1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/list.h> 35 #include <linux/limits.h> 36 #include <linux/perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <linux/version.h> 39 #include <sys/epoll.h> 40 #include <sys/ioctl.h> 41 #include <sys/mman.h> 42 #include <sys/stat.h> 43 #include <sys/types.h> 44 #include <sys/vfs.h> 45 #include <sys/utsname.h> 46 #include <sys/resource.h> 47 #include <libelf.h> 48 #include <gelf.h> 49 #include <zlib.h> 50 51 #include "libbpf.h" 52 #include "bpf.h" 53 #include "btf.h" 54 #include "str_error.h" 55 #include "libbpf_internal.h" 56 #include "hashmap.h" 57 #include "bpf_gen_internal.h" 58 59 #ifndef BPF_FS_MAGIC 60 #define BPF_FS_MAGIC 0xcafe4a11 61 #endif 62 63 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 64 65 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 66 * compilation if user enables corresponding warning. Disable it explicitly. 67 */ 68 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 69 70 #define __printf(a, b) __attribute__((format(printf, a, b))) 71 72 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 73 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 74 75 static int __base_pr(enum libbpf_print_level level, const char *format, 76 va_list args) 77 { 78 if (level == LIBBPF_DEBUG) 79 return 0; 80 81 return vfprintf(stderr, format, args); 82 } 83 84 static libbpf_print_fn_t __libbpf_pr = __base_pr; 85 86 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 87 { 88 libbpf_print_fn_t old_print_fn = __libbpf_pr; 89 90 __libbpf_pr = fn; 91 return old_print_fn; 92 } 93 94 __printf(2, 3) 95 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 96 { 97 va_list args; 98 99 if (!__libbpf_pr) 100 return; 101 102 va_start(args, format); 103 __libbpf_pr(level, format, args); 104 va_end(args); 105 } 106 107 static void pr_perm_msg(int err) 108 { 109 struct rlimit limit; 110 char buf[100]; 111 112 if (err != -EPERM || geteuid() != 0) 113 return; 114 115 err = getrlimit(RLIMIT_MEMLOCK, &limit); 116 if (err) 117 return; 118 119 if (limit.rlim_cur == RLIM_INFINITY) 120 return; 121 122 if (limit.rlim_cur < 1024) 123 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 124 else if (limit.rlim_cur < 1024*1024) 125 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 126 else 127 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 128 129 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 130 buf); 131 } 132 133 #define STRERR_BUFSIZE 128 134 135 /* Copied from tools/perf/util/util.h */ 136 #ifndef zfree 137 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 138 #endif 139 140 #ifndef zclose 141 # define zclose(fd) ({ \ 142 int ___err = 0; \ 143 if ((fd) >= 0) \ 144 ___err = close((fd)); \ 145 fd = -1; \ 146 ___err; }) 147 #endif 148 149 static inline __u64 ptr_to_u64(const void *ptr) 150 { 151 return (__u64) (unsigned long) ptr; 152 } 153 154 /* this goes away in libbpf 1.0 */ 155 enum libbpf_strict_mode libbpf_mode = LIBBPF_STRICT_NONE; 156 157 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 158 { 159 libbpf_mode = mode; 160 return 0; 161 } 162 163 __u32 libbpf_major_version(void) 164 { 165 return LIBBPF_MAJOR_VERSION; 166 } 167 168 __u32 libbpf_minor_version(void) 169 { 170 return LIBBPF_MINOR_VERSION; 171 } 172 173 const char *libbpf_version_string(void) 174 { 175 #define __S(X) #X 176 #define _S(X) __S(X) 177 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 178 #undef _S 179 #undef __S 180 } 181 182 enum reloc_type { 183 RELO_LD64, 184 RELO_CALL, 185 RELO_DATA, 186 RELO_EXTERN_VAR, 187 RELO_EXTERN_FUNC, 188 RELO_SUBPROG_ADDR, 189 RELO_CORE, 190 }; 191 192 struct reloc_desc { 193 enum reloc_type type; 194 int insn_idx; 195 union { 196 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 197 struct { 198 int map_idx; 199 int sym_off; 200 }; 201 }; 202 }; 203 204 struct bpf_sec_def; 205 206 typedef int (*init_fn_t)(struct bpf_program *prog, long cookie); 207 typedef int (*preload_fn_t)(struct bpf_program *prog, struct bpf_prog_load_opts *opts, long cookie); 208 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_program *prog, long cookie); 209 210 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 211 enum sec_def_flags { 212 SEC_NONE = 0, 213 /* expected_attach_type is optional, if kernel doesn't support that */ 214 SEC_EXP_ATTACH_OPT = 1, 215 /* legacy, only used by libbpf_get_type_names() and 216 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 217 * This used to be associated with cgroup (and few other) BPF programs 218 * that were attachable through BPF_PROG_ATTACH command. Pretty 219 * meaningless nowadays, though. 220 */ 221 SEC_ATTACHABLE = 2, 222 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 223 /* attachment target is specified through BTF ID in either kernel or 224 * other BPF program's BTF object */ 225 SEC_ATTACH_BTF = 4, 226 /* BPF program type allows sleeping/blocking in kernel */ 227 SEC_SLEEPABLE = 8, 228 /* allow non-strict prefix matching */ 229 SEC_SLOPPY_PFX = 16, 230 /* BPF program support non-linear XDP buffer */ 231 SEC_XDP_FRAGS = 32, 232 /* deprecated sec definitions not supposed to be used */ 233 SEC_DEPRECATED = 64, 234 }; 235 236 struct bpf_sec_def { 237 const char *sec; 238 enum bpf_prog_type prog_type; 239 enum bpf_attach_type expected_attach_type; 240 long cookie; 241 242 init_fn_t init_fn; 243 preload_fn_t preload_fn; 244 attach_fn_t attach_fn; 245 }; 246 247 /* 248 * bpf_prog should be a better name but it has been used in 249 * linux/filter.h. 250 */ 251 struct bpf_program { 252 const struct bpf_sec_def *sec_def; 253 char *sec_name; 254 size_t sec_idx; 255 /* this program's instruction offset (in number of instructions) 256 * within its containing ELF section 257 */ 258 size_t sec_insn_off; 259 /* number of original instructions in ELF section belonging to this 260 * program, not taking into account subprogram instructions possible 261 * appended later during relocation 262 */ 263 size_t sec_insn_cnt; 264 /* Offset (in number of instructions) of the start of instruction 265 * belonging to this BPF program within its containing main BPF 266 * program. For the entry-point (main) BPF program, this is always 267 * zero. For a sub-program, this gets reset before each of main BPF 268 * programs are processed and relocated and is used to determined 269 * whether sub-program was already appended to the main program, and 270 * if yes, at which instruction offset. 271 */ 272 size_t sub_insn_off; 273 274 char *name; 275 /* name with / replaced by _; makes recursive pinning 276 * in bpf_object__pin_programs easier 277 */ 278 char *pin_name; 279 280 /* instructions that belong to BPF program; insns[0] is located at 281 * sec_insn_off instruction within its ELF section in ELF file, so 282 * when mapping ELF file instruction index to the local instruction, 283 * one needs to subtract sec_insn_off; and vice versa. 284 */ 285 struct bpf_insn *insns; 286 /* actual number of instruction in this BPF program's image; for 287 * entry-point BPF programs this includes the size of main program 288 * itself plus all the used sub-programs, appended at the end 289 */ 290 size_t insns_cnt; 291 292 struct reloc_desc *reloc_desc; 293 int nr_reloc; 294 295 /* BPF verifier log settings */ 296 char *log_buf; 297 size_t log_size; 298 __u32 log_level; 299 300 struct { 301 int nr; 302 int *fds; 303 } instances; 304 bpf_program_prep_t preprocessor; 305 306 struct bpf_object *obj; 307 void *priv; 308 bpf_program_clear_priv_t clear_priv; 309 310 bool load; 311 bool mark_btf_static; 312 enum bpf_prog_type type; 313 enum bpf_attach_type expected_attach_type; 314 int prog_ifindex; 315 __u32 attach_btf_obj_fd; 316 __u32 attach_btf_id; 317 __u32 attach_prog_fd; 318 void *func_info; 319 __u32 func_info_rec_size; 320 __u32 func_info_cnt; 321 322 void *line_info; 323 __u32 line_info_rec_size; 324 __u32 line_info_cnt; 325 __u32 prog_flags; 326 }; 327 328 struct bpf_struct_ops { 329 const char *tname; 330 const struct btf_type *type; 331 struct bpf_program **progs; 332 __u32 *kern_func_off; 333 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 334 void *data; 335 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 336 * btf_vmlinux's format. 337 * struct bpf_struct_ops_tcp_congestion_ops { 338 * [... some other kernel fields ...] 339 * struct tcp_congestion_ops data; 340 * } 341 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 342 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 343 * from "data". 344 */ 345 void *kern_vdata; 346 __u32 type_id; 347 }; 348 349 #define DATA_SEC ".data" 350 #define BSS_SEC ".bss" 351 #define RODATA_SEC ".rodata" 352 #define KCONFIG_SEC ".kconfig" 353 #define KSYMS_SEC ".ksyms" 354 #define STRUCT_OPS_SEC ".struct_ops" 355 356 enum libbpf_map_type { 357 LIBBPF_MAP_UNSPEC, 358 LIBBPF_MAP_DATA, 359 LIBBPF_MAP_BSS, 360 LIBBPF_MAP_RODATA, 361 LIBBPF_MAP_KCONFIG, 362 }; 363 364 struct bpf_map { 365 char *name; 366 /* real_name is defined for special internal maps (.rodata*, 367 * .data*, .bss, .kconfig) and preserves their original ELF section 368 * name. This is important to be be able to find corresponding BTF 369 * DATASEC information. 370 */ 371 char *real_name; 372 int fd; 373 int sec_idx; 374 size_t sec_offset; 375 int map_ifindex; 376 int inner_map_fd; 377 struct bpf_map_def def; 378 __u32 numa_node; 379 __u32 btf_var_idx; 380 __u32 btf_key_type_id; 381 __u32 btf_value_type_id; 382 __u32 btf_vmlinux_value_type_id; 383 void *priv; 384 bpf_map_clear_priv_t clear_priv; 385 enum libbpf_map_type libbpf_type; 386 void *mmaped; 387 struct bpf_struct_ops *st_ops; 388 struct bpf_map *inner_map; 389 void **init_slots; 390 int init_slots_sz; 391 char *pin_path; 392 bool pinned; 393 bool reused; 394 bool skipped; 395 __u64 map_extra; 396 }; 397 398 enum extern_type { 399 EXT_UNKNOWN, 400 EXT_KCFG, 401 EXT_KSYM, 402 }; 403 404 enum kcfg_type { 405 KCFG_UNKNOWN, 406 KCFG_CHAR, 407 KCFG_BOOL, 408 KCFG_INT, 409 KCFG_TRISTATE, 410 KCFG_CHAR_ARR, 411 }; 412 413 struct extern_desc { 414 enum extern_type type; 415 int sym_idx; 416 int btf_id; 417 int sec_btf_id; 418 const char *name; 419 bool is_set; 420 bool is_weak; 421 union { 422 struct { 423 enum kcfg_type type; 424 int sz; 425 int align; 426 int data_off; 427 bool is_signed; 428 } kcfg; 429 struct { 430 unsigned long long addr; 431 432 /* target btf_id of the corresponding kernel var. */ 433 int kernel_btf_obj_fd; 434 int kernel_btf_id; 435 436 /* local btf_id of the ksym extern's type. */ 437 __u32 type_id; 438 /* BTF fd index to be patched in for insn->off, this is 439 * 0 for vmlinux BTF, index in obj->fd_array for module 440 * BTF 441 */ 442 __s16 btf_fd_idx; 443 } ksym; 444 }; 445 }; 446 447 static LIST_HEAD(bpf_objects_list); 448 449 struct module_btf { 450 struct btf *btf; 451 char *name; 452 __u32 id; 453 int fd; 454 int fd_array_idx; 455 }; 456 457 enum sec_type { 458 SEC_UNUSED = 0, 459 SEC_RELO, 460 SEC_BSS, 461 SEC_DATA, 462 SEC_RODATA, 463 }; 464 465 struct elf_sec_desc { 466 enum sec_type sec_type; 467 Elf64_Shdr *shdr; 468 Elf_Data *data; 469 }; 470 471 struct elf_state { 472 int fd; 473 const void *obj_buf; 474 size_t obj_buf_sz; 475 Elf *elf; 476 Elf64_Ehdr *ehdr; 477 Elf_Data *symbols; 478 Elf_Data *st_ops_data; 479 size_t shstrndx; /* section index for section name strings */ 480 size_t strtabidx; 481 struct elf_sec_desc *secs; 482 int sec_cnt; 483 int maps_shndx; 484 int btf_maps_shndx; 485 __u32 btf_maps_sec_btf_id; 486 int text_shndx; 487 int symbols_shndx; 488 int st_ops_shndx; 489 }; 490 491 struct bpf_object { 492 char name[BPF_OBJ_NAME_LEN]; 493 char license[64]; 494 __u32 kern_version; 495 496 struct bpf_program *programs; 497 size_t nr_programs; 498 struct bpf_map *maps; 499 size_t nr_maps; 500 size_t maps_cap; 501 502 char *kconfig; 503 struct extern_desc *externs; 504 int nr_extern; 505 int kconfig_map_idx; 506 507 bool loaded; 508 bool has_subcalls; 509 bool has_rodata; 510 511 struct bpf_gen *gen_loader; 512 513 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 514 struct elf_state efile; 515 /* 516 * All loaded bpf_object are linked in a list, which is 517 * hidden to caller. bpf_objects__<func> handlers deal with 518 * all objects. 519 */ 520 struct list_head list; 521 522 struct btf *btf; 523 struct btf_ext *btf_ext; 524 525 /* Parse and load BTF vmlinux if any of the programs in the object need 526 * it at load time. 527 */ 528 struct btf *btf_vmlinux; 529 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 530 * override for vmlinux BTF. 531 */ 532 char *btf_custom_path; 533 /* vmlinux BTF override for CO-RE relocations */ 534 struct btf *btf_vmlinux_override; 535 /* Lazily initialized kernel module BTFs */ 536 struct module_btf *btf_modules; 537 bool btf_modules_loaded; 538 size_t btf_module_cnt; 539 size_t btf_module_cap; 540 541 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 542 char *log_buf; 543 size_t log_size; 544 __u32 log_level; 545 546 void *priv; 547 bpf_object_clear_priv_t clear_priv; 548 549 int *fd_array; 550 size_t fd_array_cap; 551 size_t fd_array_cnt; 552 553 char path[]; 554 }; 555 556 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 557 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 558 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 559 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 560 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 561 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 562 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 563 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 564 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 565 566 void bpf_program__unload(struct bpf_program *prog) 567 { 568 int i; 569 570 if (!prog) 571 return; 572 573 /* 574 * If the object is opened but the program was never loaded, 575 * it is possible that prog->instances.nr == -1. 576 */ 577 if (prog->instances.nr > 0) { 578 for (i = 0; i < prog->instances.nr; i++) 579 zclose(prog->instances.fds[i]); 580 } else if (prog->instances.nr != -1) { 581 pr_warn("Internal error: instances.nr is %d\n", 582 prog->instances.nr); 583 } 584 585 prog->instances.nr = -1; 586 zfree(&prog->instances.fds); 587 588 zfree(&prog->func_info); 589 zfree(&prog->line_info); 590 } 591 592 static void bpf_program__exit(struct bpf_program *prog) 593 { 594 if (!prog) 595 return; 596 597 if (prog->clear_priv) 598 prog->clear_priv(prog, prog->priv); 599 600 prog->priv = NULL; 601 prog->clear_priv = NULL; 602 603 bpf_program__unload(prog); 604 zfree(&prog->name); 605 zfree(&prog->sec_name); 606 zfree(&prog->pin_name); 607 zfree(&prog->insns); 608 zfree(&prog->reloc_desc); 609 610 prog->nr_reloc = 0; 611 prog->insns_cnt = 0; 612 prog->sec_idx = -1; 613 } 614 615 static char *__bpf_program__pin_name(struct bpf_program *prog) 616 { 617 char *name, *p; 618 619 if (libbpf_mode & LIBBPF_STRICT_SEC_NAME) 620 name = strdup(prog->name); 621 else 622 name = strdup(prog->sec_name); 623 624 if (!name) 625 return NULL; 626 627 p = name; 628 629 while ((p = strchr(p, '/'))) 630 *p = '_'; 631 632 return name; 633 } 634 635 static bool insn_is_subprog_call(const struct bpf_insn *insn) 636 { 637 return BPF_CLASS(insn->code) == BPF_JMP && 638 BPF_OP(insn->code) == BPF_CALL && 639 BPF_SRC(insn->code) == BPF_K && 640 insn->src_reg == BPF_PSEUDO_CALL && 641 insn->dst_reg == 0 && 642 insn->off == 0; 643 } 644 645 static bool is_call_insn(const struct bpf_insn *insn) 646 { 647 return insn->code == (BPF_JMP | BPF_CALL); 648 } 649 650 static bool insn_is_pseudo_func(struct bpf_insn *insn) 651 { 652 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 653 } 654 655 static int 656 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 657 const char *name, size_t sec_idx, const char *sec_name, 658 size_t sec_off, void *insn_data, size_t insn_data_sz) 659 { 660 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 661 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 662 sec_name, name, sec_off, insn_data_sz); 663 return -EINVAL; 664 } 665 666 memset(prog, 0, sizeof(*prog)); 667 prog->obj = obj; 668 669 prog->sec_idx = sec_idx; 670 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 671 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 672 /* insns_cnt can later be increased by appending used subprograms */ 673 prog->insns_cnt = prog->sec_insn_cnt; 674 675 prog->type = BPF_PROG_TYPE_UNSPEC; 676 prog->load = true; 677 678 prog->instances.fds = NULL; 679 prog->instances.nr = -1; 680 681 /* inherit object's log_level */ 682 prog->log_level = obj->log_level; 683 684 prog->sec_name = strdup(sec_name); 685 if (!prog->sec_name) 686 goto errout; 687 688 prog->name = strdup(name); 689 if (!prog->name) 690 goto errout; 691 692 prog->pin_name = __bpf_program__pin_name(prog); 693 if (!prog->pin_name) 694 goto errout; 695 696 prog->insns = malloc(insn_data_sz); 697 if (!prog->insns) 698 goto errout; 699 memcpy(prog->insns, insn_data, insn_data_sz); 700 701 return 0; 702 errout: 703 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 704 bpf_program__exit(prog); 705 return -ENOMEM; 706 } 707 708 static int 709 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 710 const char *sec_name, int sec_idx) 711 { 712 Elf_Data *symbols = obj->efile.symbols; 713 struct bpf_program *prog, *progs; 714 void *data = sec_data->d_buf; 715 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 716 int nr_progs, err, i; 717 const char *name; 718 Elf64_Sym *sym; 719 720 progs = obj->programs; 721 nr_progs = obj->nr_programs; 722 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 723 sec_off = 0; 724 725 for (i = 0; i < nr_syms; i++) { 726 sym = elf_sym_by_idx(obj, i); 727 728 if (sym->st_shndx != sec_idx) 729 continue; 730 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 731 continue; 732 733 prog_sz = sym->st_size; 734 sec_off = sym->st_value; 735 736 name = elf_sym_str(obj, sym->st_name); 737 if (!name) { 738 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 739 sec_name, sec_off); 740 return -LIBBPF_ERRNO__FORMAT; 741 } 742 743 if (sec_off + prog_sz > sec_sz) { 744 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 745 sec_name, sec_off); 746 return -LIBBPF_ERRNO__FORMAT; 747 } 748 749 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 750 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 751 return -ENOTSUP; 752 } 753 754 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 755 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 756 757 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 758 if (!progs) { 759 /* 760 * In this case the original obj->programs 761 * is still valid, so don't need special treat for 762 * bpf_close_object(). 763 */ 764 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 765 sec_name, name); 766 return -ENOMEM; 767 } 768 obj->programs = progs; 769 770 prog = &progs[nr_progs]; 771 772 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 773 sec_off, data + sec_off, prog_sz); 774 if (err) 775 return err; 776 777 /* if function is a global/weak symbol, but has restricted 778 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 779 * as static to enable more permissive BPF verification mode 780 * with more outside context available to BPF verifier 781 */ 782 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL 783 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 784 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 785 prog->mark_btf_static = true; 786 787 nr_progs++; 788 obj->nr_programs = nr_progs; 789 } 790 791 return 0; 792 } 793 794 __u32 get_kernel_version(void) 795 { 796 /* On Ubuntu LINUX_VERSION_CODE doesn't correspond to info.release, 797 * but Ubuntu provides /proc/version_signature file, as described at 798 * https://ubuntu.com/kernel, with an example contents below, which we 799 * can use to get a proper LINUX_VERSION_CODE. 800 * 801 * Ubuntu 5.4.0-12.15-generic 5.4.8 802 * 803 * In the above, 5.4.8 is what kernel is actually expecting, while 804 * uname() call will return 5.4.0 in info.release. 805 */ 806 const char *ubuntu_kver_file = "/proc/version_signature"; 807 __u32 major, minor, patch; 808 struct utsname info; 809 810 if (access(ubuntu_kver_file, R_OK) == 0) { 811 FILE *f; 812 813 f = fopen(ubuntu_kver_file, "r"); 814 if (f) { 815 if (fscanf(f, "%*s %*s %d.%d.%d\n", &major, &minor, &patch) == 3) { 816 fclose(f); 817 return KERNEL_VERSION(major, minor, patch); 818 } 819 fclose(f); 820 } 821 /* something went wrong, fall back to uname() approach */ 822 } 823 824 uname(&info); 825 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 826 return 0; 827 return KERNEL_VERSION(major, minor, patch); 828 } 829 830 static const struct btf_member * 831 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 832 { 833 struct btf_member *m; 834 int i; 835 836 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 837 if (btf_member_bit_offset(t, i) == bit_offset) 838 return m; 839 } 840 841 return NULL; 842 } 843 844 static const struct btf_member * 845 find_member_by_name(const struct btf *btf, const struct btf_type *t, 846 const char *name) 847 { 848 struct btf_member *m; 849 int i; 850 851 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 852 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 853 return m; 854 } 855 856 return NULL; 857 } 858 859 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 860 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 861 const char *name, __u32 kind); 862 863 static int 864 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 865 const struct btf_type **type, __u32 *type_id, 866 const struct btf_type **vtype, __u32 *vtype_id, 867 const struct btf_member **data_member) 868 { 869 const struct btf_type *kern_type, *kern_vtype; 870 const struct btf_member *kern_data_member; 871 __s32 kern_vtype_id, kern_type_id; 872 __u32 i; 873 874 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 875 if (kern_type_id < 0) { 876 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 877 tname); 878 return kern_type_id; 879 } 880 kern_type = btf__type_by_id(btf, kern_type_id); 881 882 /* Find the corresponding "map_value" type that will be used 883 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 884 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 885 * btf_vmlinux. 886 */ 887 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 888 tname, BTF_KIND_STRUCT); 889 if (kern_vtype_id < 0) { 890 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 891 STRUCT_OPS_VALUE_PREFIX, tname); 892 return kern_vtype_id; 893 } 894 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 895 896 /* Find "struct tcp_congestion_ops" from 897 * struct bpf_struct_ops_tcp_congestion_ops { 898 * [ ... ] 899 * struct tcp_congestion_ops data; 900 * } 901 */ 902 kern_data_member = btf_members(kern_vtype); 903 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 904 if (kern_data_member->type == kern_type_id) 905 break; 906 } 907 if (i == btf_vlen(kern_vtype)) { 908 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 909 tname, STRUCT_OPS_VALUE_PREFIX, tname); 910 return -EINVAL; 911 } 912 913 *type = kern_type; 914 *type_id = kern_type_id; 915 *vtype = kern_vtype; 916 *vtype_id = kern_vtype_id; 917 *data_member = kern_data_member; 918 919 return 0; 920 } 921 922 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 923 { 924 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 925 } 926 927 /* Init the map's fields that depend on kern_btf */ 928 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 929 const struct btf *btf, 930 const struct btf *kern_btf) 931 { 932 const struct btf_member *member, *kern_member, *kern_data_member; 933 const struct btf_type *type, *kern_type, *kern_vtype; 934 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 935 struct bpf_struct_ops *st_ops; 936 void *data, *kern_data; 937 const char *tname; 938 int err; 939 940 st_ops = map->st_ops; 941 type = st_ops->type; 942 tname = st_ops->tname; 943 err = find_struct_ops_kern_types(kern_btf, tname, 944 &kern_type, &kern_type_id, 945 &kern_vtype, &kern_vtype_id, 946 &kern_data_member); 947 if (err) 948 return err; 949 950 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 951 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 952 953 map->def.value_size = kern_vtype->size; 954 map->btf_vmlinux_value_type_id = kern_vtype_id; 955 956 st_ops->kern_vdata = calloc(1, kern_vtype->size); 957 if (!st_ops->kern_vdata) 958 return -ENOMEM; 959 960 data = st_ops->data; 961 kern_data_off = kern_data_member->offset / 8; 962 kern_data = st_ops->kern_vdata + kern_data_off; 963 964 member = btf_members(type); 965 for (i = 0; i < btf_vlen(type); i++, member++) { 966 const struct btf_type *mtype, *kern_mtype; 967 __u32 mtype_id, kern_mtype_id; 968 void *mdata, *kern_mdata; 969 __s64 msize, kern_msize; 970 __u32 moff, kern_moff; 971 __u32 kern_member_idx; 972 const char *mname; 973 974 mname = btf__name_by_offset(btf, member->name_off); 975 kern_member = find_member_by_name(kern_btf, kern_type, mname); 976 if (!kern_member) { 977 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 978 map->name, mname); 979 return -ENOTSUP; 980 } 981 982 kern_member_idx = kern_member - btf_members(kern_type); 983 if (btf_member_bitfield_size(type, i) || 984 btf_member_bitfield_size(kern_type, kern_member_idx)) { 985 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 986 map->name, mname); 987 return -ENOTSUP; 988 } 989 990 moff = member->offset / 8; 991 kern_moff = kern_member->offset / 8; 992 993 mdata = data + moff; 994 kern_mdata = kern_data + kern_moff; 995 996 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 997 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 998 &kern_mtype_id); 999 if (BTF_INFO_KIND(mtype->info) != 1000 BTF_INFO_KIND(kern_mtype->info)) { 1001 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1002 map->name, mname, BTF_INFO_KIND(mtype->info), 1003 BTF_INFO_KIND(kern_mtype->info)); 1004 return -ENOTSUP; 1005 } 1006 1007 if (btf_is_ptr(mtype)) { 1008 struct bpf_program *prog; 1009 1010 prog = st_ops->progs[i]; 1011 if (!prog) 1012 continue; 1013 1014 kern_mtype = skip_mods_and_typedefs(kern_btf, 1015 kern_mtype->type, 1016 &kern_mtype_id); 1017 1018 /* mtype->type must be a func_proto which was 1019 * guaranteed in bpf_object__collect_st_ops_relos(), 1020 * so only check kern_mtype for func_proto here. 1021 */ 1022 if (!btf_is_func_proto(kern_mtype)) { 1023 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1024 map->name, mname); 1025 return -ENOTSUP; 1026 } 1027 1028 prog->attach_btf_id = kern_type_id; 1029 prog->expected_attach_type = kern_member_idx; 1030 1031 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1032 1033 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1034 map->name, mname, prog->name, moff, 1035 kern_moff); 1036 1037 continue; 1038 } 1039 1040 msize = btf__resolve_size(btf, mtype_id); 1041 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1042 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1043 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1044 map->name, mname, (ssize_t)msize, 1045 (ssize_t)kern_msize); 1046 return -ENOTSUP; 1047 } 1048 1049 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1050 map->name, mname, (unsigned int)msize, 1051 moff, kern_moff); 1052 memcpy(kern_mdata, mdata, msize); 1053 } 1054 1055 return 0; 1056 } 1057 1058 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1059 { 1060 struct bpf_map *map; 1061 size_t i; 1062 int err; 1063 1064 for (i = 0; i < obj->nr_maps; i++) { 1065 map = &obj->maps[i]; 1066 1067 if (!bpf_map__is_struct_ops(map)) 1068 continue; 1069 1070 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1071 obj->btf_vmlinux); 1072 if (err) 1073 return err; 1074 } 1075 1076 return 0; 1077 } 1078 1079 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 1080 { 1081 const struct btf_type *type, *datasec; 1082 const struct btf_var_secinfo *vsi; 1083 struct bpf_struct_ops *st_ops; 1084 const char *tname, *var_name; 1085 __s32 type_id, datasec_id; 1086 const struct btf *btf; 1087 struct bpf_map *map; 1088 __u32 i; 1089 1090 if (obj->efile.st_ops_shndx == -1) 1091 return 0; 1092 1093 btf = obj->btf; 1094 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 1095 BTF_KIND_DATASEC); 1096 if (datasec_id < 0) { 1097 pr_warn("struct_ops init: DATASEC %s not found\n", 1098 STRUCT_OPS_SEC); 1099 return -EINVAL; 1100 } 1101 1102 datasec = btf__type_by_id(btf, datasec_id); 1103 vsi = btf_var_secinfos(datasec); 1104 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1105 type = btf__type_by_id(obj->btf, vsi->type); 1106 var_name = btf__name_by_offset(obj->btf, type->name_off); 1107 1108 type_id = btf__resolve_type(obj->btf, vsi->type); 1109 if (type_id < 0) { 1110 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1111 vsi->type, STRUCT_OPS_SEC); 1112 return -EINVAL; 1113 } 1114 1115 type = btf__type_by_id(obj->btf, type_id); 1116 tname = btf__name_by_offset(obj->btf, type->name_off); 1117 if (!tname[0]) { 1118 pr_warn("struct_ops init: anonymous type is not supported\n"); 1119 return -ENOTSUP; 1120 } 1121 if (!btf_is_struct(type)) { 1122 pr_warn("struct_ops init: %s is not a struct\n", tname); 1123 return -EINVAL; 1124 } 1125 1126 map = bpf_object__add_map(obj); 1127 if (IS_ERR(map)) 1128 return PTR_ERR(map); 1129 1130 map->sec_idx = obj->efile.st_ops_shndx; 1131 map->sec_offset = vsi->offset; 1132 map->name = strdup(var_name); 1133 if (!map->name) 1134 return -ENOMEM; 1135 1136 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1137 map->def.key_size = sizeof(int); 1138 map->def.value_size = type->size; 1139 map->def.max_entries = 1; 1140 1141 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1142 if (!map->st_ops) 1143 return -ENOMEM; 1144 st_ops = map->st_ops; 1145 st_ops->data = malloc(type->size); 1146 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1147 st_ops->kern_func_off = malloc(btf_vlen(type) * 1148 sizeof(*st_ops->kern_func_off)); 1149 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1150 return -ENOMEM; 1151 1152 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1153 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1154 var_name, STRUCT_OPS_SEC); 1155 return -EINVAL; 1156 } 1157 1158 memcpy(st_ops->data, 1159 obj->efile.st_ops_data->d_buf + vsi->offset, 1160 type->size); 1161 st_ops->tname = tname; 1162 st_ops->type = type; 1163 st_ops->type_id = type_id; 1164 1165 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1166 tname, type_id, var_name, vsi->offset); 1167 } 1168 1169 return 0; 1170 } 1171 1172 static struct bpf_object *bpf_object__new(const char *path, 1173 const void *obj_buf, 1174 size_t obj_buf_sz, 1175 const char *obj_name) 1176 { 1177 bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST); 1178 struct bpf_object *obj; 1179 char *end; 1180 1181 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1182 if (!obj) { 1183 pr_warn("alloc memory failed for %s\n", path); 1184 return ERR_PTR(-ENOMEM); 1185 } 1186 1187 strcpy(obj->path, path); 1188 if (obj_name) { 1189 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1190 } else { 1191 /* Using basename() GNU version which doesn't modify arg. */ 1192 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1193 end = strchr(obj->name, '.'); 1194 if (end) 1195 *end = 0; 1196 } 1197 1198 obj->efile.fd = -1; 1199 /* 1200 * Caller of this function should also call 1201 * bpf_object__elf_finish() after data collection to return 1202 * obj_buf to user. If not, we should duplicate the buffer to 1203 * avoid user freeing them before elf finish. 1204 */ 1205 obj->efile.obj_buf = obj_buf; 1206 obj->efile.obj_buf_sz = obj_buf_sz; 1207 obj->efile.maps_shndx = -1; 1208 obj->efile.btf_maps_shndx = -1; 1209 obj->efile.st_ops_shndx = -1; 1210 obj->kconfig_map_idx = -1; 1211 1212 obj->kern_version = get_kernel_version(); 1213 obj->loaded = false; 1214 1215 INIT_LIST_HEAD(&obj->list); 1216 if (!strict) 1217 list_add(&obj->list, &bpf_objects_list); 1218 return obj; 1219 } 1220 1221 static void bpf_object__elf_finish(struct bpf_object *obj) 1222 { 1223 if (!obj->efile.elf) 1224 return; 1225 1226 if (obj->efile.elf) { 1227 elf_end(obj->efile.elf); 1228 obj->efile.elf = NULL; 1229 } 1230 obj->efile.symbols = NULL; 1231 obj->efile.st_ops_data = NULL; 1232 1233 zfree(&obj->efile.secs); 1234 obj->efile.sec_cnt = 0; 1235 zclose(obj->efile.fd); 1236 obj->efile.obj_buf = NULL; 1237 obj->efile.obj_buf_sz = 0; 1238 } 1239 1240 static int bpf_object__elf_init(struct bpf_object *obj) 1241 { 1242 Elf64_Ehdr *ehdr; 1243 int err = 0; 1244 Elf *elf; 1245 1246 if (obj->efile.elf) { 1247 pr_warn("elf: init internal error\n"); 1248 return -LIBBPF_ERRNO__LIBELF; 1249 } 1250 1251 if (obj->efile.obj_buf_sz > 0) { 1252 /* 1253 * obj_buf should have been validated by 1254 * bpf_object__open_buffer(). 1255 */ 1256 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1257 } else { 1258 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1259 if (obj->efile.fd < 0) { 1260 char errmsg[STRERR_BUFSIZE], *cp; 1261 1262 err = -errno; 1263 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1264 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1265 return err; 1266 } 1267 1268 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1269 } 1270 1271 if (!elf) { 1272 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1273 err = -LIBBPF_ERRNO__LIBELF; 1274 goto errout; 1275 } 1276 1277 obj->efile.elf = elf; 1278 1279 if (elf_kind(elf) != ELF_K_ELF) { 1280 err = -LIBBPF_ERRNO__FORMAT; 1281 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1282 goto errout; 1283 } 1284 1285 if (gelf_getclass(elf) != ELFCLASS64) { 1286 err = -LIBBPF_ERRNO__FORMAT; 1287 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1288 goto errout; 1289 } 1290 1291 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1292 if (!obj->efile.ehdr) { 1293 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1294 err = -LIBBPF_ERRNO__FORMAT; 1295 goto errout; 1296 } 1297 1298 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1299 pr_warn("elf: failed to get section names section index for %s: %s\n", 1300 obj->path, elf_errmsg(-1)); 1301 err = -LIBBPF_ERRNO__FORMAT; 1302 goto errout; 1303 } 1304 1305 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1306 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1307 pr_warn("elf: failed to get section names strings from %s: %s\n", 1308 obj->path, elf_errmsg(-1)); 1309 err = -LIBBPF_ERRNO__FORMAT; 1310 goto errout; 1311 } 1312 1313 /* Old LLVM set e_machine to EM_NONE */ 1314 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1315 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1316 err = -LIBBPF_ERRNO__FORMAT; 1317 goto errout; 1318 } 1319 1320 return 0; 1321 errout: 1322 bpf_object__elf_finish(obj); 1323 return err; 1324 } 1325 1326 static int bpf_object__check_endianness(struct bpf_object *obj) 1327 { 1328 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1329 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1330 return 0; 1331 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1332 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1333 return 0; 1334 #else 1335 # error "Unrecognized __BYTE_ORDER__" 1336 #endif 1337 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1338 return -LIBBPF_ERRNO__ENDIAN; 1339 } 1340 1341 static int 1342 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1343 { 1344 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1345 * go over allowed ELF data section buffer 1346 */ 1347 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1348 pr_debug("license of %s is %s\n", obj->path, obj->license); 1349 return 0; 1350 } 1351 1352 static int 1353 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1354 { 1355 __u32 kver; 1356 1357 if (size != sizeof(kver)) { 1358 pr_warn("invalid kver section in %s\n", obj->path); 1359 return -LIBBPF_ERRNO__FORMAT; 1360 } 1361 memcpy(&kver, data, sizeof(kver)); 1362 obj->kern_version = kver; 1363 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1364 return 0; 1365 } 1366 1367 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1368 { 1369 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1370 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1371 return true; 1372 return false; 1373 } 1374 1375 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1376 { 1377 Elf_Data *data; 1378 Elf_Scn *scn; 1379 1380 if (!name) 1381 return -EINVAL; 1382 1383 scn = elf_sec_by_name(obj, name); 1384 data = elf_sec_data(obj, scn); 1385 if (data) { 1386 *size = data->d_size; 1387 return 0; /* found it */ 1388 } 1389 1390 return -ENOENT; 1391 } 1392 1393 static int find_elf_var_offset(const struct bpf_object *obj, const char *name, __u32 *off) 1394 { 1395 Elf_Data *symbols = obj->efile.symbols; 1396 const char *sname; 1397 size_t si; 1398 1399 if (!name || !off) 1400 return -EINVAL; 1401 1402 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1403 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1404 1405 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL || 1406 ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1407 continue; 1408 1409 sname = elf_sym_str(obj, sym->st_name); 1410 if (!sname) { 1411 pr_warn("failed to get sym name string for var %s\n", name); 1412 return -EIO; 1413 } 1414 if (strcmp(name, sname) == 0) { 1415 *off = sym->st_value; 1416 return 0; 1417 } 1418 } 1419 1420 return -ENOENT; 1421 } 1422 1423 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1424 { 1425 struct bpf_map *new_maps; 1426 size_t new_cap; 1427 int i; 1428 1429 if (obj->nr_maps < obj->maps_cap) 1430 return &obj->maps[obj->nr_maps++]; 1431 1432 new_cap = max((size_t)4, obj->maps_cap * 3 / 2); 1433 new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps)); 1434 if (!new_maps) { 1435 pr_warn("alloc maps for object failed\n"); 1436 return ERR_PTR(-ENOMEM); 1437 } 1438 1439 obj->maps_cap = new_cap; 1440 obj->maps = new_maps; 1441 1442 /* zero out new maps */ 1443 memset(obj->maps + obj->nr_maps, 0, 1444 (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps)); 1445 /* 1446 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin) 1447 * when failure (zclose won't close negative fd)). 1448 */ 1449 for (i = obj->nr_maps; i < obj->maps_cap; i++) { 1450 obj->maps[i].fd = -1; 1451 obj->maps[i].inner_map_fd = -1; 1452 } 1453 1454 return &obj->maps[obj->nr_maps++]; 1455 } 1456 1457 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1458 { 1459 long page_sz = sysconf(_SC_PAGE_SIZE); 1460 size_t map_sz; 1461 1462 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1463 map_sz = roundup(map_sz, page_sz); 1464 return map_sz; 1465 } 1466 1467 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1468 { 1469 char map_name[BPF_OBJ_NAME_LEN], *p; 1470 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1471 1472 /* This is one of the more confusing parts of libbpf for various 1473 * reasons, some of which are historical. The original idea for naming 1474 * internal names was to include as much of BPF object name prefix as 1475 * possible, so that it can be distinguished from similar internal 1476 * maps of a different BPF object. 1477 * As an example, let's say we have bpf_object named 'my_object_name' 1478 * and internal map corresponding to '.rodata' ELF section. The final 1479 * map name advertised to user and to the kernel will be 1480 * 'my_objec.rodata', taking first 8 characters of object name and 1481 * entire 7 characters of '.rodata'. 1482 * Somewhat confusingly, if internal map ELF section name is shorter 1483 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1484 * for the suffix, even though we only have 4 actual characters, and 1485 * resulting map will be called 'my_objec.bss', not even using all 15 1486 * characters allowed by the kernel. Oh well, at least the truncated 1487 * object name is somewhat consistent in this case. But if the map 1488 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1489 * (8 chars) and thus will be left with only first 7 characters of the 1490 * object name ('my_obje'). Happy guessing, user, that the final map 1491 * name will be "my_obje.kconfig". 1492 * Now, with libbpf starting to support arbitrarily named .rodata.* 1493 * and .data.* data sections, it's possible that ELF section name is 1494 * longer than allowed 15 chars, so we now need to be careful to take 1495 * only up to 15 first characters of ELF name, taking no BPF object 1496 * name characters at all. So '.rodata.abracadabra' will result in 1497 * '.rodata.abracad' kernel and user-visible name. 1498 * We need to keep this convoluted logic intact for .data, .bss and 1499 * .rodata maps, but for new custom .data.custom and .rodata.custom 1500 * maps we use their ELF names as is, not prepending bpf_object name 1501 * in front. We still need to truncate them to 15 characters for the 1502 * kernel. Full name can be recovered for such maps by using DATASEC 1503 * BTF type associated with such map's value type, though. 1504 */ 1505 if (sfx_len >= BPF_OBJ_NAME_LEN) 1506 sfx_len = BPF_OBJ_NAME_LEN - 1; 1507 1508 /* if there are two or more dots in map name, it's a custom dot map */ 1509 if (strchr(real_name + 1, '.') != NULL) 1510 pfx_len = 0; 1511 else 1512 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1513 1514 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1515 sfx_len, real_name); 1516 1517 /* sanitise map name to characters allowed by kernel */ 1518 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1519 if (!isalnum(*p) && *p != '_' && *p != '.') 1520 *p = '_'; 1521 1522 return strdup(map_name); 1523 } 1524 1525 static int 1526 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1527 const char *real_name, int sec_idx, void *data, size_t data_sz) 1528 { 1529 struct bpf_map_def *def; 1530 struct bpf_map *map; 1531 int err; 1532 1533 map = bpf_object__add_map(obj); 1534 if (IS_ERR(map)) 1535 return PTR_ERR(map); 1536 1537 map->libbpf_type = type; 1538 map->sec_idx = sec_idx; 1539 map->sec_offset = 0; 1540 map->real_name = strdup(real_name); 1541 map->name = internal_map_name(obj, real_name); 1542 if (!map->real_name || !map->name) { 1543 zfree(&map->real_name); 1544 zfree(&map->name); 1545 return -ENOMEM; 1546 } 1547 1548 def = &map->def; 1549 def->type = BPF_MAP_TYPE_ARRAY; 1550 def->key_size = sizeof(int); 1551 def->value_size = data_sz; 1552 def->max_entries = 1; 1553 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1554 ? BPF_F_RDONLY_PROG : 0; 1555 def->map_flags |= BPF_F_MMAPABLE; 1556 1557 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1558 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1559 1560 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1561 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1562 if (map->mmaped == MAP_FAILED) { 1563 err = -errno; 1564 map->mmaped = NULL; 1565 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1566 map->name, err); 1567 zfree(&map->real_name); 1568 zfree(&map->name); 1569 return err; 1570 } 1571 1572 if (data) 1573 memcpy(map->mmaped, data, data_sz); 1574 1575 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1576 return 0; 1577 } 1578 1579 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1580 { 1581 struct elf_sec_desc *sec_desc; 1582 const char *sec_name; 1583 int err = 0, sec_idx; 1584 1585 /* 1586 * Populate obj->maps with libbpf internal maps. 1587 */ 1588 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1589 sec_desc = &obj->efile.secs[sec_idx]; 1590 1591 switch (sec_desc->sec_type) { 1592 case SEC_DATA: 1593 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1594 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1595 sec_name, sec_idx, 1596 sec_desc->data->d_buf, 1597 sec_desc->data->d_size); 1598 break; 1599 case SEC_RODATA: 1600 obj->has_rodata = true; 1601 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1602 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1603 sec_name, sec_idx, 1604 sec_desc->data->d_buf, 1605 sec_desc->data->d_size); 1606 break; 1607 case SEC_BSS: 1608 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1609 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1610 sec_name, sec_idx, 1611 NULL, 1612 sec_desc->data->d_size); 1613 break; 1614 default: 1615 /* skip */ 1616 break; 1617 } 1618 if (err) 1619 return err; 1620 } 1621 return 0; 1622 } 1623 1624 1625 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1626 const void *name) 1627 { 1628 int i; 1629 1630 for (i = 0; i < obj->nr_extern; i++) { 1631 if (strcmp(obj->externs[i].name, name) == 0) 1632 return &obj->externs[i]; 1633 } 1634 return NULL; 1635 } 1636 1637 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1638 char value) 1639 { 1640 switch (ext->kcfg.type) { 1641 case KCFG_BOOL: 1642 if (value == 'm') { 1643 pr_warn("extern (kcfg) %s=%c should be tristate or char\n", 1644 ext->name, value); 1645 return -EINVAL; 1646 } 1647 *(bool *)ext_val = value == 'y' ? true : false; 1648 break; 1649 case KCFG_TRISTATE: 1650 if (value == 'y') 1651 *(enum libbpf_tristate *)ext_val = TRI_YES; 1652 else if (value == 'm') 1653 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1654 else /* value == 'n' */ 1655 *(enum libbpf_tristate *)ext_val = TRI_NO; 1656 break; 1657 case KCFG_CHAR: 1658 *(char *)ext_val = value; 1659 break; 1660 case KCFG_UNKNOWN: 1661 case KCFG_INT: 1662 case KCFG_CHAR_ARR: 1663 default: 1664 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n", 1665 ext->name, value); 1666 return -EINVAL; 1667 } 1668 ext->is_set = true; 1669 return 0; 1670 } 1671 1672 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1673 const char *value) 1674 { 1675 size_t len; 1676 1677 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1678 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value); 1679 return -EINVAL; 1680 } 1681 1682 len = strlen(value); 1683 if (value[len - 1] != '"') { 1684 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1685 ext->name, value); 1686 return -EINVAL; 1687 } 1688 1689 /* strip quotes */ 1690 len -= 2; 1691 if (len >= ext->kcfg.sz) { 1692 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n", 1693 ext->name, value, len, ext->kcfg.sz - 1); 1694 len = ext->kcfg.sz - 1; 1695 } 1696 memcpy(ext_val, value + 1, len); 1697 ext_val[len] = '\0'; 1698 ext->is_set = true; 1699 return 0; 1700 } 1701 1702 static int parse_u64(const char *value, __u64 *res) 1703 { 1704 char *value_end; 1705 int err; 1706 1707 errno = 0; 1708 *res = strtoull(value, &value_end, 0); 1709 if (errno) { 1710 err = -errno; 1711 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1712 return err; 1713 } 1714 if (*value_end) { 1715 pr_warn("failed to parse '%s' as integer completely\n", value); 1716 return -EINVAL; 1717 } 1718 return 0; 1719 } 1720 1721 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1722 { 1723 int bit_sz = ext->kcfg.sz * 8; 1724 1725 if (ext->kcfg.sz == 8) 1726 return true; 1727 1728 /* Validate that value stored in u64 fits in integer of `ext->sz` 1729 * bytes size without any loss of information. If the target integer 1730 * is signed, we rely on the following limits of integer type of 1731 * Y bits and subsequent transformation: 1732 * 1733 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1734 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1735 * 0 <= X + 2^(Y-1) < 2^Y 1736 * 1737 * For unsigned target integer, check that all the (64 - Y) bits are 1738 * zero. 1739 */ 1740 if (ext->kcfg.is_signed) 1741 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1742 else 1743 return (v >> bit_sz) == 0; 1744 } 1745 1746 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1747 __u64 value) 1748 { 1749 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1750 pr_warn("extern (kcfg) %s=%llu should be integer\n", 1751 ext->name, (unsigned long long)value); 1752 return -EINVAL; 1753 } 1754 if (!is_kcfg_value_in_range(ext, value)) { 1755 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n", 1756 ext->name, (unsigned long long)value, ext->kcfg.sz); 1757 return -ERANGE; 1758 } 1759 switch (ext->kcfg.sz) { 1760 case 1: *(__u8 *)ext_val = value; break; 1761 case 2: *(__u16 *)ext_val = value; break; 1762 case 4: *(__u32 *)ext_val = value; break; 1763 case 8: *(__u64 *)ext_val = value; break; 1764 default: 1765 return -EINVAL; 1766 } 1767 ext->is_set = true; 1768 return 0; 1769 } 1770 1771 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1772 char *buf, void *data) 1773 { 1774 struct extern_desc *ext; 1775 char *sep, *value; 1776 int len, err = 0; 1777 void *ext_val; 1778 __u64 num; 1779 1780 if (!str_has_pfx(buf, "CONFIG_")) 1781 return 0; 1782 1783 sep = strchr(buf, '='); 1784 if (!sep) { 1785 pr_warn("failed to parse '%s': no separator\n", buf); 1786 return -EINVAL; 1787 } 1788 1789 /* Trim ending '\n' */ 1790 len = strlen(buf); 1791 if (buf[len - 1] == '\n') 1792 buf[len - 1] = '\0'; 1793 /* Split on '=' and ensure that a value is present. */ 1794 *sep = '\0'; 1795 if (!sep[1]) { 1796 *sep = '='; 1797 pr_warn("failed to parse '%s': no value\n", buf); 1798 return -EINVAL; 1799 } 1800 1801 ext = find_extern_by_name(obj, buf); 1802 if (!ext || ext->is_set) 1803 return 0; 1804 1805 ext_val = data + ext->kcfg.data_off; 1806 value = sep + 1; 1807 1808 switch (*value) { 1809 case 'y': case 'n': case 'm': 1810 err = set_kcfg_value_tri(ext, ext_val, *value); 1811 break; 1812 case '"': 1813 err = set_kcfg_value_str(ext, ext_val, value); 1814 break; 1815 default: 1816 /* assume integer */ 1817 err = parse_u64(value, &num); 1818 if (err) { 1819 pr_warn("extern (kcfg) %s=%s should be integer\n", 1820 ext->name, value); 1821 return err; 1822 } 1823 err = set_kcfg_value_num(ext, ext_val, num); 1824 break; 1825 } 1826 if (err) 1827 return err; 1828 pr_debug("extern (kcfg) %s=%s\n", ext->name, value); 1829 return 0; 1830 } 1831 1832 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1833 { 1834 char buf[PATH_MAX]; 1835 struct utsname uts; 1836 int len, err = 0; 1837 gzFile file; 1838 1839 uname(&uts); 1840 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1841 if (len < 0) 1842 return -EINVAL; 1843 else if (len >= PATH_MAX) 1844 return -ENAMETOOLONG; 1845 1846 /* gzopen also accepts uncompressed files. */ 1847 file = gzopen(buf, "r"); 1848 if (!file) 1849 file = gzopen("/proc/config.gz", "r"); 1850 1851 if (!file) { 1852 pr_warn("failed to open system Kconfig\n"); 1853 return -ENOENT; 1854 } 1855 1856 while (gzgets(file, buf, sizeof(buf))) { 1857 err = bpf_object__process_kconfig_line(obj, buf, data); 1858 if (err) { 1859 pr_warn("error parsing system Kconfig line '%s': %d\n", 1860 buf, err); 1861 goto out; 1862 } 1863 } 1864 1865 out: 1866 gzclose(file); 1867 return err; 1868 } 1869 1870 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1871 const char *config, void *data) 1872 { 1873 char buf[PATH_MAX]; 1874 int err = 0; 1875 FILE *file; 1876 1877 file = fmemopen((void *)config, strlen(config), "r"); 1878 if (!file) { 1879 err = -errno; 1880 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1881 return err; 1882 } 1883 1884 while (fgets(buf, sizeof(buf), file)) { 1885 err = bpf_object__process_kconfig_line(obj, buf, data); 1886 if (err) { 1887 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1888 buf, err); 1889 break; 1890 } 1891 } 1892 1893 fclose(file); 1894 return err; 1895 } 1896 1897 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1898 { 1899 struct extern_desc *last_ext = NULL, *ext; 1900 size_t map_sz; 1901 int i, err; 1902 1903 for (i = 0; i < obj->nr_extern; i++) { 1904 ext = &obj->externs[i]; 1905 if (ext->type == EXT_KCFG) 1906 last_ext = ext; 1907 } 1908 1909 if (!last_ext) 1910 return 0; 1911 1912 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 1913 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1914 ".kconfig", obj->efile.symbols_shndx, 1915 NULL, map_sz); 1916 if (err) 1917 return err; 1918 1919 obj->kconfig_map_idx = obj->nr_maps - 1; 1920 1921 return 0; 1922 } 1923 1924 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) 1925 { 1926 Elf_Data *symbols = obj->efile.symbols; 1927 int i, map_def_sz = 0, nr_maps = 0, nr_syms; 1928 Elf_Data *data = NULL; 1929 Elf_Scn *scn; 1930 1931 if (obj->efile.maps_shndx < 0) 1932 return 0; 1933 1934 if (libbpf_mode & LIBBPF_STRICT_MAP_DEFINITIONS) { 1935 pr_warn("legacy map definitions in SEC(\"maps\") are not supported\n"); 1936 return -EOPNOTSUPP; 1937 } 1938 1939 if (!symbols) 1940 return -EINVAL; 1941 1942 scn = elf_sec_by_idx(obj, obj->efile.maps_shndx); 1943 data = elf_sec_data(obj, scn); 1944 if (!scn || !data) { 1945 pr_warn("elf: failed to get legacy map definitions for %s\n", 1946 obj->path); 1947 return -EINVAL; 1948 } 1949 1950 /* 1951 * Count number of maps. Each map has a name. 1952 * Array of maps is not supported: only the first element is 1953 * considered. 1954 * 1955 * TODO: Detect array of map and report error. 1956 */ 1957 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 1958 for (i = 0; i < nr_syms; i++) { 1959 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 1960 1961 if (sym->st_shndx != obj->efile.maps_shndx) 1962 continue; 1963 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION) 1964 continue; 1965 nr_maps++; 1966 } 1967 /* Assume equally sized map definitions */ 1968 pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n", 1969 nr_maps, data->d_size, obj->path); 1970 1971 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) { 1972 pr_warn("elf: unable to determine legacy map definition size in %s\n", 1973 obj->path); 1974 return -EINVAL; 1975 } 1976 map_def_sz = data->d_size / nr_maps; 1977 1978 /* Fill obj->maps using data in "maps" section. */ 1979 for (i = 0; i < nr_syms; i++) { 1980 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 1981 const char *map_name; 1982 struct bpf_map_def *def; 1983 struct bpf_map *map; 1984 1985 if (sym->st_shndx != obj->efile.maps_shndx) 1986 continue; 1987 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION) 1988 continue; 1989 1990 map = bpf_object__add_map(obj); 1991 if (IS_ERR(map)) 1992 return PTR_ERR(map); 1993 1994 map_name = elf_sym_str(obj, sym->st_name); 1995 if (!map_name) { 1996 pr_warn("failed to get map #%d name sym string for obj %s\n", 1997 i, obj->path); 1998 return -LIBBPF_ERRNO__FORMAT; 1999 } 2000 2001 pr_warn("map '%s' (legacy): legacy map definitions are deprecated, use BTF-defined maps instead\n", map_name); 2002 2003 if (ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 2004 pr_warn("map '%s' (legacy): static maps are not supported\n", map_name); 2005 return -ENOTSUP; 2006 } 2007 2008 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2009 map->sec_idx = sym->st_shndx; 2010 map->sec_offset = sym->st_value; 2011 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n", 2012 map_name, map->sec_idx, map->sec_offset); 2013 if (sym->st_value + map_def_sz > data->d_size) { 2014 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n", 2015 obj->path, map_name); 2016 return -EINVAL; 2017 } 2018 2019 map->name = strdup(map_name); 2020 if (!map->name) { 2021 pr_warn("map '%s': failed to alloc map name\n", map_name); 2022 return -ENOMEM; 2023 } 2024 pr_debug("map %d is \"%s\"\n", i, map->name); 2025 def = (struct bpf_map_def *)(data->d_buf + sym->st_value); 2026 /* 2027 * If the definition of the map in the object file fits in 2028 * bpf_map_def, copy it. Any extra fields in our version 2029 * of bpf_map_def will default to zero as a result of the 2030 * calloc above. 2031 */ 2032 if (map_def_sz <= sizeof(struct bpf_map_def)) { 2033 memcpy(&map->def, def, map_def_sz); 2034 } else { 2035 /* 2036 * Here the map structure being read is bigger than what 2037 * we expect, truncate if the excess bits are all zero. 2038 * If they are not zero, reject this map as 2039 * incompatible. 2040 */ 2041 char *b; 2042 2043 for (b = ((char *)def) + sizeof(struct bpf_map_def); 2044 b < ((char *)def) + map_def_sz; b++) { 2045 if (*b != 0) { 2046 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n", 2047 obj->path, map_name); 2048 if (strict) 2049 return -EINVAL; 2050 } 2051 } 2052 memcpy(&map->def, def, sizeof(struct bpf_map_def)); 2053 } 2054 } 2055 return 0; 2056 } 2057 2058 const struct btf_type * 2059 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2060 { 2061 const struct btf_type *t = btf__type_by_id(btf, id); 2062 2063 if (res_id) 2064 *res_id = id; 2065 2066 while (btf_is_mod(t) || btf_is_typedef(t)) { 2067 if (res_id) 2068 *res_id = t->type; 2069 t = btf__type_by_id(btf, t->type); 2070 } 2071 2072 return t; 2073 } 2074 2075 static const struct btf_type * 2076 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2077 { 2078 const struct btf_type *t; 2079 2080 t = skip_mods_and_typedefs(btf, id, NULL); 2081 if (!btf_is_ptr(t)) 2082 return NULL; 2083 2084 t = skip_mods_and_typedefs(btf, t->type, res_id); 2085 2086 return btf_is_func_proto(t) ? t : NULL; 2087 } 2088 2089 static const char *__btf_kind_str(__u16 kind) 2090 { 2091 switch (kind) { 2092 case BTF_KIND_UNKN: return "void"; 2093 case BTF_KIND_INT: return "int"; 2094 case BTF_KIND_PTR: return "ptr"; 2095 case BTF_KIND_ARRAY: return "array"; 2096 case BTF_KIND_STRUCT: return "struct"; 2097 case BTF_KIND_UNION: return "union"; 2098 case BTF_KIND_ENUM: return "enum"; 2099 case BTF_KIND_FWD: return "fwd"; 2100 case BTF_KIND_TYPEDEF: return "typedef"; 2101 case BTF_KIND_VOLATILE: return "volatile"; 2102 case BTF_KIND_CONST: return "const"; 2103 case BTF_KIND_RESTRICT: return "restrict"; 2104 case BTF_KIND_FUNC: return "func"; 2105 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2106 case BTF_KIND_VAR: return "var"; 2107 case BTF_KIND_DATASEC: return "datasec"; 2108 case BTF_KIND_FLOAT: return "float"; 2109 case BTF_KIND_DECL_TAG: return "decl_tag"; 2110 case BTF_KIND_TYPE_TAG: return "type_tag"; 2111 default: return "unknown"; 2112 } 2113 } 2114 2115 const char *btf_kind_str(const struct btf_type *t) 2116 { 2117 return __btf_kind_str(btf_kind(t)); 2118 } 2119 2120 /* 2121 * Fetch integer attribute of BTF map definition. Such attributes are 2122 * represented using a pointer to an array, in which dimensionality of array 2123 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2124 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2125 * type definition, while using only sizeof(void *) space in ELF data section. 2126 */ 2127 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2128 const struct btf_member *m, __u32 *res) 2129 { 2130 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2131 const char *name = btf__name_by_offset(btf, m->name_off); 2132 const struct btf_array *arr_info; 2133 const struct btf_type *arr_t; 2134 2135 if (!btf_is_ptr(t)) { 2136 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2137 map_name, name, btf_kind_str(t)); 2138 return false; 2139 } 2140 2141 arr_t = btf__type_by_id(btf, t->type); 2142 if (!arr_t) { 2143 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2144 map_name, name, t->type); 2145 return false; 2146 } 2147 if (!btf_is_array(arr_t)) { 2148 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2149 map_name, name, btf_kind_str(arr_t)); 2150 return false; 2151 } 2152 arr_info = btf_array(arr_t); 2153 *res = arr_info->nelems; 2154 return true; 2155 } 2156 2157 static int build_map_pin_path(struct bpf_map *map, const char *path) 2158 { 2159 char buf[PATH_MAX]; 2160 int len; 2161 2162 if (!path) 2163 path = "/sys/fs/bpf"; 2164 2165 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 2166 if (len < 0) 2167 return -EINVAL; 2168 else if (len >= PATH_MAX) 2169 return -ENAMETOOLONG; 2170 2171 return bpf_map__set_pin_path(map, buf); 2172 } 2173 2174 int parse_btf_map_def(const char *map_name, struct btf *btf, 2175 const struct btf_type *def_t, bool strict, 2176 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2177 { 2178 const struct btf_type *t; 2179 const struct btf_member *m; 2180 bool is_inner = inner_def == NULL; 2181 int vlen, i; 2182 2183 vlen = btf_vlen(def_t); 2184 m = btf_members(def_t); 2185 for (i = 0; i < vlen; i++, m++) { 2186 const char *name = btf__name_by_offset(btf, m->name_off); 2187 2188 if (!name) { 2189 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2190 return -EINVAL; 2191 } 2192 if (strcmp(name, "type") == 0) { 2193 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2194 return -EINVAL; 2195 map_def->parts |= MAP_DEF_MAP_TYPE; 2196 } else if (strcmp(name, "max_entries") == 0) { 2197 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2198 return -EINVAL; 2199 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2200 } else if (strcmp(name, "map_flags") == 0) { 2201 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2202 return -EINVAL; 2203 map_def->parts |= MAP_DEF_MAP_FLAGS; 2204 } else if (strcmp(name, "numa_node") == 0) { 2205 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2206 return -EINVAL; 2207 map_def->parts |= MAP_DEF_NUMA_NODE; 2208 } else if (strcmp(name, "key_size") == 0) { 2209 __u32 sz; 2210 2211 if (!get_map_field_int(map_name, btf, m, &sz)) 2212 return -EINVAL; 2213 if (map_def->key_size && map_def->key_size != sz) { 2214 pr_warn("map '%s': conflicting key size %u != %u.\n", 2215 map_name, map_def->key_size, sz); 2216 return -EINVAL; 2217 } 2218 map_def->key_size = sz; 2219 map_def->parts |= MAP_DEF_KEY_SIZE; 2220 } else if (strcmp(name, "key") == 0) { 2221 __s64 sz; 2222 2223 t = btf__type_by_id(btf, m->type); 2224 if (!t) { 2225 pr_warn("map '%s': key type [%d] not found.\n", 2226 map_name, m->type); 2227 return -EINVAL; 2228 } 2229 if (!btf_is_ptr(t)) { 2230 pr_warn("map '%s': key spec is not PTR: %s.\n", 2231 map_name, btf_kind_str(t)); 2232 return -EINVAL; 2233 } 2234 sz = btf__resolve_size(btf, t->type); 2235 if (sz < 0) { 2236 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2237 map_name, t->type, (ssize_t)sz); 2238 return sz; 2239 } 2240 if (map_def->key_size && map_def->key_size != sz) { 2241 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2242 map_name, map_def->key_size, (ssize_t)sz); 2243 return -EINVAL; 2244 } 2245 map_def->key_size = sz; 2246 map_def->key_type_id = t->type; 2247 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2248 } else if (strcmp(name, "value_size") == 0) { 2249 __u32 sz; 2250 2251 if (!get_map_field_int(map_name, btf, m, &sz)) 2252 return -EINVAL; 2253 if (map_def->value_size && map_def->value_size != sz) { 2254 pr_warn("map '%s': conflicting value size %u != %u.\n", 2255 map_name, map_def->value_size, sz); 2256 return -EINVAL; 2257 } 2258 map_def->value_size = sz; 2259 map_def->parts |= MAP_DEF_VALUE_SIZE; 2260 } else if (strcmp(name, "value") == 0) { 2261 __s64 sz; 2262 2263 t = btf__type_by_id(btf, m->type); 2264 if (!t) { 2265 pr_warn("map '%s': value type [%d] not found.\n", 2266 map_name, m->type); 2267 return -EINVAL; 2268 } 2269 if (!btf_is_ptr(t)) { 2270 pr_warn("map '%s': value spec is not PTR: %s.\n", 2271 map_name, btf_kind_str(t)); 2272 return -EINVAL; 2273 } 2274 sz = btf__resolve_size(btf, t->type); 2275 if (sz < 0) { 2276 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2277 map_name, t->type, (ssize_t)sz); 2278 return sz; 2279 } 2280 if (map_def->value_size && map_def->value_size != sz) { 2281 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2282 map_name, map_def->value_size, (ssize_t)sz); 2283 return -EINVAL; 2284 } 2285 map_def->value_size = sz; 2286 map_def->value_type_id = t->type; 2287 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2288 } 2289 else if (strcmp(name, "values") == 0) { 2290 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2291 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2292 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2293 char inner_map_name[128]; 2294 int err; 2295 2296 if (is_inner) { 2297 pr_warn("map '%s': multi-level inner maps not supported.\n", 2298 map_name); 2299 return -ENOTSUP; 2300 } 2301 if (i != vlen - 1) { 2302 pr_warn("map '%s': '%s' member should be last.\n", 2303 map_name, name); 2304 return -EINVAL; 2305 } 2306 if (!is_map_in_map && !is_prog_array) { 2307 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2308 map_name); 2309 return -ENOTSUP; 2310 } 2311 if (map_def->value_size && map_def->value_size != 4) { 2312 pr_warn("map '%s': conflicting value size %u != 4.\n", 2313 map_name, map_def->value_size); 2314 return -EINVAL; 2315 } 2316 map_def->value_size = 4; 2317 t = btf__type_by_id(btf, m->type); 2318 if (!t) { 2319 pr_warn("map '%s': %s type [%d] not found.\n", 2320 map_name, desc, m->type); 2321 return -EINVAL; 2322 } 2323 if (!btf_is_array(t) || btf_array(t)->nelems) { 2324 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2325 map_name, desc); 2326 return -EINVAL; 2327 } 2328 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2329 if (!btf_is_ptr(t)) { 2330 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2331 map_name, desc, btf_kind_str(t)); 2332 return -EINVAL; 2333 } 2334 t = skip_mods_and_typedefs(btf, t->type, NULL); 2335 if (is_prog_array) { 2336 if (!btf_is_func_proto(t)) { 2337 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2338 map_name, btf_kind_str(t)); 2339 return -EINVAL; 2340 } 2341 continue; 2342 } 2343 if (!btf_is_struct(t)) { 2344 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2345 map_name, btf_kind_str(t)); 2346 return -EINVAL; 2347 } 2348 2349 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2350 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2351 if (err) 2352 return err; 2353 2354 map_def->parts |= MAP_DEF_INNER_MAP; 2355 } else if (strcmp(name, "pinning") == 0) { 2356 __u32 val; 2357 2358 if (is_inner) { 2359 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2360 return -EINVAL; 2361 } 2362 if (!get_map_field_int(map_name, btf, m, &val)) 2363 return -EINVAL; 2364 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2365 pr_warn("map '%s': invalid pinning value %u.\n", 2366 map_name, val); 2367 return -EINVAL; 2368 } 2369 map_def->pinning = val; 2370 map_def->parts |= MAP_DEF_PINNING; 2371 } else if (strcmp(name, "map_extra") == 0) { 2372 __u32 map_extra; 2373 2374 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2375 return -EINVAL; 2376 map_def->map_extra = map_extra; 2377 map_def->parts |= MAP_DEF_MAP_EXTRA; 2378 } else { 2379 if (strict) { 2380 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2381 return -ENOTSUP; 2382 } 2383 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2384 } 2385 } 2386 2387 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2388 pr_warn("map '%s': map type isn't specified.\n", map_name); 2389 return -EINVAL; 2390 } 2391 2392 return 0; 2393 } 2394 2395 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2396 { 2397 map->def.type = def->map_type; 2398 map->def.key_size = def->key_size; 2399 map->def.value_size = def->value_size; 2400 map->def.max_entries = def->max_entries; 2401 map->def.map_flags = def->map_flags; 2402 map->map_extra = def->map_extra; 2403 2404 map->numa_node = def->numa_node; 2405 map->btf_key_type_id = def->key_type_id; 2406 map->btf_value_type_id = def->value_type_id; 2407 2408 if (def->parts & MAP_DEF_MAP_TYPE) 2409 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2410 2411 if (def->parts & MAP_DEF_KEY_TYPE) 2412 pr_debug("map '%s': found key [%u], sz = %u.\n", 2413 map->name, def->key_type_id, def->key_size); 2414 else if (def->parts & MAP_DEF_KEY_SIZE) 2415 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2416 2417 if (def->parts & MAP_DEF_VALUE_TYPE) 2418 pr_debug("map '%s': found value [%u], sz = %u.\n", 2419 map->name, def->value_type_id, def->value_size); 2420 else if (def->parts & MAP_DEF_VALUE_SIZE) 2421 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2422 2423 if (def->parts & MAP_DEF_MAX_ENTRIES) 2424 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2425 if (def->parts & MAP_DEF_MAP_FLAGS) 2426 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2427 if (def->parts & MAP_DEF_MAP_EXTRA) 2428 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2429 (unsigned long long)def->map_extra); 2430 if (def->parts & MAP_DEF_PINNING) 2431 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2432 if (def->parts & MAP_DEF_NUMA_NODE) 2433 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2434 2435 if (def->parts & MAP_DEF_INNER_MAP) 2436 pr_debug("map '%s': found inner map definition.\n", map->name); 2437 } 2438 2439 static const char *btf_var_linkage_str(__u32 linkage) 2440 { 2441 switch (linkage) { 2442 case BTF_VAR_STATIC: return "static"; 2443 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2444 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2445 default: return "unknown"; 2446 } 2447 } 2448 2449 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2450 const struct btf_type *sec, 2451 int var_idx, int sec_idx, 2452 const Elf_Data *data, bool strict, 2453 const char *pin_root_path) 2454 { 2455 struct btf_map_def map_def = {}, inner_def = {}; 2456 const struct btf_type *var, *def; 2457 const struct btf_var_secinfo *vi; 2458 const struct btf_var *var_extra; 2459 const char *map_name; 2460 struct bpf_map *map; 2461 int err; 2462 2463 vi = btf_var_secinfos(sec) + var_idx; 2464 var = btf__type_by_id(obj->btf, vi->type); 2465 var_extra = btf_var(var); 2466 map_name = btf__name_by_offset(obj->btf, var->name_off); 2467 2468 if (map_name == NULL || map_name[0] == '\0') { 2469 pr_warn("map #%d: empty name.\n", var_idx); 2470 return -EINVAL; 2471 } 2472 if ((__u64)vi->offset + vi->size > data->d_size) { 2473 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2474 return -EINVAL; 2475 } 2476 if (!btf_is_var(var)) { 2477 pr_warn("map '%s': unexpected var kind %s.\n", 2478 map_name, btf_kind_str(var)); 2479 return -EINVAL; 2480 } 2481 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2482 pr_warn("map '%s': unsupported map linkage %s.\n", 2483 map_name, btf_var_linkage_str(var_extra->linkage)); 2484 return -EOPNOTSUPP; 2485 } 2486 2487 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2488 if (!btf_is_struct(def)) { 2489 pr_warn("map '%s': unexpected def kind %s.\n", 2490 map_name, btf_kind_str(var)); 2491 return -EINVAL; 2492 } 2493 if (def->size > vi->size) { 2494 pr_warn("map '%s': invalid def size.\n", map_name); 2495 return -EINVAL; 2496 } 2497 2498 map = bpf_object__add_map(obj); 2499 if (IS_ERR(map)) 2500 return PTR_ERR(map); 2501 map->name = strdup(map_name); 2502 if (!map->name) { 2503 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2504 return -ENOMEM; 2505 } 2506 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2507 map->def.type = BPF_MAP_TYPE_UNSPEC; 2508 map->sec_idx = sec_idx; 2509 map->sec_offset = vi->offset; 2510 map->btf_var_idx = var_idx; 2511 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2512 map_name, map->sec_idx, map->sec_offset); 2513 2514 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2515 if (err) 2516 return err; 2517 2518 fill_map_from_def(map, &map_def); 2519 2520 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2521 err = build_map_pin_path(map, pin_root_path); 2522 if (err) { 2523 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2524 return err; 2525 } 2526 } 2527 2528 if (map_def.parts & MAP_DEF_INNER_MAP) { 2529 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2530 if (!map->inner_map) 2531 return -ENOMEM; 2532 map->inner_map->fd = -1; 2533 map->inner_map->sec_idx = sec_idx; 2534 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2535 if (!map->inner_map->name) 2536 return -ENOMEM; 2537 sprintf(map->inner_map->name, "%s.inner", map_name); 2538 2539 fill_map_from_def(map->inner_map, &inner_def); 2540 } 2541 2542 return 0; 2543 } 2544 2545 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2546 const char *pin_root_path) 2547 { 2548 const struct btf_type *sec = NULL; 2549 int nr_types, i, vlen, err; 2550 const struct btf_type *t; 2551 const char *name; 2552 Elf_Data *data; 2553 Elf_Scn *scn; 2554 2555 if (obj->efile.btf_maps_shndx < 0) 2556 return 0; 2557 2558 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2559 data = elf_sec_data(obj, scn); 2560 if (!scn || !data) { 2561 pr_warn("elf: failed to get %s map definitions for %s\n", 2562 MAPS_ELF_SEC, obj->path); 2563 return -EINVAL; 2564 } 2565 2566 nr_types = btf__type_cnt(obj->btf); 2567 for (i = 1; i < nr_types; i++) { 2568 t = btf__type_by_id(obj->btf, i); 2569 if (!btf_is_datasec(t)) 2570 continue; 2571 name = btf__name_by_offset(obj->btf, t->name_off); 2572 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2573 sec = t; 2574 obj->efile.btf_maps_sec_btf_id = i; 2575 break; 2576 } 2577 } 2578 2579 if (!sec) { 2580 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2581 return -ENOENT; 2582 } 2583 2584 vlen = btf_vlen(sec); 2585 for (i = 0; i < vlen; i++) { 2586 err = bpf_object__init_user_btf_map(obj, sec, i, 2587 obj->efile.btf_maps_shndx, 2588 data, strict, 2589 pin_root_path); 2590 if (err) 2591 return err; 2592 } 2593 2594 return 0; 2595 } 2596 2597 static int bpf_object__init_maps(struct bpf_object *obj, 2598 const struct bpf_object_open_opts *opts) 2599 { 2600 const char *pin_root_path; 2601 bool strict; 2602 int err; 2603 2604 strict = !OPTS_GET(opts, relaxed_maps, false); 2605 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2606 2607 err = bpf_object__init_user_maps(obj, strict); 2608 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2609 err = err ?: bpf_object__init_global_data_maps(obj); 2610 err = err ?: bpf_object__init_kconfig_map(obj); 2611 err = err ?: bpf_object__init_struct_ops_maps(obj); 2612 2613 return err; 2614 } 2615 2616 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2617 { 2618 Elf64_Shdr *sh; 2619 2620 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2621 if (!sh) 2622 return false; 2623 2624 return sh->sh_flags & SHF_EXECINSTR; 2625 } 2626 2627 static bool btf_needs_sanitization(struct bpf_object *obj) 2628 { 2629 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2630 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2631 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2632 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2633 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2634 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2635 2636 return !has_func || !has_datasec || !has_func_global || !has_float || 2637 !has_decl_tag || !has_type_tag; 2638 } 2639 2640 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2641 { 2642 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2643 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2644 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2645 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2646 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2647 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2648 struct btf_type *t; 2649 int i, j, vlen; 2650 2651 for (i = 1; i < btf__type_cnt(btf); i++) { 2652 t = (struct btf_type *)btf__type_by_id(btf, i); 2653 2654 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2655 /* replace VAR/DECL_TAG with INT */ 2656 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2657 /* 2658 * using size = 1 is the safest choice, 4 will be too 2659 * big and cause kernel BTF validation failure if 2660 * original variable took less than 4 bytes 2661 */ 2662 t->size = 1; 2663 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2664 } else if (!has_datasec && btf_is_datasec(t)) { 2665 /* replace DATASEC with STRUCT */ 2666 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2667 struct btf_member *m = btf_members(t); 2668 struct btf_type *vt; 2669 char *name; 2670 2671 name = (char *)btf__name_by_offset(btf, t->name_off); 2672 while (*name) { 2673 if (*name == '.') 2674 *name = '_'; 2675 name++; 2676 } 2677 2678 vlen = btf_vlen(t); 2679 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2680 for (j = 0; j < vlen; j++, v++, m++) { 2681 /* order of field assignments is important */ 2682 m->offset = v->offset * 8; 2683 m->type = v->type; 2684 /* preserve variable name as member name */ 2685 vt = (void *)btf__type_by_id(btf, v->type); 2686 m->name_off = vt->name_off; 2687 } 2688 } else if (!has_func && btf_is_func_proto(t)) { 2689 /* replace FUNC_PROTO with ENUM */ 2690 vlen = btf_vlen(t); 2691 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2692 t->size = sizeof(__u32); /* kernel enforced */ 2693 } else if (!has_func && btf_is_func(t)) { 2694 /* replace FUNC with TYPEDEF */ 2695 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2696 } else if (!has_func_global && btf_is_func(t)) { 2697 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2698 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2699 } else if (!has_float && btf_is_float(t)) { 2700 /* replace FLOAT with an equally-sized empty STRUCT; 2701 * since C compilers do not accept e.g. "float" as a 2702 * valid struct name, make it anonymous 2703 */ 2704 t->name_off = 0; 2705 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2706 } else if (!has_type_tag && btf_is_type_tag(t)) { 2707 /* replace TYPE_TAG with a CONST */ 2708 t->name_off = 0; 2709 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2710 } 2711 } 2712 } 2713 2714 static bool libbpf_needs_btf(const struct bpf_object *obj) 2715 { 2716 return obj->efile.btf_maps_shndx >= 0 || 2717 obj->efile.st_ops_shndx >= 0 || 2718 obj->nr_extern > 0; 2719 } 2720 2721 static bool kernel_needs_btf(const struct bpf_object *obj) 2722 { 2723 return obj->efile.st_ops_shndx >= 0; 2724 } 2725 2726 static int bpf_object__init_btf(struct bpf_object *obj, 2727 Elf_Data *btf_data, 2728 Elf_Data *btf_ext_data) 2729 { 2730 int err = -ENOENT; 2731 2732 if (btf_data) { 2733 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2734 err = libbpf_get_error(obj->btf); 2735 if (err) { 2736 obj->btf = NULL; 2737 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2738 goto out; 2739 } 2740 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2741 btf__set_pointer_size(obj->btf, 8); 2742 } 2743 if (btf_ext_data) { 2744 if (!obj->btf) { 2745 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2746 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2747 goto out; 2748 } 2749 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2750 err = libbpf_get_error(obj->btf_ext); 2751 if (err) { 2752 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2753 BTF_EXT_ELF_SEC, err); 2754 obj->btf_ext = NULL; 2755 goto out; 2756 } 2757 } 2758 out: 2759 if (err && libbpf_needs_btf(obj)) { 2760 pr_warn("BTF is required, but is missing or corrupted.\n"); 2761 return err; 2762 } 2763 return 0; 2764 } 2765 2766 static int compare_vsi_off(const void *_a, const void *_b) 2767 { 2768 const struct btf_var_secinfo *a = _a; 2769 const struct btf_var_secinfo *b = _b; 2770 2771 return a->offset - b->offset; 2772 } 2773 2774 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2775 struct btf_type *t) 2776 { 2777 __u32 size = 0, off = 0, i, vars = btf_vlen(t); 2778 const char *name = btf__name_by_offset(btf, t->name_off); 2779 const struct btf_type *t_var; 2780 struct btf_var_secinfo *vsi; 2781 const struct btf_var *var; 2782 int ret; 2783 2784 if (!name) { 2785 pr_debug("No name found in string section for DATASEC kind.\n"); 2786 return -ENOENT; 2787 } 2788 2789 /* .extern datasec size and var offsets were set correctly during 2790 * extern collection step, so just skip straight to sorting variables 2791 */ 2792 if (t->size) 2793 goto sort_vars; 2794 2795 ret = find_elf_sec_sz(obj, name, &size); 2796 if (ret || !size) { 2797 pr_debug("Invalid size for section %s: %u bytes\n", name, size); 2798 return -ENOENT; 2799 } 2800 2801 t->size = size; 2802 2803 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2804 t_var = btf__type_by_id(btf, vsi->type); 2805 if (!t_var || !btf_is_var(t_var)) { 2806 pr_debug("Non-VAR type seen in section %s\n", name); 2807 return -EINVAL; 2808 } 2809 2810 var = btf_var(t_var); 2811 if (var->linkage == BTF_VAR_STATIC) 2812 continue; 2813 2814 name = btf__name_by_offset(btf, t_var->name_off); 2815 if (!name) { 2816 pr_debug("No name found in string section for VAR kind\n"); 2817 return -ENOENT; 2818 } 2819 2820 ret = find_elf_var_offset(obj, name, &off); 2821 if (ret) { 2822 pr_debug("No offset found in symbol table for VAR %s\n", 2823 name); 2824 return -ENOENT; 2825 } 2826 2827 vsi->offset = off; 2828 } 2829 2830 sort_vars: 2831 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 2832 return 0; 2833 } 2834 2835 static int btf_finalize_data(struct bpf_object *obj, struct btf *btf) 2836 { 2837 int err = 0; 2838 __u32 i, n = btf__type_cnt(btf); 2839 2840 for (i = 1; i < n; i++) { 2841 struct btf_type *t = btf_type_by_id(btf, i); 2842 2843 /* Loader needs to fix up some of the things compiler 2844 * couldn't get its hands on while emitting BTF. This 2845 * is section size and global variable offset. We use 2846 * the info from the ELF itself for this purpose. 2847 */ 2848 if (btf_is_datasec(t)) { 2849 err = btf_fixup_datasec(obj, btf, t); 2850 if (err) 2851 break; 2852 } 2853 } 2854 2855 return libbpf_err(err); 2856 } 2857 2858 int btf__finalize_data(struct bpf_object *obj, struct btf *btf) 2859 { 2860 return btf_finalize_data(obj, btf); 2861 } 2862 2863 static int bpf_object__finalize_btf(struct bpf_object *obj) 2864 { 2865 int err; 2866 2867 if (!obj->btf) 2868 return 0; 2869 2870 err = btf_finalize_data(obj, obj->btf); 2871 if (err) { 2872 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2873 return err; 2874 } 2875 2876 return 0; 2877 } 2878 2879 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 2880 { 2881 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 2882 prog->type == BPF_PROG_TYPE_LSM) 2883 return true; 2884 2885 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2886 * also need vmlinux BTF 2887 */ 2888 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2889 return true; 2890 2891 return false; 2892 } 2893 2894 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 2895 { 2896 struct bpf_program *prog; 2897 int i; 2898 2899 /* CO-RE relocations need kernel BTF, only when btf_custom_path 2900 * is not specified 2901 */ 2902 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 2903 return true; 2904 2905 /* Support for typed ksyms needs kernel BTF */ 2906 for (i = 0; i < obj->nr_extern; i++) { 2907 const struct extern_desc *ext; 2908 2909 ext = &obj->externs[i]; 2910 if (ext->type == EXT_KSYM && ext->ksym.type_id) 2911 return true; 2912 } 2913 2914 bpf_object__for_each_program(prog, obj) { 2915 if (!prog->load) 2916 continue; 2917 if (prog_needs_vmlinux_btf(prog)) 2918 return true; 2919 } 2920 2921 return false; 2922 } 2923 2924 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 2925 { 2926 int err; 2927 2928 /* btf_vmlinux could be loaded earlier */ 2929 if (obj->btf_vmlinux || obj->gen_loader) 2930 return 0; 2931 2932 if (!force && !obj_needs_vmlinux_btf(obj)) 2933 return 0; 2934 2935 obj->btf_vmlinux = btf__load_vmlinux_btf(); 2936 err = libbpf_get_error(obj->btf_vmlinux); 2937 if (err) { 2938 pr_warn("Error loading vmlinux BTF: %d\n", err); 2939 obj->btf_vmlinux = NULL; 2940 return err; 2941 } 2942 return 0; 2943 } 2944 2945 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 2946 { 2947 struct btf *kern_btf = obj->btf; 2948 bool btf_mandatory, sanitize; 2949 int i, err = 0; 2950 2951 if (!obj->btf) 2952 return 0; 2953 2954 if (!kernel_supports(obj, FEAT_BTF)) { 2955 if (kernel_needs_btf(obj)) { 2956 err = -EOPNOTSUPP; 2957 goto report; 2958 } 2959 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 2960 return 0; 2961 } 2962 2963 /* Even though some subprogs are global/weak, user might prefer more 2964 * permissive BPF verification process that BPF verifier performs for 2965 * static functions, taking into account more context from the caller 2966 * functions. In such case, they need to mark such subprogs with 2967 * __attribute__((visibility("hidden"))) and libbpf will adjust 2968 * corresponding FUNC BTF type to be marked as static and trigger more 2969 * involved BPF verification process. 2970 */ 2971 for (i = 0; i < obj->nr_programs; i++) { 2972 struct bpf_program *prog = &obj->programs[i]; 2973 struct btf_type *t; 2974 const char *name; 2975 int j, n; 2976 2977 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 2978 continue; 2979 2980 n = btf__type_cnt(obj->btf); 2981 for (j = 1; j < n; j++) { 2982 t = btf_type_by_id(obj->btf, j); 2983 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 2984 continue; 2985 2986 name = btf__str_by_offset(obj->btf, t->name_off); 2987 if (strcmp(name, prog->name) != 0) 2988 continue; 2989 2990 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 2991 break; 2992 } 2993 } 2994 2995 sanitize = btf_needs_sanitization(obj); 2996 if (sanitize) { 2997 const void *raw_data; 2998 __u32 sz; 2999 3000 /* clone BTF to sanitize a copy and leave the original intact */ 3001 raw_data = btf__raw_data(obj->btf, &sz); 3002 kern_btf = btf__new(raw_data, sz); 3003 err = libbpf_get_error(kern_btf); 3004 if (err) 3005 return err; 3006 3007 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3008 btf__set_pointer_size(obj->btf, 8); 3009 bpf_object__sanitize_btf(obj, kern_btf); 3010 } 3011 3012 if (obj->gen_loader) { 3013 __u32 raw_size = 0; 3014 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3015 3016 if (!raw_data) 3017 return -ENOMEM; 3018 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3019 /* Pretend to have valid FD to pass various fd >= 0 checks. 3020 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3021 */ 3022 btf__set_fd(kern_btf, 0); 3023 } else { 3024 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3025 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3026 obj->log_level ? 1 : 0); 3027 } 3028 if (sanitize) { 3029 if (!err) { 3030 /* move fd to libbpf's BTF */ 3031 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3032 btf__set_fd(kern_btf, -1); 3033 } 3034 btf__free(kern_btf); 3035 } 3036 report: 3037 if (err) { 3038 btf_mandatory = kernel_needs_btf(obj); 3039 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3040 btf_mandatory ? "BTF is mandatory, can't proceed." 3041 : "BTF is optional, ignoring."); 3042 if (!btf_mandatory) 3043 err = 0; 3044 } 3045 return err; 3046 } 3047 3048 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3049 { 3050 const char *name; 3051 3052 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3053 if (!name) { 3054 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3055 off, obj->path, elf_errmsg(-1)); 3056 return NULL; 3057 } 3058 3059 return name; 3060 } 3061 3062 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3063 { 3064 const char *name; 3065 3066 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3067 if (!name) { 3068 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3069 off, obj->path, elf_errmsg(-1)); 3070 return NULL; 3071 } 3072 3073 return name; 3074 } 3075 3076 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3077 { 3078 Elf_Scn *scn; 3079 3080 scn = elf_getscn(obj->efile.elf, idx); 3081 if (!scn) { 3082 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3083 idx, obj->path, elf_errmsg(-1)); 3084 return NULL; 3085 } 3086 return scn; 3087 } 3088 3089 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3090 { 3091 Elf_Scn *scn = NULL; 3092 Elf *elf = obj->efile.elf; 3093 const char *sec_name; 3094 3095 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3096 sec_name = elf_sec_name(obj, scn); 3097 if (!sec_name) 3098 return NULL; 3099 3100 if (strcmp(sec_name, name) != 0) 3101 continue; 3102 3103 return scn; 3104 } 3105 return NULL; 3106 } 3107 3108 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3109 { 3110 Elf64_Shdr *shdr; 3111 3112 if (!scn) 3113 return NULL; 3114 3115 shdr = elf64_getshdr(scn); 3116 if (!shdr) { 3117 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3118 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3119 return NULL; 3120 } 3121 3122 return shdr; 3123 } 3124 3125 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3126 { 3127 const char *name; 3128 Elf64_Shdr *sh; 3129 3130 if (!scn) 3131 return NULL; 3132 3133 sh = elf_sec_hdr(obj, scn); 3134 if (!sh) 3135 return NULL; 3136 3137 name = elf_sec_str(obj, sh->sh_name); 3138 if (!name) { 3139 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3140 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3141 return NULL; 3142 } 3143 3144 return name; 3145 } 3146 3147 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3148 { 3149 Elf_Data *data; 3150 3151 if (!scn) 3152 return NULL; 3153 3154 data = elf_getdata(scn, 0); 3155 if (!data) { 3156 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3157 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3158 obj->path, elf_errmsg(-1)); 3159 return NULL; 3160 } 3161 3162 return data; 3163 } 3164 3165 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3166 { 3167 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3168 return NULL; 3169 3170 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3171 } 3172 3173 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3174 { 3175 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3176 return NULL; 3177 3178 return (Elf64_Rel *)data->d_buf + idx; 3179 } 3180 3181 static bool is_sec_name_dwarf(const char *name) 3182 { 3183 /* approximation, but the actual list is too long */ 3184 return str_has_pfx(name, ".debug_"); 3185 } 3186 3187 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3188 { 3189 /* no special handling of .strtab */ 3190 if (hdr->sh_type == SHT_STRTAB) 3191 return true; 3192 3193 /* ignore .llvm_addrsig section as well */ 3194 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3195 return true; 3196 3197 /* no subprograms will lead to an empty .text section, ignore it */ 3198 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3199 strcmp(name, ".text") == 0) 3200 return true; 3201 3202 /* DWARF sections */ 3203 if (is_sec_name_dwarf(name)) 3204 return true; 3205 3206 if (str_has_pfx(name, ".rel")) { 3207 name += sizeof(".rel") - 1; 3208 /* DWARF section relocations */ 3209 if (is_sec_name_dwarf(name)) 3210 return true; 3211 3212 /* .BTF and .BTF.ext don't need relocations */ 3213 if (strcmp(name, BTF_ELF_SEC) == 0 || 3214 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3215 return true; 3216 } 3217 3218 return false; 3219 } 3220 3221 static int cmp_progs(const void *_a, const void *_b) 3222 { 3223 const struct bpf_program *a = _a; 3224 const struct bpf_program *b = _b; 3225 3226 if (a->sec_idx != b->sec_idx) 3227 return a->sec_idx < b->sec_idx ? -1 : 1; 3228 3229 /* sec_insn_off can't be the same within the section */ 3230 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3231 } 3232 3233 static int bpf_object__elf_collect(struct bpf_object *obj) 3234 { 3235 struct elf_sec_desc *sec_desc; 3236 Elf *elf = obj->efile.elf; 3237 Elf_Data *btf_ext_data = NULL; 3238 Elf_Data *btf_data = NULL; 3239 int idx = 0, err = 0; 3240 const char *name; 3241 Elf_Data *data; 3242 Elf_Scn *scn; 3243 Elf64_Shdr *sh; 3244 3245 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3246 * section. e_shnum does include sec #0, so e_shnum is the necessary 3247 * size of an array to keep all the sections. 3248 */ 3249 obj->efile.sec_cnt = obj->efile.ehdr->e_shnum; 3250 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3251 if (!obj->efile.secs) 3252 return -ENOMEM; 3253 3254 /* a bunch of ELF parsing functionality depends on processing symbols, 3255 * so do the first pass and find the symbol table 3256 */ 3257 scn = NULL; 3258 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3259 sh = elf_sec_hdr(obj, scn); 3260 if (!sh) 3261 return -LIBBPF_ERRNO__FORMAT; 3262 3263 if (sh->sh_type == SHT_SYMTAB) { 3264 if (obj->efile.symbols) { 3265 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3266 return -LIBBPF_ERRNO__FORMAT; 3267 } 3268 3269 data = elf_sec_data(obj, scn); 3270 if (!data) 3271 return -LIBBPF_ERRNO__FORMAT; 3272 3273 idx = elf_ndxscn(scn); 3274 3275 obj->efile.symbols = data; 3276 obj->efile.symbols_shndx = idx; 3277 obj->efile.strtabidx = sh->sh_link; 3278 } 3279 } 3280 3281 if (!obj->efile.symbols) { 3282 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3283 obj->path); 3284 return -ENOENT; 3285 } 3286 3287 scn = NULL; 3288 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3289 idx = elf_ndxscn(scn); 3290 sec_desc = &obj->efile.secs[idx]; 3291 3292 sh = elf_sec_hdr(obj, scn); 3293 if (!sh) 3294 return -LIBBPF_ERRNO__FORMAT; 3295 3296 name = elf_sec_str(obj, sh->sh_name); 3297 if (!name) 3298 return -LIBBPF_ERRNO__FORMAT; 3299 3300 if (ignore_elf_section(sh, name)) 3301 continue; 3302 3303 data = elf_sec_data(obj, scn); 3304 if (!data) 3305 return -LIBBPF_ERRNO__FORMAT; 3306 3307 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3308 idx, name, (unsigned long)data->d_size, 3309 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3310 (int)sh->sh_type); 3311 3312 if (strcmp(name, "license") == 0) { 3313 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3314 if (err) 3315 return err; 3316 } else if (strcmp(name, "version") == 0) { 3317 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3318 if (err) 3319 return err; 3320 } else if (strcmp(name, "maps") == 0) { 3321 obj->efile.maps_shndx = idx; 3322 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3323 obj->efile.btf_maps_shndx = idx; 3324 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3325 if (sh->sh_type != SHT_PROGBITS) 3326 return -LIBBPF_ERRNO__FORMAT; 3327 btf_data = data; 3328 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3329 if (sh->sh_type != SHT_PROGBITS) 3330 return -LIBBPF_ERRNO__FORMAT; 3331 btf_ext_data = data; 3332 } else if (sh->sh_type == SHT_SYMTAB) { 3333 /* already processed during the first pass above */ 3334 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3335 if (sh->sh_flags & SHF_EXECINSTR) { 3336 if (strcmp(name, ".text") == 0) 3337 obj->efile.text_shndx = idx; 3338 err = bpf_object__add_programs(obj, data, name, idx); 3339 if (err) 3340 return err; 3341 } else if (strcmp(name, DATA_SEC) == 0 || 3342 str_has_pfx(name, DATA_SEC ".")) { 3343 sec_desc->sec_type = SEC_DATA; 3344 sec_desc->shdr = sh; 3345 sec_desc->data = data; 3346 } else if (strcmp(name, RODATA_SEC) == 0 || 3347 str_has_pfx(name, RODATA_SEC ".")) { 3348 sec_desc->sec_type = SEC_RODATA; 3349 sec_desc->shdr = sh; 3350 sec_desc->data = data; 3351 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3352 obj->efile.st_ops_data = data; 3353 obj->efile.st_ops_shndx = idx; 3354 } else { 3355 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3356 idx, name); 3357 } 3358 } else if (sh->sh_type == SHT_REL) { 3359 int targ_sec_idx = sh->sh_info; /* points to other section */ 3360 3361 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3362 targ_sec_idx >= obj->efile.sec_cnt) 3363 return -LIBBPF_ERRNO__FORMAT; 3364 3365 /* Only do relo for section with exec instructions */ 3366 if (!section_have_execinstr(obj, targ_sec_idx) && 3367 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3368 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3369 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3370 idx, name, targ_sec_idx, 3371 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3372 continue; 3373 } 3374 3375 sec_desc->sec_type = SEC_RELO; 3376 sec_desc->shdr = sh; 3377 sec_desc->data = data; 3378 } else if (sh->sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 3379 sec_desc->sec_type = SEC_BSS; 3380 sec_desc->shdr = sh; 3381 sec_desc->data = data; 3382 } else { 3383 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3384 (size_t)sh->sh_size); 3385 } 3386 } 3387 3388 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3389 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3390 return -LIBBPF_ERRNO__FORMAT; 3391 } 3392 3393 /* sort BPF programs by section name and in-section instruction offset 3394 * for faster search */ 3395 if (obj->nr_programs) 3396 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3397 3398 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3399 } 3400 3401 static bool sym_is_extern(const Elf64_Sym *sym) 3402 { 3403 int bind = ELF64_ST_BIND(sym->st_info); 3404 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3405 return sym->st_shndx == SHN_UNDEF && 3406 (bind == STB_GLOBAL || bind == STB_WEAK) && 3407 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3408 } 3409 3410 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3411 { 3412 int bind = ELF64_ST_BIND(sym->st_info); 3413 int type = ELF64_ST_TYPE(sym->st_info); 3414 3415 /* in .text section */ 3416 if (sym->st_shndx != text_shndx) 3417 return false; 3418 3419 /* local function */ 3420 if (bind == STB_LOCAL && type == STT_SECTION) 3421 return true; 3422 3423 /* global function */ 3424 return bind == STB_GLOBAL && type == STT_FUNC; 3425 } 3426 3427 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3428 { 3429 const struct btf_type *t; 3430 const char *tname; 3431 int i, n; 3432 3433 if (!btf) 3434 return -ESRCH; 3435 3436 n = btf__type_cnt(btf); 3437 for (i = 1; i < n; i++) { 3438 t = btf__type_by_id(btf, i); 3439 3440 if (!btf_is_var(t) && !btf_is_func(t)) 3441 continue; 3442 3443 tname = btf__name_by_offset(btf, t->name_off); 3444 if (strcmp(tname, ext_name)) 3445 continue; 3446 3447 if (btf_is_var(t) && 3448 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3449 return -EINVAL; 3450 3451 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3452 return -EINVAL; 3453 3454 return i; 3455 } 3456 3457 return -ENOENT; 3458 } 3459 3460 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3461 const struct btf_var_secinfo *vs; 3462 const struct btf_type *t; 3463 int i, j, n; 3464 3465 if (!btf) 3466 return -ESRCH; 3467 3468 n = btf__type_cnt(btf); 3469 for (i = 1; i < n; i++) { 3470 t = btf__type_by_id(btf, i); 3471 3472 if (!btf_is_datasec(t)) 3473 continue; 3474 3475 vs = btf_var_secinfos(t); 3476 for (j = 0; j < btf_vlen(t); j++, vs++) { 3477 if (vs->type == ext_btf_id) 3478 return i; 3479 } 3480 } 3481 3482 return -ENOENT; 3483 } 3484 3485 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3486 bool *is_signed) 3487 { 3488 const struct btf_type *t; 3489 const char *name; 3490 3491 t = skip_mods_and_typedefs(btf, id, NULL); 3492 name = btf__name_by_offset(btf, t->name_off); 3493 3494 if (is_signed) 3495 *is_signed = false; 3496 switch (btf_kind(t)) { 3497 case BTF_KIND_INT: { 3498 int enc = btf_int_encoding(t); 3499 3500 if (enc & BTF_INT_BOOL) 3501 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3502 if (is_signed) 3503 *is_signed = enc & BTF_INT_SIGNED; 3504 if (t->size == 1) 3505 return KCFG_CHAR; 3506 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3507 return KCFG_UNKNOWN; 3508 return KCFG_INT; 3509 } 3510 case BTF_KIND_ENUM: 3511 if (t->size != 4) 3512 return KCFG_UNKNOWN; 3513 if (strcmp(name, "libbpf_tristate")) 3514 return KCFG_UNKNOWN; 3515 return KCFG_TRISTATE; 3516 case BTF_KIND_ARRAY: 3517 if (btf_array(t)->nelems == 0) 3518 return KCFG_UNKNOWN; 3519 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3520 return KCFG_UNKNOWN; 3521 return KCFG_CHAR_ARR; 3522 default: 3523 return KCFG_UNKNOWN; 3524 } 3525 } 3526 3527 static int cmp_externs(const void *_a, const void *_b) 3528 { 3529 const struct extern_desc *a = _a; 3530 const struct extern_desc *b = _b; 3531 3532 if (a->type != b->type) 3533 return a->type < b->type ? -1 : 1; 3534 3535 if (a->type == EXT_KCFG) { 3536 /* descending order by alignment requirements */ 3537 if (a->kcfg.align != b->kcfg.align) 3538 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3539 /* ascending order by size, within same alignment class */ 3540 if (a->kcfg.sz != b->kcfg.sz) 3541 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3542 } 3543 3544 /* resolve ties by name */ 3545 return strcmp(a->name, b->name); 3546 } 3547 3548 static int find_int_btf_id(const struct btf *btf) 3549 { 3550 const struct btf_type *t; 3551 int i, n; 3552 3553 n = btf__type_cnt(btf); 3554 for (i = 1; i < n; i++) { 3555 t = btf__type_by_id(btf, i); 3556 3557 if (btf_is_int(t) && btf_int_bits(t) == 32) 3558 return i; 3559 } 3560 3561 return 0; 3562 } 3563 3564 static int add_dummy_ksym_var(struct btf *btf) 3565 { 3566 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3567 const struct btf_var_secinfo *vs; 3568 const struct btf_type *sec; 3569 3570 if (!btf) 3571 return 0; 3572 3573 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3574 BTF_KIND_DATASEC); 3575 if (sec_btf_id < 0) 3576 return 0; 3577 3578 sec = btf__type_by_id(btf, sec_btf_id); 3579 vs = btf_var_secinfos(sec); 3580 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3581 const struct btf_type *vt; 3582 3583 vt = btf__type_by_id(btf, vs->type); 3584 if (btf_is_func(vt)) 3585 break; 3586 } 3587 3588 /* No func in ksyms sec. No need to add dummy var. */ 3589 if (i == btf_vlen(sec)) 3590 return 0; 3591 3592 int_btf_id = find_int_btf_id(btf); 3593 dummy_var_btf_id = btf__add_var(btf, 3594 "dummy_ksym", 3595 BTF_VAR_GLOBAL_ALLOCATED, 3596 int_btf_id); 3597 if (dummy_var_btf_id < 0) 3598 pr_warn("cannot create a dummy_ksym var\n"); 3599 3600 return dummy_var_btf_id; 3601 } 3602 3603 static int bpf_object__collect_externs(struct bpf_object *obj) 3604 { 3605 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3606 const struct btf_type *t; 3607 struct extern_desc *ext; 3608 int i, n, off, dummy_var_btf_id; 3609 const char *ext_name, *sec_name; 3610 Elf_Scn *scn; 3611 Elf64_Shdr *sh; 3612 3613 if (!obj->efile.symbols) 3614 return 0; 3615 3616 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3617 sh = elf_sec_hdr(obj, scn); 3618 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3619 return -LIBBPF_ERRNO__FORMAT; 3620 3621 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3622 if (dummy_var_btf_id < 0) 3623 return dummy_var_btf_id; 3624 3625 n = sh->sh_size / sh->sh_entsize; 3626 pr_debug("looking for externs among %d symbols...\n", n); 3627 3628 for (i = 0; i < n; i++) { 3629 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3630 3631 if (!sym) 3632 return -LIBBPF_ERRNO__FORMAT; 3633 if (!sym_is_extern(sym)) 3634 continue; 3635 ext_name = elf_sym_str(obj, sym->st_name); 3636 if (!ext_name || !ext_name[0]) 3637 continue; 3638 3639 ext = obj->externs; 3640 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3641 if (!ext) 3642 return -ENOMEM; 3643 obj->externs = ext; 3644 ext = &ext[obj->nr_extern]; 3645 memset(ext, 0, sizeof(*ext)); 3646 obj->nr_extern++; 3647 3648 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3649 if (ext->btf_id <= 0) { 3650 pr_warn("failed to find BTF for extern '%s': %d\n", 3651 ext_name, ext->btf_id); 3652 return ext->btf_id; 3653 } 3654 t = btf__type_by_id(obj->btf, ext->btf_id); 3655 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3656 ext->sym_idx = i; 3657 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3658 3659 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3660 if (ext->sec_btf_id <= 0) { 3661 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3662 ext_name, ext->btf_id, ext->sec_btf_id); 3663 return ext->sec_btf_id; 3664 } 3665 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3666 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3667 3668 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3669 if (btf_is_func(t)) { 3670 pr_warn("extern function %s is unsupported under %s section\n", 3671 ext->name, KCONFIG_SEC); 3672 return -ENOTSUP; 3673 } 3674 kcfg_sec = sec; 3675 ext->type = EXT_KCFG; 3676 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3677 if (ext->kcfg.sz <= 0) { 3678 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3679 ext_name, ext->kcfg.sz); 3680 return ext->kcfg.sz; 3681 } 3682 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3683 if (ext->kcfg.align <= 0) { 3684 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3685 ext_name, ext->kcfg.align); 3686 return -EINVAL; 3687 } 3688 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3689 &ext->kcfg.is_signed); 3690 if (ext->kcfg.type == KCFG_UNKNOWN) { 3691 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name); 3692 return -ENOTSUP; 3693 } 3694 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3695 ksym_sec = sec; 3696 ext->type = EXT_KSYM; 3697 skip_mods_and_typedefs(obj->btf, t->type, 3698 &ext->ksym.type_id); 3699 } else { 3700 pr_warn("unrecognized extern section '%s'\n", sec_name); 3701 return -ENOTSUP; 3702 } 3703 } 3704 pr_debug("collected %d externs total\n", obj->nr_extern); 3705 3706 if (!obj->nr_extern) 3707 return 0; 3708 3709 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3710 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3711 3712 /* for .ksyms section, we need to turn all externs into allocated 3713 * variables in BTF to pass kernel verification; we do this by 3714 * pretending that each extern is a 8-byte variable 3715 */ 3716 if (ksym_sec) { 3717 /* find existing 4-byte integer type in BTF to use for fake 3718 * extern variables in DATASEC 3719 */ 3720 int int_btf_id = find_int_btf_id(obj->btf); 3721 /* For extern function, a dummy_var added earlier 3722 * will be used to replace the vs->type and 3723 * its name string will be used to refill 3724 * the missing param's name. 3725 */ 3726 const struct btf_type *dummy_var; 3727 3728 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3729 for (i = 0; i < obj->nr_extern; i++) { 3730 ext = &obj->externs[i]; 3731 if (ext->type != EXT_KSYM) 3732 continue; 3733 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3734 i, ext->sym_idx, ext->name); 3735 } 3736 3737 sec = ksym_sec; 3738 n = btf_vlen(sec); 3739 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3740 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3741 struct btf_type *vt; 3742 3743 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3744 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3745 ext = find_extern_by_name(obj, ext_name); 3746 if (!ext) { 3747 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3748 btf_kind_str(vt), ext_name); 3749 return -ESRCH; 3750 } 3751 if (btf_is_func(vt)) { 3752 const struct btf_type *func_proto; 3753 struct btf_param *param; 3754 int j; 3755 3756 func_proto = btf__type_by_id(obj->btf, 3757 vt->type); 3758 param = btf_params(func_proto); 3759 /* Reuse the dummy_var string if the 3760 * func proto does not have param name. 3761 */ 3762 for (j = 0; j < btf_vlen(func_proto); j++) 3763 if (param[j].type && !param[j].name_off) 3764 param[j].name_off = 3765 dummy_var->name_off; 3766 vs->type = dummy_var_btf_id; 3767 vt->info &= ~0xffff; 3768 vt->info |= BTF_FUNC_GLOBAL; 3769 } else { 3770 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3771 vt->type = int_btf_id; 3772 } 3773 vs->offset = off; 3774 vs->size = sizeof(int); 3775 } 3776 sec->size = off; 3777 } 3778 3779 if (kcfg_sec) { 3780 sec = kcfg_sec; 3781 /* for kcfg externs calculate their offsets within a .kconfig map */ 3782 off = 0; 3783 for (i = 0; i < obj->nr_extern; i++) { 3784 ext = &obj->externs[i]; 3785 if (ext->type != EXT_KCFG) 3786 continue; 3787 3788 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3789 off = ext->kcfg.data_off + ext->kcfg.sz; 3790 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3791 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3792 } 3793 sec->size = off; 3794 n = btf_vlen(sec); 3795 for (i = 0; i < n; i++) { 3796 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3797 3798 t = btf__type_by_id(obj->btf, vs->type); 3799 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3800 ext = find_extern_by_name(obj, ext_name); 3801 if (!ext) { 3802 pr_warn("failed to find extern definition for BTF var '%s'\n", 3803 ext_name); 3804 return -ESRCH; 3805 } 3806 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3807 vs->offset = ext->kcfg.data_off; 3808 } 3809 } 3810 return 0; 3811 } 3812 3813 struct bpf_program * 3814 bpf_object__find_program_by_title(const struct bpf_object *obj, 3815 const char *title) 3816 { 3817 struct bpf_program *pos; 3818 3819 bpf_object__for_each_program(pos, obj) { 3820 if (pos->sec_name && !strcmp(pos->sec_name, title)) 3821 return pos; 3822 } 3823 return errno = ENOENT, NULL; 3824 } 3825 3826 static bool prog_is_subprog(const struct bpf_object *obj, 3827 const struct bpf_program *prog) 3828 { 3829 /* For legacy reasons, libbpf supports an entry-point BPF programs 3830 * without SEC() attribute, i.e., those in the .text section. But if 3831 * there are 2 or more such programs in the .text section, they all 3832 * must be subprograms called from entry-point BPF programs in 3833 * designated SEC()'tions, otherwise there is no way to distinguish 3834 * which of those programs should be loaded vs which are a subprogram. 3835 * Similarly, if there is a function/program in .text and at least one 3836 * other BPF program with custom SEC() attribute, then we just assume 3837 * .text programs are subprograms (even if they are not called from 3838 * other programs), because libbpf never explicitly supported mixing 3839 * SEC()-designated BPF programs and .text entry-point BPF programs. 3840 */ 3841 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3842 } 3843 3844 struct bpf_program * 3845 bpf_object__find_program_by_name(const struct bpf_object *obj, 3846 const char *name) 3847 { 3848 struct bpf_program *prog; 3849 3850 bpf_object__for_each_program(prog, obj) { 3851 if (prog_is_subprog(obj, prog)) 3852 continue; 3853 if (!strcmp(prog->name, name)) 3854 return prog; 3855 } 3856 return errno = ENOENT, NULL; 3857 } 3858 3859 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3860 int shndx) 3861 { 3862 switch (obj->efile.secs[shndx].sec_type) { 3863 case SEC_BSS: 3864 case SEC_DATA: 3865 case SEC_RODATA: 3866 return true; 3867 default: 3868 return false; 3869 } 3870 } 3871 3872 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3873 int shndx) 3874 { 3875 return shndx == obj->efile.maps_shndx || 3876 shndx == obj->efile.btf_maps_shndx; 3877 } 3878 3879 static enum libbpf_map_type 3880 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3881 { 3882 if (shndx == obj->efile.symbols_shndx) 3883 return LIBBPF_MAP_KCONFIG; 3884 3885 switch (obj->efile.secs[shndx].sec_type) { 3886 case SEC_BSS: 3887 return LIBBPF_MAP_BSS; 3888 case SEC_DATA: 3889 return LIBBPF_MAP_DATA; 3890 case SEC_RODATA: 3891 return LIBBPF_MAP_RODATA; 3892 default: 3893 return LIBBPF_MAP_UNSPEC; 3894 } 3895 } 3896 3897 static int bpf_program__record_reloc(struct bpf_program *prog, 3898 struct reloc_desc *reloc_desc, 3899 __u32 insn_idx, const char *sym_name, 3900 const Elf64_Sym *sym, const Elf64_Rel *rel) 3901 { 3902 struct bpf_insn *insn = &prog->insns[insn_idx]; 3903 size_t map_idx, nr_maps = prog->obj->nr_maps; 3904 struct bpf_object *obj = prog->obj; 3905 __u32 shdr_idx = sym->st_shndx; 3906 enum libbpf_map_type type; 3907 const char *sym_sec_name; 3908 struct bpf_map *map; 3909 3910 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 3911 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 3912 prog->name, sym_name, insn_idx, insn->code); 3913 return -LIBBPF_ERRNO__RELOC; 3914 } 3915 3916 if (sym_is_extern(sym)) { 3917 int sym_idx = ELF64_R_SYM(rel->r_info); 3918 int i, n = obj->nr_extern; 3919 struct extern_desc *ext; 3920 3921 for (i = 0; i < n; i++) { 3922 ext = &obj->externs[i]; 3923 if (ext->sym_idx == sym_idx) 3924 break; 3925 } 3926 if (i >= n) { 3927 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 3928 prog->name, sym_name, sym_idx); 3929 return -LIBBPF_ERRNO__RELOC; 3930 } 3931 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 3932 prog->name, i, ext->name, ext->sym_idx, insn_idx); 3933 if (insn->code == (BPF_JMP | BPF_CALL)) 3934 reloc_desc->type = RELO_EXTERN_FUNC; 3935 else 3936 reloc_desc->type = RELO_EXTERN_VAR; 3937 reloc_desc->insn_idx = insn_idx; 3938 reloc_desc->sym_off = i; /* sym_off stores extern index */ 3939 return 0; 3940 } 3941 3942 /* sub-program call relocation */ 3943 if (is_call_insn(insn)) { 3944 if (insn->src_reg != BPF_PSEUDO_CALL) { 3945 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 3946 return -LIBBPF_ERRNO__RELOC; 3947 } 3948 /* text_shndx can be 0, if no default "main" program exists */ 3949 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 3950 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3951 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 3952 prog->name, sym_name, sym_sec_name); 3953 return -LIBBPF_ERRNO__RELOC; 3954 } 3955 if (sym->st_value % BPF_INSN_SZ) { 3956 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 3957 prog->name, sym_name, (size_t)sym->st_value); 3958 return -LIBBPF_ERRNO__RELOC; 3959 } 3960 reloc_desc->type = RELO_CALL; 3961 reloc_desc->insn_idx = insn_idx; 3962 reloc_desc->sym_off = sym->st_value; 3963 return 0; 3964 } 3965 3966 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 3967 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 3968 prog->name, sym_name, shdr_idx); 3969 return -LIBBPF_ERRNO__RELOC; 3970 } 3971 3972 /* loading subprog addresses */ 3973 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 3974 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 3975 * local_func: sym->st_value = 0, insn->imm = offset in the section. 3976 */ 3977 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 3978 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 3979 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 3980 return -LIBBPF_ERRNO__RELOC; 3981 } 3982 3983 reloc_desc->type = RELO_SUBPROG_ADDR; 3984 reloc_desc->insn_idx = insn_idx; 3985 reloc_desc->sym_off = sym->st_value; 3986 return 0; 3987 } 3988 3989 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 3990 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3991 3992 /* generic map reference relocation */ 3993 if (type == LIBBPF_MAP_UNSPEC) { 3994 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 3995 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 3996 prog->name, sym_name, sym_sec_name); 3997 return -LIBBPF_ERRNO__RELOC; 3998 } 3999 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4000 map = &obj->maps[map_idx]; 4001 if (map->libbpf_type != type || 4002 map->sec_idx != sym->st_shndx || 4003 map->sec_offset != sym->st_value) 4004 continue; 4005 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4006 prog->name, map_idx, map->name, map->sec_idx, 4007 map->sec_offset, insn_idx); 4008 break; 4009 } 4010 if (map_idx >= nr_maps) { 4011 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4012 prog->name, sym_sec_name, (size_t)sym->st_value); 4013 return -LIBBPF_ERRNO__RELOC; 4014 } 4015 reloc_desc->type = RELO_LD64; 4016 reloc_desc->insn_idx = insn_idx; 4017 reloc_desc->map_idx = map_idx; 4018 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4019 return 0; 4020 } 4021 4022 /* global data map relocation */ 4023 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4024 pr_warn("prog '%s': bad data relo against section '%s'\n", 4025 prog->name, sym_sec_name); 4026 return -LIBBPF_ERRNO__RELOC; 4027 } 4028 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4029 map = &obj->maps[map_idx]; 4030 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4031 continue; 4032 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4033 prog->name, map_idx, map->name, map->sec_idx, 4034 map->sec_offset, insn_idx); 4035 break; 4036 } 4037 if (map_idx >= nr_maps) { 4038 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4039 prog->name, sym_sec_name); 4040 return -LIBBPF_ERRNO__RELOC; 4041 } 4042 4043 reloc_desc->type = RELO_DATA; 4044 reloc_desc->insn_idx = insn_idx; 4045 reloc_desc->map_idx = map_idx; 4046 reloc_desc->sym_off = sym->st_value; 4047 return 0; 4048 } 4049 4050 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4051 { 4052 return insn_idx >= prog->sec_insn_off && 4053 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4054 } 4055 4056 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4057 size_t sec_idx, size_t insn_idx) 4058 { 4059 int l = 0, r = obj->nr_programs - 1, m; 4060 struct bpf_program *prog; 4061 4062 while (l < r) { 4063 m = l + (r - l + 1) / 2; 4064 prog = &obj->programs[m]; 4065 4066 if (prog->sec_idx < sec_idx || 4067 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4068 l = m; 4069 else 4070 r = m - 1; 4071 } 4072 /* matching program could be at index l, but it still might be the 4073 * wrong one, so we need to double check conditions for the last time 4074 */ 4075 prog = &obj->programs[l]; 4076 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4077 return prog; 4078 return NULL; 4079 } 4080 4081 static int 4082 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4083 { 4084 const char *relo_sec_name, *sec_name; 4085 size_t sec_idx = shdr->sh_info, sym_idx; 4086 struct bpf_program *prog; 4087 struct reloc_desc *relos; 4088 int err, i, nrels; 4089 const char *sym_name; 4090 __u32 insn_idx; 4091 Elf_Scn *scn; 4092 Elf_Data *scn_data; 4093 Elf64_Sym *sym; 4094 Elf64_Rel *rel; 4095 4096 if (sec_idx >= obj->efile.sec_cnt) 4097 return -EINVAL; 4098 4099 scn = elf_sec_by_idx(obj, sec_idx); 4100 scn_data = elf_sec_data(obj, scn); 4101 4102 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4103 sec_name = elf_sec_name(obj, scn); 4104 if (!relo_sec_name || !sec_name) 4105 return -EINVAL; 4106 4107 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4108 relo_sec_name, sec_idx, sec_name); 4109 nrels = shdr->sh_size / shdr->sh_entsize; 4110 4111 for (i = 0; i < nrels; i++) { 4112 rel = elf_rel_by_idx(data, i); 4113 if (!rel) { 4114 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4115 return -LIBBPF_ERRNO__FORMAT; 4116 } 4117 4118 sym_idx = ELF64_R_SYM(rel->r_info); 4119 sym = elf_sym_by_idx(obj, sym_idx); 4120 if (!sym) { 4121 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4122 relo_sec_name, sym_idx, i); 4123 return -LIBBPF_ERRNO__FORMAT; 4124 } 4125 4126 if (sym->st_shndx >= obj->efile.sec_cnt) { 4127 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4128 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4129 return -LIBBPF_ERRNO__FORMAT; 4130 } 4131 4132 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4133 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4134 relo_sec_name, (size_t)rel->r_offset, i); 4135 return -LIBBPF_ERRNO__FORMAT; 4136 } 4137 4138 insn_idx = rel->r_offset / BPF_INSN_SZ; 4139 /* relocations against static functions are recorded as 4140 * relocations against the section that contains a function; 4141 * in such case, symbol will be STT_SECTION and sym.st_name 4142 * will point to empty string (0), so fetch section name 4143 * instead 4144 */ 4145 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4146 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4147 else 4148 sym_name = elf_sym_str(obj, sym->st_name); 4149 sym_name = sym_name ?: "<?"; 4150 4151 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4152 relo_sec_name, i, insn_idx, sym_name); 4153 4154 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4155 if (!prog) { 4156 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4157 relo_sec_name, i, sec_name, insn_idx); 4158 continue; 4159 } 4160 4161 relos = libbpf_reallocarray(prog->reloc_desc, 4162 prog->nr_reloc + 1, sizeof(*relos)); 4163 if (!relos) 4164 return -ENOMEM; 4165 prog->reloc_desc = relos; 4166 4167 /* adjust insn_idx to local BPF program frame of reference */ 4168 insn_idx -= prog->sec_insn_off; 4169 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4170 insn_idx, sym_name, sym, rel); 4171 if (err) 4172 return err; 4173 4174 prog->nr_reloc++; 4175 } 4176 return 0; 4177 } 4178 4179 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 4180 { 4181 struct bpf_map_def *def = &map->def; 4182 __u32 key_type_id = 0, value_type_id = 0; 4183 int ret; 4184 4185 /* if it's BTF-defined map, we don't need to search for type IDs. 4186 * For struct_ops map, it does not need btf_key_type_id and 4187 * btf_value_type_id. 4188 */ 4189 if (map->sec_idx == obj->efile.btf_maps_shndx || 4190 bpf_map__is_struct_ops(map)) 4191 return 0; 4192 4193 if (!bpf_map__is_internal(map)) { 4194 pr_warn("Use of BPF_ANNOTATE_KV_PAIR is deprecated, use BTF-defined maps in .maps section instead\n"); 4195 #pragma GCC diagnostic push 4196 #pragma GCC diagnostic ignored "-Wdeprecated-declarations" 4197 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size, 4198 def->value_size, &key_type_id, 4199 &value_type_id); 4200 #pragma GCC diagnostic pop 4201 } else { 4202 /* 4203 * LLVM annotates global data differently in BTF, that is, 4204 * only as '.data', '.bss' or '.rodata'. 4205 */ 4206 ret = btf__find_by_name(obj->btf, map->real_name); 4207 } 4208 if (ret < 0) 4209 return ret; 4210 4211 map->btf_key_type_id = key_type_id; 4212 map->btf_value_type_id = bpf_map__is_internal(map) ? 4213 ret : value_type_id; 4214 return 0; 4215 } 4216 4217 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4218 { 4219 char file[PATH_MAX], buff[4096]; 4220 FILE *fp; 4221 __u32 val; 4222 int err; 4223 4224 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4225 memset(info, 0, sizeof(*info)); 4226 4227 fp = fopen(file, "r"); 4228 if (!fp) { 4229 err = -errno; 4230 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4231 err); 4232 return err; 4233 } 4234 4235 while (fgets(buff, sizeof(buff), fp)) { 4236 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4237 info->type = val; 4238 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4239 info->key_size = val; 4240 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4241 info->value_size = val; 4242 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4243 info->max_entries = val; 4244 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4245 info->map_flags = val; 4246 } 4247 4248 fclose(fp); 4249 4250 return 0; 4251 } 4252 4253 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4254 { 4255 struct bpf_map_info info = {}; 4256 __u32 len = sizeof(info); 4257 int new_fd, err; 4258 char *new_name; 4259 4260 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4261 if (err && errno == EINVAL) 4262 err = bpf_get_map_info_from_fdinfo(fd, &info); 4263 if (err) 4264 return libbpf_err(err); 4265 4266 new_name = strdup(info.name); 4267 if (!new_name) 4268 return libbpf_err(-errno); 4269 4270 new_fd = open("/", O_RDONLY | O_CLOEXEC); 4271 if (new_fd < 0) { 4272 err = -errno; 4273 goto err_free_new_name; 4274 } 4275 4276 new_fd = dup3(fd, new_fd, O_CLOEXEC); 4277 if (new_fd < 0) { 4278 err = -errno; 4279 goto err_close_new_fd; 4280 } 4281 4282 err = zclose(map->fd); 4283 if (err) { 4284 err = -errno; 4285 goto err_close_new_fd; 4286 } 4287 free(map->name); 4288 4289 map->fd = new_fd; 4290 map->name = new_name; 4291 map->def.type = info.type; 4292 map->def.key_size = info.key_size; 4293 map->def.value_size = info.value_size; 4294 map->def.max_entries = info.max_entries; 4295 map->def.map_flags = info.map_flags; 4296 map->btf_key_type_id = info.btf_key_type_id; 4297 map->btf_value_type_id = info.btf_value_type_id; 4298 map->reused = true; 4299 map->map_extra = info.map_extra; 4300 4301 return 0; 4302 4303 err_close_new_fd: 4304 close(new_fd); 4305 err_free_new_name: 4306 free(new_name); 4307 return libbpf_err(err); 4308 } 4309 4310 __u32 bpf_map__max_entries(const struct bpf_map *map) 4311 { 4312 return map->def.max_entries; 4313 } 4314 4315 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4316 { 4317 if (!bpf_map_type__is_map_in_map(map->def.type)) 4318 return errno = EINVAL, NULL; 4319 4320 return map->inner_map; 4321 } 4322 4323 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4324 { 4325 if (map->fd >= 0) 4326 return libbpf_err(-EBUSY); 4327 map->def.max_entries = max_entries; 4328 return 0; 4329 } 4330 4331 int bpf_map__resize(struct bpf_map *map, __u32 max_entries) 4332 { 4333 if (!map || !max_entries) 4334 return libbpf_err(-EINVAL); 4335 4336 return bpf_map__set_max_entries(map, max_entries); 4337 } 4338 4339 static int 4340 bpf_object__probe_loading(struct bpf_object *obj) 4341 { 4342 char *cp, errmsg[STRERR_BUFSIZE]; 4343 struct bpf_insn insns[] = { 4344 BPF_MOV64_IMM(BPF_REG_0, 0), 4345 BPF_EXIT_INSN(), 4346 }; 4347 int ret, insn_cnt = ARRAY_SIZE(insns); 4348 4349 if (obj->gen_loader) 4350 return 0; 4351 4352 ret = bump_rlimit_memlock(); 4353 if (ret) 4354 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4355 4356 /* make sure basic loading works */ 4357 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4358 if (ret < 0) 4359 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4360 if (ret < 0) { 4361 ret = errno; 4362 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4363 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4364 "program. Make sure your kernel supports BPF " 4365 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4366 "set to big enough value.\n", __func__, cp, ret); 4367 return -ret; 4368 } 4369 close(ret); 4370 4371 return 0; 4372 } 4373 4374 static int probe_fd(int fd) 4375 { 4376 if (fd >= 0) 4377 close(fd); 4378 return fd >= 0; 4379 } 4380 4381 static int probe_kern_prog_name(void) 4382 { 4383 struct bpf_insn insns[] = { 4384 BPF_MOV64_IMM(BPF_REG_0, 0), 4385 BPF_EXIT_INSN(), 4386 }; 4387 int ret, insn_cnt = ARRAY_SIZE(insns); 4388 4389 /* make sure loading with name works */ 4390 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, "test", "GPL", insns, insn_cnt, NULL); 4391 return probe_fd(ret); 4392 } 4393 4394 static int probe_kern_global_data(void) 4395 { 4396 char *cp, errmsg[STRERR_BUFSIZE]; 4397 struct bpf_insn insns[] = { 4398 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4399 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4400 BPF_MOV64_IMM(BPF_REG_0, 0), 4401 BPF_EXIT_INSN(), 4402 }; 4403 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4404 4405 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL); 4406 if (map < 0) { 4407 ret = -errno; 4408 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4409 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4410 __func__, cp, -ret); 4411 return ret; 4412 } 4413 4414 insns[0].imm = map; 4415 4416 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4417 close(map); 4418 return probe_fd(ret); 4419 } 4420 4421 static int probe_kern_btf(void) 4422 { 4423 static const char strs[] = "\0int"; 4424 __u32 types[] = { 4425 /* int */ 4426 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4427 }; 4428 4429 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4430 strs, sizeof(strs))); 4431 } 4432 4433 static int probe_kern_btf_func(void) 4434 { 4435 static const char strs[] = "\0int\0x\0a"; 4436 /* void x(int a) {} */ 4437 __u32 types[] = { 4438 /* int */ 4439 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4440 /* FUNC_PROTO */ /* [2] */ 4441 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4442 BTF_PARAM_ENC(7, 1), 4443 /* FUNC x */ /* [3] */ 4444 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4445 }; 4446 4447 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4448 strs, sizeof(strs))); 4449 } 4450 4451 static int probe_kern_btf_func_global(void) 4452 { 4453 static const char strs[] = "\0int\0x\0a"; 4454 /* static void x(int a) {} */ 4455 __u32 types[] = { 4456 /* int */ 4457 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4458 /* FUNC_PROTO */ /* [2] */ 4459 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4460 BTF_PARAM_ENC(7, 1), 4461 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4462 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4463 }; 4464 4465 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4466 strs, sizeof(strs))); 4467 } 4468 4469 static int probe_kern_btf_datasec(void) 4470 { 4471 static const char strs[] = "\0x\0.data"; 4472 /* static int a; */ 4473 __u32 types[] = { 4474 /* int */ 4475 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4476 /* VAR x */ /* [2] */ 4477 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4478 BTF_VAR_STATIC, 4479 /* DATASEC val */ /* [3] */ 4480 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4481 BTF_VAR_SECINFO_ENC(2, 0, 4), 4482 }; 4483 4484 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4485 strs, sizeof(strs))); 4486 } 4487 4488 static int probe_kern_btf_float(void) 4489 { 4490 static const char strs[] = "\0float"; 4491 __u32 types[] = { 4492 /* float */ 4493 BTF_TYPE_FLOAT_ENC(1, 4), 4494 }; 4495 4496 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4497 strs, sizeof(strs))); 4498 } 4499 4500 static int probe_kern_btf_decl_tag(void) 4501 { 4502 static const char strs[] = "\0tag"; 4503 __u32 types[] = { 4504 /* int */ 4505 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4506 /* VAR x */ /* [2] */ 4507 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4508 BTF_VAR_STATIC, 4509 /* attr */ 4510 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4511 }; 4512 4513 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4514 strs, sizeof(strs))); 4515 } 4516 4517 static int probe_kern_btf_type_tag(void) 4518 { 4519 static const char strs[] = "\0tag"; 4520 __u32 types[] = { 4521 /* int */ 4522 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4523 /* attr */ 4524 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4525 /* ptr */ 4526 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4527 }; 4528 4529 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4530 strs, sizeof(strs))); 4531 } 4532 4533 static int probe_kern_array_mmap(void) 4534 { 4535 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4536 int fd; 4537 4538 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), sizeof(int), 1, &opts); 4539 return probe_fd(fd); 4540 } 4541 4542 static int probe_kern_exp_attach_type(void) 4543 { 4544 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4545 struct bpf_insn insns[] = { 4546 BPF_MOV64_IMM(BPF_REG_0, 0), 4547 BPF_EXIT_INSN(), 4548 }; 4549 int fd, insn_cnt = ARRAY_SIZE(insns); 4550 4551 /* use any valid combination of program type and (optional) 4552 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4553 * to see if kernel supports expected_attach_type field for 4554 * BPF_PROG_LOAD command 4555 */ 4556 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4557 return probe_fd(fd); 4558 } 4559 4560 static int probe_kern_probe_read_kernel(void) 4561 { 4562 struct bpf_insn insns[] = { 4563 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4564 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4565 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4566 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4567 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4568 BPF_EXIT_INSN(), 4569 }; 4570 int fd, insn_cnt = ARRAY_SIZE(insns); 4571 4572 fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4573 return probe_fd(fd); 4574 } 4575 4576 static int probe_prog_bind_map(void) 4577 { 4578 char *cp, errmsg[STRERR_BUFSIZE]; 4579 struct bpf_insn insns[] = { 4580 BPF_MOV64_IMM(BPF_REG_0, 0), 4581 BPF_EXIT_INSN(), 4582 }; 4583 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4584 4585 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL); 4586 if (map < 0) { 4587 ret = -errno; 4588 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4589 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4590 __func__, cp, -ret); 4591 return ret; 4592 } 4593 4594 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4595 if (prog < 0) { 4596 close(map); 4597 return 0; 4598 } 4599 4600 ret = bpf_prog_bind_map(prog, map, NULL); 4601 4602 close(map); 4603 close(prog); 4604 4605 return ret >= 0; 4606 } 4607 4608 static int probe_module_btf(void) 4609 { 4610 static const char strs[] = "\0int"; 4611 __u32 types[] = { 4612 /* int */ 4613 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4614 }; 4615 struct bpf_btf_info info; 4616 __u32 len = sizeof(info); 4617 char name[16]; 4618 int fd, err; 4619 4620 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4621 if (fd < 0) 4622 return 0; /* BTF not supported at all */ 4623 4624 memset(&info, 0, sizeof(info)); 4625 info.name = ptr_to_u64(name); 4626 info.name_len = sizeof(name); 4627 4628 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4629 * kernel's module BTF support coincides with support for 4630 * name/name_len fields in struct bpf_btf_info. 4631 */ 4632 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4633 close(fd); 4634 return !err; 4635 } 4636 4637 static int probe_perf_link(void) 4638 { 4639 struct bpf_insn insns[] = { 4640 BPF_MOV64_IMM(BPF_REG_0, 0), 4641 BPF_EXIT_INSN(), 4642 }; 4643 int prog_fd, link_fd, err; 4644 4645 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4646 insns, ARRAY_SIZE(insns), NULL); 4647 if (prog_fd < 0) 4648 return -errno; 4649 4650 /* use invalid perf_event FD to get EBADF, if link is supported; 4651 * otherwise EINVAL should be returned 4652 */ 4653 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4654 err = -errno; /* close() can clobber errno */ 4655 4656 if (link_fd >= 0) 4657 close(link_fd); 4658 close(prog_fd); 4659 4660 return link_fd < 0 && err == -EBADF; 4661 } 4662 4663 enum kern_feature_result { 4664 FEAT_UNKNOWN = 0, 4665 FEAT_SUPPORTED = 1, 4666 FEAT_MISSING = 2, 4667 }; 4668 4669 typedef int (*feature_probe_fn)(void); 4670 4671 static struct kern_feature_desc { 4672 const char *desc; 4673 feature_probe_fn probe; 4674 enum kern_feature_result res; 4675 } feature_probes[__FEAT_CNT] = { 4676 [FEAT_PROG_NAME] = { 4677 "BPF program name", probe_kern_prog_name, 4678 }, 4679 [FEAT_GLOBAL_DATA] = { 4680 "global variables", probe_kern_global_data, 4681 }, 4682 [FEAT_BTF] = { 4683 "minimal BTF", probe_kern_btf, 4684 }, 4685 [FEAT_BTF_FUNC] = { 4686 "BTF functions", probe_kern_btf_func, 4687 }, 4688 [FEAT_BTF_GLOBAL_FUNC] = { 4689 "BTF global function", probe_kern_btf_func_global, 4690 }, 4691 [FEAT_BTF_DATASEC] = { 4692 "BTF data section and variable", probe_kern_btf_datasec, 4693 }, 4694 [FEAT_ARRAY_MMAP] = { 4695 "ARRAY map mmap()", probe_kern_array_mmap, 4696 }, 4697 [FEAT_EXP_ATTACH_TYPE] = { 4698 "BPF_PROG_LOAD expected_attach_type attribute", 4699 probe_kern_exp_attach_type, 4700 }, 4701 [FEAT_PROBE_READ_KERN] = { 4702 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4703 }, 4704 [FEAT_PROG_BIND_MAP] = { 4705 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4706 }, 4707 [FEAT_MODULE_BTF] = { 4708 "module BTF support", probe_module_btf, 4709 }, 4710 [FEAT_BTF_FLOAT] = { 4711 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4712 }, 4713 [FEAT_PERF_LINK] = { 4714 "BPF perf link support", probe_perf_link, 4715 }, 4716 [FEAT_BTF_DECL_TAG] = { 4717 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 4718 }, 4719 [FEAT_BTF_TYPE_TAG] = { 4720 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 4721 }, 4722 [FEAT_MEMCG_ACCOUNT] = { 4723 "memcg-based memory accounting", probe_memcg_account, 4724 }, 4725 }; 4726 4727 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4728 { 4729 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4730 int ret; 4731 4732 if (obj && obj->gen_loader) 4733 /* To generate loader program assume the latest kernel 4734 * to avoid doing extra prog_load, map_create syscalls. 4735 */ 4736 return true; 4737 4738 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4739 ret = feat->probe(); 4740 if (ret > 0) { 4741 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4742 } else if (ret == 0) { 4743 WRITE_ONCE(feat->res, FEAT_MISSING); 4744 } else { 4745 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4746 WRITE_ONCE(feat->res, FEAT_MISSING); 4747 } 4748 } 4749 4750 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4751 } 4752 4753 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4754 { 4755 struct bpf_map_info map_info = {}; 4756 char msg[STRERR_BUFSIZE]; 4757 __u32 map_info_len; 4758 int err; 4759 4760 map_info_len = sizeof(map_info); 4761 4762 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len); 4763 if (err && errno == EINVAL) 4764 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 4765 if (err) { 4766 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 4767 libbpf_strerror_r(errno, msg, sizeof(msg))); 4768 return false; 4769 } 4770 4771 return (map_info.type == map->def.type && 4772 map_info.key_size == map->def.key_size && 4773 map_info.value_size == map->def.value_size && 4774 map_info.max_entries == map->def.max_entries && 4775 map_info.map_flags == map->def.map_flags && 4776 map_info.map_extra == map->map_extra); 4777 } 4778 4779 static int 4780 bpf_object__reuse_map(struct bpf_map *map) 4781 { 4782 char *cp, errmsg[STRERR_BUFSIZE]; 4783 int err, pin_fd; 4784 4785 pin_fd = bpf_obj_get(map->pin_path); 4786 if (pin_fd < 0) { 4787 err = -errno; 4788 if (err == -ENOENT) { 4789 pr_debug("found no pinned map to reuse at '%s'\n", 4790 map->pin_path); 4791 return 0; 4792 } 4793 4794 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4795 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4796 map->pin_path, cp); 4797 return err; 4798 } 4799 4800 if (!map_is_reuse_compat(map, pin_fd)) { 4801 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4802 map->pin_path); 4803 close(pin_fd); 4804 return -EINVAL; 4805 } 4806 4807 err = bpf_map__reuse_fd(map, pin_fd); 4808 if (err) { 4809 close(pin_fd); 4810 return err; 4811 } 4812 map->pinned = true; 4813 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4814 4815 return 0; 4816 } 4817 4818 static int 4819 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4820 { 4821 enum libbpf_map_type map_type = map->libbpf_type; 4822 char *cp, errmsg[STRERR_BUFSIZE]; 4823 int err, zero = 0; 4824 4825 if (obj->gen_loader) { 4826 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 4827 map->mmaped, map->def.value_size); 4828 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 4829 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 4830 return 0; 4831 } 4832 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4833 if (err) { 4834 err = -errno; 4835 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4836 pr_warn("Error setting initial map(%s) contents: %s\n", 4837 map->name, cp); 4838 return err; 4839 } 4840 4841 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 4842 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 4843 err = bpf_map_freeze(map->fd); 4844 if (err) { 4845 err = -errno; 4846 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4847 pr_warn("Error freezing map(%s) as read-only: %s\n", 4848 map->name, cp); 4849 return err; 4850 } 4851 } 4852 return 0; 4853 } 4854 4855 static void bpf_map__destroy(struct bpf_map *map); 4856 4857 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 4858 { 4859 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 4860 struct bpf_map_def *def = &map->def; 4861 const char *map_name = NULL; 4862 int err = 0; 4863 4864 if (kernel_supports(obj, FEAT_PROG_NAME)) 4865 map_name = map->name; 4866 create_attr.map_ifindex = map->map_ifindex; 4867 create_attr.map_flags = def->map_flags; 4868 create_attr.numa_node = map->numa_node; 4869 create_attr.map_extra = map->map_extra; 4870 4871 if (bpf_map__is_struct_ops(map)) 4872 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 4873 4874 if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) { 4875 create_attr.btf_fd = btf__fd(obj->btf); 4876 create_attr.btf_key_type_id = map->btf_key_type_id; 4877 create_attr.btf_value_type_id = map->btf_value_type_id; 4878 } 4879 4880 if (bpf_map_type__is_map_in_map(def->type)) { 4881 if (map->inner_map) { 4882 err = bpf_object__create_map(obj, map->inner_map, true); 4883 if (err) { 4884 pr_warn("map '%s': failed to create inner map: %d\n", 4885 map->name, err); 4886 return err; 4887 } 4888 map->inner_map_fd = bpf_map__fd(map->inner_map); 4889 } 4890 if (map->inner_map_fd >= 0) 4891 create_attr.inner_map_fd = map->inner_map_fd; 4892 } 4893 4894 switch (def->type) { 4895 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 4896 case BPF_MAP_TYPE_CGROUP_ARRAY: 4897 case BPF_MAP_TYPE_STACK_TRACE: 4898 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 4899 case BPF_MAP_TYPE_HASH_OF_MAPS: 4900 case BPF_MAP_TYPE_DEVMAP: 4901 case BPF_MAP_TYPE_DEVMAP_HASH: 4902 case BPF_MAP_TYPE_CPUMAP: 4903 case BPF_MAP_TYPE_XSKMAP: 4904 case BPF_MAP_TYPE_SOCKMAP: 4905 case BPF_MAP_TYPE_SOCKHASH: 4906 case BPF_MAP_TYPE_QUEUE: 4907 case BPF_MAP_TYPE_STACK: 4908 case BPF_MAP_TYPE_RINGBUF: 4909 create_attr.btf_fd = 0; 4910 create_attr.btf_key_type_id = 0; 4911 create_attr.btf_value_type_id = 0; 4912 map->btf_key_type_id = 0; 4913 map->btf_value_type_id = 0; 4914 default: 4915 break; 4916 } 4917 4918 if (obj->gen_loader) { 4919 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 4920 def->key_size, def->value_size, def->max_entries, 4921 &create_attr, is_inner ? -1 : map - obj->maps); 4922 /* Pretend to have valid FD to pass various fd >= 0 checks. 4923 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 4924 */ 4925 map->fd = 0; 4926 } else { 4927 map->fd = bpf_map_create(def->type, map_name, 4928 def->key_size, def->value_size, 4929 def->max_entries, &create_attr); 4930 } 4931 if (map->fd < 0 && (create_attr.btf_key_type_id || 4932 create_attr.btf_value_type_id)) { 4933 char *cp, errmsg[STRERR_BUFSIZE]; 4934 4935 err = -errno; 4936 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4937 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 4938 map->name, cp, err); 4939 create_attr.btf_fd = 0; 4940 create_attr.btf_key_type_id = 0; 4941 create_attr.btf_value_type_id = 0; 4942 map->btf_key_type_id = 0; 4943 map->btf_value_type_id = 0; 4944 map->fd = bpf_map_create(def->type, map_name, 4945 def->key_size, def->value_size, 4946 def->max_entries, &create_attr); 4947 } 4948 4949 err = map->fd < 0 ? -errno : 0; 4950 4951 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 4952 if (obj->gen_loader) 4953 map->inner_map->fd = -1; 4954 bpf_map__destroy(map->inner_map); 4955 zfree(&map->inner_map); 4956 } 4957 4958 return err; 4959 } 4960 4961 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 4962 { 4963 const struct bpf_map *targ_map; 4964 unsigned int i; 4965 int fd, err = 0; 4966 4967 for (i = 0; i < map->init_slots_sz; i++) { 4968 if (!map->init_slots[i]) 4969 continue; 4970 4971 targ_map = map->init_slots[i]; 4972 fd = bpf_map__fd(targ_map); 4973 4974 if (obj->gen_loader) { 4975 bpf_gen__populate_outer_map(obj->gen_loader, 4976 map - obj->maps, i, 4977 targ_map - obj->maps); 4978 } else { 4979 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 4980 } 4981 if (err) { 4982 err = -errno; 4983 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 4984 map->name, i, targ_map->name, fd, err); 4985 return err; 4986 } 4987 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 4988 map->name, i, targ_map->name, fd); 4989 } 4990 4991 zfree(&map->init_slots); 4992 map->init_slots_sz = 0; 4993 4994 return 0; 4995 } 4996 4997 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 4998 { 4999 const struct bpf_program *targ_prog; 5000 unsigned int i; 5001 int fd, err; 5002 5003 if (obj->gen_loader) 5004 return -ENOTSUP; 5005 5006 for (i = 0; i < map->init_slots_sz; i++) { 5007 if (!map->init_slots[i]) 5008 continue; 5009 5010 targ_prog = map->init_slots[i]; 5011 fd = bpf_program__fd(targ_prog); 5012 5013 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5014 if (err) { 5015 err = -errno; 5016 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5017 map->name, i, targ_prog->name, fd, err); 5018 return err; 5019 } 5020 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5021 map->name, i, targ_prog->name, fd); 5022 } 5023 5024 zfree(&map->init_slots); 5025 map->init_slots_sz = 0; 5026 5027 return 0; 5028 } 5029 5030 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5031 { 5032 struct bpf_map *map; 5033 int i, err; 5034 5035 for (i = 0; i < obj->nr_maps; i++) { 5036 map = &obj->maps[i]; 5037 5038 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5039 continue; 5040 5041 err = init_prog_array_slots(obj, map); 5042 if (err < 0) { 5043 zclose(map->fd); 5044 return err; 5045 } 5046 } 5047 return 0; 5048 } 5049 5050 static int map_set_def_max_entries(struct bpf_map *map) 5051 { 5052 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5053 int nr_cpus; 5054 5055 nr_cpus = libbpf_num_possible_cpus(); 5056 if (nr_cpus < 0) { 5057 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5058 map->name, nr_cpus); 5059 return nr_cpus; 5060 } 5061 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5062 map->def.max_entries = nr_cpus; 5063 } 5064 5065 return 0; 5066 } 5067 5068 static int 5069 bpf_object__create_maps(struct bpf_object *obj) 5070 { 5071 struct bpf_map *map; 5072 char *cp, errmsg[STRERR_BUFSIZE]; 5073 unsigned int i, j; 5074 int err; 5075 bool retried; 5076 5077 for (i = 0; i < obj->nr_maps; i++) { 5078 map = &obj->maps[i]; 5079 5080 /* To support old kernels, we skip creating global data maps 5081 * (.rodata, .data, .kconfig, etc); later on, during program 5082 * loading, if we detect that at least one of the to-be-loaded 5083 * programs is referencing any global data map, we'll error 5084 * out with program name and relocation index logged. 5085 * This approach allows to accommodate Clang emitting 5086 * unnecessary .rodata.str1.1 sections for string literals, 5087 * but also it allows to have CO-RE applications that use 5088 * global variables in some of BPF programs, but not others. 5089 * If those global variable-using programs are not loaded at 5090 * runtime due to bpf_program__set_autoload(prog, false), 5091 * bpf_object loading will succeed just fine even on old 5092 * kernels. 5093 */ 5094 if (bpf_map__is_internal(map) && 5095 !kernel_supports(obj, FEAT_GLOBAL_DATA)) { 5096 map->skipped = true; 5097 continue; 5098 } 5099 5100 err = map_set_def_max_entries(map); 5101 if (err) 5102 goto err_out; 5103 5104 retried = false; 5105 retry: 5106 if (map->pin_path) { 5107 err = bpf_object__reuse_map(map); 5108 if (err) { 5109 pr_warn("map '%s': error reusing pinned map\n", 5110 map->name); 5111 goto err_out; 5112 } 5113 if (retried && map->fd < 0) { 5114 pr_warn("map '%s': cannot find pinned map\n", 5115 map->name); 5116 err = -ENOENT; 5117 goto err_out; 5118 } 5119 } 5120 5121 if (map->fd >= 0) { 5122 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5123 map->name, map->fd); 5124 } else { 5125 err = bpf_object__create_map(obj, map, false); 5126 if (err) 5127 goto err_out; 5128 5129 pr_debug("map '%s': created successfully, fd=%d\n", 5130 map->name, map->fd); 5131 5132 if (bpf_map__is_internal(map)) { 5133 err = bpf_object__populate_internal_map(obj, map); 5134 if (err < 0) { 5135 zclose(map->fd); 5136 goto err_out; 5137 } 5138 } 5139 5140 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5141 err = init_map_in_map_slots(obj, map); 5142 if (err < 0) { 5143 zclose(map->fd); 5144 goto err_out; 5145 } 5146 } 5147 } 5148 5149 if (map->pin_path && !map->pinned) { 5150 err = bpf_map__pin(map, NULL); 5151 if (err) { 5152 zclose(map->fd); 5153 if (!retried && err == -EEXIST) { 5154 retried = true; 5155 goto retry; 5156 } 5157 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5158 map->name, map->pin_path, err); 5159 goto err_out; 5160 } 5161 } 5162 } 5163 5164 return 0; 5165 5166 err_out: 5167 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5168 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5169 pr_perm_msg(err); 5170 for (j = 0; j < i; j++) 5171 zclose(obj->maps[j].fd); 5172 return err; 5173 } 5174 5175 static bool bpf_core_is_flavor_sep(const char *s) 5176 { 5177 /* check X___Y name pattern, where X and Y are not underscores */ 5178 return s[0] != '_' && /* X */ 5179 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5180 s[4] != '_'; /* Y */ 5181 } 5182 5183 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5184 * before last triple underscore. Struct name part after last triple 5185 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5186 */ 5187 size_t bpf_core_essential_name_len(const char *name) 5188 { 5189 size_t n = strlen(name); 5190 int i; 5191 5192 for (i = n - 5; i >= 0; i--) { 5193 if (bpf_core_is_flavor_sep(name + i)) 5194 return i + 1; 5195 } 5196 return n; 5197 } 5198 5199 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5200 { 5201 if (!cands) 5202 return; 5203 5204 free(cands->cands); 5205 free(cands); 5206 } 5207 5208 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5209 size_t local_essent_len, 5210 const struct btf *targ_btf, 5211 const char *targ_btf_name, 5212 int targ_start_id, 5213 struct bpf_core_cand_list *cands) 5214 { 5215 struct bpf_core_cand *new_cands, *cand; 5216 const struct btf_type *t, *local_t; 5217 const char *targ_name, *local_name; 5218 size_t targ_essent_len; 5219 int n, i; 5220 5221 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5222 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5223 5224 n = btf__type_cnt(targ_btf); 5225 for (i = targ_start_id; i < n; i++) { 5226 t = btf__type_by_id(targ_btf, i); 5227 if (btf_kind(t) != btf_kind(local_t)) 5228 continue; 5229 5230 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5231 if (str_is_empty(targ_name)) 5232 continue; 5233 5234 targ_essent_len = bpf_core_essential_name_len(targ_name); 5235 if (targ_essent_len != local_essent_len) 5236 continue; 5237 5238 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5239 continue; 5240 5241 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5242 local_cand->id, btf_kind_str(local_t), 5243 local_name, i, btf_kind_str(t), targ_name, 5244 targ_btf_name); 5245 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5246 sizeof(*cands->cands)); 5247 if (!new_cands) 5248 return -ENOMEM; 5249 5250 cand = &new_cands[cands->len]; 5251 cand->btf = targ_btf; 5252 cand->id = i; 5253 5254 cands->cands = new_cands; 5255 cands->len++; 5256 } 5257 return 0; 5258 } 5259 5260 static int load_module_btfs(struct bpf_object *obj) 5261 { 5262 struct bpf_btf_info info; 5263 struct module_btf *mod_btf; 5264 struct btf *btf; 5265 char name[64]; 5266 __u32 id = 0, len; 5267 int err, fd; 5268 5269 if (obj->btf_modules_loaded) 5270 return 0; 5271 5272 if (obj->gen_loader) 5273 return 0; 5274 5275 /* don't do this again, even if we find no module BTFs */ 5276 obj->btf_modules_loaded = true; 5277 5278 /* kernel too old to support module BTFs */ 5279 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5280 return 0; 5281 5282 while (true) { 5283 err = bpf_btf_get_next_id(id, &id); 5284 if (err && errno == ENOENT) 5285 return 0; 5286 if (err) { 5287 err = -errno; 5288 pr_warn("failed to iterate BTF objects: %d\n", err); 5289 return err; 5290 } 5291 5292 fd = bpf_btf_get_fd_by_id(id); 5293 if (fd < 0) { 5294 if (errno == ENOENT) 5295 continue; /* expected race: BTF was unloaded */ 5296 err = -errno; 5297 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5298 return err; 5299 } 5300 5301 len = sizeof(info); 5302 memset(&info, 0, sizeof(info)); 5303 info.name = ptr_to_u64(name); 5304 info.name_len = sizeof(name); 5305 5306 err = bpf_obj_get_info_by_fd(fd, &info, &len); 5307 if (err) { 5308 err = -errno; 5309 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5310 goto err_out; 5311 } 5312 5313 /* ignore non-module BTFs */ 5314 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5315 close(fd); 5316 continue; 5317 } 5318 5319 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5320 err = libbpf_get_error(btf); 5321 if (err) { 5322 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5323 name, id, err); 5324 goto err_out; 5325 } 5326 5327 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5328 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5329 if (err) 5330 goto err_out; 5331 5332 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5333 5334 mod_btf->btf = btf; 5335 mod_btf->id = id; 5336 mod_btf->fd = fd; 5337 mod_btf->name = strdup(name); 5338 if (!mod_btf->name) { 5339 err = -ENOMEM; 5340 goto err_out; 5341 } 5342 continue; 5343 5344 err_out: 5345 close(fd); 5346 return err; 5347 } 5348 5349 return 0; 5350 } 5351 5352 static struct bpf_core_cand_list * 5353 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5354 { 5355 struct bpf_core_cand local_cand = {}; 5356 struct bpf_core_cand_list *cands; 5357 const struct btf *main_btf; 5358 const struct btf_type *local_t; 5359 const char *local_name; 5360 size_t local_essent_len; 5361 int err, i; 5362 5363 local_cand.btf = local_btf; 5364 local_cand.id = local_type_id; 5365 local_t = btf__type_by_id(local_btf, local_type_id); 5366 if (!local_t) 5367 return ERR_PTR(-EINVAL); 5368 5369 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5370 if (str_is_empty(local_name)) 5371 return ERR_PTR(-EINVAL); 5372 local_essent_len = bpf_core_essential_name_len(local_name); 5373 5374 cands = calloc(1, sizeof(*cands)); 5375 if (!cands) 5376 return ERR_PTR(-ENOMEM); 5377 5378 /* Attempt to find target candidates in vmlinux BTF first */ 5379 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5380 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5381 if (err) 5382 goto err_out; 5383 5384 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5385 if (cands->len) 5386 return cands; 5387 5388 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5389 if (obj->btf_vmlinux_override) 5390 return cands; 5391 5392 /* now look through module BTFs, trying to still find candidates */ 5393 err = load_module_btfs(obj); 5394 if (err) 5395 goto err_out; 5396 5397 for (i = 0; i < obj->btf_module_cnt; i++) { 5398 err = bpf_core_add_cands(&local_cand, local_essent_len, 5399 obj->btf_modules[i].btf, 5400 obj->btf_modules[i].name, 5401 btf__type_cnt(obj->btf_vmlinux), 5402 cands); 5403 if (err) 5404 goto err_out; 5405 } 5406 5407 return cands; 5408 err_out: 5409 bpf_core_free_cands(cands); 5410 return ERR_PTR(err); 5411 } 5412 5413 /* Check local and target types for compatibility. This check is used for 5414 * type-based CO-RE relocations and follow slightly different rules than 5415 * field-based relocations. This function assumes that root types were already 5416 * checked for name match. Beyond that initial root-level name check, names 5417 * are completely ignored. Compatibility rules are as follows: 5418 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5419 * kind should match for local and target types (i.e., STRUCT is not 5420 * compatible with UNION); 5421 * - for ENUMs, the size is ignored; 5422 * - for INT, size and signedness are ignored; 5423 * - for ARRAY, dimensionality is ignored, element types are checked for 5424 * compatibility recursively; 5425 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5426 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5427 * - FUNC_PROTOs are compatible if they have compatible signature: same 5428 * number of input args and compatible return and argument types. 5429 * These rules are not set in stone and probably will be adjusted as we get 5430 * more experience with using BPF CO-RE relocations. 5431 */ 5432 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5433 const struct btf *targ_btf, __u32 targ_id) 5434 { 5435 const struct btf_type *local_type, *targ_type; 5436 int depth = 32; /* max recursion depth */ 5437 5438 /* caller made sure that names match (ignoring flavor suffix) */ 5439 local_type = btf__type_by_id(local_btf, local_id); 5440 targ_type = btf__type_by_id(targ_btf, targ_id); 5441 if (btf_kind(local_type) != btf_kind(targ_type)) 5442 return 0; 5443 5444 recur: 5445 depth--; 5446 if (depth < 0) 5447 return -EINVAL; 5448 5449 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 5450 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 5451 if (!local_type || !targ_type) 5452 return -EINVAL; 5453 5454 if (btf_kind(local_type) != btf_kind(targ_type)) 5455 return 0; 5456 5457 switch (btf_kind(local_type)) { 5458 case BTF_KIND_UNKN: 5459 case BTF_KIND_STRUCT: 5460 case BTF_KIND_UNION: 5461 case BTF_KIND_ENUM: 5462 case BTF_KIND_FWD: 5463 return 1; 5464 case BTF_KIND_INT: 5465 /* just reject deprecated bitfield-like integers; all other 5466 * integers are by default compatible between each other 5467 */ 5468 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0; 5469 case BTF_KIND_PTR: 5470 local_id = local_type->type; 5471 targ_id = targ_type->type; 5472 goto recur; 5473 case BTF_KIND_ARRAY: 5474 local_id = btf_array(local_type)->type; 5475 targ_id = btf_array(targ_type)->type; 5476 goto recur; 5477 case BTF_KIND_FUNC_PROTO: { 5478 struct btf_param *local_p = btf_params(local_type); 5479 struct btf_param *targ_p = btf_params(targ_type); 5480 __u16 local_vlen = btf_vlen(local_type); 5481 __u16 targ_vlen = btf_vlen(targ_type); 5482 int i, err; 5483 5484 if (local_vlen != targ_vlen) 5485 return 0; 5486 5487 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { 5488 skip_mods_and_typedefs(local_btf, local_p->type, &local_id); 5489 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id); 5490 err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id); 5491 if (err <= 0) 5492 return err; 5493 } 5494 5495 /* tail recurse for return type check */ 5496 skip_mods_and_typedefs(local_btf, local_type->type, &local_id); 5497 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id); 5498 goto recur; 5499 } 5500 default: 5501 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n", 5502 btf_kind_str(local_type), local_id, targ_id); 5503 return 0; 5504 } 5505 } 5506 5507 static size_t bpf_core_hash_fn(const void *key, void *ctx) 5508 { 5509 return (size_t)key; 5510 } 5511 5512 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 5513 { 5514 return k1 == k2; 5515 } 5516 5517 static void *u32_as_hash_key(__u32 x) 5518 { 5519 return (void *)(uintptr_t)x; 5520 } 5521 5522 static int record_relo_core(struct bpf_program *prog, 5523 const struct bpf_core_relo *core_relo, int insn_idx) 5524 { 5525 struct reloc_desc *relos, *relo; 5526 5527 relos = libbpf_reallocarray(prog->reloc_desc, 5528 prog->nr_reloc + 1, sizeof(*relos)); 5529 if (!relos) 5530 return -ENOMEM; 5531 relo = &relos[prog->nr_reloc]; 5532 relo->type = RELO_CORE; 5533 relo->insn_idx = insn_idx; 5534 relo->core_relo = core_relo; 5535 prog->reloc_desc = relos; 5536 prog->nr_reloc++; 5537 return 0; 5538 } 5539 5540 static int bpf_core_resolve_relo(struct bpf_program *prog, 5541 const struct bpf_core_relo *relo, 5542 int relo_idx, 5543 const struct btf *local_btf, 5544 struct hashmap *cand_cache, 5545 struct bpf_core_relo_res *targ_res) 5546 { 5547 struct bpf_core_spec specs_scratch[3] = {}; 5548 const void *type_key = u32_as_hash_key(relo->type_id); 5549 struct bpf_core_cand_list *cands = NULL; 5550 const char *prog_name = prog->name; 5551 const struct btf_type *local_type; 5552 const char *local_name; 5553 __u32 local_id = relo->type_id; 5554 int err; 5555 5556 local_type = btf__type_by_id(local_btf, local_id); 5557 if (!local_type) 5558 return -EINVAL; 5559 5560 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5561 if (!local_name) 5562 return -EINVAL; 5563 5564 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5565 !hashmap__find(cand_cache, type_key, (void **)&cands)) { 5566 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5567 if (IS_ERR(cands)) { 5568 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5569 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5570 local_name, PTR_ERR(cands)); 5571 return PTR_ERR(cands); 5572 } 5573 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL); 5574 if (err) { 5575 bpf_core_free_cands(cands); 5576 return err; 5577 } 5578 } 5579 5580 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5581 targ_res); 5582 } 5583 5584 static int 5585 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5586 { 5587 const struct btf_ext_info_sec *sec; 5588 struct bpf_core_relo_res targ_res; 5589 const struct bpf_core_relo *rec; 5590 const struct btf_ext_info *seg; 5591 struct hashmap_entry *entry; 5592 struct hashmap *cand_cache = NULL; 5593 struct bpf_program *prog; 5594 struct bpf_insn *insn; 5595 const char *sec_name; 5596 int i, err = 0, insn_idx, sec_idx; 5597 5598 if (obj->btf_ext->core_relo_info.len == 0) 5599 return 0; 5600 5601 if (targ_btf_path) { 5602 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5603 err = libbpf_get_error(obj->btf_vmlinux_override); 5604 if (err) { 5605 pr_warn("failed to parse target BTF: %d\n", err); 5606 return err; 5607 } 5608 } 5609 5610 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5611 if (IS_ERR(cand_cache)) { 5612 err = PTR_ERR(cand_cache); 5613 goto out; 5614 } 5615 5616 seg = &obj->btf_ext->core_relo_info; 5617 for_each_btf_ext_sec(seg, sec) { 5618 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5619 if (str_is_empty(sec_name)) { 5620 err = -EINVAL; 5621 goto out; 5622 } 5623 /* bpf_object's ELF is gone by now so it's not easy to find 5624 * section index by section name, but we can find *any* 5625 * bpf_program within desired section name and use it's 5626 * prog->sec_idx to do a proper search by section index and 5627 * instruction offset 5628 */ 5629 prog = NULL; 5630 for (i = 0; i < obj->nr_programs; i++) { 5631 prog = &obj->programs[i]; 5632 if (strcmp(prog->sec_name, sec_name) == 0) 5633 break; 5634 } 5635 if (!prog) { 5636 pr_warn("sec '%s': failed to find a BPF program\n", sec_name); 5637 return -ENOENT; 5638 } 5639 sec_idx = prog->sec_idx; 5640 5641 pr_debug("sec '%s': found %d CO-RE relocations\n", 5642 sec_name, sec->num_info); 5643 5644 for_each_btf_ext_rec(seg, sec, i, rec) { 5645 if (rec->insn_off % BPF_INSN_SZ) 5646 return -EINVAL; 5647 insn_idx = rec->insn_off / BPF_INSN_SZ; 5648 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5649 if (!prog) { 5650 pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n", 5651 sec_name, insn_idx, i); 5652 err = -EINVAL; 5653 goto out; 5654 } 5655 /* no need to apply CO-RE relocation if the program is 5656 * not going to be loaded 5657 */ 5658 if (!prog->load) 5659 continue; 5660 5661 /* adjust insn_idx from section frame of reference to the local 5662 * program's frame of reference; (sub-)program code is not yet 5663 * relocated, so it's enough to just subtract in-section offset 5664 */ 5665 insn_idx = insn_idx - prog->sec_insn_off; 5666 if (insn_idx >= prog->insns_cnt) 5667 return -EINVAL; 5668 insn = &prog->insns[insn_idx]; 5669 5670 if (prog->obj->gen_loader) { 5671 err = record_relo_core(prog, rec, insn_idx); 5672 if (err) { 5673 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5674 prog->name, i, err); 5675 goto out; 5676 } 5677 continue; 5678 } 5679 5680 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5681 if (err) { 5682 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5683 prog->name, i, err); 5684 goto out; 5685 } 5686 5687 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5688 if (err) { 5689 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5690 prog->name, i, insn_idx, err); 5691 goto out; 5692 } 5693 } 5694 } 5695 5696 out: 5697 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5698 btf__free(obj->btf_vmlinux_override); 5699 obj->btf_vmlinux_override = NULL; 5700 5701 if (!IS_ERR_OR_NULL(cand_cache)) { 5702 hashmap__for_each_entry(cand_cache, entry, i) { 5703 bpf_core_free_cands(entry->value); 5704 } 5705 hashmap__free(cand_cache); 5706 } 5707 return err; 5708 } 5709 5710 /* Relocate data references within program code: 5711 * - map references; 5712 * - global variable references; 5713 * - extern references. 5714 */ 5715 static int 5716 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5717 { 5718 int i; 5719 5720 for (i = 0; i < prog->nr_reloc; i++) { 5721 struct reloc_desc *relo = &prog->reloc_desc[i]; 5722 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5723 struct extern_desc *ext; 5724 5725 switch (relo->type) { 5726 case RELO_LD64: 5727 if (obj->gen_loader) { 5728 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 5729 insn[0].imm = relo->map_idx; 5730 } else { 5731 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5732 insn[0].imm = obj->maps[relo->map_idx].fd; 5733 } 5734 break; 5735 case RELO_DATA: 5736 insn[1].imm = insn[0].imm + relo->sym_off; 5737 if (obj->gen_loader) { 5738 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5739 insn[0].imm = relo->map_idx; 5740 } else { 5741 const struct bpf_map *map = &obj->maps[relo->map_idx]; 5742 5743 if (map->skipped) { 5744 pr_warn("prog '%s': relo #%d: kernel doesn't support global data\n", 5745 prog->name, i); 5746 return -ENOTSUP; 5747 } 5748 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5749 insn[0].imm = obj->maps[relo->map_idx].fd; 5750 } 5751 break; 5752 case RELO_EXTERN_VAR: 5753 ext = &obj->externs[relo->sym_off]; 5754 if (ext->type == EXT_KCFG) { 5755 if (obj->gen_loader) { 5756 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5757 insn[0].imm = obj->kconfig_map_idx; 5758 } else { 5759 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5760 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5761 } 5762 insn[1].imm = ext->kcfg.data_off; 5763 } else /* EXT_KSYM */ { 5764 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 5765 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 5766 insn[0].imm = ext->ksym.kernel_btf_id; 5767 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 5768 } else { /* typeless ksyms or unresolved typed ksyms */ 5769 insn[0].imm = (__u32)ext->ksym.addr; 5770 insn[1].imm = ext->ksym.addr >> 32; 5771 } 5772 } 5773 break; 5774 case RELO_EXTERN_FUNC: 5775 ext = &obj->externs[relo->sym_off]; 5776 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 5777 if (ext->is_set) { 5778 insn[0].imm = ext->ksym.kernel_btf_id; 5779 insn[0].off = ext->ksym.btf_fd_idx; 5780 } else { /* unresolved weak kfunc */ 5781 insn[0].imm = 0; 5782 insn[0].off = 0; 5783 } 5784 break; 5785 case RELO_SUBPROG_ADDR: 5786 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 5787 pr_warn("prog '%s': relo #%d: bad insn\n", 5788 prog->name, i); 5789 return -EINVAL; 5790 } 5791 /* handled already */ 5792 break; 5793 case RELO_CALL: 5794 /* handled already */ 5795 break; 5796 case RELO_CORE: 5797 /* will be handled by bpf_program_record_relos() */ 5798 break; 5799 default: 5800 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 5801 prog->name, i, relo->type); 5802 return -EINVAL; 5803 } 5804 } 5805 5806 return 0; 5807 } 5808 5809 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 5810 const struct bpf_program *prog, 5811 const struct btf_ext_info *ext_info, 5812 void **prog_info, __u32 *prog_rec_cnt, 5813 __u32 *prog_rec_sz) 5814 { 5815 void *copy_start = NULL, *copy_end = NULL; 5816 void *rec, *rec_end, *new_prog_info; 5817 const struct btf_ext_info_sec *sec; 5818 size_t old_sz, new_sz; 5819 const char *sec_name; 5820 int i, off_adj; 5821 5822 for_each_btf_ext_sec(ext_info, sec) { 5823 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5824 if (!sec_name) 5825 return -EINVAL; 5826 if (strcmp(sec_name, prog->sec_name) != 0) 5827 continue; 5828 5829 for_each_btf_ext_rec(ext_info, sec, i, rec) { 5830 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 5831 5832 if (insn_off < prog->sec_insn_off) 5833 continue; 5834 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 5835 break; 5836 5837 if (!copy_start) 5838 copy_start = rec; 5839 copy_end = rec + ext_info->rec_size; 5840 } 5841 5842 if (!copy_start) 5843 return -ENOENT; 5844 5845 /* append func/line info of a given (sub-)program to the main 5846 * program func/line info 5847 */ 5848 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 5849 new_sz = old_sz + (copy_end - copy_start); 5850 new_prog_info = realloc(*prog_info, new_sz); 5851 if (!new_prog_info) 5852 return -ENOMEM; 5853 *prog_info = new_prog_info; 5854 *prog_rec_cnt = new_sz / ext_info->rec_size; 5855 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 5856 5857 /* Kernel instruction offsets are in units of 8-byte 5858 * instructions, while .BTF.ext instruction offsets generated 5859 * by Clang are in units of bytes. So convert Clang offsets 5860 * into kernel offsets and adjust offset according to program 5861 * relocated position. 5862 */ 5863 off_adj = prog->sub_insn_off - prog->sec_insn_off; 5864 rec = new_prog_info + old_sz; 5865 rec_end = new_prog_info + new_sz; 5866 for (; rec < rec_end; rec += ext_info->rec_size) { 5867 __u32 *insn_off = rec; 5868 5869 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 5870 } 5871 *prog_rec_sz = ext_info->rec_size; 5872 return 0; 5873 } 5874 5875 return -ENOENT; 5876 } 5877 5878 static int 5879 reloc_prog_func_and_line_info(const struct bpf_object *obj, 5880 struct bpf_program *main_prog, 5881 const struct bpf_program *prog) 5882 { 5883 int err; 5884 5885 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 5886 * supprot func/line info 5887 */ 5888 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 5889 return 0; 5890 5891 /* only attempt func info relocation if main program's func_info 5892 * relocation was successful 5893 */ 5894 if (main_prog != prog && !main_prog->func_info) 5895 goto line_info; 5896 5897 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 5898 &main_prog->func_info, 5899 &main_prog->func_info_cnt, 5900 &main_prog->func_info_rec_size); 5901 if (err) { 5902 if (err != -ENOENT) { 5903 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 5904 prog->name, err); 5905 return err; 5906 } 5907 if (main_prog->func_info) { 5908 /* 5909 * Some info has already been found but has problem 5910 * in the last btf_ext reloc. Must have to error out. 5911 */ 5912 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 5913 return err; 5914 } 5915 /* Have problem loading the very first info. Ignore the rest. */ 5916 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 5917 prog->name); 5918 } 5919 5920 line_info: 5921 /* don't relocate line info if main program's relocation failed */ 5922 if (main_prog != prog && !main_prog->line_info) 5923 return 0; 5924 5925 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 5926 &main_prog->line_info, 5927 &main_prog->line_info_cnt, 5928 &main_prog->line_info_rec_size); 5929 if (err) { 5930 if (err != -ENOENT) { 5931 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 5932 prog->name, err); 5933 return err; 5934 } 5935 if (main_prog->line_info) { 5936 /* 5937 * Some info has already been found but has problem 5938 * in the last btf_ext reloc. Must have to error out. 5939 */ 5940 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 5941 return err; 5942 } 5943 /* Have problem loading the very first info. Ignore the rest. */ 5944 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 5945 prog->name); 5946 } 5947 return 0; 5948 } 5949 5950 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 5951 { 5952 size_t insn_idx = *(const size_t *)key; 5953 const struct reloc_desc *relo = elem; 5954 5955 if (insn_idx == relo->insn_idx) 5956 return 0; 5957 return insn_idx < relo->insn_idx ? -1 : 1; 5958 } 5959 5960 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 5961 { 5962 if (!prog->nr_reloc) 5963 return NULL; 5964 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 5965 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 5966 } 5967 5968 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 5969 { 5970 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 5971 struct reloc_desc *relos; 5972 int i; 5973 5974 if (main_prog == subprog) 5975 return 0; 5976 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 5977 if (!relos) 5978 return -ENOMEM; 5979 if (subprog->nr_reloc) 5980 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 5981 sizeof(*relos) * subprog->nr_reloc); 5982 5983 for (i = main_prog->nr_reloc; i < new_cnt; i++) 5984 relos[i].insn_idx += subprog->sub_insn_off; 5985 /* After insn_idx adjustment the 'relos' array is still sorted 5986 * by insn_idx and doesn't break bsearch. 5987 */ 5988 main_prog->reloc_desc = relos; 5989 main_prog->nr_reloc = new_cnt; 5990 return 0; 5991 } 5992 5993 static int 5994 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 5995 struct bpf_program *prog) 5996 { 5997 size_t sub_insn_idx, insn_idx, new_cnt; 5998 struct bpf_program *subprog; 5999 struct bpf_insn *insns, *insn; 6000 struct reloc_desc *relo; 6001 int err; 6002 6003 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6004 if (err) 6005 return err; 6006 6007 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6008 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6009 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6010 continue; 6011 6012 relo = find_prog_insn_relo(prog, insn_idx); 6013 if (relo && relo->type == RELO_EXTERN_FUNC) 6014 /* kfunc relocations will be handled later 6015 * in bpf_object__relocate_data() 6016 */ 6017 continue; 6018 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6019 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6020 prog->name, insn_idx, relo->type); 6021 return -LIBBPF_ERRNO__RELOC; 6022 } 6023 if (relo) { 6024 /* sub-program instruction index is a combination of 6025 * an offset of a symbol pointed to by relocation and 6026 * call instruction's imm field; for global functions, 6027 * call always has imm = -1, but for static functions 6028 * relocation is against STT_SECTION and insn->imm 6029 * points to a start of a static function 6030 * 6031 * for subprog addr relocation, the relo->sym_off + insn->imm is 6032 * the byte offset in the corresponding section. 6033 */ 6034 if (relo->type == RELO_CALL) 6035 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6036 else 6037 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6038 } else if (insn_is_pseudo_func(insn)) { 6039 /* 6040 * RELO_SUBPROG_ADDR relo is always emitted even if both 6041 * functions are in the same section, so it shouldn't reach here. 6042 */ 6043 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6044 prog->name, insn_idx); 6045 return -LIBBPF_ERRNO__RELOC; 6046 } else { 6047 /* if subprogram call is to a static function within 6048 * the same ELF section, there won't be any relocation 6049 * emitted, but it also means there is no additional 6050 * offset necessary, insns->imm is relative to 6051 * instruction's original position within the section 6052 */ 6053 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6054 } 6055 6056 /* we enforce that sub-programs should be in .text section */ 6057 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6058 if (!subprog) { 6059 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6060 prog->name); 6061 return -LIBBPF_ERRNO__RELOC; 6062 } 6063 6064 /* if it's the first call instruction calling into this 6065 * subprogram (meaning this subprog hasn't been processed 6066 * yet) within the context of current main program: 6067 * - append it at the end of main program's instructions blog; 6068 * - process is recursively, while current program is put on hold; 6069 * - if that subprogram calls some other not yet processes 6070 * subprogram, same thing will happen recursively until 6071 * there are no more unprocesses subprograms left to append 6072 * and relocate. 6073 */ 6074 if (subprog->sub_insn_off == 0) { 6075 subprog->sub_insn_off = main_prog->insns_cnt; 6076 6077 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6078 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6079 if (!insns) { 6080 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6081 return -ENOMEM; 6082 } 6083 main_prog->insns = insns; 6084 main_prog->insns_cnt = new_cnt; 6085 6086 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6087 subprog->insns_cnt * sizeof(*insns)); 6088 6089 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6090 main_prog->name, subprog->insns_cnt, subprog->name); 6091 6092 /* The subprog insns are now appended. Append its relos too. */ 6093 err = append_subprog_relos(main_prog, subprog); 6094 if (err) 6095 return err; 6096 err = bpf_object__reloc_code(obj, main_prog, subprog); 6097 if (err) 6098 return err; 6099 } 6100 6101 /* main_prog->insns memory could have been re-allocated, so 6102 * calculate pointer again 6103 */ 6104 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6105 /* calculate correct instruction position within current main 6106 * prog; each main prog can have a different set of 6107 * subprograms appended (potentially in different order as 6108 * well), so position of any subprog can be different for 6109 * different main programs */ 6110 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6111 6112 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6113 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6114 } 6115 6116 return 0; 6117 } 6118 6119 /* 6120 * Relocate sub-program calls. 6121 * 6122 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6123 * main prog) is processed separately. For each subprog (non-entry functions, 6124 * that can be called from either entry progs or other subprogs) gets their 6125 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6126 * hasn't been yet appended and relocated within current main prog. Once its 6127 * relocated, sub_insn_off will point at the position within current main prog 6128 * where given subprog was appended. This will further be used to relocate all 6129 * the call instructions jumping into this subprog. 6130 * 6131 * We start with main program and process all call instructions. If the call 6132 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6133 * is zero), subprog instructions are appended at the end of main program's 6134 * instruction array. Then main program is "put on hold" while we recursively 6135 * process newly appended subprogram. If that subprogram calls into another 6136 * subprogram that hasn't been appended, new subprogram is appended again to 6137 * the *main* prog's instructions (subprog's instructions are always left 6138 * untouched, as they need to be in unmodified state for subsequent main progs 6139 * and subprog instructions are always sent only as part of a main prog) and 6140 * the process continues recursively. Once all the subprogs called from a main 6141 * prog or any of its subprogs are appended (and relocated), all their 6142 * positions within finalized instructions array are known, so it's easy to 6143 * rewrite call instructions with correct relative offsets, corresponding to 6144 * desired target subprog. 6145 * 6146 * Its important to realize that some subprogs might not be called from some 6147 * main prog and any of its called/used subprogs. Those will keep their 6148 * subprog->sub_insn_off as zero at all times and won't be appended to current 6149 * main prog and won't be relocated within the context of current main prog. 6150 * They might still be used from other main progs later. 6151 * 6152 * Visually this process can be shown as below. Suppose we have two main 6153 * programs mainA and mainB and BPF object contains three subprogs: subA, 6154 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6155 * subC both call subB: 6156 * 6157 * +--------+ +-------+ 6158 * | v v | 6159 * +--+---+ +--+-+-+ +---+--+ 6160 * | subA | | subB | | subC | 6161 * +--+---+ +------+ +---+--+ 6162 * ^ ^ 6163 * | | 6164 * +---+-------+ +------+----+ 6165 * | mainA | | mainB | 6166 * +-----------+ +-----------+ 6167 * 6168 * We'll start relocating mainA, will find subA, append it and start 6169 * processing sub A recursively: 6170 * 6171 * +-----------+------+ 6172 * | mainA | subA | 6173 * +-----------+------+ 6174 * 6175 * At this point we notice that subB is used from subA, so we append it and 6176 * relocate (there are no further subcalls from subB): 6177 * 6178 * +-----------+------+------+ 6179 * | mainA | subA | subB | 6180 * +-----------+------+------+ 6181 * 6182 * At this point, we relocate subA calls, then go one level up and finish with 6183 * relocatin mainA calls. mainA is done. 6184 * 6185 * For mainB process is similar but results in different order. We start with 6186 * mainB and skip subA and subB, as mainB never calls them (at least 6187 * directly), but we see subC is needed, so we append and start processing it: 6188 * 6189 * +-----------+------+ 6190 * | mainB | subC | 6191 * +-----------+------+ 6192 * Now we see subC needs subB, so we go back to it, append and relocate it: 6193 * 6194 * +-----------+------+------+ 6195 * | mainB | subC | subB | 6196 * +-----------+------+------+ 6197 * 6198 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6199 */ 6200 static int 6201 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6202 { 6203 struct bpf_program *subprog; 6204 int i, err; 6205 6206 /* mark all subprogs as not relocated (yet) within the context of 6207 * current main program 6208 */ 6209 for (i = 0; i < obj->nr_programs; i++) { 6210 subprog = &obj->programs[i]; 6211 if (!prog_is_subprog(obj, subprog)) 6212 continue; 6213 6214 subprog->sub_insn_off = 0; 6215 } 6216 6217 err = bpf_object__reloc_code(obj, prog, prog); 6218 if (err) 6219 return err; 6220 6221 6222 return 0; 6223 } 6224 6225 static void 6226 bpf_object__free_relocs(struct bpf_object *obj) 6227 { 6228 struct bpf_program *prog; 6229 int i; 6230 6231 /* free up relocation descriptors */ 6232 for (i = 0; i < obj->nr_programs; i++) { 6233 prog = &obj->programs[i]; 6234 zfree(&prog->reloc_desc); 6235 prog->nr_reloc = 0; 6236 } 6237 } 6238 6239 static int cmp_relocs(const void *_a, const void *_b) 6240 { 6241 const struct reloc_desc *a = _a; 6242 const struct reloc_desc *b = _b; 6243 6244 if (a->insn_idx != b->insn_idx) 6245 return a->insn_idx < b->insn_idx ? -1 : 1; 6246 6247 /* no two relocations should have the same insn_idx, but ... */ 6248 if (a->type != b->type) 6249 return a->type < b->type ? -1 : 1; 6250 6251 return 0; 6252 } 6253 6254 static void bpf_object__sort_relos(struct bpf_object *obj) 6255 { 6256 int i; 6257 6258 for (i = 0; i < obj->nr_programs; i++) { 6259 struct bpf_program *p = &obj->programs[i]; 6260 6261 if (!p->nr_reloc) 6262 continue; 6263 6264 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6265 } 6266 } 6267 6268 static int 6269 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6270 { 6271 struct bpf_program *prog; 6272 size_t i, j; 6273 int err; 6274 6275 if (obj->btf_ext) { 6276 err = bpf_object__relocate_core(obj, targ_btf_path); 6277 if (err) { 6278 pr_warn("failed to perform CO-RE relocations: %d\n", 6279 err); 6280 return err; 6281 } 6282 if (obj->gen_loader) 6283 bpf_object__sort_relos(obj); 6284 } 6285 6286 /* Before relocating calls pre-process relocations and mark 6287 * few ld_imm64 instructions that points to subprogs. 6288 * Otherwise bpf_object__reloc_code() later would have to consider 6289 * all ld_imm64 insns as relocation candidates. That would 6290 * reduce relocation speed, since amount of find_prog_insn_relo() 6291 * would increase and most of them will fail to find a relo. 6292 */ 6293 for (i = 0; i < obj->nr_programs; i++) { 6294 prog = &obj->programs[i]; 6295 for (j = 0; j < prog->nr_reloc; j++) { 6296 struct reloc_desc *relo = &prog->reloc_desc[j]; 6297 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6298 6299 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6300 if (relo->type == RELO_SUBPROG_ADDR) 6301 insn[0].src_reg = BPF_PSEUDO_FUNC; 6302 } 6303 } 6304 6305 /* relocate subprogram calls and append used subprograms to main 6306 * programs; each copy of subprogram code needs to be relocated 6307 * differently for each main program, because its code location might 6308 * have changed. 6309 * Append subprog relos to main programs to allow data relos to be 6310 * processed after text is completely relocated. 6311 */ 6312 for (i = 0; i < obj->nr_programs; i++) { 6313 prog = &obj->programs[i]; 6314 /* sub-program's sub-calls are relocated within the context of 6315 * its main program only 6316 */ 6317 if (prog_is_subprog(obj, prog)) 6318 continue; 6319 if (!prog->load) 6320 continue; 6321 6322 err = bpf_object__relocate_calls(obj, prog); 6323 if (err) { 6324 pr_warn("prog '%s': failed to relocate calls: %d\n", 6325 prog->name, err); 6326 return err; 6327 } 6328 } 6329 /* Process data relos for main programs */ 6330 for (i = 0; i < obj->nr_programs; i++) { 6331 prog = &obj->programs[i]; 6332 if (prog_is_subprog(obj, prog)) 6333 continue; 6334 if (!prog->load) 6335 continue; 6336 err = bpf_object__relocate_data(obj, prog); 6337 if (err) { 6338 pr_warn("prog '%s': failed to relocate data references: %d\n", 6339 prog->name, err); 6340 return err; 6341 } 6342 } 6343 if (!obj->gen_loader) 6344 bpf_object__free_relocs(obj); 6345 return 0; 6346 } 6347 6348 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6349 Elf64_Shdr *shdr, Elf_Data *data); 6350 6351 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6352 Elf64_Shdr *shdr, Elf_Data *data) 6353 { 6354 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6355 int i, j, nrels, new_sz; 6356 const struct btf_var_secinfo *vi = NULL; 6357 const struct btf_type *sec, *var, *def; 6358 struct bpf_map *map = NULL, *targ_map = NULL; 6359 struct bpf_program *targ_prog = NULL; 6360 bool is_prog_array, is_map_in_map; 6361 const struct btf_member *member; 6362 const char *name, *mname, *type; 6363 unsigned int moff; 6364 Elf64_Sym *sym; 6365 Elf64_Rel *rel; 6366 void *tmp; 6367 6368 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6369 return -EINVAL; 6370 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6371 if (!sec) 6372 return -EINVAL; 6373 6374 nrels = shdr->sh_size / shdr->sh_entsize; 6375 for (i = 0; i < nrels; i++) { 6376 rel = elf_rel_by_idx(data, i); 6377 if (!rel) { 6378 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6379 return -LIBBPF_ERRNO__FORMAT; 6380 } 6381 6382 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6383 if (!sym) { 6384 pr_warn(".maps relo #%d: symbol %zx not found\n", 6385 i, (size_t)ELF64_R_SYM(rel->r_info)); 6386 return -LIBBPF_ERRNO__FORMAT; 6387 } 6388 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6389 6390 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6391 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6392 (size_t)rel->r_offset, sym->st_name, name); 6393 6394 for (j = 0; j < obj->nr_maps; j++) { 6395 map = &obj->maps[j]; 6396 if (map->sec_idx != obj->efile.btf_maps_shndx) 6397 continue; 6398 6399 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6400 if (vi->offset <= rel->r_offset && 6401 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6402 break; 6403 } 6404 if (j == obj->nr_maps) { 6405 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6406 i, name, (size_t)rel->r_offset); 6407 return -EINVAL; 6408 } 6409 6410 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 6411 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 6412 type = is_map_in_map ? "map" : "prog"; 6413 if (is_map_in_map) { 6414 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6415 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6416 i, name); 6417 return -LIBBPF_ERRNO__RELOC; 6418 } 6419 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6420 map->def.key_size != sizeof(int)) { 6421 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6422 i, map->name, sizeof(int)); 6423 return -EINVAL; 6424 } 6425 targ_map = bpf_object__find_map_by_name(obj, name); 6426 if (!targ_map) { 6427 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 6428 i, name); 6429 return -ESRCH; 6430 } 6431 } else if (is_prog_array) { 6432 targ_prog = bpf_object__find_program_by_name(obj, name); 6433 if (!targ_prog) { 6434 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 6435 i, name); 6436 return -ESRCH; 6437 } 6438 if (targ_prog->sec_idx != sym->st_shndx || 6439 targ_prog->sec_insn_off * 8 != sym->st_value || 6440 prog_is_subprog(obj, targ_prog)) { 6441 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 6442 i, name); 6443 return -LIBBPF_ERRNO__RELOC; 6444 } 6445 } else { 6446 return -EINVAL; 6447 } 6448 6449 var = btf__type_by_id(obj->btf, vi->type); 6450 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6451 if (btf_vlen(def) == 0) 6452 return -EINVAL; 6453 member = btf_members(def) + btf_vlen(def) - 1; 6454 mname = btf__name_by_offset(obj->btf, member->name_off); 6455 if (strcmp(mname, "values")) 6456 return -EINVAL; 6457 6458 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6459 if (rel->r_offset - vi->offset < moff) 6460 return -EINVAL; 6461 6462 moff = rel->r_offset - vi->offset - moff; 6463 /* here we use BPF pointer size, which is always 64 bit, as we 6464 * are parsing ELF that was built for BPF target 6465 */ 6466 if (moff % bpf_ptr_sz) 6467 return -EINVAL; 6468 moff /= bpf_ptr_sz; 6469 if (moff >= map->init_slots_sz) { 6470 new_sz = moff + 1; 6471 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6472 if (!tmp) 6473 return -ENOMEM; 6474 map->init_slots = tmp; 6475 memset(map->init_slots + map->init_slots_sz, 0, 6476 (new_sz - map->init_slots_sz) * host_ptr_sz); 6477 map->init_slots_sz = new_sz; 6478 } 6479 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 6480 6481 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 6482 i, map->name, moff, type, name); 6483 } 6484 6485 return 0; 6486 } 6487 6488 static int bpf_object__collect_relos(struct bpf_object *obj) 6489 { 6490 int i, err; 6491 6492 for (i = 0; i < obj->efile.sec_cnt; i++) { 6493 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6494 Elf64_Shdr *shdr; 6495 Elf_Data *data; 6496 int idx; 6497 6498 if (sec_desc->sec_type != SEC_RELO) 6499 continue; 6500 6501 shdr = sec_desc->shdr; 6502 data = sec_desc->data; 6503 idx = shdr->sh_info; 6504 6505 if (shdr->sh_type != SHT_REL) { 6506 pr_warn("internal error at %d\n", __LINE__); 6507 return -LIBBPF_ERRNO__INTERNAL; 6508 } 6509 6510 if (idx == obj->efile.st_ops_shndx) 6511 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6512 else if (idx == obj->efile.btf_maps_shndx) 6513 err = bpf_object__collect_map_relos(obj, shdr, data); 6514 else 6515 err = bpf_object__collect_prog_relos(obj, shdr, data); 6516 if (err) 6517 return err; 6518 } 6519 6520 bpf_object__sort_relos(obj); 6521 return 0; 6522 } 6523 6524 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6525 { 6526 if (BPF_CLASS(insn->code) == BPF_JMP && 6527 BPF_OP(insn->code) == BPF_CALL && 6528 BPF_SRC(insn->code) == BPF_K && 6529 insn->src_reg == 0 && 6530 insn->dst_reg == 0) { 6531 *func_id = insn->imm; 6532 return true; 6533 } 6534 return false; 6535 } 6536 6537 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6538 { 6539 struct bpf_insn *insn = prog->insns; 6540 enum bpf_func_id func_id; 6541 int i; 6542 6543 if (obj->gen_loader) 6544 return 0; 6545 6546 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6547 if (!insn_is_helper_call(insn, &func_id)) 6548 continue; 6549 6550 /* on kernels that don't yet support 6551 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6552 * to bpf_probe_read() which works well for old kernels 6553 */ 6554 switch (func_id) { 6555 case BPF_FUNC_probe_read_kernel: 6556 case BPF_FUNC_probe_read_user: 6557 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6558 insn->imm = BPF_FUNC_probe_read; 6559 break; 6560 case BPF_FUNC_probe_read_kernel_str: 6561 case BPF_FUNC_probe_read_user_str: 6562 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6563 insn->imm = BPF_FUNC_probe_read_str; 6564 break; 6565 default: 6566 break; 6567 } 6568 } 6569 return 0; 6570 } 6571 6572 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6573 int *btf_obj_fd, int *btf_type_id); 6574 6575 /* this is called as prog->sec_def->preload_fn for libbpf-supported sec_defs */ 6576 static int libbpf_preload_prog(struct bpf_program *prog, 6577 struct bpf_prog_load_opts *opts, long cookie) 6578 { 6579 enum sec_def_flags def = cookie; 6580 6581 /* old kernels might not support specifying expected_attach_type */ 6582 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6583 opts->expected_attach_type = 0; 6584 6585 if (def & SEC_SLEEPABLE) 6586 opts->prog_flags |= BPF_F_SLEEPABLE; 6587 6588 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 6589 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 6590 6591 if (def & SEC_DEPRECATED) 6592 pr_warn("SEC(\"%s\") is deprecated, please see https://github.com/libbpf/libbpf/wiki/Libbpf-1.0-migration-guide#bpf-program-sec-annotation-deprecations for details\n", 6593 prog->sec_name); 6594 6595 if ((prog->type == BPF_PROG_TYPE_TRACING || 6596 prog->type == BPF_PROG_TYPE_LSM || 6597 prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) { 6598 int btf_obj_fd = 0, btf_type_id = 0, err; 6599 const char *attach_name; 6600 6601 attach_name = strchr(prog->sec_name, '/') + 1; 6602 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6603 if (err) 6604 return err; 6605 6606 /* cache resolved BTF FD and BTF type ID in the prog */ 6607 prog->attach_btf_obj_fd = btf_obj_fd; 6608 prog->attach_btf_id = btf_type_id; 6609 6610 /* but by now libbpf common logic is not utilizing 6611 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 6612 * this callback is called after opts were populated by 6613 * libbpf, so this callback has to update opts explicitly here 6614 */ 6615 opts->attach_btf_obj_fd = btf_obj_fd; 6616 opts->attach_btf_id = btf_type_id; 6617 } 6618 return 0; 6619 } 6620 6621 static int bpf_object_load_prog_instance(struct bpf_object *obj, struct bpf_program *prog, 6622 struct bpf_insn *insns, int insns_cnt, 6623 const char *license, __u32 kern_version, 6624 int *prog_fd) 6625 { 6626 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 6627 const char *prog_name = NULL; 6628 char *cp, errmsg[STRERR_BUFSIZE]; 6629 size_t log_buf_size = 0; 6630 char *log_buf = NULL, *tmp; 6631 int btf_fd, ret, err; 6632 bool own_log_buf = true; 6633 __u32 log_level = prog->log_level; 6634 6635 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6636 /* 6637 * The program type must be set. Most likely we couldn't find a proper 6638 * section definition at load time, and thus we didn't infer the type. 6639 */ 6640 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6641 prog->name, prog->sec_name); 6642 return -EINVAL; 6643 } 6644 6645 if (!insns || !insns_cnt) 6646 return -EINVAL; 6647 6648 load_attr.expected_attach_type = prog->expected_attach_type; 6649 if (kernel_supports(obj, FEAT_PROG_NAME)) 6650 prog_name = prog->name; 6651 load_attr.attach_prog_fd = prog->attach_prog_fd; 6652 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 6653 load_attr.attach_btf_id = prog->attach_btf_id; 6654 load_attr.kern_version = kern_version; 6655 load_attr.prog_ifindex = prog->prog_ifindex; 6656 6657 /* specify func_info/line_info only if kernel supports them */ 6658 btf_fd = bpf_object__btf_fd(obj); 6659 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 6660 load_attr.prog_btf_fd = btf_fd; 6661 load_attr.func_info = prog->func_info; 6662 load_attr.func_info_rec_size = prog->func_info_rec_size; 6663 load_attr.func_info_cnt = prog->func_info_cnt; 6664 load_attr.line_info = prog->line_info; 6665 load_attr.line_info_rec_size = prog->line_info_rec_size; 6666 load_attr.line_info_cnt = prog->line_info_cnt; 6667 } 6668 load_attr.log_level = log_level; 6669 load_attr.prog_flags = prog->prog_flags; 6670 load_attr.fd_array = obj->fd_array; 6671 6672 /* adjust load_attr if sec_def provides custom preload callback */ 6673 if (prog->sec_def && prog->sec_def->preload_fn) { 6674 err = prog->sec_def->preload_fn(prog, &load_attr, prog->sec_def->cookie); 6675 if (err < 0) { 6676 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 6677 prog->name, err); 6678 return err; 6679 } 6680 } 6681 6682 if (obj->gen_loader) { 6683 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 6684 license, insns, insns_cnt, &load_attr, 6685 prog - obj->programs); 6686 *prog_fd = -1; 6687 return 0; 6688 } 6689 6690 retry_load: 6691 /* if log_level is zero, we don't request logs initiallly even if 6692 * custom log_buf is specified; if the program load fails, then we'll 6693 * bump log_level to 1 and use either custom log_buf or we'll allocate 6694 * our own and retry the load to get details on what failed 6695 */ 6696 if (log_level) { 6697 if (prog->log_buf) { 6698 log_buf = prog->log_buf; 6699 log_buf_size = prog->log_size; 6700 own_log_buf = false; 6701 } else if (obj->log_buf) { 6702 log_buf = obj->log_buf; 6703 log_buf_size = obj->log_size; 6704 own_log_buf = false; 6705 } else { 6706 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 6707 tmp = realloc(log_buf, log_buf_size); 6708 if (!tmp) { 6709 ret = -ENOMEM; 6710 goto out; 6711 } 6712 log_buf = tmp; 6713 log_buf[0] = '\0'; 6714 own_log_buf = true; 6715 } 6716 } 6717 6718 load_attr.log_buf = log_buf; 6719 load_attr.log_size = log_buf_size; 6720 load_attr.log_level = log_level; 6721 6722 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 6723 if (ret >= 0) { 6724 if (log_level && own_log_buf) { 6725 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6726 prog->name, log_buf); 6727 } 6728 6729 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 6730 struct bpf_map *map; 6731 int i; 6732 6733 for (i = 0; i < obj->nr_maps; i++) { 6734 map = &prog->obj->maps[i]; 6735 if (map->libbpf_type != LIBBPF_MAP_RODATA) 6736 continue; 6737 6738 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 6739 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6740 pr_warn("prog '%s': failed to bind map '%s': %s\n", 6741 prog->name, map->real_name, cp); 6742 /* Don't fail hard if can't bind rodata. */ 6743 } 6744 } 6745 } 6746 6747 *prog_fd = ret; 6748 ret = 0; 6749 goto out; 6750 } 6751 6752 if (log_level == 0) { 6753 log_level = 1; 6754 goto retry_load; 6755 } 6756 /* On ENOSPC, increase log buffer size and retry, unless custom 6757 * log_buf is specified. 6758 * Be careful to not overflow u32, though. Kernel's log buf size limit 6759 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 6760 * multiply by 2 unless we are sure we'll fit within 32 bits. 6761 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 6762 */ 6763 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 6764 goto retry_load; 6765 6766 ret = -errno; 6767 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6768 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 6769 pr_perm_msg(ret); 6770 6771 if (own_log_buf && log_buf && log_buf[0] != '\0') { 6772 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6773 prog->name, log_buf); 6774 } 6775 if (insns_cnt >= BPF_MAXINSNS) { 6776 pr_warn("prog '%s': program too large (%d insns), at most %d insns\n", 6777 prog->name, insns_cnt, BPF_MAXINSNS); 6778 } 6779 6780 out: 6781 if (own_log_buf) 6782 free(log_buf); 6783 return ret; 6784 } 6785 6786 static int bpf_program_record_relos(struct bpf_program *prog) 6787 { 6788 struct bpf_object *obj = prog->obj; 6789 int i; 6790 6791 for (i = 0; i < prog->nr_reloc; i++) { 6792 struct reloc_desc *relo = &prog->reloc_desc[i]; 6793 struct extern_desc *ext = &obj->externs[relo->sym_off]; 6794 6795 switch (relo->type) { 6796 case RELO_EXTERN_VAR: 6797 if (ext->type != EXT_KSYM) 6798 continue; 6799 bpf_gen__record_extern(obj->gen_loader, ext->name, 6800 ext->is_weak, !ext->ksym.type_id, 6801 BTF_KIND_VAR, relo->insn_idx); 6802 break; 6803 case RELO_EXTERN_FUNC: 6804 bpf_gen__record_extern(obj->gen_loader, ext->name, 6805 ext->is_weak, false, BTF_KIND_FUNC, 6806 relo->insn_idx); 6807 break; 6808 case RELO_CORE: { 6809 struct bpf_core_relo cr = { 6810 .insn_off = relo->insn_idx * 8, 6811 .type_id = relo->core_relo->type_id, 6812 .access_str_off = relo->core_relo->access_str_off, 6813 .kind = relo->core_relo->kind, 6814 }; 6815 6816 bpf_gen__record_relo_core(obj->gen_loader, &cr); 6817 break; 6818 } 6819 default: 6820 continue; 6821 } 6822 } 6823 return 0; 6824 } 6825 6826 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 6827 const char *license, __u32 kern_ver) 6828 { 6829 int err = 0, fd, i; 6830 6831 if (obj->loaded) { 6832 pr_warn("prog '%s': can't load after object was loaded\n", prog->name); 6833 return libbpf_err(-EINVAL); 6834 } 6835 6836 if (prog->instances.nr < 0 || !prog->instances.fds) { 6837 if (prog->preprocessor) { 6838 pr_warn("Internal error: can't load program '%s'\n", 6839 prog->name); 6840 return libbpf_err(-LIBBPF_ERRNO__INTERNAL); 6841 } 6842 6843 prog->instances.fds = malloc(sizeof(int)); 6844 if (!prog->instances.fds) { 6845 pr_warn("Not enough memory for BPF fds\n"); 6846 return libbpf_err(-ENOMEM); 6847 } 6848 prog->instances.nr = 1; 6849 prog->instances.fds[0] = -1; 6850 } 6851 6852 if (!prog->preprocessor) { 6853 if (prog->instances.nr != 1) { 6854 pr_warn("prog '%s': inconsistent nr(%d) != 1\n", 6855 prog->name, prog->instances.nr); 6856 } 6857 if (obj->gen_loader) 6858 bpf_program_record_relos(prog); 6859 err = bpf_object_load_prog_instance(obj, prog, 6860 prog->insns, prog->insns_cnt, 6861 license, kern_ver, &fd); 6862 if (!err) 6863 prog->instances.fds[0] = fd; 6864 goto out; 6865 } 6866 6867 for (i = 0; i < prog->instances.nr; i++) { 6868 struct bpf_prog_prep_result result; 6869 bpf_program_prep_t preprocessor = prog->preprocessor; 6870 6871 memset(&result, 0, sizeof(result)); 6872 err = preprocessor(prog, i, prog->insns, 6873 prog->insns_cnt, &result); 6874 if (err) { 6875 pr_warn("Preprocessing the %dth instance of program '%s' failed\n", 6876 i, prog->name); 6877 goto out; 6878 } 6879 6880 if (!result.new_insn_ptr || !result.new_insn_cnt) { 6881 pr_debug("Skip loading the %dth instance of program '%s'\n", 6882 i, prog->name); 6883 prog->instances.fds[i] = -1; 6884 if (result.pfd) 6885 *result.pfd = -1; 6886 continue; 6887 } 6888 6889 err = bpf_object_load_prog_instance(obj, prog, 6890 result.new_insn_ptr, result.new_insn_cnt, 6891 license, kern_ver, &fd); 6892 if (err) { 6893 pr_warn("Loading the %dth instance of program '%s' failed\n", 6894 i, prog->name); 6895 goto out; 6896 } 6897 6898 if (result.pfd) 6899 *result.pfd = fd; 6900 prog->instances.fds[i] = fd; 6901 } 6902 out: 6903 if (err) 6904 pr_warn("failed to load program '%s'\n", prog->name); 6905 return libbpf_err(err); 6906 } 6907 6908 int bpf_program__load(struct bpf_program *prog, const char *license, __u32 kern_ver) 6909 { 6910 return bpf_object_load_prog(prog->obj, prog, license, kern_ver); 6911 } 6912 6913 static int 6914 bpf_object__load_progs(struct bpf_object *obj, int log_level) 6915 { 6916 struct bpf_program *prog; 6917 size_t i; 6918 int err; 6919 6920 for (i = 0; i < obj->nr_programs; i++) { 6921 prog = &obj->programs[i]; 6922 err = bpf_object__sanitize_prog(obj, prog); 6923 if (err) 6924 return err; 6925 } 6926 6927 for (i = 0; i < obj->nr_programs; i++) { 6928 prog = &obj->programs[i]; 6929 if (prog_is_subprog(obj, prog)) 6930 continue; 6931 if (!prog->load) { 6932 pr_debug("prog '%s': skipped loading\n", prog->name); 6933 continue; 6934 } 6935 prog->log_level |= log_level; 6936 err = bpf_object_load_prog(obj, prog, obj->license, obj->kern_version); 6937 if (err) 6938 return err; 6939 } 6940 if (obj->gen_loader) 6941 bpf_object__free_relocs(obj); 6942 return 0; 6943 } 6944 6945 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 6946 6947 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 6948 { 6949 struct bpf_program *prog; 6950 int err; 6951 6952 bpf_object__for_each_program(prog, obj) { 6953 prog->sec_def = find_sec_def(prog->sec_name); 6954 if (!prog->sec_def) { 6955 /* couldn't guess, but user might manually specify */ 6956 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 6957 prog->name, prog->sec_name); 6958 continue; 6959 } 6960 6961 bpf_program__set_type(prog, prog->sec_def->prog_type); 6962 bpf_program__set_expected_attach_type(prog, prog->sec_def->expected_attach_type); 6963 6964 #pragma GCC diagnostic push 6965 #pragma GCC diagnostic ignored "-Wdeprecated-declarations" 6966 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING || 6967 prog->sec_def->prog_type == BPF_PROG_TYPE_EXT) 6968 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0); 6969 #pragma GCC diagnostic pop 6970 6971 /* sec_def can have custom callback which should be called 6972 * after bpf_program is initialized to adjust its properties 6973 */ 6974 if (prog->sec_def->init_fn) { 6975 err = prog->sec_def->init_fn(prog, prog->sec_def->cookie); 6976 if (err < 0) { 6977 pr_warn("prog '%s': failed to initialize: %d\n", 6978 prog->name, err); 6979 return err; 6980 } 6981 } 6982 } 6983 6984 return 0; 6985 } 6986 6987 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 6988 const struct bpf_object_open_opts *opts) 6989 { 6990 const char *obj_name, *kconfig, *btf_tmp_path; 6991 struct bpf_object *obj; 6992 char tmp_name[64]; 6993 int err; 6994 char *log_buf; 6995 size_t log_size; 6996 __u32 log_level; 6997 6998 if (elf_version(EV_CURRENT) == EV_NONE) { 6999 pr_warn("failed to init libelf for %s\n", 7000 path ? : "(mem buf)"); 7001 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7002 } 7003 7004 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7005 return ERR_PTR(-EINVAL); 7006 7007 obj_name = OPTS_GET(opts, object_name, NULL); 7008 if (obj_buf) { 7009 if (!obj_name) { 7010 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7011 (unsigned long)obj_buf, 7012 (unsigned long)obj_buf_sz); 7013 obj_name = tmp_name; 7014 } 7015 path = obj_name; 7016 pr_debug("loading object '%s' from buffer\n", obj_name); 7017 } 7018 7019 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7020 log_size = OPTS_GET(opts, kernel_log_size, 0); 7021 log_level = OPTS_GET(opts, kernel_log_level, 0); 7022 if (log_size > UINT_MAX) 7023 return ERR_PTR(-EINVAL); 7024 if (log_size && !log_buf) 7025 return ERR_PTR(-EINVAL); 7026 7027 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7028 if (IS_ERR(obj)) 7029 return obj; 7030 7031 obj->log_buf = log_buf; 7032 obj->log_size = log_size; 7033 obj->log_level = log_level; 7034 7035 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7036 if (btf_tmp_path) { 7037 if (strlen(btf_tmp_path) >= PATH_MAX) { 7038 err = -ENAMETOOLONG; 7039 goto out; 7040 } 7041 obj->btf_custom_path = strdup(btf_tmp_path); 7042 if (!obj->btf_custom_path) { 7043 err = -ENOMEM; 7044 goto out; 7045 } 7046 } 7047 7048 kconfig = OPTS_GET(opts, kconfig, NULL); 7049 if (kconfig) { 7050 obj->kconfig = strdup(kconfig); 7051 if (!obj->kconfig) { 7052 err = -ENOMEM; 7053 goto out; 7054 } 7055 } 7056 7057 err = bpf_object__elf_init(obj); 7058 err = err ? : bpf_object__check_endianness(obj); 7059 err = err ? : bpf_object__elf_collect(obj); 7060 err = err ? : bpf_object__collect_externs(obj); 7061 err = err ? : bpf_object__finalize_btf(obj); 7062 err = err ? : bpf_object__init_maps(obj, opts); 7063 err = err ? : bpf_object_init_progs(obj, opts); 7064 err = err ? : bpf_object__collect_relos(obj); 7065 if (err) 7066 goto out; 7067 7068 bpf_object__elf_finish(obj); 7069 7070 return obj; 7071 out: 7072 bpf_object__close(obj); 7073 return ERR_PTR(err); 7074 } 7075 7076 static struct bpf_object * 7077 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags) 7078 { 7079 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7080 .relaxed_maps = flags & MAPS_RELAX_COMPAT, 7081 ); 7082 7083 /* param validation */ 7084 if (!attr->file) 7085 return NULL; 7086 7087 pr_debug("loading %s\n", attr->file); 7088 return bpf_object_open(attr->file, NULL, 0, &opts); 7089 } 7090 7091 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr) 7092 { 7093 return libbpf_ptr(__bpf_object__open_xattr(attr, 0)); 7094 } 7095 7096 struct bpf_object *bpf_object__open(const char *path) 7097 { 7098 struct bpf_object_open_attr attr = { 7099 .file = path, 7100 .prog_type = BPF_PROG_TYPE_UNSPEC, 7101 }; 7102 7103 return libbpf_ptr(__bpf_object__open_xattr(&attr, 0)); 7104 } 7105 7106 struct bpf_object * 7107 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7108 { 7109 if (!path) 7110 return libbpf_err_ptr(-EINVAL); 7111 7112 pr_debug("loading %s\n", path); 7113 7114 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7115 } 7116 7117 struct bpf_object * 7118 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7119 const struct bpf_object_open_opts *opts) 7120 { 7121 if (!obj_buf || obj_buf_sz == 0) 7122 return libbpf_err_ptr(-EINVAL); 7123 7124 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7125 } 7126 7127 struct bpf_object * 7128 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz, 7129 const char *name) 7130 { 7131 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7132 .object_name = name, 7133 /* wrong default, but backwards-compatible */ 7134 .relaxed_maps = true, 7135 ); 7136 7137 /* returning NULL is wrong, but backwards-compatible */ 7138 if (!obj_buf || obj_buf_sz == 0) 7139 return errno = EINVAL, NULL; 7140 7141 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, &opts)); 7142 } 7143 7144 static int bpf_object_unload(struct bpf_object *obj) 7145 { 7146 size_t i; 7147 7148 if (!obj) 7149 return libbpf_err(-EINVAL); 7150 7151 for (i = 0; i < obj->nr_maps; i++) { 7152 zclose(obj->maps[i].fd); 7153 if (obj->maps[i].st_ops) 7154 zfree(&obj->maps[i].st_ops->kern_vdata); 7155 } 7156 7157 for (i = 0; i < obj->nr_programs; i++) 7158 bpf_program__unload(&obj->programs[i]); 7159 7160 return 0; 7161 } 7162 7163 int bpf_object__unload(struct bpf_object *obj) __attribute__((alias("bpf_object_unload"))); 7164 7165 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7166 { 7167 struct bpf_map *m; 7168 7169 bpf_object__for_each_map(m, obj) { 7170 if (!bpf_map__is_internal(m)) 7171 continue; 7172 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7173 m->def.map_flags ^= BPF_F_MMAPABLE; 7174 } 7175 7176 return 0; 7177 } 7178 7179 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7180 { 7181 char sym_type, sym_name[500]; 7182 unsigned long long sym_addr; 7183 const struct btf_type *t; 7184 struct extern_desc *ext; 7185 int ret, err = 0; 7186 FILE *f; 7187 7188 f = fopen("/proc/kallsyms", "r"); 7189 if (!f) { 7190 err = -errno; 7191 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7192 return err; 7193 } 7194 7195 while (true) { 7196 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7197 &sym_addr, &sym_type, sym_name); 7198 if (ret == EOF && feof(f)) 7199 break; 7200 if (ret != 3) { 7201 pr_warn("failed to read kallsyms entry: %d\n", ret); 7202 err = -EINVAL; 7203 goto out; 7204 } 7205 7206 ext = find_extern_by_name(obj, sym_name); 7207 if (!ext || ext->type != EXT_KSYM) 7208 continue; 7209 7210 t = btf__type_by_id(obj->btf, ext->btf_id); 7211 if (!btf_is_var(t)) 7212 continue; 7213 7214 if (ext->is_set && ext->ksym.addr != sym_addr) { 7215 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n", 7216 sym_name, ext->ksym.addr, sym_addr); 7217 err = -EINVAL; 7218 goto out; 7219 } 7220 if (!ext->is_set) { 7221 ext->is_set = true; 7222 ext->ksym.addr = sym_addr; 7223 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr); 7224 } 7225 } 7226 7227 out: 7228 fclose(f); 7229 return err; 7230 } 7231 7232 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7233 __u16 kind, struct btf **res_btf, 7234 struct module_btf **res_mod_btf) 7235 { 7236 struct module_btf *mod_btf; 7237 struct btf *btf; 7238 int i, id, err; 7239 7240 btf = obj->btf_vmlinux; 7241 mod_btf = NULL; 7242 id = btf__find_by_name_kind(btf, ksym_name, kind); 7243 7244 if (id == -ENOENT) { 7245 err = load_module_btfs(obj); 7246 if (err) 7247 return err; 7248 7249 for (i = 0; i < obj->btf_module_cnt; i++) { 7250 /* we assume module_btf's BTF FD is always >0 */ 7251 mod_btf = &obj->btf_modules[i]; 7252 btf = mod_btf->btf; 7253 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7254 if (id != -ENOENT) 7255 break; 7256 } 7257 } 7258 if (id <= 0) 7259 return -ESRCH; 7260 7261 *res_btf = btf; 7262 *res_mod_btf = mod_btf; 7263 return id; 7264 } 7265 7266 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7267 struct extern_desc *ext) 7268 { 7269 const struct btf_type *targ_var, *targ_type; 7270 __u32 targ_type_id, local_type_id; 7271 struct module_btf *mod_btf = NULL; 7272 const char *targ_var_name; 7273 struct btf *btf = NULL; 7274 int id, err; 7275 7276 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7277 if (id < 0) { 7278 if (id == -ESRCH && ext->is_weak) 7279 return 0; 7280 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7281 ext->name); 7282 return id; 7283 } 7284 7285 /* find local type_id */ 7286 local_type_id = ext->ksym.type_id; 7287 7288 /* find target type_id */ 7289 targ_var = btf__type_by_id(btf, id); 7290 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7291 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7292 7293 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7294 btf, targ_type_id); 7295 if (err <= 0) { 7296 const struct btf_type *local_type; 7297 const char *targ_name, *local_name; 7298 7299 local_type = btf__type_by_id(obj->btf, local_type_id); 7300 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7301 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7302 7303 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7304 ext->name, local_type_id, 7305 btf_kind_str(local_type), local_name, targ_type_id, 7306 btf_kind_str(targ_type), targ_name); 7307 return -EINVAL; 7308 } 7309 7310 ext->is_set = true; 7311 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7312 ext->ksym.kernel_btf_id = id; 7313 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7314 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7315 7316 return 0; 7317 } 7318 7319 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7320 struct extern_desc *ext) 7321 { 7322 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7323 struct module_btf *mod_btf = NULL; 7324 const struct btf_type *kern_func; 7325 struct btf *kern_btf = NULL; 7326 int ret; 7327 7328 local_func_proto_id = ext->ksym.type_id; 7329 7330 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf); 7331 if (kfunc_id < 0) { 7332 if (kfunc_id == -ESRCH && ext->is_weak) 7333 return 0; 7334 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7335 ext->name); 7336 return kfunc_id; 7337 } 7338 7339 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7340 kfunc_proto_id = kern_func->type; 7341 7342 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7343 kern_btf, kfunc_proto_id); 7344 if (ret <= 0) { 7345 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n", 7346 ext->name, local_func_proto_id, kfunc_proto_id); 7347 return -EINVAL; 7348 } 7349 7350 /* set index for module BTF fd in fd_array, if unset */ 7351 if (mod_btf && !mod_btf->fd_array_idx) { 7352 /* insn->off is s16 */ 7353 if (obj->fd_array_cnt == INT16_MAX) { 7354 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7355 ext->name, mod_btf->fd_array_idx); 7356 return -E2BIG; 7357 } 7358 /* Cannot use index 0 for module BTF fd */ 7359 if (!obj->fd_array_cnt) 7360 obj->fd_array_cnt = 1; 7361 7362 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7363 obj->fd_array_cnt + 1); 7364 if (ret) 7365 return ret; 7366 mod_btf->fd_array_idx = obj->fd_array_cnt; 7367 /* we assume module BTF FD is always >0 */ 7368 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7369 } 7370 7371 ext->is_set = true; 7372 ext->ksym.kernel_btf_id = kfunc_id; 7373 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7374 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n", 7375 ext->name, kfunc_id); 7376 7377 return 0; 7378 } 7379 7380 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7381 { 7382 const struct btf_type *t; 7383 struct extern_desc *ext; 7384 int i, err; 7385 7386 for (i = 0; i < obj->nr_extern; i++) { 7387 ext = &obj->externs[i]; 7388 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7389 continue; 7390 7391 if (obj->gen_loader) { 7392 ext->is_set = true; 7393 ext->ksym.kernel_btf_obj_fd = 0; 7394 ext->ksym.kernel_btf_id = 0; 7395 continue; 7396 } 7397 t = btf__type_by_id(obj->btf, ext->btf_id); 7398 if (btf_is_var(t)) 7399 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7400 else 7401 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7402 if (err) 7403 return err; 7404 } 7405 return 0; 7406 } 7407 7408 static int bpf_object__resolve_externs(struct bpf_object *obj, 7409 const char *extra_kconfig) 7410 { 7411 bool need_config = false, need_kallsyms = false; 7412 bool need_vmlinux_btf = false; 7413 struct extern_desc *ext; 7414 void *kcfg_data = NULL; 7415 int err, i; 7416 7417 if (obj->nr_extern == 0) 7418 return 0; 7419 7420 if (obj->kconfig_map_idx >= 0) 7421 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7422 7423 for (i = 0; i < obj->nr_extern; i++) { 7424 ext = &obj->externs[i]; 7425 7426 if (ext->type == EXT_KCFG && 7427 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7428 void *ext_val = kcfg_data + ext->kcfg.data_off; 7429 __u32 kver = get_kernel_version(); 7430 7431 if (!kver) { 7432 pr_warn("failed to get kernel version\n"); 7433 return -EINVAL; 7434 } 7435 err = set_kcfg_value_num(ext, ext_val, kver); 7436 if (err) 7437 return err; 7438 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver); 7439 } else if (ext->type == EXT_KCFG && str_has_pfx(ext->name, "CONFIG_")) { 7440 need_config = true; 7441 } else if (ext->type == EXT_KSYM) { 7442 if (ext->ksym.type_id) 7443 need_vmlinux_btf = true; 7444 else 7445 need_kallsyms = true; 7446 } else { 7447 pr_warn("unrecognized extern '%s'\n", ext->name); 7448 return -EINVAL; 7449 } 7450 } 7451 if (need_config && extra_kconfig) { 7452 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7453 if (err) 7454 return -EINVAL; 7455 need_config = false; 7456 for (i = 0; i < obj->nr_extern; i++) { 7457 ext = &obj->externs[i]; 7458 if (ext->type == EXT_KCFG && !ext->is_set) { 7459 need_config = true; 7460 break; 7461 } 7462 } 7463 } 7464 if (need_config) { 7465 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7466 if (err) 7467 return -EINVAL; 7468 } 7469 if (need_kallsyms) { 7470 err = bpf_object__read_kallsyms_file(obj); 7471 if (err) 7472 return -EINVAL; 7473 } 7474 if (need_vmlinux_btf) { 7475 err = bpf_object__resolve_ksyms_btf_id(obj); 7476 if (err) 7477 return -EINVAL; 7478 } 7479 for (i = 0; i < obj->nr_extern; i++) { 7480 ext = &obj->externs[i]; 7481 7482 if (!ext->is_set && !ext->is_weak) { 7483 pr_warn("extern %s (strong) not resolved\n", ext->name); 7484 return -ESRCH; 7485 } else if (!ext->is_set) { 7486 pr_debug("extern %s (weak) not resolved, defaulting to zero\n", 7487 ext->name); 7488 } 7489 } 7490 7491 return 0; 7492 } 7493 7494 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 7495 { 7496 int err, i; 7497 7498 if (!obj) 7499 return libbpf_err(-EINVAL); 7500 7501 if (obj->loaded) { 7502 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7503 return libbpf_err(-EINVAL); 7504 } 7505 7506 if (obj->gen_loader) 7507 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 7508 7509 err = bpf_object__probe_loading(obj); 7510 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7511 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7512 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7513 err = err ? : bpf_object__sanitize_maps(obj); 7514 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7515 err = err ? : bpf_object__create_maps(obj); 7516 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 7517 err = err ? : bpf_object__load_progs(obj, extra_log_level); 7518 err = err ? : bpf_object_init_prog_arrays(obj); 7519 7520 if (obj->gen_loader) { 7521 /* reset FDs */ 7522 if (obj->btf) 7523 btf__set_fd(obj->btf, -1); 7524 for (i = 0; i < obj->nr_maps; i++) 7525 obj->maps[i].fd = -1; 7526 if (!err) 7527 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 7528 } 7529 7530 /* clean up fd_array */ 7531 zfree(&obj->fd_array); 7532 7533 /* clean up module BTFs */ 7534 for (i = 0; i < obj->btf_module_cnt; i++) { 7535 close(obj->btf_modules[i].fd); 7536 btf__free(obj->btf_modules[i].btf); 7537 free(obj->btf_modules[i].name); 7538 } 7539 free(obj->btf_modules); 7540 7541 /* clean up vmlinux BTF */ 7542 btf__free(obj->btf_vmlinux); 7543 obj->btf_vmlinux = NULL; 7544 7545 obj->loaded = true; /* doesn't matter if successfully or not */ 7546 7547 if (err) 7548 goto out; 7549 7550 return 0; 7551 out: 7552 /* unpin any maps that were auto-pinned during load */ 7553 for (i = 0; i < obj->nr_maps; i++) 7554 if (obj->maps[i].pinned && !obj->maps[i].reused) 7555 bpf_map__unpin(&obj->maps[i], NULL); 7556 7557 bpf_object_unload(obj); 7558 pr_warn("failed to load object '%s'\n", obj->path); 7559 return libbpf_err(err); 7560 } 7561 7562 int bpf_object__load_xattr(struct bpf_object_load_attr *attr) 7563 { 7564 return bpf_object_load(attr->obj, attr->log_level, attr->target_btf_path); 7565 } 7566 7567 int bpf_object__load(struct bpf_object *obj) 7568 { 7569 return bpf_object_load(obj, 0, NULL); 7570 } 7571 7572 static int make_parent_dir(const char *path) 7573 { 7574 char *cp, errmsg[STRERR_BUFSIZE]; 7575 char *dname, *dir; 7576 int err = 0; 7577 7578 dname = strdup(path); 7579 if (dname == NULL) 7580 return -ENOMEM; 7581 7582 dir = dirname(dname); 7583 if (mkdir(dir, 0700) && errno != EEXIST) 7584 err = -errno; 7585 7586 free(dname); 7587 if (err) { 7588 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7589 pr_warn("failed to mkdir %s: %s\n", path, cp); 7590 } 7591 return err; 7592 } 7593 7594 static int check_path(const char *path) 7595 { 7596 char *cp, errmsg[STRERR_BUFSIZE]; 7597 struct statfs st_fs; 7598 char *dname, *dir; 7599 int err = 0; 7600 7601 if (path == NULL) 7602 return -EINVAL; 7603 7604 dname = strdup(path); 7605 if (dname == NULL) 7606 return -ENOMEM; 7607 7608 dir = dirname(dname); 7609 if (statfs(dir, &st_fs)) { 7610 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7611 pr_warn("failed to statfs %s: %s\n", dir, cp); 7612 err = -errno; 7613 } 7614 free(dname); 7615 7616 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7617 pr_warn("specified path %s is not on BPF FS\n", path); 7618 err = -EINVAL; 7619 } 7620 7621 return err; 7622 } 7623 7624 static int bpf_program_pin_instance(struct bpf_program *prog, const char *path, int instance) 7625 { 7626 char *cp, errmsg[STRERR_BUFSIZE]; 7627 int err; 7628 7629 err = make_parent_dir(path); 7630 if (err) 7631 return libbpf_err(err); 7632 7633 err = check_path(path); 7634 if (err) 7635 return libbpf_err(err); 7636 7637 if (prog == NULL) { 7638 pr_warn("invalid program pointer\n"); 7639 return libbpf_err(-EINVAL); 7640 } 7641 7642 if (instance < 0 || instance >= prog->instances.nr) { 7643 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7644 instance, prog->name, prog->instances.nr); 7645 return libbpf_err(-EINVAL); 7646 } 7647 7648 if (bpf_obj_pin(prog->instances.fds[instance], path)) { 7649 err = -errno; 7650 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7651 pr_warn("failed to pin program: %s\n", cp); 7652 return libbpf_err(err); 7653 } 7654 pr_debug("pinned program '%s'\n", path); 7655 7656 return 0; 7657 } 7658 7659 static int bpf_program_unpin_instance(struct bpf_program *prog, const char *path, int instance) 7660 { 7661 int err; 7662 7663 err = check_path(path); 7664 if (err) 7665 return libbpf_err(err); 7666 7667 if (prog == NULL) { 7668 pr_warn("invalid program pointer\n"); 7669 return libbpf_err(-EINVAL); 7670 } 7671 7672 if (instance < 0 || instance >= prog->instances.nr) { 7673 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7674 instance, prog->name, prog->instances.nr); 7675 return libbpf_err(-EINVAL); 7676 } 7677 7678 err = unlink(path); 7679 if (err != 0) 7680 return libbpf_err(-errno); 7681 7682 pr_debug("unpinned program '%s'\n", path); 7683 7684 return 0; 7685 } 7686 7687 __attribute__((alias("bpf_program_pin_instance"))) 7688 int bpf_object__pin_instance(struct bpf_program *prog, const char *path, int instance); 7689 7690 __attribute__((alias("bpf_program_unpin_instance"))) 7691 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, int instance); 7692 7693 int bpf_program__pin(struct bpf_program *prog, const char *path) 7694 { 7695 int i, err; 7696 7697 err = make_parent_dir(path); 7698 if (err) 7699 return libbpf_err(err); 7700 7701 err = check_path(path); 7702 if (err) 7703 return libbpf_err(err); 7704 7705 if (prog == NULL) { 7706 pr_warn("invalid program pointer\n"); 7707 return libbpf_err(-EINVAL); 7708 } 7709 7710 if (prog->instances.nr <= 0) { 7711 pr_warn("no instances of prog %s to pin\n", prog->name); 7712 return libbpf_err(-EINVAL); 7713 } 7714 7715 if (prog->instances.nr == 1) { 7716 /* don't create subdirs when pinning single instance */ 7717 return bpf_program_pin_instance(prog, path, 0); 7718 } 7719 7720 for (i = 0; i < prog->instances.nr; i++) { 7721 char buf[PATH_MAX]; 7722 int len; 7723 7724 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7725 if (len < 0) { 7726 err = -EINVAL; 7727 goto err_unpin; 7728 } else if (len >= PATH_MAX) { 7729 err = -ENAMETOOLONG; 7730 goto err_unpin; 7731 } 7732 7733 err = bpf_program_pin_instance(prog, buf, i); 7734 if (err) 7735 goto err_unpin; 7736 } 7737 7738 return 0; 7739 7740 err_unpin: 7741 for (i = i - 1; i >= 0; i--) { 7742 char buf[PATH_MAX]; 7743 int len; 7744 7745 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7746 if (len < 0) 7747 continue; 7748 else if (len >= PATH_MAX) 7749 continue; 7750 7751 bpf_program_unpin_instance(prog, buf, i); 7752 } 7753 7754 rmdir(path); 7755 7756 return libbpf_err(err); 7757 } 7758 7759 int bpf_program__unpin(struct bpf_program *prog, const char *path) 7760 { 7761 int i, err; 7762 7763 err = check_path(path); 7764 if (err) 7765 return libbpf_err(err); 7766 7767 if (prog == NULL) { 7768 pr_warn("invalid program pointer\n"); 7769 return libbpf_err(-EINVAL); 7770 } 7771 7772 if (prog->instances.nr <= 0) { 7773 pr_warn("no instances of prog %s to pin\n", prog->name); 7774 return libbpf_err(-EINVAL); 7775 } 7776 7777 if (prog->instances.nr == 1) { 7778 /* don't create subdirs when pinning single instance */ 7779 return bpf_program_unpin_instance(prog, path, 0); 7780 } 7781 7782 for (i = 0; i < prog->instances.nr; i++) { 7783 char buf[PATH_MAX]; 7784 int len; 7785 7786 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7787 if (len < 0) 7788 return libbpf_err(-EINVAL); 7789 else if (len >= PATH_MAX) 7790 return libbpf_err(-ENAMETOOLONG); 7791 7792 err = bpf_program_unpin_instance(prog, buf, i); 7793 if (err) 7794 return err; 7795 } 7796 7797 err = rmdir(path); 7798 if (err) 7799 return libbpf_err(-errno); 7800 7801 return 0; 7802 } 7803 7804 int bpf_map__pin(struct bpf_map *map, const char *path) 7805 { 7806 char *cp, errmsg[STRERR_BUFSIZE]; 7807 int err; 7808 7809 if (map == NULL) { 7810 pr_warn("invalid map pointer\n"); 7811 return libbpf_err(-EINVAL); 7812 } 7813 7814 if (map->pin_path) { 7815 if (path && strcmp(path, map->pin_path)) { 7816 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7817 bpf_map__name(map), map->pin_path, path); 7818 return libbpf_err(-EINVAL); 7819 } else if (map->pinned) { 7820 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 7821 bpf_map__name(map), map->pin_path); 7822 return 0; 7823 } 7824 } else { 7825 if (!path) { 7826 pr_warn("missing a path to pin map '%s' at\n", 7827 bpf_map__name(map)); 7828 return libbpf_err(-EINVAL); 7829 } else if (map->pinned) { 7830 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 7831 return libbpf_err(-EEXIST); 7832 } 7833 7834 map->pin_path = strdup(path); 7835 if (!map->pin_path) { 7836 err = -errno; 7837 goto out_err; 7838 } 7839 } 7840 7841 err = make_parent_dir(map->pin_path); 7842 if (err) 7843 return libbpf_err(err); 7844 7845 err = check_path(map->pin_path); 7846 if (err) 7847 return libbpf_err(err); 7848 7849 if (bpf_obj_pin(map->fd, map->pin_path)) { 7850 err = -errno; 7851 goto out_err; 7852 } 7853 7854 map->pinned = true; 7855 pr_debug("pinned map '%s'\n", map->pin_path); 7856 7857 return 0; 7858 7859 out_err: 7860 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7861 pr_warn("failed to pin map: %s\n", cp); 7862 return libbpf_err(err); 7863 } 7864 7865 int bpf_map__unpin(struct bpf_map *map, const char *path) 7866 { 7867 int err; 7868 7869 if (map == NULL) { 7870 pr_warn("invalid map pointer\n"); 7871 return libbpf_err(-EINVAL); 7872 } 7873 7874 if (map->pin_path) { 7875 if (path && strcmp(path, map->pin_path)) { 7876 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7877 bpf_map__name(map), map->pin_path, path); 7878 return libbpf_err(-EINVAL); 7879 } 7880 path = map->pin_path; 7881 } else if (!path) { 7882 pr_warn("no path to unpin map '%s' from\n", 7883 bpf_map__name(map)); 7884 return libbpf_err(-EINVAL); 7885 } 7886 7887 err = check_path(path); 7888 if (err) 7889 return libbpf_err(err); 7890 7891 err = unlink(path); 7892 if (err != 0) 7893 return libbpf_err(-errno); 7894 7895 map->pinned = false; 7896 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 7897 7898 return 0; 7899 } 7900 7901 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 7902 { 7903 char *new = NULL; 7904 7905 if (path) { 7906 new = strdup(path); 7907 if (!new) 7908 return libbpf_err(-errno); 7909 } 7910 7911 free(map->pin_path); 7912 map->pin_path = new; 7913 return 0; 7914 } 7915 7916 __alias(bpf_map__pin_path) 7917 const char *bpf_map__get_pin_path(const struct bpf_map *map); 7918 7919 const char *bpf_map__pin_path(const struct bpf_map *map) 7920 { 7921 return map->pin_path; 7922 } 7923 7924 bool bpf_map__is_pinned(const struct bpf_map *map) 7925 { 7926 return map->pinned; 7927 } 7928 7929 static void sanitize_pin_path(char *s) 7930 { 7931 /* bpffs disallows periods in path names */ 7932 while (*s) { 7933 if (*s == '.') 7934 *s = '_'; 7935 s++; 7936 } 7937 } 7938 7939 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 7940 { 7941 struct bpf_map *map; 7942 int err; 7943 7944 if (!obj) 7945 return libbpf_err(-ENOENT); 7946 7947 if (!obj->loaded) { 7948 pr_warn("object not yet loaded; load it first\n"); 7949 return libbpf_err(-ENOENT); 7950 } 7951 7952 bpf_object__for_each_map(map, obj) { 7953 char *pin_path = NULL; 7954 char buf[PATH_MAX]; 7955 7956 if (map->skipped) 7957 continue; 7958 7959 if (path) { 7960 int len; 7961 7962 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7963 bpf_map__name(map)); 7964 if (len < 0) { 7965 err = -EINVAL; 7966 goto err_unpin_maps; 7967 } else if (len >= PATH_MAX) { 7968 err = -ENAMETOOLONG; 7969 goto err_unpin_maps; 7970 } 7971 sanitize_pin_path(buf); 7972 pin_path = buf; 7973 } else if (!map->pin_path) { 7974 continue; 7975 } 7976 7977 err = bpf_map__pin(map, pin_path); 7978 if (err) 7979 goto err_unpin_maps; 7980 } 7981 7982 return 0; 7983 7984 err_unpin_maps: 7985 while ((map = bpf_object__prev_map(obj, map))) { 7986 if (!map->pin_path) 7987 continue; 7988 7989 bpf_map__unpin(map, NULL); 7990 } 7991 7992 return libbpf_err(err); 7993 } 7994 7995 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 7996 { 7997 struct bpf_map *map; 7998 int err; 7999 8000 if (!obj) 8001 return libbpf_err(-ENOENT); 8002 8003 bpf_object__for_each_map(map, obj) { 8004 char *pin_path = NULL; 8005 char buf[PATH_MAX]; 8006 8007 if (path) { 8008 int len; 8009 8010 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8011 bpf_map__name(map)); 8012 if (len < 0) 8013 return libbpf_err(-EINVAL); 8014 else if (len >= PATH_MAX) 8015 return libbpf_err(-ENAMETOOLONG); 8016 sanitize_pin_path(buf); 8017 pin_path = buf; 8018 } else if (!map->pin_path) { 8019 continue; 8020 } 8021 8022 err = bpf_map__unpin(map, pin_path); 8023 if (err) 8024 return libbpf_err(err); 8025 } 8026 8027 return 0; 8028 } 8029 8030 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8031 { 8032 struct bpf_program *prog; 8033 int err; 8034 8035 if (!obj) 8036 return libbpf_err(-ENOENT); 8037 8038 if (!obj->loaded) { 8039 pr_warn("object not yet loaded; load it first\n"); 8040 return libbpf_err(-ENOENT); 8041 } 8042 8043 bpf_object__for_each_program(prog, obj) { 8044 char buf[PATH_MAX]; 8045 int len; 8046 8047 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8048 prog->pin_name); 8049 if (len < 0) { 8050 err = -EINVAL; 8051 goto err_unpin_programs; 8052 } else if (len >= PATH_MAX) { 8053 err = -ENAMETOOLONG; 8054 goto err_unpin_programs; 8055 } 8056 8057 err = bpf_program__pin(prog, buf); 8058 if (err) 8059 goto err_unpin_programs; 8060 } 8061 8062 return 0; 8063 8064 err_unpin_programs: 8065 while ((prog = bpf_object__prev_program(obj, prog))) { 8066 char buf[PATH_MAX]; 8067 int len; 8068 8069 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8070 prog->pin_name); 8071 if (len < 0) 8072 continue; 8073 else if (len >= PATH_MAX) 8074 continue; 8075 8076 bpf_program__unpin(prog, buf); 8077 } 8078 8079 return libbpf_err(err); 8080 } 8081 8082 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8083 { 8084 struct bpf_program *prog; 8085 int err; 8086 8087 if (!obj) 8088 return libbpf_err(-ENOENT); 8089 8090 bpf_object__for_each_program(prog, obj) { 8091 char buf[PATH_MAX]; 8092 int len; 8093 8094 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8095 prog->pin_name); 8096 if (len < 0) 8097 return libbpf_err(-EINVAL); 8098 else if (len >= PATH_MAX) 8099 return libbpf_err(-ENAMETOOLONG); 8100 8101 err = bpf_program__unpin(prog, buf); 8102 if (err) 8103 return libbpf_err(err); 8104 } 8105 8106 return 0; 8107 } 8108 8109 int bpf_object__pin(struct bpf_object *obj, const char *path) 8110 { 8111 int err; 8112 8113 err = bpf_object__pin_maps(obj, path); 8114 if (err) 8115 return libbpf_err(err); 8116 8117 err = bpf_object__pin_programs(obj, path); 8118 if (err) { 8119 bpf_object__unpin_maps(obj, path); 8120 return libbpf_err(err); 8121 } 8122 8123 return 0; 8124 } 8125 8126 static void bpf_map__destroy(struct bpf_map *map) 8127 { 8128 if (map->clear_priv) 8129 map->clear_priv(map, map->priv); 8130 map->priv = NULL; 8131 map->clear_priv = NULL; 8132 8133 if (map->inner_map) { 8134 bpf_map__destroy(map->inner_map); 8135 zfree(&map->inner_map); 8136 } 8137 8138 zfree(&map->init_slots); 8139 map->init_slots_sz = 0; 8140 8141 if (map->mmaped) { 8142 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8143 map->mmaped = NULL; 8144 } 8145 8146 if (map->st_ops) { 8147 zfree(&map->st_ops->data); 8148 zfree(&map->st_ops->progs); 8149 zfree(&map->st_ops->kern_func_off); 8150 zfree(&map->st_ops); 8151 } 8152 8153 zfree(&map->name); 8154 zfree(&map->real_name); 8155 zfree(&map->pin_path); 8156 8157 if (map->fd >= 0) 8158 zclose(map->fd); 8159 } 8160 8161 void bpf_object__close(struct bpf_object *obj) 8162 { 8163 size_t i; 8164 8165 if (IS_ERR_OR_NULL(obj)) 8166 return; 8167 8168 if (obj->clear_priv) 8169 obj->clear_priv(obj, obj->priv); 8170 8171 bpf_gen__free(obj->gen_loader); 8172 bpf_object__elf_finish(obj); 8173 bpf_object_unload(obj); 8174 btf__free(obj->btf); 8175 btf_ext__free(obj->btf_ext); 8176 8177 for (i = 0; i < obj->nr_maps; i++) 8178 bpf_map__destroy(&obj->maps[i]); 8179 8180 zfree(&obj->btf_custom_path); 8181 zfree(&obj->kconfig); 8182 zfree(&obj->externs); 8183 obj->nr_extern = 0; 8184 8185 zfree(&obj->maps); 8186 obj->nr_maps = 0; 8187 8188 if (obj->programs && obj->nr_programs) { 8189 for (i = 0; i < obj->nr_programs; i++) 8190 bpf_program__exit(&obj->programs[i]); 8191 } 8192 zfree(&obj->programs); 8193 8194 list_del(&obj->list); 8195 free(obj); 8196 } 8197 8198 struct bpf_object * 8199 bpf_object__next(struct bpf_object *prev) 8200 { 8201 struct bpf_object *next; 8202 bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST); 8203 8204 if (strict) 8205 return NULL; 8206 8207 if (!prev) 8208 next = list_first_entry(&bpf_objects_list, 8209 struct bpf_object, 8210 list); 8211 else 8212 next = list_next_entry(prev, list); 8213 8214 /* Empty list is noticed here so don't need checking on entry. */ 8215 if (&next->list == &bpf_objects_list) 8216 return NULL; 8217 8218 return next; 8219 } 8220 8221 const char *bpf_object__name(const struct bpf_object *obj) 8222 { 8223 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8224 } 8225 8226 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8227 { 8228 return obj ? obj->kern_version : 0; 8229 } 8230 8231 struct btf *bpf_object__btf(const struct bpf_object *obj) 8232 { 8233 return obj ? obj->btf : NULL; 8234 } 8235 8236 int bpf_object__btf_fd(const struct bpf_object *obj) 8237 { 8238 return obj->btf ? btf__fd(obj->btf) : -1; 8239 } 8240 8241 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8242 { 8243 if (obj->loaded) 8244 return libbpf_err(-EINVAL); 8245 8246 obj->kern_version = kern_version; 8247 8248 return 0; 8249 } 8250 8251 int bpf_object__set_priv(struct bpf_object *obj, void *priv, 8252 bpf_object_clear_priv_t clear_priv) 8253 { 8254 if (obj->priv && obj->clear_priv) 8255 obj->clear_priv(obj, obj->priv); 8256 8257 obj->priv = priv; 8258 obj->clear_priv = clear_priv; 8259 return 0; 8260 } 8261 8262 void *bpf_object__priv(const struct bpf_object *obj) 8263 { 8264 return obj ? obj->priv : libbpf_err_ptr(-EINVAL); 8265 } 8266 8267 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8268 { 8269 struct bpf_gen *gen; 8270 8271 if (!opts) 8272 return -EFAULT; 8273 if (!OPTS_VALID(opts, gen_loader_opts)) 8274 return -EINVAL; 8275 gen = calloc(sizeof(*gen), 1); 8276 if (!gen) 8277 return -ENOMEM; 8278 gen->opts = opts; 8279 obj->gen_loader = gen; 8280 return 0; 8281 } 8282 8283 static struct bpf_program * 8284 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8285 bool forward) 8286 { 8287 size_t nr_programs = obj->nr_programs; 8288 ssize_t idx; 8289 8290 if (!nr_programs) 8291 return NULL; 8292 8293 if (!p) 8294 /* Iter from the beginning */ 8295 return forward ? &obj->programs[0] : 8296 &obj->programs[nr_programs - 1]; 8297 8298 if (p->obj != obj) { 8299 pr_warn("error: program handler doesn't match object\n"); 8300 return errno = EINVAL, NULL; 8301 } 8302 8303 idx = (p - obj->programs) + (forward ? 1 : -1); 8304 if (idx >= obj->nr_programs || idx < 0) 8305 return NULL; 8306 return &obj->programs[idx]; 8307 } 8308 8309 struct bpf_program * 8310 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj) 8311 { 8312 return bpf_object__next_program(obj, prev); 8313 } 8314 8315 struct bpf_program * 8316 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8317 { 8318 struct bpf_program *prog = prev; 8319 8320 do { 8321 prog = __bpf_program__iter(prog, obj, true); 8322 } while (prog && prog_is_subprog(obj, prog)); 8323 8324 return prog; 8325 } 8326 8327 struct bpf_program * 8328 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj) 8329 { 8330 return bpf_object__prev_program(obj, next); 8331 } 8332 8333 struct bpf_program * 8334 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8335 { 8336 struct bpf_program *prog = next; 8337 8338 do { 8339 prog = __bpf_program__iter(prog, obj, false); 8340 } while (prog && prog_is_subprog(obj, prog)); 8341 8342 return prog; 8343 } 8344 8345 int bpf_program__set_priv(struct bpf_program *prog, void *priv, 8346 bpf_program_clear_priv_t clear_priv) 8347 { 8348 if (prog->priv && prog->clear_priv) 8349 prog->clear_priv(prog, prog->priv); 8350 8351 prog->priv = priv; 8352 prog->clear_priv = clear_priv; 8353 return 0; 8354 } 8355 8356 void *bpf_program__priv(const struct bpf_program *prog) 8357 { 8358 return prog ? prog->priv : libbpf_err_ptr(-EINVAL); 8359 } 8360 8361 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8362 { 8363 prog->prog_ifindex = ifindex; 8364 } 8365 8366 const char *bpf_program__name(const struct bpf_program *prog) 8367 { 8368 return prog->name; 8369 } 8370 8371 const char *bpf_program__section_name(const struct bpf_program *prog) 8372 { 8373 return prog->sec_name; 8374 } 8375 8376 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy) 8377 { 8378 const char *title; 8379 8380 title = prog->sec_name; 8381 if (needs_copy) { 8382 title = strdup(title); 8383 if (!title) { 8384 pr_warn("failed to strdup program title\n"); 8385 return libbpf_err_ptr(-ENOMEM); 8386 } 8387 } 8388 8389 return title; 8390 } 8391 8392 bool bpf_program__autoload(const struct bpf_program *prog) 8393 { 8394 return prog->load; 8395 } 8396 8397 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8398 { 8399 if (prog->obj->loaded) 8400 return libbpf_err(-EINVAL); 8401 8402 prog->load = autoload; 8403 return 0; 8404 } 8405 8406 static int bpf_program_nth_fd(const struct bpf_program *prog, int n); 8407 8408 int bpf_program__fd(const struct bpf_program *prog) 8409 { 8410 return bpf_program_nth_fd(prog, 0); 8411 } 8412 8413 size_t bpf_program__size(const struct bpf_program *prog) 8414 { 8415 return prog->insns_cnt * BPF_INSN_SZ; 8416 } 8417 8418 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8419 { 8420 return prog->insns; 8421 } 8422 8423 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8424 { 8425 return prog->insns_cnt; 8426 } 8427 8428 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances, 8429 bpf_program_prep_t prep) 8430 { 8431 int *instances_fds; 8432 8433 if (nr_instances <= 0 || !prep) 8434 return libbpf_err(-EINVAL); 8435 8436 if (prog->instances.nr > 0 || prog->instances.fds) { 8437 pr_warn("Can't set pre-processor after loading\n"); 8438 return libbpf_err(-EINVAL); 8439 } 8440 8441 instances_fds = malloc(sizeof(int) * nr_instances); 8442 if (!instances_fds) { 8443 pr_warn("alloc memory failed for fds\n"); 8444 return libbpf_err(-ENOMEM); 8445 } 8446 8447 /* fill all fd with -1 */ 8448 memset(instances_fds, -1, sizeof(int) * nr_instances); 8449 8450 prog->instances.nr = nr_instances; 8451 prog->instances.fds = instances_fds; 8452 prog->preprocessor = prep; 8453 return 0; 8454 } 8455 8456 __attribute__((alias("bpf_program_nth_fd"))) 8457 int bpf_program__nth_fd(const struct bpf_program *prog, int n); 8458 8459 static int bpf_program_nth_fd(const struct bpf_program *prog, int n) 8460 { 8461 int fd; 8462 8463 if (!prog) 8464 return libbpf_err(-EINVAL); 8465 8466 if (n >= prog->instances.nr || n < 0) { 8467 pr_warn("Can't get the %dth fd from program %s: only %d instances\n", 8468 n, prog->name, prog->instances.nr); 8469 return libbpf_err(-EINVAL); 8470 } 8471 8472 fd = prog->instances.fds[n]; 8473 if (fd < 0) { 8474 pr_warn("%dth instance of program '%s' is invalid\n", 8475 n, prog->name); 8476 return libbpf_err(-ENOENT); 8477 } 8478 8479 return fd; 8480 } 8481 8482 __alias(bpf_program__type) 8483 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 8484 8485 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 8486 { 8487 return prog->type; 8488 } 8489 8490 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8491 { 8492 prog->type = type; 8493 } 8494 8495 static bool bpf_program__is_type(const struct bpf_program *prog, 8496 enum bpf_prog_type type) 8497 { 8498 return prog ? (prog->type == type) : false; 8499 } 8500 8501 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \ 8502 int bpf_program__set_##NAME(struct bpf_program *prog) \ 8503 { \ 8504 if (!prog) \ 8505 return libbpf_err(-EINVAL); \ 8506 bpf_program__set_type(prog, TYPE); \ 8507 return 0; \ 8508 } \ 8509 \ 8510 bool bpf_program__is_##NAME(const struct bpf_program *prog) \ 8511 { \ 8512 return bpf_program__is_type(prog, TYPE); \ 8513 } \ 8514 8515 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER); 8516 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM); 8517 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE); 8518 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS); 8519 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT); 8520 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT); 8521 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT); 8522 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP); 8523 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT); 8524 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING); 8525 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS); 8526 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT); 8527 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP); 8528 8529 __alias(bpf_program__expected_attach_type) 8530 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 8531 8532 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 8533 { 8534 return prog->expected_attach_type; 8535 } 8536 8537 void bpf_program__set_expected_attach_type(struct bpf_program *prog, 8538 enum bpf_attach_type type) 8539 { 8540 prog->expected_attach_type = type; 8541 } 8542 8543 __u32 bpf_program__flags(const struct bpf_program *prog) 8544 { 8545 return prog->prog_flags; 8546 } 8547 8548 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 8549 { 8550 if (prog->obj->loaded) 8551 return libbpf_err(-EBUSY); 8552 8553 prog->prog_flags = flags; 8554 return 0; 8555 } 8556 8557 __u32 bpf_program__log_level(const struct bpf_program *prog) 8558 { 8559 return prog->log_level; 8560 } 8561 8562 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 8563 { 8564 if (prog->obj->loaded) 8565 return libbpf_err(-EBUSY); 8566 8567 prog->log_level = log_level; 8568 return 0; 8569 } 8570 8571 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 8572 { 8573 *log_size = prog->log_size; 8574 return prog->log_buf; 8575 } 8576 8577 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 8578 { 8579 if (log_size && !log_buf) 8580 return -EINVAL; 8581 if (prog->log_size > UINT_MAX) 8582 return -EINVAL; 8583 if (prog->obj->loaded) 8584 return -EBUSY; 8585 8586 prog->log_buf = log_buf; 8587 prog->log_size = log_size; 8588 return 0; 8589 } 8590 8591 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 8592 .sec = sec_pfx, \ 8593 .prog_type = BPF_PROG_TYPE_##ptype, \ 8594 .expected_attach_type = atype, \ 8595 .cookie = (long)(flags), \ 8596 .preload_fn = libbpf_preload_prog, \ 8597 __VA_ARGS__ \ 8598 } 8599 8600 static struct bpf_link *attach_kprobe(const struct bpf_program *prog, long cookie); 8601 static struct bpf_link *attach_tp(const struct bpf_program *prog, long cookie); 8602 static struct bpf_link *attach_raw_tp(const struct bpf_program *prog, long cookie); 8603 static struct bpf_link *attach_trace(const struct bpf_program *prog, long cookie); 8604 static struct bpf_link *attach_lsm(const struct bpf_program *prog, long cookie); 8605 static struct bpf_link *attach_iter(const struct bpf_program *prog, long cookie); 8606 8607 static const struct bpf_sec_def section_defs[] = { 8608 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE | SEC_SLOPPY_PFX), 8609 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8610 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8611 SEC_DEF("kprobe/", KPROBE, 0, SEC_NONE, attach_kprobe), 8612 SEC_DEF("uprobe/", KPROBE, 0, SEC_NONE), 8613 SEC_DEF("kretprobe/", KPROBE, 0, SEC_NONE, attach_kprobe), 8614 SEC_DEF("uretprobe/", KPROBE, 0, SEC_NONE), 8615 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), 8616 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE | SEC_SLOPPY_PFX | SEC_DEPRECATED), 8617 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8618 SEC_DEF("tracepoint/", TRACEPOINT, 0, SEC_NONE, attach_tp), 8619 SEC_DEF("tp/", TRACEPOINT, 0, SEC_NONE, attach_tp), 8620 SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8621 SEC_DEF("raw_tp/", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8622 SEC_DEF("raw_tracepoint.w/", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8623 SEC_DEF("raw_tp.w/", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8624 SEC_DEF("tp_btf/", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 8625 SEC_DEF("fentry/", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 8626 SEC_DEF("fmod_ret/", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 8627 SEC_DEF("fexit/", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 8628 SEC_DEF("fentry.s/", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8629 SEC_DEF("fmod_ret.s/", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8630 SEC_DEF("fexit.s/", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8631 SEC_DEF("freplace/", EXT, 0, SEC_ATTACH_BTF, attach_trace), 8632 SEC_DEF("lsm/", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 8633 SEC_DEF("lsm.s/", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 8634 SEC_DEF("iter/", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 8635 SEC_DEF("iter.s/", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 8636 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 8637 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 8638 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 8639 SEC_DEF("xdp_devmap/", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE | SEC_DEPRECATED), 8640 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 8641 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 8642 SEC_DEF("xdp_cpumap/", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE | SEC_DEPRECATED), 8643 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 8644 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8645 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8646 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE | SEC_SLOPPY_PFX), 8647 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8648 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8649 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE | SEC_SLOPPY_PFX), 8650 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8651 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8652 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX), 8653 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8654 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8655 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8656 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8657 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8658 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8659 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8660 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8661 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8662 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX), 8663 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8664 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8665 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8666 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8667 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8668 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8669 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8670 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8671 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8672 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8673 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8674 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8675 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8676 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8677 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8678 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8679 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8680 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8681 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 8682 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8683 }; 8684 8685 #define MAX_TYPE_NAME_SIZE 32 8686 8687 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8688 { 8689 const struct bpf_sec_def *sec_def; 8690 enum sec_def_flags sec_flags; 8691 int i, n = ARRAY_SIZE(section_defs), len; 8692 bool strict = libbpf_mode & LIBBPF_STRICT_SEC_NAME; 8693 8694 for (i = 0; i < n; i++) { 8695 sec_def = §ion_defs[i]; 8696 sec_flags = sec_def->cookie; 8697 len = strlen(sec_def->sec); 8698 8699 /* "type/" always has to have proper SEC("type/extras") form */ 8700 if (sec_def->sec[len - 1] == '/') { 8701 if (str_has_pfx(sec_name, sec_def->sec)) 8702 return sec_def; 8703 continue; 8704 } 8705 8706 /* "type+" means it can be either exact SEC("type") or 8707 * well-formed SEC("type/extras") with proper '/' separator 8708 */ 8709 if (sec_def->sec[len - 1] == '+') { 8710 len--; 8711 /* not even a prefix */ 8712 if (strncmp(sec_name, sec_def->sec, len) != 0) 8713 continue; 8714 /* exact match or has '/' separator */ 8715 if (sec_name[len] == '\0' || sec_name[len] == '/') 8716 return sec_def; 8717 continue; 8718 } 8719 8720 /* SEC_SLOPPY_PFX definitions are allowed to be just prefix 8721 * matches, unless strict section name mode 8722 * (LIBBPF_STRICT_SEC_NAME) is enabled, in which case the 8723 * match has to be exact. 8724 */ 8725 if ((sec_flags & SEC_SLOPPY_PFX) && !strict) { 8726 if (str_has_pfx(sec_name, sec_def->sec)) 8727 return sec_def; 8728 continue; 8729 } 8730 8731 /* Definitions not marked SEC_SLOPPY_PFX (e.g., 8732 * SEC("syscall")) are exact matches in both modes. 8733 */ 8734 if (strcmp(sec_name, sec_def->sec) == 0) 8735 return sec_def; 8736 } 8737 return NULL; 8738 } 8739 8740 static char *libbpf_get_type_names(bool attach_type) 8741 { 8742 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8743 char *buf; 8744 8745 buf = malloc(len); 8746 if (!buf) 8747 return NULL; 8748 8749 buf[0] = '\0'; 8750 /* Forge string buf with all available names */ 8751 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8752 const struct bpf_sec_def *sec_def = §ion_defs[i]; 8753 8754 if (attach_type) { 8755 if (sec_def->preload_fn != libbpf_preload_prog) 8756 continue; 8757 8758 if (!(sec_def->cookie & SEC_ATTACHABLE)) 8759 continue; 8760 } 8761 8762 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8763 free(buf); 8764 return NULL; 8765 } 8766 strcat(buf, " "); 8767 strcat(buf, section_defs[i].sec); 8768 } 8769 8770 return buf; 8771 } 8772 8773 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8774 enum bpf_attach_type *expected_attach_type) 8775 { 8776 const struct bpf_sec_def *sec_def; 8777 char *type_names; 8778 8779 if (!name) 8780 return libbpf_err(-EINVAL); 8781 8782 sec_def = find_sec_def(name); 8783 if (sec_def) { 8784 *prog_type = sec_def->prog_type; 8785 *expected_attach_type = sec_def->expected_attach_type; 8786 return 0; 8787 } 8788 8789 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8790 type_names = libbpf_get_type_names(false); 8791 if (type_names != NULL) { 8792 pr_debug("supported section(type) names are:%s\n", type_names); 8793 free(type_names); 8794 } 8795 8796 return libbpf_err(-ESRCH); 8797 } 8798 8799 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 8800 size_t offset) 8801 { 8802 struct bpf_map *map; 8803 size_t i; 8804 8805 for (i = 0; i < obj->nr_maps; i++) { 8806 map = &obj->maps[i]; 8807 if (!bpf_map__is_struct_ops(map)) 8808 continue; 8809 if (map->sec_offset <= offset && 8810 offset - map->sec_offset < map->def.value_size) 8811 return map; 8812 } 8813 8814 return NULL; 8815 } 8816 8817 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 8818 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 8819 Elf64_Shdr *shdr, Elf_Data *data) 8820 { 8821 const struct btf_member *member; 8822 struct bpf_struct_ops *st_ops; 8823 struct bpf_program *prog; 8824 unsigned int shdr_idx; 8825 const struct btf *btf; 8826 struct bpf_map *map; 8827 unsigned int moff, insn_idx; 8828 const char *name; 8829 __u32 member_idx; 8830 Elf64_Sym *sym; 8831 Elf64_Rel *rel; 8832 int i, nrels; 8833 8834 btf = obj->btf; 8835 nrels = shdr->sh_size / shdr->sh_entsize; 8836 for (i = 0; i < nrels; i++) { 8837 rel = elf_rel_by_idx(data, i); 8838 if (!rel) { 8839 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 8840 return -LIBBPF_ERRNO__FORMAT; 8841 } 8842 8843 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 8844 if (!sym) { 8845 pr_warn("struct_ops reloc: symbol %zx not found\n", 8846 (size_t)ELF64_R_SYM(rel->r_info)); 8847 return -LIBBPF_ERRNO__FORMAT; 8848 } 8849 8850 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 8851 map = find_struct_ops_map_by_offset(obj, rel->r_offset); 8852 if (!map) { 8853 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 8854 (size_t)rel->r_offset); 8855 return -EINVAL; 8856 } 8857 8858 moff = rel->r_offset - map->sec_offset; 8859 shdr_idx = sym->st_shndx; 8860 st_ops = map->st_ops; 8861 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 8862 map->name, 8863 (long long)(rel->r_info >> 32), 8864 (long long)sym->st_value, 8865 shdr_idx, (size_t)rel->r_offset, 8866 map->sec_offset, sym->st_name, name); 8867 8868 if (shdr_idx >= SHN_LORESERVE) { 8869 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 8870 map->name, (size_t)rel->r_offset, shdr_idx); 8871 return -LIBBPF_ERRNO__RELOC; 8872 } 8873 if (sym->st_value % BPF_INSN_SZ) { 8874 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 8875 map->name, (unsigned long long)sym->st_value); 8876 return -LIBBPF_ERRNO__FORMAT; 8877 } 8878 insn_idx = sym->st_value / BPF_INSN_SZ; 8879 8880 member = find_member_by_offset(st_ops->type, moff * 8); 8881 if (!member) { 8882 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 8883 map->name, moff); 8884 return -EINVAL; 8885 } 8886 member_idx = member - btf_members(st_ops->type); 8887 name = btf__name_by_offset(btf, member->name_off); 8888 8889 if (!resolve_func_ptr(btf, member->type, NULL)) { 8890 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 8891 map->name, name); 8892 return -EINVAL; 8893 } 8894 8895 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 8896 if (!prog) { 8897 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 8898 map->name, shdr_idx, name); 8899 return -EINVAL; 8900 } 8901 8902 /* prevent the use of BPF prog with invalid type */ 8903 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 8904 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 8905 map->name, prog->name); 8906 return -EINVAL; 8907 } 8908 8909 /* if we haven't yet processed this BPF program, record proper 8910 * attach_btf_id and member_idx 8911 */ 8912 if (!prog->attach_btf_id) { 8913 prog->attach_btf_id = st_ops->type_id; 8914 prog->expected_attach_type = member_idx; 8915 } 8916 8917 /* struct_ops BPF prog can be re-used between multiple 8918 * .struct_ops as long as it's the same struct_ops struct 8919 * definition and the same function pointer field 8920 */ 8921 if (prog->attach_btf_id != st_ops->type_id || 8922 prog->expected_attach_type != member_idx) { 8923 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 8924 map->name, prog->name, prog->sec_name, prog->type, 8925 prog->attach_btf_id, prog->expected_attach_type, name); 8926 return -EINVAL; 8927 } 8928 8929 st_ops->progs[member_idx] = prog; 8930 } 8931 8932 return 0; 8933 } 8934 8935 #define BTF_TRACE_PREFIX "btf_trace_" 8936 #define BTF_LSM_PREFIX "bpf_lsm_" 8937 #define BTF_ITER_PREFIX "bpf_iter_" 8938 #define BTF_MAX_NAME_SIZE 128 8939 8940 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 8941 const char **prefix, int *kind) 8942 { 8943 switch (attach_type) { 8944 case BPF_TRACE_RAW_TP: 8945 *prefix = BTF_TRACE_PREFIX; 8946 *kind = BTF_KIND_TYPEDEF; 8947 break; 8948 case BPF_LSM_MAC: 8949 *prefix = BTF_LSM_PREFIX; 8950 *kind = BTF_KIND_FUNC; 8951 break; 8952 case BPF_TRACE_ITER: 8953 *prefix = BTF_ITER_PREFIX; 8954 *kind = BTF_KIND_FUNC; 8955 break; 8956 default: 8957 *prefix = ""; 8958 *kind = BTF_KIND_FUNC; 8959 } 8960 } 8961 8962 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 8963 const char *name, __u32 kind) 8964 { 8965 char btf_type_name[BTF_MAX_NAME_SIZE]; 8966 int ret; 8967 8968 ret = snprintf(btf_type_name, sizeof(btf_type_name), 8969 "%s%s", prefix, name); 8970 /* snprintf returns the number of characters written excluding the 8971 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 8972 * indicates truncation. 8973 */ 8974 if (ret < 0 || ret >= sizeof(btf_type_name)) 8975 return -ENAMETOOLONG; 8976 return btf__find_by_name_kind(btf, btf_type_name, kind); 8977 } 8978 8979 static inline int find_attach_btf_id(struct btf *btf, const char *name, 8980 enum bpf_attach_type attach_type) 8981 { 8982 const char *prefix; 8983 int kind; 8984 8985 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 8986 return find_btf_by_prefix_kind(btf, prefix, name, kind); 8987 } 8988 8989 int libbpf_find_vmlinux_btf_id(const char *name, 8990 enum bpf_attach_type attach_type) 8991 { 8992 struct btf *btf; 8993 int err; 8994 8995 btf = btf__load_vmlinux_btf(); 8996 err = libbpf_get_error(btf); 8997 if (err) { 8998 pr_warn("vmlinux BTF is not found\n"); 8999 return libbpf_err(err); 9000 } 9001 9002 err = find_attach_btf_id(btf, name, attach_type); 9003 if (err <= 0) 9004 pr_warn("%s is not found in vmlinux BTF\n", name); 9005 9006 btf__free(btf); 9007 return libbpf_err(err); 9008 } 9009 9010 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9011 { 9012 struct bpf_prog_info info = {}; 9013 __u32 info_len = sizeof(info); 9014 struct btf *btf; 9015 int err; 9016 9017 err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len); 9018 if (err) { 9019 pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n", 9020 attach_prog_fd, err); 9021 return err; 9022 } 9023 9024 err = -EINVAL; 9025 if (!info.btf_id) { 9026 pr_warn("The target program doesn't have BTF\n"); 9027 goto out; 9028 } 9029 btf = btf__load_from_kernel_by_id(info.btf_id); 9030 err = libbpf_get_error(btf); 9031 if (err) { 9032 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9033 goto out; 9034 } 9035 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9036 btf__free(btf); 9037 if (err <= 0) { 9038 pr_warn("%s is not found in prog's BTF\n", name); 9039 goto out; 9040 } 9041 out: 9042 return err; 9043 } 9044 9045 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9046 enum bpf_attach_type attach_type, 9047 int *btf_obj_fd, int *btf_type_id) 9048 { 9049 int ret, i; 9050 9051 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9052 if (ret > 0) { 9053 *btf_obj_fd = 0; /* vmlinux BTF */ 9054 *btf_type_id = ret; 9055 return 0; 9056 } 9057 if (ret != -ENOENT) 9058 return ret; 9059 9060 ret = load_module_btfs(obj); 9061 if (ret) 9062 return ret; 9063 9064 for (i = 0; i < obj->btf_module_cnt; i++) { 9065 const struct module_btf *mod = &obj->btf_modules[i]; 9066 9067 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9068 if (ret > 0) { 9069 *btf_obj_fd = mod->fd; 9070 *btf_type_id = ret; 9071 return 0; 9072 } 9073 if (ret == -ENOENT) 9074 continue; 9075 9076 return ret; 9077 } 9078 9079 return -ESRCH; 9080 } 9081 9082 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9083 int *btf_obj_fd, int *btf_type_id) 9084 { 9085 enum bpf_attach_type attach_type = prog->expected_attach_type; 9086 __u32 attach_prog_fd = prog->attach_prog_fd; 9087 int err = 0; 9088 9089 /* BPF program's BTF ID */ 9090 if (attach_prog_fd) { 9091 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9092 if (err < 0) { 9093 pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9094 attach_prog_fd, attach_name, err); 9095 return err; 9096 } 9097 *btf_obj_fd = 0; 9098 *btf_type_id = err; 9099 return 0; 9100 } 9101 9102 /* kernel/module BTF ID */ 9103 if (prog->obj->gen_loader) { 9104 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9105 *btf_obj_fd = 0; 9106 *btf_type_id = 1; 9107 } else { 9108 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9109 } 9110 if (err) { 9111 pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err); 9112 return err; 9113 } 9114 return 0; 9115 } 9116 9117 int libbpf_attach_type_by_name(const char *name, 9118 enum bpf_attach_type *attach_type) 9119 { 9120 char *type_names; 9121 const struct bpf_sec_def *sec_def; 9122 9123 if (!name) 9124 return libbpf_err(-EINVAL); 9125 9126 sec_def = find_sec_def(name); 9127 if (!sec_def) { 9128 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9129 type_names = libbpf_get_type_names(true); 9130 if (type_names != NULL) { 9131 pr_debug("attachable section(type) names are:%s\n", type_names); 9132 free(type_names); 9133 } 9134 9135 return libbpf_err(-EINVAL); 9136 } 9137 9138 if (sec_def->preload_fn != libbpf_preload_prog) 9139 return libbpf_err(-EINVAL); 9140 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9141 return libbpf_err(-EINVAL); 9142 9143 *attach_type = sec_def->expected_attach_type; 9144 return 0; 9145 } 9146 9147 int bpf_map__fd(const struct bpf_map *map) 9148 { 9149 return map ? map->fd : libbpf_err(-EINVAL); 9150 } 9151 9152 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map) 9153 { 9154 return map ? &map->def : libbpf_err_ptr(-EINVAL); 9155 } 9156 9157 static bool map_uses_real_name(const struct bpf_map *map) 9158 { 9159 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9160 * their user-visible name differs from kernel-visible name. Users see 9161 * such map's corresponding ELF section name as a map name. 9162 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9163 * maps to know which name has to be returned to the user. 9164 */ 9165 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9166 return true; 9167 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9168 return true; 9169 return false; 9170 } 9171 9172 const char *bpf_map__name(const struct bpf_map *map) 9173 { 9174 if (!map) 9175 return NULL; 9176 9177 if (map_uses_real_name(map)) 9178 return map->real_name; 9179 9180 return map->name; 9181 } 9182 9183 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9184 { 9185 return map->def.type; 9186 } 9187 9188 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9189 { 9190 if (map->fd >= 0) 9191 return libbpf_err(-EBUSY); 9192 map->def.type = type; 9193 return 0; 9194 } 9195 9196 __u32 bpf_map__map_flags(const struct bpf_map *map) 9197 { 9198 return map->def.map_flags; 9199 } 9200 9201 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9202 { 9203 if (map->fd >= 0) 9204 return libbpf_err(-EBUSY); 9205 map->def.map_flags = flags; 9206 return 0; 9207 } 9208 9209 __u64 bpf_map__map_extra(const struct bpf_map *map) 9210 { 9211 return map->map_extra; 9212 } 9213 9214 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9215 { 9216 if (map->fd >= 0) 9217 return libbpf_err(-EBUSY); 9218 map->map_extra = map_extra; 9219 return 0; 9220 } 9221 9222 __u32 bpf_map__numa_node(const struct bpf_map *map) 9223 { 9224 return map->numa_node; 9225 } 9226 9227 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9228 { 9229 if (map->fd >= 0) 9230 return libbpf_err(-EBUSY); 9231 map->numa_node = numa_node; 9232 return 0; 9233 } 9234 9235 __u32 bpf_map__key_size(const struct bpf_map *map) 9236 { 9237 return map->def.key_size; 9238 } 9239 9240 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9241 { 9242 if (map->fd >= 0) 9243 return libbpf_err(-EBUSY); 9244 map->def.key_size = size; 9245 return 0; 9246 } 9247 9248 __u32 bpf_map__value_size(const struct bpf_map *map) 9249 { 9250 return map->def.value_size; 9251 } 9252 9253 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9254 { 9255 if (map->fd >= 0) 9256 return libbpf_err(-EBUSY); 9257 map->def.value_size = size; 9258 return 0; 9259 } 9260 9261 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9262 { 9263 return map ? map->btf_key_type_id : 0; 9264 } 9265 9266 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9267 { 9268 return map ? map->btf_value_type_id : 0; 9269 } 9270 9271 int bpf_map__set_priv(struct bpf_map *map, void *priv, 9272 bpf_map_clear_priv_t clear_priv) 9273 { 9274 if (!map) 9275 return libbpf_err(-EINVAL); 9276 9277 if (map->priv) { 9278 if (map->clear_priv) 9279 map->clear_priv(map, map->priv); 9280 } 9281 9282 map->priv = priv; 9283 map->clear_priv = clear_priv; 9284 return 0; 9285 } 9286 9287 void *bpf_map__priv(const struct bpf_map *map) 9288 { 9289 return map ? map->priv : libbpf_err_ptr(-EINVAL); 9290 } 9291 9292 int bpf_map__set_initial_value(struct bpf_map *map, 9293 const void *data, size_t size) 9294 { 9295 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9296 size != map->def.value_size || map->fd >= 0) 9297 return libbpf_err(-EINVAL); 9298 9299 memcpy(map->mmaped, data, size); 9300 return 0; 9301 } 9302 9303 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9304 { 9305 if (!map->mmaped) 9306 return NULL; 9307 *psize = map->def.value_size; 9308 return map->mmaped; 9309 } 9310 9311 bool bpf_map__is_offload_neutral(const struct bpf_map *map) 9312 { 9313 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 9314 } 9315 9316 bool bpf_map__is_internal(const struct bpf_map *map) 9317 { 9318 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9319 } 9320 9321 __u32 bpf_map__ifindex(const struct bpf_map *map) 9322 { 9323 return map->map_ifindex; 9324 } 9325 9326 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9327 { 9328 if (map->fd >= 0) 9329 return libbpf_err(-EBUSY); 9330 map->map_ifindex = ifindex; 9331 return 0; 9332 } 9333 9334 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9335 { 9336 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9337 pr_warn("error: unsupported map type\n"); 9338 return libbpf_err(-EINVAL); 9339 } 9340 if (map->inner_map_fd != -1) { 9341 pr_warn("error: inner_map_fd already specified\n"); 9342 return libbpf_err(-EINVAL); 9343 } 9344 if (map->inner_map) { 9345 bpf_map__destroy(map->inner_map); 9346 zfree(&map->inner_map); 9347 } 9348 map->inner_map_fd = fd; 9349 return 0; 9350 } 9351 9352 static struct bpf_map * 9353 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9354 { 9355 ssize_t idx; 9356 struct bpf_map *s, *e; 9357 9358 if (!obj || !obj->maps) 9359 return errno = EINVAL, NULL; 9360 9361 s = obj->maps; 9362 e = obj->maps + obj->nr_maps; 9363 9364 if ((m < s) || (m >= e)) { 9365 pr_warn("error in %s: map handler doesn't belong to object\n", 9366 __func__); 9367 return errno = EINVAL, NULL; 9368 } 9369 9370 idx = (m - obj->maps) + i; 9371 if (idx >= obj->nr_maps || idx < 0) 9372 return NULL; 9373 return &obj->maps[idx]; 9374 } 9375 9376 struct bpf_map * 9377 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj) 9378 { 9379 return bpf_object__next_map(obj, prev); 9380 } 9381 9382 struct bpf_map * 9383 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 9384 { 9385 if (prev == NULL) 9386 return obj->maps; 9387 9388 return __bpf_map__iter(prev, obj, 1); 9389 } 9390 9391 struct bpf_map * 9392 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj) 9393 { 9394 return bpf_object__prev_map(obj, next); 9395 } 9396 9397 struct bpf_map * 9398 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 9399 { 9400 if (next == NULL) { 9401 if (!obj->nr_maps) 9402 return NULL; 9403 return obj->maps + obj->nr_maps - 1; 9404 } 9405 9406 return __bpf_map__iter(next, obj, -1); 9407 } 9408 9409 struct bpf_map * 9410 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9411 { 9412 struct bpf_map *pos; 9413 9414 bpf_object__for_each_map(pos, obj) { 9415 /* if it's a special internal map name (which always starts 9416 * with dot) then check if that special name matches the 9417 * real map name (ELF section name) 9418 */ 9419 if (name[0] == '.') { 9420 if (pos->real_name && strcmp(pos->real_name, name) == 0) 9421 return pos; 9422 continue; 9423 } 9424 /* otherwise map name has to be an exact match */ 9425 if (map_uses_real_name(pos)) { 9426 if (strcmp(pos->real_name, name) == 0) 9427 return pos; 9428 continue; 9429 } 9430 if (strcmp(pos->name, name) == 0) 9431 return pos; 9432 } 9433 return errno = ENOENT, NULL; 9434 } 9435 9436 int 9437 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9438 { 9439 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9440 } 9441 9442 struct bpf_map * 9443 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset) 9444 { 9445 return libbpf_err_ptr(-ENOTSUP); 9446 } 9447 9448 long libbpf_get_error(const void *ptr) 9449 { 9450 if (!IS_ERR_OR_NULL(ptr)) 9451 return 0; 9452 9453 if (IS_ERR(ptr)) 9454 errno = -PTR_ERR(ptr); 9455 9456 /* If ptr == NULL, then errno should be already set by the failing 9457 * API, because libbpf never returns NULL on success and it now always 9458 * sets errno on error. So no extra errno handling for ptr == NULL 9459 * case. 9460 */ 9461 return -errno; 9462 } 9463 9464 __attribute__((alias("bpf_prog_load_xattr2"))) 9465 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr, 9466 struct bpf_object **pobj, int *prog_fd); 9467 9468 static int bpf_prog_load_xattr2(const struct bpf_prog_load_attr *attr, 9469 struct bpf_object **pobj, int *prog_fd) 9470 { 9471 struct bpf_object_open_attr open_attr = {}; 9472 struct bpf_program *prog, *first_prog = NULL; 9473 struct bpf_object *obj; 9474 struct bpf_map *map; 9475 int err; 9476 9477 if (!attr) 9478 return libbpf_err(-EINVAL); 9479 if (!attr->file) 9480 return libbpf_err(-EINVAL); 9481 9482 open_attr.file = attr->file; 9483 open_attr.prog_type = attr->prog_type; 9484 9485 obj = __bpf_object__open_xattr(&open_attr, 0); 9486 err = libbpf_get_error(obj); 9487 if (err) 9488 return libbpf_err(-ENOENT); 9489 9490 bpf_object__for_each_program(prog, obj) { 9491 enum bpf_attach_type attach_type = attr->expected_attach_type; 9492 /* 9493 * to preserve backwards compatibility, bpf_prog_load treats 9494 * attr->prog_type, if specified, as an override to whatever 9495 * bpf_object__open guessed 9496 */ 9497 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) { 9498 bpf_program__set_type(prog, attr->prog_type); 9499 bpf_program__set_expected_attach_type(prog, 9500 attach_type); 9501 } 9502 if (bpf_program__type(prog) == BPF_PROG_TYPE_UNSPEC) { 9503 /* 9504 * we haven't guessed from section name and user 9505 * didn't provide a fallback type, too bad... 9506 */ 9507 bpf_object__close(obj); 9508 return libbpf_err(-EINVAL); 9509 } 9510 9511 prog->prog_ifindex = attr->ifindex; 9512 prog->log_level = attr->log_level; 9513 prog->prog_flags |= attr->prog_flags; 9514 if (!first_prog) 9515 first_prog = prog; 9516 } 9517 9518 bpf_object__for_each_map(map, obj) { 9519 if (map->def.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 9520 map->map_ifindex = attr->ifindex; 9521 } 9522 9523 if (!first_prog) { 9524 pr_warn("object file doesn't contain bpf program\n"); 9525 bpf_object__close(obj); 9526 return libbpf_err(-ENOENT); 9527 } 9528 9529 err = bpf_object__load(obj); 9530 if (err) { 9531 bpf_object__close(obj); 9532 return libbpf_err(err); 9533 } 9534 9535 *pobj = obj; 9536 *prog_fd = bpf_program__fd(first_prog); 9537 return 0; 9538 } 9539 9540 COMPAT_VERSION(bpf_prog_load_deprecated, bpf_prog_load, LIBBPF_0.0.1) 9541 int bpf_prog_load_deprecated(const char *file, enum bpf_prog_type type, 9542 struct bpf_object **pobj, int *prog_fd) 9543 { 9544 struct bpf_prog_load_attr attr; 9545 9546 memset(&attr, 0, sizeof(struct bpf_prog_load_attr)); 9547 attr.file = file; 9548 attr.prog_type = type; 9549 attr.expected_attach_type = 0; 9550 9551 return bpf_prog_load_xattr2(&attr, pobj, prog_fd); 9552 } 9553 9554 struct bpf_link { 9555 int (*detach)(struct bpf_link *link); 9556 void (*dealloc)(struct bpf_link *link); 9557 char *pin_path; /* NULL, if not pinned */ 9558 int fd; /* hook FD, -1 if not applicable */ 9559 bool disconnected; 9560 }; 9561 9562 /* Replace link's underlying BPF program with the new one */ 9563 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9564 { 9565 int ret; 9566 9567 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9568 return libbpf_err_errno(ret); 9569 } 9570 9571 /* Release "ownership" of underlying BPF resource (typically, BPF program 9572 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9573 * link, when destructed through bpf_link__destroy() call won't attempt to 9574 * detach/unregisted that BPF resource. This is useful in situations where, 9575 * say, attached BPF program has to outlive userspace program that attached it 9576 * in the system. Depending on type of BPF program, though, there might be 9577 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9578 * exit of userspace program doesn't trigger automatic detachment and clean up 9579 * inside the kernel. 9580 */ 9581 void bpf_link__disconnect(struct bpf_link *link) 9582 { 9583 link->disconnected = true; 9584 } 9585 9586 int bpf_link__destroy(struct bpf_link *link) 9587 { 9588 int err = 0; 9589 9590 if (IS_ERR_OR_NULL(link)) 9591 return 0; 9592 9593 if (!link->disconnected && link->detach) 9594 err = link->detach(link); 9595 if (link->pin_path) 9596 free(link->pin_path); 9597 if (link->dealloc) 9598 link->dealloc(link); 9599 else 9600 free(link); 9601 9602 return libbpf_err(err); 9603 } 9604 9605 int bpf_link__fd(const struct bpf_link *link) 9606 { 9607 return link->fd; 9608 } 9609 9610 const char *bpf_link__pin_path(const struct bpf_link *link) 9611 { 9612 return link->pin_path; 9613 } 9614 9615 static int bpf_link__detach_fd(struct bpf_link *link) 9616 { 9617 return libbpf_err_errno(close(link->fd)); 9618 } 9619 9620 struct bpf_link *bpf_link__open(const char *path) 9621 { 9622 struct bpf_link *link; 9623 int fd; 9624 9625 fd = bpf_obj_get(path); 9626 if (fd < 0) { 9627 fd = -errno; 9628 pr_warn("failed to open link at %s: %d\n", path, fd); 9629 return libbpf_err_ptr(fd); 9630 } 9631 9632 link = calloc(1, sizeof(*link)); 9633 if (!link) { 9634 close(fd); 9635 return libbpf_err_ptr(-ENOMEM); 9636 } 9637 link->detach = &bpf_link__detach_fd; 9638 link->fd = fd; 9639 9640 link->pin_path = strdup(path); 9641 if (!link->pin_path) { 9642 bpf_link__destroy(link); 9643 return libbpf_err_ptr(-ENOMEM); 9644 } 9645 9646 return link; 9647 } 9648 9649 int bpf_link__detach(struct bpf_link *link) 9650 { 9651 return bpf_link_detach(link->fd) ? -errno : 0; 9652 } 9653 9654 int bpf_link__pin(struct bpf_link *link, const char *path) 9655 { 9656 int err; 9657 9658 if (link->pin_path) 9659 return libbpf_err(-EBUSY); 9660 err = make_parent_dir(path); 9661 if (err) 9662 return libbpf_err(err); 9663 err = check_path(path); 9664 if (err) 9665 return libbpf_err(err); 9666 9667 link->pin_path = strdup(path); 9668 if (!link->pin_path) 9669 return libbpf_err(-ENOMEM); 9670 9671 if (bpf_obj_pin(link->fd, link->pin_path)) { 9672 err = -errno; 9673 zfree(&link->pin_path); 9674 return libbpf_err(err); 9675 } 9676 9677 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9678 return 0; 9679 } 9680 9681 int bpf_link__unpin(struct bpf_link *link) 9682 { 9683 int err; 9684 9685 if (!link->pin_path) 9686 return libbpf_err(-EINVAL); 9687 9688 err = unlink(link->pin_path); 9689 if (err != 0) 9690 return -errno; 9691 9692 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9693 zfree(&link->pin_path); 9694 return 0; 9695 } 9696 9697 struct bpf_link_perf { 9698 struct bpf_link link; 9699 int perf_event_fd; 9700 /* legacy kprobe support: keep track of probe identifier and type */ 9701 char *legacy_probe_name; 9702 bool legacy_is_kprobe; 9703 bool legacy_is_retprobe; 9704 }; 9705 9706 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 9707 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 9708 9709 static int bpf_link_perf_detach(struct bpf_link *link) 9710 { 9711 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9712 int err = 0; 9713 9714 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 9715 err = -errno; 9716 9717 if (perf_link->perf_event_fd != link->fd) 9718 close(perf_link->perf_event_fd); 9719 close(link->fd); 9720 9721 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 9722 if (perf_link->legacy_probe_name) { 9723 if (perf_link->legacy_is_kprobe) { 9724 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 9725 perf_link->legacy_is_retprobe); 9726 } else { 9727 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 9728 perf_link->legacy_is_retprobe); 9729 } 9730 } 9731 9732 return err; 9733 } 9734 9735 static void bpf_link_perf_dealloc(struct bpf_link *link) 9736 { 9737 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9738 9739 free(perf_link->legacy_probe_name); 9740 free(perf_link); 9741 } 9742 9743 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 9744 const struct bpf_perf_event_opts *opts) 9745 { 9746 char errmsg[STRERR_BUFSIZE]; 9747 struct bpf_link_perf *link; 9748 int prog_fd, link_fd = -1, err; 9749 9750 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 9751 return libbpf_err_ptr(-EINVAL); 9752 9753 if (pfd < 0) { 9754 pr_warn("prog '%s': invalid perf event FD %d\n", 9755 prog->name, pfd); 9756 return libbpf_err_ptr(-EINVAL); 9757 } 9758 prog_fd = bpf_program__fd(prog); 9759 if (prog_fd < 0) { 9760 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 9761 prog->name); 9762 return libbpf_err_ptr(-EINVAL); 9763 } 9764 9765 link = calloc(1, sizeof(*link)); 9766 if (!link) 9767 return libbpf_err_ptr(-ENOMEM); 9768 link->link.detach = &bpf_link_perf_detach; 9769 link->link.dealloc = &bpf_link_perf_dealloc; 9770 link->perf_event_fd = pfd; 9771 9772 if (kernel_supports(prog->obj, FEAT_PERF_LINK)) { 9773 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 9774 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 9775 9776 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 9777 if (link_fd < 0) { 9778 err = -errno; 9779 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 9780 prog->name, pfd, 9781 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9782 goto err_out; 9783 } 9784 link->link.fd = link_fd; 9785 } else { 9786 if (OPTS_GET(opts, bpf_cookie, 0)) { 9787 pr_warn("prog '%s': user context value is not supported\n", prog->name); 9788 err = -EOPNOTSUPP; 9789 goto err_out; 9790 } 9791 9792 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 9793 err = -errno; 9794 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 9795 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9796 if (err == -EPROTO) 9797 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 9798 prog->name, pfd); 9799 goto err_out; 9800 } 9801 link->link.fd = pfd; 9802 } 9803 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9804 err = -errno; 9805 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 9806 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9807 goto err_out; 9808 } 9809 9810 return &link->link; 9811 err_out: 9812 if (link_fd >= 0) 9813 close(link_fd); 9814 free(link); 9815 return libbpf_err_ptr(err); 9816 } 9817 9818 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 9819 { 9820 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 9821 } 9822 9823 /* 9824 * this function is expected to parse integer in the range of [0, 2^31-1] from 9825 * given file using scanf format string fmt. If actual parsed value is 9826 * negative, the result might be indistinguishable from error 9827 */ 9828 static int parse_uint_from_file(const char *file, const char *fmt) 9829 { 9830 char buf[STRERR_BUFSIZE]; 9831 int err, ret; 9832 FILE *f; 9833 9834 f = fopen(file, "r"); 9835 if (!f) { 9836 err = -errno; 9837 pr_debug("failed to open '%s': %s\n", file, 9838 libbpf_strerror_r(err, buf, sizeof(buf))); 9839 return err; 9840 } 9841 err = fscanf(f, fmt, &ret); 9842 if (err != 1) { 9843 err = err == EOF ? -EIO : -errno; 9844 pr_debug("failed to parse '%s': %s\n", file, 9845 libbpf_strerror_r(err, buf, sizeof(buf))); 9846 fclose(f); 9847 return err; 9848 } 9849 fclose(f); 9850 return ret; 9851 } 9852 9853 static int determine_kprobe_perf_type(void) 9854 { 9855 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 9856 9857 return parse_uint_from_file(file, "%d\n"); 9858 } 9859 9860 static int determine_uprobe_perf_type(void) 9861 { 9862 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 9863 9864 return parse_uint_from_file(file, "%d\n"); 9865 } 9866 9867 static int determine_kprobe_retprobe_bit(void) 9868 { 9869 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 9870 9871 return parse_uint_from_file(file, "config:%d\n"); 9872 } 9873 9874 static int determine_uprobe_retprobe_bit(void) 9875 { 9876 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 9877 9878 return parse_uint_from_file(file, "config:%d\n"); 9879 } 9880 9881 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 9882 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 9883 9884 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 9885 uint64_t offset, int pid, size_t ref_ctr_off) 9886 { 9887 struct perf_event_attr attr = {}; 9888 char errmsg[STRERR_BUFSIZE]; 9889 int type, pfd, err; 9890 9891 if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 9892 return -EINVAL; 9893 9894 type = uprobe ? determine_uprobe_perf_type() 9895 : determine_kprobe_perf_type(); 9896 if (type < 0) { 9897 pr_warn("failed to determine %s perf type: %s\n", 9898 uprobe ? "uprobe" : "kprobe", 9899 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 9900 return type; 9901 } 9902 if (retprobe) { 9903 int bit = uprobe ? determine_uprobe_retprobe_bit() 9904 : determine_kprobe_retprobe_bit(); 9905 9906 if (bit < 0) { 9907 pr_warn("failed to determine %s retprobe bit: %s\n", 9908 uprobe ? "uprobe" : "kprobe", 9909 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 9910 return bit; 9911 } 9912 attr.config |= 1 << bit; 9913 } 9914 attr.size = sizeof(attr); 9915 attr.type = type; 9916 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9917 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 9918 attr.config2 = offset; /* kprobe_addr or probe_offset */ 9919 9920 /* pid filter is meaningful only for uprobes */ 9921 pfd = syscall(__NR_perf_event_open, &attr, 9922 pid < 0 ? -1 : pid /* pid */, 9923 pid == -1 ? 0 : -1 /* cpu */, 9924 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9925 if (pfd < 0) { 9926 err = -errno; 9927 pr_warn("%s perf_event_open() failed: %s\n", 9928 uprobe ? "uprobe" : "kprobe", 9929 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9930 return err; 9931 } 9932 return pfd; 9933 } 9934 9935 static int append_to_file(const char *file, const char *fmt, ...) 9936 { 9937 int fd, n, err = 0; 9938 va_list ap; 9939 9940 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 9941 if (fd < 0) 9942 return -errno; 9943 9944 va_start(ap, fmt); 9945 n = vdprintf(fd, fmt, ap); 9946 va_end(ap); 9947 9948 if (n < 0) 9949 err = -errno; 9950 9951 close(fd); 9952 return err; 9953 } 9954 9955 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 9956 const char *kfunc_name, size_t offset) 9957 { 9958 static int index = 0; 9959 9960 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 9961 __sync_fetch_and_add(&index, 1)); 9962 } 9963 9964 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 9965 const char *kfunc_name, size_t offset) 9966 { 9967 const char *file = "/sys/kernel/debug/tracing/kprobe_events"; 9968 9969 return append_to_file(file, "%c:%s/%s %s+0x%zx", 9970 retprobe ? 'r' : 'p', 9971 retprobe ? "kretprobes" : "kprobes", 9972 probe_name, kfunc_name, offset); 9973 } 9974 9975 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 9976 { 9977 const char *file = "/sys/kernel/debug/tracing/kprobe_events"; 9978 9979 return append_to_file(file, "-:%s/%s", retprobe ? "kretprobes" : "kprobes", probe_name); 9980 } 9981 9982 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 9983 { 9984 char file[256]; 9985 9986 snprintf(file, sizeof(file), 9987 "/sys/kernel/debug/tracing/events/%s/%s/id", 9988 retprobe ? "kretprobes" : "kprobes", probe_name); 9989 9990 return parse_uint_from_file(file, "%d\n"); 9991 } 9992 9993 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 9994 const char *kfunc_name, size_t offset, int pid) 9995 { 9996 struct perf_event_attr attr = {}; 9997 char errmsg[STRERR_BUFSIZE]; 9998 int type, pfd, err; 9999 10000 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 10001 if (err < 0) { 10002 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 10003 kfunc_name, offset, 10004 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10005 return err; 10006 } 10007 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 10008 if (type < 0) { 10009 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 10010 kfunc_name, offset, 10011 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10012 return type; 10013 } 10014 attr.size = sizeof(attr); 10015 attr.config = type; 10016 attr.type = PERF_TYPE_TRACEPOINT; 10017 10018 pfd = syscall(__NR_perf_event_open, &attr, 10019 pid < 0 ? -1 : pid, /* pid */ 10020 pid == -1 ? 0 : -1, /* cpu */ 10021 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10022 if (pfd < 0) { 10023 err = -errno; 10024 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10025 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10026 return err; 10027 } 10028 return pfd; 10029 } 10030 10031 struct bpf_link * 10032 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 10033 const char *func_name, 10034 const struct bpf_kprobe_opts *opts) 10035 { 10036 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10037 char errmsg[STRERR_BUFSIZE]; 10038 char *legacy_probe = NULL; 10039 struct bpf_link *link; 10040 size_t offset; 10041 bool retprobe, legacy; 10042 int pfd, err; 10043 10044 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 10045 return libbpf_err_ptr(-EINVAL); 10046 10047 retprobe = OPTS_GET(opts, retprobe, false); 10048 offset = OPTS_GET(opts, offset, 0); 10049 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10050 10051 legacy = determine_kprobe_perf_type() < 0; 10052 if (!legacy) { 10053 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 10054 func_name, offset, 10055 -1 /* pid */, 0 /* ref_ctr_off */); 10056 } else { 10057 char probe_name[256]; 10058 10059 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 10060 func_name, offset); 10061 10062 legacy_probe = strdup(probe_name); 10063 if (!legacy_probe) 10064 return libbpf_err_ptr(-ENOMEM); 10065 10066 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 10067 offset, -1 /* pid */); 10068 } 10069 if (pfd < 0) { 10070 err = -errno; 10071 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 10072 prog->name, retprobe ? "kretprobe" : "kprobe", 10073 func_name, offset, 10074 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10075 goto err_out; 10076 } 10077 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10078 err = libbpf_get_error(link); 10079 if (err) { 10080 close(pfd); 10081 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 10082 prog->name, retprobe ? "kretprobe" : "kprobe", 10083 func_name, offset, 10084 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10085 goto err_out; 10086 } 10087 if (legacy) { 10088 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10089 10090 perf_link->legacy_probe_name = legacy_probe; 10091 perf_link->legacy_is_kprobe = true; 10092 perf_link->legacy_is_retprobe = retprobe; 10093 } 10094 10095 return link; 10096 err_out: 10097 free(legacy_probe); 10098 return libbpf_err_ptr(err); 10099 } 10100 10101 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 10102 bool retprobe, 10103 const char *func_name) 10104 { 10105 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 10106 .retprobe = retprobe, 10107 ); 10108 10109 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 10110 } 10111 10112 static struct bpf_link *attach_kprobe(const struct bpf_program *prog, long cookie) 10113 { 10114 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 10115 unsigned long offset = 0; 10116 struct bpf_link *link; 10117 const char *func_name; 10118 char *func; 10119 int n, err; 10120 10121 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 10122 if (opts.retprobe) 10123 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 10124 else 10125 func_name = prog->sec_name + sizeof("kprobe/") - 1; 10126 10127 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 10128 if (n < 1) { 10129 err = -EINVAL; 10130 pr_warn("kprobe name is invalid: %s\n", func_name); 10131 return libbpf_err_ptr(err); 10132 } 10133 if (opts.retprobe && offset != 0) { 10134 free(func); 10135 err = -EINVAL; 10136 pr_warn("kretprobes do not support offset specification\n"); 10137 return libbpf_err_ptr(err); 10138 } 10139 10140 opts.offset = offset; 10141 link = bpf_program__attach_kprobe_opts(prog, func, &opts); 10142 free(func); 10143 return link; 10144 } 10145 10146 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 10147 const char *binary_path, uint64_t offset) 10148 { 10149 int i; 10150 10151 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 10152 10153 /* sanitize binary_path in the probe name */ 10154 for (i = 0; buf[i]; i++) { 10155 if (!isalnum(buf[i])) 10156 buf[i] = '_'; 10157 } 10158 } 10159 10160 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 10161 const char *binary_path, size_t offset) 10162 { 10163 const char *file = "/sys/kernel/debug/tracing/uprobe_events"; 10164 10165 return append_to_file(file, "%c:%s/%s %s:0x%zx", 10166 retprobe ? 'r' : 'p', 10167 retprobe ? "uretprobes" : "uprobes", 10168 probe_name, binary_path, offset); 10169 } 10170 10171 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 10172 { 10173 const char *file = "/sys/kernel/debug/tracing/uprobe_events"; 10174 10175 return append_to_file(file, "-:%s/%s", retprobe ? "uretprobes" : "uprobes", probe_name); 10176 } 10177 10178 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10179 { 10180 char file[512]; 10181 10182 snprintf(file, sizeof(file), 10183 "/sys/kernel/debug/tracing/events/%s/%s/id", 10184 retprobe ? "uretprobes" : "uprobes", probe_name); 10185 10186 return parse_uint_from_file(file, "%d\n"); 10187 } 10188 10189 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 10190 const char *binary_path, size_t offset, int pid) 10191 { 10192 struct perf_event_attr attr; 10193 int type, pfd, err; 10194 10195 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 10196 if (err < 0) { 10197 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 10198 binary_path, (size_t)offset, err); 10199 return err; 10200 } 10201 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 10202 if (type < 0) { 10203 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 10204 binary_path, offset, err); 10205 return type; 10206 } 10207 10208 memset(&attr, 0, sizeof(attr)); 10209 attr.size = sizeof(attr); 10210 attr.config = type; 10211 attr.type = PERF_TYPE_TRACEPOINT; 10212 10213 pfd = syscall(__NR_perf_event_open, &attr, 10214 pid < 0 ? -1 : pid, /* pid */ 10215 pid == -1 ? 0 : -1, /* cpu */ 10216 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10217 if (pfd < 0) { 10218 err = -errno; 10219 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 10220 return err; 10221 } 10222 return pfd; 10223 } 10224 10225 LIBBPF_API struct bpf_link * 10226 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 10227 const char *binary_path, size_t func_offset, 10228 const struct bpf_uprobe_opts *opts) 10229 { 10230 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10231 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 10232 struct bpf_link *link; 10233 size_t ref_ctr_off; 10234 int pfd, err; 10235 bool retprobe, legacy; 10236 10237 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 10238 return libbpf_err_ptr(-EINVAL); 10239 10240 retprobe = OPTS_GET(opts, retprobe, false); 10241 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 10242 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10243 10244 legacy = determine_uprobe_perf_type() < 0; 10245 if (!legacy) { 10246 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 10247 func_offset, pid, ref_ctr_off); 10248 } else { 10249 char probe_name[512]; 10250 10251 if (ref_ctr_off) 10252 return libbpf_err_ptr(-EINVAL); 10253 10254 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 10255 binary_path, func_offset); 10256 10257 legacy_probe = strdup(probe_name); 10258 if (!legacy_probe) 10259 return libbpf_err_ptr(-ENOMEM); 10260 10261 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 10262 binary_path, func_offset, pid); 10263 } 10264 if (pfd < 0) { 10265 err = -errno; 10266 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 10267 prog->name, retprobe ? "uretprobe" : "uprobe", 10268 binary_path, func_offset, 10269 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10270 goto err_out; 10271 } 10272 10273 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10274 err = libbpf_get_error(link); 10275 if (err) { 10276 close(pfd); 10277 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 10278 prog->name, retprobe ? "uretprobe" : "uprobe", 10279 binary_path, func_offset, 10280 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10281 goto err_out; 10282 } 10283 if (legacy) { 10284 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10285 10286 perf_link->legacy_probe_name = legacy_probe; 10287 perf_link->legacy_is_kprobe = false; 10288 perf_link->legacy_is_retprobe = retprobe; 10289 } 10290 return link; 10291 err_out: 10292 free(legacy_probe); 10293 return libbpf_err_ptr(err); 10294 10295 } 10296 10297 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 10298 bool retprobe, pid_t pid, 10299 const char *binary_path, 10300 size_t func_offset) 10301 { 10302 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 10303 10304 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 10305 } 10306 10307 static int determine_tracepoint_id(const char *tp_category, 10308 const char *tp_name) 10309 { 10310 char file[PATH_MAX]; 10311 int ret; 10312 10313 ret = snprintf(file, sizeof(file), 10314 "/sys/kernel/debug/tracing/events/%s/%s/id", 10315 tp_category, tp_name); 10316 if (ret < 0) 10317 return -errno; 10318 if (ret >= sizeof(file)) { 10319 pr_debug("tracepoint %s/%s path is too long\n", 10320 tp_category, tp_name); 10321 return -E2BIG; 10322 } 10323 return parse_uint_from_file(file, "%d\n"); 10324 } 10325 10326 static int perf_event_open_tracepoint(const char *tp_category, 10327 const char *tp_name) 10328 { 10329 struct perf_event_attr attr = {}; 10330 char errmsg[STRERR_BUFSIZE]; 10331 int tp_id, pfd, err; 10332 10333 tp_id = determine_tracepoint_id(tp_category, tp_name); 10334 if (tp_id < 0) { 10335 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 10336 tp_category, tp_name, 10337 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 10338 return tp_id; 10339 } 10340 10341 attr.type = PERF_TYPE_TRACEPOINT; 10342 attr.size = sizeof(attr); 10343 attr.config = tp_id; 10344 10345 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 10346 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10347 if (pfd < 0) { 10348 err = -errno; 10349 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 10350 tp_category, tp_name, 10351 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10352 return err; 10353 } 10354 return pfd; 10355 } 10356 10357 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 10358 const char *tp_category, 10359 const char *tp_name, 10360 const struct bpf_tracepoint_opts *opts) 10361 { 10362 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10363 char errmsg[STRERR_BUFSIZE]; 10364 struct bpf_link *link; 10365 int pfd, err; 10366 10367 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 10368 return libbpf_err_ptr(-EINVAL); 10369 10370 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10371 10372 pfd = perf_event_open_tracepoint(tp_category, tp_name); 10373 if (pfd < 0) { 10374 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 10375 prog->name, tp_category, tp_name, 10376 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10377 return libbpf_err_ptr(pfd); 10378 } 10379 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10380 err = libbpf_get_error(link); 10381 if (err) { 10382 close(pfd); 10383 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 10384 prog->name, tp_category, tp_name, 10385 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10386 return libbpf_err_ptr(err); 10387 } 10388 return link; 10389 } 10390 10391 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 10392 const char *tp_category, 10393 const char *tp_name) 10394 { 10395 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 10396 } 10397 10398 static struct bpf_link *attach_tp(const struct bpf_program *prog, long cookie) 10399 { 10400 char *sec_name, *tp_cat, *tp_name; 10401 struct bpf_link *link; 10402 10403 sec_name = strdup(prog->sec_name); 10404 if (!sec_name) 10405 return libbpf_err_ptr(-ENOMEM); 10406 10407 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 10408 if (str_has_pfx(prog->sec_name, "tp/")) 10409 tp_cat = sec_name + sizeof("tp/") - 1; 10410 else 10411 tp_cat = sec_name + sizeof("tracepoint/") - 1; 10412 tp_name = strchr(tp_cat, '/'); 10413 if (!tp_name) { 10414 free(sec_name); 10415 return libbpf_err_ptr(-EINVAL); 10416 } 10417 *tp_name = '\0'; 10418 tp_name++; 10419 10420 link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 10421 free(sec_name); 10422 return link; 10423 } 10424 10425 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 10426 const char *tp_name) 10427 { 10428 char errmsg[STRERR_BUFSIZE]; 10429 struct bpf_link *link; 10430 int prog_fd, pfd; 10431 10432 prog_fd = bpf_program__fd(prog); 10433 if (prog_fd < 0) { 10434 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10435 return libbpf_err_ptr(-EINVAL); 10436 } 10437 10438 link = calloc(1, sizeof(*link)); 10439 if (!link) 10440 return libbpf_err_ptr(-ENOMEM); 10441 link->detach = &bpf_link__detach_fd; 10442 10443 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 10444 if (pfd < 0) { 10445 pfd = -errno; 10446 free(link); 10447 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 10448 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10449 return libbpf_err_ptr(pfd); 10450 } 10451 link->fd = pfd; 10452 return link; 10453 } 10454 10455 static struct bpf_link *attach_raw_tp(const struct bpf_program *prog, long cookie) 10456 { 10457 static const char *const prefixes[] = { 10458 "raw_tp/", 10459 "raw_tracepoint/", 10460 "raw_tp.w/", 10461 "raw_tracepoint.w/", 10462 }; 10463 size_t i; 10464 const char *tp_name = NULL; 10465 10466 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 10467 if (str_has_pfx(prog->sec_name, prefixes[i])) { 10468 tp_name = prog->sec_name + strlen(prefixes[i]); 10469 break; 10470 } 10471 } 10472 if (!tp_name) { 10473 pr_warn("prog '%s': invalid section name '%s'\n", 10474 prog->name, prog->sec_name); 10475 return libbpf_err_ptr(-EINVAL); 10476 } 10477 10478 return bpf_program__attach_raw_tracepoint(prog, tp_name); 10479 } 10480 10481 /* Common logic for all BPF program types that attach to a btf_id */ 10482 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog) 10483 { 10484 char errmsg[STRERR_BUFSIZE]; 10485 struct bpf_link *link; 10486 int prog_fd, pfd; 10487 10488 prog_fd = bpf_program__fd(prog); 10489 if (prog_fd < 0) { 10490 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10491 return libbpf_err_ptr(-EINVAL); 10492 } 10493 10494 link = calloc(1, sizeof(*link)); 10495 if (!link) 10496 return libbpf_err_ptr(-ENOMEM); 10497 link->detach = &bpf_link__detach_fd; 10498 10499 pfd = bpf_raw_tracepoint_open(NULL, prog_fd); 10500 if (pfd < 0) { 10501 pfd = -errno; 10502 free(link); 10503 pr_warn("prog '%s': failed to attach: %s\n", 10504 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10505 return libbpf_err_ptr(pfd); 10506 } 10507 link->fd = pfd; 10508 return (struct bpf_link *)link; 10509 } 10510 10511 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 10512 { 10513 return bpf_program__attach_btf_id(prog); 10514 } 10515 10516 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 10517 { 10518 return bpf_program__attach_btf_id(prog); 10519 } 10520 10521 static struct bpf_link *attach_trace(const struct bpf_program *prog, long cookie) 10522 { 10523 return bpf_program__attach_trace(prog); 10524 } 10525 10526 static struct bpf_link *attach_lsm(const struct bpf_program *prog, long cookie) 10527 { 10528 return bpf_program__attach_lsm(prog); 10529 } 10530 10531 static struct bpf_link * 10532 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id, 10533 const char *target_name) 10534 { 10535 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 10536 .target_btf_id = btf_id); 10537 enum bpf_attach_type attach_type; 10538 char errmsg[STRERR_BUFSIZE]; 10539 struct bpf_link *link; 10540 int prog_fd, link_fd; 10541 10542 prog_fd = bpf_program__fd(prog); 10543 if (prog_fd < 0) { 10544 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10545 return libbpf_err_ptr(-EINVAL); 10546 } 10547 10548 link = calloc(1, sizeof(*link)); 10549 if (!link) 10550 return libbpf_err_ptr(-ENOMEM); 10551 link->detach = &bpf_link__detach_fd; 10552 10553 attach_type = bpf_program__expected_attach_type(prog); 10554 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 10555 if (link_fd < 0) { 10556 link_fd = -errno; 10557 free(link); 10558 pr_warn("prog '%s': failed to attach to %s: %s\n", 10559 prog->name, target_name, 10560 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 10561 return libbpf_err_ptr(link_fd); 10562 } 10563 link->fd = link_fd; 10564 return link; 10565 } 10566 10567 struct bpf_link * 10568 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 10569 { 10570 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 10571 } 10572 10573 struct bpf_link * 10574 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 10575 { 10576 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 10577 } 10578 10579 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 10580 { 10581 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 10582 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 10583 } 10584 10585 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 10586 int target_fd, 10587 const char *attach_func_name) 10588 { 10589 int btf_id; 10590 10591 if (!!target_fd != !!attach_func_name) { 10592 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 10593 prog->name); 10594 return libbpf_err_ptr(-EINVAL); 10595 } 10596 10597 if (prog->type != BPF_PROG_TYPE_EXT) { 10598 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 10599 prog->name); 10600 return libbpf_err_ptr(-EINVAL); 10601 } 10602 10603 if (target_fd) { 10604 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 10605 if (btf_id < 0) 10606 return libbpf_err_ptr(btf_id); 10607 10608 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 10609 } else { 10610 /* no target, so use raw_tracepoint_open for compatibility 10611 * with old kernels 10612 */ 10613 return bpf_program__attach_trace(prog); 10614 } 10615 } 10616 10617 struct bpf_link * 10618 bpf_program__attach_iter(const struct bpf_program *prog, 10619 const struct bpf_iter_attach_opts *opts) 10620 { 10621 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 10622 char errmsg[STRERR_BUFSIZE]; 10623 struct bpf_link *link; 10624 int prog_fd, link_fd; 10625 __u32 target_fd = 0; 10626 10627 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 10628 return libbpf_err_ptr(-EINVAL); 10629 10630 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 10631 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 10632 10633 prog_fd = bpf_program__fd(prog); 10634 if (prog_fd < 0) { 10635 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10636 return libbpf_err_ptr(-EINVAL); 10637 } 10638 10639 link = calloc(1, sizeof(*link)); 10640 if (!link) 10641 return libbpf_err_ptr(-ENOMEM); 10642 link->detach = &bpf_link__detach_fd; 10643 10644 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 10645 &link_create_opts); 10646 if (link_fd < 0) { 10647 link_fd = -errno; 10648 free(link); 10649 pr_warn("prog '%s': failed to attach to iterator: %s\n", 10650 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 10651 return libbpf_err_ptr(link_fd); 10652 } 10653 link->fd = link_fd; 10654 return link; 10655 } 10656 10657 static struct bpf_link *attach_iter(const struct bpf_program *prog, long cookie) 10658 { 10659 return bpf_program__attach_iter(prog, NULL); 10660 } 10661 10662 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 10663 { 10664 if (!prog->sec_def || !prog->sec_def->attach_fn) 10665 return libbpf_err_ptr(-ESRCH); 10666 10667 return prog->sec_def->attach_fn(prog, prog->sec_def->cookie); 10668 } 10669 10670 static int bpf_link__detach_struct_ops(struct bpf_link *link) 10671 { 10672 __u32 zero = 0; 10673 10674 if (bpf_map_delete_elem(link->fd, &zero)) 10675 return -errno; 10676 10677 return 0; 10678 } 10679 10680 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 10681 { 10682 struct bpf_struct_ops *st_ops; 10683 struct bpf_link *link; 10684 __u32 i, zero = 0; 10685 int err; 10686 10687 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 10688 return libbpf_err_ptr(-EINVAL); 10689 10690 link = calloc(1, sizeof(*link)); 10691 if (!link) 10692 return libbpf_err_ptr(-EINVAL); 10693 10694 st_ops = map->st_ops; 10695 for (i = 0; i < btf_vlen(st_ops->type); i++) { 10696 struct bpf_program *prog = st_ops->progs[i]; 10697 void *kern_data; 10698 int prog_fd; 10699 10700 if (!prog) 10701 continue; 10702 10703 prog_fd = bpf_program__fd(prog); 10704 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 10705 *(unsigned long *)kern_data = prog_fd; 10706 } 10707 10708 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 10709 if (err) { 10710 err = -errno; 10711 free(link); 10712 return libbpf_err_ptr(err); 10713 } 10714 10715 link->detach = bpf_link__detach_struct_ops; 10716 link->fd = map->fd; 10717 10718 return link; 10719 } 10720 10721 static enum bpf_perf_event_ret 10722 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 10723 void **copy_mem, size_t *copy_size, 10724 bpf_perf_event_print_t fn, void *private_data) 10725 { 10726 struct perf_event_mmap_page *header = mmap_mem; 10727 __u64 data_head = ring_buffer_read_head(header); 10728 __u64 data_tail = header->data_tail; 10729 void *base = ((__u8 *)header) + page_size; 10730 int ret = LIBBPF_PERF_EVENT_CONT; 10731 struct perf_event_header *ehdr; 10732 size_t ehdr_size; 10733 10734 while (data_head != data_tail) { 10735 ehdr = base + (data_tail & (mmap_size - 1)); 10736 ehdr_size = ehdr->size; 10737 10738 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 10739 void *copy_start = ehdr; 10740 size_t len_first = base + mmap_size - copy_start; 10741 size_t len_secnd = ehdr_size - len_first; 10742 10743 if (*copy_size < ehdr_size) { 10744 free(*copy_mem); 10745 *copy_mem = malloc(ehdr_size); 10746 if (!*copy_mem) { 10747 *copy_size = 0; 10748 ret = LIBBPF_PERF_EVENT_ERROR; 10749 break; 10750 } 10751 *copy_size = ehdr_size; 10752 } 10753 10754 memcpy(*copy_mem, copy_start, len_first); 10755 memcpy(*copy_mem + len_first, base, len_secnd); 10756 ehdr = *copy_mem; 10757 } 10758 10759 ret = fn(ehdr, private_data); 10760 data_tail += ehdr_size; 10761 if (ret != LIBBPF_PERF_EVENT_CONT) 10762 break; 10763 } 10764 10765 ring_buffer_write_tail(header, data_tail); 10766 return libbpf_err(ret); 10767 } 10768 10769 __attribute__((alias("perf_event_read_simple"))) 10770 enum bpf_perf_event_ret 10771 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 10772 void **copy_mem, size_t *copy_size, 10773 bpf_perf_event_print_t fn, void *private_data); 10774 10775 struct perf_buffer; 10776 10777 struct perf_buffer_params { 10778 struct perf_event_attr *attr; 10779 /* if event_cb is specified, it takes precendence */ 10780 perf_buffer_event_fn event_cb; 10781 /* sample_cb and lost_cb are higher-level common-case callbacks */ 10782 perf_buffer_sample_fn sample_cb; 10783 perf_buffer_lost_fn lost_cb; 10784 void *ctx; 10785 int cpu_cnt; 10786 int *cpus; 10787 int *map_keys; 10788 }; 10789 10790 struct perf_cpu_buf { 10791 struct perf_buffer *pb; 10792 void *base; /* mmap()'ed memory */ 10793 void *buf; /* for reconstructing segmented data */ 10794 size_t buf_size; 10795 int fd; 10796 int cpu; 10797 int map_key; 10798 }; 10799 10800 struct perf_buffer { 10801 perf_buffer_event_fn event_cb; 10802 perf_buffer_sample_fn sample_cb; 10803 perf_buffer_lost_fn lost_cb; 10804 void *ctx; /* passed into callbacks */ 10805 10806 size_t page_size; 10807 size_t mmap_size; 10808 struct perf_cpu_buf **cpu_bufs; 10809 struct epoll_event *events; 10810 int cpu_cnt; /* number of allocated CPU buffers */ 10811 int epoll_fd; /* perf event FD */ 10812 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 10813 }; 10814 10815 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 10816 struct perf_cpu_buf *cpu_buf) 10817 { 10818 if (!cpu_buf) 10819 return; 10820 if (cpu_buf->base && 10821 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 10822 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 10823 if (cpu_buf->fd >= 0) { 10824 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 10825 close(cpu_buf->fd); 10826 } 10827 free(cpu_buf->buf); 10828 free(cpu_buf); 10829 } 10830 10831 void perf_buffer__free(struct perf_buffer *pb) 10832 { 10833 int i; 10834 10835 if (IS_ERR_OR_NULL(pb)) 10836 return; 10837 if (pb->cpu_bufs) { 10838 for (i = 0; i < pb->cpu_cnt; i++) { 10839 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 10840 10841 if (!cpu_buf) 10842 continue; 10843 10844 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 10845 perf_buffer__free_cpu_buf(pb, cpu_buf); 10846 } 10847 free(pb->cpu_bufs); 10848 } 10849 if (pb->epoll_fd >= 0) 10850 close(pb->epoll_fd); 10851 free(pb->events); 10852 free(pb); 10853 } 10854 10855 static struct perf_cpu_buf * 10856 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 10857 int cpu, int map_key) 10858 { 10859 struct perf_cpu_buf *cpu_buf; 10860 char msg[STRERR_BUFSIZE]; 10861 int err; 10862 10863 cpu_buf = calloc(1, sizeof(*cpu_buf)); 10864 if (!cpu_buf) 10865 return ERR_PTR(-ENOMEM); 10866 10867 cpu_buf->pb = pb; 10868 cpu_buf->cpu = cpu; 10869 cpu_buf->map_key = map_key; 10870 10871 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 10872 -1, PERF_FLAG_FD_CLOEXEC); 10873 if (cpu_buf->fd < 0) { 10874 err = -errno; 10875 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 10876 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10877 goto error; 10878 } 10879 10880 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 10881 PROT_READ | PROT_WRITE, MAP_SHARED, 10882 cpu_buf->fd, 0); 10883 if (cpu_buf->base == MAP_FAILED) { 10884 cpu_buf->base = NULL; 10885 err = -errno; 10886 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 10887 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10888 goto error; 10889 } 10890 10891 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10892 err = -errno; 10893 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 10894 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10895 goto error; 10896 } 10897 10898 return cpu_buf; 10899 10900 error: 10901 perf_buffer__free_cpu_buf(pb, cpu_buf); 10902 return (struct perf_cpu_buf *)ERR_PTR(err); 10903 } 10904 10905 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 10906 struct perf_buffer_params *p); 10907 10908 DEFAULT_VERSION(perf_buffer__new_v0_6_0, perf_buffer__new, LIBBPF_0.6.0) 10909 struct perf_buffer *perf_buffer__new_v0_6_0(int map_fd, size_t page_cnt, 10910 perf_buffer_sample_fn sample_cb, 10911 perf_buffer_lost_fn lost_cb, 10912 void *ctx, 10913 const struct perf_buffer_opts *opts) 10914 { 10915 struct perf_buffer_params p = {}; 10916 struct perf_event_attr attr = {}; 10917 10918 if (!OPTS_VALID(opts, perf_buffer_opts)) 10919 return libbpf_err_ptr(-EINVAL); 10920 10921 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 10922 attr.type = PERF_TYPE_SOFTWARE; 10923 attr.sample_type = PERF_SAMPLE_RAW; 10924 attr.sample_period = 1; 10925 attr.wakeup_events = 1; 10926 10927 p.attr = &attr; 10928 p.sample_cb = sample_cb; 10929 p.lost_cb = lost_cb; 10930 p.ctx = ctx; 10931 10932 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 10933 } 10934 10935 COMPAT_VERSION(perf_buffer__new_deprecated, perf_buffer__new, LIBBPF_0.0.4) 10936 struct perf_buffer *perf_buffer__new_deprecated(int map_fd, size_t page_cnt, 10937 const struct perf_buffer_opts *opts) 10938 { 10939 return perf_buffer__new_v0_6_0(map_fd, page_cnt, 10940 opts ? opts->sample_cb : NULL, 10941 opts ? opts->lost_cb : NULL, 10942 opts ? opts->ctx : NULL, 10943 NULL); 10944 } 10945 10946 DEFAULT_VERSION(perf_buffer__new_raw_v0_6_0, perf_buffer__new_raw, LIBBPF_0.6.0) 10947 struct perf_buffer *perf_buffer__new_raw_v0_6_0(int map_fd, size_t page_cnt, 10948 struct perf_event_attr *attr, 10949 perf_buffer_event_fn event_cb, void *ctx, 10950 const struct perf_buffer_raw_opts *opts) 10951 { 10952 struct perf_buffer_params p = {}; 10953 10954 if (!attr) 10955 return libbpf_err_ptr(-EINVAL); 10956 10957 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 10958 return libbpf_err_ptr(-EINVAL); 10959 10960 p.attr = attr; 10961 p.event_cb = event_cb; 10962 p.ctx = ctx; 10963 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 10964 p.cpus = OPTS_GET(opts, cpus, NULL); 10965 p.map_keys = OPTS_GET(opts, map_keys, NULL); 10966 10967 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 10968 } 10969 10970 COMPAT_VERSION(perf_buffer__new_raw_deprecated, perf_buffer__new_raw, LIBBPF_0.0.4) 10971 struct perf_buffer *perf_buffer__new_raw_deprecated(int map_fd, size_t page_cnt, 10972 const struct perf_buffer_raw_opts *opts) 10973 { 10974 LIBBPF_OPTS(perf_buffer_raw_opts, inner_opts, 10975 .cpu_cnt = opts->cpu_cnt, 10976 .cpus = opts->cpus, 10977 .map_keys = opts->map_keys, 10978 ); 10979 10980 return perf_buffer__new_raw_v0_6_0(map_fd, page_cnt, opts->attr, 10981 opts->event_cb, opts->ctx, &inner_opts); 10982 } 10983 10984 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 10985 struct perf_buffer_params *p) 10986 { 10987 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 10988 struct bpf_map_info map; 10989 char msg[STRERR_BUFSIZE]; 10990 struct perf_buffer *pb; 10991 bool *online = NULL; 10992 __u32 map_info_len; 10993 int err, i, j, n; 10994 10995 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 10996 pr_warn("page count should be power of two, but is %zu\n", 10997 page_cnt); 10998 return ERR_PTR(-EINVAL); 10999 } 11000 11001 /* best-effort sanity checks */ 11002 memset(&map, 0, sizeof(map)); 11003 map_info_len = sizeof(map); 11004 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 11005 if (err) { 11006 err = -errno; 11007 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 11008 * -EBADFD, -EFAULT, or -E2BIG on real error 11009 */ 11010 if (err != -EINVAL) { 11011 pr_warn("failed to get map info for map FD %d: %s\n", 11012 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 11013 return ERR_PTR(err); 11014 } 11015 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 11016 map_fd); 11017 } else { 11018 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 11019 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 11020 map.name); 11021 return ERR_PTR(-EINVAL); 11022 } 11023 } 11024 11025 pb = calloc(1, sizeof(*pb)); 11026 if (!pb) 11027 return ERR_PTR(-ENOMEM); 11028 11029 pb->event_cb = p->event_cb; 11030 pb->sample_cb = p->sample_cb; 11031 pb->lost_cb = p->lost_cb; 11032 pb->ctx = p->ctx; 11033 11034 pb->page_size = getpagesize(); 11035 pb->mmap_size = pb->page_size * page_cnt; 11036 pb->map_fd = map_fd; 11037 11038 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 11039 if (pb->epoll_fd < 0) { 11040 err = -errno; 11041 pr_warn("failed to create epoll instance: %s\n", 11042 libbpf_strerror_r(err, msg, sizeof(msg))); 11043 goto error; 11044 } 11045 11046 if (p->cpu_cnt > 0) { 11047 pb->cpu_cnt = p->cpu_cnt; 11048 } else { 11049 pb->cpu_cnt = libbpf_num_possible_cpus(); 11050 if (pb->cpu_cnt < 0) { 11051 err = pb->cpu_cnt; 11052 goto error; 11053 } 11054 if (map.max_entries && map.max_entries < pb->cpu_cnt) 11055 pb->cpu_cnt = map.max_entries; 11056 } 11057 11058 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 11059 if (!pb->events) { 11060 err = -ENOMEM; 11061 pr_warn("failed to allocate events: out of memory\n"); 11062 goto error; 11063 } 11064 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 11065 if (!pb->cpu_bufs) { 11066 err = -ENOMEM; 11067 pr_warn("failed to allocate buffers: out of memory\n"); 11068 goto error; 11069 } 11070 11071 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 11072 if (err) { 11073 pr_warn("failed to get online CPU mask: %d\n", err); 11074 goto error; 11075 } 11076 11077 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 11078 struct perf_cpu_buf *cpu_buf; 11079 int cpu, map_key; 11080 11081 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 11082 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 11083 11084 /* in case user didn't explicitly requested particular CPUs to 11085 * be attached to, skip offline/not present CPUs 11086 */ 11087 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 11088 continue; 11089 11090 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 11091 if (IS_ERR(cpu_buf)) { 11092 err = PTR_ERR(cpu_buf); 11093 goto error; 11094 } 11095 11096 pb->cpu_bufs[j] = cpu_buf; 11097 11098 err = bpf_map_update_elem(pb->map_fd, &map_key, 11099 &cpu_buf->fd, 0); 11100 if (err) { 11101 err = -errno; 11102 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 11103 cpu, map_key, cpu_buf->fd, 11104 libbpf_strerror_r(err, msg, sizeof(msg))); 11105 goto error; 11106 } 11107 11108 pb->events[j].events = EPOLLIN; 11109 pb->events[j].data.ptr = cpu_buf; 11110 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 11111 &pb->events[j]) < 0) { 11112 err = -errno; 11113 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 11114 cpu, cpu_buf->fd, 11115 libbpf_strerror_r(err, msg, sizeof(msg))); 11116 goto error; 11117 } 11118 j++; 11119 } 11120 pb->cpu_cnt = j; 11121 free(online); 11122 11123 return pb; 11124 11125 error: 11126 free(online); 11127 if (pb) 11128 perf_buffer__free(pb); 11129 return ERR_PTR(err); 11130 } 11131 11132 struct perf_sample_raw { 11133 struct perf_event_header header; 11134 uint32_t size; 11135 char data[]; 11136 }; 11137 11138 struct perf_sample_lost { 11139 struct perf_event_header header; 11140 uint64_t id; 11141 uint64_t lost; 11142 uint64_t sample_id; 11143 }; 11144 11145 static enum bpf_perf_event_ret 11146 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 11147 { 11148 struct perf_cpu_buf *cpu_buf = ctx; 11149 struct perf_buffer *pb = cpu_buf->pb; 11150 void *data = e; 11151 11152 /* user wants full control over parsing perf event */ 11153 if (pb->event_cb) 11154 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 11155 11156 switch (e->type) { 11157 case PERF_RECORD_SAMPLE: { 11158 struct perf_sample_raw *s = data; 11159 11160 if (pb->sample_cb) 11161 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 11162 break; 11163 } 11164 case PERF_RECORD_LOST: { 11165 struct perf_sample_lost *s = data; 11166 11167 if (pb->lost_cb) 11168 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 11169 break; 11170 } 11171 default: 11172 pr_warn("unknown perf sample type %d\n", e->type); 11173 return LIBBPF_PERF_EVENT_ERROR; 11174 } 11175 return LIBBPF_PERF_EVENT_CONT; 11176 } 11177 11178 static int perf_buffer__process_records(struct perf_buffer *pb, 11179 struct perf_cpu_buf *cpu_buf) 11180 { 11181 enum bpf_perf_event_ret ret; 11182 11183 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 11184 pb->page_size, &cpu_buf->buf, 11185 &cpu_buf->buf_size, 11186 perf_buffer__process_record, cpu_buf); 11187 if (ret != LIBBPF_PERF_EVENT_CONT) 11188 return ret; 11189 return 0; 11190 } 11191 11192 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 11193 { 11194 return pb->epoll_fd; 11195 } 11196 11197 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 11198 { 11199 int i, cnt, err; 11200 11201 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 11202 if (cnt < 0) 11203 return -errno; 11204 11205 for (i = 0; i < cnt; i++) { 11206 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 11207 11208 err = perf_buffer__process_records(pb, cpu_buf); 11209 if (err) { 11210 pr_warn("error while processing records: %d\n", err); 11211 return libbpf_err(err); 11212 } 11213 } 11214 return cnt; 11215 } 11216 11217 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 11218 * manager. 11219 */ 11220 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 11221 { 11222 return pb->cpu_cnt; 11223 } 11224 11225 /* 11226 * Return perf_event FD of a ring buffer in *buf_idx* slot of 11227 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 11228 * select()/poll()/epoll() Linux syscalls. 11229 */ 11230 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 11231 { 11232 struct perf_cpu_buf *cpu_buf; 11233 11234 if (buf_idx >= pb->cpu_cnt) 11235 return libbpf_err(-EINVAL); 11236 11237 cpu_buf = pb->cpu_bufs[buf_idx]; 11238 if (!cpu_buf) 11239 return libbpf_err(-ENOENT); 11240 11241 return cpu_buf->fd; 11242 } 11243 11244 /* 11245 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 11246 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 11247 * consume, do nothing and return success. 11248 * Returns: 11249 * - 0 on success; 11250 * - <0 on failure. 11251 */ 11252 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 11253 { 11254 struct perf_cpu_buf *cpu_buf; 11255 11256 if (buf_idx >= pb->cpu_cnt) 11257 return libbpf_err(-EINVAL); 11258 11259 cpu_buf = pb->cpu_bufs[buf_idx]; 11260 if (!cpu_buf) 11261 return libbpf_err(-ENOENT); 11262 11263 return perf_buffer__process_records(pb, cpu_buf); 11264 } 11265 11266 int perf_buffer__consume(struct perf_buffer *pb) 11267 { 11268 int i, err; 11269 11270 for (i = 0; i < pb->cpu_cnt; i++) { 11271 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 11272 11273 if (!cpu_buf) 11274 continue; 11275 11276 err = perf_buffer__process_records(pb, cpu_buf); 11277 if (err) { 11278 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 11279 return libbpf_err(err); 11280 } 11281 } 11282 return 0; 11283 } 11284 11285 struct bpf_prog_info_array_desc { 11286 int array_offset; /* e.g. offset of jited_prog_insns */ 11287 int count_offset; /* e.g. offset of jited_prog_len */ 11288 int size_offset; /* > 0: offset of rec size, 11289 * < 0: fix size of -size_offset 11290 */ 11291 }; 11292 11293 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = { 11294 [BPF_PROG_INFO_JITED_INSNS] = { 11295 offsetof(struct bpf_prog_info, jited_prog_insns), 11296 offsetof(struct bpf_prog_info, jited_prog_len), 11297 -1, 11298 }, 11299 [BPF_PROG_INFO_XLATED_INSNS] = { 11300 offsetof(struct bpf_prog_info, xlated_prog_insns), 11301 offsetof(struct bpf_prog_info, xlated_prog_len), 11302 -1, 11303 }, 11304 [BPF_PROG_INFO_MAP_IDS] = { 11305 offsetof(struct bpf_prog_info, map_ids), 11306 offsetof(struct bpf_prog_info, nr_map_ids), 11307 -(int)sizeof(__u32), 11308 }, 11309 [BPF_PROG_INFO_JITED_KSYMS] = { 11310 offsetof(struct bpf_prog_info, jited_ksyms), 11311 offsetof(struct bpf_prog_info, nr_jited_ksyms), 11312 -(int)sizeof(__u64), 11313 }, 11314 [BPF_PROG_INFO_JITED_FUNC_LENS] = { 11315 offsetof(struct bpf_prog_info, jited_func_lens), 11316 offsetof(struct bpf_prog_info, nr_jited_func_lens), 11317 -(int)sizeof(__u32), 11318 }, 11319 [BPF_PROG_INFO_FUNC_INFO] = { 11320 offsetof(struct bpf_prog_info, func_info), 11321 offsetof(struct bpf_prog_info, nr_func_info), 11322 offsetof(struct bpf_prog_info, func_info_rec_size), 11323 }, 11324 [BPF_PROG_INFO_LINE_INFO] = { 11325 offsetof(struct bpf_prog_info, line_info), 11326 offsetof(struct bpf_prog_info, nr_line_info), 11327 offsetof(struct bpf_prog_info, line_info_rec_size), 11328 }, 11329 [BPF_PROG_INFO_JITED_LINE_INFO] = { 11330 offsetof(struct bpf_prog_info, jited_line_info), 11331 offsetof(struct bpf_prog_info, nr_jited_line_info), 11332 offsetof(struct bpf_prog_info, jited_line_info_rec_size), 11333 }, 11334 [BPF_PROG_INFO_PROG_TAGS] = { 11335 offsetof(struct bpf_prog_info, prog_tags), 11336 offsetof(struct bpf_prog_info, nr_prog_tags), 11337 -(int)sizeof(__u8) * BPF_TAG_SIZE, 11338 }, 11339 11340 }; 11341 11342 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info, 11343 int offset) 11344 { 11345 __u32 *array = (__u32 *)info; 11346 11347 if (offset >= 0) 11348 return array[offset / sizeof(__u32)]; 11349 return -(int)offset; 11350 } 11351 11352 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info, 11353 int offset) 11354 { 11355 __u64 *array = (__u64 *)info; 11356 11357 if (offset >= 0) 11358 return array[offset / sizeof(__u64)]; 11359 return -(int)offset; 11360 } 11361 11362 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset, 11363 __u32 val) 11364 { 11365 __u32 *array = (__u32 *)info; 11366 11367 if (offset >= 0) 11368 array[offset / sizeof(__u32)] = val; 11369 } 11370 11371 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset, 11372 __u64 val) 11373 { 11374 __u64 *array = (__u64 *)info; 11375 11376 if (offset >= 0) 11377 array[offset / sizeof(__u64)] = val; 11378 } 11379 11380 struct bpf_prog_info_linear * 11381 bpf_program__get_prog_info_linear(int fd, __u64 arrays) 11382 { 11383 struct bpf_prog_info_linear *info_linear; 11384 struct bpf_prog_info info = {}; 11385 __u32 info_len = sizeof(info); 11386 __u32 data_len = 0; 11387 int i, err; 11388 void *ptr; 11389 11390 if (arrays >> BPF_PROG_INFO_LAST_ARRAY) 11391 return libbpf_err_ptr(-EINVAL); 11392 11393 /* step 1: get array dimensions */ 11394 err = bpf_obj_get_info_by_fd(fd, &info, &info_len); 11395 if (err) { 11396 pr_debug("can't get prog info: %s", strerror(errno)); 11397 return libbpf_err_ptr(-EFAULT); 11398 } 11399 11400 /* step 2: calculate total size of all arrays */ 11401 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11402 bool include_array = (arrays & (1UL << i)) > 0; 11403 struct bpf_prog_info_array_desc *desc; 11404 __u32 count, size; 11405 11406 desc = bpf_prog_info_array_desc + i; 11407 11408 /* kernel is too old to support this field */ 11409 if (info_len < desc->array_offset + sizeof(__u32) || 11410 info_len < desc->count_offset + sizeof(__u32) || 11411 (desc->size_offset > 0 && info_len < desc->size_offset)) 11412 include_array = false; 11413 11414 if (!include_array) { 11415 arrays &= ~(1UL << i); /* clear the bit */ 11416 continue; 11417 } 11418 11419 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11420 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11421 11422 data_len += count * size; 11423 } 11424 11425 /* step 3: allocate continuous memory */ 11426 data_len = roundup(data_len, sizeof(__u64)); 11427 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len); 11428 if (!info_linear) 11429 return libbpf_err_ptr(-ENOMEM); 11430 11431 /* step 4: fill data to info_linear->info */ 11432 info_linear->arrays = arrays; 11433 memset(&info_linear->info, 0, sizeof(info)); 11434 ptr = info_linear->data; 11435 11436 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11437 struct bpf_prog_info_array_desc *desc; 11438 __u32 count, size; 11439 11440 if ((arrays & (1UL << i)) == 0) 11441 continue; 11442 11443 desc = bpf_prog_info_array_desc + i; 11444 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11445 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11446 bpf_prog_info_set_offset_u32(&info_linear->info, 11447 desc->count_offset, count); 11448 bpf_prog_info_set_offset_u32(&info_linear->info, 11449 desc->size_offset, size); 11450 bpf_prog_info_set_offset_u64(&info_linear->info, 11451 desc->array_offset, 11452 ptr_to_u64(ptr)); 11453 ptr += count * size; 11454 } 11455 11456 /* step 5: call syscall again to get required arrays */ 11457 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len); 11458 if (err) { 11459 pr_debug("can't get prog info: %s", strerror(errno)); 11460 free(info_linear); 11461 return libbpf_err_ptr(-EFAULT); 11462 } 11463 11464 /* step 6: verify the data */ 11465 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11466 struct bpf_prog_info_array_desc *desc; 11467 __u32 v1, v2; 11468 11469 if ((arrays & (1UL << i)) == 0) 11470 continue; 11471 11472 desc = bpf_prog_info_array_desc + i; 11473 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11474 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 11475 desc->count_offset); 11476 if (v1 != v2) 11477 pr_warn("%s: mismatch in element count\n", __func__); 11478 11479 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11480 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 11481 desc->size_offset); 11482 if (v1 != v2) 11483 pr_warn("%s: mismatch in rec size\n", __func__); 11484 } 11485 11486 /* step 7: update info_len and data_len */ 11487 info_linear->info_len = sizeof(struct bpf_prog_info); 11488 info_linear->data_len = data_len; 11489 11490 return info_linear; 11491 } 11492 11493 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear) 11494 { 11495 int i; 11496 11497 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11498 struct bpf_prog_info_array_desc *desc; 11499 __u64 addr, offs; 11500 11501 if ((info_linear->arrays & (1UL << i)) == 0) 11502 continue; 11503 11504 desc = bpf_prog_info_array_desc + i; 11505 addr = bpf_prog_info_read_offset_u64(&info_linear->info, 11506 desc->array_offset); 11507 offs = addr - ptr_to_u64(info_linear->data); 11508 bpf_prog_info_set_offset_u64(&info_linear->info, 11509 desc->array_offset, offs); 11510 } 11511 } 11512 11513 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear) 11514 { 11515 int i; 11516 11517 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11518 struct bpf_prog_info_array_desc *desc; 11519 __u64 addr, offs; 11520 11521 if ((info_linear->arrays & (1UL << i)) == 0) 11522 continue; 11523 11524 desc = bpf_prog_info_array_desc + i; 11525 offs = bpf_prog_info_read_offset_u64(&info_linear->info, 11526 desc->array_offset); 11527 addr = offs + ptr_to_u64(info_linear->data); 11528 bpf_prog_info_set_offset_u64(&info_linear->info, 11529 desc->array_offset, addr); 11530 } 11531 } 11532 11533 int bpf_program__set_attach_target(struct bpf_program *prog, 11534 int attach_prog_fd, 11535 const char *attach_func_name) 11536 { 11537 int btf_obj_fd = 0, btf_id = 0, err; 11538 11539 if (!prog || attach_prog_fd < 0) 11540 return libbpf_err(-EINVAL); 11541 11542 if (prog->obj->loaded) 11543 return libbpf_err(-EINVAL); 11544 11545 if (attach_prog_fd && !attach_func_name) { 11546 /* remember attach_prog_fd and let bpf_program__load() find 11547 * BTF ID during the program load 11548 */ 11549 prog->attach_prog_fd = attach_prog_fd; 11550 return 0; 11551 } 11552 11553 if (attach_prog_fd) { 11554 btf_id = libbpf_find_prog_btf_id(attach_func_name, 11555 attach_prog_fd); 11556 if (btf_id < 0) 11557 return libbpf_err(btf_id); 11558 } else { 11559 if (!attach_func_name) 11560 return libbpf_err(-EINVAL); 11561 11562 /* load btf_vmlinux, if not yet */ 11563 err = bpf_object__load_vmlinux_btf(prog->obj, true); 11564 if (err) 11565 return libbpf_err(err); 11566 err = find_kernel_btf_id(prog->obj, attach_func_name, 11567 prog->expected_attach_type, 11568 &btf_obj_fd, &btf_id); 11569 if (err) 11570 return libbpf_err(err); 11571 } 11572 11573 prog->attach_btf_id = btf_id; 11574 prog->attach_btf_obj_fd = btf_obj_fd; 11575 prog->attach_prog_fd = attach_prog_fd; 11576 return 0; 11577 } 11578 11579 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 11580 { 11581 int err = 0, n, len, start, end = -1; 11582 bool *tmp; 11583 11584 *mask = NULL; 11585 *mask_sz = 0; 11586 11587 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 11588 while (*s) { 11589 if (*s == ',' || *s == '\n') { 11590 s++; 11591 continue; 11592 } 11593 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 11594 if (n <= 0 || n > 2) { 11595 pr_warn("Failed to get CPU range %s: %d\n", s, n); 11596 err = -EINVAL; 11597 goto cleanup; 11598 } else if (n == 1) { 11599 end = start; 11600 } 11601 if (start < 0 || start > end) { 11602 pr_warn("Invalid CPU range [%d,%d] in %s\n", 11603 start, end, s); 11604 err = -EINVAL; 11605 goto cleanup; 11606 } 11607 tmp = realloc(*mask, end + 1); 11608 if (!tmp) { 11609 err = -ENOMEM; 11610 goto cleanup; 11611 } 11612 *mask = tmp; 11613 memset(tmp + *mask_sz, 0, start - *mask_sz); 11614 memset(tmp + start, 1, end - start + 1); 11615 *mask_sz = end + 1; 11616 s += len; 11617 } 11618 if (!*mask_sz) { 11619 pr_warn("Empty CPU range\n"); 11620 return -EINVAL; 11621 } 11622 return 0; 11623 cleanup: 11624 free(*mask); 11625 *mask = NULL; 11626 return err; 11627 } 11628 11629 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 11630 { 11631 int fd, err = 0, len; 11632 char buf[128]; 11633 11634 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 11635 if (fd < 0) { 11636 err = -errno; 11637 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 11638 return err; 11639 } 11640 len = read(fd, buf, sizeof(buf)); 11641 close(fd); 11642 if (len <= 0) { 11643 err = len ? -errno : -EINVAL; 11644 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 11645 return err; 11646 } 11647 if (len >= sizeof(buf)) { 11648 pr_warn("CPU mask is too big in file %s\n", fcpu); 11649 return -E2BIG; 11650 } 11651 buf[len] = '\0'; 11652 11653 return parse_cpu_mask_str(buf, mask, mask_sz); 11654 } 11655 11656 int libbpf_num_possible_cpus(void) 11657 { 11658 static const char *fcpu = "/sys/devices/system/cpu/possible"; 11659 static int cpus; 11660 int err, n, i, tmp_cpus; 11661 bool *mask; 11662 11663 tmp_cpus = READ_ONCE(cpus); 11664 if (tmp_cpus > 0) 11665 return tmp_cpus; 11666 11667 err = parse_cpu_mask_file(fcpu, &mask, &n); 11668 if (err) 11669 return libbpf_err(err); 11670 11671 tmp_cpus = 0; 11672 for (i = 0; i < n; i++) { 11673 if (mask[i]) 11674 tmp_cpus++; 11675 } 11676 free(mask); 11677 11678 WRITE_ONCE(cpus, tmp_cpus); 11679 return tmp_cpus; 11680 } 11681 11682 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 11683 const struct bpf_object_open_opts *opts) 11684 { 11685 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 11686 .object_name = s->name, 11687 ); 11688 struct bpf_object *obj; 11689 int i, err; 11690 11691 /* Attempt to preserve opts->object_name, unless overriden by user 11692 * explicitly. Overwriting object name for skeletons is discouraged, 11693 * as it breaks global data maps, because they contain object name 11694 * prefix as their own map name prefix. When skeleton is generated, 11695 * bpftool is making an assumption that this name will stay the same. 11696 */ 11697 if (opts) { 11698 memcpy(&skel_opts, opts, sizeof(*opts)); 11699 if (!opts->object_name) 11700 skel_opts.object_name = s->name; 11701 } 11702 11703 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 11704 err = libbpf_get_error(obj); 11705 if (err) { 11706 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 11707 s->name, err); 11708 return libbpf_err(err); 11709 } 11710 11711 *s->obj = obj; 11712 11713 for (i = 0; i < s->map_cnt; i++) { 11714 struct bpf_map **map = s->maps[i].map; 11715 const char *name = s->maps[i].name; 11716 void **mmaped = s->maps[i].mmaped; 11717 11718 *map = bpf_object__find_map_by_name(obj, name); 11719 if (!*map) { 11720 pr_warn("failed to find skeleton map '%s'\n", name); 11721 return libbpf_err(-ESRCH); 11722 } 11723 11724 /* externs shouldn't be pre-setup from user code */ 11725 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 11726 *mmaped = (*map)->mmaped; 11727 } 11728 11729 for (i = 0; i < s->prog_cnt; i++) { 11730 struct bpf_program **prog = s->progs[i].prog; 11731 const char *name = s->progs[i].name; 11732 11733 *prog = bpf_object__find_program_by_name(obj, name); 11734 if (!*prog) { 11735 pr_warn("failed to find skeleton program '%s'\n", name); 11736 return libbpf_err(-ESRCH); 11737 } 11738 } 11739 11740 return 0; 11741 } 11742 11743 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 11744 { 11745 int i, err; 11746 11747 err = bpf_object__load(*s->obj); 11748 if (err) { 11749 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 11750 return libbpf_err(err); 11751 } 11752 11753 for (i = 0; i < s->map_cnt; i++) { 11754 struct bpf_map *map = *s->maps[i].map; 11755 size_t mmap_sz = bpf_map_mmap_sz(map); 11756 int prot, map_fd = bpf_map__fd(map); 11757 void **mmaped = s->maps[i].mmaped; 11758 11759 if (!mmaped) 11760 continue; 11761 11762 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 11763 *mmaped = NULL; 11764 continue; 11765 } 11766 11767 if (map->def.map_flags & BPF_F_RDONLY_PROG) 11768 prot = PROT_READ; 11769 else 11770 prot = PROT_READ | PROT_WRITE; 11771 11772 /* Remap anonymous mmap()-ed "map initialization image" as 11773 * a BPF map-backed mmap()-ed memory, but preserving the same 11774 * memory address. This will cause kernel to change process' 11775 * page table to point to a different piece of kernel memory, 11776 * but from userspace point of view memory address (and its 11777 * contents, being identical at this point) will stay the 11778 * same. This mapping will be released by bpf_object__close() 11779 * as per normal clean up procedure, so we don't need to worry 11780 * about it from skeleton's clean up perspective. 11781 */ 11782 *mmaped = mmap(map->mmaped, mmap_sz, prot, 11783 MAP_SHARED | MAP_FIXED, map_fd, 0); 11784 if (*mmaped == MAP_FAILED) { 11785 err = -errno; 11786 *mmaped = NULL; 11787 pr_warn("failed to re-mmap() map '%s': %d\n", 11788 bpf_map__name(map), err); 11789 return libbpf_err(err); 11790 } 11791 } 11792 11793 return 0; 11794 } 11795 11796 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 11797 { 11798 int i, err; 11799 11800 for (i = 0; i < s->prog_cnt; i++) { 11801 struct bpf_program *prog = *s->progs[i].prog; 11802 struct bpf_link **link = s->progs[i].link; 11803 11804 if (!prog->load) 11805 continue; 11806 11807 /* auto-attaching not supported for this program */ 11808 if (!prog->sec_def || !prog->sec_def->attach_fn) 11809 continue; 11810 11811 *link = bpf_program__attach(prog); 11812 err = libbpf_get_error(*link); 11813 if (err) { 11814 pr_warn("failed to auto-attach program '%s': %d\n", 11815 bpf_program__name(prog), err); 11816 return libbpf_err(err); 11817 } 11818 } 11819 11820 return 0; 11821 } 11822 11823 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 11824 { 11825 int i; 11826 11827 for (i = 0; i < s->prog_cnt; i++) { 11828 struct bpf_link **link = s->progs[i].link; 11829 11830 bpf_link__destroy(*link); 11831 *link = NULL; 11832 } 11833 } 11834 11835 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 11836 { 11837 if (!s) 11838 return; 11839 11840 if (s->progs) 11841 bpf_object__detach_skeleton(s); 11842 if (s->obj) 11843 bpf_object__close(*s->obj); 11844 free(s->maps); 11845 free(s->progs); 11846 free(s); 11847 } 11848