1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/list.h> 35 #include <linux/limits.h> 36 #include <linux/perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <linux/version.h> 39 #include <sys/epoll.h> 40 #include <sys/ioctl.h> 41 #include <sys/mman.h> 42 #include <sys/stat.h> 43 #include <sys/types.h> 44 #include <sys/vfs.h> 45 #include <sys/utsname.h> 46 #include <sys/resource.h> 47 #include <libelf.h> 48 #include <gelf.h> 49 #include <zlib.h> 50 51 #include "libbpf.h" 52 #include "bpf.h" 53 #include "btf.h" 54 #include "str_error.h" 55 #include "libbpf_internal.h" 56 #include "hashmap.h" 57 58 #ifndef BPF_FS_MAGIC 59 #define BPF_FS_MAGIC 0xcafe4a11 60 #endif 61 62 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 63 64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 65 * compilation if user enables corresponding warning. Disable it explicitly. 66 */ 67 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 68 69 #define __printf(a, b) __attribute__((format(printf, a, b))) 70 71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 72 static const struct btf_type * 73 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id); 74 75 static int __base_pr(enum libbpf_print_level level, const char *format, 76 va_list args) 77 { 78 if (level == LIBBPF_DEBUG) 79 return 0; 80 81 return vfprintf(stderr, format, args); 82 } 83 84 static libbpf_print_fn_t __libbpf_pr = __base_pr; 85 86 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 87 { 88 libbpf_print_fn_t old_print_fn = __libbpf_pr; 89 90 __libbpf_pr = fn; 91 return old_print_fn; 92 } 93 94 __printf(2, 3) 95 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 96 { 97 va_list args; 98 99 if (!__libbpf_pr) 100 return; 101 102 va_start(args, format); 103 __libbpf_pr(level, format, args); 104 va_end(args); 105 } 106 107 static void pr_perm_msg(int err) 108 { 109 struct rlimit limit; 110 char buf[100]; 111 112 if (err != -EPERM || geteuid() != 0) 113 return; 114 115 err = getrlimit(RLIMIT_MEMLOCK, &limit); 116 if (err) 117 return; 118 119 if (limit.rlim_cur == RLIM_INFINITY) 120 return; 121 122 if (limit.rlim_cur < 1024) 123 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 124 else if (limit.rlim_cur < 1024*1024) 125 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 126 else 127 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 128 129 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 130 buf); 131 } 132 133 #define STRERR_BUFSIZE 128 134 135 /* Copied from tools/perf/util/util.h */ 136 #ifndef zfree 137 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 138 #endif 139 140 #ifndef zclose 141 # define zclose(fd) ({ \ 142 int ___err = 0; \ 143 if ((fd) >= 0) \ 144 ___err = close((fd)); \ 145 fd = -1; \ 146 ___err; }) 147 #endif 148 149 static inline __u64 ptr_to_u64(const void *ptr) 150 { 151 return (__u64) (unsigned long) ptr; 152 } 153 154 enum kern_feature_id { 155 /* v4.14: kernel support for program & map names. */ 156 FEAT_PROG_NAME, 157 /* v5.2: kernel support for global data sections. */ 158 FEAT_GLOBAL_DATA, 159 /* BTF support */ 160 FEAT_BTF, 161 /* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */ 162 FEAT_BTF_FUNC, 163 /* BTF_KIND_VAR and BTF_KIND_DATASEC support */ 164 FEAT_BTF_DATASEC, 165 /* BTF_FUNC_GLOBAL is supported */ 166 FEAT_BTF_GLOBAL_FUNC, 167 /* BPF_F_MMAPABLE is supported for arrays */ 168 FEAT_ARRAY_MMAP, 169 /* kernel support for expected_attach_type in BPF_PROG_LOAD */ 170 FEAT_EXP_ATTACH_TYPE, 171 /* bpf_probe_read_{kernel,user}[_str] helpers */ 172 FEAT_PROBE_READ_KERN, 173 /* BPF_PROG_BIND_MAP is supported */ 174 FEAT_PROG_BIND_MAP, 175 /* Kernel support for module BTFs */ 176 FEAT_MODULE_BTF, 177 /* BTF_KIND_FLOAT support */ 178 FEAT_BTF_FLOAT, 179 __FEAT_CNT, 180 }; 181 182 static bool kernel_supports(enum kern_feature_id feat_id); 183 184 enum reloc_type { 185 RELO_LD64, 186 RELO_CALL, 187 RELO_DATA, 188 RELO_EXTERN_VAR, 189 RELO_EXTERN_FUNC, 190 RELO_SUBPROG_ADDR, 191 }; 192 193 struct reloc_desc { 194 enum reloc_type type; 195 int insn_idx; 196 int map_idx; 197 int sym_off; 198 bool processed; 199 }; 200 201 struct bpf_sec_def; 202 203 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_sec_def *sec, 204 struct bpf_program *prog); 205 206 struct bpf_sec_def { 207 const char *sec; 208 size_t len; 209 enum bpf_prog_type prog_type; 210 enum bpf_attach_type expected_attach_type; 211 bool is_exp_attach_type_optional; 212 bool is_attachable; 213 bool is_attach_btf; 214 bool is_sleepable; 215 attach_fn_t attach_fn; 216 }; 217 218 /* 219 * bpf_prog should be a better name but it has been used in 220 * linux/filter.h. 221 */ 222 struct bpf_program { 223 const struct bpf_sec_def *sec_def; 224 char *sec_name; 225 size_t sec_idx; 226 /* this program's instruction offset (in number of instructions) 227 * within its containing ELF section 228 */ 229 size_t sec_insn_off; 230 /* number of original instructions in ELF section belonging to this 231 * program, not taking into account subprogram instructions possible 232 * appended later during relocation 233 */ 234 size_t sec_insn_cnt; 235 /* Offset (in number of instructions) of the start of instruction 236 * belonging to this BPF program within its containing main BPF 237 * program. For the entry-point (main) BPF program, this is always 238 * zero. For a sub-program, this gets reset before each of main BPF 239 * programs are processed and relocated and is used to determined 240 * whether sub-program was already appended to the main program, and 241 * if yes, at which instruction offset. 242 */ 243 size_t sub_insn_off; 244 245 char *name; 246 /* sec_name with / replaced by _; makes recursive pinning 247 * in bpf_object__pin_programs easier 248 */ 249 char *pin_name; 250 251 /* instructions that belong to BPF program; insns[0] is located at 252 * sec_insn_off instruction within its ELF section in ELF file, so 253 * when mapping ELF file instruction index to the local instruction, 254 * one needs to subtract sec_insn_off; and vice versa. 255 */ 256 struct bpf_insn *insns; 257 /* actual number of instruction in this BPF program's image; for 258 * entry-point BPF programs this includes the size of main program 259 * itself plus all the used sub-programs, appended at the end 260 */ 261 size_t insns_cnt; 262 263 struct reloc_desc *reloc_desc; 264 int nr_reloc; 265 int log_level; 266 267 struct { 268 int nr; 269 int *fds; 270 } instances; 271 bpf_program_prep_t preprocessor; 272 273 struct bpf_object *obj; 274 void *priv; 275 bpf_program_clear_priv_t clear_priv; 276 277 bool load; 278 enum bpf_prog_type type; 279 enum bpf_attach_type expected_attach_type; 280 int prog_ifindex; 281 __u32 attach_btf_obj_fd; 282 __u32 attach_btf_id; 283 __u32 attach_prog_fd; 284 void *func_info; 285 __u32 func_info_rec_size; 286 __u32 func_info_cnt; 287 288 void *line_info; 289 __u32 line_info_rec_size; 290 __u32 line_info_cnt; 291 __u32 prog_flags; 292 }; 293 294 struct bpf_struct_ops { 295 const char *tname; 296 const struct btf_type *type; 297 struct bpf_program **progs; 298 __u32 *kern_func_off; 299 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 300 void *data; 301 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 302 * btf_vmlinux's format. 303 * struct bpf_struct_ops_tcp_congestion_ops { 304 * [... some other kernel fields ...] 305 * struct tcp_congestion_ops data; 306 * } 307 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 308 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 309 * from "data". 310 */ 311 void *kern_vdata; 312 __u32 type_id; 313 }; 314 315 #define DATA_SEC ".data" 316 #define BSS_SEC ".bss" 317 #define RODATA_SEC ".rodata" 318 #define KCONFIG_SEC ".kconfig" 319 #define KSYMS_SEC ".ksyms" 320 #define STRUCT_OPS_SEC ".struct_ops" 321 322 enum libbpf_map_type { 323 LIBBPF_MAP_UNSPEC, 324 LIBBPF_MAP_DATA, 325 LIBBPF_MAP_BSS, 326 LIBBPF_MAP_RODATA, 327 LIBBPF_MAP_KCONFIG, 328 }; 329 330 static const char * const libbpf_type_to_btf_name[] = { 331 [LIBBPF_MAP_DATA] = DATA_SEC, 332 [LIBBPF_MAP_BSS] = BSS_SEC, 333 [LIBBPF_MAP_RODATA] = RODATA_SEC, 334 [LIBBPF_MAP_KCONFIG] = KCONFIG_SEC, 335 }; 336 337 struct bpf_map { 338 char *name; 339 int fd; 340 int sec_idx; 341 size_t sec_offset; 342 int map_ifindex; 343 int inner_map_fd; 344 struct bpf_map_def def; 345 __u32 numa_node; 346 __u32 btf_var_idx; 347 __u32 btf_key_type_id; 348 __u32 btf_value_type_id; 349 __u32 btf_vmlinux_value_type_id; 350 void *priv; 351 bpf_map_clear_priv_t clear_priv; 352 enum libbpf_map_type libbpf_type; 353 void *mmaped; 354 struct bpf_struct_ops *st_ops; 355 struct bpf_map *inner_map; 356 void **init_slots; 357 int init_slots_sz; 358 char *pin_path; 359 bool pinned; 360 bool reused; 361 }; 362 363 enum extern_type { 364 EXT_UNKNOWN, 365 EXT_KCFG, 366 EXT_KSYM, 367 }; 368 369 enum kcfg_type { 370 KCFG_UNKNOWN, 371 KCFG_CHAR, 372 KCFG_BOOL, 373 KCFG_INT, 374 KCFG_TRISTATE, 375 KCFG_CHAR_ARR, 376 }; 377 378 struct extern_desc { 379 enum extern_type type; 380 int sym_idx; 381 int btf_id; 382 int sec_btf_id; 383 const char *name; 384 bool is_set; 385 bool is_weak; 386 union { 387 struct { 388 enum kcfg_type type; 389 int sz; 390 int align; 391 int data_off; 392 bool is_signed; 393 } kcfg; 394 struct { 395 unsigned long long addr; 396 397 /* target btf_id of the corresponding kernel var. */ 398 int kernel_btf_obj_fd; 399 int kernel_btf_id; 400 401 /* local btf_id of the ksym extern's type. */ 402 __u32 type_id; 403 } ksym; 404 }; 405 }; 406 407 static LIST_HEAD(bpf_objects_list); 408 409 struct module_btf { 410 struct btf *btf; 411 char *name; 412 __u32 id; 413 int fd; 414 }; 415 416 struct bpf_object { 417 char name[BPF_OBJ_NAME_LEN]; 418 char license[64]; 419 __u32 kern_version; 420 421 struct bpf_program *programs; 422 size_t nr_programs; 423 struct bpf_map *maps; 424 size_t nr_maps; 425 size_t maps_cap; 426 427 char *kconfig; 428 struct extern_desc *externs; 429 int nr_extern; 430 int kconfig_map_idx; 431 int rodata_map_idx; 432 433 bool loaded; 434 bool has_subcalls; 435 436 /* 437 * Information when doing elf related work. Only valid if fd 438 * is valid. 439 */ 440 struct { 441 int fd; 442 const void *obj_buf; 443 size_t obj_buf_sz; 444 Elf *elf; 445 GElf_Ehdr ehdr; 446 Elf_Data *symbols; 447 Elf_Data *data; 448 Elf_Data *rodata; 449 Elf_Data *bss; 450 Elf_Data *st_ops_data; 451 size_t shstrndx; /* section index for section name strings */ 452 size_t strtabidx; 453 struct { 454 GElf_Shdr shdr; 455 Elf_Data *data; 456 } *reloc_sects; 457 int nr_reloc_sects; 458 int maps_shndx; 459 int btf_maps_shndx; 460 __u32 btf_maps_sec_btf_id; 461 int text_shndx; 462 int symbols_shndx; 463 int data_shndx; 464 int rodata_shndx; 465 int bss_shndx; 466 int st_ops_shndx; 467 } efile; 468 /* 469 * All loaded bpf_object is linked in a list, which is 470 * hidden to caller. bpf_objects__<func> handlers deal with 471 * all objects. 472 */ 473 struct list_head list; 474 475 struct btf *btf; 476 struct btf_ext *btf_ext; 477 478 /* Parse and load BTF vmlinux if any of the programs in the object need 479 * it at load time. 480 */ 481 struct btf *btf_vmlinux; 482 /* vmlinux BTF override for CO-RE relocations */ 483 struct btf *btf_vmlinux_override; 484 /* Lazily initialized kernel module BTFs */ 485 struct module_btf *btf_modules; 486 bool btf_modules_loaded; 487 size_t btf_module_cnt; 488 size_t btf_module_cap; 489 490 void *priv; 491 bpf_object_clear_priv_t clear_priv; 492 493 char path[]; 494 }; 495 #define obj_elf_valid(o) ((o)->efile.elf) 496 497 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 498 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 499 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 500 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 501 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr); 502 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 503 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 504 static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx, 505 size_t off, __u32 sym_type, GElf_Sym *sym); 506 507 void bpf_program__unload(struct bpf_program *prog) 508 { 509 int i; 510 511 if (!prog) 512 return; 513 514 /* 515 * If the object is opened but the program was never loaded, 516 * it is possible that prog->instances.nr == -1. 517 */ 518 if (prog->instances.nr > 0) { 519 for (i = 0; i < prog->instances.nr; i++) 520 zclose(prog->instances.fds[i]); 521 } else if (prog->instances.nr != -1) { 522 pr_warn("Internal error: instances.nr is %d\n", 523 prog->instances.nr); 524 } 525 526 prog->instances.nr = -1; 527 zfree(&prog->instances.fds); 528 529 zfree(&prog->func_info); 530 zfree(&prog->line_info); 531 } 532 533 static void bpf_program__exit(struct bpf_program *prog) 534 { 535 if (!prog) 536 return; 537 538 if (prog->clear_priv) 539 prog->clear_priv(prog, prog->priv); 540 541 prog->priv = NULL; 542 prog->clear_priv = NULL; 543 544 bpf_program__unload(prog); 545 zfree(&prog->name); 546 zfree(&prog->sec_name); 547 zfree(&prog->pin_name); 548 zfree(&prog->insns); 549 zfree(&prog->reloc_desc); 550 551 prog->nr_reloc = 0; 552 prog->insns_cnt = 0; 553 prog->sec_idx = -1; 554 } 555 556 static char *__bpf_program__pin_name(struct bpf_program *prog) 557 { 558 char *name, *p; 559 560 name = p = strdup(prog->sec_name); 561 while ((p = strchr(p, '/'))) 562 *p = '_'; 563 564 return name; 565 } 566 567 static bool insn_is_subprog_call(const struct bpf_insn *insn) 568 { 569 return BPF_CLASS(insn->code) == BPF_JMP && 570 BPF_OP(insn->code) == BPF_CALL && 571 BPF_SRC(insn->code) == BPF_K && 572 insn->src_reg == BPF_PSEUDO_CALL && 573 insn->dst_reg == 0 && 574 insn->off == 0; 575 } 576 577 static bool is_ldimm64_insn(struct bpf_insn *insn) 578 { 579 return insn->code == (BPF_LD | BPF_IMM | BPF_DW); 580 } 581 582 static bool is_call_insn(const struct bpf_insn *insn) 583 { 584 return insn->code == (BPF_JMP | BPF_CALL); 585 } 586 587 static bool insn_is_pseudo_func(struct bpf_insn *insn) 588 { 589 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 590 } 591 592 static int 593 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 594 const char *name, size_t sec_idx, const char *sec_name, 595 size_t sec_off, void *insn_data, size_t insn_data_sz) 596 { 597 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 598 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 599 sec_name, name, sec_off, insn_data_sz); 600 return -EINVAL; 601 } 602 603 memset(prog, 0, sizeof(*prog)); 604 prog->obj = obj; 605 606 prog->sec_idx = sec_idx; 607 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 608 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 609 /* insns_cnt can later be increased by appending used subprograms */ 610 prog->insns_cnt = prog->sec_insn_cnt; 611 612 prog->type = BPF_PROG_TYPE_UNSPEC; 613 prog->load = true; 614 615 prog->instances.fds = NULL; 616 prog->instances.nr = -1; 617 618 prog->sec_name = strdup(sec_name); 619 if (!prog->sec_name) 620 goto errout; 621 622 prog->name = strdup(name); 623 if (!prog->name) 624 goto errout; 625 626 prog->pin_name = __bpf_program__pin_name(prog); 627 if (!prog->pin_name) 628 goto errout; 629 630 prog->insns = malloc(insn_data_sz); 631 if (!prog->insns) 632 goto errout; 633 memcpy(prog->insns, insn_data, insn_data_sz); 634 635 return 0; 636 errout: 637 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 638 bpf_program__exit(prog); 639 return -ENOMEM; 640 } 641 642 static int 643 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 644 const char *sec_name, int sec_idx) 645 { 646 struct bpf_program *prog, *progs; 647 void *data = sec_data->d_buf; 648 size_t sec_sz = sec_data->d_size, sec_off, prog_sz; 649 int nr_progs, err; 650 const char *name; 651 GElf_Sym sym; 652 653 progs = obj->programs; 654 nr_progs = obj->nr_programs; 655 sec_off = 0; 656 657 while (sec_off < sec_sz) { 658 if (elf_sym_by_sec_off(obj, sec_idx, sec_off, STT_FUNC, &sym)) { 659 pr_warn("sec '%s': failed to find program symbol at offset %zu\n", 660 sec_name, sec_off); 661 return -LIBBPF_ERRNO__FORMAT; 662 } 663 664 prog_sz = sym.st_size; 665 666 name = elf_sym_str(obj, sym.st_name); 667 if (!name) { 668 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 669 sec_name, sec_off); 670 return -LIBBPF_ERRNO__FORMAT; 671 } 672 673 if (sec_off + prog_sz > sec_sz) { 674 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 675 sec_name, sec_off); 676 return -LIBBPF_ERRNO__FORMAT; 677 } 678 679 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 680 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 681 682 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 683 if (!progs) { 684 /* 685 * In this case the original obj->programs 686 * is still valid, so don't need special treat for 687 * bpf_close_object(). 688 */ 689 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 690 sec_name, name); 691 return -ENOMEM; 692 } 693 obj->programs = progs; 694 695 prog = &progs[nr_progs]; 696 697 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 698 sec_off, data + sec_off, prog_sz); 699 if (err) 700 return err; 701 702 nr_progs++; 703 obj->nr_programs = nr_progs; 704 705 sec_off += prog_sz; 706 } 707 708 return 0; 709 } 710 711 static __u32 get_kernel_version(void) 712 { 713 __u32 major, minor, patch; 714 struct utsname info; 715 716 uname(&info); 717 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 718 return 0; 719 return KERNEL_VERSION(major, minor, patch); 720 } 721 722 static const struct btf_member * 723 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 724 { 725 struct btf_member *m; 726 int i; 727 728 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 729 if (btf_member_bit_offset(t, i) == bit_offset) 730 return m; 731 } 732 733 return NULL; 734 } 735 736 static const struct btf_member * 737 find_member_by_name(const struct btf *btf, const struct btf_type *t, 738 const char *name) 739 { 740 struct btf_member *m; 741 int i; 742 743 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 744 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 745 return m; 746 } 747 748 return NULL; 749 } 750 751 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 752 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 753 const char *name, __u32 kind); 754 755 static int 756 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 757 const struct btf_type **type, __u32 *type_id, 758 const struct btf_type **vtype, __u32 *vtype_id, 759 const struct btf_member **data_member) 760 { 761 const struct btf_type *kern_type, *kern_vtype; 762 const struct btf_member *kern_data_member; 763 __s32 kern_vtype_id, kern_type_id; 764 __u32 i; 765 766 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 767 if (kern_type_id < 0) { 768 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 769 tname); 770 return kern_type_id; 771 } 772 kern_type = btf__type_by_id(btf, kern_type_id); 773 774 /* Find the corresponding "map_value" type that will be used 775 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 776 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 777 * btf_vmlinux. 778 */ 779 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 780 tname, BTF_KIND_STRUCT); 781 if (kern_vtype_id < 0) { 782 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 783 STRUCT_OPS_VALUE_PREFIX, tname); 784 return kern_vtype_id; 785 } 786 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 787 788 /* Find "struct tcp_congestion_ops" from 789 * struct bpf_struct_ops_tcp_congestion_ops { 790 * [ ... ] 791 * struct tcp_congestion_ops data; 792 * } 793 */ 794 kern_data_member = btf_members(kern_vtype); 795 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 796 if (kern_data_member->type == kern_type_id) 797 break; 798 } 799 if (i == btf_vlen(kern_vtype)) { 800 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 801 tname, STRUCT_OPS_VALUE_PREFIX, tname); 802 return -EINVAL; 803 } 804 805 *type = kern_type; 806 *type_id = kern_type_id; 807 *vtype = kern_vtype; 808 *vtype_id = kern_vtype_id; 809 *data_member = kern_data_member; 810 811 return 0; 812 } 813 814 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 815 { 816 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 817 } 818 819 /* Init the map's fields that depend on kern_btf */ 820 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 821 const struct btf *btf, 822 const struct btf *kern_btf) 823 { 824 const struct btf_member *member, *kern_member, *kern_data_member; 825 const struct btf_type *type, *kern_type, *kern_vtype; 826 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 827 struct bpf_struct_ops *st_ops; 828 void *data, *kern_data; 829 const char *tname; 830 int err; 831 832 st_ops = map->st_ops; 833 type = st_ops->type; 834 tname = st_ops->tname; 835 err = find_struct_ops_kern_types(kern_btf, tname, 836 &kern_type, &kern_type_id, 837 &kern_vtype, &kern_vtype_id, 838 &kern_data_member); 839 if (err) 840 return err; 841 842 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 843 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 844 845 map->def.value_size = kern_vtype->size; 846 map->btf_vmlinux_value_type_id = kern_vtype_id; 847 848 st_ops->kern_vdata = calloc(1, kern_vtype->size); 849 if (!st_ops->kern_vdata) 850 return -ENOMEM; 851 852 data = st_ops->data; 853 kern_data_off = kern_data_member->offset / 8; 854 kern_data = st_ops->kern_vdata + kern_data_off; 855 856 member = btf_members(type); 857 for (i = 0; i < btf_vlen(type); i++, member++) { 858 const struct btf_type *mtype, *kern_mtype; 859 __u32 mtype_id, kern_mtype_id; 860 void *mdata, *kern_mdata; 861 __s64 msize, kern_msize; 862 __u32 moff, kern_moff; 863 __u32 kern_member_idx; 864 const char *mname; 865 866 mname = btf__name_by_offset(btf, member->name_off); 867 kern_member = find_member_by_name(kern_btf, kern_type, mname); 868 if (!kern_member) { 869 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 870 map->name, mname); 871 return -ENOTSUP; 872 } 873 874 kern_member_idx = kern_member - btf_members(kern_type); 875 if (btf_member_bitfield_size(type, i) || 876 btf_member_bitfield_size(kern_type, kern_member_idx)) { 877 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 878 map->name, mname); 879 return -ENOTSUP; 880 } 881 882 moff = member->offset / 8; 883 kern_moff = kern_member->offset / 8; 884 885 mdata = data + moff; 886 kern_mdata = kern_data + kern_moff; 887 888 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 889 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 890 &kern_mtype_id); 891 if (BTF_INFO_KIND(mtype->info) != 892 BTF_INFO_KIND(kern_mtype->info)) { 893 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 894 map->name, mname, BTF_INFO_KIND(mtype->info), 895 BTF_INFO_KIND(kern_mtype->info)); 896 return -ENOTSUP; 897 } 898 899 if (btf_is_ptr(mtype)) { 900 struct bpf_program *prog; 901 902 prog = st_ops->progs[i]; 903 if (!prog) 904 continue; 905 906 kern_mtype = skip_mods_and_typedefs(kern_btf, 907 kern_mtype->type, 908 &kern_mtype_id); 909 910 /* mtype->type must be a func_proto which was 911 * guaranteed in bpf_object__collect_st_ops_relos(), 912 * so only check kern_mtype for func_proto here. 913 */ 914 if (!btf_is_func_proto(kern_mtype)) { 915 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 916 map->name, mname); 917 return -ENOTSUP; 918 } 919 920 prog->attach_btf_id = kern_type_id; 921 prog->expected_attach_type = kern_member_idx; 922 923 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 924 925 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 926 map->name, mname, prog->name, moff, 927 kern_moff); 928 929 continue; 930 } 931 932 msize = btf__resolve_size(btf, mtype_id); 933 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 934 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 935 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 936 map->name, mname, (ssize_t)msize, 937 (ssize_t)kern_msize); 938 return -ENOTSUP; 939 } 940 941 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 942 map->name, mname, (unsigned int)msize, 943 moff, kern_moff); 944 memcpy(kern_mdata, mdata, msize); 945 } 946 947 return 0; 948 } 949 950 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 951 { 952 struct bpf_map *map; 953 size_t i; 954 int err; 955 956 for (i = 0; i < obj->nr_maps; i++) { 957 map = &obj->maps[i]; 958 959 if (!bpf_map__is_struct_ops(map)) 960 continue; 961 962 err = bpf_map__init_kern_struct_ops(map, obj->btf, 963 obj->btf_vmlinux); 964 if (err) 965 return err; 966 } 967 968 return 0; 969 } 970 971 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 972 { 973 const struct btf_type *type, *datasec; 974 const struct btf_var_secinfo *vsi; 975 struct bpf_struct_ops *st_ops; 976 const char *tname, *var_name; 977 __s32 type_id, datasec_id; 978 const struct btf *btf; 979 struct bpf_map *map; 980 __u32 i; 981 982 if (obj->efile.st_ops_shndx == -1) 983 return 0; 984 985 btf = obj->btf; 986 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 987 BTF_KIND_DATASEC); 988 if (datasec_id < 0) { 989 pr_warn("struct_ops init: DATASEC %s not found\n", 990 STRUCT_OPS_SEC); 991 return -EINVAL; 992 } 993 994 datasec = btf__type_by_id(btf, datasec_id); 995 vsi = btf_var_secinfos(datasec); 996 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 997 type = btf__type_by_id(obj->btf, vsi->type); 998 var_name = btf__name_by_offset(obj->btf, type->name_off); 999 1000 type_id = btf__resolve_type(obj->btf, vsi->type); 1001 if (type_id < 0) { 1002 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1003 vsi->type, STRUCT_OPS_SEC); 1004 return -EINVAL; 1005 } 1006 1007 type = btf__type_by_id(obj->btf, type_id); 1008 tname = btf__name_by_offset(obj->btf, type->name_off); 1009 if (!tname[0]) { 1010 pr_warn("struct_ops init: anonymous type is not supported\n"); 1011 return -ENOTSUP; 1012 } 1013 if (!btf_is_struct(type)) { 1014 pr_warn("struct_ops init: %s is not a struct\n", tname); 1015 return -EINVAL; 1016 } 1017 1018 map = bpf_object__add_map(obj); 1019 if (IS_ERR(map)) 1020 return PTR_ERR(map); 1021 1022 map->sec_idx = obj->efile.st_ops_shndx; 1023 map->sec_offset = vsi->offset; 1024 map->name = strdup(var_name); 1025 if (!map->name) 1026 return -ENOMEM; 1027 1028 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1029 map->def.key_size = sizeof(int); 1030 map->def.value_size = type->size; 1031 map->def.max_entries = 1; 1032 1033 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1034 if (!map->st_ops) 1035 return -ENOMEM; 1036 st_ops = map->st_ops; 1037 st_ops->data = malloc(type->size); 1038 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1039 st_ops->kern_func_off = malloc(btf_vlen(type) * 1040 sizeof(*st_ops->kern_func_off)); 1041 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1042 return -ENOMEM; 1043 1044 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1045 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1046 var_name, STRUCT_OPS_SEC); 1047 return -EINVAL; 1048 } 1049 1050 memcpy(st_ops->data, 1051 obj->efile.st_ops_data->d_buf + vsi->offset, 1052 type->size); 1053 st_ops->tname = tname; 1054 st_ops->type = type; 1055 st_ops->type_id = type_id; 1056 1057 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1058 tname, type_id, var_name, vsi->offset); 1059 } 1060 1061 return 0; 1062 } 1063 1064 static struct bpf_object *bpf_object__new(const char *path, 1065 const void *obj_buf, 1066 size_t obj_buf_sz, 1067 const char *obj_name) 1068 { 1069 struct bpf_object *obj; 1070 char *end; 1071 1072 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1073 if (!obj) { 1074 pr_warn("alloc memory failed for %s\n", path); 1075 return ERR_PTR(-ENOMEM); 1076 } 1077 1078 strcpy(obj->path, path); 1079 if (obj_name) { 1080 strncpy(obj->name, obj_name, sizeof(obj->name) - 1); 1081 obj->name[sizeof(obj->name) - 1] = 0; 1082 } else { 1083 /* Using basename() GNU version which doesn't modify arg. */ 1084 strncpy(obj->name, basename((void *)path), 1085 sizeof(obj->name) - 1); 1086 end = strchr(obj->name, '.'); 1087 if (end) 1088 *end = 0; 1089 } 1090 1091 obj->efile.fd = -1; 1092 /* 1093 * Caller of this function should also call 1094 * bpf_object__elf_finish() after data collection to return 1095 * obj_buf to user. If not, we should duplicate the buffer to 1096 * avoid user freeing them before elf finish. 1097 */ 1098 obj->efile.obj_buf = obj_buf; 1099 obj->efile.obj_buf_sz = obj_buf_sz; 1100 obj->efile.maps_shndx = -1; 1101 obj->efile.btf_maps_shndx = -1; 1102 obj->efile.data_shndx = -1; 1103 obj->efile.rodata_shndx = -1; 1104 obj->efile.bss_shndx = -1; 1105 obj->efile.st_ops_shndx = -1; 1106 obj->kconfig_map_idx = -1; 1107 obj->rodata_map_idx = -1; 1108 1109 obj->kern_version = get_kernel_version(); 1110 obj->loaded = false; 1111 1112 INIT_LIST_HEAD(&obj->list); 1113 list_add(&obj->list, &bpf_objects_list); 1114 return obj; 1115 } 1116 1117 static void bpf_object__elf_finish(struct bpf_object *obj) 1118 { 1119 if (!obj_elf_valid(obj)) 1120 return; 1121 1122 if (obj->efile.elf) { 1123 elf_end(obj->efile.elf); 1124 obj->efile.elf = NULL; 1125 } 1126 obj->efile.symbols = NULL; 1127 obj->efile.data = NULL; 1128 obj->efile.rodata = NULL; 1129 obj->efile.bss = NULL; 1130 obj->efile.st_ops_data = NULL; 1131 1132 zfree(&obj->efile.reloc_sects); 1133 obj->efile.nr_reloc_sects = 0; 1134 zclose(obj->efile.fd); 1135 obj->efile.obj_buf = NULL; 1136 obj->efile.obj_buf_sz = 0; 1137 } 1138 1139 static int bpf_object__elf_init(struct bpf_object *obj) 1140 { 1141 int err = 0; 1142 GElf_Ehdr *ep; 1143 1144 if (obj_elf_valid(obj)) { 1145 pr_warn("elf: init internal error\n"); 1146 return -LIBBPF_ERRNO__LIBELF; 1147 } 1148 1149 if (obj->efile.obj_buf_sz > 0) { 1150 /* 1151 * obj_buf should have been validated by 1152 * bpf_object__open_buffer(). 1153 */ 1154 obj->efile.elf = elf_memory((char *)obj->efile.obj_buf, 1155 obj->efile.obj_buf_sz); 1156 } else { 1157 obj->efile.fd = open(obj->path, O_RDONLY); 1158 if (obj->efile.fd < 0) { 1159 char errmsg[STRERR_BUFSIZE], *cp; 1160 1161 err = -errno; 1162 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1163 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1164 return err; 1165 } 1166 1167 obj->efile.elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1168 } 1169 1170 if (!obj->efile.elf) { 1171 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1172 err = -LIBBPF_ERRNO__LIBELF; 1173 goto errout; 1174 } 1175 1176 if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) { 1177 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1178 err = -LIBBPF_ERRNO__FORMAT; 1179 goto errout; 1180 } 1181 ep = &obj->efile.ehdr; 1182 1183 if (elf_getshdrstrndx(obj->efile.elf, &obj->efile.shstrndx)) { 1184 pr_warn("elf: failed to get section names section index for %s: %s\n", 1185 obj->path, elf_errmsg(-1)); 1186 err = -LIBBPF_ERRNO__FORMAT; 1187 goto errout; 1188 } 1189 1190 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1191 if (!elf_rawdata(elf_getscn(obj->efile.elf, obj->efile.shstrndx), NULL)) { 1192 pr_warn("elf: failed to get section names strings from %s: %s\n", 1193 obj->path, elf_errmsg(-1)); 1194 err = -LIBBPF_ERRNO__FORMAT; 1195 goto errout; 1196 } 1197 1198 /* Old LLVM set e_machine to EM_NONE */ 1199 if (ep->e_type != ET_REL || 1200 (ep->e_machine && ep->e_machine != EM_BPF)) { 1201 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1202 err = -LIBBPF_ERRNO__FORMAT; 1203 goto errout; 1204 } 1205 1206 return 0; 1207 errout: 1208 bpf_object__elf_finish(obj); 1209 return err; 1210 } 1211 1212 static int bpf_object__check_endianness(struct bpf_object *obj) 1213 { 1214 #if __BYTE_ORDER == __LITTLE_ENDIAN 1215 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2LSB) 1216 return 0; 1217 #elif __BYTE_ORDER == __BIG_ENDIAN 1218 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2MSB) 1219 return 0; 1220 #else 1221 # error "Unrecognized __BYTE_ORDER__" 1222 #endif 1223 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1224 return -LIBBPF_ERRNO__ENDIAN; 1225 } 1226 1227 static int 1228 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1229 { 1230 memcpy(obj->license, data, min(size, sizeof(obj->license) - 1)); 1231 pr_debug("license of %s is %s\n", obj->path, obj->license); 1232 return 0; 1233 } 1234 1235 static int 1236 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1237 { 1238 __u32 kver; 1239 1240 if (size != sizeof(kver)) { 1241 pr_warn("invalid kver section in %s\n", obj->path); 1242 return -LIBBPF_ERRNO__FORMAT; 1243 } 1244 memcpy(&kver, data, sizeof(kver)); 1245 obj->kern_version = kver; 1246 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1247 return 0; 1248 } 1249 1250 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1251 { 1252 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1253 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1254 return true; 1255 return false; 1256 } 1257 1258 int bpf_object__section_size(const struct bpf_object *obj, const char *name, 1259 __u32 *size) 1260 { 1261 int ret = -ENOENT; 1262 1263 *size = 0; 1264 if (!name) { 1265 return -EINVAL; 1266 } else if (!strcmp(name, DATA_SEC)) { 1267 if (obj->efile.data) 1268 *size = obj->efile.data->d_size; 1269 } else if (!strcmp(name, BSS_SEC)) { 1270 if (obj->efile.bss) 1271 *size = obj->efile.bss->d_size; 1272 } else if (!strcmp(name, RODATA_SEC)) { 1273 if (obj->efile.rodata) 1274 *size = obj->efile.rodata->d_size; 1275 } else if (!strcmp(name, STRUCT_OPS_SEC)) { 1276 if (obj->efile.st_ops_data) 1277 *size = obj->efile.st_ops_data->d_size; 1278 } else { 1279 Elf_Scn *scn = elf_sec_by_name(obj, name); 1280 Elf_Data *data = elf_sec_data(obj, scn); 1281 1282 if (data) { 1283 ret = 0; /* found it */ 1284 *size = data->d_size; 1285 } 1286 } 1287 1288 return *size ? 0 : ret; 1289 } 1290 1291 int bpf_object__variable_offset(const struct bpf_object *obj, const char *name, 1292 __u32 *off) 1293 { 1294 Elf_Data *symbols = obj->efile.symbols; 1295 const char *sname; 1296 size_t si; 1297 1298 if (!name || !off) 1299 return -EINVAL; 1300 1301 for (si = 0; si < symbols->d_size / sizeof(GElf_Sym); si++) { 1302 GElf_Sym sym; 1303 1304 if (!gelf_getsym(symbols, si, &sym)) 1305 continue; 1306 if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL || 1307 GELF_ST_TYPE(sym.st_info) != STT_OBJECT) 1308 continue; 1309 1310 sname = elf_sym_str(obj, sym.st_name); 1311 if (!sname) { 1312 pr_warn("failed to get sym name string for var %s\n", 1313 name); 1314 return -EIO; 1315 } 1316 if (strcmp(name, sname) == 0) { 1317 *off = sym.st_value; 1318 return 0; 1319 } 1320 } 1321 1322 return -ENOENT; 1323 } 1324 1325 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1326 { 1327 struct bpf_map *new_maps; 1328 size_t new_cap; 1329 int i; 1330 1331 if (obj->nr_maps < obj->maps_cap) 1332 return &obj->maps[obj->nr_maps++]; 1333 1334 new_cap = max((size_t)4, obj->maps_cap * 3 / 2); 1335 new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps)); 1336 if (!new_maps) { 1337 pr_warn("alloc maps for object failed\n"); 1338 return ERR_PTR(-ENOMEM); 1339 } 1340 1341 obj->maps_cap = new_cap; 1342 obj->maps = new_maps; 1343 1344 /* zero out new maps */ 1345 memset(obj->maps + obj->nr_maps, 0, 1346 (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps)); 1347 /* 1348 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin) 1349 * when failure (zclose won't close negative fd)). 1350 */ 1351 for (i = obj->nr_maps; i < obj->maps_cap; i++) { 1352 obj->maps[i].fd = -1; 1353 obj->maps[i].inner_map_fd = -1; 1354 } 1355 1356 return &obj->maps[obj->nr_maps++]; 1357 } 1358 1359 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1360 { 1361 long page_sz = sysconf(_SC_PAGE_SIZE); 1362 size_t map_sz; 1363 1364 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1365 map_sz = roundup(map_sz, page_sz); 1366 return map_sz; 1367 } 1368 1369 static char *internal_map_name(struct bpf_object *obj, 1370 enum libbpf_map_type type) 1371 { 1372 char map_name[BPF_OBJ_NAME_LEN], *p; 1373 const char *sfx = libbpf_type_to_btf_name[type]; 1374 int sfx_len = max((size_t)7, strlen(sfx)); 1375 int pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, 1376 strlen(obj->name)); 1377 1378 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1379 sfx_len, libbpf_type_to_btf_name[type]); 1380 1381 /* sanitise map name to characters allowed by kernel */ 1382 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1383 if (!isalnum(*p) && *p != '_' && *p != '.') 1384 *p = '_'; 1385 1386 return strdup(map_name); 1387 } 1388 1389 static int 1390 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1391 int sec_idx, void *data, size_t data_sz) 1392 { 1393 struct bpf_map_def *def; 1394 struct bpf_map *map; 1395 int err; 1396 1397 map = bpf_object__add_map(obj); 1398 if (IS_ERR(map)) 1399 return PTR_ERR(map); 1400 1401 map->libbpf_type = type; 1402 map->sec_idx = sec_idx; 1403 map->sec_offset = 0; 1404 map->name = internal_map_name(obj, type); 1405 if (!map->name) { 1406 pr_warn("failed to alloc map name\n"); 1407 return -ENOMEM; 1408 } 1409 1410 def = &map->def; 1411 def->type = BPF_MAP_TYPE_ARRAY; 1412 def->key_size = sizeof(int); 1413 def->value_size = data_sz; 1414 def->max_entries = 1; 1415 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1416 ? BPF_F_RDONLY_PROG : 0; 1417 def->map_flags |= BPF_F_MMAPABLE; 1418 1419 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1420 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1421 1422 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1423 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1424 if (map->mmaped == MAP_FAILED) { 1425 err = -errno; 1426 map->mmaped = NULL; 1427 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1428 map->name, err); 1429 zfree(&map->name); 1430 return err; 1431 } 1432 1433 if (data) 1434 memcpy(map->mmaped, data, data_sz); 1435 1436 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1437 return 0; 1438 } 1439 1440 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1441 { 1442 int err; 1443 1444 /* 1445 * Populate obj->maps with libbpf internal maps. 1446 */ 1447 if (obj->efile.data_shndx >= 0) { 1448 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1449 obj->efile.data_shndx, 1450 obj->efile.data->d_buf, 1451 obj->efile.data->d_size); 1452 if (err) 1453 return err; 1454 } 1455 if (obj->efile.rodata_shndx >= 0) { 1456 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1457 obj->efile.rodata_shndx, 1458 obj->efile.rodata->d_buf, 1459 obj->efile.rodata->d_size); 1460 if (err) 1461 return err; 1462 1463 obj->rodata_map_idx = obj->nr_maps - 1; 1464 } 1465 if (obj->efile.bss_shndx >= 0) { 1466 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1467 obj->efile.bss_shndx, 1468 NULL, 1469 obj->efile.bss->d_size); 1470 if (err) 1471 return err; 1472 } 1473 return 0; 1474 } 1475 1476 1477 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1478 const void *name) 1479 { 1480 int i; 1481 1482 for (i = 0; i < obj->nr_extern; i++) { 1483 if (strcmp(obj->externs[i].name, name) == 0) 1484 return &obj->externs[i]; 1485 } 1486 return NULL; 1487 } 1488 1489 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1490 char value) 1491 { 1492 switch (ext->kcfg.type) { 1493 case KCFG_BOOL: 1494 if (value == 'm') { 1495 pr_warn("extern (kcfg) %s=%c should be tristate or char\n", 1496 ext->name, value); 1497 return -EINVAL; 1498 } 1499 *(bool *)ext_val = value == 'y' ? true : false; 1500 break; 1501 case KCFG_TRISTATE: 1502 if (value == 'y') 1503 *(enum libbpf_tristate *)ext_val = TRI_YES; 1504 else if (value == 'm') 1505 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1506 else /* value == 'n' */ 1507 *(enum libbpf_tristate *)ext_val = TRI_NO; 1508 break; 1509 case KCFG_CHAR: 1510 *(char *)ext_val = value; 1511 break; 1512 case KCFG_UNKNOWN: 1513 case KCFG_INT: 1514 case KCFG_CHAR_ARR: 1515 default: 1516 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n", 1517 ext->name, value); 1518 return -EINVAL; 1519 } 1520 ext->is_set = true; 1521 return 0; 1522 } 1523 1524 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1525 const char *value) 1526 { 1527 size_t len; 1528 1529 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1530 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value); 1531 return -EINVAL; 1532 } 1533 1534 len = strlen(value); 1535 if (value[len - 1] != '"') { 1536 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1537 ext->name, value); 1538 return -EINVAL; 1539 } 1540 1541 /* strip quotes */ 1542 len -= 2; 1543 if (len >= ext->kcfg.sz) { 1544 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n", 1545 ext->name, value, len, ext->kcfg.sz - 1); 1546 len = ext->kcfg.sz - 1; 1547 } 1548 memcpy(ext_val, value + 1, len); 1549 ext_val[len] = '\0'; 1550 ext->is_set = true; 1551 return 0; 1552 } 1553 1554 static int parse_u64(const char *value, __u64 *res) 1555 { 1556 char *value_end; 1557 int err; 1558 1559 errno = 0; 1560 *res = strtoull(value, &value_end, 0); 1561 if (errno) { 1562 err = -errno; 1563 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1564 return err; 1565 } 1566 if (*value_end) { 1567 pr_warn("failed to parse '%s' as integer completely\n", value); 1568 return -EINVAL; 1569 } 1570 return 0; 1571 } 1572 1573 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1574 { 1575 int bit_sz = ext->kcfg.sz * 8; 1576 1577 if (ext->kcfg.sz == 8) 1578 return true; 1579 1580 /* Validate that value stored in u64 fits in integer of `ext->sz` 1581 * bytes size without any loss of information. If the target integer 1582 * is signed, we rely on the following limits of integer type of 1583 * Y bits and subsequent transformation: 1584 * 1585 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1586 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1587 * 0 <= X + 2^(Y-1) < 2^Y 1588 * 1589 * For unsigned target integer, check that all the (64 - Y) bits are 1590 * zero. 1591 */ 1592 if (ext->kcfg.is_signed) 1593 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1594 else 1595 return (v >> bit_sz) == 0; 1596 } 1597 1598 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1599 __u64 value) 1600 { 1601 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1602 pr_warn("extern (kcfg) %s=%llu should be integer\n", 1603 ext->name, (unsigned long long)value); 1604 return -EINVAL; 1605 } 1606 if (!is_kcfg_value_in_range(ext, value)) { 1607 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n", 1608 ext->name, (unsigned long long)value, ext->kcfg.sz); 1609 return -ERANGE; 1610 } 1611 switch (ext->kcfg.sz) { 1612 case 1: *(__u8 *)ext_val = value; break; 1613 case 2: *(__u16 *)ext_val = value; break; 1614 case 4: *(__u32 *)ext_val = value; break; 1615 case 8: *(__u64 *)ext_val = value; break; 1616 default: 1617 return -EINVAL; 1618 } 1619 ext->is_set = true; 1620 return 0; 1621 } 1622 1623 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1624 char *buf, void *data) 1625 { 1626 struct extern_desc *ext; 1627 char *sep, *value; 1628 int len, err = 0; 1629 void *ext_val; 1630 __u64 num; 1631 1632 if (strncmp(buf, "CONFIG_", 7)) 1633 return 0; 1634 1635 sep = strchr(buf, '='); 1636 if (!sep) { 1637 pr_warn("failed to parse '%s': no separator\n", buf); 1638 return -EINVAL; 1639 } 1640 1641 /* Trim ending '\n' */ 1642 len = strlen(buf); 1643 if (buf[len - 1] == '\n') 1644 buf[len - 1] = '\0'; 1645 /* Split on '=' and ensure that a value is present. */ 1646 *sep = '\0'; 1647 if (!sep[1]) { 1648 *sep = '='; 1649 pr_warn("failed to parse '%s': no value\n", buf); 1650 return -EINVAL; 1651 } 1652 1653 ext = find_extern_by_name(obj, buf); 1654 if (!ext || ext->is_set) 1655 return 0; 1656 1657 ext_val = data + ext->kcfg.data_off; 1658 value = sep + 1; 1659 1660 switch (*value) { 1661 case 'y': case 'n': case 'm': 1662 err = set_kcfg_value_tri(ext, ext_val, *value); 1663 break; 1664 case '"': 1665 err = set_kcfg_value_str(ext, ext_val, value); 1666 break; 1667 default: 1668 /* assume integer */ 1669 err = parse_u64(value, &num); 1670 if (err) { 1671 pr_warn("extern (kcfg) %s=%s should be integer\n", 1672 ext->name, value); 1673 return err; 1674 } 1675 err = set_kcfg_value_num(ext, ext_val, num); 1676 break; 1677 } 1678 if (err) 1679 return err; 1680 pr_debug("extern (kcfg) %s=%s\n", ext->name, value); 1681 return 0; 1682 } 1683 1684 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1685 { 1686 char buf[PATH_MAX]; 1687 struct utsname uts; 1688 int len, err = 0; 1689 gzFile file; 1690 1691 uname(&uts); 1692 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1693 if (len < 0) 1694 return -EINVAL; 1695 else if (len >= PATH_MAX) 1696 return -ENAMETOOLONG; 1697 1698 /* gzopen also accepts uncompressed files. */ 1699 file = gzopen(buf, "r"); 1700 if (!file) 1701 file = gzopen("/proc/config.gz", "r"); 1702 1703 if (!file) { 1704 pr_warn("failed to open system Kconfig\n"); 1705 return -ENOENT; 1706 } 1707 1708 while (gzgets(file, buf, sizeof(buf))) { 1709 err = bpf_object__process_kconfig_line(obj, buf, data); 1710 if (err) { 1711 pr_warn("error parsing system Kconfig line '%s': %d\n", 1712 buf, err); 1713 goto out; 1714 } 1715 } 1716 1717 out: 1718 gzclose(file); 1719 return err; 1720 } 1721 1722 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1723 const char *config, void *data) 1724 { 1725 char buf[PATH_MAX]; 1726 int err = 0; 1727 FILE *file; 1728 1729 file = fmemopen((void *)config, strlen(config), "r"); 1730 if (!file) { 1731 err = -errno; 1732 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1733 return err; 1734 } 1735 1736 while (fgets(buf, sizeof(buf), file)) { 1737 err = bpf_object__process_kconfig_line(obj, buf, data); 1738 if (err) { 1739 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1740 buf, err); 1741 break; 1742 } 1743 } 1744 1745 fclose(file); 1746 return err; 1747 } 1748 1749 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1750 { 1751 struct extern_desc *last_ext = NULL, *ext; 1752 size_t map_sz; 1753 int i, err; 1754 1755 for (i = 0; i < obj->nr_extern; i++) { 1756 ext = &obj->externs[i]; 1757 if (ext->type == EXT_KCFG) 1758 last_ext = ext; 1759 } 1760 1761 if (!last_ext) 1762 return 0; 1763 1764 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 1765 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1766 obj->efile.symbols_shndx, 1767 NULL, map_sz); 1768 if (err) 1769 return err; 1770 1771 obj->kconfig_map_idx = obj->nr_maps - 1; 1772 1773 return 0; 1774 } 1775 1776 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) 1777 { 1778 Elf_Data *symbols = obj->efile.symbols; 1779 int i, map_def_sz = 0, nr_maps = 0, nr_syms; 1780 Elf_Data *data = NULL; 1781 Elf_Scn *scn; 1782 1783 if (obj->efile.maps_shndx < 0) 1784 return 0; 1785 1786 if (!symbols) 1787 return -EINVAL; 1788 1789 1790 scn = elf_sec_by_idx(obj, obj->efile.maps_shndx); 1791 data = elf_sec_data(obj, scn); 1792 if (!scn || !data) { 1793 pr_warn("elf: failed to get legacy map definitions for %s\n", 1794 obj->path); 1795 return -EINVAL; 1796 } 1797 1798 /* 1799 * Count number of maps. Each map has a name. 1800 * Array of maps is not supported: only the first element is 1801 * considered. 1802 * 1803 * TODO: Detect array of map and report error. 1804 */ 1805 nr_syms = symbols->d_size / sizeof(GElf_Sym); 1806 for (i = 0; i < nr_syms; i++) { 1807 GElf_Sym sym; 1808 1809 if (!gelf_getsym(symbols, i, &sym)) 1810 continue; 1811 if (sym.st_shndx != obj->efile.maps_shndx) 1812 continue; 1813 nr_maps++; 1814 } 1815 /* Assume equally sized map definitions */ 1816 pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n", 1817 nr_maps, data->d_size, obj->path); 1818 1819 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) { 1820 pr_warn("elf: unable to determine legacy map definition size in %s\n", 1821 obj->path); 1822 return -EINVAL; 1823 } 1824 map_def_sz = data->d_size / nr_maps; 1825 1826 /* Fill obj->maps using data in "maps" section. */ 1827 for (i = 0; i < nr_syms; i++) { 1828 GElf_Sym sym; 1829 const char *map_name; 1830 struct bpf_map_def *def; 1831 struct bpf_map *map; 1832 1833 if (!gelf_getsym(symbols, i, &sym)) 1834 continue; 1835 if (sym.st_shndx != obj->efile.maps_shndx) 1836 continue; 1837 1838 map = bpf_object__add_map(obj); 1839 if (IS_ERR(map)) 1840 return PTR_ERR(map); 1841 1842 map_name = elf_sym_str(obj, sym.st_name); 1843 if (!map_name) { 1844 pr_warn("failed to get map #%d name sym string for obj %s\n", 1845 i, obj->path); 1846 return -LIBBPF_ERRNO__FORMAT; 1847 } 1848 1849 map->libbpf_type = LIBBPF_MAP_UNSPEC; 1850 map->sec_idx = sym.st_shndx; 1851 map->sec_offset = sym.st_value; 1852 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n", 1853 map_name, map->sec_idx, map->sec_offset); 1854 if (sym.st_value + map_def_sz > data->d_size) { 1855 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n", 1856 obj->path, map_name); 1857 return -EINVAL; 1858 } 1859 1860 map->name = strdup(map_name); 1861 if (!map->name) { 1862 pr_warn("failed to alloc map name\n"); 1863 return -ENOMEM; 1864 } 1865 pr_debug("map %d is \"%s\"\n", i, map->name); 1866 def = (struct bpf_map_def *)(data->d_buf + sym.st_value); 1867 /* 1868 * If the definition of the map in the object file fits in 1869 * bpf_map_def, copy it. Any extra fields in our version 1870 * of bpf_map_def will default to zero as a result of the 1871 * calloc above. 1872 */ 1873 if (map_def_sz <= sizeof(struct bpf_map_def)) { 1874 memcpy(&map->def, def, map_def_sz); 1875 } else { 1876 /* 1877 * Here the map structure being read is bigger than what 1878 * we expect, truncate if the excess bits are all zero. 1879 * If they are not zero, reject this map as 1880 * incompatible. 1881 */ 1882 char *b; 1883 1884 for (b = ((char *)def) + sizeof(struct bpf_map_def); 1885 b < ((char *)def) + map_def_sz; b++) { 1886 if (*b != 0) { 1887 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n", 1888 obj->path, map_name); 1889 if (strict) 1890 return -EINVAL; 1891 } 1892 } 1893 memcpy(&map->def, def, sizeof(struct bpf_map_def)); 1894 } 1895 } 1896 return 0; 1897 } 1898 1899 static const struct btf_type * 1900 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 1901 { 1902 const struct btf_type *t = btf__type_by_id(btf, id); 1903 1904 if (res_id) 1905 *res_id = id; 1906 1907 while (btf_is_mod(t) || btf_is_typedef(t)) { 1908 if (res_id) 1909 *res_id = t->type; 1910 t = btf__type_by_id(btf, t->type); 1911 } 1912 1913 return t; 1914 } 1915 1916 static const struct btf_type * 1917 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 1918 { 1919 const struct btf_type *t; 1920 1921 t = skip_mods_and_typedefs(btf, id, NULL); 1922 if (!btf_is_ptr(t)) 1923 return NULL; 1924 1925 t = skip_mods_and_typedefs(btf, t->type, res_id); 1926 1927 return btf_is_func_proto(t) ? t : NULL; 1928 } 1929 1930 static const char *__btf_kind_str(__u16 kind) 1931 { 1932 switch (kind) { 1933 case BTF_KIND_UNKN: return "void"; 1934 case BTF_KIND_INT: return "int"; 1935 case BTF_KIND_PTR: return "ptr"; 1936 case BTF_KIND_ARRAY: return "array"; 1937 case BTF_KIND_STRUCT: return "struct"; 1938 case BTF_KIND_UNION: return "union"; 1939 case BTF_KIND_ENUM: return "enum"; 1940 case BTF_KIND_FWD: return "fwd"; 1941 case BTF_KIND_TYPEDEF: return "typedef"; 1942 case BTF_KIND_VOLATILE: return "volatile"; 1943 case BTF_KIND_CONST: return "const"; 1944 case BTF_KIND_RESTRICT: return "restrict"; 1945 case BTF_KIND_FUNC: return "func"; 1946 case BTF_KIND_FUNC_PROTO: return "func_proto"; 1947 case BTF_KIND_VAR: return "var"; 1948 case BTF_KIND_DATASEC: return "datasec"; 1949 case BTF_KIND_FLOAT: return "float"; 1950 default: return "unknown"; 1951 } 1952 } 1953 1954 static const char *btf_kind_str(const struct btf_type *t) 1955 { 1956 return __btf_kind_str(btf_kind(t)); 1957 } 1958 1959 static enum btf_func_linkage btf_func_linkage(const struct btf_type *t) 1960 { 1961 return (enum btf_func_linkage)BTF_INFO_VLEN(t->info); 1962 } 1963 1964 /* 1965 * Fetch integer attribute of BTF map definition. Such attributes are 1966 * represented using a pointer to an array, in which dimensionality of array 1967 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 1968 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 1969 * type definition, while using only sizeof(void *) space in ELF data section. 1970 */ 1971 static bool get_map_field_int(const char *map_name, const struct btf *btf, 1972 const struct btf_member *m, __u32 *res) 1973 { 1974 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 1975 const char *name = btf__name_by_offset(btf, m->name_off); 1976 const struct btf_array *arr_info; 1977 const struct btf_type *arr_t; 1978 1979 if (!btf_is_ptr(t)) { 1980 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 1981 map_name, name, btf_kind_str(t)); 1982 return false; 1983 } 1984 1985 arr_t = btf__type_by_id(btf, t->type); 1986 if (!arr_t) { 1987 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 1988 map_name, name, t->type); 1989 return false; 1990 } 1991 if (!btf_is_array(arr_t)) { 1992 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 1993 map_name, name, btf_kind_str(arr_t)); 1994 return false; 1995 } 1996 arr_info = btf_array(arr_t); 1997 *res = arr_info->nelems; 1998 return true; 1999 } 2000 2001 static int build_map_pin_path(struct bpf_map *map, const char *path) 2002 { 2003 char buf[PATH_MAX]; 2004 int len; 2005 2006 if (!path) 2007 path = "/sys/fs/bpf"; 2008 2009 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 2010 if (len < 0) 2011 return -EINVAL; 2012 else if (len >= PATH_MAX) 2013 return -ENAMETOOLONG; 2014 2015 return bpf_map__set_pin_path(map, buf); 2016 } 2017 2018 2019 static int parse_btf_map_def(struct bpf_object *obj, 2020 struct bpf_map *map, 2021 const struct btf_type *def, 2022 bool strict, bool is_inner, 2023 const char *pin_root_path) 2024 { 2025 const struct btf_type *t; 2026 const struct btf_member *m; 2027 int vlen, i; 2028 2029 vlen = btf_vlen(def); 2030 m = btf_members(def); 2031 for (i = 0; i < vlen; i++, m++) { 2032 const char *name = btf__name_by_offset(obj->btf, m->name_off); 2033 2034 if (!name) { 2035 pr_warn("map '%s': invalid field #%d.\n", map->name, i); 2036 return -EINVAL; 2037 } 2038 if (strcmp(name, "type") == 0) { 2039 if (!get_map_field_int(map->name, obj->btf, m, 2040 &map->def.type)) 2041 return -EINVAL; 2042 pr_debug("map '%s': found type = %u.\n", 2043 map->name, map->def.type); 2044 } else if (strcmp(name, "max_entries") == 0) { 2045 if (!get_map_field_int(map->name, obj->btf, m, 2046 &map->def.max_entries)) 2047 return -EINVAL; 2048 pr_debug("map '%s': found max_entries = %u.\n", 2049 map->name, map->def.max_entries); 2050 } else if (strcmp(name, "map_flags") == 0) { 2051 if (!get_map_field_int(map->name, obj->btf, m, 2052 &map->def.map_flags)) 2053 return -EINVAL; 2054 pr_debug("map '%s': found map_flags = %u.\n", 2055 map->name, map->def.map_flags); 2056 } else if (strcmp(name, "numa_node") == 0) { 2057 if (!get_map_field_int(map->name, obj->btf, m, &map->numa_node)) 2058 return -EINVAL; 2059 pr_debug("map '%s': found numa_node = %u.\n", map->name, map->numa_node); 2060 } else if (strcmp(name, "key_size") == 0) { 2061 __u32 sz; 2062 2063 if (!get_map_field_int(map->name, obj->btf, m, &sz)) 2064 return -EINVAL; 2065 pr_debug("map '%s': found key_size = %u.\n", 2066 map->name, sz); 2067 if (map->def.key_size && map->def.key_size != sz) { 2068 pr_warn("map '%s': conflicting key size %u != %u.\n", 2069 map->name, map->def.key_size, sz); 2070 return -EINVAL; 2071 } 2072 map->def.key_size = sz; 2073 } else if (strcmp(name, "key") == 0) { 2074 __s64 sz; 2075 2076 t = btf__type_by_id(obj->btf, m->type); 2077 if (!t) { 2078 pr_warn("map '%s': key type [%d] not found.\n", 2079 map->name, m->type); 2080 return -EINVAL; 2081 } 2082 if (!btf_is_ptr(t)) { 2083 pr_warn("map '%s': key spec is not PTR: %s.\n", 2084 map->name, btf_kind_str(t)); 2085 return -EINVAL; 2086 } 2087 sz = btf__resolve_size(obj->btf, t->type); 2088 if (sz < 0) { 2089 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2090 map->name, t->type, (ssize_t)sz); 2091 return sz; 2092 } 2093 pr_debug("map '%s': found key [%u], sz = %zd.\n", 2094 map->name, t->type, (ssize_t)sz); 2095 if (map->def.key_size && map->def.key_size != sz) { 2096 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2097 map->name, map->def.key_size, (ssize_t)sz); 2098 return -EINVAL; 2099 } 2100 map->def.key_size = sz; 2101 map->btf_key_type_id = t->type; 2102 } else if (strcmp(name, "value_size") == 0) { 2103 __u32 sz; 2104 2105 if (!get_map_field_int(map->name, obj->btf, m, &sz)) 2106 return -EINVAL; 2107 pr_debug("map '%s': found value_size = %u.\n", 2108 map->name, sz); 2109 if (map->def.value_size && map->def.value_size != sz) { 2110 pr_warn("map '%s': conflicting value size %u != %u.\n", 2111 map->name, map->def.value_size, sz); 2112 return -EINVAL; 2113 } 2114 map->def.value_size = sz; 2115 } else if (strcmp(name, "value") == 0) { 2116 __s64 sz; 2117 2118 t = btf__type_by_id(obj->btf, m->type); 2119 if (!t) { 2120 pr_warn("map '%s': value type [%d] not found.\n", 2121 map->name, m->type); 2122 return -EINVAL; 2123 } 2124 if (!btf_is_ptr(t)) { 2125 pr_warn("map '%s': value spec is not PTR: %s.\n", 2126 map->name, btf_kind_str(t)); 2127 return -EINVAL; 2128 } 2129 sz = btf__resolve_size(obj->btf, t->type); 2130 if (sz < 0) { 2131 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2132 map->name, t->type, (ssize_t)sz); 2133 return sz; 2134 } 2135 pr_debug("map '%s': found value [%u], sz = %zd.\n", 2136 map->name, t->type, (ssize_t)sz); 2137 if (map->def.value_size && map->def.value_size != sz) { 2138 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2139 map->name, map->def.value_size, (ssize_t)sz); 2140 return -EINVAL; 2141 } 2142 map->def.value_size = sz; 2143 map->btf_value_type_id = t->type; 2144 } 2145 else if (strcmp(name, "values") == 0) { 2146 int err; 2147 2148 if (is_inner) { 2149 pr_warn("map '%s': multi-level inner maps not supported.\n", 2150 map->name); 2151 return -ENOTSUP; 2152 } 2153 if (i != vlen - 1) { 2154 pr_warn("map '%s': '%s' member should be last.\n", 2155 map->name, name); 2156 return -EINVAL; 2157 } 2158 if (!bpf_map_type__is_map_in_map(map->def.type)) { 2159 pr_warn("map '%s': should be map-in-map.\n", 2160 map->name); 2161 return -ENOTSUP; 2162 } 2163 if (map->def.value_size && map->def.value_size != 4) { 2164 pr_warn("map '%s': conflicting value size %u != 4.\n", 2165 map->name, map->def.value_size); 2166 return -EINVAL; 2167 } 2168 map->def.value_size = 4; 2169 t = btf__type_by_id(obj->btf, m->type); 2170 if (!t) { 2171 pr_warn("map '%s': map-in-map inner type [%d] not found.\n", 2172 map->name, m->type); 2173 return -EINVAL; 2174 } 2175 if (!btf_is_array(t) || btf_array(t)->nelems) { 2176 pr_warn("map '%s': map-in-map inner spec is not a zero-sized array.\n", 2177 map->name); 2178 return -EINVAL; 2179 } 2180 t = skip_mods_and_typedefs(obj->btf, btf_array(t)->type, 2181 NULL); 2182 if (!btf_is_ptr(t)) { 2183 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2184 map->name, btf_kind_str(t)); 2185 return -EINVAL; 2186 } 2187 t = skip_mods_and_typedefs(obj->btf, t->type, NULL); 2188 if (!btf_is_struct(t)) { 2189 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2190 map->name, btf_kind_str(t)); 2191 return -EINVAL; 2192 } 2193 2194 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2195 if (!map->inner_map) 2196 return -ENOMEM; 2197 map->inner_map->sec_idx = obj->efile.btf_maps_shndx; 2198 map->inner_map->name = malloc(strlen(map->name) + 2199 sizeof(".inner") + 1); 2200 if (!map->inner_map->name) 2201 return -ENOMEM; 2202 sprintf(map->inner_map->name, "%s.inner", map->name); 2203 2204 err = parse_btf_map_def(obj, map->inner_map, t, strict, 2205 true /* is_inner */, NULL); 2206 if (err) 2207 return err; 2208 } else if (strcmp(name, "pinning") == 0) { 2209 __u32 val; 2210 int err; 2211 2212 if (is_inner) { 2213 pr_debug("map '%s': inner def can't be pinned.\n", 2214 map->name); 2215 return -EINVAL; 2216 } 2217 if (!get_map_field_int(map->name, obj->btf, m, &val)) 2218 return -EINVAL; 2219 pr_debug("map '%s': found pinning = %u.\n", 2220 map->name, val); 2221 2222 if (val != LIBBPF_PIN_NONE && 2223 val != LIBBPF_PIN_BY_NAME) { 2224 pr_warn("map '%s': invalid pinning value %u.\n", 2225 map->name, val); 2226 return -EINVAL; 2227 } 2228 if (val == LIBBPF_PIN_BY_NAME) { 2229 err = build_map_pin_path(map, pin_root_path); 2230 if (err) { 2231 pr_warn("map '%s': couldn't build pin path.\n", 2232 map->name); 2233 return err; 2234 } 2235 } 2236 } else { 2237 if (strict) { 2238 pr_warn("map '%s': unknown field '%s'.\n", 2239 map->name, name); 2240 return -ENOTSUP; 2241 } 2242 pr_debug("map '%s': ignoring unknown field '%s'.\n", 2243 map->name, name); 2244 } 2245 } 2246 2247 if (map->def.type == BPF_MAP_TYPE_UNSPEC) { 2248 pr_warn("map '%s': map type isn't specified.\n", map->name); 2249 return -EINVAL; 2250 } 2251 2252 return 0; 2253 } 2254 2255 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2256 const struct btf_type *sec, 2257 int var_idx, int sec_idx, 2258 const Elf_Data *data, bool strict, 2259 const char *pin_root_path) 2260 { 2261 const struct btf_type *var, *def; 2262 const struct btf_var_secinfo *vi; 2263 const struct btf_var *var_extra; 2264 const char *map_name; 2265 struct bpf_map *map; 2266 2267 vi = btf_var_secinfos(sec) + var_idx; 2268 var = btf__type_by_id(obj->btf, vi->type); 2269 var_extra = btf_var(var); 2270 map_name = btf__name_by_offset(obj->btf, var->name_off); 2271 2272 if (map_name == NULL || map_name[0] == '\0') { 2273 pr_warn("map #%d: empty name.\n", var_idx); 2274 return -EINVAL; 2275 } 2276 if ((__u64)vi->offset + vi->size > data->d_size) { 2277 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2278 return -EINVAL; 2279 } 2280 if (!btf_is_var(var)) { 2281 pr_warn("map '%s': unexpected var kind %s.\n", 2282 map_name, btf_kind_str(var)); 2283 return -EINVAL; 2284 } 2285 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED && 2286 var_extra->linkage != BTF_VAR_STATIC) { 2287 pr_warn("map '%s': unsupported var linkage %u.\n", 2288 map_name, var_extra->linkage); 2289 return -EOPNOTSUPP; 2290 } 2291 2292 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2293 if (!btf_is_struct(def)) { 2294 pr_warn("map '%s': unexpected def kind %s.\n", 2295 map_name, btf_kind_str(var)); 2296 return -EINVAL; 2297 } 2298 if (def->size > vi->size) { 2299 pr_warn("map '%s': invalid def size.\n", map_name); 2300 return -EINVAL; 2301 } 2302 2303 map = bpf_object__add_map(obj); 2304 if (IS_ERR(map)) 2305 return PTR_ERR(map); 2306 map->name = strdup(map_name); 2307 if (!map->name) { 2308 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2309 return -ENOMEM; 2310 } 2311 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2312 map->def.type = BPF_MAP_TYPE_UNSPEC; 2313 map->sec_idx = sec_idx; 2314 map->sec_offset = vi->offset; 2315 map->btf_var_idx = var_idx; 2316 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2317 map_name, map->sec_idx, map->sec_offset); 2318 2319 return parse_btf_map_def(obj, map, def, strict, false, pin_root_path); 2320 } 2321 2322 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2323 const char *pin_root_path) 2324 { 2325 const struct btf_type *sec = NULL; 2326 int nr_types, i, vlen, err; 2327 const struct btf_type *t; 2328 const char *name; 2329 Elf_Data *data; 2330 Elf_Scn *scn; 2331 2332 if (obj->efile.btf_maps_shndx < 0) 2333 return 0; 2334 2335 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2336 data = elf_sec_data(obj, scn); 2337 if (!scn || !data) { 2338 pr_warn("elf: failed to get %s map definitions for %s\n", 2339 MAPS_ELF_SEC, obj->path); 2340 return -EINVAL; 2341 } 2342 2343 nr_types = btf__get_nr_types(obj->btf); 2344 for (i = 1; i <= nr_types; i++) { 2345 t = btf__type_by_id(obj->btf, i); 2346 if (!btf_is_datasec(t)) 2347 continue; 2348 name = btf__name_by_offset(obj->btf, t->name_off); 2349 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2350 sec = t; 2351 obj->efile.btf_maps_sec_btf_id = i; 2352 break; 2353 } 2354 } 2355 2356 if (!sec) { 2357 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2358 return -ENOENT; 2359 } 2360 2361 vlen = btf_vlen(sec); 2362 for (i = 0; i < vlen; i++) { 2363 err = bpf_object__init_user_btf_map(obj, sec, i, 2364 obj->efile.btf_maps_shndx, 2365 data, strict, 2366 pin_root_path); 2367 if (err) 2368 return err; 2369 } 2370 2371 return 0; 2372 } 2373 2374 static int bpf_object__init_maps(struct bpf_object *obj, 2375 const struct bpf_object_open_opts *opts) 2376 { 2377 const char *pin_root_path; 2378 bool strict; 2379 int err; 2380 2381 strict = !OPTS_GET(opts, relaxed_maps, false); 2382 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2383 2384 err = bpf_object__init_user_maps(obj, strict); 2385 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2386 err = err ?: bpf_object__init_global_data_maps(obj); 2387 err = err ?: bpf_object__init_kconfig_map(obj); 2388 err = err ?: bpf_object__init_struct_ops_maps(obj); 2389 if (err) 2390 return err; 2391 2392 return 0; 2393 } 2394 2395 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2396 { 2397 GElf_Shdr sh; 2398 2399 if (elf_sec_hdr(obj, elf_sec_by_idx(obj, idx), &sh)) 2400 return false; 2401 2402 return sh.sh_flags & SHF_EXECINSTR; 2403 } 2404 2405 static bool btf_needs_sanitization(struct bpf_object *obj) 2406 { 2407 bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC); 2408 bool has_datasec = kernel_supports(FEAT_BTF_DATASEC); 2409 bool has_float = kernel_supports(FEAT_BTF_FLOAT); 2410 bool has_func = kernel_supports(FEAT_BTF_FUNC); 2411 2412 return !has_func || !has_datasec || !has_func_global || !has_float; 2413 } 2414 2415 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2416 { 2417 bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC); 2418 bool has_datasec = kernel_supports(FEAT_BTF_DATASEC); 2419 bool has_float = kernel_supports(FEAT_BTF_FLOAT); 2420 bool has_func = kernel_supports(FEAT_BTF_FUNC); 2421 struct btf_type *t; 2422 int i, j, vlen; 2423 2424 for (i = 1; i <= btf__get_nr_types(btf); i++) { 2425 t = (struct btf_type *)btf__type_by_id(btf, i); 2426 2427 if (!has_datasec && btf_is_var(t)) { 2428 /* replace VAR with INT */ 2429 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2430 /* 2431 * using size = 1 is the safest choice, 4 will be too 2432 * big and cause kernel BTF validation failure if 2433 * original variable took less than 4 bytes 2434 */ 2435 t->size = 1; 2436 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2437 } else if (!has_datasec && btf_is_datasec(t)) { 2438 /* replace DATASEC with STRUCT */ 2439 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2440 struct btf_member *m = btf_members(t); 2441 struct btf_type *vt; 2442 char *name; 2443 2444 name = (char *)btf__name_by_offset(btf, t->name_off); 2445 while (*name) { 2446 if (*name == '.') 2447 *name = '_'; 2448 name++; 2449 } 2450 2451 vlen = btf_vlen(t); 2452 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2453 for (j = 0; j < vlen; j++, v++, m++) { 2454 /* order of field assignments is important */ 2455 m->offset = v->offset * 8; 2456 m->type = v->type; 2457 /* preserve variable name as member name */ 2458 vt = (void *)btf__type_by_id(btf, v->type); 2459 m->name_off = vt->name_off; 2460 } 2461 } else if (!has_func && btf_is_func_proto(t)) { 2462 /* replace FUNC_PROTO with ENUM */ 2463 vlen = btf_vlen(t); 2464 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2465 t->size = sizeof(__u32); /* kernel enforced */ 2466 } else if (!has_func && btf_is_func(t)) { 2467 /* replace FUNC with TYPEDEF */ 2468 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2469 } else if (!has_func_global && btf_is_func(t)) { 2470 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2471 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2472 } else if (!has_float && btf_is_float(t)) { 2473 /* replace FLOAT with an equally-sized empty STRUCT; 2474 * since C compilers do not accept e.g. "float" as a 2475 * valid struct name, make it anonymous 2476 */ 2477 t->name_off = 0; 2478 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2479 } 2480 } 2481 } 2482 2483 static bool libbpf_needs_btf(const struct bpf_object *obj) 2484 { 2485 return obj->efile.btf_maps_shndx >= 0 || 2486 obj->efile.st_ops_shndx >= 0 || 2487 obj->nr_extern > 0; 2488 } 2489 2490 static bool kernel_needs_btf(const struct bpf_object *obj) 2491 { 2492 return obj->efile.st_ops_shndx >= 0; 2493 } 2494 2495 static int bpf_object__init_btf(struct bpf_object *obj, 2496 Elf_Data *btf_data, 2497 Elf_Data *btf_ext_data) 2498 { 2499 int err = -ENOENT; 2500 2501 if (btf_data) { 2502 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2503 if (IS_ERR(obj->btf)) { 2504 err = PTR_ERR(obj->btf); 2505 obj->btf = NULL; 2506 pr_warn("Error loading ELF section %s: %d.\n", 2507 BTF_ELF_SEC, err); 2508 goto out; 2509 } 2510 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2511 btf__set_pointer_size(obj->btf, 8); 2512 err = 0; 2513 } 2514 if (btf_ext_data) { 2515 if (!obj->btf) { 2516 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2517 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2518 goto out; 2519 } 2520 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, 2521 btf_ext_data->d_size); 2522 if (IS_ERR(obj->btf_ext)) { 2523 pr_warn("Error loading ELF section %s: %ld. Ignored and continue.\n", 2524 BTF_EXT_ELF_SEC, PTR_ERR(obj->btf_ext)); 2525 obj->btf_ext = NULL; 2526 goto out; 2527 } 2528 } 2529 out: 2530 if (err && libbpf_needs_btf(obj)) { 2531 pr_warn("BTF is required, but is missing or corrupted.\n"); 2532 return err; 2533 } 2534 return 0; 2535 } 2536 2537 static int bpf_object__finalize_btf(struct bpf_object *obj) 2538 { 2539 int err; 2540 2541 if (!obj->btf) 2542 return 0; 2543 2544 err = btf__finalize_data(obj, obj->btf); 2545 if (err) { 2546 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2547 return err; 2548 } 2549 2550 return 0; 2551 } 2552 2553 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 2554 { 2555 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 2556 prog->type == BPF_PROG_TYPE_LSM) 2557 return true; 2558 2559 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2560 * also need vmlinux BTF 2561 */ 2562 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2563 return true; 2564 2565 return false; 2566 } 2567 2568 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 2569 { 2570 struct bpf_program *prog; 2571 int i; 2572 2573 /* CO-RE relocations need kernel BTF */ 2574 if (obj->btf_ext && obj->btf_ext->core_relo_info.len) 2575 return true; 2576 2577 /* Support for typed ksyms needs kernel BTF */ 2578 for (i = 0; i < obj->nr_extern; i++) { 2579 const struct extern_desc *ext; 2580 2581 ext = &obj->externs[i]; 2582 if (ext->type == EXT_KSYM && ext->ksym.type_id) 2583 return true; 2584 } 2585 2586 bpf_object__for_each_program(prog, obj) { 2587 if (!prog->load) 2588 continue; 2589 if (prog_needs_vmlinux_btf(prog)) 2590 return true; 2591 } 2592 2593 return false; 2594 } 2595 2596 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 2597 { 2598 int err; 2599 2600 /* btf_vmlinux could be loaded earlier */ 2601 if (obj->btf_vmlinux) 2602 return 0; 2603 2604 if (!force && !obj_needs_vmlinux_btf(obj)) 2605 return 0; 2606 2607 obj->btf_vmlinux = libbpf_find_kernel_btf(); 2608 if (IS_ERR(obj->btf_vmlinux)) { 2609 err = PTR_ERR(obj->btf_vmlinux); 2610 pr_warn("Error loading vmlinux BTF: %d\n", err); 2611 obj->btf_vmlinux = NULL; 2612 return err; 2613 } 2614 return 0; 2615 } 2616 2617 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 2618 { 2619 struct btf *kern_btf = obj->btf; 2620 bool btf_mandatory, sanitize; 2621 int err = 0; 2622 2623 if (!obj->btf) 2624 return 0; 2625 2626 if (!kernel_supports(FEAT_BTF)) { 2627 if (kernel_needs_btf(obj)) { 2628 err = -EOPNOTSUPP; 2629 goto report; 2630 } 2631 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 2632 return 0; 2633 } 2634 2635 sanitize = btf_needs_sanitization(obj); 2636 if (sanitize) { 2637 const void *raw_data; 2638 __u32 sz; 2639 2640 /* clone BTF to sanitize a copy and leave the original intact */ 2641 raw_data = btf__get_raw_data(obj->btf, &sz); 2642 kern_btf = btf__new(raw_data, sz); 2643 if (IS_ERR(kern_btf)) 2644 return PTR_ERR(kern_btf); 2645 2646 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2647 btf__set_pointer_size(obj->btf, 8); 2648 bpf_object__sanitize_btf(obj, kern_btf); 2649 } 2650 2651 err = btf__load(kern_btf); 2652 if (sanitize) { 2653 if (!err) { 2654 /* move fd to libbpf's BTF */ 2655 btf__set_fd(obj->btf, btf__fd(kern_btf)); 2656 btf__set_fd(kern_btf, -1); 2657 } 2658 btf__free(kern_btf); 2659 } 2660 report: 2661 if (err) { 2662 btf_mandatory = kernel_needs_btf(obj); 2663 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 2664 btf_mandatory ? "BTF is mandatory, can't proceed." 2665 : "BTF is optional, ignoring."); 2666 if (!btf_mandatory) 2667 err = 0; 2668 } 2669 return err; 2670 } 2671 2672 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 2673 { 2674 const char *name; 2675 2676 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 2677 if (!name) { 2678 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 2679 off, obj->path, elf_errmsg(-1)); 2680 return NULL; 2681 } 2682 2683 return name; 2684 } 2685 2686 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 2687 { 2688 const char *name; 2689 2690 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 2691 if (!name) { 2692 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 2693 off, obj->path, elf_errmsg(-1)); 2694 return NULL; 2695 } 2696 2697 return name; 2698 } 2699 2700 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 2701 { 2702 Elf_Scn *scn; 2703 2704 scn = elf_getscn(obj->efile.elf, idx); 2705 if (!scn) { 2706 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 2707 idx, obj->path, elf_errmsg(-1)); 2708 return NULL; 2709 } 2710 return scn; 2711 } 2712 2713 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 2714 { 2715 Elf_Scn *scn = NULL; 2716 Elf *elf = obj->efile.elf; 2717 const char *sec_name; 2718 2719 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2720 sec_name = elf_sec_name(obj, scn); 2721 if (!sec_name) 2722 return NULL; 2723 2724 if (strcmp(sec_name, name) != 0) 2725 continue; 2726 2727 return scn; 2728 } 2729 return NULL; 2730 } 2731 2732 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr) 2733 { 2734 if (!scn) 2735 return -EINVAL; 2736 2737 if (gelf_getshdr(scn, hdr) != hdr) { 2738 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 2739 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 2740 return -EINVAL; 2741 } 2742 2743 return 0; 2744 } 2745 2746 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 2747 { 2748 const char *name; 2749 GElf_Shdr sh; 2750 2751 if (!scn) 2752 return NULL; 2753 2754 if (elf_sec_hdr(obj, scn, &sh)) 2755 return NULL; 2756 2757 name = elf_sec_str(obj, sh.sh_name); 2758 if (!name) { 2759 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 2760 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 2761 return NULL; 2762 } 2763 2764 return name; 2765 } 2766 2767 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 2768 { 2769 Elf_Data *data; 2770 2771 if (!scn) 2772 return NULL; 2773 2774 data = elf_getdata(scn, 0); 2775 if (!data) { 2776 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 2777 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 2778 obj->path, elf_errmsg(-1)); 2779 return NULL; 2780 } 2781 2782 return data; 2783 } 2784 2785 static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx, 2786 size_t off, __u32 sym_type, GElf_Sym *sym) 2787 { 2788 Elf_Data *symbols = obj->efile.symbols; 2789 size_t n = symbols->d_size / sizeof(GElf_Sym); 2790 int i; 2791 2792 for (i = 0; i < n; i++) { 2793 if (!gelf_getsym(symbols, i, sym)) 2794 continue; 2795 if (sym->st_shndx != sec_idx || sym->st_value != off) 2796 continue; 2797 if (GELF_ST_TYPE(sym->st_info) != sym_type) 2798 continue; 2799 return 0; 2800 } 2801 2802 return -ENOENT; 2803 } 2804 2805 static bool is_sec_name_dwarf(const char *name) 2806 { 2807 /* approximation, but the actual list is too long */ 2808 return strncmp(name, ".debug_", sizeof(".debug_") - 1) == 0; 2809 } 2810 2811 static bool ignore_elf_section(GElf_Shdr *hdr, const char *name) 2812 { 2813 /* no special handling of .strtab */ 2814 if (hdr->sh_type == SHT_STRTAB) 2815 return true; 2816 2817 /* ignore .llvm_addrsig section as well */ 2818 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 2819 return true; 2820 2821 /* no subprograms will lead to an empty .text section, ignore it */ 2822 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 2823 strcmp(name, ".text") == 0) 2824 return true; 2825 2826 /* DWARF sections */ 2827 if (is_sec_name_dwarf(name)) 2828 return true; 2829 2830 if (strncmp(name, ".rel", sizeof(".rel") - 1) == 0) { 2831 name += sizeof(".rel") - 1; 2832 /* DWARF section relocations */ 2833 if (is_sec_name_dwarf(name)) 2834 return true; 2835 2836 /* .BTF and .BTF.ext don't need relocations */ 2837 if (strcmp(name, BTF_ELF_SEC) == 0 || 2838 strcmp(name, BTF_EXT_ELF_SEC) == 0) 2839 return true; 2840 } 2841 2842 return false; 2843 } 2844 2845 static int cmp_progs(const void *_a, const void *_b) 2846 { 2847 const struct bpf_program *a = _a; 2848 const struct bpf_program *b = _b; 2849 2850 if (a->sec_idx != b->sec_idx) 2851 return a->sec_idx < b->sec_idx ? -1 : 1; 2852 2853 /* sec_insn_off can't be the same within the section */ 2854 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 2855 } 2856 2857 static int bpf_object__elf_collect(struct bpf_object *obj) 2858 { 2859 Elf *elf = obj->efile.elf; 2860 Elf_Data *btf_ext_data = NULL; 2861 Elf_Data *btf_data = NULL; 2862 int idx = 0, err = 0; 2863 const char *name; 2864 Elf_Data *data; 2865 Elf_Scn *scn; 2866 GElf_Shdr sh; 2867 2868 /* a bunch of ELF parsing functionality depends on processing symbols, 2869 * so do the first pass and find the symbol table 2870 */ 2871 scn = NULL; 2872 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2873 if (elf_sec_hdr(obj, scn, &sh)) 2874 return -LIBBPF_ERRNO__FORMAT; 2875 2876 if (sh.sh_type == SHT_SYMTAB) { 2877 if (obj->efile.symbols) { 2878 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 2879 return -LIBBPF_ERRNO__FORMAT; 2880 } 2881 2882 data = elf_sec_data(obj, scn); 2883 if (!data) 2884 return -LIBBPF_ERRNO__FORMAT; 2885 2886 obj->efile.symbols = data; 2887 obj->efile.symbols_shndx = elf_ndxscn(scn); 2888 obj->efile.strtabidx = sh.sh_link; 2889 } 2890 } 2891 2892 scn = NULL; 2893 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2894 idx++; 2895 2896 if (elf_sec_hdr(obj, scn, &sh)) 2897 return -LIBBPF_ERRNO__FORMAT; 2898 2899 name = elf_sec_str(obj, sh.sh_name); 2900 if (!name) 2901 return -LIBBPF_ERRNO__FORMAT; 2902 2903 if (ignore_elf_section(&sh, name)) 2904 continue; 2905 2906 data = elf_sec_data(obj, scn); 2907 if (!data) 2908 return -LIBBPF_ERRNO__FORMAT; 2909 2910 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 2911 idx, name, (unsigned long)data->d_size, 2912 (int)sh.sh_link, (unsigned long)sh.sh_flags, 2913 (int)sh.sh_type); 2914 2915 if (strcmp(name, "license") == 0) { 2916 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 2917 if (err) 2918 return err; 2919 } else if (strcmp(name, "version") == 0) { 2920 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 2921 if (err) 2922 return err; 2923 } else if (strcmp(name, "maps") == 0) { 2924 obj->efile.maps_shndx = idx; 2925 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 2926 obj->efile.btf_maps_shndx = idx; 2927 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 2928 btf_data = data; 2929 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 2930 btf_ext_data = data; 2931 } else if (sh.sh_type == SHT_SYMTAB) { 2932 /* already processed during the first pass above */ 2933 } else if (sh.sh_type == SHT_PROGBITS && data->d_size > 0) { 2934 if (sh.sh_flags & SHF_EXECINSTR) { 2935 if (strcmp(name, ".text") == 0) 2936 obj->efile.text_shndx = idx; 2937 err = bpf_object__add_programs(obj, data, name, idx); 2938 if (err) 2939 return err; 2940 } else if (strcmp(name, DATA_SEC) == 0) { 2941 obj->efile.data = data; 2942 obj->efile.data_shndx = idx; 2943 } else if (strcmp(name, RODATA_SEC) == 0) { 2944 obj->efile.rodata = data; 2945 obj->efile.rodata_shndx = idx; 2946 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 2947 obj->efile.st_ops_data = data; 2948 obj->efile.st_ops_shndx = idx; 2949 } else { 2950 pr_info("elf: skipping unrecognized data section(%d) %s\n", 2951 idx, name); 2952 } 2953 } else if (sh.sh_type == SHT_REL) { 2954 int nr_sects = obj->efile.nr_reloc_sects; 2955 void *sects = obj->efile.reloc_sects; 2956 int sec = sh.sh_info; /* points to other section */ 2957 2958 /* Only do relo for section with exec instructions */ 2959 if (!section_have_execinstr(obj, sec) && 2960 strcmp(name, ".rel" STRUCT_OPS_SEC) && 2961 strcmp(name, ".rel" MAPS_ELF_SEC)) { 2962 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 2963 idx, name, sec, 2964 elf_sec_name(obj, elf_sec_by_idx(obj, sec)) ?: "<?>"); 2965 continue; 2966 } 2967 2968 sects = libbpf_reallocarray(sects, nr_sects + 1, 2969 sizeof(*obj->efile.reloc_sects)); 2970 if (!sects) 2971 return -ENOMEM; 2972 2973 obj->efile.reloc_sects = sects; 2974 obj->efile.nr_reloc_sects++; 2975 2976 obj->efile.reloc_sects[nr_sects].shdr = sh; 2977 obj->efile.reloc_sects[nr_sects].data = data; 2978 } else if (sh.sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 2979 obj->efile.bss = data; 2980 obj->efile.bss_shndx = idx; 2981 } else { 2982 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 2983 (size_t)sh.sh_size); 2984 } 2985 } 2986 2987 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 2988 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 2989 return -LIBBPF_ERRNO__FORMAT; 2990 } 2991 2992 /* sort BPF programs by section name and in-section instruction offset 2993 * for faster search */ 2994 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 2995 2996 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 2997 } 2998 2999 static bool sym_is_extern(const GElf_Sym *sym) 3000 { 3001 int bind = GELF_ST_BIND(sym->st_info); 3002 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3003 return sym->st_shndx == SHN_UNDEF && 3004 (bind == STB_GLOBAL || bind == STB_WEAK) && 3005 GELF_ST_TYPE(sym->st_info) == STT_NOTYPE; 3006 } 3007 3008 static bool sym_is_subprog(const GElf_Sym *sym, int text_shndx) 3009 { 3010 int bind = GELF_ST_BIND(sym->st_info); 3011 int type = GELF_ST_TYPE(sym->st_info); 3012 3013 /* in .text section */ 3014 if (sym->st_shndx != text_shndx) 3015 return false; 3016 3017 /* local function */ 3018 if (bind == STB_LOCAL && type == STT_SECTION) 3019 return true; 3020 3021 /* global function */ 3022 return bind == STB_GLOBAL && type == STT_FUNC; 3023 } 3024 3025 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3026 { 3027 const struct btf_type *t; 3028 const char *tname; 3029 int i, n; 3030 3031 if (!btf) 3032 return -ESRCH; 3033 3034 n = btf__get_nr_types(btf); 3035 for (i = 1; i <= n; i++) { 3036 t = btf__type_by_id(btf, i); 3037 3038 if (!btf_is_var(t) && !btf_is_func(t)) 3039 continue; 3040 3041 tname = btf__name_by_offset(btf, t->name_off); 3042 if (strcmp(tname, ext_name)) 3043 continue; 3044 3045 if (btf_is_var(t) && 3046 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3047 return -EINVAL; 3048 3049 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3050 return -EINVAL; 3051 3052 return i; 3053 } 3054 3055 return -ENOENT; 3056 } 3057 3058 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3059 const struct btf_var_secinfo *vs; 3060 const struct btf_type *t; 3061 int i, j, n; 3062 3063 if (!btf) 3064 return -ESRCH; 3065 3066 n = btf__get_nr_types(btf); 3067 for (i = 1; i <= n; i++) { 3068 t = btf__type_by_id(btf, i); 3069 3070 if (!btf_is_datasec(t)) 3071 continue; 3072 3073 vs = btf_var_secinfos(t); 3074 for (j = 0; j < btf_vlen(t); j++, vs++) { 3075 if (vs->type == ext_btf_id) 3076 return i; 3077 } 3078 } 3079 3080 return -ENOENT; 3081 } 3082 3083 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3084 bool *is_signed) 3085 { 3086 const struct btf_type *t; 3087 const char *name; 3088 3089 t = skip_mods_and_typedefs(btf, id, NULL); 3090 name = btf__name_by_offset(btf, t->name_off); 3091 3092 if (is_signed) 3093 *is_signed = false; 3094 switch (btf_kind(t)) { 3095 case BTF_KIND_INT: { 3096 int enc = btf_int_encoding(t); 3097 3098 if (enc & BTF_INT_BOOL) 3099 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3100 if (is_signed) 3101 *is_signed = enc & BTF_INT_SIGNED; 3102 if (t->size == 1) 3103 return KCFG_CHAR; 3104 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3105 return KCFG_UNKNOWN; 3106 return KCFG_INT; 3107 } 3108 case BTF_KIND_ENUM: 3109 if (t->size != 4) 3110 return KCFG_UNKNOWN; 3111 if (strcmp(name, "libbpf_tristate")) 3112 return KCFG_UNKNOWN; 3113 return KCFG_TRISTATE; 3114 case BTF_KIND_ARRAY: 3115 if (btf_array(t)->nelems == 0) 3116 return KCFG_UNKNOWN; 3117 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3118 return KCFG_UNKNOWN; 3119 return KCFG_CHAR_ARR; 3120 default: 3121 return KCFG_UNKNOWN; 3122 } 3123 } 3124 3125 static int cmp_externs(const void *_a, const void *_b) 3126 { 3127 const struct extern_desc *a = _a; 3128 const struct extern_desc *b = _b; 3129 3130 if (a->type != b->type) 3131 return a->type < b->type ? -1 : 1; 3132 3133 if (a->type == EXT_KCFG) { 3134 /* descending order by alignment requirements */ 3135 if (a->kcfg.align != b->kcfg.align) 3136 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3137 /* ascending order by size, within same alignment class */ 3138 if (a->kcfg.sz != b->kcfg.sz) 3139 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3140 } 3141 3142 /* resolve ties by name */ 3143 return strcmp(a->name, b->name); 3144 } 3145 3146 static int find_int_btf_id(const struct btf *btf) 3147 { 3148 const struct btf_type *t; 3149 int i, n; 3150 3151 n = btf__get_nr_types(btf); 3152 for (i = 1; i <= n; i++) { 3153 t = btf__type_by_id(btf, i); 3154 3155 if (btf_is_int(t) && btf_int_bits(t) == 32) 3156 return i; 3157 } 3158 3159 return 0; 3160 } 3161 3162 static int add_dummy_ksym_var(struct btf *btf) 3163 { 3164 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3165 const struct btf_var_secinfo *vs; 3166 const struct btf_type *sec; 3167 3168 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3169 BTF_KIND_DATASEC); 3170 if (sec_btf_id < 0) 3171 return 0; 3172 3173 sec = btf__type_by_id(btf, sec_btf_id); 3174 vs = btf_var_secinfos(sec); 3175 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3176 const struct btf_type *vt; 3177 3178 vt = btf__type_by_id(btf, vs->type); 3179 if (btf_is_func(vt)) 3180 break; 3181 } 3182 3183 /* No func in ksyms sec. No need to add dummy var. */ 3184 if (i == btf_vlen(sec)) 3185 return 0; 3186 3187 int_btf_id = find_int_btf_id(btf); 3188 dummy_var_btf_id = btf__add_var(btf, 3189 "dummy_ksym", 3190 BTF_VAR_GLOBAL_ALLOCATED, 3191 int_btf_id); 3192 if (dummy_var_btf_id < 0) 3193 pr_warn("cannot create a dummy_ksym var\n"); 3194 3195 return dummy_var_btf_id; 3196 } 3197 3198 static int bpf_object__collect_externs(struct bpf_object *obj) 3199 { 3200 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3201 const struct btf_type *t; 3202 struct extern_desc *ext; 3203 int i, n, off, dummy_var_btf_id; 3204 const char *ext_name, *sec_name; 3205 Elf_Scn *scn; 3206 GElf_Shdr sh; 3207 3208 if (!obj->efile.symbols) 3209 return 0; 3210 3211 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3212 if (elf_sec_hdr(obj, scn, &sh)) 3213 return -LIBBPF_ERRNO__FORMAT; 3214 3215 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3216 if (dummy_var_btf_id < 0) 3217 return dummy_var_btf_id; 3218 3219 n = sh.sh_size / sh.sh_entsize; 3220 pr_debug("looking for externs among %d symbols...\n", n); 3221 3222 for (i = 0; i < n; i++) { 3223 GElf_Sym sym; 3224 3225 if (!gelf_getsym(obj->efile.symbols, i, &sym)) 3226 return -LIBBPF_ERRNO__FORMAT; 3227 if (!sym_is_extern(&sym)) 3228 continue; 3229 ext_name = elf_sym_str(obj, sym.st_name); 3230 if (!ext_name || !ext_name[0]) 3231 continue; 3232 3233 ext = obj->externs; 3234 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3235 if (!ext) 3236 return -ENOMEM; 3237 obj->externs = ext; 3238 ext = &ext[obj->nr_extern]; 3239 memset(ext, 0, sizeof(*ext)); 3240 obj->nr_extern++; 3241 3242 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3243 if (ext->btf_id <= 0) { 3244 pr_warn("failed to find BTF for extern '%s': %d\n", 3245 ext_name, ext->btf_id); 3246 return ext->btf_id; 3247 } 3248 t = btf__type_by_id(obj->btf, ext->btf_id); 3249 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3250 ext->sym_idx = i; 3251 ext->is_weak = GELF_ST_BIND(sym.st_info) == STB_WEAK; 3252 3253 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3254 if (ext->sec_btf_id <= 0) { 3255 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3256 ext_name, ext->btf_id, ext->sec_btf_id); 3257 return ext->sec_btf_id; 3258 } 3259 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3260 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3261 3262 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3263 if (btf_is_func(t)) { 3264 pr_warn("extern function %s is unsupported under %s section\n", 3265 ext->name, KCONFIG_SEC); 3266 return -ENOTSUP; 3267 } 3268 kcfg_sec = sec; 3269 ext->type = EXT_KCFG; 3270 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3271 if (ext->kcfg.sz <= 0) { 3272 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3273 ext_name, ext->kcfg.sz); 3274 return ext->kcfg.sz; 3275 } 3276 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3277 if (ext->kcfg.align <= 0) { 3278 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3279 ext_name, ext->kcfg.align); 3280 return -EINVAL; 3281 } 3282 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3283 &ext->kcfg.is_signed); 3284 if (ext->kcfg.type == KCFG_UNKNOWN) { 3285 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name); 3286 return -ENOTSUP; 3287 } 3288 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3289 if (btf_is_func(t) && ext->is_weak) { 3290 pr_warn("extern weak function %s is unsupported\n", 3291 ext->name); 3292 return -ENOTSUP; 3293 } 3294 ksym_sec = sec; 3295 ext->type = EXT_KSYM; 3296 skip_mods_and_typedefs(obj->btf, t->type, 3297 &ext->ksym.type_id); 3298 } else { 3299 pr_warn("unrecognized extern section '%s'\n", sec_name); 3300 return -ENOTSUP; 3301 } 3302 } 3303 pr_debug("collected %d externs total\n", obj->nr_extern); 3304 3305 if (!obj->nr_extern) 3306 return 0; 3307 3308 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3309 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3310 3311 /* for .ksyms section, we need to turn all externs into allocated 3312 * variables in BTF to pass kernel verification; we do this by 3313 * pretending that each extern is a 8-byte variable 3314 */ 3315 if (ksym_sec) { 3316 /* find existing 4-byte integer type in BTF to use for fake 3317 * extern variables in DATASEC 3318 */ 3319 int int_btf_id = find_int_btf_id(obj->btf); 3320 /* For extern function, a dummy_var added earlier 3321 * will be used to replace the vs->type and 3322 * its name string will be used to refill 3323 * the missing param's name. 3324 */ 3325 const struct btf_type *dummy_var; 3326 3327 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3328 for (i = 0; i < obj->nr_extern; i++) { 3329 ext = &obj->externs[i]; 3330 if (ext->type != EXT_KSYM) 3331 continue; 3332 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3333 i, ext->sym_idx, ext->name); 3334 } 3335 3336 sec = ksym_sec; 3337 n = btf_vlen(sec); 3338 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3339 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3340 struct btf_type *vt; 3341 3342 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3343 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3344 ext = find_extern_by_name(obj, ext_name); 3345 if (!ext) { 3346 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3347 btf_kind_str(vt), ext_name); 3348 return -ESRCH; 3349 } 3350 if (btf_is_func(vt)) { 3351 const struct btf_type *func_proto; 3352 struct btf_param *param; 3353 int j; 3354 3355 func_proto = btf__type_by_id(obj->btf, 3356 vt->type); 3357 param = btf_params(func_proto); 3358 /* Reuse the dummy_var string if the 3359 * func proto does not have param name. 3360 */ 3361 for (j = 0; j < btf_vlen(func_proto); j++) 3362 if (param[j].type && !param[j].name_off) 3363 param[j].name_off = 3364 dummy_var->name_off; 3365 vs->type = dummy_var_btf_id; 3366 vt->info &= ~0xffff; 3367 vt->info |= BTF_FUNC_GLOBAL; 3368 } else { 3369 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3370 vt->type = int_btf_id; 3371 } 3372 vs->offset = off; 3373 vs->size = sizeof(int); 3374 } 3375 sec->size = off; 3376 } 3377 3378 if (kcfg_sec) { 3379 sec = kcfg_sec; 3380 /* for kcfg externs calculate their offsets within a .kconfig map */ 3381 off = 0; 3382 for (i = 0; i < obj->nr_extern; i++) { 3383 ext = &obj->externs[i]; 3384 if (ext->type != EXT_KCFG) 3385 continue; 3386 3387 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3388 off = ext->kcfg.data_off + ext->kcfg.sz; 3389 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3390 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3391 } 3392 sec->size = off; 3393 n = btf_vlen(sec); 3394 for (i = 0; i < n; i++) { 3395 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3396 3397 t = btf__type_by_id(obj->btf, vs->type); 3398 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3399 ext = find_extern_by_name(obj, ext_name); 3400 if (!ext) { 3401 pr_warn("failed to find extern definition for BTF var '%s'\n", 3402 ext_name); 3403 return -ESRCH; 3404 } 3405 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3406 vs->offset = ext->kcfg.data_off; 3407 } 3408 } 3409 return 0; 3410 } 3411 3412 struct bpf_program * 3413 bpf_object__find_program_by_title(const struct bpf_object *obj, 3414 const char *title) 3415 { 3416 struct bpf_program *pos; 3417 3418 bpf_object__for_each_program(pos, obj) { 3419 if (pos->sec_name && !strcmp(pos->sec_name, title)) 3420 return pos; 3421 } 3422 return NULL; 3423 } 3424 3425 static bool prog_is_subprog(const struct bpf_object *obj, 3426 const struct bpf_program *prog) 3427 { 3428 /* For legacy reasons, libbpf supports an entry-point BPF programs 3429 * without SEC() attribute, i.e., those in the .text section. But if 3430 * there are 2 or more such programs in the .text section, they all 3431 * must be subprograms called from entry-point BPF programs in 3432 * designated SEC()'tions, otherwise there is no way to distinguish 3433 * which of those programs should be loaded vs which are a subprogram. 3434 * Similarly, if there is a function/program in .text and at least one 3435 * other BPF program with custom SEC() attribute, then we just assume 3436 * .text programs are subprograms (even if they are not called from 3437 * other programs), because libbpf never explicitly supported mixing 3438 * SEC()-designated BPF programs and .text entry-point BPF programs. 3439 */ 3440 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3441 } 3442 3443 struct bpf_program * 3444 bpf_object__find_program_by_name(const struct bpf_object *obj, 3445 const char *name) 3446 { 3447 struct bpf_program *prog; 3448 3449 bpf_object__for_each_program(prog, obj) { 3450 if (prog_is_subprog(obj, prog)) 3451 continue; 3452 if (!strcmp(prog->name, name)) 3453 return prog; 3454 } 3455 return NULL; 3456 } 3457 3458 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3459 int shndx) 3460 { 3461 return shndx == obj->efile.data_shndx || 3462 shndx == obj->efile.bss_shndx || 3463 shndx == obj->efile.rodata_shndx; 3464 } 3465 3466 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3467 int shndx) 3468 { 3469 return shndx == obj->efile.maps_shndx || 3470 shndx == obj->efile.btf_maps_shndx; 3471 } 3472 3473 static enum libbpf_map_type 3474 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3475 { 3476 if (shndx == obj->efile.data_shndx) 3477 return LIBBPF_MAP_DATA; 3478 else if (shndx == obj->efile.bss_shndx) 3479 return LIBBPF_MAP_BSS; 3480 else if (shndx == obj->efile.rodata_shndx) 3481 return LIBBPF_MAP_RODATA; 3482 else if (shndx == obj->efile.symbols_shndx) 3483 return LIBBPF_MAP_KCONFIG; 3484 else 3485 return LIBBPF_MAP_UNSPEC; 3486 } 3487 3488 static int bpf_program__record_reloc(struct bpf_program *prog, 3489 struct reloc_desc *reloc_desc, 3490 __u32 insn_idx, const char *sym_name, 3491 const GElf_Sym *sym, const GElf_Rel *rel) 3492 { 3493 struct bpf_insn *insn = &prog->insns[insn_idx]; 3494 size_t map_idx, nr_maps = prog->obj->nr_maps; 3495 struct bpf_object *obj = prog->obj; 3496 __u32 shdr_idx = sym->st_shndx; 3497 enum libbpf_map_type type; 3498 const char *sym_sec_name; 3499 struct bpf_map *map; 3500 3501 reloc_desc->processed = false; 3502 3503 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 3504 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 3505 prog->name, sym_name, insn_idx, insn->code); 3506 return -LIBBPF_ERRNO__RELOC; 3507 } 3508 3509 if (sym_is_extern(sym)) { 3510 int sym_idx = GELF_R_SYM(rel->r_info); 3511 int i, n = obj->nr_extern; 3512 struct extern_desc *ext; 3513 3514 for (i = 0; i < n; i++) { 3515 ext = &obj->externs[i]; 3516 if (ext->sym_idx == sym_idx) 3517 break; 3518 } 3519 if (i >= n) { 3520 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 3521 prog->name, sym_name, sym_idx); 3522 return -LIBBPF_ERRNO__RELOC; 3523 } 3524 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 3525 prog->name, i, ext->name, ext->sym_idx, insn_idx); 3526 if (insn->code == (BPF_JMP | BPF_CALL)) 3527 reloc_desc->type = RELO_EXTERN_FUNC; 3528 else 3529 reloc_desc->type = RELO_EXTERN_VAR; 3530 reloc_desc->insn_idx = insn_idx; 3531 reloc_desc->sym_off = i; /* sym_off stores extern index */ 3532 return 0; 3533 } 3534 3535 /* sub-program call relocation */ 3536 if (is_call_insn(insn)) { 3537 if (insn->src_reg != BPF_PSEUDO_CALL) { 3538 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 3539 return -LIBBPF_ERRNO__RELOC; 3540 } 3541 /* text_shndx can be 0, if no default "main" program exists */ 3542 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 3543 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3544 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 3545 prog->name, sym_name, sym_sec_name); 3546 return -LIBBPF_ERRNO__RELOC; 3547 } 3548 if (sym->st_value % BPF_INSN_SZ) { 3549 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 3550 prog->name, sym_name, (size_t)sym->st_value); 3551 return -LIBBPF_ERRNO__RELOC; 3552 } 3553 reloc_desc->type = RELO_CALL; 3554 reloc_desc->insn_idx = insn_idx; 3555 reloc_desc->sym_off = sym->st_value; 3556 return 0; 3557 } 3558 3559 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 3560 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 3561 prog->name, sym_name, shdr_idx); 3562 return -LIBBPF_ERRNO__RELOC; 3563 } 3564 3565 /* loading subprog addresses */ 3566 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 3567 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 3568 * local_func: sym->st_value = 0, insn->imm = offset in the section. 3569 */ 3570 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 3571 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 3572 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 3573 return -LIBBPF_ERRNO__RELOC; 3574 } 3575 3576 reloc_desc->type = RELO_SUBPROG_ADDR; 3577 reloc_desc->insn_idx = insn_idx; 3578 reloc_desc->sym_off = sym->st_value; 3579 return 0; 3580 } 3581 3582 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 3583 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3584 3585 /* generic map reference relocation */ 3586 if (type == LIBBPF_MAP_UNSPEC) { 3587 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 3588 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 3589 prog->name, sym_name, sym_sec_name); 3590 return -LIBBPF_ERRNO__RELOC; 3591 } 3592 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3593 map = &obj->maps[map_idx]; 3594 if (map->libbpf_type != type || 3595 map->sec_idx != sym->st_shndx || 3596 map->sec_offset != sym->st_value) 3597 continue; 3598 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 3599 prog->name, map_idx, map->name, map->sec_idx, 3600 map->sec_offset, insn_idx); 3601 break; 3602 } 3603 if (map_idx >= nr_maps) { 3604 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 3605 prog->name, sym_sec_name, (size_t)sym->st_value); 3606 return -LIBBPF_ERRNO__RELOC; 3607 } 3608 reloc_desc->type = RELO_LD64; 3609 reloc_desc->insn_idx = insn_idx; 3610 reloc_desc->map_idx = map_idx; 3611 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 3612 return 0; 3613 } 3614 3615 /* global data map relocation */ 3616 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 3617 pr_warn("prog '%s': bad data relo against section '%s'\n", 3618 prog->name, sym_sec_name); 3619 return -LIBBPF_ERRNO__RELOC; 3620 } 3621 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3622 map = &obj->maps[map_idx]; 3623 if (map->libbpf_type != type) 3624 continue; 3625 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 3626 prog->name, map_idx, map->name, map->sec_idx, 3627 map->sec_offset, insn_idx); 3628 break; 3629 } 3630 if (map_idx >= nr_maps) { 3631 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 3632 prog->name, sym_sec_name); 3633 return -LIBBPF_ERRNO__RELOC; 3634 } 3635 3636 reloc_desc->type = RELO_DATA; 3637 reloc_desc->insn_idx = insn_idx; 3638 reloc_desc->map_idx = map_idx; 3639 reloc_desc->sym_off = sym->st_value; 3640 return 0; 3641 } 3642 3643 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 3644 { 3645 return insn_idx >= prog->sec_insn_off && 3646 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 3647 } 3648 3649 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 3650 size_t sec_idx, size_t insn_idx) 3651 { 3652 int l = 0, r = obj->nr_programs - 1, m; 3653 struct bpf_program *prog; 3654 3655 while (l < r) { 3656 m = l + (r - l + 1) / 2; 3657 prog = &obj->programs[m]; 3658 3659 if (prog->sec_idx < sec_idx || 3660 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 3661 l = m; 3662 else 3663 r = m - 1; 3664 } 3665 /* matching program could be at index l, but it still might be the 3666 * wrong one, so we need to double check conditions for the last time 3667 */ 3668 prog = &obj->programs[l]; 3669 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 3670 return prog; 3671 return NULL; 3672 } 3673 3674 static int 3675 bpf_object__collect_prog_relos(struct bpf_object *obj, GElf_Shdr *shdr, Elf_Data *data) 3676 { 3677 Elf_Data *symbols = obj->efile.symbols; 3678 const char *relo_sec_name, *sec_name; 3679 size_t sec_idx = shdr->sh_info; 3680 struct bpf_program *prog; 3681 struct reloc_desc *relos; 3682 int err, i, nrels; 3683 const char *sym_name; 3684 __u32 insn_idx; 3685 GElf_Sym sym; 3686 GElf_Rel rel; 3687 3688 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 3689 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 3690 if (!relo_sec_name || !sec_name) 3691 return -EINVAL; 3692 3693 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 3694 relo_sec_name, sec_idx, sec_name); 3695 nrels = shdr->sh_size / shdr->sh_entsize; 3696 3697 for (i = 0; i < nrels; i++) { 3698 if (!gelf_getrel(data, i, &rel)) { 3699 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 3700 return -LIBBPF_ERRNO__FORMAT; 3701 } 3702 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 3703 pr_warn("sec '%s': symbol 0x%zx not found for relo #%d\n", 3704 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i); 3705 return -LIBBPF_ERRNO__FORMAT; 3706 } 3707 if (rel.r_offset % BPF_INSN_SZ) { 3708 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 3709 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i); 3710 return -LIBBPF_ERRNO__FORMAT; 3711 } 3712 3713 insn_idx = rel.r_offset / BPF_INSN_SZ; 3714 /* relocations against static functions are recorded as 3715 * relocations against the section that contains a function; 3716 * in such case, symbol will be STT_SECTION and sym.st_name 3717 * will point to empty string (0), so fetch section name 3718 * instead 3719 */ 3720 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && sym.st_name == 0) 3721 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym.st_shndx)); 3722 else 3723 sym_name = elf_sym_str(obj, sym.st_name); 3724 sym_name = sym_name ?: "<?"; 3725 3726 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 3727 relo_sec_name, i, insn_idx, sym_name); 3728 3729 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 3730 if (!prog) { 3731 pr_warn("sec '%s': relo #%d: program not found in section '%s' for insn #%u\n", 3732 relo_sec_name, i, sec_name, insn_idx); 3733 return -LIBBPF_ERRNO__RELOC; 3734 } 3735 3736 relos = libbpf_reallocarray(prog->reloc_desc, 3737 prog->nr_reloc + 1, sizeof(*relos)); 3738 if (!relos) 3739 return -ENOMEM; 3740 prog->reloc_desc = relos; 3741 3742 /* adjust insn_idx to local BPF program frame of reference */ 3743 insn_idx -= prog->sec_insn_off; 3744 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 3745 insn_idx, sym_name, &sym, &rel); 3746 if (err) 3747 return err; 3748 3749 prog->nr_reloc++; 3750 } 3751 return 0; 3752 } 3753 3754 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 3755 { 3756 struct bpf_map_def *def = &map->def; 3757 __u32 key_type_id = 0, value_type_id = 0; 3758 int ret; 3759 3760 /* if it's BTF-defined map, we don't need to search for type IDs. 3761 * For struct_ops map, it does not need btf_key_type_id and 3762 * btf_value_type_id. 3763 */ 3764 if (map->sec_idx == obj->efile.btf_maps_shndx || 3765 bpf_map__is_struct_ops(map)) 3766 return 0; 3767 3768 if (!bpf_map__is_internal(map)) { 3769 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size, 3770 def->value_size, &key_type_id, 3771 &value_type_id); 3772 } else { 3773 /* 3774 * LLVM annotates global data differently in BTF, that is, 3775 * only as '.data', '.bss' or '.rodata'. 3776 */ 3777 ret = btf__find_by_name(obj->btf, 3778 libbpf_type_to_btf_name[map->libbpf_type]); 3779 } 3780 if (ret < 0) 3781 return ret; 3782 3783 map->btf_key_type_id = key_type_id; 3784 map->btf_value_type_id = bpf_map__is_internal(map) ? 3785 ret : value_type_id; 3786 return 0; 3787 } 3788 3789 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 3790 { 3791 struct bpf_map_info info = {}; 3792 __u32 len = sizeof(info); 3793 int new_fd, err; 3794 char *new_name; 3795 3796 err = bpf_obj_get_info_by_fd(fd, &info, &len); 3797 if (err) 3798 return err; 3799 3800 new_name = strdup(info.name); 3801 if (!new_name) 3802 return -errno; 3803 3804 new_fd = open("/", O_RDONLY | O_CLOEXEC); 3805 if (new_fd < 0) { 3806 err = -errno; 3807 goto err_free_new_name; 3808 } 3809 3810 new_fd = dup3(fd, new_fd, O_CLOEXEC); 3811 if (new_fd < 0) { 3812 err = -errno; 3813 goto err_close_new_fd; 3814 } 3815 3816 err = zclose(map->fd); 3817 if (err) { 3818 err = -errno; 3819 goto err_close_new_fd; 3820 } 3821 free(map->name); 3822 3823 map->fd = new_fd; 3824 map->name = new_name; 3825 map->def.type = info.type; 3826 map->def.key_size = info.key_size; 3827 map->def.value_size = info.value_size; 3828 map->def.max_entries = info.max_entries; 3829 map->def.map_flags = info.map_flags; 3830 map->btf_key_type_id = info.btf_key_type_id; 3831 map->btf_value_type_id = info.btf_value_type_id; 3832 map->reused = true; 3833 3834 return 0; 3835 3836 err_close_new_fd: 3837 close(new_fd); 3838 err_free_new_name: 3839 free(new_name); 3840 return err; 3841 } 3842 3843 __u32 bpf_map__max_entries(const struct bpf_map *map) 3844 { 3845 return map->def.max_entries; 3846 } 3847 3848 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 3849 { 3850 if (map->fd >= 0) 3851 return -EBUSY; 3852 map->def.max_entries = max_entries; 3853 return 0; 3854 } 3855 3856 int bpf_map__resize(struct bpf_map *map, __u32 max_entries) 3857 { 3858 if (!map || !max_entries) 3859 return -EINVAL; 3860 3861 return bpf_map__set_max_entries(map, max_entries); 3862 } 3863 3864 static int 3865 bpf_object__probe_loading(struct bpf_object *obj) 3866 { 3867 struct bpf_load_program_attr attr; 3868 char *cp, errmsg[STRERR_BUFSIZE]; 3869 struct bpf_insn insns[] = { 3870 BPF_MOV64_IMM(BPF_REG_0, 0), 3871 BPF_EXIT_INSN(), 3872 }; 3873 int ret; 3874 3875 /* make sure basic loading works */ 3876 3877 memset(&attr, 0, sizeof(attr)); 3878 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3879 attr.insns = insns; 3880 attr.insns_cnt = ARRAY_SIZE(insns); 3881 attr.license = "GPL"; 3882 3883 ret = bpf_load_program_xattr(&attr, NULL, 0); 3884 if (ret < 0) { 3885 ret = errno; 3886 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 3887 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 3888 "program. Make sure your kernel supports BPF " 3889 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 3890 "set to big enough value.\n", __func__, cp, ret); 3891 return -ret; 3892 } 3893 close(ret); 3894 3895 return 0; 3896 } 3897 3898 static int probe_fd(int fd) 3899 { 3900 if (fd >= 0) 3901 close(fd); 3902 return fd >= 0; 3903 } 3904 3905 static int probe_kern_prog_name(void) 3906 { 3907 struct bpf_load_program_attr attr; 3908 struct bpf_insn insns[] = { 3909 BPF_MOV64_IMM(BPF_REG_0, 0), 3910 BPF_EXIT_INSN(), 3911 }; 3912 int ret; 3913 3914 /* make sure loading with name works */ 3915 3916 memset(&attr, 0, sizeof(attr)); 3917 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3918 attr.insns = insns; 3919 attr.insns_cnt = ARRAY_SIZE(insns); 3920 attr.license = "GPL"; 3921 attr.name = "test"; 3922 ret = bpf_load_program_xattr(&attr, NULL, 0); 3923 return probe_fd(ret); 3924 } 3925 3926 static int probe_kern_global_data(void) 3927 { 3928 struct bpf_load_program_attr prg_attr; 3929 struct bpf_create_map_attr map_attr; 3930 char *cp, errmsg[STRERR_BUFSIZE]; 3931 struct bpf_insn insns[] = { 3932 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 3933 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 3934 BPF_MOV64_IMM(BPF_REG_0, 0), 3935 BPF_EXIT_INSN(), 3936 }; 3937 int ret, map; 3938 3939 memset(&map_attr, 0, sizeof(map_attr)); 3940 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 3941 map_attr.key_size = sizeof(int); 3942 map_attr.value_size = 32; 3943 map_attr.max_entries = 1; 3944 3945 map = bpf_create_map_xattr(&map_attr); 3946 if (map < 0) { 3947 ret = -errno; 3948 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 3949 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 3950 __func__, cp, -ret); 3951 return ret; 3952 } 3953 3954 insns[0].imm = map; 3955 3956 memset(&prg_attr, 0, sizeof(prg_attr)); 3957 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3958 prg_attr.insns = insns; 3959 prg_attr.insns_cnt = ARRAY_SIZE(insns); 3960 prg_attr.license = "GPL"; 3961 3962 ret = bpf_load_program_xattr(&prg_attr, NULL, 0); 3963 close(map); 3964 return probe_fd(ret); 3965 } 3966 3967 static int probe_kern_btf(void) 3968 { 3969 static const char strs[] = "\0int"; 3970 __u32 types[] = { 3971 /* int */ 3972 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 3973 }; 3974 3975 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3976 strs, sizeof(strs))); 3977 } 3978 3979 static int probe_kern_btf_func(void) 3980 { 3981 static const char strs[] = "\0int\0x\0a"; 3982 /* void x(int a) {} */ 3983 __u32 types[] = { 3984 /* int */ 3985 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3986 /* FUNC_PROTO */ /* [2] */ 3987 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 3988 BTF_PARAM_ENC(7, 1), 3989 /* FUNC x */ /* [3] */ 3990 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 3991 }; 3992 3993 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3994 strs, sizeof(strs))); 3995 } 3996 3997 static int probe_kern_btf_func_global(void) 3998 { 3999 static const char strs[] = "\0int\0x\0a"; 4000 /* static void x(int a) {} */ 4001 __u32 types[] = { 4002 /* int */ 4003 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4004 /* FUNC_PROTO */ /* [2] */ 4005 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4006 BTF_PARAM_ENC(7, 1), 4007 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4008 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4009 }; 4010 4011 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4012 strs, sizeof(strs))); 4013 } 4014 4015 static int probe_kern_btf_datasec(void) 4016 { 4017 static const char strs[] = "\0x\0.data"; 4018 /* static int a; */ 4019 __u32 types[] = { 4020 /* int */ 4021 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4022 /* VAR x */ /* [2] */ 4023 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4024 BTF_VAR_STATIC, 4025 /* DATASEC val */ /* [3] */ 4026 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4027 BTF_VAR_SECINFO_ENC(2, 0, 4), 4028 }; 4029 4030 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4031 strs, sizeof(strs))); 4032 } 4033 4034 static int probe_kern_btf_float(void) 4035 { 4036 static const char strs[] = "\0float"; 4037 __u32 types[] = { 4038 /* float */ 4039 BTF_TYPE_FLOAT_ENC(1, 4), 4040 }; 4041 4042 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4043 strs, sizeof(strs))); 4044 } 4045 4046 static int probe_kern_array_mmap(void) 4047 { 4048 struct bpf_create_map_attr attr = { 4049 .map_type = BPF_MAP_TYPE_ARRAY, 4050 .map_flags = BPF_F_MMAPABLE, 4051 .key_size = sizeof(int), 4052 .value_size = sizeof(int), 4053 .max_entries = 1, 4054 }; 4055 4056 return probe_fd(bpf_create_map_xattr(&attr)); 4057 } 4058 4059 static int probe_kern_exp_attach_type(void) 4060 { 4061 struct bpf_load_program_attr attr; 4062 struct bpf_insn insns[] = { 4063 BPF_MOV64_IMM(BPF_REG_0, 0), 4064 BPF_EXIT_INSN(), 4065 }; 4066 4067 memset(&attr, 0, sizeof(attr)); 4068 /* use any valid combination of program type and (optional) 4069 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4070 * to see if kernel supports expected_attach_type field for 4071 * BPF_PROG_LOAD command 4072 */ 4073 attr.prog_type = BPF_PROG_TYPE_CGROUP_SOCK; 4074 attr.expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE; 4075 attr.insns = insns; 4076 attr.insns_cnt = ARRAY_SIZE(insns); 4077 attr.license = "GPL"; 4078 4079 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0)); 4080 } 4081 4082 static int probe_kern_probe_read_kernel(void) 4083 { 4084 struct bpf_load_program_attr attr; 4085 struct bpf_insn insns[] = { 4086 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4087 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4088 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4089 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4090 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4091 BPF_EXIT_INSN(), 4092 }; 4093 4094 memset(&attr, 0, sizeof(attr)); 4095 attr.prog_type = BPF_PROG_TYPE_KPROBE; 4096 attr.insns = insns; 4097 attr.insns_cnt = ARRAY_SIZE(insns); 4098 attr.license = "GPL"; 4099 4100 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0)); 4101 } 4102 4103 static int probe_prog_bind_map(void) 4104 { 4105 struct bpf_load_program_attr prg_attr; 4106 struct bpf_create_map_attr map_attr; 4107 char *cp, errmsg[STRERR_BUFSIZE]; 4108 struct bpf_insn insns[] = { 4109 BPF_MOV64_IMM(BPF_REG_0, 0), 4110 BPF_EXIT_INSN(), 4111 }; 4112 int ret, map, prog; 4113 4114 memset(&map_attr, 0, sizeof(map_attr)); 4115 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 4116 map_attr.key_size = sizeof(int); 4117 map_attr.value_size = 32; 4118 map_attr.max_entries = 1; 4119 4120 map = bpf_create_map_xattr(&map_attr); 4121 if (map < 0) { 4122 ret = -errno; 4123 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4124 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4125 __func__, cp, -ret); 4126 return ret; 4127 } 4128 4129 memset(&prg_attr, 0, sizeof(prg_attr)); 4130 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4131 prg_attr.insns = insns; 4132 prg_attr.insns_cnt = ARRAY_SIZE(insns); 4133 prg_attr.license = "GPL"; 4134 4135 prog = bpf_load_program_xattr(&prg_attr, NULL, 0); 4136 if (prog < 0) { 4137 close(map); 4138 return 0; 4139 } 4140 4141 ret = bpf_prog_bind_map(prog, map, NULL); 4142 4143 close(map); 4144 close(prog); 4145 4146 return ret >= 0; 4147 } 4148 4149 static int probe_module_btf(void) 4150 { 4151 static const char strs[] = "\0int"; 4152 __u32 types[] = { 4153 /* int */ 4154 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4155 }; 4156 struct bpf_btf_info info; 4157 __u32 len = sizeof(info); 4158 char name[16]; 4159 int fd, err; 4160 4161 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4162 if (fd < 0) 4163 return 0; /* BTF not supported at all */ 4164 4165 memset(&info, 0, sizeof(info)); 4166 info.name = ptr_to_u64(name); 4167 info.name_len = sizeof(name); 4168 4169 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4170 * kernel's module BTF support coincides with support for 4171 * name/name_len fields in struct bpf_btf_info. 4172 */ 4173 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4174 close(fd); 4175 return !err; 4176 } 4177 4178 enum kern_feature_result { 4179 FEAT_UNKNOWN = 0, 4180 FEAT_SUPPORTED = 1, 4181 FEAT_MISSING = 2, 4182 }; 4183 4184 typedef int (*feature_probe_fn)(void); 4185 4186 static struct kern_feature_desc { 4187 const char *desc; 4188 feature_probe_fn probe; 4189 enum kern_feature_result res; 4190 } feature_probes[__FEAT_CNT] = { 4191 [FEAT_PROG_NAME] = { 4192 "BPF program name", probe_kern_prog_name, 4193 }, 4194 [FEAT_GLOBAL_DATA] = { 4195 "global variables", probe_kern_global_data, 4196 }, 4197 [FEAT_BTF] = { 4198 "minimal BTF", probe_kern_btf, 4199 }, 4200 [FEAT_BTF_FUNC] = { 4201 "BTF functions", probe_kern_btf_func, 4202 }, 4203 [FEAT_BTF_GLOBAL_FUNC] = { 4204 "BTF global function", probe_kern_btf_func_global, 4205 }, 4206 [FEAT_BTF_DATASEC] = { 4207 "BTF data section and variable", probe_kern_btf_datasec, 4208 }, 4209 [FEAT_ARRAY_MMAP] = { 4210 "ARRAY map mmap()", probe_kern_array_mmap, 4211 }, 4212 [FEAT_EXP_ATTACH_TYPE] = { 4213 "BPF_PROG_LOAD expected_attach_type attribute", 4214 probe_kern_exp_attach_type, 4215 }, 4216 [FEAT_PROBE_READ_KERN] = { 4217 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4218 }, 4219 [FEAT_PROG_BIND_MAP] = { 4220 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4221 }, 4222 [FEAT_MODULE_BTF] = { 4223 "module BTF support", probe_module_btf, 4224 }, 4225 [FEAT_BTF_FLOAT] = { 4226 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4227 }, 4228 }; 4229 4230 static bool kernel_supports(enum kern_feature_id feat_id) 4231 { 4232 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4233 int ret; 4234 4235 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4236 ret = feat->probe(); 4237 if (ret > 0) { 4238 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4239 } else if (ret == 0) { 4240 WRITE_ONCE(feat->res, FEAT_MISSING); 4241 } else { 4242 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4243 WRITE_ONCE(feat->res, FEAT_MISSING); 4244 } 4245 } 4246 4247 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4248 } 4249 4250 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4251 { 4252 struct bpf_map_info map_info = {}; 4253 char msg[STRERR_BUFSIZE]; 4254 __u32 map_info_len; 4255 4256 map_info_len = sizeof(map_info); 4257 4258 if (bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len)) { 4259 pr_warn("failed to get map info for map FD %d: %s\n", 4260 map_fd, libbpf_strerror_r(errno, msg, sizeof(msg))); 4261 return false; 4262 } 4263 4264 return (map_info.type == map->def.type && 4265 map_info.key_size == map->def.key_size && 4266 map_info.value_size == map->def.value_size && 4267 map_info.max_entries == map->def.max_entries && 4268 map_info.map_flags == map->def.map_flags); 4269 } 4270 4271 static int 4272 bpf_object__reuse_map(struct bpf_map *map) 4273 { 4274 char *cp, errmsg[STRERR_BUFSIZE]; 4275 int err, pin_fd; 4276 4277 pin_fd = bpf_obj_get(map->pin_path); 4278 if (pin_fd < 0) { 4279 err = -errno; 4280 if (err == -ENOENT) { 4281 pr_debug("found no pinned map to reuse at '%s'\n", 4282 map->pin_path); 4283 return 0; 4284 } 4285 4286 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4287 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4288 map->pin_path, cp); 4289 return err; 4290 } 4291 4292 if (!map_is_reuse_compat(map, pin_fd)) { 4293 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4294 map->pin_path); 4295 close(pin_fd); 4296 return -EINVAL; 4297 } 4298 4299 err = bpf_map__reuse_fd(map, pin_fd); 4300 if (err) { 4301 close(pin_fd); 4302 return err; 4303 } 4304 map->pinned = true; 4305 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4306 4307 return 0; 4308 } 4309 4310 static int 4311 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4312 { 4313 enum libbpf_map_type map_type = map->libbpf_type; 4314 char *cp, errmsg[STRERR_BUFSIZE]; 4315 int err, zero = 0; 4316 4317 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4318 if (err) { 4319 err = -errno; 4320 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4321 pr_warn("Error setting initial map(%s) contents: %s\n", 4322 map->name, cp); 4323 return err; 4324 } 4325 4326 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 4327 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 4328 err = bpf_map_freeze(map->fd); 4329 if (err) { 4330 err = -errno; 4331 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4332 pr_warn("Error freezing map(%s) as read-only: %s\n", 4333 map->name, cp); 4334 return err; 4335 } 4336 } 4337 return 0; 4338 } 4339 4340 static void bpf_map__destroy(struct bpf_map *map); 4341 4342 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map) 4343 { 4344 struct bpf_create_map_attr create_attr; 4345 struct bpf_map_def *def = &map->def; 4346 4347 memset(&create_attr, 0, sizeof(create_attr)); 4348 4349 if (kernel_supports(FEAT_PROG_NAME)) 4350 create_attr.name = map->name; 4351 create_attr.map_ifindex = map->map_ifindex; 4352 create_attr.map_type = def->type; 4353 create_attr.map_flags = def->map_flags; 4354 create_attr.key_size = def->key_size; 4355 create_attr.value_size = def->value_size; 4356 create_attr.numa_node = map->numa_node; 4357 4358 if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) { 4359 int nr_cpus; 4360 4361 nr_cpus = libbpf_num_possible_cpus(); 4362 if (nr_cpus < 0) { 4363 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 4364 map->name, nr_cpus); 4365 return nr_cpus; 4366 } 4367 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 4368 create_attr.max_entries = nr_cpus; 4369 } else { 4370 create_attr.max_entries = def->max_entries; 4371 } 4372 4373 if (bpf_map__is_struct_ops(map)) 4374 create_attr.btf_vmlinux_value_type_id = 4375 map->btf_vmlinux_value_type_id; 4376 4377 create_attr.btf_fd = 0; 4378 create_attr.btf_key_type_id = 0; 4379 create_attr.btf_value_type_id = 0; 4380 if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) { 4381 create_attr.btf_fd = btf__fd(obj->btf); 4382 create_attr.btf_key_type_id = map->btf_key_type_id; 4383 create_attr.btf_value_type_id = map->btf_value_type_id; 4384 } 4385 4386 if (bpf_map_type__is_map_in_map(def->type)) { 4387 if (map->inner_map) { 4388 int err; 4389 4390 err = bpf_object__create_map(obj, map->inner_map); 4391 if (err) { 4392 pr_warn("map '%s': failed to create inner map: %d\n", 4393 map->name, err); 4394 return err; 4395 } 4396 map->inner_map_fd = bpf_map__fd(map->inner_map); 4397 } 4398 if (map->inner_map_fd >= 0) 4399 create_attr.inner_map_fd = map->inner_map_fd; 4400 } 4401 4402 map->fd = bpf_create_map_xattr(&create_attr); 4403 if (map->fd < 0 && (create_attr.btf_key_type_id || 4404 create_attr.btf_value_type_id)) { 4405 char *cp, errmsg[STRERR_BUFSIZE]; 4406 int err = -errno; 4407 4408 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4409 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 4410 map->name, cp, err); 4411 create_attr.btf_fd = 0; 4412 create_attr.btf_key_type_id = 0; 4413 create_attr.btf_value_type_id = 0; 4414 map->btf_key_type_id = 0; 4415 map->btf_value_type_id = 0; 4416 map->fd = bpf_create_map_xattr(&create_attr); 4417 } 4418 4419 if (map->fd < 0) 4420 return -errno; 4421 4422 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 4423 bpf_map__destroy(map->inner_map); 4424 zfree(&map->inner_map); 4425 } 4426 4427 return 0; 4428 } 4429 4430 static int init_map_slots(struct bpf_map *map) 4431 { 4432 const struct bpf_map *targ_map; 4433 unsigned int i; 4434 int fd, err; 4435 4436 for (i = 0; i < map->init_slots_sz; i++) { 4437 if (!map->init_slots[i]) 4438 continue; 4439 4440 targ_map = map->init_slots[i]; 4441 fd = bpf_map__fd(targ_map); 4442 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 4443 if (err) { 4444 err = -errno; 4445 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 4446 map->name, i, targ_map->name, 4447 fd, err); 4448 return err; 4449 } 4450 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 4451 map->name, i, targ_map->name, fd); 4452 } 4453 4454 zfree(&map->init_slots); 4455 map->init_slots_sz = 0; 4456 4457 return 0; 4458 } 4459 4460 static int 4461 bpf_object__create_maps(struct bpf_object *obj) 4462 { 4463 struct bpf_map *map; 4464 char *cp, errmsg[STRERR_BUFSIZE]; 4465 unsigned int i, j; 4466 int err; 4467 4468 for (i = 0; i < obj->nr_maps; i++) { 4469 map = &obj->maps[i]; 4470 4471 if (map->pin_path) { 4472 err = bpf_object__reuse_map(map); 4473 if (err) { 4474 pr_warn("map '%s': error reusing pinned map\n", 4475 map->name); 4476 goto err_out; 4477 } 4478 } 4479 4480 if (map->fd >= 0) { 4481 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 4482 map->name, map->fd); 4483 } else { 4484 err = bpf_object__create_map(obj, map); 4485 if (err) 4486 goto err_out; 4487 4488 pr_debug("map '%s': created successfully, fd=%d\n", 4489 map->name, map->fd); 4490 4491 if (bpf_map__is_internal(map)) { 4492 err = bpf_object__populate_internal_map(obj, map); 4493 if (err < 0) { 4494 zclose(map->fd); 4495 goto err_out; 4496 } 4497 } 4498 4499 if (map->init_slots_sz) { 4500 err = init_map_slots(map); 4501 if (err < 0) { 4502 zclose(map->fd); 4503 goto err_out; 4504 } 4505 } 4506 } 4507 4508 if (map->pin_path && !map->pinned) { 4509 err = bpf_map__pin(map, NULL); 4510 if (err) { 4511 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 4512 map->name, map->pin_path, err); 4513 zclose(map->fd); 4514 goto err_out; 4515 } 4516 } 4517 } 4518 4519 return 0; 4520 4521 err_out: 4522 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4523 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 4524 pr_perm_msg(err); 4525 for (j = 0; j < i; j++) 4526 zclose(obj->maps[j].fd); 4527 return err; 4528 } 4529 4530 #define BPF_CORE_SPEC_MAX_LEN 64 4531 4532 /* represents BPF CO-RE field or array element accessor */ 4533 struct bpf_core_accessor { 4534 __u32 type_id; /* struct/union type or array element type */ 4535 __u32 idx; /* field index or array index */ 4536 const char *name; /* field name or NULL for array accessor */ 4537 }; 4538 4539 struct bpf_core_spec { 4540 const struct btf *btf; 4541 /* high-level spec: named fields and array indices only */ 4542 struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN]; 4543 /* original unresolved (no skip_mods_or_typedefs) root type ID */ 4544 __u32 root_type_id; 4545 /* CO-RE relocation kind */ 4546 enum bpf_core_relo_kind relo_kind; 4547 /* high-level spec length */ 4548 int len; 4549 /* raw, low-level spec: 1-to-1 with accessor spec string */ 4550 int raw_spec[BPF_CORE_SPEC_MAX_LEN]; 4551 /* raw spec length */ 4552 int raw_len; 4553 /* field bit offset represented by spec */ 4554 __u32 bit_offset; 4555 }; 4556 4557 static bool str_is_empty(const char *s) 4558 { 4559 return !s || !s[0]; 4560 } 4561 4562 static bool is_flex_arr(const struct btf *btf, 4563 const struct bpf_core_accessor *acc, 4564 const struct btf_array *arr) 4565 { 4566 const struct btf_type *t; 4567 4568 /* not a flexible array, if not inside a struct or has non-zero size */ 4569 if (!acc->name || arr->nelems > 0) 4570 return false; 4571 4572 /* has to be the last member of enclosing struct */ 4573 t = btf__type_by_id(btf, acc->type_id); 4574 return acc->idx == btf_vlen(t) - 1; 4575 } 4576 4577 static const char *core_relo_kind_str(enum bpf_core_relo_kind kind) 4578 { 4579 switch (kind) { 4580 case BPF_FIELD_BYTE_OFFSET: return "byte_off"; 4581 case BPF_FIELD_BYTE_SIZE: return "byte_sz"; 4582 case BPF_FIELD_EXISTS: return "field_exists"; 4583 case BPF_FIELD_SIGNED: return "signed"; 4584 case BPF_FIELD_LSHIFT_U64: return "lshift_u64"; 4585 case BPF_FIELD_RSHIFT_U64: return "rshift_u64"; 4586 case BPF_TYPE_ID_LOCAL: return "local_type_id"; 4587 case BPF_TYPE_ID_TARGET: return "target_type_id"; 4588 case BPF_TYPE_EXISTS: return "type_exists"; 4589 case BPF_TYPE_SIZE: return "type_size"; 4590 case BPF_ENUMVAL_EXISTS: return "enumval_exists"; 4591 case BPF_ENUMVAL_VALUE: return "enumval_value"; 4592 default: return "unknown"; 4593 } 4594 } 4595 4596 static bool core_relo_is_field_based(enum bpf_core_relo_kind kind) 4597 { 4598 switch (kind) { 4599 case BPF_FIELD_BYTE_OFFSET: 4600 case BPF_FIELD_BYTE_SIZE: 4601 case BPF_FIELD_EXISTS: 4602 case BPF_FIELD_SIGNED: 4603 case BPF_FIELD_LSHIFT_U64: 4604 case BPF_FIELD_RSHIFT_U64: 4605 return true; 4606 default: 4607 return false; 4608 } 4609 } 4610 4611 static bool core_relo_is_type_based(enum bpf_core_relo_kind kind) 4612 { 4613 switch (kind) { 4614 case BPF_TYPE_ID_LOCAL: 4615 case BPF_TYPE_ID_TARGET: 4616 case BPF_TYPE_EXISTS: 4617 case BPF_TYPE_SIZE: 4618 return true; 4619 default: 4620 return false; 4621 } 4622 } 4623 4624 static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind) 4625 { 4626 switch (kind) { 4627 case BPF_ENUMVAL_EXISTS: 4628 case BPF_ENUMVAL_VALUE: 4629 return true; 4630 default: 4631 return false; 4632 } 4633 } 4634 4635 /* 4636 * Turn bpf_core_relo into a low- and high-level spec representation, 4637 * validating correctness along the way, as well as calculating resulting 4638 * field bit offset, specified by accessor string. Low-level spec captures 4639 * every single level of nestedness, including traversing anonymous 4640 * struct/union members. High-level one only captures semantically meaningful 4641 * "turning points": named fields and array indicies. 4642 * E.g., for this case: 4643 * 4644 * struct sample { 4645 * int __unimportant; 4646 * struct { 4647 * int __1; 4648 * int __2; 4649 * int a[7]; 4650 * }; 4651 * }; 4652 * 4653 * struct sample *s = ...; 4654 * 4655 * int x = &s->a[3]; // access string = '0:1:2:3' 4656 * 4657 * Low-level spec has 1:1 mapping with each element of access string (it's 4658 * just a parsed access string representation): [0, 1, 2, 3]. 4659 * 4660 * High-level spec will capture only 3 points: 4661 * - intial zero-index access by pointer (&s->... is the same as &s[0]...); 4662 * - field 'a' access (corresponds to '2' in low-level spec); 4663 * - array element #3 access (corresponds to '3' in low-level spec). 4664 * 4665 * Type-based relocations (TYPE_EXISTS/TYPE_SIZE, 4666 * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their 4667 * spec and raw_spec are kept empty. 4668 * 4669 * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access 4670 * string to specify enumerator's value index that need to be relocated. 4671 */ 4672 static int bpf_core_parse_spec(const struct btf *btf, 4673 __u32 type_id, 4674 const char *spec_str, 4675 enum bpf_core_relo_kind relo_kind, 4676 struct bpf_core_spec *spec) 4677 { 4678 int access_idx, parsed_len, i; 4679 struct bpf_core_accessor *acc; 4680 const struct btf_type *t; 4681 const char *name; 4682 __u32 id; 4683 __s64 sz; 4684 4685 if (str_is_empty(spec_str) || *spec_str == ':') 4686 return -EINVAL; 4687 4688 memset(spec, 0, sizeof(*spec)); 4689 spec->btf = btf; 4690 spec->root_type_id = type_id; 4691 spec->relo_kind = relo_kind; 4692 4693 /* type-based relocations don't have a field access string */ 4694 if (core_relo_is_type_based(relo_kind)) { 4695 if (strcmp(spec_str, "0")) 4696 return -EINVAL; 4697 return 0; 4698 } 4699 4700 /* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */ 4701 while (*spec_str) { 4702 if (*spec_str == ':') 4703 ++spec_str; 4704 if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1) 4705 return -EINVAL; 4706 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 4707 return -E2BIG; 4708 spec_str += parsed_len; 4709 spec->raw_spec[spec->raw_len++] = access_idx; 4710 } 4711 4712 if (spec->raw_len == 0) 4713 return -EINVAL; 4714 4715 t = skip_mods_and_typedefs(btf, type_id, &id); 4716 if (!t) 4717 return -EINVAL; 4718 4719 access_idx = spec->raw_spec[0]; 4720 acc = &spec->spec[0]; 4721 acc->type_id = id; 4722 acc->idx = access_idx; 4723 spec->len++; 4724 4725 if (core_relo_is_enumval_based(relo_kind)) { 4726 if (!btf_is_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t)) 4727 return -EINVAL; 4728 4729 /* record enumerator name in a first accessor */ 4730 acc->name = btf__name_by_offset(btf, btf_enum(t)[access_idx].name_off); 4731 return 0; 4732 } 4733 4734 if (!core_relo_is_field_based(relo_kind)) 4735 return -EINVAL; 4736 4737 sz = btf__resolve_size(btf, id); 4738 if (sz < 0) 4739 return sz; 4740 spec->bit_offset = access_idx * sz * 8; 4741 4742 for (i = 1; i < spec->raw_len; i++) { 4743 t = skip_mods_and_typedefs(btf, id, &id); 4744 if (!t) 4745 return -EINVAL; 4746 4747 access_idx = spec->raw_spec[i]; 4748 acc = &spec->spec[spec->len]; 4749 4750 if (btf_is_composite(t)) { 4751 const struct btf_member *m; 4752 __u32 bit_offset; 4753 4754 if (access_idx >= btf_vlen(t)) 4755 return -EINVAL; 4756 4757 bit_offset = btf_member_bit_offset(t, access_idx); 4758 spec->bit_offset += bit_offset; 4759 4760 m = btf_members(t) + access_idx; 4761 if (m->name_off) { 4762 name = btf__name_by_offset(btf, m->name_off); 4763 if (str_is_empty(name)) 4764 return -EINVAL; 4765 4766 acc->type_id = id; 4767 acc->idx = access_idx; 4768 acc->name = name; 4769 spec->len++; 4770 } 4771 4772 id = m->type; 4773 } else if (btf_is_array(t)) { 4774 const struct btf_array *a = btf_array(t); 4775 bool flex; 4776 4777 t = skip_mods_and_typedefs(btf, a->type, &id); 4778 if (!t) 4779 return -EINVAL; 4780 4781 flex = is_flex_arr(btf, acc - 1, a); 4782 if (!flex && access_idx >= a->nelems) 4783 return -EINVAL; 4784 4785 spec->spec[spec->len].type_id = id; 4786 spec->spec[spec->len].idx = access_idx; 4787 spec->len++; 4788 4789 sz = btf__resolve_size(btf, id); 4790 if (sz < 0) 4791 return sz; 4792 spec->bit_offset += access_idx * sz * 8; 4793 } else { 4794 pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n", 4795 type_id, spec_str, i, id, btf_kind_str(t)); 4796 return -EINVAL; 4797 } 4798 } 4799 4800 return 0; 4801 } 4802 4803 static bool bpf_core_is_flavor_sep(const char *s) 4804 { 4805 /* check X___Y name pattern, where X and Y are not underscores */ 4806 return s[0] != '_' && /* X */ 4807 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 4808 s[4] != '_'; /* Y */ 4809 } 4810 4811 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 4812 * before last triple underscore. Struct name part after last triple 4813 * underscore is ignored by BPF CO-RE relocation during relocation matching. 4814 */ 4815 static size_t bpf_core_essential_name_len(const char *name) 4816 { 4817 size_t n = strlen(name); 4818 int i; 4819 4820 for (i = n - 5; i >= 0; i--) { 4821 if (bpf_core_is_flavor_sep(name + i)) 4822 return i + 1; 4823 } 4824 return n; 4825 } 4826 4827 struct core_cand 4828 { 4829 const struct btf *btf; 4830 const struct btf_type *t; 4831 const char *name; 4832 __u32 id; 4833 }; 4834 4835 /* dynamically sized list of type IDs and its associated struct btf */ 4836 struct core_cand_list { 4837 struct core_cand *cands; 4838 int len; 4839 }; 4840 4841 static void bpf_core_free_cands(struct core_cand_list *cands) 4842 { 4843 free(cands->cands); 4844 free(cands); 4845 } 4846 4847 static int bpf_core_add_cands(struct core_cand *local_cand, 4848 size_t local_essent_len, 4849 const struct btf *targ_btf, 4850 const char *targ_btf_name, 4851 int targ_start_id, 4852 struct core_cand_list *cands) 4853 { 4854 struct core_cand *new_cands, *cand; 4855 const struct btf_type *t; 4856 const char *targ_name; 4857 size_t targ_essent_len; 4858 int n, i; 4859 4860 n = btf__get_nr_types(targ_btf); 4861 for (i = targ_start_id; i <= n; i++) { 4862 t = btf__type_by_id(targ_btf, i); 4863 if (btf_kind(t) != btf_kind(local_cand->t)) 4864 continue; 4865 4866 targ_name = btf__name_by_offset(targ_btf, t->name_off); 4867 if (str_is_empty(targ_name)) 4868 continue; 4869 4870 targ_essent_len = bpf_core_essential_name_len(targ_name); 4871 if (targ_essent_len != local_essent_len) 4872 continue; 4873 4874 if (strncmp(local_cand->name, targ_name, local_essent_len) != 0) 4875 continue; 4876 4877 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 4878 local_cand->id, btf_kind_str(local_cand->t), 4879 local_cand->name, i, btf_kind_str(t), targ_name, 4880 targ_btf_name); 4881 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 4882 sizeof(*cands->cands)); 4883 if (!new_cands) 4884 return -ENOMEM; 4885 4886 cand = &new_cands[cands->len]; 4887 cand->btf = targ_btf; 4888 cand->t = t; 4889 cand->name = targ_name; 4890 cand->id = i; 4891 4892 cands->cands = new_cands; 4893 cands->len++; 4894 } 4895 return 0; 4896 } 4897 4898 static int load_module_btfs(struct bpf_object *obj) 4899 { 4900 struct bpf_btf_info info; 4901 struct module_btf *mod_btf; 4902 struct btf *btf; 4903 char name[64]; 4904 __u32 id = 0, len; 4905 int err, fd; 4906 4907 if (obj->btf_modules_loaded) 4908 return 0; 4909 4910 /* don't do this again, even if we find no module BTFs */ 4911 obj->btf_modules_loaded = true; 4912 4913 /* kernel too old to support module BTFs */ 4914 if (!kernel_supports(FEAT_MODULE_BTF)) 4915 return 0; 4916 4917 while (true) { 4918 err = bpf_btf_get_next_id(id, &id); 4919 if (err && errno == ENOENT) 4920 return 0; 4921 if (err) { 4922 err = -errno; 4923 pr_warn("failed to iterate BTF objects: %d\n", err); 4924 return err; 4925 } 4926 4927 fd = bpf_btf_get_fd_by_id(id); 4928 if (fd < 0) { 4929 if (errno == ENOENT) 4930 continue; /* expected race: BTF was unloaded */ 4931 err = -errno; 4932 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 4933 return err; 4934 } 4935 4936 len = sizeof(info); 4937 memset(&info, 0, sizeof(info)); 4938 info.name = ptr_to_u64(name); 4939 info.name_len = sizeof(name); 4940 4941 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4942 if (err) { 4943 err = -errno; 4944 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 4945 goto err_out; 4946 } 4947 4948 /* ignore non-module BTFs */ 4949 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 4950 close(fd); 4951 continue; 4952 } 4953 4954 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 4955 if (IS_ERR(btf)) { 4956 pr_warn("failed to load module [%s]'s BTF object #%d: %ld\n", 4957 name, id, PTR_ERR(btf)); 4958 err = PTR_ERR(btf); 4959 goto err_out; 4960 } 4961 4962 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 4963 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 4964 if (err) 4965 goto err_out; 4966 4967 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 4968 4969 mod_btf->btf = btf; 4970 mod_btf->id = id; 4971 mod_btf->fd = fd; 4972 mod_btf->name = strdup(name); 4973 if (!mod_btf->name) { 4974 err = -ENOMEM; 4975 goto err_out; 4976 } 4977 continue; 4978 4979 err_out: 4980 close(fd); 4981 return err; 4982 } 4983 4984 return 0; 4985 } 4986 4987 static struct core_cand_list * 4988 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 4989 { 4990 struct core_cand local_cand = {}; 4991 struct core_cand_list *cands; 4992 const struct btf *main_btf; 4993 size_t local_essent_len; 4994 int err, i; 4995 4996 local_cand.btf = local_btf; 4997 local_cand.t = btf__type_by_id(local_btf, local_type_id); 4998 if (!local_cand.t) 4999 return ERR_PTR(-EINVAL); 5000 5001 local_cand.name = btf__name_by_offset(local_btf, local_cand.t->name_off); 5002 if (str_is_empty(local_cand.name)) 5003 return ERR_PTR(-EINVAL); 5004 local_essent_len = bpf_core_essential_name_len(local_cand.name); 5005 5006 cands = calloc(1, sizeof(*cands)); 5007 if (!cands) 5008 return ERR_PTR(-ENOMEM); 5009 5010 /* Attempt to find target candidates in vmlinux BTF first */ 5011 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5012 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5013 if (err) 5014 goto err_out; 5015 5016 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5017 if (cands->len) 5018 return cands; 5019 5020 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5021 if (obj->btf_vmlinux_override) 5022 return cands; 5023 5024 /* now look through module BTFs, trying to still find candidates */ 5025 err = load_module_btfs(obj); 5026 if (err) 5027 goto err_out; 5028 5029 for (i = 0; i < obj->btf_module_cnt; i++) { 5030 err = bpf_core_add_cands(&local_cand, local_essent_len, 5031 obj->btf_modules[i].btf, 5032 obj->btf_modules[i].name, 5033 btf__get_nr_types(obj->btf_vmlinux) + 1, 5034 cands); 5035 if (err) 5036 goto err_out; 5037 } 5038 5039 return cands; 5040 err_out: 5041 bpf_core_free_cands(cands); 5042 return ERR_PTR(err); 5043 } 5044 5045 /* Check two types for compatibility for the purpose of field access 5046 * relocation. const/volatile/restrict and typedefs are skipped to ensure we 5047 * are relocating semantically compatible entities: 5048 * - any two STRUCTs/UNIONs are compatible and can be mixed; 5049 * - any two FWDs are compatible, if their names match (modulo flavor suffix); 5050 * - any two PTRs are always compatible; 5051 * - for ENUMs, names should be the same (ignoring flavor suffix) or at 5052 * least one of enums should be anonymous; 5053 * - for ENUMs, check sizes, names are ignored; 5054 * - for INT, size and signedness are ignored; 5055 * - for ARRAY, dimensionality is ignored, element types are checked for 5056 * compatibility recursively; 5057 * - everything else shouldn't be ever a target of relocation. 5058 * These rules are not set in stone and probably will be adjusted as we get 5059 * more experience with using BPF CO-RE relocations. 5060 */ 5061 static int bpf_core_fields_are_compat(const struct btf *local_btf, 5062 __u32 local_id, 5063 const struct btf *targ_btf, 5064 __u32 targ_id) 5065 { 5066 const struct btf_type *local_type, *targ_type; 5067 5068 recur: 5069 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 5070 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 5071 if (!local_type || !targ_type) 5072 return -EINVAL; 5073 5074 if (btf_is_composite(local_type) && btf_is_composite(targ_type)) 5075 return 1; 5076 if (btf_kind(local_type) != btf_kind(targ_type)) 5077 return 0; 5078 5079 switch (btf_kind(local_type)) { 5080 case BTF_KIND_PTR: 5081 return 1; 5082 case BTF_KIND_FWD: 5083 case BTF_KIND_ENUM: { 5084 const char *local_name, *targ_name; 5085 size_t local_len, targ_len; 5086 5087 local_name = btf__name_by_offset(local_btf, 5088 local_type->name_off); 5089 targ_name = btf__name_by_offset(targ_btf, targ_type->name_off); 5090 local_len = bpf_core_essential_name_len(local_name); 5091 targ_len = bpf_core_essential_name_len(targ_name); 5092 /* one of them is anonymous or both w/ same flavor-less names */ 5093 return local_len == 0 || targ_len == 0 || 5094 (local_len == targ_len && 5095 strncmp(local_name, targ_name, local_len) == 0); 5096 } 5097 case BTF_KIND_INT: 5098 /* just reject deprecated bitfield-like integers; all other 5099 * integers are by default compatible between each other 5100 */ 5101 return btf_int_offset(local_type) == 0 && 5102 btf_int_offset(targ_type) == 0; 5103 case BTF_KIND_ARRAY: 5104 local_id = btf_array(local_type)->type; 5105 targ_id = btf_array(targ_type)->type; 5106 goto recur; 5107 default: 5108 pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n", 5109 btf_kind(local_type), local_id, targ_id); 5110 return 0; 5111 } 5112 } 5113 5114 /* 5115 * Given single high-level named field accessor in local type, find 5116 * corresponding high-level accessor for a target type. Along the way, 5117 * maintain low-level spec for target as well. Also keep updating target 5118 * bit offset. 5119 * 5120 * Searching is performed through recursive exhaustive enumeration of all 5121 * fields of a struct/union. If there are any anonymous (embedded) 5122 * structs/unions, they are recursively searched as well. If field with 5123 * desired name is found, check compatibility between local and target types, 5124 * before returning result. 5125 * 5126 * 1 is returned, if field is found. 5127 * 0 is returned if no compatible field is found. 5128 * <0 is returned on error. 5129 */ 5130 static int bpf_core_match_member(const struct btf *local_btf, 5131 const struct bpf_core_accessor *local_acc, 5132 const struct btf *targ_btf, 5133 __u32 targ_id, 5134 struct bpf_core_spec *spec, 5135 __u32 *next_targ_id) 5136 { 5137 const struct btf_type *local_type, *targ_type; 5138 const struct btf_member *local_member, *m; 5139 const char *local_name, *targ_name; 5140 __u32 local_id; 5141 int i, n, found; 5142 5143 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 5144 if (!targ_type) 5145 return -EINVAL; 5146 if (!btf_is_composite(targ_type)) 5147 return 0; 5148 5149 local_id = local_acc->type_id; 5150 local_type = btf__type_by_id(local_btf, local_id); 5151 local_member = btf_members(local_type) + local_acc->idx; 5152 local_name = btf__name_by_offset(local_btf, local_member->name_off); 5153 5154 n = btf_vlen(targ_type); 5155 m = btf_members(targ_type); 5156 for (i = 0; i < n; i++, m++) { 5157 __u32 bit_offset; 5158 5159 bit_offset = btf_member_bit_offset(targ_type, i); 5160 5161 /* too deep struct/union/array nesting */ 5162 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 5163 return -E2BIG; 5164 5165 /* speculate this member will be the good one */ 5166 spec->bit_offset += bit_offset; 5167 spec->raw_spec[spec->raw_len++] = i; 5168 5169 targ_name = btf__name_by_offset(targ_btf, m->name_off); 5170 if (str_is_empty(targ_name)) { 5171 /* embedded struct/union, we need to go deeper */ 5172 found = bpf_core_match_member(local_btf, local_acc, 5173 targ_btf, m->type, 5174 spec, next_targ_id); 5175 if (found) /* either found or error */ 5176 return found; 5177 } else if (strcmp(local_name, targ_name) == 0) { 5178 /* matching named field */ 5179 struct bpf_core_accessor *targ_acc; 5180 5181 targ_acc = &spec->spec[spec->len++]; 5182 targ_acc->type_id = targ_id; 5183 targ_acc->idx = i; 5184 targ_acc->name = targ_name; 5185 5186 *next_targ_id = m->type; 5187 found = bpf_core_fields_are_compat(local_btf, 5188 local_member->type, 5189 targ_btf, m->type); 5190 if (!found) 5191 spec->len--; /* pop accessor */ 5192 return found; 5193 } 5194 /* member turned out not to be what we looked for */ 5195 spec->bit_offset -= bit_offset; 5196 spec->raw_len--; 5197 } 5198 5199 return 0; 5200 } 5201 5202 /* Check local and target types for compatibility. This check is used for 5203 * type-based CO-RE relocations and follow slightly different rules than 5204 * field-based relocations. This function assumes that root types were already 5205 * checked for name match. Beyond that initial root-level name check, names 5206 * are completely ignored. Compatibility rules are as follows: 5207 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5208 * kind should match for local and target types (i.e., STRUCT is not 5209 * compatible with UNION); 5210 * - for ENUMs, the size is ignored; 5211 * - for INT, size and signedness are ignored; 5212 * - for ARRAY, dimensionality is ignored, element types are checked for 5213 * compatibility recursively; 5214 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5215 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5216 * - FUNC_PROTOs are compatible if they have compatible signature: same 5217 * number of input args and compatible return and argument types. 5218 * These rules are not set in stone and probably will be adjusted as we get 5219 * more experience with using BPF CO-RE relocations. 5220 */ 5221 static int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5222 const struct btf *targ_btf, __u32 targ_id) 5223 { 5224 const struct btf_type *local_type, *targ_type; 5225 int depth = 32; /* max recursion depth */ 5226 5227 /* caller made sure that names match (ignoring flavor suffix) */ 5228 local_type = btf__type_by_id(local_btf, local_id); 5229 targ_type = btf__type_by_id(targ_btf, targ_id); 5230 if (btf_kind(local_type) != btf_kind(targ_type)) 5231 return 0; 5232 5233 recur: 5234 depth--; 5235 if (depth < 0) 5236 return -EINVAL; 5237 5238 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 5239 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 5240 if (!local_type || !targ_type) 5241 return -EINVAL; 5242 5243 if (btf_kind(local_type) != btf_kind(targ_type)) 5244 return 0; 5245 5246 switch (btf_kind(local_type)) { 5247 case BTF_KIND_UNKN: 5248 case BTF_KIND_STRUCT: 5249 case BTF_KIND_UNION: 5250 case BTF_KIND_ENUM: 5251 case BTF_KIND_FWD: 5252 return 1; 5253 case BTF_KIND_INT: 5254 /* just reject deprecated bitfield-like integers; all other 5255 * integers are by default compatible between each other 5256 */ 5257 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0; 5258 case BTF_KIND_PTR: 5259 local_id = local_type->type; 5260 targ_id = targ_type->type; 5261 goto recur; 5262 case BTF_KIND_ARRAY: 5263 local_id = btf_array(local_type)->type; 5264 targ_id = btf_array(targ_type)->type; 5265 goto recur; 5266 case BTF_KIND_FUNC_PROTO: { 5267 struct btf_param *local_p = btf_params(local_type); 5268 struct btf_param *targ_p = btf_params(targ_type); 5269 __u16 local_vlen = btf_vlen(local_type); 5270 __u16 targ_vlen = btf_vlen(targ_type); 5271 int i, err; 5272 5273 if (local_vlen != targ_vlen) 5274 return 0; 5275 5276 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { 5277 skip_mods_and_typedefs(local_btf, local_p->type, &local_id); 5278 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id); 5279 err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id); 5280 if (err <= 0) 5281 return err; 5282 } 5283 5284 /* tail recurse for return type check */ 5285 skip_mods_and_typedefs(local_btf, local_type->type, &local_id); 5286 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id); 5287 goto recur; 5288 } 5289 default: 5290 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n", 5291 btf_kind_str(local_type), local_id, targ_id); 5292 return 0; 5293 } 5294 } 5295 5296 /* 5297 * Try to match local spec to a target type and, if successful, produce full 5298 * target spec (high-level, low-level + bit offset). 5299 */ 5300 static int bpf_core_spec_match(struct bpf_core_spec *local_spec, 5301 const struct btf *targ_btf, __u32 targ_id, 5302 struct bpf_core_spec *targ_spec) 5303 { 5304 const struct btf_type *targ_type; 5305 const struct bpf_core_accessor *local_acc; 5306 struct bpf_core_accessor *targ_acc; 5307 int i, sz, matched; 5308 5309 memset(targ_spec, 0, sizeof(*targ_spec)); 5310 targ_spec->btf = targ_btf; 5311 targ_spec->root_type_id = targ_id; 5312 targ_spec->relo_kind = local_spec->relo_kind; 5313 5314 if (core_relo_is_type_based(local_spec->relo_kind)) { 5315 return bpf_core_types_are_compat(local_spec->btf, 5316 local_spec->root_type_id, 5317 targ_btf, targ_id); 5318 } 5319 5320 local_acc = &local_spec->spec[0]; 5321 targ_acc = &targ_spec->spec[0]; 5322 5323 if (core_relo_is_enumval_based(local_spec->relo_kind)) { 5324 size_t local_essent_len, targ_essent_len; 5325 const struct btf_enum *e; 5326 const char *targ_name; 5327 5328 /* has to resolve to an enum */ 5329 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id); 5330 if (!btf_is_enum(targ_type)) 5331 return 0; 5332 5333 local_essent_len = bpf_core_essential_name_len(local_acc->name); 5334 5335 for (i = 0, e = btf_enum(targ_type); i < btf_vlen(targ_type); i++, e++) { 5336 targ_name = btf__name_by_offset(targ_spec->btf, e->name_off); 5337 targ_essent_len = bpf_core_essential_name_len(targ_name); 5338 if (targ_essent_len != local_essent_len) 5339 continue; 5340 if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) { 5341 targ_acc->type_id = targ_id; 5342 targ_acc->idx = i; 5343 targ_acc->name = targ_name; 5344 targ_spec->len++; 5345 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 5346 targ_spec->raw_len++; 5347 return 1; 5348 } 5349 } 5350 return 0; 5351 } 5352 5353 if (!core_relo_is_field_based(local_spec->relo_kind)) 5354 return -EINVAL; 5355 5356 for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) { 5357 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, 5358 &targ_id); 5359 if (!targ_type) 5360 return -EINVAL; 5361 5362 if (local_acc->name) { 5363 matched = bpf_core_match_member(local_spec->btf, 5364 local_acc, 5365 targ_btf, targ_id, 5366 targ_spec, &targ_id); 5367 if (matched <= 0) 5368 return matched; 5369 } else { 5370 /* for i=0, targ_id is already treated as array element 5371 * type (because it's the original struct), for others 5372 * we should find array element type first 5373 */ 5374 if (i > 0) { 5375 const struct btf_array *a; 5376 bool flex; 5377 5378 if (!btf_is_array(targ_type)) 5379 return 0; 5380 5381 a = btf_array(targ_type); 5382 flex = is_flex_arr(targ_btf, targ_acc - 1, a); 5383 if (!flex && local_acc->idx >= a->nelems) 5384 return 0; 5385 if (!skip_mods_and_typedefs(targ_btf, a->type, 5386 &targ_id)) 5387 return -EINVAL; 5388 } 5389 5390 /* too deep struct/union/array nesting */ 5391 if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 5392 return -E2BIG; 5393 5394 targ_acc->type_id = targ_id; 5395 targ_acc->idx = local_acc->idx; 5396 targ_acc->name = NULL; 5397 targ_spec->len++; 5398 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 5399 targ_spec->raw_len++; 5400 5401 sz = btf__resolve_size(targ_btf, targ_id); 5402 if (sz < 0) 5403 return sz; 5404 targ_spec->bit_offset += local_acc->idx * sz * 8; 5405 } 5406 } 5407 5408 return 1; 5409 } 5410 5411 static int bpf_core_calc_field_relo(const struct bpf_program *prog, 5412 const struct bpf_core_relo *relo, 5413 const struct bpf_core_spec *spec, 5414 __u32 *val, __u32 *field_sz, __u32 *type_id, 5415 bool *validate) 5416 { 5417 const struct bpf_core_accessor *acc; 5418 const struct btf_type *t; 5419 __u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id; 5420 const struct btf_member *m; 5421 const struct btf_type *mt; 5422 bool bitfield; 5423 __s64 sz; 5424 5425 *field_sz = 0; 5426 5427 if (relo->kind == BPF_FIELD_EXISTS) { 5428 *val = spec ? 1 : 0; 5429 return 0; 5430 } 5431 5432 if (!spec) 5433 return -EUCLEAN; /* request instruction poisoning */ 5434 5435 acc = &spec->spec[spec->len - 1]; 5436 t = btf__type_by_id(spec->btf, acc->type_id); 5437 5438 /* a[n] accessor needs special handling */ 5439 if (!acc->name) { 5440 if (relo->kind == BPF_FIELD_BYTE_OFFSET) { 5441 *val = spec->bit_offset / 8; 5442 /* remember field size for load/store mem size */ 5443 sz = btf__resolve_size(spec->btf, acc->type_id); 5444 if (sz < 0) 5445 return -EINVAL; 5446 *field_sz = sz; 5447 *type_id = acc->type_id; 5448 } else if (relo->kind == BPF_FIELD_BYTE_SIZE) { 5449 sz = btf__resolve_size(spec->btf, acc->type_id); 5450 if (sz < 0) 5451 return -EINVAL; 5452 *val = sz; 5453 } else { 5454 pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n", 5455 prog->name, relo->kind, relo->insn_off / 8); 5456 return -EINVAL; 5457 } 5458 if (validate) 5459 *validate = true; 5460 return 0; 5461 } 5462 5463 m = btf_members(t) + acc->idx; 5464 mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id); 5465 bit_off = spec->bit_offset; 5466 bit_sz = btf_member_bitfield_size(t, acc->idx); 5467 5468 bitfield = bit_sz > 0; 5469 if (bitfield) { 5470 byte_sz = mt->size; 5471 byte_off = bit_off / 8 / byte_sz * byte_sz; 5472 /* figure out smallest int size necessary for bitfield load */ 5473 while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) { 5474 if (byte_sz >= 8) { 5475 /* bitfield can't be read with 64-bit read */ 5476 pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n", 5477 prog->name, relo->kind, relo->insn_off / 8); 5478 return -E2BIG; 5479 } 5480 byte_sz *= 2; 5481 byte_off = bit_off / 8 / byte_sz * byte_sz; 5482 } 5483 } else { 5484 sz = btf__resolve_size(spec->btf, field_type_id); 5485 if (sz < 0) 5486 return -EINVAL; 5487 byte_sz = sz; 5488 byte_off = spec->bit_offset / 8; 5489 bit_sz = byte_sz * 8; 5490 } 5491 5492 /* for bitfields, all the relocatable aspects are ambiguous and we 5493 * might disagree with compiler, so turn off validation of expected 5494 * value, except for signedness 5495 */ 5496 if (validate) 5497 *validate = !bitfield; 5498 5499 switch (relo->kind) { 5500 case BPF_FIELD_BYTE_OFFSET: 5501 *val = byte_off; 5502 if (!bitfield) { 5503 *field_sz = byte_sz; 5504 *type_id = field_type_id; 5505 } 5506 break; 5507 case BPF_FIELD_BYTE_SIZE: 5508 *val = byte_sz; 5509 break; 5510 case BPF_FIELD_SIGNED: 5511 /* enums will be assumed unsigned */ 5512 *val = btf_is_enum(mt) || 5513 (btf_int_encoding(mt) & BTF_INT_SIGNED); 5514 if (validate) 5515 *validate = true; /* signedness is never ambiguous */ 5516 break; 5517 case BPF_FIELD_LSHIFT_U64: 5518 #if __BYTE_ORDER == __LITTLE_ENDIAN 5519 *val = 64 - (bit_off + bit_sz - byte_off * 8); 5520 #else 5521 *val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8); 5522 #endif 5523 break; 5524 case BPF_FIELD_RSHIFT_U64: 5525 *val = 64 - bit_sz; 5526 if (validate) 5527 *validate = true; /* right shift is never ambiguous */ 5528 break; 5529 case BPF_FIELD_EXISTS: 5530 default: 5531 return -EOPNOTSUPP; 5532 } 5533 5534 return 0; 5535 } 5536 5537 static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo, 5538 const struct bpf_core_spec *spec, 5539 __u32 *val) 5540 { 5541 __s64 sz; 5542 5543 /* type-based relos return zero when target type is not found */ 5544 if (!spec) { 5545 *val = 0; 5546 return 0; 5547 } 5548 5549 switch (relo->kind) { 5550 case BPF_TYPE_ID_TARGET: 5551 *val = spec->root_type_id; 5552 break; 5553 case BPF_TYPE_EXISTS: 5554 *val = 1; 5555 break; 5556 case BPF_TYPE_SIZE: 5557 sz = btf__resolve_size(spec->btf, spec->root_type_id); 5558 if (sz < 0) 5559 return -EINVAL; 5560 *val = sz; 5561 break; 5562 case BPF_TYPE_ID_LOCAL: 5563 /* BPF_TYPE_ID_LOCAL is handled specially and shouldn't get here */ 5564 default: 5565 return -EOPNOTSUPP; 5566 } 5567 5568 return 0; 5569 } 5570 5571 static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo, 5572 const struct bpf_core_spec *spec, 5573 __u32 *val) 5574 { 5575 const struct btf_type *t; 5576 const struct btf_enum *e; 5577 5578 switch (relo->kind) { 5579 case BPF_ENUMVAL_EXISTS: 5580 *val = spec ? 1 : 0; 5581 break; 5582 case BPF_ENUMVAL_VALUE: 5583 if (!spec) 5584 return -EUCLEAN; /* request instruction poisoning */ 5585 t = btf__type_by_id(spec->btf, spec->spec[0].type_id); 5586 e = btf_enum(t) + spec->spec[0].idx; 5587 *val = e->val; 5588 break; 5589 default: 5590 return -EOPNOTSUPP; 5591 } 5592 5593 return 0; 5594 } 5595 5596 struct bpf_core_relo_res 5597 { 5598 /* expected value in the instruction, unless validate == false */ 5599 __u32 orig_val; 5600 /* new value that needs to be patched up to */ 5601 __u32 new_val; 5602 /* relocation unsuccessful, poison instruction, but don't fail load */ 5603 bool poison; 5604 /* some relocations can't be validated against orig_val */ 5605 bool validate; 5606 /* for field byte offset relocations or the forms: 5607 * *(T *)(rX + <off>) = rY 5608 * rX = *(T *)(rY + <off>), 5609 * we remember original and resolved field size to adjust direct 5610 * memory loads of pointers and integers; this is necessary for 32-bit 5611 * host kernel architectures, but also allows to automatically 5612 * relocate fields that were resized from, e.g., u32 to u64, etc. 5613 */ 5614 bool fail_memsz_adjust; 5615 __u32 orig_sz; 5616 __u32 orig_type_id; 5617 __u32 new_sz; 5618 __u32 new_type_id; 5619 }; 5620 5621 /* Calculate original and target relocation values, given local and target 5622 * specs and relocation kind. These values are calculated for each candidate. 5623 * If there are multiple candidates, resulting values should all be consistent 5624 * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity. 5625 * If instruction has to be poisoned, *poison will be set to true. 5626 */ 5627 static int bpf_core_calc_relo(const struct bpf_program *prog, 5628 const struct bpf_core_relo *relo, 5629 int relo_idx, 5630 const struct bpf_core_spec *local_spec, 5631 const struct bpf_core_spec *targ_spec, 5632 struct bpf_core_relo_res *res) 5633 { 5634 int err = -EOPNOTSUPP; 5635 5636 res->orig_val = 0; 5637 res->new_val = 0; 5638 res->poison = false; 5639 res->validate = true; 5640 res->fail_memsz_adjust = false; 5641 res->orig_sz = res->new_sz = 0; 5642 res->orig_type_id = res->new_type_id = 0; 5643 5644 if (core_relo_is_field_based(relo->kind)) { 5645 err = bpf_core_calc_field_relo(prog, relo, local_spec, 5646 &res->orig_val, &res->orig_sz, 5647 &res->orig_type_id, &res->validate); 5648 err = err ?: bpf_core_calc_field_relo(prog, relo, targ_spec, 5649 &res->new_val, &res->new_sz, 5650 &res->new_type_id, NULL); 5651 if (err) 5652 goto done; 5653 /* Validate if it's safe to adjust load/store memory size. 5654 * Adjustments are performed only if original and new memory 5655 * sizes differ. 5656 */ 5657 res->fail_memsz_adjust = false; 5658 if (res->orig_sz != res->new_sz) { 5659 const struct btf_type *orig_t, *new_t; 5660 5661 orig_t = btf__type_by_id(local_spec->btf, res->orig_type_id); 5662 new_t = btf__type_by_id(targ_spec->btf, res->new_type_id); 5663 5664 /* There are two use cases in which it's safe to 5665 * adjust load/store's mem size: 5666 * - reading a 32-bit kernel pointer, while on BPF 5667 * size pointers are always 64-bit; in this case 5668 * it's safe to "downsize" instruction size due to 5669 * pointer being treated as unsigned integer with 5670 * zero-extended upper 32-bits; 5671 * - reading unsigned integers, again due to 5672 * zero-extension is preserving the value correctly. 5673 * 5674 * In all other cases it's incorrect to attempt to 5675 * load/store field because read value will be 5676 * incorrect, so we poison relocated instruction. 5677 */ 5678 if (btf_is_ptr(orig_t) && btf_is_ptr(new_t)) 5679 goto done; 5680 if (btf_is_int(orig_t) && btf_is_int(new_t) && 5681 btf_int_encoding(orig_t) != BTF_INT_SIGNED && 5682 btf_int_encoding(new_t) != BTF_INT_SIGNED) 5683 goto done; 5684 5685 /* mark as invalid mem size adjustment, but this will 5686 * only be checked for LDX/STX/ST insns 5687 */ 5688 res->fail_memsz_adjust = true; 5689 } 5690 } else if (core_relo_is_type_based(relo->kind)) { 5691 err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val); 5692 err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val); 5693 } else if (core_relo_is_enumval_based(relo->kind)) { 5694 err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val); 5695 err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val); 5696 } 5697 5698 done: 5699 if (err == -EUCLEAN) { 5700 /* EUCLEAN is used to signal instruction poisoning request */ 5701 res->poison = true; 5702 err = 0; 5703 } else if (err == -EOPNOTSUPP) { 5704 /* EOPNOTSUPP means unknown/unsupported relocation */ 5705 pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n", 5706 prog->name, relo_idx, core_relo_kind_str(relo->kind), 5707 relo->kind, relo->insn_off / 8); 5708 } 5709 5710 return err; 5711 } 5712 5713 /* 5714 * Turn instruction for which CO_RE relocation failed into invalid one with 5715 * distinct signature. 5716 */ 5717 static void bpf_core_poison_insn(struct bpf_program *prog, int relo_idx, 5718 int insn_idx, struct bpf_insn *insn) 5719 { 5720 pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n", 5721 prog->name, relo_idx, insn_idx); 5722 insn->code = BPF_JMP | BPF_CALL; 5723 insn->dst_reg = 0; 5724 insn->src_reg = 0; 5725 insn->off = 0; 5726 /* if this instruction is reachable (not a dead code), 5727 * verifier will complain with the following message: 5728 * invalid func unknown#195896080 5729 */ 5730 insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */ 5731 } 5732 5733 static int insn_bpf_size_to_bytes(struct bpf_insn *insn) 5734 { 5735 switch (BPF_SIZE(insn->code)) { 5736 case BPF_DW: return 8; 5737 case BPF_W: return 4; 5738 case BPF_H: return 2; 5739 case BPF_B: return 1; 5740 default: return -1; 5741 } 5742 } 5743 5744 static int insn_bytes_to_bpf_size(__u32 sz) 5745 { 5746 switch (sz) { 5747 case 8: return BPF_DW; 5748 case 4: return BPF_W; 5749 case 2: return BPF_H; 5750 case 1: return BPF_B; 5751 default: return -1; 5752 } 5753 } 5754 5755 /* 5756 * Patch relocatable BPF instruction. 5757 * 5758 * Patched value is determined by relocation kind and target specification. 5759 * For existence relocations target spec will be NULL if field/type is not found. 5760 * Expected insn->imm value is determined using relocation kind and local 5761 * spec, and is checked before patching instruction. If actual insn->imm value 5762 * is wrong, bail out with error. 5763 * 5764 * Currently supported classes of BPF instruction are: 5765 * 1. rX = <imm> (assignment with immediate operand); 5766 * 2. rX += <imm> (arithmetic operations with immediate operand); 5767 * 3. rX = <imm64> (load with 64-bit immediate value); 5768 * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64}; 5769 * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64}; 5770 * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}. 5771 */ 5772 static int bpf_core_patch_insn(struct bpf_program *prog, 5773 const struct bpf_core_relo *relo, 5774 int relo_idx, 5775 const struct bpf_core_relo_res *res) 5776 { 5777 __u32 orig_val, new_val; 5778 struct bpf_insn *insn; 5779 int insn_idx; 5780 __u8 class; 5781 5782 if (relo->insn_off % BPF_INSN_SZ) 5783 return -EINVAL; 5784 insn_idx = relo->insn_off / BPF_INSN_SZ; 5785 /* adjust insn_idx from section frame of reference to the local 5786 * program's frame of reference; (sub-)program code is not yet 5787 * relocated, so it's enough to just subtract in-section offset 5788 */ 5789 insn_idx = insn_idx - prog->sec_insn_off; 5790 insn = &prog->insns[insn_idx]; 5791 class = BPF_CLASS(insn->code); 5792 5793 if (res->poison) { 5794 poison: 5795 /* poison second part of ldimm64 to avoid confusing error from 5796 * verifier about "unknown opcode 00" 5797 */ 5798 if (is_ldimm64_insn(insn)) 5799 bpf_core_poison_insn(prog, relo_idx, insn_idx + 1, insn + 1); 5800 bpf_core_poison_insn(prog, relo_idx, insn_idx, insn); 5801 return 0; 5802 } 5803 5804 orig_val = res->orig_val; 5805 new_val = res->new_val; 5806 5807 switch (class) { 5808 case BPF_ALU: 5809 case BPF_ALU64: 5810 if (BPF_SRC(insn->code) != BPF_K) 5811 return -EINVAL; 5812 if (res->validate && insn->imm != orig_val) { 5813 pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n", 5814 prog->name, relo_idx, 5815 insn_idx, insn->imm, orig_val, new_val); 5816 return -EINVAL; 5817 } 5818 orig_val = insn->imm; 5819 insn->imm = new_val; 5820 pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n", 5821 prog->name, relo_idx, insn_idx, 5822 orig_val, new_val); 5823 break; 5824 case BPF_LDX: 5825 case BPF_ST: 5826 case BPF_STX: 5827 if (res->validate && insn->off != orig_val) { 5828 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %u -> %u\n", 5829 prog->name, relo_idx, insn_idx, insn->off, orig_val, new_val); 5830 return -EINVAL; 5831 } 5832 if (new_val > SHRT_MAX) { 5833 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n", 5834 prog->name, relo_idx, insn_idx, new_val); 5835 return -ERANGE; 5836 } 5837 if (res->fail_memsz_adjust) { 5838 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. " 5839 "Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n", 5840 prog->name, relo_idx, insn_idx); 5841 goto poison; 5842 } 5843 5844 orig_val = insn->off; 5845 insn->off = new_val; 5846 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n", 5847 prog->name, relo_idx, insn_idx, orig_val, new_val); 5848 5849 if (res->new_sz != res->orig_sz) { 5850 int insn_bytes_sz, insn_bpf_sz; 5851 5852 insn_bytes_sz = insn_bpf_size_to_bytes(insn); 5853 if (insn_bytes_sz != res->orig_sz) { 5854 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n", 5855 prog->name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz); 5856 return -EINVAL; 5857 } 5858 5859 insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz); 5860 if (insn_bpf_sz < 0) { 5861 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n", 5862 prog->name, relo_idx, insn_idx, res->new_sz); 5863 return -EINVAL; 5864 } 5865 5866 insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code); 5867 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n", 5868 prog->name, relo_idx, insn_idx, res->orig_sz, res->new_sz); 5869 } 5870 break; 5871 case BPF_LD: { 5872 __u64 imm; 5873 5874 if (!is_ldimm64_insn(insn) || 5875 insn[0].src_reg != 0 || insn[0].off != 0 || 5876 insn_idx + 1 >= prog->insns_cnt || 5877 insn[1].code != 0 || insn[1].dst_reg != 0 || 5878 insn[1].src_reg != 0 || insn[1].off != 0) { 5879 pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n", 5880 prog->name, relo_idx, insn_idx); 5881 return -EINVAL; 5882 } 5883 5884 imm = insn[0].imm + ((__u64)insn[1].imm << 32); 5885 if (res->validate && imm != orig_val) { 5886 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %u -> %u\n", 5887 prog->name, relo_idx, 5888 insn_idx, (unsigned long long)imm, 5889 orig_val, new_val); 5890 return -EINVAL; 5891 } 5892 5893 insn[0].imm = new_val; 5894 insn[1].imm = 0; /* currently only 32-bit values are supported */ 5895 pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %u\n", 5896 prog->name, relo_idx, insn_idx, 5897 (unsigned long long)imm, new_val); 5898 break; 5899 } 5900 default: 5901 pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n", 5902 prog->name, relo_idx, insn_idx, insn->code, 5903 insn->src_reg, insn->dst_reg, insn->off, insn->imm); 5904 return -EINVAL; 5905 } 5906 5907 return 0; 5908 } 5909 5910 /* Output spec definition in the format: 5911 * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>, 5912 * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b 5913 */ 5914 static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec) 5915 { 5916 const struct btf_type *t; 5917 const struct btf_enum *e; 5918 const char *s; 5919 __u32 type_id; 5920 int i; 5921 5922 type_id = spec->root_type_id; 5923 t = btf__type_by_id(spec->btf, type_id); 5924 s = btf__name_by_offset(spec->btf, t->name_off); 5925 5926 libbpf_print(level, "[%u] %s %s", type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s); 5927 5928 if (core_relo_is_type_based(spec->relo_kind)) 5929 return; 5930 5931 if (core_relo_is_enumval_based(spec->relo_kind)) { 5932 t = skip_mods_and_typedefs(spec->btf, type_id, NULL); 5933 e = btf_enum(t) + spec->raw_spec[0]; 5934 s = btf__name_by_offset(spec->btf, e->name_off); 5935 5936 libbpf_print(level, "::%s = %u", s, e->val); 5937 return; 5938 } 5939 5940 if (core_relo_is_field_based(spec->relo_kind)) { 5941 for (i = 0; i < spec->len; i++) { 5942 if (spec->spec[i].name) 5943 libbpf_print(level, ".%s", spec->spec[i].name); 5944 else if (i > 0 || spec->spec[i].idx > 0) 5945 libbpf_print(level, "[%u]", spec->spec[i].idx); 5946 } 5947 5948 libbpf_print(level, " ("); 5949 for (i = 0; i < spec->raw_len; i++) 5950 libbpf_print(level, "%s%d", i == 0 ? "" : ":", spec->raw_spec[i]); 5951 5952 if (spec->bit_offset % 8) 5953 libbpf_print(level, " @ offset %u.%u)", 5954 spec->bit_offset / 8, spec->bit_offset % 8); 5955 else 5956 libbpf_print(level, " @ offset %u)", spec->bit_offset / 8); 5957 return; 5958 } 5959 } 5960 5961 static size_t bpf_core_hash_fn(const void *key, void *ctx) 5962 { 5963 return (size_t)key; 5964 } 5965 5966 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 5967 { 5968 return k1 == k2; 5969 } 5970 5971 static void *u32_as_hash_key(__u32 x) 5972 { 5973 return (void *)(uintptr_t)x; 5974 } 5975 5976 /* 5977 * CO-RE relocate single instruction. 5978 * 5979 * The outline and important points of the algorithm: 5980 * 1. For given local type, find corresponding candidate target types. 5981 * Candidate type is a type with the same "essential" name, ignoring 5982 * everything after last triple underscore (___). E.g., `sample`, 5983 * `sample___flavor_one`, `sample___flavor_another_one`, are all candidates 5984 * for each other. Names with triple underscore are referred to as 5985 * "flavors" and are useful, among other things, to allow to 5986 * specify/support incompatible variations of the same kernel struct, which 5987 * might differ between different kernel versions and/or build 5988 * configurations. 5989 * 5990 * N.B. Struct "flavors" could be generated by bpftool's BTF-to-C 5991 * converter, when deduplicated BTF of a kernel still contains more than 5992 * one different types with the same name. In that case, ___2, ___3, etc 5993 * are appended starting from second name conflict. But start flavors are 5994 * also useful to be defined "locally", in BPF program, to extract same 5995 * data from incompatible changes between different kernel 5996 * versions/configurations. For instance, to handle field renames between 5997 * kernel versions, one can use two flavors of the struct name with the 5998 * same common name and use conditional relocations to extract that field, 5999 * depending on target kernel version. 6000 * 2. For each candidate type, try to match local specification to this 6001 * candidate target type. Matching involves finding corresponding 6002 * high-level spec accessors, meaning that all named fields should match, 6003 * as well as all array accesses should be within the actual bounds. Also, 6004 * types should be compatible (see bpf_core_fields_are_compat for details). 6005 * 3. It is supported and expected that there might be multiple flavors 6006 * matching the spec. As long as all the specs resolve to the same set of 6007 * offsets across all candidates, there is no error. If there is any 6008 * ambiguity, CO-RE relocation will fail. This is necessary to accomodate 6009 * imprefection of BTF deduplication, which can cause slight duplication of 6010 * the same BTF type, if some directly or indirectly referenced (by 6011 * pointer) type gets resolved to different actual types in different 6012 * object files. If such situation occurs, deduplicated BTF will end up 6013 * with two (or more) structurally identical types, which differ only in 6014 * types they refer to through pointer. This should be OK in most cases and 6015 * is not an error. 6016 * 4. Candidate types search is performed by linearly scanning through all 6017 * types in target BTF. It is anticipated that this is overall more 6018 * efficient memory-wise and not significantly worse (if not better) 6019 * CPU-wise compared to prebuilding a map from all local type names to 6020 * a list of candidate type names. It's also sped up by caching resolved 6021 * list of matching candidates per each local "root" type ID, that has at 6022 * least one bpf_core_relo associated with it. This list is shared 6023 * between multiple relocations for the same type ID and is updated as some 6024 * of the candidates are pruned due to structural incompatibility. 6025 */ 6026 static int bpf_core_apply_relo(struct bpf_program *prog, 6027 const struct bpf_core_relo *relo, 6028 int relo_idx, 6029 const struct btf *local_btf, 6030 struct hashmap *cand_cache) 6031 { 6032 struct bpf_core_spec local_spec, cand_spec, targ_spec = {}; 6033 const void *type_key = u32_as_hash_key(relo->type_id); 6034 struct bpf_core_relo_res cand_res, targ_res; 6035 const struct btf_type *local_type; 6036 const char *local_name; 6037 struct core_cand_list *cands = NULL; 6038 __u32 local_id; 6039 const char *spec_str; 6040 int i, j, err; 6041 6042 local_id = relo->type_id; 6043 local_type = btf__type_by_id(local_btf, local_id); 6044 if (!local_type) 6045 return -EINVAL; 6046 6047 local_name = btf__name_by_offset(local_btf, local_type->name_off); 6048 if (!local_name) 6049 return -EINVAL; 6050 6051 spec_str = btf__name_by_offset(local_btf, relo->access_str_off); 6052 if (str_is_empty(spec_str)) 6053 return -EINVAL; 6054 6055 err = bpf_core_parse_spec(local_btf, local_id, spec_str, relo->kind, &local_spec); 6056 if (err) { 6057 pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n", 6058 prog->name, relo_idx, local_id, btf_kind_str(local_type), 6059 str_is_empty(local_name) ? "<anon>" : local_name, 6060 spec_str, err); 6061 return -EINVAL; 6062 } 6063 6064 pr_debug("prog '%s': relo #%d: kind <%s> (%d), spec is ", prog->name, 6065 relo_idx, core_relo_kind_str(relo->kind), relo->kind); 6066 bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec); 6067 libbpf_print(LIBBPF_DEBUG, "\n"); 6068 6069 /* TYPE_ID_LOCAL relo is special and doesn't need candidate search */ 6070 if (relo->kind == BPF_TYPE_ID_LOCAL) { 6071 targ_res.validate = true; 6072 targ_res.poison = false; 6073 targ_res.orig_val = local_spec.root_type_id; 6074 targ_res.new_val = local_spec.root_type_id; 6075 goto patch_insn; 6076 } 6077 6078 /* libbpf doesn't support candidate search for anonymous types */ 6079 if (str_is_empty(spec_str)) { 6080 pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n", 6081 prog->name, relo_idx, core_relo_kind_str(relo->kind), relo->kind); 6082 return -EOPNOTSUPP; 6083 } 6084 6085 if (!hashmap__find(cand_cache, type_key, (void **)&cands)) { 6086 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 6087 if (IS_ERR(cands)) { 6088 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 6089 prog->name, relo_idx, local_id, btf_kind_str(local_type), 6090 local_name, PTR_ERR(cands)); 6091 return PTR_ERR(cands); 6092 } 6093 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL); 6094 if (err) { 6095 bpf_core_free_cands(cands); 6096 return err; 6097 } 6098 } 6099 6100 for (i = 0, j = 0; i < cands->len; i++) { 6101 err = bpf_core_spec_match(&local_spec, cands->cands[i].btf, 6102 cands->cands[i].id, &cand_spec); 6103 if (err < 0) { 6104 pr_warn("prog '%s': relo #%d: error matching candidate #%d ", 6105 prog->name, relo_idx, i); 6106 bpf_core_dump_spec(LIBBPF_WARN, &cand_spec); 6107 libbpf_print(LIBBPF_WARN, ": %d\n", err); 6108 return err; 6109 } 6110 6111 pr_debug("prog '%s': relo #%d: %s candidate #%d ", prog->name, 6112 relo_idx, err == 0 ? "non-matching" : "matching", i); 6113 bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec); 6114 libbpf_print(LIBBPF_DEBUG, "\n"); 6115 6116 if (err == 0) 6117 continue; 6118 6119 err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, &cand_spec, &cand_res); 6120 if (err) 6121 return err; 6122 6123 if (j == 0) { 6124 targ_res = cand_res; 6125 targ_spec = cand_spec; 6126 } else if (cand_spec.bit_offset != targ_spec.bit_offset) { 6127 /* if there are many field relo candidates, they 6128 * should all resolve to the same bit offset 6129 */ 6130 pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n", 6131 prog->name, relo_idx, cand_spec.bit_offset, 6132 targ_spec.bit_offset); 6133 return -EINVAL; 6134 } else if (cand_res.poison != targ_res.poison || cand_res.new_val != targ_res.new_val) { 6135 /* all candidates should result in the same relocation 6136 * decision and value, otherwise it's dangerous to 6137 * proceed due to ambiguity 6138 */ 6139 pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %u != %s %u\n", 6140 prog->name, relo_idx, 6141 cand_res.poison ? "failure" : "success", cand_res.new_val, 6142 targ_res.poison ? "failure" : "success", targ_res.new_val); 6143 return -EINVAL; 6144 } 6145 6146 cands->cands[j++] = cands->cands[i]; 6147 } 6148 6149 /* 6150 * For BPF_FIELD_EXISTS relo or when used BPF program has field 6151 * existence checks or kernel version/config checks, it's expected 6152 * that we might not find any candidates. In this case, if field 6153 * wasn't found in any candidate, the list of candidates shouldn't 6154 * change at all, we'll just handle relocating appropriately, 6155 * depending on relo's kind. 6156 */ 6157 if (j > 0) 6158 cands->len = j; 6159 6160 /* 6161 * If no candidates were found, it might be both a programmer error, 6162 * as well as expected case, depending whether instruction w/ 6163 * relocation is guarded in some way that makes it unreachable (dead 6164 * code) if relocation can't be resolved. This is handled in 6165 * bpf_core_patch_insn() uniformly by replacing that instruction with 6166 * BPF helper call insn (using invalid helper ID). If that instruction 6167 * is indeed unreachable, then it will be ignored and eliminated by 6168 * verifier. If it was an error, then verifier will complain and point 6169 * to a specific instruction number in its log. 6170 */ 6171 if (j == 0) { 6172 pr_debug("prog '%s': relo #%d: no matching targets found\n", 6173 prog->name, relo_idx); 6174 6175 /* calculate single target relo result explicitly */ 6176 err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, NULL, &targ_res); 6177 if (err) 6178 return err; 6179 } 6180 6181 patch_insn: 6182 /* bpf_core_patch_insn() should know how to handle missing targ_spec */ 6183 err = bpf_core_patch_insn(prog, relo, relo_idx, &targ_res); 6184 if (err) { 6185 pr_warn("prog '%s': relo #%d: failed to patch insn at offset %d: %d\n", 6186 prog->name, relo_idx, relo->insn_off, err); 6187 return -EINVAL; 6188 } 6189 6190 return 0; 6191 } 6192 6193 static int 6194 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 6195 { 6196 const struct btf_ext_info_sec *sec; 6197 const struct bpf_core_relo *rec; 6198 const struct btf_ext_info *seg; 6199 struct hashmap_entry *entry; 6200 struct hashmap *cand_cache = NULL; 6201 struct bpf_program *prog; 6202 const char *sec_name; 6203 int i, err = 0, insn_idx, sec_idx; 6204 6205 if (obj->btf_ext->core_relo_info.len == 0) 6206 return 0; 6207 6208 if (targ_btf_path) { 6209 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 6210 if (IS_ERR_OR_NULL(obj->btf_vmlinux_override)) { 6211 err = PTR_ERR(obj->btf_vmlinux_override); 6212 pr_warn("failed to parse target BTF: %d\n", err); 6213 return err; 6214 } 6215 } 6216 6217 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 6218 if (IS_ERR(cand_cache)) { 6219 err = PTR_ERR(cand_cache); 6220 goto out; 6221 } 6222 6223 seg = &obj->btf_ext->core_relo_info; 6224 for_each_btf_ext_sec(seg, sec) { 6225 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 6226 if (str_is_empty(sec_name)) { 6227 err = -EINVAL; 6228 goto out; 6229 } 6230 /* bpf_object's ELF is gone by now so it's not easy to find 6231 * section index by section name, but we can find *any* 6232 * bpf_program within desired section name and use it's 6233 * prog->sec_idx to do a proper search by section index and 6234 * instruction offset 6235 */ 6236 prog = NULL; 6237 for (i = 0; i < obj->nr_programs; i++) { 6238 prog = &obj->programs[i]; 6239 if (strcmp(prog->sec_name, sec_name) == 0) 6240 break; 6241 } 6242 if (!prog) { 6243 pr_warn("sec '%s': failed to find a BPF program\n", sec_name); 6244 return -ENOENT; 6245 } 6246 sec_idx = prog->sec_idx; 6247 6248 pr_debug("sec '%s': found %d CO-RE relocations\n", 6249 sec_name, sec->num_info); 6250 6251 for_each_btf_ext_rec(seg, sec, i, rec) { 6252 insn_idx = rec->insn_off / BPF_INSN_SZ; 6253 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 6254 if (!prog) { 6255 pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n", 6256 sec_name, insn_idx, i); 6257 err = -EINVAL; 6258 goto out; 6259 } 6260 /* no need to apply CO-RE relocation if the program is 6261 * not going to be loaded 6262 */ 6263 if (!prog->load) 6264 continue; 6265 6266 err = bpf_core_apply_relo(prog, rec, i, obj->btf, cand_cache); 6267 if (err) { 6268 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 6269 prog->name, i, err); 6270 goto out; 6271 } 6272 } 6273 } 6274 6275 out: 6276 /* obj->btf_vmlinux and module BTFs are freed after object load */ 6277 btf__free(obj->btf_vmlinux_override); 6278 obj->btf_vmlinux_override = NULL; 6279 6280 if (!IS_ERR_OR_NULL(cand_cache)) { 6281 hashmap__for_each_entry(cand_cache, entry, i) { 6282 bpf_core_free_cands(entry->value); 6283 } 6284 hashmap__free(cand_cache); 6285 } 6286 return err; 6287 } 6288 6289 /* Relocate data references within program code: 6290 * - map references; 6291 * - global variable references; 6292 * - extern references. 6293 */ 6294 static int 6295 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 6296 { 6297 int i; 6298 6299 for (i = 0; i < prog->nr_reloc; i++) { 6300 struct reloc_desc *relo = &prog->reloc_desc[i]; 6301 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6302 struct extern_desc *ext; 6303 6304 switch (relo->type) { 6305 case RELO_LD64: 6306 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 6307 insn[0].imm = obj->maps[relo->map_idx].fd; 6308 relo->processed = true; 6309 break; 6310 case RELO_DATA: 6311 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6312 insn[1].imm = insn[0].imm + relo->sym_off; 6313 insn[0].imm = obj->maps[relo->map_idx].fd; 6314 relo->processed = true; 6315 break; 6316 case RELO_EXTERN_VAR: 6317 ext = &obj->externs[relo->sym_off]; 6318 if (ext->type == EXT_KCFG) { 6319 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6320 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 6321 insn[1].imm = ext->kcfg.data_off; 6322 } else /* EXT_KSYM */ { 6323 if (ext->ksym.type_id) { /* typed ksyms */ 6324 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 6325 insn[0].imm = ext->ksym.kernel_btf_id; 6326 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 6327 } else { /* typeless ksyms */ 6328 insn[0].imm = (__u32)ext->ksym.addr; 6329 insn[1].imm = ext->ksym.addr >> 32; 6330 } 6331 } 6332 relo->processed = true; 6333 break; 6334 case RELO_EXTERN_FUNC: 6335 ext = &obj->externs[relo->sym_off]; 6336 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 6337 insn[0].imm = ext->ksym.kernel_btf_id; 6338 relo->processed = true; 6339 break; 6340 case RELO_SUBPROG_ADDR: 6341 insn[0].src_reg = BPF_PSEUDO_FUNC; 6342 /* will be handled as a follow up pass */ 6343 break; 6344 case RELO_CALL: 6345 /* will be handled as a follow up pass */ 6346 break; 6347 default: 6348 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6349 prog->name, i, relo->type); 6350 return -EINVAL; 6351 } 6352 } 6353 6354 return 0; 6355 } 6356 6357 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6358 const struct bpf_program *prog, 6359 const struct btf_ext_info *ext_info, 6360 void **prog_info, __u32 *prog_rec_cnt, 6361 __u32 *prog_rec_sz) 6362 { 6363 void *copy_start = NULL, *copy_end = NULL; 6364 void *rec, *rec_end, *new_prog_info; 6365 const struct btf_ext_info_sec *sec; 6366 size_t old_sz, new_sz; 6367 const char *sec_name; 6368 int i, off_adj; 6369 6370 for_each_btf_ext_sec(ext_info, sec) { 6371 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 6372 if (!sec_name) 6373 return -EINVAL; 6374 if (strcmp(sec_name, prog->sec_name) != 0) 6375 continue; 6376 6377 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6378 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6379 6380 if (insn_off < prog->sec_insn_off) 6381 continue; 6382 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6383 break; 6384 6385 if (!copy_start) 6386 copy_start = rec; 6387 copy_end = rec + ext_info->rec_size; 6388 } 6389 6390 if (!copy_start) 6391 return -ENOENT; 6392 6393 /* append func/line info of a given (sub-)program to the main 6394 * program func/line info 6395 */ 6396 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6397 new_sz = old_sz + (copy_end - copy_start); 6398 new_prog_info = realloc(*prog_info, new_sz); 6399 if (!new_prog_info) 6400 return -ENOMEM; 6401 *prog_info = new_prog_info; 6402 *prog_rec_cnt = new_sz / ext_info->rec_size; 6403 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6404 6405 /* Kernel instruction offsets are in units of 8-byte 6406 * instructions, while .BTF.ext instruction offsets generated 6407 * by Clang are in units of bytes. So convert Clang offsets 6408 * into kernel offsets and adjust offset according to program 6409 * relocated position. 6410 */ 6411 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6412 rec = new_prog_info + old_sz; 6413 rec_end = new_prog_info + new_sz; 6414 for (; rec < rec_end; rec += ext_info->rec_size) { 6415 __u32 *insn_off = rec; 6416 6417 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6418 } 6419 *prog_rec_sz = ext_info->rec_size; 6420 return 0; 6421 } 6422 6423 return -ENOENT; 6424 } 6425 6426 static int 6427 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6428 struct bpf_program *main_prog, 6429 const struct bpf_program *prog) 6430 { 6431 int err; 6432 6433 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6434 * supprot func/line info 6435 */ 6436 if (!obj->btf_ext || !kernel_supports(FEAT_BTF_FUNC)) 6437 return 0; 6438 6439 /* only attempt func info relocation if main program's func_info 6440 * relocation was successful 6441 */ 6442 if (main_prog != prog && !main_prog->func_info) 6443 goto line_info; 6444 6445 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6446 &main_prog->func_info, 6447 &main_prog->func_info_cnt, 6448 &main_prog->func_info_rec_size); 6449 if (err) { 6450 if (err != -ENOENT) { 6451 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6452 prog->name, err); 6453 return err; 6454 } 6455 if (main_prog->func_info) { 6456 /* 6457 * Some info has already been found but has problem 6458 * in the last btf_ext reloc. Must have to error out. 6459 */ 6460 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6461 return err; 6462 } 6463 /* Have problem loading the very first info. Ignore the rest. */ 6464 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6465 prog->name); 6466 } 6467 6468 line_info: 6469 /* don't relocate line info if main program's relocation failed */ 6470 if (main_prog != prog && !main_prog->line_info) 6471 return 0; 6472 6473 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6474 &main_prog->line_info, 6475 &main_prog->line_info_cnt, 6476 &main_prog->line_info_rec_size); 6477 if (err) { 6478 if (err != -ENOENT) { 6479 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6480 prog->name, err); 6481 return err; 6482 } 6483 if (main_prog->line_info) { 6484 /* 6485 * Some info has already been found but has problem 6486 * in the last btf_ext reloc. Must have to error out. 6487 */ 6488 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6489 return err; 6490 } 6491 /* Have problem loading the very first info. Ignore the rest. */ 6492 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6493 prog->name); 6494 } 6495 return 0; 6496 } 6497 6498 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6499 { 6500 size_t insn_idx = *(const size_t *)key; 6501 const struct reloc_desc *relo = elem; 6502 6503 if (insn_idx == relo->insn_idx) 6504 return 0; 6505 return insn_idx < relo->insn_idx ? -1 : 1; 6506 } 6507 6508 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6509 { 6510 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6511 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6512 } 6513 6514 static int 6515 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6516 struct bpf_program *prog) 6517 { 6518 size_t sub_insn_idx, insn_idx, new_cnt; 6519 struct bpf_program *subprog; 6520 struct bpf_insn *insns, *insn; 6521 struct reloc_desc *relo; 6522 int err; 6523 6524 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6525 if (err) 6526 return err; 6527 6528 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6529 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6530 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6531 continue; 6532 6533 relo = find_prog_insn_relo(prog, insn_idx); 6534 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6535 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6536 prog->name, insn_idx, relo->type); 6537 return -LIBBPF_ERRNO__RELOC; 6538 } 6539 if (relo) { 6540 /* sub-program instruction index is a combination of 6541 * an offset of a symbol pointed to by relocation and 6542 * call instruction's imm field; for global functions, 6543 * call always has imm = -1, but for static functions 6544 * relocation is against STT_SECTION and insn->imm 6545 * points to a start of a static function 6546 * 6547 * for subprog addr relocation, the relo->sym_off + insn->imm is 6548 * the byte offset in the corresponding section. 6549 */ 6550 if (relo->type == RELO_CALL) 6551 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6552 else 6553 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6554 } else if (insn_is_pseudo_func(insn)) { 6555 /* 6556 * RELO_SUBPROG_ADDR relo is always emitted even if both 6557 * functions are in the same section, so it shouldn't reach here. 6558 */ 6559 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6560 prog->name, insn_idx); 6561 return -LIBBPF_ERRNO__RELOC; 6562 } else { 6563 /* if subprogram call is to a static function within 6564 * the same ELF section, there won't be any relocation 6565 * emitted, but it also means there is no additional 6566 * offset necessary, insns->imm is relative to 6567 * instruction's original position within the section 6568 */ 6569 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6570 } 6571 6572 /* we enforce that sub-programs should be in .text section */ 6573 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6574 if (!subprog) { 6575 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6576 prog->name); 6577 return -LIBBPF_ERRNO__RELOC; 6578 } 6579 6580 /* if it's the first call instruction calling into this 6581 * subprogram (meaning this subprog hasn't been processed 6582 * yet) within the context of current main program: 6583 * - append it at the end of main program's instructions blog; 6584 * - process is recursively, while current program is put on hold; 6585 * - if that subprogram calls some other not yet processes 6586 * subprogram, same thing will happen recursively until 6587 * there are no more unprocesses subprograms left to append 6588 * and relocate. 6589 */ 6590 if (subprog->sub_insn_off == 0) { 6591 subprog->sub_insn_off = main_prog->insns_cnt; 6592 6593 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6594 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6595 if (!insns) { 6596 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6597 return -ENOMEM; 6598 } 6599 main_prog->insns = insns; 6600 main_prog->insns_cnt = new_cnt; 6601 6602 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6603 subprog->insns_cnt * sizeof(*insns)); 6604 6605 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6606 main_prog->name, subprog->insns_cnt, subprog->name); 6607 6608 err = bpf_object__reloc_code(obj, main_prog, subprog); 6609 if (err) 6610 return err; 6611 } 6612 6613 /* main_prog->insns memory could have been re-allocated, so 6614 * calculate pointer again 6615 */ 6616 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6617 /* calculate correct instruction position within current main 6618 * prog; each main prog can have a different set of 6619 * subprograms appended (potentially in different order as 6620 * well), so position of any subprog can be different for 6621 * different main programs */ 6622 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6623 6624 if (relo) 6625 relo->processed = true; 6626 6627 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6628 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6629 } 6630 6631 return 0; 6632 } 6633 6634 /* 6635 * Relocate sub-program calls. 6636 * 6637 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6638 * main prog) is processed separately. For each subprog (non-entry functions, 6639 * that can be called from either entry progs or other subprogs) gets their 6640 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6641 * hasn't been yet appended and relocated within current main prog. Once its 6642 * relocated, sub_insn_off will point at the position within current main prog 6643 * where given subprog was appended. This will further be used to relocate all 6644 * the call instructions jumping into this subprog. 6645 * 6646 * We start with main program and process all call instructions. If the call 6647 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6648 * is zero), subprog instructions are appended at the end of main program's 6649 * instruction array. Then main program is "put on hold" while we recursively 6650 * process newly appended subprogram. If that subprogram calls into another 6651 * subprogram that hasn't been appended, new subprogram is appended again to 6652 * the *main* prog's instructions (subprog's instructions are always left 6653 * untouched, as they need to be in unmodified state for subsequent main progs 6654 * and subprog instructions are always sent only as part of a main prog) and 6655 * the process continues recursively. Once all the subprogs called from a main 6656 * prog or any of its subprogs are appended (and relocated), all their 6657 * positions within finalized instructions array are known, so it's easy to 6658 * rewrite call instructions with correct relative offsets, corresponding to 6659 * desired target subprog. 6660 * 6661 * Its important to realize that some subprogs might not be called from some 6662 * main prog and any of its called/used subprogs. Those will keep their 6663 * subprog->sub_insn_off as zero at all times and won't be appended to current 6664 * main prog and won't be relocated within the context of current main prog. 6665 * They might still be used from other main progs later. 6666 * 6667 * Visually this process can be shown as below. Suppose we have two main 6668 * programs mainA and mainB and BPF object contains three subprogs: subA, 6669 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6670 * subC both call subB: 6671 * 6672 * +--------+ +-------+ 6673 * | v v | 6674 * +--+---+ +--+-+-+ +---+--+ 6675 * | subA | | subB | | subC | 6676 * +--+---+ +------+ +---+--+ 6677 * ^ ^ 6678 * | | 6679 * +---+-------+ +------+----+ 6680 * | mainA | | mainB | 6681 * +-----------+ +-----------+ 6682 * 6683 * We'll start relocating mainA, will find subA, append it and start 6684 * processing sub A recursively: 6685 * 6686 * +-----------+------+ 6687 * | mainA | subA | 6688 * +-----------+------+ 6689 * 6690 * At this point we notice that subB is used from subA, so we append it and 6691 * relocate (there are no further subcalls from subB): 6692 * 6693 * +-----------+------+------+ 6694 * | mainA | subA | subB | 6695 * +-----------+------+------+ 6696 * 6697 * At this point, we relocate subA calls, then go one level up and finish with 6698 * relocatin mainA calls. mainA is done. 6699 * 6700 * For mainB process is similar but results in different order. We start with 6701 * mainB and skip subA and subB, as mainB never calls them (at least 6702 * directly), but we see subC is needed, so we append and start processing it: 6703 * 6704 * +-----------+------+ 6705 * | mainB | subC | 6706 * +-----------+------+ 6707 * Now we see subC needs subB, so we go back to it, append and relocate it: 6708 * 6709 * +-----------+------+------+ 6710 * | mainB | subC | subB | 6711 * +-----------+------+------+ 6712 * 6713 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6714 */ 6715 static int 6716 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6717 { 6718 struct bpf_program *subprog; 6719 int i, j, err; 6720 6721 /* mark all subprogs as not relocated (yet) within the context of 6722 * current main program 6723 */ 6724 for (i = 0; i < obj->nr_programs; i++) { 6725 subprog = &obj->programs[i]; 6726 if (!prog_is_subprog(obj, subprog)) 6727 continue; 6728 6729 subprog->sub_insn_off = 0; 6730 for (j = 0; j < subprog->nr_reloc; j++) 6731 if (subprog->reloc_desc[j].type == RELO_CALL) 6732 subprog->reloc_desc[j].processed = false; 6733 } 6734 6735 err = bpf_object__reloc_code(obj, prog, prog); 6736 if (err) 6737 return err; 6738 6739 6740 return 0; 6741 } 6742 6743 static int 6744 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6745 { 6746 struct bpf_program *prog; 6747 size_t i; 6748 int err; 6749 6750 if (obj->btf_ext) { 6751 err = bpf_object__relocate_core(obj, targ_btf_path); 6752 if (err) { 6753 pr_warn("failed to perform CO-RE relocations: %d\n", 6754 err); 6755 return err; 6756 } 6757 } 6758 /* relocate data references first for all programs and sub-programs, 6759 * as they don't change relative to code locations, so subsequent 6760 * subprogram processing won't need to re-calculate any of them 6761 */ 6762 for (i = 0; i < obj->nr_programs; i++) { 6763 prog = &obj->programs[i]; 6764 err = bpf_object__relocate_data(obj, prog); 6765 if (err) { 6766 pr_warn("prog '%s': failed to relocate data references: %d\n", 6767 prog->name, err); 6768 return err; 6769 } 6770 } 6771 /* now relocate subprogram calls and append used subprograms to main 6772 * programs; each copy of subprogram code needs to be relocated 6773 * differently for each main program, because its code location might 6774 * have changed 6775 */ 6776 for (i = 0; i < obj->nr_programs; i++) { 6777 prog = &obj->programs[i]; 6778 /* sub-program's sub-calls are relocated within the context of 6779 * its main program only 6780 */ 6781 if (prog_is_subprog(obj, prog)) 6782 continue; 6783 6784 err = bpf_object__relocate_calls(obj, prog); 6785 if (err) { 6786 pr_warn("prog '%s': failed to relocate calls: %d\n", 6787 prog->name, err); 6788 return err; 6789 } 6790 } 6791 /* free up relocation descriptors */ 6792 for (i = 0; i < obj->nr_programs; i++) { 6793 prog = &obj->programs[i]; 6794 zfree(&prog->reloc_desc); 6795 prog->nr_reloc = 0; 6796 } 6797 return 0; 6798 } 6799 6800 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6801 GElf_Shdr *shdr, Elf_Data *data); 6802 6803 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6804 GElf_Shdr *shdr, Elf_Data *data) 6805 { 6806 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6807 int i, j, nrels, new_sz; 6808 const struct btf_var_secinfo *vi = NULL; 6809 const struct btf_type *sec, *var, *def; 6810 struct bpf_map *map = NULL, *targ_map; 6811 const struct btf_member *member; 6812 const char *name, *mname; 6813 Elf_Data *symbols; 6814 unsigned int moff; 6815 GElf_Sym sym; 6816 GElf_Rel rel; 6817 void *tmp; 6818 6819 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6820 return -EINVAL; 6821 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6822 if (!sec) 6823 return -EINVAL; 6824 6825 symbols = obj->efile.symbols; 6826 nrels = shdr->sh_size / shdr->sh_entsize; 6827 for (i = 0; i < nrels; i++) { 6828 if (!gelf_getrel(data, i, &rel)) { 6829 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6830 return -LIBBPF_ERRNO__FORMAT; 6831 } 6832 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 6833 pr_warn(".maps relo #%d: symbol %zx not found\n", 6834 i, (size_t)GELF_R_SYM(rel.r_info)); 6835 return -LIBBPF_ERRNO__FORMAT; 6836 } 6837 name = elf_sym_str(obj, sym.st_name) ?: "<?>"; 6838 if (sym.st_shndx != obj->efile.btf_maps_shndx) { 6839 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6840 i, name); 6841 return -LIBBPF_ERRNO__RELOC; 6842 } 6843 6844 pr_debug(".maps relo #%d: for %zd value %zd rel.r_offset %zu name %d ('%s')\n", 6845 i, (ssize_t)(rel.r_info >> 32), (size_t)sym.st_value, 6846 (size_t)rel.r_offset, sym.st_name, name); 6847 6848 for (j = 0; j < obj->nr_maps; j++) { 6849 map = &obj->maps[j]; 6850 if (map->sec_idx != obj->efile.btf_maps_shndx) 6851 continue; 6852 6853 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6854 if (vi->offset <= rel.r_offset && 6855 rel.r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6856 break; 6857 } 6858 if (j == obj->nr_maps) { 6859 pr_warn(".maps relo #%d: cannot find map '%s' at rel.r_offset %zu\n", 6860 i, name, (size_t)rel.r_offset); 6861 return -EINVAL; 6862 } 6863 6864 if (!bpf_map_type__is_map_in_map(map->def.type)) 6865 return -EINVAL; 6866 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6867 map->def.key_size != sizeof(int)) { 6868 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6869 i, map->name, sizeof(int)); 6870 return -EINVAL; 6871 } 6872 6873 targ_map = bpf_object__find_map_by_name(obj, name); 6874 if (!targ_map) 6875 return -ESRCH; 6876 6877 var = btf__type_by_id(obj->btf, vi->type); 6878 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6879 if (btf_vlen(def) == 0) 6880 return -EINVAL; 6881 member = btf_members(def) + btf_vlen(def) - 1; 6882 mname = btf__name_by_offset(obj->btf, member->name_off); 6883 if (strcmp(mname, "values")) 6884 return -EINVAL; 6885 6886 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6887 if (rel.r_offset - vi->offset < moff) 6888 return -EINVAL; 6889 6890 moff = rel.r_offset - vi->offset - moff; 6891 /* here we use BPF pointer size, which is always 64 bit, as we 6892 * are parsing ELF that was built for BPF target 6893 */ 6894 if (moff % bpf_ptr_sz) 6895 return -EINVAL; 6896 moff /= bpf_ptr_sz; 6897 if (moff >= map->init_slots_sz) { 6898 new_sz = moff + 1; 6899 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6900 if (!tmp) 6901 return -ENOMEM; 6902 map->init_slots = tmp; 6903 memset(map->init_slots + map->init_slots_sz, 0, 6904 (new_sz - map->init_slots_sz) * host_ptr_sz); 6905 map->init_slots_sz = new_sz; 6906 } 6907 map->init_slots[moff] = targ_map; 6908 6909 pr_debug(".maps relo #%d: map '%s' slot [%d] points to map '%s'\n", 6910 i, map->name, moff, name); 6911 } 6912 6913 return 0; 6914 } 6915 6916 static int cmp_relocs(const void *_a, const void *_b) 6917 { 6918 const struct reloc_desc *a = _a; 6919 const struct reloc_desc *b = _b; 6920 6921 if (a->insn_idx != b->insn_idx) 6922 return a->insn_idx < b->insn_idx ? -1 : 1; 6923 6924 /* no two relocations should have the same insn_idx, but ... */ 6925 if (a->type != b->type) 6926 return a->type < b->type ? -1 : 1; 6927 6928 return 0; 6929 } 6930 6931 static int bpf_object__collect_relos(struct bpf_object *obj) 6932 { 6933 int i, err; 6934 6935 for (i = 0; i < obj->efile.nr_reloc_sects; i++) { 6936 GElf_Shdr *shdr = &obj->efile.reloc_sects[i].shdr; 6937 Elf_Data *data = obj->efile.reloc_sects[i].data; 6938 int idx = shdr->sh_info; 6939 6940 if (shdr->sh_type != SHT_REL) { 6941 pr_warn("internal error at %d\n", __LINE__); 6942 return -LIBBPF_ERRNO__INTERNAL; 6943 } 6944 6945 if (idx == obj->efile.st_ops_shndx) 6946 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6947 else if (idx == obj->efile.btf_maps_shndx) 6948 err = bpf_object__collect_map_relos(obj, shdr, data); 6949 else 6950 err = bpf_object__collect_prog_relos(obj, shdr, data); 6951 if (err) 6952 return err; 6953 } 6954 6955 for (i = 0; i < obj->nr_programs; i++) { 6956 struct bpf_program *p = &obj->programs[i]; 6957 6958 if (!p->nr_reloc) 6959 continue; 6960 6961 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6962 } 6963 return 0; 6964 } 6965 6966 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6967 { 6968 if (BPF_CLASS(insn->code) == BPF_JMP && 6969 BPF_OP(insn->code) == BPF_CALL && 6970 BPF_SRC(insn->code) == BPF_K && 6971 insn->src_reg == 0 && 6972 insn->dst_reg == 0) { 6973 *func_id = insn->imm; 6974 return true; 6975 } 6976 return false; 6977 } 6978 6979 static int bpf_object__sanitize_prog(struct bpf_object* obj, struct bpf_program *prog) 6980 { 6981 struct bpf_insn *insn = prog->insns; 6982 enum bpf_func_id func_id; 6983 int i; 6984 6985 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6986 if (!insn_is_helper_call(insn, &func_id)) 6987 continue; 6988 6989 /* on kernels that don't yet support 6990 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6991 * to bpf_probe_read() which works well for old kernels 6992 */ 6993 switch (func_id) { 6994 case BPF_FUNC_probe_read_kernel: 6995 case BPF_FUNC_probe_read_user: 6996 if (!kernel_supports(FEAT_PROBE_READ_KERN)) 6997 insn->imm = BPF_FUNC_probe_read; 6998 break; 6999 case BPF_FUNC_probe_read_kernel_str: 7000 case BPF_FUNC_probe_read_user_str: 7001 if (!kernel_supports(FEAT_PROBE_READ_KERN)) 7002 insn->imm = BPF_FUNC_probe_read_str; 7003 break; 7004 default: 7005 break; 7006 } 7007 } 7008 return 0; 7009 } 7010 7011 static int 7012 load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt, 7013 char *license, __u32 kern_version, int *pfd) 7014 { 7015 struct bpf_prog_load_params load_attr = {}; 7016 char *cp, errmsg[STRERR_BUFSIZE]; 7017 size_t log_buf_size = 0; 7018 char *log_buf = NULL; 7019 int btf_fd, ret; 7020 7021 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 7022 /* 7023 * The program type must be set. Most likely we couldn't find a proper 7024 * section definition at load time, and thus we didn't infer the type. 7025 */ 7026 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 7027 prog->name, prog->sec_name); 7028 return -EINVAL; 7029 } 7030 7031 if (!insns || !insns_cnt) 7032 return -EINVAL; 7033 7034 load_attr.prog_type = prog->type; 7035 /* old kernels might not support specifying expected_attach_type */ 7036 if (!kernel_supports(FEAT_EXP_ATTACH_TYPE) && prog->sec_def && 7037 prog->sec_def->is_exp_attach_type_optional) 7038 load_attr.expected_attach_type = 0; 7039 else 7040 load_attr.expected_attach_type = prog->expected_attach_type; 7041 if (kernel_supports(FEAT_PROG_NAME)) 7042 load_attr.name = prog->name; 7043 load_attr.insns = insns; 7044 load_attr.insn_cnt = insns_cnt; 7045 load_attr.license = license; 7046 load_attr.attach_btf_id = prog->attach_btf_id; 7047 if (prog->attach_prog_fd) 7048 load_attr.attach_prog_fd = prog->attach_prog_fd; 7049 else 7050 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 7051 load_attr.attach_btf_id = prog->attach_btf_id; 7052 load_attr.kern_version = kern_version; 7053 load_attr.prog_ifindex = prog->prog_ifindex; 7054 7055 /* specify func_info/line_info only if kernel supports them */ 7056 btf_fd = bpf_object__btf_fd(prog->obj); 7057 if (btf_fd >= 0 && kernel_supports(FEAT_BTF_FUNC)) { 7058 load_attr.prog_btf_fd = btf_fd; 7059 load_attr.func_info = prog->func_info; 7060 load_attr.func_info_rec_size = prog->func_info_rec_size; 7061 load_attr.func_info_cnt = prog->func_info_cnt; 7062 load_attr.line_info = prog->line_info; 7063 load_attr.line_info_rec_size = prog->line_info_rec_size; 7064 load_attr.line_info_cnt = prog->line_info_cnt; 7065 } 7066 load_attr.log_level = prog->log_level; 7067 load_attr.prog_flags = prog->prog_flags; 7068 7069 retry_load: 7070 if (log_buf_size) { 7071 log_buf = malloc(log_buf_size); 7072 if (!log_buf) 7073 return -ENOMEM; 7074 7075 *log_buf = 0; 7076 } 7077 7078 load_attr.log_buf = log_buf; 7079 load_attr.log_buf_sz = log_buf_size; 7080 ret = libbpf__bpf_prog_load(&load_attr); 7081 7082 if (ret >= 0) { 7083 if (log_buf && load_attr.log_level) 7084 pr_debug("verifier log:\n%s", log_buf); 7085 7086 if (prog->obj->rodata_map_idx >= 0 && 7087 kernel_supports(FEAT_PROG_BIND_MAP)) { 7088 struct bpf_map *rodata_map = 7089 &prog->obj->maps[prog->obj->rodata_map_idx]; 7090 7091 if (bpf_prog_bind_map(ret, bpf_map__fd(rodata_map), NULL)) { 7092 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7093 pr_warn("prog '%s': failed to bind .rodata map: %s\n", 7094 prog->name, cp); 7095 /* Don't fail hard if can't bind rodata. */ 7096 } 7097 } 7098 7099 *pfd = ret; 7100 ret = 0; 7101 goto out; 7102 } 7103 7104 if (!log_buf || errno == ENOSPC) { 7105 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, 7106 log_buf_size << 1); 7107 7108 free(log_buf); 7109 goto retry_load; 7110 } 7111 ret = errno ? -errno : -LIBBPF_ERRNO__LOAD; 7112 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7113 pr_warn("load bpf program failed: %s\n", cp); 7114 pr_perm_msg(ret); 7115 7116 if (log_buf && log_buf[0] != '\0') { 7117 ret = -LIBBPF_ERRNO__VERIFY; 7118 pr_warn("-- BEGIN DUMP LOG ---\n"); 7119 pr_warn("\n%s\n", log_buf); 7120 pr_warn("-- END LOG --\n"); 7121 } else if (load_attr.insn_cnt >= BPF_MAXINSNS) { 7122 pr_warn("Program too large (%zu insns), at most %d insns\n", 7123 load_attr.insn_cnt, BPF_MAXINSNS); 7124 ret = -LIBBPF_ERRNO__PROG2BIG; 7125 } else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) { 7126 /* Wrong program type? */ 7127 int fd; 7128 7129 load_attr.prog_type = BPF_PROG_TYPE_KPROBE; 7130 load_attr.expected_attach_type = 0; 7131 load_attr.log_buf = NULL; 7132 load_attr.log_buf_sz = 0; 7133 fd = libbpf__bpf_prog_load(&load_attr); 7134 if (fd >= 0) { 7135 close(fd); 7136 ret = -LIBBPF_ERRNO__PROGTYPE; 7137 goto out; 7138 } 7139 } 7140 7141 out: 7142 free(log_buf); 7143 return ret; 7144 } 7145 7146 static int libbpf_find_attach_btf_id(struct bpf_program *prog, int *btf_obj_fd, int *btf_type_id); 7147 7148 int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_ver) 7149 { 7150 int err = 0, fd, i; 7151 7152 if (prog->obj->loaded) { 7153 pr_warn("prog '%s': can't load after object was loaded\n", prog->name); 7154 return -EINVAL; 7155 } 7156 7157 if ((prog->type == BPF_PROG_TYPE_TRACING || 7158 prog->type == BPF_PROG_TYPE_LSM || 7159 prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) { 7160 int btf_obj_fd = 0, btf_type_id = 0; 7161 7162 err = libbpf_find_attach_btf_id(prog, &btf_obj_fd, &btf_type_id); 7163 if (err) 7164 return err; 7165 7166 prog->attach_btf_obj_fd = btf_obj_fd; 7167 prog->attach_btf_id = btf_type_id; 7168 } 7169 7170 if (prog->instances.nr < 0 || !prog->instances.fds) { 7171 if (prog->preprocessor) { 7172 pr_warn("Internal error: can't load program '%s'\n", 7173 prog->name); 7174 return -LIBBPF_ERRNO__INTERNAL; 7175 } 7176 7177 prog->instances.fds = malloc(sizeof(int)); 7178 if (!prog->instances.fds) { 7179 pr_warn("Not enough memory for BPF fds\n"); 7180 return -ENOMEM; 7181 } 7182 prog->instances.nr = 1; 7183 prog->instances.fds[0] = -1; 7184 } 7185 7186 if (!prog->preprocessor) { 7187 if (prog->instances.nr != 1) { 7188 pr_warn("prog '%s': inconsistent nr(%d) != 1\n", 7189 prog->name, prog->instances.nr); 7190 } 7191 err = load_program(prog, prog->insns, prog->insns_cnt, 7192 license, kern_ver, &fd); 7193 if (!err) 7194 prog->instances.fds[0] = fd; 7195 goto out; 7196 } 7197 7198 for (i = 0; i < prog->instances.nr; i++) { 7199 struct bpf_prog_prep_result result; 7200 bpf_program_prep_t preprocessor = prog->preprocessor; 7201 7202 memset(&result, 0, sizeof(result)); 7203 err = preprocessor(prog, i, prog->insns, 7204 prog->insns_cnt, &result); 7205 if (err) { 7206 pr_warn("Preprocessing the %dth instance of program '%s' failed\n", 7207 i, prog->name); 7208 goto out; 7209 } 7210 7211 if (!result.new_insn_ptr || !result.new_insn_cnt) { 7212 pr_debug("Skip loading the %dth instance of program '%s'\n", 7213 i, prog->name); 7214 prog->instances.fds[i] = -1; 7215 if (result.pfd) 7216 *result.pfd = -1; 7217 continue; 7218 } 7219 7220 err = load_program(prog, result.new_insn_ptr, 7221 result.new_insn_cnt, license, kern_ver, &fd); 7222 if (err) { 7223 pr_warn("Loading the %dth instance of program '%s' failed\n", 7224 i, prog->name); 7225 goto out; 7226 } 7227 7228 if (result.pfd) 7229 *result.pfd = fd; 7230 prog->instances.fds[i] = fd; 7231 } 7232 out: 7233 if (err) 7234 pr_warn("failed to load program '%s'\n", prog->name); 7235 zfree(&prog->insns); 7236 prog->insns_cnt = 0; 7237 return err; 7238 } 7239 7240 static int 7241 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7242 { 7243 struct bpf_program *prog; 7244 size_t i; 7245 int err; 7246 7247 for (i = 0; i < obj->nr_programs; i++) { 7248 prog = &obj->programs[i]; 7249 err = bpf_object__sanitize_prog(obj, prog); 7250 if (err) 7251 return err; 7252 } 7253 7254 for (i = 0; i < obj->nr_programs; i++) { 7255 prog = &obj->programs[i]; 7256 if (prog_is_subprog(obj, prog)) 7257 continue; 7258 if (!prog->load) { 7259 pr_debug("prog '%s': skipped loading\n", prog->name); 7260 continue; 7261 } 7262 prog->log_level |= log_level; 7263 err = bpf_program__load(prog, obj->license, obj->kern_version); 7264 if (err) 7265 return err; 7266 } 7267 return 0; 7268 } 7269 7270 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7271 7272 static struct bpf_object * 7273 __bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7274 const struct bpf_object_open_opts *opts) 7275 { 7276 const char *obj_name, *kconfig; 7277 struct bpf_program *prog; 7278 struct bpf_object *obj; 7279 char tmp_name[64]; 7280 int err; 7281 7282 if (elf_version(EV_CURRENT) == EV_NONE) { 7283 pr_warn("failed to init libelf for %s\n", 7284 path ? : "(mem buf)"); 7285 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7286 } 7287 7288 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7289 return ERR_PTR(-EINVAL); 7290 7291 obj_name = OPTS_GET(opts, object_name, NULL); 7292 if (obj_buf) { 7293 if (!obj_name) { 7294 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7295 (unsigned long)obj_buf, 7296 (unsigned long)obj_buf_sz); 7297 obj_name = tmp_name; 7298 } 7299 path = obj_name; 7300 pr_debug("loading object '%s' from buffer\n", obj_name); 7301 } 7302 7303 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7304 if (IS_ERR(obj)) 7305 return obj; 7306 7307 kconfig = OPTS_GET(opts, kconfig, NULL); 7308 if (kconfig) { 7309 obj->kconfig = strdup(kconfig); 7310 if (!obj->kconfig) 7311 return ERR_PTR(-ENOMEM); 7312 } 7313 7314 err = bpf_object__elf_init(obj); 7315 err = err ? : bpf_object__check_endianness(obj); 7316 err = err ? : bpf_object__elf_collect(obj); 7317 err = err ? : bpf_object__collect_externs(obj); 7318 err = err ? : bpf_object__finalize_btf(obj); 7319 err = err ? : bpf_object__init_maps(obj, opts); 7320 err = err ? : bpf_object__collect_relos(obj); 7321 if (err) 7322 goto out; 7323 bpf_object__elf_finish(obj); 7324 7325 bpf_object__for_each_program(prog, obj) { 7326 prog->sec_def = find_sec_def(prog->sec_name); 7327 if (!prog->sec_def) { 7328 /* couldn't guess, but user might manually specify */ 7329 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7330 prog->name, prog->sec_name); 7331 continue; 7332 } 7333 7334 if (prog->sec_def->is_sleepable) 7335 prog->prog_flags |= BPF_F_SLEEPABLE; 7336 bpf_program__set_type(prog, prog->sec_def->prog_type); 7337 bpf_program__set_expected_attach_type(prog, 7338 prog->sec_def->expected_attach_type); 7339 7340 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING || 7341 prog->sec_def->prog_type == BPF_PROG_TYPE_EXT) 7342 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0); 7343 } 7344 7345 return obj; 7346 out: 7347 bpf_object__close(obj); 7348 return ERR_PTR(err); 7349 } 7350 7351 static struct bpf_object * 7352 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags) 7353 { 7354 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7355 .relaxed_maps = flags & MAPS_RELAX_COMPAT, 7356 ); 7357 7358 /* param validation */ 7359 if (!attr->file) 7360 return NULL; 7361 7362 pr_debug("loading %s\n", attr->file); 7363 return __bpf_object__open(attr->file, NULL, 0, &opts); 7364 } 7365 7366 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr) 7367 { 7368 return __bpf_object__open_xattr(attr, 0); 7369 } 7370 7371 struct bpf_object *bpf_object__open(const char *path) 7372 { 7373 struct bpf_object_open_attr attr = { 7374 .file = path, 7375 .prog_type = BPF_PROG_TYPE_UNSPEC, 7376 }; 7377 7378 return bpf_object__open_xattr(&attr); 7379 } 7380 7381 struct bpf_object * 7382 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7383 { 7384 if (!path) 7385 return ERR_PTR(-EINVAL); 7386 7387 pr_debug("loading %s\n", path); 7388 7389 return __bpf_object__open(path, NULL, 0, opts); 7390 } 7391 7392 struct bpf_object * 7393 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7394 const struct bpf_object_open_opts *opts) 7395 { 7396 if (!obj_buf || obj_buf_sz == 0) 7397 return ERR_PTR(-EINVAL); 7398 7399 return __bpf_object__open(NULL, obj_buf, obj_buf_sz, opts); 7400 } 7401 7402 struct bpf_object * 7403 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz, 7404 const char *name) 7405 { 7406 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7407 .object_name = name, 7408 /* wrong default, but backwards-compatible */ 7409 .relaxed_maps = true, 7410 ); 7411 7412 /* returning NULL is wrong, but backwards-compatible */ 7413 if (!obj_buf || obj_buf_sz == 0) 7414 return NULL; 7415 7416 return bpf_object__open_mem(obj_buf, obj_buf_sz, &opts); 7417 } 7418 7419 int bpf_object__unload(struct bpf_object *obj) 7420 { 7421 size_t i; 7422 7423 if (!obj) 7424 return -EINVAL; 7425 7426 for (i = 0; i < obj->nr_maps; i++) { 7427 zclose(obj->maps[i].fd); 7428 if (obj->maps[i].st_ops) 7429 zfree(&obj->maps[i].st_ops->kern_vdata); 7430 } 7431 7432 for (i = 0; i < obj->nr_programs; i++) 7433 bpf_program__unload(&obj->programs[i]); 7434 7435 return 0; 7436 } 7437 7438 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7439 { 7440 struct bpf_map *m; 7441 7442 bpf_object__for_each_map(m, obj) { 7443 if (!bpf_map__is_internal(m)) 7444 continue; 7445 if (!kernel_supports(FEAT_GLOBAL_DATA)) { 7446 pr_warn("kernel doesn't support global data\n"); 7447 return -ENOTSUP; 7448 } 7449 if (!kernel_supports(FEAT_ARRAY_MMAP)) 7450 m->def.map_flags ^= BPF_F_MMAPABLE; 7451 } 7452 7453 return 0; 7454 } 7455 7456 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7457 { 7458 char sym_type, sym_name[500]; 7459 unsigned long long sym_addr; 7460 const struct btf_type *t; 7461 struct extern_desc *ext; 7462 int ret, err = 0; 7463 FILE *f; 7464 7465 f = fopen("/proc/kallsyms", "r"); 7466 if (!f) { 7467 err = -errno; 7468 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7469 return err; 7470 } 7471 7472 while (true) { 7473 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7474 &sym_addr, &sym_type, sym_name); 7475 if (ret == EOF && feof(f)) 7476 break; 7477 if (ret != 3) { 7478 pr_warn("failed to read kallsyms entry: %d\n", ret); 7479 err = -EINVAL; 7480 goto out; 7481 } 7482 7483 ext = find_extern_by_name(obj, sym_name); 7484 if (!ext || ext->type != EXT_KSYM) 7485 continue; 7486 7487 t = btf__type_by_id(obj->btf, ext->btf_id); 7488 if (!btf_is_var(t)) 7489 continue; 7490 7491 if (ext->is_set && ext->ksym.addr != sym_addr) { 7492 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n", 7493 sym_name, ext->ksym.addr, sym_addr); 7494 err = -EINVAL; 7495 goto out; 7496 } 7497 if (!ext->is_set) { 7498 ext->is_set = true; 7499 ext->ksym.addr = sym_addr; 7500 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr); 7501 } 7502 } 7503 7504 out: 7505 fclose(f); 7506 return err; 7507 } 7508 7509 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7510 __u16 kind, struct btf **res_btf, 7511 int *res_btf_fd) 7512 { 7513 int i, id, btf_fd, err; 7514 struct btf *btf; 7515 7516 btf = obj->btf_vmlinux; 7517 btf_fd = 0; 7518 id = btf__find_by_name_kind(btf, ksym_name, kind); 7519 7520 if (id == -ENOENT) { 7521 err = load_module_btfs(obj); 7522 if (err) 7523 return err; 7524 7525 for (i = 0; i < obj->btf_module_cnt; i++) { 7526 btf = obj->btf_modules[i].btf; 7527 /* we assume module BTF FD is always >0 */ 7528 btf_fd = obj->btf_modules[i].fd; 7529 id = btf__find_by_name_kind(btf, ksym_name, kind); 7530 if (id != -ENOENT) 7531 break; 7532 } 7533 } 7534 if (id <= 0) { 7535 pr_warn("extern (%s ksym) '%s': failed to find BTF ID in kernel BTF(s).\n", 7536 __btf_kind_str(kind), ksym_name); 7537 return -ESRCH; 7538 } 7539 7540 *res_btf = btf; 7541 *res_btf_fd = btf_fd; 7542 return id; 7543 } 7544 7545 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7546 struct extern_desc *ext) 7547 { 7548 const struct btf_type *targ_var, *targ_type; 7549 __u32 targ_type_id, local_type_id; 7550 const char *targ_var_name; 7551 int id, btf_fd = 0, err; 7552 struct btf *btf = NULL; 7553 7554 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &btf_fd); 7555 if (id < 0) 7556 return id; 7557 7558 /* find local type_id */ 7559 local_type_id = ext->ksym.type_id; 7560 7561 /* find target type_id */ 7562 targ_var = btf__type_by_id(btf, id); 7563 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7564 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7565 7566 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7567 btf, targ_type_id); 7568 if (err <= 0) { 7569 const struct btf_type *local_type; 7570 const char *targ_name, *local_name; 7571 7572 local_type = btf__type_by_id(obj->btf, local_type_id); 7573 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7574 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7575 7576 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7577 ext->name, local_type_id, 7578 btf_kind_str(local_type), local_name, targ_type_id, 7579 btf_kind_str(targ_type), targ_name); 7580 return -EINVAL; 7581 } 7582 7583 ext->is_set = true; 7584 ext->ksym.kernel_btf_obj_fd = btf_fd; 7585 ext->ksym.kernel_btf_id = id; 7586 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7587 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7588 7589 return 0; 7590 } 7591 7592 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7593 struct extern_desc *ext) 7594 { 7595 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7596 const struct btf_type *kern_func; 7597 struct btf *kern_btf = NULL; 7598 int ret, kern_btf_fd = 0; 7599 7600 local_func_proto_id = ext->ksym.type_id; 7601 7602 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, 7603 &kern_btf, &kern_btf_fd); 7604 if (kfunc_id < 0) { 7605 pr_warn("extern (func ksym) '%s': not found in kernel BTF\n", 7606 ext->name); 7607 return kfunc_id; 7608 } 7609 7610 if (kern_btf != obj->btf_vmlinux) { 7611 pr_warn("extern (func ksym) '%s': function in kernel module is not supported\n", 7612 ext->name); 7613 return -ENOTSUP; 7614 } 7615 7616 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7617 kfunc_proto_id = kern_func->type; 7618 7619 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7620 kern_btf, kfunc_proto_id); 7621 if (ret <= 0) { 7622 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n", 7623 ext->name, local_func_proto_id, kfunc_proto_id); 7624 return -EINVAL; 7625 } 7626 7627 ext->is_set = true; 7628 ext->ksym.kernel_btf_obj_fd = kern_btf_fd; 7629 ext->ksym.kernel_btf_id = kfunc_id; 7630 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n", 7631 ext->name, kfunc_id); 7632 7633 return 0; 7634 } 7635 7636 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7637 { 7638 const struct btf_type *t; 7639 struct extern_desc *ext; 7640 int i, err; 7641 7642 for (i = 0; i < obj->nr_extern; i++) { 7643 ext = &obj->externs[i]; 7644 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7645 continue; 7646 7647 t = btf__type_by_id(obj->btf, ext->btf_id); 7648 if (btf_is_var(t)) 7649 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7650 else 7651 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7652 if (err) 7653 return err; 7654 } 7655 return 0; 7656 } 7657 7658 static int bpf_object__resolve_externs(struct bpf_object *obj, 7659 const char *extra_kconfig) 7660 { 7661 bool need_config = false, need_kallsyms = false; 7662 bool need_vmlinux_btf = false; 7663 struct extern_desc *ext; 7664 void *kcfg_data = NULL; 7665 int err, i; 7666 7667 if (obj->nr_extern == 0) 7668 return 0; 7669 7670 if (obj->kconfig_map_idx >= 0) 7671 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7672 7673 for (i = 0; i < obj->nr_extern; i++) { 7674 ext = &obj->externs[i]; 7675 7676 if (ext->type == EXT_KCFG && 7677 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7678 void *ext_val = kcfg_data + ext->kcfg.data_off; 7679 __u32 kver = get_kernel_version(); 7680 7681 if (!kver) { 7682 pr_warn("failed to get kernel version\n"); 7683 return -EINVAL; 7684 } 7685 err = set_kcfg_value_num(ext, ext_val, kver); 7686 if (err) 7687 return err; 7688 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver); 7689 } else if (ext->type == EXT_KCFG && 7690 strncmp(ext->name, "CONFIG_", 7) == 0) { 7691 need_config = true; 7692 } else if (ext->type == EXT_KSYM) { 7693 if (ext->ksym.type_id) 7694 need_vmlinux_btf = true; 7695 else 7696 need_kallsyms = true; 7697 } else { 7698 pr_warn("unrecognized extern '%s'\n", ext->name); 7699 return -EINVAL; 7700 } 7701 } 7702 if (need_config && extra_kconfig) { 7703 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7704 if (err) 7705 return -EINVAL; 7706 need_config = false; 7707 for (i = 0; i < obj->nr_extern; i++) { 7708 ext = &obj->externs[i]; 7709 if (ext->type == EXT_KCFG && !ext->is_set) { 7710 need_config = true; 7711 break; 7712 } 7713 } 7714 } 7715 if (need_config) { 7716 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7717 if (err) 7718 return -EINVAL; 7719 } 7720 if (need_kallsyms) { 7721 err = bpf_object__read_kallsyms_file(obj); 7722 if (err) 7723 return -EINVAL; 7724 } 7725 if (need_vmlinux_btf) { 7726 err = bpf_object__resolve_ksyms_btf_id(obj); 7727 if (err) 7728 return -EINVAL; 7729 } 7730 for (i = 0; i < obj->nr_extern; i++) { 7731 ext = &obj->externs[i]; 7732 7733 if (!ext->is_set && !ext->is_weak) { 7734 pr_warn("extern %s (strong) not resolved\n", ext->name); 7735 return -ESRCH; 7736 } else if (!ext->is_set) { 7737 pr_debug("extern %s (weak) not resolved, defaulting to zero\n", 7738 ext->name); 7739 } 7740 } 7741 7742 return 0; 7743 } 7744 7745 int bpf_object__load_xattr(struct bpf_object_load_attr *attr) 7746 { 7747 struct bpf_object *obj; 7748 int err, i; 7749 7750 if (!attr) 7751 return -EINVAL; 7752 obj = attr->obj; 7753 if (!obj) 7754 return -EINVAL; 7755 7756 if (obj->loaded) { 7757 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7758 return -EINVAL; 7759 } 7760 7761 err = bpf_object__probe_loading(obj); 7762 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7763 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7764 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7765 err = err ? : bpf_object__sanitize_maps(obj); 7766 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7767 err = err ? : bpf_object__create_maps(obj); 7768 err = err ? : bpf_object__relocate(obj, attr->target_btf_path); 7769 err = err ? : bpf_object__load_progs(obj, attr->log_level); 7770 7771 /* clean up module BTFs */ 7772 for (i = 0; i < obj->btf_module_cnt; i++) { 7773 close(obj->btf_modules[i].fd); 7774 btf__free(obj->btf_modules[i].btf); 7775 free(obj->btf_modules[i].name); 7776 } 7777 free(obj->btf_modules); 7778 7779 /* clean up vmlinux BTF */ 7780 btf__free(obj->btf_vmlinux); 7781 obj->btf_vmlinux = NULL; 7782 7783 obj->loaded = true; /* doesn't matter if successfully or not */ 7784 7785 if (err) 7786 goto out; 7787 7788 return 0; 7789 out: 7790 /* unpin any maps that were auto-pinned during load */ 7791 for (i = 0; i < obj->nr_maps; i++) 7792 if (obj->maps[i].pinned && !obj->maps[i].reused) 7793 bpf_map__unpin(&obj->maps[i], NULL); 7794 7795 bpf_object__unload(obj); 7796 pr_warn("failed to load object '%s'\n", obj->path); 7797 return err; 7798 } 7799 7800 int bpf_object__load(struct bpf_object *obj) 7801 { 7802 struct bpf_object_load_attr attr = { 7803 .obj = obj, 7804 }; 7805 7806 return bpf_object__load_xattr(&attr); 7807 } 7808 7809 static int make_parent_dir(const char *path) 7810 { 7811 char *cp, errmsg[STRERR_BUFSIZE]; 7812 char *dname, *dir; 7813 int err = 0; 7814 7815 dname = strdup(path); 7816 if (dname == NULL) 7817 return -ENOMEM; 7818 7819 dir = dirname(dname); 7820 if (mkdir(dir, 0700) && errno != EEXIST) 7821 err = -errno; 7822 7823 free(dname); 7824 if (err) { 7825 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7826 pr_warn("failed to mkdir %s: %s\n", path, cp); 7827 } 7828 return err; 7829 } 7830 7831 static int check_path(const char *path) 7832 { 7833 char *cp, errmsg[STRERR_BUFSIZE]; 7834 struct statfs st_fs; 7835 char *dname, *dir; 7836 int err = 0; 7837 7838 if (path == NULL) 7839 return -EINVAL; 7840 7841 dname = strdup(path); 7842 if (dname == NULL) 7843 return -ENOMEM; 7844 7845 dir = dirname(dname); 7846 if (statfs(dir, &st_fs)) { 7847 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7848 pr_warn("failed to statfs %s: %s\n", dir, cp); 7849 err = -errno; 7850 } 7851 free(dname); 7852 7853 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7854 pr_warn("specified path %s is not on BPF FS\n", path); 7855 err = -EINVAL; 7856 } 7857 7858 return err; 7859 } 7860 7861 int bpf_program__pin_instance(struct bpf_program *prog, const char *path, 7862 int instance) 7863 { 7864 char *cp, errmsg[STRERR_BUFSIZE]; 7865 int err; 7866 7867 err = make_parent_dir(path); 7868 if (err) 7869 return err; 7870 7871 err = check_path(path); 7872 if (err) 7873 return err; 7874 7875 if (prog == NULL) { 7876 pr_warn("invalid program pointer\n"); 7877 return -EINVAL; 7878 } 7879 7880 if (instance < 0 || instance >= prog->instances.nr) { 7881 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7882 instance, prog->name, prog->instances.nr); 7883 return -EINVAL; 7884 } 7885 7886 if (bpf_obj_pin(prog->instances.fds[instance], path)) { 7887 err = -errno; 7888 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7889 pr_warn("failed to pin program: %s\n", cp); 7890 return err; 7891 } 7892 pr_debug("pinned program '%s'\n", path); 7893 7894 return 0; 7895 } 7896 7897 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, 7898 int instance) 7899 { 7900 int err; 7901 7902 err = check_path(path); 7903 if (err) 7904 return err; 7905 7906 if (prog == NULL) { 7907 pr_warn("invalid program pointer\n"); 7908 return -EINVAL; 7909 } 7910 7911 if (instance < 0 || instance >= prog->instances.nr) { 7912 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7913 instance, prog->name, prog->instances.nr); 7914 return -EINVAL; 7915 } 7916 7917 err = unlink(path); 7918 if (err != 0) 7919 return -errno; 7920 pr_debug("unpinned program '%s'\n", path); 7921 7922 return 0; 7923 } 7924 7925 int bpf_program__pin(struct bpf_program *prog, const char *path) 7926 { 7927 int i, err; 7928 7929 err = make_parent_dir(path); 7930 if (err) 7931 return err; 7932 7933 err = check_path(path); 7934 if (err) 7935 return err; 7936 7937 if (prog == NULL) { 7938 pr_warn("invalid program pointer\n"); 7939 return -EINVAL; 7940 } 7941 7942 if (prog->instances.nr <= 0) { 7943 pr_warn("no instances of prog %s to pin\n", prog->name); 7944 return -EINVAL; 7945 } 7946 7947 if (prog->instances.nr == 1) { 7948 /* don't create subdirs when pinning single instance */ 7949 return bpf_program__pin_instance(prog, path, 0); 7950 } 7951 7952 for (i = 0; i < prog->instances.nr; i++) { 7953 char buf[PATH_MAX]; 7954 int len; 7955 7956 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7957 if (len < 0) { 7958 err = -EINVAL; 7959 goto err_unpin; 7960 } else if (len >= PATH_MAX) { 7961 err = -ENAMETOOLONG; 7962 goto err_unpin; 7963 } 7964 7965 err = bpf_program__pin_instance(prog, buf, i); 7966 if (err) 7967 goto err_unpin; 7968 } 7969 7970 return 0; 7971 7972 err_unpin: 7973 for (i = i - 1; i >= 0; i--) { 7974 char buf[PATH_MAX]; 7975 int len; 7976 7977 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7978 if (len < 0) 7979 continue; 7980 else if (len >= PATH_MAX) 7981 continue; 7982 7983 bpf_program__unpin_instance(prog, buf, i); 7984 } 7985 7986 rmdir(path); 7987 7988 return err; 7989 } 7990 7991 int bpf_program__unpin(struct bpf_program *prog, const char *path) 7992 { 7993 int i, err; 7994 7995 err = check_path(path); 7996 if (err) 7997 return err; 7998 7999 if (prog == NULL) { 8000 pr_warn("invalid program pointer\n"); 8001 return -EINVAL; 8002 } 8003 8004 if (prog->instances.nr <= 0) { 8005 pr_warn("no instances of prog %s to pin\n", prog->name); 8006 return -EINVAL; 8007 } 8008 8009 if (prog->instances.nr == 1) { 8010 /* don't create subdirs when pinning single instance */ 8011 return bpf_program__unpin_instance(prog, path, 0); 8012 } 8013 8014 for (i = 0; i < prog->instances.nr; i++) { 8015 char buf[PATH_MAX]; 8016 int len; 8017 8018 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 8019 if (len < 0) 8020 return -EINVAL; 8021 else if (len >= PATH_MAX) 8022 return -ENAMETOOLONG; 8023 8024 err = bpf_program__unpin_instance(prog, buf, i); 8025 if (err) 8026 return err; 8027 } 8028 8029 err = rmdir(path); 8030 if (err) 8031 return -errno; 8032 8033 return 0; 8034 } 8035 8036 int bpf_map__pin(struct bpf_map *map, const char *path) 8037 { 8038 char *cp, errmsg[STRERR_BUFSIZE]; 8039 int err; 8040 8041 if (map == NULL) { 8042 pr_warn("invalid map pointer\n"); 8043 return -EINVAL; 8044 } 8045 8046 if (map->pin_path) { 8047 if (path && strcmp(path, map->pin_path)) { 8048 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8049 bpf_map__name(map), map->pin_path, path); 8050 return -EINVAL; 8051 } else if (map->pinned) { 8052 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8053 bpf_map__name(map), map->pin_path); 8054 return 0; 8055 } 8056 } else { 8057 if (!path) { 8058 pr_warn("missing a path to pin map '%s' at\n", 8059 bpf_map__name(map)); 8060 return -EINVAL; 8061 } else if (map->pinned) { 8062 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8063 return -EEXIST; 8064 } 8065 8066 map->pin_path = strdup(path); 8067 if (!map->pin_path) { 8068 err = -errno; 8069 goto out_err; 8070 } 8071 } 8072 8073 err = make_parent_dir(map->pin_path); 8074 if (err) 8075 return err; 8076 8077 err = check_path(map->pin_path); 8078 if (err) 8079 return err; 8080 8081 if (bpf_obj_pin(map->fd, map->pin_path)) { 8082 err = -errno; 8083 goto out_err; 8084 } 8085 8086 map->pinned = true; 8087 pr_debug("pinned map '%s'\n", map->pin_path); 8088 8089 return 0; 8090 8091 out_err: 8092 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8093 pr_warn("failed to pin map: %s\n", cp); 8094 return err; 8095 } 8096 8097 int bpf_map__unpin(struct bpf_map *map, const char *path) 8098 { 8099 int err; 8100 8101 if (map == NULL) { 8102 pr_warn("invalid map pointer\n"); 8103 return -EINVAL; 8104 } 8105 8106 if (map->pin_path) { 8107 if (path && strcmp(path, map->pin_path)) { 8108 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8109 bpf_map__name(map), map->pin_path, path); 8110 return -EINVAL; 8111 } 8112 path = map->pin_path; 8113 } else if (!path) { 8114 pr_warn("no path to unpin map '%s' from\n", 8115 bpf_map__name(map)); 8116 return -EINVAL; 8117 } 8118 8119 err = check_path(path); 8120 if (err) 8121 return err; 8122 8123 err = unlink(path); 8124 if (err != 0) 8125 return -errno; 8126 8127 map->pinned = false; 8128 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8129 8130 return 0; 8131 } 8132 8133 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8134 { 8135 char *new = NULL; 8136 8137 if (path) { 8138 new = strdup(path); 8139 if (!new) 8140 return -errno; 8141 } 8142 8143 free(map->pin_path); 8144 map->pin_path = new; 8145 return 0; 8146 } 8147 8148 const char *bpf_map__get_pin_path(const struct bpf_map *map) 8149 { 8150 return map->pin_path; 8151 } 8152 8153 bool bpf_map__is_pinned(const struct bpf_map *map) 8154 { 8155 return map->pinned; 8156 } 8157 8158 static void sanitize_pin_path(char *s) 8159 { 8160 /* bpffs disallows periods in path names */ 8161 while (*s) { 8162 if (*s == '.') 8163 *s = '_'; 8164 s++; 8165 } 8166 } 8167 8168 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8169 { 8170 struct bpf_map *map; 8171 int err; 8172 8173 if (!obj) 8174 return -ENOENT; 8175 8176 if (!obj->loaded) { 8177 pr_warn("object not yet loaded; load it first\n"); 8178 return -ENOENT; 8179 } 8180 8181 bpf_object__for_each_map(map, obj) { 8182 char *pin_path = NULL; 8183 char buf[PATH_MAX]; 8184 8185 if (path) { 8186 int len; 8187 8188 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8189 bpf_map__name(map)); 8190 if (len < 0) { 8191 err = -EINVAL; 8192 goto err_unpin_maps; 8193 } else if (len >= PATH_MAX) { 8194 err = -ENAMETOOLONG; 8195 goto err_unpin_maps; 8196 } 8197 sanitize_pin_path(buf); 8198 pin_path = buf; 8199 } else if (!map->pin_path) { 8200 continue; 8201 } 8202 8203 err = bpf_map__pin(map, pin_path); 8204 if (err) 8205 goto err_unpin_maps; 8206 } 8207 8208 return 0; 8209 8210 err_unpin_maps: 8211 while ((map = bpf_map__prev(map, obj))) { 8212 if (!map->pin_path) 8213 continue; 8214 8215 bpf_map__unpin(map, NULL); 8216 } 8217 8218 return err; 8219 } 8220 8221 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8222 { 8223 struct bpf_map *map; 8224 int err; 8225 8226 if (!obj) 8227 return -ENOENT; 8228 8229 bpf_object__for_each_map(map, obj) { 8230 char *pin_path = NULL; 8231 char buf[PATH_MAX]; 8232 8233 if (path) { 8234 int len; 8235 8236 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8237 bpf_map__name(map)); 8238 if (len < 0) 8239 return -EINVAL; 8240 else if (len >= PATH_MAX) 8241 return -ENAMETOOLONG; 8242 sanitize_pin_path(buf); 8243 pin_path = buf; 8244 } else if (!map->pin_path) { 8245 continue; 8246 } 8247 8248 err = bpf_map__unpin(map, pin_path); 8249 if (err) 8250 return err; 8251 } 8252 8253 return 0; 8254 } 8255 8256 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8257 { 8258 struct bpf_program *prog; 8259 int err; 8260 8261 if (!obj) 8262 return -ENOENT; 8263 8264 if (!obj->loaded) { 8265 pr_warn("object not yet loaded; load it first\n"); 8266 return -ENOENT; 8267 } 8268 8269 bpf_object__for_each_program(prog, obj) { 8270 char buf[PATH_MAX]; 8271 int len; 8272 8273 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8274 prog->pin_name); 8275 if (len < 0) { 8276 err = -EINVAL; 8277 goto err_unpin_programs; 8278 } else if (len >= PATH_MAX) { 8279 err = -ENAMETOOLONG; 8280 goto err_unpin_programs; 8281 } 8282 8283 err = bpf_program__pin(prog, buf); 8284 if (err) 8285 goto err_unpin_programs; 8286 } 8287 8288 return 0; 8289 8290 err_unpin_programs: 8291 while ((prog = bpf_program__prev(prog, obj))) { 8292 char buf[PATH_MAX]; 8293 int len; 8294 8295 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8296 prog->pin_name); 8297 if (len < 0) 8298 continue; 8299 else if (len >= PATH_MAX) 8300 continue; 8301 8302 bpf_program__unpin(prog, buf); 8303 } 8304 8305 return err; 8306 } 8307 8308 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8309 { 8310 struct bpf_program *prog; 8311 int err; 8312 8313 if (!obj) 8314 return -ENOENT; 8315 8316 bpf_object__for_each_program(prog, obj) { 8317 char buf[PATH_MAX]; 8318 int len; 8319 8320 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8321 prog->pin_name); 8322 if (len < 0) 8323 return -EINVAL; 8324 else if (len >= PATH_MAX) 8325 return -ENAMETOOLONG; 8326 8327 err = bpf_program__unpin(prog, buf); 8328 if (err) 8329 return err; 8330 } 8331 8332 return 0; 8333 } 8334 8335 int bpf_object__pin(struct bpf_object *obj, const char *path) 8336 { 8337 int err; 8338 8339 err = bpf_object__pin_maps(obj, path); 8340 if (err) 8341 return err; 8342 8343 err = bpf_object__pin_programs(obj, path); 8344 if (err) { 8345 bpf_object__unpin_maps(obj, path); 8346 return err; 8347 } 8348 8349 return 0; 8350 } 8351 8352 static void bpf_map__destroy(struct bpf_map *map) 8353 { 8354 if (map->clear_priv) 8355 map->clear_priv(map, map->priv); 8356 map->priv = NULL; 8357 map->clear_priv = NULL; 8358 8359 if (map->inner_map) { 8360 bpf_map__destroy(map->inner_map); 8361 zfree(&map->inner_map); 8362 } 8363 8364 zfree(&map->init_slots); 8365 map->init_slots_sz = 0; 8366 8367 if (map->mmaped) { 8368 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8369 map->mmaped = NULL; 8370 } 8371 8372 if (map->st_ops) { 8373 zfree(&map->st_ops->data); 8374 zfree(&map->st_ops->progs); 8375 zfree(&map->st_ops->kern_func_off); 8376 zfree(&map->st_ops); 8377 } 8378 8379 zfree(&map->name); 8380 zfree(&map->pin_path); 8381 8382 if (map->fd >= 0) 8383 zclose(map->fd); 8384 } 8385 8386 void bpf_object__close(struct bpf_object *obj) 8387 { 8388 size_t i; 8389 8390 if (IS_ERR_OR_NULL(obj)) 8391 return; 8392 8393 if (obj->clear_priv) 8394 obj->clear_priv(obj, obj->priv); 8395 8396 bpf_object__elf_finish(obj); 8397 bpf_object__unload(obj); 8398 btf__free(obj->btf); 8399 btf_ext__free(obj->btf_ext); 8400 8401 for (i = 0; i < obj->nr_maps; i++) 8402 bpf_map__destroy(&obj->maps[i]); 8403 8404 zfree(&obj->kconfig); 8405 zfree(&obj->externs); 8406 obj->nr_extern = 0; 8407 8408 zfree(&obj->maps); 8409 obj->nr_maps = 0; 8410 8411 if (obj->programs && obj->nr_programs) { 8412 for (i = 0; i < obj->nr_programs; i++) 8413 bpf_program__exit(&obj->programs[i]); 8414 } 8415 zfree(&obj->programs); 8416 8417 list_del(&obj->list); 8418 free(obj); 8419 } 8420 8421 struct bpf_object * 8422 bpf_object__next(struct bpf_object *prev) 8423 { 8424 struct bpf_object *next; 8425 8426 if (!prev) 8427 next = list_first_entry(&bpf_objects_list, 8428 struct bpf_object, 8429 list); 8430 else 8431 next = list_next_entry(prev, list); 8432 8433 /* Empty list is noticed here so don't need checking on entry. */ 8434 if (&next->list == &bpf_objects_list) 8435 return NULL; 8436 8437 return next; 8438 } 8439 8440 const char *bpf_object__name(const struct bpf_object *obj) 8441 { 8442 return obj ? obj->name : ERR_PTR(-EINVAL); 8443 } 8444 8445 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8446 { 8447 return obj ? obj->kern_version : 0; 8448 } 8449 8450 struct btf *bpf_object__btf(const struct bpf_object *obj) 8451 { 8452 return obj ? obj->btf : NULL; 8453 } 8454 8455 int bpf_object__btf_fd(const struct bpf_object *obj) 8456 { 8457 return obj->btf ? btf__fd(obj->btf) : -1; 8458 } 8459 8460 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8461 { 8462 if (obj->loaded) 8463 return -EINVAL; 8464 8465 obj->kern_version = kern_version; 8466 8467 return 0; 8468 } 8469 8470 int bpf_object__set_priv(struct bpf_object *obj, void *priv, 8471 bpf_object_clear_priv_t clear_priv) 8472 { 8473 if (obj->priv && obj->clear_priv) 8474 obj->clear_priv(obj, obj->priv); 8475 8476 obj->priv = priv; 8477 obj->clear_priv = clear_priv; 8478 return 0; 8479 } 8480 8481 void *bpf_object__priv(const struct bpf_object *obj) 8482 { 8483 return obj ? obj->priv : ERR_PTR(-EINVAL); 8484 } 8485 8486 static struct bpf_program * 8487 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8488 bool forward) 8489 { 8490 size_t nr_programs = obj->nr_programs; 8491 ssize_t idx; 8492 8493 if (!nr_programs) 8494 return NULL; 8495 8496 if (!p) 8497 /* Iter from the beginning */ 8498 return forward ? &obj->programs[0] : 8499 &obj->programs[nr_programs - 1]; 8500 8501 if (p->obj != obj) { 8502 pr_warn("error: program handler doesn't match object\n"); 8503 return NULL; 8504 } 8505 8506 idx = (p - obj->programs) + (forward ? 1 : -1); 8507 if (idx >= obj->nr_programs || idx < 0) 8508 return NULL; 8509 return &obj->programs[idx]; 8510 } 8511 8512 struct bpf_program * 8513 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj) 8514 { 8515 struct bpf_program *prog = prev; 8516 8517 do { 8518 prog = __bpf_program__iter(prog, obj, true); 8519 } while (prog && prog_is_subprog(obj, prog)); 8520 8521 return prog; 8522 } 8523 8524 struct bpf_program * 8525 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj) 8526 { 8527 struct bpf_program *prog = next; 8528 8529 do { 8530 prog = __bpf_program__iter(prog, obj, false); 8531 } while (prog && prog_is_subprog(obj, prog)); 8532 8533 return prog; 8534 } 8535 8536 int bpf_program__set_priv(struct bpf_program *prog, void *priv, 8537 bpf_program_clear_priv_t clear_priv) 8538 { 8539 if (prog->priv && prog->clear_priv) 8540 prog->clear_priv(prog, prog->priv); 8541 8542 prog->priv = priv; 8543 prog->clear_priv = clear_priv; 8544 return 0; 8545 } 8546 8547 void *bpf_program__priv(const struct bpf_program *prog) 8548 { 8549 return prog ? prog->priv : ERR_PTR(-EINVAL); 8550 } 8551 8552 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8553 { 8554 prog->prog_ifindex = ifindex; 8555 } 8556 8557 const char *bpf_program__name(const struct bpf_program *prog) 8558 { 8559 return prog->name; 8560 } 8561 8562 const char *bpf_program__section_name(const struct bpf_program *prog) 8563 { 8564 return prog->sec_name; 8565 } 8566 8567 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy) 8568 { 8569 const char *title; 8570 8571 title = prog->sec_name; 8572 if (needs_copy) { 8573 title = strdup(title); 8574 if (!title) { 8575 pr_warn("failed to strdup program title\n"); 8576 return ERR_PTR(-ENOMEM); 8577 } 8578 } 8579 8580 return title; 8581 } 8582 8583 bool bpf_program__autoload(const struct bpf_program *prog) 8584 { 8585 return prog->load; 8586 } 8587 8588 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8589 { 8590 if (prog->obj->loaded) 8591 return -EINVAL; 8592 8593 prog->load = autoload; 8594 return 0; 8595 } 8596 8597 int bpf_program__fd(const struct bpf_program *prog) 8598 { 8599 return bpf_program__nth_fd(prog, 0); 8600 } 8601 8602 size_t bpf_program__size(const struct bpf_program *prog) 8603 { 8604 return prog->insns_cnt * BPF_INSN_SZ; 8605 } 8606 8607 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances, 8608 bpf_program_prep_t prep) 8609 { 8610 int *instances_fds; 8611 8612 if (nr_instances <= 0 || !prep) 8613 return -EINVAL; 8614 8615 if (prog->instances.nr > 0 || prog->instances.fds) { 8616 pr_warn("Can't set pre-processor after loading\n"); 8617 return -EINVAL; 8618 } 8619 8620 instances_fds = malloc(sizeof(int) * nr_instances); 8621 if (!instances_fds) { 8622 pr_warn("alloc memory failed for fds\n"); 8623 return -ENOMEM; 8624 } 8625 8626 /* fill all fd with -1 */ 8627 memset(instances_fds, -1, sizeof(int) * nr_instances); 8628 8629 prog->instances.nr = nr_instances; 8630 prog->instances.fds = instances_fds; 8631 prog->preprocessor = prep; 8632 return 0; 8633 } 8634 8635 int bpf_program__nth_fd(const struct bpf_program *prog, int n) 8636 { 8637 int fd; 8638 8639 if (!prog) 8640 return -EINVAL; 8641 8642 if (n >= prog->instances.nr || n < 0) { 8643 pr_warn("Can't get the %dth fd from program %s: only %d instances\n", 8644 n, prog->name, prog->instances.nr); 8645 return -EINVAL; 8646 } 8647 8648 fd = prog->instances.fds[n]; 8649 if (fd < 0) { 8650 pr_warn("%dth instance of program '%s' is invalid\n", 8651 n, prog->name); 8652 return -ENOENT; 8653 } 8654 8655 return fd; 8656 } 8657 8658 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog) 8659 { 8660 return prog->type; 8661 } 8662 8663 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8664 { 8665 prog->type = type; 8666 } 8667 8668 static bool bpf_program__is_type(const struct bpf_program *prog, 8669 enum bpf_prog_type type) 8670 { 8671 return prog ? (prog->type == type) : false; 8672 } 8673 8674 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \ 8675 int bpf_program__set_##NAME(struct bpf_program *prog) \ 8676 { \ 8677 if (!prog) \ 8678 return -EINVAL; \ 8679 bpf_program__set_type(prog, TYPE); \ 8680 return 0; \ 8681 } \ 8682 \ 8683 bool bpf_program__is_##NAME(const struct bpf_program *prog) \ 8684 { \ 8685 return bpf_program__is_type(prog, TYPE); \ 8686 } \ 8687 8688 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER); 8689 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM); 8690 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE); 8691 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS); 8692 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT); 8693 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT); 8694 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT); 8695 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP); 8696 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT); 8697 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING); 8698 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS); 8699 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT); 8700 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP); 8701 8702 enum bpf_attach_type 8703 bpf_program__get_expected_attach_type(const struct bpf_program *prog) 8704 { 8705 return prog->expected_attach_type; 8706 } 8707 8708 void bpf_program__set_expected_attach_type(struct bpf_program *prog, 8709 enum bpf_attach_type type) 8710 { 8711 prog->expected_attach_type = type; 8712 } 8713 8714 #define BPF_PROG_SEC_IMPL(string, ptype, eatype, eatype_optional, \ 8715 attachable, attach_btf) \ 8716 { \ 8717 .sec = string, \ 8718 .len = sizeof(string) - 1, \ 8719 .prog_type = ptype, \ 8720 .expected_attach_type = eatype, \ 8721 .is_exp_attach_type_optional = eatype_optional, \ 8722 .is_attachable = attachable, \ 8723 .is_attach_btf = attach_btf, \ 8724 } 8725 8726 /* Programs that can NOT be attached. */ 8727 #define BPF_PROG_SEC(string, ptype) BPF_PROG_SEC_IMPL(string, ptype, 0, 0, 0, 0) 8728 8729 /* Programs that can be attached. */ 8730 #define BPF_APROG_SEC(string, ptype, atype) \ 8731 BPF_PROG_SEC_IMPL(string, ptype, atype, true, 1, 0) 8732 8733 /* Programs that must specify expected attach type at load time. */ 8734 #define BPF_EAPROG_SEC(string, ptype, eatype) \ 8735 BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 1, 0) 8736 8737 /* Programs that use BTF to identify attach point */ 8738 #define BPF_PROG_BTF(string, ptype, eatype) \ 8739 BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 0, 1) 8740 8741 /* Programs that can be attached but attach type can't be identified by section 8742 * name. Kept for backward compatibility. 8743 */ 8744 #define BPF_APROG_COMPAT(string, ptype) BPF_PROG_SEC(string, ptype) 8745 8746 #define SEC_DEF(sec_pfx, ptype, ...) { \ 8747 .sec = sec_pfx, \ 8748 .len = sizeof(sec_pfx) - 1, \ 8749 .prog_type = BPF_PROG_TYPE_##ptype, \ 8750 __VA_ARGS__ \ 8751 } 8752 8753 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 8754 struct bpf_program *prog); 8755 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 8756 struct bpf_program *prog); 8757 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 8758 struct bpf_program *prog); 8759 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 8760 struct bpf_program *prog); 8761 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec, 8762 struct bpf_program *prog); 8763 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec, 8764 struct bpf_program *prog); 8765 8766 static const struct bpf_sec_def section_defs[] = { 8767 BPF_PROG_SEC("socket", BPF_PROG_TYPE_SOCKET_FILTER), 8768 BPF_PROG_SEC("sk_reuseport", BPF_PROG_TYPE_SK_REUSEPORT), 8769 SEC_DEF("kprobe/", KPROBE, 8770 .attach_fn = attach_kprobe), 8771 BPF_PROG_SEC("uprobe/", BPF_PROG_TYPE_KPROBE), 8772 SEC_DEF("kretprobe/", KPROBE, 8773 .attach_fn = attach_kprobe), 8774 BPF_PROG_SEC("uretprobe/", BPF_PROG_TYPE_KPROBE), 8775 BPF_PROG_SEC("classifier", BPF_PROG_TYPE_SCHED_CLS), 8776 BPF_PROG_SEC("action", BPF_PROG_TYPE_SCHED_ACT), 8777 SEC_DEF("tracepoint/", TRACEPOINT, 8778 .attach_fn = attach_tp), 8779 SEC_DEF("tp/", TRACEPOINT, 8780 .attach_fn = attach_tp), 8781 SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT, 8782 .attach_fn = attach_raw_tp), 8783 SEC_DEF("raw_tp/", RAW_TRACEPOINT, 8784 .attach_fn = attach_raw_tp), 8785 SEC_DEF("tp_btf/", TRACING, 8786 .expected_attach_type = BPF_TRACE_RAW_TP, 8787 .is_attach_btf = true, 8788 .attach_fn = attach_trace), 8789 SEC_DEF("fentry/", TRACING, 8790 .expected_attach_type = BPF_TRACE_FENTRY, 8791 .is_attach_btf = true, 8792 .attach_fn = attach_trace), 8793 SEC_DEF("fmod_ret/", TRACING, 8794 .expected_attach_type = BPF_MODIFY_RETURN, 8795 .is_attach_btf = true, 8796 .attach_fn = attach_trace), 8797 SEC_DEF("fexit/", TRACING, 8798 .expected_attach_type = BPF_TRACE_FEXIT, 8799 .is_attach_btf = true, 8800 .attach_fn = attach_trace), 8801 SEC_DEF("fentry.s/", TRACING, 8802 .expected_attach_type = BPF_TRACE_FENTRY, 8803 .is_attach_btf = true, 8804 .is_sleepable = true, 8805 .attach_fn = attach_trace), 8806 SEC_DEF("fmod_ret.s/", TRACING, 8807 .expected_attach_type = BPF_MODIFY_RETURN, 8808 .is_attach_btf = true, 8809 .is_sleepable = true, 8810 .attach_fn = attach_trace), 8811 SEC_DEF("fexit.s/", TRACING, 8812 .expected_attach_type = BPF_TRACE_FEXIT, 8813 .is_attach_btf = true, 8814 .is_sleepable = true, 8815 .attach_fn = attach_trace), 8816 SEC_DEF("freplace/", EXT, 8817 .is_attach_btf = true, 8818 .attach_fn = attach_trace), 8819 SEC_DEF("lsm/", LSM, 8820 .is_attach_btf = true, 8821 .expected_attach_type = BPF_LSM_MAC, 8822 .attach_fn = attach_lsm), 8823 SEC_DEF("lsm.s/", LSM, 8824 .is_attach_btf = true, 8825 .is_sleepable = true, 8826 .expected_attach_type = BPF_LSM_MAC, 8827 .attach_fn = attach_lsm), 8828 SEC_DEF("iter/", TRACING, 8829 .expected_attach_type = BPF_TRACE_ITER, 8830 .is_attach_btf = true, 8831 .attach_fn = attach_iter), 8832 BPF_EAPROG_SEC("xdp_devmap/", BPF_PROG_TYPE_XDP, 8833 BPF_XDP_DEVMAP), 8834 BPF_EAPROG_SEC("xdp_cpumap/", BPF_PROG_TYPE_XDP, 8835 BPF_XDP_CPUMAP), 8836 BPF_APROG_SEC("xdp", BPF_PROG_TYPE_XDP, 8837 BPF_XDP), 8838 BPF_PROG_SEC("perf_event", BPF_PROG_TYPE_PERF_EVENT), 8839 BPF_PROG_SEC("lwt_in", BPF_PROG_TYPE_LWT_IN), 8840 BPF_PROG_SEC("lwt_out", BPF_PROG_TYPE_LWT_OUT), 8841 BPF_PROG_SEC("lwt_xmit", BPF_PROG_TYPE_LWT_XMIT), 8842 BPF_PROG_SEC("lwt_seg6local", BPF_PROG_TYPE_LWT_SEG6LOCAL), 8843 BPF_APROG_SEC("cgroup_skb/ingress", BPF_PROG_TYPE_CGROUP_SKB, 8844 BPF_CGROUP_INET_INGRESS), 8845 BPF_APROG_SEC("cgroup_skb/egress", BPF_PROG_TYPE_CGROUP_SKB, 8846 BPF_CGROUP_INET_EGRESS), 8847 BPF_APROG_COMPAT("cgroup/skb", BPF_PROG_TYPE_CGROUP_SKB), 8848 BPF_EAPROG_SEC("cgroup/sock_create", BPF_PROG_TYPE_CGROUP_SOCK, 8849 BPF_CGROUP_INET_SOCK_CREATE), 8850 BPF_EAPROG_SEC("cgroup/sock_release", BPF_PROG_TYPE_CGROUP_SOCK, 8851 BPF_CGROUP_INET_SOCK_RELEASE), 8852 BPF_APROG_SEC("cgroup/sock", BPF_PROG_TYPE_CGROUP_SOCK, 8853 BPF_CGROUP_INET_SOCK_CREATE), 8854 BPF_EAPROG_SEC("cgroup/post_bind4", BPF_PROG_TYPE_CGROUP_SOCK, 8855 BPF_CGROUP_INET4_POST_BIND), 8856 BPF_EAPROG_SEC("cgroup/post_bind6", BPF_PROG_TYPE_CGROUP_SOCK, 8857 BPF_CGROUP_INET6_POST_BIND), 8858 BPF_APROG_SEC("cgroup/dev", BPF_PROG_TYPE_CGROUP_DEVICE, 8859 BPF_CGROUP_DEVICE), 8860 BPF_APROG_SEC("sockops", BPF_PROG_TYPE_SOCK_OPS, 8861 BPF_CGROUP_SOCK_OPS), 8862 BPF_APROG_SEC("sk_skb/stream_parser", BPF_PROG_TYPE_SK_SKB, 8863 BPF_SK_SKB_STREAM_PARSER), 8864 BPF_APROG_SEC("sk_skb/stream_verdict", BPF_PROG_TYPE_SK_SKB, 8865 BPF_SK_SKB_STREAM_VERDICT), 8866 BPF_APROG_COMPAT("sk_skb", BPF_PROG_TYPE_SK_SKB), 8867 BPF_APROG_SEC("sk_msg", BPF_PROG_TYPE_SK_MSG, 8868 BPF_SK_MSG_VERDICT), 8869 BPF_APROG_SEC("lirc_mode2", BPF_PROG_TYPE_LIRC_MODE2, 8870 BPF_LIRC_MODE2), 8871 BPF_APROG_SEC("flow_dissector", BPF_PROG_TYPE_FLOW_DISSECTOR, 8872 BPF_FLOW_DISSECTOR), 8873 BPF_EAPROG_SEC("cgroup/bind4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8874 BPF_CGROUP_INET4_BIND), 8875 BPF_EAPROG_SEC("cgroup/bind6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8876 BPF_CGROUP_INET6_BIND), 8877 BPF_EAPROG_SEC("cgroup/connect4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8878 BPF_CGROUP_INET4_CONNECT), 8879 BPF_EAPROG_SEC("cgroup/connect6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8880 BPF_CGROUP_INET6_CONNECT), 8881 BPF_EAPROG_SEC("cgroup/sendmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8882 BPF_CGROUP_UDP4_SENDMSG), 8883 BPF_EAPROG_SEC("cgroup/sendmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8884 BPF_CGROUP_UDP6_SENDMSG), 8885 BPF_EAPROG_SEC("cgroup/recvmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8886 BPF_CGROUP_UDP4_RECVMSG), 8887 BPF_EAPROG_SEC("cgroup/recvmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8888 BPF_CGROUP_UDP6_RECVMSG), 8889 BPF_EAPROG_SEC("cgroup/getpeername4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8890 BPF_CGROUP_INET4_GETPEERNAME), 8891 BPF_EAPROG_SEC("cgroup/getpeername6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8892 BPF_CGROUP_INET6_GETPEERNAME), 8893 BPF_EAPROG_SEC("cgroup/getsockname4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8894 BPF_CGROUP_INET4_GETSOCKNAME), 8895 BPF_EAPROG_SEC("cgroup/getsockname6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8896 BPF_CGROUP_INET6_GETSOCKNAME), 8897 BPF_EAPROG_SEC("cgroup/sysctl", BPF_PROG_TYPE_CGROUP_SYSCTL, 8898 BPF_CGROUP_SYSCTL), 8899 BPF_EAPROG_SEC("cgroup/getsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 8900 BPF_CGROUP_GETSOCKOPT), 8901 BPF_EAPROG_SEC("cgroup/setsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 8902 BPF_CGROUP_SETSOCKOPT), 8903 BPF_PROG_SEC("struct_ops", BPF_PROG_TYPE_STRUCT_OPS), 8904 BPF_EAPROG_SEC("sk_lookup/", BPF_PROG_TYPE_SK_LOOKUP, 8905 BPF_SK_LOOKUP), 8906 }; 8907 8908 #undef BPF_PROG_SEC_IMPL 8909 #undef BPF_PROG_SEC 8910 #undef BPF_APROG_SEC 8911 #undef BPF_EAPROG_SEC 8912 #undef BPF_APROG_COMPAT 8913 #undef SEC_DEF 8914 8915 #define MAX_TYPE_NAME_SIZE 32 8916 8917 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8918 { 8919 int i, n = ARRAY_SIZE(section_defs); 8920 8921 for (i = 0; i < n; i++) { 8922 if (strncmp(sec_name, 8923 section_defs[i].sec, section_defs[i].len)) 8924 continue; 8925 return §ion_defs[i]; 8926 } 8927 return NULL; 8928 } 8929 8930 static char *libbpf_get_type_names(bool attach_type) 8931 { 8932 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8933 char *buf; 8934 8935 buf = malloc(len); 8936 if (!buf) 8937 return NULL; 8938 8939 buf[0] = '\0'; 8940 /* Forge string buf with all available names */ 8941 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8942 if (attach_type && !section_defs[i].is_attachable) 8943 continue; 8944 8945 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8946 free(buf); 8947 return NULL; 8948 } 8949 strcat(buf, " "); 8950 strcat(buf, section_defs[i].sec); 8951 } 8952 8953 return buf; 8954 } 8955 8956 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8957 enum bpf_attach_type *expected_attach_type) 8958 { 8959 const struct bpf_sec_def *sec_def; 8960 char *type_names; 8961 8962 if (!name) 8963 return -EINVAL; 8964 8965 sec_def = find_sec_def(name); 8966 if (sec_def) { 8967 *prog_type = sec_def->prog_type; 8968 *expected_attach_type = sec_def->expected_attach_type; 8969 return 0; 8970 } 8971 8972 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8973 type_names = libbpf_get_type_names(false); 8974 if (type_names != NULL) { 8975 pr_debug("supported section(type) names are:%s\n", type_names); 8976 free(type_names); 8977 } 8978 8979 return -ESRCH; 8980 } 8981 8982 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 8983 size_t offset) 8984 { 8985 struct bpf_map *map; 8986 size_t i; 8987 8988 for (i = 0; i < obj->nr_maps; i++) { 8989 map = &obj->maps[i]; 8990 if (!bpf_map__is_struct_ops(map)) 8991 continue; 8992 if (map->sec_offset <= offset && 8993 offset - map->sec_offset < map->def.value_size) 8994 return map; 8995 } 8996 8997 return NULL; 8998 } 8999 9000 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 9001 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9002 GElf_Shdr *shdr, Elf_Data *data) 9003 { 9004 const struct btf_member *member; 9005 struct bpf_struct_ops *st_ops; 9006 struct bpf_program *prog; 9007 unsigned int shdr_idx; 9008 const struct btf *btf; 9009 struct bpf_map *map; 9010 Elf_Data *symbols; 9011 unsigned int moff, insn_idx; 9012 const char *name; 9013 __u32 member_idx; 9014 GElf_Sym sym; 9015 GElf_Rel rel; 9016 int i, nrels; 9017 9018 symbols = obj->efile.symbols; 9019 btf = obj->btf; 9020 nrels = shdr->sh_size / shdr->sh_entsize; 9021 for (i = 0; i < nrels; i++) { 9022 if (!gelf_getrel(data, i, &rel)) { 9023 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9024 return -LIBBPF_ERRNO__FORMAT; 9025 } 9026 9027 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 9028 pr_warn("struct_ops reloc: symbol %zx not found\n", 9029 (size_t)GELF_R_SYM(rel.r_info)); 9030 return -LIBBPF_ERRNO__FORMAT; 9031 } 9032 9033 name = elf_sym_str(obj, sym.st_name) ?: "<?>"; 9034 map = find_struct_ops_map_by_offset(obj, rel.r_offset); 9035 if (!map) { 9036 pr_warn("struct_ops reloc: cannot find map at rel.r_offset %zu\n", 9037 (size_t)rel.r_offset); 9038 return -EINVAL; 9039 } 9040 9041 moff = rel.r_offset - map->sec_offset; 9042 shdr_idx = sym.st_shndx; 9043 st_ops = map->st_ops; 9044 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel.r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9045 map->name, 9046 (long long)(rel.r_info >> 32), 9047 (long long)sym.st_value, 9048 shdr_idx, (size_t)rel.r_offset, 9049 map->sec_offset, sym.st_name, name); 9050 9051 if (shdr_idx >= SHN_LORESERVE) { 9052 pr_warn("struct_ops reloc %s: rel.r_offset %zu shdr_idx %u unsupported non-static function\n", 9053 map->name, (size_t)rel.r_offset, shdr_idx); 9054 return -LIBBPF_ERRNO__RELOC; 9055 } 9056 if (sym.st_value % BPF_INSN_SZ) { 9057 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9058 map->name, (unsigned long long)sym.st_value); 9059 return -LIBBPF_ERRNO__FORMAT; 9060 } 9061 insn_idx = sym.st_value / BPF_INSN_SZ; 9062 9063 member = find_member_by_offset(st_ops->type, moff * 8); 9064 if (!member) { 9065 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9066 map->name, moff); 9067 return -EINVAL; 9068 } 9069 member_idx = member - btf_members(st_ops->type); 9070 name = btf__name_by_offset(btf, member->name_off); 9071 9072 if (!resolve_func_ptr(btf, member->type, NULL)) { 9073 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9074 map->name, name); 9075 return -EINVAL; 9076 } 9077 9078 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9079 if (!prog) { 9080 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9081 map->name, shdr_idx, name); 9082 return -EINVAL; 9083 } 9084 9085 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 9086 const struct bpf_sec_def *sec_def; 9087 9088 sec_def = find_sec_def(prog->sec_name); 9089 if (sec_def && 9090 sec_def->prog_type != BPF_PROG_TYPE_STRUCT_OPS) { 9091 /* for pr_warn */ 9092 prog->type = sec_def->prog_type; 9093 goto invalid_prog; 9094 } 9095 9096 prog->type = BPF_PROG_TYPE_STRUCT_OPS; 9097 prog->attach_btf_id = st_ops->type_id; 9098 prog->expected_attach_type = member_idx; 9099 } else if (prog->type != BPF_PROG_TYPE_STRUCT_OPS || 9100 prog->attach_btf_id != st_ops->type_id || 9101 prog->expected_attach_type != member_idx) { 9102 goto invalid_prog; 9103 } 9104 st_ops->progs[member_idx] = prog; 9105 } 9106 9107 return 0; 9108 9109 invalid_prog: 9110 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 9111 map->name, prog->name, prog->sec_name, prog->type, 9112 prog->attach_btf_id, prog->expected_attach_type, name); 9113 return -EINVAL; 9114 } 9115 9116 #define BTF_TRACE_PREFIX "btf_trace_" 9117 #define BTF_LSM_PREFIX "bpf_lsm_" 9118 #define BTF_ITER_PREFIX "bpf_iter_" 9119 #define BTF_MAX_NAME_SIZE 128 9120 9121 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9122 const char *name, __u32 kind) 9123 { 9124 char btf_type_name[BTF_MAX_NAME_SIZE]; 9125 int ret; 9126 9127 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9128 "%s%s", prefix, name); 9129 /* snprintf returns the number of characters written excluding the 9130 * the terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9131 * indicates truncation. 9132 */ 9133 if (ret < 0 || ret >= sizeof(btf_type_name)) 9134 return -ENAMETOOLONG; 9135 return btf__find_by_name_kind(btf, btf_type_name, kind); 9136 } 9137 9138 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9139 enum bpf_attach_type attach_type) 9140 { 9141 int err; 9142 9143 if (attach_type == BPF_TRACE_RAW_TP) 9144 err = find_btf_by_prefix_kind(btf, BTF_TRACE_PREFIX, name, 9145 BTF_KIND_TYPEDEF); 9146 else if (attach_type == BPF_LSM_MAC) 9147 err = find_btf_by_prefix_kind(btf, BTF_LSM_PREFIX, name, 9148 BTF_KIND_FUNC); 9149 else if (attach_type == BPF_TRACE_ITER) 9150 err = find_btf_by_prefix_kind(btf, BTF_ITER_PREFIX, name, 9151 BTF_KIND_FUNC); 9152 else 9153 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9154 9155 return err; 9156 } 9157 9158 int libbpf_find_vmlinux_btf_id(const char *name, 9159 enum bpf_attach_type attach_type) 9160 { 9161 struct btf *btf; 9162 int err; 9163 9164 btf = libbpf_find_kernel_btf(); 9165 if (IS_ERR(btf)) { 9166 pr_warn("vmlinux BTF is not found\n"); 9167 return -EINVAL; 9168 } 9169 9170 err = find_attach_btf_id(btf, name, attach_type); 9171 if (err <= 0) 9172 pr_warn("%s is not found in vmlinux BTF\n", name); 9173 9174 btf__free(btf); 9175 return err; 9176 } 9177 9178 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9179 { 9180 struct bpf_prog_info_linear *info_linear; 9181 struct bpf_prog_info *info; 9182 struct btf *btf = NULL; 9183 int err = -EINVAL; 9184 9185 info_linear = bpf_program__get_prog_info_linear(attach_prog_fd, 0); 9186 if (IS_ERR_OR_NULL(info_linear)) { 9187 pr_warn("failed get_prog_info_linear for FD %d\n", 9188 attach_prog_fd); 9189 return -EINVAL; 9190 } 9191 info = &info_linear->info; 9192 if (!info->btf_id) { 9193 pr_warn("The target program doesn't have BTF\n"); 9194 goto out; 9195 } 9196 if (btf__get_from_id(info->btf_id, &btf)) { 9197 pr_warn("Failed to get BTF of the program\n"); 9198 goto out; 9199 } 9200 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9201 btf__free(btf); 9202 if (err <= 0) { 9203 pr_warn("%s is not found in prog's BTF\n", name); 9204 goto out; 9205 } 9206 out: 9207 free(info_linear); 9208 return err; 9209 } 9210 9211 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9212 enum bpf_attach_type attach_type, 9213 int *btf_obj_fd, int *btf_type_id) 9214 { 9215 int ret, i; 9216 9217 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9218 if (ret > 0) { 9219 *btf_obj_fd = 0; /* vmlinux BTF */ 9220 *btf_type_id = ret; 9221 return 0; 9222 } 9223 if (ret != -ENOENT) 9224 return ret; 9225 9226 ret = load_module_btfs(obj); 9227 if (ret) 9228 return ret; 9229 9230 for (i = 0; i < obj->btf_module_cnt; i++) { 9231 const struct module_btf *mod = &obj->btf_modules[i]; 9232 9233 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9234 if (ret > 0) { 9235 *btf_obj_fd = mod->fd; 9236 *btf_type_id = ret; 9237 return 0; 9238 } 9239 if (ret == -ENOENT) 9240 continue; 9241 9242 return ret; 9243 } 9244 9245 return -ESRCH; 9246 } 9247 9248 static int libbpf_find_attach_btf_id(struct bpf_program *prog, int *btf_obj_fd, int *btf_type_id) 9249 { 9250 enum bpf_attach_type attach_type = prog->expected_attach_type; 9251 __u32 attach_prog_fd = prog->attach_prog_fd; 9252 const char *name = prog->sec_name, *attach_name; 9253 const struct bpf_sec_def *sec = NULL; 9254 int i, err; 9255 9256 if (!name) 9257 return -EINVAL; 9258 9259 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9260 if (!section_defs[i].is_attach_btf) 9261 continue; 9262 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 9263 continue; 9264 9265 sec = §ion_defs[i]; 9266 break; 9267 } 9268 9269 if (!sec) { 9270 pr_warn("failed to identify BTF ID based on ELF section name '%s'\n", name); 9271 return -ESRCH; 9272 } 9273 attach_name = name + sec->len; 9274 9275 /* BPF program's BTF ID */ 9276 if (attach_prog_fd) { 9277 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9278 if (err < 0) { 9279 pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9280 attach_prog_fd, attach_name, err); 9281 return err; 9282 } 9283 *btf_obj_fd = 0; 9284 *btf_type_id = err; 9285 return 0; 9286 } 9287 9288 /* kernel/module BTF ID */ 9289 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9290 if (err) { 9291 pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err); 9292 return err; 9293 } 9294 return 0; 9295 } 9296 9297 int libbpf_attach_type_by_name(const char *name, 9298 enum bpf_attach_type *attach_type) 9299 { 9300 char *type_names; 9301 int i; 9302 9303 if (!name) 9304 return -EINVAL; 9305 9306 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9307 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 9308 continue; 9309 if (!section_defs[i].is_attachable) 9310 return -EINVAL; 9311 *attach_type = section_defs[i].expected_attach_type; 9312 return 0; 9313 } 9314 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9315 type_names = libbpf_get_type_names(true); 9316 if (type_names != NULL) { 9317 pr_debug("attachable section(type) names are:%s\n", type_names); 9318 free(type_names); 9319 } 9320 9321 return -EINVAL; 9322 } 9323 9324 int bpf_map__fd(const struct bpf_map *map) 9325 { 9326 return map ? map->fd : -EINVAL; 9327 } 9328 9329 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map) 9330 { 9331 return map ? &map->def : ERR_PTR(-EINVAL); 9332 } 9333 9334 const char *bpf_map__name(const struct bpf_map *map) 9335 { 9336 return map ? map->name : NULL; 9337 } 9338 9339 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9340 { 9341 return map->def.type; 9342 } 9343 9344 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9345 { 9346 if (map->fd >= 0) 9347 return -EBUSY; 9348 map->def.type = type; 9349 return 0; 9350 } 9351 9352 __u32 bpf_map__map_flags(const struct bpf_map *map) 9353 { 9354 return map->def.map_flags; 9355 } 9356 9357 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9358 { 9359 if (map->fd >= 0) 9360 return -EBUSY; 9361 map->def.map_flags = flags; 9362 return 0; 9363 } 9364 9365 __u32 bpf_map__numa_node(const struct bpf_map *map) 9366 { 9367 return map->numa_node; 9368 } 9369 9370 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9371 { 9372 if (map->fd >= 0) 9373 return -EBUSY; 9374 map->numa_node = numa_node; 9375 return 0; 9376 } 9377 9378 __u32 bpf_map__key_size(const struct bpf_map *map) 9379 { 9380 return map->def.key_size; 9381 } 9382 9383 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9384 { 9385 if (map->fd >= 0) 9386 return -EBUSY; 9387 map->def.key_size = size; 9388 return 0; 9389 } 9390 9391 __u32 bpf_map__value_size(const struct bpf_map *map) 9392 { 9393 return map->def.value_size; 9394 } 9395 9396 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9397 { 9398 if (map->fd >= 0) 9399 return -EBUSY; 9400 map->def.value_size = size; 9401 return 0; 9402 } 9403 9404 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9405 { 9406 return map ? map->btf_key_type_id : 0; 9407 } 9408 9409 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9410 { 9411 return map ? map->btf_value_type_id : 0; 9412 } 9413 9414 int bpf_map__set_priv(struct bpf_map *map, void *priv, 9415 bpf_map_clear_priv_t clear_priv) 9416 { 9417 if (!map) 9418 return -EINVAL; 9419 9420 if (map->priv) { 9421 if (map->clear_priv) 9422 map->clear_priv(map, map->priv); 9423 } 9424 9425 map->priv = priv; 9426 map->clear_priv = clear_priv; 9427 return 0; 9428 } 9429 9430 void *bpf_map__priv(const struct bpf_map *map) 9431 { 9432 return map ? map->priv : ERR_PTR(-EINVAL); 9433 } 9434 9435 int bpf_map__set_initial_value(struct bpf_map *map, 9436 const void *data, size_t size) 9437 { 9438 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9439 size != map->def.value_size || map->fd >= 0) 9440 return -EINVAL; 9441 9442 memcpy(map->mmaped, data, size); 9443 return 0; 9444 } 9445 9446 bool bpf_map__is_offload_neutral(const struct bpf_map *map) 9447 { 9448 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 9449 } 9450 9451 bool bpf_map__is_internal(const struct bpf_map *map) 9452 { 9453 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9454 } 9455 9456 __u32 bpf_map__ifindex(const struct bpf_map *map) 9457 { 9458 return map->map_ifindex; 9459 } 9460 9461 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9462 { 9463 if (map->fd >= 0) 9464 return -EBUSY; 9465 map->map_ifindex = ifindex; 9466 return 0; 9467 } 9468 9469 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9470 { 9471 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9472 pr_warn("error: unsupported map type\n"); 9473 return -EINVAL; 9474 } 9475 if (map->inner_map_fd != -1) { 9476 pr_warn("error: inner_map_fd already specified\n"); 9477 return -EINVAL; 9478 } 9479 map->inner_map_fd = fd; 9480 return 0; 9481 } 9482 9483 static struct bpf_map * 9484 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9485 { 9486 ssize_t idx; 9487 struct bpf_map *s, *e; 9488 9489 if (!obj || !obj->maps) 9490 return NULL; 9491 9492 s = obj->maps; 9493 e = obj->maps + obj->nr_maps; 9494 9495 if ((m < s) || (m >= e)) { 9496 pr_warn("error in %s: map handler doesn't belong to object\n", 9497 __func__); 9498 return NULL; 9499 } 9500 9501 idx = (m - obj->maps) + i; 9502 if (idx >= obj->nr_maps || idx < 0) 9503 return NULL; 9504 return &obj->maps[idx]; 9505 } 9506 9507 struct bpf_map * 9508 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj) 9509 { 9510 if (prev == NULL) 9511 return obj->maps; 9512 9513 return __bpf_map__iter(prev, obj, 1); 9514 } 9515 9516 struct bpf_map * 9517 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj) 9518 { 9519 if (next == NULL) { 9520 if (!obj->nr_maps) 9521 return NULL; 9522 return obj->maps + obj->nr_maps - 1; 9523 } 9524 9525 return __bpf_map__iter(next, obj, -1); 9526 } 9527 9528 struct bpf_map * 9529 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9530 { 9531 struct bpf_map *pos; 9532 9533 bpf_object__for_each_map(pos, obj) { 9534 if (pos->name && !strcmp(pos->name, name)) 9535 return pos; 9536 } 9537 return NULL; 9538 } 9539 9540 int 9541 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9542 { 9543 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9544 } 9545 9546 struct bpf_map * 9547 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset) 9548 { 9549 return ERR_PTR(-ENOTSUP); 9550 } 9551 9552 long libbpf_get_error(const void *ptr) 9553 { 9554 return PTR_ERR_OR_ZERO(ptr); 9555 } 9556 9557 int bpf_prog_load(const char *file, enum bpf_prog_type type, 9558 struct bpf_object **pobj, int *prog_fd) 9559 { 9560 struct bpf_prog_load_attr attr; 9561 9562 memset(&attr, 0, sizeof(struct bpf_prog_load_attr)); 9563 attr.file = file; 9564 attr.prog_type = type; 9565 attr.expected_attach_type = 0; 9566 9567 return bpf_prog_load_xattr(&attr, pobj, prog_fd); 9568 } 9569 9570 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr, 9571 struct bpf_object **pobj, int *prog_fd) 9572 { 9573 struct bpf_object_open_attr open_attr = {}; 9574 struct bpf_program *prog, *first_prog = NULL; 9575 struct bpf_object *obj; 9576 struct bpf_map *map; 9577 int err; 9578 9579 if (!attr) 9580 return -EINVAL; 9581 if (!attr->file) 9582 return -EINVAL; 9583 9584 open_attr.file = attr->file; 9585 open_attr.prog_type = attr->prog_type; 9586 9587 obj = bpf_object__open_xattr(&open_attr); 9588 if (IS_ERR_OR_NULL(obj)) 9589 return -ENOENT; 9590 9591 bpf_object__for_each_program(prog, obj) { 9592 enum bpf_attach_type attach_type = attr->expected_attach_type; 9593 /* 9594 * to preserve backwards compatibility, bpf_prog_load treats 9595 * attr->prog_type, if specified, as an override to whatever 9596 * bpf_object__open guessed 9597 */ 9598 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) { 9599 bpf_program__set_type(prog, attr->prog_type); 9600 bpf_program__set_expected_attach_type(prog, 9601 attach_type); 9602 } 9603 if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) { 9604 /* 9605 * we haven't guessed from section name and user 9606 * didn't provide a fallback type, too bad... 9607 */ 9608 bpf_object__close(obj); 9609 return -EINVAL; 9610 } 9611 9612 prog->prog_ifindex = attr->ifindex; 9613 prog->log_level = attr->log_level; 9614 prog->prog_flags |= attr->prog_flags; 9615 if (!first_prog) 9616 first_prog = prog; 9617 } 9618 9619 bpf_object__for_each_map(map, obj) { 9620 if (!bpf_map__is_offload_neutral(map)) 9621 map->map_ifindex = attr->ifindex; 9622 } 9623 9624 if (!first_prog) { 9625 pr_warn("object file doesn't contain bpf program\n"); 9626 bpf_object__close(obj); 9627 return -ENOENT; 9628 } 9629 9630 err = bpf_object__load(obj); 9631 if (err) { 9632 bpf_object__close(obj); 9633 return err; 9634 } 9635 9636 *pobj = obj; 9637 *prog_fd = bpf_program__fd(first_prog); 9638 return 0; 9639 } 9640 9641 struct bpf_link { 9642 int (*detach)(struct bpf_link *link); 9643 int (*destroy)(struct bpf_link *link); 9644 char *pin_path; /* NULL, if not pinned */ 9645 int fd; /* hook FD, -1 if not applicable */ 9646 bool disconnected; 9647 }; 9648 9649 /* Replace link's underlying BPF program with the new one */ 9650 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9651 { 9652 return bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9653 } 9654 9655 /* Release "ownership" of underlying BPF resource (typically, BPF program 9656 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9657 * link, when destructed through bpf_link__destroy() call won't attempt to 9658 * detach/unregisted that BPF resource. This is useful in situations where, 9659 * say, attached BPF program has to outlive userspace program that attached it 9660 * in the system. Depending on type of BPF program, though, there might be 9661 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9662 * exit of userspace program doesn't trigger automatic detachment and clean up 9663 * inside the kernel. 9664 */ 9665 void bpf_link__disconnect(struct bpf_link *link) 9666 { 9667 link->disconnected = true; 9668 } 9669 9670 int bpf_link__destroy(struct bpf_link *link) 9671 { 9672 int err = 0; 9673 9674 if (IS_ERR_OR_NULL(link)) 9675 return 0; 9676 9677 if (!link->disconnected && link->detach) 9678 err = link->detach(link); 9679 if (link->destroy) 9680 link->destroy(link); 9681 if (link->pin_path) 9682 free(link->pin_path); 9683 free(link); 9684 9685 return err; 9686 } 9687 9688 int bpf_link__fd(const struct bpf_link *link) 9689 { 9690 return link->fd; 9691 } 9692 9693 const char *bpf_link__pin_path(const struct bpf_link *link) 9694 { 9695 return link->pin_path; 9696 } 9697 9698 static int bpf_link__detach_fd(struct bpf_link *link) 9699 { 9700 return close(link->fd); 9701 } 9702 9703 struct bpf_link *bpf_link__open(const char *path) 9704 { 9705 struct bpf_link *link; 9706 int fd; 9707 9708 fd = bpf_obj_get(path); 9709 if (fd < 0) { 9710 fd = -errno; 9711 pr_warn("failed to open link at %s: %d\n", path, fd); 9712 return ERR_PTR(fd); 9713 } 9714 9715 link = calloc(1, sizeof(*link)); 9716 if (!link) { 9717 close(fd); 9718 return ERR_PTR(-ENOMEM); 9719 } 9720 link->detach = &bpf_link__detach_fd; 9721 link->fd = fd; 9722 9723 link->pin_path = strdup(path); 9724 if (!link->pin_path) { 9725 bpf_link__destroy(link); 9726 return ERR_PTR(-ENOMEM); 9727 } 9728 9729 return link; 9730 } 9731 9732 int bpf_link__detach(struct bpf_link *link) 9733 { 9734 return bpf_link_detach(link->fd) ? -errno : 0; 9735 } 9736 9737 int bpf_link__pin(struct bpf_link *link, const char *path) 9738 { 9739 int err; 9740 9741 if (link->pin_path) 9742 return -EBUSY; 9743 err = make_parent_dir(path); 9744 if (err) 9745 return err; 9746 err = check_path(path); 9747 if (err) 9748 return err; 9749 9750 link->pin_path = strdup(path); 9751 if (!link->pin_path) 9752 return -ENOMEM; 9753 9754 if (bpf_obj_pin(link->fd, link->pin_path)) { 9755 err = -errno; 9756 zfree(&link->pin_path); 9757 return err; 9758 } 9759 9760 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9761 return 0; 9762 } 9763 9764 int bpf_link__unpin(struct bpf_link *link) 9765 { 9766 int err; 9767 9768 if (!link->pin_path) 9769 return -EINVAL; 9770 9771 err = unlink(link->pin_path); 9772 if (err != 0) 9773 return -errno; 9774 9775 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9776 zfree(&link->pin_path); 9777 return 0; 9778 } 9779 9780 static int bpf_link__detach_perf_event(struct bpf_link *link) 9781 { 9782 int err; 9783 9784 err = ioctl(link->fd, PERF_EVENT_IOC_DISABLE, 0); 9785 if (err) 9786 err = -errno; 9787 9788 close(link->fd); 9789 return err; 9790 } 9791 9792 struct bpf_link *bpf_program__attach_perf_event(struct bpf_program *prog, 9793 int pfd) 9794 { 9795 char errmsg[STRERR_BUFSIZE]; 9796 struct bpf_link *link; 9797 int prog_fd, err; 9798 9799 if (pfd < 0) { 9800 pr_warn("prog '%s': invalid perf event FD %d\n", 9801 prog->name, pfd); 9802 return ERR_PTR(-EINVAL); 9803 } 9804 prog_fd = bpf_program__fd(prog); 9805 if (prog_fd < 0) { 9806 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 9807 prog->name); 9808 return ERR_PTR(-EINVAL); 9809 } 9810 9811 link = calloc(1, sizeof(*link)); 9812 if (!link) 9813 return ERR_PTR(-ENOMEM); 9814 link->detach = &bpf_link__detach_perf_event; 9815 link->fd = pfd; 9816 9817 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 9818 err = -errno; 9819 free(link); 9820 pr_warn("prog '%s': failed to attach to pfd %d: %s\n", 9821 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9822 if (err == -EPROTO) 9823 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 9824 prog->name, pfd); 9825 return ERR_PTR(err); 9826 } 9827 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9828 err = -errno; 9829 free(link); 9830 pr_warn("prog '%s': failed to enable pfd %d: %s\n", 9831 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9832 return ERR_PTR(err); 9833 } 9834 return link; 9835 } 9836 9837 /* 9838 * this function is expected to parse integer in the range of [0, 2^31-1] from 9839 * given file using scanf format string fmt. If actual parsed value is 9840 * negative, the result might be indistinguishable from error 9841 */ 9842 static int parse_uint_from_file(const char *file, const char *fmt) 9843 { 9844 char buf[STRERR_BUFSIZE]; 9845 int err, ret; 9846 FILE *f; 9847 9848 f = fopen(file, "r"); 9849 if (!f) { 9850 err = -errno; 9851 pr_debug("failed to open '%s': %s\n", file, 9852 libbpf_strerror_r(err, buf, sizeof(buf))); 9853 return err; 9854 } 9855 err = fscanf(f, fmt, &ret); 9856 if (err != 1) { 9857 err = err == EOF ? -EIO : -errno; 9858 pr_debug("failed to parse '%s': %s\n", file, 9859 libbpf_strerror_r(err, buf, sizeof(buf))); 9860 fclose(f); 9861 return err; 9862 } 9863 fclose(f); 9864 return ret; 9865 } 9866 9867 static int determine_kprobe_perf_type(void) 9868 { 9869 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 9870 9871 return parse_uint_from_file(file, "%d\n"); 9872 } 9873 9874 static int determine_uprobe_perf_type(void) 9875 { 9876 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 9877 9878 return parse_uint_from_file(file, "%d\n"); 9879 } 9880 9881 static int determine_kprobe_retprobe_bit(void) 9882 { 9883 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 9884 9885 return parse_uint_from_file(file, "config:%d\n"); 9886 } 9887 9888 static int determine_uprobe_retprobe_bit(void) 9889 { 9890 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 9891 9892 return parse_uint_from_file(file, "config:%d\n"); 9893 } 9894 9895 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 9896 uint64_t offset, int pid) 9897 { 9898 struct perf_event_attr attr = {}; 9899 char errmsg[STRERR_BUFSIZE]; 9900 int type, pfd, err; 9901 9902 type = uprobe ? determine_uprobe_perf_type() 9903 : determine_kprobe_perf_type(); 9904 if (type < 0) { 9905 pr_warn("failed to determine %s perf type: %s\n", 9906 uprobe ? "uprobe" : "kprobe", 9907 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 9908 return type; 9909 } 9910 if (retprobe) { 9911 int bit = uprobe ? determine_uprobe_retprobe_bit() 9912 : determine_kprobe_retprobe_bit(); 9913 9914 if (bit < 0) { 9915 pr_warn("failed to determine %s retprobe bit: %s\n", 9916 uprobe ? "uprobe" : "kprobe", 9917 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 9918 return bit; 9919 } 9920 attr.config |= 1 << bit; 9921 } 9922 attr.size = sizeof(attr); 9923 attr.type = type; 9924 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 9925 attr.config2 = offset; /* kprobe_addr or probe_offset */ 9926 9927 /* pid filter is meaningful only for uprobes */ 9928 pfd = syscall(__NR_perf_event_open, &attr, 9929 pid < 0 ? -1 : pid /* pid */, 9930 pid == -1 ? 0 : -1 /* cpu */, 9931 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9932 if (pfd < 0) { 9933 err = -errno; 9934 pr_warn("%s perf_event_open() failed: %s\n", 9935 uprobe ? "uprobe" : "kprobe", 9936 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9937 return err; 9938 } 9939 return pfd; 9940 } 9941 9942 struct bpf_link *bpf_program__attach_kprobe(struct bpf_program *prog, 9943 bool retprobe, 9944 const char *func_name) 9945 { 9946 char errmsg[STRERR_BUFSIZE]; 9947 struct bpf_link *link; 9948 int pfd, err; 9949 9950 pfd = perf_event_open_probe(false /* uprobe */, retprobe, func_name, 9951 0 /* offset */, -1 /* pid */); 9952 if (pfd < 0) { 9953 pr_warn("prog '%s': failed to create %s '%s' perf event: %s\n", 9954 prog->name, retprobe ? "kretprobe" : "kprobe", func_name, 9955 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9956 return ERR_PTR(pfd); 9957 } 9958 link = bpf_program__attach_perf_event(prog, pfd); 9959 if (IS_ERR(link)) { 9960 close(pfd); 9961 err = PTR_ERR(link); 9962 pr_warn("prog '%s': failed to attach to %s '%s': %s\n", 9963 prog->name, retprobe ? "kretprobe" : "kprobe", func_name, 9964 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9965 return link; 9966 } 9967 return link; 9968 } 9969 9970 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 9971 struct bpf_program *prog) 9972 { 9973 const char *func_name; 9974 bool retprobe; 9975 9976 func_name = prog->sec_name + sec->len; 9977 retprobe = strcmp(sec->sec, "kretprobe/") == 0; 9978 9979 return bpf_program__attach_kprobe(prog, retprobe, func_name); 9980 } 9981 9982 struct bpf_link *bpf_program__attach_uprobe(struct bpf_program *prog, 9983 bool retprobe, pid_t pid, 9984 const char *binary_path, 9985 size_t func_offset) 9986 { 9987 char errmsg[STRERR_BUFSIZE]; 9988 struct bpf_link *link; 9989 int pfd, err; 9990 9991 pfd = perf_event_open_probe(true /* uprobe */, retprobe, 9992 binary_path, func_offset, pid); 9993 if (pfd < 0) { 9994 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 9995 prog->name, retprobe ? "uretprobe" : "uprobe", 9996 binary_path, func_offset, 9997 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9998 return ERR_PTR(pfd); 9999 } 10000 link = bpf_program__attach_perf_event(prog, pfd); 10001 if (IS_ERR(link)) { 10002 close(pfd); 10003 err = PTR_ERR(link); 10004 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 10005 prog->name, retprobe ? "uretprobe" : "uprobe", 10006 binary_path, func_offset, 10007 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10008 return link; 10009 } 10010 return link; 10011 } 10012 10013 static int determine_tracepoint_id(const char *tp_category, 10014 const char *tp_name) 10015 { 10016 char file[PATH_MAX]; 10017 int ret; 10018 10019 ret = snprintf(file, sizeof(file), 10020 "/sys/kernel/debug/tracing/events/%s/%s/id", 10021 tp_category, tp_name); 10022 if (ret < 0) 10023 return -errno; 10024 if (ret >= sizeof(file)) { 10025 pr_debug("tracepoint %s/%s path is too long\n", 10026 tp_category, tp_name); 10027 return -E2BIG; 10028 } 10029 return parse_uint_from_file(file, "%d\n"); 10030 } 10031 10032 static int perf_event_open_tracepoint(const char *tp_category, 10033 const char *tp_name) 10034 { 10035 struct perf_event_attr attr = {}; 10036 char errmsg[STRERR_BUFSIZE]; 10037 int tp_id, pfd, err; 10038 10039 tp_id = determine_tracepoint_id(tp_category, tp_name); 10040 if (tp_id < 0) { 10041 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 10042 tp_category, tp_name, 10043 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 10044 return tp_id; 10045 } 10046 10047 attr.type = PERF_TYPE_TRACEPOINT; 10048 attr.size = sizeof(attr); 10049 attr.config = tp_id; 10050 10051 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 10052 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10053 if (pfd < 0) { 10054 err = -errno; 10055 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 10056 tp_category, tp_name, 10057 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10058 return err; 10059 } 10060 return pfd; 10061 } 10062 10063 struct bpf_link *bpf_program__attach_tracepoint(struct bpf_program *prog, 10064 const char *tp_category, 10065 const char *tp_name) 10066 { 10067 char errmsg[STRERR_BUFSIZE]; 10068 struct bpf_link *link; 10069 int pfd, err; 10070 10071 pfd = perf_event_open_tracepoint(tp_category, tp_name); 10072 if (pfd < 0) { 10073 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 10074 prog->name, tp_category, tp_name, 10075 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10076 return ERR_PTR(pfd); 10077 } 10078 link = bpf_program__attach_perf_event(prog, pfd); 10079 if (IS_ERR(link)) { 10080 close(pfd); 10081 err = PTR_ERR(link); 10082 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 10083 prog->name, tp_category, tp_name, 10084 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10085 return link; 10086 } 10087 return link; 10088 } 10089 10090 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 10091 struct bpf_program *prog) 10092 { 10093 char *sec_name, *tp_cat, *tp_name; 10094 struct bpf_link *link; 10095 10096 sec_name = strdup(prog->sec_name); 10097 if (!sec_name) 10098 return ERR_PTR(-ENOMEM); 10099 10100 /* extract "tp/<category>/<name>" */ 10101 tp_cat = sec_name + sec->len; 10102 tp_name = strchr(tp_cat, '/'); 10103 if (!tp_name) { 10104 link = ERR_PTR(-EINVAL); 10105 goto out; 10106 } 10107 *tp_name = '\0'; 10108 tp_name++; 10109 10110 link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 10111 out: 10112 free(sec_name); 10113 return link; 10114 } 10115 10116 struct bpf_link *bpf_program__attach_raw_tracepoint(struct bpf_program *prog, 10117 const char *tp_name) 10118 { 10119 char errmsg[STRERR_BUFSIZE]; 10120 struct bpf_link *link; 10121 int prog_fd, pfd; 10122 10123 prog_fd = bpf_program__fd(prog); 10124 if (prog_fd < 0) { 10125 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10126 return ERR_PTR(-EINVAL); 10127 } 10128 10129 link = calloc(1, sizeof(*link)); 10130 if (!link) 10131 return ERR_PTR(-ENOMEM); 10132 link->detach = &bpf_link__detach_fd; 10133 10134 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 10135 if (pfd < 0) { 10136 pfd = -errno; 10137 free(link); 10138 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 10139 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10140 return ERR_PTR(pfd); 10141 } 10142 link->fd = pfd; 10143 return link; 10144 } 10145 10146 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 10147 struct bpf_program *prog) 10148 { 10149 const char *tp_name = prog->sec_name + sec->len; 10150 10151 return bpf_program__attach_raw_tracepoint(prog, tp_name); 10152 } 10153 10154 /* Common logic for all BPF program types that attach to a btf_id */ 10155 static struct bpf_link *bpf_program__attach_btf_id(struct bpf_program *prog) 10156 { 10157 char errmsg[STRERR_BUFSIZE]; 10158 struct bpf_link *link; 10159 int prog_fd, pfd; 10160 10161 prog_fd = bpf_program__fd(prog); 10162 if (prog_fd < 0) { 10163 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10164 return ERR_PTR(-EINVAL); 10165 } 10166 10167 link = calloc(1, sizeof(*link)); 10168 if (!link) 10169 return ERR_PTR(-ENOMEM); 10170 link->detach = &bpf_link__detach_fd; 10171 10172 pfd = bpf_raw_tracepoint_open(NULL, prog_fd); 10173 if (pfd < 0) { 10174 pfd = -errno; 10175 free(link); 10176 pr_warn("prog '%s': failed to attach: %s\n", 10177 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10178 return ERR_PTR(pfd); 10179 } 10180 link->fd = pfd; 10181 return (struct bpf_link *)link; 10182 } 10183 10184 struct bpf_link *bpf_program__attach_trace(struct bpf_program *prog) 10185 { 10186 return bpf_program__attach_btf_id(prog); 10187 } 10188 10189 struct bpf_link *bpf_program__attach_lsm(struct bpf_program *prog) 10190 { 10191 return bpf_program__attach_btf_id(prog); 10192 } 10193 10194 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 10195 struct bpf_program *prog) 10196 { 10197 return bpf_program__attach_trace(prog); 10198 } 10199 10200 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec, 10201 struct bpf_program *prog) 10202 { 10203 return bpf_program__attach_lsm(prog); 10204 } 10205 10206 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec, 10207 struct bpf_program *prog) 10208 { 10209 return bpf_program__attach_iter(prog, NULL); 10210 } 10211 10212 static struct bpf_link * 10213 bpf_program__attach_fd(struct bpf_program *prog, int target_fd, int btf_id, 10214 const char *target_name) 10215 { 10216 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 10217 .target_btf_id = btf_id); 10218 enum bpf_attach_type attach_type; 10219 char errmsg[STRERR_BUFSIZE]; 10220 struct bpf_link *link; 10221 int prog_fd, link_fd; 10222 10223 prog_fd = bpf_program__fd(prog); 10224 if (prog_fd < 0) { 10225 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10226 return ERR_PTR(-EINVAL); 10227 } 10228 10229 link = calloc(1, sizeof(*link)); 10230 if (!link) 10231 return ERR_PTR(-ENOMEM); 10232 link->detach = &bpf_link__detach_fd; 10233 10234 attach_type = bpf_program__get_expected_attach_type(prog); 10235 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 10236 if (link_fd < 0) { 10237 link_fd = -errno; 10238 free(link); 10239 pr_warn("prog '%s': failed to attach to %s: %s\n", 10240 prog->name, target_name, 10241 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 10242 return ERR_PTR(link_fd); 10243 } 10244 link->fd = link_fd; 10245 return link; 10246 } 10247 10248 struct bpf_link * 10249 bpf_program__attach_cgroup(struct bpf_program *prog, int cgroup_fd) 10250 { 10251 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 10252 } 10253 10254 struct bpf_link * 10255 bpf_program__attach_netns(struct bpf_program *prog, int netns_fd) 10256 { 10257 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 10258 } 10259 10260 struct bpf_link *bpf_program__attach_xdp(struct bpf_program *prog, int ifindex) 10261 { 10262 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 10263 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 10264 } 10265 10266 struct bpf_link *bpf_program__attach_freplace(struct bpf_program *prog, 10267 int target_fd, 10268 const char *attach_func_name) 10269 { 10270 int btf_id; 10271 10272 if (!!target_fd != !!attach_func_name) { 10273 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 10274 prog->name); 10275 return ERR_PTR(-EINVAL); 10276 } 10277 10278 if (prog->type != BPF_PROG_TYPE_EXT) { 10279 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 10280 prog->name); 10281 return ERR_PTR(-EINVAL); 10282 } 10283 10284 if (target_fd) { 10285 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 10286 if (btf_id < 0) 10287 return ERR_PTR(btf_id); 10288 10289 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 10290 } else { 10291 /* no target, so use raw_tracepoint_open for compatibility 10292 * with old kernels 10293 */ 10294 return bpf_program__attach_trace(prog); 10295 } 10296 } 10297 10298 struct bpf_link * 10299 bpf_program__attach_iter(struct bpf_program *prog, 10300 const struct bpf_iter_attach_opts *opts) 10301 { 10302 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 10303 char errmsg[STRERR_BUFSIZE]; 10304 struct bpf_link *link; 10305 int prog_fd, link_fd; 10306 __u32 target_fd = 0; 10307 10308 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 10309 return ERR_PTR(-EINVAL); 10310 10311 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 10312 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 10313 10314 prog_fd = bpf_program__fd(prog); 10315 if (prog_fd < 0) { 10316 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10317 return ERR_PTR(-EINVAL); 10318 } 10319 10320 link = calloc(1, sizeof(*link)); 10321 if (!link) 10322 return ERR_PTR(-ENOMEM); 10323 link->detach = &bpf_link__detach_fd; 10324 10325 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 10326 &link_create_opts); 10327 if (link_fd < 0) { 10328 link_fd = -errno; 10329 free(link); 10330 pr_warn("prog '%s': failed to attach to iterator: %s\n", 10331 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 10332 return ERR_PTR(link_fd); 10333 } 10334 link->fd = link_fd; 10335 return link; 10336 } 10337 10338 struct bpf_link *bpf_program__attach(struct bpf_program *prog) 10339 { 10340 const struct bpf_sec_def *sec_def; 10341 10342 sec_def = find_sec_def(prog->sec_name); 10343 if (!sec_def || !sec_def->attach_fn) 10344 return ERR_PTR(-ESRCH); 10345 10346 return sec_def->attach_fn(sec_def, prog); 10347 } 10348 10349 static int bpf_link__detach_struct_ops(struct bpf_link *link) 10350 { 10351 __u32 zero = 0; 10352 10353 if (bpf_map_delete_elem(link->fd, &zero)) 10354 return -errno; 10355 10356 return 0; 10357 } 10358 10359 struct bpf_link *bpf_map__attach_struct_ops(struct bpf_map *map) 10360 { 10361 struct bpf_struct_ops *st_ops; 10362 struct bpf_link *link; 10363 __u32 i, zero = 0; 10364 int err; 10365 10366 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 10367 return ERR_PTR(-EINVAL); 10368 10369 link = calloc(1, sizeof(*link)); 10370 if (!link) 10371 return ERR_PTR(-EINVAL); 10372 10373 st_ops = map->st_ops; 10374 for (i = 0; i < btf_vlen(st_ops->type); i++) { 10375 struct bpf_program *prog = st_ops->progs[i]; 10376 void *kern_data; 10377 int prog_fd; 10378 10379 if (!prog) 10380 continue; 10381 10382 prog_fd = bpf_program__fd(prog); 10383 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 10384 *(unsigned long *)kern_data = prog_fd; 10385 } 10386 10387 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 10388 if (err) { 10389 err = -errno; 10390 free(link); 10391 return ERR_PTR(err); 10392 } 10393 10394 link->detach = bpf_link__detach_struct_ops; 10395 link->fd = map->fd; 10396 10397 return link; 10398 } 10399 10400 enum bpf_perf_event_ret 10401 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 10402 void **copy_mem, size_t *copy_size, 10403 bpf_perf_event_print_t fn, void *private_data) 10404 { 10405 struct perf_event_mmap_page *header = mmap_mem; 10406 __u64 data_head = ring_buffer_read_head(header); 10407 __u64 data_tail = header->data_tail; 10408 void *base = ((__u8 *)header) + page_size; 10409 int ret = LIBBPF_PERF_EVENT_CONT; 10410 struct perf_event_header *ehdr; 10411 size_t ehdr_size; 10412 10413 while (data_head != data_tail) { 10414 ehdr = base + (data_tail & (mmap_size - 1)); 10415 ehdr_size = ehdr->size; 10416 10417 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 10418 void *copy_start = ehdr; 10419 size_t len_first = base + mmap_size - copy_start; 10420 size_t len_secnd = ehdr_size - len_first; 10421 10422 if (*copy_size < ehdr_size) { 10423 free(*copy_mem); 10424 *copy_mem = malloc(ehdr_size); 10425 if (!*copy_mem) { 10426 *copy_size = 0; 10427 ret = LIBBPF_PERF_EVENT_ERROR; 10428 break; 10429 } 10430 *copy_size = ehdr_size; 10431 } 10432 10433 memcpy(*copy_mem, copy_start, len_first); 10434 memcpy(*copy_mem + len_first, base, len_secnd); 10435 ehdr = *copy_mem; 10436 } 10437 10438 ret = fn(ehdr, private_data); 10439 data_tail += ehdr_size; 10440 if (ret != LIBBPF_PERF_EVENT_CONT) 10441 break; 10442 } 10443 10444 ring_buffer_write_tail(header, data_tail); 10445 return ret; 10446 } 10447 10448 struct perf_buffer; 10449 10450 struct perf_buffer_params { 10451 struct perf_event_attr *attr; 10452 /* if event_cb is specified, it takes precendence */ 10453 perf_buffer_event_fn event_cb; 10454 /* sample_cb and lost_cb are higher-level common-case callbacks */ 10455 perf_buffer_sample_fn sample_cb; 10456 perf_buffer_lost_fn lost_cb; 10457 void *ctx; 10458 int cpu_cnt; 10459 int *cpus; 10460 int *map_keys; 10461 }; 10462 10463 struct perf_cpu_buf { 10464 struct perf_buffer *pb; 10465 void *base; /* mmap()'ed memory */ 10466 void *buf; /* for reconstructing segmented data */ 10467 size_t buf_size; 10468 int fd; 10469 int cpu; 10470 int map_key; 10471 }; 10472 10473 struct perf_buffer { 10474 perf_buffer_event_fn event_cb; 10475 perf_buffer_sample_fn sample_cb; 10476 perf_buffer_lost_fn lost_cb; 10477 void *ctx; /* passed into callbacks */ 10478 10479 size_t page_size; 10480 size_t mmap_size; 10481 struct perf_cpu_buf **cpu_bufs; 10482 struct epoll_event *events; 10483 int cpu_cnt; /* number of allocated CPU buffers */ 10484 int epoll_fd; /* perf event FD */ 10485 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 10486 }; 10487 10488 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 10489 struct perf_cpu_buf *cpu_buf) 10490 { 10491 if (!cpu_buf) 10492 return; 10493 if (cpu_buf->base && 10494 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 10495 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 10496 if (cpu_buf->fd >= 0) { 10497 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 10498 close(cpu_buf->fd); 10499 } 10500 free(cpu_buf->buf); 10501 free(cpu_buf); 10502 } 10503 10504 void perf_buffer__free(struct perf_buffer *pb) 10505 { 10506 int i; 10507 10508 if (IS_ERR_OR_NULL(pb)) 10509 return; 10510 if (pb->cpu_bufs) { 10511 for (i = 0; i < pb->cpu_cnt; i++) { 10512 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 10513 10514 if (!cpu_buf) 10515 continue; 10516 10517 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 10518 perf_buffer__free_cpu_buf(pb, cpu_buf); 10519 } 10520 free(pb->cpu_bufs); 10521 } 10522 if (pb->epoll_fd >= 0) 10523 close(pb->epoll_fd); 10524 free(pb->events); 10525 free(pb); 10526 } 10527 10528 static struct perf_cpu_buf * 10529 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 10530 int cpu, int map_key) 10531 { 10532 struct perf_cpu_buf *cpu_buf; 10533 char msg[STRERR_BUFSIZE]; 10534 int err; 10535 10536 cpu_buf = calloc(1, sizeof(*cpu_buf)); 10537 if (!cpu_buf) 10538 return ERR_PTR(-ENOMEM); 10539 10540 cpu_buf->pb = pb; 10541 cpu_buf->cpu = cpu; 10542 cpu_buf->map_key = map_key; 10543 10544 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 10545 -1, PERF_FLAG_FD_CLOEXEC); 10546 if (cpu_buf->fd < 0) { 10547 err = -errno; 10548 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 10549 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10550 goto error; 10551 } 10552 10553 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 10554 PROT_READ | PROT_WRITE, MAP_SHARED, 10555 cpu_buf->fd, 0); 10556 if (cpu_buf->base == MAP_FAILED) { 10557 cpu_buf->base = NULL; 10558 err = -errno; 10559 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 10560 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10561 goto error; 10562 } 10563 10564 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10565 err = -errno; 10566 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 10567 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10568 goto error; 10569 } 10570 10571 return cpu_buf; 10572 10573 error: 10574 perf_buffer__free_cpu_buf(pb, cpu_buf); 10575 return (struct perf_cpu_buf *)ERR_PTR(err); 10576 } 10577 10578 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 10579 struct perf_buffer_params *p); 10580 10581 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 10582 const struct perf_buffer_opts *opts) 10583 { 10584 struct perf_buffer_params p = {}; 10585 struct perf_event_attr attr = { 0, }; 10586 10587 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 10588 attr.type = PERF_TYPE_SOFTWARE; 10589 attr.sample_type = PERF_SAMPLE_RAW; 10590 attr.sample_period = 1; 10591 attr.wakeup_events = 1; 10592 10593 p.attr = &attr; 10594 p.sample_cb = opts ? opts->sample_cb : NULL; 10595 p.lost_cb = opts ? opts->lost_cb : NULL; 10596 p.ctx = opts ? opts->ctx : NULL; 10597 10598 return __perf_buffer__new(map_fd, page_cnt, &p); 10599 } 10600 10601 struct perf_buffer * 10602 perf_buffer__new_raw(int map_fd, size_t page_cnt, 10603 const struct perf_buffer_raw_opts *opts) 10604 { 10605 struct perf_buffer_params p = {}; 10606 10607 p.attr = opts->attr; 10608 p.event_cb = opts->event_cb; 10609 p.ctx = opts->ctx; 10610 p.cpu_cnt = opts->cpu_cnt; 10611 p.cpus = opts->cpus; 10612 p.map_keys = opts->map_keys; 10613 10614 return __perf_buffer__new(map_fd, page_cnt, &p); 10615 } 10616 10617 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 10618 struct perf_buffer_params *p) 10619 { 10620 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 10621 struct bpf_map_info map; 10622 char msg[STRERR_BUFSIZE]; 10623 struct perf_buffer *pb; 10624 bool *online = NULL; 10625 __u32 map_info_len; 10626 int err, i, j, n; 10627 10628 if (page_cnt & (page_cnt - 1)) { 10629 pr_warn("page count should be power of two, but is %zu\n", 10630 page_cnt); 10631 return ERR_PTR(-EINVAL); 10632 } 10633 10634 /* best-effort sanity checks */ 10635 memset(&map, 0, sizeof(map)); 10636 map_info_len = sizeof(map); 10637 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 10638 if (err) { 10639 err = -errno; 10640 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 10641 * -EBADFD, -EFAULT, or -E2BIG on real error 10642 */ 10643 if (err != -EINVAL) { 10644 pr_warn("failed to get map info for map FD %d: %s\n", 10645 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 10646 return ERR_PTR(err); 10647 } 10648 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 10649 map_fd); 10650 } else { 10651 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 10652 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 10653 map.name); 10654 return ERR_PTR(-EINVAL); 10655 } 10656 } 10657 10658 pb = calloc(1, sizeof(*pb)); 10659 if (!pb) 10660 return ERR_PTR(-ENOMEM); 10661 10662 pb->event_cb = p->event_cb; 10663 pb->sample_cb = p->sample_cb; 10664 pb->lost_cb = p->lost_cb; 10665 pb->ctx = p->ctx; 10666 10667 pb->page_size = getpagesize(); 10668 pb->mmap_size = pb->page_size * page_cnt; 10669 pb->map_fd = map_fd; 10670 10671 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 10672 if (pb->epoll_fd < 0) { 10673 err = -errno; 10674 pr_warn("failed to create epoll instance: %s\n", 10675 libbpf_strerror_r(err, msg, sizeof(msg))); 10676 goto error; 10677 } 10678 10679 if (p->cpu_cnt > 0) { 10680 pb->cpu_cnt = p->cpu_cnt; 10681 } else { 10682 pb->cpu_cnt = libbpf_num_possible_cpus(); 10683 if (pb->cpu_cnt < 0) { 10684 err = pb->cpu_cnt; 10685 goto error; 10686 } 10687 if (map.max_entries && map.max_entries < pb->cpu_cnt) 10688 pb->cpu_cnt = map.max_entries; 10689 } 10690 10691 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 10692 if (!pb->events) { 10693 err = -ENOMEM; 10694 pr_warn("failed to allocate events: out of memory\n"); 10695 goto error; 10696 } 10697 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 10698 if (!pb->cpu_bufs) { 10699 err = -ENOMEM; 10700 pr_warn("failed to allocate buffers: out of memory\n"); 10701 goto error; 10702 } 10703 10704 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 10705 if (err) { 10706 pr_warn("failed to get online CPU mask: %d\n", err); 10707 goto error; 10708 } 10709 10710 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 10711 struct perf_cpu_buf *cpu_buf; 10712 int cpu, map_key; 10713 10714 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 10715 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 10716 10717 /* in case user didn't explicitly requested particular CPUs to 10718 * be attached to, skip offline/not present CPUs 10719 */ 10720 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 10721 continue; 10722 10723 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 10724 if (IS_ERR(cpu_buf)) { 10725 err = PTR_ERR(cpu_buf); 10726 goto error; 10727 } 10728 10729 pb->cpu_bufs[j] = cpu_buf; 10730 10731 err = bpf_map_update_elem(pb->map_fd, &map_key, 10732 &cpu_buf->fd, 0); 10733 if (err) { 10734 err = -errno; 10735 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 10736 cpu, map_key, cpu_buf->fd, 10737 libbpf_strerror_r(err, msg, sizeof(msg))); 10738 goto error; 10739 } 10740 10741 pb->events[j].events = EPOLLIN; 10742 pb->events[j].data.ptr = cpu_buf; 10743 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 10744 &pb->events[j]) < 0) { 10745 err = -errno; 10746 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 10747 cpu, cpu_buf->fd, 10748 libbpf_strerror_r(err, msg, sizeof(msg))); 10749 goto error; 10750 } 10751 j++; 10752 } 10753 pb->cpu_cnt = j; 10754 free(online); 10755 10756 return pb; 10757 10758 error: 10759 free(online); 10760 if (pb) 10761 perf_buffer__free(pb); 10762 return ERR_PTR(err); 10763 } 10764 10765 struct perf_sample_raw { 10766 struct perf_event_header header; 10767 uint32_t size; 10768 char data[]; 10769 }; 10770 10771 struct perf_sample_lost { 10772 struct perf_event_header header; 10773 uint64_t id; 10774 uint64_t lost; 10775 uint64_t sample_id; 10776 }; 10777 10778 static enum bpf_perf_event_ret 10779 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 10780 { 10781 struct perf_cpu_buf *cpu_buf = ctx; 10782 struct perf_buffer *pb = cpu_buf->pb; 10783 void *data = e; 10784 10785 /* user wants full control over parsing perf event */ 10786 if (pb->event_cb) 10787 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 10788 10789 switch (e->type) { 10790 case PERF_RECORD_SAMPLE: { 10791 struct perf_sample_raw *s = data; 10792 10793 if (pb->sample_cb) 10794 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 10795 break; 10796 } 10797 case PERF_RECORD_LOST: { 10798 struct perf_sample_lost *s = data; 10799 10800 if (pb->lost_cb) 10801 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 10802 break; 10803 } 10804 default: 10805 pr_warn("unknown perf sample type %d\n", e->type); 10806 return LIBBPF_PERF_EVENT_ERROR; 10807 } 10808 return LIBBPF_PERF_EVENT_CONT; 10809 } 10810 10811 static int perf_buffer__process_records(struct perf_buffer *pb, 10812 struct perf_cpu_buf *cpu_buf) 10813 { 10814 enum bpf_perf_event_ret ret; 10815 10816 ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size, 10817 pb->page_size, &cpu_buf->buf, 10818 &cpu_buf->buf_size, 10819 perf_buffer__process_record, cpu_buf); 10820 if (ret != LIBBPF_PERF_EVENT_CONT) 10821 return ret; 10822 return 0; 10823 } 10824 10825 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 10826 { 10827 return pb->epoll_fd; 10828 } 10829 10830 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 10831 { 10832 int i, cnt, err; 10833 10834 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 10835 for (i = 0; i < cnt; i++) { 10836 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 10837 10838 err = perf_buffer__process_records(pb, cpu_buf); 10839 if (err) { 10840 pr_warn("error while processing records: %d\n", err); 10841 return err; 10842 } 10843 } 10844 return cnt < 0 ? -errno : cnt; 10845 } 10846 10847 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 10848 * manager. 10849 */ 10850 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 10851 { 10852 return pb->cpu_cnt; 10853 } 10854 10855 /* 10856 * Return perf_event FD of a ring buffer in *buf_idx* slot of 10857 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 10858 * select()/poll()/epoll() Linux syscalls. 10859 */ 10860 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 10861 { 10862 struct perf_cpu_buf *cpu_buf; 10863 10864 if (buf_idx >= pb->cpu_cnt) 10865 return -EINVAL; 10866 10867 cpu_buf = pb->cpu_bufs[buf_idx]; 10868 if (!cpu_buf) 10869 return -ENOENT; 10870 10871 return cpu_buf->fd; 10872 } 10873 10874 /* 10875 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 10876 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 10877 * consume, do nothing and return success. 10878 * Returns: 10879 * - 0 on success; 10880 * - <0 on failure. 10881 */ 10882 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 10883 { 10884 struct perf_cpu_buf *cpu_buf; 10885 10886 if (buf_idx >= pb->cpu_cnt) 10887 return -EINVAL; 10888 10889 cpu_buf = pb->cpu_bufs[buf_idx]; 10890 if (!cpu_buf) 10891 return -ENOENT; 10892 10893 return perf_buffer__process_records(pb, cpu_buf); 10894 } 10895 10896 int perf_buffer__consume(struct perf_buffer *pb) 10897 { 10898 int i, err; 10899 10900 for (i = 0; i < pb->cpu_cnt; i++) { 10901 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 10902 10903 if (!cpu_buf) 10904 continue; 10905 10906 err = perf_buffer__process_records(pb, cpu_buf); 10907 if (err) { 10908 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 10909 return err; 10910 } 10911 } 10912 return 0; 10913 } 10914 10915 struct bpf_prog_info_array_desc { 10916 int array_offset; /* e.g. offset of jited_prog_insns */ 10917 int count_offset; /* e.g. offset of jited_prog_len */ 10918 int size_offset; /* > 0: offset of rec size, 10919 * < 0: fix size of -size_offset 10920 */ 10921 }; 10922 10923 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = { 10924 [BPF_PROG_INFO_JITED_INSNS] = { 10925 offsetof(struct bpf_prog_info, jited_prog_insns), 10926 offsetof(struct bpf_prog_info, jited_prog_len), 10927 -1, 10928 }, 10929 [BPF_PROG_INFO_XLATED_INSNS] = { 10930 offsetof(struct bpf_prog_info, xlated_prog_insns), 10931 offsetof(struct bpf_prog_info, xlated_prog_len), 10932 -1, 10933 }, 10934 [BPF_PROG_INFO_MAP_IDS] = { 10935 offsetof(struct bpf_prog_info, map_ids), 10936 offsetof(struct bpf_prog_info, nr_map_ids), 10937 -(int)sizeof(__u32), 10938 }, 10939 [BPF_PROG_INFO_JITED_KSYMS] = { 10940 offsetof(struct bpf_prog_info, jited_ksyms), 10941 offsetof(struct bpf_prog_info, nr_jited_ksyms), 10942 -(int)sizeof(__u64), 10943 }, 10944 [BPF_PROG_INFO_JITED_FUNC_LENS] = { 10945 offsetof(struct bpf_prog_info, jited_func_lens), 10946 offsetof(struct bpf_prog_info, nr_jited_func_lens), 10947 -(int)sizeof(__u32), 10948 }, 10949 [BPF_PROG_INFO_FUNC_INFO] = { 10950 offsetof(struct bpf_prog_info, func_info), 10951 offsetof(struct bpf_prog_info, nr_func_info), 10952 offsetof(struct bpf_prog_info, func_info_rec_size), 10953 }, 10954 [BPF_PROG_INFO_LINE_INFO] = { 10955 offsetof(struct bpf_prog_info, line_info), 10956 offsetof(struct bpf_prog_info, nr_line_info), 10957 offsetof(struct bpf_prog_info, line_info_rec_size), 10958 }, 10959 [BPF_PROG_INFO_JITED_LINE_INFO] = { 10960 offsetof(struct bpf_prog_info, jited_line_info), 10961 offsetof(struct bpf_prog_info, nr_jited_line_info), 10962 offsetof(struct bpf_prog_info, jited_line_info_rec_size), 10963 }, 10964 [BPF_PROG_INFO_PROG_TAGS] = { 10965 offsetof(struct bpf_prog_info, prog_tags), 10966 offsetof(struct bpf_prog_info, nr_prog_tags), 10967 -(int)sizeof(__u8) * BPF_TAG_SIZE, 10968 }, 10969 10970 }; 10971 10972 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info, 10973 int offset) 10974 { 10975 __u32 *array = (__u32 *)info; 10976 10977 if (offset >= 0) 10978 return array[offset / sizeof(__u32)]; 10979 return -(int)offset; 10980 } 10981 10982 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info, 10983 int offset) 10984 { 10985 __u64 *array = (__u64 *)info; 10986 10987 if (offset >= 0) 10988 return array[offset / sizeof(__u64)]; 10989 return -(int)offset; 10990 } 10991 10992 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset, 10993 __u32 val) 10994 { 10995 __u32 *array = (__u32 *)info; 10996 10997 if (offset >= 0) 10998 array[offset / sizeof(__u32)] = val; 10999 } 11000 11001 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset, 11002 __u64 val) 11003 { 11004 __u64 *array = (__u64 *)info; 11005 11006 if (offset >= 0) 11007 array[offset / sizeof(__u64)] = val; 11008 } 11009 11010 struct bpf_prog_info_linear * 11011 bpf_program__get_prog_info_linear(int fd, __u64 arrays) 11012 { 11013 struct bpf_prog_info_linear *info_linear; 11014 struct bpf_prog_info info = {}; 11015 __u32 info_len = sizeof(info); 11016 __u32 data_len = 0; 11017 int i, err; 11018 void *ptr; 11019 11020 if (arrays >> BPF_PROG_INFO_LAST_ARRAY) 11021 return ERR_PTR(-EINVAL); 11022 11023 /* step 1: get array dimensions */ 11024 err = bpf_obj_get_info_by_fd(fd, &info, &info_len); 11025 if (err) { 11026 pr_debug("can't get prog info: %s", strerror(errno)); 11027 return ERR_PTR(-EFAULT); 11028 } 11029 11030 /* step 2: calculate total size of all arrays */ 11031 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11032 bool include_array = (arrays & (1UL << i)) > 0; 11033 struct bpf_prog_info_array_desc *desc; 11034 __u32 count, size; 11035 11036 desc = bpf_prog_info_array_desc + i; 11037 11038 /* kernel is too old to support this field */ 11039 if (info_len < desc->array_offset + sizeof(__u32) || 11040 info_len < desc->count_offset + sizeof(__u32) || 11041 (desc->size_offset > 0 && info_len < desc->size_offset)) 11042 include_array = false; 11043 11044 if (!include_array) { 11045 arrays &= ~(1UL << i); /* clear the bit */ 11046 continue; 11047 } 11048 11049 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11050 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11051 11052 data_len += count * size; 11053 } 11054 11055 /* step 3: allocate continuous memory */ 11056 data_len = roundup(data_len, sizeof(__u64)); 11057 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len); 11058 if (!info_linear) 11059 return ERR_PTR(-ENOMEM); 11060 11061 /* step 4: fill data to info_linear->info */ 11062 info_linear->arrays = arrays; 11063 memset(&info_linear->info, 0, sizeof(info)); 11064 ptr = info_linear->data; 11065 11066 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11067 struct bpf_prog_info_array_desc *desc; 11068 __u32 count, size; 11069 11070 if ((arrays & (1UL << i)) == 0) 11071 continue; 11072 11073 desc = bpf_prog_info_array_desc + i; 11074 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11075 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11076 bpf_prog_info_set_offset_u32(&info_linear->info, 11077 desc->count_offset, count); 11078 bpf_prog_info_set_offset_u32(&info_linear->info, 11079 desc->size_offset, size); 11080 bpf_prog_info_set_offset_u64(&info_linear->info, 11081 desc->array_offset, 11082 ptr_to_u64(ptr)); 11083 ptr += count * size; 11084 } 11085 11086 /* step 5: call syscall again to get required arrays */ 11087 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len); 11088 if (err) { 11089 pr_debug("can't get prog info: %s", strerror(errno)); 11090 free(info_linear); 11091 return ERR_PTR(-EFAULT); 11092 } 11093 11094 /* step 6: verify the data */ 11095 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11096 struct bpf_prog_info_array_desc *desc; 11097 __u32 v1, v2; 11098 11099 if ((arrays & (1UL << i)) == 0) 11100 continue; 11101 11102 desc = bpf_prog_info_array_desc + i; 11103 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11104 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 11105 desc->count_offset); 11106 if (v1 != v2) 11107 pr_warn("%s: mismatch in element count\n", __func__); 11108 11109 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11110 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 11111 desc->size_offset); 11112 if (v1 != v2) 11113 pr_warn("%s: mismatch in rec size\n", __func__); 11114 } 11115 11116 /* step 7: update info_len and data_len */ 11117 info_linear->info_len = sizeof(struct bpf_prog_info); 11118 info_linear->data_len = data_len; 11119 11120 return info_linear; 11121 } 11122 11123 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear) 11124 { 11125 int i; 11126 11127 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11128 struct bpf_prog_info_array_desc *desc; 11129 __u64 addr, offs; 11130 11131 if ((info_linear->arrays & (1UL << i)) == 0) 11132 continue; 11133 11134 desc = bpf_prog_info_array_desc + i; 11135 addr = bpf_prog_info_read_offset_u64(&info_linear->info, 11136 desc->array_offset); 11137 offs = addr - ptr_to_u64(info_linear->data); 11138 bpf_prog_info_set_offset_u64(&info_linear->info, 11139 desc->array_offset, offs); 11140 } 11141 } 11142 11143 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear) 11144 { 11145 int i; 11146 11147 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11148 struct bpf_prog_info_array_desc *desc; 11149 __u64 addr, offs; 11150 11151 if ((info_linear->arrays & (1UL << i)) == 0) 11152 continue; 11153 11154 desc = bpf_prog_info_array_desc + i; 11155 offs = bpf_prog_info_read_offset_u64(&info_linear->info, 11156 desc->array_offset); 11157 addr = offs + ptr_to_u64(info_linear->data); 11158 bpf_prog_info_set_offset_u64(&info_linear->info, 11159 desc->array_offset, addr); 11160 } 11161 } 11162 11163 int bpf_program__set_attach_target(struct bpf_program *prog, 11164 int attach_prog_fd, 11165 const char *attach_func_name) 11166 { 11167 int btf_obj_fd = 0, btf_id = 0, err; 11168 11169 if (!prog || attach_prog_fd < 0 || !attach_func_name) 11170 return -EINVAL; 11171 11172 if (prog->obj->loaded) 11173 return -EINVAL; 11174 11175 if (attach_prog_fd) { 11176 btf_id = libbpf_find_prog_btf_id(attach_func_name, 11177 attach_prog_fd); 11178 if (btf_id < 0) 11179 return btf_id; 11180 } else { 11181 /* load btf_vmlinux, if not yet */ 11182 err = bpf_object__load_vmlinux_btf(prog->obj, true); 11183 if (err) 11184 return err; 11185 err = find_kernel_btf_id(prog->obj, attach_func_name, 11186 prog->expected_attach_type, 11187 &btf_obj_fd, &btf_id); 11188 if (err) 11189 return err; 11190 } 11191 11192 prog->attach_btf_id = btf_id; 11193 prog->attach_btf_obj_fd = btf_obj_fd; 11194 prog->attach_prog_fd = attach_prog_fd; 11195 return 0; 11196 } 11197 11198 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 11199 { 11200 int err = 0, n, len, start, end = -1; 11201 bool *tmp; 11202 11203 *mask = NULL; 11204 *mask_sz = 0; 11205 11206 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 11207 while (*s) { 11208 if (*s == ',' || *s == '\n') { 11209 s++; 11210 continue; 11211 } 11212 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 11213 if (n <= 0 || n > 2) { 11214 pr_warn("Failed to get CPU range %s: %d\n", s, n); 11215 err = -EINVAL; 11216 goto cleanup; 11217 } else if (n == 1) { 11218 end = start; 11219 } 11220 if (start < 0 || start > end) { 11221 pr_warn("Invalid CPU range [%d,%d] in %s\n", 11222 start, end, s); 11223 err = -EINVAL; 11224 goto cleanup; 11225 } 11226 tmp = realloc(*mask, end + 1); 11227 if (!tmp) { 11228 err = -ENOMEM; 11229 goto cleanup; 11230 } 11231 *mask = tmp; 11232 memset(tmp + *mask_sz, 0, start - *mask_sz); 11233 memset(tmp + start, 1, end - start + 1); 11234 *mask_sz = end + 1; 11235 s += len; 11236 } 11237 if (!*mask_sz) { 11238 pr_warn("Empty CPU range\n"); 11239 return -EINVAL; 11240 } 11241 return 0; 11242 cleanup: 11243 free(*mask); 11244 *mask = NULL; 11245 return err; 11246 } 11247 11248 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 11249 { 11250 int fd, err = 0, len; 11251 char buf[128]; 11252 11253 fd = open(fcpu, O_RDONLY); 11254 if (fd < 0) { 11255 err = -errno; 11256 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 11257 return err; 11258 } 11259 len = read(fd, buf, sizeof(buf)); 11260 close(fd); 11261 if (len <= 0) { 11262 err = len ? -errno : -EINVAL; 11263 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 11264 return err; 11265 } 11266 if (len >= sizeof(buf)) { 11267 pr_warn("CPU mask is too big in file %s\n", fcpu); 11268 return -E2BIG; 11269 } 11270 buf[len] = '\0'; 11271 11272 return parse_cpu_mask_str(buf, mask, mask_sz); 11273 } 11274 11275 int libbpf_num_possible_cpus(void) 11276 { 11277 static const char *fcpu = "/sys/devices/system/cpu/possible"; 11278 static int cpus; 11279 int err, n, i, tmp_cpus; 11280 bool *mask; 11281 11282 tmp_cpus = READ_ONCE(cpus); 11283 if (tmp_cpus > 0) 11284 return tmp_cpus; 11285 11286 err = parse_cpu_mask_file(fcpu, &mask, &n); 11287 if (err) 11288 return err; 11289 11290 tmp_cpus = 0; 11291 for (i = 0; i < n; i++) { 11292 if (mask[i]) 11293 tmp_cpus++; 11294 } 11295 free(mask); 11296 11297 WRITE_ONCE(cpus, tmp_cpus); 11298 return tmp_cpus; 11299 } 11300 11301 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 11302 const struct bpf_object_open_opts *opts) 11303 { 11304 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 11305 .object_name = s->name, 11306 ); 11307 struct bpf_object *obj; 11308 int i; 11309 11310 /* Attempt to preserve opts->object_name, unless overriden by user 11311 * explicitly. Overwriting object name for skeletons is discouraged, 11312 * as it breaks global data maps, because they contain object name 11313 * prefix as their own map name prefix. When skeleton is generated, 11314 * bpftool is making an assumption that this name will stay the same. 11315 */ 11316 if (opts) { 11317 memcpy(&skel_opts, opts, sizeof(*opts)); 11318 if (!opts->object_name) 11319 skel_opts.object_name = s->name; 11320 } 11321 11322 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 11323 if (IS_ERR(obj)) { 11324 pr_warn("failed to initialize skeleton BPF object '%s': %ld\n", 11325 s->name, PTR_ERR(obj)); 11326 return PTR_ERR(obj); 11327 } 11328 11329 *s->obj = obj; 11330 11331 for (i = 0; i < s->map_cnt; i++) { 11332 struct bpf_map **map = s->maps[i].map; 11333 const char *name = s->maps[i].name; 11334 void **mmaped = s->maps[i].mmaped; 11335 11336 *map = bpf_object__find_map_by_name(obj, name); 11337 if (!*map) { 11338 pr_warn("failed to find skeleton map '%s'\n", name); 11339 return -ESRCH; 11340 } 11341 11342 /* externs shouldn't be pre-setup from user code */ 11343 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 11344 *mmaped = (*map)->mmaped; 11345 } 11346 11347 for (i = 0; i < s->prog_cnt; i++) { 11348 struct bpf_program **prog = s->progs[i].prog; 11349 const char *name = s->progs[i].name; 11350 11351 *prog = bpf_object__find_program_by_name(obj, name); 11352 if (!*prog) { 11353 pr_warn("failed to find skeleton program '%s'\n", name); 11354 return -ESRCH; 11355 } 11356 } 11357 11358 return 0; 11359 } 11360 11361 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 11362 { 11363 int i, err; 11364 11365 err = bpf_object__load(*s->obj); 11366 if (err) { 11367 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 11368 return err; 11369 } 11370 11371 for (i = 0; i < s->map_cnt; i++) { 11372 struct bpf_map *map = *s->maps[i].map; 11373 size_t mmap_sz = bpf_map_mmap_sz(map); 11374 int prot, map_fd = bpf_map__fd(map); 11375 void **mmaped = s->maps[i].mmaped; 11376 11377 if (!mmaped) 11378 continue; 11379 11380 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 11381 *mmaped = NULL; 11382 continue; 11383 } 11384 11385 if (map->def.map_flags & BPF_F_RDONLY_PROG) 11386 prot = PROT_READ; 11387 else 11388 prot = PROT_READ | PROT_WRITE; 11389 11390 /* Remap anonymous mmap()-ed "map initialization image" as 11391 * a BPF map-backed mmap()-ed memory, but preserving the same 11392 * memory address. This will cause kernel to change process' 11393 * page table to point to a different piece of kernel memory, 11394 * but from userspace point of view memory address (and its 11395 * contents, being identical at this point) will stay the 11396 * same. This mapping will be released by bpf_object__close() 11397 * as per normal clean up procedure, so we don't need to worry 11398 * about it from skeleton's clean up perspective. 11399 */ 11400 *mmaped = mmap(map->mmaped, mmap_sz, prot, 11401 MAP_SHARED | MAP_FIXED, map_fd, 0); 11402 if (*mmaped == MAP_FAILED) { 11403 err = -errno; 11404 *mmaped = NULL; 11405 pr_warn("failed to re-mmap() map '%s': %d\n", 11406 bpf_map__name(map), err); 11407 return err; 11408 } 11409 } 11410 11411 return 0; 11412 } 11413 11414 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 11415 { 11416 int i; 11417 11418 for (i = 0; i < s->prog_cnt; i++) { 11419 struct bpf_program *prog = *s->progs[i].prog; 11420 struct bpf_link **link = s->progs[i].link; 11421 const struct bpf_sec_def *sec_def; 11422 11423 if (!prog->load) 11424 continue; 11425 11426 sec_def = find_sec_def(prog->sec_name); 11427 if (!sec_def || !sec_def->attach_fn) 11428 continue; 11429 11430 *link = sec_def->attach_fn(sec_def, prog); 11431 if (IS_ERR(*link)) { 11432 pr_warn("failed to auto-attach program '%s': %ld\n", 11433 bpf_program__name(prog), PTR_ERR(*link)); 11434 return PTR_ERR(*link); 11435 } 11436 } 11437 11438 return 0; 11439 } 11440 11441 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 11442 { 11443 int i; 11444 11445 for (i = 0; i < s->prog_cnt; i++) { 11446 struct bpf_link **link = s->progs[i].link; 11447 11448 bpf_link__destroy(*link); 11449 *link = NULL; 11450 } 11451 } 11452 11453 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 11454 { 11455 if (s->progs) 11456 bpf_object__detach_skeleton(s); 11457 if (s->obj) 11458 bpf_object__close(*s->obj); 11459 free(s->maps); 11460 free(s->progs); 11461 free(s); 11462 } 11463