xref: /openbmc/linux/tools/lib/bpf/libbpf.c (revision e71383fb9cd15a28d6c01d2c165a96f1c0bcf418)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * Common eBPF ELF object loading operations.
5  *
6  * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7  * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8  * Copyright (C) 2015 Huawei Inc.
9  * Copyright (C) 2017 Nicira, Inc.
10  * Copyright (C) 2019 Isovalent, Inc.
11  */
12 
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/limits.h>
35 #include <linux/perf_event.h>
36 #include <linux/ring_buffer.h>
37 #include <sys/epoll.h>
38 #include <sys/ioctl.h>
39 #include <sys/mman.h>
40 #include <sys/stat.h>
41 #include <sys/types.h>
42 #include <sys/vfs.h>
43 #include <sys/utsname.h>
44 #include <sys/resource.h>
45 #include <libelf.h>
46 #include <gelf.h>
47 #include <zlib.h>
48 
49 #include "libbpf.h"
50 #include "bpf.h"
51 #include "btf.h"
52 #include "str_error.h"
53 #include "libbpf_internal.h"
54 #include "hashmap.h"
55 #include "bpf_gen_internal.h"
56 #include "zip.h"
57 
58 #ifndef BPF_FS_MAGIC
59 #define BPF_FS_MAGIC		0xcafe4a11
60 #endif
61 
62 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
63 
64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
65  * compilation if user enables corresponding warning. Disable it explicitly.
66  */
67 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
68 
69 #define __printf(a, b)	__attribute__((format(printf, a, b)))
70 
71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
73 
74 static const char * const attach_type_name[] = {
75 	[BPF_CGROUP_INET_INGRESS]	= "cgroup_inet_ingress",
76 	[BPF_CGROUP_INET_EGRESS]	= "cgroup_inet_egress",
77 	[BPF_CGROUP_INET_SOCK_CREATE]	= "cgroup_inet_sock_create",
78 	[BPF_CGROUP_INET_SOCK_RELEASE]	= "cgroup_inet_sock_release",
79 	[BPF_CGROUP_SOCK_OPS]		= "cgroup_sock_ops",
80 	[BPF_CGROUP_DEVICE]		= "cgroup_device",
81 	[BPF_CGROUP_INET4_BIND]		= "cgroup_inet4_bind",
82 	[BPF_CGROUP_INET6_BIND]		= "cgroup_inet6_bind",
83 	[BPF_CGROUP_INET4_CONNECT]	= "cgroup_inet4_connect",
84 	[BPF_CGROUP_INET6_CONNECT]	= "cgroup_inet6_connect",
85 	[BPF_CGROUP_INET4_POST_BIND]	= "cgroup_inet4_post_bind",
86 	[BPF_CGROUP_INET6_POST_BIND]	= "cgroup_inet6_post_bind",
87 	[BPF_CGROUP_INET4_GETPEERNAME]	= "cgroup_inet4_getpeername",
88 	[BPF_CGROUP_INET6_GETPEERNAME]	= "cgroup_inet6_getpeername",
89 	[BPF_CGROUP_INET4_GETSOCKNAME]	= "cgroup_inet4_getsockname",
90 	[BPF_CGROUP_INET6_GETSOCKNAME]	= "cgroup_inet6_getsockname",
91 	[BPF_CGROUP_UDP4_SENDMSG]	= "cgroup_udp4_sendmsg",
92 	[BPF_CGROUP_UDP6_SENDMSG]	= "cgroup_udp6_sendmsg",
93 	[BPF_CGROUP_SYSCTL]		= "cgroup_sysctl",
94 	[BPF_CGROUP_UDP4_RECVMSG]	= "cgroup_udp4_recvmsg",
95 	[BPF_CGROUP_UDP6_RECVMSG]	= "cgroup_udp6_recvmsg",
96 	[BPF_CGROUP_GETSOCKOPT]		= "cgroup_getsockopt",
97 	[BPF_CGROUP_SETSOCKOPT]		= "cgroup_setsockopt",
98 	[BPF_SK_SKB_STREAM_PARSER]	= "sk_skb_stream_parser",
99 	[BPF_SK_SKB_STREAM_VERDICT]	= "sk_skb_stream_verdict",
100 	[BPF_SK_SKB_VERDICT]		= "sk_skb_verdict",
101 	[BPF_SK_MSG_VERDICT]		= "sk_msg_verdict",
102 	[BPF_LIRC_MODE2]		= "lirc_mode2",
103 	[BPF_FLOW_DISSECTOR]		= "flow_dissector",
104 	[BPF_TRACE_RAW_TP]		= "trace_raw_tp",
105 	[BPF_TRACE_FENTRY]		= "trace_fentry",
106 	[BPF_TRACE_FEXIT]		= "trace_fexit",
107 	[BPF_MODIFY_RETURN]		= "modify_return",
108 	[BPF_LSM_MAC]			= "lsm_mac",
109 	[BPF_LSM_CGROUP]		= "lsm_cgroup",
110 	[BPF_SK_LOOKUP]			= "sk_lookup",
111 	[BPF_TRACE_ITER]		= "trace_iter",
112 	[BPF_XDP_DEVMAP]		= "xdp_devmap",
113 	[BPF_XDP_CPUMAP]		= "xdp_cpumap",
114 	[BPF_XDP]			= "xdp",
115 	[BPF_SK_REUSEPORT_SELECT]	= "sk_reuseport_select",
116 	[BPF_SK_REUSEPORT_SELECT_OR_MIGRATE]	= "sk_reuseport_select_or_migrate",
117 	[BPF_PERF_EVENT]		= "perf_event",
118 	[BPF_TRACE_KPROBE_MULTI]	= "trace_kprobe_multi",
119 	[BPF_STRUCT_OPS]		= "struct_ops",
120 	[BPF_NETFILTER]			= "netfilter",
121 };
122 
123 static const char * const link_type_name[] = {
124 	[BPF_LINK_TYPE_UNSPEC]			= "unspec",
125 	[BPF_LINK_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
126 	[BPF_LINK_TYPE_TRACING]			= "tracing",
127 	[BPF_LINK_TYPE_CGROUP]			= "cgroup",
128 	[BPF_LINK_TYPE_ITER]			= "iter",
129 	[BPF_LINK_TYPE_NETNS]			= "netns",
130 	[BPF_LINK_TYPE_XDP]			= "xdp",
131 	[BPF_LINK_TYPE_PERF_EVENT]		= "perf_event",
132 	[BPF_LINK_TYPE_KPROBE_MULTI]		= "kprobe_multi",
133 	[BPF_LINK_TYPE_STRUCT_OPS]		= "struct_ops",
134 	[BPF_LINK_TYPE_NETFILTER]		= "netfilter",
135 };
136 
137 static const char * const map_type_name[] = {
138 	[BPF_MAP_TYPE_UNSPEC]			= "unspec",
139 	[BPF_MAP_TYPE_HASH]			= "hash",
140 	[BPF_MAP_TYPE_ARRAY]			= "array",
141 	[BPF_MAP_TYPE_PROG_ARRAY]		= "prog_array",
142 	[BPF_MAP_TYPE_PERF_EVENT_ARRAY]		= "perf_event_array",
143 	[BPF_MAP_TYPE_PERCPU_HASH]		= "percpu_hash",
144 	[BPF_MAP_TYPE_PERCPU_ARRAY]		= "percpu_array",
145 	[BPF_MAP_TYPE_STACK_TRACE]		= "stack_trace",
146 	[BPF_MAP_TYPE_CGROUP_ARRAY]		= "cgroup_array",
147 	[BPF_MAP_TYPE_LRU_HASH]			= "lru_hash",
148 	[BPF_MAP_TYPE_LRU_PERCPU_HASH]		= "lru_percpu_hash",
149 	[BPF_MAP_TYPE_LPM_TRIE]			= "lpm_trie",
150 	[BPF_MAP_TYPE_ARRAY_OF_MAPS]		= "array_of_maps",
151 	[BPF_MAP_TYPE_HASH_OF_MAPS]		= "hash_of_maps",
152 	[BPF_MAP_TYPE_DEVMAP]			= "devmap",
153 	[BPF_MAP_TYPE_DEVMAP_HASH]		= "devmap_hash",
154 	[BPF_MAP_TYPE_SOCKMAP]			= "sockmap",
155 	[BPF_MAP_TYPE_CPUMAP]			= "cpumap",
156 	[BPF_MAP_TYPE_XSKMAP]			= "xskmap",
157 	[BPF_MAP_TYPE_SOCKHASH]			= "sockhash",
158 	[BPF_MAP_TYPE_CGROUP_STORAGE]		= "cgroup_storage",
159 	[BPF_MAP_TYPE_REUSEPORT_SOCKARRAY]	= "reuseport_sockarray",
160 	[BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE]	= "percpu_cgroup_storage",
161 	[BPF_MAP_TYPE_QUEUE]			= "queue",
162 	[BPF_MAP_TYPE_STACK]			= "stack",
163 	[BPF_MAP_TYPE_SK_STORAGE]		= "sk_storage",
164 	[BPF_MAP_TYPE_STRUCT_OPS]		= "struct_ops",
165 	[BPF_MAP_TYPE_RINGBUF]			= "ringbuf",
166 	[BPF_MAP_TYPE_INODE_STORAGE]		= "inode_storage",
167 	[BPF_MAP_TYPE_TASK_STORAGE]		= "task_storage",
168 	[BPF_MAP_TYPE_BLOOM_FILTER]		= "bloom_filter",
169 	[BPF_MAP_TYPE_USER_RINGBUF]             = "user_ringbuf",
170 	[BPF_MAP_TYPE_CGRP_STORAGE]		= "cgrp_storage",
171 };
172 
173 static const char * const prog_type_name[] = {
174 	[BPF_PROG_TYPE_UNSPEC]			= "unspec",
175 	[BPF_PROG_TYPE_SOCKET_FILTER]		= "socket_filter",
176 	[BPF_PROG_TYPE_KPROBE]			= "kprobe",
177 	[BPF_PROG_TYPE_SCHED_CLS]		= "sched_cls",
178 	[BPF_PROG_TYPE_SCHED_ACT]		= "sched_act",
179 	[BPF_PROG_TYPE_TRACEPOINT]		= "tracepoint",
180 	[BPF_PROG_TYPE_XDP]			= "xdp",
181 	[BPF_PROG_TYPE_PERF_EVENT]		= "perf_event",
182 	[BPF_PROG_TYPE_CGROUP_SKB]		= "cgroup_skb",
183 	[BPF_PROG_TYPE_CGROUP_SOCK]		= "cgroup_sock",
184 	[BPF_PROG_TYPE_LWT_IN]			= "lwt_in",
185 	[BPF_PROG_TYPE_LWT_OUT]			= "lwt_out",
186 	[BPF_PROG_TYPE_LWT_XMIT]		= "lwt_xmit",
187 	[BPF_PROG_TYPE_SOCK_OPS]		= "sock_ops",
188 	[BPF_PROG_TYPE_SK_SKB]			= "sk_skb",
189 	[BPF_PROG_TYPE_CGROUP_DEVICE]		= "cgroup_device",
190 	[BPF_PROG_TYPE_SK_MSG]			= "sk_msg",
191 	[BPF_PROG_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
192 	[BPF_PROG_TYPE_CGROUP_SOCK_ADDR]	= "cgroup_sock_addr",
193 	[BPF_PROG_TYPE_LWT_SEG6LOCAL]		= "lwt_seg6local",
194 	[BPF_PROG_TYPE_LIRC_MODE2]		= "lirc_mode2",
195 	[BPF_PROG_TYPE_SK_REUSEPORT]		= "sk_reuseport",
196 	[BPF_PROG_TYPE_FLOW_DISSECTOR]		= "flow_dissector",
197 	[BPF_PROG_TYPE_CGROUP_SYSCTL]		= "cgroup_sysctl",
198 	[BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE]	= "raw_tracepoint_writable",
199 	[BPF_PROG_TYPE_CGROUP_SOCKOPT]		= "cgroup_sockopt",
200 	[BPF_PROG_TYPE_TRACING]			= "tracing",
201 	[BPF_PROG_TYPE_STRUCT_OPS]		= "struct_ops",
202 	[BPF_PROG_TYPE_EXT]			= "ext",
203 	[BPF_PROG_TYPE_LSM]			= "lsm",
204 	[BPF_PROG_TYPE_SK_LOOKUP]		= "sk_lookup",
205 	[BPF_PROG_TYPE_SYSCALL]			= "syscall",
206 	[BPF_PROG_TYPE_NETFILTER]		= "netfilter",
207 };
208 
209 static int __base_pr(enum libbpf_print_level level, const char *format,
210 		     va_list args)
211 {
212 	if (level == LIBBPF_DEBUG)
213 		return 0;
214 
215 	return vfprintf(stderr, format, args);
216 }
217 
218 static libbpf_print_fn_t __libbpf_pr = __base_pr;
219 
220 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
221 {
222 	libbpf_print_fn_t old_print_fn;
223 
224 	old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED);
225 
226 	return old_print_fn;
227 }
228 
229 __printf(2, 3)
230 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
231 {
232 	va_list args;
233 	int old_errno;
234 	libbpf_print_fn_t print_fn;
235 
236 	print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED);
237 	if (!print_fn)
238 		return;
239 
240 	old_errno = errno;
241 
242 	va_start(args, format);
243 	__libbpf_pr(level, format, args);
244 	va_end(args);
245 
246 	errno = old_errno;
247 }
248 
249 static void pr_perm_msg(int err)
250 {
251 	struct rlimit limit;
252 	char buf[100];
253 
254 	if (err != -EPERM || geteuid() != 0)
255 		return;
256 
257 	err = getrlimit(RLIMIT_MEMLOCK, &limit);
258 	if (err)
259 		return;
260 
261 	if (limit.rlim_cur == RLIM_INFINITY)
262 		return;
263 
264 	if (limit.rlim_cur < 1024)
265 		snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
266 	else if (limit.rlim_cur < 1024*1024)
267 		snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
268 	else
269 		snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
270 
271 	pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
272 		buf);
273 }
274 
275 #define STRERR_BUFSIZE  128
276 
277 /* Copied from tools/perf/util/util.h */
278 #ifndef zfree
279 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
280 #endif
281 
282 #ifndef zclose
283 # define zclose(fd) ({			\
284 	int ___err = 0;			\
285 	if ((fd) >= 0)			\
286 		___err = close((fd));	\
287 	fd = -1;			\
288 	___err; })
289 #endif
290 
291 static inline __u64 ptr_to_u64(const void *ptr)
292 {
293 	return (__u64) (unsigned long) ptr;
294 }
295 
296 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
297 {
298 	/* as of v1.0 libbpf_set_strict_mode() is a no-op */
299 	return 0;
300 }
301 
302 __u32 libbpf_major_version(void)
303 {
304 	return LIBBPF_MAJOR_VERSION;
305 }
306 
307 __u32 libbpf_minor_version(void)
308 {
309 	return LIBBPF_MINOR_VERSION;
310 }
311 
312 const char *libbpf_version_string(void)
313 {
314 #define __S(X) #X
315 #define _S(X) __S(X)
316 	return  "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
317 #undef _S
318 #undef __S
319 }
320 
321 enum reloc_type {
322 	RELO_LD64,
323 	RELO_CALL,
324 	RELO_DATA,
325 	RELO_EXTERN_LD64,
326 	RELO_EXTERN_CALL,
327 	RELO_SUBPROG_ADDR,
328 	RELO_CORE,
329 };
330 
331 struct reloc_desc {
332 	enum reloc_type type;
333 	int insn_idx;
334 	union {
335 		const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
336 		struct {
337 			int map_idx;
338 			int sym_off;
339 			int ext_idx;
340 		};
341 	};
342 };
343 
344 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
345 enum sec_def_flags {
346 	SEC_NONE = 0,
347 	/* expected_attach_type is optional, if kernel doesn't support that */
348 	SEC_EXP_ATTACH_OPT = 1,
349 	/* legacy, only used by libbpf_get_type_names() and
350 	 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
351 	 * This used to be associated with cgroup (and few other) BPF programs
352 	 * that were attachable through BPF_PROG_ATTACH command. Pretty
353 	 * meaningless nowadays, though.
354 	 */
355 	SEC_ATTACHABLE = 2,
356 	SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
357 	/* attachment target is specified through BTF ID in either kernel or
358 	 * other BPF program's BTF object
359 	 */
360 	SEC_ATTACH_BTF = 4,
361 	/* BPF program type allows sleeping/blocking in kernel */
362 	SEC_SLEEPABLE = 8,
363 	/* BPF program support non-linear XDP buffer */
364 	SEC_XDP_FRAGS = 16,
365 };
366 
367 struct bpf_sec_def {
368 	char *sec;
369 	enum bpf_prog_type prog_type;
370 	enum bpf_attach_type expected_attach_type;
371 	long cookie;
372 	int handler_id;
373 
374 	libbpf_prog_setup_fn_t prog_setup_fn;
375 	libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
376 	libbpf_prog_attach_fn_t prog_attach_fn;
377 };
378 
379 /*
380  * bpf_prog should be a better name but it has been used in
381  * linux/filter.h.
382  */
383 struct bpf_program {
384 	char *name;
385 	char *sec_name;
386 	size_t sec_idx;
387 	const struct bpf_sec_def *sec_def;
388 	/* this program's instruction offset (in number of instructions)
389 	 * within its containing ELF section
390 	 */
391 	size_t sec_insn_off;
392 	/* number of original instructions in ELF section belonging to this
393 	 * program, not taking into account subprogram instructions possible
394 	 * appended later during relocation
395 	 */
396 	size_t sec_insn_cnt;
397 	/* Offset (in number of instructions) of the start of instruction
398 	 * belonging to this BPF program  within its containing main BPF
399 	 * program. For the entry-point (main) BPF program, this is always
400 	 * zero. For a sub-program, this gets reset before each of main BPF
401 	 * programs are processed and relocated and is used to determined
402 	 * whether sub-program was already appended to the main program, and
403 	 * if yes, at which instruction offset.
404 	 */
405 	size_t sub_insn_off;
406 
407 	/* instructions that belong to BPF program; insns[0] is located at
408 	 * sec_insn_off instruction within its ELF section in ELF file, so
409 	 * when mapping ELF file instruction index to the local instruction,
410 	 * one needs to subtract sec_insn_off; and vice versa.
411 	 */
412 	struct bpf_insn *insns;
413 	/* actual number of instruction in this BPF program's image; for
414 	 * entry-point BPF programs this includes the size of main program
415 	 * itself plus all the used sub-programs, appended at the end
416 	 */
417 	size_t insns_cnt;
418 
419 	struct reloc_desc *reloc_desc;
420 	int nr_reloc;
421 
422 	/* BPF verifier log settings */
423 	char *log_buf;
424 	size_t log_size;
425 	__u32 log_level;
426 
427 	struct bpf_object *obj;
428 
429 	int fd;
430 	bool autoload;
431 	bool autoattach;
432 	bool mark_btf_static;
433 	enum bpf_prog_type type;
434 	enum bpf_attach_type expected_attach_type;
435 
436 	int prog_ifindex;
437 	__u32 attach_btf_obj_fd;
438 	__u32 attach_btf_id;
439 	__u32 attach_prog_fd;
440 
441 	void *func_info;
442 	__u32 func_info_rec_size;
443 	__u32 func_info_cnt;
444 
445 	void *line_info;
446 	__u32 line_info_rec_size;
447 	__u32 line_info_cnt;
448 	__u32 prog_flags;
449 };
450 
451 struct bpf_struct_ops {
452 	const char *tname;
453 	const struct btf_type *type;
454 	struct bpf_program **progs;
455 	__u32 *kern_func_off;
456 	/* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
457 	void *data;
458 	/* e.g. struct bpf_struct_ops_tcp_congestion_ops in
459 	 *      btf_vmlinux's format.
460 	 * struct bpf_struct_ops_tcp_congestion_ops {
461 	 *	[... some other kernel fields ...]
462 	 *	struct tcp_congestion_ops data;
463 	 * }
464 	 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
465 	 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
466 	 * from "data".
467 	 */
468 	void *kern_vdata;
469 	__u32 type_id;
470 };
471 
472 #define DATA_SEC ".data"
473 #define BSS_SEC ".bss"
474 #define RODATA_SEC ".rodata"
475 #define KCONFIG_SEC ".kconfig"
476 #define KSYMS_SEC ".ksyms"
477 #define STRUCT_OPS_SEC ".struct_ops"
478 #define STRUCT_OPS_LINK_SEC ".struct_ops.link"
479 
480 enum libbpf_map_type {
481 	LIBBPF_MAP_UNSPEC,
482 	LIBBPF_MAP_DATA,
483 	LIBBPF_MAP_BSS,
484 	LIBBPF_MAP_RODATA,
485 	LIBBPF_MAP_KCONFIG,
486 };
487 
488 struct bpf_map_def {
489 	unsigned int type;
490 	unsigned int key_size;
491 	unsigned int value_size;
492 	unsigned int max_entries;
493 	unsigned int map_flags;
494 };
495 
496 struct bpf_map {
497 	struct bpf_object *obj;
498 	char *name;
499 	/* real_name is defined for special internal maps (.rodata*,
500 	 * .data*, .bss, .kconfig) and preserves their original ELF section
501 	 * name. This is important to be able to find corresponding BTF
502 	 * DATASEC information.
503 	 */
504 	char *real_name;
505 	int fd;
506 	int sec_idx;
507 	size_t sec_offset;
508 	int map_ifindex;
509 	int inner_map_fd;
510 	struct bpf_map_def def;
511 	__u32 numa_node;
512 	__u32 btf_var_idx;
513 	__u32 btf_key_type_id;
514 	__u32 btf_value_type_id;
515 	__u32 btf_vmlinux_value_type_id;
516 	enum libbpf_map_type libbpf_type;
517 	void *mmaped;
518 	struct bpf_struct_ops *st_ops;
519 	struct bpf_map *inner_map;
520 	void **init_slots;
521 	int init_slots_sz;
522 	char *pin_path;
523 	bool pinned;
524 	bool reused;
525 	bool autocreate;
526 	__u64 map_extra;
527 };
528 
529 enum extern_type {
530 	EXT_UNKNOWN,
531 	EXT_KCFG,
532 	EXT_KSYM,
533 };
534 
535 enum kcfg_type {
536 	KCFG_UNKNOWN,
537 	KCFG_CHAR,
538 	KCFG_BOOL,
539 	KCFG_INT,
540 	KCFG_TRISTATE,
541 	KCFG_CHAR_ARR,
542 };
543 
544 struct extern_desc {
545 	enum extern_type type;
546 	int sym_idx;
547 	int btf_id;
548 	int sec_btf_id;
549 	const char *name;
550 	bool is_set;
551 	bool is_weak;
552 	union {
553 		struct {
554 			enum kcfg_type type;
555 			int sz;
556 			int align;
557 			int data_off;
558 			bool is_signed;
559 		} kcfg;
560 		struct {
561 			unsigned long long addr;
562 
563 			/* target btf_id of the corresponding kernel var. */
564 			int kernel_btf_obj_fd;
565 			int kernel_btf_id;
566 
567 			/* local btf_id of the ksym extern's type. */
568 			__u32 type_id;
569 			/* BTF fd index to be patched in for insn->off, this is
570 			 * 0 for vmlinux BTF, index in obj->fd_array for module
571 			 * BTF
572 			 */
573 			__s16 btf_fd_idx;
574 		} ksym;
575 	};
576 };
577 
578 struct module_btf {
579 	struct btf *btf;
580 	char *name;
581 	__u32 id;
582 	int fd;
583 	int fd_array_idx;
584 };
585 
586 enum sec_type {
587 	SEC_UNUSED = 0,
588 	SEC_RELO,
589 	SEC_BSS,
590 	SEC_DATA,
591 	SEC_RODATA,
592 };
593 
594 struct elf_sec_desc {
595 	enum sec_type sec_type;
596 	Elf64_Shdr *shdr;
597 	Elf_Data *data;
598 };
599 
600 struct elf_state {
601 	int fd;
602 	const void *obj_buf;
603 	size_t obj_buf_sz;
604 	Elf *elf;
605 	Elf64_Ehdr *ehdr;
606 	Elf_Data *symbols;
607 	Elf_Data *st_ops_data;
608 	Elf_Data *st_ops_link_data;
609 	size_t shstrndx; /* section index for section name strings */
610 	size_t strtabidx;
611 	struct elf_sec_desc *secs;
612 	size_t sec_cnt;
613 	int btf_maps_shndx;
614 	__u32 btf_maps_sec_btf_id;
615 	int text_shndx;
616 	int symbols_shndx;
617 	int st_ops_shndx;
618 	int st_ops_link_shndx;
619 };
620 
621 struct usdt_manager;
622 
623 struct bpf_object {
624 	char name[BPF_OBJ_NAME_LEN];
625 	char license[64];
626 	__u32 kern_version;
627 
628 	struct bpf_program *programs;
629 	size_t nr_programs;
630 	struct bpf_map *maps;
631 	size_t nr_maps;
632 	size_t maps_cap;
633 
634 	char *kconfig;
635 	struct extern_desc *externs;
636 	int nr_extern;
637 	int kconfig_map_idx;
638 
639 	bool loaded;
640 	bool has_subcalls;
641 	bool has_rodata;
642 
643 	struct bpf_gen *gen_loader;
644 
645 	/* Information when doing ELF related work. Only valid if efile.elf is not NULL */
646 	struct elf_state efile;
647 
648 	struct btf *btf;
649 	struct btf_ext *btf_ext;
650 
651 	/* Parse and load BTF vmlinux if any of the programs in the object need
652 	 * it at load time.
653 	 */
654 	struct btf *btf_vmlinux;
655 	/* Path to the custom BTF to be used for BPF CO-RE relocations as an
656 	 * override for vmlinux BTF.
657 	 */
658 	char *btf_custom_path;
659 	/* vmlinux BTF override for CO-RE relocations */
660 	struct btf *btf_vmlinux_override;
661 	/* Lazily initialized kernel module BTFs */
662 	struct module_btf *btf_modules;
663 	bool btf_modules_loaded;
664 	size_t btf_module_cnt;
665 	size_t btf_module_cap;
666 
667 	/* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
668 	char *log_buf;
669 	size_t log_size;
670 	__u32 log_level;
671 
672 	int *fd_array;
673 	size_t fd_array_cap;
674 	size_t fd_array_cnt;
675 
676 	struct usdt_manager *usdt_man;
677 
678 	char path[];
679 };
680 
681 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
682 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
683 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
684 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
685 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
686 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
687 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
688 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
689 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
690 
691 void bpf_program__unload(struct bpf_program *prog)
692 {
693 	if (!prog)
694 		return;
695 
696 	zclose(prog->fd);
697 
698 	zfree(&prog->func_info);
699 	zfree(&prog->line_info);
700 }
701 
702 static void bpf_program__exit(struct bpf_program *prog)
703 {
704 	if (!prog)
705 		return;
706 
707 	bpf_program__unload(prog);
708 	zfree(&prog->name);
709 	zfree(&prog->sec_name);
710 	zfree(&prog->insns);
711 	zfree(&prog->reloc_desc);
712 
713 	prog->nr_reloc = 0;
714 	prog->insns_cnt = 0;
715 	prog->sec_idx = -1;
716 }
717 
718 static bool insn_is_subprog_call(const struct bpf_insn *insn)
719 {
720 	return BPF_CLASS(insn->code) == BPF_JMP &&
721 	       BPF_OP(insn->code) == BPF_CALL &&
722 	       BPF_SRC(insn->code) == BPF_K &&
723 	       insn->src_reg == BPF_PSEUDO_CALL &&
724 	       insn->dst_reg == 0 &&
725 	       insn->off == 0;
726 }
727 
728 static bool is_call_insn(const struct bpf_insn *insn)
729 {
730 	return insn->code == (BPF_JMP | BPF_CALL);
731 }
732 
733 static bool insn_is_pseudo_func(struct bpf_insn *insn)
734 {
735 	return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
736 }
737 
738 static int
739 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
740 		      const char *name, size_t sec_idx, const char *sec_name,
741 		      size_t sec_off, void *insn_data, size_t insn_data_sz)
742 {
743 	if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
744 		pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
745 			sec_name, name, sec_off, insn_data_sz);
746 		return -EINVAL;
747 	}
748 
749 	memset(prog, 0, sizeof(*prog));
750 	prog->obj = obj;
751 
752 	prog->sec_idx = sec_idx;
753 	prog->sec_insn_off = sec_off / BPF_INSN_SZ;
754 	prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
755 	/* insns_cnt can later be increased by appending used subprograms */
756 	prog->insns_cnt = prog->sec_insn_cnt;
757 
758 	prog->type = BPF_PROG_TYPE_UNSPEC;
759 	prog->fd = -1;
760 
761 	/* libbpf's convention for SEC("?abc...") is that it's just like
762 	 * SEC("abc...") but the corresponding bpf_program starts out with
763 	 * autoload set to false.
764 	 */
765 	if (sec_name[0] == '?') {
766 		prog->autoload = false;
767 		/* from now on forget there was ? in section name */
768 		sec_name++;
769 	} else {
770 		prog->autoload = true;
771 	}
772 
773 	prog->autoattach = true;
774 
775 	/* inherit object's log_level */
776 	prog->log_level = obj->log_level;
777 
778 	prog->sec_name = strdup(sec_name);
779 	if (!prog->sec_name)
780 		goto errout;
781 
782 	prog->name = strdup(name);
783 	if (!prog->name)
784 		goto errout;
785 
786 	prog->insns = malloc(insn_data_sz);
787 	if (!prog->insns)
788 		goto errout;
789 	memcpy(prog->insns, insn_data, insn_data_sz);
790 
791 	return 0;
792 errout:
793 	pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
794 	bpf_program__exit(prog);
795 	return -ENOMEM;
796 }
797 
798 static int
799 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
800 			 const char *sec_name, int sec_idx)
801 {
802 	Elf_Data *symbols = obj->efile.symbols;
803 	struct bpf_program *prog, *progs;
804 	void *data = sec_data->d_buf;
805 	size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
806 	int nr_progs, err, i;
807 	const char *name;
808 	Elf64_Sym *sym;
809 
810 	progs = obj->programs;
811 	nr_progs = obj->nr_programs;
812 	nr_syms = symbols->d_size / sizeof(Elf64_Sym);
813 
814 	for (i = 0; i < nr_syms; i++) {
815 		sym = elf_sym_by_idx(obj, i);
816 
817 		if (sym->st_shndx != sec_idx)
818 			continue;
819 		if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
820 			continue;
821 
822 		prog_sz = sym->st_size;
823 		sec_off = sym->st_value;
824 
825 		name = elf_sym_str(obj, sym->st_name);
826 		if (!name) {
827 			pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
828 				sec_name, sec_off);
829 			return -LIBBPF_ERRNO__FORMAT;
830 		}
831 
832 		if (sec_off + prog_sz > sec_sz) {
833 			pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
834 				sec_name, sec_off);
835 			return -LIBBPF_ERRNO__FORMAT;
836 		}
837 
838 		if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
839 			pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
840 			return -ENOTSUP;
841 		}
842 
843 		pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
844 			 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
845 
846 		progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
847 		if (!progs) {
848 			/*
849 			 * In this case the original obj->programs
850 			 * is still valid, so don't need special treat for
851 			 * bpf_close_object().
852 			 */
853 			pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
854 				sec_name, name);
855 			return -ENOMEM;
856 		}
857 		obj->programs = progs;
858 
859 		prog = &progs[nr_progs];
860 
861 		err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
862 					    sec_off, data + sec_off, prog_sz);
863 		if (err)
864 			return err;
865 
866 		/* if function is a global/weak symbol, but has restricted
867 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
868 		 * as static to enable more permissive BPF verification mode
869 		 * with more outside context available to BPF verifier
870 		 */
871 		if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL
872 		    && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
873 			|| ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
874 			prog->mark_btf_static = true;
875 
876 		nr_progs++;
877 		obj->nr_programs = nr_progs;
878 	}
879 
880 	return 0;
881 }
882 
883 static const struct btf_member *
884 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
885 {
886 	struct btf_member *m;
887 	int i;
888 
889 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
890 		if (btf_member_bit_offset(t, i) == bit_offset)
891 			return m;
892 	}
893 
894 	return NULL;
895 }
896 
897 static const struct btf_member *
898 find_member_by_name(const struct btf *btf, const struct btf_type *t,
899 		    const char *name)
900 {
901 	struct btf_member *m;
902 	int i;
903 
904 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
905 		if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
906 			return m;
907 	}
908 
909 	return NULL;
910 }
911 
912 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
913 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
914 				   const char *name, __u32 kind);
915 
916 static int
917 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
918 			   const struct btf_type **type, __u32 *type_id,
919 			   const struct btf_type **vtype, __u32 *vtype_id,
920 			   const struct btf_member **data_member)
921 {
922 	const struct btf_type *kern_type, *kern_vtype;
923 	const struct btf_member *kern_data_member;
924 	__s32 kern_vtype_id, kern_type_id;
925 	__u32 i;
926 
927 	kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
928 	if (kern_type_id < 0) {
929 		pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
930 			tname);
931 		return kern_type_id;
932 	}
933 	kern_type = btf__type_by_id(btf, kern_type_id);
934 
935 	/* Find the corresponding "map_value" type that will be used
936 	 * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
937 	 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
938 	 * btf_vmlinux.
939 	 */
940 	kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
941 						tname, BTF_KIND_STRUCT);
942 	if (kern_vtype_id < 0) {
943 		pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
944 			STRUCT_OPS_VALUE_PREFIX, tname);
945 		return kern_vtype_id;
946 	}
947 	kern_vtype = btf__type_by_id(btf, kern_vtype_id);
948 
949 	/* Find "struct tcp_congestion_ops" from
950 	 * struct bpf_struct_ops_tcp_congestion_ops {
951 	 *	[ ... ]
952 	 *	struct tcp_congestion_ops data;
953 	 * }
954 	 */
955 	kern_data_member = btf_members(kern_vtype);
956 	for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
957 		if (kern_data_member->type == kern_type_id)
958 			break;
959 	}
960 	if (i == btf_vlen(kern_vtype)) {
961 		pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
962 			tname, STRUCT_OPS_VALUE_PREFIX, tname);
963 		return -EINVAL;
964 	}
965 
966 	*type = kern_type;
967 	*type_id = kern_type_id;
968 	*vtype = kern_vtype;
969 	*vtype_id = kern_vtype_id;
970 	*data_member = kern_data_member;
971 
972 	return 0;
973 }
974 
975 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
976 {
977 	return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
978 }
979 
980 /* Init the map's fields that depend on kern_btf */
981 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
982 					 const struct btf *btf,
983 					 const struct btf *kern_btf)
984 {
985 	const struct btf_member *member, *kern_member, *kern_data_member;
986 	const struct btf_type *type, *kern_type, *kern_vtype;
987 	__u32 i, kern_type_id, kern_vtype_id, kern_data_off;
988 	struct bpf_struct_ops *st_ops;
989 	void *data, *kern_data;
990 	const char *tname;
991 	int err;
992 
993 	st_ops = map->st_ops;
994 	type = st_ops->type;
995 	tname = st_ops->tname;
996 	err = find_struct_ops_kern_types(kern_btf, tname,
997 					 &kern_type, &kern_type_id,
998 					 &kern_vtype, &kern_vtype_id,
999 					 &kern_data_member);
1000 	if (err)
1001 		return err;
1002 
1003 	pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1004 		 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1005 
1006 	map->def.value_size = kern_vtype->size;
1007 	map->btf_vmlinux_value_type_id = kern_vtype_id;
1008 
1009 	st_ops->kern_vdata = calloc(1, kern_vtype->size);
1010 	if (!st_ops->kern_vdata)
1011 		return -ENOMEM;
1012 
1013 	data = st_ops->data;
1014 	kern_data_off = kern_data_member->offset / 8;
1015 	kern_data = st_ops->kern_vdata + kern_data_off;
1016 
1017 	member = btf_members(type);
1018 	for (i = 0; i < btf_vlen(type); i++, member++) {
1019 		const struct btf_type *mtype, *kern_mtype;
1020 		__u32 mtype_id, kern_mtype_id;
1021 		void *mdata, *kern_mdata;
1022 		__s64 msize, kern_msize;
1023 		__u32 moff, kern_moff;
1024 		__u32 kern_member_idx;
1025 		const char *mname;
1026 
1027 		mname = btf__name_by_offset(btf, member->name_off);
1028 		kern_member = find_member_by_name(kern_btf, kern_type, mname);
1029 		if (!kern_member) {
1030 			pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1031 				map->name, mname);
1032 			return -ENOTSUP;
1033 		}
1034 
1035 		kern_member_idx = kern_member - btf_members(kern_type);
1036 		if (btf_member_bitfield_size(type, i) ||
1037 		    btf_member_bitfield_size(kern_type, kern_member_idx)) {
1038 			pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1039 				map->name, mname);
1040 			return -ENOTSUP;
1041 		}
1042 
1043 		moff = member->offset / 8;
1044 		kern_moff = kern_member->offset / 8;
1045 
1046 		mdata = data + moff;
1047 		kern_mdata = kern_data + kern_moff;
1048 
1049 		mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1050 		kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1051 						    &kern_mtype_id);
1052 		if (BTF_INFO_KIND(mtype->info) !=
1053 		    BTF_INFO_KIND(kern_mtype->info)) {
1054 			pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1055 				map->name, mname, BTF_INFO_KIND(mtype->info),
1056 				BTF_INFO_KIND(kern_mtype->info));
1057 			return -ENOTSUP;
1058 		}
1059 
1060 		if (btf_is_ptr(mtype)) {
1061 			struct bpf_program *prog;
1062 
1063 			prog = st_ops->progs[i];
1064 			if (!prog)
1065 				continue;
1066 
1067 			kern_mtype = skip_mods_and_typedefs(kern_btf,
1068 							    kern_mtype->type,
1069 							    &kern_mtype_id);
1070 
1071 			/* mtype->type must be a func_proto which was
1072 			 * guaranteed in bpf_object__collect_st_ops_relos(),
1073 			 * so only check kern_mtype for func_proto here.
1074 			 */
1075 			if (!btf_is_func_proto(kern_mtype)) {
1076 				pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1077 					map->name, mname);
1078 				return -ENOTSUP;
1079 			}
1080 
1081 			prog->attach_btf_id = kern_type_id;
1082 			prog->expected_attach_type = kern_member_idx;
1083 
1084 			st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1085 
1086 			pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1087 				 map->name, mname, prog->name, moff,
1088 				 kern_moff);
1089 
1090 			continue;
1091 		}
1092 
1093 		msize = btf__resolve_size(btf, mtype_id);
1094 		kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1095 		if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1096 			pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1097 				map->name, mname, (ssize_t)msize,
1098 				(ssize_t)kern_msize);
1099 			return -ENOTSUP;
1100 		}
1101 
1102 		pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1103 			 map->name, mname, (unsigned int)msize,
1104 			 moff, kern_moff);
1105 		memcpy(kern_mdata, mdata, msize);
1106 	}
1107 
1108 	return 0;
1109 }
1110 
1111 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1112 {
1113 	struct bpf_map *map;
1114 	size_t i;
1115 	int err;
1116 
1117 	for (i = 0; i < obj->nr_maps; i++) {
1118 		map = &obj->maps[i];
1119 
1120 		if (!bpf_map__is_struct_ops(map))
1121 			continue;
1122 
1123 		err = bpf_map__init_kern_struct_ops(map, obj->btf,
1124 						    obj->btf_vmlinux);
1125 		if (err)
1126 			return err;
1127 	}
1128 
1129 	return 0;
1130 }
1131 
1132 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name,
1133 				int shndx, Elf_Data *data, __u32 map_flags)
1134 {
1135 	const struct btf_type *type, *datasec;
1136 	const struct btf_var_secinfo *vsi;
1137 	struct bpf_struct_ops *st_ops;
1138 	const char *tname, *var_name;
1139 	__s32 type_id, datasec_id;
1140 	const struct btf *btf;
1141 	struct bpf_map *map;
1142 	__u32 i;
1143 
1144 	if (shndx == -1)
1145 		return 0;
1146 
1147 	btf = obj->btf;
1148 	datasec_id = btf__find_by_name_kind(btf, sec_name,
1149 					    BTF_KIND_DATASEC);
1150 	if (datasec_id < 0) {
1151 		pr_warn("struct_ops init: DATASEC %s not found\n",
1152 			sec_name);
1153 		return -EINVAL;
1154 	}
1155 
1156 	datasec = btf__type_by_id(btf, datasec_id);
1157 	vsi = btf_var_secinfos(datasec);
1158 	for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1159 		type = btf__type_by_id(obj->btf, vsi->type);
1160 		var_name = btf__name_by_offset(obj->btf, type->name_off);
1161 
1162 		type_id = btf__resolve_type(obj->btf, vsi->type);
1163 		if (type_id < 0) {
1164 			pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1165 				vsi->type, sec_name);
1166 			return -EINVAL;
1167 		}
1168 
1169 		type = btf__type_by_id(obj->btf, type_id);
1170 		tname = btf__name_by_offset(obj->btf, type->name_off);
1171 		if (!tname[0]) {
1172 			pr_warn("struct_ops init: anonymous type is not supported\n");
1173 			return -ENOTSUP;
1174 		}
1175 		if (!btf_is_struct(type)) {
1176 			pr_warn("struct_ops init: %s is not a struct\n", tname);
1177 			return -EINVAL;
1178 		}
1179 
1180 		map = bpf_object__add_map(obj);
1181 		if (IS_ERR(map))
1182 			return PTR_ERR(map);
1183 
1184 		map->sec_idx = shndx;
1185 		map->sec_offset = vsi->offset;
1186 		map->name = strdup(var_name);
1187 		if (!map->name)
1188 			return -ENOMEM;
1189 
1190 		map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1191 		map->def.key_size = sizeof(int);
1192 		map->def.value_size = type->size;
1193 		map->def.max_entries = 1;
1194 		map->def.map_flags = map_flags;
1195 
1196 		map->st_ops = calloc(1, sizeof(*map->st_ops));
1197 		if (!map->st_ops)
1198 			return -ENOMEM;
1199 		st_ops = map->st_ops;
1200 		st_ops->data = malloc(type->size);
1201 		st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1202 		st_ops->kern_func_off = malloc(btf_vlen(type) *
1203 					       sizeof(*st_ops->kern_func_off));
1204 		if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1205 			return -ENOMEM;
1206 
1207 		if (vsi->offset + type->size > data->d_size) {
1208 			pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1209 				var_name, sec_name);
1210 			return -EINVAL;
1211 		}
1212 
1213 		memcpy(st_ops->data,
1214 		       data->d_buf + vsi->offset,
1215 		       type->size);
1216 		st_ops->tname = tname;
1217 		st_ops->type = type;
1218 		st_ops->type_id = type_id;
1219 
1220 		pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1221 			 tname, type_id, var_name, vsi->offset);
1222 	}
1223 
1224 	return 0;
1225 }
1226 
1227 static int bpf_object_init_struct_ops(struct bpf_object *obj)
1228 {
1229 	int err;
1230 
1231 	err = init_struct_ops_maps(obj, STRUCT_OPS_SEC, obj->efile.st_ops_shndx,
1232 				   obj->efile.st_ops_data, 0);
1233 	err = err ?: init_struct_ops_maps(obj, STRUCT_OPS_LINK_SEC,
1234 					  obj->efile.st_ops_link_shndx,
1235 					  obj->efile.st_ops_link_data,
1236 					  BPF_F_LINK);
1237 	return err;
1238 }
1239 
1240 static struct bpf_object *bpf_object__new(const char *path,
1241 					  const void *obj_buf,
1242 					  size_t obj_buf_sz,
1243 					  const char *obj_name)
1244 {
1245 	struct bpf_object *obj;
1246 	char *end;
1247 
1248 	obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1249 	if (!obj) {
1250 		pr_warn("alloc memory failed for %s\n", path);
1251 		return ERR_PTR(-ENOMEM);
1252 	}
1253 
1254 	strcpy(obj->path, path);
1255 	if (obj_name) {
1256 		libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1257 	} else {
1258 		/* Using basename() GNU version which doesn't modify arg. */
1259 		libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1260 		end = strchr(obj->name, '.');
1261 		if (end)
1262 			*end = 0;
1263 	}
1264 
1265 	obj->efile.fd = -1;
1266 	/*
1267 	 * Caller of this function should also call
1268 	 * bpf_object__elf_finish() after data collection to return
1269 	 * obj_buf to user. If not, we should duplicate the buffer to
1270 	 * avoid user freeing them before elf finish.
1271 	 */
1272 	obj->efile.obj_buf = obj_buf;
1273 	obj->efile.obj_buf_sz = obj_buf_sz;
1274 	obj->efile.btf_maps_shndx = -1;
1275 	obj->efile.st_ops_shndx = -1;
1276 	obj->efile.st_ops_link_shndx = -1;
1277 	obj->kconfig_map_idx = -1;
1278 
1279 	obj->kern_version = get_kernel_version();
1280 	obj->loaded = false;
1281 
1282 	return obj;
1283 }
1284 
1285 static void bpf_object__elf_finish(struct bpf_object *obj)
1286 {
1287 	if (!obj->efile.elf)
1288 		return;
1289 
1290 	elf_end(obj->efile.elf);
1291 	obj->efile.elf = NULL;
1292 	obj->efile.symbols = NULL;
1293 	obj->efile.st_ops_data = NULL;
1294 	obj->efile.st_ops_link_data = NULL;
1295 
1296 	zfree(&obj->efile.secs);
1297 	obj->efile.sec_cnt = 0;
1298 	zclose(obj->efile.fd);
1299 	obj->efile.obj_buf = NULL;
1300 	obj->efile.obj_buf_sz = 0;
1301 }
1302 
1303 static int bpf_object__elf_init(struct bpf_object *obj)
1304 {
1305 	Elf64_Ehdr *ehdr;
1306 	int err = 0;
1307 	Elf *elf;
1308 
1309 	if (obj->efile.elf) {
1310 		pr_warn("elf: init internal error\n");
1311 		return -LIBBPF_ERRNO__LIBELF;
1312 	}
1313 
1314 	if (obj->efile.obj_buf_sz > 0) {
1315 		/* obj_buf should have been validated by bpf_object__open_mem(). */
1316 		elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1317 	} else {
1318 		obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1319 		if (obj->efile.fd < 0) {
1320 			char errmsg[STRERR_BUFSIZE], *cp;
1321 
1322 			err = -errno;
1323 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1324 			pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1325 			return err;
1326 		}
1327 
1328 		elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1329 	}
1330 
1331 	if (!elf) {
1332 		pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1333 		err = -LIBBPF_ERRNO__LIBELF;
1334 		goto errout;
1335 	}
1336 
1337 	obj->efile.elf = elf;
1338 
1339 	if (elf_kind(elf) != ELF_K_ELF) {
1340 		err = -LIBBPF_ERRNO__FORMAT;
1341 		pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1342 		goto errout;
1343 	}
1344 
1345 	if (gelf_getclass(elf) != ELFCLASS64) {
1346 		err = -LIBBPF_ERRNO__FORMAT;
1347 		pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1348 		goto errout;
1349 	}
1350 
1351 	obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1352 	if (!obj->efile.ehdr) {
1353 		pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1354 		err = -LIBBPF_ERRNO__FORMAT;
1355 		goto errout;
1356 	}
1357 
1358 	if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1359 		pr_warn("elf: failed to get section names section index for %s: %s\n",
1360 			obj->path, elf_errmsg(-1));
1361 		err = -LIBBPF_ERRNO__FORMAT;
1362 		goto errout;
1363 	}
1364 
1365 	/* ELF is corrupted/truncated, avoid calling elf_strptr. */
1366 	if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1367 		pr_warn("elf: failed to get section names strings from %s: %s\n",
1368 			obj->path, elf_errmsg(-1));
1369 		err = -LIBBPF_ERRNO__FORMAT;
1370 		goto errout;
1371 	}
1372 
1373 	/* Old LLVM set e_machine to EM_NONE */
1374 	if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1375 		pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1376 		err = -LIBBPF_ERRNO__FORMAT;
1377 		goto errout;
1378 	}
1379 
1380 	return 0;
1381 errout:
1382 	bpf_object__elf_finish(obj);
1383 	return err;
1384 }
1385 
1386 static int bpf_object__check_endianness(struct bpf_object *obj)
1387 {
1388 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1389 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1390 		return 0;
1391 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1392 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1393 		return 0;
1394 #else
1395 # error "Unrecognized __BYTE_ORDER__"
1396 #endif
1397 	pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1398 	return -LIBBPF_ERRNO__ENDIAN;
1399 }
1400 
1401 static int
1402 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1403 {
1404 	if (!data) {
1405 		pr_warn("invalid license section in %s\n", obj->path);
1406 		return -LIBBPF_ERRNO__FORMAT;
1407 	}
1408 	/* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1409 	 * go over allowed ELF data section buffer
1410 	 */
1411 	libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1412 	pr_debug("license of %s is %s\n", obj->path, obj->license);
1413 	return 0;
1414 }
1415 
1416 static int
1417 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1418 {
1419 	__u32 kver;
1420 
1421 	if (!data || size != sizeof(kver)) {
1422 		pr_warn("invalid kver section in %s\n", obj->path);
1423 		return -LIBBPF_ERRNO__FORMAT;
1424 	}
1425 	memcpy(&kver, data, sizeof(kver));
1426 	obj->kern_version = kver;
1427 	pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1428 	return 0;
1429 }
1430 
1431 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1432 {
1433 	if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1434 	    type == BPF_MAP_TYPE_HASH_OF_MAPS)
1435 		return true;
1436 	return false;
1437 }
1438 
1439 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1440 {
1441 	Elf_Data *data;
1442 	Elf_Scn *scn;
1443 
1444 	if (!name)
1445 		return -EINVAL;
1446 
1447 	scn = elf_sec_by_name(obj, name);
1448 	data = elf_sec_data(obj, scn);
1449 	if (data) {
1450 		*size = data->d_size;
1451 		return 0; /* found it */
1452 	}
1453 
1454 	return -ENOENT;
1455 }
1456 
1457 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name)
1458 {
1459 	Elf_Data *symbols = obj->efile.symbols;
1460 	const char *sname;
1461 	size_t si;
1462 
1463 	for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1464 		Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1465 
1466 		if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1467 			continue;
1468 
1469 		if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1470 		    ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1471 			continue;
1472 
1473 		sname = elf_sym_str(obj, sym->st_name);
1474 		if (!sname) {
1475 			pr_warn("failed to get sym name string for var %s\n", name);
1476 			return ERR_PTR(-EIO);
1477 		}
1478 		if (strcmp(name, sname) == 0)
1479 			return sym;
1480 	}
1481 
1482 	return ERR_PTR(-ENOENT);
1483 }
1484 
1485 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1486 {
1487 	struct bpf_map *map;
1488 	int err;
1489 
1490 	err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1491 				sizeof(*obj->maps), obj->nr_maps + 1);
1492 	if (err)
1493 		return ERR_PTR(err);
1494 
1495 	map = &obj->maps[obj->nr_maps++];
1496 	map->obj = obj;
1497 	map->fd = -1;
1498 	map->inner_map_fd = -1;
1499 	map->autocreate = true;
1500 
1501 	return map;
1502 }
1503 
1504 static size_t bpf_map_mmap_sz(unsigned int value_sz, unsigned int max_entries)
1505 {
1506 	const long page_sz = sysconf(_SC_PAGE_SIZE);
1507 	size_t map_sz;
1508 
1509 	map_sz = (size_t)roundup(value_sz, 8) * max_entries;
1510 	map_sz = roundup(map_sz, page_sz);
1511 	return map_sz;
1512 }
1513 
1514 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz)
1515 {
1516 	void *mmaped;
1517 
1518 	if (!map->mmaped)
1519 		return -EINVAL;
1520 
1521 	if (old_sz == new_sz)
1522 		return 0;
1523 
1524 	mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1525 	if (mmaped == MAP_FAILED)
1526 		return -errno;
1527 
1528 	memcpy(mmaped, map->mmaped, min(old_sz, new_sz));
1529 	munmap(map->mmaped, old_sz);
1530 	map->mmaped = mmaped;
1531 	return 0;
1532 }
1533 
1534 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1535 {
1536 	char map_name[BPF_OBJ_NAME_LEN], *p;
1537 	int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1538 
1539 	/* This is one of the more confusing parts of libbpf for various
1540 	 * reasons, some of which are historical. The original idea for naming
1541 	 * internal names was to include as much of BPF object name prefix as
1542 	 * possible, so that it can be distinguished from similar internal
1543 	 * maps of a different BPF object.
1544 	 * As an example, let's say we have bpf_object named 'my_object_name'
1545 	 * and internal map corresponding to '.rodata' ELF section. The final
1546 	 * map name advertised to user and to the kernel will be
1547 	 * 'my_objec.rodata', taking first 8 characters of object name and
1548 	 * entire 7 characters of '.rodata'.
1549 	 * Somewhat confusingly, if internal map ELF section name is shorter
1550 	 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1551 	 * for the suffix, even though we only have 4 actual characters, and
1552 	 * resulting map will be called 'my_objec.bss', not even using all 15
1553 	 * characters allowed by the kernel. Oh well, at least the truncated
1554 	 * object name is somewhat consistent in this case. But if the map
1555 	 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1556 	 * (8 chars) and thus will be left with only first 7 characters of the
1557 	 * object name ('my_obje'). Happy guessing, user, that the final map
1558 	 * name will be "my_obje.kconfig".
1559 	 * Now, with libbpf starting to support arbitrarily named .rodata.*
1560 	 * and .data.* data sections, it's possible that ELF section name is
1561 	 * longer than allowed 15 chars, so we now need to be careful to take
1562 	 * only up to 15 first characters of ELF name, taking no BPF object
1563 	 * name characters at all. So '.rodata.abracadabra' will result in
1564 	 * '.rodata.abracad' kernel and user-visible name.
1565 	 * We need to keep this convoluted logic intact for .data, .bss and
1566 	 * .rodata maps, but for new custom .data.custom and .rodata.custom
1567 	 * maps we use their ELF names as is, not prepending bpf_object name
1568 	 * in front. We still need to truncate them to 15 characters for the
1569 	 * kernel. Full name can be recovered for such maps by using DATASEC
1570 	 * BTF type associated with such map's value type, though.
1571 	 */
1572 	if (sfx_len >= BPF_OBJ_NAME_LEN)
1573 		sfx_len = BPF_OBJ_NAME_LEN - 1;
1574 
1575 	/* if there are two or more dots in map name, it's a custom dot map */
1576 	if (strchr(real_name + 1, '.') != NULL)
1577 		pfx_len = 0;
1578 	else
1579 		pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1580 
1581 	snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1582 		 sfx_len, real_name);
1583 
1584 	/* sanitise map name to characters allowed by kernel */
1585 	for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1586 		if (!isalnum(*p) && *p != '_' && *p != '.')
1587 			*p = '_';
1588 
1589 	return strdup(map_name);
1590 }
1591 
1592 static int
1593 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map);
1594 
1595 /* Internal BPF map is mmap()'able only if at least one of corresponding
1596  * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL
1597  * variable and it's not marked as __hidden (which turns it into, effectively,
1598  * a STATIC variable).
1599  */
1600 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map)
1601 {
1602 	const struct btf_type *t, *vt;
1603 	struct btf_var_secinfo *vsi;
1604 	int i, n;
1605 
1606 	if (!map->btf_value_type_id)
1607 		return false;
1608 
1609 	t = btf__type_by_id(obj->btf, map->btf_value_type_id);
1610 	if (!btf_is_datasec(t))
1611 		return false;
1612 
1613 	vsi = btf_var_secinfos(t);
1614 	for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) {
1615 		vt = btf__type_by_id(obj->btf, vsi->type);
1616 		if (!btf_is_var(vt))
1617 			continue;
1618 
1619 		if (btf_var(vt)->linkage != BTF_VAR_STATIC)
1620 			return true;
1621 	}
1622 
1623 	return false;
1624 }
1625 
1626 static int
1627 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1628 			      const char *real_name, int sec_idx, void *data, size_t data_sz)
1629 {
1630 	struct bpf_map_def *def;
1631 	struct bpf_map *map;
1632 	size_t mmap_sz;
1633 	int err;
1634 
1635 	map = bpf_object__add_map(obj);
1636 	if (IS_ERR(map))
1637 		return PTR_ERR(map);
1638 
1639 	map->libbpf_type = type;
1640 	map->sec_idx = sec_idx;
1641 	map->sec_offset = 0;
1642 	map->real_name = strdup(real_name);
1643 	map->name = internal_map_name(obj, real_name);
1644 	if (!map->real_name || !map->name) {
1645 		zfree(&map->real_name);
1646 		zfree(&map->name);
1647 		return -ENOMEM;
1648 	}
1649 
1650 	def = &map->def;
1651 	def->type = BPF_MAP_TYPE_ARRAY;
1652 	def->key_size = sizeof(int);
1653 	def->value_size = data_sz;
1654 	def->max_entries = 1;
1655 	def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1656 			 ? BPF_F_RDONLY_PROG : 0;
1657 
1658 	/* failures are fine because of maps like .rodata.str1.1 */
1659 	(void) map_fill_btf_type_info(obj, map);
1660 
1661 	if (map_is_mmapable(obj, map))
1662 		def->map_flags |= BPF_F_MMAPABLE;
1663 
1664 	pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1665 		 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1666 
1667 	mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
1668 	map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE,
1669 			   MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1670 	if (map->mmaped == MAP_FAILED) {
1671 		err = -errno;
1672 		map->mmaped = NULL;
1673 		pr_warn("failed to alloc map '%s' content buffer: %d\n",
1674 			map->name, err);
1675 		zfree(&map->real_name);
1676 		zfree(&map->name);
1677 		return err;
1678 	}
1679 
1680 	if (data)
1681 		memcpy(map->mmaped, data, data_sz);
1682 
1683 	pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1684 	return 0;
1685 }
1686 
1687 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1688 {
1689 	struct elf_sec_desc *sec_desc;
1690 	const char *sec_name;
1691 	int err = 0, sec_idx;
1692 
1693 	/*
1694 	 * Populate obj->maps with libbpf internal maps.
1695 	 */
1696 	for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1697 		sec_desc = &obj->efile.secs[sec_idx];
1698 
1699 		/* Skip recognized sections with size 0. */
1700 		if (!sec_desc->data || sec_desc->data->d_size == 0)
1701 			continue;
1702 
1703 		switch (sec_desc->sec_type) {
1704 		case SEC_DATA:
1705 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1706 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1707 							    sec_name, sec_idx,
1708 							    sec_desc->data->d_buf,
1709 							    sec_desc->data->d_size);
1710 			break;
1711 		case SEC_RODATA:
1712 			obj->has_rodata = true;
1713 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1714 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1715 							    sec_name, sec_idx,
1716 							    sec_desc->data->d_buf,
1717 							    sec_desc->data->d_size);
1718 			break;
1719 		case SEC_BSS:
1720 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1721 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1722 							    sec_name, sec_idx,
1723 							    NULL,
1724 							    sec_desc->data->d_size);
1725 			break;
1726 		default:
1727 			/* skip */
1728 			break;
1729 		}
1730 		if (err)
1731 			return err;
1732 	}
1733 	return 0;
1734 }
1735 
1736 
1737 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1738 					       const void *name)
1739 {
1740 	int i;
1741 
1742 	for (i = 0; i < obj->nr_extern; i++) {
1743 		if (strcmp(obj->externs[i].name, name) == 0)
1744 			return &obj->externs[i];
1745 	}
1746 	return NULL;
1747 }
1748 
1749 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1750 			      char value)
1751 {
1752 	switch (ext->kcfg.type) {
1753 	case KCFG_BOOL:
1754 		if (value == 'm') {
1755 			pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
1756 				ext->name, value);
1757 			return -EINVAL;
1758 		}
1759 		*(bool *)ext_val = value == 'y' ? true : false;
1760 		break;
1761 	case KCFG_TRISTATE:
1762 		if (value == 'y')
1763 			*(enum libbpf_tristate *)ext_val = TRI_YES;
1764 		else if (value == 'm')
1765 			*(enum libbpf_tristate *)ext_val = TRI_MODULE;
1766 		else /* value == 'n' */
1767 			*(enum libbpf_tristate *)ext_val = TRI_NO;
1768 		break;
1769 	case KCFG_CHAR:
1770 		*(char *)ext_val = value;
1771 		break;
1772 	case KCFG_UNKNOWN:
1773 	case KCFG_INT:
1774 	case KCFG_CHAR_ARR:
1775 	default:
1776 		pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
1777 			ext->name, value);
1778 		return -EINVAL;
1779 	}
1780 	ext->is_set = true;
1781 	return 0;
1782 }
1783 
1784 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1785 			      const char *value)
1786 {
1787 	size_t len;
1788 
1789 	if (ext->kcfg.type != KCFG_CHAR_ARR) {
1790 		pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
1791 			ext->name, value);
1792 		return -EINVAL;
1793 	}
1794 
1795 	len = strlen(value);
1796 	if (value[len - 1] != '"') {
1797 		pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1798 			ext->name, value);
1799 		return -EINVAL;
1800 	}
1801 
1802 	/* strip quotes */
1803 	len -= 2;
1804 	if (len >= ext->kcfg.sz) {
1805 		pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
1806 			ext->name, value, len, ext->kcfg.sz - 1);
1807 		len = ext->kcfg.sz - 1;
1808 	}
1809 	memcpy(ext_val, value + 1, len);
1810 	ext_val[len] = '\0';
1811 	ext->is_set = true;
1812 	return 0;
1813 }
1814 
1815 static int parse_u64(const char *value, __u64 *res)
1816 {
1817 	char *value_end;
1818 	int err;
1819 
1820 	errno = 0;
1821 	*res = strtoull(value, &value_end, 0);
1822 	if (errno) {
1823 		err = -errno;
1824 		pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1825 		return err;
1826 	}
1827 	if (*value_end) {
1828 		pr_warn("failed to parse '%s' as integer completely\n", value);
1829 		return -EINVAL;
1830 	}
1831 	return 0;
1832 }
1833 
1834 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1835 {
1836 	int bit_sz = ext->kcfg.sz * 8;
1837 
1838 	if (ext->kcfg.sz == 8)
1839 		return true;
1840 
1841 	/* Validate that value stored in u64 fits in integer of `ext->sz`
1842 	 * bytes size without any loss of information. If the target integer
1843 	 * is signed, we rely on the following limits of integer type of
1844 	 * Y bits and subsequent transformation:
1845 	 *
1846 	 *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
1847 	 *            0 <= X + 2^(Y-1) <= 2^Y - 1
1848 	 *            0 <= X + 2^(Y-1) <  2^Y
1849 	 *
1850 	 *  For unsigned target integer, check that all the (64 - Y) bits are
1851 	 *  zero.
1852 	 */
1853 	if (ext->kcfg.is_signed)
1854 		return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1855 	else
1856 		return (v >> bit_sz) == 0;
1857 }
1858 
1859 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1860 			      __u64 value)
1861 {
1862 	if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
1863 	    ext->kcfg.type != KCFG_BOOL) {
1864 		pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
1865 			ext->name, (unsigned long long)value);
1866 		return -EINVAL;
1867 	}
1868 	if (ext->kcfg.type == KCFG_BOOL && value > 1) {
1869 		pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
1870 			ext->name, (unsigned long long)value);
1871 		return -EINVAL;
1872 
1873 	}
1874 	if (!is_kcfg_value_in_range(ext, value)) {
1875 		pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
1876 			ext->name, (unsigned long long)value, ext->kcfg.sz);
1877 		return -ERANGE;
1878 	}
1879 	switch (ext->kcfg.sz) {
1880 	case 1:
1881 		*(__u8 *)ext_val = value;
1882 		break;
1883 	case 2:
1884 		*(__u16 *)ext_val = value;
1885 		break;
1886 	case 4:
1887 		*(__u32 *)ext_val = value;
1888 		break;
1889 	case 8:
1890 		*(__u64 *)ext_val = value;
1891 		break;
1892 	default:
1893 		return -EINVAL;
1894 	}
1895 	ext->is_set = true;
1896 	return 0;
1897 }
1898 
1899 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1900 					    char *buf, void *data)
1901 {
1902 	struct extern_desc *ext;
1903 	char *sep, *value;
1904 	int len, err = 0;
1905 	void *ext_val;
1906 	__u64 num;
1907 
1908 	if (!str_has_pfx(buf, "CONFIG_"))
1909 		return 0;
1910 
1911 	sep = strchr(buf, '=');
1912 	if (!sep) {
1913 		pr_warn("failed to parse '%s': no separator\n", buf);
1914 		return -EINVAL;
1915 	}
1916 
1917 	/* Trim ending '\n' */
1918 	len = strlen(buf);
1919 	if (buf[len - 1] == '\n')
1920 		buf[len - 1] = '\0';
1921 	/* Split on '=' and ensure that a value is present. */
1922 	*sep = '\0';
1923 	if (!sep[1]) {
1924 		*sep = '=';
1925 		pr_warn("failed to parse '%s': no value\n", buf);
1926 		return -EINVAL;
1927 	}
1928 
1929 	ext = find_extern_by_name(obj, buf);
1930 	if (!ext || ext->is_set)
1931 		return 0;
1932 
1933 	ext_val = data + ext->kcfg.data_off;
1934 	value = sep + 1;
1935 
1936 	switch (*value) {
1937 	case 'y': case 'n': case 'm':
1938 		err = set_kcfg_value_tri(ext, ext_val, *value);
1939 		break;
1940 	case '"':
1941 		err = set_kcfg_value_str(ext, ext_val, value);
1942 		break;
1943 	default:
1944 		/* assume integer */
1945 		err = parse_u64(value, &num);
1946 		if (err) {
1947 			pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
1948 			return err;
1949 		}
1950 		if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1951 			pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
1952 			return -EINVAL;
1953 		}
1954 		err = set_kcfg_value_num(ext, ext_val, num);
1955 		break;
1956 	}
1957 	if (err)
1958 		return err;
1959 	pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
1960 	return 0;
1961 }
1962 
1963 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1964 {
1965 	char buf[PATH_MAX];
1966 	struct utsname uts;
1967 	int len, err = 0;
1968 	gzFile file;
1969 
1970 	uname(&uts);
1971 	len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1972 	if (len < 0)
1973 		return -EINVAL;
1974 	else if (len >= PATH_MAX)
1975 		return -ENAMETOOLONG;
1976 
1977 	/* gzopen also accepts uncompressed files. */
1978 	file = gzopen(buf, "r");
1979 	if (!file)
1980 		file = gzopen("/proc/config.gz", "r");
1981 
1982 	if (!file) {
1983 		pr_warn("failed to open system Kconfig\n");
1984 		return -ENOENT;
1985 	}
1986 
1987 	while (gzgets(file, buf, sizeof(buf))) {
1988 		err = bpf_object__process_kconfig_line(obj, buf, data);
1989 		if (err) {
1990 			pr_warn("error parsing system Kconfig line '%s': %d\n",
1991 				buf, err);
1992 			goto out;
1993 		}
1994 	}
1995 
1996 out:
1997 	gzclose(file);
1998 	return err;
1999 }
2000 
2001 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
2002 					const char *config, void *data)
2003 {
2004 	char buf[PATH_MAX];
2005 	int err = 0;
2006 	FILE *file;
2007 
2008 	file = fmemopen((void *)config, strlen(config), "r");
2009 	if (!file) {
2010 		err = -errno;
2011 		pr_warn("failed to open in-memory Kconfig: %d\n", err);
2012 		return err;
2013 	}
2014 
2015 	while (fgets(buf, sizeof(buf), file)) {
2016 		err = bpf_object__process_kconfig_line(obj, buf, data);
2017 		if (err) {
2018 			pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
2019 				buf, err);
2020 			break;
2021 		}
2022 	}
2023 
2024 	fclose(file);
2025 	return err;
2026 }
2027 
2028 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
2029 {
2030 	struct extern_desc *last_ext = NULL, *ext;
2031 	size_t map_sz;
2032 	int i, err;
2033 
2034 	for (i = 0; i < obj->nr_extern; i++) {
2035 		ext = &obj->externs[i];
2036 		if (ext->type == EXT_KCFG)
2037 			last_ext = ext;
2038 	}
2039 
2040 	if (!last_ext)
2041 		return 0;
2042 
2043 	map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
2044 	err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
2045 					    ".kconfig", obj->efile.symbols_shndx,
2046 					    NULL, map_sz);
2047 	if (err)
2048 		return err;
2049 
2050 	obj->kconfig_map_idx = obj->nr_maps - 1;
2051 
2052 	return 0;
2053 }
2054 
2055 const struct btf_type *
2056 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2057 {
2058 	const struct btf_type *t = btf__type_by_id(btf, id);
2059 
2060 	if (res_id)
2061 		*res_id = id;
2062 
2063 	while (btf_is_mod(t) || btf_is_typedef(t)) {
2064 		if (res_id)
2065 			*res_id = t->type;
2066 		t = btf__type_by_id(btf, t->type);
2067 	}
2068 
2069 	return t;
2070 }
2071 
2072 static const struct btf_type *
2073 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2074 {
2075 	const struct btf_type *t;
2076 
2077 	t = skip_mods_and_typedefs(btf, id, NULL);
2078 	if (!btf_is_ptr(t))
2079 		return NULL;
2080 
2081 	t = skip_mods_and_typedefs(btf, t->type, res_id);
2082 
2083 	return btf_is_func_proto(t) ? t : NULL;
2084 }
2085 
2086 static const char *__btf_kind_str(__u16 kind)
2087 {
2088 	switch (kind) {
2089 	case BTF_KIND_UNKN: return "void";
2090 	case BTF_KIND_INT: return "int";
2091 	case BTF_KIND_PTR: return "ptr";
2092 	case BTF_KIND_ARRAY: return "array";
2093 	case BTF_KIND_STRUCT: return "struct";
2094 	case BTF_KIND_UNION: return "union";
2095 	case BTF_KIND_ENUM: return "enum";
2096 	case BTF_KIND_FWD: return "fwd";
2097 	case BTF_KIND_TYPEDEF: return "typedef";
2098 	case BTF_KIND_VOLATILE: return "volatile";
2099 	case BTF_KIND_CONST: return "const";
2100 	case BTF_KIND_RESTRICT: return "restrict";
2101 	case BTF_KIND_FUNC: return "func";
2102 	case BTF_KIND_FUNC_PROTO: return "func_proto";
2103 	case BTF_KIND_VAR: return "var";
2104 	case BTF_KIND_DATASEC: return "datasec";
2105 	case BTF_KIND_FLOAT: return "float";
2106 	case BTF_KIND_DECL_TAG: return "decl_tag";
2107 	case BTF_KIND_TYPE_TAG: return "type_tag";
2108 	case BTF_KIND_ENUM64: return "enum64";
2109 	default: return "unknown";
2110 	}
2111 }
2112 
2113 const char *btf_kind_str(const struct btf_type *t)
2114 {
2115 	return __btf_kind_str(btf_kind(t));
2116 }
2117 
2118 /*
2119  * Fetch integer attribute of BTF map definition. Such attributes are
2120  * represented using a pointer to an array, in which dimensionality of array
2121  * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2122  * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2123  * type definition, while using only sizeof(void *) space in ELF data section.
2124  */
2125 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2126 			      const struct btf_member *m, __u32 *res)
2127 {
2128 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2129 	const char *name = btf__name_by_offset(btf, m->name_off);
2130 	const struct btf_array *arr_info;
2131 	const struct btf_type *arr_t;
2132 
2133 	if (!btf_is_ptr(t)) {
2134 		pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2135 			map_name, name, btf_kind_str(t));
2136 		return false;
2137 	}
2138 
2139 	arr_t = btf__type_by_id(btf, t->type);
2140 	if (!arr_t) {
2141 		pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2142 			map_name, name, t->type);
2143 		return false;
2144 	}
2145 	if (!btf_is_array(arr_t)) {
2146 		pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2147 			map_name, name, btf_kind_str(arr_t));
2148 		return false;
2149 	}
2150 	arr_info = btf_array(arr_t);
2151 	*res = arr_info->nelems;
2152 	return true;
2153 }
2154 
2155 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2156 {
2157 	int len;
2158 
2159 	len = snprintf(buf, buf_sz, "%s/%s", path, name);
2160 	if (len < 0)
2161 		return -EINVAL;
2162 	if (len >= buf_sz)
2163 		return -ENAMETOOLONG;
2164 
2165 	return 0;
2166 }
2167 
2168 static int build_map_pin_path(struct bpf_map *map, const char *path)
2169 {
2170 	char buf[PATH_MAX];
2171 	int err;
2172 
2173 	if (!path)
2174 		path = "/sys/fs/bpf";
2175 
2176 	err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2177 	if (err)
2178 		return err;
2179 
2180 	return bpf_map__set_pin_path(map, buf);
2181 }
2182 
2183 /* should match definition in bpf_helpers.h */
2184 enum libbpf_pin_type {
2185 	LIBBPF_PIN_NONE,
2186 	/* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2187 	LIBBPF_PIN_BY_NAME,
2188 };
2189 
2190 int parse_btf_map_def(const char *map_name, struct btf *btf,
2191 		      const struct btf_type *def_t, bool strict,
2192 		      struct btf_map_def *map_def, struct btf_map_def *inner_def)
2193 {
2194 	const struct btf_type *t;
2195 	const struct btf_member *m;
2196 	bool is_inner = inner_def == NULL;
2197 	int vlen, i;
2198 
2199 	vlen = btf_vlen(def_t);
2200 	m = btf_members(def_t);
2201 	for (i = 0; i < vlen; i++, m++) {
2202 		const char *name = btf__name_by_offset(btf, m->name_off);
2203 
2204 		if (!name) {
2205 			pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2206 			return -EINVAL;
2207 		}
2208 		if (strcmp(name, "type") == 0) {
2209 			if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2210 				return -EINVAL;
2211 			map_def->parts |= MAP_DEF_MAP_TYPE;
2212 		} else if (strcmp(name, "max_entries") == 0) {
2213 			if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2214 				return -EINVAL;
2215 			map_def->parts |= MAP_DEF_MAX_ENTRIES;
2216 		} else if (strcmp(name, "map_flags") == 0) {
2217 			if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2218 				return -EINVAL;
2219 			map_def->parts |= MAP_DEF_MAP_FLAGS;
2220 		} else if (strcmp(name, "numa_node") == 0) {
2221 			if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2222 				return -EINVAL;
2223 			map_def->parts |= MAP_DEF_NUMA_NODE;
2224 		} else if (strcmp(name, "key_size") == 0) {
2225 			__u32 sz;
2226 
2227 			if (!get_map_field_int(map_name, btf, m, &sz))
2228 				return -EINVAL;
2229 			if (map_def->key_size && map_def->key_size != sz) {
2230 				pr_warn("map '%s': conflicting key size %u != %u.\n",
2231 					map_name, map_def->key_size, sz);
2232 				return -EINVAL;
2233 			}
2234 			map_def->key_size = sz;
2235 			map_def->parts |= MAP_DEF_KEY_SIZE;
2236 		} else if (strcmp(name, "key") == 0) {
2237 			__s64 sz;
2238 
2239 			t = btf__type_by_id(btf, m->type);
2240 			if (!t) {
2241 				pr_warn("map '%s': key type [%d] not found.\n",
2242 					map_name, m->type);
2243 				return -EINVAL;
2244 			}
2245 			if (!btf_is_ptr(t)) {
2246 				pr_warn("map '%s': key spec is not PTR: %s.\n",
2247 					map_name, btf_kind_str(t));
2248 				return -EINVAL;
2249 			}
2250 			sz = btf__resolve_size(btf, t->type);
2251 			if (sz < 0) {
2252 				pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2253 					map_name, t->type, (ssize_t)sz);
2254 				return sz;
2255 			}
2256 			if (map_def->key_size && map_def->key_size != sz) {
2257 				pr_warn("map '%s': conflicting key size %u != %zd.\n",
2258 					map_name, map_def->key_size, (ssize_t)sz);
2259 				return -EINVAL;
2260 			}
2261 			map_def->key_size = sz;
2262 			map_def->key_type_id = t->type;
2263 			map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2264 		} else if (strcmp(name, "value_size") == 0) {
2265 			__u32 sz;
2266 
2267 			if (!get_map_field_int(map_name, btf, m, &sz))
2268 				return -EINVAL;
2269 			if (map_def->value_size && map_def->value_size != sz) {
2270 				pr_warn("map '%s': conflicting value size %u != %u.\n",
2271 					map_name, map_def->value_size, sz);
2272 				return -EINVAL;
2273 			}
2274 			map_def->value_size = sz;
2275 			map_def->parts |= MAP_DEF_VALUE_SIZE;
2276 		} else if (strcmp(name, "value") == 0) {
2277 			__s64 sz;
2278 
2279 			t = btf__type_by_id(btf, m->type);
2280 			if (!t) {
2281 				pr_warn("map '%s': value type [%d] not found.\n",
2282 					map_name, m->type);
2283 				return -EINVAL;
2284 			}
2285 			if (!btf_is_ptr(t)) {
2286 				pr_warn("map '%s': value spec is not PTR: %s.\n",
2287 					map_name, btf_kind_str(t));
2288 				return -EINVAL;
2289 			}
2290 			sz = btf__resolve_size(btf, t->type);
2291 			if (sz < 0) {
2292 				pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2293 					map_name, t->type, (ssize_t)sz);
2294 				return sz;
2295 			}
2296 			if (map_def->value_size && map_def->value_size != sz) {
2297 				pr_warn("map '%s': conflicting value size %u != %zd.\n",
2298 					map_name, map_def->value_size, (ssize_t)sz);
2299 				return -EINVAL;
2300 			}
2301 			map_def->value_size = sz;
2302 			map_def->value_type_id = t->type;
2303 			map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2304 		}
2305 		else if (strcmp(name, "values") == 0) {
2306 			bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2307 			bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2308 			const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2309 			char inner_map_name[128];
2310 			int err;
2311 
2312 			if (is_inner) {
2313 				pr_warn("map '%s': multi-level inner maps not supported.\n",
2314 					map_name);
2315 				return -ENOTSUP;
2316 			}
2317 			if (i != vlen - 1) {
2318 				pr_warn("map '%s': '%s' member should be last.\n",
2319 					map_name, name);
2320 				return -EINVAL;
2321 			}
2322 			if (!is_map_in_map && !is_prog_array) {
2323 				pr_warn("map '%s': should be map-in-map or prog-array.\n",
2324 					map_name);
2325 				return -ENOTSUP;
2326 			}
2327 			if (map_def->value_size && map_def->value_size != 4) {
2328 				pr_warn("map '%s': conflicting value size %u != 4.\n",
2329 					map_name, map_def->value_size);
2330 				return -EINVAL;
2331 			}
2332 			map_def->value_size = 4;
2333 			t = btf__type_by_id(btf, m->type);
2334 			if (!t) {
2335 				pr_warn("map '%s': %s type [%d] not found.\n",
2336 					map_name, desc, m->type);
2337 				return -EINVAL;
2338 			}
2339 			if (!btf_is_array(t) || btf_array(t)->nelems) {
2340 				pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2341 					map_name, desc);
2342 				return -EINVAL;
2343 			}
2344 			t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2345 			if (!btf_is_ptr(t)) {
2346 				pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2347 					map_name, desc, btf_kind_str(t));
2348 				return -EINVAL;
2349 			}
2350 			t = skip_mods_and_typedefs(btf, t->type, NULL);
2351 			if (is_prog_array) {
2352 				if (!btf_is_func_proto(t)) {
2353 					pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2354 						map_name, btf_kind_str(t));
2355 					return -EINVAL;
2356 				}
2357 				continue;
2358 			}
2359 			if (!btf_is_struct(t)) {
2360 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2361 					map_name, btf_kind_str(t));
2362 				return -EINVAL;
2363 			}
2364 
2365 			snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2366 			err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2367 			if (err)
2368 				return err;
2369 
2370 			map_def->parts |= MAP_DEF_INNER_MAP;
2371 		} else if (strcmp(name, "pinning") == 0) {
2372 			__u32 val;
2373 
2374 			if (is_inner) {
2375 				pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2376 				return -EINVAL;
2377 			}
2378 			if (!get_map_field_int(map_name, btf, m, &val))
2379 				return -EINVAL;
2380 			if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2381 				pr_warn("map '%s': invalid pinning value %u.\n",
2382 					map_name, val);
2383 				return -EINVAL;
2384 			}
2385 			map_def->pinning = val;
2386 			map_def->parts |= MAP_DEF_PINNING;
2387 		} else if (strcmp(name, "map_extra") == 0) {
2388 			__u32 map_extra;
2389 
2390 			if (!get_map_field_int(map_name, btf, m, &map_extra))
2391 				return -EINVAL;
2392 			map_def->map_extra = map_extra;
2393 			map_def->parts |= MAP_DEF_MAP_EXTRA;
2394 		} else {
2395 			if (strict) {
2396 				pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2397 				return -ENOTSUP;
2398 			}
2399 			pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2400 		}
2401 	}
2402 
2403 	if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2404 		pr_warn("map '%s': map type isn't specified.\n", map_name);
2405 		return -EINVAL;
2406 	}
2407 
2408 	return 0;
2409 }
2410 
2411 static size_t adjust_ringbuf_sz(size_t sz)
2412 {
2413 	__u32 page_sz = sysconf(_SC_PAGE_SIZE);
2414 	__u32 mul;
2415 
2416 	/* if user forgot to set any size, make sure they see error */
2417 	if (sz == 0)
2418 		return 0;
2419 	/* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2420 	 * a power-of-2 multiple of kernel's page size. If user diligently
2421 	 * satisified these conditions, pass the size through.
2422 	 */
2423 	if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2424 		return sz;
2425 
2426 	/* Otherwise find closest (page_sz * power_of_2) product bigger than
2427 	 * user-set size to satisfy both user size request and kernel
2428 	 * requirements and substitute correct max_entries for map creation.
2429 	 */
2430 	for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2431 		if (mul * page_sz > sz)
2432 			return mul * page_sz;
2433 	}
2434 
2435 	/* if it's impossible to satisfy the conditions (i.e., user size is
2436 	 * very close to UINT_MAX but is not a power-of-2 multiple of
2437 	 * page_size) then just return original size and let kernel reject it
2438 	 */
2439 	return sz;
2440 }
2441 
2442 static bool map_is_ringbuf(const struct bpf_map *map)
2443 {
2444 	return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2445 	       map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2446 }
2447 
2448 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2449 {
2450 	map->def.type = def->map_type;
2451 	map->def.key_size = def->key_size;
2452 	map->def.value_size = def->value_size;
2453 	map->def.max_entries = def->max_entries;
2454 	map->def.map_flags = def->map_flags;
2455 	map->map_extra = def->map_extra;
2456 
2457 	map->numa_node = def->numa_node;
2458 	map->btf_key_type_id = def->key_type_id;
2459 	map->btf_value_type_id = def->value_type_id;
2460 
2461 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2462 	if (map_is_ringbuf(map))
2463 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2464 
2465 	if (def->parts & MAP_DEF_MAP_TYPE)
2466 		pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2467 
2468 	if (def->parts & MAP_DEF_KEY_TYPE)
2469 		pr_debug("map '%s': found key [%u], sz = %u.\n",
2470 			 map->name, def->key_type_id, def->key_size);
2471 	else if (def->parts & MAP_DEF_KEY_SIZE)
2472 		pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2473 
2474 	if (def->parts & MAP_DEF_VALUE_TYPE)
2475 		pr_debug("map '%s': found value [%u], sz = %u.\n",
2476 			 map->name, def->value_type_id, def->value_size);
2477 	else if (def->parts & MAP_DEF_VALUE_SIZE)
2478 		pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2479 
2480 	if (def->parts & MAP_DEF_MAX_ENTRIES)
2481 		pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2482 	if (def->parts & MAP_DEF_MAP_FLAGS)
2483 		pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2484 	if (def->parts & MAP_DEF_MAP_EXTRA)
2485 		pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2486 			 (unsigned long long)def->map_extra);
2487 	if (def->parts & MAP_DEF_PINNING)
2488 		pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2489 	if (def->parts & MAP_DEF_NUMA_NODE)
2490 		pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2491 
2492 	if (def->parts & MAP_DEF_INNER_MAP)
2493 		pr_debug("map '%s': found inner map definition.\n", map->name);
2494 }
2495 
2496 static const char *btf_var_linkage_str(__u32 linkage)
2497 {
2498 	switch (linkage) {
2499 	case BTF_VAR_STATIC: return "static";
2500 	case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2501 	case BTF_VAR_GLOBAL_EXTERN: return "extern";
2502 	default: return "unknown";
2503 	}
2504 }
2505 
2506 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2507 					 const struct btf_type *sec,
2508 					 int var_idx, int sec_idx,
2509 					 const Elf_Data *data, bool strict,
2510 					 const char *pin_root_path)
2511 {
2512 	struct btf_map_def map_def = {}, inner_def = {};
2513 	const struct btf_type *var, *def;
2514 	const struct btf_var_secinfo *vi;
2515 	const struct btf_var *var_extra;
2516 	const char *map_name;
2517 	struct bpf_map *map;
2518 	int err;
2519 
2520 	vi = btf_var_secinfos(sec) + var_idx;
2521 	var = btf__type_by_id(obj->btf, vi->type);
2522 	var_extra = btf_var(var);
2523 	map_name = btf__name_by_offset(obj->btf, var->name_off);
2524 
2525 	if (map_name == NULL || map_name[0] == '\0') {
2526 		pr_warn("map #%d: empty name.\n", var_idx);
2527 		return -EINVAL;
2528 	}
2529 	if ((__u64)vi->offset + vi->size > data->d_size) {
2530 		pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2531 		return -EINVAL;
2532 	}
2533 	if (!btf_is_var(var)) {
2534 		pr_warn("map '%s': unexpected var kind %s.\n",
2535 			map_name, btf_kind_str(var));
2536 		return -EINVAL;
2537 	}
2538 	if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2539 		pr_warn("map '%s': unsupported map linkage %s.\n",
2540 			map_name, btf_var_linkage_str(var_extra->linkage));
2541 		return -EOPNOTSUPP;
2542 	}
2543 
2544 	def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2545 	if (!btf_is_struct(def)) {
2546 		pr_warn("map '%s': unexpected def kind %s.\n",
2547 			map_name, btf_kind_str(var));
2548 		return -EINVAL;
2549 	}
2550 	if (def->size > vi->size) {
2551 		pr_warn("map '%s': invalid def size.\n", map_name);
2552 		return -EINVAL;
2553 	}
2554 
2555 	map = bpf_object__add_map(obj);
2556 	if (IS_ERR(map))
2557 		return PTR_ERR(map);
2558 	map->name = strdup(map_name);
2559 	if (!map->name) {
2560 		pr_warn("map '%s': failed to alloc map name.\n", map_name);
2561 		return -ENOMEM;
2562 	}
2563 	map->libbpf_type = LIBBPF_MAP_UNSPEC;
2564 	map->def.type = BPF_MAP_TYPE_UNSPEC;
2565 	map->sec_idx = sec_idx;
2566 	map->sec_offset = vi->offset;
2567 	map->btf_var_idx = var_idx;
2568 	pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2569 		 map_name, map->sec_idx, map->sec_offset);
2570 
2571 	err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2572 	if (err)
2573 		return err;
2574 
2575 	fill_map_from_def(map, &map_def);
2576 
2577 	if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2578 		err = build_map_pin_path(map, pin_root_path);
2579 		if (err) {
2580 			pr_warn("map '%s': couldn't build pin path.\n", map->name);
2581 			return err;
2582 		}
2583 	}
2584 
2585 	if (map_def.parts & MAP_DEF_INNER_MAP) {
2586 		map->inner_map = calloc(1, sizeof(*map->inner_map));
2587 		if (!map->inner_map)
2588 			return -ENOMEM;
2589 		map->inner_map->fd = -1;
2590 		map->inner_map->sec_idx = sec_idx;
2591 		map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2592 		if (!map->inner_map->name)
2593 			return -ENOMEM;
2594 		sprintf(map->inner_map->name, "%s.inner", map_name);
2595 
2596 		fill_map_from_def(map->inner_map, &inner_def);
2597 	}
2598 
2599 	err = map_fill_btf_type_info(obj, map);
2600 	if (err)
2601 		return err;
2602 
2603 	return 0;
2604 }
2605 
2606 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2607 					  const char *pin_root_path)
2608 {
2609 	const struct btf_type *sec = NULL;
2610 	int nr_types, i, vlen, err;
2611 	const struct btf_type *t;
2612 	const char *name;
2613 	Elf_Data *data;
2614 	Elf_Scn *scn;
2615 
2616 	if (obj->efile.btf_maps_shndx < 0)
2617 		return 0;
2618 
2619 	scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2620 	data = elf_sec_data(obj, scn);
2621 	if (!scn || !data) {
2622 		pr_warn("elf: failed to get %s map definitions for %s\n",
2623 			MAPS_ELF_SEC, obj->path);
2624 		return -EINVAL;
2625 	}
2626 
2627 	nr_types = btf__type_cnt(obj->btf);
2628 	for (i = 1; i < nr_types; i++) {
2629 		t = btf__type_by_id(obj->btf, i);
2630 		if (!btf_is_datasec(t))
2631 			continue;
2632 		name = btf__name_by_offset(obj->btf, t->name_off);
2633 		if (strcmp(name, MAPS_ELF_SEC) == 0) {
2634 			sec = t;
2635 			obj->efile.btf_maps_sec_btf_id = i;
2636 			break;
2637 		}
2638 	}
2639 
2640 	if (!sec) {
2641 		pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2642 		return -ENOENT;
2643 	}
2644 
2645 	vlen = btf_vlen(sec);
2646 	for (i = 0; i < vlen; i++) {
2647 		err = bpf_object__init_user_btf_map(obj, sec, i,
2648 						    obj->efile.btf_maps_shndx,
2649 						    data, strict,
2650 						    pin_root_path);
2651 		if (err)
2652 			return err;
2653 	}
2654 
2655 	return 0;
2656 }
2657 
2658 static int bpf_object__init_maps(struct bpf_object *obj,
2659 				 const struct bpf_object_open_opts *opts)
2660 {
2661 	const char *pin_root_path;
2662 	bool strict;
2663 	int err = 0;
2664 
2665 	strict = !OPTS_GET(opts, relaxed_maps, false);
2666 	pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2667 
2668 	err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2669 	err = err ?: bpf_object__init_global_data_maps(obj);
2670 	err = err ?: bpf_object__init_kconfig_map(obj);
2671 	err = err ?: bpf_object_init_struct_ops(obj);
2672 
2673 	return err;
2674 }
2675 
2676 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2677 {
2678 	Elf64_Shdr *sh;
2679 
2680 	sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2681 	if (!sh)
2682 		return false;
2683 
2684 	return sh->sh_flags & SHF_EXECINSTR;
2685 }
2686 
2687 static bool btf_needs_sanitization(struct bpf_object *obj)
2688 {
2689 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2690 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2691 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2692 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2693 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2694 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2695 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2696 
2697 	return !has_func || !has_datasec || !has_func_global || !has_float ||
2698 	       !has_decl_tag || !has_type_tag || !has_enum64;
2699 }
2700 
2701 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2702 {
2703 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2704 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2705 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2706 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2707 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2708 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2709 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2710 	int enum64_placeholder_id = 0;
2711 	struct btf_type *t;
2712 	int i, j, vlen;
2713 
2714 	for (i = 1; i < btf__type_cnt(btf); i++) {
2715 		t = (struct btf_type *)btf__type_by_id(btf, i);
2716 
2717 		if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
2718 			/* replace VAR/DECL_TAG with INT */
2719 			t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2720 			/*
2721 			 * using size = 1 is the safest choice, 4 will be too
2722 			 * big and cause kernel BTF validation failure if
2723 			 * original variable took less than 4 bytes
2724 			 */
2725 			t->size = 1;
2726 			*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2727 		} else if (!has_datasec && btf_is_datasec(t)) {
2728 			/* replace DATASEC with STRUCT */
2729 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
2730 			struct btf_member *m = btf_members(t);
2731 			struct btf_type *vt;
2732 			char *name;
2733 
2734 			name = (char *)btf__name_by_offset(btf, t->name_off);
2735 			while (*name) {
2736 				if (*name == '.')
2737 					*name = '_';
2738 				name++;
2739 			}
2740 
2741 			vlen = btf_vlen(t);
2742 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2743 			for (j = 0; j < vlen; j++, v++, m++) {
2744 				/* order of field assignments is important */
2745 				m->offset = v->offset * 8;
2746 				m->type = v->type;
2747 				/* preserve variable name as member name */
2748 				vt = (void *)btf__type_by_id(btf, v->type);
2749 				m->name_off = vt->name_off;
2750 			}
2751 		} else if (!has_func && btf_is_func_proto(t)) {
2752 			/* replace FUNC_PROTO with ENUM */
2753 			vlen = btf_vlen(t);
2754 			t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2755 			t->size = sizeof(__u32); /* kernel enforced */
2756 		} else if (!has_func && btf_is_func(t)) {
2757 			/* replace FUNC with TYPEDEF */
2758 			t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2759 		} else if (!has_func_global && btf_is_func(t)) {
2760 			/* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2761 			t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2762 		} else if (!has_float && btf_is_float(t)) {
2763 			/* replace FLOAT with an equally-sized empty STRUCT;
2764 			 * since C compilers do not accept e.g. "float" as a
2765 			 * valid struct name, make it anonymous
2766 			 */
2767 			t->name_off = 0;
2768 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2769 		} else if (!has_type_tag && btf_is_type_tag(t)) {
2770 			/* replace TYPE_TAG with a CONST */
2771 			t->name_off = 0;
2772 			t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
2773 		} else if (!has_enum64 && btf_is_enum(t)) {
2774 			/* clear the kflag */
2775 			t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
2776 		} else if (!has_enum64 && btf_is_enum64(t)) {
2777 			/* replace ENUM64 with a union */
2778 			struct btf_member *m;
2779 
2780 			if (enum64_placeholder_id == 0) {
2781 				enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
2782 				if (enum64_placeholder_id < 0)
2783 					return enum64_placeholder_id;
2784 
2785 				t = (struct btf_type *)btf__type_by_id(btf, i);
2786 			}
2787 
2788 			m = btf_members(t);
2789 			vlen = btf_vlen(t);
2790 			t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
2791 			for (j = 0; j < vlen; j++, m++) {
2792 				m->type = enum64_placeholder_id;
2793 				m->offset = 0;
2794 			}
2795 		}
2796 	}
2797 
2798 	return 0;
2799 }
2800 
2801 static bool libbpf_needs_btf(const struct bpf_object *obj)
2802 {
2803 	return obj->efile.btf_maps_shndx >= 0 ||
2804 	       obj->efile.st_ops_shndx >= 0 ||
2805 	       obj->efile.st_ops_link_shndx >= 0 ||
2806 	       obj->nr_extern > 0;
2807 }
2808 
2809 static bool kernel_needs_btf(const struct bpf_object *obj)
2810 {
2811 	return obj->efile.st_ops_shndx >= 0 || obj->efile.st_ops_link_shndx >= 0;
2812 }
2813 
2814 static int bpf_object__init_btf(struct bpf_object *obj,
2815 				Elf_Data *btf_data,
2816 				Elf_Data *btf_ext_data)
2817 {
2818 	int err = -ENOENT;
2819 
2820 	if (btf_data) {
2821 		obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2822 		err = libbpf_get_error(obj->btf);
2823 		if (err) {
2824 			obj->btf = NULL;
2825 			pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
2826 			goto out;
2827 		}
2828 		/* enforce 8-byte pointers for BPF-targeted BTFs */
2829 		btf__set_pointer_size(obj->btf, 8);
2830 	}
2831 	if (btf_ext_data) {
2832 		struct btf_ext_info *ext_segs[3];
2833 		int seg_num, sec_num;
2834 
2835 		if (!obj->btf) {
2836 			pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2837 				 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2838 			goto out;
2839 		}
2840 		obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
2841 		err = libbpf_get_error(obj->btf_ext);
2842 		if (err) {
2843 			pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
2844 				BTF_EXT_ELF_SEC, err);
2845 			obj->btf_ext = NULL;
2846 			goto out;
2847 		}
2848 
2849 		/* setup .BTF.ext to ELF section mapping */
2850 		ext_segs[0] = &obj->btf_ext->func_info;
2851 		ext_segs[1] = &obj->btf_ext->line_info;
2852 		ext_segs[2] = &obj->btf_ext->core_relo_info;
2853 		for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
2854 			struct btf_ext_info *seg = ext_segs[seg_num];
2855 			const struct btf_ext_info_sec *sec;
2856 			const char *sec_name;
2857 			Elf_Scn *scn;
2858 
2859 			if (seg->sec_cnt == 0)
2860 				continue;
2861 
2862 			seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
2863 			if (!seg->sec_idxs) {
2864 				err = -ENOMEM;
2865 				goto out;
2866 			}
2867 
2868 			sec_num = 0;
2869 			for_each_btf_ext_sec(seg, sec) {
2870 				/* preventively increment index to avoid doing
2871 				 * this before every continue below
2872 				 */
2873 				sec_num++;
2874 
2875 				sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
2876 				if (str_is_empty(sec_name))
2877 					continue;
2878 				scn = elf_sec_by_name(obj, sec_name);
2879 				if (!scn)
2880 					continue;
2881 
2882 				seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
2883 			}
2884 		}
2885 	}
2886 out:
2887 	if (err && libbpf_needs_btf(obj)) {
2888 		pr_warn("BTF is required, but is missing or corrupted.\n");
2889 		return err;
2890 	}
2891 	return 0;
2892 }
2893 
2894 static int compare_vsi_off(const void *_a, const void *_b)
2895 {
2896 	const struct btf_var_secinfo *a = _a;
2897 	const struct btf_var_secinfo *b = _b;
2898 
2899 	return a->offset - b->offset;
2900 }
2901 
2902 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
2903 			     struct btf_type *t)
2904 {
2905 	__u32 size = 0, i, vars = btf_vlen(t);
2906 	const char *sec_name = btf__name_by_offset(btf, t->name_off);
2907 	struct btf_var_secinfo *vsi;
2908 	bool fixup_offsets = false;
2909 	int err;
2910 
2911 	if (!sec_name) {
2912 		pr_debug("No name found in string section for DATASEC kind.\n");
2913 		return -ENOENT;
2914 	}
2915 
2916 	/* Extern-backing datasecs (.ksyms, .kconfig) have their size and
2917 	 * variable offsets set at the previous step. Further, not every
2918 	 * extern BTF VAR has corresponding ELF symbol preserved, so we skip
2919 	 * all fixups altogether for such sections and go straight to sorting
2920 	 * VARs within their DATASEC.
2921 	 */
2922 	if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0)
2923 		goto sort_vars;
2924 
2925 	/* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to
2926 	 * fix this up. But BPF static linker already fixes this up and fills
2927 	 * all the sizes and offsets during static linking. So this step has
2928 	 * to be optional. But the STV_HIDDEN handling is non-optional for any
2929 	 * non-extern DATASEC, so the variable fixup loop below handles both
2930 	 * functions at the same time, paying the cost of BTF VAR <-> ELF
2931 	 * symbol matching just once.
2932 	 */
2933 	if (t->size == 0) {
2934 		err = find_elf_sec_sz(obj, sec_name, &size);
2935 		if (err || !size) {
2936 			pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n",
2937 				 sec_name, size, err);
2938 			return -ENOENT;
2939 		}
2940 
2941 		t->size = size;
2942 		fixup_offsets = true;
2943 	}
2944 
2945 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
2946 		const struct btf_type *t_var;
2947 		struct btf_var *var;
2948 		const char *var_name;
2949 		Elf64_Sym *sym;
2950 
2951 		t_var = btf__type_by_id(btf, vsi->type);
2952 		if (!t_var || !btf_is_var(t_var)) {
2953 			pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name);
2954 			return -EINVAL;
2955 		}
2956 
2957 		var = btf_var(t_var);
2958 		if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN)
2959 			continue;
2960 
2961 		var_name = btf__name_by_offset(btf, t_var->name_off);
2962 		if (!var_name) {
2963 			pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n",
2964 				 sec_name, i);
2965 			return -ENOENT;
2966 		}
2967 
2968 		sym = find_elf_var_sym(obj, var_name);
2969 		if (IS_ERR(sym)) {
2970 			pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n",
2971 				 sec_name, var_name);
2972 			return -ENOENT;
2973 		}
2974 
2975 		if (fixup_offsets)
2976 			vsi->offset = sym->st_value;
2977 
2978 		/* if variable is a global/weak symbol, but has restricted
2979 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR
2980 		 * as static. This follows similar logic for functions (BPF
2981 		 * subprogs) and influences libbpf's further decisions about
2982 		 * whether to make global data BPF array maps as
2983 		 * BPF_F_MMAPABLE.
2984 		 */
2985 		if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
2986 		    || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)
2987 			var->linkage = BTF_VAR_STATIC;
2988 	}
2989 
2990 sort_vars:
2991 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
2992 	return 0;
2993 }
2994 
2995 static int bpf_object_fixup_btf(struct bpf_object *obj)
2996 {
2997 	int i, n, err = 0;
2998 
2999 	if (!obj->btf)
3000 		return 0;
3001 
3002 	n = btf__type_cnt(obj->btf);
3003 	for (i = 1; i < n; i++) {
3004 		struct btf_type *t = btf_type_by_id(obj->btf, i);
3005 
3006 		/* Loader needs to fix up some of the things compiler
3007 		 * couldn't get its hands on while emitting BTF. This
3008 		 * is section size and global variable offset. We use
3009 		 * the info from the ELF itself for this purpose.
3010 		 */
3011 		if (btf_is_datasec(t)) {
3012 			err = btf_fixup_datasec(obj, obj->btf, t);
3013 			if (err)
3014 				return err;
3015 		}
3016 	}
3017 
3018 	return 0;
3019 }
3020 
3021 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
3022 {
3023 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
3024 	    prog->type == BPF_PROG_TYPE_LSM)
3025 		return true;
3026 
3027 	/* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
3028 	 * also need vmlinux BTF
3029 	 */
3030 	if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
3031 		return true;
3032 
3033 	return false;
3034 }
3035 
3036 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
3037 {
3038 	struct bpf_program *prog;
3039 	int i;
3040 
3041 	/* CO-RE relocations need kernel BTF, only when btf_custom_path
3042 	 * is not specified
3043 	 */
3044 	if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
3045 		return true;
3046 
3047 	/* Support for typed ksyms needs kernel BTF */
3048 	for (i = 0; i < obj->nr_extern; i++) {
3049 		const struct extern_desc *ext;
3050 
3051 		ext = &obj->externs[i];
3052 		if (ext->type == EXT_KSYM && ext->ksym.type_id)
3053 			return true;
3054 	}
3055 
3056 	bpf_object__for_each_program(prog, obj) {
3057 		if (!prog->autoload)
3058 			continue;
3059 		if (prog_needs_vmlinux_btf(prog))
3060 			return true;
3061 	}
3062 
3063 	return false;
3064 }
3065 
3066 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3067 {
3068 	int err;
3069 
3070 	/* btf_vmlinux could be loaded earlier */
3071 	if (obj->btf_vmlinux || obj->gen_loader)
3072 		return 0;
3073 
3074 	if (!force && !obj_needs_vmlinux_btf(obj))
3075 		return 0;
3076 
3077 	obj->btf_vmlinux = btf__load_vmlinux_btf();
3078 	err = libbpf_get_error(obj->btf_vmlinux);
3079 	if (err) {
3080 		pr_warn("Error loading vmlinux BTF: %d\n", err);
3081 		obj->btf_vmlinux = NULL;
3082 		return err;
3083 	}
3084 	return 0;
3085 }
3086 
3087 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3088 {
3089 	struct btf *kern_btf = obj->btf;
3090 	bool btf_mandatory, sanitize;
3091 	int i, err = 0;
3092 
3093 	if (!obj->btf)
3094 		return 0;
3095 
3096 	if (!kernel_supports(obj, FEAT_BTF)) {
3097 		if (kernel_needs_btf(obj)) {
3098 			err = -EOPNOTSUPP;
3099 			goto report;
3100 		}
3101 		pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3102 		return 0;
3103 	}
3104 
3105 	/* Even though some subprogs are global/weak, user might prefer more
3106 	 * permissive BPF verification process that BPF verifier performs for
3107 	 * static functions, taking into account more context from the caller
3108 	 * functions. In such case, they need to mark such subprogs with
3109 	 * __attribute__((visibility("hidden"))) and libbpf will adjust
3110 	 * corresponding FUNC BTF type to be marked as static and trigger more
3111 	 * involved BPF verification process.
3112 	 */
3113 	for (i = 0; i < obj->nr_programs; i++) {
3114 		struct bpf_program *prog = &obj->programs[i];
3115 		struct btf_type *t;
3116 		const char *name;
3117 		int j, n;
3118 
3119 		if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3120 			continue;
3121 
3122 		n = btf__type_cnt(obj->btf);
3123 		for (j = 1; j < n; j++) {
3124 			t = btf_type_by_id(obj->btf, j);
3125 			if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3126 				continue;
3127 
3128 			name = btf__str_by_offset(obj->btf, t->name_off);
3129 			if (strcmp(name, prog->name) != 0)
3130 				continue;
3131 
3132 			t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3133 			break;
3134 		}
3135 	}
3136 
3137 	sanitize = btf_needs_sanitization(obj);
3138 	if (sanitize) {
3139 		const void *raw_data;
3140 		__u32 sz;
3141 
3142 		/* clone BTF to sanitize a copy and leave the original intact */
3143 		raw_data = btf__raw_data(obj->btf, &sz);
3144 		kern_btf = btf__new(raw_data, sz);
3145 		err = libbpf_get_error(kern_btf);
3146 		if (err)
3147 			return err;
3148 
3149 		/* enforce 8-byte pointers for BPF-targeted BTFs */
3150 		btf__set_pointer_size(obj->btf, 8);
3151 		err = bpf_object__sanitize_btf(obj, kern_btf);
3152 		if (err)
3153 			return err;
3154 	}
3155 
3156 	if (obj->gen_loader) {
3157 		__u32 raw_size = 0;
3158 		const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3159 
3160 		if (!raw_data)
3161 			return -ENOMEM;
3162 		bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3163 		/* Pretend to have valid FD to pass various fd >= 0 checks.
3164 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3165 		 */
3166 		btf__set_fd(kern_btf, 0);
3167 	} else {
3168 		/* currently BPF_BTF_LOAD only supports log_level 1 */
3169 		err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3170 					   obj->log_level ? 1 : 0);
3171 	}
3172 	if (sanitize) {
3173 		if (!err) {
3174 			/* move fd to libbpf's BTF */
3175 			btf__set_fd(obj->btf, btf__fd(kern_btf));
3176 			btf__set_fd(kern_btf, -1);
3177 		}
3178 		btf__free(kern_btf);
3179 	}
3180 report:
3181 	if (err) {
3182 		btf_mandatory = kernel_needs_btf(obj);
3183 		pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3184 			btf_mandatory ? "BTF is mandatory, can't proceed."
3185 				      : "BTF is optional, ignoring.");
3186 		if (!btf_mandatory)
3187 			err = 0;
3188 	}
3189 	return err;
3190 }
3191 
3192 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3193 {
3194 	const char *name;
3195 
3196 	name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3197 	if (!name) {
3198 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3199 			off, obj->path, elf_errmsg(-1));
3200 		return NULL;
3201 	}
3202 
3203 	return name;
3204 }
3205 
3206 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3207 {
3208 	const char *name;
3209 
3210 	name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3211 	if (!name) {
3212 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3213 			off, obj->path, elf_errmsg(-1));
3214 		return NULL;
3215 	}
3216 
3217 	return name;
3218 }
3219 
3220 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3221 {
3222 	Elf_Scn *scn;
3223 
3224 	scn = elf_getscn(obj->efile.elf, idx);
3225 	if (!scn) {
3226 		pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3227 			idx, obj->path, elf_errmsg(-1));
3228 		return NULL;
3229 	}
3230 	return scn;
3231 }
3232 
3233 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3234 {
3235 	Elf_Scn *scn = NULL;
3236 	Elf *elf = obj->efile.elf;
3237 	const char *sec_name;
3238 
3239 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3240 		sec_name = elf_sec_name(obj, scn);
3241 		if (!sec_name)
3242 			return NULL;
3243 
3244 		if (strcmp(sec_name, name) != 0)
3245 			continue;
3246 
3247 		return scn;
3248 	}
3249 	return NULL;
3250 }
3251 
3252 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3253 {
3254 	Elf64_Shdr *shdr;
3255 
3256 	if (!scn)
3257 		return NULL;
3258 
3259 	shdr = elf64_getshdr(scn);
3260 	if (!shdr) {
3261 		pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3262 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3263 		return NULL;
3264 	}
3265 
3266 	return shdr;
3267 }
3268 
3269 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3270 {
3271 	const char *name;
3272 	Elf64_Shdr *sh;
3273 
3274 	if (!scn)
3275 		return NULL;
3276 
3277 	sh = elf_sec_hdr(obj, scn);
3278 	if (!sh)
3279 		return NULL;
3280 
3281 	name = elf_sec_str(obj, sh->sh_name);
3282 	if (!name) {
3283 		pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3284 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3285 		return NULL;
3286 	}
3287 
3288 	return name;
3289 }
3290 
3291 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3292 {
3293 	Elf_Data *data;
3294 
3295 	if (!scn)
3296 		return NULL;
3297 
3298 	data = elf_getdata(scn, 0);
3299 	if (!data) {
3300 		pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3301 			elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3302 			obj->path, elf_errmsg(-1));
3303 		return NULL;
3304 	}
3305 
3306 	return data;
3307 }
3308 
3309 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3310 {
3311 	if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3312 		return NULL;
3313 
3314 	return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3315 }
3316 
3317 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3318 {
3319 	if (idx >= data->d_size / sizeof(Elf64_Rel))
3320 		return NULL;
3321 
3322 	return (Elf64_Rel *)data->d_buf + idx;
3323 }
3324 
3325 static bool is_sec_name_dwarf(const char *name)
3326 {
3327 	/* approximation, but the actual list is too long */
3328 	return str_has_pfx(name, ".debug_");
3329 }
3330 
3331 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3332 {
3333 	/* no special handling of .strtab */
3334 	if (hdr->sh_type == SHT_STRTAB)
3335 		return true;
3336 
3337 	/* ignore .llvm_addrsig section as well */
3338 	if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3339 		return true;
3340 
3341 	/* no subprograms will lead to an empty .text section, ignore it */
3342 	if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3343 	    strcmp(name, ".text") == 0)
3344 		return true;
3345 
3346 	/* DWARF sections */
3347 	if (is_sec_name_dwarf(name))
3348 		return true;
3349 
3350 	if (str_has_pfx(name, ".rel")) {
3351 		name += sizeof(".rel") - 1;
3352 		/* DWARF section relocations */
3353 		if (is_sec_name_dwarf(name))
3354 			return true;
3355 
3356 		/* .BTF and .BTF.ext don't need relocations */
3357 		if (strcmp(name, BTF_ELF_SEC) == 0 ||
3358 		    strcmp(name, BTF_EXT_ELF_SEC) == 0)
3359 			return true;
3360 	}
3361 
3362 	return false;
3363 }
3364 
3365 static int cmp_progs(const void *_a, const void *_b)
3366 {
3367 	const struct bpf_program *a = _a;
3368 	const struct bpf_program *b = _b;
3369 
3370 	if (a->sec_idx != b->sec_idx)
3371 		return a->sec_idx < b->sec_idx ? -1 : 1;
3372 
3373 	/* sec_insn_off can't be the same within the section */
3374 	return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3375 }
3376 
3377 static int bpf_object__elf_collect(struct bpf_object *obj)
3378 {
3379 	struct elf_sec_desc *sec_desc;
3380 	Elf *elf = obj->efile.elf;
3381 	Elf_Data *btf_ext_data = NULL;
3382 	Elf_Data *btf_data = NULL;
3383 	int idx = 0, err = 0;
3384 	const char *name;
3385 	Elf_Data *data;
3386 	Elf_Scn *scn;
3387 	Elf64_Shdr *sh;
3388 
3389 	/* ELF section indices are 0-based, but sec #0 is special "invalid"
3390 	 * section. Since section count retrieved by elf_getshdrnum() does
3391 	 * include sec #0, it is already the necessary size of an array to keep
3392 	 * all the sections.
3393 	 */
3394 	if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3395 		pr_warn("elf: failed to get the number of sections for %s: %s\n",
3396 			obj->path, elf_errmsg(-1));
3397 		return -LIBBPF_ERRNO__FORMAT;
3398 	}
3399 	obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3400 	if (!obj->efile.secs)
3401 		return -ENOMEM;
3402 
3403 	/* a bunch of ELF parsing functionality depends on processing symbols,
3404 	 * so do the first pass and find the symbol table
3405 	 */
3406 	scn = NULL;
3407 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3408 		sh = elf_sec_hdr(obj, scn);
3409 		if (!sh)
3410 			return -LIBBPF_ERRNO__FORMAT;
3411 
3412 		if (sh->sh_type == SHT_SYMTAB) {
3413 			if (obj->efile.symbols) {
3414 				pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3415 				return -LIBBPF_ERRNO__FORMAT;
3416 			}
3417 
3418 			data = elf_sec_data(obj, scn);
3419 			if (!data)
3420 				return -LIBBPF_ERRNO__FORMAT;
3421 
3422 			idx = elf_ndxscn(scn);
3423 
3424 			obj->efile.symbols = data;
3425 			obj->efile.symbols_shndx = idx;
3426 			obj->efile.strtabidx = sh->sh_link;
3427 		}
3428 	}
3429 
3430 	if (!obj->efile.symbols) {
3431 		pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3432 			obj->path);
3433 		return -ENOENT;
3434 	}
3435 
3436 	scn = NULL;
3437 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3438 		idx = elf_ndxscn(scn);
3439 		sec_desc = &obj->efile.secs[idx];
3440 
3441 		sh = elf_sec_hdr(obj, scn);
3442 		if (!sh)
3443 			return -LIBBPF_ERRNO__FORMAT;
3444 
3445 		name = elf_sec_str(obj, sh->sh_name);
3446 		if (!name)
3447 			return -LIBBPF_ERRNO__FORMAT;
3448 
3449 		if (ignore_elf_section(sh, name))
3450 			continue;
3451 
3452 		data = elf_sec_data(obj, scn);
3453 		if (!data)
3454 			return -LIBBPF_ERRNO__FORMAT;
3455 
3456 		pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3457 			 idx, name, (unsigned long)data->d_size,
3458 			 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3459 			 (int)sh->sh_type);
3460 
3461 		if (strcmp(name, "license") == 0) {
3462 			err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3463 			if (err)
3464 				return err;
3465 		} else if (strcmp(name, "version") == 0) {
3466 			err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3467 			if (err)
3468 				return err;
3469 		} else if (strcmp(name, "maps") == 0) {
3470 			pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3471 			return -ENOTSUP;
3472 		} else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3473 			obj->efile.btf_maps_shndx = idx;
3474 		} else if (strcmp(name, BTF_ELF_SEC) == 0) {
3475 			if (sh->sh_type != SHT_PROGBITS)
3476 				return -LIBBPF_ERRNO__FORMAT;
3477 			btf_data = data;
3478 		} else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3479 			if (sh->sh_type != SHT_PROGBITS)
3480 				return -LIBBPF_ERRNO__FORMAT;
3481 			btf_ext_data = data;
3482 		} else if (sh->sh_type == SHT_SYMTAB) {
3483 			/* already processed during the first pass above */
3484 		} else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3485 			if (sh->sh_flags & SHF_EXECINSTR) {
3486 				if (strcmp(name, ".text") == 0)
3487 					obj->efile.text_shndx = idx;
3488 				err = bpf_object__add_programs(obj, data, name, idx);
3489 				if (err)
3490 					return err;
3491 			} else if (strcmp(name, DATA_SEC) == 0 ||
3492 				   str_has_pfx(name, DATA_SEC ".")) {
3493 				sec_desc->sec_type = SEC_DATA;
3494 				sec_desc->shdr = sh;
3495 				sec_desc->data = data;
3496 			} else if (strcmp(name, RODATA_SEC) == 0 ||
3497 				   str_has_pfx(name, RODATA_SEC ".")) {
3498 				sec_desc->sec_type = SEC_RODATA;
3499 				sec_desc->shdr = sh;
3500 				sec_desc->data = data;
3501 			} else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
3502 				obj->efile.st_ops_data = data;
3503 				obj->efile.st_ops_shndx = idx;
3504 			} else if (strcmp(name, STRUCT_OPS_LINK_SEC) == 0) {
3505 				obj->efile.st_ops_link_data = data;
3506 				obj->efile.st_ops_link_shndx = idx;
3507 			} else {
3508 				pr_info("elf: skipping unrecognized data section(%d) %s\n",
3509 					idx, name);
3510 			}
3511 		} else if (sh->sh_type == SHT_REL) {
3512 			int targ_sec_idx = sh->sh_info; /* points to other section */
3513 
3514 			if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3515 			    targ_sec_idx >= obj->efile.sec_cnt)
3516 				return -LIBBPF_ERRNO__FORMAT;
3517 
3518 			/* Only do relo for section with exec instructions */
3519 			if (!section_have_execinstr(obj, targ_sec_idx) &&
3520 			    strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3521 			    strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) &&
3522 			    strcmp(name, ".rel" MAPS_ELF_SEC)) {
3523 				pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3524 					idx, name, targ_sec_idx,
3525 					elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3526 				continue;
3527 			}
3528 
3529 			sec_desc->sec_type = SEC_RELO;
3530 			sec_desc->shdr = sh;
3531 			sec_desc->data = data;
3532 		} else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 ||
3533 							 str_has_pfx(name, BSS_SEC "."))) {
3534 			sec_desc->sec_type = SEC_BSS;
3535 			sec_desc->shdr = sh;
3536 			sec_desc->data = data;
3537 		} else {
3538 			pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3539 				(size_t)sh->sh_size);
3540 		}
3541 	}
3542 
3543 	if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3544 		pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3545 		return -LIBBPF_ERRNO__FORMAT;
3546 	}
3547 
3548 	/* sort BPF programs by section name and in-section instruction offset
3549 	 * for faster search
3550 	 */
3551 	if (obj->nr_programs)
3552 		qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3553 
3554 	return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3555 }
3556 
3557 static bool sym_is_extern(const Elf64_Sym *sym)
3558 {
3559 	int bind = ELF64_ST_BIND(sym->st_info);
3560 	/* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3561 	return sym->st_shndx == SHN_UNDEF &&
3562 	       (bind == STB_GLOBAL || bind == STB_WEAK) &&
3563 	       ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3564 }
3565 
3566 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3567 {
3568 	int bind = ELF64_ST_BIND(sym->st_info);
3569 	int type = ELF64_ST_TYPE(sym->st_info);
3570 
3571 	/* in .text section */
3572 	if (sym->st_shndx != text_shndx)
3573 		return false;
3574 
3575 	/* local function */
3576 	if (bind == STB_LOCAL && type == STT_SECTION)
3577 		return true;
3578 
3579 	/* global function */
3580 	return bind == STB_GLOBAL && type == STT_FUNC;
3581 }
3582 
3583 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3584 {
3585 	const struct btf_type *t;
3586 	const char *tname;
3587 	int i, n;
3588 
3589 	if (!btf)
3590 		return -ESRCH;
3591 
3592 	n = btf__type_cnt(btf);
3593 	for (i = 1; i < n; i++) {
3594 		t = btf__type_by_id(btf, i);
3595 
3596 		if (!btf_is_var(t) && !btf_is_func(t))
3597 			continue;
3598 
3599 		tname = btf__name_by_offset(btf, t->name_off);
3600 		if (strcmp(tname, ext_name))
3601 			continue;
3602 
3603 		if (btf_is_var(t) &&
3604 		    btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3605 			return -EINVAL;
3606 
3607 		if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3608 			return -EINVAL;
3609 
3610 		return i;
3611 	}
3612 
3613 	return -ENOENT;
3614 }
3615 
3616 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3617 	const struct btf_var_secinfo *vs;
3618 	const struct btf_type *t;
3619 	int i, j, n;
3620 
3621 	if (!btf)
3622 		return -ESRCH;
3623 
3624 	n = btf__type_cnt(btf);
3625 	for (i = 1; i < n; i++) {
3626 		t = btf__type_by_id(btf, i);
3627 
3628 		if (!btf_is_datasec(t))
3629 			continue;
3630 
3631 		vs = btf_var_secinfos(t);
3632 		for (j = 0; j < btf_vlen(t); j++, vs++) {
3633 			if (vs->type == ext_btf_id)
3634 				return i;
3635 		}
3636 	}
3637 
3638 	return -ENOENT;
3639 }
3640 
3641 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3642 				     bool *is_signed)
3643 {
3644 	const struct btf_type *t;
3645 	const char *name;
3646 
3647 	t = skip_mods_and_typedefs(btf, id, NULL);
3648 	name = btf__name_by_offset(btf, t->name_off);
3649 
3650 	if (is_signed)
3651 		*is_signed = false;
3652 	switch (btf_kind(t)) {
3653 	case BTF_KIND_INT: {
3654 		int enc = btf_int_encoding(t);
3655 
3656 		if (enc & BTF_INT_BOOL)
3657 			return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3658 		if (is_signed)
3659 			*is_signed = enc & BTF_INT_SIGNED;
3660 		if (t->size == 1)
3661 			return KCFG_CHAR;
3662 		if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3663 			return KCFG_UNKNOWN;
3664 		return KCFG_INT;
3665 	}
3666 	case BTF_KIND_ENUM:
3667 		if (t->size != 4)
3668 			return KCFG_UNKNOWN;
3669 		if (strcmp(name, "libbpf_tristate"))
3670 			return KCFG_UNKNOWN;
3671 		return KCFG_TRISTATE;
3672 	case BTF_KIND_ENUM64:
3673 		if (strcmp(name, "libbpf_tristate"))
3674 			return KCFG_UNKNOWN;
3675 		return KCFG_TRISTATE;
3676 	case BTF_KIND_ARRAY:
3677 		if (btf_array(t)->nelems == 0)
3678 			return KCFG_UNKNOWN;
3679 		if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3680 			return KCFG_UNKNOWN;
3681 		return KCFG_CHAR_ARR;
3682 	default:
3683 		return KCFG_UNKNOWN;
3684 	}
3685 }
3686 
3687 static int cmp_externs(const void *_a, const void *_b)
3688 {
3689 	const struct extern_desc *a = _a;
3690 	const struct extern_desc *b = _b;
3691 
3692 	if (a->type != b->type)
3693 		return a->type < b->type ? -1 : 1;
3694 
3695 	if (a->type == EXT_KCFG) {
3696 		/* descending order by alignment requirements */
3697 		if (a->kcfg.align != b->kcfg.align)
3698 			return a->kcfg.align > b->kcfg.align ? -1 : 1;
3699 		/* ascending order by size, within same alignment class */
3700 		if (a->kcfg.sz != b->kcfg.sz)
3701 			return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3702 	}
3703 
3704 	/* resolve ties by name */
3705 	return strcmp(a->name, b->name);
3706 }
3707 
3708 static int find_int_btf_id(const struct btf *btf)
3709 {
3710 	const struct btf_type *t;
3711 	int i, n;
3712 
3713 	n = btf__type_cnt(btf);
3714 	for (i = 1; i < n; i++) {
3715 		t = btf__type_by_id(btf, i);
3716 
3717 		if (btf_is_int(t) && btf_int_bits(t) == 32)
3718 			return i;
3719 	}
3720 
3721 	return 0;
3722 }
3723 
3724 static int add_dummy_ksym_var(struct btf *btf)
3725 {
3726 	int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
3727 	const struct btf_var_secinfo *vs;
3728 	const struct btf_type *sec;
3729 
3730 	if (!btf)
3731 		return 0;
3732 
3733 	sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
3734 					    BTF_KIND_DATASEC);
3735 	if (sec_btf_id < 0)
3736 		return 0;
3737 
3738 	sec = btf__type_by_id(btf, sec_btf_id);
3739 	vs = btf_var_secinfos(sec);
3740 	for (i = 0; i < btf_vlen(sec); i++, vs++) {
3741 		const struct btf_type *vt;
3742 
3743 		vt = btf__type_by_id(btf, vs->type);
3744 		if (btf_is_func(vt))
3745 			break;
3746 	}
3747 
3748 	/* No func in ksyms sec.  No need to add dummy var. */
3749 	if (i == btf_vlen(sec))
3750 		return 0;
3751 
3752 	int_btf_id = find_int_btf_id(btf);
3753 	dummy_var_btf_id = btf__add_var(btf,
3754 					"dummy_ksym",
3755 					BTF_VAR_GLOBAL_ALLOCATED,
3756 					int_btf_id);
3757 	if (dummy_var_btf_id < 0)
3758 		pr_warn("cannot create a dummy_ksym var\n");
3759 
3760 	return dummy_var_btf_id;
3761 }
3762 
3763 static int bpf_object__collect_externs(struct bpf_object *obj)
3764 {
3765 	struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3766 	const struct btf_type *t;
3767 	struct extern_desc *ext;
3768 	int i, n, off, dummy_var_btf_id;
3769 	const char *ext_name, *sec_name;
3770 	Elf_Scn *scn;
3771 	Elf64_Shdr *sh;
3772 
3773 	if (!obj->efile.symbols)
3774 		return 0;
3775 
3776 	scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3777 	sh = elf_sec_hdr(obj, scn);
3778 	if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
3779 		return -LIBBPF_ERRNO__FORMAT;
3780 
3781 	dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
3782 	if (dummy_var_btf_id < 0)
3783 		return dummy_var_btf_id;
3784 
3785 	n = sh->sh_size / sh->sh_entsize;
3786 	pr_debug("looking for externs among %d symbols...\n", n);
3787 
3788 	for (i = 0; i < n; i++) {
3789 		Elf64_Sym *sym = elf_sym_by_idx(obj, i);
3790 
3791 		if (!sym)
3792 			return -LIBBPF_ERRNO__FORMAT;
3793 		if (!sym_is_extern(sym))
3794 			continue;
3795 		ext_name = elf_sym_str(obj, sym->st_name);
3796 		if (!ext_name || !ext_name[0])
3797 			continue;
3798 
3799 		ext = obj->externs;
3800 		ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3801 		if (!ext)
3802 			return -ENOMEM;
3803 		obj->externs = ext;
3804 		ext = &ext[obj->nr_extern];
3805 		memset(ext, 0, sizeof(*ext));
3806 		obj->nr_extern++;
3807 
3808 		ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3809 		if (ext->btf_id <= 0) {
3810 			pr_warn("failed to find BTF for extern '%s': %d\n",
3811 				ext_name, ext->btf_id);
3812 			return ext->btf_id;
3813 		}
3814 		t = btf__type_by_id(obj->btf, ext->btf_id);
3815 		ext->name = btf__name_by_offset(obj->btf, t->name_off);
3816 		ext->sym_idx = i;
3817 		ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
3818 
3819 		ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3820 		if (ext->sec_btf_id <= 0) {
3821 			pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3822 				ext_name, ext->btf_id, ext->sec_btf_id);
3823 			return ext->sec_btf_id;
3824 		}
3825 		sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3826 		sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3827 
3828 		if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3829 			if (btf_is_func(t)) {
3830 				pr_warn("extern function %s is unsupported under %s section\n",
3831 					ext->name, KCONFIG_SEC);
3832 				return -ENOTSUP;
3833 			}
3834 			kcfg_sec = sec;
3835 			ext->type = EXT_KCFG;
3836 			ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3837 			if (ext->kcfg.sz <= 0) {
3838 				pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3839 					ext_name, ext->kcfg.sz);
3840 				return ext->kcfg.sz;
3841 			}
3842 			ext->kcfg.align = btf__align_of(obj->btf, t->type);
3843 			if (ext->kcfg.align <= 0) {
3844 				pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3845 					ext_name, ext->kcfg.align);
3846 				return -EINVAL;
3847 			}
3848 			ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3849 							&ext->kcfg.is_signed);
3850 			if (ext->kcfg.type == KCFG_UNKNOWN) {
3851 				pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
3852 				return -ENOTSUP;
3853 			}
3854 		} else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3855 			ksym_sec = sec;
3856 			ext->type = EXT_KSYM;
3857 			skip_mods_and_typedefs(obj->btf, t->type,
3858 					       &ext->ksym.type_id);
3859 		} else {
3860 			pr_warn("unrecognized extern section '%s'\n", sec_name);
3861 			return -ENOTSUP;
3862 		}
3863 	}
3864 	pr_debug("collected %d externs total\n", obj->nr_extern);
3865 
3866 	if (!obj->nr_extern)
3867 		return 0;
3868 
3869 	/* sort externs by type, for kcfg ones also by (align, size, name) */
3870 	qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3871 
3872 	/* for .ksyms section, we need to turn all externs into allocated
3873 	 * variables in BTF to pass kernel verification; we do this by
3874 	 * pretending that each extern is a 8-byte variable
3875 	 */
3876 	if (ksym_sec) {
3877 		/* find existing 4-byte integer type in BTF to use for fake
3878 		 * extern variables in DATASEC
3879 		 */
3880 		int int_btf_id = find_int_btf_id(obj->btf);
3881 		/* For extern function, a dummy_var added earlier
3882 		 * will be used to replace the vs->type and
3883 		 * its name string will be used to refill
3884 		 * the missing param's name.
3885 		 */
3886 		const struct btf_type *dummy_var;
3887 
3888 		dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
3889 		for (i = 0; i < obj->nr_extern; i++) {
3890 			ext = &obj->externs[i];
3891 			if (ext->type != EXT_KSYM)
3892 				continue;
3893 			pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3894 				 i, ext->sym_idx, ext->name);
3895 		}
3896 
3897 		sec = ksym_sec;
3898 		n = btf_vlen(sec);
3899 		for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3900 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3901 			struct btf_type *vt;
3902 
3903 			vt = (void *)btf__type_by_id(obj->btf, vs->type);
3904 			ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3905 			ext = find_extern_by_name(obj, ext_name);
3906 			if (!ext) {
3907 				pr_warn("failed to find extern definition for BTF %s '%s'\n",
3908 					btf_kind_str(vt), ext_name);
3909 				return -ESRCH;
3910 			}
3911 			if (btf_is_func(vt)) {
3912 				const struct btf_type *func_proto;
3913 				struct btf_param *param;
3914 				int j;
3915 
3916 				func_proto = btf__type_by_id(obj->btf,
3917 							     vt->type);
3918 				param = btf_params(func_proto);
3919 				/* Reuse the dummy_var string if the
3920 				 * func proto does not have param name.
3921 				 */
3922 				for (j = 0; j < btf_vlen(func_proto); j++)
3923 					if (param[j].type && !param[j].name_off)
3924 						param[j].name_off =
3925 							dummy_var->name_off;
3926 				vs->type = dummy_var_btf_id;
3927 				vt->info &= ~0xffff;
3928 				vt->info |= BTF_FUNC_GLOBAL;
3929 			} else {
3930 				btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3931 				vt->type = int_btf_id;
3932 			}
3933 			vs->offset = off;
3934 			vs->size = sizeof(int);
3935 		}
3936 		sec->size = off;
3937 	}
3938 
3939 	if (kcfg_sec) {
3940 		sec = kcfg_sec;
3941 		/* for kcfg externs calculate their offsets within a .kconfig map */
3942 		off = 0;
3943 		for (i = 0; i < obj->nr_extern; i++) {
3944 			ext = &obj->externs[i];
3945 			if (ext->type != EXT_KCFG)
3946 				continue;
3947 
3948 			ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3949 			off = ext->kcfg.data_off + ext->kcfg.sz;
3950 			pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3951 				 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3952 		}
3953 		sec->size = off;
3954 		n = btf_vlen(sec);
3955 		for (i = 0; i < n; i++) {
3956 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3957 
3958 			t = btf__type_by_id(obj->btf, vs->type);
3959 			ext_name = btf__name_by_offset(obj->btf, t->name_off);
3960 			ext = find_extern_by_name(obj, ext_name);
3961 			if (!ext) {
3962 				pr_warn("failed to find extern definition for BTF var '%s'\n",
3963 					ext_name);
3964 				return -ESRCH;
3965 			}
3966 			btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3967 			vs->offset = ext->kcfg.data_off;
3968 		}
3969 	}
3970 	return 0;
3971 }
3972 
3973 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
3974 {
3975 	return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
3976 }
3977 
3978 struct bpf_program *
3979 bpf_object__find_program_by_name(const struct bpf_object *obj,
3980 				 const char *name)
3981 {
3982 	struct bpf_program *prog;
3983 
3984 	bpf_object__for_each_program(prog, obj) {
3985 		if (prog_is_subprog(obj, prog))
3986 			continue;
3987 		if (!strcmp(prog->name, name))
3988 			return prog;
3989 	}
3990 	return errno = ENOENT, NULL;
3991 }
3992 
3993 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
3994 				      int shndx)
3995 {
3996 	switch (obj->efile.secs[shndx].sec_type) {
3997 	case SEC_BSS:
3998 	case SEC_DATA:
3999 	case SEC_RODATA:
4000 		return true;
4001 	default:
4002 		return false;
4003 	}
4004 }
4005 
4006 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
4007 				      int shndx)
4008 {
4009 	return shndx == obj->efile.btf_maps_shndx;
4010 }
4011 
4012 static enum libbpf_map_type
4013 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
4014 {
4015 	if (shndx == obj->efile.symbols_shndx)
4016 		return LIBBPF_MAP_KCONFIG;
4017 
4018 	switch (obj->efile.secs[shndx].sec_type) {
4019 	case SEC_BSS:
4020 		return LIBBPF_MAP_BSS;
4021 	case SEC_DATA:
4022 		return LIBBPF_MAP_DATA;
4023 	case SEC_RODATA:
4024 		return LIBBPF_MAP_RODATA;
4025 	default:
4026 		return LIBBPF_MAP_UNSPEC;
4027 	}
4028 }
4029 
4030 static int bpf_program__record_reloc(struct bpf_program *prog,
4031 				     struct reloc_desc *reloc_desc,
4032 				     __u32 insn_idx, const char *sym_name,
4033 				     const Elf64_Sym *sym, const Elf64_Rel *rel)
4034 {
4035 	struct bpf_insn *insn = &prog->insns[insn_idx];
4036 	size_t map_idx, nr_maps = prog->obj->nr_maps;
4037 	struct bpf_object *obj = prog->obj;
4038 	__u32 shdr_idx = sym->st_shndx;
4039 	enum libbpf_map_type type;
4040 	const char *sym_sec_name;
4041 	struct bpf_map *map;
4042 
4043 	if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
4044 		pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
4045 			prog->name, sym_name, insn_idx, insn->code);
4046 		return -LIBBPF_ERRNO__RELOC;
4047 	}
4048 
4049 	if (sym_is_extern(sym)) {
4050 		int sym_idx = ELF64_R_SYM(rel->r_info);
4051 		int i, n = obj->nr_extern;
4052 		struct extern_desc *ext;
4053 
4054 		for (i = 0; i < n; i++) {
4055 			ext = &obj->externs[i];
4056 			if (ext->sym_idx == sym_idx)
4057 				break;
4058 		}
4059 		if (i >= n) {
4060 			pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4061 				prog->name, sym_name, sym_idx);
4062 			return -LIBBPF_ERRNO__RELOC;
4063 		}
4064 		pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4065 			 prog->name, i, ext->name, ext->sym_idx, insn_idx);
4066 		if (insn->code == (BPF_JMP | BPF_CALL))
4067 			reloc_desc->type = RELO_EXTERN_CALL;
4068 		else
4069 			reloc_desc->type = RELO_EXTERN_LD64;
4070 		reloc_desc->insn_idx = insn_idx;
4071 		reloc_desc->ext_idx = i;
4072 		return 0;
4073 	}
4074 
4075 	/* sub-program call relocation */
4076 	if (is_call_insn(insn)) {
4077 		if (insn->src_reg != BPF_PSEUDO_CALL) {
4078 			pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4079 			return -LIBBPF_ERRNO__RELOC;
4080 		}
4081 		/* text_shndx can be 0, if no default "main" program exists */
4082 		if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4083 			sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4084 			pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4085 				prog->name, sym_name, sym_sec_name);
4086 			return -LIBBPF_ERRNO__RELOC;
4087 		}
4088 		if (sym->st_value % BPF_INSN_SZ) {
4089 			pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4090 				prog->name, sym_name, (size_t)sym->st_value);
4091 			return -LIBBPF_ERRNO__RELOC;
4092 		}
4093 		reloc_desc->type = RELO_CALL;
4094 		reloc_desc->insn_idx = insn_idx;
4095 		reloc_desc->sym_off = sym->st_value;
4096 		return 0;
4097 	}
4098 
4099 	if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4100 		pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4101 			prog->name, sym_name, shdr_idx);
4102 		return -LIBBPF_ERRNO__RELOC;
4103 	}
4104 
4105 	/* loading subprog addresses */
4106 	if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4107 		/* global_func: sym->st_value = offset in the section, insn->imm = 0.
4108 		 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4109 		 */
4110 		if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4111 			pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4112 				prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4113 			return -LIBBPF_ERRNO__RELOC;
4114 		}
4115 
4116 		reloc_desc->type = RELO_SUBPROG_ADDR;
4117 		reloc_desc->insn_idx = insn_idx;
4118 		reloc_desc->sym_off = sym->st_value;
4119 		return 0;
4120 	}
4121 
4122 	type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4123 	sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4124 
4125 	/* generic map reference relocation */
4126 	if (type == LIBBPF_MAP_UNSPEC) {
4127 		if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4128 			pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4129 				prog->name, sym_name, sym_sec_name);
4130 			return -LIBBPF_ERRNO__RELOC;
4131 		}
4132 		for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4133 			map = &obj->maps[map_idx];
4134 			if (map->libbpf_type != type ||
4135 			    map->sec_idx != sym->st_shndx ||
4136 			    map->sec_offset != sym->st_value)
4137 				continue;
4138 			pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4139 				 prog->name, map_idx, map->name, map->sec_idx,
4140 				 map->sec_offset, insn_idx);
4141 			break;
4142 		}
4143 		if (map_idx >= nr_maps) {
4144 			pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4145 				prog->name, sym_sec_name, (size_t)sym->st_value);
4146 			return -LIBBPF_ERRNO__RELOC;
4147 		}
4148 		reloc_desc->type = RELO_LD64;
4149 		reloc_desc->insn_idx = insn_idx;
4150 		reloc_desc->map_idx = map_idx;
4151 		reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4152 		return 0;
4153 	}
4154 
4155 	/* global data map relocation */
4156 	if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4157 		pr_warn("prog '%s': bad data relo against section '%s'\n",
4158 			prog->name, sym_sec_name);
4159 		return -LIBBPF_ERRNO__RELOC;
4160 	}
4161 	for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4162 		map = &obj->maps[map_idx];
4163 		if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4164 			continue;
4165 		pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4166 			 prog->name, map_idx, map->name, map->sec_idx,
4167 			 map->sec_offset, insn_idx);
4168 		break;
4169 	}
4170 	if (map_idx >= nr_maps) {
4171 		pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4172 			prog->name, sym_sec_name);
4173 		return -LIBBPF_ERRNO__RELOC;
4174 	}
4175 
4176 	reloc_desc->type = RELO_DATA;
4177 	reloc_desc->insn_idx = insn_idx;
4178 	reloc_desc->map_idx = map_idx;
4179 	reloc_desc->sym_off = sym->st_value;
4180 	return 0;
4181 }
4182 
4183 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4184 {
4185 	return insn_idx >= prog->sec_insn_off &&
4186 	       insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4187 }
4188 
4189 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4190 						 size_t sec_idx, size_t insn_idx)
4191 {
4192 	int l = 0, r = obj->nr_programs - 1, m;
4193 	struct bpf_program *prog;
4194 
4195 	if (!obj->nr_programs)
4196 		return NULL;
4197 
4198 	while (l < r) {
4199 		m = l + (r - l + 1) / 2;
4200 		prog = &obj->programs[m];
4201 
4202 		if (prog->sec_idx < sec_idx ||
4203 		    (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4204 			l = m;
4205 		else
4206 			r = m - 1;
4207 	}
4208 	/* matching program could be at index l, but it still might be the
4209 	 * wrong one, so we need to double check conditions for the last time
4210 	 */
4211 	prog = &obj->programs[l];
4212 	if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4213 		return prog;
4214 	return NULL;
4215 }
4216 
4217 static int
4218 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4219 {
4220 	const char *relo_sec_name, *sec_name;
4221 	size_t sec_idx = shdr->sh_info, sym_idx;
4222 	struct bpf_program *prog;
4223 	struct reloc_desc *relos;
4224 	int err, i, nrels;
4225 	const char *sym_name;
4226 	__u32 insn_idx;
4227 	Elf_Scn *scn;
4228 	Elf_Data *scn_data;
4229 	Elf64_Sym *sym;
4230 	Elf64_Rel *rel;
4231 
4232 	if (sec_idx >= obj->efile.sec_cnt)
4233 		return -EINVAL;
4234 
4235 	scn = elf_sec_by_idx(obj, sec_idx);
4236 	scn_data = elf_sec_data(obj, scn);
4237 
4238 	relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4239 	sec_name = elf_sec_name(obj, scn);
4240 	if (!relo_sec_name || !sec_name)
4241 		return -EINVAL;
4242 
4243 	pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4244 		 relo_sec_name, sec_idx, sec_name);
4245 	nrels = shdr->sh_size / shdr->sh_entsize;
4246 
4247 	for (i = 0; i < nrels; i++) {
4248 		rel = elf_rel_by_idx(data, i);
4249 		if (!rel) {
4250 			pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4251 			return -LIBBPF_ERRNO__FORMAT;
4252 		}
4253 
4254 		sym_idx = ELF64_R_SYM(rel->r_info);
4255 		sym = elf_sym_by_idx(obj, sym_idx);
4256 		if (!sym) {
4257 			pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4258 				relo_sec_name, sym_idx, i);
4259 			return -LIBBPF_ERRNO__FORMAT;
4260 		}
4261 
4262 		if (sym->st_shndx >= obj->efile.sec_cnt) {
4263 			pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4264 				relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4265 			return -LIBBPF_ERRNO__FORMAT;
4266 		}
4267 
4268 		if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4269 			pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4270 				relo_sec_name, (size_t)rel->r_offset, i);
4271 			return -LIBBPF_ERRNO__FORMAT;
4272 		}
4273 
4274 		insn_idx = rel->r_offset / BPF_INSN_SZ;
4275 		/* relocations against static functions are recorded as
4276 		 * relocations against the section that contains a function;
4277 		 * in such case, symbol will be STT_SECTION and sym.st_name
4278 		 * will point to empty string (0), so fetch section name
4279 		 * instead
4280 		 */
4281 		if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4282 			sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4283 		else
4284 			sym_name = elf_sym_str(obj, sym->st_name);
4285 		sym_name = sym_name ?: "<?";
4286 
4287 		pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4288 			 relo_sec_name, i, insn_idx, sym_name);
4289 
4290 		prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4291 		if (!prog) {
4292 			pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4293 				relo_sec_name, i, sec_name, insn_idx);
4294 			continue;
4295 		}
4296 
4297 		relos = libbpf_reallocarray(prog->reloc_desc,
4298 					    prog->nr_reloc + 1, sizeof(*relos));
4299 		if (!relos)
4300 			return -ENOMEM;
4301 		prog->reloc_desc = relos;
4302 
4303 		/* adjust insn_idx to local BPF program frame of reference */
4304 		insn_idx -= prog->sec_insn_off;
4305 		err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4306 						insn_idx, sym_name, sym, rel);
4307 		if (err)
4308 			return err;
4309 
4310 		prog->nr_reloc++;
4311 	}
4312 	return 0;
4313 }
4314 
4315 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map)
4316 {
4317 	int id;
4318 
4319 	if (!obj->btf)
4320 		return -ENOENT;
4321 
4322 	/* if it's BTF-defined map, we don't need to search for type IDs.
4323 	 * For struct_ops map, it does not need btf_key_type_id and
4324 	 * btf_value_type_id.
4325 	 */
4326 	if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4327 		return 0;
4328 
4329 	/*
4330 	 * LLVM annotates global data differently in BTF, that is,
4331 	 * only as '.data', '.bss' or '.rodata'.
4332 	 */
4333 	if (!bpf_map__is_internal(map))
4334 		return -ENOENT;
4335 
4336 	id = btf__find_by_name(obj->btf, map->real_name);
4337 	if (id < 0)
4338 		return id;
4339 
4340 	map->btf_key_type_id = 0;
4341 	map->btf_value_type_id = id;
4342 	return 0;
4343 }
4344 
4345 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4346 {
4347 	char file[PATH_MAX], buff[4096];
4348 	FILE *fp;
4349 	__u32 val;
4350 	int err;
4351 
4352 	snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4353 	memset(info, 0, sizeof(*info));
4354 
4355 	fp = fopen(file, "re");
4356 	if (!fp) {
4357 		err = -errno;
4358 		pr_warn("failed to open %s: %d. No procfs support?\n", file,
4359 			err);
4360 		return err;
4361 	}
4362 
4363 	while (fgets(buff, sizeof(buff), fp)) {
4364 		if (sscanf(buff, "map_type:\t%u", &val) == 1)
4365 			info->type = val;
4366 		else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4367 			info->key_size = val;
4368 		else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4369 			info->value_size = val;
4370 		else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4371 			info->max_entries = val;
4372 		else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4373 			info->map_flags = val;
4374 	}
4375 
4376 	fclose(fp);
4377 
4378 	return 0;
4379 }
4380 
4381 bool bpf_map__autocreate(const struct bpf_map *map)
4382 {
4383 	return map->autocreate;
4384 }
4385 
4386 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4387 {
4388 	if (map->obj->loaded)
4389 		return libbpf_err(-EBUSY);
4390 
4391 	map->autocreate = autocreate;
4392 	return 0;
4393 }
4394 
4395 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4396 {
4397 	struct bpf_map_info info;
4398 	__u32 len = sizeof(info), name_len;
4399 	int new_fd, err;
4400 	char *new_name;
4401 
4402 	memset(&info, 0, len);
4403 	err = bpf_map_get_info_by_fd(fd, &info, &len);
4404 	if (err && errno == EINVAL)
4405 		err = bpf_get_map_info_from_fdinfo(fd, &info);
4406 	if (err)
4407 		return libbpf_err(err);
4408 
4409 	name_len = strlen(info.name);
4410 	if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4411 		new_name = strdup(map->name);
4412 	else
4413 		new_name = strdup(info.name);
4414 
4415 	if (!new_name)
4416 		return libbpf_err(-errno);
4417 
4418 	/*
4419 	 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set.
4420 	 * This is similar to what we do in ensure_good_fd(), but without
4421 	 * closing original FD.
4422 	 */
4423 	new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3);
4424 	if (new_fd < 0) {
4425 		err = -errno;
4426 		goto err_free_new_name;
4427 	}
4428 
4429 	err = zclose(map->fd);
4430 	if (err) {
4431 		err = -errno;
4432 		goto err_close_new_fd;
4433 	}
4434 	free(map->name);
4435 
4436 	map->fd = new_fd;
4437 	map->name = new_name;
4438 	map->def.type = info.type;
4439 	map->def.key_size = info.key_size;
4440 	map->def.value_size = info.value_size;
4441 	map->def.max_entries = info.max_entries;
4442 	map->def.map_flags = info.map_flags;
4443 	map->btf_key_type_id = info.btf_key_type_id;
4444 	map->btf_value_type_id = info.btf_value_type_id;
4445 	map->reused = true;
4446 	map->map_extra = info.map_extra;
4447 
4448 	return 0;
4449 
4450 err_close_new_fd:
4451 	close(new_fd);
4452 err_free_new_name:
4453 	free(new_name);
4454 	return libbpf_err(err);
4455 }
4456 
4457 __u32 bpf_map__max_entries(const struct bpf_map *map)
4458 {
4459 	return map->def.max_entries;
4460 }
4461 
4462 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4463 {
4464 	if (!bpf_map_type__is_map_in_map(map->def.type))
4465 		return errno = EINVAL, NULL;
4466 
4467 	return map->inner_map;
4468 }
4469 
4470 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4471 {
4472 	if (map->obj->loaded)
4473 		return libbpf_err(-EBUSY);
4474 
4475 	map->def.max_entries = max_entries;
4476 
4477 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4478 	if (map_is_ringbuf(map))
4479 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4480 
4481 	return 0;
4482 }
4483 
4484 static int
4485 bpf_object__probe_loading(struct bpf_object *obj)
4486 {
4487 	char *cp, errmsg[STRERR_BUFSIZE];
4488 	struct bpf_insn insns[] = {
4489 		BPF_MOV64_IMM(BPF_REG_0, 0),
4490 		BPF_EXIT_INSN(),
4491 	};
4492 	int ret, insn_cnt = ARRAY_SIZE(insns);
4493 
4494 	if (obj->gen_loader)
4495 		return 0;
4496 
4497 	ret = bump_rlimit_memlock();
4498 	if (ret)
4499 		pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4500 
4501 	/* make sure basic loading works */
4502 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4503 	if (ret < 0)
4504 		ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4505 	if (ret < 0) {
4506 		ret = errno;
4507 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4508 		pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4509 			"program. Make sure your kernel supports BPF "
4510 			"(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4511 			"set to big enough value.\n", __func__, cp, ret);
4512 		return -ret;
4513 	}
4514 	close(ret);
4515 
4516 	return 0;
4517 }
4518 
4519 static int probe_fd(int fd)
4520 {
4521 	if (fd >= 0)
4522 		close(fd);
4523 	return fd >= 0;
4524 }
4525 
4526 static int probe_kern_prog_name(void)
4527 {
4528 	const size_t attr_sz = offsetofend(union bpf_attr, prog_name);
4529 	struct bpf_insn insns[] = {
4530 		BPF_MOV64_IMM(BPF_REG_0, 0),
4531 		BPF_EXIT_INSN(),
4532 	};
4533 	union bpf_attr attr;
4534 	int ret;
4535 
4536 	memset(&attr, 0, attr_sz);
4537 	attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4538 	attr.license = ptr_to_u64("GPL");
4539 	attr.insns = ptr_to_u64(insns);
4540 	attr.insn_cnt = (__u32)ARRAY_SIZE(insns);
4541 	libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name));
4542 
4543 	/* make sure loading with name works */
4544 	ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS);
4545 	return probe_fd(ret);
4546 }
4547 
4548 static int probe_kern_global_data(void)
4549 {
4550 	char *cp, errmsg[STRERR_BUFSIZE];
4551 	struct bpf_insn insns[] = {
4552 		BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
4553 		BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
4554 		BPF_MOV64_IMM(BPF_REG_0, 0),
4555 		BPF_EXIT_INSN(),
4556 	};
4557 	int ret, map, insn_cnt = ARRAY_SIZE(insns);
4558 
4559 	map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL);
4560 	if (map < 0) {
4561 		ret = -errno;
4562 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4563 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4564 			__func__, cp, -ret);
4565 		return ret;
4566 	}
4567 
4568 	insns[0].imm = map;
4569 
4570 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4571 	close(map);
4572 	return probe_fd(ret);
4573 }
4574 
4575 static int probe_kern_btf(void)
4576 {
4577 	static const char strs[] = "\0int";
4578 	__u32 types[] = {
4579 		/* int */
4580 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4581 	};
4582 
4583 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4584 					     strs, sizeof(strs)));
4585 }
4586 
4587 static int probe_kern_btf_func(void)
4588 {
4589 	static const char strs[] = "\0int\0x\0a";
4590 	/* void x(int a) {} */
4591 	__u32 types[] = {
4592 		/* int */
4593 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4594 		/* FUNC_PROTO */                                /* [2] */
4595 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4596 		BTF_PARAM_ENC(7, 1),
4597 		/* FUNC x */                                    /* [3] */
4598 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
4599 	};
4600 
4601 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4602 					     strs, sizeof(strs)));
4603 }
4604 
4605 static int probe_kern_btf_func_global(void)
4606 {
4607 	static const char strs[] = "\0int\0x\0a";
4608 	/* static void x(int a) {} */
4609 	__u32 types[] = {
4610 		/* int */
4611 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4612 		/* FUNC_PROTO */                                /* [2] */
4613 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4614 		BTF_PARAM_ENC(7, 1),
4615 		/* FUNC x BTF_FUNC_GLOBAL */                    /* [3] */
4616 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
4617 	};
4618 
4619 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4620 					     strs, sizeof(strs)));
4621 }
4622 
4623 static int probe_kern_btf_datasec(void)
4624 {
4625 	static const char strs[] = "\0x\0.data";
4626 	/* static int a; */
4627 	__u32 types[] = {
4628 		/* int */
4629 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4630 		/* VAR x */                                     /* [2] */
4631 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4632 		BTF_VAR_STATIC,
4633 		/* DATASEC val */                               /* [3] */
4634 		BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
4635 		BTF_VAR_SECINFO_ENC(2, 0, 4),
4636 	};
4637 
4638 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4639 					     strs, sizeof(strs)));
4640 }
4641 
4642 static int probe_kern_btf_float(void)
4643 {
4644 	static const char strs[] = "\0float";
4645 	__u32 types[] = {
4646 		/* float */
4647 		BTF_TYPE_FLOAT_ENC(1, 4),
4648 	};
4649 
4650 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4651 					     strs, sizeof(strs)));
4652 }
4653 
4654 static int probe_kern_btf_decl_tag(void)
4655 {
4656 	static const char strs[] = "\0tag";
4657 	__u32 types[] = {
4658 		/* int */
4659 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4660 		/* VAR x */                                     /* [2] */
4661 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4662 		BTF_VAR_STATIC,
4663 		/* attr */
4664 		BTF_TYPE_DECL_TAG_ENC(1, 2, -1),
4665 	};
4666 
4667 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4668 					     strs, sizeof(strs)));
4669 }
4670 
4671 static int probe_kern_btf_type_tag(void)
4672 {
4673 	static const char strs[] = "\0tag";
4674 	__u32 types[] = {
4675 		/* int */
4676 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),		/* [1] */
4677 		/* attr */
4678 		BTF_TYPE_TYPE_TAG_ENC(1, 1),				/* [2] */
4679 		/* ptr */
4680 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2),	/* [3] */
4681 	};
4682 
4683 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4684 					     strs, sizeof(strs)));
4685 }
4686 
4687 static int probe_kern_array_mmap(void)
4688 {
4689 	LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE);
4690 	int fd;
4691 
4692 	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts);
4693 	return probe_fd(fd);
4694 }
4695 
4696 static int probe_kern_exp_attach_type(void)
4697 {
4698 	LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE);
4699 	struct bpf_insn insns[] = {
4700 		BPF_MOV64_IMM(BPF_REG_0, 0),
4701 		BPF_EXIT_INSN(),
4702 	};
4703 	int fd, insn_cnt = ARRAY_SIZE(insns);
4704 
4705 	/* use any valid combination of program type and (optional)
4706 	 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
4707 	 * to see if kernel supports expected_attach_type field for
4708 	 * BPF_PROG_LOAD command
4709 	 */
4710 	fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts);
4711 	return probe_fd(fd);
4712 }
4713 
4714 static int probe_kern_probe_read_kernel(void)
4715 {
4716 	struct bpf_insn insns[] = {
4717 		BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),	/* r1 = r10 (fp) */
4718 		BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),	/* r1 += -8 */
4719 		BPF_MOV64_IMM(BPF_REG_2, 8),		/* r2 = 8 */
4720 		BPF_MOV64_IMM(BPF_REG_3, 0),		/* r3 = 0 */
4721 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
4722 		BPF_EXIT_INSN(),
4723 	};
4724 	int fd, insn_cnt = ARRAY_SIZE(insns);
4725 
4726 	fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4727 	return probe_fd(fd);
4728 }
4729 
4730 static int probe_prog_bind_map(void)
4731 {
4732 	char *cp, errmsg[STRERR_BUFSIZE];
4733 	struct bpf_insn insns[] = {
4734 		BPF_MOV64_IMM(BPF_REG_0, 0),
4735 		BPF_EXIT_INSN(),
4736 	};
4737 	int ret, map, prog, insn_cnt = ARRAY_SIZE(insns);
4738 
4739 	map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL);
4740 	if (map < 0) {
4741 		ret = -errno;
4742 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4743 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4744 			__func__, cp, -ret);
4745 		return ret;
4746 	}
4747 
4748 	prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4749 	if (prog < 0) {
4750 		close(map);
4751 		return 0;
4752 	}
4753 
4754 	ret = bpf_prog_bind_map(prog, map, NULL);
4755 
4756 	close(map);
4757 	close(prog);
4758 
4759 	return ret >= 0;
4760 }
4761 
4762 static int probe_module_btf(void)
4763 {
4764 	static const char strs[] = "\0int";
4765 	__u32 types[] = {
4766 		/* int */
4767 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4768 	};
4769 	struct bpf_btf_info info;
4770 	__u32 len = sizeof(info);
4771 	char name[16];
4772 	int fd, err;
4773 
4774 	fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4775 	if (fd < 0)
4776 		return 0; /* BTF not supported at all */
4777 
4778 	memset(&info, 0, sizeof(info));
4779 	info.name = ptr_to_u64(name);
4780 	info.name_len = sizeof(name);
4781 
4782 	/* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4783 	 * kernel's module BTF support coincides with support for
4784 	 * name/name_len fields in struct bpf_btf_info.
4785 	 */
4786 	err = bpf_btf_get_info_by_fd(fd, &info, &len);
4787 	close(fd);
4788 	return !err;
4789 }
4790 
4791 static int probe_perf_link(void)
4792 {
4793 	struct bpf_insn insns[] = {
4794 		BPF_MOV64_IMM(BPF_REG_0, 0),
4795 		BPF_EXIT_INSN(),
4796 	};
4797 	int prog_fd, link_fd, err;
4798 
4799 	prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL",
4800 				insns, ARRAY_SIZE(insns), NULL);
4801 	if (prog_fd < 0)
4802 		return -errno;
4803 
4804 	/* use invalid perf_event FD to get EBADF, if link is supported;
4805 	 * otherwise EINVAL should be returned
4806 	 */
4807 	link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL);
4808 	err = -errno; /* close() can clobber errno */
4809 
4810 	if (link_fd >= 0)
4811 		close(link_fd);
4812 	close(prog_fd);
4813 
4814 	return link_fd < 0 && err == -EBADF;
4815 }
4816 
4817 static int probe_kern_bpf_cookie(void)
4818 {
4819 	struct bpf_insn insns[] = {
4820 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie),
4821 		BPF_EXIT_INSN(),
4822 	};
4823 	int ret, insn_cnt = ARRAY_SIZE(insns);
4824 
4825 	ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL);
4826 	return probe_fd(ret);
4827 }
4828 
4829 static int probe_kern_btf_enum64(void)
4830 {
4831 	static const char strs[] = "\0enum64";
4832 	__u32 types[] = {
4833 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8),
4834 	};
4835 
4836 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4837 					     strs, sizeof(strs)));
4838 }
4839 
4840 static int probe_kern_syscall_wrapper(void);
4841 
4842 enum kern_feature_result {
4843 	FEAT_UNKNOWN = 0,
4844 	FEAT_SUPPORTED = 1,
4845 	FEAT_MISSING = 2,
4846 };
4847 
4848 typedef int (*feature_probe_fn)(void);
4849 
4850 static struct kern_feature_desc {
4851 	const char *desc;
4852 	feature_probe_fn probe;
4853 	enum kern_feature_result res;
4854 } feature_probes[__FEAT_CNT] = {
4855 	[FEAT_PROG_NAME] = {
4856 		"BPF program name", probe_kern_prog_name,
4857 	},
4858 	[FEAT_GLOBAL_DATA] = {
4859 		"global variables", probe_kern_global_data,
4860 	},
4861 	[FEAT_BTF] = {
4862 		"minimal BTF", probe_kern_btf,
4863 	},
4864 	[FEAT_BTF_FUNC] = {
4865 		"BTF functions", probe_kern_btf_func,
4866 	},
4867 	[FEAT_BTF_GLOBAL_FUNC] = {
4868 		"BTF global function", probe_kern_btf_func_global,
4869 	},
4870 	[FEAT_BTF_DATASEC] = {
4871 		"BTF data section and variable", probe_kern_btf_datasec,
4872 	},
4873 	[FEAT_ARRAY_MMAP] = {
4874 		"ARRAY map mmap()", probe_kern_array_mmap,
4875 	},
4876 	[FEAT_EXP_ATTACH_TYPE] = {
4877 		"BPF_PROG_LOAD expected_attach_type attribute",
4878 		probe_kern_exp_attach_type,
4879 	},
4880 	[FEAT_PROBE_READ_KERN] = {
4881 		"bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4882 	},
4883 	[FEAT_PROG_BIND_MAP] = {
4884 		"BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4885 	},
4886 	[FEAT_MODULE_BTF] = {
4887 		"module BTF support", probe_module_btf,
4888 	},
4889 	[FEAT_BTF_FLOAT] = {
4890 		"BTF_KIND_FLOAT support", probe_kern_btf_float,
4891 	},
4892 	[FEAT_PERF_LINK] = {
4893 		"BPF perf link support", probe_perf_link,
4894 	},
4895 	[FEAT_BTF_DECL_TAG] = {
4896 		"BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag,
4897 	},
4898 	[FEAT_BTF_TYPE_TAG] = {
4899 		"BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag,
4900 	},
4901 	[FEAT_MEMCG_ACCOUNT] = {
4902 		"memcg-based memory accounting", probe_memcg_account,
4903 	},
4904 	[FEAT_BPF_COOKIE] = {
4905 		"BPF cookie support", probe_kern_bpf_cookie,
4906 	},
4907 	[FEAT_BTF_ENUM64] = {
4908 		"BTF_KIND_ENUM64 support", probe_kern_btf_enum64,
4909 	},
4910 	[FEAT_SYSCALL_WRAPPER] = {
4911 		"Kernel using syscall wrapper", probe_kern_syscall_wrapper,
4912 	},
4913 };
4914 
4915 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
4916 {
4917 	struct kern_feature_desc *feat = &feature_probes[feat_id];
4918 	int ret;
4919 
4920 	if (obj && obj->gen_loader)
4921 		/* To generate loader program assume the latest kernel
4922 		 * to avoid doing extra prog_load, map_create syscalls.
4923 		 */
4924 		return true;
4925 
4926 	if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4927 		ret = feat->probe();
4928 		if (ret > 0) {
4929 			WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4930 		} else if (ret == 0) {
4931 			WRITE_ONCE(feat->res, FEAT_MISSING);
4932 		} else {
4933 			pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4934 			WRITE_ONCE(feat->res, FEAT_MISSING);
4935 		}
4936 	}
4937 
4938 	return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4939 }
4940 
4941 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4942 {
4943 	struct bpf_map_info map_info;
4944 	char msg[STRERR_BUFSIZE];
4945 	__u32 map_info_len = sizeof(map_info);
4946 	int err;
4947 
4948 	memset(&map_info, 0, map_info_len);
4949 	err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len);
4950 	if (err && errno == EINVAL)
4951 		err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
4952 	if (err) {
4953 		pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
4954 			libbpf_strerror_r(errno, msg, sizeof(msg)));
4955 		return false;
4956 	}
4957 
4958 	return (map_info.type == map->def.type &&
4959 		map_info.key_size == map->def.key_size &&
4960 		map_info.value_size == map->def.value_size &&
4961 		map_info.max_entries == map->def.max_entries &&
4962 		map_info.map_flags == map->def.map_flags &&
4963 		map_info.map_extra == map->map_extra);
4964 }
4965 
4966 static int
4967 bpf_object__reuse_map(struct bpf_map *map)
4968 {
4969 	char *cp, errmsg[STRERR_BUFSIZE];
4970 	int err, pin_fd;
4971 
4972 	pin_fd = bpf_obj_get(map->pin_path);
4973 	if (pin_fd < 0) {
4974 		err = -errno;
4975 		if (err == -ENOENT) {
4976 			pr_debug("found no pinned map to reuse at '%s'\n",
4977 				 map->pin_path);
4978 			return 0;
4979 		}
4980 
4981 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
4982 		pr_warn("couldn't retrieve pinned map '%s': %s\n",
4983 			map->pin_path, cp);
4984 		return err;
4985 	}
4986 
4987 	if (!map_is_reuse_compat(map, pin_fd)) {
4988 		pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
4989 			map->pin_path);
4990 		close(pin_fd);
4991 		return -EINVAL;
4992 	}
4993 
4994 	err = bpf_map__reuse_fd(map, pin_fd);
4995 	close(pin_fd);
4996 	if (err)
4997 		return err;
4998 
4999 	map->pinned = true;
5000 	pr_debug("reused pinned map at '%s'\n", map->pin_path);
5001 
5002 	return 0;
5003 }
5004 
5005 static int
5006 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
5007 {
5008 	enum libbpf_map_type map_type = map->libbpf_type;
5009 	char *cp, errmsg[STRERR_BUFSIZE];
5010 	int err, zero = 0;
5011 
5012 	if (obj->gen_loader) {
5013 		bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
5014 					 map->mmaped, map->def.value_size);
5015 		if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
5016 			bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
5017 		return 0;
5018 	}
5019 	err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
5020 	if (err) {
5021 		err = -errno;
5022 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5023 		pr_warn("Error setting initial map(%s) contents: %s\n",
5024 			map->name, cp);
5025 		return err;
5026 	}
5027 
5028 	/* Freeze .rodata and .kconfig map as read-only from syscall side. */
5029 	if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
5030 		err = bpf_map_freeze(map->fd);
5031 		if (err) {
5032 			err = -errno;
5033 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5034 			pr_warn("Error freezing map(%s) as read-only: %s\n",
5035 				map->name, cp);
5036 			return err;
5037 		}
5038 	}
5039 	return 0;
5040 }
5041 
5042 static void bpf_map__destroy(struct bpf_map *map);
5043 
5044 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
5045 {
5046 	LIBBPF_OPTS(bpf_map_create_opts, create_attr);
5047 	struct bpf_map_def *def = &map->def;
5048 	const char *map_name = NULL;
5049 	int err = 0;
5050 
5051 	if (kernel_supports(obj, FEAT_PROG_NAME))
5052 		map_name = map->name;
5053 	create_attr.map_ifindex = map->map_ifindex;
5054 	create_attr.map_flags = def->map_flags;
5055 	create_attr.numa_node = map->numa_node;
5056 	create_attr.map_extra = map->map_extra;
5057 
5058 	if (bpf_map__is_struct_ops(map))
5059 		create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5060 
5061 	if (obj->btf && btf__fd(obj->btf) >= 0) {
5062 		create_attr.btf_fd = btf__fd(obj->btf);
5063 		create_attr.btf_key_type_id = map->btf_key_type_id;
5064 		create_attr.btf_value_type_id = map->btf_value_type_id;
5065 	}
5066 
5067 	if (bpf_map_type__is_map_in_map(def->type)) {
5068 		if (map->inner_map) {
5069 			err = bpf_object__create_map(obj, map->inner_map, true);
5070 			if (err) {
5071 				pr_warn("map '%s': failed to create inner map: %d\n",
5072 					map->name, err);
5073 				return err;
5074 			}
5075 			map->inner_map_fd = bpf_map__fd(map->inner_map);
5076 		}
5077 		if (map->inner_map_fd >= 0)
5078 			create_attr.inner_map_fd = map->inner_map_fd;
5079 	}
5080 
5081 	switch (def->type) {
5082 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5083 	case BPF_MAP_TYPE_CGROUP_ARRAY:
5084 	case BPF_MAP_TYPE_STACK_TRACE:
5085 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5086 	case BPF_MAP_TYPE_HASH_OF_MAPS:
5087 	case BPF_MAP_TYPE_DEVMAP:
5088 	case BPF_MAP_TYPE_DEVMAP_HASH:
5089 	case BPF_MAP_TYPE_CPUMAP:
5090 	case BPF_MAP_TYPE_XSKMAP:
5091 	case BPF_MAP_TYPE_SOCKMAP:
5092 	case BPF_MAP_TYPE_SOCKHASH:
5093 	case BPF_MAP_TYPE_QUEUE:
5094 	case BPF_MAP_TYPE_STACK:
5095 		create_attr.btf_fd = 0;
5096 		create_attr.btf_key_type_id = 0;
5097 		create_attr.btf_value_type_id = 0;
5098 		map->btf_key_type_id = 0;
5099 		map->btf_value_type_id = 0;
5100 	default:
5101 		break;
5102 	}
5103 
5104 	if (obj->gen_loader) {
5105 		bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5106 				    def->key_size, def->value_size, def->max_entries,
5107 				    &create_attr, is_inner ? -1 : map - obj->maps);
5108 		/* Pretend to have valid FD to pass various fd >= 0 checks.
5109 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
5110 		 */
5111 		map->fd = 0;
5112 	} else {
5113 		map->fd = bpf_map_create(def->type, map_name,
5114 					 def->key_size, def->value_size,
5115 					 def->max_entries, &create_attr);
5116 	}
5117 	if (map->fd < 0 && (create_attr.btf_key_type_id ||
5118 			    create_attr.btf_value_type_id)) {
5119 		char *cp, errmsg[STRERR_BUFSIZE];
5120 
5121 		err = -errno;
5122 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5123 		pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
5124 			map->name, cp, err);
5125 		create_attr.btf_fd = 0;
5126 		create_attr.btf_key_type_id = 0;
5127 		create_attr.btf_value_type_id = 0;
5128 		map->btf_key_type_id = 0;
5129 		map->btf_value_type_id = 0;
5130 		map->fd = bpf_map_create(def->type, map_name,
5131 					 def->key_size, def->value_size,
5132 					 def->max_entries, &create_attr);
5133 	}
5134 
5135 	err = map->fd < 0 ? -errno : 0;
5136 
5137 	if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5138 		if (obj->gen_loader)
5139 			map->inner_map->fd = -1;
5140 		bpf_map__destroy(map->inner_map);
5141 		zfree(&map->inner_map);
5142 	}
5143 
5144 	return err;
5145 }
5146 
5147 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5148 {
5149 	const struct bpf_map *targ_map;
5150 	unsigned int i;
5151 	int fd, err = 0;
5152 
5153 	for (i = 0; i < map->init_slots_sz; i++) {
5154 		if (!map->init_slots[i])
5155 			continue;
5156 
5157 		targ_map = map->init_slots[i];
5158 		fd = bpf_map__fd(targ_map);
5159 
5160 		if (obj->gen_loader) {
5161 			bpf_gen__populate_outer_map(obj->gen_loader,
5162 						    map - obj->maps, i,
5163 						    targ_map - obj->maps);
5164 		} else {
5165 			err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5166 		}
5167 		if (err) {
5168 			err = -errno;
5169 			pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5170 				map->name, i, targ_map->name, fd, err);
5171 			return err;
5172 		}
5173 		pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5174 			 map->name, i, targ_map->name, fd);
5175 	}
5176 
5177 	zfree(&map->init_slots);
5178 	map->init_slots_sz = 0;
5179 
5180 	return 0;
5181 }
5182 
5183 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5184 {
5185 	const struct bpf_program *targ_prog;
5186 	unsigned int i;
5187 	int fd, err;
5188 
5189 	if (obj->gen_loader)
5190 		return -ENOTSUP;
5191 
5192 	for (i = 0; i < map->init_slots_sz; i++) {
5193 		if (!map->init_slots[i])
5194 			continue;
5195 
5196 		targ_prog = map->init_slots[i];
5197 		fd = bpf_program__fd(targ_prog);
5198 
5199 		err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5200 		if (err) {
5201 			err = -errno;
5202 			pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5203 				map->name, i, targ_prog->name, fd, err);
5204 			return err;
5205 		}
5206 		pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5207 			 map->name, i, targ_prog->name, fd);
5208 	}
5209 
5210 	zfree(&map->init_slots);
5211 	map->init_slots_sz = 0;
5212 
5213 	return 0;
5214 }
5215 
5216 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5217 {
5218 	struct bpf_map *map;
5219 	int i, err;
5220 
5221 	for (i = 0; i < obj->nr_maps; i++) {
5222 		map = &obj->maps[i];
5223 
5224 		if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5225 			continue;
5226 
5227 		err = init_prog_array_slots(obj, map);
5228 		if (err < 0) {
5229 			zclose(map->fd);
5230 			return err;
5231 		}
5232 	}
5233 	return 0;
5234 }
5235 
5236 static int map_set_def_max_entries(struct bpf_map *map)
5237 {
5238 	if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5239 		int nr_cpus;
5240 
5241 		nr_cpus = libbpf_num_possible_cpus();
5242 		if (nr_cpus < 0) {
5243 			pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5244 				map->name, nr_cpus);
5245 			return nr_cpus;
5246 		}
5247 		pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5248 		map->def.max_entries = nr_cpus;
5249 	}
5250 
5251 	return 0;
5252 }
5253 
5254 static int
5255 bpf_object__create_maps(struct bpf_object *obj)
5256 {
5257 	struct bpf_map *map;
5258 	char *cp, errmsg[STRERR_BUFSIZE];
5259 	unsigned int i, j;
5260 	int err;
5261 	bool retried;
5262 
5263 	for (i = 0; i < obj->nr_maps; i++) {
5264 		map = &obj->maps[i];
5265 
5266 		/* To support old kernels, we skip creating global data maps
5267 		 * (.rodata, .data, .kconfig, etc); later on, during program
5268 		 * loading, if we detect that at least one of the to-be-loaded
5269 		 * programs is referencing any global data map, we'll error
5270 		 * out with program name and relocation index logged.
5271 		 * This approach allows to accommodate Clang emitting
5272 		 * unnecessary .rodata.str1.1 sections for string literals,
5273 		 * but also it allows to have CO-RE applications that use
5274 		 * global variables in some of BPF programs, but not others.
5275 		 * If those global variable-using programs are not loaded at
5276 		 * runtime due to bpf_program__set_autoload(prog, false),
5277 		 * bpf_object loading will succeed just fine even on old
5278 		 * kernels.
5279 		 */
5280 		if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5281 			map->autocreate = false;
5282 
5283 		if (!map->autocreate) {
5284 			pr_debug("map '%s': skipped auto-creating...\n", map->name);
5285 			continue;
5286 		}
5287 
5288 		err = map_set_def_max_entries(map);
5289 		if (err)
5290 			goto err_out;
5291 
5292 		retried = false;
5293 retry:
5294 		if (map->pin_path) {
5295 			err = bpf_object__reuse_map(map);
5296 			if (err) {
5297 				pr_warn("map '%s': error reusing pinned map\n",
5298 					map->name);
5299 				goto err_out;
5300 			}
5301 			if (retried && map->fd < 0) {
5302 				pr_warn("map '%s': cannot find pinned map\n",
5303 					map->name);
5304 				err = -ENOENT;
5305 				goto err_out;
5306 			}
5307 		}
5308 
5309 		if (map->fd >= 0) {
5310 			pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5311 				 map->name, map->fd);
5312 		} else {
5313 			err = bpf_object__create_map(obj, map, false);
5314 			if (err)
5315 				goto err_out;
5316 
5317 			pr_debug("map '%s': created successfully, fd=%d\n",
5318 				 map->name, map->fd);
5319 
5320 			if (bpf_map__is_internal(map)) {
5321 				err = bpf_object__populate_internal_map(obj, map);
5322 				if (err < 0) {
5323 					zclose(map->fd);
5324 					goto err_out;
5325 				}
5326 			}
5327 
5328 			if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5329 				err = init_map_in_map_slots(obj, map);
5330 				if (err < 0) {
5331 					zclose(map->fd);
5332 					goto err_out;
5333 				}
5334 			}
5335 		}
5336 
5337 		if (map->pin_path && !map->pinned) {
5338 			err = bpf_map__pin(map, NULL);
5339 			if (err) {
5340 				zclose(map->fd);
5341 				if (!retried && err == -EEXIST) {
5342 					retried = true;
5343 					goto retry;
5344 				}
5345 				pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5346 					map->name, map->pin_path, err);
5347 				goto err_out;
5348 			}
5349 		}
5350 	}
5351 
5352 	return 0;
5353 
5354 err_out:
5355 	cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5356 	pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5357 	pr_perm_msg(err);
5358 	for (j = 0; j < i; j++)
5359 		zclose(obj->maps[j].fd);
5360 	return err;
5361 }
5362 
5363 static bool bpf_core_is_flavor_sep(const char *s)
5364 {
5365 	/* check X___Y name pattern, where X and Y are not underscores */
5366 	return s[0] != '_' &&				      /* X */
5367 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
5368 	       s[4] != '_';				      /* Y */
5369 }
5370 
5371 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5372  * before last triple underscore. Struct name part after last triple
5373  * underscore is ignored by BPF CO-RE relocation during relocation matching.
5374  */
5375 size_t bpf_core_essential_name_len(const char *name)
5376 {
5377 	size_t n = strlen(name);
5378 	int i;
5379 
5380 	for (i = n - 5; i >= 0; i--) {
5381 		if (bpf_core_is_flavor_sep(name + i))
5382 			return i + 1;
5383 	}
5384 	return n;
5385 }
5386 
5387 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5388 {
5389 	if (!cands)
5390 		return;
5391 
5392 	free(cands->cands);
5393 	free(cands);
5394 }
5395 
5396 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5397 		       size_t local_essent_len,
5398 		       const struct btf *targ_btf,
5399 		       const char *targ_btf_name,
5400 		       int targ_start_id,
5401 		       struct bpf_core_cand_list *cands)
5402 {
5403 	struct bpf_core_cand *new_cands, *cand;
5404 	const struct btf_type *t, *local_t;
5405 	const char *targ_name, *local_name;
5406 	size_t targ_essent_len;
5407 	int n, i;
5408 
5409 	local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5410 	local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5411 
5412 	n = btf__type_cnt(targ_btf);
5413 	for (i = targ_start_id; i < n; i++) {
5414 		t = btf__type_by_id(targ_btf, i);
5415 		if (!btf_kind_core_compat(t, local_t))
5416 			continue;
5417 
5418 		targ_name = btf__name_by_offset(targ_btf, t->name_off);
5419 		if (str_is_empty(targ_name))
5420 			continue;
5421 
5422 		targ_essent_len = bpf_core_essential_name_len(targ_name);
5423 		if (targ_essent_len != local_essent_len)
5424 			continue;
5425 
5426 		if (strncmp(local_name, targ_name, local_essent_len) != 0)
5427 			continue;
5428 
5429 		pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5430 			 local_cand->id, btf_kind_str(local_t),
5431 			 local_name, i, btf_kind_str(t), targ_name,
5432 			 targ_btf_name);
5433 		new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5434 					      sizeof(*cands->cands));
5435 		if (!new_cands)
5436 			return -ENOMEM;
5437 
5438 		cand = &new_cands[cands->len];
5439 		cand->btf = targ_btf;
5440 		cand->id = i;
5441 
5442 		cands->cands = new_cands;
5443 		cands->len++;
5444 	}
5445 	return 0;
5446 }
5447 
5448 static int load_module_btfs(struct bpf_object *obj)
5449 {
5450 	struct bpf_btf_info info;
5451 	struct module_btf *mod_btf;
5452 	struct btf *btf;
5453 	char name[64];
5454 	__u32 id = 0, len;
5455 	int err, fd;
5456 
5457 	if (obj->btf_modules_loaded)
5458 		return 0;
5459 
5460 	if (obj->gen_loader)
5461 		return 0;
5462 
5463 	/* don't do this again, even if we find no module BTFs */
5464 	obj->btf_modules_loaded = true;
5465 
5466 	/* kernel too old to support module BTFs */
5467 	if (!kernel_supports(obj, FEAT_MODULE_BTF))
5468 		return 0;
5469 
5470 	while (true) {
5471 		err = bpf_btf_get_next_id(id, &id);
5472 		if (err && errno == ENOENT)
5473 			return 0;
5474 		if (err) {
5475 			err = -errno;
5476 			pr_warn("failed to iterate BTF objects: %d\n", err);
5477 			return err;
5478 		}
5479 
5480 		fd = bpf_btf_get_fd_by_id(id);
5481 		if (fd < 0) {
5482 			if (errno == ENOENT)
5483 				continue; /* expected race: BTF was unloaded */
5484 			err = -errno;
5485 			pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5486 			return err;
5487 		}
5488 
5489 		len = sizeof(info);
5490 		memset(&info, 0, sizeof(info));
5491 		info.name = ptr_to_u64(name);
5492 		info.name_len = sizeof(name);
5493 
5494 		err = bpf_btf_get_info_by_fd(fd, &info, &len);
5495 		if (err) {
5496 			err = -errno;
5497 			pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5498 			goto err_out;
5499 		}
5500 
5501 		/* ignore non-module BTFs */
5502 		if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5503 			close(fd);
5504 			continue;
5505 		}
5506 
5507 		btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5508 		err = libbpf_get_error(btf);
5509 		if (err) {
5510 			pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5511 				name, id, err);
5512 			goto err_out;
5513 		}
5514 
5515 		err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5516 					sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5517 		if (err)
5518 			goto err_out;
5519 
5520 		mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5521 
5522 		mod_btf->btf = btf;
5523 		mod_btf->id = id;
5524 		mod_btf->fd = fd;
5525 		mod_btf->name = strdup(name);
5526 		if (!mod_btf->name) {
5527 			err = -ENOMEM;
5528 			goto err_out;
5529 		}
5530 		continue;
5531 
5532 err_out:
5533 		close(fd);
5534 		return err;
5535 	}
5536 
5537 	return 0;
5538 }
5539 
5540 static struct bpf_core_cand_list *
5541 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5542 {
5543 	struct bpf_core_cand local_cand = {};
5544 	struct bpf_core_cand_list *cands;
5545 	const struct btf *main_btf;
5546 	const struct btf_type *local_t;
5547 	const char *local_name;
5548 	size_t local_essent_len;
5549 	int err, i;
5550 
5551 	local_cand.btf = local_btf;
5552 	local_cand.id = local_type_id;
5553 	local_t = btf__type_by_id(local_btf, local_type_id);
5554 	if (!local_t)
5555 		return ERR_PTR(-EINVAL);
5556 
5557 	local_name = btf__name_by_offset(local_btf, local_t->name_off);
5558 	if (str_is_empty(local_name))
5559 		return ERR_PTR(-EINVAL);
5560 	local_essent_len = bpf_core_essential_name_len(local_name);
5561 
5562 	cands = calloc(1, sizeof(*cands));
5563 	if (!cands)
5564 		return ERR_PTR(-ENOMEM);
5565 
5566 	/* Attempt to find target candidates in vmlinux BTF first */
5567 	main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5568 	err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5569 	if (err)
5570 		goto err_out;
5571 
5572 	/* if vmlinux BTF has any candidate, don't got for module BTFs */
5573 	if (cands->len)
5574 		return cands;
5575 
5576 	/* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5577 	if (obj->btf_vmlinux_override)
5578 		return cands;
5579 
5580 	/* now look through module BTFs, trying to still find candidates */
5581 	err = load_module_btfs(obj);
5582 	if (err)
5583 		goto err_out;
5584 
5585 	for (i = 0; i < obj->btf_module_cnt; i++) {
5586 		err = bpf_core_add_cands(&local_cand, local_essent_len,
5587 					 obj->btf_modules[i].btf,
5588 					 obj->btf_modules[i].name,
5589 					 btf__type_cnt(obj->btf_vmlinux),
5590 					 cands);
5591 		if (err)
5592 			goto err_out;
5593 	}
5594 
5595 	return cands;
5596 err_out:
5597 	bpf_core_free_cands(cands);
5598 	return ERR_PTR(err);
5599 }
5600 
5601 /* Check local and target types for compatibility. This check is used for
5602  * type-based CO-RE relocations and follow slightly different rules than
5603  * field-based relocations. This function assumes that root types were already
5604  * checked for name match. Beyond that initial root-level name check, names
5605  * are completely ignored. Compatibility rules are as follows:
5606  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5607  *     kind should match for local and target types (i.e., STRUCT is not
5608  *     compatible with UNION);
5609  *   - for ENUMs, the size is ignored;
5610  *   - for INT, size and signedness are ignored;
5611  *   - for ARRAY, dimensionality is ignored, element types are checked for
5612  *     compatibility recursively;
5613  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
5614  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5615  *   - FUNC_PROTOs are compatible if they have compatible signature: same
5616  *     number of input args and compatible return and argument types.
5617  * These rules are not set in stone and probably will be adjusted as we get
5618  * more experience with using BPF CO-RE relocations.
5619  */
5620 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5621 			      const struct btf *targ_btf, __u32 targ_id)
5622 {
5623 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5624 }
5625 
5626 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5627 			 const struct btf *targ_btf, __u32 targ_id)
5628 {
5629 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5630 }
5631 
5632 static size_t bpf_core_hash_fn(const long key, void *ctx)
5633 {
5634 	return key;
5635 }
5636 
5637 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx)
5638 {
5639 	return k1 == k2;
5640 }
5641 
5642 static int record_relo_core(struct bpf_program *prog,
5643 			    const struct bpf_core_relo *core_relo, int insn_idx)
5644 {
5645 	struct reloc_desc *relos, *relo;
5646 
5647 	relos = libbpf_reallocarray(prog->reloc_desc,
5648 				    prog->nr_reloc + 1, sizeof(*relos));
5649 	if (!relos)
5650 		return -ENOMEM;
5651 	relo = &relos[prog->nr_reloc];
5652 	relo->type = RELO_CORE;
5653 	relo->insn_idx = insn_idx;
5654 	relo->core_relo = core_relo;
5655 	prog->reloc_desc = relos;
5656 	prog->nr_reloc++;
5657 	return 0;
5658 }
5659 
5660 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5661 {
5662 	struct reloc_desc *relo;
5663 	int i;
5664 
5665 	for (i = 0; i < prog->nr_reloc; i++) {
5666 		relo = &prog->reloc_desc[i];
5667 		if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5668 			continue;
5669 
5670 		return relo->core_relo;
5671 	}
5672 
5673 	return NULL;
5674 }
5675 
5676 static int bpf_core_resolve_relo(struct bpf_program *prog,
5677 				 const struct bpf_core_relo *relo,
5678 				 int relo_idx,
5679 				 const struct btf *local_btf,
5680 				 struct hashmap *cand_cache,
5681 				 struct bpf_core_relo_res *targ_res)
5682 {
5683 	struct bpf_core_spec specs_scratch[3] = {};
5684 	struct bpf_core_cand_list *cands = NULL;
5685 	const char *prog_name = prog->name;
5686 	const struct btf_type *local_type;
5687 	const char *local_name;
5688 	__u32 local_id = relo->type_id;
5689 	int err;
5690 
5691 	local_type = btf__type_by_id(local_btf, local_id);
5692 	if (!local_type)
5693 		return -EINVAL;
5694 
5695 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
5696 	if (!local_name)
5697 		return -EINVAL;
5698 
5699 	if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5700 	    !hashmap__find(cand_cache, local_id, &cands)) {
5701 		cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5702 		if (IS_ERR(cands)) {
5703 			pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5704 				prog_name, relo_idx, local_id, btf_kind_str(local_type),
5705 				local_name, PTR_ERR(cands));
5706 			return PTR_ERR(cands);
5707 		}
5708 		err = hashmap__set(cand_cache, local_id, cands, NULL, NULL);
5709 		if (err) {
5710 			bpf_core_free_cands(cands);
5711 			return err;
5712 		}
5713 	}
5714 
5715 	return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5716 				       targ_res);
5717 }
5718 
5719 static int
5720 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5721 {
5722 	const struct btf_ext_info_sec *sec;
5723 	struct bpf_core_relo_res targ_res;
5724 	const struct bpf_core_relo *rec;
5725 	const struct btf_ext_info *seg;
5726 	struct hashmap_entry *entry;
5727 	struct hashmap *cand_cache = NULL;
5728 	struct bpf_program *prog;
5729 	struct bpf_insn *insn;
5730 	const char *sec_name;
5731 	int i, err = 0, insn_idx, sec_idx, sec_num;
5732 
5733 	if (obj->btf_ext->core_relo_info.len == 0)
5734 		return 0;
5735 
5736 	if (targ_btf_path) {
5737 		obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5738 		err = libbpf_get_error(obj->btf_vmlinux_override);
5739 		if (err) {
5740 			pr_warn("failed to parse target BTF: %d\n", err);
5741 			return err;
5742 		}
5743 	}
5744 
5745 	cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5746 	if (IS_ERR(cand_cache)) {
5747 		err = PTR_ERR(cand_cache);
5748 		goto out;
5749 	}
5750 
5751 	seg = &obj->btf_ext->core_relo_info;
5752 	sec_num = 0;
5753 	for_each_btf_ext_sec(seg, sec) {
5754 		sec_idx = seg->sec_idxs[sec_num];
5755 		sec_num++;
5756 
5757 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5758 		if (str_is_empty(sec_name)) {
5759 			err = -EINVAL;
5760 			goto out;
5761 		}
5762 
5763 		pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5764 
5765 		for_each_btf_ext_rec(seg, sec, i, rec) {
5766 			if (rec->insn_off % BPF_INSN_SZ)
5767 				return -EINVAL;
5768 			insn_idx = rec->insn_off / BPF_INSN_SZ;
5769 			prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5770 			if (!prog) {
5771 				/* When __weak subprog is "overridden" by another instance
5772 				 * of the subprog from a different object file, linker still
5773 				 * appends all the .BTF.ext info that used to belong to that
5774 				 * eliminated subprogram.
5775 				 * This is similar to what x86-64 linker does for relocations.
5776 				 * So just ignore such relocations just like we ignore
5777 				 * subprog instructions when discovering subprograms.
5778 				 */
5779 				pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5780 					 sec_name, i, insn_idx);
5781 				continue;
5782 			}
5783 			/* no need to apply CO-RE relocation if the program is
5784 			 * not going to be loaded
5785 			 */
5786 			if (!prog->autoload)
5787 				continue;
5788 
5789 			/* adjust insn_idx from section frame of reference to the local
5790 			 * program's frame of reference; (sub-)program code is not yet
5791 			 * relocated, so it's enough to just subtract in-section offset
5792 			 */
5793 			insn_idx = insn_idx - prog->sec_insn_off;
5794 			if (insn_idx >= prog->insns_cnt)
5795 				return -EINVAL;
5796 			insn = &prog->insns[insn_idx];
5797 
5798 			err = record_relo_core(prog, rec, insn_idx);
5799 			if (err) {
5800 				pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5801 					prog->name, i, err);
5802 				goto out;
5803 			}
5804 
5805 			if (prog->obj->gen_loader)
5806 				continue;
5807 
5808 			err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5809 			if (err) {
5810 				pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5811 					prog->name, i, err);
5812 				goto out;
5813 			}
5814 
5815 			err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5816 			if (err) {
5817 				pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5818 					prog->name, i, insn_idx, err);
5819 				goto out;
5820 			}
5821 		}
5822 	}
5823 
5824 out:
5825 	/* obj->btf_vmlinux and module BTFs are freed after object load */
5826 	btf__free(obj->btf_vmlinux_override);
5827 	obj->btf_vmlinux_override = NULL;
5828 
5829 	if (!IS_ERR_OR_NULL(cand_cache)) {
5830 		hashmap__for_each_entry(cand_cache, entry, i) {
5831 			bpf_core_free_cands(entry->pvalue);
5832 		}
5833 		hashmap__free(cand_cache);
5834 	}
5835 	return err;
5836 }
5837 
5838 /* base map load ldimm64 special constant, used also for log fixup logic */
5839 #define POISON_LDIMM64_MAP_BASE 2001000000
5840 #define POISON_LDIMM64_MAP_PFX "200100"
5841 
5842 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
5843 			       int insn_idx, struct bpf_insn *insn,
5844 			       int map_idx, const struct bpf_map *map)
5845 {
5846 	int i;
5847 
5848 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
5849 		 prog->name, relo_idx, insn_idx, map_idx, map->name);
5850 
5851 	/* we turn single ldimm64 into two identical invalid calls */
5852 	for (i = 0; i < 2; i++) {
5853 		insn->code = BPF_JMP | BPF_CALL;
5854 		insn->dst_reg = 0;
5855 		insn->src_reg = 0;
5856 		insn->off = 0;
5857 		/* if this instruction is reachable (not a dead code),
5858 		 * verifier will complain with something like:
5859 		 * invalid func unknown#2001000123
5860 		 * where lower 123 is map index into obj->maps[] array
5861 		 */
5862 		insn->imm = POISON_LDIMM64_MAP_BASE + map_idx;
5863 
5864 		insn++;
5865 	}
5866 }
5867 
5868 /* unresolved kfunc call special constant, used also for log fixup logic */
5869 #define POISON_CALL_KFUNC_BASE 2002000000
5870 #define POISON_CALL_KFUNC_PFX "2002"
5871 
5872 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx,
5873 			      int insn_idx, struct bpf_insn *insn,
5874 			      int ext_idx, const struct extern_desc *ext)
5875 {
5876 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n",
5877 		 prog->name, relo_idx, insn_idx, ext->name);
5878 
5879 	/* we turn kfunc call into invalid helper call with identifiable constant */
5880 	insn->code = BPF_JMP | BPF_CALL;
5881 	insn->dst_reg = 0;
5882 	insn->src_reg = 0;
5883 	insn->off = 0;
5884 	/* if this instruction is reachable (not a dead code),
5885 	 * verifier will complain with something like:
5886 	 * invalid func unknown#2001000123
5887 	 * where lower 123 is extern index into obj->externs[] array
5888 	 */
5889 	insn->imm = POISON_CALL_KFUNC_BASE + ext_idx;
5890 }
5891 
5892 /* Relocate data references within program code:
5893  *  - map references;
5894  *  - global variable references;
5895  *  - extern references.
5896  */
5897 static int
5898 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
5899 {
5900 	int i;
5901 
5902 	for (i = 0; i < prog->nr_reloc; i++) {
5903 		struct reloc_desc *relo = &prog->reloc_desc[i];
5904 		struct bpf_insn *insn = &prog->insns[relo->insn_idx];
5905 		const struct bpf_map *map;
5906 		struct extern_desc *ext;
5907 
5908 		switch (relo->type) {
5909 		case RELO_LD64:
5910 			map = &obj->maps[relo->map_idx];
5911 			if (obj->gen_loader) {
5912 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
5913 				insn[0].imm = relo->map_idx;
5914 			} else if (map->autocreate) {
5915 				insn[0].src_reg = BPF_PSEUDO_MAP_FD;
5916 				insn[0].imm = map->fd;
5917 			} else {
5918 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5919 						   relo->map_idx, map);
5920 			}
5921 			break;
5922 		case RELO_DATA:
5923 			map = &obj->maps[relo->map_idx];
5924 			insn[1].imm = insn[0].imm + relo->sym_off;
5925 			if (obj->gen_loader) {
5926 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5927 				insn[0].imm = relo->map_idx;
5928 			} else if (map->autocreate) {
5929 				insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5930 				insn[0].imm = map->fd;
5931 			} else {
5932 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5933 						   relo->map_idx, map);
5934 			}
5935 			break;
5936 		case RELO_EXTERN_LD64:
5937 			ext = &obj->externs[relo->ext_idx];
5938 			if (ext->type == EXT_KCFG) {
5939 				if (obj->gen_loader) {
5940 					insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5941 					insn[0].imm = obj->kconfig_map_idx;
5942 				} else {
5943 					insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5944 					insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
5945 				}
5946 				insn[1].imm = ext->kcfg.data_off;
5947 			} else /* EXT_KSYM */ {
5948 				if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
5949 					insn[0].src_reg = BPF_PSEUDO_BTF_ID;
5950 					insn[0].imm = ext->ksym.kernel_btf_id;
5951 					insn[1].imm = ext->ksym.kernel_btf_obj_fd;
5952 				} else { /* typeless ksyms or unresolved typed ksyms */
5953 					insn[0].imm = (__u32)ext->ksym.addr;
5954 					insn[1].imm = ext->ksym.addr >> 32;
5955 				}
5956 			}
5957 			break;
5958 		case RELO_EXTERN_CALL:
5959 			ext = &obj->externs[relo->ext_idx];
5960 			insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
5961 			if (ext->is_set) {
5962 				insn[0].imm = ext->ksym.kernel_btf_id;
5963 				insn[0].off = ext->ksym.btf_fd_idx;
5964 			} else { /* unresolved weak kfunc call */
5965 				poison_kfunc_call(prog, i, relo->insn_idx, insn,
5966 						  relo->ext_idx, ext);
5967 			}
5968 			break;
5969 		case RELO_SUBPROG_ADDR:
5970 			if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
5971 				pr_warn("prog '%s': relo #%d: bad insn\n",
5972 					prog->name, i);
5973 				return -EINVAL;
5974 			}
5975 			/* handled already */
5976 			break;
5977 		case RELO_CALL:
5978 			/* handled already */
5979 			break;
5980 		case RELO_CORE:
5981 			/* will be handled by bpf_program_record_relos() */
5982 			break;
5983 		default:
5984 			pr_warn("prog '%s': relo #%d: bad relo type %d\n",
5985 				prog->name, i, relo->type);
5986 			return -EINVAL;
5987 		}
5988 	}
5989 
5990 	return 0;
5991 }
5992 
5993 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
5994 				    const struct bpf_program *prog,
5995 				    const struct btf_ext_info *ext_info,
5996 				    void **prog_info, __u32 *prog_rec_cnt,
5997 				    __u32 *prog_rec_sz)
5998 {
5999 	void *copy_start = NULL, *copy_end = NULL;
6000 	void *rec, *rec_end, *new_prog_info;
6001 	const struct btf_ext_info_sec *sec;
6002 	size_t old_sz, new_sz;
6003 	int i, sec_num, sec_idx, off_adj;
6004 
6005 	sec_num = 0;
6006 	for_each_btf_ext_sec(ext_info, sec) {
6007 		sec_idx = ext_info->sec_idxs[sec_num];
6008 		sec_num++;
6009 		if (prog->sec_idx != sec_idx)
6010 			continue;
6011 
6012 		for_each_btf_ext_rec(ext_info, sec, i, rec) {
6013 			__u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6014 
6015 			if (insn_off < prog->sec_insn_off)
6016 				continue;
6017 			if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6018 				break;
6019 
6020 			if (!copy_start)
6021 				copy_start = rec;
6022 			copy_end = rec + ext_info->rec_size;
6023 		}
6024 
6025 		if (!copy_start)
6026 			return -ENOENT;
6027 
6028 		/* append func/line info of a given (sub-)program to the main
6029 		 * program func/line info
6030 		 */
6031 		old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6032 		new_sz = old_sz + (copy_end - copy_start);
6033 		new_prog_info = realloc(*prog_info, new_sz);
6034 		if (!new_prog_info)
6035 			return -ENOMEM;
6036 		*prog_info = new_prog_info;
6037 		*prog_rec_cnt = new_sz / ext_info->rec_size;
6038 		memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6039 
6040 		/* Kernel instruction offsets are in units of 8-byte
6041 		 * instructions, while .BTF.ext instruction offsets generated
6042 		 * by Clang are in units of bytes. So convert Clang offsets
6043 		 * into kernel offsets and adjust offset according to program
6044 		 * relocated position.
6045 		 */
6046 		off_adj = prog->sub_insn_off - prog->sec_insn_off;
6047 		rec = new_prog_info + old_sz;
6048 		rec_end = new_prog_info + new_sz;
6049 		for (; rec < rec_end; rec += ext_info->rec_size) {
6050 			__u32 *insn_off = rec;
6051 
6052 			*insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6053 		}
6054 		*prog_rec_sz = ext_info->rec_size;
6055 		return 0;
6056 	}
6057 
6058 	return -ENOENT;
6059 }
6060 
6061 static int
6062 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6063 			      struct bpf_program *main_prog,
6064 			      const struct bpf_program *prog)
6065 {
6066 	int err;
6067 
6068 	/* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6069 	 * supprot func/line info
6070 	 */
6071 	if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6072 		return 0;
6073 
6074 	/* only attempt func info relocation if main program's func_info
6075 	 * relocation was successful
6076 	 */
6077 	if (main_prog != prog && !main_prog->func_info)
6078 		goto line_info;
6079 
6080 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6081 				       &main_prog->func_info,
6082 				       &main_prog->func_info_cnt,
6083 				       &main_prog->func_info_rec_size);
6084 	if (err) {
6085 		if (err != -ENOENT) {
6086 			pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6087 				prog->name, err);
6088 			return err;
6089 		}
6090 		if (main_prog->func_info) {
6091 			/*
6092 			 * Some info has already been found but has problem
6093 			 * in the last btf_ext reloc. Must have to error out.
6094 			 */
6095 			pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6096 			return err;
6097 		}
6098 		/* Have problem loading the very first info. Ignore the rest. */
6099 		pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6100 			prog->name);
6101 	}
6102 
6103 line_info:
6104 	/* don't relocate line info if main program's relocation failed */
6105 	if (main_prog != prog && !main_prog->line_info)
6106 		return 0;
6107 
6108 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6109 				       &main_prog->line_info,
6110 				       &main_prog->line_info_cnt,
6111 				       &main_prog->line_info_rec_size);
6112 	if (err) {
6113 		if (err != -ENOENT) {
6114 			pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6115 				prog->name, err);
6116 			return err;
6117 		}
6118 		if (main_prog->line_info) {
6119 			/*
6120 			 * Some info has already been found but has problem
6121 			 * in the last btf_ext reloc. Must have to error out.
6122 			 */
6123 			pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6124 			return err;
6125 		}
6126 		/* Have problem loading the very first info. Ignore the rest. */
6127 		pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6128 			prog->name);
6129 	}
6130 	return 0;
6131 }
6132 
6133 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6134 {
6135 	size_t insn_idx = *(const size_t *)key;
6136 	const struct reloc_desc *relo = elem;
6137 
6138 	if (insn_idx == relo->insn_idx)
6139 		return 0;
6140 	return insn_idx < relo->insn_idx ? -1 : 1;
6141 }
6142 
6143 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6144 {
6145 	if (!prog->nr_reloc)
6146 		return NULL;
6147 	return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6148 		       sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6149 }
6150 
6151 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6152 {
6153 	int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6154 	struct reloc_desc *relos;
6155 	int i;
6156 
6157 	if (main_prog == subprog)
6158 		return 0;
6159 	relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6160 	if (!relos)
6161 		return -ENOMEM;
6162 	if (subprog->nr_reloc)
6163 		memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6164 		       sizeof(*relos) * subprog->nr_reloc);
6165 
6166 	for (i = main_prog->nr_reloc; i < new_cnt; i++)
6167 		relos[i].insn_idx += subprog->sub_insn_off;
6168 	/* After insn_idx adjustment the 'relos' array is still sorted
6169 	 * by insn_idx and doesn't break bsearch.
6170 	 */
6171 	main_prog->reloc_desc = relos;
6172 	main_prog->nr_reloc = new_cnt;
6173 	return 0;
6174 }
6175 
6176 static int
6177 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6178 		       struct bpf_program *prog)
6179 {
6180 	size_t sub_insn_idx, insn_idx, new_cnt;
6181 	struct bpf_program *subprog;
6182 	struct bpf_insn *insns, *insn;
6183 	struct reloc_desc *relo;
6184 	int err;
6185 
6186 	err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6187 	if (err)
6188 		return err;
6189 
6190 	for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6191 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6192 		if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6193 			continue;
6194 
6195 		relo = find_prog_insn_relo(prog, insn_idx);
6196 		if (relo && relo->type == RELO_EXTERN_CALL)
6197 			/* kfunc relocations will be handled later
6198 			 * in bpf_object__relocate_data()
6199 			 */
6200 			continue;
6201 		if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6202 			pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6203 				prog->name, insn_idx, relo->type);
6204 			return -LIBBPF_ERRNO__RELOC;
6205 		}
6206 		if (relo) {
6207 			/* sub-program instruction index is a combination of
6208 			 * an offset of a symbol pointed to by relocation and
6209 			 * call instruction's imm field; for global functions,
6210 			 * call always has imm = -1, but for static functions
6211 			 * relocation is against STT_SECTION and insn->imm
6212 			 * points to a start of a static function
6213 			 *
6214 			 * for subprog addr relocation, the relo->sym_off + insn->imm is
6215 			 * the byte offset in the corresponding section.
6216 			 */
6217 			if (relo->type == RELO_CALL)
6218 				sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6219 			else
6220 				sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6221 		} else if (insn_is_pseudo_func(insn)) {
6222 			/*
6223 			 * RELO_SUBPROG_ADDR relo is always emitted even if both
6224 			 * functions are in the same section, so it shouldn't reach here.
6225 			 */
6226 			pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6227 				prog->name, insn_idx);
6228 			return -LIBBPF_ERRNO__RELOC;
6229 		} else {
6230 			/* if subprogram call is to a static function within
6231 			 * the same ELF section, there won't be any relocation
6232 			 * emitted, but it also means there is no additional
6233 			 * offset necessary, insns->imm is relative to
6234 			 * instruction's original position within the section
6235 			 */
6236 			sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6237 		}
6238 
6239 		/* we enforce that sub-programs should be in .text section */
6240 		subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6241 		if (!subprog) {
6242 			pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6243 				prog->name);
6244 			return -LIBBPF_ERRNO__RELOC;
6245 		}
6246 
6247 		/* if it's the first call instruction calling into this
6248 		 * subprogram (meaning this subprog hasn't been processed
6249 		 * yet) within the context of current main program:
6250 		 *   - append it at the end of main program's instructions blog;
6251 		 *   - process is recursively, while current program is put on hold;
6252 		 *   - if that subprogram calls some other not yet processes
6253 		 *   subprogram, same thing will happen recursively until
6254 		 *   there are no more unprocesses subprograms left to append
6255 		 *   and relocate.
6256 		 */
6257 		if (subprog->sub_insn_off == 0) {
6258 			subprog->sub_insn_off = main_prog->insns_cnt;
6259 
6260 			new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6261 			insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6262 			if (!insns) {
6263 				pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6264 				return -ENOMEM;
6265 			}
6266 			main_prog->insns = insns;
6267 			main_prog->insns_cnt = new_cnt;
6268 
6269 			memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6270 			       subprog->insns_cnt * sizeof(*insns));
6271 
6272 			pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6273 				 main_prog->name, subprog->insns_cnt, subprog->name);
6274 
6275 			/* The subprog insns are now appended. Append its relos too. */
6276 			err = append_subprog_relos(main_prog, subprog);
6277 			if (err)
6278 				return err;
6279 			err = bpf_object__reloc_code(obj, main_prog, subprog);
6280 			if (err)
6281 				return err;
6282 		}
6283 
6284 		/* main_prog->insns memory could have been re-allocated, so
6285 		 * calculate pointer again
6286 		 */
6287 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6288 		/* calculate correct instruction position within current main
6289 		 * prog; each main prog can have a different set of
6290 		 * subprograms appended (potentially in different order as
6291 		 * well), so position of any subprog can be different for
6292 		 * different main programs
6293 		 */
6294 		insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6295 
6296 		pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6297 			 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6298 	}
6299 
6300 	return 0;
6301 }
6302 
6303 /*
6304  * Relocate sub-program calls.
6305  *
6306  * Algorithm operates as follows. Each entry-point BPF program (referred to as
6307  * main prog) is processed separately. For each subprog (non-entry functions,
6308  * that can be called from either entry progs or other subprogs) gets their
6309  * sub_insn_off reset to zero. This serves as indicator that this subprogram
6310  * hasn't been yet appended and relocated within current main prog. Once its
6311  * relocated, sub_insn_off will point at the position within current main prog
6312  * where given subprog was appended. This will further be used to relocate all
6313  * the call instructions jumping into this subprog.
6314  *
6315  * We start with main program and process all call instructions. If the call
6316  * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6317  * is zero), subprog instructions are appended at the end of main program's
6318  * instruction array. Then main program is "put on hold" while we recursively
6319  * process newly appended subprogram. If that subprogram calls into another
6320  * subprogram that hasn't been appended, new subprogram is appended again to
6321  * the *main* prog's instructions (subprog's instructions are always left
6322  * untouched, as they need to be in unmodified state for subsequent main progs
6323  * and subprog instructions are always sent only as part of a main prog) and
6324  * the process continues recursively. Once all the subprogs called from a main
6325  * prog or any of its subprogs are appended (and relocated), all their
6326  * positions within finalized instructions array are known, so it's easy to
6327  * rewrite call instructions with correct relative offsets, corresponding to
6328  * desired target subprog.
6329  *
6330  * Its important to realize that some subprogs might not be called from some
6331  * main prog and any of its called/used subprogs. Those will keep their
6332  * subprog->sub_insn_off as zero at all times and won't be appended to current
6333  * main prog and won't be relocated within the context of current main prog.
6334  * They might still be used from other main progs later.
6335  *
6336  * Visually this process can be shown as below. Suppose we have two main
6337  * programs mainA and mainB and BPF object contains three subprogs: subA,
6338  * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6339  * subC both call subB:
6340  *
6341  *        +--------+ +-------+
6342  *        |        v v       |
6343  *     +--+---+ +--+-+-+ +---+--+
6344  *     | subA | | subB | | subC |
6345  *     +--+---+ +------+ +---+--+
6346  *        ^                  ^
6347  *        |                  |
6348  *    +---+-------+   +------+----+
6349  *    |   mainA   |   |   mainB   |
6350  *    +-----------+   +-----------+
6351  *
6352  * We'll start relocating mainA, will find subA, append it and start
6353  * processing sub A recursively:
6354  *
6355  *    +-----------+------+
6356  *    |   mainA   | subA |
6357  *    +-----------+------+
6358  *
6359  * At this point we notice that subB is used from subA, so we append it and
6360  * relocate (there are no further subcalls from subB):
6361  *
6362  *    +-----------+------+------+
6363  *    |   mainA   | subA | subB |
6364  *    +-----------+------+------+
6365  *
6366  * At this point, we relocate subA calls, then go one level up and finish with
6367  * relocatin mainA calls. mainA is done.
6368  *
6369  * For mainB process is similar but results in different order. We start with
6370  * mainB and skip subA and subB, as mainB never calls them (at least
6371  * directly), but we see subC is needed, so we append and start processing it:
6372  *
6373  *    +-----------+------+
6374  *    |   mainB   | subC |
6375  *    +-----------+------+
6376  * Now we see subC needs subB, so we go back to it, append and relocate it:
6377  *
6378  *    +-----------+------+------+
6379  *    |   mainB   | subC | subB |
6380  *    +-----------+------+------+
6381  *
6382  * At this point we unwind recursion, relocate calls in subC, then in mainB.
6383  */
6384 static int
6385 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6386 {
6387 	struct bpf_program *subprog;
6388 	int i, err;
6389 
6390 	/* mark all subprogs as not relocated (yet) within the context of
6391 	 * current main program
6392 	 */
6393 	for (i = 0; i < obj->nr_programs; i++) {
6394 		subprog = &obj->programs[i];
6395 		if (!prog_is_subprog(obj, subprog))
6396 			continue;
6397 
6398 		subprog->sub_insn_off = 0;
6399 	}
6400 
6401 	err = bpf_object__reloc_code(obj, prog, prog);
6402 	if (err)
6403 		return err;
6404 
6405 	return 0;
6406 }
6407 
6408 static void
6409 bpf_object__free_relocs(struct bpf_object *obj)
6410 {
6411 	struct bpf_program *prog;
6412 	int i;
6413 
6414 	/* free up relocation descriptors */
6415 	for (i = 0; i < obj->nr_programs; i++) {
6416 		prog = &obj->programs[i];
6417 		zfree(&prog->reloc_desc);
6418 		prog->nr_reloc = 0;
6419 	}
6420 }
6421 
6422 static int cmp_relocs(const void *_a, const void *_b)
6423 {
6424 	const struct reloc_desc *a = _a;
6425 	const struct reloc_desc *b = _b;
6426 
6427 	if (a->insn_idx != b->insn_idx)
6428 		return a->insn_idx < b->insn_idx ? -1 : 1;
6429 
6430 	/* no two relocations should have the same insn_idx, but ... */
6431 	if (a->type != b->type)
6432 		return a->type < b->type ? -1 : 1;
6433 
6434 	return 0;
6435 }
6436 
6437 static void bpf_object__sort_relos(struct bpf_object *obj)
6438 {
6439 	int i;
6440 
6441 	for (i = 0; i < obj->nr_programs; i++) {
6442 		struct bpf_program *p = &obj->programs[i];
6443 
6444 		if (!p->nr_reloc)
6445 			continue;
6446 
6447 		qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6448 	}
6449 }
6450 
6451 static int
6452 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6453 {
6454 	struct bpf_program *prog;
6455 	size_t i, j;
6456 	int err;
6457 
6458 	if (obj->btf_ext) {
6459 		err = bpf_object__relocate_core(obj, targ_btf_path);
6460 		if (err) {
6461 			pr_warn("failed to perform CO-RE relocations: %d\n",
6462 				err);
6463 			return err;
6464 		}
6465 		bpf_object__sort_relos(obj);
6466 	}
6467 
6468 	/* Before relocating calls pre-process relocations and mark
6469 	 * few ld_imm64 instructions that points to subprogs.
6470 	 * Otherwise bpf_object__reloc_code() later would have to consider
6471 	 * all ld_imm64 insns as relocation candidates. That would
6472 	 * reduce relocation speed, since amount of find_prog_insn_relo()
6473 	 * would increase and most of them will fail to find a relo.
6474 	 */
6475 	for (i = 0; i < obj->nr_programs; i++) {
6476 		prog = &obj->programs[i];
6477 		for (j = 0; j < prog->nr_reloc; j++) {
6478 			struct reloc_desc *relo = &prog->reloc_desc[j];
6479 			struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6480 
6481 			/* mark the insn, so it's recognized by insn_is_pseudo_func() */
6482 			if (relo->type == RELO_SUBPROG_ADDR)
6483 				insn[0].src_reg = BPF_PSEUDO_FUNC;
6484 		}
6485 	}
6486 
6487 	/* relocate subprogram calls and append used subprograms to main
6488 	 * programs; each copy of subprogram code needs to be relocated
6489 	 * differently for each main program, because its code location might
6490 	 * have changed.
6491 	 * Append subprog relos to main programs to allow data relos to be
6492 	 * processed after text is completely relocated.
6493 	 */
6494 	for (i = 0; i < obj->nr_programs; i++) {
6495 		prog = &obj->programs[i];
6496 		/* sub-program's sub-calls are relocated within the context of
6497 		 * its main program only
6498 		 */
6499 		if (prog_is_subprog(obj, prog))
6500 			continue;
6501 		if (!prog->autoload)
6502 			continue;
6503 
6504 		err = bpf_object__relocate_calls(obj, prog);
6505 		if (err) {
6506 			pr_warn("prog '%s': failed to relocate calls: %d\n",
6507 				prog->name, err);
6508 			return err;
6509 		}
6510 	}
6511 	/* Process data relos for main programs */
6512 	for (i = 0; i < obj->nr_programs; i++) {
6513 		prog = &obj->programs[i];
6514 		if (prog_is_subprog(obj, prog))
6515 			continue;
6516 		if (!prog->autoload)
6517 			continue;
6518 		err = bpf_object__relocate_data(obj, prog);
6519 		if (err) {
6520 			pr_warn("prog '%s': failed to relocate data references: %d\n",
6521 				prog->name, err);
6522 			return err;
6523 		}
6524 	}
6525 
6526 	return 0;
6527 }
6528 
6529 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6530 					    Elf64_Shdr *shdr, Elf_Data *data);
6531 
6532 static int bpf_object__collect_map_relos(struct bpf_object *obj,
6533 					 Elf64_Shdr *shdr, Elf_Data *data)
6534 {
6535 	const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6536 	int i, j, nrels, new_sz;
6537 	const struct btf_var_secinfo *vi = NULL;
6538 	const struct btf_type *sec, *var, *def;
6539 	struct bpf_map *map = NULL, *targ_map = NULL;
6540 	struct bpf_program *targ_prog = NULL;
6541 	bool is_prog_array, is_map_in_map;
6542 	const struct btf_member *member;
6543 	const char *name, *mname, *type;
6544 	unsigned int moff;
6545 	Elf64_Sym *sym;
6546 	Elf64_Rel *rel;
6547 	void *tmp;
6548 
6549 	if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6550 		return -EINVAL;
6551 	sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6552 	if (!sec)
6553 		return -EINVAL;
6554 
6555 	nrels = shdr->sh_size / shdr->sh_entsize;
6556 	for (i = 0; i < nrels; i++) {
6557 		rel = elf_rel_by_idx(data, i);
6558 		if (!rel) {
6559 			pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6560 			return -LIBBPF_ERRNO__FORMAT;
6561 		}
6562 
6563 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
6564 		if (!sym) {
6565 			pr_warn(".maps relo #%d: symbol %zx not found\n",
6566 				i, (size_t)ELF64_R_SYM(rel->r_info));
6567 			return -LIBBPF_ERRNO__FORMAT;
6568 		}
6569 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
6570 
6571 		pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
6572 			 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
6573 			 (size_t)rel->r_offset, sym->st_name, name);
6574 
6575 		for (j = 0; j < obj->nr_maps; j++) {
6576 			map = &obj->maps[j];
6577 			if (map->sec_idx != obj->efile.btf_maps_shndx)
6578 				continue;
6579 
6580 			vi = btf_var_secinfos(sec) + map->btf_var_idx;
6581 			if (vi->offset <= rel->r_offset &&
6582 			    rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6583 				break;
6584 		}
6585 		if (j == obj->nr_maps) {
6586 			pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
6587 				i, name, (size_t)rel->r_offset);
6588 			return -EINVAL;
6589 		}
6590 
6591 		is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
6592 		is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
6593 		type = is_map_in_map ? "map" : "prog";
6594 		if (is_map_in_map) {
6595 			if (sym->st_shndx != obj->efile.btf_maps_shndx) {
6596 				pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6597 					i, name);
6598 				return -LIBBPF_ERRNO__RELOC;
6599 			}
6600 			if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6601 			    map->def.key_size != sizeof(int)) {
6602 				pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6603 					i, map->name, sizeof(int));
6604 				return -EINVAL;
6605 			}
6606 			targ_map = bpf_object__find_map_by_name(obj, name);
6607 			if (!targ_map) {
6608 				pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
6609 					i, name);
6610 				return -ESRCH;
6611 			}
6612 		} else if (is_prog_array) {
6613 			targ_prog = bpf_object__find_program_by_name(obj, name);
6614 			if (!targ_prog) {
6615 				pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
6616 					i, name);
6617 				return -ESRCH;
6618 			}
6619 			if (targ_prog->sec_idx != sym->st_shndx ||
6620 			    targ_prog->sec_insn_off * 8 != sym->st_value ||
6621 			    prog_is_subprog(obj, targ_prog)) {
6622 				pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
6623 					i, name);
6624 				return -LIBBPF_ERRNO__RELOC;
6625 			}
6626 		} else {
6627 			return -EINVAL;
6628 		}
6629 
6630 		var = btf__type_by_id(obj->btf, vi->type);
6631 		def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6632 		if (btf_vlen(def) == 0)
6633 			return -EINVAL;
6634 		member = btf_members(def) + btf_vlen(def) - 1;
6635 		mname = btf__name_by_offset(obj->btf, member->name_off);
6636 		if (strcmp(mname, "values"))
6637 			return -EINVAL;
6638 
6639 		moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6640 		if (rel->r_offset - vi->offset < moff)
6641 			return -EINVAL;
6642 
6643 		moff = rel->r_offset - vi->offset - moff;
6644 		/* here we use BPF pointer size, which is always 64 bit, as we
6645 		 * are parsing ELF that was built for BPF target
6646 		 */
6647 		if (moff % bpf_ptr_sz)
6648 			return -EINVAL;
6649 		moff /= bpf_ptr_sz;
6650 		if (moff >= map->init_slots_sz) {
6651 			new_sz = moff + 1;
6652 			tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6653 			if (!tmp)
6654 				return -ENOMEM;
6655 			map->init_slots = tmp;
6656 			memset(map->init_slots + map->init_slots_sz, 0,
6657 			       (new_sz - map->init_slots_sz) * host_ptr_sz);
6658 			map->init_slots_sz = new_sz;
6659 		}
6660 		map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
6661 
6662 		pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
6663 			 i, map->name, moff, type, name);
6664 	}
6665 
6666 	return 0;
6667 }
6668 
6669 static int bpf_object__collect_relos(struct bpf_object *obj)
6670 {
6671 	int i, err;
6672 
6673 	for (i = 0; i < obj->efile.sec_cnt; i++) {
6674 		struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
6675 		Elf64_Shdr *shdr;
6676 		Elf_Data *data;
6677 		int idx;
6678 
6679 		if (sec_desc->sec_type != SEC_RELO)
6680 			continue;
6681 
6682 		shdr = sec_desc->shdr;
6683 		data = sec_desc->data;
6684 		idx = shdr->sh_info;
6685 
6686 		if (shdr->sh_type != SHT_REL) {
6687 			pr_warn("internal error at %d\n", __LINE__);
6688 			return -LIBBPF_ERRNO__INTERNAL;
6689 		}
6690 
6691 		if (idx == obj->efile.st_ops_shndx || idx == obj->efile.st_ops_link_shndx)
6692 			err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6693 		else if (idx == obj->efile.btf_maps_shndx)
6694 			err = bpf_object__collect_map_relos(obj, shdr, data);
6695 		else
6696 			err = bpf_object__collect_prog_relos(obj, shdr, data);
6697 		if (err)
6698 			return err;
6699 	}
6700 
6701 	bpf_object__sort_relos(obj);
6702 	return 0;
6703 }
6704 
6705 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6706 {
6707 	if (BPF_CLASS(insn->code) == BPF_JMP &&
6708 	    BPF_OP(insn->code) == BPF_CALL &&
6709 	    BPF_SRC(insn->code) == BPF_K &&
6710 	    insn->src_reg == 0 &&
6711 	    insn->dst_reg == 0) {
6712 		    *func_id = insn->imm;
6713 		    return true;
6714 	}
6715 	return false;
6716 }
6717 
6718 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
6719 {
6720 	struct bpf_insn *insn = prog->insns;
6721 	enum bpf_func_id func_id;
6722 	int i;
6723 
6724 	if (obj->gen_loader)
6725 		return 0;
6726 
6727 	for (i = 0; i < prog->insns_cnt; i++, insn++) {
6728 		if (!insn_is_helper_call(insn, &func_id))
6729 			continue;
6730 
6731 		/* on kernels that don't yet support
6732 		 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6733 		 * to bpf_probe_read() which works well for old kernels
6734 		 */
6735 		switch (func_id) {
6736 		case BPF_FUNC_probe_read_kernel:
6737 		case BPF_FUNC_probe_read_user:
6738 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6739 				insn->imm = BPF_FUNC_probe_read;
6740 			break;
6741 		case BPF_FUNC_probe_read_kernel_str:
6742 		case BPF_FUNC_probe_read_user_str:
6743 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6744 				insn->imm = BPF_FUNC_probe_read_str;
6745 			break;
6746 		default:
6747 			break;
6748 		}
6749 	}
6750 	return 0;
6751 }
6752 
6753 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
6754 				     int *btf_obj_fd, int *btf_type_id);
6755 
6756 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
6757 static int libbpf_prepare_prog_load(struct bpf_program *prog,
6758 				    struct bpf_prog_load_opts *opts, long cookie)
6759 {
6760 	enum sec_def_flags def = cookie;
6761 
6762 	/* old kernels might not support specifying expected_attach_type */
6763 	if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
6764 		opts->expected_attach_type = 0;
6765 
6766 	if (def & SEC_SLEEPABLE)
6767 		opts->prog_flags |= BPF_F_SLEEPABLE;
6768 
6769 	if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
6770 		opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
6771 
6772 	if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
6773 		int btf_obj_fd = 0, btf_type_id = 0, err;
6774 		const char *attach_name;
6775 
6776 		attach_name = strchr(prog->sec_name, '/');
6777 		if (!attach_name) {
6778 			/* if BPF program is annotated with just SEC("fentry")
6779 			 * (or similar) without declaratively specifying
6780 			 * target, then it is expected that target will be
6781 			 * specified with bpf_program__set_attach_target() at
6782 			 * runtime before BPF object load step. If not, then
6783 			 * there is nothing to load into the kernel as BPF
6784 			 * verifier won't be able to validate BPF program
6785 			 * correctness anyways.
6786 			 */
6787 			pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
6788 				prog->name);
6789 			return -EINVAL;
6790 		}
6791 		attach_name++; /* skip over / */
6792 
6793 		err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
6794 		if (err)
6795 			return err;
6796 
6797 		/* cache resolved BTF FD and BTF type ID in the prog */
6798 		prog->attach_btf_obj_fd = btf_obj_fd;
6799 		prog->attach_btf_id = btf_type_id;
6800 
6801 		/* but by now libbpf common logic is not utilizing
6802 		 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
6803 		 * this callback is called after opts were populated by
6804 		 * libbpf, so this callback has to update opts explicitly here
6805 		 */
6806 		opts->attach_btf_obj_fd = btf_obj_fd;
6807 		opts->attach_btf_id = btf_type_id;
6808 	}
6809 	return 0;
6810 }
6811 
6812 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
6813 
6814 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
6815 				struct bpf_insn *insns, int insns_cnt,
6816 				const char *license, __u32 kern_version, int *prog_fd)
6817 {
6818 	LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
6819 	const char *prog_name = NULL;
6820 	char *cp, errmsg[STRERR_BUFSIZE];
6821 	size_t log_buf_size = 0;
6822 	char *log_buf = NULL, *tmp;
6823 	int btf_fd, ret, err;
6824 	bool own_log_buf = true;
6825 	__u32 log_level = prog->log_level;
6826 
6827 	if (prog->type == BPF_PROG_TYPE_UNSPEC) {
6828 		/*
6829 		 * The program type must be set.  Most likely we couldn't find a proper
6830 		 * section definition at load time, and thus we didn't infer the type.
6831 		 */
6832 		pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
6833 			prog->name, prog->sec_name);
6834 		return -EINVAL;
6835 	}
6836 
6837 	if (!insns || !insns_cnt)
6838 		return -EINVAL;
6839 
6840 	load_attr.expected_attach_type = prog->expected_attach_type;
6841 	if (kernel_supports(obj, FEAT_PROG_NAME))
6842 		prog_name = prog->name;
6843 	load_attr.attach_prog_fd = prog->attach_prog_fd;
6844 	load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
6845 	load_attr.attach_btf_id = prog->attach_btf_id;
6846 	load_attr.kern_version = kern_version;
6847 	load_attr.prog_ifindex = prog->prog_ifindex;
6848 
6849 	/* specify func_info/line_info only if kernel supports them */
6850 	btf_fd = bpf_object__btf_fd(obj);
6851 	if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
6852 		load_attr.prog_btf_fd = btf_fd;
6853 		load_attr.func_info = prog->func_info;
6854 		load_attr.func_info_rec_size = prog->func_info_rec_size;
6855 		load_attr.func_info_cnt = prog->func_info_cnt;
6856 		load_attr.line_info = prog->line_info;
6857 		load_attr.line_info_rec_size = prog->line_info_rec_size;
6858 		load_attr.line_info_cnt = prog->line_info_cnt;
6859 	}
6860 	load_attr.log_level = log_level;
6861 	load_attr.prog_flags = prog->prog_flags;
6862 	load_attr.fd_array = obj->fd_array;
6863 
6864 	/* adjust load_attr if sec_def provides custom preload callback */
6865 	if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
6866 		err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
6867 		if (err < 0) {
6868 			pr_warn("prog '%s': failed to prepare load attributes: %d\n",
6869 				prog->name, err);
6870 			return err;
6871 		}
6872 		insns = prog->insns;
6873 		insns_cnt = prog->insns_cnt;
6874 	}
6875 
6876 	if (obj->gen_loader) {
6877 		bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
6878 				   license, insns, insns_cnt, &load_attr,
6879 				   prog - obj->programs);
6880 		*prog_fd = -1;
6881 		return 0;
6882 	}
6883 
6884 retry_load:
6885 	/* if log_level is zero, we don't request logs initially even if
6886 	 * custom log_buf is specified; if the program load fails, then we'll
6887 	 * bump log_level to 1 and use either custom log_buf or we'll allocate
6888 	 * our own and retry the load to get details on what failed
6889 	 */
6890 	if (log_level) {
6891 		if (prog->log_buf) {
6892 			log_buf = prog->log_buf;
6893 			log_buf_size = prog->log_size;
6894 			own_log_buf = false;
6895 		} else if (obj->log_buf) {
6896 			log_buf = obj->log_buf;
6897 			log_buf_size = obj->log_size;
6898 			own_log_buf = false;
6899 		} else {
6900 			log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
6901 			tmp = realloc(log_buf, log_buf_size);
6902 			if (!tmp) {
6903 				ret = -ENOMEM;
6904 				goto out;
6905 			}
6906 			log_buf = tmp;
6907 			log_buf[0] = '\0';
6908 			own_log_buf = true;
6909 		}
6910 	}
6911 
6912 	load_attr.log_buf = log_buf;
6913 	load_attr.log_size = log_buf_size;
6914 	load_attr.log_level = log_level;
6915 
6916 	ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
6917 	if (ret >= 0) {
6918 		if (log_level && own_log_buf) {
6919 			pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6920 				 prog->name, log_buf);
6921 		}
6922 
6923 		if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
6924 			struct bpf_map *map;
6925 			int i;
6926 
6927 			for (i = 0; i < obj->nr_maps; i++) {
6928 				map = &prog->obj->maps[i];
6929 				if (map->libbpf_type != LIBBPF_MAP_RODATA)
6930 					continue;
6931 
6932 				if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) {
6933 					cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6934 					pr_warn("prog '%s': failed to bind map '%s': %s\n",
6935 						prog->name, map->real_name, cp);
6936 					/* Don't fail hard if can't bind rodata. */
6937 				}
6938 			}
6939 		}
6940 
6941 		*prog_fd = ret;
6942 		ret = 0;
6943 		goto out;
6944 	}
6945 
6946 	if (log_level == 0) {
6947 		log_level = 1;
6948 		goto retry_load;
6949 	}
6950 	/* On ENOSPC, increase log buffer size and retry, unless custom
6951 	 * log_buf is specified.
6952 	 * Be careful to not overflow u32, though. Kernel's log buf size limit
6953 	 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
6954 	 * multiply by 2 unless we are sure we'll fit within 32 bits.
6955 	 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
6956 	 */
6957 	if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
6958 		goto retry_load;
6959 
6960 	ret = -errno;
6961 
6962 	/* post-process verifier log to improve error descriptions */
6963 	fixup_verifier_log(prog, log_buf, log_buf_size);
6964 
6965 	cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6966 	pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
6967 	pr_perm_msg(ret);
6968 
6969 	if (own_log_buf && log_buf && log_buf[0] != '\0') {
6970 		pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6971 			prog->name, log_buf);
6972 	}
6973 
6974 out:
6975 	if (own_log_buf)
6976 		free(log_buf);
6977 	return ret;
6978 }
6979 
6980 static char *find_prev_line(char *buf, char *cur)
6981 {
6982 	char *p;
6983 
6984 	if (cur == buf) /* end of a log buf */
6985 		return NULL;
6986 
6987 	p = cur - 1;
6988 	while (p - 1 >= buf && *(p - 1) != '\n')
6989 		p--;
6990 
6991 	return p;
6992 }
6993 
6994 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
6995 		      char *orig, size_t orig_sz, const char *patch)
6996 {
6997 	/* size of the remaining log content to the right from the to-be-replaced part */
6998 	size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
6999 	size_t patch_sz = strlen(patch);
7000 
7001 	if (patch_sz != orig_sz) {
7002 		/* If patch line(s) are longer than original piece of verifier log,
7003 		 * shift log contents by (patch_sz - orig_sz) bytes to the right
7004 		 * starting from after to-be-replaced part of the log.
7005 		 *
7006 		 * If patch line(s) are shorter than original piece of verifier log,
7007 		 * shift log contents by (orig_sz - patch_sz) bytes to the left
7008 		 * starting from after to-be-replaced part of the log
7009 		 *
7010 		 * We need to be careful about not overflowing available
7011 		 * buf_sz capacity. If that's the case, we'll truncate the end
7012 		 * of the original log, as necessary.
7013 		 */
7014 		if (patch_sz > orig_sz) {
7015 			if (orig + patch_sz >= buf + buf_sz) {
7016 				/* patch is big enough to cover remaining space completely */
7017 				patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
7018 				rem_sz = 0;
7019 			} else if (patch_sz - orig_sz > buf_sz - log_sz) {
7020 				/* patch causes part of remaining log to be truncated */
7021 				rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
7022 			}
7023 		}
7024 		/* shift remaining log to the right by calculated amount */
7025 		memmove(orig + patch_sz, orig + orig_sz, rem_sz);
7026 	}
7027 
7028 	memcpy(orig, patch, patch_sz);
7029 }
7030 
7031 static void fixup_log_failed_core_relo(struct bpf_program *prog,
7032 				       char *buf, size_t buf_sz, size_t log_sz,
7033 				       char *line1, char *line2, char *line3)
7034 {
7035 	/* Expected log for failed and not properly guarded CO-RE relocation:
7036 	 * line1 -> 123: (85) call unknown#195896080
7037 	 * line2 -> invalid func unknown#195896080
7038 	 * line3 -> <anything else or end of buffer>
7039 	 *
7040 	 * "123" is the index of the instruction that was poisoned. We extract
7041 	 * instruction index to find corresponding CO-RE relocation and
7042 	 * replace this part of the log with more relevant information about
7043 	 * failed CO-RE relocation.
7044 	 */
7045 	const struct bpf_core_relo *relo;
7046 	struct bpf_core_spec spec;
7047 	char patch[512], spec_buf[256];
7048 	int insn_idx, err, spec_len;
7049 
7050 	if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
7051 		return;
7052 
7053 	relo = find_relo_core(prog, insn_idx);
7054 	if (!relo)
7055 		return;
7056 
7057 	err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
7058 	if (err)
7059 		return;
7060 
7061 	spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
7062 	snprintf(patch, sizeof(patch),
7063 		 "%d: <invalid CO-RE relocation>\n"
7064 		 "failed to resolve CO-RE relocation %s%s\n",
7065 		 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
7066 
7067 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7068 }
7069 
7070 static void fixup_log_missing_map_load(struct bpf_program *prog,
7071 				       char *buf, size_t buf_sz, size_t log_sz,
7072 				       char *line1, char *line2, char *line3)
7073 {
7074 	/* Expected log for failed and not properly guarded map reference:
7075 	 * line1 -> 123: (85) call unknown#2001000345
7076 	 * line2 -> invalid func unknown#2001000345
7077 	 * line3 -> <anything else or end of buffer>
7078 	 *
7079 	 * "123" is the index of the instruction that was poisoned.
7080 	 * "345" in "2001000345" is a map index in obj->maps to fetch map name.
7081 	 */
7082 	struct bpf_object *obj = prog->obj;
7083 	const struct bpf_map *map;
7084 	int insn_idx, map_idx;
7085 	char patch[128];
7086 
7087 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7088 		return;
7089 
7090 	map_idx -= POISON_LDIMM64_MAP_BASE;
7091 	if (map_idx < 0 || map_idx >= obj->nr_maps)
7092 		return;
7093 	map = &obj->maps[map_idx];
7094 
7095 	snprintf(patch, sizeof(patch),
7096 		 "%d: <invalid BPF map reference>\n"
7097 		 "BPF map '%s' is referenced but wasn't created\n",
7098 		 insn_idx, map->name);
7099 
7100 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7101 }
7102 
7103 static void fixup_log_missing_kfunc_call(struct bpf_program *prog,
7104 					 char *buf, size_t buf_sz, size_t log_sz,
7105 					 char *line1, char *line2, char *line3)
7106 {
7107 	/* Expected log for failed and not properly guarded kfunc call:
7108 	 * line1 -> 123: (85) call unknown#2002000345
7109 	 * line2 -> invalid func unknown#2002000345
7110 	 * line3 -> <anything else or end of buffer>
7111 	 *
7112 	 * "123" is the index of the instruction that was poisoned.
7113 	 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name.
7114 	 */
7115 	struct bpf_object *obj = prog->obj;
7116 	const struct extern_desc *ext;
7117 	int insn_idx, ext_idx;
7118 	char patch[128];
7119 
7120 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2)
7121 		return;
7122 
7123 	ext_idx -= POISON_CALL_KFUNC_BASE;
7124 	if (ext_idx < 0 || ext_idx >= obj->nr_extern)
7125 		return;
7126 	ext = &obj->externs[ext_idx];
7127 
7128 	snprintf(patch, sizeof(patch),
7129 		 "%d: <invalid kfunc call>\n"
7130 		 "kfunc '%s' is referenced but wasn't resolved\n",
7131 		 insn_idx, ext->name);
7132 
7133 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7134 }
7135 
7136 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7137 {
7138 	/* look for familiar error patterns in last N lines of the log */
7139 	const size_t max_last_line_cnt = 10;
7140 	char *prev_line, *cur_line, *next_line;
7141 	size_t log_sz;
7142 	int i;
7143 
7144 	if (!buf)
7145 		return;
7146 
7147 	log_sz = strlen(buf) + 1;
7148 	next_line = buf + log_sz - 1;
7149 
7150 	for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7151 		cur_line = find_prev_line(buf, next_line);
7152 		if (!cur_line)
7153 			return;
7154 
7155 		if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7156 			prev_line = find_prev_line(buf, cur_line);
7157 			if (!prev_line)
7158 				continue;
7159 
7160 			/* failed CO-RE relocation case */
7161 			fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7162 						   prev_line, cur_line, next_line);
7163 			return;
7164 		} else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) {
7165 			prev_line = find_prev_line(buf, cur_line);
7166 			if (!prev_line)
7167 				continue;
7168 
7169 			/* reference to uncreated BPF map */
7170 			fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7171 						   prev_line, cur_line, next_line);
7172 			return;
7173 		} else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) {
7174 			prev_line = find_prev_line(buf, cur_line);
7175 			if (!prev_line)
7176 				continue;
7177 
7178 			/* reference to unresolved kfunc */
7179 			fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz,
7180 						     prev_line, cur_line, next_line);
7181 			return;
7182 		}
7183 	}
7184 }
7185 
7186 static int bpf_program_record_relos(struct bpf_program *prog)
7187 {
7188 	struct bpf_object *obj = prog->obj;
7189 	int i;
7190 
7191 	for (i = 0; i < prog->nr_reloc; i++) {
7192 		struct reloc_desc *relo = &prog->reloc_desc[i];
7193 		struct extern_desc *ext = &obj->externs[relo->ext_idx];
7194 		int kind;
7195 
7196 		switch (relo->type) {
7197 		case RELO_EXTERN_LD64:
7198 			if (ext->type != EXT_KSYM)
7199 				continue;
7200 			kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ?
7201 				BTF_KIND_VAR : BTF_KIND_FUNC;
7202 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7203 					       ext->is_weak, !ext->ksym.type_id,
7204 					       true, kind, relo->insn_idx);
7205 			break;
7206 		case RELO_EXTERN_CALL:
7207 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7208 					       ext->is_weak, false, false, BTF_KIND_FUNC,
7209 					       relo->insn_idx);
7210 			break;
7211 		case RELO_CORE: {
7212 			struct bpf_core_relo cr = {
7213 				.insn_off = relo->insn_idx * 8,
7214 				.type_id = relo->core_relo->type_id,
7215 				.access_str_off = relo->core_relo->access_str_off,
7216 				.kind = relo->core_relo->kind,
7217 			};
7218 
7219 			bpf_gen__record_relo_core(obj->gen_loader, &cr);
7220 			break;
7221 		}
7222 		default:
7223 			continue;
7224 		}
7225 	}
7226 	return 0;
7227 }
7228 
7229 static int
7230 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7231 {
7232 	struct bpf_program *prog;
7233 	size_t i;
7234 	int err;
7235 
7236 	for (i = 0; i < obj->nr_programs; i++) {
7237 		prog = &obj->programs[i];
7238 		err = bpf_object__sanitize_prog(obj, prog);
7239 		if (err)
7240 			return err;
7241 	}
7242 
7243 	for (i = 0; i < obj->nr_programs; i++) {
7244 		prog = &obj->programs[i];
7245 		if (prog_is_subprog(obj, prog))
7246 			continue;
7247 		if (!prog->autoload) {
7248 			pr_debug("prog '%s': skipped loading\n", prog->name);
7249 			continue;
7250 		}
7251 		prog->log_level |= log_level;
7252 
7253 		if (obj->gen_loader)
7254 			bpf_program_record_relos(prog);
7255 
7256 		err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7257 					   obj->license, obj->kern_version, &prog->fd);
7258 		if (err) {
7259 			pr_warn("prog '%s': failed to load: %d\n", prog->name, err);
7260 			return err;
7261 		}
7262 	}
7263 
7264 	bpf_object__free_relocs(obj);
7265 	return 0;
7266 }
7267 
7268 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7269 
7270 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7271 {
7272 	struct bpf_program *prog;
7273 	int err;
7274 
7275 	bpf_object__for_each_program(prog, obj) {
7276 		prog->sec_def = find_sec_def(prog->sec_name);
7277 		if (!prog->sec_def) {
7278 			/* couldn't guess, but user might manually specify */
7279 			pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7280 				prog->name, prog->sec_name);
7281 			continue;
7282 		}
7283 
7284 		prog->type = prog->sec_def->prog_type;
7285 		prog->expected_attach_type = prog->sec_def->expected_attach_type;
7286 
7287 		/* sec_def can have custom callback which should be called
7288 		 * after bpf_program is initialized to adjust its properties
7289 		 */
7290 		if (prog->sec_def->prog_setup_fn) {
7291 			err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7292 			if (err < 0) {
7293 				pr_warn("prog '%s': failed to initialize: %d\n",
7294 					prog->name, err);
7295 				return err;
7296 			}
7297 		}
7298 	}
7299 
7300 	return 0;
7301 }
7302 
7303 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7304 					  const struct bpf_object_open_opts *opts)
7305 {
7306 	const char *obj_name, *kconfig, *btf_tmp_path;
7307 	struct bpf_object *obj;
7308 	char tmp_name[64];
7309 	int err;
7310 	char *log_buf;
7311 	size_t log_size;
7312 	__u32 log_level;
7313 
7314 	if (elf_version(EV_CURRENT) == EV_NONE) {
7315 		pr_warn("failed to init libelf for %s\n",
7316 			path ? : "(mem buf)");
7317 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7318 	}
7319 
7320 	if (!OPTS_VALID(opts, bpf_object_open_opts))
7321 		return ERR_PTR(-EINVAL);
7322 
7323 	obj_name = OPTS_GET(opts, object_name, NULL);
7324 	if (obj_buf) {
7325 		if (!obj_name) {
7326 			snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7327 				 (unsigned long)obj_buf,
7328 				 (unsigned long)obj_buf_sz);
7329 			obj_name = tmp_name;
7330 		}
7331 		path = obj_name;
7332 		pr_debug("loading object '%s' from buffer\n", obj_name);
7333 	}
7334 
7335 	log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7336 	log_size = OPTS_GET(opts, kernel_log_size, 0);
7337 	log_level = OPTS_GET(opts, kernel_log_level, 0);
7338 	if (log_size > UINT_MAX)
7339 		return ERR_PTR(-EINVAL);
7340 	if (log_size && !log_buf)
7341 		return ERR_PTR(-EINVAL);
7342 
7343 	obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7344 	if (IS_ERR(obj))
7345 		return obj;
7346 
7347 	obj->log_buf = log_buf;
7348 	obj->log_size = log_size;
7349 	obj->log_level = log_level;
7350 
7351 	btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7352 	if (btf_tmp_path) {
7353 		if (strlen(btf_tmp_path) >= PATH_MAX) {
7354 			err = -ENAMETOOLONG;
7355 			goto out;
7356 		}
7357 		obj->btf_custom_path = strdup(btf_tmp_path);
7358 		if (!obj->btf_custom_path) {
7359 			err = -ENOMEM;
7360 			goto out;
7361 		}
7362 	}
7363 
7364 	kconfig = OPTS_GET(opts, kconfig, NULL);
7365 	if (kconfig) {
7366 		obj->kconfig = strdup(kconfig);
7367 		if (!obj->kconfig) {
7368 			err = -ENOMEM;
7369 			goto out;
7370 		}
7371 	}
7372 
7373 	err = bpf_object__elf_init(obj);
7374 	err = err ? : bpf_object__check_endianness(obj);
7375 	err = err ? : bpf_object__elf_collect(obj);
7376 	err = err ? : bpf_object__collect_externs(obj);
7377 	err = err ? : bpf_object_fixup_btf(obj);
7378 	err = err ? : bpf_object__init_maps(obj, opts);
7379 	err = err ? : bpf_object_init_progs(obj, opts);
7380 	err = err ? : bpf_object__collect_relos(obj);
7381 	if (err)
7382 		goto out;
7383 
7384 	bpf_object__elf_finish(obj);
7385 
7386 	return obj;
7387 out:
7388 	bpf_object__close(obj);
7389 	return ERR_PTR(err);
7390 }
7391 
7392 struct bpf_object *
7393 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7394 {
7395 	if (!path)
7396 		return libbpf_err_ptr(-EINVAL);
7397 
7398 	pr_debug("loading %s\n", path);
7399 
7400 	return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
7401 }
7402 
7403 struct bpf_object *bpf_object__open(const char *path)
7404 {
7405 	return bpf_object__open_file(path, NULL);
7406 }
7407 
7408 struct bpf_object *
7409 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7410 		     const struct bpf_object_open_opts *opts)
7411 {
7412 	if (!obj_buf || obj_buf_sz == 0)
7413 		return libbpf_err_ptr(-EINVAL);
7414 
7415 	return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
7416 }
7417 
7418 static int bpf_object_unload(struct bpf_object *obj)
7419 {
7420 	size_t i;
7421 
7422 	if (!obj)
7423 		return libbpf_err(-EINVAL);
7424 
7425 	for (i = 0; i < obj->nr_maps; i++) {
7426 		zclose(obj->maps[i].fd);
7427 		if (obj->maps[i].st_ops)
7428 			zfree(&obj->maps[i].st_ops->kern_vdata);
7429 	}
7430 
7431 	for (i = 0; i < obj->nr_programs; i++)
7432 		bpf_program__unload(&obj->programs[i]);
7433 
7434 	return 0;
7435 }
7436 
7437 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7438 {
7439 	struct bpf_map *m;
7440 
7441 	bpf_object__for_each_map(m, obj) {
7442 		if (!bpf_map__is_internal(m))
7443 			continue;
7444 		if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
7445 			m->def.map_flags &= ~BPF_F_MMAPABLE;
7446 	}
7447 
7448 	return 0;
7449 }
7450 
7451 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
7452 {
7453 	char sym_type, sym_name[500];
7454 	unsigned long long sym_addr;
7455 	int ret, err = 0;
7456 	FILE *f;
7457 
7458 	f = fopen("/proc/kallsyms", "re");
7459 	if (!f) {
7460 		err = -errno;
7461 		pr_warn("failed to open /proc/kallsyms: %d\n", err);
7462 		return err;
7463 	}
7464 
7465 	while (true) {
7466 		ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7467 			     &sym_addr, &sym_type, sym_name);
7468 		if (ret == EOF && feof(f))
7469 			break;
7470 		if (ret != 3) {
7471 			pr_warn("failed to read kallsyms entry: %d\n", ret);
7472 			err = -EINVAL;
7473 			break;
7474 		}
7475 
7476 		err = cb(sym_addr, sym_type, sym_name, ctx);
7477 		if (err)
7478 			break;
7479 	}
7480 
7481 	fclose(f);
7482 	return err;
7483 }
7484 
7485 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
7486 		       const char *sym_name, void *ctx)
7487 {
7488 	struct bpf_object *obj = ctx;
7489 	const struct btf_type *t;
7490 	struct extern_desc *ext;
7491 
7492 	ext = find_extern_by_name(obj, sym_name);
7493 	if (!ext || ext->type != EXT_KSYM)
7494 		return 0;
7495 
7496 	t = btf__type_by_id(obj->btf, ext->btf_id);
7497 	if (!btf_is_var(t))
7498 		return 0;
7499 
7500 	if (ext->is_set && ext->ksym.addr != sym_addr) {
7501 		pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
7502 			sym_name, ext->ksym.addr, sym_addr);
7503 		return -EINVAL;
7504 	}
7505 	if (!ext->is_set) {
7506 		ext->is_set = true;
7507 		ext->ksym.addr = sym_addr;
7508 		pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
7509 	}
7510 	return 0;
7511 }
7512 
7513 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7514 {
7515 	return libbpf_kallsyms_parse(kallsyms_cb, obj);
7516 }
7517 
7518 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
7519 			    __u16 kind, struct btf **res_btf,
7520 			    struct module_btf **res_mod_btf)
7521 {
7522 	struct module_btf *mod_btf;
7523 	struct btf *btf;
7524 	int i, id, err;
7525 
7526 	btf = obj->btf_vmlinux;
7527 	mod_btf = NULL;
7528 	id = btf__find_by_name_kind(btf, ksym_name, kind);
7529 
7530 	if (id == -ENOENT) {
7531 		err = load_module_btfs(obj);
7532 		if (err)
7533 			return err;
7534 
7535 		for (i = 0; i < obj->btf_module_cnt; i++) {
7536 			/* we assume module_btf's BTF FD is always >0 */
7537 			mod_btf = &obj->btf_modules[i];
7538 			btf = mod_btf->btf;
7539 			id = btf__find_by_name_kind_own(btf, ksym_name, kind);
7540 			if (id != -ENOENT)
7541 				break;
7542 		}
7543 	}
7544 	if (id <= 0)
7545 		return -ESRCH;
7546 
7547 	*res_btf = btf;
7548 	*res_mod_btf = mod_btf;
7549 	return id;
7550 }
7551 
7552 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
7553 					       struct extern_desc *ext)
7554 {
7555 	const struct btf_type *targ_var, *targ_type;
7556 	__u32 targ_type_id, local_type_id;
7557 	struct module_btf *mod_btf = NULL;
7558 	const char *targ_var_name;
7559 	struct btf *btf = NULL;
7560 	int id, err;
7561 
7562 	id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
7563 	if (id < 0) {
7564 		if (id == -ESRCH && ext->is_weak)
7565 			return 0;
7566 		pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
7567 			ext->name);
7568 		return id;
7569 	}
7570 
7571 	/* find local type_id */
7572 	local_type_id = ext->ksym.type_id;
7573 
7574 	/* find target type_id */
7575 	targ_var = btf__type_by_id(btf, id);
7576 	targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
7577 	targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
7578 
7579 	err = bpf_core_types_are_compat(obj->btf, local_type_id,
7580 					btf, targ_type_id);
7581 	if (err <= 0) {
7582 		const struct btf_type *local_type;
7583 		const char *targ_name, *local_name;
7584 
7585 		local_type = btf__type_by_id(obj->btf, local_type_id);
7586 		local_name = btf__name_by_offset(obj->btf, local_type->name_off);
7587 		targ_name = btf__name_by_offset(btf, targ_type->name_off);
7588 
7589 		pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7590 			ext->name, local_type_id,
7591 			btf_kind_str(local_type), local_name, targ_type_id,
7592 			btf_kind_str(targ_type), targ_name);
7593 		return -EINVAL;
7594 	}
7595 
7596 	ext->is_set = true;
7597 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7598 	ext->ksym.kernel_btf_id = id;
7599 	pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
7600 		 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7601 
7602 	return 0;
7603 }
7604 
7605 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
7606 						struct extern_desc *ext)
7607 {
7608 	int local_func_proto_id, kfunc_proto_id, kfunc_id;
7609 	struct module_btf *mod_btf = NULL;
7610 	const struct btf_type *kern_func;
7611 	struct btf *kern_btf = NULL;
7612 	int ret;
7613 
7614 	local_func_proto_id = ext->ksym.type_id;
7615 
7616 	kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf);
7617 	if (kfunc_id < 0) {
7618 		if (kfunc_id == -ESRCH && ext->is_weak)
7619 			return 0;
7620 		pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
7621 			ext->name);
7622 		return kfunc_id;
7623 	}
7624 
7625 	kern_func = btf__type_by_id(kern_btf, kfunc_id);
7626 	kfunc_proto_id = kern_func->type;
7627 
7628 	ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
7629 					kern_btf, kfunc_proto_id);
7630 	if (ret <= 0) {
7631 		pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n",
7632 			ext->name, local_func_proto_id,
7633 			mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id);
7634 		return -EINVAL;
7635 	}
7636 
7637 	/* set index for module BTF fd in fd_array, if unset */
7638 	if (mod_btf && !mod_btf->fd_array_idx) {
7639 		/* insn->off is s16 */
7640 		if (obj->fd_array_cnt == INT16_MAX) {
7641 			pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
7642 				ext->name, mod_btf->fd_array_idx);
7643 			return -E2BIG;
7644 		}
7645 		/* Cannot use index 0 for module BTF fd */
7646 		if (!obj->fd_array_cnt)
7647 			obj->fd_array_cnt = 1;
7648 
7649 		ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
7650 					obj->fd_array_cnt + 1);
7651 		if (ret)
7652 			return ret;
7653 		mod_btf->fd_array_idx = obj->fd_array_cnt;
7654 		/* we assume module BTF FD is always >0 */
7655 		obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
7656 	}
7657 
7658 	ext->is_set = true;
7659 	ext->ksym.kernel_btf_id = kfunc_id;
7660 	ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
7661 	/* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data()
7662 	 * populates FD into ld_imm64 insn when it's used to point to kfunc.
7663 	 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call.
7664 	 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64.
7665 	 */
7666 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7667 	pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n",
7668 		 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id);
7669 
7670 	return 0;
7671 }
7672 
7673 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7674 {
7675 	const struct btf_type *t;
7676 	struct extern_desc *ext;
7677 	int i, err;
7678 
7679 	for (i = 0; i < obj->nr_extern; i++) {
7680 		ext = &obj->externs[i];
7681 		if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7682 			continue;
7683 
7684 		if (obj->gen_loader) {
7685 			ext->is_set = true;
7686 			ext->ksym.kernel_btf_obj_fd = 0;
7687 			ext->ksym.kernel_btf_id = 0;
7688 			continue;
7689 		}
7690 		t = btf__type_by_id(obj->btf, ext->btf_id);
7691 		if (btf_is_var(t))
7692 			err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
7693 		else
7694 			err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
7695 		if (err)
7696 			return err;
7697 	}
7698 	return 0;
7699 }
7700 
7701 static int bpf_object__resolve_externs(struct bpf_object *obj,
7702 				       const char *extra_kconfig)
7703 {
7704 	bool need_config = false, need_kallsyms = false;
7705 	bool need_vmlinux_btf = false;
7706 	struct extern_desc *ext;
7707 	void *kcfg_data = NULL;
7708 	int err, i;
7709 
7710 	if (obj->nr_extern == 0)
7711 		return 0;
7712 
7713 	if (obj->kconfig_map_idx >= 0)
7714 		kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7715 
7716 	for (i = 0; i < obj->nr_extern; i++) {
7717 		ext = &obj->externs[i];
7718 
7719 		if (ext->type == EXT_KSYM) {
7720 			if (ext->ksym.type_id)
7721 				need_vmlinux_btf = true;
7722 			else
7723 				need_kallsyms = true;
7724 			continue;
7725 		} else if (ext->type == EXT_KCFG) {
7726 			void *ext_ptr = kcfg_data + ext->kcfg.data_off;
7727 			__u64 value = 0;
7728 
7729 			/* Kconfig externs need actual /proc/config.gz */
7730 			if (str_has_pfx(ext->name, "CONFIG_")) {
7731 				need_config = true;
7732 				continue;
7733 			}
7734 
7735 			/* Virtual kcfg externs are customly handled by libbpf */
7736 			if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7737 				value = get_kernel_version();
7738 				if (!value) {
7739 					pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
7740 					return -EINVAL;
7741 				}
7742 			} else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
7743 				value = kernel_supports(obj, FEAT_BPF_COOKIE);
7744 			} else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
7745 				value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
7746 			} else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
7747 				/* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
7748 				 * __kconfig externs, where LINUX_ ones are virtual and filled out
7749 				 * customly by libbpf (their values don't come from Kconfig).
7750 				 * If LINUX_xxx variable is not recognized by libbpf, but is marked
7751 				 * __weak, it defaults to zero value, just like for CONFIG_xxx
7752 				 * externs.
7753 				 */
7754 				pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
7755 				return -EINVAL;
7756 			}
7757 
7758 			err = set_kcfg_value_num(ext, ext_ptr, value);
7759 			if (err)
7760 				return err;
7761 			pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
7762 				 ext->name, (long long)value);
7763 		} else {
7764 			pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
7765 			return -EINVAL;
7766 		}
7767 	}
7768 	if (need_config && extra_kconfig) {
7769 		err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7770 		if (err)
7771 			return -EINVAL;
7772 		need_config = false;
7773 		for (i = 0; i < obj->nr_extern; i++) {
7774 			ext = &obj->externs[i];
7775 			if (ext->type == EXT_KCFG && !ext->is_set) {
7776 				need_config = true;
7777 				break;
7778 			}
7779 		}
7780 	}
7781 	if (need_config) {
7782 		err = bpf_object__read_kconfig_file(obj, kcfg_data);
7783 		if (err)
7784 			return -EINVAL;
7785 	}
7786 	if (need_kallsyms) {
7787 		err = bpf_object__read_kallsyms_file(obj);
7788 		if (err)
7789 			return -EINVAL;
7790 	}
7791 	if (need_vmlinux_btf) {
7792 		err = bpf_object__resolve_ksyms_btf_id(obj);
7793 		if (err)
7794 			return -EINVAL;
7795 	}
7796 	for (i = 0; i < obj->nr_extern; i++) {
7797 		ext = &obj->externs[i];
7798 
7799 		if (!ext->is_set && !ext->is_weak) {
7800 			pr_warn("extern '%s' (strong): not resolved\n", ext->name);
7801 			return -ESRCH;
7802 		} else if (!ext->is_set) {
7803 			pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
7804 				 ext->name);
7805 		}
7806 	}
7807 
7808 	return 0;
7809 }
7810 
7811 static void bpf_map_prepare_vdata(const struct bpf_map *map)
7812 {
7813 	struct bpf_struct_ops *st_ops;
7814 	__u32 i;
7815 
7816 	st_ops = map->st_ops;
7817 	for (i = 0; i < btf_vlen(st_ops->type); i++) {
7818 		struct bpf_program *prog = st_ops->progs[i];
7819 		void *kern_data;
7820 		int prog_fd;
7821 
7822 		if (!prog)
7823 			continue;
7824 
7825 		prog_fd = bpf_program__fd(prog);
7826 		kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
7827 		*(unsigned long *)kern_data = prog_fd;
7828 	}
7829 }
7830 
7831 static int bpf_object_prepare_struct_ops(struct bpf_object *obj)
7832 {
7833 	int i;
7834 
7835 	for (i = 0; i < obj->nr_maps; i++)
7836 		if (bpf_map__is_struct_ops(&obj->maps[i]))
7837 			bpf_map_prepare_vdata(&obj->maps[i]);
7838 
7839 	return 0;
7840 }
7841 
7842 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
7843 {
7844 	int err, i;
7845 
7846 	if (!obj)
7847 		return libbpf_err(-EINVAL);
7848 
7849 	if (obj->loaded) {
7850 		pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7851 		return libbpf_err(-EINVAL);
7852 	}
7853 
7854 	if (obj->gen_loader)
7855 		bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
7856 
7857 	err = bpf_object__probe_loading(obj);
7858 	err = err ? : bpf_object__load_vmlinux_btf(obj, false);
7859 	err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7860 	err = err ? : bpf_object__sanitize_and_load_btf(obj);
7861 	err = err ? : bpf_object__sanitize_maps(obj);
7862 	err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7863 	err = err ? : bpf_object__create_maps(obj);
7864 	err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
7865 	err = err ? : bpf_object__load_progs(obj, extra_log_level);
7866 	err = err ? : bpf_object_init_prog_arrays(obj);
7867 	err = err ? : bpf_object_prepare_struct_ops(obj);
7868 
7869 	if (obj->gen_loader) {
7870 		/* reset FDs */
7871 		if (obj->btf)
7872 			btf__set_fd(obj->btf, -1);
7873 		for (i = 0; i < obj->nr_maps; i++)
7874 			obj->maps[i].fd = -1;
7875 		if (!err)
7876 			err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
7877 	}
7878 
7879 	/* clean up fd_array */
7880 	zfree(&obj->fd_array);
7881 
7882 	/* clean up module BTFs */
7883 	for (i = 0; i < obj->btf_module_cnt; i++) {
7884 		close(obj->btf_modules[i].fd);
7885 		btf__free(obj->btf_modules[i].btf);
7886 		free(obj->btf_modules[i].name);
7887 	}
7888 	free(obj->btf_modules);
7889 
7890 	/* clean up vmlinux BTF */
7891 	btf__free(obj->btf_vmlinux);
7892 	obj->btf_vmlinux = NULL;
7893 
7894 	obj->loaded = true; /* doesn't matter if successfully or not */
7895 
7896 	if (err)
7897 		goto out;
7898 
7899 	return 0;
7900 out:
7901 	/* unpin any maps that were auto-pinned during load */
7902 	for (i = 0; i < obj->nr_maps; i++)
7903 		if (obj->maps[i].pinned && !obj->maps[i].reused)
7904 			bpf_map__unpin(&obj->maps[i], NULL);
7905 
7906 	bpf_object_unload(obj);
7907 	pr_warn("failed to load object '%s'\n", obj->path);
7908 	return libbpf_err(err);
7909 }
7910 
7911 int bpf_object__load(struct bpf_object *obj)
7912 {
7913 	return bpf_object_load(obj, 0, NULL);
7914 }
7915 
7916 static int make_parent_dir(const char *path)
7917 {
7918 	char *cp, errmsg[STRERR_BUFSIZE];
7919 	char *dname, *dir;
7920 	int err = 0;
7921 
7922 	dname = strdup(path);
7923 	if (dname == NULL)
7924 		return -ENOMEM;
7925 
7926 	dir = dirname(dname);
7927 	if (mkdir(dir, 0700) && errno != EEXIST)
7928 		err = -errno;
7929 
7930 	free(dname);
7931 	if (err) {
7932 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7933 		pr_warn("failed to mkdir %s: %s\n", path, cp);
7934 	}
7935 	return err;
7936 }
7937 
7938 static int check_path(const char *path)
7939 {
7940 	char *cp, errmsg[STRERR_BUFSIZE];
7941 	struct statfs st_fs;
7942 	char *dname, *dir;
7943 	int err = 0;
7944 
7945 	if (path == NULL)
7946 		return -EINVAL;
7947 
7948 	dname = strdup(path);
7949 	if (dname == NULL)
7950 		return -ENOMEM;
7951 
7952 	dir = dirname(dname);
7953 	if (statfs(dir, &st_fs)) {
7954 		cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7955 		pr_warn("failed to statfs %s: %s\n", dir, cp);
7956 		err = -errno;
7957 	}
7958 	free(dname);
7959 
7960 	if (!err && st_fs.f_type != BPF_FS_MAGIC) {
7961 		pr_warn("specified path %s is not on BPF FS\n", path);
7962 		err = -EINVAL;
7963 	}
7964 
7965 	return err;
7966 }
7967 
7968 int bpf_program__pin(struct bpf_program *prog, const char *path)
7969 {
7970 	char *cp, errmsg[STRERR_BUFSIZE];
7971 	int err;
7972 
7973 	if (prog->fd < 0) {
7974 		pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
7975 		return libbpf_err(-EINVAL);
7976 	}
7977 
7978 	err = make_parent_dir(path);
7979 	if (err)
7980 		return libbpf_err(err);
7981 
7982 	err = check_path(path);
7983 	if (err)
7984 		return libbpf_err(err);
7985 
7986 	if (bpf_obj_pin(prog->fd, path)) {
7987 		err = -errno;
7988 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
7989 		pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp);
7990 		return libbpf_err(err);
7991 	}
7992 
7993 	pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
7994 	return 0;
7995 }
7996 
7997 int bpf_program__unpin(struct bpf_program *prog, const char *path)
7998 {
7999 	int err;
8000 
8001 	if (prog->fd < 0) {
8002 		pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
8003 		return libbpf_err(-EINVAL);
8004 	}
8005 
8006 	err = check_path(path);
8007 	if (err)
8008 		return libbpf_err(err);
8009 
8010 	err = unlink(path);
8011 	if (err)
8012 		return libbpf_err(-errno);
8013 
8014 	pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
8015 	return 0;
8016 }
8017 
8018 int bpf_map__pin(struct bpf_map *map, const char *path)
8019 {
8020 	char *cp, errmsg[STRERR_BUFSIZE];
8021 	int err;
8022 
8023 	if (map == NULL) {
8024 		pr_warn("invalid map pointer\n");
8025 		return libbpf_err(-EINVAL);
8026 	}
8027 
8028 	if (map->pin_path) {
8029 		if (path && strcmp(path, map->pin_path)) {
8030 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8031 				bpf_map__name(map), map->pin_path, path);
8032 			return libbpf_err(-EINVAL);
8033 		} else if (map->pinned) {
8034 			pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8035 				 bpf_map__name(map), map->pin_path);
8036 			return 0;
8037 		}
8038 	} else {
8039 		if (!path) {
8040 			pr_warn("missing a path to pin map '%s' at\n",
8041 				bpf_map__name(map));
8042 			return libbpf_err(-EINVAL);
8043 		} else if (map->pinned) {
8044 			pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8045 			return libbpf_err(-EEXIST);
8046 		}
8047 
8048 		map->pin_path = strdup(path);
8049 		if (!map->pin_path) {
8050 			err = -errno;
8051 			goto out_err;
8052 		}
8053 	}
8054 
8055 	err = make_parent_dir(map->pin_path);
8056 	if (err)
8057 		return libbpf_err(err);
8058 
8059 	err = check_path(map->pin_path);
8060 	if (err)
8061 		return libbpf_err(err);
8062 
8063 	if (bpf_obj_pin(map->fd, map->pin_path)) {
8064 		err = -errno;
8065 		goto out_err;
8066 	}
8067 
8068 	map->pinned = true;
8069 	pr_debug("pinned map '%s'\n", map->pin_path);
8070 
8071 	return 0;
8072 
8073 out_err:
8074 	cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8075 	pr_warn("failed to pin map: %s\n", cp);
8076 	return libbpf_err(err);
8077 }
8078 
8079 int bpf_map__unpin(struct bpf_map *map, const char *path)
8080 {
8081 	int err;
8082 
8083 	if (map == NULL) {
8084 		pr_warn("invalid map pointer\n");
8085 		return libbpf_err(-EINVAL);
8086 	}
8087 
8088 	if (map->pin_path) {
8089 		if (path && strcmp(path, map->pin_path)) {
8090 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8091 				bpf_map__name(map), map->pin_path, path);
8092 			return libbpf_err(-EINVAL);
8093 		}
8094 		path = map->pin_path;
8095 	} else if (!path) {
8096 		pr_warn("no path to unpin map '%s' from\n",
8097 			bpf_map__name(map));
8098 		return libbpf_err(-EINVAL);
8099 	}
8100 
8101 	err = check_path(path);
8102 	if (err)
8103 		return libbpf_err(err);
8104 
8105 	err = unlink(path);
8106 	if (err != 0)
8107 		return libbpf_err(-errno);
8108 
8109 	map->pinned = false;
8110 	pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8111 
8112 	return 0;
8113 }
8114 
8115 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8116 {
8117 	char *new = NULL;
8118 
8119 	if (path) {
8120 		new = strdup(path);
8121 		if (!new)
8122 			return libbpf_err(-errno);
8123 	}
8124 
8125 	free(map->pin_path);
8126 	map->pin_path = new;
8127 	return 0;
8128 }
8129 
8130 __alias(bpf_map__pin_path)
8131 const char *bpf_map__get_pin_path(const struct bpf_map *map);
8132 
8133 const char *bpf_map__pin_path(const struct bpf_map *map)
8134 {
8135 	return map->pin_path;
8136 }
8137 
8138 bool bpf_map__is_pinned(const struct bpf_map *map)
8139 {
8140 	return map->pinned;
8141 }
8142 
8143 static void sanitize_pin_path(char *s)
8144 {
8145 	/* bpffs disallows periods in path names */
8146 	while (*s) {
8147 		if (*s == '.')
8148 			*s = '_';
8149 		s++;
8150 	}
8151 }
8152 
8153 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8154 {
8155 	struct bpf_map *map;
8156 	int err;
8157 
8158 	if (!obj)
8159 		return libbpf_err(-ENOENT);
8160 
8161 	if (!obj->loaded) {
8162 		pr_warn("object not yet loaded; load it first\n");
8163 		return libbpf_err(-ENOENT);
8164 	}
8165 
8166 	bpf_object__for_each_map(map, obj) {
8167 		char *pin_path = NULL;
8168 		char buf[PATH_MAX];
8169 
8170 		if (!map->autocreate)
8171 			continue;
8172 
8173 		if (path) {
8174 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8175 			if (err)
8176 				goto err_unpin_maps;
8177 			sanitize_pin_path(buf);
8178 			pin_path = buf;
8179 		} else if (!map->pin_path) {
8180 			continue;
8181 		}
8182 
8183 		err = bpf_map__pin(map, pin_path);
8184 		if (err)
8185 			goto err_unpin_maps;
8186 	}
8187 
8188 	return 0;
8189 
8190 err_unpin_maps:
8191 	while ((map = bpf_object__prev_map(obj, map))) {
8192 		if (!map->pin_path)
8193 			continue;
8194 
8195 		bpf_map__unpin(map, NULL);
8196 	}
8197 
8198 	return libbpf_err(err);
8199 }
8200 
8201 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8202 {
8203 	struct bpf_map *map;
8204 	int err;
8205 
8206 	if (!obj)
8207 		return libbpf_err(-ENOENT);
8208 
8209 	bpf_object__for_each_map(map, obj) {
8210 		char *pin_path = NULL;
8211 		char buf[PATH_MAX];
8212 
8213 		if (path) {
8214 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8215 			if (err)
8216 				return libbpf_err(err);
8217 			sanitize_pin_path(buf);
8218 			pin_path = buf;
8219 		} else if (!map->pin_path) {
8220 			continue;
8221 		}
8222 
8223 		err = bpf_map__unpin(map, pin_path);
8224 		if (err)
8225 			return libbpf_err(err);
8226 	}
8227 
8228 	return 0;
8229 }
8230 
8231 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8232 {
8233 	struct bpf_program *prog;
8234 	char buf[PATH_MAX];
8235 	int err;
8236 
8237 	if (!obj)
8238 		return libbpf_err(-ENOENT);
8239 
8240 	if (!obj->loaded) {
8241 		pr_warn("object not yet loaded; load it first\n");
8242 		return libbpf_err(-ENOENT);
8243 	}
8244 
8245 	bpf_object__for_each_program(prog, obj) {
8246 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8247 		if (err)
8248 			goto err_unpin_programs;
8249 
8250 		err = bpf_program__pin(prog, buf);
8251 		if (err)
8252 			goto err_unpin_programs;
8253 	}
8254 
8255 	return 0;
8256 
8257 err_unpin_programs:
8258 	while ((prog = bpf_object__prev_program(obj, prog))) {
8259 		if (pathname_concat(buf, sizeof(buf), path, prog->name))
8260 			continue;
8261 
8262 		bpf_program__unpin(prog, buf);
8263 	}
8264 
8265 	return libbpf_err(err);
8266 }
8267 
8268 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8269 {
8270 	struct bpf_program *prog;
8271 	int err;
8272 
8273 	if (!obj)
8274 		return libbpf_err(-ENOENT);
8275 
8276 	bpf_object__for_each_program(prog, obj) {
8277 		char buf[PATH_MAX];
8278 
8279 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8280 		if (err)
8281 			return libbpf_err(err);
8282 
8283 		err = bpf_program__unpin(prog, buf);
8284 		if (err)
8285 			return libbpf_err(err);
8286 	}
8287 
8288 	return 0;
8289 }
8290 
8291 int bpf_object__pin(struct bpf_object *obj, const char *path)
8292 {
8293 	int err;
8294 
8295 	err = bpf_object__pin_maps(obj, path);
8296 	if (err)
8297 		return libbpf_err(err);
8298 
8299 	err = bpf_object__pin_programs(obj, path);
8300 	if (err) {
8301 		bpf_object__unpin_maps(obj, path);
8302 		return libbpf_err(err);
8303 	}
8304 
8305 	return 0;
8306 }
8307 
8308 static void bpf_map__destroy(struct bpf_map *map)
8309 {
8310 	if (map->inner_map) {
8311 		bpf_map__destroy(map->inner_map);
8312 		zfree(&map->inner_map);
8313 	}
8314 
8315 	zfree(&map->init_slots);
8316 	map->init_slots_sz = 0;
8317 
8318 	if (map->mmaped) {
8319 		size_t mmap_sz;
8320 
8321 		mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
8322 		munmap(map->mmaped, mmap_sz);
8323 		map->mmaped = NULL;
8324 	}
8325 
8326 	if (map->st_ops) {
8327 		zfree(&map->st_ops->data);
8328 		zfree(&map->st_ops->progs);
8329 		zfree(&map->st_ops->kern_func_off);
8330 		zfree(&map->st_ops);
8331 	}
8332 
8333 	zfree(&map->name);
8334 	zfree(&map->real_name);
8335 	zfree(&map->pin_path);
8336 
8337 	if (map->fd >= 0)
8338 		zclose(map->fd);
8339 }
8340 
8341 void bpf_object__close(struct bpf_object *obj)
8342 {
8343 	size_t i;
8344 
8345 	if (IS_ERR_OR_NULL(obj))
8346 		return;
8347 
8348 	usdt_manager_free(obj->usdt_man);
8349 	obj->usdt_man = NULL;
8350 
8351 	bpf_gen__free(obj->gen_loader);
8352 	bpf_object__elf_finish(obj);
8353 	bpf_object_unload(obj);
8354 	btf__free(obj->btf);
8355 	btf_ext__free(obj->btf_ext);
8356 
8357 	for (i = 0; i < obj->nr_maps; i++)
8358 		bpf_map__destroy(&obj->maps[i]);
8359 
8360 	zfree(&obj->btf_custom_path);
8361 	zfree(&obj->kconfig);
8362 	zfree(&obj->externs);
8363 	obj->nr_extern = 0;
8364 
8365 	zfree(&obj->maps);
8366 	obj->nr_maps = 0;
8367 
8368 	if (obj->programs && obj->nr_programs) {
8369 		for (i = 0; i < obj->nr_programs; i++)
8370 			bpf_program__exit(&obj->programs[i]);
8371 	}
8372 	zfree(&obj->programs);
8373 
8374 	free(obj);
8375 }
8376 
8377 const char *bpf_object__name(const struct bpf_object *obj)
8378 {
8379 	return obj ? obj->name : libbpf_err_ptr(-EINVAL);
8380 }
8381 
8382 unsigned int bpf_object__kversion(const struct bpf_object *obj)
8383 {
8384 	return obj ? obj->kern_version : 0;
8385 }
8386 
8387 struct btf *bpf_object__btf(const struct bpf_object *obj)
8388 {
8389 	return obj ? obj->btf : NULL;
8390 }
8391 
8392 int bpf_object__btf_fd(const struct bpf_object *obj)
8393 {
8394 	return obj->btf ? btf__fd(obj->btf) : -1;
8395 }
8396 
8397 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
8398 {
8399 	if (obj->loaded)
8400 		return libbpf_err(-EINVAL);
8401 
8402 	obj->kern_version = kern_version;
8403 
8404 	return 0;
8405 }
8406 
8407 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
8408 {
8409 	struct bpf_gen *gen;
8410 
8411 	if (!opts)
8412 		return -EFAULT;
8413 	if (!OPTS_VALID(opts, gen_loader_opts))
8414 		return -EINVAL;
8415 	gen = calloc(sizeof(*gen), 1);
8416 	if (!gen)
8417 		return -ENOMEM;
8418 	gen->opts = opts;
8419 	obj->gen_loader = gen;
8420 	return 0;
8421 }
8422 
8423 static struct bpf_program *
8424 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8425 		    bool forward)
8426 {
8427 	size_t nr_programs = obj->nr_programs;
8428 	ssize_t idx;
8429 
8430 	if (!nr_programs)
8431 		return NULL;
8432 
8433 	if (!p)
8434 		/* Iter from the beginning */
8435 		return forward ? &obj->programs[0] :
8436 			&obj->programs[nr_programs - 1];
8437 
8438 	if (p->obj != obj) {
8439 		pr_warn("error: program handler doesn't match object\n");
8440 		return errno = EINVAL, NULL;
8441 	}
8442 
8443 	idx = (p - obj->programs) + (forward ? 1 : -1);
8444 	if (idx >= obj->nr_programs || idx < 0)
8445 		return NULL;
8446 	return &obj->programs[idx];
8447 }
8448 
8449 struct bpf_program *
8450 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
8451 {
8452 	struct bpf_program *prog = prev;
8453 
8454 	do {
8455 		prog = __bpf_program__iter(prog, obj, true);
8456 	} while (prog && prog_is_subprog(obj, prog));
8457 
8458 	return prog;
8459 }
8460 
8461 struct bpf_program *
8462 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
8463 {
8464 	struct bpf_program *prog = next;
8465 
8466 	do {
8467 		prog = __bpf_program__iter(prog, obj, false);
8468 	} while (prog && prog_is_subprog(obj, prog));
8469 
8470 	return prog;
8471 }
8472 
8473 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8474 {
8475 	prog->prog_ifindex = ifindex;
8476 }
8477 
8478 const char *bpf_program__name(const struct bpf_program *prog)
8479 {
8480 	return prog->name;
8481 }
8482 
8483 const char *bpf_program__section_name(const struct bpf_program *prog)
8484 {
8485 	return prog->sec_name;
8486 }
8487 
8488 bool bpf_program__autoload(const struct bpf_program *prog)
8489 {
8490 	return prog->autoload;
8491 }
8492 
8493 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8494 {
8495 	if (prog->obj->loaded)
8496 		return libbpf_err(-EINVAL);
8497 
8498 	prog->autoload = autoload;
8499 	return 0;
8500 }
8501 
8502 bool bpf_program__autoattach(const struct bpf_program *prog)
8503 {
8504 	return prog->autoattach;
8505 }
8506 
8507 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
8508 {
8509 	prog->autoattach = autoattach;
8510 }
8511 
8512 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
8513 {
8514 	return prog->insns;
8515 }
8516 
8517 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
8518 {
8519 	return prog->insns_cnt;
8520 }
8521 
8522 int bpf_program__set_insns(struct bpf_program *prog,
8523 			   struct bpf_insn *new_insns, size_t new_insn_cnt)
8524 {
8525 	struct bpf_insn *insns;
8526 
8527 	if (prog->obj->loaded)
8528 		return -EBUSY;
8529 
8530 	insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
8531 	if (!insns) {
8532 		pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
8533 		return -ENOMEM;
8534 	}
8535 	memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
8536 
8537 	prog->insns = insns;
8538 	prog->insns_cnt = new_insn_cnt;
8539 	return 0;
8540 }
8541 
8542 int bpf_program__fd(const struct bpf_program *prog)
8543 {
8544 	if (!prog)
8545 		return libbpf_err(-EINVAL);
8546 
8547 	if (prog->fd < 0)
8548 		return libbpf_err(-ENOENT);
8549 
8550 	return prog->fd;
8551 }
8552 
8553 __alias(bpf_program__type)
8554 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
8555 
8556 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
8557 {
8558 	return prog->type;
8559 }
8560 
8561 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8562 {
8563 	if (prog->obj->loaded)
8564 		return libbpf_err(-EBUSY);
8565 
8566 	prog->type = type;
8567 	prog->sec_def = NULL;
8568 	return 0;
8569 }
8570 
8571 __alias(bpf_program__expected_attach_type)
8572 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
8573 
8574 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
8575 {
8576 	return prog->expected_attach_type;
8577 }
8578 
8579 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
8580 					   enum bpf_attach_type type)
8581 {
8582 	if (prog->obj->loaded)
8583 		return libbpf_err(-EBUSY);
8584 
8585 	prog->expected_attach_type = type;
8586 	return 0;
8587 }
8588 
8589 __u32 bpf_program__flags(const struct bpf_program *prog)
8590 {
8591 	return prog->prog_flags;
8592 }
8593 
8594 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
8595 {
8596 	if (prog->obj->loaded)
8597 		return libbpf_err(-EBUSY);
8598 
8599 	prog->prog_flags = flags;
8600 	return 0;
8601 }
8602 
8603 __u32 bpf_program__log_level(const struct bpf_program *prog)
8604 {
8605 	return prog->log_level;
8606 }
8607 
8608 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
8609 {
8610 	if (prog->obj->loaded)
8611 		return libbpf_err(-EBUSY);
8612 
8613 	prog->log_level = log_level;
8614 	return 0;
8615 }
8616 
8617 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
8618 {
8619 	*log_size = prog->log_size;
8620 	return prog->log_buf;
8621 }
8622 
8623 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
8624 {
8625 	if (log_size && !log_buf)
8626 		return -EINVAL;
8627 	if (prog->log_size > UINT_MAX)
8628 		return -EINVAL;
8629 	if (prog->obj->loaded)
8630 		return -EBUSY;
8631 
8632 	prog->log_buf = log_buf;
8633 	prog->log_size = log_size;
8634 	return 0;
8635 }
8636 
8637 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) {			    \
8638 	.sec = (char *)sec_pfx,						    \
8639 	.prog_type = BPF_PROG_TYPE_##ptype,				    \
8640 	.expected_attach_type = atype,					    \
8641 	.cookie = (long)(flags),					    \
8642 	.prog_prepare_load_fn = libbpf_prepare_prog_load,		    \
8643 	__VA_ARGS__							    \
8644 }
8645 
8646 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8647 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8648 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8649 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8650 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8651 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8652 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8653 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8654 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8655 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8656 
8657 static const struct bpf_sec_def section_defs[] = {
8658 	SEC_DEF("socket",		SOCKET_FILTER, 0, SEC_NONE),
8659 	SEC_DEF("sk_reuseport/migrate",	SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
8660 	SEC_DEF("sk_reuseport",		SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
8661 	SEC_DEF("kprobe+",		KPROBE,	0, SEC_NONE, attach_kprobe),
8662 	SEC_DEF("uprobe+",		KPROBE,	0, SEC_NONE, attach_uprobe),
8663 	SEC_DEF("uprobe.s+",		KPROBE,	0, SEC_SLEEPABLE, attach_uprobe),
8664 	SEC_DEF("kretprobe+",		KPROBE, 0, SEC_NONE, attach_kprobe),
8665 	SEC_DEF("uretprobe+",		KPROBE, 0, SEC_NONE, attach_uprobe),
8666 	SEC_DEF("uretprobe.s+",		KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
8667 	SEC_DEF("kprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8668 	SEC_DEF("kretprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8669 	SEC_DEF("ksyscall+",		KPROBE,	0, SEC_NONE, attach_ksyscall),
8670 	SEC_DEF("kretsyscall+",		KPROBE, 0, SEC_NONE, attach_ksyscall),
8671 	SEC_DEF("usdt+",		KPROBE,	0, SEC_NONE, attach_usdt),
8672 	SEC_DEF("tc",			SCHED_CLS, 0, SEC_NONE),
8673 	SEC_DEF("classifier",		SCHED_CLS, 0, SEC_NONE),
8674 	SEC_DEF("action",		SCHED_ACT, 0, SEC_NONE),
8675 	SEC_DEF("tracepoint+",		TRACEPOINT, 0, SEC_NONE, attach_tp),
8676 	SEC_DEF("tp+",			TRACEPOINT, 0, SEC_NONE, attach_tp),
8677 	SEC_DEF("raw_tracepoint+",	RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8678 	SEC_DEF("raw_tp+",		RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8679 	SEC_DEF("raw_tracepoint.w+",	RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8680 	SEC_DEF("raw_tp.w+",		RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8681 	SEC_DEF("tp_btf+",		TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
8682 	SEC_DEF("fentry+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
8683 	SEC_DEF("fmod_ret+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
8684 	SEC_DEF("fexit+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
8685 	SEC_DEF("fentry.s+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8686 	SEC_DEF("fmod_ret.s+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8687 	SEC_DEF("fexit.s+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8688 	SEC_DEF("freplace+",		EXT, 0, SEC_ATTACH_BTF, attach_trace),
8689 	SEC_DEF("lsm+",			LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
8690 	SEC_DEF("lsm.s+",		LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
8691 	SEC_DEF("lsm_cgroup+",		LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
8692 	SEC_DEF("iter+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
8693 	SEC_DEF("iter.s+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
8694 	SEC_DEF("syscall",		SYSCALL, 0, SEC_SLEEPABLE),
8695 	SEC_DEF("xdp.frags/devmap",	XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
8696 	SEC_DEF("xdp/devmap",		XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
8697 	SEC_DEF("xdp.frags/cpumap",	XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
8698 	SEC_DEF("xdp/cpumap",		XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
8699 	SEC_DEF("xdp.frags",		XDP, BPF_XDP, SEC_XDP_FRAGS),
8700 	SEC_DEF("xdp",			XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
8701 	SEC_DEF("perf_event",		PERF_EVENT, 0, SEC_NONE),
8702 	SEC_DEF("lwt_in",		LWT_IN, 0, SEC_NONE),
8703 	SEC_DEF("lwt_out",		LWT_OUT, 0, SEC_NONE),
8704 	SEC_DEF("lwt_xmit",		LWT_XMIT, 0, SEC_NONE),
8705 	SEC_DEF("lwt_seg6local",	LWT_SEG6LOCAL, 0, SEC_NONE),
8706 	SEC_DEF("sockops",		SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
8707 	SEC_DEF("sk_skb/stream_parser",	SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
8708 	SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
8709 	SEC_DEF("sk_skb",		SK_SKB, 0, SEC_NONE),
8710 	SEC_DEF("sk_msg",		SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
8711 	SEC_DEF("lirc_mode2",		LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
8712 	SEC_DEF("flow_dissector",	FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
8713 	SEC_DEF("cgroup_skb/ingress",	CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
8714 	SEC_DEF("cgroup_skb/egress",	CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
8715 	SEC_DEF("cgroup/skb",		CGROUP_SKB, 0, SEC_NONE),
8716 	SEC_DEF("cgroup/sock_create",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
8717 	SEC_DEF("cgroup/sock_release",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
8718 	SEC_DEF("cgroup/sock",		CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
8719 	SEC_DEF("cgroup/post_bind4",	CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
8720 	SEC_DEF("cgroup/post_bind6",	CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
8721 	SEC_DEF("cgroup/bind4",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
8722 	SEC_DEF("cgroup/bind6",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
8723 	SEC_DEF("cgroup/connect4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
8724 	SEC_DEF("cgroup/connect6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
8725 	SEC_DEF("cgroup/sendmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
8726 	SEC_DEF("cgroup/sendmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
8727 	SEC_DEF("cgroup/recvmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
8728 	SEC_DEF("cgroup/recvmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
8729 	SEC_DEF("cgroup/getpeername4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
8730 	SEC_DEF("cgroup/getpeername6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
8731 	SEC_DEF("cgroup/getsockname4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
8732 	SEC_DEF("cgroup/getsockname6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
8733 	SEC_DEF("cgroup/sysctl",	CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
8734 	SEC_DEF("cgroup/getsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
8735 	SEC_DEF("cgroup/setsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
8736 	SEC_DEF("cgroup/dev",		CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
8737 	SEC_DEF("struct_ops+",		STRUCT_OPS, 0, SEC_NONE),
8738 	SEC_DEF("struct_ops.s+",	STRUCT_OPS, 0, SEC_SLEEPABLE),
8739 	SEC_DEF("sk_lookup",		SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
8740 	SEC_DEF("netfilter",		NETFILTER, BPF_NETFILTER, SEC_NONE),
8741 };
8742 
8743 static size_t custom_sec_def_cnt;
8744 static struct bpf_sec_def *custom_sec_defs;
8745 static struct bpf_sec_def custom_fallback_def;
8746 static bool has_custom_fallback_def;
8747 
8748 static int last_custom_sec_def_handler_id;
8749 
8750 int libbpf_register_prog_handler(const char *sec,
8751 				 enum bpf_prog_type prog_type,
8752 				 enum bpf_attach_type exp_attach_type,
8753 				 const struct libbpf_prog_handler_opts *opts)
8754 {
8755 	struct bpf_sec_def *sec_def;
8756 
8757 	if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
8758 		return libbpf_err(-EINVAL);
8759 
8760 	if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
8761 		return libbpf_err(-E2BIG);
8762 
8763 	if (sec) {
8764 		sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
8765 					      sizeof(*sec_def));
8766 		if (!sec_def)
8767 			return libbpf_err(-ENOMEM);
8768 
8769 		custom_sec_defs = sec_def;
8770 		sec_def = &custom_sec_defs[custom_sec_def_cnt];
8771 	} else {
8772 		if (has_custom_fallback_def)
8773 			return libbpf_err(-EBUSY);
8774 
8775 		sec_def = &custom_fallback_def;
8776 	}
8777 
8778 	sec_def->sec = sec ? strdup(sec) : NULL;
8779 	if (sec && !sec_def->sec)
8780 		return libbpf_err(-ENOMEM);
8781 
8782 	sec_def->prog_type = prog_type;
8783 	sec_def->expected_attach_type = exp_attach_type;
8784 	sec_def->cookie = OPTS_GET(opts, cookie, 0);
8785 
8786 	sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
8787 	sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
8788 	sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
8789 
8790 	sec_def->handler_id = ++last_custom_sec_def_handler_id;
8791 
8792 	if (sec)
8793 		custom_sec_def_cnt++;
8794 	else
8795 		has_custom_fallback_def = true;
8796 
8797 	return sec_def->handler_id;
8798 }
8799 
8800 int libbpf_unregister_prog_handler(int handler_id)
8801 {
8802 	struct bpf_sec_def *sec_defs;
8803 	int i;
8804 
8805 	if (handler_id <= 0)
8806 		return libbpf_err(-EINVAL);
8807 
8808 	if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
8809 		memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
8810 		has_custom_fallback_def = false;
8811 		return 0;
8812 	}
8813 
8814 	for (i = 0; i < custom_sec_def_cnt; i++) {
8815 		if (custom_sec_defs[i].handler_id == handler_id)
8816 			break;
8817 	}
8818 
8819 	if (i == custom_sec_def_cnt)
8820 		return libbpf_err(-ENOENT);
8821 
8822 	free(custom_sec_defs[i].sec);
8823 	for (i = i + 1; i < custom_sec_def_cnt; i++)
8824 		custom_sec_defs[i - 1] = custom_sec_defs[i];
8825 	custom_sec_def_cnt--;
8826 
8827 	/* try to shrink the array, but it's ok if we couldn't */
8828 	sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
8829 	if (sec_defs)
8830 		custom_sec_defs = sec_defs;
8831 
8832 	return 0;
8833 }
8834 
8835 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
8836 {
8837 	size_t len = strlen(sec_def->sec);
8838 
8839 	/* "type/" always has to have proper SEC("type/extras") form */
8840 	if (sec_def->sec[len - 1] == '/') {
8841 		if (str_has_pfx(sec_name, sec_def->sec))
8842 			return true;
8843 		return false;
8844 	}
8845 
8846 	/* "type+" means it can be either exact SEC("type") or
8847 	 * well-formed SEC("type/extras") with proper '/' separator
8848 	 */
8849 	if (sec_def->sec[len - 1] == '+') {
8850 		len--;
8851 		/* not even a prefix */
8852 		if (strncmp(sec_name, sec_def->sec, len) != 0)
8853 			return false;
8854 		/* exact match or has '/' separator */
8855 		if (sec_name[len] == '\0' || sec_name[len] == '/')
8856 			return true;
8857 		return false;
8858 	}
8859 
8860 	return strcmp(sec_name, sec_def->sec) == 0;
8861 }
8862 
8863 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
8864 {
8865 	const struct bpf_sec_def *sec_def;
8866 	int i, n;
8867 
8868 	n = custom_sec_def_cnt;
8869 	for (i = 0; i < n; i++) {
8870 		sec_def = &custom_sec_defs[i];
8871 		if (sec_def_matches(sec_def, sec_name))
8872 			return sec_def;
8873 	}
8874 
8875 	n = ARRAY_SIZE(section_defs);
8876 	for (i = 0; i < n; i++) {
8877 		sec_def = &section_defs[i];
8878 		if (sec_def_matches(sec_def, sec_name))
8879 			return sec_def;
8880 	}
8881 
8882 	if (has_custom_fallback_def)
8883 		return &custom_fallback_def;
8884 
8885 	return NULL;
8886 }
8887 
8888 #define MAX_TYPE_NAME_SIZE 32
8889 
8890 static char *libbpf_get_type_names(bool attach_type)
8891 {
8892 	int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
8893 	char *buf;
8894 
8895 	buf = malloc(len);
8896 	if (!buf)
8897 		return NULL;
8898 
8899 	buf[0] = '\0';
8900 	/* Forge string buf with all available names */
8901 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8902 		const struct bpf_sec_def *sec_def = &section_defs[i];
8903 
8904 		if (attach_type) {
8905 			if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
8906 				continue;
8907 
8908 			if (!(sec_def->cookie & SEC_ATTACHABLE))
8909 				continue;
8910 		}
8911 
8912 		if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
8913 			free(buf);
8914 			return NULL;
8915 		}
8916 		strcat(buf, " ");
8917 		strcat(buf, section_defs[i].sec);
8918 	}
8919 
8920 	return buf;
8921 }
8922 
8923 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
8924 			     enum bpf_attach_type *expected_attach_type)
8925 {
8926 	const struct bpf_sec_def *sec_def;
8927 	char *type_names;
8928 
8929 	if (!name)
8930 		return libbpf_err(-EINVAL);
8931 
8932 	sec_def = find_sec_def(name);
8933 	if (sec_def) {
8934 		*prog_type = sec_def->prog_type;
8935 		*expected_attach_type = sec_def->expected_attach_type;
8936 		return 0;
8937 	}
8938 
8939 	pr_debug("failed to guess program type from ELF section '%s'\n", name);
8940 	type_names = libbpf_get_type_names(false);
8941 	if (type_names != NULL) {
8942 		pr_debug("supported section(type) names are:%s\n", type_names);
8943 		free(type_names);
8944 	}
8945 
8946 	return libbpf_err(-ESRCH);
8947 }
8948 
8949 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
8950 {
8951 	if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
8952 		return NULL;
8953 
8954 	return attach_type_name[t];
8955 }
8956 
8957 const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
8958 {
8959 	if (t < 0 || t >= ARRAY_SIZE(link_type_name))
8960 		return NULL;
8961 
8962 	return link_type_name[t];
8963 }
8964 
8965 const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
8966 {
8967 	if (t < 0 || t >= ARRAY_SIZE(map_type_name))
8968 		return NULL;
8969 
8970 	return map_type_name[t];
8971 }
8972 
8973 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
8974 {
8975 	if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
8976 		return NULL;
8977 
8978 	return prog_type_name[t];
8979 }
8980 
8981 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
8982 						     int sec_idx,
8983 						     size_t offset)
8984 {
8985 	struct bpf_map *map;
8986 	size_t i;
8987 
8988 	for (i = 0; i < obj->nr_maps; i++) {
8989 		map = &obj->maps[i];
8990 		if (!bpf_map__is_struct_ops(map))
8991 			continue;
8992 		if (map->sec_idx == sec_idx &&
8993 		    map->sec_offset <= offset &&
8994 		    offset - map->sec_offset < map->def.value_size)
8995 			return map;
8996 	}
8997 
8998 	return NULL;
8999 }
9000 
9001 /* Collect the reloc from ELF and populate the st_ops->progs[] */
9002 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
9003 					    Elf64_Shdr *shdr, Elf_Data *data)
9004 {
9005 	const struct btf_member *member;
9006 	struct bpf_struct_ops *st_ops;
9007 	struct bpf_program *prog;
9008 	unsigned int shdr_idx;
9009 	const struct btf *btf;
9010 	struct bpf_map *map;
9011 	unsigned int moff, insn_idx;
9012 	const char *name;
9013 	__u32 member_idx;
9014 	Elf64_Sym *sym;
9015 	Elf64_Rel *rel;
9016 	int i, nrels;
9017 
9018 	btf = obj->btf;
9019 	nrels = shdr->sh_size / shdr->sh_entsize;
9020 	for (i = 0; i < nrels; i++) {
9021 		rel = elf_rel_by_idx(data, i);
9022 		if (!rel) {
9023 			pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
9024 			return -LIBBPF_ERRNO__FORMAT;
9025 		}
9026 
9027 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
9028 		if (!sym) {
9029 			pr_warn("struct_ops reloc: symbol %zx not found\n",
9030 				(size_t)ELF64_R_SYM(rel->r_info));
9031 			return -LIBBPF_ERRNO__FORMAT;
9032 		}
9033 
9034 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
9035 		map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset);
9036 		if (!map) {
9037 			pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
9038 				(size_t)rel->r_offset);
9039 			return -EINVAL;
9040 		}
9041 
9042 		moff = rel->r_offset - map->sec_offset;
9043 		shdr_idx = sym->st_shndx;
9044 		st_ops = map->st_ops;
9045 		pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9046 			 map->name,
9047 			 (long long)(rel->r_info >> 32),
9048 			 (long long)sym->st_value,
9049 			 shdr_idx, (size_t)rel->r_offset,
9050 			 map->sec_offset, sym->st_name, name);
9051 
9052 		if (shdr_idx >= SHN_LORESERVE) {
9053 			pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
9054 				map->name, (size_t)rel->r_offset, shdr_idx);
9055 			return -LIBBPF_ERRNO__RELOC;
9056 		}
9057 		if (sym->st_value % BPF_INSN_SZ) {
9058 			pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9059 				map->name, (unsigned long long)sym->st_value);
9060 			return -LIBBPF_ERRNO__FORMAT;
9061 		}
9062 		insn_idx = sym->st_value / BPF_INSN_SZ;
9063 
9064 		member = find_member_by_offset(st_ops->type, moff * 8);
9065 		if (!member) {
9066 			pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9067 				map->name, moff);
9068 			return -EINVAL;
9069 		}
9070 		member_idx = member - btf_members(st_ops->type);
9071 		name = btf__name_by_offset(btf, member->name_off);
9072 
9073 		if (!resolve_func_ptr(btf, member->type, NULL)) {
9074 			pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9075 				map->name, name);
9076 			return -EINVAL;
9077 		}
9078 
9079 		prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9080 		if (!prog) {
9081 			pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9082 				map->name, shdr_idx, name);
9083 			return -EINVAL;
9084 		}
9085 
9086 		/* prevent the use of BPF prog with invalid type */
9087 		if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9088 			pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
9089 				map->name, prog->name);
9090 			return -EINVAL;
9091 		}
9092 
9093 		/* if we haven't yet processed this BPF program, record proper
9094 		 * attach_btf_id and member_idx
9095 		 */
9096 		if (!prog->attach_btf_id) {
9097 			prog->attach_btf_id = st_ops->type_id;
9098 			prog->expected_attach_type = member_idx;
9099 		}
9100 
9101 		/* struct_ops BPF prog can be re-used between multiple
9102 		 * .struct_ops & .struct_ops.link as long as it's the
9103 		 * same struct_ops struct definition and the same
9104 		 * function pointer field
9105 		 */
9106 		if (prog->attach_btf_id != st_ops->type_id ||
9107 		    prog->expected_attach_type != member_idx) {
9108 			pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
9109 				map->name, prog->name, prog->sec_name, prog->type,
9110 				prog->attach_btf_id, prog->expected_attach_type, name);
9111 			return -EINVAL;
9112 		}
9113 
9114 		st_ops->progs[member_idx] = prog;
9115 	}
9116 
9117 	return 0;
9118 }
9119 
9120 #define BTF_TRACE_PREFIX "btf_trace_"
9121 #define BTF_LSM_PREFIX "bpf_lsm_"
9122 #define BTF_ITER_PREFIX "bpf_iter_"
9123 #define BTF_MAX_NAME_SIZE 128
9124 
9125 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9126 				const char **prefix, int *kind)
9127 {
9128 	switch (attach_type) {
9129 	case BPF_TRACE_RAW_TP:
9130 		*prefix = BTF_TRACE_PREFIX;
9131 		*kind = BTF_KIND_TYPEDEF;
9132 		break;
9133 	case BPF_LSM_MAC:
9134 	case BPF_LSM_CGROUP:
9135 		*prefix = BTF_LSM_PREFIX;
9136 		*kind = BTF_KIND_FUNC;
9137 		break;
9138 	case BPF_TRACE_ITER:
9139 		*prefix = BTF_ITER_PREFIX;
9140 		*kind = BTF_KIND_FUNC;
9141 		break;
9142 	default:
9143 		*prefix = "";
9144 		*kind = BTF_KIND_FUNC;
9145 	}
9146 }
9147 
9148 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
9149 				   const char *name, __u32 kind)
9150 {
9151 	char btf_type_name[BTF_MAX_NAME_SIZE];
9152 	int ret;
9153 
9154 	ret = snprintf(btf_type_name, sizeof(btf_type_name),
9155 		       "%s%s", prefix, name);
9156 	/* snprintf returns the number of characters written excluding the
9157 	 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
9158 	 * indicates truncation.
9159 	 */
9160 	if (ret < 0 || ret >= sizeof(btf_type_name))
9161 		return -ENAMETOOLONG;
9162 	return btf__find_by_name_kind(btf, btf_type_name, kind);
9163 }
9164 
9165 static inline int find_attach_btf_id(struct btf *btf, const char *name,
9166 				     enum bpf_attach_type attach_type)
9167 {
9168 	const char *prefix;
9169 	int kind;
9170 
9171 	btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
9172 	return find_btf_by_prefix_kind(btf, prefix, name, kind);
9173 }
9174 
9175 int libbpf_find_vmlinux_btf_id(const char *name,
9176 			       enum bpf_attach_type attach_type)
9177 {
9178 	struct btf *btf;
9179 	int err;
9180 
9181 	btf = btf__load_vmlinux_btf();
9182 	err = libbpf_get_error(btf);
9183 	if (err) {
9184 		pr_warn("vmlinux BTF is not found\n");
9185 		return libbpf_err(err);
9186 	}
9187 
9188 	err = find_attach_btf_id(btf, name, attach_type);
9189 	if (err <= 0)
9190 		pr_warn("%s is not found in vmlinux BTF\n", name);
9191 
9192 	btf__free(btf);
9193 	return libbpf_err(err);
9194 }
9195 
9196 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9197 {
9198 	struct bpf_prog_info info;
9199 	__u32 info_len = sizeof(info);
9200 	struct btf *btf;
9201 	int err;
9202 
9203 	memset(&info, 0, info_len);
9204 	err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len);
9205 	if (err) {
9206 		pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n",
9207 			attach_prog_fd, err);
9208 		return err;
9209 	}
9210 
9211 	err = -EINVAL;
9212 	if (!info.btf_id) {
9213 		pr_warn("The target program doesn't have BTF\n");
9214 		goto out;
9215 	}
9216 	btf = btf__load_from_kernel_by_id(info.btf_id);
9217 	err = libbpf_get_error(btf);
9218 	if (err) {
9219 		pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9220 		goto out;
9221 	}
9222 	err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9223 	btf__free(btf);
9224 	if (err <= 0) {
9225 		pr_warn("%s is not found in prog's BTF\n", name);
9226 		goto out;
9227 	}
9228 out:
9229 	return err;
9230 }
9231 
9232 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9233 			      enum bpf_attach_type attach_type,
9234 			      int *btf_obj_fd, int *btf_type_id)
9235 {
9236 	int ret, i;
9237 
9238 	ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9239 	if (ret > 0) {
9240 		*btf_obj_fd = 0; /* vmlinux BTF */
9241 		*btf_type_id = ret;
9242 		return 0;
9243 	}
9244 	if (ret != -ENOENT)
9245 		return ret;
9246 
9247 	ret = load_module_btfs(obj);
9248 	if (ret)
9249 		return ret;
9250 
9251 	for (i = 0; i < obj->btf_module_cnt; i++) {
9252 		const struct module_btf *mod = &obj->btf_modules[i];
9253 
9254 		ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9255 		if (ret > 0) {
9256 			*btf_obj_fd = mod->fd;
9257 			*btf_type_id = ret;
9258 			return 0;
9259 		}
9260 		if (ret == -ENOENT)
9261 			continue;
9262 
9263 		return ret;
9264 	}
9265 
9266 	return -ESRCH;
9267 }
9268 
9269 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9270 				     int *btf_obj_fd, int *btf_type_id)
9271 {
9272 	enum bpf_attach_type attach_type = prog->expected_attach_type;
9273 	__u32 attach_prog_fd = prog->attach_prog_fd;
9274 	int err = 0;
9275 
9276 	/* BPF program's BTF ID */
9277 	if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
9278 		if (!attach_prog_fd) {
9279 			pr_warn("prog '%s': attach program FD is not set\n", prog->name);
9280 			return -EINVAL;
9281 		}
9282 		err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9283 		if (err < 0) {
9284 			pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9285 				 prog->name, attach_prog_fd, attach_name, err);
9286 			return err;
9287 		}
9288 		*btf_obj_fd = 0;
9289 		*btf_type_id = err;
9290 		return 0;
9291 	}
9292 
9293 	/* kernel/module BTF ID */
9294 	if (prog->obj->gen_loader) {
9295 		bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9296 		*btf_obj_fd = 0;
9297 		*btf_type_id = 1;
9298 	} else {
9299 		err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9300 	}
9301 	if (err) {
9302 		pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n",
9303 			prog->name, attach_name, err);
9304 		return err;
9305 	}
9306 	return 0;
9307 }
9308 
9309 int libbpf_attach_type_by_name(const char *name,
9310 			       enum bpf_attach_type *attach_type)
9311 {
9312 	char *type_names;
9313 	const struct bpf_sec_def *sec_def;
9314 
9315 	if (!name)
9316 		return libbpf_err(-EINVAL);
9317 
9318 	sec_def = find_sec_def(name);
9319 	if (!sec_def) {
9320 		pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9321 		type_names = libbpf_get_type_names(true);
9322 		if (type_names != NULL) {
9323 			pr_debug("attachable section(type) names are:%s\n", type_names);
9324 			free(type_names);
9325 		}
9326 
9327 		return libbpf_err(-EINVAL);
9328 	}
9329 
9330 	if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9331 		return libbpf_err(-EINVAL);
9332 	if (!(sec_def->cookie & SEC_ATTACHABLE))
9333 		return libbpf_err(-EINVAL);
9334 
9335 	*attach_type = sec_def->expected_attach_type;
9336 	return 0;
9337 }
9338 
9339 int bpf_map__fd(const struct bpf_map *map)
9340 {
9341 	return map ? map->fd : libbpf_err(-EINVAL);
9342 }
9343 
9344 static bool map_uses_real_name(const struct bpf_map *map)
9345 {
9346 	/* Since libbpf started to support custom .data.* and .rodata.* maps,
9347 	 * their user-visible name differs from kernel-visible name. Users see
9348 	 * such map's corresponding ELF section name as a map name.
9349 	 * This check distinguishes .data/.rodata from .data.* and .rodata.*
9350 	 * maps to know which name has to be returned to the user.
9351 	 */
9352 	if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
9353 		return true;
9354 	if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
9355 		return true;
9356 	return false;
9357 }
9358 
9359 const char *bpf_map__name(const struct bpf_map *map)
9360 {
9361 	if (!map)
9362 		return NULL;
9363 
9364 	if (map_uses_real_name(map))
9365 		return map->real_name;
9366 
9367 	return map->name;
9368 }
9369 
9370 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9371 {
9372 	return map->def.type;
9373 }
9374 
9375 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9376 {
9377 	if (map->fd >= 0)
9378 		return libbpf_err(-EBUSY);
9379 	map->def.type = type;
9380 	return 0;
9381 }
9382 
9383 __u32 bpf_map__map_flags(const struct bpf_map *map)
9384 {
9385 	return map->def.map_flags;
9386 }
9387 
9388 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9389 {
9390 	if (map->fd >= 0)
9391 		return libbpf_err(-EBUSY);
9392 	map->def.map_flags = flags;
9393 	return 0;
9394 }
9395 
9396 __u64 bpf_map__map_extra(const struct bpf_map *map)
9397 {
9398 	return map->map_extra;
9399 }
9400 
9401 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
9402 {
9403 	if (map->fd >= 0)
9404 		return libbpf_err(-EBUSY);
9405 	map->map_extra = map_extra;
9406 	return 0;
9407 }
9408 
9409 __u32 bpf_map__numa_node(const struct bpf_map *map)
9410 {
9411 	return map->numa_node;
9412 }
9413 
9414 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
9415 {
9416 	if (map->fd >= 0)
9417 		return libbpf_err(-EBUSY);
9418 	map->numa_node = numa_node;
9419 	return 0;
9420 }
9421 
9422 __u32 bpf_map__key_size(const struct bpf_map *map)
9423 {
9424 	return map->def.key_size;
9425 }
9426 
9427 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
9428 {
9429 	if (map->fd >= 0)
9430 		return libbpf_err(-EBUSY);
9431 	map->def.key_size = size;
9432 	return 0;
9433 }
9434 
9435 __u32 bpf_map__value_size(const struct bpf_map *map)
9436 {
9437 	return map->def.value_size;
9438 }
9439 
9440 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size)
9441 {
9442 	struct btf *btf;
9443 	struct btf_type *datasec_type, *var_type;
9444 	struct btf_var_secinfo *var;
9445 	const struct btf_type *array_type;
9446 	const struct btf_array *array;
9447 	int vlen, element_sz, new_array_id;
9448 	__u32 nr_elements;
9449 
9450 	/* check btf existence */
9451 	btf = bpf_object__btf(map->obj);
9452 	if (!btf)
9453 		return -ENOENT;
9454 
9455 	/* verify map is datasec */
9456 	datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map));
9457 	if (!btf_is_datasec(datasec_type)) {
9458 		pr_warn("map '%s': cannot be resized, map value type is not a datasec\n",
9459 			bpf_map__name(map));
9460 		return -EINVAL;
9461 	}
9462 
9463 	/* verify datasec has at least one var */
9464 	vlen = btf_vlen(datasec_type);
9465 	if (vlen == 0) {
9466 		pr_warn("map '%s': cannot be resized, map value datasec is empty\n",
9467 			bpf_map__name(map));
9468 		return -EINVAL;
9469 	}
9470 
9471 	/* verify last var in the datasec is an array */
9472 	var = &btf_var_secinfos(datasec_type)[vlen - 1];
9473 	var_type = btf_type_by_id(btf, var->type);
9474 	array_type = skip_mods_and_typedefs(btf, var_type->type, NULL);
9475 	if (!btf_is_array(array_type)) {
9476 		pr_warn("map '%s': cannot be resized, last var must be an array\n",
9477 			bpf_map__name(map));
9478 		return -EINVAL;
9479 	}
9480 
9481 	/* verify request size aligns with array */
9482 	array = btf_array(array_type);
9483 	element_sz = btf__resolve_size(btf, array->type);
9484 	if (element_sz <= 0 || (size - var->offset) % element_sz != 0) {
9485 		pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n",
9486 			bpf_map__name(map), element_sz, size);
9487 		return -EINVAL;
9488 	}
9489 
9490 	/* create a new array based on the existing array, but with new length */
9491 	nr_elements = (size - var->offset) / element_sz;
9492 	new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements);
9493 	if (new_array_id < 0)
9494 		return new_array_id;
9495 
9496 	/* adding a new btf type invalidates existing pointers to btf objects,
9497 	 * so refresh pointers before proceeding
9498 	 */
9499 	datasec_type = btf_type_by_id(btf, map->btf_value_type_id);
9500 	var = &btf_var_secinfos(datasec_type)[vlen - 1];
9501 	var_type = btf_type_by_id(btf, var->type);
9502 
9503 	/* finally update btf info */
9504 	datasec_type->size = size;
9505 	var->size = size - var->offset;
9506 	var_type->type = new_array_id;
9507 
9508 	return 0;
9509 }
9510 
9511 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
9512 {
9513 	if (map->fd >= 0)
9514 		return libbpf_err(-EBUSY);
9515 
9516 	if (map->mmaped) {
9517 		int err;
9518 		size_t mmap_old_sz, mmap_new_sz;
9519 
9520 		mmap_old_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
9521 		mmap_new_sz = bpf_map_mmap_sz(size, map->def.max_entries);
9522 		err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz);
9523 		if (err) {
9524 			pr_warn("map '%s': failed to resize memory-mapped region: %d\n",
9525 				bpf_map__name(map), err);
9526 			return err;
9527 		}
9528 		err = map_btf_datasec_resize(map, size);
9529 		if (err && err != -ENOENT) {
9530 			pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n",
9531 				bpf_map__name(map), err);
9532 			map->btf_value_type_id = 0;
9533 			map->btf_key_type_id = 0;
9534 		}
9535 	}
9536 
9537 	map->def.value_size = size;
9538 	return 0;
9539 }
9540 
9541 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
9542 {
9543 	return map ? map->btf_key_type_id : 0;
9544 }
9545 
9546 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
9547 {
9548 	return map ? map->btf_value_type_id : 0;
9549 }
9550 
9551 int bpf_map__set_initial_value(struct bpf_map *map,
9552 			       const void *data, size_t size)
9553 {
9554 	if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
9555 	    size != map->def.value_size || map->fd >= 0)
9556 		return libbpf_err(-EINVAL);
9557 
9558 	memcpy(map->mmaped, data, size);
9559 	return 0;
9560 }
9561 
9562 void *bpf_map__initial_value(struct bpf_map *map, size_t *psize)
9563 {
9564 	if (!map->mmaped)
9565 		return NULL;
9566 	*psize = map->def.value_size;
9567 	return map->mmaped;
9568 }
9569 
9570 bool bpf_map__is_internal(const struct bpf_map *map)
9571 {
9572 	return map->libbpf_type != LIBBPF_MAP_UNSPEC;
9573 }
9574 
9575 __u32 bpf_map__ifindex(const struct bpf_map *map)
9576 {
9577 	return map->map_ifindex;
9578 }
9579 
9580 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
9581 {
9582 	if (map->fd >= 0)
9583 		return libbpf_err(-EBUSY);
9584 	map->map_ifindex = ifindex;
9585 	return 0;
9586 }
9587 
9588 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
9589 {
9590 	if (!bpf_map_type__is_map_in_map(map->def.type)) {
9591 		pr_warn("error: unsupported map type\n");
9592 		return libbpf_err(-EINVAL);
9593 	}
9594 	if (map->inner_map_fd != -1) {
9595 		pr_warn("error: inner_map_fd already specified\n");
9596 		return libbpf_err(-EINVAL);
9597 	}
9598 	if (map->inner_map) {
9599 		bpf_map__destroy(map->inner_map);
9600 		zfree(&map->inner_map);
9601 	}
9602 	map->inner_map_fd = fd;
9603 	return 0;
9604 }
9605 
9606 static struct bpf_map *
9607 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
9608 {
9609 	ssize_t idx;
9610 	struct bpf_map *s, *e;
9611 
9612 	if (!obj || !obj->maps)
9613 		return errno = EINVAL, NULL;
9614 
9615 	s = obj->maps;
9616 	e = obj->maps + obj->nr_maps;
9617 
9618 	if ((m < s) || (m >= e)) {
9619 		pr_warn("error in %s: map handler doesn't belong to object\n",
9620 			 __func__);
9621 		return errno = EINVAL, NULL;
9622 	}
9623 
9624 	idx = (m - obj->maps) + i;
9625 	if (idx >= obj->nr_maps || idx < 0)
9626 		return NULL;
9627 	return &obj->maps[idx];
9628 }
9629 
9630 struct bpf_map *
9631 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
9632 {
9633 	if (prev == NULL)
9634 		return obj->maps;
9635 
9636 	return __bpf_map__iter(prev, obj, 1);
9637 }
9638 
9639 struct bpf_map *
9640 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
9641 {
9642 	if (next == NULL) {
9643 		if (!obj->nr_maps)
9644 			return NULL;
9645 		return obj->maps + obj->nr_maps - 1;
9646 	}
9647 
9648 	return __bpf_map__iter(next, obj, -1);
9649 }
9650 
9651 struct bpf_map *
9652 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9653 {
9654 	struct bpf_map *pos;
9655 
9656 	bpf_object__for_each_map(pos, obj) {
9657 		/* if it's a special internal map name (which always starts
9658 		 * with dot) then check if that special name matches the
9659 		 * real map name (ELF section name)
9660 		 */
9661 		if (name[0] == '.') {
9662 			if (pos->real_name && strcmp(pos->real_name, name) == 0)
9663 				return pos;
9664 			continue;
9665 		}
9666 		/* otherwise map name has to be an exact match */
9667 		if (map_uses_real_name(pos)) {
9668 			if (strcmp(pos->real_name, name) == 0)
9669 				return pos;
9670 			continue;
9671 		}
9672 		if (strcmp(pos->name, name) == 0)
9673 			return pos;
9674 	}
9675 	return errno = ENOENT, NULL;
9676 }
9677 
9678 int
9679 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9680 {
9681 	return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9682 }
9683 
9684 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
9685 			   size_t value_sz, bool check_value_sz)
9686 {
9687 	if (map->fd <= 0)
9688 		return -ENOENT;
9689 
9690 	if (map->def.key_size != key_sz) {
9691 		pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
9692 			map->name, key_sz, map->def.key_size);
9693 		return -EINVAL;
9694 	}
9695 
9696 	if (!check_value_sz)
9697 		return 0;
9698 
9699 	switch (map->def.type) {
9700 	case BPF_MAP_TYPE_PERCPU_ARRAY:
9701 	case BPF_MAP_TYPE_PERCPU_HASH:
9702 	case BPF_MAP_TYPE_LRU_PERCPU_HASH:
9703 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
9704 		int num_cpu = libbpf_num_possible_cpus();
9705 		size_t elem_sz = roundup(map->def.value_size, 8);
9706 
9707 		if (value_sz != num_cpu * elem_sz) {
9708 			pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
9709 				map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
9710 			return -EINVAL;
9711 		}
9712 		break;
9713 	}
9714 	default:
9715 		if (map->def.value_size != value_sz) {
9716 			pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
9717 				map->name, value_sz, map->def.value_size);
9718 			return -EINVAL;
9719 		}
9720 		break;
9721 	}
9722 	return 0;
9723 }
9724 
9725 int bpf_map__lookup_elem(const struct bpf_map *map,
9726 			 const void *key, size_t key_sz,
9727 			 void *value, size_t value_sz, __u64 flags)
9728 {
9729 	int err;
9730 
9731 	err = validate_map_op(map, key_sz, value_sz, true);
9732 	if (err)
9733 		return libbpf_err(err);
9734 
9735 	return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
9736 }
9737 
9738 int bpf_map__update_elem(const struct bpf_map *map,
9739 			 const void *key, size_t key_sz,
9740 			 const void *value, size_t value_sz, __u64 flags)
9741 {
9742 	int err;
9743 
9744 	err = validate_map_op(map, key_sz, value_sz, true);
9745 	if (err)
9746 		return libbpf_err(err);
9747 
9748 	return bpf_map_update_elem(map->fd, key, value, flags);
9749 }
9750 
9751 int bpf_map__delete_elem(const struct bpf_map *map,
9752 			 const void *key, size_t key_sz, __u64 flags)
9753 {
9754 	int err;
9755 
9756 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9757 	if (err)
9758 		return libbpf_err(err);
9759 
9760 	return bpf_map_delete_elem_flags(map->fd, key, flags);
9761 }
9762 
9763 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
9764 				    const void *key, size_t key_sz,
9765 				    void *value, size_t value_sz, __u64 flags)
9766 {
9767 	int err;
9768 
9769 	err = validate_map_op(map, key_sz, value_sz, true);
9770 	if (err)
9771 		return libbpf_err(err);
9772 
9773 	return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
9774 }
9775 
9776 int bpf_map__get_next_key(const struct bpf_map *map,
9777 			  const void *cur_key, void *next_key, size_t key_sz)
9778 {
9779 	int err;
9780 
9781 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9782 	if (err)
9783 		return libbpf_err(err);
9784 
9785 	return bpf_map_get_next_key(map->fd, cur_key, next_key);
9786 }
9787 
9788 long libbpf_get_error(const void *ptr)
9789 {
9790 	if (!IS_ERR_OR_NULL(ptr))
9791 		return 0;
9792 
9793 	if (IS_ERR(ptr))
9794 		errno = -PTR_ERR(ptr);
9795 
9796 	/* If ptr == NULL, then errno should be already set by the failing
9797 	 * API, because libbpf never returns NULL on success and it now always
9798 	 * sets errno on error. So no extra errno handling for ptr == NULL
9799 	 * case.
9800 	 */
9801 	return -errno;
9802 }
9803 
9804 /* Replace link's underlying BPF program with the new one */
9805 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
9806 {
9807 	int ret;
9808 
9809 	ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
9810 	return libbpf_err_errno(ret);
9811 }
9812 
9813 /* Release "ownership" of underlying BPF resource (typically, BPF program
9814  * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
9815  * link, when destructed through bpf_link__destroy() call won't attempt to
9816  * detach/unregisted that BPF resource. This is useful in situations where,
9817  * say, attached BPF program has to outlive userspace program that attached it
9818  * in the system. Depending on type of BPF program, though, there might be
9819  * additional steps (like pinning BPF program in BPF FS) necessary to ensure
9820  * exit of userspace program doesn't trigger automatic detachment and clean up
9821  * inside the kernel.
9822  */
9823 void bpf_link__disconnect(struct bpf_link *link)
9824 {
9825 	link->disconnected = true;
9826 }
9827 
9828 int bpf_link__destroy(struct bpf_link *link)
9829 {
9830 	int err = 0;
9831 
9832 	if (IS_ERR_OR_NULL(link))
9833 		return 0;
9834 
9835 	if (!link->disconnected && link->detach)
9836 		err = link->detach(link);
9837 	if (link->pin_path)
9838 		free(link->pin_path);
9839 	if (link->dealloc)
9840 		link->dealloc(link);
9841 	else
9842 		free(link);
9843 
9844 	return libbpf_err(err);
9845 }
9846 
9847 int bpf_link__fd(const struct bpf_link *link)
9848 {
9849 	return link->fd;
9850 }
9851 
9852 const char *bpf_link__pin_path(const struct bpf_link *link)
9853 {
9854 	return link->pin_path;
9855 }
9856 
9857 static int bpf_link__detach_fd(struct bpf_link *link)
9858 {
9859 	return libbpf_err_errno(close(link->fd));
9860 }
9861 
9862 struct bpf_link *bpf_link__open(const char *path)
9863 {
9864 	struct bpf_link *link;
9865 	int fd;
9866 
9867 	fd = bpf_obj_get(path);
9868 	if (fd < 0) {
9869 		fd = -errno;
9870 		pr_warn("failed to open link at %s: %d\n", path, fd);
9871 		return libbpf_err_ptr(fd);
9872 	}
9873 
9874 	link = calloc(1, sizeof(*link));
9875 	if (!link) {
9876 		close(fd);
9877 		return libbpf_err_ptr(-ENOMEM);
9878 	}
9879 	link->detach = &bpf_link__detach_fd;
9880 	link->fd = fd;
9881 
9882 	link->pin_path = strdup(path);
9883 	if (!link->pin_path) {
9884 		bpf_link__destroy(link);
9885 		return libbpf_err_ptr(-ENOMEM);
9886 	}
9887 
9888 	return link;
9889 }
9890 
9891 int bpf_link__detach(struct bpf_link *link)
9892 {
9893 	return bpf_link_detach(link->fd) ? -errno : 0;
9894 }
9895 
9896 int bpf_link__pin(struct bpf_link *link, const char *path)
9897 {
9898 	int err;
9899 
9900 	if (link->pin_path)
9901 		return libbpf_err(-EBUSY);
9902 	err = make_parent_dir(path);
9903 	if (err)
9904 		return libbpf_err(err);
9905 	err = check_path(path);
9906 	if (err)
9907 		return libbpf_err(err);
9908 
9909 	link->pin_path = strdup(path);
9910 	if (!link->pin_path)
9911 		return libbpf_err(-ENOMEM);
9912 
9913 	if (bpf_obj_pin(link->fd, link->pin_path)) {
9914 		err = -errno;
9915 		zfree(&link->pin_path);
9916 		return libbpf_err(err);
9917 	}
9918 
9919 	pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
9920 	return 0;
9921 }
9922 
9923 int bpf_link__unpin(struct bpf_link *link)
9924 {
9925 	int err;
9926 
9927 	if (!link->pin_path)
9928 		return libbpf_err(-EINVAL);
9929 
9930 	err = unlink(link->pin_path);
9931 	if (err != 0)
9932 		return -errno;
9933 
9934 	pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
9935 	zfree(&link->pin_path);
9936 	return 0;
9937 }
9938 
9939 struct bpf_link_perf {
9940 	struct bpf_link link;
9941 	int perf_event_fd;
9942 	/* legacy kprobe support: keep track of probe identifier and type */
9943 	char *legacy_probe_name;
9944 	bool legacy_is_kprobe;
9945 	bool legacy_is_retprobe;
9946 };
9947 
9948 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
9949 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
9950 
9951 static int bpf_link_perf_detach(struct bpf_link *link)
9952 {
9953 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9954 	int err = 0;
9955 
9956 	if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
9957 		err = -errno;
9958 
9959 	if (perf_link->perf_event_fd != link->fd)
9960 		close(perf_link->perf_event_fd);
9961 	close(link->fd);
9962 
9963 	/* legacy uprobe/kprobe needs to be removed after perf event fd closure */
9964 	if (perf_link->legacy_probe_name) {
9965 		if (perf_link->legacy_is_kprobe) {
9966 			err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
9967 							 perf_link->legacy_is_retprobe);
9968 		} else {
9969 			err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
9970 							 perf_link->legacy_is_retprobe);
9971 		}
9972 	}
9973 
9974 	return err;
9975 }
9976 
9977 static void bpf_link_perf_dealloc(struct bpf_link *link)
9978 {
9979 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9980 
9981 	free(perf_link->legacy_probe_name);
9982 	free(perf_link);
9983 }
9984 
9985 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
9986 						     const struct bpf_perf_event_opts *opts)
9987 {
9988 	char errmsg[STRERR_BUFSIZE];
9989 	struct bpf_link_perf *link;
9990 	int prog_fd, link_fd = -1, err;
9991 	bool force_ioctl_attach;
9992 
9993 	if (!OPTS_VALID(opts, bpf_perf_event_opts))
9994 		return libbpf_err_ptr(-EINVAL);
9995 
9996 	if (pfd < 0) {
9997 		pr_warn("prog '%s': invalid perf event FD %d\n",
9998 			prog->name, pfd);
9999 		return libbpf_err_ptr(-EINVAL);
10000 	}
10001 	prog_fd = bpf_program__fd(prog);
10002 	if (prog_fd < 0) {
10003 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
10004 			prog->name);
10005 		return libbpf_err_ptr(-EINVAL);
10006 	}
10007 
10008 	link = calloc(1, sizeof(*link));
10009 	if (!link)
10010 		return libbpf_err_ptr(-ENOMEM);
10011 	link->link.detach = &bpf_link_perf_detach;
10012 	link->link.dealloc = &bpf_link_perf_dealloc;
10013 	link->perf_event_fd = pfd;
10014 
10015 	force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false);
10016 	if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) {
10017 		DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
10018 			.perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
10019 
10020 		link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
10021 		if (link_fd < 0) {
10022 			err = -errno;
10023 			pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
10024 				prog->name, pfd,
10025 				err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10026 			goto err_out;
10027 		}
10028 		link->link.fd = link_fd;
10029 	} else {
10030 		if (OPTS_GET(opts, bpf_cookie, 0)) {
10031 			pr_warn("prog '%s': user context value is not supported\n", prog->name);
10032 			err = -EOPNOTSUPP;
10033 			goto err_out;
10034 		}
10035 
10036 		if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
10037 			err = -errno;
10038 			pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
10039 				prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10040 			if (err == -EPROTO)
10041 				pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
10042 					prog->name, pfd);
10043 			goto err_out;
10044 		}
10045 		link->link.fd = pfd;
10046 	}
10047 	if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10048 		err = -errno;
10049 		pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
10050 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10051 		goto err_out;
10052 	}
10053 
10054 	return &link->link;
10055 err_out:
10056 	if (link_fd >= 0)
10057 		close(link_fd);
10058 	free(link);
10059 	return libbpf_err_ptr(err);
10060 }
10061 
10062 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
10063 {
10064 	return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
10065 }
10066 
10067 /*
10068  * this function is expected to parse integer in the range of [0, 2^31-1] from
10069  * given file using scanf format string fmt. If actual parsed value is
10070  * negative, the result might be indistinguishable from error
10071  */
10072 static int parse_uint_from_file(const char *file, const char *fmt)
10073 {
10074 	char buf[STRERR_BUFSIZE];
10075 	int err, ret;
10076 	FILE *f;
10077 
10078 	f = fopen(file, "re");
10079 	if (!f) {
10080 		err = -errno;
10081 		pr_debug("failed to open '%s': %s\n", file,
10082 			 libbpf_strerror_r(err, buf, sizeof(buf)));
10083 		return err;
10084 	}
10085 	err = fscanf(f, fmt, &ret);
10086 	if (err != 1) {
10087 		err = err == EOF ? -EIO : -errno;
10088 		pr_debug("failed to parse '%s': %s\n", file,
10089 			libbpf_strerror_r(err, buf, sizeof(buf)));
10090 		fclose(f);
10091 		return err;
10092 	}
10093 	fclose(f);
10094 	return ret;
10095 }
10096 
10097 static int determine_kprobe_perf_type(void)
10098 {
10099 	const char *file = "/sys/bus/event_source/devices/kprobe/type";
10100 
10101 	return parse_uint_from_file(file, "%d\n");
10102 }
10103 
10104 static int determine_uprobe_perf_type(void)
10105 {
10106 	const char *file = "/sys/bus/event_source/devices/uprobe/type";
10107 
10108 	return parse_uint_from_file(file, "%d\n");
10109 }
10110 
10111 static int determine_kprobe_retprobe_bit(void)
10112 {
10113 	const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
10114 
10115 	return parse_uint_from_file(file, "config:%d\n");
10116 }
10117 
10118 static int determine_uprobe_retprobe_bit(void)
10119 {
10120 	const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
10121 
10122 	return parse_uint_from_file(file, "config:%d\n");
10123 }
10124 
10125 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
10126 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
10127 
10128 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
10129 				 uint64_t offset, int pid, size_t ref_ctr_off)
10130 {
10131 	const size_t attr_sz = sizeof(struct perf_event_attr);
10132 	struct perf_event_attr attr;
10133 	char errmsg[STRERR_BUFSIZE];
10134 	int type, pfd;
10135 
10136 	if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
10137 		return -EINVAL;
10138 
10139 	memset(&attr, 0, attr_sz);
10140 
10141 	type = uprobe ? determine_uprobe_perf_type()
10142 		      : determine_kprobe_perf_type();
10143 	if (type < 0) {
10144 		pr_warn("failed to determine %s perf type: %s\n",
10145 			uprobe ? "uprobe" : "kprobe",
10146 			libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
10147 		return type;
10148 	}
10149 	if (retprobe) {
10150 		int bit = uprobe ? determine_uprobe_retprobe_bit()
10151 				 : determine_kprobe_retprobe_bit();
10152 
10153 		if (bit < 0) {
10154 			pr_warn("failed to determine %s retprobe bit: %s\n",
10155 				uprobe ? "uprobe" : "kprobe",
10156 				libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
10157 			return bit;
10158 		}
10159 		attr.config |= 1 << bit;
10160 	}
10161 	attr.size = attr_sz;
10162 	attr.type = type;
10163 	attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10164 	attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
10165 	attr.config2 = offset;		 /* kprobe_addr or probe_offset */
10166 
10167 	/* pid filter is meaningful only for uprobes */
10168 	pfd = syscall(__NR_perf_event_open, &attr,
10169 		      pid < 0 ? -1 : pid /* pid */,
10170 		      pid == -1 ? 0 : -1 /* cpu */,
10171 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10172 	return pfd >= 0 ? pfd : -errno;
10173 }
10174 
10175 static int append_to_file(const char *file, const char *fmt, ...)
10176 {
10177 	int fd, n, err = 0;
10178 	va_list ap;
10179 	char buf[1024];
10180 
10181 	va_start(ap, fmt);
10182 	n = vsnprintf(buf, sizeof(buf), fmt, ap);
10183 	va_end(ap);
10184 
10185 	if (n < 0 || n >= sizeof(buf))
10186 		return -EINVAL;
10187 
10188 	fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
10189 	if (fd < 0)
10190 		return -errno;
10191 
10192 	if (write(fd, buf, n) < 0)
10193 		err = -errno;
10194 
10195 	close(fd);
10196 	return err;
10197 }
10198 
10199 #define DEBUGFS "/sys/kernel/debug/tracing"
10200 #define TRACEFS "/sys/kernel/tracing"
10201 
10202 static bool use_debugfs(void)
10203 {
10204 	static int has_debugfs = -1;
10205 
10206 	if (has_debugfs < 0)
10207 		has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
10208 
10209 	return has_debugfs == 1;
10210 }
10211 
10212 static const char *tracefs_path(void)
10213 {
10214 	return use_debugfs() ? DEBUGFS : TRACEFS;
10215 }
10216 
10217 static const char *tracefs_kprobe_events(void)
10218 {
10219 	return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
10220 }
10221 
10222 static const char *tracefs_uprobe_events(void)
10223 {
10224 	return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
10225 }
10226 
10227 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
10228 					 const char *kfunc_name, size_t offset)
10229 {
10230 	static int index = 0;
10231 	int i;
10232 
10233 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
10234 		 __sync_fetch_and_add(&index, 1));
10235 
10236 	/* sanitize binary_path in the probe name */
10237 	for (i = 0; buf[i]; i++) {
10238 		if (!isalnum(buf[i]))
10239 			buf[i] = '_';
10240 	}
10241 }
10242 
10243 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
10244 				   const char *kfunc_name, size_t offset)
10245 {
10246 	return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
10247 			      retprobe ? 'r' : 'p',
10248 			      retprobe ? "kretprobes" : "kprobes",
10249 			      probe_name, kfunc_name, offset);
10250 }
10251 
10252 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
10253 {
10254 	return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
10255 			      retprobe ? "kretprobes" : "kprobes", probe_name);
10256 }
10257 
10258 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10259 {
10260 	char file[256];
10261 
10262 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10263 		 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
10264 
10265 	return parse_uint_from_file(file, "%d\n");
10266 }
10267 
10268 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
10269 					 const char *kfunc_name, size_t offset, int pid)
10270 {
10271 	const size_t attr_sz = sizeof(struct perf_event_attr);
10272 	struct perf_event_attr attr;
10273 	char errmsg[STRERR_BUFSIZE];
10274 	int type, pfd, err;
10275 
10276 	err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
10277 	if (err < 0) {
10278 		pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
10279 			kfunc_name, offset,
10280 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10281 		return err;
10282 	}
10283 	type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
10284 	if (type < 0) {
10285 		err = type;
10286 		pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
10287 			kfunc_name, offset,
10288 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10289 		goto err_clean_legacy;
10290 	}
10291 
10292 	memset(&attr, 0, attr_sz);
10293 	attr.size = attr_sz;
10294 	attr.config = type;
10295 	attr.type = PERF_TYPE_TRACEPOINT;
10296 
10297 	pfd = syscall(__NR_perf_event_open, &attr,
10298 		      pid < 0 ? -1 : pid, /* pid */
10299 		      pid == -1 ? 0 : -1, /* cpu */
10300 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
10301 	if (pfd < 0) {
10302 		err = -errno;
10303 		pr_warn("legacy kprobe perf_event_open() failed: %s\n",
10304 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10305 		goto err_clean_legacy;
10306 	}
10307 	return pfd;
10308 
10309 err_clean_legacy:
10310 	/* Clear the newly added legacy kprobe_event */
10311 	remove_kprobe_event_legacy(probe_name, retprobe);
10312 	return err;
10313 }
10314 
10315 static const char *arch_specific_syscall_pfx(void)
10316 {
10317 #if defined(__x86_64__)
10318 	return "x64";
10319 #elif defined(__i386__)
10320 	return "ia32";
10321 #elif defined(__s390x__)
10322 	return "s390x";
10323 #elif defined(__s390__)
10324 	return "s390";
10325 #elif defined(__arm__)
10326 	return "arm";
10327 #elif defined(__aarch64__)
10328 	return "arm64";
10329 #elif defined(__mips__)
10330 	return "mips";
10331 #elif defined(__riscv)
10332 	return "riscv";
10333 #elif defined(__powerpc__)
10334 	return "powerpc";
10335 #elif defined(__powerpc64__)
10336 	return "powerpc64";
10337 #else
10338 	return NULL;
10339 #endif
10340 }
10341 
10342 static int probe_kern_syscall_wrapper(void)
10343 {
10344 	char syscall_name[64];
10345 	const char *ksys_pfx;
10346 
10347 	ksys_pfx = arch_specific_syscall_pfx();
10348 	if (!ksys_pfx)
10349 		return 0;
10350 
10351 	snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
10352 
10353 	if (determine_kprobe_perf_type() >= 0) {
10354 		int pfd;
10355 
10356 		pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
10357 		if (pfd >= 0)
10358 			close(pfd);
10359 
10360 		return pfd >= 0 ? 1 : 0;
10361 	} else { /* legacy mode */
10362 		char probe_name[128];
10363 
10364 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
10365 		if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
10366 			return 0;
10367 
10368 		(void)remove_kprobe_event_legacy(probe_name, false);
10369 		return 1;
10370 	}
10371 }
10372 
10373 struct bpf_link *
10374 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
10375 				const char *func_name,
10376 				const struct bpf_kprobe_opts *opts)
10377 {
10378 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10379 	enum probe_attach_mode attach_mode;
10380 	char errmsg[STRERR_BUFSIZE];
10381 	char *legacy_probe = NULL;
10382 	struct bpf_link *link;
10383 	size_t offset;
10384 	bool retprobe, legacy;
10385 	int pfd, err;
10386 
10387 	if (!OPTS_VALID(opts, bpf_kprobe_opts))
10388 		return libbpf_err_ptr(-EINVAL);
10389 
10390 	attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
10391 	retprobe = OPTS_GET(opts, retprobe, false);
10392 	offset = OPTS_GET(opts, offset, 0);
10393 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10394 
10395 	legacy = determine_kprobe_perf_type() < 0;
10396 	switch (attach_mode) {
10397 	case PROBE_ATTACH_MODE_LEGACY:
10398 		legacy = true;
10399 		pe_opts.force_ioctl_attach = true;
10400 		break;
10401 	case PROBE_ATTACH_MODE_PERF:
10402 		if (legacy)
10403 			return libbpf_err_ptr(-ENOTSUP);
10404 		pe_opts.force_ioctl_attach = true;
10405 		break;
10406 	case PROBE_ATTACH_MODE_LINK:
10407 		if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
10408 			return libbpf_err_ptr(-ENOTSUP);
10409 		break;
10410 	case PROBE_ATTACH_MODE_DEFAULT:
10411 		break;
10412 	default:
10413 		return libbpf_err_ptr(-EINVAL);
10414 	}
10415 
10416 	if (!legacy) {
10417 		pfd = perf_event_open_probe(false /* uprobe */, retprobe,
10418 					    func_name, offset,
10419 					    -1 /* pid */, 0 /* ref_ctr_off */);
10420 	} else {
10421 		char probe_name[256];
10422 
10423 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
10424 					     func_name, offset);
10425 
10426 		legacy_probe = strdup(probe_name);
10427 		if (!legacy_probe)
10428 			return libbpf_err_ptr(-ENOMEM);
10429 
10430 		pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
10431 						    offset, -1 /* pid */);
10432 	}
10433 	if (pfd < 0) {
10434 		err = -errno;
10435 		pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
10436 			prog->name, retprobe ? "kretprobe" : "kprobe",
10437 			func_name, offset,
10438 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10439 		goto err_out;
10440 	}
10441 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10442 	err = libbpf_get_error(link);
10443 	if (err) {
10444 		close(pfd);
10445 		pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
10446 			prog->name, retprobe ? "kretprobe" : "kprobe",
10447 			func_name, offset,
10448 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10449 		goto err_clean_legacy;
10450 	}
10451 	if (legacy) {
10452 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10453 
10454 		perf_link->legacy_probe_name = legacy_probe;
10455 		perf_link->legacy_is_kprobe = true;
10456 		perf_link->legacy_is_retprobe = retprobe;
10457 	}
10458 
10459 	return link;
10460 
10461 err_clean_legacy:
10462 	if (legacy)
10463 		remove_kprobe_event_legacy(legacy_probe, retprobe);
10464 err_out:
10465 	free(legacy_probe);
10466 	return libbpf_err_ptr(err);
10467 }
10468 
10469 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
10470 					    bool retprobe,
10471 					    const char *func_name)
10472 {
10473 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
10474 		.retprobe = retprobe,
10475 	);
10476 
10477 	return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
10478 }
10479 
10480 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
10481 					      const char *syscall_name,
10482 					      const struct bpf_ksyscall_opts *opts)
10483 {
10484 	LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
10485 	char func_name[128];
10486 
10487 	if (!OPTS_VALID(opts, bpf_ksyscall_opts))
10488 		return libbpf_err_ptr(-EINVAL);
10489 
10490 	if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
10491 		/* arch_specific_syscall_pfx() should never return NULL here
10492 		 * because it is guarded by kernel_supports(). However, since
10493 		 * compiler does not know that we have an explicit conditional
10494 		 * as well.
10495 		 */
10496 		snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
10497 			 arch_specific_syscall_pfx() ? : "", syscall_name);
10498 	} else {
10499 		snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
10500 	}
10501 
10502 	kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
10503 	kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10504 
10505 	return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
10506 }
10507 
10508 /* Adapted from perf/util/string.c */
10509 static bool glob_match(const char *str, const char *pat)
10510 {
10511 	while (*str && *pat && *pat != '*') {
10512 		if (*pat == '?') {      /* Matches any single character */
10513 			str++;
10514 			pat++;
10515 			continue;
10516 		}
10517 		if (*str != *pat)
10518 			return false;
10519 		str++;
10520 		pat++;
10521 	}
10522 	/* Check wild card */
10523 	if (*pat == '*') {
10524 		while (*pat == '*')
10525 			pat++;
10526 		if (!*pat) /* Tail wild card matches all */
10527 			return true;
10528 		while (*str)
10529 			if (glob_match(str++, pat))
10530 				return true;
10531 	}
10532 	return !*str && !*pat;
10533 }
10534 
10535 struct kprobe_multi_resolve {
10536 	const char *pattern;
10537 	unsigned long *addrs;
10538 	size_t cap;
10539 	size_t cnt;
10540 };
10541 
10542 static int
10543 resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type,
10544 			const char *sym_name, void *ctx)
10545 {
10546 	struct kprobe_multi_resolve *res = ctx;
10547 	int err;
10548 
10549 	if (!glob_match(sym_name, res->pattern))
10550 		return 0;
10551 
10552 	err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long),
10553 				res->cnt + 1);
10554 	if (err)
10555 		return err;
10556 
10557 	res->addrs[res->cnt++] = (unsigned long) sym_addr;
10558 	return 0;
10559 }
10560 
10561 struct bpf_link *
10562 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
10563 				      const char *pattern,
10564 				      const struct bpf_kprobe_multi_opts *opts)
10565 {
10566 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
10567 	struct kprobe_multi_resolve res = {
10568 		.pattern = pattern,
10569 	};
10570 	struct bpf_link *link = NULL;
10571 	char errmsg[STRERR_BUFSIZE];
10572 	const unsigned long *addrs;
10573 	int err, link_fd, prog_fd;
10574 	const __u64 *cookies;
10575 	const char **syms;
10576 	bool retprobe;
10577 	size_t cnt;
10578 
10579 	if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
10580 		return libbpf_err_ptr(-EINVAL);
10581 
10582 	syms    = OPTS_GET(opts, syms, false);
10583 	addrs   = OPTS_GET(opts, addrs, false);
10584 	cnt     = OPTS_GET(opts, cnt, false);
10585 	cookies = OPTS_GET(opts, cookies, false);
10586 
10587 	if (!pattern && !addrs && !syms)
10588 		return libbpf_err_ptr(-EINVAL);
10589 	if (pattern && (addrs || syms || cookies || cnt))
10590 		return libbpf_err_ptr(-EINVAL);
10591 	if (!pattern && !cnt)
10592 		return libbpf_err_ptr(-EINVAL);
10593 	if (addrs && syms)
10594 		return libbpf_err_ptr(-EINVAL);
10595 
10596 	if (pattern) {
10597 		err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res);
10598 		if (err)
10599 			goto error;
10600 		if (!res.cnt) {
10601 			err = -ENOENT;
10602 			goto error;
10603 		}
10604 		addrs = res.addrs;
10605 		cnt = res.cnt;
10606 	}
10607 
10608 	retprobe = OPTS_GET(opts, retprobe, false);
10609 
10610 	lopts.kprobe_multi.syms = syms;
10611 	lopts.kprobe_multi.addrs = addrs;
10612 	lopts.kprobe_multi.cookies = cookies;
10613 	lopts.kprobe_multi.cnt = cnt;
10614 	lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
10615 
10616 	link = calloc(1, sizeof(*link));
10617 	if (!link) {
10618 		err = -ENOMEM;
10619 		goto error;
10620 	}
10621 	link->detach = &bpf_link__detach_fd;
10622 
10623 	prog_fd = bpf_program__fd(prog);
10624 	link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts);
10625 	if (link_fd < 0) {
10626 		err = -errno;
10627 		pr_warn("prog '%s': failed to attach: %s\n",
10628 			prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10629 		goto error;
10630 	}
10631 	link->fd = link_fd;
10632 	free(res.addrs);
10633 	return link;
10634 
10635 error:
10636 	free(link);
10637 	free(res.addrs);
10638 	return libbpf_err_ptr(err);
10639 }
10640 
10641 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10642 {
10643 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
10644 	unsigned long offset = 0;
10645 	const char *func_name;
10646 	char *func;
10647 	int n;
10648 
10649 	*link = NULL;
10650 
10651 	/* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
10652 	if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
10653 		return 0;
10654 
10655 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
10656 	if (opts.retprobe)
10657 		func_name = prog->sec_name + sizeof("kretprobe/") - 1;
10658 	else
10659 		func_name = prog->sec_name + sizeof("kprobe/") - 1;
10660 
10661 	n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
10662 	if (n < 1) {
10663 		pr_warn("kprobe name is invalid: %s\n", func_name);
10664 		return -EINVAL;
10665 	}
10666 	if (opts.retprobe && offset != 0) {
10667 		free(func);
10668 		pr_warn("kretprobes do not support offset specification\n");
10669 		return -EINVAL;
10670 	}
10671 
10672 	opts.offset = offset;
10673 	*link = bpf_program__attach_kprobe_opts(prog, func, &opts);
10674 	free(func);
10675 	return libbpf_get_error(*link);
10676 }
10677 
10678 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10679 {
10680 	LIBBPF_OPTS(bpf_ksyscall_opts, opts);
10681 	const char *syscall_name;
10682 
10683 	*link = NULL;
10684 
10685 	/* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
10686 	if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
10687 		return 0;
10688 
10689 	opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
10690 	if (opts.retprobe)
10691 		syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
10692 	else
10693 		syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
10694 
10695 	*link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
10696 	return *link ? 0 : -errno;
10697 }
10698 
10699 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10700 {
10701 	LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
10702 	const char *spec;
10703 	char *pattern;
10704 	int n;
10705 
10706 	*link = NULL;
10707 
10708 	/* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
10709 	if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
10710 	    strcmp(prog->sec_name, "kretprobe.multi") == 0)
10711 		return 0;
10712 
10713 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
10714 	if (opts.retprobe)
10715 		spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
10716 	else
10717 		spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
10718 
10719 	n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
10720 	if (n < 1) {
10721 		pr_warn("kprobe multi pattern is invalid: %s\n", pattern);
10722 		return -EINVAL;
10723 	}
10724 
10725 	*link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
10726 	free(pattern);
10727 	return libbpf_get_error(*link);
10728 }
10729 
10730 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
10731 					 const char *binary_path, uint64_t offset)
10732 {
10733 	int i;
10734 
10735 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
10736 
10737 	/* sanitize binary_path in the probe name */
10738 	for (i = 0; buf[i]; i++) {
10739 		if (!isalnum(buf[i]))
10740 			buf[i] = '_';
10741 	}
10742 }
10743 
10744 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
10745 					  const char *binary_path, size_t offset)
10746 {
10747 	return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
10748 			      retprobe ? 'r' : 'p',
10749 			      retprobe ? "uretprobes" : "uprobes",
10750 			      probe_name, binary_path, offset);
10751 }
10752 
10753 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
10754 {
10755 	return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
10756 			      retprobe ? "uretprobes" : "uprobes", probe_name);
10757 }
10758 
10759 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10760 {
10761 	char file[512];
10762 
10763 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10764 		 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
10765 
10766 	return parse_uint_from_file(file, "%d\n");
10767 }
10768 
10769 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
10770 					 const char *binary_path, size_t offset, int pid)
10771 {
10772 	const size_t attr_sz = sizeof(struct perf_event_attr);
10773 	struct perf_event_attr attr;
10774 	int type, pfd, err;
10775 
10776 	err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
10777 	if (err < 0) {
10778 		pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
10779 			binary_path, (size_t)offset, err);
10780 		return err;
10781 	}
10782 	type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
10783 	if (type < 0) {
10784 		err = type;
10785 		pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
10786 			binary_path, offset, err);
10787 		goto err_clean_legacy;
10788 	}
10789 
10790 	memset(&attr, 0, attr_sz);
10791 	attr.size = attr_sz;
10792 	attr.config = type;
10793 	attr.type = PERF_TYPE_TRACEPOINT;
10794 
10795 	pfd = syscall(__NR_perf_event_open, &attr,
10796 		      pid < 0 ? -1 : pid, /* pid */
10797 		      pid == -1 ? 0 : -1, /* cpu */
10798 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
10799 	if (pfd < 0) {
10800 		err = -errno;
10801 		pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
10802 		goto err_clean_legacy;
10803 	}
10804 	return pfd;
10805 
10806 err_clean_legacy:
10807 	/* Clear the newly added legacy uprobe_event */
10808 	remove_uprobe_event_legacy(probe_name, retprobe);
10809 	return err;
10810 }
10811 
10812 /* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */
10813 static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn)
10814 {
10815 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
10816 		GElf_Shdr sh;
10817 
10818 		if (!gelf_getshdr(scn, &sh))
10819 			continue;
10820 		if (sh.sh_type == sh_type)
10821 			return scn;
10822 	}
10823 	return NULL;
10824 }
10825 
10826 /* Find offset of function name in the provided ELF object. "binary_path" is
10827  * the path to the ELF binary represented by "elf", and only used for error
10828  * reporting matters. "name" matches symbol name or name@@LIB for library
10829  * functions.
10830  */
10831 static long elf_find_func_offset(Elf *elf, const char *binary_path, const char *name)
10832 {
10833 	int i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB };
10834 	bool is_shared_lib, is_name_qualified;
10835 	long ret = -ENOENT;
10836 	size_t name_len;
10837 	GElf_Ehdr ehdr;
10838 
10839 	if (!gelf_getehdr(elf, &ehdr)) {
10840 		pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1));
10841 		ret = -LIBBPF_ERRNO__FORMAT;
10842 		goto out;
10843 	}
10844 	/* for shared lib case, we do not need to calculate relative offset */
10845 	is_shared_lib = ehdr.e_type == ET_DYN;
10846 
10847 	name_len = strlen(name);
10848 	/* Does name specify "@@LIB"? */
10849 	is_name_qualified = strstr(name, "@@") != NULL;
10850 
10851 	/* Search SHT_DYNSYM, SHT_SYMTAB for symbol. This search order is used because if
10852 	 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically
10853 	 * linked binary may not have SHT_DYMSYM, so absence of a section should not be
10854 	 * reported as a warning/error.
10855 	 */
10856 	for (i = 0; i < ARRAY_SIZE(sh_types); i++) {
10857 		size_t nr_syms, strtabidx, idx;
10858 		Elf_Data *symbols = NULL;
10859 		Elf_Scn *scn = NULL;
10860 		int last_bind = -1;
10861 		const char *sname;
10862 		GElf_Shdr sh;
10863 
10864 		scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL);
10865 		if (!scn) {
10866 			pr_debug("elf: failed to find symbol table ELF sections in '%s'\n",
10867 				 binary_path);
10868 			continue;
10869 		}
10870 		if (!gelf_getshdr(scn, &sh))
10871 			continue;
10872 		strtabidx = sh.sh_link;
10873 		symbols = elf_getdata(scn, 0);
10874 		if (!symbols) {
10875 			pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n",
10876 				binary_path, elf_errmsg(-1));
10877 			ret = -LIBBPF_ERRNO__FORMAT;
10878 			goto out;
10879 		}
10880 		nr_syms = symbols->d_size / sh.sh_entsize;
10881 
10882 		for (idx = 0; idx < nr_syms; idx++) {
10883 			int curr_bind;
10884 			GElf_Sym sym;
10885 			Elf_Scn *sym_scn;
10886 			GElf_Shdr sym_sh;
10887 
10888 			if (!gelf_getsym(symbols, idx, &sym))
10889 				continue;
10890 
10891 			if (GELF_ST_TYPE(sym.st_info) != STT_FUNC)
10892 				continue;
10893 
10894 			sname = elf_strptr(elf, strtabidx, sym.st_name);
10895 			if (!sname)
10896 				continue;
10897 
10898 			curr_bind = GELF_ST_BIND(sym.st_info);
10899 
10900 			/* User can specify func, func@@LIB or func@@LIB_VERSION. */
10901 			if (strncmp(sname, name, name_len) != 0)
10902 				continue;
10903 			/* ...but we don't want a search for "foo" to match 'foo2" also, so any
10904 			 * additional characters in sname should be of the form "@@LIB".
10905 			 */
10906 			if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@')
10907 				continue;
10908 
10909 			if (ret >= 0) {
10910 				/* handle multiple matches */
10911 				if (last_bind != STB_WEAK && curr_bind != STB_WEAK) {
10912 					/* Only accept one non-weak bind. */
10913 					pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n",
10914 						sname, name, binary_path);
10915 					ret = -LIBBPF_ERRNO__FORMAT;
10916 					goto out;
10917 				} else if (curr_bind == STB_WEAK) {
10918 					/* already have a non-weak bind, and
10919 					 * this is a weak bind, so ignore.
10920 					 */
10921 					continue;
10922 				}
10923 			}
10924 
10925 			/* Transform symbol's virtual address (absolute for
10926 			 * binaries and relative for shared libs) into file
10927 			 * offset, which is what kernel is expecting for
10928 			 * uprobe/uretprobe attachment.
10929 			 * See Documentation/trace/uprobetracer.rst for more
10930 			 * details.
10931 			 * This is done by looking up symbol's containing
10932 			 * section's header and using it's virtual address
10933 			 * (sh_addr) and corresponding file offset (sh_offset)
10934 			 * to transform sym.st_value (virtual address) into
10935 			 * desired final file offset.
10936 			 */
10937 			sym_scn = elf_getscn(elf, sym.st_shndx);
10938 			if (!sym_scn)
10939 				continue;
10940 			if (!gelf_getshdr(sym_scn, &sym_sh))
10941 				continue;
10942 
10943 			ret = sym.st_value - sym_sh.sh_addr + sym_sh.sh_offset;
10944 			last_bind = curr_bind;
10945 		}
10946 		if (ret > 0)
10947 			break;
10948 	}
10949 
10950 	if (ret > 0) {
10951 		pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path,
10952 			 ret);
10953 	} else {
10954 		if (ret == 0) {
10955 			pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path,
10956 				is_shared_lib ? "should not be 0 in a shared library" :
10957 						"try using shared library path instead");
10958 			ret = -ENOENT;
10959 		} else {
10960 			pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path);
10961 		}
10962 	}
10963 out:
10964 	return ret;
10965 }
10966 
10967 /* Find offset of function name in ELF object specified by path. "name" matches
10968  * symbol name or name@@LIB for library functions.
10969  */
10970 static long elf_find_func_offset_from_file(const char *binary_path, const char *name)
10971 {
10972 	char errmsg[STRERR_BUFSIZE];
10973 	long ret = -ENOENT;
10974 	Elf *elf;
10975 	int fd;
10976 
10977 	fd = open(binary_path, O_RDONLY | O_CLOEXEC);
10978 	if (fd < 0) {
10979 		ret = -errno;
10980 		pr_warn("failed to open %s: %s\n", binary_path,
10981 			libbpf_strerror_r(ret, errmsg, sizeof(errmsg)));
10982 		return ret;
10983 	}
10984 	elf = elf_begin(fd, ELF_C_READ_MMAP, NULL);
10985 	if (!elf) {
10986 		pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1));
10987 		close(fd);
10988 		return -LIBBPF_ERRNO__FORMAT;
10989 	}
10990 
10991 	ret = elf_find_func_offset(elf, binary_path, name);
10992 	elf_end(elf);
10993 	close(fd);
10994 	return ret;
10995 }
10996 
10997 /* Find offset of function name in archive specified by path. Currently
10998  * supported are .zip files that do not compress their contents, as used on
10999  * Android in the form of APKs, for example. "file_name" is the name of the ELF
11000  * file inside the archive. "func_name" matches symbol name or name@@LIB for
11001  * library functions.
11002  *
11003  * An overview of the APK format specifically provided here:
11004  * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents
11005  */
11006 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name,
11007 					      const char *func_name)
11008 {
11009 	struct zip_archive *archive;
11010 	struct zip_entry entry;
11011 	long ret;
11012 	Elf *elf;
11013 
11014 	archive = zip_archive_open(archive_path);
11015 	if (IS_ERR(archive)) {
11016 		ret = PTR_ERR(archive);
11017 		pr_warn("zip: failed to open %s: %ld\n", archive_path, ret);
11018 		return ret;
11019 	}
11020 
11021 	ret = zip_archive_find_entry(archive, file_name, &entry);
11022 	if (ret) {
11023 		pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name,
11024 			archive_path, ret);
11025 		goto out;
11026 	}
11027 	pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path,
11028 		 (unsigned long)entry.data_offset);
11029 
11030 	if (entry.compression) {
11031 		pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name,
11032 			archive_path);
11033 		ret = -LIBBPF_ERRNO__FORMAT;
11034 		goto out;
11035 	}
11036 
11037 	elf = elf_memory((void *)entry.data, entry.data_length);
11038 	if (!elf) {
11039 		pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path,
11040 			elf_errmsg(-1));
11041 		ret = -LIBBPF_ERRNO__LIBELF;
11042 		goto out;
11043 	}
11044 
11045 	ret = elf_find_func_offset(elf, file_name, func_name);
11046 	if (ret > 0) {
11047 		pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n",
11048 			 func_name, file_name, archive_path, entry.data_offset, ret,
11049 			 ret + entry.data_offset);
11050 		ret += entry.data_offset;
11051 	}
11052 	elf_end(elf);
11053 
11054 out:
11055 	zip_archive_close(archive);
11056 	return ret;
11057 }
11058 
11059 static const char *arch_specific_lib_paths(void)
11060 {
11061 	/*
11062 	 * Based on https://packages.debian.org/sid/libc6.
11063 	 *
11064 	 * Assume that the traced program is built for the same architecture
11065 	 * as libbpf, which should cover the vast majority of cases.
11066 	 */
11067 #if defined(__x86_64__)
11068 	return "/lib/x86_64-linux-gnu";
11069 #elif defined(__i386__)
11070 	return "/lib/i386-linux-gnu";
11071 #elif defined(__s390x__)
11072 	return "/lib/s390x-linux-gnu";
11073 #elif defined(__s390__)
11074 	return "/lib/s390-linux-gnu";
11075 #elif defined(__arm__) && defined(__SOFTFP__)
11076 	return "/lib/arm-linux-gnueabi";
11077 #elif defined(__arm__) && !defined(__SOFTFP__)
11078 	return "/lib/arm-linux-gnueabihf";
11079 #elif defined(__aarch64__)
11080 	return "/lib/aarch64-linux-gnu";
11081 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
11082 	return "/lib/mips64el-linux-gnuabi64";
11083 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
11084 	return "/lib/mipsel-linux-gnu";
11085 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
11086 	return "/lib/powerpc64le-linux-gnu";
11087 #elif defined(__sparc__) && defined(__arch64__)
11088 	return "/lib/sparc64-linux-gnu";
11089 #elif defined(__riscv) && __riscv_xlen == 64
11090 	return "/lib/riscv64-linux-gnu";
11091 #else
11092 	return NULL;
11093 #endif
11094 }
11095 
11096 /* Get full path to program/shared library. */
11097 static int resolve_full_path(const char *file, char *result, size_t result_sz)
11098 {
11099 	const char *search_paths[3] = {};
11100 	int i, perm;
11101 
11102 	if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
11103 		search_paths[0] = getenv("LD_LIBRARY_PATH");
11104 		search_paths[1] = "/usr/lib64:/usr/lib";
11105 		search_paths[2] = arch_specific_lib_paths();
11106 		perm = R_OK;
11107 	} else {
11108 		search_paths[0] = getenv("PATH");
11109 		search_paths[1] = "/usr/bin:/usr/sbin";
11110 		perm = R_OK | X_OK;
11111 	}
11112 
11113 	for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
11114 		const char *s;
11115 
11116 		if (!search_paths[i])
11117 			continue;
11118 		for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
11119 			char *next_path;
11120 			int seg_len;
11121 
11122 			if (s[0] == ':')
11123 				s++;
11124 			next_path = strchr(s, ':');
11125 			seg_len = next_path ? next_path - s : strlen(s);
11126 			if (!seg_len)
11127 				continue;
11128 			snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
11129 			/* ensure it has required permissions */
11130 			if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
11131 				continue;
11132 			pr_debug("resolved '%s' to '%s'\n", file, result);
11133 			return 0;
11134 		}
11135 	}
11136 	return -ENOENT;
11137 }
11138 
11139 LIBBPF_API struct bpf_link *
11140 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
11141 				const char *binary_path, size_t func_offset,
11142 				const struct bpf_uprobe_opts *opts)
11143 {
11144 	const char *archive_path = NULL, *archive_sep = NULL;
11145 	char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
11146 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11147 	enum probe_attach_mode attach_mode;
11148 	char full_path[PATH_MAX];
11149 	struct bpf_link *link;
11150 	size_t ref_ctr_off;
11151 	int pfd, err;
11152 	bool retprobe, legacy;
11153 	const char *func_name;
11154 
11155 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
11156 		return libbpf_err_ptr(-EINVAL);
11157 
11158 	attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11159 	retprobe = OPTS_GET(opts, retprobe, false);
11160 	ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
11161 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11162 
11163 	if (!binary_path)
11164 		return libbpf_err_ptr(-EINVAL);
11165 
11166 	/* Check if "binary_path" refers to an archive. */
11167 	archive_sep = strstr(binary_path, "!/");
11168 	if (archive_sep) {
11169 		full_path[0] = '\0';
11170 		libbpf_strlcpy(full_path, binary_path,
11171 			       min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1)));
11172 		archive_path = full_path;
11173 		binary_path = archive_sep + 2;
11174 	} else if (!strchr(binary_path, '/')) {
11175 		err = resolve_full_path(binary_path, full_path, sizeof(full_path));
11176 		if (err) {
11177 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11178 				prog->name, binary_path, err);
11179 			return libbpf_err_ptr(err);
11180 		}
11181 		binary_path = full_path;
11182 	}
11183 	func_name = OPTS_GET(opts, func_name, NULL);
11184 	if (func_name) {
11185 		long sym_off;
11186 
11187 		if (archive_path) {
11188 			sym_off = elf_find_func_offset_from_archive(archive_path, binary_path,
11189 								    func_name);
11190 			binary_path = archive_path;
11191 		} else {
11192 			sym_off = elf_find_func_offset_from_file(binary_path, func_name);
11193 		}
11194 		if (sym_off < 0)
11195 			return libbpf_err_ptr(sym_off);
11196 		func_offset += sym_off;
11197 	}
11198 
11199 	legacy = determine_uprobe_perf_type() < 0;
11200 	switch (attach_mode) {
11201 	case PROBE_ATTACH_MODE_LEGACY:
11202 		legacy = true;
11203 		pe_opts.force_ioctl_attach = true;
11204 		break;
11205 	case PROBE_ATTACH_MODE_PERF:
11206 		if (legacy)
11207 			return libbpf_err_ptr(-ENOTSUP);
11208 		pe_opts.force_ioctl_attach = true;
11209 		break;
11210 	case PROBE_ATTACH_MODE_LINK:
11211 		if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11212 			return libbpf_err_ptr(-ENOTSUP);
11213 		break;
11214 	case PROBE_ATTACH_MODE_DEFAULT:
11215 		break;
11216 	default:
11217 		return libbpf_err_ptr(-EINVAL);
11218 	}
11219 
11220 	if (!legacy) {
11221 		pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
11222 					    func_offset, pid, ref_ctr_off);
11223 	} else {
11224 		char probe_name[PATH_MAX + 64];
11225 
11226 		if (ref_ctr_off)
11227 			return libbpf_err_ptr(-EINVAL);
11228 
11229 		gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
11230 					     binary_path, func_offset);
11231 
11232 		legacy_probe = strdup(probe_name);
11233 		if (!legacy_probe)
11234 			return libbpf_err_ptr(-ENOMEM);
11235 
11236 		pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
11237 						    binary_path, func_offset, pid);
11238 	}
11239 	if (pfd < 0) {
11240 		err = -errno;
11241 		pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
11242 			prog->name, retprobe ? "uretprobe" : "uprobe",
11243 			binary_path, func_offset,
11244 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11245 		goto err_out;
11246 	}
11247 
11248 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11249 	err = libbpf_get_error(link);
11250 	if (err) {
11251 		close(pfd);
11252 		pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
11253 			prog->name, retprobe ? "uretprobe" : "uprobe",
11254 			binary_path, func_offset,
11255 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11256 		goto err_clean_legacy;
11257 	}
11258 	if (legacy) {
11259 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11260 
11261 		perf_link->legacy_probe_name = legacy_probe;
11262 		perf_link->legacy_is_kprobe = false;
11263 		perf_link->legacy_is_retprobe = retprobe;
11264 	}
11265 	return link;
11266 
11267 err_clean_legacy:
11268 	if (legacy)
11269 		remove_uprobe_event_legacy(legacy_probe, retprobe);
11270 err_out:
11271 	free(legacy_probe);
11272 	return libbpf_err_ptr(err);
11273 }
11274 
11275 /* Format of u[ret]probe section definition supporting auto-attach:
11276  * u[ret]probe/binary:function[+offset]
11277  *
11278  * binary can be an absolute/relative path or a filename; the latter is resolved to a
11279  * full binary path via bpf_program__attach_uprobe_opts.
11280  *
11281  * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
11282  * specified (and auto-attach is not possible) or the above format is specified for
11283  * auto-attach.
11284  */
11285 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11286 {
11287 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
11288 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11289 	int n, ret = -EINVAL;
11290 	long offset = 0;
11291 
11292 	*link = NULL;
11293 
11294 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li",
11295 		   &probe_type, &binary_path, &func_name, &offset);
11296 	switch (n) {
11297 	case 1:
11298 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11299 		ret = 0;
11300 		break;
11301 	case 2:
11302 		pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
11303 			prog->name, prog->sec_name);
11304 		break;
11305 	case 3:
11306 	case 4:
11307 		opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
11308 				strcmp(probe_type, "uretprobe.s") == 0;
11309 		if (opts.retprobe && offset != 0) {
11310 			pr_warn("prog '%s': uretprobes do not support offset specification\n",
11311 				prog->name);
11312 			break;
11313 		}
11314 		opts.func_name = func_name;
11315 		*link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
11316 		ret = libbpf_get_error(*link);
11317 		break;
11318 	default:
11319 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11320 			prog->sec_name);
11321 		break;
11322 	}
11323 	free(probe_type);
11324 	free(binary_path);
11325 	free(func_name);
11326 
11327 	return ret;
11328 }
11329 
11330 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
11331 					    bool retprobe, pid_t pid,
11332 					    const char *binary_path,
11333 					    size_t func_offset)
11334 {
11335 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
11336 
11337 	return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
11338 }
11339 
11340 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
11341 					  pid_t pid, const char *binary_path,
11342 					  const char *usdt_provider, const char *usdt_name,
11343 					  const struct bpf_usdt_opts *opts)
11344 {
11345 	char resolved_path[512];
11346 	struct bpf_object *obj = prog->obj;
11347 	struct bpf_link *link;
11348 	__u64 usdt_cookie;
11349 	int err;
11350 
11351 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
11352 		return libbpf_err_ptr(-EINVAL);
11353 
11354 	if (bpf_program__fd(prog) < 0) {
11355 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
11356 			prog->name);
11357 		return libbpf_err_ptr(-EINVAL);
11358 	}
11359 
11360 	if (!binary_path)
11361 		return libbpf_err_ptr(-EINVAL);
11362 
11363 	if (!strchr(binary_path, '/')) {
11364 		err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
11365 		if (err) {
11366 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11367 				prog->name, binary_path, err);
11368 			return libbpf_err_ptr(err);
11369 		}
11370 		binary_path = resolved_path;
11371 	}
11372 
11373 	/* USDT manager is instantiated lazily on first USDT attach. It will
11374 	 * be destroyed together with BPF object in bpf_object__close().
11375 	 */
11376 	if (IS_ERR(obj->usdt_man))
11377 		return libbpf_ptr(obj->usdt_man);
11378 	if (!obj->usdt_man) {
11379 		obj->usdt_man = usdt_manager_new(obj);
11380 		if (IS_ERR(obj->usdt_man))
11381 			return libbpf_ptr(obj->usdt_man);
11382 	}
11383 
11384 	usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
11385 	link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
11386 					usdt_provider, usdt_name, usdt_cookie);
11387 	err = libbpf_get_error(link);
11388 	if (err)
11389 		return libbpf_err_ptr(err);
11390 	return link;
11391 }
11392 
11393 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11394 {
11395 	char *path = NULL, *provider = NULL, *name = NULL;
11396 	const char *sec_name;
11397 	int n, err;
11398 
11399 	sec_name = bpf_program__section_name(prog);
11400 	if (strcmp(sec_name, "usdt") == 0) {
11401 		/* no auto-attach for just SEC("usdt") */
11402 		*link = NULL;
11403 		return 0;
11404 	}
11405 
11406 	n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
11407 	if (n != 3) {
11408 		pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
11409 			sec_name);
11410 		err = -EINVAL;
11411 	} else {
11412 		*link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
11413 						 provider, name, NULL);
11414 		err = libbpf_get_error(*link);
11415 	}
11416 	free(path);
11417 	free(provider);
11418 	free(name);
11419 	return err;
11420 }
11421 
11422 static int determine_tracepoint_id(const char *tp_category,
11423 				   const char *tp_name)
11424 {
11425 	char file[PATH_MAX];
11426 	int ret;
11427 
11428 	ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11429 		       tracefs_path(), tp_category, tp_name);
11430 	if (ret < 0)
11431 		return -errno;
11432 	if (ret >= sizeof(file)) {
11433 		pr_debug("tracepoint %s/%s path is too long\n",
11434 			 tp_category, tp_name);
11435 		return -E2BIG;
11436 	}
11437 	return parse_uint_from_file(file, "%d\n");
11438 }
11439 
11440 static int perf_event_open_tracepoint(const char *tp_category,
11441 				      const char *tp_name)
11442 {
11443 	const size_t attr_sz = sizeof(struct perf_event_attr);
11444 	struct perf_event_attr attr;
11445 	char errmsg[STRERR_BUFSIZE];
11446 	int tp_id, pfd, err;
11447 
11448 	tp_id = determine_tracepoint_id(tp_category, tp_name);
11449 	if (tp_id < 0) {
11450 		pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
11451 			tp_category, tp_name,
11452 			libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
11453 		return tp_id;
11454 	}
11455 
11456 	memset(&attr, 0, attr_sz);
11457 	attr.type = PERF_TYPE_TRACEPOINT;
11458 	attr.size = attr_sz;
11459 	attr.config = tp_id;
11460 
11461 	pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
11462 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11463 	if (pfd < 0) {
11464 		err = -errno;
11465 		pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
11466 			tp_category, tp_name,
11467 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11468 		return err;
11469 	}
11470 	return pfd;
11471 }
11472 
11473 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
11474 						     const char *tp_category,
11475 						     const char *tp_name,
11476 						     const struct bpf_tracepoint_opts *opts)
11477 {
11478 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11479 	char errmsg[STRERR_BUFSIZE];
11480 	struct bpf_link *link;
11481 	int pfd, err;
11482 
11483 	if (!OPTS_VALID(opts, bpf_tracepoint_opts))
11484 		return libbpf_err_ptr(-EINVAL);
11485 
11486 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11487 
11488 	pfd = perf_event_open_tracepoint(tp_category, tp_name);
11489 	if (pfd < 0) {
11490 		pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
11491 			prog->name, tp_category, tp_name,
11492 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11493 		return libbpf_err_ptr(pfd);
11494 	}
11495 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11496 	err = libbpf_get_error(link);
11497 	if (err) {
11498 		close(pfd);
11499 		pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
11500 			prog->name, tp_category, tp_name,
11501 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11502 		return libbpf_err_ptr(err);
11503 	}
11504 	return link;
11505 }
11506 
11507 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
11508 						const char *tp_category,
11509 						const char *tp_name)
11510 {
11511 	return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
11512 }
11513 
11514 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11515 {
11516 	char *sec_name, *tp_cat, *tp_name;
11517 
11518 	*link = NULL;
11519 
11520 	/* no auto-attach for SEC("tp") or SEC("tracepoint") */
11521 	if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
11522 		return 0;
11523 
11524 	sec_name = strdup(prog->sec_name);
11525 	if (!sec_name)
11526 		return -ENOMEM;
11527 
11528 	/* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
11529 	if (str_has_pfx(prog->sec_name, "tp/"))
11530 		tp_cat = sec_name + sizeof("tp/") - 1;
11531 	else
11532 		tp_cat = sec_name + sizeof("tracepoint/") - 1;
11533 	tp_name = strchr(tp_cat, '/');
11534 	if (!tp_name) {
11535 		free(sec_name);
11536 		return -EINVAL;
11537 	}
11538 	*tp_name = '\0';
11539 	tp_name++;
11540 
11541 	*link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
11542 	free(sec_name);
11543 	return libbpf_get_error(*link);
11544 }
11545 
11546 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
11547 						    const char *tp_name)
11548 {
11549 	char errmsg[STRERR_BUFSIZE];
11550 	struct bpf_link *link;
11551 	int prog_fd, pfd;
11552 
11553 	prog_fd = bpf_program__fd(prog);
11554 	if (prog_fd < 0) {
11555 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11556 		return libbpf_err_ptr(-EINVAL);
11557 	}
11558 
11559 	link = calloc(1, sizeof(*link));
11560 	if (!link)
11561 		return libbpf_err_ptr(-ENOMEM);
11562 	link->detach = &bpf_link__detach_fd;
11563 
11564 	pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
11565 	if (pfd < 0) {
11566 		pfd = -errno;
11567 		free(link);
11568 		pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
11569 			prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11570 		return libbpf_err_ptr(pfd);
11571 	}
11572 	link->fd = pfd;
11573 	return link;
11574 }
11575 
11576 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11577 {
11578 	static const char *const prefixes[] = {
11579 		"raw_tp",
11580 		"raw_tracepoint",
11581 		"raw_tp.w",
11582 		"raw_tracepoint.w",
11583 	};
11584 	size_t i;
11585 	const char *tp_name = NULL;
11586 
11587 	*link = NULL;
11588 
11589 	for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
11590 		size_t pfx_len;
11591 
11592 		if (!str_has_pfx(prog->sec_name, prefixes[i]))
11593 			continue;
11594 
11595 		pfx_len = strlen(prefixes[i]);
11596 		/* no auto-attach case of, e.g., SEC("raw_tp") */
11597 		if (prog->sec_name[pfx_len] == '\0')
11598 			return 0;
11599 
11600 		if (prog->sec_name[pfx_len] != '/')
11601 			continue;
11602 
11603 		tp_name = prog->sec_name + pfx_len + 1;
11604 		break;
11605 	}
11606 
11607 	if (!tp_name) {
11608 		pr_warn("prog '%s': invalid section name '%s'\n",
11609 			prog->name, prog->sec_name);
11610 		return -EINVAL;
11611 	}
11612 
11613 	*link = bpf_program__attach_raw_tracepoint(prog, tp_name);
11614 	return libbpf_get_error(*link);
11615 }
11616 
11617 /* Common logic for all BPF program types that attach to a btf_id */
11618 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
11619 						   const struct bpf_trace_opts *opts)
11620 {
11621 	LIBBPF_OPTS(bpf_link_create_opts, link_opts);
11622 	char errmsg[STRERR_BUFSIZE];
11623 	struct bpf_link *link;
11624 	int prog_fd, pfd;
11625 
11626 	if (!OPTS_VALID(opts, bpf_trace_opts))
11627 		return libbpf_err_ptr(-EINVAL);
11628 
11629 	prog_fd = bpf_program__fd(prog);
11630 	if (prog_fd < 0) {
11631 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11632 		return libbpf_err_ptr(-EINVAL);
11633 	}
11634 
11635 	link = calloc(1, sizeof(*link));
11636 	if (!link)
11637 		return libbpf_err_ptr(-ENOMEM);
11638 	link->detach = &bpf_link__detach_fd;
11639 
11640 	/* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
11641 	link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
11642 	pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
11643 	if (pfd < 0) {
11644 		pfd = -errno;
11645 		free(link);
11646 		pr_warn("prog '%s': failed to attach: %s\n",
11647 			prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11648 		return libbpf_err_ptr(pfd);
11649 	}
11650 	link->fd = pfd;
11651 	return link;
11652 }
11653 
11654 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
11655 {
11656 	return bpf_program__attach_btf_id(prog, NULL);
11657 }
11658 
11659 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
11660 						const struct bpf_trace_opts *opts)
11661 {
11662 	return bpf_program__attach_btf_id(prog, opts);
11663 }
11664 
11665 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
11666 {
11667 	return bpf_program__attach_btf_id(prog, NULL);
11668 }
11669 
11670 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11671 {
11672 	*link = bpf_program__attach_trace(prog);
11673 	return libbpf_get_error(*link);
11674 }
11675 
11676 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11677 {
11678 	*link = bpf_program__attach_lsm(prog);
11679 	return libbpf_get_error(*link);
11680 }
11681 
11682 static struct bpf_link *
11683 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id,
11684 		       const char *target_name)
11685 {
11686 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts,
11687 			    .target_btf_id = btf_id);
11688 	enum bpf_attach_type attach_type;
11689 	char errmsg[STRERR_BUFSIZE];
11690 	struct bpf_link *link;
11691 	int prog_fd, link_fd;
11692 
11693 	prog_fd = bpf_program__fd(prog);
11694 	if (prog_fd < 0) {
11695 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11696 		return libbpf_err_ptr(-EINVAL);
11697 	}
11698 
11699 	link = calloc(1, sizeof(*link));
11700 	if (!link)
11701 		return libbpf_err_ptr(-ENOMEM);
11702 	link->detach = &bpf_link__detach_fd;
11703 
11704 	attach_type = bpf_program__expected_attach_type(prog);
11705 	link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts);
11706 	if (link_fd < 0) {
11707 		link_fd = -errno;
11708 		free(link);
11709 		pr_warn("prog '%s': failed to attach to %s: %s\n",
11710 			prog->name, target_name,
11711 			libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11712 		return libbpf_err_ptr(link_fd);
11713 	}
11714 	link->fd = link_fd;
11715 	return link;
11716 }
11717 
11718 struct bpf_link *
11719 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
11720 {
11721 	return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup");
11722 }
11723 
11724 struct bpf_link *
11725 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
11726 {
11727 	return bpf_program__attach_fd(prog, netns_fd, 0, "netns");
11728 }
11729 
11730 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
11731 {
11732 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
11733 	return bpf_program__attach_fd(prog, ifindex, 0, "xdp");
11734 }
11735 
11736 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
11737 					      int target_fd,
11738 					      const char *attach_func_name)
11739 {
11740 	int btf_id;
11741 
11742 	if (!!target_fd != !!attach_func_name) {
11743 		pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
11744 			prog->name);
11745 		return libbpf_err_ptr(-EINVAL);
11746 	}
11747 
11748 	if (prog->type != BPF_PROG_TYPE_EXT) {
11749 		pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
11750 			prog->name);
11751 		return libbpf_err_ptr(-EINVAL);
11752 	}
11753 
11754 	if (target_fd) {
11755 		btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
11756 		if (btf_id < 0)
11757 			return libbpf_err_ptr(btf_id);
11758 
11759 		return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace");
11760 	} else {
11761 		/* no target, so use raw_tracepoint_open for compatibility
11762 		 * with old kernels
11763 		 */
11764 		return bpf_program__attach_trace(prog);
11765 	}
11766 }
11767 
11768 struct bpf_link *
11769 bpf_program__attach_iter(const struct bpf_program *prog,
11770 			 const struct bpf_iter_attach_opts *opts)
11771 {
11772 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
11773 	char errmsg[STRERR_BUFSIZE];
11774 	struct bpf_link *link;
11775 	int prog_fd, link_fd;
11776 	__u32 target_fd = 0;
11777 
11778 	if (!OPTS_VALID(opts, bpf_iter_attach_opts))
11779 		return libbpf_err_ptr(-EINVAL);
11780 
11781 	link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
11782 	link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
11783 
11784 	prog_fd = bpf_program__fd(prog);
11785 	if (prog_fd < 0) {
11786 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11787 		return libbpf_err_ptr(-EINVAL);
11788 	}
11789 
11790 	link = calloc(1, sizeof(*link));
11791 	if (!link)
11792 		return libbpf_err_ptr(-ENOMEM);
11793 	link->detach = &bpf_link__detach_fd;
11794 
11795 	link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
11796 				  &link_create_opts);
11797 	if (link_fd < 0) {
11798 		link_fd = -errno;
11799 		free(link);
11800 		pr_warn("prog '%s': failed to attach to iterator: %s\n",
11801 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11802 		return libbpf_err_ptr(link_fd);
11803 	}
11804 	link->fd = link_fd;
11805 	return link;
11806 }
11807 
11808 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11809 {
11810 	*link = bpf_program__attach_iter(prog, NULL);
11811 	return libbpf_get_error(*link);
11812 }
11813 
11814 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
11815 {
11816 	struct bpf_link *link = NULL;
11817 	int err;
11818 
11819 	if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
11820 		return libbpf_err_ptr(-EOPNOTSUPP);
11821 
11822 	err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
11823 	if (err)
11824 		return libbpf_err_ptr(err);
11825 
11826 	/* When calling bpf_program__attach() explicitly, auto-attach support
11827 	 * is expected to work, so NULL returned link is considered an error.
11828 	 * This is different for skeleton's attach, see comment in
11829 	 * bpf_object__attach_skeleton().
11830 	 */
11831 	if (!link)
11832 		return libbpf_err_ptr(-EOPNOTSUPP);
11833 
11834 	return link;
11835 }
11836 
11837 struct bpf_link_struct_ops {
11838 	struct bpf_link link;
11839 	int map_fd;
11840 };
11841 
11842 static int bpf_link__detach_struct_ops(struct bpf_link *link)
11843 {
11844 	struct bpf_link_struct_ops *st_link;
11845 	__u32 zero = 0;
11846 
11847 	st_link = container_of(link, struct bpf_link_struct_ops, link);
11848 
11849 	if (st_link->map_fd < 0)
11850 		/* w/o a real link */
11851 		return bpf_map_delete_elem(link->fd, &zero);
11852 
11853 	return close(link->fd);
11854 }
11855 
11856 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
11857 {
11858 	struct bpf_link_struct_ops *link;
11859 	__u32 zero = 0;
11860 	int err, fd;
11861 
11862 	if (!bpf_map__is_struct_ops(map) || map->fd == -1)
11863 		return libbpf_err_ptr(-EINVAL);
11864 
11865 	link = calloc(1, sizeof(*link));
11866 	if (!link)
11867 		return libbpf_err_ptr(-EINVAL);
11868 
11869 	/* kern_vdata should be prepared during the loading phase. */
11870 	err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
11871 	/* It can be EBUSY if the map has been used to create or
11872 	 * update a link before.  We don't allow updating the value of
11873 	 * a struct_ops once it is set.  That ensures that the value
11874 	 * never changed.  So, it is safe to skip EBUSY.
11875 	 */
11876 	if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) {
11877 		free(link);
11878 		return libbpf_err_ptr(err);
11879 	}
11880 
11881 	link->link.detach = bpf_link__detach_struct_ops;
11882 
11883 	if (!(map->def.map_flags & BPF_F_LINK)) {
11884 		/* w/o a real link */
11885 		link->link.fd = map->fd;
11886 		link->map_fd = -1;
11887 		return &link->link;
11888 	}
11889 
11890 	fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL);
11891 	if (fd < 0) {
11892 		free(link);
11893 		return libbpf_err_ptr(fd);
11894 	}
11895 
11896 	link->link.fd = fd;
11897 	link->map_fd = map->fd;
11898 
11899 	return &link->link;
11900 }
11901 
11902 /*
11903  * Swap the back struct_ops of a link with a new struct_ops map.
11904  */
11905 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map)
11906 {
11907 	struct bpf_link_struct_ops *st_ops_link;
11908 	__u32 zero = 0;
11909 	int err;
11910 
11911 	if (!bpf_map__is_struct_ops(map) || map->fd < 0)
11912 		return -EINVAL;
11913 
11914 	st_ops_link = container_of(link, struct bpf_link_struct_ops, link);
11915 	/* Ensure the type of a link is correct */
11916 	if (st_ops_link->map_fd < 0)
11917 		return -EINVAL;
11918 
11919 	err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
11920 	/* It can be EBUSY if the map has been used to create or
11921 	 * update a link before.  We don't allow updating the value of
11922 	 * a struct_ops once it is set.  That ensures that the value
11923 	 * never changed.  So, it is safe to skip EBUSY.
11924 	 */
11925 	if (err && err != -EBUSY)
11926 		return err;
11927 
11928 	err = bpf_link_update(link->fd, map->fd, NULL);
11929 	if (err < 0)
11930 		return err;
11931 
11932 	st_ops_link->map_fd = map->fd;
11933 
11934 	return 0;
11935 }
11936 
11937 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
11938 							  void *private_data);
11939 
11940 static enum bpf_perf_event_ret
11941 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
11942 		       void **copy_mem, size_t *copy_size,
11943 		       bpf_perf_event_print_t fn, void *private_data)
11944 {
11945 	struct perf_event_mmap_page *header = mmap_mem;
11946 	__u64 data_head = ring_buffer_read_head(header);
11947 	__u64 data_tail = header->data_tail;
11948 	void *base = ((__u8 *)header) + page_size;
11949 	int ret = LIBBPF_PERF_EVENT_CONT;
11950 	struct perf_event_header *ehdr;
11951 	size_t ehdr_size;
11952 
11953 	while (data_head != data_tail) {
11954 		ehdr = base + (data_tail & (mmap_size - 1));
11955 		ehdr_size = ehdr->size;
11956 
11957 		if (((void *)ehdr) + ehdr_size > base + mmap_size) {
11958 			void *copy_start = ehdr;
11959 			size_t len_first = base + mmap_size - copy_start;
11960 			size_t len_secnd = ehdr_size - len_first;
11961 
11962 			if (*copy_size < ehdr_size) {
11963 				free(*copy_mem);
11964 				*copy_mem = malloc(ehdr_size);
11965 				if (!*copy_mem) {
11966 					*copy_size = 0;
11967 					ret = LIBBPF_PERF_EVENT_ERROR;
11968 					break;
11969 				}
11970 				*copy_size = ehdr_size;
11971 			}
11972 
11973 			memcpy(*copy_mem, copy_start, len_first);
11974 			memcpy(*copy_mem + len_first, base, len_secnd);
11975 			ehdr = *copy_mem;
11976 		}
11977 
11978 		ret = fn(ehdr, private_data);
11979 		data_tail += ehdr_size;
11980 		if (ret != LIBBPF_PERF_EVENT_CONT)
11981 			break;
11982 	}
11983 
11984 	ring_buffer_write_tail(header, data_tail);
11985 	return libbpf_err(ret);
11986 }
11987 
11988 struct perf_buffer;
11989 
11990 struct perf_buffer_params {
11991 	struct perf_event_attr *attr;
11992 	/* if event_cb is specified, it takes precendence */
11993 	perf_buffer_event_fn event_cb;
11994 	/* sample_cb and lost_cb are higher-level common-case callbacks */
11995 	perf_buffer_sample_fn sample_cb;
11996 	perf_buffer_lost_fn lost_cb;
11997 	void *ctx;
11998 	int cpu_cnt;
11999 	int *cpus;
12000 	int *map_keys;
12001 };
12002 
12003 struct perf_cpu_buf {
12004 	struct perf_buffer *pb;
12005 	void *base; /* mmap()'ed memory */
12006 	void *buf; /* for reconstructing segmented data */
12007 	size_t buf_size;
12008 	int fd;
12009 	int cpu;
12010 	int map_key;
12011 };
12012 
12013 struct perf_buffer {
12014 	perf_buffer_event_fn event_cb;
12015 	perf_buffer_sample_fn sample_cb;
12016 	perf_buffer_lost_fn lost_cb;
12017 	void *ctx; /* passed into callbacks */
12018 
12019 	size_t page_size;
12020 	size_t mmap_size;
12021 	struct perf_cpu_buf **cpu_bufs;
12022 	struct epoll_event *events;
12023 	int cpu_cnt; /* number of allocated CPU buffers */
12024 	int epoll_fd; /* perf event FD */
12025 	int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
12026 };
12027 
12028 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
12029 				      struct perf_cpu_buf *cpu_buf)
12030 {
12031 	if (!cpu_buf)
12032 		return;
12033 	if (cpu_buf->base &&
12034 	    munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
12035 		pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
12036 	if (cpu_buf->fd >= 0) {
12037 		ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
12038 		close(cpu_buf->fd);
12039 	}
12040 	free(cpu_buf->buf);
12041 	free(cpu_buf);
12042 }
12043 
12044 void perf_buffer__free(struct perf_buffer *pb)
12045 {
12046 	int i;
12047 
12048 	if (IS_ERR_OR_NULL(pb))
12049 		return;
12050 	if (pb->cpu_bufs) {
12051 		for (i = 0; i < pb->cpu_cnt; i++) {
12052 			struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12053 
12054 			if (!cpu_buf)
12055 				continue;
12056 
12057 			bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
12058 			perf_buffer__free_cpu_buf(pb, cpu_buf);
12059 		}
12060 		free(pb->cpu_bufs);
12061 	}
12062 	if (pb->epoll_fd >= 0)
12063 		close(pb->epoll_fd);
12064 	free(pb->events);
12065 	free(pb);
12066 }
12067 
12068 static struct perf_cpu_buf *
12069 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
12070 			  int cpu, int map_key)
12071 {
12072 	struct perf_cpu_buf *cpu_buf;
12073 	char msg[STRERR_BUFSIZE];
12074 	int err;
12075 
12076 	cpu_buf = calloc(1, sizeof(*cpu_buf));
12077 	if (!cpu_buf)
12078 		return ERR_PTR(-ENOMEM);
12079 
12080 	cpu_buf->pb = pb;
12081 	cpu_buf->cpu = cpu;
12082 	cpu_buf->map_key = map_key;
12083 
12084 	cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
12085 			      -1, PERF_FLAG_FD_CLOEXEC);
12086 	if (cpu_buf->fd < 0) {
12087 		err = -errno;
12088 		pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
12089 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12090 		goto error;
12091 	}
12092 
12093 	cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
12094 			     PROT_READ | PROT_WRITE, MAP_SHARED,
12095 			     cpu_buf->fd, 0);
12096 	if (cpu_buf->base == MAP_FAILED) {
12097 		cpu_buf->base = NULL;
12098 		err = -errno;
12099 		pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
12100 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12101 		goto error;
12102 	}
12103 
12104 	if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
12105 		err = -errno;
12106 		pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
12107 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12108 		goto error;
12109 	}
12110 
12111 	return cpu_buf;
12112 
12113 error:
12114 	perf_buffer__free_cpu_buf(pb, cpu_buf);
12115 	return (struct perf_cpu_buf *)ERR_PTR(err);
12116 }
12117 
12118 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
12119 					      struct perf_buffer_params *p);
12120 
12121 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
12122 				     perf_buffer_sample_fn sample_cb,
12123 				     perf_buffer_lost_fn lost_cb,
12124 				     void *ctx,
12125 				     const struct perf_buffer_opts *opts)
12126 {
12127 	const size_t attr_sz = sizeof(struct perf_event_attr);
12128 	struct perf_buffer_params p = {};
12129 	struct perf_event_attr attr;
12130 	__u32 sample_period;
12131 
12132 	if (!OPTS_VALID(opts, perf_buffer_opts))
12133 		return libbpf_err_ptr(-EINVAL);
12134 
12135 	sample_period = OPTS_GET(opts, sample_period, 1);
12136 	if (!sample_period)
12137 		sample_period = 1;
12138 
12139 	memset(&attr, 0, attr_sz);
12140 	attr.size = attr_sz;
12141 	attr.config = PERF_COUNT_SW_BPF_OUTPUT;
12142 	attr.type = PERF_TYPE_SOFTWARE;
12143 	attr.sample_type = PERF_SAMPLE_RAW;
12144 	attr.sample_period = sample_period;
12145 	attr.wakeup_events = sample_period;
12146 
12147 	p.attr = &attr;
12148 	p.sample_cb = sample_cb;
12149 	p.lost_cb = lost_cb;
12150 	p.ctx = ctx;
12151 
12152 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
12153 }
12154 
12155 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
12156 					 struct perf_event_attr *attr,
12157 					 perf_buffer_event_fn event_cb, void *ctx,
12158 					 const struct perf_buffer_raw_opts *opts)
12159 {
12160 	struct perf_buffer_params p = {};
12161 
12162 	if (!attr)
12163 		return libbpf_err_ptr(-EINVAL);
12164 
12165 	if (!OPTS_VALID(opts, perf_buffer_raw_opts))
12166 		return libbpf_err_ptr(-EINVAL);
12167 
12168 	p.attr = attr;
12169 	p.event_cb = event_cb;
12170 	p.ctx = ctx;
12171 	p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
12172 	p.cpus = OPTS_GET(opts, cpus, NULL);
12173 	p.map_keys = OPTS_GET(opts, map_keys, NULL);
12174 
12175 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
12176 }
12177 
12178 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
12179 					      struct perf_buffer_params *p)
12180 {
12181 	const char *online_cpus_file = "/sys/devices/system/cpu/online";
12182 	struct bpf_map_info map;
12183 	char msg[STRERR_BUFSIZE];
12184 	struct perf_buffer *pb;
12185 	bool *online = NULL;
12186 	__u32 map_info_len;
12187 	int err, i, j, n;
12188 
12189 	if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
12190 		pr_warn("page count should be power of two, but is %zu\n",
12191 			page_cnt);
12192 		return ERR_PTR(-EINVAL);
12193 	}
12194 
12195 	/* best-effort sanity checks */
12196 	memset(&map, 0, sizeof(map));
12197 	map_info_len = sizeof(map);
12198 	err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len);
12199 	if (err) {
12200 		err = -errno;
12201 		/* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
12202 		 * -EBADFD, -EFAULT, or -E2BIG on real error
12203 		 */
12204 		if (err != -EINVAL) {
12205 			pr_warn("failed to get map info for map FD %d: %s\n",
12206 				map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
12207 			return ERR_PTR(err);
12208 		}
12209 		pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
12210 			 map_fd);
12211 	} else {
12212 		if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
12213 			pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
12214 				map.name);
12215 			return ERR_PTR(-EINVAL);
12216 		}
12217 	}
12218 
12219 	pb = calloc(1, sizeof(*pb));
12220 	if (!pb)
12221 		return ERR_PTR(-ENOMEM);
12222 
12223 	pb->event_cb = p->event_cb;
12224 	pb->sample_cb = p->sample_cb;
12225 	pb->lost_cb = p->lost_cb;
12226 	pb->ctx = p->ctx;
12227 
12228 	pb->page_size = getpagesize();
12229 	pb->mmap_size = pb->page_size * page_cnt;
12230 	pb->map_fd = map_fd;
12231 
12232 	pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
12233 	if (pb->epoll_fd < 0) {
12234 		err = -errno;
12235 		pr_warn("failed to create epoll instance: %s\n",
12236 			libbpf_strerror_r(err, msg, sizeof(msg)));
12237 		goto error;
12238 	}
12239 
12240 	if (p->cpu_cnt > 0) {
12241 		pb->cpu_cnt = p->cpu_cnt;
12242 	} else {
12243 		pb->cpu_cnt = libbpf_num_possible_cpus();
12244 		if (pb->cpu_cnt < 0) {
12245 			err = pb->cpu_cnt;
12246 			goto error;
12247 		}
12248 		if (map.max_entries && map.max_entries < pb->cpu_cnt)
12249 			pb->cpu_cnt = map.max_entries;
12250 	}
12251 
12252 	pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
12253 	if (!pb->events) {
12254 		err = -ENOMEM;
12255 		pr_warn("failed to allocate events: out of memory\n");
12256 		goto error;
12257 	}
12258 	pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
12259 	if (!pb->cpu_bufs) {
12260 		err = -ENOMEM;
12261 		pr_warn("failed to allocate buffers: out of memory\n");
12262 		goto error;
12263 	}
12264 
12265 	err = parse_cpu_mask_file(online_cpus_file, &online, &n);
12266 	if (err) {
12267 		pr_warn("failed to get online CPU mask: %d\n", err);
12268 		goto error;
12269 	}
12270 
12271 	for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
12272 		struct perf_cpu_buf *cpu_buf;
12273 		int cpu, map_key;
12274 
12275 		cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
12276 		map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
12277 
12278 		/* in case user didn't explicitly requested particular CPUs to
12279 		 * be attached to, skip offline/not present CPUs
12280 		 */
12281 		if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
12282 			continue;
12283 
12284 		cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
12285 		if (IS_ERR(cpu_buf)) {
12286 			err = PTR_ERR(cpu_buf);
12287 			goto error;
12288 		}
12289 
12290 		pb->cpu_bufs[j] = cpu_buf;
12291 
12292 		err = bpf_map_update_elem(pb->map_fd, &map_key,
12293 					  &cpu_buf->fd, 0);
12294 		if (err) {
12295 			err = -errno;
12296 			pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
12297 				cpu, map_key, cpu_buf->fd,
12298 				libbpf_strerror_r(err, msg, sizeof(msg)));
12299 			goto error;
12300 		}
12301 
12302 		pb->events[j].events = EPOLLIN;
12303 		pb->events[j].data.ptr = cpu_buf;
12304 		if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
12305 			      &pb->events[j]) < 0) {
12306 			err = -errno;
12307 			pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
12308 				cpu, cpu_buf->fd,
12309 				libbpf_strerror_r(err, msg, sizeof(msg)));
12310 			goto error;
12311 		}
12312 		j++;
12313 	}
12314 	pb->cpu_cnt = j;
12315 	free(online);
12316 
12317 	return pb;
12318 
12319 error:
12320 	free(online);
12321 	if (pb)
12322 		perf_buffer__free(pb);
12323 	return ERR_PTR(err);
12324 }
12325 
12326 struct perf_sample_raw {
12327 	struct perf_event_header header;
12328 	uint32_t size;
12329 	char data[];
12330 };
12331 
12332 struct perf_sample_lost {
12333 	struct perf_event_header header;
12334 	uint64_t id;
12335 	uint64_t lost;
12336 	uint64_t sample_id;
12337 };
12338 
12339 static enum bpf_perf_event_ret
12340 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
12341 {
12342 	struct perf_cpu_buf *cpu_buf = ctx;
12343 	struct perf_buffer *pb = cpu_buf->pb;
12344 	void *data = e;
12345 
12346 	/* user wants full control over parsing perf event */
12347 	if (pb->event_cb)
12348 		return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
12349 
12350 	switch (e->type) {
12351 	case PERF_RECORD_SAMPLE: {
12352 		struct perf_sample_raw *s = data;
12353 
12354 		if (pb->sample_cb)
12355 			pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
12356 		break;
12357 	}
12358 	case PERF_RECORD_LOST: {
12359 		struct perf_sample_lost *s = data;
12360 
12361 		if (pb->lost_cb)
12362 			pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
12363 		break;
12364 	}
12365 	default:
12366 		pr_warn("unknown perf sample type %d\n", e->type);
12367 		return LIBBPF_PERF_EVENT_ERROR;
12368 	}
12369 	return LIBBPF_PERF_EVENT_CONT;
12370 }
12371 
12372 static int perf_buffer__process_records(struct perf_buffer *pb,
12373 					struct perf_cpu_buf *cpu_buf)
12374 {
12375 	enum bpf_perf_event_ret ret;
12376 
12377 	ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
12378 				     pb->page_size, &cpu_buf->buf,
12379 				     &cpu_buf->buf_size,
12380 				     perf_buffer__process_record, cpu_buf);
12381 	if (ret != LIBBPF_PERF_EVENT_CONT)
12382 		return ret;
12383 	return 0;
12384 }
12385 
12386 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
12387 {
12388 	return pb->epoll_fd;
12389 }
12390 
12391 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
12392 {
12393 	int i, cnt, err;
12394 
12395 	cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
12396 	if (cnt < 0)
12397 		return -errno;
12398 
12399 	for (i = 0; i < cnt; i++) {
12400 		struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
12401 
12402 		err = perf_buffer__process_records(pb, cpu_buf);
12403 		if (err) {
12404 			pr_warn("error while processing records: %d\n", err);
12405 			return libbpf_err(err);
12406 		}
12407 	}
12408 	return cnt;
12409 }
12410 
12411 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
12412  * manager.
12413  */
12414 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
12415 {
12416 	return pb->cpu_cnt;
12417 }
12418 
12419 /*
12420  * Return perf_event FD of a ring buffer in *buf_idx* slot of
12421  * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
12422  * select()/poll()/epoll() Linux syscalls.
12423  */
12424 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
12425 {
12426 	struct perf_cpu_buf *cpu_buf;
12427 
12428 	if (buf_idx >= pb->cpu_cnt)
12429 		return libbpf_err(-EINVAL);
12430 
12431 	cpu_buf = pb->cpu_bufs[buf_idx];
12432 	if (!cpu_buf)
12433 		return libbpf_err(-ENOENT);
12434 
12435 	return cpu_buf->fd;
12436 }
12437 
12438 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
12439 {
12440 	struct perf_cpu_buf *cpu_buf;
12441 
12442 	if (buf_idx >= pb->cpu_cnt)
12443 		return libbpf_err(-EINVAL);
12444 
12445 	cpu_buf = pb->cpu_bufs[buf_idx];
12446 	if (!cpu_buf)
12447 		return libbpf_err(-ENOENT);
12448 
12449 	*buf = cpu_buf->base;
12450 	*buf_size = pb->mmap_size;
12451 	return 0;
12452 }
12453 
12454 /*
12455  * Consume data from perf ring buffer corresponding to slot *buf_idx* in
12456  * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
12457  * consume, do nothing and return success.
12458  * Returns:
12459  *   - 0 on success;
12460  *   - <0 on failure.
12461  */
12462 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
12463 {
12464 	struct perf_cpu_buf *cpu_buf;
12465 
12466 	if (buf_idx >= pb->cpu_cnt)
12467 		return libbpf_err(-EINVAL);
12468 
12469 	cpu_buf = pb->cpu_bufs[buf_idx];
12470 	if (!cpu_buf)
12471 		return libbpf_err(-ENOENT);
12472 
12473 	return perf_buffer__process_records(pb, cpu_buf);
12474 }
12475 
12476 int perf_buffer__consume(struct perf_buffer *pb)
12477 {
12478 	int i, err;
12479 
12480 	for (i = 0; i < pb->cpu_cnt; i++) {
12481 		struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12482 
12483 		if (!cpu_buf)
12484 			continue;
12485 
12486 		err = perf_buffer__process_records(pb, cpu_buf);
12487 		if (err) {
12488 			pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
12489 			return libbpf_err(err);
12490 		}
12491 	}
12492 	return 0;
12493 }
12494 
12495 int bpf_program__set_attach_target(struct bpf_program *prog,
12496 				   int attach_prog_fd,
12497 				   const char *attach_func_name)
12498 {
12499 	int btf_obj_fd = 0, btf_id = 0, err;
12500 
12501 	if (!prog || attach_prog_fd < 0)
12502 		return libbpf_err(-EINVAL);
12503 
12504 	if (prog->obj->loaded)
12505 		return libbpf_err(-EINVAL);
12506 
12507 	if (attach_prog_fd && !attach_func_name) {
12508 		/* remember attach_prog_fd and let bpf_program__load() find
12509 		 * BTF ID during the program load
12510 		 */
12511 		prog->attach_prog_fd = attach_prog_fd;
12512 		return 0;
12513 	}
12514 
12515 	if (attach_prog_fd) {
12516 		btf_id = libbpf_find_prog_btf_id(attach_func_name,
12517 						 attach_prog_fd);
12518 		if (btf_id < 0)
12519 			return libbpf_err(btf_id);
12520 	} else {
12521 		if (!attach_func_name)
12522 			return libbpf_err(-EINVAL);
12523 
12524 		/* load btf_vmlinux, if not yet */
12525 		err = bpf_object__load_vmlinux_btf(prog->obj, true);
12526 		if (err)
12527 			return libbpf_err(err);
12528 		err = find_kernel_btf_id(prog->obj, attach_func_name,
12529 					 prog->expected_attach_type,
12530 					 &btf_obj_fd, &btf_id);
12531 		if (err)
12532 			return libbpf_err(err);
12533 	}
12534 
12535 	prog->attach_btf_id = btf_id;
12536 	prog->attach_btf_obj_fd = btf_obj_fd;
12537 	prog->attach_prog_fd = attach_prog_fd;
12538 	return 0;
12539 }
12540 
12541 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
12542 {
12543 	int err = 0, n, len, start, end = -1;
12544 	bool *tmp;
12545 
12546 	*mask = NULL;
12547 	*mask_sz = 0;
12548 
12549 	/* Each sub string separated by ',' has format \d+-\d+ or \d+ */
12550 	while (*s) {
12551 		if (*s == ',' || *s == '\n') {
12552 			s++;
12553 			continue;
12554 		}
12555 		n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
12556 		if (n <= 0 || n > 2) {
12557 			pr_warn("Failed to get CPU range %s: %d\n", s, n);
12558 			err = -EINVAL;
12559 			goto cleanup;
12560 		} else if (n == 1) {
12561 			end = start;
12562 		}
12563 		if (start < 0 || start > end) {
12564 			pr_warn("Invalid CPU range [%d,%d] in %s\n",
12565 				start, end, s);
12566 			err = -EINVAL;
12567 			goto cleanup;
12568 		}
12569 		tmp = realloc(*mask, end + 1);
12570 		if (!tmp) {
12571 			err = -ENOMEM;
12572 			goto cleanup;
12573 		}
12574 		*mask = tmp;
12575 		memset(tmp + *mask_sz, 0, start - *mask_sz);
12576 		memset(tmp + start, 1, end - start + 1);
12577 		*mask_sz = end + 1;
12578 		s += len;
12579 	}
12580 	if (!*mask_sz) {
12581 		pr_warn("Empty CPU range\n");
12582 		return -EINVAL;
12583 	}
12584 	return 0;
12585 cleanup:
12586 	free(*mask);
12587 	*mask = NULL;
12588 	return err;
12589 }
12590 
12591 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
12592 {
12593 	int fd, err = 0, len;
12594 	char buf[128];
12595 
12596 	fd = open(fcpu, O_RDONLY | O_CLOEXEC);
12597 	if (fd < 0) {
12598 		err = -errno;
12599 		pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
12600 		return err;
12601 	}
12602 	len = read(fd, buf, sizeof(buf));
12603 	close(fd);
12604 	if (len <= 0) {
12605 		err = len ? -errno : -EINVAL;
12606 		pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
12607 		return err;
12608 	}
12609 	if (len >= sizeof(buf)) {
12610 		pr_warn("CPU mask is too big in file %s\n", fcpu);
12611 		return -E2BIG;
12612 	}
12613 	buf[len] = '\0';
12614 
12615 	return parse_cpu_mask_str(buf, mask, mask_sz);
12616 }
12617 
12618 int libbpf_num_possible_cpus(void)
12619 {
12620 	static const char *fcpu = "/sys/devices/system/cpu/possible";
12621 	static int cpus;
12622 	int err, n, i, tmp_cpus;
12623 	bool *mask;
12624 
12625 	tmp_cpus = READ_ONCE(cpus);
12626 	if (tmp_cpus > 0)
12627 		return tmp_cpus;
12628 
12629 	err = parse_cpu_mask_file(fcpu, &mask, &n);
12630 	if (err)
12631 		return libbpf_err(err);
12632 
12633 	tmp_cpus = 0;
12634 	for (i = 0; i < n; i++) {
12635 		if (mask[i])
12636 			tmp_cpus++;
12637 	}
12638 	free(mask);
12639 
12640 	WRITE_ONCE(cpus, tmp_cpus);
12641 	return tmp_cpus;
12642 }
12643 
12644 static int populate_skeleton_maps(const struct bpf_object *obj,
12645 				  struct bpf_map_skeleton *maps,
12646 				  size_t map_cnt)
12647 {
12648 	int i;
12649 
12650 	for (i = 0; i < map_cnt; i++) {
12651 		struct bpf_map **map = maps[i].map;
12652 		const char *name = maps[i].name;
12653 		void **mmaped = maps[i].mmaped;
12654 
12655 		*map = bpf_object__find_map_by_name(obj, name);
12656 		if (!*map) {
12657 			pr_warn("failed to find skeleton map '%s'\n", name);
12658 			return -ESRCH;
12659 		}
12660 
12661 		/* externs shouldn't be pre-setup from user code */
12662 		if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
12663 			*mmaped = (*map)->mmaped;
12664 	}
12665 	return 0;
12666 }
12667 
12668 static int populate_skeleton_progs(const struct bpf_object *obj,
12669 				   struct bpf_prog_skeleton *progs,
12670 				   size_t prog_cnt)
12671 {
12672 	int i;
12673 
12674 	for (i = 0; i < prog_cnt; i++) {
12675 		struct bpf_program **prog = progs[i].prog;
12676 		const char *name = progs[i].name;
12677 
12678 		*prog = bpf_object__find_program_by_name(obj, name);
12679 		if (!*prog) {
12680 			pr_warn("failed to find skeleton program '%s'\n", name);
12681 			return -ESRCH;
12682 		}
12683 	}
12684 	return 0;
12685 }
12686 
12687 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
12688 			      const struct bpf_object_open_opts *opts)
12689 {
12690 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
12691 		.object_name = s->name,
12692 	);
12693 	struct bpf_object *obj;
12694 	int err;
12695 
12696 	/* Attempt to preserve opts->object_name, unless overriden by user
12697 	 * explicitly. Overwriting object name for skeletons is discouraged,
12698 	 * as it breaks global data maps, because they contain object name
12699 	 * prefix as their own map name prefix. When skeleton is generated,
12700 	 * bpftool is making an assumption that this name will stay the same.
12701 	 */
12702 	if (opts) {
12703 		memcpy(&skel_opts, opts, sizeof(*opts));
12704 		if (!opts->object_name)
12705 			skel_opts.object_name = s->name;
12706 	}
12707 
12708 	obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
12709 	err = libbpf_get_error(obj);
12710 	if (err) {
12711 		pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
12712 			s->name, err);
12713 		return libbpf_err(err);
12714 	}
12715 
12716 	*s->obj = obj;
12717 	err = populate_skeleton_maps(obj, s->maps, s->map_cnt);
12718 	if (err) {
12719 		pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
12720 		return libbpf_err(err);
12721 	}
12722 
12723 	err = populate_skeleton_progs(obj, s->progs, s->prog_cnt);
12724 	if (err) {
12725 		pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
12726 		return libbpf_err(err);
12727 	}
12728 
12729 	return 0;
12730 }
12731 
12732 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
12733 {
12734 	int err, len, var_idx, i;
12735 	const char *var_name;
12736 	const struct bpf_map *map;
12737 	struct btf *btf;
12738 	__u32 map_type_id;
12739 	const struct btf_type *map_type, *var_type;
12740 	const struct bpf_var_skeleton *var_skel;
12741 	struct btf_var_secinfo *var;
12742 
12743 	if (!s->obj)
12744 		return libbpf_err(-EINVAL);
12745 
12746 	btf = bpf_object__btf(s->obj);
12747 	if (!btf) {
12748 		pr_warn("subskeletons require BTF at runtime (object %s)\n",
12749 			bpf_object__name(s->obj));
12750 		return libbpf_err(-errno);
12751 	}
12752 
12753 	err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt);
12754 	if (err) {
12755 		pr_warn("failed to populate subskeleton maps: %d\n", err);
12756 		return libbpf_err(err);
12757 	}
12758 
12759 	err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt);
12760 	if (err) {
12761 		pr_warn("failed to populate subskeleton maps: %d\n", err);
12762 		return libbpf_err(err);
12763 	}
12764 
12765 	for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
12766 		var_skel = &s->vars[var_idx];
12767 		map = *var_skel->map;
12768 		map_type_id = bpf_map__btf_value_type_id(map);
12769 		map_type = btf__type_by_id(btf, map_type_id);
12770 
12771 		if (!btf_is_datasec(map_type)) {
12772 			pr_warn("type for map '%1$s' is not a datasec: %2$s",
12773 				bpf_map__name(map),
12774 				__btf_kind_str(btf_kind(map_type)));
12775 			return libbpf_err(-EINVAL);
12776 		}
12777 
12778 		len = btf_vlen(map_type);
12779 		var = btf_var_secinfos(map_type);
12780 		for (i = 0; i < len; i++, var++) {
12781 			var_type = btf__type_by_id(btf, var->type);
12782 			var_name = btf__name_by_offset(btf, var_type->name_off);
12783 			if (strcmp(var_name, var_skel->name) == 0) {
12784 				*var_skel->addr = map->mmaped + var->offset;
12785 				break;
12786 			}
12787 		}
12788 	}
12789 	return 0;
12790 }
12791 
12792 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
12793 {
12794 	if (!s)
12795 		return;
12796 	free(s->maps);
12797 	free(s->progs);
12798 	free(s->vars);
12799 	free(s);
12800 }
12801 
12802 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
12803 {
12804 	int i, err;
12805 
12806 	err = bpf_object__load(*s->obj);
12807 	if (err) {
12808 		pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
12809 		return libbpf_err(err);
12810 	}
12811 
12812 	for (i = 0; i < s->map_cnt; i++) {
12813 		struct bpf_map *map = *s->maps[i].map;
12814 		size_t mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
12815 		int prot, map_fd = bpf_map__fd(map);
12816 		void **mmaped = s->maps[i].mmaped;
12817 
12818 		if (!mmaped)
12819 			continue;
12820 
12821 		if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
12822 			*mmaped = NULL;
12823 			continue;
12824 		}
12825 
12826 		if (map->def.map_flags & BPF_F_RDONLY_PROG)
12827 			prot = PROT_READ;
12828 		else
12829 			prot = PROT_READ | PROT_WRITE;
12830 
12831 		/* Remap anonymous mmap()-ed "map initialization image" as
12832 		 * a BPF map-backed mmap()-ed memory, but preserving the same
12833 		 * memory address. This will cause kernel to change process'
12834 		 * page table to point to a different piece of kernel memory,
12835 		 * but from userspace point of view memory address (and its
12836 		 * contents, being identical at this point) will stay the
12837 		 * same. This mapping will be released by bpf_object__close()
12838 		 * as per normal clean up procedure, so we don't need to worry
12839 		 * about it from skeleton's clean up perspective.
12840 		 */
12841 		*mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0);
12842 		if (*mmaped == MAP_FAILED) {
12843 			err = -errno;
12844 			*mmaped = NULL;
12845 			pr_warn("failed to re-mmap() map '%s': %d\n",
12846 				 bpf_map__name(map), err);
12847 			return libbpf_err(err);
12848 		}
12849 	}
12850 
12851 	return 0;
12852 }
12853 
12854 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
12855 {
12856 	int i, err;
12857 
12858 	for (i = 0; i < s->prog_cnt; i++) {
12859 		struct bpf_program *prog = *s->progs[i].prog;
12860 		struct bpf_link **link = s->progs[i].link;
12861 
12862 		if (!prog->autoload || !prog->autoattach)
12863 			continue;
12864 
12865 		/* auto-attaching not supported for this program */
12866 		if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12867 			continue;
12868 
12869 		/* if user already set the link manually, don't attempt auto-attach */
12870 		if (*link)
12871 			continue;
12872 
12873 		err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
12874 		if (err) {
12875 			pr_warn("prog '%s': failed to auto-attach: %d\n",
12876 				bpf_program__name(prog), err);
12877 			return libbpf_err(err);
12878 		}
12879 
12880 		/* It's possible that for some SEC() definitions auto-attach
12881 		 * is supported in some cases (e.g., if definition completely
12882 		 * specifies target information), but is not in other cases.
12883 		 * SEC("uprobe") is one such case. If user specified target
12884 		 * binary and function name, such BPF program can be
12885 		 * auto-attached. But if not, it shouldn't trigger skeleton's
12886 		 * attach to fail. It should just be skipped.
12887 		 * attach_fn signals such case with returning 0 (no error) and
12888 		 * setting link to NULL.
12889 		 */
12890 	}
12891 
12892 	return 0;
12893 }
12894 
12895 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
12896 {
12897 	int i;
12898 
12899 	for (i = 0; i < s->prog_cnt; i++) {
12900 		struct bpf_link **link = s->progs[i].link;
12901 
12902 		bpf_link__destroy(*link);
12903 		*link = NULL;
12904 	}
12905 }
12906 
12907 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
12908 {
12909 	if (!s)
12910 		return;
12911 
12912 	if (s->progs)
12913 		bpf_object__detach_skeleton(s);
12914 	if (s->obj)
12915 		bpf_object__close(*s->obj);
12916 	free(s->maps);
12917 	free(s->progs);
12918 	free(s);
12919 }
12920