xref: /openbmc/linux/tools/lib/bpf/libbpf.c (revision abe9af53)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * Common eBPF ELF object loading operations.
5  *
6  * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7  * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8  * Copyright (C) 2015 Huawei Inc.
9  * Copyright (C) 2017 Nicira, Inc.
10  * Copyright (C) 2019 Isovalent, Inc.
11  */
12 
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/list.h>
35 #include <linux/limits.h>
36 #include <linux/perf_event.h>
37 #include <linux/ring_buffer.h>
38 #include <linux/version.h>
39 #include <sys/epoll.h>
40 #include <sys/ioctl.h>
41 #include <sys/mman.h>
42 #include <sys/stat.h>
43 #include <sys/types.h>
44 #include <sys/vfs.h>
45 #include <sys/utsname.h>
46 #include <sys/resource.h>
47 #include <libelf.h>
48 #include <gelf.h>
49 #include <zlib.h>
50 
51 #include "libbpf.h"
52 #include "bpf.h"
53 #include "btf.h"
54 #include "str_error.h"
55 #include "libbpf_internal.h"
56 #include "hashmap.h"
57 
58 #ifndef EM_BPF
59 #define EM_BPF 247
60 #endif
61 
62 #ifndef BPF_FS_MAGIC
63 #define BPF_FS_MAGIC		0xcafe4a11
64 #endif
65 
66 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
67 
68 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
69  * compilation if user enables corresponding warning. Disable it explicitly.
70  */
71 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
72 
73 #define __printf(a, b)	__attribute__((format(printf, a, b)))
74 
75 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
76 static const struct btf_type *
77 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id);
78 
79 static int __base_pr(enum libbpf_print_level level, const char *format,
80 		     va_list args)
81 {
82 	if (level == LIBBPF_DEBUG)
83 		return 0;
84 
85 	return vfprintf(stderr, format, args);
86 }
87 
88 static libbpf_print_fn_t __libbpf_pr = __base_pr;
89 
90 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
91 {
92 	libbpf_print_fn_t old_print_fn = __libbpf_pr;
93 
94 	__libbpf_pr = fn;
95 	return old_print_fn;
96 }
97 
98 __printf(2, 3)
99 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
100 {
101 	va_list args;
102 
103 	if (!__libbpf_pr)
104 		return;
105 
106 	va_start(args, format);
107 	__libbpf_pr(level, format, args);
108 	va_end(args);
109 }
110 
111 static void pr_perm_msg(int err)
112 {
113 	struct rlimit limit;
114 	char buf[100];
115 
116 	if (err != -EPERM || geteuid() != 0)
117 		return;
118 
119 	err = getrlimit(RLIMIT_MEMLOCK, &limit);
120 	if (err)
121 		return;
122 
123 	if (limit.rlim_cur == RLIM_INFINITY)
124 		return;
125 
126 	if (limit.rlim_cur < 1024)
127 		snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
128 	else if (limit.rlim_cur < 1024*1024)
129 		snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
130 	else
131 		snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
132 
133 	pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
134 		buf);
135 }
136 
137 #define STRERR_BUFSIZE  128
138 
139 /* Copied from tools/perf/util/util.h */
140 #ifndef zfree
141 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
142 #endif
143 
144 #ifndef zclose
145 # define zclose(fd) ({			\
146 	int ___err = 0;			\
147 	if ((fd) >= 0)			\
148 		___err = close((fd));	\
149 	fd = -1;			\
150 	___err; })
151 #endif
152 
153 static inline __u64 ptr_to_u64(const void *ptr)
154 {
155 	return (__u64) (unsigned long) ptr;
156 }
157 
158 enum kern_feature_id {
159 	/* v4.14: kernel support for program & map names. */
160 	FEAT_PROG_NAME,
161 	/* v5.2: kernel support for global data sections. */
162 	FEAT_GLOBAL_DATA,
163 	/* BTF support */
164 	FEAT_BTF,
165 	/* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */
166 	FEAT_BTF_FUNC,
167 	/* BTF_KIND_VAR and BTF_KIND_DATASEC support */
168 	FEAT_BTF_DATASEC,
169 	/* BTF_FUNC_GLOBAL is supported */
170 	FEAT_BTF_GLOBAL_FUNC,
171 	/* BPF_F_MMAPABLE is supported for arrays */
172 	FEAT_ARRAY_MMAP,
173 	/* kernel support for expected_attach_type in BPF_PROG_LOAD */
174 	FEAT_EXP_ATTACH_TYPE,
175 	/* bpf_probe_read_{kernel,user}[_str] helpers */
176 	FEAT_PROBE_READ_KERN,
177 	/* BPF_PROG_BIND_MAP is supported */
178 	FEAT_PROG_BIND_MAP,
179 	__FEAT_CNT,
180 };
181 
182 static bool kernel_supports(enum kern_feature_id feat_id);
183 
184 enum reloc_type {
185 	RELO_LD64,
186 	RELO_CALL,
187 	RELO_DATA,
188 	RELO_EXTERN,
189 };
190 
191 struct reloc_desc {
192 	enum reloc_type type;
193 	int insn_idx;
194 	int map_idx;
195 	int sym_off;
196 	bool processed;
197 };
198 
199 struct bpf_sec_def;
200 
201 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_sec_def *sec,
202 					struct bpf_program *prog);
203 
204 struct bpf_sec_def {
205 	const char *sec;
206 	size_t len;
207 	enum bpf_prog_type prog_type;
208 	enum bpf_attach_type expected_attach_type;
209 	bool is_exp_attach_type_optional;
210 	bool is_attachable;
211 	bool is_attach_btf;
212 	bool is_sleepable;
213 	attach_fn_t attach_fn;
214 };
215 
216 /*
217  * bpf_prog should be a better name but it has been used in
218  * linux/filter.h.
219  */
220 struct bpf_program {
221 	const struct bpf_sec_def *sec_def;
222 	char *sec_name;
223 	size_t sec_idx;
224 	/* this program's instruction offset (in number of instructions)
225 	 * within its containing ELF section
226 	 */
227 	size_t sec_insn_off;
228 	/* number of original instructions in ELF section belonging to this
229 	 * program, not taking into account subprogram instructions possible
230 	 * appended later during relocation
231 	 */
232 	size_t sec_insn_cnt;
233 	/* Offset (in number of instructions) of the start of instruction
234 	 * belonging to this BPF program  within its containing main BPF
235 	 * program. For the entry-point (main) BPF program, this is always
236 	 * zero. For a sub-program, this gets reset before each of main BPF
237 	 * programs are processed and relocated and is used to determined
238 	 * whether sub-program was already appended to the main program, and
239 	 * if yes, at which instruction offset.
240 	 */
241 	size_t sub_insn_off;
242 
243 	char *name;
244 	/* sec_name with / replaced by _; makes recursive pinning
245 	 * in bpf_object__pin_programs easier
246 	 */
247 	char *pin_name;
248 
249 	/* instructions that belong to BPF program; insns[0] is located at
250 	 * sec_insn_off instruction within its ELF section in ELF file, so
251 	 * when mapping ELF file instruction index to the local instruction,
252 	 * one needs to subtract sec_insn_off; and vice versa.
253 	 */
254 	struct bpf_insn *insns;
255 	/* actual number of instruction in this BPF program's image; for
256 	 * entry-point BPF programs this includes the size of main program
257 	 * itself plus all the used sub-programs, appended at the end
258 	 */
259 	size_t insns_cnt;
260 
261 	struct reloc_desc *reloc_desc;
262 	int nr_reloc;
263 	int log_level;
264 
265 	struct {
266 		int nr;
267 		int *fds;
268 	} instances;
269 	bpf_program_prep_t preprocessor;
270 
271 	struct bpf_object *obj;
272 	void *priv;
273 	bpf_program_clear_priv_t clear_priv;
274 
275 	bool load;
276 	enum bpf_prog_type type;
277 	enum bpf_attach_type expected_attach_type;
278 	int prog_ifindex;
279 	__u32 attach_btf_id;
280 	__u32 attach_prog_fd;
281 	void *func_info;
282 	__u32 func_info_rec_size;
283 	__u32 func_info_cnt;
284 
285 	void *line_info;
286 	__u32 line_info_rec_size;
287 	__u32 line_info_cnt;
288 	__u32 prog_flags;
289 };
290 
291 struct bpf_struct_ops {
292 	const char *tname;
293 	const struct btf_type *type;
294 	struct bpf_program **progs;
295 	__u32 *kern_func_off;
296 	/* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
297 	void *data;
298 	/* e.g. struct bpf_struct_ops_tcp_congestion_ops in
299 	 *      btf_vmlinux's format.
300 	 * struct bpf_struct_ops_tcp_congestion_ops {
301 	 *	[... some other kernel fields ...]
302 	 *	struct tcp_congestion_ops data;
303 	 * }
304 	 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
305 	 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
306 	 * from "data".
307 	 */
308 	void *kern_vdata;
309 	__u32 type_id;
310 };
311 
312 #define DATA_SEC ".data"
313 #define BSS_SEC ".bss"
314 #define RODATA_SEC ".rodata"
315 #define KCONFIG_SEC ".kconfig"
316 #define KSYMS_SEC ".ksyms"
317 #define STRUCT_OPS_SEC ".struct_ops"
318 
319 enum libbpf_map_type {
320 	LIBBPF_MAP_UNSPEC,
321 	LIBBPF_MAP_DATA,
322 	LIBBPF_MAP_BSS,
323 	LIBBPF_MAP_RODATA,
324 	LIBBPF_MAP_KCONFIG,
325 };
326 
327 static const char * const libbpf_type_to_btf_name[] = {
328 	[LIBBPF_MAP_DATA]	= DATA_SEC,
329 	[LIBBPF_MAP_BSS]	= BSS_SEC,
330 	[LIBBPF_MAP_RODATA]	= RODATA_SEC,
331 	[LIBBPF_MAP_KCONFIG]	= KCONFIG_SEC,
332 };
333 
334 struct bpf_map {
335 	char *name;
336 	int fd;
337 	int sec_idx;
338 	size_t sec_offset;
339 	int map_ifindex;
340 	int inner_map_fd;
341 	struct bpf_map_def def;
342 	__u32 numa_node;
343 	__u32 btf_var_idx;
344 	__u32 btf_key_type_id;
345 	__u32 btf_value_type_id;
346 	__u32 btf_vmlinux_value_type_id;
347 	void *priv;
348 	bpf_map_clear_priv_t clear_priv;
349 	enum libbpf_map_type libbpf_type;
350 	void *mmaped;
351 	struct bpf_struct_ops *st_ops;
352 	struct bpf_map *inner_map;
353 	void **init_slots;
354 	int init_slots_sz;
355 	char *pin_path;
356 	bool pinned;
357 	bool reused;
358 };
359 
360 enum extern_type {
361 	EXT_UNKNOWN,
362 	EXT_KCFG,
363 	EXT_KSYM,
364 };
365 
366 enum kcfg_type {
367 	KCFG_UNKNOWN,
368 	KCFG_CHAR,
369 	KCFG_BOOL,
370 	KCFG_INT,
371 	KCFG_TRISTATE,
372 	KCFG_CHAR_ARR,
373 };
374 
375 struct extern_desc {
376 	enum extern_type type;
377 	int sym_idx;
378 	int btf_id;
379 	int sec_btf_id;
380 	const char *name;
381 	bool is_set;
382 	bool is_weak;
383 	union {
384 		struct {
385 			enum kcfg_type type;
386 			int sz;
387 			int align;
388 			int data_off;
389 			bool is_signed;
390 		} kcfg;
391 		struct {
392 			unsigned long long addr;
393 
394 			/* target btf_id of the corresponding kernel var. */
395 			int vmlinux_btf_id;
396 
397 			/* local btf_id of the ksym extern's type. */
398 			__u32 type_id;
399 		} ksym;
400 	};
401 };
402 
403 static LIST_HEAD(bpf_objects_list);
404 
405 struct bpf_object {
406 	char name[BPF_OBJ_NAME_LEN];
407 	char license[64];
408 	__u32 kern_version;
409 
410 	struct bpf_program *programs;
411 	size_t nr_programs;
412 	struct bpf_map *maps;
413 	size_t nr_maps;
414 	size_t maps_cap;
415 
416 	char *kconfig;
417 	struct extern_desc *externs;
418 	int nr_extern;
419 	int kconfig_map_idx;
420 	int rodata_map_idx;
421 
422 	bool loaded;
423 	bool has_subcalls;
424 
425 	/*
426 	 * Information when doing elf related work. Only valid if fd
427 	 * is valid.
428 	 */
429 	struct {
430 		int fd;
431 		const void *obj_buf;
432 		size_t obj_buf_sz;
433 		Elf *elf;
434 		GElf_Ehdr ehdr;
435 		Elf_Data *symbols;
436 		Elf_Data *data;
437 		Elf_Data *rodata;
438 		Elf_Data *bss;
439 		Elf_Data *st_ops_data;
440 		size_t shstrndx; /* section index for section name strings */
441 		size_t strtabidx;
442 		struct {
443 			GElf_Shdr shdr;
444 			Elf_Data *data;
445 		} *reloc_sects;
446 		int nr_reloc_sects;
447 		int maps_shndx;
448 		int btf_maps_shndx;
449 		__u32 btf_maps_sec_btf_id;
450 		int text_shndx;
451 		int symbols_shndx;
452 		int data_shndx;
453 		int rodata_shndx;
454 		int bss_shndx;
455 		int st_ops_shndx;
456 	} efile;
457 	/*
458 	 * All loaded bpf_object is linked in a list, which is
459 	 * hidden to caller. bpf_objects__<func> handlers deal with
460 	 * all objects.
461 	 */
462 	struct list_head list;
463 
464 	struct btf *btf;
465 	/* Parse and load BTF vmlinux if any of the programs in the object need
466 	 * it at load time.
467 	 */
468 	struct btf *btf_vmlinux;
469 	struct btf_ext *btf_ext;
470 
471 	void *priv;
472 	bpf_object_clear_priv_t clear_priv;
473 
474 	char path[];
475 };
476 #define obj_elf_valid(o)	((o)->efile.elf)
477 
478 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
479 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
480 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
481 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
482 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr);
483 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
484 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
485 static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx,
486 			      size_t off, __u32 sym_type, GElf_Sym *sym);
487 
488 void bpf_program__unload(struct bpf_program *prog)
489 {
490 	int i;
491 
492 	if (!prog)
493 		return;
494 
495 	/*
496 	 * If the object is opened but the program was never loaded,
497 	 * it is possible that prog->instances.nr == -1.
498 	 */
499 	if (prog->instances.nr > 0) {
500 		for (i = 0; i < prog->instances.nr; i++)
501 			zclose(prog->instances.fds[i]);
502 	} else if (prog->instances.nr != -1) {
503 		pr_warn("Internal error: instances.nr is %d\n",
504 			prog->instances.nr);
505 	}
506 
507 	prog->instances.nr = -1;
508 	zfree(&prog->instances.fds);
509 
510 	zfree(&prog->func_info);
511 	zfree(&prog->line_info);
512 }
513 
514 static void bpf_program__exit(struct bpf_program *prog)
515 {
516 	if (!prog)
517 		return;
518 
519 	if (prog->clear_priv)
520 		prog->clear_priv(prog, prog->priv);
521 
522 	prog->priv = NULL;
523 	prog->clear_priv = NULL;
524 
525 	bpf_program__unload(prog);
526 	zfree(&prog->name);
527 	zfree(&prog->sec_name);
528 	zfree(&prog->pin_name);
529 	zfree(&prog->insns);
530 	zfree(&prog->reloc_desc);
531 
532 	prog->nr_reloc = 0;
533 	prog->insns_cnt = 0;
534 	prog->sec_idx = -1;
535 }
536 
537 static char *__bpf_program__pin_name(struct bpf_program *prog)
538 {
539 	char *name, *p;
540 
541 	name = p = strdup(prog->sec_name);
542 	while ((p = strchr(p, '/')))
543 		*p = '_';
544 
545 	return name;
546 }
547 
548 static bool insn_is_subprog_call(const struct bpf_insn *insn)
549 {
550 	return BPF_CLASS(insn->code) == BPF_JMP &&
551 	       BPF_OP(insn->code) == BPF_CALL &&
552 	       BPF_SRC(insn->code) == BPF_K &&
553 	       insn->src_reg == BPF_PSEUDO_CALL &&
554 	       insn->dst_reg == 0 &&
555 	       insn->off == 0;
556 }
557 
558 static int
559 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
560 		      const char *name, size_t sec_idx, const char *sec_name,
561 		      size_t sec_off, void *insn_data, size_t insn_data_sz)
562 {
563 	int i;
564 
565 	if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
566 		pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
567 			sec_name, name, sec_off, insn_data_sz);
568 		return -EINVAL;
569 	}
570 
571 	memset(prog, 0, sizeof(*prog));
572 	prog->obj = obj;
573 
574 	prog->sec_idx = sec_idx;
575 	prog->sec_insn_off = sec_off / BPF_INSN_SZ;
576 	prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
577 	/* insns_cnt can later be increased by appending used subprograms */
578 	prog->insns_cnt = prog->sec_insn_cnt;
579 
580 	prog->type = BPF_PROG_TYPE_UNSPEC;
581 	prog->load = true;
582 
583 	prog->instances.fds = NULL;
584 	prog->instances.nr = -1;
585 
586 	prog->sec_name = strdup(sec_name);
587 	if (!prog->sec_name)
588 		goto errout;
589 
590 	prog->name = strdup(name);
591 	if (!prog->name)
592 		goto errout;
593 
594 	prog->pin_name = __bpf_program__pin_name(prog);
595 	if (!prog->pin_name)
596 		goto errout;
597 
598 	prog->insns = malloc(insn_data_sz);
599 	if (!prog->insns)
600 		goto errout;
601 	memcpy(prog->insns, insn_data, insn_data_sz);
602 
603 	for (i = 0; i < prog->insns_cnt; i++) {
604 		if (insn_is_subprog_call(&prog->insns[i])) {
605 			obj->has_subcalls = true;
606 			break;
607 		}
608 	}
609 
610 	return 0;
611 errout:
612 	pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
613 	bpf_program__exit(prog);
614 	return -ENOMEM;
615 }
616 
617 static int
618 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
619 			 const char *sec_name, int sec_idx)
620 {
621 	struct bpf_program *prog, *progs;
622 	void *data = sec_data->d_buf;
623 	size_t sec_sz = sec_data->d_size, sec_off, prog_sz;
624 	int nr_progs, err;
625 	const char *name;
626 	GElf_Sym sym;
627 
628 	progs = obj->programs;
629 	nr_progs = obj->nr_programs;
630 	sec_off = 0;
631 
632 	while (sec_off < sec_sz) {
633 		if (elf_sym_by_sec_off(obj, sec_idx, sec_off, STT_FUNC, &sym)) {
634 			pr_warn("sec '%s': failed to find program symbol at offset %zu\n",
635 				sec_name, sec_off);
636 			return -LIBBPF_ERRNO__FORMAT;
637 		}
638 
639 		prog_sz = sym.st_size;
640 
641 		name = elf_sym_str(obj, sym.st_name);
642 		if (!name) {
643 			pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
644 				sec_name, sec_off);
645 			return -LIBBPF_ERRNO__FORMAT;
646 		}
647 
648 		if (sec_off + prog_sz > sec_sz) {
649 			pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
650 				sec_name, sec_off);
651 			return -LIBBPF_ERRNO__FORMAT;
652 		}
653 
654 		pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
655 			 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
656 
657 		progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
658 		if (!progs) {
659 			/*
660 			 * In this case the original obj->programs
661 			 * is still valid, so don't need special treat for
662 			 * bpf_close_object().
663 			 */
664 			pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
665 				sec_name, name);
666 			return -ENOMEM;
667 		}
668 		obj->programs = progs;
669 
670 		prog = &progs[nr_progs];
671 
672 		err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
673 					    sec_off, data + sec_off, prog_sz);
674 		if (err)
675 			return err;
676 
677 		nr_progs++;
678 		obj->nr_programs = nr_progs;
679 
680 		sec_off += prog_sz;
681 	}
682 
683 	return 0;
684 }
685 
686 static __u32 get_kernel_version(void)
687 {
688 	__u32 major, minor, patch;
689 	struct utsname info;
690 
691 	uname(&info);
692 	if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3)
693 		return 0;
694 	return KERNEL_VERSION(major, minor, patch);
695 }
696 
697 static const struct btf_member *
698 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
699 {
700 	struct btf_member *m;
701 	int i;
702 
703 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
704 		if (btf_member_bit_offset(t, i) == bit_offset)
705 			return m;
706 	}
707 
708 	return NULL;
709 }
710 
711 static const struct btf_member *
712 find_member_by_name(const struct btf *btf, const struct btf_type *t,
713 		    const char *name)
714 {
715 	struct btf_member *m;
716 	int i;
717 
718 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
719 		if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
720 			return m;
721 	}
722 
723 	return NULL;
724 }
725 
726 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
727 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
728 				   const char *name, __u32 kind);
729 
730 static int
731 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
732 			   const struct btf_type **type, __u32 *type_id,
733 			   const struct btf_type **vtype, __u32 *vtype_id,
734 			   const struct btf_member **data_member)
735 {
736 	const struct btf_type *kern_type, *kern_vtype;
737 	const struct btf_member *kern_data_member;
738 	__s32 kern_vtype_id, kern_type_id;
739 	__u32 i;
740 
741 	kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
742 	if (kern_type_id < 0) {
743 		pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
744 			tname);
745 		return kern_type_id;
746 	}
747 	kern_type = btf__type_by_id(btf, kern_type_id);
748 
749 	/* Find the corresponding "map_value" type that will be used
750 	 * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
751 	 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
752 	 * btf_vmlinux.
753 	 */
754 	kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
755 						tname, BTF_KIND_STRUCT);
756 	if (kern_vtype_id < 0) {
757 		pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
758 			STRUCT_OPS_VALUE_PREFIX, tname);
759 		return kern_vtype_id;
760 	}
761 	kern_vtype = btf__type_by_id(btf, kern_vtype_id);
762 
763 	/* Find "struct tcp_congestion_ops" from
764 	 * struct bpf_struct_ops_tcp_congestion_ops {
765 	 *	[ ... ]
766 	 *	struct tcp_congestion_ops data;
767 	 * }
768 	 */
769 	kern_data_member = btf_members(kern_vtype);
770 	for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
771 		if (kern_data_member->type == kern_type_id)
772 			break;
773 	}
774 	if (i == btf_vlen(kern_vtype)) {
775 		pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
776 			tname, STRUCT_OPS_VALUE_PREFIX, tname);
777 		return -EINVAL;
778 	}
779 
780 	*type = kern_type;
781 	*type_id = kern_type_id;
782 	*vtype = kern_vtype;
783 	*vtype_id = kern_vtype_id;
784 	*data_member = kern_data_member;
785 
786 	return 0;
787 }
788 
789 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
790 {
791 	return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
792 }
793 
794 /* Init the map's fields that depend on kern_btf */
795 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
796 					 const struct btf *btf,
797 					 const struct btf *kern_btf)
798 {
799 	const struct btf_member *member, *kern_member, *kern_data_member;
800 	const struct btf_type *type, *kern_type, *kern_vtype;
801 	__u32 i, kern_type_id, kern_vtype_id, kern_data_off;
802 	struct bpf_struct_ops *st_ops;
803 	void *data, *kern_data;
804 	const char *tname;
805 	int err;
806 
807 	st_ops = map->st_ops;
808 	type = st_ops->type;
809 	tname = st_ops->tname;
810 	err = find_struct_ops_kern_types(kern_btf, tname,
811 					 &kern_type, &kern_type_id,
812 					 &kern_vtype, &kern_vtype_id,
813 					 &kern_data_member);
814 	if (err)
815 		return err;
816 
817 	pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
818 		 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
819 
820 	map->def.value_size = kern_vtype->size;
821 	map->btf_vmlinux_value_type_id = kern_vtype_id;
822 
823 	st_ops->kern_vdata = calloc(1, kern_vtype->size);
824 	if (!st_ops->kern_vdata)
825 		return -ENOMEM;
826 
827 	data = st_ops->data;
828 	kern_data_off = kern_data_member->offset / 8;
829 	kern_data = st_ops->kern_vdata + kern_data_off;
830 
831 	member = btf_members(type);
832 	for (i = 0; i < btf_vlen(type); i++, member++) {
833 		const struct btf_type *mtype, *kern_mtype;
834 		__u32 mtype_id, kern_mtype_id;
835 		void *mdata, *kern_mdata;
836 		__s64 msize, kern_msize;
837 		__u32 moff, kern_moff;
838 		__u32 kern_member_idx;
839 		const char *mname;
840 
841 		mname = btf__name_by_offset(btf, member->name_off);
842 		kern_member = find_member_by_name(kern_btf, kern_type, mname);
843 		if (!kern_member) {
844 			pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
845 				map->name, mname);
846 			return -ENOTSUP;
847 		}
848 
849 		kern_member_idx = kern_member - btf_members(kern_type);
850 		if (btf_member_bitfield_size(type, i) ||
851 		    btf_member_bitfield_size(kern_type, kern_member_idx)) {
852 			pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
853 				map->name, mname);
854 			return -ENOTSUP;
855 		}
856 
857 		moff = member->offset / 8;
858 		kern_moff = kern_member->offset / 8;
859 
860 		mdata = data + moff;
861 		kern_mdata = kern_data + kern_moff;
862 
863 		mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
864 		kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
865 						    &kern_mtype_id);
866 		if (BTF_INFO_KIND(mtype->info) !=
867 		    BTF_INFO_KIND(kern_mtype->info)) {
868 			pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
869 				map->name, mname, BTF_INFO_KIND(mtype->info),
870 				BTF_INFO_KIND(kern_mtype->info));
871 			return -ENOTSUP;
872 		}
873 
874 		if (btf_is_ptr(mtype)) {
875 			struct bpf_program *prog;
876 
877 			mtype = skip_mods_and_typedefs(btf, mtype->type, &mtype_id);
878 			kern_mtype = skip_mods_and_typedefs(kern_btf,
879 							    kern_mtype->type,
880 							    &kern_mtype_id);
881 			if (!btf_is_func_proto(mtype) ||
882 			    !btf_is_func_proto(kern_mtype)) {
883 				pr_warn("struct_ops init_kern %s: non func ptr %s is not supported\n",
884 					map->name, mname);
885 				return -ENOTSUP;
886 			}
887 
888 			prog = st_ops->progs[i];
889 			if (!prog) {
890 				pr_debug("struct_ops init_kern %s: func ptr %s is not set\n",
891 					 map->name, mname);
892 				continue;
893 			}
894 
895 			prog->attach_btf_id = kern_type_id;
896 			prog->expected_attach_type = kern_member_idx;
897 
898 			st_ops->kern_func_off[i] = kern_data_off + kern_moff;
899 
900 			pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
901 				 map->name, mname, prog->name, moff,
902 				 kern_moff);
903 
904 			continue;
905 		}
906 
907 		msize = btf__resolve_size(btf, mtype_id);
908 		kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
909 		if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
910 			pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
911 				map->name, mname, (ssize_t)msize,
912 				(ssize_t)kern_msize);
913 			return -ENOTSUP;
914 		}
915 
916 		pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
917 			 map->name, mname, (unsigned int)msize,
918 			 moff, kern_moff);
919 		memcpy(kern_mdata, mdata, msize);
920 	}
921 
922 	return 0;
923 }
924 
925 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
926 {
927 	struct bpf_map *map;
928 	size_t i;
929 	int err;
930 
931 	for (i = 0; i < obj->nr_maps; i++) {
932 		map = &obj->maps[i];
933 
934 		if (!bpf_map__is_struct_ops(map))
935 			continue;
936 
937 		err = bpf_map__init_kern_struct_ops(map, obj->btf,
938 						    obj->btf_vmlinux);
939 		if (err)
940 			return err;
941 	}
942 
943 	return 0;
944 }
945 
946 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj)
947 {
948 	const struct btf_type *type, *datasec;
949 	const struct btf_var_secinfo *vsi;
950 	struct bpf_struct_ops *st_ops;
951 	const char *tname, *var_name;
952 	__s32 type_id, datasec_id;
953 	const struct btf *btf;
954 	struct bpf_map *map;
955 	__u32 i;
956 
957 	if (obj->efile.st_ops_shndx == -1)
958 		return 0;
959 
960 	btf = obj->btf;
961 	datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC,
962 					    BTF_KIND_DATASEC);
963 	if (datasec_id < 0) {
964 		pr_warn("struct_ops init: DATASEC %s not found\n",
965 			STRUCT_OPS_SEC);
966 		return -EINVAL;
967 	}
968 
969 	datasec = btf__type_by_id(btf, datasec_id);
970 	vsi = btf_var_secinfos(datasec);
971 	for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
972 		type = btf__type_by_id(obj->btf, vsi->type);
973 		var_name = btf__name_by_offset(obj->btf, type->name_off);
974 
975 		type_id = btf__resolve_type(obj->btf, vsi->type);
976 		if (type_id < 0) {
977 			pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
978 				vsi->type, STRUCT_OPS_SEC);
979 			return -EINVAL;
980 		}
981 
982 		type = btf__type_by_id(obj->btf, type_id);
983 		tname = btf__name_by_offset(obj->btf, type->name_off);
984 		if (!tname[0]) {
985 			pr_warn("struct_ops init: anonymous type is not supported\n");
986 			return -ENOTSUP;
987 		}
988 		if (!btf_is_struct(type)) {
989 			pr_warn("struct_ops init: %s is not a struct\n", tname);
990 			return -EINVAL;
991 		}
992 
993 		map = bpf_object__add_map(obj);
994 		if (IS_ERR(map))
995 			return PTR_ERR(map);
996 
997 		map->sec_idx = obj->efile.st_ops_shndx;
998 		map->sec_offset = vsi->offset;
999 		map->name = strdup(var_name);
1000 		if (!map->name)
1001 			return -ENOMEM;
1002 
1003 		map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1004 		map->def.key_size = sizeof(int);
1005 		map->def.value_size = type->size;
1006 		map->def.max_entries = 1;
1007 
1008 		map->st_ops = calloc(1, sizeof(*map->st_ops));
1009 		if (!map->st_ops)
1010 			return -ENOMEM;
1011 		st_ops = map->st_ops;
1012 		st_ops->data = malloc(type->size);
1013 		st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1014 		st_ops->kern_func_off = malloc(btf_vlen(type) *
1015 					       sizeof(*st_ops->kern_func_off));
1016 		if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1017 			return -ENOMEM;
1018 
1019 		if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) {
1020 			pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1021 				var_name, STRUCT_OPS_SEC);
1022 			return -EINVAL;
1023 		}
1024 
1025 		memcpy(st_ops->data,
1026 		       obj->efile.st_ops_data->d_buf + vsi->offset,
1027 		       type->size);
1028 		st_ops->tname = tname;
1029 		st_ops->type = type;
1030 		st_ops->type_id = type_id;
1031 
1032 		pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1033 			 tname, type_id, var_name, vsi->offset);
1034 	}
1035 
1036 	return 0;
1037 }
1038 
1039 static struct bpf_object *bpf_object__new(const char *path,
1040 					  const void *obj_buf,
1041 					  size_t obj_buf_sz,
1042 					  const char *obj_name)
1043 {
1044 	struct bpf_object *obj;
1045 	char *end;
1046 
1047 	obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1048 	if (!obj) {
1049 		pr_warn("alloc memory failed for %s\n", path);
1050 		return ERR_PTR(-ENOMEM);
1051 	}
1052 
1053 	strcpy(obj->path, path);
1054 	if (obj_name) {
1055 		strncpy(obj->name, obj_name, sizeof(obj->name) - 1);
1056 		obj->name[sizeof(obj->name) - 1] = 0;
1057 	} else {
1058 		/* Using basename() GNU version which doesn't modify arg. */
1059 		strncpy(obj->name, basename((void *)path),
1060 			sizeof(obj->name) - 1);
1061 		end = strchr(obj->name, '.');
1062 		if (end)
1063 			*end = 0;
1064 	}
1065 
1066 	obj->efile.fd = -1;
1067 	/*
1068 	 * Caller of this function should also call
1069 	 * bpf_object__elf_finish() after data collection to return
1070 	 * obj_buf to user. If not, we should duplicate the buffer to
1071 	 * avoid user freeing them before elf finish.
1072 	 */
1073 	obj->efile.obj_buf = obj_buf;
1074 	obj->efile.obj_buf_sz = obj_buf_sz;
1075 	obj->efile.maps_shndx = -1;
1076 	obj->efile.btf_maps_shndx = -1;
1077 	obj->efile.data_shndx = -1;
1078 	obj->efile.rodata_shndx = -1;
1079 	obj->efile.bss_shndx = -1;
1080 	obj->efile.st_ops_shndx = -1;
1081 	obj->kconfig_map_idx = -1;
1082 	obj->rodata_map_idx = -1;
1083 
1084 	obj->kern_version = get_kernel_version();
1085 	obj->loaded = false;
1086 
1087 	INIT_LIST_HEAD(&obj->list);
1088 	list_add(&obj->list, &bpf_objects_list);
1089 	return obj;
1090 }
1091 
1092 static void bpf_object__elf_finish(struct bpf_object *obj)
1093 {
1094 	if (!obj_elf_valid(obj))
1095 		return;
1096 
1097 	if (obj->efile.elf) {
1098 		elf_end(obj->efile.elf);
1099 		obj->efile.elf = NULL;
1100 	}
1101 	obj->efile.symbols = NULL;
1102 	obj->efile.data = NULL;
1103 	obj->efile.rodata = NULL;
1104 	obj->efile.bss = NULL;
1105 	obj->efile.st_ops_data = NULL;
1106 
1107 	zfree(&obj->efile.reloc_sects);
1108 	obj->efile.nr_reloc_sects = 0;
1109 	zclose(obj->efile.fd);
1110 	obj->efile.obj_buf = NULL;
1111 	obj->efile.obj_buf_sz = 0;
1112 }
1113 
1114 /* if libelf is old and doesn't support mmap(), fall back to read() */
1115 #ifndef ELF_C_READ_MMAP
1116 #define ELF_C_READ_MMAP ELF_C_READ
1117 #endif
1118 
1119 static int bpf_object__elf_init(struct bpf_object *obj)
1120 {
1121 	int err = 0;
1122 	GElf_Ehdr *ep;
1123 
1124 	if (obj_elf_valid(obj)) {
1125 		pr_warn("elf: init internal error\n");
1126 		return -LIBBPF_ERRNO__LIBELF;
1127 	}
1128 
1129 	if (obj->efile.obj_buf_sz > 0) {
1130 		/*
1131 		 * obj_buf should have been validated by
1132 		 * bpf_object__open_buffer().
1133 		 */
1134 		obj->efile.elf = elf_memory((char *)obj->efile.obj_buf,
1135 					    obj->efile.obj_buf_sz);
1136 	} else {
1137 		obj->efile.fd = open(obj->path, O_RDONLY);
1138 		if (obj->efile.fd < 0) {
1139 			char errmsg[STRERR_BUFSIZE], *cp;
1140 
1141 			err = -errno;
1142 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1143 			pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1144 			return err;
1145 		}
1146 
1147 		obj->efile.elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1148 	}
1149 
1150 	if (!obj->efile.elf) {
1151 		pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1152 		err = -LIBBPF_ERRNO__LIBELF;
1153 		goto errout;
1154 	}
1155 
1156 	if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) {
1157 		pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1158 		err = -LIBBPF_ERRNO__FORMAT;
1159 		goto errout;
1160 	}
1161 	ep = &obj->efile.ehdr;
1162 
1163 	if (elf_getshdrstrndx(obj->efile.elf, &obj->efile.shstrndx)) {
1164 		pr_warn("elf: failed to get section names section index for %s: %s\n",
1165 			obj->path, elf_errmsg(-1));
1166 		err = -LIBBPF_ERRNO__FORMAT;
1167 		goto errout;
1168 	}
1169 
1170 	/* Elf is corrupted/truncated, avoid calling elf_strptr. */
1171 	if (!elf_rawdata(elf_getscn(obj->efile.elf, obj->efile.shstrndx), NULL)) {
1172 		pr_warn("elf: failed to get section names strings from %s: %s\n",
1173 			obj->path, elf_errmsg(-1));
1174 		return -LIBBPF_ERRNO__FORMAT;
1175 	}
1176 
1177 	/* Old LLVM set e_machine to EM_NONE */
1178 	if (ep->e_type != ET_REL ||
1179 	    (ep->e_machine && ep->e_machine != EM_BPF)) {
1180 		pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1181 		err = -LIBBPF_ERRNO__FORMAT;
1182 		goto errout;
1183 	}
1184 
1185 	return 0;
1186 errout:
1187 	bpf_object__elf_finish(obj);
1188 	return err;
1189 }
1190 
1191 static int bpf_object__check_endianness(struct bpf_object *obj)
1192 {
1193 #if __BYTE_ORDER == __LITTLE_ENDIAN
1194 	if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2LSB)
1195 		return 0;
1196 #elif __BYTE_ORDER == __BIG_ENDIAN
1197 	if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2MSB)
1198 		return 0;
1199 #else
1200 # error "Unrecognized __BYTE_ORDER__"
1201 #endif
1202 	pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1203 	return -LIBBPF_ERRNO__ENDIAN;
1204 }
1205 
1206 static int
1207 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1208 {
1209 	memcpy(obj->license, data, min(size, sizeof(obj->license) - 1));
1210 	pr_debug("license of %s is %s\n", obj->path, obj->license);
1211 	return 0;
1212 }
1213 
1214 static int
1215 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1216 {
1217 	__u32 kver;
1218 
1219 	if (size != sizeof(kver)) {
1220 		pr_warn("invalid kver section in %s\n", obj->path);
1221 		return -LIBBPF_ERRNO__FORMAT;
1222 	}
1223 	memcpy(&kver, data, sizeof(kver));
1224 	obj->kern_version = kver;
1225 	pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1226 	return 0;
1227 }
1228 
1229 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1230 {
1231 	if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1232 	    type == BPF_MAP_TYPE_HASH_OF_MAPS)
1233 		return true;
1234 	return false;
1235 }
1236 
1237 int bpf_object__section_size(const struct bpf_object *obj, const char *name,
1238 			     __u32 *size)
1239 {
1240 	int ret = -ENOENT;
1241 
1242 	*size = 0;
1243 	if (!name) {
1244 		return -EINVAL;
1245 	} else if (!strcmp(name, DATA_SEC)) {
1246 		if (obj->efile.data)
1247 			*size = obj->efile.data->d_size;
1248 	} else if (!strcmp(name, BSS_SEC)) {
1249 		if (obj->efile.bss)
1250 			*size = obj->efile.bss->d_size;
1251 	} else if (!strcmp(name, RODATA_SEC)) {
1252 		if (obj->efile.rodata)
1253 			*size = obj->efile.rodata->d_size;
1254 	} else if (!strcmp(name, STRUCT_OPS_SEC)) {
1255 		if (obj->efile.st_ops_data)
1256 			*size = obj->efile.st_ops_data->d_size;
1257 	} else {
1258 		Elf_Scn *scn = elf_sec_by_name(obj, name);
1259 		Elf_Data *data = elf_sec_data(obj, scn);
1260 
1261 		if (data) {
1262 			ret = 0; /* found it */
1263 			*size = data->d_size;
1264 		}
1265 	}
1266 
1267 	return *size ? 0 : ret;
1268 }
1269 
1270 int bpf_object__variable_offset(const struct bpf_object *obj, const char *name,
1271 				__u32 *off)
1272 {
1273 	Elf_Data *symbols = obj->efile.symbols;
1274 	const char *sname;
1275 	size_t si;
1276 
1277 	if (!name || !off)
1278 		return -EINVAL;
1279 
1280 	for (si = 0; si < symbols->d_size / sizeof(GElf_Sym); si++) {
1281 		GElf_Sym sym;
1282 
1283 		if (!gelf_getsym(symbols, si, &sym))
1284 			continue;
1285 		if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL ||
1286 		    GELF_ST_TYPE(sym.st_info) != STT_OBJECT)
1287 			continue;
1288 
1289 		sname = elf_sym_str(obj, sym.st_name);
1290 		if (!sname) {
1291 			pr_warn("failed to get sym name string for var %s\n",
1292 				name);
1293 			return -EIO;
1294 		}
1295 		if (strcmp(name, sname) == 0) {
1296 			*off = sym.st_value;
1297 			return 0;
1298 		}
1299 	}
1300 
1301 	return -ENOENT;
1302 }
1303 
1304 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1305 {
1306 	struct bpf_map *new_maps;
1307 	size_t new_cap;
1308 	int i;
1309 
1310 	if (obj->nr_maps < obj->maps_cap)
1311 		return &obj->maps[obj->nr_maps++];
1312 
1313 	new_cap = max((size_t)4, obj->maps_cap * 3 / 2);
1314 	new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps));
1315 	if (!new_maps) {
1316 		pr_warn("alloc maps for object failed\n");
1317 		return ERR_PTR(-ENOMEM);
1318 	}
1319 
1320 	obj->maps_cap = new_cap;
1321 	obj->maps = new_maps;
1322 
1323 	/* zero out new maps */
1324 	memset(obj->maps + obj->nr_maps, 0,
1325 	       (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps));
1326 	/*
1327 	 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin)
1328 	 * when failure (zclose won't close negative fd)).
1329 	 */
1330 	for (i = obj->nr_maps; i < obj->maps_cap; i++) {
1331 		obj->maps[i].fd = -1;
1332 		obj->maps[i].inner_map_fd = -1;
1333 	}
1334 
1335 	return &obj->maps[obj->nr_maps++];
1336 }
1337 
1338 static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1339 {
1340 	long page_sz = sysconf(_SC_PAGE_SIZE);
1341 	size_t map_sz;
1342 
1343 	map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries;
1344 	map_sz = roundup(map_sz, page_sz);
1345 	return map_sz;
1346 }
1347 
1348 static char *internal_map_name(struct bpf_object *obj,
1349 			       enum libbpf_map_type type)
1350 {
1351 	char map_name[BPF_OBJ_NAME_LEN], *p;
1352 	const char *sfx = libbpf_type_to_btf_name[type];
1353 	int sfx_len = max((size_t)7, strlen(sfx));
1354 	int pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1,
1355 			  strlen(obj->name));
1356 
1357 	snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1358 		 sfx_len, libbpf_type_to_btf_name[type]);
1359 
1360 	/* sanitise map name to characters allowed by kernel */
1361 	for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1362 		if (!isalnum(*p) && *p != '_' && *p != '.')
1363 			*p = '_';
1364 
1365 	return strdup(map_name);
1366 }
1367 
1368 static int
1369 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1370 			      int sec_idx, void *data, size_t data_sz)
1371 {
1372 	struct bpf_map_def *def;
1373 	struct bpf_map *map;
1374 	int err;
1375 
1376 	map = bpf_object__add_map(obj);
1377 	if (IS_ERR(map))
1378 		return PTR_ERR(map);
1379 
1380 	map->libbpf_type = type;
1381 	map->sec_idx = sec_idx;
1382 	map->sec_offset = 0;
1383 	map->name = internal_map_name(obj, type);
1384 	if (!map->name) {
1385 		pr_warn("failed to alloc map name\n");
1386 		return -ENOMEM;
1387 	}
1388 
1389 	def = &map->def;
1390 	def->type = BPF_MAP_TYPE_ARRAY;
1391 	def->key_size = sizeof(int);
1392 	def->value_size = data_sz;
1393 	def->max_entries = 1;
1394 	def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1395 			 ? BPF_F_RDONLY_PROG : 0;
1396 	def->map_flags |= BPF_F_MMAPABLE;
1397 
1398 	pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1399 		 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1400 
1401 	map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
1402 			   MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1403 	if (map->mmaped == MAP_FAILED) {
1404 		err = -errno;
1405 		map->mmaped = NULL;
1406 		pr_warn("failed to alloc map '%s' content buffer: %d\n",
1407 			map->name, err);
1408 		zfree(&map->name);
1409 		return err;
1410 	}
1411 
1412 	if (data)
1413 		memcpy(map->mmaped, data, data_sz);
1414 
1415 	pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1416 	return 0;
1417 }
1418 
1419 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1420 {
1421 	int err;
1422 
1423 	/*
1424 	 * Populate obj->maps with libbpf internal maps.
1425 	 */
1426 	if (obj->efile.data_shndx >= 0) {
1427 		err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1428 						    obj->efile.data_shndx,
1429 						    obj->efile.data->d_buf,
1430 						    obj->efile.data->d_size);
1431 		if (err)
1432 			return err;
1433 	}
1434 	if (obj->efile.rodata_shndx >= 0) {
1435 		err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1436 						    obj->efile.rodata_shndx,
1437 						    obj->efile.rodata->d_buf,
1438 						    obj->efile.rodata->d_size);
1439 		if (err)
1440 			return err;
1441 
1442 		obj->rodata_map_idx = obj->nr_maps - 1;
1443 	}
1444 	if (obj->efile.bss_shndx >= 0) {
1445 		err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1446 						    obj->efile.bss_shndx,
1447 						    NULL,
1448 						    obj->efile.bss->d_size);
1449 		if (err)
1450 			return err;
1451 	}
1452 	return 0;
1453 }
1454 
1455 
1456 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1457 					       const void *name)
1458 {
1459 	int i;
1460 
1461 	for (i = 0; i < obj->nr_extern; i++) {
1462 		if (strcmp(obj->externs[i].name, name) == 0)
1463 			return &obj->externs[i];
1464 	}
1465 	return NULL;
1466 }
1467 
1468 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1469 			      char value)
1470 {
1471 	switch (ext->kcfg.type) {
1472 	case KCFG_BOOL:
1473 		if (value == 'm') {
1474 			pr_warn("extern (kcfg) %s=%c should be tristate or char\n",
1475 				ext->name, value);
1476 			return -EINVAL;
1477 		}
1478 		*(bool *)ext_val = value == 'y' ? true : false;
1479 		break;
1480 	case KCFG_TRISTATE:
1481 		if (value == 'y')
1482 			*(enum libbpf_tristate *)ext_val = TRI_YES;
1483 		else if (value == 'm')
1484 			*(enum libbpf_tristate *)ext_val = TRI_MODULE;
1485 		else /* value == 'n' */
1486 			*(enum libbpf_tristate *)ext_val = TRI_NO;
1487 		break;
1488 	case KCFG_CHAR:
1489 		*(char *)ext_val = value;
1490 		break;
1491 	case KCFG_UNKNOWN:
1492 	case KCFG_INT:
1493 	case KCFG_CHAR_ARR:
1494 	default:
1495 		pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n",
1496 			ext->name, value);
1497 		return -EINVAL;
1498 	}
1499 	ext->is_set = true;
1500 	return 0;
1501 }
1502 
1503 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1504 			      const char *value)
1505 {
1506 	size_t len;
1507 
1508 	if (ext->kcfg.type != KCFG_CHAR_ARR) {
1509 		pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value);
1510 		return -EINVAL;
1511 	}
1512 
1513 	len = strlen(value);
1514 	if (value[len - 1] != '"') {
1515 		pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1516 			ext->name, value);
1517 		return -EINVAL;
1518 	}
1519 
1520 	/* strip quotes */
1521 	len -= 2;
1522 	if (len >= ext->kcfg.sz) {
1523 		pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n",
1524 			ext->name, value, len, ext->kcfg.sz - 1);
1525 		len = ext->kcfg.sz - 1;
1526 	}
1527 	memcpy(ext_val, value + 1, len);
1528 	ext_val[len] = '\0';
1529 	ext->is_set = true;
1530 	return 0;
1531 }
1532 
1533 static int parse_u64(const char *value, __u64 *res)
1534 {
1535 	char *value_end;
1536 	int err;
1537 
1538 	errno = 0;
1539 	*res = strtoull(value, &value_end, 0);
1540 	if (errno) {
1541 		err = -errno;
1542 		pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1543 		return err;
1544 	}
1545 	if (*value_end) {
1546 		pr_warn("failed to parse '%s' as integer completely\n", value);
1547 		return -EINVAL;
1548 	}
1549 	return 0;
1550 }
1551 
1552 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1553 {
1554 	int bit_sz = ext->kcfg.sz * 8;
1555 
1556 	if (ext->kcfg.sz == 8)
1557 		return true;
1558 
1559 	/* Validate that value stored in u64 fits in integer of `ext->sz`
1560 	 * bytes size without any loss of information. If the target integer
1561 	 * is signed, we rely on the following limits of integer type of
1562 	 * Y bits and subsequent transformation:
1563 	 *
1564 	 *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
1565 	 *            0 <= X + 2^(Y-1) <= 2^Y - 1
1566 	 *            0 <= X + 2^(Y-1) <  2^Y
1567 	 *
1568 	 *  For unsigned target integer, check that all the (64 - Y) bits are
1569 	 *  zero.
1570 	 */
1571 	if (ext->kcfg.is_signed)
1572 		return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1573 	else
1574 		return (v >> bit_sz) == 0;
1575 }
1576 
1577 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1578 			      __u64 value)
1579 {
1580 	if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1581 		pr_warn("extern (kcfg) %s=%llu should be integer\n",
1582 			ext->name, (unsigned long long)value);
1583 		return -EINVAL;
1584 	}
1585 	if (!is_kcfg_value_in_range(ext, value)) {
1586 		pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n",
1587 			ext->name, (unsigned long long)value, ext->kcfg.sz);
1588 		return -ERANGE;
1589 	}
1590 	switch (ext->kcfg.sz) {
1591 		case 1: *(__u8 *)ext_val = value; break;
1592 		case 2: *(__u16 *)ext_val = value; break;
1593 		case 4: *(__u32 *)ext_val = value; break;
1594 		case 8: *(__u64 *)ext_val = value; break;
1595 		default:
1596 			return -EINVAL;
1597 	}
1598 	ext->is_set = true;
1599 	return 0;
1600 }
1601 
1602 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1603 					    char *buf, void *data)
1604 {
1605 	struct extern_desc *ext;
1606 	char *sep, *value;
1607 	int len, err = 0;
1608 	void *ext_val;
1609 	__u64 num;
1610 
1611 	if (strncmp(buf, "CONFIG_", 7))
1612 		return 0;
1613 
1614 	sep = strchr(buf, '=');
1615 	if (!sep) {
1616 		pr_warn("failed to parse '%s': no separator\n", buf);
1617 		return -EINVAL;
1618 	}
1619 
1620 	/* Trim ending '\n' */
1621 	len = strlen(buf);
1622 	if (buf[len - 1] == '\n')
1623 		buf[len - 1] = '\0';
1624 	/* Split on '=' and ensure that a value is present. */
1625 	*sep = '\0';
1626 	if (!sep[1]) {
1627 		*sep = '=';
1628 		pr_warn("failed to parse '%s': no value\n", buf);
1629 		return -EINVAL;
1630 	}
1631 
1632 	ext = find_extern_by_name(obj, buf);
1633 	if (!ext || ext->is_set)
1634 		return 0;
1635 
1636 	ext_val = data + ext->kcfg.data_off;
1637 	value = sep + 1;
1638 
1639 	switch (*value) {
1640 	case 'y': case 'n': case 'm':
1641 		err = set_kcfg_value_tri(ext, ext_val, *value);
1642 		break;
1643 	case '"':
1644 		err = set_kcfg_value_str(ext, ext_val, value);
1645 		break;
1646 	default:
1647 		/* assume integer */
1648 		err = parse_u64(value, &num);
1649 		if (err) {
1650 			pr_warn("extern (kcfg) %s=%s should be integer\n",
1651 				ext->name, value);
1652 			return err;
1653 		}
1654 		err = set_kcfg_value_num(ext, ext_val, num);
1655 		break;
1656 	}
1657 	if (err)
1658 		return err;
1659 	pr_debug("extern (kcfg) %s=%s\n", ext->name, value);
1660 	return 0;
1661 }
1662 
1663 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1664 {
1665 	char buf[PATH_MAX];
1666 	struct utsname uts;
1667 	int len, err = 0;
1668 	gzFile file;
1669 
1670 	uname(&uts);
1671 	len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1672 	if (len < 0)
1673 		return -EINVAL;
1674 	else if (len >= PATH_MAX)
1675 		return -ENAMETOOLONG;
1676 
1677 	/* gzopen also accepts uncompressed files. */
1678 	file = gzopen(buf, "r");
1679 	if (!file)
1680 		file = gzopen("/proc/config.gz", "r");
1681 
1682 	if (!file) {
1683 		pr_warn("failed to open system Kconfig\n");
1684 		return -ENOENT;
1685 	}
1686 
1687 	while (gzgets(file, buf, sizeof(buf))) {
1688 		err = bpf_object__process_kconfig_line(obj, buf, data);
1689 		if (err) {
1690 			pr_warn("error parsing system Kconfig line '%s': %d\n",
1691 				buf, err);
1692 			goto out;
1693 		}
1694 	}
1695 
1696 out:
1697 	gzclose(file);
1698 	return err;
1699 }
1700 
1701 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
1702 					const char *config, void *data)
1703 {
1704 	char buf[PATH_MAX];
1705 	int err = 0;
1706 	FILE *file;
1707 
1708 	file = fmemopen((void *)config, strlen(config), "r");
1709 	if (!file) {
1710 		err = -errno;
1711 		pr_warn("failed to open in-memory Kconfig: %d\n", err);
1712 		return err;
1713 	}
1714 
1715 	while (fgets(buf, sizeof(buf), file)) {
1716 		err = bpf_object__process_kconfig_line(obj, buf, data);
1717 		if (err) {
1718 			pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
1719 				buf, err);
1720 			break;
1721 		}
1722 	}
1723 
1724 	fclose(file);
1725 	return err;
1726 }
1727 
1728 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
1729 {
1730 	struct extern_desc *last_ext = NULL, *ext;
1731 	size_t map_sz;
1732 	int i, err;
1733 
1734 	for (i = 0; i < obj->nr_extern; i++) {
1735 		ext = &obj->externs[i];
1736 		if (ext->type == EXT_KCFG)
1737 			last_ext = ext;
1738 	}
1739 
1740 	if (!last_ext)
1741 		return 0;
1742 
1743 	map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
1744 	err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
1745 					    obj->efile.symbols_shndx,
1746 					    NULL, map_sz);
1747 	if (err)
1748 		return err;
1749 
1750 	obj->kconfig_map_idx = obj->nr_maps - 1;
1751 
1752 	return 0;
1753 }
1754 
1755 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict)
1756 {
1757 	Elf_Data *symbols = obj->efile.symbols;
1758 	int i, map_def_sz = 0, nr_maps = 0, nr_syms;
1759 	Elf_Data *data = NULL;
1760 	Elf_Scn *scn;
1761 
1762 	if (obj->efile.maps_shndx < 0)
1763 		return 0;
1764 
1765 	if (!symbols)
1766 		return -EINVAL;
1767 
1768 
1769 	scn = elf_sec_by_idx(obj, obj->efile.maps_shndx);
1770 	data = elf_sec_data(obj, scn);
1771 	if (!scn || !data) {
1772 		pr_warn("elf: failed to get legacy map definitions for %s\n",
1773 			obj->path);
1774 		return -EINVAL;
1775 	}
1776 
1777 	/*
1778 	 * Count number of maps. Each map has a name.
1779 	 * Array of maps is not supported: only the first element is
1780 	 * considered.
1781 	 *
1782 	 * TODO: Detect array of map and report error.
1783 	 */
1784 	nr_syms = symbols->d_size / sizeof(GElf_Sym);
1785 	for (i = 0; i < nr_syms; i++) {
1786 		GElf_Sym sym;
1787 
1788 		if (!gelf_getsym(symbols, i, &sym))
1789 			continue;
1790 		if (sym.st_shndx != obj->efile.maps_shndx)
1791 			continue;
1792 		nr_maps++;
1793 	}
1794 	/* Assume equally sized map definitions */
1795 	pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n",
1796 		 nr_maps, data->d_size, obj->path);
1797 
1798 	if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) {
1799 		pr_warn("elf: unable to determine legacy map definition size in %s\n",
1800 			obj->path);
1801 		return -EINVAL;
1802 	}
1803 	map_def_sz = data->d_size / nr_maps;
1804 
1805 	/* Fill obj->maps using data in "maps" section.  */
1806 	for (i = 0; i < nr_syms; i++) {
1807 		GElf_Sym sym;
1808 		const char *map_name;
1809 		struct bpf_map_def *def;
1810 		struct bpf_map *map;
1811 
1812 		if (!gelf_getsym(symbols, i, &sym))
1813 			continue;
1814 		if (sym.st_shndx != obj->efile.maps_shndx)
1815 			continue;
1816 
1817 		map = bpf_object__add_map(obj);
1818 		if (IS_ERR(map))
1819 			return PTR_ERR(map);
1820 
1821 		map_name = elf_sym_str(obj, sym.st_name);
1822 		if (!map_name) {
1823 			pr_warn("failed to get map #%d name sym string for obj %s\n",
1824 				i, obj->path);
1825 			return -LIBBPF_ERRNO__FORMAT;
1826 		}
1827 
1828 		map->libbpf_type = LIBBPF_MAP_UNSPEC;
1829 		map->sec_idx = sym.st_shndx;
1830 		map->sec_offset = sym.st_value;
1831 		pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n",
1832 			 map_name, map->sec_idx, map->sec_offset);
1833 		if (sym.st_value + map_def_sz > data->d_size) {
1834 			pr_warn("corrupted maps section in %s: last map \"%s\" too small\n",
1835 				obj->path, map_name);
1836 			return -EINVAL;
1837 		}
1838 
1839 		map->name = strdup(map_name);
1840 		if (!map->name) {
1841 			pr_warn("failed to alloc map name\n");
1842 			return -ENOMEM;
1843 		}
1844 		pr_debug("map %d is \"%s\"\n", i, map->name);
1845 		def = (struct bpf_map_def *)(data->d_buf + sym.st_value);
1846 		/*
1847 		 * If the definition of the map in the object file fits in
1848 		 * bpf_map_def, copy it.  Any extra fields in our version
1849 		 * of bpf_map_def will default to zero as a result of the
1850 		 * calloc above.
1851 		 */
1852 		if (map_def_sz <= sizeof(struct bpf_map_def)) {
1853 			memcpy(&map->def, def, map_def_sz);
1854 		} else {
1855 			/*
1856 			 * Here the map structure being read is bigger than what
1857 			 * we expect, truncate if the excess bits are all zero.
1858 			 * If they are not zero, reject this map as
1859 			 * incompatible.
1860 			 */
1861 			char *b;
1862 
1863 			for (b = ((char *)def) + sizeof(struct bpf_map_def);
1864 			     b < ((char *)def) + map_def_sz; b++) {
1865 				if (*b != 0) {
1866 					pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n",
1867 						obj->path, map_name);
1868 					if (strict)
1869 						return -EINVAL;
1870 				}
1871 			}
1872 			memcpy(&map->def, def, sizeof(struct bpf_map_def));
1873 		}
1874 	}
1875 	return 0;
1876 }
1877 
1878 static const struct btf_type *
1879 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
1880 {
1881 	const struct btf_type *t = btf__type_by_id(btf, id);
1882 
1883 	if (res_id)
1884 		*res_id = id;
1885 
1886 	while (btf_is_mod(t) || btf_is_typedef(t)) {
1887 		if (res_id)
1888 			*res_id = t->type;
1889 		t = btf__type_by_id(btf, t->type);
1890 	}
1891 
1892 	return t;
1893 }
1894 
1895 static const struct btf_type *
1896 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
1897 {
1898 	const struct btf_type *t;
1899 
1900 	t = skip_mods_and_typedefs(btf, id, NULL);
1901 	if (!btf_is_ptr(t))
1902 		return NULL;
1903 
1904 	t = skip_mods_and_typedefs(btf, t->type, res_id);
1905 
1906 	return btf_is_func_proto(t) ? t : NULL;
1907 }
1908 
1909 static const char *btf_kind_str(const struct btf_type *t)
1910 {
1911 	switch (btf_kind(t)) {
1912 	case BTF_KIND_UNKN: return "void";
1913 	case BTF_KIND_INT: return "int";
1914 	case BTF_KIND_PTR: return "ptr";
1915 	case BTF_KIND_ARRAY: return "array";
1916 	case BTF_KIND_STRUCT: return "struct";
1917 	case BTF_KIND_UNION: return "union";
1918 	case BTF_KIND_ENUM: return "enum";
1919 	case BTF_KIND_FWD: return "fwd";
1920 	case BTF_KIND_TYPEDEF: return "typedef";
1921 	case BTF_KIND_VOLATILE: return "volatile";
1922 	case BTF_KIND_CONST: return "const";
1923 	case BTF_KIND_RESTRICT: return "restrict";
1924 	case BTF_KIND_FUNC: return "func";
1925 	case BTF_KIND_FUNC_PROTO: return "func_proto";
1926 	case BTF_KIND_VAR: return "var";
1927 	case BTF_KIND_DATASEC: return "datasec";
1928 	default: return "unknown";
1929 	}
1930 }
1931 
1932 /*
1933  * Fetch integer attribute of BTF map definition. Such attributes are
1934  * represented using a pointer to an array, in which dimensionality of array
1935  * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
1936  * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
1937  * type definition, while using only sizeof(void *) space in ELF data section.
1938  */
1939 static bool get_map_field_int(const char *map_name, const struct btf *btf,
1940 			      const struct btf_member *m, __u32 *res)
1941 {
1942 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
1943 	const char *name = btf__name_by_offset(btf, m->name_off);
1944 	const struct btf_array *arr_info;
1945 	const struct btf_type *arr_t;
1946 
1947 	if (!btf_is_ptr(t)) {
1948 		pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
1949 			map_name, name, btf_kind_str(t));
1950 		return false;
1951 	}
1952 
1953 	arr_t = btf__type_by_id(btf, t->type);
1954 	if (!arr_t) {
1955 		pr_warn("map '%s': attr '%s': type [%u] not found.\n",
1956 			map_name, name, t->type);
1957 		return false;
1958 	}
1959 	if (!btf_is_array(arr_t)) {
1960 		pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
1961 			map_name, name, btf_kind_str(arr_t));
1962 		return false;
1963 	}
1964 	arr_info = btf_array(arr_t);
1965 	*res = arr_info->nelems;
1966 	return true;
1967 }
1968 
1969 static int build_map_pin_path(struct bpf_map *map, const char *path)
1970 {
1971 	char buf[PATH_MAX];
1972 	int len;
1973 
1974 	if (!path)
1975 		path = "/sys/fs/bpf";
1976 
1977 	len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map));
1978 	if (len < 0)
1979 		return -EINVAL;
1980 	else if (len >= PATH_MAX)
1981 		return -ENAMETOOLONG;
1982 
1983 	return bpf_map__set_pin_path(map, buf);
1984 }
1985 
1986 
1987 static int parse_btf_map_def(struct bpf_object *obj,
1988 			     struct bpf_map *map,
1989 			     const struct btf_type *def,
1990 			     bool strict, bool is_inner,
1991 			     const char *pin_root_path)
1992 {
1993 	const struct btf_type *t;
1994 	const struct btf_member *m;
1995 	int vlen, i;
1996 
1997 	vlen = btf_vlen(def);
1998 	m = btf_members(def);
1999 	for (i = 0; i < vlen; i++, m++) {
2000 		const char *name = btf__name_by_offset(obj->btf, m->name_off);
2001 
2002 		if (!name) {
2003 			pr_warn("map '%s': invalid field #%d.\n", map->name, i);
2004 			return -EINVAL;
2005 		}
2006 		if (strcmp(name, "type") == 0) {
2007 			if (!get_map_field_int(map->name, obj->btf, m,
2008 					       &map->def.type))
2009 				return -EINVAL;
2010 			pr_debug("map '%s': found type = %u.\n",
2011 				 map->name, map->def.type);
2012 		} else if (strcmp(name, "max_entries") == 0) {
2013 			if (!get_map_field_int(map->name, obj->btf, m,
2014 					       &map->def.max_entries))
2015 				return -EINVAL;
2016 			pr_debug("map '%s': found max_entries = %u.\n",
2017 				 map->name, map->def.max_entries);
2018 		} else if (strcmp(name, "map_flags") == 0) {
2019 			if (!get_map_field_int(map->name, obj->btf, m,
2020 					       &map->def.map_flags))
2021 				return -EINVAL;
2022 			pr_debug("map '%s': found map_flags = %u.\n",
2023 				 map->name, map->def.map_flags);
2024 		} else if (strcmp(name, "numa_node") == 0) {
2025 			if (!get_map_field_int(map->name, obj->btf, m, &map->numa_node))
2026 				return -EINVAL;
2027 			pr_debug("map '%s': found numa_node = %u.\n", map->name, map->numa_node);
2028 		} else if (strcmp(name, "key_size") == 0) {
2029 			__u32 sz;
2030 
2031 			if (!get_map_field_int(map->name, obj->btf, m, &sz))
2032 				return -EINVAL;
2033 			pr_debug("map '%s': found key_size = %u.\n",
2034 				 map->name, sz);
2035 			if (map->def.key_size && map->def.key_size != sz) {
2036 				pr_warn("map '%s': conflicting key size %u != %u.\n",
2037 					map->name, map->def.key_size, sz);
2038 				return -EINVAL;
2039 			}
2040 			map->def.key_size = sz;
2041 		} else if (strcmp(name, "key") == 0) {
2042 			__s64 sz;
2043 
2044 			t = btf__type_by_id(obj->btf, m->type);
2045 			if (!t) {
2046 				pr_warn("map '%s': key type [%d] not found.\n",
2047 					map->name, m->type);
2048 				return -EINVAL;
2049 			}
2050 			if (!btf_is_ptr(t)) {
2051 				pr_warn("map '%s': key spec is not PTR: %s.\n",
2052 					map->name, btf_kind_str(t));
2053 				return -EINVAL;
2054 			}
2055 			sz = btf__resolve_size(obj->btf, t->type);
2056 			if (sz < 0) {
2057 				pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2058 					map->name, t->type, (ssize_t)sz);
2059 				return sz;
2060 			}
2061 			pr_debug("map '%s': found key [%u], sz = %zd.\n",
2062 				 map->name, t->type, (ssize_t)sz);
2063 			if (map->def.key_size && map->def.key_size != sz) {
2064 				pr_warn("map '%s': conflicting key size %u != %zd.\n",
2065 					map->name, map->def.key_size, (ssize_t)sz);
2066 				return -EINVAL;
2067 			}
2068 			map->def.key_size = sz;
2069 			map->btf_key_type_id = t->type;
2070 		} else if (strcmp(name, "value_size") == 0) {
2071 			__u32 sz;
2072 
2073 			if (!get_map_field_int(map->name, obj->btf, m, &sz))
2074 				return -EINVAL;
2075 			pr_debug("map '%s': found value_size = %u.\n",
2076 				 map->name, sz);
2077 			if (map->def.value_size && map->def.value_size != sz) {
2078 				pr_warn("map '%s': conflicting value size %u != %u.\n",
2079 					map->name, map->def.value_size, sz);
2080 				return -EINVAL;
2081 			}
2082 			map->def.value_size = sz;
2083 		} else if (strcmp(name, "value") == 0) {
2084 			__s64 sz;
2085 
2086 			t = btf__type_by_id(obj->btf, m->type);
2087 			if (!t) {
2088 				pr_warn("map '%s': value type [%d] not found.\n",
2089 					map->name, m->type);
2090 				return -EINVAL;
2091 			}
2092 			if (!btf_is_ptr(t)) {
2093 				pr_warn("map '%s': value spec is not PTR: %s.\n",
2094 					map->name, btf_kind_str(t));
2095 				return -EINVAL;
2096 			}
2097 			sz = btf__resolve_size(obj->btf, t->type);
2098 			if (sz < 0) {
2099 				pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2100 					map->name, t->type, (ssize_t)sz);
2101 				return sz;
2102 			}
2103 			pr_debug("map '%s': found value [%u], sz = %zd.\n",
2104 				 map->name, t->type, (ssize_t)sz);
2105 			if (map->def.value_size && map->def.value_size != sz) {
2106 				pr_warn("map '%s': conflicting value size %u != %zd.\n",
2107 					map->name, map->def.value_size, (ssize_t)sz);
2108 				return -EINVAL;
2109 			}
2110 			map->def.value_size = sz;
2111 			map->btf_value_type_id = t->type;
2112 		}
2113 		else if (strcmp(name, "values") == 0) {
2114 			int err;
2115 
2116 			if (is_inner) {
2117 				pr_warn("map '%s': multi-level inner maps not supported.\n",
2118 					map->name);
2119 				return -ENOTSUP;
2120 			}
2121 			if (i != vlen - 1) {
2122 				pr_warn("map '%s': '%s' member should be last.\n",
2123 					map->name, name);
2124 				return -EINVAL;
2125 			}
2126 			if (!bpf_map_type__is_map_in_map(map->def.type)) {
2127 				pr_warn("map '%s': should be map-in-map.\n",
2128 					map->name);
2129 				return -ENOTSUP;
2130 			}
2131 			if (map->def.value_size && map->def.value_size != 4) {
2132 				pr_warn("map '%s': conflicting value size %u != 4.\n",
2133 					map->name, map->def.value_size);
2134 				return -EINVAL;
2135 			}
2136 			map->def.value_size = 4;
2137 			t = btf__type_by_id(obj->btf, m->type);
2138 			if (!t) {
2139 				pr_warn("map '%s': map-in-map inner type [%d] not found.\n",
2140 					map->name, m->type);
2141 				return -EINVAL;
2142 			}
2143 			if (!btf_is_array(t) || btf_array(t)->nelems) {
2144 				pr_warn("map '%s': map-in-map inner spec is not a zero-sized array.\n",
2145 					map->name);
2146 				return -EINVAL;
2147 			}
2148 			t = skip_mods_and_typedefs(obj->btf, btf_array(t)->type,
2149 						   NULL);
2150 			if (!btf_is_ptr(t)) {
2151 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2152 					map->name, btf_kind_str(t));
2153 				return -EINVAL;
2154 			}
2155 			t = skip_mods_and_typedefs(obj->btf, t->type, NULL);
2156 			if (!btf_is_struct(t)) {
2157 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2158 					map->name, btf_kind_str(t));
2159 				return -EINVAL;
2160 			}
2161 
2162 			map->inner_map = calloc(1, sizeof(*map->inner_map));
2163 			if (!map->inner_map)
2164 				return -ENOMEM;
2165 			map->inner_map->sec_idx = obj->efile.btf_maps_shndx;
2166 			map->inner_map->name = malloc(strlen(map->name) +
2167 						      sizeof(".inner") + 1);
2168 			if (!map->inner_map->name)
2169 				return -ENOMEM;
2170 			sprintf(map->inner_map->name, "%s.inner", map->name);
2171 
2172 			err = parse_btf_map_def(obj, map->inner_map, t, strict,
2173 						true /* is_inner */, NULL);
2174 			if (err)
2175 				return err;
2176 		} else if (strcmp(name, "pinning") == 0) {
2177 			__u32 val;
2178 			int err;
2179 
2180 			if (is_inner) {
2181 				pr_debug("map '%s': inner def can't be pinned.\n",
2182 					 map->name);
2183 				return -EINVAL;
2184 			}
2185 			if (!get_map_field_int(map->name, obj->btf, m, &val))
2186 				return -EINVAL;
2187 			pr_debug("map '%s': found pinning = %u.\n",
2188 				 map->name, val);
2189 
2190 			if (val != LIBBPF_PIN_NONE &&
2191 			    val != LIBBPF_PIN_BY_NAME) {
2192 				pr_warn("map '%s': invalid pinning value %u.\n",
2193 					map->name, val);
2194 				return -EINVAL;
2195 			}
2196 			if (val == LIBBPF_PIN_BY_NAME) {
2197 				err = build_map_pin_path(map, pin_root_path);
2198 				if (err) {
2199 					pr_warn("map '%s': couldn't build pin path.\n",
2200 						map->name);
2201 					return err;
2202 				}
2203 			}
2204 		} else {
2205 			if (strict) {
2206 				pr_warn("map '%s': unknown field '%s'.\n",
2207 					map->name, name);
2208 				return -ENOTSUP;
2209 			}
2210 			pr_debug("map '%s': ignoring unknown field '%s'.\n",
2211 				 map->name, name);
2212 		}
2213 	}
2214 
2215 	if (map->def.type == BPF_MAP_TYPE_UNSPEC) {
2216 		pr_warn("map '%s': map type isn't specified.\n", map->name);
2217 		return -EINVAL;
2218 	}
2219 
2220 	return 0;
2221 }
2222 
2223 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2224 					 const struct btf_type *sec,
2225 					 int var_idx, int sec_idx,
2226 					 const Elf_Data *data, bool strict,
2227 					 const char *pin_root_path)
2228 {
2229 	const struct btf_type *var, *def;
2230 	const struct btf_var_secinfo *vi;
2231 	const struct btf_var *var_extra;
2232 	const char *map_name;
2233 	struct bpf_map *map;
2234 
2235 	vi = btf_var_secinfos(sec) + var_idx;
2236 	var = btf__type_by_id(obj->btf, vi->type);
2237 	var_extra = btf_var(var);
2238 	map_name = btf__name_by_offset(obj->btf, var->name_off);
2239 
2240 	if (map_name == NULL || map_name[0] == '\0') {
2241 		pr_warn("map #%d: empty name.\n", var_idx);
2242 		return -EINVAL;
2243 	}
2244 	if ((__u64)vi->offset + vi->size > data->d_size) {
2245 		pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2246 		return -EINVAL;
2247 	}
2248 	if (!btf_is_var(var)) {
2249 		pr_warn("map '%s': unexpected var kind %s.\n",
2250 			map_name, btf_kind_str(var));
2251 		return -EINVAL;
2252 	}
2253 	if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2254 	    var_extra->linkage != BTF_VAR_STATIC) {
2255 		pr_warn("map '%s': unsupported var linkage %u.\n",
2256 			map_name, var_extra->linkage);
2257 		return -EOPNOTSUPP;
2258 	}
2259 
2260 	def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2261 	if (!btf_is_struct(def)) {
2262 		pr_warn("map '%s': unexpected def kind %s.\n",
2263 			map_name, btf_kind_str(var));
2264 		return -EINVAL;
2265 	}
2266 	if (def->size > vi->size) {
2267 		pr_warn("map '%s': invalid def size.\n", map_name);
2268 		return -EINVAL;
2269 	}
2270 
2271 	map = bpf_object__add_map(obj);
2272 	if (IS_ERR(map))
2273 		return PTR_ERR(map);
2274 	map->name = strdup(map_name);
2275 	if (!map->name) {
2276 		pr_warn("map '%s': failed to alloc map name.\n", map_name);
2277 		return -ENOMEM;
2278 	}
2279 	map->libbpf_type = LIBBPF_MAP_UNSPEC;
2280 	map->def.type = BPF_MAP_TYPE_UNSPEC;
2281 	map->sec_idx = sec_idx;
2282 	map->sec_offset = vi->offset;
2283 	map->btf_var_idx = var_idx;
2284 	pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2285 		 map_name, map->sec_idx, map->sec_offset);
2286 
2287 	return parse_btf_map_def(obj, map, def, strict, false, pin_root_path);
2288 }
2289 
2290 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2291 					  const char *pin_root_path)
2292 {
2293 	const struct btf_type *sec = NULL;
2294 	int nr_types, i, vlen, err;
2295 	const struct btf_type *t;
2296 	const char *name;
2297 	Elf_Data *data;
2298 	Elf_Scn *scn;
2299 
2300 	if (obj->efile.btf_maps_shndx < 0)
2301 		return 0;
2302 
2303 	scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2304 	data = elf_sec_data(obj, scn);
2305 	if (!scn || !data) {
2306 		pr_warn("elf: failed to get %s map definitions for %s\n",
2307 			MAPS_ELF_SEC, obj->path);
2308 		return -EINVAL;
2309 	}
2310 
2311 	nr_types = btf__get_nr_types(obj->btf);
2312 	for (i = 1; i <= nr_types; i++) {
2313 		t = btf__type_by_id(obj->btf, i);
2314 		if (!btf_is_datasec(t))
2315 			continue;
2316 		name = btf__name_by_offset(obj->btf, t->name_off);
2317 		if (strcmp(name, MAPS_ELF_SEC) == 0) {
2318 			sec = t;
2319 			obj->efile.btf_maps_sec_btf_id = i;
2320 			break;
2321 		}
2322 	}
2323 
2324 	if (!sec) {
2325 		pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2326 		return -ENOENT;
2327 	}
2328 
2329 	vlen = btf_vlen(sec);
2330 	for (i = 0; i < vlen; i++) {
2331 		err = bpf_object__init_user_btf_map(obj, sec, i,
2332 						    obj->efile.btf_maps_shndx,
2333 						    data, strict,
2334 						    pin_root_path);
2335 		if (err)
2336 			return err;
2337 	}
2338 
2339 	return 0;
2340 }
2341 
2342 static int bpf_object__init_maps(struct bpf_object *obj,
2343 				 const struct bpf_object_open_opts *opts)
2344 {
2345 	const char *pin_root_path;
2346 	bool strict;
2347 	int err;
2348 
2349 	strict = !OPTS_GET(opts, relaxed_maps, false);
2350 	pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2351 
2352 	err = bpf_object__init_user_maps(obj, strict);
2353 	err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2354 	err = err ?: bpf_object__init_global_data_maps(obj);
2355 	err = err ?: bpf_object__init_kconfig_map(obj);
2356 	err = err ?: bpf_object__init_struct_ops_maps(obj);
2357 	if (err)
2358 		return err;
2359 
2360 	return 0;
2361 }
2362 
2363 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2364 {
2365 	GElf_Shdr sh;
2366 
2367 	if (elf_sec_hdr(obj, elf_sec_by_idx(obj, idx), &sh))
2368 		return false;
2369 
2370 	return sh.sh_flags & SHF_EXECINSTR;
2371 }
2372 
2373 static bool btf_needs_sanitization(struct bpf_object *obj)
2374 {
2375 	bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC);
2376 	bool has_datasec = kernel_supports(FEAT_BTF_DATASEC);
2377 	bool has_func = kernel_supports(FEAT_BTF_FUNC);
2378 
2379 	return !has_func || !has_datasec || !has_func_global;
2380 }
2381 
2382 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2383 {
2384 	bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC);
2385 	bool has_datasec = kernel_supports(FEAT_BTF_DATASEC);
2386 	bool has_func = kernel_supports(FEAT_BTF_FUNC);
2387 	struct btf_type *t;
2388 	int i, j, vlen;
2389 
2390 	for (i = 1; i <= btf__get_nr_types(btf); i++) {
2391 		t = (struct btf_type *)btf__type_by_id(btf, i);
2392 
2393 		if (!has_datasec && btf_is_var(t)) {
2394 			/* replace VAR with INT */
2395 			t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2396 			/*
2397 			 * using size = 1 is the safest choice, 4 will be too
2398 			 * big and cause kernel BTF validation failure if
2399 			 * original variable took less than 4 bytes
2400 			 */
2401 			t->size = 1;
2402 			*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2403 		} else if (!has_datasec && btf_is_datasec(t)) {
2404 			/* replace DATASEC with STRUCT */
2405 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
2406 			struct btf_member *m = btf_members(t);
2407 			struct btf_type *vt;
2408 			char *name;
2409 
2410 			name = (char *)btf__name_by_offset(btf, t->name_off);
2411 			while (*name) {
2412 				if (*name == '.')
2413 					*name = '_';
2414 				name++;
2415 			}
2416 
2417 			vlen = btf_vlen(t);
2418 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2419 			for (j = 0; j < vlen; j++, v++, m++) {
2420 				/* order of field assignments is important */
2421 				m->offset = v->offset * 8;
2422 				m->type = v->type;
2423 				/* preserve variable name as member name */
2424 				vt = (void *)btf__type_by_id(btf, v->type);
2425 				m->name_off = vt->name_off;
2426 			}
2427 		} else if (!has_func && btf_is_func_proto(t)) {
2428 			/* replace FUNC_PROTO with ENUM */
2429 			vlen = btf_vlen(t);
2430 			t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2431 			t->size = sizeof(__u32); /* kernel enforced */
2432 		} else if (!has_func && btf_is_func(t)) {
2433 			/* replace FUNC with TYPEDEF */
2434 			t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2435 		} else if (!has_func_global && btf_is_func(t)) {
2436 			/* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2437 			t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2438 		}
2439 	}
2440 }
2441 
2442 static bool libbpf_needs_btf(const struct bpf_object *obj)
2443 {
2444 	return obj->efile.btf_maps_shndx >= 0 ||
2445 	       obj->efile.st_ops_shndx >= 0 ||
2446 	       obj->nr_extern > 0;
2447 }
2448 
2449 static bool kernel_needs_btf(const struct bpf_object *obj)
2450 {
2451 	return obj->efile.st_ops_shndx >= 0;
2452 }
2453 
2454 static int bpf_object__init_btf(struct bpf_object *obj,
2455 				Elf_Data *btf_data,
2456 				Elf_Data *btf_ext_data)
2457 {
2458 	int err = -ENOENT;
2459 
2460 	if (btf_data) {
2461 		obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2462 		if (IS_ERR(obj->btf)) {
2463 			err = PTR_ERR(obj->btf);
2464 			obj->btf = NULL;
2465 			pr_warn("Error loading ELF section %s: %d.\n",
2466 				BTF_ELF_SEC, err);
2467 			goto out;
2468 		}
2469 		/* enforce 8-byte pointers for BPF-targeted BTFs */
2470 		btf__set_pointer_size(obj->btf, 8);
2471 		err = 0;
2472 	}
2473 	if (btf_ext_data) {
2474 		if (!obj->btf) {
2475 			pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2476 				 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2477 			goto out;
2478 		}
2479 		obj->btf_ext = btf_ext__new(btf_ext_data->d_buf,
2480 					    btf_ext_data->d_size);
2481 		if (IS_ERR(obj->btf_ext)) {
2482 			pr_warn("Error loading ELF section %s: %ld. Ignored and continue.\n",
2483 				BTF_EXT_ELF_SEC, PTR_ERR(obj->btf_ext));
2484 			obj->btf_ext = NULL;
2485 			goto out;
2486 		}
2487 	}
2488 out:
2489 	if (err && libbpf_needs_btf(obj)) {
2490 		pr_warn("BTF is required, but is missing or corrupted.\n");
2491 		return err;
2492 	}
2493 	return 0;
2494 }
2495 
2496 static int bpf_object__finalize_btf(struct bpf_object *obj)
2497 {
2498 	int err;
2499 
2500 	if (!obj->btf)
2501 		return 0;
2502 
2503 	err = btf__finalize_data(obj, obj->btf);
2504 	if (err) {
2505 		pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err);
2506 		return err;
2507 	}
2508 
2509 	return 0;
2510 }
2511 
2512 static inline bool libbpf_prog_needs_vmlinux_btf(struct bpf_program *prog)
2513 {
2514 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
2515 	    prog->type == BPF_PROG_TYPE_LSM)
2516 		return true;
2517 
2518 	/* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
2519 	 * also need vmlinux BTF
2520 	 */
2521 	if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
2522 		return true;
2523 
2524 	return false;
2525 }
2526 
2527 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj)
2528 {
2529 	bool need_vmlinux_btf = false;
2530 	struct bpf_program *prog;
2531 	int i, err;
2532 
2533 	/* CO-RE relocations need kernel BTF */
2534 	if (obj->btf_ext && obj->btf_ext->core_relo_info.len)
2535 		need_vmlinux_btf = true;
2536 
2537 	/* Support for typed ksyms needs kernel BTF */
2538 	for (i = 0; i < obj->nr_extern; i++) {
2539 		const struct extern_desc *ext;
2540 
2541 		ext = &obj->externs[i];
2542 		if (ext->type == EXT_KSYM && ext->ksym.type_id) {
2543 			need_vmlinux_btf = true;
2544 			break;
2545 		}
2546 	}
2547 
2548 	bpf_object__for_each_program(prog, obj) {
2549 		if (!prog->load)
2550 			continue;
2551 		if (libbpf_prog_needs_vmlinux_btf(prog)) {
2552 			need_vmlinux_btf = true;
2553 			break;
2554 		}
2555 	}
2556 
2557 	if (!need_vmlinux_btf)
2558 		return 0;
2559 
2560 	obj->btf_vmlinux = libbpf_find_kernel_btf();
2561 	if (IS_ERR(obj->btf_vmlinux)) {
2562 		err = PTR_ERR(obj->btf_vmlinux);
2563 		pr_warn("Error loading vmlinux BTF: %d\n", err);
2564 		obj->btf_vmlinux = NULL;
2565 		return err;
2566 	}
2567 	return 0;
2568 }
2569 
2570 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
2571 {
2572 	struct btf *kern_btf = obj->btf;
2573 	bool btf_mandatory, sanitize;
2574 	int err = 0;
2575 
2576 	if (!obj->btf)
2577 		return 0;
2578 
2579 	if (!kernel_supports(FEAT_BTF)) {
2580 		if (kernel_needs_btf(obj)) {
2581 			err = -EOPNOTSUPP;
2582 			goto report;
2583 		}
2584 		pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
2585 		return 0;
2586 	}
2587 
2588 	sanitize = btf_needs_sanitization(obj);
2589 	if (sanitize) {
2590 		const void *raw_data;
2591 		__u32 sz;
2592 
2593 		/* clone BTF to sanitize a copy and leave the original intact */
2594 		raw_data = btf__get_raw_data(obj->btf, &sz);
2595 		kern_btf = btf__new(raw_data, sz);
2596 		if (IS_ERR(kern_btf))
2597 			return PTR_ERR(kern_btf);
2598 
2599 		/* enforce 8-byte pointers for BPF-targeted BTFs */
2600 		btf__set_pointer_size(obj->btf, 8);
2601 		bpf_object__sanitize_btf(obj, kern_btf);
2602 	}
2603 
2604 	err = btf__load(kern_btf);
2605 	if (sanitize) {
2606 		if (!err) {
2607 			/* move fd to libbpf's BTF */
2608 			btf__set_fd(obj->btf, btf__fd(kern_btf));
2609 			btf__set_fd(kern_btf, -1);
2610 		}
2611 		btf__free(kern_btf);
2612 	}
2613 report:
2614 	if (err) {
2615 		btf_mandatory = kernel_needs_btf(obj);
2616 		pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
2617 			btf_mandatory ? "BTF is mandatory, can't proceed."
2618 				      : "BTF is optional, ignoring.");
2619 		if (!btf_mandatory)
2620 			err = 0;
2621 	}
2622 	return err;
2623 }
2624 
2625 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
2626 {
2627 	const char *name;
2628 
2629 	name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
2630 	if (!name) {
2631 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
2632 			off, obj->path, elf_errmsg(-1));
2633 		return NULL;
2634 	}
2635 
2636 	return name;
2637 }
2638 
2639 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
2640 {
2641 	const char *name;
2642 
2643 	name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
2644 	if (!name) {
2645 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
2646 			off, obj->path, elf_errmsg(-1));
2647 		return NULL;
2648 	}
2649 
2650 	return name;
2651 }
2652 
2653 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
2654 {
2655 	Elf_Scn *scn;
2656 
2657 	scn = elf_getscn(obj->efile.elf, idx);
2658 	if (!scn) {
2659 		pr_warn("elf: failed to get section(%zu) from %s: %s\n",
2660 			idx, obj->path, elf_errmsg(-1));
2661 		return NULL;
2662 	}
2663 	return scn;
2664 }
2665 
2666 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
2667 {
2668 	Elf_Scn *scn = NULL;
2669 	Elf *elf = obj->efile.elf;
2670 	const char *sec_name;
2671 
2672 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
2673 		sec_name = elf_sec_name(obj, scn);
2674 		if (!sec_name)
2675 			return NULL;
2676 
2677 		if (strcmp(sec_name, name) != 0)
2678 			continue;
2679 
2680 		return scn;
2681 	}
2682 	return NULL;
2683 }
2684 
2685 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr)
2686 {
2687 	if (!scn)
2688 		return -EINVAL;
2689 
2690 	if (gelf_getshdr(scn, hdr) != hdr) {
2691 		pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
2692 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
2693 		return -EINVAL;
2694 	}
2695 
2696 	return 0;
2697 }
2698 
2699 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
2700 {
2701 	const char *name;
2702 	GElf_Shdr sh;
2703 
2704 	if (!scn)
2705 		return NULL;
2706 
2707 	if (elf_sec_hdr(obj, scn, &sh))
2708 		return NULL;
2709 
2710 	name = elf_sec_str(obj, sh.sh_name);
2711 	if (!name) {
2712 		pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
2713 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
2714 		return NULL;
2715 	}
2716 
2717 	return name;
2718 }
2719 
2720 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
2721 {
2722 	Elf_Data *data;
2723 
2724 	if (!scn)
2725 		return NULL;
2726 
2727 	data = elf_getdata(scn, 0);
2728 	if (!data) {
2729 		pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
2730 			elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
2731 			obj->path, elf_errmsg(-1));
2732 		return NULL;
2733 	}
2734 
2735 	return data;
2736 }
2737 
2738 static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx,
2739 			      size_t off, __u32 sym_type, GElf_Sym *sym)
2740 {
2741 	Elf_Data *symbols = obj->efile.symbols;
2742 	size_t n = symbols->d_size / sizeof(GElf_Sym);
2743 	int i;
2744 
2745 	for (i = 0; i < n; i++) {
2746 		if (!gelf_getsym(symbols, i, sym))
2747 			continue;
2748 		if (sym->st_shndx != sec_idx || sym->st_value != off)
2749 			continue;
2750 		if (GELF_ST_TYPE(sym->st_info) != sym_type)
2751 			continue;
2752 		return 0;
2753 	}
2754 
2755 	return -ENOENT;
2756 }
2757 
2758 static bool is_sec_name_dwarf(const char *name)
2759 {
2760 	/* approximation, but the actual list is too long */
2761 	return strncmp(name, ".debug_", sizeof(".debug_") - 1) == 0;
2762 }
2763 
2764 static bool ignore_elf_section(GElf_Shdr *hdr, const char *name)
2765 {
2766 	/* no special handling of .strtab */
2767 	if (hdr->sh_type == SHT_STRTAB)
2768 		return true;
2769 
2770 	/* ignore .llvm_addrsig section as well */
2771 	if (hdr->sh_type == 0x6FFF4C03 /* SHT_LLVM_ADDRSIG */)
2772 		return true;
2773 
2774 	/* no subprograms will lead to an empty .text section, ignore it */
2775 	if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
2776 	    strcmp(name, ".text") == 0)
2777 		return true;
2778 
2779 	/* DWARF sections */
2780 	if (is_sec_name_dwarf(name))
2781 		return true;
2782 
2783 	if (strncmp(name, ".rel", sizeof(".rel") - 1) == 0) {
2784 		name += sizeof(".rel") - 1;
2785 		/* DWARF section relocations */
2786 		if (is_sec_name_dwarf(name))
2787 			return true;
2788 
2789 		/* .BTF and .BTF.ext don't need relocations */
2790 		if (strcmp(name, BTF_ELF_SEC) == 0 ||
2791 		    strcmp(name, BTF_EXT_ELF_SEC) == 0)
2792 			return true;
2793 	}
2794 
2795 	return false;
2796 }
2797 
2798 static int cmp_progs(const void *_a, const void *_b)
2799 {
2800 	const struct bpf_program *a = _a;
2801 	const struct bpf_program *b = _b;
2802 
2803 	if (a->sec_idx != b->sec_idx)
2804 		return a->sec_idx < b->sec_idx ? -1 : 1;
2805 
2806 	/* sec_insn_off can't be the same within the section */
2807 	return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
2808 }
2809 
2810 static int bpf_object__elf_collect(struct bpf_object *obj)
2811 {
2812 	Elf *elf = obj->efile.elf;
2813 	Elf_Data *btf_ext_data = NULL;
2814 	Elf_Data *btf_data = NULL;
2815 	int idx = 0, err = 0;
2816 	const char *name;
2817 	Elf_Data *data;
2818 	Elf_Scn *scn;
2819 	GElf_Shdr sh;
2820 
2821 	/* a bunch of ELF parsing functionality depends on processing symbols,
2822 	 * so do the first pass and find the symbol table
2823 	 */
2824 	scn = NULL;
2825 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
2826 		if (elf_sec_hdr(obj, scn, &sh))
2827 			return -LIBBPF_ERRNO__FORMAT;
2828 
2829 		if (sh.sh_type == SHT_SYMTAB) {
2830 			if (obj->efile.symbols) {
2831 				pr_warn("elf: multiple symbol tables in %s\n", obj->path);
2832 				return -LIBBPF_ERRNO__FORMAT;
2833 			}
2834 
2835 			data = elf_sec_data(obj, scn);
2836 			if (!data)
2837 				return -LIBBPF_ERRNO__FORMAT;
2838 
2839 			obj->efile.symbols = data;
2840 			obj->efile.symbols_shndx = elf_ndxscn(scn);
2841 			obj->efile.strtabidx = sh.sh_link;
2842 		}
2843 	}
2844 
2845 	scn = NULL;
2846 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
2847 		idx++;
2848 
2849 		if (elf_sec_hdr(obj, scn, &sh))
2850 			return -LIBBPF_ERRNO__FORMAT;
2851 
2852 		name = elf_sec_str(obj, sh.sh_name);
2853 		if (!name)
2854 			return -LIBBPF_ERRNO__FORMAT;
2855 
2856 		if (ignore_elf_section(&sh, name))
2857 			continue;
2858 
2859 		data = elf_sec_data(obj, scn);
2860 		if (!data)
2861 			return -LIBBPF_ERRNO__FORMAT;
2862 
2863 		pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
2864 			 idx, name, (unsigned long)data->d_size,
2865 			 (int)sh.sh_link, (unsigned long)sh.sh_flags,
2866 			 (int)sh.sh_type);
2867 
2868 		if (strcmp(name, "license") == 0) {
2869 			err = bpf_object__init_license(obj, data->d_buf, data->d_size);
2870 			if (err)
2871 				return err;
2872 		} else if (strcmp(name, "version") == 0) {
2873 			err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
2874 			if (err)
2875 				return err;
2876 		} else if (strcmp(name, "maps") == 0) {
2877 			obj->efile.maps_shndx = idx;
2878 		} else if (strcmp(name, MAPS_ELF_SEC) == 0) {
2879 			obj->efile.btf_maps_shndx = idx;
2880 		} else if (strcmp(name, BTF_ELF_SEC) == 0) {
2881 			btf_data = data;
2882 		} else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
2883 			btf_ext_data = data;
2884 		} else if (sh.sh_type == SHT_SYMTAB) {
2885 			/* already processed during the first pass above */
2886 		} else if (sh.sh_type == SHT_PROGBITS && data->d_size > 0) {
2887 			if (sh.sh_flags & SHF_EXECINSTR) {
2888 				if (strcmp(name, ".text") == 0)
2889 					obj->efile.text_shndx = idx;
2890 				err = bpf_object__add_programs(obj, data, name, idx);
2891 				if (err)
2892 					return err;
2893 			} else if (strcmp(name, DATA_SEC) == 0) {
2894 				obj->efile.data = data;
2895 				obj->efile.data_shndx = idx;
2896 			} else if (strcmp(name, RODATA_SEC) == 0) {
2897 				obj->efile.rodata = data;
2898 				obj->efile.rodata_shndx = idx;
2899 			} else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
2900 				obj->efile.st_ops_data = data;
2901 				obj->efile.st_ops_shndx = idx;
2902 			} else {
2903 				pr_info("elf: skipping unrecognized data section(%d) %s\n",
2904 					idx, name);
2905 			}
2906 		} else if (sh.sh_type == SHT_REL) {
2907 			int nr_sects = obj->efile.nr_reloc_sects;
2908 			void *sects = obj->efile.reloc_sects;
2909 			int sec = sh.sh_info; /* points to other section */
2910 
2911 			/* Only do relo for section with exec instructions */
2912 			if (!section_have_execinstr(obj, sec) &&
2913 			    strcmp(name, ".rel" STRUCT_OPS_SEC) &&
2914 			    strcmp(name, ".rel" MAPS_ELF_SEC)) {
2915 				pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
2916 					idx, name, sec,
2917 					elf_sec_name(obj, elf_sec_by_idx(obj, sec)) ?: "<?>");
2918 				continue;
2919 			}
2920 
2921 			sects = libbpf_reallocarray(sects, nr_sects + 1,
2922 						    sizeof(*obj->efile.reloc_sects));
2923 			if (!sects)
2924 				return -ENOMEM;
2925 
2926 			obj->efile.reloc_sects = sects;
2927 			obj->efile.nr_reloc_sects++;
2928 
2929 			obj->efile.reloc_sects[nr_sects].shdr = sh;
2930 			obj->efile.reloc_sects[nr_sects].data = data;
2931 		} else if (sh.sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) {
2932 			obj->efile.bss = data;
2933 			obj->efile.bss_shndx = idx;
2934 		} else {
2935 			pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
2936 				(size_t)sh.sh_size);
2937 		}
2938 	}
2939 
2940 	if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
2941 		pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
2942 		return -LIBBPF_ERRNO__FORMAT;
2943 	}
2944 
2945 	/* sort BPF programs by section name and in-section instruction offset
2946 	 * for faster search */
2947 	qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
2948 
2949 	return bpf_object__init_btf(obj, btf_data, btf_ext_data);
2950 }
2951 
2952 static bool sym_is_extern(const GElf_Sym *sym)
2953 {
2954 	int bind = GELF_ST_BIND(sym->st_info);
2955 	/* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
2956 	return sym->st_shndx == SHN_UNDEF &&
2957 	       (bind == STB_GLOBAL || bind == STB_WEAK) &&
2958 	       GELF_ST_TYPE(sym->st_info) == STT_NOTYPE;
2959 }
2960 
2961 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
2962 {
2963 	const struct btf_type *t;
2964 	const char *var_name;
2965 	int i, n;
2966 
2967 	if (!btf)
2968 		return -ESRCH;
2969 
2970 	n = btf__get_nr_types(btf);
2971 	for (i = 1; i <= n; i++) {
2972 		t = btf__type_by_id(btf, i);
2973 
2974 		if (!btf_is_var(t))
2975 			continue;
2976 
2977 		var_name = btf__name_by_offset(btf, t->name_off);
2978 		if (strcmp(var_name, ext_name))
2979 			continue;
2980 
2981 		if (btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
2982 			return -EINVAL;
2983 
2984 		return i;
2985 	}
2986 
2987 	return -ENOENT;
2988 }
2989 
2990 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
2991 	const struct btf_var_secinfo *vs;
2992 	const struct btf_type *t;
2993 	int i, j, n;
2994 
2995 	if (!btf)
2996 		return -ESRCH;
2997 
2998 	n = btf__get_nr_types(btf);
2999 	for (i = 1; i <= n; i++) {
3000 		t = btf__type_by_id(btf, i);
3001 
3002 		if (!btf_is_datasec(t))
3003 			continue;
3004 
3005 		vs = btf_var_secinfos(t);
3006 		for (j = 0; j < btf_vlen(t); j++, vs++) {
3007 			if (vs->type == ext_btf_id)
3008 				return i;
3009 		}
3010 	}
3011 
3012 	return -ENOENT;
3013 }
3014 
3015 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3016 				     bool *is_signed)
3017 {
3018 	const struct btf_type *t;
3019 	const char *name;
3020 
3021 	t = skip_mods_and_typedefs(btf, id, NULL);
3022 	name = btf__name_by_offset(btf, t->name_off);
3023 
3024 	if (is_signed)
3025 		*is_signed = false;
3026 	switch (btf_kind(t)) {
3027 	case BTF_KIND_INT: {
3028 		int enc = btf_int_encoding(t);
3029 
3030 		if (enc & BTF_INT_BOOL)
3031 			return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3032 		if (is_signed)
3033 			*is_signed = enc & BTF_INT_SIGNED;
3034 		if (t->size == 1)
3035 			return KCFG_CHAR;
3036 		if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3037 			return KCFG_UNKNOWN;
3038 		return KCFG_INT;
3039 	}
3040 	case BTF_KIND_ENUM:
3041 		if (t->size != 4)
3042 			return KCFG_UNKNOWN;
3043 		if (strcmp(name, "libbpf_tristate"))
3044 			return KCFG_UNKNOWN;
3045 		return KCFG_TRISTATE;
3046 	case BTF_KIND_ARRAY:
3047 		if (btf_array(t)->nelems == 0)
3048 			return KCFG_UNKNOWN;
3049 		if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3050 			return KCFG_UNKNOWN;
3051 		return KCFG_CHAR_ARR;
3052 	default:
3053 		return KCFG_UNKNOWN;
3054 	}
3055 }
3056 
3057 static int cmp_externs(const void *_a, const void *_b)
3058 {
3059 	const struct extern_desc *a = _a;
3060 	const struct extern_desc *b = _b;
3061 
3062 	if (a->type != b->type)
3063 		return a->type < b->type ? -1 : 1;
3064 
3065 	if (a->type == EXT_KCFG) {
3066 		/* descending order by alignment requirements */
3067 		if (a->kcfg.align != b->kcfg.align)
3068 			return a->kcfg.align > b->kcfg.align ? -1 : 1;
3069 		/* ascending order by size, within same alignment class */
3070 		if (a->kcfg.sz != b->kcfg.sz)
3071 			return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3072 	}
3073 
3074 	/* resolve ties by name */
3075 	return strcmp(a->name, b->name);
3076 }
3077 
3078 static int find_int_btf_id(const struct btf *btf)
3079 {
3080 	const struct btf_type *t;
3081 	int i, n;
3082 
3083 	n = btf__get_nr_types(btf);
3084 	for (i = 1; i <= n; i++) {
3085 		t = btf__type_by_id(btf, i);
3086 
3087 		if (btf_is_int(t) && btf_int_bits(t) == 32)
3088 			return i;
3089 	}
3090 
3091 	return 0;
3092 }
3093 
3094 static int bpf_object__collect_externs(struct bpf_object *obj)
3095 {
3096 	struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3097 	const struct btf_type *t;
3098 	struct extern_desc *ext;
3099 	int i, n, off;
3100 	const char *ext_name, *sec_name;
3101 	Elf_Scn *scn;
3102 	GElf_Shdr sh;
3103 
3104 	if (!obj->efile.symbols)
3105 		return 0;
3106 
3107 	scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3108 	if (elf_sec_hdr(obj, scn, &sh))
3109 		return -LIBBPF_ERRNO__FORMAT;
3110 
3111 	n = sh.sh_size / sh.sh_entsize;
3112 	pr_debug("looking for externs among %d symbols...\n", n);
3113 
3114 	for (i = 0; i < n; i++) {
3115 		GElf_Sym sym;
3116 
3117 		if (!gelf_getsym(obj->efile.symbols, i, &sym))
3118 			return -LIBBPF_ERRNO__FORMAT;
3119 		if (!sym_is_extern(&sym))
3120 			continue;
3121 		ext_name = elf_sym_str(obj, sym.st_name);
3122 		if (!ext_name || !ext_name[0])
3123 			continue;
3124 
3125 		ext = obj->externs;
3126 		ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3127 		if (!ext)
3128 			return -ENOMEM;
3129 		obj->externs = ext;
3130 		ext = &ext[obj->nr_extern];
3131 		memset(ext, 0, sizeof(*ext));
3132 		obj->nr_extern++;
3133 
3134 		ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3135 		if (ext->btf_id <= 0) {
3136 			pr_warn("failed to find BTF for extern '%s': %d\n",
3137 				ext_name, ext->btf_id);
3138 			return ext->btf_id;
3139 		}
3140 		t = btf__type_by_id(obj->btf, ext->btf_id);
3141 		ext->name = btf__name_by_offset(obj->btf, t->name_off);
3142 		ext->sym_idx = i;
3143 		ext->is_weak = GELF_ST_BIND(sym.st_info) == STB_WEAK;
3144 
3145 		ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3146 		if (ext->sec_btf_id <= 0) {
3147 			pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3148 				ext_name, ext->btf_id, ext->sec_btf_id);
3149 			return ext->sec_btf_id;
3150 		}
3151 		sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3152 		sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3153 
3154 		if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3155 			kcfg_sec = sec;
3156 			ext->type = EXT_KCFG;
3157 			ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3158 			if (ext->kcfg.sz <= 0) {
3159 				pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3160 					ext_name, ext->kcfg.sz);
3161 				return ext->kcfg.sz;
3162 			}
3163 			ext->kcfg.align = btf__align_of(obj->btf, t->type);
3164 			if (ext->kcfg.align <= 0) {
3165 				pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3166 					ext_name, ext->kcfg.align);
3167 				return -EINVAL;
3168 			}
3169 			ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3170 						        &ext->kcfg.is_signed);
3171 			if (ext->kcfg.type == KCFG_UNKNOWN) {
3172 				pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name);
3173 				return -ENOTSUP;
3174 			}
3175 		} else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3176 			ksym_sec = sec;
3177 			ext->type = EXT_KSYM;
3178 			skip_mods_and_typedefs(obj->btf, t->type,
3179 					       &ext->ksym.type_id);
3180 		} else {
3181 			pr_warn("unrecognized extern section '%s'\n", sec_name);
3182 			return -ENOTSUP;
3183 		}
3184 	}
3185 	pr_debug("collected %d externs total\n", obj->nr_extern);
3186 
3187 	if (!obj->nr_extern)
3188 		return 0;
3189 
3190 	/* sort externs by type, for kcfg ones also by (align, size, name) */
3191 	qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3192 
3193 	/* for .ksyms section, we need to turn all externs into allocated
3194 	 * variables in BTF to pass kernel verification; we do this by
3195 	 * pretending that each extern is a 8-byte variable
3196 	 */
3197 	if (ksym_sec) {
3198 		/* find existing 4-byte integer type in BTF to use for fake
3199 		 * extern variables in DATASEC
3200 		 */
3201 		int int_btf_id = find_int_btf_id(obj->btf);
3202 
3203 		for (i = 0; i < obj->nr_extern; i++) {
3204 			ext = &obj->externs[i];
3205 			if (ext->type != EXT_KSYM)
3206 				continue;
3207 			pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3208 				 i, ext->sym_idx, ext->name);
3209 		}
3210 
3211 		sec = ksym_sec;
3212 		n = btf_vlen(sec);
3213 		for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3214 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3215 			struct btf_type *vt;
3216 
3217 			vt = (void *)btf__type_by_id(obj->btf, vs->type);
3218 			ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3219 			ext = find_extern_by_name(obj, ext_name);
3220 			if (!ext) {
3221 				pr_warn("failed to find extern definition for BTF var '%s'\n",
3222 					ext_name);
3223 				return -ESRCH;
3224 			}
3225 			btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3226 			vt->type = int_btf_id;
3227 			vs->offset = off;
3228 			vs->size = sizeof(int);
3229 		}
3230 		sec->size = off;
3231 	}
3232 
3233 	if (kcfg_sec) {
3234 		sec = kcfg_sec;
3235 		/* for kcfg externs calculate their offsets within a .kconfig map */
3236 		off = 0;
3237 		for (i = 0; i < obj->nr_extern; i++) {
3238 			ext = &obj->externs[i];
3239 			if (ext->type != EXT_KCFG)
3240 				continue;
3241 
3242 			ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3243 			off = ext->kcfg.data_off + ext->kcfg.sz;
3244 			pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3245 				 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3246 		}
3247 		sec->size = off;
3248 		n = btf_vlen(sec);
3249 		for (i = 0; i < n; i++) {
3250 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3251 
3252 			t = btf__type_by_id(obj->btf, vs->type);
3253 			ext_name = btf__name_by_offset(obj->btf, t->name_off);
3254 			ext = find_extern_by_name(obj, ext_name);
3255 			if (!ext) {
3256 				pr_warn("failed to find extern definition for BTF var '%s'\n",
3257 					ext_name);
3258 				return -ESRCH;
3259 			}
3260 			btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3261 			vs->offset = ext->kcfg.data_off;
3262 		}
3263 	}
3264 	return 0;
3265 }
3266 
3267 struct bpf_program *
3268 bpf_object__find_program_by_title(const struct bpf_object *obj,
3269 				  const char *title)
3270 {
3271 	struct bpf_program *pos;
3272 
3273 	bpf_object__for_each_program(pos, obj) {
3274 		if (pos->sec_name && !strcmp(pos->sec_name, title))
3275 			return pos;
3276 	}
3277 	return NULL;
3278 }
3279 
3280 static bool prog_is_subprog(const struct bpf_object *obj,
3281 			    const struct bpf_program *prog)
3282 {
3283 	return prog->sec_idx == obj->efile.text_shndx && obj->has_subcalls;
3284 }
3285 
3286 struct bpf_program *
3287 bpf_object__find_program_by_name(const struct bpf_object *obj,
3288 				 const char *name)
3289 {
3290 	struct bpf_program *prog;
3291 
3292 	bpf_object__for_each_program(prog, obj) {
3293 		if (prog_is_subprog(obj, prog))
3294 			continue;
3295 		if (!strcmp(prog->name, name))
3296 			return prog;
3297 	}
3298 	return NULL;
3299 }
3300 
3301 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
3302 				      int shndx)
3303 {
3304 	return shndx == obj->efile.data_shndx ||
3305 	       shndx == obj->efile.bss_shndx ||
3306 	       shndx == obj->efile.rodata_shndx;
3307 }
3308 
3309 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
3310 				      int shndx)
3311 {
3312 	return shndx == obj->efile.maps_shndx ||
3313 	       shndx == obj->efile.btf_maps_shndx;
3314 }
3315 
3316 static enum libbpf_map_type
3317 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
3318 {
3319 	if (shndx == obj->efile.data_shndx)
3320 		return LIBBPF_MAP_DATA;
3321 	else if (shndx == obj->efile.bss_shndx)
3322 		return LIBBPF_MAP_BSS;
3323 	else if (shndx == obj->efile.rodata_shndx)
3324 		return LIBBPF_MAP_RODATA;
3325 	else if (shndx == obj->efile.symbols_shndx)
3326 		return LIBBPF_MAP_KCONFIG;
3327 	else
3328 		return LIBBPF_MAP_UNSPEC;
3329 }
3330 
3331 static int bpf_program__record_reloc(struct bpf_program *prog,
3332 				     struct reloc_desc *reloc_desc,
3333 				     __u32 insn_idx, const char *sym_name,
3334 				     const GElf_Sym *sym, const GElf_Rel *rel)
3335 {
3336 	struct bpf_insn *insn = &prog->insns[insn_idx];
3337 	size_t map_idx, nr_maps = prog->obj->nr_maps;
3338 	struct bpf_object *obj = prog->obj;
3339 	__u32 shdr_idx = sym->st_shndx;
3340 	enum libbpf_map_type type;
3341 	const char *sym_sec_name;
3342 	struct bpf_map *map;
3343 
3344 	reloc_desc->processed = false;
3345 
3346 	/* sub-program call relocation */
3347 	if (insn->code == (BPF_JMP | BPF_CALL)) {
3348 		if (insn->src_reg != BPF_PSEUDO_CALL) {
3349 			pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
3350 			return -LIBBPF_ERRNO__RELOC;
3351 		}
3352 		/* text_shndx can be 0, if no default "main" program exists */
3353 		if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
3354 			sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3355 			pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
3356 				prog->name, sym_name, sym_sec_name);
3357 			return -LIBBPF_ERRNO__RELOC;
3358 		}
3359 		if (sym->st_value % BPF_INSN_SZ) {
3360 			pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
3361 				prog->name, sym_name, (size_t)sym->st_value);
3362 			return -LIBBPF_ERRNO__RELOC;
3363 		}
3364 		reloc_desc->type = RELO_CALL;
3365 		reloc_desc->insn_idx = insn_idx;
3366 		reloc_desc->sym_off = sym->st_value;
3367 		return 0;
3368 	}
3369 
3370 	if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) {
3371 		pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
3372 			prog->name, sym_name, insn_idx, insn->code);
3373 		return -LIBBPF_ERRNO__RELOC;
3374 	}
3375 
3376 	if (sym_is_extern(sym)) {
3377 		int sym_idx = GELF_R_SYM(rel->r_info);
3378 		int i, n = obj->nr_extern;
3379 		struct extern_desc *ext;
3380 
3381 		for (i = 0; i < n; i++) {
3382 			ext = &obj->externs[i];
3383 			if (ext->sym_idx == sym_idx)
3384 				break;
3385 		}
3386 		if (i >= n) {
3387 			pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
3388 				prog->name, sym_name, sym_idx);
3389 			return -LIBBPF_ERRNO__RELOC;
3390 		}
3391 		pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
3392 			 prog->name, i, ext->name, ext->sym_idx, insn_idx);
3393 		reloc_desc->type = RELO_EXTERN;
3394 		reloc_desc->insn_idx = insn_idx;
3395 		reloc_desc->sym_off = i; /* sym_off stores extern index */
3396 		return 0;
3397 	}
3398 
3399 	if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
3400 		pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
3401 			prog->name, sym_name, shdr_idx);
3402 		return -LIBBPF_ERRNO__RELOC;
3403 	}
3404 
3405 	type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
3406 	sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3407 
3408 	/* generic map reference relocation */
3409 	if (type == LIBBPF_MAP_UNSPEC) {
3410 		if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
3411 			pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
3412 				prog->name, sym_name, sym_sec_name);
3413 			return -LIBBPF_ERRNO__RELOC;
3414 		}
3415 		for (map_idx = 0; map_idx < nr_maps; map_idx++) {
3416 			map = &obj->maps[map_idx];
3417 			if (map->libbpf_type != type ||
3418 			    map->sec_idx != sym->st_shndx ||
3419 			    map->sec_offset != sym->st_value)
3420 				continue;
3421 			pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
3422 				 prog->name, map_idx, map->name, map->sec_idx,
3423 				 map->sec_offset, insn_idx);
3424 			break;
3425 		}
3426 		if (map_idx >= nr_maps) {
3427 			pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
3428 				prog->name, sym_sec_name, (size_t)sym->st_value);
3429 			return -LIBBPF_ERRNO__RELOC;
3430 		}
3431 		reloc_desc->type = RELO_LD64;
3432 		reloc_desc->insn_idx = insn_idx;
3433 		reloc_desc->map_idx = map_idx;
3434 		reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
3435 		return 0;
3436 	}
3437 
3438 	/* global data map relocation */
3439 	if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
3440 		pr_warn("prog '%s': bad data relo against section '%s'\n",
3441 			prog->name, sym_sec_name);
3442 		return -LIBBPF_ERRNO__RELOC;
3443 	}
3444 	for (map_idx = 0; map_idx < nr_maps; map_idx++) {
3445 		map = &obj->maps[map_idx];
3446 		if (map->libbpf_type != type)
3447 			continue;
3448 		pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
3449 			 prog->name, map_idx, map->name, map->sec_idx,
3450 			 map->sec_offset, insn_idx);
3451 		break;
3452 	}
3453 	if (map_idx >= nr_maps) {
3454 		pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
3455 			prog->name, sym_sec_name);
3456 		return -LIBBPF_ERRNO__RELOC;
3457 	}
3458 
3459 	reloc_desc->type = RELO_DATA;
3460 	reloc_desc->insn_idx = insn_idx;
3461 	reloc_desc->map_idx = map_idx;
3462 	reloc_desc->sym_off = sym->st_value;
3463 	return 0;
3464 }
3465 
3466 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
3467 {
3468 	return insn_idx >= prog->sec_insn_off &&
3469 	       insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
3470 }
3471 
3472 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
3473 						 size_t sec_idx, size_t insn_idx)
3474 {
3475 	int l = 0, r = obj->nr_programs - 1, m;
3476 	struct bpf_program *prog;
3477 
3478 	while (l < r) {
3479 		m = l + (r - l + 1) / 2;
3480 		prog = &obj->programs[m];
3481 
3482 		if (prog->sec_idx < sec_idx ||
3483 		    (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
3484 			l = m;
3485 		else
3486 			r = m - 1;
3487 	}
3488 	/* matching program could be at index l, but it still might be the
3489 	 * wrong one, so we need to double check conditions for the last time
3490 	 */
3491 	prog = &obj->programs[l];
3492 	if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
3493 		return prog;
3494 	return NULL;
3495 }
3496 
3497 static int
3498 bpf_object__collect_prog_relos(struct bpf_object *obj, GElf_Shdr *shdr, Elf_Data *data)
3499 {
3500 	Elf_Data *symbols = obj->efile.symbols;
3501 	const char *relo_sec_name, *sec_name;
3502 	size_t sec_idx = shdr->sh_info;
3503 	struct bpf_program *prog;
3504 	struct reloc_desc *relos;
3505 	int err, i, nrels;
3506 	const char *sym_name;
3507 	__u32 insn_idx;
3508 	GElf_Sym sym;
3509 	GElf_Rel rel;
3510 
3511 	relo_sec_name = elf_sec_str(obj, shdr->sh_name);
3512 	sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
3513 	if (!relo_sec_name || !sec_name)
3514 		return -EINVAL;
3515 
3516 	pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
3517 		 relo_sec_name, sec_idx, sec_name);
3518 	nrels = shdr->sh_size / shdr->sh_entsize;
3519 
3520 	for (i = 0; i < nrels; i++) {
3521 		if (!gelf_getrel(data, i, &rel)) {
3522 			pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
3523 			return -LIBBPF_ERRNO__FORMAT;
3524 		}
3525 		if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
3526 			pr_warn("sec '%s': symbol 0x%zx not found for relo #%d\n",
3527 				relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i);
3528 			return -LIBBPF_ERRNO__FORMAT;
3529 		}
3530 		if (rel.r_offset % BPF_INSN_SZ) {
3531 			pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
3532 				relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i);
3533 			return -LIBBPF_ERRNO__FORMAT;
3534 		}
3535 
3536 		insn_idx = rel.r_offset / BPF_INSN_SZ;
3537 		/* relocations against static functions are recorded as
3538 		 * relocations against the section that contains a function;
3539 		 * in such case, symbol will be STT_SECTION and sym.st_name
3540 		 * will point to empty string (0), so fetch section name
3541 		 * instead
3542 		 */
3543 		if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && sym.st_name == 0)
3544 			sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym.st_shndx));
3545 		else
3546 			sym_name = elf_sym_str(obj, sym.st_name);
3547 		sym_name = sym_name ?: "<?";
3548 
3549 		pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
3550 			 relo_sec_name, i, insn_idx, sym_name);
3551 
3552 		prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
3553 		if (!prog) {
3554 			pr_warn("sec '%s': relo #%d: program not found in section '%s' for insn #%u\n",
3555 				relo_sec_name, i, sec_name, insn_idx);
3556 			return -LIBBPF_ERRNO__RELOC;
3557 		}
3558 
3559 		relos = libbpf_reallocarray(prog->reloc_desc,
3560 					    prog->nr_reloc + 1, sizeof(*relos));
3561 		if (!relos)
3562 			return -ENOMEM;
3563 		prog->reloc_desc = relos;
3564 
3565 		/* adjust insn_idx to local BPF program frame of reference */
3566 		insn_idx -= prog->sec_insn_off;
3567 		err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
3568 						insn_idx, sym_name, &sym, &rel);
3569 		if (err)
3570 			return err;
3571 
3572 		prog->nr_reloc++;
3573 	}
3574 	return 0;
3575 }
3576 
3577 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map)
3578 {
3579 	struct bpf_map_def *def = &map->def;
3580 	__u32 key_type_id = 0, value_type_id = 0;
3581 	int ret;
3582 
3583 	/* if it's BTF-defined map, we don't need to search for type IDs.
3584 	 * For struct_ops map, it does not need btf_key_type_id and
3585 	 * btf_value_type_id.
3586 	 */
3587 	if (map->sec_idx == obj->efile.btf_maps_shndx ||
3588 	    bpf_map__is_struct_ops(map))
3589 		return 0;
3590 
3591 	if (!bpf_map__is_internal(map)) {
3592 		ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size,
3593 					   def->value_size, &key_type_id,
3594 					   &value_type_id);
3595 	} else {
3596 		/*
3597 		 * LLVM annotates global data differently in BTF, that is,
3598 		 * only as '.data', '.bss' or '.rodata'.
3599 		 */
3600 		ret = btf__find_by_name(obj->btf,
3601 				libbpf_type_to_btf_name[map->libbpf_type]);
3602 	}
3603 	if (ret < 0)
3604 		return ret;
3605 
3606 	map->btf_key_type_id = key_type_id;
3607 	map->btf_value_type_id = bpf_map__is_internal(map) ?
3608 				 ret : value_type_id;
3609 	return 0;
3610 }
3611 
3612 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
3613 {
3614 	struct bpf_map_info info = {};
3615 	__u32 len = sizeof(info);
3616 	int new_fd, err;
3617 	char *new_name;
3618 
3619 	err = bpf_obj_get_info_by_fd(fd, &info, &len);
3620 	if (err)
3621 		return err;
3622 
3623 	new_name = strdup(info.name);
3624 	if (!new_name)
3625 		return -errno;
3626 
3627 	new_fd = open("/", O_RDONLY | O_CLOEXEC);
3628 	if (new_fd < 0) {
3629 		err = -errno;
3630 		goto err_free_new_name;
3631 	}
3632 
3633 	new_fd = dup3(fd, new_fd, O_CLOEXEC);
3634 	if (new_fd < 0) {
3635 		err = -errno;
3636 		goto err_close_new_fd;
3637 	}
3638 
3639 	err = zclose(map->fd);
3640 	if (err) {
3641 		err = -errno;
3642 		goto err_close_new_fd;
3643 	}
3644 	free(map->name);
3645 
3646 	map->fd = new_fd;
3647 	map->name = new_name;
3648 	map->def.type = info.type;
3649 	map->def.key_size = info.key_size;
3650 	map->def.value_size = info.value_size;
3651 	map->def.max_entries = info.max_entries;
3652 	map->def.map_flags = info.map_flags;
3653 	map->btf_key_type_id = info.btf_key_type_id;
3654 	map->btf_value_type_id = info.btf_value_type_id;
3655 	map->reused = true;
3656 
3657 	return 0;
3658 
3659 err_close_new_fd:
3660 	close(new_fd);
3661 err_free_new_name:
3662 	free(new_name);
3663 	return err;
3664 }
3665 
3666 __u32 bpf_map__max_entries(const struct bpf_map *map)
3667 {
3668 	return map->def.max_entries;
3669 }
3670 
3671 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
3672 {
3673 	if (map->fd >= 0)
3674 		return -EBUSY;
3675 	map->def.max_entries = max_entries;
3676 	return 0;
3677 }
3678 
3679 int bpf_map__resize(struct bpf_map *map, __u32 max_entries)
3680 {
3681 	if (!map || !max_entries)
3682 		return -EINVAL;
3683 
3684 	return bpf_map__set_max_entries(map, max_entries);
3685 }
3686 
3687 static int
3688 bpf_object__probe_loading(struct bpf_object *obj)
3689 {
3690 	struct bpf_load_program_attr attr;
3691 	char *cp, errmsg[STRERR_BUFSIZE];
3692 	struct bpf_insn insns[] = {
3693 		BPF_MOV64_IMM(BPF_REG_0, 0),
3694 		BPF_EXIT_INSN(),
3695 	};
3696 	int ret;
3697 
3698 	/* make sure basic loading works */
3699 
3700 	memset(&attr, 0, sizeof(attr));
3701 	attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3702 	attr.insns = insns;
3703 	attr.insns_cnt = ARRAY_SIZE(insns);
3704 	attr.license = "GPL";
3705 
3706 	ret = bpf_load_program_xattr(&attr, NULL, 0);
3707 	if (ret < 0) {
3708 		ret = errno;
3709 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
3710 		pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
3711 			"program. Make sure your kernel supports BPF "
3712 			"(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
3713 			"set to big enough value.\n", __func__, cp, ret);
3714 		return -ret;
3715 	}
3716 	close(ret);
3717 
3718 	return 0;
3719 }
3720 
3721 static int probe_fd(int fd)
3722 {
3723 	if (fd >= 0)
3724 		close(fd);
3725 	return fd >= 0;
3726 }
3727 
3728 static int probe_kern_prog_name(void)
3729 {
3730 	struct bpf_load_program_attr attr;
3731 	struct bpf_insn insns[] = {
3732 		BPF_MOV64_IMM(BPF_REG_0, 0),
3733 		BPF_EXIT_INSN(),
3734 	};
3735 	int ret;
3736 
3737 	/* make sure loading with name works */
3738 
3739 	memset(&attr, 0, sizeof(attr));
3740 	attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3741 	attr.insns = insns;
3742 	attr.insns_cnt = ARRAY_SIZE(insns);
3743 	attr.license = "GPL";
3744 	attr.name = "test";
3745 	ret = bpf_load_program_xattr(&attr, NULL, 0);
3746 	return probe_fd(ret);
3747 }
3748 
3749 static int probe_kern_global_data(void)
3750 {
3751 	struct bpf_load_program_attr prg_attr;
3752 	struct bpf_create_map_attr map_attr;
3753 	char *cp, errmsg[STRERR_BUFSIZE];
3754 	struct bpf_insn insns[] = {
3755 		BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
3756 		BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
3757 		BPF_MOV64_IMM(BPF_REG_0, 0),
3758 		BPF_EXIT_INSN(),
3759 	};
3760 	int ret, map;
3761 
3762 	memset(&map_attr, 0, sizeof(map_attr));
3763 	map_attr.map_type = BPF_MAP_TYPE_ARRAY;
3764 	map_attr.key_size = sizeof(int);
3765 	map_attr.value_size = 32;
3766 	map_attr.max_entries = 1;
3767 
3768 	map = bpf_create_map_xattr(&map_attr);
3769 	if (map < 0) {
3770 		ret = -errno;
3771 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
3772 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
3773 			__func__, cp, -ret);
3774 		return ret;
3775 	}
3776 
3777 	insns[0].imm = map;
3778 
3779 	memset(&prg_attr, 0, sizeof(prg_attr));
3780 	prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3781 	prg_attr.insns = insns;
3782 	prg_attr.insns_cnt = ARRAY_SIZE(insns);
3783 	prg_attr.license = "GPL";
3784 
3785 	ret = bpf_load_program_xattr(&prg_attr, NULL, 0);
3786 	close(map);
3787 	return probe_fd(ret);
3788 }
3789 
3790 static int probe_kern_btf(void)
3791 {
3792 	static const char strs[] = "\0int";
3793 	__u32 types[] = {
3794 		/* int */
3795 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
3796 	};
3797 
3798 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3799 					     strs, sizeof(strs)));
3800 }
3801 
3802 static int probe_kern_btf_func(void)
3803 {
3804 	static const char strs[] = "\0int\0x\0a";
3805 	/* void x(int a) {} */
3806 	__u32 types[] = {
3807 		/* int */
3808 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
3809 		/* FUNC_PROTO */                                /* [2] */
3810 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
3811 		BTF_PARAM_ENC(7, 1),
3812 		/* FUNC x */                                    /* [3] */
3813 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
3814 	};
3815 
3816 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3817 					     strs, sizeof(strs)));
3818 }
3819 
3820 static int probe_kern_btf_func_global(void)
3821 {
3822 	static const char strs[] = "\0int\0x\0a";
3823 	/* static void x(int a) {} */
3824 	__u32 types[] = {
3825 		/* int */
3826 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
3827 		/* FUNC_PROTO */                                /* [2] */
3828 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
3829 		BTF_PARAM_ENC(7, 1),
3830 		/* FUNC x BTF_FUNC_GLOBAL */                    /* [3] */
3831 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
3832 	};
3833 
3834 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3835 					     strs, sizeof(strs)));
3836 }
3837 
3838 static int probe_kern_btf_datasec(void)
3839 {
3840 	static const char strs[] = "\0x\0.data";
3841 	/* static int a; */
3842 	__u32 types[] = {
3843 		/* int */
3844 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
3845 		/* VAR x */                                     /* [2] */
3846 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
3847 		BTF_VAR_STATIC,
3848 		/* DATASEC val */                               /* [3] */
3849 		BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
3850 		BTF_VAR_SECINFO_ENC(2, 0, 4),
3851 	};
3852 
3853 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3854 					     strs, sizeof(strs)));
3855 }
3856 
3857 static int probe_kern_array_mmap(void)
3858 {
3859 	struct bpf_create_map_attr attr = {
3860 		.map_type = BPF_MAP_TYPE_ARRAY,
3861 		.map_flags = BPF_F_MMAPABLE,
3862 		.key_size = sizeof(int),
3863 		.value_size = sizeof(int),
3864 		.max_entries = 1,
3865 	};
3866 
3867 	return probe_fd(bpf_create_map_xattr(&attr));
3868 }
3869 
3870 static int probe_kern_exp_attach_type(void)
3871 {
3872 	struct bpf_load_program_attr attr;
3873 	struct bpf_insn insns[] = {
3874 		BPF_MOV64_IMM(BPF_REG_0, 0),
3875 		BPF_EXIT_INSN(),
3876 	};
3877 
3878 	memset(&attr, 0, sizeof(attr));
3879 	/* use any valid combination of program type and (optional)
3880 	 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
3881 	 * to see if kernel supports expected_attach_type field for
3882 	 * BPF_PROG_LOAD command
3883 	 */
3884 	attr.prog_type = BPF_PROG_TYPE_CGROUP_SOCK;
3885 	attr.expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE;
3886 	attr.insns = insns;
3887 	attr.insns_cnt = ARRAY_SIZE(insns);
3888 	attr.license = "GPL";
3889 
3890 	return probe_fd(bpf_load_program_xattr(&attr, NULL, 0));
3891 }
3892 
3893 static int probe_kern_probe_read_kernel(void)
3894 {
3895 	struct bpf_load_program_attr attr;
3896 	struct bpf_insn insns[] = {
3897 		BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),	/* r1 = r10 (fp) */
3898 		BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),	/* r1 += -8 */
3899 		BPF_MOV64_IMM(BPF_REG_2, 8),		/* r2 = 8 */
3900 		BPF_MOV64_IMM(BPF_REG_3, 0),		/* r3 = 0 */
3901 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
3902 		BPF_EXIT_INSN(),
3903 	};
3904 
3905 	memset(&attr, 0, sizeof(attr));
3906 	attr.prog_type = BPF_PROG_TYPE_KPROBE;
3907 	attr.insns = insns;
3908 	attr.insns_cnt = ARRAY_SIZE(insns);
3909 	attr.license = "GPL";
3910 
3911 	return probe_fd(bpf_load_program_xattr(&attr, NULL, 0));
3912 }
3913 
3914 static int probe_prog_bind_map(void)
3915 {
3916 	struct bpf_load_program_attr prg_attr;
3917 	struct bpf_create_map_attr map_attr;
3918 	char *cp, errmsg[STRERR_BUFSIZE];
3919 	struct bpf_insn insns[] = {
3920 		BPF_MOV64_IMM(BPF_REG_0, 0),
3921 		BPF_EXIT_INSN(),
3922 	};
3923 	int ret, map, prog;
3924 
3925 	memset(&map_attr, 0, sizeof(map_attr));
3926 	map_attr.map_type = BPF_MAP_TYPE_ARRAY;
3927 	map_attr.key_size = sizeof(int);
3928 	map_attr.value_size = 32;
3929 	map_attr.max_entries = 1;
3930 
3931 	map = bpf_create_map_xattr(&map_attr);
3932 	if (map < 0) {
3933 		ret = -errno;
3934 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
3935 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
3936 			__func__, cp, -ret);
3937 		return ret;
3938 	}
3939 
3940 	memset(&prg_attr, 0, sizeof(prg_attr));
3941 	prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3942 	prg_attr.insns = insns;
3943 	prg_attr.insns_cnt = ARRAY_SIZE(insns);
3944 	prg_attr.license = "GPL";
3945 
3946 	prog = bpf_load_program_xattr(&prg_attr, NULL, 0);
3947 	if (prog < 0) {
3948 		close(map);
3949 		return 0;
3950 	}
3951 
3952 	ret = bpf_prog_bind_map(prog, map, NULL);
3953 
3954 	close(map);
3955 	close(prog);
3956 
3957 	return ret >= 0;
3958 }
3959 
3960 enum kern_feature_result {
3961 	FEAT_UNKNOWN = 0,
3962 	FEAT_SUPPORTED = 1,
3963 	FEAT_MISSING = 2,
3964 };
3965 
3966 typedef int (*feature_probe_fn)(void);
3967 
3968 static struct kern_feature_desc {
3969 	const char *desc;
3970 	feature_probe_fn probe;
3971 	enum kern_feature_result res;
3972 } feature_probes[__FEAT_CNT] = {
3973 	[FEAT_PROG_NAME] = {
3974 		"BPF program name", probe_kern_prog_name,
3975 	},
3976 	[FEAT_GLOBAL_DATA] = {
3977 		"global variables", probe_kern_global_data,
3978 	},
3979 	[FEAT_BTF] = {
3980 		"minimal BTF", probe_kern_btf,
3981 	},
3982 	[FEAT_BTF_FUNC] = {
3983 		"BTF functions", probe_kern_btf_func,
3984 	},
3985 	[FEAT_BTF_GLOBAL_FUNC] = {
3986 		"BTF global function", probe_kern_btf_func_global,
3987 	},
3988 	[FEAT_BTF_DATASEC] = {
3989 		"BTF data section and variable", probe_kern_btf_datasec,
3990 	},
3991 	[FEAT_ARRAY_MMAP] = {
3992 		"ARRAY map mmap()", probe_kern_array_mmap,
3993 	},
3994 	[FEAT_EXP_ATTACH_TYPE] = {
3995 		"BPF_PROG_LOAD expected_attach_type attribute",
3996 		probe_kern_exp_attach_type,
3997 	},
3998 	[FEAT_PROBE_READ_KERN] = {
3999 		"bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4000 	},
4001 	[FEAT_PROG_BIND_MAP] = {
4002 		"BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4003 	}
4004 };
4005 
4006 static bool kernel_supports(enum kern_feature_id feat_id)
4007 {
4008 	struct kern_feature_desc *feat = &feature_probes[feat_id];
4009 	int ret;
4010 
4011 	if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4012 		ret = feat->probe();
4013 		if (ret > 0) {
4014 			WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4015 		} else if (ret == 0) {
4016 			WRITE_ONCE(feat->res, FEAT_MISSING);
4017 		} else {
4018 			pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4019 			WRITE_ONCE(feat->res, FEAT_MISSING);
4020 		}
4021 	}
4022 
4023 	return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4024 }
4025 
4026 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4027 {
4028 	struct bpf_map_info map_info = {};
4029 	char msg[STRERR_BUFSIZE];
4030 	__u32 map_info_len;
4031 
4032 	map_info_len = sizeof(map_info);
4033 
4034 	if (bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len)) {
4035 		pr_warn("failed to get map info for map FD %d: %s\n",
4036 			map_fd, libbpf_strerror_r(errno, msg, sizeof(msg)));
4037 		return false;
4038 	}
4039 
4040 	return (map_info.type == map->def.type &&
4041 		map_info.key_size == map->def.key_size &&
4042 		map_info.value_size == map->def.value_size &&
4043 		map_info.max_entries == map->def.max_entries &&
4044 		map_info.map_flags == map->def.map_flags);
4045 }
4046 
4047 static int
4048 bpf_object__reuse_map(struct bpf_map *map)
4049 {
4050 	char *cp, errmsg[STRERR_BUFSIZE];
4051 	int err, pin_fd;
4052 
4053 	pin_fd = bpf_obj_get(map->pin_path);
4054 	if (pin_fd < 0) {
4055 		err = -errno;
4056 		if (err == -ENOENT) {
4057 			pr_debug("found no pinned map to reuse at '%s'\n",
4058 				 map->pin_path);
4059 			return 0;
4060 		}
4061 
4062 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
4063 		pr_warn("couldn't retrieve pinned map '%s': %s\n",
4064 			map->pin_path, cp);
4065 		return err;
4066 	}
4067 
4068 	if (!map_is_reuse_compat(map, pin_fd)) {
4069 		pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
4070 			map->pin_path);
4071 		close(pin_fd);
4072 		return -EINVAL;
4073 	}
4074 
4075 	err = bpf_map__reuse_fd(map, pin_fd);
4076 	if (err) {
4077 		close(pin_fd);
4078 		return err;
4079 	}
4080 	map->pinned = true;
4081 	pr_debug("reused pinned map at '%s'\n", map->pin_path);
4082 
4083 	return 0;
4084 }
4085 
4086 static int
4087 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
4088 {
4089 	enum libbpf_map_type map_type = map->libbpf_type;
4090 	char *cp, errmsg[STRERR_BUFSIZE];
4091 	int err, zero = 0;
4092 
4093 	err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
4094 	if (err) {
4095 		err = -errno;
4096 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4097 		pr_warn("Error setting initial map(%s) contents: %s\n",
4098 			map->name, cp);
4099 		return err;
4100 	}
4101 
4102 	/* Freeze .rodata and .kconfig map as read-only from syscall side. */
4103 	if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
4104 		err = bpf_map_freeze(map->fd);
4105 		if (err) {
4106 			err = -errno;
4107 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4108 			pr_warn("Error freezing map(%s) as read-only: %s\n",
4109 				map->name, cp);
4110 			return err;
4111 		}
4112 	}
4113 	return 0;
4114 }
4115 
4116 static void bpf_map__destroy(struct bpf_map *map);
4117 
4118 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map)
4119 {
4120 	struct bpf_create_map_attr create_attr;
4121 	struct bpf_map_def *def = &map->def;
4122 
4123 	memset(&create_attr, 0, sizeof(create_attr));
4124 
4125 	if (kernel_supports(FEAT_PROG_NAME))
4126 		create_attr.name = map->name;
4127 	create_attr.map_ifindex = map->map_ifindex;
4128 	create_attr.map_type = def->type;
4129 	create_attr.map_flags = def->map_flags;
4130 	create_attr.key_size = def->key_size;
4131 	create_attr.value_size = def->value_size;
4132 	create_attr.numa_node = map->numa_node;
4133 
4134 	if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) {
4135 		int nr_cpus;
4136 
4137 		nr_cpus = libbpf_num_possible_cpus();
4138 		if (nr_cpus < 0) {
4139 			pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
4140 				map->name, nr_cpus);
4141 			return nr_cpus;
4142 		}
4143 		pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
4144 		create_attr.max_entries = nr_cpus;
4145 	} else {
4146 		create_attr.max_entries = def->max_entries;
4147 	}
4148 
4149 	if (bpf_map__is_struct_ops(map))
4150 		create_attr.btf_vmlinux_value_type_id =
4151 			map->btf_vmlinux_value_type_id;
4152 
4153 	create_attr.btf_fd = 0;
4154 	create_attr.btf_key_type_id = 0;
4155 	create_attr.btf_value_type_id = 0;
4156 	if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) {
4157 		create_attr.btf_fd = btf__fd(obj->btf);
4158 		create_attr.btf_key_type_id = map->btf_key_type_id;
4159 		create_attr.btf_value_type_id = map->btf_value_type_id;
4160 	}
4161 
4162 	if (bpf_map_type__is_map_in_map(def->type)) {
4163 		if (map->inner_map) {
4164 			int err;
4165 
4166 			err = bpf_object__create_map(obj, map->inner_map);
4167 			if (err) {
4168 				pr_warn("map '%s': failed to create inner map: %d\n",
4169 					map->name, err);
4170 				return err;
4171 			}
4172 			map->inner_map_fd = bpf_map__fd(map->inner_map);
4173 		}
4174 		if (map->inner_map_fd >= 0)
4175 			create_attr.inner_map_fd = map->inner_map_fd;
4176 	}
4177 
4178 	map->fd = bpf_create_map_xattr(&create_attr);
4179 	if (map->fd < 0 && (create_attr.btf_key_type_id ||
4180 			    create_attr.btf_value_type_id)) {
4181 		char *cp, errmsg[STRERR_BUFSIZE];
4182 		int err = -errno;
4183 
4184 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4185 		pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
4186 			map->name, cp, err);
4187 		create_attr.btf_fd = 0;
4188 		create_attr.btf_key_type_id = 0;
4189 		create_attr.btf_value_type_id = 0;
4190 		map->btf_key_type_id = 0;
4191 		map->btf_value_type_id = 0;
4192 		map->fd = bpf_create_map_xattr(&create_attr);
4193 	}
4194 
4195 	if (map->fd < 0)
4196 		return -errno;
4197 
4198 	if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
4199 		bpf_map__destroy(map->inner_map);
4200 		zfree(&map->inner_map);
4201 	}
4202 
4203 	return 0;
4204 }
4205 
4206 static int init_map_slots(struct bpf_map *map)
4207 {
4208 	const struct bpf_map *targ_map;
4209 	unsigned int i;
4210 	int fd, err;
4211 
4212 	for (i = 0; i < map->init_slots_sz; i++) {
4213 		if (!map->init_slots[i])
4214 			continue;
4215 
4216 		targ_map = map->init_slots[i];
4217 		fd = bpf_map__fd(targ_map);
4218 		err = bpf_map_update_elem(map->fd, &i, &fd, 0);
4219 		if (err) {
4220 			err = -errno;
4221 			pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
4222 				map->name, i, targ_map->name,
4223 				fd, err);
4224 			return err;
4225 		}
4226 		pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
4227 			 map->name, i, targ_map->name, fd);
4228 	}
4229 
4230 	zfree(&map->init_slots);
4231 	map->init_slots_sz = 0;
4232 
4233 	return 0;
4234 }
4235 
4236 static int
4237 bpf_object__create_maps(struct bpf_object *obj)
4238 {
4239 	struct bpf_map *map;
4240 	char *cp, errmsg[STRERR_BUFSIZE];
4241 	unsigned int i, j;
4242 	int err;
4243 
4244 	for (i = 0; i < obj->nr_maps; i++) {
4245 		map = &obj->maps[i];
4246 
4247 		if (map->pin_path) {
4248 			err = bpf_object__reuse_map(map);
4249 			if (err) {
4250 				pr_warn("map '%s': error reusing pinned map\n",
4251 					map->name);
4252 				goto err_out;
4253 			}
4254 		}
4255 
4256 		if (map->fd >= 0) {
4257 			pr_debug("map '%s': skipping creation (preset fd=%d)\n",
4258 				 map->name, map->fd);
4259 		} else {
4260 			err = bpf_object__create_map(obj, map);
4261 			if (err)
4262 				goto err_out;
4263 
4264 			pr_debug("map '%s': created successfully, fd=%d\n",
4265 				 map->name, map->fd);
4266 
4267 			if (bpf_map__is_internal(map)) {
4268 				err = bpf_object__populate_internal_map(obj, map);
4269 				if (err < 0) {
4270 					zclose(map->fd);
4271 					goto err_out;
4272 				}
4273 			}
4274 
4275 			if (map->init_slots_sz) {
4276 				err = init_map_slots(map);
4277 				if (err < 0) {
4278 					zclose(map->fd);
4279 					goto err_out;
4280 				}
4281 			}
4282 		}
4283 
4284 		if (map->pin_path && !map->pinned) {
4285 			err = bpf_map__pin(map, NULL);
4286 			if (err) {
4287 				pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
4288 					map->name, map->pin_path, err);
4289 				zclose(map->fd);
4290 				goto err_out;
4291 			}
4292 		}
4293 	}
4294 
4295 	return 0;
4296 
4297 err_out:
4298 	cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4299 	pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
4300 	pr_perm_msg(err);
4301 	for (j = 0; j < i; j++)
4302 		zclose(obj->maps[j].fd);
4303 	return err;
4304 }
4305 
4306 #define BPF_CORE_SPEC_MAX_LEN 64
4307 
4308 /* represents BPF CO-RE field or array element accessor */
4309 struct bpf_core_accessor {
4310 	__u32 type_id;		/* struct/union type or array element type */
4311 	__u32 idx;		/* field index or array index */
4312 	const char *name;	/* field name or NULL for array accessor */
4313 };
4314 
4315 struct bpf_core_spec {
4316 	const struct btf *btf;
4317 	/* high-level spec: named fields and array indices only */
4318 	struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN];
4319 	/* original unresolved (no skip_mods_or_typedefs) root type ID */
4320 	__u32 root_type_id;
4321 	/* CO-RE relocation kind */
4322 	enum bpf_core_relo_kind relo_kind;
4323 	/* high-level spec length */
4324 	int len;
4325 	/* raw, low-level spec: 1-to-1 with accessor spec string */
4326 	int raw_spec[BPF_CORE_SPEC_MAX_LEN];
4327 	/* raw spec length */
4328 	int raw_len;
4329 	/* field bit offset represented by spec */
4330 	__u32 bit_offset;
4331 };
4332 
4333 static bool str_is_empty(const char *s)
4334 {
4335 	return !s || !s[0];
4336 }
4337 
4338 static bool is_flex_arr(const struct btf *btf,
4339 			const struct bpf_core_accessor *acc,
4340 			const struct btf_array *arr)
4341 {
4342 	const struct btf_type *t;
4343 
4344 	/* not a flexible array, if not inside a struct or has non-zero size */
4345 	if (!acc->name || arr->nelems > 0)
4346 		return false;
4347 
4348 	/* has to be the last member of enclosing struct */
4349 	t = btf__type_by_id(btf, acc->type_id);
4350 	return acc->idx == btf_vlen(t) - 1;
4351 }
4352 
4353 static const char *core_relo_kind_str(enum bpf_core_relo_kind kind)
4354 {
4355 	switch (kind) {
4356 	case BPF_FIELD_BYTE_OFFSET: return "byte_off";
4357 	case BPF_FIELD_BYTE_SIZE: return "byte_sz";
4358 	case BPF_FIELD_EXISTS: return "field_exists";
4359 	case BPF_FIELD_SIGNED: return "signed";
4360 	case BPF_FIELD_LSHIFT_U64: return "lshift_u64";
4361 	case BPF_FIELD_RSHIFT_U64: return "rshift_u64";
4362 	case BPF_TYPE_ID_LOCAL: return "local_type_id";
4363 	case BPF_TYPE_ID_TARGET: return "target_type_id";
4364 	case BPF_TYPE_EXISTS: return "type_exists";
4365 	case BPF_TYPE_SIZE: return "type_size";
4366 	case BPF_ENUMVAL_EXISTS: return "enumval_exists";
4367 	case BPF_ENUMVAL_VALUE: return "enumval_value";
4368 	default: return "unknown";
4369 	}
4370 }
4371 
4372 static bool core_relo_is_field_based(enum bpf_core_relo_kind kind)
4373 {
4374 	switch (kind) {
4375 	case BPF_FIELD_BYTE_OFFSET:
4376 	case BPF_FIELD_BYTE_SIZE:
4377 	case BPF_FIELD_EXISTS:
4378 	case BPF_FIELD_SIGNED:
4379 	case BPF_FIELD_LSHIFT_U64:
4380 	case BPF_FIELD_RSHIFT_U64:
4381 		return true;
4382 	default:
4383 		return false;
4384 	}
4385 }
4386 
4387 static bool core_relo_is_type_based(enum bpf_core_relo_kind kind)
4388 {
4389 	switch (kind) {
4390 	case BPF_TYPE_ID_LOCAL:
4391 	case BPF_TYPE_ID_TARGET:
4392 	case BPF_TYPE_EXISTS:
4393 	case BPF_TYPE_SIZE:
4394 		return true;
4395 	default:
4396 		return false;
4397 	}
4398 }
4399 
4400 static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind)
4401 {
4402 	switch (kind) {
4403 	case BPF_ENUMVAL_EXISTS:
4404 	case BPF_ENUMVAL_VALUE:
4405 		return true;
4406 	default:
4407 		return false;
4408 	}
4409 }
4410 
4411 /*
4412  * Turn bpf_core_relo into a low- and high-level spec representation,
4413  * validating correctness along the way, as well as calculating resulting
4414  * field bit offset, specified by accessor string. Low-level spec captures
4415  * every single level of nestedness, including traversing anonymous
4416  * struct/union members. High-level one only captures semantically meaningful
4417  * "turning points": named fields and array indicies.
4418  * E.g., for this case:
4419  *
4420  *   struct sample {
4421  *       int __unimportant;
4422  *       struct {
4423  *           int __1;
4424  *           int __2;
4425  *           int a[7];
4426  *       };
4427  *   };
4428  *
4429  *   struct sample *s = ...;
4430  *
4431  *   int x = &s->a[3]; // access string = '0:1:2:3'
4432  *
4433  * Low-level spec has 1:1 mapping with each element of access string (it's
4434  * just a parsed access string representation): [0, 1, 2, 3].
4435  *
4436  * High-level spec will capture only 3 points:
4437  *   - intial zero-index access by pointer (&s->... is the same as &s[0]...);
4438  *   - field 'a' access (corresponds to '2' in low-level spec);
4439  *   - array element #3 access (corresponds to '3' in low-level spec).
4440  *
4441  * Type-based relocations (TYPE_EXISTS/TYPE_SIZE,
4442  * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their
4443  * spec and raw_spec are kept empty.
4444  *
4445  * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access
4446  * string to specify enumerator's value index that need to be relocated.
4447  */
4448 static int bpf_core_parse_spec(const struct btf *btf,
4449 			       __u32 type_id,
4450 			       const char *spec_str,
4451 			       enum bpf_core_relo_kind relo_kind,
4452 			       struct bpf_core_spec *spec)
4453 {
4454 	int access_idx, parsed_len, i;
4455 	struct bpf_core_accessor *acc;
4456 	const struct btf_type *t;
4457 	const char *name;
4458 	__u32 id;
4459 	__s64 sz;
4460 
4461 	if (str_is_empty(spec_str) || *spec_str == ':')
4462 		return -EINVAL;
4463 
4464 	memset(spec, 0, sizeof(*spec));
4465 	spec->btf = btf;
4466 	spec->root_type_id = type_id;
4467 	spec->relo_kind = relo_kind;
4468 
4469 	/* type-based relocations don't have a field access string */
4470 	if (core_relo_is_type_based(relo_kind)) {
4471 		if (strcmp(spec_str, "0"))
4472 			return -EINVAL;
4473 		return 0;
4474 	}
4475 
4476 	/* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */
4477 	while (*spec_str) {
4478 		if (*spec_str == ':')
4479 			++spec_str;
4480 		if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1)
4481 			return -EINVAL;
4482 		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
4483 			return -E2BIG;
4484 		spec_str += parsed_len;
4485 		spec->raw_spec[spec->raw_len++] = access_idx;
4486 	}
4487 
4488 	if (spec->raw_len == 0)
4489 		return -EINVAL;
4490 
4491 	t = skip_mods_and_typedefs(btf, type_id, &id);
4492 	if (!t)
4493 		return -EINVAL;
4494 
4495 	access_idx = spec->raw_spec[0];
4496 	acc = &spec->spec[0];
4497 	acc->type_id = id;
4498 	acc->idx = access_idx;
4499 	spec->len++;
4500 
4501 	if (core_relo_is_enumval_based(relo_kind)) {
4502 		if (!btf_is_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t))
4503 			return -EINVAL;
4504 
4505 		/* record enumerator name in a first accessor */
4506 		acc->name = btf__name_by_offset(btf, btf_enum(t)[access_idx].name_off);
4507 		return 0;
4508 	}
4509 
4510 	if (!core_relo_is_field_based(relo_kind))
4511 		return -EINVAL;
4512 
4513 	sz = btf__resolve_size(btf, id);
4514 	if (sz < 0)
4515 		return sz;
4516 	spec->bit_offset = access_idx * sz * 8;
4517 
4518 	for (i = 1; i < spec->raw_len; i++) {
4519 		t = skip_mods_and_typedefs(btf, id, &id);
4520 		if (!t)
4521 			return -EINVAL;
4522 
4523 		access_idx = spec->raw_spec[i];
4524 		acc = &spec->spec[spec->len];
4525 
4526 		if (btf_is_composite(t)) {
4527 			const struct btf_member *m;
4528 			__u32 bit_offset;
4529 
4530 			if (access_idx >= btf_vlen(t))
4531 				return -EINVAL;
4532 
4533 			bit_offset = btf_member_bit_offset(t, access_idx);
4534 			spec->bit_offset += bit_offset;
4535 
4536 			m = btf_members(t) + access_idx;
4537 			if (m->name_off) {
4538 				name = btf__name_by_offset(btf, m->name_off);
4539 				if (str_is_empty(name))
4540 					return -EINVAL;
4541 
4542 				acc->type_id = id;
4543 				acc->idx = access_idx;
4544 				acc->name = name;
4545 				spec->len++;
4546 			}
4547 
4548 			id = m->type;
4549 		} else if (btf_is_array(t)) {
4550 			const struct btf_array *a = btf_array(t);
4551 			bool flex;
4552 
4553 			t = skip_mods_and_typedefs(btf, a->type, &id);
4554 			if (!t)
4555 				return -EINVAL;
4556 
4557 			flex = is_flex_arr(btf, acc - 1, a);
4558 			if (!flex && access_idx >= a->nelems)
4559 				return -EINVAL;
4560 
4561 			spec->spec[spec->len].type_id = id;
4562 			spec->spec[spec->len].idx = access_idx;
4563 			spec->len++;
4564 
4565 			sz = btf__resolve_size(btf, id);
4566 			if (sz < 0)
4567 				return sz;
4568 			spec->bit_offset += access_idx * sz * 8;
4569 		} else {
4570 			pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n",
4571 				type_id, spec_str, i, id, btf_kind_str(t));
4572 			return -EINVAL;
4573 		}
4574 	}
4575 
4576 	return 0;
4577 }
4578 
4579 static bool bpf_core_is_flavor_sep(const char *s)
4580 {
4581 	/* check X___Y name pattern, where X and Y are not underscores */
4582 	return s[0] != '_' &&				      /* X */
4583 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
4584 	       s[4] != '_';				      /* Y */
4585 }
4586 
4587 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
4588  * before last triple underscore. Struct name part after last triple
4589  * underscore is ignored by BPF CO-RE relocation during relocation matching.
4590  */
4591 static size_t bpf_core_essential_name_len(const char *name)
4592 {
4593 	size_t n = strlen(name);
4594 	int i;
4595 
4596 	for (i = n - 5; i >= 0; i--) {
4597 		if (bpf_core_is_flavor_sep(name + i))
4598 			return i + 1;
4599 	}
4600 	return n;
4601 }
4602 
4603 /* dynamically sized list of type IDs */
4604 struct ids_vec {
4605 	__u32 *data;
4606 	int len;
4607 };
4608 
4609 static void bpf_core_free_cands(struct ids_vec *cand_ids)
4610 {
4611 	free(cand_ids->data);
4612 	free(cand_ids);
4613 }
4614 
4615 static struct ids_vec *bpf_core_find_cands(const struct btf *local_btf,
4616 					   __u32 local_type_id,
4617 					   const struct btf *targ_btf)
4618 {
4619 	size_t local_essent_len, targ_essent_len;
4620 	const char *local_name, *targ_name;
4621 	const struct btf_type *t, *local_t;
4622 	struct ids_vec *cand_ids;
4623 	__u32 *new_ids;
4624 	int i, err, n;
4625 
4626 	local_t = btf__type_by_id(local_btf, local_type_id);
4627 	if (!local_t)
4628 		return ERR_PTR(-EINVAL);
4629 
4630 	local_name = btf__name_by_offset(local_btf, local_t->name_off);
4631 	if (str_is_empty(local_name))
4632 		return ERR_PTR(-EINVAL);
4633 	local_essent_len = bpf_core_essential_name_len(local_name);
4634 
4635 	cand_ids = calloc(1, sizeof(*cand_ids));
4636 	if (!cand_ids)
4637 		return ERR_PTR(-ENOMEM);
4638 
4639 	n = btf__get_nr_types(targ_btf);
4640 	for (i = 1; i <= n; i++) {
4641 		t = btf__type_by_id(targ_btf, i);
4642 		if (btf_kind(t) != btf_kind(local_t))
4643 			continue;
4644 
4645 		targ_name = btf__name_by_offset(targ_btf, t->name_off);
4646 		if (str_is_empty(targ_name))
4647 			continue;
4648 
4649 		targ_essent_len = bpf_core_essential_name_len(targ_name);
4650 		if (targ_essent_len != local_essent_len)
4651 			continue;
4652 
4653 		if (strncmp(local_name, targ_name, local_essent_len) == 0) {
4654 			pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s\n",
4655 				 local_type_id, btf_kind_str(local_t),
4656 				 local_name, i, btf_kind_str(t), targ_name);
4657 			new_ids = libbpf_reallocarray(cand_ids->data,
4658 						      cand_ids->len + 1,
4659 						      sizeof(*cand_ids->data));
4660 			if (!new_ids) {
4661 				err = -ENOMEM;
4662 				goto err_out;
4663 			}
4664 			cand_ids->data = new_ids;
4665 			cand_ids->data[cand_ids->len++] = i;
4666 		}
4667 	}
4668 	return cand_ids;
4669 err_out:
4670 	bpf_core_free_cands(cand_ids);
4671 	return ERR_PTR(err);
4672 }
4673 
4674 /* Check two types for compatibility for the purpose of field access
4675  * relocation. const/volatile/restrict and typedefs are skipped to ensure we
4676  * are relocating semantically compatible entities:
4677  *   - any two STRUCTs/UNIONs are compatible and can be mixed;
4678  *   - any two FWDs are compatible, if their names match (modulo flavor suffix);
4679  *   - any two PTRs are always compatible;
4680  *   - for ENUMs, names should be the same (ignoring flavor suffix) or at
4681  *     least one of enums should be anonymous;
4682  *   - for ENUMs, check sizes, names are ignored;
4683  *   - for INT, size and signedness are ignored;
4684  *   - for ARRAY, dimensionality is ignored, element types are checked for
4685  *     compatibility recursively;
4686  *   - everything else shouldn't be ever a target of relocation.
4687  * These rules are not set in stone and probably will be adjusted as we get
4688  * more experience with using BPF CO-RE relocations.
4689  */
4690 static int bpf_core_fields_are_compat(const struct btf *local_btf,
4691 				      __u32 local_id,
4692 				      const struct btf *targ_btf,
4693 				      __u32 targ_id)
4694 {
4695 	const struct btf_type *local_type, *targ_type;
4696 
4697 recur:
4698 	local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
4699 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
4700 	if (!local_type || !targ_type)
4701 		return -EINVAL;
4702 
4703 	if (btf_is_composite(local_type) && btf_is_composite(targ_type))
4704 		return 1;
4705 	if (btf_kind(local_type) != btf_kind(targ_type))
4706 		return 0;
4707 
4708 	switch (btf_kind(local_type)) {
4709 	case BTF_KIND_PTR:
4710 		return 1;
4711 	case BTF_KIND_FWD:
4712 	case BTF_KIND_ENUM: {
4713 		const char *local_name, *targ_name;
4714 		size_t local_len, targ_len;
4715 
4716 		local_name = btf__name_by_offset(local_btf,
4717 						 local_type->name_off);
4718 		targ_name = btf__name_by_offset(targ_btf, targ_type->name_off);
4719 		local_len = bpf_core_essential_name_len(local_name);
4720 		targ_len = bpf_core_essential_name_len(targ_name);
4721 		/* one of them is anonymous or both w/ same flavor-less names */
4722 		return local_len == 0 || targ_len == 0 ||
4723 		       (local_len == targ_len &&
4724 			strncmp(local_name, targ_name, local_len) == 0);
4725 	}
4726 	case BTF_KIND_INT:
4727 		/* just reject deprecated bitfield-like integers; all other
4728 		 * integers are by default compatible between each other
4729 		 */
4730 		return btf_int_offset(local_type) == 0 &&
4731 		       btf_int_offset(targ_type) == 0;
4732 	case BTF_KIND_ARRAY:
4733 		local_id = btf_array(local_type)->type;
4734 		targ_id = btf_array(targ_type)->type;
4735 		goto recur;
4736 	default:
4737 		pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n",
4738 			btf_kind(local_type), local_id, targ_id);
4739 		return 0;
4740 	}
4741 }
4742 
4743 /*
4744  * Given single high-level named field accessor in local type, find
4745  * corresponding high-level accessor for a target type. Along the way,
4746  * maintain low-level spec for target as well. Also keep updating target
4747  * bit offset.
4748  *
4749  * Searching is performed through recursive exhaustive enumeration of all
4750  * fields of a struct/union. If there are any anonymous (embedded)
4751  * structs/unions, they are recursively searched as well. If field with
4752  * desired name is found, check compatibility between local and target types,
4753  * before returning result.
4754  *
4755  * 1 is returned, if field is found.
4756  * 0 is returned if no compatible field is found.
4757  * <0 is returned on error.
4758  */
4759 static int bpf_core_match_member(const struct btf *local_btf,
4760 				 const struct bpf_core_accessor *local_acc,
4761 				 const struct btf *targ_btf,
4762 				 __u32 targ_id,
4763 				 struct bpf_core_spec *spec,
4764 				 __u32 *next_targ_id)
4765 {
4766 	const struct btf_type *local_type, *targ_type;
4767 	const struct btf_member *local_member, *m;
4768 	const char *local_name, *targ_name;
4769 	__u32 local_id;
4770 	int i, n, found;
4771 
4772 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
4773 	if (!targ_type)
4774 		return -EINVAL;
4775 	if (!btf_is_composite(targ_type))
4776 		return 0;
4777 
4778 	local_id = local_acc->type_id;
4779 	local_type = btf__type_by_id(local_btf, local_id);
4780 	local_member = btf_members(local_type) + local_acc->idx;
4781 	local_name = btf__name_by_offset(local_btf, local_member->name_off);
4782 
4783 	n = btf_vlen(targ_type);
4784 	m = btf_members(targ_type);
4785 	for (i = 0; i < n; i++, m++) {
4786 		__u32 bit_offset;
4787 
4788 		bit_offset = btf_member_bit_offset(targ_type, i);
4789 
4790 		/* too deep struct/union/array nesting */
4791 		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
4792 			return -E2BIG;
4793 
4794 		/* speculate this member will be the good one */
4795 		spec->bit_offset += bit_offset;
4796 		spec->raw_spec[spec->raw_len++] = i;
4797 
4798 		targ_name = btf__name_by_offset(targ_btf, m->name_off);
4799 		if (str_is_empty(targ_name)) {
4800 			/* embedded struct/union, we need to go deeper */
4801 			found = bpf_core_match_member(local_btf, local_acc,
4802 						      targ_btf, m->type,
4803 						      spec, next_targ_id);
4804 			if (found) /* either found or error */
4805 				return found;
4806 		} else if (strcmp(local_name, targ_name) == 0) {
4807 			/* matching named field */
4808 			struct bpf_core_accessor *targ_acc;
4809 
4810 			targ_acc = &spec->spec[spec->len++];
4811 			targ_acc->type_id = targ_id;
4812 			targ_acc->idx = i;
4813 			targ_acc->name = targ_name;
4814 
4815 			*next_targ_id = m->type;
4816 			found = bpf_core_fields_are_compat(local_btf,
4817 							   local_member->type,
4818 							   targ_btf, m->type);
4819 			if (!found)
4820 				spec->len--; /* pop accessor */
4821 			return found;
4822 		}
4823 		/* member turned out not to be what we looked for */
4824 		spec->bit_offset -= bit_offset;
4825 		spec->raw_len--;
4826 	}
4827 
4828 	return 0;
4829 }
4830 
4831 /* Check local and target types for compatibility. This check is used for
4832  * type-based CO-RE relocations and follow slightly different rules than
4833  * field-based relocations. This function assumes that root types were already
4834  * checked for name match. Beyond that initial root-level name check, names
4835  * are completely ignored. Compatibility rules are as follows:
4836  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
4837  *     kind should match for local and target types (i.e., STRUCT is not
4838  *     compatible with UNION);
4839  *   - for ENUMs, the size is ignored;
4840  *   - for INT, size and signedness are ignored;
4841  *   - for ARRAY, dimensionality is ignored, element types are checked for
4842  *     compatibility recursively;
4843  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
4844  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
4845  *   - FUNC_PROTOs are compatible if they have compatible signature: same
4846  *     number of input args and compatible return and argument types.
4847  * These rules are not set in stone and probably will be adjusted as we get
4848  * more experience with using BPF CO-RE relocations.
4849  */
4850 static int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
4851 				     const struct btf *targ_btf, __u32 targ_id)
4852 {
4853 	const struct btf_type *local_type, *targ_type;
4854 	int depth = 32; /* max recursion depth */
4855 
4856 	/* caller made sure that names match (ignoring flavor suffix) */
4857 	local_type = btf__type_by_id(local_btf, local_id);
4858 	targ_type = btf__type_by_id(targ_btf, targ_id);
4859 	if (btf_kind(local_type) != btf_kind(targ_type))
4860 		return 0;
4861 
4862 recur:
4863 	depth--;
4864 	if (depth < 0)
4865 		return -EINVAL;
4866 
4867 	local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
4868 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
4869 	if (!local_type || !targ_type)
4870 		return -EINVAL;
4871 
4872 	if (btf_kind(local_type) != btf_kind(targ_type))
4873 		return 0;
4874 
4875 	switch (btf_kind(local_type)) {
4876 	case BTF_KIND_UNKN:
4877 	case BTF_KIND_STRUCT:
4878 	case BTF_KIND_UNION:
4879 	case BTF_KIND_ENUM:
4880 	case BTF_KIND_FWD:
4881 		return 1;
4882 	case BTF_KIND_INT:
4883 		/* just reject deprecated bitfield-like integers; all other
4884 		 * integers are by default compatible between each other
4885 		 */
4886 		return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0;
4887 	case BTF_KIND_PTR:
4888 		local_id = local_type->type;
4889 		targ_id = targ_type->type;
4890 		goto recur;
4891 	case BTF_KIND_ARRAY:
4892 		local_id = btf_array(local_type)->type;
4893 		targ_id = btf_array(targ_type)->type;
4894 		goto recur;
4895 	case BTF_KIND_FUNC_PROTO: {
4896 		struct btf_param *local_p = btf_params(local_type);
4897 		struct btf_param *targ_p = btf_params(targ_type);
4898 		__u16 local_vlen = btf_vlen(local_type);
4899 		__u16 targ_vlen = btf_vlen(targ_type);
4900 		int i, err;
4901 
4902 		if (local_vlen != targ_vlen)
4903 			return 0;
4904 
4905 		for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
4906 			skip_mods_and_typedefs(local_btf, local_p->type, &local_id);
4907 			skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id);
4908 			err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id);
4909 			if (err <= 0)
4910 				return err;
4911 		}
4912 
4913 		/* tail recurse for return type check */
4914 		skip_mods_and_typedefs(local_btf, local_type->type, &local_id);
4915 		skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id);
4916 		goto recur;
4917 	}
4918 	default:
4919 		pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n",
4920 			btf_kind_str(local_type), local_id, targ_id);
4921 		return 0;
4922 	}
4923 }
4924 
4925 /*
4926  * Try to match local spec to a target type and, if successful, produce full
4927  * target spec (high-level, low-level + bit offset).
4928  */
4929 static int bpf_core_spec_match(struct bpf_core_spec *local_spec,
4930 			       const struct btf *targ_btf, __u32 targ_id,
4931 			       struct bpf_core_spec *targ_spec)
4932 {
4933 	const struct btf_type *targ_type;
4934 	const struct bpf_core_accessor *local_acc;
4935 	struct bpf_core_accessor *targ_acc;
4936 	int i, sz, matched;
4937 
4938 	memset(targ_spec, 0, sizeof(*targ_spec));
4939 	targ_spec->btf = targ_btf;
4940 	targ_spec->root_type_id = targ_id;
4941 	targ_spec->relo_kind = local_spec->relo_kind;
4942 
4943 	if (core_relo_is_type_based(local_spec->relo_kind)) {
4944 		return bpf_core_types_are_compat(local_spec->btf,
4945 						 local_spec->root_type_id,
4946 						 targ_btf, targ_id);
4947 	}
4948 
4949 	local_acc = &local_spec->spec[0];
4950 	targ_acc = &targ_spec->spec[0];
4951 
4952 	if (core_relo_is_enumval_based(local_spec->relo_kind)) {
4953 		size_t local_essent_len, targ_essent_len;
4954 		const struct btf_enum *e;
4955 		const char *targ_name;
4956 
4957 		/* has to resolve to an enum */
4958 		targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id);
4959 		if (!btf_is_enum(targ_type))
4960 			return 0;
4961 
4962 		local_essent_len = bpf_core_essential_name_len(local_acc->name);
4963 
4964 		for (i = 0, e = btf_enum(targ_type); i < btf_vlen(targ_type); i++, e++) {
4965 			targ_name = btf__name_by_offset(targ_spec->btf, e->name_off);
4966 			targ_essent_len = bpf_core_essential_name_len(targ_name);
4967 			if (targ_essent_len != local_essent_len)
4968 				continue;
4969 			if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) {
4970 				targ_acc->type_id = targ_id;
4971 				targ_acc->idx = i;
4972 				targ_acc->name = targ_name;
4973 				targ_spec->len++;
4974 				targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
4975 				targ_spec->raw_len++;
4976 				return 1;
4977 			}
4978 		}
4979 		return 0;
4980 	}
4981 
4982 	if (!core_relo_is_field_based(local_spec->relo_kind))
4983 		return -EINVAL;
4984 
4985 	for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) {
4986 		targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id,
4987 						   &targ_id);
4988 		if (!targ_type)
4989 			return -EINVAL;
4990 
4991 		if (local_acc->name) {
4992 			matched = bpf_core_match_member(local_spec->btf,
4993 							local_acc,
4994 							targ_btf, targ_id,
4995 							targ_spec, &targ_id);
4996 			if (matched <= 0)
4997 				return matched;
4998 		} else {
4999 			/* for i=0, targ_id is already treated as array element
5000 			 * type (because it's the original struct), for others
5001 			 * we should find array element type first
5002 			 */
5003 			if (i > 0) {
5004 				const struct btf_array *a;
5005 				bool flex;
5006 
5007 				if (!btf_is_array(targ_type))
5008 					return 0;
5009 
5010 				a = btf_array(targ_type);
5011 				flex = is_flex_arr(targ_btf, targ_acc - 1, a);
5012 				if (!flex && local_acc->idx >= a->nelems)
5013 					return 0;
5014 				if (!skip_mods_and_typedefs(targ_btf, a->type,
5015 							    &targ_id))
5016 					return -EINVAL;
5017 			}
5018 
5019 			/* too deep struct/union/array nesting */
5020 			if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
5021 				return -E2BIG;
5022 
5023 			targ_acc->type_id = targ_id;
5024 			targ_acc->idx = local_acc->idx;
5025 			targ_acc->name = NULL;
5026 			targ_spec->len++;
5027 			targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
5028 			targ_spec->raw_len++;
5029 
5030 			sz = btf__resolve_size(targ_btf, targ_id);
5031 			if (sz < 0)
5032 				return sz;
5033 			targ_spec->bit_offset += local_acc->idx * sz * 8;
5034 		}
5035 	}
5036 
5037 	return 1;
5038 }
5039 
5040 static int bpf_core_calc_field_relo(const struct bpf_program *prog,
5041 				    const struct bpf_core_relo *relo,
5042 				    const struct bpf_core_spec *spec,
5043 				    __u32 *val, __u32 *field_sz, __u32 *type_id,
5044 				    bool *validate)
5045 {
5046 	const struct bpf_core_accessor *acc;
5047 	const struct btf_type *t;
5048 	__u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id;
5049 	const struct btf_member *m;
5050 	const struct btf_type *mt;
5051 	bool bitfield;
5052 	__s64 sz;
5053 
5054 	*field_sz = 0;
5055 
5056 	if (relo->kind == BPF_FIELD_EXISTS) {
5057 		*val = spec ? 1 : 0;
5058 		return 0;
5059 	}
5060 
5061 	if (!spec)
5062 		return -EUCLEAN; /* request instruction poisoning */
5063 
5064 	acc = &spec->spec[spec->len - 1];
5065 	t = btf__type_by_id(spec->btf, acc->type_id);
5066 
5067 	/* a[n] accessor needs special handling */
5068 	if (!acc->name) {
5069 		if (relo->kind == BPF_FIELD_BYTE_OFFSET) {
5070 			*val = spec->bit_offset / 8;
5071 			/* remember field size for load/store mem size */
5072 			sz = btf__resolve_size(spec->btf, acc->type_id);
5073 			if (sz < 0)
5074 				return -EINVAL;
5075 			*field_sz = sz;
5076 			*type_id = acc->type_id;
5077 		} else if (relo->kind == BPF_FIELD_BYTE_SIZE) {
5078 			sz = btf__resolve_size(spec->btf, acc->type_id);
5079 			if (sz < 0)
5080 				return -EINVAL;
5081 			*val = sz;
5082 		} else {
5083 			pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n",
5084 				prog->name, relo->kind, relo->insn_off / 8);
5085 			return -EINVAL;
5086 		}
5087 		if (validate)
5088 			*validate = true;
5089 		return 0;
5090 	}
5091 
5092 	m = btf_members(t) + acc->idx;
5093 	mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id);
5094 	bit_off = spec->bit_offset;
5095 	bit_sz = btf_member_bitfield_size(t, acc->idx);
5096 
5097 	bitfield = bit_sz > 0;
5098 	if (bitfield) {
5099 		byte_sz = mt->size;
5100 		byte_off = bit_off / 8 / byte_sz * byte_sz;
5101 		/* figure out smallest int size necessary for bitfield load */
5102 		while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) {
5103 			if (byte_sz >= 8) {
5104 				/* bitfield can't be read with 64-bit read */
5105 				pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n",
5106 					prog->name, relo->kind, relo->insn_off / 8);
5107 				return -E2BIG;
5108 			}
5109 			byte_sz *= 2;
5110 			byte_off = bit_off / 8 / byte_sz * byte_sz;
5111 		}
5112 	} else {
5113 		sz = btf__resolve_size(spec->btf, field_type_id);
5114 		if (sz < 0)
5115 			return -EINVAL;
5116 		byte_sz = sz;
5117 		byte_off = spec->bit_offset / 8;
5118 		bit_sz = byte_sz * 8;
5119 	}
5120 
5121 	/* for bitfields, all the relocatable aspects are ambiguous and we
5122 	 * might disagree with compiler, so turn off validation of expected
5123 	 * value, except for signedness
5124 	 */
5125 	if (validate)
5126 		*validate = !bitfield;
5127 
5128 	switch (relo->kind) {
5129 	case BPF_FIELD_BYTE_OFFSET:
5130 		*val = byte_off;
5131 		if (!bitfield) {
5132 			*field_sz = byte_sz;
5133 			*type_id = field_type_id;
5134 		}
5135 		break;
5136 	case BPF_FIELD_BYTE_SIZE:
5137 		*val = byte_sz;
5138 		break;
5139 	case BPF_FIELD_SIGNED:
5140 		/* enums will be assumed unsigned */
5141 		*val = btf_is_enum(mt) ||
5142 		       (btf_int_encoding(mt) & BTF_INT_SIGNED);
5143 		if (validate)
5144 			*validate = true; /* signedness is never ambiguous */
5145 		break;
5146 	case BPF_FIELD_LSHIFT_U64:
5147 #if __BYTE_ORDER == __LITTLE_ENDIAN
5148 		*val = 64 - (bit_off + bit_sz - byte_off  * 8);
5149 #else
5150 		*val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8);
5151 #endif
5152 		break;
5153 	case BPF_FIELD_RSHIFT_U64:
5154 		*val = 64 - bit_sz;
5155 		if (validate)
5156 			*validate = true; /* right shift is never ambiguous */
5157 		break;
5158 	case BPF_FIELD_EXISTS:
5159 	default:
5160 		return -EOPNOTSUPP;
5161 	}
5162 
5163 	return 0;
5164 }
5165 
5166 static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo,
5167 				   const struct bpf_core_spec *spec,
5168 				   __u32 *val)
5169 {
5170 	__s64 sz;
5171 
5172 	/* type-based relos return zero when target type is not found */
5173 	if (!spec) {
5174 		*val = 0;
5175 		return 0;
5176 	}
5177 
5178 	switch (relo->kind) {
5179 	case BPF_TYPE_ID_TARGET:
5180 		*val = spec->root_type_id;
5181 		break;
5182 	case BPF_TYPE_EXISTS:
5183 		*val = 1;
5184 		break;
5185 	case BPF_TYPE_SIZE:
5186 		sz = btf__resolve_size(spec->btf, spec->root_type_id);
5187 		if (sz < 0)
5188 			return -EINVAL;
5189 		*val = sz;
5190 		break;
5191 	case BPF_TYPE_ID_LOCAL:
5192 	/* BPF_TYPE_ID_LOCAL is handled specially and shouldn't get here */
5193 	default:
5194 		return -EOPNOTSUPP;
5195 	}
5196 
5197 	return 0;
5198 }
5199 
5200 static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo,
5201 				      const struct bpf_core_spec *spec,
5202 				      __u32 *val)
5203 {
5204 	const struct btf_type *t;
5205 	const struct btf_enum *e;
5206 
5207 	switch (relo->kind) {
5208 	case BPF_ENUMVAL_EXISTS:
5209 		*val = spec ? 1 : 0;
5210 		break;
5211 	case BPF_ENUMVAL_VALUE:
5212 		if (!spec)
5213 			return -EUCLEAN; /* request instruction poisoning */
5214 		t = btf__type_by_id(spec->btf, spec->spec[0].type_id);
5215 		e = btf_enum(t) + spec->spec[0].idx;
5216 		*val = e->val;
5217 		break;
5218 	default:
5219 		return -EOPNOTSUPP;
5220 	}
5221 
5222 	return 0;
5223 }
5224 
5225 struct bpf_core_relo_res
5226 {
5227 	/* expected value in the instruction, unless validate == false */
5228 	__u32 orig_val;
5229 	/* new value that needs to be patched up to */
5230 	__u32 new_val;
5231 	/* relocation unsuccessful, poison instruction, but don't fail load */
5232 	bool poison;
5233 	/* some relocations can't be validated against orig_val */
5234 	bool validate;
5235 	/* for field byte offset relocations or the forms:
5236 	 *     *(T *)(rX + <off>) = rY
5237 	 *     rX = *(T *)(rY + <off>),
5238 	 * we remember original and resolved field size to adjust direct
5239 	 * memory loads of pointers and integers; this is necessary for 32-bit
5240 	 * host kernel architectures, but also allows to automatically
5241 	 * relocate fields that were resized from, e.g., u32 to u64, etc.
5242 	 */
5243 	bool fail_memsz_adjust;
5244 	__u32 orig_sz;
5245 	__u32 orig_type_id;
5246 	__u32 new_sz;
5247 	__u32 new_type_id;
5248 };
5249 
5250 /* Calculate original and target relocation values, given local and target
5251  * specs and relocation kind. These values are calculated for each candidate.
5252  * If there are multiple candidates, resulting values should all be consistent
5253  * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity.
5254  * If instruction has to be poisoned, *poison will be set to true.
5255  */
5256 static int bpf_core_calc_relo(const struct bpf_program *prog,
5257 			      const struct bpf_core_relo *relo,
5258 			      int relo_idx,
5259 			      const struct bpf_core_spec *local_spec,
5260 			      const struct bpf_core_spec *targ_spec,
5261 			      struct bpf_core_relo_res *res)
5262 {
5263 	int err = -EOPNOTSUPP;
5264 
5265 	res->orig_val = 0;
5266 	res->new_val = 0;
5267 	res->poison = false;
5268 	res->validate = true;
5269 	res->fail_memsz_adjust = false;
5270 	res->orig_sz = res->new_sz = 0;
5271 	res->orig_type_id = res->new_type_id = 0;
5272 
5273 	if (core_relo_is_field_based(relo->kind)) {
5274 		err = bpf_core_calc_field_relo(prog, relo, local_spec,
5275 					       &res->orig_val, &res->orig_sz,
5276 					       &res->orig_type_id, &res->validate);
5277 		err = err ?: bpf_core_calc_field_relo(prog, relo, targ_spec,
5278 						      &res->new_val, &res->new_sz,
5279 						      &res->new_type_id, NULL);
5280 		if (err)
5281 			goto done;
5282 		/* Validate if it's safe to adjust load/store memory size.
5283 		 * Adjustments are performed only if original and new memory
5284 		 * sizes differ.
5285 		 */
5286 		res->fail_memsz_adjust = false;
5287 		if (res->orig_sz != res->new_sz) {
5288 			const struct btf_type *orig_t, *new_t;
5289 
5290 			orig_t = btf__type_by_id(local_spec->btf, res->orig_type_id);
5291 			new_t = btf__type_by_id(targ_spec->btf, res->new_type_id);
5292 
5293 			/* There are two use cases in which it's safe to
5294 			 * adjust load/store's mem size:
5295 			 *   - reading a 32-bit kernel pointer, while on BPF
5296 			 *   size pointers are always 64-bit; in this case
5297 			 *   it's safe to "downsize" instruction size due to
5298 			 *   pointer being treated as unsigned integer with
5299 			 *   zero-extended upper 32-bits;
5300 			 *   - reading unsigned integers, again due to
5301 			 *   zero-extension is preserving the value correctly.
5302 			 *
5303 			 * In all other cases it's incorrect to attempt to
5304 			 * load/store field because read value will be
5305 			 * incorrect, so we poison relocated instruction.
5306 			 */
5307 			if (btf_is_ptr(orig_t) && btf_is_ptr(new_t))
5308 				goto done;
5309 			if (btf_is_int(orig_t) && btf_is_int(new_t) &&
5310 			    btf_int_encoding(orig_t) != BTF_INT_SIGNED &&
5311 			    btf_int_encoding(new_t) != BTF_INT_SIGNED)
5312 				goto done;
5313 
5314 			/* mark as invalid mem size adjustment, but this will
5315 			 * only be checked for LDX/STX/ST insns
5316 			 */
5317 			res->fail_memsz_adjust = true;
5318 		}
5319 	} else if (core_relo_is_type_based(relo->kind)) {
5320 		err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val);
5321 		err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val);
5322 	} else if (core_relo_is_enumval_based(relo->kind)) {
5323 		err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val);
5324 		err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val);
5325 	}
5326 
5327 done:
5328 	if (err == -EUCLEAN) {
5329 		/* EUCLEAN is used to signal instruction poisoning request */
5330 		res->poison = true;
5331 		err = 0;
5332 	} else if (err == -EOPNOTSUPP) {
5333 		/* EOPNOTSUPP means unknown/unsupported relocation */
5334 		pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n",
5335 			prog->name, relo_idx, core_relo_kind_str(relo->kind),
5336 			relo->kind, relo->insn_off / 8);
5337 	}
5338 
5339 	return err;
5340 }
5341 
5342 /*
5343  * Turn instruction for which CO_RE relocation failed into invalid one with
5344  * distinct signature.
5345  */
5346 static void bpf_core_poison_insn(struct bpf_program *prog, int relo_idx,
5347 				 int insn_idx, struct bpf_insn *insn)
5348 {
5349 	pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n",
5350 		 prog->name, relo_idx, insn_idx);
5351 	insn->code = BPF_JMP | BPF_CALL;
5352 	insn->dst_reg = 0;
5353 	insn->src_reg = 0;
5354 	insn->off = 0;
5355 	/* if this instruction is reachable (not a dead code),
5356 	 * verifier will complain with the following message:
5357 	 * invalid func unknown#195896080
5358 	 */
5359 	insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */
5360 }
5361 
5362 static bool is_ldimm64(struct bpf_insn *insn)
5363 {
5364 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
5365 }
5366 
5367 static int insn_bpf_size_to_bytes(struct bpf_insn *insn)
5368 {
5369 	switch (BPF_SIZE(insn->code)) {
5370 	case BPF_DW: return 8;
5371 	case BPF_W: return 4;
5372 	case BPF_H: return 2;
5373 	case BPF_B: return 1;
5374 	default: return -1;
5375 	}
5376 }
5377 
5378 static int insn_bytes_to_bpf_size(__u32 sz)
5379 {
5380 	switch (sz) {
5381 	case 8: return BPF_DW;
5382 	case 4: return BPF_W;
5383 	case 2: return BPF_H;
5384 	case 1: return BPF_B;
5385 	default: return -1;
5386 	}
5387 }
5388 
5389 /*
5390  * Patch relocatable BPF instruction.
5391  *
5392  * Patched value is determined by relocation kind and target specification.
5393  * For existence relocations target spec will be NULL if field/type is not found.
5394  * Expected insn->imm value is determined using relocation kind and local
5395  * spec, and is checked before patching instruction. If actual insn->imm value
5396  * is wrong, bail out with error.
5397  *
5398  * Currently supported classes of BPF instruction are:
5399  * 1. rX = <imm> (assignment with immediate operand);
5400  * 2. rX += <imm> (arithmetic operations with immediate operand);
5401  * 3. rX = <imm64> (load with 64-bit immediate value);
5402  * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64};
5403  * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64};
5404  * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}.
5405  */
5406 static int bpf_core_patch_insn(struct bpf_program *prog,
5407 			       const struct bpf_core_relo *relo,
5408 			       int relo_idx,
5409 			       const struct bpf_core_relo_res *res)
5410 {
5411 	__u32 orig_val, new_val;
5412 	struct bpf_insn *insn;
5413 	int insn_idx;
5414 	__u8 class;
5415 
5416 	if (relo->insn_off % BPF_INSN_SZ)
5417 		return -EINVAL;
5418 	insn_idx = relo->insn_off / BPF_INSN_SZ;
5419 	/* adjust insn_idx from section frame of reference to the local
5420 	 * program's frame of reference; (sub-)program code is not yet
5421 	 * relocated, so it's enough to just subtract in-section offset
5422 	 */
5423 	insn_idx = insn_idx - prog->sec_insn_off;
5424 	insn = &prog->insns[insn_idx];
5425 	class = BPF_CLASS(insn->code);
5426 
5427 	if (res->poison) {
5428 poison:
5429 		/* poison second part of ldimm64 to avoid confusing error from
5430 		 * verifier about "unknown opcode 00"
5431 		 */
5432 		if (is_ldimm64(insn))
5433 			bpf_core_poison_insn(prog, relo_idx, insn_idx + 1, insn + 1);
5434 		bpf_core_poison_insn(prog, relo_idx, insn_idx, insn);
5435 		return 0;
5436 	}
5437 
5438 	orig_val = res->orig_val;
5439 	new_val = res->new_val;
5440 
5441 	switch (class) {
5442 	case BPF_ALU:
5443 	case BPF_ALU64:
5444 		if (BPF_SRC(insn->code) != BPF_K)
5445 			return -EINVAL;
5446 		if (res->validate && insn->imm != orig_val) {
5447 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n",
5448 				prog->name, relo_idx,
5449 				insn_idx, insn->imm, orig_val, new_val);
5450 			return -EINVAL;
5451 		}
5452 		orig_val = insn->imm;
5453 		insn->imm = new_val;
5454 		pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n",
5455 			 prog->name, relo_idx, insn_idx,
5456 			 orig_val, new_val);
5457 		break;
5458 	case BPF_LDX:
5459 	case BPF_ST:
5460 	case BPF_STX:
5461 		if (res->validate && insn->off != orig_val) {
5462 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %u -> %u\n",
5463 				prog->name, relo_idx, insn_idx, insn->off, orig_val, new_val);
5464 			return -EINVAL;
5465 		}
5466 		if (new_val > SHRT_MAX) {
5467 			pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n",
5468 				prog->name, relo_idx, insn_idx, new_val);
5469 			return -ERANGE;
5470 		}
5471 		if (res->fail_memsz_adjust) {
5472 			pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. "
5473 				"Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n",
5474 				prog->name, relo_idx, insn_idx);
5475 			goto poison;
5476 		}
5477 
5478 		orig_val = insn->off;
5479 		insn->off = new_val;
5480 		pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n",
5481 			 prog->name, relo_idx, insn_idx, orig_val, new_val);
5482 
5483 		if (res->new_sz != res->orig_sz) {
5484 			int insn_bytes_sz, insn_bpf_sz;
5485 
5486 			insn_bytes_sz = insn_bpf_size_to_bytes(insn);
5487 			if (insn_bytes_sz != res->orig_sz) {
5488 				pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n",
5489 					prog->name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz);
5490 				return -EINVAL;
5491 			}
5492 
5493 			insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz);
5494 			if (insn_bpf_sz < 0) {
5495 				pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n",
5496 					prog->name, relo_idx, insn_idx, res->new_sz);
5497 				return -EINVAL;
5498 			}
5499 
5500 			insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code);
5501 			pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n",
5502 				 prog->name, relo_idx, insn_idx, res->orig_sz, res->new_sz);
5503 		}
5504 		break;
5505 	case BPF_LD: {
5506 		__u64 imm;
5507 
5508 		if (!is_ldimm64(insn) ||
5509 		    insn[0].src_reg != 0 || insn[0].off != 0 ||
5510 		    insn_idx + 1 >= prog->insns_cnt ||
5511 		    insn[1].code != 0 || insn[1].dst_reg != 0 ||
5512 		    insn[1].src_reg != 0 || insn[1].off != 0) {
5513 			pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n",
5514 				prog->name, relo_idx, insn_idx);
5515 			return -EINVAL;
5516 		}
5517 
5518 		imm = insn[0].imm + ((__u64)insn[1].imm << 32);
5519 		if (res->validate && imm != orig_val) {
5520 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %u -> %u\n",
5521 				prog->name, relo_idx,
5522 				insn_idx, (unsigned long long)imm,
5523 				orig_val, new_val);
5524 			return -EINVAL;
5525 		}
5526 
5527 		insn[0].imm = new_val;
5528 		insn[1].imm = 0; /* currently only 32-bit values are supported */
5529 		pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %u\n",
5530 			 prog->name, relo_idx, insn_idx,
5531 			 (unsigned long long)imm, new_val);
5532 		break;
5533 	}
5534 	default:
5535 		pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n",
5536 			prog->name, relo_idx, insn_idx, insn->code,
5537 			insn->src_reg, insn->dst_reg, insn->off, insn->imm);
5538 		return -EINVAL;
5539 	}
5540 
5541 	return 0;
5542 }
5543 
5544 /* Output spec definition in the format:
5545  * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>,
5546  * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b
5547  */
5548 static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec)
5549 {
5550 	const struct btf_type *t;
5551 	const struct btf_enum *e;
5552 	const char *s;
5553 	__u32 type_id;
5554 	int i;
5555 
5556 	type_id = spec->root_type_id;
5557 	t = btf__type_by_id(spec->btf, type_id);
5558 	s = btf__name_by_offset(spec->btf, t->name_off);
5559 
5560 	libbpf_print(level, "[%u] %s %s", type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s);
5561 
5562 	if (core_relo_is_type_based(spec->relo_kind))
5563 		return;
5564 
5565 	if (core_relo_is_enumval_based(spec->relo_kind)) {
5566 		t = skip_mods_and_typedefs(spec->btf, type_id, NULL);
5567 		e = btf_enum(t) + spec->raw_spec[0];
5568 		s = btf__name_by_offset(spec->btf, e->name_off);
5569 
5570 		libbpf_print(level, "::%s = %u", s, e->val);
5571 		return;
5572 	}
5573 
5574 	if (core_relo_is_field_based(spec->relo_kind)) {
5575 		for (i = 0; i < spec->len; i++) {
5576 			if (spec->spec[i].name)
5577 				libbpf_print(level, ".%s", spec->spec[i].name);
5578 			else if (i > 0 || spec->spec[i].idx > 0)
5579 				libbpf_print(level, "[%u]", spec->spec[i].idx);
5580 		}
5581 
5582 		libbpf_print(level, " (");
5583 		for (i = 0; i < spec->raw_len; i++)
5584 			libbpf_print(level, "%s%d", i == 0 ? "" : ":", spec->raw_spec[i]);
5585 
5586 		if (spec->bit_offset % 8)
5587 			libbpf_print(level, " @ offset %u.%u)",
5588 				     spec->bit_offset / 8, spec->bit_offset % 8);
5589 		else
5590 			libbpf_print(level, " @ offset %u)", spec->bit_offset / 8);
5591 		return;
5592 	}
5593 }
5594 
5595 static size_t bpf_core_hash_fn(const void *key, void *ctx)
5596 {
5597 	return (size_t)key;
5598 }
5599 
5600 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx)
5601 {
5602 	return k1 == k2;
5603 }
5604 
5605 static void *u32_as_hash_key(__u32 x)
5606 {
5607 	return (void *)(uintptr_t)x;
5608 }
5609 
5610 /*
5611  * CO-RE relocate single instruction.
5612  *
5613  * The outline and important points of the algorithm:
5614  * 1. For given local type, find corresponding candidate target types.
5615  *    Candidate type is a type with the same "essential" name, ignoring
5616  *    everything after last triple underscore (___). E.g., `sample`,
5617  *    `sample___flavor_one`, `sample___flavor_another_one`, are all candidates
5618  *    for each other. Names with triple underscore are referred to as
5619  *    "flavors" and are useful, among other things, to allow to
5620  *    specify/support incompatible variations of the same kernel struct, which
5621  *    might differ between different kernel versions and/or build
5622  *    configurations.
5623  *
5624  *    N.B. Struct "flavors" could be generated by bpftool's BTF-to-C
5625  *    converter, when deduplicated BTF of a kernel still contains more than
5626  *    one different types with the same name. In that case, ___2, ___3, etc
5627  *    are appended starting from second name conflict. But start flavors are
5628  *    also useful to be defined "locally", in BPF program, to extract same
5629  *    data from incompatible changes between different kernel
5630  *    versions/configurations. For instance, to handle field renames between
5631  *    kernel versions, one can use two flavors of the struct name with the
5632  *    same common name and use conditional relocations to extract that field,
5633  *    depending on target kernel version.
5634  * 2. For each candidate type, try to match local specification to this
5635  *    candidate target type. Matching involves finding corresponding
5636  *    high-level spec accessors, meaning that all named fields should match,
5637  *    as well as all array accesses should be within the actual bounds. Also,
5638  *    types should be compatible (see bpf_core_fields_are_compat for details).
5639  * 3. It is supported and expected that there might be multiple flavors
5640  *    matching the spec. As long as all the specs resolve to the same set of
5641  *    offsets across all candidates, there is no error. If there is any
5642  *    ambiguity, CO-RE relocation will fail. This is necessary to accomodate
5643  *    imprefection of BTF deduplication, which can cause slight duplication of
5644  *    the same BTF type, if some directly or indirectly referenced (by
5645  *    pointer) type gets resolved to different actual types in different
5646  *    object files. If such situation occurs, deduplicated BTF will end up
5647  *    with two (or more) structurally identical types, which differ only in
5648  *    types they refer to through pointer. This should be OK in most cases and
5649  *    is not an error.
5650  * 4. Candidate types search is performed by linearly scanning through all
5651  *    types in target BTF. It is anticipated that this is overall more
5652  *    efficient memory-wise and not significantly worse (if not better)
5653  *    CPU-wise compared to prebuilding a map from all local type names to
5654  *    a list of candidate type names. It's also sped up by caching resolved
5655  *    list of matching candidates per each local "root" type ID, that has at
5656  *    least one bpf_core_relo associated with it. This list is shared
5657  *    between multiple relocations for the same type ID and is updated as some
5658  *    of the candidates are pruned due to structural incompatibility.
5659  */
5660 static int bpf_core_apply_relo(struct bpf_program *prog,
5661 			       const struct bpf_core_relo *relo,
5662 			       int relo_idx,
5663 			       const struct btf *local_btf,
5664 			       const struct btf *targ_btf,
5665 			       struct hashmap *cand_cache)
5666 {
5667 	struct bpf_core_spec local_spec, cand_spec, targ_spec = {};
5668 	const void *type_key = u32_as_hash_key(relo->type_id);
5669 	struct bpf_core_relo_res cand_res, targ_res;
5670 	const struct btf_type *local_type;
5671 	const char *local_name;
5672 	struct ids_vec *cand_ids;
5673 	__u32 local_id, cand_id;
5674 	const char *spec_str;
5675 	int i, j, err;
5676 
5677 	local_id = relo->type_id;
5678 	local_type = btf__type_by_id(local_btf, local_id);
5679 	if (!local_type)
5680 		return -EINVAL;
5681 
5682 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
5683 	if (!local_name)
5684 		return -EINVAL;
5685 
5686 	spec_str = btf__name_by_offset(local_btf, relo->access_str_off);
5687 	if (str_is_empty(spec_str))
5688 		return -EINVAL;
5689 
5690 	err = bpf_core_parse_spec(local_btf, local_id, spec_str, relo->kind, &local_spec);
5691 	if (err) {
5692 		pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n",
5693 			prog->name, relo_idx, local_id, btf_kind_str(local_type),
5694 			str_is_empty(local_name) ? "<anon>" : local_name,
5695 			spec_str, err);
5696 		return -EINVAL;
5697 	}
5698 
5699 	pr_debug("prog '%s': relo #%d: kind <%s> (%d), spec is ", prog->name,
5700 		 relo_idx, core_relo_kind_str(relo->kind), relo->kind);
5701 	bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec);
5702 	libbpf_print(LIBBPF_DEBUG, "\n");
5703 
5704 	/* TYPE_ID_LOCAL relo is special and doesn't need candidate search */
5705 	if (relo->kind == BPF_TYPE_ID_LOCAL) {
5706 		targ_res.validate = true;
5707 		targ_res.poison = false;
5708 		targ_res.orig_val = local_spec.root_type_id;
5709 		targ_res.new_val = local_spec.root_type_id;
5710 		goto patch_insn;
5711 	}
5712 
5713 	/* libbpf doesn't support candidate search for anonymous types */
5714 	if (str_is_empty(spec_str)) {
5715 		pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n",
5716 			prog->name, relo_idx, core_relo_kind_str(relo->kind), relo->kind);
5717 		return -EOPNOTSUPP;
5718 	}
5719 
5720 	if (!hashmap__find(cand_cache, type_key, (void **)&cand_ids)) {
5721 		cand_ids = bpf_core_find_cands(local_btf, local_id, targ_btf);
5722 		if (IS_ERR(cand_ids)) {
5723 			pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld",
5724 				prog->name, relo_idx, local_id, btf_kind_str(local_type),
5725 				local_name, PTR_ERR(cand_ids));
5726 			return PTR_ERR(cand_ids);
5727 		}
5728 		err = hashmap__set(cand_cache, type_key, cand_ids, NULL, NULL);
5729 		if (err) {
5730 			bpf_core_free_cands(cand_ids);
5731 			return err;
5732 		}
5733 	}
5734 
5735 	for (i = 0, j = 0; i < cand_ids->len; i++) {
5736 		cand_id = cand_ids->data[i];
5737 		err = bpf_core_spec_match(&local_spec, targ_btf, cand_id, &cand_spec);
5738 		if (err < 0) {
5739 			pr_warn("prog '%s': relo #%d: error matching candidate #%d ",
5740 				prog->name, relo_idx, i);
5741 			bpf_core_dump_spec(LIBBPF_WARN, &cand_spec);
5742 			libbpf_print(LIBBPF_WARN, ": %d\n", err);
5743 			return err;
5744 		}
5745 
5746 		pr_debug("prog '%s': relo #%d: %s candidate #%d ", prog->name,
5747 			 relo_idx, err == 0 ? "non-matching" : "matching", i);
5748 		bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec);
5749 		libbpf_print(LIBBPF_DEBUG, "\n");
5750 
5751 		if (err == 0)
5752 			continue;
5753 
5754 		err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, &cand_spec, &cand_res);
5755 		if (err)
5756 			return err;
5757 
5758 		if (j == 0) {
5759 			targ_res = cand_res;
5760 			targ_spec = cand_spec;
5761 		} else if (cand_spec.bit_offset != targ_spec.bit_offset) {
5762 			/* if there are many field relo candidates, they
5763 			 * should all resolve to the same bit offset
5764 			 */
5765 			pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n",
5766 				prog->name, relo_idx, cand_spec.bit_offset,
5767 				targ_spec.bit_offset);
5768 			return -EINVAL;
5769 		} else if (cand_res.poison != targ_res.poison || cand_res.new_val != targ_res.new_val) {
5770 			/* all candidates should result in the same relocation
5771 			 * decision and value, otherwise it's dangerous to
5772 			 * proceed due to ambiguity
5773 			 */
5774 			pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %u != %s %u\n",
5775 				prog->name, relo_idx,
5776 				cand_res.poison ? "failure" : "success", cand_res.new_val,
5777 				targ_res.poison ? "failure" : "success", targ_res.new_val);
5778 			return -EINVAL;
5779 		}
5780 
5781 		cand_ids->data[j++] = cand_spec.root_type_id;
5782 	}
5783 
5784 	/*
5785 	 * For BPF_FIELD_EXISTS relo or when used BPF program has field
5786 	 * existence checks or kernel version/config checks, it's expected
5787 	 * that we might not find any candidates. In this case, if field
5788 	 * wasn't found in any candidate, the list of candidates shouldn't
5789 	 * change at all, we'll just handle relocating appropriately,
5790 	 * depending on relo's kind.
5791 	 */
5792 	if (j > 0)
5793 		cand_ids->len = j;
5794 
5795 	/*
5796 	 * If no candidates were found, it might be both a programmer error,
5797 	 * as well as expected case, depending whether instruction w/
5798 	 * relocation is guarded in some way that makes it unreachable (dead
5799 	 * code) if relocation can't be resolved. This is handled in
5800 	 * bpf_core_patch_insn() uniformly by replacing that instruction with
5801 	 * BPF helper call insn (using invalid helper ID). If that instruction
5802 	 * is indeed unreachable, then it will be ignored and eliminated by
5803 	 * verifier. If it was an error, then verifier will complain and point
5804 	 * to a specific instruction number in its log.
5805 	 */
5806 	if (j == 0) {
5807 		pr_debug("prog '%s': relo #%d: no matching targets found\n",
5808 			 prog->name, relo_idx);
5809 
5810 		/* calculate single target relo result explicitly */
5811 		err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, NULL, &targ_res);
5812 		if (err)
5813 			return err;
5814 	}
5815 
5816 patch_insn:
5817 	/* bpf_core_patch_insn() should know how to handle missing targ_spec */
5818 	err = bpf_core_patch_insn(prog, relo, relo_idx, &targ_res);
5819 	if (err) {
5820 		pr_warn("prog '%s': relo #%d: failed to patch insn at offset %d: %d\n",
5821 			prog->name, relo_idx, relo->insn_off, err);
5822 		return -EINVAL;
5823 	}
5824 
5825 	return 0;
5826 }
5827 
5828 static int
5829 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5830 {
5831 	const struct btf_ext_info_sec *sec;
5832 	const struct bpf_core_relo *rec;
5833 	const struct btf_ext_info *seg;
5834 	struct hashmap_entry *entry;
5835 	struct hashmap *cand_cache = NULL;
5836 	struct bpf_program *prog;
5837 	struct btf *targ_btf;
5838 	const char *sec_name;
5839 	int i, err = 0, insn_idx, sec_idx;
5840 
5841 	if (obj->btf_ext->core_relo_info.len == 0)
5842 		return 0;
5843 
5844 	if (targ_btf_path)
5845 		targ_btf = btf__parse(targ_btf_path, NULL);
5846 	else
5847 		targ_btf = obj->btf_vmlinux;
5848 	if (IS_ERR_OR_NULL(targ_btf)) {
5849 		pr_warn("failed to get target BTF: %ld\n", PTR_ERR(targ_btf));
5850 		return PTR_ERR(targ_btf);
5851 	}
5852 
5853 	cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5854 	if (IS_ERR(cand_cache)) {
5855 		err = PTR_ERR(cand_cache);
5856 		goto out;
5857 	}
5858 
5859 	seg = &obj->btf_ext->core_relo_info;
5860 	for_each_btf_ext_sec(seg, sec) {
5861 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5862 		if (str_is_empty(sec_name)) {
5863 			err = -EINVAL;
5864 			goto out;
5865 		}
5866 		/* bpf_object's ELF is gone by now so it's not easy to find
5867 		 * section index by section name, but we can find *any*
5868 		 * bpf_program within desired section name and use it's
5869 		 * prog->sec_idx to do a proper search by section index and
5870 		 * instruction offset
5871 		 */
5872 		prog = NULL;
5873 		for (i = 0; i < obj->nr_programs; i++) {
5874 			prog = &obj->programs[i];
5875 			if (strcmp(prog->sec_name, sec_name) == 0)
5876 				break;
5877 		}
5878 		if (!prog) {
5879 			pr_warn("sec '%s': failed to find a BPF program\n", sec_name);
5880 			return -ENOENT;
5881 		}
5882 		sec_idx = prog->sec_idx;
5883 
5884 		pr_debug("sec '%s': found %d CO-RE relocations\n",
5885 			 sec_name, sec->num_info);
5886 
5887 		for_each_btf_ext_rec(seg, sec, i, rec) {
5888 			insn_idx = rec->insn_off / BPF_INSN_SZ;
5889 			prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5890 			if (!prog) {
5891 				pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n",
5892 					sec_name, insn_idx, i);
5893 				err = -EINVAL;
5894 				goto out;
5895 			}
5896 			/* no need to apply CO-RE relocation if the program is
5897 			 * not going to be loaded
5898 			 */
5899 			if (!prog->load)
5900 				continue;
5901 
5902 			err = bpf_core_apply_relo(prog, rec, i, obj->btf,
5903 						  targ_btf, cand_cache);
5904 			if (err) {
5905 				pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5906 					prog->name, i, err);
5907 				goto out;
5908 			}
5909 		}
5910 	}
5911 
5912 out:
5913 	/* obj->btf_vmlinux is freed at the end of object load phase */
5914 	if (targ_btf != obj->btf_vmlinux)
5915 		btf__free(targ_btf);
5916 	if (!IS_ERR_OR_NULL(cand_cache)) {
5917 		hashmap__for_each_entry(cand_cache, entry, i) {
5918 			bpf_core_free_cands(entry->value);
5919 		}
5920 		hashmap__free(cand_cache);
5921 	}
5922 	return err;
5923 }
5924 
5925 /* Relocate data references within program code:
5926  *  - map references;
5927  *  - global variable references;
5928  *  - extern references.
5929  */
5930 static int
5931 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
5932 {
5933 	int i;
5934 
5935 	for (i = 0; i < prog->nr_reloc; i++) {
5936 		struct reloc_desc *relo = &prog->reloc_desc[i];
5937 		struct bpf_insn *insn = &prog->insns[relo->insn_idx];
5938 		struct extern_desc *ext;
5939 
5940 		switch (relo->type) {
5941 		case RELO_LD64:
5942 			insn[0].src_reg = BPF_PSEUDO_MAP_FD;
5943 			insn[0].imm = obj->maps[relo->map_idx].fd;
5944 			relo->processed = true;
5945 			break;
5946 		case RELO_DATA:
5947 			insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5948 			insn[1].imm = insn[0].imm + relo->sym_off;
5949 			insn[0].imm = obj->maps[relo->map_idx].fd;
5950 			relo->processed = true;
5951 			break;
5952 		case RELO_EXTERN:
5953 			ext = &obj->externs[relo->sym_off];
5954 			if (ext->type == EXT_KCFG) {
5955 				insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5956 				insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
5957 				insn[1].imm = ext->kcfg.data_off;
5958 			} else /* EXT_KSYM */ {
5959 				if (ext->ksym.type_id) { /* typed ksyms */
5960 					insn[0].src_reg = BPF_PSEUDO_BTF_ID;
5961 					insn[0].imm = ext->ksym.vmlinux_btf_id;
5962 				} else { /* typeless ksyms */
5963 					insn[0].imm = (__u32)ext->ksym.addr;
5964 					insn[1].imm = ext->ksym.addr >> 32;
5965 				}
5966 			}
5967 			relo->processed = true;
5968 			break;
5969 		case RELO_CALL:
5970 			/* will be handled as a follow up pass */
5971 			break;
5972 		default:
5973 			pr_warn("prog '%s': relo #%d: bad relo type %d\n",
5974 				prog->name, i, relo->type);
5975 			return -EINVAL;
5976 		}
5977 	}
5978 
5979 	return 0;
5980 }
5981 
5982 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
5983 				    const struct bpf_program *prog,
5984 				    const struct btf_ext_info *ext_info,
5985 				    void **prog_info, __u32 *prog_rec_cnt,
5986 				    __u32 *prog_rec_sz)
5987 {
5988 	void *copy_start = NULL, *copy_end = NULL;
5989 	void *rec, *rec_end, *new_prog_info;
5990 	const struct btf_ext_info_sec *sec;
5991 	size_t old_sz, new_sz;
5992 	const char *sec_name;
5993 	int i, off_adj;
5994 
5995 	for_each_btf_ext_sec(ext_info, sec) {
5996 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5997 		if (!sec_name)
5998 			return -EINVAL;
5999 		if (strcmp(sec_name, prog->sec_name) != 0)
6000 			continue;
6001 
6002 		for_each_btf_ext_rec(ext_info, sec, i, rec) {
6003 			__u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6004 
6005 			if (insn_off < prog->sec_insn_off)
6006 				continue;
6007 			if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6008 				break;
6009 
6010 			if (!copy_start)
6011 				copy_start = rec;
6012 			copy_end = rec + ext_info->rec_size;
6013 		}
6014 
6015 		if (!copy_start)
6016 			return -ENOENT;
6017 
6018 		/* append func/line info of a given (sub-)program to the main
6019 		 * program func/line info
6020 		 */
6021 		old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6022 		new_sz = old_sz + (copy_end - copy_start);
6023 		new_prog_info = realloc(*prog_info, new_sz);
6024 		if (!new_prog_info)
6025 			return -ENOMEM;
6026 		*prog_info = new_prog_info;
6027 		*prog_rec_cnt = new_sz / ext_info->rec_size;
6028 		memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6029 
6030 		/* Kernel instruction offsets are in units of 8-byte
6031 		 * instructions, while .BTF.ext instruction offsets generated
6032 		 * by Clang are in units of bytes. So convert Clang offsets
6033 		 * into kernel offsets and adjust offset according to program
6034 		 * relocated position.
6035 		 */
6036 		off_adj = prog->sub_insn_off - prog->sec_insn_off;
6037 		rec = new_prog_info + old_sz;
6038 		rec_end = new_prog_info + new_sz;
6039 		for (; rec < rec_end; rec += ext_info->rec_size) {
6040 			__u32 *insn_off = rec;
6041 
6042 			*insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6043 		}
6044 		*prog_rec_sz = ext_info->rec_size;
6045 		return 0;
6046 	}
6047 
6048 	return -ENOENT;
6049 }
6050 
6051 static int
6052 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6053 			      struct bpf_program *main_prog,
6054 			      const struct bpf_program *prog)
6055 {
6056 	int err;
6057 
6058 	/* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6059 	 * supprot func/line info
6060 	 */
6061 	if (!obj->btf_ext || !kernel_supports(FEAT_BTF_FUNC))
6062 		return 0;
6063 
6064 	/* only attempt func info relocation if main program's func_info
6065 	 * relocation was successful
6066 	 */
6067 	if (main_prog != prog && !main_prog->func_info)
6068 		goto line_info;
6069 
6070 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6071 				       &main_prog->func_info,
6072 				       &main_prog->func_info_cnt,
6073 				       &main_prog->func_info_rec_size);
6074 	if (err) {
6075 		if (err != -ENOENT) {
6076 			pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6077 				prog->name, err);
6078 			return err;
6079 		}
6080 		if (main_prog->func_info) {
6081 			/*
6082 			 * Some info has already been found but has problem
6083 			 * in the last btf_ext reloc. Must have to error out.
6084 			 */
6085 			pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6086 			return err;
6087 		}
6088 		/* Have problem loading the very first info. Ignore the rest. */
6089 		pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6090 			prog->name);
6091 	}
6092 
6093 line_info:
6094 	/* don't relocate line info if main program's relocation failed */
6095 	if (main_prog != prog && !main_prog->line_info)
6096 		return 0;
6097 
6098 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6099 				       &main_prog->line_info,
6100 				       &main_prog->line_info_cnt,
6101 				       &main_prog->line_info_rec_size);
6102 	if (err) {
6103 		if (err != -ENOENT) {
6104 			pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6105 				prog->name, err);
6106 			return err;
6107 		}
6108 		if (main_prog->line_info) {
6109 			/*
6110 			 * Some info has already been found but has problem
6111 			 * in the last btf_ext reloc. Must have to error out.
6112 			 */
6113 			pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6114 			return err;
6115 		}
6116 		/* Have problem loading the very first info. Ignore the rest. */
6117 		pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6118 			prog->name);
6119 	}
6120 	return 0;
6121 }
6122 
6123 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6124 {
6125 	size_t insn_idx = *(const size_t *)key;
6126 	const struct reloc_desc *relo = elem;
6127 
6128 	if (insn_idx == relo->insn_idx)
6129 		return 0;
6130 	return insn_idx < relo->insn_idx ? -1 : 1;
6131 }
6132 
6133 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6134 {
6135 	return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6136 		       sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6137 }
6138 
6139 static int
6140 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6141 		       struct bpf_program *prog)
6142 {
6143 	size_t sub_insn_idx, insn_idx, new_cnt;
6144 	struct bpf_program *subprog;
6145 	struct bpf_insn *insns, *insn;
6146 	struct reloc_desc *relo;
6147 	int err;
6148 
6149 	err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6150 	if (err)
6151 		return err;
6152 
6153 	for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6154 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6155 		if (!insn_is_subprog_call(insn))
6156 			continue;
6157 
6158 		relo = find_prog_insn_relo(prog, insn_idx);
6159 		if (relo && relo->type != RELO_CALL) {
6160 			pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6161 				prog->name, insn_idx, relo->type);
6162 			return -LIBBPF_ERRNO__RELOC;
6163 		}
6164 		if (relo) {
6165 			/* sub-program instruction index is a combination of
6166 			 * an offset of a symbol pointed to by relocation and
6167 			 * call instruction's imm field; for global functions,
6168 			 * call always has imm = -1, but for static functions
6169 			 * relocation is against STT_SECTION and insn->imm
6170 			 * points to a start of a static function
6171 			 */
6172 			sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6173 		} else {
6174 			/* if subprogram call is to a static function within
6175 			 * the same ELF section, there won't be any relocation
6176 			 * emitted, but it also means there is no additional
6177 			 * offset necessary, insns->imm is relative to
6178 			 * instruction's original position within the section
6179 			 */
6180 			sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6181 		}
6182 
6183 		/* we enforce that sub-programs should be in .text section */
6184 		subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6185 		if (!subprog) {
6186 			pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6187 				prog->name);
6188 			return -LIBBPF_ERRNO__RELOC;
6189 		}
6190 
6191 		/* if it's the first call instruction calling into this
6192 		 * subprogram (meaning this subprog hasn't been processed
6193 		 * yet) within the context of current main program:
6194 		 *   - append it at the end of main program's instructions blog;
6195 		 *   - process is recursively, while current program is put on hold;
6196 		 *   - if that subprogram calls some other not yet processes
6197 		 *   subprogram, same thing will happen recursively until
6198 		 *   there are no more unprocesses subprograms left to append
6199 		 *   and relocate.
6200 		 */
6201 		if (subprog->sub_insn_off == 0) {
6202 			subprog->sub_insn_off = main_prog->insns_cnt;
6203 
6204 			new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6205 			insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6206 			if (!insns) {
6207 				pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6208 				return -ENOMEM;
6209 			}
6210 			main_prog->insns = insns;
6211 			main_prog->insns_cnt = new_cnt;
6212 
6213 			memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6214 			       subprog->insns_cnt * sizeof(*insns));
6215 
6216 			pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6217 				 main_prog->name, subprog->insns_cnt, subprog->name);
6218 
6219 			err = bpf_object__reloc_code(obj, main_prog, subprog);
6220 			if (err)
6221 				return err;
6222 		}
6223 
6224 		/* main_prog->insns memory could have been re-allocated, so
6225 		 * calculate pointer again
6226 		 */
6227 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6228 		/* calculate correct instruction position within current main
6229 		 * prog; each main prog can have a different set of
6230 		 * subprograms appended (potentially in different order as
6231 		 * well), so position of any subprog can be different for
6232 		 * different main programs */
6233 		insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6234 
6235 		if (relo)
6236 			relo->processed = true;
6237 
6238 		pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6239 			 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6240 	}
6241 
6242 	return 0;
6243 }
6244 
6245 /*
6246  * Relocate sub-program calls.
6247  *
6248  * Algorithm operates as follows. Each entry-point BPF program (referred to as
6249  * main prog) is processed separately. For each subprog (non-entry functions,
6250  * that can be called from either entry progs or other subprogs) gets their
6251  * sub_insn_off reset to zero. This serves as indicator that this subprogram
6252  * hasn't been yet appended and relocated within current main prog. Once its
6253  * relocated, sub_insn_off will point at the position within current main prog
6254  * where given subprog was appended. This will further be used to relocate all
6255  * the call instructions jumping into this subprog.
6256  *
6257  * We start with main program and process all call instructions. If the call
6258  * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6259  * is zero), subprog instructions are appended at the end of main program's
6260  * instruction array. Then main program is "put on hold" while we recursively
6261  * process newly appended subprogram. If that subprogram calls into another
6262  * subprogram that hasn't been appended, new subprogram is appended again to
6263  * the *main* prog's instructions (subprog's instructions are always left
6264  * untouched, as they need to be in unmodified state for subsequent main progs
6265  * and subprog instructions are always sent only as part of a main prog) and
6266  * the process continues recursively. Once all the subprogs called from a main
6267  * prog or any of its subprogs are appended (and relocated), all their
6268  * positions within finalized instructions array are known, so it's easy to
6269  * rewrite call instructions with correct relative offsets, corresponding to
6270  * desired target subprog.
6271  *
6272  * Its important to realize that some subprogs might not be called from some
6273  * main prog and any of its called/used subprogs. Those will keep their
6274  * subprog->sub_insn_off as zero at all times and won't be appended to current
6275  * main prog and won't be relocated within the context of current main prog.
6276  * They might still be used from other main progs later.
6277  *
6278  * Visually this process can be shown as below. Suppose we have two main
6279  * programs mainA and mainB and BPF object contains three subprogs: subA,
6280  * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6281  * subC both call subB:
6282  *
6283  *        +--------+ +-------+
6284  *        |        v v       |
6285  *     +--+---+ +--+-+-+ +---+--+
6286  *     | subA | | subB | | subC |
6287  *     +--+---+ +------+ +---+--+
6288  *        ^                  ^
6289  *        |                  |
6290  *    +---+-------+   +------+----+
6291  *    |   mainA   |   |   mainB   |
6292  *    +-----------+   +-----------+
6293  *
6294  * We'll start relocating mainA, will find subA, append it and start
6295  * processing sub A recursively:
6296  *
6297  *    +-----------+------+
6298  *    |   mainA   | subA |
6299  *    +-----------+------+
6300  *
6301  * At this point we notice that subB is used from subA, so we append it and
6302  * relocate (there are no further subcalls from subB):
6303  *
6304  *    +-----------+------+------+
6305  *    |   mainA   | subA | subB |
6306  *    +-----------+------+------+
6307  *
6308  * At this point, we relocate subA calls, then go one level up and finish with
6309  * relocatin mainA calls. mainA is done.
6310  *
6311  * For mainB process is similar but results in different order. We start with
6312  * mainB and skip subA and subB, as mainB never calls them (at least
6313  * directly), but we see subC is needed, so we append and start processing it:
6314  *
6315  *    +-----------+------+
6316  *    |   mainB   | subC |
6317  *    +-----------+------+
6318  * Now we see subC needs subB, so we go back to it, append and relocate it:
6319  *
6320  *    +-----------+------+------+
6321  *    |   mainB   | subC | subB |
6322  *    +-----------+------+------+
6323  *
6324  * At this point we unwind recursion, relocate calls in subC, then in mainB.
6325  */
6326 static int
6327 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6328 {
6329 	struct bpf_program *subprog;
6330 	int i, j, err;
6331 
6332 	/* mark all subprogs as not relocated (yet) within the context of
6333 	 * current main program
6334 	 */
6335 	for (i = 0; i < obj->nr_programs; i++) {
6336 		subprog = &obj->programs[i];
6337 		if (!prog_is_subprog(obj, subprog))
6338 			continue;
6339 
6340 		subprog->sub_insn_off = 0;
6341 		for (j = 0; j < subprog->nr_reloc; j++)
6342 			if (subprog->reloc_desc[j].type == RELO_CALL)
6343 				subprog->reloc_desc[j].processed = false;
6344 	}
6345 
6346 	err = bpf_object__reloc_code(obj, prog, prog);
6347 	if (err)
6348 		return err;
6349 
6350 
6351 	return 0;
6352 }
6353 
6354 static int
6355 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6356 {
6357 	struct bpf_program *prog;
6358 	size_t i;
6359 	int err;
6360 
6361 	if (obj->btf_ext) {
6362 		err = bpf_object__relocate_core(obj, targ_btf_path);
6363 		if (err) {
6364 			pr_warn("failed to perform CO-RE relocations: %d\n",
6365 				err);
6366 			return err;
6367 		}
6368 	}
6369 	/* relocate data references first for all programs and sub-programs,
6370 	 * as they don't change relative to code locations, so subsequent
6371 	 * subprogram processing won't need to re-calculate any of them
6372 	 */
6373 	for (i = 0; i < obj->nr_programs; i++) {
6374 		prog = &obj->programs[i];
6375 		err = bpf_object__relocate_data(obj, prog);
6376 		if (err) {
6377 			pr_warn("prog '%s': failed to relocate data references: %d\n",
6378 				prog->name, err);
6379 			return err;
6380 		}
6381 	}
6382 	/* now relocate subprogram calls and append used subprograms to main
6383 	 * programs; each copy of subprogram code needs to be relocated
6384 	 * differently for each main program, because its code location might
6385 	 * have changed
6386 	 */
6387 	for (i = 0; i < obj->nr_programs; i++) {
6388 		prog = &obj->programs[i];
6389 		/* sub-program's sub-calls are relocated within the context of
6390 		 * its main program only
6391 		 */
6392 		if (prog_is_subprog(obj, prog))
6393 			continue;
6394 
6395 		err = bpf_object__relocate_calls(obj, prog);
6396 		if (err) {
6397 			pr_warn("prog '%s': failed to relocate calls: %d\n",
6398 				prog->name, err);
6399 			return err;
6400 		}
6401 	}
6402 	/* free up relocation descriptors */
6403 	for (i = 0; i < obj->nr_programs; i++) {
6404 		prog = &obj->programs[i];
6405 		zfree(&prog->reloc_desc);
6406 		prog->nr_reloc = 0;
6407 	}
6408 	return 0;
6409 }
6410 
6411 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6412 					    GElf_Shdr *shdr, Elf_Data *data);
6413 
6414 static int bpf_object__collect_map_relos(struct bpf_object *obj,
6415 					 GElf_Shdr *shdr, Elf_Data *data)
6416 {
6417 	const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6418 	int i, j, nrels, new_sz;
6419 	const struct btf_var_secinfo *vi = NULL;
6420 	const struct btf_type *sec, *var, *def;
6421 	struct bpf_map *map = NULL, *targ_map;
6422 	const struct btf_member *member;
6423 	const char *name, *mname;
6424 	Elf_Data *symbols;
6425 	unsigned int moff;
6426 	GElf_Sym sym;
6427 	GElf_Rel rel;
6428 	void *tmp;
6429 
6430 	if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6431 		return -EINVAL;
6432 	sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6433 	if (!sec)
6434 		return -EINVAL;
6435 
6436 	symbols = obj->efile.symbols;
6437 	nrels = shdr->sh_size / shdr->sh_entsize;
6438 	for (i = 0; i < nrels; i++) {
6439 		if (!gelf_getrel(data, i, &rel)) {
6440 			pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6441 			return -LIBBPF_ERRNO__FORMAT;
6442 		}
6443 		if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
6444 			pr_warn(".maps relo #%d: symbol %zx not found\n",
6445 				i, (size_t)GELF_R_SYM(rel.r_info));
6446 			return -LIBBPF_ERRNO__FORMAT;
6447 		}
6448 		name = elf_sym_str(obj, sym.st_name) ?: "<?>";
6449 		if (sym.st_shndx != obj->efile.btf_maps_shndx) {
6450 			pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6451 				i, name);
6452 			return -LIBBPF_ERRNO__RELOC;
6453 		}
6454 
6455 		pr_debug(".maps relo #%d: for %zd value %zd rel.r_offset %zu name %d ('%s')\n",
6456 			 i, (ssize_t)(rel.r_info >> 32), (size_t)sym.st_value,
6457 			 (size_t)rel.r_offset, sym.st_name, name);
6458 
6459 		for (j = 0; j < obj->nr_maps; j++) {
6460 			map = &obj->maps[j];
6461 			if (map->sec_idx != obj->efile.btf_maps_shndx)
6462 				continue;
6463 
6464 			vi = btf_var_secinfos(sec) + map->btf_var_idx;
6465 			if (vi->offset <= rel.r_offset &&
6466 			    rel.r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6467 				break;
6468 		}
6469 		if (j == obj->nr_maps) {
6470 			pr_warn(".maps relo #%d: cannot find map '%s' at rel.r_offset %zu\n",
6471 				i, name, (size_t)rel.r_offset);
6472 			return -EINVAL;
6473 		}
6474 
6475 		if (!bpf_map_type__is_map_in_map(map->def.type))
6476 			return -EINVAL;
6477 		if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6478 		    map->def.key_size != sizeof(int)) {
6479 			pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6480 				i, map->name, sizeof(int));
6481 			return -EINVAL;
6482 		}
6483 
6484 		targ_map = bpf_object__find_map_by_name(obj, name);
6485 		if (!targ_map)
6486 			return -ESRCH;
6487 
6488 		var = btf__type_by_id(obj->btf, vi->type);
6489 		def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6490 		if (btf_vlen(def) == 0)
6491 			return -EINVAL;
6492 		member = btf_members(def) + btf_vlen(def) - 1;
6493 		mname = btf__name_by_offset(obj->btf, member->name_off);
6494 		if (strcmp(mname, "values"))
6495 			return -EINVAL;
6496 
6497 		moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6498 		if (rel.r_offset - vi->offset < moff)
6499 			return -EINVAL;
6500 
6501 		moff = rel.r_offset - vi->offset - moff;
6502 		/* here we use BPF pointer size, which is always 64 bit, as we
6503 		 * are parsing ELF that was built for BPF target
6504 		 */
6505 		if (moff % bpf_ptr_sz)
6506 			return -EINVAL;
6507 		moff /= bpf_ptr_sz;
6508 		if (moff >= map->init_slots_sz) {
6509 			new_sz = moff + 1;
6510 			tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6511 			if (!tmp)
6512 				return -ENOMEM;
6513 			map->init_slots = tmp;
6514 			memset(map->init_slots + map->init_slots_sz, 0,
6515 			       (new_sz - map->init_slots_sz) * host_ptr_sz);
6516 			map->init_slots_sz = new_sz;
6517 		}
6518 		map->init_slots[moff] = targ_map;
6519 
6520 		pr_debug(".maps relo #%d: map '%s' slot [%d] points to map '%s'\n",
6521 			 i, map->name, moff, name);
6522 	}
6523 
6524 	return 0;
6525 }
6526 
6527 static int cmp_relocs(const void *_a, const void *_b)
6528 {
6529 	const struct reloc_desc *a = _a;
6530 	const struct reloc_desc *b = _b;
6531 
6532 	if (a->insn_idx != b->insn_idx)
6533 		return a->insn_idx < b->insn_idx ? -1 : 1;
6534 
6535 	/* no two relocations should have the same insn_idx, but ... */
6536 	if (a->type != b->type)
6537 		return a->type < b->type ? -1 : 1;
6538 
6539 	return 0;
6540 }
6541 
6542 static int bpf_object__collect_relos(struct bpf_object *obj)
6543 {
6544 	int i, err;
6545 
6546 	for (i = 0; i < obj->efile.nr_reloc_sects; i++) {
6547 		GElf_Shdr *shdr = &obj->efile.reloc_sects[i].shdr;
6548 		Elf_Data *data = obj->efile.reloc_sects[i].data;
6549 		int idx = shdr->sh_info;
6550 
6551 		if (shdr->sh_type != SHT_REL) {
6552 			pr_warn("internal error at %d\n", __LINE__);
6553 			return -LIBBPF_ERRNO__INTERNAL;
6554 		}
6555 
6556 		if (idx == obj->efile.st_ops_shndx)
6557 			err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6558 		else if (idx == obj->efile.btf_maps_shndx)
6559 			err = bpf_object__collect_map_relos(obj, shdr, data);
6560 		else
6561 			err = bpf_object__collect_prog_relos(obj, shdr, data);
6562 		if (err)
6563 			return err;
6564 	}
6565 
6566 	for (i = 0; i < obj->nr_programs; i++) {
6567 		struct bpf_program *p = &obj->programs[i];
6568 
6569 		if (!p->nr_reloc)
6570 			continue;
6571 
6572 		qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6573 	}
6574 	return 0;
6575 }
6576 
6577 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6578 {
6579 	if (BPF_CLASS(insn->code) == BPF_JMP &&
6580 	    BPF_OP(insn->code) == BPF_CALL &&
6581 	    BPF_SRC(insn->code) == BPF_K &&
6582 	    insn->src_reg == 0 &&
6583 	    insn->dst_reg == 0) {
6584 		    *func_id = insn->imm;
6585 		    return true;
6586 	}
6587 	return false;
6588 }
6589 
6590 static int bpf_object__sanitize_prog(struct bpf_object* obj, struct bpf_program *prog)
6591 {
6592 	struct bpf_insn *insn = prog->insns;
6593 	enum bpf_func_id func_id;
6594 	int i;
6595 
6596 	for (i = 0; i < prog->insns_cnt; i++, insn++) {
6597 		if (!insn_is_helper_call(insn, &func_id))
6598 			continue;
6599 
6600 		/* on kernels that don't yet support
6601 		 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6602 		 * to bpf_probe_read() which works well for old kernels
6603 		 */
6604 		switch (func_id) {
6605 		case BPF_FUNC_probe_read_kernel:
6606 		case BPF_FUNC_probe_read_user:
6607 			if (!kernel_supports(FEAT_PROBE_READ_KERN))
6608 				insn->imm = BPF_FUNC_probe_read;
6609 			break;
6610 		case BPF_FUNC_probe_read_kernel_str:
6611 		case BPF_FUNC_probe_read_user_str:
6612 			if (!kernel_supports(FEAT_PROBE_READ_KERN))
6613 				insn->imm = BPF_FUNC_probe_read_str;
6614 			break;
6615 		default:
6616 			break;
6617 		}
6618 	}
6619 	return 0;
6620 }
6621 
6622 static int
6623 load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt,
6624 	     char *license, __u32 kern_version, int *pfd)
6625 {
6626 	struct bpf_load_program_attr load_attr;
6627 	char *cp, errmsg[STRERR_BUFSIZE];
6628 	size_t log_buf_size = 0;
6629 	char *log_buf = NULL;
6630 	int btf_fd, ret;
6631 
6632 	if (!insns || !insns_cnt)
6633 		return -EINVAL;
6634 
6635 	memset(&load_attr, 0, sizeof(struct bpf_load_program_attr));
6636 	load_attr.prog_type = prog->type;
6637 	/* old kernels might not support specifying expected_attach_type */
6638 	if (!kernel_supports(FEAT_EXP_ATTACH_TYPE) && prog->sec_def &&
6639 	    prog->sec_def->is_exp_attach_type_optional)
6640 		load_attr.expected_attach_type = 0;
6641 	else
6642 		load_attr.expected_attach_type = prog->expected_attach_type;
6643 	if (kernel_supports(FEAT_PROG_NAME))
6644 		load_attr.name = prog->name;
6645 	load_attr.insns = insns;
6646 	load_attr.insns_cnt = insns_cnt;
6647 	load_attr.license = license;
6648 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
6649 	    prog->type == BPF_PROG_TYPE_LSM) {
6650 		load_attr.attach_btf_id = prog->attach_btf_id;
6651 	} else if (prog->type == BPF_PROG_TYPE_TRACING ||
6652 		   prog->type == BPF_PROG_TYPE_EXT) {
6653 		load_attr.attach_prog_fd = prog->attach_prog_fd;
6654 		load_attr.attach_btf_id = prog->attach_btf_id;
6655 	} else {
6656 		load_attr.kern_version = kern_version;
6657 		load_attr.prog_ifindex = prog->prog_ifindex;
6658 	}
6659 	/* specify func_info/line_info only if kernel supports them */
6660 	btf_fd = bpf_object__btf_fd(prog->obj);
6661 	if (btf_fd >= 0 && kernel_supports(FEAT_BTF_FUNC)) {
6662 		load_attr.prog_btf_fd = btf_fd;
6663 		load_attr.func_info = prog->func_info;
6664 		load_attr.func_info_rec_size = prog->func_info_rec_size;
6665 		load_attr.func_info_cnt = prog->func_info_cnt;
6666 		load_attr.line_info = prog->line_info;
6667 		load_attr.line_info_rec_size = prog->line_info_rec_size;
6668 		load_attr.line_info_cnt = prog->line_info_cnt;
6669 	}
6670 	load_attr.log_level = prog->log_level;
6671 	load_attr.prog_flags = prog->prog_flags;
6672 
6673 retry_load:
6674 	if (log_buf_size) {
6675 		log_buf = malloc(log_buf_size);
6676 		if (!log_buf)
6677 			return -ENOMEM;
6678 
6679 		*log_buf = 0;
6680 	}
6681 
6682 	ret = bpf_load_program_xattr(&load_attr, log_buf, log_buf_size);
6683 
6684 	if (ret >= 0) {
6685 		if (log_buf && load_attr.log_level)
6686 			pr_debug("verifier log:\n%s", log_buf);
6687 
6688 		if (prog->obj->rodata_map_idx >= 0 &&
6689 		    kernel_supports(FEAT_PROG_BIND_MAP)) {
6690 			struct bpf_map *rodata_map =
6691 				&prog->obj->maps[prog->obj->rodata_map_idx];
6692 
6693 			if (bpf_prog_bind_map(ret, bpf_map__fd(rodata_map), NULL)) {
6694 				cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6695 				pr_warn("prog '%s': failed to bind .rodata map: %s\n",
6696 					prog->name, cp);
6697 				/* Don't fail hard if can't bind rodata. */
6698 			}
6699 		}
6700 
6701 		*pfd = ret;
6702 		ret = 0;
6703 		goto out;
6704 	}
6705 
6706 	if (!log_buf || errno == ENOSPC) {
6707 		log_buf_size = max((size_t)BPF_LOG_BUF_SIZE,
6708 				   log_buf_size << 1);
6709 
6710 		free(log_buf);
6711 		goto retry_load;
6712 	}
6713 	ret = errno ? -errno : -LIBBPF_ERRNO__LOAD;
6714 	cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6715 	pr_warn("load bpf program failed: %s\n", cp);
6716 	pr_perm_msg(ret);
6717 
6718 	if (log_buf && log_buf[0] != '\0') {
6719 		ret = -LIBBPF_ERRNO__VERIFY;
6720 		pr_warn("-- BEGIN DUMP LOG ---\n");
6721 		pr_warn("\n%s\n", log_buf);
6722 		pr_warn("-- END LOG --\n");
6723 	} else if (load_attr.insns_cnt >= BPF_MAXINSNS) {
6724 		pr_warn("Program too large (%zu insns), at most %d insns\n",
6725 			load_attr.insns_cnt, BPF_MAXINSNS);
6726 		ret = -LIBBPF_ERRNO__PROG2BIG;
6727 	} else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) {
6728 		/* Wrong program type? */
6729 		int fd;
6730 
6731 		load_attr.prog_type = BPF_PROG_TYPE_KPROBE;
6732 		load_attr.expected_attach_type = 0;
6733 		fd = bpf_load_program_xattr(&load_attr, NULL, 0);
6734 		if (fd >= 0) {
6735 			close(fd);
6736 			ret = -LIBBPF_ERRNO__PROGTYPE;
6737 			goto out;
6738 		}
6739 	}
6740 
6741 out:
6742 	free(log_buf);
6743 	return ret;
6744 }
6745 
6746 static int libbpf_find_attach_btf_id(struct bpf_program *prog);
6747 
6748 int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_ver)
6749 {
6750 	int err = 0, fd, i, btf_id;
6751 
6752 	if (prog->obj->loaded) {
6753 		pr_warn("prog '%s': can't load after object was loaded\n", prog->name);
6754 		return -EINVAL;
6755 	}
6756 
6757 	if ((prog->type == BPF_PROG_TYPE_TRACING ||
6758 	     prog->type == BPF_PROG_TYPE_LSM ||
6759 	     prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) {
6760 		btf_id = libbpf_find_attach_btf_id(prog);
6761 		if (btf_id <= 0)
6762 			return btf_id;
6763 		prog->attach_btf_id = btf_id;
6764 	}
6765 
6766 	if (prog->instances.nr < 0 || !prog->instances.fds) {
6767 		if (prog->preprocessor) {
6768 			pr_warn("Internal error: can't load program '%s'\n",
6769 				prog->name);
6770 			return -LIBBPF_ERRNO__INTERNAL;
6771 		}
6772 
6773 		prog->instances.fds = malloc(sizeof(int));
6774 		if (!prog->instances.fds) {
6775 			pr_warn("Not enough memory for BPF fds\n");
6776 			return -ENOMEM;
6777 		}
6778 		prog->instances.nr = 1;
6779 		prog->instances.fds[0] = -1;
6780 	}
6781 
6782 	if (!prog->preprocessor) {
6783 		if (prog->instances.nr != 1) {
6784 			pr_warn("prog '%s': inconsistent nr(%d) != 1\n",
6785 				prog->name, prog->instances.nr);
6786 		}
6787 		err = load_program(prog, prog->insns, prog->insns_cnt,
6788 				   license, kern_ver, &fd);
6789 		if (!err)
6790 			prog->instances.fds[0] = fd;
6791 		goto out;
6792 	}
6793 
6794 	for (i = 0; i < prog->instances.nr; i++) {
6795 		struct bpf_prog_prep_result result;
6796 		bpf_program_prep_t preprocessor = prog->preprocessor;
6797 
6798 		memset(&result, 0, sizeof(result));
6799 		err = preprocessor(prog, i, prog->insns,
6800 				   prog->insns_cnt, &result);
6801 		if (err) {
6802 			pr_warn("Preprocessing the %dth instance of program '%s' failed\n",
6803 				i, prog->name);
6804 			goto out;
6805 		}
6806 
6807 		if (!result.new_insn_ptr || !result.new_insn_cnt) {
6808 			pr_debug("Skip loading the %dth instance of program '%s'\n",
6809 				 i, prog->name);
6810 			prog->instances.fds[i] = -1;
6811 			if (result.pfd)
6812 				*result.pfd = -1;
6813 			continue;
6814 		}
6815 
6816 		err = load_program(prog, result.new_insn_ptr,
6817 				   result.new_insn_cnt, license, kern_ver, &fd);
6818 		if (err) {
6819 			pr_warn("Loading the %dth instance of program '%s' failed\n",
6820 				i, prog->name);
6821 			goto out;
6822 		}
6823 
6824 		if (result.pfd)
6825 			*result.pfd = fd;
6826 		prog->instances.fds[i] = fd;
6827 	}
6828 out:
6829 	if (err)
6830 		pr_warn("failed to load program '%s'\n", prog->name);
6831 	zfree(&prog->insns);
6832 	prog->insns_cnt = 0;
6833 	return err;
6834 }
6835 
6836 static int
6837 bpf_object__load_progs(struct bpf_object *obj, int log_level)
6838 {
6839 	struct bpf_program *prog;
6840 	size_t i;
6841 	int err;
6842 
6843 	for (i = 0; i < obj->nr_programs; i++) {
6844 		prog = &obj->programs[i];
6845 		err = bpf_object__sanitize_prog(obj, prog);
6846 		if (err)
6847 			return err;
6848 	}
6849 
6850 	for (i = 0; i < obj->nr_programs; i++) {
6851 		prog = &obj->programs[i];
6852 		if (prog_is_subprog(obj, prog))
6853 			continue;
6854 		if (!prog->load) {
6855 			pr_debug("prog '%s': skipped loading\n", prog->name);
6856 			continue;
6857 		}
6858 		prog->log_level |= log_level;
6859 		err = bpf_program__load(prog, obj->license, obj->kern_version);
6860 		if (err)
6861 			return err;
6862 	}
6863 	return 0;
6864 }
6865 
6866 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
6867 
6868 static struct bpf_object *
6869 __bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz,
6870 		   const struct bpf_object_open_opts *opts)
6871 {
6872 	const char *obj_name, *kconfig;
6873 	struct bpf_program *prog;
6874 	struct bpf_object *obj;
6875 	char tmp_name[64];
6876 	int err;
6877 
6878 	if (elf_version(EV_CURRENT) == EV_NONE) {
6879 		pr_warn("failed to init libelf for %s\n",
6880 			path ? : "(mem buf)");
6881 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
6882 	}
6883 
6884 	if (!OPTS_VALID(opts, bpf_object_open_opts))
6885 		return ERR_PTR(-EINVAL);
6886 
6887 	obj_name = OPTS_GET(opts, object_name, NULL);
6888 	if (obj_buf) {
6889 		if (!obj_name) {
6890 			snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
6891 				 (unsigned long)obj_buf,
6892 				 (unsigned long)obj_buf_sz);
6893 			obj_name = tmp_name;
6894 		}
6895 		path = obj_name;
6896 		pr_debug("loading object '%s' from buffer\n", obj_name);
6897 	}
6898 
6899 	obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
6900 	if (IS_ERR(obj))
6901 		return obj;
6902 
6903 	kconfig = OPTS_GET(opts, kconfig, NULL);
6904 	if (kconfig) {
6905 		obj->kconfig = strdup(kconfig);
6906 		if (!obj->kconfig)
6907 			return ERR_PTR(-ENOMEM);
6908 	}
6909 
6910 	err = bpf_object__elf_init(obj);
6911 	err = err ? : bpf_object__check_endianness(obj);
6912 	err = err ? : bpf_object__elf_collect(obj);
6913 	err = err ? : bpf_object__collect_externs(obj);
6914 	err = err ? : bpf_object__finalize_btf(obj);
6915 	err = err ? : bpf_object__init_maps(obj, opts);
6916 	err = err ? : bpf_object__collect_relos(obj);
6917 	if (err)
6918 		goto out;
6919 	bpf_object__elf_finish(obj);
6920 
6921 	bpf_object__for_each_program(prog, obj) {
6922 		prog->sec_def = find_sec_def(prog->sec_name);
6923 		if (!prog->sec_def)
6924 			/* couldn't guess, but user might manually specify */
6925 			continue;
6926 
6927 		if (prog->sec_def->is_sleepable)
6928 			prog->prog_flags |= BPF_F_SLEEPABLE;
6929 		bpf_program__set_type(prog, prog->sec_def->prog_type);
6930 		bpf_program__set_expected_attach_type(prog,
6931 				prog->sec_def->expected_attach_type);
6932 
6933 		if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING ||
6934 		    prog->sec_def->prog_type == BPF_PROG_TYPE_EXT)
6935 			prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0);
6936 	}
6937 
6938 	return obj;
6939 out:
6940 	bpf_object__close(obj);
6941 	return ERR_PTR(err);
6942 }
6943 
6944 static struct bpf_object *
6945 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags)
6946 {
6947 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
6948 		.relaxed_maps = flags & MAPS_RELAX_COMPAT,
6949 	);
6950 
6951 	/* param validation */
6952 	if (!attr->file)
6953 		return NULL;
6954 
6955 	pr_debug("loading %s\n", attr->file);
6956 	return __bpf_object__open(attr->file, NULL, 0, &opts);
6957 }
6958 
6959 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr)
6960 {
6961 	return __bpf_object__open_xattr(attr, 0);
6962 }
6963 
6964 struct bpf_object *bpf_object__open(const char *path)
6965 {
6966 	struct bpf_object_open_attr attr = {
6967 		.file		= path,
6968 		.prog_type	= BPF_PROG_TYPE_UNSPEC,
6969 	};
6970 
6971 	return bpf_object__open_xattr(&attr);
6972 }
6973 
6974 struct bpf_object *
6975 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
6976 {
6977 	if (!path)
6978 		return ERR_PTR(-EINVAL);
6979 
6980 	pr_debug("loading %s\n", path);
6981 
6982 	return __bpf_object__open(path, NULL, 0, opts);
6983 }
6984 
6985 struct bpf_object *
6986 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
6987 		     const struct bpf_object_open_opts *opts)
6988 {
6989 	if (!obj_buf || obj_buf_sz == 0)
6990 		return ERR_PTR(-EINVAL);
6991 
6992 	return __bpf_object__open(NULL, obj_buf, obj_buf_sz, opts);
6993 }
6994 
6995 struct bpf_object *
6996 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz,
6997 			const char *name)
6998 {
6999 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
7000 		.object_name = name,
7001 		/* wrong default, but backwards-compatible */
7002 		.relaxed_maps = true,
7003 	);
7004 
7005 	/* returning NULL is wrong, but backwards-compatible */
7006 	if (!obj_buf || obj_buf_sz == 0)
7007 		return NULL;
7008 
7009 	return bpf_object__open_mem(obj_buf, obj_buf_sz, &opts);
7010 }
7011 
7012 int bpf_object__unload(struct bpf_object *obj)
7013 {
7014 	size_t i;
7015 
7016 	if (!obj)
7017 		return -EINVAL;
7018 
7019 	for (i = 0; i < obj->nr_maps; i++) {
7020 		zclose(obj->maps[i].fd);
7021 		if (obj->maps[i].st_ops)
7022 			zfree(&obj->maps[i].st_ops->kern_vdata);
7023 	}
7024 
7025 	for (i = 0; i < obj->nr_programs; i++)
7026 		bpf_program__unload(&obj->programs[i]);
7027 
7028 	return 0;
7029 }
7030 
7031 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7032 {
7033 	struct bpf_map *m;
7034 
7035 	bpf_object__for_each_map(m, obj) {
7036 		if (!bpf_map__is_internal(m))
7037 			continue;
7038 		if (!kernel_supports(FEAT_GLOBAL_DATA)) {
7039 			pr_warn("kernel doesn't support global data\n");
7040 			return -ENOTSUP;
7041 		}
7042 		if (!kernel_supports(FEAT_ARRAY_MMAP))
7043 			m->def.map_flags ^= BPF_F_MMAPABLE;
7044 	}
7045 
7046 	return 0;
7047 }
7048 
7049 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7050 {
7051 	char sym_type, sym_name[500];
7052 	unsigned long long sym_addr;
7053 	struct extern_desc *ext;
7054 	int ret, err = 0;
7055 	FILE *f;
7056 
7057 	f = fopen("/proc/kallsyms", "r");
7058 	if (!f) {
7059 		err = -errno;
7060 		pr_warn("failed to open /proc/kallsyms: %d\n", err);
7061 		return err;
7062 	}
7063 
7064 	while (true) {
7065 		ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7066 			     &sym_addr, &sym_type, sym_name);
7067 		if (ret == EOF && feof(f))
7068 			break;
7069 		if (ret != 3) {
7070 			pr_warn("failed to read kallsyms entry: %d\n", ret);
7071 			err = -EINVAL;
7072 			goto out;
7073 		}
7074 
7075 		ext = find_extern_by_name(obj, sym_name);
7076 		if (!ext || ext->type != EXT_KSYM)
7077 			continue;
7078 
7079 		if (ext->is_set && ext->ksym.addr != sym_addr) {
7080 			pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n",
7081 				sym_name, ext->ksym.addr, sym_addr);
7082 			err = -EINVAL;
7083 			goto out;
7084 		}
7085 		if (!ext->is_set) {
7086 			ext->is_set = true;
7087 			ext->ksym.addr = sym_addr;
7088 			pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr);
7089 		}
7090 	}
7091 
7092 out:
7093 	fclose(f);
7094 	return err;
7095 }
7096 
7097 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7098 {
7099 	struct extern_desc *ext;
7100 	int i, id;
7101 
7102 	for (i = 0; i < obj->nr_extern; i++) {
7103 		const struct btf_type *targ_var, *targ_type;
7104 		__u32 targ_type_id, local_type_id;
7105 		const char *targ_var_name;
7106 		int ret;
7107 
7108 		ext = &obj->externs[i];
7109 		if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7110 			continue;
7111 
7112 		id = btf__find_by_name_kind(obj->btf_vmlinux, ext->name,
7113 					    BTF_KIND_VAR);
7114 		if (id <= 0) {
7115 			pr_warn("extern (ksym) '%s': failed to find BTF ID in vmlinux BTF.\n",
7116 				ext->name);
7117 			return -ESRCH;
7118 		}
7119 
7120 		/* find local type_id */
7121 		local_type_id = ext->ksym.type_id;
7122 
7123 		/* find target type_id */
7124 		targ_var = btf__type_by_id(obj->btf_vmlinux, id);
7125 		targ_var_name = btf__name_by_offset(obj->btf_vmlinux,
7126 						    targ_var->name_off);
7127 		targ_type = skip_mods_and_typedefs(obj->btf_vmlinux,
7128 						   targ_var->type,
7129 						   &targ_type_id);
7130 
7131 		ret = bpf_core_types_are_compat(obj->btf, local_type_id,
7132 						obj->btf_vmlinux, targ_type_id);
7133 		if (ret <= 0) {
7134 			const struct btf_type *local_type;
7135 			const char *targ_name, *local_name;
7136 
7137 			local_type = btf__type_by_id(obj->btf, local_type_id);
7138 			local_name = btf__name_by_offset(obj->btf,
7139 							 local_type->name_off);
7140 			targ_name = btf__name_by_offset(obj->btf_vmlinux,
7141 							targ_type->name_off);
7142 
7143 			pr_warn("extern (ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7144 				ext->name, local_type_id,
7145 				btf_kind_str(local_type), local_name, targ_type_id,
7146 				btf_kind_str(targ_type), targ_name);
7147 			return -EINVAL;
7148 		}
7149 
7150 		ext->is_set = true;
7151 		ext->ksym.vmlinux_btf_id = id;
7152 		pr_debug("extern (ksym) '%s': resolved to [%d] %s %s\n",
7153 			 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7154 	}
7155 	return 0;
7156 }
7157 
7158 static int bpf_object__resolve_externs(struct bpf_object *obj,
7159 				       const char *extra_kconfig)
7160 {
7161 	bool need_config = false, need_kallsyms = false;
7162 	bool need_vmlinux_btf = false;
7163 	struct extern_desc *ext;
7164 	void *kcfg_data = NULL;
7165 	int err, i;
7166 
7167 	if (obj->nr_extern == 0)
7168 		return 0;
7169 
7170 	if (obj->kconfig_map_idx >= 0)
7171 		kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7172 
7173 	for (i = 0; i < obj->nr_extern; i++) {
7174 		ext = &obj->externs[i];
7175 
7176 		if (ext->type == EXT_KCFG &&
7177 		    strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7178 			void *ext_val = kcfg_data + ext->kcfg.data_off;
7179 			__u32 kver = get_kernel_version();
7180 
7181 			if (!kver) {
7182 				pr_warn("failed to get kernel version\n");
7183 				return -EINVAL;
7184 			}
7185 			err = set_kcfg_value_num(ext, ext_val, kver);
7186 			if (err)
7187 				return err;
7188 			pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver);
7189 		} else if (ext->type == EXT_KCFG &&
7190 			   strncmp(ext->name, "CONFIG_", 7) == 0) {
7191 			need_config = true;
7192 		} else if (ext->type == EXT_KSYM) {
7193 			if (ext->ksym.type_id)
7194 				need_vmlinux_btf = true;
7195 			else
7196 				need_kallsyms = true;
7197 		} else {
7198 			pr_warn("unrecognized extern '%s'\n", ext->name);
7199 			return -EINVAL;
7200 		}
7201 	}
7202 	if (need_config && extra_kconfig) {
7203 		err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7204 		if (err)
7205 			return -EINVAL;
7206 		need_config = false;
7207 		for (i = 0; i < obj->nr_extern; i++) {
7208 			ext = &obj->externs[i];
7209 			if (ext->type == EXT_KCFG && !ext->is_set) {
7210 				need_config = true;
7211 				break;
7212 			}
7213 		}
7214 	}
7215 	if (need_config) {
7216 		err = bpf_object__read_kconfig_file(obj, kcfg_data);
7217 		if (err)
7218 			return -EINVAL;
7219 	}
7220 	if (need_kallsyms) {
7221 		err = bpf_object__read_kallsyms_file(obj);
7222 		if (err)
7223 			return -EINVAL;
7224 	}
7225 	if (need_vmlinux_btf) {
7226 		err = bpf_object__resolve_ksyms_btf_id(obj);
7227 		if (err)
7228 			return -EINVAL;
7229 	}
7230 	for (i = 0; i < obj->nr_extern; i++) {
7231 		ext = &obj->externs[i];
7232 
7233 		if (!ext->is_set && !ext->is_weak) {
7234 			pr_warn("extern %s (strong) not resolved\n", ext->name);
7235 			return -ESRCH;
7236 		} else if (!ext->is_set) {
7237 			pr_debug("extern %s (weak) not resolved, defaulting to zero\n",
7238 				 ext->name);
7239 		}
7240 	}
7241 
7242 	return 0;
7243 }
7244 
7245 int bpf_object__load_xattr(struct bpf_object_load_attr *attr)
7246 {
7247 	struct bpf_object *obj;
7248 	int err, i;
7249 
7250 	if (!attr)
7251 		return -EINVAL;
7252 	obj = attr->obj;
7253 	if (!obj)
7254 		return -EINVAL;
7255 
7256 	if (obj->loaded) {
7257 		pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7258 		return -EINVAL;
7259 	}
7260 
7261 	err = bpf_object__probe_loading(obj);
7262 	err = err ? : bpf_object__load_vmlinux_btf(obj);
7263 	err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7264 	err = err ? : bpf_object__sanitize_and_load_btf(obj);
7265 	err = err ? : bpf_object__sanitize_maps(obj);
7266 	err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7267 	err = err ? : bpf_object__create_maps(obj);
7268 	err = err ? : bpf_object__relocate(obj, attr->target_btf_path);
7269 	err = err ? : bpf_object__load_progs(obj, attr->log_level);
7270 
7271 	btf__free(obj->btf_vmlinux);
7272 	obj->btf_vmlinux = NULL;
7273 
7274 	obj->loaded = true; /* doesn't matter if successfully or not */
7275 
7276 	if (err)
7277 		goto out;
7278 
7279 	return 0;
7280 out:
7281 	/* unpin any maps that were auto-pinned during load */
7282 	for (i = 0; i < obj->nr_maps; i++)
7283 		if (obj->maps[i].pinned && !obj->maps[i].reused)
7284 			bpf_map__unpin(&obj->maps[i], NULL);
7285 
7286 	bpf_object__unload(obj);
7287 	pr_warn("failed to load object '%s'\n", obj->path);
7288 	return err;
7289 }
7290 
7291 int bpf_object__load(struct bpf_object *obj)
7292 {
7293 	struct bpf_object_load_attr attr = {
7294 		.obj = obj,
7295 	};
7296 
7297 	return bpf_object__load_xattr(&attr);
7298 }
7299 
7300 static int make_parent_dir(const char *path)
7301 {
7302 	char *cp, errmsg[STRERR_BUFSIZE];
7303 	char *dname, *dir;
7304 	int err = 0;
7305 
7306 	dname = strdup(path);
7307 	if (dname == NULL)
7308 		return -ENOMEM;
7309 
7310 	dir = dirname(dname);
7311 	if (mkdir(dir, 0700) && errno != EEXIST)
7312 		err = -errno;
7313 
7314 	free(dname);
7315 	if (err) {
7316 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7317 		pr_warn("failed to mkdir %s: %s\n", path, cp);
7318 	}
7319 	return err;
7320 }
7321 
7322 static int check_path(const char *path)
7323 {
7324 	char *cp, errmsg[STRERR_BUFSIZE];
7325 	struct statfs st_fs;
7326 	char *dname, *dir;
7327 	int err = 0;
7328 
7329 	if (path == NULL)
7330 		return -EINVAL;
7331 
7332 	dname = strdup(path);
7333 	if (dname == NULL)
7334 		return -ENOMEM;
7335 
7336 	dir = dirname(dname);
7337 	if (statfs(dir, &st_fs)) {
7338 		cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7339 		pr_warn("failed to statfs %s: %s\n", dir, cp);
7340 		err = -errno;
7341 	}
7342 	free(dname);
7343 
7344 	if (!err && st_fs.f_type != BPF_FS_MAGIC) {
7345 		pr_warn("specified path %s is not on BPF FS\n", path);
7346 		err = -EINVAL;
7347 	}
7348 
7349 	return err;
7350 }
7351 
7352 int bpf_program__pin_instance(struct bpf_program *prog, const char *path,
7353 			      int instance)
7354 {
7355 	char *cp, errmsg[STRERR_BUFSIZE];
7356 	int err;
7357 
7358 	err = make_parent_dir(path);
7359 	if (err)
7360 		return err;
7361 
7362 	err = check_path(path);
7363 	if (err)
7364 		return err;
7365 
7366 	if (prog == NULL) {
7367 		pr_warn("invalid program pointer\n");
7368 		return -EINVAL;
7369 	}
7370 
7371 	if (instance < 0 || instance >= prog->instances.nr) {
7372 		pr_warn("invalid prog instance %d of prog %s (max %d)\n",
7373 			instance, prog->name, prog->instances.nr);
7374 		return -EINVAL;
7375 	}
7376 
7377 	if (bpf_obj_pin(prog->instances.fds[instance], path)) {
7378 		err = -errno;
7379 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
7380 		pr_warn("failed to pin program: %s\n", cp);
7381 		return err;
7382 	}
7383 	pr_debug("pinned program '%s'\n", path);
7384 
7385 	return 0;
7386 }
7387 
7388 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path,
7389 				int instance)
7390 {
7391 	int err;
7392 
7393 	err = check_path(path);
7394 	if (err)
7395 		return err;
7396 
7397 	if (prog == NULL) {
7398 		pr_warn("invalid program pointer\n");
7399 		return -EINVAL;
7400 	}
7401 
7402 	if (instance < 0 || instance >= prog->instances.nr) {
7403 		pr_warn("invalid prog instance %d of prog %s (max %d)\n",
7404 			instance, prog->name, prog->instances.nr);
7405 		return -EINVAL;
7406 	}
7407 
7408 	err = unlink(path);
7409 	if (err != 0)
7410 		return -errno;
7411 	pr_debug("unpinned program '%s'\n", path);
7412 
7413 	return 0;
7414 }
7415 
7416 int bpf_program__pin(struct bpf_program *prog, const char *path)
7417 {
7418 	int i, err;
7419 
7420 	err = make_parent_dir(path);
7421 	if (err)
7422 		return err;
7423 
7424 	err = check_path(path);
7425 	if (err)
7426 		return err;
7427 
7428 	if (prog == NULL) {
7429 		pr_warn("invalid program pointer\n");
7430 		return -EINVAL;
7431 	}
7432 
7433 	if (prog->instances.nr <= 0) {
7434 		pr_warn("no instances of prog %s to pin\n", prog->name);
7435 		return -EINVAL;
7436 	}
7437 
7438 	if (prog->instances.nr == 1) {
7439 		/* don't create subdirs when pinning single instance */
7440 		return bpf_program__pin_instance(prog, path, 0);
7441 	}
7442 
7443 	for (i = 0; i < prog->instances.nr; i++) {
7444 		char buf[PATH_MAX];
7445 		int len;
7446 
7447 		len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7448 		if (len < 0) {
7449 			err = -EINVAL;
7450 			goto err_unpin;
7451 		} else if (len >= PATH_MAX) {
7452 			err = -ENAMETOOLONG;
7453 			goto err_unpin;
7454 		}
7455 
7456 		err = bpf_program__pin_instance(prog, buf, i);
7457 		if (err)
7458 			goto err_unpin;
7459 	}
7460 
7461 	return 0;
7462 
7463 err_unpin:
7464 	for (i = i - 1; i >= 0; i--) {
7465 		char buf[PATH_MAX];
7466 		int len;
7467 
7468 		len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7469 		if (len < 0)
7470 			continue;
7471 		else if (len >= PATH_MAX)
7472 			continue;
7473 
7474 		bpf_program__unpin_instance(prog, buf, i);
7475 	}
7476 
7477 	rmdir(path);
7478 
7479 	return err;
7480 }
7481 
7482 int bpf_program__unpin(struct bpf_program *prog, const char *path)
7483 {
7484 	int i, err;
7485 
7486 	err = check_path(path);
7487 	if (err)
7488 		return err;
7489 
7490 	if (prog == NULL) {
7491 		pr_warn("invalid program pointer\n");
7492 		return -EINVAL;
7493 	}
7494 
7495 	if (prog->instances.nr <= 0) {
7496 		pr_warn("no instances of prog %s to pin\n", prog->name);
7497 		return -EINVAL;
7498 	}
7499 
7500 	if (prog->instances.nr == 1) {
7501 		/* don't create subdirs when pinning single instance */
7502 		return bpf_program__unpin_instance(prog, path, 0);
7503 	}
7504 
7505 	for (i = 0; i < prog->instances.nr; i++) {
7506 		char buf[PATH_MAX];
7507 		int len;
7508 
7509 		len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7510 		if (len < 0)
7511 			return -EINVAL;
7512 		else if (len >= PATH_MAX)
7513 			return -ENAMETOOLONG;
7514 
7515 		err = bpf_program__unpin_instance(prog, buf, i);
7516 		if (err)
7517 			return err;
7518 	}
7519 
7520 	err = rmdir(path);
7521 	if (err)
7522 		return -errno;
7523 
7524 	return 0;
7525 }
7526 
7527 int bpf_map__pin(struct bpf_map *map, const char *path)
7528 {
7529 	char *cp, errmsg[STRERR_BUFSIZE];
7530 	int err;
7531 
7532 	if (map == NULL) {
7533 		pr_warn("invalid map pointer\n");
7534 		return -EINVAL;
7535 	}
7536 
7537 	if (map->pin_path) {
7538 		if (path && strcmp(path, map->pin_path)) {
7539 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7540 				bpf_map__name(map), map->pin_path, path);
7541 			return -EINVAL;
7542 		} else if (map->pinned) {
7543 			pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
7544 				 bpf_map__name(map), map->pin_path);
7545 			return 0;
7546 		}
7547 	} else {
7548 		if (!path) {
7549 			pr_warn("missing a path to pin map '%s' at\n",
7550 				bpf_map__name(map));
7551 			return -EINVAL;
7552 		} else if (map->pinned) {
7553 			pr_warn("map '%s' already pinned\n", bpf_map__name(map));
7554 			return -EEXIST;
7555 		}
7556 
7557 		map->pin_path = strdup(path);
7558 		if (!map->pin_path) {
7559 			err = -errno;
7560 			goto out_err;
7561 		}
7562 	}
7563 
7564 	err = make_parent_dir(map->pin_path);
7565 	if (err)
7566 		return err;
7567 
7568 	err = check_path(map->pin_path);
7569 	if (err)
7570 		return err;
7571 
7572 	if (bpf_obj_pin(map->fd, map->pin_path)) {
7573 		err = -errno;
7574 		goto out_err;
7575 	}
7576 
7577 	map->pinned = true;
7578 	pr_debug("pinned map '%s'\n", map->pin_path);
7579 
7580 	return 0;
7581 
7582 out_err:
7583 	cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7584 	pr_warn("failed to pin map: %s\n", cp);
7585 	return err;
7586 }
7587 
7588 int bpf_map__unpin(struct bpf_map *map, const char *path)
7589 {
7590 	int err;
7591 
7592 	if (map == NULL) {
7593 		pr_warn("invalid map pointer\n");
7594 		return -EINVAL;
7595 	}
7596 
7597 	if (map->pin_path) {
7598 		if (path && strcmp(path, map->pin_path)) {
7599 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7600 				bpf_map__name(map), map->pin_path, path);
7601 			return -EINVAL;
7602 		}
7603 		path = map->pin_path;
7604 	} else if (!path) {
7605 		pr_warn("no path to unpin map '%s' from\n",
7606 			bpf_map__name(map));
7607 		return -EINVAL;
7608 	}
7609 
7610 	err = check_path(path);
7611 	if (err)
7612 		return err;
7613 
7614 	err = unlink(path);
7615 	if (err != 0)
7616 		return -errno;
7617 
7618 	map->pinned = false;
7619 	pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
7620 
7621 	return 0;
7622 }
7623 
7624 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
7625 {
7626 	char *new = NULL;
7627 
7628 	if (path) {
7629 		new = strdup(path);
7630 		if (!new)
7631 			return -errno;
7632 	}
7633 
7634 	free(map->pin_path);
7635 	map->pin_path = new;
7636 	return 0;
7637 }
7638 
7639 const char *bpf_map__get_pin_path(const struct bpf_map *map)
7640 {
7641 	return map->pin_path;
7642 }
7643 
7644 bool bpf_map__is_pinned(const struct bpf_map *map)
7645 {
7646 	return map->pinned;
7647 }
7648 
7649 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
7650 {
7651 	struct bpf_map *map;
7652 	int err;
7653 
7654 	if (!obj)
7655 		return -ENOENT;
7656 
7657 	if (!obj->loaded) {
7658 		pr_warn("object not yet loaded; load it first\n");
7659 		return -ENOENT;
7660 	}
7661 
7662 	bpf_object__for_each_map(map, obj) {
7663 		char *pin_path = NULL;
7664 		char buf[PATH_MAX];
7665 
7666 		if (path) {
7667 			int len;
7668 
7669 			len = snprintf(buf, PATH_MAX, "%s/%s", path,
7670 				       bpf_map__name(map));
7671 			if (len < 0) {
7672 				err = -EINVAL;
7673 				goto err_unpin_maps;
7674 			} else if (len >= PATH_MAX) {
7675 				err = -ENAMETOOLONG;
7676 				goto err_unpin_maps;
7677 			}
7678 			pin_path = buf;
7679 		} else if (!map->pin_path) {
7680 			continue;
7681 		}
7682 
7683 		err = bpf_map__pin(map, pin_path);
7684 		if (err)
7685 			goto err_unpin_maps;
7686 	}
7687 
7688 	return 0;
7689 
7690 err_unpin_maps:
7691 	while ((map = bpf_map__prev(map, obj))) {
7692 		if (!map->pin_path)
7693 			continue;
7694 
7695 		bpf_map__unpin(map, NULL);
7696 	}
7697 
7698 	return err;
7699 }
7700 
7701 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
7702 {
7703 	struct bpf_map *map;
7704 	int err;
7705 
7706 	if (!obj)
7707 		return -ENOENT;
7708 
7709 	bpf_object__for_each_map(map, obj) {
7710 		char *pin_path = NULL;
7711 		char buf[PATH_MAX];
7712 
7713 		if (path) {
7714 			int len;
7715 
7716 			len = snprintf(buf, PATH_MAX, "%s/%s", path,
7717 				       bpf_map__name(map));
7718 			if (len < 0)
7719 				return -EINVAL;
7720 			else if (len >= PATH_MAX)
7721 				return -ENAMETOOLONG;
7722 			pin_path = buf;
7723 		} else if (!map->pin_path) {
7724 			continue;
7725 		}
7726 
7727 		err = bpf_map__unpin(map, pin_path);
7728 		if (err)
7729 			return err;
7730 	}
7731 
7732 	return 0;
7733 }
7734 
7735 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
7736 {
7737 	struct bpf_program *prog;
7738 	int err;
7739 
7740 	if (!obj)
7741 		return -ENOENT;
7742 
7743 	if (!obj->loaded) {
7744 		pr_warn("object not yet loaded; load it first\n");
7745 		return -ENOENT;
7746 	}
7747 
7748 	bpf_object__for_each_program(prog, obj) {
7749 		char buf[PATH_MAX];
7750 		int len;
7751 
7752 		len = snprintf(buf, PATH_MAX, "%s/%s", path,
7753 			       prog->pin_name);
7754 		if (len < 0) {
7755 			err = -EINVAL;
7756 			goto err_unpin_programs;
7757 		} else if (len >= PATH_MAX) {
7758 			err = -ENAMETOOLONG;
7759 			goto err_unpin_programs;
7760 		}
7761 
7762 		err = bpf_program__pin(prog, buf);
7763 		if (err)
7764 			goto err_unpin_programs;
7765 	}
7766 
7767 	return 0;
7768 
7769 err_unpin_programs:
7770 	while ((prog = bpf_program__prev(prog, obj))) {
7771 		char buf[PATH_MAX];
7772 		int len;
7773 
7774 		len = snprintf(buf, PATH_MAX, "%s/%s", path,
7775 			       prog->pin_name);
7776 		if (len < 0)
7777 			continue;
7778 		else if (len >= PATH_MAX)
7779 			continue;
7780 
7781 		bpf_program__unpin(prog, buf);
7782 	}
7783 
7784 	return err;
7785 }
7786 
7787 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
7788 {
7789 	struct bpf_program *prog;
7790 	int err;
7791 
7792 	if (!obj)
7793 		return -ENOENT;
7794 
7795 	bpf_object__for_each_program(prog, obj) {
7796 		char buf[PATH_MAX];
7797 		int len;
7798 
7799 		len = snprintf(buf, PATH_MAX, "%s/%s", path,
7800 			       prog->pin_name);
7801 		if (len < 0)
7802 			return -EINVAL;
7803 		else if (len >= PATH_MAX)
7804 			return -ENAMETOOLONG;
7805 
7806 		err = bpf_program__unpin(prog, buf);
7807 		if (err)
7808 			return err;
7809 	}
7810 
7811 	return 0;
7812 }
7813 
7814 int bpf_object__pin(struct bpf_object *obj, const char *path)
7815 {
7816 	int err;
7817 
7818 	err = bpf_object__pin_maps(obj, path);
7819 	if (err)
7820 		return err;
7821 
7822 	err = bpf_object__pin_programs(obj, path);
7823 	if (err) {
7824 		bpf_object__unpin_maps(obj, path);
7825 		return err;
7826 	}
7827 
7828 	return 0;
7829 }
7830 
7831 static void bpf_map__destroy(struct bpf_map *map)
7832 {
7833 	if (map->clear_priv)
7834 		map->clear_priv(map, map->priv);
7835 	map->priv = NULL;
7836 	map->clear_priv = NULL;
7837 
7838 	if (map->inner_map) {
7839 		bpf_map__destroy(map->inner_map);
7840 		zfree(&map->inner_map);
7841 	}
7842 
7843 	zfree(&map->init_slots);
7844 	map->init_slots_sz = 0;
7845 
7846 	if (map->mmaped) {
7847 		munmap(map->mmaped, bpf_map_mmap_sz(map));
7848 		map->mmaped = NULL;
7849 	}
7850 
7851 	if (map->st_ops) {
7852 		zfree(&map->st_ops->data);
7853 		zfree(&map->st_ops->progs);
7854 		zfree(&map->st_ops->kern_func_off);
7855 		zfree(&map->st_ops);
7856 	}
7857 
7858 	zfree(&map->name);
7859 	zfree(&map->pin_path);
7860 
7861 	if (map->fd >= 0)
7862 		zclose(map->fd);
7863 }
7864 
7865 void bpf_object__close(struct bpf_object *obj)
7866 {
7867 	size_t i;
7868 
7869 	if (IS_ERR_OR_NULL(obj))
7870 		return;
7871 
7872 	if (obj->clear_priv)
7873 		obj->clear_priv(obj, obj->priv);
7874 
7875 	bpf_object__elf_finish(obj);
7876 	bpf_object__unload(obj);
7877 	btf__free(obj->btf);
7878 	btf_ext__free(obj->btf_ext);
7879 
7880 	for (i = 0; i < obj->nr_maps; i++)
7881 		bpf_map__destroy(&obj->maps[i]);
7882 
7883 	zfree(&obj->kconfig);
7884 	zfree(&obj->externs);
7885 	obj->nr_extern = 0;
7886 
7887 	zfree(&obj->maps);
7888 	obj->nr_maps = 0;
7889 
7890 	if (obj->programs && obj->nr_programs) {
7891 		for (i = 0; i < obj->nr_programs; i++)
7892 			bpf_program__exit(&obj->programs[i]);
7893 	}
7894 	zfree(&obj->programs);
7895 
7896 	list_del(&obj->list);
7897 	free(obj);
7898 }
7899 
7900 struct bpf_object *
7901 bpf_object__next(struct bpf_object *prev)
7902 {
7903 	struct bpf_object *next;
7904 
7905 	if (!prev)
7906 		next = list_first_entry(&bpf_objects_list,
7907 					struct bpf_object,
7908 					list);
7909 	else
7910 		next = list_next_entry(prev, list);
7911 
7912 	/* Empty list is noticed here so don't need checking on entry. */
7913 	if (&next->list == &bpf_objects_list)
7914 		return NULL;
7915 
7916 	return next;
7917 }
7918 
7919 const char *bpf_object__name(const struct bpf_object *obj)
7920 {
7921 	return obj ? obj->name : ERR_PTR(-EINVAL);
7922 }
7923 
7924 unsigned int bpf_object__kversion(const struct bpf_object *obj)
7925 {
7926 	return obj ? obj->kern_version : 0;
7927 }
7928 
7929 struct btf *bpf_object__btf(const struct bpf_object *obj)
7930 {
7931 	return obj ? obj->btf : NULL;
7932 }
7933 
7934 int bpf_object__btf_fd(const struct bpf_object *obj)
7935 {
7936 	return obj->btf ? btf__fd(obj->btf) : -1;
7937 }
7938 
7939 int bpf_object__set_priv(struct bpf_object *obj, void *priv,
7940 			 bpf_object_clear_priv_t clear_priv)
7941 {
7942 	if (obj->priv && obj->clear_priv)
7943 		obj->clear_priv(obj, obj->priv);
7944 
7945 	obj->priv = priv;
7946 	obj->clear_priv = clear_priv;
7947 	return 0;
7948 }
7949 
7950 void *bpf_object__priv(const struct bpf_object *obj)
7951 {
7952 	return obj ? obj->priv : ERR_PTR(-EINVAL);
7953 }
7954 
7955 static struct bpf_program *
7956 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
7957 		    bool forward)
7958 {
7959 	size_t nr_programs = obj->nr_programs;
7960 	ssize_t idx;
7961 
7962 	if (!nr_programs)
7963 		return NULL;
7964 
7965 	if (!p)
7966 		/* Iter from the beginning */
7967 		return forward ? &obj->programs[0] :
7968 			&obj->programs[nr_programs - 1];
7969 
7970 	if (p->obj != obj) {
7971 		pr_warn("error: program handler doesn't match object\n");
7972 		return NULL;
7973 	}
7974 
7975 	idx = (p - obj->programs) + (forward ? 1 : -1);
7976 	if (idx >= obj->nr_programs || idx < 0)
7977 		return NULL;
7978 	return &obj->programs[idx];
7979 }
7980 
7981 struct bpf_program *
7982 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj)
7983 {
7984 	struct bpf_program *prog = prev;
7985 
7986 	do {
7987 		prog = __bpf_program__iter(prog, obj, true);
7988 	} while (prog && prog_is_subprog(obj, prog));
7989 
7990 	return prog;
7991 }
7992 
7993 struct bpf_program *
7994 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj)
7995 {
7996 	struct bpf_program *prog = next;
7997 
7998 	do {
7999 		prog = __bpf_program__iter(prog, obj, false);
8000 	} while (prog && prog_is_subprog(obj, prog));
8001 
8002 	return prog;
8003 }
8004 
8005 int bpf_program__set_priv(struct bpf_program *prog, void *priv,
8006 			  bpf_program_clear_priv_t clear_priv)
8007 {
8008 	if (prog->priv && prog->clear_priv)
8009 		prog->clear_priv(prog, prog->priv);
8010 
8011 	prog->priv = priv;
8012 	prog->clear_priv = clear_priv;
8013 	return 0;
8014 }
8015 
8016 void *bpf_program__priv(const struct bpf_program *prog)
8017 {
8018 	return prog ? prog->priv : ERR_PTR(-EINVAL);
8019 }
8020 
8021 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8022 {
8023 	prog->prog_ifindex = ifindex;
8024 }
8025 
8026 const char *bpf_program__name(const struct bpf_program *prog)
8027 {
8028 	return prog->name;
8029 }
8030 
8031 const char *bpf_program__section_name(const struct bpf_program *prog)
8032 {
8033 	return prog->sec_name;
8034 }
8035 
8036 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy)
8037 {
8038 	const char *title;
8039 
8040 	title = prog->sec_name;
8041 	if (needs_copy) {
8042 		title = strdup(title);
8043 		if (!title) {
8044 			pr_warn("failed to strdup program title\n");
8045 			return ERR_PTR(-ENOMEM);
8046 		}
8047 	}
8048 
8049 	return title;
8050 }
8051 
8052 bool bpf_program__autoload(const struct bpf_program *prog)
8053 {
8054 	return prog->load;
8055 }
8056 
8057 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8058 {
8059 	if (prog->obj->loaded)
8060 		return -EINVAL;
8061 
8062 	prog->load = autoload;
8063 	return 0;
8064 }
8065 
8066 int bpf_program__fd(const struct bpf_program *prog)
8067 {
8068 	return bpf_program__nth_fd(prog, 0);
8069 }
8070 
8071 size_t bpf_program__size(const struct bpf_program *prog)
8072 {
8073 	return prog->insns_cnt * BPF_INSN_SZ;
8074 }
8075 
8076 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances,
8077 			  bpf_program_prep_t prep)
8078 {
8079 	int *instances_fds;
8080 
8081 	if (nr_instances <= 0 || !prep)
8082 		return -EINVAL;
8083 
8084 	if (prog->instances.nr > 0 || prog->instances.fds) {
8085 		pr_warn("Can't set pre-processor after loading\n");
8086 		return -EINVAL;
8087 	}
8088 
8089 	instances_fds = malloc(sizeof(int) * nr_instances);
8090 	if (!instances_fds) {
8091 		pr_warn("alloc memory failed for fds\n");
8092 		return -ENOMEM;
8093 	}
8094 
8095 	/* fill all fd with -1 */
8096 	memset(instances_fds, -1, sizeof(int) * nr_instances);
8097 
8098 	prog->instances.nr = nr_instances;
8099 	prog->instances.fds = instances_fds;
8100 	prog->preprocessor = prep;
8101 	return 0;
8102 }
8103 
8104 int bpf_program__nth_fd(const struct bpf_program *prog, int n)
8105 {
8106 	int fd;
8107 
8108 	if (!prog)
8109 		return -EINVAL;
8110 
8111 	if (n >= prog->instances.nr || n < 0) {
8112 		pr_warn("Can't get the %dth fd from program %s: only %d instances\n",
8113 			n, prog->name, prog->instances.nr);
8114 		return -EINVAL;
8115 	}
8116 
8117 	fd = prog->instances.fds[n];
8118 	if (fd < 0) {
8119 		pr_warn("%dth instance of program '%s' is invalid\n",
8120 			n, prog->name);
8121 		return -ENOENT;
8122 	}
8123 
8124 	return fd;
8125 }
8126 
8127 enum bpf_prog_type bpf_program__get_type(struct bpf_program *prog)
8128 {
8129 	return prog->type;
8130 }
8131 
8132 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8133 {
8134 	prog->type = type;
8135 }
8136 
8137 static bool bpf_program__is_type(const struct bpf_program *prog,
8138 				 enum bpf_prog_type type)
8139 {
8140 	return prog ? (prog->type == type) : false;
8141 }
8142 
8143 #define BPF_PROG_TYPE_FNS(NAME, TYPE)				\
8144 int bpf_program__set_##NAME(struct bpf_program *prog)		\
8145 {								\
8146 	if (!prog)						\
8147 		return -EINVAL;					\
8148 	bpf_program__set_type(prog, TYPE);			\
8149 	return 0;						\
8150 }								\
8151 								\
8152 bool bpf_program__is_##NAME(const struct bpf_program *prog)	\
8153 {								\
8154 	return bpf_program__is_type(prog, TYPE);		\
8155 }								\
8156 
8157 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER);
8158 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM);
8159 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE);
8160 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS);
8161 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT);
8162 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT);
8163 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT);
8164 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP);
8165 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT);
8166 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING);
8167 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS);
8168 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT);
8169 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP);
8170 
8171 enum bpf_attach_type
8172 bpf_program__get_expected_attach_type(struct bpf_program *prog)
8173 {
8174 	return prog->expected_attach_type;
8175 }
8176 
8177 void bpf_program__set_expected_attach_type(struct bpf_program *prog,
8178 					   enum bpf_attach_type type)
8179 {
8180 	prog->expected_attach_type = type;
8181 }
8182 
8183 #define BPF_PROG_SEC_IMPL(string, ptype, eatype, eatype_optional,	    \
8184 			  attachable, attach_btf)			    \
8185 	{								    \
8186 		.sec = string,						    \
8187 		.len = sizeof(string) - 1,				    \
8188 		.prog_type = ptype,					    \
8189 		.expected_attach_type = eatype,				    \
8190 		.is_exp_attach_type_optional = eatype_optional,		    \
8191 		.is_attachable = attachable,				    \
8192 		.is_attach_btf = attach_btf,				    \
8193 	}
8194 
8195 /* Programs that can NOT be attached. */
8196 #define BPF_PROG_SEC(string, ptype) BPF_PROG_SEC_IMPL(string, ptype, 0, 0, 0, 0)
8197 
8198 /* Programs that can be attached. */
8199 #define BPF_APROG_SEC(string, ptype, atype) \
8200 	BPF_PROG_SEC_IMPL(string, ptype, atype, true, 1, 0)
8201 
8202 /* Programs that must specify expected attach type at load time. */
8203 #define BPF_EAPROG_SEC(string, ptype, eatype) \
8204 	BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 1, 0)
8205 
8206 /* Programs that use BTF to identify attach point */
8207 #define BPF_PROG_BTF(string, ptype, eatype) \
8208 	BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 0, 1)
8209 
8210 /* Programs that can be attached but attach type can't be identified by section
8211  * name. Kept for backward compatibility.
8212  */
8213 #define BPF_APROG_COMPAT(string, ptype) BPF_PROG_SEC(string, ptype)
8214 
8215 #define SEC_DEF(sec_pfx, ptype, ...) {					    \
8216 	.sec = sec_pfx,							    \
8217 	.len = sizeof(sec_pfx) - 1,					    \
8218 	.prog_type = BPF_PROG_TYPE_##ptype,				    \
8219 	__VA_ARGS__							    \
8220 }
8221 
8222 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec,
8223 				      struct bpf_program *prog);
8224 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec,
8225 				  struct bpf_program *prog);
8226 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec,
8227 				      struct bpf_program *prog);
8228 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec,
8229 				     struct bpf_program *prog);
8230 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec,
8231 				   struct bpf_program *prog);
8232 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec,
8233 				    struct bpf_program *prog);
8234 
8235 static const struct bpf_sec_def section_defs[] = {
8236 	BPF_PROG_SEC("socket",			BPF_PROG_TYPE_SOCKET_FILTER),
8237 	BPF_PROG_SEC("sk_reuseport",		BPF_PROG_TYPE_SK_REUSEPORT),
8238 	SEC_DEF("kprobe/", KPROBE,
8239 		.attach_fn = attach_kprobe),
8240 	BPF_PROG_SEC("uprobe/",			BPF_PROG_TYPE_KPROBE),
8241 	SEC_DEF("kretprobe/", KPROBE,
8242 		.attach_fn = attach_kprobe),
8243 	BPF_PROG_SEC("uretprobe/",		BPF_PROG_TYPE_KPROBE),
8244 	BPF_PROG_SEC("classifier",		BPF_PROG_TYPE_SCHED_CLS),
8245 	BPF_PROG_SEC("action",			BPF_PROG_TYPE_SCHED_ACT),
8246 	SEC_DEF("tracepoint/", TRACEPOINT,
8247 		.attach_fn = attach_tp),
8248 	SEC_DEF("tp/", TRACEPOINT,
8249 		.attach_fn = attach_tp),
8250 	SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT,
8251 		.attach_fn = attach_raw_tp),
8252 	SEC_DEF("raw_tp/", RAW_TRACEPOINT,
8253 		.attach_fn = attach_raw_tp),
8254 	SEC_DEF("tp_btf/", TRACING,
8255 		.expected_attach_type = BPF_TRACE_RAW_TP,
8256 		.is_attach_btf = true,
8257 		.attach_fn = attach_trace),
8258 	SEC_DEF("fentry/", TRACING,
8259 		.expected_attach_type = BPF_TRACE_FENTRY,
8260 		.is_attach_btf = true,
8261 		.attach_fn = attach_trace),
8262 	SEC_DEF("fmod_ret/", TRACING,
8263 		.expected_attach_type = BPF_MODIFY_RETURN,
8264 		.is_attach_btf = true,
8265 		.attach_fn = attach_trace),
8266 	SEC_DEF("fexit/", TRACING,
8267 		.expected_attach_type = BPF_TRACE_FEXIT,
8268 		.is_attach_btf = true,
8269 		.attach_fn = attach_trace),
8270 	SEC_DEF("fentry.s/", TRACING,
8271 		.expected_attach_type = BPF_TRACE_FENTRY,
8272 		.is_attach_btf = true,
8273 		.is_sleepable = true,
8274 		.attach_fn = attach_trace),
8275 	SEC_DEF("fmod_ret.s/", TRACING,
8276 		.expected_attach_type = BPF_MODIFY_RETURN,
8277 		.is_attach_btf = true,
8278 		.is_sleepable = true,
8279 		.attach_fn = attach_trace),
8280 	SEC_DEF("fexit.s/", TRACING,
8281 		.expected_attach_type = BPF_TRACE_FEXIT,
8282 		.is_attach_btf = true,
8283 		.is_sleepable = true,
8284 		.attach_fn = attach_trace),
8285 	SEC_DEF("freplace/", EXT,
8286 		.is_attach_btf = true,
8287 		.attach_fn = attach_trace),
8288 	SEC_DEF("lsm/", LSM,
8289 		.is_attach_btf = true,
8290 		.expected_attach_type = BPF_LSM_MAC,
8291 		.attach_fn = attach_lsm),
8292 	SEC_DEF("lsm.s/", LSM,
8293 		.is_attach_btf = true,
8294 		.is_sleepable = true,
8295 		.expected_attach_type = BPF_LSM_MAC,
8296 		.attach_fn = attach_lsm),
8297 	SEC_DEF("iter/", TRACING,
8298 		.expected_attach_type = BPF_TRACE_ITER,
8299 		.is_attach_btf = true,
8300 		.attach_fn = attach_iter),
8301 	BPF_EAPROG_SEC("xdp_devmap/",		BPF_PROG_TYPE_XDP,
8302 						BPF_XDP_DEVMAP),
8303 	BPF_EAPROG_SEC("xdp_cpumap/",		BPF_PROG_TYPE_XDP,
8304 						BPF_XDP_CPUMAP),
8305 	BPF_APROG_SEC("xdp",			BPF_PROG_TYPE_XDP,
8306 						BPF_XDP),
8307 	BPF_PROG_SEC("perf_event",		BPF_PROG_TYPE_PERF_EVENT),
8308 	BPF_PROG_SEC("lwt_in",			BPF_PROG_TYPE_LWT_IN),
8309 	BPF_PROG_SEC("lwt_out",			BPF_PROG_TYPE_LWT_OUT),
8310 	BPF_PROG_SEC("lwt_xmit",		BPF_PROG_TYPE_LWT_XMIT),
8311 	BPF_PROG_SEC("lwt_seg6local",		BPF_PROG_TYPE_LWT_SEG6LOCAL),
8312 	BPF_APROG_SEC("cgroup_skb/ingress",	BPF_PROG_TYPE_CGROUP_SKB,
8313 						BPF_CGROUP_INET_INGRESS),
8314 	BPF_APROG_SEC("cgroup_skb/egress",	BPF_PROG_TYPE_CGROUP_SKB,
8315 						BPF_CGROUP_INET_EGRESS),
8316 	BPF_APROG_COMPAT("cgroup/skb",		BPF_PROG_TYPE_CGROUP_SKB),
8317 	BPF_EAPROG_SEC("cgroup/sock_create",	BPF_PROG_TYPE_CGROUP_SOCK,
8318 						BPF_CGROUP_INET_SOCK_CREATE),
8319 	BPF_EAPROG_SEC("cgroup/sock_release",	BPF_PROG_TYPE_CGROUP_SOCK,
8320 						BPF_CGROUP_INET_SOCK_RELEASE),
8321 	BPF_APROG_SEC("cgroup/sock",		BPF_PROG_TYPE_CGROUP_SOCK,
8322 						BPF_CGROUP_INET_SOCK_CREATE),
8323 	BPF_EAPROG_SEC("cgroup/post_bind4",	BPF_PROG_TYPE_CGROUP_SOCK,
8324 						BPF_CGROUP_INET4_POST_BIND),
8325 	BPF_EAPROG_SEC("cgroup/post_bind6",	BPF_PROG_TYPE_CGROUP_SOCK,
8326 						BPF_CGROUP_INET6_POST_BIND),
8327 	BPF_APROG_SEC("cgroup/dev",		BPF_PROG_TYPE_CGROUP_DEVICE,
8328 						BPF_CGROUP_DEVICE),
8329 	BPF_APROG_SEC("sockops",		BPF_PROG_TYPE_SOCK_OPS,
8330 						BPF_CGROUP_SOCK_OPS),
8331 	BPF_APROG_SEC("sk_skb/stream_parser",	BPF_PROG_TYPE_SK_SKB,
8332 						BPF_SK_SKB_STREAM_PARSER),
8333 	BPF_APROG_SEC("sk_skb/stream_verdict",	BPF_PROG_TYPE_SK_SKB,
8334 						BPF_SK_SKB_STREAM_VERDICT),
8335 	BPF_APROG_COMPAT("sk_skb",		BPF_PROG_TYPE_SK_SKB),
8336 	BPF_APROG_SEC("sk_msg",			BPF_PROG_TYPE_SK_MSG,
8337 						BPF_SK_MSG_VERDICT),
8338 	BPF_APROG_SEC("lirc_mode2",		BPF_PROG_TYPE_LIRC_MODE2,
8339 						BPF_LIRC_MODE2),
8340 	BPF_APROG_SEC("flow_dissector",		BPF_PROG_TYPE_FLOW_DISSECTOR,
8341 						BPF_FLOW_DISSECTOR),
8342 	BPF_EAPROG_SEC("cgroup/bind4",		BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8343 						BPF_CGROUP_INET4_BIND),
8344 	BPF_EAPROG_SEC("cgroup/bind6",		BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8345 						BPF_CGROUP_INET6_BIND),
8346 	BPF_EAPROG_SEC("cgroup/connect4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8347 						BPF_CGROUP_INET4_CONNECT),
8348 	BPF_EAPROG_SEC("cgroup/connect6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8349 						BPF_CGROUP_INET6_CONNECT),
8350 	BPF_EAPROG_SEC("cgroup/sendmsg4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8351 						BPF_CGROUP_UDP4_SENDMSG),
8352 	BPF_EAPROG_SEC("cgroup/sendmsg6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8353 						BPF_CGROUP_UDP6_SENDMSG),
8354 	BPF_EAPROG_SEC("cgroup/recvmsg4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8355 						BPF_CGROUP_UDP4_RECVMSG),
8356 	BPF_EAPROG_SEC("cgroup/recvmsg6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8357 						BPF_CGROUP_UDP6_RECVMSG),
8358 	BPF_EAPROG_SEC("cgroup/getpeername4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8359 						BPF_CGROUP_INET4_GETPEERNAME),
8360 	BPF_EAPROG_SEC("cgroup/getpeername6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8361 						BPF_CGROUP_INET6_GETPEERNAME),
8362 	BPF_EAPROG_SEC("cgroup/getsockname4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8363 						BPF_CGROUP_INET4_GETSOCKNAME),
8364 	BPF_EAPROG_SEC("cgroup/getsockname6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8365 						BPF_CGROUP_INET6_GETSOCKNAME),
8366 	BPF_EAPROG_SEC("cgroup/sysctl",		BPF_PROG_TYPE_CGROUP_SYSCTL,
8367 						BPF_CGROUP_SYSCTL),
8368 	BPF_EAPROG_SEC("cgroup/getsockopt",	BPF_PROG_TYPE_CGROUP_SOCKOPT,
8369 						BPF_CGROUP_GETSOCKOPT),
8370 	BPF_EAPROG_SEC("cgroup/setsockopt",	BPF_PROG_TYPE_CGROUP_SOCKOPT,
8371 						BPF_CGROUP_SETSOCKOPT),
8372 	BPF_PROG_SEC("struct_ops",		BPF_PROG_TYPE_STRUCT_OPS),
8373 	BPF_EAPROG_SEC("sk_lookup/",		BPF_PROG_TYPE_SK_LOOKUP,
8374 						BPF_SK_LOOKUP),
8375 };
8376 
8377 #undef BPF_PROG_SEC_IMPL
8378 #undef BPF_PROG_SEC
8379 #undef BPF_APROG_SEC
8380 #undef BPF_EAPROG_SEC
8381 #undef BPF_APROG_COMPAT
8382 #undef SEC_DEF
8383 
8384 #define MAX_TYPE_NAME_SIZE 32
8385 
8386 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
8387 {
8388 	int i, n = ARRAY_SIZE(section_defs);
8389 
8390 	for (i = 0; i < n; i++) {
8391 		if (strncmp(sec_name,
8392 			    section_defs[i].sec, section_defs[i].len))
8393 			continue;
8394 		return &section_defs[i];
8395 	}
8396 	return NULL;
8397 }
8398 
8399 static char *libbpf_get_type_names(bool attach_type)
8400 {
8401 	int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
8402 	char *buf;
8403 
8404 	buf = malloc(len);
8405 	if (!buf)
8406 		return NULL;
8407 
8408 	buf[0] = '\0';
8409 	/* Forge string buf with all available names */
8410 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8411 		if (attach_type && !section_defs[i].is_attachable)
8412 			continue;
8413 
8414 		if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
8415 			free(buf);
8416 			return NULL;
8417 		}
8418 		strcat(buf, " ");
8419 		strcat(buf, section_defs[i].sec);
8420 	}
8421 
8422 	return buf;
8423 }
8424 
8425 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
8426 			     enum bpf_attach_type *expected_attach_type)
8427 {
8428 	const struct bpf_sec_def *sec_def;
8429 	char *type_names;
8430 
8431 	if (!name)
8432 		return -EINVAL;
8433 
8434 	sec_def = find_sec_def(name);
8435 	if (sec_def) {
8436 		*prog_type = sec_def->prog_type;
8437 		*expected_attach_type = sec_def->expected_attach_type;
8438 		return 0;
8439 	}
8440 
8441 	pr_debug("failed to guess program type from ELF section '%s'\n", name);
8442 	type_names = libbpf_get_type_names(false);
8443 	if (type_names != NULL) {
8444 		pr_debug("supported section(type) names are:%s\n", type_names);
8445 		free(type_names);
8446 	}
8447 
8448 	return -ESRCH;
8449 }
8450 
8451 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
8452 						     size_t offset)
8453 {
8454 	struct bpf_map *map;
8455 	size_t i;
8456 
8457 	for (i = 0; i < obj->nr_maps; i++) {
8458 		map = &obj->maps[i];
8459 		if (!bpf_map__is_struct_ops(map))
8460 			continue;
8461 		if (map->sec_offset <= offset &&
8462 		    offset - map->sec_offset < map->def.value_size)
8463 			return map;
8464 	}
8465 
8466 	return NULL;
8467 }
8468 
8469 /* Collect the reloc from ELF and populate the st_ops->progs[] */
8470 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
8471 					    GElf_Shdr *shdr, Elf_Data *data)
8472 {
8473 	const struct btf_member *member;
8474 	struct bpf_struct_ops *st_ops;
8475 	struct bpf_program *prog;
8476 	unsigned int shdr_idx;
8477 	const struct btf *btf;
8478 	struct bpf_map *map;
8479 	Elf_Data *symbols;
8480 	unsigned int moff, insn_idx;
8481 	const char *name;
8482 	__u32 member_idx;
8483 	GElf_Sym sym;
8484 	GElf_Rel rel;
8485 	int i, nrels;
8486 
8487 	symbols = obj->efile.symbols;
8488 	btf = obj->btf;
8489 	nrels = shdr->sh_size / shdr->sh_entsize;
8490 	for (i = 0; i < nrels; i++) {
8491 		if (!gelf_getrel(data, i, &rel)) {
8492 			pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
8493 			return -LIBBPF_ERRNO__FORMAT;
8494 		}
8495 
8496 		if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
8497 			pr_warn("struct_ops reloc: symbol %zx not found\n",
8498 				(size_t)GELF_R_SYM(rel.r_info));
8499 			return -LIBBPF_ERRNO__FORMAT;
8500 		}
8501 
8502 		name = elf_sym_str(obj, sym.st_name) ?: "<?>";
8503 		map = find_struct_ops_map_by_offset(obj, rel.r_offset);
8504 		if (!map) {
8505 			pr_warn("struct_ops reloc: cannot find map at rel.r_offset %zu\n",
8506 				(size_t)rel.r_offset);
8507 			return -EINVAL;
8508 		}
8509 
8510 		moff = rel.r_offset - map->sec_offset;
8511 		shdr_idx = sym.st_shndx;
8512 		st_ops = map->st_ops;
8513 		pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel.r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
8514 			 map->name,
8515 			 (long long)(rel.r_info >> 32),
8516 			 (long long)sym.st_value,
8517 			 shdr_idx, (size_t)rel.r_offset,
8518 			 map->sec_offset, sym.st_name, name);
8519 
8520 		if (shdr_idx >= SHN_LORESERVE) {
8521 			pr_warn("struct_ops reloc %s: rel.r_offset %zu shdr_idx %u unsupported non-static function\n",
8522 				map->name, (size_t)rel.r_offset, shdr_idx);
8523 			return -LIBBPF_ERRNO__RELOC;
8524 		}
8525 		if (sym.st_value % BPF_INSN_SZ) {
8526 			pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
8527 				map->name, (unsigned long long)sym.st_value);
8528 			return -LIBBPF_ERRNO__FORMAT;
8529 		}
8530 		insn_idx = sym.st_value / BPF_INSN_SZ;
8531 
8532 		member = find_member_by_offset(st_ops->type, moff * 8);
8533 		if (!member) {
8534 			pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
8535 				map->name, moff);
8536 			return -EINVAL;
8537 		}
8538 		member_idx = member - btf_members(st_ops->type);
8539 		name = btf__name_by_offset(btf, member->name_off);
8540 
8541 		if (!resolve_func_ptr(btf, member->type, NULL)) {
8542 			pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
8543 				map->name, name);
8544 			return -EINVAL;
8545 		}
8546 
8547 		prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
8548 		if (!prog) {
8549 			pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
8550 				map->name, shdr_idx, name);
8551 			return -EINVAL;
8552 		}
8553 
8554 		if (prog->type == BPF_PROG_TYPE_UNSPEC) {
8555 			const struct bpf_sec_def *sec_def;
8556 
8557 			sec_def = find_sec_def(prog->sec_name);
8558 			if (sec_def &&
8559 			    sec_def->prog_type != BPF_PROG_TYPE_STRUCT_OPS) {
8560 				/* for pr_warn */
8561 				prog->type = sec_def->prog_type;
8562 				goto invalid_prog;
8563 			}
8564 
8565 			prog->type = BPF_PROG_TYPE_STRUCT_OPS;
8566 			prog->attach_btf_id = st_ops->type_id;
8567 			prog->expected_attach_type = member_idx;
8568 		} else if (prog->type != BPF_PROG_TYPE_STRUCT_OPS ||
8569 			   prog->attach_btf_id != st_ops->type_id ||
8570 			   prog->expected_attach_type != member_idx) {
8571 			goto invalid_prog;
8572 		}
8573 		st_ops->progs[member_idx] = prog;
8574 	}
8575 
8576 	return 0;
8577 
8578 invalid_prog:
8579 	pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
8580 		map->name, prog->name, prog->sec_name, prog->type,
8581 		prog->attach_btf_id, prog->expected_attach_type, name);
8582 	return -EINVAL;
8583 }
8584 
8585 #define BTF_TRACE_PREFIX "btf_trace_"
8586 #define BTF_LSM_PREFIX "bpf_lsm_"
8587 #define BTF_ITER_PREFIX "bpf_iter_"
8588 #define BTF_MAX_NAME_SIZE 128
8589 
8590 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
8591 				   const char *name, __u32 kind)
8592 {
8593 	char btf_type_name[BTF_MAX_NAME_SIZE];
8594 	int ret;
8595 
8596 	ret = snprintf(btf_type_name, sizeof(btf_type_name),
8597 		       "%s%s", prefix, name);
8598 	/* snprintf returns the number of characters written excluding the
8599 	 * the terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
8600 	 * indicates truncation.
8601 	 */
8602 	if (ret < 0 || ret >= sizeof(btf_type_name))
8603 		return -ENAMETOOLONG;
8604 	return btf__find_by_name_kind(btf, btf_type_name, kind);
8605 }
8606 
8607 static inline int __find_vmlinux_btf_id(struct btf *btf, const char *name,
8608 					enum bpf_attach_type attach_type)
8609 {
8610 	int err;
8611 
8612 	if (attach_type == BPF_TRACE_RAW_TP)
8613 		err = find_btf_by_prefix_kind(btf, BTF_TRACE_PREFIX, name,
8614 					      BTF_KIND_TYPEDEF);
8615 	else if (attach_type == BPF_LSM_MAC)
8616 		err = find_btf_by_prefix_kind(btf, BTF_LSM_PREFIX, name,
8617 					      BTF_KIND_FUNC);
8618 	else if (attach_type == BPF_TRACE_ITER)
8619 		err = find_btf_by_prefix_kind(btf, BTF_ITER_PREFIX, name,
8620 					      BTF_KIND_FUNC);
8621 	else
8622 		err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
8623 
8624 	if (err <= 0)
8625 		pr_warn("%s is not found in vmlinux BTF\n", name);
8626 
8627 	return err;
8628 }
8629 
8630 int libbpf_find_vmlinux_btf_id(const char *name,
8631 			       enum bpf_attach_type attach_type)
8632 {
8633 	struct btf *btf;
8634 	int err;
8635 
8636 	btf = libbpf_find_kernel_btf();
8637 	if (IS_ERR(btf)) {
8638 		pr_warn("vmlinux BTF is not found\n");
8639 		return -EINVAL;
8640 	}
8641 
8642 	err = __find_vmlinux_btf_id(btf, name, attach_type);
8643 	btf__free(btf);
8644 	return err;
8645 }
8646 
8647 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
8648 {
8649 	struct bpf_prog_info_linear *info_linear;
8650 	struct bpf_prog_info *info;
8651 	struct btf *btf = NULL;
8652 	int err = -EINVAL;
8653 
8654 	info_linear = bpf_program__get_prog_info_linear(attach_prog_fd, 0);
8655 	if (IS_ERR_OR_NULL(info_linear)) {
8656 		pr_warn("failed get_prog_info_linear for FD %d\n",
8657 			attach_prog_fd);
8658 		return -EINVAL;
8659 	}
8660 	info = &info_linear->info;
8661 	if (!info->btf_id) {
8662 		pr_warn("The target program doesn't have BTF\n");
8663 		goto out;
8664 	}
8665 	if (btf__get_from_id(info->btf_id, &btf)) {
8666 		pr_warn("Failed to get BTF of the program\n");
8667 		goto out;
8668 	}
8669 	err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
8670 	btf__free(btf);
8671 	if (err <= 0) {
8672 		pr_warn("%s is not found in prog's BTF\n", name);
8673 		goto out;
8674 	}
8675 out:
8676 	free(info_linear);
8677 	return err;
8678 }
8679 
8680 static int libbpf_find_attach_btf_id(struct bpf_program *prog)
8681 {
8682 	enum bpf_attach_type attach_type = prog->expected_attach_type;
8683 	__u32 attach_prog_fd = prog->attach_prog_fd;
8684 	const char *name = prog->sec_name;
8685 	int i, err;
8686 
8687 	if (!name)
8688 		return -EINVAL;
8689 
8690 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8691 		if (!section_defs[i].is_attach_btf)
8692 			continue;
8693 		if (strncmp(name, section_defs[i].sec, section_defs[i].len))
8694 			continue;
8695 		if (attach_prog_fd)
8696 			err = libbpf_find_prog_btf_id(name + section_defs[i].len,
8697 						      attach_prog_fd);
8698 		else
8699 			err = __find_vmlinux_btf_id(prog->obj->btf_vmlinux,
8700 						    name + section_defs[i].len,
8701 						    attach_type);
8702 		return err;
8703 	}
8704 	pr_warn("failed to identify btf_id based on ELF section name '%s'\n", name);
8705 	return -ESRCH;
8706 }
8707 
8708 int libbpf_attach_type_by_name(const char *name,
8709 			       enum bpf_attach_type *attach_type)
8710 {
8711 	char *type_names;
8712 	int i;
8713 
8714 	if (!name)
8715 		return -EINVAL;
8716 
8717 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8718 		if (strncmp(name, section_defs[i].sec, section_defs[i].len))
8719 			continue;
8720 		if (!section_defs[i].is_attachable)
8721 			return -EINVAL;
8722 		*attach_type = section_defs[i].expected_attach_type;
8723 		return 0;
8724 	}
8725 	pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
8726 	type_names = libbpf_get_type_names(true);
8727 	if (type_names != NULL) {
8728 		pr_debug("attachable section(type) names are:%s\n", type_names);
8729 		free(type_names);
8730 	}
8731 
8732 	return -EINVAL;
8733 }
8734 
8735 int bpf_map__fd(const struct bpf_map *map)
8736 {
8737 	return map ? map->fd : -EINVAL;
8738 }
8739 
8740 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map)
8741 {
8742 	return map ? &map->def : ERR_PTR(-EINVAL);
8743 }
8744 
8745 const char *bpf_map__name(const struct bpf_map *map)
8746 {
8747 	return map ? map->name : NULL;
8748 }
8749 
8750 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
8751 {
8752 	return map->def.type;
8753 }
8754 
8755 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
8756 {
8757 	if (map->fd >= 0)
8758 		return -EBUSY;
8759 	map->def.type = type;
8760 	return 0;
8761 }
8762 
8763 __u32 bpf_map__map_flags(const struct bpf_map *map)
8764 {
8765 	return map->def.map_flags;
8766 }
8767 
8768 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
8769 {
8770 	if (map->fd >= 0)
8771 		return -EBUSY;
8772 	map->def.map_flags = flags;
8773 	return 0;
8774 }
8775 
8776 __u32 bpf_map__numa_node(const struct bpf_map *map)
8777 {
8778 	return map->numa_node;
8779 }
8780 
8781 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
8782 {
8783 	if (map->fd >= 0)
8784 		return -EBUSY;
8785 	map->numa_node = numa_node;
8786 	return 0;
8787 }
8788 
8789 __u32 bpf_map__key_size(const struct bpf_map *map)
8790 {
8791 	return map->def.key_size;
8792 }
8793 
8794 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
8795 {
8796 	if (map->fd >= 0)
8797 		return -EBUSY;
8798 	map->def.key_size = size;
8799 	return 0;
8800 }
8801 
8802 __u32 bpf_map__value_size(const struct bpf_map *map)
8803 {
8804 	return map->def.value_size;
8805 }
8806 
8807 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
8808 {
8809 	if (map->fd >= 0)
8810 		return -EBUSY;
8811 	map->def.value_size = size;
8812 	return 0;
8813 }
8814 
8815 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
8816 {
8817 	return map ? map->btf_key_type_id : 0;
8818 }
8819 
8820 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
8821 {
8822 	return map ? map->btf_value_type_id : 0;
8823 }
8824 
8825 int bpf_map__set_priv(struct bpf_map *map, void *priv,
8826 		     bpf_map_clear_priv_t clear_priv)
8827 {
8828 	if (!map)
8829 		return -EINVAL;
8830 
8831 	if (map->priv) {
8832 		if (map->clear_priv)
8833 			map->clear_priv(map, map->priv);
8834 	}
8835 
8836 	map->priv = priv;
8837 	map->clear_priv = clear_priv;
8838 	return 0;
8839 }
8840 
8841 void *bpf_map__priv(const struct bpf_map *map)
8842 {
8843 	return map ? map->priv : ERR_PTR(-EINVAL);
8844 }
8845 
8846 int bpf_map__set_initial_value(struct bpf_map *map,
8847 			       const void *data, size_t size)
8848 {
8849 	if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
8850 	    size != map->def.value_size || map->fd >= 0)
8851 		return -EINVAL;
8852 
8853 	memcpy(map->mmaped, data, size);
8854 	return 0;
8855 }
8856 
8857 bool bpf_map__is_offload_neutral(const struct bpf_map *map)
8858 {
8859 	return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
8860 }
8861 
8862 bool bpf_map__is_internal(const struct bpf_map *map)
8863 {
8864 	return map->libbpf_type != LIBBPF_MAP_UNSPEC;
8865 }
8866 
8867 __u32 bpf_map__ifindex(const struct bpf_map *map)
8868 {
8869 	return map->map_ifindex;
8870 }
8871 
8872 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
8873 {
8874 	if (map->fd >= 0)
8875 		return -EBUSY;
8876 	map->map_ifindex = ifindex;
8877 	return 0;
8878 }
8879 
8880 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
8881 {
8882 	if (!bpf_map_type__is_map_in_map(map->def.type)) {
8883 		pr_warn("error: unsupported map type\n");
8884 		return -EINVAL;
8885 	}
8886 	if (map->inner_map_fd != -1) {
8887 		pr_warn("error: inner_map_fd already specified\n");
8888 		return -EINVAL;
8889 	}
8890 	map->inner_map_fd = fd;
8891 	return 0;
8892 }
8893 
8894 static struct bpf_map *
8895 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
8896 {
8897 	ssize_t idx;
8898 	struct bpf_map *s, *e;
8899 
8900 	if (!obj || !obj->maps)
8901 		return NULL;
8902 
8903 	s = obj->maps;
8904 	e = obj->maps + obj->nr_maps;
8905 
8906 	if ((m < s) || (m >= e)) {
8907 		pr_warn("error in %s: map handler doesn't belong to object\n",
8908 			 __func__);
8909 		return NULL;
8910 	}
8911 
8912 	idx = (m - obj->maps) + i;
8913 	if (idx >= obj->nr_maps || idx < 0)
8914 		return NULL;
8915 	return &obj->maps[idx];
8916 }
8917 
8918 struct bpf_map *
8919 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj)
8920 {
8921 	if (prev == NULL)
8922 		return obj->maps;
8923 
8924 	return __bpf_map__iter(prev, obj, 1);
8925 }
8926 
8927 struct bpf_map *
8928 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj)
8929 {
8930 	if (next == NULL) {
8931 		if (!obj->nr_maps)
8932 			return NULL;
8933 		return obj->maps + obj->nr_maps - 1;
8934 	}
8935 
8936 	return __bpf_map__iter(next, obj, -1);
8937 }
8938 
8939 struct bpf_map *
8940 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
8941 {
8942 	struct bpf_map *pos;
8943 
8944 	bpf_object__for_each_map(pos, obj) {
8945 		if (pos->name && !strcmp(pos->name, name))
8946 			return pos;
8947 	}
8948 	return NULL;
8949 }
8950 
8951 int
8952 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
8953 {
8954 	return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
8955 }
8956 
8957 struct bpf_map *
8958 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset)
8959 {
8960 	return ERR_PTR(-ENOTSUP);
8961 }
8962 
8963 long libbpf_get_error(const void *ptr)
8964 {
8965 	return PTR_ERR_OR_ZERO(ptr);
8966 }
8967 
8968 int bpf_prog_load(const char *file, enum bpf_prog_type type,
8969 		  struct bpf_object **pobj, int *prog_fd)
8970 {
8971 	struct bpf_prog_load_attr attr;
8972 
8973 	memset(&attr, 0, sizeof(struct bpf_prog_load_attr));
8974 	attr.file = file;
8975 	attr.prog_type = type;
8976 	attr.expected_attach_type = 0;
8977 
8978 	return bpf_prog_load_xattr(&attr, pobj, prog_fd);
8979 }
8980 
8981 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr,
8982 			struct bpf_object **pobj, int *prog_fd)
8983 {
8984 	struct bpf_object_open_attr open_attr = {};
8985 	struct bpf_program *prog, *first_prog = NULL;
8986 	struct bpf_object *obj;
8987 	struct bpf_map *map;
8988 	int err;
8989 
8990 	if (!attr)
8991 		return -EINVAL;
8992 	if (!attr->file)
8993 		return -EINVAL;
8994 
8995 	open_attr.file = attr->file;
8996 	open_attr.prog_type = attr->prog_type;
8997 
8998 	obj = bpf_object__open_xattr(&open_attr);
8999 	if (IS_ERR_OR_NULL(obj))
9000 		return -ENOENT;
9001 
9002 	bpf_object__for_each_program(prog, obj) {
9003 		enum bpf_attach_type attach_type = attr->expected_attach_type;
9004 		/*
9005 		 * to preserve backwards compatibility, bpf_prog_load treats
9006 		 * attr->prog_type, if specified, as an override to whatever
9007 		 * bpf_object__open guessed
9008 		 */
9009 		if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) {
9010 			bpf_program__set_type(prog, attr->prog_type);
9011 			bpf_program__set_expected_attach_type(prog,
9012 							      attach_type);
9013 		}
9014 		if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) {
9015 			/*
9016 			 * we haven't guessed from section name and user
9017 			 * didn't provide a fallback type, too bad...
9018 			 */
9019 			bpf_object__close(obj);
9020 			return -EINVAL;
9021 		}
9022 
9023 		prog->prog_ifindex = attr->ifindex;
9024 		prog->log_level = attr->log_level;
9025 		prog->prog_flags |= attr->prog_flags;
9026 		if (!first_prog)
9027 			first_prog = prog;
9028 	}
9029 
9030 	bpf_object__for_each_map(map, obj) {
9031 		if (!bpf_map__is_offload_neutral(map))
9032 			map->map_ifindex = attr->ifindex;
9033 	}
9034 
9035 	if (!first_prog) {
9036 		pr_warn("object file doesn't contain bpf program\n");
9037 		bpf_object__close(obj);
9038 		return -ENOENT;
9039 	}
9040 
9041 	err = bpf_object__load(obj);
9042 	if (err) {
9043 		bpf_object__close(obj);
9044 		return err;
9045 	}
9046 
9047 	*pobj = obj;
9048 	*prog_fd = bpf_program__fd(first_prog);
9049 	return 0;
9050 }
9051 
9052 struct bpf_link {
9053 	int (*detach)(struct bpf_link *link);
9054 	int (*destroy)(struct bpf_link *link);
9055 	char *pin_path;		/* NULL, if not pinned */
9056 	int fd;			/* hook FD, -1 if not applicable */
9057 	bool disconnected;
9058 };
9059 
9060 /* Replace link's underlying BPF program with the new one */
9061 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
9062 {
9063 	return bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
9064 }
9065 
9066 /* Release "ownership" of underlying BPF resource (typically, BPF program
9067  * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
9068  * link, when destructed through bpf_link__destroy() call won't attempt to
9069  * detach/unregisted that BPF resource. This is useful in situations where,
9070  * say, attached BPF program has to outlive userspace program that attached it
9071  * in the system. Depending on type of BPF program, though, there might be
9072  * additional steps (like pinning BPF program in BPF FS) necessary to ensure
9073  * exit of userspace program doesn't trigger automatic detachment and clean up
9074  * inside the kernel.
9075  */
9076 void bpf_link__disconnect(struct bpf_link *link)
9077 {
9078 	link->disconnected = true;
9079 }
9080 
9081 int bpf_link__destroy(struct bpf_link *link)
9082 {
9083 	int err = 0;
9084 
9085 	if (IS_ERR_OR_NULL(link))
9086 		return 0;
9087 
9088 	if (!link->disconnected && link->detach)
9089 		err = link->detach(link);
9090 	if (link->destroy)
9091 		link->destroy(link);
9092 	if (link->pin_path)
9093 		free(link->pin_path);
9094 	free(link);
9095 
9096 	return err;
9097 }
9098 
9099 int bpf_link__fd(const struct bpf_link *link)
9100 {
9101 	return link->fd;
9102 }
9103 
9104 const char *bpf_link__pin_path(const struct bpf_link *link)
9105 {
9106 	return link->pin_path;
9107 }
9108 
9109 static int bpf_link__detach_fd(struct bpf_link *link)
9110 {
9111 	return close(link->fd);
9112 }
9113 
9114 struct bpf_link *bpf_link__open(const char *path)
9115 {
9116 	struct bpf_link *link;
9117 	int fd;
9118 
9119 	fd = bpf_obj_get(path);
9120 	if (fd < 0) {
9121 		fd = -errno;
9122 		pr_warn("failed to open link at %s: %d\n", path, fd);
9123 		return ERR_PTR(fd);
9124 	}
9125 
9126 	link = calloc(1, sizeof(*link));
9127 	if (!link) {
9128 		close(fd);
9129 		return ERR_PTR(-ENOMEM);
9130 	}
9131 	link->detach = &bpf_link__detach_fd;
9132 	link->fd = fd;
9133 
9134 	link->pin_path = strdup(path);
9135 	if (!link->pin_path) {
9136 		bpf_link__destroy(link);
9137 		return ERR_PTR(-ENOMEM);
9138 	}
9139 
9140 	return link;
9141 }
9142 
9143 int bpf_link__detach(struct bpf_link *link)
9144 {
9145 	return bpf_link_detach(link->fd) ? -errno : 0;
9146 }
9147 
9148 int bpf_link__pin(struct bpf_link *link, const char *path)
9149 {
9150 	int err;
9151 
9152 	if (link->pin_path)
9153 		return -EBUSY;
9154 	err = make_parent_dir(path);
9155 	if (err)
9156 		return err;
9157 	err = check_path(path);
9158 	if (err)
9159 		return err;
9160 
9161 	link->pin_path = strdup(path);
9162 	if (!link->pin_path)
9163 		return -ENOMEM;
9164 
9165 	if (bpf_obj_pin(link->fd, link->pin_path)) {
9166 		err = -errno;
9167 		zfree(&link->pin_path);
9168 		return err;
9169 	}
9170 
9171 	pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
9172 	return 0;
9173 }
9174 
9175 int bpf_link__unpin(struct bpf_link *link)
9176 {
9177 	int err;
9178 
9179 	if (!link->pin_path)
9180 		return -EINVAL;
9181 
9182 	err = unlink(link->pin_path);
9183 	if (err != 0)
9184 		return -errno;
9185 
9186 	pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
9187 	zfree(&link->pin_path);
9188 	return 0;
9189 }
9190 
9191 static int bpf_link__detach_perf_event(struct bpf_link *link)
9192 {
9193 	int err;
9194 
9195 	err = ioctl(link->fd, PERF_EVENT_IOC_DISABLE, 0);
9196 	if (err)
9197 		err = -errno;
9198 
9199 	close(link->fd);
9200 	return err;
9201 }
9202 
9203 struct bpf_link *bpf_program__attach_perf_event(struct bpf_program *prog,
9204 						int pfd)
9205 {
9206 	char errmsg[STRERR_BUFSIZE];
9207 	struct bpf_link *link;
9208 	int prog_fd, err;
9209 
9210 	if (pfd < 0) {
9211 		pr_warn("prog '%s': invalid perf event FD %d\n",
9212 			prog->name, pfd);
9213 		return ERR_PTR(-EINVAL);
9214 	}
9215 	prog_fd = bpf_program__fd(prog);
9216 	if (prog_fd < 0) {
9217 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
9218 			prog->name);
9219 		return ERR_PTR(-EINVAL);
9220 	}
9221 
9222 	link = calloc(1, sizeof(*link));
9223 	if (!link)
9224 		return ERR_PTR(-ENOMEM);
9225 	link->detach = &bpf_link__detach_perf_event;
9226 	link->fd = pfd;
9227 
9228 	if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
9229 		err = -errno;
9230 		free(link);
9231 		pr_warn("prog '%s': failed to attach to pfd %d: %s\n",
9232 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9233 		if (err == -EPROTO)
9234 			pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
9235 				prog->name, pfd);
9236 		return ERR_PTR(err);
9237 	}
9238 	if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
9239 		err = -errno;
9240 		free(link);
9241 		pr_warn("prog '%s': failed to enable pfd %d: %s\n",
9242 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9243 		return ERR_PTR(err);
9244 	}
9245 	return link;
9246 }
9247 
9248 /*
9249  * this function is expected to parse integer in the range of [0, 2^31-1] from
9250  * given file using scanf format string fmt. If actual parsed value is
9251  * negative, the result might be indistinguishable from error
9252  */
9253 static int parse_uint_from_file(const char *file, const char *fmt)
9254 {
9255 	char buf[STRERR_BUFSIZE];
9256 	int err, ret;
9257 	FILE *f;
9258 
9259 	f = fopen(file, "r");
9260 	if (!f) {
9261 		err = -errno;
9262 		pr_debug("failed to open '%s': %s\n", file,
9263 			 libbpf_strerror_r(err, buf, sizeof(buf)));
9264 		return err;
9265 	}
9266 	err = fscanf(f, fmt, &ret);
9267 	if (err != 1) {
9268 		err = err == EOF ? -EIO : -errno;
9269 		pr_debug("failed to parse '%s': %s\n", file,
9270 			libbpf_strerror_r(err, buf, sizeof(buf)));
9271 		fclose(f);
9272 		return err;
9273 	}
9274 	fclose(f);
9275 	return ret;
9276 }
9277 
9278 static int determine_kprobe_perf_type(void)
9279 {
9280 	const char *file = "/sys/bus/event_source/devices/kprobe/type";
9281 
9282 	return parse_uint_from_file(file, "%d\n");
9283 }
9284 
9285 static int determine_uprobe_perf_type(void)
9286 {
9287 	const char *file = "/sys/bus/event_source/devices/uprobe/type";
9288 
9289 	return parse_uint_from_file(file, "%d\n");
9290 }
9291 
9292 static int determine_kprobe_retprobe_bit(void)
9293 {
9294 	const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
9295 
9296 	return parse_uint_from_file(file, "config:%d\n");
9297 }
9298 
9299 static int determine_uprobe_retprobe_bit(void)
9300 {
9301 	const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
9302 
9303 	return parse_uint_from_file(file, "config:%d\n");
9304 }
9305 
9306 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
9307 				 uint64_t offset, int pid)
9308 {
9309 	struct perf_event_attr attr = {};
9310 	char errmsg[STRERR_BUFSIZE];
9311 	int type, pfd, err;
9312 
9313 	type = uprobe ? determine_uprobe_perf_type()
9314 		      : determine_kprobe_perf_type();
9315 	if (type < 0) {
9316 		pr_warn("failed to determine %s perf type: %s\n",
9317 			uprobe ? "uprobe" : "kprobe",
9318 			libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
9319 		return type;
9320 	}
9321 	if (retprobe) {
9322 		int bit = uprobe ? determine_uprobe_retprobe_bit()
9323 				 : determine_kprobe_retprobe_bit();
9324 
9325 		if (bit < 0) {
9326 			pr_warn("failed to determine %s retprobe bit: %s\n",
9327 				uprobe ? "uprobe" : "kprobe",
9328 				libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
9329 			return bit;
9330 		}
9331 		attr.config |= 1 << bit;
9332 	}
9333 	attr.size = sizeof(attr);
9334 	attr.type = type;
9335 	attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
9336 	attr.config2 = offset;		 /* kprobe_addr or probe_offset */
9337 
9338 	/* pid filter is meaningful only for uprobes */
9339 	pfd = syscall(__NR_perf_event_open, &attr,
9340 		      pid < 0 ? -1 : pid /* pid */,
9341 		      pid == -1 ? 0 : -1 /* cpu */,
9342 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9343 	if (pfd < 0) {
9344 		err = -errno;
9345 		pr_warn("%s perf_event_open() failed: %s\n",
9346 			uprobe ? "uprobe" : "kprobe",
9347 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9348 		return err;
9349 	}
9350 	return pfd;
9351 }
9352 
9353 struct bpf_link *bpf_program__attach_kprobe(struct bpf_program *prog,
9354 					    bool retprobe,
9355 					    const char *func_name)
9356 {
9357 	char errmsg[STRERR_BUFSIZE];
9358 	struct bpf_link *link;
9359 	int pfd, err;
9360 
9361 	pfd = perf_event_open_probe(false /* uprobe */, retprobe, func_name,
9362 				    0 /* offset */, -1 /* pid */);
9363 	if (pfd < 0) {
9364 		pr_warn("prog '%s': failed to create %s '%s' perf event: %s\n",
9365 			prog->name, retprobe ? "kretprobe" : "kprobe", func_name,
9366 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9367 		return ERR_PTR(pfd);
9368 	}
9369 	link = bpf_program__attach_perf_event(prog, pfd);
9370 	if (IS_ERR(link)) {
9371 		close(pfd);
9372 		err = PTR_ERR(link);
9373 		pr_warn("prog '%s': failed to attach to %s '%s': %s\n",
9374 			prog->name, retprobe ? "kretprobe" : "kprobe", func_name,
9375 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9376 		return link;
9377 	}
9378 	return link;
9379 }
9380 
9381 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec,
9382 				      struct bpf_program *prog)
9383 {
9384 	const char *func_name;
9385 	bool retprobe;
9386 
9387 	func_name = prog->sec_name + sec->len;
9388 	retprobe = strcmp(sec->sec, "kretprobe/") == 0;
9389 
9390 	return bpf_program__attach_kprobe(prog, retprobe, func_name);
9391 }
9392 
9393 struct bpf_link *bpf_program__attach_uprobe(struct bpf_program *prog,
9394 					    bool retprobe, pid_t pid,
9395 					    const char *binary_path,
9396 					    size_t func_offset)
9397 {
9398 	char errmsg[STRERR_BUFSIZE];
9399 	struct bpf_link *link;
9400 	int pfd, err;
9401 
9402 	pfd = perf_event_open_probe(true /* uprobe */, retprobe,
9403 				    binary_path, func_offset, pid);
9404 	if (pfd < 0) {
9405 		pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
9406 			prog->name, retprobe ? "uretprobe" : "uprobe",
9407 			binary_path, func_offset,
9408 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9409 		return ERR_PTR(pfd);
9410 	}
9411 	link = bpf_program__attach_perf_event(prog, pfd);
9412 	if (IS_ERR(link)) {
9413 		close(pfd);
9414 		err = PTR_ERR(link);
9415 		pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
9416 			prog->name, retprobe ? "uretprobe" : "uprobe",
9417 			binary_path, func_offset,
9418 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9419 		return link;
9420 	}
9421 	return link;
9422 }
9423 
9424 static int determine_tracepoint_id(const char *tp_category,
9425 				   const char *tp_name)
9426 {
9427 	char file[PATH_MAX];
9428 	int ret;
9429 
9430 	ret = snprintf(file, sizeof(file),
9431 		       "/sys/kernel/debug/tracing/events/%s/%s/id",
9432 		       tp_category, tp_name);
9433 	if (ret < 0)
9434 		return -errno;
9435 	if (ret >= sizeof(file)) {
9436 		pr_debug("tracepoint %s/%s path is too long\n",
9437 			 tp_category, tp_name);
9438 		return -E2BIG;
9439 	}
9440 	return parse_uint_from_file(file, "%d\n");
9441 }
9442 
9443 static int perf_event_open_tracepoint(const char *tp_category,
9444 				      const char *tp_name)
9445 {
9446 	struct perf_event_attr attr = {};
9447 	char errmsg[STRERR_BUFSIZE];
9448 	int tp_id, pfd, err;
9449 
9450 	tp_id = determine_tracepoint_id(tp_category, tp_name);
9451 	if (tp_id < 0) {
9452 		pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
9453 			tp_category, tp_name,
9454 			libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
9455 		return tp_id;
9456 	}
9457 
9458 	attr.type = PERF_TYPE_TRACEPOINT;
9459 	attr.size = sizeof(attr);
9460 	attr.config = tp_id;
9461 
9462 	pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
9463 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9464 	if (pfd < 0) {
9465 		err = -errno;
9466 		pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
9467 			tp_category, tp_name,
9468 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9469 		return err;
9470 	}
9471 	return pfd;
9472 }
9473 
9474 struct bpf_link *bpf_program__attach_tracepoint(struct bpf_program *prog,
9475 						const char *tp_category,
9476 						const char *tp_name)
9477 {
9478 	char errmsg[STRERR_BUFSIZE];
9479 	struct bpf_link *link;
9480 	int pfd, err;
9481 
9482 	pfd = perf_event_open_tracepoint(tp_category, tp_name);
9483 	if (pfd < 0) {
9484 		pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
9485 			prog->name, tp_category, tp_name,
9486 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9487 		return ERR_PTR(pfd);
9488 	}
9489 	link = bpf_program__attach_perf_event(prog, pfd);
9490 	if (IS_ERR(link)) {
9491 		close(pfd);
9492 		err = PTR_ERR(link);
9493 		pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
9494 			prog->name, tp_category, tp_name,
9495 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9496 		return link;
9497 	}
9498 	return link;
9499 }
9500 
9501 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec,
9502 				  struct bpf_program *prog)
9503 {
9504 	char *sec_name, *tp_cat, *tp_name;
9505 	struct bpf_link *link;
9506 
9507 	sec_name = strdup(prog->sec_name);
9508 	if (!sec_name)
9509 		return ERR_PTR(-ENOMEM);
9510 
9511 	/* extract "tp/<category>/<name>" */
9512 	tp_cat = sec_name + sec->len;
9513 	tp_name = strchr(tp_cat, '/');
9514 	if (!tp_name) {
9515 		link = ERR_PTR(-EINVAL);
9516 		goto out;
9517 	}
9518 	*tp_name = '\0';
9519 	tp_name++;
9520 
9521 	link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
9522 out:
9523 	free(sec_name);
9524 	return link;
9525 }
9526 
9527 struct bpf_link *bpf_program__attach_raw_tracepoint(struct bpf_program *prog,
9528 						    const char *tp_name)
9529 {
9530 	char errmsg[STRERR_BUFSIZE];
9531 	struct bpf_link *link;
9532 	int prog_fd, pfd;
9533 
9534 	prog_fd = bpf_program__fd(prog);
9535 	if (prog_fd < 0) {
9536 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9537 		return ERR_PTR(-EINVAL);
9538 	}
9539 
9540 	link = calloc(1, sizeof(*link));
9541 	if (!link)
9542 		return ERR_PTR(-ENOMEM);
9543 	link->detach = &bpf_link__detach_fd;
9544 
9545 	pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
9546 	if (pfd < 0) {
9547 		pfd = -errno;
9548 		free(link);
9549 		pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
9550 			prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9551 		return ERR_PTR(pfd);
9552 	}
9553 	link->fd = pfd;
9554 	return link;
9555 }
9556 
9557 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec,
9558 				      struct bpf_program *prog)
9559 {
9560 	const char *tp_name = prog->sec_name + sec->len;
9561 
9562 	return bpf_program__attach_raw_tracepoint(prog, tp_name);
9563 }
9564 
9565 /* Common logic for all BPF program types that attach to a btf_id */
9566 static struct bpf_link *bpf_program__attach_btf_id(struct bpf_program *prog)
9567 {
9568 	char errmsg[STRERR_BUFSIZE];
9569 	struct bpf_link *link;
9570 	int prog_fd, pfd;
9571 
9572 	prog_fd = bpf_program__fd(prog);
9573 	if (prog_fd < 0) {
9574 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9575 		return ERR_PTR(-EINVAL);
9576 	}
9577 
9578 	link = calloc(1, sizeof(*link));
9579 	if (!link)
9580 		return ERR_PTR(-ENOMEM);
9581 	link->detach = &bpf_link__detach_fd;
9582 
9583 	pfd = bpf_raw_tracepoint_open(NULL, prog_fd);
9584 	if (pfd < 0) {
9585 		pfd = -errno;
9586 		free(link);
9587 		pr_warn("prog '%s': failed to attach: %s\n",
9588 			prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9589 		return ERR_PTR(pfd);
9590 	}
9591 	link->fd = pfd;
9592 	return (struct bpf_link *)link;
9593 }
9594 
9595 struct bpf_link *bpf_program__attach_trace(struct bpf_program *prog)
9596 {
9597 	return bpf_program__attach_btf_id(prog);
9598 }
9599 
9600 struct bpf_link *bpf_program__attach_lsm(struct bpf_program *prog)
9601 {
9602 	return bpf_program__attach_btf_id(prog);
9603 }
9604 
9605 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec,
9606 				     struct bpf_program *prog)
9607 {
9608 	return bpf_program__attach_trace(prog);
9609 }
9610 
9611 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec,
9612 				   struct bpf_program *prog)
9613 {
9614 	return bpf_program__attach_lsm(prog);
9615 }
9616 
9617 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec,
9618 				    struct bpf_program *prog)
9619 {
9620 	return bpf_program__attach_iter(prog, NULL);
9621 }
9622 
9623 static struct bpf_link *
9624 bpf_program__attach_fd(struct bpf_program *prog, int target_fd, int btf_id,
9625 		       const char *target_name)
9626 {
9627 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts,
9628 			    .target_btf_id = btf_id);
9629 	enum bpf_attach_type attach_type;
9630 	char errmsg[STRERR_BUFSIZE];
9631 	struct bpf_link *link;
9632 	int prog_fd, link_fd;
9633 
9634 	prog_fd = bpf_program__fd(prog);
9635 	if (prog_fd < 0) {
9636 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9637 		return ERR_PTR(-EINVAL);
9638 	}
9639 
9640 	link = calloc(1, sizeof(*link));
9641 	if (!link)
9642 		return ERR_PTR(-ENOMEM);
9643 	link->detach = &bpf_link__detach_fd;
9644 
9645 	attach_type = bpf_program__get_expected_attach_type(prog);
9646 	link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts);
9647 	if (link_fd < 0) {
9648 		link_fd = -errno;
9649 		free(link);
9650 		pr_warn("prog '%s': failed to attach to %s: %s\n",
9651 			prog->name, target_name,
9652 			libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
9653 		return ERR_PTR(link_fd);
9654 	}
9655 	link->fd = link_fd;
9656 	return link;
9657 }
9658 
9659 struct bpf_link *
9660 bpf_program__attach_cgroup(struct bpf_program *prog, int cgroup_fd)
9661 {
9662 	return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup");
9663 }
9664 
9665 struct bpf_link *
9666 bpf_program__attach_netns(struct bpf_program *prog, int netns_fd)
9667 {
9668 	return bpf_program__attach_fd(prog, netns_fd, 0, "netns");
9669 }
9670 
9671 struct bpf_link *bpf_program__attach_xdp(struct bpf_program *prog, int ifindex)
9672 {
9673 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
9674 	return bpf_program__attach_fd(prog, ifindex, 0, "xdp");
9675 }
9676 
9677 struct bpf_link *bpf_program__attach_freplace(struct bpf_program *prog,
9678 					      int target_fd,
9679 					      const char *attach_func_name)
9680 {
9681 	int btf_id;
9682 
9683 	if (!!target_fd != !!attach_func_name) {
9684 		pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
9685 			prog->name);
9686 		return ERR_PTR(-EINVAL);
9687 	}
9688 
9689 	if (prog->type != BPF_PROG_TYPE_EXT) {
9690 		pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
9691 			prog->name);
9692 		return ERR_PTR(-EINVAL);
9693 	}
9694 
9695 	if (target_fd) {
9696 		btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
9697 		if (btf_id < 0)
9698 			return ERR_PTR(btf_id);
9699 
9700 		return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace");
9701 	} else {
9702 		/* no target, so use raw_tracepoint_open for compatibility
9703 		 * with old kernels
9704 		 */
9705 		return bpf_program__attach_trace(prog);
9706 	}
9707 }
9708 
9709 struct bpf_link *
9710 bpf_program__attach_iter(struct bpf_program *prog,
9711 			 const struct bpf_iter_attach_opts *opts)
9712 {
9713 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
9714 	char errmsg[STRERR_BUFSIZE];
9715 	struct bpf_link *link;
9716 	int prog_fd, link_fd;
9717 	__u32 target_fd = 0;
9718 
9719 	if (!OPTS_VALID(opts, bpf_iter_attach_opts))
9720 		return ERR_PTR(-EINVAL);
9721 
9722 	link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
9723 	link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
9724 
9725 	prog_fd = bpf_program__fd(prog);
9726 	if (prog_fd < 0) {
9727 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9728 		return ERR_PTR(-EINVAL);
9729 	}
9730 
9731 	link = calloc(1, sizeof(*link));
9732 	if (!link)
9733 		return ERR_PTR(-ENOMEM);
9734 	link->detach = &bpf_link__detach_fd;
9735 
9736 	link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
9737 				  &link_create_opts);
9738 	if (link_fd < 0) {
9739 		link_fd = -errno;
9740 		free(link);
9741 		pr_warn("prog '%s': failed to attach to iterator: %s\n",
9742 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
9743 		return ERR_PTR(link_fd);
9744 	}
9745 	link->fd = link_fd;
9746 	return link;
9747 }
9748 
9749 struct bpf_link *bpf_program__attach(struct bpf_program *prog)
9750 {
9751 	const struct bpf_sec_def *sec_def;
9752 
9753 	sec_def = find_sec_def(prog->sec_name);
9754 	if (!sec_def || !sec_def->attach_fn)
9755 		return ERR_PTR(-ESRCH);
9756 
9757 	return sec_def->attach_fn(sec_def, prog);
9758 }
9759 
9760 static int bpf_link__detach_struct_ops(struct bpf_link *link)
9761 {
9762 	__u32 zero = 0;
9763 
9764 	if (bpf_map_delete_elem(link->fd, &zero))
9765 		return -errno;
9766 
9767 	return 0;
9768 }
9769 
9770 struct bpf_link *bpf_map__attach_struct_ops(struct bpf_map *map)
9771 {
9772 	struct bpf_struct_ops *st_ops;
9773 	struct bpf_link *link;
9774 	__u32 i, zero = 0;
9775 	int err;
9776 
9777 	if (!bpf_map__is_struct_ops(map) || map->fd == -1)
9778 		return ERR_PTR(-EINVAL);
9779 
9780 	link = calloc(1, sizeof(*link));
9781 	if (!link)
9782 		return ERR_PTR(-EINVAL);
9783 
9784 	st_ops = map->st_ops;
9785 	for (i = 0; i < btf_vlen(st_ops->type); i++) {
9786 		struct bpf_program *prog = st_ops->progs[i];
9787 		void *kern_data;
9788 		int prog_fd;
9789 
9790 		if (!prog)
9791 			continue;
9792 
9793 		prog_fd = bpf_program__fd(prog);
9794 		kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
9795 		*(unsigned long *)kern_data = prog_fd;
9796 	}
9797 
9798 	err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0);
9799 	if (err) {
9800 		err = -errno;
9801 		free(link);
9802 		return ERR_PTR(err);
9803 	}
9804 
9805 	link->detach = bpf_link__detach_struct_ops;
9806 	link->fd = map->fd;
9807 
9808 	return link;
9809 }
9810 
9811 enum bpf_perf_event_ret
9812 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
9813 			   void **copy_mem, size_t *copy_size,
9814 			   bpf_perf_event_print_t fn, void *private_data)
9815 {
9816 	struct perf_event_mmap_page *header = mmap_mem;
9817 	__u64 data_head = ring_buffer_read_head(header);
9818 	__u64 data_tail = header->data_tail;
9819 	void *base = ((__u8 *)header) + page_size;
9820 	int ret = LIBBPF_PERF_EVENT_CONT;
9821 	struct perf_event_header *ehdr;
9822 	size_t ehdr_size;
9823 
9824 	while (data_head != data_tail) {
9825 		ehdr = base + (data_tail & (mmap_size - 1));
9826 		ehdr_size = ehdr->size;
9827 
9828 		if (((void *)ehdr) + ehdr_size > base + mmap_size) {
9829 			void *copy_start = ehdr;
9830 			size_t len_first = base + mmap_size - copy_start;
9831 			size_t len_secnd = ehdr_size - len_first;
9832 
9833 			if (*copy_size < ehdr_size) {
9834 				free(*copy_mem);
9835 				*copy_mem = malloc(ehdr_size);
9836 				if (!*copy_mem) {
9837 					*copy_size = 0;
9838 					ret = LIBBPF_PERF_EVENT_ERROR;
9839 					break;
9840 				}
9841 				*copy_size = ehdr_size;
9842 			}
9843 
9844 			memcpy(*copy_mem, copy_start, len_first);
9845 			memcpy(*copy_mem + len_first, base, len_secnd);
9846 			ehdr = *copy_mem;
9847 		}
9848 
9849 		ret = fn(ehdr, private_data);
9850 		data_tail += ehdr_size;
9851 		if (ret != LIBBPF_PERF_EVENT_CONT)
9852 			break;
9853 	}
9854 
9855 	ring_buffer_write_tail(header, data_tail);
9856 	return ret;
9857 }
9858 
9859 struct perf_buffer;
9860 
9861 struct perf_buffer_params {
9862 	struct perf_event_attr *attr;
9863 	/* if event_cb is specified, it takes precendence */
9864 	perf_buffer_event_fn event_cb;
9865 	/* sample_cb and lost_cb are higher-level common-case callbacks */
9866 	perf_buffer_sample_fn sample_cb;
9867 	perf_buffer_lost_fn lost_cb;
9868 	void *ctx;
9869 	int cpu_cnt;
9870 	int *cpus;
9871 	int *map_keys;
9872 };
9873 
9874 struct perf_cpu_buf {
9875 	struct perf_buffer *pb;
9876 	void *base; /* mmap()'ed memory */
9877 	void *buf; /* for reconstructing segmented data */
9878 	size_t buf_size;
9879 	int fd;
9880 	int cpu;
9881 	int map_key;
9882 };
9883 
9884 struct perf_buffer {
9885 	perf_buffer_event_fn event_cb;
9886 	perf_buffer_sample_fn sample_cb;
9887 	perf_buffer_lost_fn lost_cb;
9888 	void *ctx; /* passed into callbacks */
9889 
9890 	size_t page_size;
9891 	size_t mmap_size;
9892 	struct perf_cpu_buf **cpu_bufs;
9893 	struct epoll_event *events;
9894 	int cpu_cnt; /* number of allocated CPU buffers */
9895 	int epoll_fd; /* perf event FD */
9896 	int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
9897 };
9898 
9899 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
9900 				      struct perf_cpu_buf *cpu_buf)
9901 {
9902 	if (!cpu_buf)
9903 		return;
9904 	if (cpu_buf->base &&
9905 	    munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
9906 		pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
9907 	if (cpu_buf->fd >= 0) {
9908 		ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
9909 		close(cpu_buf->fd);
9910 	}
9911 	free(cpu_buf->buf);
9912 	free(cpu_buf);
9913 }
9914 
9915 void perf_buffer__free(struct perf_buffer *pb)
9916 {
9917 	int i;
9918 
9919 	if (IS_ERR_OR_NULL(pb))
9920 		return;
9921 	if (pb->cpu_bufs) {
9922 		for (i = 0; i < pb->cpu_cnt; i++) {
9923 			struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
9924 
9925 			if (!cpu_buf)
9926 				continue;
9927 
9928 			bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
9929 			perf_buffer__free_cpu_buf(pb, cpu_buf);
9930 		}
9931 		free(pb->cpu_bufs);
9932 	}
9933 	if (pb->epoll_fd >= 0)
9934 		close(pb->epoll_fd);
9935 	free(pb->events);
9936 	free(pb);
9937 }
9938 
9939 static struct perf_cpu_buf *
9940 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
9941 			  int cpu, int map_key)
9942 {
9943 	struct perf_cpu_buf *cpu_buf;
9944 	char msg[STRERR_BUFSIZE];
9945 	int err;
9946 
9947 	cpu_buf = calloc(1, sizeof(*cpu_buf));
9948 	if (!cpu_buf)
9949 		return ERR_PTR(-ENOMEM);
9950 
9951 	cpu_buf->pb = pb;
9952 	cpu_buf->cpu = cpu;
9953 	cpu_buf->map_key = map_key;
9954 
9955 	cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
9956 			      -1, PERF_FLAG_FD_CLOEXEC);
9957 	if (cpu_buf->fd < 0) {
9958 		err = -errno;
9959 		pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
9960 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
9961 		goto error;
9962 	}
9963 
9964 	cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
9965 			     PROT_READ | PROT_WRITE, MAP_SHARED,
9966 			     cpu_buf->fd, 0);
9967 	if (cpu_buf->base == MAP_FAILED) {
9968 		cpu_buf->base = NULL;
9969 		err = -errno;
9970 		pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
9971 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
9972 		goto error;
9973 	}
9974 
9975 	if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
9976 		err = -errno;
9977 		pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
9978 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
9979 		goto error;
9980 	}
9981 
9982 	return cpu_buf;
9983 
9984 error:
9985 	perf_buffer__free_cpu_buf(pb, cpu_buf);
9986 	return (struct perf_cpu_buf *)ERR_PTR(err);
9987 }
9988 
9989 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
9990 					      struct perf_buffer_params *p);
9991 
9992 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
9993 				     const struct perf_buffer_opts *opts)
9994 {
9995 	struct perf_buffer_params p = {};
9996 	struct perf_event_attr attr = { 0, };
9997 
9998 	attr.config = PERF_COUNT_SW_BPF_OUTPUT;
9999 	attr.type = PERF_TYPE_SOFTWARE;
10000 	attr.sample_type = PERF_SAMPLE_RAW;
10001 	attr.sample_period = 1;
10002 	attr.wakeup_events = 1;
10003 
10004 	p.attr = &attr;
10005 	p.sample_cb = opts ? opts->sample_cb : NULL;
10006 	p.lost_cb = opts ? opts->lost_cb : NULL;
10007 	p.ctx = opts ? opts->ctx : NULL;
10008 
10009 	return __perf_buffer__new(map_fd, page_cnt, &p);
10010 }
10011 
10012 struct perf_buffer *
10013 perf_buffer__new_raw(int map_fd, size_t page_cnt,
10014 		     const struct perf_buffer_raw_opts *opts)
10015 {
10016 	struct perf_buffer_params p = {};
10017 
10018 	p.attr = opts->attr;
10019 	p.event_cb = opts->event_cb;
10020 	p.ctx = opts->ctx;
10021 	p.cpu_cnt = opts->cpu_cnt;
10022 	p.cpus = opts->cpus;
10023 	p.map_keys = opts->map_keys;
10024 
10025 	return __perf_buffer__new(map_fd, page_cnt, &p);
10026 }
10027 
10028 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
10029 					      struct perf_buffer_params *p)
10030 {
10031 	const char *online_cpus_file = "/sys/devices/system/cpu/online";
10032 	struct bpf_map_info map;
10033 	char msg[STRERR_BUFSIZE];
10034 	struct perf_buffer *pb;
10035 	bool *online = NULL;
10036 	__u32 map_info_len;
10037 	int err, i, j, n;
10038 
10039 	if (page_cnt & (page_cnt - 1)) {
10040 		pr_warn("page count should be power of two, but is %zu\n",
10041 			page_cnt);
10042 		return ERR_PTR(-EINVAL);
10043 	}
10044 
10045 	/* best-effort sanity checks */
10046 	memset(&map, 0, sizeof(map));
10047 	map_info_len = sizeof(map);
10048 	err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len);
10049 	if (err) {
10050 		err = -errno;
10051 		/* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
10052 		 * -EBADFD, -EFAULT, or -E2BIG on real error
10053 		 */
10054 		if (err != -EINVAL) {
10055 			pr_warn("failed to get map info for map FD %d: %s\n",
10056 				map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
10057 			return ERR_PTR(err);
10058 		}
10059 		pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
10060 			 map_fd);
10061 	} else {
10062 		if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
10063 			pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
10064 				map.name);
10065 			return ERR_PTR(-EINVAL);
10066 		}
10067 	}
10068 
10069 	pb = calloc(1, sizeof(*pb));
10070 	if (!pb)
10071 		return ERR_PTR(-ENOMEM);
10072 
10073 	pb->event_cb = p->event_cb;
10074 	pb->sample_cb = p->sample_cb;
10075 	pb->lost_cb = p->lost_cb;
10076 	pb->ctx = p->ctx;
10077 
10078 	pb->page_size = getpagesize();
10079 	pb->mmap_size = pb->page_size * page_cnt;
10080 	pb->map_fd = map_fd;
10081 
10082 	pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
10083 	if (pb->epoll_fd < 0) {
10084 		err = -errno;
10085 		pr_warn("failed to create epoll instance: %s\n",
10086 			libbpf_strerror_r(err, msg, sizeof(msg)));
10087 		goto error;
10088 	}
10089 
10090 	if (p->cpu_cnt > 0) {
10091 		pb->cpu_cnt = p->cpu_cnt;
10092 	} else {
10093 		pb->cpu_cnt = libbpf_num_possible_cpus();
10094 		if (pb->cpu_cnt < 0) {
10095 			err = pb->cpu_cnt;
10096 			goto error;
10097 		}
10098 		if (map.max_entries && map.max_entries < pb->cpu_cnt)
10099 			pb->cpu_cnt = map.max_entries;
10100 	}
10101 
10102 	pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
10103 	if (!pb->events) {
10104 		err = -ENOMEM;
10105 		pr_warn("failed to allocate events: out of memory\n");
10106 		goto error;
10107 	}
10108 	pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
10109 	if (!pb->cpu_bufs) {
10110 		err = -ENOMEM;
10111 		pr_warn("failed to allocate buffers: out of memory\n");
10112 		goto error;
10113 	}
10114 
10115 	err = parse_cpu_mask_file(online_cpus_file, &online, &n);
10116 	if (err) {
10117 		pr_warn("failed to get online CPU mask: %d\n", err);
10118 		goto error;
10119 	}
10120 
10121 	for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
10122 		struct perf_cpu_buf *cpu_buf;
10123 		int cpu, map_key;
10124 
10125 		cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
10126 		map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
10127 
10128 		/* in case user didn't explicitly requested particular CPUs to
10129 		 * be attached to, skip offline/not present CPUs
10130 		 */
10131 		if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
10132 			continue;
10133 
10134 		cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
10135 		if (IS_ERR(cpu_buf)) {
10136 			err = PTR_ERR(cpu_buf);
10137 			goto error;
10138 		}
10139 
10140 		pb->cpu_bufs[j] = cpu_buf;
10141 
10142 		err = bpf_map_update_elem(pb->map_fd, &map_key,
10143 					  &cpu_buf->fd, 0);
10144 		if (err) {
10145 			err = -errno;
10146 			pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
10147 				cpu, map_key, cpu_buf->fd,
10148 				libbpf_strerror_r(err, msg, sizeof(msg)));
10149 			goto error;
10150 		}
10151 
10152 		pb->events[j].events = EPOLLIN;
10153 		pb->events[j].data.ptr = cpu_buf;
10154 		if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
10155 			      &pb->events[j]) < 0) {
10156 			err = -errno;
10157 			pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
10158 				cpu, cpu_buf->fd,
10159 				libbpf_strerror_r(err, msg, sizeof(msg)));
10160 			goto error;
10161 		}
10162 		j++;
10163 	}
10164 	pb->cpu_cnt = j;
10165 	free(online);
10166 
10167 	return pb;
10168 
10169 error:
10170 	free(online);
10171 	if (pb)
10172 		perf_buffer__free(pb);
10173 	return ERR_PTR(err);
10174 }
10175 
10176 struct perf_sample_raw {
10177 	struct perf_event_header header;
10178 	uint32_t size;
10179 	char data[];
10180 };
10181 
10182 struct perf_sample_lost {
10183 	struct perf_event_header header;
10184 	uint64_t id;
10185 	uint64_t lost;
10186 	uint64_t sample_id;
10187 };
10188 
10189 static enum bpf_perf_event_ret
10190 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
10191 {
10192 	struct perf_cpu_buf *cpu_buf = ctx;
10193 	struct perf_buffer *pb = cpu_buf->pb;
10194 	void *data = e;
10195 
10196 	/* user wants full control over parsing perf event */
10197 	if (pb->event_cb)
10198 		return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
10199 
10200 	switch (e->type) {
10201 	case PERF_RECORD_SAMPLE: {
10202 		struct perf_sample_raw *s = data;
10203 
10204 		if (pb->sample_cb)
10205 			pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
10206 		break;
10207 	}
10208 	case PERF_RECORD_LOST: {
10209 		struct perf_sample_lost *s = data;
10210 
10211 		if (pb->lost_cb)
10212 			pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
10213 		break;
10214 	}
10215 	default:
10216 		pr_warn("unknown perf sample type %d\n", e->type);
10217 		return LIBBPF_PERF_EVENT_ERROR;
10218 	}
10219 	return LIBBPF_PERF_EVENT_CONT;
10220 }
10221 
10222 static int perf_buffer__process_records(struct perf_buffer *pb,
10223 					struct perf_cpu_buf *cpu_buf)
10224 {
10225 	enum bpf_perf_event_ret ret;
10226 
10227 	ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size,
10228 					 pb->page_size, &cpu_buf->buf,
10229 					 &cpu_buf->buf_size,
10230 					 perf_buffer__process_record, cpu_buf);
10231 	if (ret != LIBBPF_PERF_EVENT_CONT)
10232 		return ret;
10233 	return 0;
10234 }
10235 
10236 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
10237 {
10238 	return pb->epoll_fd;
10239 }
10240 
10241 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
10242 {
10243 	int i, cnt, err;
10244 
10245 	cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
10246 	for (i = 0; i < cnt; i++) {
10247 		struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
10248 
10249 		err = perf_buffer__process_records(pb, cpu_buf);
10250 		if (err) {
10251 			pr_warn("error while processing records: %d\n", err);
10252 			return err;
10253 		}
10254 	}
10255 	return cnt < 0 ? -errno : cnt;
10256 }
10257 
10258 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
10259  * manager.
10260  */
10261 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
10262 {
10263 	return pb->cpu_cnt;
10264 }
10265 
10266 /*
10267  * Return perf_event FD of a ring buffer in *buf_idx* slot of
10268  * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
10269  * select()/poll()/epoll() Linux syscalls.
10270  */
10271 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
10272 {
10273 	struct perf_cpu_buf *cpu_buf;
10274 
10275 	if (buf_idx >= pb->cpu_cnt)
10276 		return -EINVAL;
10277 
10278 	cpu_buf = pb->cpu_bufs[buf_idx];
10279 	if (!cpu_buf)
10280 		return -ENOENT;
10281 
10282 	return cpu_buf->fd;
10283 }
10284 
10285 /*
10286  * Consume data from perf ring buffer corresponding to slot *buf_idx* in
10287  * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
10288  * consume, do nothing and return success.
10289  * Returns:
10290  *   - 0 on success;
10291  *   - <0 on failure.
10292  */
10293 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
10294 {
10295 	struct perf_cpu_buf *cpu_buf;
10296 
10297 	if (buf_idx >= pb->cpu_cnt)
10298 		return -EINVAL;
10299 
10300 	cpu_buf = pb->cpu_bufs[buf_idx];
10301 	if (!cpu_buf)
10302 		return -ENOENT;
10303 
10304 	return perf_buffer__process_records(pb, cpu_buf);
10305 }
10306 
10307 int perf_buffer__consume(struct perf_buffer *pb)
10308 {
10309 	int i, err;
10310 
10311 	for (i = 0; i < pb->cpu_cnt; i++) {
10312 		struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
10313 
10314 		if (!cpu_buf)
10315 			continue;
10316 
10317 		err = perf_buffer__process_records(pb, cpu_buf);
10318 		if (err) {
10319 			pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
10320 			return err;
10321 		}
10322 	}
10323 	return 0;
10324 }
10325 
10326 struct bpf_prog_info_array_desc {
10327 	int	array_offset;	/* e.g. offset of jited_prog_insns */
10328 	int	count_offset;	/* e.g. offset of jited_prog_len */
10329 	int	size_offset;	/* > 0: offset of rec size,
10330 				 * < 0: fix size of -size_offset
10331 				 */
10332 };
10333 
10334 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = {
10335 	[BPF_PROG_INFO_JITED_INSNS] = {
10336 		offsetof(struct bpf_prog_info, jited_prog_insns),
10337 		offsetof(struct bpf_prog_info, jited_prog_len),
10338 		-1,
10339 	},
10340 	[BPF_PROG_INFO_XLATED_INSNS] = {
10341 		offsetof(struct bpf_prog_info, xlated_prog_insns),
10342 		offsetof(struct bpf_prog_info, xlated_prog_len),
10343 		-1,
10344 	},
10345 	[BPF_PROG_INFO_MAP_IDS] = {
10346 		offsetof(struct bpf_prog_info, map_ids),
10347 		offsetof(struct bpf_prog_info, nr_map_ids),
10348 		-(int)sizeof(__u32),
10349 	},
10350 	[BPF_PROG_INFO_JITED_KSYMS] = {
10351 		offsetof(struct bpf_prog_info, jited_ksyms),
10352 		offsetof(struct bpf_prog_info, nr_jited_ksyms),
10353 		-(int)sizeof(__u64),
10354 	},
10355 	[BPF_PROG_INFO_JITED_FUNC_LENS] = {
10356 		offsetof(struct bpf_prog_info, jited_func_lens),
10357 		offsetof(struct bpf_prog_info, nr_jited_func_lens),
10358 		-(int)sizeof(__u32),
10359 	},
10360 	[BPF_PROG_INFO_FUNC_INFO] = {
10361 		offsetof(struct bpf_prog_info, func_info),
10362 		offsetof(struct bpf_prog_info, nr_func_info),
10363 		offsetof(struct bpf_prog_info, func_info_rec_size),
10364 	},
10365 	[BPF_PROG_INFO_LINE_INFO] = {
10366 		offsetof(struct bpf_prog_info, line_info),
10367 		offsetof(struct bpf_prog_info, nr_line_info),
10368 		offsetof(struct bpf_prog_info, line_info_rec_size),
10369 	},
10370 	[BPF_PROG_INFO_JITED_LINE_INFO] = {
10371 		offsetof(struct bpf_prog_info, jited_line_info),
10372 		offsetof(struct bpf_prog_info, nr_jited_line_info),
10373 		offsetof(struct bpf_prog_info, jited_line_info_rec_size),
10374 	},
10375 	[BPF_PROG_INFO_PROG_TAGS] = {
10376 		offsetof(struct bpf_prog_info, prog_tags),
10377 		offsetof(struct bpf_prog_info, nr_prog_tags),
10378 		-(int)sizeof(__u8) * BPF_TAG_SIZE,
10379 	},
10380 
10381 };
10382 
10383 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info,
10384 					   int offset)
10385 {
10386 	__u32 *array = (__u32 *)info;
10387 
10388 	if (offset >= 0)
10389 		return array[offset / sizeof(__u32)];
10390 	return -(int)offset;
10391 }
10392 
10393 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info,
10394 					   int offset)
10395 {
10396 	__u64 *array = (__u64 *)info;
10397 
10398 	if (offset >= 0)
10399 		return array[offset / sizeof(__u64)];
10400 	return -(int)offset;
10401 }
10402 
10403 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset,
10404 					 __u32 val)
10405 {
10406 	__u32 *array = (__u32 *)info;
10407 
10408 	if (offset >= 0)
10409 		array[offset / sizeof(__u32)] = val;
10410 }
10411 
10412 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset,
10413 					 __u64 val)
10414 {
10415 	__u64 *array = (__u64 *)info;
10416 
10417 	if (offset >= 0)
10418 		array[offset / sizeof(__u64)] = val;
10419 }
10420 
10421 struct bpf_prog_info_linear *
10422 bpf_program__get_prog_info_linear(int fd, __u64 arrays)
10423 {
10424 	struct bpf_prog_info_linear *info_linear;
10425 	struct bpf_prog_info info = {};
10426 	__u32 info_len = sizeof(info);
10427 	__u32 data_len = 0;
10428 	int i, err;
10429 	void *ptr;
10430 
10431 	if (arrays >> BPF_PROG_INFO_LAST_ARRAY)
10432 		return ERR_PTR(-EINVAL);
10433 
10434 	/* step 1: get array dimensions */
10435 	err = bpf_obj_get_info_by_fd(fd, &info, &info_len);
10436 	if (err) {
10437 		pr_debug("can't get prog info: %s", strerror(errno));
10438 		return ERR_PTR(-EFAULT);
10439 	}
10440 
10441 	/* step 2: calculate total size of all arrays */
10442 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10443 		bool include_array = (arrays & (1UL << i)) > 0;
10444 		struct bpf_prog_info_array_desc *desc;
10445 		__u32 count, size;
10446 
10447 		desc = bpf_prog_info_array_desc + i;
10448 
10449 		/* kernel is too old to support this field */
10450 		if (info_len < desc->array_offset + sizeof(__u32) ||
10451 		    info_len < desc->count_offset + sizeof(__u32) ||
10452 		    (desc->size_offset > 0 && info_len < desc->size_offset))
10453 			include_array = false;
10454 
10455 		if (!include_array) {
10456 			arrays &= ~(1UL << i);	/* clear the bit */
10457 			continue;
10458 		}
10459 
10460 		count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
10461 		size  = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
10462 
10463 		data_len += count * size;
10464 	}
10465 
10466 	/* step 3: allocate continuous memory */
10467 	data_len = roundup(data_len, sizeof(__u64));
10468 	info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len);
10469 	if (!info_linear)
10470 		return ERR_PTR(-ENOMEM);
10471 
10472 	/* step 4: fill data to info_linear->info */
10473 	info_linear->arrays = arrays;
10474 	memset(&info_linear->info, 0, sizeof(info));
10475 	ptr = info_linear->data;
10476 
10477 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10478 		struct bpf_prog_info_array_desc *desc;
10479 		__u32 count, size;
10480 
10481 		if ((arrays & (1UL << i)) == 0)
10482 			continue;
10483 
10484 		desc  = bpf_prog_info_array_desc + i;
10485 		count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
10486 		size  = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
10487 		bpf_prog_info_set_offset_u32(&info_linear->info,
10488 					     desc->count_offset, count);
10489 		bpf_prog_info_set_offset_u32(&info_linear->info,
10490 					     desc->size_offset, size);
10491 		bpf_prog_info_set_offset_u64(&info_linear->info,
10492 					     desc->array_offset,
10493 					     ptr_to_u64(ptr));
10494 		ptr += count * size;
10495 	}
10496 
10497 	/* step 5: call syscall again to get required arrays */
10498 	err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len);
10499 	if (err) {
10500 		pr_debug("can't get prog info: %s", strerror(errno));
10501 		free(info_linear);
10502 		return ERR_PTR(-EFAULT);
10503 	}
10504 
10505 	/* step 6: verify the data */
10506 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10507 		struct bpf_prog_info_array_desc *desc;
10508 		__u32 v1, v2;
10509 
10510 		if ((arrays & (1UL << i)) == 0)
10511 			continue;
10512 
10513 		desc = bpf_prog_info_array_desc + i;
10514 		v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
10515 		v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
10516 						   desc->count_offset);
10517 		if (v1 != v2)
10518 			pr_warn("%s: mismatch in element count\n", __func__);
10519 
10520 		v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
10521 		v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
10522 						   desc->size_offset);
10523 		if (v1 != v2)
10524 			pr_warn("%s: mismatch in rec size\n", __func__);
10525 	}
10526 
10527 	/* step 7: update info_len and data_len */
10528 	info_linear->info_len = sizeof(struct bpf_prog_info);
10529 	info_linear->data_len = data_len;
10530 
10531 	return info_linear;
10532 }
10533 
10534 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear)
10535 {
10536 	int i;
10537 
10538 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10539 		struct bpf_prog_info_array_desc *desc;
10540 		__u64 addr, offs;
10541 
10542 		if ((info_linear->arrays & (1UL << i)) == 0)
10543 			continue;
10544 
10545 		desc = bpf_prog_info_array_desc + i;
10546 		addr = bpf_prog_info_read_offset_u64(&info_linear->info,
10547 						     desc->array_offset);
10548 		offs = addr - ptr_to_u64(info_linear->data);
10549 		bpf_prog_info_set_offset_u64(&info_linear->info,
10550 					     desc->array_offset, offs);
10551 	}
10552 }
10553 
10554 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear)
10555 {
10556 	int i;
10557 
10558 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10559 		struct bpf_prog_info_array_desc *desc;
10560 		__u64 addr, offs;
10561 
10562 		if ((info_linear->arrays & (1UL << i)) == 0)
10563 			continue;
10564 
10565 		desc = bpf_prog_info_array_desc + i;
10566 		offs = bpf_prog_info_read_offset_u64(&info_linear->info,
10567 						     desc->array_offset);
10568 		addr = offs + ptr_to_u64(info_linear->data);
10569 		bpf_prog_info_set_offset_u64(&info_linear->info,
10570 					     desc->array_offset, addr);
10571 	}
10572 }
10573 
10574 int bpf_program__set_attach_target(struct bpf_program *prog,
10575 				   int attach_prog_fd,
10576 				   const char *attach_func_name)
10577 {
10578 	int btf_id;
10579 
10580 	if (!prog || attach_prog_fd < 0 || !attach_func_name)
10581 		return -EINVAL;
10582 
10583 	if (attach_prog_fd)
10584 		btf_id = libbpf_find_prog_btf_id(attach_func_name,
10585 						 attach_prog_fd);
10586 	else
10587 		btf_id = libbpf_find_vmlinux_btf_id(attach_func_name,
10588 						    prog->expected_attach_type);
10589 
10590 	if (btf_id < 0)
10591 		return btf_id;
10592 
10593 	prog->attach_btf_id = btf_id;
10594 	prog->attach_prog_fd = attach_prog_fd;
10595 	return 0;
10596 }
10597 
10598 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
10599 {
10600 	int err = 0, n, len, start, end = -1;
10601 	bool *tmp;
10602 
10603 	*mask = NULL;
10604 	*mask_sz = 0;
10605 
10606 	/* Each sub string separated by ',' has format \d+-\d+ or \d+ */
10607 	while (*s) {
10608 		if (*s == ',' || *s == '\n') {
10609 			s++;
10610 			continue;
10611 		}
10612 		n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
10613 		if (n <= 0 || n > 2) {
10614 			pr_warn("Failed to get CPU range %s: %d\n", s, n);
10615 			err = -EINVAL;
10616 			goto cleanup;
10617 		} else if (n == 1) {
10618 			end = start;
10619 		}
10620 		if (start < 0 || start > end) {
10621 			pr_warn("Invalid CPU range [%d,%d] in %s\n",
10622 				start, end, s);
10623 			err = -EINVAL;
10624 			goto cleanup;
10625 		}
10626 		tmp = realloc(*mask, end + 1);
10627 		if (!tmp) {
10628 			err = -ENOMEM;
10629 			goto cleanup;
10630 		}
10631 		*mask = tmp;
10632 		memset(tmp + *mask_sz, 0, start - *mask_sz);
10633 		memset(tmp + start, 1, end - start + 1);
10634 		*mask_sz = end + 1;
10635 		s += len;
10636 	}
10637 	if (!*mask_sz) {
10638 		pr_warn("Empty CPU range\n");
10639 		return -EINVAL;
10640 	}
10641 	return 0;
10642 cleanup:
10643 	free(*mask);
10644 	*mask = NULL;
10645 	return err;
10646 }
10647 
10648 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
10649 {
10650 	int fd, err = 0, len;
10651 	char buf[128];
10652 
10653 	fd = open(fcpu, O_RDONLY);
10654 	if (fd < 0) {
10655 		err = -errno;
10656 		pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
10657 		return err;
10658 	}
10659 	len = read(fd, buf, sizeof(buf));
10660 	close(fd);
10661 	if (len <= 0) {
10662 		err = len ? -errno : -EINVAL;
10663 		pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
10664 		return err;
10665 	}
10666 	if (len >= sizeof(buf)) {
10667 		pr_warn("CPU mask is too big in file %s\n", fcpu);
10668 		return -E2BIG;
10669 	}
10670 	buf[len] = '\0';
10671 
10672 	return parse_cpu_mask_str(buf, mask, mask_sz);
10673 }
10674 
10675 int libbpf_num_possible_cpus(void)
10676 {
10677 	static const char *fcpu = "/sys/devices/system/cpu/possible";
10678 	static int cpus;
10679 	int err, n, i, tmp_cpus;
10680 	bool *mask;
10681 
10682 	tmp_cpus = READ_ONCE(cpus);
10683 	if (tmp_cpus > 0)
10684 		return tmp_cpus;
10685 
10686 	err = parse_cpu_mask_file(fcpu, &mask, &n);
10687 	if (err)
10688 		return err;
10689 
10690 	tmp_cpus = 0;
10691 	for (i = 0; i < n; i++) {
10692 		if (mask[i])
10693 			tmp_cpus++;
10694 	}
10695 	free(mask);
10696 
10697 	WRITE_ONCE(cpus, tmp_cpus);
10698 	return tmp_cpus;
10699 }
10700 
10701 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
10702 			      const struct bpf_object_open_opts *opts)
10703 {
10704 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
10705 		.object_name = s->name,
10706 	);
10707 	struct bpf_object *obj;
10708 	int i;
10709 
10710 	/* Attempt to preserve opts->object_name, unless overriden by user
10711 	 * explicitly. Overwriting object name for skeletons is discouraged,
10712 	 * as it breaks global data maps, because they contain object name
10713 	 * prefix as their own map name prefix. When skeleton is generated,
10714 	 * bpftool is making an assumption that this name will stay the same.
10715 	 */
10716 	if (opts) {
10717 		memcpy(&skel_opts, opts, sizeof(*opts));
10718 		if (!opts->object_name)
10719 			skel_opts.object_name = s->name;
10720 	}
10721 
10722 	obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
10723 	if (IS_ERR(obj)) {
10724 		pr_warn("failed to initialize skeleton BPF object '%s': %ld\n",
10725 			s->name, PTR_ERR(obj));
10726 		return PTR_ERR(obj);
10727 	}
10728 
10729 	*s->obj = obj;
10730 
10731 	for (i = 0; i < s->map_cnt; i++) {
10732 		struct bpf_map **map = s->maps[i].map;
10733 		const char *name = s->maps[i].name;
10734 		void **mmaped = s->maps[i].mmaped;
10735 
10736 		*map = bpf_object__find_map_by_name(obj, name);
10737 		if (!*map) {
10738 			pr_warn("failed to find skeleton map '%s'\n", name);
10739 			return -ESRCH;
10740 		}
10741 
10742 		/* externs shouldn't be pre-setup from user code */
10743 		if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
10744 			*mmaped = (*map)->mmaped;
10745 	}
10746 
10747 	for (i = 0; i < s->prog_cnt; i++) {
10748 		struct bpf_program **prog = s->progs[i].prog;
10749 		const char *name = s->progs[i].name;
10750 
10751 		*prog = bpf_object__find_program_by_name(obj, name);
10752 		if (!*prog) {
10753 			pr_warn("failed to find skeleton program '%s'\n", name);
10754 			return -ESRCH;
10755 		}
10756 	}
10757 
10758 	return 0;
10759 }
10760 
10761 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
10762 {
10763 	int i, err;
10764 
10765 	err = bpf_object__load(*s->obj);
10766 	if (err) {
10767 		pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
10768 		return err;
10769 	}
10770 
10771 	for (i = 0; i < s->map_cnt; i++) {
10772 		struct bpf_map *map = *s->maps[i].map;
10773 		size_t mmap_sz = bpf_map_mmap_sz(map);
10774 		int prot, map_fd = bpf_map__fd(map);
10775 		void **mmaped = s->maps[i].mmaped;
10776 
10777 		if (!mmaped)
10778 			continue;
10779 
10780 		if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
10781 			*mmaped = NULL;
10782 			continue;
10783 		}
10784 
10785 		if (map->def.map_flags & BPF_F_RDONLY_PROG)
10786 			prot = PROT_READ;
10787 		else
10788 			prot = PROT_READ | PROT_WRITE;
10789 
10790 		/* Remap anonymous mmap()-ed "map initialization image" as
10791 		 * a BPF map-backed mmap()-ed memory, but preserving the same
10792 		 * memory address. This will cause kernel to change process'
10793 		 * page table to point to a different piece of kernel memory,
10794 		 * but from userspace point of view memory address (and its
10795 		 * contents, being identical at this point) will stay the
10796 		 * same. This mapping will be released by bpf_object__close()
10797 		 * as per normal clean up procedure, so we don't need to worry
10798 		 * about it from skeleton's clean up perspective.
10799 		 */
10800 		*mmaped = mmap(map->mmaped, mmap_sz, prot,
10801 				MAP_SHARED | MAP_FIXED, map_fd, 0);
10802 		if (*mmaped == MAP_FAILED) {
10803 			err = -errno;
10804 			*mmaped = NULL;
10805 			pr_warn("failed to re-mmap() map '%s': %d\n",
10806 				 bpf_map__name(map), err);
10807 			return err;
10808 		}
10809 	}
10810 
10811 	return 0;
10812 }
10813 
10814 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
10815 {
10816 	int i;
10817 
10818 	for (i = 0; i < s->prog_cnt; i++) {
10819 		struct bpf_program *prog = *s->progs[i].prog;
10820 		struct bpf_link **link = s->progs[i].link;
10821 		const struct bpf_sec_def *sec_def;
10822 
10823 		if (!prog->load)
10824 			continue;
10825 
10826 		sec_def = find_sec_def(prog->sec_name);
10827 		if (!sec_def || !sec_def->attach_fn)
10828 			continue;
10829 
10830 		*link = sec_def->attach_fn(sec_def, prog);
10831 		if (IS_ERR(*link)) {
10832 			pr_warn("failed to auto-attach program '%s': %ld\n",
10833 				bpf_program__name(prog), PTR_ERR(*link));
10834 			return PTR_ERR(*link);
10835 		}
10836 	}
10837 
10838 	return 0;
10839 }
10840 
10841 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
10842 {
10843 	int i;
10844 
10845 	for (i = 0; i < s->prog_cnt; i++) {
10846 		struct bpf_link **link = s->progs[i].link;
10847 
10848 		bpf_link__destroy(*link);
10849 		*link = NULL;
10850 	}
10851 }
10852 
10853 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
10854 {
10855 	if (s->progs)
10856 		bpf_object__detach_skeleton(s);
10857 	if (s->obj)
10858 		bpf_object__close(*s->obj);
10859 	free(s->maps);
10860 	free(s->progs);
10861 	free(s);
10862 }
10863