1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/list.h> 35 #include <linux/limits.h> 36 #include <linux/perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <linux/version.h> 39 #include <sys/epoll.h> 40 #include <sys/ioctl.h> 41 #include <sys/mman.h> 42 #include <sys/stat.h> 43 #include <sys/types.h> 44 #include <sys/vfs.h> 45 #include <sys/utsname.h> 46 #include <sys/resource.h> 47 #include <libelf.h> 48 #include <gelf.h> 49 #include <zlib.h> 50 51 #include "libbpf.h" 52 #include "bpf.h" 53 #include "btf.h" 54 #include "str_error.h" 55 #include "libbpf_internal.h" 56 #include "hashmap.h" 57 #include "bpf_gen_internal.h" 58 59 #ifndef BPF_FS_MAGIC 60 #define BPF_FS_MAGIC 0xcafe4a11 61 #endif 62 63 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 64 65 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 66 * compilation if user enables corresponding warning. Disable it explicitly. 67 */ 68 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 69 70 #define __printf(a, b) __attribute__((format(printf, a, b))) 71 72 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 73 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 74 75 static int __base_pr(enum libbpf_print_level level, const char *format, 76 va_list args) 77 { 78 if (level == LIBBPF_DEBUG) 79 return 0; 80 81 return vfprintf(stderr, format, args); 82 } 83 84 static libbpf_print_fn_t __libbpf_pr = __base_pr; 85 86 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 87 { 88 libbpf_print_fn_t old_print_fn = __libbpf_pr; 89 90 __libbpf_pr = fn; 91 return old_print_fn; 92 } 93 94 __printf(2, 3) 95 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 96 { 97 va_list args; 98 99 if (!__libbpf_pr) 100 return; 101 102 va_start(args, format); 103 __libbpf_pr(level, format, args); 104 va_end(args); 105 } 106 107 static void pr_perm_msg(int err) 108 { 109 struct rlimit limit; 110 char buf[100]; 111 112 if (err != -EPERM || geteuid() != 0) 113 return; 114 115 err = getrlimit(RLIMIT_MEMLOCK, &limit); 116 if (err) 117 return; 118 119 if (limit.rlim_cur == RLIM_INFINITY) 120 return; 121 122 if (limit.rlim_cur < 1024) 123 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 124 else if (limit.rlim_cur < 1024*1024) 125 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 126 else 127 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 128 129 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 130 buf); 131 } 132 133 #define STRERR_BUFSIZE 128 134 135 /* Copied from tools/perf/util/util.h */ 136 #ifndef zfree 137 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 138 #endif 139 140 #ifndef zclose 141 # define zclose(fd) ({ \ 142 int ___err = 0; \ 143 if ((fd) >= 0) \ 144 ___err = close((fd)); \ 145 fd = -1; \ 146 ___err; }) 147 #endif 148 149 static inline __u64 ptr_to_u64(const void *ptr) 150 { 151 return (__u64) (unsigned long) ptr; 152 } 153 154 /* this goes away in libbpf 1.0 */ 155 enum libbpf_strict_mode libbpf_mode = LIBBPF_STRICT_NONE; 156 157 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 158 { 159 libbpf_mode = mode; 160 return 0; 161 } 162 163 __u32 libbpf_major_version(void) 164 { 165 return LIBBPF_MAJOR_VERSION; 166 } 167 168 __u32 libbpf_minor_version(void) 169 { 170 return LIBBPF_MINOR_VERSION; 171 } 172 173 const char *libbpf_version_string(void) 174 { 175 #define __S(X) #X 176 #define _S(X) __S(X) 177 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 178 #undef _S 179 #undef __S 180 } 181 182 enum reloc_type { 183 RELO_LD64, 184 RELO_CALL, 185 RELO_DATA, 186 RELO_EXTERN_VAR, 187 RELO_EXTERN_FUNC, 188 RELO_SUBPROG_ADDR, 189 RELO_CORE, 190 }; 191 192 struct reloc_desc { 193 enum reloc_type type; 194 int insn_idx; 195 union { 196 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 197 struct { 198 int map_idx; 199 int sym_off; 200 }; 201 }; 202 }; 203 204 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 205 enum sec_def_flags { 206 SEC_NONE = 0, 207 /* expected_attach_type is optional, if kernel doesn't support that */ 208 SEC_EXP_ATTACH_OPT = 1, 209 /* legacy, only used by libbpf_get_type_names() and 210 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 211 * This used to be associated with cgroup (and few other) BPF programs 212 * that were attachable through BPF_PROG_ATTACH command. Pretty 213 * meaningless nowadays, though. 214 */ 215 SEC_ATTACHABLE = 2, 216 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 217 /* attachment target is specified through BTF ID in either kernel or 218 * other BPF program's BTF object */ 219 SEC_ATTACH_BTF = 4, 220 /* BPF program type allows sleeping/blocking in kernel */ 221 SEC_SLEEPABLE = 8, 222 /* allow non-strict prefix matching */ 223 SEC_SLOPPY_PFX = 16, 224 /* BPF program support non-linear XDP buffer */ 225 SEC_XDP_FRAGS = 32, 226 /* deprecated sec definitions not supposed to be used */ 227 SEC_DEPRECATED = 64, 228 }; 229 230 struct bpf_sec_def { 231 char *sec; 232 enum bpf_prog_type prog_type; 233 enum bpf_attach_type expected_attach_type; 234 long cookie; 235 int handler_id; 236 237 libbpf_prog_setup_fn_t prog_setup_fn; 238 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 239 libbpf_prog_attach_fn_t prog_attach_fn; 240 }; 241 242 /* 243 * bpf_prog should be a better name but it has been used in 244 * linux/filter.h. 245 */ 246 struct bpf_program { 247 const struct bpf_sec_def *sec_def; 248 char *sec_name; 249 size_t sec_idx; 250 /* this program's instruction offset (in number of instructions) 251 * within its containing ELF section 252 */ 253 size_t sec_insn_off; 254 /* number of original instructions in ELF section belonging to this 255 * program, not taking into account subprogram instructions possible 256 * appended later during relocation 257 */ 258 size_t sec_insn_cnt; 259 /* Offset (in number of instructions) of the start of instruction 260 * belonging to this BPF program within its containing main BPF 261 * program. For the entry-point (main) BPF program, this is always 262 * zero. For a sub-program, this gets reset before each of main BPF 263 * programs are processed and relocated and is used to determined 264 * whether sub-program was already appended to the main program, and 265 * if yes, at which instruction offset. 266 */ 267 size_t sub_insn_off; 268 269 char *name; 270 /* name with / replaced by _; makes recursive pinning 271 * in bpf_object__pin_programs easier 272 */ 273 char *pin_name; 274 275 /* instructions that belong to BPF program; insns[0] is located at 276 * sec_insn_off instruction within its ELF section in ELF file, so 277 * when mapping ELF file instruction index to the local instruction, 278 * one needs to subtract sec_insn_off; and vice versa. 279 */ 280 struct bpf_insn *insns; 281 /* actual number of instruction in this BPF program's image; for 282 * entry-point BPF programs this includes the size of main program 283 * itself plus all the used sub-programs, appended at the end 284 */ 285 size_t insns_cnt; 286 287 struct reloc_desc *reloc_desc; 288 int nr_reloc; 289 290 /* BPF verifier log settings */ 291 char *log_buf; 292 size_t log_size; 293 __u32 log_level; 294 295 struct { 296 int nr; 297 int *fds; 298 } instances; 299 bpf_program_prep_t preprocessor; 300 301 struct bpf_object *obj; 302 void *priv; 303 bpf_program_clear_priv_t clear_priv; 304 305 bool autoload; 306 bool mark_btf_static; 307 enum bpf_prog_type type; 308 enum bpf_attach_type expected_attach_type; 309 int prog_ifindex; 310 __u32 attach_btf_obj_fd; 311 __u32 attach_btf_id; 312 __u32 attach_prog_fd; 313 void *func_info; 314 __u32 func_info_rec_size; 315 __u32 func_info_cnt; 316 317 void *line_info; 318 __u32 line_info_rec_size; 319 __u32 line_info_cnt; 320 __u32 prog_flags; 321 }; 322 323 struct bpf_struct_ops { 324 const char *tname; 325 const struct btf_type *type; 326 struct bpf_program **progs; 327 __u32 *kern_func_off; 328 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 329 void *data; 330 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 331 * btf_vmlinux's format. 332 * struct bpf_struct_ops_tcp_congestion_ops { 333 * [... some other kernel fields ...] 334 * struct tcp_congestion_ops data; 335 * } 336 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 337 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 338 * from "data". 339 */ 340 void *kern_vdata; 341 __u32 type_id; 342 }; 343 344 #define DATA_SEC ".data" 345 #define BSS_SEC ".bss" 346 #define RODATA_SEC ".rodata" 347 #define KCONFIG_SEC ".kconfig" 348 #define KSYMS_SEC ".ksyms" 349 #define STRUCT_OPS_SEC ".struct_ops" 350 351 enum libbpf_map_type { 352 LIBBPF_MAP_UNSPEC, 353 LIBBPF_MAP_DATA, 354 LIBBPF_MAP_BSS, 355 LIBBPF_MAP_RODATA, 356 LIBBPF_MAP_KCONFIG, 357 }; 358 359 struct bpf_map { 360 char *name; 361 /* real_name is defined for special internal maps (.rodata*, 362 * .data*, .bss, .kconfig) and preserves their original ELF section 363 * name. This is important to be be able to find corresponding BTF 364 * DATASEC information. 365 */ 366 char *real_name; 367 int fd; 368 int sec_idx; 369 size_t sec_offset; 370 int map_ifindex; 371 int inner_map_fd; 372 struct bpf_map_def def; 373 __u32 numa_node; 374 __u32 btf_var_idx; 375 __u32 btf_key_type_id; 376 __u32 btf_value_type_id; 377 __u32 btf_vmlinux_value_type_id; 378 void *priv; 379 bpf_map_clear_priv_t clear_priv; 380 enum libbpf_map_type libbpf_type; 381 void *mmaped; 382 struct bpf_struct_ops *st_ops; 383 struct bpf_map *inner_map; 384 void **init_slots; 385 int init_slots_sz; 386 char *pin_path; 387 bool pinned; 388 bool reused; 389 bool skipped; 390 __u64 map_extra; 391 }; 392 393 enum extern_type { 394 EXT_UNKNOWN, 395 EXT_KCFG, 396 EXT_KSYM, 397 }; 398 399 enum kcfg_type { 400 KCFG_UNKNOWN, 401 KCFG_CHAR, 402 KCFG_BOOL, 403 KCFG_INT, 404 KCFG_TRISTATE, 405 KCFG_CHAR_ARR, 406 }; 407 408 struct extern_desc { 409 enum extern_type type; 410 int sym_idx; 411 int btf_id; 412 int sec_btf_id; 413 const char *name; 414 bool is_set; 415 bool is_weak; 416 union { 417 struct { 418 enum kcfg_type type; 419 int sz; 420 int align; 421 int data_off; 422 bool is_signed; 423 } kcfg; 424 struct { 425 unsigned long long addr; 426 427 /* target btf_id of the corresponding kernel var. */ 428 int kernel_btf_obj_fd; 429 int kernel_btf_id; 430 431 /* local btf_id of the ksym extern's type. */ 432 __u32 type_id; 433 /* BTF fd index to be patched in for insn->off, this is 434 * 0 for vmlinux BTF, index in obj->fd_array for module 435 * BTF 436 */ 437 __s16 btf_fd_idx; 438 } ksym; 439 }; 440 }; 441 442 static LIST_HEAD(bpf_objects_list); 443 444 struct module_btf { 445 struct btf *btf; 446 char *name; 447 __u32 id; 448 int fd; 449 int fd_array_idx; 450 }; 451 452 enum sec_type { 453 SEC_UNUSED = 0, 454 SEC_RELO, 455 SEC_BSS, 456 SEC_DATA, 457 SEC_RODATA, 458 }; 459 460 struct elf_sec_desc { 461 enum sec_type sec_type; 462 Elf64_Shdr *shdr; 463 Elf_Data *data; 464 }; 465 466 struct elf_state { 467 int fd; 468 const void *obj_buf; 469 size_t obj_buf_sz; 470 Elf *elf; 471 Elf64_Ehdr *ehdr; 472 Elf_Data *symbols; 473 Elf_Data *st_ops_data; 474 size_t shstrndx; /* section index for section name strings */ 475 size_t strtabidx; 476 struct elf_sec_desc *secs; 477 int sec_cnt; 478 int maps_shndx; 479 int btf_maps_shndx; 480 __u32 btf_maps_sec_btf_id; 481 int text_shndx; 482 int symbols_shndx; 483 int st_ops_shndx; 484 }; 485 486 struct usdt_manager; 487 488 struct bpf_object { 489 char name[BPF_OBJ_NAME_LEN]; 490 char license[64]; 491 __u32 kern_version; 492 493 struct bpf_program *programs; 494 size_t nr_programs; 495 struct bpf_map *maps; 496 size_t nr_maps; 497 size_t maps_cap; 498 499 char *kconfig; 500 struct extern_desc *externs; 501 int nr_extern; 502 int kconfig_map_idx; 503 504 bool loaded; 505 bool has_subcalls; 506 bool has_rodata; 507 508 struct bpf_gen *gen_loader; 509 510 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 511 struct elf_state efile; 512 /* 513 * All loaded bpf_object are linked in a list, which is 514 * hidden to caller. bpf_objects__<func> handlers deal with 515 * all objects. 516 */ 517 struct list_head list; 518 519 struct btf *btf; 520 struct btf_ext *btf_ext; 521 522 /* Parse and load BTF vmlinux if any of the programs in the object need 523 * it at load time. 524 */ 525 struct btf *btf_vmlinux; 526 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 527 * override for vmlinux BTF. 528 */ 529 char *btf_custom_path; 530 /* vmlinux BTF override for CO-RE relocations */ 531 struct btf *btf_vmlinux_override; 532 /* Lazily initialized kernel module BTFs */ 533 struct module_btf *btf_modules; 534 bool btf_modules_loaded; 535 size_t btf_module_cnt; 536 size_t btf_module_cap; 537 538 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 539 char *log_buf; 540 size_t log_size; 541 __u32 log_level; 542 543 void *priv; 544 bpf_object_clear_priv_t clear_priv; 545 546 int *fd_array; 547 size_t fd_array_cap; 548 size_t fd_array_cnt; 549 550 struct usdt_manager *usdt_man; 551 552 char path[]; 553 }; 554 555 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 556 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 557 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 558 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 559 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 560 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 561 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 562 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 563 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 564 565 void bpf_program__unload(struct bpf_program *prog) 566 { 567 int i; 568 569 if (!prog) 570 return; 571 572 /* 573 * If the object is opened but the program was never loaded, 574 * it is possible that prog->instances.nr == -1. 575 */ 576 if (prog->instances.nr > 0) { 577 for (i = 0; i < prog->instances.nr; i++) 578 zclose(prog->instances.fds[i]); 579 } else if (prog->instances.nr != -1) { 580 pr_warn("Internal error: instances.nr is %d\n", 581 prog->instances.nr); 582 } 583 584 prog->instances.nr = -1; 585 zfree(&prog->instances.fds); 586 587 zfree(&prog->func_info); 588 zfree(&prog->line_info); 589 } 590 591 static void bpf_program__exit(struct bpf_program *prog) 592 { 593 if (!prog) 594 return; 595 596 if (prog->clear_priv) 597 prog->clear_priv(prog, prog->priv); 598 599 prog->priv = NULL; 600 prog->clear_priv = NULL; 601 602 bpf_program__unload(prog); 603 zfree(&prog->name); 604 zfree(&prog->sec_name); 605 zfree(&prog->pin_name); 606 zfree(&prog->insns); 607 zfree(&prog->reloc_desc); 608 609 prog->nr_reloc = 0; 610 prog->insns_cnt = 0; 611 prog->sec_idx = -1; 612 } 613 614 static char *__bpf_program__pin_name(struct bpf_program *prog) 615 { 616 char *name, *p; 617 618 if (libbpf_mode & LIBBPF_STRICT_SEC_NAME) 619 name = strdup(prog->name); 620 else 621 name = strdup(prog->sec_name); 622 623 if (!name) 624 return NULL; 625 626 p = name; 627 628 while ((p = strchr(p, '/'))) 629 *p = '_'; 630 631 return name; 632 } 633 634 static bool insn_is_subprog_call(const struct bpf_insn *insn) 635 { 636 return BPF_CLASS(insn->code) == BPF_JMP && 637 BPF_OP(insn->code) == BPF_CALL && 638 BPF_SRC(insn->code) == BPF_K && 639 insn->src_reg == BPF_PSEUDO_CALL && 640 insn->dst_reg == 0 && 641 insn->off == 0; 642 } 643 644 static bool is_call_insn(const struct bpf_insn *insn) 645 { 646 return insn->code == (BPF_JMP | BPF_CALL); 647 } 648 649 static bool insn_is_pseudo_func(struct bpf_insn *insn) 650 { 651 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 652 } 653 654 static int 655 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 656 const char *name, size_t sec_idx, const char *sec_name, 657 size_t sec_off, void *insn_data, size_t insn_data_sz) 658 { 659 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 660 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 661 sec_name, name, sec_off, insn_data_sz); 662 return -EINVAL; 663 } 664 665 memset(prog, 0, sizeof(*prog)); 666 prog->obj = obj; 667 668 prog->sec_idx = sec_idx; 669 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 670 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 671 /* insns_cnt can later be increased by appending used subprograms */ 672 prog->insns_cnt = prog->sec_insn_cnt; 673 674 prog->type = BPF_PROG_TYPE_UNSPEC; 675 676 /* libbpf's convention for SEC("?abc...") is that it's just like 677 * SEC("abc...") but the corresponding bpf_program starts out with 678 * autoload set to false. 679 */ 680 if (sec_name[0] == '?') { 681 prog->autoload = false; 682 /* from now on forget there was ? in section name */ 683 sec_name++; 684 } else { 685 prog->autoload = true; 686 } 687 688 prog->instances.fds = NULL; 689 prog->instances.nr = -1; 690 691 /* inherit object's log_level */ 692 prog->log_level = obj->log_level; 693 694 prog->sec_name = strdup(sec_name); 695 if (!prog->sec_name) 696 goto errout; 697 698 prog->name = strdup(name); 699 if (!prog->name) 700 goto errout; 701 702 prog->pin_name = __bpf_program__pin_name(prog); 703 if (!prog->pin_name) 704 goto errout; 705 706 prog->insns = malloc(insn_data_sz); 707 if (!prog->insns) 708 goto errout; 709 memcpy(prog->insns, insn_data, insn_data_sz); 710 711 return 0; 712 errout: 713 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 714 bpf_program__exit(prog); 715 return -ENOMEM; 716 } 717 718 static int 719 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 720 const char *sec_name, int sec_idx) 721 { 722 Elf_Data *symbols = obj->efile.symbols; 723 struct bpf_program *prog, *progs; 724 void *data = sec_data->d_buf; 725 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 726 int nr_progs, err, i; 727 const char *name; 728 Elf64_Sym *sym; 729 730 progs = obj->programs; 731 nr_progs = obj->nr_programs; 732 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 733 sec_off = 0; 734 735 for (i = 0; i < nr_syms; i++) { 736 sym = elf_sym_by_idx(obj, i); 737 738 if (sym->st_shndx != sec_idx) 739 continue; 740 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 741 continue; 742 743 prog_sz = sym->st_size; 744 sec_off = sym->st_value; 745 746 name = elf_sym_str(obj, sym->st_name); 747 if (!name) { 748 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 749 sec_name, sec_off); 750 return -LIBBPF_ERRNO__FORMAT; 751 } 752 753 if (sec_off + prog_sz > sec_sz) { 754 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 755 sec_name, sec_off); 756 return -LIBBPF_ERRNO__FORMAT; 757 } 758 759 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 760 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 761 return -ENOTSUP; 762 } 763 764 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 765 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 766 767 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 768 if (!progs) { 769 /* 770 * In this case the original obj->programs 771 * is still valid, so don't need special treat for 772 * bpf_close_object(). 773 */ 774 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 775 sec_name, name); 776 return -ENOMEM; 777 } 778 obj->programs = progs; 779 780 prog = &progs[nr_progs]; 781 782 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 783 sec_off, data + sec_off, prog_sz); 784 if (err) 785 return err; 786 787 /* if function is a global/weak symbol, but has restricted 788 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 789 * as static to enable more permissive BPF verification mode 790 * with more outside context available to BPF verifier 791 */ 792 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL 793 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 794 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 795 prog->mark_btf_static = true; 796 797 nr_progs++; 798 obj->nr_programs = nr_progs; 799 } 800 801 return 0; 802 } 803 804 __u32 get_kernel_version(void) 805 { 806 /* On Ubuntu LINUX_VERSION_CODE doesn't correspond to info.release, 807 * but Ubuntu provides /proc/version_signature file, as described at 808 * https://ubuntu.com/kernel, with an example contents below, which we 809 * can use to get a proper LINUX_VERSION_CODE. 810 * 811 * Ubuntu 5.4.0-12.15-generic 5.4.8 812 * 813 * In the above, 5.4.8 is what kernel is actually expecting, while 814 * uname() call will return 5.4.0 in info.release. 815 */ 816 const char *ubuntu_kver_file = "/proc/version_signature"; 817 __u32 major, minor, patch; 818 struct utsname info; 819 820 if (access(ubuntu_kver_file, R_OK) == 0) { 821 FILE *f; 822 823 f = fopen(ubuntu_kver_file, "r"); 824 if (f) { 825 if (fscanf(f, "%*s %*s %d.%d.%d\n", &major, &minor, &patch) == 3) { 826 fclose(f); 827 return KERNEL_VERSION(major, minor, patch); 828 } 829 fclose(f); 830 } 831 /* something went wrong, fall back to uname() approach */ 832 } 833 834 uname(&info); 835 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 836 return 0; 837 return KERNEL_VERSION(major, minor, patch); 838 } 839 840 static const struct btf_member * 841 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 842 { 843 struct btf_member *m; 844 int i; 845 846 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 847 if (btf_member_bit_offset(t, i) == bit_offset) 848 return m; 849 } 850 851 return NULL; 852 } 853 854 static const struct btf_member * 855 find_member_by_name(const struct btf *btf, const struct btf_type *t, 856 const char *name) 857 { 858 struct btf_member *m; 859 int i; 860 861 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 862 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 863 return m; 864 } 865 866 return NULL; 867 } 868 869 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 870 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 871 const char *name, __u32 kind); 872 873 static int 874 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 875 const struct btf_type **type, __u32 *type_id, 876 const struct btf_type **vtype, __u32 *vtype_id, 877 const struct btf_member **data_member) 878 { 879 const struct btf_type *kern_type, *kern_vtype; 880 const struct btf_member *kern_data_member; 881 __s32 kern_vtype_id, kern_type_id; 882 __u32 i; 883 884 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 885 if (kern_type_id < 0) { 886 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 887 tname); 888 return kern_type_id; 889 } 890 kern_type = btf__type_by_id(btf, kern_type_id); 891 892 /* Find the corresponding "map_value" type that will be used 893 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 894 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 895 * btf_vmlinux. 896 */ 897 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 898 tname, BTF_KIND_STRUCT); 899 if (kern_vtype_id < 0) { 900 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 901 STRUCT_OPS_VALUE_PREFIX, tname); 902 return kern_vtype_id; 903 } 904 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 905 906 /* Find "struct tcp_congestion_ops" from 907 * struct bpf_struct_ops_tcp_congestion_ops { 908 * [ ... ] 909 * struct tcp_congestion_ops data; 910 * } 911 */ 912 kern_data_member = btf_members(kern_vtype); 913 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 914 if (kern_data_member->type == kern_type_id) 915 break; 916 } 917 if (i == btf_vlen(kern_vtype)) { 918 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 919 tname, STRUCT_OPS_VALUE_PREFIX, tname); 920 return -EINVAL; 921 } 922 923 *type = kern_type; 924 *type_id = kern_type_id; 925 *vtype = kern_vtype; 926 *vtype_id = kern_vtype_id; 927 *data_member = kern_data_member; 928 929 return 0; 930 } 931 932 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 933 { 934 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 935 } 936 937 /* Init the map's fields that depend on kern_btf */ 938 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 939 const struct btf *btf, 940 const struct btf *kern_btf) 941 { 942 const struct btf_member *member, *kern_member, *kern_data_member; 943 const struct btf_type *type, *kern_type, *kern_vtype; 944 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 945 struct bpf_struct_ops *st_ops; 946 void *data, *kern_data; 947 const char *tname; 948 int err; 949 950 st_ops = map->st_ops; 951 type = st_ops->type; 952 tname = st_ops->tname; 953 err = find_struct_ops_kern_types(kern_btf, tname, 954 &kern_type, &kern_type_id, 955 &kern_vtype, &kern_vtype_id, 956 &kern_data_member); 957 if (err) 958 return err; 959 960 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 961 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 962 963 map->def.value_size = kern_vtype->size; 964 map->btf_vmlinux_value_type_id = kern_vtype_id; 965 966 st_ops->kern_vdata = calloc(1, kern_vtype->size); 967 if (!st_ops->kern_vdata) 968 return -ENOMEM; 969 970 data = st_ops->data; 971 kern_data_off = kern_data_member->offset / 8; 972 kern_data = st_ops->kern_vdata + kern_data_off; 973 974 member = btf_members(type); 975 for (i = 0; i < btf_vlen(type); i++, member++) { 976 const struct btf_type *mtype, *kern_mtype; 977 __u32 mtype_id, kern_mtype_id; 978 void *mdata, *kern_mdata; 979 __s64 msize, kern_msize; 980 __u32 moff, kern_moff; 981 __u32 kern_member_idx; 982 const char *mname; 983 984 mname = btf__name_by_offset(btf, member->name_off); 985 kern_member = find_member_by_name(kern_btf, kern_type, mname); 986 if (!kern_member) { 987 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 988 map->name, mname); 989 return -ENOTSUP; 990 } 991 992 kern_member_idx = kern_member - btf_members(kern_type); 993 if (btf_member_bitfield_size(type, i) || 994 btf_member_bitfield_size(kern_type, kern_member_idx)) { 995 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 996 map->name, mname); 997 return -ENOTSUP; 998 } 999 1000 moff = member->offset / 8; 1001 kern_moff = kern_member->offset / 8; 1002 1003 mdata = data + moff; 1004 kern_mdata = kern_data + kern_moff; 1005 1006 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1007 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1008 &kern_mtype_id); 1009 if (BTF_INFO_KIND(mtype->info) != 1010 BTF_INFO_KIND(kern_mtype->info)) { 1011 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1012 map->name, mname, BTF_INFO_KIND(mtype->info), 1013 BTF_INFO_KIND(kern_mtype->info)); 1014 return -ENOTSUP; 1015 } 1016 1017 if (btf_is_ptr(mtype)) { 1018 struct bpf_program *prog; 1019 1020 prog = st_ops->progs[i]; 1021 if (!prog) 1022 continue; 1023 1024 kern_mtype = skip_mods_and_typedefs(kern_btf, 1025 kern_mtype->type, 1026 &kern_mtype_id); 1027 1028 /* mtype->type must be a func_proto which was 1029 * guaranteed in bpf_object__collect_st_ops_relos(), 1030 * so only check kern_mtype for func_proto here. 1031 */ 1032 if (!btf_is_func_proto(kern_mtype)) { 1033 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1034 map->name, mname); 1035 return -ENOTSUP; 1036 } 1037 1038 prog->attach_btf_id = kern_type_id; 1039 prog->expected_attach_type = kern_member_idx; 1040 1041 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1042 1043 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1044 map->name, mname, prog->name, moff, 1045 kern_moff); 1046 1047 continue; 1048 } 1049 1050 msize = btf__resolve_size(btf, mtype_id); 1051 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1052 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1053 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1054 map->name, mname, (ssize_t)msize, 1055 (ssize_t)kern_msize); 1056 return -ENOTSUP; 1057 } 1058 1059 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1060 map->name, mname, (unsigned int)msize, 1061 moff, kern_moff); 1062 memcpy(kern_mdata, mdata, msize); 1063 } 1064 1065 return 0; 1066 } 1067 1068 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1069 { 1070 struct bpf_map *map; 1071 size_t i; 1072 int err; 1073 1074 for (i = 0; i < obj->nr_maps; i++) { 1075 map = &obj->maps[i]; 1076 1077 if (!bpf_map__is_struct_ops(map)) 1078 continue; 1079 1080 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1081 obj->btf_vmlinux); 1082 if (err) 1083 return err; 1084 } 1085 1086 return 0; 1087 } 1088 1089 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 1090 { 1091 const struct btf_type *type, *datasec; 1092 const struct btf_var_secinfo *vsi; 1093 struct bpf_struct_ops *st_ops; 1094 const char *tname, *var_name; 1095 __s32 type_id, datasec_id; 1096 const struct btf *btf; 1097 struct bpf_map *map; 1098 __u32 i; 1099 1100 if (obj->efile.st_ops_shndx == -1) 1101 return 0; 1102 1103 btf = obj->btf; 1104 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 1105 BTF_KIND_DATASEC); 1106 if (datasec_id < 0) { 1107 pr_warn("struct_ops init: DATASEC %s not found\n", 1108 STRUCT_OPS_SEC); 1109 return -EINVAL; 1110 } 1111 1112 datasec = btf__type_by_id(btf, datasec_id); 1113 vsi = btf_var_secinfos(datasec); 1114 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1115 type = btf__type_by_id(obj->btf, vsi->type); 1116 var_name = btf__name_by_offset(obj->btf, type->name_off); 1117 1118 type_id = btf__resolve_type(obj->btf, vsi->type); 1119 if (type_id < 0) { 1120 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1121 vsi->type, STRUCT_OPS_SEC); 1122 return -EINVAL; 1123 } 1124 1125 type = btf__type_by_id(obj->btf, type_id); 1126 tname = btf__name_by_offset(obj->btf, type->name_off); 1127 if (!tname[0]) { 1128 pr_warn("struct_ops init: anonymous type is not supported\n"); 1129 return -ENOTSUP; 1130 } 1131 if (!btf_is_struct(type)) { 1132 pr_warn("struct_ops init: %s is not a struct\n", tname); 1133 return -EINVAL; 1134 } 1135 1136 map = bpf_object__add_map(obj); 1137 if (IS_ERR(map)) 1138 return PTR_ERR(map); 1139 1140 map->sec_idx = obj->efile.st_ops_shndx; 1141 map->sec_offset = vsi->offset; 1142 map->name = strdup(var_name); 1143 if (!map->name) 1144 return -ENOMEM; 1145 1146 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1147 map->def.key_size = sizeof(int); 1148 map->def.value_size = type->size; 1149 map->def.max_entries = 1; 1150 1151 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1152 if (!map->st_ops) 1153 return -ENOMEM; 1154 st_ops = map->st_ops; 1155 st_ops->data = malloc(type->size); 1156 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1157 st_ops->kern_func_off = malloc(btf_vlen(type) * 1158 sizeof(*st_ops->kern_func_off)); 1159 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1160 return -ENOMEM; 1161 1162 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1163 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1164 var_name, STRUCT_OPS_SEC); 1165 return -EINVAL; 1166 } 1167 1168 memcpy(st_ops->data, 1169 obj->efile.st_ops_data->d_buf + vsi->offset, 1170 type->size); 1171 st_ops->tname = tname; 1172 st_ops->type = type; 1173 st_ops->type_id = type_id; 1174 1175 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1176 tname, type_id, var_name, vsi->offset); 1177 } 1178 1179 return 0; 1180 } 1181 1182 static struct bpf_object *bpf_object__new(const char *path, 1183 const void *obj_buf, 1184 size_t obj_buf_sz, 1185 const char *obj_name) 1186 { 1187 bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST); 1188 struct bpf_object *obj; 1189 char *end; 1190 1191 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1192 if (!obj) { 1193 pr_warn("alloc memory failed for %s\n", path); 1194 return ERR_PTR(-ENOMEM); 1195 } 1196 1197 strcpy(obj->path, path); 1198 if (obj_name) { 1199 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1200 } else { 1201 /* Using basename() GNU version which doesn't modify arg. */ 1202 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1203 end = strchr(obj->name, '.'); 1204 if (end) 1205 *end = 0; 1206 } 1207 1208 obj->efile.fd = -1; 1209 /* 1210 * Caller of this function should also call 1211 * bpf_object__elf_finish() after data collection to return 1212 * obj_buf to user. If not, we should duplicate the buffer to 1213 * avoid user freeing them before elf finish. 1214 */ 1215 obj->efile.obj_buf = obj_buf; 1216 obj->efile.obj_buf_sz = obj_buf_sz; 1217 obj->efile.maps_shndx = -1; 1218 obj->efile.btf_maps_shndx = -1; 1219 obj->efile.st_ops_shndx = -1; 1220 obj->kconfig_map_idx = -1; 1221 1222 obj->kern_version = get_kernel_version(); 1223 obj->loaded = false; 1224 1225 INIT_LIST_HEAD(&obj->list); 1226 if (!strict) 1227 list_add(&obj->list, &bpf_objects_list); 1228 return obj; 1229 } 1230 1231 static void bpf_object__elf_finish(struct bpf_object *obj) 1232 { 1233 if (!obj->efile.elf) 1234 return; 1235 1236 elf_end(obj->efile.elf); 1237 obj->efile.elf = NULL; 1238 obj->efile.symbols = NULL; 1239 obj->efile.st_ops_data = NULL; 1240 1241 zfree(&obj->efile.secs); 1242 obj->efile.sec_cnt = 0; 1243 zclose(obj->efile.fd); 1244 obj->efile.obj_buf = NULL; 1245 obj->efile.obj_buf_sz = 0; 1246 } 1247 1248 static int bpf_object__elf_init(struct bpf_object *obj) 1249 { 1250 Elf64_Ehdr *ehdr; 1251 int err = 0; 1252 Elf *elf; 1253 1254 if (obj->efile.elf) { 1255 pr_warn("elf: init internal error\n"); 1256 return -LIBBPF_ERRNO__LIBELF; 1257 } 1258 1259 if (obj->efile.obj_buf_sz > 0) { 1260 /* 1261 * obj_buf should have been validated by 1262 * bpf_object__open_buffer(). 1263 */ 1264 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1265 } else { 1266 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1267 if (obj->efile.fd < 0) { 1268 char errmsg[STRERR_BUFSIZE], *cp; 1269 1270 err = -errno; 1271 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1272 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1273 return err; 1274 } 1275 1276 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1277 } 1278 1279 if (!elf) { 1280 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1281 err = -LIBBPF_ERRNO__LIBELF; 1282 goto errout; 1283 } 1284 1285 obj->efile.elf = elf; 1286 1287 if (elf_kind(elf) != ELF_K_ELF) { 1288 err = -LIBBPF_ERRNO__FORMAT; 1289 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1290 goto errout; 1291 } 1292 1293 if (gelf_getclass(elf) != ELFCLASS64) { 1294 err = -LIBBPF_ERRNO__FORMAT; 1295 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1296 goto errout; 1297 } 1298 1299 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1300 if (!obj->efile.ehdr) { 1301 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1302 err = -LIBBPF_ERRNO__FORMAT; 1303 goto errout; 1304 } 1305 1306 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1307 pr_warn("elf: failed to get section names section index for %s: %s\n", 1308 obj->path, elf_errmsg(-1)); 1309 err = -LIBBPF_ERRNO__FORMAT; 1310 goto errout; 1311 } 1312 1313 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1314 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1315 pr_warn("elf: failed to get section names strings from %s: %s\n", 1316 obj->path, elf_errmsg(-1)); 1317 err = -LIBBPF_ERRNO__FORMAT; 1318 goto errout; 1319 } 1320 1321 /* Old LLVM set e_machine to EM_NONE */ 1322 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1323 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1324 err = -LIBBPF_ERRNO__FORMAT; 1325 goto errout; 1326 } 1327 1328 return 0; 1329 errout: 1330 bpf_object__elf_finish(obj); 1331 return err; 1332 } 1333 1334 static int bpf_object__check_endianness(struct bpf_object *obj) 1335 { 1336 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1337 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1338 return 0; 1339 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1340 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1341 return 0; 1342 #else 1343 # error "Unrecognized __BYTE_ORDER__" 1344 #endif 1345 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1346 return -LIBBPF_ERRNO__ENDIAN; 1347 } 1348 1349 static int 1350 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1351 { 1352 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1353 * go over allowed ELF data section buffer 1354 */ 1355 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1356 pr_debug("license of %s is %s\n", obj->path, obj->license); 1357 return 0; 1358 } 1359 1360 static int 1361 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1362 { 1363 __u32 kver; 1364 1365 if (size != sizeof(kver)) { 1366 pr_warn("invalid kver section in %s\n", obj->path); 1367 return -LIBBPF_ERRNO__FORMAT; 1368 } 1369 memcpy(&kver, data, sizeof(kver)); 1370 obj->kern_version = kver; 1371 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1372 return 0; 1373 } 1374 1375 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1376 { 1377 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1378 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1379 return true; 1380 return false; 1381 } 1382 1383 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1384 { 1385 Elf_Data *data; 1386 Elf_Scn *scn; 1387 1388 if (!name) 1389 return -EINVAL; 1390 1391 scn = elf_sec_by_name(obj, name); 1392 data = elf_sec_data(obj, scn); 1393 if (data) { 1394 *size = data->d_size; 1395 return 0; /* found it */ 1396 } 1397 1398 return -ENOENT; 1399 } 1400 1401 static int find_elf_var_offset(const struct bpf_object *obj, const char *name, __u32 *off) 1402 { 1403 Elf_Data *symbols = obj->efile.symbols; 1404 const char *sname; 1405 size_t si; 1406 1407 if (!name || !off) 1408 return -EINVAL; 1409 1410 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1411 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1412 1413 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1414 continue; 1415 1416 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1417 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1418 continue; 1419 1420 sname = elf_sym_str(obj, sym->st_name); 1421 if (!sname) { 1422 pr_warn("failed to get sym name string for var %s\n", name); 1423 return -EIO; 1424 } 1425 if (strcmp(name, sname) == 0) { 1426 *off = sym->st_value; 1427 return 0; 1428 } 1429 } 1430 1431 return -ENOENT; 1432 } 1433 1434 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1435 { 1436 struct bpf_map *new_maps; 1437 size_t new_cap; 1438 int i; 1439 1440 if (obj->nr_maps < obj->maps_cap) 1441 return &obj->maps[obj->nr_maps++]; 1442 1443 new_cap = max((size_t)4, obj->maps_cap * 3 / 2); 1444 new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps)); 1445 if (!new_maps) { 1446 pr_warn("alloc maps for object failed\n"); 1447 return ERR_PTR(-ENOMEM); 1448 } 1449 1450 obj->maps_cap = new_cap; 1451 obj->maps = new_maps; 1452 1453 /* zero out new maps */ 1454 memset(obj->maps + obj->nr_maps, 0, 1455 (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps)); 1456 /* 1457 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin) 1458 * when failure (zclose won't close negative fd)). 1459 */ 1460 for (i = obj->nr_maps; i < obj->maps_cap; i++) { 1461 obj->maps[i].fd = -1; 1462 obj->maps[i].inner_map_fd = -1; 1463 } 1464 1465 return &obj->maps[obj->nr_maps++]; 1466 } 1467 1468 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1469 { 1470 long page_sz = sysconf(_SC_PAGE_SIZE); 1471 size_t map_sz; 1472 1473 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1474 map_sz = roundup(map_sz, page_sz); 1475 return map_sz; 1476 } 1477 1478 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1479 { 1480 char map_name[BPF_OBJ_NAME_LEN], *p; 1481 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1482 1483 /* This is one of the more confusing parts of libbpf for various 1484 * reasons, some of which are historical. The original idea for naming 1485 * internal names was to include as much of BPF object name prefix as 1486 * possible, so that it can be distinguished from similar internal 1487 * maps of a different BPF object. 1488 * As an example, let's say we have bpf_object named 'my_object_name' 1489 * and internal map corresponding to '.rodata' ELF section. The final 1490 * map name advertised to user and to the kernel will be 1491 * 'my_objec.rodata', taking first 8 characters of object name and 1492 * entire 7 characters of '.rodata'. 1493 * Somewhat confusingly, if internal map ELF section name is shorter 1494 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1495 * for the suffix, even though we only have 4 actual characters, and 1496 * resulting map will be called 'my_objec.bss', not even using all 15 1497 * characters allowed by the kernel. Oh well, at least the truncated 1498 * object name is somewhat consistent in this case. But if the map 1499 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1500 * (8 chars) and thus will be left with only first 7 characters of the 1501 * object name ('my_obje'). Happy guessing, user, that the final map 1502 * name will be "my_obje.kconfig". 1503 * Now, with libbpf starting to support arbitrarily named .rodata.* 1504 * and .data.* data sections, it's possible that ELF section name is 1505 * longer than allowed 15 chars, so we now need to be careful to take 1506 * only up to 15 first characters of ELF name, taking no BPF object 1507 * name characters at all. So '.rodata.abracadabra' will result in 1508 * '.rodata.abracad' kernel and user-visible name. 1509 * We need to keep this convoluted logic intact for .data, .bss and 1510 * .rodata maps, but for new custom .data.custom and .rodata.custom 1511 * maps we use their ELF names as is, not prepending bpf_object name 1512 * in front. We still need to truncate them to 15 characters for the 1513 * kernel. Full name can be recovered for such maps by using DATASEC 1514 * BTF type associated with such map's value type, though. 1515 */ 1516 if (sfx_len >= BPF_OBJ_NAME_LEN) 1517 sfx_len = BPF_OBJ_NAME_LEN - 1; 1518 1519 /* if there are two or more dots in map name, it's a custom dot map */ 1520 if (strchr(real_name + 1, '.') != NULL) 1521 pfx_len = 0; 1522 else 1523 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1524 1525 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1526 sfx_len, real_name); 1527 1528 /* sanitise map name to characters allowed by kernel */ 1529 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1530 if (!isalnum(*p) && *p != '_' && *p != '.') 1531 *p = '_'; 1532 1533 return strdup(map_name); 1534 } 1535 1536 static int 1537 bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map); 1538 1539 static int 1540 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1541 const char *real_name, int sec_idx, void *data, size_t data_sz) 1542 { 1543 struct bpf_map_def *def; 1544 struct bpf_map *map; 1545 int err; 1546 1547 map = bpf_object__add_map(obj); 1548 if (IS_ERR(map)) 1549 return PTR_ERR(map); 1550 1551 map->libbpf_type = type; 1552 map->sec_idx = sec_idx; 1553 map->sec_offset = 0; 1554 map->real_name = strdup(real_name); 1555 map->name = internal_map_name(obj, real_name); 1556 if (!map->real_name || !map->name) { 1557 zfree(&map->real_name); 1558 zfree(&map->name); 1559 return -ENOMEM; 1560 } 1561 1562 def = &map->def; 1563 def->type = BPF_MAP_TYPE_ARRAY; 1564 def->key_size = sizeof(int); 1565 def->value_size = data_sz; 1566 def->max_entries = 1; 1567 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1568 ? BPF_F_RDONLY_PROG : 0; 1569 def->map_flags |= BPF_F_MMAPABLE; 1570 1571 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1572 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1573 1574 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1575 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1576 if (map->mmaped == MAP_FAILED) { 1577 err = -errno; 1578 map->mmaped = NULL; 1579 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1580 map->name, err); 1581 zfree(&map->real_name); 1582 zfree(&map->name); 1583 return err; 1584 } 1585 1586 /* failures are fine because of maps like .rodata.str1.1 */ 1587 (void) bpf_map_find_btf_info(obj, map); 1588 1589 if (data) 1590 memcpy(map->mmaped, data, data_sz); 1591 1592 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1593 return 0; 1594 } 1595 1596 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1597 { 1598 struct elf_sec_desc *sec_desc; 1599 const char *sec_name; 1600 int err = 0, sec_idx; 1601 1602 /* 1603 * Populate obj->maps with libbpf internal maps. 1604 */ 1605 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1606 sec_desc = &obj->efile.secs[sec_idx]; 1607 1608 switch (sec_desc->sec_type) { 1609 case SEC_DATA: 1610 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1611 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1612 sec_name, sec_idx, 1613 sec_desc->data->d_buf, 1614 sec_desc->data->d_size); 1615 break; 1616 case SEC_RODATA: 1617 obj->has_rodata = true; 1618 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1619 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1620 sec_name, sec_idx, 1621 sec_desc->data->d_buf, 1622 sec_desc->data->d_size); 1623 break; 1624 case SEC_BSS: 1625 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1626 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1627 sec_name, sec_idx, 1628 NULL, 1629 sec_desc->data->d_size); 1630 break; 1631 default: 1632 /* skip */ 1633 break; 1634 } 1635 if (err) 1636 return err; 1637 } 1638 return 0; 1639 } 1640 1641 1642 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1643 const void *name) 1644 { 1645 int i; 1646 1647 for (i = 0; i < obj->nr_extern; i++) { 1648 if (strcmp(obj->externs[i].name, name) == 0) 1649 return &obj->externs[i]; 1650 } 1651 return NULL; 1652 } 1653 1654 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1655 char value) 1656 { 1657 switch (ext->kcfg.type) { 1658 case KCFG_BOOL: 1659 if (value == 'm') { 1660 pr_warn("extern (kcfg) %s=%c should be tristate or char\n", 1661 ext->name, value); 1662 return -EINVAL; 1663 } 1664 *(bool *)ext_val = value == 'y' ? true : false; 1665 break; 1666 case KCFG_TRISTATE: 1667 if (value == 'y') 1668 *(enum libbpf_tristate *)ext_val = TRI_YES; 1669 else if (value == 'm') 1670 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1671 else /* value == 'n' */ 1672 *(enum libbpf_tristate *)ext_val = TRI_NO; 1673 break; 1674 case KCFG_CHAR: 1675 *(char *)ext_val = value; 1676 break; 1677 case KCFG_UNKNOWN: 1678 case KCFG_INT: 1679 case KCFG_CHAR_ARR: 1680 default: 1681 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n", 1682 ext->name, value); 1683 return -EINVAL; 1684 } 1685 ext->is_set = true; 1686 return 0; 1687 } 1688 1689 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1690 const char *value) 1691 { 1692 size_t len; 1693 1694 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1695 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value); 1696 return -EINVAL; 1697 } 1698 1699 len = strlen(value); 1700 if (value[len - 1] != '"') { 1701 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1702 ext->name, value); 1703 return -EINVAL; 1704 } 1705 1706 /* strip quotes */ 1707 len -= 2; 1708 if (len >= ext->kcfg.sz) { 1709 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n", 1710 ext->name, value, len, ext->kcfg.sz - 1); 1711 len = ext->kcfg.sz - 1; 1712 } 1713 memcpy(ext_val, value + 1, len); 1714 ext_val[len] = '\0'; 1715 ext->is_set = true; 1716 return 0; 1717 } 1718 1719 static int parse_u64(const char *value, __u64 *res) 1720 { 1721 char *value_end; 1722 int err; 1723 1724 errno = 0; 1725 *res = strtoull(value, &value_end, 0); 1726 if (errno) { 1727 err = -errno; 1728 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1729 return err; 1730 } 1731 if (*value_end) { 1732 pr_warn("failed to parse '%s' as integer completely\n", value); 1733 return -EINVAL; 1734 } 1735 return 0; 1736 } 1737 1738 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1739 { 1740 int bit_sz = ext->kcfg.sz * 8; 1741 1742 if (ext->kcfg.sz == 8) 1743 return true; 1744 1745 /* Validate that value stored in u64 fits in integer of `ext->sz` 1746 * bytes size without any loss of information. If the target integer 1747 * is signed, we rely on the following limits of integer type of 1748 * Y bits and subsequent transformation: 1749 * 1750 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1751 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1752 * 0 <= X + 2^(Y-1) < 2^Y 1753 * 1754 * For unsigned target integer, check that all the (64 - Y) bits are 1755 * zero. 1756 */ 1757 if (ext->kcfg.is_signed) 1758 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1759 else 1760 return (v >> bit_sz) == 0; 1761 } 1762 1763 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1764 __u64 value) 1765 { 1766 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1767 pr_warn("extern (kcfg) %s=%llu should be integer\n", 1768 ext->name, (unsigned long long)value); 1769 return -EINVAL; 1770 } 1771 if (!is_kcfg_value_in_range(ext, value)) { 1772 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n", 1773 ext->name, (unsigned long long)value, ext->kcfg.sz); 1774 return -ERANGE; 1775 } 1776 switch (ext->kcfg.sz) { 1777 case 1: *(__u8 *)ext_val = value; break; 1778 case 2: *(__u16 *)ext_val = value; break; 1779 case 4: *(__u32 *)ext_val = value; break; 1780 case 8: *(__u64 *)ext_val = value; break; 1781 default: 1782 return -EINVAL; 1783 } 1784 ext->is_set = true; 1785 return 0; 1786 } 1787 1788 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1789 char *buf, void *data) 1790 { 1791 struct extern_desc *ext; 1792 char *sep, *value; 1793 int len, err = 0; 1794 void *ext_val; 1795 __u64 num; 1796 1797 if (!str_has_pfx(buf, "CONFIG_")) 1798 return 0; 1799 1800 sep = strchr(buf, '='); 1801 if (!sep) { 1802 pr_warn("failed to parse '%s': no separator\n", buf); 1803 return -EINVAL; 1804 } 1805 1806 /* Trim ending '\n' */ 1807 len = strlen(buf); 1808 if (buf[len - 1] == '\n') 1809 buf[len - 1] = '\0'; 1810 /* Split on '=' and ensure that a value is present. */ 1811 *sep = '\0'; 1812 if (!sep[1]) { 1813 *sep = '='; 1814 pr_warn("failed to parse '%s': no value\n", buf); 1815 return -EINVAL; 1816 } 1817 1818 ext = find_extern_by_name(obj, buf); 1819 if (!ext || ext->is_set) 1820 return 0; 1821 1822 ext_val = data + ext->kcfg.data_off; 1823 value = sep + 1; 1824 1825 switch (*value) { 1826 case 'y': case 'n': case 'm': 1827 err = set_kcfg_value_tri(ext, ext_val, *value); 1828 break; 1829 case '"': 1830 err = set_kcfg_value_str(ext, ext_val, value); 1831 break; 1832 default: 1833 /* assume integer */ 1834 err = parse_u64(value, &num); 1835 if (err) { 1836 pr_warn("extern (kcfg) %s=%s should be integer\n", 1837 ext->name, value); 1838 return err; 1839 } 1840 err = set_kcfg_value_num(ext, ext_val, num); 1841 break; 1842 } 1843 if (err) 1844 return err; 1845 pr_debug("extern (kcfg) %s=%s\n", ext->name, value); 1846 return 0; 1847 } 1848 1849 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1850 { 1851 char buf[PATH_MAX]; 1852 struct utsname uts; 1853 int len, err = 0; 1854 gzFile file; 1855 1856 uname(&uts); 1857 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1858 if (len < 0) 1859 return -EINVAL; 1860 else if (len >= PATH_MAX) 1861 return -ENAMETOOLONG; 1862 1863 /* gzopen also accepts uncompressed files. */ 1864 file = gzopen(buf, "r"); 1865 if (!file) 1866 file = gzopen("/proc/config.gz", "r"); 1867 1868 if (!file) { 1869 pr_warn("failed to open system Kconfig\n"); 1870 return -ENOENT; 1871 } 1872 1873 while (gzgets(file, buf, sizeof(buf))) { 1874 err = bpf_object__process_kconfig_line(obj, buf, data); 1875 if (err) { 1876 pr_warn("error parsing system Kconfig line '%s': %d\n", 1877 buf, err); 1878 goto out; 1879 } 1880 } 1881 1882 out: 1883 gzclose(file); 1884 return err; 1885 } 1886 1887 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1888 const char *config, void *data) 1889 { 1890 char buf[PATH_MAX]; 1891 int err = 0; 1892 FILE *file; 1893 1894 file = fmemopen((void *)config, strlen(config), "r"); 1895 if (!file) { 1896 err = -errno; 1897 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1898 return err; 1899 } 1900 1901 while (fgets(buf, sizeof(buf), file)) { 1902 err = bpf_object__process_kconfig_line(obj, buf, data); 1903 if (err) { 1904 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1905 buf, err); 1906 break; 1907 } 1908 } 1909 1910 fclose(file); 1911 return err; 1912 } 1913 1914 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1915 { 1916 struct extern_desc *last_ext = NULL, *ext; 1917 size_t map_sz; 1918 int i, err; 1919 1920 for (i = 0; i < obj->nr_extern; i++) { 1921 ext = &obj->externs[i]; 1922 if (ext->type == EXT_KCFG) 1923 last_ext = ext; 1924 } 1925 1926 if (!last_ext) 1927 return 0; 1928 1929 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 1930 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1931 ".kconfig", obj->efile.symbols_shndx, 1932 NULL, map_sz); 1933 if (err) 1934 return err; 1935 1936 obj->kconfig_map_idx = obj->nr_maps - 1; 1937 1938 return 0; 1939 } 1940 1941 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) 1942 { 1943 Elf_Data *symbols = obj->efile.symbols; 1944 int i, map_def_sz = 0, nr_maps = 0, nr_syms; 1945 Elf_Data *data = NULL; 1946 Elf_Scn *scn; 1947 1948 if (obj->efile.maps_shndx < 0) 1949 return 0; 1950 1951 if (libbpf_mode & LIBBPF_STRICT_MAP_DEFINITIONS) { 1952 pr_warn("legacy map definitions in SEC(\"maps\") are not supported\n"); 1953 return -EOPNOTSUPP; 1954 } 1955 1956 if (!symbols) 1957 return -EINVAL; 1958 1959 scn = elf_sec_by_idx(obj, obj->efile.maps_shndx); 1960 data = elf_sec_data(obj, scn); 1961 if (!scn || !data) { 1962 pr_warn("elf: failed to get legacy map definitions for %s\n", 1963 obj->path); 1964 return -EINVAL; 1965 } 1966 1967 /* 1968 * Count number of maps. Each map has a name. 1969 * Array of maps is not supported: only the first element is 1970 * considered. 1971 * 1972 * TODO: Detect array of map and report error. 1973 */ 1974 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 1975 for (i = 0; i < nr_syms; i++) { 1976 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 1977 1978 if (sym->st_shndx != obj->efile.maps_shndx) 1979 continue; 1980 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION) 1981 continue; 1982 nr_maps++; 1983 } 1984 /* Assume equally sized map definitions */ 1985 pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n", 1986 nr_maps, data->d_size, obj->path); 1987 1988 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) { 1989 pr_warn("elf: unable to determine legacy map definition size in %s\n", 1990 obj->path); 1991 return -EINVAL; 1992 } 1993 map_def_sz = data->d_size / nr_maps; 1994 1995 /* Fill obj->maps using data in "maps" section. */ 1996 for (i = 0; i < nr_syms; i++) { 1997 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 1998 const char *map_name; 1999 struct bpf_map_def *def; 2000 struct bpf_map *map; 2001 2002 if (sym->st_shndx != obj->efile.maps_shndx) 2003 continue; 2004 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION) 2005 continue; 2006 2007 map = bpf_object__add_map(obj); 2008 if (IS_ERR(map)) 2009 return PTR_ERR(map); 2010 2011 map_name = elf_sym_str(obj, sym->st_name); 2012 if (!map_name) { 2013 pr_warn("failed to get map #%d name sym string for obj %s\n", 2014 i, obj->path); 2015 return -LIBBPF_ERRNO__FORMAT; 2016 } 2017 2018 pr_warn("map '%s' (legacy): legacy map definitions are deprecated, use BTF-defined maps instead\n", map_name); 2019 2020 if (ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 2021 pr_warn("map '%s' (legacy): static maps are not supported\n", map_name); 2022 return -ENOTSUP; 2023 } 2024 2025 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2026 map->sec_idx = sym->st_shndx; 2027 map->sec_offset = sym->st_value; 2028 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n", 2029 map_name, map->sec_idx, map->sec_offset); 2030 if (sym->st_value + map_def_sz > data->d_size) { 2031 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n", 2032 obj->path, map_name); 2033 return -EINVAL; 2034 } 2035 2036 map->name = strdup(map_name); 2037 if (!map->name) { 2038 pr_warn("map '%s': failed to alloc map name\n", map_name); 2039 return -ENOMEM; 2040 } 2041 pr_debug("map %d is \"%s\"\n", i, map->name); 2042 def = (struct bpf_map_def *)(data->d_buf + sym->st_value); 2043 /* 2044 * If the definition of the map in the object file fits in 2045 * bpf_map_def, copy it. Any extra fields in our version 2046 * of bpf_map_def will default to zero as a result of the 2047 * calloc above. 2048 */ 2049 if (map_def_sz <= sizeof(struct bpf_map_def)) { 2050 memcpy(&map->def, def, map_def_sz); 2051 } else { 2052 /* 2053 * Here the map structure being read is bigger than what 2054 * we expect, truncate if the excess bits are all zero. 2055 * If they are not zero, reject this map as 2056 * incompatible. 2057 */ 2058 char *b; 2059 2060 for (b = ((char *)def) + sizeof(struct bpf_map_def); 2061 b < ((char *)def) + map_def_sz; b++) { 2062 if (*b != 0) { 2063 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n", 2064 obj->path, map_name); 2065 if (strict) 2066 return -EINVAL; 2067 } 2068 } 2069 memcpy(&map->def, def, sizeof(struct bpf_map_def)); 2070 } 2071 2072 /* btf info may not exist but fill it in if it does exist */ 2073 (void) bpf_map_find_btf_info(obj, map); 2074 } 2075 return 0; 2076 } 2077 2078 const struct btf_type * 2079 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2080 { 2081 const struct btf_type *t = btf__type_by_id(btf, id); 2082 2083 if (res_id) 2084 *res_id = id; 2085 2086 while (btf_is_mod(t) || btf_is_typedef(t)) { 2087 if (res_id) 2088 *res_id = t->type; 2089 t = btf__type_by_id(btf, t->type); 2090 } 2091 2092 return t; 2093 } 2094 2095 static const struct btf_type * 2096 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2097 { 2098 const struct btf_type *t; 2099 2100 t = skip_mods_and_typedefs(btf, id, NULL); 2101 if (!btf_is_ptr(t)) 2102 return NULL; 2103 2104 t = skip_mods_and_typedefs(btf, t->type, res_id); 2105 2106 return btf_is_func_proto(t) ? t : NULL; 2107 } 2108 2109 static const char *__btf_kind_str(__u16 kind) 2110 { 2111 switch (kind) { 2112 case BTF_KIND_UNKN: return "void"; 2113 case BTF_KIND_INT: return "int"; 2114 case BTF_KIND_PTR: return "ptr"; 2115 case BTF_KIND_ARRAY: return "array"; 2116 case BTF_KIND_STRUCT: return "struct"; 2117 case BTF_KIND_UNION: return "union"; 2118 case BTF_KIND_ENUM: return "enum"; 2119 case BTF_KIND_FWD: return "fwd"; 2120 case BTF_KIND_TYPEDEF: return "typedef"; 2121 case BTF_KIND_VOLATILE: return "volatile"; 2122 case BTF_KIND_CONST: return "const"; 2123 case BTF_KIND_RESTRICT: return "restrict"; 2124 case BTF_KIND_FUNC: return "func"; 2125 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2126 case BTF_KIND_VAR: return "var"; 2127 case BTF_KIND_DATASEC: return "datasec"; 2128 case BTF_KIND_FLOAT: return "float"; 2129 case BTF_KIND_DECL_TAG: return "decl_tag"; 2130 case BTF_KIND_TYPE_TAG: return "type_tag"; 2131 default: return "unknown"; 2132 } 2133 } 2134 2135 const char *btf_kind_str(const struct btf_type *t) 2136 { 2137 return __btf_kind_str(btf_kind(t)); 2138 } 2139 2140 /* 2141 * Fetch integer attribute of BTF map definition. Such attributes are 2142 * represented using a pointer to an array, in which dimensionality of array 2143 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2144 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2145 * type definition, while using only sizeof(void *) space in ELF data section. 2146 */ 2147 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2148 const struct btf_member *m, __u32 *res) 2149 { 2150 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2151 const char *name = btf__name_by_offset(btf, m->name_off); 2152 const struct btf_array *arr_info; 2153 const struct btf_type *arr_t; 2154 2155 if (!btf_is_ptr(t)) { 2156 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2157 map_name, name, btf_kind_str(t)); 2158 return false; 2159 } 2160 2161 arr_t = btf__type_by_id(btf, t->type); 2162 if (!arr_t) { 2163 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2164 map_name, name, t->type); 2165 return false; 2166 } 2167 if (!btf_is_array(arr_t)) { 2168 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2169 map_name, name, btf_kind_str(arr_t)); 2170 return false; 2171 } 2172 arr_info = btf_array(arr_t); 2173 *res = arr_info->nelems; 2174 return true; 2175 } 2176 2177 static int build_map_pin_path(struct bpf_map *map, const char *path) 2178 { 2179 char buf[PATH_MAX]; 2180 int len; 2181 2182 if (!path) 2183 path = "/sys/fs/bpf"; 2184 2185 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 2186 if (len < 0) 2187 return -EINVAL; 2188 else if (len >= PATH_MAX) 2189 return -ENAMETOOLONG; 2190 2191 return bpf_map__set_pin_path(map, buf); 2192 } 2193 2194 int parse_btf_map_def(const char *map_name, struct btf *btf, 2195 const struct btf_type *def_t, bool strict, 2196 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2197 { 2198 const struct btf_type *t; 2199 const struct btf_member *m; 2200 bool is_inner = inner_def == NULL; 2201 int vlen, i; 2202 2203 vlen = btf_vlen(def_t); 2204 m = btf_members(def_t); 2205 for (i = 0; i < vlen; i++, m++) { 2206 const char *name = btf__name_by_offset(btf, m->name_off); 2207 2208 if (!name) { 2209 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2210 return -EINVAL; 2211 } 2212 if (strcmp(name, "type") == 0) { 2213 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2214 return -EINVAL; 2215 map_def->parts |= MAP_DEF_MAP_TYPE; 2216 } else if (strcmp(name, "max_entries") == 0) { 2217 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2218 return -EINVAL; 2219 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2220 } else if (strcmp(name, "map_flags") == 0) { 2221 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2222 return -EINVAL; 2223 map_def->parts |= MAP_DEF_MAP_FLAGS; 2224 } else if (strcmp(name, "numa_node") == 0) { 2225 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2226 return -EINVAL; 2227 map_def->parts |= MAP_DEF_NUMA_NODE; 2228 } else if (strcmp(name, "key_size") == 0) { 2229 __u32 sz; 2230 2231 if (!get_map_field_int(map_name, btf, m, &sz)) 2232 return -EINVAL; 2233 if (map_def->key_size && map_def->key_size != sz) { 2234 pr_warn("map '%s': conflicting key size %u != %u.\n", 2235 map_name, map_def->key_size, sz); 2236 return -EINVAL; 2237 } 2238 map_def->key_size = sz; 2239 map_def->parts |= MAP_DEF_KEY_SIZE; 2240 } else if (strcmp(name, "key") == 0) { 2241 __s64 sz; 2242 2243 t = btf__type_by_id(btf, m->type); 2244 if (!t) { 2245 pr_warn("map '%s': key type [%d] not found.\n", 2246 map_name, m->type); 2247 return -EINVAL; 2248 } 2249 if (!btf_is_ptr(t)) { 2250 pr_warn("map '%s': key spec is not PTR: %s.\n", 2251 map_name, btf_kind_str(t)); 2252 return -EINVAL; 2253 } 2254 sz = btf__resolve_size(btf, t->type); 2255 if (sz < 0) { 2256 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2257 map_name, t->type, (ssize_t)sz); 2258 return sz; 2259 } 2260 if (map_def->key_size && map_def->key_size != sz) { 2261 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2262 map_name, map_def->key_size, (ssize_t)sz); 2263 return -EINVAL; 2264 } 2265 map_def->key_size = sz; 2266 map_def->key_type_id = t->type; 2267 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2268 } else if (strcmp(name, "value_size") == 0) { 2269 __u32 sz; 2270 2271 if (!get_map_field_int(map_name, btf, m, &sz)) 2272 return -EINVAL; 2273 if (map_def->value_size && map_def->value_size != sz) { 2274 pr_warn("map '%s': conflicting value size %u != %u.\n", 2275 map_name, map_def->value_size, sz); 2276 return -EINVAL; 2277 } 2278 map_def->value_size = sz; 2279 map_def->parts |= MAP_DEF_VALUE_SIZE; 2280 } else if (strcmp(name, "value") == 0) { 2281 __s64 sz; 2282 2283 t = btf__type_by_id(btf, m->type); 2284 if (!t) { 2285 pr_warn("map '%s': value type [%d] not found.\n", 2286 map_name, m->type); 2287 return -EINVAL; 2288 } 2289 if (!btf_is_ptr(t)) { 2290 pr_warn("map '%s': value spec is not PTR: %s.\n", 2291 map_name, btf_kind_str(t)); 2292 return -EINVAL; 2293 } 2294 sz = btf__resolve_size(btf, t->type); 2295 if (sz < 0) { 2296 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2297 map_name, t->type, (ssize_t)sz); 2298 return sz; 2299 } 2300 if (map_def->value_size && map_def->value_size != sz) { 2301 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2302 map_name, map_def->value_size, (ssize_t)sz); 2303 return -EINVAL; 2304 } 2305 map_def->value_size = sz; 2306 map_def->value_type_id = t->type; 2307 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2308 } 2309 else if (strcmp(name, "values") == 0) { 2310 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2311 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2312 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2313 char inner_map_name[128]; 2314 int err; 2315 2316 if (is_inner) { 2317 pr_warn("map '%s': multi-level inner maps not supported.\n", 2318 map_name); 2319 return -ENOTSUP; 2320 } 2321 if (i != vlen - 1) { 2322 pr_warn("map '%s': '%s' member should be last.\n", 2323 map_name, name); 2324 return -EINVAL; 2325 } 2326 if (!is_map_in_map && !is_prog_array) { 2327 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2328 map_name); 2329 return -ENOTSUP; 2330 } 2331 if (map_def->value_size && map_def->value_size != 4) { 2332 pr_warn("map '%s': conflicting value size %u != 4.\n", 2333 map_name, map_def->value_size); 2334 return -EINVAL; 2335 } 2336 map_def->value_size = 4; 2337 t = btf__type_by_id(btf, m->type); 2338 if (!t) { 2339 pr_warn("map '%s': %s type [%d] not found.\n", 2340 map_name, desc, m->type); 2341 return -EINVAL; 2342 } 2343 if (!btf_is_array(t) || btf_array(t)->nelems) { 2344 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2345 map_name, desc); 2346 return -EINVAL; 2347 } 2348 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2349 if (!btf_is_ptr(t)) { 2350 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2351 map_name, desc, btf_kind_str(t)); 2352 return -EINVAL; 2353 } 2354 t = skip_mods_and_typedefs(btf, t->type, NULL); 2355 if (is_prog_array) { 2356 if (!btf_is_func_proto(t)) { 2357 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2358 map_name, btf_kind_str(t)); 2359 return -EINVAL; 2360 } 2361 continue; 2362 } 2363 if (!btf_is_struct(t)) { 2364 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2365 map_name, btf_kind_str(t)); 2366 return -EINVAL; 2367 } 2368 2369 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2370 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2371 if (err) 2372 return err; 2373 2374 map_def->parts |= MAP_DEF_INNER_MAP; 2375 } else if (strcmp(name, "pinning") == 0) { 2376 __u32 val; 2377 2378 if (is_inner) { 2379 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2380 return -EINVAL; 2381 } 2382 if (!get_map_field_int(map_name, btf, m, &val)) 2383 return -EINVAL; 2384 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2385 pr_warn("map '%s': invalid pinning value %u.\n", 2386 map_name, val); 2387 return -EINVAL; 2388 } 2389 map_def->pinning = val; 2390 map_def->parts |= MAP_DEF_PINNING; 2391 } else if (strcmp(name, "map_extra") == 0) { 2392 __u32 map_extra; 2393 2394 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2395 return -EINVAL; 2396 map_def->map_extra = map_extra; 2397 map_def->parts |= MAP_DEF_MAP_EXTRA; 2398 } else { 2399 if (strict) { 2400 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2401 return -ENOTSUP; 2402 } 2403 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2404 } 2405 } 2406 2407 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2408 pr_warn("map '%s': map type isn't specified.\n", map_name); 2409 return -EINVAL; 2410 } 2411 2412 return 0; 2413 } 2414 2415 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2416 { 2417 map->def.type = def->map_type; 2418 map->def.key_size = def->key_size; 2419 map->def.value_size = def->value_size; 2420 map->def.max_entries = def->max_entries; 2421 map->def.map_flags = def->map_flags; 2422 map->map_extra = def->map_extra; 2423 2424 map->numa_node = def->numa_node; 2425 map->btf_key_type_id = def->key_type_id; 2426 map->btf_value_type_id = def->value_type_id; 2427 2428 if (def->parts & MAP_DEF_MAP_TYPE) 2429 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2430 2431 if (def->parts & MAP_DEF_KEY_TYPE) 2432 pr_debug("map '%s': found key [%u], sz = %u.\n", 2433 map->name, def->key_type_id, def->key_size); 2434 else if (def->parts & MAP_DEF_KEY_SIZE) 2435 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2436 2437 if (def->parts & MAP_DEF_VALUE_TYPE) 2438 pr_debug("map '%s': found value [%u], sz = %u.\n", 2439 map->name, def->value_type_id, def->value_size); 2440 else if (def->parts & MAP_DEF_VALUE_SIZE) 2441 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2442 2443 if (def->parts & MAP_DEF_MAX_ENTRIES) 2444 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2445 if (def->parts & MAP_DEF_MAP_FLAGS) 2446 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2447 if (def->parts & MAP_DEF_MAP_EXTRA) 2448 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2449 (unsigned long long)def->map_extra); 2450 if (def->parts & MAP_DEF_PINNING) 2451 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2452 if (def->parts & MAP_DEF_NUMA_NODE) 2453 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2454 2455 if (def->parts & MAP_DEF_INNER_MAP) 2456 pr_debug("map '%s': found inner map definition.\n", map->name); 2457 } 2458 2459 static const char *btf_var_linkage_str(__u32 linkage) 2460 { 2461 switch (linkage) { 2462 case BTF_VAR_STATIC: return "static"; 2463 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2464 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2465 default: return "unknown"; 2466 } 2467 } 2468 2469 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2470 const struct btf_type *sec, 2471 int var_idx, int sec_idx, 2472 const Elf_Data *data, bool strict, 2473 const char *pin_root_path) 2474 { 2475 struct btf_map_def map_def = {}, inner_def = {}; 2476 const struct btf_type *var, *def; 2477 const struct btf_var_secinfo *vi; 2478 const struct btf_var *var_extra; 2479 const char *map_name; 2480 struct bpf_map *map; 2481 int err; 2482 2483 vi = btf_var_secinfos(sec) + var_idx; 2484 var = btf__type_by_id(obj->btf, vi->type); 2485 var_extra = btf_var(var); 2486 map_name = btf__name_by_offset(obj->btf, var->name_off); 2487 2488 if (map_name == NULL || map_name[0] == '\0') { 2489 pr_warn("map #%d: empty name.\n", var_idx); 2490 return -EINVAL; 2491 } 2492 if ((__u64)vi->offset + vi->size > data->d_size) { 2493 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2494 return -EINVAL; 2495 } 2496 if (!btf_is_var(var)) { 2497 pr_warn("map '%s': unexpected var kind %s.\n", 2498 map_name, btf_kind_str(var)); 2499 return -EINVAL; 2500 } 2501 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2502 pr_warn("map '%s': unsupported map linkage %s.\n", 2503 map_name, btf_var_linkage_str(var_extra->linkage)); 2504 return -EOPNOTSUPP; 2505 } 2506 2507 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2508 if (!btf_is_struct(def)) { 2509 pr_warn("map '%s': unexpected def kind %s.\n", 2510 map_name, btf_kind_str(var)); 2511 return -EINVAL; 2512 } 2513 if (def->size > vi->size) { 2514 pr_warn("map '%s': invalid def size.\n", map_name); 2515 return -EINVAL; 2516 } 2517 2518 map = bpf_object__add_map(obj); 2519 if (IS_ERR(map)) 2520 return PTR_ERR(map); 2521 map->name = strdup(map_name); 2522 if (!map->name) { 2523 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2524 return -ENOMEM; 2525 } 2526 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2527 map->def.type = BPF_MAP_TYPE_UNSPEC; 2528 map->sec_idx = sec_idx; 2529 map->sec_offset = vi->offset; 2530 map->btf_var_idx = var_idx; 2531 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2532 map_name, map->sec_idx, map->sec_offset); 2533 2534 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2535 if (err) 2536 return err; 2537 2538 fill_map_from_def(map, &map_def); 2539 2540 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2541 err = build_map_pin_path(map, pin_root_path); 2542 if (err) { 2543 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2544 return err; 2545 } 2546 } 2547 2548 if (map_def.parts & MAP_DEF_INNER_MAP) { 2549 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2550 if (!map->inner_map) 2551 return -ENOMEM; 2552 map->inner_map->fd = -1; 2553 map->inner_map->sec_idx = sec_idx; 2554 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2555 if (!map->inner_map->name) 2556 return -ENOMEM; 2557 sprintf(map->inner_map->name, "%s.inner", map_name); 2558 2559 fill_map_from_def(map->inner_map, &inner_def); 2560 } 2561 2562 err = bpf_map_find_btf_info(obj, map); 2563 if (err) 2564 return err; 2565 2566 return 0; 2567 } 2568 2569 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2570 const char *pin_root_path) 2571 { 2572 const struct btf_type *sec = NULL; 2573 int nr_types, i, vlen, err; 2574 const struct btf_type *t; 2575 const char *name; 2576 Elf_Data *data; 2577 Elf_Scn *scn; 2578 2579 if (obj->efile.btf_maps_shndx < 0) 2580 return 0; 2581 2582 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2583 data = elf_sec_data(obj, scn); 2584 if (!scn || !data) { 2585 pr_warn("elf: failed to get %s map definitions for %s\n", 2586 MAPS_ELF_SEC, obj->path); 2587 return -EINVAL; 2588 } 2589 2590 nr_types = btf__type_cnt(obj->btf); 2591 for (i = 1; i < nr_types; i++) { 2592 t = btf__type_by_id(obj->btf, i); 2593 if (!btf_is_datasec(t)) 2594 continue; 2595 name = btf__name_by_offset(obj->btf, t->name_off); 2596 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2597 sec = t; 2598 obj->efile.btf_maps_sec_btf_id = i; 2599 break; 2600 } 2601 } 2602 2603 if (!sec) { 2604 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2605 return -ENOENT; 2606 } 2607 2608 vlen = btf_vlen(sec); 2609 for (i = 0; i < vlen; i++) { 2610 err = bpf_object__init_user_btf_map(obj, sec, i, 2611 obj->efile.btf_maps_shndx, 2612 data, strict, 2613 pin_root_path); 2614 if (err) 2615 return err; 2616 } 2617 2618 return 0; 2619 } 2620 2621 static int bpf_object__init_maps(struct bpf_object *obj, 2622 const struct bpf_object_open_opts *opts) 2623 { 2624 const char *pin_root_path; 2625 bool strict; 2626 int err; 2627 2628 strict = !OPTS_GET(opts, relaxed_maps, false); 2629 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2630 2631 err = bpf_object__init_user_maps(obj, strict); 2632 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2633 err = err ?: bpf_object__init_global_data_maps(obj); 2634 err = err ?: bpf_object__init_kconfig_map(obj); 2635 err = err ?: bpf_object__init_struct_ops_maps(obj); 2636 2637 return err; 2638 } 2639 2640 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2641 { 2642 Elf64_Shdr *sh; 2643 2644 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2645 if (!sh) 2646 return false; 2647 2648 return sh->sh_flags & SHF_EXECINSTR; 2649 } 2650 2651 static bool btf_needs_sanitization(struct bpf_object *obj) 2652 { 2653 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2654 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2655 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2656 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2657 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2658 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2659 2660 return !has_func || !has_datasec || !has_func_global || !has_float || 2661 !has_decl_tag || !has_type_tag; 2662 } 2663 2664 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2665 { 2666 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2667 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2668 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2669 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2670 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2671 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2672 struct btf_type *t; 2673 int i, j, vlen; 2674 2675 for (i = 1; i < btf__type_cnt(btf); i++) { 2676 t = (struct btf_type *)btf__type_by_id(btf, i); 2677 2678 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2679 /* replace VAR/DECL_TAG with INT */ 2680 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2681 /* 2682 * using size = 1 is the safest choice, 4 will be too 2683 * big and cause kernel BTF validation failure if 2684 * original variable took less than 4 bytes 2685 */ 2686 t->size = 1; 2687 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2688 } else if (!has_datasec && btf_is_datasec(t)) { 2689 /* replace DATASEC with STRUCT */ 2690 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2691 struct btf_member *m = btf_members(t); 2692 struct btf_type *vt; 2693 char *name; 2694 2695 name = (char *)btf__name_by_offset(btf, t->name_off); 2696 while (*name) { 2697 if (*name == '.') 2698 *name = '_'; 2699 name++; 2700 } 2701 2702 vlen = btf_vlen(t); 2703 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2704 for (j = 0; j < vlen; j++, v++, m++) { 2705 /* order of field assignments is important */ 2706 m->offset = v->offset * 8; 2707 m->type = v->type; 2708 /* preserve variable name as member name */ 2709 vt = (void *)btf__type_by_id(btf, v->type); 2710 m->name_off = vt->name_off; 2711 } 2712 } else if (!has_func && btf_is_func_proto(t)) { 2713 /* replace FUNC_PROTO with ENUM */ 2714 vlen = btf_vlen(t); 2715 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2716 t->size = sizeof(__u32); /* kernel enforced */ 2717 } else if (!has_func && btf_is_func(t)) { 2718 /* replace FUNC with TYPEDEF */ 2719 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2720 } else if (!has_func_global && btf_is_func(t)) { 2721 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2722 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2723 } else if (!has_float && btf_is_float(t)) { 2724 /* replace FLOAT with an equally-sized empty STRUCT; 2725 * since C compilers do not accept e.g. "float" as a 2726 * valid struct name, make it anonymous 2727 */ 2728 t->name_off = 0; 2729 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2730 } else if (!has_type_tag && btf_is_type_tag(t)) { 2731 /* replace TYPE_TAG with a CONST */ 2732 t->name_off = 0; 2733 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2734 } 2735 } 2736 } 2737 2738 static bool libbpf_needs_btf(const struct bpf_object *obj) 2739 { 2740 return obj->efile.btf_maps_shndx >= 0 || 2741 obj->efile.st_ops_shndx >= 0 || 2742 obj->nr_extern > 0; 2743 } 2744 2745 static bool kernel_needs_btf(const struct bpf_object *obj) 2746 { 2747 return obj->efile.st_ops_shndx >= 0; 2748 } 2749 2750 static int bpf_object__init_btf(struct bpf_object *obj, 2751 Elf_Data *btf_data, 2752 Elf_Data *btf_ext_data) 2753 { 2754 int err = -ENOENT; 2755 2756 if (btf_data) { 2757 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2758 err = libbpf_get_error(obj->btf); 2759 if (err) { 2760 obj->btf = NULL; 2761 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2762 goto out; 2763 } 2764 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2765 btf__set_pointer_size(obj->btf, 8); 2766 } 2767 if (btf_ext_data) { 2768 struct btf_ext_info *ext_segs[3]; 2769 int seg_num, sec_num; 2770 2771 if (!obj->btf) { 2772 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2773 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2774 goto out; 2775 } 2776 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2777 err = libbpf_get_error(obj->btf_ext); 2778 if (err) { 2779 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2780 BTF_EXT_ELF_SEC, err); 2781 obj->btf_ext = NULL; 2782 goto out; 2783 } 2784 2785 /* setup .BTF.ext to ELF section mapping */ 2786 ext_segs[0] = &obj->btf_ext->func_info; 2787 ext_segs[1] = &obj->btf_ext->line_info; 2788 ext_segs[2] = &obj->btf_ext->core_relo_info; 2789 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 2790 struct btf_ext_info *seg = ext_segs[seg_num]; 2791 const struct btf_ext_info_sec *sec; 2792 const char *sec_name; 2793 Elf_Scn *scn; 2794 2795 if (seg->sec_cnt == 0) 2796 continue; 2797 2798 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 2799 if (!seg->sec_idxs) { 2800 err = -ENOMEM; 2801 goto out; 2802 } 2803 2804 sec_num = 0; 2805 for_each_btf_ext_sec(seg, sec) { 2806 /* preventively increment index to avoid doing 2807 * this before every continue below 2808 */ 2809 sec_num++; 2810 2811 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 2812 if (str_is_empty(sec_name)) 2813 continue; 2814 scn = elf_sec_by_name(obj, sec_name); 2815 if (!scn) 2816 continue; 2817 2818 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 2819 } 2820 } 2821 } 2822 out: 2823 if (err && libbpf_needs_btf(obj)) { 2824 pr_warn("BTF is required, but is missing or corrupted.\n"); 2825 return err; 2826 } 2827 return 0; 2828 } 2829 2830 static int compare_vsi_off(const void *_a, const void *_b) 2831 { 2832 const struct btf_var_secinfo *a = _a; 2833 const struct btf_var_secinfo *b = _b; 2834 2835 return a->offset - b->offset; 2836 } 2837 2838 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2839 struct btf_type *t) 2840 { 2841 __u32 size = 0, off = 0, i, vars = btf_vlen(t); 2842 const char *name = btf__name_by_offset(btf, t->name_off); 2843 const struct btf_type *t_var; 2844 struct btf_var_secinfo *vsi; 2845 const struct btf_var *var; 2846 int ret; 2847 2848 if (!name) { 2849 pr_debug("No name found in string section for DATASEC kind.\n"); 2850 return -ENOENT; 2851 } 2852 2853 /* .extern datasec size and var offsets were set correctly during 2854 * extern collection step, so just skip straight to sorting variables 2855 */ 2856 if (t->size) 2857 goto sort_vars; 2858 2859 ret = find_elf_sec_sz(obj, name, &size); 2860 if (ret || !size) { 2861 pr_debug("Invalid size for section %s: %u bytes\n", name, size); 2862 return -ENOENT; 2863 } 2864 2865 t->size = size; 2866 2867 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2868 t_var = btf__type_by_id(btf, vsi->type); 2869 if (!t_var || !btf_is_var(t_var)) { 2870 pr_debug("Non-VAR type seen in section %s\n", name); 2871 return -EINVAL; 2872 } 2873 2874 var = btf_var(t_var); 2875 if (var->linkage == BTF_VAR_STATIC) 2876 continue; 2877 2878 name = btf__name_by_offset(btf, t_var->name_off); 2879 if (!name) { 2880 pr_debug("No name found in string section for VAR kind\n"); 2881 return -ENOENT; 2882 } 2883 2884 ret = find_elf_var_offset(obj, name, &off); 2885 if (ret) { 2886 pr_debug("No offset found in symbol table for VAR %s\n", 2887 name); 2888 return -ENOENT; 2889 } 2890 2891 vsi->offset = off; 2892 } 2893 2894 sort_vars: 2895 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 2896 return 0; 2897 } 2898 2899 static int btf_finalize_data(struct bpf_object *obj, struct btf *btf) 2900 { 2901 int err = 0; 2902 __u32 i, n = btf__type_cnt(btf); 2903 2904 for (i = 1; i < n; i++) { 2905 struct btf_type *t = btf_type_by_id(btf, i); 2906 2907 /* Loader needs to fix up some of the things compiler 2908 * couldn't get its hands on while emitting BTF. This 2909 * is section size and global variable offset. We use 2910 * the info from the ELF itself for this purpose. 2911 */ 2912 if (btf_is_datasec(t)) { 2913 err = btf_fixup_datasec(obj, btf, t); 2914 if (err) 2915 break; 2916 } 2917 } 2918 2919 return libbpf_err(err); 2920 } 2921 2922 int btf__finalize_data(struct bpf_object *obj, struct btf *btf) 2923 { 2924 return btf_finalize_data(obj, btf); 2925 } 2926 2927 static int bpf_object__finalize_btf(struct bpf_object *obj) 2928 { 2929 int err; 2930 2931 if (!obj->btf) 2932 return 0; 2933 2934 err = btf_finalize_data(obj, obj->btf); 2935 if (err) { 2936 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2937 return err; 2938 } 2939 2940 return 0; 2941 } 2942 2943 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 2944 { 2945 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 2946 prog->type == BPF_PROG_TYPE_LSM) 2947 return true; 2948 2949 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2950 * also need vmlinux BTF 2951 */ 2952 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2953 return true; 2954 2955 return false; 2956 } 2957 2958 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 2959 { 2960 struct bpf_program *prog; 2961 int i; 2962 2963 /* CO-RE relocations need kernel BTF, only when btf_custom_path 2964 * is not specified 2965 */ 2966 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 2967 return true; 2968 2969 /* Support for typed ksyms needs kernel BTF */ 2970 for (i = 0; i < obj->nr_extern; i++) { 2971 const struct extern_desc *ext; 2972 2973 ext = &obj->externs[i]; 2974 if (ext->type == EXT_KSYM && ext->ksym.type_id) 2975 return true; 2976 } 2977 2978 bpf_object__for_each_program(prog, obj) { 2979 if (!prog->autoload) 2980 continue; 2981 if (prog_needs_vmlinux_btf(prog)) 2982 return true; 2983 } 2984 2985 return false; 2986 } 2987 2988 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 2989 { 2990 int err; 2991 2992 /* btf_vmlinux could be loaded earlier */ 2993 if (obj->btf_vmlinux || obj->gen_loader) 2994 return 0; 2995 2996 if (!force && !obj_needs_vmlinux_btf(obj)) 2997 return 0; 2998 2999 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3000 err = libbpf_get_error(obj->btf_vmlinux); 3001 if (err) { 3002 pr_warn("Error loading vmlinux BTF: %d\n", err); 3003 obj->btf_vmlinux = NULL; 3004 return err; 3005 } 3006 return 0; 3007 } 3008 3009 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3010 { 3011 struct btf *kern_btf = obj->btf; 3012 bool btf_mandatory, sanitize; 3013 int i, err = 0; 3014 3015 if (!obj->btf) 3016 return 0; 3017 3018 if (!kernel_supports(obj, FEAT_BTF)) { 3019 if (kernel_needs_btf(obj)) { 3020 err = -EOPNOTSUPP; 3021 goto report; 3022 } 3023 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3024 return 0; 3025 } 3026 3027 /* Even though some subprogs are global/weak, user might prefer more 3028 * permissive BPF verification process that BPF verifier performs for 3029 * static functions, taking into account more context from the caller 3030 * functions. In such case, they need to mark such subprogs with 3031 * __attribute__((visibility("hidden"))) and libbpf will adjust 3032 * corresponding FUNC BTF type to be marked as static and trigger more 3033 * involved BPF verification process. 3034 */ 3035 for (i = 0; i < obj->nr_programs; i++) { 3036 struct bpf_program *prog = &obj->programs[i]; 3037 struct btf_type *t; 3038 const char *name; 3039 int j, n; 3040 3041 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3042 continue; 3043 3044 n = btf__type_cnt(obj->btf); 3045 for (j = 1; j < n; j++) { 3046 t = btf_type_by_id(obj->btf, j); 3047 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3048 continue; 3049 3050 name = btf__str_by_offset(obj->btf, t->name_off); 3051 if (strcmp(name, prog->name) != 0) 3052 continue; 3053 3054 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3055 break; 3056 } 3057 } 3058 3059 sanitize = btf_needs_sanitization(obj); 3060 if (sanitize) { 3061 const void *raw_data; 3062 __u32 sz; 3063 3064 /* clone BTF to sanitize a copy and leave the original intact */ 3065 raw_data = btf__raw_data(obj->btf, &sz); 3066 kern_btf = btf__new(raw_data, sz); 3067 err = libbpf_get_error(kern_btf); 3068 if (err) 3069 return err; 3070 3071 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3072 btf__set_pointer_size(obj->btf, 8); 3073 bpf_object__sanitize_btf(obj, kern_btf); 3074 } 3075 3076 if (obj->gen_loader) { 3077 __u32 raw_size = 0; 3078 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3079 3080 if (!raw_data) 3081 return -ENOMEM; 3082 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3083 /* Pretend to have valid FD to pass various fd >= 0 checks. 3084 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3085 */ 3086 btf__set_fd(kern_btf, 0); 3087 } else { 3088 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3089 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3090 obj->log_level ? 1 : 0); 3091 } 3092 if (sanitize) { 3093 if (!err) { 3094 /* move fd to libbpf's BTF */ 3095 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3096 btf__set_fd(kern_btf, -1); 3097 } 3098 btf__free(kern_btf); 3099 } 3100 report: 3101 if (err) { 3102 btf_mandatory = kernel_needs_btf(obj); 3103 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3104 btf_mandatory ? "BTF is mandatory, can't proceed." 3105 : "BTF is optional, ignoring."); 3106 if (!btf_mandatory) 3107 err = 0; 3108 } 3109 return err; 3110 } 3111 3112 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3113 { 3114 const char *name; 3115 3116 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3117 if (!name) { 3118 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3119 off, obj->path, elf_errmsg(-1)); 3120 return NULL; 3121 } 3122 3123 return name; 3124 } 3125 3126 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3127 { 3128 const char *name; 3129 3130 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3131 if (!name) { 3132 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3133 off, obj->path, elf_errmsg(-1)); 3134 return NULL; 3135 } 3136 3137 return name; 3138 } 3139 3140 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3141 { 3142 Elf_Scn *scn; 3143 3144 scn = elf_getscn(obj->efile.elf, idx); 3145 if (!scn) { 3146 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3147 idx, obj->path, elf_errmsg(-1)); 3148 return NULL; 3149 } 3150 return scn; 3151 } 3152 3153 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3154 { 3155 Elf_Scn *scn = NULL; 3156 Elf *elf = obj->efile.elf; 3157 const char *sec_name; 3158 3159 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3160 sec_name = elf_sec_name(obj, scn); 3161 if (!sec_name) 3162 return NULL; 3163 3164 if (strcmp(sec_name, name) != 0) 3165 continue; 3166 3167 return scn; 3168 } 3169 return NULL; 3170 } 3171 3172 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3173 { 3174 Elf64_Shdr *shdr; 3175 3176 if (!scn) 3177 return NULL; 3178 3179 shdr = elf64_getshdr(scn); 3180 if (!shdr) { 3181 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3182 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3183 return NULL; 3184 } 3185 3186 return shdr; 3187 } 3188 3189 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3190 { 3191 const char *name; 3192 Elf64_Shdr *sh; 3193 3194 if (!scn) 3195 return NULL; 3196 3197 sh = elf_sec_hdr(obj, scn); 3198 if (!sh) 3199 return NULL; 3200 3201 name = elf_sec_str(obj, sh->sh_name); 3202 if (!name) { 3203 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3204 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3205 return NULL; 3206 } 3207 3208 return name; 3209 } 3210 3211 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3212 { 3213 Elf_Data *data; 3214 3215 if (!scn) 3216 return NULL; 3217 3218 data = elf_getdata(scn, 0); 3219 if (!data) { 3220 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3221 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3222 obj->path, elf_errmsg(-1)); 3223 return NULL; 3224 } 3225 3226 return data; 3227 } 3228 3229 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3230 { 3231 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3232 return NULL; 3233 3234 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3235 } 3236 3237 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3238 { 3239 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3240 return NULL; 3241 3242 return (Elf64_Rel *)data->d_buf + idx; 3243 } 3244 3245 static bool is_sec_name_dwarf(const char *name) 3246 { 3247 /* approximation, but the actual list is too long */ 3248 return str_has_pfx(name, ".debug_"); 3249 } 3250 3251 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3252 { 3253 /* no special handling of .strtab */ 3254 if (hdr->sh_type == SHT_STRTAB) 3255 return true; 3256 3257 /* ignore .llvm_addrsig section as well */ 3258 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3259 return true; 3260 3261 /* no subprograms will lead to an empty .text section, ignore it */ 3262 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3263 strcmp(name, ".text") == 0) 3264 return true; 3265 3266 /* DWARF sections */ 3267 if (is_sec_name_dwarf(name)) 3268 return true; 3269 3270 if (str_has_pfx(name, ".rel")) { 3271 name += sizeof(".rel") - 1; 3272 /* DWARF section relocations */ 3273 if (is_sec_name_dwarf(name)) 3274 return true; 3275 3276 /* .BTF and .BTF.ext don't need relocations */ 3277 if (strcmp(name, BTF_ELF_SEC) == 0 || 3278 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3279 return true; 3280 } 3281 3282 return false; 3283 } 3284 3285 static int cmp_progs(const void *_a, const void *_b) 3286 { 3287 const struct bpf_program *a = _a; 3288 const struct bpf_program *b = _b; 3289 3290 if (a->sec_idx != b->sec_idx) 3291 return a->sec_idx < b->sec_idx ? -1 : 1; 3292 3293 /* sec_insn_off can't be the same within the section */ 3294 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3295 } 3296 3297 static int bpf_object__elf_collect(struct bpf_object *obj) 3298 { 3299 struct elf_sec_desc *sec_desc; 3300 Elf *elf = obj->efile.elf; 3301 Elf_Data *btf_ext_data = NULL; 3302 Elf_Data *btf_data = NULL; 3303 int idx = 0, err = 0; 3304 const char *name; 3305 Elf_Data *data; 3306 Elf_Scn *scn; 3307 Elf64_Shdr *sh; 3308 3309 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3310 * section. e_shnum does include sec #0, so e_shnum is the necessary 3311 * size of an array to keep all the sections. 3312 */ 3313 obj->efile.sec_cnt = obj->efile.ehdr->e_shnum; 3314 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3315 if (!obj->efile.secs) 3316 return -ENOMEM; 3317 3318 /* a bunch of ELF parsing functionality depends on processing symbols, 3319 * so do the first pass and find the symbol table 3320 */ 3321 scn = NULL; 3322 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3323 sh = elf_sec_hdr(obj, scn); 3324 if (!sh) 3325 return -LIBBPF_ERRNO__FORMAT; 3326 3327 if (sh->sh_type == SHT_SYMTAB) { 3328 if (obj->efile.symbols) { 3329 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3330 return -LIBBPF_ERRNO__FORMAT; 3331 } 3332 3333 data = elf_sec_data(obj, scn); 3334 if (!data) 3335 return -LIBBPF_ERRNO__FORMAT; 3336 3337 idx = elf_ndxscn(scn); 3338 3339 obj->efile.symbols = data; 3340 obj->efile.symbols_shndx = idx; 3341 obj->efile.strtabidx = sh->sh_link; 3342 } 3343 } 3344 3345 if (!obj->efile.symbols) { 3346 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3347 obj->path); 3348 return -ENOENT; 3349 } 3350 3351 scn = NULL; 3352 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3353 idx = elf_ndxscn(scn); 3354 sec_desc = &obj->efile.secs[idx]; 3355 3356 sh = elf_sec_hdr(obj, scn); 3357 if (!sh) 3358 return -LIBBPF_ERRNO__FORMAT; 3359 3360 name = elf_sec_str(obj, sh->sh_name); 3361 if (!name) 3362 return -LIBBPF_ERRNO__FORMAT; 3363 3364 if (ignore_elf_section(sh, name)) 3365 continue; 3366 3367 data = elf_sec_data(obj, scn); 3368 if (!data) 3369 return -LIBBPF_ERRNO__FORMAT; 3370 3371 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3372 idx, name, (unsigned long)data->d_size, 3373 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3374 (int)sh->sh_type); 3375 3376 if (strcmp(name, "license") == 0) { 3377 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3378 if (err) 3379 return err; 3380 } else if (strcmp(name, "version") == 0) { 3381 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3382 if (err) 3383 return err; 3384 } else if (strcmp(name, "maps") == 0) { 3385 obj->efile.maps_shndx = idx; 3386 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3387 obj->efile.btf_maps_shndx = idx; 3388 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3389 if (sh->sh_type != SHT_PROGBITS) 3390 return -LIBBPF_ERRNO__FORMAT; 3391 btf_data = data; 3392 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3393 if (sh->sh_type != SHT_PROGBITS) 3394 return -LIBBPF_ERRNO__FORMAT; 3395 btf_ext_data = data; 3396 } else if (sh->sh_type == SHT_SYMTAB) { 3397 /* already processed during the first pass above */ 3398 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3399 if (sh->sh_flags & SHF_EXECINSTR) { 3400 if (strcmp(name, ".text") == 0) 3401 obj->efile.text_shndx = idx; 3402 err = bpf_object__add_programs(obj, data, name, idx); 3403 if (err) 3404 return err; 3405 } else if (strcmp(name, DATA_SEC) == 0 || 3406 str_has_pfx(name, DATA_SEC ".")) { 3407 sec_desc->sec_type = SEC_DATA; 3408 sec_desc->shdr = sh; 3409 sec_desc->data = data; 3410 } else if (strcmp(name, RODATA_SEC) == 0 || 3411 str_has_pfx(name, RODATA_SEC ".")) { 3412 sec_desc->sec_type = SEC_RODATA; 3413 sec_desc->shdr = sh; 3414 sec_desc->data = data; 3415 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3416 obj->efile.st_ops_data = data; 3417 obj->efile.st_ops_shndx = idx; 3418 } else { 3419 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3420 idx, name); 3421 } 3422 } else if (sh->sh_type == SHT_REL) { 3423 int targ_sec_idx = sh->sh_info; /* points to other section */ 3424 3425 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3426 targ_sec_idx >= obj->efile.sec_cnt) 3427 return -LIBBPF_ERRNO__FORMAT; 3428 3429 /* Only do relo for section with exec instructions */ 3430 if (!section_have_execinstr(obj, targ_sec_idx) && 3431 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3432 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3433 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3434 idx, name, targ_sec_idx, 3435 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3436 continue; 3437 } 3438 3439 sec_desc->sec_type = SEC_RELO; 3440 sec_desc->shdr = sh; 3441 sec_desc->data = data; 3442 } else if (sh->sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 3443 sec_desc->sec_type = SEC_BSS; 3444 sec_desc->shdr = sh; 3445 sec_desc->data = data; 3446 } else { 3447 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3448 (size_t)sh->sh_size); 3449 } 3450 } 3451 3452 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3453 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3454 return -LIBBPF_ERRNO__FORMAT; 3455 } 3456 3457 /* sort BPF programs by section name and in-section instruction offset 3458 * for faster search */ 3459 if (obj->nr_programs) 3460 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3461 3462 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3463 } 3464 3465 static bool sym_is_extern(const Elf64_Sym *sym) 3466 { 3467 int bind = ELF64_ST_BIND(sym->st_info); 3468 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3469 return sym->st_shndx == SHN_UNDEF && 3470 (bind == STB_GLOBAL || bind == STB_WEAK) && 3471 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3472 } 3473 3474 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3475 { 3476 int bind = ELF64_ST_BIND(sym->st_info); 3477 int type = ELF64_ST_TYPE(sym->st_info); 3478 3479 /* in .text section */ 3480 if (sym->st_shndx != text_shndx) 3481 return false; 3482 3483 /* local function */ 3484 if (bind == STB_LOCAL && type == STT_SECTION) 3485 return true; 3486 3487 /* global function */ 3488 return bind == STB_GLOBAL && type == STT_FUNC; 3489 } 3490 3491 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3492 { 3493 const struct btf_type *t; 3494 const char *tname; 3495 int i, n; 3496 3497 if (!btf) 3498 return -ESRCH; 3499 3500 n = btf__type_cnt(btf); 3501 for (i = 1; i < n; i++) { 3502 t = btf__type_by_id(btf, i); 3503 3504 if (!btf_is_var(t) && !btf_is_func(t)) 3505 continue; 3506 3507 tname = btf__name_by_offset(btf, t->name_off); 3508 if (strcmp(tname, ext_name)) 3509 continue; 3510 3511 if (btf_is_var(t) && 3512 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3513 return -EINVAL; 3514 3515 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3516 return -EINVAL; 3517 3518 return i; 3519 } 3520 3521 return -ENOENT; 3522 } 3523 3524 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3525 const struct btf_var_secinfo *vs; 3526 const struct btf_type *t; 3527 int i, j, n; 3528 3529 if (!btf) 3530 return -ESRCH; 3531 3532 n = btf__type_cnt(btf); 3533 for (i = 1; i < n; i++) { 3534 t = btf__type_by_id(btf, i); 3535 3536 if (!btf_is_datasec(t)) 3537 continue; 3538 3539 vs = btf_var_secinfos(t); 3540 for (j = 0; j < btf_vlen(t); j++, vs++) { 3541 if (vs->type == ext_btf_id) 3542 return i; 3543 } 3544 } 3545 3546 return -ENOENT; 3547 } 3548 3549 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3550 bool *is_signed) 3551 { 3552 const struct btf_type *t; 3553 const char *name; 3554 3555 t = skip_mods_and_typedefs(btf, id, NULL); 3556 name = btf__name_by_offset(btf, t->name_off); 3557 3558 if (is_signed) 3559 *is_signed = false; 3560 switch (btf_kind(t)) { 3561 case BTF_KIND_INT: { 3562 int enc = btf_int_encoding(t); 3563 3564 if (enc & BTF_INT_BOOL) 3565 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3566 if (is_signed) 3567 *is_signed = enc & BTF_INT_SIGNED; 3568 if (t->size == 1) 3569 return KCFG_CHAR; 3570 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3571 return KCFG_UNKNOWN; 3572 return KCFG_INT; 3573 } 3574 case BTF_KIND_ENUM: 3575 if (t->size != 4) 3576 return KCFG_UNKNOWN; 3577 if (strcmp(name, "libbpf_tristate")) 3578 return KCFG_UNKNOWN; 3579 return KCFG_TRISTATE; 3580 case BTF_KIND_ARRAY: 3581 if (btf_array(t)->nelems == 0) 3582 return KCFG_UNKNOWN; 3583 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3584 return KCFG_UNKNOWN; 3585 return KCFG_CHAR_ARR; 3586 default: 3587 return KCFG_UNKNOWN; 3588 } 3589 } 3590 3591 static int cmp_externs(const void *_a, const void *_b) 3592 { 3593 const struct extern_desc *a = _a; 3594 const struct extern_desc *b = _b; 3595 3596 if (a->type != b->type) 3597 return a->type < b->type ? -1 : 1; 3598 3599 if (a->type == EXT_KCFG) { 3600 /* descending order by alignment requirements */ 3601 if (a->kcfg.align != b->kcfg.align) 3602 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3603 /* ascending order by size, within same alignment class */ 3604 if (a->kcfg.sz != b->kcfg.sz) 3605 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3606 } 3607 3608 /* resolve ties by name */ 3609 return strcmp(a->name, b->name); 3610 } 3611 3612 static int find_int_btf_id(const struct btf *btf) 3613 { 3614 const struct btf_type *t; 3615 int i, n; 3616 3617 n = btf__type_cnt(btf); 3618 for (i = 1; i < n; i++) { 3619 t = btf__type_by_id(btf, i); 3620 3621 if (btf_is_int(t) && btf_int_bits(t) == 32) 3622 return i; 3623 } 3624 3625 return 0; 3626 } 3627 3628 static int add_dummy_ksym_var(struct btf *btf) 3629 { 3630 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3631 const struct btf_var_secinfo *vs; 3632 const struct btf_type *sec; 3633 3634 if (!btf) 3635 return 0; 3636 3637 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3638 BTF_KIND_DATASEC); 3639 if (sec_btf_id < 0) 3640 return 0; 3641 3642 sec = btf__type_by_id(btf, sec_btf_id); 3643 vs = btf_var_secinfos(sec); 3644 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3645 const struct btf_type *vt; 3646 3647 vt = btf__type_by_id(btf, vs->type); 3648 if (btf_is_func(vt)) 3649 break; 3650 } 3651 3652 /* No func in ksyms sec. No need to add dummy var. */ 3653 if (i == btf_vlen(sec)) 3654 return 0; 3655 3656 int_btf_id = find_int_btf_id(btf); 3657 dummy_var_btf_id = btf__add_var(btf, 3658 "dummy_ksym", 3659 BTF_VAR_GLOBAL_ALLOCATED, 3660 int_btf_id); 3661 if (dummy_var_btf_id < 0) 3662 pr_warn("cannot create a dummy_ksym var\n"); 3663 3664 return dummy_var_btf_id; 3665 } 3666 3667 static int bpf_object__collect_externs(struct bpf_object *obj) 3668 { 3669 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3670 const struct btf_type *t; 3671 struct extern_desc *ext; 3672 int i, n, off, dummy_var_btf_id; 3673 const char *ext_name, *sec_name; 3674 Elf_Scn *scn; 3675 Elf64_Shdr *sh; 3676 3677 if (!obj->efile.symbols) 3678 return 0; 3679 3680 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3681 sh = elf_sec_hdr(obj, scn); 3682 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3683 return -LIBBPF_ERRNO__FORMAT; 3684 3685 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3686 if (dummy_var_btf_id < 0) 3687 return dummy_var_btf_id; 3688 3689 n = sh->sh_size / sh->sh_entsize; 3690 pr_debug("looking for externs among %d symbols...\n", n); 3691 3692 for (i = 0; i < n; i++) { 3693 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3694 3695 if (!sym) 3696 return -LIBBPF_ERRNO__FORMAT; 3697 if (!sym_is_extern(sym)) 3698 continue; 3699 ext_name = elf_sym_str(obj, sym->st_name); 3700 if (!ext_name || !ext_name[0]) 3701 continue; 3702 3703 ext = obj->externs; 3704 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3705 if (!ext) 3706 return -ENOMEM; 3707 obj->externs = ext; 3708 ext = &ext[obj->nr_extern]; 3709 memset(ext, 0, sizeof(*ext)); 3710 obj->nr_extern++; 3711 3712 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3713 if (ext->btf_id <= 0) { 3714 pr_warn("failed to find BTF for extern '%s': %d\n", 3715 ext_name, ext->btf_id); 3716 return ext->btf_id; 3717 } 3718 t = btf__type_by_id(obj->btf, ext->btf_id); 3719 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3720 ext->sym_idx = i; 3721 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3722 3723 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3724 if (ext->sec_btf_id <= 0) { 3725 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3726 ext_name, ext->btf_id, ext->sec_btf_id); 3727 return ext->sec_btf_id; 3728 } 3729 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3730 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3731 3732 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3733 if (btf_is_func(t)) { 3734 pr_warn("extern function %s is unsupported under %s section\n", 3735 ext->name, KCONFIG_SEC); 3736 return -ENOTSUP; 3737 } 3738 kcfg_sec = sec; 3739 ext->type = EXT_KCFG; 3740 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3741 if (ext->kcfg.sz <= 0) { 3742 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3743 ext_name, ext->kcfg.sz); 3744 return ext->kcfg.sz; 3745 } 3746 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3747 if (ext->kcfg.align <= 0) { 3748 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3749 ext_name, ext->kcfg.align); 3750 return -EINVAL; 3751 } 3752 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3753 &ext->kcfg.is_signed); 3754 if (ext->kcfg.type == KCFG_UNKNOWN) { 3755 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name); 3756 return -ENOTSUP; 3757 } 3758 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3759 ksym_sec = sec; 3760 ext->type = EXT_KSYM; 3761 skip_mods_and_typedefs(obj->btf, t->type, 3762 &ext->ksym.type_id); 3763 } else { 3764 pr_warn("unrecognized extern section '%s'\n", sec_name); 3765 return -ENOTSUP; 3766 } 3767 } 3768 pr_debug("collected %d externs total\n", obj->nr_extern); 3769 3770 if (!obj->nr_extern) 3771 return 0; 3772 3773 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3774 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3775 3776 /* for .ksyms section, we need to turn all externs into allocated 3777 * variables in BTF to pass kernel verification; we do this by 3778 * pretending that each extern is a 8-byte variable 3779 */ 3780 if (ksym_sec) { 3781 /* find existing 4-byte integer type in BTF to use for fake 3782 * extern variables in DATASEC 3783 */ 3784 int int_btf_id = find_int_btf_id(obj->btf); 3785 /* For extern function, a dummy_var added earlier 3786 * will be used to replace the vs->type and 3787 * its name string will be used to refill 3788 * the missing param's name. 3789 */ 3790 const struct btf_type *dummy_var; 3791 3792 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3793 for (i = 0; i < obj->nr_extern; i++) { 3794 ext = &obj->externs[i]; 3795 if (ext->type != EXT_KSYM) 3796 continue; 3797 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3798 i, ext->sym_idx, ext->name); 3799 } 3800 3801 sec = ksym_sec; 3802 n = btf_vlen(sec); 3803 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3804 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3805 struct btf_type *vt; 3806 3807 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3808 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3809 ext = find_extern_by_name(obj, ext_name); 3810 if (!ext) { 3811 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3812 btf_kind_str(vt), ext_name); 3813 return -ESRCH; 3814 } 3815 if (btf_is_func(vt)) { 3816 const struct btf_type *func_proto; 3817 struct btf_param *param; 3818 int j; 3819 3820 func_proto = btf__type_by_id(obj->btf, 3821 vt->type); 3822 param = btf_params(func_proto); 3823 /* Reuse the dummy_var string if the 3824 * func proto does not have param name. 3825 */ 3826 for (j = 0; j < btf_vlen(func_proto); j++) 3827 if (param[j].type && !param[j].name_off) 3828 param[j].name_off = 3829 dummy_var->name_off; 3830 vs->type = dummy_var_btf_id; 3831 vt->info &= ~0xffff; 3832 vt->info |= BTF_FUNC_GLOBAL; 3833 } else { 3834 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3835 vt->type = int_btf_id; 3836 } 3837 vs->offset = off; 3838 vs->size = sizeof(int); 3839 } 3840 sec->size = off; 3841 } 3842 3843 if (kcfg_sec) { 3844 sec = kcfg_sec; 3845 /* for kcfg externs calculate their offsets within a .kconfig map */ 3846 off = 0; 3847 for (i = 0; i < obj->nr_extern; i++) { 3848 ext = &obj->externs[i]; 3849 if (ext->type != EXT_KCFG) 3850 continue; 3851 3852 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3853 off = ext->kcfg.data_off + ext->kcfg.sz; 3854 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3855 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3856 } 3857 sec->size = off; 3858 n = btf_vlen(sec); 3859 for (i = 0; i < n; i++) { 3860 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3861 3862 t = btf__type_by_id(obj->btf, vs->type); 3863 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3864 ext = find_extern_by_name(obj, ext_name); 3865 if (!ext) { 3866 pr_warn("failed to find extern definition for BTF var '%s'\n", 3867 ext_name); 3868 return -ESRCH; 3869 } 3870 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3871 vs->offset = ext->kcfg.data_off; 3872 } 3873 } 3874 return 0; 3875 } 3876 3877 struct bpf_program * 3878 bpf_object__find_program_by_title(const struct bpf_object *obj, 3879 const char *title) 3880 { 3881 struct bpf_program *pos; 3882 3883 bpf_object__for_each_program(pos, obj) { 3884 if (pos->sec_name && !strcmp(pos->sec_name, title)) 3885 return pos; 3886 } 3887 return errno = ENOENT, NULL; 3888 } 3889 3890 static bool prog_is_subprog(const struct bpf_object *obj, 3891 const struct bpf_program *prog) 3892 { 3893 /* For legacy reasons, libbpf supports an entry-point BPF programs 3894 * without SEC() attribute, i.e., those in the .text section. But if 3895 * there are 2 or more such programs in the .text section, they all 3896 * must be subprograms called from entry-point BPF programs in 3897 * designated SEC()'tions, otherwise there is no way to distinguish 3898 * which of those programs should be loaded vs which are a subprogram. 3899 * Similarly, if there is a function/program in .text and at least one 3900 * other BPF program with custom SEC() attribute, then we just assume 3901 * .text programs are subprograms (even if they are not called from 3902 * other programs), because libbpf never explicitly supported mixing 3903 * SEC()-designated BPF programs and .text entry-point BPF programs. 3904 * 3905 * In libbpf 1.0 strict mode, we always consider .text 3906 * programs to be subprograms. 3907 */ 3908 3909 if (libbpf_mode & LIBBPF_STRICT_SEC_NAME) 3910 return prog->sec_idx == obj->efile.text_shndx; 3911 3912 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3913 } 3914 3915 struct bpf_program * 3916 bpf_object__find_program_by_name(const struct bpf_object *obj, 3917 const char *name) 3918 { 3919 struct bpf_program *prog; 3920 3921 bpf_object__for_each_program(prog, obj) { 3922 if (prog_is_subprog(obj, prog)) 3923 continue; 3924 if (!strcmp(prog->name, name)) 3925 return prog; 3926 } 3927 return errno = ENOENT, NULL; 3928 } 3929 3930 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3931 int shndx) 3932 { 3933 switch (obj->efile.secs[shndx].sec_type) { 3934 case SEC_BSS: 3935 case SEC_DATA: 3936 case SEC_RODATA: 3937 return true; 3938 default: 3939 return false; 3940 } 3941 } 3942 3943 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3944 int shndx) 3945 { 3946 return shndx == obj->efile.maps_shndx || 3947 shndx == obj->efile.btf_maps_shndx; 3948 } 3949 3950 static enum libbpf_map_type 3951 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3952 { 3953 if (shndx == obj->efile.symbols_shndx) 3954 return LIBBPF_MAP_KCONFIG; 3955 3956 switch (obj->efile.secs[shndx].sec_type) { 3957 case SEC_BSS: 3958 return LIBBPF_MAP_BSS; 3959 case SEC_DATA: 3960 return LIBBPF_MAP_DATA; 3961 case SEC_RODATA: 3962 return LIBBPF_MAP_RODATA; 3963 default: 3964 return LIBBPF_MAP_UNSPEC; 3965 } 3966 } 3967 3968 static int bpf_program__record_reloc(struct bpf_program *prog, 3969 struct reloc_desc *reloc_desc, 3970 __u32 insn_idx, const char *sym_name, 3971 const Elf64_Sym *sym, const Elf64_Rel *rel) 3972 { 3973 struct bpf_insn *insn = &prog->insns[insn_idx]; 3974 size_t map_idx, nr_maps = prog->obj->nr_maps; 3975 struct bpf_object *obj = prog->obj; 3976 __u32 shdr_idx = sym->st_shndx; 3977 enum libbpf_map_type type; 3978 const char *sym_sec_name; 3979 struct bpf_map *map; 3980 3981 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 3982 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 3983 prog->name, sym_name, insn_idx, insn->code); 3984 return -LIBBPF_ERRNO__RELOC; 3985 } 3986 3987 if (sym_is_extern(sym)) { 3988 int sym_idx = ELF64_R_SYM(rel->r_info); 3989 int i, n = obj->nr_extern; 3990 struct extern_desc *ext; 3991 3992 for (i = 0; i < n; i++) { 3993 ext = &obj->externs[i]; 3994 if (ext->sym_idx == sym_idx) 3995 break; 3996 } 3997 if (i >= n) { 3998 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 3999 prog->name, sym_name, sym_idx); 4000 return -LIBBPF_ERRNO__RELOC; 4001 } 4002 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4003 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4004 if (insn->code == (BPF_JMP | BPF_CALL)) 4005 reloc_desc->type = RELO_EXTERN_FUNC; 4006 else 4007 reloc_desc->type = RELO_EXTERN_VAR; 4008 reloc_desc->insn_idx = insn_idx; 4009 reloc_desc->sym_off = i; /* sym_off stores extern index */ 4010 return 0; 4011 } 4012 4013 /* sub-program call relocation */ 4014 if (is_call_insn(insn)) { 4015 if (insn->src_reg != BPF_PSEUDO_CALL) { 4016 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4017 return -LIBBPF_ERRNO__RELOC; 4018 } 4019 /* text_shndx can be 0, if no default "main" program exists */ 4020 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4021 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4022 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4023 prog->name, sym_name, sym_sec_name); 4024 return -LIBBPF_ERRNO__RELOC; 4025 } 4026 if (sym->st_value % BPF_INSN_SZ) { 4027 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4028 prog->name, sym_name, (size_t)sym->st_value); 4029 return -LIBBPF_ERRNO__RELOC; 4030 } 4031 reloc_desc->type = RELO_CALL; 4032 reloc_desc->insn_idx = insn_idx; 4033 reloc_desc->sym_off = sym->st_value; 4034 return 0; 4035 } 4036 4037 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4038 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4039 prog->name, sym_name, shdr_idx); 4040 return -LIBBPF_ERRNO__RELOC; 4041 } 4042 4043 /* loading subprog addresses */ 4044 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4045 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4046 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4047 */ 4048 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4049 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4050 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4051 return -LIBBPF_ERRNO__RELOC; 4052 } 4053 4054 reloc_desc->type = RELO_SUBPROG_ADDR; 4055 reloc_desc->insn_idx = insn_idx; 4056 reloc_desc->sym_off = sym->st_value; 4057 return 0; 4058 } 4059 4060 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4061 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4062 4063 /* generic map reference relocation */ 4064 if (type == LIBBPF_MAP_UNSPEC) { 4065 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4066 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4067 prog->name, sym_name, sym_sec_name); 4068 return -LIBBPF_ERRNO__RELOC; 4069 } 4070 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4071 map = &obj->maps[map_idx]; 4072 if (map->libbpf_type != type || 4073 map->sec_idx != sym->st_shndx || 4074 map->sec_offset != sym->st_value) 4075 continue; 4076 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4077 prog->name, map_idx, map->name, map->sec_idx, 4078 map->sec_offset, insn_idx); 4079 break; 4080 } 4081 if (map_idx >= nr_maps) { 4082 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4083 prog->name, sym_sec_name, (size_t)sym->st_value); 4084 return -LIBBPF_ERRNO__RELOC; 4085 } 4086 reloc_desc->type = RELO_LD64; 4087 reloc_desc->insn_idx = insn_idx; 4088 reloc_desc->map_idx = map_idx; 4089 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4090 return 0; 4091 } 4092 4093 /* global data map relocation */ 4094 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4095 pr_warn("prog '%s': bad data relo against section '%s'\n", 4096 prog->name, sym_sec_name); 4097 return -LIBBPF_ERRNO__RELOC; 4098 } 4099 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4100 map = &obj->maps[map_idx]; 4101 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4102 continue; 4103 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4104 prog->name, map_idx, map->name, map->sec_idx, 4105 map->sec_offset, insn_idx); 4106 break; 4107 } 4108 if (map_idx >= nr_maps) { 4109 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4110 prog->name, sym_sec_name); 4111 return -LIBBPF_ERRNO__RELOC; 4112 } 4113 4114 reloc_desc->type = RELO_DATA; 4115 reloc_desc->insn_idx = insn_idx; 4116 reloc_desc->map_idx = map_idx; 4117 reloc_desc->sym_off = sym->st_value; 4118 return 0; 4119 } 4120 4121 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4122 { 4123 return insn_idx >= prog->sec_insn_off && 4124 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4125 } 4126 4127 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4128 size_t sec_idx, size_t insn_idx) 4129 { 4130 int l = 0, r = obj->nr_programs - 1, m; 4131 struct bpf_program *prog; 4132 4133 while (l < r) { 4134 m = l + (r - l + 1) / 2; 4135 prog = &obj->programs[m]; 4136 4137 if (prog->sec_idx < sec_idx || 4138 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4139 l = m; 4140 else 4141 r = m - 1; 4142 } 4143 /* matching program could be at index l, but it still might be the 4144 * wrong one, so we need to double check conditions for the last time 4145 */ 4146 prog = &obj->programs[l]; 4147 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4148 return prog; 4149 return NULL; 4150 } 4151 4152 static int 4153 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4154 { 4155 const char *relo_sec_name, *sec_name; 4156 size_t sec_idx = shdr->sh_info, sym_idx; 4157 struct bpf_program *prog; 4158 struct reloc_desc *relos; 4159 int err, i, nrels; 4160 const char *sym_name; 4161 __u32 insn_idx; 4162 Elf_Scn *scn; 4163 Elf_Data *scn_data; 4164 Elf64_Sym *sym; 4165 Elf64_Rel *rel; 4166 4167 if (sec_idx >= obj->efile.sec_cnt) 4168 return -EINVAL; 4169 4170 scn = elf_sec_by_idx(obj, sec_idx); 4171 scn_data = elf_sec_data(obj, scn); 4172 4173 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4174 sec_name = elf_sec_name(obj, scn); 4175 if (!relo_sec_name || !sec_name) 4176 return -EINVAL; 4177 4178 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4179 relo_sec_name, sec_idx, sec_name); 4180 nrels = shdr->sh_size / shdr->sh_entsize; 4181 4182 for (i = 0; i < nrels; i++) { 4183 rel = elf_rel_by_idx(data, i); 4184 if (!rel) { 4185 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4186 return -LIBBPF_ERRNO__FORMAT; 4187 } 4188 4189 sym_idx = ELF64_R_SYM(rel->r_info); 4190 sym = elf_sym_by_idx(obj, sym_idx); 4191 if (!sym) { 4192 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4193 relo_sec_name, sym_idx, i); 4194 return -LIBBPF_ERRNO__FORMAT; 4195 } 4196 4197 if (sym->st_shndx >= obj->efile.sec_cnt) { 4198 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4199 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4200 return -LIBBPF_ERRNO__FORMAT; 4201 } 4202 4203 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4204 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4205 relo_sec_name, (size_t)rel->r_offset, i); 4206 return -LIBBPF_ERRNO__FORMAT; 4207 } 4208 4209 insn_idx = rel->r_offset / BPF_INSN_SZ; 4210 /* relocations against static functions are recorded as 4211 * relocations against the section that contains a function; 4212 * in such case, symbol will be STT_SECTION and sym.st_name 4213 * will point to empty string (0), so fetch section name 4214 * instead 4215 */ 4216 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4217 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4218 else 4219 sym_name = elf_sym_str(obj, sym->st_name); 4220 sym_name = sym_name ?: "<?"; 4221 4222 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4223 relo_sec_name, i, insn_idx, sym_name); 4224 4225 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4226 if (!prog) { 4227 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4228 relo_sec_name, i, sec_name, insn_idx); 4229 continue; 4230 } 4231 4232 relos = libbpf_reallocarray(prog->reloc_desc, 4233 prog->nr_reloc + 1, sizeof(*relos)); 4234 if (!relos) 4235 return -ENOMEM; 4236 prog->reloc_desc = relos; 4237 4238 /* adjust insn_idx to local BPF program frame of reference */ 4239 insn_idx -= prog->sec_insn_off; 4240 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4241 insn_idx, sym_name, sym, rel); 4242 if (err) 4243 return err; 4244 4245 prog->nr_reloc++; 4246 } 4247 return 0; 4248 } 4249 4250 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 4251 { 4252 struct bpf_map_def *def = &map->def; 4253 __u32 key_type_id = 0, value_type_id = 0; 4254 int ret; 4255 4256 if (!obj->btf) 4257 return -ENOENT; 4258 4259 /* if it's BTF-defined map, we don't need to search for type IDs. 4260 * For struct_ops map, it does not need btf_key_type_id and 4261 * btf_value_type_id. 4262 */ 4263 if (map->sec_idx == obj->efile.btf_maps_shndx || 4264 bpf_map__is_struct_ops(map)) 4265 return 0; 4266 4267 if (!bpf_map__is_internal(map)) { 4268 pr_warn("Use of BPF_ANNOTATE_KV_PAIR is deprecated, use BTF-defined maps in .maps section instead\n"); 4269 #pragma GCC diagnostic push 4270 #pragma GCC diagnostic ignored "-Wdeprecated-declarations" 4271 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size, 4272 def->value_size, &key_type_id, 4273 &value_type_id); 4274 #pragma GCC diagnostic pop 4275 } else { 4276 /* 4277 * LLVM annotates global data differently in BTF, that is, 4278 * only as '.data', '.bss' or '.rodata'. 4279 */ 4280 ret = btf__find_by_name(obj->btf, map->real_name); 4281 } 4282 if (ret < 0) 4283 return ret; 4284 4285 map->btf_key_type_id = key_type_id; 4286 map->btf_value_type_id = bpf_map__is_internal(map) ? 4287 ret : value_type_id; 4288 return 0; 4289 } 4290 4291 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4292 { 4293 char file[PATH_MAX], buff[4096]; 4294 FILE *fp; 4295 __u32 val; 4296 int err; 4297 4298 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4299 memset(info, 0, sizeof(*info)); 4300 4301 fp = fopen(file, "r"); 4302 if (!fp) { 4303 err = -errno; 4304 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4305 err); 4306 return err; 4307 } 4308 4309 while (fgets(buff, sizeof(buff), fp)) { 4310 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4311 info->type = val; 4312 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4313 info->key_size = val; 4314 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4315 info->value_size = val; 4316 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4317 info->max_entries = val; 4318 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4319 info->map_flags = val; 4320 } 4321 4322 fclose(fp); 4323 4324 return 0; 4325 } 4326 4327 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4328 { 4329 struct bpf_map_info info = {}; 4330 __u32 len = sizeof(info); 4331 int new_fd, err; 4332 char *new_name; 4333 4334 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4335 if (err && errno == EINVAL) 4336 err = bpf_get_map_info_from_fdinfo(fd, &info); 4337 if (err) 4338 return libbpf_err(err); 4339 4340 new_name = strdup(info.name); 4341 if (!new_name) 4342 return libbpf_err(-errno); 4343 4344 new_fd = open("/", O_RDONLY | O_CLOEXEC); 4345 if (new_fd < 0) { 4346 err = -errno; 4347 goto err_free_new_name; 4348 } 4349 4350 new_fd = dup3(fd, new_fd, O_CLOEXEC); 4351 if (new_fd < 0) { 4352 err = -errno; 4353 goto err_close_new_fd; 4354 } 4355 4356 err = zclose(map->fd); 4357 if (err) { 4358 err = -errno; 4359 goto err_close_new_fd; 4360 } 4361 free(map->name); 4362 4363 map->fd = new_fd; 4364 map->name = new_name; 4365 map->def.type = info.type; 4366 map->def.key_size = info.key_size; 4367 map->def.value_size = info.value_size; 4368 map->def.max_entries = info.max_entries; 4369 map->def.map_flags = info.map_flags; 4370 map->btf_key_type_id = info.btf_key_type_id; 4371 map->btf_value_type_id = info.btf_value_type_id; 4372 map->reused = true; 4373 map->map_extra = info.map_extra; 4374 4375 return 0; 4376 4377 err_close_new_fd: 4378 close(new_fd); 4379 err_free_new_name: 4380 free(new_name); 4381 return libbpf_err(err); 4382 } 4383 4384 __u32 bpf_map__max_entries(const struct bpf_map *map) 4385 { 4386 return map->def.max_entries; 4387 } 4388 4389 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4390 { 4391 if (!bpf_map_type__is_map_in_map(map->def.type)) 4392 return errno = EINVAL, NULL; 4393 4394 return map->inner_map; 4395 } 4396 4397 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4398 { 4399 if (map->fd >= 0) 4400 return libbpf_err(-EBUSY); 4401 map->def.max_entries = max_entries; 4402 return 0; 4403 } 4404 4405 int bpf_map__resize(struct bpf_map *map, __u32 max_entries) 4406 { 4407 if (!map || !max_entries) 4408 return libbpf_err(-EINVAL); 4409 4410 return bpf_map__set_max_entries(map, max_entries); 4411 } 4412 4413 static int 4414 bpf_object__probe_loading(struct bpf_object *obj) 4415 { 4416 char *cp, errmsg[STRERR_BUFSIZE]; 4417 struct bpf_insn insns[] = { 4418 BPF_MOV64_IMM(BPF_REG_0, 0), 4419 BPF_EXIT_INSN(), 4420 }; 4421 int ret, insn_cnt = ARRAY_SIZE(insns); 4422 4423 if (obj->gen_loader) 4424 return 0; 4425 4426 ret = bump_rlimit_memlock(); 4427 if (ret) 4428 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4429 4430 /* make sure basic loading works */ 4431 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4432 if (ret < 0) 4433 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4434 if (ret < 0) { 4435 ret = errno; 4436 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4437 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4438 "program. Make sure your kernel supports BPF " 4439 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4440 "set to big enough value.\n", __func__, cp, ret); 4441 return -ret; 4442 } 4443 close(ret); 4444 4445 return 0; 4446 } 4447 4448 static int probe_fd(int fd) 4449 { 4450 if (fd >= 0) 4451 close(fd); 4452 return fd >= 0; 4453 } 4454 4455 static int probe_kern_prog_name(void) 4456 { 4457 struct bpf_insn insns[] = { 4458 BPF_MOV64_IMM(BPF_REG_0, 0), 4459 BPF_EXIT_INSN(), 4460 }; 4461 int ret, insn_cnt = ARRAY_SIZE(insns); 4462 4463 /* make sure loading with name works */ 4464 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, "test", "GPL", insns, insn_cnt, NULL); 4465 return probe_fd(ret); 4466 } 4467 4468 static int probe_kern_global_data(void) 4469 { 4470 char *cp, errmsg[STRERR_BUFSIZE]; 4471 struct bpf_insn insns[] = { 4472 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4473 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4474 BPF_MOV64_IMM(BPF_REG_0, 0), 4475 BPF_EXIT_INSN(), 4476 }; 4477 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4478 4479 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL); 4480 if (map < 0) { 4481 ret = -errno; 4482 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4483 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4484 __func__, cp, -ret); 4485 return ret; 4486 } 4487 4488 insns[0].imm = map; 4489 4490 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4491 close(map); 4492 return probe_fd(ret); 4493 } 4494 4495 static int probe_kern_btf(void) 4496 { 4497 static const char strs[] = "\0int"; 4498 __u32 types[] = { 4499 /* int */ 4500 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4501 }; 4502 4503 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4504 strs, sizeof(strs))); 4505 } 4506 4507 static int probe_kern_btf_func(void) 4508 { 4509 static const char strs[] = "\0int\0x\0a"; 4510 /* void x(int a) {} */ 4511 __u32 types[] = { 4512 /* int */ 4513 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4514 /* FUNC_PROTO */ /* [2] */ 4515 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4516 BTF_PARAM_ENC(7, 1), 4517 /* FUNC x */ /* [3] */ 4518 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4519 }; 4520 4521 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4522 strs, sizeof(strs))); 4523 } 4524 4525 static int probe_kern_btf_func_global(void) 4526 { 4527 static const char strs[] = "\0int\0x\0a"; 4528 /* static void x(int a) {} */ 4529 __u32 types[] = { 4530 /* int */ 4531 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4532 /* FUNC_PROTO */ /* [2] */ 4533 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4534 BTF_PARAM_ENC(7, 1), 4535 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4536 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4537 }; 4538 4539 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4540 strs, sizeof(strs))); 4541 } 4542 4543 static int probe_kern_btf_datasec(void) 4544 { 4545 static const char strs[] = "\0x\0.data"; 4546 /* static int a; */ 4547 __u32 types[] = { 4548 /* int */ 4549 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4550 /* VAR x */ /* [2] */ 4551 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4552 BTF_VAR_STATIC, 4553 /* DATASEC val */ /* [3] */ 4554 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4555 BTF_VAR_SECINFO_ENC(2, 0, 4), 4556 }; 4557 4558 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4559 strs, sizeof(strs))); 4560 } 4561 4562 static int probe_kern_btf_float(void) 4563 { 4564 static const char strs[] = "\0float"; 4565 __u32 types[] = { 4566 /* float */ 4567 BTF_TYPE_FLOAT_ENC(1, 4), 4568 }; 4569 4570 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4571 strs, sizeof(strs))); 4572 } 4573 4574 static int probe_kern_btf_decl_tag(void) 4575 { 4576 static const char strs[] = "\0tag"; 4577 __u32 types[] = { 4578 /* int */ 4579 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4580 /* VAR x */ /* [2] */ 4581 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4582 BTF_VAR_STATIC, 4583 /* attr */ 4584 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4585 }; 4586 4587 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4588 strs, sizeof(strs))); 4589 } 4590 4591 static int probe_kern_btf_type_tag(void) 4592 { 4593 static const char strs[] = "\0tag"; 4594 __u32 types[] = { 4595 /* int */ 4596 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4597 /* attr */ 4598 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4599 /* ptr */ 4600 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4601 }; 4602 4603 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4604 strs, sizeof(strs))); 4605 } 4606 4607 static int probe_kern_array_mmap(void) 4608 { 4609 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4610 int fd; 4611 4612 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), sizeof(int), 1, &opts); 4613 return probe_fd(fd); 4614 } 4615 4616 static int probe_kern_exp_attach_type(void) 4617 { 4618 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4619 struct bpf_insn insns[] = { 4620 BPF_MOV64_IMM(BPF_REG_0, 0), 4621 BPF_EXIT_INSN(), 4622 }; 4623 int fd, insn_cnt = ARRAY_SIZE(insns); 4624 4625 /* use any valid combination of program type and (optional) 4626 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4627 * to see if kernel supports expected_attach_type field for 4628 * BPF_PROG_LOAD command 4629 */ 4630 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4631 return probe_fd(fd); 4632 } 4633 4634 static int probe_kern_probe_read_kernel(void) 4635 { 4636 struct bpf_insn insns[] = { 4637 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4638 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4639 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4640 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4641 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4642 BPF_EXIT_INSN(), 4643 }; 4644 int fd, insn_cnt = ARRAY_SIZE(insns); 4645 4646 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4647 return probe_fd(fd); 4648 } 4649 4650 static int probe_prog_bind_map(void) 4651 { 4652 char *cp, errmsg[STRERR_BUFSIZE]; 4653 struct bpf_insn insns[] = { 4654 BPF_MOV64_IMM(BPF_REG_0, 0), 4655 BPF_EXIT_INSN(), 4656 }; 4657 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4658 4659 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL); 4660 if (map < 0) { 4661 ret = -errno; 4662 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4663 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4664 __func__, cp, -ret); 4665 return ret; 4666 } 4667 4668 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4669 if (prog < 0) { 4670 close(map); 4671 return 0; 4672 } 4673 4674 ret = bpf_prog_bind_map(prog, map, NULL); 4675 4676 close(map); 4677 close(prog); 4678 4679 return ret >= 0; 4680 } 4681 4682 static int probe_module_btf(void) 4683 { 4684 static const char strs[] = "\0int"; 4685 __u32 types[] = { 4686 /* int */ 4687 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4688 }; 4689 struct bpf_btf_info info; 4690 __u32 len = sizeof(info); 4691 char name[16]; 4692 int fd, err; 4693 4694 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4695 if (fd < 0) 4696 return 0; /* BTF not supported at all */ 4697 4698 memset(&info, 0, sizeof(info)); 4699 info.name = ptr_to_u64(name); 4700 info.name_len = sizeof(name); 4701 4702 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4703 * kernel's module BTF support coincides with support for 4704 * name/name_len fields in struct bpf_btf_info. 4705 */ 4706 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4707 close(fd); 4708 return !err; 4709 } 4710 4711 static int probe_perf_link(void) 4712 { 4713 struct bpf_insn insns[] = { 4714 BPF_MOV64_IMM(BPF_REG_0, 0), 4715 BPF_EXIT_INSN(), 4716 }; 4717 int prog_fd, link_fd, err; 4718 4719 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4720 insns, ARRAY_SIZE(insns), NULL); 4721 if (prog_fd < 0) 4722 return -errno; 4723 4724 /* use invalid perf_event FD to get EBADF, if link is supported; 4725 * otherwise EINVAL should be returned 4726 */ 4727 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4728 err = -errno; /* close() can clobber errno */ 4729 4730 if (link_fd >= 0) 4731 close(link_fd); 4732 close(prog_fd); 4733 4734 return link_fd < 0 && err == -EBADF; 4735 } 4736 4737 static int probe_kern_bpf_cookie(void) 4738 { 4739 struct bpf_insn insns[] = { 4740 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie), 4741 BPF_EXIT_INSN(), 4742 }; 4743 int ret, insn_cnt = ARRAY_SIZE(insns); 4744 4745 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4746 return probe_fd(ret); 4747 } 4748 4749 enum kern_feature_result { 4750 FEAT_UNKNOWN = 0, 4751 FEAT_SUPPORTED = 1, 4752 FEAT_MISSING = 2, 4753 }; 4754 4755 typedef int (*feature_probe_fn)(void); 4756 4757 static struct kern_feature_desc { 4758 const char *desc; 4759 feature_probe_fn probe; 4760 enum kern_feature_result res; 4761 } feature_probes[__FEAT_CNT] = { 4762 [FEAT_PROG_NAME] = { 4763 "BPF program name", probe_kern_prog_name, 4764 }, 4765 [FEAT_GLOBAL_DATA] = { 4766 "global variables", probe_kern_global_data, 4767 }, 4768 [FEAT_BTF] = { 4769 "minimal BTF", probe_kern_btf, 4770 }, 4771 [FEAT_BTF_FUNC] = { 4772 "BTF functions", probe_kern_btf_func, 4773 }, 4774 [FEAT_BTF_GLOBAL_FUNC] = { 4775 "BTF global function", probe_kern_btf_func_global, 4776 }, 4777 [FEAT_BTF_DATASEC] = { 4778 "BTF data section and variable", probe_kern_btf_datasec, 4779 }, 4780 [FEAT_ARRAY_MMAP] = { 4781 "ARRAY map mmap()", probe_kern_array_mmap, 4782 }, 4783 [FEAT_EXP_ATTACH_TYPE] = { 4784 "BPF_PROG_LOAD expected_attach_type attribute", 4785 probe_kern_exp_attach_type, 4786 }, 4787 [FEAT_PROBE_READ_KERN] = { 4788 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4789 }, 4790 [FEAT_PROG_BIND_MAP] = { 4791 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4792 }, 4793 [FEAT_MODULE_BTF] = { 4794 "module BTF support", probe_module_btf, 4795 }, 4796 [FEAT_BTF_FLOAT] = { 4797 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4798 }, 4799 [FEAT_PERF_LINK] = { 4800 "BPF perf link support", probe_perf_link, 4801 }, 4802 [FEAT_BTF_DECL_TAG] = { 4803 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 4804 }, 4805 [FEAT_BTF_TYPE_TAG] = { 4806 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 4807 }, 4808 [FEAT_MEMCG_ACCOUNT] = { 4809 "memcg-based memory accounting", probe_memcg_account, 4810 }, 4811 [FEAT_BPF_COOKIE] = { 4812 "BPF cookie support", probe_kern_bpf_cookie, 4813 }, 4814 }; 4815 4816 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4817 { 4818 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4819 int ret; 4820 4821 if (obj && obj->gen_loader) 4822 /* To generate loader program assume the latest kernel 4823 * to avoid doing extra prog_load, map_create syscalls. 4824 */ 4825 return true; 4826 4827 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4828 ret = feat->probe(); 4829 if (ret > 0) { 4830 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4831 } else if (ret == 0) { 4832 WRITE_ONCE(feat->res, FEAT_MISSING); 4833 } else { 4834 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4835 WRITE_ONCE(feat->res, FEAT_MISSING); 4836 } 4837 } 4838 4839 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4840 } 4841 4842 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4843 { 4844 struct bpf_map_info map_info = {}; 4845 char msg[STRERR_BUFSIZE]; 4846 __u32 map_info_len; 4847 int err; 4848 4849 map_info_len = sizeof(map_info); 4850 4851 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len); 4852 if (err && errno == EINVAL) 4853 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 4854 if (err) { 4855 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 4856 libbpf_strerror_r(errno, msg, sizeof(msg))); 4857 return false; 4858 } 4859 4860 return (map_info.type == map->def.type && 4861 map_info.key_size == map->def.key_size && 4862 map_info.value_size == map->def.value_size && 4863 map_info.max_entries == map->def.max_entries && 4864 map_info.map_flags == map->def.map_flags && 4865 map_info.map_extra == map->map_extra); 4866 } 4867 4868 static int 4869 bpf_object__reuse_map(struct bpf_map *map) 4870 { 4871 char *cp, errmsg[STRERR_BUFSIZE]; 4872 int err, pin_fd; 4873 4874 pin_fd = bpf_obj_get(map->pin_path); 4875 if (pin_fd < 0) { 4876 err = -errno; 4877 if (err == -ENOENT) { 4878 pr_debug("found no pinned map to reuse at '%s'\n", 4879 map->pin_path); 4880 return 0; 4881 } 4882 4883 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4884 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4885 map->pin_path, cp); 4886 return err; 4887 } 4888 4889 if (!map_is_reuse_compat(map, pin_fd)) { 4890 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4891 map->pin_path); 4892 close(pin_fd); 4893 return -EINVAL; 4894 } 4895 4896 err = bpf_map__reuse_fd(map, pin_fd); 4897 close(pin_fd); 4898 if (err) { 4899 return err; 4900 } 4901 map->pinned = true; 4902 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4903 4904 return 0; 4905 } 4906 4907 static int 4908 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4909 { 4910 enum libbpf_map_type map_type = map->libbpf_type; 4911 char *cp, errmsg[STRERR_BUFSIZE]; 4912 int err, zero = 0; 4913 4914 if (obj->gen_loader) { 4915 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 4916 map->mmaped, map->def.value_size); 4917 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 4918 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 4919 return 0; 4920 } 4921 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4922 if (err) { 4923 err = -errno; 4924 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4925 pr_warn("Error setting initial map(%s) contents: %s\n", 4926 map->name, cp); 4927 return err; 4928 } 4929 4930 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 4931 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 4932 err = bpf_map_freeze(map->fd); 4933 if (err) { 4934 err = -errno; 4935 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4936 pr_warn("Error freezing map(%s) as read-only: %s\n", 4937 map->name, cp); 4938 return err; 4939 } 4940 } 4941 return 0; 4942 } 4943 4944 static void bpf_map__destroy(struct bpf_map *map); 4945 4946 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 4947 { 4948 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 4949 struct bpf_map_def *def = &map->def; 4950 const char *map_name = NULL; 4951 int err = 0; 4952 4953 if (kernel_supports(obj, FEAT_PROG_NAME)) 4954 map_name = map->name; 4955 create_attr.map_ifindex = map->map_ifindex; 4956 create_attr.map_flags = def->map_flags; 4957 create_attr.numa_node = map->numa_node; 4958 create_attr.map_extra = map->map_extra; 4959 4960 if (bpf_map__is_struct_ops(map)) 4961 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 4962 4963 if (obj->btf && btf__fd(obj->btf) >= 0) { 4964 create_attr.btf_fd = btf__fd(obj->btf); 4965 create_attr.btf_key_type_id = map->btf_key_type_id; 4966 create_attr.btf_value_type_id = map->btf_value_type_id; 4967 } 4968 4969 if (bpf_map_type__is_map_in_map(def->type)) { 4970 if (map->inner_map) { 4971 err = bpf_object__create_map(obj, map->inner_map, true); 4972 if (err) { 4973 pr_warn("map '%s': failed to create inner map: %d\n", 4974 map->name, err); 4975 return err; 4976 } 4977 map->inner_map_fd = bpf_map__fd(map->inner_map); 4978 } 4979 if (map->inner_map_fd >= 0) 4980 create_attr.inner_map_fd = map->inner_map_fd; 4981 } 4982 4983 switch (def->type) { 4984 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 4985 case BPF_MAP_TYPE_CGROUP_ARRAY: 4986 case BPF_MAP_TYPE_STACK_TRACE: 4987 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 4988 case BPF_MAP_TYPE_HASH_OF_MAPS: 4989 case BPF_MAP_TYPE_DEVMAP: 4990 case BPF_MAP_TYPE_DEVMAP_HASH: 4991 case BPF_MAP_TYPE_CPUMAP: 4992 case BPF_MAP_TYPE_XSKMAP: 4993 case BPF_MAP_TYPE_SOCKMAP: 4994 case BPF_MAP_TYPE_SOCKHASH: 4995 case BPF_MAP_TYPE_QUEUE: 4996 case BPF_MAP_TYPE_STACK: 4997 case BPF_MAP_TYPE_RINGBUF: 4998 create_attr.btf_fd = 0; 4999 create_attr.btf_key_type_id = 0; 5000 create_attr.btf_value_type_id = 0; 5001 map->btf_key_type_id = 0; 5002 map->btf_value_type_id = 0; 5003 default: 5004 break; 5005 } 5006 5007 if (obj->gen_loader) { 5008 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5009 def->key_size, def->value_size, def->max_entries, 5010 &create_attr, is_inner ? -1 : map - obj->maps); 5011 /* Pretend to have valid FD to pass various fd >= 0 checks. 5012 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 5013 */ 5014 map->fd = 0; 5015 } else { 5016 map->fd = bpf_map_create(def->type, map_name, 5017 def->key_size, def->value_size, 5018 def->max_entries, &create_attr); 5019 } 5020 if (map->fd < 0 && (create_attr.btf_key_type_id || 5021 create_attr.btf_value_type_id)) { 5022 char *cp, errmsg[STRERR_BUFSIZE]; 5023 5024 err = -errno; 5025 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5026 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 5027 map->name, cp, err); 5028 create_attr.btf_fd = 0; 5029 create_attr.btf_key_type_id = 0; 5030 create_attr.btf_value_type_id = 0; 5031 map->btf_key_type_id = 0; 5032 map->btf_value_type_id = 0; 5033 map->fd = bpf_map_create(def->type, map_name, 5034 def->key_size, def->value_size, 5035 def->max_entries, &create_attr); 5036 } 5037 5038 err = map->fd < 0 ? -errno : 0; 5039 5040 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5041 if (obj->gen_loader) 5042 map->inner_map->fd = -1; 5043 bpf_map__destroy(map->inner_map); 5044 zfree(&map->inner_map); 5045 } 5046 5047 return err; 5048 } 5049 5050 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5051 { 5052 const struct bpf_map *targ_map; 5053 unsigned int i; 5054 int fd, err = 0; 5055 5056 for (i = 0; i < map->init_slots_sz; i++) { 5057 if (!map->init_slots[i]) 5058 continue; 5059 5060 targ_map = map->init_slots[i]; 5061 fd = bpf_map__fd(targ_map); 5062 5063 if (obj->gen_loader) { 5064 bpf_gen__populate_outer_map(obj->gen_loader, 5065 map - obj->maps, i, 5066 targ_map - obj->maps); 5067 } else { 5068 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5069 } 5070 if (err) { 5071 err = -errno; 5072 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5073 map->name, i, targ_map->name, fd, err); 5074 return err; 5075 } 5076 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5077 map->name, i, targ_map->name, fd); 5078 } 5079 5080 zfree(&map->init_slots); 5081 map->init_slots_sz = 0; 5082 5083 return 0; 5084 } 5085 5086 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5087 { 5088 const struct bpf_program *targ_prog; 5089 unsigned int i; 5090 int fd, err; 5091 5092 if (obj->gen_loader) 5093 return -ENOTSUP; 5094 5095 for (i = 0; i < map->init_slots_sz; i++) { 5096 if (!map->init_slots[i]) 5097 continue; 5098 5099 targ_prog = map->init_slots[i]; 5100 fd = bpf_program__fd(targ_prog); 5101 5102 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5103 if (err) { 5104 err = -errno; 5105 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5106 map->name, i, targ_prog->name, fd, err); 5107 return err; 5108 } 5109 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5110 map->name, i, targ_prog->name, fd); 5111 } 5112 5113 zfree(&map->init_slots); 5114 map->init_slots_sz = 0; 5115 5116 return 0; 5117 } 5118 5119 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5120 { 5121 struct bpf_map *map; 5122 int i, err; 5123 5124 for (i = 0; i < obj->nr_maps; i++) { 5125 map = &obj->maps[i]; 5126 5127 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5128 continue; 5129 5130 err = init_prog_array_slots(obj, map); 5131 if (err < 0) { 5132 zclose(map->fd); 5133 return err; 5134 } 5135 } 5136 return 0; 5137 } 5138 5139 static int map_set_def_max_entries(struct bpf_map *map) 5140 { 5141 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5142 int nr_cpus; 5143 5144 nr_cpus = libbpf_num_possible_cpus(); 5145 if (nr_cpus < 0) { 5146 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5147 map->name, nr_cpus); 5148 return nr_cpus; 5149 } 5150 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5151 map->def.max_entries = nr_cpus; 5152 } 5153 5154 return 0; 5155 } 5156 5157 static int 5158 bpf_object__create_maps(struct bpf_object *obj) 5159 { 5160 struct bpf_map *map; 5161 char *cp, errmsg[STRERR_BUFSIZE]; 5162 unsigned int i, j; 5163 int err; 5164 bool retried; 5165 5166 for (i = 0; i < obj->nr_maps; i++) { 5167 map = &obj->maps[i]; 5168 5169 /* To support old kernels, we skip creating global data maps 5170 * (.rodata, .data, .kconfig, etc); later on, during program 5171 * loading, if we detect that at least one of the to-be-loaded 5172 * programs is referencing any global data map, we'll error 5173 * out with program name and relocation index logged. 5174 * This approach allows to accommodate Clang emitting 5175 * unnecessary .rodata.str1.1 sections for string literals, 5176 * but also it allows to have CO-RE applications that use 5177 * global variables in some of BPF programs, but not others. 5178 * If those global variable-using programs are not loaded at 5179 * runtime due to bpf_program__set_autoload(prog, false), 5180 * bpf_object loading will succeed just fine even on old 5181 * kernels. 5182 */ 5183 if (bpf_map__is_internal(map) && 5184 !kernel_supports(obj, FEAT_GLOBAL_DATA)) { 5185 map->skipped = true; 5186 continue; 5187 } 5188 5189 err = map_set_def_max_entries(map); 5190 if (err) 5191 goto err_out; 5192 5193 retried = false; 5194 retry: 5195 if (map->pin_path) { 5196 err = bpf_object__reuse_map(map); 5197 if (err) { 5198 pr_warn("map '%s': error reusing pinned map\n", 5199 map->name); 5200 goto err_out; 5201 } 5202 if (retried && map->fd < 0) { 5203 pr_warn("map '%s': cannot find pinned map\n", 5204 map->name); 5205 err = -ENOENT; 5206 goto err_out; 5207 } 5208 } 5209 5210 if (map->fd >= 0) { 5211 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5212 map->name, map->fd); 5213 } else { 5214 err = bpf_object__create_map(obj, map, false); 5215 if (err) 5216 goto err_out; 5217 5218 pr_debug("map '%s': created successfully, fd=%d\n", 5219 map->name, map->fd); 5220 5221 if (bpf_map__is_internal(map)) { 5222 err = bpf_object__populate_internal_map(obj, map); 5223 if (err < 0) { 5224 zclose(map->fd); 5225 goto err_out; 5226 } 5227 } 5228 5229 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5230 err = init_map_in_map_slots(obj, map); 5231 if (err < 0) { 5232 zclose(map->fd); 5233 goto err_out; 5234 } 5235 } 5236 } 5237 5238 if (map->pin_path && !map->pinned) { 5239 err = bpf_map__pin(map, NULL); 5240 if (err) { 5241 zclose(map->fd); 5242 if (!retried && err == -EEXIST) { 5243 retried = true; 5244 goto retry; 5245 } 5246 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5247 map->name, map->pin_path, err); 5248 goto err_out; 5249 } 5250 } 5251 } 5252 5253 return 0; 5254 5255 err_out: 5256 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5257 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5258 pr_perm_msg(err); 5259 for (j = 0; j < i; j++) 5260 zclose(obj->maps[j].fd); 5261 return err; 5262 } 5263 5264 static bool bpf_core_is_flavor_sep(const char *s) 5265 { 5266 /* check X___Y name pattern, where X and Y are not underscores */ 5267 return s[0] != '_' && /* X */ 5268 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5269 s[4] != '_'; /* Y */ 5270 } 5271 5272 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5273 * before last triple underscore. Struct name part after last triple 5274 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5275 */ 5276 size_t bpf_core_essential_name_len(const char *name) 5277 { 5278 size_t n = strlen(name); 5279 int i; 5280 5281 for (i = n - 5; i >= 0; i--) { 5282 if (bpf_core_is_flavor_sep(name + i)) 5283 return i + 1; 5284 } 5285 return n; 5286 } 5287 5288 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5289 { 5290 if (!cands) 5291 return; 5292 5293 free(cands->cands); 5294 free(cands); 5295 } 5296 5297 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5298 size_t local_essent_len, 5299 const struct btf *targ_btf, 5300 const char *targ_btf_name, 5301 int targ_start_id, 5302 struct bpf_core_cand_list *cands) 5303 { 5304 struct bpf_core_cand *new_cands, *cand; 5305 const struct btf_type *t, *local_t; 5306 const char *targ_name, *local_name; 5307 size_t targ_essent_len; 5308 int n, i; 5309 5310 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5311 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5312 5313 n = btf__type_cnt(targ_btf); 5314 for (i = targ_start_id; i < n; i++) { 5315 t = btf__type_by_id(targ_btf, i); 5316 if (btf_kind(t) != btf_kind(local_t)) 5317 continue; 5318 5319 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5320 if (str_is_empty(targ_name)) 5321 continue; 5322 5323 targ_essent_len = bpf_core_essential_name_len(targ_name); 5324 if (targ_essent_len != local_essent_len) 5325 continue; 5326 5327 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5328 continue; 5329 5330 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5331 local_cand->id, btf_kind_str(local_t), 5332 local_name, i, btf_kind_str(t), targ_name, 5333 targ_btf_name); 5334 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5335 sizeof(*cands->cands)); 5336 if (!new_cands) 5337 return -ENOMEM; 5338 5339 cand = &new_cands[cands->len]; 5340 cand->btf = targ_btf; 5341 cand->id = i; 5342 5343 cands->cands = new_cands; 5344 cands->len++; 5345 } 5346 return 0; 5347 } 5348 5349 static int load_module_btfs(struct bpf_object *obj) 5350 { 5351 struct bpf_btf_info info; 5352 struct module_btf *mod_btf; 5353 struct btf *btf; 5354 char name[64]; 5355 __u32 id = 0, len; 5356 int err, fd; 5357 5358 if (obj->btf_modules_loaded) 5359 return 0; 5360 5361 if (obj->gen_loader) 5362 return 0; 5363 5364 /* don't do this again, even if we find no module BTFs */ 5365 obj->btf_modules_loaded = true; 5366 5367 /* kernel too old to support module BTFs */ 5368 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5369 return 0; 5370 5371 while (true) { 5372 err = bpf_btf_get_next_id(id, &id); 5373 if (err && errno == ENOENT) 5374 return 0; 5375 if (err) { 5376 err = -errno; 5377 pr_warn("failed to iterate BTF objects: %d\n", err); 5378 return err; 5379 } 5380 5381 fd = bpf_btf_get_fd_by_id(id); 5382 if (fd < 0) { 5383 if (errno == ENOENT) 5384 continue; /* expected race: BTF was unloaded */ 5385 err = -errno; 5386 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5387 return err; 5388 } 5389 5390 len = sizeof(info); 5391 memset(&info, 0, sizeof(info)); 5392 info.name = ptr_to_u64(name); 5393 info.name_len = sizeof(name); 5394 5395 err = bpf_obj_get_info_by_fd(fd, &info, &len); 5396 if (err) { 5397 err = -errno; 5398 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5399 goto err_out; 5400 } 5401 5402 /* ignore non-module BTFs */ 5403 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5404 close(fd); 5405 continue; 5406 } 5407 5408 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5409 err = libbpf_get_error(btf); 5410 if (err) { 5411 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5412 name, id, err); 5413 goto err_out; 5414 } 5415 5416 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5417 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5418 if (err) 5419 goto err_out; 5420 5421 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5422 5423 mod_btf->btf = btf; 5424 mod_btf->id = id; 5425 mod_btf->fd = fd; 5426 mod_btf->name = strdup(name); 5427 if (!mod_btf->name) { 5428 err = -ENOMEM; 5429 goto err_out; 5430 } 5431 continue; 5432 5433 err_out: 5434 close(fd); 5435 return err; 5436 } 5437 5438 return 0; 5439 } 5440 5441 static struct bpf_core_cand_list * 5442 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5443 { 5444 struct bpf_core_cand local_cand = {}; 5445 struct bpf_core_cand_list *cands; 5446 const struct btf *main_btf; 5447 const struct btf_type *local_t; 5448 const char *local_name; 5449 size_t local_essent_len; 5450 int err, i; 5451 5452 local_cand.btf = local_btf; 5453 local_cand.id = local_type_id; 5454 local_t = btf__type_by_id(local_btf, local_type_id); 5455 if (!local_t) 5456 return ERR_PTR(-EINVAL); 5457 5458 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5459 if (str_is_empty(local_name)) 5460 return ERR_PTR(-EINVAL); 5461 local_essent_len = bpf_core_essential_name_len(local_name); 5462 5463 cands = calloc(1, sizeof(*cands)); 5464 if (!cands) 5465 return ERR_PTR(-ENOMEM); 5466 5467 /* Attempt to find target candidates in vmlinux BTF first */ 5468 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5469 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5470 if (err) 5471 goto err_out; 5472 5473 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5474 if (cands->len) 5475 return cands; 5476 5477 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5478 if (obj->btf_vmlinux_override) 5479 return cands; 5480 5481 /* now look through module BTFs, trying to still find candidates */ 5482 err = load_module_btfs(obj); 5483 if (err) 5484 goto err_out; 5485 5486 for (i = 0; i < obj->btf_module_cnt; i++) { 5487 err = bpf_core_add_cands(&local_cand, local_essent_len, 5488 obj->btf_modules[i].btf, 5489 obj->btf_modules[i].name, 5490 btf__type_cnt(obj->btf_vmlinux), 5491 cands); 5492 if (err) 5493 goto err_out; 5494 } 5495 5496 return cands; 5497 err_out: 5498 bpf_core_free_cands(cands); 5499 return ERR_PTR(err); 5500 } 5501 5502 /* Check local and target types for compatibility. This check is used for 5503 * type-based CO-RE relocations and follow slightly different rules than 5504 * field-based relocations. This function assumes that root types were already 5505 * checked for name match. Beyond that initial root-level name check, names 5506 * are completely ignored. Compatibility rules are as follows: 5507 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5508 * kind should match for local and target types (i.e., STRUCT is not 5509 * compatible with UNION); 5510 * - for ENUMs, the size is ignored; 5511 * - for INT, size and signedness are ignored; 5512 * - for ARRAY, dimensionality is ignored, element types are checked for 5513 * compatibility recursively; 5514 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5515 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5516 * - FUNC_PROTOs are compatible if they have compatible signature: same 5517 * number of input args and compatible return and argument types. 5518 * These rules are not set in stone and probably will be adjusted as we get 5519 * more experience with using BPF CO-RE relocations. 5520 */ 5521 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5522 const struct btf *targ_btf, __u32 targ_id) 5523 { 5524 const struct btf_type *local_type, *targ_type; 5525 int depth = 32; /* max recursion depth */ 5526 5527 /* caller made sure that names match (ignoring flavor suffix) */ 5528 local_type = btf__type_by_id(local_btf, local_id); 5529 targ_type = btf__type_by_id(targ_btf, targ_id); 5530 if (btf_kind(local_type) != btf_kind(targ_type)) 5531 return 0; 5532 5533 recur: 5534 depth--; 5535 if (depth < 0) 5536 return -EINVAL; 5537 5538 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 5539 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 5540 if (!local_type || !targ_type) 5541 return -EINVAL; 5542 5543 if (btf_kind(local_type) != btf_kind(targ_type)) 5544 return 0; 5545 5546 switch (btf_kind(local_type)) { 5547 case BTF_KIND_UNKN: 5548 case BTF_KIND_STRUCT: 5549 case BTF_KIND_UNION: 5550 case BTF_KIND_ENUM: 5551 case BTF_KIND_FWD: 5552 return 1; 5553 case BTF_KIND_INT: 5554 /* just reject deprecated bitfield-like integers; all other 5555 * integers are by default compatible between each other 5556 */ 5557 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0; 5558 case BTF_KIND_PTR: 5559 local_id = local_type->type; 5560 targ_id = targ_type->type; 5561 goto recur; 5562 case BTF_KIND_ARRAY: 5563 local_id = btf_array(local_type)->type; 5564 targ_id = btf_array(targ_type)->type; 5565 goto recur; 5566 case BTF_KIND_FUNC_PROTO: { 5567 struct btf_param *local_p = btf_params(local_type); 5568 struct btf_param *targ_p = btf_params(targ_type); 5569 __u16 local_vlen = btf_vlen(local_type); 5570 __u16 targ_vlen = btf_vlen(targ_type); 5571 int i, err; 5572 5573 if (local_vlen != targ_vlen) 5574 return 0; 5575 5576 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { 5577 skip_mods_and_typedefs(local_btf, local_p->type, &local_id); 5578 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id); 5579 err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id); 5580 if (err <= 0) 5581 return err; 5582 } 5583 5584 /* tail recurse for return type check */ 5585 skip_mods_and_typedefs(local_btf, local_type->type, &local_id); 5586 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id); 5587 goto recur; 5588 } 5589 default: 5590 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n", 5591 btf_kind_str(local_type), local_id, targ_id); 5592 return 0; 5593 } 5594 } 5595 5596 static size_t bpf_core_hash_fn(const void *key, void *ctx) 5597 { 5598 return (size_t)key; 5599 } 5600 5601 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 5602 { 5603 return k1 == k2; 5604 } 5605 5606 static void *u32_as_hash_key(__u32 x) 5607 { 5608 return (void *)(uintptr_t)x; 5609 } 5610 5611 static int record_relo_core(struct bpf_program *prog, 5612 const struct bpf_core_relo *core_relo, int insn_idx) 5613 { 5614 struct reloc_desc *relos, *relo; 5615 5616 relos = libbpf_reallocarray(prog->reloc_desc, 5617 prog->nr_reloc + 1, sizeof(*relos)); 5618 if (!relos) 5619 return -ENOMEM; 5620 relo = &relos[prog->nr_reloc]; 5621 relo->type = RELO_CORE; 5622 relo->insn_idx = insn_idx; 5623 relo->core_relo = core_relo; 5624 prog->reloc_desc = relos; 5625 prog->nr_reloc++; 5626 return 0; 5627 } 5628 5629 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5630 { 5631 struct reloc_desc *relo; 5632 int i; 5633 5634 for (i = 0; i < prog->nr_reloc; i++) { 5635 relo = &prog->reloc_desc[i]; 5636 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5637 continue; 5638 5639 return relo->core_relo; 5640 } 5641 5642 return NULL; 5643 } 5644 5645 static int bpf_core_resolve_relo(struct bpf_program *prog, 5646 const struct bpf_core_relo *relo, 5647 int relo_idx, 5648 const struct btf *local_btf, 5649 struct hashmap *cand_cache, 5650 struct bpf_core_relo_res *targ_res) 5651 { 5652 struct bpf_core_spec specs_scratch[3] = {}; 5653 const void *type_key = u32_as_hash_key(relo->type_id); 5654 struct bpf_core_cand_list *cands = NULL; 5655 const char *prog_name = prog->name; 5656 const struct btf_type *local_type; 5657 const char *local_name; 5658 __u32 local_id = relo->type_id; 5659 int err; 5660 5661 local_type = btf__type_by_id(local_btf, local_id); 5662 if (!local_type) 5663 return -EINVAL; 5664 5665 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5666 if (!local_name) 5667 return -EINVAL; 5668 5669 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5670 !hashmap__find(cand_cache, type_key, (void **)&cands)) { 5671 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5672 if (IS_ERR(cands)) { 5673 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5674 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5675 local_name, PTR_ERR(cands)); 5676 return PTR_ERR(cands); 5677 } 5678 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL); 5679 if (err) { 5680 bpf_core_free_cands(cands); 5681 return err; 5682 } 5683 } 5684 5685 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5686 targ_res); 5687 } 5688 5689 static int 5690 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5691 { 5692 const struct btf_ext_info_sec *sec; 5693 struct bpf_core_relo_res targ_res; 5694 const struct bpf_core_relo *rec; 5695 const struct btf_ext_info *seg; 5696 struct hashmap_entry *entry; 5697 struct hashmap *cand_cache = NULL; 5698 struct bpf_program *prog; 5699 struct bpf_insn *insn; 5700 const char *sec_name; 5701 int i, err = 0, insn_idx, sec_idx, sec_num; 5702 5703 if (obj->btf_ext->core_relo_info.len == 0) 5704 return 0; 5705 5706 if (targ_btf_path) { 5707 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5708 err = libbpf_get_error(obj->btf_vmlinux_override); 5709 if (err) { 5710 pr_warn("failed to parse target BTF: %d\n", err); 5711 return err; 5712 } 5713 } 5714 5715 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5716 if (IS_ERR(cand_cache)) { 5717 err = PTR_ERR(cand_cache); 5718 goto out; 5719 } 5720 5721 seg = &obj->btf_ext->core_relo_info; 5722 sec_num = 0; 5723 for_each_btf_ext_sec(seg, sec) { 5724 sec_idx = seg->sec_idxs[sec_num]; 5725 sec_num++; 5726 5727 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5728 if (str_is_empty(sec_name)) { 5729 err = -EINVAL; 5730 goto out; 5731 } 5732 5733 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5734 5735 for_each_btf_ext_rec(seg, sec, i, rec) { 5736 if (rec->insn_off % BPF_INSN_SZ) 5737 return -EINVAL; 5738 insn_idx = rec->insn_off / BPF_INSN_SZ; 5739 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5740 if (!prog) { 5741 /* When __weak subprog is "overridden" by another instance 5742 * of the subprog from a different object file, linker still 5743 * appends all the .BTF.ext info that used to belong to that 5744 * eliminated subprogram. 5745 * This is similar to what x86-64 linker does for relocations. 5746 * So just ignore such relocations just like we ignore 5747 * subprog instructions when discovering subprograms. 5748 */ 5749 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5750 sec_name, i, insn_idx); 5751 continue; 5752 } 5753 /* no need to apply CO-RE relocation if the program is 5754 * not going to be loaded 5755 */ 5756 if (!prog->autoload) 5757 continue; 5758 5759 /* adjust insn_idx from section frame of reference to the local 5760 * program's frame of reference; (sub-)program code is not yet 5761 * relocated, so it's enough to just subtract in-section offset 5762 */ 5763 insn_idx = insn_idx - prog->sec_insn_off; 5764 if (insn_idx >= prog->insns_cnt) 5765 return -EINVAL; 5766 insn = &prog->insns[insn_idx]; 5767 5768 err = record_relo_core(prog, rec, insn_idx); 5769 if (err) { 5770 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5771 prog->name, i, err); 5772 goto out; 5773 } 5774 5775 if (prog->obj->gen_loader) 5776 continue; 5777 5778 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5779 if (err) { 5780 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5781 prog->name, i, err); 5782 goto out; 5783 } 5784 5785 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5786 if (err) { 5787 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5788 prog->name, i, insn_idx, err); 5789 goto out; 5790 } 5791 } 5792 } 5793 5794 out: 5795 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5796 btf__free(obj->btf_vmlinux_override); 5797 obj->btf_vmlinux_override = NULL; 5798 5799 if (!IS_ERR_OR_NULL(cand_cache)) { 5800 hashmap__for_each_entry(cand_cache, entry, i) { 5801 bpf_core_free_cands(entry->value); 5802 } 5803 hashmap__free(cand_cache); 5804 } 5805 return err; 5806 } 5807 5808 /* Relocate data references within program code: 5809 * - map references; 5810 * - global variable references; 5811 * - extern references. 5812 */ 5813 static int 5814 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5815 { 5816 int i; 5817 5818 for (i = 0; i < prog->nr_reloc; i++) { 5819 struct reloc_desc *relo = &prog->reloc_desc[i]; 5820 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5821 struct extern_desc *ext; 5822 5823 switch (relo->type) { 5824 case RELO_LD64: 5825 if (obj->gen_loader) { 5826 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 5827 insn[0].imm = relo->map_idx; 5828 } else { 5829 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5830 insn[0].imm = obj->maps[relo->map_idx].fd; 5831 } 5832 break; 5833 case RELO_DATA: 5834 insn[1].imm = insn[0].imm + relo->sym_off; 5835 if (obj->gen_loader) { 5836 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5837 insn[0].imm = relo->map_idx; 5838 } else { 5839 const struct bpf_map *map = &obj->maps[relo->map_idx]; 5840 5841 if (map->skipped) { 5842 pr_warn("prog '%s': relo #%d: kernel doesn't support global data\n", 5843 prog->name, i); 5844 return -ENOTSUP; 5845 } 5846 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5847 insn[0].imm = obj->maps[relo->map_idx].fd; 5848 } 5849 break; 5850 case RELO_EXTERN_VAR: 5851 ext = &obj->externs[relo->sym_off]; 5852 if (ext->type == EXT_KCFG) { 5853 if (obj->gen_loader) { 5854 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5855 insn[0].imm = obj->kconfig_map_idx; 5856 } else { 5857 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5858 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5859 } 5860 insn[1].imm = ext->kcfg.data_off; 5861 } else /* EXT_KSYM */ { 5862 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 5863 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 5864 insn[0].imm = ext->ksym.kernel_btf_id; 5865 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 5866 } else { /* typeless ksyms or unresolved typed ksyms */ 5867 insn[0].imm = (__u32)ext->ksym.addr; 5868 insn[1].imm = ext->ksym.addr >> 32; 5869 } 5870 } 5871 break; 5872 case RELO_EXTERN_FUNC: 5873 ext = &obj->externs[relo->sym_off]; 5874 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 5875 if (ext->is_set) { 5876 insn[0].imm = ext->ksym.kernel_btf_id; 5877 insn[0].off = ext->ksym.btf_fd_idx; 5878 } else { /* unresolved weak kfunc */ 5879 insn[0].imm = 0; 5880 insn[0].off = 0; 5881 } 5882 break; 5883 case RELO_SUBPROG_ADDR: 5884 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 5885 pr_warn("prog '%s': relo #%d: bad insn\n", 5886 prog->name, i); 5887 return -EINVAL; 5888 } 5889 /* handled already */ 5890 break; 5891 case RELO_CALL: 5892 /* handled already */ 5893 break; 5894 case RELO_CORE: 5895 /* will be handled by bpf_program_record_relos() */ 5896 break; 5897 default: 5898 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 5899 prog->name, i, relo->type); 5900 return -EINVAL; 5901 } 5902 } 5903 5904 return 0; 5905 } 5906 5907 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 5908 const struct bpf_program *prog, 5909 const struct btf_ext_info *ext_info, 5910 void **prog_info, __u32 *prog_rec_cnt, 5911 __u32 *prog_rec_sz) 5912 { 5913 void *copy_start = NULL, *copy_end = NULL; 5914 void *rec, *rec_end, *new_prog_info; 5915 const struct btf_ext_info_sec *sec; 5916 size_t old_sz, new_sz; 5917 int i, sec_num, sec_idx, off_adj; 5918 5919 sec_num = 0; 5920 for_each_btf_ext_sec(ext_info, sec) { 5921 sec_idx = ext_info->sec_idxs[sec_num]; 5922 sec_num++; 5923 if (prog->sec_idx != sec_idx) 5924 continue; 5925 5926 for_each_btf_ext_rec(ext_info, sec, i, rec) { 5927 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 5928 5929 if (insn_off < prog->sec_insn_off) 5930 continue; 5931 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 5932 break; 5933 5934 if (!copy_start) 5935 copy_start = rec; 5936 copy_end = rec + ext_info->rec_size; 5937 } 5938 5939 if (!copy_start) 5940 return -ENOENT; 5941 5942 /* append func/line info of a given (sub-)program to the main 5943 * program func/line info 5944 */ 5945 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 5946 new_sz = old_sz + (copy_end - copy_start); 5947 new_prog_info = realloc(*prog_info, new_sz); 5948 if (!new_prog_info) 5949 return -ENOMEM; 5950 *prog_info = new_prog_info; 5951 *prog_rec_cnt = new_sz / ext_info->rec_size; 5952 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 5953 5954 /* Kernel instruction offsets are in units of 8-byte 5955 * instructions, while .BTF.ext instruction offsets generated 5956 * by Clang are in units of bytes. So convert Clang offsets 5957 * into kernel offsets and adjust offset according to program 5958 * relocated position. 5959 */ 5960 off_adj = prog->sub_insn_off - prog->sec_insn_off; 5961 rec = new_prog_info + old_sz; 5962 rec_end = new_prog_info + new_sz; 5963 for (; rec < rec_end; rec += ext_info->rec_size) { 5964 __u32 *insn_off = rec; 5965 5966 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 5967 } 5968 *prog_rec_sz = ext_info->rec_size; 5969 return 0; 5970 } 5971 5972 return -ENOENT; 5973 } 5974 5975 static int 5976 reloc_prog_func_and_line_info(const struct bpf_object *obj, 5977 struct bpf_program *main_prog, 5978 const struct bpf_program *prog) 5979 { 5980 int err; 5981 5982 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 5983 * supprot func/line info 5984 */ 5985 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 5986 return 0; 5987 5988 /* only attempt func info relocation if main program's func_info 5989 * relocation was successful 5990 */ 5991 if (main_prog != prog && !main_prog->func_info) 5992 goto line_info; 5993 5994 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 5995 &main_prog->func_info, 5996 &main_prog->func_info_cnt, 5997 &main_prog->func_info_rec_size); 5998 if (err) { 5999 if (err != -ENOENT) { 6000 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6001 prog->name, err); 6002 return err; 6003 } 6004 if (main_prog->func_info) { 6005 /* 6006 * Some info has already been found but has problem 6007 * in the last btf_ext reloc. Must have to error out. 6008 */ 6009 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6010 return err; 6011 } 6012 /* Have problem loading the very first info. Ignore the rest. */ 6013 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6014 prog->name); 6015 } 6016 6017 line_info: 6018 /* don't relocate line info if main program's relocation failed */ 6019 if (main_prog != prog && !main_prog->line_info) 6020 return 0; 6021 6022 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6023 &main_prog->line_info, 6024 &main_prog->line_info_cnt, 6025 &main_prog->line_info_rec_size); 6026 if (err) { 6027 if (err != -ENOENT) { 6028 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6029 prog->name, err); 6030 return err; 6031 } 6032 if (main_prog->line_info) { 6033 /* 6034 * Some info has already been found but has problem 6035 * in the last btf_ext reloc. Must have to error out. 6036 */ 6037 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6038 return err; 6039 } 6040 /* Have problem loading the very first info. Ignore the rest. */ 6041 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6042 prog->name); 6043 } 6044 return 0; 6045 } 6046 6047 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6048 { 6049 size_t insn_idx = *(const size_t *)key; 6050 const struct reloc_desc *relo = elem; 6051 6052 if (insn_idx == relo->insn_idx) 6053 return 0; 6054 return insn_idx < relo->insn_idx ? -1 : 1; 6055 } 6056 6057 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6058 { 6059 if (!prog->nr_reloc) 6060 return NULL; 6061 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6062 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6063 } 6064 6065 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6066 { 6067 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6068 struct reloc_desc *relos; 6069 int i; 6070 6071 if (main_prog == subprog) 6072 return 0; 6073 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6074 if (!relos) 6075 return -ENOMEM; 6076 if (subprog->nr_reloc) 6077 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6078 sizeof(*relos) * subprog->nr_reloc); 6079 6080 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6081 relos[i].insn_idx += subprog->sub_insn_off; 6082 /* After insn_idx adjustment the 'relos' array is still sorted 6083 * by insn_idx and doesn't break bsearch. 6084 */ 6085 main_prog->reloc_desc = relos; 6086 main_prog->nr_reloc = new_cnt; 6087 return 0; 6088 } 6089 6090 static int 6091 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6092 struct bpf_program *prog) 6093 { 6094 size_t sub_insn_idx, insn_idx, new_cnt; 6095 struct bpf_program *subprog; 6096 struct bpf_insn *insns, *insn; 6097 struct reloc_desc *relo; 6098 int err; 6099 6100 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6101 if (err) 6102 return err; 6103 6104 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6105 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6106 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6107 continue; 6108 6109 relo = find_prog_insn_relo(prog, insn_idx); 6110 if (relo && relo->type == RELO_EXTERN_FUNC) 6111 /* kfunc relocations will be handled later 6112 * in bpf_object__relocate_data() 6113 */ 6114 continue; 6115 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6116 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6117 prog->name, insn_idx, relo->type); 6118 return -LIBBPF_ERRNO__RELOC; 6119 } 6120 if (relo) { 6121 /* sub-program instruction index is a combination of 6122 * an offset of a symbol pointed to by relocation and 6123 * call instruction's imm field; for global functions, 6124 * call always has imm = -1, but for static functions 6125 * relocation is against STT_SECTION and insn->imm 6126 * points to a start of a static function 6127 * 6128 * for subprog addr relocation, the relo->sym_off + insn->imm is 6129 * the byte offset in the corresponding section. 6130 */ 6131 if (relo->type == RELO_CALL) 6132 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6133 else 6134 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6135 } else if (insn_is_pseudo_func(insn)) { 6136 /* 6137 * RELO_SUBPROG_ADDR relo is always emitted even if both 6138 * functions are in the same section, so it shouldn't reach here. 6139 */ 6140 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6141 prog->name, insn_idx); 6142 return -LIBBPF_ERRNO__RELOC; 6143 } else { 6144 /* if subprogram call is to a static function within 6145 * the same ELF section, there won't be any relocation 6146 * emitted, but it also means there is no additional 6147 * offset necessary, insns->imm is relative to 6148 * instruction's original position within the section 6149 */ 6150 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6151 } 6152 6153 /* we enforce that sub-programs should be in .text section */ 6154 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6155 if (!subprog) { 6156 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6157 prog->name); 6158 return -LIBBPF_ERRNO__RELOC; 6159 } 6160 6161 /* if it's the first call instruction calling into this 6162 * subprogram (meaning this subprog hasn't been processed 6163 * yet) within the context of current main program: 6164 * - append it at the end of main program's instructions blog; 6165 * - process is recursively, while current program is put on hold; 6166 * - if that subprogram calls some other not yet processes 6167 * subprogram, same thing will happen recursively until 6168 * there are no more unprocesses subprograms left to append 6169 * and relocate. 6170 */ 6171 if (subprog->sub_insn_off == 0) { 6172 subprog->sub_insn_off = main_prog->insns_cnt; 6173 6174 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6175 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6176 if (!insns) { 6177 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6178 return -ENOMEM; 6179 } 6180 main_prog->insns = insns; 6181 main_prog->insns_cnt = new_cnt; 6182 6183 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6184 subprog->insns_cnt * sizeof(*insns)); 6185 6186 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6187 main_prog->name, subprog->insns_cnt, subprog->name); 6188 6189 /* The subprog insns are now appended. Append its relos too. */ 6190 err = append_subprog_relos(main_prog, subprog); 6191 if (err) 6192 return err; 6193 err = bpf_object__reloc_code(obj, main_prog, subprog); 6194 if (err) 6195 return err; 6196 } 6197 6198 /* main_prog->insns memory could have been re-allocated, so 6199 * calculate pointer again 6200 */ 6201 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6202 /* calculate correct instruction position within current main 6203 * prog; each main prog can have a different set of 6204 * subprograms appended (potentially in different order as 6205 * well), so position of any subprog can be different for 6206 * different main programs */ 6207 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6208 6209 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6210 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6211 } 6212 6213 return 0; 6214 } 6215 6216 /* 6217 * Relocate sub-program calls. 6218 * 6219 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6220 * main prog) is processed separately. For each subprog (non-entry functions, 6221 * that can be called from either entry progs or other subprogs) gets their 6222 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6223 * hasn't been yet appended and relocated within current main prog. Once its 6224 * relocated, sub_insn_off will point at the position within current main prog 6225 * where given subprog was appended. This will further be used to relocate all 6226 * the call instructions jumping into this subprog. 6227 * 6228 * We start with main program and process all call instructions. If the call 6229 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6230 * is zero), subprog instructions are appended at the end of main program's 6231 * instruction array. Then main program is "put on hold" while we recursively 6232 * process newly appended subprogram. If that subprogram calls into another 6233 * subprogram that hasn't been appended, new subprogram is appended again to 6234 * the *main* prog's instructions (subprog's instructions are always left 6235 * untouched, as they need to be in unmodified state for subsequent main progs 6236 * and subprog instructions are always sent only as part of a main prog) and 6237 * the process continues recursively. Once all the subprogs called from a main 6238 * prog or any of its subprogs are appended (and relocated), all their 6239 * positions within finalized instructions array are known, so it's easy to 6240 * rewrite call instructions with correct relative offsets, corresponding to 6241 * desired target subprog. 6242 * 6243 * Its important to realize that some subprogs might not be called from some 6244 * main prog and any of its called/used subprogs. Those will keep their 6245 * subprog->sub_insn_off as zero at all times and won't be appended to current 6246 * main prog and won't be relocated within the context of current main prog. 6247 * They might still be used from other main progs later. 6248 * 6249 * Visually this process can be shown as below. Suppose we have two main 6250 * programs mainA and mainB and BPF object contains three subprogs: subA, 6251 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6252 * subC both call subB: 6253 * 6254 * +--------+ +-------+ 6255 * | v v | 6256 * +--+---+ +--+-+-+ +---+--+ 6257 * | subA | | subB | | subC | 6258 * +--+---+ +------+ +---+--+ 6259 * ^ ^ 6260 * | | 6261 * +---+-------+ +------+----+ 6262 * | mainA | | mainB | 6263 * +-----------+ +-----------+ 6264 * 6265 * We'll start relocating mainA, will find subA, append it and start 6266 * processing sub A recursively: 6267 * 6268 * +-----------+------+ 6269 * | mainA | subA | 6270 * +-----------+------+ 6271 * 6272 * At this point we notice that subB is used from subA, so we append it and 6273 * relocate (there are no further subcalls from subB): 6274 * 6275 * +-----------+------+------+ 6276 * | mainA | subA | subB | 6277 * +-----------+------+------+ 6278 * 6279 * At this point, we relocate subA calls, then go one level up and finish with 6280 * relocatin mainA calls. mainA is done. 6281 * 6282 * For mainB process is similar but results in different order. We start with 6283 * mainB and skip subA and subB, as mainB never calls them (at least 6284 * directly), but we see subC is needed, so we append and start processing it: 6285 * 6286 * +-----------+------+ 6287 * | mainB | subC | 6288 * +-----------+------+ 6289 * Now we see subC needs subB, so we go back to it, append and relocate it: 6290 * 6291 * +-----------+------+------+ 6292 * | mainB | subC | subB | 6293 * +-----------+------+------+ 6294 * 6295 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6296 */ 6297 static int 6298 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6299 { 6300 struct bpf_program *subprog; 6301 int i, err; 6302 6303 /* mark all subprogs as not relocated (yet) within the context of 6304 * current main program 6305 */ 6306 for (i = 0; i < obj->nr_programs; i++) { 6307 subprog = &obj->programs[i]; 6308 if (!prog_is_subprog(obj, subprog)) 6309 continue; 6310 6311 subprog->sub_insn_off = 0; 6312 } 6313 6314 err = bpf_object__reloc_code(obj, prog, prog); 6315 if (err) 6316 return err; 6317 6318 return 0; 6319 } 6320 6321 static void 6322 bpf_object__free_relocs(struct bpf_object *obj) 6323 { 6324 struct bpf_program *prog; 6325 int i; 6326 6327 /* free up relocation descriptors */ 6328 for (i = 0; i < obj->nr_programs; i++) { 6329 prog = &obj->programs[i]; 6330 zfree(&prog->reloc_desc); 6331 prog->nr_reloc = 0; 6332 } 6333 } 6334 6335 static int cmp_relocs(const void *_a, const void *_b) 6336 { 6337 const struct reloc_desc *a = _a; 6338 const struct reloc_desc *b = _b; 6339 6340 if (a->insn_idx != b->insn_idx) 6341 return a->insn_idx < b->insn_idx ? -1 : 1; 6342 6343 /* no two relocations should have the same insn_idx, but ... */ 6344 if (a->type != b->type) 6345 return a->type < b->type ? -1 : 1; 6346 6347 return 0; 6348 } 6349 6350 static void bpf_object__sort_relos(struct bpf_object *obj) 6351 { 6352 int i; 6353 6354 for (i = 0; i < obj->nr_programs; i++) { 6355 struct bpf_program *p = &obj->programs[i]; 6356 6357 if (!p->nr_reloc) 6358 continue; 6359 6360 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6361 } 6362 } 6363 6364 static int 6365 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6366 { 6367 struct bpf_program *prog; 6368 size_t i, j; 6369 int err; 6370 6371 if (obj->btf_ext) { 6372 err = bpf_object__relocate_core(obj, targ_btf_path); 6373 if (err) { 6374 pr_warn("failed to perform CO-RE relocations: %d\n", 6375 err); 6376 return err; 6377 } 6378 bpf_object__sort_relos(obj); 6379 } 6380 6381 /* Before relocating calls pre-process relocations and mark 6382 * few ld_imm64 instructions that points to subprogs. 6383 * Otherwise bpf_object__reloc_code() later would have to consider 6384 * all ld_imm64 insns as relocation candidates. That would 6385 * reduce relocation speed, since amount of find_prog_insn_relo() 6386 * would increase and most of them will fail to find a relo. 6387 */ 6388 for (i = 0; i < obj->nr_programs; i++) { 6389 prog = &obj->programs[i]; 6390 for (j = 0; j < prog->nr_reloc; j++) { 6391 struct reloc_desc *relo = &prog->reloc_desc[j]; 6392 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6393 6394 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6395 if (relo->type == RELO_SUBPROG_ADDR) 6396 insn[0].src_reg = BPF_PSEUDO_FUNC; 6397 } 6398 } 6399 6400 /* relocate subprogram calls and append used subprograms to main 6401 * programs; each copy of subprogram code needs to be relocated 6402 * differently for each main program, because its code location might 6403 * have changed. 6404 * Append subprog relos to main programs to allow data relos to be 6405 * processed after text is completely relocated. 6406 */ 6407 for (i = 0; i < obj->nr_programs; i++) { 6408 prog = &obj->programs[i]; 6409 /* sub-program's sub-calls are relocated within the context of 6410 * its main program only 6411 */ 6412 if (prog_is_subprog(obj, prog)) 6413 continue; 6414 if (!prog->autoload) 6415 continue; 6416 6417 err = bpf_object__relocate_calls(obj, prog); 6418 if (err) { 6419 pr_warn("prog '%s': failed to relocate calls: %d\n", 6420 prog->name, err); 6421 return err; 6422 } 6423 } 6424 /* Process data relos for main programs */ 6425 for (i = 0; i < obj->nr_programs; i++) { 6426 prog = &obj->programs[i]; 6427 if (prog_is_subprog(obj, prog)) 6428 continue; 6429 if (!prog->autoload) 6430 continue; 6431 err = bpf_object__relocate_data(obj, prog); 6432 if (err) { 6433 pr_warn("prog '%s': failed to relocate data references: %d\n", 6434 prog->name, err); 6435 return err; 6436 } 6437 } 6438 6439 return 0; 6440 } 6441 6442 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6443 Elf64_Shdr *shdr, Elf_Data *data); 6444 6445 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6446 Elf64_Shdr *shdr, Elf_Data *data) 6447 { 6448 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6449 int i, j, nrels, new_sz; 6450 const struct btf_var_secinfo *vi = NULL; 6451 const struct btf_type *sec, *var, *def; 6452 struct bpf_map *map = NULL, *targ_map = NULL; 6453 struct bpf_program *targ_prog = NULL; 6454 bool is_prog_array, is_map_in_map; 6455 const struct btf_member *member; 6456 const char *name, *mname, *type; 6457 unsigned int moff; 6458 Elf64_Sym *sym; 6459 Elf64_Rel *rel; 6460 void *tmp; 6461 6462 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6463 return -EINVAL; 6464 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6465 if (!sec) 6466 return -EINVAL; 6467 6468 nrels = shdr->sh_size / shdr->sh_entsize; 6469 for (i = 0; i < nrels; i++) { 6470 rel = elf_rel_by_idx(data, i); 6471 if (!rel) { 6472 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6473 return -LIBBPF_ERRNO__FORMAT; 6474 } 6475 6476 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6477 if (!sym) { 6478 pr_warn(".maps relo #%d: symbol %zx not found\n", 6479 i, (size_t)ELF64_R_SYM(rel->r_info)); 6480 return -LIBBPF_ERRNO__FORMAT; 6481 } 6482 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6483 6484 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6485 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6486 (size_t)rel->r_offset, sym->st_name, name); 6487 6488 for (j = 0; j < obj->nr_maps; j++) { 6489 map = &obj->maps[j]; 6490 if (map->sec_idx != obj->efile.btf_maps_shndx) 6491 continue; 6492 6493 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6494 if (vi->offset <= rel->r_offset && 6495 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6496 break; 6497 } 6498 if (j == obj->nr_maps) { 6499 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6500 i, name, (size_t)rel->r_offset); 6501 return -EINVAL; 6502 } 6503 6504 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 6505 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 6506 type = is_map_in_map ? "map" : "prog"; 6507 if (is_map_in_map) { 6508 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6509 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6510 i, name); 6511 return -LIBBPF_ERRNO__RELOC; 6512 } 6513 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6514 map->def.key_size != sizeof(int)) { 6515 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6516 i, map->name, sizeof(int)); 6517 return -EINVAL; 6518 } 6519 targ_map = bpf_object__find_map_by_name(obj, name); 6520 if (!targ_map) { 6521 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 6522 i, name); 6523 return -ESRCH; 6524 } 6525 } else if (is_prog_array) { 6526 targ_prog = bpf_object__find_program_by_name(obj, name); 6527 if (!targ_prog) { 6528 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 6529 i, name); 6530 return -ESRCH; 6531 } 6532 if (targ_prog->sec_idx != sym->st_shndx || 6533 targ_prog->sec_insn_off * 8 != sym->st_value || 6534 prog_is_subprog(obj, targ_prog)) { 6535 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 6536 i, name); 6537 return -LIBBPF_ERRNO__RELOC; 6538 } 6539 } else { 6540 return -EINVAL; 6541 } 6542 6543 var = btf__type_by_id(obj->btf, vi->type); 6544 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6545 if (btf_vlen(def) == 0) 6546 return -EINVAL; 6547 member = btf_members(def) + btf_vlen(def) - 1; 6548 mname = btf__name_by_offset(obj->btf, member->name_off); 6549 if (strcmp(mname, "values")) 6550 return -EINVAL; 6551 6552 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6553 if (rel->r_offset - vi->offset < moff) 6554 return -EINVAL; 6555 6556 moff = rel->r_offset - vi->offset - moff; 6557 /* here we use BPF pointer size, which is always 64 bit, as we 6558 * are parsing ELF that was built for BPF target 6559 */ 6560 if (moff % bpf_ptr_sz) 6561 return -EINVAL; 6562 moff /= bpf_ptr_sz; 6563 if (moff >= map->init_slots_sz) { 6564 new_sz = moff + 1; 6565 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6566 if (!tmp) 6567 return -ENOMEM; 6568 map->init_slots = tmp; 6569 memset(map->init_slots + map->init_slots_sz, 0, 6570 (new_sz - map->init_slots_sz) * host_ptr_sz); 6571 map->init_slots_sz = new_sz; 6572 } 6573 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 6574 6575 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 6576 i, map->name, moff, type, name); 6577 } 6578 6579 return 0; 6580 } 6581 6582 static int bpf_object__collect_relos(struct bpf_object *obj) 6583 { 6584 int i, err; 6585 6586 for (i = 0; i < obj->efile.sec_cnt; i++) { 6587 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6588 Elf64_Shdr *shdr; 6589 Elf_Data *data; 6590 int idx; 6591 6592 if (sec_desc->sec_type != SEC_RELO) 6593 continue; 6594 6595 shdr = sec_desc->shdr; 6596 data = sec_desc->data; 6597 idx = shdr->sh_info; 6598 6599 if (shdr->sh_type != SHT_REL) { 6600 pr_warn("internal error at %d\n", __LINE__); 6601 return -LIBBPF_ERRNO__INTERNAL; 6602 } 6603 6604 if (idx == obj->efile.st_ops_shndx) 6605 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6606 else if (idx == obj->efile.btf_maps_shndx) 6607 err = bpf_object__collect_map_relos(obj, shdr, data); 6608 else 6609 err = bpf_object__collect_prog_relos(obj, shdr, data); 6610 if (err) 6611 return err; 6612 } 6613 6614 bpf_object__sort_relos(obj); 6615 return 0; 6616 } 6617 6618 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6619 { 6620 if (BPF_CLASS(insn->code) == BPF_JMP && 6621 BPF_OP(insn->code) == BPF_CALL && 6622 BPF_SRC(insn->code) == BPF_K && 6623 insn->src_reg == 0 && 6624 insn->dst_reg == 0) { 6625 *func_id = insn->imm; 6626 return true; 6627 } 6628 return false; 6629 } 6630 6631 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6632 { 6633 struct bpf_insn *insn = prog->insns; 6634 enum bpf_func_id func_id; 6635 int i; 6636 6637 if (obj->gen_loader) 6638 return 0; 6639 6640 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6641 if (!insn_is_helper_call(insn, &func_id)) 6642 continue; 6643 6644 /* on kernels that don't yet support 6645 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6646 * to bpf_probe_read() which works well for old kernels 6647 */ 6648 switch (func_id) { 6649 case BPF_FUNC_probe_read_kernel: 6650 case BPF_FUNC_probe_read_user: 6651 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6652 insn->imm = BPF_FUNC_probe_read; 6653 break; 6654 case BPF_FUNC_probe_read_kernel_str: 6655 case BPF_FUNC_probe_read_user_str: 6656 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6657 insn->imm = BPF_FUNC_probe_read_str; 6658 break; 6659 default: 6660 break; 6661 } 6662 } 6663 return 0; 6664 } 6665 6666 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6667 int *btf_obj_fd, int *btf_type_id); 6668 6669 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 6670 static int libbpf_prepare_prog_load(struct bpf_program *prog, 6671 struct bpf_prog_load_opts *opts, long cookie) 6672 { 6673 enum sec_def_flags def = cookie; 6674 6675 /* old kernels might not support specifying expected_attach_type */ 6676 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6677 opts->expected_attach_type = 0; 6678 6679 if (def & SEC_SLEEPABLE) 6680 opts->prog_flags |= BPF_F_SLEEPABLE; 6681 6682 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 6683 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 6684 6685 if (def & SEC_DEPRECATED) 6686 pr_warn("SEC(\"%s\") is deprecated, please see https://github.com/libbpf/libbpf/wiki/Libbpf-1.0-migration-guide#bpf-program-sec-annotation-deprecations for details\n", 6687 prog->sec_name); 6688 6689 if ((prog->type == BPF_PROG_TYPE_TRACING || 6690 prog->type == BPF_PROG_TYPE_LSM || 6691 prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) { 6692 int btf_obj_fd = 0, btf_type_id = 0, err; 6693 const char *attach_name; 6694 6695 attach_name = strchr(prog->sec_name, '/') + 1; 6696 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6697 if (err) 6698 return err; 6699 6700 /* cache resolved BTF FD and BTF type ID in the prog */ 6701 prog->attach_btf_obj_fd = btf_obj_fd; 6702 prog->attach_btf_id = btf_type_id; 6703 6704 /* but by now libbpf common logic is not utilizing 6705 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 6706 * this callback is called after opts were populated by 6707 * libbpf, so this callback has to update opts explicitly here 6708 */ 6709 opts->attach_btf_obj_fd = btf_obj_fd; 6710 opts->attach_btf_id = btf_type_id; 6711 } 6712 return 0; 6713 } 6714 6715 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 6716 6717 static int bpf_object_load_prog_instance(struct bpf_object *obj, struct bpf_program *prog, 6718 struct bpf_insn *insns, int insns_cnt, 6719 const char *license, __u32 kern_version, 6720 int *prog_fd) 6721 { 6722 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 6723 const char *prog_name = NULL; 6724 char *cp, errmsg[STRERR_BUFSIZE]; 6725 size_t log_buf_size = 0; 6726 char *log_buf = NULL, *tmp; 6727 int btf_fd, ret, err; 6728 bool own_log_buf = true; 6729 __u32 log_level = prog->log_level; 6730 6731 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6732 /* 6733 * The program type must be set. Most likely we couldn't find a proper 6734 * section definition at load time, and thus we didn't infer the type. 6735 */ 6736 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6737 prog->name, prog->sec_name); 6738 return -EINVAL; 6739 } 6740 6741 if (!insns || !insns_cnt) 6742 return -EINVAL; 6743 6744 load_attr.expected_attach_type = prog->expected_attach_type; 6745 if (kernel_supports(obj, FEAT_PROG_NAME)) 6746 prog_name = prog->name; 6747 load_attr.attach_prog_fd = prog->attach_prog_fd; 6748 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 6749 load_attr.attach_btf_id = prog->attach_btf_id; 6750 load_attr.kern_version = kern_version; 6751 load_attr.prog_ifindex = prog->prog_ifindex; 6752 6753 /* specify func_info/line_info only if kernel supports them */ 6754 btf_fd = bpf_object__btf_fd(obj); 6755 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 6756 load_attr.prog_btf_fd = btf_fd; 6757 load_attr.func_info = prog->func_info; 6758 load_attr.func_info_rec_size = prog->func_info_rec_size; 6759 load_attr.func_info_cnt = prog->func_info_cnt; 6760 load_attr.line_info = prog->line_info; 6761 load_attr.line_info_rec_size = prog->line_info_rec_size; 6762 load_attr.line_info_cnt = prog->line_info_cnt; 6763 } 6764 load_attr.log_level = log_level; 6765 load_attr.prog_flags = prog->prog_flags; 6766 load_attr.fd_array = obj->fd_array; 6767 6768 /* adjust load_attr if sec_def provides custom preload callback */ 6769 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 6770 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 6771 if (err < 0) { 6772 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 6773 prog->name, err); 6774 return err; 6775 } 6776 } 6777 6778 if (obj->gen_loader) { 6779 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 6780 license, insns, insns_cnt, &load_attr, 6781 prog - obj->programs); 6782 *prog_fd = -1; 6783 return 0; 6784 } 6785 6786 retry_load: 6787 /* if log_level is zero, we don't request logs initiallly even if 6788 * custom log_buf is specified; if the program load fails, then we'll 6789 * bump log_level to 1 and use either custom log_buf or we'll allocate 6790 * our own and retry the load to get details on what failed 6791 */ 6792 if (log_level) { 6793 if (prog->log_buf) { 6794 log_buf = prog->log_buf; 6795 log_buf_size = prog->log_size; 6796 own_log_buf = false; 6797 } else if (obj->log_buf) { 6798 log_buf = obj->log_buf; 6799 log_buf_size = obj->log_size; 6800 own_log_buf = false; 6801 } else { 6802 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 6803 tmp = realloc(log_buf, log_buf_size); 6804 if (!tmp) { 6805 ret = -ENOMEM; 6806 goto out; 6807 } 6808 log_buf = tmp; 6809 log_buf[0] = '\0'; 6810 own_log_buf = true; 6811 } 6812 } 6813 6814 load_attr.log_buf = log_buf; 6815 load_attr.log_size = log_buf_size; 6816 load_attr.log_level = log_level; 6817 6818 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 6819 if (ret >= 0) { 6820 if (log_level && own_log_buf) { 6821 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6822 prog->name, log_buf); 6823 } 6824 6825 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 6826 struct bpf_map *map; 6827 int i; 6828 6829 for (i = 0; i < obj->nr_maps; i++) { 6830 map = &prog->obj->maps[i]; 6831 if (map->libbpf_type != LIBBPF_MAP_RODATA) 6832 continue; 6833 6834 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 6835 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6836 pr_warn("prog '%s': failed to bind map '%s': %s\n", 6837 prog->name, map->real_name, cp); 6838 /* Don't fail hard if can't bind rodata. */ 6839 } 6840 } 6841 } 6842 6843 *prog_fd = ret; 6844 ret = 0; 6845 goto out; 6846 } 6847 6848 if (log_level == 0) { 6849 log_level = 1; 6850 goto retry_load; 6851 } 6852 /* On ENOSPC, increase log buffer size and retry, unless custom 6853 * log_buf is specified. 6854 * Be careful to not overflow u32, though. Kernel's log buf size limit 6855 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 6856 * multiply by 2 unless we are sure we'll fit within 32 bits. 6857 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 6858 */ 6859 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 6860 goto retry_load; 6861 6862 ret = -errno; 6863 6864 /* post-process verifier log to improve error descriptions */ 6865 fixup_verifier_log(prog, log_buf, log_buf_size); 6866 6867 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6868 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 6869 pr_perm_msg(ret); 6870 6871 if (own_log_buf && log_buf && log_buf[0] != '\0') { 6872 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6873 prog->name, log_buf); 6874 } 6875 6876 out: 6877 if (own_log_buf) 6878 free(log_buf); 6879 return ret; 6880 } 6881 6882 static char *find_prev_line(char *buf, char *cur) 6883 { 6884 char *p; 6885 6886 if (cur == buf) /* end of a log buf */ 6887 return NULL; 6888 6889 p = cur - 1; 6890 while (p - 1 >= buf && *(p - 1) != '\n') 6891 p--; 6892 6893 return p; 6894 } 6895 6896 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 6897 char *orig, size_t orig_sz, const char *patch) 6898 { 6899 /* size of the remaining log content to the right from the to-be-replaced part */ 6900 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 6901 size_t patch_sz = strlen(patch); 6902 6903 if (patch_sz != orig_sz) { 6904 /* If patch line(s) are longer than original piece of verifier log, 6905 * shift log contents by (patch_sz - orig_sz) bytes to the right 6906 * starting from after to-be-replaced part of the log. 6907 * 6908 * If patch line(s) are shorter than original piece of verifier log, 6909 * shift log contents by (orig_sz - patch_sz) bytes to the left 6910 * starting from after to-be-replaced part of the log 6911 * 6912 * We need to be careful about not overflowing available 6913 * buf_sz capacity. If that's the case, we'll truncate the end 6914 * of the original log, as necessary. 6915 */ 6916 if (patch_sz > orig_sz) { 6917 if (orig + patch_sz >= buf + buf_sz) { 6918 /* patch is big enough to cover remaining space completely */ 6919 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 6920 rem_sz = 0; 6921 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 6922 /* patch causes part of remaining log to be truncated */ 6923 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 6924 } 6925 } 6926 /* shift remaining log to the right by calculated amount */ 6927 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 6928 } 6929 6930 memcpy(orig, patch, patch_sz); 6931 } 6932 6933 static void fixup_log_failed_core_relo(struct bpf_program *prog, 6934 char *buf, size_t buf_sz, size_t log_sz, 6935 char *line1, char *line2, char *line3) 6936 { 6937 /* Expected log for failed and not properly guarded CO-RE relocation: 6938 * line1 -> 123: (85) call unknown#195896080 6939 * line2 -> invalid func unknown#195896080 6940 * line3 -> <anything else or end of buffer> 6941 * 6942 * "123" is the index of the instruction that was poisoned. We extract 6943 * instruction index to find corresponding CO-RE relocation and 6944 * replace this part of the log with more relevant information about 6945 * failed CO-RE relocation. 6946 */ 6947 const struct bpf_core_relo *relo; 6948 struct bpf_core_spec spec; 6949 char patch[512], spec_buf[256]; 6950 int insn_idx, err; 6951 6952 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 6953 return; 6954 6955 relo = find_relo_core(prog, insn_idx); 6956 if (!relo) 6957 return; 6958 6959 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 6960 if (err) 6961 return; 6962 6963 bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 6964 snprintf(patch, sizeof(patch), 6965 "%d: <invalid CO-RE relocation>\n" 6966 "failed to resolve CO-RE relocation %s\n", 6967 insn_idx, spec_buf); 6968 6969 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 6970 } 6971 6972 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 6973 { 6974 /* look for familiar error patterns in last N lines of the log */ 6975 const size_t max_last_line_cnt = 10; 6976 char *prev_line, *cur_line, *next_line; 6977 size_t log_sz; 6978 int i; 6979 6980 if (!buf) 6981 return; 6982 6983 log_sz = strlen(buf) + 1; 6984 next_line = buf + log_sz - 1; 6985 6986 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 6987 cur_line = find_prev_line(buf, next_line); 6988 if (!cur_line) 6989 return; 6990 6991 /* failed CO-RE relocation case */ 6992 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 6993 prev_line = find_prev_line(buf, cur_line); 6994 if (!prev_line) 6995 continue; 6996 6997 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 6998 prev_line, cur_line, next_line); 6999 return; 7000 } 7001 } 7002 } 7003 7004 static int bpf_program_record_relos(struct bpf_program *prog) 7005 { 7006 struct bpf_object *obj = prog->obj; 7007 int i; 7008 7009 for (i = 0; i < prog->nr_reloc; i++) { 7010 struct reloc_desc *relo = &prog->reloc_desc[i]; 7011 struct extern_desc *ext = &obj->externs[relo->sym_off]; 7012 7013 switch (relo->type) { 7014 case RELO_EXTERN_VAR: 7015 if (ext->type != EXT_KSYM) 7016 continue; 7017 bpf_gen__record_extern(obj->gen_loader, ext->name, 7018 ext->is_weak, !ext->ksym.type_id, 7019 BTF_KIND_VAR, relo->insn_idx); 7020 break; 7021 case RELO_EXTERN_FUNC: 7022 bpf_gen__record_extern(obj->gen_loader, ext->name, 7023 ext->is_weak, false, BTF_KIND_FUNC, 7024 relo->insn_idx); 7025 break; 7026 case RELO_CORE: { 7027 struct bpf_core_relo cr = { 7028 .insn_off = relo->insn_idx * 8, 7029 .type_id = relo->core_relo->type_id, 7030 .access_str_off = relo->core_relo->access_str_off, 7031 .kind = relo->core_relo->kind, 7032 }; 7033 7034 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7035 break; 7036 } 7037 default: 7038 continue; 7039 } 7040 } 7041 return 0; 7042 } 7043 7044 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 7045 const char *license, __u32 kern_ver) 7046 { 7047 int err = 0, fd, i; 7048 7049 if (obj->loaded) { 7050 pr_warn("prog '%s': can't load after object was loaded\n", prog->name); 7051 return libbpf_err(-EINVAL); 7052 } 7053 7054 if (prog->instances.nr < 0 || !prog->instances.fds) { 7055 if (prog->preprocessor) { 7056 pr_warn("Internal error: can't load program '%s'\n", 7057 prog->name); 7058 return libbpf_err(-LIBBPF_ERRNO__INTERNAL); 7059 } 7060 7061 prog->instances.fds = malloc(sizeof(int)); 7062 if (!prog->instances.fds) { 7063 pr_warn("Not enough memory for BPF fds\n"); 7064 return libbpf_err(-ENOMEM); 7065 } 7066 prog->instances.nr = 1; 7067 prog->instances.fds[0] = -1; 7068 } 7069 7070 if (!prog->preprocessor) { 7071 if (prog->instances.nr != 1) { 7072 pr_warn("prog '%s': inconsistent nr(%d) != 1\n", 7073 prog->name, prog->instances.nr); 7074 } 7075 if (obj->gen_loader) 7076 bpf_program_record_relos(prog); 7077 err = bpf_object_load_prog_instance(obj, prog, 7078 prog->insns, prog->insns_cnt, 7079 license, kern_ver, &fd); 7080 if (!err) 7081 prog->instances.fds[0] = fd; 7082 goto out; 7083 } 7084 7085 for (i = 0; i < prog->instances.nr; i++) { 7086 struct bpf_prog_prep_result result; 7087 bpf_program_prep_t preprocessor = prog->preprocessor; 7088 7089 memset(&result, 0, sizeof(result)); 7090 err = preprocessor(prog, i, prog->insns, 7091 prog->insns_cnt, &result); 7092 if (err) { 7093 pr_warn("Preprocessing the %dth instance of program '%s' failed\n", 7094 i, prog->name); 7095 goto out; 7096 } 7097 7098 if (!result.new_insn_ptr || !result.new_insn_cnt) { 7099 pr_debug("Skip loading the %dth instance of program '%s'\n", 7100 i, prog->name); 7101 prog->instances.fds[i] = -1; 7102 if (result.pfd) 7103 *result.pfd = -1; 7104 continue; 7105 } 7106 7107 err = bpf_object_load_prog_instance(obj, prog, 7108 result.new_insn_ptr, result.new_insn_cnt, 7109 license, kern_ver, &fd); 7110 if (err) { 7111 pr_warn("Loading the %dth instance of program '%s' failed\n", 7112 i, prog->name); 7113 goto out; 7114 } 7115 7116 if (result.pfd) 7117 *result.pfd = fd; 7118 prog->instances.fds[i] = fd; 7119 } 7120 out: 7121 if (err) 7122 pr_warn("failed to load program '%s'\n", prog->name); 7123 return libbpf_err(err); 7124 } 7125 7126 int bpf_program__load(struct bpf_program *prog, const char *license, __u32 kern_ver) 7127 { 7128 return bpf_object_load_prog(prog->obj, prog, license, kern_ver); 7129 } 7130 7131 static int 7132 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7133 { 7134 struct bpf_program *prog; 7135 size_t i; 7136 int err; 7137 7138 for (i = 0; i < obj->nr_programs; i++) { 7139 prog = &obj->programs[i]; 7140 err = bpf_object__sanitize_prog(obj, prog); 7141 if (err) 7142 return err; 7143 } 7144 7145 for (i = 0; i < obj->nr_programs; i++) { 7146 prog = &obj->programs[i]; 7147 if (prog_is_subprog(obj, prog)) 7148 continue; 7149 if (!prog->autoload) { 7150 pr_debug("prog '%s': skipped loading\n", prog->name); 7151 continue; 7152 } 7153 prog->log_level |= log_level; 7154 err = bpf_object_load_prog(obj, prog, obj->license, obj->kern_version); 7155 if (err) 7156 return err; 7157 } 7158 7159 bpf_object__free_relocs(obj); 7160 return 0; 7161 } 7162 7163 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7164 7165 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7166 { 7167 struct bpf_program *prog; 7168 int err; 7169 7170 bpf_object__for_each_program(prog, obj) { 7171 prog->sec_def = find_sec_def(prog->sec_name); 7172 if (!prog->sec_def) { 7173 /* couldn't guess, but user might manually specify */ 7174 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7175 prog->name, prog->sec_name); 7176 continue; 7177 } 7178 7179 prog->type = prog->sec_def->prog_type; 7180 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7181 7182 #pragma GCC diagnostic push 7183 #pragma GCC diagnostic ignored "-Wdeprecated-declarations" 7184 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING || 7185 prog->sec_def->prog_type == BPF_PROG_TYPE_EXT) 7186 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0); 7187 #pragma GCC diagnostic pop 7188 7189 /* sec_def can have custom callback which should be called 7190 * after bpf_program is initialized to adjust its properties 7191 */ 7192 if (prog->sec_def->prog_setup_fn) { 7193 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7194 if (err < 0) { 7195 pr_warn("prog '%s': failed to initialize: %d\n", 7196 prog->name, err); 7197 return err; 7198 } 7199 } 7200 } 7201 7202 return 0; 7203 } 7204 7205 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7206 const struct bpf_object_open_opts *opts) 7207 { 7208 const char *obj_name, *kconfig, *btf_tmp_path; 7209 struct bpf_object *obj; 7210 char tmp_name[64]; 7211 int err; 7212 char *log_buf; 7213 size_t log_size; 7214 __u32 log_level; 7215 7216 if (elf_version(EV_CURRENT) == EV_NONE) { 7217 pr_warn("failed to init libelf for %s\n", 7218 path ? : "(mem buf)"); 7219 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7220 } 7221 7222 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7223 return ERR_PTR(-EINVAL); 7224 7225 obj_name = OPTS_GET(opts, object_name, NULL); 7226 if (obj_buf) { 7227 if (!obj_name) { 7228 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7229 (unsigned long)obj_buf, 7230 (unsigned long)obj_buf_sz); 7231 obj_name = tmp_name; 7232 } 7233 path = obj_name; 7234 pr_debug("loading object '%s' from buffer\n", obj_name); 7235 } 7236 7237 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7238 log_size = OPTS_GET(opts, kernel_log_size, 0); 7239 log_level = OPTS_GET(opts, kernel_log_level, 0); 7240 if (log_size > UINT_MAX) 7241 return ERR_PTR(-EINVAL); 7242 if (log_size && !log_buf) 7243 return ERR_PTR(-EINVAL); 7244 7245 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7246 if (IS_ERR(obj)) 7247 return obj; 7248 7249 obj->log_buf = log_buf; 7250 obj->log_size = log_size; 7251 obj->log_level = log_level; 7252 7253 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7254 if (btf_tmp_path) { 7255 if (strlen(btf_tmp_path) >= PATH_MAX) { 7256 err = -ENAMETOOLONG; 7257 goto out; 7258 } 7259 obj->btf_custom_path = strdup(btf_tmp_path); 7260 if (!obj->btf_custom_path) { 7261 err = -ENOMEM; 7262 goto out; 7263 } 7264 } 7265 7266 kconfig = OPTS_GET(opts, kconfig, NULL); 7267 if (kconfig) { 7268 obj->kconfig = strdup(kconfig); 7269 if (!obj->kconfig) { 7270 err = -ENOMEM; 7271 goto out; 7272 } 7273 } 7274 7275 err = bpf_object__elf_init(obj); 7276 err = err ? : bpf_object__check_endianness(obj); 7277 err = err ? : bpf_object__elf_collect(obj); 7278 err = err ? : bpf_object__collect_externs(obj); 7279 err = err ? : bpf_object__finalize_btf(obj); 7280 err = err ? : bpf_object__init_maps(obj, opts); 7281 err = err ? : bpf_object_init_progs(obj, opts); 7282 err = err ? : bpf_object__collect_relos(obj); 7283 if (err) 7284 goto out; 7285 7286 bpf_object__elf_finish(obj); 7287 7288 return obj; 7289 out: 7290 bpf_object__close(obj); 7291 return ERR_PTR(err); 7292 } 7293 7294 static struct bpf_object * 7295 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags) 7296 { 7297 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7298 .relaxed_maps = flags & MAPS_RELAX_COMPAT, 7299 ); 7300 7301 /* param validation */ 7302 if (!attr->file) 7303 return NULL; 7304 7305 pr_debug("loading %s\n", attr->file); 7306 return bpf_object_open(attr->file, NULL, 0, &opts); 7307 } 7308 7309 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr) 7310 { 7311 return libbpf_ptr(__bpf_object__open_xattr(attr, 0)); 7312 } 7313 7314 struct bpf_object *bpf_object__open(const char *path) 7315 { 7316 struct bpf_object_open_attr attr = { 7317 .file = path, 7318 .prog_type = BPF_PROG_TYPE_UNSPEC, 7319 }; 7320 7321 return libbpf_ptr(__bpf_object__open_xattr(&attr, 0)); 7322 } 7323 7324 struct bpf_object * 7325 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7326 { 7327 if (!path) 7328 return libbpf_err_ptr(-EINVAL); 7329 7330 pr_debug("loading %s\n", path); 7331 7332 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7333 } 7334 7335 struct bpf_object * 7336 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7337 const struct bpf_object_open_opts *opts) 7338 { 7339 if (!obj_buf || obj_buf_sz == 0) 7340 return libbpf_err_ptr(-EINVAL); 7341 7342 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7343 } 7344 7345 struct bpf_object * 7346 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz, 7347 const char *name) 7348 { 7349 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7350 .object_name = name, 7351 /* wrong default, but backwards-compatible */ 7352 .relaxed_maps = true, 7353 ); 7354 7355 /* returning NULL is wrong, but backwards-compatible */ 7356 if (!obj_buf || obj_buf_sz == 0) 7357 return errno = EINVAL, NULL; 7358 7359 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, &opts)); 7360 } 7361 7362 static int bpf_object_unload(struct bpf_object *obj) 7363 { 7364 size_t i; 7365 7366 if (!obj) 7367 return libbpf_err(-EINVAL); 7368 7369 for (i = 0; i < obj->nr_maps; i++) { 7370 zclose(obj->maps[i].fd); 7371 if (obj->maps[i].st_ops) 7372 zfree(&obj->maps[i].st_ops->kern_vdata); 7373 } 7374 7375 for (i = 0; i < obj->nr_programs; i++) 7376 bpf_program__unload(&obj->programs[i]); 7377 7378 return 0; 7379 } 7380 7381 int bpf_object__unload(struct bpf_object *obj) __attribute__((alias("bpf_object_unload"))); 7382 7383 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7384 { 7385 struct bpf_map *m; 7386 7387 bpf_object__for_each_map(m, obj) { 7388 if (!bpf_map__is_internal(m)) 7389 continue; 7390 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7391 m->def.map_flags ^= BPF_F_MMAPABLE; 7392 } 7393 7394 return 0; 7395 } 7396 7397 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 7398 { 7399 char sym_type, sym_name[500]; 7400 unsigned long long sym_addr; 7401 int ret, err = 0; 7402 FILE *f; 7403 7404 f = fopen("/proc/kallsyms", "r"); 7405 if (!f) { 7406 err = -errno; 7407 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7408 return err; 7409 } 7410 7411 while (true) { 7412 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7413 &sym_addr, &sym_type, sym_name); 7414 if (ret == EOF && feof(f)) 7415 break; 7416 if (ret != 3) { 7417 pr_warn("failed to read kallsyms entry: %d\n", ret); 7418 err = -EINVAL; 7419 break; 7420 } 7421 7422 err = cb(sym_addr, sym_type, sym_name, ctx); 7423 if (err) 7424 break; 7425 } 7426 7427 fclose(f); 7428 return err; 7429 } 7430 7431 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 7432 const char *sym_name, void *ctx) 7433 { 7434 struct bpf_object *obj = ctx; 7435 const struct btf_type *t; 7436 struct extern_desc *ext; 7437 7438 ext = find_extern_by_name(obj, sym_name); 7439 if (!ext || ext->type != EXT_KSYM) 7440 return 0; 7441 7442 t = btf__type_by_id(obj->btf, ext->btf_id); 7443 if (!btf_is_var(t)) 7444 return 0; 7445 7446 if (ext->is_set && ext->ksym.addr != sym_addr) { 7447 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n", 7448 sym_name, ext->ksym.addr, sym_addr); 7449 return -EINVAL; 7450 } 7451 if (!ext->is_set) { 7452 ext->is_set = true; 7453 ext->ksym.addr = sym_addr; 7454 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr); 7455 } 7456 return 0; 7457 } 7458 7459 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7460 { 7461 return libbpf_kallsyms_parse(kallsyms_cb, obj); 7462 } 7463 7464 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7465 __u16 kind, struct btf **res_btf, 7466 struct module_btf **res_mod_btf) 7467 { 7468 struct module_btf *mod_btf; 7469 struct btf *btf; 7470 int i, id, err; 7471 7472 btf = obj->btf_vmlinux; 7473 mod_btf = NULL; 7474 id = btf__find_by_name_kind(btf, ksym_name, kind); 7475 7476 if (id == -ENOENT) { 7477 err = load_module_btfs(obj); 7478 if (err) 7479 return err; 7480 7481 for (i = 0; i < obj->btf_module_cnt; i++) { 7482 /* we assume module_btf's BTF FD is always >0 */ 7483 mod_btf = &obj->btf_modules[i]; 7484 btf = mod_btf->btf; 7485 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7486 if (id != -ENOENT) 7487 break; 7488 } 7489 } 7490 if (id <= 0) 7491 return -ESRCH; 7492 7493 *res_btf = btf; 7494 *res_mod_btf = mod_btf; 7495 return id; 7496 } 7497 7498 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7499 struct extern_desc *ext) 7500 { 7501 const struct btf_type *targ_var, *targ_type; 7502 __u32 targ_type_id, local_type_id; 7503 struct module_btf *mod_btf = NULL; 7504 const char *targ_var_name; 7505 struct btf *btf = NULL; 7506 int id, err; 7507 7508 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7509 if (id < 0) { 7510 if (id == -ESRCH && ext->is_weak) 7511 return 0; 7512 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7513 ext->name); 7514 return id; 7515 } 7516 7517 /* find local type_id */ 7518 local_type_id = ext->ksym.type_id; 7519 7520 /* find target type_id */ 7521 targ_var = btf__type_by_id(btf, id); 7522 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7523 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7524 7525 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7526 btf, targ_type_id); 7527 if (err <= 0) { 7528 const struct btf_type *local_type; 7529 const char *targ_name, *local_name; 7530 7531 local_type = btf__type_by_id(obj->btf, local_type_id); 7532 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7533 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7534 7535 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7536 ext->name, local_type_id, 7537 btf_kind_str(local_type), local_name, targ_type_id, 7538 btf_kind_str(targ_type), targ_name); 7539 return -EINVAL; 7540 } 7541 7542 ext->is_set = true; 7543 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7544 ext->ksym.kernel_btf_id = id; 7545 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7546 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7547 7548 return 0; 7549 } 7550 7551 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7552 struct extern_desc *ext) 7553 { 7554 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7555 struct module_btf *mod_btf = NULL; 7556 const struct btf_type *kern_func; 7557 struct btf *kern_btf = NULL; 7558 int ret; 7559 7560 local_func_proto_id = ext->ksym.type_id; 7561 7562 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf); 7563 if (kfunc_id < 0) { 7564 if (kfunc_id == -ESRCH && ext->is_weak) 7565 return 0; 7566 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7567 ext->name); 7568 return kfunc_id; 7569 } 7570 7571 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7572 kfunc_proto_id = kern_func->type; 7573 7574 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7575 kern_btf, kfunc_proto_id); 7576 if (ret <= 0) { 7577 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n", 7578 ext->name, local_func_proto_id, kfunc_proto_id); 7579 return -EINVAL; 7580 } 7581 7582 /* set index for module BTF fd in fd_array, if unset */ 7583 if (mod_btf && !mod_btf->fd_array_idx) { 7584 /* insn->off is s16 */ 7585 if (obj->fd_array_cnt == INT16_MAX) { 7586 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7587 ext->name, mod_btf->fd_array_idx); 7588 return -E2BIG; 7589 } 7590 /* Cannot use index 0 for module BTF fd */ 7591 if (!obj->fd_array_cnt) 7592 obj->fd_array_cnt = 1; 7593 7594 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7595 obj->fd_array_cnt + 1); 7596 if (ret) 7597 return ret; 7598 mod_btf->fd_array_idx = obj->fd_array_cnt; 7599 /* we assume module BTF FD is always >0 */ 7600 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7601 } 7602 7603 ext->is_set = true; 7604 ext->ksym.kernel_btf_id = kfunc_id; 7605 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7606 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n", 7607 ext->name, kfunc_id); 7608 7609 return 0; 7610 } 7611 7612 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7613 { 7614 const struct btf_type *t; 7615 struct extern_desc *ext; 7616 int i, err; 7617 7618 for (i = 0; i < obj->nr_extern; i++) { 7619 ext = &obj->externs[i]; 7620 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7621 continue; 7622 7623 if (obj->gen_loader) { 7624 ext->is_set = true; 7625 ext->ksym.kernel_btf_obj_fd = 0; 7626 ext->ksym.kernel_btf_id = 0; 7627 continue; 7628 } 7629 t = btf__type_by_id(obj->btf, ext->btf_id); 7630 if (btf_is_var(t)) 7631 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7632 else 7633 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7634 if (err) 7635 return err; 7636 } 7637 return 0; 7638 } 7639 7640 static int bpf_object__resolve_externs(struct bpf_object *obj, 7641 const char *extra_kconfig) 7642 { 7643 bool need_config = false, need_kallsyms = false; 7644 bool need_vmlinux_btf = false; 7645 struct extern_desc *ext; 7646 void *kcfg_data = NULL; 7647 int err, i; 7648 7649 if (obj->nr_extern == 0) 7650 return 0; 7651 7652 if (obj->kconfig_map_idx >= 0) 7653 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7654 7655 for (i = 0; i < obj->nr_extern; i++) { 7656 ext = &obj->externs[i]; 7657 7658 if (ext->type == EXT_KCFG && 7659 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7660 void *ext_val = kcfg_data + ext->kcfg.data_off; 7661 __u32 kver = get_kernel_version(); 7662 7663 if (!kver) { 7664 pr_warn("failed to get kernel version\n"); 7665 return -EINVAL; 7666 } 7667 err = set_kcfg_value_num(ext, ext_val, kver); 7668 if (err) 7669 return err; 7670 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver); 7671 } else if (ext->type == EXT_KCFG && str_has_pfx(ext->name, "CONFIG_")) { 7672 need_config = true; 7673 } else if (ext->type == EXT_KSYM) { 7674 if (ext->ksym.type_id) 7675 need_vmlinux_btf = true; 7676 else 7677 need_kallsyms = true; 7678 } else { 7679 pr_warn("unrecognized extern '%s'\n", ext->name); 7680 return -EINVAL; 7681 } 7682 } 7683 if (need_config && extra_kconfig) { 7684 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7685 if (err) 7686 return -EINVAL; 7687 need_config = false; 7688 for (i = 0; i < obj->nr_extern; i++) { 7689 ext = &obj->externs[i]; 7690 if (ext->type == EXT_KCFG && !ext->is_set) { 7691 need_config = true; 7692 break; 7693 } 7694 } 7695 } 7696 if (need_config) { 7697 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7698 if (err) 7699 return -EINVAL; 7700 } 7701 if (need_kallsyms) { 7702 err = bpf_object__read_kallsyms_file(obj); 7703 if (err) 7704 return -EINVAL; 7705 } 7706 if (need_vmlinux_btf) { 7707 err = bpf_object__resolve_ksyms_btf_id(obj); 7708 if (err) 7709 return -EINVAL; 7710 } 7711 for (i = 0; i < obj->nr_extern; i++) { 7712 ext = &obj->externs[i]; 7713 7714 if (!ext->is_set && !ext->is_weak) { 7715 pr_warn("extern %s (strong) not resolved\n", ext->name); 7716 return -ESRCH; 7717 } else if (!ext->is_set) { 7718 pr_debug("extern %s (weak) not resolved, defaulting to zero\n", 7719 ext->name); 7720 } 7721 } 7722 7723 return 0; 7724 } 7725 7726 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 7727 { 7728 int err, i; 7729 7730 if (!obj) 7731 return libbpf_err(-EINVAL); 7732 7733 if (obj->loaded) { 7734 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7735 return libbpf_err(-EINVAL); 7736 } 7737 7738 if (obj->gen_loader) 7739 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 7740 7741 err = bpf_object__probe_loading(obj); 7742 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7743 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7744 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7745 err = err ? : bpf_object__sanitize_maps(obj); 7746 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7747 err = err ? : bpf_object__create_maps(obj); 7748 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 7749 err = err ? : bpf_object__load_progs(obj, extra_log_level); 7750 err = err ? : bpf_object_init_prog_arrays(obj); 7751 7752 if (obj->gen_loader) { 7753 /* reset FDs */ 7754 if (obj->btf) 7755 btf__set_fd(obj->btf, -1); 7756 for (i = 0; i < obj->nr_maps; i++) 7757 obj->maps[i].fd = -1; 7758 if (!err) 7759 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 7760 } 7761 7762 /* clean up fd_array */ 7763 zfree(&obj->fd_array); 7764 7765 /* clean up module BTFs */ 7766 for (i = 0; i < obj->btf_module_cnt; i++) { 7767 close(obj->btf_modules[i].fd); 7768 btf__free(obj->btf_modules[i].btf); 7769 free(obj->btf_modules[i].name); 7770 } 7771 free(obj->btf_modules); 7772 7773 /* clean up vmlinux BTF */ 7774 btf__free(obj->btf_vmlinux); 7775 obj->btf_vmlinux = NULL; 7776 7777 obj->loaded = true; /* doesn't matter if successfully or not */ 7778 7779 if (err) 7780 goto out; 7781 7782 return 0; 7783 out: 7784 /* unpin any maps that were auto-pinned during load */ 7785 for (i = 0; i < obj->nr_maps; i++) 7786 if (obj->maps[i].pinned && !obj->maps[i].reused) 7787 bpf_map__unpin(&obj->maps[i], NULL); 7788 7789 bpf_object_unload(obj); 7790 pr_warn("failed to load object '%s'\n", obj->path); 7791 return libbpf_err(err); 7792 } 7793 7794 int bpf_object__load_xattr(struct bpf_object_load_attr *attr) 7795 { 7796 return bpf_object_load(attr->obj, attr->log_level, attr->target_btf_path); 7797 } 7798 7799 int bpf_object__load(struct bpf_object *obj) 7800 { 7801 return bpf_object_load(obj, 0, NULL); 7802 } 7803 7804 static int make_parent_dir(const char *path) 7805 { 7806 char *cp, errmsg[STRERR_BUFSIZE]; 7807 char *dname, *dir; 7808 int err = 0; 7809 7810 dname = strdup(path); 7811 if (dname == NULL) 7812 return -ENOMEM; 7813 7814 dir = dirname(dname); 7815 if (mkdir(dir, 0700) && errno != EEXIST) 7816 err = -errno; 7817 7818 free(dname); 7819 if (err) { 7820 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7821 pr_warn("failed to mkdir %s: %s\n", path, cp); 7822 } 7823 return err; 7824 } 7825 7826 static int check_path(const char *path) 7827 { 7828 char *cp, errmsg[STRERR_BUFSIZE]; 7829 struct statfs st_fs; 7830 char *dname, *dir; 7831 int err = 0; 7832 7833 if (path == NULL) 7834 return -EINVAL; 7835 7836 dname = strdup(path); 7837 if (dname == NULL) 7838 return -ENOMEM; 7839 7840 dir = dirname(dname); 7841 if (statfs(dir, &st_fs)) { 7842 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7843 pr_warn("failed to statfs %s: %s\n", dir, cp); 7844 err = -errno; 7845 } 7846 free(dname); 7847 7848 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7849 pr_warn("specified path %s is not on BPF FS\n", path); 7850 err = -EINVAL; 7851 } 7852 7853 return err; 7854 } 7855 7856 static int bpf_program_pin_instance(struct bpf_program *prog, const char *path, int instance) 7857 { 7858 char *cp, errmsg[STRERR_BUFSIZE]; 7859 int err; 7860 7861 err = make_parent_dir(path); 7862 if (err) 7863 return libbpf_err(err); 7864 7865 err = check_path(path); 7866 if (err) 7867 return libbpf_err(err); 7868 7869 if (prog == NULL) { 7870 pr_warn("invalid program pointer\n"); 7871 return libbpf_err(-EINVAL); 7872 } 7873 7874 if (instance < 0 || instance >= prog->instances.nr) { 7875 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7876 instance, prog->name, prog->instances.nr); 7877 return libbpf_err(-EINVAL); 7878 } 7879 7880 if (bpf_obj_pin(prog->instances.fds[instance], path)) { 7881 err = -errno; 7882 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7883 pr_warn("failed to pin program: %s\n", cp); 7884 return libbpf_err(err); 7885 } 7886 pr_debug("pinned program '%s'\n", path); 7887 7888 return 0; 7889 } 7890 7891 static int bpf_program_unpin_instance(struct bpf_program *prog, const char *path, int instance) 7892 { 7893 int err; 7894 7895 err = check_path(path); 7896 if (err) 7897 return libbpf_err(err); 7898 7899 if (prog == NULL) { 7900 pr_warn("invalid program pointer\n"); 7901 return libbpf_err(-EINVAL); 7902 } 7903 7904 if (instance < 0 || instance >= prog->instances.nr) { 7905 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7906 instance, prog->name, prog->instances.nr); 7907 return libbpf_err(-EINVAL); 7908 } 7909 7910 err = unlink(path); 7911 if (err != 0) 7912 return libbpf_err(-errno); 7913 7914 pr_debug("unpinned program '%s'\n", path); 7915 7916 return 0; 7917 } 7918 7919 __attribute__((alias("bpf_program_pin_instance"))) 7920 int bpf_object__pin_instance(struct bpf_program *prog, const char *path, int instance); 7921 7922 __attribute__((alias("bpf_program_unpin_instance"))) 7923 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, int instance); 7924 7925 int bpf_program__pin(struct bpf_program *prog, const char *path) 7926 { 7927 int i, err; 7928 7929 err = make_parent_dir(path); 7930 if (err) 7931 return libbpf_err(err); 7932 7933 err = check_path(path); 7934 if (err) 7935 return libbpf_err(err); 7936 7937 if (prog == NULL) { 7938 pr_warn("invalid program pointer\n"); 7939 return libbpf_err(-EINVAL); 7940 } 7941 7942 if (prog->instances.nr <= 0) { 7943 pr_warn("no instances of prog %s to pin\n", prog->name); 7944 return libbpf_err(-EINVAL); 7945 } 7946 7947 if (prog->instances.nr == 1) { 7948 /* don't create subdirs when pinning single instance */ 7949 return bpf_program_pin_instance(prog, path, 0); 7950 } 7951 7952 for (i = 0; i < prog->instances.nr; i++) { 7953 char buf[PATH_MAX]; 7954 int len; 7955 7956 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7957 if (len < 0) { 7958 err = -EINVAL; 7959 goto err_unpin; 7960 } else if (len >= PATH_MAX) { 7961 err = -ENAMETOOLONG; 7962 goto err_unpin; 7963 } 7964 7965 err = bpf_program_pin_instance(prog, buf, i); 7966 if (err) 7967 goto err_unpin; 7968 } 7969 7970 return 0; 7971 7972 err_unpin: 7973 for (i = i - 1; i >= 0; i--) { 7974 char buf[PATH_MAX]; 7975 int len; 7976 7977 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7978 if (len < 0) 7979 continue; 7980 else if (len >= PATH_MAX) 7981 continue; 7982 7983 bpf_program_unpin_instance(prog, buf, i); 7984 } 7985 7986 rmdir(path); 7987 7988 return libbpf_err(err); 7989 } 7990 7991 int bpf_program__unpin(struct bpf_program *prog, const char *path) 7992 { 7993 int i, err; 7994 7995 err = check_path(path); 7996 if (err) 7997 return libbpf_err(err); 7998 7999 if (prog == NULL) { 8000 pr_warn("invalid program pointer\n"); 8001 return libbpf_err(-EINVAL); 8002 } 8003 8004 if (prog->instances.nr <= 0) { 8005 pr_warn("no instances of prog %s to pin\n", prog->name); 8006 return libbpf_err(-EINVAL); 8007 } 8008 8009 if (prog->instances.nr == 1) { 8010 /* don't create subdirs when pinning single instance */ 8011 return bpf_program_unpin_instance(prog, path, 0); 8012 } 8013 8014 for (i = 0; i < prog->instances.nr; i++) { 8015 char buf[PATH_MAX]; 8016 int len; 8017 8018 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 8019 if (len < 0) 8020 return libbpf_err(-EINVAL); 8021 else if (len >= PATH_MAX) 8022 return libbpf_err(-ENAMETOOLONG); 8023 8024 err = bpf_program_unpin_instance(prog, buf, i); 8025 if (err) 8026 return err; 8027 } 8028 8029 err = rmdir(path); 8030 if (err) 8031 return libbpf_err(-errno); 8032 8033 return 0; 8034 } 8035 8036 int bpf_map__pin(struct bpf_map *map, const char *path) 8037 { 8038 char *cp, errmsg[STRERR_BUFSIZE]; 8039 int err; 8040 8041 if (map == NULL) { 8042 pr_warn("invalid map pointer\n"); 8043 return libbpf_err(-EINVAL); 8044 } 8045 8046 if (map->pin_path) { 8047 if (path && strcmp(path, map->pin_path)) { 8048 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8049 bpf_map__name(map), map->pin_path, path); 8050 return libbpf_err(-EINVAL); 8051 } else if (map->pinned) { 8052 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8053 bpf_map__name(map), map->pin_path); 8054 return 0; 8055 } 8056 } else { 8057 if (!path) { 8058 pr_warn("missing a path to pin map '%s' at\n", 8059 bpf_map__name(map)); 8060 return libbpf_err(-EINVAL); 8061 } else if (map->pinned) { 8062 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8063 return libbpf_err(-EEXIST); 8064 } 8065 8066 map->pin_path = strdup(path); 8067 if (!map->pin_path) { 8068 err = -errno; 8069 goto out_err; 8070 } 8071 } 8072 8073 err = make_parent_dir(map->pin_path); 8074 if (err) 8075 return libbpf_err(err); 8076 8077 err = check_path(map->pin_path); 8078 if (err) 8079 return libbpf_err(err); 8080 8081 if (bpf_obj_pin(map->fd, map->pin_path)) { 8082 err = -errno; 8083 goto out_err; 8084 } 8085 8086 map->pinned = true; 8087 pr_debug("pinned map '%s'\n", map->pin_path); 8088 8089 return 0; 8090 8091 out_err: 8092 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8093 pr_warn("failed to pin map: %s\n", cp); 8094 return libbpf_err(err); 8095 } 8096 8097 int bpf_map__unpin(struct bpf_map *map, const char *path) 8098 { 8099 int err; 8100 8101 if (map == NULL) { 8102 pr_warn("invalid map pointer\n"); 8103 return libbpf_err(-EINVAL); 8104 } 8105 8106 if (map->pin_path) { 8107 if (path && strcmp(path, map->pin_path)) { 8108 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8109 bpf_map__name(map), map->pin_path, path); 8110 return libbpf_err(-EINVAL); 8111 } 8112 path = map->pin_path; 8113 } else if (!path) { 8114 pr_warn("no path to unpin map '%s' from\n", 8115 bpf_map__name(map)); 8116 return libbpf_err(-EINVAL); 8117 } 8118 8119 err = check_path(path); 8120 if (err) 8121 return libbpf_err(err); 8122 8123 err = unlink(path); 8124 if (err != 0) 8125 return libbpf_err(-errno); 8126 8127 map->pinned = false; 8128 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8129 8130 return 0; 8131 } 8132 8133 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8134 { 8135 char *new = NULL; 8136 8137 if (path) { 8138 new = strdup(path); 8139 if (!new) 8140 return libbpf_err(-errno); 8141 } 8142 8143 free(map->pin_path); 8144 map->pin_path = new; 8145 return 0; 8146 } 8147 8148 __alias(bpf_map__pin_path) 8149 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8150 8151 const char *bpf_map__pin_path(const struct bpf_map *map) 8152 { 8153 return map->pin_path; 8154 } 8155 8156 bool bpf_map__is_pinned(const struct bpf_map *map) 8157 { 8158 return map->pinned; 8159 } 8160 8161 static void sanitize_pin_path(char *s) 8162 { 8163 /* bpffs disallows periods in path names */ 8164 while (*s) { 8165 if (*s == '.') 8166 *s = '_'; 8167 s++; 8168 } 8169 } 8170 8171 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8172 { 8173 struct bpf_map *map; 8174 int err; 8175 8176 if (!obj) 8177 return libbpf_err(-ENOENT); 8178 8179 if (!obj->loaded) { 8180 pr_warn("object not yet loaded; load it first\n"); 8181 return libbpf_err(-ENOENT); 8182 } 8183 8184 bpf_object__for_each_map(map, obj) { 8185 char *pin_path = NULL; 8186 char buf[PATH_MAX]; 8187 8188 if (map->skipped) 8189 continue; 8190 8191 if (path) { 8192 int len; 8193 8194 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8195 bpf_map__name(map)); 8196 if (len < 0) { 8197 err = -EINVAL; 8198 goto err_unpin_maps; 8199 } else if (len >= PATH_MAX) { 8200 err = -ENAMETOOLONG; 8201 goto err_unpin_maps; 8202 } 8203 sanitize_pin_path(buf); 8204 pin_path = buf; 8205 } else if (!map->pin_path) { 8206 continue; 8207 } 8208 8209 err = bpf_map__pin(map, pin_path); 8210 if (err) 8211 goto err_unpin_maps; 8212 } 8213 8214 return 0; 8215 8216 err_unpin_maps: 8217 while ((map = bpf_object__prev_map(obj, map))) { 8218 if (!map->pin_path) 8219 continue; 8220 8221 bpf_map__unpin(map, NULL); 8222 } 8223 8224 return libbpf_err(err); 8225 } 8226 8227 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8228 { 8229 struct bpf_map *map; 8230 int err; 8231 8232 if (!obj) 8233 return libbpf_err(-ENOENT); 8234 8235 bpf_object__for_each_map(map, obj) { 8236 char *pin_path = NULL; 8237 char buf[PATH_MAX]; 8238 8239 if (path) { 8240 int len; 8241 8242 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8243 bpf_map__name(map)); 8244 if (len < 0) 8245 return libbpf_err(-EINVAL); 8246 else if (len >= PATH_MAX) 8247 return libbpf_err(-ENAMETOOLONG); 8248 sanitize_pin_path(buf); 8249 pin_path = buf; 8250 } else if (!map->pin_path) { 8251 continue; 8252 } 8253 8254 err = bpf_map__unpin(map, pin_path); 8255 if (err) 8256 return libbpf_err(err); 8257 } 8258 8259 return 0; 8260 } 8261 8262 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8263 { 8264 struct bpf_program *prog; 8265 int err; 8266 8267 if (!obj) 8268 return libbpf_err(-ENOENT); 8269 8270 if (!obj->loaded) { 8271 pr_warn("object not yet loaded; load it first\n"); 8272 return libbpf_err(-ENOENT); 8273 } 8274 8275 bpf_object__for_each_program(prog, obj) { 8276 char buf[PATH_MAX]; 8277 int len; 8278 8279 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8280 prog->pin_name); 8281 if (len < 0) { 8282 err = -EINVAL; 8283 goto err_unpin_programs; 8284 } else if (len >= PATH_MAX) { 8285 err = -ENAMETOOLONG; 8286 goto err_unpin_programs; 8287 } 8288 8289 err = bpf_program__pin(prog, buf); 8290 if (err) 8291 goto err_unpin_programs; 8292 } 8293 8294 return 0; 8295 8296 err_unpin_programs: 8297 while ((prog = bpf_object__prev_program(obj, prog))) { 8298 char buf[PATH_MAX]; 8299 int len; 8300 8301 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8302 prog->pin_name); 8303 if (len < 0) 8304 continue; 8305 else if (len >= PATH_MAX) 8306 continue; 8307 8308 bpf_program__unpin(prog, buf); 8309 } 8310 8311 return libbpf_err(err); 8312 } 8313 8314 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8315 { 8316 struct bpf_program *prog; 8317 int err; 8318 8319 if (!obj) 8320 return libbpf_err(-ENOENT); 8321 8322 bpf_object__for_each_program(prog, obj) { 8323 char buf[PATH_MAX]; 8324 int len; 8325 8326 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8327 prog->pin_name); 8328 if (len < 0) 8329 return libbpf_err(-EINVAL); 8330 else if (len >= PATH_MAX) 8331 return libbpf_err(-ENAMETOOLONG); 8332 8333 err = bpf_program__unpin(prog, buf); 8334 if (err) 8335 return libbpf_err(err); 8336 } 8337 8338 return 0; 8339 } 8340 8341 int bpf_object__pin(struct bpf_object *obj, const char *path) 8342 { 8343 int err; 8344 8345 err = bpf_object__pin_maps(obj, path); 8346 if (err) 8347 return libbpf_err(err); 8348 8349 err = bpf_object__pin_programs(obj, path); 8350 if (err) { 8351 bpf_object__unpin_maps(obj, path); 8352 return libbpf_err(err); 8353 } 8354 8355 return 0; 8356 } 8357 8358 static void bpf_map__destroy(struct bpf_map *map) 8359 { 8360 if (map->clear_priv) 8361 map->clear_priv(map, map->priv); 8362 map->priv = NULL; 8363 map->clear_priv = NULL; 8364 8365 if (map->inner_map) { 8366 bpf_map__destroy(map->inner_map); 8367 zfree(&map->inner_map); 8368 } 8369 8370 zfree(&map->init_slots); 8371 map->init_slots_sz = 0; 8372 8373 if (map->mmaped) { 8374 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8375 map->mmaped = NULL; 8376 } 8377 8378 if (map->st_ops) { 8379 zfree(&map->st_ops->data); 8380 zfree(&map->st_ops->progs); 8381 zfree(&map->st_ops->kern_func_off); 8382 zfree(&map->st_ops); 8383 } 8384 8385 zfree(&map->name); 8386 zfree(&map->real_name); 8387 zfree(&map->pin_path); 8388 8389 if (map->fd >= 0) 8390 zclose(map->fd); 8391 } 8392 8393 void bpf_object__close(struct bpf_object *obj) 8394 { 8395 size_t i; 8396 8397 if (IS_ERR_OR_NULL(obj)) 8398 return; 8399 8400 if (obj->clear_priv) 8401 obj->clear_priv(obj, obj->priv); 8402 8403 usdt_manager_free(obj->usdt_man); 8404 obj->usdt_man = NULL; 8405 8406 bpf_gen__free(obj->gen_loader); 8407 bpf_object__elf_finish(obj); 8408 bpf_object_unload(obj); 8409 btf__free(obj->btf); 8410 btf_ext__free(obj->btf_ext); 8411 8412 for (i = 0; i < obj->nr_maps; i++) 8413 bpf_map__destroy(&obj->maps[i]); 8414 8415 zfree(&obj->btf_custom_path); 8416 zfree(&obj->kconfig); 8417 zfree(&obj->externs); 8418 obj->nr_extern = 0; 8419 8420 zfree(&obj->maps); 8421 obj->nr_maps = 0; 8422 8423 if (obj->programs && obj->nr_programs) { 8424 for (i = 0; i < obj->nr_programs; i++) 8425 bpf_program__exit(&obj->programs[i]); 8426 } 8427 zfree(&obj->programs); 8428 8429 list_del(&obj->list); 8430 free(obj); 8431 } 8432 8433 struct bpf_object * 8434 bpf_object__next(struct bpf_object *prev) 8435 { 8436 struct bpf_object *next; 8437 bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST); 8438 8439 if (strict) 8440 return NULL; 8441 8442 if (!prev) 8443 next = list_first_entry(&bpf_objects_list, 8444 struct bpf_object, 8445 list); 8446 else 8447 next = list_next_entry(prev, list); 8448 8449 /* Empty list is noticed here so don't need checking on entry. */ 8450 if (&next->list == &bpf_objects_list) 8451 return NULL; 8452 8453 return next; 8454 } 8455 8456 const char *bpf_object__name(const struct bpf_object *obj) 8457 { 8458 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8459 } 8460 8461 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8462 { 8463 return obj ? obj->kern_version : 0; 8464 } 8465 8466 struct btf *bpf_object__btf(const struct bpf_object *obj) 8467 { 8468 return obj ? obj->btf : NULL; 8469 } 8470 8471 int bpf_object__btf_fd(const struct bpf_object *obj) 8472 { 8473 return obj->btf ? btf__fd(obj->btf) : -1; 8474 } 8475 8476 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8477 { 8478 if (obj->loaded) 8479 return libbpf_err(-EINVAL); 8480 8481 obj->kern_version = kern_version; 8482 8483 return 0; 8484 } 8485 8486 int bpf_object__set_priv(struct bpf_object *obj, void *priv, 8487 bpf_object_clear_priv_t clear_priv) 8488 { 8489 if (obj->priv && obj->clear_priv) 8490 obj->clear_priv(obj, obj->priv); 8491 8492 obj->priv = priv; 8493 obj->clear_priv = clear_priv; 8494 return 0; 8495 } 8496 8497 void *bpf_object__priv(const struct bpf_object *obj) 8498 { 8499 return obj ? obj->priv : libbpf_err_ptr(-EINVAL); 8500 } 8501 8502 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8503 { 8504 struct bpf_gen *gen; 8505 8506 if (!opts) 8507 return -EFAULT; 8508 if (!OPTS_VALID(opts, gen_loader_opts)) 8509 return -EINVAL; 8510 gen = calloc(sizeof(*gen), 1); 8511 if (!gen) 8512 return -ENOMEM; 8513 gen->opts = opts; 8514 obj->gen_loader = gen; 8515 return 0; 8516 } 8517 8518 static struct bpf_program * 8519 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8520 bool forward) 8521 { 8522 size_t nr_programs = obj->nr_programs; 8523 ssize_t idx; 8524 8525 if (!nr_programs) 8526 return NULL; 8527 8528 if (!p) 8529 /* Iter from the beginning */ 8530 return forward ? &obj->programs[0] : 8531 &obj->programs[nr_programs - 1]; 8532 8533 if (p->obj != obj) { 8534 pr_warn("error: program handler doesn't match object\n"); 8535 return errno = EINVAL, NULL; 8536 } 8537 8538 idx = (p - obj->programs) + (forward ? 1 : -1); 8539 if (idx >= obj->nr_programs || idx < 0) 8540 return NULL; 8541 return &obj->programs[idx]; 8542 } 8543 8544 struct bpf_program * 8545 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj) 8546 { 8547 return bpf_object__next_program(obj, prev); 8548 } 8549 8550 struct bpf_program * 8551 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8552 { 8553 struct bpf_program *prog = prev; 8554 8555 do { 8556 prog = __bpf_program__iter(prog, obj, true); 8557 } while (prog && prog_is_subprog(obj, prog)); 8558 8559 return prog; 8560 } 8561 8562 struct bpf_program * 8563 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj) 8564 { 8565 return bpf_object__prev_program(obj, next); 8566 } 8567 8568 struct bpf_program * 8569 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8570 { 8571 struct bpf_program *prog = next; 8572 8573 do { 8574 prog = __bpf_program__iter(prog, obj, false); 8575 } while (prog && prog_is_subprog(obj, prog)); 8576 8577 return prog; 8578 } 8579 8580 int bpf_program__set_priv(struct bpf_program *prog, void *priv, 8581 bpf_program_clear_priv_t clear_priv) 8582 { 8583 if (prog->priv && prog->clear_priv) 8584 prog->clear_priv(prog, prog->priv); 8585 8586 prog->priv = priv; 8587 prog->clear_priv = clear_priv; 8588 return 0; 8589 } 8590 8591 void *bpf_program__priv(const struct bpf_program *prog) 8592 { 8593 return prog ? prog->priv : libbpf_err_ptr(-EINVAL); 8594 } 8595 8596 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8597 { 8598 prog->prog_ifindex = ifindex; 8599 } 8600 8601 const char *bpf_program__name(const struct bpf_program *prog) 8602 { 8603 return prog->name; 8604 } 8605 8606 const char *bpf_program__section_name(const struct bpf_program *prog) 8607 { 8608 return prog->sec_name; 8609 } 8610 8611 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy) 8612 { 8613 const char *title; 8614 8615 title = prog->sec_name; 8616 if (needs_copy) { 8617 title = strdup(title); 8618 if (!title) { 8619 pr_warn("failed to strdup program title\n"); 8620 return libbpf_err_ptr(-ENOMEM); 8621 } 8622 } 8623 8624 return title; 8625 } 8626 8627 bool bpf_program__autoload(const struct bpf_program *prog) 8628 { 8629 return prog->autoload; 8630 } 8631 8632 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8633 { 8634 if (prog->obj->loaded) 8635 return libbpf_err(-EINVAL); 8636 8637 prog->autoload = autoload; 8638 return 0; 8639 } 8640 8641 static int bpf_program_nth_fd(const struct bpf_program *prog, int n); 8642 8643 int bpf_program__fd(const struct bpf_program *prog) 8644 { 8645 return bpf_program_nth_fd(prog, 0); 8646 } 8647 8648 size_t bpf_program__size(const struct bpf_program *prog) 8649 { 8650 return prog->insns_cnt * BPF_INSN_SZ; 8651 } 8652 8653 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8654 { 8655 return prog->insns; 8656 } 8657 8658 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8659 { 8660 return prog->insns_cnt; 8661 } 8662 8663 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances, 8664 bpf_program_prep_t prep) 8665 { 8666 int *instances_fds; 8667 8668 if (nr_instances <= 0 || !prep) 8669 return libbpf_err(-EINVAL); 8670 8671 if (prog->instances.nr > 0 || prog->instances.fds) { 8672 pr_warn("Can't set pre-processor after loading\n"); 8673 return libbpf_err(-EINVAL); 8674 } 8675 8676 instances_fds = malloc(sizeof(int) * nr_instances); 8677 if (!instances_fds) { 8678 pr_warn("alloc memory failed for fds\n"); 8679 return libbpf_err(-ENOMEM); 8680 } 8681 8682 /* fill all fd with -1 */ 8683 memset(instances_fds, -1, sizeof(int) * nr_instances); 8684 8685 prog->instances.nr = nr_instances; 8686 prog->instances.fds = instances_fds; 8687 prog->preprocessor = prep; 8688 return 0; 8689 } 8690 8691 __attribute__((alias("bpf_program_nth_fd"))) 8692 int bpf_program__nth_fd(const struct bpf_program *prog, int n); 8693 8694 static int bpf_program_nth_fd(const struct bpf_program *prog, int n) 8695 { 8696 int fd; 8697 8698 if (!prog) 8699 return libbpf_err(-EINVAL); 8700 8701 if (n >= prog->instances.nr || n < 0) { 8702 pr_warn("Can't get the %dth fd from program %s: only %d instances\n", 8703 n, prog->name, prog->instances.nr); 8704 return libbpf_err(-EINVAL); 8705 } 8706 8707 fd = prog->instances.fds[n]; 8708 if (fd < 0) { 8709 pr_warn("%dth instance of program '%s' is invalid\n", 8710 n, prog->name); 8711 return libbpf_err(-ENOENT); 8712 } 8713 8714 return fd; 8715 } 8716 8717 __alias(bpf_program__type) 8718 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 8719 8720 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 8721 { 8722 return prog->type; 8723 } 8724 8725 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8726 { 8727 if (prog->obj->loaded) 8728 return libbpf_err(-EBUSY); 8729 8730 prog->type = type; 8731 return 0; 8732 } 8733 8734 static bool bpf_program__is_type(const struct bpf_program *prog, 8735 enum bpf_prog_type type) 8736 { 8737 return prog ? (prog->type == type) : false; 8738 } 8739 8740 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \ 8741 int bpf_program__set_##NAME(struct bpf_program *prog) \ 8742 { \ 8743 if (!prog) \ 8744 return libbpf_err(-EINVAL); \ 8745 return bpf_program__set_type(prog, TYPE); \ 8746 } \ 8747 \ 8748 bool bpf_program__is_##NAME(const struct bpf_program *prog) \ 8749 { \ 8750 return bpf_program__is_type(prog, TYPE); \ 8751 } \ 8752 8753 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER); 8754 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM); 8755 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE); 8756 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS); 8757 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT); 8758 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT); 8759 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT); 8760 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP); 8761 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT); 8762 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING); 8763 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS); 8764 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT); 8765 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP); 8766 8767 __alias(bpf_program__expected_attach_type) 8768 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 8769 8770 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 8771 { 8772 return prog->expected_attach_type; 8773 } 8774 8775 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 8776 enum bpf_attach_type type) 8777 { 8778 if (prog->obj->loaded) 8779 return libbpf_err(-EBUSY); 8780 8781 prog->expected_attach_type = type; 8782 return 0; 8783 } 8784 8785 __u32 bpf_program__flags(const struct bpf_program *prog) 8786 { 8787 return prog->prog_flags; 8788 } 8789 8790 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 8791 { 8792 if (prog->obj->loaded) 8793 return libbpf_err(-EBUSY); 8794 8795 prog->prog_flags = flags; 8796 return 0; 8797 } 8798 8799 __u32 bpf_program__log_level(const struct bpf_program *prog) 8800 { 8801 return prog->log_level; 8802 } 8803 8804 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 8805 { 8806 if (prog->obj->loaded) 8807 return libbpf_err(-EBUSY); 8808 8809 prog->log_level = log_level; 8810 return 0; 8811 } 8812 8813 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 8814 { 8815 *log_size = prog->log_size; 8816 return prog->log_buf; 8817 } 8818 8819 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 8820 { 8821 if (log_size && !log_buf) 8822 return -EINVAL; 8823 if (prog->log_size > UINT_MAX) 8824 return -EINVAL; 8825 if (prog->obj->loaded) 8826 return -EBUSY; 8827 8828 prog->log_buf = log_buf; 8829 prog->log_size = log_size; 8830 return 0; 8831 } 8832 8833 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 8834 .sec = (char *)sec_pfx, \ 8835 .prog_type = BPF_PROG_TYPE_##ptype, \ 8836 .expected_attach_type = atype, \ 8837 .cookie = (long)(flags), \ 8838 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 8839 __VA_ARGS__ \ 8840 } 8841 8842 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8843 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8844 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8845 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8846 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8847 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8848 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8849 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8850 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8851 8852 static const struct bpf_sec_def section_defs[] = { 8853 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE | SEC_SLOPPY_PFX), 8854 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8855 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8856 SEC_DEF("kprobe/", KPROBE, 0, SEC_NONE, attach_kprobe), 8857 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8858 SEC_DEF("kretprobe/", KPROBE, 0, SEC_NONE, attach_kprobe), 8859 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8860 SEC_DEF("kprobe.multi/", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8861 SEC_DEF("kretprobe.multi/", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8862 SEC_DEF("usdt+", KPROBE, 0, SEC_NONE, attach_usdt), 8863 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), 8864 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE | SEC_SLOPPY_PFX | SEC_DEPRECATED), 8865 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8866 SEC_DEF("tracepoint/", TRACEPOINT, 0, SEC_NONE, attach_tp), 8867 SEC_DEF("tp/", TRACEPOINT, 0, SEC_NONE, attach_tp), 8868 SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8869 SEC_DEF("raw_tp/", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8870 SEC_DEF("raw_tracepoint.w/", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8871 SEC_DEF("raw_tp.w/", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8872 SEC_DEF("tp_btf/", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 8873 SEC_DEF("fentry/", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 8874 SEC_DEF("fmod_ret/", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 8875 SEC_DEF("fexit/", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 8876 SEC_DEF("fentry.s/", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8877 SEC_DEF("fmod_ret.s/", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8878 SEC_DEF("fexit.s/", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8879 SEC_DEF("freplace/", EXT, 0, SEC_ATTACH_BTF, attach_trace), 8880 SEC_DEF("lsm/", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 8881 SEC_DEF("lsm.s/", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 8882 SEC_DEF("iter/", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 8883 SEC_DEF("iter.s/", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 8884 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 8885 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 8886 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 8887 SEC_DEF("xdp_devmap/", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE | SEC_DEPRECATED), 8888 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 8889 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 8890 SEC_DEF("xdp_cpumap/", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE | SEC_DEPRECATED), 8891 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 8892 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8893 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8894 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE | SEC_SLOPPY_PFX), 8895 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8896 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8897 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE | SEC_SLOPPY_PFX), 8898 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8899 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8900 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX), 8901 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8902 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8903 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8904 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8905 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8906 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8907 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8908 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8909 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8910 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX), 8911 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8912 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8913 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8914 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8915 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8916 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8917 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8918 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8919 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8920 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8921 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8922 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8923 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8924 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8925 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8926 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8927 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8928 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8929 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 8930 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8931 }; 8932 8933 static size_t custom_sec_def_cnt; 8934 static struct bpf_sec_def *custom_sec_defs; 8935 static struct bpf_sec_def custom_fallback_def; 8936 static bool has_custom_fallback_def; 8937 8938 static int last_custom_sec_def_handler_id; 8939 8940 int libbpf_register_prog_handler(const char *sec, 8941 enum bpf_prog_type prog_type, 8942 enum bpf_attach_type exp_attach_type, 8943 const struct libbpf_prog_handler_opts *opts) 8944 { 8945 struct bpf_sec_def *sec_def; 8946 8947 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 8948 return libbpf_err(-EINVAL); 8949 8950 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 8951 return libbpf_err(-E2BIG); 8952 8953 if (sec) { 8954 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 8955 sizeof(*sec_def)); 8956 if (!sec_def) 8957 return libbpf_err(-ENOMEM); 8958 8959 custom_sec_defs = sec_def; 8960 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 8961 } else { 8962 if (has_custom_fallback_def) 8963 return libbpf_err(-EBUSY); 8964 8965 sec_def = &custom_fallback_def; 8966 } 8967 8968 sec_def->sec = sec ? strdup(sec) : NULL; 8969 if (sec && !sec_def->sec) 8970 return libbpf_err(-ENOMEM); 8971 8972 sec_def->prog_type = prog_type; 8973 sec_def->expected_attach_type = exp_attach_type; 8974 sec_def->cookie = OPTS_GET(opts, cookie, 0); 8975 8976 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 8977 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 8978 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 8979 8980 sec_def->handler_id = ++last_custom_sec_def_handler_id; 8981 8982 if (sec) 8983 custom_sec_def_cnt++; 8984 else 8985 has_custom_fallback_def = true; 8986 8987 return sec_def->handler_id; 8988 } 8989 8990 int libbpf_unregister_prog_handler(int handler_id) 8991 { 8992 struct bpf_sec_def *sec_defs; 8993 int i; 8994 8995 if (handler_id <= 0) 8996 return libbpf_err(-EINVAL); 8997 8998 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 8999 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 9000 has_custom_fallback_def = false; 9001 return 0; 9002 } 9003 9004 for (i = 0; i < custom_sec_def_cnt; i++) { 9005 if (custom_sec_defs[i].handler_id == handler_id) 9006 break; 9007 } 9008 9009 if (i == custom_sec_def_cnt) 9010 return libbpf_err(-ENOENT); 9011 9012 free(custom_sec_defs[i].sec); 9013 for (i = i + 1; i < custom_sec_def_cnt; i++) 9014 custom_sec_defs[i - 1] = custom_sec_defs[i]; 9015 custom_sec_def_cnt--; 9016 9017 /* try to shrink the array, but it's ok if we couldn't */ 9018 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 9019 if (sec_defs) 9020 custom_sec_defs = sec_defs; 9021 9022 return 0; 9023 } 9024 9025 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name, 9026 bool allow_sloppy) 9027 { 9028 size_t len = strlen(sec_def->sec); 9029 9030 /* "type/" always has to have proper SEC("type/extras") form */ 9031 if (sec_def->sec[len - 1] == '/') { 9032 if (str_has_pfx(sec_name, sec_def->sec)) 9033 return true; 9034 return false; 9035 } 9036 9037 /* "type+" means it can be either exact SEC("type") or 9038 * well-formed SEC("type/extras") with proper '/' separator 9039 */ 9040 if (sec_def->sec[len - 1] == '+') { 9041 len--; 9042 /* not even a prefix */ 9043 if (strncmp(sec_name, sec_def->sec, len) != 0) 9044 return false; 9045 /* exact match or has '/' separator */ 9046 if (sec_name[len] == '\0' || sec_name[len] == '/') 9047 return true; 9048 return false; 9049 } 9050 9051 /* SEC_SLOPPY_PFX definitions are allowed to be just prefix 9052 * matches, unless strict section name mode 9053 * (LIBBPF_STRICT_SEC_NAME) is enabled, in which case the 9054 * match has to be exact. 9055 */ 9056 if (allow_sloppy && str_has_pfx(sec_name, sec_def->sec)) 9057 return true; 9058 9059 /* Definitions not marked SEC_SLOPPY_PFX (e.g., 9060 * SEC("syscall")) are exact matches in both modes. 9061 */ 9062 return strcmp(sec_name, sec_def->sec) == 0; 9063 } 9064 9065 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 9066 { 9067 const struct bpf_sec_def *sec_def; 9068 int i, n; 9069 bool strict = libbpf_mode & LIBBPF_STRICT_SEC_NAME, allow_sloppy; 9070 9071 n = custom_sec_def_cnt; 9072 for (i = 0; i < n; i++) { 9073 sec_def = &custom_sec_defs[i]; 9074 if (sec_def_matches(sec_def, sec_name, false)) 9075 return sec_def; 9076 } 9077 9078 n = ARRAY_SIZE(section_defs); 9079 for (i = 0; i < n; i++) { 9080 sec_def = §ion_defs[i]; 9081 allow_sloppy = (sec_def->cookie & SEC_SLOPPY_PFX) && !strict; 9082 if (sec_def_matches(sec_def, sec_name, allow_sloppy)) 9083 return sec_def; 9084 } 9085 9086 if (has_custom_fallback_def) 9087 return &custom_fallback_def; 9088 9089 return NULL; 9090 } 9091 9092 #define MAX_TYPE_NAME_SIZE 32 9093 9094 static char *libbpf_get_type_names(bool attach_type) 9095 { 9096 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 9097 char *buf; 9098 9099 buf = malloc(len); 9100 if (!buf) 9101 return NULL; 9102 9103 buf[0] = '\0'; 9104 /* Forge string buf with all available names */ 9105 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9106 const struct bpf_sec_def *sec_def = §ion_defs[i]; 9107 9108 if (attach_type) { 9109 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9110 continue; 9111 9112 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9113 continue; 9114 } 9115 9116 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 9117 free(buf); 9118 return NULL; 9119 } 9120 strcat(buf, " "); 9121 strcat(buf, section_defs[i].sec); 9122 } 9123 9124 return buf; 9125 } 9126 9127 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 9128 enum bpf_attach_type *expected_attach_type) 9129 { 9130 const struct bpf_sec_def *sec_def; 9131 char *type_names; 9132 9133 if (!name) 9134 return libbpf_err(-EINVAL); 9135 9136 sec_def = find_sec_def(name); 9137 if (sec_def) { 9138 *prog_type = sec_def->prog_type; 9139 *expected_attach_type = sec_def->expected_attach_type; 9140 return 0; 9141 } 9142 9143 pr_debug("failed to guess program type from ELF section '%s'\n", name); 9144 type_names = libbpf_get_type_names(false); 9145 if (type_names != NULL) { 9146 pr_debug("supported section(type) names are:%s\n", type_names); 9147 free(type_names); 9148 } 9149 9150 return libbpf_err(-ESRCH); 9151 } 9152 9153 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 9154 size_t offset) 9155 { 9156 struct bpf_map *map; 9157 size_t i; 9158 9159 for (i = 0; i < obj->nr_maps; i++) { 9160 map = &obj->maps[i]; 9161 if (!bpf_map__is_struct_ops(map)) 9162 continue; 9163 if (map->sec_offset <= offset && 9164 offset - map->sec_offset < map->def.value_size) 9165 return map; 9166 } 9167 9168 return NULL; 9169 } 9170 9171 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 9172 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9173 Elf64_Shdr *shdr, Elf_Data *data) 9174 { 9175 const struct btf_member *member; 9176 struct bpf_struct_ops *st_ops; 9177 struct bpf_program *prog; 9178 unsigned int shdr_idx; 9179 const struct btf *btf; 9180 struct bpf_map *map; 9181 unsigned int moff, insn_idx; 9182 const char *name; 9183 __u32 member_idx; 9184 Elf64_Sym *sym; 9185 Elf64_Rel *rel; 9186 int i, nrels; 9187 9188 btf = obj->btf; 9189 nrels = shdr->sh_size / shdr->sh_entsize; 9190 for (i = 0; i < nrels; i++) { 9191 rel = elf_rel_by_idx(data, i); 9192 if (!rel) { 9193 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9194 return -LIBBPF_ERRNO__FORMAT; 9195 } 9196 9197 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 9198 if (!sym) { 9199 pr_warn("struct_ops reloc: symbol %zx not found\n", 9200 (size_t)ELF64_R_SYM(rel->r_info)); 9201 return -LIBBPF_ERRNO__FORMAT; 9202 } 9203 9204 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 9205 map = find_struct_ops_map_by_offset(obj, rel->r_offset); 9206 if (!map) { 9207 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 9208 (size_t)rel->r_offset); 9209 return -EINVAL; 9210 } 9211 9212 moff = rel->r_offset - map->sec_offset; 9213 shdr_idx = sym->st_shndx; 9214 st_ops = map->st_ops; 9215 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9216 map->name, 9217 (long long)(rel->r_info >> 32), 9218 (long long)sym->st_value, 9219 shdr_idx, (size_t)rel->r_offset, 9220 map->sec_offset, sym->st_name, name); 9221 9222 if (shdr_idx >= SHN_LORESERVE) { 9223 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9224 map->name, (size_t)rel->r_offset, shdr_idx); 9225 return -LIBBPF_ERRNO__RELOC; 9226 } 9227 if (sym->st_value % BPF_INSN_SZ) { 9228 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9229 map->name, (unsigned long long)sym->st_value); 9230 return -LIBBPF_ERRNO__FORMAT; 9231 } 9232 insn_idx = sym->st_value / BPF_INSN_SZ; 9233 9234 member = find_member_by_offset(st_ops->type, moff * 8); 9235 if (!member) { 9236 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9237 map->name, moff); 9238 return -EINVAL; 9239 } 9240 member_idx = member - btf_members(st_ops->type); 9241 name = btf__name_by_offset(btf, member->name_off); 9242 9243 if (!resolve_func_ptr(btf, member->type, NULL)) { 9244 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9245 map->name, name); 9246 return -EINVAL; 9247 } 9248 9249 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9250 if (!prog) { 9251 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9252 map->name, shdr_idx, name); 9253 return -EINVAL; 9254 } 9255 9256 /* prevent the use of BPF prog with invalid type */ 9257 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9258 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9259 map->name, prog->name); 9260 return -EINVAL; 9261 } 9262 9263 /* if we haven't yet processed this BPF program, record proper 9264 * attach_btf_id and member_idx 9265 */ 9266 if (!prog->attach_btf_id) { 9267 prog->attach_btf_id = st_ops->type_id; 9268 prog->expected_attach_type = member_idx; 9269 } 9270 9271 /* struct_ops BPF prog can be re-used between multiple 9272 * .struct_ops as long as it's the same struct_ops struct 9273 * definition and the same function pointer field 9274 */ 9275 if (prog->attach_btf_id != st_ops->type_id || 9276 prog->expected_attach_type != member_idx) { 9277 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 9278 map->name, prog->name, prog->sec_name, prog->type, 9279 prog->attach_btf_id, prog->expected_attach_type, name); 9280 return -EINVAL; 9281 } 9282 9283 st_ops->progs[member_idx] = prog; 9284 } 9285 9286 return 0; 9287 } 9288 9289 #define BTF_TRACE_PREFIX "btf_trace_" 9290 #define BTF_LSM_PREFIX "bpf_lsm_" 9291 #define BTF_ITER_PREFIX "bpf_iter_" 9292 #define BTF_MAX_NAME_SIZE 128 9293 9294 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9295 const char **prefix, int *kind) 9296 { 9297 switch (attach_type) { 9298 case BPF_TRACE_RAW_TP: 9299 *prefix = BTF_TRACE_PREFIX; 9300 *kind = BTF_KIND_TYPEDEF; 9301 break; 9302 case BPF_LSM_MAC: 9303 *prefix = BTF_LSM_PREFIX; 9304 *kind = BTF_KIND_FUNC; 9305 break; 9306 case BPF_TRACE_ITER: 9307 *prefix = BTF_ITER_PREFIX; 9308 *kind = BTF_KIND_FUNC; 9309 break; 9310 default: 9311 *prefix = ""; 9312 *kind = BTF_KIND_FUNC; 9313 } 9314 } 9315 9316 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9317 const char *name, __u32 kind) 9318 { 9319 char btf_type_name[BTF_MAX_NAME_SIZE]; 9320 int ret; 9321 9322 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9323 "%s%s", prefix, name); 9324 /* snprintf returns the number of characters written excluding the 9325 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9326 * indicates truncation. 9327 */ 9328 if (ret < 0 || ret >= sizeof(btf_type_name)) 9329 return -ENAMETOOLONG; 9330 return btf__find_by_name_kind(btf, btf_type_name, kind); 9331 } 9332 9333 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9334 enum bpf_attach_type attach_type) 9335 { 9336 const char *prefix; 9337 int kind; 9338 9339 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9340 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9341 } 9342 9343 int libbpf_find_vmlinux_btf_id(const char *name, 9344 enum bpf_attach_type attach_type) 9345 { 9346 struct btf *btf; 9347 int err; 9348 9349 btf = btf__load_vmlinux_btf(); 9350 err = libbpf_get_error(btf); 9351 if (err) { 9352 pr_warn("vmlinux BTF is not found\n"); 9353 return libbpf_err(err); 9354 } 9355 9356 err = find_attach_btf_id(btf, name, attach_type); 9357 if (err <= 0) 9358 pr_warn("%s is not found in vmlinux BTF\n", name); 9359 9360 btf__free(btf); 9361 return libbpf_err(err); 9362 } 9363 9364 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9365 { 9366 struct bpf_prog_info info = {}; 9367 __u32 info_len = sizeof(info); 9368 struct btf *btf; 9369 int err; 9370 9371 err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len); 9372 if (err) { 9373 pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n", 9374 attach_prog_fd, err); 9375 return err; 9376 } 9377 9378 err = -EINVAL; 9379 if (!info.btf_id) { 9380 pr_warn("The target program doesn't have BTF\n"); 9381 goto out; 9382 } 9383 btf = btf__load_from_kernel_by_id(info.btf_id); 9384 err = libbpf_get_error(btf); 9385 if (err) { 9386 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9387 goto out; 9388 } 9389 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9390 btf__free(btf); 9391 if (err <= 0) { 9392 pr_warn("%s is not found in prog's BTF\n", name); 9393 goto out; 9394 } 9395 out: 9396 return err; 9397 } 9398 9399 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9400 enum bpf_attach_type attach_type, 9401 int *btf_obj_fd, int *btf_type_id) 9402 { 9403 int ret, i; 9404 9405 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9406 if (ret > 0) { 9407 *btf_obj_fd = 0; /* vmlinux BTF */ 9408 *btf_type_id = ret; 9409 return 0; 9410 } 9411 if (ret != -ENOENT) 9412 return ret; 9413 9414 ret = load_module_btfs(obj); 9415 if (ret) 9416 return ret; 9417 9418 for (i = 0; i < obj->btf_module_cnt; i++) { 9419 const struct module_btf *mod = &obj->btf_modules[i]; 9420 9421 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9422 if (ret > 0) { 9423 *btf_obj_fd = mod->fd; 9424 *btf_type_id = ret; 9425 return 0; 9426 } 9427 if (ret == -ENOENT) 9428 continue; 9429 9430 return ret; 9431 } 9432 9433 return -ESRCH; 9434 } 9435 9436 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9437 int *btf_obj_fd, int *btf_type_id) 9438 { 9439 enum bpf_attach_type attach_type = prog->expected_attach_type; 9440 __u32 attach_prog_fd = prog->attach_prog_fd; 9441 int err = 0; 9442 9443 /* BPF program's BTF ID */ 9444 if (attach_prog_fd) { 9445 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9446 if (err < 0) { 9447 pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9448 attach_prog_fd, attach_name, err); 9449 return err; 9450 } 9451 *btf_obj_fd = 0; 9452 *btf_type_id = err; 9453 return 0; 9454 } 9455 9456 /* kernel/module BTF ID */ 9457 if (prog->obj->gen_loader) { 9458 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9459 *btf_obj_fd = 0; 9460 *btf_type_id = 1; 9461 } else { 9462 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9463 } 9464 if (err) { 9465 pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err); 9466 return err; 9467 } 9468 return 0; 9469 } 9470 9471 int libbpf_attach_type_by_name(const char *name, 9472 enum bpf_attach_type *attach_type) 9473 { 9474 char *type_names; 9475 const struct bpf_sec_def *sec_def; 9476 9477 if (!name) 9478 return libbpf_err(-EINVAL); 9479 9480 sec_def = find_sec_def(name); 9481 if (!sec_def) { 9482 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9483 type_names = libbpf_get_type_names(true); 9484 if (type_names != NULL) { 9485 pr_debug("attachable section(type) names are:%s\n", type_names); 9486 free(type_names); 9487 } 9488 9489 return libbpf_err(-EINVAL); 9490 } 9491 9492 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9493 return libbpf_err(-EINVAL); 9494 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9495 return libbpf_err(-EINVAL); 9496 9497 *attach_type = sec_def->expected_attach_type; 9498 return 0; 9499 } 9500 9501 int bpf_map__fd(const struct bpf_map *map) 9502 { 9503 return map ? map->fd : libbpf_err(-EINVAL); 9504 } 9505 9506 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map) 9507 { 9508 return map ? &map->def : libbpf_err_ptr(-EINVAL); 9509 } 9510 9511 static bool map_uses_real_name(const struct bpf_map *map) 9512 { 9513 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9514 * their user-visible name differs from kernel-visible name. Users see 9515 * such map's corresponding ELF section name as a map name. 9516 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9517 * maps to know which name has to be returned to the user. 9518 */ 9519 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9520 return true; 9521 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9522 return true; 9523 return false; 9524 } 9525 9526 const char *bpf_map__name(const struct bpf_map *map) 9527 { 9528 if (!map) 9529 return NULL; 9530 9531 if (map_uses_real_name(map)) 9532 return map->real_name; 9533 9534 return map->name; 9535 } 9536 9537 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9538 { 9539 return map->def.type; 9540 } 9541 9542 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9543 { 9544 if (map->fd >= 0) 9545 return libbpf_err(-EBUSY); 9546 map->def.type = type; 9547 return 0; 9548 } 9549 9550 __u32 bpf_map__map_flags(const struct bpf_map *map) 9551 { 9552 return map->def.map_flags; 9553 } 9554 9555 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9556 { 9557 if (map->fd >= 0) 9558 return libbpf_err(-EBUSY); 9559 map->def.map_flags = flags; 9560 return 0; 9561 } 9562 9563 __u64 bpf_map__map_extra(const struct bpf_map *map) 9564 { 9565 return map->map_extra; 9566 } 9567 9568 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9569 { 9570 if (map->fd >= 0) 9571 return libbpf_err(-EBUSY); 9572 map->map_extra = map_extra; 9573 return 0; 9574 } 9575 9576 __u32 bpf_map__numa_node(const struct bpf_map *map) 9577 { 9578 return map->numa_node; 9579 } 9580 9581 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9582 { 9583 if (map->fd >= 0) 9584 return libbpf_err(-EBUSY); 9585 map->numa_node = numa_node; 9586 return 0; 9587 } 9588 9589 __u32 bpf_map__key_size(const struct bpf_map *map) 9590 { 9591 return map->def.key_size; 9592 } 9593 9594 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9595 { 9596 if (map->fd >= 0) 9597 return libbpf_err(-EBUSY); 9598 map->def.key_size = size; 9599 return 0; 9600 } 9601 9602 __u32 bpf_map__value_size(const struct bpf_map *map) 9603 { 9604 return map->def.value_size; 9605 } 9606 9607 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9608 { 9609 if (map->fd >= 0) 9610 return libbpf_err(-EBUSY); 9611 map->def.value_size = size; 9612 return 0; 9613 } 9614 9615 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9616 { 9617 return map ? map->btf_key_type_id : 0; 9618 } 9619 9620 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9621 { 9622 return map ? map->btf_value_type_id : 0; 9623 } 9624 9625 int bpf_map__set_priv(struct bpf_map *map, void *priv, 9626 bpf_map_clear_priv_t clear_priv) 9627 { 9628 if (!map) 9629 return libbpf_err(-EINVAL); 9630 9631 if (map->priv) { 9632 if (map->clear_priv) 9633 map->clear_priv(map, map->priv); 9634 } 9635 9636 map->priv = priv; 9637 map->clear_priv = clear_priv; 9638 return 0; 9639 } 9640 9641 void *bpf_map__priv(const struct bpf_map *map) 9642 { 9643 return map ? map->priv : libbpf_err_ptr(-EINVAL); 9644 } 9645 9646 int bpf_map__set_initial_value(struct bpf_map *map, 9647 const void *data, size_t size) 9648 { 9649 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9650 size != map->def.value_size || map->fd >= 0) 9651 return libbpf_err(-EINVAL); 9652 9653 memcpy(map->mmaped, data, size); 9654 return 0; 9655 } 9656 9657 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9658 { 9659 if (!map->mmaped) 9660 return NULL; 9661 *psize = map->def.value_size; 9662 return map->mmaped; 9663 } 9664 9665 bool bpf_map__is_offload_neutral(const struct bpf_map *map) 9666 { 9667 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 9668 } 9669 9670 bool bpf_map__is_internal(const struct bpf_map *map) 9671 { 9672 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9673 } 9674 9675 __u32 bpf_map__ifindex(const struct bpf_map *map) 9676 { 9677 return map->map_ifindex; 9678 } 9679 9680 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9681 { 9682 if (map->fd >= 0) 9683 return libbpf_err(-EBUSY); 9684 map->map_ifindex = ifindex; 9685 return 0; 9686 } 9687 9688 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9689 { 9690 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9691 pr_warn("error: unsupported map type\n"); 9692 return libbpf_err(-EINVAL); 9693 } 9694 if (map->inner_map_fd != -1) { 9695 pr_warn("error: inner_map_fd already specified\n"); 9696 return libbpf_err(-EINVAL); 9697 } 9698 if (map->inner_map) { 9699 bpf_map__destroy(map->inner_map); 9700 zfree(&map->inner_map); 9701 } 9702 map->inner_map_fd = fd; 9703 return 0; 9704 } 9705 9706 static struct bpf_map * 9707 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9708 { 9709 ssize_t idx; 9710 struct bpf_map *s, *e; 9711 9712 if (!obj || !obj->maps) 9713 return errno = EINVAL, NULL; 9714 9715 s = obj->maps; 9716 e = obj->maps + obj->nr_maps; 9717 9718 if ((m < s) || (m >= e)) { 9719 pr_warn("error in %s: map handler doesn't belong to object\n", 9720 __func__); 9721 return errno = EINVAL, NULL; 9722 } 9723 9724 idx = (m - obj->maps) + i; 9725 if (idx >= obj->nr_maps || idx < 0) 9726 return NULL; 9727 return &obj->maps[idx]; 9728 } 9729 9730 struct bpf_map * 9731 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj) 9732 { 9733 return bpf_object__next_map(obj, prev); 9734 } 9735 9736 struct bpf_map * 9737 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 9738 { 9739 if (prev == NULL) 9740 return obj->maps; 9741 9742 return __bpf_map__iter(prev, obj, 1); 9743 } 9744 9745 struct bpf_map * 9746 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj) 9747 { 9748 return bpf_object__prev_map(obj, next); 9749 } 9750 9751 struct bpf_map * 9752 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 9753 { 9754 if (next == NULL) { 9755 if (!obj->nr_maps) 9756 return NULL; 9757 return obj->maps + obj->nr_maps - 1; 9758 } 9759 9760 return __bpf_map__iter(next, obj, -1); 9761 } 9762 9763 struct bpf_map * 9764 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9765 { 9766 struct bpf_map *pos; 9767 9768 bpf_object__for_each_map(pos, obj) { 9769 /* if it's a special internal map name (which always starts 9770 * with dot) then check if that special name matches the 9771 * real map name (ELF section name) 9772 */ 9773 if (name[0] == '.') { 9774 if (pos->real_name && strcmp(pos->real_name, name) == 0) 9775 return pos; 9776 continue; 9777 } 9778 /* otherwise map name has to be an exact match */ 9779 if (map_uses_real_name(pos)) { 9780 if (strcmp(pos->real_name, name) == 0) 9781 return pos; 9782 continue; 9783 } 9784 if (strcmp(pos->name, name) == 0) 9785 return pos; 9786 } 9787 return errno = ENOENT, NULL; 9788 } 9789 9790 int 9791 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9792 { 9793 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9794 } 9795 9796 struct bpf_map * 9797 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset) 9798 { 9799 return libbpf_err_ptr(-ENOTSUP); 9800 } 9801 9802 long libbpf_get_error(const void *ptr) 9803 { 9804 if (!IS_ERR_OR_NULL(ptr)) 9805 return 0; 9806 9807 if (IS_ERR(ptr)) 9808 errno = -PTR_ERR(ptr); 9809 9810 /* If ptr == NULL, then errno should be already set by the failing 9811 * API, because libbpf never returns NULL on success and it now always 9812 * sets errno on error. So no extra errno handling for ptr == NULL 9813 * case. 9814 */ 9815 return -errno; 9816 } 9817 9818 __attribute__((alias("bpf_prog_load_xattr2"))) 9819 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr, 9820 struct bpf_object **pobj, int *prog_fd); 9821 9822 static int bpf_prog_load_xattr2(const struct bpf_prog_load_attr *attr, 9823 struct bpf_object **pobj, int *prog_fd) 9824 { 9825 struct bpf_object_open_attr open_attr = {}; 9826 struct bpf_program *prog, *first_prog = NULL; 9827 struct bpf_object *obj; 9828 struct bpf_map *map; 9829 int err; 9830 9831 if (!attr) 9832 return libbpf_err(-EINVAL); 9833 if (!attr->file) 9834 return libbpf_err(-EINVAL); 9835 9836 open_attr.file = attr->file; 9837 open_attr.prog_type = attr->prog_type; 9838 9839 obj = __bpf_object__open_xattr(&open_attr, 0); 9840 err = libbpf_get_error(obj); 9841 if (err) 9842 return libbpf_err(-ENOENT); 9843 9844 bpf_object__for_each_program(prog, obj) { 9845 enum bpf_attach_type attach_type = attr->expected_attach_type; 9846 /* 9847 * to preserve backwards compatibility, bpf_prog_load treats 9848 * attr->prog_type, if specified, as an override to whatever 9849 * bpf_object__open guessed 9850 */ 9851 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) { 9852 prog->type = attr->prog_type; 9853 prog->expected_attach_type = attach_type; 9854 } 9855 if (bpf_program__type(prog) == BPF_PROG_TYPE_UNSPEC) { 9856 /* 9857 * we haven't guessed from section name and user 9858 * didn't provide a fallback type, too bad... 9859 */ 9860 bpf_object__close(obj); 9861 return libbpf_err(-EINVAL); 9862 } 9863 9864 prog->prog_ifindex = attr->ifindex; 9865 prog->log_level = attr->log_level; 9866 prog->prog_flags |= attr->prog_flags; 9867 if (!first_prog) 9868 first_prog = prog; 9869 } 9870 9871 bpf_object__for_each_map(map, obj) { 9872 if (map->def.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 9873 map->map_ifindex = attr->ifindex; 9874 } 9875 9876 if (!first_prog) { 9877 pr_warn("object file doesn't contain bpf program\n"); 9878 bpf_object__close(obj); 9879 return libbpf_err(-ENOENT); 9880 } 9881 9882 err = bpf_object__load(obj); 9883 if (err) { 9884 bpf_object__close(obj); 9885 return libbpf_err(err); 9886 } 9887 9888 *pobj = obj; 9889 *prog_fd = bpf_program__fd(first_prog); 9890 return 0; 9891 } 9892 9893 COMPAT_VERSION(bpf_prog_load_deprecated, bpf_prog_load, LIBBPF_0.0.1) 9894 int bpf_prog_load_deprecated(const char *file, enum bpf_prog_type type, 9895 struct bpf_object **pobj, int *prog_fd) 9896 { 9897 struct bpf_prog_load_attr attr; 9898 9899 memset(&attr, 0, sizeof(struct bpf_prog_load_attr)); 9900 attr.file = file; 9901 attr.prog_type = type; 9902 attr.expected_attach_type = 0; 9903 9904 return bpf_prog_load_xattr2(&attr, pobj, prog_fd); 9905 } 9906 9907 /* Replace link's underlying BPF program with the new one */ 9908 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9909 { 9910 int ret; 9911 9912 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9913 return libbpf_err_errno(ret); 9914 } 9915 9916 /* Release "ownership" of underlying BPF resource (typically, BPF program 9917 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9918 * link, when destructed through bpf_link__destroy() call won't attempt to 9919 * detach/unregisted that BPF resource. This is useful in situations where, 9920 * say, attached BPF program has to outlive userspace program that attached it 9921 * in the system. Depending on type of BPF program, though, there might be 9922 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9923 * exit of userspace program doesn't trigger automatic detachment and clean up 9924 * inside the kernel. 9925 */ 9926 void bpf_link__disconnect(struct bpf_link *link) 9927 { 9928 link->disconnected = true; 9929 } 9930 9931 int bpf_link__destroy(struct bpf_link *link) 9932 { 9933 int err = 0; 9934 9935 if (IS_ERR_OR_NULL(link)) 9936 return 0; 9937 9938 if (!link->disconnected && link->detach) 9939 err = link->detach(link); 9940 if (link->pin_path) 9941 free(link->pin_path); 9942 if (link->dealloc) 9943 link->dealloc(link); 9944 else 9945 free(link); 9946 9947 return libbpf_err(err); 9948 } 9949 9950 int bpf_link__fd(const struct bpf_link *link) 9951 { 9952 return link->fd; 9953 } 9954 9955 const char *bpf_link__pin_path(const struct bpf_link *link) 9956 { 9957 return link->pin_path; 9958 } 9959 9960 static int bpf_link__detach_fd(struct bpf_link *link) 9961 { 9962 return libbpf_err_errno(close(link->fd)); 9963 } 9964 9965 struct bpf_link *bpf_link__open(const char *path) 9966 { 9967 struct bpf_link *link; 9968 int fd; 9969 9970 fd = bpf_obj_get(path); 9971 if (fd < 0) { 9972 fd = -errno; 9973 pr_warn("failed to open link at %s: %d\n", path, fd); 9974 return libbpf_err_ptr(fd); 9975 } 9976 9977 link = calloc(1, sizeof(*link)); 9978 if (!link) { 9979 close(fd); 9980 return libbpf_err_ptr(-ENOMEM); 9981 } 9982 link->detach = &bpf_link__detach_fd; 9983 link->fd = fd; 9984 9985 link->pin_path = strdup(path); 9986 if (!link->pin_path) { 9987 bpf_link__destroy(link); 9988 return libbpf_err_ptr(-ENOMEM); 9989 } 9990 9991 return link; 9992 } 9993 9994 int bpf_link__detach(struct bpf_link *link) 9995 { 9996 return bpf_link_detach(link->fd) ? -errno : 0; 9997 } 9998 9999 int bpf_link__pin(struct bpf_link *link, const char *path) 10000 { 10001 int err; 10002 10003 if (link->pin_path) 10004 return libbpf_err(-EBUSY); 10005 err = make_parent_dir(path); 10006 if (err) 10007 return libbpf_err(err); 10008 err = check_path(path); 10009 if (err) 10010 return libbpf_err(err); 10011 10012 link->pin_path = strdup(path); 10013 if (!link->pin_path) 10014 return libbpf_err(-ENOMEM); 10015 10016 if (bpf_obj_pin(link->fd, link->pin_path)) { 10017 err = -errno; 10018 zfree(&link->pin_path); 10019 return libbpf_err(err); 10020 } 10021 10022 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 10023 return 0; 10024 } 10025 10026 int bpf_link__unpin(struct bpf_link *link) 10027 { 10028 int err; 10029 10030 if (!link->pin_path) 10031 return libbpf_err(-EINVAL); 10032 10033 err = unlink(link->pin_path); 10034 if (err != 0) 10035 return -errno; 10036 10037 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 10038 zfree(&link->pin_path); 10039 return 0; 10040 } 10041 10042 struct bpf_link_perf { 10043 struct bpf_link link; 10044 int perf_event_fd; 10045 /* legacy kprobe support: keep track of probe identifier and type */ 10046 char *legacy_probe_name; 10047 bool legacy_is_kprobe; 10048 bool legacy_is_retprobe; 10049 }; 10050 10051 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 10052 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 10053 10054 static int bpf_link_perf_detach(struct bpf_link *link) 10055 { 10056 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10057 int err = 0; 10058 10059 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 10060 err = -errno; 10061 10062 if (perf_link->perf_event_fd != link->fd) 10063 close(perf_link->perf_event_fd); 10064 close(link->fd); 10065 10066 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 10067 if (perf_link->legacy_probe_name) { 10068 if (perf_link->legacy_is_kprobe) { 10069 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 10070 perf_link->legacy_is_retprobe); 10071 } else { 10072 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 10073 perf_link->legacy_is_retprobe); 10074 } 10075 } 10076 10077 return err; 10078 } 10079 10080 static void bpf_link_perf_dealloc(struct bpf_link *link) 10081 { 10082 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10083 10084 free(perf_link->legacy_probe_name); 10085 free(perf_link); 10086 } 10087 10088 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 10089 const struct bpf_perf_event_opts *opts) 10090 { 10091 char errmsg[STRERR_BUFSIZE]; 10092 struct bpf_link_perf *link; 10093 int prog_fd, link_fd = -1, err; 10094 10095 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 10096 return libbpf_err_ptr(-EINVAL); 10097 10098 if (pfd < 0) { 10099 pr_warn("prog '%s': invalid perf event FD %d\n", 10100 prog->name, pfd); 10101 return libbpf_err_ptr(-EINVAL); 10102 } 10103 prog_fd = bpf_program__fd(prog); 10104 if (prog_fd < 0) { 10105 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 10106 prog->name); 10107 return libbpf_err_ptr(-EINVAL); 10108 } 10109 10110 link = calloc(1, sizeof(*link)); 10111 if (!link) 10112 return libbpf_err_ptr(-ENOMEM); 10113 link->link.detach = &bpf_link_perf_detach; 10114 link->link.dealloc = &bpf_link_perf_dealloc; 10115 link->perf_event_fd = pfd; 10116 10117 if (kernel_supports(prog->obj, FEAT_PERF_LINK)) { 10118 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 10119 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 10120 10121 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 10122 if (link_fd < 0) { 10123 err = -errno; 10124 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 10125 prog->name, pfd, 10126 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10127 goto err_out; 10128 } 10129 link->link.fd = link_fd; 10130 } else { 10131 if (OPTS_GET(opts, bpf_cookie, 0)) { 10132 pr_warn("prog '%s': user context value is not supported\n", prog->name); 10133 err = -EOPNOTSUPP; 10134 goto err_out; 10135 } 10136 10137 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 10138 err = -errno; 10139 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 10140 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10141 if (err == -EPROTO) 10142 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 10143 prog->name, pfd); 10144 goto err_out; 10145 } 10146 link->link.fd = pfd; 10147 } 10148 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10149 err = -errno; 10150 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 10151 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10152 goto err_out; 10153 } 10154 10155 return &link->link; 10156 err_out: 10157 if (link_fd >= 0) 10158 close(link_fd); 10159 free(link); 10160 return libbpf_err_ptr(err); 10161 } 10162 10163 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 10164 { 10165 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 10166 } 10167 10168 /* 10169 * this function is expected to parse integer in the range of [0, 2^31-1] from 10170 * given file using scanf format string fmt. If actual parsed value is 10171 * negative, the result might be indistinguishable from error 10172 */ 10173 static int parse_uint_from_file(const char *file, const char *fmt) 10174 { 10175 char buf[STRERR_BUFSIZE]; 10176 int err, ret; 10177 FILE *f; 10178 10179 f = fopen(file, "r"); 10180 if (!f) { 10181 err = -errno; 10182 pr_debug("failed to open '%s': %s\n", file, 10183 libbpf_strerror_r(err, buf, sizeof(buf))); 10184 return err; 10185 } 10186 err = fscanf(f, fmt, &ret); 10187 if (err != 1) { 10188 err = err == EOF ? -EIO : -errno; 10189 pr_debug("failed to parse '%s': %s\n", file, 10190 libbpf_strerror_r(err, buf, sizeof(buf))); 10191 fclose(f); 10192 return err; 10193 } 10194 fclose(f); 10195 return ret; 10196 } 10197 10198 static int determine_kprobe_perf_type(void) 10199 { 10200 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 10201 10202 return parse_uint_from_file(file, "%d\n"); 10203 } 10204 10205 static int determine_uprobe_perf_type(void) 10206 { 10207 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 10208 10209 return parse_uint_from_file(file, "%d\n"); 10210 } 10211 10212 static int determine_kprobe_retprobe_bit(void) 10213 { 10214 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 10215 10216 return parse_uint_from_file(file, "config:%d\n"); 10217 } 10218 10219 static int determine_uprobe_retprobe_bit(void) 10220 { 10221 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 10222 10223 return parse_uint_from_file(file, "config:%d\n"); 10224 } 10225 10226 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 10227 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 10228 10229 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 10230 uint64_t offset, int pid, size_t ref_ctr_off) 10231 { 10232 struct perf_event_attr attr = {}; 10233 char errmsg[STRERR_BUFSIZE]; 10234 int type, pfd, err; 10235 10236 if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 10237 return -EINVAL; 10238 10239 type = uprobe ? determine_uprobe_perf_type() 10240 : determine_kprobe_perf_type(); 10241 if (type < 0) { 10242 pr_warn("failed to determine %s perf type: %s\n", 10243 uprobe ? "uprobe" : "kprobe", 10244 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10245 return type; 10246 } 10247 if (retprobe) { 10248 int bit = uprobe ? determine_uprobe_retprobe_bit() 10249 : determine_kprobe_retprobe_bit(); 10250 10251 if (bit < 0) { 10252 pr_warn("failed to determine %s retprobe bit: %s\n", 10253 uprobe ? "uprobe" : "kprobe", 10254 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 10255 return bit; 10256 } 10257 attr.config |= 1 << bit; 10258 } 10259 attr.size = sizeof(attr); 10260 attr.type = type; 10261 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10262 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 10263 attr.config2 = offset; /* kprobe_addr or probe_offset */ 10264 10265 /* pid filter is meaningful only for uprobes */ 10266 pfd = syscall(__NR_perf_event_open, &attr, 10267 pid < 0 ? -1 : pid /* pid */, 10268 pid == -1 ? 0 : -1 /* cpu */, 10269 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10270 if (pfd < 0) { 10271 err = -errno; 10272 pr_warn("%s perf_event_open() failed: %s\n", 10273 uprobe ? "uprobe" : "kprobe", 10274 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10275 return err; 10276 } 10277 return pfd; 10278 } 10279 10280 static int append_to_file(const char *file, const char *fmt, ...) 10281 { 10282 int fd, n, err = 0; 10283 va_list ap; 10284 10285 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 10286 if (fd < 0) 10287 return -errno; 10288 10289 va_start(ap, fmt); 10290 n = vdprintf(fd, fmt, ap); 10291 va_end(ap); 10292 10293 if (n < 0) 10294 err = -errno; 10295 10296 close(fd); 10297 return err; 10298 } 10299 10300 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 10301 const char *kfunc_name, size_t offset) 10302 { 10303 static int index = 0; 10304 10305 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 10306 __sync_fetch_and_add(&index, 1)); 10307 } 10308 10309 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 10310 const char *kfunc_name, size_t offset) 10311 { 10312 const char *file = "/sys/kernel/debug/tracing/kprobe_events"; 10313 10314 return append_to_file(file, "%c:%s/%s %s+0x%zx", 10315 retprobe ? 'r' : 'p', 10316 retprobe ? "kretprobes" : "kprobes", 10317 probe_name, kfunc_name, offset); 10318 } 10319 10320 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 10321 { 10322 const char *file = "/sys/kernel/debug/tracing/kprobe_events"; 10323 10324 return append_to_file(file, "-:%s/%s", retprobe ? "kretprobes" : "kprobes", probe_name); 10325 } 10326 10327 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10328 { 10329 char file[256]; 10330 10331 snprintf(file, sizeof(file), 10332 "/sys/kernel/debug/tracing/events/%s/%s/id", 10333 retprobe ? "kretprobes" : "kprobes", probe_name); 10334 10335 return parse_uint_from_file(file, "%d\n"); 10336 } 10337 10338 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 10339 const char *kfunc_name, size_t offset, int pid) 10340 { 10341 struct perf_event_attr attr = {}; 10342 char errmsg[STRERR_BUFSIZE]; 10343 int type, pfd, err; 10344 10345 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 10346 if (err < 0) { 10347 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 10348 kfunc_name, offset, 10349 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10350 return err; 10351 } 10352 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 10353 if (type < 0) { 10354 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 10355 kfunc_name, offset, 10356 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10357 return type; 10358 } 10359 attr.size = sizeof(attr); 10360 attr.config = type; 10361 attr.type = PERF_TYPE_TRACEPOINT; 10362 10363 pfd = syscall(__NR_perf_event_open, &attr, 10364 pid < 0 ? -1 : pid, /* pid */ 10365 pid == -1 ? 0 : -1, /* cpu */ 10366 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10367 if (pfd < 0) { 10368 err = -errno; 10369 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10370 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10371 return err; 10372 } 10373 return pfd; 10374 } 10375 10376 struct bpf_link * 10377 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 10378 const char *func_name, 10379 const struct bpf_kprobe_opts *opts) 10380 { 10381 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10382 char errmsg[STRERR_BUFSIZE]; 10383 char *legacy_probe = NULL; 10384 struct bpf_link *link; 10385 size_t offset; 10386 bool retprobe, legacy; 10387 int pfd, err; 10388 10389 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 10390 return libbpf_err_ptr(-EINVAL); 10391 10392 retprobe = OPTS_GET(opts, retprobe, false); 10393 offset = OPTS_GET(opts, offset, 0); 10394 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10395 10396 legacy = determine_kprobe_perf_type() < 0; 10397 if (!legacy) { 10398 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 10399 func_name, offset, 10400 -1 /* pid */, 0 /* ref_ctr_off */); 10401 } else { 10402 char probe_name[256]; 10403 10404 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 10405 func_name, offset); 10406 10407 legacy_probe = strdup(probe_name); 10408 if (!legacy_probe) 10409 return libbpf_err_ptr(-ENOMEM); 10410 10411 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 10412 offset, -1 /* pid */); 10413 } 10414 if (pfd < 0) { 10415 err = -errno; 10416 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 10417 prog->name, retprobe ? "kretprobe" : "kprobe", 10418 func_name, offset, 10419 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10420 goto err_out; 10421 } 10422 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10423 err = libbpf_get_error(link); 10424 if (err) { 10425 close(pfd); 10426 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 10427 prog->name, retprobe ? "kretprobe" : "kprobe", 10428 func_name, offset, 10429 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10430 goto err_out; 10431 } 10432 if (legacy) { 10433 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10434 10435 perf_link->legacy_probe_name = legacy_probe; 10436 perf_link->legacy_is_kprobe = true; 10437 perf_link->legacy_is_retprobe = retprobe; 10438 } 10439 10440 return link; 10441 err_out: 10442 free(legacy_probe); 10443 return libbpf_err_ptr(err); 10444 } 10445 10446 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 10447 bool retprobe, 10448 const char *func_name) 10449 { 10450 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 10451 .retprobe = retprobe, 10452 ); 10453 10454 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 10455 } 10456 10457 /* Adapted from perf/util/string.c */ 10458 static bool glob_match(const char *str, const char *pat) 10459 { 10460 while (*str && *pat && *pat != '*') { 10461 if (*pat == '?') { /* Matches any single character */ 10462 str++; 10463 pat++; 10464 continue; 10465 } 10466 if (*str != *pat) 10467 return false; 10468 str++; 10469 pat++; 10470 } 10471 /* Check wild card */ 10472 if (*pat == '*') { 10473 while (*pat == '*') 10474 pat++; 10475 if (!*pat) /* Tail wild card matches all */ 10476 return true; 10477 while (*str) 10478 if (glob_match(str++, pat)) 10479 return true; 10480 } 10481 return !*str && !*pat; 10482 } 10483 10484 struct kprobe_multi_resolve { 10485 const char *pattern; 10486 unsigned long *addrs; 10487 size_t cap; 10488 size_t cnt; 10489 }; 10490 10491 static int 10492 resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type, 10493 const char *sym_name, void *ctx) 10494 { 10495 struct kprobe_multi_resolve *res = ctx; 10496 int err; 10497 10498 if (!glob_match(sym_name, res->pattern)) 10499 return 0; 10500 10501 err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long), 10502 res->cnt + 1); 10503 if (err) 10504 return err; 10505 10506 res->addrs[res->cnt++] = (unsigned long) sym_addr; 10507 return 0; 10508 } 10509 10510 struct bpf_link * 10511 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 10512 const char *pattern, 10513 const struct bpf_kprobe_multi_opts *opts) 10514 { 10515 LIBBPF_OPTS(bpf_link_create_opts, lopts); 10516 struct kprobe_multi_resolve res = { 10517 .pattern = pattern, 10518 }; 10519 struct bpf_link *link = NULL; 10520 char errmsg[STRERR_BUFSIZE]; 10521 const unsigned long *addrs; 10522 int err, link_fd, prog_fd; 10523 const __u64 *cookies; 10524 const char **syms; 10525 bool retprobe; 10526 size_t cnt; 10527 10528 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 10529 return libbpf_err_ptr(-EINVAL); 10530 10531 syms = OPTS_GET(opts, syms, false); 10532 addrs = OPTS_GET(opts, addrs, false); 10533 cnt = OPTS_GET(opts, cnt, false); 10534 cookies = OPTS_GET(opts, cookies, false); 10535 10536 if (!pattern && !addrs && !syms) 10537 return libbpf_err_ptr(-EINVAL); 10538 if (pattern && (addrs || syms || cookies || cnt)) 10539 return libbpf_err_ptr(-EINVAL); 10540 if (!pattern && !cnt) 10541 return libbpf_err_ptr(-EINVAL); 10542 if (addrs && syms) 10543 return libbpf_err_ptr(-EINVAL); 10544 10545 if (pattern) { 10546 err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res); 10547 if (err) 10548 goto error; 10549 if (!res.cnt) { 10550 err = -ENOENT; 10551 goto error; 10552 } 10553 addrs = res.addrs; 10554 cnt = res.cnt; 10555 } 10556 10557 retprobe = OPTS_GET(opts, retprobe, false); 10558 10559 lopts.kprobe_multi.syms = syms; 10560 lopts.kprobe_multi.addrs = addrs; 10561 lopts.kprobe_multi.cookies = cookies; 10562 lopts.kprobe_multi.cnt = cnt; 10563 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 10564 10565 link = calloc(1, sizeof(*link)); 10566 if (!link) { 10567 err = -ENOMEM; 10568 goto error; 10569 } 10570 link->detach = &bpf_link__detach_fd; 10571 10572 prog_fd = bpf_program__fd(prog); 10573 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts); 10574 if (link_fd < 0) { 10575 err = -errno; 10576 pr_warn("prog '%s': failed to attach: %s\n", 10577 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10578 goto error; 10579 } 10580 link->fd = link_fd; 10581 free(res.addrs); 10582 return link; 10583 10584 error: 10585 free(link); 10586 free(res.addrs); 10587 return libbpf_err_ptr(err); 10588 } 10589 10590 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10591 { 10592 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 10593 unsigned long offset = 0; 10594 const char *func_name; 10595 char *func; 10596 int n; 10597 10598 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 10599 if (opts.retprobe) 10600 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 10601 else 10602 func_name = prog->sec_name + sizeof("kprobe/") - 1; 10603 10604 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 10605 if (n < 1) { 10606 pr_warn("kprobe name is invalid: %s\n", func_name); 10607 return -EINVAL; 10608 } 10609 if (opts.retprobe && offset != 0) { 10610 free(func); 10611 pr_warn("kretprobes do not support offset specification\n"); 10612 return -EINVAL; 10613 } 10614 10615 opts.offset = offset; 10616 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 10617 free(func); 10618 return libbpf_get_error(*link); 10619 } 10620 10621 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10622 { 10623 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 10624 const char *spec; 10625 char *pattern; 10626 int n; 10627 10628 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 10629 if (opts.retprobe) 10630 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 10631 else 10632 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 10633 10634 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 10635 if (n < 1) { 10636 pr_warn("kprobe multi pattern is invalid: %s\n", pattern); 10637 return -EINVAL; 10638 } 10639 10640 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 10641 free(pattern); 10642 return libbpf_get_error(*link); 10643 } 10644 10645 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 10646 const char *binary_path, uint64_t offset) 10647 { 10648 int i; 10649 10650 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 10651 10652 /* sanitize binary_path in the probe name */ 10653 for (i = 0; buf[i]; i++) { 10654 if (!isalnum(buf[i])) 10655 buf[i] = '_'; 10656 } 10657 } 10658 10659 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 10660 const char *binary_path, size_t offset) 10661 { 10662 const char *file = "/sys/kernel/debug/tracing/uprobe_events"; 10663 10664 return append_to_file(file, "%c:%s/%s %s:0x%zx", 10665 retprobe ? 'r' : 'p', 10666 retprobe ? "uretprobes" : "uprobes", 10667 probe_name, binary_path, offset); 10668 } 10669 10670 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 10671 { 10672 const char *file = "/sys/kernel/debug/tracing/uprobe_events"; 10673 10674 return append_to_file(file, "-:%s/%s", retprobe ? "uretprobes" : "uprobes", probe_name); 10675 } 10676 10677 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10678 { 10679 char file[512]; 10680 10681 snprintf(file, sizeof(file), 10682 "/sys/kernel/debug/tracing/events/%s/%s/id", 10683 retprobe ? "uretprobes" : "uprobes", probe_name); 10684 10685 return parse_uint_from_file(file, "%d\n"); 10686 } 10687 10688 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 10689 const char *binary_path, size_t offset, int pid) 10690 { 10691 struct perf_event_attr attr; 10692 int type, pfd, err; 10693 10694 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 10695 if (err < 0) { 10696 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 10697 binary_path, (size_t)offset, err); 10698 return err; 10699 } 10700 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 10701 if (type < 0) { 10702 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 10703 binary_path, offset, err); 10704 return type; 10705 } 10706 10707 memset(&attr, 0, sizeof(attr)); 10708 attr.size = sizeof(attr); 10709 attr.config = type; 10710 attr.type = PERF_TYPE_TRACEPOINT; 10711 10712 pfd = syscall(__NR_perf_event_open, &attr, 10713 pid < 0 ? -1 : pid, /* pid */ 10714 pid == -1 ? 0 : -1, /* cpu */ 10715 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10716 if (pfd < 0) { 10717 err = -errno; 10718 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 10719 return err; 10720 } 10721 return pfd; 10722 } 10723 10724 /* uprobes deal in relative offsets; subtract the base address associated with 10725 * the mapped binary. See Documentation/trace/uprobetracer.rst for more 10726 * details. 10727 */ 10728 static long elf_find_relative_offset(const char *filename, Elf *elf, long addr) 10729 { 10730 size_t n; 10731 int i; 10732 10733 if (elf_getphdrnum(elf, &n)) { 10734 pr_warn("elf: failed to find program headers for '%s': %s\n", filename, 10735 elf_errmsg(-1)); 10736 return -ENOENT; 10737 } 10738 10739 for (i = 0; i < n; i++) { 10740 int seg_start, seg_end, seg_offset; 10741 GElf_Phdr phdr; 10742 10743 if (!gelf_getphdr(elf, i, &phdr)) { 10744 pr_warn("elf: failed to get program header %d from '%s': %s\n", i, filename, 10745 elf_errmsg(-1)); 10746 return -ENOENT; 10747 } 10748 if (phdr.p_type != PT_LOAD || !(phdr.p_flags & PF_X)) 10749 continue; 10750 10751 seg_start = phdr.p_vaddr; 10752 seg_end = seg_start + phdr.p_memsz; 10753 seg_offset = phdr.p_offset; 10754 if (addr >= seg_start && addr < seg_end) 10755 return addr - seg_start + seg_offset; 10756 } 10757 pr_warn("elf: failed to find prog header containing 0x%lx in '%s'\n", addr, filename); 10758 return -ENOENT; 10759 } 10760 10761 /* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */ 10762 static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn) 10763 { 10764 while ((scn = elf_nextscn(elf, scn)) != NULL) { 10765 GElf_Shdr sh; 10766 10767 if (!gelf_getshdr(scn, &sh)) 10768 continue; 10769 if (sh.sh_type == sh_type) 10770 return scn; 10771 } 10772 return NULL; 10773 } 10774 10775 /* Find offset of function name in object specified by path. "name" matches 10776 * symbol name or name@@LIB for library functions. 10777 */ 10778 static long elf_find_func_offset(const char *binary_path, const char *name) 10779 { 10780 int fd, i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB }; 10781 bool is_shared_lib, is_name_qualified; 10782 char errmsg[STRERR_BUFSIZE]; 10783 long ret = -ENOENT; 10784 size_t name_len; 10785 GElf_Ehdr ehdr; 10786 Elf *elf; 10787 10788 fd = open(binary_path, O_RDONLY | O_CLOEXEC); 10789 if (fd < 0) { 10790 ret = -errno; 10791 pr_warn("failed to open %s: %s\n", binary_path, 10792 libbpf_strerror_r(ret, errmsg, sizeof(errmsg))); 10793 return ret; 10794 } 10795 elf = elf_begin(fd, ELF_C_READ_MMAP, NULL); 10796 if (!elf) { 10797 pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1)); 10798 close(fd); 10799 return -LIBBPF_ERRNO__FORMAT; 10800 } 10801 if (!gelf_getehdr(elf, &ehdr)) { 10802 pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1)); 10803 ret = -LIBBPF_ERRNO__FORMAT; 10804 goto out; 10805 } 10806 /* for shared lib case, we do not need to calculate relative offset */ 10807 is_shared_lib = ehdr.e_type == ET_DYN; 10808 10809 name_len = strlen(name); 10810 /* Does name specify "@@LIB"? */ 10811 is_name_qualified = strstr(name, "@@") != NULL; 10812 10813 /* Search SHT_DYNSYM, SHT_SYMTAB for symbol. This search order is used because if 10814 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically 10815 * linked binary may not have SHT_DYMSYM, so absence of a section should not be 10816 * reported as a warning/error. 10817 */ 10818 for (i = 0; i < ARRAY_SIZE(sh_types); i++) { 10819 size_t nr_syms, strtabidx, idx; 10820 Elf_Data *symbols = NULL; 10821 Elf_Scn *scn = NULL; 10822 int last_bind = -1; 10823 const char *sname; 10824 GElf_Shdr sh; 10825 10826 scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL); 10827 if (!scn) { 10828 pr_debug("elf: failed to find symbol table ELF sections in '%s'\n", 10829 binary_path); 10830 continue; 10831 } 10832 if (!gelf_getshdr(scn, &sh)) 10833 continue; 10834 strtabidx = sh.sh_link; 10835 symbols = elf_getdata(scn, 0); 10836 if (!symbols) { 10837 pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n", 10838 binary_path, elf_errmsg(-1)); 10839 ret = -LIBBPF_ERRNO__FORMAT; 10840 goto out; 10841 } 10842 nr_syms = symbols->d_size / sh.sh_entsize; 10843 10844 for (idx = 0; idx < nr_syms; idx++) { 10845 int curr_bind; 10846 GElf_Sym sym; 10847 10848 if (!gelf_getsym(symbols, idx, &sym)) 10849 continue; 10850 10851 if (GELF_ST_TYPE(sym.st_info) != STT_FUNC) 10852 continue; 10853 10854 sname = elf_strptr(elf, strtabidx, sym.st_name); 10855 if (!sname) 10856 continue; 10857 10858 curr_bind = GELF_ST_BIND(sym.st_info); 10859 10860 /* User can specify func, func@@LIB or func@@LIB_VERSION. */ 10861 if (strncmp(sname, name, name_len) != 0) 10862 continue; 10863 /* ...but we don't want a search for "foo" to match 'foo2" also, so any 10864 * additional characters in sname should be of the form "@@LIB". 10865 */ 10866 if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@') 10867 continue; 10868 10869 if (ret >= 0) { 10870 /* handle multiple matches */ 10871 if (last_bind != STB_WEAK && curr_bind != STB_WEAK) { 10872 /* Only accept one non-weak bind. */ 10873 pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n", 10874 sname, name, binary_path); 10875 ret = -LIBBPF_ERRNO__FORMAT; 10876 goto out; 10877 } else if (curr_bind == STB_WEAK) { 10878 /* already have a non-weak bind, and 10879 * this is a weak bind, so ignore. 10880 */ 10881 continue; 10882 } 10883 } 10884 ret = sym.st_value; 10885 last_bind = curr_bind; 10886 } 10887 /* For binaries that are not shared libraries, we need relative offset */ 10888 if (ret > 0 && !is_shared_lib) 10889 ret = elf_find_relative_offset(binary_path, elf, ret); 10890 if (ret > 0) 10891 break; 10892 } 10893 10894 if (ret > 0) { 10895 pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path, 10896 ret); 10897 } else { 10898 if (ret == 0) { 10899 pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path, 10900 is_shared_lib ? "should not be 0 in a shared library" : 10901 "try using shared library path instead"); 10902 ret = -ENOENT; 10903 } else { 10904 pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path); 10905 } 10906 } 10907 out: 10908 elf_end(elf); 10909 close(fd); 10910 return ret; 10911 } 10912 10913 static const char *arch_specific_lib_paths(void) 10914 { 10915 /* 10916 * Based on https://packages.debian.org/sid/libc6. 10917 * 10918 * Assume that the traced program is built for the same architecture 10919 * as libbpf, which should cover the vast majority of cases. 10920 */ 10921 #if defined(__x86_64__) 10922 return "/lib/x86_64-linux-gnu"; 10923 #elif defined(__i386__) 10924 return "/lib/i386-linux-gnu"; 10925 #elif defined(__s390x__) 10926 return "/lib/s390x-linux-gnu"; 10927 #elif defined(__s390__) 10928 return "/lib/s390-linux-gnu"; 10929 #elif defined(__arm__) && defined(__SOFTFP__) 10930 return "/lib/arm-linux-gnueabi"; 10931 #elif defined(__arm__) && !defined(__SOFTFP__) 10932 return "/lib/arm-linux-gnueabihf"; 10933 #elif defined(__aarch64__) 10934 return "/lib/aarch64-linux-gnu"; 10935 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 10936 return "/lib/mips64el-linux-gnuabi64"; 10937 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 10938 return "/lib/mipsel-linux-gnu"; 10939 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 10940 return "/lib/powerpc64le-linux-gnu"; 10941 #elif defined(__sparc__) && defined(__arch64__) 10942 return "/lib/sparc64-linux-gnu"; 10943 #elif defined(__riscv) && __riscv_xlen == 64 10944 return "/lib/riscv64-linux-gnu"; 10945 #else 10946 return NULL; 10947 #endif 10948 } 10949 10950 /* Get full path to program/shared library. */ 10951 static int resolve_full_path(const char *file, char *result, size_t result_sz) 10952 { 10953 const char *search_paths[3] = {}; 10954 int i; 10955 10956 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 10957 search_paths[0] = getenv("LD_LIBRARY_PATH"); 10958 search_paths[1] = "/usr/lib64:/usr/lib"; 10959 search_paths[2] = arch_specific_lib_paths(); 10960 } else { 10961 search_paths[0] = getenv("PATH"); 10962 search_paths[1] = "/usr/bin:/usr/sbin"; 10963 } 10964 10965 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 10966 const char *s; 10967 10968 if (!search_paths[i]) 10969 continue; 10970 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 10971 char *next_path; 10972 int seg_len; 10973 10974 if (s[0] == ':') 10975 s++; 10976 next_path = strchr(s, ':'); 10977 seg_len = next_path ? next_path - s : strlen(s); 10978 if (!seg_len) 10979 continue; 10980 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 10981 /* ensure it is an executable file/link */ 10982 if (access(result, R_OK | X_OK) < 0) 10983 continue; 10984 pr_debug("resolved '%s' to '%s'\n", file, result); 10985 return 0; 10986 } 10987 } 10988 return -ENOENT; 10989 } 10990 10991 LIBBPF_API struct bpf_link * 10992 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 10993 const char *binary_path, size_t func_offset, 10994 const struct bpf_uprobe_opts *opts) 10995 { 10996 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10997 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 10998 char full_binary_path[PATH_MAX]; 10999 struct bpf_link *link; 11000 size_t ref_ctr_off; 11001 int pfd, err; 11002 bool retprobe, legacy; 11003 const char *func_name; 11004 11005 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11006 return libbpf_err_ptr(-EINVAL); 11007 11008 retprobe = OPTS_GET(opts, retprobe, false); 11009 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 11010 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11011 11012 if (binary_path && !strchr(binary_path, '/')) { 11013 err = resolve_full_path(binary_path, full_binary_path, 11014 sizeof(full_binary_path)); 11015 if (err) { 11016 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11017 prog->name, binary_path, err); 11018 return libbpf_err_ptr(err); 11019 } 11020 binary_path = full_binary_path; 11021 } 11022 func_name = OPTS_GET(opts, func_name, NULL); 11023 if (func_name) { 11024 long sym_off; 11025 11026 if (!binary_path) { 11027 pr_warn("prog '%s': name-based attach requires binary_path\n", 11028 prog->name); 11029 return libbpf_err_ptr(-EINVAL); 11030 } 11031 sym_off = elf_find_func_offset(binary_path, func_name); 11032 if (sym_off < 0) 11033 return libbpf_err_ptr(sym_off); 11034 func_offset += sym_off; 11035 } 11036 11037 legacy = determine_uprobe_perf_type() < 0; 11038 if (!legacy) { 11039 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 11040 func_offset, pid, ref_ctr_off); 11041 } else { 11042 char probe_name[PATH_MAX + 64]; 11043 11044 if (ref_ctr_off) 11045 return libbpf_err_ptr(-EINVAL); 11046 11047 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 11048 binary_path, func_offset); 11049 11050 legacy_probe = strdup(probe_name); 11051 if (!legacy_probe) 11052 return libbpf_err_ptr(-ENOMEM); 11053 11054 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 11055 binary_path, func_offset, pid); 11056 } 11057 if (pfd < 0) { 11058 err = -errno; 11059 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 11060 prog->name, retprobe ? "uretprobe" : "uprobe", 11061 binary_path, func_offset, 11062 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11063 goto err_out; 11064 } 11065 11066 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11067 err = libbpf_get_error(link); 11068 if (err) { 11069 close(pfd); 11070 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 11071 prog->name, retprobe ? "uretprobe" : "uprobe", 11072 binary_path, func_offset, 11073 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11074 goto err_out; 11075 } 11076 if (legacy) { 11077 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11078 11079 perf_link->legacy_probe_name = legacy_probe; 11080 perf_link->legacy_is_kprobe = false; 11081 perf_link->legacy_is_retprobe = retprobe; 11082 } 11083 return link; 11084 err_out: 11085 free(legacy_probe); 11086 return libbpf_err_ptr(err); 11087 11088 } 11089 11090 /* Format of u[ret]probe section definition supporting auto-attach: 11091 * u[ret]probe/binary:function[+offset] 11092 * 11093 * binary can be an absolute/relative path or a filename; the latter is resolved to a 11094 * full binary path via bpf_program__attach_uprobe_opts. 11095 * 11096 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 11097 * specified (and auto-attach is not possible) or the above format is specified for 11098 * auto-attach. 11099 */ 11100 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11101 { 11102 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 11103 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11104 int n, ret = -EINVAL; 11105 long offset = 0; 11106 11107 *link = NULL; 11108 11109 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li", 11110 &probe_type, &binary_path, &func_name, &offset); 11111 switch (n) { 11112 case 1: 11113 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11114 ret = 0; 11115 break; 11116 case 2: 11117 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 11118 prog->name, prog->sec_name); 11119 break; 11120 case 3: 11121 case 4: 11122 opts.retprobe = strcmp(probe_type, "uretprobe") == 0; 11123 if (opts.retprobe && offset != 0) { 11124 pr_warn("prog '%s': uretprobes do not support offset specification\n", 11125 prog->name); 11126 break; 11127 } 11128 opts.func_name = func_name; 11129 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 11130 ret = libbpf_get_error(*link); 11131 break; 11132 default: 11133 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11134 prog->sec_name); 11135 break; 11136 } 11137 free(probe_type); 11138 free(binary_path); 11139 free(func_name); 11140 11141 return ret; 11142 } 11143 11144 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 11145 bool retprobe, pid_t pid, 11146 const char *binary_path, 11147 size_t func_offset) 11148 { 11149 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 11150 11151 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 11152 } 11153 11154 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 11155 pid_t pid, const char *binary_path, 11156 const char *usdt_provider, const char *usdt_name, 11157 const struct bpf_usdt_opts *opts) 11158 { 11159 char resolved_path[512]; 11160 struct bpf_object *obj = prog->obj; 11161 struct bpf_link *link; 11162 __u64 usdt_cookie; 11163 int err; 11164 11165 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11166 return libbpf_err_ptr(-EINVAL); 11167 11168 if (bpf_program__fd(prog) < 0) { 11169 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 11170 prog->name); 11171 return libbpf_err_ptr(-EINVAL); 11172 } 11173 11174 if (!strchr(binary_path, '/')) { 11175 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 11176 if (err) { 11177 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11178 prog->name, binary_path, err); 11179 return libbpf_err_ptr(err); 11180 } 11181 binary_path = resolved_path; 11182 } 11183 11184 /* USDT manager is instantiated lazily on first USDT attach. It will 11185 * be destroyed together with BPF object in bpf_object__close(). 11186 */ 11187 if (IS_ERR(obj->usdt_man)) 11188 return libbpf_ptr(obj->usdt_man); 11189 if (!obj->usdt_man) { 11190 obj->usdt_man = usdt_manager_new(obj); 11191 if (IS_ERR(obj->usdt_man)) 11192 return libbpf_ptr(obj->usdt_man); 11193 } 11194 11195 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 11196 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 11197 usdt_provider, usdt_name, usdt_cookie); 11198 err = libbpf_get_error(link); 11199 if (err) 11200 return libbpf_err_ptr(err); 11201 return link; 11202 } 11203 11204 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11205 { 11206 char *path = NULL, *provider = NULL, *name = NULL; 11207 const char *sec_name; 11208 int n, err; 11209 11210 sec_name = bpf_program__section_name(prog); 11211 if (strcmp(sec_name, "usdt") == 0) { 11212 /* no auto-attach for just SEC("usdt") */ 11213 *link = NULL; 11214 return 0; 11215 } 11216 11217 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 11218 if (n != 3) { 11219 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 11220 sec_name); 11221 err = -EINVAL; 11222 } else { 11223 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 11224 provider, name, NULL); 11225 err = libbpf_get_error(*link); 11226 } 11227 free(path); 11228 free(provider); 11229 free(name); 11230 return err; 11231 } 11232 11233 static int determine_tracepoint_id(const char *tp_category, 11234 const char *tp_name) 11235 { 11236 char file[PATH_MAX]; 11237 int ret; 11238 11239 ret = snprintf(file, sizeof(file), 11240 "/sys/kernel/debug/tracing/events/%s/%s/id", 11241 tp_category, tp_name); 11242 if (ret < 0) 11243 return -errno; 11244 if (ret >= sizeof(file)) { 11245 pr_debug("tracepoint %s/%s path is too long\n", 11246 tp_category, tp_name); 11247 return -E2BIG; 11248 } 11249 return parse_uint_from_file(file, "%d\n"); 11250 } 11251 11252 static int perf_event_open_tracepoint(const char *tp_category, 11253 const char *tp_name) 11254 { 11255 struct perf_event_attr attr = {}; 11256 char errmsg[STRERR_BUFSIZE]; 11257 int tp_id, pfd, err; 11258 11259 tp_id = determine_tracepoint_id(tp_category, tp_name); 11260 if (tp_id < 0) { 11261 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 11262 tp_category, tp_name, 11263 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 11264 return tp_id; 11265 } 11266 11267 attr.type = PERF_TYPE_TRACEPOINT; 11268 attr.size = sizeof(attr); 11269 attr.config = tp_id; 11270 11271 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 11272 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11273 if (pfd < 0) { 11274 err = -errno; 11275 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 11276 tp_category, tp_name, 11277 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11278 return err; 11279 } 11280 return pfd; 11281 } 11282 11283 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 11284 const char *tp_category, 11285 const char *tp_name, 11286 const struct bpf_tracepoint_opts *opts) 11287 { 11288 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11289 char errmsg[STRERR_BUFSIZE]; 11290 struct bpf_link *link; 11291 int pfd, err; 11292 11293 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 11294 return libbpf_err_ptr(-EINVAL); 11295 11296 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11297 11298 pfd = perf_event_open_tracepoint(tp_category, tp_name); 11299 if (pfd < 0) { 11300 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 11301 prog->name, tp_category, tp_name, 11302 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11303 return libbpf_err_ptr(pfd); 11304 } 11305 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11306 err = libbpf_get_error(link); 11307 if (err) { 11308 close(pfd); 11309 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 11310 prog->name, tp_category, tp_name, 11311 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11312 return libbpf_err_ptr(err); 11313 } 11314 return link; 11315 } 11316 11317 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 11318 const char *tp_category, 11319 const char *tp_name) 11320 { 11321 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 11322 } 11323 11324 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11325 { 11326 char *sec_name, *tp_cat, *tp_name; 11327 11328 sec_name = strdup(prog->sec_name); 11329 if (!sec_name) 11330 return -ENOMEM; 11331 11332 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 11333 if (str_has_pfx(prog->sec_name, "tp/")) 11334 tp_cat = sec_name + sizeof("tp/") - 1; 11335 else 11336 tp_cat = sec_name + sizeof("tracepoint/") - 1; 11337 tp_name = strchr(tp_cat, '/'); 11338 if (!tp_name) { 11339 free(sec_name); 11340 return -EINVAL; 11341 } 11342 *tp_name = '\0'; 11343 tp_name++; 11344 11345 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 11346 free(sec_name); 11347 return libbpf_get_error(*link); 11348 } 11349 11350 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 11351 const char *tp_name) 11352 { 11353 char errmsg[STRERR_BUFSIZE]; 11354 struct bpf_link *link; 11355 int prog_fd, pfd; 11356 11357 prog_fd = bpf_program__fd(prog); 11358 if (prog_fd < 0) { 11359 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11360 return libbpf_err_ptr(-EINVAL); 11361 } 11362 11363 link = calloc(1, sizeof(*link)); 11364 if (!link) 11365 return libbpf_err_ptr(-ENOMEM); 11366 link->detach = &bpf_link__detach_fd; 11367 11368 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 11369 if (pfd < 0) { 11370 pfd = -errno; 11371 free(link); 11372 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 11373 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11374 return libbpf_err_ptr(pfd); 11375 } 11376 link->fd = pfd; 11377 return link; 11378 } 11379 11380 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11381 { 11382 static const char *const prefixes[] = { 11383 "raw_tp/", 11384 "raw_tracepoint/", 11385 "raw_tp.w/", 11386 "raw_tracepoint.w/", 11387 }; 11388 size_t i; 11389 const char *tp_name = NULL; 11390 11391 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 11392 if (str_has_pfx(prog->sec_name, prefixes[i])) { 11393 tp_name = prog->sec_name + strlen(prefixes[i]); 11394 break; 11395 } 11396 } 11397 if (!tp_name) { 11398 pr_warn("prog '%s': invalid section name '%s'\n", 11399 prog->name, prog->sec_name); 11400 return -EINVAL; 11401 } 11402 11403 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 11404 return libbpf_get_error(link); 11405 } 11406 11407 /* Common logic for all BPF program types that attach to a btf_id */ 11408 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog) 11409 { 11410 char errmsg[STRERR_BUFSIZE]; 11411 struct bpf_link *link; 11412 int prog_fd, pfd; 11413 11414 prog_fd = bpf_program__fd(prog); 11415 if (prog_fd < 0) { 11416 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11417 return libbpf_err_ptr(-EINVAL); 11418 } 11419 11420 link = calloc(1, sizeof(*link)); 11421 if (!link) 11422 return libbpf_err_ptr(-ENOMEM); 11423 link->detach = &bpf_link__detach_fd; 11424 11425 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 11426 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), NULL); 11427 if (pfd < 0) { 11428 pfd = -errno; 11429 free(link); 11430 pr_warn("prog '%s': failed to attach: %s\n", 11431 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11432 return libbpf_err_ptr(pfd); 11433 } 11434 link->fd = pfd; 11435 return link; 11436 } 11437 11438 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 11439 { 11440 return bpf_program__attach_btf_id(prog); 11441 } 11442 11443 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 11444 { 11445 return bpf_program__attach_btf_id(prog); 11446 } 11447 11448 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11449 { 11450 *link = bpf_program__attach_trace(prog); 11451 return libbpf_get_error(*link); 11452 } 11453 11454 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11455 { 11456 *link = bpf_program__attach_lsm(prog); 11457 return libbpf_get_error(*link); 11458 } 11459 11460 static struct bpf_link * 11461 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id, 11462 const char *target_name) 11463 { 11464 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 11465 .target_btf_id = btf_id); 11466 enum bpf_attach_type attach_type; 11467 char errmsg[STRERR_BUFSIZE]; 11468 struct bpf_link *link; 11469 int prog_fd, link_fd; 11470 11471 prog_fd = bpf_program__fd(prog); 11472 if (prog_fd < 0) { 11473 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11474 return libbpf_err_ptr(-EINVAL); 11475 } 11476 11477 link = calloc(1, sizeof(*link)); 11478 if (!link) 11479 return libbpf_err_ptr(-ENOMEM); 11480 link->detach = &bpf_link__detach_fd; 11481 11482 attach_type = bpf_program__expected_attach_type(prog); 11483 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 11484 if (link_fd < 0) { 11485 link_fd = -errno; 11486 free(link); 11487 pr_warn("prog '%s': failed to attach to %s: %s\n", 11488 prog->name, target_name, 11489 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11490 return libbpf_err_ptr(link_fd); 11491 } 11492 link->fd = link_fd; 11493 return link; 11494 } 11495 11496 struct bpf_link * 11497 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 11498 { 11499 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 11500 } 11501 11502 struct bpf_link * 11503 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 11504 { 11505 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 11506 } 11507 11508 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 11509 { 11510 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 11511 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 11512 } 11513 11514 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 11515 int target_fd, 11516 const char *attach_func_name) 11517 { 11518 int btf_id; 11519 11520 if (!!target_fd != !!attach_func_name) { 11521 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 11522 prog->name); 11523 return libbpf_err_ptr(-EINVAL); 11524 } 11525 11526 if (prog->type != BPF_PROG_TYPE_EXT) { 11527 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 11528 prog->name); 11529 return libbpf_err_ptr(-EINVAL); 11530 } 11531 11532 if (target_fd) { 11533 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 11534 if (btf_id < 0) 11535 return libbpf_err_ptr(btf_id); 11536 11537 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 11538 } else { 11539 /* no target, so use raw_tracepoint_open for compatibility 11540 * with old kernels 11541 */ 11542 return bpf_program__attach_trace(prog); 11543 } 11544 } 11545 11546 struct bpf_link * 11547 bpf_program__attach_iter(const struct bpf_program *prog, 11548 const struct bpf_iter_attach_opts *opts) 11549 { 11550 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 11551 char errmsg[STRERR_BUFSIZE]; 11552 struct bpf_link *link; 11553 int prog_fd, link_fd; 11554 __u32 target_fd = 0; 11555 11556 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 11557 return libbpf_err_ptr(-EINVAL); 11558 11559 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 11560 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 11561 11562 prog_fd = bpf_program__fd(prog); 11563 if (prog_fd < 0) { 11564 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11565 return libbpf_err_ptr(-EINVAL); 11566 } 11567 11568 link = calloc(1, sizeof(*link)); 11569 if (!link) 11570 return libbpf_err_ptr(-ENOMEM); 11571 link->detach = &bpf_link__detach_fd; 11572 11573 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 11574 &link_create_opts); 11575 if (link_fd < 0) { 11576 link_fd = -errno; 11577 free(link); 11578 pr_warn("prog '%s': failed to attach to iterator: %s\n", 11579 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11580 return libbpf_err_ptr(link_fd); 11581 } 11582 link->fd = link_fd; 11583 return link; 11584 } 11585 11586 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11587 { 11588 *link = bpf_program__attach_iter(prog, NULL); 11589 return libbpf_get_error(*link); 11590 } 11591 11592 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 11593 { 11594 struct bpf_link *link = NULL; 11595 int err; 11596 11597 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 11598 return libbpf_err_ptr(-EOPNOTSUPP); 11599 11600 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 11601 if (err) 11602 return libbpf_err_ptr(err); 11603 11604 /* When calling bpf_program__attach() explicitly, auto-attach support 11605 * is expected to work, so NULL returned link is considered an error. 11606 * This is different for skeleton's attach, see comment in 11607 * bpf_object__attach_skeleton(). 11608 */ 11609 if (!link) 11610 return libbpf_err_ptr(-EOPNOTSUPP); 11611 11612 return link; 11613 } 11614 11615 static int bpf_link__detach_struct_ops(struct bpf_link *link) 11616 { 11617 __u32 zero = 0; 11618 11619 if (bpf_map_delete_elem(link->fd, &zero)) 11620 return -errno; 11621 11622 return 0; 11623 } 11624 11625 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 11626 { 11627 struct bpf_struct_ops *st_ops; 11628 struct bpf_link *link; 11629 __u32 i, zero = 0; 11630 int err; 11631 11632 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 11633 return libbpf_err_ptr(-EINVAL); 11634 11635 link = calloc(1, sizeof(*link)); 11636 if (!link) 11637 return libbpf_err_ptr(-EINVAL); 11638 11639 st_ops = map->st_ops; 11640 for (i = 0; i < btf_vlen(st_ops->type); i++) { 11641 struct bpf_program *prog = st_ops->progs[i]; 11642 void *kern_data; 11643 int prog_fd; 11644 11645 if (!prog) 11646 continue; 11647 11648 prog_fd = bpf_program__fd(prog); 11649 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 11650 *(unsigned long *)kern_data = prog_fd; 11651 } 11652 11653 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 11654 if (err) { 11655 err = -errno; 11656 free(link); 11657 return libbpf_err_ptr(err); 11658 } 11659 11660 link->detach = bpf_link__detach_struct_ops; 11661 link->fd = map->fd; 11662 11663 return link; 11664 } 11665 11666 static enum bpf_perf_event_ret 11667 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 11668 void **copy_mem, size_t *copy_size, 11669 bpf_perf_event_print_t fn, void *private_data) 11670 { 11671 struct perf_event_mmap_page *header = mmap_mem; 11672 __u64 data_head = ring_buffer_read_head(header); 11673 __u64 data_tail = header->data_tail; 11674 void *base = ((__u8 *)header) + page_size; 11675 int ret = LIBBPF_PERF_EVENT_CONT; 11676 struct perf_event_header *ehdr; 11677 size_t ehdr_size; 11678 11679 while (data_head != data_tail) { 11680 ehdr = base + (data_tail & (mmap_size - 1)); 11681 ehdr_size = ehdr->size; 11682 11683 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 11684 void *copy_start = ehdr; 11685 size_t len_first = base + mmap_size - copy_start; 11686 size_t len_secnd = ehdr_size - len_first; 11687 11688 if (*copy_size < ehdr_size) { 11689 free(*copy_mem); 11690 *copy_mem = malloc(ehdr_size); 11691 if (!*copy_mem) { 11692 *copy_size = 0; 11693 ret = LIBBPF_PERF_EVENT_ERROR; 11694 break; 11695 } 11696 *copy_size = ehdr_size; 11697 } 11698 11699 memcpy(*copy_mem, copy_start, len_first); 11700 memcpy(*copy_mem + len_first, base, len_secnd); 11701 ehdr = *copy_mem; 11702 } 11703 11704 ret = fn(ehdr, private_data); 11705 data_tail += ehdr_size; 11706 if (ret != LIBBPF_PERF_EVENT_CONT) 11707 break; 11708 } 11709 11710 ring_buffer_write_tail(header, data_tail); 11711 return libbpf_err(ret); 11712 } 11713 11714 __attribute__((alias("perf_event_read_simple"))) 11715 enum bpf_perf_event_ret 11716 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 11717 void **copy_mem, size_t *copy_size, 11718 bpf_perf_event_print_t fn, void *private_data); 11719 11720 struct perf_buffer; 11721 11722 struct perf_buffer_params { 11723 struct perf_event_attr *attr; 11724 /* if event_cb is specified, it takes precendence */ 11725 perf_buffer_event_fn event_cb; 11726 /* sample_cb and lost_cb are higher-level common-case callbacks */ 11727 perf_buffer_sample_fn sample_cb; 11728 perf_buffer_lost_fn lost_cb; 11729 void *ctx; 11730 int cpu_cnt; 11731 int *cpus; 11732 int *map_keys; 11733 }; 11734 11735 struct perf_cpu_buf { 11736 struct perf_buffer *pb; 11737 void *base; /* mmap()'ed memory */ 11738 void *buf; /* for reconstructing segmented data */ 11739 size_t buf_size; 11740 int fd; 11741 int cpu; 11742 int map_key; 11743 }; 11744 11745 struct perf_buffer { 11746 perf_buffer_event_fn event_cb; 11747 perf_buffer_sample_fn sample_cb; 11748 perf_buffer_lost_fn lost_cb; 11749 void *ctx; /* passed into callbacks */ 11750 11751 size_t page_size; 11752 size_t mmap_size; 11753 struct perf_cpu_buf **cpu_bufs; 11754 struct epoll_event *events; 11755 int cpu_cnt; /* number of allocated CPU buffers */ 11756 int epoll_fd; /* perf event FD */ 11757 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 11758 }; 11759 11760 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 11761 struct perf_cpu_buf *cpu_buf) 11762 { 11763 if (!cpu_buf) 11764 return; 11765 if (cpu_buf->base && 11766 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 11767 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 11768 if (cpu_buf->fd >= 0) { 11769 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 11770 close(cpu_buf->fd); 11771 } 11772 free(cpu_buf->buf); 11773 free(cpu_buf); 11774 } 11775 11776 void perf_buffer__free(struct perf_buffer *pb) 11777 { 11778 int i; 11779 11780 if (IS_ERR_OR_NULL(pb)) 11781 return; 11782 if (pb->cpu_bufs) { 11783 for (i = 0; i < pb->cpu_cnt; i++) { 11784 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 11785 11786 if (!cpu_buf) 11787 continue; 11788 11789 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 11790 perf_buffer__free_cpu_buf(pb, cpu_buf); 11791 } 11792 free(pb->cpu_bufs); 11793 } 11794 if (pb->epoll_fd >= 0) 11795 close(pb->epoll_fd); 11796 free(pb->events); 11797 free(pb); 11798 } 11799 11800 static struct perf_cpu_buf * 11801 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 11802 int cpu, int map_key) 11803 { 11804 struct perf_cpu_buf *cpu_buf; 11805 char msg[STRERR_BUFSIZE]; 11806 int err; 11807 11808 cpu_buf = calloc(1, sizeof(*cpu_buf)); 11809 if (!cpu_buf) 11810 return ERR_PTR(-ENOMEM); 11811 11812 cpu_buf->pb = pb; 11813 cpu_buf->cpu = cpu; 11814 cpu_buf->map_key = map_key; 11815 11816 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 11817 -1, PERF_FLAG_FD_CLOEXEC); 11818 if (cpu_buf->fd < 0) { 11819 err = -errno; 11820 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 11821 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11822 goto error; 11823 } 11824 11825 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 11826 PROT_READ | PROT_WRITE, MAP_SHARED, 11827 cpu_buf->fd, 0); 11828 if (cpu_buf->base == MAP_FAILED) { 11829 cpu_buf->base = NULL; 11830 err = -errno; 11831 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 11832 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11833 goto error; 11834 } 11835 11836 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 11837 err = -errno; 11838 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 11839 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11840 goto error; 11841 } 11842 11843 return cpu_buf; 11844 11845 error: 11846 perf_buffer__free_cpu_buf(pb, cpu_buf); 11847 return (struct perf_cpu_buf *)ERR_PTR(err); 11848 } 11849 11850 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 11851 struct perf_buffer_params *p); 11852 11853 DEFAULT_VERSION(perf_buffer__new_v0_6_0, perf_buffer__new, LIBBPF_0.6.0) 11854 struct perf_buffer *perf_buffer__new_v0_6_0(int map_fd, size_t page_cnt, 11855 perf_buffer_sample_fn sample_cb, 11856 perf_buffer_lost_fn lost_cb, 11857 void *ctx, 11858 const struct perf_buffer_opts *opts) 11859 { 11860 struct perf_buffer_params p = {}; 11861 struct perf_event_attr attr = {}; 11862 11863 if (!OPTS_VALID(opts, perf_buffer_opts)) 11864 return libbpf_err_ptr(-EINVAL); 11865 11866 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 11867 attr.type = PERF_TYPE_SOFTWARE; 11868 attr.sample_type = PERF_SAMPLE_RAW; 11869 attr.sample_period = 1; 11870 attr.wakeup_events = 1; 11871 11872 p.attr = &attr; 11873 p.sample_cb = sample_cb; 11874 p.lost_cb = lost_cb; 11875 p.ctx = ctx; 11876 11877 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 11878 } 11879 11880 COMPAT_VERSION(perf_buffer__new_deprecated, perf_buffer__new, LIBBPF_0.0.4) 11881 struct perf_buffer *perf_buffer__new_deprecated(int map_fd, size_t page_cnt, 11882 const struct perf_buffer_opts *opts) 11883 { 11884 return perf_buffer__new_v0_6_0(map_fd, page_cnt, 11885 opts ? opts->sample_cb : NULL, 11886 opts ? opts->lost_cb : NULL, 11887 opts ? opts->ctx : NULL, 11888 NULL); 11889 } 11890 11891 DEFAULT_VERSION(perf_buffer__new_raw_v0_6_0, perf_buffer__new_raw, LIBBPF_0.6.0) 11892 struct perf_buffer *perf_buffer__new_raw_v0_6_0(int map_fd, size_t page_cnt, 11893 struct perf_event_attr *attr, 11894 perf_buffer_event_fn event_cb, void *ctx, 11895 const struct perf_buffer_raw_opts *opts) 11896 { 11897 struct perf_buffer_params p = {}; 11898 11899 if (!attr) 11900 return libbpf_err_ptr(-EINVAL); 11901 11902 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 11903 return libbpf_err_ptr(-EINVAL); 11904 11905 p.attr = attr; 11906 p.event_cb = event_cb; 11907 p.ctx = ctx; 11908 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 11909 p.cpus = OPTS_GET(opts, cpus, NULL); 11910 p.map_keys = OPTS_GET(opts, map_keys, NULL); 11911 11912 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 11913 } 11914 11915 COMPAT_VERSION(perf_buffer__new_raw_deprecated, perf_buffer__new_raw, LIBBPF_0.0.4) 11916 struct perf_buffer *perf_buffer__new_raw_deprecated(int map_fd, size_t page_cnt, 11917 const struct perf_buffer_raw_opts *opts) 11918 { 11919 LIBBPF_OPTS(perf_buffer_raw_opts, inner_opts, 11920 .cpu_cnt = opts->cpu_cnt, 11921 .cpus = opts->cpus, 11922 .map_keys = opts->map_keys, 11923 ); 11924 11925 return perf_buffer__new_raw_v0_6_0(map_fd, page_cnt, opts->attr, 11926 opts->event_cb, opts->ctx, &inner_opts); 11927 } 11928 11929 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 11930 struct perf_buffer_params *p) 11931 { 11932 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 11933 struct bpf_map_info map; 11934 char msg[STRERR_BUFSIZE]; 11935 struct perf_buffer *pb; 11936 bool *online = NULL; 11937 __u32 map_info_len; 11938 int err, i, j, n; 11939 11940 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 11941 pr_warn("page count should be power of two, but is %zu\n", 11942 page_cnt); 11943 return ERR_PTR(-EINVAL); 11944 } 11945 11946 /* best-effort sanity checks */ 11947 memset(&map, 0, sizeof(map)); 11948 map_info_len = sizeof(map); 11949 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 11950 if (err) { 11951 err = -errno; 11952 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 11953 * -EBADFD, -EFAULT, or -E2BIG on real error 11954 */ 11955 if (err != -EINVAL) { 11956 pr_warn("failed to get map info for map FD %d: %s\n", 11957 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 11958 return ERR_PTR(err); 11959 } 11960 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 11961 map_fd); 11962 } else { 11963 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 11964 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 11965 map.name); 11966 return ERR_PTR(-EINVAL); 11967 } 11968 } 11969 11970 pb = calloc(1, sizeof(*pb)); 11971 if (!pb) 11972 return ERR_PTR(-ENOMEM); 11973 11974 pb->event_cb = p->event_cb; 11975 pb->sample_cb = p->sample_cb; 11976 pb->lost_cb = p->lost_cb; 11977 pb->ctx = p->ctx; 11978 11979 pb->page_size = getpagesize(); 11980 pb->mmap_size = pb->page_size * page_cnt; 11981 pb->map_fd = map_fd; 11982 11983 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 11984 if (pb->epoll_fd < 0) { 11985 err = -errno; 11986 pr_warn("failed to create epoll instance: %s\n", 11987 libbpf_strerror_r(err, msg, sizeof(msg))); 11988 goto error; 11989 } 11990 11991 if (p->cpu_cnt > 0) { 11992 pb->cpu_cnt = p->cpu_cnt; 11993 } else { 11994 pb->cpu_cnt = libbpf_num_possible_cpus(); 11995 if (pb->cpu_cnt < 0) { 11996 err = pb->cpu_cnt; 11997 goto error; 11998 } 11999 if (map.max_entries && map.max_entries < pb->cpu_cnt) 12000 pb->cpu_cnt = map.max_entries; 12001 } 12002 12003 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 12004 if (!pb->events) { 12005 err = -ENOMEM; 12006 pr_warn("failed to allocate events: out of memory\n"); 12007 goto error; 12008 } 12009 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 12010 if (!pb->cpu_bufs) { 12011 err = -ENOMEM; 12012 pr_warn("failed to allocate buffers: out of memory\n"); 12013 goto error; 12014 } 12015 12016 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 12017 if (err) { 12018 pr_warn("failed to get online CPU mask: %d\n", err); 12019 goto error; 12020 } 12021 12022 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 12023 struct perf_cpu_buf *cpu_buf; 12024 int cpu, map_key; 12025 12026 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 12027 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 12028 12029 /* in case user didn't explicitly requested particular CPUs to 12030 * be attached to, skip offline/not present CPUs 12031 */ 12032 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 12033 continue; 12034 12035 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 12036 if (IS_ERR(cpu_buf)) { 12037 err = PTR_ERR(cpu_buf); 12038 goto error; 12039 } 12040 12041 pb->cpu_bufs[j] = cpu_buf; 12042 12043 err = bpf_map_update_elem(pb->map_fd, &map_key, 12044 &cpu_buf->fd, 0); 12045 if (err) { 12046 err = -errno; 12047 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 12048 cpu, map_key, cpu_buf->fd, 12049 libbpf_strerror_r(err, msg, sizeof(msg))); 12050 goto error; 12051 } 12052 12053 pb->events[j].events = EPOLLIN; 12054 pb->events[j].data.ptr = cpu_buf; 12055 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 12056 &pb->events[j]) < 0) { 12057 err = -errno; 12058 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 12059 cpu, cpu_buf->fd, 12060 libbpf_strerror_r(err, msg, sizeof(msg))); 12061 goto error; 12062 } 12063 j++; 12064 } 12065 pb->cpu_cnt = j; 12066 free(online); 12067 12068 return pb; 12069 12070 error: 12071 free(online); 12072 if (pb) 12073 perf_buffer__free(pb); 12074 return ERR_PTR(err); 12075 } 12076 12077 struct perf_sample_raw { 12078 struct perf_event_header header; 12079 uint32_t size; 12080 char data[]; 12081 }; 12082 12083 struct perf_sample_lost { 12084 struct perf_event_header header; 12085 uint64_t id; 12086 uint64_t lost; 12087 uint64_t sample_id; 12088 }; 12089 12090 static enum bpf_perf_event_ret 12091 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 12092 { 12093 struct perf_cpu_buf *cpu_buf = ctx; 12094 struct perf_buffer *pb = cpu_buf->pb; 12095 void *data = e; 12096 12097 /* user wants full control over parsing perf event */ 12098 if (pb->event_cb) 12099 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 12100 12101 switch (e->type) { 12102 case PERF_RECORD_SAMPLE: { 12103 struct perf_sample_raw *s = data; 12104 12105 if (pb->sample_cb) 12106 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 12107 break; 12108 } 12109 case PERF_RECORD_LOST: { 12110 struct perf_sample_lost *s = data; 12111 12112 if (pb->lost_cb) 12113 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 12114 break; 12115 } 12116 default: 12117 pr_warn("unknown perf sample type %d\n", e->type); 12118 return LIBBPF_PERF_EVENT_ERROR; 12119 } 12120 return LIBBPF_PERF_EVENT_CONT; 12121 } 12122 12123 static int perf_buffer__process_records(struct perf_buffer *pb, 12124 struct perf_cpu_buf *cpu_buf) 12125 { 12126 enum bpf_perf_event_ret ret; 12127 12128 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 12129 pb->page_size, &cpu_buf->buf, 12130 &cpu_buf->buf_size, 12131 perf_buffer__process_record, cpu_buf); 12132 if (ret != LIBBPF_PERF_EVENT_CONT) 12133 return ret; 12134 return 0; 12135 } 12136 12137 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 12138 { 12139 return pb->epoll_fd; 12140 } 12141 12142 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 12143 { 12144 int i, cnt, err; 12145 12146 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 12147 if (cnt < 0) 12148 return -errno; 12149 12150 for (i = 0; i < cnt; i++) { 12151 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 12152 12153 err = perf_buffer__process_records(pb, cpu_buf); 12154 if (err) { 12155 pr_warn("error while processing records: %d\n", err); 12156 return libbpf_err(err); 12157 } 12158 } 12159 return cnt; 12160 } 12161 12162 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 12163 * manager. 12164 */ 12165 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 12166 { 12167 return pb->cpu_cnt; 12168 } 12169 12170 /* 12171 * Return perf_event FD of a ring buffer in *buf_idx* slot of 12172 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 12173 * select()/poll()/epoll() Linux syscalls. 12174 */ 12175 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 12176 { 12177 struct perf_cpu_buf *cpu_buf; 12178 12179 if (buf_idx >= pb->cpu_cnt) 12180 return libbpf_err(-EINVAL); 12181 12182 cpu_buf = pb->cpu_bufs[buf_idx]; 12183 if (!cpu_buf) 12184 return libbpf_err(-ENOENT); 12185 12186 return cpu_buf->fd; 12187 } 12188 12189 /* 12190 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 12191 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 12192 * consume, do nothing and return success. 12193 * Returns: 12194 * - 0 on success; 12195 * - <0 on failure. 12196 */ 12197 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 12198 { 12199 struct perf_cpu_buf *cpu_buf; 12200 12201 if (buf_idx >= pb->cpu_cnt) 12202 return libbpf_err(-EINVAL); 12203 12204 cpu_buf = pb->cpu_bufs[buf_idx]; 12205 if (!cpu_buf) 12206 return libbpf_err(-ENOENT); 12207 12208 return perf_buffer__process_records(pb, cpu_buf); 12209 } 12210 12211 int perf_buffer__consume(struct perf_buffer *pb) 12212 { 12213 int i, err; 12214 12215 for (i = 0; i < pb->cpu_cnt; i++) { 12216 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12217 12218 if (!cpu_buf) 12219 continue; 12220 12221 err = perf_buffer__process_records(pb, cpu_buf); 12222 if (err) { 12223 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 12224 return libbpf_err(err); 12225 } 12226 } 12227 return 0; 12228 } 12229 12230 struct bpf_prog_info_array_desc { 12231 int array_offset; /* e.g. offset of jited_prog_insns */ 12232 int count_offset; /* e.g. offset of jited_prog_len */ 12233 int size_offset; /* > 0: offset of rec size, 12234 * < 0: fix size of -size_offset 12235 */ 12236 }; 12237 12238 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = { 12239 [BPF_PROG_INFO_JITED_INSNS] = { 12240 offsetof(struct bpf_prog_info, jited_prog_insns), 12241 offsetof(struct bpf_prog_info, jited_prog_len), 12242 -1, 12243 }, 12244 [BPF_PROG_INFO_XLATED_INSNS] = { 12245 offsetof(struct bpf_prog_info, xlated_prog_insns), 12246 offsetof(struct bpf_prog_info, xlated_prog_len), 12247 -1, 12248 }, 12249 [BPF_PROG_INFO_MAP_IDS] = { 12250 offsetof(struct bpf_prog_info, map_ids), 12251 offsetof(struct bpf_prog_info, nr_map_ids), 12252 -(int)sizeof(__u32), 12253 }, 12254 [BPF_PROG_INFO_JITED_KSYMS] = { 12255 offsetof(struct bpf_prog_info, jited_ksyms), 12256 offsetof(struct bpf_prog_info, nr_jited_ksyms), 12257 -(int)sizeof(__u64), 12258 }, 12259 [BPF_PROG_INFO_JITED_FUNC_LENS] = { 12260 offsetof(struct bpf_prog_info, jited_func_lens), 12261 offsetof(struct bpf_prog_info, nr_jited_func_lens), 12262 -(int)sizeof(__u32), 12263 }, 12264 [BPF_PROG_INFO_FUNC_INFO] = { 12265 offsetof(struct bpf_prog_info, func_info), 12266 offsetof(struct bpf_prog_info, nr_func_info), 12267 offsetof(struct bpf_prog_info, func_info_rec_size), 12268 }, 12269 [BPF_PROG_INFO_LINE_INFO] = { 12270 offsetof(struct bpf_prog_info, line_info), 12271 offsetof(struct bpf_prog_info, nr_line_info), 12272 offsetof(struct bpf_prog_info, line_info_rec_size), 12273 }, 12274 [BPF_PROG_INFO_JITED_LINE_INFO] = { 12275 offsetof(struct bpf_prog_info, jited_line_info), 12276 offsetof(struct bpf_prog_info, nr_jited_line_info), 12277 offsetof(struct bpf_prog_info, jited_line_info_rec_size), 12278 }, 12279 [BPF_PROG_INFO_PROG_TAGS] = { 12280 offsetof(struct bpf_prog_info, prog_tags), 12281 offsetof(struct bpf_prog_info, nr_prog_tags), 12282 -(int)sizeof(__u8) * BPF_TAG_SIZE, 12283 }, 12284 12285 }; 12286 12287 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info, 12288 int offset) 12289 { 12290 __u32 *array = (__u32 *)info; 12291 12292 if (offset >= 0) 12293 return array[offset / sizeof(__u32)]; 12294 return -(int)offset; 12295 } 12296 12297 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info, 12298 int offset) 12299 { 12300 __u64 *array = (__u64 *)info; 12301 12302 if (offset >= 0) 12303 return array[offset / sizeof(__u64)]; 12304 return -(int)offset; 12305 } 12306 12307 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset, 12308 __u32 val) 12309 { 12310 __u32 *array = (__u32 *)info; 12311 12312 if (offset >= 0) 12313 array[offset / sizeof(__u32)] = val; 12314 } 12315 12316 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset, 12317 __u64 val) 12318 { 12319 __u64 *array = (__u64 *)info; 12320 12321 if (offset >= 0) 12322 array[offset / sizeof(__u64)] = val; 12323 } 12324 12325 struct bpf_prog_info_linear * 12326 bpf_program__get_prog_info_linear(int fd, __u64 arrays) 12327 { 12328 struct bpf_prog_info_linear *info_linear; 12329 struct bpf_prog_info info = {}; 12330 __u32 info_len = sizeof(info); 12331 __u32 data_len = 0; 12332 int i, err; 12333 void *ptr; 12334 12335 if (arrays >> BPF_PROG_INFO_LAST_ARRAY) 12336 return libbpf_err_ptr(-EINVAL); 12337 12338 /* step 1: get array dimensions */ 12339 err = bpf_obj_get_info_by_fd(fd, &info, &info_len); 12340 if (err) { 12341 pr_debug("can't get prog info: %s", strerror(errno)); 12342 return libbpf_err_ptr(-EFAULT); 12343 } 12344 12345 /* step 2: calculate total size of all arrays */ 12346 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 12347 bool include_array = (arrays & (1UL << i)) > 0; 12348 struct bpf_prog_info_array_desc *desc; 12349 __u32 count, size; 12350 12351 desc = bpf_prog_info_array_desc + i; 12352 12353 /* kernel is too old to support this field */ 12354 if (info_len < desc->array_offset + sizeof(__u32) || 12355 info_len < desc->count_offset + sizeof(__u32) || 12356 (desc->size_offset > 0 && info_len < desc->size_offset)) 12357 include_array = false; 12358 12359 if (!include_array) { 12360 arrays &= ~(1UL << i); /* clear the bit */ 12361 continue; 12362 } 12363 12364 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 12365 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 12366 12367 data_len += count * size; 12368 } 12369 12370 /* step 3: allocate continuous memory */ 12371 data_len = roundup(data_len, sizeof(__u64)); 12372 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len); 12373 if (!info_linear) 12374 return libbpf_err_ptr(-ENOMEM); 12375 12376 /* step 4: fill data to info_linear->info */ 12377 info_linear->arrays = arrays; 12378 memset(&info_linear->info, 0, sizeof(info)); 12379 ptr = info_linear->data; 12380 12381 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 12382 struct bpf_prog_info_array_desc *desc; 12383 __u32 count, size; 12384 12385 if ((arrays & (1UL << i)) == 0) 12386 continue; 12387 12388 desc = bpf_prog_info_array_desc + i; 12389 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 12390 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 12391 bpf_prog_info_set_offset_u32(&info_linear->info, 12392 desc->count_offset, count); 12393 bpf_prog_info_set_offset_u32(&info_linear->info, 12394 desc->size_offset, size); 12395 bpf_prog_info_set_offset_u64(&info_linear->info, 12396 desc->array_offset, 12397 ptr_to_u64(ptr)); 12398 ptr += count * size; 12399 } 12400 12401 /* step 5: call syscall again to get required arrays */ 12402 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len); 12403 if (err) { 12404 pr_debug("can't get prog info: %s", strerror(errno)); 12405 free(info_linear); 12406 return libbpf_err_ptr(-EFAULT); 12407 } 12408 12409 /* step 6: verify the data */ 12410 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 12411 struct bpf_prog_info_array_desc *desc; 12412 __u32 v1, v2; 12413 12414 if ((arrays & (1UL << i)) == 0) 12415 continue; 12416 12417 desc = bpf_prog_info_array_desc + i; 12418 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 12419 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 12420 desc->count_offset); 12421 if (v1 != v2) 12422 pr_warn("%s: mismatch in element count\n", __func__); 12423 12424 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 12425 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 12426 desc->size_offset); 12427 if (v1 != v2) 12428 pr_warn("%s: mismatch in rec size\n", __func__); 12429 } 12430 12431 /* step 7: update info_len and data_len */ 12432 info_linear->info_len = sizeof(struct bpf_prog_info); 12433 info_linear->data_len = data_len; 12434 12435 return info_linear; 12436 } 12437 12438 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear) 12439 { 12440 int i; 12441 12442 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 12443 struct bpf_prog_info_array_desc *desc; 12444 __u64 addr, offs; 12445 12446 if ((info_linear->arrays & (1UL << i)) == 0) 12447 continue; 12448 12449 desc = bpf_prog_info_array_desc + i; 12450 addr = bpf_prog_info_read_offset_u64(&info_linear->info, 12451 desc->array_offset); 12452 offs = addr - ptr_to_u64(info_linear->data); 12453 bpf_prog_info_set_offset_u64(&info_linear->info, 12454 desc->array_offset, offs); 12455 } 12456 } 12457 12458 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear) 12459 { 12460 int i; 12461 12462 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 12463 struct bpf_prog_info_array_desc *desc; 12464 __u64 addr, offs; 12465 12466 if ((info_linear->arrays & (1UL << i)) == 0) 12467 continue; 12468 12469 desc = bpf_prog_info_array_desc + i; 12470 offs = bpf_prog_info_read_offset_u64(&info_linear->info, 12471 desc->array_offset); 12472 addr = offs + ptr_to_u64(info_linear->data); 12473 bpf_prog_info_set_offset_u64(&info_linear->info, 12474 desc->array_offset, addr); 12475 } 12476 } 12477 12478 int bpf_program__set_attach_target(struct bpf_program *prog, 12479 int attach_prog_fd, 12480 const char *attach_func_name) 12481 { 12482 int btf_obj_fd = 0, btf_id = 0, err; 12483 12484 if (!prog || attach_prog_fd < 0) 12485 return libbpf_err(-EINVAL); 12486 12487 if (prog->obj->loaded) 12488 return libbpf_err(-EINVAL); 12489 12490 if (attach_prog_fd && !attach_func_name) { 12491 /* remember attach_prog_fd and let bpf_program__load() find 12492 * BTF ID during the program load 12493 */ 12494 prog->attach_prog_fd = attach_prog_fd; 12495 return 0; 12496 } 12497 12498 if (attach_prog_fd) { 12499 btf_id = libbpf_find_prog_btf_id(attach_func_name, 12500 attach_prog_fd); 12501 if (btf_id < 0) 12502 return libbpf_err(btf_id); 12503 } else { 12504 if (!attach_func_name) 12505 return libbpf_err(-EINVAL); 12506 12507 /* load btf_vmlinux, if not yet */ 12508 err = bpf_object__load_vmlinux_btf(prog->obj, true); 12509 if (err) 12510 return libbpf_err(err); 12511 err = find_kernel_btf_id(prog->obj, attach_func_name, 12512 prog->expected_attach_type, 12513 &btf_obj_fd, &btf_id); 12514 if (err) 12515 return libbpf_err(err); 12516 } 12517 12518 prog->attach_btf_id = btf_id; 12519 prog->attach_btf_obj_fd = btf_obj_fd; 12520 prog->attach_prog_fd = attach_prog_fd; 12521 return 0; 12522 } 12523 12524 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 12525 { 12526 int err = 0, n, len, start, end = -1; 12527 bool *tmp; 12528 12529 *mask = NULL; 12530 *mask_sz = 0; 12531 12532 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 12533 while (*s) { 12534 if (*s == ',' || *s == '\n') { 12535 s++; 12536 continue; 12537 } 12538 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 12539 if (n <= 0 || n > 2) { 12540 pr_warn("Failed to get CPU range %s: %d\n", s, n); 12541 err = -EINVAL; 12542 goto cleanup; 12543 } else if (n == 1) { 12544 end = start; 12545 } 12546 if (start < 0 || start > end) { 12547 pr_warn("Invalid CPU range [%d,%d] in %s\n", 12548 start, end, s); 12549 err = -EINVAL; 12550 goto cleanup; 12551 } 12552 tmp = realloc(*mask, end + 1); 12553 if (!tmp) { 12554 err = -ENOMEM; 12555 goto cleanup; 12556 } 12557 *mask = tmp; 12558 memset(tmp + *mask_sz, 0, start - *mask_sz); 12559 memset(tmp + start, 1, end - start + 1); 12560 *mask_sz = end + 1; 12561 s += len; 12562 } 12563 if (!*mask_sz) { 12564 pr_warn("Empty CPU range\n"); 12565 return -EINVAL; 12566 } 12567 return 0; 12568 cleanup: 12569 free(*mask); 12570 *mask = NULL; 12571 return err; 12572 } 12573 12574 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 12575 { 12576 int fd, err = 0, len; 12577 char buf[128]; 12578 12579 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 12580 if (fd < 0) { 12581 err = -errno; 12582 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 12583 return err; 12584 } 12585 len = read(fd, buf, sizeof(buf)); 12586 close(fd); 12587 if (len <= 0) { 12588 err = len ? -errno : -EINVAL; 12589 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 12590 return err; 12591 } 12592 if (len >= sizeof(buf)) { 12593 pr_warn("CPU mask is too big in file %s\n", fcpu); 12594 return -E2BIG; 12595 } 12596 buf[len] = '\0'; 12597 12598 return parse_cpu_mask_str(buf, mask, mask_sz); 12599 } 12600 12601 int libbpf_num_possible_cpus(void) 12602 { 12603 static const char *fcpu = "/sys/devices/system/cpu/possible"; 12604 static int cpus; 12605 int err, n, i, tmp_cpus; 12606 bool *mask; 12607 12608 tmp_cpus = READ_ONCE(cpus); 12609 if (tmp_cpus > 0) 12610 return tmp_cpus; 12611 12612 err = parse_cpu_mask_file(fcpu, &mask, &n); 12613 if (err) 12614 return libbpf_err(err); 12615 12616 tmp_cpus = 0; 12617 for (i = 0; i < n; i++) { 12618 if (mask[i]) 12619 tmp_cpus++; 12620 } 12621 free(mask); 12622 12623 WRITE_ONCE(cpus, tmp_cpus); 12624 return tmp_cpus; 12625 } 12626 12627 static int populate_skeleton_maps(const struct bpf_object *obj, 12628 struct bpf_map_skeleton *maps, 12629 size_t map_cnt) 12630 { 12631 int i; 12632 12633 for (i = 0; i < map_cnt; i++) { 12634 struct bpf_map **map = maps[i].map; 12635 const char *name = maps[i].name; 12636 void **mmaped = maps[i].mmaped; 12637 12638 *map = bpf_object__find_map_by_name(obj, name); 12639 if (!*map) { 12640 pr_warn("failed to find skeleton map '%s'\n", name); 12641 return -ESRCH; 12642 } 12643 12644 /* externs shouldn't be pre-setup from user code */ 12645 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 12646 *mmaped = (*map)->mmaped; 12647 } 12648 return 0; 12649 } 12650 12651 static int populate_skeleton_progs(const struct bpf_object *obj, 12652 struct bpf_prog_skeleton *progs, 12653 size_t prog_cnt) 12654 { 12655 int i; 12656 12657 for (i = 0; i < prog_cnt; i++) { 12658 struct bpf_program **prog = progs[i].prog; 12659 const char *name = progs[i].name; 12660 12661 *prog = bpf_object__find_program_by_name(obj, name); 12662 if (!*prog) { 12663 pr_warn("failed to find skeleton program '%s'\n", name); 12664 return -ESRCH; 12665 } 12666 } 12667 return 0; 12668 } 12669 12670 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 12671 const struct bpf_object_open_opts *opts) 12672 { 12673 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 12674 .object_name = s->name, 12675 ); 12676 struct bpf_object *obj; 12677 int err; 12678 12679 /* Attempt to preserve opts->object_name, unless overriden by user 12680 * explicitly. Overwriting object name for skeletons is discouraged, 12681 * as it breaks global data maps, because they contain object name 12682 * prefix as their own map name prefix. When skeleton is generated, 12683 * bpftool is making an assumption that this name will stay the same. 12684 */ 12685 if (opts) { 12686 memcpy(&skel_opts, opts, sizeof(*opts)); 12687 if (!opts->object_name) 12688 skel_opts.object_name = s->name; 12689 } 12690 12691 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 12692 err = libbpf_get_error(obj); 12693 if (err) { 12694 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 12695 s->name, err); 12696 return libbpf_err(err); 12697 } 12698 12699 *s->obj = obj; 12700 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 12701 if (err) { 12702 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 12703 return libbpf_err(err); 12704 } 12705 12706 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 12707 if (err) { 12708 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 12709 return libbpf_err(err); 12710 } 12711 12712 return 0; 12713 } 12714 12715 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 12716 { 12717 int err, len, var_idx, i; 12718 const char *var_name; 12719 const struct bpf_map *map; 12720 struct btf *btf; 12721 __u32 map_type_id; 12722 const struct btf_type *map_type, *var_type; 12723 const struct bpf_var_skeleton *var_skel; 12724 struct btf_var_secinfo *var; 12725 12726 if (!s->obj) 12727 return libbpf_err(-EINVAL); 12728 12729 btf = bpf_object__btf(s->obj); 12730 if (!btf) { 12731 pr_warn("subskeletons require BTF at runtime (object %s)\n", 12732 bpf_object__name(s->obj)); 12733 return libbpf_err(-errno); 12734 } 12735 12736 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 12737 if (err) { 12738 pr_warn("failed to populate subskeleton maps: %d\n", err); 12739 return libbpf_err(err); 12740 } 12741 12742 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 12743 if (err) { 12744 pr_warn("failed to populate subskeleton maps: %d\n", err); 12745 return libbpf_err(err); 12746 } 12747 12748 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 12749 var_skel = &s->vars[var_idx]; 12750 map = *var_skel->map; 12751 map_type_id = bpf_map__btf_value_type_id(map); 12752 map_type = btf__type_by_id(btf, map_type_id); 12753 12754 if (!btf_is_datasec(map_type)) { 12755 pr_warn("type for map '%1$s' is not a datasec: %2$s", 12756 bpf_map__name(map), 12757 __btf_kind_str(btf_kind(map_type))); 12758 return libbpf_err(-EINVAL); 12759 } 12760 12761 len = btf_vlen(map_type); 12762 var = btf_var_secinfos(map_type); 12763 for (i = 0; i < len; i++, var++) { 12764 var_type = btf__type_by_id(btf, var->type); 12765 var_name = btf__name_by_offset(btf, var_type->name_off); 12766 if (strcmp(var_name, var_skel->name) == 0) { 12767 *var_skel->addr = map->mmaped + var->offset; 12768 break; 12769 } 12770 } 12771 } 12772 return 0; 12773 } 12774 12775 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 12776 { 12777 if (!s) 12778 return; 12779 free(s->maps); 12780 free(s->progs); 12781 free(s->vars); 12782 free(s); 12783 } 12784 12785 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 12786 { 12787 int i, err; 12788 12789 err = bpf_object__load(*s->obj); 12790 if (err) { 12791 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 12792 return libbpf_err(err); 12793 } 12794 12795 for (i = 0; i < s->map_cnt; i++) { 12796 struct bpf_map *map = *s->maps[i].map; 12797 size_t mmap_sz = bpf_map_mmap_sz(map); 12798 int prot, map_fd = bpf_map__fd(map); 12799 void **mmaped = s->maps[i].mmaped; 12800 12801 if (!mmaped) 12802 continue; 12803 12804 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 12805 *mmaped = NULL; 12806 continue; 12807 } 12808 12809 if (map->def.map_flags & BPF_F_RDONLY_PROG) 12810 prot = PROT_READ; 12811 else 12812 prot = PROT_READ | PROT_WRITE; 12813 12814 /* Remap anonymous mmap()-ed "map initialization image" as 12815 * a BPF map-backed mmap()-ed memory, but preserving the same 12816 * memory address. This will cause kernel to change process' 12817 * page table to point to a different piece of kernel memory, 12818 * but from userspace point of view memory address (and its 12819 * contents, being identical at this point) will stay the 12820 * same. This mapping will be released by bpf_object__close() 12821 * as per normal clean up procedure, so we don't need to worry 12822 * about it from skeleton's clean up perspective. 12823 */ 12824 *mmaped = mmap(map->mmaped, mmap_sz, prot, 12825 MAP_SHARED | MAP_FIXED, map_fd, 0); 12826 if (*mmaped == MAP_FAILED) { 12827 err = -errno; 12828 *mmaped = NULL; 12829 pr_warn("failed to re-mmap() map '%s': %d\n", 12830 bpf_map__name(map), err); 12831 return libbpf_err(err); 12832 } 12833 } 12834 12835 return 0; 12836 } 12837 12838 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 12839 { 12840 int i, err; 12841 12842 for (i = 0; i < s->prog_cnt; i++) { 12843 struct bpf_program *prog = *s->progs[i].prog; 12844 struct bpf_link **link = s->progs[i].link; 12845 12846 if (!prog->autoload) 12847 continue; 12848 12849 /* auto-attaching not supported for this program */ 12850 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12851 continue; 12852 12853 /* if user already set the link manually, don't attempt auto-attach */ 12854 if (*link) 12855 continue; 12856 12857 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 12858 if (err) { 12859 pr_warn("prog '%s': failed to auto-attach: %d\n", 12860 bpf_program__name(prog), err); 12861 return libbpf_err(err); 12862 } 12863 12864 /* It's possible that for some SEC() definitions auto-attach 12865 * is supported in some cases (e.g., if definition completely 12866 * specifies target information), but is not in other cases. 12867 * SEC("uprobe") is one such case. If user specified target 12868 * binary and function name, such BPF program can be 12869 * auto-attached. But if not, it shouldn't trigger skeleton's 12870 * attach to fail. It should just be skipped. 12871 * attach_fn signals such case with returning 0 (no error) and 12872 * setting link to NULL. 12873 */ 12874 } 12875 12876 return 0; 12877 } 12878 12879 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 12880 { 12881 int i; 12882 12883 for (i = 0; i < s->prog_cnt; i++) { 12884 struct bpf_link **link = s->progs[i].link; 12885 12886 bpf_link__destroy(*link); 12887 *link = NULL; 12888 } 12889 } 12890 12891 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 12892 { 12893 if (!s) 12894 return; 12895 12896 if (s->progs) 12897 bpf_object__detach_skeleton(s); 12898 if (s->obj) 12899 bpf_object__close(*s->obj); 12900 free(s->maps); 12901 free(s->progs); 12902 free(s); 12903 } 12904