1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/ring_buffer.h> 37 #include <linux/version.h> 38 #include <sys/epoll.h> 39 #include <sys/ioctl.h> 40 #include <sys/mman.h> 41 #include <sys/stat.h> 42 #include <sys/types.h> 43 #include <sys/vfs.h> 44 #include <sys/utsname.h> 45 #include <sys/resource.h> 46 #include <libelf.h> 47 #include <gelf.h> 48 #include <zlib.h> 49 50 #include "libbpf.h" 51 #include "bpf.h" 52 #include "btf.h" 53 #include "str_error.h" 54 #include "libbpf_internal.h" 55 #include "hashmap.h" 56 #include "bpf_gen_internal.h" 57 58 #ifndef BPF_FS_MAGIC 59 #define BPF_FS_MAGIC 0xcafe4a11 60 #endif 61 62 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 63 64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 65 * compilation if user enables corresponding warning. Disable it explicitly. 66 */ 67 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 68 69 #define __printf(a, b) __attribute__((format(printf, a, b))) 70 71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 73 74 static const char * const attach_type_name[] = { 75 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 76 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 77 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 78 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 79 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 80 [BPF_CGROUP_DEVICE] = "cgroup_device", 81 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 82 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 83 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 84 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 85 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 86 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 87 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 88 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 89 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 90 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 91 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 92 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 93 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 94 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 95 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 96 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 97 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 98 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 99 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 100 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 101 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 102 [BPF_LIRC_MODE2] = "lirc_mode2", 103 [BPF_FLOW_DISSECTOR] = "flow_dissector", 104 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 105 [BPF_TRACE_FENTRY] = "trace_fentry", 106 [BPF_TRACE_FEXIT] = "trace_fexit", 107 [BPF_MODIFY_RETURN] = "modify_return", 108 [BPF_LSM_MAC] = "lsm_mac", 109 [BPF_LSM_CGROUP] = "lsm_cgroup", 110 [BPF_SK_LOOKUP] = "sk_lookup", 111 [BPF_TRACE_ITER] = "trace_iter", 112 [BPF_XDP_DEVMAP] = "xdp_devmap", 113 [BPF_XDP_CPUMAP] = "xdp_cpumap", 114 [BPF_XDP] = "xdp", 115 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 116 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 117 [BPF_PERF_EVENT] = "perf_event", 118 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 119 }; 120 121 static const char * const link_type_name[] = { 122 [BPF_LINK_TYPE_UNSPEC] = "unspec", 123 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 124 [BPF_LINK_TYPE_TRACING] = "tracing", 125 [BPF_LINK_TYPE_CGROUP] = "cgroup", 126 [BPF_LINK_TYPE_ITER] = "iter", 127 [BPF_LINK_TYPE_NETNS] = "netns", 128 [BPF_LINK_TYPE_XDP] = "xdp", 129 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 130 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 131 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 132 }; 133 134 static const char * const map_type_name[] = { 135 [BPF_MAP_TYPE_UNSPEC] = "unspec", 136 [BPF_MAP_TYPE_HASH] = "hash", 137 [BPF_MAP_TYPE_ARRAY] = "array", 138 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 139 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 140 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 141 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 142 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 143 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 144 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 145 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 146 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 147 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 148 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 149 [BPF_MAP_TYPE_DEVMAP] = "devmap", 150 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 151 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 152 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 153 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 154 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 155 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 156 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 157 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 158 [BPF_MAP_TYPE_QUEUE] = "queue", 159 [BPF_MAP_TYPE_STACK] = "stack", 160 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 161 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 162 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 163 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 164 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 165 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 166 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 167 }; 168 169 static const char * const prog_type_name[] = { 170 [BPF_PROG_TYPE_UNSPEC] = "unspec", 171 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 172 [BPF_PROG_TYPE_KPROBE] = "kprobe", 173 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 174 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 175 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 176 [BPF_PROG_TYPE_XDP] = "xdp", 177 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 178 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 179 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 180 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 181 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 182 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 183 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 184 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 185 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 186 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 187 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 188 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 189 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 190 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 191 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 192 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 193 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 194 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 195 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 196 [BPF_PROG_TYPE_TRACING] = "tracing", 197 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 198 [BPF_PROG_TYPE_EXT] = "ext", 199 [BPF_PROG_TYPE_LSM] = "lsm", 200 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 201 [BPF_PROG_TYPE_SYSCALL] = "syscall", 202 }; 203 204 static int __base_pr(enum libbpf_print_level level, const char *format, 205 va_list args) 206 { 207 if (level == LIBBPF_DEBUG) 208 return 0; 209 210 return vfprintf(stderr, format, args); 211 } 212 213 static libbpf_print_fn_t __libbpf_pr = __base_pr; 214 215 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 216 { 217 libbpf_print_fn_t old_print_fn = __libbpf_pr; 218 219 __libbpf_pr = fn; 220 return old_print_fn; 221 } 222 223 __printf(2, 3) 224 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 225 { 226 va_list args; 227 int old_errno; 228 229 if (!__libbpf_pr) 230 return; 231 232 old_errno = errno; 233 234 va_start(args, format); 235 __libbpf_pr(level, format, args); 236 va_end(args); 237 238 errno = old_errno; 239 } 240 241 static void pr_perm_msg(int err) 242 { 243 struct rlimit limit; 244 char buf[100]; 245 246 if (err != -EPERM || geteuid() != 0) 247 return; 248 249 err = getrlimit(RLIMIT_MEMLOCK, &limit); 250 if (err) 251 return; 252 253 if (limit.rlim_cur == RLIM_INFINITY) 254 return; 255 256 if (limit.rlim_cur < 1024) 257 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 258 else if (limit.rlim_cur < 1024*1024) 259 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 260 else 261 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 262 263 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 264 buf); 265 } 266 267 #define STRERR_BUFSIZE 128 268 269 /* Copied from tools/perf/util/util.h */ 270 #ifndef zfree 271 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 272 #endif 273 274 #ifndef zclose 275 # define zclose(fd) ({ \ 276 int ___err = 0; \ 277 if ((fd) >= 0) \ 278 ___err = close((fd)); \ 279 fd = -1; \ 280 ___err; }) 281 #endif 282 283 static inline __u64 ptr_to_u64(const void *ptr) 284 { 285 return (__u64) (unsigned long) ptr; 286 } 287 288 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 289 { 290 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 291 return 0; 292 } 293 294 __u32 libbpf_major_version(void) 295 { 296 return LIBBPF_MAJOR_VERSION; 297 } 298 299 __u32 libbpf_minor_version(void) 300 { 301 return LIBBPF_MINOR_VERSION; 302 } 303 304 const char *libbpf_version_string(void) 305 { 306 #define __S(X) #X 307 #define _S(X) __S(X) 308 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 309 #undef _S 310 #undef __S 311 } 312 313 enum reloc_type { 314 RELO_LD64, 315 RELO_CALL, 316 RELO_DATA, 317 RELO_EXTERN_VAR, 318 RELO_EXTERN_FUNC, 319 RELO_SUBPROG_ADDR, 320 RELO_CORE, 321 }; 322 323 struct reloc_desc { 324 enum reloc_type type; 325 int insn_idx; 326 union { 327 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 328 struct { 329 int map_idx; 330 int sym_off; 331 }; 332 }; 333 }; 334 335 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 336 enum sec_def_flags { 337 SEC_NONE = 0, 338 /* expected_attach_type is optional, if kernel doesn't support that */ 339 SEC_EXP_ATTACH_OPT = 1, 340 /* legacy, only used by libbpf_get_type_names() and 341 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 342 * This used to be associated with cgroup (and few other) BPF programs 343 * that were attachable through BPF_PROG_ATTACH command. Pretty 344 * meaningless nowadays, though. 345 */ 346 SEC_ATTACHABLE = 2, 347 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 348 /* attachment target is specified through BTF ID in either kernel or 349 * other BPF program's BTF object */ 350 SEC_ATTACH_BTF = 4, 351 /* BPF program type allows sleeping/blocking in kernel */ 352 SEC_SLEEPABLE = 8, 353 /* BPF program support non-linear XDP buffer */ 354 SEC_XDP_FRAGS = 16, 355 }; 356 357 struct bpf_sec_def { 358 char *sec; 359 enum bpf_prog_type prog_type; 360 enum bpf_attach_type expected_attach_type; 361 long cookie; 362 int handler_id; 363 364 libbpf_prog_setup_fn_t prog_setup_fn; 365 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 366 libbpf_prog_attach_fn_t prog_attach_fn; 367 }; 368 369 /* 370 * bpf_prog should be a better name but it has been used in 371 * linux/filter.h. 372 */ 373 struct bpf_program { 374 char *name; 375 char *sec_name; 376 size_t sec_idx; 377 const struct bpf_sec_def *sec_def; 378 /* this program's instruction offset (in number of instructions) 379 * within its containing ELF section 380 */ 381 size_t sec_insn_off; 382 /* number of original instructions in ELF section belonging to this 383 * program, not taking into account subprogram instructions possible 384 * appended later during relocation 385 */ 386 size_t sec_insn_cnt; 387 /* Offset (in number of instructions) of the start of instruction 388 * belonging to this BPF program within its containing main BPF 389 * program. For the entry-point (main) BPF program, this is always 390 * zero. For a sub-program, this gets reset before each of main BPF 391 * programs are processed and relocated and is used to determined 392 * whether sub-program was already appended to the main program, and 393 * if yes, at which instruction offset. 394 */ 395 size_t sub_insn_off; 396 397 /* instructions that belong to BPF program; insns[0] is located at 398 * sec_insn_off instruction within its ELF section in ELF file, so 399 * when mapping ELF file instruction index to the local instruction, 400 * one needs to subtract sec_insn_off; and vice versa. 401 */ 402 struct bpf_insn *insns; 403 /* actual number of instruction in this BPF program's image; for 404 * entry-point BPF programs this includes the size of main program 405 * itself plus all the used sub-programs, appended at the end 406 */ 407 size_t insns_cnt; 408 409 struct reloc_desc *reloc_desc; 410 int nr_reloc; 411 412 /* BPF verifier log settings */ 413 char *log_buf; 414 size_t log_size; 415 __u32 log_level; 416 417 struct bpf_object *obj; 418 419 int fd; 420 bool autoload; 421 bool autoattach; 422 bool mark_btf_static; 423 enum bpf_prog_type type; 424 enum bpf_attach_type expected_attach_type; 425 426 int prog_ifindex; 427 __u32 attach_btf_obj_fd; 428 __u32 attach_btf_id; 429 __u32 attach_prog_fd; 430 431 void *func_info; 432 __u32 func_info_rec_size; 433 __u32 func_info_cnt; 434 435 void *line_info; 436 __u32 line_info_rec_size; 437 __u32 line_info_cnt; 438 __u32 prog_flags; 439 }; 440 441 struct bpf_struct_ops { 442 const char *tname; 443 const struct btf_type *type; 444 struct bpf_program **progs; 445 __u32 *kern_func_off; 446 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 447 void *data; 448 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 449 * btf_vmlinux's format. 450 * struct bpf_struct_ops_tcp_congestion_ops { 451 * [... some other kernel fields ...] 452 * struct tcp_congestion_ops data; 453 * } 454 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 455 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 456 * from "data". 457 */ 458 void *kern_vdata; 459 __u32 type_id; 460 }; 461 462 #define DATA_SEC ".data" 463 #define BSS_SEC ".bss" 464 #define RODATA_SEC ".rodata" 465 #define KCONFIG_SEC ".kconfig" 466 #define KSYMS_SEC ".ksyms" 467 #define STRUCT_OPS_SEC ".struct_ops" 468 469 enum libbpf_map_type { 470 LIBBPF_MAP_UNSPEC, 471 LIBBPF_MAP_DATA, 472 LIBBPF_MAP_BSS, 473 LIBBPF_MAP_RODATA, 474 LIBBPF_MAP_KCONFIG, 475 }; 476 477 struct bpf_map_def { 478 unsigned int type; 479 unsigned int key_size; 480 unsigned int value_size; 481 unsigned int max_entries; 482 unsigned int map_flags; 483 }; 484 485 struct bpf_map { 486 struct bpf_object *obj; 487 char *name; 488 /* real_name is defined for special internal maps (.rodata*, 489 * .data*, .bss, .kconfig) and preserves their original ELF section 490 * name. This is important to be be able to find corresponding BTF 491 * DATASEC information. 492 */ 493 char *real_name; 494 int fd; 495 int sec_idx; 496 size_t sec_offset; 497 int map_ifindex; 498 int inner_map_fd; 499 struct bpf_map_def def; 500 __u32 numa_node; 501 __u32 btf_var_idx; 502 __u32 btf_key_type_id; 503 __u32 btf_value_type_id; 504 __u32 btf_vmlinux_value_type_id; 505 enum libbpf_map_type libbpf_type; 506 void *mmaped; 507 struct bpf_struct_ops *st_ops; 508 struct bpf_map *inner_map; 509 void **init_slots; 510 int init_slots_sz; 511 char *pin_path; 512 bool pinned; 513 bool reused; 514 bool autocreate; 515 __u64 map_extra; 516 }; 517 518 enum extern_type { 519 EXT_UNKNOWN, 520 EXT_KCFG, 521 EXT_KSYM, 522 }; 523 524 enum kcfg_type { 525 KCFG_UNKNOWN, 526 KCFG_CHAR, 527 KCFG_BOOL, 528 KCFG_INT, 529 KCFG_TRISTATE, 530 KCFG_CHAR_ARR, 531 }; 532 533 struct extern_desc { 534 enum extern_type type; 535 int sym_idx; 536 int btf_id; 537 int sec_btf_id; 538 const char *name; 539 bool is_set; 540 bool is_weak; 541 union { 542 struct { 543 enum kcfg_type type; 544 int sz; 545 int align; 546 int data_off; 547 bool is_signed; 548 } kcfg; 549 struct { 550 unsigned long long addr; 551 552 /* target btf_id of the corresponding kernel var. */ 553 int kernel_btf_obj_fd; 554 int kernel_btf_id; 555 556 /* local btf_id of the ksym extern's type. */ 557 __u32 type_id; 558 /* BTF fd index to be patched in for insn->off, this is 559 * 0 for vmlinux BTF, index in obj->fd_array for module 560 * BTF 561 */ 562 __s16 btf_fd_idx; 563 } ksym; 564 }; 565 }; 566 567 struct module_btf { 568 struct btf *btf; 569 char *name; 570 __u32 id; 571 int fd; 572 int fd_array_idx; 573 }; 574 575 enum sec_type { 576 SEC_UNUSED = 0, 577 SEC_RELO, 578 SEC_BSS, 579 SEC_DATA, 580 SEC_RODATA, 581 }; 582 583 struct elf_sec_desc { 584 enum sec_type sec_type; 585 Elf64_Shdr *shdr; 586 Elf_Data *data; 587 }; 588 589 struct elf_state { 590 int fd; 591 const void *obj_buf; 592 size_t obj_buf_sz; 593 Elf *elf; 594 Elf64_Ehdr *ehdr; 595 Elf_Data *symbols; 596 Elf_Data *st_ops_data; 597 size_t shstrndx; /* section index for section name strings */ 598 size_t strtabidx; 599 struct elf_sec_desc *secs; 600 int sec_cnt; 601 int btf_maps_shndx; 602 __u32 btf_maps_sec_btf_id; 603 int text_shndx; 604 int symbols_shndx; 605 int st_ops_shndx; 606 }; 607 608 struct usdt_manager; 609 610 struct bpf_object { 611 char name[BPF_OBJ_NAME_LEN]; 612 char license[64]; 613 __u32 kern_version; 614 615 struct bpf_program *programs; 616 size_t nr_programs; 617 struct bpf_map *maps; 618 size_t nr_maps; 619 size_t maps_cap; 620 621 char *kconfig; 622 struct extern_desc *externs; 623 int nr_extern; 624 int kconfig_map_idx; 625 626 bool loaded; 627 bool has_subcalls; 628 bool has_rodata; 629 630 struct bpf_gen *gen_loader; 631 632 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 633 struct elf_state efile; 634 635 struct btf *btf; 636 struct btf_ext *btf_ext; 637 638 /* Parse and load BTF vmlinux if any of the programs in the object need 639 * it at load time. 640 */ 641 struct btf *btf_vmlinux; 642 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 643 * override for vmlinux BTF. 644 */ 645 char *btf_custom_path; 646 /* vmlinux BTF override for CO-RE relocations */ 647 struct btf *btf_vmlinux_override; 648 /* Lazily initialized kernel module BTFs */ 649 struct module_btf *btf_modules; 650 bool btf_modules_loaded; 651 size_t btf_module_cnt; 652 size_t btf_module_cap; 653 654 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 655 char *log_buf; 656 size_t log_size; 657 __u32 log_level; 658 659 int *fd_array; 660 size_t fd_array_cap; 661 size_t fd_array_cnt; 662 663 struct usdt_manager *usdt_man; 664 665 char path[]; 666 }; 667 668 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 669 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 670 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 671 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 672 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 673 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 674 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 675 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 676 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 677 678 void bpf_program__unload(struct bpf_program *prog) 679 { 680 if (!prog) 681 return; 682 683 zclose(prog->fd); 684 685 zfree(&prog->func_info); 686 zfree(&prog->line_info); 687 } 688 689 static void bpf_program__exit(struct bpf_program *prog) 690 { 691 if (!prog) 692 return; 693 694 bpf_program__unload(prog); 695 zfree(&prog->name); 696 zfree(&prog->sec_name); 697 zfree(&prog->insns); 698 zfree(&prog->reloc_desc); 699 700 prog->nr_reloc = 0; 701 prog->insns_cnt = 0; 702 prog->sec_idx = -1; 703 } 704 705 static bool insn_is_subprog_call(const struct bpf_insn *insn) 706 { 707 return BPF_CLASS(insn->code) == BPF_JMP && 708 BPF_OP(insn->code) == BPF_CALL && 709 BPF_SRC(insn->code) == BPF_K && 710 insn->src_reg == BPF_PSEUDO_CALL && 711 insn->dst_reg == 0 && 712 insn->off == 0; 713 } 714 715 static bool is_call_insn(const struct bpf_insn *insn) 716 { 717 return insn->code == (BPF_JMP | BPF_CALL); 718 } 719 720 static bool insn_is_pseudo_func(struct bpf_insn *insn) 721 { 722 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 723 } 724 725 static int 726 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 727 const char *name, size_t sec_idx, const char *sec_name, 728 size_t sec_off, void *insn_data, size_t insn_data_sz) 729 { 730 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 731 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 732 sec_name, name, sec_off, insn_data_sz); 733 return -EINVAL; 734 } 735 736 memset(prog, 0, sizeof(*prog)); 737 prog->obj = obj; 738 739 prog->sec_idx = sec_idx; 740 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 741 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 742 /* insns_cnt can later be increased by appending used subprograms */ 743 prog->insns_cnt = prog->sec_insn_cnt; 744 745 prog->type = BPF_PROG_TYPE_UNSPEC; 746 prog->fd = -1; 747 748 /* libbpf's convention for SEC("?abc...") is that it's just like 749 * SEC("abc...") but the corresponding bpf_program starts out with 750 * autoload set to false. 751 */ 752 if (sec_name[0] == '?') { 753 prog->autoload = false; 754 /* from now on forget there was ? in section name */ 755 sec_name++; 756 } else { 757 prog->autoload = true; 758 } 759 760 prog->autoattach = true; 761 762 /* inherit object's log_level */ 763 prog->log_level = obj->log_level; 764 765 prog->sec_name = strdup(sec_name); 766 if (!prog->sec_name) 767 goto errout; 768 769 prog->name = strdup(name); 770 if (!prog->name) 771 goto errout; 772 773 prog->insns = malloc(insn_data_sz); 774 if (!prog->insns) 775 goto errout; 776 memcpy(prog->insns, insn_data, insn_data_sz); 777 778 return 0; 779 errout: 780 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 781 bpf_program__exit(prog); 782 return -ENOMEM; 783 } 784 785 static int 786 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 787 const char *sec_name, int sec_idx) 788 { 789 Elf_Data *symbols = obj->efile.symbols; 790 struct bpf_program *prog, *progs; 791 void *data = sec_data->d_buf; 792 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 793 int nr_progs, err, i; 794 const char *name; 795 Elf64_Sym *sym; 796 797 progs = obj->programs; 798 nr_progs = obj->nr_programs; 799 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 800 sec_off = 0; 801 802 for (i = 0; i < nr_syms; i++) { 803 sym = elf_sym_by_idx(obj, i); 804 805 if (sym->st_shndx != sec_idx) 806 continue; 807 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 808 continue; 809 810 prog_sz = sym->st_size; 811 sec_off = sym->st_value; 812 813 name = elf_sym_str(obj, sym->st_name); 814 if (!name) { 815 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 816 sec_name, sec_off); 817 return -LIBBPF_ERRNO__FORMAT; 818 } 819 820 if (sec_off + prog_sz > sec_sz) { 821 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 822 sec_name, sec_off); 823 return -LIBBPF_ERRNO__FORMAT; 824 } 825 826 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 827 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 828 return -ENOTSUP; 829 } 830 831 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 832 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 833 834 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 835 if (!progs) { 836 /* 837 * In this case the original obj->programs 838 * is still valid, so don't need special treat for 839 * bpf_close_object(). 840 */ 841 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 842 sec_name, name); 843 return -ENOMEM; 844 } 845 obj->programs = progs; 846 847 prog = &progs[nr_progs]; 848 849 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 850 sec_off, data + sec_off, prog_sz); 851 if (err) 852 return err; 853 854 /* if function is a global/weak symbol, but has restricted 855 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 856 * as static to enable more permissive BPF verification mode 857 * with more outside context available to BPF verifier 858 */ 859 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL 860 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 861 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 862 prog->mark_btf_static = true; 863 864 nr_progs++; 865 obj->nr_programs = nr_progs; 866 } 867 868 return 0; 869 } 870 871 __u32 get_kernel_version(void) 872 { 873 /* On Ubuntu LINUX_VERSION_CODE doesn't correspond to info.release, 874 * but Ubuntu provides /proc/version_signature file, as described at 875 * https://ubuntu.com/kernel, with an example contents below, which we 876 * can use to get a proper LINUX_VERSION_CODE. 877 * 878 * Ubuntu 5.4.0-12.15-generic 5.4.8 879 * 880 * In the above, 5.4.8 is what kernel is actually expecting, while 881 * uname() call will return 5.4.0 in info.release. 882 */ 883 const char *ubuntu_kver_file = "/proc/version_signature"; 884 __u32 major, minor, patch; 885 struct utsname info; 886 887 if (faccessat(AT_FDCWD, ubuntu_kver_file, R_OK, AT_EACCESS) == 0) { 888 FILE *f; 889 890 f = fopen(ubuntu_kver_file, "r"); 891 if (f) { 892 if (fscanf(f, "%*s %*s %d.%d.%d\n", &major, &minor, &patch) == 3) { 893 fclose(f); 894 return KERNEL_VERSION(major, minor, patch); 895 } 896 fclose(f); 897 } 898 /* something went wrong, fall back to uname() approach */ 899 } 900 901 uname(&info); 902 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 903 return 0; 904 return KERNEL_VERSION(major, minor, patch); 905 } 906 907 static const struct btf_member * 908 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 909 { 910 struct btf_member *m; 911 int i; 912 913 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 914 if (btf_member_bit_offset(t, i) == bit_offset) 915 return m; 916 } 917 918 return NULL; 919 } 920 921 static const struct btf_member * 922 find_member_by_name(const struct btf *btf, const struct btf_type *t, 923 const char *name) 924 { 925 struct btf_member *m; 926 int i; 927 928 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 929 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 930 return m; 931 } 932 933 return NULL; 934 } 935 936 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 937 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 938 const char *name, __u32 kind); 939 940 static int 941 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 942 const struct btf_type **type, __u32 *type_id, 943 const struct btf_type **vtype, __u32 *vtype_id, 944 const struct btf_member **data_member) 945 { 946 const struct btf_type *kern_type, *kern_vtype; 947 const struct btf_member *kern_data_member; 948 __s32 kern_vtype_id, kern_type_id; 949 __u32 i; 950 951 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 952 if (kern_type_id < 0) { 953 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 954 tname); 955 return kern_type_id; 956 } 957 kern_type = btf__type_by_id(btf, kern_type_id); 958 959 /* Find the corresponding "map_value" type that will be used 960 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 961 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 962 * btf_vmlinux. 963 */ 964 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 965 tname, BTF_KIND_STRUCT); 966 if (kern_vtype_id < 0) { 967 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 968 STRUCT_OPS_VALUE_PREFIX, tname); 969 return kern_vtype_id; 970 } 971 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 972 973 /* Find "struct tcp_congestion_ops" from 974 * struct bpf_struct_ops_tcp_congestion_ops { 975 * [ ... ] 976 * struct tcp_congestion_ops data; 977 * } 978 */ 979 kern_data_member = btf_members(kern_vtype); 980 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 981 if (kern_data_member->type == kern_type_id) 982 break; 983 } 984 if (i == btf_vlen(kern_vtype)) { 985 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 986 tname, STRUCT_OPS_VALUE_PREFIX, tname); 987 return -EINVAL; 988 } 989 990 *type = kern_type; 991 *type_id = kern_type_id; 992 *vtype = kern_vtype; 993 *vtype_id = kern_vtype_id; 994 *data_member = kern_data_member; 995 996 return 0; 997 } 998 999 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 1000 { 1001 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 1002 } 1003 1004 /* Init the map's fields that depend on kern_btf */ 1005 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 1006 const struct btf *btf, 1007 const struct btf *kern_btf) 1008 { 1009 const struct btf_member *member, *kern_member, *kern_data_member; 1010 const struct btf_type *type, *kern_type, *kern_vtype; 1011 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 1012 struct bpf_struct_ops *st_ops; 1013 void *data, *kern_data; 1014 const char *tname; 1015 int err; 1016 1017 st_ops = map->st_ops; 1018 type = st_ops->type; 1019 tname = st_ops->tname; 1020 err = find_struct_ops_kern_types(kern_btf, tname, 1021 &kern_type, &kern_type_id, 1022 &kern_vtype, &kern_vtype_id, 1023 &kern_data_member); 1024 if (err) 1025 return err; 1026 1027 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1028 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1029 1030 map->def.value_size = kern_vtype->size; 1031 map->btf_vmlinux_value_type_id = kern_vtype_id; 1032 1033 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1034 if (!st_ops->kern_vdata) 1035 return -ENOMEM; 1036 1037 data = st_ops->data; 1038 kern_data_off = kern_data_member->offset / 8; 1039 kern_data = st_ops->kern_vdata + kern_data_off; 1040 1041 member = btf_members(type); 1042 for (i = 0; i < btf_vlen(type); i++, member++) { 1043 const struct btf_type *mtype, *kern_mtype; 1044 __u32 mtype_id, kern_mtype_id; 1045 void *mdata, *kern_mdata; 1046 __s64 msize, kern_msize; 1047 __u32 moff, kern_moff; 1048 __u32 kern_member_idx; 1049 const char *mname; 1050 1051 mname = btf__name_by_offset(btf, member->name_off); 1052 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1053 if (!kern_member) { 1054 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1055 map->name, mname); 1056 return -ENOTSUP; 1057 } 1058 1059 kern_member_idx = kern_member - btf_members(kern_type); 1060 if (btf_member_bitfield_size(type, i) || 1061 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1062 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1063 map->name, mname); 1064 return -ENOTSUP; 1065 } 1066 1067 moff = member->offset / 8; 1068 kern_moff = kern_member->offset / 8; 1069 1070 mdata = data + moff; 1071 kern_mdata = kern_data + kern_moff; 1072 1073 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1074 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1075 &kern_mtype_id); 1076 if (BTF_INFO_KIND(mtype->info) != 1077 BTF_INFO_KIND(kern_mtype->info)) { 1078 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1079 map->name, mname, BTF_INFO_KIND(mtype->info), 1080 BTF_INFO_KIND(kern_mtype->info)); 1081 return -ENOTSUP; 1082 } 1083 1084 if (btf_is_ptr(mtype)) { 1085 struct bpf_program *prog; 1086 1087 prog = st_ops->progs[i]; 1088 if (!prog) 1089 continue; 1090 1091 kern_mtype = skip_mods_and_typedefs(kern_btf, 1092 kern_mtype->type, 1093 &kern_mtype_id); 1094 1095 /* mtype->type must be a func_proto which was 1096 * guaranteed in bpf_object__collect_st_ops_relos(), 1097 * so only check kern_mtype for func_proto here. 1098 */ 1099 if (!btf_is_func_proto(kern_mtype)) { 1100 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1101 map->name, mname); 1102 return -ENOTSUP; 1103 } 1104 1105 prog->attach_btf_id = kern_type_id; 1106 prog->expected_attach_type = kern_member_idx; 1107 1108 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1109 1110 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1111 map->name, mname, prog->name, moff, 1112 kern_moff); 1113 1114 continue; 1115 } 1116 1117 msize = btf__resolve_size(btf, mtype_id); 1118 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1119 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1120 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1121 map->name, mname, (ssize_t)msize, 1122 (ssize_t)kern_msize); 1123 return -ENOTSUP; 1124 } 1125 1126 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1127 map->name, mname, (unsigned int)msize, 1128 moff, kern_moff); 1129 memcpy(kern_mdata, mdata, msize); 1130 } 1131 1132 return 0; 1133 } 1134 1135 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1136 { 1137 struct bpf_map *map; 1138 size_t i; 1139 int err; 1140 1141 for (i = 0; i < obj->nr_maps; i++) { 1142 map = &obj->maps[i]; 1143 1144 if (!bpf_map__is_struct_ops(map)) 1145 continue; 1146 1147 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1148 obj->btf_vmlinux); 1149 if (err) 1150 return err; 1151 } 1152 1153 return 0; 1154 } 1155 1156 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 1157 { 1158 const struct btf_type *type, *datasec; 1159 const struct btf_var_secinfo *vsi; 1160 struct bpf_struct_ops *st_ops; 1161 const char *tname, *var_name; 1162 __s32 type_id, datasec_id; 1163 const struct btf *btf; 1164 struct bpf_map *map; 1165 __u32 i; 1166 1167 if (obj->efile.st_ops_shndx == -1) 1168 return 0; 1169 1170 btf = obj->btf; 1171 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 1172 BTF_KIND_DATASEC); 1173 if (datasec_id < 0) { 1174 pr_warn("struct_ops init: DATASEC %s not found\n", 1175 STRUCT_OPS_SEC); 1176 return -EINVAL; 1177 } 1178 1179 datasec = btf__type_by_id(btf, datasec_id); 1180 vsi = btf_var_secinfos(datasec); 1181 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1182 type = btf__type_by_id(obj->btf, vsi->type); 1183 var_name = btf__name_by_offset(obj->btf, type->name_off); 1184 1185 type_id = btf__resolve_type(obj->btf, vsi->type); 1186 if (type_id < 0) { 1187 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1188 vsi->type, STRUCT_OPS_SEC); 1189 return -EINVAL; 1190 } 1191 1192 type = btf__type_by_id(obj->btf, type_id); 1193 tname = btf__name_by_offset(obj->btf, type->name_off); 1194 if (!tname[0]) { 1195 pr_warn("struct_ops init: anonymous type is not supported\n"); 1196 return -ENOTSUP; 1197 } 1198 if (!btf_is_struct(type)) { 1199 pr_warn("struct_ops init: %s is not a struct\n", tname); 1200 return -EINVAL; 1201 } 1202 1203 map = bpf_object__add_map(obj); 1204 if (IS_ERR(map)) 1205 return PTR_ERR(map); 1206 1207 map->sec_idx = obj->efile.st_ops_shndx; 1208 map->sec_offset = vsi->offset; 1209 map->name = strdup(var_name); 1210 if (!map->name) 1211 return -ENOMEM; 1212 1213 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1214 map->def.key_size = sizeof(int); 1215 map->def.value_size = type->size; 1216 map->def.max_entries = 1; 1217 1218 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1219 if (!map->st_ops) 1220 return -ENOMEM; 1221 st_ops = map->st_ops; 1222 st_ops->data = malloc(type->size); 1223 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1224 st_ops->kern_func_off = malloc(btf_vlen(type) * 1225 sizeof(*st_ops->kern_func_off)); 1226 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1227 return -ENOMEM; 1228 1229 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1230 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1231 var_name, STRUCT_OPS_SEC); 1232 return -EINVAL; 1233 } 1234 1235 memcpy(st_ops->data, 1236 obj->efile.st_ops_data->d_buf + vsi->offset, 1237 type->size); 1238 st_ops->tname = tname; 1239 st_ops->type = type; 1240 st_ops->type_id = type_id; 1241 1242 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1243 tname, type_id, var_name, vsi->offset); 1244 } 1245 1246 return 0; 1247 } 1248 1249 static struct bpf_object *bpf_object__new(const char *path, 1250 const void *obj_buf, 1251 size_t obj_buf_sz, 1252 const char *obj_name) 1253 { 1254 struct bpf_object *obj; 1255 char *end; 1256 1257 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1258 if (!obj) { 1259 pr_warn("alloc memory failed for %s\n", path); 1260 return ERR_PTR(-ENOMEM); 1261 } 1262 1263 strcpy(obj->path, path); 1264 if (obj_name) { 1265 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1266 } else { 1267 /* Using basename() GNU version which doesn't modify arg. */ 1268 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1269 end = strchr(obj->name, '.'); 1270 if (end) 1271 *end = 0; 1272 } 1273 1274 obj->efile.fd = -1; 1275 /* 1276 * Caller of this function should also call 1277 * bpf_object__elf_finish() after data collection to return 1278 * obj_buf to user. If not, we should duplicate the buffer to 1279 * avoid user freeing them before elf finish. 1280 */ 1281 obj->efile.obj_buf = obj_buf; 1282 obj->efile.obj_buf_sz = obj_buf_sz; 1283 obj->efile.btf_maps_shndx = -1; 1284 obj->efile.st_ops_shndx = -1; 1285 obj->kconfig_map_idx = -1; 1286 1287 obj->kern_version = get_kernel_version(); 1288 obj->loaded = false; 1289 1290 return obj; 1291 } 1292 1293 static void bpf_object__elf_finish(struct bpf_object *obj) 1294 { 1295 if (!obj->efile.elf) 1296 return; 1297 1298 elf_end(obj->efile.elf); 1299 obj->efile.elf = NULL; 1300 obj->efile.symbols = NULL; 1301 obj->efile.st_ops_data = NULL; 1302 1303 zfree(&obj->efile.secs); 1304 obj->efile.sec_cnt = 0; 1305 zclose(obj->efile.fd); 1306 obj->efile.obj_buf = NULL; 1307 obj->efile.obj_buf_sz = 0; 1308 } 1309 1310 static int bpf_object__elf_init(struct bpf_object *obj) 1311 { 1312 Elf64_Ehdr *ehdr; 1313 int err = 0; 1314 Elf *elf; 1315 1316 if (obj->efile.elf) { 1317 pr_warn("elf: init internal error\n"); 1318 return -LIBBPF_ERRNO__LIBELF; 1319 } 1320 1321 if (obj->efile.obj_buf_sz > 0) { 1322 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1323 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1324 } else { 1325 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1326 if (obj->efile.fd < 0) { 1327 char errmsg[STRERR_BUFSIZE], *cp; 1328 1329 err = -errno; 1330 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1331 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1332 return err; 1333 } 1334 1335 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1336 } 1337 1338 if (!elf) { 1339 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1340 err = -LIBBPF_ERRNO__LIBELF; 1341 goto errout; 1342 } 1343 1344 obj->efile.elf = elf; 1345 1346 if (elf_kind(elf) != ELF_K_ELF) { 1347 err = -LIBBPF_ERRNO__FORMAT; 1348 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1349 goto errout; 1350 } 1351 1352 if (gelf_getclass(elf) != ELFCLASS64) { 1353 err = -LIBBPF_ERRNO__FORMAT; 1354 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1355 goto errout; 1356 } 1357 1358 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1359 if (!obj->efile.ehdr) { 1360 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1361 err = -LIBBPF_ERRNO__FORMAT; 1362 goto errout; 1363 } 1364 1365 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1366 pr_warn("elf: failed to get section names section index for %s: %s\n", 1367 obj->path, elf_errmsg(-1)); 1368 err = -LIBBPF_ERRNO__FORMAT; 1369 goto errout; 1370 } 1371 1372 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1373 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1374 pr_warn("elf: failed to get section names strings from %s: %s\n", 1375 obj->path, elf_errmsg(-1)); 1376 err = -LIBBPF_ERRNO__FORMAT; 1377 goto errout; 1378 } 1379 1380 /* Old LLVM set e_machine to EM_NONE */ 1381 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1382 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1383 err = -LIBBPF_ERRNO__FORMAT; 1384 goto errout; 1385 } 1386 1387 return 0; 1388 errout: 1389 bpf_object__elf_finish(obj); 1390 return err; 1391 } 1392 1393 static int bpf_object__check_endianness(struct bpf_object *obj) 1394 { 1395 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1396 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1397 return 0; 1398 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1399 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1400 return 0; 1401 #else 1402 # error "Unrecognized __BYTE_ORDER__" 1403 #endif 1404 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1405 return -LIBBPF_ERRNO__ENDIAN; 1406 } 1407 1408 static int 1409 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1410 { 1411 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1412 * go over allowed ELF data section buffer 1413 */ 1414 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1415 pr_debug("license of %s is %s\n", obj->path, obj->license); 1416 return 0; 1417 } 1418 1419 static int 1420 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1421 { 1422 __u32 kver; 1423 1424 if (size != sizeof(kver)) { 1425 pr_warn("invalid kver section in %s\n", obj->path); 1426 return -LIBBPF_ERRNO__FORMAT; 1427 } 1428 memcpy(&kver, data, sizeof(kver)); 1429 obj->kern_version = kver; 1430 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1431 return 0; 1432 } 1433 1434 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1435 { 1436 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1437 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1438 return true; 1439 return false; 1440 } 1441 1442 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1443 { 1444 Elf_Data *data; 1445 Elf_Scn *scn; 1446 1447 if (!name) 1448 return -EINVAL; 1449 1450 scn = elf_sec_by_name(obj, name); 1451 data = elf_sec_data(obj, scn); 1452 if (data) { 1453 *size = data->d_size; 1454 return 0; /* found it */ 1455 } 1456 1457 return -ENOENT; 1458 } 1459 1460 static int find_elf_var_offset(const struct bpf_object *obj, const char *name, __u32 *off) 1461 { 1462 Elf_Data *symbols = obj->efile.symbols; 1463 const char *sname; 1464 size_t si; 1465 1466 if (!name || !off) 1467 return -EINVAL; 1468 1469 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1470 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1471 1472 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1473 continue; 1474 1475 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1476 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1477 continue; 1478 1479 sname = elf_sym_str(obj, sym->st_name); 1480 if (!sname) { 1481 pr_warn("failed to get sym name string for var %s\n", name); 1482 return -EIO; 1483 } 1484 if (strcmp(name, sname) == 0) { 1485 *off = sym->st_value; 1486 return 0; 1487 } 1488 } 1489 1490 return -ENOENT; 1491 } 1492 1493 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1494 { 1495 struct bpf_map *map; 1496 int err; 1497 1498 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1499 sizeof(*obj->maps), obj->nr_maps + 1); 1500 if (err) 1501 return ERR_PTR(err); 1502 1503 map = &obj->maps[obj->nr_maps++]; 1504 map->obj = obj; 1505 map->fd = -1; 1506 map->inner_map_fd = -1; 1507 map->autocreate = true; 1508 1509 return map; 1510 } 1511 1512 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1513 { 1514 long page_sz = sysconf(_SC_PAGE_SIZE); 1515 size_t map_sz; 1516 1517 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1518 map_sz = roundup(map_sz, page_sz); 1519 return map_sz; 1520 } 1521 1522 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1523 { 1524 char map_name[BPF_OBJ_NAME_LEN], *p; 1525 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1526 1527 /* This is one of the more confusing parts of libbpf for various 1528 * reasons, some of which are historical. The original idea for naming 1529 * internal names was to include as much of BPF object name prefix as 1530 * possible, so that it can be distinguished from similar internal 1531 * maps of a different BPF object. 1532 * As an example, let's say we have bpf_object named 'my_object_name' 1533 * and internal map corresponding to '.rodata' ELF section. The final 1534 * map name advertised to user and to the kernel will be 1535 * 'my_objec.rodata', taking first 8 characters of object name and 1536 * entire 7 characters of '.rodata'. 1537 * Somewhat confusingly, if internal map ELF section name is shorter 1538 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1539 * for the suffix, even though we only have 4 actual characters, and 1540 * resulting map will be called 'my_objec.bss', not even using all 15 1541 * characters allowed by the kernel. Oh well, at least the truncated 1542 * object name is somewhat consistent in this case. But if the map 1543 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1544 * (8 chars) and thus will be left with only first 7 characters of the 1545 * object name ('my_obje'). Happy guessing, user, that the final map 1546 * name will be "my_obje.kconfig". 1547 * Now, with libbpf starting to support arbitrarily named .rodata.* 1548 * and .data.* data sections, it's possible that ELF section name is 1549 * longer than allowed 15 chars, so we now need to be careful to take 1550 * only up to 15 first characters of ELF name, taking no BPF object 1551 * name characters at all. So '.rodata.abracadabra' will result in 1552 * '.rodata.abracad' kernel and user-visible name. 1553 * We need to keep this convoluted logic intact for .data, .bss and 1554 * .rodata maps, but for new custom .data.custom and .rodata.custom 1555 * maps we use their ELF names as is, not prepending bpf_object name 1556 * in front. We still need to truncate them to 15 characters for the 1557 * kernel. Full name can be recovered for such maps by using DATASEC 1558 * BTF type associated with such map's value type, though. 1559 */ 1560 if (sfx_len >= BPF_OBJ_NAME_LEN) 1561 sfx_len = BPF_OBJ_NAME_LEN - 1; 1562 1563 /* if there are two or more dots in map name, it's a custom dot map */ 1564 if (strchr(real_name + 1, '.') != NULL) 1565 pfx_len = 0; 1566 else 1567 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1568 1569 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1570 sfx_len, real_name); 1571 1572 /* sanitise map name to characters allowed by kernel */ 1573 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1574 if (!isalnum(*p) && *p != '_' && *p != '.') 1575 *p = '_'; 1576 1577 return strdup(map_name); 1578 } 1579 1580 static int 1581 bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map); 1582 1583 static int 1584 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1585 const char *real_name, int sec_idx, void *data, size_t data_sz) 1586 { 1587 struct bpf_map_def *def; 1588 struct bpf_map *map; 1589 int err; 1590 1591 map = bpf_object__add_map(obj); 1592 if (IS_ERR(map)) 1593 return PTR_ERR(map); 1594 1595 map->libbpf_type = type; 1596 map->sec_idx = sec_idx; 1597 map->sec_offset = 0; 1598 map->real_name = strdup(real_name); 1599 map->name = internal_map_name(obj, real_name); 1600 if (!map->real_name || !map->name) { 1601 zfree(&map->real_name); 1602 zfree(&map->name); 1603 return -ENOMEM; 1604 } 1605 1606 def = &map->def; 1607 def->type = BPF_MAP_TYPE_ARRAY; 1608 def->key_size = sizeof(int); 1609 def->value_size = data_sz; 1610 def->max_entries = 1; 1611 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1612 ? BPF_F_RDONLY_PROG : 0; 1613 def->map_flags |= BPF_F_MMAPABLE; 1614 1615 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1616 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1617 1618 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1619 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1620 if (map->mmaped == MAP_FAILED) { 1621 err = -errno; 1622 map->mmaped = NULL; 1623 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1624 map->name, err); 1625 zfree(&map->real_name); 1626 zfree(&map->name); 1627 return err; 1628 } 1629 1630 /* failures are fine because of maps like .rodata.str1.1 */ 1631 (void) bpf_map_find_btf_info(obj, map); 1632 1633 if (data) 1634 memcpy(map->mmaped, data, data_sz); 1635 1636 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1637 return 0; 1638 } 1639 1640 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1641 { 1642 struct elf_sec_desc *sec_desc; 1643 const char *sec_name; 1644 int err = 0, sec_idx; 1645 1646 /* 1647 * Populate obj->maps with libbpf internal maps. 1648 */ 1649 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1650 sec_desc = &obj->efile.secs[sec_idx]; 1651 1652 /* Skip recognized sections with size 0. */ 1653 if (!sec_desc->data || sec_desc->data->d_size == 0) 1654 continue; 1655 1656 switch (sec_desc->sec_type) { 1657 case SEC_DATA: 1658 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1659 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1660 sec_name, sec_idx, 1661 sec_desc->data->d_buf, 1662 sec_desc->data->d_size); 1663 break; 1664 case SEC_RODATA: 1665 obj->has_rodata = true; 1666 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1667 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1668 sec_name, sec_idx, 1669 sec_desc->data->d_buf, 1670 sec_desc->data->d_size); 1671 break; 1672 case SEC_BSS: 1673 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1674 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1675 sec_name, sec_idx, 1676 NULL, 1677 sec_desc->data->d_size); 1678 break; 1679 default: 1680 /* skip */ 1681 break; 1682 } 1683 if (err) 1684 return err; 1685 } 1686 return 0; 1687 } 1688 1689 1690 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1691 const void *name) 1692 { 1693 int i; 1694 1695 for (i = 0; i < obj->nr_extern; i++) { 1696 if (strcmp(obj->externs[i].name, name) == 0) 1697 return &obj->externs[i]; 1698 } 1699 return NULL; 1700 } 1701 1702 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1703 char value) 1704 { 1705 switch (ext->kcfg.type) { 1706 case KCFG_BOOL: 1707 if (value == 'm') { 1708 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 1709 ext->name, value); 1710 return -EINVAL; 1711 } 1712 *(bool *)ext_val = value == 'y' ? true : false; 1713 break; 1714 case KCFG_TRISTATE: 1715 if (value == 'y') 1716 *(enum libbpf_tristate *)ext_val = TRI_YES; 1717 else if (value == 'm') 1718 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1719 else /* value == 'n' */ 1720 *(enum libbpf_tristate *)ext_val = TRI_NO; 1721 break; 1722 case KCFG_CHAR: 1723 *(char *)ext_val = value; 1724 break; 1725 case KCFG_UNKNOWN: 1726 case KCFG_INT: 1727 case KCFG_CHAR_ARR: 1728 default: 1729 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 1730 ext->name, value); 1731 return -EINVAL; 1732 } 1733 ext->is_set = true; 1734 return 0; 1735 } 1736 1737 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1738 const char *value) 1739 { 1740 size_t len; 1741 1742 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1743 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 1744 ext->name, value); 1745 return -EINVAL; 1746 } 1747 1748 len = strlen(value); 1749 if (value[len - 1] != '"') { 1750 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1751 ext->name, value); 1752 return -EINVAL; 1753 } 1754 1755 /* strip quotes */ 1756 len -= 2; 1757 if (len >= ext->kcfg.sz) { 1758 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 1759 ext->name, value, len, ext->kcfg.sz - 1); 1760 len = ext->kcfg.sz - 1; 1761 } 1762 memcpy(ext_val, value + 1, len); 1763 ext_val[len] = '\0'; 1764 ext->is_set = true; 1765 return 0; 1766 } 1767 1768 static int parse_u64(const char *value, __u64 *res) 1769 { 1770 char *value_end; 1771 int err; 1772 1773 errno = 0; 1774 *res = strtoull(value, &value_end, 0); 1775 if (errno) { 1776 err = -errno; 1777 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1778 return err; 1779 } 1780 if (*value_end) { 1781 pr_warn("failed to parse '%s' as integer completely\n", value); 1782 return -EINVAL; 1783 } 1784 return 0; 1785 } 1786 1787 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1788 { 1789 int bit_sz = ext->kcfg.sz * 8; 1790 1791 if (ext->kcfg.sz == 8) 1792 return true; 1793 1794 /* Validate that value stored in u64 fits in integer of `ext->sz` 1795 * bytes size without any loss of information. If the target integer 1796 * is signed, we rely on the following limits of integer type of 1797 * Y bits and subsequent transformation: 1798 * 1799 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1800 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1801 * 0 <= X + 2^(Y-1) < 2^Y 1802 * 1803 * For unsigned target integer, check that all the (64 - Y) bits are 1804 * zero. 1805 */ 1806 if (ext->kcfg.is_signed) 1807 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1808 else 1809 return (v >> bit_sz) == 0; 1810 } 1811 1812 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1813 __u64 value) 1814 { 1815 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 1816 ext->kcfg.type != KCFG_BOOL) { 1817 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 1818 ext->name, (unsigned long long)value); 1819 return -EINVAL; 1820 } 1821 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 1822 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 1823 ext->name, (unsigned long long)value); 1824 return -EINVAL; 1825 1826 } 1827 if (!is_kcfg_value_in_range(ext, value)) { 1828 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 1829 ext->name, (unsigned long long)value, ext->kcfg.sz); 1830 return -ERANGE; 1831 } 1832 switch (ext->kcfg.sz) { 1833 case 1: *(__u8 *)ext_val = value; break; 1834 case 2: *(__u16 *)ext_val = value; break; 1835 case 4: *(__u32 *)ext_val = value; break; 1836 case 8: *(__u64 *)ext_val = value; break; 1837 default: 1838 return -EINVAL; 1839 } 1840 ext->is_set = true; 1841 return 0; 1842 } 1843 1844 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1845 char *buf, void *data) 1846 { 1847 struct extern_desc *ext; 1848 char *sep, *value; 1849 int len, err = 0; 1850 void *ext_val; 1851 __u64 num; 1852 1853 if (!str_has_pfx(buf, "CONFIG_")) 1854 return 0; 1855 1856 sep = strchr(buf, '='); 1857 if (!sep) { 1858 pr_warn("failed to parse '%s': no separator\n", buf); 1859 return -EINVAL; 1860 } 1861 1862 /* Trim ending '\n' */ 1863 len = strlen(buf); 1864 if (buf[len - 1] == '\n') 1865 buf[len - 1] = '\0'; 1866 /* Split on '=' and ensure that a value is present. */ 1867 *sep = '\0'; 1868 if (!sep[1]) { 1869 *sep = '='; 1870 pr_warn("failed to parse '%s': no value\n", buf); 1871 return -EINVAL; 1872 } 1873 1874 ext = find_extern_by_name(obj, buf); 1875 if (!ext || ext->is_set) 1876 return 0; 1877 1878 ext_val = data + ext->kcfg.data_off; 1879 value = sep + 1; 1880 1881 switch (*value) { 1882 case 'y': case 'n': case 'm': 1883 err = set_kcfg_value_tri(ext, ext_val, *value); 1884 break; 1885 case '"': 1886 err = set_kcfg_value_str(ext, ext_val, value); 1887 break; 1888 default: 1889 /* assume integer */ 1890 err = parse_u64(value, &num); 1891 if (err) { 1892 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 1893 return err; 1894 } 1895 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1896 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 1897 return -EINVAL; 1898 } 1899 err = set_kcfg_value_num(ext, ext_val, num); 1900 break; 1901 } 1902 if (err) 1903 return err; 1904 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 1905 return 0; 1906 } 1907 1908 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1909 { 1910 char buf[PATH_MAX]; 1911 struct utsname uts; 1912 int len, err = 0; 1913 gzFile file; 1914 1915 uname(&uts); 1916 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1917 if (len < 0) 1918 return -EINVAL; 1919 else if (len >= PATH_MAX) 1920 return -ENAMETOOLONG; 1921 1922 /* gzopen also accepts uncompressed files. */ 1923 file = gzopen(buf, "r"); 1924 if (!file) 1925 file = gzopen("/proc/config.gz", "r"); 1926 1927 if (!file) { 1928 pr_warn("failed to open system Kconfig\n"); 1929 return -ENOENT; 1930 } 1931 1932 while (gzgets(file, buf, sizeof(buf))) { 1933 err = bpf_object__process_kconfig_line(obj, buf, data); 1934 if (err) { 1935 pr_warn("error parsing system Kconfig line '%s': %d\n", 1936 buf, err); 1937 goto out; 1938 } 1939 } 1940 1941 out: 1942 gzclose(file); 1943 return err; 1944 } 1945 1946 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1947 const char *config, void *data) 1948 { 1949 char buf[PATH_MAX]; 1950 int err = 0; 1951 FILE *file; 1952 1953 file = fmemopen((void *)config, strlen(config), "r"); 1954 if (!file) { 1955 err = -errno; 1956 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1957 return err; 1958 } 1959 1960 while (fgets(buf, sizeof(buf), file)) { 1961 err = bpf_object__process_kconfig_line(obj, buf, data); 1962 if (err) { 1963 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1964 buf, err); 1965 break; 1966 } 1967 } 1968 1969 fclose(file); 1970 return err; 1971 } 1972 1973 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1974 { 1975 struct extern_desc *last_ext = NULL, *ext; 1976 size_t map_sz; 1977 int i, err; 1978 1979 for (i = 0; i < obj->nr_extern; i++) { 1980 ext = &obj->externs[i]; 1981 if (ext->type == EXT_KCFG) 1982 last_ext = ext; 1983 } 1984 1985 if (!last_ext) 1986 return 0; 1987 1988 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 1989 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1990 ".kconfig", obj->efile.symbols_shndx, 1991 NULL, map_sz); 1992 if (err) 1993 return err; 1994 1995 obj->kconfig_map_idx = obj->nr_maps - 1; 1996 1997 return 0; 1998 } 1999 2000 const struct btf_type * 2001 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2002 { 2003 const struct btf_type *t = btf__type_by_id(btf, id); 2004 2005 if (res_id) 2006 *res_id = id; 2007 2008 while (btf_is_mod(t) || btf_is_typedef(t)) { 2009 if (res_id) 2010 *res_id = t->type; 2011 t = btf__type_by_id(btf, t->type); 2012 } 2013 2014 return t; 2015 } 2016 2017 static const struct btf_type * 2018 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2019 { 2020 const struct btf_type *t; 2021 2022 t = skip_mods_and_typedefs(btf, id, NULL); 2023 if (!btf_is_ptr(t)) 2024 return NULL; 2025 2026 t = skip_mods_and_typedefs(btf, t->type, res_id); 2027 2028 return btf_is_func_proto(t) ? t : NULL; 2029 } 2030 2031 static const char *__btf_kind_str(__u16 kind) 2032 { 2033 switch (kind) { 2034 case BTF_KIND_UNKN: return "void"; 2035 case BTF_KIND_INT: return "int"; 2036 case BTF_KIND_PTR: return "ptr"; 2037 case BTF_KIND_ARRAY: return "array"; 2038 case BTF_KIND_STRUCT: return "struct"; 2039 case BTF_KIND_UNION: return "union"; 2040 case BTF_KIND_ENUM: return "enum"; 2041 case BTF_KIND_FWD: return "fwd"; 2042 case BTF_KIND_TYPEDEF: return "typedef"; 2043 case BTF_KIND_VOLATILE: return "volatile"; 2044 case BTF_KIND_CONST: return "const"; 2045 case BTF_KIND_RESTRICT: return "restrict"; 2046 case BTF_KIND_FUNC: return "func"; 2047 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2048 case BTF_KIND_VAR: return "var"; 2049 case BTF_KIND_DATASEC: return "datasec"; 2050 case BTF_KIND_FLOAT: return "float"; 2051 case BTF_KIND_DECL_TAG: return "decl_tag"; 2052 case BTF_KIND_TYPE_TAG: return "type_tag"; 2053 case BTF_KIND_ENUM64: return "enum64"; 2054 default: return "unknown"; 2055 } 2056 } 2057 2058 const char *btf_kind_str(const struct btf_type *t) 2059 { 2060 return __btf_kind_str(btf_kind(t)); 2061 } 2062 2063 /* 2064 * Fetch integer attribute of BTF map definition. Such attributes are 2065 * represented using a pointer to an array, in which dimensionality of array 2066 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2067 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2068 * type definition, while using only sizeof(void *) space in ELF data section. 2069 */ 2070 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2071 const struct btf_member *m, __u32 *res) 2072 { 2073 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2074 const char *name = btf__name_by_offset(btf, m->name_off); 2075 const struct btf_array *arr_info; 2076 const struct btf_type *arr_t; 2077 2078 if (!btf_is_ptr(t)) { 2079 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2080 map_name, name, btf_kind_str(t)); 2081 return false; 2082 } 2083 2084 arr_t = btf__type_by_id(btf, t->type); 2085 if (!arr_t) { 2086 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2087 map_name, name, t->type); 2088 return false; 2089 } 2090 if (!btf_is_array(arr_t)) { 2091 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2092 map_name, name, btf_kind_str(arr_t)); 2093 return false; 2094 } 2095 arr_info = btf_array(arr_t); 2096 *res = arr_info->nelems; 2097 return true; 2098 } 2099 2100 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2101 { 2102 int len; 2103 2104 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2105 if (len < 0) 2106 return -EINVAL; 2107 if (len >= buf_sz) 2108 return -ENAMETOOLONG; 2109 2110 return 0; 2111 } 2112 2113 static int build_map_pin_path(struct bpf_map *map, const char *path) 2114 { 2115 char buf[PATH_MAX]; 2116 int err; 2117 2118 if (!path) 2119 path = "/sys/fs/bpf"; 2120 2121 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2122 if (err) 2123 return err; 2124 2125 return bpf_map__set_pin_path(map, buf); 2126 } 2127 2128 /* should match definition in bpf_helpers.h */ 2129 enum libbpf_pin_type { 2130 LIBBPF_PIN_NONE, 2131 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2132 LIBBPF_PIN_BY_NAME, 2133 }; 2134 2135 int parse_btf_map_def(const char *map_name, struct btf *btf, 2136 const struct btf_type *def_t, bool strict, 2137 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2138 { 2139 const struct btf_type *t; 2140 const struct btf_member *m; 2141 bool is_inner = inner_def == NULL; 2142 int vlen, i; 2143 2144 vlen = btf_vlen(def_t); 2145 m = btf_members(def_t); 2146 for (i = 0; i < vlen; i++, m++) { 2147 const char *name = btf__name_by_offset(btf, m->name_off); 2148 2149 if (!name) { 2150 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2151 return -EINVAL; 2152 } 2153 if (strcmp(name, "type") == 0) { 2154 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2155 return -EINVAL; 2156 map_def->parts |= MAP_DEF_MAP_TYPE; 2157 } else if (strcmp(name, "max_entries") == 0) { 2158 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2159 return -EINVAL; 2160 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2161 } else if (strcmp(name, "map_flags") == 0) { 2162 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2163 return -EINVAL; 2164 map_def->parts |= MAP_DEF_MAP_FLAGS; 2165 } else if (strcmp(name, "numa_node") == 0) { 2166 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2167 return -EINVAL; 2168 map_def->parts |= MAP_DEF_NUMA_NODE; 2169 } else if (strcmp(name, "key_size") == 0) { 2170 __u32 sz; 2171 2172 if (!get_map_field_int(map_name, btf, m, &sz)) 2173 return -EINVAL; 2174 if (map_def->key_size && map_def->key_size != sz) { 2175 pr_warn("map '%s': conflicting key size %u != %u.\n", 2176 map_name, map_def->key_size, sz); 2177 return -EINVAL; 2178 } 2179 map_def->key_size = sz; 2180 map_def->parts |= MAP_DEF_KEY_SIZE; 2181 } else if (strcmp(name, "key") == 0) { 2182 __s64 sz; 2183 2184 t = btf__type_by_id(btf, m->type); 2185 if (!t) { 2186 pr_warn("map '%s': key type [%d] not found.\n", 2187 map_name, m->type); 2188 return -EINVAL; 2189 } 2190 if (!btf_is_ptr(t)) { 2191 pr_warn("map '%s': key spec is not PTR: %s.\n", 2192 map_name, btf_kind_str(t)); 2193 return -EINVAL; 2194 } 2195 sz = btf__resolve_size(btf, t->type); 2196 if (sz < 0) { 2197 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2198 map_name, t->type, (ssize_t)sz); 2199 return sz; 2200 } 2201 if (map_def->key_size && map_def->key_size != sz) { 2202 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2203 map_name, map_def->key_size, (ssize_t)sz); 2204 return -EINVAL; 2205 } 2206 map_def->key_size = sz; 2207 map_def->key_type_id = t->type; 2208 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2209 } else if (strcmp(name, "value_size") == 0) { 2210 __u32 sz; 2211 2212 if (!get_map_field_int(map_name, btf, m, &sz)) 2213 return -EINVAL; 2214 if (map_def->value_size && map_def->value_size != sz) { 2215 pr_warn("map '%s': conflicting value size %u != %u.\n", 2216 map_name, map_def->value_size, sz); 2217 return -EINVAL; 2218 } 2219 map_def->value_size = sz; 2220 map_def->parts |= MAP_DEF_VALUE_SIZE; 2221 } else if (strcmp(name, "value") == 0) { 2222 __s64 sz; 2223 2224 t = btf__type_by_id(btf, m->type); 2225 if (!t) { 2226 pr_warn("map '%s': value type [%d] not found.\n", 2227 map_name, m->type); 2228 return -EINVAL; 2229 } 2230 if (!btf_is_ptr(t)) { 2231 pr_warn("map '%s': value spec is not PTR: %s.\n", 2232 map_name, btf_kind_str(t)); 2233 return -EINVAL; 2234 } 2235 sz = btf__resolve_size(btf, t->type); 2236 if (sz < 0) { 2237 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2238 map_name, t->type, (ssize_t)sz); 2239 return sz; 2240 } 2241 if (map_def->value_size && map_def->value_size != sz) { 2242 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2243 map_name, map_def->value_size, (ssize_t)sz); 2244 return -EINVAL; 2245 } 2246 map_def->value_size = sz; 2247 map_def->value_type_id = t->type; 2248 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2249 } 2250 else if (strcmp(name, "values") == 0) { 2251 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2252 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2253 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2254 char inner_map_name[128]; 2255 int err; 2256 2257 if (is_inner) { 2258 pr_warn("map '%s': multi-level inner maps not supported.\n", 2259 map_name); 2260 return -ENOTSUP; 2261 } 2262 if (i != vlen - 1) { 2263 pr_warn("map '%s': '%s' member should be last.\n", 2264 map_name, name); 2265 return -EINVAL; 2266 } 2267 if (!is_map_in_map && !is_prog_array) { 2268 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2269 map_name); 2270 return -ENOTSUP; 2271 } 2272 if (map_def->value_size && map_def->value_size != 4) { 2273 pr_warn("map '%s': conflicting value size %u != 4.\n", 2274 map_name, map_def->value_size); 2275 return -EINVAL; 2276 } 2277 map_def->value_size = 4; 2278 t = btf__type_by_id(btf, m->type); 2279 if (!t) { 2280 pr_warn("map '%s': %s type [%d] not found.\n", 2281 map_name, desc, m->type); 2282 return -EINVAL; 2283 } 2284 if (!btf_is_array(t) || btf_array(t)->nelems) { 2285 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2286 map_name, desc); 2287 return -EINVAL; 2288 } 2289 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2290 if (!btf_is_ptr(t)) { 2291 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2292 map_name, desc, btf_kind_str(t)); 2293 return -EINVAL; 2294 } 2295 t = skip_mods_and_typedefs(btf, t->type, NULL); 2296 if (is_prog_array) { 2297 if (!btf_is_func_proto(t)) { 2298 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2299 map_name, btf_kind_str(t)); 2300 return -EINVAL; 2301 } 2302 continue; 2303 } 2304 if (!btf_is_struct(t)) { 2305 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2306 map_name, btf_kind_str(t)); 2307 return -EINVAL; 2308 } 2309 2310 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2311 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2312 if (err) 2313 return err; 2314 2315 map_def->parts |= MAP_DEF_INNER_MAP; 2316 } else if (strcmp(name, "pinning") == 0) { 2317 __u32 val; 2318 2319 if (is_inner) { 2320 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2321 return -EINVAL; 2322 } 2323 if (!get_map_field_int(map_name, btf, m, &val)) 2324 return -EINVAL; 2325 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2326 pr_warn("map '%s': invalid pinning value %u.\n", 2327 map_name, val); 2328 return -EINVAL; 2329 } 2330 map_def->pinning = val; 2331 map_def->parts |= MAP_DEF_PINNING; 2332 } else if (strcmp(name, "map_extra") == 0) { 2333 __u32 map_extra; 2334 2335 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2336 return -EINVAL; 2337 map_def->map_extra = map_extra; 2338 map_def->parts |= MAP_DEF_MAP_EXTRA; 2339 } else { 2340 if (strict) { 2341 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2342 return -ENOTSUP; 2343 } 2344 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2345 } 2346 } 2347 2348 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2349 pr_warn("map '%s': map type isn't specified.\n", map_name); 2350 return -EINVAL; 2351 } 2352 2353 return 0; 2354 } 2355 2356 static size_t adjust_ringbuf_sz(size_t sz) 2357 { 2358 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2359 __u32 mul; 2360 2361 /* if user forgot to set any size, make sure they see error */ 2362 if (sz == 0) 2363 return 0; 2364 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2365 * a power-of-2 multiple of kernel's page size. If user diligently 2366 * satisified these conditions, pass the size through. 2367 */ 2368 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2369 return sz; 2370 2371 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2372 * user-set size to satisfy both user size request and kernel 2373 * requirements and substitute correct max_entries for map creation. 2374 */ 2375 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2376 if (mul * page_sz > sz) 2377 return mul * page_sz; 2378 } 2379 2380 /* if it's impossible to satisfy the conditions (i.e., user size is 2381 * very close to UINT_MAX but is not a power-of-2 multiple of 2382 * page_size) then just return original size and let kernel reject it 2383 */ 2384 return sz; 2385 } 2386 2387 static bool map_is_ringbuf(const struct bpf_map *map) 2388 { 2389 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2390 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2391 } 2392 2393 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2394 { 2395 map->def.type = def->map_type; 2396 map->def.key_size = def->key_size; 2397 map->def.value_size = def->value_size; 2398 map->def.max_entries = def->max_entries; 2399 map->def.map_flags = def->map_flags; 2400 map->map_extra = def->map_extra; 2401 2402 map->numa_node = def->numa_node; 2403 map->btf_key_type_id = def->key_type_id; 2404 map->btf_value_type_id = def->value_type_id; 2405 2406 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2407 if (map_is_ringbuf(map)) 2408 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2409 2410 if (def->parts & MAP_DEF_MAP_TYPE) 2411 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2412 2413 if (def->parts & MAP_DEF_KEY_TYPE) 2414 pr_debug("map '%s': found key [%u], sz = %u.\n", 2415 map->name, def->key_type_id, def->key_size); 2416 else if (def->parts & MAP_DEF_KEY_SIZE) 2417 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2418 2419 if (def->parts & MAP_DEF_VALUE_TYPE) 2420 pr_debug("map '%s': found value [%u], sz = %u.\n", 2421 map->name, def->value_type_id, def->value_size); 2422 else if (def->parts & MAP_DEF_VALUE_SIZE) 2423 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2424 2425 if (def->parts & MAP_DEF_MAX_ENTRIES) 2426 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2427 if (def->parts & MAP_DEF_MAP_FLAGS) 2428 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2429 if (def->parts & MAP_DEF_MAP_EXTRA) 2430 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2431 (unsigned long long)def->map_extra); 2432 if (def->parts & MAP_DEF_PINNING) 2433 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2434 if (def->parts & MAP_DEF_NUMA_NODE) 2435 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2436 2437 if (def->parts & MAP_DEF_INNER_MAP) 2438 pr_debug("map '%s': found inner map definition.\n", map->name); 2439 } 2440 2441 static const char *btf_var_linkage_str(__u32 linkage) 2442 { 2443 switch (linkage) { 2444 case BTF_VAR_STATIC: return "static"; 2445 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2446 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2447 default: return "unknown"; 2448 } 2449 } 2450 2451 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2452 const struct btf_type *sec, 2453 int var_idx, int sec_idx, 2454 const Elf_Data *data, bool strict, 2455 const char *pin_root_path) 2456 { 2457 struct btf_map_def map_def = {}, inner_def = {}; 2458 const struct btf_type *var, *def; 2459 const struct btf_var_secinfo *vi; 2460 const struct btf_var *var_extra; 2461 const char *map_name; 2462 struct bpf_map *map; 2463 int err; 2464 2465 vi = btf_var_secinfos(sec) + var_idx; 2466 var = btf__type_by_id(obj->btf, vi->type); 2467 var_extra = btf_var(var); 2468 map_name = btf__name_by_offset(obj->btf, var->name_off); 2469 2470 if (map_name == NULL || map_name[0] == '\0') { 2471 pr_warn("map #%d: empty name.\n", var_idx); 2472 return -EINVAL; 2473 } 2474 if ((__u64)vi->offset + vi->size > data->d_size) { 2475 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2476 return -EINVAL; 2477 } 2478 if (!btf_is_var(var)) { 2479 pr_warn("map '%s': unexpected var kind %s.\n", 2480 map_name, btf_kind_str(var)); 2481 return -EINVAL; 2482 } 2483 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2484 pr_warn("map '%s': unsupported map linkage %s.\n", 2485 map_name, btf_var_linkage_str(var_extra->linkage)); 2486 return -EOPNOTSUPP; 2487 } 2488 2489 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2490 if (!btf_is_struct(def)) { 2491 pr_warn("map '%s': unexpected def kind %s.\n", 2492 map_name, btf_kind_str(var)); 2493 return -EINVAL; 2494 } 2495 if (def->size > vi->size) { 2496 pr_warn("map '%s': invalid def size.\n", map_name); 2497 return -EINVAL; 2498 } 2499 2500 map = bpf_object__add_map(obj); 2501 if (IS_ERR(map)) 2502 return PTR_ERR(map); 2503 map->name = strdup(map_name); 2504 if (!map->name) { 2505 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2506 return -ENOMEM; 2507 } 2508 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2509 map->def.type = BPF_MAP_TYPE_UNSPEC; 2510 map->sec_idx = sec_idx; 2511 map->sec_offset = vi->offset; 2512 map->btf_var_idx = var_idx; 2513 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2514 map_name, map->sec_idx, map->sec_offset); 2515 2516 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2517 if (err) 2518 return err; 2519 2520 fill_map_from_def(map, &map_def); 2521 2522 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2523 err = build_map_pin_path(map, pin_root_path); 2524 if (err) { 2525 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2526 return err; 2527 } 2528 } 2529 2530 if (map_def.parts & MAP_DEF_INNER_MAP) { 2531 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2532 if (!map->inner_map) 2533 return -ENOMEM; 2534 map->inner_map->fd = -1; 2535 map->inner_map->sec_idx = sec_idx; 2536 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2537 if (!map->inner_map->name) 2538 return -ENOMEM; 2539 sprintf(map->inner_map->name, "%s.inner", map_name); 2540 2541 fill_map_from_def(map->inner_map, &inner_def); 2542 } 2543 2544 err = bpf_map_find_btf_info(obj, map); 2545 if (err) 2546 return err; 2547 2548 return 0; 2549 } 2550 2551 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2552 const char *pin_root_path) 2553 { 2554 const struct btf_type *sec = NULL; 2555 int nr_types, i, vlen, err; 2556 const struct btf_type *t; 2557 const char *name; 2558 Elf_Data *data; 2559 Elf_Scn *scn; 2560 2561 if (obj->efile.btf_maps_shndx < 0) 2562 return 0; 2563 2564 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2565 data = elf_sec_data(obj, scn); 2566 if (!scn || !data) { 2567 pr_warn("elf: failed to get %s map definitions for %s\n", 2568 MAPS_ELF_SEC, obj->path); 2569 return -EINVAL; 2570 } 2571 2572 nr_types = btf__type_cnt(obj->btf); 2573 for (i = 1; i < nr_types; i++) { 2574 t = btf__type_by_id(obj->btf, i); 2575 if (!btf_is_datasec(t)) 2576 continue; 2577 name = btf__name_by_offset(obj->btf, t->name_off); 2578 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2579 sec = t; 2580 obj->efile.btf_maps_sec_btf_id = i; 2581 break; 2582 } 2583 } 2584 2585 if (!sec) { 2586 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2587 return -ENOENT; 2588 } 2589 2590 vlen = btf_vlen(sec); 2591 for (i = 0; i < vlen; i++) { 2592 err = bpf_object__init_user_btf_map(obj, sec, i, 2593 obj->efile.btf_maps_shndx, 2594 data, strict, 2595 pin_root_path); 2596 if (err) 2597 return err; 2598 } 2599 2600 return 0; 2601 } 2602 2603 static int bpf_object__init_maps(struct bpf_object *obj, 2604 const struct bpf_object_open_opts *opts) 2605 { 2606 const char *pin_root_path; 2607 bool strict; 2608 int err = 0; 2609 2610 strict = !OPTS_GET(opts, relaxed_maps, false); 2611 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2612 2613 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2614 err = err ?: bpf_object__init_global_data_maps(obj); 2615 err = err ?: bpf_object__init_kconfig_map(obj); 2616 err = err ?: bpf_object__init_struct_ops_maps(obj); 2617 2618 return err; 2619 } 2620 2621 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2622 { 2623 Elf64_Shdr *sh; 2624 2625 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2626 if (!sh) 2627 return false; 2628 2629 return sh->sh_flags & SHF_EXECINSTR; 2630 } 2631 2632 static bool btf_needs_sanitization(struct bpf_object *obj) 2633 { 2634 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2635 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2636 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2637 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2638 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2639 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2640 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2641 2642 return !has_func || !has_datasec || !has_func_global || !has_float || 2643 !has_decl_tag || !has_type_tag || !has_enum64; 2644 } 2645 2646 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2647 { 2648 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2649 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2650 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2651 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2652 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2653 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2654 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2655 int enum64_placeholder_id = 0; 2656 struct btf_type *t; 2657 int i, j, vlen; 2658 2659 for (i = 1; i < btf__type_cnt(btf); i++) { 2660 t = (struct btf_type *)btf__type_by_id(btf, i); 2661 2662 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2663 /* replace VAR/DECL_TAG with INT */ 2664 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2665 /* 2666 * using size = 1 is the safest choice, 4 will be too 2667 * big and cause kernel BTF validation failure if 2668 * original variable took less than 4 bytes 2669 */ 2670 t->size = 1; 2671 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2672 } else if (!has_datasec && btf_is_datasec(t)) { 2673 /* replace DATASEC with STRUCT */ 2674 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2675 struct btf_member *m = btf_members(t); 2676 struct btf_type *vt; 2677 char *name; 2678 2679 name = (char *)btf__name_by_offset(btf, t->name_off); 2680 while (*name) { 2681 if (*name == '.') 2682 *name = '_'; 2683 name++; 2684 } 2685 2686 vlen = btf_vlen(t); 2687 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2688 for (j = 0; j < vlen; j++, v++, m++) { 2689 /* order of field assignments is important */ 2690 m->offset = v->offset * 8; 2691 m->type = v->type; 2692 /* preserve variable name as member name */ 2693 vt = (void *)btf__type_by_id(btf, v->type); 2694 m->name_off = vt->name_off; 2695 } 2696 } else if (!has_func && btf_is_func_proto(t)) { 2697 /* replace FUNC_PROTO with ENUM */ 2698 vlen = btf_vlen(t); 2699 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2700 t->size = sizeof(__u32); /* kernel enforced */ 2701 } else if (!has_func && btf_is_func(t)) { 2702 /* replace FUNC with TYPEDEF */ 2703 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2704 } else if (!has_func_global && btf_is_func(t)) { 2705 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2706 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2707 } else if (!has_float && btf_is_float(t)) { 2708 /* replace FLOAT with an equally-sized empty STRUCT; 2709 * since C compilers do not accept e.g. "float" as a 2710 * valid struct name, make it anonymous 2711 */ 2712 t->name_off = 0; 2713 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2714 } else if (!has_type_tag && btf_is_type_tag(t)) { 2715 /* replace TYPE_TAG with a CONST */ 2716 t->name_off = 0; 2717 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2718 } else if (!has_enum64 && btf_is_enum(t)) { 2719 /* clear the kflag */ 2720 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 2721 } else if (!has_enum64 && btf_is_enum64(t)) { 2722 /* replace ENUM64 with a union */ 2723 struct btf_member *m; 2724 2725 if (enum64_placeholder_id == 0) { 2726 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 2727 if (enum64_placeholder_id < 0) 2728 return enum64_placeholder_id; 2729 2730 t = (struct btf_type *)btf__type_by_id(btf, i); 2731 } 2732 2733 m = btf_members(t); 2734 vlen = btf_vlen(t); 2735 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 2736 for (j = 0; j < vlen; j++, m++) { 2737 m->type = enum64_placeholder_id; 2738 m->offset = 0; 2739 } 2740 } 2741 } 2742 2743 return 0; 2744 } 2745 2746 static bool libbpf_needs_btf(const struct bpf_object *obj) 2747 { 2748 return obj->efile.btf_maps_shndx >= 0 || 2749 obj->efile.st_ops_shndx >= 0 || 2750 obj->nr_extern > 0; 2751 } 2752 2753 static bool kernel_needs_btf(const struct bpf_object *obj) 2754 { 2755 return obj->efile.st_ops_shndx >= 0; 2756 } 2757 2758 static int bpf_object__init_btf(struct bpf_object *obj, 2759 Elf_Data *btf_data, 2760 Elf_Data *btf_ext_data) 2761 { 2762 int err = -ENOENT; 2763 2764 if (btf_data) { 2765 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2766 err = libbpf_get_error(obj->btf); 2767 if (err) { 2768 obj->btf = NULL; 2769 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2770 goto out; 2771 } 2772 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2773 btf__set_pointer_size(obj->btf, 8); 2774 } 2775 if (btf_ext_data) { 2776 struct btf_ext_info *ext_segs[3]; 2777 int seg_num, sec_num; 2778 2779 if (!obj->btf) { 2780 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2781 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2782 goto out; 2783 } 2784 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2785 err = libbpf_get_error(obj->btf_ext); 2786 if (err) { 2787 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2788 BTF_EXT_ELF_SEC, err); 2789 obj->btf_ext = NULL; 2790 goto out; 2791 } 2792 2793 /* setup .BTF.ext to ELF section mapping */ 2794 ext_segs[0] = &obj->btf_ext->func_info; 2795 ext_segs[1] = &obj->btf_ext->line_info; 2796 ext_segs[2] = &obj->btf_ext->core_relo_info; 2797 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 2798 struct btf_ext_info *seg = ext_segs[seg_num]; 2799 const struct btf_ext_info_sec *sec; 2800 const char *sec_name; 2801 Elf_Scn *scn; 2802 2803 if (seg->sec_cnt == 0) 2804 continue; 2805 2806 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 2807 if (!seg->sec_idxs) { 2808 err = -ENOMEM; 2809 goto out; 2810 } 2811 2812 sec_num = 0; 2813 for_each_btf_ext_sec(seg, sec) { 2814 /* preventively increment index to avoid doing 2815 * this before every continue below 2816 */ 2817 sec_num++; 2818 2819 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 2820 if (str_is_empty(sec_name)) 2821 continue; 2822 scn = elf_sec_by_name(obj, sec_name); 2823 if (!scn) 2824 continue; 2825 2826 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 2827 } 2828 } 2829 } 2830 out: 2831 if (err && libbpf_needs_btf(obj)) { 2832 pr_warn("BTF is required, but is missing or corrupted.\n"); 2833 return err; 2834 } 2835 return 0; 2836 } 2837 2838 static int compare_vsi_off(const void *_a, const void *_b) 2839 { 2840 const struct btf_var_secinfo *a = _a; 2841 const struct btf_var_secinfo *b = _b; 2842 2843 return a->offset - b->offset; 2844 } 2845 2846 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2847 struct btf_type *t) 2848 { 2849 __u32 size = 0, off = 0, i, vars = btf_vlen(t); 2850 const char *name = btf__name_by_offset(btf, t->name_off); 2851 const struct btf_type *t_var; 2852 struct btf_var_secinfo *vsi; 2853 const struct btf_var *var; 2854 int ret; 2855 2856 if (!name) { 2857 pr_debug("No name found in string section for DATASEC kind.\n"); 2858 return -ENOENT; 2859 } 2860 2861 /* .extern datasec size and var offsets were set correctly during 2862 * extern collection step, so just skip straight to sorting variables 2863 */ 2864 if (t->size) 2865 goto sort_vars; 2866 2867 ret = find_elf_sec_sz(obj, name, &size); 2868 if (ret || !size) { 2869 pr_debug("Invalid size for section %s: %u bytes\n", name, size); 2870 return -ENOENT; 2871 } 2872 2873 t->size = size; 2874 2875 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2876 t_var = btf__type_by_id(btf, vsi->type); 2877 if (!t_var || !btf_is_var(t_var)) { 2878 pr_debug("Non-VAR type seen in section %s\n", name); 2879 return -EINVAL; 2880 } 2881 2882 var = btf_var(t_var); 2883 if (var->linkage == BTF_VAR_STATIC) 2884 continue; 2885 2886 name = btf__name_by_offset(btf, t_var->name_off); 2887 if (!name) { 2888 pr_debug("No name found in string section for VAR kind\n"); 2889 return -ENOENT; 2890 } 2891 2892 ret = find_elf_var_offset(obj, name, &off); 2893 if (ret) { 2894 pr_debug("No offset found in symbol table for VAR %s\n", 2895 name); 2896 return -ENOENT; 2897 } 2898 2899 vsi->offset = off; 2900 } 2901 2902 sort_vars: 2903 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 2904 return 0; 2905 } 2906 2907 static int btf_finalize_data(struct bpf_object *obj, struct btf *btf) 2908 { 2909 int err = 0; 2910 __u32 i, n = btf__type_cnt(btf); 2911 2912 for (i = 1; i < n; i++) { 2913 struct btf_type *t = btf_type_by_id(btf, i); 2914 2915 /* Loader needs to fix up some of the things compiler 2916 * couldn't get its hands on while emitting BTF. This 2917 * is section size and global variable offset. We use 2918 * the info from the ELF itself for this purpose. 2919 */ 2920 if (btf_is_datasec(t)) { 2921 err = btf_fixup_datasec(obj, btf, t); 2922 if (err) 2923 break; 2924 } 2925 } 2926 2927 return libbpf_err(err); 2928 } 2929 2930 static int bpf_object__finalize_btf(struct bpf_object *obj) 2931 { 2932 int err; 2933 2934 if (!obj->btf) 2935 return 0; 2936 2937 err = btf_finalize_data(obj, obj->btf); 2938 if (err) { 2939 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2940 return err; 2941 } 2942 2943 return 0; 2944 } 2945 2946 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 2947 { 2948 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 2949 prog->type == BPF_PROG_TYPE_LSM) 2950 return true; 2951 2952 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2953 * also need vmlinux BTF 2954 */ 2955 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2956 return true; 2957 2958 return false; 2959 } 2960 2961 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 2962 { 2963 struct bpf_program *prog; 2964 int i; 2965 2966 /* CO-RE relocations need kernel BTF, only when btf_custom_path 2967 * is not specified 2968 */ 2969 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 2970 return true; 2971 2972 /* Support for typed ksyms needs kernel BTF */ 2973 for (i = 0; i < obj->nr_extern; i++) { 2974 const struct extern_desc *ext; 2975 2976 ext = &obj->externs[i]; 2977 if (ext->type == EXT_KSYM && ext->ksym.type_id) 2978 return true; 2979 } 2980 2981 bpf_object__for_each_program(prog, obj) { 2982 if (!prog->autoload) 2983 continue; 2984 if (prog_needs_vmlinux_btf(prog)) 2985 return true; 2986 } 2987 2988 return false; 2989 } 2990 2991 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 2992 { 2993 int err; 2994 2995 /* btf_vmlinux could be loaded earlier */ 2996 if (obj->btf_vmlinux || obj->gen_loader) 2997 return 0; 2998 2999 if (!force && !obj_needs_vmlinux_btf(obj)) 3000 return 0; 3001 3002 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3003 err = libbpf_get_error(obj->btf_vmlinux); 3004 if (err) { 3005 pr_warn("Error loading vmlinux BTF: %d\n", err); 3006 obj->btf_vmlinux = NULL; 3007 return err; 3008 } 3009 return 0; 3010 } 3011 3012 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3013 { 3014 struct btf *kern_btf = obj->btf; 3015 bool btf_mandatory, sanitize; 3016 int i, err = 0; 3017 3018 if (!obj->btf) 3019 return 0; 3020 3021 if (!kernel_supports(obj, FEAT_BTF)) { 3022 if (kernel_needs_btf(obj)) { 3023 err = -EOPNOTSUPP; 3024 goto report; 3025 } 3026 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3027 return 0; 3028 } 3029 3030 /* Even though some subprogs are global/weak, user might prefer more 3031 * permissive BPF verification process that BPF verifier performs for 3032 * static functions, taking into account more context from the caller 3033 * functions. In such case, they need to mark such subprogs with 3034 * __attribute__((visibility("hidden"))) and libbpf will adjust 3035 * corresponding FUNC BTF type to be marked as static and trigger more 3036 * involved BPF verification process. 3037 */ 3038 for (i = 0; i < obj->nr_programs; i++) { 3039 struct bpf_program *prog = &obj->programs[i]; 3040 struct btf_type *t; 3041 const char *name; 3042 int j, n; 3043 3044 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3045 continue; 3046 3047 n = btf__type_cnt(obj->btf); 3048 for (j = 1; j < n; j++) { 3049 t = btf_type_by_id(obj->btf, j); 3050 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3051 continue; 3052 3053 name = btf__str_by_offset(obj->btf, t->name_off); 3054 if (strcmp(name, prog->name) != 0) 3055 continue; 3056 3057 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3058 break; 3059 } 3060 } 3061 3062 sanitize = btf_needs_sanitization(obj); 3063 if (sanitize) { 3064 const void *raw_data; 3065 __u32 sz; 3066 3067 /* clone BTF to sanitize a copy and leave the original intact */ 3068 raw_data = btf__raw_data(obj->btf, &sz); 3069 kern_btf = btf__new(raw_data, sz); 3070 err = libbpf_get_error(kern_btf); 3071 if (err) 3072 return err; 3073 3074 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3075 btf__set_pointer_size(obj->btf, 8); 3076 err = bpf_object__sanitize_btf(obj, kern_btf); 3077 if (err) 3078 return err; 3079 } 3080 3081 if (obj->gen_loader) { 3082 __u32 raw_size = 0; 3083 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3084 3085 if (!raw_data) 3086 return -ENOMEM; 3087 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3088 /* Pretend to have valid FD to pass various fd >= 0 checks. 3089 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3090 */ 3091 btf__set_fd(kern_btf, 0); 3092 } else { 3093 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3094 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3095 obj->log_level ? 1 : 0); 3096 } 3097 if (sanitize) { 3098 if (!err) { 3099 /* move fd to libbpf's BTF */ 3100 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3101 btf__set_fd(kern_btf, -1); 3102 } 3103 btf__free(kern_btf); 3104 } 3105 report: 3106 if (err) { 3107 btf_mandatory = kernel_needs_btf(obj); 3108 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3109 btf_mandatory ? "BTF is mandatory, can't proceed." 3110 : "BTF is optional, ignoring."); 3111 if (!btf_mandatory) 3112 err = 0; 3113 } 3114 return err; 3115 } 3116 3117 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3118 { 3119 const char *name; 3120 3121 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3122 if (!name) { 3123 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3124 off, obj->path, elf_errmsg(-1)); 3125 return NULL; 3126 } 3127 3128 return name; 3129 } 3130 3131 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3132 { 3133 const char *name; 3134 3135 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3136 if (!name) { 3137 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3138 off, obj->path, elf_errmsg(-1)); 3139 return NULL; 3140 } 3141 3142 return name; 3143 } 3144 3145 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3146 { 3147 Elf_Scn *scn; 3148 3149 scn = elf_getscn(obj->efile.elf, idx); 3150 if (!scn) { 3151 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3152 idx, obj->path, elf_errmsg(-1)); 3153 return NULL; 3154 } 3155 return scn; 3156 } 3157 3158 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3159 { 3160 Elf_Scn *scn = NULL; 3161 Elf *elf = obj->efile.elf; 3162 const char *sec_name; 3163 3164 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3165 sec_name = elf_sec_name(obj, scn); 3166 if (!sec_name) 3167 return NULL; 3168 3169 if (strcmp(sec_name, name) != 0) 3170 continue; 3171 3172 return scn; 3173 } 3174 return NULL; 3175 } 3176 3177 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3178 { 3179 Elf64_Shdr *shdr; 3180 3181 if (!scn) 3182 return NULL; 3183 3184 shdr = elf64_getshdr(scn); 3185 if (!shdr) { 3186 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3187 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3188 return NULL; 3189 } 3190 3191 return shdr; 3192 } 3193 3194 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3195 { 3196 const char *name; 3197 Elf64_Shdr *sh; 3198 3199 if (!scn) 3200 return NULL; 3201 3202 sh = elf_sec_hdr(obj, scn); 3203 if (!sh) 3204 return NULL; 3205 3206 name = elf_sec_str(obj, sh->sh_name); 3207 if (!name) { 3208 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3209 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3210 return NULL; 3211 } 3212 3213 return name; 3214 } 3215 3216 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3217 { 3218 Elf_Data *data; 3219 3220 if (!scn) 3221 return NULL; 3222 3223 data = elf_getdata(scn, 0); 3224 if (!data) { 3225 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3226 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3227 obj->path, elf_errmsg(-1)); 3228 return NULL; 3229 } 3230 3231 return data; 3232 } 3233 3234 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3235 { 3236 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3237 return NULL; 3238 3239 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3240 } 3241 3242 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3243 { 3244 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3245 return NULL; 3246 3247 return (Elf64_Rel *)data->d_buf + idx; 3248 } 3249 3250 static bool is_sec_name_dwarf(const char *name) 3251 { 3252 /* approximation, but the actual list is too long */ 3253 return str_has_pfx(name, ".debug_"); 3254 } 3255 3256 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3257 { 3258 /* no special handling of .strtab */ 3259 if (hdr->sh_type == SHT_STRTAB) 3260 return true; 3261 3262 /* ignore .llvm_addrsig section as well */ 3263 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3264 return true; 3265 3266 /* no subprograms will lead to an empty .text section, ignore it */ 3267 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3268 strcmp(name, ".text") == 0) 3269 return true; 3270 3271 /* DWARF sections */ 3272 if (is_sec_name_dwarf(name)) 3273 return true; 3274 3275 if (str_has_pfx(name, ".rel")) { 3276 name += sizeof(".rel") - 1; 3277 /* DWARF section relocations */ 3278 if (is_sec_name_dwarf(name)) 3279 return true; 3280 3281 /* .BTF and .BTF.ext don't need relocations */ 3282 if (strcmp(name, BTF_ELF_SEC) == 0 || 3283 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3284 return true; 3285 } 3286 3287 return false; 3288 } 3289 3290 static int cmp_progs(const void *_a, const void *_b) 3291 { 3292 const struct bpf_program *a = _a; 3293 const struct bpf_program *b = _b; 3294 3295 if (a->sec_idx != b->sec_idx) 3296 return a->sec_idx < b->sec_idx ? -1 : 1; 3297 3298 /* sec_insn_off can't be the same within the section */ 3299 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3300 } 3301 3302 static int bpf_object__elf_collect(struct bpf_object *obj) 3303 { 3304 struct elf_sec_desc *sec_desc; 3305 Elf *elf = obj->efile.elf; 3306 Elf_Data *btf_ext_data = NULL; 3307 Elf_Data *btf_data = NULL; 3308 int idx = 0, err = 0; 3309 const char *name; 3310 Elf_Data *data; 3311 Elf_Scn *scn; 3312 Elf64_Shdr *sh; 3313 3314 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3315 * section. e_shnum does include sec #0, so e_shnum is the necessary 3316 * size of an array to keep all the sections. 3317 */ 3318 obj->efile.sec_cnt = obj->efile.ehdr->e_shnum; 3319 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3320 if (!obj->efile.secs) 3321 return -ENOMEM; 3322 3323 /* a bunch of ELF parsing functionality depends on processing symbols, 3324 * so do the first pass and find the symbol table 3325 */ 3326 scn = NULL; 3327 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3328 sh = elf_sec_hdr(obj, scn); 3329 if (!sh) 3330 return -LIBBPF_ERRNO__FORMAT; 3331 3332 if (sh->sh_type == SHT_SYMTAB) { 3333 if (obj->efile.symbols) { 3334 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3335 return -LIBBPF_ERRNO__FORMAT; 3336 } 3337 3338 data = elf_sec_data(obj, scn); 3339 if (!data) 3340 return -LIBBPF_ERRNO__FORMAT; 3341 3342 idx = elf_ndxscn(scn); 3343 3344 obj->efile.symbols = data; 3345 obj->efile.symbols_shndx = idx; 3346 obj->efile.strtabidx = sh->sh_link; 3347 } 3348 } 3349 3350 if (!obj->efile.symbols) { 3351 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3352 obj->path); 3353 return -ENOENT; 3354 } 3355 3356 scn = NULL; 3357 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3358 idx = elf_ndxscn(scn); 3359 sec_desc = &obj->efile.secs[idx]; 3360 3361 sh = elf_sec_hdr(obj, scn); 3362 if (!sh) 3363 return -LIBBPF_ERRNO__FORMAT; 3364 3365 name = elf_sec_str(obj, sh->sh_name); 3366 if (!name) 3367 return -LIBBPF_ERRNO__FORMAT; 3368 3369 if (ignore_elf_section(sh, name)) 3370 continue; 3371 3372 data = elf_sec_data(obj, scn); 3373 if (!data) 3374 return -LIBBPF_ERRNO__FORMAT; 3375 3376 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3377 idx, name, (unsigned long)data->d_size, 3378 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3379 (int)sh->sh_type); 3380 3381 if (strcmp(name, "license") == 0) { 3382 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3383 if (err) 3384 return err; 3385 } else if (strcmp(name, "version") == 0) { 3386 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3387 if (err) 3388 return err; 3389 } else if (strcmp(name, "maps") == 0) { 3390 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3391 return -ENOTSUP; 3392 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3393 obj->efile.btf_maps_shndx = idx; 3394 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3395 if (sh->sh_type != SHT_PROGBITS) 3396 return -LIBBPF_ERRNO__FORMAT; 3397 btf_data = data; 3398 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3399 if (sh->sh_type != SHT_PROGBITS) 3400 return -LIBBPF_ERRNO__FORMAT; 3401 btf_ext_data = data; 3402 } else if (sh->sh_type == SHT_SYMTAB) { 3403 /* already processed during the first pass above */ 3404 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3405 if (sh->sh_flags & SHF_EXECINSTR) { 3406 if (strcmp(name, ".text") == 0) 3407 obj->efile.text_shndx = idx; 3408 err = bpf_object__add_programs(obj, data, name, idx); 3409 if (err) 3410 return err; 3411 } else if (strcmp(name, DATA_SEC) == 0 || 3412 str_has_pfx(name, DATA_SEC ".")) { 3413 sec_desc->sec_type = SEC_DATA; 3414 sec_desc->shdr = sh; 3415 sec_desc->data = data; 3416 } else if (strcmp(name, RODATA_SEC) == 0 || 3417 str_has_pfx(name, RODATA_SEC ".")) { 3418 sec_desc->sec_type = SEC_RODATA; 3419 sec_desc->shdr = sh; 3420 sec_desc->data = data; 3421 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3422 obj->efile.st_ops_data = data; 3423 obj->efile.st_ops_shndx = idx; 3424 } else { 3425 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3426 idx, name); 3427 } 3428 } else if (sh->sh_type == SHT_REL) { 3429 int targ_sec_idx = sh->sh_info; /* points to other section */ 3430 3431 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3432 targ_sec_idx >= obj->efile.sec_cnt) 3433 return -LIBBPF_ERRNO__FORMAT; 3434 3435 /* Only do relo for section with exec instructions */ 3436 if (!section_have_execinstr(obj, targ_sec_idx) && 3437 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3438 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3439 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3440 idx, name, targ_sec_idx, 3441 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3442 continue; 3443 } 3444 3445 sec_desc->sec_type = SEC_RELO; 3446 sec_desc->shdr = sh; 3447 sec_desc->data = data; 3448 } else if (sh->sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 3449 sec_desc->sec_type = SEC_BSS; 3450 sec_desc->shdr = sh; 3451 sec_desc->data = data; 3452 } else { 3453 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3454 (size_t)sh->sh_size); 3455 } 3456 } 3457 3458 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3459 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3460 return -LIBBPF_ERRNO__FORMAT; 3461 } 3462 3463 /* sort BPF programs by section name and in-section instruction offset 3464 * for faster search */ 3465 if (obj->nr_programs) 3466 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3467 3468 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3469 } 3470 3471 static bool sym_is_extern(const Elf64_Sym *sym) 3472 { 3473 int bind = ELF64_ST_BIND(sym->st_info); 3474 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3475 return sym->st_shndx == SHN_UNDEF && 3476 (bind == STB_GLOBAL || bind == STB_WEAK) && 3477 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3478 } 3479 3480 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3481 { 3482 int bind = ELF64_ST_BIND(sym->st_info); 3483 int type = ELF64_ST_TYPE(sym->st_info); 3484 3485 /* in .text section */ 3486 if (sym->st_shndx != text_shndx) 3487 return false; 3488 3489 /* local function */ 3490 if (bind == STB_LOCAL && type == STT_SECTION) 3491 return true; 3492 3493 /* global function */ 3494 return bind == STB_GLOBAL && type == STT_FUNC; 3495 } 3496 3497 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3498 { 3499 const struct btf_type *t; 3500 const char *tname; 3501 int i, n; 3502 3503 if (!btf) 3504 return -ESRCH; 3505 3506 n = btf__type_cnt(btf); 3507 for (i = 1; i < n; i++) { 3508 t = btf__type_by_id(btf, i); 3509 3510 if (!btf_is_var(t) && !btf_is_func(t)) 3511 continue; 3512 3513 tname = btf__name_by_offset(btf, t->name_off); 3514 if (strcmp(tname, ext_name)) 3515 continue; 3516 3517 if (btf_is_var(t) && 3518 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3519 return -EINVAL; 3520 3521 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3522 return -EINVAL; 3523 3524 return i; 3525 } 3526 3527 return -ENOENT; 3528 } 3529 3530 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3531 const struct btf_var_secinfo *vs; 3532 const struct btf_type *t; 3533 int i, j, n; 3534 3535 if (!btf) 3536 return -ESRCH; 3537 3538 n = btf__type_cnt(btf); 3539 for (i = 1; i < n; i++) { 3540 t = btf__type_by_id(btf, i); 3541 3542 if (!btf_is_datasec(t)) 3543 continue; 3544 3545 vs = btf_var_secinfos(t); 3546 for (j = 0; j < btf_vlen(t); j++, vs++) { 3547 if (vs->type == ext_btf_id) 3548 return i; 3549 } 3550 } 3551 3552 return -ENOENT; 3553 } 3554 3555 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3556 bool *is_signed) 3557 { 3558 const struct btf_type *t; 3559 const char *name; 3560 3561 t = skip_mods_and_typedefs(btf, id, NULL); 3562 name = btf__name_by_offset(btf, t->name_off); 3563 3564 if (is_signed) 3565 *is_signed = false; 3566 switch (btf_kind(t)) { 3567 case BTF_KIND_INT: { 3568 int enc = btf_int_encoding(t); 3569 3570 if (enc & BTF_INT_BOOL) 3571 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3572 if (is_signed) 3573 *is_signed = enc & BTF_INT_SIGNED; 3574 if (t->size == 1) 3575 return KCFG_CHAR; 3576 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3577 return KCFG_UNKNOWN; 3578 return KCFG_INT; 3579 } 3580 case BTF_KIND_ENUM: 3581 if (t->size != 4) 3582 return KCFG_UNKNOWN; 3583 if (strcmp(name, "libbpf_tristate")) 3584 return KCFG_UNKNOWN; 3585 return KCFG_TRISTATE; 3586 case BTF_KIND_ENUM64: 3587 if (strcmp(name, "libbpf_tristate")) 3588 return KCFG_UNKNOWN; 3589 return KCFG_TRISTATE; 3590 case BTF_KIND_ARRAY: 3591 if (btf_array(t)->nelems == 0) 3592 return KCFG_UNKNOWN; 3593 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3594 return KCFG_UNKNOWN; 3595 return KCFG_CHAR_ARR; 3596 default: 3597 return KCFG_UNKNOWN; 3598 } 3599 } 3600 3601 static int cmp_externs(const void *_a, const void *_b) 3602 { 3603 const struct extern_desc *a = _a; 3604 const struct extern_desc *b = _b; 3605 3606 if (a->type != b->type) 3607 return a->type < b->type ? -1 : 1; 3608 3609 if (a->type == EXT_KCFG) { 3610 /* descending order by alignment requirements */ 3611 if (a->kcfg.align != b->kcfg.align) 3612 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3613 /* ascending order by size, within same alignment class */ 3614 if (a->kcfg.sz != b->kcfg.sz) 3615 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3616 } 3617 3618 /* resolve ties by name */ 3619 return strcmp(a->name, b->name); 3620 } 3621 3622 static int find_int_btf_id(const struct btf *btf) 3623 { 3624 const struct btf_type *t; 3625 int i, n; 3626 3627 n = btf__type_cnt(btf); 3628 for (i = 1; i < n; i++) { 3629 t = btf__type_by_id(btf, i); 3630 3631 if (btf_is_int(t) && btf_int_bits(t) == 32) 3632 return i; 3633 } 3634 3635 return 0; 3636 } 3637 3638 static int add_dummy_ksym_var(struct btf *btf) 3639 { 3640 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3641 const struct btf_var_secinfo *vs; 3642 const struct btf_type *sec; 3643 3644 if (!btf) 3645 return 0; 3646 3647 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3648 BTF_KIND_DATASEC); 3649 if (sec_btf_id < 0) 3650 return 0; 3651 3652 sec = btf__type_by_id(btf, sec_btf_id); 3653 vs = btf_var_secinfos(sec); 3654 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3655 const struct btf_type *vt; 3656 3657 vt = btf__type_by_id(btf, vs->type); 3658 if (btf_is_func(vt)) 3659 break; 3660 } 3661 3662 /* No func in ksyms sec. No need to add dummy var. */ 3663 if (i == btf_vlen(sec)) 3664 return 0; 3665 3666 int_btf_id = find_int_btf_id(btf); 3667 dummy_var_btf_id = btf__add_var(btf, 3668 "dummy_ksym", 3669 BTF_VAR_GLOBAL_ALLOCATED, 3670 int_btf_id); 3671 if (dummy_var_btf_id < 0) 3672 pr_warn("cannot create a dummy_ksym var\n"); 3673 3674 return dummy_var_btf_id; 3675 } 3676 3677 static int bpf_object__collect_externs(struct bpf_object *obj) 3678 { 3679 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3680 const struct btf_type *t; 3681 struct extern_desc *ext; 3682 int i, n, off, dummy_var_btf_id; 3683 const char *ext_name, *sec_name; 3684 Elf_Scn *scn; 3685 Elf64_Shdr *sh; 3686 3687 if (!obj->efile.symbols) 3688 return 0; 3689 3690 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3691 sh = elf_sec_hdr(obj, scn); 3692 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3693 return -LIBBPF_ERRNO__FORMAT; 3694 3695 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3696 if (dummy_var_btf_id < 0) 3697 return dummy_var_btf_id; 3698 3699 n = sh->sh_size / sh->sh_entsize; 3700 pr_debug("looking for externs among %d symbols...\n", n); 3701 3702 for (i = 0; i < n; i++) { 3703 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3704 3705 if (!sym) 3706 return -LIBBPF_ERRNO__FORMAT; 3707 if (!sym_is_extern(sym)) 3708 continue; 3709 ext_name = elf_sym_str(obj, sym->st_name); 3710 if (!ext_name || !ext_name[0]) 3711 continue; 3712 3713 ext = obj->externs; 3714 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3715 if (!ext) 3716 return -ENOMEM; 3717 obj->externs = ext; 3718 ext = &ext[obj->nr_extern]; 3719 memset(ext, 0, sizeof(*ext)); 3720 obj->nr_extern++; 3721 3722 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3723 if (ext->btf_id <= 0) { 3724 pr_warn("failed to find BTF for extern '%s': %d\n", 3725 ext_name, ext->btf_id); 3726 return ext->btf_id; 3727 } 3728 t = btf__type_by_id(obj->btf, ext->btf_id); 3729 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3730 ext->sym_idx = i; 3731 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3732 3733 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3734 if (ext->sec_btf_id <= 0) { 3735 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3736 ext_name, ext->btf_id, ext->sec_btf_id); 3737 return ext->sec_btf_id; 3738 } 3739 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3740 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3741 3742 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3743 if (btf_is_func(t)) { 3744 pr_warn("extern function %s is unsupported under %s section\n", 3745 ext->name, KCONFIG_SEC); 3746 return -ENOTSUP; 3747 } 3748 kcfg_sec = sec; 3749 ext->type = EXT_KCFG; 3750 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3751 if (ext->kcfg.sz <= 0) { 3752 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3753 ext_name, ext->kcfg.sz); 3754 return ext->kcfg.sz; 3755 } 3756 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3757 if (ext->kcfg.align <= 0) { 3758 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3759 ext_name, ext->kcfg.align); 3760 return -EINVAL; 3761 } 3762 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3763 &ext->kcfg.is_signed); 3764 if (ext->kcfg.type == KCFG_UNKNOWN) { 3765 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 3766 return -ENOTSUP; 3767 } 3768 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3769 ksym_sec = sec; 3770 ext->type = EXT_KSYM; 3771 skip_mods_and_typedefs(obj->btf, t->type, 3772 &ext->ksym.type_id); 3773 } else { 3774 pr_warn("unrecognized extern section '%s'\n", sec_name); 3775 return -ENOTSUP; 3776 } 3777 } 3778 pr_debug("collected %d externs total\n", obj->nr_extern); 3779 3780 if (!obj->nr_extern) 3781 return 0; 3782 3783 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3784 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3785 3786 /* for .ksyms section, we need to turn all externs into allocated 3787 * variables in BTF to pass kernel verification; we do this by 3788 * pretending that each extern is a 8-byte variable 3789 */ 3790 if (ksym_sec) { 3791 /* find existing 4-byte integer type in BTF to use for fake 3792 * extern variables in DATASEC 3793 */ 3794 int int_btf_id = find_int_btf_id(obj->btf); 3795 /* For extern function, a dummy_var added earlier 3796 * will be used to replace the vs->type and 3797 * its name string will be used to refill 3798 * the missing param's name. 3799 */ 3800 const struct btf_type *dummy_var; 3801 3802 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3803 for (i = 0; i < obj->nr_extern; i++) { 3804 ext = &obj->externs[i]; 3805 if (ext->type != EXT_KSYM) 3806 continue; 3807 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3808 i, ext->sym_idx, ext->name); 3809 } 3810 3811 sec = ksym_sec; 3812 n = btf_vlen(sec); 3813 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3814 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3815 struct btf_type *vt; 3816 3817 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3818 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3819 ext = find_extern_by_name(obj, ext_name); 3820 if (!ext) { 3821 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3822 btf_kind_str(vt), ext_name); 3823 return -ESRCH; 3824 } 3825 if (btf_is_func(vt)) { 3826 const struct btf_type *func_proto; 3827 struct btf_param *param; 3828 int j; 3829 3830 func_proto = btf__type_by_id(obj->btf, 3831 vt->type); 3832 param = btf_params(func_proto); 3833 /* Reuse the dummy_var string if the 3834 * func proto does not have param name. 3835 */ 3836 for (j = 0; j < btf_vlen(func_proto); j++) 3837 if (param[j].type && !param[j].name_off) 3838 param[j].name_off = 3839 dummy_var->name_off; 3840 vs->type = dummy_var_btf_id; 3841 vt->info &= ~0xffff; 3842 vt->info |= BTF_FUNC_GLOBAL; 3843 } else { 3844 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3845 vt->type = int_btf_id; 3846 } 3847 vs->offset = off; 3848 vs->size = sizeof(int); 3849 } 3850 sec->size = off; 3851 } 3852 3853 if (kcfg_sec) { 3854 sec = kcfg_sec; 3855 /* for kcfg externs calculate their offsets within a .kconfig map */ 3856 off = 0; 3857 for (i = 0; i < obj->nr_extern; i++) { 3858 ext = &obj->externs[i]; 3859 if (ext->type != EXT_KCFG) 3860 continue; 3861 3862 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3863 off = ext->kcfg.data_off + ext->kcfg.sz; 3864 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3865 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3866 } 3867 sec->size = off; 3868 n = btf_vlen(sec); 3869 for (i = 0; i < n; i++) { 3870 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3871 3872 t = btf__type_by_id(obj->btf, vs->type); 3873 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3874 ext = find_extern_by_name(obj, ext_name); 3875 if (!ext) { 3876 pr_warn("failed to find extern definition for BTF var '%s'\n", 3877 ext_name); 3878 return -ESRCH; 3879 } 3880 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3881 vs->offset = ext->kcfg.data_off; 3882 } 3883 } 3884 return 0; 3885 } 3886 3887 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 3888 { 3889 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3890 } 3891 3892 struct bpf_program * 3893 bpf_object__find_program_by_name(const struct bpf_object *obj, 3894 const char *name) 3895 { 3896 struct bpf_program *prog; 3897 3898 bpf_object__for_each_program(prog, obj) { 3899 if (prog_is_subprog(obj, prog)) 3900 continue; 3901 if (!strcmp(prog->name, name)) 3902 return prog; 3903 } 3904 return errno = ENOENT, NULL; 3905 } 3906 3907 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3908 int shndx) 3909 { 3910 switch (obj->efile.secs[shndx].sec_type) { 3911 case SEC_BSS: 3912 case SEC_DATA: 3913 case SEC_RODATA: 3914 return true; 3915 default: 3916 return false; 3917 } 3918 } 3919 3920 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3921 int shndx) 3922 { 3923 return shndx == obj->efile.btf_maps_shndx; 3924 } 3925 3926 static enum libbpf_map_type 3927 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3928 { 3929 if (shndx == obj->efile.symbols_shndx) 3930 return LIBBPF_MAP_KCONFIG; 3931 3932 switch (obj->efile.secs[shndx].sec_type) { 3933 case SEC_BSS: 3934 return LIBBPF_MAP_BSS; 3935 case SEC_DATA: 3936 return LIBBPF_MAP_DATA; 3937 case SEC_RODATA: 3938 return LIBBPF_MAP_RODATA; 3939 default: 3940 return LIBBPF_MAP_UNSPEC; 3941 } 3942 } 3943 3944 static int bpf_program__record_reloc(struct bpf_program *prog, 3945 struct reloc_desc *reloc_desc, 3946 __u32 insn_idx, const char *sym_name, 3947 const Elf64_Sym *sym, const Elf64_Rel *rel) 3948 { 3949 struct bpf_insn *insn = &prog->insns[insn_idx]; 3950 size_t map_idx, nr_maps = prog->obj->nr_maps; 3951 struct bpf_object *obj = prog->obj; 3952 __u32 shdr_idx = sym->st_shndx; 3953 enum libbpf_map_type type; 3954 const char *sym_sec_name; 3955 struct bpf_map *map; 3956 3957 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 3958 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 3959 prog->name, sym_name, insn_idx, insn->code); 3960 return -LIBBPF_ERRNO__RELOC; 3961 } 3962 3963 if (sym_is_extern(sym)) { 3964 int sym_idx = ELF64_R_SYM(rel->r_info); 3965 int i, n = obj->nr_extern; 3966 struct extern_desc *ext; 3967 3968 for (i = 0; i < n; i++) { 3969 ext = &obj->externs[i]; 3970 if (ext->sym_idx == sym_idx) 3971 break; 3972 } 3973 if (i >= n) { 3974 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 3975 prog->name, sym_name, sym_idx); 3976 return -LIBBPF_ERRNO__RELOC; 3977 } 3978 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 3979 prog->name, i, ext->name, ext->sym_idx, insn_idx); 3980 if (insn->code == (BPF_JMP | BPF_CALL)) 3981 reloc_desc->type = RELO_EXTERN_FUNC; 3982 else 3983 reloc_desc->type = RELO_EXTERN_VAR; 3984 reloc_desc->insn_idx = insn_idx; 3985 reloc_desc->sym_off = i; /* sym_off stores extern index */ 3986 return 0; 3987 } 3988 3989 /* sub-program call relocation */ 3990 if (is_call_insn(insn)) { 3991 if (insn->src_reg != BPF_PSEUDO_CALL) { 3992 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 3993 return -LIBBPF_ERRNO__RELOC; 3994 } 3995 /* text_shndx can be 0, if no default "main" program exists */ 3996 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 3997 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3998 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 3999 prog->name, sym_name, sym_sec_name); 4000 return -LIBBPF_ERRNO__RELOC; 4001 } 4002 if (sym->st_value % BPF_INSN_SZ) { 4003 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4004 prog->name, sym_name, (size_t)sym->st_value); 4005 return -LIBBPF_ERRNO__RELOC; 4006 } 4007 reloc_desc->type = RELO_CALL; 4008 reloc_desc->insn_idx = insn_idx; 4009 reloc_desc->sym_off = sym->st_value; 4010 return 0; 4011 } 4012 4013 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4014 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4015 prog->name, sym_name, shdr_idx); 4016 return -LIBBPF_ERRNO__RELOC; 4017 } 4018 4019 /* loading subprog addresses */ 4020 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4021 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4022 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4023 */ 4024 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4025 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4026 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4027 return -LIBBPF_ERRNO__RELOC; 4028 } 4029 4030 reloc_desc->type = RELO_SUBPROG_ADDR; 4031 reloc_desc->insn_idx = insn_idx; 4032 reloc_desc->sym_off = sym->st_value; 4033 return 0; 4034 } 4035 4036 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4037 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4038 4039 /* generic map reference relocation */ 4040 if (type == LIBBPF_MAP_UNSPEC) { 4041 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4042 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4043 prog->name, sym_name, sym_sec_name); 4044 return -LIBBPF_ERRNO__RELOC; 4045 } 4046 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4047 map = &obj->maps[map_idx]; 4048 if (map->libbpf_type != type || 4049 map->sec_idx != sym->st_shndx || 4050 map->sec_offset != sym->st_value) 4051 continue; 4052 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4053 prog->name, map_idx, map->name, map->sec_idx, 4054 map->sec_offset, insn_idx); 4055 break; 4056 } 4057 if (map_idx >= nr_maps) { 4058 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4059 prog->name, sym_sec_name, (size_t)sym->st_value); 4060 return -LIBBPF_ERRNO__RELOC; 4061 } 4062 reloc_desc->type = RELO_LD64; 4063 reloc_desc->insn_idx = insn_idx; 4064 reloc_desc->map_idx = map_idx; 4065 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4066 return 0; 4067 } 4068 4069 /* global data map relocation */ 4070 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4071 pr_warn("prog '%s': bad data relo against section '%s'\n", 4072 prog->name, sym_sec_name); 4073 return -LIBBPF_ERRNO__RELOC; 4074 } 4075 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4076 map = &obj->maps[map_idx]; 4077 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4078 continue; 4079 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4080 prog->name, map_idx, map->name, map->sec_idx, 4081 map->sec_offset, insn_idx); 4082 break; 4083 } 4084 if (map_idx >= nr_maps) { 4085 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4086 prog->name, sym_sec_name); 4087 return -LIBBPF_ERRNO__RELOC; 4088 } 4089 4090 reloc_desc->type = RELO_DATA; 4091 reloc_desc->insn_idx = insn_idx; 4092 reloc_desc->map_idx = map_idx; 4093 reloc_desc->sym_off = sym->st_value; 4094 return 0; 4095 } 4096 4097 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4098 { 4099 return insn_idx >= prog->sec_insn_off && 4100 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4101 } 4102 4103 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4104 size_t sec_idx, size_t insn_idx) 4105 { 4106 int l = 0, r = obj->nr_programs - 1, m; 4107 struct bpf_program *prog; 4108 4109 while (l < r) { 4110 m = l + (r - l + 1) / 2; 4111 prog = &obj->programs[m]; 4112 4113 if (prog->sec_idx < sec_idx || 4114 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4115 l = m; 4116 else 4117 r = m - 1; 4118 } 4119 /* matching program could be at index l, but it still might be the 4120 * wrong one, so we need to double check conditions for the last time 4121 */ 4122 prog = &obj->programs[l]; 4123 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4124 return prog; 4125 return NULL; 4126 } 4127 4128 static int 4129 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4130 { 4131 const char *relo_sec_name, *sec_name; 4132 size_t sec_idx = shdr->sh_info, sym_idx; 4133 struct bpf_program *prog; 4134 struct reloc_desc *relos; 4135 int err, i, nrels; 4136 const char *sym_name; 4137 __u32 insn_idx; 4138 Elf_Scn *scn; 4139 Elf_Data *scn_data; 4140 Elf64_Sym *sym; 4141 Elf64_Rel *rel; 4142 4143 if (sec_idx >= obj->efile.sec_cnt) 4144 return -EINVAL; 4145 4146 scn = elf_sec_by_idx(obj, sec_idx); 4147 scn_data = elf_sec_data(obj, scn); 4148 4149 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4150 sec_name = elf_sec_name(obj, scn); 4151 if (!relo_sec_name || !sec_name) 4152 return -EINVAL; 4153 4154 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4155 relo_sec_name, sec_idx, sec_name); 4156 nrels = shdr->sh_size / shdr->sh_entsize; 4157 4158 for (i = 0; i < nrels; i++) { 4159 rel = elf_rel_by_idx(data, i); 4160 if (!rel) { 4161 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4162 return -LIBBPF_ERRNO__FORMAT; 4163 } 4164 4165 sym_idx = ELF64_R_SYM(rel->r_info); 4166 sym = elf_sym_by_idx(obj, sym_idx); 4167 if (!sym) { 4168 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4169 relo_sec_name, sym_idx, i); 4170 return -LIBBPF_ERRNO__FORMAT; 4171 } 4172 4173 if (sym->st_shndx >= obj->efile.sec_cnt) { 4174 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4175 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4176 return -LIBBPF_ERRNO__FORMAT; 4177 } 4178 4179 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4180 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4181 relo_sec_name, (size_t)rel->r_offset, i); 4182 return -LIBBPF_ERRNO__FORMAT; 4183 } 4184 4185 insn_idx = rel->r_offset / BPF_INSN_SZ; 4186 /* relocations against static functions are recorded as 4187 * relocations against the section that contains a function; 4188 * in such case, symbol will be STT_SECTION and sym.st_name 4189 * will point to empty string (0), so fetch section name 4190 * instead 4191 */ 4192 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4193 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4194 else 4195 sym_name = elf_sym_str(obj, sym->st_name); 4196 sym_name = sym_name ?: "<?"; 4197 4198 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4199 relo_sec_name, i, insn_idx, sym_name); 4200 4201 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4202 if (!prog) { 4203 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4204 relo_sec_name, i, sec_name, insn_idx); 4205 continue; 4206 } 4207 4208 relos = libbpf_reallocarray(prog->reloc_desc, 4209 prog->nr_reloc + 1, sizeof(*relos)); 4210 if (!relos) 4211 return -ENOMEM; 4212 prog->reloc_desc = relos; 4213 4214 /* adjust insn_idx to local BPF program frame of reference */ 4215 insn_idx -= prog->sec_insn_off; 4216 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4217 insn_idx, sym_name, sym, rel); 4218 if (err) 4219 return err; 4220 4221 prog->nr_reloc++; 4222 } 4223 return 0; 4224 } 4225 4226 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 4227 { 4228 int id; 4229 4230 if (!obj->btf) 4231 return -ENOENT; 4232 4233 /* if it's BTF-defined map, we don't need to search for type IDs. 4234 * For struct_ops map, it does not need btf_key_type_id and 4235 * btf_value_type_id. 4236 */ 4237 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4238 return 0; 4239 4240 /* 4241 * LLVM annotates global data differently in BTF, that is, 4242 * only as '.data', '.bss' or '.rodata'. 4243 */ 4244 if (!bpf_map__is_internal(map)) 4245 return -ENOENT; 4246 4247 id = btf__find_by_name(obj->btf, map->real_name); 4248 if (id < 0) 4249 return id; 4250 4251 map->btf_key_type_id = 0; 4252 map->btf_value_type_id = id; 4253 return 0; 4254 } 4255 4256 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4257 { 4258 char file[PATH_MAX], buff[4096]; 4259 FILE *fp; 4260 __u32 val; 4261 int err; 4262 4263 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4264 memset(info, 0, sizeof(*info)); 4265 4266 fp = fopen(file, "r"); 4267 if (!fp) { 4268 err = -errno; 4269 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4270 err); 4271 return err; 4272 } 4273 4274 while (fgets(buff, sizeof(buff), fp)) { 4275 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4276 info->type = val; 4277 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4278 info->key_size = val; 4279 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4280 info->value_size = val; 4281 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4282 info->max_entries = val; 4283 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4284 info->map_flags = val; 4285 } 4286 4287 fclose(fp); 4288 4289 return 0; 4290 } 4291 4292 bool bpf_map__autocreate(const struct bpf_map *map) 4293 { 4294 return map->autocreate; 4295 } 4296 4297 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4298 { 4299 if (map->obj->loaded) 4300 return libbpf_err(-EBUSY); 4301 4302 map->autocreate = autocreate; 4303 return 0; 4304 } 4305 4306 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4307 { 4308 struct bpf_map_info info; 4309 __u32 len = sizeof(info), name_len; 4310 int new_fd, err; 4311 char *new_name; 4312 4313 memset(&info, 0, len); 4314 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4315 if (err && errno == EINVAL) 4316 err = bpf_get_map_info_from_fdinfo(fd, &info); 4317 if (err) 4318 return libbpf_err(err); 4319 4320 name_len = strlen(info.name); 4321 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4322 new_name = strdup(map->name); 4323 else 4324 new_name = strdup(info.name); 4325 4326 if (!new_name) 4327 return libbpf_err(-errno); 4328 4329 new_fd = open("/", O_RDONLY | O_CLOEXEC); 4330 if (new_fd < 0) { 4331 err = -errno; 4332 goto err_free_new_name; 4333 } 4334 4335 new_fd = dup3(fd, new_fd, O_CLOEXEC); 4336 if (new_fd < 0) { 4337 err = -errno; 4338 goto err_close_new_fd; 4339 } 4340 4341 err = zclose(map->fd); 4342 if (err) { 4343 err = -errno; 4344 goto err_close_new_fd; 4345 } 4346 free(map->name); 4347 4348 map->fd = new_fd; 4349 map->name = new_name; 4350 map->def.type = info.type; 4351 map->def.key_size = info.key_size; 4352 map->def.value_size = info.value_size; 4353 map->def.max_entries = info.max_entries; 4354 map->def.map_flags = info.map_flags; 4355 map->btf_key_type_id = info.btf_key_type_id; 4356 map->btf_value_type_id = info.btf_value_type_id; 4357 map->reused = true; 4358 map->map_extra = info.map_extra; 4359 4360 return 0; 4361 4362 err_close_new_fd: 4363 close(new_fd); 4364 err_free_new_name: 4365 free(new_name); 4366 return libbpf_err(err); 4367 } 4368 4369 __u32 bpf_map__max_entries(const struct bpf_map *map) 4370 { 4371 return map->def.max_entries; 4372 } 4373 4374 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4375 { 4376 if (!bpf_map_type__is_map_in_map(map->def.type)) 4377 return errno = EINVAL, NULL; 4378 4379 return map->inner_map; 4380 } 4381 4382 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4383 { 4384 if (map->obj->loaded) 4385 return libbpf_err(-EBUSY); 4386 4387 map->def.max_entries = max_entries; 4388 4389 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4390 if (map_is_ringbuf(map)) 4391 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4392 4393 return 0; 4394 } 4395 4396 static int 4397 bpf_object__probe_loading(struct bpf_object *obj) 4398 { 4399 char *cp, errmsg[STRERR_BUFSIZE]; 4400 struct bpf_insn insns[] = { 4401 BPF_MOV64_IMM(BPF_REG_0, 0), 4402 BPF_EXIT_INSN(), 4403 }; 4404 int ret, insn_cnt = ARRAY_SIZE(insns); 4405 4406 if (obj->gen_loader) 4407 return 0; 4408 4409 ret = bump_rlimit_memlock(); 4410 if (ret) 4411 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4412 4413 /* make sure basic loading works */ 4414 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4415 if (ret < 0) 4416 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4417 if (ret < 0) { 4418 ret = errno; 4419 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4420 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4421 "program. Make sure your kernel supports BPF " 4422 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4423 "set to big enough value.\n", __func__, cp, ret); 4424 return -ret; 4425 } 4426 close(ret); 4427 4428 return 0; 4429 } 4430 4431 static int probe_fd(int fd) 4432 { 4433 if (fd >= 0) 4434 close(fd); 4435 return fd >= 0; 4436 } 4437 4438 static int probe_kern_prog_name(void) 4439 { 4440 const size_t attr_sz = offsetofend(union bpf_attr, prog_name); 4441 struct bpf_insn insns[] = { 4442 BPF_MOV64_IMM(BPF_REG_0, 0), 4443 BPF_EXIT_INSN(), 4444 }; 4445 union bpf_attr attr; 4446 int ret; 4447 4448 memset(&attr, 0, attr_sz); 4449 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4450 attr.license = ptr_to_u64("GPL"); 4451 attr.insns = ptr_to_u64(insns); 4452 attr.insn_cnt = (__u32)ARRAY_SIZE(insns); 4453 libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name)); 4454 4455 /* make sure loading with name works */ 4456 ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS); 4457 return probe_fd(ret); 4458 } 4459 4460 static int probe_kern_global_data(void) 4461 { 4462 char *cp, errmsg[STRERR_BUFSIZE]; 4463 struct bpf_insn insns[] = { 4464 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4465 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4466 BPF_MOV64_IMM(BPF_REG_0, 0), 4467 BPF_EXIT_INSN(), 4468 }; 4469 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4470 4471 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL); 4472 if (map < 0) { 4473 ret = -errno; 4474 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4475 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4476 __func__, cp, -ret); 4477 return ret; 4478 } 4479 4480 insns[0].imm = map; 4481 4482 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4483 close(map); 4484 return probe_fd(ret); 4485 } 4486 4487 static int probe_kern_btf(void) 4488 { 4489 static const char strs[] = "\0int"; 4490 __u32 types[] = { 4491 /* int */ 4492 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4493 }; 4494 4495 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4496 strs, sizeof(strs))); 4497 } 4498 4499 static int probe_kern_btf_func(void) 4500 { 4501 static const char strs[] = "\0int\0x\0a"; 4502 /* void x(int a) {} */ 4503 __u32 types[] = { 4504 /* int */ 4505 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4506 /* FUNC_PROTO */ /* [2] */ 4507 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4508 BTF_PARAM_ENC(7, 1), 4509 /* FUNC x */ /* [3] */ 4510 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4511 }; 4512 4513 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4514 strs, sizeof(strs))); 4515 } 4516 4517 static int probe_kern_btf_func_global(void) 4518 { 4519 static const char strs[] = "\0int\0x\0a"; 4520 /* static void x(int a) {} */ 4521 __u32 types[] = { 4522 /* int */ 4523 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4524 /* FUNC_PROTO */ /* [2] */ 4525 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4526 BTF_PARAM_ENC(7, 1), 4527 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4528 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4529 }; 4530 4531 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4532 strs, sizeof(strs))); 4533 } 4534 4535 static int probe_kern_btf_datasec(void) 4536 { 4537 static const char strs[] = "\0x\0.data"; 4538 /* static int a; */ 4539 __u32 types[] = { 4540 /* int */ 4541 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4542 /* VAR x */ /* [2] */ 4543 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4544 BTF_VAR_STATIC, 4545 /* DATASEC val */ /* [3] */ 4546 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4547 BTF_VAR_SECINFO_ENC(2, 0, 4), 4548 }; 4549 4550 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4551 strs, sizeof(strs))); 4552 } 4553 4554 static int probe_kern_btf_float(void) 4555 { 4556 static const char strs[] = "\0float"; 4557 __u32 types[] = { 4558 /* float */ 4559 BTF_TYPE_FLOAT_ENC(1, 4), 4560 }; 4561 4562 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4563 strs, sizeof(strs))); 4564 } 4565 4566 static int probe_kern_btf_decl_tag(void) 4567 { 4568 static const char strs[] = "\0tag"; 4569 __u32 types[] = { 4570 /* int */ 4571 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4572 /* VAR x */ /* [2] */ 4573 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4574 BTF_VAR_STATIC, 4575 /* attr */ 4576 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4577 }; 4578 4579 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4580 strs, sizeof(strs))); 4581 } 4582 4583 static int probe_kern_btf_type_tag(void) 4584 { 4585 static const char strs[] = "\0tag"; 4586 __u32 types[] = { 4587 /* int */ 4588 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4589 /* attr */ 4590 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4591 /* ptr */ 4592 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4593 }; 4594 4595 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4596 strs, sizeof(strs))); 4597 } 4598 4599 static int probe_kern_array_mmap(void) 4600 { 4601 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4602 int fd; 4603 4604 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts); 4605 return probe_fd(fd); 4606 } 4607 4608 static int probe_kern_exp_attach_type(void) 4609 { 4610 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4611 struct bpf_insn insns[] = { 4612 BPF_MOV64_IMM(BPF_REG_0, 0), 4613 BPF_EXIT_INSN(), 4614 }; 4615 int fd, insn_cnt = ARRAY_SIZE(insns); 4616 4617 /* use any valid combination of program type and (optional) 4618 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4619 * to see if kernel supports expected_attach_type field for 4620 * BPF_PROG_LOAD command 4621 */ 4622 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4623 return probe_fd(fd); 4624 } 4625 4626 static int probe_kern_probe_read_kernel(void) 4627 { 4628 struct bpf_insn insns[] = { 4629 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4630 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4631 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4632 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4633 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4634 BPF_EXIT_INSN(), 4635 }; 4636 int fd, insn_cnt = ARRAY_SIZE(insns); 4637 4638 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4639 return probe_fd(fd); 4640 } 4641 4642 static int probe_prog_bind_map(void) 4643 { 4644 char *cp, errmsg[STRERR_BUFSIZE]; 4645 struct bpf_insn insns[] = { 4646 BPF_MOV64_IMM(BPF_REG_0, 0), 4647 BPF_EXIT_INSN(), 4648 }; 4649 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4650 4651 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL); 4652 if (map < 0) { 4653 ret = -errno; 4654 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4655 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4656 __func__, cp, -ret); 4657 return ret; 4658 } 4659 4660 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4661 if (prog < 0) { 4662 close(map); 4663 return 0; 4664 } 4665 4666 ret = bpf_prog_bind_map(prog, map, NULL); 4667 4668 close(map); 4669 close(prog); 4670 4671 return ret >= 0; 4672 } 4673 4674 static int probe_module_btf(void) 4675 { 4676 static const char strs[] = "\0int"; 4677 __u32 types[] = { 4678 /* int */ 4679 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4680 }; 4681 struct bpf_btf_info info; 4682 __u32 len = sizeof(info); 4683 char name[16]; 4684 int fd, err; 4685 4686 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4687 if (fd < 0) 4688 return 0; /* BTF not supported at all */ 4689 4690 memset(&info, 0, sizeof(info)); 4691 info.name = ptr_to_u64(name); 4692 info.name_len = sizeof(name); 4693 4694 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4695 * kernel's module BTF support coincides with support for 4696 * name/name_len fields in struct bpf_btf_info. 4697 */ 4698 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4699 close(fd); 4700 return !err; 4701 } 4702 4703 static int probe_perf_link(void) 4704 { 4705 struct bpf_insn insns[] = { 4706 BPF_MOV64_IMM(BPF_REG_0, 0), 4707 BPF_EXIT_INSN(), 4708 }; 4709 int prog_fd, link_fd, err; 4710 4711 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4712 insns, ARRAY_SIZE(insns), NULL); 4713 if (prog_fd < 0) 4714 return -errno; 4715 4716 /* use invalid perf_event FD to get EBADF, if link is supported; 4717 * otherwise EINVAL should be returned 4718 */ 4719 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4720 err = -errno; /* close() can clobber errno */ 4721 4722 if (link_fd >= 0) 4723 close(link_fd); 4724 close(prog_fd); 4725 4726 return link_fd < 0 && err == -EBADF; 4727 } 4728 4729 static int probe_kern_bpf_cookie(void) 4730 { 4731 struct bpf_insn insns[] = { 4732 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie), 4733 BPF_EXIT_INSN(), 4734 }; 4735 int ret, insn_cnt = ARRAY_SIZE(insns); 4736 4737 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4738 return probe_fd(ret); 4739 } 4740 4741 static int probe_kern_btf_enum64(void) 4742 { 4743 static const char strs[] = "\0enum64"; 4744 __u32 types[] = { 4745 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8), 4746 }; 4747 4748 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4749 strs, sizeof(strs))); 4750 } 4751 4752 static int probe_kern_syscall_wrapper(void); 4753 4754 enum kern_feature_result { 4755 FEAT_UNKNOWN = 0, 4756 FEAT_SUPPORTED = 1, 4757 FEAT_MISSING = 2, 4758 }; 4759 4760 typedef int (*feature_probe_fn)(void); 4761 4762 static struct kern_feature_desc { 4763 const char *desc; 4764 feature_probe_fn probe; 4765 enum kern_feature_result res; 4766 } feature_probes[__FEAT_CNT] = { 4767 [FEAT_PROG_NAME] = { 4768 "BPF program name", probe_kern_prog_name, 4769 }, 4770 [FEAT_GLOBAL_DATA] = { 4771 "global variables", probe_kern_global_data, 4772 }, 4773 [FEAT_BTF] = { 4774 "minimal BTF", probe_kern_btf, 4775 }, 4776 [FEAT_BTF_FUNC] = { 4777 "BTF functions", probe_kern_btf_func, 4778 }, 4779 [FEAT_BTF_GLOBAL_FUNC] = { 4780 "BTF global function", probe_kern_btf_func_global, 4781 }, 4782 [FEAT_BTF_DATASEC] = { 4783 "BTF data section and variable", probe_kern_btf_datasec, 4784 }, 4785 [FEAT_ARRAY_MMAP] = { 4786 "ARRAY map mmap()", probe_kern_array_mmap, 4787 }, 4788 [FEAT_EXP_ATTACH_TYPE] = { 4789 "BPF_PROG_LOAD expected_attach_type attribute", 4790 probe_kern_exp_attach_type, 4791 }, 4792 [FEAT_PROBE_READ_KERN] = { 4793 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4794 }, 4795 [FEAT_PROG_BIND_MAP] = { 4796 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4797 }, 4798 [FEAT_MODULE_BTF] = { 4799 "module BTF support", probe_module_btf, 4800 }, 4801 [FEAT_BTF_FLOAT] = { 4802 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4803 }, 4804 [FEAT_PERF_LINK] = { 4805 "BPF perf link support", probe_perf_link, 4806 }, 4807 [FEAT_BTF_DECL_TAG] = { 4808 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 4809 }, 4810 [FEAT_BTF_TYPE_TAG] = { 4811 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 4812 }, 4813 [FEAT_MEMCG_ACCOUNT] = { 4814 "memcg-based memory accounting", probe_memcg_account, 4815 }, 4816 [FEAT_BPF_COOKIE] = { 4817 "BPF cookie support", probe_kern_bpf_cookie, 4818 }, 4819 [FEAT_BTF_ENUM64] = { 4820 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64, 4821 }, 4822 [FEAT_SYSCALL_WRAPPER] = { 4823 "Kernel using syscall wrapper", probe_kern_syscall_wrapper, 4824 }, 4825 }; 4826 4827 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4828 { 4829 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4830 int ret; 4831 4832 if (obj && obj->gen_loader) 4833 /* To generate loader program assume the latest kernel 4834 * to avoid doing extra prog_load, map_create syscalls. 4835 */ 4836 return true; 4837 4838 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4839 ret = feat->probe(); 4840 if (ret > 0) { 4841 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4842 } else if (ret == 0) { 4843 WRITE_ONCE(feat->res, FEAT_MISSING); 4844 } else { 4845 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4846 WRITE_ONCE(feat->res, FEAT_MISSING); 4847 } 4848 } 4849 4850 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4851 } 4852 4853 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4854 { 4855 struct bpf_map_info map_info; 4856 char msg[STRERR_BUFSIZE]; 4857 __u32 map_info_len = sizeof(map_info); 4858 int err; 4859 4860 memset(&map_info, 0, map_info_len); 4861 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len); 4862 if (err && errno == EINVAL) 4863 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 4864 if (err) { 4865 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 4866 libbpf_strerror_r(errno, msg, sizeof(msg))); 4867 return false; 4868 } 4869 4870 return (map_info.type == map->def.type && 4871 map_info.key_size == map->def.key_size && 4872 map_info.value_size == map->def.value_size && 4873 map_info.max_entries == map->def.max_entries && 4874 map_info.map_flags == map->def.map_flags && 4875 map_info.map_extra == map->map_extra); 4876 } 4877 4878 static int 4879 bpf_object__reuse_map(struct bpf_map *map) 4880 { 4881 char *cp, errmsg[STRERR_BUFSIZE]; 4882 int err, pin_fd; 4883 4884 pin_fd = bpf_obj_get(map->pin_path); 4885 if (pin_fd < 0) { 4886 err = -errno; 4887 if (err == -ENOENT) { 4888 pr_debug("found no pinned map to reuse at '%s'\n", 4889 map->pin_path); 4890 return 0; 4891 } 4892 4893 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4894 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4895 map->pin_path, cp); 4896 return err; 4897 } 4898 4899 if (!map_is_reuse_compat(map, pin_fd)) { 4900 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4901 map->pin_path); 4902 close(pin_fd); 4903 return -EINVAL; 4904 } 4905 4906 err = bpf_map__reuse_fd(map, pin_fd); 4907 close(pin_fd); 4908 if (err) { 4909 return err; 4910 } 4911 map->pinned = true; 4912 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4913 4914 return 0; 4915 } 4916 4917 static int 4918 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4919 { 4920 enum libbpf_map_type map_type = map->libbpf_type; 4921 char *cp, errmsg[STRERR_BUFSIZE]; 4922 int err, zero = 0; 4923 4924 if (obj->gen_loader) { 4925 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 4926 map->mmaped, map->def.value_size); 4927 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 4928 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 4929 return 0; 4930 } 4931 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4932 if (err) { 4933 err = -errno; 4934 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4935 pr_warn("Error setting initial map(%s) contents: %s\n", 4936 map->name, cp); 4937 return err; 4938 } 4939 4940 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 4941 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 4942 err = bpf_map_freeze(map->fd); 4943 if (err) { 4944 err = -errno; 4945 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4946 pr_warn("Error freezing map(%s) as read-only: %s\n", 4947 map->name, cp); 4948 return err; 4949 } 4950 } 4951 return 0; 4952 } 4953 4954 static void bpf_map__destroy(struct bpf_map *map); 4955 4956 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 4957 { 4958 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 4959 struct bpf_map_def *def = &map->def; 4960 const char *map_name = NULL; 4961 int err = 0; 4962 4963 if (kernel_supports(obj, FEAT_PROG_NAME)) 4964 map_name = map->name; 4965 create_attr.map_ifindex = map->map_ifindex; 4966 create_attr.map_flags = def->map_flags; 4967 create_attr.numa_node = map->numa_node; 4968 create_attr.map_extra = map->map_extra; 4969 4970 if (bpf_map__is_struct_ops(map)) 4971 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 4972 4973 if (obj->btf && btf__fd(obj->btf) >= 0) { 4974 create_attr.btf_fd = btf__fd(obj->btf); 4975 create_attr.btf_key_type_id = map->btf_key_type_id; 4976 create_attr.btf_value_type_id = map->btf_value_type_id; 4977 } 4978 4979 if (bpf_map_type__is_map_in_map(def->type)) { 4980 if (map->inner_map) { 4981 err = bpf_object__create_map(obj, map->inner_map, true); 4982 if (err) { 4983 pr_warn("map '%s': failed to create inner map: %d\n", 4984 map->name, err); 4985 return err; 4986 } 4987 map->inner_map_fd = bpf_map__fd(map->inner_map); 4988 } 4989 if (map->inner_map_fd >= 0) 4990 create_attr.inner_map_fd = map->inner_map_fd; 4991 } 4992 4993 switch (def->type) { 4994 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 4995 case BPF_MAP_TYPE_CGROUP_ARRAY: 4996 case BPF_MAP_TYPE_STACK_TRACE: 4997 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 4998 case BPF_MAP_TYPE_HASH_OF_MAPS: 4999 case BPF_MAP_TYPE_DEVMAP: 5000 case BPF_MAP_TYPE_DEVMAP_HASH: 5001 case BPF_MAP_TYPE_CPUMAP: 5002 case BPF_MAP_TYPE_XSKMAP: 5003 case BPF_MAP_TYPE_SOCKMAP: 5004 case BPF_MAP_TYPE_SOCKHASH: 5005 case BPF_MAP_TYPE_QUEUE: 5006 case BPF_MAP_TYPE_STACK: 5007 create_attr.btf_fd = 0; 5008 create_attr.btf_key_type_id = 0; 5009 create_attr.btf_value_type_id = 0; 5010 map->btf_key_type_id = 0; 5011 map->btf_value_type_id = 0; 5012 default: 5013 break; 5014 } 5015 5016 if (obj->gen_loader) { 5017 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5018 def->key_size, def->value_size, def->max_entries, 5019 &create_attr, is_inner ? -1 : map - obj->maps); 5020 /* Pretend to have valid FD to pass various fd >= 0 checks. 5021 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 5022 */ 5023 map->fd = 0; 5024 } else { 5025 map->fd = bpf_map_create(def->type, map_name, 5026 def->key_size, def->value_size, 5027 def->max_entries, &create_attr); 5028 } 5029 if (map->fd < 0 && (create_attr.btf_key_type_id || 5030 create_attr.btf_value_type_id)) { 5031 char *cp, errmsg[STRERR_BUFSIZE]; 5032 5033 err = -errno; 5034 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5035 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 5036 map->name, cp, err); 5037 create_attr.btf_fd = 0; 5038 create_attr.btf_key_type_id = 0; 5039 create_attr.btf_value_type_id = 0; 5040 map->btf_key_type_id = 0; 5041 map->btf_value_type_id = 0; 5042 map->fd = bpf_map_create(def->type, map_name, 5043 def->key_size, def->value_size, 5044 def->max_entries, &create_attr); 5045 } 5046 5047 err = map->fd < 0 ? -errno : 0; 5048 5049 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5050 if (obj->gen_loader) 5051 map->inner_map->fd = -1; 5052 bpf_map__destroy(map->inner_map); 5053 zfree(&map->inner_map); 5054 } 5055 5056 return err; 5057 } 5058 5059 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5060 { 5061 const struct bpf_map *targ_map; 5062 unsigned int i; 5063 int fd, err = 0; 5064 5065 for (i = 0; i < map->init_slots_sz; i++) { 5066 if (!map->init_slots[i]) 5067 continue; 5068 5069 targ_map = map->init_slots[i]; 5070 fd = bpf_map__fd(targ_map); 5071 5072 if (obj->gen_loader) { 5073 bpf_gen__populate_outer_map(obj->gen_loader, 5074 map - obj->maps, i, 5075 targ_map - obj->maps); 5076 } else { 5077 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5078 } 5079 if (err) { 5080 err = -errno; 5081 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5082 map->name, i, targ_map->name, fd, err); 5083 return err; 5084 } 5085 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5086 map->name, i, targ_map->name, fd); 5087 } 5088 5089 zfree(&map->init_slots); 5090 map->init_slots_sz = 0; 5091 5092 return 0; 5093 } 5094 5095 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5096 { 5097 const struct bpf_program *targ_prog; 5098 unsigned int i; 5099 int fd, err; 5100 5101 if (obj->gen_loader) 5102 return -ENOTSUP; 5103 5104 for (i = 0; i < map->init_slots_sz; i++) { 5105 if (!map->init_slots[i]) 5106 continue; 5107 5108 targ_prog = map->init_slots[i]; 5109 fd = bpf_program__fd(targ_prog); 5110 5111 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5112 if (err) { 5113 err = -errno; 5114 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5115 map->name, i, targ_prog->name, fd, err); 5116 return err; 5117 } 5118 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5119 map->name, i, targ_prog->name, fd); 5120 } 5121 5122 zfree(&map->init_slots); 5123 map->init_slots_sz = 0; 5124 5125 return 0; 5126 } 5127 5128 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5129 { 5130 struct bpf_map *map; 5131 int i, err; 5132 5133 for (i = 0; i < obj->nr_maps; i++) { 5134 map = &obj->maps[i]; 5135 5136 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5137 continue; 5138 5139 err = init_prog_array_slots(obj, map); 5140 if (err < 0) { 5141 zclose(map->fd); 5142 return err; 5143 } 5144 } 5145 return 0; 5146 } 5147 5148 static int map_set_def_max_entries(struct bpf_map *map) 5149 { 5150 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5151 int nr_cpus; 5152 5153 nr_cpus = libbpf_num_possible_cpus(); 5154 if (nr_cpus < 0) { 5155 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5156 map->name, nr_cpus); 5157 return nr_cpus; 5158 } 5159 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5160 map->def.max_entries = nr_cpus; 5161 } 5162 5163 return 0; 5164 } 5165 5166 static int 5167 bpf_object__create_maps(struct bpf_object *obj) 5168 { 5169 struct bpf_map *map; 5170 char *cp, errmsg[STRERR_BUFSIZE]; 5171 unsigned int i, j; 5172 int err; 5173 bool retried; 5174 5175 for (i = 0; i < obj->nr_maps; i++) { 5176 map = &obj->maps[i]; 5177 5178 /* To support old kernels, we skip creating global data maps 5179 * (.rodata, .data, .kconfig, etc); later on, during program 5180 * loading, if we detect that at least one of the to-be-loaded 5181 * programs is referencing any global data map, we'll error 5182 * out with program name and relocation index logged. 5183 * This approach allows to accommodate Clang emitting 5184 * unnecessary .rodata.str1.1 sections for string literals, 5185 * but also it allows to have CO-RE applications that use 5186 * global variables in some of BPF programs, but not others. 5187 * If those global variable-using programs are not loaded at 5188 * runtime due to bpf_program__set_autoload(prog, false), 5189 * bpf_object loading will succeed just fine even on old 5190 * kernels. 5191 */ 5192 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5193 map->autocreate = false; 5194 5195 if (!map->autocreate) { 5196 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5197 continue; 5198 } 5199 5200 err = map_set_def_max_entries(map); 5201 if (err) 5202 goto err_out; 5203 5204 retried = false; 5205 retry: 5206 if (map->pin_path) { 5207 err = bpf_object__reuse_map(map); 5208 if (err) { 5209 pr_warn("map '%s': error reusing pinned map\n", 5210 map->name); 5211 goto err_out; 5212 } 5213 if (retried && map->fd < 0) { 5214 pr_warn("map '%s': cannot find pinned map\n", 5215 map->name); 5216 err = -ENOENT; 5217 goto err_out; 5218 } 5219 } 5220 5221 if (map->fd >= 0) { 5222 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5223 map->name, map->fd); 5224 } else { 5225 err = bpf_object__create_map(obj, map, false); 5226 if (err) 5227 goto err_out; 5228 5229 pr_debug("map '%s': created successfully, fd=%d\n", 5230 map->name, map->fd); 5231 5232 if (bpf_map__is_internal(map)) { 5233 err = bpf_object__populate_internal_map(obj, map); 5234 if (err < 0) { 5235 zclose(map->fd); 5236 goto err_out; 5237 } 5238 } 5239 5240 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5241 err = init_map_in_map_slots(obj, map); 5242 if (err < 0) { 5243 zclose(map->fd); 5244 goto err_out; 5245 } 5246 } 5247 } 5248 5249 if (map->pin_path && !map->pinned) { 5250 err = bpf_map__pin(map, NULL); 5251 if (err) { 5252 zclose(map->fd); 5253 if (!retried && err == -EEXIST) { 5254 retried = true; 5255 goto retry; 5256 } 5257 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5258 map->name, map->pin_path, err); 5259 goto err_out; 5260 } 5261 } 5262 } 5263 5264 return 0; 5265 5266 err_out: 5267 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5268 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5269 pr_perm_msg(err); 5270 for (j = 0; j < i; j++) 5271 zclose(obj->maps[j].fd); 5272 return err; 5273 } 5274 5275 static bool bpf_core_is_flavor_sep(const char *s) 5276 { 5277 /* check X___Y name pattern, where X and Y are not underscores */ 5278 return s[0] != '_' && /* X */ 5279 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5280 s[4] != '_'; /* Y */ 5281 } 5282 5283 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5284 * before last triple underscore. Struct name part after last triple 5285 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5286 */ 5287 size_t bpf_core_essential_name_len(const char *name) 5288 { 5289 size_t n = strlen(name); 5290 int i; 5291 5292 for (i = n - 5; i >= 0; i--) { 5293 if (bpf_core_is_flavor_sep(name + i)) 5294 return i + 1; 5295 } 5296 return n; 5297 } 5298 5299 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5300 { 5301 if (!cands) 5302 return; 5303 5304 free(cands->cands); 5305 free(cands); 5306 } 5307 5308 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5309 size_t local_essent_len, 5310 const struct btf *targ_btf, 5311 const char *targ_btf_name, 5312 int targ_start_id, 5313 struct bpf_core_cand_list *cands) 5314 { 5315 struct bpf_core_cand *new_cands, *cand; 5316 const struct btf_type *t, *local_t; 5317 const char *targ_name, *local_name; 5318 size_t targ_essent_len; 5319 int n, i; 5320 5321 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5322 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5323 5324 n = btf__type_cnt(targ_btf); 5325 for (i = targ_start_id; i < n; i++) { 5326 t = btf__type_by_id(targ_btf, i); 5327 if (!btf_kind_core_compat(t, local_t)) 5328 continue; 5329 5330 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5331 if (str_is_empty(targ_name)) 5332 continue; 5333 5334 targ_essent_len = bpf_core_essential_name_len(targ_name); 5335 if (targ_essent_len != local_essent_len) 5336 continue; 5337 5338 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5339 continue; 5340 5341 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5342 local_cand->id, btf_kind_str(local_t), 5343 local_name, i, btf_kind_str(t), targ_name, 5344 targ_btf_name); 5345 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5346 sizeof(*cands->cands)); 5347 if (!new_cands) 5348 return -ENOMEM; 5349 5350 cand = &new_cands[cands->len]; 5351 cand->btf = targ_btf; 5352 cand->id = i; 5353 5354 cands->cands = new_cands; 5355 cands->len++; 5356 } 5357 return 0; 5358 } 5359 5360 static int load_module_btfs(struct bpf_object *obj) 5361 { 5362 struct bpf_btf_info info; 5363 struct module_btf *mod_btf; 5364 struct btf *btf; 5365 char name[64]; 5366 __u32 id = 0, len; 5367 int err, fd; 5368 5369 if (obj->btf_modules_loaded) 5370 return 0; 5371 5372 if (obj->gen_loader) 5373 return 0; 5374 5375 /* don't do this again, even if we find no module BTFs */ 5376 obj->btf_modules_loaded = true; 5377 5378 /* kernel too old to support module BTFs */ 5379 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5380 return 0; 5381 5382 while (true) { 5383 err = bpf_btf_get_next_id(id, &id); 5384 if (err && errno == ENOENT) 5385 return 0; 5386 if (err) { 5387 err = -errno; 5388 pr_warn("failed to iterate BTF objects: %d\n", err); 5389 return err; 5390 } 5391 5392 fd = bpf_btf_get_fd_by_id(id); 5393 if (fd < 0) { 5394 if (errno == ENOENT) 5395 continue; /* expected race: BTF was unloaded */ 5396 err = -errno; 5397 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5398 return err; 5399 } 5400 5401 len = sizeof(info); 5402 memset(&info, 0, sizeof(info)); 5403 info.name = ptr_to_u64(name); 5404 info.name_len = sizeof(name); 5405 5406 err = bpf_obj_get_info_by_fd(fd, &info, &len); 5407 if (err) { 5408 err = -errno; 5409 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5410 goto err_out; 5411 } 5412 5413 /* ignore non-module BTFs */ 5414 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5415 close(fd); 5416 continue; 5417 } 5418 5419 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5420 err = libbpf_get_error(btf); 5421 if (err) { 5422 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5423 name, id, err); 5424 goto err_out; 5425 } 5426 5427 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5428 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5429 if (err) 5430 goto err_out; 5431 5432 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5433 5434 mod_btf->btf = btf; 5435 mod_btf->id = id; 5436 mod_btf->fd = fd; 5437 mod_btf->name = strdup(name); 5438 if (!mod_btf->name) { 5439 err = -ENOMEM; 5440 goto err_out; 5441 } 5442 continue; 5443 5444 err_out: 5445 close(fd); 5446 return err; 5447 } 5448 5449 return 0; 5450 } 5451 5452 static struct bpf_core_cand_list * 5453 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5454 { 5455 struct bpf_core_cand local_cand = {}; 5456 struct bpf_core_cand_list *cands; 5457 const struct btf *main_btf; 5458 const struct btf_type *local_t; 5459 const char *local_name; 5460 size_t local_essent_len; 5461 int err, i; 5462 5463 local_cand.btf = local_btf; 5464 local_cand.id = local_type_id; 5465 local_t = btf__type_by_id(local_btf, local_type_id); 5466 if (!local_t) 5467 return ERR_PTR(-EINVAL); 5468 5469 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5470 if (str_is_empty(local_name)) 5471 return ERR_PTR(-EINVAL); 5472 local_essent_len = bpf_core_essential_name_len(local_name); 5473 5474 cands = calloc(1, sizeof(*cands)); 5475 if (!cands) 5476 return ERR_PTR(-ENOMEM); 5477 5478 /* Attempt to find target candidates in vmlinux BTF first */ 5479 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5480 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5481 if (err) 5482 goto err_out; 5483 5484 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5485 if (cands->len) 5486 return cands; 5487 5488 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5489 if (obj->btf_vmlinux_override) 5490 return cands; 5491 5492 /* now look through module BTFs, trying to still find candidates */ 5493 err = load_module_btfs(obj); 5494 if (err) 5495 goto err_out; 5496 5497 for (i = 0; i < obj->btf_module_cnt; i++) { 5498 err = bpf_core_add_cands(&local_cand, local_essent_len, 5499 obj->btf_modules[i].btf, 5500 obj->btf_modules[i].name, 5501 btf__type_cnt(obj->btf_vmlinux), 5502 cands); 5503 if (err) 5504 goto err_out; 5505 } 5506 5507 return cands; 5508 err_out: 5509 bpf_core_free_cands(cands); 5510 return ERR_PTR(err); 5511 } 5512 5513 /* Check local and target types for compatibility. This check is used for 5514 * type-based CO-RE relocations and follow slightly different rules than 5515 * field-based relocations. This function assumes that root types were already 5516 * checked for name match. Beyond that initial root-level name check, names 5517 * are completely ignored. Compatibility rules are as follows: 5518 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5519 * kind should match for local and target types (i.e., STRUCT is not 5520 * compatible with UNION); 5521 * - for ENUMs, the size is ignored; 5522 * - for INT, size and signedness are ignored; 5523 * - for ARRAY, dimensionality is ignored, element types are checked for 5524 * compatibility recursively; 5525 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5526 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5527 * - FUNC_PROTOs are compatible if they have compatible signature: same 5528 * number of input args and compatible return and argument types. 5529 * These rules are not set in stone and probably will be adjusted as we get 5530 * more experience with using BPF CO-RE relocations. 5531 */ 5532 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5533 const struct btf *targ_btf, __u32 targ_id) 5534 { 5535 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5536 } 5537 5538 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5539 const struct btf *targ_btf, __u32 targ_id) 5540 { 5541 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5542 } 5543 5544 static size_t bpf_core_hash_fn(const void *key, void *ctx) 5545 { 5546 return (size_t)key; 5547 } 5548 5549 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 5550 { 5551 return k1 == k2; 5552 } 5553 5554 static void *u32_as_hash_key(__u32 x) 5555 { 5556 return (void *)(uintptr_t)x; 5557 } 5558 5559 static int record_relo_core(struct bpf_program *prog, 5560 const struct bpf_core_relo *core_relo, int insn_idx) 5561 { 5562 struct reloc_desc *relos, *relo; 5563 5564 relos = libbpf_reallocarray(prog->reloc_desc, 5565 prog->nr_reloc + 1, sizeof(*relos)); 5566 if (!relos) 5567 return -ENOMEM; 5568 relo = &relos[prog->nr_reloc]; 5569 relo->type = RELO_CORE; 5570 relo->insn_idx = insn_idx; 5571 relo->core_relo = core_relo; 5572 prog->reloc_desc = relos; 5573 prog->nr_reloc++; 5574 return 0; 5575 } 5576 5577 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5578 { 5579 struct reloc_desc *relo; 5580 int i; 5581 5582 for (i = 0; i < prog->nr_reloc; i++) { 5583 relo = &prog->reloc_desc[i]; 5584 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5585 continue; 5586 5587 return relo->core_relo; 5588 } 5589 5590 return NULL; 5591 } 5592 5593 static int bpf_core_resolve_relo(struct bpf_program *prog, 5594 const struct bpf_core_relo *relo, 5595 int relo_idx, 5596 const struct btf *local_btf, 5597 struct hashmap *cand_cache, 5598 struct bpf_core_relo_res *targ_res) 5599 { 5600 struct bpf_core_spec specs_scratch[3] = {}; 5601 const void *type_key = u32_as_hash_key(relo->type_id); 5602 struct bpf_core_cand_list *cands = NULL; 5603 const char *prog_name = prog->name; 5604 const struct btf_type *local_type; 5605 const char *local_name; 5606 __u32 local_id = relo->type_id; 5607 int err; 5608 5609 local_type = btf__type_by_id(local_btf, local_id); 5610 if (!local_type) 5611 return -EINVAL; 5612 5613 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5614 if (!local_name) 5615 return -EINVAL; 5616 5617 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5618 !hashmap__find(cand_cache, type_key, (void **)&cands)) { 5619 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5620 if (IS_ERR(cands)) { 5621 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5622 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5623 local_name, PTR_ERR(cands)); 5624 return PTR_ERR(cands); 5625 } 5626 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL); 5627 if (err) { 5628 bpf_core_free_cands(cands); 5629 return err; 5630 } 5631 } 5632 5633 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5634 targ_res); 5635 } 5636 5637 static int 5638 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5639 { 5640 const struct btf_ext_info_sec *sec; 5641 struct bpf_core_relo_res targ_res; 5642 const struct bpf_core_relo *rec; 5643 const struct btf_ext_info *seg; 5644 struct hashmap_entry *entry; 5645 struct hashmap *cand_cache = NULL; 5646 struct bpf_program *prog; 5647 struct bpf_insn *insn; 5648 const char *sec_name; 5649 int i, err = 0, insn_idx, sec_idx, sec_num; 5650 5651 if (obj->btf_ext->core_relo_info.len == 0) 5652 return 0; 5653 5654 if (targ_btf_path) { 5655 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5656 err = libbpf_get_error(obj->btf_vmlinux_override); 5657 if (err) { 5658 pr_warn("failed to parse target BTF: %d\n", err); 5659 return err; 5660 } 5661 } 5662 5663 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5664 if (IS_ERR(cand_cache)) { 5665 err = PTR_ERR(cand_cache); 5666 goto out; 5667 } 5668 5669 seg = &obj->btf_ext->core_relo_info; 5670 sec_num = 0; 5671 for_each_btf_ext_sec(seg, sec) { 5672 sec_idx = seg->sec_idxs[sec_num]; 5673 sec_num++; 5674 5675 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5676 if (str_is_empty(sec_name)) { 5677 err = -EINVAL; 5678 goto out; 5679 } 5680 5681 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5682 5683 for_each_btf_ext_rec(seg, sec, i, rec) { 5684 if (rec->insn_off % BPF_INSN_SZ) 5685 return -EINVAL; 5686 insn_idx = rec->insn_off / BPF_INSN_SZ; 5687 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5688 if (!prog) { 5689 /* When __weak subprog is "overridden" by another instance 5690 * of the subprog from a different object file, linker still 5691 * appends all the .BTF.ext info that used to belong to that 5692 * eliminated subprogram. 5693 * This is similar to what x86-64 linker does for relocations. 5694 * So just ignore such relocations just like we ignore 5695 * subprog instructions when discovering subprograms. 5696 */ 5697 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5698 sec_name, i, insn_idx); 5699 continue; 5700 } 5701 /* no need to apply CO-RE relocation if the program is 5702 * not going to be loaded 5703 */ 5704 if (!prog->autoload) 5705 continue; 5706 5707 /* adjust insn_idx from section frame of reference to the local 5708 * program's frame of reference; (sub-)program code is not yet 5709 * relocated, so it's enough to just subtract in-section offset 5710 */ 5711 insn_idx = insn_idx - prog->sec_insn_off; 5712 if (insn_idx >= prog->insns_cnt) 5713 return -EINVAL; 5714 insn = &prog->insns[insn_idx]; 5715 5716 err = record_relo_core(prog, rec, insn_idx); 5717 if (err) { 5718 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5719 prog->name, i, err); 5720 goto out; 5721 } 5722 5723 if (prog->obj->gen_loader) 5724 continue; 5725 5726 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5727 if (err) { 5728 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5729 prog->name, i, err); 5730 goto out; 5731 } 5732 5733 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5734 if (err) { 5735 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5736 prog->name, i, insn_idx, err); 5737 goto out; 5738 } 5739 } 5740 } 5741 5742 out: 5743 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5744 btf__free(obj->btf_vmlinux_override); 5745 obj->btf_vmlinux_override = NULL; 5746 5747 if (!IS_ERR_OR_NULL(cand_cache)) { 5748 hashmap__for_each_entry(cand_cache, entry, i) { 5749 bpf_core_free_cands(entry->value); 5750 } 5751 hashmap__free(cand_cache); 5752 } 5753 return err; 5754 } 5755 5756 /* base map load ldimm64 special constant, used also for log fixup logic */ 5757 #define MAP_LDIMM64_POISON_BASE 2001000000 5758 #define MAP_LDIMM64_POISON_PFX "200100" 5759 5760 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 5761 int insn_idx, struct bpf_insn *insn, 5762 int map_idx, const struct bpf_map *map) 5763 { 5764 int i; 5765 5766 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 5767 prog->name, relo_idx, insn_idx, map_idx, map->name); 5768 5769 /* we turn single ldimm64 into two identical invalid calls */ 5770 for (i = 0; i < 2; i++) { 5771 insn->code = BPF_JMP | BPF_CALL; 5772 insn->dst_reg = 0; 5773 insn->src_reg = 0; 5774 insn->off = 0; 5775 /* if this instruction is reachable (not a dead code), 5776 * verifier will complain with something like: 5777 * invalid func unknown#2001000123 5778 * where lower 123 is map index into obj->maps[] array 5779 */ 5780 insn->imm = MAP_LDIMM64_POISON_BASE + map_idx; 5781 5782 insn++; 5783 } 5784 } 5785 5786 /* Relocate data references within program code: 5787 * - map references; 5788 * - global variable references; 5789 * - extern references. 5790 */ 5791 static int 5792 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5793 { 5794 int i; 5795 5796 for (i = 0; i < prog->nr_reloc; i++) { 5797 struct reloc_desc *relo = &prog->reloc_desc[i]; 5798 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5799 const struct bpf_map *map; 5800 struct extern_desc *ext; 5801 5802 switch (relo->type) { 5803 case RELO_LD64: 5804 map = &obj->maps[relo->map_idx]; 5805 if (obj->gen_loader) { 5806 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 5807 insn[0].imm = relo->map_idx; 5808 } else if (map->autocreate) { 5809 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5810 insn[0].imm = map->fd; 5811 } else { 5812 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5813 relo->map_idx, map); 5814 } 5815 break; 5816 case RELO_DATA: 5817 map = &obj->maps[relo->map_idx]; 5818 insn[1].imm = insn[0].imm + relo->sym_off; 5819 if (obj->gen_loader) { 5820 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5821 insn[0].imm = relo->map_idx; 5822 } else if (map->autocreate) { 5823 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5824 insn[0].imm = map->fd; 5825 } else { 5826 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5827 relo->map_idx, map); 5828 } 5829 break; 5830 case RELO_EXTERN_VAR: 5831 ext = &obj->externs[relo->sym_off]; 5832 if (ext->type == EXT_KCFG) { 5833 if (obj->gen_loader) { 5834 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5835 insn[0].imm = obj->kconfig_map_idx; 5836 } else { 5837 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5838 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5839 } 5840 insn[1].imm = ext->kcfg.data_off; 5841 } else /* EXT_KSYM */ { 5842 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 5843 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 5844 insn[0].imm = ext->ksym.kernel_btf_id; 5845 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 5846 } else { /* typeless ksyms or unresolved typed ksyms */ 5847 insn[0].imm = (__u32)ext->ksym.addr; 5848 insn[1].imm = ext->ksym.addr >> 32; 5849 } 5850 } 5851 break; 5852 case RELO_EXTERN_FUNC: 5853 ext = &obj->externs[relo->sym_off]; 5854 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 5855 if (ext->is_set) { 5856 insn[0].imm = ext->ksym.kernel_btf_id; 5857 insn[0].off = ext->ksym.btf_fd_idx; 5858 } else { /* unresolved weak kfunc */ 5859 insn[0].imm = 0; 5860 insn[0].off = 0; 5861 } 5862 break; 5863 case RELO_SUBPROG_ADDR: 5864 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 5865 pr_warn("prog '%s': relo #%d: bad insn\n", 5866 prog->name, i); 5867 return -EINVAL; 5868 } 5869 /* handled already */ 5870 break; 5871 case RELO_CALL: 5872 /* handled already */ 5873 break; 5874 case RELO_CORE: 5875 /* will be handled by bpf_program_record_relos() */ 5876 break; 5877 default: 5878 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 5879 prog->name, i, relo->type); 5880 return -EINVAL; 5881 } 5882 } 5883 5884 return 0; 5885 } 5886 5887 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 5888 const struct bpf_program *prog, 5889 const struct btf_ext_info *ext_info, 5890 void **prog_info, __u32 *prog_rec_cnt, 5891 __u32 *prog_rec_sz) 5892 { 5893 void *copy_start = NULL, *copy_end = NULL; 5894 void *rec, *rec_end, *new_prog_info; 5895 const struct btf_ext_info_sec *sec; 5896 size_t old_sz, new_sz; 5897 int i, sec_num, sec_idx, off_adj; 5898 5899 sec_num = 0; 5900 for_each_btf_ext_sec(ext_info, sec) { 5901 sec_idx = ext_info->sec_idxs[sec_num]; 5902 sec_num++; 5903 if (prog->sec_idx != sec_idx) 5904 continue; 5905 5906 for_each_btf_ext_rec(ext_info, sec, i, rec) { 5907 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 5908 5909 if (insn_off < prog->sec_insn_off) 5910 continue; 5911 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 5912 break; 5913 5914 if (!copy_start) 5915 copy_start = rec; 5916 copy_end = rec + ext_info->rec_size; 5917 } 5918 5919 if (!copy_start) 5920 return -ENOENT; 5921 5922 /* append func/line info of a given (sub-)program to the main 5923 * program func/line info 5924 */ 5925 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 5926 new_sz = old_sz + (copy_end - copy_start); 5927 new_prog_info = realloc(*prog_info, new_sz); 5928 if (!new_prog_info) 5929 return -ENOMEM; 5930 *prog_info = new_prog_info; 5931 *prog_rec_cnt = new_sz / ext_info->rec_size; 5932 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 5933 5934 /* Kernel instruction offsets are in units of 8-byte 5935 * instructions, while .BTF.ext instruction offsets generated 5936 * by Clang are in units of bytes. So convert Clang offsets 5937 * into kernel offsets and adjust offset according to program 5938 * relocated position. 5939 */ 5940 off_adj = prog->sub_insn_off - prog->sec_insn_off; 5941 rec = new_prog_info + old_sz; 5942 rec_end = new_prog_info + new_sz; 5943 for (; rec < rec_end; rec += ext_info->rec_size) { 5944 __u32 *insn_off = rec; 5945 5946 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 5947 } 5948 *prog_rec_sz = ext_info->rec_size; 5949 return 0; 5950 } 5951 5952 return -ENOENT; 5953 } 5954 5955 static int 5956 reloc_prog_func_and_line_info(const struct bpf_object *obj, 5957 struct bpf_program *main_prog, 5958 const struct bpf_program *prog) 5959 { 5960 int err; 5961 5962 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 5963 * supprot func/line info 5964 */ 5965 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 5966 return 0; 5967 5968 /* only attempt func info relocation if main program's func_info 5969 * relocation was successful 5970 */ 5971 if (main_prog != prog && !main_prog->func_info) 5972 goto line_info; 5973 5974 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 5975 &main_prog->func_info, 5976 &main_prog->func_info_cnt, 5977 &main_prog->func_info_rec_size); 5978 if (err) { 5979 if (err != -ENOENT) { 5980 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 5981 prog->name, err); 5982 return err; 5983 } 5984 if (main_prog->func_info) { 5985 /* 5986 * Some info has already been found but has problem 5987 * in the last btf_ext reloc. Must have to error out. 5988 */ 5989 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 5990 return err; 5991 } 5992 /* Have problem loading the very first info. Ignore the rest. */ 5993 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 5994 prog->name); 5995 } 5996 5997 line_info: 5998 /* don't relocate line info if main program's relocation failed */ 5999 if (main_prog != prog && !main_prog->line_info) 6000 return 0; 6001 6002 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6003 &main_prog->line_info, 6004 &main_prog->line_info_cnt, 6005 &main_prog->line_info_rec_size); 6006 if (err) { 6007 if (err != -ENOENT) { 6008 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6009 prog->name, err); 6010 return err; 6011 } 6012 if (main_prog->line_info) { 6013 /* 6014 * Some info has already been found but has problem 6015 * in the last btf_ext reloc. Must have to error out. 6016 */ 6017 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6018 return err; 6019 } 6020 /* Have problem loading the very first info. Ignore the rest. */ 6021 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6022 prog->name); 6023 } 6024 return 0; 6025 } 6026 6027 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6028 { 6029 size_t insn_idx = *(const size_t *)key; 6030 const struct reloc_desc *relo = elem; 6031 6032 if (insn_idx == relo->insn_idx) 6033 return 0; 6034 return insn_idx < relo->insn_idx ? -1 : 1; 6035 } 6036 6037 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6038 { 6039 if (!prog->nr_reloc) 6040 return NULL; 6041 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6042 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6043 } 6044 6045 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6046 { 6047 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6048 struct reloc_desc *relos; 6049 int i; 6050 6051 if (main_prog == subprog) 6052 return 0; 6053 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6054 if (!relos) 6055 return -ENOMEM; 6056 if (subprog->nr_reloc) 6057 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6058 sizeof(*relos) * subprog->nr_reloc); 6059 6060 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6061 relos[i].insn_idx += subprog->sub_insn_off; 6062 /* After insn_idx adjustment the 'relos' array is still sorted 6063 * by insn_idx and doesn't break bsearch. 6064 */ 6065 main_prog->reloc_desc = relos; 6066 main_prog->nr_reloc = new_cnt; 6067 return 0; 6068 } 6069 6070 static int 6071 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6072 struct bpf_program *prog) 6073 { 6074 size_t sub_insn_idx, insn_idx, new_cnt; 6075 struct bpf_program *subprog; 6076 struct bpf_insn *insns, *insn; 6077 struct reloc_desc *relo; 6078 int err; 6079 6080 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6081 if (err) 6082 return err; 6083 6084 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6085 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6086 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6087 continue; 6088 6089 relo = find_prog_insn_relo(prog, insn_idx); 6090 if (relo && relo->type == RELO_EXTERN_FUNC) 6091 /* kfunc relocations will be handled later 6092 * in bpf_object__relocate_data() 6093 */ 6094 continue; 6095 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6096 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6097 prog->name, insn_idx, relo->type); 6098 return -LIBBPF_ERRNO__RELOC; 6099 } 6100 if (relo) { 6101 /* sub-program instruction index is a combination of 6102 * an offset of a symbol pointed to by relocation and 6103 * call instruction's imm field; for global functions, 6104 * call always has imm = -1, but for static functions 6105 * relocation is against STT_SECTION and insn->imm 6106 * points to a start of a static function 6107 * 6108 * for subprog addr relocation, the relo->sym_off + insn->imm is 6109 * the byte offset in the corresponding section. 6110 */ 6111 if (relo->type == RELO_CALL) 6112 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6113 else 6114 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6115 } else if (insn_is_pseudo_func(insn)) { 6116 /* 6117 * RELO_SUBPROG_ADDR relo is always emitted even if both 6118 * functions are in the same section, so it shouldn't reach here. 6119 */ 6120 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6121 prog->name, insn_idx); 6122 return -LIBBPF_ERRNO__RELOC; 6123 } else { 6124 /* if subprogram call is to a static function within 6125 * the same ELF section, there won't be any relocation 6126 * emitted, but it also means there is no additional 6127 * offset necessary, insns->imm is relative to 6128 * instruction's original position within the section 6129 */ 6130 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6131 } 6132 6133 /* we enforce that sub-programs should be in .text section */ 6134 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6135 if (!subprog) { 6136 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6137 prog->name); 6138 return -LIBBPF_ERRNO__RELOC; 6139 } 6140 6141 /* if it's the first call instruction calling into this 6142 * subprogram (meaning this subprog hasn't been processed 6143 * yet) within the context of current main program: 6144 * - append it at the end of main program's instructions blog; 6145 * - process is recursively, while current program is put on hold; 6146 * - if that subprogram calls some other not yet processes 6147 * subprogram, same thing will happen recursively until 6148 * there are no more unprocesses subprograms left to append 6149 * and relocate. 6150 */ 6151 if (subprog->sub_insn_off == 0) { 6152 subprog->sub_insn_off = main_prog->insns_cnt; 6153 6154 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6155 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6156 if (!insns) { 6157 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6158 return -ENOMEM; 6159 } 6160 main_prog->insns = insns; 6161 main_prog->insns_cnt = new_cnt; 6162 6163 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6164 subprog->insns_cnt * sizeof(*insns)); 6165 6166 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6167 main_prog->name, subprog->insns_cnt, subprog->name); 6168 6169 /* The subprog insns are now appended. Append its relos too. */ 6170 err = append_subprog_relos(main_prog, subprog); 6171 if (err) 6172 return err; 6173 err = bpf_object__reloc_code(obj, main_prog, subprog); 6174 if (err) 6175 return err; 6176 } 6177 6178 /* main_prog->insns memory could have been re-allocated, so 6179 * calculate pointer again 6180 */ 6181 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6182 /* calculate correct instruction position within current main 6183 * prog; each main prog can have a different set of 6184 * subprograms appended (potentially in different order as 6185 * well), so position of any subprog can be different for 6186 * different main programs */ 6187 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6188 6189 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6190 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6191 } 6192 6193 return 0; 6194 } 6195 6196 /* 6197 * Relocate sub-program calls. 6198 * 6199 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6200 * main prog) is processed separately. For each subprog (non-entry functions, 6201 * that can be called from either entry progs or other subprogs) gets their 6202 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6203 * hasn't been yet appended and relocated within current main prog. Once its 6204 * relocated, sub_insn_off will point at the position within current main prog 6205 * where given subprog was appended. This will further be used to relocate all 6206 * the call instructions jumping into this subprog. 6207 * 6208 * We start with main program and process all call instructions. If the call 6209 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6210 * is zero), subprog instructions are appended at the end of main program's 6211 * instruction array. Then main program is "put on hold" while we recursively 6212 * process newly appended subprogram. If that subprogram calls into another 6213 * subprogram that hasn't been appended, new subprogram is appended again to 6214 * the *main* prog's instructions (subprog's instructions are always left 6215 * untouched, as they need to be in unmodified state for subsequent main progs 6216 * and subprog instructions are always sent only as part of a main prog) and 6217 * the process continues recursively. Once all the subprogs called from a main 6218 * prog or any of its subprogs are appended (and relocated), all their 6219 * positions within finalized instructions array are known, so it's easy to 6220 * rewrite call instructions with correct relative offsets, corresponding to 6221 * desired target subprog. 6222 * 6223 * Its important to realize that some subprogs might not be called from some 6224 * main prog and any of its called/used subprogs. Those will keep their 6225 * subprog->sub_insn_off as zero at all times and won't be appended to current 6226 * main prog and won't be relocated within the context of current main prog. 6227 * They might still be used from other main progs later. 6228 * 6229 * Visually this process can be shown as below. Suppose we have two main 6230 * programs mainA and mainB and BPF object contains three subprogs: subA, 6231 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6232 * subC both call subB: 6233 * 6234 * +--------+ +-------+ 6235 * | v v | 6236 * +--+---+ +--+-+-+ +---+--+ 6237 * | subA | | subB | | subC | 6238 * +--+---+ +------+ +---+--+ 6239 * ^ ^ 6240 * | | 6241 * +---+-------+ +------+----+ 6242 * | mainA | | mainB | 6243 * +-----------+ +-----------+ 6244 * 6245 * We'll start relocating mainA, will find subA, append it and start 6246 * processing sub A recursively: 6247 * 6248 * +-----------+------+ 6249 * | mainA | subA | 6250 * +-----------+------+ 6251 * 6252 * At this point we notice that subB is used from subA, so we append it and 6253 * relocate (there are no further subcalls from subB): 6254 * 6255 * +-----------+------+------+ 6256 * | mainA | subA | subB | 6257 * +-----------+------+------+ 6258 * 6259 * At this point, we relocate subA calls, then go one level up and finish with 6260 * relocatin mainA calls. mainA is done. 6261 * 6262 * For mainB process is similar but results in different order. We start with 6263 * mainB and skip subA and subB, as mainB never calls them (at least 6264 * directly), but we see subC is needed, so we append and start processing it: 6265 * 6266 * +-----------+------+ 6267 * | mainB | subC | 6268 * +-----------+------+ 6269 * Now we see subC needs subB, so we go back to it, append and relocate it: 6270 * 6271 * +-----------+------+------+ 6272 * | mainB | subC | subB | 6273 * +-----------+------+------+ 6274 * 6275 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6276 */ 6277 static int 6278 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6279 { 6280 struct bpf_program *subprog; 6281 int i, err; 6282 6283 /* mark all subprogs as not relocated (yet) within the context of 6284 * current main program 6285 */ 6286 for (i = 0; i < obj->nr_programs; i++) { 6287 subprog = &obj->programs[i]; 6288 if (!prog_is_subprog(obj, subprog)) 6289 continue; 6290 6291 subprog->sub_insn_off = 0; 6292 } 6293 6294 err = bpf_object__reloc_code(obj, prog, prog); 6295 if (err) 6296 return err; 6297 6298 return 0; 6299 } 6300 6301 static void 6302 bpf_object__free_relocs(struct bpf_object *obj) 6303 { 6304 struct bpf_program *prog; 6305 int i; 6306 6307 /* free up relocation descriptors */ 6308 for (i = 0; i < obj->nr_programs; i++) { 6309 prog = &obj->programs[i]; 6310 zfree(&prog->reloc_desc); 6311 prog->nr_reloc = 0; 6312 } 6313 } 6314 6315 static int cmp_relocs(const void *_a, const void *_b) 6316 { 6317 const struct reloc_desc *a = _a; 6318 const struct reloc_desc *b = _b; 6319 6320 if (a->insn_idx != b->insn_idx) 6321 return a->insn_idx < b->insn_idx ? -1 : 1; 6322 6323 /* no two relocations should have the same insn_idx, but ... */ 6324 if (a->type != b->type) 6325 return a->type < b->type ? -1 : 1; 6326 6327 return 0; 6328 } 6329 6330 static void bpf_object__sort_relos(struct bpf_object *obj) 6331 { 6332 int i; 6333 6334 for (i = 0; i < obj->nr_programs; i++) { 6335 struct bpf_program *p = &obj->programs[i]; 6336 6337 if (!p->nr_reloc) 6338 continue; 6339 6340 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6341 } 6342 } 6343 6344 static int 6345 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6346 { 6347 struct bpf_program *prog; 6348 size_t i, j; 6349 int err; 6350 6351 if (obj->btf_ext) { 6352 err = bpf_object__relocate_core(obj, targ_btf_path); 6353 if (err) { 6354 pr_warn("failed to perform CO-RE relocations: %d\n", 6355 err); 6356 return err; 6357 } 6358 bpf_object__sort_relos(obj); 6359 } 6360 6361 /* Before relocating calls pre-process relocations and mark 6362 * few ld_imm64 instructions that points to subprogs. 6363 * Otherwise bpf_object__reloc_code() later would have to consider 6364 * all ld_imm64 insns as relocation candidates. That would 6365 * reduce relocation speed, since amount of find_prog_insn_relo() 6366 * would increase and most of them will fail to find a relo. 6367 */ 6368 for (i = 0; i < obj->nr_programs; i++) { 6369 prog = &obj->programs[i]; 6370 for (j = 0; j < prog->nr_reloc; j++) { 6371 struct reloc_desc *relo = &prog->reloc_desc[j]; 6372 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6373 6374 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6375 if (relo->type == RELO_SUBPROG_ADDR) 6376 insn[0].src_reg = BPF_PSEUDO_FUNC; 6377 } 6378 } 6379 6380 /* relocate subprogram calls and append used subprograms to main 6381 * programs; each copy of subprogram code needs to be relocated 6382 * differently for each main program, because its code location might 6383 * have changed. 6384 * Append subprog relos to main programs to allow data relos to be 6385 * processed after text is completely relocated. 6386 */ 6387 for (i = 0; i < obj->nr_programs; i++) { 6388 prog = &obj->programs[i]; 6389 /* sub-program's sub-calls are relocated within the context of 6390 * its main program only 6391 */ 6392 if (prog_is_subprog(obj, prog)) 6393 continue; 6394 if (!prog->autoload) 6395 continue; 6396 6397 err = bpf_object__relocate_calls(obj, prog); 6398 if (err) { 6399 pr_warn("prog '%s': failed to relocate calls: %d\n", 6400 prog->name, err); 6401 return err; 6402 } 6403 } 6404 /* Process data relos for main programs */ 6405 for (i = 0; i < obj->nr_programs; i++) { 6406 prog = &obj->programs[i]; 6407 if (prog_is_subprog(obj, prog)) 6408 continue; 6409 if (!prog->autoload) 6410 continue; 6411 err = bpf_object__relocate_data(obj, prog); 6412 if (err) { 6413 pr_warn("prog '%s': failed to relocate data references: %d\n", 6414 prog->name, err); 6415 return err; 6416 } 6417 } 6418 6419 return 0; 6420 } 6421 6422 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6423 Elf64_Shdr *shdr, Elf_Data *data); 6424 6425 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6426 Elf64_Shdr *shdr, Elf_Data *data) 6427 { 6428 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6429 int i, j, nrels, new_sz; 6430 const struct btf_var_secinfo *vi = NULL; 6431 const struct btf_type *sec, *var, *def; 6432 struct bpf_map *map = NULL, *targ_map = NULL; 6433 struct bpf_program *targ_prog = NULL; 6434 bool is_prog_array, is_map_in_map; 6435 const struct btf_member *member; 6436 const char *name, *mname, *type; 6437 unsigned int moff; 6438 Elf64_Sym *sym; 6439 Elf64_Rel *rel; 6440 void *tmp; 6441 6442 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6443 return -EINVAL; 6444 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6445 if (!sec) 6446 return -EINVAL; 6447 6448 nrels = shdr->sh_size / shdr->sh_entsize; 6449 for (i = 0; i < nrels; i++) { 6450 rel = elf_rel_by_idx(data, i); 6451 if (!rel) { 6452 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6453 return -LIBBPF_ERRNO__FORMAT; 6454 } 6455 6456 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6457 if (!sym) { 6458 pr_warn(".maps relo #%d: symbol %zx not found\n", 6459 i, (size_t)ELF64_R_SYM(rel->r_info)); 6460 return -LIBBPF_ERRNO__FORMAT; 6461 } 6462 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6463 6464 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6465 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6466 (size_t)rel->r_offset, sym->st_name, name); 6467 6468 for (j = 0; j < obj->nr_maps; j++) { 6469 map = &obj->maps[j]; 6470 if (map->sec_idx != obj->efile.btf_maps_shndx) 6471 continue; 6472 6473 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6474 if (vi->offset <= rel->r_offset && 6475 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6476 break; 6477 } 6478 if (j == obj->nr_maps) { 6479 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6480 i, name, (size_t)rel->r_offset); 6481 return -EINVAL; 6482 } 6483 6484 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 6485 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 6486 type = is_map_in_map ? "map" : "prog"; 6487 if (is_map_in_map) { 6488 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6489 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6490 i, name); 6491 return -LIBBPF_ERRNO__RELOC; 6492 } 6493 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6494 map->def.key_size != sizeof(int)) { 6495 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6496 i, map->name, sizeof(int)); 6497 return -EINVAL; 6498 } 6499 targ_map = bpf_object__find_map_by_name(obj, name); 6500 if (!targ_map) { 6501 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 6502 i, name); 6503 return -ESRCH; 6504 } 6505 } else if (is_prog_array) { 6506 targ_prog = bpf_object__find_program_by_name(obj, name); 6507 if (!targ_prog) { 6508 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 6509 i, name); 6510 return -ESRCH; 6511 } 6512 if (targ_prog->sec_idx != sym->st_shndx || 6513 targ_prog->sec_insn_off * 8 != sym->st_value || 6514 prog_is_subprog(obj, targ_prog)) { 6515 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 6516 i, name); 6517 return -LIBBPF_ERRNO__RELOC; 6518 } 6519 } else { 6520 return -EINVAL; 6521 } 6522 6523 var = btf__type_by_id(obj->btf, vi->type); 6524 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6525 if (btf_vlen(def) == 0) 6526 return -EINVAL; 6527 member = btf_members(def) + btf_vlen(def) - 1; 6528 mname = btf__name_by_offset(obj->btf, member->name_off); 6529 if (strcmp(mname, "values")) 6530 return -EINVAL; 6531 6532 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6533 if (rel->r_offset - vi->offset < moff) 6534 return -EINVAL; 6535 6536 moff = rel->r_offset - vi->offset - moff; 6537 /* here we use BPF pointer size, which is always 64 bit, as we 6538 * are parsing ELF that was built for BPF target 6539 */ 6540 if (moff % bpf_ptr_sz) 6541 return -EINVAL; 6542 moff /= bpf_ptr_sz; 6543 if (moff >= map->init_slots_sz) { 6544 new_sz = moff + 1; 6545 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6546 if (!tmp) 6547 return -ENOMEM; 6548 map->init_slots = tmp; 6549 memset(map->init_slots + map->init_slots_sz, 0, 6550 (new_sz - map->init_slots_sz) * host_ptr_sz); 6551 map->init_slots_sz = new_sz; 6552 } 6553 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 6554 6555 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 6556 i, map->name, moff, type, name); 6557 } 6558 6559 return 0; 6560 } 6561 6562 static int bpf_object__collect_relos(struct bpf_object *obj) 6563 { 6564 int i, err; 6565 6566 for (i = 0; i < obj->efile.sec_cnt; i++) { 6567 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6568 Elf64_Shdr *shdr; 6569 Elf_Data *data; 6570 int idx; 6571 6572 if (sec_desc->sec_type != SEC_RELO) 6573 continue; 6574 6575 shdr = sec_desc->shdr; 6576 data = sec_desc->data; 6577 idx = shdr->sh_info; 6578 6579 if (shdr->sh_type != SHT_REL) { 6580 pr_warn("internal error at %d\n", __LINE__); 6581 return -LIBBPF_ERRNO__INTERNAL; 6582 } 6583 6584 if (idx == obj->efile.st_ops_shndx) 6585 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6586 else if (idx == obj->efile.btf_maps_shndx) 6587 err = bpf_object__collect_map_relos(obj, shdr, data); 6588 else 6589 err = bpf_object__collect_prog_relos(obj, shdr, data); 6590 if (err) 6591 return err; 6592 } 6593 6594 bpf_object__sort_relos(obj); 6595 return 0; 6596 } 6597 6598 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6599 { 6600 if (BPF_CLASS(insn->code) == BPF_JMP && 6601 BPF_OP(insn->code) == BPF_CALL && 6602 BPF_SRC(insn->code) == BPF_K && 6603 insn->src_reg == 0 && 6604 insn->dst_reg == 0) { 6605 *func_id = insn->imm; 6606 return true; 6607 } 6608 return false; 6609 } 6610 6611 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6612 { 6613 struct bpf_insn *insn = prog->insns; 6614 enum bpf_func_id func_id; 6615 int i; 6616 6617 if (obj->gen_loader) 6618 return 0; 6619 6620 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6621 if (!insn_is_helper_call(insn, &func_id)) 6622 continue; 6623 6624 /* on kernels that don't yet support 6625 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6626 * to bpf_probe_read() which works well for old kernels 6627 */ 6628 switch (func_id) { 6629 case BPF_FUNC_probe_read_kernel: 6630 case BPF_FUNC_probe_read_user: 6631 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6632 insn->imm = BPF_FUNC_probe_read; 6633 break; 6634 case BPF_FUNC_probe_read_kernel_str: 6635 case BPF_FUNC_probe_read_user_str: 6636 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6637 insn->imm = BPF_FUNC_probe_read_str; 6638 break; 6639 default: 6640 break; 6641 } 6642 } 6643 return 0; 6644 } 6645 6646 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6647 int *btf_obj_fd, int *btf_type_id); 6648 6649 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 6650 static int libbpf_prepare_prog_load(struct bpf_program *prog, 6651 struct bpf_prog_load_opts *opts, long cookie) 6652 { 6653 enum sec_def_flags def = cookie; 6654 6655 /* old kernels might not support specifying expected_attach_type */ 6656 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6657 opts->expected_attach_type = 0; 6658 6659 if (def & SEC_SLEEPABLE) 6660 opts->prog_flags |= BPF_F_SLEEPABLE; 6661 6662 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 6663 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 6664 6665 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 6666 int btf_obj_fd = 0, btf_type_id = 0, err; 6667 const char *attach_name; 6668 6669 attach_name = strchr(prog->sec_name, '/'); 6670 if (!attach_name) { 6671 /* if BPF program is annotated with just SEC("fentry") 6672 * (or similar) without declaratively specifying 6673 * target, then it is expected that target will be 6674 * specified with bpf_program__set_attach_target() at 6675 * runtime before BPF object load step. If not, then 6676 * there is nothing to load into the kernel as BPF 6677 * verifier won't be able to validate BPF program 6678 * correctness anyways. 6679 */ 6680 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 6681 prog->name); 6682 return -EINVAL; 6683 } 6684 attach_name++; /* skip over / */ 6685 6686 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6687 if (err) 6688 return err; 6689 6690 /* cache resolved BTF FD and BTF type ID in the prog */ 6691 prog->attach_btf_obj_fd = btf_obj_fd; 6692 prog->attach_btf_id = btf_type_id; 6693 6694 /* but by now libbpf common logic is not utilizing 6695 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 6696 * this callback is called after opts were populated by 6697 * libbpf, so this callback has to update opts explicitly here 6698 */ 6699 opts->attach_btf_obj_fd = btf_obj_fd; 6700 opts->attach_btf_id = btf_type_id; 6701 } 6702 return 0; 6703 } 6704 6705 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 6706 6707 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 6708 struct bpf_insn *insns, int insns_cnt, 6709 const char *license, __u32 kern_version, int *prog_fd) 6710 { 6711 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 6712 const char *prog_name = NULL; 6713 char *cp, errmsg[STRERR_BUFSIZE]; 6714 size_t log_buf_size = 0; 6715 char *log_buf = NULL, *tmp; 6716 int btf_fd, ret, err; 6717 bool own_log_buf = true; 6718 __u32 log_level = prog->log_level; 6719 6720 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6721 /* 6722 * The program type must be set. Most likely we couldn't find a proper 6723 * section definition at load time, and thus we didn't infer the type. 6724 */ 6725 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6726 prog->name, prog->sec_name); 6727 return -EINVAL; 6728 } 6729 6730 if (!insns || !insns_cnt) 6731 return -EINVAL; 6732 6733 load_attr.expected_attach_type = prog->expected_attach_type; 6734 if (kernel_supports(obj, FEAT_PROG_NAME)) 6735 prog_name = prog->name; 6736 load_attr.attach_prog_fd = prog->attach_prog_fd; 6737 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 6738 load_attr.attach_btf_id = prog->attach_btf_id; 6739 load_attr.kern_version = kern_version; 6740 load_attr.prog_ifindex = prog->prog_ifindex; 6741 6742 /* specify func_info/line_info only if kernel supports them */ 6743 btf_fd = bpf_object__btf_fd(obj); 6744 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 6745 load_attr.prog_btf_fd = btf_fd; 6746 load_attr.func_info = prog->func_info; 6747 load_attr.func_info_rec_size = prog->func_info_rec_size; 6748 load_attr.func_info_cnt = prog->func_info_cnt; 6749 load_attr.line_info = prog->line_info; 6750 load_attr.line_info_rec_size = prog->line_info_rec_size; 6751 load_attr.line_info_cnt = prog->line_info_cnt; 6752 } 6753 load_attr.log_level = log_level; 6754 load_attr.prog_flags = prog->prog_flags; 6755 load_attr.fd_array = obj->fd_array; 6756 6757 /* adjust load_attr if sec_def provides custom preload callback */ 6758 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 6759 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 6760 if (err < 0) { 6761 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 6762 prog->name, err); 6763 return err; 6764 } 6765 insns = prog->insns; 6766 insns_cnt = prog->insns_cnt; 6767 } 6768 6769 if (obj->gen_loader) { 6770 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 6771 license, insns, insns_cnt, &load_attr, 6772 prog - obj->programs); 6773 *prog_fd = -1; 6774 return 0; 6775 } 6776 6777 retry_load: 6778 /* if log_level is zero, we don't request logs initially even if 6779 * custom log_buf is specified; if the program load fails, then we'll 6780 * bump log_level to 1 and use either custom log_buf or we'll allocate 6781 * our own and retry the load to get details on what failed 6782 */ 6783 if (log_level) { 6784 if (prog->log_buf) { 6785 log_buf = prog->log_buf; 6786 log_buf_size = prog->log_size; 6787 own_log_buf = false; 6788 } else if (obj->log_buf) { 6789 log_buf = obj->log_buf; 6790 log_buf_size = obj->log_size; 6791 own_log_buf = false; 6792 } else { 6793 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 6794 tmp = realloc(log_buf, log_buf_size); 6795 if (!tmp) { 6796 ret = -ENOMEM; 6797 goto out; 6798 } 6799 log_buf = tmp; 6800 log_buf[0] = '\0'; 6801 own_log_buf = true; 6802 } 6803 } 6804 6805 load_attr.log_buf = log_buf; 6806 load_attr.log_size = log_buf_size; 6807 load_attr.log_level = log_level; 6808 6809 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 6810 if (ret >= 0) { 6811 if (log_level && own_log_buf) { 6812 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6813 prog->name, log_buf); 6814 } 6815 6816 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 6817 struct bpf_map *map; 6818 int i; 6819 6820 for (i = 0; i < obj->nr_maps; i++) { 6821 map = &prog->obj->maps[i]; 6822 if (map->libbpf_type != LIBBPF_MAP_RODATA) 6823 continue; 6824 6825 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 6826 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6827 pr_warn("prog '%s': failed to bind map '%s': %s\n", 6828 prog->name, map->real_name, cp); 6829 /* Don't fail hard if can't bind rodata. */ 6830 } 6831 } 6832 } 6833 6834 *prog_fd = ret; 6835 ret = 0; 6836 goto out; 6837 } 6838 6839 if (log_level == 0) { 6840 log_level = 1; 6841 goto retry_load; 6842 } 6843 /* On ENOSPC, increase log buffer size and retry, unless custom 6844 * log_buf is specified. 6845 * Be careful to not overflow u32, though. Kernel's log buf size limit 6846 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 6847 * multiply by 2 unless we are sure we'll fit within 32 bits. 6848 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 6849 */ 6850 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 6851 goto retry_load; 6852 6853 ret = -errno; 6854 6855 /* post-process verifier log to improve error descriptions */ 6856 fixup_verifier_log(prog, log_buf, log_buf_size); 6857 6858 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6859 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 6860 pr_perm_msg(ret); 6861 6862 if (own_log_buf && log_buf && log_buf[0] != '\0') { 6863 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6864 prog->name, log_buf); 6865 } 6866 6867 out: 6868 if (own_log_buf) 6869 free(log_buf); 6870 return ret; 6871 } 6872 6873 static char *find_prev_line(char *buf, char *cur) 6874 { 6875 char *p; 6876 6877 if (cur == buf) /* end of a log buf */ 6878 return NULL; 6879 6880 p = cur - 1; 6881 while (p - 1 >= buf && *(p - 1) != '\n') 6882 p--; 6883 6884 return p; 6885 } 6886 6887 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 6888 char *orig, size_t orig_sz, const char *patch) 6889 { 6890 /* size of the remaining log content to the right from the to-be-replaced part */ 6891 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 6892 size_t patch_sz = strlen(patch); 6893 6894 if (patch_sz != orig_sz) { 6895 /* If patch line(s) are longer than original piece of verifier log, 6896 * shift log contents by (patch_sz - orig_sz) bytes to the right 6897 * starting from after to-be-replaced part of the log. 6898 * 6899 * If patch line(s) are shorter than original piece of verifier log, 6900 * shift log contents by (orig_sz - patch_sz) bytes to the left 6901 * starting from after to-be-replaced part of the log 6902 * 6903 * We need to be careful about not overflowing available 6904 * buf_sz capacity. If that's the case, we'll truncate the end 6905 * of the original log, as necessary. 6906 */ 6907 if (patch_sz > orig_sz) { 6908 if (orig + patch_sz >= buf + buf_sz) { 6909 /* patch is big enough to cover remaining space completely */ 6910 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 6911 rem_sz = 0; 6912 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 6913 /* patch causes part of remaining log to be truncated */ 6914 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 6915 } 6916 } 6917 /* shift remaining log to the right by calculated amount */ 6918 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 6919 } 6920 6921 memcpy(orig, patch, patch_sz); 6922 } 6923 6924 static void fixup_log_failed_core_relo(struct bpf_program *prog, 6925 char *buf, size_t buf_sz, size_t log_sz, 6926 char *line1, char *line2, char *line3) 6927 { 6928 /* Expected log for failed and not properly guarded CO-RE relocation: 6929 * line1 -> 123: (85) call unknown#195896080 6930 * line2 -> invalid func unknown#195896080 6931 * line3 -> <anything else or end of buffer> 6932 * 6933 * "123" is the index of the instruction that was poisoned. We extract 6934 * instruction index to find corresponding CO-RE relocation and 6935 * replace this part of the log with more relevant information about 6936 * failed CO-RE relocation. 6937 */ 6938 const struct bpf_core_relo *relo; 6939 struct bpf_core_spec spec; 6940 char patch[512], spec_buf[256]; 6941 int insn_idx, err, spec_len; 6942 6943 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 6944 return; 6945 6946 relo = find_relo_core(prog, insn_idx); 6947 if (!relo) 6948 return; 6949 6950 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 6951 if (err) 6952 return; 6953 6954 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 6955 snprintf(patch, sizeof(patch), 6956 "%d: <invalid CO-RE relocation>\n" 6957 "failed to resolve CO-RE relocation %s%s\n", 6958 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 6959 6960 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 6961 } 6962 6963 static void fixup_log_missing_map_load(struct bpf_program *prog, 6964 char *buf, size_t buf_sz, size_t log_sz, 6965 char *line1, char *line2, char *line3) 6966 { 6967 /* Expected log for failed and not properly guarded CO-RE relocation: 6968 * line1 -> 123: (85) call unknown#2001000345 6969 * line2 -> invalid func unknown#2001000345 6970 * line3 -> <anything else or end of buffer> 6971 * 6972 * "123" is the index of the instruction that was poisoned. 6973 * "345" in "2001000345" are map index in obj->maps to fetch map name. 6974 */ 6975 struct bpf_object *obj = prog->obj; 6976 const struct bpf_map *map; 6977 int insn_idx, map_idx; 6978 char patch[128]; 6979 6980 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 6981 return; 6982 6983 map_idx -= MAP_LDIMM64_POISON_BASE; 6984 if (map_idx < 0 || map_idx >= obj->nr_maps) 6985 return; 6986 map = &obj->maps[map_idx]; 6987 6988 snprintf(patch, sizeof(patch), 6989 "%d: <invalid BPF map reference>\n" 6990 "BPF map '%s' is referenced but wasn't created\n", 6991 insn_idx, map->name); 6992 6993 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 6994 } 6995 6996 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 6997 { 6998 /* look for familiar error patterns in last N lines of the log */ 6999 const size_t max_last_line_cnt = 10; 7000 char *prev_line, *cur_line, *next_line; 7001 size_t log_sz; 7002 int i; 7003 7004 if (!buf) 7005 return; 7006 7007 log_sz = strlen(buf) + 1; 7008 next_line = buf + log_sz - 1; 7009 7010 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7011 cur_line = find_prev_line(buf, next_line); 7012 if (!cur_line) 7013 return; 7014 7015 /* failed CO-RE relocation case */ 7016 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7017 prev_line = find_prev_line(buf, cur_line); 7018 if (!prev_line) 7019 continue; 7020 7021 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7022 prev_line, cur_line, next_line); 7023 return; 7024 } else if (str_has_pfx(cur_line, "invalid func unknown#"MAP_LDIMM64_POISON_PFX)) { 7025 prev_line = find_prev_line(buf, cur_line); 7026 if (!prev_line) 7027 continue; 7028 7029 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7030 prev_line, cur_line, next_line); 7031 return; 7032 } 7033 } 7034 } 7035 7036 static int bpf_program_record_relos(struct bpf_program *prog) 7037 { 7038 struct bpf_object *obj = prog->obj; 7039 int i; 7040 7041 for (i = 0; i < prog->nr_reloc; i++) { 7042 struct reloc_desc *relo = &prog->reloc_desc[i]; 7043 struct extern_desc *ext = &obj->externs[relo->sym_off]; 7044 7045 switch (relo->type) { 7046 case RELO_EXTERN_VAR: 7047 if (ext->type != EXT_KSYM) 7048 continue; 7049 bpf_gen__record_extern(obj->gen_loader, ext->name, 7050 ext->is_weak, !ext->ksym.type_id, 7051 BTF_KIND_VAR, relo->insn_idx); 7052 break; 7053 case RELO_EXTERN_FUNC: 7054 bpf_gen__record_extern(obj->gen_loader, ext->name, 7055 ext->is_weak, false, BTF_KIND_FUNC, 7056 relo->insn_idx); 7057 break; 7058 case RELO_CORE: { 7059 struct bpf_core_relo cr = { 7060 .insn_off = relo->insn_idx * 8, 7061 .type_id = relo->core_relo->type_id, 7062 .access_str_off = relo->core_relo->access_str_off, 7063 .kind = relo->core_relo->kind, 7064 }; 7065 7066 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7067 break; 7068 } 7069 default: 7070 continue; 7071 } 7072 } 7073 return 0; 7074 } 7075 7076 static int 7077 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7078 { 7079 struct bpf_program *prog; 7080 size_t i; 7081 int err; 7082 7083 for (i = 0; i < obj->nr_programs; i++) { 7084 prog = &obj->programs[i]; 7085 err = bpf_object__sanitize_prog(obj, prog); 7086 if (err) 7087 return err; 7088 } 7089 7090 for (i = 0; i < obj->nr_programs; i++) { 7091 prog = &obj->programs[i]; 7092 if (prog_is_subprog(obj, prog)) 7093 continue; 7094 if (!prog->autoload) { 7095 pr_debug("prog '%s': skipped loading\n", prog->name); 7096 continue; 7097 } 7098 prog->log_level |= log_level; 7099 7100 if (obj->gen_loader) 7101 bpf_program_record_relos(prog); 7102 7103 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7104 obj->license, obj->kern_version, &prog->fd); 7105 if (err) { 7106 pr_warn("prog '%s': failed to load: %d\n", prog->name, err); 7107 return err; 7108 } 7109 } 7110 7111 bpf_object__free_relocs(obj); 7112 return 0; 7113 } 7114 7115 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7116 7117 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7118 { 7119 struct bpf_program *prog; 7120 int err; 7121 7122 bpf_object__for_each_program(prog, obj) { 7123 prog->sec_def = find_sec_def(prog->sec_name); 7124 if (!prog->sec_def) { 7125 /* couldn't guess, but user might manually specify */ 7126 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7127 prog->name, prog->sec_name); 7128 continue; 7129 } 7130 7131 prog->type = prog->sec_def->prog_type; 7132 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7133 7134 /* sec_def can have custom callback which should be called 7135 * after bpf_program is initialized to adjust its properties 7136 */ 7137 if (prog->sec_def->prog_setup_fn) { 7138 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7139 if (err < 0) { 7140 pr_warn("prog '%s': failed to initialize: %d\n", 7141 prog->name, err); 7142 return err; 7143 } 7144 } 7145 } 7146 7147 return 0; 7148 } 7149 7150 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7151 const struct bpf_object_open_opts *opts) 7152 { 7153 const char *obj_name, *kconfig, *btf_tmp_path; 7154 struct bpf_object *obj; 7155 char tmp_name[64]; 7156 int err; 7157 char *log_buf; 7158 size_t log_size; 7159 __u32 log_level; 7160 7161 if (elf_version(EV_CURRENT) == EV_NONE) { 7162 pr_warn("failed to init libelf for %s\n", 7163 path ? : "(mem buf)"); 7164 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7165 } 7166 7167 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7168 return ERR_PTR(-EINVAL); 7169 7170 obj_name = OPTS_GET(opts, object_name, NULL); 7171 if (obj_buf) { 7172 if (!obj_name) { 7173 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7174 (unsigned long)obj_buf, 7175 (unsigned long)obj_buf_sz); 7176 obj_name = tmp_name; 7177 } 7178 path = obj_name; 7179 pr_debug("loading object '%s' from buffer\n", obj_name); 7180 } 7181 7182 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7183 log_size = OPTS_GET(opts, kernel_log_size, 0); 7184 log_level = OPTS_GET(opts, kernel_log_level, 0); 7185 if (log_size > UINT_MAX) 7186 return ERR_PTR(-EINVAL); 7187 if (log_size && !log_buf) 7188 return ERR_PTR(-EINVAL); 7189 7190 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7191 if (IS_ERR(obj)) 7192 return obj; 7193 7194 obj->log_buf = log_buf; 7195 obj->log_size = log_size; 7196 obj->log_level = log_level; 7197 7198 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7199 if (btf_tmp_path) { 7200 if (strlen(btf_tmp_path) >= PATH_MAX) { 7201 err = -ENAMETOOLONG; 7202 goto out; 7203 } 7204 obj->btf_custom_path = strdup(btf_tmp_path); 7205 if (!obj->btf_custom_path) { 7206 err = -ENOMEM; 7207 goto out; 7208 } 7209 } 7210 7211 kconfig = OPTS_GET(opts, kconfig, NULL); 7212 if (kconfig) { 7213 obj->kconfig = strdup(kconfig); 7214 if (!obj->kconfig) { 7215 err = -ENOMEM; 7216 goto out; 7217 } 7218 } 7219 7220 err = bpf_object__elf_init(obj); 7221 err = err ? : bpf_object__check_endianness(obj); 7222 err = err ? : bpf_object__elf_collect(obj); 7223 err = err ? : bpf_object__collect_externs(obj); 7224 err = err ? : bpf_object__finalize_btf(obj); 7225 err = err ? : bpf_object__init_maps(obj, opts); 7226 err = err ? : bpf_object_init_progs(obj, opts); 7227 err = err ? : bpf_object__collect_relos(obj); 7228 if (err) 7229 goto out; 7230 7231 bpf_object__elf_finish(obj); 7232 7233 return obj; 7234 out: 7235 bpf_object__close(obj); 7236 return ERR_PTR(err); 7237 } 7238 7239 struct bpf_object * 7240 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7241 { 7242 if (!path) 7243 return libbpf_err_ptr(-EINVAL); 7244 7245 pr_debug("loading %s\n", path); 7246 7247 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7248 } 7249 7250 struct bpf_object *bpf_object__open(const char *path) 7251 { 7252 return bpf_object__open_file(path, NULL); 7253 } 7254 7255 struct bpf_object * 7256 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7257 const struct bpf_object_open_opts *opts) 7258 { 7259 if (!obj_buf || obj_buf_sz == 0) 7260 return libbpf_err_ptr(-EINVAL); 7261 7262 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7263 } 7264 7265 static int bpf_object_unload(struct bpf_object *obj) 7266 { 7267 size_t i; 7268 7269 if (!obj) 7270 return libbpf_err(-EINVAL); 7271 7272 for (i = 0; i < obj->nr_maps; i++) { 7273 zclose(obj->maps[i].fd); 7274 if (obj->maps[i].st_ops) 7275 zfree(&obj->maps[i].st_ops->kern_vdata); 7276 } 7277 7278 for (i = 0; i < obj->nr_programs; i++) 7279 bpf_program__unload(&obj->programs[i]); 7280 7281 return 0; 7282 } 7283 7284 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7285 { 7286 struct bpf_map *m; 7287 7288 bpf_object__for_each_map(m, obj) { 7289 if (!bpf_map__is_internal(m)) 7290 continue; 7291 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7292 m->def.map_flags ^= BPF_F_MMAPABLE; 7293 } 7294 7295 return 0; 7296 } 7297 7298 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 7299 { 7300 char sym_type, sym_name[500]; 7301 unsigned long long sym_addr; 7302 int ret, err = 0; 7303 FILE *f; 7304 7305 f = fopen("/proc/kallsyms", "r"); 7306 if (!f) { 7307 err = -errno; 7308 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7309 return err; 7310 } 7311 7312 while (true) { 7313 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7314 &sym_addr, &sym_type, sym_name); 7315 if (ret == EOF && feof(f)) 7316 break; 7317 if (ret != 3) { 7318 pr_warn("failed to read kallsyms entry: %d\n", ret); 7319 err = -EINVAL; 7320 break; 7321 } 7322 7323 err = cb(sym_addr, sym_type, sym_name, ctx); 7324 if (err) 7325 break; 7326 } 7327 7328 fclose(f); 7329 return err; 7330 } 7331 7332 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 7333 const char *sym_name, void *ctx) 7334 { 7335 struct bpf_object *obj = ctx; 7336 const struct btf_type *t; 7337 struct extern_desc *ext; 7338 7339 ext = find_extern_by_name(obj, sym_name); 7340 if (!ext || ext->type != EXT_KSYM) 7341 return 0; 7342 7343 t = btf__type_by_id(obj->btf, ext->btf_id); 7344 if (!btf_is_var(t)) 7345 return 0; 7346 7347 if (ext->is_set && ext->ksym.addr != sym_addr) { 7348 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 7349 sym_name, ext->ksym.addr, sym_addr); 7350 return -EINVAL; 7351 } 7352 if (!ext->is_set) { 7353 ext->is_set = true; 7354 ext->ksym.addr = sym_addr; 7355 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 7356 } 7357 return 0; 7358 } 7359 7360 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7361 { 7362 return libbpf_kallsyms_parse(kallsyms_cb, obj); 7363 } 7364 7365 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7366 __u16 kind, struct btf **res_btf, 7367 struct module_btf **res_mod_btf) 7368 { 7369 struct module_btf *mod_btf; 7370 struct btf *btf; 7371 int i, id, err; 7372 7373 btf = obj->btf_vmlinux; 7374 mod_btf = NULL; 7375 id = btf__find_by_name_kind(btf, ksym_name, kind); 7376 7377 if (id == -ENOENT) { 7378 err = load_module_btfs(obj); 7379 if (err) 7380 return err; 7381 7382 for (i = 0; i < obj->btf_module_cnt; i++) { 7383 /* we assume module_btf's BTF FD is always >0 */ 7384 mod_btf = &obj->btf_modules[i]; 7385 btf = mod_btf->btf; 7386 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7387 if (id != -ENOENT) 7388 break; 7389 } 7390 } 7391 if (id <= 0) 7392 return -ESRCH; 7393 7394 *res_btf = btf; 7395 *res_mod_btf = mod_btf; 7396 return id; 7397 } 7398 7399 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7400 struct extern_desc *ext) 7401 { 7402 const struct btf_type *targ_var, *targ_type; 7403 __u32 targ_type_id, local_type_id; 7404 struct module_btf *mod_btf = NULL; 7405 const char *targ_var_name; 7406 struct btf *btf = NULL; 7407 int id, err; 7408 7409 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7410 if (id < 0) { 7411 if (id == -ESRCH && ext->is_weak) 7412 return 0; 7413 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7414 ext->name); 7415 return id; 7416 } 7417 7418 /* find local type_id */ 7419 local_type_id = ext->ksym.type_id; 7420 7421 /* find target type_id */ 7422 targ_var = btf__type_by_id(btf, id); 7423 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7424 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7425 7426 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7427 btf, targ_type_id); 7428 if (err <= 0) { 7429 const struct btf_type *local_type; 7430 const char *targ_name, *local_name; 7431 7432 local_type = btf__type_by_id(obj->btf, local_type_id); 7433 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7434 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7435 7436 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7437 ext->name, local_type_id, 7438 btf_kind_str(local_type), local_name, targ_type_id, 7439 btf_kind_str(targ_type), targ_name); 7440 return -EINVAL; 7441 } 7442 7443 ext->is_set = true; 7444 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7445 ext->ksym.kernel_btf_id = id; 7446 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7447 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7448 7449 return 0; 7450 } 7451 7452 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7453 struct extern_desc *ext) 7454 { 7455 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7456 struct module_btf *mod_btf = NULL; 7457 const struct btf_type *kern_func; 7458 struct btf *kern_btf = NULL; 7459 int ret; 7460 7461 local_func_proto_id = ext->ksym.type_id; 7462 7463 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf); 7464 if (kfunc_id < 0) { 7465 if (kfunc_id == -ESRCH && ext->is_weak) 7466 return 0; 7467 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7468 ext->name); 7469 return kfunc_id; 7470 } 7471 7472 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7473 kfunc_proto_id = kern_func->type; 7474 7475 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7476 kern_btf, kfunc_proto_id); 7477 if (ret <= 0) { 7478 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n", 7479 ext->name, local_func_proto_id, kfunc_proto_id); 7480 return -EINVAL; 7481 } 7482 7483 /* set index for module BTF fd in fd_array, if unset */ 7484 if (mod_btf && !mod_btf->fd_array_idx) { 7485 /* insn->off is s16 */ 7486 if (obj->fd_array_cnt == INT16_MAX) { 7487 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7488 ext->name, mod_btf->fd_array_idx); 7489 return -E2BIG; 7490 } 7491 /* Cannot use index 0 for module BTF fd */ 7492 if (!obj->fd_array_cnt) 7493 obj->fd_array_cnt = 1; 7494 7495 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7496 obj->fd_array_cnt + 1); 7497 if (ret) 7498 return ret; 7499 mod_btf->fd_array_idx = obj->fd_array_cnt; 7500 /* we assume module BTF FD is always >0 */ 7501 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7502 } 7503 7504 ext->is_set = true; 7505 ext->ksym.kernel_btf_id = kfunc_id; 7506 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7507 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n", 7508 ext->name, kfunc_id); 7509 7510 return 0; 7511 } 7512 7513 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7514 { 7515 const struct btf_type *t; 7516 struct extern_desc *ext; 7517 int i, err; 7518 7519 for (i = 0; i < obj->nr_extern; i++) { 7520 ext = &obj->externs[i]; 7521 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7522 continue; 7523 7524 if (obj->gen_loader) { 7525 ext->is_set = true; 7526 ext->ksym.kernel_btf_obj_fd = 0; 7527 ext->ksym.kernel_btf_id = 0; 7528 continue; 7529 } 7530 t = btf__type_by_id(obj->btf, ext->btf_id); 7531 if (btf_is_var(t)) 7532 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7533 else 7534 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7535 if (err) 7536 return err; 7537 } 7538 return 0; 7539 } 7540 7541 static int bpf_object__resolve_externs(struct bpf_object *obj, 7542 const char *extra_kconfig) 7543 { 7544 bool need_config = false, need_kallsyms = false; 7545 bool need_vmlinux_btf = false; 7546 struct extern_desc *ext; 7547 void *kcfg_data = NULL; 7548 int err, i; 7549 7550 if (obj->nr_extern == 0) 7551 return 0; 7552 7553 if (obj->kconfig_map_idx >= 0) 7554 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7555 7556 for (i = 0; i < obj->nr_extern; i++) { 7557 ext = &obj->externs[i]; 7558 7559 if (ext->type == EXT_KSYM) { 7560 if (ext->ksym.type_id) 7561 need_vmlinux_btf = true; 7562 else 7563 need_kallsyms = true; 7564 continue; 7565 } else if (ext->type == EXT_KCFG) { 7566 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 7567 __u64 value = 0; 7568 7569 /* Kconfig externs need actual /proc/config.gz */ 7570 if (str_has_pfx(ext->name, "CONFIG_")) { 7571 need_config = true; 7572 continue; 7573 } 7574 7575 /* Virtual kcfg externs are customly handled by libbpf */ 7576 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7577 value = get_kernel_version(); 7578 if (!value) { 7579 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 7580 return -EINVAL; 7581 } 7582 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 7583 value = kernel_supports(obj, FEAT_BPF_COOKIE); 7584 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 7585 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 7586 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 7587 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 7588 * __kconfig externs, where LINUX_ ones are virtual and filled out 7589 * customly by libbpf (their values don't come from Kconfig). 7590 * If LINUX_xxx variable is not recognized by libbpf, but is marked 7591 * __weak, it defaults to zero value, just like for CONFIG_xxx 7592 * externs. 7593 */ 7594 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 7595 return -EINVAL; 7596 } 7597 7598 err = set_kcfg_value_num(ext, ext_ptr, value); 7599 if (err) 7600 return err; 7601 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 7602 ext->name, (long long)value); 7603 } else { 7604 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 7605 return -EINVAL; 7606 } 7607 } 7608 if (need_config && extra_kconfig) { 7609 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7610 if (err) 7611 return -EINVAL; 7612 need_config = false; 7613 for (i = 0; i < obj->nr_extern; i++) { 7614 ext = &obj->externs[i]; 7615 if (ext->type == EXT_KCFG && !ext->is_set) { 7616 need_config = true; 7617 break; 7618 } 7619 } 7620 } 7621 if (need_config) { 7622 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7623 if (err) 7624 return -EINVAL; 7625 } 7626 if (need_kallsyms) { 7627 err = bpf_object__read_kallsyms_file(obj); 7628 if (err) 7629 return -EINVAL; 7630 } 7631 if (need_vmlinux_btf) { 7632 err = bpf_object__resolve_ksyms_btf_id(obj); 7633 if (err) 7634 return -EINVAL; 7635 } 7636 for (i = 0; i < obj->nr_extern; i++) { 7637 ext = &obj->externs[i]; 7638 7639 if (!ext->is_set && !ext->is_weak) { 7640 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 7641 return -ESRCH; 7642 } else if (!ext->is_set) { 7643 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 7644 ext->name); 7645 } 7646 } 7647 7648 return 0; 7649 } 7650 7651 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 7652 { 7653 int err, i; 7654 7655 if (!obj) 7656 return libbpf_err(-EINVAL); 7657 7658 if (obj->loaded) { 7659 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7660 return libbpf_err(-EINVAL); 7661 } 7662 7663 if (obj->gen_loader) 7664 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 7665 7666 err = bpf_object__probe_loading(obj); 7667 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7668 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7669 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7670 err = err ? : bpf_object__sanitize_maps(obj); 7671 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7672 err = err ? : bpf_object__create_maps(obj); 7673 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 7674 err = err ? : bpf_object__load_progs(obj, extra_log_level); 7675 err = err ? : bpf_object_init_prog_arrays(obj); 7676 7677 if (obj->gen_loader) { 7678 /* reset FDs */ 7679 if (obj->btf) 7680 btf__set_fd(obj->btf, -1); 7681 for (i = 0; i < obj->nr_maps; i++) 7682 obj->maps[i].fd = -1; 7683 if (!err) 7684 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 7685 } 7686 7687 /* clean up fd_array */ 7688 zfree(&obj->fd_array); 7689 7690 /* clean up module BTFs */ 7691 for (i = 0; i < obj->btf_module_cnt; i++) { 7692 close(obj->btf_modules[i].fd); 7693 btf__free(obj->btf_modules[i].btf); 7694 free(obj->btf_modules[i].name); 7695 } 7696 free(obj->btf_modules); 7697 7698 /* clean up vmlinux BTF */ 7699 btf__free(obj->btf_vmlinux); 7700 obj->btf_vmlinux = NULL; 7701 7702 obj->loaded = true; /* doesn't matter if successfully or not */ 7703 7704 if (err) 7705 goto out; 7706 7707 return 0; 7708 out: 7709 /* unpin any maps that were auto-pinned during load */ 7710 for (i = 0; i < obj->nr_maps; i++) 7711 if (obj->maps[i].pinned && !obj->maps[i].reused) 7712 bpf_map__unpin(&obj->maps[i], NULL); 7713 7714 bpf_object_unload(obj); 7715 pr_warn("failed to load object '%s'\n", obj->path); 7716 return libbpf_err(err); 7717 } 7718 7719 int bpf_object__load(struct bpf_object *obj) 7720 { 7721 return bpf_object_load(obj, 0, NULL); 7722 } 7723 7724 static int make_parent_dir(const char *path) 7725 { 7726 char *cp, errmsg[STRERR_BUFSIZE]; 7727 char *dname, *dir; 7728 int err = 0; 7729 7730 dname = strdup(path); 7731 if (dname == NULL) 7732 return -ENOMEM; 7733 7734 dir = dirname(dname); 7735 if (mkdir(dir, 0700) && errno != EEXIST) 7736 err = -errno; 7737 7738 free(dname); 7739 if (err) { 7740 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7741 pr_warn("failed to mkdir %s: %s\n", path, cp); 7742 } 7743 return err; 7744 } 7745 7746 static int check_path(const char *path) 7747 { 7748 char *cp, errmsg[STRERR_BUFSIZE]; 7749 struct statfs st_fs; 7750 char *dname, *dir; 7751 int err = 0; 7752 7753 if (path == NULL) 7754 return -EINVAL; 7755 7756 dname = strdup(path); 7757 if (dname == NULL) 7758 return -ENOMEM; 7759 7760 dir = dirname(dname); 7761 if (statfs(dir, &st_fs)) { 7762 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7763 pr_warn("failed to statfs %s: %s\n", dir, cp); 7764 err = -errno; 7765 } 7766 free(dname); 7767 7768 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7769 pr_warn("specified path %s is not on BPF FS\n", path); 7770 err = -EINVAL; 7771 } 7772 7773 return err; 7774 } 7775 7776 int bpf_program__pin(struct bpf_program *prog, const char *path) 7777 { 7778 char *cp, errmsg[STRERR_BUFSIZE]; 7779 int err; 7780 7781 if (prog->fd < 0) { 7782 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 7783 return libbpf_err(-EINVAL); 7784 } 7785 7786 err = make_parent_dir(path); 7787 if (err) 7788 return libbpf_err(err); 7789 7790 err = check_path(path); 7791 if (err) 7792 return libbpf_err(err); 7793 7794 if (bpf_obj_pin(prog->fd, path)) { 7795 err = -errno; 7796 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7797 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp); 7798 return libbpf_err(err); 7799 } 7800 7801 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 7802 return 0; 7803 } 7804 7805 int bpf_program__unpin(struct bpf_program *prog, const char *path) 7806 { 7807 int err; 7808 7809 if (prog->fd < 0) { 7810 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 7811 return libbpf_err(-EINVAL); 7812 } 7813 7814 err = check_path(path); 7815 if (err) 7816 return libbpf_err(err); 7817 7818 err = unlink(path); 7819 if (err) 7820 return libbpf_err(-errno); 7821 7822 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 7823 return 0; 7824 } 7825 7826 int bpf_map__pin(struct bpf_map *map, const char *path) 7827 { 7828 char *cp, errmsg[STRERR_BUFSIZE]; 7829 int err; 7830 7831 if (map == NULL) { 7832 pr_warn("invalid map pointer\n"); 7833 return libbpf_err(-EINVAL); 7834 } 7835 7836 if (map->pin_path) { 7837 if (path && strcmp(path, map->pin_path)) { 7838 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7839 bpf_map__name(map), map->pin_path, path); 7840 return libbpf_err(-EINVAL); 7841 } else if (map->pinned) { 7842 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 7843 bpf_map__name(map), map->pin_path); 7844 return 0; 7845 } 7846 } else { 7847 if (!path) { 7848 pr_warn("missing a path to pin map '%s' at\n", 7849 bpf_map__name(map)); 7850 return libbpf_err(-EINVAL); 7851 } else if (map->pinned) { 7852 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 7853 return libbpf_err(-EEXIST); 7854 } 7855 7856 map->pin_path = strdup(path); 7857 if (!map->pin_path) { 7858 err = -errno; 7859 goto out_err; 7860 } 7861 } 7862 7863 err = make_parent_dir(map->pin_path); 7864 if (err) 7865 return libbpf_err(err); 7866 7867 err = check_path(map->pin_path); 7868 if (err) 7869 return libbpf_err(err); 7870 7871 if (bpf_obj_pin(map->fd, map->pin_path)) { 7872 err = -errno; 7873 goto out_err; 7874 } 7875 7876 map->pinned = true; 7877 pr_debug("pinned map '%s'\n", map->pin_path); 7878 7879 return 0; 7880 7881 out_err: 7882 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7883 pr_warn("failed to pin map: %s\n", cp); 7884 return libbpf_err(err); 7885 } 7886 7887 int bpf_map__unpin(struct bpf_map *map, const char *path) 7888 { 7889 int err; 7890 7891 if (map == NULL) { 7892 pr_warn("invalid map pointer\n"); 7893 return libbpf_err(-EINVAL); 7894 } 7895 7896 if (map->pin_path) { 7897 if (path && strcmp(path, map->pin_path)) { 7898 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7899 bpf_map__name(map), map->pin_path, path); 7900 return libbpf_err(-EINVAL); 7901 } 7902 path = map->pin_path; 7903 } else if (!path) { 7904 pr_warn("no path to unpin map '%s' from\n", 7905 bpf_map__name(map)); 7906 return libbpf_err(-EINVAL); 7907 } 7908 7909 err = check_path(path); 7910 if (err) 7911 return libbpf_err(err); 7912 7913 err = unlink(path); 7914 if (err != 0) 7915 return libbpf_err(-errno); 7916 7917 map->pinned = false; 7918 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 7919 7920 return 0; 7921 } 7922 7923 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 7924 { 7925 char *new = NULL; 7926 7927 if (path) { 7928 new = strdup(path); 7929 if (!new) 7930 return libbpf_err(-errno); 7931 } 7932 7933 free(map->pin_path); 7934 map->pin_path = new; 7935 return 0; 7936 } 7937 7938 __alias(bpf_map__pin_path) 7939 const char *bpf_map__get_pin_path(const struct bpf_map *map); 7940 7941 const char *bpf_map__pin_path(const struct bpf_map *map) 7942 { 7943 return map->pin_path; 7944 } 7945 7946 bool bpf_map__is_pinned(const struct bpf_map *map) 7947 { 7948 return map->pinned; 7949 } 7950 7951 static void sanitize_pin_path(char *s) 7952 { 7953 /* bpffs disallows periods in path names */ 7954 while (*s) { 7955 if (*s == '.') 7956 *s = '_'; 7957 s++; 7958 } 7959 } 7960 7961 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 7962 { 7963 struct bpf_map *map; 7964 int err; 7965 7966 if (!obj) 7967 return libbpf_err(-ENOENT); 7968 7969 if (!obj->loaded) { 7970 pr_warn("object not yet loaded; load it first\n"); 7971 return libbpf_err(-ENOENT); 7972 } 7973 7974 bpf_object__for_each_map(map, obj) { 7975 char *pin_path = NULL; 7976 char buf[PATH_MAX]; 7977 7978 if (!map->autocreate) 7979 continue; 7980 7981 if (path) { 7982 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 7983 if (err) 7984 goto err_unpin_maps; 7985 sanitize_pin_path(buf); 7986 pin_path = buf; 7987 } else if (!map->pin_path) { 7988 continue; 7989 } 7990 7991 err = bpf_map__pin(map, pin_path); 7992 if (err) 7993 goto err_unpin_maps; 7994 } 7995 7996 return 0; 7997 7998 err_unpin_maps: 7999 while ((map = bpf_object__prev_map(obj, map))) { 8000 if (!map->pin_path) 8001 continue; 8002 8003 bpf_map__unpin(map, NULL); 8004 } 8005 8006 return libbpf_err(err); 8007 } 8008 8009 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8010 { 8011 struct bpf_map *map; 8012 int err; 8013 8014 if (!obj) 8015 return libbpf_err(-ENOENT); 8016 8017 bpf_object__for_each_map(map, obj) { 8018 char *pin_path = NULL; 8019 char buf[PATH_MAX]; 8020 8021 if (path) { 8022 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8023 if (err) 8024 return libbpf_err(err); 8025 sanitize_pin_path(buf); 8026 pin_path = buf; 8027 } else if (!map->pin_path) { 8028 continue; 8029 } 8030 8031 err = bpf_map__unpin(map, pin_path); 8032 if (err) 8033 return libbpf_err(err); 8034 } 8035 8036 return 0; 8037 } 8038 8039 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8040 { 8041 struct bpf_program *prog; 8042 char buf[PATH_MAX]; 8043 int err; 8044 8045 if (!obj) 8046 return libbpf_err(-ENOENT); 8047 8048 if (!obj->loaded) { 8049 pr_warn("object not yet loaded; load it first\n"); 8050 return libbpf_err(-ENOENT); 8051 } 8052 8053 bpf_object__for_each_program(prog, obj) { 8054 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8055 if (err) 8056 goto err_unpin_programs; 8057 8058 err = bpf_program__pin(prog, buf); 8059 if (err) 8060 goto err_unpin_programs; 8061 } 8062 8063 return 0; 8064 8065 err_unpin_programs: 8066 while ((prog = bpf_object__prev_program(obj, prog))) { 8067 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 8068 continue; 8069 8070 bpf_program__unpin(prog, buf); 8071 } 8072 8073 return libbpf_err(err); 8074 } 8075 8076 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8077 { 8078 struct bpf_program *prog; 8079 int err; 8080 8081 if (!obj) 8082 return libbpf_err(-ENOENT); 8083 8084 bpf_object__for_each_program(prog, obj) { 8085 char buf[PATH_MAX]; 8086 8087 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8088 if (err) 8089 return libbpf_err(err); 8090 8091 err = bpf_program__unpin(prog, buf); 8092 if (err) 8093 return libbpf_err(err); 8094 } 8095 8096 return 0; 8097 } 8098 8099 int bpf_object__pin(struct bpf_object *obj, const char *path) 8100 { 8101 int err; 8102 8103 err = bpf_object__pin_maps(obj, path); 8104 if (err) 8105 return libbpf_err(err); 8106 8107 err = bpf_object__pin_programs(obj, path); 8108 if (err) { 8109 bpf_object__unpin_maps(obj, path); 8110 return libbpf_err(err); 8111 } 8112 8113 return 0; 8114 } 8115 8116 static void bpf_map__destroy(struct bpf_map *map) 8117 { 8118 if (map->inner_map) { 8119 bpf_map__destroy(map->inner_map); 8120 zfree(&map->inner_map); 8121 } 8122 8123 zfree(&map->init_slots); 8124 map->init_slots_sz = 0; 8125 8126 if (map->mmaped) { 8127 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8128 map->mmaped = NULL; 8129 } 8130 8131 if (map->st_ops) { 8132 zfree(&map->st_ops->data); 8133 zfree(&map->st_ops->progs); 8134 zfree(&map->st_ops->kern_func_off); 8135 zfree(&map->st_ops); 8136 } 8137 8138 zfree(&map->name); 8139 zfree(&map->real_name); 8140 zfree(&map->pin_path); 8141 8142 if (map->fd >= 0) 8143 zclose(map->fd); 8144 } 8145 8146 void bpf_object__close(struct bpf_object *obj) 8147 { 8148 size_t i; 8149 8150 if (IS_ERR_OR_NULL(obj)) 8151 return; 8152 8153 usdt_manager_free(obj->usdt_man); 8154 obj->usdt_man = NULL; 8155 8156 bpf_gen__free(obj->gen_loader); 8157 bpf_object__elf_finish(obj); 8158 bpf_object_unload(obj); 8159 btf__free(obj->btf); 8160 btf_ext__free(obj->btf_ext); 8161 8162 for (i = 0; i < obj->nr_maps; i++) 8163 bpf_map__destroy(&obj->maps[i]); 8164 8165 zfree(&obj->btf_custom_path); 8166 zfree(&obj->kconfig); 8167 zfree(&obj->externs); 8168 obj->nr_extern = 0; 8169 8170 zfree(&obj->maps); 8171 obj->nr_maps = 0; 8172 8173 if (obj->programs && obj->nr_programs) { 8174 for (i = 0; i < obj->nr_programs; i++) 8175 bpf_program__exit(&obj->programs[i]); 8176 } 8177 zfree(&obj->programs); 8178 8179 free(obj); 8180 } 8181 8182 const char *bpf_object__name(const struct bpf_object *obj) 8183 { 8184 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8185 } 8186 8187 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8188 { 8189 return obj ? obj->kern_version : 0; 8190 } 8191 8192 struct btf *bpf_object__btf(const struct bpf_object *obj) 8193 { 8194 return obj ? obj->btf : NULL; 8195 } 8196 8197 int bpf_object__btf_fd(const struct bpf_object *obj) 8198 { 8199 return obj->btf ? btf__fd(obj->btf) : -1; 8200 } 8201 8202 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8203 { 8204 if (obj->loaded) 8205 return libbpf_err(-EINVAL); 8206 8207 obj->kern_version = kern_version; 8208 8209 return 0; 8210 } 8211 8212 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8213 { 8214 struct bpf_gen *gen; 8215 8216 if (!opts) 8217 return -EFAULT; 8218 if (!OPTS_VALID(opts, gen_loader_opts)) 8219 return -EINVAL; 8220 gen = calloc(sizeof(*gen), 1); 8221 if (!gen) 8222 return -ENOMEM; 8223 gen->opts = opts; 8224 obj->gen_loader = gen; 8225 return 0; 8226 } 8227 8228 static struct bpf_program * 8229 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8230 bool forward) 8231 { 8232 size_t nr_programs = obj->nr_programs; 8233 ssize_t idx; 8234 8235 if (!nr_programs) 8236 return NULL; 8237 8238 if (!p) 8239 /* Iter from the beginning */ 8240 return forward ? &obj->programs[0] : 8241 &obj->programs[nr_programs - 1]; 8242 8243 if (p->obj != obj) { 8244 pr_warn("error: program handler doesn't match object\n"); 8245 return errno = EINVAL, NULL; 8246 } 8247 8248 idx = (p - obj->programs) + (forward ? 1 : -1); 8249 if (idx >= obj->nr_programs || idx < 0) 8250 return NULL; 8251 return &obj->programs[idx]; 8252 } 8253 8254 struct bpf_program * 8255 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8256 { 8257 struct bpf_program *prog = prev; 8258 8259 do { 8260 prog = __bpf_program__iter(prog, obj, true); 8261 } while (prog && prog_is_subprog(obj, prog)); 8262 8263 return prog; 8264 } 8265 8266 struct bpf_program * 8267 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8268 { 8269 struct bpf_program *prog = next; 8270 8271 do { 8272 prog = __bpf_program__iter(prog, obj, false); 8273 } while (prog && prog_is_subprog(obj, prog)); 8274 8275 return prog; 8276 } 8277 8278 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8279 { 8280 prog->prog_ifindex = ifindex; 8281 } 8282 8283 const char *bpf_program__name(const struct bpf_program *prog) 8284 { 8285 return prog->name; 8286 } 8287 8288 const char *bpf_program__section_name(const struct bpf_program *prog) 8289 { 8290 return prog->sec_name; 8291 } 8292 8293 bool bpf_program__autoload(const struct bpf_program *prog) 8294 { 8295 return prog->autoload; 8296 } 8297 8298 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8299 { 8300 if (prog->obj->loaded) 8301 return libbpf_err(-EINVAL); 8302 8303 prog->autoload = autoload; 8304 return 0; 8305 } 8306 8307 bool bpf_program__autoattach(const struct bpf_program *prog) 8308 { 8309 return prog->autoattach; 8310 } 8311 8312 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 8313 { 8314 prog->autoattach = autoattach; 8315 } 8316 8317 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8318 { 8319 return prog->insns; 8320 } 8321 8322 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8323 { 8324 return prog->insns_cnt; 8325 } 8326 8327 int bpf_program__set_insns(struct bpf_program *prog, 8328 struct bpf_insn *new_insns, size_t new_insn_cnt) 8329 { 8330 struct bpf_insn *insns; 8331 8332 if (prog->obj->loaded) 8333 return -EBUSY; 8334 8335 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 8336 if (!insns) { 8337 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 8338 return -ENOMEM; 8339 } 8340 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 8341 8342 prog->insns = insns; 8343 prog->insns_cnt = new_insn_cnt; 8344 return 0; 8345 } 8346 8347 int bpf_program__fd(const struct bpf_program *prog) 8348 { 8349 if (!prog) 8350 return libbpf_err(-EINVAL); 8351 8352 if (prog->fd < 0) 8353 return libbpf_err(-ENOENT); 8354 8355 return prog->fd; 8356 } 8357 8358 __alias(bpf_program__type) 8359 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 8360 8361 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 8362 { 8363 return prog->type; 8364 } 8365 8366 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8367 { 8368 if (prog->obj->loaded) 8369 return libbpf_err(-EBUSY); 8370 8371 prog->type = type; 8372 return 0; 8373 } 8374 8375 __alias(bpf_program__expected_attach_type) 8376 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 8377 8378 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 8379 { 8380 return prog->expected_attach_type; 8381 } 8382 8383 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 8384 enum bpf_attach_type type) 8385 { 8386 if (prog->obj->loaded) 8387 return libbpf_err(-EBUSY); 8388 8389 prog->expected_attach_type = type; 8390 return 0; 8391 } 8392 8393 __u32 bpf_program__flags(const struct bpf_program *prog) 8394 { 8395 return prog->prog_flags; 8396 } 8397 8398 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 8399 { 8400 if (prog->obj->loaded) 8401 return libbpf_err(-EBUSY); 8402 8403 prog->prog_flags = flags; 8404 return 0; 8405 } 8406 8407 __u32 bpf_program__log_level(const struct bpf_program *prog) 8408 { 8409 return prog->log_level; 8410 } 8411 8412 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 8413 { 8414 if (prog->obj->loaded) 8415 return libbpf_err(-EBUSY); 8416 8417 prog->log_level = log_level; 8418 return 0; 8419 } 8420 8421 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 8422 { 8423 *log_size = prog->log_size; 8424 return prog->log_buf; 8425 } 8426 8427 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 8428 { 8429 if (log_size && !log_buf) 8430 return -EINVAL; 8431 if (prog->log_size > UINT_MAX) 8432 return -EINVAL; 8433 if (prog->obj->loaded) 8434 return -EBUSY; 8435 8436 prog->log_buf = log_buf; 8437 prog->log_size = log_size; 8438 return 0; 8439 } 8440 8441 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 8442 .sec = (char *)sec_pfx, \ 8443 .prog_type = BPF_PROG_TYPE_##ptype, \ 8444 .expected_attach_type = atype, \ 8445 .cookie = (long)(flags), \ 8446 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 8447 __VA_ARGS__ \ 8448 } 8449 8450 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8451 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8452 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8453 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8454 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8455 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8456 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8457 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8458 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8459 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8460 8461 static const struct bpf_sec_def section_defs[] = { 8462 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 8463 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 8464 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 8465 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8466 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8467 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8468 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8469 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8470 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8471 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8472 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8473 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8474 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8475 SEC_DEF("usdt+", KPROBE, 0, SEC_NONE, attach_usdt), 8476 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), 8477 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), 8478 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), 8479 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8480 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8481 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8482 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8483 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8484 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8485 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 8486 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 8487 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 8488 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 8489 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8490 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8491 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8492 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 8493 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 8494 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 8495 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 8496 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 8497 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 8498 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 8499 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 8500 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 8501 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 8502 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 8503 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 8504 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 8505 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 8506 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 8507 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 8508 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 8509 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 8510 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 8511 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 8512 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 8513 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 8514 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 8515 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 8516 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 8517 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 8518 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 8519 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 8520 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 8521 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 8522 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 8523 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 8524 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 8525 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 8526 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 8527 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 8528 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 8529 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 8530 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 8531 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 8532 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 8533 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 8534 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 8535 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 8536 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 8537 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 8538 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 8539 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 8540 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 8541 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 8542 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 8543 }; 8544 8545 static size_t custom_sec_def_cnt; 8546 static struct bpf_sec_def *custom_sec_defs; 8547 static struct bpf_sec_def custom_fallback_def; 8548 static bool has_custom_fallback_def; 8549 8550 static int last_custom_sec_def_handler_id; 8551 8552 int libbpf_register_prog_handler(const char *sec, 8553 enum bpf_prog_type prog_type, 8554 enum bpf_attach_type exp_attach_type, 8555 const struct libbpf_prog_handler_opts *opts) 8556 { 8557 struct bpf_sec_def *sec_def; 8558 8559 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 8560 return libbpf_err(-EINVAL); 8561 8562 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 8563 return libbpf_err(-E2BIG); 8564 8565 if (sec) { 8566 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 8567 sizeof(*sec_def)); 8568 if (!sec_def) 8569 return libbpf_err(-ENOMEM); 8570 8571 custom_sec_defs = sec_def; 8572 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 8573 } else { 8574 if (has_custom_fallback_def) 8575 return libbpf_err(-EBUSY); 8576 8577 sec_def = &custom_fallback_def; 8578 } 8579 8580 sec_def->sec = sec ? strdup(sec) : NULL; 8581 if (sec && !sec_def->sec) 8582 return libbpf_err(-ENOMEM); 8583 8584 sec_def->prog_type = prog_type; 8585 sec_def->expected_attach_type = exp_attach_type; 8586 sec_def->cookie = OPTS_GET(opts, cookie, 0); 8587 8588 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 8589 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 8590 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 8591 8592 sec_def->handler_id = ++last_custom_sec_def_handler_id; 8593 8594 if (sec) 8595 custom_sec_def_cnt++; 8596 else 8597 has_custom_fallback_def = true; 8598 8599 return sec_def->handler_id; 8600 } 8601 8602 int libbpf_unregister_prog_handler(int handler_id) 8603 { 8604 struct bpf_sec_def *sec_defs; 8605 int i; 8606 8607 if (handler_id <= 0) 8608 return libbpf_err(-EINVAL); 8609 8610 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 8611 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 8612 has_custom_fallback_def = false; 8613 return 0; 8614 } 8615 8616 for (i = 0; i < custom_sec_def_cnt; i++) { 8617 if (custom_sec_defs[i].handler_id == handler_id) 8618 break; 8619 } 8620 8621 if (i == custom_sec_def_cnt) 8622 return libbpf_err(-ENOENT); 8623 8624 free(custom_sec_defs[i].sec); 8625 for (i = i + 1; i < custom_sec_def_cnt; i++) 8626 custom_sec_defs[i - 1] = custom_sec_defs[i]; 8627 custom_sec_def_cnt--; 8628 8629 /* try to shrink the array, but it's ok if we couldn't */ 8630 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 8631 if (sec_defs) 8632 custom_sec_defs = sec_defs; 8633 8634 return 0; 8635 } 8636 8637 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 8638 { 8639 size_t len = strlen(sec_def->sec); 8640 8641 /* "type/" always has to have proper SEC("type/extras") form */ 8642 if (sec_def->sec[len - 1] == '/') { 8643 if (str_has_pfx(sec_name, sec_def->sec)) 8644 return true; 8645 return false; 8646 } 8647 8648 /* "type+" means it can be either exact SEC("type") or 8649 * well-formed SEC("type/extras") with proper '/' separator 8650 */ 8651 if (sec_def->sec[len - 1] == '+') { 8652 len--; 8653 /* not even a prefix */ 8654 if (strncmp(sec_name, sec_def->sec, len) != 0) 8655 return false; 8656 /* exact match or has '/' separator */ 8657 if (sec_name[len] == '\0' || sec_name[len] == '/') 8658 return true; 8659 return false; 8660 } 8661 8662 return strcmp(sec_name, sec_def->sec) == 0; 8663 } 8664 8665 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8666 { 8667 const struct bpf_sec_def *sec_def; 8668 int i, n; 8669 8670 n = custom_sec_def_cnt; 8671 for (i = 0; i < n; i++) { 8672 sec_def = &custom_sec_defs[i]; 8673 if (sec_def_matches(sec_def, sec_name)) 8674 return sec_def; 8675 } 8676 8677 n = ARRAY_SIZE(section_defs); 8678 for (i = 0; i < n; i++) { 8679 sec_def = §ion_defs[i]; 8680 if (sec_def_matches(sec_def, sec_name)) 8681 return sec_def; 8682 } 8683 8684 if (has_custom_fallback_def) 8685 return &custom_fallback_def; 8686 8687 return NULL; 8688 } 8689 8690 #define MAX_TYPE_NAME_SIZE 32 8691 8692 static char *libbpf_get_type_names(bool attach_type) 8693 { 8694 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8695 char *buf; 8696 8697 buf = malloc(len); 8698 if (!buf) 8699 return NULL; 8700 8701 buf[0] = '\0'; 8702 /* Forge string buf with all available names */ 8703 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8704 const struct bpf_sec_def *sec_def = §ion_defs[i]; 8705 8706 if (attach_type) { 8707 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 8708 continue; 8709 8710 if (!(sec_def->cookie & SEC_ATTACHABLE)) 8711 continue; 8712 } 8713 8714 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8715 free(buf); 8716 return NULL; 8717 } 8718 strcat(buf, " "); 8719 strcat(buf, section_defs[i].sec); 8720 } 8721 8722 return buf; 8723 } 8724 8725 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8726 enum bpf_attach_type *expected_attach_type) 8727 { 8728 const struct bpf_sec_def *sec_def; 8729 char *type_names; 8730 8731 if (!name) 8732 return libbpf_err(-EINVAL); 8733 8734 sec_def = find_sec_def(name); 8735 if (sec_def) { 8736 *prog_type = sec_def->prog_type; 8737 *expected_attach_type = sec_def->expected_attach_type; 8738 return 0; 8739 } 8740 8741 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8742 type_names = libbpf_get_type_names(false); 8743 if (type_names != NULL) { 8744 pr_debug("supported section(type) names are:%s\n", type_names); 8745 free(type_names); 8746 } 8747 8748 return libbpf_err(-ESRCH); 8749 } 8750 8751 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 8752 { 8753 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 8754 return NULL; 8755 8756 return attach_type_name[t]; 8757 } 8758 8759 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 8760 { 8761 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 8762 return NULL; 8763 8764 return link_type_name[t]; 8765 } 8766 8767 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 8768 { 8769 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 8770 return NULL; 8771 8772 return map_type_name[t]; 8773 } 8774 8775 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 8776 { 8777 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 8778 return NULL; 8779 8780 return prog_type_name[t]; 8781 } 8782 8783 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 8784 size_t offset) 8785 { 8786 struct bpf_map *map; 8787 size_t i; 8788 8789 for (i = 0; i < obj->nr_maps; i++) { 8790 map = &obj->maps[i]; 8791 if (!bpf_map__is_struct_ops(map)) 8792 continue; 8793 if (map->sec_offset <= offset && 8794 offset - map->sec_offset < map->def.value_size) 8795 return map; 8796 } 8797 8798 return NULL; 8799 } 8800 8801 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 8802 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 8803 Elf64_Shdr *shdr, Elf_Data *data) 8804 { 8805 const struct btf_member *member; 8806 struct bpf_struct_ops *st_ops; 8807 struct bpf_program *prog; 8808 unsigned int shdr_idx; 8809 const struct btf *btf; 8810 struct bpf_map *map; 8811 unsigned int moff, insn_idx; 8812 const char *name; 8813 __u32 member_idx; 8814 Elf64_Sym *sym; 8815 Elf64_Rel *rel; 8816 int i, nrels; 8817 8818 btf = obj->btf; 8819 nrels = shdr->sh_size / shdr->sh_entsize; 8820 for (i = 0; i < nrels; i++) { 8821 rel = elf_rel_by_idx(data, i); 8822 if (!rel) { 8823 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 8824 return -LIBBPF_ERRNO__FORMAT; 8825 } 8826 8827 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 8828 if (!sym) { 8829 pr_warn("struct_ops reloc: symbol %zx not found\n", 8830 (size_t)ELF64_R_SYM(rel->r_info)); 8831 return -LIBBPF_ERRNO__FORMAT; 8832 } 8833 8834 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 8835 map = find_struct_ops_map_by_offset(obj, rel->r_offset); 8836 if (!map) { 8837 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 8838 (size_t)rel->r_offset); 8839 return -EINVAL; 8840 } 8841 8842 moff = rel->r_offset - map->sec_offset; 8843 shdr_idx = sym->st_shndx; 8844 st_ops = map->st_ops; 8845 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 8846 map->name, 8847 (long long)(rel->r_info >> 32), 8848 (long long)sym->st_value, 8849 shdr_idx, (size_t)rel->r_offset, 8850 map->sec_offset, sym->st_name, name); 8851 8852 if (shdr_idx >= SHN_LORESERVE) { 8853 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 8854 map->name, (size_t)rel->r_offset, shdr_idx); 8855 return -LIBBPF_ERRNO__RELOC; 8856 } 8857 if (sym->st_value % BPF_INSN_SZ) { 8858 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 8859 map->name, (unsigned long long)sym->st_value); 8860 return -LIBBPF_ERRNO__FORMAT; 8861 } 8862 insn_idx = sym->st_value / BPF_INSN_SZ; 8863 8864 member = find_member_by_offset(st_ops->type, moff * 8); 8865 if (!member) { 8866 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 8867 map->name, moff); 8868 return -EINVAL; 8869 } 8870 member_idx = member - btf_members(st_ops->type); 8871 name = btf__name_by_offset(btf, member->name_off); 8872 8873 if (!resolve_func_ptr(btf, member->type, NULL)) { 8874 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 8875 map->name, name); 8876 return -EINVAL; 8877 } 8878 8879 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 8880 if (!prog) { 8881 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 8882 map->name, shdr_idx, name); 8883 return -EINVAL; 8884 } 8885 8886 /* prevent the use of BPF prog with invalid type */ 8887 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 8888 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 8889 map->name, prog->name); 8890 return -EINVAL; 8891 } 8892 8893 /* if we haven't yet processed this BPF program, record proper 8894 * attach_btf_id and member_idx 8895 */ 8896 if (!prog->attach_btf_id) { 8897 prog->attach_btf_id = st_ops->type_id; 8898 prog->expected_attach_type = member_idx; 8899 } 8900 8901 /* struct_ops BPF prog can be re-used between multiple 8902 * .struct_ops as long as it's the same struct_ops struct 8903 * definition and the same function pointer field 8904 */ 8905 if (prog->attach_btf_id != st_ops->type_id || 8906 prog->expected_attach_type != member_idx) { 8907 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 8908 map->name, prog->name, prog->sec_name, prog->type, 8909 prog->attach_btf_id, prog->expected_attach_type, name); 8910 return -EINVAL; 8911 } 8912 8913 st_ops->progs[member_idx] = prog; 8914 } 8915 8916 return 0; 8917 } 8918 8919 #define BTF_TRACE_PREFIX "btf_trace_" 8920 #define BTF_LSM_PREFIX "bpf_lsm_" 8921 #define BTF_ITER_PREFIX "bpf_iter_" 8922 #define BTF_MAX_NAME_SIZE 128 8923 8924 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 8925 const char **prefix, int *kind) 8926 { 8927 switch (attach_type) { 8928 case BPF_TRACE_RAW_TP: 8929 *prefix = BTF_TRACE_PREFIX; 8930 *kind = BTF_KIND_TYPEDEF; 8931 break; 8932 case BPF_LSM_MAC: 8933 case BPF_LSM_CGROUP: 8934 *prefix = BTF_LSM_PREFIX; 8935 *kind = BTF_KIND_FUNC; 8936 break; 8937 case BPF_TRACE_ITER: 8938 *prefix = BTF_ITER_PREFIX; 8939 *kind = BTF_KIND_FUNC; 8940 break; 8941 default: 8942 *prefix = ""; 8943 *kind = BTF_KIND_FUNC; 8944 } 8945 } 8946 8947 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 8948 const char *name, __u32 kind) 8949 { 8950 char btf_type_name[BTF_MAX_NAME_SIZE]; 8951 int ret; 8952 8953 ret = snprintf(btf_type_name, sizeof(btf_type_name), 8954 "%s%s", prefix, name); 8955 /* snprintf returns the number of characters written excluding the 8956 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 8957 * indicates truncation. 8958 */ 8959 if (ret < 0 || ret >= sizeof(btf_type_name)) 8960 return -ENAMETOOLONG; 8961 return btf__find_by_name_kind(btf, btf_type_name, kind); 8962 } 8963 8964 static inline int find_attach_btf_id(struct btf *btf, const char *name, 8965 enum bpf_attach_type attach_type) 8966 { 8967 const char *prefix; 8968 int kind; 8969 8970 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 8971 return find_btf_by_prefix_kind(btf, prefix, name, kind); 8972 } 8973 8974 int libbpf_find_vmlinux_btf_id(const char *name, 8975 enum bpf_attach_type attach_type) 8976 { 8977 struct btf *btf; 8978 int err; 8979 8980 btf = btf__load_vmlinux_btf(); 8981 err = libbpf_get_error(btf); 8982 if (err) { 8983 pr_warn("vmlinux BTF is not found\n"); 8984 return libbpf_err(err); 8985 } 8986 8987 err = find_attach_btf_id(btf, name, attach_type); 8988 if (err <= 0) 8989 pr_warn("%s is not found in vmlinux BTF\n", name); 8990 8991 btf__free(btf); 8992 return libbpf_err(err); 8993 } 8994 8995 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 8996 { 8997 struct bpf_prog_info info; 8998 __u32 info_len = sizeof(info); 8999 struct btf *btf; 9000 int err; 9001 9002 memset(&info, 0, info_len); 9003 err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len); 9004 if (err) { 9005 pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n", 9006 attach_prog_fd, err); 9007 return err; 9008 } 9009 9010 err = -EINVAL; 9011 if (!info.btf_id) { 9012 pr_warn("The target program doesn't have BTF\n"); 9013 goto out; 9014 } 9015 btf = btf__load_from_kernel_by_id(info.btf_id); 9016 err = libbpf_get_error(btf); 9017 if (err) { 9018 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9019 goto out; 9020 } 9021 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9022 btf__free(btf); 9023 if (err <= 0) { 9024 pr_warn("%s is not found in prog's BTF\n", name); 9025 goto out; 9026 } 9027 out: 9028 return err; 9029 } 9030 9031 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9032 enum bpf_attach_type attach_type, 9033 int *btf_obj_fd, int *btf_type_id) 9034 { 9035 int ret, i; 9036 9037 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9038 if (ret > 0) { 9039 *btf_obj_fd = 0; /* vmlinux BTF */ 9040 *btf_type_id = ret; 9041 return 0; 9042 } 9043 if (ret != -ENOENT) 9044 return ret; 9045 9046 ret = load_module_btfs(obj); 9047 if (ret) 9048 return ret; 9049 9050 for (i = 0; i < obj->btf_module_cnt; i++) { 9051 const struct module_btf *mod = &obj->btf_modules[i]; 9052 9053 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9054 if (ret > 0) { 9055 *btf_obj_fd = mod->fd; 9056 *btf_type_id = ret; 9057 return 0; 9058 } 9059 if (ret == -ENOENT) 9060 continue; 9061 9062 return ret; 9063 } 9064 9065 return -ESRCH; 9066 } 9067 9068 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9069 int *btf_obj_fd, int *btf_type_id) 9070 { 9071 enum bpf_attach_type attach_type = prog->expected_attach_type; 9072 __u32 attach_prog_fd = prog->attach_prog_fd; 9073 int err = 0; 9074 9075 /* BPF program's BTF ID */ 9076 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 9077 if (!attach_prog_fd) { 9078 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 9079 return -EINVAL; 9080 } 9081 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9082 if (err < 0) { 9083 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9084 prog->name, attach_prog_fd, attach_name, err); 9085 return err; 9086 } 9087 *btf_obj_fd = 0; 9088 *btf_type_id = err; 9089 return 0; 9090 } 9091 9092 /* kernel/module BTF ID */ 9093 if (prog->obj->gen_loader) { 9094 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9095 *btf_obj_fd = 0; 9096 *btf_type_id = 1; 9097 } else { 9098 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9099 } 9100 if (err) { 9101 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n", 9102 prog->name, attach_name, err); 9103 return err; 9104 } 9105 return 0; 9106 } 9107 9108 int libbpf_attach_type_by_name(const char *name, 9109 enum bpf_attach_type *attach_type) 9110 { 9111 char *type_names; 9112 const struct bpf_sec_def *sec_def; 9113 9114 if (!name) 9115 return libbpf_err(-EINVAL); 9116 9117 sec_def = find_sec_def(name); 9118 if (!sec_def) { 9119 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9120 type_names = libbpf_get_type_names(true); 9121 if (type_names != NULL) { 9122 pr_debug("attachable section(type) names are:%s\n", type_names); 9123 free(type_names); 9124 } 9125 9126 return libbpf_err(-EINVAL); 9127 } 9128 9129 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9130 return libbpf_err(-EINVAL); 9131 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9132 return libbpf_err(-EINVAL); 9133 9134 *attach_type = sec_def->expected_attach_type; 9135 return 0; 9136 } 9137 9138 int bpf_map__fd(const struct bpf_map *map) 9139 { 9140 return map ? map->fd : libbpf_err(-EINVAL); 9141 } 9142 9143 static bool map_uses_real_name(const struct bpf_map *map) 9144 { 9145 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9146 * their user-visible name differs from kernel-visible name. Users see 9147 * such map's corresponding ELF section name as a map name. 9148 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9149 * maps to know which name has to be returned to the user. 9150 */ 9151 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9152 return true; 9153 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9154 return true; 9155 return false; 9156 } 9157 9158 const char *bpf_map__name(const struct bpf_map *map) 9159 { 9160 if (!map) 9161 return NULL; 9162 9163 if (map_uses_real_name(map)) 9164 return map->real_name; 9165 9166 return map->name; 9167 } 9168 9169 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9170 { 9171 return map->def.type; 9172 } 9173 9174 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9175 { 9176 if (map->fd >= 0) 9177 return libbpf_err(-EBUSY); 9178 map->def.type = type; 9179 return 0; 9180 } 9181 9182 __u32 bpf_map__map_flags(const struct bpf_map *map) 9183 { 9184 return map->def.map_flags; 9185 } 9186 9187 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9188 { 9189 if (map->fd >= 0) 9190 return libbpf_err(-EBUSY); 9191 map->def.map_flags = flags; 9192 return 0; 9193 } 9194 9195 __u64 bpf_map__map_extra(const struct bpf_map *map) 9196 { 9197 return map->map_extra; 9198 } 9199 9200 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9201 { 9202 if (map->fd >= 0) 9203 return libbpf_err(-EBUSY); 9204 map->map_extra = map_extra; 9205 return 0; 9206 } 9207 9208 __u32 bpf_map__numa_node(const struct bpf_map *map) 9209 { 9210 return map->numa_node; 9211 } 9212 9213 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9214 { 9215 if (map->fd >= 0) 9216 return libbpf_err(-EBUSY); 9217 map->numa_node = numa_node; 9218 return 0; 9219 } 9220 9221 __u32 bpf_map__key_size(const struct bpf_map *map) 9222 { 9223 return map->def.key_size; 9224 } 9225 9226 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9227 { 9228 if (map->fd >= 0) 9229 return libbpf_err(-EBUSY); 9230 map->def.key_size = size; 9231 return 0; 9232 } 9233 9234 __u32 bpf_map__value_size(const struct bpf_map *map) 9235 { 9236 return map->def.value_size; 9237 } 9238 9239 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9240 { 9241 if (map->fd >= 0) 9242 return libbpf_err(-EBUSY); 9243 map->def.value_size = size; 9244 return 0; 9245 } 9246 9247 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9248 { 9249 return map ? map->btf_key_type_id : 0; 9250 } 9251 9252 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9253 { 9254 return map ? map->btf_value_type_id : 0; 9255 } 9256 9257 int bpf_map__set_initial_value(struct bpf_map *map, 9258 const void *data, size_t size) 9259 { 9260 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9261 size != map->def.value_size || map->fd >= 0) 9262 return libbpf_err(-EINVAL); 9263 9264 memcpy(map->mmaped, data, size); 9265 return 0; 9266 } 9267 9268 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9269 { 9270 if (!map->mmaped) 9271 return NULL; 9272 *psize = map->def.value_size; 9273 return map->mmaped; 9274 } 9275 9276 bool bpf_map__is_internal(const struct bpf_map *map) 9277 { 9278 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9279 } 9280 9281 __u32 bpf_map__ifindex(const struct bpf_map *map) 9282 { 9283 return map->map_ifindex; 9284 } 9285 9286 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9287 { 9288 if (map->fd >= 0) 9289 return libbpf_err(-EBUSY); 9290 map->map_ifindex = ifindex; 9291 return 0; 9292 } 9293 9294 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9295 { 9296 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9297 pr_warn("error: unsupported map type\n"); 9298 return libbpf_err(-EINVAL); 9299 } 9300 if (map->inner_map_fd != -1) { 9301 pr_warn("error: inner_map_fd already specified\n"); 9302 return libbpf_err(-EINVAL); 9303 } 9304 if (map->inner_map) { 9305 bpf_map__destroy(map->inner_map); 9306 zfree(&map->inner_map); 9307 } 9308 map->inner_map_fd = fd; 9309 return 0; 9310 } 9311 9312 static struct bpf_map * 9313 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9314 { 9315 ssize_t idx; 9316 struct bpf_map *s, *e; 9317 9318 if (!obj || !obj->maps) 9319 return errno = EINVAL, NULL; 9320 9321 s = obj->maps; 9322 e = obj->maps + obj->nr_maps; 9323 9324 if ((m < s) || (m >= e)) { 9325 pr_warn("error in %s: map handler doesn't belong to object\n", 9326 __func__); 9327 return errno = EINVAL, NULL; 9328 } 9329 9330 idx = (m - obj->maps) + i; 9331 if (idx >= obj->nr_maps || idx < 0) 9332 return NULL; 9333 return &obj->maps[idx]; 9334 } 9335 9336 struct bpf_map * 9337 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 9338 { 9339 if (prev == NULL) 9340 return obj->maps; 9341 9342 return __bpf_map__iter(prev, obj, 1); 9343 } 9344 9345 struct bpf_map * 9346 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 9347 { 9348 if (next == NULL) { 9349 if (!obj->nr_maps) 9350 return NULL; 9351 return obj->maps + obj->nr_maps - 1; 9352 } 9353 9354 return __bpf_map__iter(next, obj, -1); 9355 } 9356 9357 struct bpf_map * 9358 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9359 { 9360 struct bpf_map *pos; 9361 9362 bpf_object__for_each_map(pos, obj) { 9363 /* if it's a special internal map name (which always starts 9364 * with dot) then check if that special name matches the 9365 * real map name (ELF section name) 9366 */ 9367 if (name[0] == '.') { 9368 if (pos->real_name && strcmp(pos->real_name, name) == 0) 9369 return pos; 9370 continue; 9371 } 9372 /* otherwise map name has to be an exact match */ 9373 if (map_uses_real_name(pos)) { 9374 if (strcmp(pos->real_name, name) == 0) 9375 return pos; 9376 continue; 9377 } 9378 if (strcmp(pos->name, name) == 0) 9379 return pos; 9380 } 9381 return errno = ENOENT, NULL; 9382 } 9383 9384 int 9385 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9386 { 9387 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9388 } 9389 9390 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 9391 size_t value_sz, bool check_value_sz) 9392 { 9393 if (map->fd <= 0) 9394 return -ENOENT; 9395 9396 if (map->def.key_size != key_sz) { 9397 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 9398 map->name, key_sz, map->def.key_size); 9399 return -EINVAL; 9400 } 9401 9402 if (!check_value_sz) 9403 return 0; 9404 9405 switch (map->def.type) { 9406 case BPF_MAP_TYPE_PERCPU_ARRAY: 9407 case BPF_MAP_TYPE_PERCPU_HASH: 9408 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 9409 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 9410 int num_cpu = libbpf_num_possible_cpus(); 9411 size_t elem_sz = roundup(map->def.value_size, 8); 9412 9413 if (value_sz != num_cpu * elem_sz) { 9414 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 9415 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 9416 return -EINVAL; 9417 } 9418 break; 9419 } 9420 default: 9421 if (map->def.value_size != value_sz) { 9422 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 9423 map->name, value_sz, map->def.value_size); 9424 return -EINVAL; 9425 } 9426 break; 9427 } 9428 return 0; 9429 } 9430 9431 int bpf_map__lookup_elem(const struct bpf_map *map, 9432 const void *key, size_t key_sz, 9433 void *value, size_t value_sz, __u64 flags) 9434 { 9435 int err; 9436 9437 err = validate_map_op(map, key_sz, value_sz, true); 9438 if (err) 9439 return libbpf_err(err); 9440 9441 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 9442 } 9443 9444 int bpf_map__update_elem(const struct bpf_map *map, 9445 const void *key, size_t key_sz, 9446 const void *value, size_t value_sz, __u64 flags) 9447 { 9448 int err; 9449 9450 err = validate_map_op(map, key_sz, value_sz, true); 9451 if (err) 9452 return libbpf_err(err); 9453 9454 return bpf_map_update_elem(map->fd, key, value, flags); 9455 } 9456 9457 int bpf_map__delete_elem(const struct bpf_map *map, 9458 const void *key, size_t key_sz, __u64 flags) 9459 { 9460 int err; 9461 9462 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 9463 if (err) 9464 return libbpf_err(err); 9465 9466 return bpf_map_delete_elem_flags(map->fd, key, flags); 9467 } 9468 9469 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 9470 const void *key, size_t key_sz, 9471 void *value, size_t value_sz, __u64 flags) 9472 { 9473 int err; 9474 9475 err = validate_map_op(map, key_sz, value_sz, true); 9476 if (err) 9477 return libbpf_err(err); 9478 9479 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 9480 } 9481 9482 int bpf_map__get_next_key(const struct bpf_map *map, 9483 const void *cur_key, void *next_key, size_t key_sz) 9484 { 9485 int err; 9486 9487 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 9488 if (err) 9489 return libbpf_err(err); 9490 9491 return bpf_map_get_next_key(map->fd, cur_key, next_key); 9492 } 9493 9494 long libbpf_get_error(const void *ptr) 9495 { 9496 if (!IS_ERR_OR_NULL(ptr)) 9497 return 0; 9498 9499 if (IS_ERR(ptr)) 9500 errno = -PTR_ERR(ptr); 9501 9502 /* If ptr == NULL, then errno should be already set by the failing 9503 * API, because libbpf never returns NULL on success and it now always 9504 * sets errno on error. So no extra errno handling for ptr == NULL 9505 * case. 9506 */ 9507 return -errno; 9508 } 9509 9510 /* Replace link's underlying BPF program with the new one */ 9511 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9512 { 9513 int ret; 9514 9515 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9516 return libbpf_err_errno(ret); 9517 } 9518 9519 /* Release "ownership" of underlying BPF resource (typically, BPF program 9520 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9521 * link, when destructed through bpf_link__destroy() call won't attempt to 9522 * detach/unregisted that BPF resource. This is useful in situations where, 9523 * say, attached BPF program has to outlive userspace program that attached it 9524 * in the system. Depending on type of BPF program, though, there might be 9525 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9526 * exit of userspace program doesn't trigger automatic detachment and clean up 9527 * inside the kernel. 9528 */ 9529 void bpf_link__disconnect(struct bpf_link *link) 9530 { 9531 link->disconnected = true; 9532 } 9533 9534 int bpf_link__destroy(struct bpf_link *link) 9535 { 9536 int err = 0; 9537 9538 if (IS_ERR_OR_NULL(link)) 9539 return 0; 9540 9541 if (!link->disconnected && link->detach) 9542 err = link->detach(link); 9543 if (link->pin_path) 9544 free(link->pin_path); 9545 if (link->dealloc) 9546 link->dealloc(link); 9547 else 9548 free(link); 9549 9550 return libbpf_err(err); 9551 } 9552 9553 int bpf_link__fd(const struct bpf_link *link) 9554 { 9555 return link->fd; 9556 } 9557 9558 const char *bpf_link__pin_path(const struct bpf_link *link) 9559 { 9560 return link->pin_path; 9561 } 9562 9563 static int bpf_link__detach_fd(struct bpf_link *link) 9564 { 9565 return libbpf_err_errno(close(link->fd)); 9566 } 9567 9568 struct bpf_link *bpf_link__open(const char *path) 9569 { 9570 struct bpf_link *link; 9571 int fd; 9572 9573 fd = bpf_obj_get(path); 9574 if (fd < 0) { 9575 fd = -errno; 9576 pr_warn("failed to open link at %s: %d\n", path, fd); 9577 return libbpf_err_ptr(fd); 9578 } 9579 9580 link = calloc(1, sizeof(*link)); 9581 if (!link) { 9582 close(fd); 9583 return libbpf_err_ptr(-ENOMEM); 9584 } 9585 link->detach = &bpf_link__detach_fd; 9586 link->fd = fd; 9587 9588 link->pin_path = strdup(path); 9589 if (!link->pin_path) { 9590 bpf_link__destroy(link); 9591 return libbpf_err_ptr(-ENOMEM); 9592 } 9593 9594 return link; 9595 } 9596 9597 int bpf_link__detach(struct bpf_link *link) 9598 { 9599 return bpf_link_detach(link->fd) ? -errno : 0; 9600 } 9601 9602 int bpf_link__pin(struct bpf_link *link, const char *path) 9603 { 9604 int err; 9605 9606 if (link->pin_path) 9607 return libbpf_err(-EBUSY); 9608 err = make_parent_dir(path); 9609 if (err) 9610 return libbpf_err(err); 9611 err = check_path(path); 9612 if (err) 9613 return libbpf_err(err); 9614 9615 link->pin_path = strdup(path); 9616 if (!link->pin_path) 9617 return libbpf_err(-ENOMEM); 9618 9619 if (bpf_obj_pin(link->fd, link->pin_path)) { 9620 err = -errno; 9621 zfree(&link->pin_path); 9622 return libbpf_err(err); 9623 } 9624 9625 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9626 return 0; 9627 } 9628 9629 int bpf_link__unpin(struct bpf_link *link) 9630 { 9631 int err; 9632 9633 if (!link->pin_path) 9634 return libbpf_err(-EINVAL); 9635 9636 err = unlink(link->pin_path); 9637 if (err != 0) 9638 return -errno; 9639 9640 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9641 zfree(&link->pin_path); 9642 return 0; 9643 } 9644 9645 struct bpf_link_perf { 9646 struct bpf_link link; 9647 int perf_event_fd; 9648 /* legacy kprobe support: keep track of probe identifier and type */ 9649 char *legacy_probe_name; 9650 bool legacy_is_kprobe; 9651 bool legacy_is_retprobe; 9652 }; 9653 9654 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 9655 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 9656 9657 static int bpf_link_perf_detach(struct bpf_link *link) 9658 { 9659 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9660 int err = 0; 9661 9662 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 9663 err = -errno; 9664 9665 if (perf_link->perf_event_fd != link->fd) 9666 close(perf_link->perf_event_fd); 9667 close(link->fd); 9668 9669 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 9670 if (perf_link->legacy_probe_name) { 9671 if (perf_link->legacy_is_kprobe) { 9672 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 9673 perf_link->legacy_is_retprobe); 9674 } else { 9675 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 9676 perf_link->legacy_is_retprobe); 9677 } 9678 } 9679 9680 return err; 9681 } 9682 9683 static void bpf_link_perf_dealloc(struct bpf_link *link) 9684 { 9685 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9686 9687 free(perf_link->legacy_probe_name); 9688 free(perf_link); 9689 } 9690 9691 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 9692 const struct bpf_perf_event_opts *opts) 9693 { 9694 char errmsg[STRERR_BUFSIZE]; 9695 struct bpf_link_perf *link; 9696 int prog_fd, link_fd = -1, err; 9697 9698 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 9699 return libbpf_err_ptr(-EINVAL); 9700 9701 if (pfd < 0) { 9702 pr_warn("prog '%s': invalid perf event FD %d\n", 9703 prog->name, pfd); 9704 return libbpf_err_ptr(-EINVAL); 9705 } 9706 prog_fd = bpf_program__fd(prog); 9707 if (prog_fd < 0) { 9708 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 9709 prog->name); 9710 return libbpf_err_ptr(-EINVAL); 9711 } 9712 9713 link = calloc(1, sizeof(*link)); 9714 if (!link) 9715 return libbpf_err_ptr(-ENOMEM); 9716 link->link.detach = &bpf_link_perf_detach; 9717 link->link.dealloc = &bpf_link_perf_dealloc; 9718 link->perf_event_fd = pfd; 9719 9720 if (kernel_supports(prog->obj, FEAT_PERF_LINK)) { 9721 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 9722 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 9723 9724 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 9725 if (link_fd < 0) { 9726 err = -errno; 9727 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 9728 prog->name, pfd, 9729 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9730 goto err_out; 9731 } 9732 link->link.fd = link_fd; 9733 } else { 9734 if (OPTS_GET(opts, bpf_cookie, 0)) { 9735 pr_warn("prog '%s': user context value is not supported\n", prog->name); 9736 err = -EOPNOTSUPP; 9737 goto err_out; 9738 } 9739 9740 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 9741 err = -errno; 9742 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 9743 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9744 if (err == -EPROTO) 9745 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 9746 prog->name, pfd); 9747 goto err_out; 9748 } 9749 link->link.fd = pfd; 9750 } 9751 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9752 err = -errno; 9753 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 9754 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9755 goto err_out; 9756 } 9757 9758 return &link->link; 9759 err_out: 9760 if (link_fd >= 0) 9761 close(link_fd); 9762 free(link); 9763 return libbpf_err_ptr(err); 9764 } 9765 9766 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 9767 { 9768 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 9769 } 9770 9771 /* 9772 * this function is expected to parse integer in the range of [0, 2^31-1] from 9773 * given file using scanf format string fmt. If actual parsed value is 9774 * negative, the result might be indistinguishable from error 9775 */ 9776 static int parse_uint_from_file(const char *file, const char *fmt) 9777 { 9778 char buf[STRERR_BUFSIZE]; 9779 int err, ret; 9780 FILE *f; 9781 9782 f = fopen(file, "r"); 9783 if (!f) { 9784 err = -errno; 9785 pr_debug("failed to open '%s': %s\n", file, 9786 libbpf_strerror_r(err, buf, sizeof(buf))); 9787 return err; 9788 } 9789 err = fscanf(f, fmt, &ret); 9790 if (err != 1) { 9791 err = err == EOF ? -EIO : -errno; 9792 pr_debug("failed to parse '%s': %s\n", file, 9793 libbpf_strerror_r(err, buf, sizeof(buf))); 9794 fclose(f); 9795 return err; 9796 } 9797 fclose(f); 9798 return ret; 9799 } 9800 9801 static int determine_kprobe_perf_type(void) 9802 { 9803 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 9804 9805 return parse_uint_from_file(file, "%d\n"); 9806 } 9807 9808 static int determine_uprobe_perf_type(void) 9809 { 9810 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 9811 9812 return parse_uint_from_file(file, "%d\n"); 9813 } 9814 9815 static int determine_kprobe_retprobe_bit(void) 9816 { 9817 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 9818 9819 return parse_uint_from_file(file, "config:%d\n"); 9820 } 9821 9822 static int determine_uprobe_retprobe_bit(void) 9823 { 9824 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 9825 9826 return parse_uint_from_file(file, "config:%d\n"); 9827 } 9828 9829 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 9830 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 9831 9832 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 9833 uint64_t offset, int pid, size_t ref_ctr_off) 9834 { 9835 const size_t attr_sz = sizeof(struct perf_event_attr); 9836 struct perf_event_attr attr; 9837 char errmsg[STRERR_BUFSIZE]; 9838 int type, pfd; 9839 9840 if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 9841 return -EINVAL; 9842 9843 memset(&attr, 0, attr_sz); 9844 9845 type = uprobe ? determine_uprobe_perf_type() 9846 : determine_kprobe_perf_type(); 9847 if (type < 0) { 9848 pr_warn("failed to determine %s perf type: %s\n", 9849 uprobe ? "uprobe" : "kprobe", 9850 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 9851 return type; 9852 } 9853 if (retprobe) { 9854 int bit = uprobe ? determine_uprobe_retprobe_bit() 9855 : determine_kprobe_retprobe_bit(); 9856 9857 if (bit < 0) { 9858 pr_warn("failed to determine %s retprobe bit: %s\n", 9859 uprobe ? "uprobe" : "kprobe", 9860 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 9861 return bit; 9862 } 9863 attr.config |= 1 << bit; 9864 } 9865 attr.size = attr_sz; 9866 attr.type = type; 9867 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9868 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 9869 attr.config2 = offset; /* kprobe_addr or probe_offset */ 9870 9871 /* pid filter is meaningful only for uprobes */ 9872 pfd = syscall(__NR_perf_event_open, &attr, 9873 pid < 0 ? -1 : pid /* pid */, 9874 pid == -1 ? 0 : -1 /* cpu */, 9875 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9876 return pfd >= 0 ? pfd : -errno; 9877 } 9878 9879 static int append_to_file(const char *file, const char *fmt, ...) 9880 { 9881 int fd, n, err = 0; 9882 va_list ap; 9883 9884 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 9885 if (fd < 0) 9886 return -errno; 9887 9888 va_start(ap, fmt); 9889 n = vdprintf(fd, fmt, ap); 9890 va_end(ap); 9891 9892 if (n < 0) 9893 err = -errno; 9894 9895 close(fd); 9896 return err; 9897 } 9898 9899 #define DEBUGFS "/sys/kernel/debug/tracing" 9900 #define TRACEFS "/sys/kernel/tracing" 9901 9902 static bool use_debugfs(void) 9903 { 9904 static int has_debugfs = -1; 9905 9906 if (has_debugfs < 0) 9907 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 9908 9909 return has_debugfs == 1; 9910 } 9911 9912 static const char *tracefs_path(void) 9913 { 9914 return use_debugfs() ? DEBUGFS : TRACEFS; 9915 } 9916 9917 static const char *tracefs_kprobe_events(void) 9918 { 9919 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 9920 } 9921 9922 static const char *tracefs_uprobe_events(void) 9923 { 9924 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 9925 } 9926 9927 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 9928 const char *kfunc_name, size_t offset) 9929 { 9930 static int index = 0; 9931 9932 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 9933 __sync_fetch_and_add(&index, 1)); 9934 } 9935 9936 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 9937 const char *kfunc_name, size_t offset) 9938 { 9939 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 9940 retprobe ? 'r' : 'p', 9941 retprobe ? "kretprobes" : "kprobes", 9942 probe_name, kfunc_name, offset); 9943 } 9944 9945 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 9946 { 9947 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 9948 retprobe ? "kretprobes" : "kprobes", probe_name); 9949 } 9950 9951 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 9952 { 9953 char file[256]; 9954 9955 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 9956 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 9957 9958 return parse_uint_from_file(file, "%d\n"); 9959 } 9960 9961 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 9962 const char *kfunc_name, size_t offset, int pid) 9963 { 9964 const size_t attr_sz = sizeof(struct perf_event_attr); 9965 struct perf_event_attr attr; 9966 char errmsg[STRERR_BUFSIZE]; 9967 int type, pfd, err; 9968 9969 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 9970 if (err < 0) { 9971 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 9972 kfunc_name, offset, 9973 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9974 return err; 9975 } 9976 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 9977 if (type < 0) { 9978 err = type; 9979 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 9980 kfunc_name, offset, 9981 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9982 goto err_clean_legacy; 9983 } 9984 9985 memset(&attr, 0, attr_sz); 9986 attr.size = attr_sz; 9987 attr.config = type; 9988 attr.type = PERF_TYPE_TRACEPOINT; 9989 9990 pfd = syscall(__NR_perf_event_open, &attr, 9991 pid < 0 ? -1 : pid, /* pid */ 9992 pid == -1 ? 0 : -1, /* cpu */ 9993 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9994 if (pfd < 0) { 9995 err = -errno; 9996 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 9997 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9998 goto err_clean_legacy; 9999 } 10000 return pfd; 10001 10002 err_clean_legacy: 10003 /* Clear the newly added legacy kprobe_event */ 10004 remove_kprobe_event_legacy(probe_name, retprobe); 10005 return err; 10006 } 10007 10008 static const char *arch_specific_syscall_pfx(void) 10009 { 10010 #if defined(__x86_64__) 10011 return "x64"; 10012 #elif defined(__i386__) 10013 return "ia32"; 10014 #elif defined(__s390x__) 10015 return "s390x"; 10016 #elif defined(__s390__) 10017 return "s390"; 10018 #elif defined(__arm__) 10019 return "arm"; 10020 #elif defined(__aarch64__) 10021 return "arm64"; 10022 #elif defined(__mips__) 10023 return "mips"; 10024 #elif defined(__riscv) 10025 return "riscv"; 10026 #elif defined(__powerpc__) 10027 return "powerpc"; 10028 #elif defined(__powerpc64__) 10029 return "powerpc64"; 10030 #else 10031 return NULL; 10032 #endif 10033 } 10034 10035 static int probe_kern_syscall_wrapper(void) 10036 { 10037 char syscall_name[64]; 10038 const char *ksys_pfx; 10039 10040 ksys_pfx = arch_specific_syscall_pfx(); 10041 if (!ksys_pfx) 10042 return 0; 10043 10044 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 10045 10046 if (determine_kprobe_perf_type() >= 0) { 10047 int pfd; 10048 10049 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 10050 if (pfd >= 0) 10051 close(pfd); 10052 10053 return pfd >= 0 ? 1 : 0; 10054 } else { /* legacy mode */ 10055 char probe_name[128]; 10056 10057 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 10058 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 10059 return 0; 10060 10061 (void)remove_kprobe_event_legacy(probe_name, false); 10062 return 1; 10063 } 10064 } 10065 10066 struct bpf_link * 10067 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 10068 const char *func_name, 10069 const struct bpf_kprobe_opts *opts) 10070 { 10071 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10072 char errmsg[STRERR_BUFSIZE]; 10073 char *legacy_probe = NULL; 10074 struct bpf_link *link; 10075 size_t offset; 10076 bool retprobe, legacy; 10077 int pfd, err; 10078 10079 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 10080 return libbpf_err_ptr(-EINVAL); 10081 10082 retprobe = OPTS_GET(opts, retprobe, false); 10083 offset = OPTS_GET(opts, offset, 0); 10084 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10085 10086 legacy = determine_kprobe_perf_type() < 0; 10087 if (!legacy) { 10088 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 10089 func_name, offset, 10090 -1 /* pid */, 0 /* ref_ctr_off */); 10091 } else { 10092 char probe_name[256]; 10093 10094 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 10095 func_name, offset); 10096 10097 legacy_probe = strdup(probe_name); 10098 if (!legacy_probe) 10099 return libbpf_err_ptr(-ENOMEM); 10100 10101 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 10102 offset, -1 /* pid */); 10103 } 10104 if (pfd < 0) { 10105 err = -errno; 10106 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 10107 prog->name, retprobe ? "kretprobe" : "kprobe", 10108 func_name, offset, 10109 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10110 goto err_out; 10111 } 10112 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10113 err = libbpf_get_error(link); 10114 if (err) { 10115 close(pfd); 10116 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 10117 prog->name, retprobe ? "kretprobe" : "kprobe", 10118 func_name, offset, 10119 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10120 goto err_clean_legacy; 10121 } 10122 if (legacy) { 10123 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10124 10125 perf_link->legacy_probe_name = legacy_probe; 10126 perf_link->legacy_is_kprobe = true; 10127 perf_link->legacy_is_retprobe = retprobe; 10128 } 10129 10130 return link; 10131 10132 err_clean_legacy: 10133 if (legacy) 10134 remove_kprobe_event_legacy(legacy_probe, retprobe); 10135 err_out: 10136 free(legacy_probe); 10137 return libbpf_err_ptr(err); 10138 } 10139 10140 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 10141 bool retprobe, 10142 const char *func_name) 10143 { 10144 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 10145 .retprobe = retprobe, 10146 ); 10147 10148 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 10149 } 10150 10151 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 10152 const char *syscall_name, 10153 const struct bpf_ksyscall_opts *opts) 10154 { 10155 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 10156 char func_name[128]; 10157 10158 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 10159 return libbpf_err_ptr(-EINVAL); 10160 10161 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 10162 /* arch_specific_syscall_pfx() should never return NULL here 10163 * because it is guarded by kernel_supports(). However, since 10164 * compiler does not know that we have an explicit conditional 10165 * as well. 10166 */ 10167 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 10168 arch_specific_syscall_pfx() ? : "", syscall_name); 10169 } else { 10170 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 10171 } 10172 10173 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 10174 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10175 10176 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 10177 } 10178 10179 /* Adapted from perf/util/string.c */ 10180 static bool glob_match(const char *str, const char *pat) 10181 { 10182 while (*str && *pat && *pat != '*') { 10183 if (*pat == '?') { /* Matches any single character */ 10184 str++; 10185 pat++; 10186 continue; 10187 } 10188 if (*str != *pat) 10189 return false; 10190 str++; 10191 pat++; 10192 } 10193 /* Check wild card */ 10194 if (*pat == '*') { 10195 while (*pat == '*') 10196 pat++; 10197 if (!*pat) /* Tail wild card matches all */ 10198 return true; 10199 while (*str) 10200 if (glob_match(str++, pat)) 10201 return true; 10202 } 10203 return !*str && !*pat; 10204 } 10205 10206 struct kprobe_multi_resolve { 10207 const char *pattern; 10208 unsigned long *addrs; 10209 size_t cap; 10210 size_t cnt; 10211 }; 10212 10213 static int 10214 resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type, 10215 const char *sym_name, void *ctx) 10216 { 10217 struct kprobe_multi_resolve *res = ctx; 10218 int err; 10219 10220 if (!glob_match(sym_name, res->pattern)) 10221 return 0; 10222 10223 err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long), 10224 res->cnt + 1); 10225 if (err) 10226 return err; 10227 10228 res->addrs[res->cnt++] = (unsigned long) sym_addr; 10229 return 0; 10230 } 10231 10232 struct bpf_link * 10233 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 10234 const char *pattern, 10235 const struct bpf_kprobe_multi_opts *opts) 10236 { 10237 LIBBPF_OPTS(bpf_link_create_opts, lopts); 10238 struct kprobe_multi_resolve res = { 10239 .pattern = pattern, 10240 }; 10241 struct bpf_link *link = NULL; 10242 char errmsg[STRERR_BUFSIZE]; 10243 const unsigned long *addrs; 10244 int err, link_fd, prog_fd; 10245 const __u64 *cookies; 10246 const char **syms; 10247 bool retprobe; 10248 size_t cnt; 10249 10250 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 10251 return libbpf_err_ptr(-EINVAL); 10252 10253 syms = OPTS_GET(opts, syms, false); 10254 addrs = OPTS_GET(opts, addrs, false); 10255 cnt = OPTS_GET(opts, cnt, false); 10256 cookies = OPTS_GET(opts, cookies, false); 10257 10258 if (!pattern && !addrs && !syms) 10259 return libbpf_err_ptr(-EINVAL); 10260 if (pattern && (addrs || syms || cookies || cnt)) 10261 return libbpf_err_ptr(-EINVAL); 10262 if (!pattern && !cnt) 10263 return libbpf_err_ptr(-EINVAL); 10264 if (addrs && syms) 10265 return libbpf_err_ptr(-EINVAL); 10266 10267 if (pattern) { 10268 err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res); 10269 if (err) 10270 goto error; 10271 if (!res.cnt) { 10272 err = -ENOENT; 10273 goto error; 10274 } 10275 addrs = res.addrs; 10276 cnt = res.cnt; 10277 } 10278 10279 retprobe = OPTS_GET(opts, retprobe, false); 10280 10281 lopts.kprobe_multi.syms = syms; 10282 lopts.kprobe_multi.addrs = addrs; 10283 lopts.kprobe_multi.cookies = cookies; 10284 lopts.kprobe_multi.cnt = cnt; 10285 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 10286 10287 link = calloc(1, sizeof(*link)); 10288 if (!link) { 10289 err = -ENOMEM; 10290 goto error; 10291 } 10292 link->detach = &bpf_link__detach_fd; 10293 10294 prog_fd = bpf_program__fd(prog); 10295 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts); 10296 if (link_fd < 0) { 10297 err = -errno; 10298 pr_warn("prog '%s': failed to attach: %s\n", 10299 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10300 goto error; 10301 } 10302 link->fd = link_fd; 10303 free(res.addrs); 10304 return link; 10305 10306 error: 10307 free(link); 10308 free(res.addrs); 10309 return libbpf_err_ptr(err); 10310 } 10311 10312 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10313 { 10314 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 10315 unsigned long offset = 0; 10316 const char *func_name; 10317 char *func; 10318 int n; 10319 10320 *link = NULL; 10321 10322 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 10323 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 10324 return 0; 10325 10326 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 10327 if (opts.retprobe) 10328 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 10329 else 10330 func_name = prog->sec_name + sizeof("kprobe/") - 1; 10331 10332 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 10333 if (n < 1) { 10334 pr_warn("kprobe name is invalid: %s\n", func_name); 10335 return -EINVAL; 10336 } 10337 if (opts.retprobe && offset != 0) { 10338 free(func); 10339 pr_warn("kretprobes do not support offset specification\n"); 10340 return -EINVAL; 10341 } 10342 10343 opts.offset = offset; 10344 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 10345 free(func); 10346 return libbpf_get_error(*link); 10347 } 10348 10349 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10350 { 10351 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 10352 const char *syscall_name; 10353 10354 *link = NULL; 10355 10356 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 10357 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 10358 return 0; 10359 10360 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 10361 if (opts.retprobe) 10362 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 10363 else 10364 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 10365 10366 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 10367 return *link ? 0 : -errno; 10368 } 10369 10370 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10371 { 10372 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 10373 const char *spec; 10374 char *pattern; 10375 int n; 10376 10377 *link = NULL; 10378 10379 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 10380 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 10381 strcmp(prog->sec_name, "kretprobe.multi") == 0) 10382 return 0; 10383 10384 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 10385 if (opts.retprobe) 10386 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 10387 else 10388 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 10389 10390 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 10391 if (n < 1) { 10392 pr_warn("kprobe multi pattern is invalid: %s\n", pattern); 10393 return -EINVAL; 10394 } 10395 10396 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 10397 free(pattern); 10398 return libbpf_get_error(*link); 10399 } 10400 10401 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 10402 const char *binary_path, uint64_t offset) 10403 { 10404 int i; 10405 10406 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 10407 10408 /* sanitize binary_path in the probe name */ 10409 for (i = 0; buf[i]; i++) { 10410 if (!isalnum(buf[i])) 10411 buf[i] = '_'; 10412 } 10413 } 10414 10415 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 10416 const char *binary_path, size_t offset) 10417 { 10418 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 10419 retprobe ? 'r' : 'p', 10420 retprobe ? "uretprobes" : "uprobes", 10421 probe_name, binary_path, offset); 10422 } 10423 10424 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 10425 { 10426 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 10427 retprobe ? "uretprobes" : "uprobes", probe_name); 10428 } 10429 10430 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10431 { 10432 char file[512]; 10433 10434 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10435 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 10436 10437 return parse_uint_from_file(file, "%d\n"); 10438 } 10439 10440 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 10441 const char *binary_path, size_t offset, int pid) 10442 { 10443 const size_t attr_sz = sizeof(struct perf_event_attr); 10444 struct perf_event_attr attr; 10445 int type, pfd, err; 10446 10447 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 10448 if (err < 0) { 10449 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 10450 binary_path, (size_t)offset, err); 10451 return err; 10452 } 10453 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 10454 if (type < 0) { 10455 err = type; 10456 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 10457 binary_path, offset, err); 10458 goto err_clean_legacy; 10459 } 10460 10461 memset(&attr, 0, attr_sz); 10462 attr.size = attr_sz; 10463 attr.config = type; 10464 attr.type = PERF_TYPE_TRACEPOINT; 10465 10466 pfd = syscall(__NR_perf_event_open, &attr, 10467 pid < 0 ? -1 : pid, /* pid */ 10468 pid == -1 ? 0 : -1, /* cpu */ 10469 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10470 if (pfd < 0) { 10471 err = -errno; 10472 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 10473 goto err_clean_legacy; 10474 } 10475 return pfd; 10476 10477 err_clean_legacy: 10478 /* Clear the newly added legacy uprobe_event */ 10479 remove_uprobe_event_legacy(probe_name, retprobe); 10480 return err; 10481 } 10482 10483 /* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */ 10484 static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn) 10485 { 10486 while ((scn = elf_nextscn(elf, scn)) != NULL) { 10487 GElf_Shdr sh; 10488 10489 if (!gelf_getshdr(scn, &sh)) 10490 continue; 10491 if (sh.sh_type == sh_type) 10492 return scn; 10493 } 10494 return NULL; 10495 } 10496 10497 /* Find offset of function name in object specified by path. "name" matches 10498 * symbol name or name@@LIB for library functions. 10499 */ 10500 static long elf_find_func_offset(const char *binary_path, const char *name) 10501 { 10502 int fd, i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB }; 10503 bool is_shared_lib, is_name_qualified; 10504 char errmsg[STRERR_BUFSIZE]; 10505 long ret = -ENOENT; 10506 size_t name_len; 10507 GElf_Ehdr ehdr; 10508 Elf *elf; 10509 10510 fd = open(binary_path, O_RDONLY | O_CLOEXEC); 10511 if (fd < 0) { 10512 ret = -errno; 10513 pr_warn("failed to open %s: %s\n", binary_path, 10514 libbpf_strerror_r(ret, errmsg, sizeof(errmsg))); 10515 return ret; 10516 } 10517 elf = elf_begin(fd, ELF_C_READ_MMAP, NULL); 10518 if (!elf) { 10519 pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1)); 10520 close(fd); 10521 return -LIBBPF_ERRNO__FORMAT; 10522 } 10523 if (!gelf_getehdr(elf, &ehdr)) { 10524 pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1)); 10525 ret = -LIBBPF_ERRNO__FORMAT; 10526 goto out; 10527 } 10528 /* for shared lib case, we do not need to calculate relative offset */ 10529 is_shared_lib = ehdr.e_type == ET_DYN; 10530 10531 name_len = strlen(name); 10532 /* Does name specify "@@LIB"? */ 10533 is_name_qualified = strstr(name, "@@") != NULL; 10534 10535 /* Search SHT_DYNSYM, SHT_SYMTAB for symbol. This search order is used because if 10536 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically 10537 * linked binary may not have SHT_DYMSYM, so absence of a section should not be 10538 * reported as a warning/error. 10539 */ 10540 for (i = 0; i < ARRAY_SIZE(sh_types); i++) { 10541 size_t nr_syms, strtabidx, idx; 10542 Elf_Data *symbols = NULL; 10543 Elf_Scn *scn = NULL; 10544 int last_bind = -1; 10545 const char *sname; 10546 GElf_Shdr sh; 10547 10548 scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL); 10549 if (!scn) { 10550 pr_debug("elf: failed to find symbol table ELF sections in '%s'\n", 10551 binary_path); 10552 continue; 10553 } 10554 if (!gelf_getshdr(scn, &sh)) 10555 continue; 10556 strtabidx = sh.sh_link; 10557 symbols = elf_getdata(scn, 0); 10558 if (!symbols) { 10559 pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n", 10560 binary_path, elf_errmsg(-1)); 10561 ret = -LIBBPF_ERRNO__FORMAT; 10562 goto out; 10563 } 10564 nr_syms = symbols->d_size / sh.sh_entsize; 10565 10566 for (idx = 0; idx < nr_syms; idx++) { 10567 int curr_bind; 10568 GElf_Sym sym; 10569 Elf_Scn *sym_scn; 10570 GElf_Shdr sym_sh; 10571 10572 if (!gelf_getsym(symbols, idx, &sym)) 10573 continue; 10574 10575 if (GELF_ST_TYPE(sym.st_info) != STT_FUNC) 10576 continue; 10577 10578 sname = elf_strptr(elf, strtabidx, sym.st_name); 10579 if (!sname) 10580 continue; 10581 10582 curr_bind = GELF_ST_BIND(sym.st_info); 10583 10584 /* User can specify func, func@@LIB or func@@LIB_VERSION. */ 10585 if (strncmp(sname, name, name_len) != 0) 10586 continue; 10587 /* ...but we don't want a search for "foo" to match 'foo2" also, so any 10588 * additional characters in sname should be of the form "@@LIB". 10589 */ 10590 if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@') 10591 continue; 10592 10593 if (ret >= 0) { 10594 /* handle multiple matches */ 10595 if (last_bind != STB_WEAK && curr_bind != STB_WEAK) { 10596 /* Only accept one non-weak bind. */ 10597 pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n", 10598 sname, name, binary_path); 10599 ret = -LIBBPF_ERRNO__FORMAT; 10600 goto out; 10601 } else if (curr_bind == STB_WEAK) { 10602 /* already have a non-weak bind, and 10603 * this is a weak bind, so ignore. 10604 */ 10605 continue; 10606 } 10607 } 10608 10609 /* Transform symbol's virtual address (absolute for 10610 * binaries and relative for shared libs) into file 10611 * offset, which is what kernel is expecting for 10612 * uprobe/uretprobe attachment. 10613 * See Documentation/trace/uprobetracer.rst for more 10614 * details. 10615 * This is done by looking up symbol's containing 10616 * section's header and using it's virtual address 10617 * (sh_addr) and corresponding file offset (sh_offset) 10618 * to transform sym.st_value (virtual address) into 10619 * desired final file offset. 10620 */ 10621 sym_scn = elf_getscn(elf, sym.st_shndx); 10622 if (!sym_scn) 10623 continue; 10624 if (!gelf_getshdr(sym_scn, &sym_sh)) 10625 continue; 10626 10627 ret = sym.st_value - sym_sh.sh_addr + sym_sh.sh_offset; 10628 last_bind = curr_bind; 10629 } 10630 if (ret > 0) 10631 break; 10632 } 10633 10634 if (ret > 0) { 10635 pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path, 10636 ret); 10637 } else { 10638 if (ret == 0) { 10639 pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path, 10640 is_shared_lib ? "should not be 0 in a shared library" : 10641 "try using shared library path instead"); 10642 ret = -ENOENT; 10643 } else { 10644 pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path); 10645 } 10646 } 10647 out: 10648 elf_end(elf); 10649 close(fd); 10650 return ret; 10651 } 10652 10653 static const char *arch_specific_lib_paths(void) 10654 { 10655 /* 10656 * Based on https://packages.debian.org/sid/libc6. 10657 * 10658 * Assume that the traced program is built for the same architecture 10659 * as libbpf, which should cover the vast majority of cases. 10660 */ 10661 #if defined(__x86_64__) 10662 return "/lib/x86_64-linux-gnu"; 10663 #elif defined(__i386__) 10664 return "/lib/i386-linux-gnu"; 10665 #elif defined(__s390x__) 10666 return "/lib/s390x-linux-gnu"; 10667 #elif defined(__s390__) 10668 return "/lib/s390-linux-gnu"; 10669 #elif defined(__arm__) && defined(__SOFTFP__) 10670 return "/lib/arm-linux-gnueabi"; 10671 #elif defined(__arm__) && !defined(__SOFTFP__) 10672 return "/lib/arm-linux-gnueabihf"; 10673 #elif defined(__aarch64__) 10674 return "/lib/aarch64-linux-gnu"; 10675 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 10676 return "/lib/mips64el-linux-gnuabi64"; 10677 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 10678 return "/lib/mipsel-linux-gnu"; 10679 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 10680 return "/lib/powerpc64le-linux-gnu"; 10681 #elif defined(__sparc__) && defined(__arch64__) 10682 return "/lib/sparc64-linux-gnu"; 10683 #elif defined(__riscv) && __riscv_xlen == 64 10684 return "/lib/riscv64-linux-gnu"; 10685 #else 10686 return NULL; 10687 #endif 10688 } 10689 10690 /* Get full path to program/shared library. */ 10691 static int resolve_full_path(const char *file, char *result, size_t result_sz) 10692 { 10693 const char *search_paths[3] = {}; 10694 int i, perm; 10695 10696 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 10697 search_paths[0] = getenv("LD_LIBRARY_PATH"); 10698 search_paths[1] = "/usr/lib64:/usr/lib"; 10699 search_paths[2] = arch_specific_lib_paths(); 10700 perm = R_OK; 10701 } else { 10702 search_paths[0] = getenv("PATH"); 10703 search_paths[1] = "/usr/bin:/usr/sbin"; 10704 perm = R_OK | X_OK; 10705 } 10706 10707 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 10708 const char *s; 10709 10710 if (!search_paths[i]) 10711 continue; 10712 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 10713 char *next_path; 10714 int seg_len; 10715 10716 if (s[0] == ':') 10717 s++; 10718 next_path = strchr(s, ':'); 10719 seg_len = next_path ? next_path - s : strlen(s); 10720 if (!seg_len) 10721 continue; 10722 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 10723 /* ensure it has required permissions */ 10724 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 10725 continue; 10726 pr_debug("resolved '%s' to '%s'\n", file, result); 10727 return 0; 10728 } 10729 } 10730 return -ENOENT; 10731 } 10732 10733 LIBBPF_API struct bpf_link * 10734 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 10735 const char *binary_path, size_t func_offset, 10736 const struct bpf_uprobe_opts *opts) 10737 { 10738 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10739 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 10740 char full_binary_path[PATH_MAX]; 10741 struct bpf_link *link; 10742 size_t ref_ctr_off; 10743 int pfd, err; 10744 bool retprobe, legacy; 10745 const char *func_name; 10746 10747 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 10748 return libbpf_err_ptr(-EINVAL); 10749 10750 retprobe = OPTS_GET(opts, retprobe, false); 10751 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 10752 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10753 10754 if (!binary_path) 10755 return libbpf_err_ptr(-EINVAL); 10756 10757 if (!strchr(binary_path, '/')) { 10758 err = resolve_full_path(binary_path, full_binary_path, 10759 sizeof(full_binary_path)); 10760 if (err) { 10761 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 10762 prog->name, binary_path, err); 10763 return libbpf_err_ptr(err); 10764 } 10765 binary_path = full_binary_path; 10766 } 10767 func_name = OPTS_GET(opts, func_name, NULL); 10768 if (func_name) { 10769 long sym_off; 10770 10771 sym_off = elf_find_func_offset(binary_path, func_name); 10772 if (sym_off < 0) 10773 return libbpf_err_ptr(sym_off); 10774 func_offset += sym_off; 10775 } 10776 10777 legacy = determine_uprobe_perf_type() < 0; 10778 if (!legacy) { 10779 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 10780 func_offset, pid, ref_ctr_off); 10781 } else { 10782 char probe_name[PATH_MAX + 64]; 10783 10784 if (ref_ctr_off) 10785 return libbpf_err_ptr(-EINVAL); 10786 10787 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 10788 binary_path, func_offset); 10789 10790 legacy_probe = strdup(probe_name); 10791 if (!legacy_probe) 10792 return libbpf_err_ptr(-ENOMEM); 10793 10794 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 10795 binary_path, func_offset, pid); 10796 } 10797 if (pfd < 0) { 10798 err = -errno; 10799 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 10800 prog->name, retprobe ? "uretprobe" : "uprobe", 10801 binary_path, func_offset, 10802 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10803 goto err_out; 10804 } 10805 10806 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10807 err = libbpf_get_error(link); 10808 if (err) { 10809 close(pfd); 10810 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 10811 prog->name, retprobe ? "uretprobe" : "uprobe", 10812 binary_path, func_offset, 10813 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10814 goto err_clean_legacy; 10815 } 10816 if (legacy) { 10817 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10818 10819 perf_link->legacy_probe_name = legacy_probe; 10820 perf_link->legacy_is_kprobe = false; 10821 perf_link->legacy_is_retprobe = retprobe; 10822 } 10823 return link; 10824 10825 err_clean_legacy: 10826 if (legacy) 10827 remove_uprobe_event_legacy(legacy_probe, retprobe); 10828 err_out: 10829 free(legacy_probe); 10830 return libbpf_err_ptr(err); 10831 } 10832 10833 /* Format of u[ret]probe section definition supporting auto-attach: 10834 * u[ret]probe/binary:function[+offset] 10835 * 10836 * binary can be an absolute/relative path or a filename; the latter is resolved to a 10837 * full binary path via bpf_program__attach_uprobe_opts. 10838 * 10839 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 10840 * specified (and auto-attach is not possible) or the above format is specified for 10841 * auto-attach. 10842 */ 10843 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10844 { 10845 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 10846 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 10847 int n, ret = -EINVAL; 10848 long offset = 0; 10849 10850 *link = NULL; 10851 10852 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li", 10853 &probe_type, &binary_path, &func_name, &offset); 10854 switch (n) { 10855 case 1: 10856 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 10857 ret = 0; 10858 break; 10859 case 2: 10860 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 10861 prog->name, prog->sec_name); 10862 break; 10863 case 3: 10864 case 4: 10865 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 10866 strcmp(probe_type, "uretprobe.s") == 0; 10867 if (opts.retprobe && offset != 0) { 10868 pr_warn("prog '%s': uretprobes do not support offset specification\n", 10869 prog->name); 10870 break; 10871 } 10872 opts.func_name = func_name; 10873 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 10874 ret = libbpf_get_error(*link); 10875 break; 10876 default: 10877 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 10878 prog->sec_name); 10879 break; 10880 } 10881 free(probe_type); 10882 free(binary_path); 10883 free(func_name); 10884 10885 return ret; 10886 } 10887 10888 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 10889 bool retprobe, pid_t pid, 10890 const char *binary_path, 10891 size_t func_offset) 10892 { 10893 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 10894 10895 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 10896 } 10897 10898 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 10899 pid_t pid, const char *binary_path, 10900 const char *usdt_provider, const char *usdt_name, 10901 const struct bpf_usdt_opts *opts) 10902 { 10903 char resolved_path[512]; 10904 struct bpf_object *obj = prog->obj; 10905 struct bpf_link *link; 10906 __u64 usdt_cookie; 10907 int err; 10908 10909 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 10910 return libbpf_err_ptr(-EINVAL); 10911 10912 if (bpf_program__fd(prog) < 0) { 10913 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 10914 prog->name); 10915 return libbpf_err_ptr(-EINVAL); 10916 } 10917 10918 if (!binary_path) 10919 return libbpf_err_ptr(-EINVAL); 10920 10921 if (!strchr(binary_path, '/')) { 10922 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 10923 if (err) { 10924 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 10925 prog->name, binary_path, err); 10926 return libbpf_err_ptr(err); 10927 } 10928 binary_path = resolved_path; 10929 } 10930 10931 /* USDT manager is instantiated lazily on first USDT attach. It will 10932 * be destroyed together with BPF object in bpf_object__close(). 10933 */ 10934 if (IS_ERR(obj->usdt_man)) 10935 return libbpf_ptr(obj->usdt_man); 10936 if (!obj->usdt_man) { 10937 obj->usdt_man = usdt_manager_new(obj); 10938 if (IS_ERR(obj->usdt_man)) 10939 return libbpf_ptr(obj->usdt_man); 10940 } 10941 10942 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 10943 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 10944 usdt_provider, usdt_name, usdt_cookie); 10945 err = libbpf_get_error(link); 10946 if (err) 10947 return libbpf_err_ptr(err); 10948 return link; 10949 } 10950 10951 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10952 { 10953 char *path = NULL, *provider = NULL, *name = NULL; 10954 const char *sec_name; 10955 int n, err; 10956 10957 sec_name = bpf_program__section_name(prog); 10958 if (strcmp(sec_name, "usdt") == 0) { 10959 /* no auto-attach for just SEC("usdt") */ 10960 *link = NULL; 10961 return 0; 10962 } 10963 10964 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 10965 if (n != 3) { 10966 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 10967 sec_name); 10968 err = -EINVAL; 10969 } else { 10970 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 10971 provider, name, NULL); 10972 err = libbpf_get_error(*link); 10973 } 10974 free(path); 10975 free(provider); 10976 free(name); 10977 return err; 10978 } 10979 10980 static int determine_tracepoint_id(const char *tp_category, 10981 const char *tp_name) 10982 { 10983 char file[PATH_MAX]; 10984 int ret; 10985 10986 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10987 tracefs_path(), tp_category, tp_name); 10988 if (ret < 0) 10989 return -errno; 10990 if (ret >= sizeof(file)) { 10991 pr_debug("tracepoint %s/%s path is too long\n", 10992 tp_category, tp_name); 10993 return -E2BIG; 10994 } 10995 return parse_uint_from_file(file, "%d\n"); 10996 } 10997 10998 static int perf_event_open_tracepoint(const char *tp_category, 10999 const char *tp_name) 11000 { 11001 const size_t attr_sz = sizeof(struct perf_event_attr); 11002 struct perf_event_attr attr; 11003 char errmsg[STRERR_BUFSIZE]; 11004 int tp_id, pfd, err; 11005 11006 tp_id = determine_tracepoint_id(tp_category, tp_name); 11007 if (tp_id < 0) { 11008 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 11009 tp_category, tp_name, 11010 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 11011 return tp_id; 11012 } 11013 11014 memset(&attr, 0, attr_sz); 11015 attr.type = PERF_TYPE_TRACEPOINT; 11016 attr.size = attr_sz; 11017 attr.config = tp_id; 11018 11019 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 11020 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11021 if (pfd < 0) { 11022 err = -errno; 11023 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 11024 tp_category, tp_name, 11025 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11026 return err; 11027 } 11028 return pfd; 11029 } 11030 11031 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 11032 const char *tp_category, 11033 const char *tp_name, 11034 const struct bpf_tracepoint_opts *opts) 11035 { 11036 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11037 char errmsg[STRERR_BUFSIZE]; 11038 struct bpf_link *link; 11039 int pfd, err; 11040 11041 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 11042 return libbpf_err_ptr(-EINVAL); 11043 11044 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11045 11046 pfd = perf_event_open_tracepoint(tp_category, tp_name); 11047 if (pfd < 0) { 11048 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 11049 prog->name, tp_category, tp_name, 11050 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11051 return libbpf_err_ptr(pfd); 11052 } 11053 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11054 err = libbpf_get_error(link); 11055 if (err) { 11056 close(pfd); 11057 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 11058 prog->name, tp_category, tp_name, 11059 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11060 return libbpf_err_ptr(err); 11061 } 11062 return link; 11063 } 11064 11065 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 11066 const char *tp_category, 11067 const char *tp_name) 11068 { 11069 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 11070 } 11071 11072 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11073 { 11074 char *sec_name, *tp_cat, *tp_name; 11075 11076 *link = NULL; 11077 11078 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 11079 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 11080 return 0; 11081 11082 sec_name = strdup(prog->sec_name); 11083 if (!sec_name) 11084 return -ENOMEM; 11085 11086 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 11087 if (str_has_pfx(prog->sec_name, "tp/")) 11088 tp_cat = sec_name + sizeof("tp/") - 1; 11089 else 11090 tp_cat = sec_name + sizeof("tracepoint/") - 1; 11091 tp_name = strchr(tp_cat, '/'); 11092 if (!tp_name) { 11093 free(sec_name); 11094 return -EINVAL; 11095 } 11096 *tp_name = '\0'; 11097 tp_name++; 11098 11099 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 11100 free(sec_name); 11101 return libbpf_get_error(*link); 11102 } 11103 11104 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 11105 const char *tp_name) 11106 { 11107 char errmsg[STRERR_BUFSIZE]; 11108 struct bpf_link *link; 11109 int prog_fd, pfd; 11110 11111 prog_fd = bpf_program__fd(prog); 11112 if (prog_fd < 0) { 11113 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11114 return libbpf_err_ptr(-EINVAL); 11115 } 11116 11117 link = calloc(1, sizeof(*link)); 11118 if (!link) 11119 return libbpf_err_ptr(-ENOMEM); 11120 link->detach = &bpf_link__detach_fd; 11121 11122 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 11123 if (pfd < 0) { 11124 pfd = -errno; 11125 free(link); 11126 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 11127 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11128 return libbpf_err_ptr(pfd); 11129 } 11130 link->fd = pfd; 11131 return link; 11132 } 11133 11134 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11135 { 11136 static const char *const prefixes[] = { 11137 "raw_tp", 11138 "raw_tracepoint", 11139 "raw_tp.w", 11140 "raw_tracepoint.w", 11141 }; 11142 size_t i; 11143 const char *tp_name = NULL; 11144 11145 *link = NULL; 11146 11147 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 11148 size_t pfx_len; 11149 11150 if (!str_has_pfx(prog->sec_name, prefixes[i])) 11151 continue; 11152 11153 pfx_len = strlen(prefixes[i]); 11154 /* no auto-attach case of, e.g., SEC("raw_tp") */ 11155 if (prog->sec_name[pfx_len] == '\0') 11156 return 0; 11157 11158 if (prog->sec_name[pfx_len] != '/') 11159 continue; 11160 11161 tp_name = prog->sec_name + pfx_len + 1; 11162 break; 11163 } 11164 11165 if (!tp_name) { 11166 pr_warn("prog '%s': invalid section name '%s'\n", 11167 prog->name, prog->sec_name); 11168 return -EINVAL; 11169 } 11170 11171 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 11172 return libbpf_get_error(*link); 11173 } 11174 11175 /* Common logic for all BPF program types that attach to a btf_id */ 11176 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 11177 const struct bpf_trace_opts *opts) 11178 { 11179 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 11180 char errmsg[STRERR_BUFSIZE]; 11181 struct bpf_link *link; 11182 int prog_fd, pfd; 11183 11184 if (!OPTS_VALID(opts, bpf_trace_opts)) 11185 return libbpf_err_ptr(-EINVAL); 11186 11187 prog_fd = bpf_program__fd(prog); 11188 if (prog_fd < 0) { 11189 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11190 return libbpf_err_ptr(-EINVAL); 11191 } 11192 11193 link = calloc(1, sizeof(*link)); 11194 if (!link) 11195 return libbpf_err_ptr(-ENOMEM); 11196 link->detach = &bpf_link__detach_fd; 11197 11198 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 11199 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 11200 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 11201 if (pfd < 0) { 11202 pfd = -errno; 11203 free(link); 11204 pr_warn("prog '%s': failed to attach: %s\n", 11205 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11206 return libbpf_err_ptr(pfd); 11207 } 11208 link->fd = pfd; 11209 return link; 11210 } 11211 11212 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 11213 { 11214 return bpf_program__attach_btf_id(prog, NULL); 11215 } 11216 11217 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 11218 const struct bpf_trace_opts *opts) 11219 { 11220 return bpf_program__attach_btf_id(prog, opts); 11221 } 11222 11223 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 11224 { 11225 return bpf_program__attach_btf_id(prog, NULL); 11226 } 11227 11228 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11229 { 11230 *link = bpf_program__attach_trace(prog); 11231 return libbpf_get_error(*link); 11232 } 11233 11234 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11235 { 11236 *link = bpf_program__attach_lsm(prog); 11237 return libbpf_get_error(*link); 11238 } 11239 11240 static struct bpf_link * 11241 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id, 11242 const char *target_name) 11243 { 11244 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 11245 .target_btf_id = btf_id); 11246 enum bpf_attach_type attach_type; 11247 char errmsg[STRERR_BUFSIZE]; 11248 struct bpf_link *link; 11249 int prog_fd, link_fd; 11250 11251 prog_fd = bpf_program__fd(prog); 11252 if (prog_fd < 0) { 11253 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11254 return libbpf_err_ptr(-EINVAL); 11255 } 11256 11257 link = calloc(1, sizeof(*link)); 11258 if (!link) 11259 return libbpf_err_ptr(-ENOMEM); 11260 link->detach = &bpf_link__detach_fd; 11261 11262 attach_type = bpf_program__expected_attach_type(prog); 11263 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 11264 if (link_fd < 0) { 11265 link_fd = -errno; 11266 free(link); 11267 pr_warn("prog '%s': failed to attach to %s: %s\n", 11268 prog->name, target_name, 11269 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11270 return libbpf_err_ptr(link_fd); 11271 } 11272 link->fd = link_fd; 11273 return link; 11274 } 11275 11276 struct bpf_link * 11277 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 11278 { 11279 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 11280 } 11281 11282 struct bpf_link * 11283 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 11284 { 11285 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 11286 } 11287 11288 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 11289 { 11290 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 11291 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 11292 } 11293 11294 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 11295 int target_fd, 11296 const char *attach_func_name) 11297 { 11298 int btf_id; 11299 11300 if (!!target_fd != !!attach_func_name) { 11301 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 11302 prog->name); 11303 return libbpf_err_ptr(-EINVAL); 11304 } 11305 11306 if (prog->type != BPF_PROG_TYPE_EXT) { 11307 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 11308 prog->name); 11309 return libbpf_err_ptr(-EINVAL); 11310 } 11311 11312 if (target_fd) { 11313 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 11314 if (btf_id < 0) 11315 return libbpf_err_ptr(btf_id); 11316 11317 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 11318 } else { 11319 /* no target, so use raw_tracepoint_open for compatibility 11320 * with old kernels 11321 */ 11322 return bpf_program__attach_trace(prog); 11323 } 11324 } 11325 11326 struct bpf_link * 11327 bpf_program__attach_iter(const struct bpf_program *prog, 11328 const struct bpf_iter_attach_opts *opts) 11329 { 11330 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 11331 char errmsg[STRERR_BUFSIZE]; 11332 struct bpf_link *link; 11333 int prog_fd, link_fd; 11334 __u32 target_fd = 0; 11335 11336 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 11337 return libbpf_err_ptr(-EINVAL); 11338 11339 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 11340 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 11341 11342 prog_fd = bpf_program__fd(prog); 11343 if (prog_fd < 0) { 11344 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11345 return libbpf_err_ptr(-EINVAL); 11346 } 11347 11348 link = calloc(1, sizeof(*link)); 11349 if (!link) 11350 return libbpf_err_ptr(-ENOMEM); 11351 link->detach = &bpf_link__detach_fd; 11352 11353 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 11354 &link_create_opts); 11355 if (link_fd < 0) { 11356 link_fd = -errno; 11357 free(link); 11358 pr_warn("prog '%s': failed to attach to iterator: %s\n", 11359 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11360 return libbpf_err_ptr(link_fd); 11361 } 11362 link->fd = link_fd; 11363 return link; 11364 } 11365 11366 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11367 { 11368 *link = bpf_program__attach_iter(prog, NULL); 11369 return libbpf_get_error(*link); 11370 } 11371 11372 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 11373 { 11374 struct bpf_link *link = NULL; 11375 int err; 11376 11377 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 11378 return libbpf_err_ptr(-EOPNOTSUPP); 11379 11380 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 11381 if (err) 11382 return libbpf_err_ptr(err); 11383 11384 /* When calling bpf_program__attach() explicitly, auto-attach support 11385 * is expected to work, so NULL returned link is considered an error. 11386 * This is different for skeleton's attach, see comment in 11387 * bpf_object__attach_skeleton(). 11388 */ 11389 if (!link) 11390 return libbpf_err_ptr(-EOPNOTSUPP); 11391 11392 return link; 11393 } 11394 11395 static int bpf_link__detach_struct_ops(struct bpf_link *link) 11396 { 11397 __u32 zero = 0; 11398 11399 if (bpf_map_delete_elem(link->fd, &zero)) 11400 return -errno; 11401 11402 return 0; 11403 } 11404 11405 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 11406 { 11407 struct bpf_struct_ops *st_ops; 11408 struct bpf_link *link; 11409 __u32 i, zero = 0; 11410 int err; 11411 11412 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 11413 return libbpf_err_ptr(-EINVAL); 11414 11415 link = calloc(1, sizeof(*link)); 11416 if (!link) 11417 return libbpf_err_ptr(-EINVAL); 11418 11419 st_ops = map->st_ops; 11420 for (i = 0; i < btf_vlen(st_ops->type); i++) { 11421 struct bpf_program *prog = st_ops->progs[i]; 11422 void *kern_data; 11423 int prog_fd; 11424 11425 if (!prog) 11426 continue; 11427 11428 prog_fd = bpf_program__fd(prog); 11429 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 11430 *(unsigned long *)kern_data = prog_fd; 11431 } 11432 11433 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 11434 if (err) { 11435 err = -errno; 11436 free(link); 11437 return libbpf_err_ptr(err); 11438 } 11439 11440 link->detach = bpf_link__detach_struct_ops; 11441 link->fd = map->fd; 11442 11443 return link; 11444 } 11445 11446 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 11447 void *private_data); 11448 11449 static enum bpf_perf_event_ret 11450 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 11451 void **copy_mem, size_t *copy_size, 11452 bpf_perf_event_print_t fn, void *private_data) 11453 { 11454 struct perf_event_mmap_page *header = mmap_mem; 11455 __u64 data_head = ring_buffer_read_head(header); 11456 __u64 data_tail = header->data_tail; 11457 void *base = ((__u8 *)header) + page_size; 11458 int ret = LIBBPF_PERF_EVENT_CONT; 11459 struct perf_event_header *ehdr; 11460 size_t ehdr_size; 11461 11462 while (data_head != data_tail) { 11463 ehdr = base + (data_tail & (mmap_size - 1)); 11464 ehdr_size = ehdr->size; 11465 11466 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 11467 void *copy_start = ehdr; 11468 size_t len_first = base + mmap_size - copy_start; 11469 size_t len_secnd = ehdr_size - len_first; 11470 11471 if (*copy_size < ehdr_size) { 11472 free(*copy_mem); 11473 *copy_mem = malloc(ehdr_size); 11474 if (!*copy_mem) { 11475 *copy_size = 0; 11476 ret = LIBBPF_PERF_EVENT_ERROR; 11477 break; 11478 } 11479 *copy_size = ehdr_size; 11480 } 11481 11482 memcpy(*copy_mem, copy_start, len_first); 11483 memcpy(*copy_mem + len_first, base, len_secnd); 11484 ehdr = *copy_mem; 11485 } 11486 11487 ret = fn(ehdr, private_data); 11488 data_tail += ehdr_size; 11489 if (ret != LIBBPF_PERF_EVENT_CONT) 11490 break; 11491 } 11492 11493 ring_buffer_write_tail(header, data_tail); 11494 return libbpf_err(ret); 11495 } 11496 11497 struct perf_buffer; 11498 11499 struct perf_buffer_params { 11500 struct perf_event_attr *attr; 11501 /* if event_cb is specified, it takes precendence */ 11502 perf_buffer_event_fn event_cb; 11503 /* sample_cb and lost_cb are higher-level common-case callbacks */ 11504 perf_buffer_sample_fn sample_cb; 11505 perf_buffer_lost_fn lost_cb; 11506 void *ctx; 11507 int cpu_cnt; 11508 int *cpus; 11509 int *map_keys; 11510 }; 11511 11512 struct perf_cpu_buf { 11513 struct perf_buffer *pb; 11514 void *base; /* mmap()'ed memory */ 11515 void *buf; /* for reconstructing segmented data */ 11516 size_t buf_size; 11517 int fd; 11518 int cpu; 11519 int map_key; 11520 }; 11521 11522 struct perf_buffer { 11523 perf_buffer_event_fn event_cb; 11524 perf_buffer_sample_fn sample_cb; 11525 perf_buffer_lost_fn lost_cb; 11526 void *ctx; /* passed into callbacks */ 11527 11528 size_t page_size; 11529 size_t mmap_size; 11530 struct perf_cpu_buf **cpu_bufs; 11531 struct epoll_event *events; 11532 int cpu_cnt; /* number of allocated CPU buffers */ 11533 int epoll_fd; /* perf event FD */ 11534 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 11535 }; 11536 11537 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 11538 struct perf_cpu_buf *cpu_buf) 11539 { 11540 if (!cpu_buf) 11541 return; 11542 if (cpu_buf->base && 11543 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 11544 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 11545 if (cpu_buf->fd >= 0) { 11546 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 11547 close(cpu_buf->fd); 11548 } 11549 free(cpu_buf->buf); 11550 free(cpu_buf); 11551 } 11552 11553 void perf_buffer__free(struct perf_buffer *pb) 11554 { 11555 int i; 11556 11557 if (IS_ERR_OR_NULL(pb)) 11558 return; 11559 if (pb->cpu_bufs) { 11560 for (i = 0; i < pb->cpu_cnt; i++) { 11561 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 11562 11563 if (!cpu_buf) 11564 continue; 11565 11566 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 11567 perf_buffer__free_cpu_buf(pb, cpu_buf); 11568 } 11569 free(pb->cpu_bufs); 11570 } 11571 if (pb->epoll_fd >= 0) 11572 close(pb->epoll_fd); 11573 free(pb->events); 11574 free(pb); 11575 } 11576 11577 static struct perf_cpu_buf * 11578 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 11579 int cpu, int map_key) 11580 { 11581 struct perf_cpu_buf *cpu_buf; 11582 char msg[STRERR_BUFSIZE]; 11583 int err; 11584 11585 cpu_buf = calloc(1, sizeof(*cpu_buf)); 11586 if (!cpu_buf) 11587 return ERR_PTR(-ENOMEM); 11588 11589 cpu_buf->pb = pb; 11590 cpu_buf->cpu = cpu; 11591 cpu_buf->map_key = map_key; 11592 11593 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 11594 -1, PERF_FLAG_FD_CLOEXEC); 11595 if (cpu_buf->fd < 0) { 11596 err = -errno; 11597 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 11598 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11599 goto error; 11600 } 11601 11602 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 11603 PROT_READ | PROT_WRITE, MAP_SHARED, 11604 cpu_buf->fd, 0); 11605 if (cpu_buf->base == MAP_FAILED) { 11606 cpu_buf->base = NULL; 11607 err = -errno; 11608 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 11609 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11610 goto error; 11611 } 11612 11613 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 11614 err = -errno; 11615 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 11616 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11617 goto error; 11618 } 11619 11620 return cpu_buf; 11621 11622 error: 11623 perf_buffer__free_cpu_buf(pb, cpu_buf); 11624 return (struct perf_cpu_buf *)ERR_PTR(err); 11625 } 11626 11627 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 11628 struct perf_buffer_params *p); 11629 11630 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 11631 perf_buffer_sample_fn sample_cb, 11632 perf_buffer_lost_fn lost_cb, 11633 void *ctx, 11634 const struct perf_buffer_opts *opts) 11635 { 11636 const size_t attr_sz = sizeof(struct perf_event_attr); 11637 struct perf_buffer_params p = {}; 11638 struct perf_event_attr attr; 11639 11640 if (!OPTS_VALID(opts, perf_buffer_opts)) 11641 return libbpf_err_ptr(-EINVAL); 11642 11643 memset(&attr, 0, attr_sz); 11644 attr.size = attr_sz; 11645 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 11646 attr.type = PERF_TYPE_SOFTWARE; 11647 attr.sample_type = PERF_SAMPLE_RAW; 11648 attr.sample_period = 1; 11649 attr.wakeup_events = 1; 11650 11651 p.attr = &attr; 11652 p.sample_cb = sample_cb; 11653 p.lost_cb = lost_cb; 11654 p.ctx = ctx; 11655 11656 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 11657 } 11658 11659 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 11660 struct perf_event_attr *attr, 11661 perf_buffer_event_fn event_cb, void *ctx, 11662 const struct perf_buffer_raw_opts *opts) 11663 { 11664 struct perf_buffer_params p = {}; 11665 11666 if (!attr) 11667 return libbpf_err_ptr(-EINVAL); 11668 11669 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 11670 return libbpf_err_ptr(-EINVAL); 11671 11672 p.attr = attr; 11673 p.event_cb = event_cb; 11674 p.ctx = ctx; 11675 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 11676 p.cpus = OPTS_GET(opts, cpus, NULL); 11677 p.map_keys = OPTS_GET(opts, map_keys, NULL); 11678 11679 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 11680 } 11681 11682 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 11683 struct perf_buffer_params *p) 11684 { 11685 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 11686 struct bpf_map_info map; 11687 char msg[STRERR_BUFSIZE]; 11688 struct perf_buffer *pb; 11689 bool *online = NULL; 11690 __u32 map_info_len; 11691 int err, i, j, n; 11692 11693 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 11694 pr_warn("page count should be power of two, but is %zu\n", 11695 page_cnt); 11696 return ERR_PTR(-EINVAL); 11697 } 11698 11699 /* best-effort sanity checks */ 11700 memset(&map, 0, sizeof(map)); 11701 map_info_len = sizeof(map); 11702 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 11703 if (err) { 11704 err = -errno; 11705 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 11706 * -EBADFD, -EFAULT, or -E2BIG on real error 11707 */ 11708 if (err != -EINVAL) { 11709 pr_warn("failed to get map info for map FD %d: %s\n", 11710 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 11711 return ERR_PTR(err); 11712 } 11713 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 11714 map_fd); 11715 } else { 11716 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 11717 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 11718 map.name); 11719 return ERR_PTR(-EINVAL); 11720 } 11721 } 11722 11723 pb = calloc(1, sizeof(*pb)); 11724 if (!pb) 11725 return ERR_PTR(-ENOMEM); 11726 11727 pb->event_cb = p->event_cb; 11728 pb->sample_cb = p->sample_cb; 11729 pb->lost_cb = p->lost_cb; 11730 pb->ctx = p->ctx; 11731 11732 pb->page_size = getpagesize(); 11733 pb->mmap_size = pb->page_size * page_cnt; 11734 pb->map_fd = map_fd; 11735 11736 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 11737 if (pb->epoll_fd < 0) { 11738 err = -errno; 11739 pr_warn("failed to create epoll instance: %s\n", 11740 libbpf_strerror_r(err, msg, sizeof(msg))); 11741 goto error; 11742 } 11743 11744 if (p->cpu_cnt > 0) { 11745 pb->cpu_cnt = p->cpu_cnt; 11746 } else { 11747 pb->cpu_cnt = libbpf_num_possible_cpus(); 11748 if (pb->cpu_cnt < 0) { 11749 err = pb->cpu_cnt; 11750 goto error; 11751 } 11752 if (map.max_entries && map.max_entries < pb->cpu_cnt) 11753 pb->cpu_cnt = map.max_entries; 11754 } 11755 11756 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 11757 if (!pb->events) { 11758 err = -ENOMEM; 11759 pr_warn("failed to allocate events: out of memory\n"); 11760 goto error; 11761 } 11762 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 11763 if (!pb->cpu_bufs) { 11764 err = -ENOMEM; 11765 pr_warn("failed to allocate buffers: out of memory\n"); 11766 goto error; 11767 } 11768 11769 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 11770 if (err) { 11771 pr_warn("failed to get online CPU mask: %d\n", err); 11772 goto error; 11773 } 11774 11775 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 11776 struct perf_cpu_buf *cpu_buf; 11777 int cpu, map_key; 11778 11779 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 11780 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 11781 11782 /* in case user didn't explicitly requested particular CPUs to 11783 * be attached to, skip offline/not present CPUs 11784 */ 11785 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 11786 continue; 11787 11788 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 11789 if (IS_ERR(cpu_buf)) { 11790 err = PTR_ERR(cpu_buf); 11791 goto error; 11792 } 11793 11794 pb->cpu_bufs[j] = cpu_buf; 11795 11796 err = bpf_map_update_elem(pb->map_fd, &map_key, 11797 &cpu_buf->fd, 0); 11798 if (err) { 11799 err = -errno; 11800 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 11801 cpu, map_key, cpu_buf->fd, 11802 libbpf_strerror_r(err, msg, sizeof(msg))); 11803 goto error; 11804 } 11805 11806 pb->events[j].events = EPOLLIN; 11807 pb->events[j].data.ptr = cpu_buf; 11808 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 11809 &pb->events[j]) < 0) { 11810 err = -errno; 11811 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 11812 cpu, cpu_buf->fd, 11813 libbpf_strerror_r(err, msg, sizeof(msg))); 11814 goto error; 11815 } 11816 j++; 11817 } 11818 pb->cpu_cnt = j; 11819 free(online); 11820 11821 return pb; 11822 11823 error: 11824 free(online); 11825 if (pb) 11826 perf_buffer__free(pb); 11827 return ERR_PTR(err); 11828 } 11829 11830 struct perf_sample_raw { 11831 struct perf_event_header header; 11832 uint32_t size; 11833 char data[]; 11834 }; 11835 11836 struct perf_sample_lost { 11837 struct perf_event_header header; 11838 uint64_t id; 11839 uint64_t lost; 11840 uint64_t sample_id; 11841 }; 11842 11843 static enum bpf_perf_event_ret 11844 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 11845 { 11846 struct perf_cpu_buf *cpu_buf = ctx; 11847 struct perf_buffer *pb = cpu_buf->pb; 11848 void *data = e; 11849 11850 /* user wants full control over parsing perf event */ 11851 if (pb->event_cb) 11852 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 11853 11854 switch (e->type) { 11855 case PERF_RECORD_SAMPLE: { 11856 struct perf_sample_raw *s = data; 11857 11858 if (pb->sample_cb) 11859 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 11860 break; 11861 } 11862 case PERF_RECORD_LOST: { 11863 struct perf_sample_lost *s = data; 11864 11865 if (pb->lost_cb) 11866 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 11867 break; 11868 } 11869 default: 11870 pr_warn("unknown perf sample type %d\n", e->type); 11871 return LIBBPF_PERF_EVENT_ERROR; 11872 } 11873 return LIBBPF_PERF_EVENT_CONT; 11874 } 11875 11876 static int perf_buffer__process_records(struct perf_buffer *pb, 11877 struct perf_cpu_buf *cpu_buf) 11878 { 11879 enum bpf_perf_event_ret ret; 11880 11881 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 11882 pb->page_size, &cpu_buf->buf, 11883 &cpu_buf->buf_size, 11884 perf_buffer__process_record, cpu_buf); 11885 if (ret != LIBBPF_PERF_EVENT_CONT) 11886 return ret; 11887 return 0; 11888 } 11889 11890 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 11891 { 11892 return pb->epoll_fd; 11893 } 11894 11895 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 11896 { 11897 int i, cnt, err; 11898 11899 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 11900 if (cnt < 0) 11901 return -errno; 11902 11903 for (i = 0; i < cnt; i++) { 11904 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 11905 11906 err = perf_buffer__process_records(pb, cpu_buf); 11907 if (err) { 11908 pr_warn("error while processing records: %d\n", err); 11909 return libbpf_err(err); 11910 } 11911 } 11912 return cnt; 11913 } 11914 11915 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 11916 * manager. 11917 */ 11918 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 11919 { 11920 return pb->cpu_cnt; 11921 } 11922 11923 /* 11924 * Return perf_event FD of a ring buffer in *buf_idx* slot of 11925 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 11926 * select()/poll()/epoll() Linux syscalls. 11927 */ 11928 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 11929 { 11930 struct perf_cpu_buf *cpu_buf; 11931 11932 if (buf_idx >= pb->cpu_cnt) 11933 return libbpf_err(-EINVAL); 11934 11935 cpu_buf = pb->cpu_bufs[buf_idx]; 11936 if (!cpu_buf) 11937 return libbpf_err(-ENOENT); 11938 11939 return cpu_buf->fd; 11940 } 11941 11942 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 11943 { 11944 struct perf_cpu_buf *cpu_buf; 11945 11946 if (buf_idx >= pb->cpu_cnt) 11947 return libbpf_err(-EINVAL); 11948 11949 cpu_buf = pb->cpu_bufs[buf_idx]; 11950 if (!cpu_buf) 11951 return libbpf_err(-ENOENT); 11952 11953 *buf = cpu_buf->base; 11954 *buf_size = pb->mmap_size; 11955 return 0; 11956 } 11957 11958 /* 11959 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 11960 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 11961 * consume, do nothing and return success. 11962 * Returns: 11963 * - 0 on success; 11964 * - <0 on failure. 11965 */ 11966 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 11967 { 11968 struct perf_cpu_buf *cpu_buf; 11969 11970 if (buf_idx >= pb->cpu_cnt) 11971 return libbpf_err(-EINVAL); 11972 11973 cpu_buf = pb->cpu_bufs[buf_idx]; 11974 if (!cpu_buf) 11975 return libbpf_err(-ENOENT); 11976 11977 return perf_buffer__process_records(pb, cpu_buf); 11978 } 11979 11980 int perf_buffer__consume(struct perf_buffer *pb) 11981 { 11982 int i, err; 11983 11984 for (i = 0; i < pb->cpu_cnt; i++) { 11985 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 11986 11987 if (!cpu_buf) 11988 continue; 11989 11990 err = perf_buffer__process_records(pb, cpu_buf); 11991 if (err) { 11992 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 11993 return libbpf_err(err); 11994 } 11995 } 11996 return 0; 11997 } 11998 11999 int bpf_program__set_attach_target(struct bpf_program *prog, 12000 int attach_prog_fd, 12001 const char *attach_func_name) 12002 { 12003 int btf_obj_fd = 0, btf_id = 0, err; 12004 12005 if (!prog || attach_prog_fd < 0) 12006 return libbpf_err(-EINVAL); 12007 12008 if (prog->obj->loaded) 12009 return libbpf_err(-EINVAL); 12010 12011 if (attach_prog_fd && !attach_func_name) { 12012 /* remember attach_prog_fd and let bpf_program__load() find 12013 * BTF ID during the program load 12014 */ 12015 prog->attach_prog_fd = attach_prog_fd; 12016 return 0; 12017 } 12018 12019 if (attach_prog_fd) { 12020 btf_id = libbpf_find_prog_btf_id(attach_func_name, 12021 attach_prog_fd); 12022 if (btf_id < 0) 12023 return libbpf_err(btf_id); 12024 } else { 12025 if (!attach_func_name) 12026 return libbpf_err(-EINVAL); 12027 12028 /* load btf_vmlinux, if not yet */ 12029 err = bpf_object__load_vmlinux_btf(prog->obj, true); 12030 if (err) 12031 return libbpf_err(err); 12032 err = find_kernel_btf_id(prog->obj, attach_func_name, 12033 prog->expected_attach_type, 12034 &btf_obj_fd, &btf_id); 12035 if (err) 12036 return libbpf_err(err); 12037 } 12038 12039 prog->attach_btf_id = btf_id; 12040 prog->attach_btf_obj_fd = btf_obj_fd; 12041 prog->attach_prog_fd = attach_prog_fd; 12042 return 0; 12043 } 12044 12045 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 12046 { 12047 int err = 0, n, len, start, end = -1; 12048 bool *tmp; 12049 12050 *mask = NULL; 12051 *mask_sz = 0; 12052 12053 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 12054 while (*s) { 12055 if (*s == ',' || *s == '\n') { 12056 s++; 12057 continue; 12058 } 12059 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 12060 if (n <= 0 || n > 2) { 12061 pr_warn("Failed to get CPU range %s: %d\n", s, n); 12062 err = -EINVAL; 12063 goto cleanup; 12064 } else if (n == 1) { 12065 end = start; 12066 } 12067 if (start < 0 || start > end) { 12068 pr_warn("Invalid CPU range [%d,%d] in %s\n", 12069 start, end, s); 12070 err = -EINVAL; 12071 goto cleanup; 12072 } 12073 tmp = realloc(*mask, end + 1); 12074 if (!tmp) { 12075 err = -ENOMEM; 12076 goto cleanup; 12077 } 12078 *mask = tmp; 12079 memset(tmp + *mask_sz, 0, start - *mask_sz); 12080 memset(tmp + start, 1, end - start + 1); 12081 *mask_sz = end + 1; 12082 s += len; 12083 } 12084 if (!*mask_sz) { 12085 pr_warn("Empty CPU range\n"); 12086 return -EINVAL; 12087 } 12088 return 0; 12089 cleanup: 12090 free(*mask); 12091 *mask = NULL; 12092 return err; 12093 } 12094 12095 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 12096 { 12097 int fd, err = 0, len; 12098 char buf[128]; 12099 12100 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 12101 if (fd < 0) { 12102 err = -errno; 12103 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 12104 return err; 12105 } 12106 len = read(fd, buf, sizeof(buf)); 12107 close(fd); 12108 if (len <= 0) { 12109 err = len ? -errno : -EINVAL; 12110 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 12111 return err; 12112 } 12113 if (len >= sizeof(buf)) { 12114 pr_warn("CPU mask is too big in file %s\n", fcpu); 12115 return -E2BIG; 12116 } 12117 buf[len] = '\0'; 12118 12119 return parse_cpu_mask_str(buf, mask, mask_sz); 12120 } 12121 12122 int libbpf_num_possible_cpus(void) 12123 { 12124 static const char *fcpu = "/sys/devices/system/cpu/possible"; 12125 static int cpus; 12126 int err, n, i, tmp_cpus; 12127 bool *mask; 12128 12129 tmp_cpus = READ_ONCE(cpus); 12130 if (tmp_cpus > 0) 12131 return tmp_cpus; 12132 12133 err = parse_cpu_mask_file(fcpu, &mask, &n); 12134 if (err) 12135 return libbpf_err(err); 12136 12137 tmp_cpus = 0; 12138 for (i = 0; i < n; i++) { 12139 if (mask[i]) 12140 tmp_cpus++; 12141 } 12142 free(mask); 12143 12144 WRITE_ONCE(cpus, tmp_cpus); 12145 return tmp_cpus; 12146 } 12147 12148 static int populate_skeleton_maps(const struct bpf_object *obj, 12149 struct bpf_map_skeleton *maps, 12150 size_t map_cnt) 12151 { 12152 int i; 12153 12154 for (i = 0; i < map_cnt; i++) { 12155 struct bpf_map **map = maps[i].map; 12156 const char *name = maps[i].name; 12157 void **mmaped = maps[i].mmaped; 12158 12159 *map = bpf_object__find_map_by_name(obj, name); 12160 if (!*map) { 12161 pr_warn("failed to find skeleton map '%s'\n", name); 12162 return -ESRCH; 12163 } 12164 12165 /* externs shouldn't be pre-setup from user code */ 12166 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 12167 *mmaped = (*map)->mmaped; 12168 } 12169 return 0; 12170 } 12171 12172 static int populate_skeleton_progs(const struct bpf_object *obj, 12173 struct bpf_prog_skeleton *progs, 12174 size_t prog_cnt) 12175 { 12176 int i; 12177 12178 for (i = 0; i < prog_cnt; i++) { 12179 struct bpf_program **prog = progs[i].prog; 12180 const char *name = progs[i].name; 12181 12182 *prog = bpf_object__find_program_by_name(obj, name); 12183 if (!*prog) { 12184 pr_warn("failed to find skeleton program '%s'\n", name); 12185 return -ESRCH; 12186 } 12187 } 12188 return 0; 12189 } 12190 12191 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 12192 const struct bpf_object_open_opts *opts) 12193 { 12194 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 12195 .object_name = s->name, 12196 ); 12197 struct bpf_object *obj; 12198 int err; 12199 12200 /* Attempt to preserve opts->object_name, unless overriden by user 12201 * explicitly. Overwriting object name for skeletons is discouraged, 12202 * as it breaks global data maps, because they contain object name 12203 * prefix as their own map name prefix. When skeleton is generated, 12204 * bpftool is making an assumption that this name will stay the same. 12205 */ 12206 if (opts) { 12207 memcpy(&skel_opts, opts, sizeof(*opts)); 12208 if (!opts->object_name) 12209 skel_opts.object_name = s->name; 12210 } 12211 12212 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 12213 err = libbpf_get_error(obj); 12214 if (err) { 12215 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 12216 s->name, err); 12217 return libbpf_err(err); 12218 } 12219 12220 *s->obj = obj; 12221 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 12222 if (err) { 12223 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 12224 return libbpf_err(err); 12225 } 12226 12227 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 12228 if (err) { 12229 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 12230 return libbpf_err(err); 12231 } 12232 12233 return 0; 12234 } 12235 12236 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 12237 { 12238 int err, len, var_idx, i; 12239 const char *var_name; 12240 const struct bpf_map *map; 12241 struct btf *btf; 12242 __u32 map_type_id; 12243 const struct btf_type *map_type, *var_type; 12244 const struct bpf_var_skeleton *var_skel; 12245 struct btf_var_secinfo *var; 12246 12247 if (!s->obj) 12248 return libbpf_err(-EINVAL); 12249 12250 btf = bpf_object__btf(s->obj); 12251 if (!btf) { 12252 pr_warn("subskeletons require BTF at runtime (object %s)\n", 12253 bpf_object__name(s->obj)); 12254 return libbpf_err(-errno); 12255 } 12256 12257 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 12258 if (err) { 12259 pr_warn("failed to populate subskeleton maps: %d\n", err); 12260 return libbpf_err(err); 12261 } 12262 12263 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 12264 if (err) { 12265 pr_warn("failed to populate subskeleton maps: %d\n", err); 12266 return libbpf_err(err); 12267 } 12268 12269 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 12270 var_skel = &s->vars[var_idx]; 12271 map = *var_skel->map; 12272 map_type_id = bpf_map__btf_value_type_id(map); 12273 map_type = btf__type_by_id(btf, map_type_id); 12274 12275 if (!btf_is_datasec(map_type)) { 12276 pr_warn("type for map '%1$s' is not a datasec: %2$s", 12277 bpf_map__name(map), 12278 __btf_kind_str(btf_kind(map_type))); 12279 return libbpf_err(-EINVAL); 12280 } 12281 12282 len = btf_vlen(map_type); 12283 var = btf_var_secinfos(map_type); 12284 for (i = 0; i < len; i++, var++) { 12285 var_type = btf__type_by_id(btf, var->type); 12286 var_name = btf__name_by_offset(btf, var_type->name_off); 12287 if (strcmp(var_name, var_skel->name) == 0) { 12288 *var_skel->addr = map->mmaped + var->offset; 12289 break; 12290 } 12291 } 12292 } 12293 return 0; 12294 } 12295 12296 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 12297 { 12298 if (!s) 12299 return; 12300 free(s->maps); 12301 free(s->progs); 12302 free(s->vars); 12303 free(s); 12304 } 12305 12306 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 12307 { 12308 int i, err; 12309 12310 err = bpf_object__load(*s->obj); 12311 if (err) { 12312 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 12313 return libbpf_err(err); 12314 } 12315 12316 for (i = 0; i < s->map_cnt; i++) { 12317 struct bpf_map *map = *s->maps[i].map; 12318 size_t mmap_sz = bpf_map_mmap_sz(map); 12319 int prot, map_fd = bpf_map__fd(map); 12320 void **mmaped = s->maps[i].mmaped; 12321 12322 if (!mmaped) 12323 continue; 12324 12325 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 12326 *mmaped = NULL; 12327 continue; 12328 } 12329 12330 if (map->def.map_flags & BPF_F_RDONLY_PROG) 12331 prot = PROT_READ; 12332 else 12333 prot = PROT_READ | PROT_WRITE; 12334 12335 /* Remap anonymous mmap()-ed "map initialization image" as 12336 * a BPF map-backed mmap()-ed memory, but preserving the same 12337 * memory address. This will cause kernel to change process' 12338 * page table to point to a different piece of kernel memory, 12339 * but from userspace point of view memory address (and its 12340 * contents, being identical at this point) will stay the 12341 * same. This mapping will be released by bpf_object__close() 12342 * as per normal clean up procedure, so we don't need to worry 12343 * about it from skeleton's clean up perspective. 12344 */ 12345 *mmaped = mmap(map->mmaped, mmap_sz, prot, 12346 MAP_SHARED | MAP_FIXED, map_fd, 0); 12347 if (*mmaped == MAP_FAILED) { 12348 err = -errno; 12349 *mmaped = NULL; 12350 pr_warn("failed to re-mmap() map '%s': %d\n", 12351 bpf_map__name(map), err); 12352 return libbpf_err(err); 12353 } 12354 } 12355 12356 return 0; 12357 } 12358 12359 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 12360 { 12361 int i, err; 12362 12363 for (i = 0; i < s->prog_cnt; i++) { 12364 struct bpf_program *prog = *s->progs[i].prog; 12365 struct bpf_link **link = s->progs[i].link; 12366 12367 if (!prog->autoload || !prog->autoattach) 12368 continue; 12369 12370 /* auto-attaching not supported for this program */ 12371 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12372 continue; 12373 12374 /* if user already set the link manually, don't attempt auto-attach */ 12375 if (*link) 12376 continue; 12377 12378 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 12379 if (err) { 12380 pr_warn("prog '%s': failed to auto-attach: %d\n", 12381 bpf_program__name(prog), err); 12382 return libbpf_err(err); 12383 } 12384 12385 /* It's possible that for some SEC() definitions auto-attach 12386 * is supported in some cases (e.g., if definition completely 12387 * specifies target information), but is not in other cases. 12388 * SEC("uprobe") is one such case. If user specified target 12389 * binary and function name, such BPF program can be 12390 * auto-attached. But if not, it shouldn't trigger skeleton's 12391 * attach to fail. It should just be skipped. 12392 * attach_fn signals such case with returning 0 (no error) and 12393 * setting link to NULL. 12394 */ 12395 } 12396 12397 return 0; 12398 } 12399 12400 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 12401 { 12402 int i; 12403 12404 for (i = 0; i < s->prog_cnt; i++) { 12405 struct bpf_link **link = s->progs[i].link; 12406 12407 bpf_link__destroy(*link); 12408 *link = NULL; 12409 } 12410 } 12411 12412 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 12413 { 12414 if (!s) 12415 return; 12416 12417 if (s->progs) 12418 bpf_object__detach_skeleton(s); 12419 if (s->obj) 12420 bpf_object__close(*s->obj); 12421 free(s->maps); 12422 free(s->progs); 12423 free(s); 12424 } 12425