog_info, xlated_prog_len), 11256 -1, 11257 }, 11258 [BPF_PROG_INFO_MAP_IDS] = { 11259 offsetof(struct bpf_prog_info, map_ids), 11260 offsetof(struct bpf_prog_info, nr_map_ids), 11261 -(int)sizeof(__u32), 11262 }, 11263 [BPF_PROG_INFO_JITED_KSYMS] = { 11264 offsetof(struct bpf_prog_info, jited_ksyms), 11265 offsetof(struct bpf_prog_info, nr_jited_ksyms), 11266 -(int)sizeof(__u64), 11267 }, 11268 [BPF_PROG_INFO_JITED_FUNC_LENS] = { 11269 offsetof(struct bpf_prog_info, jited_func_lens), 11270 offsetof(struct bpf_prog_info, nr_jited_func_lens), 11271 -(int)sizeof(__u32), 11272 }, 11273 [BPF_PROG_INFO_FUNC_INFO] = { 11274 offsetof(struct bpf_prog_info, func_info), 11275 offsetof(struct bpf_prog_info, nr_func_info), 11276 offsetof(struct bpf_prog_info, func_info_rec_size), 11277 }, 11278 [BPF_PROG_INFO_LINE_INFO] = { 11279 offsetof(struct bpf_prog_info, line_info), 11280 offsetof(struct bpf_prog_info, nr_line_info), 11281 offsetof(struct bpf_prog_info, line_info_rec_size), 11282 }, 11283 [BPF_PROG_INFO_JITED_LINE_INFO] = { 11284 offsetof(struct bpf_prog_info, jited_line_info), 11285 offsetof(struct bpf_prog_info, nr_jited_line_info), 11286 offsetof(struct bpf_prog_info, jited_line_info_rec_size), 11287 }, 11288 [BPF_PROG_INFO_PROG_TAGS] = { 11289 offsetof(struct bpf_prog_info, prog_tags), 11290 offsetof(struct bpf_prog_info, nr_prog_tags), 11291 -(int)sizeof(__u8) * BPF_TAG_SIZE, 11292 }, 11293 11294 }; 11295 11296 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info, 11297 int offset) 11298 { 11299 __u32 *array = (__u32 *)info; 11300 11301 if (offset >= 0) 11302 return array[offset / sizeof(__u32)]; 11303 return -(int)offset; 11304 } 11305 11306 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info, 11307 int offset) 11308 { 11309 __u64 *array = (__u64 *)info; 11310 11311 if (offset >= 0) 11312 return array[offset / sizeof(__u64)]; 11313 return -(int)offset; 11314 } 11315 11316 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset, 11317 __u32 val) 11318 { 11319 __u32 *array = (__u32 *)info; 11320 11321 if (offset >= 0) 11322 array[offset / sizeof(__u32)] = val; 11323 } 11324 11325 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset, 11326 __u64 val) 11327 { 11328 __u64 *array = (__u64 *)info; 11329 11330 if (offset >= 0) 11331 array[offset / sizeof(__u64)] = val; 11332 } 11333 11334 struct bpf_prog_info_linear * 11335 bpf_program__get_prog_info_linear(int fd, __u64 arrays) 11336 { 11337 struct bpf_prog_info_linear *info_linear; 11338 struct bpf_prog_info info = {}; 11339 __u32 info_len = sizeof(info); 11340 __u32 data_len = 0; 11341 int i, err; 11342 void *ptr; 11343 11344 if (arrays >> BPF_PROG_INFO_LAST_ARRAY) 11345 return ERR_PTR(-EINVAL); 11346 11347 /* step 1: get array dimensions */ 11348 err = bpf_obj_get_info_by_fd(fd, &info, &info_len); 11349 if (err) { 11350 pr_debug("can't get prog info: %s", strerror(errno)); 11351 return ERR_PTR(-EFAULT); 11352 } 11353 11354 /* step 2: calculate total size of all arrays */ 11355 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11356 bool include_array = (arrays & (1UL << i)) > 0; 11357 struct bpf_prog_info_array_desc *desc; 11358 __u32 count, size; 11359 11360 desc = bpf_prog_info_array_desc + i; 11361 11362 /* kernel is too old to support this field */ 11363 if (info_len < desc->array_offset + sizeof(__u32) || 11364 info_len < desc->count_offset + sizeof(__u32) || 11365 (desc->size_offset > 0 && info_len < desc->size_offset)) 11366 include_array = false; 11367 11368 if (!include_array) { 11369 arrays &= ~(1UL << i); /* clear the bit */ 11370 continue; 11371 } 11372 11373 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11374 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11375 11376 data_len += count * size; 11377 } 11378 11379 /* step 3: allocate continuous memory */ 11380 data_len = roundup(data_len, sizeof(__u64)); 11381 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len); 11382 if (!info_linear) 11383 return ERR_PTR(-ENOMEM); 11384 11385 /* step 4: fill data to info_linear->info */ 11386 info_linear->arrays = arrays; 11387 memset(&info_linear->info, 0, sizeof(info)); 11388 ptr = info_linear->data; 11389 11390 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11391 struct bpf_prog_info_array_desc *desc; 11392 __u32 count, size; 11393 11394 if ((arrays & (1UL << i)) == 0) 11395 continue; 11396 11397 desc = bpf_prog_info_array_desc + i; 11398 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11399 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11400 bpf_prog_info_set_offset_u32(&info_linear->info, 11401 desc->count_offset, count); 11402 bpf_prog_info_set_offset_u32(&info_linear->info, 11403 desc->size_offset, size); 11404 bpf_prog_info_set_offset_u64(&info_linear->info, 11405 desc->array_offset, 11406 ptr_to_u64(ptr)); 11407 ptr += count * size; 11408 } 11409 11410 /* step 5: call syscall again to get required arrays */ 11411 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len); 11412 if (err) { 11413 pr_debug("can't get prog info: %s", strerror(errno)); 11414 free(info_linear); 11415 return ERR_PTR(-EFAULT); 11416 } 11417 11418 /* step 6: verify the data */ 11419 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11420 struct bpf_prog_info_array_desc *desc; 11421 __u32 v1, v2; 11422 11423 if ((arrays & (1UL << i)) == 0) 11424 continue; 11425 11426 desc = bpf_prog_info_array_desc + i; 11427 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11428 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 11429 desc->count_offset); 11430 if (v1 != v2) 11431 pr_warn("%s: mismatch in element count\n", __func__); 11432 11433 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11434 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 11435 desc->size_offset); 11436 if (v1 != v2) 11437 pr_warn("%s: mismatch in rec size\n", __func__); 11438 } 11439 11440 /* step 7: update info_len and data_len */ 11441 info_linear->info_len = sizeof(struct bpf_prog_info); 11442 info_linear->data_len = data_len; 11443 11444 return info_linear; 11445 } 11446 11447 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear) 11448 { 11449 int i; 11450 11451 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11452 struct bpf_prog_info_array_desc *desc; 11453 __u64 addr, offs; 11454 11455 if ((info_linear->arrays & (1UL << i)) == 0) 11456 continue; 11457 11458 desc = bpf_prog_info_array_desc + i; 11459 addr = bpf_prog_info_read_offset_u64(&info_linear->info, 11460 desc->array_offset); 11461 offs = addr - ptr_to_u64(info_linear->data); 11462 bpf_prog_info_set_offset_u64(&info_linear->info, 11463 desc->array_offset, offs); 11464 } 11465 } 11466 11467 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear) 11468 { 11469 int i; 11470 11471 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11472 struct bpf_prog_info_array_desc *desc; 11473 __u64 addr, offs; 11474 11475 if ((info_linear->arrays & (1UL << i)) == 0) 11476 continue; 11477 11478 desc = bpf_prog_info_array_desc + i; 11479 offs = bpf_prog_info_read_offset_u64(&info_linear->info, 11480 desc->array_offset); 11481 addr = offs + ptr_to_u64(info_linear->data); 11482 bpf_prog_info_set_offset_u64(&info_linear->info, 11483 desc->array_offset, addr); 11484 } 11485 } 11486 11487 int bpf_program__set_attach_target(struct bpf_program *prog, 11488 int attach_prog_fd, 11489 const char *attach_func_name) 11490 { 11491 int btf_obj_fd = 0, btf_id = 0, err; 11492 11493 if (!prog || attach_prog_fd < 0 || !attach_func_name) 11494 return -EINVAL; 11495 11496 if (prog->obj->loaded) 11497 return -EINVAL; 11498 11499 if (attach_prog_fd) { 11500 btf_id = libbpf_find_prog_btf_id(attach_func_name, 11501 attach_prog_fd); 11502 if (btf_id < 0) 11503 return btf_id; 11504 } else { 11505 /* load btf_vmlinux, if not yet */ 11506 err = bpf_object__load_vmlinux_btf(prog->obj, true); 11507 if (err) 11508 return err; 11509 err = find_kernel_btf_id(prog->obj, attach_func_name, 11510 prog->expected_attach_type, 11511 &btf_obj_fd, &btf_id); 11512 if (err) 11513 return err; 11514 } 11515 11516 prog->attach_btf_id = btf_id; 11517 prog->attach_btf_obj_fd = btf_obj_fd; 11518 prog->attach_prog_fd = attach_prog_fd; 11519 return 0; 11520 } 11521 11522 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 11523 { 11524 int err = 0, n, len, start, end = -1; 11525 bool *tmp; 11526 11527 *mask = NULL; 11528 *mask_sz = 0; 11529 11530 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 11531 while (*s) { 11532 if (*s == ',' || *s == '\n') { 11533 s++; 11534 continue; 11535 } 11536 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 11537 if (n <= 0 || n > 2) { 11538 pr_warn("Failed to get CPU range %s: %d\n", s, n); 11539 err = -EINVAL; 11540 goto cleanup; 11541 } else if (n == 1) { 11542 end = start; 11543 } 11544 if (start < 0 || start > end) { 11545 pr_warn("Invalid CPU range [%d,%d] in %s\n", 11546 start, end, s); 11547 err = -EINVAL; 11548 goto cleanup; 11549 } 11550 tmp = realloc(*mask, end + 1); 11551 if (!tmp) { 11552 err = -ENOMEM; 11553 goto cleanup; 11554 } 11555 *mask = tmp; 11556 memset(tmp + *mask_sz, 0, start - *mask_sz); 11557 memset(tmp + start, 1, end - start + 1); 11558 *mask_sz = end + 1; 11559 s += len; 11560 } 11561 if (!*mask_sz) { 11562 pr_warn("Empty CPU range\n"); 11563 return -EINVAL; 11564 } 11565 return 0; 11566 cleanup: 11567 free(*mask); 11568 *mask = NULL; 11569 return err; 11570 } 11571 11572 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 11573 { 11574 int fd, err = 0, len; 11575 char buf[128]; 11576 11577 fd = open(fcpu, O_RDONLY); 11578 if (fd < 0) { 11579 err = -errno; 11580 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 11581 return err; 11582 } 11583 len = read(fd, buf, sizeof(buf)); 11584 close(fd); 11585 if (len <= 0) { 11586 err = len ? -errno : -EINVAL; 11587 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 11588 return err; 11589 } 11590 if (len >= sizeof(buf)) { 11591 pr_warn("CPU mask is too big in file %s\n", fcpu); 11592 return -E2BIG; 11593 } 11594 buf[len] = '\0'; 11595 11596 return parse_cpu_mask_str(buf, mask, mask_sz); 11597 } 11598 11599 int libbpf_num_possible_cpus(void) 11600 { 11601 static const char *fcpu = "/sys/devices/system/cpu/possible"; 11602 static int cpus; 11603 int err, n, i, tmp_cpus; 11604 bool *mask; 11605 11606 tmp_cpus = READ_ONCE(cpus); 11607 if (tmp_cpus > 0) 11608 return tmp_cpus; 11609 11610 err = parse_cpu_mask_file(fcpu, &mask, &n); 11611 if (err) 11612 return err; 11613 11614 tmp_cpus = 0; 11615 for (i = 0; i < n; i++) { 11616 if (mask[i]) 11617 tmp_cpus++; 11618 } 11619 free(mask); 11620 11621 WRITE_ONCE(cpus, tmp_cpus); 11622 return tmp_cpus; 11623 } 11624 11625 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 11626 const struct bpf_object_open_opts *opts) 11627 { 11628 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 11629 .object_name = s->name, 11630 ); 11631 struct bpf_object *obj; 11632 int i; 11633 11634 /* Attempt to preserve opts->object_name, unless overriden by user 11635 * explicitly. Overwriting object name for skeletons is discouraged, 11636 * as it breaks global data maps, because they contain object name 11637 * prefix as their own map name prefix. When skeleton is generated, 11638 * bpftool is making an assumption that this name will stay the same. 11639 */ 11640 if (opts) { 11641 memcpy(&skel_opts, opts, sizeof(*opts)); 11642 if (!opts->object_name) 11643 skel_opts.object_name = s->name; 11644 } 11645 11646 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 11647 if (IS_ERR(obj)) { 11648 pr_warn("failed to initialize skeleton BPF object '%s': %ld\n", 11649 s->name, PTR_ERR(obj)); 11650 return PTR_ERR(obj); 11651 } 11652 11653 *s->obj = obj; 11654 11655 for (i = 0; i < s->map_cnt; i++) { 11656 struct bpf_map **map = s->maps[i].map; 11657 const char *name = s->maps[i].name; 11658 void **mmaped = s->maps[i].mmaped; 11659 11660 *map = bpf_object__find_map_by_name(obj, name); 11661 if (!*map) { 11662 pr_warn("failed to find skeleton map '%s'\n", name); 11663 return -ESRCH; 11664 } 11665 11666 /* externs shouldn't be pre-setup from user code */ 11667 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 11668 *mmaped = (*map)->mmaped; 11669 } 11670 11671 for (i = 0; i < s->prog_cnt; i++) { 11672 struct bpf_program **prog = s->progs[i].prog; 11673 const char *name = s->progs[i].name; 11674 11675 *prog = bpf_object__find_program_by_name(obj, name); 11676 if (!*prog) { 11677 pr_warn("failed to find skeleton program '%s'\n", name); 11678 return -ESRCH; 11679 } 11680 } 11681 11682 return 0; 11683 } 11684 11685 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 11686 { 11687 int i, err; 11688 11689 err = bpf_object__load(*s->obj); 11690 if (err) { 11691 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 11692 return err; 11693 } 11694 11695 for (i = 0; i < s->map_cnt; i++) { 11696 struct bpf_map *map = *s->maps[i].map; 11697 size_t mmap_sz = bpf_map_mmap_sz(map); 11698 int prot, map_fd = bpf_map__fd(map); 11699 void **mmaped = s->maps[i].mmaped; 11700 11701 if (!mmaped) 11702 continue; 11703 11704 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 11705 *mmaped = NULL; 11706 continue; 11707 } 11708 11709 if (map->def.map_flags & BPF_F_RDONLY_PROG) 11710 prot = PROT_READ; 11711 else 11712 prot = PROT_READ | PROT_WRITE; 11713 11714 /* Remap anonymous mmap()-ed "map initialization image" as 11715 * a BPF map-backed mmap()-ed memory, but preserving the same 11716 * memory address. This will cause kernel to change process' 11717 * page table to point to a different piece of kernel memory, 11718 * but from userspace point of view memory address (and its 11719 * contents, being identical at this point) will stay the 11720 * same. This mapping will be released by bpf_object__close() 11721 * as per normal clean up procedure, so we don't need to worry 11722 * about it from skeleton's clean up perspective. 11723 */ 11724 *mmaped = mmap(map->mmaped, mmap_sz, prot, 11725 MAP_SHARED | MAP_FIXED, map_fd, 0); 11726 if (*mmaped == MAP_FAILED) { 11727 err = -errno; 11728 *mmaped = NULL; 11729 pr_warn("failed to re-mmap() map '%s': %d\n", 11730 bpf_map__name(map), err); 11731 return err; 11732 } 11733 } 11734 11735 return 0; 11736 } 11737 11738 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 11739 { 11740 int i; 11741 11742 for (i = 0; i < s->prog_cnt; i++) { 11743 struct bpf_program *prog = *s->progs[i].prog; 11744 struct bpf_link **link = s->progs[i].link; 11745 const struct bpf_sec_def *sec_def; 11746 11747 if (!prog->load) 11748 continue; 11749 11750 sec_def = find_sec_def(prog->sec_name); 11751 if (!sec_def || !sec_def->attach_fn) 11752 continue; 11753 11754 *link = sec_def->attach_fn(sec_def, prog); 11755 if (IS_ERR(*link)) { 11756 pr_warn("failed to auto-attach program '%s': %ld\n", 11757 bpf_program__name(prog), PTR_ERR(*link)); 11758 return PTR_ERR(*link); 11759 } 11760 } 11761 11762 return 0; 11763 } 11764 11765 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 11766 { 11767 int i; 11768 11769 for (i = 0; i < s->prog_cnt; i++) { 11770 struct bpf_link **link = s->progs[i].link; 11771 11772 bpf_link__destroy(*link); 11773 *link = NULL; 11774 } 11775 } 11776 11777 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 11778 { 11779 if (s->progs) 11780 bpf_object__detach_skeleton(s); 11781 if (s->obj) 11782 bpf_object__close(*s->obj); 11783 free(s->maps); 11784 free(s->progs); 11785 free(s); 11786 } 11787