xref: /openbmc/linux/tools/lib/bpf/libbpf.c (revision a98478f8)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * Common eBPF ELF object loading operations.
5  *
6  * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7  * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8  * Copyright (C) 2015 Huawei Inc.
9  * Copyright (C) 2017 Nicira, Inc.
10  * Copyright (C) 2019 Isovalent, Inc.
11  */
12 
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/list.h>
35 #include <linux/limits.h>
36 #include <linux/perf_event.h>
37 #include <linux/ring_buffer.h>
38 #include <linux/version.h>
39 #include <sys/epoll.h>
40 #include <sys/ioctl.h>
41 #include <sys/mman.h>
42 #include <sys/stat.h>
43 #include <sys/types.h>
44 #include <sys/vfs.h>
45 #include <sys/utsname.h>
46 #include <sys/resource.h>
47 #include <libelf.h>
48 #include <gelf.h>
49 #include <zlib.h>
50 
51 #include "libbpf.h"
52 #include "bpf.h"
53 #include "btf.h"
54 #include "str_error.h"
55 #include "libbpf_internal.h"
56 #include "hashmap.h"
57 #include "bpf_gen_internal.h"
58 
59 #ifndef BPF_FS_MAGIC
60 #define BPF_FS_MAGIC		0xcafe4a11
61 #endif
62 
63 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
64 
65 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
66  * compilation if user enables corresponding warning. Disable it explicitly.
67  */
68 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
69 
70 #define __printf(a, b)	__attribute__((format(printf, a, b)))
71 
72 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
73 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
74 
75 static int __base_pr(enum libbpf_print_level level, const char *format,
76 		     va_list args)
77 {
78 	if (level == LIBBPF_DEBUG)
79 		return 0;
80 
81 	return vfprintf(stderr, format, args);
82 }
83 
84 static libbpf_print_fn_t __libbpf_pr = __base_pr;
85 
86 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
87 {
88 	libbpf_print_fn_t old_print_fn = __libbpf_pr;
89 
90 	__libbpf_pr = fn;
91 	return old_print_fn;
92 }
93 
94 __printf(2, 3)
95 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
96 {
97 	va_list args;
98 
99 	if (!__libbpf_pr)
100 		return;
101 
102 	va_start(args, format);
103 	__libbpf_pr(level, format, args);
104 	va_end(args);
105 }
106 
107 static void pr_perm_msg(int err)
108 {
109 	struct rlimit limit;
110 	char buf[100];
111 
112 	if (err != -EPERM || geteuid() != 0)
113 		return;
114 
115 	err = getrlimit(RLIMIT_MEMLOCK, &limit);
116 	if (err)
117 		return;
118 
119 	if (limit.rlim_cur == RLIM_INFINITY)
120 		return;
121 
122 	if (limit.rlim_cur < 1024)
123 		snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
124 	else if (limit.rlim_cur < 1024*1024)
125 		snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
126 	else
127 		snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
128 
129 	pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
130 		buf);
131 }
132 
133 #define STRERR_BUFSIZE  128
134 
135 /* Copied from tools/perf/util/util.h */
136 #ifndef zfree
137 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
138 #endif
139 
140 #ifndef zclose
141 # define zclose(fd) ({			\
142 	int ___err = 0;			\
143 	if ((fd) >= 0)			\
144 		___err = close((fd));	\
145 	fd = -1;			\
146 	___err; })
147 #endif
148 
149 static inline __u64 ptr_to_u64(const void *ptr)
150 {
151 	return (__u64) (unsigned long) ptr;
152 }
153 
154 /* this goes away in libbpf 1.0 */
155 enum libbpf_strict_mode libbpf_mode = LIBBPF_STRICT_NONE;
156 
157 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
158 {
159 	/* __LIBBPF_STRICT_LAST is the last power-of-2 value used + 1, so to
160 	 * get all possible values we compensate last +1, and then (2*x - 1)
161 	 * to get the bit mask
162 	 */
163 	if (mode != LIBBPF_STRICT_ALL
164 	    && (mode & ~((__LIBBPF_STRICT_LAST - 1) * 2 - 1)))
165 		return errno = EINVAL, -EINVAL;
166 
167 	libbpf_mode = mode;
168 	return 0;
169 }
170 
171 enum kern_feature_id {
172 	/* v4.14: kernel support for program & map names. */
173 	FEAT_PROG_NAME,
174 	/* v5.2: kernel support for global data sections. */
175 	FEAT_GLOBAL_DATA,
176 	/* BTF support */
177 	FEAT_BTF,
178 	/* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */
179 	FEAT_BTF_FUNC,
180 	/* BTF_KIND_VAR and BTF_KIND_DATASEC support */
181 	FEAT_BTF_DATASEC,
182 	/* BTF_FUNC_GLOBAL is supported */
183 	FEAT_BTF_GLOBAL_FUNC,
184 	/* BPF_F_MMAPABLE is supported for arrays */
185 	FEAT_ARRAY_MMAP,
186 	/* kernel support for expected_attach_type in BPF_PROG_LOAD */
187 	FEAT_EXP_ATTACH_TYPE,
188 	/* bpf_probe_read_{kernel,user}[_str] helpers */
189 	FEAT_PROBE_READ_KERN,
190 	/* BPF_PROG_BIND_MAP is supported */
191 	FEAT_PROG_BIND_MAP,
192 	/* Kernel support for module BTFs */
193 	FEAT_MODULE_BTF,
194 	/* BTF_KIND_FLOAT support */
195 	FEAT_BTF_FLOAT,
196 	/* BPF perf link support */
197 	FEAT_PERF_LINK,
198 	/* BTF_KIND_DECL_TAG support */
199 	FEAT_BTF_DECL_TAG,
200 	__FEAT_CNT,
201 };
202 
203 static bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id);
204 
205 enum reloc_type {
206 	RELO_LD64,
207 	RELO_CALL,
208 	RELO_DATA,
209 	RELO_EXTERN_VAR,
210 	RELO_EXTERN_FUNC,
211 	RELO_SUBPROG_ADDR,
212 };
213 
214 struct reloc_desc {
215 	enum reloc_type type;
216 	int insn_idx;
217 	int map_idx;
218 	int sym_off;
219 };
220 
221 struct bpf_sec_def;
222 
223 typedef int (*init_fn_t)(struct bpf_program *prog, long cookie);
224 typedef int (*preload_fn_t)(struct bpf_program *prog, struct bpf_prog_load_params *attr, long cookie);
225 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_program *prog, long cookie);
226 
227 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
228 enum sec_def_flags {
229 	SEC_NONE = 0,
230 	/* expected_attach_type is optional, if kernel doesn't support that */
231 	SEC_EXP_ATTACH_OPT = 1,
232 	/* legacy, only used by libbpf_get_type_names() and
233 	 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
234 	 * This used to be associated with cgroup (and few other) BPF programs
235 	 * that were attachable through BPF_PROG_ATTACH command. Pretty
236 	 * meaningless nowadays, though.
237 	 */
238 	SEC_ATTACHABLE = 2,
239 	SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
240 	/* attachment target is specified through BTF ID in either kernel or
241 	 * other BPF program's BTF object */
242 	SEC_ATTACH_BTF = 4,
243 	/* BPF program type allows sleeping/blocking in kernel */
244 	SEC_SLEEPABLE = 8,
245 	/* allow non-strict prefix matching */
246 	SEC_SLOPPY_PFX = 16,
247 };
248 
249 struct bpf_sec_def {
250 	const char *sec;
251 	enum bpf_prog_type prog_type;
252 	enum bpf_attach_type expected_attach_type;
253 	long cookie;
254 
255 	init_fn_t init_fn;
256 	preload_fn_t preload_fn;
257 	attach_fn_t attach_fn;
258 };
259 
260 /*
261  * bpf_prog should be a better name but it has been used in
262  * linux/filter.h.
263  */
264 struct bpf_program {
265 	const struct bpf_sec_def *sec_def;
266 	char *sec_name;
267 	size_t sec_idx;
268 	/* this program's instruction offset (in number of instructions)
269 	 * within its containing ELF section
270 	 */
271 	size_t sec_insn_off;
272 	/* number of original instructions in ELF section belonging to this
273 	 * program, not taking into account subprogram instructions possible
274 	 * appended later during relocation
275 	 */
276 	size_t sec_insn_cnt;
277 	/* Offset (in number of instructions) of the start of instruction
278 	 * belonging to this BPF program  within its containing main BPF
279 	 * program. For the entry-point (main) BPF program, this is always
280 	 * zero. For a sub-program, this gets reset before each of main BPF
281 	 * programs are processed and relocated and is used to determined
282 	 * whether sub-program was already appended to the main program, and
283 	 * if yes, at which instruction offset.
284 	 */
285 	size_t sub_insn_off;
286 
287 	char *name;
288 	/* name with / replaced by _; makes recursive pinning
289 	 * in bpf_object__pin_programs easier
290 	 */
291 	char *pin_name;
292 
293 	/* instructions that belong to BPF program; insns[0] is located at
294 	 * sec_insn_off instruction within its ELF section in ELF file, so
295 	 * when mapping ELF file instruction index to the local instruction,
296 	 * one needs to subtract sec_insn_off; and vice versa.
297 	 */
298 	struct bpf_insn *insns;
299 	/* actual number of instruction in this BPF program's image; for
300 	 * entry-point BPF programs this includes the size of main program
301 	 * itself plus all the used sub-programs, appended at the end
302 	 */
303 	size_t insns_cnt;
304 
305 	struct reloc_desc *reloc_desc;
306 	int nr_reloc;
307 	int log_level;
308 
309 	struct {
310 		int nr;
311 		int *fds;
312 	} instances;
313 	bpf_program_prep_t preprocessor;
314 
315 	struct bpf_object *obj;
316 	void *priv;
317 	bpf_program_clear_priv_t clear_priv;
318 
319 	bool load;
320 	bool mark_btf_static;
321 	enum bpf_prog_type type;
322 	enum bpf_attach_type expected_attach_type;
323 	int prog_ifindex;
324 	__u32 attach_btf_obj_fd;
325 	__u32 attach_btf_id;
326 	__u32 attach_prog_fd;
327 	void *func_info;
328 	__u32 func_info_rec_size;
329 	__u32 func_info_cnt;
330 
331 	void *line_info;
332 	__u32 line_info_rec_size;
333 	__u32 line_info_cnt;
334 	__u32 prog_flags;
335 };
336 
337 struct bpf_struct_ops {
338 	const char *tname;
339 	const struct btf_type *type;
340 	struct bpf_program **progs;
341 	__u32 *kern_func_off;
342 	/* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
343 	void *data;
344 	/* e.g. struct bpf_struct_ops_tcp_congestion_ops in
345 	 *      btf_vmlinux's format.
346 	 * struct bpf_struct_ops_tcp_congestion_ops {
347 	 *	[... some other kernel fields ...]
348 	 *	struct tcp_congestion_ops data;
349 	 * }
350 	 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
351 	 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
352 	 * from "data".
353 	 */
354 	void *kern_vdata;
355 	__u32 type_id;
356 };
357 
358 #define DATA_SEC ".data"
359 #define BSS_SEC ".bss"
360 #define RODATA_SEC ".rodata"
361 #define KCONFIG_SEC ".kconfig"
362 #define KSYMS_SEC ".ksyms"
363 #define STRUCT_OPS_SEC ".struct_ops"
364 
365 enum libbpf_map_type {
366 	LIBBPF_MAP_UNSPEC,
367 	LIBBPF_MAP_DATA,
368 	LIBBPF_MAP_BSS,
369 	LIBBPF_MAP_RODATA,
370 	LIBBPF_MAP_KCONFIG,
371 };
372 
373 struct bpf_map {
374 	char *name;
375 	/* real_name is defined for special internal maps (.rodata*,
376 	 * .data*, .bss, .kconfig) and preserves their original ELF section
377 	 * name. This is important to be be able to find corresponding BTF
378 	 * DATASEC information.
379 	 */
380 	char *real_name;
381 	int fd;
382 	int sec_idx;
383 	size_t sec_offset;
384 	int map_ifindex;
385 	int inner_map_fd;
386 	struct bpf_map_def def;
387 	__u32 numa_node;
388 	__u32 btf_var_idx;
389 	__u32 btf_key_type_id;
390 	__u32 btf_value_type_id;
391 	__u32 btf_vmlinux_value_type_id;
392 	void *priv;
393 	bpf_map_clear_priv_t clear_priv;
394 	enum libbpf_map_type libbpf_type;
395 	void *mmaped;
396 	struct bpf_struct_ops *st_ops;
397 	struct bpf_map *inner_map;
398 	void **init_slots;
399 	int init_slots_sz;
400 	char *pin_path;
401 	bool pinned;
402 	bool reused;
403 	__u64 map_extra;
404 };
405 
406 enum extern_type {
407 	EXT_UNKNOWN,
408 	EXT_KCFG,
409 	EXT_KSYM,
410 };
411 
412 enum kcfg_type {
413 	KCFG_UNKNOWN,
414 	KCFG_CHAR,
415 	KCFG_BOOL,
416 	KCFG_INT,
417 	KCFG_TRISTATE,
418 	KCFG_CHAR_ARR,
419 };
420 
421 struct extern_desc {
422 	enum extern_type type;
423 	int sym_idx;
424 	int btf_id;
425 	int sec_btf_id;
426 	const char *name;
427 	bool is_set;
428 	bool is_weak;
429 	union {
430 		struct {
431 			enum kcfg_type type;
432 			int sz;
433 			int align;
434 			int data_off;
435 			bool is_signed;
436 		} kcfg;
437 		struct {
438 			unsigned long long addr;
439 
440 			/* target btf_id of the corresponding kernel var. */
441 			int kernel_btf_obj_fd;
442 			int kernel_btf_id;
443 
444 			/* local btf_id of the ksym extern's type. */
445 			__u32 type_id;
446 			/* BTF fd index to be patched in for insn->off, this is
447 			 * 0 for vmlinux BTF, index in obj->fd_array for module
448 			 * BTF
449 			 */
450 			__s16 btf_fd_idx;
451 		} ksym;
452 	};
453 };
454 
455 static LIST_HEAD(bpf_objects_list);
456 
457 struct module_btf {
458 	struct btf *btf;
459 	char *name;
460 	__u32 id;
461 	int fd;
462 	int fd_array_idx;
463 };
464 
465 enum sec_type {
466 	SEC_UNUSED = 0,
467 	SEC_RELO,
468 	SEC_BSS,
469 	SEC_DATA,
470 	SEC_RODATA,
471 };
472 
473 struct elf_sec_desc {
474 	enum sec_type sec_type;
475 	Elf64_Shdr *shdr;
476 	Elf_Data *data;
477 };
478 
479 struct elf_state {
480 	int fd;
481 	const void *obj_buf;
482 	size_t obj_buf_sz;
483 	Elf *elf;
484 	Elf64_Ehdr *ehdr;
485 	Elf_Data *symbols;
486 	Elf_Data *st_ops_data;
487 	size_t shstrndx; /* section index for section name strings */
488 	size_t strtabidx;
489 	struct elf_sec_desc *secs;
490 	int sec_cnt;
491 	int maps_shndx;
492 	int btf_maps_shndx;
493 	__u32 btf_maps_sec_btf_id;
494 	int text_shndx;
495 	int symbols_shndx;
496 	int st_ops_shndx;
497 };
498 
499 struct bpf_object {
500 	char name[BPF_OBJ_NAME_LEN];
501 	char license[64];
502 	__u32 kern_version;
503 
504 	struct bpf_program *programs;
505 	size_t nr_programs;
506 	struct bpf_map *maps;
507 	size_t nr_maps;
508 	size_t maps_cap;
509 
510 	char *kconfig;
511 	struct extern_desc *externs;
512 	int nr_extern;
513 	int kconfig_map_idx;
514 
515 	bool loaded;
516 	bool has_subcalls;
517 	bool has_rodata;
518 
519 	struct bpf_gen *gen_loader;
520 
521 	/* Information when doing ELF related work. Only valid if efile.elf is not NULL */
522 	struct elf_state efile;
523 	/*
524 	 * All loaded bpf_object are linked in a list, which is
525 	 * hidden to caller. bpf_objects__<func> handlers deal with
526 	 * all objects.
527 	 */
528 	struct list_head list;
529 
530 	struct btf *btf;
531 	struct btf_ext *btf_ext;
532 
533 	/* Parse and load BTF vmlinux if any of the programs in the object need
534 	 * it at load time.
535 	 */
536 	struct btf *btf_vmlinux;
537 	/* Path to the custom BTF to be used for BPF CO-RE relocations as an
538 	 * override for vmlinux BTF.
539 	 */
540 	char *btf_custom_path;
541 	/* vmlinux BTF override for CO-RE relocations */
542 	struct btf *btf_vmlinux_override;
543 	/* Lazily initialized kernel module BTFs */
544 	struct module_btf *btf_modules;
545 	bool btf_modules_loaded;
546 	size_t btf_module_cnt;
547 	size_t btf_module_cap;
548 
549 	void *priv;
550 	bpf_object_clear_priv_t clear_priv;
551 
552 	int *fd_array;
553 	size_t fd_array_cap;
554 	size_t fd_array_cnt;
555 
556 	char path[];
557 };
558 
559 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
560 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
561 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
562 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
563 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
564 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
565 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
566 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
567 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
568 
569 void bpf_program__unload(struct bpf_program *prog)
570 {
571 	int i;
572 
573 	if (!prog)
574 		return;
575 
576 	/*
577 	 * If the object is opened but the program was never loaded,
578 	 * it is possible that prog->instances.nr == -1.
579 	 */
580 	if (prog->instances.nr > 0) {
581 		for (i = 0; i < prog->instances.nr; i++)
582 			zclose(prog->instances.fds[i]);
583 	} else if (prog->instances.nr != -1) {
584 		pr_warn("Internal error: instances.nr is %d\n",
585 			prog->instances.nr);
586 	}
587 
588 	prog->instances.nr = -1;
589 	zfree(&prog->instances.fds);
590 
591 	zfree(&prog->func_info);
592 	zfree(&prog->line_info);
593 }
594 
595 static void bpf_program__exit(struct bpf_program *prog)
596 {
597 	if (!prog)
598 		return;
599 
600 	if (prog->clear_priv)
601 		prog->clear_priv(prog, prog->priv);
602 
603 	prog->priv = NULL;
604 	prog->clear_priv = NULL;
605 
606 	bpf_program__unload(prog);
607 	zfree(&prog->name);
608 	zfree(&prog->sec_name);
609 	zfree(&prog->pin_name);
610 	zfree(&prog->insns);
611 	zfree(&prog->reloc_desc);
612 
613 	prog->nr_reloc = 0;
614 	prog->insns_cnt = 0;
615 	prog->sec_idx = -1;
616 }
617 
618 static char *__bpf_program__pin_name(struct bpf_program *prog)
619 {
620 	char *name, *p;
621 
622 	if (libbpf_mode & LIBBPF_STRICT_SEC_NAME)
623 		name = strdup(prog->name);
624 	else
625 		name = strdup(prog->sec_name);
626 
627 	if (!name)
628 		return NULL;
629 
630 	p = name;
631 
632 	while ((p = strchr(p, '/')))
633 		*p = '_';
634 
635 	return name;
636 }
637 
638 static bool insn_is_subprog_call(const struct bpf_insn *insn)
639 {
640 	return BPF_CLASS(insn->code) == BPF_JMP &&
641 	       BPF_OP(insn->code) == BPF_CALL &&
642 	       BPF_SRC(insn->code) == BPF_K &&
643 	       insn->src_reg == BPF_PSEUDO_CALL &&
644 	       insn->dst_reg == 0 &&
645 	       insn->off == 0;
646 }
647 
648 static bool is_call_insn(const struct bpf_insn *insn)
649 {
650 	return insn->code == (BPF_JMP | BPF_CALL);
651 }
652 
653 static bool insn_is_pseudo_func(struct bpf_insn *insn)
654 {
655 	return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
656 }
657 
658 static int
659 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
660 		      const char *name, size_t sec_idx, const char *sec_name,
661 		      size_t sec_off, void *insn_data, size_t insn_data_sz)
662 {
663 	if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
664 		pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
665 			sec_name, name, sec_off, insn_data_sz);
666 		return -EINVAL;
667 	}
668 
669 	memset(prog, 0, sizeof(*prog));
670 	prog->obj = obj;
671 
672 	prog->sec_idx = sec_idx;
673 	prog->sec_insn_off = sec_off / BPF_INSN_SZ;
674 	prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
675 	/* insns_cnt can later be increased by appending used subprograms */
676 	prog->insns_cnt = prog->sec_insn_cnt;
677 
678 	prog->type = BPF_PROG_TYPE_UNSPEC;
679 	prog->load = true;
680 
681 	prog->instances.fds = NULL;
682 	prog->instances.nr = -1;
683 
684 	prog->sec_name = strdup(sec_name);
685 	if (!prog->sec_name)
686 		goto errout;
687 
688 	prog->name = strdup(name);
689 	if (!prog->name)
690 		goto errout;
691 
692 	prog->pin_name = __bpf_program__pin_name(prog);
693 	if (!prog->pin_name)
694 		goto errout;
695 
696 	prog->insns = malloc(insn_data_sz);
697 	if (!prog->insns)
698 		goto errout;
699 	memcpy(prog->insns, insn_data, insn_data_sz);
700 
701 	return 0;
702 errout:
703 	pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
704 	bpf_program__exit(prog);
705 	return -ENOMEM;
706 }
707 
708 static int
709 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
710 			 const char *sec_name, int sec_idx)
711 {
712 	Elf_Data *symbols = obj->efile.symbols;
713 	struct bpf_program *prog, *progs;
714 	void *data = sec_data->d_buf;
715 	size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
716 	int nr_progs, err, i;
717 	const char *name;
718 	Elf64_Sym *sym;
719 
720 	progs = obj->programs;
721 	nr_progs = obj->nr_programs;
722 	nr_syms = symbols->d_size / sizeof(Elf64_Sym);
723 	sec_off = 0;
724 
725 	for (i = 0; i < nr_syms; i++) {
726 		sym = elf_sym_by_idx(obj, i);
727 
728 		if (sym->st_shndx != sec_idx)
729 			continue;
730 		if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
731 			continue;
732 
733 		prog_sz = sym->st_size;
734 		sec_off = sym->st_value;
735 
736 		name = elf_sym_str(obj, sym->st_name);
737 		if (!name) {
738 			pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
739 				sec_name, sec_off);
740 			return -LIBBPF_ERRNO__FORMAT;
741 		}
742 
743 		if (sec_off + prog_sz > sec_sz) {
744 			pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
745 				sec_name, sec_off);
746 			return -LIBBPF_ERRNO__FORMAT;
747 		}
748 
749 		if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
750 			pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
751 			return -ENOTSUP;
752 		}
753 
754 		pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
755 			 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
756 
757 		progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
758 		if (!progs) {
759 			/*
760 			 * In this case the original obj->programs
761 			 * is still valid, so don't need special treat for
762 			 * bpf_close_object().
763 			 */
764 			pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
765 				sec_name, name);
766 			return -ENOMEM;
767 		}
768 		obj->programs = progs;
769 
770 		prog = &progs[nr_progs];
771 
772 		err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
773 					    sec_off, data + sec_off, prog_sz);
774 		if (err)
775 			return err;
776 
777 		/* if function is a global/weak symbol, but has restricted
778 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
779 		 * as static to enable more permissive BPF verification mode
780 		 * with more outside context available to BPF verifier
781 		 */
782 		if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL
783 		    && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
784 			|| ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
785 			prog->mark_btf_static = true;
786 
787 		nr_progs++;
788 		obj->nr_programs = nr_progs;
789 	}
790 
791 	return 0;
792 }
793 
794 static __u32 get_kernel_version(void)
795 {
796 	__u32 major, minor, patch;
797 	struct utsname info;
798 
799 	uname(&info);
800 	if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3)
801 		return 0;
802 	return KERNEL_VERSION(major, minor, patch);
803 }
804 
805 static const struct btf_member *
806 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
807 {
808 	struct btf_member *m;
809 	int i;
810 
811 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
812 		if (btf_member_bit_offset(t, i) == bit_offset)
813 			return m;
814 	}
815 
816 	return NULL;
817 }
818 
819 static const struct btf_member *
820 find_member_by_name(const struct btf *btf, const struct btf_type *t,
821 		    const char *name)
822 {
823 	struct btf_member *m;
824 	int i;
825 
826 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
827 		if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
828 			return m;
829 	}
830 
831 	return NULL;
832 }
833 
834 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
835 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
836 				   const char *name, __u32 kind);
837 
838 static int
839 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
840 			   const struct btf_type **type, __u32 *type_id,
841 			   const struct btf_type **vtype, __u32 *vtype_id,
842 			   const struct btf_member **data_member)
843 {
844 	const struct btf_type *kern_type, *kern_vtype;
845 	const struct btf_member *kern_data_member;
846 	__s32 kern_vtype_id, kern_type_id;
847 	__u32 i;
848 
849 	kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
850 	if (kern_type_id < 0) {
851 		pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
852 			tname);
853 		return kern_type_id;
854 	}
855 	kern_type = btf__type_by_id(btf, kern_type_id);
856 
857 	/* Find the corresponding "map_value" type that will be used
858 	 * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
859 	 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
860 	 * btf_vmlinux.
861 	 */
862 	kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
863 						tname, BTF_KIND_STRUCT);
864 	if (kern_vtype_id < 0) {
865 		pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
866 			STRUCT_OPS_VALUE_PREFIX, tname);
867 		return kern_vtype_id;
868 	}
869 	kern_vtype = btf__type_by_id(btf, kern_vtype_id);
870 
871 	/* Find "struct tcp_congestion_ops" from
872 	 * struct bpf_struct_ops_tcp_congestion_ops {
873 	 *	[ ... ]
874 	 *	struct tcp_congestion_ops data;
875 	 * }
876 	 */
877 	kern_data_member = btf_members(kern_vtype);
878 	for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
879 		if (kern_data_member->type == kern_type_id)
880 			break;
881 	}
882 	if (i == btf_vlen(kern_vtype)) {
883 		pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
884 			tname, STRUCT_OPS_VALUE_PREFIX, tname);
885 		return -EINVAL;
886 	}
887 
888 	*type = kern_type;
889 	*type_id = kern_type_id;
890 	*vtype = kern_vtype;
891 	*vtype_id = kern_vtype_id;
892 	*data_member = kern_data_member;
893 
894 	return 0;
895 }
896 
897 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
898 {
899 	return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
900 }
901 
902 /* Init the map's fields that depend on kern_btf */
903 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
904 					 const struct btf *btf,
905 					 const struct btf *kern_btf)
906 {
907 	const struct btf_member *member, *kern_member, *kern_data_member;
908 	const struct btf_type *type, *kern_type, *kern_vtype;
909 	__u32 i, kern_type_id, kern_vtype_id, kern_data_off;
910 	struct bpf_struct_ops *st_ops;
911 	void *data, *kern_data;
912 	const char *tname;
913 	int err;
914 
915 	st_ops = map->st_ops;
916 	type = st_ops->type;
917 	tname = st_ops->tname;
918 	err = find_struct_ops_kern_types(kern_btf, tname,
919 					 &kern_type, &kern_type_id,
920 					 &kern_vtype, &kern_vtype_id,
921 					 &kern_data_member);
922 	if (err)
923 		return err;
924 
925 	pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
926 		 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
927 
928 	map->def.value_size = kern_vtype->size;
929 	map->btf_vmlinux_value_type_id = kern_vtype_id;
930 
931 	st_ops->kern_vdata = calloc(1, kern_vtype->size);
932 	if (!st_ops->kern_vdata)
933 		return -ENOMEM;
934 
935 	data = st_ops->data;
936 	kern_data_off = kern_data_member->offset / 8;
937 	kern_data = st_ops->kern_vdata + kern_data_off;
938 
939 	member = btf_members(type);
940 	for (i = 0; i < btf_vlen(type); i++, member++) {
941 		const struct btf_type *mtype, *kern_mtype;
942 		__u32 mtype_id, kern_mtype_id;
943 		void *mdata, *kern_mdata;
944 		__s64 msize, kern_msize;
945 		__u32 moff, kern_moff;
946 		__u32 kern_member_idx;
947 		const char *mname;
948 
949 		mname = btf__name_by_offset(btf, member->name_off);
950 		kern_member = find_member_by_name(kern_btf, kern_type, mname);
951 		if (!kern_member) {
952 			pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
953 				map->name, mname);
954 			return -ENOTSUP;
955 		}
956 
957 		kern_member_idx = kern_member - btf_members(kern_type);
958 		if (btf_member_bitfield_size(type, i) ||
959 		    btf_member_bitfield_size(kern_type, kern_member_idx)) {
960 			pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
961 				map->name, mname);
962 			return -ENOTSUP;
963 		}
964 
965 		moff = member->offset / 8;
966 		kern_moff = kern_member->offset / 8;
967 
968 		mdata = data + moff;
969 		kern_mdata = kern_data + kern_moff;
970 
971 		mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
972 		kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
973 						    &kern_mtype_id);
974 		if (BTF_INFO_KIND(mtype->info) !=
975 		    BTF_INFO_KIND(kern_mtype->info)) {
976 			pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
977 				map->name, mname, BTF_INFO_KIND(mtype->info),
978 				BTF_INFO_KIND(kern_mtype->info));
979 			return -ENOTSUP;
980 		}
981 
982 		if (btf_is_ptr(mtype)) {
983 			struct bpf_program *prog;
984 
985 			prog = st_ops->progs[i];
986 			if (!prog)
987 				continue;
988 
989 			kern_mtype = skip_mods_and_typedefs(kern_btf,
990 							    kern_mtype->type,
991 							    &kern_mtype_id);
992 
993 			/* mtype->type must be a func_proto which was
994 			 * guaranteed in bpf_object__collect_st_ops_relos(),
995 			 * so only check kern_mtype for func_proto here.
996 			 */
997 			if (!btf_is_func_proto(kern_mtype)) {
998 				pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
999 					map->name, mname);
1000 				return -ENOTSUP;
1001 			}
1002 
1003 			prog->attach_btf_id = kern_type_id;
1004 			prog->expected_attach_type = kern_member_idx;
1005 
1006 			st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1007 
1008 			pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1009 				 map->name, mname, prog->name, moff,
1010 				 kern_moff);
1011 
1012 			continue;
1013 		}
1014 
1015 		msize = btf__resolve_size(btf, mtype_id);
1016 		kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1017 		if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1018 			pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1019 				map->name, mname, (ssize_t)msize,
1020 				(ssize_t)kern_msize);
1021 			return -ENOTSUP;
1022 		}
1023 
1024 		pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1025 			 map->name, mname, (unsigned int)msize,
1026 			 moff, kern_moff);
1027 		memcpy(kern_mdata, mdata, msize);
1028 	}
1029 
1030 	return 0;
1031 }
1032 
1033 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1034 {
1035 	struct bpf_map *map;
1036 	size_t i;
1037 	int err;
1038 
1039 	for (i = 0; i < obj->nr_maps; i++) {
1040 		map = &obj->maps[i];
1041 
1042 		if (!bpf_map__is_struct_ops(map))
1043 			continue;
1044 
1045 		err = bpf_map__init_kern_struct_ops(map, obj->btf,
1046 						    obj->btf_vmlinux);
1047 		if (err)
1048 			return err;
1049 	}
1050 
1051 	return 0;
1052 }
1053 
1054 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj)
1055 {
1056 	const struct btf_type *type, *datasec;
1057 	const struct btf_var_secinfo *vsi;
1058 	struct bpf_struct_ops *st_ops;
1059 	const char *tname, *var_name;
1060 	__s32 type_id, datasec_id;
1061 	const struct btf *btf;
1062 	struct bpf_map *map;
1063 	__u32 i;
1064 
1065 	if (obj->efile.st_ops_shndx == -1)
1066 		return 0;
1067 
1068 	btf = obj->btf;
1069 	datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC,
1070 					    BTF_KIND_DATASEC);
1071 	if (datasec_id < 0) {
1072 		pr_warn("struct_ops init: DATASEC %s not found\n",
1073 			STRUCT_OPS_SEC);
1074 		return -EINVAL;
1075 	}
1076 
1077 	datasec = btf__type_by_id(btf, datasec_id);
1078 	vsi = btf_var_secinfos(datasec);
1079 	for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1080 		type = btf__type_by_id(obj->btf, vsi->type);
1081 		var_name = btf__name_by_offset(obj->btf, type->name_off);
1082 
1083 		type_id = btf__resolve_type(obj->btf, vsi->type);
1084 		if (type_id < 0) {
1085 			pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1086 				vsi->type, STRUCT_OPS_SEC);
1087 			return -EINVAL;
1088 		}
1089 
1090 		type = btf__type_by_id(obj->btf, type_id);
1091 		tname = btf__name_by_offset(obj->btf, type->name_off);
1092 		if (!tname[0]) {
1093 			pr_warn("struct_ops init: anonymous type is not supported\n");
1094 			return -ENOTSUP;
1095 		}
1096 		if (!btf_is_struct(type)) {
1097 			pr_warn("struct_ops init: %s is not a struct\n", tname);
1098 			return -EINVAL;
1099 		}
1100 
1101 		map = bpf_object__add_map(obj);
1102 		if (IS_ERR(map))
1103 			return PTR_ERR(map);
1104 
1105 		map->sec_idx = obj->efile.st_ops_shndx;
1106 		map->sec_offset = vsi->offset;
1107 		map->name = strdup(var_name);
1108 		if (!map->name)
1109 			return -ENOMEM;
1110 
1111 		map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1112 		map->def.key_size = sizeof(int);
1113 		map->def.value_size = type->size;
1114 		map->def.max_entries = 1;
1115 
1116 		map->st_ops = calloc(1, sizeof(*map->st_ops));
1117 		if (!map->st_ops)
1118 			return -ENOMEM;
1119 		st_ops = map->st_ops;
1120 		st_ops->data = malloc(type->size);
1121 		st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1122 		st_ops->kern_func_off = malloc(btf_vlen(type) *
1123 					       sizeof(*st_ops->kern_func_off));
1124 		if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1125 			return -ENOMEM;
1126 
1127 		if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) {
1128 			pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1129 				var_name, STRUCT_OPS_SEC);
1130 			return -EINVAL;
1131 		}
1132 
1133 		memcpy(st_ops->data,
1134 		       obj->efile.st_ops_data->d_buf + vsi->offset,
1135 		       type->size);
1136 		st_ops->tname = tname;
1137 		st_ops->type = type;
1138 		st_ops->type_id = type_id;
1139 
1140 		pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1141 			 tname, type_id, var_name, vsi->offset);
1142 	}
1143 
1144 	return 0;
1145 }
1146 
1147 static struct bpf_object *bpf_object__new(const char *path,
1148 					  const void *obj_buf,
1149 					  size_t obj_buf_sz,
1150 					  const char *obj_name)
1151 {
1152 	bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST);
1153 	struct bpf_object *obj;
1154 	char *end;
1155 
1156 	obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1157 	if (!obj) {
1158 		pr_warn("alloc memory failed for %s\n", path);
1159 		return ERR_PTR(-ENOMEM);
1160 	}
1161 
1162 	strcpy(obj->path, path);
1163 	if (obj_name) {
1164 		strncpy(obj->name, obj_name, sizeof(obj->name) - 1);
1165 		obj->name[sizeof(obj->name) - 1] = 0;
1166 	} else {
1167 		/* Using basename() GNU version which doesn't modify arg. */
1168 		strncpy(obj->name, basename((void *)path),
1169 			sizeof(obj->name) - 1);
1170 		end = strchr(obj->name, '.');
1171 		if (end)
1172 			*end = 0;
1173 	}
1174 
1175 	obj->efile.fd = -1;
1176 	/*
1177 	 * Caller of this function should also call
1178 	 * bpf_object__elf_finish() after data collection to return
1179 	 * obj_buf to user. If not, we should duplicate the buffer to
1180 	 * avoid user freeing them before elf finish.
1181 	 */
1182 	obj->efile.obj_buf = obj_buf;
1183 	obj->efile.obj_buf_sz = obj_buf_sz;
1184 	obj->efile.maps_shndx = -1;
1185 	obj->efile.btf_maps_shndx = -1;
1186 	obj->efile.st_ops_shndx = -1;
1187 	obj->kconfig_map_idx = -1;
1188 
1189 	obj->kern_version = get_kernel_version();
1190 	obj->loaded = false;
1191 
1192 	INIT_LIST_HEAD(&obj->list);
1193 	if (!strict)
1194 		list_add(&obj->list, &bpf_objects_list);
1195 	return obj;
1196 }
1197 
1198 static void bpf_object__elf_finish(struct bpf_object *obj)
1199 {
1200 	if (!obj->efile.elf)
1201 		return;
1202 
1203 	if (obj->efile.elf) {
1204 		elf_end(obj->efile.elf);
1205 		obj->efile.elf = NULL;
1206 	}
1207 	obj->efile.symbols = NULL;
1208 	obj->efile.st_ops_data = NULL;
1209 
1210 	zfree(&obj->efile.secs);
1211 	obj->efile.sec_cnt = 0;
1212 	zclose(obj->efile.fd);
1213 	obj->efile.obj_buf = NULL;
1214 	obj->efile.obj_buf_sz = 0;
1215 }
1216 
1217 static int bpf_object__elf_init(struct bpf_object *obj)
1218 {
1219 	Elf64_Ehdr *ehdr;
1220 	int err = 0;
1221 	Elf *elf;
1222 
1223 	if (obj->efile.elf) {
1224 		pr_warn("elf: init internal error\n");
1225 		return -LIBBPF_ERRNO__LIBELF;
1226 	}
1227 
1228 	if (obj->efile.obj_buf_sz > 0) {
1229 		/*
1230 		 * obj_buf should have been validated by
1231 		 * bpf_object__open_buffer().
1232 		 */
1233 		elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1234 	} else {
1235 		obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1236 		if (obj->efile.fd < 0) {
1237 			char errmsg[STRERR_BUFSIZE], *cp;
1238 
1239 			err = -errno;
1240 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1241 			pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1242 			return err;
1243 		}
1244 
1245 		elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1246 	}
1247 
1248 	if (!elf) {
1249 		pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1250 		err = -LIBBPF_ERRNO__LIBELF;
1251 		goto errout;
1252 	}
1253 
1254 	obj->efile.elf = elf;
1255 
1256 	if (elf_kind(elf) != ELF_K_ELF) {
1257 		err = -LIBBPF_ERRNO__FORMAT;
1258 		pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1259 		goto errout;
1260 	}
1261 
1262 	if (gelf_getclass(elf) != ELFCLASS64) {
1263 		err = -LIBBPF_ERRNO__FORMAT;
1264 		pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1265 		goto errout;
1266 	}
1267 
1268 	obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1269 	if (!obj->efile.ehdr) {
1270 		pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1271 		err = -LIBBPF_ERRNO__FORMAT;
1272 		goto errout;
1273 	}
1274 
1275 	if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1276 		pr_warn("elf: failed to get section names section index for %s: %s\n",
1277 			obj->path, elf_errmsg(-1));
1278 		err = -LIBBPF_ERRNO__FORMAT;
1279 		goto errout;
1280 	}
1281 
1282 	/* Elf is corrupted/truncated, avoid calling elf_strptr. */
1283 	if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1284 		pr_warn("elf: failed to get section names strings from %s: %s\n",
1285 			obj->path, elf_errmsg(-1));
1286 		err = -LIBBPF_ERRNO__FORMAT;
1287 		goto errout;
1288 	}
1289 
1290 	/* Old LLVM set e_machine to EM_NONE */
1291 	if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1292 		pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1293 		err = -LIBBPF_ERRNO__FORMAT;
1294 		goto errout;
1295 	}
1296 
1297 	return 0;
1298 errout:
1299 	bpf_object__elf_finish(obj);
1300 	return err;
1301 }
1302 
1303 static int bpf_object__check_endianness(struct bpf_object *obj)
1304 {
1305 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1306 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1307 		return 0;
1308 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1309 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1310 		return 0;
1311 #else
1312 # error "Unrecognized __BYTE_ORDER__"
1313 #endif
1314 	pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1315 	return -LIBBPF_ERRNO__ENDIAN;
1316 }
1317 
1318 static int
1319 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1320 {
1321 	memcpy(obj->license, data, min(size, sizeof(obj->license) - 1));
1322 	pr_debug("license of %s is %s\n", obj->path, obj->license);
1323 	return 0;
1324 }
1325 
1326 static int
1327 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1328 {
1329 	__u32 kver;
1330 
1331 	if (size != sizeof(kver)) {
1332 		pr_warn("invalid kver section in %s\n", obj->path);
1333 		return -LIBBPF_ERRNO__FORMAT;
1334 	}
1335 	memcpy(&kver, data, sizeof(kver));
1336 	obj->kern_version = kver;
1337 	pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1338 	return 0;
1339 }
1340 
1341 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1342 {
1343 	if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1344 	    type == BPF_MAP_TYPE_HASH_OF_MAPS)
1345 		return true;
1346 	return false;
1347 }
1348 
1349 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1350 {
1351 	int ret = -ENOENT;
1352 	Elf_Data *data;
1353 	Elf_Scn *scn;
1354 
1355 	*size = 0;
1356 	if (!name)
1357 		return -EINVAL;
1358 
1359 	scn = elf_sec_by_name(obj, name);
1360 	data = elf_sec_data(obj, scn);
1361 	if (data) {
1362 		ret = 0; /* found it */
1363 		*size = data->d_size;
1364 	}
1365 
1366 	return *size ? 0 : ret;
1367 }
1368 
1369 static int find_elf_var_offset(const struct bpf_object *obj, const char *name, __u32 *off)
1370 {
1371 	Elf_Data *symbols = obj->efile.symbols;
1372 	const char *sname;
1373 	size_t si;
1374 
1375 	if (!name || !off)
1376 		return -EINVAL;
1377 
1378 	for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1379 		Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1380 
1381 		if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL ||
1382 		    ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1383 			continue;
1384 
1385 		sname = elf_sym_str(obj, sym->st_name);
1386 		if (!sname) {
1387 			pr_warn("failed to get sym name string for var %s\n", name);
1388 			return -EIO;
1389 		}
1390 		if (strcmp(name, sname) == 0) {
1391 			*off = sym->st_value;
1392 			return 0;
1393 		}
1394 	}
1395 
1396 	return -ENOENT;
1397 }
1398 
1399 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1400 {
1401 	struct bpf_map *new_maps;
1402 	size_t new_cap;
1403 	int i;
1404 
1405 	if (obj->nr_maps < obj->maps_cap)
1406 		return &obj->maps[obj->nr_maps++];
1407 
1408 	new_cap = max((size_t)4, obj->maps_cap * 3 / 2);
1409 	new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps));
1410 	if (!new_maps) {
1411 		pr_warn("alloc maps for object failed\n");
1412 		return ERR_PTR(-ENOMEM);
1413 	}
1414 
1415 	obj->maps_cap = new_cap;
1416 	obj->maps = new_maps;
1417 
1418 	/* zero out new maps */
1419 	memset(obj->maps + obj->nr_maps, 0,
1420 	       (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps));
1421 	/*
1422 	 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin)
1423 	 * when failure (zclose won't close negative fd)).
1424 	 */
1425 	for (i = obj->nr_maps; i < obj->maps_cap; i++) {
1426 		obj->maps[i].fd = -1;
1427 		obj->maps[i].inner_map_fd = -1;
1428 	}
1429 
1430 	return &obj->maps[obj->nr_maps++];
1431 }
1432 
1433 static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1434 {
1435 	long page_sz = sysconf(_SC_PAGE_SIZE);
1436 	size_t map_sz;
1437 
1438 	map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries;
1439 	map_sz = roundup(map_sz, page_sz);
1440 	return map_sz;
1441 }
1442 
1443 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1444 {
1445 	char map_name[BPF_OBJ_NAME_LEN], *p;
1446 	int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1447 
1448 	/* This is one of the more confusing parts of libbpf for various
1449 	 * reasons, some of which are historical. The original idea for naming
1450 	 * internal names was to include as much of BPF object name prefix as
1451 	 * possible, so that it can be distinguished from similar internal
1452 	 * maps of a different BPF object.
1453 	 * As an example, let's say we have bpf_object named 'my_object_name'
1454 	 * and internal map corresponding to '.rodata' ELF section. The final
1455 	 * map name advertised to user and to the kernel will be
1456 	 * 'my_objec.rodata', taking first 8 characters of object name and
1457 	 * entire 7 characters of '.rodata'.
1458 	 * Somewhat confusingly, if internal map ELF section name is shorter
1459 	 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1460 	 * for the suffix, even though we only have 4 actual characters, and
1461 	 * resulting map will be called 'my_objec.bss', not even using all 15
1462 	 * characters allowed by the kernel. Oh well, at least the truncated
1463 	 * object name is somewhat consistent in this case. But if the map
1464 	 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1465 	 * (8 chars) and thus will be left with only first 7 characters of the
1466 	 * object name ('my_obje'). Happy guessing, user, that the final map
1467 	 * name will be "my_obje.kconfig".
1468 	 * Now, with libbpf starting to support arbitrarily named .rodata.*
1469 	 * and .data.* data sections, it's possible that ELF section name is
1470 	 * longer than allowed 15 chars, so we now need to be careful to take
1471 	 * only up to 15 first characters of ELF name, taking no BPF object
1472 	 * name characters at all. So '.rodata.abracadabra' will result in
1473 	 * '.rodata.abracad' kernel and user-visible name.
1474 	 * We need to keep this convoluted logic intact for .data, .bss and
1475 	 * .rodata maps, but for new custom .data.custom and .rodata.custom
1476 	 * maps we use their ELF names as is, not prepending bpf_object name
1477 	 * in front. We still need to truncate them to 15 characters for the
1478 	 * kernel. Full name can be recovered for such maps by using DATASEC
1479 	 * BTF type associated with such map's value type, though.
1480 	 */
1481 	if (sfx_len >= BPF_OBJ_NAME_LEN)
1482 		sfx_len = BPF_OBJ_NAME_LEN - 1;
1483 
1484 	/* if there are two or more dots in map name, it's a custom dot map */
1485 	if (strchr(real_name + 1, '.') != NULL)
1486 		pfx_len = 0;
1487 	else
1488 		pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1489 
1490 	snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1491 		 sfx_len, real_name);
1492 
1493 	/* sanitise map name to characters allowed by kernel */
1494 	for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1495 		if (!isalnum(*p) && *p != '_' && *p != '.')
1496 			*p = '_';
1497 
1498 	return strdup(map_name);
1499 }
1500 
1501 static int
1502 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1503 			      const char *real_name, int sec_idx, void *data, size_t data_sz)
1504 {
1505 	struct bpf_map_def *def;
1506 	struct bpf_map *map;
1507 	int err;
1508 
1509 	map = bpf_object__add_map(obj);
1510 	if (IS_ERR(map))
1511 		return PTR_ERR(map);
1512 
1513 	map->libbpf_type = type;
1514 	map->sec_idx = sec_idx;
1515 	map->sec_offset = 0;
1516 	map->real_name = strdup(real_name);
1517 	map->name = internal_map_name(obj, real_name);
1518 	if (!map->real_name || !map->name) {
1519 		zfree(&map->real_name);
1520 		zfree(&map->name);
1521 		return -ENOMEM;
1522 	}
1523 
1524 	def = &map->def;
1525 	def->type = BPF_MAP_TYPE_ARRAY;
1526 	def->key_size = sizeof(int);
1527 	def->value_size = data_sz;
1528 	def->max_entries = 1;
1529 	def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1530 			 ? BPF_F_RDONLY_PROG : 0;
1531 	def->map_flags |= BPF_F_MMAPABLE;
1532 
1533 	pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1534 		 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1535 
1536 	map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
1537 			   MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1538 	if (map->mmaped == MAP_FAILED) {
1539 		err = -errno;
1540 		map->mmaped = NULL;
1541 		pr_warn("failed to alloc map '%s' content buffer: %d\n",
1542 			map->name, err);
1543 		zfree(&map->real_name);
1544 		zfree(&map->name);
1545 		return err;
1546 	}
1547 
1548 	if (data)
1549 		memcpy(map->mmaped, data, data_sz);
1550 
1551 	pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1552 	return 0;
1553 }
1554 
1555 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1556 {
1557 	struct elf_sec_desc *sec_desc;
1558 	const char *sec_name;
1559 	int err = 0, sec_idx;
1560 
1561 	/*
1562 	 * Populate obj->maps with libbpf internal maps.
1563 	 */
1564 	for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1565 		sec_desc = &obj->efile.secs[sec_idx];
1566 
1567 		switch (sec_desc->sec_type) {
1568 		case SEC_DATA:
1569 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1570 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1571 							    sec_name, sec_idx,
1572 							    sec_desc->data->d_buf,
1573 							    sec_desc->data->d_size);
1574 			break;
1575 		case SEC_RODATA:
1576 			obj->has_rodata = true;
1577 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1578 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1579 							    sec_name, sec_idx,
1580 							    sec_desc->data->d_buf,
1581 							    sec_desc->data->d_size);
1582 			break;
1583 		case SEC_BSS:
1584 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1585 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1586 							    sec_name, sec_idx,
1587 							    NULL,
1588 							    sec_desc->data->d_size);
1589 			break;
1590 		default:
1591 			/* skip */
1592 			break;
1593 		}
1594 		if (err)
1595 			return err;
1596 	}
1597 	return 0;
1598 }
1599 
1600 
1601 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1602 					       const void *name)
1603 {
1604 	int i;
1605 
1606 	for (i = 0; i < obj->nr_extern; i++) {
1607 		if (strcmp(obj->externs[i].name, name) == 0)
1608 			return &obj->externs[i];
1609 	}
1610 	return NULL;
1611 }
1612 
1613 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1614 			      char value)
1615 {
1616 	switch (ext->kcfg.type) {
1617 	case KCFG_BOOL:
1618 		if (value == 'm') {
1619 			pr_warn("extern (kcfg) %s=%c should be tristate or char\n",
1620 				ext->name, value);
1621 			return -EINVAL;
1622 		}
1623 		*(bool *)ext_val = value == 'y' ? true : false;
1624 		break;
1625 	case KCFG_TRISTATE:
1626 		if (value == 'y')
1627 			*(enum libbpf_tristate *)ext_val = TRI_YES;
1628 		else if (value == 'm')
1629 			*(enum libbpf_tristate *)ext_val = TRI_MODULE;
1630 		else /* value == 'n' */
1631 			*(enum libbpf_tristate *)ext_val = TRI_NO;
1632 		break;
1633 	case KCFG_CHAR:
1634 		*(char *)ext_val = value;
1635 		break;
1636 	case KCFG_UNKNOWN:
1637 	case KCFG_INT:
1638 	case KCFG_CHAR_ARR:
1639 	default:
1640 		pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n",
1641 			ext->name, value);
1642 		return -EINVAL;
1643 	}
1644 	ext->is_set = true;
1645 	return 0;
1646 }
1647 
1648 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1649 			      const char *value)
1650 {
1651 	size_t len;
1652 
1653 	if (ext->kcfg.type != KCFG_CHAR_ARR) {
1654 		pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value);
1655 		return -EINVAL;
1656 	}
1657 
1658 	len = strlen(value);
1659 	if (value[len - 1] != '"') {
1660 		pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1661 			ext->name, value);
1662 		return -EINVAL;
1663 	}
1664 
1665 	/* strip quotes */
1666 	len -= 2;
1667 	if (len >= ext->kcfg.sz) {
1668 		pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n",
1669 			ext->name, value, len, ext->kcfg.sz - 1);
1670 		len = ext->kcfg.sz - 1;
1671 	}
1672 	memcpy(ext_val, value + 1, len);
1673 	ext_val[len] = '\0';
1674 	ext->is_set = true;
1675 	return 0;
1676 }
1677 
1678 static int parse_u64(const char *value, __u64 *res)
1679 {
1680 	char *value_end;
1681 	int err;
1682 
1683 	errno = 0;
1684 	*res = strtoull(value, &value_end, 0);
1685 	if (errno) {
1686 		err = -errno;
1687 		pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1688 		return err;
1689 	}
1690 	if (*value_end) {
1691 		pr_warn("failed to parse '%s' as integer completely\n", value);
1692 		return -EINVAL;
1693 	}
1694 	return 0;
1695 }
1696 
1697 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1698 {
1699 	int bit_sz = ext->kcfg.sz * 8;
1700 
1701 	if (ext->kcfg.sz == 8)
1702 		return true;
1703 
1704 	/* Validate that value stored in u64 fits in integer of `ext->sz`
1705 	 * bytes size without any loss of information. If the target integer
1706 	 * is signed, we rely on the following limits of integer type of
1707 	 * Y bits and subsequent transformation:
1708 	 *
1709 	 *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
1710 	 *            0 <= X + 2^(Y-1) <= 2^Y - 1
1711 	 *            0 <= X + 2^(Y-1) <  2^Y
1712 	 *
1713 	 *  For unsigned target integer, check that all the (64 - Y) bits are
1714 	 *  zero.
1715 	 */
1716 	if (ext->kcfg.is_signed)
1717 		return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1718 	else
1719 		return (v >> bit_sz) == 0;
1720 }
1721 
1722 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1723 			      __u64 value)
1724 {
1725 	if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1726 		pr_warn("extern (kcfg) %s=%llu should be integer\n",
1727 			ext->name, (unsigned long long)value);
1728 		return -EINVAL;
1729 	}
1730 	if (!is_kcfg_value_in_range(ext, value)) {
1731 		pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n",
1732 			ext->name, (unsigned long long)value, ext->kcfg.sz);
1733 		return -ERANGE;
1734 	}
1735 	switch (ext->kcfg.sz) {
1736 		case 1: *(__u8 *)ext_val = value; break;
1737 		case 2: *(__u16 *)ext_val = value; break;
1738 		case 4: *(__u32 *)ext_val = value; break;
1739 		case 8: *(__u64 *)ext_val = value; break;
1740 		default:
1741 			return -EINVAL;
1742 	}
1743 	ext->is_set = true;
1744 	return 0;
1745 }
1746 
1747 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1748 					    char *buf, void *data)
1749 {
1750 	struct extern_desc *ext;
1751 	char *sep, *value;
1752 	int len, err = 0;
1753 	void *ext_val;
1754 	__u64 num;
1755 
1756 	if (!str_has_pfx(buf, "CONFIG_"))
1757 		return 0;
1758 
1759 	sep = strchr(buf, '=');
1760 	if (!sep) {
1761 		pr_warn("failed to parse '%s': no separator\n", buf);
1762 		return -EINVAL;
1763 	}
1764 
1765 	/* Trim ending '\n' */
1766 	len = strlen(buf);
1767 	if (buf[len - 1] == '\n')
1768 		buf[len - 1] = '\0';
1769 	/* Split on '=' and ensure that a value is present. */
1770 	*sep = '\0';
1771 	if (!sep[1]) {
1772 		*sep = '=';
1773 		pr_warn("failed to parse '%s': no value\n", buf);
1774 		return -EINVAL;
1775 	}
1776 
1777 	ext = find_extern_by_name(obj, buf);
1778 	if (!ext || ext->is_set)
1779 		return 0;
1780 
1781 	ext_val = data + ext->kcfg.data_off;
1782 	value = sep + 1;
1783 
1784 	switch (*value) {
1785 	case 'y': case 'n': case 'm':
1786 		err = set_kcfg_value_tri(ext, ext_val, *value);
1787 		break;
1788 	case '"':
1789 		err = set_kcfg_value_str(ext, ext_val, value);
1790 		break;
1791 	default:
1792 		/* assume integer */
1793 		err = parse_u64(value, &num);
1794 		if (err) {
1795 			pr_warn("extern (kcfg) %s=%s should be integer\n",
1796 				ext->name, value);
1797 			return err;
1798 		}
1799 		err = set_kcfg_value_num(ext, ext_val, num);
1800 		break;
1801 	}
1802 	if (err)
1803 		return err;
1804 	pr_debug("extern (kcfg) %s=%s\n", ext->name, value);
1805 	return 0;
1806 }
1807 
1808 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1809 {
1810 	char buf[PATH_MAX];
1811 	struct utsname uts;
1812 	int len, err = 0;
1813 	gzFile file;
1814 
1815 	uname(&uts);
1816 	len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1817 	if (len < 0)
1818 		return -EINVAL;
1819 	else if (len >= PATH_MAX)
1820 		return -ENAMETOOLONG;
1821 
1822 	/* gzopen also accepts uncompressed files. */
1823 	file = gzopen(buf, "r");
1824 	if (!file)
1825 		file = gzopen("/proc/config.gz", "r");
1826 
1827 	if (!file) {
1828 		pr_warn("failed to open system Kconfig\n");
1829 		return -ENOENT;
1830 	}
1831 
1832 	while (gzgets(file, buf, sizeof(buf))) {
1833 		err = bpf_object__process_kconfig_line(obj, buf, data);
1834 		if (err) {
1835 			pr_warn("error parsing system Kconfig line '%s': %d\n",
1836 				buf, err);
1837 			goto out;
1838 		}
1839 	}
1840 
1841 out:
1842 	gzclose(file);
1843 	return err;
1844 }
1845 
1846 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
1847 					const char *config, void *data)
1848 {
1849 	char buf[PATH_MAX];
1850 	int err = 0;
1851 	FILE *file;
1852 
1853 	file = fmemopen((void *)config, strlen(config), "r");
1854 	if (!file) {
1855 		err = -errno;
1856 		pr_warn("failed to open in-memory Kconfig: %d\n", err);
1857 		return err;
1858 	}
1859 
1860 	while (fgets(buf, sizeof(buf), file)) {
1861 		err = bpf_object__process_kconfig_line(obj, buf, data);
1862 		if (err) {
1863 			pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
1864 				buf, err);
1865 			break;
1866 		}
1867 	}
1868 
1869 	fclose(file);
1870 	return err;
1871 }
1872 
1873 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
1874 {
1875 	struct extern_desc *last_ext = NULL, *ext;
1876 	size_t map_sz;
1877 	int i, err;
1878 
1879 	for (i = 0; i < obj->nr_extern; i++) {
1880 		ext = &obj->externs[i];
1881 		if (ext->type == EXT_KCFG)
1882 			last_ext = ext;
1883 	}
1884 
1885 	if (!last_ext)
1886 		return 0;
1887 
1888 	map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
1889 	err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
1890 					    ".kconfig", obj->efile.symbols_shndx,
1891 					    NULL, map_sz);
1892 	if (err)
1893 		return err;
1894 
1895 	obj->kconfig_map_idx = obj->nr_maps - 1;
1896 
1897 	return 0;
1898 }
1899 
1900 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict)
1901 {
1902 	Elf_Data *symbols = obj->efile.symbols;
1903 	int i, map_def_sz = 0, nr_maps = 0, nr_syms;
1904 	Elf_Data *data = NULL;
1905 	Elf_Scn *scn;
1906 
1907 	if (obj->efile.maps_shndx < 0)
1908 		return 0;
1909 
1910 	if (!symbols)
1911 		return -EINVAL;
1912 
1913 	scn = elf_sec_by_idx(obj, obj->efile.maps_shndx);
1914 	data = elf_sec_data(obj, scn);
1915 	if (!scn || !data) {
1916 		pr_warn("elf: failed to get legacy map definitions for %s\n",
1917 			obj->path);
1918 		return -EINVAL;
1919 	}
1920 
1921 	/*
1922 	 * Count number of maps. Each map has a name.
1923 	 * Array of maps is not supported: only the first element is
1924 	 * considered.
1925 	 *
1926 	 * TODO: Detect array of map and report error.
1927 	 */
1928 	nr_syms = symbols->d_size / sizeof(Elf64_Sym);
1929 	for (i = 0; i < nr_syms; i++) {
1930 		Elf64_Sym *sym = elf_sym_by_idx(obj, i);
1931 
1932 		if (sym->st_shndx != obj->efile.maps_shndx)
1933 			continue;
1934 		if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION)
1935 			continue;
1936 		nr_maps++;
1937 	}
1938 	/* Assume equally sized map definitions */
1939 	pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n",
1940 		 nr_maps, data->d_size, obj->path);
1941 
1942 	if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) {
1943 		pr_warn("elf: unable to determine legacy map definition size in %s\n",
1944 			obj->path);
1945 		return -EINVAL;
1946 	}
1947 	map_def_sz = data->d_size / nr_maps;
1948 
1949 	/* Fill obj->maps using data in "maps" section.  */
1950 	for (i = 0; i < nr_syms; i++) {
1951 		Elf64_Sym *sym = elf_sym_by_idx(obj, i);
1952 		const char *map_name;
1953 		struct bpf_map_def *def;
1954 		struct bpf_map *map;
1955 
1956 		if (sym->st_shndx != obj->efile.maps_shndx)
1957 			continue;
1958 		if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION)
1959 			continue;
1960 
1961 		map = bpf_object__add_map(obj);
1962 		if (IS_ERR(map))
1963 			return PTR_ERR(map);
1964 
1965 		map_name = elf_sym_str(obj, sym->st_name);
1966 		if (!map_name) {
1967 			pr_warn("failed to get map #%d name sym string for obj %s\n",
1968 				i, obj->path);
1969 			return -LIBBPF_ERRNO__FORMAT;
1970 		}
1971 
1972 		if (ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
1973 			pr_warn("map '%s' (legacy): static maps are not supported\n", map_name);
1974 			return -ENOTSUP;
1975 		}
1976 
1977 		map->libbpf_type = LIBBPF_MAP_UNSPEC;
1978 		map->sec_idx = sym->st_shndx;
1979 		map->sec_offset = sym->st_value;
1980 		pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n",
1981 			 map_name, map->sec_idx, map->sec_offset);
1982 		if (sym->st_value + map_def_sz > data->d_size) {
1983 			pr_warn("corrupted maps section in %s: last map \"%s\" too small\n",
1984 				obj->path, map_name);
1985 			return -EINVAL;
1986 		}
1987 
1988 		map->name = strdup(map_name);
1989 		if (!map->name) {
1990 			pr_warn("map '%s': failed to alloc map name\n", map_name);
1991 			return -ENOMEM;
1992 		}
1993 		pr_debug("map %d is \"%s\"\n", i, map->name);
1994 		def = (struct bpf_map_def *)(data->d_buf + sym->st_value);
1995 		/*
1996 		 * If the definition of the map in the object file fits in
1997 		 * bpf_map_def, copy it.  Any extra fields in our version
1998 		 * of bpf_map_def will default to zero as a result of the
1999 		 * calloc above.
2000 		 */
2001 		if (map_def_sz <= sizeof(struct bpf_map_def)) {
2002 			memcpy(&map->def, def, map_def_sz);
2003 		} else {
2004 			/*
2005 			 * Here the map structure being read is bigger than what
2006 			 * we expect, truncate if the excess bits are all zero.
2007 			 * If they are not zero, reject this map as
2008 			 * incompatible.
2009 			 */
2010 			char *b;
2011 
2012 			for (b = ((char *)def) + sizeof(struct bpf_map_def);
2013 			     b < ((char *)def) + map_def_sz; b++) {
2014 				if (*b != 0) {
2015 					pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n",
2016 						obj->path, map_name);
2017 					if (strict)
2018 						return -EINVAL;
2019 				}
2020 			}
2021 			memcpy(&map->def, def, sizeof(struct bpf_map_def));
2022 		}
2023 	}
2024 	return 0;
2025 }
2026 
2027 const struct btf_type *
2028 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2029 {
2030 	const struct btf_type *t = btf__type_by_id(btf, id);
2031 
2032 	if (res_id)
2033 		*res_id = id;
2034 
2035 	while (btf_is_mod(t) || btf_is_typedef(t)) {
2036 		if (res_id)
2037 			*res_id = t->type;
2038 		t = btf__type_by_id(btf, t->type);
2039 	}
2040 
2041 	return t;
2042 }
2043 
2044 static const struct btf_type *
2045 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2046 {
2047 	const struct btf_type *t;
2048 
2049 	t = skip_mods_and_typedefs(btf, id, NULL);
2050 	if (!btf_is_ptr(t))
2051 		return NULL;
2052 
2053 	t = skip_mods_and_typedefs(btf, t->type, res_id);
2054 
2055 	return btf_is_func_proto(t) ? t : NULL;
2056 }
2057 
2058 static const char *__btf_kind_str(__u16 kind)
2059 {
2060 	switch (kind) {
2061 	case BTF_KIND_UNKN: return "void";
2062 	case BTF_KIND_INT: return "int";
2063 	case BTF_KIND_PTR: return "ptr";
2064 	case BTF_KIND_ARRAY: return "array";
2065 	case BTF_KIND_STRUCT: return "struct";
2066 	case BTF_KIND_UNION: return "union";
2067 	case BTF_KIND_ENUM: return "enum";
2068 	case BTF_KIND_FWD: return "fwd";
2069 	case BTF_KIND_TYPEDEF: return "typedef";
2070 	case BTF_KIND_VOLATILE: return "volatile";
2071 	case BTF_KIND_CONST: return "const";
2072 	case BTF_KIND_RESTRICT: return "restrict";
2073 	case BTF_KIND_FUNC: return "func";
2074 	case BTF_KIND_FUNC_PROTO: return "func_proto";
2075 	case BTF_KIND_VAR: return "var";
2076 	case BTF_KIND_DATASEC: return "datasec";
2077 	case BTF_KIND_FLOAT: return "float";
2078 	case BTF_KIND_DECL_TAG: return "decl_tag";
2079 	default: return "unknown";
2080 	}
2081 }
2082 
2083 const char *btf_kind_str(const struct btf_type *t)
2084 {
2085 	return __btf_kind_str(btf_kind(t));
2086 }
2087 
2088 /*
2089  * Fetch integer attribute of BTF map definition. Such attributes are
2090  * represented using a pointer to an array, in which dimensionality of array
2091  * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2092  * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2093  * type definition, while using only sizeof(void *) space in ELF data section.
2094  */
2095 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2096 			      const struct btf_member *m, __u32 *res)
2097 {
2098 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2099 	const char *name = btf__name_by_offset(btf, m->name_off);
2100 	const struct btf_array *arr_info;
2101 	const struct btf_type *arr_t;
2102 
2103 	if (!btf_is_ptr(t)) {
2104 		pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2105 			map_name, name, btf_kind_str(t));
2106 		return false;
2107 	}
2108 
2109 	arr_t = btf__type_by_id(btf, t->type);
2110 	if (!arr_t) {
2111 		pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2112 			map_name, name, t->type);
2113 		return false;
2114 	}
2115 	if (!btf_is_array(arr_t)) {
2116 		pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2117 			map_name, name, btf_kind_str(arr_t));
2118 		return false;
2119 	}
2120 	arr_info = btf_array(arr_t);
2121 	*res = arr_info->nelems;
2122 	return true;
2123 }
2124 
2125 static int build_map_pin_path(struct bpf_map *map, const char *path)
2126 {
2127 	char buf[PATH_MAX];
2128 	int len;
2129 
2130 	if (!path)
2131 		path = "/sys/fs/bpf";
2132 
2133 	len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map));
2134 	if (len < 0)
2135 		return -EINVAL;
2136 	else if (len >= PATH_MAX)
2137 		return -ENAMETOOLONG;
2138 
2139 	return bpf_map__set_pin_path(map, buf);
2140 }
2141 
2142 int parse_btf_map_def(const char *map_name, struct btf *btf,
2143 		      const struct btf_type *def_t, bool strict,
2144 		      struct btf_map_def *map_def, struct btf_map_def *inner_def)
2145 {
2146 	const struct btf_type *t;
2147 	const struct btf_member *m;
2148 	bool is_inner = inner_def == NULL;
2149 	int vlen, i;
2150 
2151 	vlen = btf_vlen(def_t);
2152 	m = btf_members(def_t);
2153 	for (i = 0; i < vlen; i++, m++) {
2154 		const char *name = btf__name_by_offset(btf, m->name_off);
2155 
2156 		if (!name) {
2157 			pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2158 			return -EINVAL;
2159 		}
2160 		if (strcmp(name, "type") == 0) {
2161 			if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2162 				return -EINVAL;
2163 			map_def->parts |= MAP_DEF_MAP_TYPE;
2164 		} else if (strcmp(name, "max_entries") == 0) {
2165 			if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2166 				return -EINVAL;
2167 			map_def->parts |= MAP_DEF_MAX_ENTRIES;
2168 		} else if (strcmp(name, "map_flags") == 0) {
2169 			if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2170 				return -EINVAL;
2171 			map_def->parts |= MAP_DEF_MAP_FLAGS;
2172 		} else if (strcmp(name, "numa_node") == 0) {
2173 			if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2174 				return -EINVAL;
2175 			map_def->parts |= MAP_DEF_NUMA_NODE;
2176 		} else if (strcmp(name, "key_size") == 0) {
2177 			__u32 sz;
2178 
2179 			if (!get_map_field_int(map_name, btf, m, &sz))
2180 				return -EINVAL;
2181 			if (map_def->key_size && map_def->key_size != sz) {
2182 				pr_warn("map '%s': conflicting key size %u != %u.\n",
2183 					map_name, map_def->key_size, sz);
2184 				return -EINVAL;
2185 			}
2186 			map_def->key_size = sz;
2187 			map_def->parts |= MAP_DEF_KEY_SIZE;
2188 		} else if (strcmp(name, "key") == 0) {
2189 			__s64 sz;
2190 
2191 			t = btf__type_by_id(btf, m->type);
2192 			if (!t) {
2193 				pr_warn("map '%s': key type [%d] not found.\n",
2194 					map_name, m->type);
2195 				return -EINVAL;
2196 			}
2197 			if (!btf_is_ptr(t)) {
2198 				pr_warn("map '%s': key spec is not PTR: %s.\n",
2199 					map_name, btf_kind_str(t));
2200 				return -EINVAL;
2201 			}
2202 			sz = btf__resolve_size(btf, t->type);
2203 			if (sz < 0) {
2204 				pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2205 					map_name, t->type, (ssize_t)sz);
2206 				return sz;
2207 			}
2208 			if (map_def->key_size && map_def->key_size != sz) {
2209 				pr_warn("map '%s': conflicting key size %u != %zd.\n",
2210 					map_name, map_def->key_size, (ssize_t)sz);
2211 				return -EINVAL;
2212 			}
2213 			map_def->key_size = sz;
2214 			map_def->key_type_id = t->type;
2215 			map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2216 		} else if (strcmp(name, "value_size") == 0) {
2217 			__u32 sz;
2218 
2219 			if (!get_map_field_int(map_name, btf, m, &sz))
2220 				return -EINVAL;
2221 			if (map_def->value_size && map_def->value_size != sz) {
2222 				pr_warn("map '%s': conflicting value size %u != %u.\n",
2223 					map_name, map_def->value_size, sz);
2224 				return -EINVAL;
2225 			}
2226 			map_def->value_size = sz;
2227 			map_def->parts |= MAP_DEF_VALUE_SIZE;
2228 		} else if (strcmp(name, "value") == 0) {
2229 			__s64 sz;
2230 
2231 			t = btf__type_by_id(btf, m->type);
2232 			if (!t) {
2233 				pr_warn("map '%s': value type [%d] not found.\n",
2234 					map_name, m->type);
2235 				return -EINVAL;
2236 			}
2237 			if (!btf_is_ptr(t)) {
2238 				pr_warn("map '%s': value spec is not PTR: %s.\n",
2239 					map_name, btf_kind_str(t));
2240 				return -EINVAL;
2241 			}
2242 			sz = btf__resolve_size(btf, t->type);
2243 			if (sz < 0) {
2244 				pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2245 					map_name, t->type, (ssize_t)sz);
2246 				return sz;
2247 			}
2248 			if (map_def->value_size && map_def->value_size != sz) {
2249 				pr_warn("map '%s': conflicting value size %u != %zd.\n",
2250 					map_name, map_def->value_size, (ssize_t)sz);
2251 				return -EINVAL;
2252 			}
2253 			map_def->value_size = sz;
2254 			map_def->value_type_id = t->type;
2255 			map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2256 		}
2257 		else if (strcmp(name, "values") == 0) {
2258 			char inner_map_name[128];
2259 			int err;
2260 
2261 			if (is_inner) {
2262 				pr_warn("map '%s': multi-level inner maps not supported.\n",
2263 					map_name);
2264 				return -ENOTSUP;
2265 			}
2266 			if (i != vlen - 1) {
2267 				pr_warn("map '%s': '%s' member should be last.\n",
2268 					map_name, name);
2269 				return -EINVAL;
2270 			}
2271 			if (!bpf_map_type__is_map_in_map(map_def->map_type)) {
2272 				pr_warn("map '%s': should be map-in-map.\n",
2273 					map_name);
2274 				return -ENOTSUP;
2275 			}
2276 			if (map_def->value_size && map_def->value_size != 4) {
2277 				pr_warn("map '%s': conflicting value size %u != 4.\n",
2278 					map_name, map_def->value_size);
2279 				return -EINVAL;
2280 			}
2281 			map_def->value_size = 4;
2282 			t = btf__type_by_id(btf, m->type);
2283 			if (!t) {
2284 				pr_warn("map '%s': map-in-map inner type [%d] not found.\n",
2285 					map_name, m->type);
2286 				return -EINVAL;
2287 			}
2288 			if (!btf_is_array(t) || btf_array(t)->nelems) {
2289 				pr_warn("map '%s': map-in-map inner spec is not a zero-sized array.\n",
2290 					map_name);
2291 				return -EINVAL;
2292 			}
2293 			t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2294 			if (!btf_is_ptr(t)) {
2295 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2296 					map_name, btf_kind_str(t));
2297 				return -EINVAL;
2298 			}
2299 			t = skip_mods_and_typedefs(btf, t->type, NULL);
2300 			if (!btf_is_struct(t)) {
2301 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2302 					map_name, btf_kind_str(t));
2303 				return -EINVAL;
2304 			}
2305 
2306 			snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2307 			err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2308 			if (err)
2309 				return err;
2310 
2311 			map_def->parts |= MAP_DEF_INNER_MAP;
2312 		} else if (strcmp(name, "pinning") == 0) {
2313 			__u32 val;
2314 
2315 			if (is_inner) {
2316 				pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2317 				return -EINVAL;
2318 			}
2319 			if (!get_map_field_int(map_name, btf, m, &val))
2320 				return -EINVAL;
2321 			if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2322 				pr_warn("map '%s': invalid pinning value %u.\n",
2323 					map_name, val);
2324 				return -EINVAL;
2325 			}
2326 			map_def->pinning = val;
2327 			map_def->parts |= MAP_DEF_PINNING;
2328 		} else if (strcmp(name, "map_extra") == 0) {
2329 			__u32 map_extra;
2330 
2331 			if (!get_map_field_int(map_name, btf, m, &map_extra))
2332 				return -EINVAL;
2333 			map_def->map_extra = map_extra;
2334 			map_def->parts |= MAP_DEF_MAP_EXTRA;
2335 		} else {
2336 			if (strict) {
2337 				pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2338 				return -ENOTSUP;
2339 			}
2340 			pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2341 		}
2342 	}
2343 
2344 	if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2345 		pr_warn("map '%s': map type isn't specified.\n", map_name);
2346 		return -EINVAL;
2347 	}
2348 
2349 	return 0;
2350 }
2351 
2352 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2353 {
2354 	map->def.type = def->map_type;
2355 	map->def.key_size = def->key_size;
2356 	map->def.value_size = def->value_size;
2357 	map->def.max_entries = def->max_entries;
2358 	map->def.map_flags = def->map_flags;
2359 	map->map_extra = def->map_extra;
2360 
2361 	map->numa_node = def->numa_node;
2362 	map->btf_key_type_id = def->key_type_id;
2363 	map->btf_value_type_id = def->value_type_id;
2364 
2365 	if (def->parts & MAP_DEF_MAP_TYPE)
2366 		pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2367 
2368 	if (def->parts & MAP_DEF_KEY_TYPE)
2369 		pr_debug("map '%s': found key [%u], sz = %u.\n",
2370 			 map->name, def->key_type_id, def->key_size);
2371 	else if (def->parts & MAP_DEF_KEY_SIZE)
2372 		pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2373 
2374 	if (def->parts & MAP_DEF_VALUE_TYPE)
2375 		pr_debug("map '%s': found value [%u], sz = %u.\n",
2376 			 map->name, def->value_type_id, def->value_size);
2377 	else if (def->parts & MAP_DEF_VALUE_SIZE)
2378 		pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2379 
2380 	if (def->parts & MAP_DEF_MAX_ENTRIES)
2381 		pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2382 	if (def->parts & MAP_DEF_MAP_FLAGS)
2383 		pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2384 	if (def->parts & MAP_DEF_MAP_EXTRA)
2385 		pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2386 			 (unsigned long long)def->map_extra);
2387 	if (def->parts & MAP_DEF_PINNING)
2388 		pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2389 	if (def->parts & MAP_DEF_NUMA_NODE)
2390 		pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2391 
2392 	if (def->parts & MAP_DEF_INNER_MAP)
2393 		pr_debug("map '%s': found inner map definition.\n", map->name);
2394 }
2395 
2396 static const char *btf_var_linkage_str(__u32 linkage)
2397 {
2398 	switch (linkage) {
2399 	case BTF_VAR_STATIC: return "static";
2400 	case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2401 	case BTF_VAR_GLOBAL_EXTERN: return "extern";
2402 	default: return "unknown";
2403 	}
2404 }
2405 
2406 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2407 					 const struct btf_type *sec,
2408 					 int var_idx, int sec_idx,
2409 					 const Elf_Data *data, bool strict,
2410 					 const char *pin_root_path)
2411 {
2412 	struct btf_map_def map_def = {}, inner_def = {};
2413 	const struct btf_type *var, *def;
2414 	const struct btf_var_secinfo *vi;
2415 	const struct btf_var *var_extra;
2416 	const char *map_name;
2417 	struct bpf_map *map;
2418 	int err;
2419 
2420 	vi = btf_var_secinfos(sec) + var_idx;
2421 	var = btf__type_by_id(obj->btf, vi->type);
2422 	var_extra = btf_var(var);
2423 	map_name = btf__name_by_offset(obj->btf, var->name_off);
2424 
2425 	if (map_name == NULL || map_name[0] == '\0') {
2426 		pr_warn("map #%d: empty name.\n", var_idx);
2427 		return -EINVAL;
2428 	}
2429 	if ((__u64)vi->offset + vi->size > data->d_size) {
2430 		pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2431 		return -EINVAL;
2432 	}
2433 	if (!btf_is_var(var)) {
2434 		pr_warn("map '%s': unexpected var kind %s.\n",
2435 			map_name, btf_kind_str(var));
2436 		return -EINVAL;
2437 	}
2438 	if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2439 		pr_warn("map '%s': unsupported map linkage %s.\n",
2440 			map_name, btf_var_linkage_str(var_extra->linkage));
2441 		return -EOPNOTSUPP;
2442 	}
2443 
2444 	def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2445 	if (!btf_is_struct(def)) {
2446 		pr_warn("map '%s': unexpected def kind %s.\n",
2447 			map_name, btf_kind_str(var));
2448 		return -EINVAL;
2449 	}
2450 	if (def->size > vi->size) {
2451 		pr_warn("map '%s': invalid def size.\n", map_name);
2452 		return -EINVAL;
2453 	}
2454 
2455 	map = bpf_object__add_map(obj);
2456 	if (IS_ERR(map))
2457 		return PTR_ERR(map);
2458 	map->name = strdup(map_name);
2459 	if (!map->name) {
2460 		pr_warn("map '%s': failed to alloc map name.\n", map_name);
2461 		return -ENOMEM;
2462 	}
2463 	map->libbpf_type = LIBBPF_MAP_UNSPEC;
2464 	map->def.type = BPF_MAP_TYPE_UNSPEC;
2465 	map->sec_idx = sec_idx;
2466 	map->sec_offset = vi->offset;
2467 	map->btf_var_idx = var_idx;
2468 	pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2469 		 map_name, map->sec_idx, map->sec_offset);
2470 
2471 	err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2472 	if (err)
2473 		return err;
2474 
2475 	fill_map_from_def(map, &map_def);
2476 
2477 	if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2478 		err = build_map_pin_path(map, pin_root_path);
2479 		if (err) {
2480 			pr_warn("map '%s': couldn't build pin path.\n", map->name);
2481 			return err;
2482 		}
2483 	}
2484 
2485 	if (map_def.parts & MAP_DEF_INNER_MAP) {
2486 		map->inner_map = calloc(1, sizeof(*map->inner_map));
2487 		if (!map->inner_map)
2488 			return -ENOMEM;
2489 		map->inner_map->fd = -1;
2490 		map->inner_map->sec_idx = sec_idx;
2491 		map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2492 		if (!map->inner_map->name)
2493 			return -ENOMEM;
2494 		sprintf(map->inner_map->name, "%s.inner", map_name);
2495 
2496 		fill_map_from_def(map->inner_map, &inner_def);
2497 	}
2498 
2499 	return 0;
2500 }
2501 
2502 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2503 					  const char *pin_root_path)
2504 {
2505 	const struct btf_type *sec = NULL;
2506 	int nr_types, i, vlen, err;
2507 	const struct btf_type *t;
2508 	const char *name;
2509 	Elf_Data *data;
2510 	Elf_Scn *scn;
2511 
2512 	if (obj->efile.btf_maps_shndx < 0)
2513 		return 0;
2514 
2515 	scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2516 	data = elf_sec_data(obj, scn);
2517 	if (!scn || !data) {
2518 		pr_warn("elf: failed to get %s map definitions for %s\n",
2519 			MAPS_ELF_SEC, obj->path);
2520 		return -EINVAL;
2521 	}
2522 
2523 	nr_types = btf__type_cnt(obj->btf);
2524 	for (i = 1; i < nr_types; i++) {
2525 		t = btf__type_by_id(obj->btf, i);
2526 		if (!btf_is_datasec(t))
2527 			continue;
2528 		name = btf__name_by_offset(obj->btf, t->name_off);
2529 		if (strcmp(name, MAPS_ELF_SEC) == 0) {
2530 			sec = t;
2531 			obj->efile.btf_maps_sec_btf_id = i;
2532 			break;
2533 		}
2534 	}
2535 
2536 	if (!sec) {
2537 		pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2538 		return -ENOENT;
2539 	}
2540 
2541 	vlen = btf_vlen(sec);
2542 	for (i = 0; i < vlen; i++) {
2543 		err = bpf_object__init_user_btf_map(obj, sec, i,
2544 						    obj->efile.btf_maps_shndx,
2545 						    data, strict,
2546 						    pin_root_path);
2547 		if (err)
2548 			return err;
2549 	}
2550 
2551 	return 0;
2552 }
2553 
2554 static int bpf_object__init_maps(struct bpf_object *obj,
2555 				 const struct bpf_object_open_opts *opts)
2556 {
2557 	const char *pin_root_path;
2558 	bool strict;
2559 	int err;
2560 
2561 	strict = !OPTS_GET(opts, relaxed_maps, false);
2562 	pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2563 
2564 	err = bpf_object__init_user_maps(obj, strict);
2565 	err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2566 	err = err ?: bpf_object__init_global_data_maps(obj);
2567 	err = err ?: bpf_object__init_kconfig_map(obj);
2568 	err = err ?: bpf_object__init_struct_ops_maps(obj);
2569 
2570 	return err;
2571 }
2572 
2573 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2574 {
2575 	Elf64_Shdr *sh;
2576 
2577 	sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2578 	if (!sh)
2579 		return false;
2580 
2581 	return sh->sh_flags & SHF_EXECINSTR;
2582 }
2583 
2584 static bool btf_needs_sanitization(struct bpf_object *obj)
2585 {
2586 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2587 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2588 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2589 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2590 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2591 
2592 	return !has_func || !has_datasec || !has_func_global || !has_float || !has_decl_tag;
2593 }
2594 
2595 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2596 {
2597 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2598 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2599 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2600 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2601 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2602 	struct btf_type *t;
2603 	int i, j, vlen;
2604 
2605 	for (i = 1; i < btf__type_cnt(btf); i++) {
2606 		t = (struct btf_type *)btf__type_by_id(btf, i);
2607 
2608 		if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
2609 			/* replace VAR/DECL_TAG with INT */
2610 			t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2611 			/*
2612 			 * using size = 1 is the safest choice, 4 will be too
2613 			 * big and cause kernel BTF validation failure if
2614 			 * original variable took less than 4 bytes
2615 			 */
2616 			t->size = 1;
2617 			*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2618 		} else if (!has_datasec && btf_is_datasec(t)) {
2619 			/* replace DATASEC with STRUCT */
2620 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
2621 			struct btf_member *m = btf_members(t);
2622 			struct btf_type *vt;
2623 			char *name;
2624 
2625 			name = (char *)btf__name_by_offset(btf, t->name_off);
2626 			while (*name) {
2627 				if (*name == '.')
2628 					*name = '_';
2629 				name++;
2630 			}
2631 
2632 			vlen = btf_vlen(t);
2633 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2634 			for (j = 0; j < vlen; j++, v++, m++) {
2635 				/* order of field assignments is important */
2636 				m->offset = v->offset * 8;
2637 				m->type = v->type;
2638 				/* preserve variable name as member name */
2639 				vt = (void *)btf__type_by_id(btf, v->type);
2640 				m->name_off = vt->name_off;
2641 			}
2642 		} else if (!has_func && btf_is_func_proto(t)) {
2643 			/* replace FUNC_PROTO with ENUM */
2644 			vlen = btf_vlen(t);
2645 			t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2646 			t->size = sizeof(__u32); /* kernel enforced */
2647 		} else if (!has_func && btf_is_func(t)) {
2648 			/* replace FUNC with TYPEDEF */
2649 			t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2650 		} else if (!has_func_global && btf_is_func(t)) {
2651 			/* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2652 			t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2653 		} else if (!has_float && btf_is_float(t)) {
2654 			/* replace FLOAT with an equally-sized empty STRUCT;
2655 			 * since C compilers do not accept e.g. "float" as a
2656 			 * valid struct name, make it anonymous
2657 			 */
2658 			t->name_off = 0;
2659 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2660 		}
2661 	}
2662 }
2663 
2664 static bool libbpf_needs_btf(const struct bpf_object *obj)
2665 {
2666 	return obj->efile.btf_maps_shndx >= 0 ||
2667 	       obj->efile.st_ops_shndx >= 0 ||
2668 	       obj->nr_extern > 0;
2669 }
2670 
2671 static bool kernel_needs_btf(const struct bpf_object *obj)
2672 {
2673 	return obj->efile.st_ops_shndx >= 0;
2674 }
2675 
2676 static int bpf_object__init_btf(struct bpf_object *obj,
2677 				Elf_Data *btf_data,
2678 				Elf_Data *btf_ext_data)
2679 {
2680 	int err = -ENOENT;
2681 
2682 	if (btf_data) {
2683 		obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2684 		err = libbpf_get_error(obj->btf);
2685 		if (err) {
2686 			obj->btf = NULL;
2687 			pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
2688 			goto out;
2689 		}
2690 		/* enforce 8-byte pointers for BPF-targeted BTFs */
2691 		btf__set_pointer_size(obj->btf, 8);
2692 	}
2693 	if (btf_ext_data) {
2694 		if (!obj->btf) {
2695 			pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2696 				 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2697 			goto out;
2698 		}
2699 		obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
2700 		err = libbpf_get_error(obj->btf_ext);
2701 		if (err) {
2702 			pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
2703 				BTF_EXT_ELF_SEC, err);
2704 			obj->btf_ext = NULL;
2705 			goto out;
2706 		}
2707 	}
2708 out:
2709 	if (err && libbpf_needs_btf(obj)) {
2710 		pr_warn("BTF is required, but is missing or corrupted.\n");
2711 		return err;
2712 	}
2713 	return 0;
2714 }
2715 
2716 static int compare_vsi_off(const void *_a, const void *_b)
2717 {
2718 	const struct btf_var_secinfo *a = _a;
2719 	const struct btf_var_secinfo *b = _b;
2720 
2721 	return a->offset - b->offset;
2722 }
2723 
2724 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
2725 			     struct btf_type *t)
2726 {
2727 	__u32 size = 0, off = 0, i, vars = btf_vlen(t);
2728 	const char *name = btf__name_by_offset(btf, t->name_off);
2729 	const struct btf_type *t_var;
2730 	struct btf_var_secinfo *vsi;
2731 	const struct btf_var *var;
2732 	int ret;
2733 
2734 	if (!name) {
2735 		pr_debug("No name found in string section for DATASEC kind.\n");
2736 		return -ENOENT;
2737 	}
2738 
2739 	/* .extern datasec size and var offsets were set correctly during
2740 	 * extern collection step, so just skip straight to sorting variables
2741 	 */
2742 	if (t->size)
2743 		goto sort_vars;
2744 
2745 	ret = find_elf_sec_sz(obj, name, &size);
2746 	if (ret || !size || (t->size && t->size != size)) {
2747 		pr_debug("Invalid size for section %s: %u bytes\n", name, size);
2748 		return -ENOENT;
2749 	}
2750 
2751 	t->size = size;
2752 
2753 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
2754 		t_var = btf__type_by_id(btf, vsi->type);
2755 		var = btf_var(t_var);
2756 
2757 		if (!btf_is_var(t_var)) {
2758 			pr_debug("Non-VAR type seen in section %s\n", name);
2759 			return -EINVAL;
2760 		}
2761 
2762 		if (var->linkage == BTF_VAR_STATIC)
2763 			continue;
2764 
2765 		name = btf__name_by_offset(btf, t_var->name_off);
2766 		if (!name) {
2767 			pr_debug("No name found in string section for VAR kind\n");
2768 			return -ENOENT;
2769 		}
2770 
2771 		ret = find_elf_var_offset(obj, name, &off);
2772 		if (ret) {
2773 			pr_debug("No offset found in symbol table for VAR %s\n",
2774 				 name);
2775 			return -ENOENT;
2776 		}
2777 
2778 		vsi->offset = off;
2779 	}
2780 
2781 sort_vars:
2782 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
2783 	return 0;
2784 }
2785 
2786 static int btf_finalize_data(struct bpf_object *obj, struct btf *btf)
2787 {
2788 	int err = 0;
2789 	__u32 i, n = btf__type_cnt(btf);
2790 
2791 	for (i = 1; i < n; i++) {
2792 		struct btf_type *t = btf_type_by_id(btf, i);
2793 
2794 		/* Loader needs to fix up some of the things compiler
2795 		 * couldn't get its hands on while emitting BTF. This
2796 		 * is section size and global variable offset. We use
2797 		 * the info from the ELF itself for this purpose.
2798 		 */
2799 		if (btf_is_datasec(t)) {
2800 			err = btf_fixup_datasec(obj, btf, t);
2801 			if (err)
2802 				break;
2803 		}
2804 	}
2805 
2806 	return libbpf_err(err);
2807 }
2808 
2809 int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
2810 {
2811 	return btf_finalize_data(obj, btf);
2812 }
2813 
2814 static int bpf_object__finalize_btf(struct bpf_object *obj)
2815 {
2816 	int err;
2817 
2818 	if (!obj->btf)
2819 		return 0;
2820 
2821 	err = btf_finalize_data(obj, obj->btf);
2822 	if (err) {
2823 		pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err);
2824 		return err;
2825 	}
2826 
2827 	return 0;
2828 }
2829 
2830 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
2831 {
2832 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
2833 	    prog->type == BPF_PROG_TYPE_LSM)
2834 		return true;
2835 
2836 	/* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
2837 	 * also need vmlinux BTF
2838 	 */
2839 	if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
2840 		return true;
2841 
2842 	return false;
2843 }
2844 
2845 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
2846 {
2847 	struct bpf_program *prog;
2848 	int i;
2849 
2850 	/* CO-RE relocations need kernel BTF, only when btf_custom_path
2851 	 * is not specified
2852 	 */
2853 	if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
2854 		return true;
2855 
2856 	/* Support for typed ksyms needs kernel BTF */
2857 	for (i = 0; i < obj->nr_extern; i++) {
2858 		const struct extern_desc *ext;
2859 
2860 		ext = &obj->externs[i];
2861 		if (ext->type == EXT_KSYM && ext->ksym.type_id)
2862 			return true;
2863 	}
2864 
2865 	bpf_object__for_each_program(prog, obj) {
2866 		if (!prog->load)
2867 			continue;
2868 		if (prog_needs_vmlinux_btf(prog))
2869 			return true;
2870 	}
2871 
2872 	return false;
2873 }
2874 
2875 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
2876 {
2877 	int err;
2878 
2879 	/* btf_vmlinux could be loaded earlier */
2880 	if (obj->btf_vmlinux || obj->gen_loader)
2881 		return 0;
2882 
2883 	if (!force && !obj_needs_vmlinux_btf(obj))
2884 		return 0;
2885 
2886 	obj->btf_vmlinux = btf__load_vmlinux_btf();
2887 	err = libbpf_get_error(obj->btf_vmlinux);
2888 	if (err) {
2889 		pr_warn("Error loading vmlinux BTF: %d\n", err);
2890 		obj->btf_vmlinux = NULL;
2891 		return err;
2892 	}
2893 	return 0;
2894 }
2895 
2896 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
2897 {
2898 	struct btf *kern_btf = obj->btf;
2899 	bool btf_mandatory, sanitize;
2900 	int i, err = 0;
2901 
2902 	if (!obj->btf)
2903 		return 0;
2904 
2905 	if (!kernel_supports(obj, FEAT_BTF)) {
2906 		if (kernel_needs_btf(obj)) {
2907 			err = -EOPNOTSUPP;
2908 			goto report;
2909 		}
2910 		pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
2911 		return 0;
2912 	}
2913 
2914 	/* Even though some subprogs are global/weak, user might prefer more
2915 	 * permissive BPF verification process that BPF verifier performs for
2916 	 * static functions, taking into account more context from the caller
2917 	 * functions. In such case, they need to mark such subprogs with
2918 	 * __attribute__((visibility("hidden"))) and libbpf will adjust
2919 	 * corresponding FUNC BTF type to be marked as static and trigger more
2920 	 * involved BPF verification process.
2921 	 */
2922 	for (i = 0; i < obj->nr_programs; i++) {
2923 		struct bpf_program *prog = &obj->programs[i];
2924 		struct btf_type *t;
2925 		const char *name;
2926 		int j, n;
2927 
2928 		if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
2929 			continue;
2930 
2931 		n = btf__type_cnt(obj->btf);
2932 		for (j = 1; j < n; j++) {
2933 			t = btf_type_by_id(obj->btf, j);
2934 			if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
2935 				continue;
2936 
2937 			name = btf__str_by_offset(obj->btf, t->name_off);
2938 			if (strcmp(name, prog->name) != 0)
2939 				continue;
2940 
2941 			t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
2942 			break;
2943 		}
2944 	}
2945 
2946 	sanitize = btf_needs_sanitization(obj);
2947 	if (sanitize) {
2948 		const void *raw_data;
2949 		__u32 sz;
2950 
2951 		/* clone BTF to sanitize a copy and leave the original intact */
2952 		raw_data = btf__raw_data(obj->btf, &sz);
2953 		kern_btf = btf__new(raw_data, sz);
2954 		err = libbpf_get_error(kern_btf);
2955 		if (err)
2956 			return err;
2957 
2958 		/* enforce 8-byte pointers for BPF-targeted BTFs */
2959 		btf__set_pointer_size(obj->btf, 8);
2960 		bpf_object__sanitize_btf(obj, kern_btf);
2961 	}
2962 
2963 	if (obj->gen_loader) {
2964 		__u32 raw_size = 0;
2965 		const void *raw_data = btf__raw_data(kern_btf, &raw_size);
2966 
2967 		if (!raw_data)
2968 			return -ENOMEM;
2969 		bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
2970 		/* Pretend to have valid FD to pass various fd >= 0 checks.
2971 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
2972 		 */
2973 		btf__set_fd(kern_btf, 0);
2974 	} else {
2975 		err = btf__load_into_kernel(kern_btf);
2976 	}
2977 	if (sanitize) {
2978 		if (!err) {
2979 			/* move fd to libbpf's BTF */
2980 			btf__set_fd(obj->btf, btf__fd(kern_btf));
2981 			btf__set_fd(kern_btf, -1);
2982 		}
2983 		btf__free(kern_btf);
2984 	}
2985 report:
2986 	if (err) {
2987 		btf_mandatory = kernel_needs_btf(obj);
2988 		pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
2989 			btf_mandatory ? "BTF is mandatory, can't proceed."
2990 				      : "BTF is optional, ignoring.");
2991 		if (!btf_mandatory)
2992 			err = 0;
2993 	}
2994 	return err;
2995 }
2996 
2997 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
2998 {
2999 	const char *name;
3000 
3001 	name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3002 	if (!name) {
3003 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3004 			off, obj->path, elf_errmsg(-1));
3005 		return NULL;
3006 	}
3007 
3008 	return name;
3009 }
3010 
3011 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3012 {
3013 	const char *name;
3014 
3015 	name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3016 	if (!name) {
3017 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3018 			off, obj->path, elf_errmsg(-1));
3019 		return NULL;
3020 	}
3021 
3022 	return name;
3023 }
3024 
3025 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3026 {
3027 	Elf_Scn *scn;
3028 
3029 	scn = elf_getscn(obj->efile.elf, idx);
3030 	if (!scn) {
3031 		pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3032 			idx, obj->path, elf_errmsg(-1));
3033 		return NULL;
3034 	}
3035 	return scn;
3036 }
3037 
3038 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3039 {
3040 	Elf_Scn *scn = NULL;
3041 	Elf *elf = obj->efile.elf;
3042 	const char *sec_name;
3043 
3044 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3045 		sec_name = elf_sec_name(obj, scn);
3046 		if (!sec_name)
3047 			return NULL;
3048 
3049 		if (strcmp(sec_name, name) != 0)
3050 			continue;
3051 
3052 		return scn;
3053 	}
3054 	return NULL;
3055 }
3056 
3057 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3058 {
3059 	Elf64_Shdr *shdr;
3060 
3061 	if (!scn)
3062 		return NULL;
3063 
3064 	shdr = elf64_getshdr(scn);
3065 	if (!shdr) {
3066 		pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3067 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3068 		return NULL;
3069 	}
3070 
3071 	return shdr;
3072 }
3073 
3074 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3075 {
3076 	const char *name;
3077 	Elf64_Shdr *sh;
3078 
3079 	if (!scn)
3080 		return NULL;
3081 
3082 	sh = elf_sec_hdr(obj, scn);
3083 	if (!sh)
3084 		return NULL;
3085 
3086 	name = elf_sec_str(obj, sh->sh_name);
3087 	if (!name) {
3088 		pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3089 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3090 		return NULL;
3091 	}
3092 
3093 	return name;
3094 }
3095 
3096 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3097 {
3098 	Elf_Data *data;
3099 
3100 	if (!scn)
3101 		return NULL;
3102 
3103 	data = elf_getdata(scn, 0);
3104 	if (!data) {
3105 		pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3106 			elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3107 			obj->path, elf_errmsg(-1));
3108 		return NULL;
3109 	}
3110 
3111 	return data;
3112 }
3113 
3114 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3115 {
3116 	if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3117 		return NULL;
3118 
3119 	return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3120 }
3121 
3122 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3123 {
3124 	if (idx >= data->d_size / sizeof(Elf64_Rel))
3125 		return NULL;
3126 
3127 	return (Elf64_Rel *)data->d_buf + idx;
3128 }
3129 
3130 static bool is_sec_name_dwarf(const char *name)
3131 {
3132 	/* approximation, but the actual list is too long */
3133 	return str_has_pfx(name, ".debug_");
3134 }
3135 
3136 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3137 {
3138 	/* no special handling of .strtab */
3139 	if (hdr->sh_type == SHT_STRTAB)
3140 		return true;
3141 
3142 	/* ignore .llvm_addrsig section as well */
3143 	if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3144 		return true;
3145 
3146 	/* no subprograms will lead to an empty .text section, ignore it */
3147 	if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3148 	    strcmp(name, ".text") == 0)
3149 		return true;
3150 
3151 	/* DWARF sections */
3152 	if (is_sec_name_dwarf(name))
3153 		return true;
3154 
3155 	if (str_has_pfx(name, ".rel")) {
3156 		name += sizeof(".rel") - 1;
3157 		/* DWARF section relocations */
3158 		if (is_sec_name_dwarf(name))
3159 			return true;
3160 
3161 		/* .BTF and .BTF.ext don't need relocations */
3162 		if (strcmp(name, BTF_ELF_SEC) == 0 ||
3163 		    strcmp(name, BTF_EXT_ELF_SEC) == 0)
3164 			return true;
3165 	}
3166 
3167 	return false;
3168 }
3169 
3170 static int cmp_progs(const void *_a, const void *_b)
3171 {
3172 	const struct bpf_program *a = _a;
3173 	const struct bpf_program *b = _b;
3174 
3175 	if (a->sec_idx != b->sec_idx)
3176 		return a->sec_idx < b->sec_idx ? -1 : 1;
3177 
3178 	/* sec_insn_off can't be the same within the section */
3179 	return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3180 }
3181 
3182 static int bpf_object__elf_collect(struct bpf_object *obj)
3183 {
3184 	struct elf_sec_desc *sec_desc;
3185 	Elf *elf = obj->efile.elf;
3186 	Elf_Data *btf_ext_data = NULL;
3187 	Elf_Data *btf_data = NULL;
3188 	int idx = 0, err = 0;
3189 	const char *name;
3190 	Elf_Data *data;
3191 	Elf_Scn *scn;
3192 	Elf64_Shdr *sh;
3193 
3194 	/* ELF section indices are 1-based, so allocate +1 element to keep
3195 	 * indexing simple. Also include 0th invalid section into sec_cnt for
3196 	 * simpler and more traditional iteration logic.
3197 	 */
3198 	obj->efile.sec_cnt = 1 + obj->efile.ehdr->e_shnum;
3199 	obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3200 	if (!obj->efile.secs)
3201 		return -ENOMEM;
3202 
3203 	/* a bunch of ELF parsing functionality depends on processing symbols,
3204 	 * so do the first pass and find the symbol table
3205 	 */
3206 	scn = NULL;
3207 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3208 		sh = elf_sec_hdr(obj, scn);
3209 		if (!sh)
3210 			return -LIBBPF_ERRNO__FORMAT;
3211 
3212 		if (sh->sh_type == SHT_SYMTAB) {
3213 			if (obj->efile.symbols) {
3214 				pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3215 				return -LIBBPF_ERRNO__FORMAT;
3216 			}
3217 
3218 			data = elf_sec_data(obj, scn);
3219 			if (!data)
3220 				return -LIBBPF_ERRNO__FORMAT;
3221 
3222 			idx = elf_ndxscn(scn);
3223 
3224 			obj->efile.symbols = data;
3225 			obj->efile.symbols_shndx = idx;
3226 			obj->efile.strtabidx = sh->sh_link;
3227 		}
3228 	}
3229 
3230 	if (!obj->efile.symbols) {
3231 		pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3232 			obj->path);
3233 		return -ENOENT;
3234 	}
3235 
3236 	scn = NULL;
3237 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3238 		idx = elf_ndxscn(scn);
3239 		sec_desc = &obj->efile.secs[idx];
3240 
3241 		sh = elf_sec_hdr(obj, scn);
3242 		if (!sh)
3243 			return -LIBBPF_ERRNO__FORMAT;
3244 
3245 		name = elf_sec_str(obj, sh->sh_name);
3246 		if (!name)
3247 			return -LIBBPF_ERRNO__FORMAT;
3248 
3249 		if (ignore_elf_section(sh, name))
3250 			continue;
3251 
3252 		data = elf_sec_data(obj, scn);
3253 		if (!data)
3254 			return -LIBBPF_ERRNO__FORMAT;
3255 
3256 		pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3257 			 idx, name, (unsigned long)data->d_size,
3258 			 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3259 			 (int)sh->sh_type);
3260 
3261 		if (strcmp(name, "license") == 0) {
3262 			err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3263 			if (err)
3264 				return err;
3265 		} else if (strcmp(name, "version") == 0) {
3266 			err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3267 			if (err)
3268 				return err;
3269 		} else if (strcmp(name, "maps") == 0) {
3270 			obj->efile.maps_shndx = idx;
3271 		} else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3272 			obj->efile.btf_maps_shndx = idx;
3273 		} else if (strcmp(name, BTF_ELF_SEC) == 0) {
3274 			btf_data = data;
3275 		} else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3276 			btf_ext_data = data;
3277 		} else if (sh->sh_type == SHT_SYMTAB) {
3278 			/* already processed during the first pass above */
3279 		} else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3280 			if (sh->sh_flags & SHF_EXECINSTR) {
3281 				if (strcmp(name, ".text") == 0)
3282 					obj->efile.text_shndx = idx;
3283 				err = bpf_object__add_programs(obj, data, name, idx);
3284 				if (err)
3285 					return err;
3286 			} else if (strcmp(name, DATA_SEC) == 0 ||
3287 				   str_has_pfx(name, DATA_SEC ".")) {
3288 				sec_desc->sec_type = SEC_DATA;
3289 				sec_desc->shdr = sh;
3290 				sec_desc->data = data;
3291 			} else if (strcmp(name, RODATA_SEC) == 0 ||
3292 				   str_has_pfx(name, RODATA_SEC ".")) {
3293 				sec_desc->sec_type = SEC_RODATA;
3294 				sec_desc->shdr = sh;
3295 				sec_desc->data = data;
3296 			} else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
3297 				obj->efile.st_ops_data = data;
3298 				obj->efile.st_ops_shndx = idx;
3299 			} else {
3300 				pr_info("elf: skipping unrecognized data section(%d) %s\n",
3301 					idx, name);
3302 			}
3303 		} else if (sh->sh_type == SHT_REL) {
3304 			int targ_sec_idx = sh->sh_info; /* points to other section */
3305 
3306 			/* Only do relo for section with exec instructions */
3307 			if (!section_have_execinstr(obj, targ_sec_idx) &&
3308 			    strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3309 			    strcmp(name, ".rel" MAPS_ELF_SEC)) {
3310 				pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3311 					idx, name, targ_sec_idx,
3312 					elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3313 				continue;
3314 			}
3315 
3316 			sec_desc->sec_type = SEC_RELO;
3317 			sec_desc->shdr = sh;
3318 			sec_desc->data = data;
3319 		} else if (sh->sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) {
3320 			sec_desc->sec_type = SEC_BSS;
3321 			sec_desc->shdr = sh;
3322 			sec_desc->data = data;
3323 		} else {
3324 			pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3325 				(size_t)sh->sh_size);
3326 		}
3327 	}
3328 
3329 	if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3330 		pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3331 		return -LIBBPF_ERRNO__FORMAT;
3332 	}
3333 
3334 	/* sort BPF programs by section name and in-section instruction offset
3335 	 * for faster search */
3336 	qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3337 
3338 	return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3339 }
3340 
3341 static bool sym_is_extern(const Elf64_Sym *sym)
3342 {
3343 	int bind = ELF64_ST_BIND(sym->st_info);
3344 	/* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3345 	return sym->st_shndx == SHN_UNDEF &&
3346 	       (bind == STB_GLOBAL || bind == STB_WEAK) &&
3347 	       ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3348 }
3349 
3350 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3351 {
3352 	int bind = ELF64_ST_BIND(sym->st_info);
3353 	int type = ELF64_ST_TYPE(sym->st_info);
3354 
3355 	/* in .text section */
3356 	if (sym->st_shndx != text_shndx)
3357 		return false;
3358 
3359 	/* local function */
3360 	if (bind == STB_LOCAL && type == STT_SECTION)
3361 		return true;
3362 
3363 	/* global function */
3364 	return bind == STB_GLOBAL && type == STT_FUNC;
3365 }
3366 
3367 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3368 {
3369 	const struct btf_type *t;
3370 	const char *tname;
3371 	int i, n;
3372 
3373 	if (!btf)
3374 		return -ESRCH;
3375 
3376 	n = btf__type_cnt(btf);
3377 	for (i = 1; i < n; i++) {
3378 		t = btf__type_by_id(btf, i);
3379 
3380 		if (!btf_is_var(t) && !btf_is_func(t))
3381 			continue;
3382 
3383 		tname = btf__name_by_offset(btf, t->name_off);
3384 		if (strcmp(tname, ext_name))
3385 			continue;
3386 
3387 		if (btf_is_var(t) &&
3388 		    btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3389 			return -EINVAL;
3390 
3391 		if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3392 			return -EINVAL;
3393 
3394 		return i;
3395 	}
3396 
3397 	return -ENOENT;
3398 }
3399 
3400 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3401 	const struct btf_var_secinfo *vs;
3402 	const struct btf_type *t;
3403 	int i, j, n;
3404 
3405 	if (!btf)
3406 		return -ESRCH;
3407 
3408 	n = btf__type_cnt(btf);
3409 	for (i = 1; i < n; i++) {
3410 		t = btf__type_by_id(btf, i);
3411 
3412 		if (!btf_is_datasec(t))
3413 			continue;
3414 
3415 		vs = btf_var_secinfos(t);
3416 		for (j = 0; j < btf_vlen(t); j++, vs++) {
3417 			if (vs->type == ext_btf_id)
3418 				return i;
3419 		}
3420 	}
3421 
3422 	return -ENOENT;
3423 }
3424 
3425 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3426 				     bool *is_signed)
3427 {
3428 	const struct btf_type *t;
3429 	const char *name;
3430 
3431 	t = skip_mods_and_typedefs(btf, id, NULL);
3432 	name = btf__name_by_offset(btf, t->name_off);
3433 
3434 	if (is_signed)
3435 		*is_signed = false;
3436 	switch (btf_kind(t)) {
3437 	case BTF_KIND_INT: {
3438 		int enc = btf_int_encoding(t);
3439 
3440 		if (enc & BTF_INT_BOOL)
3441 			return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3442 		if (is_signed)
3443 			*is_signed = enc & BTF_INT_SIGNED;
3444 		if (t->size == 1)
3445 			return KCFG_CHAR;
3446 		if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3447 			return KCFG_UNKNOWN;
3448 		return KCFG_INT;
3449 	}
3450 	case BTF_KIND_ENUM:
3451 		if (t->size != 4)
3452 			return KCFG_UNKNOWN;
3453 		if (strcmp(name, "libbpf_tristate"))
3454 			return KCFG_UNKNOWN;
3455 		return KCFG_TRISTATE;
3456 	case BTF_KIND_ARRAY:
3457 		if (btf_array(t)->nelems == 0)
3458 			return KCFG_UNKNOWN;
3459 		if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3460 			return KCFG_UNKNOWN;
3461 		return KCFG_CHAR_ARR;
3462 	default:
3463 		return KCFG_UNKNOWN;
3464 	}
3465 }
3466 
3467 static int cmp_externs(const void *_a, const void *_b)
3468 {
3469 	const struct extern_desc *a = _a;
3470 	const struct extern_desc *b = _b;
3471 
3472 	if (a->type != b->type)
3473 		return a->type < b->type ? -1 : 1;
3474 
3475 	if (a->type == EXT_KCFG) {
3476 		/* descending order by alignment requirements */
3477 		if (a->kcfg.align != b->kcfg.align)
3478 			return a->kcfg.align > b->kcfg.align ? -1 : 1;
3479 		/* ascending order by size, within same alignment class */
3480 		if (a->kcfg.sz != b->kcfg.sz)
3481 			return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3482 	}
3483 
3484 	/* resolve ties by name */
3485 	return strcmp(a->name, b->name);
3486 }
3487 
3488 static int find_int_btf_id(const struct btf *btf)
3489 {
3490 	const struct btf_type *t;
3491 	int i, n;
3492 
3493 	n = btf__type_cnt(btf);
3494 	for (i = 1; i < n; i++) {
3495 		t = btf__type_by_id(btf, i);
3496 
3497 		if (btf_is_int(t) && btf_int_bits(t) == 32)
3498 			return i;
3499 	}
3500 
3501 	return 0;
3502 }
3503 
3504 static int add_dummy_ksym_var(struct btf *btf)
3505 {
3506 	int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
3507 	const struct btf_var_secinfo *vs;
3508 	const struct btf_type *sec;
3509 
3510 	if (!btf)
3511 		return 0;
3512 
3513 	sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
3514 					    BTF_KIND_DATASEC);
3515 	if (sec_btf_id < 0)
3516 		return 0;
3517 
3518 	sec = btf__type_by_id(btf, sec_btf_id);
3519 	vs = btf_var_secinfos(sec);
3520 	for (i = 0; i < btf_vlen(sec); i++, vs++) {
3521 		const struct btf_type *vt;
3522 
3523 		vt = btf__type_by_id(btf, vs->type);
3524 		if (btf_is_func(vt))
3525 			break;
3526 	}
3527 
3528 	/* No func in ksyms sec.  No need to add dummy var. */
3529 	if (i == btf_vlen(sec))
3530 		return 0;
3531 
3532 	int_btf_id = find_int_btf_id(btf);
3533 	dummy_var_btf_id = btf__add_var(btf,
3534 					"dummy_ksym",
3535 					BTF_VAR_GLOBAL_ALLOCATED,
3536 					int_btf_id);
3537 	if (dummy_var_btf_id < 0)
3538 		pr_warn("cannot create a dummy_ksym var\n");
3539 
3540 	return dummy_var_btf_id;
3541 }
3542 
3543 static int bpf_object__collect_externs(struct bpf_object *obj)
3544 {
3545 	struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3546 	const struct btf_type *t;
3547 	struct extern_desc *ext;
3548 	int i, n, off, dummy_var_btf_id;
3549 	const char *ext_name, *sec_name;
3550 	Elf_Scn *scn;
3551 	Elf64_Shdr *sh;
3552 
3553 	if (!obj->efile.symbols)
3554 		return 0;
3555 
3556 	scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3557 	sh = elf_sec_hdr(obj, scn);
3558 	if (!sh)
3559 		return -LIBBPF_ERRNO__FORMAT;
3560 
3561 	dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
3562 	if (dummy_var_btf_id < 0)
3563 		return dummy_var_btf_id;
3564 
3565 	n = sh->sh_size / sh->sh_entsize;
3566 	pr_debug("looking for externs among %d symbols...\n", n);
3567 
3568 	for (i = 0; i < n; i++) {
3569 		Elf64_Sym *sym = elf_sym_by_idx(obj, i);
3570 
3571 		if (!sym)
3572 			return -LIBBPF_ERRNO__FORMAT;
3573 		if (!sym_is_extern(sym))
3574 			continue;
3575 		ext_name = elf_sym_str(obj, sym->st_name);
3576 		if (!ext_name || !ext_name[0])
3577 			continue;
3578 
3579 		ext = obj->externs;
3580 		ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3581 		if (!ext)
3582 			return -ENOMEM;
3583 		obj->externs = ext;
3584 		ext = &ext[obj->nr_extern];
3585 		memset(ext, 0, sizeof(*ext));
3586 		obj->nr_extern++;
3587 
3588 		ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3589 		if (ext->btf_id <= 0) {
3590 			pr_warn("failed to find BTF for extern '%s': %d\n",
3591 				ext_name, ext->btf_id);
3592 			return ext->btf_id;
3593 		}
3594 		t = btf__type_by_id(obj->btf, ext->btf_id);
3595 		ext->name = btf__name_by_offset(obj->btf, t->name_off);
3596 		ext->sym_idx = i;
3597 		ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
3598 
3599 		ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3600 		if (ext->sec_btf_id <= 0) {
3601 			pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3602 				ext_name, ext->btf_id, ext->sec_btf_id);
3603 			return ext->sec_btf_id;
3604 		}
3605 		sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3606 		sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3607 
3608 		if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3609 			if (btf_is_func(t)) {
3610 				pr_warn("extern function %s is unsupported under %s section\n",
3611 					ext->name, KCONFIG_SEC);
3612 				return -ENOTSUP;
3613 			}
3614 			kcfg_sec = sec;
3615 			ext->type = EXT_KCFG;
3616 			ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3617 			if (ext->kcfg.sz <= 0) {
3618 				pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3619 					ext_name, ext->kcfg.sz);
3620 				return ext->kcfg.sz;
3621 			}
3622 			ext->kcfg.align = btf__align_of(obj->btf, t->type);
3623 			if (ext->kcfg.align <= 0) {
3624 				pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3625 					ext_name, ext->kcfg.align);
3626 				return -EINVAL;
3627 			}
3628 			ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3629 						        &ext->kcfg.is_signed);
3630 			if (ext->kcfg.type == KCFG_UNKNOWN) {
3631 				pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name);
3632 				return -ENOTSUP;
3633 			}
3634 		} else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3635 			ksym_sec = sec;
3636 			ext->type = EXT_KSYM;
3637 			skip_mods_and_typedefs(obj->btf, t->type,
3638 					       &ext->ksym.type_id);
3639 		} else {
3640 			pr_warn("unrecognized extern section '%s'\n", sec_name);
3641 			return -ENOTSUP;
3642 		}
3643 	}
3644 	pr_debug("collected %d externs total\n", obj->nr_extern);
3645 
3646 	if (!obj->nr_extern)
3647 		return 0;
3648 
3649 	/* sort externs by type, for kcfg ones also by (align, size, name) */
3650 	qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3651 
3652 	/* for .ksyms section, we need to turn all externs into allocated
3653 	 * variables in BTF to pass kernel verification; we do this by
3654 	 * pretending that each extern is a 8-byte variable
3655 	 */
3656 	if (ksym_sec) {
3657 		/* find existing 4-byte integer type in BTF to use for fake
3658 		 * extern variables in DATASEC
3659 		 */
3660 		int int_btf_id = find_int_btf_id(obj->btf);
3661 		/* For extern function, a dummy_var added earlier
3662 		 * will be used to replace the vs->type and
3663 		 * its name string will be used to refill
3664 		 * the missing param's name.
3665 		 */
3666 		const struct btf_type *dummy_var;
3667 
3668 		dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
3669 		for (i = 0; i < obj->nr_extern; i++) {
3670 			ext = &obj->externs[i];
3671 			if (ext->type != EXT_KSYM)
3672 				continue;
3673 			pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3674 				 i, ext->sym_idx, ext->name);
3675 		}
3676 
3677 		sec = ksym_sec;
3678 		n = btf_vlen(sec);
3679 		for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3680 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3681 			struct btf_type *vt;
3682 
3683 			vt = (void *)btf__type_by_id(obj->btf, vs->type);
3684 			ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3685 			ext = find_extern_by_name(obj, ext_name);
3686 			if (!ext) {
3687 				pr_warn("failed to find extern definition for BTF %s '%s'\n",
3688 					btf_kind_str(vt), ext_name);
3689 				return -ESRCH;
3690 			}
3691 			if (btf_is_func(vt)) {
3692 				const struct btf_type *func_proto;
3693 				struct btf_param *param;
3694 				int j;
3695 
3696 				func_proto = btf__type_by_id(obj->btf,
3697 							     vt->type);
3698 				param = btf_params(func_proto);
3699 				/* Reuse the dummy_var string if the
3700 				 * func proto does not have param name.
3701 				 */
3702 				for (j = 0; j < btf_vlen(func_proto); j++)
3703 					if (param[j].type && !param[j].name_off)
3704 						param[j].name_off =
3705 							dummy_var->name_off;
3706 				vs->type = dummy_var_btf_id;
3707 				vt->info &= ~0xffff;
3708 				vt->info |= BTF_FUNC_GLOBAL;
3709 			} else {
3710 				btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3711 				vt->type = int_btf_id;
3712 			}
3713 			vs->offset = off;
3714 			vs->size = sizeof(int);
3715 		}
3716 		sec->size = off;
3717 	}
3718 
3719 	if (kcfg_sec) {
3720 		sec = kcfg_sec;
3721 		/* for kcfg externs calculate their offsets within a .kconfig map */
3722 		off = 0;
3723 		for (i = 0; i < obj->nr_extern; i++) {
3724 			ext = &obj->externs[i];
3725 			if (ext->type != EXT_KCFG)
3726 				continue;
3727 
3728 			ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3729 			off = ext->kcfg.data_off + ext->kcfg.sz;
3730 			pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3731 				 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3732 		}
3733 		sec->size = off;
3734 		n = btf_vlen(sec);
3735 		for (i = 0; i < n; i++) {
3736 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3737 
3738 			t = btf__type_by_id(obj->btf, vs->type);
3739 			ext_name = btf__name_by_offset(obj->btf, t->name_off);
3740 			ext = find_extern_by_name(obj, ext_name);
3741 			if (!ext) {
3742 				pr_warn("failed to find extern definition for BTF var '%s'\n",
3743 					ext_name);
3744 				return -ESRCH;
3745 			}
3746 			btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3747 			vs->offset = ext->kcfg.data_off;
3748 		}
3749 	}
3750 	return 0;
3751 }
3752 
3753 struct bpf_program *
3754 bpf_object__find_program_by_title(const struct bpf_object *obj,
3755 				  const char *title)
3756 {
3757 	struct bpf_program *pos;
3758 
3759 	bpf_object__for_each_program(pos, obj) {
3760 		if (pos->sec_name && !strcmp(pos->sec_name, title))
3761 			return pos;
3762 	}
3763 	return errno = ENOENT, NULL;
3764 }
3765 
3766 static bool prog_is_subprog(const struct bpf_object *obj,
3767 			    const struct bpf_program *prog)
3768 {
3769 	/* For legacy reasons, libbpf supports an entry-point BPF programs
3770 	 * without SEC() attribute, i.e., those in the .text section. But if
3771 	 * there are 2 or more such programs in the .text section, they all
3772 	 * must be subprograms called from entry-point BPF programs in
3773 	 * designated SEC()'tions, otherwise there is no way to distinguish
3774 	 * which of those programs should be loaded vs which are a subprogram.
3775 	 * Similarly, if there is a function/program in .text and at least one
3776 	 * other BPF program with custom SEC() attribute, then we just assume
3777 	 * .text programs are subprograms (even if they are not called from
3778 	 * other programs), because libbpf never explicitly supported mixing
3779 	 * SEC()-designated BPF programs and .text entry-point BPF programs.
3780 	 */
3781 	return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
3782 }
3783 
3784 struct bpf_program *
3785 bpf_object__find_program_by_name(const struct bpf_object *obj,
3786 				 const char *name)
3787 {
3788 	struct bpf_program *prog;
3789 
3790 	bpf_object__for_each_program(prog, obj) {
3791 		if (prog_is_subprog(obj, prog))
3792 			continue;
3793 		if (!strcmp(prog->name, name))
3794 			return prog;
3795 	}
3796 	return errno = ENOENT, NULL;
3797 }
3798 
3799 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
3800 				      int shndx)
3801 {
3802 	switch (obj->efile.secs[shndx].sec_type) {
3803 	case SEC_BSS:
3804 	case SEC_DATA:
3805 	case SEC_RODATA:
3806 		return true;
3807 	default:
3808 		return false;
3809 	}
3810 }
3811 
3812 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
3813 				      int shndx)
3814 {
3815 	return shndx == obj->efile.maps_shndx ||
3816 	       shndx == obj->efile.btf_maps_shndx;
3817 }
3818 
3819 static enum libbpf_map_type
3820 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
3821 {
3822 	if (shndx == obj->efile.symbols_shndx)
3823 		return LIBBPF_MAP_KCONFIG;
3824 
3825 	switch (obj->efile.secs[shndx].sec_type) {
3826 	case SEC_BSS:
3827 		return LIBBPF_MAP_BSS;
3828 	case SEC_DATA:
3829 		return LIBBPF_MAP_DATA;
3830 	case SEC_RODATA:
3831 		return LIBBPF_MAP_RODATA;
3832 	default:
3833 		return LIBBPF_MAP_UNSPEC;
3834 	}
3835 }
3836 
3837 static int bpf_program__record_reloc(struct bpf_program *prog,
3838 				     struct reloc_desc *reloc_desc,
3839 				     __u32 insn_idx, const char *sym_name,
3840 				     const Elf64_Sym *sym, const Elf64_Rel *rel)
3841 {
3842 	struct bpf_insn *insn = &prog->insns[insn_idx];
3843 	size_t map_idx, nr_maps = prog->obj->nr_maps;
3844 	struct bpf_object *obj = prog->obj;
3845 	__u32 shdr_idx = sym->st_shndx;
3846 	enum libbpf_map_type type;
3847 	const char *sym_sec_name;
3848 	struct bpf_map *map;
3849 
3850 	if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
3851 		pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
3852 			prog->name, sym_name, insn_idx, insn->code);
3853 		return -LIBBPF_ERRNO__RELOC;
3854 	}
3855 
3856 	if (sym_is_extern(sym)) {
3857 		int sym_idx = ELF64_R_SYM(rel->r_info);
3858 		int i, n = obj->nr_extern;
3859 		struct extern_desc *ext;
3860 
3861 		for (i = 0; i < n; i++) {
3862 			ext = &obj->externs[i];
3863 			if (ext->sym_idx == sym_idx)
3864 				break;
3865 		}
3866 		if (i >= n) {
3867 			pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
3868 				prog->name, sym_name, sym_idx);
3869 			return -LIBBPF_ERRNO__RELOC;
3870 		}
3871 		pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
3872 			 prog->name, i, ext->name, ext->sym_idx, insn_idx);
3873 		if (insn->code == (BPF_JMP | BPF_CALL))
3874 			reloc_desc->type = RELO_EXTERN_FUNC;
3875 		else
3876 			reloc_desc->type = RELO_EXTERN_VAR;
3877 		reloc_desc->insn_idx = insn_idx;
3878 		reloc_desc->sym_off = i; /* sym_off stores extern index */
3879 		return 0;
3880 	}
3881 
3882 	/* sub-program call relocation */
3883 	if (is_call_insn(insn)) {
3884 		if (insn->src_reg != BPF_PSEUDO_CALL) {
3885 			pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
3886 			return -LIBBPF_ERRNO__RELOC;
3887 		}
3888 		/* text_shndx can be 0, if no default "main" program exists */
3889 		if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
3890 			sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3891 			pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
3892 				prog->name, sym_name, sym_sec_name);
3893 			return -LIBBPF_ERRNO__RELOC;
3894 		}
3895 		if (sym->st_value % BPF_INSN_SZ) {
3896 			pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
3897 				prog->name, sym_name, (size_t)sym->st_value);
3898 			return -LIBBPF_ERRNO__RELOC;
3899 		}
3900 		reloc_desc->type = RELO_CALL;
3901 		reloc_desc->insn_idx = insn_idx;
3902 		reloc_desc->sym_off = sym->st_value;
3903 		return 0;
3904 	}
3905 
3906 	if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
3907 		pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
3908 			prog->name, sym_name, shdr_idx);
3909 		return -LIBBPF_ERRNO__RELOC;
3910 	}
3911 
3912 	/* loading subprog addresses */
3913 	if (sym_is_subprog(sym, obj->efile.text_shndx)) {
3914 		/* global_func: sym->st_value = offset in the section, insn->imm = 0.
3915 		 * local_func: sym->st_value = 0, insn->imm = offset in the section.
3916 		 */
3917 		if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
3918 			pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
3919 				prog->name, sym_name, (size_t)sym->st_value, insn->imm);
3920 			return -LIBBPF_ERRNO__RELOC;
3921 		}
3922 
3923 		reloc_desc->type = RELO_SUBPROG_ADDR;
3924 		reloc_desc->insn_idx = insn_idx;
3925 		reloc_desc->sym_off = sym->st_value;
3926 		return 0;
3927 	}
3928 
3929 	type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
3930 	sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3931 
3932 	/* generic map reference relocation */
3933 	if (type == LIBBPF_MAP_UNSPEC) {
3934 		if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
3935 			pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
3936 				prog->name, sym_name, sym_sec_name);
3937 			return -LIBBPF_ERRNO__RELOC;
3938 		}
3939 		for (map_idx = 0; map_idx < nr_maps; map_idx++) {
3940 			map = &obj->maps[map_idx];
3941 			if (map->libbpf_type != type ||
3942 			    map->sec_idx != sym->st_shndx ||
3943 			    map->sec_offset != sym->st_value)
3944 				continue;
3945 			pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
3946 				 prog->name, map_idx, map->name, map->sec_idx,
3947 				 map->sec_offset, insn_idx);
3948 			break;
3949 		}
3950 		if (map_idx >= nr_maps) {
3951 			pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
3952 				prog->name, sym_sec_name, (size_t)sym->st_value);
3953 			return -LIBBPF_ERRNO__RELOC;
3954 		}
3955 		reloc_desc->type = RELO_LD64;
3956 		reloc_desc->insn_idx = insn_idx;
3957 		reloc_desc->map_idx = map_idx;
3958 		reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
3959 		return 0;
3960 	}
3961 
3962 	/* global data map relocation */
3963 	if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
3964 		pr_warn("prog '%s': bad data relo against section '%s'\n",
3965 			prog->name, sym_sec_name);
3966 		return -LIBBPF_ERRNO__RELOC;
3967 	}
3968 	for (map_idx = 0; map_idx < nr_maps; map_idx++) {
3969 		map = &obj->maps[map_idx];
3970 		if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
3971 			continue;
3972 		pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
3973 			 prog->name, map_idx, map->name, map->sec_idx,
3974 			 map->sec_offset, insn_idx);
3975 		break;
3976 	}
3977 	if (map_idx >= nr_maps) {
3978 		pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
3979 			prog->name, sym_sec_name);
3980 		return -LIBBPF_ERRNO__RELOC;
3981 	}
3982 
3983 	reloc_desc->type = RELO_DATA;
3984 	reloc_desc->insn_idx = insn_idx;
3985 	reloc_desc->map_idx = map_idx;
3986 	reloc_desc->sym_off = sym->st_value;
3987 	return 0;
3988 }
3989 
3990 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
3991 {
3992 	return insn_idx >= prog->sec_insn_off &&
3993 	       insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
3994 }
3995 
3996 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
3997 						 size_t sec_idx, size_t insn_idx)
3998 {
3999 	int l = 0, r = obj->nr_programs - 1, m;
4000 	struct bpf_program *prog;
4001 
4002 	while (l < r) {
4003 		m = l + (r - l + 1) / 2;
4004 		prog = &obj->programs[m];
4005 
4006 		if (prog->sec_idx < sec_idx ||
4007 		    (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4008 			l = m;
4009 		else
4010 			r = m - 1;
4011 	}
4012 	/* matching program could be at index l, but it still might be the
4013 	 * wrong one, so we need to double check conditions for the last time
4014 	 */
4015 	prog = &obj->programs[l];
4016 	if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4017 		return prog;
4018 	return NULL;
4019 }
4020 
4021 static int
4022 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4023 {
4024 	const char *relo_sec_name, *sec_name;
4025 	size_t sec_idx = shdr->sh_info;
4026 	struct bpf_program *prog;
4027 	struct reloc_desc *relos;
4028 	int err, i, nrels;
4029 	const char *sym_name;
4030 	__u32 insn_idx;
4031 	Elf_Scn *scn;
4032 	Elf_Data *scn_data;
4033 	Elf64_Sym *sym;
4034 	Elf64_Rel *rel;
4035 
4036 	scn = elf_sec_by_idx(obj, sec_idx);
4037 	scn_data = elf_sec_data(obj, scn);
4038 
4039 	relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4040 	sec_name = elf_sec_name(obj, scn);
4041 	if (!relo_sec_name || !sec_name)
4042 		return -EINVAL;
4043 
4044 	pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4045 		 relo_sec_name, sec_idx, sec_name);
4046 	nrels = shdr->sh_size / shdr->sh_entsize;
4047 
4048 	for (i = 0; i < nrels; i++) {
4049 		rel = elf_rel_by_idx(data, i);
4050 		if (!rel) {
4051 			pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4052 			return -LIBBPF_ERRNO__FORMAT;
4053 		}
4054 
4055 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
4056 		if (!sym) {
4057 			pr_warn("sec '%s': symbol 0x%zx not found for relo #%d\n",
4058 				relo_sec_name, (size_t)ELF64_R_SYM(rel->r_info), i);
4059 			return -LIBBPF_ERRNO__FORMAT;
4060 		}
4061 
4062 		if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4063 			pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4064 				relo_sec_name, (size_t)ELF64_R_SYM(rel->r_info), i);
4065 			return -LIBBPF_ERRNO__FORMAT;
4066 		}
4067 
4068 		insn_idx = rel->r_offset / BPF_INSN_SZ;
4069 		/* relocations against static functions are recorded as
4070 		 * relocations against the section that contains a function;
4071 		 * in such case, symbol will be STT_SECTION and sym.st_name
4072 		 * will point to empty string (0), so fetch section name
4073 		 * instead
4074 		 */
4075 		if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4076 			sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4077 		else
4078 			sym_name = elf_sym_str(obj, sym->st_name);
4079 		sym_name = sym_name ?: "<?";
4080 
4081 		pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4082 			 relo_sec_name, i, insn_idx, sym_name);
4083 
4084 		prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4085 		if (!prog) {
4086 			pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4087 				relo_sec_name, i, sec_name, insn_idx);
4088 			continue;
4089 		}
4090 
4091 		relos = libbpf_reallocarray(prog->reloc_desc,
4092 					    prog->nr_reloc + 1, sizeof(*relos));
4093 		if (!relos)
4094 			return -ENOMEM;
4095 		prog->reloc_desc = relos;
4096 
4097 		/* adjust insn_idx to local BPF program frame of reference */
4098 		insn_idx -= prog->sec_insn_off;
4099 		err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4100 						insn_idx, sym_name, sym, rel);
4101 		if (err)
4102 			return err;
4103 
4104 		prog->nr_reloc++;
4105 	}
4106 	return 0;
4107 }
4108 
4109 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map)
4110 {
4111 	struct bpf_map_def *def = &map->def;
4112 	__u32 key_type_id = 0, value_type_id = 0;
4113 	int ret;
4114 
4115 	/* if it's BTF-defined map, we don't need to search for type IDs.
4116 	 * For struct_ops map, it does not need btf_key_type_id and
4117 	 * btf_value_type_id.
4118 	 */
4119 	if (map->sec_idx == obj->efile.btf_maps_shndx ||
4120 	    bpf_map__is_struct_ops(map))
4121 		return 0;
4122 
4123 	if (!bpf_map__is_internal(map)) {
4124 		ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size,
4125 					   def->value_size, &key_type_id,
4126 					   &value_type_id);
4127 	} else {
4128 		/*
4129 		 * LLVM annotates global data differently in BTF, that is,
4130 		 * only as '.data', '.bss' or '.rodata'.
4131 		 */
4132 		ret = btf__find_by_name(obj->btf, map->real_name);
4133 	}
4134 	if (ret < 0)
4135 		return ret;
4136 
4137 	map->btf_key_type_id = key_type_id;
4138 	map->btf_value_type_id = bpf_map__is_internal(map) ?
4139 				 ret : value_type_id;
4140 	return 0;
4141 }
4142 
4143 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4144 {
4145 	char file[PATH_MAX], buff[4096];
4146 	FILE *fp;
4147 	__u32 val;
4148 	int err;
4149 
4150 	snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4151 	memset(info, 0, sizeof(*info));
4152 
4153 	fp = fopen(file, "r");
4154 	if (!fp) {
4155 		err = -errno;
4156 		pr_warn("failed to open %s: %d. No procfs support?\n", file,
4157 			err);
4158 		return err;
4159 	}
4160 
4161 	while (fgets(buff, sizeof(buff), fp)) {
4162 		if (sscanf(buff, "map_type:\t%u", &val) == 1)
4163 			info->type = val;
4164 		else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4165 			info->key_size = val;
4166 		else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4167 			info->value_size = val;
4168 		else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4169 			info->max_entries = val;
4170 		else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4171 			info->map_flags = val;
4172 	}
4173 
4174 	fclose(fp);
4175 
4176 	return 0;
4177 }
4178 
4179 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4180 {
4181 	struct bpf_map_info info = {};
4182 	__u32 len = sizeof(info);
4183 	int new_fd, err;
4184 	char *new_name;
4185 
4186 	err = bpf_obj_get_info_by_fd(fd, &info, &len);
4187 	if (err && errno == EINVAL)
4188 		err = bpf_get_map_info_from_fdinfo(fd, &info);
4189 	if (err)
4190 		return libbpf_err(err);
4191 
4192 	new_name = strdup(info.name);
4193 	if (!new_name)
4194 		return libbpf_err(-errno);
4195 
4196 	new_fd = open("/", O_RDONLY | O_CLOEXEC);
4197 	if (new_fd < 0) {
4198 		err = -errno;
4199 		goto err_free_new_name;
4200 	}
4201 
4202 	new_fd = dup3(fd, new_fd, O_CLOEXEC);
4203 	if (new_fd < 0) {
4204 		err = -errno;
4205 		goto err_close_new_fd;
4206 	}
4207 
4208 	err = zclose(map->fd);
4209 	if (err) {
4210 		err = -errno;
4211 		goto err_close_new_fd;
4212 	}
4213 	free(map->name);
4214 
4215 	map->fd = new_fd;
4216 	map->name = new_name;
4217 	map->def.type = info.type;
4218 	map->def.key_size = info.key_size;
4219 	map->def.value_size = info.value_size;
4220 	map->def.max_entries = info.max_entries;
4221 	map->def.map_flags = info.map_flags;
4222 	map->btf_key_type_id = info.btf_key_type_id;
4223 	map->btf_value_type_id = info.btf_value_type_id;
4224 	map->reused = true;
4225 	map->map_extra = info.map_extra;
4226 
4227 	return 0;
4228 
4229 err_close_new_fd:
4230 	close(new_fd);
4231 err_free_new_name:
4232 	free(new_name);
4233 	return libbpf_err(err);
4234 }
4235 
4236 __u32 bpf_map__max_entries(const struct bpf_map *map)
4237 {
4238 	return map->def.max_entries;
4239 }
4240 
4241 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4242 {
4243 	if (!bpf_map_type__is_map_in_map(map->def.type))
4244 		return errno = EINVAL, NULL;
4245 
4246 	return map->inner_map;
4247 }
4248 
4249 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4250 {
4251 	if (map->fd >= 0)
4252 		return libbpf_err(-EBUSY);
4253 	map->def.max_entries = max_entries;
4254 	return 0;
4255 }
4256 
4257 int bpf_map__resize(struct bpf_map *map, __u32 max_entries)
4258 {
4259 	if (!map || !max_entries)
4260 		return libbpf_err(-EINVAL);
4261 
4262 	return bpf_map__set_max_entries(map, max_entries);
4263 }
4264 
4265 static int
4266 bpf_object__probe_loading(struct bpf_object *obj)
4267 {
4268 	struct bpf_load_program_attr attr;
4269 	char *cp, errmsg[STRERR_BUFSIZE];
4270 	struct bpf_insn insns[] = {
4271 		BPF_MOV64_IMM(BPF_REG_0, 0),
4272 		BPF_EXIT_INSN(),
4273 	};
4274 	int ret;
4275 
4276 	if (obj->gen_loader)
4277 		return 0;
4278 
4279 	/* make sure basic loading works */
4280 
4281 	memset(&attr, 0, sizeof(attr));
4282 	attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4283 	attr.insns = insns;
4284 	attr.insns_cnt = ARRAY_SIZE(insns);
4285 	attr.license = "GPL";
4286 
4287 	ret = bpf_load_program_xattr(&attr, NULL, 0);
4288 	if (ret < 0) {
4289 		attr.prog_type = BPF_PROG_TYPE_TRACEPOINT;
4290 		ret = bpf_load_program_xattr(&attr, NULL, 0);
4291 	}
4292 	if (ret < 0) {
4293 		ret = errno;
4294 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4295 		pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4296 			"program. Make sure your kernel supports BPF "
4297 			"(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4298 			"set to big enough value.\n", __func__, cp, ret);
4299 		return -ret;
4300 	}
4301 	close(ret);
4302 
4303 	return 0;
4304 }
4305 
4306 static int probe_fd(int fd)
4307 {
4308 	if (fd >= 0)
4309 		close(fd);
4310 	return fd >= 0;
4311 }
4312 
4313 static int probe_kern_prog_name(void)
4314 {
4315 	struct bpf_load_program_attr attr;
4316 	struct bpf_insn insns[] = {
4317 		BPF_MOV64_IMM(BPF_REG_0, 0),
4318 		BPF_EXIT_INSN(),
4319 	};
4320 	int ret;
4321 
4322 	/* make sure loading with name works */
4323 
4324 	memset(&attr, 0, sizeof(attr));
4325 	attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4326 	attr.insns = insns;
4327 	attr.insns_cnt = ARRAY_SIZE(insns);
4328 	attr.license = "GPL";
4329 	attr.name = "test";
4330 	ret = bpf_load_program_xattr(&attr, NULL, 0);
4331 	return probe_fd(ret);
4332 }
4333 
4334 static int probe_kern_global_data(void)
4335 {
4336 	struct bpf_load_program_attr prg_attr;
4337 	struct bpf_create_map_attr map_attr;
4338 	char *cp, errmsg[STRERR_BUFSIZE];
4339 	struct bpf_insn insns[] = {
4340 		BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
4341 		BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
4342 		BPF_MOV64_IMM(BPF_REG_0, 0),
4343 		BPF_EXIT_INSN(),
4344 	};
4345 	int ret, map;
4346 
4347 	memset(&map_attr, 0, sizeof(map_attr));
4348 	map_attr.map_type = BPF_MAP_TYPE_ARRAY;
4349 	map_attr.key_size = sizeof(int);
4350 	map_attr.value_size = 32;
4351 	map_attr.max_entries = 1;
4352 
4353 	map = bpf_create_map_xattr(&map_attr);
4354 	if (map < 0) {
4355 		ret = -errno;
4356 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4357 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4358 			__func__, cp, -ret);
4359 		return ret;
4360 	}
4361 
4362 	insns[0].imm = map;
4363 
4364 	memset(&prg_attr, 0, sizeof(prg_attr));
4365 	prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4366 	prg_attr.insns = insns;
4367 	prg_attr.insns_cnt = ARRAY_SIZE(insns);
4368 	prg_attr.license = "GPL";
4369 
4370 	ret = bpf_load_program_xattr(&prg_attr, NULL, 0);
4371 	close(map);
4372 	return probe_fd(ret);
4373 }
4374 
4375 static int probe_kern_btf(void)
4376 {
4377 	static const char strs[] = "\0int";
4378 	__u32 types[] = {
4379 		/* int */
4380 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4381 	};
4382 
4383 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4384 					     strs, sizeof(strs)));
4385 }
4386 
4387 static int probe_kern_btf_func(void)
4388 {
4389 	static const char strs[] = "\0int\0x\0a";
4390 	/* void x(int a) {} */
4391 	__u32 types[] = {
4392 		/* int */
4393 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4394 		/* FUNC_PROTO */                                /* [2] */
4395 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4396 		BTF_PARAM_ENC(7, 1),
4397 		/* FUNC x */                                    /* [3] */
4398 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
4399 	};
4400 
4401 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4402 					     strs, sizeof(strs)));
4403 }
4404 
4405 static int probe_kern_btf_func_global(void)
4406 {
4407 	static const char strs[] = "\0int\0x\0a";
4408 	/* static void x(int a) {} */
4409 	__u32 types[] = {
4410 		/* int */
4411 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4412 		/* FUNC_PROTO */                                /* [2] */
4413 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4414 		BTF_PARAM_ENC(7, 1),
4415 		/* FUNC x BTF_FUNC_GLOBAL */                    /* [3] */
4416 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
4417 	};
4418 
4419 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4420 					     strs, sizeof(strs)));
4421 }
4422 
4423 static int probe_kern_btf_datasec(void)
4424 {
4425 	static const char strs[] = "\0x\0.data";
4426 	/* static int a; */
4427 	__u32 types[] = {
4428 		/* int */
4429 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4430 		/* VAR x */                                     /* [2] */
4431 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4432 		BTF_VAR_STATIC,
4433 		/* DATASEC val */                               /* [3] */
4434 		BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
4435 		BTF_VAR_SECINFO_ENC(2, 0, 4),
4436 	};
4437 
4438 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4439 					     strs, sizeof(strs)));
4440 }
4441 
4442 static int probe_kern_btf_float(void)
4443 {
4444 	static const char strs[] = "\0float";
4445 	__u32 types[] = {
4446 		/* float */
4447 		BTF_TYPE_FLOAT_ENC(1, 4),
4448 	};
4449 
4450 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4451 					     strs, sizeof(strs)));
4452 }
4453 
4454 static int probe_kern_btf_decl_tag(void)
4455 {
4456 	static const char strs[] = "\0tag";
4457 	__u32 types[] = {
4458 		/* int */
4459 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4460 		/* VAR x */                                     /* [2] */
4461 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4462 		BTF_VAR_STATIC,
4463 		/* attr */
4464 		BTF_TYPE_DECL_TAG_ENC(1, 2, -1),
4465 	};
4466 
4467 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4468 					     strs, sizeof(strs)));
4469 }
4470 
4471 static int probe_kern_array_mmap(void)
4472 {
4473 	struct bpf_create_map_attr attr = {
4474 		.map_type = BPF_MAP_TYPE_ARRAY,
4475 		.map_flags = BPF_F_MMAPABLE,
4476 		.key_size = sizeof(int),
4477 		.value_size = sizeof(int),
4478 		.max_entries = 1,
4479 	};
4480 
4481 	return probe_fd(bpf_create_map_xattr(&attr));
4482 }
4483 
4484 static int probe_kern_exp_attach_type(void)
4485 {
4486 	struct bpf_load_program_attr attr;
4487 	struct bpf_insn insns[] = {
4488 		BPF_MOV64_IMM(BPF_REG_0, 0),
4489 		BPF_EXIT_INSN(),
4490 	};
4491 
4492 	memset(&attr, 0, sizeof(attr));
4493 	/* use any valid combination of program type and (optional)
4494 	 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
4495 	 * to see if kernel supports expected_attach_type field for
4496 	 * BPF_PROG_LOAD command
4497 	 */
4498 	attr.prog_type = BPF_PROG_TYPE_CGROUP_SOCK;
4499 	attr.expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE;
4500 	attr.insns = insns;
4501 	attr.insns_cnt = ARRAY_SIZE(insns);
4502 	attr.license = "GPL";
4503 
4504 	return probe_fd(bpf_load_program_xattr(&attr, NULL, 0));
4505 }
4506 
4507 static int probe_kern_probe_read_kernel(void)
4508 {
4509 	struct bpf_load_program_attr attr;
4510 	struct bpf_insn insns[] = {
4511 		BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),	/* r1 = r10 (fp) */
4512 		BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),	/* r1 += -8 */
4513 		BPF_MOV64_IMM(BPF_REG_2, 8),		/* r2 = 8 */
4514 		BPF_MOV64_IMM(BPF_REG_3, 0),		/* r3 = 0 */
4515 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
4516 		BPF_EXIT_INSN(),
4517 	};
4518 
4519 	memset(&attr, 0, sizeof(attr));
4520 	attr.prog_type = BPF_PROG_TYPE_KPROBE;
4521 	attr.insns = insns;
4522 	attr.insns_cnt = ARRAY_SIZE(insns);
4523 	attr.license = "GPL";
4524 
4525 	return probe_fd(bpf_load_program_xattr(&attr, NULL, 0));
4526 }
4527 
4528 static int probe_prog_bind_map(void)
4529 {
4530 	struct bpf_load_program_attr prg_attr;
4531 	struct bpf_create_map_attr map_attr;
4532 	char *cp, errmsg[STRERR_BUFSIZE];
4533 	struct bpf_insn insns[] = {
4534 		BPF_MOV64_IMM(BPF_REG_0, 0),
4535 		BPF_EXIT_INSN(),
4536 	};
4537 	int ret, map, prog;
4538 
4539 	memset(&map_attr, 0, sizeof(map_attr));
4540 	map_attr.map_type = BPF_MAP_TYPE_ARRAY;
4541 	map_attr.key_size = sizeof(int);
4542 	map_attr.value_size = 32;
4543 	map_attr.max_entries = 1;
4544 
4545 	map = bpf_create_map_xattr(&map_attr);
4546 	if (map < 0) {
4547 		ret = -errno;
4548 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4549 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4550 			__func__, cp, -ret);
4551 		return ret;
4552 	}
4553 
4554 	memset(&prg_attr, 0, sizeof(prg_attr));
4555 	prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4556 	prg_attr.insns = insns;
4557 	prg_attr.insns_cnt = ARRAY_SIZE(insns);
4558 	prg_attr.license = "GPL";
4559 
4560 	prog = bpf_load_program_xattr(&prg_attr, NULL, 0);
4561 	if (prog < 0) {
4562 		close(map);
4563 		return 0;
4564 	}
4565 
4566 	ret = bpf_prog_bind_map(prog, map, NULL);
4567 
4568 	close(map);
4569 	close(prog);
4570 
4571 	return ret >= 0;
4572 }
4573 
4574 static int probe_module_btf(void)
4575 {
4576 	static const char strs[] = "\0int";
4577 	__u32 types[] = {
4578 		/* int */
4579 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4580 	};
4581 	struct bpf_btf_info info;
4582 	__u32 len = sizeof(info);
4583 	char name[16];
4584 	int fd, err;
4585 
4586 	fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4587 	if (fd < 0)
4588 		return 0; /* BTF not supported at all */
4589 
4590 	memset(&info, 0, sizeof(info));
4591 	info.name = ptr_to_u64(name);
4592 	info.name_len = sizeof(name);
4593 
4594 	/* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4595 	 * kernel's module BTF support coincides with support for
4596 	 * name/name_len fields in struct bpf_btf_info.
4597 	 */
4598 	err = bpf_obj_get_info_by_fd(fd, &info, &len);
4599 	close(fd);
4600 	return !err;
4601 }
4602 
4603 static int probe_perf_link(void)
4604 {
4605 	struct bpf_load_program_attr attr;
4606 	struct bpf_insn insns[] = {
4607 		BPF_MOV64_IMM(BPF_REG_0, 0),
4608 		BPF_EXIT_INSN(),
4609 	};
4610 	int prog_fd, link_fd, err;
4611 
4612 	memset(&attr, 0, sizeof(attr));
4613 	attr.prog_type = BPF_PROG_TYPE_TRACEPOINT;
4614 	attr.insns = insns;
4615 	attr.insns_cnt = ARRAY_SIZE(insns);
4616 	attr.license = "GPL";
4617 	prog_fd = bpf_load_program_xattr(&attr, NULL, 0);
4618 	if (prog_fd < 0)
4619 		return -errno;
4620 
4621 	/* use invalid perf_event FD to get EBADF, if link is supported;
4622 	 * otherwise EINVAL should be returned
4623 	 */
4624 	link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL);
4625 	err = -errno; /* close() can clobber errno */
4626 
4627 	if (link_fd >= 0)
4628 		close(link_fd);
4629 	close(prog_fd);
4630 
4631 	return link_fd < 0 && err == -EBADF;
4632 }
4633 
4634 enum kern_feature_result {
4635 	FEAT_UNKNOWN = 0,
4636 	FEAT_SUPPORTED = 1,
4637 	FEAT_MISSING = 2,
4638 };
4639 
4640 typedef int (*feature_probe_fn)(void);
4641 
4642 static struct kern_feature_desc {
4643 	const char *desc;
4644 	feature_probe_fn probe;
4645 	enum kern_feature_result res;
4646 } feature_probes[__FEAT_CNT] = {
4647 	[FEAT_PROG_NAME] = {
4648 		"BPF program name", probe_kern_prog_name,
4649 	},
4650 	[FEAT_GLOBAL_DATA] = {
4651 		"global variables", probe_kern_global_data,
4652 	},
4653 	[FEAT_BTF] = {
4654 		"minimal BTF", probe_kern_btf,
4655 	},
4656 	[FEAT_BTF_FUNC] = {
4657 		"BTF functions", probe_kern_btf_func,
4658 	},
4659 	[FEAT_BTF_GLOBAL_FUNC] = {
4660 		"BTF global function", probe_kern_btf_func_global,
4661 	},
4662 	[FEAT_BTF_DATASEC] = {
4663 		"BTF data section and variable", probe_kern_btf_datasec,
4664 	},
4665 	[FEAT_ARRAY_MMAP] = {
4666 		"ARRAY map mmap()", probe_kern_array_mmap,
4667 	},
4668 	[FEAT_EXP_ATTACH_TYPE] = {
4669 		"BPF_PROG_LOAD expected_attach_type attribute",
4670 		probe_kern_exp_attach_type,
4671 	},
4672 	[FEAT_PROBE_READ_KERN] = {
4673 		"bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4674 	},
4675 	[FEAT_PROG_BIND_MAP] = {
4676 		"BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4677 	},
4678 	[FEAT_MODULE_BTF] = {
4679 		"module BTF support", probe_module_btf,
4680 	},
4681 	[FEAT_BTF_FLOAT] = {
4682 		"BTF_KIND_FLOAT support", probe_kern_btf_float,
4683 	},
4684 	[FEAT_PERF_LINK] = {
4685 		"BPF perf link support", probe_perf_link,
4686 	},
4687 	[FEAT_BTF_DECL_TAG] = {
4688 		"BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag,
4689 	},
4690 };
4691 
4692 static bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
4693 {
4694 	struct kern_feature_desc *feat = &feature_probes[feat_id];
4695 	int ret;
4696 
4697 	if (obj->gen_loader)
4698 		/* To generate loader program assume the latest kernel
4699 		 * to avoid doing extra prog_load, map_create syscalls.
4700 		 */
4701 		return true;
4702 
4703 	if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4704 		ret = feat->probe();
4705 		if (ret > 0) {
4706 			WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4707 		} else if (ret == 0) {
4708 			WRITE_ONCE(feat->res, FEAT_MISSING);
4709 		} else {
4710 			pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4711 			WRITE_ONCE(feat->res, FEAT_MISSING);
4712 		}
4713 	}
4714 
4715 	return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4716 }
4717 
4718 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4719 {
4720 	struct bpf_map_info map_info = {};
4721 	char msg[STRERR_BUFSIZE];
4722 	__u32 map_info_len;
4723 	int err;
4724 
4725 	map_info_len = sizeof(map_info);
4726 
4727 	err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len);
4728 	if (err && errno == EINVAL)
4729 		err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
4730 	if (err) {
4731 		pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
4732 			libbpf_strerror_r(errno, msg, sizeof(msg)));
4733 		return false;
4734 	}
4735 
4736 	return (map_info.type == map->def.type &&
4737 		map_info.key_size == map->def.key_size &&
4738 		map_info.value_size == map->def.value_size &&
4739 		map_info.max_entries == map->def.max_entries &&
4740 		map_info.map_flags == map->def.map_flags &&
4741 		map_info.map_extra == map->map_extra);
4742 }
4743 
4744 static int
4745 bpf_object__reuse_map(struct bpf_map *map)
4746 {
4747 	char *cp, errmsg[STRERR_BUFSIZE];
4748 	int err, pin_fd;
4749 
4750 	pin_fd = bpf_obj_get(map->pin_path);
4751 	if (pin_fd < 0) {
4752 		err = -errno;
4753 		if (err == -ENOENT) {
4754 			pr_debug("found no pinned map to reuse at '%s'\n",
4755 				 map->pin_path);
4756 			return 0;
4757 		}
4758 
4759 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
4760 		pr_warn("couldn't retrieve pinned map '%s': %s\n",
4761 			map->pin_path, cp);
4762 		return err;
4763 	}
4764 
4765 	if (!map_is_reuse_compat(map, pin_fd)) {
4766 		pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
4767 			map->pin_path);
4768 		close(pin_fd);
4769 		return -EINVAL;
4770 	}
4771 
4772 	err = bpf_map__reuse_fd(map, pin_fd);
4773 	if (err) {
4774 		close(pin_fd);
4775 		return err;
4776 	}
4777 	map->pinned = true;
4778 	pr_debug("reused pinned map at '%s'\n", map->pin_path);
4779 
4780 	return 0;
4781 }
4782 
4783 static int
4784 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
4785 {
4786 	enum libbpf_map_type map_type = map->libbpf_type;
4787 	char *cp, errmsg[STRERR_BUFSIZE];
4788 	int err, zero = 0;
4789 
4790 	if (obj->gen_loader) {
4791 		bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
4792 					 map->mmaped, map->def.value_size);
4793 		if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
4794 			bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
4795 		return 0;
4796 	}
4797 	err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
4798 	if (err) {
4799 		err = -errno;
4800 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4801 		pr_warn("Error setting initial map(%s) contents: %s\n",
4802 			map->name, cp);
4803 		return err;
4804 	}
4805 
4806 	/* Freeze .rodata and .kconfig map as read-only from syscall side. */
4807 	if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
4808 		err = bpf_map_freeze(map->fd);
4809 		if (err) {
4810 			err = -errno;
4811 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4812 			pr_warn("Error freezing map(%s) as read-only: %s\n",
4813 				map->name, cp);
4814 			return err;
4815 		}
4816 	}
4817 	return 0;
4818 }
4819 
4820 static void bpf_map__destroy(struct bpf_map *map);
4821 
4822 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
4823 {
4824 	struct bpf_create_map_params create_attr;
4825 	struct bpf_map_def *def = &map->def;
4826 	int err = 0;
4827 
4828 	memset(&create_attr, 0, sizeof(create_attr));
4829 
4830 	if (kernel_supports(obj, FEAT_PROG_NAME))
4831 		create_attr.name = map->name;
4832 	create_attr.map_ifindex = map->map_ifindex;
4833 	create_attr.map_type = def->type;
4834 	create_attr.map_flags = def->map_flags;
4835 	create_attr.key_size = def->key_size;
4836 	create_attr.value_size = def->value_size;
4837 	create_attr.numa_node = map->numa_node;
4838 	create_attr.map_extra = map->map_extra;
4839 
4840 	if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) {
4841 		int nr_cpus;
4842 
4843 		nr_cpus = libbpf_num_possible_cpus();
4844 		if (nr_cpus < 0) {
4845 			pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
4846 				map->name, nr_cpus);
4847 			return nr_cpus;
4848 		}
4849 		pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
4850 		create_attr.max_entries = nr_cpus;
4851 	} else {
4852 		create_attr.max_entries = def->max_entries;
4853 	}
4854 
4855 	if (bpf_map__is_struct_ops(map))
4856 		create_attr.btf_vmlinux_value_type_id =
4857 			map->btf_vmlinux_value_type_id;
4858 
4859 	create_attr.btf_fd = 0;
4860 	create_attr.btf_key_type_id = 0;
4861 	create_attr.btf_value_type_id = 0;
4862 	if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) {
4863 		create_attr.btf_fd = btf__fd(obj->btf);
4864 		create_attr.btf_key_type_id = map->btf_key_type_id;
4865 		create_attr.btf_value_type_id = map->btf_value_type_id;
4866 	}
4867 
4868 	if (bpf_map_type__is_map_in_map(def->type)) {
4869 		if (map->inner_map) {
4870 			err = bpf_object__create_map(obj, map->inner_map, true);
4871 			if (err) {
4872 				pr_warn("map '%s': failed to create inner map: %d\n",
4873 					map->name, err);
4874 				return err;
4875 			}
4876 			map->inner_map_fd = bpf_map__fd(map->inner_map);
4877 		}
4878 		if (map->inner_map_fd >= 0)
4879 			create_attr.inner_map_fd = map->inner_map_fd;
4880 	}
4881 
4882 	switch (def->type) {
4883 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4884 	case BPF_MAP_TYPE_CGROUP_ARRAY:
4885 	case BPF_MAP_TYPE_STACK_TRACE:
4886 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
4887 	case BPF_MAP_TYPE_HASH_OF_MAPS:
4888 	case BPF_MAP_TYPE_DEVMAP:
4889 	case BPF_MAP_TYPE_DEVMAP_HASH:
4890 	case BPF_MAP_TYPE_CPUMAP:
4891 	case BPF_MAP_TYPE_XSKMAP:
4892 	case BPF_MAP_TYPE_SOCKMAP:
4893 	case BPF_MAP_TYPE_SOCKHASH:
4894 	case BPF_MAP_TYPE_QUEUE:
4895 	case BPF_MAP_TYPE_STACK:
4896 	case BPF_MAP_TYPE_RINGBUF:
4897 		create_attr.btf_fd = 0;
4898 		create_attr.btf_key_type_id = 0;
4899 		create_attr.btf_value_type_id = 0;
4900 		map->btf_key_type_id = 0;
4901 		map->btf_value_type_id = 0;
4902 	default:
4903 		break;
4904 	}
4905 
4906 	if (obj->gen_loader) {
4907 		bpf_gen__map_create(obj->gen_loader, &create_attr, is_inner ? -1 : map - obj->maps);
4908 		/* Pretend to have valid FD to pass various fd >= 0 checks.
4909 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
4910 		 */
4911 		map->fd = 0;
4912 	} else {
4913 		map->fd = libbpf__bpf_create_map_xattr(&create_attr);
4914 	}
4915 	if (map->fd < 0 && (create_attr.btf_key_type_id ||
4916 			    create_attr.btf_value_type_id)) {
4917 		char *cp, errmsg[STRERR_BUFSIZE];
4918 
4919 		err = -errno;
4920 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4921 		pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
4922 			map->name, cp, err);
4923 		create_attr.btf_fd = 0;
4924 		create_attr.btf_key_type_id = 0;
4925 		create_attr.btf_value_type_id = 0;
4926 		map->btf_key_type_id = 0;
4927 		map->btf_value_type_id = 0;
4928 		map->fd = libbpf__bpf_create_map_xattr(&create_attr);
4929 	}
4930 
4931 	err = map->fd < 0 ? -errno : 0;
4932 
4933 	if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
4934 		if (obj->gen_loader)
4935 			map->inner_map->fd = -1;
4936 		bpf_map__destroy(map->inner_map);
4937 		zfree(&map->inner_map);
4938 	}
4939 
4940 	return err;
4941 }
4942 
4943 static int init_map_slots(struct bpf_object *obj, struct bpf_map *map)
4944 {
4945 	const struct bpf_map *targ_map;
4946 	unsigned int i;
4947 	int fd, err = 0;
4948 
4949 	for (i = 0; i < map->init_slots_sz; i++) {
4950 		if (!map->init_slots[i])
4951 			continue;
4952 
4953 		targ_map = map->init_slots[i];
4954 		fd = bpf_map__fd(targ_map);
4955 		if (obj->gen_loader) {
4956 			pr_warn("// TODO map_update_elem: idx %td key %d value==map_idx %td\n",
4957 				map - obj->maps, i, targ_map - obj->maps);
4958 			return -ENOTSUP;
4959 		} else {
4960 			err = bpf_map_update_elem(map->fd, &i, &fd, 0);
4961 		}
4962 		if (err) {
4963 			err = -errno;
4964 			pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
4965 				map->name, i, targ_map->name,
4966 				fd, err);
4967 			return err;
4968 		}
4969 		pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
4970 			 map->name, i, targ_map->name, fd);
4971 	}
4972 
4973 	zfree(&map->init_slots);
4974 	map->init_slots_sz = 0;
4975 
4976 	return 0;
4977 }
4978 
4979 static int
4980 bpf_object__create_maps(struct bpf_object *obj)
4981 {
4982 	struct bpf_map *map;
4983 	char *cp, errmsg[STRERR_BUFSIZE];
4984 	unsigned int i, j;
4985 	int err;
4986 	bool retried;
4987 
4988 	for (i = 0; i < obj->nr_maps; i++) {
4989 		map = &obj->maps[i];
4990 
4991 		retried = false;
4992 retry:
4993 		if (map->pin_path) {
4994 			err = bpf_object__reuse_map(map);
4995 			if (err) {
4996 				pr_warn("map '%s': error reusing pinned map\n",
4997 					map->name);
4998 				goto err_out;
4999 			}
5000 			if (retried && map->fd < 0) {
5001 				pr_warn("map '%s': cannot find pinned map\n",
5002 					map->name);
5003 				err = -ENOENT;
5004 				goto err_out;
5005 			}
5006 		}
5007 
5008 		if (map->fd >= 0) {
5009 			pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5010 				 map->name, map->fd);
5011 		} else {
5012 			err = bpf_object__create_map(obj, map, false);
5013 			if (err)
5014 				goto err_out;
5015 
5016 			pr_debug("map '%s': created successfully, fd=%d\n",
5017 				 map->name, map->fd);
5018 
5019 			if (bpf_map__is_internal(map)) {
5020 				err = bpf_object__populate_internal_map(obj, map);
5021 				if (err < 0) {
5022 					zclose(map->fd);
5023 					goto err_out;
5024 				}
5025 			}
5026 
5027 			if (map->init_slots_sz) {
5028 				err = init_map_slots(obj, map);
5029 				if (err < 0) {
5030 					zclose(map->fd);
5031 					goto err_out;
5032 				}
5033 			}
5034 		}
5035 
5036 		if (map->pin_path && !map->pinned) {
5037 			err = bpf_map__pin(map, NULL);
5038 			if (err) {
5039 				zclose(map->fd);
5040 				if (!retried && err == -EEXIST) {
5041 					retried = true;
5042 					goto retry;
5043 				}
5044 				pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5045 					map->name, map->pin_path, err);
5046 				goto err_out;
5047 			}
5048 		}
5049 	}
5050 
5051 	return 0;
5052 
5053 err_out:
5054 	cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5055 	pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5056 	pr_perm_msg(err);
5057 	for (j = 0; j < i; j++)
5058 		zclose(obj->maps[j].fd);
5059 	return err;
5060 }
5061 
5062 static bool bpf_core_is_flavor_sep(const char *s)
5063 {
5064 	/* check X___Y name pattern, where X and Y are not underscores */
5065 	return s[0] != '_' &&				      /* X */
5066 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
5067 	       s[4] != '_';				      /* Y */
5068 }
5069 
5070 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5071  * before last triple underscore. Struct name part after last triple
5072  * underscore is ignored by BPF CO-RE relocation during relocation matching.
5073  */
5074 size_t bpf_core_essential_name_len(const char *name)
5075 {
5076 	size_t n = strlen(name);
5077 	int i;
5078 
5079 	for (i = n - 5; i >= 0; i--) {
5080 		if (bpf_core_is_flavor_sep(name + i))
5081 			return i + 1;
5082 	}
5083 	return n;
5084 }
5085 
5086 static void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5087 {
5088 	free(cands->cands);
5089 	free(cands);
5090 }
5091 
5092 static int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5093 			      size_t local_essent_len,
5094 			      const struct btf *targ_btf,
5095 			      const char *targ_btf_name,
5096 			      int targ_start_id,
5097 			      struct bpf_core_cand_list *cands)
5098 {
5099 	struct bpf_core_cand *new_cands, *cand;
5100 	const struct btf_type *t;
5101 	const char *targ_name;
5102 	size_t targ_essent_len;
5103 	int n, i;
5104 
5105 	n = btf__type_cnt(targ_btf);
5106 	for (i = targ_start_id; i < n; i++) {
5107 		t = btf__type_by_id(targ_btf, i);
5108 		if (btf_kind(t) != btf_kind(local_cand->t))
5109 			continue;
5110 
5111 		targ_name = btf__name_by_offset(targ_btf, t->name_off);
5112 		if (str_is_empty(targ_name))
5113 			continue;
5114 
5115 		targ_essent_len = bpf_core_essential_name_len(targ_name);
5116 		if (targ_essent_len != local_essent_len)
5117 			continue;
5118 
5119 		if (strncmp(local_cand->name, targ_name, local_essent_len) != 0)
5120 			continue;
5121 
5122 		pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5123 			 local_cand->id, btf_kind_str(local_cand->t),
5124 			 local_cand->name, i, btf_kind_str(t), targ_name,
5125 			 targ_btf_name);
5126 		new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5127 					      sizeof(*cands->cands));
5128 		if (!new_cands)
5129 			return -ENOMEM;
5130 
5131 		cand = &new_cands[cands->len];
5132 		cand->btf = targ_btf;
5133 		cand->t = t;
5134 		cand->name = targ_name;
5135 		cand->id = i;
5136 
5137 		cands->cands = new_cands;
5138 		cands->len++;
5139 	}
5140 	return 0;
5141 }
5142 
5143 static int load_module_btfs(struct bpf_object *obj)
5144 {
5145 	struct bpf_btf_info info;
5146 	struct module_btf *mod_btf;
5147 	struct btf *btf;
5148 	char name[64];
5149 	__u32 id = 0, len;
5150 	int err, fd;
5151 
5152 	if (obj->btf_modules_loaded)
5153 		return 0;
5154 
5155 	if (obj->gen_loader)
5156 		return 0;
5157 
5158 	/* don't do this again, even if we find no module BTFs */
5159 	obj->btf_modules_loaded = true;
5160 
5161 	/* kernel too old to support module BTFs */
5162 	if (!kernel_supports(obj, FEAT_MODULE_BTF))
5163 		return 0;
5164 
5165 	while (true) {
5166 		err = bpf_btf_get_next_id(id, &id);
5167 		if (err && errno == ENOENT)
5168 			return 0;
5169 		if (err) {
5170 			err = -errno;
5171 			pr_warn("failed to iterate BTF objects: %d\n", err);
5172 			return err;
5173 		}
5174 
5175 		fd = bpf_btf_get_fd_by_id(id);
5176 		if (fd < 0) {
5177 			if (errno == ENOENT)
5178 				continue; /* expected race: BTF was unloaded */
5179 			err = -errno;
5180 			pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5181 			return err;
5182 		}
5183 
5184 		len = sizeof(info);
5185 		memset(&info, 0, sizeof(info));
5186 		info.name = ptr_to_u64(name);
5187 		info.name_len = sizeof(name);
5188 
5189 		err = bpf_obj_get_info_by_fd(fd, &info, &len);
5190 		if (err) {
5191 			err = -errno;
5192 			pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5193 			goto err_out;
5194 		}
5195 
5196 		/* ignore non-module BTFs */
5197 		if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5198 			close(fd);
5199 			continue;
5200 		}
5201 
5202 		btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5203 		err = libbpf_get_error(btf);
5204 		if (err) {
5205 			pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5206 				name, id, err);
5207 			goto err_out;
5208 		}
5209 
5210 		err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5211 				        sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5212 		if (err)
5213 			goto err_out;
5214 
5215 		mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5216 
5217 		mod_btf->btf = btf;
5218 		mod_btf->id = id;
5219 		mod_btf->fd = fd;
5220 		mod_btf->name = strdup(name);
5221 		if (!mod_btf->name) {
5222 			err = -ENOMEM;
5223 			goto err_out;
5224 		}
5225 		continue;
5226 
5227 err_out:
5228 		close(fd);
5229 		return err;
5230 	}
5231 
5232 	return 0;
5233 }
5234 
5235 static struct bpf_core_cand_list *
5236 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5237 {
5238 	struct bpf_core_cand local_cand = {};
5239 	struct bpf_core_cand_list *cands;
5240 	const struct btf *main_btf;
5241 	size_t local_essent_len;
5242 	int err, i;
5243 
5244 	local_cand.btf = local_btf;
5245 	local_cand.t = btf__type_by_id(local_btf, local_type_id);
5246 	if (!local_cand.t)
5247 		return ERR_PTR(-EINVAL);
5248 
5249 	local_cand.name = btf__name_by_offset(local_btf, local_cand.t->name_off);
5250 	if (str_is_empty(local_cand.name))
5251 		return ERR_PTR(-EINVAL);
5252 	local_essent_len = bpf_core_essential_name_len(local_cand.name);
5253 
5254 	cands = calloc(1, sizeof(*cands));
5255 	if (!cands)
5256 		return ERR_PTR(-ENOMEM);
5257 
5258 	/* Attempt to find target candidates in vmlinux BTF first */
5259 	main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5260 	err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5261 	if (err)
5262 		goto err_out;
5263 
5264 	/* if vmlinux BTF has any candidate, don't got for module BTFs */
5265 	if (cands->len)
5266 		return cands;
5267 
5268 	/* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5269 	if (obj->btf_vmlinux_override)
5270 		return cands;
5271 
5272 	/* now look through module BTFs, trying to still find candidates */
5273 	err = load_module_btfs(obj);
5274 	if (err)
5275 		goto err_out;
5276 
5277 	for (i = 0; i < obj->btf_module_cnt; i++) {
5278 		err = bpf_core_add_cands(&local_cand, local_essent_len,
5279 					 obj->btf_modules[i].btf,
5280 					 obj->btf_modules[i].name,
5281 					 btf__type_cnt(obj->btf_vmlinux),
5282 					 cands);
5283 		if (err)
5284 			goto err_out;
5285 	}
5286 
5287 	return cands;
5288 err_out:
5289 	bpf_core_free_cands(cands);
5290 	return ERR_PTR(err);
5291 }
5292 
5293 /* Check local and target types for compatibility. This check is used for
5294  * type-based CO-RE relocations and follow slightly different rules than
5295  * field-based relocations. This function assumes that root types were already
5296  * checked for name match. Beyond that initial root-level name check, names
5297  * are completely ignored. Compatibility rules are as follows:
5298  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5299  *     kind should match for local and target types (i.e., STRUCT is not
5300  *     compatible with UNION);
5301  *   - for ENUMs, the size is ignored;
5302  *   - for INT, size and signedness are ignored;
5303  *   - for ARRAY, dimensionality is ignored, element types are checked for
5304  *     compatibility recursively;
5305  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
5306  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5307  *   - FUNC_PROTOs are compatible if they have compatible signature: same
5308  *     number of input args and compatible return and argument types.
5309  * These rules are not set in stone and probably will be adjusted as we get
5310  * more experience with using BPF CO-RE relocations.
5311  */
5312 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5313 			      const struct btf *targ_btf, __u32 targ_id)
5314 {
5315 	const struct btf_type *local_type, *targ_type;
5316 	int depth = 32; /* max recursion depth */
5317 
5318 	/* caller made sure that names match (ignoring flavor suffix) */
5319 	local_type = btf__type_by_id(local_btf, local_id);
5320 	targ_type = btf__type_by_id(targ_btf, targ_id);
5321 	if (btf_kind(local_type) != btf_kind(targ_type))
5322 		return 0;
5323 
5324 recur:
5325 	depth--;
5326 	if (depth < 0)
5327 		return -EINVAL;
5328 
5329 	local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
5330 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
5331 	if (!local_type || !targ_type)
5332 		return -EINVAL;
5333 
5334 	if (btf_kind(local_type) != btf_kind(targ_type))
5335 		return 0;
5336 
5337 	switch (btf_kind(local_type)) {
5338 	case BTF_KIND_UNKN:
5339 	case BTF_KIND_STRUCT:
5340 	case BTF_KIND_UNION:
5341 	case BTF_KIND_ENUM:
5342 	case BTF_KIND_FWD:
5343 		return 1;
5344 	case BTF_KIND_INT:
5345 		/* just reject deprecated bitfield-like integers; all other
5346 		 * integers are by default compatible between each other
5347 		 */
5348 		return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0;
5349 	case BTF_KIND_PTR:
5350 		local_id = local_type->type;
5351 		targ_id = targ_type->type;
5352 		goto recur;
5353 	case BTF_KIND_ARRAY:
5354 		local_id = btf_array(local_type)->type;
5355 		targ_id = btf_array(targ_type)->type;
5356 		goto recur;
5357 	case BTF_KIND_FUNC_PROTO: {
5358 		struct btf_param *local_p = btf_params(local_type);
5359 		struct btf_param *targ_p = btf_params(targ_type);
5360 		__u16 local_vlen = btf_vlen(local_type);
5361 		__u16 targ_vlen = btf_vlen(targ_type);
5362 		int i, err;
5363 
5364 		if (local_vlen != targ_vlen)
5365 			return 0;
5366 
5367 		for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
5368 			skip_mods_and_typedefs(local_btf, local_p->type, &local_id);
5369 			skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id);
5370 			err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id);
5371 			if (err <= 0)
5372 				return err;
5373 		}
5374 
5375 		/* tail recurse for return type check */
5376 		skip_mods_and_typedefs(local_btf, local_type->type, &local_id);
5377 		skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id);
5378 		goto recur;
5379 	}
5380 	default:
5381 		pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n",
5382 			btf_kind_str(local_type), local_id, targ_id);
5383 		return 0;
5384 	}
5385 }
5386 
5387 static size_t bpf_core_hash_fn(const void *key, void *ctx)
5388 {
5389 	return (size_t)key;
5390 }
5391 
5392 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx)
5393 {
5394 	return k1 == k2;
5395 }
5396 
5397 static void *u32_as_hash_key(__u32 x)
5398 {
5399 	return (void *)(uintptr_t)x;
5400 }
5401 
5402 static int bpf_core_apply_relo(struct bpf_program *prog,
5403 			       const struct bpf_core_relo *relo,
5404 			       int relo_idx,
5405 			       const struct btf *local_btf,
5406 			       struct hashmap *cand_cache)
5407 {
5408 	const void *type_key = u32_as_hash_key(relo->type_id);
5409 	struct bpf_core_cand_list *cands = NULL;
5410 	const char *prog_name = prog->name;
5411 	const struct btf_type *local_type;
5412 	const char *local_name;
5413 	__u32 local_id = relo->type_id;
5414 	struct bpf_insn *insn;
5415 	int insn_idx, err;
5416 
5417 	if (relo->insn_off % BPF_INSN_SZ)
5418 		return -EINVAL;
5419 	insn_idx = relo->insn_off / BPF_INSN_SZ;
5420 	/* adjust insn_idx from section frame of reference to the local
5421 	 * program's frame of reference; (sub-)program code is not yet
5422 	 * relocated, so it's enough to just subtract in-section offset
5423 	 */
5424 	insn_idx = insn_idx - prog->sec_insn_off;
5425 	if (insn_idx >= prog->insns_cnt)
5426 		return -EINVAL;
5427 	insn = &prog->insns[insn_idx];
5428 
5429 	local_type = btf__type_by_id(local_btf, local_id);
5430 	if (!local_type)
5431 		return -EINVAL;
5432 
5433 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
5434 	if (!local_name)
5435 		return -EINVAL;
5436 
5437 	if (prog->obj->gen_loader) {
5438 		pr_warn("// TODO core_relo: prog %td insn[%d] %s kind %d\n",
5439 			prog - prog->obj->programs, relo->insn_off / 8,
5440 			local_name, relo->kind);
5441 		return -ENOTSUP;
5442 	}
5443 
5444 	if (relo->kind != BPF_TYPE_ID_LOCAL &&
5445 	    !hashmap__find(cand_cache, type_key, (void **)&cands)) {
5446 		cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5447 		if (IS_ERR(cands)) {
5448 			pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5449 				prog_name, relo_idx, local_id, btf_kind_str(local_type),
5450 				local_name, PTR_ERR(cands));
5451 			return PTR_ERR(cands);
5452 		}
5453 		err = hashmap__set(cand_cache, type_key, cands, NULL, NULL);
5454 		if (err) {
5455 			bpf_core_free_cands(cands);
5456 			return err;
5457 		}
5458 	}
5459 
5460 	return bpf_core_apply_relo_insn(prog_name, insn, insn_idx, relo, relo_idx, local_btf, cands);
5461 }
5462 
5463 static int
5464 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5465 {
5466 	const struct btf_ext_info_sec *sec;
5467 	const struct bpf_core_relo *rec;
5468 	const struct btf_ext_info *seg;
5469 	struct hashmap_entry *entry;
5470 	struct hashmap *cand_cache = NULL;
5471 	struct bpf_program *prog;
5472 	const char *sec_name;
5473 	int i, err = 0, insn_idx, sec_idx;
5474 
5475 	if (obj->btf_ext->core_relo_info.len == 0)
5476 		return 0;
5477 
5478 	if (targ_btf_path) {
5479 		obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5480 		err = libbpf_get_error(obj->btf_vmlinux_override);
5481 		if (err) {
5482 			pr_warn("failed to parse target BTF: %d\n", err);
5483 			return err;
5484 		}
5485 	}
5486 
5487 	cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5488 	if (IS_ERR(cand_cache)) {
5489 		err = PTR_ERR(cand_cache);
5490 		goto out;
5491 	}
5492 
5493 	seg = &obj->btf_ext->core_relo_info;
5494 	for_each_btf_ext_sec(seg, sec) {
5495 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5496 		if (str_is_empty(sec_name)) {
5497 			err = -EINVAL;
5498 			goto out;
5499 		}
5500 		/* bpf_object's ELF is gone by now so it's not easy to find
5501 		 * section index by section name, but we can find *any*
5502 		 * bpf_program within desired section name and use it's
5503 		 * prog->sec_idx to do a proper search by section index and
5504 		 * instruction offset
5505 		 */
5506 		prog = NULL;
5507 		for (i = 0; i < obj->nr_programs; i++) {
5508 			prog = &obj->programs[i];
5509 			if (strcmp(prog->sec_name, sec_name) == 0)
5510 				break;
5511 		}
5512 		if (!prog) {
5513 			pr_warn("sec '%s': failed to find a BPF program\n", sec_name);
5514 			return -ENOENT;
5515 		}
5516 		sec_idx = prog->sec_idx;
5517 
5518 		pr_debug("sec '%s': found %d CO-RE relocations\n",
5519 			 sec_name, sec->num_info);
5520 
5521 		for_each_btf_ext_rec(seg, sec, i, rec) {
5522 			insn_idx = rec->insn_off / BPF_INSN_SZ;
5523 			prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5524 			if (!prog) {
5525 				pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n",
5526 					sec_name, insn_idx, i);
5527 				err = -EINVAL;
5528 				goto out;
5529 			}
5530 			/* no need to apply CO-RE relocation if the program is
5531 			 * not going to be loaded
5532 			 */
5533 			if (!prog->load)
5534 				continue;
5535 
5536 			err = bpf_core_apply_relo(prog, rec, i, obj->btf, cand_cache);
5537 			if (err) {
5538 				pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5539 					prog->name, i, err);
5540 				goto out;
5541 			}
5542 		}
5543 	}
5544 
5545 out:
5546 	/* obj->btf_vmlinux and module BTFs are freed after object load */
5547 	btf__free(obj->btf_vmlinux_override);
5548 	obj->btf_vmlinux_override = NULL;
5549 
5550 	if (!IS_ERR_OR_NULL(cand_cache)) {
5551 		hashmap__for_each_entry(cand_cache, entry, i) {
5552 			bpf_core_free_cands(entry->value);
5553 		}
5554 		hashmap__free(cand_cache);
5555 	}
5556 	return err;
5557 }
5558 
5559 /* Relocate data references within program code:
5560  *  - map references;
5561  *  - global variable references;
5562  *  - extern references.
5563  */
5564 static int
5565 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
5566 {
5567 	int i;
5568 
5569 	for (i = 0; i < prog->nr_reloc; i++) {
5570 		struct reloc_desc *relo = &prog->reloc_desc[i];
5571 		struct bpf_insn *insn = &prog->insns[relo->insn_idx];
5572 		struct extern_desc *ext;
5573 
5574 		switch (relo->type) {
5575 		case RELO_LD64:
5576 			if (obj->gen_loader) {
5577 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
5578 				insn[0].imm = relo->map_idx;
5579 			} else {
5580 				insn[0].src_reg = BPF_PSEUDO_MAP_FD;
5581 				insn[0].imm = obj->maps[relo->map_idx].fd;
5582 			}
5583 			break;
5584 		case RELO_DATA:
5585 			insn[1].imm = insn[0].imm + relo->sym_off;
5586 			if (obj->gen_loader) {
5587 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5588 				insn[0].imm = relo->map_idx;
5589 			} else {
5590 				insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5591 				insn[0].imm = obj->maps[relo->map_idx].fd;
5592 			}
5593 			break;
5594 		case RELO_EXTERN_VAR:
5595 			ext = &obj->externs[relo->sym_off];
5596 			if (ext->type == EXT_KCFG) {
5597 				if (obj->gen_loader) {
5598 					insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5599 					insn[0].imm = obj->kconfig_map_idx;
5600 				} else {
5601 					insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5602 					insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
5603 				}
5604 				insn[1].imm = ext->kcfg.data_off;
5605 			} else /* EXT_KSYM */ {
5606 				if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
5607 					insn[0].src_reg = BPF_PSEUDO_BTF_ID;
5608 					insn[0].imm = ext->ksym.kernel_btf_id;
5609 					insn[1].imm = ext->ksym.kernel_btf_obj_fd;
5610 				} else { /* typeless ksyms or unresolved typed ksyms */
5611 					insn[0].imm = (__u32)ext->ksym.addr;
5612 					insn[1].imm = ext->ksym.addr >> 32;
5613 				}
5614 			}
5615 			break;
5616 		case RELO_EXTERN_FUNC:
5617 			ext = &obj->externs[relo->sym_off];
5618 			insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
5619 			if (ext->is_set) {
5620 				insn[0].imm = ext->ksym.kernel_btf_id;
5621 				insn[0].off = ext->ksym.btf_fd_idx;
5622 			} else { /* unresolved weak kfunc */
5623 				insn[0].imm = 0;
5624 				insn[0].off = 0;
5625 			}
5626 			break;
5627 		case RELO_SUBPROG_ADDR:
5628 			if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
5629 				pr_warn("prog '%s': relo #%d: bad insn\n",
5630 					prog->name, i);
5631 				return -EINVAL;
5632 			}
5633 			/* handled already */
5634 			break;
5635 		case RELO_CALL:
5636 			/* handled already */
5637 			break;
5638 		default:
5639 			pr_warn("prog '%s': relo #%d: bad relo type %d\n",
5640 				prog->name, i, relo->type);
5641 			return -EINVAL;
5642 		}
5643 	}
5644 
5645 	return 0;
5646 }
5647 
5648 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
5649 				    const struct bpf_program *prog,
5650 				    const struct btf_ext_info *ext_info,
5651 				    void **prog_info, __u32 *prog_rec_cnt,
5652 				    __u32 *prog_rec_sz)
5653 {
5654 	void *copy_start = NULL, *copy_end = NULL;
5655 	void *rec, *rec_end, *new_prog_info;
5656 	const struct btf_ext_info_sec *sec;
5657 	size_t old_sz, new_sz;
5658 	const char *sec_name;
5659 	int i, off_adj;
5660 
5661 	for_each_btf_ext_sec(ext_info, sec) {
5662 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5663 		if (!sec_name)
5664 			return -EINVAL;
5665 		if (strcmp(sec_name, prog->sec_name) != 0)
5666 			continue;
5667 
5668 		for_each_btf_ext_rec(ext_info, sec, i, rec) {
5669 			__u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
5670 
5671 			if (insn_off < prog->sec_insn_off)
5672 				continue;
5673 			if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
5674 				break;
5675 
5676 			if (!copy_start)
5677 				copy_start = rec;
5678 			copy_end = rec + ext_info->rec_size;
5679 		}
5680 
5681 		if (!copy_start)
5682 			return -ENOENT;
5683 
5684 		/* append func/line info of a given (sub-)program to the main
5685 		 * program func/line info
5686 		 */
5687 		old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
5688 		new_sz = old_sz + (copy_end - copy_start);
5689 		new_prog_info = realloc(*prog_info, new_sz);
5690 		if (!new_prog_info)
5691 			return -ENOMEM;
5692 		*prog_info = new_prog_info;
5693 		*prog_rec_cnt = new_sz / ext_info->rec_size;
5694 		memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
5695 
5696 		/* Kernel instruction offsets are in units of 8-byte
5697 		 * instructions, while .BTF.ext instruction offsets generated
5698 		 * by Clang are in units of bytes. So convert Clang offsets
5699 		 * into kernel offsets and adjust offset according to program
5700 		 * relocated position.
5701 		 */
5702 		off_adj = prog->sub_insn_off - prog->sec_insn_off;
5703 		rec = new_prog_info + old_sz;
5704 		rec_end = new_prog_info + new_sz;
5705 		for (; rec < rec_end; rec += ext_info->rec_size) {
5706 			__u32 *insn_off = rec;
5707 
5708 			*insn_off = *insn_off / BPF_INSN_SZ + off_adj;
5709 		}
5710 		*prog_rec_sz = ext_info->rec_size;
5711 		return 0;
5712 	}
5713 
5714 	return -ENOENT;
5715 }
5716 
5717 static int
5718 reloc_prog_func_and_line_info(const struct bpf_object *obj,
5719 			      struct bpf_program *main_prog,
5720 			      const struct bpf_program *prog)
5721 {
5722 	int err;
5723 
5724 	/* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
5725 	 * supprot func/line info
5726 	 */
5727 	if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
5728 		return 0;
5729 
5730 	/* only attempt func info relocation if main program's func_info
5731 	 * relocation was successful
5732 	 */
5733 	if (main_prog != prog && !main_prog->func_info)
5734 		goto line_info;
5735 
5736 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
5737 				       &main_prog->func_info,
5738 				       &main_prog->func_info_cnt,
5739 				       &main_prog->func_info_rec_size);
5740 	if (err) {
5741 		if (err != -ENOENT) {
5742 			pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
5743 				prog->name, err);
5744 			return err;
5745 		}
5746 		if (main_prog->func_info) {
5747 			/*
5748 			 * Some info has already been found but has problem
5749 			 * in the last btf_ext reloc. Must have to error out.
5750 			 */
5751 			pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
5752 			return err;
5753 		}
5754 		/* Have problem loading the very first info. Ignore the rest. */
5755 		pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
5756 			prog->name);
5757 	}
5758 
5759 line_info:
5760 	/* don't relocate line info if main program's relocation failed */
5761 	if (main_prog != prog && !main_prog->line_info)
5762 		return 0;
5763 
5764 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
5765 				       &main_prog->line_info,
5766 				       &main_prog->line_info_cnt,
5767 				       &main_prog->line_info_rec_size);
5768 	if (err) {
5769 		if (err != -ENOENT) {
5770 			pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
5771 				prog->name, err);
5772 			return err;
5773 		}
5774 		if (main_prog->line_info) {
5775 			/*
5776 			 * Some info has already been found but has problem
5777 			 * in the last btf_ext reloc. Must have to error out.
5778 			 */
5779 			pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
5780 			return err;
5781 		}
5782 		/* Have problem loading the very first info. Ignore the rest. */
5783 		pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
5784 			prog->name);
5785 	}
5786 	return 0;
5787 }
5788 
5789 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
5790 {
5791 	size_t insn_idx = *(const size_t *)key;
5792 	const struct reloc_desc *relo = elem;
5793 
5794 	if (insn_idx == relo->insn_idx)
5795 		return 0;
5796 	return insn_idx < relo->insn_idx ? -1 : 1;
5797 }
5798 
5799 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
5800 {
5801 	return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
5802 		       sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
5803 }
5804 
5805 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
5806 {
5807 	int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
5808 	struct reloc_desc *relos;
5809 	int i;
5810 
5811 	if (main_prog == subprog)
5812 		return 0;
5813 	relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
5814 	if (!relos)
5815 		return -ENOMEM;
5816 	memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
5817 	       sizeof(*relos) * subprog->nr_reloc);
5818 
5819 	for (i = main_prog->nr_reloc; i < new_cnt; i++)
5820 		relos[i].insn_idx += subprog->sub_insn_off;
5821 	/* After insn_idx adjustment the 'relos' array is still sorted
5822 	 * by insn_idx and doesn't break bsearch.
5823 	 */
5824 	main_prog->reloc_desc = relos;
5825 	main_prog->nr_reloc = new_cnt;
5826 	return 0;
5827 }
5828 
5829 static int
5830 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
5831 		       struct bpf_program *prog)
5832 {
5833 	size_t sub_insn_idx, insn_idx, new_cnt;
5834 	struct bpf_program *subprog;
5835 	struct bpf_insn *insns, *insn;
5836 	struct reloc_desc *relo;
5837 	int err;
5838 
5839 	err = reloc_prog_func_and_line_info(obj, main_prog, prog);
5840 	if (err)
5841 		return err;
5842 
5843 	for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
5844 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
5845 		if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
5846 			continue;
5847 
5848 		relo = find_prog_insn_relo(prog, insn_idx);
5849 		if (relo && relo->type == RELO_EXTERN_FUNC)
5850 			/* kfunc relocations will be handled later
5851 			 * in bpf_object__relocate_data()
5852 			 */
5853 			continue;
5854 		if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
5855 			pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
5856 				prog->name, insn_idx, relo->type);
5857 			return -LIBBPF_ERRNO__RELOC;
5858 		}
5859 		if (relo) {
5860 			/* sub-program instruction index is a combination of
5861 			 * an offset of a symbol pointed to by relocation and
5862 			 * call instruction's imm field; for global functions,
5863 			 * call always has imm = -1, but for static functions
5864 			 * relocation is against STT_SECTION and insn->imm
5865 			 * points to a start of a static function
5866 			 *
5867 			 * for subprog addr relocation, the relo->sym_off + insn->imm is
5868 			 * the byte offset in the corresponding section.
5869 			 */
5870 			if (relo->type == RELO_CALL)
5871 				sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
5872 			else
5873 				sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
5874 		} else if (insn_is_pseudo_func(insn)) {
5875 			/*
5876 			 * RELO_SUBPROG_ADDR relo is always emitted even if both
5877 			 * functions are in the same section, so it shouldn't reach here.
5878 			 */
5879 			pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
5880 				prog->name, insn_idx);
5881 			return -LIBBPF_ERRNO__RELOC;
5882 		} else {
5883 			/* if subprogram call is to a static function within
5884 			 * the same ELF section, there won't be any relocation
5885 			 * emitted, but it also means there is no additional
5886 			 * offset necessary, insns->imm is relative to
5887 			 * instruction's original position within the section
5888 			 */
5889 			sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
5890 		}
5891 
5892 		/* we enforce that sub-programs should be in .text section */
5893 		subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
5894 		if (!subprog) {
5895 			pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
5896 				prog->name);
5897 			return -LIBBPF_ERRNO__RELOC;
5898 		}
5899 
5900 		/* if it's the first call instruction calling into this
5901 		 * subprogram (meaning this subprog hasn't been processed
5902 		 * yet) within the context of current main program:
5903 		 *   - append it at the end of main program's instructions blog;
5904 		 *   - process is recursively, while current program is put on hold;
5905 		 *   - if that subprogram calls some other not yet processes
5906 		 *   subprogram, same thing will happen recursively until
5907 		 *   there are no more unprocesses subprograms left to append
5908 		 *   and relocate.
5909 		 */
5910 		if (subprog->sub_insn_off == 0) {
5911 			subprog->sub_insn_off = main_prog->insns_cnt;
5912 
5913 			new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
5914 			insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
5915 			if (!insns) {
5916 				pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
5917 				return -ENOMEM;
5918 			}
5919 			main_prog->insns = insns;
5920 			main_prog->insns_cnt = new_cnt;
5921 
5922 			memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
5923 			       subprog->insns_cnt * sizeof(*insns));
5924 
5925 			pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
5926 				 main_prog->name, subprog->insns_cnt, subprog->name);
5927 
5928 			/* The subprog insns are now appended. Append its relos too. */
5929 			err = append_subprog_relos(main_prog, subprog);
5930 			if (err)
5931 				return err;
5932 			err = bpf_object__reloc_code(obj, main_prog, subprog);
5933 			if (err)
5934 				return err;
5935 		}
5936 
5937 		/* main_prog->insns memory could have been re-allocated, so
5938 		 * calculate pointer again
5939 		 */
5940 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
5941 		/* calculate correct instruction position within current main
5942 		 * prog; each main prog can have a different set of
5943 		 * subprograms appended (potentially in different order as
5944 		 * well), so position of any subprog can be different for
5945 		 * different main programs */
5946 		insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
5947 
5948 		pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
5949 			 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
5950 	}
5951 
5952 	return 0;
5953 }
5954 
5955 /*
5956  * Relocate sub-program calls.
5957  *
5958  * Algorithm operates as follows. Each entry-point BPF program (referred to as
5959  * main prog) is processed separately. For each subprog (non-entry functions,
5960  * that can be called from either entry progs or other subprogs) gets their
5961  * sub_insn_off reset to zero. This serves as indicator that this subprogram
5962  * hasn't been yet appended and relocated within current main prog. Once its
5963  * relocated, sub_insn_off will point at the position within current main prog
5964  * where given subprog was appended. This will further be used to relocate all
5965  * the call instructions jumping into this subprog.
5966  *
5967  * We start with main program and process all call instructions. If the call
5968  * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
5969  * is zero), subprog instructions are appended at the end of main program's
5970  * instruction array. Then main program is "put on hold" while we recursively
5971  * process newly appended subprogram. If that subprogram calls into another
5972  * subprogram that hasn't been appended, new subprogram is appended again to
5973  * the *main* prog's instructions (subprog's instructions are always left
5974  * untouched, as they need to be in unmodified state for subsequent main progs
5975  * and subprog instructions are always sent only as part of a main prog) and
5976  * the process continues recursively. Once all the subprogs called from a main
5977  * prog or any of its subprogs are appended (and relocated), all their
5978  * positions within finalized instructions array are known, so it's easy to
5979  * rewrite call instructions with correct relative offsets, corresponding to
5980  * desired target subprog.
5981  *
5982  * Its important to realize that some subprogs might not be called from some
5983  * main prog and any of its called/used subprogs. Those will keep their
5984  * subprog->sub_insn_off as zero at all times and won't be appended to current
5985  * main prog and won't be relocated within the context of current main prog.
5986  * They might still be used from other main progs later.
5987  *
5988  * Visually this process can be shown as below. Suppose we have two main
5989  * programs mainA and mainB and BPF object contains three subprogs: subA,
5990  * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
5991  * subC both call subB:
5992  *
5993  *        +--------+ +-------+
5994  *        |        v v       |
5995  *     +--+---+ +--+-+-+ +---+--+
5996  *     | subA | | subB | | subC |
5997  *     +--+---+ +------+ +---+--+
5998  *        ^                  ^
5999  *        |                  |
6000  *    +---+-------+   +------+----+
6001  *    |   mainA   |   |   mainB   |
6002  *    +-----------+   +-----------+
6003  *
6004  * We'll start relocating mainA, will find subA, append it and start
6005  * processing sub A recursively:
6006  *
6007  *    +-----------+------+
6008  *    |   mainA   | subA |
6009  *    +-----------+------+
6010  *
6011  * At this point we notice that subB is used from subA, so we append it and
6012  * relocate (there are no further subcalls from subB):
6013  *
6014  *    +-----------+------+------+
6015  *    |   mainA   | subA | subB |
6016  *    +-----------+------+------+
6017  *
6018  * At this point, we relocate subA calls, then go one level up and finish with
6019  * relocatin mainA calls. mainA is done.
6020  *
6021  * For mainB process is similar but results in different order. We start with
6022  * mainB and skip subA and subB, as mainB never calls them (at least
6023  * directly), but we see subC is needed, so we append and start processing it:
6024  *
6025  *    +-----------+------+
6026  *    |   mainB   | subC |
6027  *    +-----------+------+
6028  * Now we see subC needs subB, so we go back to it, append and relocate it:
6029  *
6030  *    +-----------+------+------+
6031  *    |   mainB   | subC | subB |
6032  *    +-----------+------+------+
6033  *
6034  * At this point we unwind recursion, relocate calls in subC, then in mainB.
6035  */
6036 static int
6037 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6038 {
6039 	struct bpf_program *subprog;
6040 	int i, err;
6041 
6042 	/* mark all subprogs as not relocated (yet) within the context of
6043 	 * current main program
6044 	 */
6045 	for (i = 0; i < obj->nr_programs; i++) {
6046 		subprog = &obj->programs[i];
6047 		if (!prog_is_subprog(obj, subprog))
6048 			continue;
6049 
6050 		subprog->sub_insn_off = 0;
6051 	}
6052 
6053 	err = bpf_object__reloc_code(obj, prog, prog);
6054 	if (err)
6055 		return err;
6056 
6057 
6058 	return 0;
6059 }
6060 
6061 static void
6062 bpf_object__free_relocs(struct bpf_object *obj)
6063 {
6064 	struct bpf_program *prog;
6065 	int i;
6066 
6067 	/* free up relocation descriptors */
6068 	for (i = 0; i < obj->nr_programs; i++) {
6069 		prog = &obj->programs[i];
6070 		zfree(&prog->reloc_desc);
6071 		prog->nr_reloc = 0;
6072 	}
6073 }
6074 
6075 static int
6076 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6077 {
6078 	struct bpf_program *prog;
6079 	size_t i, j;
6080 	int err;
6081 
6082 	if (obj->btf_ext) {
6083 		err = bpf_object__relocate_core(obj, targ_btf_path);
6084 		if (err) {
6085 			pr_warn("failed to perform CO-RE relocations: %d\n",
6086 				err);
6087 			return err;
6088 		}
6089 	}
6090 
6091 	/* Before relocating calls pre-process relocations and mark
6092 	 * few ld_imm64 instructions that points to subprogs.
6093 	 * Otherwise bpf_object__reloc_code() later would have to consider
6094 	 * all ld_imm64 insns as relocation candidates. That would
6095 	 * reduce relocation speed, since amount of find_prog_insn_relo()
6096 	 * would increase and most of them will fail to find a relo.
6097 	 */
6098 	for (i = 0; i < obj->nr_programs; i++) {
6099 		prog = &obj->programs[i];
6100 		for (j = 0; j < prog->nr_reloc; j++) {
6101 			struct reloc_desc *relo = &prog->reloc_desc[j];
6102 			struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6103 
6104 			/* mark the insn, so it's recognized by insn_is_pseudo_func() */
6105 			if (relo->type == RELO_SUBPROG_ADDR)
6106 				insn[0].src_reg = BPF_PSEUDO_FUNC;
6107 		}
6108 	}
6109 
6110 	/* relocate subprogram calls and append used subprograms to main
6111 	 * programs; each copy of subprogram code needs to be relocated
6112 	 * differently for each main program, because its code location might
6113 	 * have changed.
6114 	 * Append subprog relos to main programs to allow data relos to be
6115 	 * processed after text is completely relocated.
6116 	 */
6117 	for (i = 0; i < obj->nr_programs; i++) {
6118 		prog = &obj->programs[i];
6119 		/* sub-program's sub-calls are relocated within the context of
6120 		 * its main program only
6121 		 */
6122 		if (prog_is_subprog(obj, prog))
6123 			continue;
6124 
6125 		err = bpf_object__relocate_calls(obj, prog);
6126 		if (err) {
6127 			pr_warn("prog '%s': failed to relocate calls: %d\n",
6128 				prog->name, err);
6129 			return err;
6130 		}
6131 	}
6132 	/* Process data relos for main programs */
6133 	for (i = 0; i < obj->nr_programs; i++) {
6134 		prog = &obj->programs[i];
6135 		if (prog_is_subprog(obj, prog))
6136 			continue;
6137 		err = bpf_object__relocate_data(obj, prog);
6138 		if (err) {
6139 			pr_warn("prog '%s': failed to relocate data references: %d\n",
6140 				prog->name, err);
6141 			return err;
6142 		}
6143 	}
6144 	if (!obj->gen_loader)
6145 		bpf_object__free_relocs(obj);
6146 	return 0;
6147 }
6148 
6149 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6150 					    Elf64_Shdr *shdr, Elf_Data *data);
6151 
6152 static int bpf_object__collect_map_relos(struct bpf_object *obj,
6153 					 Elf64_Shdr *shdr, Elf_Data *data)
6154 {
6155 	const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6156 	int i, j, nrels, new_sz;
6157 	const struct btf_var_secinfo *vi = NULL;
6158 	const struct btf_type *sec, *var, *def;
6159 	struct bpf_map *map = NULL, *targ_map;
6160 	const struct btf_member *member;
6161 	const char *name, *mname;
6162 	unsigned int moff;
6163 	Elf64_Sym *sym;
6164 	Elf64_Rel *rel;
6165 	void *tmp;
6166 
6167 	if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6168 		return -EINVAL;
6169 	sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6170 	if (!sec)
6171 		return -EINVAL;
6172 
6173 	nrels = shdr->sh_size / shdr->sh_entsize;
6174 	for (i = 0; i < nrels; i++) {
6175 		rel = elf_rel_by_idx(data, i);
6176 		if (!rel) {
6177 			pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6178 			return -LIBBPF_ERRNO__FORMAT;
6179 		}
6180 
6181 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
6182 		if (!sym) {
6183 			pr_warn(".maps relo #%d: symbol %zx not found\n",
6184 				i, (size_t)ELF64_R_SYM(rel->r_info));
6185 			return -LIBBPF_ERRNO__FORMAT;
6186 		}
6187 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
6188 		if (sym->st_shndx != obj->efile.btf_maps_shndx) {
6189 			pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6190 				i, name);
6191 			return -LIBBPF_ERRNO__RELOC;
6192 		}
6193 
6194 		pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
6195 			 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
6196 			 (size_t)rel->r_offset, sym->st_name, name);
6197 
6198 		for (j = 0; j < obj->nr_maps; j++) {
6199 			map = &obj->maps[j];
6200 			if (map->sec_idx != obj->efile.btf_maps_shndx)
6201 				continue;
6202 
6203 			vi = btf_var_secinfos(sec) + map->btf_var_idx;
6204 			if (vi->offset <= rel->r_offset &&
6205 			    rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6206 				break;
6207 		}
6208 		if (j == obj->nr_maps) {
6209 			pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
6210 				i, name, (size_t)rel->r_offset);
6211 			return -EINVAL;
6212 		}
6213 
6214 		if (!bpf_map_type__is_map_in_map(map->def.type))
6215 			return -EINVAL;
6216 		if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6217 		    map->def.key_size != sizeof(int)) {
6218 			pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6219 				i, map->name, sizeof(int));
6220 			return -EINVAL;
6221 		}
6222 
6223 		targ_map = bpf_object__find_map_by_name(obj, name);
6224 		if (!targ_map)
6225 			return -ESRCH;
6226 
6227 		var = btf__type_by_id(obj->btf, vi->type);
6228 		def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6229 		if (btf_vlen(def) == 0)
6230 			return -EINVAL;
6231 		member = btf_members(def) + btf_vlen(def) - 1;
6232 		mname = btf__name_by_offset(obj->btf, member->name_off);
6233 		if (strcmp(mname, "values"))
6234 			return -EINVAL;
6235 
6236 		moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6237 		if (rel->r_offset - vi->offset < moff)
6238 			return -EINVAL;
6239 
6240 		moff = rel->r_offset - vi->offset - moff;
6241 		/* here we use BPF pointer size, which is always 64 bit, as we
6242 		 * are parsing ELF that was built for BPF target
6243 		 */
6244 		if (moff % bpf_ptr_sz)
6245 			return -EINVAL;
6246 		moff /= bpf_ptr_sz;
6247 		if (moff >= map->init_slots_sz) {
6248 			new_sz = moff + 1;
6249 			tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6250 			if (!tmp)
6251 				return -ENOMEM;
6252 			map->init_slots = tmp;
6253 			memset(map->init_slots + map->init_slots_sz, 0,
6254 			       (new_sz - map->init_slots_sz) * host_ptr_sz);
6255 			map->init_slots_sz = new_sz;
6256 		}
6257 		map->init_slots[moff] = targ_map;
6258 
6259 		pr_debug(".maps relo #%d: map '%s' slot [%d] points to map '%s'\n",
6260 			 i, map->name, moff, name);
6261 	}
6262 
6263 	return 0;
6264 }
6265 
6266 static int cmp_relocs(const void *_a, const void *_b)
6267 {
6268 	const struct reloc_desc *a = _a;
6269 	const struct reloc_desc *b = _b;
6270 
6271 	if (a->insn_idx != b->insn_idx)
6272 		return a->insn_idx < b->insn_idx ? -1 : 1;
6273 
6274 	/* no two relocations should have the same insn_idx, but ... */
6275 	if (a->type != b->type)
6276 		return a->type < b->type ? -1 : 1;
6277 
6278 	return 0;
6279 }
6280 
6281 static int bpf_object__collect_relos(struct bpf_object *obj)
6282 {
6283 	int i, err;
6284 
6285 	for (i = 0; i < obj->efile.sec_cnt; i++) {
6286 		struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
6287 		Elf64_Shdr *shdr;
6288 		Elf_Data *data;
6289 		int idx;
6290 
6291 		if (sec_desc->sec_type != SEC_RELO)
6292 			continue;
6293 
6294 		shdr = sec_desc->shdr;
6295 		data = sec_desc->data;
6296 		idx = shdr->sh_info;
6297 
6298 		if (shdr->sh_type != SHT_REL) {
6299 			pr_warn("internal error at %d\n", __LINE__);
6300 			return -LIBBPF_ERRNO__INTERNAL;
6301 		}
6302 
6303 		if (idx == obj->efile.st_ops_shndx)
6304 			err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6305 		else if (idx == obj->efile.btf_maps_shndx)
6306 			err = bpf_object__collect_map_relos(obj, shdr, data);
6307 		else
6308 			err = bpf_object__collect_prog_relos(obj, shdr, data);
6309 		if (err)
6310 			return err;
6311 	}
6312 
6313 	for (i = 0; i < obj->nr_programs; i++) {
6314 		struct bpf_program *p = &obj->programs[i];
6315 
6316 		if (!p->nr_reloc)
6317 			continue;
6318 
6319 		qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6320 	}
6321 	return 0;
6322 }
6323 
6324 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6325 {
6326 	if (BPF_CLASS(insn->code) == BPF_JMP &&
6327 	    BPF_OP(insn->code) == BPF_CALL &&
6328 	    BPF_SRC(insn->code) == BPF_K &&
6329 	    insn->src_reg == 0 &&
6330 	    insn->dst_reg == 0) {
6331 		    *func_id = insn->imm;
6332 		    return true;
6333 	}
6334 	return false;
6335 }
6336 
6337 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
6338 {
6339 	struct bpf_insn *insn = prog->insns;
6340 	enum bpf_func_id func_id;
6341 	int i;
6342 
6343 	if (obj->gen_loader)
6344 		return 0;
6345 
6346 	for (i = 0; i < prog->insns_cnt; i++, insn++) {
6347 		if (!insn_is_helper_call(insn, &func_id))
6348 			continue;
6349 
6350 		/* on kernels that don't yet support
6351 		 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6352 		 * to bpf_probe_read() which works well for old kernels
6353 		 */
6354 		switch (func_id) {
6355 		case BPF_FUNC_probe_read_kernel:
6356 		case BPF_FUNC_probe_read_user:
6357 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6358 				insn->imm = BPF_FUNC_probe_read;
6359 			break;
6360 		case BPF_FUNC_probe_read_kernel_str:
6361 		case BPF_FUNC_probe_read_user_str:
6362 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6363 				insn->imm = BPF_FUNC_probe_read_str;
6364 			break;
6365 		default:
6366 			break;
6367 		}
6368 	}
6369 	return 0;
6370 }
6371 
6372 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
6373 				     int *btf_obj_fd, int *btf_type_id);
6374 
6375 /* this is called as prog->sec_def->preload_fn for libbpf-supported sec_defs */
6376 static int libbpf_preload_prog(struct bpf_program *prog,
6377 			       struct bpf_prog_load_params *attr, long cookie)
6378 {
6379 	enum sec_def_flags def = cookie;
6380 
6381 	/* old kernels might not support specifying expected_attach_type */
6382 	if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
6383 		attr->expected_attach_type = 0;
6384 
6385 	if (def & SEC_SLEEPABLE)
6386 		attr->prog_flags |= BPF_F_SLEEPABLE;
6387 
6388 	if ((prog->type == BPF_PROG_TYPE_TRACING ||
6389 	     prog->type == BPF_PROG_TYPE_LSM ||
6390 	     prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) {
6391 		int btf_obj_fd = 0, btf_type_id = 0, err;
6392 		const char *attach_name;
6393 
6394 		attach_name = strchr(prog->sec_name, '/') + 1;
6395 		err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
6396 		if (err)
6397 			return err;
6398 
6399 		/* cache resolved BTF FD and BTF type ID in the prog */
6400 		prog->attach_btf_obj_fd = btf_obj_fd;
6401 		prog->attach_btf_id = btf_type_id;
6402 
6403 		/* but by now libbpf common logic is not utilizing
6404 		 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
6405 		 * this callback is called after attrs were populated by
6406 		 * libbpf, so this callback has to update attr explicitly here
6407 		 */
6408 		attr->attach_btf_obj_fd = btf_obj_fd;
6409 		attr->attach_btf_id = btf_type_id;
6410 	}
6411 	return 0;
6412 }
6413 
6414 static int
6415 load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt,
6416 	     char *license, __u32 kern_version, int *pfd)
6417 {
6418 	struct bpf_prog_load_params load_attr = {};
6419 	struct bpf_object *obj = prog->obj;
6420 	char *cp, errmsg[STRERR_BUFSIZE];
6421 	size_t log_buf_size = 0;
6422 	char *log_buf = NULL;
6423 	int btf_fd, ret, err;
6424 
6425 	if (prog->type == BPF_PROG_TYPE_UNSPEC) {
6426 		/*
6427 		 * The program type must be set.  Most likely we couldn't find a proper
6428 		 * section definition at load time, and thus we didn't infer the type.
6429 		 */
6430 		pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
6431 			prog->name, prog->sec_name);
6432 		return -EINVAL;
6433 	}
6434 
6435 	if (!insns || !insns_cnt)
6436 		return -EINVAL;
6437 
6438 	load_attr.prog_type = prog->type;
6439 	load_attr.expected_attach_type = prog->expected_attach_type;
6440 	if (kernel_supports(obj, FEAT_PROG_NAME))
6441 		load_attr.name = prog->name;
6442 	load_attr.insns = insns;
6443 	load_attr.insn_cnt = insns_cnt;
6444 	load_attr.license = license;
6445 	load_attr.attach_btf_id = prog->attach_btf_id;
6446 	load_attr.attach_prog_fd = prog->attach_prog_fd;
6447 	load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
6448 	load_attr.attach_btf_id = prog->attach_btf_id;
6449 	load_attr.kern_version = kern_version;
6450 	load_attr.prog_ifindex = prog->prog_ifindex;
6451 
6452 	/* specify func_info/line_info only if kernel supports them */
6453 	btf_fd = bpf_object__btf_fd(obj);
6454 	if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
6455 		load_attr.prog_btf_fd = btf_fd;
6456 		load_attr.func_info = prog->func_info;
6457 		load_attr.func_info_rec_size = prog->func_info_rec_size;
6458 		load_attr.func_info_cnt = prog->func_info_cnt;
6459 		load_attr.line_info = prog->line_info;
6460 		load_attr.line_info_rec_size = prog->line_info_rec_size;
6461 		load_attr.line_info_cnt = prog->line_info_cnt;
6462 	}
6463 	load_attr.log_level = prog->log_level;
6464 	load_attr.prog_flags = prog->prog_flags;
6465 	load_attr.fd_array = obj->fd_array;
6466 
6467 	/* adjust load_attr if sec_def provides custom preload callback */
6468 	if (prog->sec_def && prog->sec_def->preload_fn) {
6469 		err = prog->sec_def->preload_fn(prog, &load_attr, prog->sec_def->cookie);
6470 		if (err < 0) {
6471 			pr_warn("prog '%s': failed to prepare load attributes: %d\n",
6472 				prog->name, err);
6473 			return err;
6474 		}
6475 	}
6476 
6477 	if (obj->gen_loader) {
6478 		bpf_gen__prog_load(obj->gen_loader, &load_attr,
6479 				   prog - obj->programs);
6480 		*pfd = -1;
6481 		return 0;
6482 	}
6483 retry_load:
6484 	if (log_buf_size) {
6485 		log_buf = malloc(log_buf_size);
6486 		if (!log_buf)
6487 			return -ENOMEM;
6488 
6489 		*log_buf = 0;
6490 	}
6491 
6492 	load_attr.log_buf = log_buf;
6493 	load_attr.log_buf_sz = log_buf_size;
6494 	ret = libbpf__bpf_prog_load(&load_attr);
6495 
6496 	if (ret >= 0) {
6497 		if (log_buf && load_attr.log_level)
6498 			pr_debug("verifier log:\n%s", log_buf);
6499 
6500 		if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
6501 			struct bpf_map *map;
6502 			int i;
6503 
6504 			for (i = 0; i < obj->nr_maps; i++) {
6505 				map = &prog->obj->maps[i];
6506 				if (map->libbpf_type != LIBBPF_MAP_RODATA)
6507 					continue;
6508 
6509 				if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) {
6510 					cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6511 					pr_warn("prog '%s': failed to bind .rodata map: %s\n",
6512 						prog->name, cp);
6513 					/* Don't fail hard if can't bind rodata. */
6514 				}
6515 			}
6516 		}
6517 
6518 		*pfd = ret;
6519 		ret = 0;
6520 		goto out;
6521 	}
6522 
6523 	if (!log_buf || errno == ENOSPC) {
6524 		log_buf_size = max((size_t)BPF_LOG_BUF_SIZE,
6525 				   log_buf_size << 1);
6526 
6527 		free(log_buf);
6528 		goto retry_load;
6529 	}
6530 	ret = errno ? -errno : -LIBBPF_ERRNO__LOAD;
6531 	cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6532 	pr_warn("load bpf program failed: %s\n", cp);
6533 	pr_perm_msg(ret);
6534 
6535 	if (log_buf && log_buf[0] != '\0') {
6536 		ret = -LIBBPF_ERRNO__VERIFY;
6537 		pr_warn("-- BEGIN DUMP LOG ---\n");
6538 		pr_warn("\n%s\n", log_buf);
6539 		pr_warn("-- END LOG --\n");
6540 	} else if (load_attr.insn_cnt >= BPF_MAXINSNS) {
6541 		pr_warn("Program too large (%zu insns), at most %d insns\n",
6542 			load_attr.insn_cnt, BPF_MAXINSNS);
6543 		ret = -LIBBPF_ERRNO__PROG2BIG;
6544 	} else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) {
6545 		/* Wrong program type? */
6546 		int fd;
6547 
6548 		load_attr.prog_type = BPF_PROG_TYPE_KPROBE;
6549 		load_attr.expected_attach_type = 0;
6550 		load_attr.log_buf = NULL;
6551 		load_attr.log_buf_sz = 0;
6552 		fd = libbpf__bpf_prog_load(&load_attr);
6553 		if (fd >= 0) {
6554 			close(fd);
6555 			ret = -LIBBPF_ERRNO__PROGTYPE;
6556 			goto out;
6557 		}
6558 	}
6559 
6560 out:
6561 	free(log_buf);
6562 	return ret;
6563 }
6564 
6565 static int bpf_program__record_externs(struct bpf_program *prog)
6566 {
6567 	struct bpf_object *obj = prog->obj;
6568 	int i;
6569 
6570 	for (i = 0; i < prog->nr_reloc; i++) {
6571 		struct reloc_desc *relo = &prog->reloc_desc[i];
6572 		struct extern_desc *ext = &obj->externs[relo->sym_off];
6573 
6574 		switch (relo->type) {
6575 		case RELO_EXTERN_VAR:
6576 			if (ext->type != EXT_KSYM)
6577 				continue;
6578 			bpf_gen__record_extern(obj->gen_loader, ext->name,
6579 					       ext->is_weak, !ext->ksym.type_id,
6580 					       BTF_KIND_VAR, relo->insn_idx);
6581 			break;
6582 		case RELO_EXTERN_FUNC:
6583 			bpf_gen__record_extern(obj->gen_loader, ext->name,
6584 					       ext->is_weak, false, BTF_KIND_FUNC,
6585 					       relo->insn_idx);
6586 			break;
6587 		default:
6588 			continue;
6589 		}
6590 	}
6591 	return 0;
6592 }
6593 
6594 int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_ver)
6595 {
6596 	int err = 0, fd, i;
6597 
6598 	if (prog->obj->loaded) {
6599 		pr_warn("prog '%s': can't load after object was loaded\n", prog->name);
6600 		return libbpf_err(-EINVAL);
6601 	}
6602 
6603 	if (prog->instances.nr < 0 || !prog->instances.fds) {
6604 		if (prog->preprocessor) {
6605 			pr_warn("Internal error: can't load program '%s'\n",
6606 				prog->name);
6607 			return libbpf_err(-LIBBPF_ERRNO__INTERNAL);
6608 		}
6609 
6610 		prog->instances.fds = malloc(sizeof(int));
6611 		if (!prog->instances.fds) {
6612 			pr_warn("Not enough memory for BPF fds\n");
6613 			return libbpf_err(-ENOMEM);
6614 		}
6615 		prog->instances.nr = 1;
6616 		prog->instances.fds[0] = -1;
6617 	}
6618 
6619 	if (!prog->preprocessor) {
6620 		if (prog->instances.nr != 1) {
6621 			pr_warn("prog '%s': inconsistent nr(%d) != 1\n",
6622 				prog->name, prog->instances.nr);
6623 		}
6624 		if (prog->obj->gen_loader)
6625 			bpf_program__record_externs(prog);
6626 		err = load_program(prog, prog->insns, prog->insns_cnt,
6627 				   license, kern_ver, &fd);
6628 		if (!err)
6629 			prog->instances.fds[0] = fd;
6630 		goto out;
6631 	}
6632 
6633 	for (i = 0; i < prog->instances.nr; i++) {
6634 		struct bpf_prog_prep_result result;
6635 		bpf_program_prep_t preprocessor = prog->preprocessor;
6636 
6637 		memset(&result, 0, sizeof(result));
6638 		err = preprocessor(prog, i, prog->insns,
6639 				   prog->insns_cnt, &result);
6640 		if (err) {
6641 			pr_warn("Preprocessing the %dth instance of program '%s' failed\n",
6642 				i, prog->name);
6643 			goto out;
6644 		}
6645 
6646 		if (!result.new_insn_ptr || !result.new_insn_cnt) {
6647 			pr_debug("Skip loading the %dth instance of program '%s'\n",
6648 				 i, prog->name);
6649 			prog->instances.fds[i] = -1;
6650 			if (result.pfd)
6651 				*result.pfd = -1;
6652 			continue;
6653 		}
6654 
6655 		err = load_program(prog, result.new_insn_ptr,
6656 				   result.new_insn_cnt, license, kern_ver, &fd);
6657 		if (err) {
6658 			pr_warn("Loading the %dth instance of program '%s' failed\n",
6659 				i, prog->name);
6660 			goto out;
6661 		}
6662 
6663 		if (result.pfd)
6664 			*result.pfd = fd;
6665 		prog->instances.fds[i] = fd;
6666 	}
6667 out:
6668 	if (err)
6669 		pr_warn("failed to load program '%s'\n", prog->name);
6670 	return libbpf_err(err);
6671 }
6672 
6673 static int
6674 bpf_object__load_progs(struct bpf_object *obj, int log_level)
6675 {
6676 	struct bpf_program *prog;
6677 	size_t i;
6678 	int err;
6679 
6680 	for (i = 0; i < obj->nr_programs; i++) {
6681 		prog = &obj->programs[i];
6682 		err = bpf_object__sanitize_prog(obj, prog);
6683 		if (err)
6684 			return err;
6685 	}
6686 
6687 	for (i = 0; i < obj->nr_programs; i++) {
6688 		prog = &obj->programs[i];
6689 		if (prog_is_subprog(obj, prog))
6690 			continue;
6691 		if (!prog->load) {
6692 			pr_debug("prog '%s': skipped loading\n", prog->name);
6693 			continue;
6694 		}
6695 		prog->log_level |= log_level;
6696 		err = bpf_program__load(prog, obj->license, obj->kern_version);
6697 		if (err)
6698 			return err;
6699 	}
6700 	if (obj->gen_loader)
6701 		bpf_object__free_relocs(obj);
6702 	return 0;
6703 }
6704 
6705 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
6706 
6707 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
6708 {
6709 	struct bpf_program *prog;
6710 	int err;
6711 
6712 	bpf_object__for_each_program(prog, obj) {
6713 		prog->sec_def = find_sec_def(prog->sec_name);
6714 		if (!prog->sec_def) {
6715 			/* couldn't guess, but user might manually specify */
6716 			pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
6717 				prog->name, prog->sec_name);
6718 			continue;
6719 		}
6720 
6721 		bpf_program__set_type(prog, prog->sec_def->prog_type);
6722 		bpf_program__set_expected_attach_type(prog, prog->sec_def->expected_attach_type);
6723 
6724 #pragma GCC diagnostic push
6725 #pragma GCC diagnostic ignored "-Wdeprecated-declarations"
6726 		if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING ||
6727 		    prog->sec_def->prog_type == BPF_PROG_TYPE_EXT)
6728 			prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0);
6729 #pragma GCC diagnostic pop
6730 
6731 		/* sec_def can have custom callback which should be called
6732 		 * after bpf_program is initialized to adjust its properties
6733 		 */
6734 		if (prog->sec_def->init_fn) {
6735 			err = prog->sec_def->init_fn(prog, prog->sec_def->cookie);
6736 			if (err < 0) {
6737 				pr_warn("prog '%s': failed to initialize: %d\n",
6738 					prog->name, err);
6739 				return err;
6740 			}
6741 		}
6742 	}
6743 
6744 	return 0;
6745 }
6746 
6747 static struct bpf_object *
6748 __bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz,
6749 		   const struct bpf_object_open_opts *opts)
6750 {
6751 	const char *obj_name, *kconfig, *btf_tmp_path;
6752 	struct bpf_object *obj;
6753 	char tmp_name[64];
6754 	int err;
6755 
6756 	if (elf_version(EV_CURRENT) == EV_NONE) {
6757 		pr_warn("failed to init libelf for %s\n",
6758 			path ? : "(mem buf)");
6759 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
6760 	}
6761 
6762 	if (!OPTS_VALID(opts, bpf_object_open_opts))
6763 		return ERR_PTR(-EINVAL);
6764 
6765 	obj_name = OPTS_GET(opts, object_name, NULL);
6766 	if (obj_buf) {
6767 		if (!obj_name) {
6768 			snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
6769 				 (unsigned long)obj_buf,
6770 				 (unsigned long)obj_buf_sz);
6771 			obj_name = tmp_name;
6772 		}
6773 		path = obj_name;
6774 		pr_debug("loading object '%s' from buffer\n", obj_name);
6775 	}
6776 
6777 	obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
6778 	if (IS_ERR(obj))
6779 		return obj;
6780 
6781 	btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
6782 	if (btf_tmp_path) {
6783 		if (strlen(btf_tmp_path) >= PATH_MAX) {
6784 			err = -ENAMETOOLONG;
6785 			goto out;
6786 		}
6787 		obj->btf_custom_path = strdup(btf_tmp_path);
6788 		if (!obj->btf_custom_path) {
6789 			err = -ENOMEM;
6790 			goto out;
6791 		}
6792 	}
6793 
6794 	kconfig = OPTS_GET(opts, kconfig, NULL);
6795 	if (kconfig) {
6796 		obj->kconfig = strdup(kconfig);
6797 		if (!obj->kconfig) {
6798 			err = -ENOMEM;
6799 			goto out;
6800 		}
6801 	}
6802 
6803 	err = bpf_object__elf_init(obj);
6804 	err = err ? : bpf_object__check_endianness(obj);
6805 	err = err ? : bpf_object__elf_collect(obj);
6806 	err = err ? : bpf_object__collect_externs(obj);
6807 	err = err ? : bpf_object__finalize_btf(obj);
6808 	err = err ? : bpf_object__init_maps(obj, opts);
6809 	err = err ? : bpf_object_init_progs(obj, opts);
6810 	err = err ? : bpf_object__collect_relos(obj);
6811 	if (err)
6812 		goto out;
6813 
6814 	bpf_object__elf_finish(obj);
6815 
6816 	return obj;
6817 out:
6818 	bpf_object__close(obj);
6819 	return ERR_PTR(err);
6820 }
6821 
6822 static struct bpf_object *
6823 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags)
6824 {
6825 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
6826 		.relaxed_maps = flags & MAPS_RELAX_COMPAT,
6827 	);
6828 
6829 	/* param validation */
6830 	if (!attr->file)
6831 		return NULL;
6832 
6833 	pr_debug("loading %s\n", attr->file);
6834 	return __bpf_object__open(attr->file, NULL, 0, &opts);
6835 }
6836 
6837 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr)
6838 {
6839 	return libbpf_ptr(__bpf_object__open_xattr(attr, 0));
6840 }
6841 
6842 struct bpf_object *bpf_object__open(const char *path)
6843 {
6844 	struct bpf_object_open_attr attr = {
6845 		.file		= path,
6846 		.prog_type	= BPF_PROG_TYPE_UNSPEC,
6847 	};
6848 
6849 	return libbpf_ptr(__bpf_object__open_xattr(&attr, 0));
6850 }
6851 
6852 struct bpf_object *
6853 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
6854 {
6855 	if (!path)
6856 		return libbpf_err_ptr(-EINVAL);
6857 
6858 	pr_debug("loading %s\n", path);
6859 
6860 	return libbpf_ptr(__bpf_object__open(path, NULL, 0, opts));
6861 }
6862 
6863 struct bpf_object *
6864 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
6865 		     const struct bpf_object_open_opts *opts)
6866 {
6867 	if (!obj_buf || obj_buf_sz == 0)
6868 		return libbpf_err_ptr(-EINVAL);
6869 
6870 	return libbpf_ptr(__bpf_object__open(NULL, obj_buf, obj_buf_sz, opts));
6871 }
6872 
6873 struct bpf_object *
6874 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz,
6875 			const char *name)
6876 {
6877 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
6878 		.object_name = name,
6879 		/* wrong default, but backwards-compatible */
6880 		.relaxed_maps = true,
6881 	);
6882 
6883 	/* returning NULL is wrong, but backwards-compatible */
6884 	if (!obj_buf || obj_buf_sz == 0)
6885 		return errno = EINVAL, NULL;
6886 
6887 	return libbpf_ptr(__bpf_object__open(NULL, obj_buf, obj_buf_sz, &opts));
6888 }
6889 
6890 static int bpf_object_unload(struct bpf_object *obj)
6891 {
6892 	size_t i;
6893 
6894 	if (!obj)
6895 		return libbpf_err(-EINVAL);
6896 
6897 	for (i = 0; i < obj->nr_maps; i++) {
6898 		zclose(obj->maps[i].fd);
6899 		if (obj->maps[i].st_ops)
6900 			zfree(&obj->maps[i].st_ops->kern_vdata);
6901 	}
6902 
6903 	for (i = 0; i < obj->nr_programs; i++)
6904 		bpf_program__unload(&obj->programs[i]);
6905 
6906 	return 0;
6907 }
6908 
6909 int bpf_object__unload(struct bpf_object *obj) __attribute__((alias("bpf_object_unload")));
6910 
6911 static int bpf_object__sanitize_maps(struct bpf_object *obj)
6912 {
6913 	struct bpf_map *m;
6914 
6915 	bpf_object__for_each_map(m, obj) {
6916 		if (!bpf_map__is_internal(m))
6917 			continue;
6918 		if (!kernel_supports(obj, FEAT_GLOBAL_DATA)) {
6919 			pr_warn("kernel doesn't support global data\n");
6920 			return -ENOTSUP;
6921 		}
6922 		if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
6923 			m->def.map_flags ^= BPF_F_MMAPABLE;
6924 	}
6925 
6926 	return 0;
6927 }
6928 
6929 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
6930 {
6931 	char sym_type, sym_name[500];
6932 	unsigned long long sym_addr;
6933 	const struct btf_type *t;
6934 	struct extern_desc *ext;
6935 	int ret, err = 0;
6936 	FILE *f;
6937 
6938 	f = fopen("/proc/kallsyms", "r");
6939 	if (!f) {
6940 		err = -errno;
6941 		pr_warn("failed to open /proc/kallsyms: %d\n", err);
6942 		return err;
6943 	}
6944 
6945 	while (true) {
6946 		ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
6947 			     &sym_addr, &sym_type, sym_name);
6948 		if (ret == EOF && feof(f))
6949 			break;
6950 		if (ret != 3) {
6951 			pr_warn("failed to read kallsyms entry: %d\n", ret);
6952 			err = -EINVAL;
6953 			goto out;
6954 		}
6955 
6956 		ext = find_extern_by_name(obj, sym_name);
6957 		if (!ext || ext->type != EXT_KSYM)
6958 			continue;
6959 
6960 		t = btf__type_by_id(obj->btf, ext->btf_id);
6961 		if (!btf_is_var(t))
6962 			continue;
6963 
6964 		if (ext->is_set && ext->ksym.addr != sym_addr) {
6965 			pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n",
6966 				sym_name, ext->ksym.addr, sym_addr);
6967 			err = -EINVAL;
6968 			goto out;
6969 		}
6970 		if (!ext->is_set) {
6971 			ext->is_set = true;
6972 			ext->ksym.addr = sym_addr;
6973 			pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr);
6974 		}
6975 	}
6976 
6977 out:
6978 	fclose(f);
6979 	return err;
6980 }
6981 
6982 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
6983 			    __u16 kind, struct btf **res_btf,
6984 			    struct module_btf **res_mod_btf)
6985 {
6986 	struct module_btf *mod_btf;
6987 	struct btf *btf;
6988 	int i, id, err;
6989 
6990 	btf = obj->btf_vmlinux;
6991 	mod_btf = NULL;
6992 	id = btf__find_by_name_kind(btf, ksym_name, kind);
6993 
6994 	if (id == -ENOENT) {
6995 		err = load_module_btfs(obj);
6996 		if (err)
6997 			return err;
6998 
6999 		for (i = 0; i < obj->btf_module_cnt; i++) {
7000 			/* we assume module_btf's BTF FD is always >0 */
7001 			mod_btf = &obj->btf_modules[i];
7002 			btf = mod_btf->btf;
7003 			id = btf__find_by_name_kind_own(btf, ksym_name, kind);
7004 			if (id != -ENOENT)
7005 				break;
7006 		}
7007 	}
7008 	if (id <= 0)
7009 		return -ESRCH;
7010 
7011 	*res_btf = btf;
7012 	*res_mod_btf = mod_btf;
7013 	return id;
7014 }
7015 
7016 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
7017 					       struct extern_desc *ext)
7018 {
7019 	const struct btf_type *targ_var, *targ_type;
7020 	__u32 targ_type_id, local_type_id;
7021 	struct module_btf *mod_btf = NULL;
7022 	const char *targ_var_name;
7023 	struct btf *btf = NULL;
7024 	int id, err;
7025 
7026 	id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
7027 	if (id < 0) {
7028 		if (id == -ESRCH && ext->is_weak)
7029 			return 0;
7030 		pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
7031 			ext->name);
7032 		return id;
7033 	}
7034 
7035 	/* find local type_id */
7036 	local_type_id = ext->ksym.type_id;
7037 
7038 	/* find target type_id */
7039 	targ_var = btf__type_by_id(btf, id);
7040 	targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
7041 	targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
7042 
7043 	err = bpf_core_types_are_compat(obj->btf, local_type_id,
7044 					btf, targ_type_id);
7045 	if (err <= 0) {
7046 		const struct btf_type *local_type;
7047 		const char *targ_name, *local_name;
7048 
7049 		local_type = btf__type_by_id(obj->btf, local_type_id);
7050 		local_name = btf__name_by_offset(obj->btf, local_type->name_off);
7051 		targ_name = btf__name_by_offset(btf, targ_type->name_off);
7052 
7053 		pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7054 			ext->name, local_type_id,
7055 			btf_kind_str(local_type), local_name, targ_type_id,
7056 			btf_kind_str(targ_type), targ_name);
7057 		return -EINVAL;
7058 	}
7059 
7060 	ext->is_set = true;
7061 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7062 	ext->ksym.kernel_btf_id = id;
7063 	pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
7064 		 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7065 
7066 	return 0;
7067 }
7068 
7069 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
7070 						struct extern_desc *ext)
7071 {
7072 	int local_func_proto_id, kfunc_proto_id, kfunc_id;
7073 	struct module_btf *mod_btf = NULL;
7074 	const struct btf_type *kern_func;
7075 	struct btf *kern_btf = NULL;
7076 	int ret;
7077 
7078 	local_func_proto_id = ext->ksym.type_id;
7079 
7080 	kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf);
7081 	if (kfunc_id < 0) {
7082 		if (kfunc_id == -ESRCH && ext->is_weak)
7083 			return 0;
7084 		pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
7085 			ext->name);
7086 		return kfunc_id;
7087 	}
7088 
7089 	kern_func = btf__type_by_id(kern_btf, kfunc_id);
7090 	kfunc_proto_id = kern_func->type;
7091 
7092 	ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
7093 					kern_btf, kfunc_proto_id);
7094 	if (ret <= 0) {
7095 		pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n",
7096 			ext->name, local_func_proto_id, kfunc_proto_id);
7097 		return -EINVAL;
7098 	}
7099 
7100 	/* set index for module BTF fd in fd_array, if unset */
7101 	if (mod_btf && !mod_btf->fd_array_idx) {
7102 		/* insn->off is s16 */
7103 		if (obj->fd_array_cnt == INT16_MAX) {
7104 			pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
7105 				ext->name, mod_btf->fd_array_idx);
7106 			return -E2BIG;
7107 		}
7108 		/* Cannot use index 0 for module BTF fd */
7109 		if (!obj->fd_array_cnt)
7110 			obj->fd_array_cnt = 1;
7111 
7112 		ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
7113 					obj->fd_array_cnt + 1);
7114 		if (ret)
7115 			return ret;
7116 		mod_btf->fd_array_idx = obj->fd_array_cnt;
7117 		/* we assume module BTF FD is always >0 */
7118 		obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
7119 	}
7120 
7121 	ext->is_set = true;
7122 	ext->ksym.kernel_btf_id = kfunc_id;
7123 	ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
7124 	pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n",
7125 		 ext->name, kfunc_id);
7126 
7127 	return 0;
7128 }
7129 
7130 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7131 {
7132 	const struct btf_type *t;
7133 	struct extern_desc *ext;
7134 	int i, err;
7135 
7136 	for (i = 0; i < obj->nr_extern; i++) {
7137 		ext = &obj->externs[i];
7138 		if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7139 			continue;
7140 
7141 		if (obj->gen_loader) {
7142 			ext->is_set = true;
7143 			ext->ksym.kernel_btf_obj_fd = 0;
7144 			ext->ksym.kernel_btf_id = 0;
7145 			continue;
7146 		}
7147 		t = btf__type_by_id(obj->btf, ext->btf_id);
7148 		if (btf_is_var(t))
7149 			err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
7150 		else
7151 			err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
7152 		if (err)
7153 			return err;
7154 	}
7155 	return 0;
7156 }
7157 
7158 static int bpf_object__resolve_externs(struct bpf_object *obj,
7159 				       const char *extra_kconfig)
7160 {
7161 	bool need_config = false, need_kallsyms = false;
7162 	bool need_vmlinux_btf = false;
7163 	struct extern_desc *ext;
7164 	void *kcfg_data = NULL;
7165 	int err, i;
7166 
7167 	if (obj->nr_extern == 0)
7168 		return 0;
7169 
7170 	if (obj->kconfig_map_idx >= 0)
7171 		kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7172 
7173 	for (i = 0; i < obj->nr_extern; i++) {
7174 		ext = &obj->externs[i];
7175 
7176 		if (ext->type == EXT_KCFG &&
7177 		    strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7178 			void *ext_val = kcfg_data + ext->kcfg.data_off;
7179 			__u32 kver = get_kernel_version();
7180 
7181 			if (!kver) {
7182 				pr_warn("failed to get kernel version\n");
7183 				return -EINVAL;
7184 			}
7185 			err = set_kcfg_value_num(ext, ext_val, kver);
7186 			if (err)
7187 				return err;
7188 			pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver);
7189 		} else if (ext->type == EXT_KCFG && str_has_pfx(ext->name, "CONFIG_")) {
7190 			need_config = true;
7191 		} else if (ext->type == EXT_KSYM) {
7192 			if (ext->ksym.type_id)
7193 				need_vmlinux_btf = true;
7194 			else
7195 				need_kallsyms = true;
7196 		} else {
7197 			pr_warn("unrecognized extern '%s'\n", ext->name);
7198 			return -EINVAL;
7199 		}
7200 	}
7201 	if (need_config && extra_kconfig) {
7202 		err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7203 		if (err)
7204 			return -EINVAL;
7205 		need_config = false;
7206 		for (i = 0; i < obj->nr_extern; i++) {
7207 			ext = &obj->externs[i];
7208 			if (ext->type == EXT_KCFG && !ext->is_set) {
7209 				need_config = true;
7210 				break;
7211 			}
7212 		}
7213 	}
7214 	if (need_config) {
7215 		err = bpf_object__read_kconfig_file(obj, kcfg_data);
7216 		if (err)
7217 			return -EINVAL;
7218 	}
7219 	if (need_kallsyms) {
7220 		err = bpf_object__read_kallsyms_file(obj);
7221 		if (err)
7222 			return -EINVAL;
7223 	}
7224 	if (need_vmlinux_btf) {
7225 		err = bpf_object__resolve_ksyms_btf_id(obj);
7226 		if (err)
7227 			return -EINVAL;
7228 	}
7229 	for (i = 0; i < obj->nr_extern; i++) {
7230 		ext = &obj->externs[i];
7231 
7232 		if (!ext->is_set && !ext->is_weak) {
7233 			pr_warn("extern %s (strong) not resolved\n", ext->name);
7234 			return -ESRCH;
7235 		} else if (!ext->is_set) {
7236 			pr_debug("extern %s (weak) not resolved, defaulting to zero\n",
7237 				 ext->name);
7238 		}
7239 	}
7240 
7241 	return 0;
7242 }
7243 
7244 int bpf_object__load_xattr(struct bpf_object_load_attr *attr)
7245 {
7246 	struct bpf_object *obj;
7247 	int err, i;
7248 
7249 	if (!attr)
7250 		return libbpf_err(-EINVAL);
7251 	obj = attr->obj;
7252 	if (!obj)
7253 		return libbpf_err(-EINVAL);
7254 
7255 	if (obj->loaded) {
7256 		pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7257 		return libbpf_err(-EINVAL);
7258 	}
7259 
7260 	if (obj->gen_loader)
7261 		bpf_gen__init(obj->gen_loader, attr->log_level);
7262 
7263 	err = bpf_object__probe_loading(obj);
7264 	err = err ? : bpf_object__load_vmlinux_btf(obj, false);
7265 	err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7266 	err = err ? : bpf_object__sanitize_and_load_btf(obj);
7267 	err = err ? : bpf_object__sanitize_maps(obj);
7268 	err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7269 	err = err ? : bpf_object__create_maps(obj);
7270 	err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : attr->target_btf_path);
7271 	err = err ? : bpf_object__load_progs(obj, attr->log_level);
7272 
7273 	if (obj->gen_loader) {
7274 		/* reset FDs */
7275 		if (obj->btf)
7276 			btf__set_fd(obj->btf, -1);
7277 		for (i = 0; i < obj->nr_maps; i++)
7278 			obj->maps[i].fd = -1;
7279 		if (!err)
7280 			err = bpf_gen__finish(obj->gen_loader);
7281 	}
7282 
7283 	/* clean up fd_array */
7284 	zfree(&obj->fd_array);
7285 
7286 	/* clean up module BTFs */
7287 	for (i = 0; i < obj->btf_module_cnt; i++) {
7288 		close(obj->btf_modules[i].fd);
7289 		btf__free(obj->btf_modules[i].btf);
7290 		free(obj->btf_modules[i].name);
7291 	}
7292 	free(obj->btf_modules);
7293 
7294 	/* clean up vmlinux BTF */
7295 	btf__free(obj->btf_vmlinux);
7296 	obj->btf_vmlinux = NULL;
7297 
7298 	obj->loaded = true; /* doesn't matter if successfully or not */
7299 
7300 	if (err)
7301 		goto out;
7302 
7303 	return 0;
7304 out:
7305 	/* unpin any maps that were auto-pinned during load */
7306 	for (i = 0; i < obj->nr_maps; i++)
7307 		if (obj->maps[i].pinned && !obj->maps[i].reused)
7308 			bpf_map__unpin(&obj->maps[i], NULL);
7309 
7310 	bpf_object_unload(obj);
7311 	pr_warn("failed to load object '%s'\n", obj->path);
7312 	return libbpf_err(err);
7313 }
7314 
7315 int bpf_object__load(struct bpf_object *obj)
7316 {
7317 	struct bpf_object_load_attr attr = {
7318 		.obj = obj,
7319 	};
7320 
7321 	return bpf_object__load_xattr(&attr);
7322 }
7323 
7324 static int make_parent_dir(const char *path)
7325 {
7326 	char *cp, errmsg[STRERR_BUFSIZE];
7327 	char *dname, *dir;
7328 	int err = 0;
7329 
7330 	dname = strdup(path);
7331 	if (dname == NULL)
7332 		return -ENOMEM;
7333 
7334 	dir = dirname(dname);
7335 	if (mkdir(dir, 0700) && errno != EEXIST)
7336 		err = -errno;
7337 
7338 	free(dname);
7339 	if (err) {
7340 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7341 		pr_warn("failed to mkdir %s: %s\n", path, cp);
7342 	}
7343 	return err;
7344 }
7345 
7346 static int check_path(const char *path)
7347 {
7348 	char *cp, errmsg[STRERR_BUFSIZE];
7349 	struct statfs st_fs;
7350 	char *dname, *dir;
7351 	int err = 0;
7352 
7353 	if (path == NULL)
7354 		return -EINVAL;
7355 
7356 	dname = strdup(path);
7357 	if (dname == NULL)
7358 		return -ENOMEM;
7359 
7360 	dir = dirname(dname);
7361 	if (statfs(dir, &st_fs)) {
7362 		cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7363 		pr_warn("failed to statfs %s: %s\n", dir, cp);
7364 		err = -errno;
7365 	}
7366 	free(dname);
7367 
7368 	if (!err && st_fs.f_type != BPF_FS_MAGIC) {
7369 		pr_warn("specified path %s is not on BPF FS\n", path);
7370 		err = -EINVAL;
7371 	}
7372 
7373 	return err;
7374 }
7375 
7376 static int bpf_program_pin_instance(struct bpf_program *prog, const char *path, int instance)
7377 {
7378 	char *cp, errmsg[STRERR_BUFSIZE];
7379 	int err;
7380 
7381 	err = make_parent_dir(path);
7382 	if (err)
7383 		return libbpf_err(err);
7384 
7385 	err = check_path(path);
7386 	if (err)
7387 		return libbpf_err(err);
7388 
7389 	if (prog == NULL) {
7390 		pr_warn("invalid program pointer\n");
7391 		return libbpf_err(-EINVAL);
7392 	}
7393 
7394 	if (instance < 0 || instance >= prog->instances.nr) {
7395 		pr_warn("invalid prog instance %d of prog %s (max %d)\n",
7396 			instance, prog->name, prog->instances.nr);
7397 		return libbpf_err(-EINVAL);
7398 	}
7399 
7400 	if (bpf_obj_pin(prog->instances.fds[instance], path)) {
7401 		err = -errno;
7402 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
7403 		pr_warn("failed to pin program: %s\n", cp);
7404 		return libbpf_err(err);
7405 	}
7406 	pr_debug("pinned program '%s'\n", path);
7407 
7408 	return 0;
7409 }
7410 
7411 static int bpf_program_unpin_instance(struct bpf_program *prog, const char *path, int instance)
7412 {
7413 	int err;
7414 
7415 	err = check_path(path);
7416 	if (err)
7417 		return libbpf_err(err);
7418 
7419 	if (prog == NULL) {
7420 		pr_warn("invalid program pointer\n");
7421 		return libbpf_err(-EINVAL);
7422 	}
7423 
7424 	if (instance < 0 || instance >= prog->instances.nr) {
7425 		pr_warn("invalid prog instance %d of prog %s (max %d)\n",
7426 			instance, prog->name, prog->instances.nr);
7427 		return libbpf_err(-EINVAL);
7428 	}
7429 
7430 	err = unlink(path);
7431 	if (err != 0)
7432 		return libbpf_err(-errno);
7433 
7434 	pr_debug("unpinned program '%s'\n", path);
7435 
7436 	return 0;
7437 }
7438 
7439 __attribute__((alias("bpf_program_pin_instance")))
7440 int bpf_object__pin_instance(struct bpf_program *prog, const char *path, int instance);
7441 
7442 __attribute__((alias("bpf_program_unpin_instance")))
7443 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, int instance);
7444 
7445 int bpf_program__pin(struct bpf_program *prog, const char *path)
7446 {
7447 	int i, err;
7448 
7449 	err = make_parent_dir(path);
7450 	if (err)
7451 		return libbpf_err(err);
7452 
7453 	err = check_path(path);
7454 	if (err)
7455 		return libbpf_err(err);
7456 
7457 	if (prog == NULL) {
7458 		pr_warn("invalid program pointer\n");
7459 		return libbpf_err(-EINVAL);
7460 	}
7461 
7462 	if (prog->instances.nr <= 0) {
7463 		pr_warn("no instances of prog %s to pin\n", prog->name);
7464 		return libbpf_err(-EINVAL);
7465 	}
7466 
7467 	if (prog->instances.nr == 1) {
7468 		/* don't create subdirs when pinning single instance */
7469 		return bpf_program_pin_instance(prog, path, 0);
7470 	}
7471 
7472 	for (i = 0; i < prog->instances.nr; i++) {
7473 		char buf[PATH_MAX];
7474 		int len;
7475 
7476 		len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7477 		if (len < 0) {
7478 			err = -EINVAL;
7479 			goto err_unpin;
7480 		} else if (len >= PATH_MAX) {
7481 			err = -ENAMETOOLONG;
7482 			goto err_unpin;
7483 		}
7484 
7485 		err = bpf_program_pin_instance(prog, buf, i);
7486 		if (err)
7487 			goto err_unpin;
7488 	}
7489 
7490 	return 0;
7491 
7492 err_unpin:
7493 	for (i = i - 1; i >= 0; i--) {
7494 		char buf[PATH_MAX];
7495 		int len;
7496 
7497 		len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7498 		if (len < 0)
7499 			continue;
7500 		else if (len >= PATH_MAX)
7501 			continue;
7502 
7503 		bpf_program_unpin_instance(prog, buf, i);
7504 	}
7505 
7506 	rmdir(path);
7507 
7508 	return libbpf_err(err);
7509 }
7510 
7511 int bpf_program__unpin(struct bpf_program *prog, const char *path)
7512 {
7513 	int i, err;
7514 
7515 	err = check_path(path);
7516 	if (err)
7517 		return libbpf_err(err);
7518 
7519 	if (prog == NULL) {
7520 		pr_warn("invalid program pointer\n");
7521 		return libbpf_err(-EINVAL);
7522 	}
7523 
7524 	if (prog->instances.nr <= 0) {
7525 		pr_warn("no instances of prog %s to pin\n", prog->name);
7526 		return libbpf_err(-EINVAL);
7527 	}
7528 
7529 	if (prog->instances.nr == 1) {
7530 		/* don't create subdirs when pinning single instance */
7531 		return bpf_program_unpin_instance(prog, path, 0);
7532 	}
7533 
7534 	for (i = 0; i < prog->instances.nr; i++) {
7535 		char buf[PATH_MAX];
7536 		int len;
7537 
7538 		len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7539 		if (len < 0)
7540 			return libbpf_err(-EINVAL);
7541 		else if (len >= PATH_MAX)
7542 			return libbpf_err(-ENAMETOOLONG);
7543 
7544 		err = bpf_program_unpin_instance(prog, buf, i);
7545 		if (err)
7546 			return err;
7547 	}
7548 
7549 	err = rmdir(path);
7550 	if (err)
7551 		return libbpf_err(-errno);
7552 
7553 	return 0;
7554 }
7555 
7556 int bpf_map__pin(struct bpf_map *map, const char *path)
7557 {
7558 	char *cp, errmsg[STRERR_BUFSIZE];
7559 	int err;
7560 
7561 	if (map == NULL) {
7562 		pr_warn("invalid map pointer\n");
7563 		return libbpf_err(-EINVAL);
7564 	}
7565 
7566 	if (map->pin_path) {
7567 		if (path && strcmp(path, map->pin_path)) {
7568 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7569 				bpf_map__name(map), map->pin_path, path);
7570 			return libbpf_err(-EINVAL);
7571 		} else if (map->pinned) {
7572 			pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
7573 				 bpf_map__name(map), map->pin_path);
7574 			return 0;
7575 		}
7576 	} else {
7577 		if (!path) {
7578 			pr_warn("missing a path to pin map '%s' at\n",
7579 				bpf_map__name(map));
7580 			return libbpf_err(-EINVAL);
7581 		} else if (map->pinned) {
7582 			pr_warn("map '%s' already pinned\n", bpf_map__name(map));
7583 			return libbpf_err(-EEXIST);
7584 		}
7585 
7586 		map->pin_path = strdup(path);
7587 		if (!map->pin_path) {
7588 			err = -errno;
7589 			goto out_err;
7590 		}
7591 	}
7592 
7593 	err = make_parent_dir(map->pin_path);
7594 	if (err)
7595 		return libbpf_err(err);
7596 
7597 	err = check_path(map->pin_path);
7598 	if (err)
7599 		return libbpf_err(err);
7600 
7601 	if (bpf_obj_pin(map->fd, map->pin_path)) {
7602 		err = -errno;
7603 		goto out_err;
7604 	}
7605 
7606 	map->pinned = true;
7607 	pr_debug("pinned map '%s'\n", map->pin_path);
7608 
7609 	return 0;
7610 
7611 out_err:
7612 	cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7613 	pr_warn("failed to pin map: %s\n", cp);
7614 	return libbpf_err(err);
7615 }
7616 
7617 int bpf_map__unpin(struct bpf_map *map, const char *path)
7618 {
7619 	int err;
7620 
7621 	if (map == NULL) {
7622 		pr_warn("invalid map pointer\n");
7623 		return libbpf_err(-EINVAL);
7624 	}
7625 
7626 	if (map->pin_path) {
7627 		if (path && strcmp(path, map->pin_path)) {
7628 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7629 				bpf_map__name(map), map->pin_path, path);
7630 			return libbpf_err(-EINVAL);
7631 		}
7632 		path = map->pin_path;
7633 	} else if (!path) {
7634 		pr_warn("no path to unpin map '%s' from\n",
7635 			bpf_map__name(map));
7636 		return libbpf_err(-EINVAL);
7637 	}
7638 
7639 	err = check_path(path);
7640 	if (err)
7641 		return libbpf_err(err);
7642 
7643 	err = unlink(path);
7644 	if (err != 0)
7645 		return libbpf_err(-errno);
7646 
7647 	map->pinned = false;
7648 	pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
7649 
7650 	return 0;
7651 }
7652 
7653 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
7654 {
7655 	char *new = NULL;
7656 
7657 	if (path) {
7658 		new = strdup(path);
7659 		if (!new)
7660 			return libbpf_err(-errno);
7661 	}
7662 
7663 	free(map->pin_path);
7664 	map->pin_path = new;
7665 	return 0;
7666 }
7667 
7668 const char *bpf_map__get_pin_path(const struct bpf_map *map)
7669 {
7670 	return map->pin_path;
7671 }
7672 
7673 const char *bpf_map__pin_path(const struct bpf_map *map)
7674 {
7675 	return map->pin_path;
7676 }
7677 
7678 bool bpf_map__is_pinned(const struct bpf_map *map)
7679 {
7680 	return map->pinned;
7681 }
7682 
7683 static void sanitize_pin_path(char *s)
7684 {
7685 	/* bpffs disallows periods in path names */
7686 	while (*s) {
7687 		if (*s == '.')
7688 			*s = '_';
7689 		s++;
7690 	}
7691 }
7692 
7693 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
7694 {
7695 	struct bpf_map *map;
7696 	int err;
7697 
7698 	if (!obj)
7699 		return libbpf_err(-ENOENT);
7700 
7701 	if (!obj->loaded) {
7702 		pr_warn("object not yet loaded; load it first\n");
7703 		return libbpf_err(-ENOENT);
7704 	}
7705 
7706 	bpf_object__for_each_map(map, obj) {
7707 		char *pin_path = NULL;
7708 		char buf[PATH_MAX];
7709 
7710 		if (path) {
7711 			int len;
7712 
7713 			len = snprintf(buf, PATH_MAX, "%s/%s", path,
7714 				       bpf_map__name(map));
7715 			if (len < 0) {
7716 				err = -EINVAL;
7717 				goto err_unpin_maps;
7718 			} else if (len >= PATH_MAX) {
7719 				err = -ENAMETOOLONG;
7720 				goto err_unpin_maps;
7721 			}
7722 			sanitize_pin_path(buf);
7723 			pin_path = buf;
7724 		} else if (!map->pin_path) {
7725 			continue;
7726 		}
7727 
7728 		err = bpf_map__pin(map, pin_path);
7729 		if (err)
7730 			goto err_unpin_maps;
7731 	}
7732 
7733 	return 0;
7734 
7735 err_unpin_maps:
7736 	while ((map = bpf_map__prev(map, obj))) {
7737 		if (!map->pin_path)
7738 			continue;
7739 
7740 		bpf_map__unpin(map, NULL);
7741 	}
7742 
7743 	return libbpf_err(err);
7744 }
7745 
7746 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
7747 {
7748 	struct bpf_map *map;
7749 	int err;
7750 
7751 	if (!obj)
7752 		return libbpf_err(-ENOENT);
7753 
7754 	bpf_object__for_each_map(map, obj) {
7755 		char *pin_path = NULL;
7756 		char buf[PATH_MAX];
7757 
7758 		if (path) {
7759 			int len;
7760 
7761 			len = snprintf(buf, PATH_MAX, "%s/%s", path,
7762 				       bpf_map__name(map));
7763 			if (len < 0)
7764 				return libbpf_err(-EINVAL);
7765 			else if (len >= PATH_MAX)
7766 				return libbpf_err(-ENAMETOOLONG);
7767 			sanitize_pin_path(buf);
7768 			pin_path = buf;
7769 		} else if (!map->pin_path) {
7770 			continue;
7771 		}
7772 
7773 		err = bpf_map__unpin(map, pin_path);
7774 		if (err)
7775 			return libbpf_err(err);
7776 	}
7777 
7778 	return 0;
7779 }
7780 
7781 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
7782 {
7783 	struct bpf_program *prog;
7784 	int err;
7785 
7786 	if (!obj)
7787 		return libbpf_err(-ENOENT);
7788 
7789 	if (!obj->loaded) {
7790 		pr_warn("object not yet loaded; load it first\n");
7791 		return libbpf_err(-ENOENT);
7792 	}
7793 
7794 	bpf_object__for_each_program(prog, obj) {
7795 		char buf[PATH_MAX];
7796 		int len;
7797 
7798 		len = snprintf(buf, PATH_MAX, "%s/%s", path,
7799 			       prog->pin_name);
7800 		if (len < 0) {
7801 			err = -EINVAL;
7802 			goto err_unpin_programs;
7803 		} else if (len >= PATH_MAX) {
7804 			err = -ENAMETOOLONG;
7805 			goto err_unpin_programs;
7806 		}
7807 
7808 		err = bpf_program__pin(prog, buf);
7809 		if (err)
7810 			goto err_unpin_programs;
7811 	}
7812 
7813 	return 0;
7814 
7815 err_unpin_programs:
7816 	while ((prog = bpf_program__prev(prog, obj))) {
7817 		char buf[PATH_MAX];
7818 		int len;
7819 
7820 		len = snprintf(buf, PATH_MAX, "%s/%s", path,
7821 			       prog->pin_name);
7822 		if (len < 0)
7823 			continue;
7824 		else if (len >= PATH_MAX)
7825 			continue;
7826 
7827 		bpf_program__unpin(prog, buf);
7828 	}
7829 
7830 	return libbpf_err(err);
7831 }
7832 
7833 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
7834 {
7835 	struct bpf_program *prog;
7836 	int err;
7837 
7838 	if (!obj)
7839 		return libbpf_err(-ENOENT);
7840 
7841 	bpf_object__for_each_program(prog, obj) {
7842 		char buf[PATH_MAX];
7843 		int len;
7844 
7845 		len = snprintf(buf, PATH_MAX, "%s/%s", path,
7846 			       prog->pin_name);
7847 		if (len < 0)
7848 			return libbpf_err(-EINVAL);
7849 		else if (len >= PATH_MAX)
7850 			return libbpf_err(-ENAMETOOLONG);
7851 
7852 		err = bpf_program__unpin(prog, buf);
7853 		if (err)
7854 			return libbpf_err(err);
7855 	}
7856 
7857 	return 0;
7858 }
7859 
7860 int bpf_object__pin(struct bpf_object *obj, const char *path)
7861 {
7862 	int err;
7863 
7864 	err = bpf_object__pin_maps(obj, path);
7865 	if (err)
7866 		return libbpf_err(err);
7867 
7868 	err = bpf_object__pin_programs(obj, path);
7869 	if (err) {
7870 		bpf_object__unpin_maps(obj, path);
7871 		return libbpf_err(err);
7872 	}
7873 
7874 	return 0;
7875 }
7876 
7877 static void bpf_map__destroy(struct bpf_map *map)
7878 {
7879 	if (map->clear_priv)
7880 		map->clear_priv(map, map->priv);
7881 	map->priv = NULL;
7882 	map->clear_priv = NULL;
7883 
7884 	if (map->inner_map) {
7885 		bpf_map__destroy(map->inner_map);
7886 		zfree(&map->inner_map);
7887 	}
7888 
7889 	zfree(&map->init_slots);
7890 	map->init_slots_sz = 0;
7891 
7892 	if (map->mmaped) {
7893 		munmap(map->mmaped, bpf_map_mmap_sz(map));
7894 		map->mmaped = NULL;
7895 	}
7896 
7897 	if (map->st_ops) {
7898 		zfree(&map->st_ops->data);
7899 		zfree(&map->st_ops->progs);
7900 		zfree(&map->st_ops->kern_func_off);
7901 		zfree(&map->st_ops);
7902 	}
7903 
7904 	zfree(&map->name);
7905 	zfree(&map->real_name);
7906 	zfree(&map->pin_path);
7907 
7908 	if (map->fd >= 0)
7909 		zclose(map->fd);
7910 }
7911 
7912 void bpf_object__close(struct bpf_object *obj)
7913 {
7914 	size_t i;
7915 
7916 	if (IS_ERR_OR_NULL(obj))
7917 		return;
7918 
7919 	if (obj->clear_priv)
7920 		obj->clear_priv(obj, obj->priv);
7921 
7922 	bpf_gen__free(obj->gen_loader);
7923 	bpf_object__elf_finish(obj);
7924 	bpf_object_unload(obj);
7925 	btf__free(obj->btf);
7926 	btf_ext__free(obj->btf_ext);
7927 
7928 	for (i = 0; i < obj->nr_maps; i++)
7929 		bpf_map__destroy(&obj->maps[i]);
7930 
7931 	zfree(&obj->btf_custom_path);
7932 	zfree(&obj->kconfig);
7933 	zfree(&obj->externs);
7934 	obj->nr_extern = 0;
7935 
7936 	zfree(&obj->maps);
7937 	obj->nr_maps = 0;
7938 
7939 	if (obj->programs && obj->nr_programs) {
7940 		for (i = 0; i < obj->nr_programs; i++)
7941 			bpf_program__exit(&obj->programs[i]);
7942 	}
7943 	zfree(&obj->programs);
7944 
7945 	list_del(&obj->list);
7946 	free(obj);
7947 }
7948 
7949 struct bpf_object *
7950 bpf_object__next(struct bpf_object *prev)
7951 {
7952 	struct bpf_object *next;
7953 	bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST);
7954 
7955 	if (strict)
7956 		return NULL;
7957 
7958 	if (!prev)
7959 		next = list_first_entry(&bpf_objects_list,
7960 					struct bpf_object,
7961 					list);
7962 	else
7963 		next = list_next_entry(prev, list);
7964 
7965 	/* Empty list is noticed here so don't need checking on entry. */
7966 	if (&next->list == &bpf_objects_list)
7967 		return NULL;
7968 
7969 	return next;
7970 }
7971 
7972 const char *bpf_object__name(const struct bpf_object *obj)
7973 {
7974 	return obj ? obj->name : libbpf_err_ptr(-EINVAL);
7975 }
7976 
7977 unsigned int bpf_object__kversion(const struct bpf_object *obj)
7978 {
7979 	return obj ? obj->kern_version : 0;
7980 }
7981 
7982 struct btf *bpf_object__btf(const struct bpf_object *obj)
7983 {
7984 	return obj ? obj->btf : NULL;
7985 }
7986 
7987 int bpf_object__btf_fd(const struct bpf_object *obj)
7988 {
7989 	return obj->btf ? btf__fd(obj->btf) : -1;
7990 }
7991 
7992 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
7993 {
7994 	if (obj->loaded)
7995 		return libbpf_err(-EINVAL);
7996 
7997 	obj->kern_version = kern_version;
7998 
7999 	return 0;
8000 }
8001 
8002 int bpf_object__set_priv(struct bpf_object *obj, void *priv,
8003 			 bpf_object_clear_priv_t clear_priv)
8004 {
8005 	if (obj->priv && obj->clear_priv)
8006 		obj->clear_priv(obj, obj->priv);
8007 
8008 	obj->priv = priv;
8009 	obj->clear_priv = clear_priv;
8010 	return 0;
8011 }
8012 
8013 void *bpf_object__priv(const struct bpf_object *obj)
8014 {
8015 	return obj ? obj->priv : libbpf_err_ptr(-EINVAL);
8016 }
8017 
8018 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
8019 {
8020 	struct bpf_gen *gen;
8021 
8022 	if (!opts)
8023 		return -EFAULT;
8024 	if (!OPTS_VALID(opts, gen_loader_opts))
8025 		return -EINVAL;
8026 	gen = calloc(sizeof(*gen), 1);
8027 	if (!gen)
8028 		return -ENOMEM;
8029 	gen->opts = opts;
8030 	obj->gen_loader = gen;
8031 	return 0;
8032 }
8033 
8034 static struct bpf_program *
8035 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8036 		    bool forward)
8037 {
8038 	size_t nr_programs = obj->nr_programs;
8039 	ssize_t idx;
8040 
8041 	if (!nr_programs)
8042 		return NULL;
8043 
8044 	if (!p)
8045 		/* Iter from the beginning */
8046 		return forward ? &obj->programs[0] :
8047 			&obj->programs[nr_programs - 1];
8048 
8049 	if (p->obj != obj) {
8050 		pr_warn("error: program handler doesn't match object\n");
8051 		return errno = EINVAL, NULL;
8052 	}
8053 
8054 	idx = (p - obj->programs) + (forward ? 1 : -1);
8055 	if (idx >= obj->nr_programs || idx < 0)
8056 		return NULL;
8057 	return &obj->programs[idx];
8058 }
8059 
8060 struct bpf_program *
8061 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj)
8062 {
8063 	return bpf_object__next_program(obj, prev);
8064 }
8065 
8066 struct bpf_program *
8067 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
8068 {
8069 	struct bpf_program *prog = prev;
8070 
8071 	do {
8072 		prog = __bpf_program__iter(prog, obj, true);
8073 	} while (prog && prog_is_subprog(obj, prog));
8074 
8075 	return prog;
8076 }
8077 
8078 struct bpf_program *
8079 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj)
8080 {
8081 	return bpf_object__prev_program(obj, next);
8082 }
8083 
8084 struct bpf_program *
8085 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
8086 {
8087 	struct bpf_program *prog = next;
8088 
8089 	do {
8090 		prog = __bpf_program__iter(prog, obj, false);
8091 	} while (prog && prog_is_subprog(obj, prog));
8092 
8093 	return prog;
8094 }
8095 
8096 int bpf_program__set_priv(struct bpf_program *prog, void *priv,
8097 			  bpf_program_clear_priv_t clear_priv)
8098 {
8099 	if (prog->priv && prog->clear_priv)
8100 		prog->clear_priv(prog, prog->priv);
8101 
8102 	prog->priv = priv;
8103 	prog->clear_priv = clear_priv;
8104 	return 0;
8105 }
8106 
8107 void *bpf_program__priv(const struct bpf_program *prog)
8108 {
8109 	return prog ? prog->priv : libbpf_err_ptr(-EINVAL);
8110 }
8111 
8112 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8113 {
8114 	prog->prog_ifindex = ifindex;
8115 }
8116 
8117 const char *bpf_program__name(const struct bpf_program *prog)
8118 {
8119 	return prog->name;
8120 }
8121 
8122 const char *bpf_program__section_name(const struct bpf_program *prog)
8123 {
8124 	return prog->sec_name;
8125 }
8126 
8127 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy)
8128 {
8129 	const char *title;
8130 
8131 	title = prog->sec_name;
8132 	if (needs_copy) {
8133 		title = strdup(title);
8134 		if (!title) {
8135 			pr_warn("failed to strdup program title\n");
8136 			return libbpf_err_ptr(-ENOMEM);
8137 		}
8138 	}
8139 
8140 	return title;
8141 }
8142 
8143 bool bpf_program__autoload(const struct bpf_program *prog)
8144 {
8145 	return prog->load;
8146 }
8147 
8148 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8149 {
8150 	if (prog->obj->loaded)
8151 		return libbpf_err(-EINVAL);
8152 
8153 	prog->load = autoload;
8154 	return 0;
8155 }
8156 
8157 int bpf_program__fd(const struct bpf_program *prog)
8158 {
8159 	return bpf_program__nth_fd(prog, 0);
8160 }
8161 
8162 size_t bpf_program__size(const struct bpf_program *prog)
8163 {
8164 	return prog->insns_cnt * BPF_INSN_SZ;
8165 }
8166 
8167 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
8168 {
8169 	return prog->insns;
8170 }
8171 
8172 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
8173 {
8174 	return prog->insns_cnt;
8175 }
8176 
8177 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances,
8178 			  bpf_program_prep_t prep)
8179 {
8180 	int *instances_fds;
8181 
8182 	if (nr_instances <= 0 || !prep)
8183 		return libbpf_err(-EINVAL);
8184 
8185 	if (prog->instances.nr > 0 || prog->instances.fds) {
8186 		pr_warn("Can't set pre-processor after loading\n");
8187 		return libbpf_err(-EINVAL);
8188 	}
8189 
8190 	instances_fds = malloc(sizeof(int) * nr_instances);
8191 	if (!instances_fds) {
8192 		pr_warn("alloc memory failed for fds\n");
8193 		return libbpf_err(-ENOMEM);
8194 	}
8195 
8196 	/* fill all fd with -1 */
8197 	memset(instances_fds, -1, sizeof(int) * nr_instances);
8198 
8199 	prog->instances.nr = nr_instances;
8200 	prog->instances.fds = instances_fds;
8201 	prog->preprocessor = prep;
8202 	return 0;
8203 }
8204 
8205 int bpf_program__nth_fd(const struct bpf_program *prog, int n)
8206 {
8207 	int fd;
8208 
8209 	if (!prog)
8210 		return libbpf_err(-EINVAL);
8211 
8212 	if (n >= prog->instances.nr || n < 0) {
8213 		pr_warn("Can't get the %dth fd from program %s: only %d instances\n",
8214 			n, prog->name, prog->instances.nr);
8215 		return libbpf_err(-EINVAL);
8216 	}
8217 
8218 	fd = prog->instances.fds[n];
8219 	if (fd < 0) {
8220 		pr_warn("%dth instance of program '%s' is invalid\n",
8221 			n, prog->name);
8222 		return libbpf_err(-ENOENT);
8223 	}
8224 
8225 	return fd;
8226 }
8227 
8228 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog)
8229 {
8230 	return prog->type;
8231 }
8232 
8233 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8234 {
8235 	prog->type = type;
8236 }
8237 
8238 static bool bpf_program__is_type(const struct bpf_program *prog,
8239 				 enum bpf_prog_type type)
8240 {
8241 	return prog ? (prog->type == type) : false;
8242 }
8243 
8244 #define BPF_PROG_TYPE_FNS(NAME, TYPE)				\
8245 int bpf_program__set_##NAME(struct bpf_program *prog)		\
8246 {								\
8247 	if (!prog)						\
8248 		return libbpf_err(-EINVAL);			\
8249 	bpf_program__set_type(prog, TYPE);			\
8250 	return 0;						\
8251 }								\
8252 								\
8253 bool bpf_program__is_##NAME(const struct bpf_program *prog)	\
8254 {								\
8255 	return bpf_program__is_type(prog, TYPE);		\
8256 }								\
8257 
8258 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER);
8259 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM);
8260 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE);
8261 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS);
8262 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT);
8263 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT);
8264 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT);
8265 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP);
8266 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT);
8267 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING);
8268 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS);
8269 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT);
8270 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP);
8271 
8272 enum bpf_attach_type
8273 bpf_program__get_expected_attach_type(const struct bpf_program *prog)
8274 {
8275 	return prog->expected_attach_type;
8276 }
8277 
8278 void bpf_program__set_expected_attach_type(struct bpf_program *prog,
8279 					   enum bpf_attach_type type)
8280 {
8281 	prog->expected_attach_type = type;
8282 }
8283 
8284 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) {			    \
8285 	.sec = sec_pfx,							    \
8286 	.prog_type = BPF_PROG_TYPE_##ptype,				    \
8287 	.expected_attach_type = atype,					    \
8288 	.cookie = (long)(flags),					    \
8289 	.preload_fn = libbpf_preload_prog,				    \
8290 	__VA_ARGS__							    \
8291 }
8292 
8293 static struct bpf_link *attach_kprobe(const struct bpf_program *prog, long cookie);
8294 static struct bpf_link *attach_tp(const struct bpf_program *prog, long cookie);
8295 static struct bpf_link *attach_raw_tp(const struct bpf_program *prog, long cookie);
8296 static struct bpf_link *attach_trace(const struct bpf_program *prog, long cookie);
8297 static struct bpf_link *attach_lsm(const struct bpf_program *prog, long cookie);
8298 static struct bpf_link *attach_iter(const struct bpf_program *prog, long cookie);
8299 
8300 static const struct bpf_sec_def section_defs[] = {
8301 	SEC_DEF("socket",		SOCKET_FILTER, 0, SEC_NONE | SEC_SLOPPY_PFX),
8302 	SEC_DEF("sk_reuseport/migrate",	SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8303 	SEC_DEF("sk_reuseport",		SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8304 	SEC_DEF("kprobe/",		KPROBE,	0, SEC_NONE, attach_kprobe),
8305 	SEC_DEF("uprobe/",		KPROBE,	0, SEC_NONE),
8306 	SEC_DEF("kretprobe/",		KPROBE, 0, SEC_NONE, attach_kprobe),
8307 	SEC_DEF("uretprobe/",		KPROBE, 0, SEC_NONE),
8308 	SEC_DEF("tc",			SCHED_CLS, 0, SEC_NONE),
8309 	SEC_DEF("classifier",		SCHED_CLS, 0, SEC_NONE | SEC_SLOPPY_PFX),
8310 	SEC_DEF("action",		SCHED_ACT, 0, SEC_NONE | SEC_SLOPPY_PFX),
8311 	SEC_DEF("tracepoint/",		TRACEPOINT, 0, SEC_NONE, attach_tp),
8312 	SEC_DEF("tp/",			TRACEPOINT, 0, SEC_NONE, attach_tp),
8313 	SEC_DEF("raw_tracepoint/",	RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8314 	SEC_DEF("raw_tp/",		RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8315 	SEC_DEF("raw_tracepoint.w/",	RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8316 	SEC_DEF("raw_tp.w/",		RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8317 	SEC_DEF("tp_btf/",		TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
8318 	SEC_DEF("fentry/",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
8319 	SEC_DEF("fmod_ret/",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
8320 	SEC_DEF("fexit/",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
8321 	SEC_DEF("fentry.s/",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8322 	SEC_DEF("fmod_ret.s/",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8323 	SEC_DEF("fexit.s/",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8324 	SEC_DEF("freplace/",		EXT, 0, SEC_ATTACH_BTF, attach_trace),
8325 	SEC_DEF("lsm/",			LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
8326 	SEC_DEF("lsm.s/",		LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
8327 	SEC_DEF("iter/",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
8328 	SEC_DEF("syscall",		SYSCALL, 0, SEC_SLEEPABLE),
8329 	SEC_DEF("xdp_devmap/",		XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
8330 	SEC_DEF("xdp_cpumap/",		XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
8331 	SEC_DEF("xdp",			XDP, BPF_XDP, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8332 	SEC_DEF("perf_event",		PERF_EVENT, 0, SEC_NONE | SEC_SLOPPY_PFX),
8333 	SEC_DEF("lwt_in",		LWT_IN, 0, SEC_NONE | SEC_SLOPPY_PFX),
8334 	SEC_DEF("lwt_out",		LWT_OUT, 0, SEC_NONE | SEC_SLOPPY_PFX),
8335 	SEC_DEF("lwt_xmit",		LWT_XMIT, 0, SEC_NONE | SEC_SLOPPY_PFX),
8336 	SEC_DEF("lwt_seg6local",	LWT_SEG6LOCAL, 0, SEC_NONE | SEC_SLOPPY_PFX),
8337 	SEC_DEF("cgroup_skb/ingress",	CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8338 	SEC_DEF("cgroup_skb/egress",	CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8339 	SEC_DEF("cgroup/skb",		CGROUP_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX),
8340 	SEC_DEF("cgroup/sock_create",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8341 	SEC_DEF("cgroup/sock_release",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8342 	SEC_DEF("cgroup/sock",		CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8343 	SEC_DEF("cgroup/post_bind4",	CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8344 	SEC_DEF("cgroup/post_bind6",	CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8345 	SEC_DEF("cgroup/dev",		CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8346 	SEC_DEF("sockops",		SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8347 	SEC_DEF("sk_skb/stream_parser",	SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8348 	SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8349 	SEC_DEF("sk_skb",		SK_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX),
8350 	SEC_DEF("sk_msg",		SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8351 	SEC_DEF("lirc_mode2",		LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8352 	SEC_DEF("flow_dissector",	FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8353 	SEC_DEF("cgroup/bind4",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8354 	SEC_DEF("cgroup/bind6",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8355 	SEC_DEF("cgroup/connect4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8356 	SEC_DEF("cgroup/connect6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8357 	SEC_DEF("cgroup/sendmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8358 	SEC_DEF("cgroup/sendmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8359 	SEC_DEF("cgroup/recvmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8360 	SEC_DEF("cgroup/recvmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8361 	SEC_DEF("cgroup/getpeername4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8362 	SEC_DEF("cgroup/getpeername6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8363 	SEC_DEF("cgroup/getsockname4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8364 	SEC_DEF("cgroup/getsockname6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8365 	SEC_DEF("cgroup/sysctl",	CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8366 	SEC_DEF("cgroup/getsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8367 	SEC_DEF("cgroup/setsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8368 	SEC_DEF("struct_ops+",		STRUCT_OPS, 0, SEC_NONE),
8369 	SEC_DEF("sk_lookup",		SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8370 };
8371 
8372 #define MAX_TYPE_NAME_SIZE 32
8373 
8374 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
8375 {
8376 	const struct bpf_sec_def *sec_def;
8377 	enum sec_def_flags sec_flags;
8378 	int i, n = ARRAY_SIZE(section_defs), len;
8379 	bool strict = libbpf_mode & LIBBPF_STRICT_SEC_NAME;
8380 
8381 	for (i = 0; i < n; i++) {
8382 		sec_def = &section_defs[i];
8383 		sec_flags = sec_def->cookie;
8384 		len = strlen(sec_def->sec);
8385 
8386 		/* "type/" always has to have proper SEC("type/extras") form */
8387 		if (sec_def->sec[len - 1] == '/') {
8388 			if (str_has_pfx(sec_name, sec_def->sec))
8389 				return sec_def;
8390 			continue;
8391 		}
8392 
8393 		/* "type+" means it can be either exact SEC("type") or
8394 		 * well-formed SEC("type/extras") with proper '/' separator
8395 		 */
8396 		if (sec_def->sec[len - 1] == '+') {
8397 			len--;
8398 			/* not even a prefix */
8399 			if (strncmp(sec_name, sec_def->sec, len) != 0)
8400 				continue;
8401 			/* exact match or has '/' separator */
8402 			if (sec_name[len] == '\0' || sec_name[len] == '/')
8403 				return sec_def;
8404 			continue;
8405 		}
8406 
8407 		/* SEC_SLOPPY_PFX definitions are allowed to be just prefix
8408 		 * matches, unless strict section name mode
8409 		 * (LIBBPF_STRICT_SEC_NAME) is enabled, in which case the
8410 		 * match has to be exact.
8411 		 */
8412 		if ((sec_flags & SEC_SLOPPY_PFX) && !strict)  {
8413 			if (str_has_pfx(sec_name, sec_def->sec))
8414 				return sec_def;
8415 			continue;
8416 		}
8417 
8418 		/* Definitions not marked SEC_SLOPPY_PFX (e.g.,
8419 		 * SEC("syscall")) are exact matches in both modes.
8420 		 */
8421 		if (strcmp(sec_name, sec_def->sec) == 0)
8422 			return sec_def;
8423 	}
8424 	return NULL;
8425 }
8426 
8427 static char *libbpf_get_type_names(bool attach_type)
8428 {
8429 	int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
8430 	char *buf;
8431 
8432 	buf = malloc(len);
8433 	if (!buf)
8434 		return NULL;
8435 
8436 	buf[0] = '\0';
8437 	/* Forge string buf with all available names */
8438 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8439 		const struct bpf_sec_def *sec_def = &section_defs[i];
8440 
8441 		if (attach_type) {
8442 			if (sec_def->preload_fn != libbpf_preload_prog)
8443 				continue;
8444 
8445 			if (!(sec_def->cookie & SEC_ATTACHABLE))
8446 				continue;
8447 		}
8448 
8449 		if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
8450 			free(buf);
8451 			return NULL;
8452 		}
8453 		strcat(buf, " ");
8454 		strcat(buf, section_defs[i].sec);
8455 	}
8456 
8457 	return buf;
8458 }
8459 
8460 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
8461 			     enum bpf_attach_type *expected_attach_type)
8462 {
8463 	const struct bpf_sec_def *sec_def;
8464 	char *type_names;
8465 
8466 	if (!name)
8467 		return libbpf_err(-EINVAL);
8468 
8469 	sec_def = find_sec_def(name);
8470 	if (sec_def) {
8471 		*prog_type = sec_def->prog_type;
8472 		*expected_attach_type = sec_def->expected_attach_type;
8473 		return 0;
8474 	}
8475 
8476 	pr_debug("failed to guess program type from ELF section '%s'\n", name);
8477 	type_names = libbpf_get_type_names(false);
8478 	if (type_names != NULL) {
8479 		pr_debug("supported section(type) names are:%s\n", type_names);
8480 		free(type_names);
8481 	}
8482 
8483 	return libbpf_err(-ESRCH);
8484 }
8485 
8486 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
8487 						     size_t offset)
8488 {
8489 	struct bpf_map *map;
8490 	size_t i;
8491 
8492 	for (i = 0; i < obj->nr_maps; i++) {
8493 		map = &obj->maps[i];
8494 		if (!bpf_map__is_struct_ops(map))
8495 			continue;
8496 		if (map->sec_offset <= offset &&
8497 		    offset - map->sec_offset < map->def.value_size)
8498 			return map;
8499 	}
8500 
8501 	return NULL;
8502 }
8503 
8504 /* Collect the reloc from ELF and populate the st_ops->progs[] */
8505 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
8506 					    Elf64_Shdr *shdr, Elf_Data *data)
8507 {
8508 	const struct btf_member *member;
8509 	struct bpf_struct_ops *st_ops;
8510 	struct bpf_program *prog;
8511 	unsigned int shdr_idx;
8512 	const struct btf *btf;
8513 	struct bpf_map *map;
8514 	unsigned int moff, insn_idx;
8515 	const char *name;
8516 	__u32 member_idx;
8517 	Elf64_Sym *sym;
8518 	Elf64_Rel *rel;
8519 	int i, nrels;
8520 
8521 	btf = obj->btf;
8522 	nrels = shdr->sh_size / shdr->sh_entsize;
8523 	for (i = 0; i < nrels; i++) {
8524 		rel = elf_rel_by_idx(data, i);
8525 		if (!rel) {
8526 			pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
8527 			return -LIBBPF_ERRNO__FORMAT;
8528 		}
8529 
8530 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
8531 		if (!sym) {
8532 			pr_warn("struct_ops reloc: symbol %zx not found\n",
8533 				(size_t)ELF64_R_SYM(rel->r_info));
8534 			return -LIBBPF_ERRNO__FORMAT;
8535 		}
8536 
8537 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
8538 		map = find_struct_ops_map_by_offset(obj, rel->r_offset);
8539 		if (!map) {
8540 			pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
8541 				(size_t)rel->r_offset);
8542 			return -EINVAL;
8543 		}
8544 
8545 		moff = rel->r_offset - map->sec_offset;
8546 		shdr_idx = sym->st_shndx;
8547 		st_ops = map->st_ops;
8548 		pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
8549 			 map->name,
8550 			 (long long)(rel->r_info >> 32),
8551 			 (long long)sym->st_value,
8552 			 shdr_idx, (size_t)rel->r_offset,
8553 			 map->sec_offset, sym->st_name, name);
8554 
8555 		if (shdr_idx >= SHN_LORESERVE) {
8556 			pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
8557 				map->name, (size_t)rel->r_offset, shdr_idx);
8558 			return -LIBBPF_ERRNO__RELOC;
8559 		}
8560 		if (sym->st_value % BPF_INSN_SZ) {
8561 			pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
8562 				map->name, (unsigned long long)sym->st_value);
8563 			return -LIBBPF_ERRNO__FORMAT;
8564 		}
8565 		insn_idx = sym->st_value / BPF_INSN_SZ;
8566 
8567 		member = find_member_by_offset(st_ops->type, moff * 8);
8568 		if (!member) {
8569 			pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
8570 				map->name, moff);
8571 			return -EINVAL;
8572 		}
8573 		member_idx = member - btf_members(st_ops->type);
8574 		name = btf__name_by_offset(btf, member->name_off);
8575 
8576 		if (!resolve_func_ptr(btf, member->type, NULL)) {
8577 			pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
8578 				map->name, name);
8579 			return -EINVAL;
8580 		}
8581 
8582 		prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
8583 		if (!prog) {
8584 			pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
8585 				map->name, shdr_idx, name);
8586 			return -EINVAL;
8587 		}
8588 
8589 		/* prevent the use of BPF prog with invalid type */
8590 		if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
8591 			pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
8592 				map->name, prog->name);
8593 			return -EINVAL;
8594 		}
8595 
8596 		/* if we haven't yet processed this BPF program, record proper
8597 		 * attach_btf_id and member_idx
8598 		 */
8599 		if (!prog->attach_btf_id) {
8600 			prog->attach_btf_id = st_ops->type_id;
8601 			prog->expected_attach_type = member_idx;
8602 		}
8603 
8604 		/* struct_ops BPF prog can be re-used between multiple
8605 		 * .struct_ops as long as it's the same struct_ops struct
8606 		 * definition and the same function pointer field
8607 		 */
8608 		if (prog->attach_btf_id != st_ops->type_id ||
8609 		    prog->expected_attach_type != member_idx) {
8610 			pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
8611 				map->name, prog->name, prog->sec_name, prog->type,
8612 				prog->attach_btf_id, prog->expected_attach_type, name);
8613 			return -EINVAL;
8614 		}
8615 
8616 		st_ops->progs[member_idx] = prog;
8617 	}
8618 
8619 	return 0;
8620 }
8621 
8622 #define BTF_TRACE_PREFIX "btf_trace_"
8623 #define BTF_LSM_PREFIX "bpf_lsm_"
8624 #define BTF_ITER_PREFIX "bpf_iter_"
8625 #define BTF_MAX_NAME_SIZE 128
8626 
8627 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
8628 				const char **prefix, int *kind)
8629 {
8630 	switch (attach_type) {
8631 	case BPF_TRACE_RAW_TP:
8632 		*prefix = BTF_TRACE_PREFIX;
8633 		*kind = BTF_KIND_TYPEDEF;
8634 		break;
8635 	case BPF_LSM_MAC:
8636 		*prefix = BTF_LSM_PREFIX;
8637 		*kind = BTF_KIND_FUNC;
8638 		break;
8639 	case BPF_TRACE_ITER:
8640 		*prefix = BTF_ITER_PREFIX;
8641 		*kind = BTF_KIND_FUNC;
8642 		break;
8643 	default:
8644 		*prefix = "";
8645 		*kind = BTF_KIND_FUNC;
8646 	}
8647 }
8648 
8649 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
8650 				   const char *name, __u32 kind)
8651 {
8652 	char btf_type_name[BTF_MAX_NAME_SIZE];
8653 	int ret;
8654 
8655 	ret = snprintf(btf_type_name, sizeof(btf_type_name),
8656 		       "%s%s", prefix, name);
8657 	/* snprintf returns the number of characters written excluding the
8658 	 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
8659 	 * indicates truncation.
8660 	 */
8661 	if (ret < 0 || ret >= sizeof(btf_type_name))
8662 		return -ENAMETOOLONG;
8663 	return btf__find_by_name_kind(btf, btf_type_name, kind);
8664 }
8665 
8666 static inline int find_attach_btf_id(struct btf *btf, const char *name,
8667 				     enum bpf_attach_type attach_type)
8668 {
8669 	const char *prefix;
8670 	int kind;
8671 
8672 	btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
8673 	return find_btf_by_prefix_kind(btf, prefix, name, kind);
8674 }
8675 
8676 int libbpf_find_vmlinux_btf_id(const char *name,
8677 			       enum bpf_attach_type attach_type)
8678 {
8679 	struct btf *btf;
8680 	int err;
8681 
8682 	btf = btf__load_vmlinux_btf();
8683 	err = libbpf_get_error(btf);
8684 	if (err) {
8685 		pr_warn("vmlinux BTF is not found\n");
8686 		return libbpf_err(err);
8687 	}
8688 
8689 	err = find_attach_btf_id(btf, name, attach_type);
8690 	if (err <= 0)
8691 		pr_warn("%s is not found in vmlinux BTF\n", name);
8692 
8693 	btf__free(btf);
8694 	return libbpf_err(err);
8695 }
8696 
8697 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
8698 {
8699 	struct bpf_prog_info info = {};
8700 	__u32 info_len = sizeof(info);
8701 	struct btf *btf;
8702 	int err;
8703 
8704 	err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len);
8705 	if (err) {
8706 		pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n",
8707 			attach_prog_fd, err);
8708 		return err;
8709 	}
8710 
8711 	err = -EINVAL;
8712 	if (!info.btf_id) {
8713 		pr_warn("The target program doesn't have BTF\n");
8714 		goto out;
8715 	}
8716 	btf = btf__load_from_kernel_by_id(info.btf_id);
8717 	err = libbpf_get_error(btf);
8718 	if (err) {
8719 		pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
8720 		goto out;
8721 	}
8722 	err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
8723 	btf__free(btf);
8724 	if (err <= 0) {
8725 		pr_warn("%s is not found in prog's BTF\n", name);
8726 		goto out;
8727 	}
8728 out:
8729 	return err;
8730 }
8731 
8732 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
8733 			      enum bpf_attach_type attach_type,
8734 			      int *btf_obj_fd, int *btf_type_id)
8735 {
8736 	int ret, i;
8737 
8738 	ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
8739 	if (ret > 0) {
8740 		*btf_obj_fd = 0; /* vmlinux BTF */
8741 		*btf_type_id = ret;
8742 		return 0;
8743 	}
8744 	if (ret != -ENOENT)
8745 		return ret;
8746 
8747 	ret = load_module_btfs(obj);
8748 	if (ret)
8749 		return ret;
8750 
8751 	for (i = 0; i < obj->btf_module_cnt; i++) {
8752 		const struct module_btf *mod = &obj->btf_modules[i];
8753 
8754 		ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
8755 		if (ret > 0) {
8756 			*btf_obj_fd = mod->fd;
8757 			*btf_type_id = ret;
8758 			return 0;
8759 		}
8760 		if (ret == -ENOENT)
8761 			continue;
8762 
8763 		return ret;
8764 	}
8765 
8766 	return -ESRCH;
8767 }
8768 
8769 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
8770 				     int *btf_obj_fd, int *btf_type_id)
8771 {
8772 	enum bpf_attach_type attach_type = prog->expected_attach_type;
8773 	__u32 attach_prog_fd = prog->attach_prog_fd;
8774 	int err = 0;
8775 
8776 	/* BPF program's BTF ID */
8777 	if (attach_prog_fd) {
8778 		err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
8779 		if (err < 0) {
8780 			pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
8781 				 attach_prog_fd, attach_name, err);
8782 			return err;
8783 		}
8784 		*btf_obj_fd = 0;
8785 		*btf_type_id = err;
8786 		return 0;
8787 	}
8788 
8789 	/* kernel/module BTF ID */
8790 	if (prog->obj->gen_loader) {
8791 		bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
8792 		*btf_obj_fd = 0;
8793 		*btf_type_id = 1;
8794 	} else {
8795 		err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
8796 	}
8797 	if (err) {
8798 		pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err);
8799 		return err;
8800 	}
8801 	return 0;
8802 }
8803 
8804 int libbpf_attach_type_by_name(const char *name,
8805 			       enum bpf_attach_type *attach_type)
8806 {
8807 	char *type_names;
8808 	const struct bpf_sec_def *sec_def;
8809 
8810 	if (!name)
8811 		return libbpf_err(-EINVAL);
8812 
8813 	sec_def = find_sec_def(name);
8814 	if (!sec_def) {
8815 		pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
8816 		type_names = libbpf_get_type_names(true);
8817 		if (type_names != NULL) {
8818 			pr_debug("attachable section(type) names are:%s\n", type_names);
8819 			free(type_names);
8820 		}
8821 
8822 		return libbpf_err(-EINVAL);
8823 	}
8824 
8825 	if (sec_def->preload_fn != libbpf_preload_prog)
8826 		return libbpf_err(-EINVAL);
8827 	if (!(sec_def->cookie & SEC_ATTACHABLE))
8828 		return libbpf_err(-EINVAL);
8829 
8830 	*attach_type = sec_def->expected_attach_type;
8831 	return 0;
8832 }
8833 
8834 int bpf_map__fd(const struct bpf_map *map)
8835 {
8836 	return map ? map->fd : libbpf_err(-EINVAL);
8837 }
8838 
8839 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map)
8840 {
8841 	return map ? &map->def : libbpf_err_ptr(-EINVAL);
8842 }
8843 
8844 static bool map_uses_real_name(const struct bpf_map *map)
8845 {
8846 	/* Since libbpf started to support custom .data.* and .rodata.* maps,
8847 	 * their user-visible name differs from kernel-visible name. Users see
8848 	 * such map's corresponding ELF section name as a map name.
8849 	 * This check distinguishes .data/.rodata from .data.* and .rodata.*
8850 	 * maps to know which name has to be returned to the user.
8851 	 */
8852 	if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
8853 		return true;
8854 	if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
8855 		return true;
8856 	return false;
8857 }
8858 
8859 const char *bpf_map__name(const struct bpf_map *map)
8860 {
8861 	if (!map)
8862 		return NULL;
8863 
8864 	if (map_uses_real_name(map))
8865 		return map->real_name;
8866 
8867 	return map->name;
8868 }
8869 
8870 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
8871 {
8872 	return map->def.type;
8873 }
8874 
8875 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
8876 {
8877 	if (map->fd >= 0)
8878 		return libbpf_err(-EBUSY);
8879 	map->def.type = type;
8880 	return 0;
8881 }
8882 
8883 __u32 bpf_map__map_flags(const struct bpf_map *map)
8884 {
8885 	return map->def.map_flags;
8886 }
8887 
8888 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
8889 {
8890 	if (map->fd >= 0)
8891 		return libbpf_err(-EBUSY);
8892 	map->def.map_flags = flags;
8893 	return 0;
8894 }
8895 
8896 __u64 bpf_map__map_extra(const struct bpf_map *map)
8897 {
8898 	return map->map_extra;
8899 }
8900 
8901 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
8902 {
8903 	if (map->fd >= 0)
8904 		return libbpf_err(-EBUSY);
8905 	map->map_extra = map_extra;
8906 	return 0;
8907 }
8908 
8909 __u32 bpf_map__numa_node(const struct bpf_map *map)
8910 {
8911 	return map->numa_node;
8912 }
8913 
8914 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
8915 {
8916 	if (map->fd >= 0)
8917 		return libbpf_err(-EBUSY);
8918 	map->numa_node = numa_node;
8919 	return 0;
8920 }
8921 
8922 __u32 bpf_map__key_size(const struct bpf_map *map)
8923 {
8924 	return map->def.key_size;
8925 }
8926 
8927 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
8928 {
8929 	if (map->fd >= 0)
8930 		return libbpf_err(-EBUSY);
8931 	map->def.key_size = size;
8932 	return 0;
8933 }
8934 
8935 __u32 bpf_map__value_size(const struct bpf_map *map)
8936 {
8937 	return map->def.value_size;
8938 }
8939 
8940 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
8941 {
8942 	if (map->fd >= 0)
8943 		return libbpf_err(-EBUSY);
8944 	map->def.value_size = size;
8945 	return 0;
8946 }
8947 
8948 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
8949 {
8950 	return map ? map->btf_key_type_id : 0;
8951 }
8952 
8953 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
8954 {
8955 	return map ? map->btf_value_type_id : 0;
8956 }
8957 
8958 int bpf_map__set_priv(struct bpf_map *map, void *priv,
8959 		     bpf_map_clear_priv_t clear_priv)
8960 {
8961 	if (!map)
8962 		return libbpf_err(-EINVAL);
8963 
8964 	if (map->priv) {
8965 		if (map->clear_priv)
8966 			map->clear_priv(map, map->priv);
8967 	}
8968 
8969 	map->priv = priv;
8970 	map->clear_priv = clear_priv;
8971 	return 0;
8972 }
8973 
8974 void *bpf_map__priv(const struct bpf_map *map)
8975 {
8976 	return map ? map->priv : libbpf_err_ptr(-EINVAL);
8977 }
8978 
8979 int bpf_map__set_initial_value(struct bpf_map *map,
8980 			       const void *data, size_t size)
8981 {
8982 	if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
8983 	    size != map->def.value_size || map->fd >= 0)
8984 		return libbpf_err(-EINVAL);
8985 
8986 	memcpy(map->mmaped, data, size);
8987 	return 0;
8988 }
8989 
8990 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize)
8991 {
8992 	if (!map->mmaped)
8993 		return NULL;
8994 	*psize = map->def.value_size;
8995 	return map->mmaped;
8996 }
8997 
8998 bool bpf_map__is_offload_neutral(const struct bpf_map *map)
8999 {
9000 	return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
9001 }
9002 
9003 bool bpf_map__is_internal(const struct bpf_map *map)
9004 {
9005 	return map->libbpf_type != LIBBPF_MAP_UNSPEC;
9006 }
9007 
9008 __u32 bpf_map__ifindex(const struct bpf_map *map)
9009 {
9010 	return map->map_ifindex;
9011 }
9012 
9013 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
9014 {
9015 	if (map->fd >= 0)
9016 		return libbpf_err(-EBUSY);
9017 	map->map_ifindex = ifindex;
9018 	return 0;
9019 }
9020 
9021 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
9022 {
9023 	if (!bpf_map_type__is_map_in_map(map->def.type)) {
9024 		pr_warn("error: unsupported map type\n");
9025 		return libbpf_err(-EINVAL);
9026 	}
9027 	if (map->inner_map_fd != -1) {
9028 		pr_warn("error: inner_map_fd already specified\n");
9029 		return libbpf_err(-EINVAL);
9030 	}
9031 	zfree(&map->inner_map);
9032 	map->inner_map_fd = fd;
9033 	return 0;
9034 }
9035 
9036 static struct bpf_map *
9037 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
9038 {
9039 	ssize_t idx;
9040 	struct bpf_map *s, *e;
9041 
9042 	if (!obj || !obj->maps)
9043 		return errno = EINVAL, NULL;
9044 
9045 	s = obj->maps;
9046 	e = obj->maps + obj->nr_maps;
9047 
9048 	if ((m < s) || (m >= e)) {
9049 		pr_warn("error in %s: map handler doesn't belong to object\n",
9050 			 __func__);
9051 		return errno = EINVAL, NULL;
9052 	}
9053 
9054 	idx = (m - obj->maps) + i;
9055 	if (idx >= obj->nr_maps || idx < 0)
9056 		return NULL;
9057 	return &obj->maps[idx];
9058 }
9059 
9060 struct bpf_map *
9061 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj)
9062 {
9063 	return bpf_object__next_map(obj, prev);
9064 }
9065 
9066 struct bpf_map *
9067 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
9068 {
9069 	if (prev == NULL)
9070 		return obj->maps;
9071 
9072 	return __bpf_map__iter(prev, obj, 1);
9073 }
9074 
9075 struct bpf_map *
9076 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj)
9077 {
9078 	return bpf_object__prev_map(obj, next);
9079 }
9080 
9081 struct bpf_map *
9082 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
9083 {
9084 	if (next == NULL) {
9085 		if (!obj->nr_maps)
9086 			return NULL;
9087 		return obj->maps + obj->nr_maps - 1;
9088 	}
9089 
9090 	return __bpf_map__iter(next, obj, -1);
9091 }
9092 
9093 struct bpf_map *
9094 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9095 {
9096 	struct bpf_map *pos;
9097 
9098 	bpf_object__for_each_map(pos, obj) {
9099 		/* if it's a special internal map name (which always starts
9100 		 * with dot) then check if that special name matches the
9101 		 * real map name (ELF section name)
9102 		 */
9103 		if (name[0] == '.') {
9104 			if (pos->real_name && strcmp(pos->real_name, name) == 0)
9105 				return pos;
9106 			continue;
9107 		}
9108 		/* otherwise map name has to be an exact match */
9109 		if (map_uses_real_name(pos)) {
9110 			if (strcmp(pos->real_name, name) == 0)
9111 				return pos;
9112 			continue;
9113 		}
9114 		if (strcmp(pos->name, name) == 0)
9115 			return pos;
9116 	}
9117 	return errno = ENOENT, NULL;
9118 }
9119 
9120 int
9121 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9122 {
9123 	return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9124 }
9125 
9126 struct bpf_map *
9127 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset)
9128 {
9129 	return libbpf_err_ptr(-ENOTSUP);
9130 }
9131 
9132 long libbpf_get_error(const void *ptr)
9133 {
9134 	if (!IS_ERR_OR_NULL(ptr))
9135 		return 0;
9136 
9137 	if (IS_ERR(ptr))
9138 		errno = -PTR_ERR(ptr);
9139 
9140 	/* If ptr == NULL, then errno should be already set by the failing
9141 	 * API, because libbpf never returns NULL on success and it now always
9142 	 * sets errno on error. So no extra errno handling for ptr == NULL
9143 	 * case.
9144 	 */
9145 	return -errno;
9146 }
9147 
9148 int bpf_prog_load(const char *file, enum bpf_prog_type type,
9149 		  struct bpf_object **pobj, int *prog_fd)
9150 {
9151 	struct bpf_prog_load_attr attr;
9152 
9153 	memset(&attr, 0, sizeof(struct bpf_prog_load_attr));
9154 	attr.file = file;
9155 	attr.prog_type = type;
9156 	attr.expected_attach_type = 0;
9157 
9158 	return bpf_prog_load_xattr(&attr, pobj, prog_fd);
9159 }
9160 
9161 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr,
9162 			struct bpf_object **pobj, int *prog_fd)
9163 {
9164 	struct bpf_object_open_attr open_attr = {};
9165 	struct bpf_program *prog, *first_prog = NULL;
9166 	struct bpf_object *obj;
9167 	struct bpf_map *map;
9168 	int err;
9169 
9170 	if (!attr)
9171 		return libbpf_err(-EINVAL);
9172 	if (!attr->file)
9173 		return libbpf_err(-EINVAL);
9174 
9175 	open_attr.file = attr->file;
9176 	open_attr.prog_type = attr->prog_type;
9177 
9178 	obj = bpf_object__open_xattr(&open_attr);
9179 	err = libbpf_get_error(obj);
9180 	if (err)
9181 		return libbpf_err(-ENOENT);
9182 
9183 	bpf_object__for_each_program(prog, obj) {
9184 		enum bpf_attach_type attach_type = attr->expected_attach_type;
9185 		/*
9186 		 * to preserve backwards compatibility, bpf_prog_load treats
9187 		 * attr->prog_type, if specified, as an override to whatever
9188 		 * bpf_object__open guessed
9189 		 */
9190 		if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) {
9191 			bpf_program__set_type(prog, attr->prog_type);
9192 			bpf_program__set_expected_attach_type(prog,
9193 							      attach_type);
9194 		}
9195 		if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) {
9196 			/*
9197 			 * we haven't guessed from section name and user
9198 			 * didn't provide a fallback type, too bad...
9199 			 */
9200 			bpf_object__close(obj);
9201 			return libbpf_err(-EINVAL);
9202 		}
9203 
9204 		prog->prog_ifindex = attr->ifindex;
9205 		prog->log_level = attr->log_level;
9206 		prog->prog_flags |= attr->prog_flags;
9207 		if (!first_prog)
9208 			first_prog = prog;
9209 	}
9210 
9211 	bpf_object__for_each_map(map, obj) {
9212 		if (!bpf_map__is_offload_neutral(map))
9213 			map->map_ifindex = attr->ifindex;
9214 	}
9215 
9216 	if (!first_prog) {
9217 		pr_warn("object file doesn't contain bpf program\n");
9218 		bpf_object__close(obj);
9219 		return libbpf_err(-ENOENT);
9220 	}
9221 
9222 	err = bpf_object__load(obj);
9223 	if (err) {
9224 		bpf_object__close(obj);
9225 		return libbpf_err(err);
9226 	}
9227 
9228 	*pobj = obj;
9229 	*prog_fd = bpf_program__fd(first_prog);
9230 	return 0;
9231 }
9232 
9233 struct bpf_link {
9234 	int (*detach)(struct bpf_link *link);
9235 	void (*dealloc)(struct bpf_link *link);
9236 	char *pin_path;		/* NULL, if not pinned */
9237 	int fd;			/* hook FD, -1 if not applicable */
9238 	bool disconnected;
9239 };
9240 
9241 /* Replace link's underlying BPF program with the new one */
9242 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
9243 {
9244 	int ret;
9245 
9246 	ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
9247 	return libbpf_err_errno(ret);
9248 }
9249 
9250 /* Release "ownership" of underlying BPF resource (typically, BPF program
9251  * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
9252  * link, when destructed through bpf_link__destroy() call won't attempt to
9253  * detach/unregisted that BPF resource. This is useful in situations where,
9254  * say, attached BPF program has to outlive userspace program that attached it
9255  * in the system. Depending on type of BPF program, though, there might be
9256  * additional steps (like pinning BPF program in BPF FS) necessary to ensure
9257  * exit of userspace program doesn't trigger automatic detachment and clean up
9258  * inside the kernel.
9259  */
9260 void bpf_link__disconnect(struct bpf_link *link)
9261 {
9262 	link->disconnected = true;
9263 }
9264 
9265 int bpf_link__destroy(struct bpf_link *link)
9266 {
9267 	int err = 0;
9268 
9269 	if (IS_ERR_OR_NULL(link))
9270 		return 0;
9271 
9272 	if (!link->disconnected && link->detach)
9273 		err = link->detach(link);
9274 	if (link->pin_path)
9275 		free(link->pin_path);
9276 	if (link->dealloc)
9277 		link->dealloc(link);
9278 	else
9279 		free(link);
9280 
9281 	return libbpf_err(err);
9282 }
9283 
9284 int bpf_link__fd(const struct bpf_link *link)
9285 {
9286 	return link->fd;
9287 }
9288 
9289 const char *bpf_link__pin_path(const struct bpf_link *link)
9290 {
9291 	return link->pin_path;
9292 }
9293 
9294 static int bpf_link__detach_fd(struct bpf_link *link)
9295 {
9296 	return libbpf_err_errno(close(link->fd));
9297 }
9298 
9299 struct bpf_link *bpf_link__open(const char *path)
9300 {
9301 	struct bpf_link *link;
9302 	int fd;
9303 
9304 	fd = bpf_obj_get(path);
9305 	if (fd < 0) {
9306 		fd = -errno;
9307 		pr_warn("failed to open link at %s: %d\n", path, fd);
9308 		return libbpf_err_ptr(fd);
9309 	}
9310 
9311 	link = calloc(1, sizeof(*link));
9312 	if (!link) {
9313 		close(fd);
9314 		return libbpf_err_ptr(-ENOMEM);
9315 	}
9316 	link->detach = &bpf_link__detach_fd;
9317 	link->fd = fd;
9318 
9319 	link->pin_path = strdup(path);
9320 	if (!link->pin_path) {
9321 		bpf_link__destroy(link);
9322 		return libbpf_err_ptr(-ENOMEM);
9323 	}
9324 
9325 	return link;
9326 }
9327 
9328 int bpf_link__detach(struct bpf_link *link)
9329 {
9330 	return bpf_link_detach(link->fd) ? -errno : 0;
9331 }
9332 
9333 int bpf_link__pin(struct bpf_link *link, const char *path)
9334 {
9335 	int err;
9336 
9337 	if (link->pin_path)
9338 		return libbpf_err(-EBUSY);
9339 	err = make_parent_dir(path);
9340 	if (err)
9341 		return libbpf_err(err);
9342 	err = check_path(path);
9343 	if (err)
9344 		return libbpf_err(err);
9345 
9346 	link->pin_path = strdup(path);
9347 	if (!link->pin_path)
9348 		return libbpf_err(-ENOMEM);
9349 
9350 	if (bpf_obj_pin(link->fd, link->pin_path)) {
9351 		err = -errno;
9352 		zfree(&link->pin_path);
9353 		return libbpf_err(err);
9354 	}
9355 
9356 	pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
9357 	return 0;
9358 }
9359 
9360 int bpf_link__unpin(struct bpf_link *link)
9361 {
9362 	int err;
9363 
9364 	if (!link->pin_path)
9365 		return libbpf_err(-EINVAL);
9366 
9367 	err = unlink(link->pin_path);
9368 	if (err != 0)
9369 		return -errno;
9370 
9371 	pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
9372 	zfree(&link->pin_path);
9373 	return 0;
9374 }
9375 
9376 struct bpf_link_perf {
9377 	struct bpf_link link;
9378 	int perf_event_fd;
9379 	/* legacy kprobe support: keep track of probe identifier and type */
9380 	char *legacy_probe_name;
9381 	bool legacy_is_kprobe;
9382 	bool legacy_is_retprobe;
9383 };
9384 
9385 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
9386 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
9387 
9388 static int bpf_link_perf_detach(struct bpf_link *link)
9389 {
9390 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9391 	int err = 0;
9392 
9393 	if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
9394 		err = -errno;
9395 
9396 	if (perf_link->perf_event_fd != link->fd)
9397 		close(perf_link->perf_event_fd);
9398 	close(link->fd);
9399 
9400 	/* legacy uprobe/kprobe needs to be removed after perf event fd closure */
9401 	if (perf_link->legacy_probe_name) {
9402 		if (perf_link->legacy_is_kprobe) {
9403 			err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
9404 							 perf_link->legacy_is_retprobe);
9405 		} else {
9406 			err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
9407 							 perf_link->legacy_is_retprobe);
9408 		}
9409 	}
9410 
9411 	return err;
9412 }
9413 
9414 static void bpf_link_perf_dealloc(struct bpf_link *link)
9415 {
9416 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9417 
9418 	free(perf_link->legacy_probe_name);
9419 	free(perf_link);
9420 }
9421 
9422 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
9423 						     const struct bpf_perf_event_opts *opts)
9424 {
9425 	char errmsg[STRERR_BUFSIZE];
9426 	struct bpf_link_perf *link;
9427 	int prog_fd, link_fd = -1, err;
9428 
9429 	if (!OPTS_VALID(opts, bpf_perf_event_opts))
9430 		return libbpf_err_ptr(-EINVAL);
9431 
9432 	if (pfd < 0) {
9433 		pr_warn("prog '%s': invalid perf event FD %d\n",
9434 			prog->name, pfd);
9435 		return libbpf_err_ptr(-EINVAL);
9436 	}
9437 	prog_fd = bpf_program__fd(prog);
9438 	if (prog_fd < 0) {
9439 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
9440 			prog->name);
9441 		return libbpf_err_ptr(-EINVAL);
9442 	}
9443 
9444 	link = calloc(1, sizeof(*link));
9445 	if (!link)
9446 		return libbpf_err_ptr(-ENOMEM);
9447 	link->link.detach = &bpf_link_perf_detach;
9448 	link->link.dealloc = &bpf_link_perf_dealloc;
9449 	link->perf_event_fd = pfd;
9450 
9451 	if (kernel_supports(prog->obj, FEAT_PERF_LINK)) {
9452 		DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
9453 			.perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
9454 
9455 		link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
9456 		if (link_fd < 0) {
9457 			err = -errno;
9458 			pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
9459 				prog->name, pfd,
9460 				err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9461 			goto err_out;
9462 		}
9463 		link->link.fd = link_fd;
9464 	} else {
9465 		if (OPTS_GET(opts, bpf_cookie, 0)) {
9466 			pr_warn("prog '%s': user context value is not supported\n", prog->name);
9467 			err = -EOPNOTSUPP;
9468 			goto err_out;
9469 		}
9470 
9471 		if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
9472 			err = -errno;
9473 			pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
9474 				prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9475 			if (err == -EPROTO)
9476 				pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
9477 					prog->name, pfd);
9478 			goto err_out;
9479 		}
9480 		link->link.fd = pfd;
9481 	}
9482 	if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
9483 		err = -errno;
9484 		pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
9485 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9486 		goto err_out;
9487 	}
9488 
9489 	return &link->link;
9490 err_out:
9491 	if (link_fd >= 0)
9492 		close(link_fd);
9493 	free(link);
9494 	return libbpf_err_ptr(err);
9495 }
9496 
9497 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
9498 {
9499 	return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
9500 }
9501 
9502 /*
9503  * this function is expected to parse integer in the range of [0, 2^31-1] from
9504  * given file using scanf format string fmt. If actual parsed value is
9505  * negative, the result might be indistinguishable from error
9506  */
9507 static int parse_uint_from_file(const char *file, const char *fmt)
9508 {
9509 	char buf[STRERR_BUFSIZE];
9510 	int err, ret;
9511 	FILE *f;
9512 
9513 	f = fopen(file, "r");
9514 	if (!f) {
9515 		err = -errno;
9516 		pr_debug("failed to open '%s': %s\n", file,
9517 			 libbpf_strerror_r(err, buf, sizeof(buf)));
9518 		return err;
9519 	}
9520 	err = fscanf(f, fmt, &ret);
9521 	if (err != 1) {
9522 		err = err == EOF ? -EIO : -errno;
9523 		pr_debug("failed to parse '%s': %s\n", file,
9524 			libbpf_strerror_r(err, buf, sizeof(buf)));
9525 		fclose(f);
9526 		return err;
9527 	}
9528 	fclose(f);
9529 	return ret;
9530 }
9531 
9532 static int determine_kprobe_perf_type(void)
9533 {
9534 	const char *file = "/sys/bus/event_source/devices/kprobe/type";
9535 
9536 	return parse_uint_from_file(file, "%d\n");
9537 }
9538 
9539 static int determine_uprobe_perf_type(void)
9540 {
9541 	const char *file = "/sys/bus/event_source/devices/uprobe/type";
9542 
9543 	return parse_uint_from_file(file, "%d\n");
9544 }
9545 
9546 static int determine_kprobe_retprobe_bit(void)
9547 {
9548 	const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
9549 
9550 	return parse_uint_from_file(file, "config:%d\n");
9551 }
9552 
9553 static int determine_uprobe_retprobe_bit(void)
9554 {
9555 	const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
9556 
9557 	return parse_uint_from_file(file, "config:%d\n");
9558 }
9559 
9560 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
9561 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
9562 
9563 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
9564 				 uint64_t offset, int pid, size_t ref_ctr_off)
9565 {
9566 	struct perf_event_attr attr = {};
9567 	char errmsg[STRERR_BUFSIZE];
9568 	int type, pfd, err;
9569 
9570 	if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
9571 		return -EINVAL;
9572 
9573 	type = uprobe ? determine_uprobe_perf_type()
9574 		      : determine_kprobe_perf_type();
9575 	if (type < 0) {
9576 		pr_warn("failed to determine %s perf type: %s\n",
9577 			uprobe ? "uprobe" : "kprobe",
9578 			libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
9579 		return type;
9580 	}
9581 	if (retprobe) {
9582 		int bit = uprobe ? determine_uprobe_retprobe_bit()
9583 				 : determine_kprobe_retprobe_bit();
9584 
9585 		if (bit < 0) {
9586 			pr_warn("failed to determine %s retprobe bit: %s\n",
9587 				uprobe ? "uprobe" : "kprobe",
9588 				libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
9589 			return bit;
9590 		}
9591 		attr.config |= 1 << bit;
9592 	}
9593 	attr.size = sizeof(attr);
9594 	attr.type = type;
9595 	attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9596 	attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
9597 	attr.config2 = offset;		 /* kprobe_addr or probe_offset */
9598 
9599 	/* pid filter is meaningful only for uprobes */
9600 	pfd = syscall(__NR_perf_event_open, &attr,
9601 		      pid < 0 ? -1 : pid /* pid */,
9602 		      pid == -1 ? 0 : -1 /* cpu */,
9603 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9604 	if (pfd < 0) {
9605 		err = -errno;
9606 		pr_warn("%s perf_event_open() failed: %s\n",
9607 			uprobe ? "uprobe" : "kprobe",
9608 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9609 		return err;
9610 	}
9611 	return pfd;
9612 }
9613 
9614 static int append_to_file(const char *file, const char *fmt, ...)
9615 {
9616 	int fd, n, err = 0;
9617 	va_list ap;
9618 
9619 	fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
9620 	if (fd < 0)
9621 		return -errno;
9622 
9623 	va_start(ap, fmt);
9624 	n = vdprintf(fd, fmt, ap);
9625 	va_end(ap);
9626 
9627 	if (n < 0)
9628 		err = -errno;
9629 
9630 	close(fd);
9631 	return err;
9632 }
9633 
9634 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
9635 					 const char *kfunc_name, size_t offset)
9636 {
9637 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), kfunc_name, offset);
9638 }
9639 
9640 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
9641 				   const char *kfunc_name, size_t offset)
9642 {
9643 	const char *file = "/sys/kernel/debug/tracing/kprobe_events";
9644 
9645 	return append_to_file(file, "%c:%s/%s %s+0x%zx",
9646 			      retprobe ? 'r' : 'p',
9647 			      retprobe ? "kretprobes" : "kprobes",
9648 			      probe_name, kfunc_name, offset);
9649 }
9650 
9651 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
9652 {
9653 	const char *file = "/sys/kernel/debug/tracing/kprobe_events";
9654 
9655 	return append_to_file(file, "-:%s/%s", retprobe ? "kretprobes" : "kprobes", probe_name);
9656 }
9657 
9658 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
9659 {
9660 	char file[256];
9661 
9662 	snprintf(file, sizeof(file),
9663 		 "/sys/kernel/debug/tracing/events/%s/%s/id",
9664 		 retprobe ? "kretprobes" : "kprobes", probe_name);
9665 
9666 	return parse_uint_from_file(file, "%d\n");
9667 }
9668 
9669 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
9670 					 const char *kfunc_name, size_t offset, int pid)
9671 {
9672 	struct perf_event_attr attr = {};
9673 	char errmsg[STRERR_BUFSIZE];
9674 	int type, pfd, err;
9675 
9676 	err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
9677 	if (err < 0) {
9678 		pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
9679 			kfunc_name, offset,
9680 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9681 		return err;
9682 	}
9683 	type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
9684 	if (type < 0) {
9685 		pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
9686 			kfunc_name, offset,
9687 			libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
9688 		return type;
9689 	}
9690 	attr.size = sizeof(attr);
9691 	attr.config = type;
9692 	attr.type = PERF_TYPE_TRACEPOINT;
9693 
9694 	pfd = syscall(__NR_perf_event_open, &attr,
9695 		      pid < 0 ? -1 : pid, /* pid */
9696 		      pid == -1 ? 0 : -1, /* cpu */
9697 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
9698 	if (pfd < 0) {
9699 		err = -errno;
9700 		pr_warn("legacy kprobe perf_event_open() failed: %s\n",
9701 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9702 		return err;
9703 	}
9704 	return pfd;
9705 }
9706 
9707 struct bpf_link *
9708 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
9709 				const char *func_name,
9710 				const struct bpf_kprobe_opts *opts)
9711 {
9712 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
9713 	char errmsg[STRERR_BUFSIZE];
9714 	char *legacy_probe = NULL;
9715 	struct bpf_link *link;
9716 	size_t offset;
9717 	bool retprobe, legacy;
9718 	int pfd, err;
9719 
9720 	if (!OPTS_VALID(opts, bpf_kprobe_opts))
9721 		return libbpf_err_ptr(-EINVAL);
9722 
9723 	retprobe = OPTS_GET(opts, retprobe, false);
9724 	offset = OPTS_GET(opts, offset, 0);
9725 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
9726 
9727 	legacy = determine_kprobe_perf_type() < 0;
9728 	if (!legacy) {
9729 		pfd = perf_event_open_probe(false /* uprobe */, retprobe,
9730 					    func_name, offset,
9731 					    -1 /* pid */, 0 /* ref_ctr_off */);
9732 	} else {
9733 		char probe_name[256];
9734 
9735 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
9736 					     func_name, offset);
9737 
9738 		legacy_probe = strdup(func_name);
9739 		if (!legacy_probe)
9740 			return libbpf_err_ptr(-ENOMEM);
9741 
9742 		pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
9743 						    offset, -1 /* pid */);
9744 	}
9745 	if (pfd < 0) {
9746 		err = -errno;
9747 		pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
9748 			prog->name, retprobe ? "kretprobe" : "kprobe",
9749 			func_name, offset,
9750 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9751 		goto err_out;
9752 	}
9753 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
9754 	err = libbpf_get_error(link);
9755 	if (err) {
9756 		close(pfd);
9757 		pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
9758 			prog->name, retprobe ? "kretprobe" : "kprobe",
9759 			func_name, offset,
9760 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9761 		goto err_out;
9762 	}
9763 	if (legacy) {
9764 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9765 
9766 		perf_link->legacy_probe_name = legacy_probe;
9767 		perf_link->legacy_is_kprobe = true;
9768 		perf_link->legacy_is_retprobe = retprobe;
9769 	}
9770 
9771 	return link;
9772 err_out:
9773 	free(legacy_probe);
9774 	return libbpf_err_ptr(err);
9775 }
9776 
9777 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
9778 					    bool retprobe,
9779 					    const char *func_name)
9780 {
9781 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
9782 		.retprobe = retprobe,
9783 	);
9784 
9785 	return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
9786 }
9787 
9788 static struct bpf_link *attach_kprobe(const struct bpf_program *prog, long cookie)
9789 {
9790 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
9791 	unsigned long offset = 0;
9792 	struct bpf_link *link;
9793 	const char *func_name;
9794 	char *func;
9795 	int n, err;
9796 
9797 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
9798 	if (opts.retprobe)
9799 		func_name = prog->sec_name + sizeof("kretprobe/") - 1;
9800 	else
9801 		func_name = prog->sec_name + sizeof("kprobe/") - 1;
9802 
9803 	n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
9804 	if (n < 1) {
9805 		err = -EINVAL;
9806 		pr_warn("kprobe name is invalid: %s\n", func_name);
9807 		return libbpf_err_ptr(err);
9808 	}
9809 	if (opts.retprobe && offset != 0) {
9810 		free(func);
9811 		err = -EINVAL;
9812 		pr_warn("kretprobes do not support offset specification\n");
9813 		return libbpf_err_ptr(err);
9814 	}
9815 
9816 	opts.offset = offset;
9817 	link = bpf_program__attach_kprobe_opts(prog, func, &opts);
9818 	free(func);
9819 	return link;
9820 }
9821 
9822 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
9823 					 const char *binary_path, uint64_t offset)
9824 {
9825 	int i;
9826 
9827 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
9828 
9829 	/* sanitize binary_path in the probe name */
9830 	for (i = 0; buf[i]; i++) {
9831 		if (!isalnum(buf[i]))
9832 			buf[i] = '_';
9833 	}
9834 }
9835 
9836 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
9837 					  const char *binary_path, size_t offset)
9838 {
9839 	const char *file = "/sys/kernel/debug/tracing/uprobe_events";
9840 
9841 	return append_to_file(file, "%c:%s/%s %s:0x%zx",
9842 			      retprobe ? 'r' : 'p',
9843 			      retprobe ? "uretprobes" : "uprobes",
9844 			      probe_name, binary_path, offset);
9845 }
9846 
9847 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
9848 {
9849 	const char *file = "/sys/kernel/debug/tracing/uprobe_events";
9850 
9851 	return append_to_file(file, "-:%s/%s", retprobe ? "uretprobes" : "uprobes", probe_name);
9852 }
9853 
9854 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
9855 {
9856 	char file[512];
9857 
9858 	snprintf(file, sizeof(file),
9859 		 "/sys/kernel/debug/tracing/events/%s/%s/id",
9860 		 retprobe ? "uretprobes" : "uprobes", probe_name);
9861 
9862 	return parse_uint_from_file(file, "%d\n");
9863 }
9864 
9865 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
9866 					 const char *binary_path, size_t offset, int pid)
9867 {
9868 	struct perf_event_attr attr;
9869 	int type, pfd, err;
9870 
9871 	err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
9872 	if (err < 0) {
9873 		pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
9874 			binary_path, (size_t)offset, err);
9875 		return err;
9876 	}
9877 	type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
9878 	if (type < 0) {
9879 		pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
9880 			binary_path, offset, err);
9881 		return type;
9882 	}
9883 
9884 	memset(&attr, 0, sizeof(attr));
9885 	attr.size = sizeof(attr);
9886 	attr.config = type;
9887 	attr.type = PERF_TYPE_TRACEPOINT;
9888 
9889 	pfd = syscall(__NR_perf_event_open, &attr,
9890 		      pid < 0 ? -1 : pid, /* pid */
9891 		      pid == -1 ? 0 : -1, /* cpu */
9892 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
9893 	if (pfd < 0) {
9894 		err = -errno;
9895 		pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
9896 		return err;
9897 	}
9898 	return pfd;
9899 }
9900 
9901 LIBBPF_API struct bpf_link *
9902 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
9903 				const char *binary_path, size_t func_offset,
9904 				const struct bpf_uprobe_opts *opts)
9905 {
9906 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
9907 	char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
9908 	struct bpf_link *link;
9909 	size_t ref_ctr_off;
9910 	int pfd, err;
9911 	bool retprobe, legacy;
9912 
9913 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
9914 		return libbpf_err_ptr(-EINVAL);
9915 
9916 	retprobe = OPTS_GET(opts, retprobe, false);
9917 	ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
9918 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
9919 
9920 	legacy = determine_uprobe_perf_type() < 0;
9921 	if (!legacy) {
9922 		pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
9923 					    func_offset, pid, ref_ctr_off);
9924 	} else {
9925 		char probe_name[512];
9926 
9927 		if (ref_ctr_off)
9928 			return libbpf_err_ptr(-EINVAL);
9929 
9930 		gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
9931 					     binary_path, func_offset);
9932 
9933 		legacy_probe = strdup(probe_name);
9934 		if (!legacy_probe)
9935 			return libbpf_err_ptr(-ENOMEM);
9936 
9937 		pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
9938 						    binary_path, func_offset, pid);
9939 	}
9940 	if (pfd < 0) {
9941 		err = -errno;
9942 		pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
9943 			prog->name, retprobe ? "uretprobe" : "uprobe",
9944 			binary_path, func_offset,
9945 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9946 		goto err_out;
9947 	}
9948 
9949 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
9950 	err = libbpf_get_error(link);
9951 	if (err) {
9952 		close(pfd);
9953 		pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
9954 			prog->name, retprobe ? "uretprobe" : "uprobe",
9955 			binary_path, func_offset,
9956 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9957 		goto err_out;
9958 	}
9959 	if (legacy) {
9960 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9961 
9962 		perf_link->legacy_probe_name = legacy_probe;
9963 		perf_link->legacy_is_kprobe = false;
9964 		perf_link->legacy_is_retprobe = retprobe;
9965 	}
9966 	return link;
9967 err_out:
9968 	free(legacy_probe);
9969 	return libbpf_err_ptr(err);
9970 
9971 }
9972 
9973 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
9974 					    bool retprobe, pid_t pid,
9975 					    const char *binary_path,
9976 					    size_t func_offset)
9977 {
9978 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
9979 
9980 	return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
9981 }
9982 
9983 static int determine_tracepoint_id(const char *tp_category,
9984 				   const char *tp_name)
9985 {
9986 	char file[PATH_MAX];
9987 	int ret;
9988 
9989 	ret = snprintf(file, sizeof(file),
9990 		       "/sys/kernel/debug/tracing/events/%s/%s/id",
9991 		       tp_category, tp_name);
9992 	if (ret < 0)
9993 		return -errno;
9994 	if (ret >= sizeof(file)) {
9995 		pr_debug("tracepoint %s/%s path is too long\n",
9996 			 tp_category, tp_name);
9997 		return -E2BIG;
9998 	}
9999 	return parse_uint_from_file(file, "%d\n");
10000 }
10001 
10002 static int perf_event_open_tracepoint(const char *tp_category,
10003 				      const char *tp_name)
10004 {
10005 	struct perf_event_attr attr = {};
10006 	char errmsg[STRERR_BUFSIZE];
10007 	int tp_id, pfd, err;
10008 
10009 	tp_id = determine_tracepoint_id(tp_category, tp_name);
10010 	if (tp_id < 0) {
10011 		pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
10012 			tp_category, tp_name,
10013 			libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
10014 		return tp_id;
10015 	}
10016 
10017 	attr.type = PERF_TYPE_TRACEPOINT;
10018 	attr.size = sizeof(attr);
10019 	attr.config = tp_id;
10020 
10021 	pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
10022 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10023 	if (pfd < 0) {
10024 		err = -errno;
10025 		pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
10026 			tp_category, tp_name,
10027 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10028 		return err;
10029 	}
10030 	return pfd;
10031 }
10032 
10033 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
10034 						     const char *tp_category,
10035 						     const char *tp_name,
10036 						     const struct bpf_tracepoint_opts *opts)
10037 {
10038 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10039 	char errmsg[STRERR_BUFSIZE];
10040 	struct bpf_link *link;
10041 	int pfd, err;
10042 
10043 	if (!OPTS_VALID(opts, bpf_tracepoint_opts))
10044 		return libbpf_err_ptr(-EINVAL);
10045 
10046 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10047 
10048 	pfd = perf_event_open_tracepoint(tp_category, tp_name);
10049 	if (pfd < 0) {
10050 		pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
10051 			prog->name, tp_category, tp_name,
10052 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
10053 		return libbpf_err_ptr(pfd);
10054 	}
10055 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10056 	err = libbpf_get_error(link);
10057 	if (err) {
10058 		close(pfd);
10059 		pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
10060 			prog->name, tp_category, tp_name,
10061 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10062 		return libbpf_err_ptr(err);
10063 	}
10064 	return link;
10065 }
10066 
10067 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
10068 						const char *tp_category,
10069 						const char *tp_name)
10070 {
10071 	return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
10072 }
10073 
10074 static struct bpf_link *attach_tp(const struct bpf_program *prog, long cookie)
10075 {
10076 	char *sec_name, *tp_cat, *tp_name;
10077 	struct bpf_link *link;
10078 
10079 	sec_name = strdup(prog->sec_name);
10080 	if (!sec_name)
10081 		return libbpf_err_ptr(-ENOMEM);
10082 
10083 	/* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
10084 	if (str_has_pfx(prog->sec_name, "tp/"))
10085 		tp_cat = sec_name + sizeof("tp/") - 1;
10086 	else
10087 		tp_cat = sec_name + sizeof("tracepoint/") - 1;
10088 	tp_name = strchr(tp_cat, '/');
10089 	if (!tp_name) {
10090 		free(sec_name);
10091 		return libbpf_err_ptr(-EINVAL);
10092 	}
10093 	*tp_name = '\0';
10094 	tp_name++;
10095 
10096 	link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
10097 	free(sec_name);
10098 	return link;
10099 }
10100 
10101 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
10102 						    const char *tp_name)
10103 {
10104 	char errmsg[STRERR_BUFSIZE];
10105 	struct bpf_link *link;
10106 	int prog_fd, pfd;
10107 
10108 	prog_fd = bpf_program__fd(prog);
10109 	if (prog_fd < 0) {
10110 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
10111 		return libbpf_err_ptr(-EINVAL);
10112 	}
10113 
10114 	link = calloc(1, sizeof(*link));
10115 	if (!link)
10116 		return libbpf_err_ptr(-ENOMEM);
10117 	link->detach = &bpf_link__detach_fd;
10118 
10119 	pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
10120 	if (pfd < 0) {
10121 		pfd = -errno;
10122 		free(link);
10123 		pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
10124 			prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
10125 		return libbpf_err_ptr(pfd);
10126 	}
10127 	link->fd = pfd;
10128 	return link;
10129 }
10130 
10131 static struct bpf_link *attach_raw_tp(const struct bpf_program *prog, long cookie)
10132 {
10133 	static const char *const prefixes[] = {
10134 		"raw_tp/",
10135 		"raw_tracepoint/",
10136 		"raw_tp.w/",
10137 		"raw_tracepoint.w/",
10138 	};
10139 	size_t i;
10140 	const char *tp_name = NULL;
10141 
10142 	for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
10143 		if (str_has_pfx(prog->sec_name, prefixes[i])) {
10144 			tp_name = prog->sec_name + strlen(prefixes[i]);
10145 			break;
10146 		}
10147 	}
10148 	if (!tp_name) {
10149 		pr_warn("prog '%s': invalid section name '%s'\n",
10150 			prog->name, prog->sec_name);
10151 		return libbpf_err_ptr(-EINVAL);
10152 	}
10153 
10154 	return bpf_program__attach_raw_tracepoint(prog, tp_name);
10155 }
10156 
10157 /* Common logic for all BPF program types that attach to a btf_id */
10158 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog)
10159 {
10160 	char errmsg[STRERR_BUFSIZE];
10161 	struct bpf_link *link;
10162 	int prog_fd, pfd;
10163 
10164 	prog_fd = bpf_program__fd(prog);
10165 	if (prog_fd < 0) {
10166 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
10167 		return libbpf_err_ptr(-EINVAL);
10168 	}
10169 
10170 	link = calloc(1, sizeof(*link));
10171 	if (!link)
10172 		return libbpf_err_ptr(-ENOMEM);
10173 	link->detach = &bpf_link__detach_fd;
10174 
10175 	pfd = bpf_raw_tracepoint_open(NULL, prog_fd);
10176 	if (pfd < 0) {
10177 		pfd = -errno;
10178 		free(link);
10179 		pr_warn("prog '%s': failed to attach: %s\n",
10180 			prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
10181 		return libbpf_err_ptr(pfd);
10182 	}
10183 	link->fd = pfd;
10184 	return (struct bpf_link *)link;
10185 }
10186 
10187 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
10188 {
10189 	return bpf_program__attach_btf_id(prog);
10190 }
10191 
10192 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
10193 {
10194 	return bpf_program__attach_btf_id(prog);
10195 }
10196 
10197 static struct bpf_link *attach_trace(const struct bpf_program *prog, long cookie)
10198 {
10199 	return bpf_program__attach_trace(prog);
10200 }
10201 
10202 static struct bpf_link *attach_lsm(const struct bpf_program *prog, long cookie)
10203 {
10204 	return bpf_program__attach_lsm(prog);
10205 }
10206 
10207 static struct bpf_link *
10208 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id,
10209 		       const char *target_name)
10210 {
10211 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts,
10212 			    .target_btf_id = btf_id);
10213 	enum bpf_attach_type attach_type;
10214 	char errmsg[STRERR_BUFSIZE];
10215 	struct bpf_link *link;
10216 	int prog_fd, link_fd;
10217 
10218 	prog_fd = bpf_program__fd(prog);
10219 	if (prog_fd < 0) {
10220 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
10221 		return libbpf_err_ptr(-EINVAL);
10222 	}
10223 
10224 	link = calloc(1, sizeof(*link));
10225 	if (!link)
10226 		return libbpf_err_ptr(-ENOMEM);
10227 	link->detach = &bpf_link__detach_fd;
10228 
10229 	attach_type = bpf_program__get_expected_attach_type(prog);
10230 	link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts);
10231 	if (link_fd < 0) {
10232 		link_fd = -errno;
10233 		free(link);
10234 		pr_warn("prog '%s': failed to attach to %s: %s\n",
10235 			prog->name, target_name,
10236 			libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
10237 		return libbpf_err_ptr(link_fd);
10238 	}
10239 	link->fd = link_fd;
10240 	return link;
10241 }
10242 
10243 struct bpf_link *
10244 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
10245 {
10246 	return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup");
10247 }
10248 
10249 struct bpf_link *
10250 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
10251 {
10252 	return bpf_program__attach_fd(prog, netns_fd, 0, "netns");
10253 }
10254 
10255 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
10256 {
10257 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
10258 	return bpf_program__attach_fd(prog, ifindex, 0, "xdp");
10259 }
10260 
10261 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
10262 					      int target_fd,
10263 					      const char *attach_func_name)
10264 {
10265 	int btf_id;
10266 
10267 	if (!!target_fd != !!attach_func_name) {
10268 		pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
10269 			prog->name);
10270 		return libbpf_err_ptr(-EINVAL);
10271 	}
10272 
10273 	if (prog->type != BPF_PROG_TYPE_EXT) {
10274 		pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
10275 			prog->name);
10276 		return libbpf_err_ptr(-EINVAL);
10277 	}
10278 
10279 	if (target_fd) {
10280 		btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
10281 		if (btf_id < 0)
10282 			return libbpf_err_ptr(btf_id);
10283 
10284 		return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace");
10285 	} else {
10286 		/* no target, so use raw_tracepoint_open for compatibility
10287 		 * with old kernels
10288 		 */
10289 		return bpf_program__attach_trace(prog);
10290 	}
10291 }
10292 
10293 struct bpf_link *
10294 bpf_program__attach_iter(const struct bpf_program *prog,
10295 			 const struct bpf_iter_attach_opts *opts)
10296 {
10297 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
10298 	char errmsg[STRERR_BUFSIZE];
10299 	struct bpf_link *link;
10300 	int prog_fd, link_fd;
10301 	__u32 target_fd = 0;
10302 
10303 	if (!OPTS_VALID(opts, bpf_iter_attach_opts))
10304 		return libbpf_err_ptr(-EINVAL);
10305 
10306 	link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
10307 	link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
10308 
10309 	prog_fd = bpf_program__fd(prog);
10310 	if (prog_fd < 0) {
10311 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
10312 		return libbpf_err_ptr(-EINVAL);
10313 	}
10314 
10315 	link = calloc(1, sizeof(*link));
10316 	if (!link)
10317 		return libbpf_err_ptr(-ENOMEM);
10318 	link->detach = &bpf_link__detach_fd;
10319 
10320 	link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
10321 				  &link_create_opts);
10322 	if (link_fd < 0) {
10323 		link_fd = -errno;
10324 		free(link);
10325 		pr_warn("prog '%s': failed to attach to iterator: %s\n",
10326 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
10327 		return libbpf_err_ptr(link_fd);
10328 	}
10329 	link->fd = link_fd;
10330 	return link;
10331 }
10332 
10333 static struct bpf_link *attach_iter(const struct bpf_program *prog, long cookie)
10334 {
10335 	return bpf_program__attach_iter(prog, NULL);
10336 }
10337 
10338 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
10339 {
10340 	if (!prog->sec_def || !prog->sec_def->attach_fn)
10341 		return libbpf_err_ptr(-ESRCH);
10342 
10343 	return prog->sec_def->attach_fn(prog, prog->sec_def->cookie);
10344 }
10345 
10346 static int bpf_link__detach_struct_ops(struct bpf_link *link)
10347 {
10348 	__u32 zero = 0;
10349 
10350 	if (bpf_map_delete_elem(link->fd, &zero))
10351 		return -errno;
10352 
10353 	return 0;
10354 }
10355 
10356 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
10357 {
10358 	struct bpf_struct_ops *st_ops;
10359 	struct bpf_link *link;
10360 	__u32 i, zero = 0;
10361 	int err;
10362 
10363 	if (!bpf_map__is_struct_ops(map) || map->fd == -1)
10364 		return libbpf_err_ptr(-EINVAL);
10365 
10366 	link = calloc(1, sizeof(*link));
10367 	if (!link)
10368 		return libbpf_err_ptr(-EINVAL);
10369 
10370 	st_ops = map->st_ops;
10371 	for (i = 0; i < btf_vlen(st_ops->type); i++) {
10372 		struct bpf_program *prog = st_ops->progs[i];
10373 		void *kern_data;
10374 		int prog_fd;
10375 
10376 		if (!prog)
10377 			continue;
10378 
10379 		prog_fd = bpf_program__fd(prog);
10380 		kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
10381 		*(unsigned long *)kern_data = prog_fd;
10382 	}
10383 
10384 	err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0);
10385 	if (err) {
10386 		err = -errno;
10387 		free(link);
10388 		return libbpf_err_ptr(err);
10389 	}
10390 
10391 	link->detach = bpf_link__detach_struct_ops;
10392 	link->fd = map->fd;
10393 
10394 	return link;
10395 }
10396 
10397 enum bpf_perf_event_ret
10398 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
10399 			   void **copy_mem, size_t *copy_size,
10400 			   bpf_perf_event_print_t fn, void *private_data)
10401 {
10402 	struct perf_event_mmap_page *header = mmap_mem;
10403 	__u64 data_head = ring_buffer_read_head(header);
10404 	__u64 data_tail = header->data_tail;
10405 	void *base = ((__u8 *)header) + page_size;
10406 	int ret = LIBBPF_PERF_EVENT_CONT;
10407 	struct perf_event_header *ehdr;
10408 	size_t ehdr_size;
10409 
10410 	while (data_head != data_tail) {
10411 		ehdr = base + (data_tail & (mmap_size - 1));
10412 		ehdr_size = ehdr->size;
10413 
10414 		if (((void *)ehdr) + ehdr_size > base + mmap_size) {
10415 			void *copy_start = ehdr;
10416 			size_t len_first = base + mmap_size - copy_start;
10417 			size_t len_secnd = ehdr_size - len_first;
10418 
10419 			if (*copy_size < ehdr_size) {
10420 				free(*copy_mem);
10421 				*copy_mem = malloc(ehdr_size);
10422 				if (!*copy_mem) {
10423 					*copy_size = 0;
10424 					ret = LIBBPF_PERF_EVENT_ERROR;
10425 					break;
10426 				}
10427 				*copy_size = ehdr_size;
10428 			}
10429 
10430 			memcpy(*copy_mem, copy_start, len_first);
10431 			memcpy(*copy_mem + len_first, base, len_secnd);
10432 			ehdr = *copy_mem;
10433 		}
10434 
10435 		ret = fn(ehdr, private_data);
10436 		data_tail += ehdr_size;
10437 		if (ret != LIBBPF_PERF_EVENT_CONT)
10438 			break;
10439 	}
10440 
10441 	ring_buffer_write_tail(header, data_tail);
10442 	return libbpf_err(ret);
10443 }
10444 
10445 struct perf_buffer;
10446 
10447 struct perf_buffer_params {
10448 	struct perf_event_attr *attr;
10449 	/* if event_cb is specified, it takes precendence */
10450 	perf_buffer_event_fn event_cb;
10451 	/* sample_cb and lost_cb are higher-level common-case callbacks */
10452 	perf_buffer_sample_fn sample_cb;
10453 	perf_buffer_lost_fn lost_cb;
10454 	void *ctx;
10455 	int cpu_cnt;
10456 	int *cpus;
10457 	int *map_keys;
10458 };
10459 
10460 struct perf_cpu_buf {
10461 	struct perf_buffer *pb;
10462 	void *base; /* mmap()'ed memory */
10463 	void *buf; /* for reconstructing segmented data */
10464 	size_t buf_size;
10465 	int fd;
10466 	int cpu;
10467 	int map_key;
10468 };
10469 
10470 struct perf_buffer {
10471 	perf_buffer_event_fn event_cb;
10472 	perf_buffer_sample_fn sample_cb;
10473 	perf_buffer_lost_fn lost_cb;
10474 	void *ctx; /* passed into callbacks */
10475 
10476 	size_t page_size;
10477 	size_t mmap_size;
10478 	struct perf_cpu_buf **cpu_bufs;
10479 	struct epoll_event *events;
10480 	int cpu_cnt; /* number of allocated CPU buffers */
10481 	int epoll_fd; /* perf event FD */
10482 	int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
10483 };
10484 
10485 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
10486 				      struct perf_cpu_buf *cpu_buf)
10487 {
10488 	if (!cpu_buf)
10489 		return;
10490 	if (cpu_buf->base &&
10491 	    munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
10492 		pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
10493 	if (cpu_buf->fd >= 0) {
10494 		ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
10495 		close(cpu_buf->fd);
10496 	}
10497 	free(cpu_buf->buf);
10498 	free(cpu_buf);
10499 }
10500 
10501 void perf_buffer__free(struct perf_buffer *pb)
10502 {
10503 	int i;
10504 
10505 	if (IS_ERR_OR_NULL(pb))
10506 		return;
10507 	if (pb->cpu_bufs) {
10508 		for (i = 0; i < pb->cpu_cnt; i++) {
10509 			struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
10510 
10511 			if (!cpu_buf)
10512 				continue;
10513 
10514 			bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
10515 			perf_buffer__free_cpu_buf(pb, cpu_buf);
10516 		}
10517 		free(pb->cpu_bufs);
10518 	}
10519 	if (pb->epoll_fd >= 0)
10520 		close(pb->epoll_fd);
10521 	free(pb->events);
10522 	free(pb);
10523 }
10524 
10525 static struct perf_cpu_buf *
10526 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
10527 			  int cpu, int map_key)
10528 {
10529 	struct perf_cpu_buf *cpu_buf;
10530 	char msg[STRERR_BUFSIZE];
10531 	int err;
10532 
10533 	cpu_buf = calloc(1, sizeof(*cpu_buf));
10534 	if (!cpu_buf)
10535 		return ERR_PTR(-ENOMEM);
10536 
10537 	cpu_buf->pb = pb;
10538 	cpu_buf->cpu = cpu;
10539 	cpu_buf->map_key = map_key;
10540 
10541 	cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
10542 			      -1, PERF_FLAG_FD_CLOEXEC);
10543 	if (cpu_buf->fd < 0) {
10544 		err = -errno;
10545 		pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
10546 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10547 		goto error;
10548 	}
10549 
10550 	cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
10551 			     PROT_READ | PROT_WRITE, MAP_SHARED,
10552 			     cpu_buf->fd, 0);
10553 	if (cpu_buf->base == MAP_FAILED) {
10554 		cpu_buf->base = NULL;
10555 		err = -errno;
10556 		pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
10557 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10558 		goto error;
10559 	}
10560 
10561 	if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10562 		err = -errno;
10563 		pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
10564 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10565 		goto error;
10566 	}
10567 
10568 	return cpu_buf;
10569 
10570 error:
10571 	perf_buffer__free_cpu_buf(pb, cpu_buf);
10572 	return (struct perf_cpu_buf *)ERR_PTR(err);
10573 }
10574 
10575 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
10576 					      struct perf_buffer_params *p);
10577 
10578 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
10579 				     const struct perf_buffer_opts *opts)
10580 {
10581 	struct perf_buffer_params p = {};
10582 	struct perf_event_attr attr = { 0, };
10583 
10584 	attr.config = PERF_COUNT_SW_BPF_OUTPUT;
10585 	attr.type = PERF_TYPE_SOFTWARE;
10586 	attr.sample_type = PERF_SAMPLE_RAW;
10587 	attr.sample_period = 1;
10588 	attr.wakeup_events = 1;
10589 
10590 	p.attr = &attr;
10591 	p.sample_cb = opts ? opts->sample_cb : NULL;
10592 	p.lost_cb = opts ? opts->lost_cb : NULL;
10593 	p.ctx = opts ? opts->ctx : NULL;
10594 
10595 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
10596 }
10597 
10598 struct perf_buffer *
10599 perf_buffer__new_raw(int map_fd, size_t page_cnt,
10600 		     const struct perf_buffer_raw_opts *opts)
10601 {
10602 	struct perf_buffer_params p = {};
10603 
10604 	p.attr = opts->attr;
10605 	p.event_cb = opts->event_cb;
10606 	p.ctx = opts->ctx;
10607 	p.cpu_cnt = opts->cpu_cnt;
10608 	p.cpus = opts->cpus;
10609 	p.map_keys = opts->map_keys;
10610 
10611 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
10612 }
10613 
10614 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
10615 					      struct perf_buffer_params *p)
10616 {
10617 	const char *online_cpus_file = "/sys/devices/system/cpu/online";
10618 	struct bpf_map_info map;
10619 	char msg[STRERR_BUFSIZE];
10620 	struct perf_buffer *pb;
10621 	bool *online = NULL;
10622 	__u32 map_info_len;
10623 	int err, i, j, n;
10624 
10625 	if (page_cnt & (page_cnt - 1)) {
10626 		pr_warn("page count should be power of two, but is %zu\n",
10627 			page_cnt);
10628 		return ERR_PTR(-EINVAL);
10629 	}
10630 
10631 	/* best-effort sanity checks */
10632 	memset(&map, 0, sizeof(map));
10633 	map_info_len = sizeof(map);
10634 	err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len);
10635 	if (err) {
10636 		err = -errno;
10637 		/* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
10638 		 * -EBADFD, -EFAULT, or -E2BIG on real error
10639 		 */
10640 		if (err != -EINVAL) {
10641 			pr_warn("failed to get map info for map FD %d: %s\n",
10642 				map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
10643 			return ERR_PTR(err);
10644 		}
10645 		pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
10646 			 map_fd);
10647 	} else {
10648 		if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
10649 			pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
10650 				map.name);
10651 			return ERR_PTR(-EINVAL);
10652 		}
10653 	}
10654 
10655 	pb = calloc(1, sizeof(*pb));
10656 	if (!pb)
10657 		return ERR_PTR(-ENOMEM);
10658 
10659 	pb->event_cb = p->event_cb;
10660 	pb->sample_cb = p->sample_cb;
10661 	pb->lost_cb = p->lost_cb;
10662 	pb->ctx = p->ctx;
10663 
10664 	pb->page_size = getpagesize();
10665 	pb->mmap_size = pb->page_size * page_cnt;
10666 	pb->map_fd = map_fd;
10667 
10668 	pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
10669 	if (pb->epoll_fd < 0) {
10670 		err = -errno;
10671 		pr_warn("failed to create epoll instance: %s\n",
10672 			libbpf_strerror_r(err, msg, sizeof(msg)));
10673 		goto error;
10674 	}
10675 
10676 	if (p->cpu_cnt > 0) {
10677 		pb->cpu_cnt = p->cpu_cnt;
10678 	} else {
10679 		pb->cpu_cnt = libbpf_num_possible_cpus();
10680 		if (pb->cpu_cnt < 0) {
10681 			err = pb->cpu_cnt;
10682 			goto error;
10683 		}
10684 		if (map.max_entries && map.max_entries < pb->cpu_cnt)
10685 			pb->cpu_cnt = map.max_entries;
10686 	}
10687 
10688 	pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
10689 	if (!pb->events) {
10690 		err = -ENOMEM;
10691 		pr_warn("failed to allocate events: out of memory\n");
10692 		goto error;
10693 	}
10694 	pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
10695 	if (!pb->cpu_bufs) {
10696 		err = -ENOMEM;
10697 		pr_warn("failed to allocate buffers: out of memory\n");
10698 		goto error;
10699 	}
10700 
10701 	err = parse_cpu_mask_file(online_cpus_file, &online, &n);
10702 	if (err) {
10703 		pr_warn("failed to get online CPU mask: %d\n", err);
10704 		goto error;
10705 	}
10706 
10707 	for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
10708 		struct perf_cpu_buf *cpu_buf;
10709 		int cpu, map_key;
10710 
10711 		cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
10712 		map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
10713 
10714 		/* in case user didn't explicitly requested particular CPUs to
10715 		 * be attached to, skip offline/not present CPUs
10716 		 */
10717 		if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
10718 			continue;
10719 
10720 		cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
10721 		if (IS_ERR(cpu_buf)) {
10722 			err = PTR_ERR(cpu_buf);
10723 			goto error;
10724 		}
10725 
10726 		pb->cpu_bufs[j] = cpu_buf;
10727 
10728 		err = bpf_map_update_elem(pb->map_fd, &map_key,
10729 					  &cpu_buf->fd, 0);
10730 		if (err) {
10731 			err = -errno;
10732 			pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
10733 				cpu, map_key, cpu_buf->fd,
10734 				libbpf_strerror_r(err, msg, sizeof(msg)));
10735 			goto error;
10736 		}
10737 
10738 		pb->events[j].events = EPOLLIN;
10739 		pb->events[j].data.ptr = cpu_buf;
10740 		if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
10741 			      &pb->events[j]) < 0) {
10742 			err = -errno;
10743 			pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
10744 				cpu, cpu_buf->fd,
10745 				libbpf_strerror_r(err, msg, sizeof(msg)));
10746 			goto error;
10747 		}
10748 		j++;
10749 	}
10750 	pb->cpu_cnt = j;
10751 	free(online);
10752 
10753 	return pb;
10754 
10755 error:
10756 	free(online);
10757 	if (pb)
10758 		perf_buffer__free(pb);
10759 	return ERR_PTR(err);
10760 }
10761 
10762 struct perf_sample_raw {
10763 	struct perf_event_header header;
10764 	uint32_t size;
10765 	char data[];
10766 };
10767 
10768 struct perf_sample_lost {
10769 	struct perf_event_header header;
10770 	uint64_t id;
10771 	uint64_t lost;
10772 	uint64_t sample_id;
10773 };
10774 
10775 static enum bpf_perf_event_ret
10776 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
10777 {
10778 	struct perf_cpu_buf *cpu_buf = ctx;
10779 	struct perf_buffer *pb = cpu_buf->pb;
10780 	void *data = e;
10781 
10782 	/* user wants full control over parsing perf event */
10783 	if (pb->event_cb)
10784 		return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
10785 
10786 	switch (e->type) {
10787 	case PERF_RECORD_SAMPLE: {
10788 		struct perf_sample_raw *s = data;
10789 
10790 		if (pb->sample_cb)
10791 			pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
10792 		break;
10793 	}
10794 	case PERF_RECORD_LOST: {
10795 		struct perf_sample_lost *s = data;
10796 
10797 		if (pb->lost_cb)
10798 			pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
10799 		break;
10800 	}
10801 	default:
10802 		pr_warn("unknown perf sample type %d\n", e->type);
10803 		return LIBBPF_PERF_EVENT_ERROR;
10804 	}
10805 	return LIBBPF_PERF_EVENT_CONT;
10806 }
10807 
10808 static int perf_buffer__process_records(struct perf_buffer *pb,
10809 					struct perf_cpu_buf *cpu_buf)
10810 {
10811 	enum bpf_perf_event_ret ret;
10812 
10813 	ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size,
10814 					 pb->page_size, &cpu_buf->buf,
10815 					 &cpu_buf->buf_size,
10816 					 perf_buffer__process_record, cpu_buf);
10817 	if (ret != LIBBPF_PERF_EVENT_CONT)
10818 		return ret;
10819 	return 0;
10820 }
10821 
10822 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
10823 {
10824 	return pb->epoll_fd;
10825 }
10826 
10827 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
10828 {
10829 	int i, cnt, err;
10830 
10831 	cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
10832 	if (cnt < 0)
10833 		return -errno;
10834 
10835 	for (i = 0; i < cnt; i++) {
10836 		struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
10837 
10838 		err = perf_buffer__process_records(pb, cpu_buf);
10839 		if (err) {
10840 			pr_warn("error while processing records: %d\n", err);
10841 			return libbpf_err(err);
10842 		}
10843 	}
10844 	return cnt;
10845 }
10846 
10847 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
10848  * manager.
10849  */
10850 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
10851 {
10852 	return pb->cpu_cnt;
10853 }
10854 
10855 /*
10856  * Return perf_event FD of a ring buffer in *buf_idx* slot of
10857  * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
10858  * select()/poll()/epoll() Linux syscalls.
10859  */
10860 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
10861 {
10862 	struct perf_cpu_buf *cpu_buf;
10863 
10864 	if (buf_idx >= pb->cpu_cnt)
10865 		return libbpf_err(-EINVAL);
10866 
10867 	cpu_buf = pb->cpu_bufs[buf_idx];
10868 	if (!cpu_buf)
10869 		return libbpf_err(-ENOENT);
10870 
10871 	return cpu_buf->fd;
10872 }
10873 
10874 /*
10875  * Consume data from perf ring buffer corresponding to slot *buf_idx* in
10876  * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
10877  * consume, do nothing and return success.
10878  * Returns:
10879  *   - 0 on success;
10880  *   - <0 on failure.
10881  */
10882 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
10883 {
10884 	struct perf_cpu_buf *cpu_buf;
10885 
10886 	if (buf_idx >= pb->cpu_cnt)
10887 		return libbpf_err(-EINVAL);
10888 
10889 	cpu_buf = pb->cpu_bufs[buf_idx];
10890 	if (!cpu_buf)
10891 		return libbpf_err(-ENOENT);
10892 
10893 	return perf_buffer__process_records(pb, cpu_buf);
10894 }
10895 
10896 int perf_buffer__consume(struct perf_buffer *pb)
10897 {
10898 	int i, err;
10899 
10900 	for (i = 0; i < pb->cpu_cnt; i++) {
10901 		struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
10902 
10903 		if (!cpu_buf)
10904 			continue;
10905 
10906 		err = perf_buffer__process_records(pb, cpu_buf);
10907 		if (err) {
10908 			pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
10909 			return libbpf_err(err);
10910 		}
10911 	}
10912 	return 0;
10913 }
10914 
10915 struct bpf_prog_info_array_desc {
10916 	int	array_offset;	/* e.g. offset of jited_prog_insns */
10917 	int	count_offset;	/* e.g. offset of jited_prog_len */
10918 	int	size_offset;	/* > 0: offset of rec size,
10919 				 * < 0: fix size of -size_offset
10920 				 */
10921 };
10922 
10923 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = {
10924 	[BPF_PROG_INFO_JITED_INSNS] = {
10925 		offsetof(struct bpf_prog_info, jited_prog_insns),
10926 		offsetof(struct bpf_prog_info, jited_prog_len),
10927 		-1,
10928 	},
10929 	[BPF_PROG_INFO_XLATED_INSNS] = {
10930 		offsetof(struct bpf_prog_info, xlated_prog_insns),
10931 		offsetof(struct bpf_prog_info, xlated_prog_len),
10932 		-1,
10933 	},
10934 	[BPF_PROG_INFO_MAP_IDS] = {
10935 		offsetof(struct bpf_prog_info, map_ids),
10936 		offsetof(struct bpf_prog_info, nr_map_ids),
10937 		-(int)sizeof(__u32),
10938 	},
10939 	[BPF_PROG_INFO_JITED_KSYMS] = {
10940 		offsetof(struct bpf_prog_info, jited_ksyms),
10941 		offsetof(struct bpf_prog_info, nr_jited_ksyms),
10942 		-(int)sizeof(__u64),
10943 	},
10944 	[BPF_PROG_INFO_JITED_FUNC_LENS] = {
10945 		offsetof(struct bpf_prog_info, jited_func_lens),
10946 		offsetof(struct bpf_prog_info, nr_jited_func_lens),
10947 		-(int)sizeof(__u32),
10948 	},
10949 	[BPF_PROG_INFO_FUNC_INFO] = {
10950 		offsetof(struct bpf_prog_info, func_info),
10951 		offsetof(struct bpf_prog_info, nr_func_info),
10952 		offsetof(struct bpf_prog_info, func_info_rec_size),
10953 	},
10954 	[BPF_PROG_INFO_LINE_INFO] = {
10955 		offsetof(struct bpf_prog_info, line_info),
10956 		offsetof(struct bpf_prog_info, nr_line_info),
10957 		offsetof(struct bpf_prog_info, line_info_rec_size),
10958 	},
10959 	[BPF_PROG_INFO_JITED_LINE_INFO] = {
10960 		offsetof(struct bpf_prog_info, jited_line_info),
10961 		offsetof(struct bpf_prog_info, nr_jited_line_info),
10962 		offsetof(struct bpf_prog_info, jited_line_info_rec_size),
10963 	},
10964 	[BPF_PROG_INFO_PROG_TAGS] = {
10965 		offsetof(struct bpf_prog_info, prog_tags),
10966 		offsetof(struct bpf_prog_info, nr_prog_tags),
10967 		-(int)sizeof(__u8) * BPF_TAG_SIZE,
10968 	},
10969 
10970 };
10971 
10972 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info,
10973 					   int offset)
10974 {
10975 	__u32 *array = (__u32 *)info;
10976 
10977 	if (offset >= 0)
10978 		return array[offset / sizeof(__u32)];
10979 	return -(int)offset;
10980 }
10981 
10982 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info,
10983 					   int offset)
10984 {
10985 	__u64 *array = (__u64 *)info;
10986 
10987 	if (offset >= 0)
10988 		return array[offset / sizeof(__u64)];
10989 	return -(int)offset;
10990 }
10991 
10992 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset,
10993 					 __u32 val)
10994 {
10995 	__u32 *array = (__u32 *)info;
10996 
10997 	if (offset >= 0)
10998 		array[offset / sizeof(__u32)] = val;
10999 }
11000 
11001 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset,
11002 					 __u64 val)
11003 {
11004 	__u64 *array = (__u64 *)info;
11005 
11006 	if (offset >= 0)
11007 		array[offset / sizeof(__u64)] = val;
11008 }
11009 
11010 struct bpf_prog_info_linear *
11011 bpf_program__get_prog_info_linear(int fd, __u64 arrays)
11012 {
11013 	struct bpf_prog_info_linear *info_linear;
11014 	struct bpf_prog_info info = {};
11015 	__u32 info_len = sizeof(info);
11016 	__u32 data_len = 0;
11017 	int i, err;
11018 	void *ptr;
11019 
11020 	if (arrays >> BPF_PROG_INFO_LAST_ARRAY)
11021 		return libbpf_err_ptr(-EINVAL);
11022 
11023 	/* step 1: get array dimensions */
11024 	err = bpf_obj_get_info_by_fd(fd, &info, &info_len);
11025 	if (err) {
11026 		pr_debug("can't get prog info: %s", strerror(errno));
11027 		return libbpf_err_ptr(-EFAULT);
11028 	}
11029 
11030 	/* step 2: calculate total size of all arrays */
11031 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
11032 		bool include_array = (arrays & (1UL << i)) > 0;
11033 		struct bpf_prog_info_array_desc *desc;
11034 		__u32 count, size;
11035 
11036 		desc = bpf_prog_info_array_desc + i;
11037 
11038 		/* kernel is too old to support this field */
11039 		if (info_len < desc->array_offset + sizeof(__u32) ||
11040 		    info_len < desc->count_offset + sizeof(__u32) ||
11041 		    (desc->size_offset > 0 && info_len < desc->size_offset))
11042 			include_array = false;
11043 
11044 		if (!include_array) {
11045 			arrays &= ~(1UL << i);	/* clear the bit */
11046 			continue;
11047 		}
11048 
11049 		count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
11050 		size  = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
11051 
11052 		data_len += count * size;
11053 	}
11054 
11055 	/* step 3: allocate continuous memory */
11056 	data_len = roundup(data_len, sizeof(__u64));
11057 	info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len);
11058 	if (!info_linear)
11059 		return libbpf_err_ptr(-ENOMEM);
11060 
11061 	/* step 4: fill data to info_linear->info */
11062 	info_linear->arrays = arrays;
11063 	memset(&info_linear->info, 0, sizeof(info));
11064 	ptr = info_linear->data;
11065 
11066 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
11067 		struct bpf_prog_info_array_desc *desc;
11068 		__u32 count, size;
11069 
11070 		if ((arrays & (1UL << i)) == 0)
11071 			continue;
11072 
11073 		desc  = bpf_prog_info_array_desc + i;
11074 		count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
11075 		size  = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
11076 		bpf_prog_info_set_offset_u32(&info_linear->info,
11077 					     desc->count_offset, count);
11078 		bpf_prog_info_set_offset_u32(&info_linear->info,
11079 					     desc->size_offset, size);
11080 		bpf_prog_info_set_offset_u64(&info_linear->info,
11081 					     desc->array_offset,
11082 					     ptr_to_u64(ptr));
11083 		ptr += count * size;
11084 	}
11085 
11086 	/* step 5: call syscall again to get required arrays */
11087 	err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len);
11088 	if (err) {
11089 		pr_debug("can't get prog info: %s", strerror(errno));
11090 		free(info_linear);
11091 		return libbpf_err_ptr(-EFAULT);
11092 	}
11093 
11094 	/* step 6: verify the data */
11095 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
11096 		struct bpf_prog_info_array_desc *desc;
11097 		__u32 v1, v2;
11098 
11099 		if ((arrays & (1UL << i)) == 0)
11100 			continue;
11101 
11102 		desc = bpf_prog_info_array_desc + i;
11103 		v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
11104 		v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
11105 						   desc->count_offset);
11106 		if (v1 != v2)
11107 			pr_warn("%s: mismatch in element count\n", __func__);
11108 
11109 		v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
11110 		v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
11111 						   desc->size_offset);
11112 		if (v1 != v2)
11113 			pr_warn("%s: mismatch in rec size\n", __func__);
11114 	}
11115 
11116 	/* step 7: update info_len and data_len */
11117 	info_linear->info_len = sizeof(struct bpf_prog_info);
11118 	info_linear->data_len = data_len;
11119 
11120 	return info_linear;
11121 }
11122 
11123 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear)
11124 {
11125 	int i;
11126 
11127 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
11128 		struct bpf_prog_info_array_desc *desc;
11129 		__u64 addr, offs;
11130 
11131 		if ((info_linear->arrays & (1UL << i)) == 0)
11132 			continue;
11133 
11134 		desc = bpf_prog_info_array_desc + i;
11135 		addr = bpf_prog_info_read_offset_u64(&info_linear->info,
11136 						     desc->array_offset);
11137 		offs = addr - ptr_to_u64(info_linear->data);
11138 		bpf_prog_info_set_offset_u64(&info_linear->info,
11139 					     desc->array_offset, offs);
11140 	}
11141 }
11142 
11143 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear)
11144 {
11145 	int i;
11146 
11147 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
11148 		struct bpf_prog_info_array_desc *desc;
11149 		__u64 addr, offs;
11150 
11151 		if ((info_linear->arrays & (1UL << i)) == 0)
11152 			continue;
11153 
11154 		desc = bpf_prog_info_array_desc + i;
11155 		offs = bpf_prog_info_read_offset_u64(&info_linear->info,
11156 						     desc->array_offset);
11157 		addr = offs + ptr_to_u64(info_linear->data);
11158 		bpf_prog_info_set_offset_u64(&info_linear->info,
11159 					     desc->array_offset, addr);
11160 	}
11161 }
11162 
11163 int bpf_program__set_attach_target(struct bpf_program *prog,
11164 				   int attach_prog_fd,
11165 				   const char *attach_func_name)
11166 {
11167 	int btf_obj_fd = 0, btf_id = 0, err;
11168 
11169 	if (!prog || attach_prog_fd < 0)
11170 		return libbpf_err(-EINVAL);
11171 
11172 	if (prog->obj->loaded)
11173 		return libbpf_err(-EINVAL);
11174 
11175 	if (attach_prog_fd && !attach_func_name) {
11176 		/* remember attach_prog_fd and let bpf_program__load() find
11177 		 * BTF ID during the program load
11178 		 */
11179 		prog->attach_prog_fd = attach_prog_fd;
11180 		return 0;
11181 	}
11182 
11183 	if (attach_prog_fd) {
11184 		btf_id = libbpf_find_prog_btf_id(attach_func_name,
11185 						 attach_prog_fd);
11186 		if (btf_id < 0)
11187 			return libbpf_err(btf_id);
11188 	} else {
11189 		if (!attach_func_name)
11190 			return libbpf_err(-EINVAL);
11191 
11192 		/* load btf_vmlinux, if not yet */
11193 		err = bpf_object__load_vmlinux_btf(prog->obj, true);
11194 		if (err)
11195 			return libbpf_err(err);
11196 		err = find_kernel_btf_id(prog->obj, attach_func_name,
11197 					 prog->expected_attach_type,
11198 					 &btf_obj_fd, &btf_id);
11199 		if (err)
11200 			return libbpf_err(err);
11201 	}
11202 
11203 	prog->attach_btf_id = btf_id;
11204 	prog->attach_btf_obj_fd = btf_obj_fd;
11205 	prog->attach_prog_fd = attach_prog_fd;
11206 	return 0;
11207 }
11208 
11209 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
11210 {
11211 	int err = 0, n, len, start, end = -1;
11212 	bool *tmp;
11213 
11214 	*mask = NULL;
11215 	*mask_sz = 0;
11216 
11217 	/* Each sub string separated by ',' has format \d+-\d+ or \d+ */
11218 	while (*s) {
11219 		if (*s == ',' || *s == '\n') {
11220 			s++;
11221 			continue;
11222 		}
11223 		n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
11224 		if (n <= 0 || n > 2) {
11225 			pr_warn("Failed to get CPU range %s: %d\n", s, n);
11226 			err = -EINVAL;
11227 			goto cleanup;
11228 		} else if (n == 1) {
11229 			end = start;
11230 		}
11231 		if (start < 0 || start > end) {
11232 			pr_warn("Invalid CPU range [%d,%d] in %s\n",
11233 				start, end, s);
11234 			err = -EINVAL;
11235 			goto cleanup;
11236 		}
11237 		tmp = realloc(*mask, end + 1);
11238 		if (!tmp) {
11239 			err = -ENOMEM;
11240 			goto cleanup;
11241 		}
11242 		*mask = tmp;
11243 		memset(tmp + *mask_sz, 0, start - *mask_sz);
11244 		memset(tmp + start, 1, end - start + 1);
11245 		*mask_sz = end + 1;
11246 		s += len;
11247 	}
11248 	if (!*mask_sz) {
11249 		pr_warn("Empty CPU range\n");
11250 		return -EINVAL;
11251 	}
11252 	return 0;
11253 cleanup:
11254 	free(*mask);
11255 	*mask = NULL;
11256 	return err;
11257 }
11258 
11259 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
11260 {
11261 	int fd, err = 0, len;
11262 	char buf[128];
11263 
11264 	fd = open(fcpu, O_RDONLY | O_CLOEXEC);
11265 	if (fd < 0) {
11266 		err = -errno;
11267 		pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
11268 		return err;
11269 	}
11270 	len = read(fd, buf, sizeof(buf));
11271 	close(fd);
11272 	if (len <= 0) {
11273 		err = len ? -errno : -EINVAL;
11274 		pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
11275 		return err;
11276 	}
11277 	if (len >= sizeof(buf)) {
11278 		pr_warn("CPU mask is too big in file %s\n", fcpu);
11279 		return -E2BIG;
11280 	}
11281 	buf[len] = '\0';
11282 
11283 	return parse_cpu_mask_str(buf, mask, mask_sz);
11284 }
11285 
11286 int libbpf_num_possible_cpus(void)
11287 {
11288 	static const char *fcpu = "/sys/devices/system/cpu/possible";
11289 	static int cpus;
11290 	int err, n, i, tmp_cpus;
11291 	bool *mask;
11292 
11293 	tmp_cpus = READ_ONCE(cpus);
11294 	if (tmp_cpus > 0)
11295 		return tmp_cpus;
11296 
11297 	err = parse_cpu_mask_file(fcpu, &mask, &n);
11298 	if (err)
11299 		return libbpf_err(err);
11300 
11301 	tmp_cpus = 0;
11302 	for (i = 0; i < n; i++) {
11303 		if (mask[i])
11304 			tmp_cpus++;
11305 	}
11306 	free(mask);
11307 
11308 	WRITE_ONCE(cpus, tmp_cpus);
11309 	return tmp_cpus;
11310 }
11311 
11312 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
11313 			      const struct bpf_object_open_opts *opts)
11314 {
11315 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
11316 		.object_name = s->name,
11317 	);
11318 	struct bpf_object *obj;
11319 	int i, err;
11320 
11321 	/* Attempt to preserve opts->object_name, unless overriden by user
11322 	 * explicitly. Overwriting object name for skeletons is discouraged,
11323 	 * as it breaks global data maps, because they contain object name
11324 	 * prefix as their own map name prefix. When skeleton is generated,
11325 	 * bpftool is making an assumption that this name will stay the same.
11326 	 */
11327 	if (opts) {
11328 		memcpy(&skel_opts, opts, sizeof(*opts));
11329 		if (!opts->object_name)
11330 			skel_opts.object_name = s->name;
11331 	}
11332 
11333 	obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
11334 	err = libbpf_get_error(obj);
11335 	if (err) {
11336 		pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
11337 			s->name, err);
11338 		return libbpf_err(err);
11339 	}
11340 
11341 	*s->obj = obj;
11342 
11343 	for (i = 0; i < s->map_cnt; i++) {
11344 		struct bpf_map **map = s->maps[i].map;
11345 		const char *name = s->maps[i].name;
11346 		void **mmaped = s->maps[i].mmaped;
11347 
11348 		*map = bpf_object__find_map_by_name(obj, name);
11349 		if (!*map) {
11350 			pr_warn("failed to find skeleton map '%s'\n", name);
11351 			return libbpf_err(-ESRCH);
11352 		}
11353 
11354 		/* externs shouldn't be pre-setup from user code */
11355 		if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
11356 			*mmaped = (*map)->mmaped;
11357 	}
11358 
11359 	for (i = 0; i < s->prog_cnt; i++) {
11360 		struct bpf_program **prog = s->progs[i].prog;
11361 		const char *name = s->progs[i].name;
11362 
11363 		*prog = bpf_object__find_program_by_name(obj, name);
11364 		if (!*prog) {
11365 			pr_warn("failed to find skeleton program '%s'\n", name);
11366 			return libbpf_err(-ESRCH);
11367 		}
11368 	}
11369 
11370 	return 0;
11371 }
11372 
11373 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
11374 {
11375 	int i, err;
11376 
11377 	err = bpf_object__load(*s->obj);
11378 	if (err) {
11379 		pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
11380 		return libbpf_err(err);
11381 	}
11382 
11383 	for (i = 0; i < s->map_cnt; i++) {
11384 		struct bpf_map *map = *s->maps[i].map;
11385 		size_t mmap_sz = bpf_map_mmap_sz(map);
11386 		int prot, map_fd = bpf_map__fd(map);
11387 		void **mmaped = s->maps[i].mmaped;
11388 
11389 		if (!mmaped)
11390 			continue;
11391 
11392 		if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
11393 			*mmaped = NULL;
11394 			continue;
11395 		}
11396 
11397 		if (map->def.map_flags & BPF_F_RDONLY_PROG)
11398 			prot = PROT_READ;
11399 		else
11400 			prot = PROT_READ | PROT_WRITE;
11401 
11402 		/* Remap anonymous mmap()-ed "map initialization image" as
11403 		 * a BPF map-backed mmap()-ed memory, but preserving the same
11404 		 * memory address. This will cause kernel to change process'
11405 		 * page table to point to a different piece of kernel memory,
11406 		 * but from userspace point of view memory address (and its
11407 		 * contents, being identical at this point) will stay the
11408 		 * same. This mapping will be released by bpf_object__close()
11409 		 * as per normal clean up procedure, so we don't need to worry
11410 		 * about it from skeleton's clean up perspective.
11411 		 */
11412 		*mmaped = mmap(map->mmaped, mmap_sz, prot,
11413 				MAP_SHARED | MAP_FIXED, map_fd, 0);
11414 		if (*mmaped == MAP_FAILED) {
11415 			err = -errno;
11416 			*mmaped = NULL;
11417 			pr_warn("failed to re-mmap() map '%s': %d\n",
11418 				 bpf_map__name(map), err);
11419 			return libbpf_err(err);
11420 		}
11421 	}
11422 
11423 	return 0;
11424 }
11425 
11426 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
11427 {
11428 	int i, err;
11429 
11430 	for (i = 0; i < s->prog_cnt; i++) {
11431 		struct bpf_program *prog = *s->progs[i].prog;
11432 		struct bpf_link **link = s->progs[i].link;
11433 
11434 		if (!prog->load)
11435 			continue;
11436 
11437 		/* auto-attaching not supported for this program */
11438 		if (!prog->sec_def || !prog->sec_def->attach_fn)
11439 			continue;
11440 
11441 		*link = bpf_program__attach(prog);
11442 		err = libbpf_get_error(*link);
11443 		if (err) {
11444 			pr_warn("failed to auto-attach program '%s': %d\n",
11445 				bpf_program__name(prog), err);
11446 			return libbpf_err(err);
11447 		}
11448 	}
11449 
11450 	return 0;
11451 }
11452 
11453 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
11454 {
11455 	int i;
11456 
11457 	for (i = 0; i < s->prog_cnt; i++) {
11458 		struct bpf_link **link = s->progs[i].link;
11459 
11460 		bpf_link__destroy(*link);
11461 		*link = NULL;
11462 	}
11463 }
11464 
11465 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
11466 {
11467 	if (s->progs)
11468 		bpf_object__detach_skeleton(s);
11469 	if (s->obj)
11470 		bpf_object__close(*s->obj);
11471 	free(s->maps);
11472 	free(s->progs);
11473 	free(s);
11474 }
11475