xref: /openbmc/linux/tools/lib/bpf/libbpf.c (revision cf26e043)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * Common eBPF ELF object loading operations.
5  *
6  * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7  * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8  * Copyright (C) 2015 Huawei Inc.
9  * Copyright (C) 2017 Nicira, Inc.
10  * Copyright (C) 2019 Isovalent, Inc.
11  */
12 
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/limits.h>
35 #include <linux/perf_event.h>
36 #include <linux/ring_buffer.h>
37 #include <linux/version.h>
38 #include <sys/epoll.h>
39 #include <sys/ioctl.h>
40 #include <sys/mman.h>
41 #include <sys/stat.h>
42 #include <sys/types.h>
43 #include <sys/vfs.h>
44 #include <sys/utsname.h>
45 #include <sys/resource.h>
46 #include <libelf.h>
47 #include <gelf.h>
48 #include <zlib.h>
49 
50 #include "libbpf.h"
51 #include "bpf.h"
52 #include "btf.h"
53 #include "str_error.h"
54 #include "libbpf_internal.h"
55 #include "hashmap.h"
56 #include "bpf_gen_internal.h"
57 
58 #ifndef BPF_FS_MAGIC
59 #define BPF_FS_MAGIC		0xcafe4a11
60 #endif
61 
62 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
63 
64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
65  * compilation if user enables corresponding warning. Disable it explicitly.
66  */
67 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
68 
69 #define __printf(a, b)	__attribute__((format(printf, a, b)))
70 
71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
73 
74 static const char * const attach_type_name[] = {
75 	[BPF_CGROUP_INET_INGRESS]	= "cgroup_inet_ingress",
76 	[BPF_CGROUP_INET_EGRESS]	= "cgroup_inet_egress",
77 	[BPF_CGROUP_INET_SOCK_CREATE]	= "cgroup_inet_sock_create",
78 	[BPF_CGROUP_INET_SOCK_RELEASE]	= "cgroup_inet_sock_release",
79 	[BPF_CGROUP_SOCK_OPS]		= "cgroup_sock_ops",
80 	[BPF_CGROUP_DEVICE]		= "cgroup_device",
81 	[BPF_CGROUP_INET4_BIND]		= "cgroup_inet4_bind",
82 	[BPF_CGROUP_INET6_BIND]		= "cgroup_inet6_bind",
83 	[BPF_CGROUP_INET4_CONNECT]	= "cgroup_inet4_connect",
84 	[BPF_CGROUP_INET6_CONNECT]	= "cgroup_inet6_connect",
85 	[BPF_CGROUP_INET4_POST_BIND]	= "cgroup_inet4_post_bind",
86 	[BPF_CGROUP_INET6_POST_BIND]	= "cgroup_inet6_post_bind",
87 	[BPF_CGROUP_INET4_GETPEERNAME]	= "cgroup_inet4_getpeername",
88 	[BPF_CGROUP_INET6_GETPEERNAME]	= "cgroup_inet6_getpeername",
89 	[BPF_CGROUP_INET4_GETSOCKNAME]	= "cgroup_inet4_getsockname",
90 	[BPF_CGROUP_INET6_GETSOCKNAME]	= "cgroup_inet6_getsockname",
91 	[BPF_CGROUP_UDP4_SENDMSG]	= "cgroup_udp4_sendmsg",
92 	[BPF_CGROUP_UDP6_SENDMSG]	= "cgroup_udp6_sendmsg",
93 	[BPF_CGROUP_SYSCTL]		= "cgroup_sysctl",
94 	[BPF_CGROUP_UDP4_RECVMSG]	= "cgroup_udp4_recvmsg",
95 	[BPF_CGROUP_UDP6_RECVMSG]	= "cgroup_udp6_recvmsg",
96 	[BPF_CGROUP_GETSOCKOPT]		= "cgroup_getsockopt",
97 	[BPF_CGROUP_SETSOCKOPT]		= "cgroup_setsockopt",
98 	[BPF_SK_SKB_STREAM_PARSER]	= "sk_skb_stream_parser",
99 	[BPF_SK_SKB_STREAM_VERDICT]	= "sk_skb_stream_verdict",
100 	[BPF_SK_SKB_VERDICT]		= "sk_skb_verdict",
101 	[BPF_SK_MSG_VERDICT]		= "sk_msg_verdict",
102 	[BPF_LIRC_MODE2]		= "lirc_mode2",
103 	[BPF_FLOW_DISSECTOR]		= "flow_dissector",
104 	[BPF_TRACE_RAW_TP]		= "trace_raw_tp",
105 	[BPF_TRACE_FENTRY]		= "trace_fentry",
106 	[BPF_TRACE_FEXIT]		= "trace_fexit",
107 	[BPF_MODIFY_RETURN]		= "modify_return",
108 	[BPF_LSM_MAC]			= "lsm_mac",
109 	[BPF_LSM_CGROUP]		= "lsm_cgroup",
110 	[BPF_SK_LOOKUP]			= "sk_lookup",
111 	[BPF_TRACE_ITER]		= "trace_iter",
112 	[BPF_XDP_DEVMAP]		= "xdp_devmap",
113 	[BPF_XDP_CPUMAP]		= "xdp_cpumap",
114 	[BPF_XDP]			= "xdp",
115 	[BPF_SK_REUSEPORT_SELECT]	= "sk_reuseport_select",
116 	[BPF_SK_REUSEPORT_SELECT_OR_MIGRATE]	= "sk_reuseport_select_or_migrate",
117 	[BPF_PERF_EVENT]		= "perf_event",
118 	[BPF_TRACE_KPROBE_MULTI]	= "trace_kprobe_multi",
119 };
120 
121 static const char * const link_type_name[] = {
122 	[BPF_LINK_TYPE_UNSPEC]			= "unspec",
123 	[BPF_LINK_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
124 	[BPF_LINK_TYPE_TRACING]			= "tracing",
125 	[BPF_LINK_TYPE_CGROUP]			= "cgroup",
126 	[BPF_LINK_TYPE_ITER]			= "iter",
127 	[BPF_LINK_TYPE_NETNS]			= "netns",
128 	[BPF_LINK_TYPE_XDP]			= "xdp",
129 	[BPF_LINK_TYPE_PERF_EVENT]		= "perf_event",
130 	[BPF_LINK_TYPE_KPROBE_MULTI]		= "kprobe_multi",
131 	[BPF_LINK_TYPE_STRUCT_OPS]		= "struct_ops",
132 };
133 
134 static const char * const map_type_name[] = {
135 	[BPF_MAP_TYPE_UNSPEC]			= "unspec",
136 	[BPF_MAP_TYPE_HASH]			= "hash",
137 	[BPF_MAP_TYPE_ARRAY]			= "array",
138 	[BPF_MAP_TYPE_PROG_ARRAY]		= "prog_array",
139 	[BPF_MAP_TYPE_PERF_EVENT_ARRAY]		= "perf_event_array",
140 	[BPF_MAP_TYPE_PERCPU_HASH]		= "percpu_hash",
141 	[BPF_MAP_TYPE_PERCPU_ARRAY]		= "percpu_array",
142 	[BPF_MAP_TYPE_STACK_TRACE]		= "stack_trace",
143 	[BPF_MAP_TYPE_CGROUP_ARRAY]		= "cgroup_array",
144 	[BPF_MAP_TYPE_LRU_HASH]			= "lru_hash",
145 	[BPF_MAP_TYPE_LRU_PERCPU_HASH]		= "lru_percpu_hash",
146 	[BPF_MAP_TYPE_LPM_TRIE]			= "lpm_trie",
147 	[BPF_MAP_TYPE_ARRAY_OF_MAPS]		= "array_of_maps",
148 	[BPF_MAP_TYPE_HASH_OF_MAPS]		= "hash_of_maps",
149 	[BPF_MAP_TYPE_DEVMAP]			= "devmap",
150 	[BPF_MAP_TYPE_DEVMAP_HASH]		= "devmap_hash",
151 	[BPF_MAP_TYPE_SOCKMAP]			= "sockmap",
152 	[BPF_MAP_TYPE_CPUMAP]			= "cpumap",
153 	[BPF_MAP_TYPE_XSKMAP]			= "xskmap",
154 	[BPF_MAP_TYPE_SOCKHASH]			= "sockhash",
155 	[BPF_MAP_TYPE_CGROUP_STORAGE]		= "cgroup_storage",
156 	[BPF_MAP_TYPE_REUSEPORT_SOCKARRAY]	= "reuseport_sockarray",
157 	[BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE]	= "percpu_cgroup_storage",
158 	[BPF_MAP_TYPE_QUEUE]			= "queue",
159 	[BPF_MAP_TYPE_STACK]			= "stack",
160 	[BPF_MAP_TYPE_SK_STORAGE]		= "sk_storage",
161 	[BPF_MAP_TYPE_STRUCT_OPS]		= "struct_ops",
162 	[BPF_MAP_TYPE_RINGBUF]			= "ringbuf",
163 	[BPF_MAP_TYPE_INODE_STORAGE]		= "inode_storage",
164 	[BPF_MAP_TYPE_TASK_STORAGE]		= "task_storage",
165 	[BPF_MAP_TYPE_BLOOM_FILTER]		= "bloom_filter",
166 	[BPF_MAP_TYPE_USER_RINGBUF]             = "user_ringbuf",
167 	[BPF_MAP_TYPE_CGRP_STORAGE]		= "cgrp_storage",
168 };
169 
170 static const char * const prog_type_name[] = {
171 	[BPF_PROG_TYPE_UNSPEC]			= "unspec",
172 	[BPF_PROG_TYPE_SOCKET_FILTER]		= "socket_filter",
173 	[BPF_PROG_TYPE_KPROBE]			= "kprobe",
174 	[BPF_PROG_TYPE_SCHED_CLS]		= "sched_cls",
175 	[BPF_PROG_TYPE_SCHED_ACT]		= "sched_act",
176 	[BPF_PROG_TYPE_TRACEPOINT]		= "tracepoint",
177 	[BPF_PROG_TYPE_XDP]			= "xdp",
178 	[BPF_PROG_TYPE_PERF_EVENT]		= "perf_event",
179 	[BPF_PROG_TYPE_CGROUP_SKB]		= "cgroup_skb",
180 	[BPF_PROG_TYPE_CGROUP_SOCK]		= "cgroup_sock",
181 	[BPF_PROG_TYPE_LWT_IN]			= "lwt_in",
182 	[BPF_PROG_TYPE_LWT_OUT]			= "lwt_out",
183 	[BPF_PROG_TYPE_LWT_XMIT]		= "lwt_xmit",
184 	[BPF_PROG_TYPE_SOCK_OPS]		= "sock_ops",
185 	[BPF_PROG_TYPE_SK_SKB]			= "sk_skb",
186 	[BPF_PROG_TYPE_CGROUP_DEVICE]		= "cgroup_device",
187 	[BPF_PROG_TYPE_SK_MSG]			= "sk_msg",
188 	[BPF_PROG_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
189 	[BPF_PROG_TYPE_CGROUP_SOCK_ADDR]	= "cgroup_sock_addr",
190 	[BPF_PROG_TYPE_LWT_SEG6LOCAL]		= "lwt_seg6local",
191 	[BPF_PROG_TYPE_LIRC_MODE2]		= "lirc_mode2",
192 	[BPF_PROG_TYPE_SK_REUSEPORT]		= "sk_reuseport",
193 	[BPF_PROG_TYPE_FLOW_DISSECTOR]		= "flow_dissector",
194 	[BPF_PROG_TYPE_CGROUP_SYSCTL]		= "cgroup_sysctl",
195 	[BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE]	= "raw_tracepoint_writable",
196 	[BPF_PROG_TYPE_CGROUP_SOCKOPT]		= "cgroup_sockopt",
197 	[BPF_PROG_TYPE_TRACING]			= "tracing",
198 	[BPF_PROG_TYPE_STRUCT_OPS]		= "struct_ops",
199 	[BPF_PROG_TYPE_EXT]			= "ext",
200 	[BPF_PROG_TYPE_LSM]			= "lsm",
201 	[BPF_PROG_TYPE_SK_LOOKUP]		= "sk_lookup",
202 	[BPF_PROG_TYPE_SYSCALL]			= "syscall",
203 };
204 
205 static int __base_pr(enum libbpf_print_level level, const char *format,
206 		     va_list args)
207 {
208 	if (level == LIBBPF_DEBUG)
209 		return 0;
210 
211 	return vfprintf(stderr, format, args);
212 }
213 
214 static libbpf_print_fn_t __libbpf_pr = __base_pr;
215 
216 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
217 {
218 	libbpf_print_fn_t old_print_fn = __libbpf_pr;
219 
220 	__libbpf_pr = fn;
221 	return old_print_fn;
222 }
223 
224 __printf(2, 3)
225 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
226 {
227 	va_list args;
228 	int old_errno;
229 
230 	if (!__libbpf_pr)
231 		return;
232 
233 	old_errno = errno;
234 
235 	va_start(args, format);
236 	__libbpf_pr(level, format, args);
237 	va_end(args);
238 
239 	errno = old_errno;
240 }
241 
242 static void pr_perm_msg(int err)
243 {
244 	struct rlimit limit;
245 	char buf[100];
246 
247 	if (err != -EPERM || geteuid() != 0)
248 		return;
249 
250 	err = getrlimit(RLIMIT_MEMLOCK, &limit);
251 	if (err)
252 		return;
253 
254 	if (limit.rlim_cur == RLIM_INFINITY)
255 		return;
256 
257 	if (limit.rlim_cur < 1024)
258 		snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
259 	else if (limit.rlim_cur < 1024*1024)
260 		snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
261 	else
262 		snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
263 
264 	pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
265 		buf);
266 }
267 
268 #define STRERR_BUFSIZE  128
269 
270 /* Copied from tools/perf/util/util.h */
271 #ifndef zfree
272 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
273 #endif
274 
275 #ifndef zclose
276 # define zclose(fd) ({			\
277 	int ___err = 0;			\
278 	if ((fd) >= 0)			\
279 		___err = close((fd));	\
280 	fd = -1;			\
281 	___err; })
282 #endif
283 
284 static inline __u64 ptr_to_u64(const void *ptr)
285 {
286 	return (__u64) (unsigned long) ptr;
287 }
288 
289 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
290 {
291 	/* as of v1.0 libbpf_set_strict_mode() is a no-op */
292 	return 0;
293 }
294 
295 __u32 libbpf_major_version(void)
296 {
297 	return LIBBPF_MAJOR_VERSION;
298 }
299 
300 __u32 libbpf_minor_version(void)
301 {
302 	return LIBBPF_MINOR_VERSION;
303 }
304 
305 const char *libbpf_version_string(void)
306 {
307 #define __S(X) #X
308 #define _S(X) __S(X)
309 	return  "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
310 #undef _S
311 #undef __S
312 }
313 
314 enum reloc_type {
315 	RELO_LD64,
316 	RELO_CALL,
317 	RELO_DATA,
318 	RELO_EXTERN_VAR,
319 	RELO_EXTERN_FUNC,
320 	RELO_SUBPROG_ADDR,
321 	RELO_CORE,
322 };
323 
324 struct reloc_desc {
325 	enum reloc_type type;
326 	int insn_idx;
327 	union {
328 		const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
329 		struct {
330 			int map_idx;
331 			int sym_off;
332 		};
333 	};
334 };
335 
336 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
337 enum sec_def_flags {
338 	SEC_NONE = 0,
339 	/* expected_attach_type is optional, if kernel doesn't support that */
340 	SEC_EXP_ATTACH_OPT = 1,
341 	/* legacy, only used by libbpf_get_type_names() and
342 	 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
343 	 * This used to be associated with cgroup (and few other) BPF programs
344 	 * that were attachable through BPF_PROG_ATTACH command. Pretty
345 	 * meaningless nowadays, though.
346 	 */
347 	SEC_ATTACHABLE = 2,
348 	SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
349 	/* attachment target is specified through BTF ID in either kernel or
350 	 * other BPF program's BTF object
351 	 */
352 	SEC_ATTACH_BTF = 4,
353 	/* BPF program type allows sleeping/blocking in kernel */
354 	SEC_SLEEPABLE = 8,
355 	/* BPF program support non-linear XDP buffer */
356 	SEC_XDP_FRAGS = 16,
357 };
358 
359 struct bpf_sec_def {
360 	char *sec;
361 	enum bpf_prog_type prog_type;
362 	enum bpf_attach_type expected_attach_type;
363 	long cookie;
364 	int handler_id;
365 
366 	libbpf_prog_setup_fn_t prog_setup_fn;
367 	libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
368 	libbpf_prog_attach_fn_t prog_attach_fn;
369 };
370 
371 /*
372  * bpf_prog should be a better name but it has been used in
373  * linux/filter.h.
374  */
375 struct bpf_program {
376 	char *name;
377 	char *sec_name;
378 	size_t sec_idx;
379 	const struct bpf_sec_def *sec_def;
380 	/* this program's instruction offset (in number of instructions)
381 	 * within its containing ELF section
382 	 */
383 	size_t sec_insn_off;
384 	/* number of original instructions in ELF section belonging to this
385 	 * program, not taking into account subprogram instructions possible
386 	 * appended later during relocation
387 	 */
388 	size_t sec_insn_cnt;
389 	/* Offset (in number of instructions) of the start of instruction
390 	 * belonging to this BPF program  within its containing main BPF
391 	 * program. For the entry-point (main) BPF program, this is always
392 	 * zero. For a sub-program, this gets reset before each of main BPF
393 	 * programs are processed and relocated and is used to determined
394 	 * whether sub-program was already appended to the main program, and
395 	 * if yes, at which instruction offset.
396 	 */
397 	size_t sub_insn_off;
398 
399 	/* instructions that belong to BPF program; insns[0] is located at
400 	 * sec_insn_off instruction within its ELF section in ELF file, so
401 	 * when mapping ELF file instruction index to the local instruction,
402 	 * one needs to subtract sec_insn_off; and vice versa.
403 	 */
404 	struct bpf_insn *insns;
405 	/* actual number of instruction in this BPF program's image; for
406 	 * entry-point BPF programs this includes the size of main program
407 	 * itself plus all the used sub-programs, appended at the end
408 	 */
409 	size_t insns_cnt;
410 
411 	struct reloc_desc *reloc_desc;
412 	int nr_reloc;
413 
414 	/* BPF verifier log settings */
415 	char *log_buf;
416 	size_t log_size;
417 	__u32 log_level;
418 
419 	struct bpf_object *obj;
420 
421 	int fd;
422 	bool autoload;
423 	bool autoattach;
424 	bool mark_btf_static;
425 	enum bpf_prog_type type;
426 	enum bpf_attach_type expected_attach_type;
427 
428 	int prog_ifindex;
429 	__u32 attach_btf_obj_fd;
430 	__u32 attach_btf_id;
431 	__u32 attach_prog_fd;
432 
433 	void *func_info;
434 	__u32 func_info_rec_size;
435 	__u32 func_info_cnt;
436 
437 	void *line_info;
438 	__u32 line_info_rec_size;
439 	__u32 line_info_cnt;
440 	__u32 prog_flags;
441 };
442 
443 struct bpf_struct_ops {
444 	const char *tname;
445 	const struct btf_type *type;
446 	struct bpf_program **progs;
447 	__u32 *kern_func_off;
448 	/* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
449 	void *data;
450 	/* e.g. struct bpf_struct_ops_tcp_congestion_ops in
451 	 *      btf_vmlinux's format.
452 	 * struct bpf_struct_ops_tcp_congestion_ops {
453 	 *	[... some other kernel fields ...]
454 	 *	struct tcp_congestion_ops data;
455 	 * }
456 	 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
457 	 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
458 	 * from "data".
459 	 */
460 	void *kern_vdata;
461 	__u32 type_id;
462 };
463 
464 #define DATA_SEC ".data"
465 #define BSS_SEC ".bss"
466 #define RODATA_SEC ".rodata"
467 #define KCONFIG_SEC ".kconfig"
468 #define KSYMS_SEC ".ksyms"
469 #define STRUCT_OPS_SEC ".struct_ops"
470 
471 enum libbpf_map_type {
472 	LIBBPF_MAP_UNSPEC,
473 	LIBBPF_MAP_DATA,
474 	LIBBPF_MAP_BSS,
475 	LIBBPF_MAP_RODATA,
476 	LIBBPF_MAP_KCONFIG,
477 };
478 
479 struct bpf_map_def {
480 	unsigned int type;
481 	unsigned int key_size;
482 	unsigned int value_size;
483 	unsigned int max_entries;
484 	unsigned int map_flags;
485 };
486 
487 struct bpf_map {
488 	struct bpf_object *obj;
489 	char *name;
490 	/* real_name is defined for special internal maps (.rodata*,
491 	 * .data*, .bss, .kconfig) and preserves their original ELF section
492 	 * name. This is important to be able to find corresponding BTF
493 	 * DATASEC information.
494 	 */
495 	char *real_name;
496 	int fd;
497 	int sec_idx;
498 	size_t sec_offset;
499 	int map_ifindex;
500 	int inner_map_fd;
501 	struct bpf_map_def def;
502 	__u32 numa_node;
503 	__u32 btf_var_idx;
504 	__u32 btf_key_type_id;
505 	__u32 btf_value_type_id;
506 	__u32 btf_vmlinux_value_type_id;
507 	enum libbpf_map_type libbpf_type;
508 	void *mmaped;
509 	struct bpf_struct_ops *st_ops;
510 	struct bpf_map *inner_map;
511 	void **init_slots;
512 	int init_slots_sz;
513 	char *pin_path;
514 	bool pinned;
515 	bool reused;
516 	bool autocreate;
517 	__u64 map_extra;
518 };
519 
520 enum extern_type {
521 	EXT_UNKNOWN,
522 	EXT_KCFG,
523 	EXT_KSYM,
524 };
525 
526 enum kcfg_type {
527 	KCFG_UNKNOWN,
528 	KCFG_CHAR,
529 	KCFG_BOOL,
530 	KCFG_INT,
531 	KCFG_TRISTATE,
532 	KCFG_CHAR_ARR,
533 };
534 
535 struct extern_desc {
536 	enum extern_type type;
537 	int sym_idx;
538 	int btf_id;
539 	int sec_btf_id;
540 	const char *name;
541 	bool is_set;
542 	bool is_weak;
543 	union {
544 		struct {
545 			enum kcfg_type type;
546 			int sz;
547 			int align;
548 			int data_off;
549 			bool is_signed;
550 		} kcfg;
551 		struct {
552 			unsigned long long addr;
553 
554 			/* target btf_id of the corresponding kernel var. */
555 			int kernel_btf_obj_fd;
556 			int kernel_btf_id;
557 
558 			/* local btf_id of the ksym extern's type. */
559 			__u32 type_id;
560 			/* BTF fd index to be patched in for insn->off, this is
561 			 * 0 for vmlinux BTF, index in obj->fd_array for module
562 			 * BTF
563 			 */
564 			__s16 btf_fd_idx;
565 		} ksym;
566 	};
567 };
568 
569 struct module_btf {
570 	struct btf *btf;
571 	char *name;
572 	__u32 id;
573 	int fd;
574 	int fd_array_idx;
575 };
576 
577 enum sec_type {
578 	SEC_UNUSED = 0,
579 	SEC_RELO,
580 	SEC_BSS,
581 	SEC_DATA,
582 	SEC_RODATA,
583 };
584 
585 struct elf_sec_desc {
586 	enum sec_type sec_type;
587 	Elf64_Shdr *shdr;
588 	Elf_Data *data;
589 };
590 
591 struct elf_state {
592 	int fd;
593 	const void *obj_buf;
594 	size_t obj_buf_sz;
595 	Elf *elf;
596 	Elf64_Ehdr *ehdr;
597 	Elf_Data *symbols;
598 	Elf_Data *st_ops_data;
599 	size_t shstrndx; /* section index for section name strings */
600 	size_t strtabidx;
601 	struct elf_sec_desc *secs;
602 	size_t sec_cnt;
603 	int btf_maps_shndx;
604 	__u32 btf_maps_sec_btf_id;
605 	int text_shndx;
606 	int symbols_shndx;
607 	int st_ops_shndx;
608 };
609 
610 struct usdt_manager;
611 
612 struct bpf_object {
613 	char name[BPF_OBJ_NAME_LEN];
614 	char license[64];
615 	__u32 kern_version;
616 
617 	struct bpf_program *programs;
618 	size_t nr_programs;
619 	struct bpf_map *maps;
620 	size_t nr_maps;
621 	size_t maps_cap;
622 
623 	char *kconfig;
624 	struct extern_desc *externs;
625 	int nr_extern;
626 	int kconfig_map_idx;
627 
628 	bool loaded;
629 	bool has_subcalls;
630 	bool has_rodata;
631 
632 	struct bpf_gen *gen_loader;
633 
634 	/* Information when doing ELF related work. Only valid if efile.elf is not NULL */
635 	struct elf_state efile;
636 
637 	struct btf *btf;
638 	struct btf_ext *btf_ext;
639 
640 	/* Parse and load BTF vmlinux if any of the programs in the object need
641 	 * it at load time.
642 	 */
643 	struct btf *btf_vmlinux;
644 	/* Path to the custom BTF to be used for BPF CO-RE relocations as an
645 	 * override for vmlinux BTF.
646 	 */
647 	char *btf_custom_path;
648 	/* vmlinux BTF override for CO-RE relocations */
649 	struct btf *btf_vmlinux_override;
650 	/* Lazily initialized kernel module BTFs */
651 	struct module_btf *btf_modules;
652 	bool btf_modules_loaded;
653 	size_t btf_module_cnt;
654 	size_t btf_module_cap;
655 
656 	/* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
657 	char *log_buf;
658 	size_t log_size;
659 	__u32 log_level;
660 
661 	int *fd_array;
662 	size_t fd_array_cap;
663 	size_t fd_array_cnt;
664 
665 	struct usdt_manager *usdt_man;
666 
667 	char path[];
668 };
669 
670 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
671 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
672 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
673 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
674 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
675 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
676 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
677 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
678 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
679 
680 void bpf_program__unload(struct bpf_program *prog)
681 {
682 	if (!prog)
683 		return;
684 
685 	zclose(prog->fd);
686 
687 	zfree(&prog->func_info);
688 	zfree(&prog->line_info);
689 }
690 
691 static void bpf_program__exit(struct bpf_program *prog)
692 {
693 	if (!prog)
694 		return;
695 
696 	bpf_program__unload(prog);
697 	zfree(&prog->name);
698 	zfree(&prog->sec_name);
699 	zfree(&prog->insns);
700 	zfree(&prog->reloc_desc);
701 
702 	prog->nr_reloc = 0;
703 	prog->insns_cnt = 0;
704 	prog->sec_idx = -1;
705 }
706 
707 static bool insn_is_subprog_call(const struct bpf_insn *insn)
708 {
709 	return BPF_CLASS(insn->code) == BPF_JMP &&
710 	       BPF_OP(insn->code) == BPF_CALL &&
711 	       BPF_SRC(insn->code) == BPF_K &&
712 	       insn->src_reg == BPF_PSEUDO_CALL &&
713 	       insn->dst_reg == 0 &&
714 	       insn->off == 0;
715 }
716 
717 static bool is_call_insn(const struct bpf_insn *insn)
718 {
719 	return insn->code == (BPF_JMP | BPF_CALL);
720 }
721 
722 static bool insn_is_pseudo_func(struct bpf_insn *insn)
723 {
724 	return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
725 }
726 
727 static int
728 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
729 		      const char *name, size_t sec_idx, const char *sec_name,
730 		      size_t sec_off, void *insn_data, size_t insn_data_sz)
731 {
732 	if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
733 		pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
734 			sec_name, name, sec_off, insn_data_sz);
735 		return -EINVAL;
736 	}
737 
738 	memset(prog, 0, sizeof(*prog));
739 	prog->obj = obj;
740 
741 	prog->sec_idx = sec_idx;
742 	prog->sec_insn_off = sec_off / BPF_INSN_SZ;
743 	prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
744 	/* insns_cnt can later be increased by appending used subprograms */
745 	prog->insns_cnt = prog->sec_insn_cnt;
746 
747 	prog->type = BPF_PROG_TYPE_UNSPEC;
748 	prog->fd = -1;
749 
750 	/* libbpf's convention for SEC("?abc...") is that it's just like
751 	 * SEC("abc...") but the corresponding bpf_program starts out with
752 	 * autoload set to false.
753 	 */
754 	if (sec_name[0] == '?') {
755 		prog->autoload = false;
756 		/* from now on forget there was ? in section name */
757 		sec_name++;
758 	} else {
759 		prog->autoload = true;
760 	}
761 
762 	prog->autoattach = true;
763 
764 	/* inherit object's log_level */
765 	prog->log_level = obj->log_level;
766 
767 	prog->sec_name = strdup(sec_name);
768 	if (!prog->sec_name)
769 		goto errout;
770 
771 	prog->name = strdup(name);
772 	if (!prog->name)
773 		goto errout;
774 
775 	prog->insns = malloc(insn_data_sz);
776 	if (!prog->insns)
777 		goto errout;
778 	memcpy(prog->insns, insn_data, insn_data_sz);
779 
780 	return 0;
781 errout:
782 	pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
783 	bpf_program__exit(prog);
784 	return -ENOMEM;
785 }
786 
787 static int
788 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
789 			 const char *sec_name, int sec_idx)
790 {
791 	Elf_Data *symbols = obj->efile.symbols;
792 	struct bpf_program *prog, *progs;
793 	void *data = sec_data->d_buf;
794 	size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
795 	int nr_progs, err, i;
796 	const char *name;
797 	Elf64_Sym *sym;
798 
799 	progs = obj->programs;
800 	nr_progs = obj->nr_programs;
801 	nr_syms = symbols->d_size / sizeof(Elf64_Sym);
802 	sec_off = 0;
803 
804 	for (i = 0; i < nr_syms; i++) {
805 		sym = elf_sym_by_idx(obj, i);
806 
807 		if (sym->st_shndx != sec_idx)
808 			continue;
809 		if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
810 			continue;
811 
812 		prog_sz = sym->st_size;
813 		sec_off = sym->st_value;
814 
815 		name = elf_sym_str(obj, sym->st_name);
816 		if (!name) {
817 			pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
818 				sec_name, sec_off);
819 			return -LIBBPF_ERRNO__FORMAT;
820 		}
821 
822 		if (sec_off + prog_sz > sec_sz) {
823 			pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
824 				sec_name, sec_off);
825 			return -LIBBPF_ERRNO__FORMAT;
826 		}
827 
828 		if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
829 			pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
830 			return -ENOTSUP;
831 		}
832 
833 		pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
834 			 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
835 
836 		progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
837 		if (!progs) {
838 			/*
839 			 * In this case the original obj->programs
840 			 * is still valid, so don't need special treat for
841 			 * bpf_close_object().
842 			 */
843 			pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
844 				sec_name, name);
845 			return -ENOMEM;
846 		}
847 		obj->programs = progs;
848 
849 		prog = &progs[nr_progs];
850 
851 		err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
852 					    sec_off, data + sec_off, prog_sz);
853 		if (err)
854 			return err;
855 
856 		/* if function is a global/weak symbol, but has restricted
857 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
858 		 * as static to enable more permissive BPF verification mode
859 		 * with more outside context available to BPF verifier
860 		 */
861 		if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL
862 		    && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
863 			|| ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
864 			prog->mark_btf_static = true;
865 
866 		nr_progs++;
867 		obj->nr_programs = nr_progs;
868 	}
869 
870 	return 0;
871 }
872 
873 __u32 get_kernel_version(void)
874 {
875 	/* On Ubuntu LINUX_VERSION_CODE doesn't correspond to info.release,
876 	 * but Ubuntu provides /proc/version_signature file, as described at
877 	 * https://ubuntu.com/kernel, with an example contents below, which we
878 	 * can use to get a proper LINUX_VERSION_CODE.
879 	 *
880 	 *   Ubuntu 5.4.0-12.15-generic 5.4.8
881 	 *
882 	 * In the above, 5.4.8 is what kernel is actually expecting, while
883 	 * uname() call will return 5.4.0 in info.release.
884 	 */
885 	const char *ubuntu_kver_file = "/proc/version_signature";
886 	__u32 major, minor, patch;
887 	struct utsname info;
888 
889 	if (faccessat(AT_FDCWD, ubuntu_kver_file, R_OK, AT_EACCESS) == 0) {
890 		FILE *f;
891 
892 		f = fopen(ubuntu_kver_file, "r");
893 		if (f) {
894 			if (fscanf(f, "%*s %*s %d.%d.%d\n", &major, &minor, &patch) == 3) {
895 				fclose(f);
896 				return KERNEL_VERSION(major, minor, patch);
897 			}
898 			fclose(f);
899 		}
900 		/* something went wrong, fall back to uname() approach */
901 	}
902 
903 	uname(&info);
904 	if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3)
905 		return 0;
906 	return KERNEL_VERSION(major, minor, patch);
907 }
908 
909 static const struct btf_member *
910 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
911 {
912 	struct btf_member *m;
913 	int i;
914 
915 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
916 		if (btf_member_bit_offset(t, i) == bit_offset)
917 			return m;
918 	}
919 
920 	return NULL;
921 }
922 
923 static const struct btf_member *
924 find_member_by_name(const struct btf *btf, const struct btf_type *t,
925 		    const char *name)
926 {
927 	struct btf_member *m;
928 	int i;
929 
930 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
931 		if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
932 			return m;
933 	}
934 
935 	return NULL;
936 }
937 
938 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
939 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
940 				   const char *name, __u32 kind);
941 
942 static int
943 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
944 			   const struct btf_type **type, __u32 *type_id,
945 			   const struct btf_type **vtype, __u32 *vtype_id,
946 			   const struct btf_member **data_member)
947 {
948 	const struct btf_type *kern_type, *kern_vtype;
949 	const struct btf_member *kern_data_member;
950 	__s32 kern_vtype_id, kern_type_id;
951 	__u32 i;
952 
953 	kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
954 	if (kern_type_id < 0) {
955 		pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
956 			tname);
957 		return kern_type_id;
958 	}
959 	kern_type = btf__type_by_id(btf, kern_type_id);
960 
961 	/* Find the corresponding "map_value" type that will be used
962 	 * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
963 	 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
964 	 * btf_vmlinux.
965 	 */
966 	kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
967 						tname, BTF_KIND_STRUCT);
968 	if (kern_vtype_id < 0) {
969 		pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
970 			STRUCT_OPS_VALUE_PREFIX, tname);
971 		return kern_vtype_id;
972 	}
973 	kern_vtype = btf__type_by_id(btf, kern_vtype_id);
974 
975 	/* Find "struct tcp_congestion_ops" from
976 	 * struct bpf_struct_ops_tcp_congestion_ops {
977 	 *	[ ... ]
978 	 *	struct tcp_congestion_ops data;
979 	 * }
980 	 */
981 	kern_data_member = btf_members(kern_vtype);
982 	for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
983 		if (kern_data_member->type == kern_type_id)
984 			break;
985 	}
986 	if (i == btf_vlen(kern_vtype)) {
987 		pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
988 			tname, STRUCT_OPS_VALUE_PREFIX, tname);
989 		return -EINVAL;
990 	}
991 
992 	*type = kern_type;
993 	*type_id = kern_type_id;
994 	*vtype = kern_vtype;
995 	*vtype_id = kern_vtype_id;
996 	*data_member = kern_data_member;
997 
998 	return 0;
999 }
1000 
1001 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
1002 {
1003 	return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
1004 }
1005 
1006 /* Init the map's fields that depend on kern_btf */
1007 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
1008 					 const struct btf *btf,
1009 					 const struct btf *kern_btf)
1010 {
1011 	const struct btf_member *member, *kern_member, *kern_data_member;
1012 	const struct btf_type *type, *kern_type, *kern_vtype;
1013 	__u32 i, kern_type_id, kern_vtype_id, kern_data_off;
1014 	struct bpf_struct_ops *st_ops;
1015 	void *data, *kern_data;
1016 	const char *tname;
1017 	int err;
1018 
1019 	st_ops = map->st_ops;
1020 	type = st_ops->type;
1021 	tname = st_ops->tname;
1022 	err = find_struct_ops_kern_types(kern_btf, tname,
1023 					 &kern_type, &kern_type_id,
1024 					 &kern_vtype, &kern_vtype_id,
1025 					 &kern_data_member);
1026 	if (err)
1027 		return err;
1028 
1029 	pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1030 		 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1031 
1032 	map->def.value_size = kern_vtype->size;
1033 	map->btf_vmlinux_value_type_id = kern_vtype_id;
1034 
1035 	st_ops->kern_vdata = calloc(1, kern_vtype->size);
1036 	if (!st_ops->kern_vdata)
1037 		return -ENOMEM;
1038 
1039 	data = st_ops->data;
1040 	kern_data_off = kern_data_member->offset / 8;
1041 	kern_data = st_ops->kern_vdata + kern_data_off;
1042 
1043 	member = btf_members(type);
1044 	for (i = 0; i < btf_vlen(type); i++, member++) {
1045 		const struct btf_type *mtype, *kern_mtype;
1046 		__u32 mtype_id, kern_mtype_id;
1047 		void *mdata, *kern_mdata;
1048 		__s64 msize, kern_msize;
1049 		__u32 moff, kern_moff;
1050 		__u32 kern_member_idx;
1051 		const char *mname;
1052 
1053 		mname = btf__name_by_offset(btf, member->name_off);
1054 		kern_member = find_member_by_name(kern_btf, kern_type, mname);
1055 		if (!kern_member) {
1056 			pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1057 				map->name, mname);
1058 			return -ENOTSUP;
1059 		}
1060 
1061 		kern_member_idx = kern_member - btf_members(kern_type);
1062 		if (btf_member_bitfield_size(type, i) ||
1063 		    btf_member_bitfield_size(kern_type, kern_member_idx)) {
1064 			pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1065 				map->name, mname);
1066 			return -ENOTSUP;
1067 		}
1068 
1069 		moff = member->offset / 8;
1070 		kern_moff = kern_member->offset / 8;
1071 
1072 		mdata = data + moff;
1073 		kern_mdata = kern_data + kern_moff;
1074 
1075 		mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1076 		kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1077 						    &kern_mtype_id);
1078 		if (BTF_INFO_KIND(mtype->info) !=
1079 		    BTF_INFO_KIND(kern_mtype->info)) {
1080 			pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1081 				map->name, mname, BTF_INFO_KIND(mtype->info),
1082 				BTF_INFO_KIND(kern_mtype->info));
1083 			return -ENOTSUP;
1084 		}
1085 
1086 		if (btf_is_ptr(mtype)) {
1087 			struct bpf_program *prog;
1088 
1089 			prog = st_ops->progs[i];
1090 			if (!prog)
1091 				continue;
1092 
1093 			kern_mtype = skip_mods_and_typedefs(kern_btf,
1094 							    kern_mtype->type,
1095 							    &kern_mtype_id);
1096 
1097 			/* mtype->type must be a func_proto which was
1098 			 * guaranteed in bpf_object__collect_st_ops_relos(),
1099 			 * so only check kern_mtype for func_proto here.
1100 			 */
1101 			if (!btf_is_func_proto(kern_mtype)) {
1102 				pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1103 					map->name, mname);
1104 				return -ENOTSUP;
1105 			}
1106 
1107 			prog->attach_btf_id = kern_type_id;
1108 			prog->expected_attach_type = kern_member_idx;
1109 
1110 			st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1111 
1112 			pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1113 				 map->name, mname, prog->name, moff,
1114 				 kern_moff);
1115 
1116 			continue;
1117 		}
1118 
1119 		msize = btf__resolve_size(btf, mtype_id);
1120 		kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1121 		if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1122 			pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1123 				map->name, mname, (ssize_t)msize,
1124 				(ssize_t)kern_msize);
1125 			return -ENOTSUP;
1126 		}
1127 
1128 		pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1129 			 map->name, mname, (unsigned int)msize,
1130 			 moff, kern_moff);
1131 		memcpy(kern_mdata, mdata, msize);
1132 	}
1133 
1134 	return 0;
1135 }
1136 
1137 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1138 {
1139 	struct bpf_map *map;
1140 	size_t i;
1141 	int err;
1142 
1143 	for (i = 0; i < obj->nr_maps; i++) {
1144 		map = &obj->maps[i];
1145 
1146 		if (!bpf_map__is_struct_ops(map))
1147 			continue;
1148 
1149 		err = bpf_map__init_kern_struct_ops(map, obj->btf,
1150 						    obj->btf_vmlinux);
1151 		if (err)
1152 			return err;
1153 	}
1154 
1155 	return 0;
1156 }
1157 
1158 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj)
1159 {
1160 	const struct btf_type *type, *datasec;
1161 	const struct btf_var_secinfo *vsi;
1162 	struct bpf_struct_ops *st_ops;
1163 	const char *tname, *var_name;
1164 	__s32 type_id, datasec_id;
1165 	const struct btf *btf;
1166 	struct bpf_map *map;
1167 	__u32 i;
1168 
1169 	if (obj->efile.st_ops_shndx == -1)
1170 		return 0;
1171 
1172 	btf = obj->btf;
1173 	datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC,
1174 					    BTF_KIND_DATASEC);
1175 	if (datasec_id < 0) {
1176 		pr_warn("struct_ops init: DATASEC %s not found\n",
1177 			STRUCT_OPS_SEC);
1178 		return -EINVAL;
1179 	}
1180 
1181 	datasec = btf__type_by_id(btf, datasec_id);
1182 	vsi = btf_var_secinfos(datasec);
1183 	for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1184 		type = btf__type_by_id(obj->btf, vsi->type);
1185 		var_name = btf__name_by_offset(obj->btf, type->name_off);
1186 
1187 		type_id = btf__resolve_type(obj->btf, vsi->type);
1188 		if (type_id < 0) {
1189 			pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1190 				vsi->type, STRUCT_OPS_SEC);
1191 			return -EINVAL;
1192 		}
1193 
1194 		type = btf__type_by_id(obj->btf, type_id);
1195 		tname = btf__name_by_offset(obj->btf, type->name_off);
1196 		if (!tname[0]) {
1197 			pr_warn("struct_ops init: anonymous type is not supported\n");
1198 			return -ENOTSUP;
1199 		}
1200 		if (!btf_is_struct(type)) {
1201 			pr_warn("struct_ops init: %s is not a struct\n", tname);
1202 			return -EINVAL;
1203 		}
1204 
1205 		map = bpf_object__add_map(obj);
1206 		if (IS_ERR(map))
1207 			return PTR_ERR(map);
1208 
1209 		map->sec_idx = obj->efile.st_ops_shndx;
1210 		map->sec_offset = vsi->offset;
1211 		map->name = strdup(var_name);
1212 		if (!map->name)
1213 			return -ENOMEM;
1214 
1215 		map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1216 		map->def.key_size = sizeof(int);
1217 		map->def.value_size = type->size;
1218 		map->def.max_entries = 1;
1219 
1220 		map->st_ops = calloc(1, sizeof(*map->st_ops));
1221 		if (!map->st_ops)
1222 			return -ENOMEM;
1223 		st_ops = map->st_ops;
1224 		st_ops->data = malloc(type->size);
1225 		st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1226 		st_ops->kern_func_off = malloc(btf_vlen(type) *
1227 					       sizeof(*st_ops->kern_func_off));
1228 		if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1229 			return -ENOMEM;
1230 
1231 		if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) {
1232 			pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1233 				var_name, STRUCT_OPS_SEC);
1234 			return -EINVAL;
1235 		}
1236 
1237 		memcpy(st_ops->data,
1238 		       obj->efile.st_ops_data->d_buf + vsi->offset,
1239 		       type->size);
1240 		st_ops->tname = tname;
1241 		st_ops->type = type;
1242 		st_ops->type_id = type_id;
1243 
1244 		pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1245 			 tname, type_id, var_name, vsi->offset);
1246 	}
1247 
1248 	return 0;
1249 }
1250 
1251 static struct bpf_object *bpf_object__new(const char *path,
1252 					  const void *obj_buf,
1253 					  size_t obj_buf_sz,
1254 					  const char *obj_name)
1255 {
1256 	struct bpf_object *obj;
1257 	char *end;
1258 
1259 	obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1260 	if (!obj) {
1261 		pr_warn("alloc memory failed for %s\n", path);
1262 		return ERR_PTR(-ENOMEM);
1263 	}
1264 
1265 	strcpy(obj->path, path);
1266 	if (obj_name) {
1267 		libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1268 	} else {
1269 		/* Using basename() GNU version which doesn't modify arg. */
1270 		libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1271 		end = strchr(obj->name, '.');
1272 		if (end)
1273 			*end = 0;
1274 	}
1275 
1276 	obj->efile.fd = -1;
1277 	/*
1278 	 * Caller of this function should also call
1279 	 * bpf_object__elf_finish() after data collection to return
1280 	 * obj_buf to user. If not, we should duplicate the buffer to
1281 	 * avoid user freeing them before elf finish.
1282 	 */
1283 	obj->efile.obj_buf = obj_buf;
1284 	obj->efile.obj_buf_sz = obj_buf_sz;
1285 	obj->efile.btf_maps_shndx = -1;
1286 	obj->efile.st_ops_shndx = -1;
1287 	obj->kconfig_map_idx = -1;
1288 
1289 	obj->kern_version = get_kernel_version();
1290 	obj->loaded = false;
1291 
1292 	return obj;
1293 }
1294 
1295 static void bpf_object__elf_finish(struct bpf_object *obj)
1296 {
1297 	if (!obj->efile.elf)
1298 		return;
1299 
1300 	elf_end(obj->efile.elf);
1301 	obj->efile.elf = NULL;
1302 	obj->efile.symbols = NULL;
1303 	obj->efile.st_ops_data = NULL;
1304 
1305 	zfree(&obj->efile.secs);
1306 	obj->efile.sec_cnt = 0;
1307 	zclose(obj->efile.fd);
1308 	obj->efile.obj_buf = NULL;
1309 	obj->efile.obj_buf_sz = 0;
1310 }
1311 
1312 static int bpf_object__elf_init(struct bpf_object *obj)
1313 {
1314 	Elf64_Ehdr *ehdr;
1315 	int err = 0;
1316 	Elf *elf;
1317 
1318 	if (obj->efile.elf) {
1319 		pr_warn("elf: init internal error\n");
1320 		return -LIBBPF_ERRNO__LIBELF;
1321 	}
1322 
1323 	if (obj->efile.obj_buf_sz > 0) {
1324 		/* obj_buf should have been validated by bpf_object__open_mem(). */
1325 		elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1326 	} else {
1327 		obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1328 		if (obj->efile.fd < 0) {
1329 			char errmsg[STRERR_BUFSIZE], *cp;
1330 
1331 			err = -errno;
1332 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1333 			pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1334 			return err;
1335 		}
1336 
1337 		elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1338 	}
1339 
1340 	if (!elf) {
1341 		pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1342 		err = -LIBBPF_ERRNO__LIBELF;
1343 		goto errout;
1344 	}
1345 
1346 	obj->efile.elf = elf;
1347 
1348 	if (elf_kind(elf) != ELF_K_ELF) {
1349 		err = -LIBBPF_ERRNO__FORMAT;
1350 		pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1351 		goto errout;
1352 	}
1353 
1354 	if (gelf_getclass(elf) != ELFCLASS64) {
1355 		err = -LIBBPF_ERRNO__FORMAT;
1356 		pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1357 		goto errout;
1358 	}
1359 
1360 	obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1361 	if (!obj->efile.ehdr) {
1362 		pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1363 		err = -LIBBPF_ERRNO__FORMAT;
1364 		goto errout;
1365 	}
1366 
1367 	if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1368 		pr_warn("elf: failed to get section names section index for %s: %s\n",
1369 			obj->path, elf_errmsg(-1));
1370 		err = -LIBBPF_ERRNO__FORMAT;
1371 		goto errout;
1372 	}
1373 
1374 	/* Elf is corrupted/truncated, avoid calling elf_strptr. */
1375 	if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1376 		pr_warn("elf: failed to get section names strings from %s: %s\n",
1377 			obj->path, elf_errmsg(-1));
1378 		err = -LIBBPF_ERRNO__FORMAT;
1379 		goto errout;
1380 	}
1381 
1382 	/* Old LLVM set e_machine to EM_NONE */
1383 	if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1384 		pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1385 		err = -LIBBPF_ERRNO__FORMAT;
1386 		goto errout;
1387 	}
1388 
1389 	return 0;
1390 errout:
1391 	bpf_object__elf_finish(obj);
1392 	return err;
1393 }
1394 
1395 static int bpf_object__check_endianness(struct bpf_object *obj)
1396 {
1397 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1398 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1399 		return 0;
1400 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1401 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1402 		return 0;
1403 #else
1404 # error "Unrecognized __BYTE_ORDER__"
1405 #endif
1406 	pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1407 	return -LIBBPF_ERRNO__ENDIAN;
1408 }
1409 
1410 static int
1411 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1412 {
1413 	if (!data) {
1414 		pr_warn("invalid license section in %s\n", obj->path);
1415 		return -LIBBPF_ERRNO__FORMAT;
1416 	}
1417 	/* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1418 	 * go over allowed ELF data section buffer
1419 	 */
1420 	libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1421 	pr_debug("license of %s is %s\n", obj->path, obj->license);
1422 	return 0;
1423 }
1424 
1425 static int
1426 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1427 {
1428 	__u32 kver;
1429 
1430 	if (!data || size != sizeof(kver)) {
1431 		pr_warn("invalid kver section in %s\n", obj->path);
1432 		return -LIBBPF_ERRNO__FORMAT;
1433 	}
1434 	memcpy(&kver, data, sizeof(kver));
1435 	obj->kern_version = kver;
1436 	pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1437 	return 0;
1438 }
1439 
1440 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1441 {
1442 	if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1443 	    type == BPF_MAP_TYPE_HASH_OF_MAPS)
1444 		return true;
1445 	return false;
1446 }
1447 
1448 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1449 {
1450 	Elf_Data *data;
1451 	Elf_Scn *scn;
1452 
1453 	if (!name)
1454 		return -EINVAL;
1455 
1456 	scn = elf_sec_by_name(obj, name);
1457 	data = elf_sec_data(obj, scn);
1458 	if (data) {
1459 		*size = data->d_size;
1460 		return 0; /* found it */
1461 	}
1462 
1463 	return -ENOENT;
1464 }
1465 
1466 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name)
1467 {
1468 	Elf_Data *symbols = obj->efile.symbols;
1469 	const char *sname;
1470 	size_t si;
1471 
1472 	for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1473 		Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1474 
1475 		if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1476 			continue;
1477 
1478 		if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1479 		    ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1480 			continue;
1481 
1482 		sname = elf_sym_str(obj, sym->st_name);
1483 		if (!sname) {
1484 			pr_warn("failed to get sym name string for var %s\n", name);
1485 			return ERR_PTR(-EIO);
1486 		}
1487 		if (strcmp(name, sname) == 0)
1488 			return sym;
1489 	}
1490 
1491 	return ERR_PTR(-ENOENT);
1492 }
1493 
1494 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1495 {
1496 	struct bpf_map *map;
1497 	int err;
1498 
1499 	err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1500 				sizeof(*obj->maps), obj->nr_maps + 1);
1501 	if (err)
1502 		return ERR_PTR(err);
1503 
1504 	map = &obj->maps[obj->nr_maps++];
1505 	map->obj = obj;
1506 	map->fd = -1;
1507 	map->inner_map_fd = -1;
1508 	map->autocreate = true;
1509 
1510 	return map;
1511 }
1512 
1513 static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1514 {
1515 	long page_sz = sysconf(_SC_PAGE_SIZE);
1516 	size_t map_sz;
1517 
1518 	map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries;
1519 	map_sz = roundup(map_sz, page_sz);
1520 	return map_sz;
1521 }
1522 
1523 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1524 {
1525 	char map_name[BPF_OBJ_NAME_LEN], *p;
1526 	int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1527 
1528 	/* This is one of the more confusing parts of libbpf for various
1529 	 * reasons, some of which are historical. The original idea for naming
1530 	 * internal names was to include as much of BPF object name prefix as
1531 	 * possible, so that it can be distinguished from similar internal
1532 	 * maps of a different BPF object.
1533 	 * As an example, let's say we have bpf_object named 'my_object_name'
1534 	 * and internal map corresponding to '.rodata' ELF section. The final
1535 	 * map name advertised to user and to the kernel will be
1536 	 * 'my_objec.rodata', taking first 8 characters of object name and
1537 	 * entire 7 characters of '.rodata'.
1538 	 * Somewhat confusingly, if internal map ELF section name is shorter
1539 	 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1540 	 * for the suffix, even though we only have 4 actual characters, and
1541 	 * resulting map will be called 'my_objec.bss', not even using all 15
1542 	 * characters allowed by the kernel. Oh well, at least the truncated
1543 	 * object name is somewhat consistent in this case. But if the map
1544 	 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1545 	 * (8 chars) and thus will be left with only first 7 characters of the
1546 	 * object name ('my_obje'). Happy guessing, user, that the final map
1547 	 * name will be "my_obje.kconfig".
1548 	 * Now, with libbpf starting to support arbitrarily named .rodata.*
1549 	 * and .data.* data sections, it's possible that ELF section name is
1550 	 * longer than allowed 15 chars, so we now need to be careful to take
1551 	 * only up to 15 first characters of ELF name, taking no BPF object
1552 	 * name characters at all. So '.rodata.abracadabra' will result in
1553 	 * '.rodata.abracad' kernel and user-visible name.
1554 	 * We need to keep this convoluted logic intact for .data, .bss and
1555 	 * .rodata maps, but for new custom .data.custom and .rodata.custom
1556 	 * maps we use their ELF names as is, not prepending bpf_object name
1557 	 * in front. We still need to truncate them to 15 characters for the
1558 	 * kernel. Full name can be recovered for such maps by using DATASEC
1559 	 * BTF type associated with such map's value type, though.
1560 	 */
1561 	if (sfx_len >= BPF_OBJ_NAME_LEN)
1562 		sfx_len = BPF_OBJ_NAME_LEN - 1;
1563 
1564 	/* if there are two or more dots in map name, it's a custom dot map */
1565 	if (strchr(real_name + 1, '.') != NULL)
1566 		pfx_len = 0;
1567 	else
1568 		pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1569 
1570 	snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1571 		 sfx_len, real_name);
1572 
1573 	/* sanitise map name to characters allowed by kernel */
1574 	for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1575 		if (!isalnum(*p) && *p != '_' && *p != '.')
1576 			*p = '_';
1577 
1578 	return strdup(map_name);
1579 }
1580 
1581 static int
1582 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map);
1583 
1584 /* Internal BPF map is mmap()'able only if at least one of corresponding
1585  * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL
1586  * variable and it's not marked as __hidden (which turns it into, effectively,
1587  * a STATIC variable).
1588  */
1589 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map)
1590 {
1591 	const struct btf_type *t, *vt;
1592 	struct btf_var_secinfo *vsi;
1593 	int i, n;
1594 
1595 	if (!map->btf_value_type_id)
1596 		return false;
1597 
1598 	t = btf__type_by_id(obj->btf, map->btf_value_type_id);
1599 	if (!btf_is_datasec(t))
1600 		return false;
1601 
1602 	vsi = btf_var_secinfos(t);
1603 	for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) {
1604 		vt = btf__type_by_id(obj->btf, vsi->type);
1605 		if (!btf_is_var(vt))
1606 			continue;
1607 
1608 		if (btf_var(vt)->linkage != BTF_VAR_STATIC)
1609 			return true;
1610 	}
1611 
1612 	return false;
1613 }
1614 
1615 static int
1616 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1617 			      const char *real_name, int sec_idx, void *data, size_t data_sz)
1618 {
1619 	struct bpf_map_def *def;
1620 	struct bpf_map *map;
1621 	int err;
1622 
1623 	map = bpf_object__add_map(obj);
1624 	if (IS_ERR(map))
1625 		return PTR_ERR(map);
1626 
1627 	map->libbpf_type = type;
1628 	map->sec_idx = sec_idx;
1629 	map->sec_offset = 0;
1630 	map->real_name = strdup(real_name);
1631 	map->name = internal_map_name(obj, real_name);
1632 	if (!map->real_name || !map->name) {
1633 		zfree(&map->real_name);
1634 		zfree(&map->name);
1635 		return -ENOMEM;
1636 	}
1637 
1638 	def = &map->def;
1639 	def->type = BPF_MAP_TYPE_ARRAY;
1640 	def->key_size = sizeof(int);
1641 	def->value_size = data_sz;
1642 	def->max_entries = 1;
1643 	def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1644 			 ? BPF_F_RDONLY_PROG : 0;
1645 
1646 	/* failures are fine because of maps like .rodata.str1.1 */
1647 	(void) map_fill_btf_type_info(obj, map);
1648 
1649 	if (map_is_mmapable(obj, map))
1650 		def->map_flags |= BPF_F_MMAPABLE;
1651 
1652 	pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1653 		 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1654 
1655 	map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
1656 			   MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1657 	if (map->mmaped == MAP_FAILED) {
1658 		err = -errno;
1659 		map->mmaped = NULL;
1660 		pr_warn("failed to alloc map '%s' content buffer: %d\n",
1661 			map->name, err);
1662 		zfree(&map->real_name);
1663 		zfree(&map->name);
1664 		return err;
1665 	}
1666 
1667 	if (data)
1668 		memcpy(map->mmaped, data, data_sz);
1669 
1670 	pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1671 	return 0;
1672 }
1673 
1674 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1675 {
1676 	struct elf_sec_desc *sec_desc;
1677 	const char *sec_name;
1678 	int err = 0, sec_idx;
1679 
1680 	/*
1681 	 * Populate obj->maps with libbpf internal maps.
1682 	 */
1683 	for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1684 		sec_desc = &obj->efile.secs[sec_idx];
1685 
1686 		/* Skip recognized sections with size 0. */
1687 		if (!sec_desc->data || sec_desc->data->d_size == 0)
1688 			continue;
1689 
1690 		switch (sec_desc->sec_type) {
1691 		case SEC_DATA:
1692 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1693 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1694 							    sec_name, sec_idx,
1695 							    sec_desc->data->d_buf,
1696 							    sec_desc->data->d_size);
1697 			break;
1698 		case SEC_RODATA:
1699 			obj->has_rodata = true;
1700 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1701 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1702 							    sec_name, sec_idx,
1703 							    sec_desc->data->d_buf,
1704 							    sec_desc->data->d_size);
1705 			break;
1706 		case SEC_BSS:
1707 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1708 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1709 							    sec_name, sec_idx,
1710 							    NULL,
1711 							    sec_desc->data->d_size);
1712 			break;
1713 		default:
1714 			/* skip */
1715 			break;
1716 		}
1717 		if (err)
1718 			return err;
1719 	}
1720 	return 0;
1721 }
1722 
1723 
1724 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1725 					       const void *name)
1726 {
1727 	int i;
1728 
1729 	for (i = 0; i < obj->nr_extern; i++) {
1730 		if (strcmp(obj->externs[i].name, name) == 0)
1731 			return &obj->externs[i];
1732 	}
1733 	return NULL;
1734 }
1735 
1736 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1737 			      char value)
1738 {
1739 	switch (ext->kcfg.type) {
1740 	case KCFG_BOOL:
1741 		if (value == 'm') {
1742 			pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
1743 				ext->name, value);
1744 			return -EINVAL;
1745 		}
1746 		*(bool *)ext_val = value == 'y' ? true : false;
1747 		break;
1748 	case KCFG_TRISTATE:
1749 		if (value == 'y')
1750 			*(enum libbpf_tristate *)ext_val = TRI_YES;
1751 		else if (value == 'm')
1752 			*(enum libbpf_tristate *)ext_val = TRI_MODULE;
1753 		else /* value == 'n' */
1754 			*(enum libbpf_tristate *)ext_val = TRI_NO;
1755 		break;
1756 	case KCFG_CHAR:
1757 		*(char *)ext_val = value;
1758 		break;
1759 	case KCFG_UNKNOWN:
1760 	case KCFG_INT:
1761 	case KCFG_CHAR_ARR:
1762 	default:
1763 		pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
1764 			ext->name, value);
1765 		return -EINVAL;
1766 	}
1767 	ext->is_set = true;
1768 	return 0;
1769 }
1770 
1771 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1772 			      const char *value)
1773 {
1774 	size_t len;
1775 
1776 	if (ext->kcfg.type != KCFG_CHAR_ARR) {
1777 		pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
1778 			ext->name, value);
1779 		return -EINVAL;
1780 	}
1781 
1782 	len = strlen(value);
1783 	if (value[len - 1] != '"') {
1784 		pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1785 			ext->name, value);
1786 		return -EINVAL;
1787 	}
1788 
1789 	/* strip quotes */
1790 	len -= 2;
1791 	if (len >= ext->kcfg.sz) {
1792 		pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
1793 			ext->name, value, len, ext->kcfg.sz - 1);
1794 		len = ext->kcfg.sz - 1;
1795 	}
1796 	memcpy(ext_val, value + 1, len);
1797 	ext_val[len] = '\0';
1798 	ext->is_set = true;
1799 	return 0;
1800 }
1801 
1802 static int parse_u64(const char *value, __u64 *res)
1803 {
1804 	char *value_end;
1805 	int err;
1806 
1807 	errno = 0;
1808 	*res = strtoull(value, &value_end, 0);
1809 	if (errno) {
1810 		err = -errno;
1811 		pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1812 		return err;
1813 	}
1814 	if (*value_end) {
1815 		pr_warn("failed to parse '%s' as integer completely\n", value);
1816 		return -EINVAL;
1817 	}
1818 	return 0;
1819 }
1820 
1821 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1822 {
1823 	int bit_sz = ext->kcfg.sz * 8;
1824 
1825 	if (ext->kcfg.sz == 8)
1826 		return true;
1827 
1828 	/* Validate that value stored in u64 fits in integer of `ext->sz`
1829 	 * bytes size without any loss of information. If the target integer
1830 	 * is signed, we rely on the following limits of integer type of
1831 	 * Y bits and subsequent transformation:
1832 	 *
1833 	 *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
1834 	 *            0 <= X + 2^(Y-1) <= 2^Y - 1
1835 	 *            0 <= X + 2^(Y-1) <  2^Y
1836 	 *
1837 	 *  For unsigned target integer, check that all the (64 - Y) bits are
1838 	 *  zero.
1839 	 */
1840 	if (ext->kcfg.is_signed)
1841 		return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1842 	else
1843 		return (v >> bit_sz) == 0;
1844 }
1845 
1846 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1847 			      __u64 value)
1848 {
1849 	if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
1850 	    ext->kcfg.type != KCFG_BOOL) {
1851 		pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
1852 			ext->name, (unsigned long long)value);
1853 		return -EINVAL;
1854 	}
1855 	if (ext->kcfg.type == KCFG_BOOL && value > 1) {
1856 		pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
1857 			ext->name, (unsigned long long)value);
1858 		return -EINVAL;
1859 
1860 	}
1861 	if (!is_kcfg_value_in_range(ext, value)) {
1862 		pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
1863 			ext->name, (unsigned long long)value, ext->kcfg.sz);
1864 		return -ERANGE;
1865 	}
1866 	switch (ext->kcfg.sz) {
1867 	case 1:
1868 		*(__u8 *)ext_val = value;
1869 		break;
1870 	case 2:
1871 		*(__u16 *)ext_val = value;
1872 		break;
1873 	case 4:
1874 		*(__u32 *)ext_val = value;
1875 		break;
1876 	case 8:
1877 		*(__u64 *)ext_val = value;
1878 		break;
1879 	default:
1880 		return -EINVAL;
1881 	}
1882 	ext->is_set = true;
1883 	return 0;
1884 }
1885 
1886 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1887 					    char *buf, void *data)
1888 {
1889 	struct extern_desc *ext;
1890 	char *sep, *value;
1891 	int len, err = 0;
1892 	void *ext_val;
1893 	__u64 num;
1894 
1895 	if (!str_has_pfx(buf, "CONFIG_"))
1896 		return 0;
1897 
1898 	sep = strchr(buf, '=');
1899 	if (!sep) {
1900 		pr_warn("failed to parse '%s': no separator\n", buf);
1901 		return -EINVAL;
1902 	}
1903 
1904 	/* Trim ending '\n' */
1905 	len = strlen(buf);
1906 	if (buf[len - 1] == '\n')
1907 		buf[len - 1] = '\0';
1908 	/* Split on '=' and ensure that a value is present. */
1909 	*sep = '\0';
1910 	if (!sep[1]) {
1911 		*sep = '=';
1912 		pr_warn("failed to parse '%s': no value\n", buf);
1913 		return -EINVAL;
1914 	}
1915 
1916 	ext = find_extern_by_name(obj, buf);
1917 	if (!ext || ext->is_set)
1918 		return 0;
1919 
1920 	ext_val = data + ext->kcfg.data_off;
1921 	value = sep + 1;
1922 
1923 	switch (*value) {
1924 	case 'y': case 'n': case 'm':
1925 		err = set_kcfg_value_tri(ext, ext_val, *value);
1926 		break;
1927 	case '"':
1928 		err = set_kcfg_value_str(ext, ext_val, value);
1929 		break;
1930 	default:
1931 		/* assume integer */
1932 		err = parse_u64(value, &num);
1933 		if (err) {
1934 			pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
1935 			return err;
1936 		}
1937 		if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1938 			pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
1939 			return -EINVAL;
1940 		}
1941 		err = set_kcfg_value_num(ext, ext_val, num);
1942 		break;
1943 	}
1944 	if (err)
1945 		return err;
1946 	pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
1947 	return 0;
1948 }
1949 
1950 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1951 {
1952 	char buf[PATH_MAX];
1953 	struct utsname uts;
1954 	int len, err = 0;
1955 	gzFile file;
1956 
1957 	uname(&uts);
1958 	len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1959 	if (len < 0)
1960 		return -EINVAL;
1961 	else if (len >= PATH_MAX)
1962 		return -ENAMETOOLONG;
1963 
1964 	/* gzopen also accepts uncompressed files. */
1965 	file = gzopen(buf, "r");
1966 	if (!file)
1967 		file = gzopen("/proc/config.gz", "r");
1968 
1969 	if (!file) {
1970 		pr_warn("failed to open system Kconfig\n");
1971 		return -ENOENT;
1972 	}
1973 
1974 	while (gzgets(file, buf, sizeof(buf))) {
1975 		err = bpf_object__process_kconfig_line(obj, buf, data);
1976 		if (err) {
1977 			pr_warn("error parsing system Kconfig line '%s': %d\n",
1978 				buf, err);
1979 			goto out;
1980 		}
1981 	}
1982 
1983 out:
1984 	gzclose(file);
1985 	return err;
1986 }
1987 
1988 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
1989 					const char *config, void *data)
1990 {
1991 	char buf[PATH_MAX];
1992 	int err = 0;
1993 	FILE *file;
1994 
1995 	file = fmemopen((void *)config, strlen(config), "r");
1996 	if (!file) {
1997 		err = -errno;
1998 		pr_warn("failed to open in-memory Kconfig: %d\n", err);
1999 		return err;
2000 	}
2001 
2002 	while (fgets(buf, sizeof(buf), file)) {
2003 		err = bpf_object__process_kconfig_line(obj, buf, data);
2004 		if (err) {
2005 			pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
2006 				buf, err);
2007 			break;
2008 		}
2009 	}
2010 
2011 	fclose(file);
2012 	return err;
2013 }
2014 
2015 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
2016 {
2017 	struct extern_desc *last_ext = NULL, *ext;
2018 	size_t map_sz;
2019 	int i, err;
2020 
2021 	for (i = 0; i < obj->nr_extern; i++) {
2022 		ext = &obj->externs[i];
2023 		if (ext->type == EXT_KCFG)
2024 			last_ext = ext;
2025 	}
2026 
2027 	if (!last_ext)
2028 		return 0;
2029 
2030 	map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
2031 	err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
2032 					    ".kconfig", obj->efile.symbols_shndx,
2033 					    NULL, map_sz);
2034 	if (err)
2035 		return err;
2036 
2037 	obj->kconfig_map_idx = obj->nr_maps - 1;
2038 
2039 	return 0;
2040 }
2041 
2042 const struct btf_type *
2043 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2044 {
2045 	const struct btf_type *t = btf__type_by_id(btf, id);
2046 
2047 	if (res_id)
2048 		*res_id = id;
2049 
2050 	while (btf_is_mod(t) || btf_is_typedef(t)) {
2051 		if (res_id)
2052 			*res_id = t->type;
2053 		t = btf__type_by_id(btf, t->type);
2054 	}
2055 
2056 	return t;
2057 }
2058 
2059 static const struct btf_type *
2060 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2061 {
2062 	const struct btf_type *t;
2063 
2064 	t = skip_mods_and_typedefs(btf, id, NULL);
2065 	if (!btf_is_ptr(t))
2066 		return NULL;
2067 
2068 	t = skip_mods_and_typedefs(btf, t->type, res_id);
2069 
2070 	return btf_is_func_proto(t) ? t : NULL;
2071 }
2072 
2073 static const char *__btf_kind_str(__u16 kind)
2074 {
2075 	switch (kind) {
2076 	case BTF_KIND_UNKN: return "void";
2077 	case BTF_KIND_INT: return "int";
2078 	case BTF_KIND_PTR: return "ptr";
2079 	case BTF_KIND_ARRAY: return "array";
2080 	case BTF_KIND_STRUCT: return "struct";
2081 	case BTF_KIND_UNION: return "union";
2082 	case BTF_KIND_ENUM: return "enum";
2083 	case BTF_KIND_FWD: return "fwd";
2084 	case BTF_KIND_TYPEDEF: return "typedef";
2085 	case BTF_KIND_VOLATILE: return "volatile";
2086 	case BTF_KIND_CONST: return "const";
2087 	case BTF_KIND_RESTRICT: return "restrict";
2088 	case BTF_KIND_FUNC: return "func";
2089 	case BTF_KIND_FUNC_PROTO: return "func_proto";
2090 	case BTF_KIND_VAR: return "var";
2091 	case BTF_KIND_DATASEC: return "datasec";
2092 	case BTF_KIND_FLOAT: return "float";
2093 	case BTF_KIND_DECL_TAG: return "decl_tag";
2094 	case BTF_KIND_TYPE_TAG: return "type_tag";
2095 	case BTF_KIND_ENUM64: return "enum64";
2096 	default: return "unknown";
2097 	}
2098 }
2099 
2100 const char *btf_kind_str(const struct btf_type *t)
2101 {
2102 	return __btf_kind_str(btf_kind(t));
2103 }
2104 
2105 /*
2106  * Fetch integer attribute of BTF map definition. Such attributes are
2107  * represented using a pointer to an array, in which dimensionality of array
2108  * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2109  * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2110  * type definition, while using only sizeof(void *) space in ELF data section.
2111  */
2112 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2113 			      const struct btf_member *m, __u32 *res)
2114 {
2115 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2116 	const char *name = btf__name_by_offset(btf, m->name_off);
2117 	const struct btf_array *arr_info;
2118 	const struct btf_type *arr_t;
2119 
2120 	if (!btf_is_ptr(t)) {
2121 		pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2122 			map_name, name, btf_kind_str(t));
2123 		return false;
2124 	}
2125 
2126 	arr_t = btf__type_by_id(btf, t->type);
2127 	if (!arr_t) {
2128 		pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2129 			map_name, name, t->type);
2130 		return false;
2131 	}
2132 	if (!btf_is_array(arr_t)) {
2133 		pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2134 			map_name, name, btf_kind_str(arr_t));
2135 		return false;
2136 	}
2137 	arr_info = btf_array(arr_t);
2138 	*res = arr_info->nelems;
2139 	return true;
2140 }
2141 
2142 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2143 {
2144 	int len;
2145 
2146 	len = snprintf(buf, buf_sz, "%s/%s", path, name);
2147 	if (len < 0)
2148 		return -EINVAL;
2149 	if (len >= buf_sz)
2150 		return -ENAMETOOLONG;
2151 
2152 	return 0;
2153 }
2154 
2155 static int build_map_pin_path(struct bpf_map *map, const char *path)
2156 {
2157 	char buf[PATH_MAX];
2158 	int err;
2159 
2160 	if (!path)
2161 		path = "/sys/fs/bpf";
2162 
2163 	err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2164 	if (err)
2165 		return err;
2166 
2167 	return bpf_map__set_pin_path(map, buf);
2168 }
2169 
2170 /* should match definition in bpf_helpers.h */
2171 enum libbpf_pin_type {
2172 	LIBBPF_PIN_NONE,
2173 	/* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2174 	LIBBPF_PIN_BY_NAME,
2175 };
2176 
2177 int parse_btf_map_def(const char *map_name, struct btf *btf,
2178 		      const struct btf_type *def_t, bool strict,
2179 		      struct btf_map_def *map_def, struct btf_map_def *inner_def)
2180 {
2181 	const struct btf_type *t;
2182 	const struct btf_member *m;
2183 	bool is_inner = inner_def == NULL;
2184 	int vlen, i;
2185 
2186 	vlen = btf_vlen(def_t);
2187 	m = btf_members(def_t);
2188 	for (i = 0; i < vlen; i++, m++) {
2189 		const char *name = btf__name_by_offset(btf, m->name_off);
2190 
2191 		if (!name) {
2192 			pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2193 			return -EINVAL;
2194 		}
2195 		if (strcmp(name, "type") == 0) {
2196 			if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2197 				return -EINVAL;
2198 			map_def->parts |= MAP_DEF_MAP_TYPE;
2199 		} else if (strcmp(name, "max_entries") == 0) {
2200 			if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2201 				return -EINVAL;
2202 			map_def->parts |= MAP_DEF_MAX_ENTRIES;
2203 		} else if (strcmp(name, "map_flags") == 0) {
2204 			if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2205 				return -EINVAL;
2206 			map_def->parts |= MAP_DEF_MAP_FLAGS;
2207 		} else if (strcmp(name, "numa_node") == 0) {
2208 			if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2209 				return -EINVAL;
2210 			map_def->parts |= MAP_DEF_NUMA_NODE;
2211 		} else if (strcmp(name, "key_size") == 0) {
2212 			__u32 sz;
2213 
2214 			if (!get_map_field_int(map_name, btf, m, &sz))
2215 				return -EINVAL;
2216 			if (map_def->key_size && map_def->key_size != sz) {
2217 				pr_warn("map '%s': conflicting key size %u != %u.\n",
2218 					map_name, map_def->key_size, sz);
2219 				return -EINVAL;
2220 			}
2221 			map_def->key_size = sz;
2222 			map_def->parts |= MAP_DEF_KEY_SIZE;
2223 		} else if (strcmp(name, "key") == 0) {
2224 			__s64 sz;
2225 
2226 			t = btf__type_by_id(btf, m->type);
2227 			if (!t) {
2228 				pr_warn("map '%s': key type [%d] not found.\n",
2229 					map_name, m->type);
2230 				return -EINVAL;
2231 			}
2232 			if (!btf_is_ptr(t)) {
2233 				pr_warn("map '%s': key spec is not PTR: %s.\n",
2234 					map_name, btf_kind_str(t));
2235 				return -EINVAL;
2236 			}
2237 			sz = btf__resolve_size(btf, t->type);
2238 			if (sz < 0) {
2239 				pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2240 					map_name, t->type, (ssize_t)sz);
2241 				return sz;
2242 			}
2243 			if (map_def->key_size && map_def->key_size != sz) {
2244 				pr_warn("map '%s': conflicting key size %u != %zd.\n",
2245 					map_name, map_def->key_size, (ssize_t)sz);
2246 				return -EINVAL;
2247 			}
2248 			map_def->key_size = sz;
2249 			map_def->key_type_id = t->type;
2250 			map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2251 		} else if (strcmp(name, "value_size") == 0) {
2252 			__u32 sz;
2253 
2254 			if (!get_map_field_int(map_name, btf, m, &sz))
2255 				return -EINVAL;
2256 			if (map_def->value_size && map_def->value_size != sz) {
2257 				pr_warn("map '%s': conflicting value size %u != %u.\n",
2258 					map_name, map_def->value_size, sz);
2259 				return -EINVAL;
2260 			}
2261 			map_def->value_size = sz;
2262 			map_def->parts |= MAP_DEF_VALUE_SIZE;
2263 		} else if (strcmp(name, "value") == 0) {
2264 			__s64 sz;
2265 
2266 			t = btf__type_by_id(btf, m->type);
2267 			if (!t) {
2268 				pr_warn("map '%s': value type [%d] not found.\n",
2269 					map_name, m->type);
2270 				return -EINVAL;
2271 			}
2272 			if (!btf_is_ptr(t)) {
2273 				pr_warn("map '%s': value spec is not PTR: %s.\n",
2274 					map_name, btf_kind_str(t));
2275 				return -EINVAL;
2276 			}
2277 			sz = btf__resolve_size(btf, t->type);
2278 			if (sz < 0) {
2279 				pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2280 					map_name, t->type, (ssize_t)sz);
2281 				return sz;
2282 			}
2283 			if (map_def->value_size && map_def->value_size != sz) {
2284 				pr_warn("map '%s': conflicting value size %u != %zd.\n",
2285 					map_name, map_def->value_size, (ssize_t)sz);
2286 				return -EINVAL;
2287 			}
2288 			map_def->value_size = sz;
2289 			map_def->value_type_id = t->type;
2290 			map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2291 		}
2292 		else if (strcmp(name, "values") == 0) {
2293 			bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2294 			bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2295 			const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2296 			char inner_map_name[128];
2297 			int err;
2298 
2299 			if (is_inner) {
2300 				pr_warn("map '%s': multi-level inner maps not supported.\n",
2301 					map_name);
2302 				return -ENOTSUP;
2303 			}
2304 			if (i != vlen - 1) {
2305 				pr_warn("map '%s': '%s' member should be last.\n",
2306 					map_name, name);
2307 				return -EINVAL;
2308 			}
2309 			if (!is_map_in_map && !is_prog_array) {
2310 				pr_warn("map '%s': should be map-in-map or prog-array.\n",
2311 					map_name);
2312 				return -ENOTSUP;
2313 			}
2314 			if (map_def->value_size && map_def->value_size != 4) {
2315 				pr_warn("map '%s': conflicting value size %u != 4.\n",
2316 					map_name, map_def->value_size);
2317 				return -EINVAL;
2318 			}
2319 			map_def->value_size = 4;
2320 			t = btf__type_by_id(btf, m->type);
2321 			if (!t) {
2322 				pr_warn("map '%s': %s type [%d] not found.\n",
2323 					map_name, desc, m->type);
2324 				return -EINVAL;
2325 			}
2326 			if (!btf_is_array(t) || btf_array(t)->nelems) {
2327 				pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2328 					map_name, desc);
2329 				return -EINVAL;
2330 			}
2331 			t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2332 			if (!btf_is_ptr(t)) {
2333 				pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2334 					map_name, desc, btf_kind_str(t));
2335 				return -EINVAL;
2336 			}
2337 			t = skip_mods_and_typedefs(btf, t->type, NULL);
2338 			if (is_prog_array) {
2339 				if (!btf_is_func_proto(t)) {
2340 					pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2341 						map_name, btf_kind_str(t));
2342 					return -EINVAL;
2343 				}
2344 				continue;
2345 			}
2346 			if (!btf_is_struct(t)) {
2347 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2348 					map_name, btf_kind_str(t));
2349 				return -EINVAL;
2350 			}
2351 
2352 			snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2353 			err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2354 			if (err)
2355 				return err;
2356 
2357 			map_def->parts |= MAP_DEF_INNER_MAP;
2358 		} else if (strcmp(name, "pinning") == 0) {
2359 			__u32 val;
2360 
2361 			if (is_inner) {
2362 				pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2363 				return -EINVAL;
2364 			}
2365 			if (!get_map_field_int(map_name, btf, m, &val))
2366 				return -EINVAL;
2367 			if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2368 				pr_warn("map '%s': invalid pinning value %u.\n",
2369 					map_name, val);
2370 				return -EINVAL;
2371 			}
2372 			map_def->pinning = val;
2373 			map_def->parts |= MAP_DEF_PINNING;
2374 		} else if (strcmp(name, "map_extra") == 0) {
2375 			__u32 map_extra;
2376 
2377 			if (!get_map_field_int(map_name, btf, m, &map_extra))
2378 				return -EINVAL;
2379 			map_def->map_extra = map_extra;
2380 			map_def->parts |= MAP_DEF_MAP_EXTRA;
2381 		} else {
2382 			if (strict) {
2383 				pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2384 				return -ENOTSUP;
2385 			}
2386 			pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2387 		}
2388 	}
2389 
2390 	if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2391 		pr_warn("map '%s': map type isn't specified.\n", map_name);
2392 		return -EINVAL;
2393 	}
2394 
2395 	return 0;
2396 }
2397 
2398 static size_t adjust_ringbuf_sz(size_t sz)
2399 {
2400 	__u32 page_sz = sysconf(_SC_PAGE_SIZE);
2401 	__u32 mul;
2402 
2403 	/* if user forgot to set any size, make sure they see error */
2404 	if (sz == 0)
2405 		return 0;
2406 	/* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2407 	 * a power-of-2 multiple of kernel's page size. If user diligently
2408 	 * satisified these conditions, pass the size through.
2409 	 */
2410 	if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2411 		return sz;
2412 
2413 	/* Otherwise find closest (page_sz * power_of_2) product bigger than
2414 	 * user-set size to satisfy both user size request and kernel
2415 	 * requirements and substitute correct max_entries for map creation.
2416 	 */
2417 	for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2418 		if (mul * page_sz > sz)
2419 			return mul * page_sz;
2420 	}
2421 
2422 	/* if it's impossible to satisfy the conditions (i.e., user size is
2423 	 * very close to UINT_MAX but is not a power-of-2 multiple of
2424 	 * page_size) then just return original size and let kernel reject it
2425 	 */
2426 	return sz;
2427 }
2428 
2429 static bool map_is_ringbuf(const struct bpf_map *map)
2430 {
2431 	return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2432 	       map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2433 }
2434 
2435 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2436 {
2437 	map->def.type = def->map_type;
2438 	map->def.key_size = def->key_size;
2439 	map->def.value_size = def->value_size;
2440 	map->def.max_entries = def->max_entries;
2441 	map->def.map_flags = def->map_flags;
2442 	map->map_extra = def->map_extra;
2443 
2444 	map->numa_node = def->numa_node;
2445 	map->btf_key_type_id = def->key_type_id;
2446 	map->btf_value_type_id = def->value_type_id;
2447 
2448 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2449 	if (map_is_ringbuf(map))
2450 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2451 
2452 	if (def->parts & MAP_DEF_MAP_TYPE)
2453 		pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2454 
2455 	if (def->parts & MAP_DEF_KEY_TYPE)
2456 		pr_debug("map '%s': found key [%u], sz = %u.\n",
2457 			 map->name, def->key_type_id, def->key_size);
2458 	else if (def->parts & MAP_DEF_KEY_SIZE)
2459 		pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2460 
2461 	if (def->parts & MAP_DEF_VALUE_TYPE)
2462 		pr_debug("map '%s': found value [%u], sz = %u.\n",
2463 			 map->name, def->value_type_id, def->value_size);
2464 	else if (def->parts & MAP_DEF_VALUE_SIZE)
2465 		pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2466 
2467 	if (def->parts & MAP_DEF_MAX_ENTRIES)
2468 		pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2469 	if (def->parts & MAP_DEF_MAP_FLAGS)
2470 		pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2471 	if (def->parts & MAP_DEF_MAP_EXTRA)
2472 		pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2473 			 (unsigned long long)def->map_extra);
2474 	if (def->parts & MAP_DEF_PINNING)
2475 		pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2476 	if (def->parts & MAP_DEF_NUMA_NODE)
2477 		pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2478 
2479 	if (def->parts & MAP_DEF_INNER_MAP)
2480 		pr_debug("map '%s': found inner map definition.\n", map->name);
2481 }
2482 
2483 static const char *btf_var_linkage_str(__u32 linkage)
2484 {
2485 	switch (linkage) {
2486 	case BTF_VAR_STATIC: return "static";
2487 	case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2488 	case BTF_VAR_GLOBAL_EXTERN: return "extern";
2489 	default: return "unknown";
2490 	}
2491 }
2492 
2493 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2494 					 const struct btf_type *sec,
2495 					 int var_idx, int sec_idx,
2496 					 const Elf_Data *data, bool strict,
2497 					 const char *pin_root_path)
2498 {
2499 	struct btf_map_def map_def = {}, inner_def = {};
2500 	const struct btf_type *var, *def;
2501 	const struct btf_var_secinfo *vi;
2502 	const struct btf_var *var_extra;
2503 	const char *map_name;
2504 	struct bpf_map *map;
2505 	int err;
2506 
2507 	vi = btf_var_secinfos(sec) + var_idx;
2508 	var = btf__type_by_id(obj->btf, vi->type);
2509 	var_extra = btf_var(var);
2510 	map_name = btf__name_by_offset(obj->btf, var->name_off);
2511 
2512 	if (map_name == NULL || map_name[0] == '\0') {
2513 		pr_warn("map #%d: empty name.\n", var_idx);
2514 		return -EINVAL;
2515 	}
2516 	if ((__u64)vi->offset + vi->size > data->d_size) {
2517 		pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2518 		return -EINVAL;
2519 	}
2520 	if (!btf_is_var(var)) {
2521 		pr_warn("map '%s': unexpected var kind %s.\n",
2522 			map_name, btf_kind_str(var));
2523 		return -EINVAL;
2524 	}
2525 	if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2526 		pr_warn("map '%s': unsupported map linkage %s.\n",
2527 			map_name, btf_var_linkage_str(var_extra->linkage));
2528 		return -EOPNOTSUPP;
2529 	}
2530 
2531 	def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2532 	if (!btf_is_struct(def)) {
2533 		pr_warn("map '%s': unexpected def kind %s.\n",
2534 			map_name, btf_kind_str(var));
2535 		return -EINVAL;
2536 	}
2537 	if (def->size > vi->size) {
2538 		pr_warn("map '%s': invalid def size.\n", map_name);
2539 		return -EINVAL;
2540 	}
2541 
2542 	map = bpf_object__add_map(obj);
2543 	if (IS_ERR(map))
2544 		return PTR_ERR(map);
2545 	map->name = strdup(map_name);
2546 	if (!map->name) {
2547 		pr_warn("map '%s': failed to alloc map name.\n", map_name);
2548 		return -ENOMEM;
2549 	}
2550 	map->libbpf_type = LIBBPF_MAP_UNSPEC;
2551 	map->def.type = BPF_MAP_TYPE_UNSPEC;
2552 	map->sec_idx = sec_idx;
2553 	map->sec_offset = vi->offset;
2554 	map->btf_var_idx = var_idx;
2555 	pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2556 		 map_name, map->sec_idx, map->sec_offset);
2557 
2558 	err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2559 	if (err)
2560 		return err;
2561 
2562 	fill_map_from_def(map, &map_def);
2563 
2564 	if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2565 		err = build_map_pin_path(map, pin_root_path);
2566 		if (err) {
2567 			pr_warn("map '%s': couldn't build pin path.\n", map->name);
2568 			return err;
2569 		}
2570 	}
2571 
2572 	if (map_def.parts & MAP_DEF_INNER_MAP) {
2573 		map->inner_map = calloc(1, sizeof(*map->inner_map));
2574 		if (!map->inner_map)
2575 			return -ENOMEM;
2576 		map->inner_map->fd = -1;
2577 		map->inner_map->sec_idx = sec_idx;
2578 		map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2579 		if (!map->inner_map->name)
2580 			return -ENOMEM;
2581 		sprintf(map->inner_map->name, "%s.inner", map_name);
2582 
2583 		fill_map_from_def(map->inner_map, &inner_def);
2584 	}
2585 
2586 	err = map_fill_btf_type_info(obj, map);
2587 	if (err)
2588 		return err;
2589 
2590 	return 0;
2591 }
2592 
2593 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2594 					  const char *pin_root_path)
2595 {
2596 	const struct btf_type *sec = NULL;
2597 	int nr_types, i, vlen, err;
2598 	const struct btf_type *t;
2599 	const char *name;
2600 	Elf_Data *data;
2601 	Elf_Scn *scn;
2602 
2603 	if (obj->efile.btf_maps_shndx < 0)
2604 		return 0;
2605 
2606 	scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2607 	data = elf_sec_data(obj, scn);
2608 	if (!scn || !data) {
2609 		pr_warn("elf: failed to get %s map definitions for %s\n",
2610 			MAPS_ELF_SEC, obj->path);
2611 		return -EINVAL;
2612 	}
2613 
2614 	nr_types = btf__type_cnt(obj->btf);
2615 	for (i = 1; i < nr_types; i++) {
2616 		t = btf__type_by_id(obj->btf, i);
2617 		if (!btf_is_datasec(t))
2618 			continue;
2619 		name = btf__name_by_offset(obj->btf, t->name_off);
2620 		if (strcmp(name, MAPS_ELF_SEC) == 0) {
2621 			sec = t;
2622 			obj->efile.btf_maps_sec_btf_id = i;
2623 			break;
2624 		}
2625 	}
2626 
2627 	if (!sec) {
2628 		pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2629 		return -ENOENT;
2630 	}
2631 
2632 	vlen = btf_vlen(sec);
2633 	for (i = 0; i < vlen; i++) {
2634 		err = bpf_object__init_user_btf_map(obj, sec, i,
2635 						    obj->efile.btf_maps_shndx,
2636 						    data, strict,
2637 						    pin_root_path);
2638 		if (err)
2639 			return err;
2640 	}
2641 
2642 	return 0;
2643 }
2644 
2645 static int bpf_object__init_maps(struct bpf_object *obj,
2646 				 const struct bpf_object_open_opts *opts)
2647 {
2648 	const char *pin_root_path;
2649 	bool strict;
2650 	int err = 0;
2651 
2652 	strict = !OPTS_GET(opts, relaxed_maps, false);
2653 	pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2654 
2655 	err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2656 	err = err ?: bpf_object__init_global_data_maps(obj);
2657 	err = err ?: bpf_object__init_kconfig_map(obj);
2658 	err = err ?: bpf_object__init_struct_ops_maps(obj);
2659 
2660 	return err;
2661 }
2662 
2663 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2664 {
2665 	Elf64_Shdr *sh;
2666 
2667 	sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2668 	if (!sh)
2669 		return false;
2670 
2671 	return sh->sh_flags & SHF_EXECINSTR;
2672 }
2673 
2674 static bool btf_needs_sanitization(struct bpf_object *obj)
2675 {
2676 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2677 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2678 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2679 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2680 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2681 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2682 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2683 
2684 	return !has_func || !has_datasec || !has_func_global || !has_float ||
2685 	       !has_decl_tag || !has_type_tag || !has_enum64;
2686 }
2687 
2688 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2689 {
2690 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2691 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2692 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2693 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2694 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2695 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2696 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2697 	int enum64_placeholder_id = 0;
2698 	struct btf_type *t;
2699 	int i, j, vlen;
2700 
2701 	for (i = 1; i < btf__type_cnt(btf); i++) {
2702 		t = (struct btf_type *)btf__type_by_id(btf, i);
2703 
2704 		if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
2705 			/* replace VAR/DECL_TAG with INT */
2706 			t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2707 			/*
2708 			 * using size = 1 is the safest choice, 4 will be too
2709 			 * big and cause kernel BTF validation failure if
2710 			 * original variable took less than 4 bytes
2711 			 */
2712 			t->size = 1;
2713 			*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2714 		} else if (!has_datasec && btf_is_datasec(t)) {
2715 			/* replace DATASEC with STRUCT */
2716 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
2717 			struct btf_member *m = btf_members(t);
2718 			struct btf_type *vt;
2719 			char *name;
2720 
2721 			name = (char *)btf__name_by_offset(btf, t->name_off);
2722 			while (*name) {
2723 				if (*name == '.')
2724 					*name = '_';
2725 				name++;
2726 			}
2727 
2728 			vlen = btf_vlen(t);
2729 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2730 			for (j = 0; j < vlen; j++, v++, m++) {
2731 				/* order of field assignments is important */
2732 				m->offset = v->offset * 8;
2733 				m->type = v->type;
2734 				/* preserve variable name as member name */
2735 				vt = (void *)btf__type_by_id(btf, v->type);
2736 				m->name_off = vt->name_off;
2737 			}
2738 		} else if (!has_func && btf_is_func_proto(t)) {
2739 			/* replace FUNC_PROTO with ENUM */
2740 			vlen = btf_vlen(t);
2741 			t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2742 			t->size = sizeof(__u32); /* kernel enforced */
2743 		} else if (!has_func && btf_is_func(t)) {
2744 			/* replace FUNC with TYPEDEF */
2745 			t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2746 		} else if (!has_func_global && btf_is_func(t)) {
2747 			/* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2748 			t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2749 		} else if (!has_float && btf_is_float(t)) {
2750 			/* replace FLOAT with an equally-sized empty STRUCT;
2751 			 * since C compilers do not accept e.g. "float" as a
2752 			 * valid struct name, make it anonymous
2753 			 */
2754 			t->name_off = 0;
2755 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2756 		} else if (!has_type_tag && btf_is_type_tag(t)) {
2757 			/* replace TYPE_TAG with a CONST */
2758 			t->name_off = 0;
2759 			t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
2760 		} else if (!has_enum64 && btf_is_enum(t)) {
2761 			/* clear the kflag */
2762 			t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
2763 		} else if (!has_enum64 && btf_is_enum64(t)) {
2764 			/* replace ENUM64 with a union */
2765 			struct btf_member *m;
2766 
2767 			if (enum64_placeholder_id == 0) {
2768 				enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
2769 				if (enum64_placeholder_id < 0)
2770 					return enum64_placeholder_id;
2771 
2772 				t = (struct btf_type *)btf__type_by_id(btf, i);
2773 			}
2774 
2775 			m = btf_members(t);
2776 			vlen = btf_vlen(t);
2777 			t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
2778 			for (j = 0; j < vlen; j++, m++) {
2779 				m->type = enum64_placeholder_id;
2780 				m->offset = 0;
2781 			}
2782 		}
2783 	}
2784 
2785 	return 0;
2786 }
2787 
2788 static bool libbpf_needs_btf(const struct bpf_object *obj)
2789 {
2790 	return obj->efile.btf_maps_shndx >= 0 ||
2791 	       obj->efile.st_ops_shndx >= 0 ||
2792 	       obj->nr_extern > 0;
2793 }
2794 
2795 static bool kernel_needs_btf(const struct bpf_object *obj)
2796 {
2797 	return obj->efile.st_ops_shndx >= 0;
2798 }
2799 
2800 static int bpf_object__init_btf(struct bpf_object *obj,
2801 				Elf_Data *btf_data,
2802 				Elf_Data *btf_ext_data)
2803 {
2804 	int err = -ENOENT;
2805 
2806 	if (btf_data) {
2807 		obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2808 		err = libbpf_get_error(obj->btf);
2809 		if (err) {
2810 			obj->btf = NULL;
2811 			pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
2812 			goto out;
2813 		}
2814 		/* enforce 8-byte pointers for BPF-targeted BTFs */
2815 		btf__set_pointer_size(obj->btf, 8);
2816 	}
2817 	if (btf_ext_data) {
2818 		struct btf_ext_info *ext_segs[3];
2819 		int seg_num, sec_num;
2820 
2821 		if (!obj->btf) {
2822 			pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2823 				 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2824 			goto out;
2825 		}
2826 		obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
2827 		err = libbpf_get_error(obj->btf_ext);
2828 		if (err) {
2829 			pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
2830 				BTF_EXT_ELF_SEC, err);
2831 			obj->btf_ext = NULL;
2832 			goto out;
2833 		}
2834 
2835 		/* setup .BTF.ext to ELF section mapping */
2836 		ext_segs[0] = &obj->btf_ext->func_info;
2837 		ext_segs[1] = &obj->btf_ext->line_info;
2838 		ext_segs[2] = &obj->btf_ext->core_relo_info;
2839 		for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
2840 			struct btf_ext_info *seg = ext_segs[seg_num];
2841 			const struct btf_ext_info_sec *sec;
2842 			const char *sec_name;
2843 			Elf_Scn *scn;
2844 
2845 			if (seg->sec_cnt == 0)
2846 				continue;
2847 
2848 			seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
2849 			if (!seg->sec_idxs) {
2850 				err = -ENOMEM;
2851 				goto out;
2852 			}
2853 
2854 			sec_num = 0;
2855 			for_each_btf_ext_sec(seg, sec) {
2856 				/* preventively increment index to avoid doing
2857 				 * this before every continue below
2858 				 */
2859 				sec_num++;
2860 
2861 				sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
2862 				if (str_is_empty(sec_name))
2863 					continue;
2864 				scn = elf_sec_by_name(obj, sec_name);
2865 				if (!scn)
2866 					continue;
2867 
2868 				seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
2869 			}
2870 		}
2871 	}
2872 out:
2873 	if (err && libbpf_needs_btf(obj)) {
2874 		pr_warn("BTF is required, but is missing or corrupted.\n");
2875 		return err;
2876 	}
2877 	return 0;
2878 }
2879 
2880 static int compare_vsi_off(const void *_a, const void *_b)
2881 {
2882 	const struct btf_var_secinfo *a = _a;
2883 	const struct btf_var_secinfo *b = _b;
2884 
2885 	return a->offset - b->offset;
2886 }
2887 
2888 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
2889 			     struct btf_type *t)
2890 {
2891 	__u32 size = 0, i, vars = btf_vlen(t);
2892 	const char *sec_name = btf__name_by_offset(btf, t->name_off);
2893 	struct btf_var_secinfo *vsi;
2894 	bool fixup_offsets = false;
2895 	int err;
2896 
2897 	if (!sec_name) {
2898 		pr_debug("No name found in string section for DATASEC kind.\n");
2899 		return -ENOENT;
2900 	}
2901 
2902 	/* Extern-backing datasecs (.ksyms, .kconfig) have their size and
2903 	 * variable offsets set at the previous step. Further, not every
2904 	 * extern BTF VAR has corresponding ELF symbol preserved, so we skip
2905 	 * all fixups altogether for such sections and go straight to sorting
2906 	 * VARs within their DATASEC.
2907 	 */
2908 	if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0)
2909 		goto sort_vars;
2910 
2911 	/* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to
2912 	 * fix this up. But BPF static linker already fixes this up and fills
2913 	 * all the sizes and offsets during static linking. So this step has
2914 	 * to be optional. But the STV_HIDDEN handling is non-optional for any
2915 	 * non-extern DATASEC, so the variable fixup loop below handles both
2916 	 * functions at the same time, paying the cost of BTF VAR <-> ELF
2917 	 * symbol matching just once.
2918 	 */
2919 	if (t->size == 0) {
2920 		err = find_elf_sec_sz(obj, sec_name, &size);
2921 		if (err || !size) {
2922 			pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n",
2923 				 sec_name, size, err);
2924 			return -ENOENT;
2925 		}
2926 
2927 		t->size = size;
2928 		fixup_offsets = true;
2929 	}
2930 
2931 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
2932 		const struct btf_type *t_var;
2933 		struct btf_var *var;
2934 		const char *var_name;
2935 		Elf64_Sym *sym;
2936 
2937 		t_var = btf__type_by_id(btf, vsi->type);
2938 		if (!t_var || !btf_is_var(t_var)) {
2939 			pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name);
2940 			return -EINVAL;
2941 		}
2942 
2943 		var = btf_var(t_var);
2944 		if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN)
2945 			continue;
2946 
2947 		var_name = btf__name_by_offset(btf, t_var->name_off);
2948 		if (!var_name) {
2949 			pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n",
2950 				 sec_name, i);
2951 			return -ENOENT;
2952 		}
2953 
2954 		sym = find_elf_var_sym(obj, var_name);
2955 		if (IS_ERR(sym)) {
2956 			pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n",
2957 				 sec_name, var_name);
2958 			return -ENOENT;
2959 		}
2960 
2961 		if (fixup_offsets)
2962 			vsi->offset = sym->st_value;
2963 
2964 		/* if variable is a global/weak symbol, but has restricted
2965 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR
2966 		 * as static. This follows similar logic for functions (BPF
2967 		 * subprogs) and influences libbpf's further decisions about
2968 		 * whether to make global data BPF array maps as
2969 		 * BPF_F_MMAPABLE.
2970 		 */
2971 		if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
2972 		    || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)
2973 			var->linkage = BTF_VAR_STATIC;
2974 	}
2975 
2976 sort_vars:
2977 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
2978 	return 0;
2979 }
2980 
2981 static int bpf_object_fixup_btf(struct bpf_object *obj)
2982 {
2983 	int i, n, err = 0;
2984 
2985 	if (!obj->btf)
2986 		return 0;
2987 
2988 	n = btf__type_cnt(obj->btf);
2989 	for (i = 1; i < n; i++) {
2990 		struct btf_type *t = btf_type_by_id(obj->btf, i);
2991 
2992 		/* Loader needs to fix up some of the things compiler
2993 		 * couldn't get its hands on while emitting BTF. This
2994 		 * is section size and global variable offset. We use
2995 		 * the info from the ELF itself for this purpose.
2996 		 */
2997 		if (btf_is_datasec(t)) {
2998 			err = btf_fixup_datasec(obj, obj->btf, t);
2999 			if (err)
3000 				return err;
3001 		}
3002 	}
3003 
3004 	return 0;
3005 }
3006 
3007 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
3008 {
3009 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
3010 	    prog->type == BPF_PROG_TYPE_LSM)
3011 		return true;
3012 
3013 	/* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
3014 	 * also need vmlinux BTF
3015 	 */
3016 	if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
3017 		return true;
3018 
3019 	return false;
3020 }
3021 
3022 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
3023 {
3024 	struct bpf_program *prog;
3025 	int i;
3026 
3027 	/* CO-RE relocations need kernel BTF, only when btf_custom_path
3028 	 * is not specified
3029 	 */
3030 	if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
3031 		return true;
3032 
3033 	/* Support for typed ksyms needs kernel BTF */
3034 	for (i = 0; i < obj->nr_extern; i++) {
3035 		const struct extern_desc *ext;
3036 
3037 		ext = &obj->externs[i];
3038 		if (ext->type == EXT_KSYM && ext->ksym.type_id)
3039 			return true;
3040 	}
3041 
3042 	bpf_object__for_each_program(prog, obj) {
3043 		if (!prog->autoload)
3044 			continue;
3045 		if (prog_needs_vmlinux_btf(prog))
3046 			return true;
3047 	}
3048 
3049 	return false;
3050 }
3051 
3052 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3053 {
3054 	int err;
3055 
3056 	/* btf_vmlinux could be loaded earlier */
3057 	if (obj->btf_vmlinux || obj->gen_loader)
3058 		return 0;
3059 
3060 	if (!force && !obj_needs_vmlinux_btf(obj))
3061 		return 0;
3062 
3063 	obj->btf_vmlinux = btf__load_vmlinux_btf();
3064 	err = libbpf_get_error(obj->btf_vmlinux);
3065 	if (err) {
3066 		pr_warn("Error loading vmlinux BTF: %d\n", err);
3067 		obj->btf_vmlinux = NULL;
3068 		return err;
3069 	}
3070 	return 0;
3071 }
3072 
3073 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3074 {
3075 	struct btf *kern_btf = obj->btf;
3076 	bool btf_mandatory, sanitize;
3077 	int i, err = 0;
3078 
3079 	if (!obj->btf)
3080 		return 0;
3081 
3082 	if (!kernel_supports(obj, FEAT_BTF)) {
3083 		if (kernel_needs_btf(obj)) {
3084 			err = -EOPNOTSUPP;
3085 			goto report;
3086 		}
3087 		pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3088 		return 0;
3089 	}
3090 
3091 	/* Even though some subprogs are global/weak, user might prefer more
3092 	 * permissive BPF verification process that BPF verifier performs for
3093 	 * static functions, taking into account more context from the caller
3094 	 * functions. In such case, they need to mark such subprogs with
3095 	 * __attribute__((visibility("hidden"))) and libbpf will adjust
3096 	 * corresponding FUNC BTF type to be marked as static and trigger more
3097 	 * involved BPF verification process.
3098 	 */
3099 	for (i = 0; i < obj->nr_programs; i++) {
3100 		struct bpf_program *prog = &obj->programs[i];
3101 		struct btf_type *t;
3102 		const char *name;
3103 		int j, n;
3104 
3105 		if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3106 			continue;
3107 
3108 		n = btf__type_cnt(obj->btf);
3109 		for (j = 1; j < n; j++) {
3110 			t = btf_type_by_id(obj->btf, j);
3111 			if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3112 				continue;
3113 
3114 			name = btf__str_by_offset(obj->btf, t->name_off);
3115 			if (strcmp(name, prog->name) != 0)
3116 				continue;
3117 
3118 			t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3119 			break;
3120 		}
3121 	}
3122 
3123 	sanitize = btf_needs_sanitization(obj);
3124 	if (sanitize) {
3125 		const void *raw_data;
3126 		__u32 sz;
3127 
3128 		/* clone BTF to sanitize a copy and leave the original intact */
3129 		raw_data = btf__raw_data(obj->btf, &sz);
3130 		kern_btf = btf__new(raw_data, sz);
3131 		err = libbpf_get_error(kern_btf);
3132 		if (err)
3133 			return err;
3134 
3135 		/* enforce 8-byte pointers for BPF-targeted BTFs */
3136 		btf__set_pointer_size(obj->btf, 8);
3137 		err = bpf_object__sanitize_btf(obj, kern_btf);
3138 		if (err)
3139 			return err;
3140 	}
3141 
3142 	if (obj->gen_loader) {
3143 		__u32 raw_size = 0;
3144 		const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3145 
3146 		if (!raw_data)
3147 			return -ENOMEM;
3148 		bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3149 		/* Pretend to have valid FD to pass various fd >= 0 checks.
3150 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3151 		 */
3152 		btf__set_fd(kern_btf, 0);
3153 	} else {
3154 		/* currently BPF_BTF_LOAD only supports log_level 1 */
3155 		err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3156 					   obj->log_level ? 1 : 0);
3157 	}
3158 	if (sanitize) {
3159 		if (!err) {
3160 			/* move fd to libbpf's BTF */
3161 			btf__set_fd(obj->btf, btf__fd(kern_btf));
3162 			btf__set_fd(kern_btf, -1);
3163 		}
3164 		btf__free(kern_btf);
3165 	}
3166 report:
3167 	if (err) {
3168 		btf_mandatory = kernel_needs_btf(obj);
3169 		pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3170 			btf_mandatory ? "BTF is mandatory, can't proceed."
3171 				      : "BTF is optional, ignoring.");
3172 		if (!btf_mandatory)
3173 			err = 0;
3174 	}
3175 	return err;
3176 }
3177 
3178 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3179 {
3180 	const char *name;
3181 
3182 	name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3183 	if (!name) {
3184 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3185 			off, obj->path, elf_errmsg(-1));
3186 		return NULL;
3187 	}
3188 
3189 	return name;
3190 }
3191 
3192 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3193 {
3194 	const char *name;
3195 
3196 	name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3197 	if (!name) {
3198 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3199 			off, obj->path, elf_errmsg(-1));
3200 		return NULL;
3201 	}
3202 
3203 	return name;
3204 }
3205 
3206 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3207 {
3208 	Elf_Scn *scn;
3209 
3210 	scn = elf_getscn(obj->efile.elf, idx);
3211 	if (!scn) {
3212 		pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3213 			idx, obj->path, elf_errmsg(-1));
3214 		return NULL;
3215 	}
3216 	return scn;
3217 }
3218 
3219 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3220 {
3221 	Elf_Scn *scn = NULL;
3222 	Elf *elf = obj->efile.elf;
3223 	const char *sec_name;
3224 
3225 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3226 		sec_name = elf_sec_name(obj, scn);
3227 		if (!sec_name)
3228 			return NULL;
3229 
3230 		if (strcmp(sec_name, name) != 0)
3231 			continue;
3232 
3233 		return scn;
3234 	}
3235 	return NULL;
3236 }
3237 
3238 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3239 {
3240 	Elf64_Shdr *shdr;
3241 
3242 	if (!scn)
3243 		return NULL;
3244 
3245 	shdr = elf64_getshdr(scn);
3246 	if (!shdr) {
3247 		pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3248 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3249 		return NULL;
3250 	}
3251 
3252 	return shdr;
3253 }
3254 
3255 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3256 {
3257 	const char *name;
3258 	Elf64_Shdr *sh;
3259 
3260 	if (!scn)
3261 		return NULL;
3262 
3263 	sh = elf_sec_hdr(obj, scn);
3264 	if (!sh)
3265 		return NULL;
3266 
3267 	name = elf_sec_str(obj, sh->sh_name);
3268 	if (!name) {
3269 		pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3270 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3271 		return NULL;
3272 	}
3273 
3274 	return name;
3275 }
3276 
3277 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3278 {
3279 	Elf_Data *data;
3280 
3281 	if (!scn)
3282 		return NULL;
3283 
3284 	data = elf_getdata(scn, 0);
3285 	if (!data) {
3286 		pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3287 			elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3288 			obj->path, elf_errmsg(-1));
3289 		return NULL;
3290 	}
3291 
3292 	return data;
3293 }
3294 
3295 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3296 {
3297 	if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3298 		return NULL;
3299 
3300 	return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3301 }
3302 
3303 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3304 {
3305 	if (idx >= data->d_size / sizeof(Elf64_Rel))
3306 		return NULL;
3307 
3308 	return (Elf64_Rel *)data->d_buf + idx;
3309 }
3310 
3311 static bool is_sec_name_dwarf(const char *name)
3312 {
3313 	/* approximation, but the actual list is too long */
3314 	return str_has_pfx(name, ".debug_");
3315 }
3316 
3317 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3318 {
3319 	/* no special handling of .strtab */
3320 	if (hdr->sh_type == SHT_STRTAB)
3321 		return true;
3322 
3323 	/* ignore .llvm_addrsig section as well */
3324 	if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3325 		return true;
3326 
3327 	/* no subprograms will lead to an empty .text section, ignore it */
3328 	if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3329 	    strcmp(name, ".text") == 0)
3330 		return true;
3331 
3332 	/* DWARF sections */
3333 	if (is_sec_name_dwarf(name))
3334 		return true;
3335 
3336 	if (str_has_pfx(name, ".rel")) {
3337 		name += sizeof(".rel") - 1;
3338 		/* DWARF section relocations */
3339 		if (is_sec_name_dwarf(name))
3340 			return true;
3341 
3342 		/* .BTF and .BTF.ext don't need relocations */
3343 		if (strcmp(name, BTF_ELF_SEC) == 0 ||
3344 		    strcmp(name, BTF_EXT_ELF_SEC) == 0)
3345 			return true;
3346 	}
3347 
3348 	return false;
3349 }
3350 
3351 static int cmp_progs(const void *_a, const void *_b)
3352 {
3353 	const struct bpf_program *a = _a;
3354 	const struct bpf_program *b = _b;
3355 
3356 	if (a->sec_idx != b->sec_idx)
3357 		return a->sec_idx < b->sec_idx ? -1 : 1;
3358 
3359 	/* sec_insn_off can't be the same within the section */
3360 	return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3361 }
3362 
3363 static int bpf_object__elf_collect(struct bpf_object *obj)
3364 {
3365 	struct elf_sec_desc *sec_desc;
3366 	Elf *elf = obj->efile.elf;
3367 	Elf_Data *btf_ext_data = NULL;
3368 	Elf_Data *btf_data = NULL;
3369 	int idx = 0, err = 0;
3370 	const char *name;
3371 	Elf_Data *data;
3372 	Elf_Scn *scn;
3373 	Elf64_Shdr *sh;
3374 
3375 	/* ELF section indices are 0-based, but sec #0 is special "invalid"
3376 	 * section. Since section count retrieved by elf_getshdrnum() does
3377 	 * include sec #0, it is already the necessary size of an array to keep
3378 	 * all the sections.
3379 	 */
3380 	if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3381 		pr_warn("elf: failed to get the number of sections for %s: %s\n",
3382 			obj->path, elf_errmsg(-1));
3383 		return -LIBBPF_ERRNO__FORMAT;
3384 	}
3385 	obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3386 	if (!obj->efile.secs)
3387 		return -ENOMEM;
3388 
3389 	/* a bunch of ELF parsing functionality depends on processing symbols,
3390 	 * so do the first pass and find the symbol table
3391 	 */
3392 	scn = NULL;
3393 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3394 		sh = elf_sec_hdr(obj, scn);
3395 		if (!sh)
3396 			return -LIBBPF_ERRNO__FORMAT;
3397 
3398 		if (sh->sh_type == SHT_SYMTAB) {
3399 			if (obj->efile.symbols) {
3400 				pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3401 				return -LIBBPF_ERRNO__FORMAT;
3402 			}
3403 
3404 			data = elf_sec_data(obj, scn);
3405 			if (!data)
3406 				return -LIBBPF_ERRNO__FORMAT;
3407 
3408 			idx = elf_ndxscn(scn);
3409 
3410 			obj->efile.symbols = data;
3411 			obj->efile.symbols_shndx = idx;
3412 			obj->efile.strtabidx = sh->sh_link;
3413 		}
3414 	}
3415 
3416 	if (!obj->efile.symbols) {
3417 		pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3418 			obj->path);
3419 		return -ENOENT;
3420 	}
3421 
3422 	scn = NULL;
3423 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3424 		idx = elf_ndxscn(scn);
3425 		sec_desc = &obj->efile.secs[idx];
3426 
3427 		sh = elf_sec_hdr(obj, scn);
3428 		if (!sh)
3429 			return -LIBBPF_ERRNO__FORMAT;
3430 
3431 		name = elf_sec_str(obj, sh->sh_name);
3432 		if (!name)
3433 			return -LIBBPF_ERRNO__FORMAT;
3434 
3435 		if (ignore_elf_section(sh, name))
3436 			continue;
3437 
3438 		data = elf_sec_data(obj, scn);
3439 		if (!data)
3440 			return -LIBBPF_ERRNO__FORMAT;
3441 
3442 		pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3443 			 idx, name, (unsigned long)data->d_size,
3444 			 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3445 			 (int)sh->sh_type);
3446 
3447 		if (strcmp(name, "license") == 0) {
3448 			err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3449 			if (err)
3450 				return err;
3451 		} else if (strcmp(name, "version") == 0) {
3452 			err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3453 			if (err)
3454 				return err;
3455 		} else if (strcmp(name, "maps") == 0) {
3456 			pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3457 			return -ENOTSUP;
3458 		} else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3459 			obj->efile.btf_maps_shndx = idx;
3460 		} else if (strcmp(name, BTF_ELF_SEC) == 0) {
3461 			if (sh->sh_type != SHT_PROGBITS)
3462 				return -LIBBPF_ERRNO__FORMAT;
3463 			btf_data = data;
3464 		} else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3465 			if (sh->sh_type != SHT_PROGBITS)
3466 				return -LIBBPF_ERRNO__FORMAT;
3467 			btf_ext_data = data;
3468 		} else if (sh->sh_type == SHT_SYMTAB) {
3469 			/* already processed during the first pass above */
3470 		} else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3471 			if (sh->sh_flags & SHF_EXECINSTR) {
3472 				if (strcmp(name, ".text") == 0)
3473 					obj->efile.text_shndx = idx;
3474 				err = bpf_object__add_programs(obj, data, name, idx);
3475 				if (err)
3476 					return err;
3477 			} else if (strcmp(name, DATA_SEC) == 0 ||
3478 				   str_has_pfx(name, DATA_SEC ".")) {
3479 				sec_desc->sec_type = SEC_DATA;
3480 				sec_desc->shdr = sh;
3481 				sec_desc->data = data;
3482 			} else if (strcmp(name, RODATA_SEC) == 0 ||
3483 				   str_has_pfx(name, RODATA_SEC ".")) {
3484 				sec_desc->sec_type = SEC_RODATA;
3485 				sec_desc->shdr = sh;
3486 				sec_desc->data = data;
3487 			} else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
3488 				obj->efile.st_ops_data = data;
3489 				obj->efile.st_ops_shndx = idx;
3490 			} else {
3491 				pr_info("elf: skipping unrecognized data section(%d) %s\n",
3492 					idx, name);
3493 			}
3494 		} else if (sh->sh_type == SHT_REL) {
3495 			int targ_sec_idx = sh->sh_info; /* points to other section */
3496 
3497 			if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3498 			    targ_sec_idx >= obj->efile.sec_cnt)
3499 				return -LIBBPF_ERRNO__FORMAT;
3500 
3501 			/* Only do relo for section with exec instructions */
3502 			if (!section_have_execinstr(obj, targ_sec_idx) &&
3503 			    strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3504 			    strcmp(name, ".rel" MAPS_ELF_SEC)) {
3505 				pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3506 					idx, name, targ_sec_idx,
3507 					elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3508 				continue;
3509 			}
3510 
3511 			sec_desc->sec_type = SEC_RELO;
3512 			sec_desc->shdr = sh;
3513 			sec_desc->data = data;
3514 		} else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 ||
3515 							 str_has_pfx(name, BSS_SEC "."))) {
3516 			sec_desc->sec_type = SEC_BSS;
3517 			sec_desc->shdr = sh;
3518 			sec_desc->data = data;
3519 		} else {
3520 			pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3521 				(size_t)sh->sh_size);
3522 		}
3523 	}
3524 
3525 	if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3526 		pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3527 		return -LIBBPF_ERRNO__FORMAT;
3528 	}
3529 
3530 	/* sort BPF programs by section name and in-section instruction offset
3531 	 * for faster search
3532 	 */
3533 	if (obj->nr_programs)
3534 		qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3535 
3536 	return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3537 }
3538 
3539 static bool sym_is_extern(const Elf64_Sym *sym)
3540 {
3541 	int bind = ELF64_ST_BIND(sym->st_info);
3542 	/* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3543 	return sym->st_shndx == SHN_UNDEF &&
3544 	       (bind == STB_GLOBAL || bind == STB_WEAK) &&
3545 	       ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3546 }
3547 
3548 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3549 {
3550 	int bind = ELF64_ST_BIND(sym->st_info);
3551 	int type = ELF64_ST_TYPE(sym->st_info);
3552 
3553 	/* in .text section */
3554 	if (sym->st_shndx != text_shndx)
3555 		return false;
3556 
3557 	/* local function */
3558 	if (bind == STB_LOCAL && type == STT_SECTION)
3559 		return true;
3560 
3561 	/* global function */
3562 	return bind == STB_GLOBAL && type == STT_FUNC;
3563 }
3564 
3565 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3566 {
3567 	const struct btf_type *t;
3568 	const char *tname;
3569 	int i, n;
3570 
3571 	if (!btf)
3572 		return -ESRCH;
3573 
3574 	n = btf__type_cnt(btf);
3575 	for (i = 1; i < n; i++) {
3576 		t = btf__type_by_id(btf, i);
3577 
3578 		if (!btf_is_var(t) && !btf_is_func(t))
3579 			continue;
3580 
3581 		tname = btf__name_by_offset(btf, t->name_off);
3582 		if (strcmp(tname, ext_name))
3583 			continue;
3584 
3585 		if (btf_is_var(t) &&
3586 		    btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3587 			return -EINVAL;
3588 
3589 		if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3590 			return -EINVAL;
3591 
3592 		return i;
3593 	}
3594 
3595 	return -ENOENT;
3596 }
3597 
3598 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3599 	const struct btf_var_secinfo *vs;
3600 	const struct btf_type *t;
3601 	int i, j, n;
3602 
3603 	if (!btf)
3604 		return -ESRCH;
3605 
3606 	n = btf__type_cnt(btf);
3607 	for (i = 1; i < n; i++) {
3608 		t = btf__type_by_id(btf, i);
3609 
3610 		if (!btf_is_datasec(t))
3611 			continue;
3612 
3613 		vs = btf_var_secinfos(t);
3614 		for (j = 0; j < btf_vlen(t); j++, vs++) {
3615 			if (vs->type == ext_btf_id)
3616 				return i;
3617 		}
3618 	}
3619 
3620 	return -ENOENT;
3621 }
3622 
3623 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3624 				     bool *is_signed)
3625 {
3626 	const struct btf_type *t;
3627 	const char *name;
3628 
3629 	t = skip_mods_and_typedefs(btf, id, NULL);
3630 	name = btf__name_by_offset(btf, t->name_off);
3631 
3632 	if (is_signed)
3633 		*is_signed = false;
3634 	switch (btf_kind(t)) {
3635 	case BTF_KIND_INT: {
3636 		int enc = btf_int_encoding(t);
3637 
3638 		if (enc & BTF_INT_BOOL)
3639 			return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3640 		if (is_signed)
3641 			*is_signed = enc & BTF_INT_SIGNED;
3642 		if (t->size == 1)
3643 			return KCFG_CHAR;
3644 		if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3645 			return KCFG_UNKNOWN;
3646 		return KCFG_INT;
3647 	}
3648 	case BTF_KIND_ENUM:
3649 		if (t->size != 4)
3650 			return KCFG_UNKNOWN;
3651 		if (strcmp(name, "libbpf_tristate"))
3652 			return KCFG_UNKNOWN;
3653 		return KCFG_TRISTATE;
3654 	case BTF_KIND_ENUM64:
3655 		if (strcmp(name, "libbpf_tristate"))
3656 			return KCFG_UNKNOWN;
3657 		return KCFG_TRISTATE;
3658 	case BTF_KIND_ARRAY:
3659 		if (btf_array(t)->nelems == 0)
3660 			return KCFG_UNKNOWN;
3661 		if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3662 			return KCFG_UNKNOWN;
3663 		return KCFG_CHAR_ARR;
3664 	default:
3665 		return KCFG_UNKNOWN;
3666 	}
3667 }
3668 
3669 static int cmp_externs(const void *_a, const void *_b)
3670 {
3671 	const struct extern_desc *a = _a;
3672 	const struct extern_desc *b = _b;
3673 
3674 	if (a->type != b->type)
3675 		return a->type < b->type ? -1 : 1;
3676 
3677 	if (a->type == EXT_KCFG) {
3678 		/* descending order by alignment requirements */
3679 		if (a->kcfg.align != b->kcfg.align)
3680 			return a->kcfg.align > b->kcfg.align ? -1 : 1;
3681 		/* ascending order by size, within same alignment class */
3682 		if (a->kcfg.sz != b->kcfg.sz)
3683 			return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3684 	}
3685 
3686 	/* resolve ties by name */
3687 	return strcmp(a->name, b->name);
3688 }
3689 
3690 static int find_int_btf_id(const struct btf *btf)
3691 {
3692 	const struct btf_type *t;
3693 	int i, n;
3694 
3695 	n = btf__type_cnt(btf);
3696 	for (i = 1; i < n; i++) {
3697 		t = btf__type_by_id(btf, i);
3698 
3699 		if (btf_is_int(t) && btf_int_bits(t) == 32)
3700 			return i;
3701 	}
3702 
3703 	return 0;
3704 }
3705 
3706 static int add_dummy_ksym_var(struct btf *btf)
3707 {
3708 	int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
3709 	const struct btf_var_secinfo *vs;
3710 	const struct btf_type *sec;
3711 
3712 	if (!btf)
3713 		return 0;
3714 
3715 	sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
3716 					    BTF_KIND_DATASEC);
3717 	if (sec_btf_id < 0)
3718 		return 0;
3719 
3720 	sec = btf__type_by_id(btf, sec_btf_id);
3721 	vs = btf_var_secinfos(sec);
3722 	for (i = 0; i < btf_vlen(sec); i++, vs++) {
3723 		const struct btf_type *vt;
3724 
3725 		vt = btf__type_by_id(btf, vs->type);
3726 		if (btf_is_func(vt))
3727 			break;
3728 	}
3729 
3730 	/* No func in ksyms sec.  No need to add dummy var. */
3731 	if (i == btf_vlen(sec))
3732 		return 0;
3733 
3734 	int_btf_id = find_int_btf_id(btf);
3735 	dummy_var_btf_id = btf__add_var(btf,
3736 					"dummy_ksym",
3737 					BTF_VAR_GLOBAL_ALLOCATED,
3738 					int_btf_id);
3739 	if (dummy_var_btf_id < 0)
3740 		pr_warn("cannot create a dummy_ksym var\n");
3741 
3742 	return dummy_var_btf_id;
3743 }
3744 
3745 static int bpf_object__collect_externs(struct bpf_object *obj)
3746 {
3747 	struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3748 	const struct btf_type *t;
3749 	struct extern_desc *ext;
3750 	int i, n, off, dummy_var_btf_id;
3751 	const char *ext_name, *sec_name;
3752 	Elf_Scn *scn;
3753 	Elf64_Shdr *sh;
3754 
3755 	if (!obj->efile.symbols)
3756 		return 0;
3757 
3758 	scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3759 	sh = elf_sec_hdr(obj, scn);
3760 	if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
3761 		return -LIBBPF_ERRNO__FORMAT;
3762 
3763 	dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
3764 	if (dummy_var_btf_id < 0)
3765 		return dummy_var_btf_id;
3766 
3767 	n = sh->sh_size / sh->sh_entsize;
3768 	pr_debug("looking for externs among %d symbols...\n", n);
3769 
3770 	for (i = 0; i < n; i++) {
3771 		Elf64_Sym *sym = elf_sym_by_idx(obj, i);
3772 
3773 		if (!sym)
3774 			return -LIBBPF_ERRNO__FORMAT;
3775 		if (!sym_is_extern(sym))
3776 			continue;
3777 		ext_name = elf_sym_str(obj, sym->st_name);
3778 		if (!ext_name || !ext_name[0])
3779 			continue;
3780 
3781 		ext = obj->externs;
3782 		ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3783 		if (!ext)
3784 			return -ENOMEM;
3785 		obj->externs = ext;
3786 		ext = &ext[obj->nr_extern];
3787 		memset(ext, 0, sizeof(*ext));
3788 		obj->nr_extern++;
3789 
3790 		ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3791 		if (ext->btf_id <= 0) {
3792 			pr_warn("failed to find BTF for extern '%s': %d\n",
3793 				ext_name, ext->btf_id);
3794 			return ext->btf_id;
3795 		}
3796 		t = btf__type_by_id(obj->btf, ext->btf_id);
3797 		ext->name = btf__name_by_offset(obj->btf, t->name_off);
3798 		ext->sym_idx = i;
3799 		ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
3800 
3801 		ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3802 		if (ext->sec_btf_id <= 0) {
3803 			pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3804 				ext_name, ext->btf_id, ext->sec_btf_id);
3805 			return ext->sec_btf_id;
3806 		}
3807 		sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3808 		sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3809 
3810 		if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3811 			if (btf_is_func(t)) {
3812 				pr_warn("extern function %s is unsupported under %s section\n",
3813 					ext->name, KCONFIG_SEC);
3814 				return -ENOTSUP;
3815 			}
3816 			kcfg_sec = sec;
3817 			ext->type = EXT_KCFG;
3818 			ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3819 			if (ext->kcfg.sz <= 0) {
3820 				pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3821 					ext_name, ext->kcfg.sz);
3822 				return ext->kcfg.sz;
3823 			}
3824 			ext->kcfg.align = btf__align_of(obj->btf, t->type);
3825 			if (ext->kcfg.align <= 0) {
3826 				pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3827 					ext_name, ext->kcfg.align);
3828 				return -EINVAL;
3829 			}
3830 			ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3831 							&ext->kcfg.is_signed);
3832 			if (ext->kcfg.type == KCFG_UNKNOWN) {
3833 				pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
3834 				return -ENOTSUP;
3835 			}
3836 		} else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3837 			ksym_sec = sec;
3838 			ext->type = EXT_KSYM;
3839 			skip_mods_and_typedefs(obj->btf, t->type,
3840 					       &ext->ksym.type_id);
3841 		} else {
3842 			pr_warn("unrecognized extern section '%s'\n", sec_name);
3843 			return -ENOTSUP;
3844 		}
3845 	}
3846 	pr_debug("collected %d externs total\n", obj->nr_extern);
3847 
3848 	if (!obj->nr_extern)
3849 		return 0;
3850 
3851 	/* sort externs by type, for kcfg ones also by (align, size, name) */
3852 	qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3853 
3854 	/* for .ksyms section, we need to turn all externs into allocated
3855 	 * variables in BTF to pass kernel verification; we do this by
3856 	 * pretending that each extern is a 8-byte variable
3857 	 */
3858 	if (ksym_sec) {
3859 		/* find existing 4-byte integer type in BTF to use for fake
3860 		 * extern variables in DATASEC
3861 		 */
3862 		int int_btf_id = find_int_btf_id(obj->btf);
3863 		/* For extern function, a dummy_var added earlier
3864 		 * will be used to replace the vs->type and
3865 		 * its name string will be used to refill
3866 		 * the missing param's name.
3867 		 */
3868 		const struct btf_type *dummy_var;
3869 
3870 		dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
3871 		for (i = 0; i < obj->nr_extern; i++) {
3872 			ext = &obj->externs[i];
3873 			if (ext->type != EXT_KSYM)
3874 				continue;
3875 			pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3876 				 i, ext->sym_idx, ext->name);
3877 		}
3878 
3879 		sec = ksym_sec;
3880 		n = btf_vlen(sec);
3881 		for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3882 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3883 			struct btf_type *vt;
3884 
3885 			vt = (void *)btf__type_by_id(obj->btf, vs->type);
3886 			ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3887 			ext = find_extern_by_name(obj, ext_name);
3888 			if (!ext) {
3889 				pr_warn("failed to find extern definition for BTF %s '%s'\n",
3890 					btf_kind_str(vt), ext_name);
3891 				return -ESRCH;
3892 			}
3893 			if (btf_is_func(vt)) {
3894 				const struct btf_type *func_proto;
3895 				struct btf_param *param;
3896 				int j;
3897 
3898 				func_proto = btf__type_by_id(obj->btf,
3899 							     vt->type);
3900 				param = btf_params(func_proto);
3901 				/* Reuse the dummy_var string if the
3902 				 * func proto does not have param name.
3903 				 */
3904 				for (j = 0; j < btf_vlen(func_proto); j++)
3905 					if (param[j].type && !param[j].name_off)
3906 						param[j].name_off =
3907 							dummy_var->name_off;
3908 				vs->type = dummy_var_btf_id;
3909 				vt->info &= ~0xffff;
3910 				vt->info |= BTF_FUNC_GLOBAL;
3911 			} else {
3912 				btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3913 				vt->type = int_btf_id;
3914 			}
3915 			vs->offset = off;
3916 			vs->size = sizeof(int);
3917 		}
3918 		sec->size = off;
3919 	}
3920 
3921 	if (kcfg_sec) {
3922 		sec = kcfg_sec;
3923 		/* for kcfg externs calculate their offsets within a .kconfig map */
3924 		off = 0;
3925 		for (i = 0; i < obj->nr_extern; i++) {
3926 			ext = &obj->externs[i];
3927 			if (ext->type != EXT_KCFG)
3928 				continue;
3929 
3930 			ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3931 			off = ext->kcfg.data_off + ext->kcfg.sz;
3932 			pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3933 				 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3934 		}
3935 		sec->size = off;
3936 		n = btf_vlen(sec);
3937 		for (i = 0; i < n; i++) {
3938 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3939 
3940 			t = btf__type_by_id(obj->btf, vs->type);
3941 			ext_name = btf__name_by_offset(obj->btf, t->name_off);
3942 			ext = find_extern_by_name(obj, ext_name);
3943 			if (!ext) {
3944 				pr_warn("failed to find extern definition for BTF var '%s'\n",
3945 					ext_name);
3946 				return -ESRCH;
3947 			}
3948 			btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3949 			vs->offset = ext->kcfg.data_off;
3950 		}
3951 	}
3952 	return 0;
3953 }
3954 
3955 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
3956 {
3957 	return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
3958 }
3959 
3960 struct bpf_program *
3961 bpf_object__find_program_by_name(const struct bpf_object *obj,
3962 				 const char *name)
3963 {
3964 	struct bpf_program *prog;
3965 
3966 	bpf_object__for_each_program(prog, obj) {
3967 		if (prog_is_subprog(obj, prog))
3968 			continue;
3969 		if (!strcmp(prog->name, name))
3970 			return prog;
3971 	}
3972 	return errno = ENOENT, NULL;
3973 }
3974 
3975 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
3976 				      int shndx)
3977 {
3978 	switch (obj->efile.secs[shndx].sec_type) {
3979 	case SEC_BSS:
3980 	case SEC_DATA:
3981 	case SEC_RODATA:
3982 		return true;
3983 	default:
3984 		return false;
3985 	}
3986 }
3987 
3988 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
3989 				      int shndx)
3990 {
3991 	return shndx == obj->efile.btf_maps_shndx;
3992 }
3993 
3994 static enum libbpf_map_type
3995 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
3996 {
3997 	if (shndx == obj->efile.symbols_shndx)
3998 		return LIBBPF_MAP_KCONFIG;
3999 
4000 	switch (obj->efile.secs[shndx].sec_type) {
4001 	case SEC_BSS:
4002 		return LIBBPF_MAP_BSS;
4003 	case SEC_DATA:
4004 		return LIBBPF_MAP_DATA;
4005 	case SEC_RODATA:
4006 		return LIBBPF_MAP_RODATA;
4007 	default:
4008 		return LIBBPF_MAP_UNSPEC;
4009 	}
4010 }
4011 
4012 static int bpf_program__record_reloc(struct bpf_program *prog,
4013 				     struct reloc_desc *reloc_desc,
4014 				     __u32 insn_idx, const char *sym_name,
4015 				     const Elf64_Sym *sym, const Elf64_Rel *rel)
4016 {
4017 	struct bpf_insn *insn = &prog->insns[insn_idx];
4018 	size_t map_idx, nr_maps = prog->obj->nr_maps;
4019 	struct bpf_object *obj = prog->obj;
4020 	__u32 shdr_idx = sym->st_shndx;
4021 	enum libbpf_map_type type;
4022 	const char *sym_sec_name;
4023 	struct bpf_map *map;
4024 
4025 	if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
4026 		pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
4027 			prog->name, sym_name, insn_idx, insn->code);
4028 		return -LIBBPF_ERRNO__RELOC;
4029 	}
4030 
4031 	if (sym_is_extern(sym)) {
4032 		int sym_idx = ELF64_R_SYM(rel->r_info);
4033 		int i, n = obj->nr_extern;
4034 		struct extern_desc *ext;
4035 
4036 		for (i = 0; i < n; i++) {
4037 			ext = &obj->externs[i];
4038 			if (ext->sym_idx == sym_idx)
4039 				break;
4040 		}
4041 		if (i >= n) {
4042 			pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4043 				prog->name, sym_name, sym_idx);
4044 			return -LIBBPF_ERRNO__RELOC;
4045 		}
4046 		pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4047 			 prog->name, i, ext->name, ext->sym_idx, insn_idx);
4048 		if (insn->code == (BPF_JMP | BPF_CALL))
4049 			reloc_desc->type = RELO_EXTERN_FUNC;
4050 		else
4051 			reloc_desc->type = RELO_EXTERN_VAR;
4052 		reloc_desc->insn_idx = insn_idx;
4053 		reloc_desc->sym_off = i; /* sym_off stores extern index */
4054 		return 0;
4055 	}
4056 
4057 	/* sub-program call relocation */
4058 	if (is_call_insn(insn)) {
4059 		if (insn->src_reg != BPF_PSEUDO_CALL) {
4060 			pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4061 			return -LIBBPF_ERRNO__RELOC;
4062 		}
4063 		/* text_shndx can be 0, if no default "main" program exists */
4064 		if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4065 			sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4066 			pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4067 				prog->name, sym_name, sym_sec_name);
4068 			return -LIBBPF_ERRNO__RELOC;
4069 		}
4070 		if (sym->st_value % BPF_INSN_SZ) {
4071 			pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4072 				prog->name, sym_name, (size_t)sym->st_value);
4073 			return -LIBBPF_ERRNO__RELOC;
4074 		}
4075 		reloc_desc->type = RELO_CALL;
4076 		reloc_desc->insn_idx = insn_idx;
4077 		reloc_desc->sym_off = sym->st_value;
4078 		return 0;
4079 	}
4080 
4081 	if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4082 		pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4083 			prog->name, sym_name, shdr_idx);
4084 		return -LIBBPF_ERRNO__RELOC;
4085 	}
4086 
4087 	/* loading subprog addresses */
4088 	if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4089 		/* global_func: sym->st_value = offset in the section, insn->imm = 0.
4090 		 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4091 		 */
4092 		if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4093 			pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4094 				prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4095 			return -LIBBPF_ERRNO__RELOC;
4096 		}
4097 
4098 		reloc_desc->type = RELO_SUBPROG_ADDR;
4099 		reloc_desc->insn_idx = insn_idx;
4100 		reloc_desc->sym_off = sym->st_value;
4101 		return 0;
4102 	}
4103 
4104 	type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4105 	sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4106 
4107 	/* generic map reference relocation */
4108 	if (type == LIBBPF_MAP_UNSPEC) {
4109 		if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4110 			pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4111 				prog->name, sym_name, sym_sec_name);
4112 			return -LIBBPF_ERRNO__RELOC;
4113 		}
4114 		for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4115 			map = &obj->maps[map_idx];
4116 			if (map->libbpf_type != type ||
4117 			    map->sec_idx != sym->st_shndx ||
4118 			    map->sec_offset != sym->st_value)
4119 				continue;
4120 			pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4121 				 prog->name, map_idx, map->name, map->sec_idx,
4122 				 map->sec_offset, insn_idx);
4123 			break;
4124 		}
4125 		if (map_idx >= nr_maps) {
4126 			pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4127 				prog->name, sym_sec_name, (size_t)sym->st_value);
4128 			return -LIBBPF_ERRNO__RELOC;
4129 		}
4130 		reloc_desc->type = RELO_LD64;
4131 		reloc_desc->insn_idx = insn_idx;
4132 		reloc_desc->map_idx = map_idx;
4133 		reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4134 		return 0;
4135 	}
4136 
4137 	/* global data map relocation */
4138 	if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4139 		pr_warn("prog '%s': bad data relo against section '%s'\n",
4140 			prog->name, sym_sec_name);
4141 		return -LIBBPF_ERRNO__RELOC;
4142 	}
4143 	for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4144 		map = &obj->maps[map_idx];
4145 		if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4146 			continue;
4147 		pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4148 			 prog->name, map_idx, map->name, map->sec_idx,
4149 			 map->sec_offset, insn_idx);
4150 		break;
4151 	}
4152 	if (map_idx >= nr_maps) {
4153 		pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4154 			prog->name, sym_sec_name);
4155 		return -LIBBPF_ERRNO__RELOC;
4156 	}
4157 
4158 	reloc_desc->type = RELO_DATA;
4159 	reloc_desc->insn_idx = insn_idx;
4160 	reloc_desc->map_idx = map_idx;
4161 	reloc_desc->sym_off = sym->st_value;
4162 	return 0;
4163 }
4164 
4165 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4166 {
4167 	return insn_idx >= prog->sec_insn_off &&
4168 	       insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4169 }
4170 
4171 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4172 						 size_t sec_idx, size_t insn_idx)
4173 {
4174 	int l = 0, r = obj->nr_programs - 1, m;
4175 	struct bpf_program *prog;
4176 
4177 	if (!obj->nr_programs)
4178 		return NULL;
4179 
4180 	while (l < r) {
4181 		m = l + (r - l + 1) / 2;
4182 		prog = &obj->programs[m];
4183 
4184 		if (prog->sec_idx < sec_idx ||
4185 		    (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4186 			l = m;
4187 		else
4188 			r = m - 1;
4189 	}
4190 	/* matching program could be at index l, but it still might be the
4191 	 * wrong one, so we need to double check conditions for the last time
4192 	 */
4193 	prog = &obj->programs[l];
4194 	if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4195 		return prog;
4196 	return NULL;
4197 }
4198 
4199 static int
4200 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4201 {
4202 	const char *relo_sec_name, *sec_name;
4203 	size_t sec_idx = shdr->sh_info, sym_idx;
4204 	struct bpf_program *prog;
4205 	struct reloc_desc *relos;
4206 	int err, i, nrels;
4207 	const char *sym_name;
4208 	__u32 insn_idx;
4209 	Elf_Scn *scn;
4210 	Elf_Data *scn_data;
4211 	Elf64_Sym *sym;
4212 	Elf64_Rel *rel;
4213 
4214 	if (sec_idx >= obj->efile.sec_cnt)
4215 		return -EINVAL;
4216 
4217 	scn = elf_sec_by_idx(obj, sec_idx);
4218 	scn_data = elf_sec_data(obj, scn);
4219 
4220 	relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4221 	sec_name = elf_sec_name(obj, scn);
4222 	if (!relo_sec_name || !sec_name)
4223 		return -EINVAL;
4224 
4225 	pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4226 		 relo_sec_name, sec_idx, sec_name);
4227 	nrels = shdr->sh_size / shdr->sh_entsize;
4228 
4229 	for (i = 0; i < nrels; i++) {
4230 		rel = elf_rel_by_idx(data, i);
4231 		if (!rel) {
4232 			pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4233 			return -LIBBPF_ERRNO__FORMAT;
4234 		}
4235 
4236 		sym_idx = ELF64_R_SYM(rel->r_info);
4237 		sym = elf_sym_by_idx(obj, sym_idx);
4238 		if (!sym) {
4239 			pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4240 				relo_sec_name, sym_idx, i);
4241 			return -LIBBPF_ERRNO__FORMAT;
4242 		}
4243 
4244 		if (sym->st_shndx >= obj->efile.sec_cnt) {
4245 			pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4246 				relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4247 			return -LIBBPF_ERRNO__FORMAT;
4248 		}
4249 
4250 		if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4251 			pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4252 				relo_sec_name, (size_t)rel->r_offset, i);
4253 			return -LIBBPF_ERRNO__FORMAT;
4254 		}
4255 
4256 		insn_idx = rel->r_offset / BPF_INSN_SZ;
4257 		/* relocations against static functions are recorded as
4258 		 * relocations against the section that contains a function;
4259 		 * in such case, symbol will be STT_SECTION and sym.st_name
4260 		 * will point to empty string (0), so fetch section name
4261 		 * instead
4262 		 */
4263 		if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4264 			sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4265 		else
4266 			sym_name = elf_sym_str(obj, sym->st_name);
4267 		sym_name = sym_name ?: "<?";
4268 
4269 		pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4270 			 relo_sec_name, i, insn_idx, sym_name);
4271 
4272 		prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4273 		if (!prog) {
4274 			pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4275 				relo_sec_name, i, sec_name, insn_idx);
4276 			continue;
4277 		}
4278 
4279 		relos = libbpf_reallocarray(prog->reloc_desc,
4280 					    prog->nr_reloc + 1, sizeof(*relos));
4281 		if (!relos)
4282 			return -ENOMEM;
4283 		prog->reloc_desc = relos;
4284 
4285 		/* adjust insn_idx to local BPF program frame of reference */
4286 		insn_idx -= prog->sec_insn_off;
4287 		err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4288 						insn_idx, sym_name, sym, rel);
4289 		if (err)
4290 			return err;
4291 
4292 		prog->nr_reloc++;
4293 	}
4294 	return 0;
4295 }
4296 
4297 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map)
4298 {
4299 	int id;
4300 
4301 	if (!obj->btf)
4302 		return -ENOENT;
4303 
4304 	/* if it's BTF-defined map, we don't need to search for type IDs.
4305 	 * For struct_ops map, it does not need btf_key_type_id and
4306 	 * btf_value_type_id.
4307 	 */
4308 	if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4309 		return 0;
4310 
4311 	/*
4312 	 * LLVM annotates global data differently in BTF, that is,
4313 	 * only as '.data', '.bss' or '.rodata'.
4314 	 */
4315 	if (!bpf_map__is_internal(map))
4316 		return -ENOENT;
4317 
4318 	id = btf__find_by_name(obj->btf, map->real_name);
4319 	if (id < 0)
4320 		return id;
4321 
4322 	map->btf_key_type_id = 0;
4323 	map->btf_value_type_id = id;
4324 	return 0;
4325 }
4326 
4327 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4328 {
4329 	char file[PATH_MAX], buff[4096];
4330 	FILE *fp;
4331 	__u32 val;
4332 	int err;
4333 
4334 	snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4335 	memset(info, 0, sizeof(*info));
4336 
4337 	fp = fopen(file, "r");
4338 	if (!fp) {
4339 		err = -errno;
4340 		pr_warn("failed to open %s: %d. No procfs support?\n", file,
4341 			err);
4342 		return err;
4343 	}
4344 
4345 	while (fgets(buff, sizeof(buff), fp)) {
4346 		if (sscanf(buff, "map_type:\t%u", &val) == 1)
4347 			info->type = val;
4348 		else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4349 			info->key_size = val;
4350 		else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4351 			info->value_size = val;
4352 		else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4353 			info->max_entries = val;
4354 		else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4355 			info->map_flags = val;
4356 	}
4357 
4358 	fclose(fp);
4359 
4360 	return 0;
4361 }
4362 
4363 bool bpf_map__autocreate(const struct bpf_map *map)
4364 {
4365 	return map->autocreate;
4366 }
4367 
4368 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4369 {
4370 	if (map->obj->loaded)
4371 		return libbpf_err(-EBUSY);
4372 
4373 	map->autocreate = autocreate;
4374 	return 0;
4375 }
4376 
4377 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4378 {
4379 	struct bpf_map_info info;
4380 	__u32 len = sizeof(info), name_len;
4381 	int new_fd, err;
4382 	char *new_name;
4383 
4384 	memset(&info, 0, len);
4385 	err = bpf_obj_get_info_by_fd(fd, &info, &len);
4386 	if (err && errno == EINVAL)
4387 		err = bpf_get_map_info_from_fdinfo(fd, &info);
4388 	if (err)
4389 		return libbpf_err(err);
4390 
4391 	name_len = strlen(info.name);
4392 	if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4393 		new_name = strdup(map->name);
4394 	else
4395 		new_name = strdup(info.name);
4396 
4397 	if (!new_name)
4398 		return libbpf_err(-errno);
4399 
4400 	new_fd = open("/", O_RDONLY | O_CLOEXEC);
4401 	if (new_fd < 0) {
4402 		err = -errno;
4403 		goto err_free_new_name;
4404 	}
4405 
4406 	new_fd = dup3(fd, new_fd, O_CLOEXEC);
4407 	if (new_fd < 0) {
4408 		err = -errno;
4409 		goto err_close_new_fd;
4410 	}
4411 
4412 	err = zclose(map->fd);
4413 	if (err) {
4414 		err = -errno;
4415 		goto err_close_new_fd;
4416 	}
4417 	free(map->name);
4418 
4419 	map->fd = new_fd;
4420 	map->name = new_name;
4421 	map->def.type = info.type;
4422 	map->def.key_size = info.key_size;
4423 	map->def.value_size = info.value_size;
4424 	map->def.max_entries = info.max_entries;
4425 	map->def.map_flags = info.map_flags;
4426 	map->btf_key_type_id = info.btf_key_type_id;
4427 	map->btf_value_type_id = info.btf_value_type_id;
4428 	map->reused = true;
4429 	map->map_extra = info.map_extra;
4430 
4431 	return 0;
4432 
4433 err_close_new_fd:
4434 	close(new_fd);
4435 err_free_new_name:
4436 	free(new_name);
4437 	return libbpf_err(err);
4438 }
4439 
4440 __u32 bpf_map__max_entries(const struct bpf_map *map)
4441 {
4442 	return map->def.max_entries;
4443 }
4444 
4445 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4446 {
4447 	if (!bpf_map_type__is_map_in_map(map->def.type))
4448 		return errno = EINVAL, NULL;
4449 
4450 	return map->inner_map;
4451 }
4452 
4453 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4454 {
4455 	if (map->obj->loaded)
4456 		return libbpf_err(-EBUSY);
4457 
4458 	map->def.max_entries = max_entries;
4459 
4460 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4461 	if (map_is_ringbuf(map))
4462 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4463 
4464 	return 0;
4465 }
4466 
4467 static int
4468 bpf_object__probe_loading(struct bpf_object *obj)
4469 {
4470 	char *cp, errmsg[STRERR_BUFSIZE];
4471 	struct bpf_insn insns[] = {
4472 		BPF_MOV64_IMM(BPF_REG_0, 0),
4473 		BPF_EXIT_INSN(),
4474 	};
4475 	int ret, insn_cnt = ARRAY_SIZE(insns);
4476 
4477 	if (obj->gen_loader)
4478 		return 0;
4479 
4480 	ret = bump_rlimit_memlock();
4481 	if (ret)
4482 		pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4483 
4484 	/* make sure basic loading works */
4485 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4486 	if (ret < 0)
4487 		ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4488 	if (ret < 0) {
4489 		ret = errno;
4490 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4491 		pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4492 			"program. Make sure your kernel supports BPF "
4493 			"(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4494 			"set to big enough value.\n", __func__, cp, ret);
4495 		return -ret;
4496 	}
4497 	close(ret);
4498 
4499 	return 0;
4500 }
4501 
4502 static int probe_fd(int fd)
4503 {
4504 	if (fd >= 0)
4505 		close(fd);
4506 	return fd >= 0;
4507 }
4508 
4509 static int probe_kern_prog_name(void)
4510 {
4511 	const size_t attr_sz = offsetofend(union bpf_attr, prog_name);
4512 	struct bpf_insn insns[] = {
4513 		BPF_MOV64_IMM(BPF_REG_0, 0),
4514 		BPF_EXIT_INSN(),
4515 	};
4516 	union bpf_attr attr;
4517 	int ret;
4518 
4519 	memset(&attr, 0, attr_sz);
4520 	attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4521 	attr.license = ptr_to_u64("GPL");
4522 	attr.insns = ptr_to_u64(insns);
4523 	attr.insn_cnt = (__u32)ARRAY_SIZE(insns);
4524 	libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name));
4525 
4526 	/* make sure loading with name works */
4527 	ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS);
4528 	return probe_fd(ret);
4529 }
4530 
4531 static int probe_kern_global_data(void)
4532 {
4533 	char *cp, errmsg[STRERR_BUFSIZE];
4534 	struct bpf_insn insns[] = {
4535 		BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
4536 		BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
4537 		BPF_MOV64_IMM(BPF_REG_0, 0),
4538 		BPF_EXIT_INSN(),
4539 	};
4540 	int ret, map, insn_cnt = ARRAY_SIZE(insns);
4541 
4542 	map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL);
4543 	if (map < 0) {
4544 		ret = -errno;
4545 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4546 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4547 			__func__, cp, -ret);
4548 		return ret;
4549 	}
4550 
4551 	insns[0].imm = map;
4552 
4553 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4554 	close(map);
4555 	return probe_fd(ret);
4556 }
4557 
4558 static int probe_kern_btf(void)
4559 {
4560 	static const char strs[] = "\0int";
4561 	__u32 types[] = {
4562 		/* int */
4563 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4564 	};
4565 
4566 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4567 					     strs, sizeof(strs)));
4568 }
4569 
4570 static int probe_kern_btf_func(void)
4571 {
4572 	static const char strs[] = "\0int\0x\0a";
4573 	/* void x(int a) {} */
4574 	__u32 types[] = {
4575 		/* int */
4576 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4577 		/* FUNC_PROTO */                                /* [2] */
4578 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4579 		BTF_PARAM_ENC(7, 1),
4580 		/* FUNC x */                                    /* [3] */
4581 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
4582 	};
4583 
4584 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4585 					     strs, sizeof(strs)));
4586 }
4587 
4588 static int probe_kern_btf_func_global(void)
4589 {
4590 	static const char strs[] = "\0int\0x\0a";
4591 	/* static void x(int a) {} */
4592 	__u32 types[] = {
4593 		/* int */
4594 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4595 		/* FUNC_PROTO */                                /* [2] */
4596 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4597 		BTF_PARAM_ENC(7, 1),
4598 		/* FUNC x BTF_FUNC_GLOBAL */                    /* [3] */
4599 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
4600 	};
4601 
4602 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4603 					     strs, sizeof(strs)));
4604 }
4605 
4606 static int probe_kern_btf_datasec(void)
4607 {
4608 	static const char strs[] = "\0x\0.data";
4609 	/* static int a; */
4610 	__u32 types[] = {
4611 		/* int */
4612 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4613 		/* VAR x */                                     /* [2] */
4614 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4615 		BTF_VAR_STATIC,
4616 		/* DATASEC val */                               /* [3] */
4617 		BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
4618 		BTF_VAR_SECINFO_ENC(2, 0, 4),
4619 	};
4620 
4621 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4622 					     strs, sizeof(strs)));
4623 }
4624 
4625 static int probe_kern_btf_float(void)
4626 {
4627 	static const char strs[] = "\0float";
4628 	__u32 types[] = {
4629 		/* float */
4630 		BTF_TYPE_FLOAT_ENC(1, 4),
4631 	};
4632 
4633 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4634 					     strs, sizeof(strs)));
4635 }
4636 
4637 static int probe_kern_btf_decl_tag(void)
4638 {
4639 	static const char strs[] = "\0tag";
4640 	__u32 types[] = {
4641 		/* int */
4642 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4643 		/* VAR x */                                     /* [2] */
4644 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4645 		BTF_VAR_STATIC,
4646 		/* attr */
4647 		BTF_TYPE_DECL_TAG_ENC(1, 2, -1),
4648 	};
4649 
4650 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4651 					     strs, sizeof(strs)));
4652 }
4653 
4654 static int probe_kern_btf_type_tag(void)
4655 {
4656 	static const char strs[] = "\0tag";
4657 	__u32 types[] = {
4658 		/* int */
4659 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),		/* [1] */
4660 		/* attr */
4661 		BTF_TYPE_TYPE_TAG_ENC(1, 1),				/* [2] */
4662 		/* ptr */
4663 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2),	/* [3] */
4664 	};
4665 
4666 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4667 					     strs, sizeof(strs)));
4668 }
4669 
4670 static int probe_kern_array_mmap(void)
4671 {
4672 	LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE);
4673 	int fd;
4674 
4675 	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts);
4676 	return probe_fd(fd);
4677 }
4678 
4679 static int probe_kern_exp_attach_type(void)
4680 {
4681 	LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE);
4682 	struct bpf_insn insns[] = {
4683 		BPF_MOV64_IMM(BPF_REG_0, 0),
4684 		BPF_EXIT_INSN(),
4685 	};
4686 	int fd, insn_cnt = ARRAY_SIZE(insns);
4687 
4688 	/* use any valid combination of program type and (optional)
4689 	 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
4690 	 * to see if kernel supports expected_attach_type field for
4691 	 * BPF_PROG_LOAD command
4692 	 */
4693 	fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts);
4694 	return probe_fd(fd);
4695 }
4696 
4697 static int probe_kern_probe_read_kernel(void)
4698 {
4699 	struct bpf_insn insns[] = {
4700 		BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),	/* r1 = r10 (fp) */
4701 		BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),	/* r1 += -8 */
4702 		BPF_MOV64_IMM(BPF_REG_2, 8),		/* r2 = 8 */
4703 		BPF_MOV64_IMM(BPF_REG_3, 0),		/* r3 = 0 */
4704 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
4705 		BPF_EXIT_INSN(),
4706 	};
4707 	int fd, insn_cnt = ARRAY_SIZE(insns);
4708 
4709 	fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4710 	return probe_fd(fd);
4711 }
4712 
4713 static int probe_prog_bind_map(void)
4714 {
4715 	char *cp, errmsg[STRERR_BUFSIZE];
4716 	struct bpf_insn insns[] = {
4717 		BPF_MOV64_IMM(BPF_REG_0, 0),
4718 		BPF_EXIT_INSN(),
4719 	};
4720 	int ret, map, prog, insn_cnt = ARRAY_SIZE(insns);
4721 
4722 	map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL);
4723 	if (map < 0) {
4724 		ret = -errno;
4725 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4726 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4727 			__func__, cp, -ret);
4728 		return ret;
4729 	}
4730 
4731 	prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4732 	if (prog < 0) {
4733 		close(map);
4734 		return 0;
4735 	}
4736 
4737 	ret = bpf_prog_bind_map(prog, map, NULL);
4738 
4739 	close(map);
4740 	close(prog);
4741 
4742 	return ret >= 0;
4743 }
4744 
4745 static int probe_module_btf(void)
4746 {
4747 	static const char strs[] = "\0int";
4748 	__u32 types[] = {
4749 		/* int */
4750 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4751 	};
4752 	struct bpf_btf_info info;
4753 	__u32 len = sizeof(info);
4754 	char name[16];
4755 	int fd, err;
4756 
4757 	fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4758 	if (fd < 0)
4759 		return 0; /* BTF not supported at all */
4760 
4761 	memset(&info, 0, sizeof(info));
4762 	info.name = ptr_to_u64(name);
4763 	info.name_len = sizeof(name);
4764 
4765 	/* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4766 	 * kernel's module BTF support coincides with support for
4767 	 * name/name_len fields in struct bpf_btf_info.
4768 	 */
4769 	err = bpf_obj_get_info_by_fd(fd, &info, &len);
4770 	close(fd);
4771 	return !err;
4772 }
4773 
4774 static int probe_perf_link(void)
4775 {
4776 	struct bpf_insn insns[] = {
4777 		BPF_MOV64_IMM(BPF_REG_0, 0),
4778 		BPF_EXIT_INSN(),
4779 	};
4780 	int prog_fd, link_fd, err;
4781 
4782 	prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL",
4783 				insns, ARRAY_SIZE(insns), NULL);
4784 	if (prog_fd < 0)
4785 		return -errno;
4786 
4787 	/* use invalid perf_event FD to get EBADF, if link is supported;
4788 	 * otherwise EINVAL should be returned
4789 	 */
4790 	link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL);
4791 	err = -errno; /* close() can clobber errno */
4792 
4793 	if (link_fd >= 0)
4794 		close(link_fd);
4795 	close(prog_fd);
4796 
4797 	return link_fd < 0 && err == -EBADF;
4798 }
4799 
4800 static int probe_kern_bpf_cookie(void)
4801 {
4802 	struct bpf_insn insns[] = {
4803 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie),
4804 		BPF_EXIT_INSN(),
4805 	};
4806 	int ret, insn_cnt = ARRAY_SIZE(insns);
4807 
4808 	ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL);
4809 	return probe_fd(ret);
4810 }
4811 
4812 static int probe_kern_btf_enum64(void)
4813 {
4814 	static const char strs[] = "\0enum64";
4815 	__u32 types[] = {
4816 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8),
4817 	};
4818 
4819 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4820 					     strs, sizeof(strs)));
4821 }
4822 
4823 static int probe_kern_syscall_wrapper(void);
4824 
4825 enum kern_feature_result {
4826 	FEAT_UNKNOWN = 0,
4827 	FEAT_SUPPORTED = 1,
4828 	FEAT_MISSING = 2,
4829 };
4830 
4831 typedef int (*feature_probe_fn)(void);
4832 
4833 static struct kern_feature_desc {
4834 	const char *desc;
4835 	feature_probe_fn probe;
4836 	enum kern_feature_result res;
4837 } feature_probes[__FEAT_CNT] = {
4838 	[FEAT_PROG_NAME] = {
4839 		"BPF program name", probe_kern_prog_name,
4840 	},
4841 	[FEAT_GLOBAL_DATA] = {
4842 		"global variables", probe_kern_global_data,
4843 	},
4844 	[FEAT_BTF] = {
4845 		"minimal BTF", probe_kern_btf,
4846 	},
4847 	[FEAT_BTF_FUNC] = {
4848 		"BTF functions", probe_kern_btf_func,
4849 	},
4850 	[FEAT_BTF_GLOBAL_FUNC] = {
4851 		"BTF global function", probe_kern_btf_func_global,
4852 	},
4853 	[FEAT_BTF_DATASEC] = {
4854 		"BTF data section and variable", probe_kern_btf_datasec,
4855 	},
4856 	[FEAT_ARRAY_MMAP] = {
4857 		"ARRAY map mmap()", probe_kern_array_mmap,
4858 	},
4859 	[FEAT_EXP_ATTACH_TYPE] = {
4860 		"BPF_PROG_LOAD expected_attach_type attribute",
4861 		probe_kern_exp_attach_type,
4862 	},
4863 	[FEAT_PROBE_READ_KERN] = {
4864 		"bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4865 	},
4866 	[FEAT_PROG_BIND_MAP] = {
4867 		"BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4868 	},
4869 	[FEAT_MODULE_BTF] = {
4870 		"module BTF support", probe_module_btf,
4871 	},
4872 	[FEAT_BTF_FLOAT] = {
4873 		"BTF_KIND_FLOAT support", probe_kern_btf_float,
4874 	},
4875 	[FEAT_PERF_LINK] = {
4876 		"BPF perf link support", probe_perf_link,
4877 	},
4878 	[FEAT_BTF_DECL_TAG] = {
4879 		"BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag,
4880 	},
4881 	[FEAT_BTF_TYPE_TAG] = {
4882 		"BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag,
4883 	},
4884 	[FEAT_MEMCG_ACCOUNT] = {
4885 		"memcg-based memory accounting", probe_memcg_account,
4886 	},
4887 	[FEAT_BPF_COOKIE] = {
4888 		"BPF cookie support", probe_kern_bpf_cookie,
4889 	},
4890 	[FEAT_BTF_ENUM64] = {
4891 		"BTF_KIND_ENUM64 support", probe_kern_btf_enum64,
4892 	},
4893 	[FEAT_SYSCALL_WRAPPER] = {
4894 		"Kernel using syscall wrapper", probe_kern_syscall_wrapper,
4895 	},
4896 };
4897 
4898 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
4899 {
4900 	struct kern_feature_desc *feat = &feature_probes[feat_id];
4901 	int ret;
4902 
4903 	if (obj && obj->gen_loader)
4904 		/* To generate loader program assume the latest kernel
4905 		 * to avoid doing extra prog_load, map_create syscalls.
4906 		 */
4907 		return true;
4908 
4909 	if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4910 		ret = feat->probe();
4911 		if (ret > 0) {
4912 			WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4913 		} else if (ret == 0) {
4914 			WRITE_ONCE(feat->res, FEAT_MISSING);
4915 		} else {
4916 			pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4917 			WRITE_ONCE(feat->res, FEAT_MISSING);
4918 		}
4919 	}
4920 
4921 	return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4922 }
4923 
4924 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4925 {
4926 	struct bpf_map_info map_info;
4927 	char msg[STRERR_BUFSIZE];
4928 	__u32 map_info_len = sizeof(map_info);
4929 	int err;
4930 
4931 	memset(&map_info, 0, map_info_len);
4932 	err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len);
4933 	if (err && errno == EINVAL)
4934 		err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
4935 	if (err) {
4936 		pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
4937 			libbpf_strerror_r(errno, msg, sizeof(msg)));
4938 		return false;
4939 	}
4940 
4941 	return (map_info.type == map->def.type &&
4942 		map_info.key_size == map->def.key_size &&
4943 		map_info.value_size == map->def.value_size &&
4944 		map_info.max_entries == map->def.max_entries &&
4945 		map_info.map_flags == map->def.map_flags &&
4946 		map_info.map_extra == map->map_extra);
4947 }
4948 
4949 static int
4950 bpf_object__reuse_map(struct bpf_map *map)
4951 {
4952 	char *cp, errmsg[STRERR_BUFSIZE];
4953 	int err, pin_fd;
4954 
4955 	pin_fd = bpf_obj_get(map->pin_path);
4956 	if (pin_fd < 0) {
4957 		err = -errno;
4958 		if (err == -ENOENT) {
4959 			pr_debug("found no pinned map to reuse at '%s'\n",
4960 				 map->pin_path);
4961 			return 0;
4962 		}
4963 
4964 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
4965 		pr_warn("couldn't retrieve pinned map '%s': %s\n",
4966 			map->pin_path, cp);
4967 		return err;
4968 	}
4969 
4970 	if (!map_is_reuse_compat(map, pin_fd)) {
4971 		pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
4972 			map->pin_path);
4973 		close(pin_fd);
4974 		return -EINVAL;
4975 	}
4976 
4977 	err = bpf_map__reuse_fd(map, pin_fd);
4978 	close(pin_fd);
4979 	if (err)
4980 		return err;
4981 
4982 	map->pinned = true;
4983 	pr_debug("reused pinned map at '%s'\n", map->pin_path);
4984 
4985 	return 0;
4986 }
4987 
4988 static int
4989 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
4990 {
4991 	enum libbpf_map_type map_type = map->libbpf_type;
4992 	char *cp, errmsg[STRERR_BUFSIZE];
4993 	int err, zero = 0;
4994 
4995 	if (obj->gen_loader) {
4996 		bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
4997 					 map->mmaped, map->def.value_size);
4998 		if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
4999 			bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
5000 		return 0;
5001 	}
5002 	err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
5003 	if (err) {
5004 		err = -errno;
5005 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5006 		pr_warn("Error setting initial map(%s) contents: %s\n",
5007 			map->name, cp);
5008 		return err;
5009 	}
5010 
5011 	/* Freeze .rodata and .kconfig map as read-only from syscall side. */
5012 	if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
5013 		err = bpf_map_freeze(map->fd);
5014 		if (err) {
5015 			err = -errno;
5016 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5017 			pr_warn("Error freezing map(%s) as read-only: %s\n",
5018 				map->name, cp);
5019 			return err;
5020 		}
5021 	}
5022 	return 0;
5023 }
5024 
5025 static void bpf_map__destroy(struct bpf_map *map);
5026 
5027 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
5028 {
5029 	LIBBPF_OPTS(bpf_map_create_opts, create_attr);
5030 	struct bpf_map_def *def = &map->def;
5031 	const char *map_name = NULL;
5032 	int err = 0;
5033 
5034 	if (kernel_supports(obj, FEAT_PROG_NAME))
5035 		map_name = map->name;
5036 	create_attr.map_ifindex = map->map_ifindex;
5037 	create_attr.map_flags = def->map_flags;
5038 	create_attr.numa_node = map->numa_node;
5039 	create_attr.map_extra = map->map_extra;
5040 
5041 	if (bpf_map__is_struct_ops(map))
5042 		create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5043 
5044 	if (obj->btf && btf__fd(obj->btf) >= 0) {
5045 		create_attr.btf_fd = btf__fd(obj->btf);
5046 		create_attr.btf_key_type_id = map->btf_key_type_id;
5047 		create_attr.btf_value_type_id = map->btf_value_type_id;
5048 	}
5049 
5050 	if (bpf_map_type__is_map_in_map(def->type)) {
5051 		if (map->inner_map) {
5052 			err = bpf_object__create_map(obj, map->inner_map, true);
5053 			if (err) {
5054 				pr_warn("map '%s': failed to create inner map: %d\n",
5055 					map->name, err);
5056 				return err;
5057 			}
5058 			map->inner_map_fd = bpf_map__fd(map->inner_map);
5059 		}
5060 		if (map->inner_map_fd >= 0)
5061 			create_attr.inner_map_fd = map->inner_map_fd;
5062 	}
5063 
5064 	switch (def->type) {
5065 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5066 	case BPF_MAP_TYPE_CGROUP_ARRAY:
5067 	case BPF_MAP_TYPE_STACK_TRACE:
5068 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5069 	case BPF_MAP_TYPE_HASH_OF_MAPS:
5070 	case BPF_MAP_TYPE_DEVMAP:
5071 	case BPF_MAP_TYPE_DEVMAP_HASH:
5072 	case BPF_MAP_TYPE_CPUMAP:
5073 	case BPF_MAP_TYPE_XSKMAP:
5074 	case BPF_MAP_TYPE_SOCKMAP:
5075 	case BPF_MAP_TYPE_SOCKHASH:
5076 	case BPF_MAP_TYPE_QUEUE:
5077 	case BPF_MAP_TYPE_STACK:
5078 		create_attr.btf_fd = 0;
5079 		create_attr.btf_key_type_id = 0;
5080 		create_attr.btf_value_type_id = 0;
5081 		map->btf_key_type_id = 0;
5082 		map->btf_value_type_id = 0;
5083 	default:
5084 		break;
5085 	}
5086 
5087 	if (obj->gen_loader) {
5088 		bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5089 				    def->key_size, def->value_size, def->max_entries,
5090 				    &create_attr, is_inner ? -1 : map - obj->maps);
5091 		/* Pretend to have valid FD to pass various fd >= 0 checks.
5092 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
5093 		 */
5094 		map->fd = 0;
5095 	} else {
5096 		map->fd = bpf_map_create(def->type, map_name,
5097 					 def->key_size, def->value_size,
5098 					 def->max_entries, &create_attr);
5099 	}
5100 	if (map->fd < 0 && (create_attr.btf_key_type_id ||
5101 			    create_attr.btf_value_type_id)) {
5102 		char *cp, errmsg[STRERR_BUFSIZE];
5103 
5104 		err = -errno;
5105 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5106 		pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
5107 			map->name, cp, err);
5108 		create_attr.btf_fd = 0;
5109 		create_attr.btf_key_type_id = 0;
5110 		create_attr.btf_value_type_id = 0;
5111 		map->btf_key_type_id = 0;
5112 		map->btf_value_type_id = 0;
5113 		map->fd = bpf_map_create(def->type, map_name,
5114 					 def->key_size, def->value_size,
5115 					 def->max_entries, &create_attr);
5116 	}
5117 
5118 	err = map->fd < 0 ? -errno : 0;
5119 
5120 	if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5121 		if (obj->gen_loader)
5122 			map->inner_map->fd = -1;
5123 		bpf_map__destroy(map->inner_map);
5124 		zfree(&map->inner_map);
5125 	}
5126 
5127 	return err;
5128 }
5129 
5130 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5131 {
5132 	const struct bpf_map *targ_map;
5133 	unsigned int i;
5134 	int fd, err = 0;
5135 
5136 	for (i = 0; i < map->init_slots_sz; i++) {
5137 		if (!map->init_slots[i])
5138 			continue;
5139 
5140 		targ_map = map->init_slots[i];
5141 		fd = bpf_map__fd(targ_map);
5142 
5143 		if (obj->gen_loader) {
5144 			bpf_gen__populate_outer_map(obj->gen_loader,
5145 						    map - obj->maps, i,
5146 						    targ_map - obj->maps);
5147 		} else {
5148 			err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5149 		}
5150 		if (err) {
5151 			err = -errno;
5152 			pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5153 				map->name, i, targ_map->name, fd, err);
5154 			return err;
5155 		}
5156 		pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5157 			 map->name, i, targ_map->name, fd);
5158 	}
5159 
5160 	zfree(&map->init_slots);
5161 	map->init_slots_sz = 0;
5162 
5163 	return 0;
5164 }
5165 
5166 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5167 {
5168 	const struct bpf_program *targ_prog;
5169 	unsigned int i;
5170 	int fd, err;
5171 
5172 	if (obj->gen_loader)
5173 		return -ENOTSUP;
5174 
5175 	for (i = 0; i < map->init_slots_sz; i++) {
5176 		if (!map->init_slots[i])
5177 			continue;
5178 
5179 		targ_prog = map->init_slots[i];
5180 		fd = bpf_program__fd(targ_prog);
5181 
5182 		err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5183 		if (err) {
5184 			err = -errno;
5185 			pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5186 				map->name, i, targ_prog->name, fd, err);
5187 			return err;
5188 		}
5189 		pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5190 			 map->name, i, targ_prog->name, fd);
5191 	}
5192 
5193 	zfree(&map->init_slots);
5194 	map->init_slots_sz = 0;
5195 
5196 	return 0;
5197 }
5198 
5199 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5200 {
5201 	struct bpf_map *map;
5202 	int i, err;
5203 
5204 	for (i = 0; i < obj->nr_maps; i++) {
5205 		map = &obj->maps[i];
5206 
5207 		if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5208 			continue;
5209 
5210 		err = init_prog_array_slots(obj, map);
5211 		if (err < 0) {
5212 			zclose(map->fd);
5213 			return err;
5214 		}
5215 	}
5216 	return 0;
5217 }
5218 
5219 static int map_set_def_max_entries(struct bpf_map *map)
5220 {
5221 	if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5222 		int nr_cpus;
5223 
5224 		nr_cpus = libbpf_num_possible_cpus();
5225 		if (nr_cpus < 0) {
5226 			pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5227 				map->name, nr_cpus);
5228 			return nr_cpus;
5229 		}
5230 		pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5231 		map->def.max_entries = nr_cpus;
5232 	}
5233 
5234 	return 0;
5235 }
5236 
5237 static int
5238 bpf_object__create_maps(struct bpf_object *obj)
5239 {
5240 	struct bpf_map *map;
5241 	char *cp, errmsg[STRERR_BUFSIZE];
5242 	unsigned int i, j;
5243 	int err;
5244 	bool retried;
5245 
5246 	for (i = 0; i < obj->nr_maps; i++) {
5247 		map = &obj->maps[i];
5248 
5249 		/* To support old kernels, we skip creating global data maps
5250 		 * (.rodata, .data, .kconfig, etc); later on, during program
5251 		 * loading, if we detect that at least one of the to-be-loaded
5252 		 * programs is referencing any global data map, we'll error
5253 		 * out with program name and relocation index logged.
5254 		 * This approach allows to accommodate Clang emitting
5255 		 * unnecessary .rodata.str1.1 sections for string literals,
5256 		 * but also it allows to have CO-RE applications that use
5257 		 * global variables in some of BPF programs, but not others.
5258 		 * If those global variable-using programs are not loaded at
5259 		 * runtime due to bpf_program__set_autoload(prog, false),
5260 		 * bpf_object loading will succeed just fine even on old
5261 		 * kernels.
5262 		 */
5263 		if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5264 			map->autocreate = false;
5265 
5266 		if (!map->autocreate) {
5267 			pr_debug("map '%s': skipped auto-creating...\n", map->name);
5268 			continue;
5269 		}
5270 
5271 		err = map_set_def_max_entries(map);
5272 		if (err)
5273 			goto err_out;
5274 
5275 		retried = false;
5276 retry:
5277 		if (map->pin_path) {
5278 			err = bpf_object__reuse_map(map);
5279 			if (err) {
5280 				pr_warn("map '%s': error reusing pinned map\n",
5281 					map->name);
5282 				goto err_out;
5283 			}
5284 			if (retried && map->fd < 0) {
5285 				pr_warn("map '%s': cannot find pinned map\n",
5286 					map->name);
5287 				err = -ENOENT;
5288 				goto err_out;
5289 			}
5290 		}
5291 
5292 		if (map->fd >= 0) {
5293 			pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5294 				 map->name, map->fd);
5295 		} else {
5296 			err = bpf_object__create_map(obj, map, false);
5297 			if (err)
5298 				goto err_out;
5299 
5300 			pr_debug("map '%s': created successfully, fd=%d\n",
5301 				 map->name, map->fd);
5302 
5303 			if (bpf_map__is_internal(map)) {
5304 				err = bpf_object__populate_internal_map(obj, map);
5305 				if (err < 0) {
5306 					zclose(map->fd);
5307 					goto err_out;
5308 				}
5309 			}
5310 
5311 			if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5312 				err = init_map_in_map_slots(obj, map);
5313 				if (err < 0) {
5314 					zclose(map->fd);
5315 					goto err_out;
5316 				}
5317 			}
5318 		}
5319 
5320 		if (map->pin_path && !map->pinned) {
5321 			err = bpf_map__pin(map, NULL);
5322 			if (err) {
5323 				zclose(map->fd);
5324 				if (!retried && err == -EEXIST) {
5325 					retried = true;
5326 					goto retry;
5327 				}
5328 				pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5329 					map->name, map->pin_path, err);
5330 				goto err_out;
5331 			}
5332 		}
5333 	}
5334 
5335 	return 0;
5336 
5337 err_out:
5338 	cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5339 	pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5340 	pr_perm_msg(err);
5341 	for (j = 0; j < i; j++)
5342 		zclose(obj->maps[j].fd);
5343 	return err;
5344 }
5345 
5346 static bool bpf_core_is_flavor_sep(const char *s)
5347 {
5348 	/* check X___Y name pattern, where X and Y are not underscores */
5349 	return s[0] != '_' &&				      /* X */
5350 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
5351 	       s[4] != '_';				      /* Y */
5352 }
5353 
5354 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5355  * before last triple underscore. Struct name part after last triple
5356  * underscore is ignored by BPF CO-RE relocation during relocation matching.
5357  */
5358 size_t bpf_core_essential_name_len(const char *name)
5359 {
5360 	size_t n = strlen(name);
5361 	int i;
5362 
5363 	for (i = n - 5; i >= 0; i--) {
5364 		if (bpf_core_is_flavor_sep(name + i))
5365 			return i + 1;
5366 	}
5367 	return n;
5368 }
5369 
5370 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5371 {
5372 	if (!cands)
5373 		return;
5374 
5375 	free(cands->cands);
5376 	free(cands);
5377 }
5378 
5379 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5380 		       size_t local_essent_len,
5381 		       const struct btf *targ_btf,
5382 		       const char *targ_btf_name,
5383 		       int targ_start_id,
5384 		       struct bpf_core_cand_list *cands)
5385 {
5386 	struct bpf_core_cand *new_cands, *cand;
5387 	const struct btf_type *t, *local_t;
5388 	const char *targ_name, *local_name;
5389 	size_t targ_essent_len;
5390 	int n, i;
5391 
5392 	local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5393 	local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5394 
5395 	n = btf__type_cnt(targ_btf);
5396 	for (i = targ_start_id; i < n; i++) {
5397 		t = btf__type_by_id(targ_btf, i);
5398 		if (!btf_kind_core_compat(t, local_t))
5399 			continue;
5400 
5401 		targ_name = btf__name_by_offset(targ_btf, t->name_off);
5402 		if (str_is_empty(targ_name))
5403 			continue;
5404 
5405 		targ_essent_len = bpf_core_essential_name_len(targ_name);
5406 		if (targ_essent_len != local_essent_len)
5407 			continue;
5408 
5409 		if (strncmp(local_name, targ_name, local_essent_len) != 0)
5410 			continue;
5411 
5412 		pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5413 			 local_cand->id, btf_kind_str(local_t),
5414 			 local_name, i, btf_kind_str(t), targ_name,
5415 			 targ_btf_name);
5416 		new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5417 					      sizeof(*cands->cands));
5418 		if (!new_cands)
5419 			return -ENOMEM;
5420 
5421 		cand = &new_cands[cands->len];
5422 		cand->btf = targ_btf;
5423 		cand->id = i;
5424 
5425 		cands->cands = new_cands;
5426 		cands->len++;
5427 	}
5428 	return 0;
5429 }
5430 
5431 static int load_module_btfs(struct bpf_object *obj)
5432 {
5433 	struct bpf_btf_info info;
5434 	struct module_btf *mod_btf;
5435 	struct btf *btf;
5436 	char name[64];
5437 	__u32 id = 0, len;
5438 	int err, fd;
5439 
5440 	if (obj->btf_modules_loaded)
5441 		return 0;
5442 
5443 	if (obj->gen_loader)
5444 		return 0;
5445 
5446 	/* don't do this again, even if we find no module BTFs */
5447 	obj->btf_modules_loaded = true;
5448 
5449 	/* kernel too old to support module BTFs */
5450 	if (!kernel_supports(obj, FEAT_MODULE_BTF))
5451 		return 0;
5452 
5453 	while (true) {
5454 		err = bpf_btf_get_next_id(id, &id);
5455 		if (err && errno == ENOENT)
5456 			return 0;
5457 		if (err) {
5458 			err = -errno;
5459 			pr_warn("failed to iterate BTF objects: %d\n", err);
5460 			return err;
5461 		}
5462 
5463 		fd = bpf_btf_get_fd_by_id(id);
5464 		if (fd < 0) {
5465 			if (errno == ENOENT)
5466 				continue; /* expected race: BTF was unloaded */
5467 			err = -errno;
5468 			pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5469 			return err;
5470 		}
5471 
5472 		len = sizeof(info);
5473 		memset(&info, 0, sizeof(info));
5474 		info.name = ptr_to_u64(name);
5475 		info.name_len = sizeof(name);
5476 
5477 		err = bpf_obj_get_info_by_fd(fd, &info, &len);
5478 		if (err) {
5479 			err = -errno;
5480 			pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5481 			goto err_out;
5482 		}
5483 
5484 		/* ignore non-module BTFs */
5485 		if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5486 			close(fd);
5487 			continue;
5488 		}
5489 
5490 		btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5491 		err = libbpf_get_error(btf);
5492 		if (err) {
5493 			pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5494 				name, id, err);
5495 			goto err_out;
5496 		}
5497 
5498 		err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5499 					sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5500 		if (err)
5501 			goto err_out;
5502 
5503 		mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5504 
5505 		mod_btf->btf = btf;
5506 		mod_btf->id = id;
5507 		mod_btf->fd = fd;
5508 		mod_btf->name = strdup(name);
5509 		if (!mod_btf->name) {
5510 			err = -ENOMEM;
5511 			goto err_out;
5512 		}
5513 		continue;
5514 
5515 err_out:
5516 		close(fd);
5517 		return err;
5518 	}
5519 
5520 	return 0;
5521 }
5522 
5523 static struct bpf_core_cand_list *
5524 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5525 {
5526 	struct bpf_core_cand local_cand = {};
5527 	struct bpf_core_cand_list *cands;
5528 	const struct btf *main_btf;
5529 	const struct btf_type *local_t;
5530 	const char *local_name;
5531 	size_t local_essent_len;
5532 	int err, i;
5533 
5534 	local_cand.btf = local_btf;
5535 	local_cand.id = local_type_id;
5536 	local_t = btf__type_by_id(local_btf, local_type_id);
5537 	if (!local_t)
5538 		return ERR_PTR(-EINVAL);
5539 
5540 	local_name = btf__name_by_offset(local_btf, local_t->name_off);
5541 	if (str_is_empty(local_name))
5542 		return ERR_PTR(-EINVAL);
5543 	local_essent_len = bpf_core_essential_name_len(local_name);
5544 
5545 	cands = calloc(1, sizeof(*cands));
5546 	if (!cands)
5547 		return ERR_PTR(-ENOMEM);
5548 
5549 	/* Attempt to find target candidates in vmlinux BTF first */
5550 	main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5551 	err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5552 	if (err)
5553 		goto err_out;
5554 
5555 	/* if vmlinux BTF has any candidate, don't got for module BTFs */
5556 	if (cands->len)
5557 		return cands;
5558 
5559 	/* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5560 	if (obj->btf_vmlinux_override)
5561 		return cands;
5562 
5563 	/* now look through module BTFs, trying to still find candidates */
5564 	err = load_module_btfs(obj);
5565 	if (err)
5566 		goto err_out;
5567 
5568 	for (i = 0; i < obj->btf_module_cnt; i++) {
5569 		err = bpf_core_add_cands(&local_cand, local_essent_len,
5570 					 obj->btf_modules[i].btf,
5571 					 obj->btf_modules[i].name,
5572 					 btf__type_cnt(obj->btf_vmlinux),
5573 					 cands);
5574 		if (err)
5575 			goto err_out;
5576 	}
5577 
5578 	return cands;
5579 err_out:
5580 	bpf_core_free_cands(cands);
5581 	return ERR_PTR(err);
5582 }
5583 
5584 /* Check local and target types for compatibility. This check is used for
5585  * type-based CO-RE relocations and follow slightly different rules than
5586  * field-based relocations. This function assumes that root types were already
5587  * checked for name match. Beyond that initial root-level name check, names
5588  * are completely ignored. Compatibility rules are as follows:
5589  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5590  *     kind should match for local and target types (i.e., STRUCT is not
5591  *     compatible with UNION);
5592  *   - for ENUMs, the size is ignored;
5593  *   - for INT, size and signedness are ignored;
5594  *   - for ARRAY, dimensionality is ignored, element types are checked for
5595  *     compatibility recursively;
5596  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
5597  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5598  *   - FUNC_PROTOs are compatible if they have compatible signature: same
5599  *     number of input args and compatible return and argument types.
5600  * These rules are not set in stone and probably will be adjusted as we get
5601  * more experience with using BPF CO-RE relocations.
5602  */
5603 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5604 			      const struct btf *targ_btf, __u32 targ_id)
5605 {
5606 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5607 }
5608 
5609 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5610 			 const struct btf *targ_btf, __u32 targ_id)
5611 {
5612 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5613 }
5614 
5615 static size_t bpf_core_hash_fn(const long key, void *ctx)
5616 {
5617 	return key;
5618 }
5619 
5620 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx)
5621 {
5622 	return k1 == k2;
5623 }
5624 
5625 static int record_relo_core(struct bpf_program *prog,
5626 			    const struct bpf_core_relo *core_relo, int insn_idx)
5627 {
5628 	struct reloc_desc *relos, *relo;
5629 
5630 	relos = libbpf_reallocarray(prog->reloc_desc,
5631 				    prog->nr_reloc + 1, sizeof(*relos));
5632 	if (!relos)
5633 		return -ENOMEM;
5634 	relo = &relos[prog->nr_reloc];
5635 	relo->type = RELO_CORE;
5636 	relo->insn_idx = insn_idx;
5637 	relo->core_relo = core_relo;
5638 	prog->reloc_desc = relos;
5639 	prog->nr_reloc++;
5640 	return 0;
5641 }
5642 
5643 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5644 {
5645 	struct reloc_desc *relo;
5646 	int i;
5647 
5648 	for (i = 0; i < prog->nr_reloc; i++) {
5649 		relo = &prog->reloc_desc[i];
5650 		if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5651 			continue;
5652 
5653 		return relo->core_relo;
5654 	}
5655 
5656 	return NULL;
5657 }
5658 
5659 static int bpf_core_resolve_relo(struct bpf_program *prog,
5660 				 const struct bpf_core_relo *relo,
5661 				 int relo_idx,
5662 				 const struct btf *local_btf,
5663 				 struct hashmap *cand_cache,
5664 				 struct bpf_core_relo_res *targ_res)
5665 {
5666 	struct bpf_core_spec specs_scratch[3] = {};
5667 	struct bpf_core_cand_list *cands = NULL;
5668 	const char *prog_name = prog->name;
5669 	const struct btf_type *local_type;
5670 	const char *local_name;
5671 	__u32 local_id = relo->type_id;
5672 	int err;
5673 
5674 	local_type = btf__type_by_id(local_btf, local_id);
5675 	if (!local_type)
5676 		return -EINVAL;
5677 
5678 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
5679 	if (!local_name)
5680 		return -EINVAL;
5681 
5682 	if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5683 	    !hashmap__find(cand_cache, local_id, &cands)) {
5684 		cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5685 		if (IS_ERR(cands)) {
5686 			pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5687 				prog_name, relo_idx, local_id, btf_kind_str(local_type),
5688 				local_name, PTR_ERR(cands));
5689 			return PTR_ERR(cands);
5690 		}
5691 		err = hashmap__set(cand_cache, local_id, cands, NULL, NULL);
5692 		if (err) {
5693 			bpf_core_free_cands(cands);
5694 			return err;
5695 		}
5696 	}
5697 
5698 	return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5699 				       targ_res);
5700 }
5701 
5702 static int
5703 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5704 {
5705 	const struct btf_ext_info_sec *sec;
5706 	struct bpf_core_relo_res targ_res;
5707 	const struct bpf_core_relo *rec;
5708 	const struct btf_ext_info *seg;
5709 	struct hashmap_entry *entry;
5710 	struct hashmap *cand_cache = NULL;
5711 	struct bpf_program *prog;
5712 	struct bpf_insn *insn;
5713 	const char *sec_name;
5714 	int i, err = 0, insn_idx, sec_idx, sec_num;
5715 
5716 	if (obj->btf_ext->core_relo_info.len == 0)
5717 		return 0;
5718 
5719 	if (targ_btf_path) {
5720 		obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5721 		err = libbpf_get_error(obj->btf_vmlinux_override);
5722 		if (err) {
5723 			pr_warn("failed to parse target BTF: %d\n", err);
5724 			return err;
5725 		}
5726 	}
5727 
5728 	cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5729 	if (IS_ERR(cand_cache)) {
5730 		err = PTR_ERR(cand_cache);
5731 		goto out;
5732 	}
5733 
5734 	seg = &obj->btf_ext->core_relo_info;
5735 	sec_num = 0;
5736 	for_each_btf_ext_sec(seg, sec) {
5737 		sec_idx = seg->sec_idxs[sec_num];
5738 		sec_num++;
5739 
5740 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5741 		if (str_is_empty(sec_name)) {
5742 			err = -EINVAL;
5743 			goto out;
5744 		}
5745 
5746 		pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5747 
5748 		for_each_btf_ext_rec(seg, sec, i, rec) {
5749 			if (rec->insn_off % BPF_INSN_SZ)
5750 				return -EINVAL;
5751 			insn_idx = rec->insn_off / BPF_INSN_SZ;
5752 			prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5753 			if (!prog) {
5754 				/* When __weak subprog is "overridden" by another instance
5755 				 * of the subprog from a different object file, linker still
5756 				 * appends all the .BTF.ext info that used to belong to that
5757 				 * eliminated subprogram.
5758 				 * This is similar to what x86-64 linker does for relocations.
5759 				 * So just ignore such relocations just like we ignore
5760 				 * subprog instructions when discovering subprograms.
5761 				 */
5762 				pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5763 					 sec_name, i, insn_idx);
5764 				continue;
5765 			}
5766 			/* no need to apply CO-RE relocation if the program is
5767 			 * not going to be loaded
5768 			 */
5769 			if (!prog->autoload)
5770 				continue;
5771 
5772 			/* adjust insn_idx from section frame of reference to the local
5773 			 * program's frame of reference; (sub-)program code is not yet
5774 			 * relocated, so it's enough to just subtract in-section offset
5775 			 */
5776 			insn_idx = insn_idx - prog->sec_insn_off;
5777 			if (insn_idx >= prog->insns_cnt)
5778 				return -EINVAL;
5779 			insn = &prog->insns[insn_idx];
5780 
5781 			err = record_relo_core(prog, rec, insn_idx);
5782 			if (err) {
5783 				pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5784 					prog->name, i, err);
5785 				goto out;
5786 			}
5787 
5788 			if (prog->obj->gen_loader)
5789 				continue;
5790 
5791 			err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5792 			if (err) {
5793 				pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5794 					prog->name, i, err);
5795 				goto out;
5796 			}
5797 
5798 			err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5799 			if (err) {
5800 				pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5801 					prog->name, i, insn_idx, err);
5802 				goto out;
5803 			}
5804 		}
5805 	}
5806 
5807 out:
5808 	/* obj->btf_vmlinux and module BTFs are freed after object load */
5809 	btf__free(obj->btf_vmlinux_override);
5810 	obj->btf_vmlinux_override = NULL;
5811 
5812 	if (!IS_ERR_OR_NULL(cand_cache)) {
5813 		hashmap__for_each_entry(cand_cache, entry, i) {
5814 			bpf_core_free_cands(entry->pvalue);
5815 		}
5816 		hashmap__free(cand_cache);
5817 	}
5818 	return err;
5819 }
5820 
5821 /* base map load ldimm64 special constant, used also for log fixup logic */
5822 #define MAP_LDIMM64_POISON_BASE 2001000000
5823 #define MAP_LDIMM64_POISON_PFX "200100"
5824 
5825 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
5826 			       int insn_idx, struct bpf_insn *insn,
5827 			       int map_idx, const struct bpf_map *map)
5828 {
5829 	int i;
5830 
5831 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
5832 		 prog->name, relo_idx, insn_idx, map_idx, map->name);
5833 
5834 	/* we turn single ldimm64 into two identical invalid calls */
5835 	for (i = 0; i < 2; i++) {
5836 		insn->code = BPF_JMP | BPF_CALL;
5837 		insn->dst_reg = 0;
5838 		insn->src_reg = 0;
5839 		insn->off = 0;
5840 		/* if this instruction is reachable (not a dead code),
5841 		 * verifier will complain with something like:
5842 		 * invalid func unknown#2001000123
5843 		 * where lower 123 is map index into obj->maps[] array
5844 		 */
5845 		insn->imm = MAP_LDIMM64_POISON_BASE + map_idx;
5846 
5847 		insn++;
5848 	}
5849 }
5850 
5851 /* Relocate data references within program code:
5852  *  - map references;
5853  *  - global variable references;
5854  *  - extern references.
5855  */
5856 static int
5857 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
5858 {
5859 	int i;
5860 
5861 	for (i = 0; i < prog->nr_reloc; i++) {
5862 		struct reloc_desc *relo = &prog->reloc_desc[i];
5863 		struct bpf_insn *insn = &prog->insns[relo->insn_idx];
5864 		const struct bpf_map *map;
5865 		struct extern_desc *ext;
5866 
5867 		switch (relo->type) {
5868 		case RELO_LD64:
5869 			map = &obj->maps[relo->map_idx];
5870 			if (obj->gen_loader) {
5871 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
5872 				insn[0].imm = relo->map_idx;
5873 			} else if (map->autocreate) {
5874 				insn[0].src_reg = BPF_PSEUDO_MAP_FD;
5875 				insn[0].imm = map->fd;
5876 			} else {
5877 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5878 						   relo->map_idx, map);
5879 			}
5880 			break;
5881 		case RELO_DATA:
5882 			map = &obj->maps[relo->map_idx];
5883 			insn[1].imm = insn[0].imm + relo->sym_off;
5884 			if (obj->gen_loader) {
5885 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5886 				insn[0].imm = relo->map_idx;
5887 			} else if (map->autocreate) {
5888 				insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5889 				insn[0].imm = map->fd;
5890 			} else {
5891 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5892 						   relo->map_idx, map);
5893 			}
5894 			break;
5895 		case RELO_EXTERN_VAR:
5896 			ext = &obj->externs[relo->sym_off];
5897 			if (ext->type == EXT_KCFG) {
5898 				if (obj->gen_loader) {
5899 					insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5900 					insn[0].imm = obj->kconfig_map_idx;
5901 				} else {
5902 					insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5903 					insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
5904 				}
5905 				insn[1].imm = ext->kcfg.data_off;
5906 			} else /* EXT_KSYM */ {
5907 				if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
5908 					insn[0].src_reg = BPF_PSEUDO_BTF_ID;
5909 					insn[0].imm = ext->ksym.kernel_btf_id;
5910 					insn[1].imm = ext->ksym.kernel_btf_obj_fd;
5911 				} else { /* typeless ksyms or unresolved typed ksyms */
5912 					insn[0].imm = (__u32)ext->ksym.addr;
5913 					insn[1].imm = ext->ksym.addr >> 32;
5914 				}
5915 			}
5916 			break;
5917 		case RELO_EXTERN_FUNC:
5918 			ext = &obj->externs[relo->sym_off];
5919 			insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
5920 			if (ext->is_set) {
5921 				insn[0].imm = ext->ksym.kernel_btf_id;
5922 				insn[0].off = ext->ksym.btf_fd_idx;
5923 			} else { /* unresolved weak kfunc */
5924 				insn[0].imm = 0;
5925 				insn[0].off = 0;
5926 			}
5927 			break;
5928 		case RELO_SUBPROG_ADDR:
5929 			if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
5930 				pr_warn("prog '%s': relo #%d: bad insn\n",
5931 					prog->name, i);
5932 				return -EINVAL;
5933 			}
5934 			/* handled already */
5935 			break;
5936 		case RELO_CALL:
5937 			/* handled already */
5938 			break;
5939 		case RELO_CORE:
5940 			/* will be handled by bpf_program_record_relos() */
5941 			break;
5942 		default:
5943 			pr_warn("prog '%s': relo #%d: bad relo type %d\n",
5944 				prog->name, i, relo->type);
5945 			return -EINVAL;
5946 		}
5947 	}
5948 
5949 	return 0;
5950 }
5951 
5952 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
5953 				    const struct bpf_program *prog,
5954 				    const struct btf_ext_info *ext_info,
5955 				    void **prog_info, __u32 *prog_rec_cnt,
5956 				    __u32 *prog_rec_sz)
5957 {
5958 	void *copy_start = NULL, *copy_end = NULL;
5959 	void *rec, *rec_end, *new_prog_info;
5960 	const struct btf_ext_info_sec *sec;
5961 	size_t old_sz, new_sz;
5962 	int i, sec_num, sec_idx, off_adj;
5963 
5964 	sec_num = 0;
5965 	for_each_btf_ext_sec(ext_info, sec) {
5966 		sec_idx = ext_info->sec_idxs[sec_num];
5967 		sec_num++;
5968 		if (prog->sec_idx != sec_idx)
5969 			continue;
5970 
5971 		for_each_btf_ext_rec(ext_info, sec, i, rec) {
5972 			__u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
5973 
5974 			if (insn_off < prog->sec_insn_off)
5975 				continue;
5976 			if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
5977 				break;
5978 
5979 			if (!copy_start)
5980 				copy_start = rec;
5981 			copy_end = rec + ext_info->rec_size;
5982 		}
5983 
5984 		if (!copy_start)
5985 			return -ENOENT;
5986 
5987 		/* append func/line info of a given (sub-)program to the main
5988 		 * program func/line info
5989 		 */
5990 		old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
5991 		new_sz = old_sz + (copy_end - copy_start);
5992 		new_prog_info = realloc(*prog_info, new_sz);
5993 		if (!new_prog_info)
5994 			return -ENOMEM;
5995 		*prog_info = new_prog_info;
5996 		*prog_rec_cnt = new_sz / ext_info->rec_size;
5997 		memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
5998 
5999 		/* Kernel instruction offsets are in units of 8-byte
6000 		 * instructions, while .BTF.ext instruction offsets generated
6001 		 * by Clang are in units of bytes. So convert Clang offsets
6002 		 * into kernel offsets and adjust offset according to program
6003 		 * relocated position.
6004 		 */
6005 		off_adj = prog->sub_insn_off - prog->sec_insn_off;
6006 		rec = new_prog_info + old_sz;
6007 		rec_end = new_prog_info + new_sz;
6008 		for (; rec < rec_end; rec += ext_info->rec_size) {
6009 			__u32 *insn_off = rec;
6010 
6011 			*insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6012 		}
6013 		*prog_rec_sz = ext_info->rec_size;
6014 		return 0;
6015 	}
6016 
6017 	return -ENOENT;
6018 }
6019 
6020 static int
6021 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6022 			      struct bpf_program *main_prog,
6023 			      const struct bpf_program *prog)
6024 {
6025 	int err;
6026 
6027 	/* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6028 	 * supprot func/line info
6029 	 */
6030 	if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6031 		return 0;
6032 
6033 	/* only attempt func info relocation if main program's func_info
6034 	 * relocation was successful
6035 	 */
6036 	if (main_prog != prog && !main_prog->func_info)
6037 		goto line_info;
6038 
6039 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6040 				       &main_prog->func_info,
6041 				       &main_prog->func_info_cnt,
6042 				       &main_prog->func_info_rec_size);
6043 	if (err) {
6044 		if (err != -ENOENT) {
6045 			pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6046 				prog->name, err);
6047 			return err;
6048 		}
6049 		if (main_prog->func_info) {
6050 			/*
6051 			 * Some info has already been found but has problem
6052 			 * in the last btf_ext reloc. Must have to error out.
6053 			 */
6054 			pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6055 			return err;
6056 		}
6057 		/* Have problem loading the very first info. Ignore the rest. */
6058 		pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6059 			prog->name);
6060 	}
6061 
6062 line_info:
6063 	/* don't relocate line info if main program's relocation failed */
6064 	if (main_prog != prog && !main_prog->line_info)
6065 		return 0;
6066 
6067 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6068 				       &main_prog->line_info,
6069 				       &main_prog->line_info_cnt,
6070 				       &main_prog->line_info_rec_size);
6071 	if (err) {
6072 		if (err != -ENOENT) {
6073 			pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6074 				prog->name, err);
6075 			return err;
6076 		}
6077 		if (main_prog->line_info) {
6078 			/*
6079 			 * Some info has already been found but has problem
6080 			 * in the last btf_ext reloc. Must have to error out.
6081 			 */
6082 			pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6083 			return err;
6084 		}
6085 		/* Have problem loading the very first info. Ignore the rest. */
6086 		pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6087 			prog->name);
6088 	}
6089 	return 0;
6090 }
6091 
6092 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6093 {
6094 	size_t insn_idx = *(const size_t *)key;
6095 	const struct reloc_desc *relo = elem;
6096 
6097 	if (insn_idx == relo->insn_idx)
6098 		return 0;
6099 	return insn_idx < relo->insn_idx ? -1 : 1;
6100 }
6101 
6102 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6103 {
6104 	if (!prog->nr_reloc)
6105 		return NULL;
6106 	return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6107 		       sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6108 }
6109 
6110 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6111 {
6112 	int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6113 	struct reloc_desc *relos;
6114 	int i;
6115 
6116 	if (main_prog == subprog)
6117 		return 0;
6118 	relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6119 	if (!relos)
6120 		return -ENOMEM;
6121 	if (subprog->nr_reloc)
6122 		memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6123 		       sizeof(*relos) * subprog->nr_reloc);
6124 
6125 	for (i = main_prog->nr_reloc; i < new_cnt; i++)
6126 		relos[i].insn_idx += subprog->sub_insn_off;
6127 	/* After insn_idx adjustment the 'relos' array is still sorted
6128 	 * by insn_idx and doesn't break bsearch.
6129 	 */
6130 	main_prog->reloc_desc = relos;
6131 	main_prog->nr_reloc = new_cnt;
6132 	return 0;
6133 }
6134 
6135 static int
6136 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6137 		       struct bpf_program *prog)
6138 {
6139 	size_t sub_insn_idx, insn_idx, new_cnt;
6140 	struct bpf_program *subprog;
6141 	struct bpf_insn *insns, *insn;
6142 	struct reloc_desc *relo;
6143 	int err;
6144 
6145 	err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6146 	if (err)
6147 		return err;
6148 
6149 	for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6150 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6151 		if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6152 			continue;
6153 
6154 		relo = find_prog_insn_relo(prog, insn_idx);
6155 		if (relo && relo->type == RELO_EXTERN_FUNC)
6156 			/* kfunc relocations will be handled later
6157 			 * in bpf_object__relocate_data()
6158 			 */
6159 			continue;
6160 		if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6161 			pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6162 				prog->name, insn_idx, relo->type);
6163 			return -LIBBPF_ERRNO__RELOC;
6164 		}
6165 		if (relo) {
6166 			/* sub-program instruction index is a combination of
6167 			 * an offset of a symbol pointed to by relocation and
6168 			 * call instruction's imm field; for global functions,
6169 			 * call always has imm = -1, but for static functions
6170 			 * relocation is against STT_SECTION and insn->imm
6171 			 * points to a start of a static function
6172 			 *
6173 			 * for subprog addr relocation, the relo->sym_off + insn->imm is
6174 			 * the byte offset in the corresponding section.
6175 			 */
6176 			if (relo->type == RELO_CALL)
6177 				sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6178 			else
6179 				sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6180 		} else if (insn_is_pseudo_func(insn)) {
6181 			/*
6182 			 * RELO_SUBPROG_ADDR relo is always emitted even if both
6183 			 * functions are in the same section, so it shouldn't reach here.
6184 			 */
6185 			pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6186 				prog->name, insn_idx);
6187 			return -LIBBPF_ERRNO__RELOC;
6188 		} else {
6189 			/* if subprogram call is to a static function within
6190 			 * the same ELF section, there won't be any relocation
6191 			 * emitted, but it also means there is no additional
6192 			 * offset necessary, insns->imm is relative to
6193 			 * instruction's original position within the section
6194 			 */
6195 			sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6196 		}
6197 
6198 		/* we enforce that sub-programs should be in .text section */
6199 		subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6200 		if (!subprog) {
6201 			pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6202 				prog->name);
6203 			return -LIBBPF_ERRNO__RELOC;
6204 		}
6205 
6206 		/* if it's the first call instruction calling into this
6207 		 * subprogram (meaning this subprog hasn't been processed
6208 		 * yet) within the context of current main program:
6209 		 *   - append it at the end of main program's instructions blog;
6210 		 *   - process is recursively, while current program is put on hold;
6211 		 *   - if that subprogram calls some other not yet processes
6212 		 *   subprogram, same thing will happen recursively until
6213 		 *   there are no more unprocesses subprograms left to append
6214 		 *   and relocate.
6215 		 */
6216 		if (subprog->sub_insn_off == 0) {
6217 			subprog->sub_insn_off = main_prog->insns_cnt;
6218 
6219 			new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6220 			insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6221 			if (!insns) {
6222 				pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6223 				return -ENOMEM;
6224 			}
6225 			main_prog->insns = insns;
6226 			main_prog->insns_cnt = new_cnt;
6227 
6228 			memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6229 			       subprog->insns_cnt * sizeof(*insns));
6230 
6231 			pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6232 				 main_prog->name, subprog->insns_cnt, subprog->name);
6233 
6234 			/* The subprog insns are now appended. Append its relos too. */
6235 			err = append_subprog_relos(main_prog, subprog);
6236 			if (err)
6237 				return err;
6238 			err = bpf_object__reloc_code(obj, main_prog, subprog);
6239 			if (err)
6240 				return err;
6241 		}
6242 
6243 		/* main_prog->insns memory could have been re-allocated, so
6244 		 * calculate pointer again
6245 		 */
6246 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6247 		/* calculate correct instruction position within current main
6248 		 * prog; each main prog can have a different set of
6249 		 * subprograms appended (potentially in different order as
6250 		 * well), so position of any subprog can be different for
6251 		 * different main programs
6252 		 */
6253 		insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6254 
6255 		pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6256 			 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6257 	}
6258 
6259 	return 0;
6260 }
6261 
6262 /*
6263  * Relocate sub-program calls.
6264  *
6265  * Algorithm operates as follows. Each entry-point BPF program (referred to as
6266  * main prog) is processed separately. For each subprog (non-entry functions,
6267  * that can be called from either entry progs or other subprogs) gets their
6268  * sub_insn_off reset to zero. This serves as indicator that this subprogram
6269  * hasn't been yet appended and relocated within current main prog. Once its
6270  * relocated, sub_insn_off will point at the position within current main prog
6271  * where given subprog was appended. This will further be used to relocate all
6272  * the call instructions jumping into this subprog.
6273  *
6274  * We start with main program and process all call instructions. If the call
6275  * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6276  * is zero), subprog instructions are appended at the end of main program's
6277  * instruction array. Then main program is "put on hold" while we recursively
6278  * process newly appended subprogram. If that subprogram calls into another
6279  * subprogram that hasn't been appended, new subprogram is appended again to
6280  * the *main* prog's instructions (subprog's instructions are always left
6281  * untouched, as they need to be in unmodified state for subsequent main progs
6282  * and subprog instructions are always sent only as part of a main prog) and
6283  * the process continues recursively. Once all the subprogs called from a main
6284  * prog or any of its subprogs are appended (and relocated), all their
6285  * positions within finalized instructions array are known, so it's easy to
6286  * rewrite call instructions with correct relative offsets, corresponding to
6287  * desired target subprog.
6288  *
6289  * Its important to realize that some subprogs might not be called from some
6290  * main prog and any of its called/used subprogs. Those will keep their
6291  * subprog->sub_insn_off as zero at all times and won't be appended to current
6292  * main prog and won't be relocated within the context of current main prog.
6293  * They might still be used from other main progs later.
6294  *
6295  * Visually this process can be shown as below. Suppose we have two main
6296  * programs mainA and mainB and BPF object contains three subprogs: subA,
6297  * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6298  * subC both call subB:
6299  *
6300  *        +--------+ +-------+
6301  *        |        v v       |
6302  *     +--+---+ +--+-+-+ +---+--+
6303  *     | subA | | subB | | subC |
6304  *     +--+---+ +------+ +---+--+
6305  *        ^                  ^
6306  *        |                  |
6307  *    +---+-------+   +------+----+
6308  *    |   mainA   |   |   mainB   |
6309  *    +-----------+   +-----------+
6310  *
6311  * We'll start relocating mainA, will find subA, append it and start
6312  * processing sub A recursively:
6313  *
6314  *    +-----------+------+
6315  *    |   mainA   | subA |
6316  *    +-----------+------+
6317  *
6318  * At this point we notice that subB is used from subA, so we append it and
6319  * relocate (there are no further subcalls from subB):
6320  *
6321  *    +-----------+------+------+
6322  *    |   mainA   | subA | subB |
6323  *    +-----------+------+------+
6324  *
6325  * At this point, we relocate subA calls, then go one level up and finish with
6326  * relocatin mainA calls. mainA is done.
6327  *
6328  * For mainB process is similar but results in different order. We start with
6329  * mainB and skip subA and subB, as mainB never calls them (at least
6330  * directly), but we see subC is needed, so we append and start processing it:
6331  *
6332  *    +-----------+------+
6333  *    |   mainB   | subC |
6334  *    +-----------+------+
6335  * Now we see subC needs subB, so we go back to it, append and relocate it:
6336  *
6337  *    +-----------+------+------+
6338  *    |   mainB   | subC | subB |
6339  *    +-----------+------+------+
6340  *
6341  * At this point we unwind recursion, relocate calls in subC, then in mainB.
6342  */
6343 static int
6344 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6345 {
6346 	struct bpf_program *subprog;
6347 	int i, err;
6348 
6349 	/* mark all subprogs as not relocated (yet) within the context of
6350 	 * current main program
6351 	 */
6352 	for (i = 0; i < obj->nr_programs; i++) {
6353 		subprog = &obj->programs[i];
6354 		if (!prog_is_subprog(obj, subprog))
6355 			continue;
6356 
6357 		subprog->sub_insn_off = 0;
6358 	}
6359 
6360 	err = bpf_object__reloc_code(obj, prog, prog);
6361 	if (err)
6362 		return err;
6363 
6364 	return 0;
6365 }
6366 
6367 static void
6368 bpf_object__free_relocs(struct bpf_object *obj)
6369 {
6370 	struct bpf_program *prog;
6371 	int i;
6372 
6373 	/* free up relocation descriptors */
6374 	for (i = 0; i < obj->nr_programs; i++) {
6375 		prog = &obj->programs[i];
6376 		zfree(&prog->reloc_desc);
6377 		prog->nr_reloc = 0;
6378 	}
6379 }
6380 
6381 static int cmp_relocs(const void *_a, const void *_b)
6382 {
6383 	const struct reloc_desc *a = _a;
6384 	const struct reloc_desc *b = _b;
6385 
6386 	if (a->insn_idx != b->insn_idx)
6387 		return a->insn_idx < b->insn_idx ? -1 : 1;
6388 
6389 	/* no two relocations should have the same insn_idx, but ... */
6390 	if (a->type != b->type)
6391 		return a->type < b->type ? -1 : 1;
6392 
6393 	return 0;
6394 }
6395 
6396 static void bpf_object__sort_relos(struct bpf_object *obj)
6397 {
6398 	int i;
6399 
6400 	for (i = 0; i < obj->nr_programs; i++) {
6401 		struct bpf_program *p = &obj->programs[i];
6402 
6403 		if (!p->nr_reloc)
6404 			continue;
6405 
6406 		qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6407 	}
6408 }
6409 
6410 static int
6411 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6412 {
6413 	struct bpf_program *prog;
6414 	size_t i, j;
6415 	int err;
6416 
6417 	if (obj->btf_ext) {
6418 		err = bpf_object__relocate_core(obj, targ_btf_path);
6419 		if (err) {
6420 			pr_warn("failed to perform CO-RE relocations: %d\n",
6421 				err);
6422 			return err;
6423 		}
6424 		bpf_object__sort_relos(obj);
6425 	}
6426 
6427 	/* Before relocating calls pre-process relocations and mark
6428 	 * few ld_imm64 instructions that points to subprogs.
6429 	 * Otherwise bpf_object__reloc_code() later would have to consider
6430 	 * all ld_imm64 insns as relocation candidates. That would
6431 	 * reduce relocation speed, since amount of find_prog_insn_relo()
6432 	 * would increase and most of them will fail to find a relo.
6433 	 */
6434 	for (i = 0; i < obj->nr_programs; i++) {
6435 		prog = &obj->programs[i];
6436 		for (j = 0; j < prog->nr_reloc; j++) {
6437 			struct reloc_desc *relo = &prog->reloc_desc[j];
6438 			struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6439 
6440 			/* mark the insn, so it's recognized by insn_is_pseudo_func() */
6441 			if (relo->type == RELO_SUBPROG_ADDR)
6442 				insn[0].src_reg = BPF_PSEUDO_FUNC;
6443 		}
6444 	}
6445 
6446 	/* relocate subprogram calls and append used subprograms to main
6447 	 * programs; each copy of subprogram code needs to be relocated
6448 	 * differently for each main program, because its code location might
6449 	 * have changed.
6450 	 * Append subprog relos to main programs to allow data relos to be
6451 	 * processed after text is completely relocated.
6452 	 */
6453 	for (i = 0; i < obj->nr_programs; i++) {
6454 		prog = &obj->programs[i];
6455 		/* sub-program's sub-calls are relocated within the context of
6456 		 * its main program only
6457 		 */
6458 		if (prog_is_subprog(obj, prog))
6459 			continue;
6460 		if (!prog->autoload)
6461 			continue;
6462 
6463 		err = bpf_object__relocate_calls(obj, prog);
6464 		if (err) {
6465 			pr_warn("prog '%s': failed to relocate calls: %d\n",
6466 				prog->name, err);
6467 			return err;
6468 		}
6469 	}
6470 	/* Process data relos for main programs */
6471 	for (i = 0; i < obj->nr_programs; i++) {
6472 		prog = &obj->programs[i];
6473 		if (prog_is_subprog(obj, prog))
6474 			continue;
6475 		if (!prog->autoload)
6476 			continue;
6477 		err = bpf_object__relocate_data(obj, prog);
6478 		if (err) {
6479 			pr_warn("prog '%s': failed to relocate data references: %d\n",
6480 				prog->name, err);
6481 			return err;
6482 		}
6483 	}
6484 
6485 	return 0;
6486 }
6487 
6488 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6489 					    Elf64_Shdr *shdr, Elf_Data *data);
6490 
6491 static int bpf_object__collect_map_relos(struct bpf_object *obj,
6492 					 Elf64_Shdr *shdr, Elf_Data *data)
6493 {
6494 	const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6495 	int i, j, nrels, new_sz;
6496 	const struct btf_var_secinfo *vi = NULL;
6497 	const struct btf_type *sec, *var, *def;
6498 	struct bpf_map *map = NULL, *targ_map = NULL;
6499 	struct bpf_program *targ_prog = NULL;
6500 	bool is_prog_array, is_map_in_map;
6501 	const struct btf_member *member;
6502 	const char *name, *mname, *type;
6503 	unsigned int moff;
6504 	Elf64_Sym *sym;
6505 	Elf64_Rel *rel;
6506 	void *tmp;
6507 
6508 	if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6509 		return -EINVAL;
6510 	sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6511 	if (!sec)
6512 		return -EINVAL;
6513 
6514 	nrels = shdr->sh_size / shdr->sh_entsize;
6515 	for (i = 0; i < nrels; i++) {
6516 		rel = elf_rel_by_idx(data, i);
6517 		if (!rel) {
6518 			pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6519 			return -LIBBPF_ERRNO__FORMAT;
6520 		}
6521 
6522 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
6523 		if (!sym) {
6524 			pr_warn(".maps relo #%d: symbol %zx not found\n",
6525 				i, (size_t)ELF64_R_SYM(rel->r_info));
6526 			return -LIBBPF_ERRNO__FORMAT;
6527 		}
6528 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
6529 
6530 		pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
6531 			 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
6532 			 (size_t)rel->r_offset, sym->st_name, name);
6533 
6534 		for (j = 0; j < obj->nr_maps; j++) {
6535 			map = &obj->maps[j];
6536 			if (map->sec_idx != obj->efile.btf_maps_shndx)
6537 				continue;
6538 
6539 			vi = btf_var_secinfos(sec) + map->btf_var_idx;
6540 			if (vi->offset <= rel->r_offset &&
6541 			    rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6542 				break;
6543 		}
6544 		if (j == obj->nr_maps) {
6545 			pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
6546 				i, name, (size_t)rel->r_offset);
6547 			return -EINVAL;
6548 		}
6549 
6550 		is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
6551 		is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
6552 		type = is_map_in_map ? "map" : "prog";
6553 		if (is_map_in_map) {
6554 			if (sym->st_shndx != obj->efile.btf_maps_shndx) {
6555 				pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6556 					i, name);
6557 				return -LIBBPF_ERRNO__RELOC;
6558 			}
6559 			if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6560 			    map->def.key_size != sizeof(int)) {
6561 				pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6562 					i, map->name, sizeof(int));
6563 				return -EINVAL;
6564 			}
6565 			targ_map = bpf_object__find_map_by_name(obj, name);
6566 			if (!targ_map) {
6567 				pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
6568 					i, name);
6569 				return -ESRCH;
6570 			}
6571 		} else if (is_prog_array) {
6572 			targ_prog = bpf_object__find_program_by_name(obj, name);
6573 			if (!targ_prog) {
6574 				pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
6575 					i, name);
6576 				return -ESRCH;
6577 			}
6578 			if (targ_prog->sec_idx != sym->st_shndx ||
6579 			    targ_prog->sec_insn_off * 8 != sym->st_value ||
6580 			    prog_is_subprog(obj, targ_prog)) {
6581 				pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
6582 					i, name);
6583 				return -LIBBPF_ERRNO__RELOC;
6584 			}
6585 		} else {
6586 			return -EINVAL;
6587 		}
6588 
6589 		var = btf__type_by_id(obj->btf, vi->type);
6590 		def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6591 		if (btf_vlen(def) == 0)
6592 			return -EINVAL;
6593 		member = btf_members(def) + btf_vlen(def) - 1;
6594 		mname = btf__name_by_offset(obj->btf, member->name_off);
6595 		if (strcmp(mname, "values"))
6596 			return -EINVAL;
6597 
6598 		moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6599 		if (rel->r_offset - vi->offset < moff)
6600 			return -EINVAL;
6601 
6602 		moff = rel->r_offset - vi->offset - moff;
6603 		/* here we use BPF pointer size, which is always 64 bit, as we
6604 		 * are parsing ELF that was built for BPF target
6605 		 */
6606 		if (moff % bpf_ptr_sz)
6607 			return -EINVAL;
6608 		moff /= bpf_ptr_sz;
6609 		if (moff >= map->init_slots_sz) {
6610 			new_sz = moff + 1;
6611 			tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6612 			if (!tmp)
6613 				return -ENOMEM;
6614 			map->init_slots = tmp;
6615 			memset(map->init_slots + map->init_slots_sz, 0,
6616 			       (new_sz - map->init_slots_sz) * host_ptr_sz);
6617 			map->init_slots_sz = new_sz;
6618 		}
6619 		map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
6620 
6621 		pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
6622 			 i, map->name, moff, type, name);
6623 	}
6624 
6625 	return 0;
6626 }
6627 
6628 static int bpf_object__collect_relos(struct bpf_object *obj)
6629 {
6630 	int i, err;
6631 
6632 	for (i = 0; i < obj->efile.sec_cnt; i++) {
6633 		struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
6634 		Elf64_Shdr *shdr;
6635 		Elf_Data *data;
6636 		int idx;
6637 
6638 		if (sec_desc->sec_type != SEC_RELO)
6639 			continue;
6640 
6641 		shdr = sec_desc->shdr;
6642 		data = sec_desc->data;
6643 		idx = shdr->sh_info;
6644 
6645 		if (shdr->sh_type != SHT_REL) {
6646 			pr_warn("internal error at %d\n", __LINE__);
6647 			return -LIBBPF_ERRNO__INTERNAL;
6648 		}
6649 
6650 		if (idx == obj->efile.st_ops_shndx)
6651 			err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6652 		else if (idx == obj->efile.btf_maps_shndx)
6653 			err = bpf_object__collect_map_relos(obj, shdr, data);
6654 		else
6655 			err = bpf_object__collect_prog_relos(obj, shdr, data);
6656 		if (err)
6657 			return err;
6658 	}
6659 
6660 	bpf_object__sort_relos(obj);
6661 	return 0;
6662 }
6663 
6664 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6665 {
6666 	if (BPF_CLASS(insn->code) == BPF_JMP &&
6667 	    BPF_OP(insn->code) == BPF_CALL &&
6668 	    BPF_SRC(insn->code) == BPF_K &&
6669 	    insn->src_reg == 0 &&
6670 	    insn->dst_reg == 0) {
6671 		    *func_id = insn->imm;
6672 		    return true;
6673 	}
6674 	return false;
6675 }
6676 
6677 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
6678 {
6679 	struct bpf_insn *insn = prog->insns;
6680 	enum bpf_func_id func_id;
6681 	int i;
6682 
6683 	if (obj->gen_loader)
6684 		return 0;
6685 
6686 	for (i = 0; i < prog->insns_cnt; i++, insn++) {
6687 		if (!insn_is_helper_call(insn, &func_id))
6688 			continue;
6689 
6690 		/* on kernels that don't yet support
6691 		 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6692 		 * to bpf_probe_read() which works well for old kernels
6693 		 */
6694 		switch (func_id) {
6695 		case BPF_FUNC_probe_read_kernel:
6696 		case BPF_FUNC_probe_read_user:
6697 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6698 				insn->imm = BPF_FUNC_probe_read;
6699 			break;
6700 		case BPF_FUNC_probe_read_kernel_str:
6701 		case BPF_FUNC_probe_read_user_str:
6702 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6703 				insn->imm = BPF_FUNC_probe_read_str;
6704 			break;
6705 		default:
6706 			break;
6707 		}
6708 	}
6709 	return 0;
6710 }
6711 
6712 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
6713 				     int *btf_obj_fd, int *btf_type_id);
6714 
6715 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
6716 static int libbpf_prepare_prog_load(struct bpf_program *prog,
6717 				    struct bpf_prog_load_opts *opts, long cookie)
6718 {
6719 	enum sec_def_flags def = cookie;
6720 
6721 	/* old kernels might not support specifying expected_attach_type */
6722 	if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
6723 		opts->expected_attach_type = 0;
6724 
6725 	if (def & SEC_SLEEPABLE)
6726 		opts->prog_flags |= BPF_F_SLEEPABLE;
6727 
6728 	if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
6729 		opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
6730 
6731 	if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
6732 		int btf_obj_fd = 0, btf_type_id = 0, err;
6733 		const char *attach_name;
6734 
6735 		attach_name = strchr(prog->sec_name, '/');
6736 		if (!attach_name) {
6737 			/* if BPF program is annotated with just SEC("fentry")
6738 			 * (or similar) without declaratively specifying
6739 			 * target, then it is expected that target will be
6740 			 * specified with bpf_program__set_attach_target() at
6741 			 * runtime before BPF object load step. If not, then
6742 			 * there is nothing to load into the kernel as BPF
6743 			 * verifier won't be able to validate BPF program
6744 			 * correctness anyways.
6745 			 */
6746 			pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
6747 				prog->name);
6748 			return -EINVAL;
6749 		}
6750 		attach_name++; /* skip over / */
6751 
6752 		err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
6753 		if (err)
6754 			return err;
6755 
6756 		/* cache resolved BTF FD and BTF type ID in the prog */
6757 		prog->attach_btf_obj_fd = btf_obj_fd;
6758 		prog->attach_btf_id = btf_type_id;
6759 
6760 		/* but by now libbpf common logic is not utilizing
6761 		 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
6762 		 * this callback is called after opts were populated by
6763 		 * libbpf, so this callback has to update opts explicitly here
6764 		 */
6765 		opts->attach_btf_obj_fd = btf_obj_fd;
6766 		opts->attach_btf_id = btf_type_id;
6767 	}
6768 	return 0;
6769 }
6770 
6771 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
6772 
6773 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
6774 				struct bpf_insn *insns, int insns_cnt,
6775 				const char *license, __u32 kern_version, int *prog_fd)
6776 {
6777 	LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
6778 	const char *prog_name = NULL;
6779 	char *cp, errmsg[STRERR_BUFSIZE];
6780 	size_t log_buf_size = 0;
6781 	char *log_buf = NULL, *tmp;
6782 	int btf_fd, ret, err;
6783 	bool own_log_buf = true;
6784 	__u32 log_level = prog->log_level;
6785 
6786 	if (prog->type == BPF_PROG_TYPE_UNSPEC) {
6787 		/*
6788 		 * The program type must be set.  Most likely we couldn't find a proper
6789 		 * section definition at load time, and thus we didn't infer the type.
6790 		 */
6791 		pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
6792 			prog->name, prog->sec_name);
6793 		return -EINVAL;
6794 	}
6795 
6796 	if (!insns || !insns_cnt)
6797 		return -EINVAL;
6798 
6799 	load_attr.expected_attach_type = prog->expected_attach_type;
6800 	if (kernel_supports(obj, FEAT_PROG_NAME))
6801 		prog_name = prog->name;
6802 	load_attr.attach_prog_fd = prog->attach_prog_fd;
6803 	load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
6804 	load_attr.attach_btf_id = prog->attach_btf_id;
6805 	load_attr.kern_version = kern_version;
6806 	load_attr.prog_ifindex = prog->prog_ifindex;
6807 
6808 	/* specify func_info/line_info only if kernel supports them */
6809 	btf_fd = bpf_object__btf_fd(obj);
6810 	if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
6811 		load_attr.prog_btf_fd = btf_fd;
6812 		load_attr.func_info = prog->func_info;
6813 		load_attr.func_info_rec_size = prog->func_info_rec_size;
6814 		load_attr.func_info_cnt = prog->func_info_cnt;
6815 		load_attr.line_info = prog->line_info;
6816 		load_attr.line_info_rec_size = prog->line_info_rec_size;
6817 		load_attr.line_info_cnt = prog->line_info_cnt;
6818 	}
6819 	load_attr.log_level = log_level;
6820 	load_attr.prog_flags = prog->prog_flags;
6821 	load_attr.fd_array = obj->fd_array;
6822 
6823 	/* adjust load_attr if sec_def provides custom preload callback */
6824 	if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
6825 		err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
6826 		if (err < 0) {
6827 			pr_warn("prog '%s': failed to prepare load attributes: %d\n",
6828 				prog->name, err);
6829 			return err;
6830 		}
6831 		insns = prog->insns;
6832 		insns_cnt = prog->insns_cnt;
6833 	}
6834 
6835 	if (obj->gen_loader) {
6836 		bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
6837 				   license, insns, insns_cnt, &load_attr,
6838 				   prog - obj->programs);
6839 		*prog_fd = -1;
6840 		return 0;
6841 	}
6842 
6843 retry_load:
6844 	/* if log_level is zero, we don't request logs initially even if
6845 	 * custom log_buf is specified; if the program load fails, then we'll
6846 	 * bump log_level to 1 and use either custom log_buf or we'll allocate
6847 	 * our own and retry the load to get details on what failed
6848 	 */
6849 	if (log_level) {
6850 		if (prog->log_buf) {
6851 			log_buf = prog->log_buf;
6852 			log_buf_size = prog->log_size;
6853 			own_log_buf = false;
6854 		} else if (obj->log_buf) {
6855 			log_buf = obj->log_buf;
6856 			log_buf_size = obj->log_size;
6857 			own_log_buf = false;
6858 		} else {
6859 			log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
6860 			tmp = realloc(log_buf, log_buf_size);
6861 			if (!tmp) {
6862 				ret = -ENOMEM;
6863 				goto out;
6864 			}
6865 			log_buf = tmp;
6866 			log_buf[0] = '\0';
6867 			own_log_buf = true;
6868 		}
6869 	}
6870 
6871 	load_attr.log_buf = log_buf;
6872 	load_attr.log_size = log_buf_size;
6873 	load_attr.log_level = log_level;
6874 
6875 	ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
6876 	if (ret >= 0) {
6877 		if (log_level && own_log_buf) {
6878 			pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6879 				 prog->name, log_buf);
6880 		}
6881 
6882 		if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
6883 			struct bpf_map *map;
6884 			int i;
6885 
6886 			for (i = 0; i < obj->nr_maps; i++) {
6887 				map = &prog->obj->maps[i];
6888 				if (map->libbpf_type != LIBBPF_MAP_RODATA)
6889 					continue;
6890 
6891 				if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) {
6892 					cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6893 					pr_warn("prog '%s': failed to bind map '%s': %s\n",
6894 						prog->name, map->real_name, cp);
6895 					/* Don't fail hard if can't bind rodata. */
6896 				}
6897 			}
6898 		}
6899 
6900 		*prog_fd = ret;
6901 		ret = 0;
6902 		goto out;
6903 	}
6904 
6905 	if (log_level == 0) {
6906 		log_level = 1;
6907 		goto retry_load;
6908 	}
6909 	/* On ENOSPC, increase log buffer size and retry, unless custom
6910 	 * log_buf is specified.
6911 	 * Be careful to not overflow u32, though. Kernel's log buf size limit
6912 	 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
6913 	 * multiply by 2 unless we are sure we'll fit within 32 bits.
6914 	 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
6915 	 */
6916 	if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
6917 		goto retry_load;
6918 
6919 	ret = -errno;
6920 
6921 	/* post-process verifier log to improve error descriptions */
6922 	fixup_verifier_log(prog, log_buf, log_buf_size);
6923 
6924 	cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6925 	pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
6926 	pr_perm_msg(ret);
6927 
6928 	if (own_log_buf && log_buf && log_buf[0] != '\0') {
6929 		pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6930 			prog->name, log_buf);
6931 	}
6932 
6933 out:
6934 	if (own_log_buf)
6935 		free(log_buf);
6936 	return ret;
6937 }
6938 
6939 static char *find_prev_line(char *buf, char *cur)
6940 {
6941 	char *p;
6942 
6943 	if (cur == buf) /* end of a log buf */
6944 		return NULL;
6945 
6946 	p = cur - 1;
6947 	while (p - 1 >= buf && *(p - 1) != '\n')
6948 		p--;
6949 
6950 	return p;
6951 }
6952 
6953 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
6954 		      char *orig, size_t orig_sz, const char *patch)
6955 {
6956 	/* size of the remaining log content to the right from the to-be-replaced part */
6957 	size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
6958 	size_t patch_sz = strlen(patch);
6959 
6960 	if (patch_sz != orig_sz) {
6961 		/* If patch line(s) are longer than original piece of verifier log,
6962 		 * shift log contents by (patch_sz - orig_sz) bytes to the right
6963 		 * starting from after to-be-replaced part of the log.
6964 		 *
6965 		 * If patch line(s) are shorter than original piece of verifier log,
6966 		 * shift log contents by (orig_sz - patch_sz) bytes to the left
6967 		 * starting from after to-be-replaced part of the log
6968 		 *
6969 		 * We need to be careful about not overflowing available
6970 		 * buf_sz capacity. If that's the case, we'll truncate the end
6971 		 * of the original log, as necessary.
6972 		 */
6973 		if (patch_sz > orig_sz) {
6974 			if (orig + patch_sz >= buf + buf_sz) {
6975 				/* patch is big enough to cover remaining space completely */
6976 				patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
6977 				rem_sz = 0;
6978 			} else if (patch_sz - orig_sz > buf_sz - log_sz) {
6979 				/* patch causes part of remaining log to be truncated */
6980 				rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
6981 			}
6982 		}
6983 		/* shift remaining log to the right by calculated amount */
6984 		memmove(orig + patch_sz, orig + orig_sz, rem_sz);
6985 	}
6986 
6987 	memcpy(orig, patch, patch_sz);
6988 }
6989 
6990 static void fixup_log_failed_core_relo(struct bpf_program *prog,
6991 				       char *buf, size_t buf_sz, size_t log_sz,
6992 				       char *line1, char *line2, char *line3)
6993 {
6994 	/* Expected log for failed and not properly guarded CO-RE relocation:
6995 	 * line1 -> 123: (85) call unknown#195896080
6996 	 * line2 -> invalid func unknown#195896080
6997 	 * line3 -> <anything else or end of buffer>
6998 	 *
6999 	 * "123" is the index of the instruction that was poisoned. We extract
7000 	 * instruction index to find corresponding CO-RE relocation and
7001 	 * replace this part of the log with more relevant information about
7002 	 * failed CO-RE relocation.
7003 	 */
7004 	const struct bpf_core_relo *relo;
7005 	struct bpf_core_spec spec;
7006 	char patch[512], spec_buf[256];
7007 	int insn_idx, err, spec_len;
7008 
7009 	if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
7010 		return;
7011 
7012 	relo = find_relo_core(prog, insn_idx);
7013 	if (!relo)
7014 		return;
7015 
7016 	err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
7017 	if (err)
7018 		return;
7019 
7020 	spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
7021 	snprintf(patch, sizeof(patch),
7022 		 "%d: <invalid CO-RE relocation>\n"
7023 		 "failed to resolve CO-RE relocation %s%s\n",
7024 		 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
7025 
7026 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7027 }
7028 
7029 static void fixup_log_missing_map_load(struct bpf_program *prog,
7030 				       char *buf, size_t buf_sz, size_t log_sz,
7031 				       char *line1, char *line2, char *line3)
7032 {
7033 	/* Expected log for failed and not properly guarded CO-RE relocation:
7034 	 * line1 -> 123: (85) call unknown#2001000345
7035 	 * line2 -> invalid func unknown#2001000345
7036 	 * line3 -> <anything else or end of buffer>
7037 	 *
7038 	 * "123" is the index of the instruction that was poisoned.
7039 	 * "345" in "2001000345" are map index in obj->maps to fetch map name.
7040 	 */
7041 	struct bpf_object *obj = prog->obj;
7042 	const struct bpf_map *map;
7043 	int insn_idx, map_idx;
7044 	char patch[128];
7045 
7046 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7047 		return;
7048 
7049 	map_idx -= MAP_LDIMM64_POISON_BASE;
7050 	if (map_idx < 0 || map_idx >= obj->nr_maps)
7051 		return;
7052 	map = &obj->maps[map_idx];
7053 
7054 	snprintf(patch, sizeof(patch),
7055 		 "%d: <invalid BPF map reference>\n"
7056 		 "BPF map '%s' is referenced but wasn't created\n",
7057 		 insn_idx, map->name);
7058 
7059 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7060 }
7061 
7062 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7063 {
7064 	/* look for familiar error patterns in last N lines of the log */
7065 	const size_t max_last_line_cnt = 10;
7066 	char *prev_line, *cur_line, *next_line;
7067 	size_t log_sz;
7068 	int i;
7069 
7070 	if (!buf)
7071 		return;
7072 
7073 	log_sz = strlen(buf) + 1;
7074 	next_line = buf + log_sz - 1;
7075 
7076 	for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7077 		cur_line = find_prev_line(buf, next_line);
7078 		if (!cur_line)
7079 			return;
7080 
7081 		/* failed CO-RE relocation case */
7082 		if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7083 			prev_line = find_prev_line(buf, cur_line);
7084 			if (!prev_line)
7085 				continue;
7086 
7087 			fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7088 						   prev_line, cur_line, next_line);
7089 			return;
7090 		} else if (str_has_pfx(cur_line, "invalid func unknown#"MAP_LDIMM64_POISON_PFX)) {
7091 			prev_line = find_prev_line(buf, cur_line);
7092 			if (!prev_line)
7093 				continue;
7094 
7095 			fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7096 						   prev_line, cur_line, next_line);
7097 			return;
7098 		}
7099 	}
7100 }
7101 
7102 static int bpf_program_record_relos(struct bpf_program *prog)
7103 {
7104 	struct bpf_object *obj = prog->obj;
7105 	int i;
7106 
7107 	for (i = 0; i < prog->nr_reloc; i++) {
7108 		struct reloc_desc *relo = &prog->reloc_desc[i];
7109 		struct extern_desc *ext = &obj->externs[relo->sym_off];
7110 
7111 		switch (relo->type) {
7112 		case RELO_EXTERN_VAR:
7113 			if (ext->type != EXT_KSYM)
7114 				continue;
7115 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7116 					       ext->is_weak, !ext->ksym.type_id,
7117 					       BTF_KIND_VAR, relo->insn_idx);
7118 			break;
7119 		case RELO_EXTERN_FUNC:
7120 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7121 					       ext->is_weak, false, BTF_KIND_FUNC,
7122 					       relo->insn_idx);
7123 			break;
7124 		case RELO_CORE: {
7125 			struct bpf_core_relo cr = {
7126 				.insn_off = relo->insn_idx * 8,
7127 				.type_id = relo->core_relo->type_id,
7128 				.access_str_off = relo->core_relo->access_str_off,
7129 				.kind = relo->core_relo->kind,
7130 			};
7131 
7132 			bpf_gen__record_relo_core(obj->gen_loader, &cr);
7133 			break;
7134 		}
7135 		default:
7136 			continue;
7137 		}
7138 	}
7139 	return 0;
7140 }
7141 
7142 static int
7143 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7144 {
7145 	struct bpf_program *prog;
7146 	size_t i;
7147 	int err;
7148 
7149 	for (i = 0; i < obj->nr_programs; i++) {
7150 		prog = &obj->programs[i];
7151 		err = bpf_object__sanitize_prog(obj, prog);
7152 		if (err)
7153 			return err;
7154 	}
7155 
7156 	for (i = 0; i < obj->nr_programs; i++) {
7157 		prog = &obj->programs[i];
7158 		if (prog_is_subprog(obj, prog))
7159 			continue;
7160 		if (!prog->autoload) {
7161 			pr_debug("prog '%s': skipped loading\n", prog->name);
7162 			continue;
7163 		}
7164 		prog->log_level |= log_level;
7165 
7166 		if (obj->gen_loader)
7167 			bpf_program_record_relos(prog);
7168 
7169 		err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7170 					   obj->license, obj->kern_version, &prog->fd);
7171 		if (err) {
7172 			pr_warn("prog '%s': failed to load: %d\n", prog->name, err);
7173 			return err;
7174 		}
7175 	}
7176 
7177 	bpf_object__free_relocs(obj);
7178 	return 0;
7179 }
7180 
7181 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7182 
7183 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7184 {
7185 	struct bpf_program *prog;
7186 	int err;
7187 
7188 	bpf_object__for_each_program(prog, obj) {
7189 		prog->sec_def = find_sec_def(prog->sec_name);
7190 		if (!prog->sec_def) {
7191 			/* couldn't guess, but user might manually specify */
7192 			pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7193 				prog->name, prog->sec_name);
7194 			continue;
7195 		}
7196 
7197 		prog->type = prog->sec_def->prog_type;
7198 		prog->expected_attach_type = prog->sec_def->expected_attach_type;
7199 
7200 		/* sec_def can have custom callback which should be called
7201 		 * after bpf_program is initialized to adjust its properties
7202 		 */
7203 		if (prog->sec_def->prog_setup_fn) {
7204 			err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7205 			if (err < 0) {
7206 				pr_warn("prog '%s': failed to initialize: %d\n",
7207 					prog->name, err);
7208 				return err;
7209 			}
7210 		}
7211 	}
7212 
7213 	return 0;
7214 }
7215 
7216 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7217 					  const struct bpf_object_open_opts *opts)
7218 {
7219 	const char *obj_name, *kconfig, *btf_tmp_path;
7220 	struct bpf_object *obj;
7221 	char tmp_name[64];
7222 	int err;
7223 	char *log_buf;
7224 	size_t log_size;
7225 	__u32 log_level;
7226 
7227 	if (elf_version(EV_CURRENT) == EV_NONE) {
7228 		pr_warn("failed to init libelf for %s\n",
7229 			path ? : "(mem buf)");
7230 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7231 	}
7232 
7233 	if (!OPTS_VALID(opts, bpf_object_open_opts))
7234 		return ERR_PTR(-EINVAL);
7235 
7236 	obj_name = OPTS_GET(opts, object_name, NULL);
7237 	if (obj_buf) {
7238 		if (!obj_name) {
7239 			snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7240 				 (unsigned long)obj_buf,
7241 				 (unsigned long)obj_buf_sz);
7242 			obj_name = tmp_name;
7243 		}
7244 		path = obj_name;
7245 		pr_debug("loading object '%s' from buffer\n", obj_name);
7246 	}
7247 
7248 	log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7249 	log_size = OPTS_GET(opts, kernel_log_size, 0);
7250 	log_level = OPTS_GET(opts, kernel_log_level, 0);
7251 	if (log_size > UINT_MAX)
7252 		return ERR_PTR(-EINVAL);
7253 	if (log_size && !log_buf)
7254 		return ERR_PTR(-EINVAL);
7255 
7256 	obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7257 	if (IS_ERR(obj))
7258 		return obj;
7259 
7260 	obj->log_buf = log_buf;
7261 	obj->log_size = log_size;
7262 	obj->log_level = log_level;
7263 
7264 	btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7265 	if (btf_tmp_path) {
7266 		if (strlen(btf_tmp_path) >= PATH_MAX) {
7267 			err = -ENAMETOOLONG;
7268 			goto out;
7269 		}
7270 		obj->btf_custom_path = strdup(btf_tmp_path);
7271 		if (!obj->btf_custom_path) {
7272 			err = -ENOMEM;
7273 			goto out;
7274 		}
7275 	}
7276 
7277 	kconfig = OPTS_GET(opts, kconfig, NULL);
7278 	if (kconfig) {
7279 		obj->kconfig = strdup(kconfig);
7280 		if (!obj->kconfig) {
7281 			err = -ENOMEM;
7282 			goto out;
7283 		}
7284 	}
7285 
7286 	err = bpf_object__elf_init(obj);
7287 	err = err ? : bpf_object__check_endianness(obj);
7288 	err = err ? : bpf_object__elf_collect(obj);
7289 	err = err ? : bpf_object__collect_externs(obj);
7290 	err = err ? : bpf_object_fixup_btf(obj);
7291 	err = err ? : bpf_object__init_maps(obj, opts);
7292 	err = err ? : bpf_object_init_progs(obj, opts);
7293 	err = err ? : bpf_object__collect_relos(obj);
7294 	if (err)
7295 		goto out;
7296 
7297 	bpf_object__elf_finish(obj);
7298 
7299 	return obj;
7300 out:
7301 	bpf_object__close(obj);
7302 	return ERR_PTR(err);
7303 }
7304 
7305 struct bpf_object *
7306 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7307 {
7308 	if (!path)
7309 		return libbpf_err_ptr(-EINVAL);
7310 
7311 	pr_debug("loading %s\n", path);
7312 
7313 	return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
7314 }
7315 
7316 struct bpf_object *bpf_object__open(const char *path)
7317 {
7318 	return bpf_object__open_file(path, NULL);
7319 }
7320 
7321 struct bpf_object *
7322 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7323 		     const struct bpf_object_open_opts *opts)
7324 {
7325 	if (!obj_buf || obj_buf_sz == 0)
7326 		return libbpf_err_ptr(-EINVAL);
7327 
7328 	return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
7329 }
7330 
7331 static int bpf_object_unload(struct bpf_object *obj)
7332 {
7333 	size_t i;
7334 
7335 	if (!obj)
7336 		return libbpf_err(-EINVAL);
7337 
7338 	for (i = 0; i < obj->nr_maps; i++) {
7339 		zclose(obj->maps[i].fd);
7340 		if (obj->maps[i].st_ops)
7341 			zfree(&obj->maps[i].st_ops->kern_vdata);
7342 	}
7343 
7344 	for (i = 0; i < obj->nr_programs; i++)
7345 		bpf_program__unload(&obj->programs[i]);
7346 
7347 	return 0;
7348 }
7349 
7350 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7351 {
7352 	struct bpf_map *m;
7353 
7354 	bpf_object__for_each_map(m, obj) {
7355 		if (!bpf_map__is_internal(m))
7356 			continue;
7357 		if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
7358 			m->def.map_flags ^= BPF_F_MMAPABLE;
7359 	}
7360 
7361 	return 0;
7362 }
7363 
7364 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
7365 {
7366 	char sym_type, sym_name[500];
7367 	unsigned long long sym_addr;
7368 	int ret, err = 0;
7369 	FILE *f;
7370 
7371 	f = fopen("/proc/kallsyms", "r");
7372 	if (!f) {
7373 		err = -errno;
7374 		pr_warn("failed to open /proc/kallsyms: %d\n", err);
7375 		return err;
7376 	}
7377 
7378 	while (true) {
7379 		ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7380 			     &sym_addr, &sym_type, sym_name);
7381 		if (ret == EOF && feof(f))
7382 			break;
7383 		if (ret != 3) {
7384 			pr_warn("failed to read kallsyms entry: %d\n", ret);
7385 			err = -EINVAL;
7386 			break;
7387 		}
7388 
7389 		err = cb(sym_addr, sym_type, sym_name, ctx);
7390 		if (err)
7391 			break;
7392 	}
7393 
7394 	fclose(f);
7395 	return err;
7396 }
7397 
7398 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
7399 		       const char *sym_name, void *ctx)
7400 {
7401 	struct bpf_object *obj = ctx;
7402 	const struct btf_type *t;
7403 	struct extern_desc *ext;
7404 
7405 	ext = find_extern_by_name(obj, sym_name);
7406 	if (!ext || ext->type != EXT_KSYM)
7407 		return 0;
7408 
7409 	t = btf__type_by_id(obj->btf, ext->btf_id);
7410 	if (!btf_is_var(t))
7411 		return 0;
7412 
7413 	if (ext->is_set && ext->ksym.addr != sym_addr) {
7414 		pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
7415 			sym_name, ext->ksym.addr, sym_addr);
7416 		return -EINVAL;
7417 	}
7418 	if (!ext->is_set) {
7419 		ext->is_set = true;
7420 		ext->ksym.addr = sym_addr;
7421 		pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
7422 	}
7423 	return 0;
7424 }
7425 
7426 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7427 {
7428 	return libbpf_kallsyms_parse(kallsyms_cb, obj);
7429 }
7430 
7431 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
7432 			    __u16 kind, struct btf **res_btf,
7433 			    struct module_btf **res_mod_btf)
7434 {
7435 	struct module_btf *mod_btf;
7436 	struct btf *btf;
7437 	int i, id, err;
7438 
7439 	btf = obj->btf_vmlinux;
7440 	mod_btf = NULL;
7441 	id = btf__find_by_name_kind(btf, ksym_name, kind);
7442 
7443 	if (id == -ENOENT) {
7444 		err = load_module_btfs(obj);
7445 		if (err)
7446 			return err;
7447 
7448 		for (i = 0; i < obj->btf_module_cnt; i++) {
7449 			/* we assume module_btf's BTF FD is always >0 */
7450 			mod_btf = &obj->btf_modules[i];
7451 			btf = mod_btf->btf;
7452 			id = btf__find_by_name_kind_own(btf, ksym_name, kind);
7453 			if (id != -ENOENT)
7454 				break;
7455 		}
7456 	}
7457 	if (id <= 0)
7458 		return -ESRCH;
7459 
7460 	*res_btf = btf;
7461 	*res_mod_btf = mod_btf;
7462 	return id;
7463 }
7464 
7465 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
7466 					       struct extern_desc *ext)
7467 {
7468 	const struct btf_type *targ_var, *targ_type;
7469 	__u32 targ_type_id, local_type_id;
7470 	struct module_btf *mod_btf = NULL;
7471 	const char *targ_var_name;
7472 	struct btf *btf = NULL;
7473 	int id, err;
7474 
7475 	id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
7476 	if (id < 0) {
7477 		if (id == -ESRCH && ext->is_weak)
7478 			return 0;
7479 		pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
7480 			ext->name);
7481 		return id;
7482 	}
7483 
7484 	/* find local type_id */
7485 	local_type_id = ext->ksym.type_id;
7486 
7487 	/* find target type_id */
7488 	targ_var = btf__type_by_id(btf, id);
7489 	targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
7490 	targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
7491 
7492 	err = bpf_core_types_are_compat(obj->btf, local_type_id,
7493 					btf, targ_type_id);
7494 	if (err <= 0) {
7495 		const struct btf_type *local_type;
7496 		const char *targ_name, *local_name;
7497 
7498 		local_type = btf__type_by_id(obj->btf, local_type_id);
7499 		local_name = btf__name_by_offset(obj->btf, local_type->name_off);
7500 		targ_name = btf__name_by_offset(btf, targ_type->name_off);
7501 
7502 		pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7503 			ext->name, local_type_id,
7504 			btf_kind_str(local_type), local_name, targ_type_id,
7505 			btf_kind_str(targ_type), targ_name);
7506 		return -EINVAL;
7507 	}
7508 
7509 	ext->is_set = true;
7510 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7511 	ext->ksym.kernel_btf_id = id;
7512 	pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
7513 		 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7514 
7515 	return 0;
7516 }
7517 
7518 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
7519 						struct extern_desc *ext)
7520 {
7521 	int local_func_proto_id, kfunc_proto_id, kfunc_id;
7522 	struct module_btf *mod_btf = NULL;
7523 	const struct btf_type *kern_func;
7524 	struct btf *kern_btf = NULL;
7525 	int ret;
7526 
7527 	local_func_proto_id = ext->ksym.type_id;
7528 
7529 	kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf);
7530 	if (kfunc_id < 0) {
7531 		if (kfunc_id == -ESRCH && ext->is_weak)
7532 			return 0;
7533 		pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
7534 			ext->name);
7535 		return kfunc_id;
7536 	}
7537 
7538 	kern_func = btf__type_by_id(kern_btf, kfunc_id);
7539 	kfunc_proto_id = kern_func->type;
7540 
7541 	ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
7542 					kern_btf, kfunc_proto_id);
7543 	if (ret <= 0) {
7544 		pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n",
7545 			ext->name, local_func_proto_id, kfunc_proto_id);
7546 		return -EINVAL;
7547 	}
7548 
7549 	/* set index for module BTF fd in fd_array, if unset */
7550 	if (mod_btf && !mod_btf->fd_array_idx) {
7551 		/* insn->off is s16 */
7552 		if (obj->fd_array_cnt == INT16_MAX) {
7553 			pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
7554 				ext->name, mod_btf->fd_array_idx);
7555 			return -E2BIG;
7556 		}
7557 		/* Cannot use index 0 for module BTF fd */
7558 		if (!obj->fd_array_cnt)
7559 			obj->fd_array_cnt = 1;
7560 
7561 		ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
7562 					obj->fd_array_cnt + 1);
7563 		if (ret)
7564 			return ret;
7565 		mod_btf->fd_array_idx = obj->fd_array_cnt;
7566 		/* we assume module BTF FD is always >0 */
7567 		obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
7568 	}
7569 
7570 	ext->is_set = true;
7571 	ext->ksym.kernel_btf_id = kfunc_id;
7572 	ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
7573 	pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n",
7574 		 ext->name, kfunc_id);
7575 
7576 	return 0;
7577 }
7578 
7579 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7580 {
7581 	const struct btf_type *t;
7582 	struct extern_desc *ext;
7583 	int i, err;
7584 
7585 	for (i = 0; i < obj->nr_extern; i++) {
7586 		ext = &obj->externs[i];
7587 		if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7588 			continue;
7589 
7590 		if (obj->gen_loader) {
7591 			ext->is_set = true;
7592 			ext->ksym.kernel_btf_obj_fd = 0;
7593 			ext->ksym.kernel_btf_id = 0;
7594 			continue;
7595 		}
7596 		t = btf__type_by_id(obj->btf, ext->btf_id);
7597 		if (btf_is_var(t))
7598 			err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
7599 		else
7600 			err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
7601 		if (err)
7602 			return err;
7603 	}
7604 	return 0;
7605 }
7606 
7607 static int bpf_object__resolve_externs(struct bpf_object *obj,
7608 				       const char *extra_kconfig)
7609 {
7610 	bool need_config = false, need_kallsyms = false;
7611 	bool need_vmlinux_btf = false;
7612 	struct extern_desc *ext;
7613 	void *kcfg_data = NULL;
7614 	int err, i;
7615 
7616 	if (obj->nr_extern == 0)
7617 		return 0;
7618 
7619 	if (obj->kconfig_map_idx >= 0)
7620 		kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7621 
7622 	for (i = 0; i < obj->nr_extern; i++) {
7623 		ext = &obj->externs[i];
7624 
7625 		if (ext->type == EXT_KSYM) {
7626 			if (ext->ksym.type_id)
7627 				need_vmlinux_btf = true;
7628 			else
7629 				need_kallsyms = true;
7630 			continue;
7631 		} else if (ext->type == EXT_KCFG) {
7632 			void *ext_ptr = kcfg_data + ext->kcfg.data_off;
7633 			__u64 value = 0;
7634 
7635 			/* Kconfig externs need actual /proc/config.gz */
7636 			if (str_has_pfx(ext->name, "CONFIG_")) {
7637 				need_config = true;
7638 				continue;
7639 			}
7640 
7641 			/* Virtual kcfg externs are customly handled by libbpf */
7642 			if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7643 				value = get_kernel_version();
7644 				if (!value) {
7645 					pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
7646 					return -EINVAL;
7647 				}
7648 			} else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
7649 				value = kernel_supports(obj, FEAT_BPF_COOKIE);
7650 			} else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
7651 				value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
7652 			} else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
7653 				/* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
7654 				 * __kconfig externs, where LINUX_ ones are virtual and filled out
7655 				 * customly by libbpf (their values don't come from Kconfig).
7656 				 * If LINUX_xxx variable is not recognized by libbpf, but is marked
7657 				 * __weak, it defaults to zero value, just like for CONFIG_xxx
7658 				 * externs.
7659 				 */
7660 				pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
7661 				return -EINVAL;
7662 			}
7663 
7664 			err = set_kcfg_value_num(ext, ext_ptr, value);
7665 			if (err)
7666 				return err;
7667 			pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
7668 				 ext->name, (long long)value);
7669 		} else {
7670 			pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
7671 			return -EINVAL;
7672 		}
7673 	}
7674 	if (need_config && extra_kconfig) {
7675 		err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7676 		if (err)
7677 			return -EINVAL;
7678 		need_config = false;
7679 		for (i = 0; i < obj->nr_extern; i++) {
7680 			ext = &obj->externs[i];
7681 			if (ext->type == EXT_KCFG && !ext->is_set) {
7682 				need_config = true;
7683 				break;
7684 			}
7685 		}
7686 	}
7687 	if (need_config) {
7688 		err = bpf_object__read_kconfig_file(obj, kcfg_data);
7689 		if (err)
7690 			return -EINVAL;
7691 	}
7692 	if (need_kallsyms) {
7693 		err = bpf_object__read_kallsyms_file(obj);
7694 		if (err)
7695 			return -EINVAL;
7696 	}
7697 	if (need_vmlinux_btf) {
7698 		err = bpf_object__resolve_ksyms_btf_id(obj);
7699 		if (err)
7700 			return -EINVAL;
7701 	}
7702 	for (i = 0; i < obj->nr_extern; i++) {
7703 		ext = &obj->externs[i];
7704 
7705 		if (!ext->is_set && !ext->is_weak) {
7706 			pr_warn("extern '%s' (strong): not resolved\n", ext->name);
7707 			return -ESRCH;
7708 		} else if (!ext->is_set) {
7709 			pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
7710 				 ext->name);
7711 		}
7712 	}
7713 
7714 	return 0;
7715 }
7716 
7717 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
7718 {
7719 	int err, i;
7720 
7721 	if (!obj)
7722 		return libbpf_err(-EINVAL);
7723 
7724 	if (obj->loaded) {
7725 		pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7726 		return libbpf_err(-EINVAL);
7727 	}
7728 
7729 	if (obj->gen_loader)
7730 		bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
7731 
7732 	err = bpf_object__probe_loading(obj);
7733 	err = err ? : bpf_object__load_vmlinux_btf(obj, false);
7734 	err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7735 	err = err ? : bpf_object__sanitize_and_load_btf(obj);
7736 	err = err ? : bpf_object__sanitize_maps(obj);
7737 	err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7738 	err = err ? : bpf_object__create_maps(obj);
7739 	err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
7740 	err = err ? : bpf_object__load_progs(obj, extra_log_level);
7741 	err = err ? : bpf_object_init_prog_arrays(obj);
7742 
7743 	if (obj->gen_loader) {
7744 		/* reset FDs */
7745 		if (obj->btf)
7746 			btf__set_fd(obj->btf, -1);
7747 		for (i = 0; i < obj->nr_maps; i++)
7748 			obj->maps[i].fd = -1;
7749 		if (!err)
7750 			err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
7751 	}
7752 
7753 	/* clean up fd_array */
7754 	zfree(&obj->fd_array);
7755 
7756 	/* clean up module BTFs */
7757 	for (i = 0; i < obj->btf_module_cnt; i++) {
7758 		close(obj->btf_modules[i].fd);
7759 		btf__free(obj->btf_modules[i].btf);
7760 		free(obj->btf_modules[i].name);
7761 	}
7762 	free(obj->btf_modules);
7763 
7764 	/* clean up vmlinux BTF */
7765 	btf__free(obj->btf_vmlinux);
7766 	obj->btf_vmlinux = NULL;
7767 
7768 	obj->loaded = true; /* doesn't matter if successfully or not */
7769 
7770 	if (err)
7771 		goto out;
7772 
7773 	return 0;
7774 out:
7775 	/* unpin any maps that were auto-pinned during load */
7776 	for (i = 0; i < obj->nr_maps; i++)
7777 		if (obj->maps[i].pinned && !obj->maps[i].reused)
7778 			bpf_map__unpin(&obj->maps[i], NULL);
7779 
7780 	bpf_object_unload(obj);
7781 	pr_warn("failed to load object '%s'\n", obj->path);
7782 	return libbpf_err(err);
7783 }
7784 
7785 int bpf_object__load(struct bpf_object *obj)
7786 {
7787 	return bpf_object_load(obj, 0, NULL);
7788 }
7789 
7790 static int make_parent_dir(const char *path)
7791 {
7792 	char *cp, errmsg[STRERR_BUFSIZE];
7793 	char *dname, *dir;
7794 	int err = 0;
7795 
7796 	dname = strdup(path);
7797 	if (dname == NULL)
7798 		return -ENOMEM;
7799 
7800 	dir = dirname(dname);
7801 	if (mkdir(dir, 0700) && errno != EEXIST)
7802 		err = -errno;
7803 
7804 	free(dname);
7805 	if (err) {
7806 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7807 		pr_warn("failed to mkdir %s: %s\n", path, cp);
7808 	}
7809 	return err;
7810 }
7811 
7812 static int check_path(const char *path)
7813 {
7814 	char *cp, errmsg[STRERR_BUFSIZE];
7815 	struct statfs st_fs;
7816 	char *dname, *dir;
7817 	int err = 0;
7818 
7819 	if (path == NULL)
7820 		return -EINVAL;
7821 
7822 	dname = strdup(path);
7823 	if (dname == NULL)
7824 		return -ENOMEM;
7825 
7826 	dir = dirname(dname);
7827 	if (statfs(dir, &st_fs)) {
7828 		cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7829 		pr_warn("failed to statfs %s: %s\n", dir, cp);
7830 		err = -errno;
7831 	}
7832 	free(dname);
7833 
7834 	if (!err && st_fs.f_type != BPF_FS_MAGIC) {
7835 		pr_warn("specified path %s is not on BPF FS\n", path);
7836 		err = -EINVAL;
7837 	}
7838 
7839 	return err;
7840 }
7841 
7842 int bpf_program__pin(struct bpf_program *prog, const char *path)
7843 {
7844 	char *cp, errmsg[STRERR_BUFSIZE];
7845 	int err;
7846 
7847 	if (prog->fd < 0) {
7848 		pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
7849 		return libbpf_err(-EINVAL);
7850 	}
7851 
7852 	err = make_parent_dir(path);
7853 	if (err)
7854 		return libbpf_err(err);
7855 
7856 	err = check_path(path);
7857 	if (err)
7858 		return libbpf_err(err);
7859 
7860 	if (bpf_obj_pin(prog->fd, path)) {
7861 		err = -errno;
7862 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
7863 		pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp);
7864 		return libbpf_err(err);
7865 	}
7866 
7867 	pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
7868 	return 0;
7869 }
7870 
7871 int bpf_program__unpin(struct bpf_program *prog, const char *path)
7872 {
7873 	int err;
7874 
7875 	if (prog->fd < 0) {
7876 		pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
7877 		return libbpf_err(-EINVAL);
7878 	}
7879 
7880 	err = check_path(path);
7881 	if (err)
7882 		return libbpf_err(err);
7883 
7884 	err = unlink(path);
7885 	if (err)
7886 		return libbpf_err(-errno);
7887 
7888 	pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
7889 	return 0;
7890 }
7891 
7892 int bpf_map__pin(struct bpf_map *map, const char *path)
7893 {
7894 	char *cp, errmsg[STRERR_BUFSIZE];
7895 	int err;
7896 
7897 	if (map == NULL) {
7898 		pr_warn("invalid map pointer\n");
7899 		return libbpf_err(-EINVAL);
7900 	}
7901 
7902 	if (map->pin_path) {
7903 		if (path && strcmp(path, map->pin_path)) {
7904 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7905 				bpf_map__name(map), map->pin_path, path);
7906 			return libbpf_err(-EINVAL);
7907 		} else if (map->pinned) {
7908 			pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
7909 				 bpf_map__name(map), map->pin_path);
7910 			return 0;
7911 		}
7912 	} else {
7913 		if (!path) {
7914 			pr_warn("missing a path to pin map '%s' at\n",
7915 				bpf_map__name(map));
7916 			return libbpf_err(-EINVAL);
7917 		} else if (map->pinned) {
7918 			pr_warn("map '%s' already pinned\n", bpf_map__name(map));
7919 			return libbpf_err(-EEXIST);
7920 		}
7921 
7922 		map->pin_path = strdup(path);
7923 		if (!map->pin_path) {
7924 			err = -errno;
7925 			goto out_err;
7926 		}
7927 	}
7928 
7929 	err = make_parent_dir(map->pin_path);
7930 	if (err)
7931 		return libbpf_err(err);
7932 
7933 	err = check_path(map->pin_path);
7934 	if (err)
7935 		return libbpf_err(err);
7936 
7937 	if (bpf_obj_pin(map->fd, map->pin_path)) {
7938 		err = -errno;
7939 		goto out_err;
7940 	}
7941 
7942 	map->pinned = true;
7943 	pr_debug("pinned map '%s'\n", map->pin_path);
7944 
7945 	return 0;
7946 
7947 out_err:
7948 	cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7949 	pr_warn("failed to pin map: %s\n", cp);
7950 	return libbpf_err(err);
7951 }
7952 
7953 int bpf_map__unpin(struct bpf_map *map, const char *path)
7954 {
7955 	int err;
7956 
7957 	if (map == NULL) {
7958 		pr_warn("invalid map pointer\n");
7959 		return libbpf_err(-EINVAL);
7960 	}
7961 
7962 	if (map->pin_path) {
7963 		if (path && strcmp(path, map->pin_path)) {
7964 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7965 				bpf_map__name(map), map->pin_path, path);
7966 			return libbpf_err(-EINVAL);
7967 		}
7968 		path = map->pin_path;
7969 	} else if (!path) {
7970 		pr_warn("no path to unpin map '%s' from\n",
7971 			bpf_map__name(map));
7972 		return libbpf_err(-EINVAL);
7973 	}
7974 
7975 	err = check_path(path);
7976 	if (err)
7977 		return libbpf_err(err);
7978 
7979 	err = unlink(path);
7980 	if (err != 0)
7981 		return libbpf_err(-errno);
7982 
7983 	map->pinned = false;
7984 	pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
7985 
7986 	return 0;
7987 }
7988 
7989 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
7990 {
7991 	char *new = NULL;
7992 
7993 	if (path) {
7994 		new = strdup(path);
7995 		if (!new)
7996 			return libbpf_err(-errno);
7997 	}
7998 
7999 	free(map->pin_path);
8000 	map->pin_path = new;
8001 	return 0;
8002 }
8003 
8004 __alias(bpf_map__pin_path)
8005 const char *bpf_map__get_pin_path(const struct bpf_map *map);
8006 
8007 const char *bpf_map__pin_path(const struct bpf_map *map)
8008 {
8009 	return map->pin_path;
8010 }
8011 
8012 bool bpf_map__is_pinned(const struct bpf_map *map)
8013 {
8014 	return map->pinned;
8015 }
8016 
8017 static void sanitize_pin_path(char *s)
8018 {
8019 	/* bpffs disallows periods in path names */
8020 	while (*s) {
8021 		if (*s == '.')
8022 			*s = '_';
8023 		s++;
8024 	}
8025 }
8026 
8027 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8028 {
8029 	struct bpf_map *map;
8030 	int err;
8031 
8032 	if (!obj)
8033 		return libbpf_err(-ENOENT);
8034 
8035 	if (!obj->loaded) {
8036 		pr_warn("object not yet loaded; load it first\n");
8037 		return libbpf_err(-ENOENT);
8038 	}
8039 
8040 	bpf_object__for_each_map(map, obj) {
8041 		char *pin_path = NULL;
8042 		char buf[PATH_MAX];
8043 
8044 		if (!map->autocreate)
8045 			continue;
8046 
8047 		if (path) {
8048 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8049 			if (err)
8050 				goto err_unpin_maps;
8051 			sanitize_pin_path(buf);
8052 			pin_path = buf;
8053 		} else if (!map->pin_path) {
8054 			continue;
8055 		}
8056 
8057 		err = bpf_map__pin(map, pin_path);
8058 		if (err)
8059 			goto err_unpin_maps;
8060 	}
8061 
8062 	return 0;
8063 
8064 err_unpin_maps:
8065 	while ((map = bpf_object__prev_map(obj, map))) {
8066 		if (!map->pin_path)
8067 			continue;
8068 
8069 		bpf_map__unpin(map, NULL);
8070 	}
8071 
8072 	return libbpf_err(err);
8073 }
8074 
8075 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8076 {
8077 	struct bpf_map *map;
8078 	int err;
8079 
8080 	if (!obj)
8081 		return libbpf_err(-ENOENT);
8082 
8083 	bpf_object__for_each_map(map, obj) {
8084 		char *pin_path = NULL;
8085 		char buf[PATH_MAX];
8086 
8087 		if (path) {
8088 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8089 			if (err)
8090 				return libbpf_err(err);
8091 			sanitize_pin_path(buf);
8092 			pin_path = buf;
8093 		} else if (!map->pin_path) {
8094 			continue;
8095 		}
8096 
8097 		err = bpf_map__unpin(map, pin_path);
8098 		if (err)
8099 			return libbpf_err(err);
8100 	}
8101 
8102 	return 0;
8103 }
8104 
8105 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8106 {
8107 	struct bpf_program *prog;
8108 	char buf[PATH_MAX];
8109 	int err;
8110 
8111 	if (!obj)
8112 		return libbpf_err(-ENOENT);
8113 
8114 	if (!obj->loaded) {
8115 		pr_warn("object not yet loaded; load it first\n");
8116 		return libbpf_err(-ENOENT);
8117 	}
8118 
8119 	bpf_object__for_each_program(prog, obj) {
8120 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8121 		if (err)
8122 			goto err_unpin_programs;
8123 
8124 		err = bpf_program__pin(prog, buf);
8125 		if (err)
8126 			goto err_unpin_programs;
8127 	}
8128 
8129 	return 0;
8130 
8131 err_unpin_programs:
8132 	while ((prog = bpf_object__prev_program(obj, prog))) {
8133 		if (pathname_concat(buf, sizeof(buf), path, prog->name))
8134 			continue;
8135 
8136 		bpf_program__unpin(prog, buf);
8137 	}
8138 
8139 	return libbpf_err(err);
8140 }
8141 
8142 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8143 {
8144 	struct bpf_program *prog;
8145 	int err;
8146 
8147 	if (!obj)
8148 		return libbpf_err(-ENOENT);
8149 
8150 	bpf_object__for_each_program(prog, obj) {
8151 		char buf[PATH_MAX];
8152 
8153 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8154 		if (err)
8155 			return libbpf_err(err);
8156 
8157 		err = bpf_program__unpin(prog, buf);
8158 		if (err)
8159 			return libbpf_err(err);
8160 	}
8161 
8162 	return 0;
8163 }
8164 
8165 int bpf_object__pin(struct bpf_object *obj, const char *path)
8166 {
8167 	int err;
8168 
8169 	err = bpf_object__pin_maps(obj, path);
8170 	if (err)
8171 		return libbpf_err(err);
8172 
8173 	err = bpf_object__pin_programs(obj, path);
8174 	if (err) {
8175 		bpf_object__unpin_maps(obj, path);
8176 		return libbpf_err(err);
8177 	}
8178 
8179 	return 0;
8180 }
8181 
8182 static void bpf_map__destroy(struct bpf_map *map)
8183 {
8184 	if (map->inner_map) {
8185 		bpf_map__destroy(map->inner_map);
8186 		zfree(&map->inner_map);
8187 	}
8188 
8189 	zfree(&map->init_slots);
8190 	map->init_slots_sz = 0;
8191 
8192 	if (map->mmaped) {
8193 		munmap(map->mmaped, bpf_map_mmap_sz(map));
8194 		map->mmaped = NULL;
8195 	}
8196 
8197 	if (map->st_ops) {
8198 		zfree(&map->st_ops->data);
8199 		zfree(&map->st_ops->progs);
8200 		zfree(&map->st_ops->kern_func_off);
8201 		zfree(&map->st_ops);
8202 	}
8203 
8204 	zfree(&map->name);
8205 	zfree(&map->real_name);
8206 	zfree(&map->pin_path);
8207 
8208 	if (map->fd >= 0)
8209 		zclose(map->fd);
8210 }
8211 
8212 void bpf_object__close(struct bpf_object *obj)
8213 {
8214 	size_t i;
8215 
8216 	if (IS_ERR_OR_NULL(obj))
8217 		return;
8218 
8219 	usdt_manager_free(obj->usdt_man);
8220 	obj->usdt_man = NULL;
8221 
8222 	bpf_gen__free(obj->gen_loader);
8223 	bpf_object__elf_finish(obj);
8224 	bpf_object_unload(obj);
8225 	btf__free(obj->btf);
8226 	btf_ext__free(obj->btf_ext);
8227 
8228 	for (i = 0; i < obj->nr_maps; i++)
8229 		bpf_map__destroy(&obj->maps[i]);
8230 
8231 	zfree(&obj->btf_custom_path);
8232 	zfree(&obj->kconfig);
8233 	zfree(&obj->externs);
8234 	obj->nr_extern = 0;
8235 
8236 	zfree(&obj->maps);
8237 	obj->nr_maps = 0;
8238 
8239 	if (obj->programs && obj->nr_programs) {
8240 		for (i = 0; i < obj->nr_programs; i++)
8241 			bpf_program__exit(&obj->programs[i]);
8242 	}
8243 	zfree(&obj->programs);
8244 
8245 	free(obj);
8246 }
8247 
8248 const char *bpf_object__name(const struct bpf_object *obj)
8249 {
8250 	return obj ? obj->name : libbpf_err_ptr(-EINVAL);
8251 }
8252 
8253 unsigned int bpf_object__kversion(const struct bpf_object *obj)
8254 {
8255 	return obj ? obj->kern_version : 0;
8256 }
8257 
8258 struct btf *bpf_object__btf(const struct bpf_object *obj)
8259 {
8260 	return obj ? obj->btf : NULL;
8261 }
8262 
8263 int bpf_object__btf_fd(const struct bpf_object *obj)
8264 {
8265 	return obj->btf ? btf__fd(obj->btf) : -1;
8266 }
8267 
8268 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
8269 {
8270 	if (obj->loaded)
8271 		return libbpf_err(-EINVAL);
8272 
8273 	obj->kern_version = kern_version;
8274 
8275 	return 0;
8276 }
8277 
8278 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
8279 {
8280 	struct bpf_gen *gen;
8281 
8282 	if (!opts)
8283 		return -EFAULT;
8284 	if (!OPTS_VALID(opts, gen_loader_opts))
8285 		return -EINVAL;
8286 	gen = calloc(sizeof(*gen), 1);
8287 	if (!gen)
8288 		return -ENOMEM;
8289 	gen->opts = opts;
8290 	obj->gen_loader = gen;
8291 	return 0;
8292 }
8293 
8294 static struct bpf_program *
8295 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8296 		    bool forward)
8297 {
8298 	size_t nr_programs = obj->nr_programs;
8299 	ssize_t idx;
8300 
8301 	if (!nr_programs)
8302 		return NULL;
8303 
8304 	if (!p)
8305 		/* Iter from the beginning */
8306 		return forward ? &obj->programs[0] :
8307 			&obj->programs[nr_programs - 1];
8308 
8309 	if (p->obj != obj) {
8310 		pr_warn("error: program handler doesn't match object\n");
8311 		return errno = EINVAL, NULL;
8312 	}
8313 
8314 	idx = (p - obj->programs) + (forward ? 1 : -1);
8315 	if (idx >= obj->nr_programs || idx < 0)
8316 		return NULL;
8317 	return &obj->programs[idx];
8318 }
8319 
8320 struct bpf_program *
8321 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
8322 {
8323 	struct bpf_program *prog = prev;
8324 
8325 	do {
8326 		prog = __bpf_program__iter(prog, obj, true);
8327 	} while (prog && prog_is_subprog(obj, prog));
8328 
8329 	return prog;
8330 }
8331 
8332 struct bpf_program *
8333 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
8334 {
8335 	struct bpf_program *prog = next;
8336 
8337 	do {
8338 		prog = __bpf_program__iter(prog, obj, false);
8339 	} while (prog && prog_is_subprog(obj, prog));
8340 
8341 	return prog;
8342 }
8343 
8344 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8345 {
8346 	prog->prog_ifindex = ifindex;
8347 }
8348 
8349 const char *bpf_program__name(const struct bpf_program *prog)
8350 {
8351 	return prog->name;
8352 }
8353 
8354 const char *bpf_program__section_name(const struct bpf_program *prog)
8355 {
8356 	return prog->sec_name;
8357 }
8358 
8359 bool bpf_program__autoload(const struct bpf_program *prog)
8360 {
8361 	return prog->autoload;
8362 }
8363 
8364 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8365 {
8366 	if (prog->obj->loaded)
8367 		return libbpf_err(-EINVAL);
8368 
8369 	prog->autoload = autoload;
8370 	return 0;
8371 }
8372 
8373 bool bpf_program__autoattach(const struct bpf_program *prog)
8374 {
8375 	return prog->autoattach;
8376 }
8377 
8378 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
8379 {
8380 	prog->autoattach = autoattach;
8381 }
8382 
8383 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
8384 {
8385 	return prog->insns;
8386 }
8387 
8388 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
8389 {
8390 	return prog->insns_cnt;
8391 }
8392 
8393 int bpf_program__set_insns(struct bpf_program *prog,
8394 			   struct bpf_insn *new_insns, size_t new_insn_cnt)
8395 {
8396 	struct bpf_insn *insns;
8397 
8398 	if (prog->obj->loaded)
8399 		return -EBUSY;
8400 
8401 	insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
8402 	if (!insns) {
8403 		pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
8404 		return -ENOMEM;
8405 	}
8406 	memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
8407 
8408 	prog->insns = insns;
8409 	prog->insns_cnt = new_insn_cnt;
8410 	return 0;
8411 }
8412 
8413 int bpf_program__fd(const struct bpf_program *prog)
8414 {
8415 	if (!prog)
8416 		return libbpf_err(-EINVAL);
8417 
8418 	if (prog->fd < 0)
8419 		return libbpf_err(-ENOENT);
8420 
8421 	return prog->fd;
8422 }
8423 
8424 __alias(bpf_program__type)
8425 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
8426 
8427 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
8428 {
8429 	return prog->type;
8430 }
8431 
8432 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8433 {
8434 	if (prog->obj->loaded)
8435 		return libbpf_err(-EBUSY);
8436 
8437 	prog->type = type;
8438 	return 0;
8439 }
8440 
8441 __alias(bpf_program__expected_attach_type)
8442 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
8443 
8444 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
8445 {
8446 	return prog->expected_attach_type;
8447 }
8448 
8449 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
8450 					   enum bpf_attach_type type)
8451 {
8452 	if (prog->obj->loaded)
8453 		return libbpf_err(-EBUSY);
8454 
8455 	prog->expected_attach_type = type;
8456 	return 0;
8457 }
8458 
8459 __u32 bpf_program__flags(const struct bpf_program *prog)
8460 {
8461 	return prog->prog_flags;
8462 }
8463 
8464 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
8465 {
8466 	if (prog->obj->loaded)
8467 		return libbpf_err(-EBUSY);
8468 
8469 	prog->prog_flags = flags;
8470 	return 0;
8471 }
8472 
8473 __u32 bpf_program__log_level(const struct bpf_program *prog)
8474 {
8475 	return prog->log_level;
8476 }
8477 
8478 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
8479 {
8480 	if (prog->obj->loaded)
8481 		return libbpf_err(-EBUSY);
8482 
8483 	prog->log_level = log_level;
8484 	return 0;
8485 }
8486 
8487 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
8488 {
8489 	*log_size = prog->log_size;
8490 	return prog->log_buf;
8491 }
8492 
8493 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
8494 {
8495 	if (log_size && !log_buf)
8496 		return -EINVAL;
8497 	if (prog->log_size > UINT_MAX)
8498 		return -EINVAL;
8499 	if (prog->obj->loaded)
8500 		return -EBUSY;
8501 
8502 	prog->log_buf = log_buf;
8503 	prog->log_size = log_size;
8504 	return 0;
8505 }
8506 
8507 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) {			    \
8508 	.sec = (char *)sec_pfx,						    \
8509 	.prog_type = BPF_PROG_TYPE_##ptype,				    \
8510 	.expected_attach_type = atype,					    \
8511 	.cookie = (long)(flags),					    \
8512 	.prog_prepare_load_fn = libbpf_prepare_prog_load,		    \
8513 	__VA_ARGS__							    \
8514 }
8515 
8516 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8517 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8518 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8519 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8520 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8521 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8522 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8523 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8524 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8525 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8526 
8527 static const struct bpf_sec_def section_defs[] = {
8528 	SEC_DEF("socket",		SOCKET_FILTER, 0, SEC_NONE),
8529 	SEC_DEF("sk_reuseport/migrate",	SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
8530 	SEC_DEF("sk_reuseport",		SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
8531 	SEC_DEF("kprobe+",		KPROBE,	0, SEC_NONE, attach_kprobe),
8532 	SEC_DEF("uprobe+",		KPROBE,	0, SEC_NONE, attach_uprobe),
8533 	SEC_DEF("uprobe.s+",		KPROBE,	0, SEC_SLEEPABLE, attach_uprobe),
8534 	SEC_DEF("kretprobe+",		KPROBE, 0, SEC_NONE, attach_kprobe),
8535 	SEC_DEF("uretprobe+",		KPROBE, 0, SEC_NONE, attach_uprobe),
8536 	SEC_DEF("uretprobe.s+",		KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
8537 	SEC_DEF("kprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8538 	SEC_DEF("kretprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8539 	SEC_DEF("ksyscall+",		KPROBE,	0, SEC_NONE, attach_ksyscall),
8540 	SEC_DEF("kretsyscall+",		KPROBE, 0, SEC_NONE, attach_ksyscall),
8541 	SEC_DEF("usdt+",		KPROBE,	0, SEC_NONE, attach_usdt),
8542 	SEC_DEF("tc",			SCHED_CLS, 0, SEC_NONE),
8543 	SEC_DEF("classifier",		SCHED_CLS, 0, SEC_NONE),
8544 	SEC_DEF("action",		SCHED_ACT, 0, SEC_NONE),
8545 	SEC_DEF("tracepoint+",		TRACEPOINT, 0, SEC_NONE, attach_tp),
8546 	SEC_DEF("tp+",			TRACEPOINT, 0, SEC_NONE, attach_tp),
8547 	SEC_DEF("raw_tracepoint+",	RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8548 	SEC_DEF("raw_tp+",		RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8549 	SEC_DEF("raw_tracepoint.w+",	RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8550 	SEC_DEF("raw_tp.w+",		RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8551 	SEC_DEF("tp_btf+",		TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
8552 	SEC_DEF("fentry+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
8553 	SEC_DEF("fmod_ret+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
8554 	SEC_DEF("fexit+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
8555 	SEC_DEF("fentry.s+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8556 	SEC_DEF("fmod_ret.s+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8557 	SEC_DEF("fexit.s+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8558 	SEC_DEF("freplace+",		EXT, 0, SEC_ATTACH_BTF, attach_trace),
8559 	SEC_DEF("lsm+",			LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
8560 	SEC_DEF("lsm.s+",		LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
8561 	SEC_DEF("lsm_cgroup+",		LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
8562 	SEC_DEF("iter+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
8563 	SEC_DEF("iter.s+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
8564 	SEC_DEF("syscall",		SYSCALL, 0, SEC_SLEEPABLE),
8565 	SEC_DEF("xdp.frags/devmap",	XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
8566 	SEC_DEF("xdp/devmap",		XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
8567 	SEC_DEF("xdp.frags/cpumap",	XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
8568 	SEC_DEF("xdp/cpumap",		XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
8569 	SEC_DEF("xdp.frags",		XDP, BPF_XDP, SEC_XDP_FRAGS),
8570 	SEC_DEF("xdp",			XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
8571 	SEC_DEF("perf_event",		PERF_EVENT, 0, SEC_NONE),
8572 	SEC_DEF("lwt_in",		LWT_IN, 0, SEC_NONE),
8573 	SEC_DEF("lwt_out",		LWT_OUT, 0, SEC_NONE),
8574 	SEC_DEF("lwt_xmit",		LWT_XMIT, 0, SEC_NONE),
8575 	SEC_DEF("lwt_seg6local",	LWT_SEG6LOCAL, 0, SEC_NONE),
8576 	SEC_DEF("sockops",		SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
8577 	SEC_DEF("sk_skb/stream_parser",	SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
8578 	SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
8579 	SEC_DEF("sk_skb",		SK_SKB, 0, SEC_NONE),
8580 	SEC_DEF("sk_msg",		SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
8581 	SEC_DEF("lirc_mode2",		LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
8582 	SEC_DEF("flow_dissector",	FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
8583 	SEC_DEF("cgroup_skb/ingress",	CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
8584 	SEC_DEF("cgroup_skb/egress",	CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
8585 	SEC_DEF("cgroup/skb",		CGROUP_SKB, 0, SEC_NONE),
8586 	SEC_DEF("cgroup/sock_create",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
8587 	SEC_DEF("cgroup/sock_release",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
8588 	SEC_DEF("cgroup/sock",		CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
8589 	SEC_DEF("cgroup/post_bind4",	CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
8590 	SEC_DEF("cgroup/post_bind6",	CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
8591 	SEC_DEF("cgroup/bind4",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
8592 	SEC_DEF("cgroup/bind6",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
8593 	SEC_DEF("cgroup/connect4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
8594 	SEC_DEF("cgroup/connect6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
8595 	SEC_DEF("cgroup/sendmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
8596 	SEC_DEF("cgroup/sendmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
8597 	SEC_DEF("cgroup/recvmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
8598 	SEC_DEF("cgroup/recvmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
8599 	SEC_DEF("cgroup/getpeername4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
8600 	SEC_DEF("cgroup/getpeername6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
8601 	SEC_DEF("cgroup/getsockname4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
8602 	SEC_DEF("cgroup/getsockname6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
8603 	SEC_DEF("cgroup/sysctl",	CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
8604 	SEC_DEF("cgroup/getsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
8605 	SEC_DEF("cgroup/setsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
8606 	SEC_DEF("cgroup/dev",		CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
8607 	SEC_DEF("struct_ops+",		STRUCT_OPS, 0, SEC_NONE),
8608 	SEC_DEF("sk_lookup",		SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
8609 };
8610 
8611 static size_t custom_sec_def_cnt;
8612 static struct bpf_sec_def *custom_sec_defs;
8613 static struct bpf_sec_def custom_fallback_def;
8614 static bool has_custom_fallback_def;
8615 
8616 static int last_custom_sec_def_handler_id;
8617 
8618 int libbpf_register_prog_handler(const char *sec,
8619 				 enum bpf_prog_type prog_type,
8620 				 enum bpf_attach_type exp_attach_type,
8621 				 const struct libbpf_prog_handler_opts *opts)
8622 {
8623 	struct bpf_sec_def *sec_def;
8624 
8625 	if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
8626 		return libbpf_err(-EINVAL);
8627 
8628 	if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
8629 		return libbpf_err(-E2BIG);
8630 
8631 	if (sec) {
8632 		sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
8633 					      sizeof(*sec_def));
8634 		if (!sec_def)
8635 			return libbpf_err(-ENOMEM);
8636 
8637 		custom_sec_defs = sec_def;
8638 		sec_def = &custom_sec_defs[custom_sec_def_cnt];
8639 	} else {
8640 		if (has_custom_fallback_def)
8641 			return libbpf_err(-EBUSY);
8642 
8643 		sec_def = &custom_fallback_def;
8644 	}
8645 
8646 	sec_def->sec = sec ? strdup(sec) : NULL;
8647 	if (sec && !sec_def->sec)
8648 		return libbpf_err(-ENOMEM);
8649 
8650 	sec_def->prog_type = prog_type;
8651 	sec_def->expected_attach_type = exp_attach_type;
8652 	sec_def->cookie = OPTS_GET(opts, cookie, 0);
8653 
8654 	sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
8655 	sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
8656 	sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
8657 
8658 	sec_def->handler_id = ++last_custom_sec_def_handler_id;
8659 
8660 	if (sec)
8661 		custom_sec_def_cnt++;
8662 	else
8663 		has_custom_fallback_def = true;
8664 
8665 	return sec_def->handler_id;
8666 }
8667 
8668 int libbpf_unregister_prog_handler(int handler_id)
8669 {
8670 	struct bpf_sec_def *sec_defs;
8671 	int i;
8672 
8673 	if (handler_id <= 0)
8674 		return libbpf_err(-EINVAL);
8675 
8676 	if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
8677 		memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
8678 		has_custom_fallback_def = false;
8679 		return 0;
8680 	}
8681 
8682 	for (i = 0; i < custom_sec_def_cnt; i++) {
8683 		if (custom_sec_defs[i].handler_id == handler_id)
8684 			break;
8685 	}
8686 
8687 	if (i == custom_sec_def_cnt)
8688 		return libbpf_err(-ENOENT);
8689 
8690 	free(custom_sec_defs[i].sec);
8691 	for (i = i + 1; i < custom_sec_def_cnt; i++)
8692 		custom_sec_defs[i - 1] = custom_sec_defs[i];
8693 	custom_sec_def_cnt--;
8694 
8695 	/* try to shrink the array, but it's ok if we couldn't */
8696 	sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
8697 	if (sec_defs)
8698 		custom_sec_defs = sec_defs;
8699 
8700 	return 0;
8701 }
8702 
8703 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
8704 {
8705 	size_t len = strlen(sec_def->sec);
8706 
8707 	/* "type/" always has to have proper SEC("type/extras") form */
8708 	if (sec_def->sec[len - 1] == '/') {
8709 		if (str_has_pfx(sec_name, sec_def->sec))
8710 			return true;
8711 		return false;
8712 	}
8713 
8714 	/* "type+" means it can be either exact SEC("type") or
8715 	 * well-formed SEC("type/extras") with proper '/' separator
8716 	 */
8717 	if (sec_def->sec[len - 1] == '+') {
8718 		len--;
8719 		/* not even a prefix */
8720 		if (strncmp(sec_name, sec_def->sec, len) != 0)
8721 			return false;
8722 		/* exact match or has '/' separator */
8723 		if (sec_name[len] == '\0' || sec_name[len] == '/')
8724 			return true;
8725 		return false;
8726 	}
8727 
8728 	return strcmp(sec_name, sec_def->sec) == 0;
8729 }
8730 
8731 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
8732 {
8733 	const struct bpf_sec_def *sec_def;
8734 	int i, n;
8735 
8736 	n = custom_sec_def_cnt;
8737 	for (i = 0; i < n; i++) {
8738 		sec_def = &custom_sec_defs[i];
8739 		if (sec_def_matches(sec_def, sec_name))
8740 			return sec_def;
8741 	}
8742 
8743 	n = ARRAY_SIZE(section_defs);
8744 	for (i = 0; i < n; i++) {
8745 		sec_def = &section_defs[i];
8746 		if (sec_def_matches(sec_def, sec_name))
8747 			return sec_def;
8748 	}
8749 
8750 	if (has_custom_fallback_def)
8751 		return &custom_fallback_def;
8752 
8753 	return NULL;
8754 }
8755 
8756 #define MAX_TYPE_NAME_SIZE 32
8757 
8758 static char *libbpf_get_type_names(bool attach_type)
8759 {
8760 	int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
8761 	char *buf;
8762 
8763 	buf = malloc(len);
8764 	if (!buf)
8765 		return NULL;
8766 
8767 	buf[0] = '\0';
8768 	/* Forge string buf with all available names */
8769 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8770 		const struct bpf_sec_def *sec_def = &section_defs[i];
8771 
8772 		if (attach_type) {
8773 			if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
8774 				continue;
8775 
8776 			if (!(sec_def->cookie & SEC_ATTACHABLE))
8777 				continue;
8778 		}
8779 
8780 		if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
8781 			free(buf);
8782 			return NULL;
8783 		}
8784 		strcat(buf, " ");
8785 		strcat(buf, section_defs[i].sec);
8786 	}
8787 
8788 	return buf;
8789 }
8790 
8791 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
8792 			     enum bpf_attach_type *expected_attach_type)
8793 {
8794 	const struct bpf_sec_def *sec_def;
8795 	char *type_names;
8796 
8797 	if (!name)
8798 		return libbpf_err(-EINVAL);
8799 
8800 	sec_def = find_sec_def(name);
8801 	if (sec_def) {
8802 		*prog_type = sec_def->prog_type;
8803 		*expected_attach_type = sec_def->expected_attach_type;
8804 		return 0;
8805 	}
8806 
8807 	pr_debug("failed to guess program type from ELF section '%s'\n", name);
8808 	type_names = libbpf_get_type_names(false);
8809 	if (type_names != NULL) {
8810 		pr_debug("supported section(type) names are:%s\n", type_names);
8811 		free(type_names);
8812 	}
8813 
8814 	return libbpf_err(-ESRCH);
8815 }
8816 
8817 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
8818 {
8819 	if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
8820 		return NULL;
8821 
8822 	return attach_type_name[t];
8823 }
8824 
8825 const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
8826 {
8827 	if (t < 0 || t >= ARRAY_SIZE(link_type_name))
8828 		return NULL;
8829 
8830 	return link_type_name[t];
8831 }
8832 
8833 const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
8834 {
8835 	if (t < 0 || t >= ARRAY_SIZE(map_type_name))
8836 		return NULL;
8837 
8838 	return map_type_name[t];
8839 }
8840 
8841 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
8842 {
8843 	if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
8844 		return NULL;
8845 
8846 	return prog_type_name[t];
8847 }
8848 
8849 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
8850 						     size_t offset)
8851 {
8852 	struct bpf_map *map;
8853 	size_t i;
8854 
8855 	for (i = 0; i < obj->nr_maps; i++) {
8856 		map = &obj->maps[i];
8857 		if (!bpf_map__is_struct_ops(map))
8858 			continue;
8859 		if (map->sec_offset <= offset &&
8860 		    offset - map->sec_offset < map->def.value_size)
8861 			return map;
8862 	}
8863 
8864 	return NULL;
8865 }
8866 
8867 /* Collect the reloc from ELF and populate the st_ops->progs[] */
8868 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
8869 					    Elf64_Shdr *shdr, Elf_Data *data)
8870 {
8871 	const struct btf_member *member;
8872 	struct bpf_struct_ops *st_ops;
8873 	struct bpf_program *prog;
8874 	unsigned int shdr_idx;
8875 	const struct btf *btf;
8876 	struct bpf_map *map;
8877 	unsigned int moff, insn_idx;
8878 	const char *name;
8879 	__u32 member_idx;
8880 	Elf64_Sym *sym;
8881 	Elf64_Rel *rel;
8882 	int i, nrels;
8883 
8884 	btf = obj->btf;
8885 	nrels = shdr->sh_size / shdr->sh_entsize;
8886 	for (i = 0; i < nrels; i++) {
8887 		rel = elf_rel_by_idx(data, i);
8888 		if (!rel) {
8889 			pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
8890 			return -LIBBPF_ERRNO__FORMAT;
8891 		}
8892 
8893 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
8894 		if (!sym) {
8895 			pr_warn("struct_ops reloc: symbol %zx not found\n",
8896 				(size_t)ELF64_R_SYM(rel->r_info));
8897 			return -LIBBPF_ERRNO__FORMAT;
8898 		}
8899 
8900 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
8901 		map = find_struct_ops_map_by_offset(obj, rel->r_offset);
8902 		if (!map) {
8903 			pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
8904 				(size_t)rel->r_offset);
8905 			return -EINVAL;
8906 		}
8907 
8908 		moff = rel->r_offset - map->sec_offset;
8909 		shdr_idx = sym->st_shndx;
8910 		st_ops = map->st_ops;
8911 		pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
8912 			 map->name,
8913 			 (long long)(rel->r_info >> 32),
8914 			 (long long)sym->st_value,
8915 			 shdr_idx, (size_t)rel->r_offset,
8916 			 map->sec_offset, sym->st_name, name);
8917 
8918 		if (shdr_idx >= SHN_LORESERVE) {
8919 			pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
8920 				map->name, (size_t)rel->r_offset, shdr_idx);
8921 			return -LIBBPF_ERRNO__RELOC;
8922 		}
8923 		if (sym->st_value % BPF_INSN_SZ) {
8924 			pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
8925 				map->name, (unsigned long long)sym->st_value);
8926 			return -LIBBPF_ERRNO__FORMAT;
8927 		}
8928 		insn_idx = sym->st_value / BPF_INSN_SZ;
8929 
8930 		member = find_member_by_offset(st_ops->type, moff * 8);
8931 		if (!member) {
8932 			pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
8933 				map->name, moff);
8934 			return -EINVAL;
8935 		}
8936 		member_idx = member - btf_members(st_ops->type);
8937 		name = btf__name_by_offset(btf, member->name_off);
8938 
8939 		if (!resolve_func_ptr(btf, member->type, NULL)) {
8940 			pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
8941 				map->name, name);
8942 			return -EINVAL;
8943 		}
8944 
8945 		prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
8946 		if (!prog) {
8947 			pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
8948 				map->name, shdr_idx, name);
8949 			return -EINVAL;
8950 		}
8951 
8952 		/* prevent the use of BPF prog with invalid type */
8953 		if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
8954 			pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
8955 				map->name, prog->name);
8956 			return -EINVAL;
8957 		}
8958 
8959 		/* if we haven't yet processed this BPF program, record proper
8960 		 * attach_btf_id and member_idx
8961 		 */
8962 		if (!prog->attach_btf_id) {
8963 			prog->attach_btf_id = st_ops->type_id;
8964 			prog->expected_attach_type = member_idx;
8965 		}
8966 
8967 		/* struct_ops BPF prog can be re-used between multiple
8968 		 * .struct_ops as long as it's the same struct_ops struct
8969 		 * definition and the same function pointer field
8970 		 */
8971 		if (prog->attach_btf_id != st_ops->type_id ||
8972 		    prog->expected_attach_type != member_idx) {
8973 			pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
8974 				map->name, prog->name, prog->sec_name, prog->type,
8975 				prog->attach_btf_id, prog->expected_attach_type, name);
8976 			return -EINVAL;
8977 		}
8978 
8979 		st_ops->progs[member_idx] = prog;
8980 	}
8981 
8982 	return 0;
8983 }
8984 
8985 #define BTF_TRACE_PREFIX "btf_trace_"
8986 #define BTF_LSM_PREFIX "bpf_lsm_"
8987 #define BTF_ITER_PREFIX "bpf_iter_"
8988 #define BTF_MAX_NAME_SIZE 128
8989 
8990 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
8991 				const char **prefix, int *kind)
8992 {
8993 	switch (attach_type) {
8994 	case BPF_TRACE_RAW_TP:
8995 		*prefix = BTF_TRACE_PREFIX;
8996 		*kind = BTF_KIND_TYPEDEF;
8997 		break;
8998 	case BPF_LSM_MAC:
8999 	case BPF_LSM_CGROUP:
9000 		*prefix = BTF_LSM_PREFIX;
9001 		*kind = BTF_KIND_FUNC;
9002 		break;
9003 	case BPF_TRACE_ITER:
9004 		*prefix = BTF_ITER_PREFIX;
9005 		*kind = BTF_KIND_FUNC;
9006 		break;
9007 	default:
9008 		*prefix = "";
9009 		*kind = BTF_KIND_FUNC;
9010 	}
9011 }
9012 
9013 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
9014 				   const char *name, __u32 kind)
9015 {
9016 	char btf_type_name[BTF_MAX_NAME_SIZE];
9017 	int ret;
9018 
9019 	ret = snprintf(btf_type_name, sizeof(btf_type_name),
9020 		       "%s%s", prefix, name);
9021 	/* snprintf returns the number of characters written excluding the
9022 	 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
9023 	 * indicates truncation.
9024 	 */
9025 	if (ret < 0 || ret >= sizeof(btf_type_name))
9026 		return -ENAMETOOLONG;
9027 	return btf__find_by_name_kind(btf, btf_type_name, kind);
9028 }
9029 
9030 static inline int find_attach_btf_id(struct btf *btf, const char *name,
9031 				     enum bpf_attach_type attach_type)
9032 {
9033 	const char *prefix;
9034 	int kind;
9035 
9036 	btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
9037 	return find_btf_by_prefix_kind(btf, prefix, name, kind);
9038 }
9039 
9040 int libbpf_find_vmlinux_btf_id(const char *name,
9041 			       enum bpf_attach_type attach_type)
9042 {
9043 	struct btf *btf;
9044 	int err;
9045 
9046 	btf = btf__load_vmlinux_btf();
9047 	err = libbpf_get_error(btf);
9048 	if (err) {
9049 		pr_warn("vmlinux BTF is not found\n");
9050 		return libbpf_err(err);
9051 	}
9052 
9053 	err = find_attach_btf_id(btf, name, attach_type);
9054 	if (err <= 0)
9055 		pr_warn("%s is not found in vmlinux BTF\n", name);
9056 
9057 	btf__free(btf);
9058 	return libbpf_err(err);
9059 }
9060 
9061 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9062 {
9063 	struct bpf_prog_info info;
9064 	__u32 info_len = sizeof(info);
9065 	struct btf *btf;
9066 	int err;
9067 
9068 	memset(&info, 0, info_len);
9069 	err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len);
9070 	if (err) {
9071 		pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n",
9072 			attach_prog_fd, err);
9073 		return err;
9074 	}
9075 
9076 	err = -EINVAL;
9077 	if (!info.btf_id) {
9078 		pr_warn("The target program doesn't have BTF\n");
9079 		goto out;
9080 	}
9081 	btf = btf__load_from_kernel_by_id(info.btf_id);
9082 	err = libbpf_get_error(btf);
9083 	if (err) {
9084 		pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9085 		goto out;
9086 	}
9087 	err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9088 	btf__free(btf);
9089 	if (err <= 0) {
9090 		pr_warn("%s is not found in prog's BTF\n", name);
9091 		goto out;
9092 	}
9093 out:
9094 	return err;
9095 }
9096 
9097 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9098 			      enum bpf_attach_type attach_type,
9099 			      int *btf_obj_fd, int *btf_type_id)
9100 {
9101 	int ret, i;
9102 
9103 	ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9104 	if (ret > 0) {
9105 		*btf_obj_fd = 0; /* vmlinux BTF */
9106 		*btf_type_id = ret;
9107 		return 0;
9108 	}
9109 	if (ret != -ENOENT)
9110 		return ret;
9111 
9112 	ret = load_module_btfs(obj);
9113 	if (ret)
9114 		return ret;
9115 
9116 	for (i = 0; i < obj->btf_module_cnt; i++) {
9117 		const struct module_btf *mod = &obj->btf_modules[i];
9118 
9119 		ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9120 		if (ret > 0) {
9121 			*btf_obj_fd = mod->fd;
9122 			*btf_type_id = ret;
9123 			return 0;
9124 		}
9125 		if (ret == -ENOENT)
9126 			continue;
9127 
9128 		return ret;
9129 	}
9130 
9131 	return -ESRCH;
9132 }
9133 
9134 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9135 				     int *btf_obj_fd, int *btf_type_id)
9136 {
9137 	enum bpf_attach_type attach_type = prog->expected_attach_type;
9138 	__u32 attach_prog_fd = prog->attach_prog_fd;
9139 	int err = 0;
9140 
9141 	/* BPF program's BTF ID */
9142 	if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
9143 		if (!attach_prog_fd) {
9144 			pr_warn("prog '%s': attach program FD is not set\n", prog->name);
9145 			return -EINVAL;
9146 		}
9147 		err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9148 		if (err < 0) {
9149 			pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9150 				 prog->name, attach_prog_fd, attach_name, err);
9151 			return err;
9152 		}
9153 		*btf_obj_fd = 0;
9154 		*btf_type_id = err;
9155 		return 0;
9156 	}
9157 
9158 	/* kernel/module BTF ID */
9159 	if (prog->obj->gen_loader) {
9160 		bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9161 		*btf_obj_fd = 0;
9162 		*btf_type_id = 1;
9163 	} else {
9164 		err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9165 	}
9166 	if (err) {
9167 		pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n",
9168 			prog->name, attach_name, err);
9169 		return err;
9170 	}
9171 	return 0;
9172 }
9173 
9174 int libbpf_attach_type_by_name(const char *name,
9175 			       enum bpf_attach_type *attach_type)
9176 {
9177 	char *type_names;
9178 	const struct bpf_sec_def *sec_def;
9179 
9180 	if (!name)
9181 		return libbpf_err(-EINVAL);
9182 
9183 	sec_def = find_sec_def(name);
9184 	if (!sec_def) {
9185 		pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9186 		type_names = libbpf_get_type_names(true);
9187 		if (type_names != NULL) {
9188 			pr_debug("attachable section(type) names are:%s\n", type_names);
9189 			free(type_names);
9190 		}
9191 
9192 		return libbpf_err(-EINVAL);
9193 	}
9194 
9195 	if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9196 		return libbpf_err(-EINVAL);
9197 	if (!(sec_def->cookie & SEC_ATTACHABLE))
9198 		return libbpf_err(-EINVAL);
9199 
9200 	*attach_type = sec_def->expected_attach_type;
9201 	return 0;
9202 }
9203 
9204 int bpf_map__fd(const struct bpf_map *map)
9205 {
9206 	return map ? map->fd : libbpf_err(-EINVAL);
9207 }
9208 
9209 static bool map_uses_real_name(const struct bpf_map *map)
9210 {
9211 	/* Since libbpf started to support custom .data.* and .rodata.* maps,
9212 	 * their user-visible name differs from kernel-visible name. Users see
9213 	 * such map's corresponding ELF section name as a map name.
9214 	 * This check distinguishes .data/.rodata from .data.* and .rodata.*
9215 	 * maps to know which name has to be returned to the user.
9216 	 */
9217 	if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
9218 		return true;
9219 	if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
9220 		return true;
9221 	return false;
9222 }
9223 
9224 const char *bpf_map__name(const struct bpf_map *map)
9225 {
9226 	if (!map)
9227 		return NULL;
9228 
9229 	if (map_uses_real_name(map))
9230 		return map->real_name;
9231 
9232 	return map->name;
9233 }
9234 
9235 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9236 {
9237 	return map->def.type;
9238 }
9239 
9240 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9241 {
9242 	if (map->fd >= 0)
9243 		return libbpf_err(-EBUSY);
9244 	map->def.type = type;
9245 	return 0;
9246 }
9247 
9248 __u32 bpf_map__map_flags(const struct bpf_map *map)
9249 {
9250 	return map->def.map_flags;
9251 }
9252 
9253 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9254 {
9255 	if (map->fd >= 0)
9256 		return libbpf_err(-EBUSY);
9257 	map->def.map_flags = flags;
9258 	return 0;
9259 }
9260 
9261 __u64 bpf_map__map_extra(const struct bpf_map *map)
9262 {
9263 	return map->map_extra;
9264 }
9265 
9266 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
9267 {
9268 	if (map->fd >= 0)
9269 		return libbpf_err(-EBUSY);
9270 	map->map_extra = map_extra;
9271 	return 0;
9272 }
9273 
9274 __u32 bpf_map__numa_node(const struct bpf_map *map)
9275 {
9276 	return map->numa_node;
9277 }
9278 
9279 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
9280 {
9281 	if (map->fd >= 0)
9282 		return libbpf_err(-EBUSY);
9283 	map->numa_node = numa_node;
9284 	return 0;
9285 }
9286 
9287 __u32 bpf_map__key_size(const struct bpf_map *map)
9288 {
9289 	return map->def.key_size;
9290 }
9291 
9292 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
9293 {
9294 	if (map->fd >= 0)
9295 		return libbpf_err(-EBUSY);
9296 	map->def.key_size = size;
9297 	return 0;
9298 }
9299 
9300 __u32 bpf_map__value_size(const struct bpf_map *map)
9301 {
9302 	return map->def.value_size;
9303 }
9304 
9305 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
9306 {
9307 	if (map->fd >= 0)
9308 		return libbpf_err(-EBUSY);
9309 	map->def.value_size = size;
9310 	return 0;
9311 }
9312 
9313 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
9314 {
9315 	return map ? map->btf_key_type_id : 0;
9316 }
9317 
9318 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
9319 {
9320 	return map ? map->btf_value_type_id : 0;
9321 }
9322 
9323 int bpf_map__set_initial_value(struct bpf_map *map,
9324 			       const void *data, size_t size)
9325 {
9326 	if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
9327 	    size != map->def.value_size || map->fd >= 0)
9328 		return libbpf_err(-EINVAL);
9329 
9330 	memcpy(map->mmaped, data, size);
9331 	return 0;
9332 }
9333 
9334 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize)
9335 {
9336 	if (!map->mmaped)
9337 		return NULL;
9338 	*psize = map->def.value_size;
9339 	return map->mmaped;
9340 }
9341 
9342 bool bpf_map__is_internal(const struct bpf_map *map)
9343 {
9344 	return map->libbpf_type != LIBBPF_MAP_UNSPEC;
9345 }
9346 
9347 __u32 bpf_map__ifindex(const struct bpf_map *map)
9348 {
9349 	return map->map_ifindex;
9350 }
9351 
9352 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
9353 {
9354 	if (map->fd >= 0)
9355 		return libbpf_err(-EBUSY);
9356 	map->map_ifindex = ifindex;
9357 	return 0;
9358 }
9359 
9360 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
9361 {
9362 	if (!bpf_map_type__is_map_in_map(map->def.type)) {
9363 		pr_warn("error: unsupported map type\n");
9364 		return libbpf_err(-EINVAL);
9365 	}
9366 	if (map->inner_map_fd != -1) {
9367 		pr_warn("error: inner_map_fd already specified\n");
9368 		return libbpf_err(-EINVAL);
9369 	}
9370 	if (map->inner_map) {
9371 		bpf_map__destroy(map->inner_map);
9372 		zfree(&map->inner_map);
9373 	}
9374 	map->inner_map_fd = fd;
9375 	return 0;
9376 }
9377 
9378 static struct bpf_map *
9379 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
9380 {
9381 	ssize_t idx;
9382 	struct bpf_map *s, *e;
9383 
9384 	if (!obj || !obj->maps)
9385 		return errno = EINVAL, NULL;
9386 
9387 	s = obj->maps;
9388 	e = obj->maps + obj->nr_maps;
9389 
9390 	if ((m < s) || (m >= e)) {
9391 		pr_warn("error in %s: map handler doesn't belong to object\n",
9392 			 __func__);
9393 		return errno = EINVAL, NULL;
9394 	}
9395 
9396 	idx = (m - obj->maps) + i;
9397 	if (idx >= obj->nr_maps || idx < 0)
9398 		return NULL;
9399 	return &obj->maps[idx];
9400 }
9401 
9402 struct bpf_map *
9403 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
9404 {
9405 	if (prev == NULL)
9406 		return obj->maps;
9407 
9408 	return __bpf_map__iter(prev, obj, 1);
9409 }
9410 
9411 struct bpf_map *
9412 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
9413 {
9414 	if (next == NULL) {
9415 		if (!obj->nr_maps)
9416 			return NULL;
9417 		return obj->maps + obj->nr_maps - 1;
9418 	}
9419 
9420 	return __bpf_map__iter(next, obj, -1);
9421 }
9422 
9423 struct bpf_map *
9424 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9425 {
9426 	struct bpf_map *pos;
9427 
9428 	bpf_object__for_each_map(pos, obj) {
9429 		/* if it's a special internal map name (which always starts
9430 		 * with dot) then check if that special name matches the
9431 		 * real map name (ELF section name)
9432 		 */
9433 		if (name[0] == '.') {
9434 			if (pos->real_name && strcmp(pos->real_name, name) == 0)
9435 				return pos;
9436 			continue;
9437 		}
9438 		/* otherwise map name has to be an exact match */
9439 		if (map_uses_real_name(pos)) {
9440 			if (strcmp(pos->real_name, name) == 0)
9441 				return pos;
9442 			continue;
9443 		}
9444 		if (strcmp(pos->name, name) == 0)
9445 			return pos;
9446 	}
9447 	return errno = ENOENT, NULL;
9448 }
9449 
9450 int
9451 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9452 {
9453 	return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9454 }
9455 
9456 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
9457 			   size_t value_sz, bool check_value_sz)
9458 {
9459 	if (map->fd <= 0)
9460 		return -ENOENT;
9461 
9462 	if (map->def.key_size != key_sz) {
9463 		pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
9464 			map->name, key_sz, map->def.key_size);
9465 		return -EINVAL;
9466 	}
9467 
9468 	if (!check_value_sz)
9469 		return 0;
9470 
9471 	switch (map->def.type) {
9472 	case BPF_MAP_TYPE_PERCPU_ARRAY:
9473 	case BPF_MAP_TYPE_PERCPU_HASH:
9474 	case BPF_MAP_TYPE_LRU_PERCPU_HASH:
9475 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
9476 		int num_cpu = libbpf_num_possible_cpus();
9477 		size_t elem_sz = roundup(map->def.value_size, 8);
9478 
9479 		if (value_sz != num_cpu * elem_sz) {
9480 			pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
9481 				map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
9482 			return -EINVAL;
9483 		}
9484 		break;
9485 	}
9486 	default:
9487 		if (map->def.value_size != value_sz) {
9488 			pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
9489 				map->name, value_sz, map->def.value_size);
9490 			return -EINVAL;
9491 		}
9492 		break;
9493 	}
9494 	return 0;
9495 }
9496 
9497 int bpf_map__lookup_elem(const struct bpf_map *map,
9498 			 const void *key, size_t key_sz,
9499 			 void *value, size_t value_sz, __u64 flags)
9500 {
9501 	int err;
9502 
9503 	err = validate_map_op(map, key_sz, value_sz, true);
9504 	if (err)
9505 		return libbpf_err(err);
9506 
9507 	return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
9508 }
9509 
9510 int bpf_map__update_elem(const struct bpf_map *map,
9511 			 const void *key, size_t key_sz,
9512 			 const void *value, size_t value_sz, __u64 flags)
9513 {
9514 	int err;
9515 
9516 	err = validate_map_op(map, key_sz, value_sz, true);
9517 	if (err)
9518 		return libbpf_err(err);
9519 
9520 	return bpf_map_update_elem(map->fd, key, value, flags);
9521 }
9522 
9523 int bpf_map__delete_elem(const struct bpf_map *map,
9524 			 const void *key, size_t key_sz, __u64 flags)
9525 {
9526 	int err;
9527 
9528 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9529 	if (err)
9530 		return libbpf_err(err);
9531 
9532 	return bpf_map_delete_elem_flags(map->fd, key, flags);
9533 }
9534 
9535 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
9536 				    const void *key, size_t key_sz,
9537 				    void *value, size_t value_sz, __u64 flags)
9538 {
9539 	int err;
9540 
9541 	err = validate_map_op(map, key_sz, value_sz, true);
9542 	if (err)
9543 		return libbpf_err(err);
9544 
9545 	return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
9546 }
9547 
9548 int bpf_map__get_next_key(const struct bpf_map *map,
9549 			  const void *cur_key, void *next_key, size_t key_sz)
9550 {
9551 	int err;
9552 
9553 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9554 	if (err)
9555 		return libbpf_err(err);
9556 
9557 	return bpf_map_get_next_key(map->fd, cur_key, next_key);
9558 }
9559 
9560 long libbpf_get_error(const void *ptr)
9561 {
9562 	if (!IS_ERR_OR_NULL(ptr))
9563 		return 0;
9564 
9565 	if (IS_ERR(ptr))
9566 		errno = -PTR_ERR(ptr);
9567 
9568 	/* If ptr == NULL, then errno should be already set by the failing
9569 	 * API, because libbpf never returns NULL on success and it now always
9570 	 * sets errno on error. So no extra errno handling for ptr == NULL
9571 	 * case.
9572 	 */
9573 	return -errno;
9574 }
9575 
9576 /* Replace link's underlying BPF program with the new one */
9577 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
9578 {
9579 	int ret;
9580 
9581 	ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
9582 	return libbpf_err_errno(ret);
9583 }
9584 
9585 /* Release "ownership" of underlying BPF resource (typically, BPF program
9586  * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
9587  * link, when destructed through bpf_link__destroy() call won't attempt to
9588  * detach/unregisted that BPF resource. This is useful in situations where,
9589  * say, attached BPF program has to outlive userspace program that attached it
9590  * in the system. Depending on type of BPF program, though, there might be
9591  * additional steps (like pinning BPF program in BPF FS) necessary to ensure
9592  * exit of userspace program doesn't trigger automatic detachment and clean up
9593  * inside the kernel.
9594  */
9595 void bpf_link__disconnect(struct bpf_link *link)
9596 {
9597 	link->disconnected = true;
9598 }
9599 
9600 int bpf_link__destroy(struct bpf_link *link)
9601 {
9602 	int err = 0;
9603 
9604 	if (IS_ERR_OR_NULL(link))
9605 		return 0;
9606 
9607 	if (!link->disconnected && link->detach)
9608 		err = link->detach(link);
9609 	if (link->pin_path)
9610 		free(link->pin_path);
9611 	if (link->dealloc)
9612 		link->dealloc(link);
9613 	else
9614 		free(link);
9615 
9616 	return libbpf_err(err);
9617 }
9618 
9619 int bpf_link__fd(const struct bpf_link *link)
9620 {
9621 	return link->fd;
9622 }
9623 
9624 const char *bpf_link__pin_path(const struct bpf_link *link)
9625 {
9626 	return link->pin_path;
9627 }
9628 
9629 static int bpf_link__detach_fd(struct bpf_link *link)
9630 {
9631 	return libbpf_err_errno(close(link->fd));
9632 }
9633 
9634 struct bpf_link *bpf_link__open(const char *path)
9635 {
9636 	struct bpf_link *link;
9637 	int fd;
9638 
9639 	fd = bpf_obj_get(path);
9640 	if (fd < 0) {
9641 		fd = -errno;
9642 		pr_warn("failed to open link at %s: %d\n", path, fd);
9643 		return libbpf_err_ptr(fd);
9644 	}
9645 
9646 	link = calloc(1, sizeof(*link));
9647 	if (!link) {
9648 		close(fd);
9649 		return libbpf_err_ptr(-ENOMEM);
9650 	}
9651 	link->detach = &bpf_link__detach_fd;
9652 	link->fd = fd;
9653 
9654 	link->pin_path = strdup(path);
9655 	if (!link->pin_path) {
9656 		bpf_link__destroy(link);
9657 		return libbpf_err_ptr(-ENOMEM);
9658 	}
9659 
9660 	return link;
9661 }
9662 
9663 int bpf_link__detach(struct bpf_link *link)
9664 {
9665 	return bpf_link_detach(link->fd) ? -errno : 0;
9666 }
9667 
9668 int bpf_link__pin(struct bpf_link *link, const char *path)
9669 {
9670 	int err;
9671 
9672 	if (link->pin_path)
9673 		return libbpf_err(-EBUSY);
9674 	err = make_parent_dir(path);
9675 	if (err)
9676 		return libbpf_err(err);
9677 	err = check_path(path);
9678 	if (err)
9679 		return libbpf_err(err);
9680 
9681 	link->pin_path = strdup(path);
9682 	if (!link->pin_path)
9683 		return libbpf_err(-ENOMEM);
9684 
9685 	if (bpf_obj_pin(link->fd, link->pin_path)) {
9686 		err = -errno;
9687 		zfree(&link->pin_path);
9688 		return libbpf_err(err);
9689 	}
9690 
9691 	pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
9692 	return 0;
9693 }
9694 
9695 int bpf_link__unpin(struct bpf_link *link)
9696 {
9697 	int err;
9698 
9699 	if (!link->pin_path)
9700 		return libbpf_err(-EINVAL);
9701 
9702 	err = unlink(link->pin_path);
9703 	if (err != 0)
9704 		return -errno;
9705 
9706 	pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
9707 	zfree(&link->pin_path);
9708 	return 0;
9709 }
9710 
9711 struct bpf_link_perf {
9712 	struct bpf_link link;
9713 	int perf_event_fd;
9714 	/* legacy kprobe support: keep track of probe identifier and type */
9715 	char *legacy_probe_name;
9716 	bool legacy_is_kprobe;
9717 	bool legacy_is_retprobe;
9718 };
9719 
9720 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
9721 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
9722 
9723 static int bpf_link_perf_detach(struct bpf_link *link)
9724 {
9725 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9726 	int err = 0;
9727 
9728 	if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
9729 		err = -errno;
9730 
9731 	if (perf_link->perf_event_fd != link->fd)
9732 		close(perf_link->perf_event_fd);
9733 	close(link->fd);
9734 
9735 	/* legacy uprobe/kprobe needs to be removed after perf event fd closure */
9736 	if (perf_link->legacy_probe_name) {
9737 		if (perf_link->legacy_is_kprobe) {
9738 			err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
9739 							 perf_link->legacy_is_retprobe);
9740 		} else {
9741 			err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
9742 							 perf_link->legacy_is_retprobe);
9743 		}
9744 	}
9745 
9746 	return err;
9747 }
9748 
9749 static void bpf_link_perf_dealloc(struct bpf_link *link)
9750 {
9751 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9752 
9753 	free(perf_link->legacy_probe_name);
9754 	free(perf_link);
9755 }
9756 
9757 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
9758 						     const struct bpf_perf_event_opts *opts)
9759 {
9760 	char errmsg[STRERR_BUFSIZE];
9761 	struct bpf_link_perf *link;
9762 	int prog_fd, link_fd = -1, err;
9763 
9764 	if (!OPTS_VALID(opts, bpf_perf_event_opts))
9765 		return libbpf_err_ptr(-EINVAL);
9766 
9767 	if (pfd < 0) {
9768 		pr_warn("prog '%s': invalid perf event FD %d\n",
9769 			prog->name, pfd);
9770 		return libbpf_err_ptr(-EINVAL);
9771 	}
9772 	prog_fd = bpf_program__fd(prog);
9773 	if (prog_fd < 0) {
9774 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
9775 			prog->name);
9776 		return libbpf_err_ptr(-EINVAL);
9777 	}
9778 
9779 	link = calloc(1, sizeof(*link));
9780 	if (!link)
9781 		return libbpf_err_ptr(-ENOMEM);
9782 	link->link.detach = &bpf_link_perf_detach;
9783 	link->link.dealloc = &bpf_link_perf_dealloc;
9784 	link->perf_event_fd = pfd;
9785 
9786 	if (kernel_supports(prog->obj, FEAT_PERF_LINK)) {
9787 		DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
9788 			.perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
9789 
9790 		link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
9791 		if (link_fd < 0) {
9792 			err = -errno;
9793 			pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
9794 				prog->name, pfd,
9795 				err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9796 			goto err_out;
9797 		}
9798 		link->link.fd = link_fd;
9799 	} else {
9800 		if (OPTS_GET(opts, bpf_cookie, 0)) {
9801 			pr_warn("prog '%s': user context value is not supported\n", prog->name);
9802 			err = -EOPNOTSUPP;
9803 			goto err_out;
9804 		}
9805 
9806 		if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
9807 			err = -errno;
9808 			pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
9809 				prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9810 			if (err == -EPROTO)
9811 				pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
9812 					prog->name, pfd);
9813 			goto err_out;
9814 		}
9815 		link->link.fd = pfd;
9816 	}
9817 	if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
9818 		err = -errno;
9819 		pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
9820 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9821 		goto err_out;
9822 	}
9823 
9824 	return &link->link;
9825 err_out:
9826 	if (link_fd >= 0)
9827 		close(link_fd);
9828 	free(link);
9829 	return libbpf_err_ptr(err);
9830 }
9831 
9832 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
9833 {
9834 	return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
9835 }
9836 
9837 /*
9838  * this function is expected to parse integer in the range of [0, 2^31-1] from
9839  * given file using scanf format string fmt. If actual parsed value is
9840  * negative, the result might be indistinguishable from error
9841  */
9842 static int parse_uint_from_file(const char *file, const char *fmt)
9843 {
9844 	char buf[STRERR_BUFSIZE];
9845 	int err, ret;
9846 	FILE *f;
9847 
9848 	f = fopen(file, "r");
9849 	if (!f) {
9850 		err = -errno;
9851 		pr_debug("failed to open '%s': %s\n", file,
9852 			 libbpf_strerror_r(err, buf, sizeof(buf)));
9853 		return err;
9854 	}
9855 	err = fscanf(f, fmt, &ret);
9856 	if (err != 1) {
9857 		err = err == EOF ? -EIO : -errno;
9858 		pr_debug("failed to parse '%s': %s\n", file,
9859 			libbpf_strerror_r(err, buf, sizeof(buf)));
9860 		fclose(f);
9861 		return err;
9862 	}
9863 	fclose(f);
9864 	return ret;
9865 }
9866 
9867 static int determine_kprobe_perf_type(void)
9868 {
9869 	const char *file = "/sys/bus/event_source/devices/kprobe/type";
9870 
9871 	return parse_uint_from_file(file, "%d\n");
9872 }
9873 
9874 static int determine_uprobe_perf_type(void)
9875 {
9876 	const char *file = "/sys/bus/event_source/devices/uprobe/type";
9877 
9878 	return parse_uint_from_file(file, "%d\n");
9879 }
9880 
9881 static int determine_kprobe_retprobe_bit(void)
9882 {
9883 	const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
9884 
9885 	return parse_uint_from_file(file, "config:%d\n");
9886 }
9887 
9888 static int determine_uprobe_retprobe_bit(void)
9889 {
9890 	const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
9891 
9892 	return parse_uint_from_file(file, "config:%d\n");
9893 }
9894 
9895 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
9896 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
9897 
9898 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
9899 				 uint64_t offset, int pid, size_t ref_ctr_off)
9900 {
9901 	const size_t attr_sz = sizeof(struct perf_event_attr);
9902 	struct perf_event_attr attr;
9903 	char errmsg[STRERR_BUFSIZE];
9904 	int type, pfd;
9905 
9906 	if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
9907 		return -EINVAL;
9908 
9909 	memset(&attr, 0, attr_sz);
9910 
9911 	type = uprobe ? determine_uprobe_perf_type()
9912 		      : determine_kprobe_perf_type();
9913 	if (type < 0) {
9914 		pr_warn("failed to determine %s perf type: %s\n",
9915 			uprobe ? "uprobe" : "kprobe",
9916 			libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
9917 		return type;
9918 	}
9919 	if (retprobe) {
9920 		int bit = uprobe ? determine_uprobe_retprobe_bit()
9921 				 : determine_kprobe_retprobe_bit();
9922 
9923 		if (bit < 0) {
9924 			pr_warn("failed to determine %s retprobe bit: %s\n",
9925 				uprobe ? "uprobe" : "kprobe",
9926 				libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
9927 			return bit;
9928 		}
9929 		attr.config |= 1 << bit;
9930 	}
9931 	attr.size = attr_sz;
9932 	attr.type = type;
9933 	attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9934 	attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
9935 	attr.config2 = offset;		 /* kprobe_addr or probe_offset */
9936 
9937 	/* pid filter is meaningful only for uprobes */
9938 	pfd = syscall(__NR_perf_event_open, &attr,
9939 		      pid < 0 ? -1 : pid /* pid */,
9940 		      pid == -1 ? 0 : -1 /* cpu */,
9941 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9942 	return pfd >= 0 ? pfd : -errno;
9943 }
9944 
9945 static int append_to_file(const char *file, const char *fmt, ...)
9946 {
9947 	int fd, n, err = 0;
9948 	va_list ap;
9949 
9950 	fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
9951 	if (fd < 0)
9952 		return -errno;
9953 
9954 	va_start(ap, fmt);
9955 	n = vdprintf(fd, fmt, ap);
9956 	va_end(ap);
9957 
9958 	if (n < 0)
9959 		err = -errno;
9960 
9961 	close(fd);
9962 	return err;
9963 }
9964 
9965 #define DEBUGFS "/sys/kernel/debug/tracing"
9966 #define TRACEFS "/sys/kernel/tracing"
9967 
9968 static bool use_debugfs(void)
9969 {
9970 	static int has_debugfs = -1;
9971 
9972 	if (has_debugfs < 0)
9973 		has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
9974 
9975 	return has_debugfs == 1;
9976 }
9977 
9978 static const char *tracefs_path(void)
9979 {
9980 	return use_debugfs() ? DEBUGFS : TRACEFS;
9981 }
9982 
9983 static const char *tracefs_kprobe_events(void)
9984 {
9985 	return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
9986 }
9987 
9988 static const char *tracefs_uprobe_events(void)
9989 {
9990 	return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
9991 }
9992 
9993 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
9994 					 const char *kfunc_name, size_t offset)
9995 {
9996 	static int index = 0;
9997 
9998 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
9999 		 __sync_fetch_and_add(&index, 1));
10000 }
10001 
10002 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
10003 				   const char *kfunc_name, size_t offset)
10004 {
10005 	return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
10006 			      retprobe ? 'r' : 'p',
10007 			      retprobe ? "kretprobes" : "kprobes",
10008 			      probe_name, kfunc_name, offset);
10009 }
10010 
10011 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
10012 {
10013 	return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
10014 			      retprobe ? "kretprobes" : "kprobes", probe_name);
10015 }
10016 
10017 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10018 {
10019 	char file[256];
10020 
10021 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10022 		 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
10023 
10024 	return parse_uint_from_file(file, "%d\n");
10025 }
10026 
10027 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
10028 					 const char *kfunc_name, size_t offset, int pid)
10029 {
10030 	const size_t attr_sz = sizeof(struct perf_event_attr);
10031 	struct perf_event_attr attr;
10032 	char errmsg[STRERR_BUFSIZE];
10033 	int type, pfd, err;
10034 
10035 	err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
10036 	if (err < 0) {
10037 		pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
10038 			kfunc_name, offset,
10039 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10040 		return err;
10041 	}
10042 	type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
10043 	if (type < 0) {
10044 		err = type;
10045 		pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
10046 			kfunc_name, offset,
10047 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10048 		goto err_clean_legacy;
10049 	}
10050 
10051 	memset(&attr, 0, attr_sz);
10052 	attr.size = attr_sz;
10053 	attr.config = type;
10054 	attr.type = PERF_TYPE_TRACEPOINT;
10055 
10056 	pfd = syscall(__NR_perf_event_open, &attr,
10057 		      pid < 0 ? -1 : pid, /* pid */
10058 		      pid == -1 ? 0 : -1, /* cpu */
10059 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
10060 	if (pfd < 0) {
10061 		err = -errno;
10062 		pr_warn("legacy kprobe perf_event_open() failed: %s\n",
10063 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10064 		goto err_clean_legacy;
10065 	}
10066 	return pfd;
10067 
10068 err_clean_legacy:
10069 	/* Clear the newly added legacy kprobe_event */
10070 	remove_kprobe_event_legacy(probe_name, retprobe);
10071 	return err;
10072 }
10073 
10074 static const char *arch_specific_syscall_pfx(void)
10075 {
10076 #if defined(__x86_64__)
10077 	return "x64";
10078 #elif defined(__i386__)
10079 	return "ia32";
10080 #elif defined(__s390x__)
10081 	return "s390x";
10082 #elif defined(__s390__)
10083 	return "s390";
10084 #elif defined(__arm__)
10085 	return "arm";
10086 #elif defined(__aarch64__)
10087 	return "arm64";
10088 #elif defined(__mips__)
10089 	return "mips";
10090 #elif defined(__riscv)
10091 	return "riscv";
10092 #elif defined(__powerpc__)
10093 	return "powerpc";
10094 #elif defined(__powerpc64__)
10095 	return "powerpc64";
10096 #else
10097 	return NULL;
10098 #endif
10099 }
10100 
10101 static int probe_kern_syscall_wrapper(void)
10102 {
10103 	char syscall_name[64];
10104 	const char *ksys_pfx;
10105 
10106 	ksys_pfx = arch_specific_syscall_pfx();
10107 	if (!ksys_pfx)
10108 		return 0;
10109 
10110 	snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
10111 
10112 	if (determine_kprobe_perf_type() >= 0) {
10113 		int pfd;
10114 
10115 		pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
10116 		if (pfd >= 0)
10117 			close(pfd);
10118 
10119 		return pfd >= 0 ? 1 : 0;
10120 	} else { /* legacy mode */
10121 		char probe_name[128];
10122 
10123 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
10124 		if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
10125 			return 0;
10126 
10127 		(void)remove_kprobe_event_legacy(probe_name, false);
10128 		return 1;
10129 	}
10130 }
10131 
10132 struct bpf_link *
10133 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
10134 				const char *func_name,
10135 				const struct bpf_kprobe_opts *opts)
10136 {
10137 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10138 	char errmsg[STRERR_BUFSIZE];
10139 	char *legacy_probe = NULL;
10140 	struct bpf_link *link;
10141 	size_t offset;
10142 	bool retprobe, legacy;
10143 	int pfd, err;
10144 
10145 	if (!OPTS_VALID(opts, bpf_kprobe_opts))
10146 		return libbpf_err_ptr(-EINVAL);
10147 
10148 	retprobe = OPTS_GET(opts, retprobe, false);
10149 	offset = OPTS_GET(opts, offset, 0);
10150 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10151 
10152 	legacy = determine_kprobe_perf_type() < 0;
10153 	if (!legacy) {
10154 		pfd = perf_event_open_probe(false /* uprobe */, retprobe,
10155 					    func_name, offset,
10156 					    -1 /* pid */, 0 /* ref_ctr_off */);
10157 	} else {
10158 		char probe_name[256];
10159 
10160 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
10161 					     func_name, offset);
10162 
10163 		legacy_probe = strdup(probe_name);
10164 		if (!legacy_probe)
10165 			return libbpf_err_ptr(-ENOMEM);
10166 
10167 		pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
10168 						    offset, -1 /* pid */);
10169 	}
10170 	if (pfd < 0) {
10171 		err = -errno;
10172 		pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
10173 			prog->name, retprobe ? "kretprobe" : "kprobe",
10174 			func_name, offset,
10175 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10176 		goto err_out;
10177 	}
10178 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10179 	err = libbpf_get_error(link);
10180 	if (err) {
10181 		close(pfd);
10182 		pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
10183 			prog->name, retprobe ? "kretprobe" : "kprobe",
10184 			func_name, offset,
10185 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10186 		goto err_clean_legacy;
10187 	}
10188 	if (legacy) {
10189 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10190 
10191 		perf_link->legacy_probe_name = legacy_probe;
10192 		perf_link->legacy_is_kprobe = true;
10193 		perf_link->legacy_is_retprobe = retprobe;
10194 	}
10195 
10196 	return link;
10197 
10198 err_clean_legacy:
10199 	if (legacy)
10200 		remove_kprobe_event_legacy(legacy_probe, retprobe);
10201 err_out:
10202 	free(legacy_probe);
10203 	return libbpf_err_ptr(err);
10204 }
10205 
10206 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
10207 					    bool retprobe,
10208 					    const char *func_name)
10209 {
10210 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
10211 		.retprobe = retprobe,
10212 	);
10213 
10214 	return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
10215 }
10216 
10217 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
10218 					      const char *syscall_name,
10219 					      const struct bpf_ksyscall_opts *opts)
10220 {
10221 	LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
10222 	char func_name[128];
10223 
10224 	if (!OPTS_VALID(opts, bpf_ksyscall_opts))
10225 		return libbpf_err_ptr(-EINVAL);
10226 
10227 	if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
10228 		/* arch_specific_syscall_pfx() should never return NULL here
10229 		 * because it is guarded by kernel_supports(). However, since
10230 		 * compiler does not know that we have an explicit conditional
10231 		 * as well.
10232 		 */
10233 		snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
10234 			 arch_specific_syscall_pfx() ? : "", syscall_name);
10235 	} else {
10236 		snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
10237 	}
10238 
10239 	kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
10240 	kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10241 
10242 	return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
10243 }
10244 
10245 /* Adapted from perf/util/string.c */
10246 static bool glob_match(const char *str, const char *pat)
10247 {
10248 	while (*str && *pat && *pat != '*') {
10249 		if (*pat == '?') {      /* Matches any single character */
10250 			str++;
10251 			pat++;
10252 			continue;
10253 		}
10254 		if (*str != *pat)
10255 			return false;
10256 		str++;
10257 		pat++;
10258 	}
10259 	/* Check wild card */
10260 	if (*pat == '*') {
10261 		while (*pat == '*')
10262 			pat++;
10263 		if (!*pat) /* Tail wild card matches all */
10264 			return true;
10265 		while (*str)
10266 			if (glob_match(str++, pat))
10267 				return true;
10268 	}
10269 	return !*str && !*pat;
10270 }
10271 
10272 struct kprobe_multi_resolve {
10273 	const char *pattern;
10274 	unsigned long *addrs;
10275 	size_t cap;
10276 	size_t cnt;
10277 };
10278 
10279 static int
10280 resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type,
10281 			const char *sym_name, void *ctx)
10282 {
10283 	struct kprobe_multi_resolve *res = ctx;
10284 	int err;
10285 
10286 	if (!glob_match(sym_name, res->pattern))
10287 		return 0;
10288 
10289 	err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long),
10290 				res->cnt + 1);
10291 	if (err)
10292 		return err;
10293 
10294 	res->addrs[res->cnt++] = (unsigned long) sym_addr;
10295 	return 0;
10296 }
10297 
10298 struct bpf_link *
10299 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
10300 				      const char *pattern,
10301 				      const struct bpf_kprobe_multi_opts *opts)
10302 {
10303 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
10304 	struct kprobe_multi_resolve res = {
10305 		.pattern = pattern,
10306 	};
10307 	struct bpf_link *link = NULL;
10308 	char errmsg[STRERR_BUFSIZE];
10309 	const unsigned long *addrs;
10310 	int err, link_fd, prog_fd;
10311 	const __u64 *cookies;
10312 	const char **syms;
10313 	bool retprobe;
10314 	size_t cnt;
10315 
10316 	if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
10317 		return libbpf_err_ptr(-EINVAL);
10318 
10319 	syms    = OPTS_GET(opts, syms, false);
10320 	addrs   = OPTS_GET(opts, addrs, false);
10321 	cnt     = OPTS_GET(opts, cnt, false);
10322 	cookies = OPTS_GET(opts, cookies, false);
10323 
10324 	if (!pattern && !addrs && !syms)
10325 		return libbpf_err_ptr(-EINVAL);
10326 	if (pattern && (addrs || syms || cookies || cnt))
10327 		return libbpf_err_ptr(-EINVAL);
10328 	if (!pattern && !cnt)
10329 		return libbpf_err_ptr(-EINVAL);
10330 	if (addrs && syms)
10331 		return libbpf_err_ptr(-EINVAL);
10332 
10333 	if (pattern) {
10334 		err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res);
10335 		if (err)
10336 			goto error;
10337 		if (!res.cnt) {
10338 			err = -ENOENT;
10339 			goto error;
10340 		}
10341 		addrs = res.addrs;
10342 		cnt = res.cnt;
10343 	}
10344 
10345 	retprobe = OPTS_GET(opts, retprobe, false);
10346 
10347 	lopts.kprobe_multi.syms = syms;
10348 	lopts.kprobe_multi.addrs = addrs;
10349 	lopts.kprobe_multi.cookies = cookies;
10350 	lopts.kprobe_multi.cnt = cnt;
10351 	lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
10352 
10353 	link = calloc(1, sizeof(*link));
10354 	if (!link) {
10355 		err = -ENOMEM;
10356 		goto error;
10357 	}
10358 	link->detach = &bpf_link__detach_fd;
10359 
10360 	prog_fd = bpf_program__fd(prog);
10361 	link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts);
10362 	if (link_fd < 0) {
10363 		err = -errno;
10364 		pr_warn("prog '%s': failed to attach: %s\n",
10365 			prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10366 		goto error;
10367 	}
10368 	link->fd = link_fd;
10369 	free(res.addrs);
10370 	return link;
10371 
10372 error:
10373 	free(link);
10374 	free(res.addrs);
10375 	return libbpf_err_ptr(err);
10376 }
10377 
10378 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10379 {
10380 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
10381 	unsigned long offset = 0;
10382 	const char *func_name;
10383 	char *func;
10384 	int n;
10385 
10386 	*link = NULL;
10387 
10388 	/* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
10389 	if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
10390 		return 0;
10391 
10392 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
10393 	if (opts.retprobe)
10394 		func_name = prog->sec_name + sizeof("kretprobe/") - 1;
10395 	else
10396 		func_name = prog->sec_name + sizeof("kprobe/") - 1;
10397 
10398 	n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
10399 	if (n < 1) {
10400 		pr_warn("kprobe name is invalid: %s\n", func_name);
10401 		return -EINVAL;
10402 	}
10403 	if (opts.retprobe && offset != 0) {
10404 		free(func);
10405 		pr_warn("kretprobes do not support offset specification\n");
10406 		return -EINVAL;
10407 	}
10408 
10409 	opts.offset = offset;
10410 	*link = bpf_program__attach_kprobe_opts(prog, func, &opts);
10411 	free(func);
10412 	return libbpf_get_error(*link);
10413 }
10414 
10415 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10416 {
10417 	LIBBPF_OPTS(bpf_ksyscall_opts, opts);
10418 	const char *syscall_name;
10419 
10420 	*link = NULL;
10421 
10422 	/* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
10423 	if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
10424 		return 0;
10425 
10426 	opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
10427 	if (opts.retprobe)
10428 		syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
10429 	else
10430 		syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
10431 
10432 	*link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
10433 	return *link ? 0 : -errno;
10434 }
10435 
10436 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10437 {
10438 	LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
10439 	const char *spec;
10440 	char *pattern;
10441 	int n;
10442 
10443 	*link = NULL;
10444 
10445 	/* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
10446 	if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
10447 	    strcmp(prog->sec_name, "kretprobe.multi") == 0)
10448 		return 0;
10449 
10450 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
10451 	if (opts.retprobe)
10452 		spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
10453 	else
10454 		spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
10455 
10456 	n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
10457 	if (n < 1) {
10458 		pr_warn("kprobe multi pattern is invalid: %s\n", pattern);
10459 		return -EINVAL;
10460 	}
10461 
10462 	*link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
10463 	free(pattern);
10464 	return libbpf_get_error(*link);
10465 }
10466 
10467 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
10468 					 const char *binary_path, uint64_t offset)
10469 {
10470 	int i;
10471 
10472 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
10473 
10474 	/* sanitize binary_path in the probe name */
10475 	for (i = 0; buf[i]; i++) {
10476 		if (!isalnum(buf[i]))
10477 			buf[i] = '_';
10478 	}
10479 }
10480 
10481 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
10482 					  const char *binary_path, size_t offset)
10483 {
10484 	return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
10485 			      retprobe ? 'r' : 'p',
10486 			      retprobe ? "uretprobes" : "uprobes",
10487 			      probe_name, binary_path, offset);
10488 }
10489 
10490 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
10491 {
10492 	return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
10493 			      retprobe ? "uretprobes" : "uprobes", probe_name);
10494 }
10495 
10496 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10497 {
10498 	char file[512];
10499 
10500 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10501 		 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
10502 
10503 	return parse_uint_from_file(file, "%d\n");
10504 }
10505 
10506 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
10507 					 const char *binary_path, size_t offset, int pid)
10508 {
10509 	const size_t attr_sz = sizeof(struct perf_event_attr);
10510 	struct perf_event_attr attr;
10511 	int type, pfd, err;
10512 
10513 	err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
10514 	if (err < 0) {
10515 		pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
10516 			binary_path, (size_t)offset, err);
10517 		return err;
10518 	}
10519 	type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
10520 	if (type < 0) {
10521 		err = type;
10522 		pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
10523 			binary_path, offset, err);
10524 		goto err_clean_legacy;
10525 	}
10526 
10527 	memset(&attr, 0, attr_sz);
10528 	attr.size = attr_sz;
10529 	attr.config = type;
10530 	attr.type = PERF_TYPE_TRACEPOINT;
10531 
10532 	pfd = syscall(__NR_perf_event_open, &attr,
10533 		      pid < 0 ? -1 : pid, /* pid */
10534 		      pid == -1 ? 0 : -1, /* cpu */
10535 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
10536 	if (pfd < 0) {
10537 		err = -errno;
10538 		pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
10539 		goto err_clean_legacy;
10540 	}
10541 	return pfd;
10542 
10543 err_clean_legacy:
10544 	/* Clear the newly added legacy uprobe_event */
10545 	remove_uprobe_event_legacy(probe_name, retprobe);
10546 	return err;
10547 }
10548 
10549 /* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */
10550 static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn)
10551 {
10552 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
10553 		GElf_Shdr sh;
10554 
10555 		if (!gelf_getshdr(scn, &sh))
10556 			continue;
10557 		if (sh.sh_type == sh_type)
10558 			return scn;
10559 	}
10560 	return NULL;
10561 }
10562 
10563 /* Find offset of function name in object specified by path.  "name" matches
10564  * symbol name or name@@LIB for library functions.
10565  */
10566 static long elf_find_func_offset(const char *binary_path, const char *name)
10567 {
10568 	int fd, i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB };
10569 	bool is_shared_lib, is_name_qualified;
10570 	char errmsg[STRERR_BUFSIZE];
10571 	long ret = -ENOENT;
10572 	size_t name_len;
10573 	GElf_Ehdr ehdr;
10574 	Elf *elf;
10575 
10576 	fd = open(binary_path, O_RDONLY | O_CLOEXEC);
10577 	if (fd < 0) {
10578 		ret = -errno;
10579 		pr_warn("failed to open %s: %s\n", binary_path,
10580 			libbpf_strerror_r(ret, errmsg, sizeof(errmsg)));
10581 		return ret;
10582 	}
10583 	elf = elf_begin(fd, ELF_C_READ_MMAP, NULL);
10584 	if (!elf) {
10585 		pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1));
10586 		close(fd);
10587 		return -LIBBPF_ERRNO__FORMAT;
10588 	}
10589 	if (!gelf_getehdr(elf, &ehdr)) {
10590 		pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1));
10591 		ret = -LIBBPF_ERRNO__FORMAT;
10592 		goto out;
10593 	}
10594 	/* for shared lib case, we do not need to calculate relative offset */
10595 	is_shared_lib = ehdr.e_type == ET_DYN;
10596 
10597 	name_len = strlen(name);
10598 	/* Does name specify "@@LIB"? */
10599 	is_name_qualified = strstr(name, "@@") != NULL;
10600 
10601 	/* Search SHT_DYNSYM, SHT_SYMTAB for symbol.  This search order is used because if
10602 	 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically
10603 	 * linked binary may not have SHT_DYMSYM, so absence of a section should not be
10604 	 * reported as a warning/error.
10605 	 */
10606 	for (i = 0; i < ARRAY_SIZE(sh_types); i++) {
10607 		size_t nr_syms, strtabidx, idx;
10608 		Elf_Data *symbols = NULL;
10609 		Elf_Scn *scn = NULL;
10610 		int last_bind = -1;
10611 		const char *sname;
10612 		GElf_Shdr sh;
10613 
10614 		scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL);
10615 		if (!scn) {
10616 			pr_debug("elf: failed to find symbol table ELF sections in '%s'\n",
10617 				 binary_path);
10618 			continue;
10619 		}
10620 		if (!gelf_getshdr(scn, &sh))
10621 			continue;
10622 		strtabidx = sh.sh_link;
10623 		symbols = elf_getdata(scn, 0);
10624 		if (!symbols) {
10625 			pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n",
10626 				binary_path, elf_errmsg(-1));
10627 			ret = -LIBBPF_ERRNO__FORMAT;
10628 			goto out;
10629 		}
10630 		nr_syms = symbols->d_size / sh.sh_entsize;
10631 
10632 		for (idx = 0; idx < nr_syms; idx++) {
10633 			int curr_bind;
10634 			GElf_Sym sym;
10635 			Elf_Scn *sym_scn;
10636 			GElf_Shdr sym_sh;
10637 
10638 			if (!gelf_getsym(symbols, idx, &sym))
10639 				continue;
10640 
10641 			if (GELF_ST_TYPE(sym.st_info) != STT_FUNC)
10642 				continue;
10643 
10644 			sname = elf_strptr(elf, strtabidx, sym.st_name);
10645 			if (!sname)
10646 				continue;
10647 
10648 			curr_bind = GELF_ST_BIND(sym.st_info);
10649 
10650 			/* User can specify func, func@@LIB or func@@LIB_VERSION. */
10651 			if (strncmp(sname, name, name_len) != 0)
10652 				continue;
10653 			/* ...but we don't want a search for "foo" to match 'foo2" also, so any
10654 			 * additional characters in sname should be of the form "@@LIB".
10655 			 */
10656 			if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@')
10657 				continue;
10658 
10659 			if (ret >= 0) {
10660 				/* handle multiple matches */
10661 				if (last_bind != STB_WEAK && curr_bind != STB_WEAK) {
10662 					/* Only accept one non-weak bind. */
10663 					pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n",
10664 						sname, name, binary_path);
10665 					ret = -LIBBPF_ERRNO__FORMAT;
10666 					goto out;
10667 				} else if (curr_bind == STB_WEAK) {
10668 					/* already have a non-weak bind, and
10669 					 * this is a weak bind, so ignore.
10670 					 */
10671 					continue;
10672 				}
10673 			}
10674 
10675 			/* Transform symbol's virtual address (absolute for
10676 			 * binaries and relative for shared libs) into file
10677 			 * offset, which is what kernel is expecting for
10678 			 * uprobe/uretprobe attachment.
10679 			 * See Documentation/trace/uprobetracer.rst for more
10680 			 * details.
10681 			 * This is done by looking up symbol's containing
10682 			 * section's header and using it's virtual address
10683 			 * (sh_addr) and corresponding file offset (sh_offset)
10684 			 * to transform sym.st_value (virtual address) into
10685 			 * desired final file offset.
10686 			 */
10687 			sym_scn = elf_getscn(elf, sym.st_shndx);
10688 			if (!sym_scn)
10689 				continue;
10690 			if (!gelf_getshdr(sym_scn, &sym_sh))
10691 				continue;
10692 
10693 			ret = sym.st_value - sym_sh.sh_addr + sym_sh.sh_offset;
10694 			last_bind = curr_bind;
10695 		}
10696 		if (ret > 0)
10697 			break;
10698 	}
10699 
10700 	if (ret > 0) {
10701 		pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path,
10702 			 ret);
10703 	} else {
10704 		if (ret == 0) {
10705 			pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path,
10706 				is_shared_lib ? "should not be 0 in a shared library" :
10707 						"try using shared library path instead");
10708 			ret = -ENOENT;
10709 		} else {
10710 			pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path);
10711 		}
10712 	}
10713 out:
10714 	elf_end(elf);
10715 	close(fd);
10716 	return ret;
10717 }
10718 
10719 static const char *arch_specific_lib_paths(void)
10720 {
10721 	/*
10722 	 * Based on https://packages.debian.org/sid/libc6.
10723 	 *
10724 	 * Assume that the traced program is built for the same architecture
10725 	 * as libbpf, which should cover the vast majority of cases.
10726 	 */
10727 #if defined(__x86_64__)
10728 	return "/lib/x86_64-linux-gnu";
10729 #elif defined(__i386__)
10730 	return "/lib/i386-linux-gnu";
10731 #elif defined(__s390x__)
10732 	return "/lib/s390x-linux-gnu";
10733 #elif defined(__s390__)
10734 	return "/lib/s390-linux-gnu";
10735 #elif defined(__arm__) && defined(__SOFTFP__)
10736 	return "/lib/arm-linux-gnueabi";
10737 #elif defined(__arm__) && !defined(__SOFTFP__)
10738 	return "/lib/arm-linux-gnueabihf";
10739 #elif defined(__aarch64__)
10740 	return "/lib/aarch64-linux-gnu";
10741 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
10742 	return "/lib/mips64el-linux-gnuabi64";
10743 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
10744 	return "/lib/mipsel-linux-gnu";
10745 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
10746 	return "/lib/powerpc64le-linux-gnu";
10747 #elif defined(__sparc__) && defined(__arch64__)
10748 	return "/lib/sparc64-linux-gnu";
10749 #elif defined(__riscv) && __riscv_xlen == 64
10750 	return "/lib/riscv64-linux-gnu";
10751 #else
10752 	return NULL;
10753 #endif
10754 }
10755 
10756 /* Get full path to program/shared library. */
10757 static int resolve_full_path(const char *file, char *result, size_t result_sz)
10758 {
10759 	const char *search_paths[3] = {};
10760 	int i, perm;
10761 
10762 	if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
10763 		search_paths[0] = getenv("LD_LIBRARY_PATH");
10764 		search_paths[1] = "/usr/lib64:/usr/lib";
10765 		search_paths[2] = arch_specific_lib_paths();
10766 		perm = R_OK;
10767 	} else {
10768 		search_paths[0] = getenv("PATH");
10769 		search_paths[1] = "/usr/bin:/usr/sbin";
10770 		perm = R_OK | X_OK;
10771 	}
10772 
10773 	for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
10774 		const char *s;
10775 
10776 		if (!search_paths[i])
10777 			continue;
10778 		for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
10779 			char *next_path;
10780 			int seg_len;
10781 
10782 			if (s[0] == ':')
10783 				s++;
10784 			next_path = strchr(s, ':');
10785 			seg_len = next_path ? next_path - s : strlen(s);
10786 			if (!seg_len)
10787 				continue;
10788 			snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
10789 			/* ensure it has required permissions */
10790 			if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
10791 				continue;
10792 			pr_debug("resolved '%s' to '%s'\n", file, result);
10793 			return 0;
10794 		}
10795 	}
10796 	return -ENOENT;
10797 }
10798 
10799 LIBBPF_API struct bpf_link *
10800 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
10801 				const char *binary_path, size_t func_offset,
10802 				const struct bpf_uprobe_opts *opts)
10803 {
10804 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10805 	char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
10806 	char full_binary_path[PATH_MAX];
10807 	struct bpf_link *link;
10808 	size_t ref_ctr_off;
10809 	int pfd, err;
10810 	bool retprobe, legacy;
10811 	const char *func_name;
10812 
10813 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
10814 		return libbpf_err_ptr(-EINVAL);
10815 
10816 	retprobe = OPTS_GET(opts, retprobe, false);
10817 	ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
10818 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10819 
10820 	if (!binary_path)
10821 		return libbpf_err_ptr(-EINVAL);
10822 
10823 	if (!strchr(binary_path, '/')) {
10824 		err = resolve_full_path(binary_path, full_binary_path,
10825 					sizeof(full_binary_path));
10826 		if (err) {
10827 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
10828 				prog->name, binary_path, err);
10829 			return libbpf_err_ptr(err);
10830 		}
10831 		binary_path = full_binary_path;
10832 	}
10833 	func_name = OPTS_GET(opts, func_name, NULL);
10834 	if (func_name) {
10835 		long sym_off;
10836 
10837 		sym_off = elf_find_func_offset(binary_path, func_name);
10838 		if (sym_off < 0)
10839 			return libbpf_err_ptr(sym_off);
10840 		func_offset += sym_off;
10841 	}
10842 
10843 	legacy = determine_uprobe_perf_type() < 0;
10844 	if (!legacy) {
10845 		pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
10846 					    func_offset, pid, ref_ctr_off);
10847 	} else {
10848 		char probe_name[PATH_MAX + 64];
10849 
10850 		if (ref_ctr_off)
10851 			return libbpf_err_ptr(-EINVAL);
10852 
10853 		gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
10854 					     binary_path, func_offset);
10855 
10856 		legacy_probe = strdup(probe_name);
10857 		if (!legacy_probe)
10858 			return libbpf_err_ptr(-ENOMEM);
10859 
10860 		pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
10861 						    binary_path, func_offset, pid);
10862 	}
10863 	if (pfd < 0) {
10864 		err = -errno;
10865 		pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
10866 			prog->name, retprobe ? "uretprobe" : "uprobe",
10867 			binary_path, func_offset,
10868 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10869 		goto err_out;
10870 	}
10871 
10872 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10873 	err = libbpf_get_error(link);
10874 	if (err) {
10875 		close(pfd);
10876 		pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
10877 			prog->name, retprobe ? "uretprobe" : "uprobe",
10878 			binary_path, func_offset,
10879 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10880 		goto err_clean_legacy;
10881 	}
10882 	if (legacy) {
10883 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10884 
10885 		perf_link->legacy_probe_name = legacy_probe;
10886 		perf_link->legacy_is_kprobe = false;
10887 		perf_link->legacy_is_retprobe = retprobe;
10888 	}
10889 	return link;
10890 
10891 err_clean_legacy:
10892 	if (legacy)
10893 		remove_uprobe_event_legacy(legacy_probe, retprobe);
10894 err_out:
10895 	free(legacy_probe);
10896 	return libbpf_err_ptr(err);
10897 }
10898 
10899 /* Format of u[ret]probe section definition supporting auto-attach:
10900  * u[ret]probe/binary:function[+offset]
10901  *
10902  * binary can be an absolute/relative path or a filename; the latter is resolved to a
10903  * full binary path via bpf_program__attach_uprobe_opts.
10904  *
10905  * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
10906  * specified (and auto-attach is not possible) or the above format is specified for
10907  * auto-attach.
10908  */
10909 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10910 {
10911 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
10912 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
10913 	int n, ret = -EINVAL;
10914 	long offset = 0;
10915 
10916 	*link = NULL;
10917 
10918 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li",
10919 		   &probe_type, &binary_path, &func_name, &offset);
10920 	switch (n) {
10921 	case 1:
10922 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
10923 		ret = 0;
10924 		break;
10925 	case 2:
10926 		pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
10927 			prog->name, prog->sec_name);
10928 		break;
10929 	case 3:
10930 	case 4:
10931 		opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
10932 				strcmp(probe_type, "uretprobe.s") == 0;
10933 		if (opts.retprobe && offset != 0) {
10934 			pr_warn("prog '%s': uretprobes do not support offset specification\n",
10935 				prog->name);
10936 			break;
10937 		}
10938 		opts.func_name = func_name;
10939 		*link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
10940 		ret = libbpf_get_error(*link);
10941 		break;
10942 	default:
10943 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
10944 			prog->sec_name);
10945 		break;
10946 	}
10947 	free(probe_type);
10948 	free(binary_path);
10949 	free(func_name);
10950 
10951 	return ret;
10952 }
10953 
10954 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
10955 					    bool retprobe, pid_t pid,
10956 					    const char *binary_path,
10957 					    size_t func_offset)
10958 {
10959 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
10960 
10961 	return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
10962 }
10963 
10964 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
10965 					  pid_t pid, const char *binary_path,
10966 					  const char *usdt_provider, const char *usdt_name,
10967 					  const struct bpf_usdt_opts *opts)
10968 {
10969 	char resolved_path[512];
10970 	struct bpf_object *obj = prog->obj;
10971 	struct bpf_link *link;
10972 	__u64 usdt_cookie;
10973 	int err;
10974 
10975 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
10976 		return libbpf_err_ptr(-EINVAL);
10977 
10978 	if (bpf_program__fd(prog) < 0) {
10979 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
10980 			prog->name);
10981 		return libbpf_err_ptr(-EINVAL);
10982 	}
10983 
10984 	if (!binary_path)
10985 		return libbpf_err_ptr(-EINVAL);
10986 
10987 	if (!strchr(binary_path, '/')) {
10988 		err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
10989 		if (err) {
10990 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
10991 				prog->name, binary_path, err);
10992 			return libbpf_err_ptr(err);
10993 		}
10994 		binary_path = resolved_path;
10995 	}
10996 
10997 	/* USDT manager is instantiated lazily on first USDT attach. It will
10998 	 * be destroyed together with BPF object in bpf_object__close().
10999 	 */
11000 	if (IS_ERR(obj->usdt_man))
11001 		return libbpf_ptr(obj->usdt_man);
11002 	if (!obj->usdt_man) {
11003 		obj->usdt_man = usdt_manager_new(obj);
11004 		if (IS_ERR(obj->usdt_man))
11005 			return libbpf_ptr(obj->usdt_man);
11006 	}
11007 
11008 	usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
11009 	link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
11010 					usdt_provider, usdt_name, usdt_cookie);
11011 	err = libbpf_get_error(link);
11012 	if (err)
11013 		return libbpf_err_ptr(err);
11014 	return link;
11015 }
11016 
11017 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11018 {
11019 	char *path = NULL, *provider = NULL, *name = NULL;
11020 	const char *sec_name;
11021 	int n, err;
11022 
11023 	sec_name = bpf_program__section_name(prog);
11024 	if (strcmp(sec_name, "usdt") == 0) {
11025 		/* no auto-attach for just SEC("usdt") */
11026 		*link = NULL;
11027 		return 0;
11028 	}
11029 
11030 	n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
11031 	if (n != 3) {
11032 		pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
11033 			sec_name);
11034 		err = -EINVAL;
11035 	} else {
11036 		*link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
11037 						 provider, name, NULL);
11038 		err = libbpf_get_error(*link);
11039 	}
11040 	free(path);
11041 	free(provider);
11042 	free(name);
11043 	return err;
11044 }
11045 
11046 static int determine_tracepoint_id(const char *tp_category,
11047 				   const char *tp_name)
11048 {
11049 	char file[PATH_MAX];
11050 	int ret;
11051 
11052 	ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11053 		       tracefs_path(), tp_category, tp_name);
11054 	if (ret < 0)
11055 		return -errno;
11056 	if (ret >= sizeof(file)) {
11057 		pr_debug("tracepoint %s/%s path is too long\n",
11058 			 tp_category, tp_name);
11059 		return -E2BIG;
11060 	}
11061 	return parse_uint_from_file(file, "%d\n");
11062 }
11063 
11064 static int perf_event_open_tracepoint(const char *tp_category,
11065 				      const char *tp_name)
11066 {
11067 	const size_t attr_sz = sizeof(struct perf_event_attr);
11068 	struct perf_event_attr attr;
11069 	char errmsg[STRERR_BUFSIZE];
11070 	int tp_id, pfd, err;
11071 
11072 	tp_id = determine_tracepoint_id(tp_category, tp_name);
11073 	if (tp_id < 0) {
11074 		pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
11075 			tp_category, tp_name,
11076 			libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
11077 		return tp_id;
11078 	}
11079 
11080 	memset(&attr, 0, attr_sz);
11081 	attr.type = PERF_TYPE_TRACEPOINT;
11082 	attr.size = attr_sz;
11083 	attr.config = tp_id;
11084 
11085 	pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
11086 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11087 	if (pfd < 0) {
11088 		err = -errno;
11089 		pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
11090 			tp_category, tp_name,
11091 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11092 		return err;
11093 	}
11094 	return pfd;
11095 }
11096 
11097 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
11098 						     const char *tp_category,
11099 						     const char *tp_name,
11100 						     const struct bpf_tracepoint_opts *opts)
11101 {
11102 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11103 	char errmsg[STRERR_BUFSIZE];
11104 	struct bpf_link *link;
11105 	int pfd, err;
11106 
11107 	if (!OPTS_VALID(opts, bpf_tracepoint_opts))
11108 		return libbpf_err_ptr(-EINVAL);
11109 
11110 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11111 
11112 	pfd = perf_event_open_tracepoint(tp_category, tp_name);
11113 	if (pfd < 0) {
11114 		pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
11115 			prog->name, tp_category, tp_name,
11116 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11117 		return libbpf_err_ptr(pfd);
11118 	}
11119 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11120 	err = libbpf_get_error(link);
11121 	if (err) {
11122 		close(pfd);
11123 		pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
11124 			prog->name, tp_category, tp_name,
11125 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11126 		return libbpf_err_ptr(err);
11127 	}
11128 	return link;
11129 }
11130 
11131 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
11132 						const char *tp_category,
11133 						const char *tp_name)
11134 {
11135 	return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
11136 }
11137 
11138 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11139 {
11140 	char *sec_name, *tp_cat, *tp_name;
11141 
11142 	*link = NULL;
11143 
11144 	/* no auto-attach for SEC("tp") or SEC("tracepoint") */
11145 	if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
11146 		return 0;
11147 
11148 	sec_name = strdup(prog->sec_name);
11149 	if (!sec_name)
11150 		return -ENOMEM;
11151 
11152 	/* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
11153 	if (str_has_pfx(prog->sec_name, "tp/"))
11154 		tp_cat = sec_name + sizeof("tp/") - 1;
11155 	else
11156 		tp_cat = sec_name + sizeof("tracepoint/") - 1;
11157 	tp_name = strchr(tp_cat, '/');
11158 	if (!tp_name) {
11159 		free(sec_name);
11160 		return -EINVAL;
11161 	}
11162 	*tp_name = '\0';
11163 	tp_name++;
11164 
11165 	*link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
11166 	free(sec_name);
11167 	return libbpf_get_error(*link);
11168 }
11169 
11170 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
11171 						    const char *tp_name)
11172 {
11173 	char errmsg[STRERR_BUFSIZE];
11174 	struct bpf_link *link;
11175 	int prog_fd, pfd;
11176 
11177 	prog_fd = bpf_program__fd(prog);
11178 	if (prog_fd < 0) {
11179 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11180 		return libbpf_err_ptr(-EINVAL);
11181 	}
11182 
11183 	link = calloc(1, sizeof(*link));
11184 	if (!link)
11185 		return libbpf_err_ptr(-ENOMEM);
11186 	link->detach = &bpf_link__detach_fd;
11187 
11188 	pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
11189 	if (pfd < 0) {
11190 		pfd = -errno;
11191 		free(link);
11192 		pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
11193 			prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11194 		return libbpf_err_ptr(pfd);
11195 	}
11196 	link->fd = pfd;
11197 	return link;
11198 }
11199 
11200 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11201 {
11202 	static const char *const prefixes[] = {
11203 		"raw_tp",
11204 		"raw_tracepoint",
11205 		"raw_tp.w",
11206 		"raw_tracepoint.w",
11207 	};
11208 	size_t i;
11209 	const char *tp_name = NULL;
11210 
11211 	*link = NULL;
11212 
11213 	for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
11214 		size_t pfx_len;
11215 
11216 		if (!str_has_pfx(prog->sec_name, prefixes[i]))
11217 			continue;
11218 
11219 		pfx_len = strlen(prefixes[i]);
11220 		/* no auto-attach case of, e.g., SEC("raw_tp") */
11221 		if (prog->sec_name[pfx_len] == '\0')
11222 			return 0;
11223 
11224 		if (prog->sec_name[pfx_len] != '/')
11225 			continue;
11226 
11227 		tp_name = prog->sec_name + pfx_len + 1;
11228 		break;
11229 	}
11230 
11231 	if (!tp_name) {
11232 		pr_warn("prog '%s': invalid section name '%s'\n",
11233 			prog->name, prog->sec_name);
11234 		return -EINVAL;
11235 	}
11236 
11237 	*link = bpf_program__attach_raw_tracepoint(prog, tp_name);
11238 	return libbpf_get_error(*link);
11239 }
11240 
11241 /* Common logic for all BPF program types that attach to a btf_id */
11242 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
11243 						   const struct bpf_trace_opts *opts)
11244 {
11245 	LIBBPF_OPTS(bpf_link_create_opts, link_opts);
11246 	char errmsg[STRERR_BUFSIZE];
11247 	struct bpf_link *link;
11248 	int prog_fd, pfd;
11249 
11250 	if (!OPTS_VALID(opts, bpf_trace_opts))
11251 		return libbpf_err_ptr(-EINVAL);
11252 
11253 	prog_fd = bpf_program__fd(prog);
11254 	if (prog_fd < 0) {
11255 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11256 		return libbpf_err_ptr(-EINVAL);
11257 	}
11258 
11259 	link = calloc(1, sizeof(*link));
11260 	if (!link)
11261 		return libbpf_err_ptr(-ENOMEM);
11262 	link->detach = &bpf_link__detach_fd;
11263 
11264 	/* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
11265 	link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
11266 	pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
11267 	if (pfd < 0) {
11268 		pfd = -errno;
11269 		free(link);
11270 		pr_warn("prog '%s': failed to attach: %s\n",
11271 			prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11272 		return libbpf_err_ptr(pfd);
11273 	}
11274 	link->fd = pfd;
11275 	return link;
11276 }
11277 
11278 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
11279 {
11280 	return bpf_program__attach_btf_id(prog, NULL);
11281 }
11282 
11283 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
11284 						const struct bpf_trace_opts *opts)
11285 {
11286 	return bpf_program__attach_btf_id(prog, opts);
11287 }
11288 
11289 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
11290 {
11291 	return bpf_program__attach_btf_id(prog, NULL);
11292 }
11293 
11294 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11295 {
11296 	*link = bpf_program__attach_trace(prog);
11297 	return libbpf_get_error(*link);
11298 }
11299 
11300 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11301 {
11302 	*link = bpf_program__attach_lsm(prog);
11303 	return libbpf_get_error(*link);
11304 }
11305 
11306 static struct bpf_link *
11307 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id,
11308 		       const char *target_name)
11309 {
11310 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts,
11311 			    .target_btf_id = btf_id);
11312 	enum bpf_attach_type attach_type;
11313 	char errmsg[STRERR_BUFSIZE];
11314 	struct bpf_link *link;
11315 	int prog_fd, link_fd;
11316 
11317 	prog_fd = bpf_program__fd(prog);
11318 	if (prog_fd < 0) {
11319 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11320 		return libbpf_err_ptr(-EINVAL);
11321 	}
11322 
11323 	link = calloc(1, sizeof(*link));
11324 	if (!link)
11325 		return libbpf_err_ptr(-ENOMEM);
11326 	link->detach = &bpf_link__detach_fd;
11327 
11328 	attach_type = bpf_program__expected_attach_type(prog);
11329 	link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts);
11330 	if (link_fd < 0) {
11331 		link_fd = -errno;
11332 		free(link);
11333 		pr_warn("prog '%s': failed to attach to %s: %s\n",
11334 			prog->name, target_name,
11335 			libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11336 		return libbpf_err_ptr(link_fd);
11337 	}
11338 	link->fd = link_fd;
11339 	return link;
11340 }
11341 
11342 struct bpf_link *
11343 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
11344 {
11345 	return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup");
11346 }
11347 
11348 struct bpf_link *
11349 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
11350 {
11351 	return bpf_program__attach_fd(prog, netns_fd, 0, "netns");
11352 }
11353 
11354 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
11355 {
11356 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
11357 	return bpf_program__attach_fd(prog, ifindex, 0, "xdp");
11358 }
11359 
11360 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
11361 					      int target_fd,
11362 					      const char *attach_func_name)
11363 {
11364 	int btf_id;
11365 
11366 	if (!!target_fd != !!attach_func_name) {
11367 		pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
11368 			prog->name);
11369 		return libbpf_err_ptr(-EINVAL);
11370 	}
11371 
11372 	if (prog->type != BPF_PROG_TYPE_EXT) {
11373 		pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
11374 			prog->name);
11375 		return libbpf_err_ptr(-EINVAL);
11376 	}
11377 
11378 	if (target_fd) {
11379 		btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
11380 		if (btf_id < 0)
11381 			return libbpf_err_ptr(btf_id);
11382 
11383 		return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace");
11384 	} else {
11385 		/* no target, so use raw_tracepoint_open for compatibility
11386 		 * with old kernels
11387 		 */
11388 		return bpf_program__attach_trace(prog);
11389 	}
11390 }
11391 
11392 struct bpf_link *
11393 bpf_program__attach_iter(const struct bpf_program *prog,
11394 			 const struct bpf_iter_attach_opts *opts)
11395 {
11396 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
11397 	char errmsg[STRERR_BUFSIZE];
11398 	struct bpf_link *link;
11399 	int prog_fd, link_fd;
11400 	__u32 target_fd = 0;
11401 
11402 	if (!OPTS_VALID(opts, bpf_iter_attach_opts))
11403 		return libbpf_err_ptr(-EINVAL);
11404 
11405 	link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
11406 	link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
11407 
11408 	prog_fd = bpf_program__fd(prog);
11409 	if (prog_fd < 0) {
11410 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11411 		return libbpf_err_ptr(-EINVAL);
11412 	}
11413 
11414 	link = calloc(1, sizeof(*link));
11415 	if (!link)
11416 		return libbpf_err_ptr(-ENOMEM);
11417 	link->detach = &bpf_link__detach_fd;
11418 
11419 	link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
11420 				  &link_create_opts);
11421 	if (link_fd < 0) {
11422 		link_fd = -errno;
11423 		free(link);
11424 		pr_warn("prog '%s': failed to attach to iterator: %s\n",
11425 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11426 		return libbpf_err_ptr(link_fd);
11427 	}
11428 	link->fd = link_fd;
11429 	return link;
11430 }
11431 
11432 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11433 {
11434 	*link = bpf_program__attach_iter(prog, NULL);
11435 	return libbpf_get_error(*link);
11436 }
11437 
11438 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
11439 {
11440 	struct bpf_link *link = NULL;
11441 	int err;
11442 
11443 	if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
11444 		return libbpf_err_ptr(-EOPNOTSUPP);
11445 
11446 	err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
11447 	if (err)
11448 		return libbpf_err_ptr(err);
11449 
11450 	/* When calling bpf_program__attach() explicitly, auto-attach support
11451 	 * is expected to work, so NULL returned link is considered an error.
11452 	 * This is different for skeleton's attach, see comment in
11453 	 * bpf_object__attach_skeleton().
11454 	 */
11455 	if (!link)
11456 		return libbpf_err_ptr(-EOPNOTSUPP);
11457 
11458 	return link;
11459 }
11460 
11461 static int bpf_link__detach_struct_ops(struct bpf_link *link)
11462 {
11463 	__u32 zero = 0;
11464 
11465 	if (bpf_map_delete_elem(link->fd, &zero))
11466 		return -errno;
11467 
11468 	return 0;
11469 }
11470 
11471 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
11472 {
11473 	struct bpf_struct_ops *st_ops;
11474 	struct bpf_link *link;
11475 	__u32 i, zero = 0;
11476 	int err;
11477 
11478 	if (!bpf_map__is_struct_ops(map) || map->fd == -1)
11479 		return libbpf_err_ptr(-EINVAL);
11480 
11481 	link = calloc(1, sizeof(*link));
11482 	if (!link)
11483 		return libbpf_err_ptr(-EINVAL);
11484 
11485 	st_ops = map->st_ops;
11486 	for (i = 0; i < btf_vlen(st_ops->type); i++) {
11487 		struct bpf_program *prog = st_ops->progs[i];
11488 		void *kern_data;
11489 		int prog_fd;
11490 
11491 		if (!prog)
11492 			continue;
11493 
11494 		prog_fd = bpf_program__fd(prog);
11495 		kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
11496 		*(unsigned long *)kern_data = prog_fd;
11497 	}
11498 
11499 	err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0);
11500 	if (err) {
11501 		err = -errno;
11502 		free(link);
11503 		return libbpf_err_ptr(err);
11504 	}
11505 
11506 	link->detach = bpf_link__detach_struct_ops;
11507 	link->fd = map->fd;
11508 
11509 	return link;
11510 }
11511 
11512 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
11513 							  void *private_data);
11514 
11515 static enum bpf_perf_event_ret
11516 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
11517 		       void **copy_mem, size_t *copy_size,
11518 		       bpf_perf_event_print_t fn, void *private_data)
11519 {
11520 	struct perf_event_mmap_page *header = mmap_mem;
11521 	__u64 data_head = ring_buffer_read_head(header);
11522 	__u64 data_tail = header->data_tail;
11523 	void *base = ((__u8 *)header) + page_size;
11524 	int ret = LIBBPF_PERF_EVENT_CONT;
11525 	struct perf_event_header *ehdr;
11526 	size_t ehdr_size;
11527 
11528 	while (data_head != data_tail) {
11529 		ehdr = base + (data_tail & (mmap_size - 1));
11530 		ehdr_size = ehdr->size;
11531 
11532 		if (((void *)ehdr) + ehdr_size > base + mmap_size) {
11533 			void *copy_start = ehdr;
11534 			size_t len_first = base + mmap_size - copy_start;
11535 			size_t len_secnd = ehdr_size - len_first;
11536 
11537 			if (*copy_size < ehdr_size) {
11538 				free(*copy_mem);
11539 				*copy_mem = malloc(ehdr_size);
11540 				if (!*copy_mem) {
11541 					*copy_size = 0;
11542 					ret = LIBBPF_PERF_EVENT_ERROR;
11543 					break;
11544 				}
11545 				*copy_size = ehdr_size;
11546 			}
11547 
11548 			memcpy(*copy_mem, copy_start, len_first);
11549 			memcpy(*copy_mem + len_first, base, len_secnd);
11550 			ehdr = *copy_mem;
11551 		}
11552 
11553 		ret = fn(ehdr, private_data);
11554 		data_tail += ehdr_size;
11555 		if (ret != LIBBPF_PERF_EVENT_CONT)
11556 			break;
11557 	}
11558 
11559 	ring_buffer_write_tail(header, data_tail);
11560 	return libbpf_err(ret);
11561 }
11562 
11563 struct perf_buffer;
11564 
11565 struct perf_buffer_params {
11566 	struct perf_event_attr *attr;
11567 	/* if event_cb is specified, it takes precendence */
11568 	perf_buffer_event_fn event_cb;
11569 	/* sample_cb and lost_cb are higher-level common-case callbacks */
11570 	perf_buffer_sample_fn sample_cb;
11571 	perf_buffer_lost_fn lost_cb;
11572 	void *ctx;
11573 	int cpu_cnt;
11574 	int *cpus;
11575 	int *map_keys;
11576 };
11577 
11578 struct perf_cpu_buf {
11579 	struct perf_buffer *pb;
11580 	void *base; /* mmap()'ed memory */
11581 	void *buf; /* for reconstructing segmented data */
11582 	size_t buf_size;
11583 	int fd;
11584 	int cpu;
11585 	int map_key;
11586 };
11587 
11588 struct perf_buffer {
11589 	perf_buffer_event_fn event_cb;
11590 	perf_buffer_sample_fn sample_cb;
11591 	perf_buffer_lost_fn lost_cb;
11592 	void *ctx; /* passed into callbacks */
11593 
11594 	size_t page_size;
11595 	size_t mmap_size;
11596 	struct perf_cpu_buf **cpu_bufs;
11597 	struct epoll_event *events;
11598 	int cpu_cnt; /* number of allocated CPU buffers */
11599 	int epoll_fd; /* perf event FD */
11600 	int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
11601 };
11602 
11603 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
11604 				      struct perf_cpu_buf *cpu_buf)
11605 {
11606 	if (!cpu_buf)
11607 		return;
11608 	if (cpu_buf->base &&
11609 	    munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
11610 		pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
11611 	if (cpu_buf->fd >= 0) {
11612 		ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
11613 		close(cpu_buf->fd);
11614 	}
11615 	free(cpu_buf->buf);
11616 	free(cpu_buf);
11617 }
11618 
11619 void perf_buffer__free(struct perf_buffer *pb)
11620 {
11621 	int i;
11622 
11623 	if (IS_ERR_OR_NULL(pb))
11624 		return;
11625 	if (pb->cpu_bufs) {
11626 		for (i = 0; i < pb->cpu_cnt; i++) {
11627 			struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
11628 
11629 			if (!cpu_buf)
11630 				continue;
11631 
11632 			bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
11633 			perf_buffer__free_cpu_buf(pb, cpu_buf);
11634 		}
11635 		free(pb->cpu_bufs);
11636 	}
11637 	if (pb->epoll_fd >= 0)
11638 		close(pb->epoll_fd);
11639 	free(pb->events);
11640 	free(pb);
11641 }
11642 
11643 static struct perf_cpu_buf *
11644 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
11645 			  int cpu, int map_key)
11646 {
11647 	struct perf_cpu_buf *cpu_buf;
11648 	char msg[STRERR_BUFSIZE];
11649 	int err;
11650 
11651 	cpu_buf = calloc(1, sizeof(*cpu_buf));
11652 	if (!cpu_buf)
11653 		return ERR_PTR(-ENOMEM);
11654 
11655 	cpu_buf->pb = pb;
11656 	cpu_buf->cpu = cpu;
11657 	cpu_buf->map_key = map_key;
11658 
11659 	cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
11660 			      -1, PERF_FLAG_FD_CLOEXEC);
11661 	if (cpu_buf->fd < 0) {
11662 		err = -errno;
11663 		pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
11664 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11665 		goto error;
11666 	}
11667 
11668 	cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
11669 			     PROT_READ | PROT_WRITE, MAP_SHARED,
11670 			     cpu_buf->fd, 0);
11671 	if (cpu_buf->base == MAP_FAILED) {
11672 		cpu_buf->base = NULL;
11673 		err = -errno;
11674 		pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
11675 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11676 		goto error;
11677 	}
11678 
11679 	if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
11680 		err = -errno;
11681 		pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
11682 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11683 		goto error;
11684 	}
11685 
11686 	return cpu_buf;
11687 
11688 error:
11689 	perf_buffer__free_cpu_buf(pb, cpu_buf);
11690 	return (struct perf_cpu_buf *)ERR_PTR(err);
11691 }
11692 
11693 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
11694 					      struct perf_buffer_params *p);
11695 
11696 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
11697 				     perf_buffer_sample_fn sample_cb,
11698 				     perf_buffer_lost_fn lost_cb,
11699 				     void *ctx,
11700 				     const struct perf_buffer_opts *opts)
11701 {
11702 	const size_t attr_sz = sizeof(struct perf_event_attr);
11703 	struct perf_buffer_params p = {};
11704 	struct perf_event_attr attr;
11705 
11706 	if (!OPTS_VALID(opts, perf_buffer_opts))
11707 		return libbpf_err_ptr(-EINVAL);
11708 
11709 	memset(&attr, 0, attr_sz);
11710 	attr.size = attr_sz;
11711 	attr.config = PERF_COUNT_SW_BPF_OUTPUT;
11712 	attr.type = PERF_TYPE_SOFTWARE;
11713 	attr.sample_type = PERF_SAMPLE_RAW;
11714 	attr.sample_period = 1;
11715 	attr.wakeup_events = 1;
11716 
11717 	p.attr = &attr;
11718 	p.sample_cb = sample_cb;
11719 	p.lost_cb = lost_cb;
11720 	p.ctx = ctx;
11721 
11722 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
11723 }
11724 
11725 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
11726 					 struct perf_event_attr *attr,
11727 					 perf_buffer_event_fn event_cb, void *ctx,
11728 					 const struct perf_buffer_raw_opts *opts)
11729 {
11730 	struct perf_buffer_params p = {};
11731 
11732 	if (!attr)
11733 		return libbpf_err_ptr(-EINVAL);
11734 
11735 	if (!OPTS_VALID(opts, perf_buffer_raw_opts))
11736 		return libbpf_err_ptr(-EINVAL);
11737 
11738 	p.attr = attr;
11739 	p.event_cb = event_cb;
11740 	p.ctx = ctx;
11741 	p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
11742 	p.cpus = OPTS_GET(opts, cpus, NULL);
11743 	p.map_keys = OPTS_GET(opts, map_keys, NULL);
11744 
11745 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
11746 }
11747 
11748 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
11749 					      struct perf_buffer_params *p)
11750 {
11751 	const char *online_cpus_file = "/sys/devices/system/cpu/online";
11752 	struct bpf_map_info map;
11753 	char msg[STRERR_BUFSIZE];
11754 	struct perf_buffer *pb;
11755 	bool *online = NULL;
11756 	__u32 map_info_len;
11757 	int err, i, j, n;
11758 
11759 	if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
11760 		pr_warn("page count should be power of two, but is %zu\n",
11761 			page_cnt);
11762 		return ERR_PTR(-EINVAL);
11763 	}
11764 
11765 	/* best-effort sanity checks */
11766 	memset(&map, 0, sizeof(map));
11767 	map_info_len = sizeof(map);
11768 	err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len);
11769 	if (err) {
11770 		err = -errno;
11771 		/* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
11772 		 * -EBADFD, -EFAULT, or -E2BIG on real error
11773 		 */
11774 		if (err != -EINVAL) {
11775 			pr_warn("failed to get map info for map FD %d: %s\n",
11776 				map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
11777 			return ERR_PTR(err);
11778 		}
11779 		pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
11780 			 map_fd);
11781 	} else {
11782 		if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
11783 			pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
11784 				map.name);
11785 			return ERR_PTR(-EINVAL);
11786 		}
11787 	}
11788 
11789 	pb = calloc(1, sizeof(*pb));
11790 	if (!pb)
11791 		return ERR_PTR(-ENOMEM);
11792 
11793 	pb->event_cb = p->event_cb;
11794 	pb->sample_cb = p->sample_cb;
11795 	pb->lost_cb = p->lost_cb;
11796 	pb->ctx = p->ctx;
11797 
11798 	pb->page_size = getpagesize();
11799 	pb->mmap_size = pb->page_size * page_cnt;
11800 	pb->map_fd = map_fd;
11801 
11802 	pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
11803 	if (pb->epoll_fd < 0) {
11804 		err = -errno;
11805 		pr_warn("failed to create epoll instance: %s\n",
11806 			libbpf_strerror_r(err, msg, sizeof(msg)));
11807 		goto error;
11808 	}
11809 
11810 	if (p->cpu_cnt > 0) {
11811 		pb->cpu_cnt = p->cpu_cnt;
11812 	} else {
11813 		pb->cpu_cnt = libbpf_num_possible_cpus();
11814 		if (pb->cpu_cnt < 0) {
11815 			err = pb->cpu_cnt;
11816 			goto error;
11817 		}
11818 		if (map.max_entries && map.max_entries < pb->cpu_cnt)
11819 			pb->cpu_cnt = map.max_entries;
11820 	}
11821 
11822 	pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
11823 	if (!pb->events) {
11824 		err = -ENOMEM;
11825 		pr_warn("failed to allocate events: out of memory\n");
11826 		goto error;
11827 	}
11828 	pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
11829 	if (!pb->cpu_bufs) {
11830 		err = -ENOMEM;
11831 		pr_warn("failed to allocate buffers: out of memory\n");
11832 		goto error;
11833 	}
11834 
11835 	err = parse_cpu_mask_file(online_cpus_file, &online, &n);
11836 	if (err) {
11837 		pr_warn("failed to get online CPU mask: %d\n", err);
11838 		goto error;
11839 	}
11840 
11841 	for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
11842 		struct perf_cpu_buf *cpu_buf;
11843 		int cpu, map_key;
11844 
11845 		cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
11846 		map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
11847 
11848 		/* in case user didn't explicitly requested particular CPUs to
11849 		 * be attached to, skip offline/not present CPUs
11850 		 */
11851 		if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
11852 			continue;
11853 
11854 		cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
11855 		if (IS_ERR(cpu_buf)) {
11856 			err = PTR_ERR(cpu_buf);
11857 			goto error;
11858 		}
11859 
11860 		pb->cpu_bufs[j] = cpu_buf;
11861 
11862 		err = bpf_map_update_elem(pb->map_fd, &map_key,
11863 					  &cpu_buf->fd, 0);
11864 		if (err) {
11865 			err = -errno;
11866 			pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
11867 				cpu, map_key, cpu_buf->fd,
11868 				libbpf_strerror_r(err, msg, sizeof(msg)));
11869 			goto error;
11870 		}
11871 
11872 		pb->events[j].events = EPOLLIN;
11873 		pb->events[j].data.ptr = cpu_buf;
11874 		if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
11875 			      &pb->events[j]) < 0) {
11876 			err = -errno;
11877 			pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
11878 				cpu, cpu_buf->fd,
11879 				libbpf_strerror_r(err, msg, sizeof(msg)));
11880 			goto error;
11881 		}
11882 		j++;
11883 	}
11884 	pb->cpu_cnt = j;
11885 	free(online);
11886 
11887 	return pb;
11888 
11889 error:
11890 	free(online);
11891 	if (pb)
11892 		perf_buffer__free(pb);
11893 	return ERR_PTR(err);
11894 }
11895 
11896 struct perf_sample_raw {
11897 	struct perf_event_header header;
11898 	uint32_t size;
11899 	char data[];
11900 };
11901 
11902 struct perf_sample_lost {
11903 	struct perf_event_header header;
11904 	uint64_t id;
11905 	uint64_t lost;
11906 	uint64_t sample_id;
11907 };
11908 
11909 static enum bpf_perf_event_ret
11910 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
11911 {
11912 	struct perf_cpu_buf *cpu_buf = ctx;
11913 	struct perf_buffer *pb = cpu_buf->pb;
11914 	void *data = e;
11915 
11916 	/* user wants full control over parsing perf event */
11917 	if (pb->event_cb)
11918 		return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
11919 
11920 	switch (e->type) {
11921 	case PERF_RECORD_SAMPLE: {
11922 		struct perf_sample_raw *s = data;
11923 
11924 		if (pb->sample_cb)
11925 			pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
11926 		break;
11927 	}
11928 	case PERF_RECORD_LOST: {
11929 		struct perf_sample_lost *s = data;
11930 
11931 		if (pb->lost_cb)
11932 			pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
11933 		break;
11934 	}
11935 	default:
11936 		pr_warn("unknown perf sample type %d\n", e->type);
11937 		return LIBBPF_PERF_EVENT_ERROR;
11938 	}
11939 	return LIBBPF_PERF_EVENT_CONT;
11940 }
11941 
11942 static int perf_buffer__process_records(struct perf_buffer *pb,
11943 					struct perf_cpu_buf *cpu_buf)
11944 {
11945 	enum bpf_perf_event_ret ret;
11946 
11947 	ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
11948 				     pb->page_size, &cpu_buf->buf,
11949 				     &cpu_buf->buf_size,
11950 				     perf_buffer__process_record, cpu_buf);
11951 	if (ret != LIBBPF_PERF_EVENT_CONT)
11952 		return ret;
11953 	return 0;
11954 }
11955 
11956 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
11957 {
11958 	return pb->epoll_fd;
11959 }
11960 
11961 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
11962 {
11963 	int i, cnt, err;
11964 
11965 	cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
11966 	if (cnt < 0)
11967 		return -errno;
11968 
11969 	for (i = 0; i < cnt; i++) {
11970 		struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
11971 
11972 		err = perf_buffer__process_records(pb, cpu_buf);
11973 		if (err) {
11974 			pr_warn("error while processing records: %d\n", err);
11975 			return libbpf_err(err);
11976 		}
11977 	}
11978 	return cnt;
11979 }
11980 
11981 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
11982  * manager.
11983  */
11984 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
11985 {
11986 	return pb->cpu_cnt;
11987 }
11988 
11989 /*
11990  * Return perf_event FD of a ring buffer in *buf_idx* slot of
11991  * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
11992  * select()/poll()/epoll() Linux syscalls.
11993  */
11994 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
11995 {
11996 	struct perf_cpu_buf *cpu_buf;
11997 
11998 	if (buf_idx >= pb->cpu_cnt)
11999 		return libbpf_err(-EINVAL);
12000 
12001 	cpu_buf = pb->cpu_bufs[buf_idx];
12002 	if (!cpu_buf)
12003 		return libbpf_err(-ENOENT);
12004 
12005 	return cpu_buf->fd;
12006 }
12007 
12008 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
12009 {
12010 	struct perf_cpu_buf *cpu_buf;
12011 
12012 	if (buf_idx >= pb->cpu_cnt)
12013 		return libbpf_err(-EINVAL);
12014 
12015 	cpu_buf = pb->cpu_bufs[buf_idx];
12016 	if (!cpu_buf)
12017 		return libbpf_err(-ENOENT);
12018 
12019 	*buf = cpu_buf->base;
12020 	*buf_size = pb->mmap_size;
12021 	return 0;
12022 }
12023 
12024 /*
12025  * Consume data from perf ring buffer corresponding to slot *buf_idx* in
12026  * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
12027  * consume, do nothing and return success.
12028  * Returns:
12029  *   - 0 on success;
12030  *   - <0 on failure.
12031  */
12032 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
12033 {
12034 	struct perf_cpu_buf *cpu_buf;
12035 
12036 	if (buf_idx >= pb->cpu_cnt)
12037 		return libbpf_err(-EINVAL);
12038 
12039 	cpu_buf = pb->cpu_bufs[buf_idx];
12040 	if (!cpu_buf)
12041 		return libbpf_err(-ENOENT);
12042 
12043 	return perf_buffer__process_records(pb, cpu_buf);
12044 }
12045 
12046 int perf_buffer__consume(struct perf_buffer *pb)
12047 {
12048 	int i, err;
12049 
12050 	for (i = 0; i < pb->cpu_cnt; i++) {
12051 		struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12052 
12053 		if (!cpu_buf)
12054 			continue;
12055 
12056 		err = perf_buffer__process_records(pb, cpu_buf);
12057 		if (err) {
12058 			pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
12059 			return libbpf_err(err);
12060 		}
12061 	}
12062 	return 0;
12063 }
12064 
12065 int bpf_program__set_attach_target(struct bpf_program *prog,
12066 				   int attach_prog_fd,
12067 				   const char *attach_func_name)
12068 {
12069 	int btf_obj_fd = 0, btf_id = 0, err;
12070 
12071 	if (!prog || attach_prog_fd < 0)
12072 		return libbpf_err(-EINVAL);
12073 
12074 	if (prog->obj->loaded)
12075 		return libbpf_err(-EINVAL);
12076 
12077 	if (attach_prog_fd && !attach_func_name) {
12078 		/* remember attach_prog_fd and let bpf_program__load() find
12079 		 * BTF ID during the program load
12080 		 */
12081 		prog->attach_prog_fd = attach_prog_fd;
12082 		return 0;
12083 	}
12084 
12085 	if (attach_prog_fd) {
12086 		btf_id = libbpf_find_prog_btf_id(attach_func_name,
12087 						 attach_prog_fd);
12088 		if (btf_id < 0)
12089 			return libbpf_err(btf_id);
12090 	} else {
12091 		if (!attach_func_name)
12092 			return libbpf_err(-EINVAL);
12093 
12094 		/* load btf_vmlinux, if not yet */
12095 		err = bpf_object__load_vmlinux_btf(prog->obj, true);
12096 		if (err)
12097 			return libbpf_err(err);
12098 		err = find_kernel_btf_id(prog->obj, attach_func_name,
12099 					 prog->expected_attach_type,
12100 					 &btf_obj_fd, &btf_id);
12101 		if (err)
12102 			return libbpf_err(err);
12103 	}
12104 
12105 	prog->attach_btf_id = btf_id;
12106 	prog->attach_btf_obj_fd = btf_obj_fd;
12107 	prog->attach_prog_fd = attach_prog_fd;
12108 	return 0;
12109 }
12110 
12111 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
12112 {
12113 	int err = 0, n, len, start, end = -1;
12114 	bool *tmp;
12115 
12116 	*mask = NULL;
12117 	*mask_sz = 0;
12118 
12119 	/* Each sub string separated by ',' has format \d+-\d+ or \d+ */
12120 	while (*s) {
12121 		if (*s == ',' || *s == '\n') {
12122 			s++;
12123 			continue;
12124 		}
12125 		n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
12126 		if (n <= 0 || n > 2) {
12127 			pr_warn("Failed to get CPU range %s: %d\n", s, n);
12128 			err = -EINVAL;
12129 			goto cleanup;
12130 		} else if (n == 1) {
12131 			end = start;
12132 		}
12133 		if (start < 0 || start > end) {
12134 			pr_warn("Invalid CPU range [%d,%d] in %s\n",
12135 				start, end, s);
12136 			err = -EINVAL;
12137 			goto cleanup;
12138 		}
12139 		tmp = realloc(*mask, end + 1);
12140 		if (!tmp) {
12141 			err = -ENOMEM;
12142 			goto cleanup;
12143 		}
12144 		*mask = tmp;
12145 		memset(tmp + *mask_sz, 0, start - *mask_sz);
12146 		memset(tmp + start, 1, end - start + 1);
12147 		*mask_sz = end + 1;
12148 		s += len;
12149 	}
12150 	if (!*mask_sz) {
12151 		pr_warn("Empty CPU range\n");
12152 		return -EINVAL;
12153 	}
12154 	return 0;
12155 cleanup:
12156 	free(*mask);
12157 	*mask = NULL;
12158 	return err;
12159 }
12160 
12161 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
12162 {
12163 	int fd, err = 0, len;
12164 	char buf[128];
12165 
12166 	fd = open(fcpu, O_RDONLY | O_CLOEXEC);
12167 	if (fd < 0) {
12168 		err = -errno;
12169 		pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
12170 		return err;
12171 	}
12172 	len = read(fd, buf, sizeof(buf));
12173 	close(fd);
12174 	if (len <= 0) {
12175 		err = len ? -errno : -EINVAL;
12176 		pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
12177 		return err;
12178 	}
12179 	if (len >= sizeof(buf)) {
12180 		pr_warn("CPU mask is too big in file %s\n", fcpu);
12181 		return -E2BIG;
12182 	}
12183 	buf[len] = '\0';
12184 
12185 	return parse_cpu_mask_str(buf, mask, mask_sz);
12186 }
12187 
12188 int libbpf_num_possible_cpus(void)
12189 {
12190 	static const char *fcpu = "/sys/devices/system/cpu/possible";
12191 	static int cpus;
12192 	int err, n, i, tmp_cpus;
12193 	bool *mask;
12194 
12195 	tmp_cpus = READ_ONCE(cpus);
12196 	if (tmp_cpus > 0)
12197 		return tmp_cpus;
12198 
12199 	err = parse_cpu_mask_file(fcpu, &mask, &n);
12200 	if (err)
12201 		return libbpf_err(err);
12202 
12203 	tmp_cpus = 0;
12204 	for (i = 0; i < n; i++) {
12205 		if (mask[i])
12206 			tmp_cpus++;
12207 	}
12208 	free(mask);
12209 
12210 	WRITE_ONCE(cpus, tmp_cpus);
12211 	return tmp_cpus;
12212 }
12213 
12214 static int populate_skeleton_maps(const struct bpf_object *obj,
12215 				  struct bpf_map_skeleton *maps,
12216 				  size_t map_cnt)
12217 {
12218 	int i;
12219 
12220 	for (i = 0; i < map_cnt; i++) {
12221 		struct bpf_map **map = maps[i].map;
12222 		const char *name = maps[i].name;
12223 		void **mmaped = maps[i].mmaped;
12224 
12225 		*map = bpf_object__find_map_by_name(obj, name);
12226 		if (!*map) {
12227 			pr_warn("failed to find skeleton map '%s'\n", name);
12228 			return -ESRCH;
12229 		}
12230 
12231 		/* externs shouldn't be pre-setup from user code */
12232 		if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
12233 			*mmaped = (*map)->mmaped;
12234 	}
12235 	return 0;
12236 }
12237 
12238 static int populate_skeleton_progs(const struct bpf_object *obj,
12239 				   struct bpf_prog_skeleton *progs,
12240 				   size_t prog_cnt)
12241 {
12242 	int i;
12243 
12244 	for (i = 0; i < prog_cnt; i++) {
12245 		struct bpf_program **prog = progs[i].prog;
12246 		const char *name = progs[i].name;
12247 
12248 		*prog = bpf_object__find_program_by_name(obj, name);
12249 		if (!*prog) {
12250 			pr_warn("failed to find skeleton program '%s'\n", name);
12251 			return -ESRCH;
12252 		}
12253 	}
12254 	return 0;
12255 }
12256 
12257 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
12258 			      const struct bpf_object_open_opts *opts)
12259 {
12260 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
12261 		.object_name = s->name,
12262 	);
12263 	struct bpf_object *obj;
12264 	int err;
12265 
12266 	/* Attempt to preserve opts->object_name, unless overriden by user
12267 	 * explicitly. Overwriting object name for skeletons is discouraged,
12268 	 * as it breaks global data maps, because they contain object name
12269 	 * prefix as their own map name prefix. When skeleton is generated,
12270 	 * bpftool is making an assumption that this name will stay the same.
12271 	 */
12272 	if (opts) {
12273 		memcpy(&skel_opts, opts, sizeof(*opts));
12274 		if (!opts->object_name)
12275 			skel_opts.object_name = s->name;
12276 	}
12277 
12278 	obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
12279 	err = libbpf_get_error(obj);
12280 	if (err) {
12281 		pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
12282 			s->name, err);
12283 		return libbpf_err(err);
12284 	}
12285 
12286 	*s->obj = obj;
12287 	err = populate_skeleton_maps(obj, s->maps, s->map_cnt);
12288 	if (err) {
12289 		pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
12290 		return libbpf_err(err);
12291 	}
12292 
12293 	err = populate_skeleton_progs(obj, s->progs, s->prog_cnt);
12294 	if (err) {
12295 		pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
12296 		return libbpf_err(err);
12297 	}
12298 
12299 	return 0;
12300 }
12301 
12302 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
12303 {
12304 	int err, len, var_idx, i;
12305 	const char *var_name;
12306 	const struct bpf_map *map;
12307 	struct btf *btf;
12308 	__u32 map_type_id;
12309 	const struct btf_type *map_type, *var_type;
12310 	const struct bpf_var_skeleton *var_skel;
12311 	struct btf_var_secinfo *var;
12312 
12313 	if (!s->obj)
12314 		return libbpf_err(-EINVAL);
12315 
12316 	btf = bpf_object__btf(s->obj);
12317 	if (!btf) {
12318 		pr_warn("subskeletons require BTF at runtime (object %s)\n",
12319 			bpf_object__name(s->obj));
12320 		return libbpf_err(-errno);
12321 	}
12322 
12323 	err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt);
12324 	if (err) {
12325 		pr_warn("failed to populate subskeleton maps: %d\n", err);
12326 		return libbpf_err(err);
12327 	}
12328 
12329 	err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt);
12330 	if (err) {
12331 		pr_warn("failed to populate subskeleton maps: %d\n", err);
12332 		return libbpf_err(err);
12333 	}
12334 
12335 	for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
12336 		var_skel = &s->vars[var_idx];
12337 		map = *var_skel->map;
12338 		map_type_id = bpf_map__btf_value_type_id(map);
12339 		map_type = btf__type_by_id(btf, map_type_id);
12340 
12341 		if (!btf_is_datasec(map_type)) {
12342 			pr_warn("type for map '%1$s' is not a datasec: %2$s",
12343 				bpf_map__name(map),
12344 				__btf_kind_str(btf_kind(map_type)));
12345 			return libbpf_err(-EINVAL);
12346 		}
12347 
12348 		len = btf_vlen(map_type);
12349 		var = btf_var_secinfos(map_type);
12350 		for (i = 0; i < len; i++, var++) {
12351 			var_type = btf__type_by_id(btf, var->type);
12352 			var_name = btf__name_by_offset(btf, var_type->name_off);
12353 			if (strcmp(var_name, var_skel->name) == 0) {
12354 				*var_skel->addr = map->mmaped + var->offset;
12355 				break;
12356 			}
12357 		}
12358 	}
12359 	return 0;
12360 }
12361 
12362 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
12363 {
12364 	if (!s)
12365 		return;
12366 	free(s->maps);
12367 	free(s->progs);
12368 	free(s->vars);
12369 	free(s);
12370 }
12371 
12372 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
12373 {
12374 	int i, err;
12375 
12376 	err = bpf_object__load(*s->obj);
12377 	if (err) {
12378 		pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
12379 		return libbpf_err(err);
12380 	}
12381 
12382 	for (i = 0; i < s->map_cnt; i++) {
12383 		struct bpf_map *map = *s->maps[i].map;
12384 		size_t mmap_sz = bpf_map_mmap_sz(map);
12385 		int prot, map_fd = bpf_map__fd(map);
12386 		void **mmaped = s->maps[i].mmaped;
12387 
12388 		if (!mmaped)
12389 			continue;
12390 
12391 		if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
12392 			*mmaped = NULL;
12393 			continue;
12394 		}
12395 
12396 		if (map->def.map_flags & BPF_F_RDONLY_PROG)
12397 			prot = PROT_READ;
12398 		else
12399 			prot = PROT_READ | PROT_WRITE;
12400 
12401 		/* Remap anonymous mmap()-ed "map initialization image" as
12402 		 * a BPF map-backed mmap()-ed memory, but preserving the same
12403 		 * memory address. This will cause kernel to change process'
12404 		 * page table to point to a different piece of kernel memory,
12405 		 * but from userspace point of view memory address (and its
12406 		 * contents, being identical at this point) will stay the
12407 		 * same. This mapping will be released by bpf_object__close()
12408 		 * as per normal clean up procedure, so we don't need to worry
12409 		 * about it from skeleton's clean up perspective.
12410 		 */
12411 		*mmaped = mmap(map->mmaped, mmap_sz, prot,
12412 				MAP_SHARED | MAP_FIXED, map_fd, 0);
12413 		if (*mmaped == MAP_FAILED) {
12414 			err = -errno;
12415 			*mmaped = NULL;
12416 			pr_warn("failed to re-mmap() map '%s': %d\n",
12417 				 bpf_map__name(map), err);
12418 			return libbpf_err(err);
12419 		}
12420 	}
12421 
12422 	return 0;
12423 }
12424 
12425 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
12426 {
12427 	int i, err;
12428 
12429 	for (i = 0; i < s->prog_cnt; i++) {
12430 		struct bpf_program *prog = *s->progs[i].prog;
12431 		struct bpf_link **link = s->progs[i].link;
12432 
12433 		if (!prog->autoload || !prog->autoattach)
12434 			continue;
12435 
12436 		/* auto-attaching not supported for this program */
12437 		if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12438 			continue;
12439 
12440 		/* if user already set the link manually, don't attempt auto-attach */
12441 		if (*link)
12442 			continue;
12443 
12444 		err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
12445 		if (err) {
12446 			pr_warn("prog '%s': failed to auto-attach: %d\n",
12447 				bpf_program__name(prog), err);
12448 			return libbpf_err(err);
12449 		}
12450 
12451 		/* It's possible that for some SEC() definitions auto-attach
12452 		 * is supported in some cases (e.g., if definition completely
12453 		 * specifies target information), but is not in other cases.
12454 		 * SEC("uprobe") is one such case. If user specified target
12455 		 * binary and function name, such BPF program can be
12456 		 * auto-attached. But if not, it shouldn't trigger skeleton's
12457 		 * attach to fail. It should just be skipped.
12458 		 * attach_fn signals such case with returning 0 (no error) and
12459 		 * setting link to NULL.
12460 		 */
12461 	}
12462 
12463 	return 0;
12464 }
12465 
12466 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
12467 {
12468 	int i;
12469 
12470 	for (i = 0; i < s->prog_cnt; i++) {
12471 		struct bpf_link **link = s->progs[i].link;
12472 
12473 		bpf_link__destroy(*link);
12474 		*link = NULL;
12475 	}
12476 }
12477 
12478 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
12479 {
12480 	if (!s)
12481 		return;
12482 
12483 	if (s->progs)
12484 		bpf_object__detach_skeleton(s);
12485 	if (s->obj)
12486 		bpf_object__close(*s->obj);
12487 	free(s->maps);
12488 	free(s->progs);
12489 	free(s);
12490 }
12491