1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/ring_buffer.h> 37 #include <linux/version.h> 38 #include <sys/epoll.h> 39 #include <sys/ioctl.h> 40 #include <sys/mman.h> 41 #include <sys/stat.h> 42 #include <sys/types.h> 43 #include <sys/vfs.h> 44 #include <sys/utsname.h> 45 #include <sys/resource.h> 46 #include <libelf.h> 47 #include <gelf.h> 48 #include <zlib.h> 49 50 #include "libbpf.h" 51 #include "bpf.h" 52 #include "btf.h" 53 #include "str_error.h" 54 #include "libbpf_internal.h" 55 #include "hashmap.h" 56 #include "bpf_gen_internal.h" 57 58 #ifndef BPF_FS_MAGIC 59 #define BPF_FS_MAGIC 0xcafe4a11 60 #endif 61 62 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 63 64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 65 * compilation if user enables corresponding warning. Disable it explicitly. 66 */ 67 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 68 69 #define __printf(a, b) __attribute__((format(printf, a, b))) 70 71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 73 74 static const char * const attach_type_name[] = { 75 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 76 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 77 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 78 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 79 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 80 [BPF_CGROUP_DEVICE] = "cgroup_device", 81 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 82 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 83 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 84 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 85 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 86 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 87 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 88 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 89 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 90 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 91 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 92 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 93 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 94 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 95 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 96 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 97 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 98 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 99 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 100 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 101 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 102 [BPF_LIRC_MODE2] = "lirc_mode2", 103 [BPF_FLOW_DISSECTOR] = "flow_dissector", 104 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 105 [BPF_TRACE_FENTRY] = "trace_fentry", 106 [BPF_TRACE_FEXIT] = "trace_fexit", 107 [BPF_MODIFY_RETURN] = "modify_return", 108 [BPF_LSM_MAC] = "lsm_mac", 109 [BPF_LSM_CGROUP] = "lsm_cgroup", 110 [BPF_SK_LOOKUP] = "sk_lookup", 111 [BPF_TRACE_ITER] = "trace_iter", 112 [BPF_XDP_DEVMAP] = "xdp_devmap", 113 [BPF_XDP_CPUMAP] = "xdp_cpumap", 114 [BPF_XDP] = "xdp", 115 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 116 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 117 [BPF_PERF_EVENT] = "perf_event", 118 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 119 }; 120 121 static const char * const link_type_name[] = { 122 [BPF_LINK_TYPE_UNSPEC] = "unspec", 123 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 124 [BPF_LINK_TYPE_TRACING] = "tracing", 125 [BPF_LINK_TYPE_CGROUP] = "cgroup", 126 [BPF_LINK_TYPE_ITER] = "iter", 127 [BPF_LINK_TYPE_NETNS] = "netns", 128 [BPF_LINK_TYPE_XDP] = "xdp", 129 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 130 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 131 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 132 }; 133 134 static const char * const map_type_name[] = { 135 [BPF_MAP_TYPE_UNSPEC] = "unspec", 136 [BPF_MAP_TYPE_HASH] = "hash", 137 [BPF_MAP_TYPE_ARRAY] = "array", 138 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 139 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 140 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 141 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 142 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 143 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 144 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 145 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 146 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 147 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 148 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 149 [BPF_MAP_TYPE_DEVMAP] = "devmap", 150 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 151 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 152 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 153 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 154 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 155 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 156 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 157 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 158 [BPF_MAP_TYPE_QUEUE] = "queue", 159 [BPF_MAP_TYPE_STACK] = "stack", 160 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 161 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 162 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 163 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 164 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 165 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 166 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 167 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage", 168 }; 169 170 static const char * const prog_type_name[] = { 171 [BPF_PROG_TYPE_UNSPEC] = "unspec", 172 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 173 [BPF_PROG_TYPE_KPROBE] = "kprobe", 174 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 175 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 176 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 177 [BPF_PROG_TYPE_XDP] = "xdp", 178 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 179 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 180 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 181 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 182 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 183 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 184 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 185 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 186 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 187 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 188 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 189 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 190 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 191 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 192 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 193 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 194 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 195 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 196 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 197 [BPF_PROG_TYPE_TRACING] = "tracing", 198 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 199 [BPF_PROG_TYPE_EXT] = "ext", 200 [BPF_PROG_TYPE_LSM] = "lsm", 201 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 202 [BPF_PROG_TYPE_SYSCALL] = "syscall", 203 }; 204 205 static int __base_pr(enum libbpf_print_level level, const char *format, 206 va_list args) 207 { 208 if (level == LIBBPF_DEBUG) 209 return 0; 210 211 return vfprintf(stderr, format, args); 212 } 213 214 static libbpf_print_fn_t __libbpf_pr = __base_pr; 215 216 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 217 { 218 libbpf_print_fn_t old_print_fn = __libbpf_pr; 219 220 __libbpf_pr = fn; 221 return old_print_fn; 222 } 223 224 __printf(2, 3) 225 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 226 { 227 va_list args; 228 int old_errno; 229 230 if (!__libbpf_pr) 231 return; 232 233 old_errno = errno; 234 235 va_start(args, format); 236 __libbpf_pr(level, format, args); 237 va_end(args); 238 239 errno = old_errno; 240 } 241 242 static void pr_perm_msg(int err) 243 { 244 struct rlimit limit; 245 char buf[100]; 246 247 if (err != -EPERM || geteuid() != 0) 248 return; 249 250 err = getrlimit(RLIMIT_MEMLOCK, &limit); 251 if (err) 252 return; 253 254 if (limit.rlim_cur == RLIM_INFINITY) 255 return; 256 257 if (limit.rlim_cur < 1024) 258 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 259 else if (limit.rlim_cur < 1024*1024) 260 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 261 else 262 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 263 264 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 265 buf); 266 } 267 268 #define STRERR_BUFSIZE 128 269 270 /* Copied from tools/perf/util/util.h */ 271 #ifndef zfree 272 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 273 #endif 274 275 #ifndef zclose 276 # define zclose(fd) ({ \ 277 int ___err = 0; \ 278 if ((fd) >= 0) \ 279 ___err = close((fd)); \ 280 fd = -1; \ 281 ___err; }) 282 #endif 283 284 static inline __u64 ptr_to_u64(const void *ptr) 285 { 286 return (__u64) (unsigned long) ptr; 287 } 288 289 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 290 { 291 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 292 return 0; 293 } 294 295 __u32 libbpf_major_version(void) 296 { 297 return LIBBPF_MAJOR_VERSION; 298 } 299 300 __u32 libbpf_minor_version(void) 301 { 302 return LIBBPF_MINOR_VERSION; 303 } 304 305 const char *libbpf_version_string(void) 306 { 307 #define __S(X) #X 308 #define _S(X) __S(X) 309 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 310 #undef _S 311 #undef __S 312 } 313 314 enum reloc_type { 315 RELO_LD64, 316 RELO_CALL, 317 RELO_DATA, 318 RELO_EXTERN_VAR, 319 RELO_EXTERN_FUNC, 320 RELO_SUBPROG_ADDR, 321 RELO_CORE, 322 }; 323 324 struct reloc_desc { 325 enum reloc_type type; 326 int insn_idx; 327 union { 328 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 329 struct { 330 int map_idx; 331 int sym_off; 332 }; 333 }; 334 }; 335 336 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 337 enum sec_def_flags { 338 SEC_NONE = 0, 339 /* expected_attach_type is optional, if kernel doesn't support that */ 340 SEC_EXP_ATTACH_OPT = 1, 341 /* legacy, only used by libbpf_get_type_names() and 342 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 343 * This used to be associated with cgroup (and few other) BPF programs 344 * that were attachable through BPF_PROG_ATTACH command. Pretty 345 * meaningless nowadays, though. 346 */ 347 SEC_ATTACHABLE = 2, 348 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 349 /* attachment target is specified through BTF ID in either kernel or 350 * other BPF program's BTF object 351 */ 352 SEC_ATTACH_BTF = 4, 353 /* BPF program type allows sleeping/blocking in kernel */ 354 SEC_SLEEPABLE = 8, 355 /* BPF program support non-linear XDP buffer */ 356 SEC_XDP_FRAGS = 16, 357 }; 358 359 struct bpf_sec_def { 360 char *sec; 361 enum bpf_prog_type prog_type; 362 enum bpf_attach_type expected_attach_type; 363 long cookie; 364 int handler_id; 365 366 libbpf_prog_setup_fn_t prog_setup_fn; 367 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 368 libbpf_prog_attach_fn_t prog_attach_fn; 369 }; 370 371 /* 372 * bpf_prog should be a better name but it has been used in 373 * linux/filter.h. 374 */ 375 struct bpf_program { 376 char *name; 377 char *sec_name; 378 size_t sec_idx; 379 const struct bpf_sec_def *sec_def; 380 /* this program's instruction offset (in number of instructions) 381 * within its containing ELF section 382 */ 383 size_t sec_insn_off; 384 /* number of original instructions in ELF section belonging to this 385 * program, not taking into account subprogram instructions possible 386 * appended later during relocation 387 */ 388 size_t sec_insn_cnt; 389 /* Offset (in number of instructions) of the start of instruction 390 * belonging to this BPF program within its containing main BPF 391 * program. For the entry-point (main) BPF program, this is always 392 * zero. For a sub-program, this gets reset before each of main BPF 393 * programs are processed and relocated and is used to determined 394 * whether sub-program was already appended to the main program, and 395 * if yes, at which instruction offset. 396 */ 397 size_t sub_insn_off; 398 399 /* instructions that belong to BPF program; insns[0] is located at 400 * sec_insn_off instruction within its ELF section in ELF file, so 401 * when mapping ELF file instruction index to the local instruction, 402 * one needs to subtract sec_insn_off; and vice versa. 403 */ 404 struct bpf_insn *insns; 405 /* actual number of instruction in this BPF program's image; for 406 * entry-point BPF programs this includes the size of main program 407 * itself plus all the used sub-programs, appended at the end 408 */ 409 size_t insns_cnt; 410 411 struct reloc_desc *reloc_desc; 412 int nr_reloc; 413 414 /* BPF verifier log settings */ 415 char *log_buf; 416 size_t log_size; 417 __u32 log_level; 418 419 struct bpf_object *obj; 420 421 int fd; 422 bool autoload; 423 bool autoattach; 424 bool mark_btf_static; 425 enum bpf_prog_type type; 426 enum bpf_attach_type expected_attach_type; 427 428 int prog_ifindex; 429 __u32 attach_btf_obj_fd; 430 __u32 attach_btf_id; 431 __u32 attach_prog_fd; 432 433 void *func_info; 434 __u32 func_info_rec_size; 435 __u32 func_info_cnt; 436 437 void *line_info; 438 __u32 line_info_rec_size; 439 __u32 line_info_cnt; 440 __u32 prog_flags; 441 }; 442 443 struct bpf_struct_ops { 444 const char *tname; 445 const struct btf_type *type; 446 struct bpf_program **progs; 447 __u32 *kern_func_off; 448 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 449 void *data; 450 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 451 * btf_vmlinux's format. 452 * struct bpf_struct_ops_tcp_congestion_ops { 453 * [... some other kernel fields ...] 454 * struct tcp_congestion_ops data; 455 * } 456 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 457 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 458 * from "data". 459 */ 460 void *kern_vdata; 461 __u32 type_id; 462 }; 463 464 #define DATA_SEC ".data" 465 #define BSS_SEC ".bss" 466 #define RODATA_SEC ".rodata" 467 #define KCONFIG_SEC ".kconfig" 468 #define KSYMS_SEC ".ksyms" 469 #define STRUCT_OPS_SEC ".struct_ops" 470 471 enum libbpf_map_type { 472 LIBBPF_MAP_UNSPEC, 473 LIBBPF_MAP_DATA, 474 LIBBPF_MAP_BSS, 475 LIBBPF_MAP_RODATA, 476 LIBBPF_MAP_KCONFIG, 477 }; 478 479 struct bpf_map_def { 480 unsigned int type; 481 unsigned int key_size; 482 unsigned int value_size; 483 unsigned int max_entries; 484 unsigned int map_flags; 485 }; 486 487 struct bpf_map { 488 struct bpf_object *obj; 489 char *name; 490 /* real_name is defined for special internal maps (.rodata*, 491 * .data*, .bss, .kconfig) and preserves their original ELF section 492 * name. This is important to be able to find corresponding BTF 493 * DATASEC information. 494 */ 495 char *real_name; 496 int fd; 497 int sec_idx; 498 size_t sec_offset; 499 int map_ifindex; 500 int inner_map_fd; 501 struct bpf_map_def def; 502 __u32 numa_node; 503 __u32 btf_var_idx; 504 __u32 btf_key_type_id; 505 __u32 btf_value_type_id; 506 __u32 btf_vmlinux_value_type_id; 507 enum libbpf_map_type libbpf_type; 508 void *mmaped; 509 struct bpf_struct_ops *st_ops; 510 struct bpf_map *inner_map; 511 void **init_slots; 512 int init_slots_sz; 513 char *pin_path; 514 bool pinned; 515 bool reused; 516 bool autocreate; 517 __u64 map_extra; 518 }; 519 520 enum extern_type { 521 EXT_UNKNOWN, 522 EXT_KCFG, 523 EXT_KSYM, 524 }; 525 526 enum kcfg_type { 527 KCFG_UNKNOWN, 528 KCFG_CHAR, 529 KCFG_BOOL, 530 KCFG_INT, 531 KCFG_TRISTATE, 532 KCFG_CHAR_ARR, 533 }; 534 535 struct extern_desc { 536 enum extern_type type; 537 int sym_idx; 538 int btf_id; 539 int sec_btf_id; 540 const char *name; 541 bool is_set; 542 bool is_weak; 543 union { 544 struct { 545 enum kcfg_type type; 546 int sz; 547 int align; 548 int data_off; 549 bool is_signed; 550 } kcfg; 551 struct { 552 unsigned long long addr; 553 554 /* target btf_id of the corresponding kernel var. */ 555 int kernel_btf_obj_fd; 556 int kernel_btf_id; 557 558 /* local btf_id of the ksym extern's type. */ 559 __u32 type_id; 560 /* BTF fd index to be patched in for insn->off, this is 561 * 0 for vmlinux BTF, index in obj->fd_array for module 562 * BTF 563 */ 564 __s16 btf_fd_idx; 565 } ksym; 566 }; 567 }; 568 569 struct module_btf { 570 struct btf *btf; 571 char *name; 572 __u32 id; 573 int fd; 574 int fd_array_idx; 575 }; 576 577 enum sec_type { 578 SEC_UNUSED = 0, 579 SEC_RELO, 580 SEC_BSS, 581 SEC_DATA, 582 SEC_RODATA, 583 }; 584 585 struct elf_sec_desc { 586 enum sec_type sec_type; 587 Elf64_Shdr *shdr; 588 Elf_Data *data; 589 }; 590 591 struct elf_state { 592 int fd; 593 const void *obj_buf; 594 size_t obj_buf_sz; 595 Elf *elf; 596 Elf64_Ehdr *ehdr; 597 Elf_Data *symbols; 598 Elf_Data *st_ops_data; 599 size_t shstrndx; /* section index for section name strings */ 600 size_t strtabidx; 601 struct elf_sec_desc *secs; 602 size_t sec_cnt; 603 int btf_maps_shndx; 604 __u32 btf_maps_sec_btf_id; 605 int text_shndx; 606 int symbols_shndx; 607 int st_ops_shndx; 608 }; 609 610 struct usdt_manager; 611 612 struct bpf_object { 613 char name[BPF_OBJ_NAME_LEN]; 614 char license[64]; 615 __u32 kern_version; 616 617 struct bpf_program *programs; 618 size_t nr_programs; 619 struct bpf_map *maps; 620 size_t nr_maps; 621 size_t maps_cap; 622 623 char *kconfig; 624 struct extern_desc *externs; 625 int nr_extern; 626 int kconfig_map_idx; 627 628 bool loaded; 629 bool has_subcalls; 630 bool has_rodata; 631 632 struct bpf_gen *gen_loader; 633 634 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 635 struct elf_state efile; 636 637 struct btf *btf; 638 struct btf_ext *btf_ext; 639 640 /* Parse and load BTF vmlinux if any of the programs in the object need 641 * it at load time. 642 */ 643 struct btf *btf_vmlinux; 644 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 645 * override for vmlinux BTF. 646 */ 647 char *btf_custom_path; 648 /* vmlinux BTF override for CO-RE relocations */ 649 struct btf *btf_vmlinux_override; 650 /* Lazily initialized kernel module BTFs */ 651 struct module_btf *btf_modules; 652 bool btf_modules_loaded; 653 size_t btf_module_cnt; 654 size_t btf_module_cap; 655 656 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 657 char *log_buf; 658 size_t log_size; 659 __u32 log_level; 660 661 int *fd_array; 662 size_t fd_array_cap; 663 size_t fd_array_cnt; 664 665 struct usdt_manager *usdt_man; 666 667 char path[]; 668 }; 669 670 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 671 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 672 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 673 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 674 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 675 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 676 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 677 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 678 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 679 680 void bpf_program__unload(struct bpf_program *prog) 681 { 682 if (!prog) 683 return; 684 685 zclose(prog->fd); 686 687 zfree(&prog->func_info); 688 zfree(&prog->line_info); 689 } 690 691 static void bpf_program__exit(struct bpf_program *prog) 692 { 693 if (!prog) 694 return; 695 696 bpf_program__unload(prog); 697 zfree(&prog->name); 698 zfree(&prog->sec_name); 699 zfree(&prog->insns); 700 zfree(&prog->reloc_desc); 701 702 prog->nr_reloc = 0; 703 prog->insns_cnt = 0; 704 prog->sec_idx = -1; 705 } 706 707 static bool insn_is_subprog_call(const struct bpf_insn *insn) 708 { 709 return BPF_CLASS(insn->code) == BPF_JMP && 710 BPF_OP(insn->code) == BPF_CALL && 711 BPF_SRC(insn->code) == BPF_K && 712 insn->src_reg == BPF_PSEUDO_CALL && 713 insn->dst_reg == 0 && 714 insn->off == 0; 715 } 716 717 static bool is_call_insn(const struct bpf_insn *insn) 718 { 719 return insn->code == (BPF_JMP | BPF_CALL); 720 } 721 722 static bool insn_is_pseudo_func(struct bpf_insn *insn) 723 { 724 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 725 } 726 727 static int 728 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 729 const char *name, size_t sec_idx, const char *sec_name, 730 size_t sec_off, void *insn_data, size_t insn_data_sz) 731 { 732 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 733 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 734 sec_name, name, sec_off, insn_data_sz); 735 return -EINVAL; 736 } 737 738 memset(prog, 0, sizeof(*prog)); 739 prog->obj = obj; 740 741 prog->sec_idx = sec_idx; 742 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 743 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 744 /* insns_cnt can later be increased by appending used subprograms */ 745 prog->insns_cnt = prog->sec_insn_cnt; 746 747 prog->type = BPF_PROG_TYPE_UNSPEC; 748 prog->fd = -1; 749 750 /* libbpf's convention for SEC("?abc...") is that it's just like 751 * SEC("abc...") but the corresponding bpf_program starts out with 752 * autoload set to false. 753 */ 754 if (sec_name[0] == '?') { 755 prog->autoload = false; 756 /* from now on forget there was ? in section name */ 757 sec_name++; 758 } else { 759 prog->autoload = true; 760 } 761 762 prog->autoattach = true; 763 764 /* inherit object's log_level */ 765 prog->log_level = obj->log_level; 766 767 prog->sec_name = strdup(sec_name); 768 if (!prog->sec_name) 769 goto errout; 770 771 prog->name = strdup(name); 772 if (!prog->name) 773 goto errout; 774 775 prog->insns = malloc(insn_data_sz); 776 if (!prog->insns) 777 goto errout; 778 memcpy(prog->insns, insn_data, insn_data_sz); 779 780 return 0; 781 errout: 782 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 783 bpf_program__exit(prog); 784 return -ENOMEM; 785 } 786 787 static int 788 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 789 const char *sec_name, int sec_idx) 790 { 791 Elf_Data *symbols = obj->efile.symbols; 792 struct bpf_program *prog, *progs; 793 void *data = sec_data->d_buf; 794 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 795 int nr_progs, err, i; 796 const char *name; 797 Elf64_Sym *sym; 798 799 progs = obj->programs; 800 nr_progs = obj->nr_programs; 801 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 802 sec_off = 0; 803 804 for (i = 0; i < nr_syms; i++) { 805 sym = elf_sym_by_idx(obj, i); 806 807 if (sym->st_shndx != sec_idx) 808 continue; 809 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 810 continue; 811 812 prog_sz = sym->st_size; 813 sec_off = sym->st_value; 814 815 name = elf_sym_str(obj, sym->st_name); 816 if (!name) { 817 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 818 sec_name, sec_off); 819 return -LIBBPF_ERRNO__FORMAT; 820 } 821 822 if (sec_off + prog_sz > sec_sz) { 823 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 824 sec_name, sec_off); 825 return -LIBBPF_ERRNO__FORMAT; 826 } 827 828 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 829 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 830 return -ENOTSUP; 831 } 832 833 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 834 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 835 836 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 837 if (!progs) { 838 /* 839 * In this case the original obj->programs 840 * is still valid, so don't need special treat for 841 * bpf_close_object(). 842 */ 843 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 844 sec_name, name); 845 return -ENOMEM; 846 } 847 obj->programs = progs; 848 849 prog = &progs[nr_progs]; 850 851 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 852 sec_off, data + sec_off, prog_sz); 853 if (err) 854 return err; 855 856 /* if function is a global/weak symbol, but has restricted 857 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 858 * as static to enable more permissive BPF verification mode 859 * with more outside context available to BPF verifier 860 */ 861 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL 862 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 863 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 864 prog->mark_btf_static = true; 865 866 nr_progs++; 867 obj->nr_programs = nr_progs; 868 } 869 870 return 0; 871 } 872 873 __u32 get_kernel_version(void) 874 { 875 /* On Ubuntu LINUX_VERSION_CODE doesn't correspond to info.release, 876 * but Ubuntu provides /proc/version_signature file, as described at 877 * https://ubuntu.com/kernel, with an example contents below, which we 878 * can use to get a proper LINUX_VERSION_CODE. 879 * 880 * Ubuntu 5.4.0-12.15-generic 5.4.8 881 * 882 * In the above, 5.4.8 is what kernel is actually expecting, while 883 * uname() call will return 5.4.0 in info.release. 884 */ 885 const char *ubuntu_kver_file = "/proc/version_signature"; 886 __u32 major, minor, patch; 887 struct utsname info; 888 889 if (faccessat(AT_FDCWD, ubuntu_kver_file, R_OK, AT_EACCESS) == 0) { 890 FILE *f; 891 892 f = fopen(ubuntu_kver_file, "r"); 893 if (f) { 894 if (fscanf(f, "%*s %*s %d.%d.%d\n", &major, &minor, &patch) == 3) { 895 fclose(f); 896 return KERNEL_VERSION(major, minor, patch); 897 } 898 fclose(f); 899 } 900 /* something went wrong, fall back to uname() approach */ 901 } 902 903 uname(&info); 904 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 905 return 0; 906 return KERNEL_VERSION(major, minor, patch); 907 } 908 909 static const struct btf_member * 910 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 911 { 912 struct btf_member *m; 913 int i; 914 915 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 916 if (btf_member_bit_offset(t, i) == bit_offset) 917 return m; 918 } 919 920 return NULL; 921 } 922 923 static const struct btf_member * 924 find_member_by_name(const struct btf *btf, const struct btf_type *t, 925 const char *name) 926 { 927 struct btf_member *m; 928 int i; 929 930 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 931 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 932 return m; 933 } 934 935 return NULL; 936 } 937 938 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 939 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 940 const char *name, __u32 kind); 941 942 static int 943 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 944 const struct btf_type **type, __u32 *type_id, 945 const struct btf_type **vtype, __u32 *vtype_id, 946 const struct btf_member **data_member) 947 { 948 const struct btf_type *kern_type, *kern_vtype; 949 const struct btf_member *kern_data_member; 950 __s32 kern_vtype_id, kern_type_id; 951 __u32 i; 952 953 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 954 if (kern_type_id < 0) { 955 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 956 tname); 957 return kern_type_id; 958 } 959 kern_type = btf__type_by_id(btf, kern_type_id); 960 961 /* Find the corresponding "map_value" type that will be used 962 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 963 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 964 * btf_vmlinux. 965 */ 966 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 967 tname, BTF_KIND_STRUCT); 968 if (kern_vtype_id < 0) { 969 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 970 STRUCT_OPS_VALUE_PREFIX, tname); 971 return kern_vtype_id; 972 } 973 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 974 975 /* Find "struct tcp_congestion_ops" from 976 * struct bpf_struct_ops_tcp_congestion_ops { 977 * [ ... ] 978 * struct tcp_congestion_ops data; 979 * } 980 */ 981 kern_data_member = btf_members(kern_vtype); 982 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 983 if (kern_data_member->type == kern_type_id) 984 break; 985 } 986 if (i == btf_vlen(kern_vtype)) { 987 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 988 tname, STRUCT_OPS_VALUE_PREFIX, tname); 989 return -EINVAL; 990 } 991 992 *type = kern_type; 993 *type_id = kern_type_id; 994 *vtype = kern_vtype; 995 *vtype_id = kern_vtype_id; 996 *data_member = kern_data_member; 997 998 return 0; 999 } 1000 1001 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 1002 { 1003 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 1004 } 1005 1006 /* Init the map's fields that depend on kern_btf */ 1007 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 1008 const struct btf *btf, 1009 const struct btf *kern_btf) 1010 { 1011 const struct btf_member *member, *kern_member, *kern_data_member; 1012 const struct btf_type *type, *kern_type, *kern_vtype; 1013 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 1014 struct bpf_struct_ops *st_ops; 1015 void *data, *kern_data; 1016 const char *tname; 1017 int err; 1018 1019 st_ops = map->st_ops; 1020 type = st_ops->type; 1021 tname = st_ops->tname; 1022 err = find_struct_ops_kern_types(kern_btf, tname, 1023 &kern_type, &kern_type_id, 1024 &kern_vtype, &kern_vtype_id, 1025 &kern_data_member); 1026 if (err) 1027 return err; 1028 1029 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1030 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1031 1032 map->def.value_size = kern_vtype->size; 1033 map->btf_vmlinux_value_type_id = kern_vtype_id; 1034 1035 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1036 if (!st_ops->kern_vdata) 1037 return -ENOMEM; 1038 1039 data = st_ops->data; 1040 kern_data_off = kern_data_member->offset / 8; 1041 kern_data = st_ops->kern_vdata + kern_data_off; 1042 1043 member = btf_members(type); 1044 for (i = 0; i < btf_vlen(type); i++, member++) { 1045 const struct btf_type *mtype, *kern_mtype; 1046 __u32 mtype_id, kern_mtype_id; 1047 void *mdata, *kern_mdata; 1048 __s64 msize, kern_msize; 1049 __u32 moff, kern_moff; 1050 __u32 kern_member_idx; 1051 const char *mname; 1052 1053 mname = btf__name_by_offset(btf, member->name_off); 1054 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1055 if (!kern_member) { 1056 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1057 map->name, mname); 1058 return -ENOTSUP; 1059 } 1060 1061 kern_member_idx = kern_member - btf_members(kern_type); 1062 if (btf_member_bitfield_size(type, i) || 1063 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1064 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1065 map->name, mname); 1066 return -ENOTSUP; 1067 } 1068 1069 moff = member->offset / 8; 1070 kern_moff = kern_member->offset / 8; 1071 1072 mdata = data + moff; 1073 kern_mdata = kern_data + kern_moff; 1074 1075 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1076 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1077 &kern_mtype_id); 1078 if (BTF_INFO_KIND(mtype->info) != 1079 BTF_INFO_KIND(kern_mtype->info)) { 1080 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1081 map->name, mname, BTF_INFO_KIND(mtype->info), 1082 BTF_INFO_KIND(kern_mtype->info)); 1083 return -ENOTSUP; 1084 } 1085 1086 if (btf_is_ptr(mtype)) { 1087 struct bpf_program *prog; 1088 1089 prog = st_ops->progs[i]; 1090 if (!prog) 1091 continue; 1092 1093 kern_mtype = skip_mods_and_typedefs(kern_btf, 1094 kern_mtype->type, 1095 &kern_mtype_id); 1096 1097 /* mtype->type must be a func_proto which was 1098 * guaranteed in bpf_object__collect_st_ops_relos(), 1099 * so only check kern_mtype for func_proto here. 1100 */ 1101 if (!btf_is_func_proto(kern_mtype)) { 1102 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1103 map->name, mname); 1104 return -ENOTSUP; 1105 } 1106 1107 prog->attach_btf_id = kern_type_id; 1108 prog->expected_attach_type = kern_member_idx; 1109 1110 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1111 1112 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1113 map->name, mname, prog->name, moff, 1114 kern_moff); 1115 1116 continue; 1117 } 1118 1119 msize = btf__resolve_size(btf, mtype_id); 1120 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1121 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1122 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1123 map->name, mname, (ssize_t)msize, 1124 (ssize_t)kern_msize); 1125 return -ENOTSUP; 1126 } 1127 1128 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1129 map->name, mname, (unsigned int)msize, 1130 moff, kern_moff); 1131 memcpy(kern_mdata, mdata, msize); 1132 } 1133 1134 return 0; 1135 } 1136 1137 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1138 { 1139 struct bpf_map *map; 1140 size_t i; 1141 int err; 1142 1143 for (i = 0; i < obj->nr_maps; i++) { 1144 map = &obj->maps[i]; 1145 1146 if (!bpf_map__is_struct_ops(map)) 1147 continue; 1148 1149 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1150 obj->btf_vmlinux); 1151 if (err) 1152 return err; 1153 } 1154 1155 return 0; 1156 } 1157 1158 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 1159 { 1160 const struct btf_type *type, *datasec; 1161 const struct btf_var_secinfo *vsi; 1162 struct bpf_struct_ops *st_ops; 1163 const char *tname, *var_name; 1164 __s32 type_id, datasec_id; 1165 const struct btf *btf; 1166 struct bpf_map *map; 1167 __u32 i; 1168 1169 if (obj->efile.st_ops_shndx == -1) 1170 return 0; 1171 1172 btf = obj->btf; 1173 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 1174 BTF_KIND_DATASEC); 1175 if (datasec_id < 0) { 1176 pr_warn("struct_ops init: DATASEC %s not found\n", 1177 STRUCT_OPS_SEC); 1178 return -EINVAL; 1179 } 1180 1181 datasec = btf__type_by_id(btf, datasec_id); 1182 vsi = btf_var_secinfos(datasec); 1183 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1184 type = btf__type_by_id(obj->btf, vsi->type); 1185 var_name = btf__name_by_offset(obj->btf, type->name_off); 1186 1187 type_id = btf__resolve_type(obj->btf, vsi->type); 1188 if (type_id < 0) { 1189 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1190 vsi->type, STRUCT_OPS_SEC); 1191 return -EINVAL; 1192 } 1193 1194 type = btf__type_by_id(obj->btf, type_id); 1195 tname = btf__name_by_offset(obj->btf, type->name_off); 1196 if (!tname[0]) { 1197 pr_warn("struct_ops init: anonymous type is not supported\n"); 1198 return -ENOTSUP; 1199 } 1200 if (!btf_is_struct(type)) { 1201 pr_warn("struct_ops init: %s is not a struct\n", tname); 1202 return -EINVAL; 1203 } 1204 1205 map = bpf_object__add_map(obj); 1206 if (IS_ERR(map)) 1207 return PTR_ERR(map); 1208 1209 map->sec_idx = obj->efile.st_ops_shndx; 1210 map->sec_offset = vsi->offset; 1211 map->name = strdup(var_name); 1212 if (!map->name) 1213 return -ENOMEM; 1214 1215 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1216 map->def.key_size = sizeof(int); 1217 map->def.value_size = type->size; 1218 map->def.max_entries = 1; 1219 1220 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1221 if (!map->st_ops) 1222 return -ENOMEM; 1223 st_ops = map->st_ops; 1224 st_ops->data = malloc(type->size); 1225 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1226 st_ops->kern_func_off = malloc(btf_vlen(type) * 1227 sizeof(*st_ops->kern_func_off)); 1228 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1229 return -ENOMEM; 1230 1231 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1232 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1233 var_name, STRUCT_OPS_SEC); 1234 return -EINVAL; 1235 } 1236 1237 memcpy(st_ops->data, 1238 obj->efile.st_ops_data->d_buf + vsi->offset, 1239 type->size); 1240 st_ops->tname = tname; 1241 st_ops->type = type; 1242 st_ops->type_id = type_id; 1243 1244 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1245 tname, type_id, var_name, vsi->offset); 1246 } 1247 1248 return 0; 1249 } 1250 1251 static struct bpf_object *bpf_object__new(const char *path, 1252 const void *obj_buf, 1253 size_t obj_buf_sz, 1254 const char *obj_name) 1255 { 1256 struct bpf_object *obj; 1257 char *end; 1258 1259 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1260 if (!obj) { 1261 pr_warn("alloc memory failed for %s\n", path); 1262 return ERR_PTR(-ENOMEM); 1263 } 1264 1265 strcpy(obj->path, path); 1266 if (obj_name) { 1267 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1268 } else { 1269 /* Using basename() GNU version which doesn't modify arg. */ 1270 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1271 end = strchr(obj->name, '.'); 1272 if (end) 1273 *end = 0; 1274 } 1275 1276 obj->efile.fd = -1; 1277 /* 1278 * Caller of this function should also call 1279 * bpf_object__elf_finish() after data collection to return 1280 * obj_buf to user. If not, we should duplicate the buffer to 1281 * avoid user freeing them before elf finish. 1282 */ 1283 obj->efile.obj_buf = obj_buf; 1284 obj->efile.obj_buf_sz = obj_buf_sz; 1285 obj->efile.btf_maps_shndx = -1; 1286 obj->efile.st_ops_shndx = -1; 1287 obj->kconfig_map_idx = -1; 1288 1289 obj->kern_version = get_kernel_version(); 1290 obj->loaded = false; 1291 1292 return obj; 1293 } 1294 1295 static void bpf_object__elf_finish(struct bpf_object *obj) 1296 { 1297 if (!obj->efile.elf) 1298 return; 1299 1300 elf_end(obj->efile.elf); 1301 obj->efile.elf = NULL; 1302 obj->efile.symbols = NULL; 1303 obj->efile.st_ops_data = NULL; 1304 1305 zfree(&obj->efile.secs); 1306 obj->efile.sec_cnt = 0; 1307 zclose(obj->efile.fd); 1308 obj->efile.obj_buf = NULL; 1309 obj->efile.obj_buf_sz = 0; 1310 } 1311 1312 static int bpf_object__elf_init(struct bpf_object *obj) 1313 { 1314 Elf64_Ehdr *ehdr; 1315 int err = 0; 1316 Elf *elf; 1317 1318 if (obj->efile.elf) { 1319 pr_warn("elf: init internal error\n"); 1320 return -LIBBPF_ERRNO__LIBELF; 1321 } 1322 1323 if (obj->efile.obj_buf_sz > 0) { 1324 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1325 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1326 } else { 1327 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1328 if (obj->efile.fd < 0) { 1329 char errmsg[STRERR_BUFSIZE], *cp; 1330 1331 err = -errno; 1332 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1333 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1334 return err; 1335 } 1336 1337 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1338 } 1339 1340 if (!elf) { 1341 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1342 err = -LIBBPF_ERRNO__LIBELF; 1343 goto errout; 1344 } 1345 1346 obj->efile.elf = elf; 1347 1348 if (elf_kind(elf) != ELF_K_ELF) { 1349 err = -LIBBPF_ERRNO__FORMAT; 1350 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1351 goto errout; 1352 } 1353 1354 if (gelf_getclass(elf) != ELFCLASS64) { 1355 err = -LIBBPF_ERRNO__FORMAT; 1356 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1357 goto errout; 1358 } 1359 1360 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1361 if (!obj->efile.ehdr) { 1362 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1363 err = -LIBBPF_ERRNO__FORMAT; 1364 goto errout; 1365 } 1366 1367 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1368 pr_warn("elf: failed to get section names section index for %s: %s\n", 1369 obj->path, elf_errmsg(-1)); 1370 err = -LIBBPF_ERRNO__FORMAT; 1371 goto errout; 1372 } 1373 1374 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1375 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1376 pr_warn("elf: failed to get section names strings from %s: %s\n", 1377 obj->path, elf_errmsg(-1)); 1378 err = -LIBBPF_ERRNO__FORMAT; 1379 goto errout; 1380 } 1381 1382 /* Old LLVM set e_machine to EM_NONE */ 1383 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1384 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1385 err = -LIBBPF_ERRNO__FORMAT; 1386 goto errout; 1387 } 1388 1389 return 0; 1390 errout: 1391 bpf_object__elf_finish(obj); 1392 return err; 1393 } 1394 1395 static int bpf_object__check_endianness(struct bpf_object *obj) 1396 { 1397 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1398 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1399 return 0; 1400 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1401 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1402 return 0; 1403 #else 1404 # error "Unrecognized __BYTE_ORDER__" 1405 #endif 1406 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1407 return -LIBBPF_ERRNO__ENDIAN; 1408 } 1409 1410 static int 1411 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1412 { 1413 if (!data) { 1414 pr_warn("invalid license section in %s\n", obj->path); 1415 return -LIBBPF_ERRNO__FORMAT; 1416 } 1417 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1418 * go over allowed ELF data section buffer 1419 */ 1420 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1421 pr_debug("license of %s is %s\n", obj->path, obj->license); 1422 return 0; 1423 } 1424 1425 static int 1426 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1427 { 1428 __u32 kver; 1429 1430 if (!data || size != sizeof(kver)) { 1431 pr_warn("invalid kver section in %s\n", obj->path); 1432 return -LIBBPF_ERRNO__FORMAT; 1433 } 1434 memcpy(&kver, data, sizeof(kver)); 1435 obj->kern_version = kver; 1436 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1437 return 0; 1438 } 1439 1440 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1441 { 1442 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1443 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1444 return true; 1445 return false; 1446 } 1447 1448 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1449 { 1450 Elf_Data *data; 1451 Elf_Scn *scn; 1452 1453 if (!name) 1454 return -EINVAL; 1455 1456 scn = elf_sec_by_name(obj, name); 1457 data = elf_sec_data(obj, scn); 1458 if (data) { 1459 *size = data->d_size; 1460 return 0; /* found it */ 1461 } 1462 1463 return -ENOENT; 1464 } 1465 1466 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1467 { 1468 Elf_Data *symbols = obj->efile.symbols; 1469 const char *sname; 1470 size_t si; 1471 1472 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1473 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1474 1475 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1476 continue; 1477 1478 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1479 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1480 continue; 1481 1482 sname = elf_sym_str(obj, sym->st_name); 1483 if (!sname) { 1484 pr_warn("failed to get sym name string for var %s\n", name); 1485 return ERR_PTR(-EIO); 1486 } 1487 if (strcmp(name, sname) == 0) 1488 return sym; 1489 } 1490 1491 return ERR_PTR(-ENOENT); 1492 } 1493 1494 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1495 { 1496 struct bpf_map *map; 1497 int err; 1498 1499 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1500 sizeof(*obj->maps), obj->nr_maps + 1); 1501 if (err) 1502 return ERR_PTR(err); 1503 1504 map = &obj->maps[obj->nr_maps++]; 1505 map->obj = obj; 1506 map->fd = -1; 1507 map->inner_map_fd = -1; 1508 map->autocreate = true; 1509 1510 return map; 1511 } 1512 1513 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1514 { 1515 long page_sz = sysconf(_SC_PAGE_SIZE); 1516 size_t map_sz; 1517 1518 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1519 map_sz = roundup(map_sz, page_sz); 1520 return map_sz; 1521 } 1522 1523 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1524 { 1525 char map_name[BPF_OBJ_NAME_LEN], *p; 1526 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1527 1528 /* This is one of the more confusing parts of libbpf for various 1529 * reasons, some of which are historical. The original idea for naming 1530 * internal names was to include as much of BPF object name prefix as 1531 * possible, so that it can be distinguished from similar internal 1532 * maps of a different BPF object. 1533 * As an example, let's say we have bpf_object named 'my_object_name' 1534 * and internal map corresponding to '.rodata' ELF section. The final 1535 * map name advertised to user and to the kernel will be 1536 * 'my_objec.rodata', taking first 8 characters of object name and 1537 * entire 7 characters of '.rodata'. 1538 * Somewhat confusingly, if internal map ELF section name is shorter 1539 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1540 * for the suffix, even though we only have 4 actual characters, and 1541 * resulting map will be called 'my_objec.bss', not even using all 15 1542 * characters allowed by the kernel. Oh well, at least the truncated 1543 * object name is somewhat consistent in this case. But if the map 1544 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1545 * (8 chars) and thus will be left with only first 7 characters of the 1546 * object name ('my_obje'). Happy guessing, user, that the final map 1547 * name will be "my_obje.kconfig". 1548 * Now, with libbpf starting to support arbitrarily named .rodata.* 1549 * and .data.* data sections, it's possible that ELF section name is 1550 * longer than allowed 15 chars, so we now need to be careful to take 1551 * only up to 15 first characters of ELF name, taking no BPF object 1552 * name characters at all. So '.rodata.abracadabra' will result in 1553 * '.rodata.abracad' kernel and user-visible name. 1554 * We need to keep this convoluted logic intact for .data, .bss and 1555 * .rodata maps, but for new custom .data.custom and .rodata.custom 1556 * maps we use their ELF names as is, not prepending bpf_object name 1557 * in front. We still need to truncate them to 15 characters for the 1558 * kernel. Full name can be recovered for such maps by using DATASEC 1559 * BTF type associated with such map's value type, though. 1560 */ 1561 if (sfx_len >= BPF_OBJ_NAME_LEN) 1562 sfx_len = BPF_OBJ_NAME_LEN - 1; 1563 1564 /* if there are two or more dots in map name, it's a custom dot map */ 1565 if (strchr(real_name + 1, '.') != NULL) 1566 pfx_len = 0; 1567 else 1568 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1569 1570 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1571 sfx_len, real_name); 1572 1573 /* sanitise map name to characters allowed by kernel */ 1574 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1575 if (!isalnum(*p) && *p != '_' && *p != '.') 1576 *p = '_'; 1577 1578 return strdup(map_name); 1579 } 1580 1581 static int 1582 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1583 1584 /* Internal BPF map is mmap()'able only if at least one of corresponding 1585 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1586 * variable and it's not marked as __hidden (which turns it into, effectively, 1587 * a STATIC variable). 1588 */ 1589 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1590 { 1591 const struct btf_type *t, *vt; 1592 struct btf_var_secinfo *vsi; 1593 int i, n; 1594 1595 if (!map->btf_value_type_id) 1596 return false; 1597 1598 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1599 if (!btf_is_datasec(t)) 1600 return false; 1601 1602 vsi = btf_var_secinfos(t); 1603 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1604 vt = btf__type_by_id(obj->btf, vsi->type); 1605 if (!btf_is_var(vt)) 1606 continue; 1607 1608 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1609 return true; 1610 } 1611 1612 return false; 1613 } 1614 1615 static int 1616 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1617 const char *real_name, int sec_idx, void *data, size_t data_sz) 1618 { 1619 struct bpf_map_def *def; 1620 struct bpf_map *map; 1621 int err; 1622 1623 map = bpf_object__add_map(obj); 1624 if (IS_ERR(map)) 1625 return PTR_ERR(map); 1626 1627 map->libbpf_type = type; 1628 map->sec_idx = sec_idx; 1629 map->sec_offset = 0; 1630 map->real_name = strdup(real_name); 1631 map->name = internal_map_name(obj, real_name); 1632 if (!map->real_name || !map->name) { 1633 zfree(&map->real_name); 1634 zfree(&map->name); 1635 return -ENOMEM; 1636 } 1637 1638 def = &map->def; 1639 def->type = BPF_MAP_TYPE_ARRAY; 1640 def->key_size = sizeof(int); 1641 def->value_size = data_sz; 1642 def->max_entries = 1; 1643 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1644 ? BPF_F_RDONLY_PROG : 0; 1645 1646 /* failures are fine because of maps like .rodata.str1.1 */ 1647 (void) map_fill_btf_type_info(obj, map); 1648 1649 if (map_is_mmapable(obj, map)) 1650 def->map_flags |= BPF_F_MMAPABLE; 1651 1652 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1653 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1654 1655 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1656 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1657 if (map->mmaped == MAP_FAILED) { 1658 err = -errno; 1659 map->mmaped = NULL; 1660 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1661 map->name, err); 1662 zfree(&map->real_name); 1663 zfree(&map->name); 1664 return err; 1665 } 1666 1667 if (data) 1668 memcpy(map->mmaped, data, data_sz); 1669 1670 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1671 return 0; 1672 } 1673 1674 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1675 { 1676 struct elf_sec_desc *sec_desc; 1677 const char *sec_name; 1678 int err = 0, sec_idx; 1679 1680 /* 1681 * Populate obj->maps with libbpf internal maps. 1682 */ 1683 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1684 sec_desc = &obj->efile.secs[sec_idx]; 1685 1686 /* Skip recognized sections with size 0. */ 1687 if (!sec_desc->data || sec_desc->data->d_size == 0) 1688 continue; 1689 1690 switch (sec_desc->sec_type) { 1691 case SEC_DATA: 1692 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1693 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1694 sec_name, sec_idx, 1695 sec_desc->data->d_buf, 1696 sec_desc->data->d_size); 1697 break; 1698 case SEC_RODATA: 1699 obj->has_rodata = true; 1700 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1701 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1702 sec_name, sec_idx, 1703 sec_desc->data->d_buf, 1704 sec_desc->data->d_size); 1705 break; 1706 case SEC_BSS: 1707 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1708 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1709 sec_name, sec_idx, 1710 NULL, 1711 sec_desc->data->d_size); 1712 break; 1713 default: 1714 /* skip */ 1715 break; 1716 } 1717 if (err) 1718 return err; 1719 } 1720 return 0; 1721 } 1722 1723 1724 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1725 const void *name) 1726 { 1727 int i; 1728 1729 for (i = 0; i < obj->nr_extern; i++) { 1730 if (strcmp(obj->externs[i].name, name) == 0) 1731 return &obj->externs[i]; 1732 } 1733 return NULL; 1734 } 1735 1736 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1737 char value) 1738 { 1739 switch (ext->kcfg.type) { 1740 case KCFG_BOOL: 1741 if (value == 'm') { 1742 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 1743 ext->name, value); 1744 return -EINVAL; 1745 } 1746 *(bool *)ext_val = value == 'y' ? true : false; 1747 break; 1748 case KCFG_TRISTATE: 1749 if (value == 'y') 1750 *(enum libbpf_tristate *)ext_val = TRI_YES; 1751 else if (value == 'm') 1752 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1753 else /* value == 'n' */ 1754 *(enum libbpf_tristate *)ext_val = TRI_NO; 1755 break; 1756 case KCFG_CHAR: 1757 *(char *)ext_val = value; 1758 break; 1759 case KCFG_UNKNOWN: 1760 case KCFG_INT: 1761 case KCFG_CHAR_ARR: 1762 default: 1763 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 1764 ext->name, value); 1765 return -EINVAL; 1766 } 1767 ext->is_set = true; 1768 return 0; 1769 } 1770 1771 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1772 const char *value) 1773 { 1774 size_t len; 1775 1776 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1777 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 1778 ext->name, value); 1779 return -EINVAL; 1780 } 1781 1782 len = strlen(value); 1783 if (value[len - 1] != '"') { 1784 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1785 ext->name, value); 1786 return -EINVAL; 1787 } 1788 1789 /* strip quotes */ 1790 len -= 2; 1791 if (len >= ext->kcfg.sz) { 1792 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 1793 ext->name, value, len, ext->kcfg.sz - 1); 1794 len = ext->kcfg.sz - 1; 1795 } 1796 memcpy(ext_val, value + 1, len); 1797 ext_val[len] = '\0'; 1798 ext->is_set = true; 1799 return 0; 1800 } 1801 1802 static int parse_u64(const char *value, __u64 *res) 1803 { 1804 char *value_end; 1805 int err; 1806 1807 errno = 0; 1808 *res = strtoull(value, &value_end, 0); 1809 if (errno) { 1810 err = -errno; 1811 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1812 return err; 1813 } 1814 if (*value_end) { 1815 pr_warn("failed to parse '%s' as integer completely\n", value); 1816 return -EINVAL; 1817 } 1818 return 0; 1819 } 1820 1821 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1822 { 1823 int bit_sz = ext->kcfg.sz * 8; 1824 1825 if (ext->kcfg.sz == 8) 1826 return true; 1827 1828 /* Validate that value stored in u64 fits in integer of `ext->sz` 1829 * bytes size without any loss of information. If the target integer 1830 * is signed, we rely on the following limits of integer type of 1831 * Y bits and subsequent transformation: 1832 * 1833 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1834 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1835 * 0 <= X + 2^(Y-1) < 2^Y 1836 * 1837 * For unsigned target integer, check that all the (64 - Y) bits are 1838 * zero. 1839 */ 1840 if (ext->kcfg.is_signed) 1841 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1842 else 1843 return (v >> bit_sz) == 0; 1844 } 1845 1846 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1847 __u64 value) 1848 { 1849 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 1850 ext->kcfg.type != KCFG_BOOL) { 1851 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 1852 ext->name, (unsigned long long)value); 1853 return -EINVAL; 1854 } 1855 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 1856 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 1857 ext->name, (unsigned long long)value); 1858 return -EINVAL; 1859 1860 } 1861 if (!is_kcfg_value_in_range(ext, value)) { 1862 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 1863 ext->name, (unsigned long long)value, ext->kcfg.sz); 1864 return -ERANGE; 1865 } 1866 switch (ext->kcfg.sz) { 1867 case 1: 1868 *(__u8 *)ext_val = value; 1869 break; 1870 case 2: 1871 *(__u16 *)ext_val = value; 1872 break; 1873 case 4: 1874 *(__u32 *)ext_val = value; 1875 break; 1876 case 8: 1877 *(__u64 *)ext_val = value; 1878 break; 1879 default: 1880 return -EINVAL; 1881 } 1882 ext->is_set = true; 1883 return 0; 1884 } 1885 1886 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1887 char *buf, void *data) 1888 { 1889 struct extern_desc *ext; 1890 char *sep, *value; 1891 int len, err = 0; 1892 void *ext_val; 1893 __u64 num; 1894 1895 if (!str_has_pfx(buf, "CONFIG_")) 1896 return 0; 1897 1898 sep = strchr(buf, '='); 1899 if (!sep) { 1900 pr_warn("failed to parse '%s': no separator\n", buf); 1901 return -EINVAL; 1902 } 1903 1904 /* Trim ending '\n' */ 1905 len = strlen(buf); 1906 if (buf[len - 1] == '\n') 1907 buf[len - 1] = '\0'; 1908 /* Split on '=' and ensure that a value is present. */ 1909 *sep = '\0'; 1910 if (!sep[1]) { 1911 *sep = '='; 1912 pr_warn("failed to parse '%s': no value\n", buf); 1913 return -EINVAL; 1914 } 1915 1916 ext = find_extern_by_name(obj, buf); 1917 if (!ext || ext->is_set) 1918 return 0; 1919 1920 ext_val = data + ext->kcfg.data_off; 1921 value = sep + 1; 1922 1923 switch (*value) { 1924 case 'y': case 'n': case 'm': 1925 err = set_kcfg_value_tri(ext, ext_val, *value); 1926 break; 1927 case '"': 1928 err = set_kcfg_value_str(ext, ext_val, value); 1929 break; 1930 default: 1931 /* assume integer */ 1932 err = parse_u64(value, &num); 1933 if (err) { 1934 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 1935 return err; 1936 } 1937 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1938 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 1939 return -EINVAL; 1940 } 1941 err = set_kcfg_value_num(ext, ext_val, num); 1942 break; 1943 } 1944 if (err) 1945 return err; 1946 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 1947 return 0; 1948 } 1949 1950 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1951 { 1952 char buf[PATH_MAX]; 1953 struct utsname uts; 1954 int len, err = 0; 1955 gzFile file; 1956 1957 uname(&uts); 1958 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1959 if (len < 0) 1960 return -EINVAL; 1961 else if (len >= PATH_MAX) 1962 return -ENAMETOOLONG; 1963 1964 /* gzopen also accepts uncompressed files. */ 1965 file = gzopen(buf, "r"); 1966 if (!file) 1967 file = gzopen("/proc/config.gz", "r"); 1968 1969 if (!file) { 1970 pr_warn("failed to open system Kconfig\n"); 1971 return -ENOENT; 1972 } 1973 1974 while (gzgets(file, buf, sizeof(buf))) { 1975 err = bpf_object__process_kconfig_line(obj, buf, data); 1976 if (err) { 1977 pr_warn("error parsing system Kconfig line '%s': %d\n", 1978 buf, err); 1979 goto out; 1980 } 1981 } 1982 1983 out: 1984 gzclose(file); 1985 return err; 1986 } 1987 1988 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1989 const char *config, void *data) 1990 { 1991 char buf[PATH_MAX]; 1992 int err = 0; 1993 FILE *file; 1994 1995 file = fmemopen((void *)config, strlen(config), "r"); 1996 if (!file) { 1997 err = -errno; 1998 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1999 return err; 2000 } 2001 2002 while (fgets(buf, sizeof(buf), file)) { 2003 err = bpf_object__process_kconfig_line(obj, buf, data); 2004 if (err) { 2005 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 2006 buf, err); 2007 break; 2008 } 2009 } 2010 2011 fclose(file); 2012 return err; 2013 } 2014 2015 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2016 { 2017 struct extern_desc *last_ext = NULL, *ext; 2018 size_t map_sz; 2019 int i, err; 2020 2021 for (i = 0; i < obj->nr_extern; i++) { 2022 ext = &obj->externs[i]; 2023 if (ext->type == EXT_KCFG) 2024 last_ext = ext; 2025 } 2026 2027 if (!last_ext) 2028 return 0; 2029 2030 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2031 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2032 ".kconfig", obj->efile.symbols_shndx, 2033 NULL, map_sz); 2034 if (err) 2035 return err; 2036 2037 obj->kconfig_map_idx = obj->nr_maps - 1; 2038 2039 return 0; 2040 } 2041 2042 const struct btf_type * 2043 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2044 { 2045 const struct btf_type *t = btf__type_by_id(btf, id); 2046 2047 if (res_id) 2048 *res_id = id; 2049 2050 while (btf_is_mod(t) || btf_is_typedef(t)) { 2051 if (res_id) 2052 *res_id = t->type; 2053 t = btf__type_by_id(btf, t->type); 2054 } 2055 2056 return t; 2057 } 2058 2059 static const struct btf_type * 2060 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2061 { 2062 const struct btf_type *t; 2063 2064 t = skip_mods_and_typedefs(btf, id, NULL); 2065 if (!btf_is_ptr(t)) 2066 return NULL; 2067 2068 t = skip_mods_and_typedefs(btf, t->type, res_id); 2069 2070 return btf_is_func_proto(t) ? t : NULL; 2071 } 2072 2073 static const char *__btf_kind_str(__u16 kind) 2074 { 2075 switch (kind) { 2076 case BTF_KIND_UNKN: return "void"; 2077 case BTF_KIND_INT: return "int"; 2078 case BTF_KIND_PTR: return "ptr"; 2079 case BTF_KIND_ARRAY: return "array"; 2080 case BTF_KIND_STRUCT: return "struct"; 2081 case BTF_KIND_UNION: return "union"; 2082 case BTF_KIND_ENUM: return "enum"; 2083 case BTF_KIND_FWD: return "fwd"; 2084 case BTF_KIND_TYPEDEF: return "typedef"; 2085 case BTF_KIND_VOLATILE: return "volatile"; 2086 case BTF_KIND_CONST: return "const"; 2087 case BTF_KIND_RESTRICT: return "restrict"; 2088 case BTF_KIND_FUNC: return "func"; 2089 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2090 case BTF_KIND_VAR: return "var"; 2091 case BTF_KIND_DATASEC: return "datasec"; 2092 case BTF_KIND_FLOAT: return "float"; 2093 case BTF_KIND_DECL_TAG: return "decl_tag"; 2094 case BTF_KIND_TYPE_TAG: return "type_tag"; 2095 case BTF_KIND_ENUM64: return "enum64"; 2096 default: return "unknown"; 2097 } 2098 } 2099 2100 const char *btf_kind_str(const struct btf_type *t) 2101 { 2102 return __btf_kind_str(btf_kind(t)); 2103 } 2104 2105 /* 2106 * Fetch integer attribute of BTF map definition. Such attributes are 2107 * represented using a pointer to an array, in which dimensionality of array 2108 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2109 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2110 * type definition, while using only sizeof(void *) space in ELF data section. 2111 */ 2112 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2113 const struct btf_member *m, __u32 *res) 2114 { 2115 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2116 const char *name = btf__name_by_offset(btf, m->name_off); 2117 const struct btf_array *arr_info; 2118 const struct btf_type *arr_t; 2119 2120 if (!btf_is_ptr(t)) { 2121 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2122 map_name, name, btf_kind_str(t)); 2123 return false; 2124 } 2125 2126 arr_t = btf__type_by_id(btf, t->type); 2127 if (!arr_t) { 2128 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2129 map_name, name, t->type); 2130 return false; 2131 } 2132 if (!btf_is_array(arr_t)) { 2133 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2134 map_name, name, btf_kind_str(arr_t)); 2135 return false; 2136 } 2137 arr_info = btf_array(arr_t); 2138 *res = arr_info->nelems; 2139 return true; 2140 } 2141 2142 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2143 { 2144 int len; 2145 2146 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2147 if (len < 0) 2148 return -EINVAL; 2149 if (len >= buf_sz) 2150 return -ENAMETOOLONG; 2151 2152 return 0; 2153 } 2154 2155 static int build_map_pin_path(struct bpf_map *map, const char *path) 2156 { 2157 char buf[PATH_MAX]; 2158 int err; 2159 2160 if (!path) 2161 path = "/sys/fs/bpf"; 2162 2163 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2164 if (err) 2165 return err; 2166 2167 return bpf_map__set_pin_path(map, buf); 2168 } 2169 2170 /* should match definition in bpf_helpers.h */ 2171 enum libbpf_pin_type { 2172 LIBBPF_PIN_NONE, 2173 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2174 LIBBPF_PIN_BY_NAME, 2175 }; 2176 2177 int parse_btf_map_def(const char *map_name, struct btf *btf, 2178 const struct btf_type *def_t, bool strict, 2179 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2180 { 2181 const struct btf_type *t; 2182 const struct btf_member *m; 2183 bool is_inner = inner_def == NULL; 2184 int vlen, i; 2185 2186 vlen = btf_vlen(def_t); 2187 m = btf_members(def_t); 2188 for (i = 0; i < vlen; i++, m++) { 2189 const char *name = btf__name_by_offset(btf, m->name_off); 2190 2191 if (!name) { 2192 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2193 return -EINVAL; 2194 } 2195 if (strcmp(name, "type") == 0) { 2196 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2197 return -EINVAL; 2198 map_def->parts |= MAP_DEF_MAP_TYPE; 2199 } else if (strcmp(name, "max_entries") == 0) { 2200 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2201 return -EINVAL; 2202 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2203 } else if (strcmp(name, "map_flags") == 0) { 2204 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2205 return -EINVAL; 2206 map_def->parts |= MAP_DEF_MAP_FLAGS; 2207 } else if (strcmp(name, "numa_node") == 0) { 2208 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2209 return -EINVAL; 2210 map_def->parts |= MAP_DEF_NUMA_NODE; 2211 } else if (strcmp(name, "key_size") == 0) { 2212 __u32 sz; 2213 2214 if (!get_map_field_int(map_name, btf, m, &sz)) 2215 return -EINVAL; 2216 if (map_def->key_size && map_def->key_size != sz) { 2217 pr_warn("map '%s': conflicting key size %u != %u.\n", 2218 map_name, map_def->key_size, sz); 2219 return -EINVAL; 2220 } 2221 map_def->key_size = sz; 2222 map_def->parts |= MAP_DEF_KEY_SIZE; 2223 } else if (strcmp(name, "key") == 0) { 2224 __s64 sz; 2225 2226 t = btf__type_by_id(btf, m->type); 2227 if (!t) { 2228 pr_warn("map '%s': key type [%d] not found.\n", 2229 map_name, m->type); 2230 return -EINVAL; 2231 } 2232 if (!btf_is_ptr(t)) { 2233 pr_warn("map '%s': key spec is not PTR: %s.\n", 2234 map_name, btf_kind_str(t)); 2235 return -EINVAL; 2236 } 2237 sz = btf__resolve_size(btf, t->type); 2238 if (sz < 0) { 2239 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2240 map_name, t->type, (ssize_t)sz); 2241 return sz; 2242 } 2243 if (map_def->key_size && map_def->key_size != sz) { 2244 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2245 map_name, map_def->key_size, (ssize_t)sz); 2246 return -EINVAL; 2247 } 2248 map_def->key_size = sz; 2249 map_def->key_type_id = t->type; 2250 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2251 } else if (strcmp(name, "value_size") == 0) { 2252 __u32 sz; 2253 2254 if (!get_map_field_int(map_name, btf, m, &sz)) 2255 return -EINVAL; 2256 if (map_def->value_size && map_def->value_size != sz) { 2257 pr_warn("map '%s': conflicting value size %u != %u.\n", 2258 map_name, map_def->value_size, sz); 2259 return -EINVAL; 2260 } 2261 map_def->value_size = sz; 2262 map_def->parts |= MAP_DEF_VALUE_SIZE; 2263 } else if (strcmp(name, "value") == 0) { 2264 __s64 sz; 2265 2266 t = btf__type_by_id(btf, m->type); 2267 if (!t) { 2268 pr_warn("map '%s': value type [%d] not found.\n", 2269 map_name, m->type); 2270 return -EINVAL; 2271 } 2272 if (!btf_is_ptr(t)) { 2273 pr_warn("map '%s': value spec is not PTR: %s.\n", 2274 map_name, btf_kind_str(t)); 2275 return -EINVAL; 2276 } 2277 sz = btf__resolve_size(btf, t->type); 2278 if (sz < 0) { 2279 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2280 map_name, t->type, (ssize_t)sz); 2281 return sz; 2282 } 2283 if (map_def->value_size && map_def->value_size != sz) { 2284 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2285 map_name, map_def->value_size, (ssize_t)sz); 2286 return -EINVAL; 2287 } 2288 map_def->value_size = sz; 2289 map_def->value_type_id = t->type; 2290 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2291 } 2292 else if (strcmp(name, "values") == 0) { 2293 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2294 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2295 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2296 char inner_map_name[128]; 2297 int err; 2298 2299 if (is_inner) { 2300 pr_warn("map '%s': multi-level inner maps not supported.\n", 2301 map_name); 2302 return -ENOTSUP; 2303 } 2304 if (i != vlen - 1) { 2305 pr_warn("map '%s': '%s' member should be last.\n", 2306 map_name, name); 2307 return -EINVAL; 2308 } 2309 if (!is_map_in_map && !is_prog_array) { 2310 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2311 map_name); 2312 return -ENOTSUP; 2313 } 2314 if (map_def->value_size && map_def->value_size != 4) { 2315 pr_warn("map '%s': conflicting value size %u != 4.\n", 2316 map_name, map_def->value_size); 2317 return -EINVAL; 2318 } 2319 map_def->value_size = 4; 2320 t = btf__type_by_id(btf, m->type); 2321 if (!t) { 2322 pr_warn("map '%s': %s type [%d] not found.\n", 2323 map_name, desc, m->type); 2324 return -EINVAL; 2325 } 2326 if (!btf_is_array(t) || btf_array(t)->nelems) { 2327 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2328 map_name, desc); 2329 return -EINVAL; 2330 } 2331 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2332 if (!btf_is_ptr(t)) { 2333 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2334 map_name, desc, btf_kind_str(t)); 2335 return -EINVAL; 2336 } 2337 t = skip_mods_and_typedefs(btf, t->type, NULL); 2338 if (is_prog_array) { 2339 if (!btf_is_func_proto(t)) { 2340 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2341 map_name, btf_kind_str(t)); 2342 return -EINVAL; 2343 } 2344 continue; 2345 } 2346 if (!btf_is_struct(t)) { 2347 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2348 map_name, btf_kind_str(t)); 2349 return -EINVAL; 2350 } 2351 2352 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2353 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2354 if (err) 2355 return err; 2356 2357 map_def->parts |= MAP_DEF_INNER_MAP; 2358 } else if (strcmp(name, "pinning") == 0) { 2359 __u32 val; 2360 2361 if (is_inner) { 2362 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2363 return -EINVAL; 2364 } 2365 if (!get_map_field_int(map_name, btf, m, &val)) 2366 return -EINVAL; 2367 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2368 pr_warn("map '%s': invalid pinning value %u.\n", 2369 map_name, val); 2370 return -EINVAL; 2371 } 2372 map_def->pinning = val; 2373 map_def->parts |= MAP_DEF_PINNING; 2374 } else if (strcmp(name, "map_extra") == 0) { 2375 __u32 map_extra; 2376 2377 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2378 return -EINVAL; 2379 map_def->map_extra = map_extra; 2380 map_def->parts |= MAP_DEF_MAP_EXTRA; 2381 } else { 2382 if (strict) { 2383 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2384 return -ENOTSUP; 2385 } 2386 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2387 } 2388 } 2389 2390 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2391 pr_warn("map '%s': map type isn't specified.\n", map_name); 2392 return -EINVAL; 2393 } 2394 2395 return 0; 2396 } 2397 2398 static size_t adjust_ringbuf_sz(size_t sz) 2399 { 2400 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2401 __u32 mul; 2402 2403 /* if user forgot to set any size, make sure they see error */ 2404 if (sz == 0) 2405 return 0; 2406 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2407 * a power-of-2 multiple of kernel's page size. If user diligently 2408 * satisified these conditions, pass the size through. 2409 */ 2410 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2411 return sz; 2412 2413 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2414 * user-set size to satisfy both user size request and kernel 2415 * requirements and substitute correct max_entries for map creation. 2416 */ 2417 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2418 if (mul * page_sz > sz) 2419 return mul * page_sz; 2420 } 2421 2422 /* if it's impossible to satisfy the conditions (i.e., user size is 2423 * very close to UINT_MAX but is not a power-of-2 multiple of 2424 * page_size) then just return original size and let kernel reject it 2425 */ 2426 return sz; 2427 } 2428 2429 static bool map_is_ringbuf(const struct bpf_map *map) 2430 { 2431 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2432 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2433 } 2434 2435 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2436 { 2437 map->def.type = def->map_type; 2438 map->def.key_size = def->key_size; 2439 map->def.value_size = def->value_size; 2440 map->def.max_entries = def->max_entries; 2441 map->def.map_flags = def->map_flags; 2442 map->map_extra = def->map_extra; 2443 2444 map->numa_node = def->numa_node; 2445 map->btf_key_type_id = def->key_type_id; 2446 map->btf_value_type_id = def->value_type_id; 2447 2448 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2449 if (map_is_ringbuf(map)) 2450 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2451 2452 if (def->parts & MAP_DEF_MAP_TYPE) 2453 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2454 2455 if (def->parts & MAP_DEF_KEY_TYPE) 2456 pr_debug("map '%s': found key [%u], sz = %u.\n", 2457 map->name, def->key_type_id, def->key_size); 2458 else if (def->parts & MAP_DEF_KEY_SIZE) 2459 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2460 2461 if (def->parts & MAP_DEF_VALUE_TYPE) 2462 pr_debug("map '%s': found value [%u], sz = %u.\n", 2463 map->name, def->value_type_id, def->value_size); 2464 else if (def->parts & MAP_DEF_VALUE_SIZE) 2465 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2466 2467 if (def->parts & MAP_DEF_MAX_ENTRIES) 2468 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2469 if (def->parts & MAP_DEF_MAP_FLAGS) 2470 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2471 if (def->parts & MAP_DEF_MAP_EXTRA) 2472 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2473 (unsigned long long)def->map_extra); 2474 if (def->parts & MAP_DEF_PINNING) 2475 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2476 if (def->parts & MAP_DEF_NUMA_NODE) 2477 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2478 2479 if (def->parts & MAP_DEF_INNER_MAP) 2480 pr_debug("map '%s': found inner map definition.\n", map->name); 2481 } 2482 2483 static const char *btf_var_linkage_str(__u32 linkage) 2484 { 2485 switch (linkage) { 2486 case BTF_VAR_STATIC: return "static"; 2487 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2488 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2489 default: return "unknown"; 2490 } 2491 } 2492 2493 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2494 const struct btf_type *sec, 2495 int var_idx, int sec_idx, 2496 const Elf_Data *data, bool strict, 2497 const char *pin_root_path) 2498 { 2499 struct btf_map_def map_def = {}, inner_def = {}; 2500 const struct btf_type *var, *def; 2501 const struct btf_var_secinfo *vi; 2502 const struct btf_var *var_extra; 2503 const char *map_name; 2504 struct bpf_map *map; 2505 int err; 2506 2507 vi = btf_var_secinfos(sec) + var_idx; 2508 var = btf__type_by_id(obj->btf, vi->type); 2509 var_extra = btf_var(var); 2510 map_name = btf__name_by_offset(obj->btf, var->name_off); 2511 2512 if (map_name == NULL || map_name[0] == '\0') { 2513 pr_warn("map #%d: empty name.\n", var_idx); 2514 return -EINVAL; 2515 } 2516 if ((__u64)vi->offset + vi->size > data->d_size) { 2517 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2518 return -EINVAL; 2519 } 2520 if (!btf_is_var(var)) { 2521 pr_warn("map '%s': unexpected var kind %s.\n", 2522 map_name, btf_kind_str(var)); 2523 return -EINVAL; 2524 } 2525 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2526 pr_warn("map '%s': unsupported map linkage %s.\n", 2527 map_name, btf_var_linkage_str(var_extra->linkage)); 2528 return -EOPNOTSUPP; 2529 } 2530 2531 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2532 if (!btf_is_struct(def)) { 2533 pr_warn("map '%s': unexpected def kind %s.\n", 2534 map_name, btf_kind_str(var)); 2535 return -EINVAL; 2536 } 2537 if (def->size > vi->size) { 2538 pr_warn("map '%s': invalid def size.\n", map_name); 2539 return -EINVAL; 2540 } 2541 2542 map = bpf_object__add_map(obj); 2543 if (IS_ERR(map)) 2544 return PTR_ERR(map); 2545 map->name = strdup(map_name); 2546 if (!map->name) { 2547 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2548 return -ENOMEM; 2549 } 2550 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2551 map->def.type = BPF_MAP_TYPE_UNSPEC; 2552 map->sec_idx = sec_idx; 2553 map->sec_offset = vi->offset; 2554 map->btf_var_idx = var_idx; 2555 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2556 map_name, map->sec_idx, map->sec_offset); 2557 2558 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2559 if (err) 2560 return err; 2561 2562 fill_map_from_def(map, &map_def); 2563 2564 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2565 err = build_map_pin_path(map, pin_root_path); 2566 if (err) { 2567 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2568 return err; 2569 } 2570 } 2571 2572 if (map_def.parts & MAP_DEF_INNER_MAP) { 2573 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2574 if (!map->inner_map) 2575 return -ENOMEM; 2576 map->inner_map->fd = -1; 2577 map->inner_map->sec_idx = sec_idx; 2578 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2579 if (!map->inner_map->name) 2580 return -ENOMEM; 2581 sprintf(map->inner_map->name, "%s.inner", map_name); 2582 2583 fill_map_from_def(map->inner_map, &inner_def); 2584 } 2585 2586 err = map_fill_btf_type_info(obj, map); 2587 if (err) 2588 return err; 2589 2590 return 0; 2591 } 2592 2593 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2594 const char *pin_root_path) 2595 { 2596 const struct btf_type *sec = NULL; 2597 int nr_types, i, vlen, err; 2598 const struct btf_type *t; 2599 const char *name; 2600 Elf_Data *data; 2601 Elf_Scn *scn; 2602 2603 if (obj->efile.btf_maps_shndx < 0) 2604 return 0; 2605 2606 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2607 data = elf_sec_data(obj, scn); 2608 if (!scn || !data) { 2609 pr_warn("elf: failed to get %s map definitions for %s\n", 2610 MAPS_ELF_SEC, obj->path); 2611 return -EINVAL; 2612 } 2613 2614 nr_types = btf__type_cnt(obj->btf); 2615 for (i = 1; i < nr_types; i++) { 2616 t = btf__type_by_id(obj->btf, i); 2617 if (!btf_is_datasec(t)) 2618 continue; 2619 name = btf__name_by_offset(obj->btf, t->name_off); 2620 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2621 sec = t; 2622 obj->efile.btf_maps_sec_btf_id = i; 2623 break; 2624 } 2625 } 2626 2627 if (!sec) { 2628 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2629 return -ENOENT; 2630 } 2631 2632 vlen = btf_vlen(sec); 2633 for (i = 0; i < vlen; i++) { 2634 err = bpf_object__init_user_btf_map(obj, sec, i, 2635 obj->efile.btf_maps_shndx, 2636 data, strict, 2637 pin_root_path); 2638 if (err) 2639 return err; 2640 } 2641 2642 return 0; 2643 } 2644 2645 static int bpf_object__init_maps(struct bpf_object *obj, 2646 const struct bpf_object_open_opts *opts) 2647 { 2648 const char *pin_root_path; 2649 bool strict; 2650 int err = 0; 2651 2652 strict = !OPTS_GET(opts, relaxed_maps, false); 2653 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2654 2655 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2656 err = err ?: bpf_object__init_global_data_maps(obj); 2657 err = err ?: bpf_object__init_kconfig_map(obj); 2658 err = err ?: bpf_object__init_struct_ops_maps(obj); 2659 2660 return err; 2661 } 2662 2663 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2664 { 2665 Elf64_Shdr *sh; 2666 2667 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2668 if (!sh) 2669 return false; 2670 2671 return sh->sh_flags & SHF_EXECINSTR; 2672 } 2673 2674 static bool btf_needs_sanitization(struct bpf_object *obj) 2675 { 2676 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2677 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2678 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2679 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2680 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2681 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2682 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2683 2684 return !has_func || !has_datasec || !has_func_global || !has_float || 2685 !has_decl_tag || !has_type_tag || !has_enum64; 2686 } 2687 2688 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2689 { 2690 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2691 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2692 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2693 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2694 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2695 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2696 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2697 int enum64_placeholder_id = 0; 2698 struct btf_type *t; 2699 int i, j, vlen; 2700 2701 for (i = 1; i < btf__type_cnt(btf); i++) { 2702 t = (struct btf_type *)btf__type_by_id(btf, i); 2703 2704 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2705 /* replace VAR/DECL_TAG with INT */ 2706 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2707 /* 2708 * using size = 1 is the safest choice, 4 will be too 2709 * big and cause kernel BTF validation failure if 2710 * original variable took less than 4 bytes 2711 */ 2712 t->size = 1; 2713 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2714 } else if (!has_datasec && btf_is_datasec(t)) { 2715 /* replace DATASEC with STRUCT */ 2716 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2717 struct btf_member *m = btf_members(t); 2718 struct btf_type *vt; 2719 char *name; 2720 2721 name = (char *)btf__name_by_offset(btf, t->name_off); 2722 while (*name) { 2723 if (*name == '.') 2724 *name = '_'; 2725 name++; 2726 } 2727 2728 vlen = btf_vlen(t); 2729 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2730 for (j = 0; j < vlen; j++, v++, m++) { 2731 /* order of field assignments is important */ 2732 m->offset = v->offset * 8; 2733 m->type = v->type; 2734 /* preserve variable name as member name */ 2735 vt = (void *)btf__type_by_id(btf, v->type); 2736 m->name_off = vt->name_off; 2737 } 2738 } else if (!has_func && btf_is_func_proto(t)) { 2739 /* replace FUNC_PROTO with ENUM */ 2740 vlen = btf_vlen(t); 2741 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2742 t->size = sizeof(__u32); /* kernel enforced */ 2743 } else if (!has_func && btf_is_func(t)) { 2744 /* replace FUNC with TYPEDEF */ 2745 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2746 } else if (!has_func_global && btf_is_func(t)) { 2747 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2748 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2749 } else if (!has_float && btf_is_float(t)) { 2750 /* replace FLOAT with an equally-sized empty STRUCT; 2751 * since C compilers do not accept e.g. "float" as a 2752 * valid struct name, make it anonymous 2753 */ 2754 t->name_off = 0; 2755 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2756 } else if (!has_type_tag && btf_is_type_tag(t)) { 2757 /* replace TYPE_TAG with a CONST */ 2758 t->name_off = 0; 2759 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2760 } else if (!has_enum64 && btf_is_enum(t)) { 2761 /* clear the kflag */ 2762 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 2763 } else if (!has_enum64 && btf_is_enum64(t)) { 2764 /* replace ENUM64 with a union */ 2765 struct btf_member *m; 2766 2767 if (enum64_placeholder_id == 0) { 2768 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 2769 if (enum64_placeholder_id < 0) 2770 return enum64_placeholder_id; 2771 2772 t = (struct btf_type *)btf__type_by_id(btf, i); 2773 } 2774 2775 m = btf_members(t); 2776 vlen = btf_vlen(t); 2777 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 2778 for (j = 0; j < vlen; j++, m++) { 2779 m->type = enum64_placeholder_id; 2780 m->offset = 0; 2781 } 2782 } 2783 } 2784 2785 return 0; 2786 } 2787 2788 static bool libbpf_needs_btf(const struct bpf_object *obj) 2789 { 2790 return obj->efile.btf_maps_shndx >= 0 || 2791 obj->efile.st_ops_shndx >= 0 || 2792 obj->nr_extern > 0; 2793 } 2794 2795 static bool kernel_needs_btf(const struct bpf_object *obj) 2796 { 2797 return obj->efile.st_ops_shndx >= 0; 2798 } 2799 2800 static int bpf_object__init_btf(struct bpf_object *obj, 2801 Elf_Data *btf_data, 2802 Elf_Data *btf_ext_data) 2803 { 2804 int err = -ENOENT; 2805 2806 if (btf_data) { 2807 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2808 err = libbpf_get_error(obj->btf); 2809 if (err) { 2810 obj->btf = NULL; 2811 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2812 goto out; 2813 } 2814 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2815 btf__set_pointer_size(obj->btf, 8); 2816 } 2817 if (btf_ext_data) { 2818 struct btf_ext_info *ext_segs[3]; 2819 int seg_num, sec_num; 2820 2821 if (!obj->btf) { 2822 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2823 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2824 goto out; 2825 } 2826 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2827 err = libbpf_get_error(obj->btf_ext); 2828 if (err) { 2829 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2830 BTF_EXT_ELF_SEC, err); 2831 obj->btf_ext = NULL; 2832 goto out; 2833 } 2834 2835 /* setup .BTF.ext to ELF section mapping */ 2836 ext_segs[0] = &obj->btf_ext->func_info; 2837 ext_segs[1] = &obj->btf_ext->line_info; 2838 ext_segs[2] = &obj->btf_ext->core_relo_info; 2839 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 2840 struct btf_ext_info *seg = ext_segs[seg_num]; 2841 const struct btf_ext_info_sec *sec; 2842 const char *sec_name; 2843 Elf_Scn *scn; 2844 2845 if (seg->sec_cnt == 0) 2846 continue; 2847 2848 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 2849 if (!seg->sec_idxs) { 2850 err = -ENOMEM; 2851 goto out; 2852 } 2853 2854 sec_num = 0; 2855 for_each_btf_ext_sec(seg, sec) { 2856 /* preventively increment index to avoid doing 2857 * this before every continue below 2858 */ 2859 sec_num++; 2860 2861 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 2862 if (str_is_empty(sec_name)) 2863 continue; 2864 scn = elf_sec_by_name(obj, sec_name); 2865 if (!scn) 2866 continue; 2867 2868 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 2869 } 2870 } 2871 } 2872 out: 2873 if (err && libbpf_needs_btf(obj)) { 2874 pr_warn("BTF is required, but is missing or corrupted.\n"); 2875 return err; 2876 } 2877 return 0; 2878 } 2879 2880 static int compare_vsi_off(const void *_a, const void *_b) 2881 { 2882 const struct btf_var_secinfo *a = _a; 2883 const struct btf_var_secinfo *b = _b; 2884 2885 return a->offset - b->offset; 2886 } 2887 2888 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2889 struct btf_type *t) 2890 { 2891 __u32 size = 0, i, vars = btf_vlen(t); 2892 const char *sec_name = btf__name_by_offset(btf, t->name_off); 2893 struct btf_var_secinfo *vsi; 2894 bool fixup_offsets = false; 2895 int err; 2896 2897 if (!sec_name) { 2898 pr_debug("No name found in string section for DATASEC kind.\n"); 2899 return -ENOENT; 2900 } 2901 2902 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 2903 * variable offsets set at the previous step. Further, not every 2904 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 2905 * all fixups altogether for such sections and go straight to sorting 2906 * VARs within their DATASEC. 2907 */ 2908 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 2909 goto sort_vars; 2910 2911 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 2912 * fix this up. But BPF static linker already fixes this up and fills 2913 * all the sizes and offsets during static linking. So this step has 2914 * to be optional. But the STV_HIDDEN handling is non-optional for any 2915 * non-extern DATASEC, so the variable fixup loop below handles both 2916 * functions at the same time, paying the cost of BTF VAR <-> ELF 2917 * symbol matching just once. 2918 */ 2919 if (t->size == 0) { 2920 err = find_elf_sec_sz(obj, sec_name, &size); 2921 if (err || !size) { 2922 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n", 2923 sec_name, size, err); 2924 return -ENOENT; 2925 } 2926 2927 t->size = size; 2928 fixup_offsets = true; 2929 } 2930 2931 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2932 const struct btf_type *t_var; 2933 struct btf_var *var; 2934 const char *var_name; 2935 Elf64_Sym *sym; 2936 2937 t_var = btf__type_by_id(btf, vsi->type); 2938 if (!t_var || !btf_is_var(t_var)) { 2939 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 2940 return -EINVAL; 2941 } 2942 2943 var = btf_var(t_var); 2944 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 2945 continue; 2946 2947 var_name = btf__name_by_offset(btf, t_var->name_off); 2948 if (!var_name) { 2949 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 2950 sec_name, i); 2951 return -ENOENT; 2952 } 2953 2954 sym = find_elf_var_sym(obj, var_name); 2955 if (IS_ERR(sym)) { 2956 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 2957 sec_name, var_name); 2958 return -ENOENT; 2959 } 2960 2961 if (fixup_offsets) 2962 vsi->offset = sym->st_value; 2963 2964 /* if variable is a global/weak symbol, but has restricted 2965 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 2966 * as static. This follows similar logic for functions (BPF 2967 * subprogs) and influences libbpf's further decisions about 2968 * whether to make global data BPF array maps as 2969 * BPF_F_MMAPABLE. 2970 */ 2971 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 2972 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 2973 var->linkage = BTF_VAR_STATIC; 2974 } 2975 2976 sort_vars: 2977 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 2978 return 0; 2979 } 2980 2981 static int bpf_object_fixup_btf(struct bpf_object *obj) 2982 { 2983 int i, n, err = 0; 2984 2985 if (!obj->btf) 2986 return 0; 2987 2988 n = btf__type_cnt(obj->btf); 2989 for (i = 1; i < n; i++) { 2990 struct btf_type *t = btf_type_by_id(obj->btf, i); 2991 2992 /* Loader needs to fix up some of the things compiler 2993 * couldn't get its hands on while emitting BTF. This 2994 * is section size and global variable offset. We use 2995 * the info from the ELF itself for this purpose. 2996 */ 2997 if (btf_is_datasec(t)) { 2998 err = btf_fixup_datasec(obj, obj->btf, t); 2999 if (err) 3000 return err; 3001 } 3002 } 3003 3004 return 0; 3005 } 3006 3007 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 3008 { 3009 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3010 prog->type == BPF_PROG_TYPE_LSM) 3011 return true; 3012 3013 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3014 * also need vmlinux BTF 3015 */ 3016 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3017 return true; 3018 3019 return false; 3020 } 3021 3022 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3023 { 3024 struct bpf_program *prog; 3025 int i; 3026 3027 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3028 * is not specified 3029 */ 3030 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3031 return true; 3032 3033 /* Support for typed ksyms needs kernel BTF */ 3034 for (i = 0; i < obj->nr_extern; i++) { 3035 const struct extern_desc *ext; 3036 3037 ext = &obj->externs[i]; 3038 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3039 return true; 3040 } 3041 3042 bpf_object__for_each_program(prog, obj) { 3043 if (!prog->autoload) 3044 continue; 3045 if (prog_needs_vmlinux_btf(prog)) 3046 return true; 3047 } 3048 3049 return false; 3050 } 3051 3052 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3053 { 3054 int err; 3055 3056 /* btf_vmlinux could be loaded earlier */ 3057 if (obj->btf_vmlinux || obj->gen_loader) 3058 return 0; 3059 3060 if (!force && !obj_needs_vmlinux_btf(obj)) 3061 return 0; 3062 3063 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3064 err = libbpf_get_error(obj->btf_vmlinux); 3065 if (err) { 3066 pr_warn("Error loading vmlinux BTF: %d\n", err); 3067 obj->btf_vmlinux = NULL; 3068 return err; 3069 } 3070 return 0; 3071 } 3072 3073 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3074 { 3075 struct btf *kern_btf = obj->btf; 3076 bool btf_mandatory, sanitize; 3077 int i, err = 0; 3078 3079 if (!obj->btf) 3080 return 0; 3081 3082 if (!kernel_supports(obj, FEAT_BTF)) { 3083 if (kernel_needs_btf(obj)) { 3084 err = -EOPNOTSUPP; 3085 goto report; 3086 } 3087 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3088 return 0; 3089 } 3090 3091 /* Even though some subprogs are global/weak, user might prefer more 3092 * permissive BPF verification process that BPF verifier performs for 3093 * static functions, taking into account more context from the caller 3094 * functions. In such case, they need to mark such subprogs with 3095 * __attribute__((visibility("hidden"))) and libbpf will adjust 3096 * corresponding FUNC BTF type to be marked as static and trigger more 3097 * involved BPF verification process. 3098 */ 3099 for (i = 0; i < obj->nr_programs; i++) { 3100 struct bpf_program *prog = &obj->programs[i]; 3101 struct btf_type *t; 3102 const char *name; 3103 int j, n; 3104 3105 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3106 continue; 3107 3108 n = btf__type_cnt(obj->btf); 3109 for (j = 1; j < n; j++) { 3110 t = btf_type_by_id(obj->btf, j); 3111 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3112 continue; 3113 3114 name = btf__str_by_offset(obj->btf, t->name_off); 3115 if (strcmp(name, prog->name) != 0) 3116 continue; 3117 3118 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3119 break; 3120 } 3121 } 3122 3123 sanitize = btf_needs_sanitization(obj); 3124 if (sanitize) { 3125 const void *raw_data; 3126 __u32 sz; 3127 3128 /* clone BTF to sanitize a copy and leave the original intact */ 3129 raw_data = btf__raw_data(obj->btf, &sz); 3130 kern_btf = btf__new(raw_data, sz); 3131 err = libbpf_get_error(kern_btf); 3132 if (err) 3133 return err; 3134 3135 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3136 btf__set_pointer_size(obj->btf, 8); 3137 err = bpf_object__sanitize_btf(obj, kern_btf); 3138 if (err) 3139 return err; 3140 } 3141 3142 if (obj->gen_loader) { 3143 __u32 raw_size = 0; 3144 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3145 3146 if (!raw_data) 3147 return -ENOMEM; 3148 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3149 /* Pretend to have valid FD to pass various fd >= 0 checks. 3150 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3151 */ 3152 btf__set_fd(kern_btf, 0); 3153 } else { 3154 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3155 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3156 obj->log_level ? 1 : 0); 3157 } 3158 if (sanitize) { 3159 if (!err) { 3160 /* move fd to libbpf's BTF */ 3161 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3162 btf__set_fd(kern_btf, -1); 3163 } 3164 btf__free(kern_btf); 3165 } 3166 report: 3167 if (err) { 3168 btf_mandatory = kernel_needs_btf(obj); 3169 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3170 btf_mandatory ? "BTF is mandatory, can't proceed." 3171 : "BTF is optional, ignoring."); 3172 if (!btf_mandatory) 3173 err = 0; 3174 } 3175 return err; 3176 } 3177 3178 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3179 { 3180 const char *name; 3181 3182 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3183 if (!name) { 3184 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3185 off, obj->path, elf_errmsg(-1)); 3186 return NULL; 3187 } 3188 3189 return name; 3190 } 3191 3192 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3193 { 3194 const char *name; 3195 3196 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3197 if (!name) { 3198 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3199 off, obj->path, elf_errmsg(-1)); 3200 return NULL; 3201 } 3202 3203 return name; 3204 } 3205 3206 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3207 { 3208 Elf_Scn *scn; 3209 3210 scn = elf_getscn(obj->efile.elf, idx); 3211 if (!scn) { 3212 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3213 idx, obj->path, elf_errmsg(-1)); 3214 return NULL; 3215 } 3216 return scn; 3217 } 3218 3219 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3220 { 3221 Elf_Scn *scn = NULL; 3222 Elf *elf = obj->efile.elf; 3223 const char *sec_name; 3224 3225 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3226 sec_name = elf_sec_name(obj, scn); 3227 if (!sec_name) 3228 return NULL; 3229 3230 if (strcmp(sec_name, name) != 0) 3231 continue; 3232 3233 return scn; 3234 } 3235 return NULL; 3236 } 3237 3238 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3239 { 3240 Elf64_Shdr *shdr; 3241 3242 if (!scn) 3243 return NULL; 3244 3245 shdr = elf64_getshdr(scn); 3246 if (!shdr) { 3247 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3248 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3249 return NULL; 3250 } 3251 3252 return shdr; 3253 } 3254 3255 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3256 { 3257 const char *name; 3258 Elf64_Shdr *sh; 3259 3260 if (!scn) 3261 return NULL; 3262 3263 sh = elf_sec_hdr(obj, scn); 3264 if (!sh) 3265 return NULL; 3266 3267 name = elf_sec_str(obj, sh->sh_name); 3268 if (!name) { 3269 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3270 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3271 return NULL; 3272 } 3273 3274 return name; 3275 } 3276 3277 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3278 { 3279 Elf_Data *data; 3280 3281 if (!scn) 3282 return NULL; 3283 3284 data = elf_getdata(scn, 0); 3285 if (!data) { 3286 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3287 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3288 obj->path, elf_errmsg(-1)); 3289 return NULL; 3290 } 3291 3292 return data; 3293 } 3294 3295 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3296 { 3297 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3298 return NULL; 3299 3300 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3301 } 3302 3303 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3304 { 3305 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3306 return NULL; 3307 3308 return (Elf64_Rel *)data->d_buf + idx; 3309 } 3310 3311 static bool is_sec_name_dwarf(const char *name) 3312 { 3313 /* approximation, but the actual list is too long */ 3314 return str_has_pfx(name, ".debug_"); 3315 } 3316 3317 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3318 { 3319 /* no special handling of .strtab */ 3320 if (hdr->sh_type == SHT_STRTAB) 3321 return true; 3322 3323 /* ignore .llvm_addrsig section as well */ 3324 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3325 return true; 3326 3327 /* no subprograms will lead to an empty .text section, ignore it */ 3328 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3329 strcmp(name, ".text") == 0) 3330 return true; 3331 3332 /* DWARF sections */ 3333 if (is_sec_name_dwarf(name)) 3334 return true; 3335 3336 if (str_has_pfx(name, ".rel")) { 3337 name += sizeof(".rel") - 1; 3338 /* DWARF section relocations */ 3339 if (is_sec_name_dwarf(name)) 3340 return true; 3341 3342 /* .BTF and .BTF.ext don't need relocations */ 3343 if (strcmp(name, BTF_ELF_SEC) == 0 || 3344 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3345 return true; 3346 } 3347 3348 return false; 3349 } 3350 3351 static int cmp_progs(const void *_a, const void *_b) 3352 { 3353 const struct bpf_program *a = _a; 3354 const struct bpf_program *b = _b; 3355 3356 if (a->sec_idx != b->sec_idx) 3357 return a->sec_idx < b->sec_idx ? -1 : 1; 3358 3359 /* sec_insn_off can't be the same within the section */ 3360 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3361 } 3362 3363 static int bpf_object__elf_collect(struct bpf_object *obj) 3364 { 3365 struct elf_sec_desc *sec_desc; 3366 Elf *elf = obj->efile.elf; 3367 Elf_Data *btf_ext_data = NULL; 3368 Elf_Data *btf_data = NULL; 3369 int idx = 0, err = 0; 3370 const char *name; 3371 Elf_Data *data; 3372 Elf_Scn *scn; 3373 Elf64_Shdr *sh; 3374 3375 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3376 * section. Since section count retrieved by elf_getshdrnum() does 3377 * include sec #0, it is already the necessary size of an array to keep 3378 * all the sections. 3379 */ 3380 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3381 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3382 obj->path, elf_errmsg(-1)); 3383 return -LIBBPF_ERRNO__FORMAT; 3384 } 3385 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3386 if (!obj->efile.secs) 3387 return -ENOMEM; 3388 3389 /* a bunch of ELF parsing functionality depends on processing symbols, 3390 * so do the first pass and find the symbol table 3391 */ 3392 scn = NULL; 3393 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3394 sh = elf_sec_hdr(obj, scn); 3395 if (!sh) 3396 return -LIBBPF_ERRNO__FORMAT; 3397 3398 if (sh->sh_type == SHT_SYMTAB) { 3399 if (obj->efile.symbols) { 3400 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3401 return -LIBBPF_ERRNO__FORMAT; 3402 } 3403 3404 data = elf_sec_data(obj, scn); 3405 if (!data) 3406 return -LIBBPF_ERRNO__FORMAT; 3407 3408 idx = elf_ndxscn(scn); 3409 3410 obj->efile.symbols = data; 3411 obj->efile.symbols_shndx = idx; 3412 obj->efile.strtabidx = sh->sh_link; 3413 } 3414 } 3415 3416 if (!obj->efile.symbols) { 3417 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3418 obj->path); 3419 return -ENOENT; 3420 } 3421 3422 scn = NULL; 3423 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3424 idx = elf_ndxscn(scn); 3425 sec_desc = &obj->efile.secs[idx]; 3426 3427 sh = elf_sec_hdr(obj, scn); 3428 if (!sh) 3429 return -LIBBPF_ERRNO__FORMAT; 3430 3431 name = elf_sec_str(obj, sh->sh_name); 3432 if (!name) 3433 return -LIBBPF_ERRNO__FORMAT; 3434 3435 if (ignore_elf_section(sh, name)) 3436 continue; 3437 3438 data = elf_sec_data(obj, scn); 3439 if (!data) 3440 return -LIBBPF_ERRNO__FORMAT; 3441 3442 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3443 idx, name, (unsigned long)data->d_size, 3444 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3445 (int)sh->sh_type); 3446 3447 if (strcmp(name, "license") == 0) { 3448 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3449 if (err) 3450 return err; 3451 } else if (strcmp(name, "version") == 0) { 3452 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3453 if (err) 3454 return err; 3455 } else if (strcmp(name, "maps") == 0) { 3456 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3457 return -ENOTSUP; 3458 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3459 obj->efile.btf_maps_shndx = idx; 3460 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3461 if (sh->sh_type != SHT_PROGBITS) 3462 return -LIBBPF_ERRNO__FORMAT; 3463 btf_data = data; 3464 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3465 if (sh->sh_type != SHT_PROGBITS) 3466 return -LIBBPF_ERRNO__FORMAT; 3467 btf_ext_data = data; 3468 } else if (sh->sh_type == SHT_SYMTAB) { 3469 /* already processed during the first pass above */ 3470 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3471 if (sh->sh_flags & SHF_EXECINSTR) { 3472 if (strcmp(name, ".text") == 0) 3473 obj->efile.text_shndx = idx; 3474 err = bpf_object__add_programs(obj, data, name, idx); 3475 if (err) 3476 return err; 3477 } else if (strcmp(name, DATA_SEC) == 0 || 3478 str_has_pfx(name, DATA_SEC ".")) { 3479 sec_desc->sec_type = SEC_DATA; 3480 sec_desc->shdr = sh; 3481 sec_desc->data = data; 3482 } else if (strcmp(name, RODATA_SEC) == 0 || 3483 str_has_pfx(name, RODATA_SEC ".")) { 3484 sec_desc->sec_type = SEC_RODATA; 3485 sec_desc->shdr = sh; 3486 sec_desc->data = data; 3487 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3488 obj->efile.st_ops_data = data; 3489 obj->efile.st_ops_shndx = idx; 3490 } else { 3491 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3492 idx, name); 3493 } 3494 } else if (sh->sh_type == SHT_REL) { 3495 int targ_sec_idx = sh->sh_info; /* points to other section */ 3496 3497 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3498 targ_sec_idx >= obj->efile.sec_cnt) 3499 return -LIBBPF_ERRNO__FORMAT; 3500 3501 /* Only do relo for section with exec instructions */ 3502 if (!section_have_execinstr(obj, targ_sec_idx) && 3503 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3504 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3505 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3506 idx, name, targ_sec_idx, 3507 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3508 continue; 3509 } 3510 3511 sec_desc->sec_type = SEC_RELO; 3512 sec_desc->shdr = sh; 3513 sec_desc->data = data; 3514 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 || 3515 str_has_pfx(name, BSS_SEC "."))) { 3516 sec_desc->sec_type = SEC_BSS; 3517 sec_desc->shdr = sh; 3518 sec_desc->data = data; 3519 } else { 3520 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3521 (size_t)sh->sh_size); 3522 } 3523 } 3524 3525 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3526 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3527 return -LIBBPF_ERRNO__FORMAT; 3528 } 3529 3530 /* sort BPF programs by section name and in-section instruction offset 3531 * for faster search 3532 */ 3533 if (obj->nr_programs) 3534 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3535 3536 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3537 } 3538 3539 static bool sym_is_extern(const Elf64_Sym *sym) 3540 { 3541 int bind = ELF64_ST_BIND(sym->st_info); 3542 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3543 return sym->st_shndx == SHN_UNDEF && 3544 (bind == STB_GLOBAL || bind == STB_WEAK) && 3545 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3546 } 3547 3548 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3549 { 3550 int bind = ELF64_ST_BIND(sym->st_info); 3551 int type = ELF64_ST_TYPE(sym->st_info); 3552 3553 /* in .text section */ 3554 if (sym->st_shndx != text_shndx) 3555 return false; 3556 3557 /* local function */ 3558 if (bind == STB_LOCAL && type == STT_SECTION) 3559 return true; 3560 3561 /* global function */ 3562 return bind == STB_GLOBAL && type == STT_FUNC; 3563 } 3564 3565 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3566 { 3567 const struct btf_type *t; 3568 const char *tname; 3569 int i, n; 3570 3571 if (!btf) 3572 return -ESRCH; 3573 3574 n = btf__type_cnt(btf); 3575 for (i = 1; i < n; i++) { 3576 t = btf__type_by_id(btf, i); 3577 3578 if (!btf_is_var(t) && !btf_is_func(t)) 3579 continue; 3580 3581 tname = btf__name_by_offset(btf, t->name_off); 3582 if (strcmp(tname, ext_name)) 3583 continue; 3584 3585 if (btf_is_var(t) && 3586 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3587 return -EINVAL; 3588 3589 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3590 return -EINVAL; 3591 3592 return i; 3593 } 3594 3595 return -ENOENT; 3596 } 3597 3598 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3599 const struct btf_var_secinfo *vs; 3600 const struct btf_type *t; 3601 int i, j, n; 3602 3603 if (!btf) 3604 return -ESRCH; 3605 3606 n = btf__type_cnt(btf); 3607 for (i = 1; i < n; i++) { 3608 t = btf__type_by_id(btf, i); 3609 3610 if (!btf_is_datasec(t)) 3611 continue; 3612 3613 vs = btf_var_secinfos(t); 3614 for (j = 0; j < btf_vlen(t); j++, vs++) { 3615 if (vs->type == ext_btf_id) 3616 return i; 3617 } 3618 } 3619 3620 return -ENOENT; 3621 } 3622 3623 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3624 bool *is_signed) 3625 { 3626 const struct btf_type *t; 3627 const char *name; 3628 3629 t = skip_mods_and_typedefs(btf, id, NULL); 3630 name = btf__name_by_offset(btf, t->name_off); 3631 3632 if (is_signed) 3633 *is_signed = false; 3634 switch (btf_kind(t)) { 3635 case BTF_KIND_INT: { 3636 int enc = btf_int_encoding(t); 3637 3638 if (enc & BTF_INT_BOOL) 3639 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3640 if (is_signed) 3641 *is_signed = enc & BTF_INT_SIGNED; 3642 if (t->size == 1) 3643 return KCFG_CHAR; 3644 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3645 return KCFG_UNKNOWN; 3646 return KCFG_INT; 3647 } 3648 case BTF_KIND_ENUM: 3649 if (t->size != 4) 3650 return KCFG_UNKNOWN; 3651 if (strcmp(name, "libbpf_tristate")) 3652 return KCFG_UNKNOWN; 3653 return KCFG_TRISTATE; 3654 case BTF_KIND_ENUM64: 3655 if (strcmp(name, "libbpf_tristate")) 3656 return KCFG_UNKNOWN; 3657 return KCFG_TRISTATE; 3658 case BTF_KIND_ARRAY: 3659 if (btf_array(t)->nelems == 0) 3660 return KCFG_UNKNOWN; 3661 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3662 return KCFG_UNKNOWN; 3663 return KCFG_CHAR_ARR; 3664 default: 3665 return KCFG_UNKNOWN; 3666 } 3667 } 3668 3669 static int cmp_externs(const void *_a, const void *_b) 3670 { 3671 const struct extern_desc *a = _a; 3672 const struct extern_desc *b = _b; 3673 3674 if (a->type != b->type) 3675 return a->type < b->type ? -1 : 1; 3676 3677 if (a->type == EXT_KCFG) { 3678 /* descending order by alignment requirements */ 3679 if (a->kcfg.align != b->kcfg.align) 3680 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3681 /* ascending order by size, within same alignment class */ 3682 if (a->kcfg.sz != b->kcfg.sz) 3683 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3684 } 3685 3686 /* resolve ties by name */ 3687 return strcmp(a->name, b->name); 3688 } 3689 3690 static int find_int_btf_id(const struct btf *btf) 3691 { 3692 const struct btf_type *t; 3693 int i, n; 3694 3695 n = btf__type_cnt(btf); 3696 for (i = 1; i < n; i++) { 3697 t = btf__type_by_id(btf, i); 3698 3699 if (btf_is_int(t) && btf_int_bits(t) == 32) 3700 return i; 3701 } 3702 3703 return 0; 3704 } 3705 3706 static int add_dummy_ksym_var(struct btf *btf) 3707 { 3708 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3709 const struct btf_var_secinfo *vs; 3710 const struct btf_type *sec; 3711 3712 if (!btf) 3713 return 0; 3714 3715 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3716 BTF_KIND_DATASEC); 3717 if (sec_btf_id < 0) 3718 return 0; 3719 3720 sec = btf__type_by_id(btf, sec_btf_id); 3721 vs = btf_var_secinfos(sec); 3722 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3723 const struct btf_type *vt; 3724 3725 vt = btf__type_by_id(btf, vs->type); 3726 if (btf_is_func(vt)) 3727 break; 3728 } 3729 3730 /* No func in ksyms sec. No need to add dummy var. */ 3731 if (i == btf_vlen(sec)) 3732 return 0; 3733 3734 int_btf_id = find_int_btf_id(btf); 3735 dummy_var_btf_id = btf__add_var(btf, 3736 "dummy_ksym", 3737 BTF_VAR_GLOBAL_ALLOCATED, 3738 int_btf_id); 3739 if (dummy_var_btf_id < 0) 3740 pr_warn("cannot create a dummy_ksym var\n"); 3741 3742 return dummy_var_btf_id; 3743 } 3744 3745 static int bpf_object__collect_externs(struct bpf_object *obj) 3746 { 3747 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3748 const struct btf_type *t; 3749 struct extern_desc *ext; 3750 int i, n, off, dummy_var_btf_id; 3751 const char *ext_name, *sec_name; 3752 Elf_Scn *scn; 3753 Elf64_Shdr *sh; 3754 3755 if (!obj->efile.symbols) 3756 return 0; 3757 3758 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3759 sh = elf_sec_hdr(obj, scn); 3760 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3761 return -LIBBPF_ERRNO__FORMAT; 3762 3763 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3764 if (dummy_var_btf_id < 0) 3765 return dummy_var_btf_id; 3766 3767 n = sh->sh_size / sh->sh_entsize; 3768 pr_debug("looking for externs among %d symbols...\n", n); 3769 3770 for (i = 0; i < n; i++) { 3771 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3772 3773 if (!sym) 3774 return -LIBBPF_ERRNO__FORMAT; 3775 if (!sym_is_extern(sym)) 3776 continue; 3777 ext_name = elf_sym_str(obj, sym->st_name); 3778 if (!ext_name || !ext_name[0]) 3779 continue; 3780 3781 ext = obj->externs; 3782 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3783 if (!ext) 3784 return -ENOMEM; 3785 obj->externs = ext; 3786 ext = &ext[obj->nr_extern]; 3787 memset(ext, 0, sizeof(*ext)); 3788 obj->nr_extern++; 3789 3790 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3791 if (ext->btf_id <= 0) { 3792 pr_warn("failed to find BTF for extern '%s': %d\n", 3793 ext_name, ext->btf_id); 3794 return ext->btf_id; 3795 } 3796 t = btf__type_by_id(obj->btf, ext->btf_id); 3797 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3798 ext->sym_idx = i; 3799 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3800 3801 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3802 if (ext->sec_btf_id <= 0) { 3803 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3804 ext_name, ext->btf_id, ext->sec_btf_id); 3805 return ext->sec_btf_id; 3806 } 3807 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3808 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3809 3810 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3811 if (btf_is_func(t)) { 3812 pr_warn("extern function %s is unsupported under %s section\n", 3813 ext->name, KCONFIG_SEC); 3814 return -ENOTSUP; 3815 } 3816 kcfg_sec = sec; 3817 ext->type = EXT_KCFG; 3818 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3819 if (ext->kcfg.sz <= 0) { 3820 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3821 ext_name, ext->kcfg.sz); 3822 return ext->kcfg.sz; 3823 } 3824 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3825 if (ext->kcfg.align <= 0) { 3826 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3827 ext_name, ext->kcfg.align); 3828 return -EINVAL; 3829 } 3830 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3831 &ext->kcfg.is_signed); 3832 if (ext->kcfg.type == KCFG_UNKNOWN) { 3833 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 3834 return -ENOTSUP; 3835 } 3836 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3837 ksym_sec = sec; 3838 ext->type = EXT_KSYM; 3839 skip_mods_and_typedefs(obj->btf, t->type, 3840 &ext->ksym.type_id); 3841 } else { 3842 pr_warn("unrecognized extern section '%s'\n", sec_name); 3843 return -ENOTSUP; 3844 } 3845 } 3846 pr_debug("collected %d externs total\n", obj->nr_extern); 3847 3848 if (!obj->nr_extern) 3849 return 0; 3850 3851 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3852 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3853 3854 /* for .ksyms section, we need to turn all externs into allocated 3855 * variables in BTF to pass kernel verification; we do this by 3856 * pretending that each extern is a 8-byte variable 3857 */ 3858 if (ksym_sec) { 3859 /* find existing 4-byte integer type in BTF to use for fake 3860 * extern variables in DATASEC 3861 */ 3862 int int_btf_id = find_int_btf_id(obj->btf); 3863 /* For extern function, a dummy_var added earlier 3864 * will be used to replace the vs->type and 3865 * its name string will be used to refill 3866 * the missing param's name. 3867 */ 3868 const struct btf_type *dummy_var; 3869 3870 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3871 for (i = 0; i < obj->nr_extern; i++) { 3872 ext = &obj->externs[i]; 3873 if (ext->type != EXT_KSYM) 3874 continue; 3875 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3876 i, ext->sym_idx, ext->name); 3877 } 3878 3879 sec = ksym_sec; 3880 n = btf_vlen(sec); 3881 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3882 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3883 struct btf_type *vt; 3884 3885 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3886 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3887 ext = find_extern_by_name(obj, ext_name); 3888 if (!ext) { 3889 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3890 btf_kind_str(vt), ext_name); 3891 return -ESRCH; 3892 } 3893 if (btf_is_func(vt)) { 3894 const struct btf_type *func_proto; 3895 struct btf_param *param; 3896 int j; 3897 3898 func_proto = btf__type_by_id(obj->btf, 3899 vt->type); 3900 param = btf_params(func_proto); 3901 /* Reuse the dummy_var string if the 3902 * func proto does not have param name. 3903 */ 3904 for (j = 0; j < btf_vlen(func_proto); j++) 3905 if (param[j].type && !param[j].name_off) 3906 param[j].name_off = 3907 dummy_var->name_off; 3908 vs->type = dummy_var_btf_id; 3909 vt->info &= ~0xffff; 3910 vt->info |= BTF_FUNC_GLOBAL; 3911 } else { 3912 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3913 vt->type = int_btf_id; 3914 } 3915 vs->offset = off; 3916 vs->size = sizeof(int); 3917 } 3918 sec->size = off; 3919 } 3920 3921 if (kcfg_sec) { 3922 sec = kcfg_sec; 3923 /* for kcfg externs calculate their offsets within a .kconfig map */ 3924 off = 0; 3925 for (i = 0; i < obj->nr_extern; i++) { 3926 ext = &obj->externs[i]; 3927 if (ext->type != EXT_KCFG) 3928 continue; 3929 3930 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3931 off = ext->kcfg.data_off + ext->kcfg.sz; 3932 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3933 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3934 } 3935 sec->size = off; 3936 n = btf_vlen(sec); 3937 for (i = 0; i < n; i++) { 3938 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3939 3940 t = btf__type_by_id(obj->btf, vs->type); 3941 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3942 ext = find_extern_by_name(obj, ext_name); 3943 if (!ext) { 3944 pr_warn("failed to find extern definition for BTF var '%s'\n", 3945 ext_name); 3946 return -ESRCH; 3947 } 3948 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3949 vs->offset = ext->kcfg.data_off; 3950 } 3951 } 3952 return 0; 3953 } 3954 3955 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 3956 { 3957 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3958 } 3959 3960 struct bpf_program * 3961 bpf_object__find_program_by_name(const struct bpf_object *obj, 3962 const char *name) 3963 { 3964 struct bpf_program *prog; 3965 3966 bpf_object__for_each_program(prog, obj) { 3967 if (prog_is_subprog(obj, prog)) 3968 continue; 3969 if (!strcmp(prog->name, name)) 3970 return prog; 3971 } 3972 return errno = ENOENT, NULL; 3973 } 3974 3975 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3976 int shndx) 3977 { 3978 switch (obj->efile.secs[shndx].sec_type) { 3979 case SEC_BSS: 3980 case SEC_DATA: 3981 case SEC_RODATA: 3982 return true; 3983 default: 3984 return false; 3985 } 3986 } 3987 3988 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3989 int shndx) 3990 { 3991 return shndx == obj->efile.btf_maps_shndx; 3992 } 3993 3994 static enum libbpf_map_type 3995 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3996 { 3997 if (shndx == obj->efile.symbols_shndx) 3998 return LIBBPF_MAP_KCONFIG; 3999 4000 switch (obj->efile.secs[shndx].sec_type) { 4001 case SEC_BSS: 4002 return LIBBPF_MAP_BSS; 4003 case SEC_DATA: 4004 return LIBBPF_MAP_DATA; 4005 case SEC_RODATA: 4006 return LIBBPF_MAP_RODATA; 4007 default: 4008 return LIBBPF_MAP_UNSPEC; 4009 } 4010 } 4011 4012 static int bpf_program__record_reloc(struct bpf_program *prog, 4013 struct reloc_desc *reloc_desc, 4014 __u32 insn_idx, const char *sym_name, 4015 const Elf64_Sym *sym, const Elf64_Rel *rel) 4016 { 4017 struct bpf_insn *insn = &prog->insns[insn_idx]; 4018 size_t map_idx, nr_maps = prog->obj->nr_maps; 4019 struct bpf_object *obj = prog->obj; 4020 __u32 shdr_idx = sym->st_shndx; 4021 enum libbpf_map_type type; 4022 const char *sym_sec_name; 4023 struct bpf_map *map; 4024 4025 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4026 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4027 prog->name, sym_name, insn_idx, insn->code); 4028 return -LIBBPF_ERRNO__RELOC; 4029 } 4030 4031 if (sym_is_extern(sym)) { 4032 int sym_idx = ELF64_R_SYM(rel->r_info); 4033 int i, n = obj->nr_extern; 4034 struct extern_desc *ext; 4035 4036 for (i = 0; i < n; i++) { 4037 ext = &obj->externs[i]; 4038 if (ext->sym_idx == sym_idx) 4039 break; 4040 } 4041 if (i >= n) { 4042 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4043 prog->name, sym_name, sym_idx); 4044 return -LIBBPF_ERRNO__RELOC; 4045 } 4046 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4047 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4048 if (insn->code == (BPF_JMP | BPF_CALL)) 4049 reloc_desc->type = RELO_EXTERN_FUNC; 4050 else 4051 reloc_desc->type = RELO_EXTERN_VAR; 4052 reloc_desc->insn_idx = insn_idx; 4053 reloc_desc->sym_off = i; /* sym_off stores extern index */ 4054 return 0; 4055 } 4056 4057 /* sub-program call relocation */ 4058 if (is_call_insn(insn)) { 4059 if (insn->src_reg != BPF_PSEUDO_CALL) { 4060 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4061 return -LIBBPF_ERRNO__RELOC; 4062 } 4063 /* text_shndx can be 0, if no default "main" program exists */ 4064 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4065 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4066 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4067 prog->name, sym_name, sym_sec_name); 4068 return -LIBBPF_ERRNO__RELOC; 4069 } 4070 if (sym->st_value % BPF_INSN_SZ) { 4071 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4072 prog->name, sym_name, (size_t)sym->st_value); 4073 return -LIBBPF_ERRNO__RELOC; 4074 } 4075 reloc_desc->type = RELO_CALL; 4076 reloc_desc->insn_idx = insn_idx; 4077 reloc_desc->sym_off = sym->st_value; 4078 return 0; 4079 } 4080 4081 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4082 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4083 prog->name, sym_name, shdr_idx); 4084 return -LIBBPF_ERRNO__RELOC; 4085 } 4086 4087 /* loading subprog addresses */ 4088 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4089 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4090 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4091 */ 4092 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4093 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4094 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4095 return -LIBBPF_ERRNO__RELOC; 4096 } 4097 4098 reloc_desc->type = RELO_SUBPROG_ADDR; 4099 reloc_desc->insn_idx = insn_idx; 4100 reloc_desc->sym_off = sym->st_value; 4101 return 0; 4102 } 4103 4104 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4105 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4106 4107 /* generic map reference relocation */ 4108 if (type == LIBBPF_MAP_UNSPEC) { 4109 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4110 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4111 prog->name, sym_name, sym_sec_name); 4112 return -LIBBPF_ERRNO__RELOC; 4113 } 4114 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4115 map = &obj->maps[map_idx]; 4116 if (map->libbpf_type != type || 4117 map->sec_idx != sym->st_shndx || 4118 map->sec_offset != sym->st_value) 4119 continue; 4120 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4121 prog->name, map_idx, map->name, map->sec_idx, 4122 map->sec_offset, insn_idx); 4123 break; 4124 } 4125 if (map_idx >= nr_maps) { 4126 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4127 prog->name, sym_sec_name, (size_t)sym->st_value); 4128 return -LIBBPF_ERRNO__RELOC; 4129 } 4130 reloc_desc->type = RELO_LD64; 4131 reloc_desc->insn_idx = insn_idx; 4132 reloc_desc->map_idx = map_idx; 4133 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4134 return 0; 4135 } 4136 4137 /* global data map relocation */ 4138 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4139 pr_warn("prog '%s': bad data relo against section '%s'\n", 4140 prog->name, sym_sec_name); 4141 return -LIBBPF_ERRNO__RELOC; 4142 } 4143 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4144 map = &obj->maps[map_idx]; 4145 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4146 continue; 4147 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4148 prog->name, map_idx, map->name, map->sec_idx, 4149 map->sec_offset, insn_idx); 4150 break; 4151 } 4152 if (map_idx >= nr_maps) { 4153 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4154 prog->name, sym_sec_name); 4155 return -LIBBPF_ERRNO__RELOC; 4156 } 4157 4158 reloc_desc->type = RELO_DATA; 4159 reloc_desc->insn_idx = insn_idx; 4160 reloc_desc->map_idx = map_idx; 4161 reloc_desc->sym_off = sym->st_value; 4162 return 0; 4163 } 4164 4165 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4166 { 4167 return insn_idx >= prog->sec_insn_off && 4168 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4169 } 4170 4171 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4172 size_t sec_idx, size_t insn_idx) 4173 { 4174 int l = 0, r = obj->nr_programs - 1, m; 4175 struct bpf_program *prog; 4176 4177 if (!obj->nr_programs) 4178 return NULL; 4179 4180 while (l < r) { 4181 m = l + (r - l + 1) / 2; 4182 prog = &obj->programs[m]; 4183 4184 if (prog->sec_idx < sec_idx || 4185 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4186 l = m; 4187 else 4188 r = m - 1; 4189 } 4190 /* matching program could be at index l, but it still might be the 4191 * wrong one, so we need to double check conditions for the last time 4192 */ 4193 prog = &obj->programs[l]; 4194 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4195 return prog; 4196 return NULL; 4197 } 4198 4199 static int 4200 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4201 { 4202 const char *relo_sec_name, *sec_name; 4203 size_t sec_idx = shdr->sh_info, sym_idx; 4204 struct bpf_program *prog; 4205 struct reloc_desc *relos; 4206 int err, i, nrels; 4207 const char *sym_name; 4208 __u32 insn_idx; 4209 Elf_Scn *scn; 4210 Elf_Data *scn_data; 4211 Elf64_Sym *sym; 4212 Elf64_Rel *rel; 4213 4214 if (sec_idx >= obj->efile.sec_cnt) 4215 return -EINVAL; 4216 4217 scn = elf_sec_by_idx(obj, sec_idx); 4218 scn_data = elf_sec_data(obj, scn); 4219 4220 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4221 sec_name = elf_sec_name(obj, scn); 4222 if (!relo_sec_name || !sec_name) 4223 return -EINVAL; 4224 4225 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4226 relo_sec_name, sec_idx, sec_name); 4227 nrels = shdr->sh_size / shdr->sh_entsize; 4228 4229 for (i = 0; i < nrels; i++) { 4230 rel = elf_rel_by_idx(data, i); 4231 if (!rel) { 4232 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4233 return -LIBBPF_ERRNO__FORMAT; 4234 } 4235 4236 sym_idx = ELF64_R_SYM(rel->r_info); 4237 sym = elf_sym_by_idx(obj, sym_idx); 4238 if (!sym) { 4239 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4240 relo_sec_name, sym_idx, i); 4241 return -LIBBPF_ERRNO__FORMAT; 4242 } 4243 4244 if (sym->st_shndx >= obj->efile.sec_cnt) { 4245 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4246 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4247 return -LIBBPF_ERRNO__FORMAT; 4248 } 4249 4250 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4251 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4252 relo_sec_name, (size_t)rel->r_offset, i); 4253 return -LIBBPF_ERRNO__FORMAT; 4254 } 4255 4256 insn_idx = rel->r_offset / BPF_INSN_SZ; 4257 /* relocations against static functions are recorded as 4258 * relocations against the section that contains a function; 4259 * in such case, symbol will be STT_SECTION and sym.st_name 4260 * will point to empty string (0), so fetch section name 4261 * instead 4262 */ 4263 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4264 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4265 else 4266 sym_name = elf_sym_str(obj, sym->st_name); 4267 sym_name = sym_name ?: "<?"; 4268 4269 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4270 relo_sec_name, i, insn_idx, sym_name); 4271 4272 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4273 if (!prog) { 4274 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4275 relo_sec_name, i, sec_name, insn_idx); 4276 continue; 4277 } 4278 4279 relos = libbpf_reallocarray(prog->reloc_desc, 4280 prog->nr_reloc + 1, sizeof(*relos)); 4281 if (!relos) 4282 return -ENOMEM; 4283 prog->reloc_desc = relos; 4284 4285 /* adjust insn_idx to local BPF program frame of reference */ 4286 insn_idx -= prog->sec_insn_off; 4287 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4288 insn_idx, sym_name, sym, rel); 4289 if (err) 4290 return err; 4291 4292 prog->nr_reloc++; 4293 } 4294 return 0; 4295 } 4296 4297 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4298 { 4299 int id; 4300 4301 if (!obj->btf) 4302 return -ENOENT; 4303 4304 /* if it's BTF-defined map, we don't need to search for type IDs. 4305 * For struct_ops map, it does not need btf_key_type_id and 4306 * btf_value_type_id. 4307 */ 4308 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4309 return 0; 4310 4311 /* 4312 * LLVM annotates global data differently in BTF, that is, 4313 * only as '.data', '.bss' or '.rodata'. 4314 */ 4315 if (!bpf_map__is_internal(map)) 4316 return -ENOENT; 4317 4318 id = btf__find_by_name(obj->btf, map->real_name); 4319 if (id < 0) 4320 return id; 4321 4322 map->btf_key_type_id = 0; 4323 map->btf_value_type_id = id; 4324 return 0; 4325 } 4326 4327 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4328 { 4329 char file[PATH_MAX], buff[4096]; 4330 FILE *fp; 4331 __u32 val; 4332 int err; 4333 4334 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4335 memset(info, 0, sizeof(*info)); 4336 4337 fp = fopen(file, "r"); 4338 if (!fp) { 4339 err = -errno; 4340 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4341 err); 4342 return err; 4343 } 4344 4345 while (fgets(buff, sizeof(buff), fp)) { 4346 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4347 info->type = val; 4348 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4349 info->key_size = val; 4350 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4351 info->value_size = val; 4352 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4353 info->max_entries = val; 4354 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4355 info->map_flags = val; 4356 } 4357 4358 fclose(fp); 4359 4360 return 0; 4361 } 4362 4363 bool bpf_map__autocreate(const struct bpf_map *map) 4364 { 4365 return map->autocreate; 4366 } 4367 4368 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4369 { 4370 if (map->obj->loaded) 4371 return libbpf_err(-EBUSY); 4372 4373 map->autocreate = autocreate; 4374 return 0; 4375 } 4376 4377 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4378 { 4379 struct bpf_map_info info; 4380 __u32 len = sizeof(info), name_len; 4381 int new_fd, err; 4382 char *new_name; 4383 4384 memset(&info, 0, len); 4385 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4386 if (err && errno == EINVAL) 4387 err = bpf_get_map_info_from_fdinfo(fd, &info); 4388 if (err) 4389 return libbpf_err(err); 4390 4391 name_len = strlen(info.name); 4392 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4393 new_name = strdup(map->name); 4394 else 4395 new_name = strdup(info.name); 4396 4397 if (!new_name) 4398 return libbpf_err(-errno); 4399 4400 new_fd = open("/", O_RDONLY | O_CLOEXEC); 4401 if (new_fd < 0) { 4402 err = -errno; 4403 goto err_free_new_name; 4404 } 4405 4406 new_fd = dup3(fd, new_fd, O_CLOEXEC); 4407 if (new_fd < 0) { 4408 err = -errno; 4409 goto err_close_new_fd; 4410 } 4411 4412 err = zclose(map->fd); 4413 if (err) { 4414 err = -errno; 4415 goto err_close_new_fd; 4416 } 4417 free(map->name); 4418 4419 map->fd = new_fd; 4420 map->name = new_name; 4421 map->def.type = info.type; 4422 map->def.key_size = info.key_size; 4423 map->def.value_size = info.value_size; 4424 map->def.max_entries = info.max_entries; 4425 map->def.map_flags = info.map_flags; 4426 map->btf_key_type_id = info.btf_key_type_id; 4427 map->btf_value_type_id = info.btf_value_type_id; 4428 map->reused = true; 4429 map->map_extra = info.map_extra; 4430 4431 return 0; 4432 4433 err_close_new_fd: 4434 close(new_fd); 4435 err_free_new_name: 4436 free(new_name); 4437 return libbpf_err(err); 4438 } 4439 4440 __u32 bpf_map__max_entries(const struct bpf_map *map) 4441 { 4442 return map->def.max_entries; 4443 } 4444 4445 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4446 { 4447 if (!bpf_map_type__is_map_in_map(map->def.type)) 4448 return errno = EINVAL, NULL; 4449 4450 return map->inner_map; 4451 } 4452 4453 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4454 { 4455 if (map->obj->loaded) 4456 return libbpf_err(-EBUSY); 4457 4458 map->def.max_entries = max_entries; 4459 4460 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4461 if (map_is_ringbuf(map)) 4462 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4463 4464 return 0; 4465 } 4466 4467 static int 4468 bpf_object__probe_loading(struct bpf_object *obj) 4469 { 4470 char *cp, errmsg[STRERR_BUFSIZE]; 4471 struct bpf_insn insns[] = { 4472 BPF_MOV64_IMM(BPF_REG_0, 0), 4473 BPF_EXIT_INSN(), 4474 }; 4475 int ret, insn_cnt = ARRAY_SIZE(insns); 4476 4477 if (obj->gen_loader) 4478 return 0; 4479 4480 ret = bump_rlimit_memlock(); 4481 if (ret) 4482 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4483 4484 /* make sure basic loading works */ 4485 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4486 if (ret < 0) 4487 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4488 if (ret < 0) { 4489 ret = errno; 4490 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4491 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4492 "program. Make sure your kernel supports BPF " 4493 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4494 "set to big enough value.\n", __func__, cp, ret); 4495 return -ret; 4496 } 4497 close(ret); 4498 4499 return 0; 4500 } 4501 4502 static int probe_fd(int fd) 4503 { 4504 if (fd >= 0) 4505 close(fd); 4506 return fd >= 0; 4507 } 4508 4509 static int probe_kern_prog_name(void) 4510 { 4511 const size_t attr_sz = offsetofend(union bpf_attr, prog_name); 4512 struct bpf_insn insns[] = { 4513 BPF_MOV64_IMM(BPF_REG_0, 0), 4514 BPF_EXIT_INSN(), 4515 }; 4516 union bpf_attr attr; 4517 int ret; 4518 4519 memset(&attr, 0, attr_sz); 4520 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4521 attr.license = ptr_to_u64("GPL"); 4522 attr.insns = ptr_to_u64(insns); 4523 attr.insn_cnt = (__u32)ARRAY_SIZE(insns); 4524 libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name)); 4525 4526 /* make sure loading with name works */ 4527 ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS); 4528 return probe_fd(ret); 4529 } 4530 4531 static int probe_kern_global_data(void) 4532 { 4533 char *cp, errmsg[STRERR_BUFSIZE]; 4534 struct bpf_insn insns[] = { 4535 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4536 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4537 BPF_MOV64_IMM(BPF_REG_0, 0), 4538 BPF_EXIT_INSN(), 4539 }; 4540 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4541 4542 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL); 4543 if (map < 0) { 4544 ret = -errno; 4545 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4546 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4547 __func__, cp, -ret); 4548 return ret; 4549 } 4550 4551 insns[0].imm = map; 4552 4553 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4554 close(map); 4555 return probe_fd(ret); 4556 } 4557 4558 static int probe_kern_btf(void) 4559 { 4560 static const char strs[] = "\0int"; 4561 __u32 types[] = { 4562 /* int */ 4563 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4564 }; 4565 4566 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4567 strs, sizeof(strs))); 4568 } 4569 4570 static int probe_kern_btf_func(void) 4571 { 4572 static const char strs[] = "\0int\0x\0a"; 4573 /* void x(int a) {} */ 4574 __u32 types[] = { 4575 /* int */ 4576 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4577 /* FUNC_PROTO */ /* [2] */ 4578 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4579 BTF_PARAM_ENC(7, 1), 4580 /* FUNC x */ /* [3] */ 4581 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4582 }; 4583 4584 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4585 strs, sizeof(strs))); 4586 } 4587 4588 static int probe_kern_btf_func_global(void) 4589 { 4590 static const char strs[] = "\0int\0x\0a"; 4591 /* static void x(int a) {} */ 4592 __u32 types[] = { 4593 /* int */ 4594 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4595 /* FUNC_PROTO */ /* [2] */ 4596 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4597 BTF_PARAM_ENC(7, 1), 4598 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4599 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4600 }; 4601 4602 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4603 strs, sizeof(strs))); 4604 } 4605 4606 static int probe_kern_btf_datasec(void) 4607 { 4608 static const char strs[] = "\0x\0.data"; 4609 /* static int a; */ 4610 __u32 types[] = { 4611 /* int */ 4612 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4613 /* VAR x */ /* [2] */ 4614 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4615 BTF_VAR_STATIC, 4616 /* DATASEC val */ /* [3] */ 4617 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4618 BTF_VAR_SECINFO_ENC(2, 0, 4), 4619 }; 4620 4621 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4622 strs, sizeof(strs))); 4623 } 4624 4625 static int probe_kern_btf_float(void) 4626 { 4627 static const char strs[] = "\0float"; 4628 __u32 types[] = { 4629 /* float */ 4630 BTF_TYPE_FLOAT_ENC(1, 4), 4631 }; 4632 4633 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4634 strs, sizeof(strs))); 4635 } 4636 4637 static int probe_kern_btf_decl_tag(void) 4638 { 4639 static const char strs[] = "\0tag"; 4640 __u32 types[] = { 4641 /* int */ 4642 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4643 /* VAR x */ /* [2] */ 4644 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4645 BTF_VAR_STATIC, 4646 /* attr */ 4647 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4648 }; 4649 4650 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4651 strs, sizeof(strs))); 4652 } 4653 4654 static int probe_kern_btf_type_tag(void) 4655 { 4656 static const char strs[] = "\0tag"; 4657 __u32 types[] = { 4658 /* int */ 4659 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4660 /* attr */ 4661 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4662 /* ptr */ 4663 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4664 }; 4665 4666 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4667 strs, sizeof(strs))); 4668 } 4669 4670 static int probe_kern_array_mmap(void) 4671 { 4672 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4673 int fd; 4674 4675 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts); 4676 return probe_fd(fd); 4677 } 4678 4679 static int probe_kern_exp_attach_type(void) 4680 { 4681 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4682 struct bpf_insn insns[] = { 4683 BPF_MOV64_IMM(BPF_REG_0, 0), 4684 BPF_EXIT_INSN(), 4685 }; 4686 int fd, insn_cnt = ARRAY_SIZE(insns); 4687 4688 /* use any valid combination of program type and (optional) 4689 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4690 * to see if kernel supports expected_attach_type field for 4691 * BPF_PROG_LOAD command 4692 */ 4693 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4694 return probe_fd(fd); 4695 } 4696 4697 static int probe_kern_probe_read_kernel(void) 4698 { 4699 struct bpf_insn insns[] = { 4700 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4701 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4702 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4703 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4704 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4705 BPF_EXIT_INSN(), 4706 }; 4707 int fd, insn_cnt = ARRAY_SIZE(insns); 4708 4709 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4710 return probe_fd(fd); 4711 } 4712 4713 static int probe_prog_bind_map(void) 4714 { 4715 char *cp, errmsg[STRERR_BUFSIZE]; 4716 struct bpf_insn insns[] = { 4717 BPF_MOV64_IMM(BPF_REG_0, 0), 4718 BPF_EXIT_INSN(), 4719 }; 4720 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4721 4722 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL); 4723 if (map < 0) { 4724 ret = -errno; 4725 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4726 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4727 __func__, cp, -ret); 4728 return ret; 4729 } 4730 4731 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4732 if (prog < 0) { 4733 close(map); 4734 return 0; 4735 } 4736 4737 ret = bpf_prog_bind_map(prog, map, NULL); 4738 4739 close(map); 4740 close(prog); 4741 4742 return ret >= 0; 4743 } 4744 4745 static int probe_module_btf(void) 4746 { 4747 static const char strs[] = "\0int"; 4748 __u32 types[] = { 4749 /* int */ 4750 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4751 }; 4752 struct bpf_btf_info info; 4753 __u32 len = sizeof(info); 4754 char name[16]; 4755 int fd, err; 4756 4757 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4758 if (fd < 0) 4759 return 0; /* BTF not supported at all */ 4760 4761 memset(&info, 0, sizeof(info)); 4762 info.name = ptr_to_u64(name); 4763 info.name_len = sizeof(name); 4764 4765 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4766 * kernel's module BTF support coincides with support for 4767 * name/name_len fields in struct bpf_btf_info. 4768 */ 4769 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4770 close(fd); 4771 return !err; 4772 } 4773 4774 static int probe_perf_link(void) 4775 { 4776 struct bpf_insn insns[] = { 4777 BPF_MOV64_IMM(BPF_REG_0, 0), 4778 BPF_EXIT_INSN(), 4779 }; 4780 int prog_fd, link_fd, err; 4781 4782 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4783 insns, ARRAY_SIZE(insns), NULL); 4784 if (prog_fd < 0) 4785 return -errno; 4786 4787 /* use invalid perf_event FD to get EBADF, if link is supported; 4788 * otherwise EINVAL should be returned 4789 */ 4790 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4791 err = -errno; /* close() can clobber errno */ 4792 4793 if (link_fd >= 0) 4794 close(link_fd); 4795 close(prog_fd); 4796 4797 return link_fd < 0 && err == -EBADF; 4798 } 4799 4800 static int probe_kern_bpf_cookie(void) 4801 { 4802 struct bpf_insn insns[] = { 4803 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie), 4804 BPF_EXIT_INSN(), 4805 }; 4806 int ret, insn_cnt = ARRAY_SIZE(insns); 4807 4808 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4809 return probe_fd(ret); 4810 } 4811 4812 static int probe_kern_btf_enum64(void) 4813 { 4814 static const char strs[] = "\0enum64"; 4815 __u32 types[] = { 4816 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8), 4817 }; 4818 4819 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4820 strs, sizeof(strs))); 4821 } 4822 4823 static int probe_kern_syscall_wrapper(void); 4824 4825 enum kern_feature_result { 4826 FEAT_UNKNOWN = 0, 4827 FEAT_SUPPORTED = 1, 4828 FEAT_MISSING = 2, 4829 }; 4830 4831 typedef int (*feature_probe_fn)(void); 4832 4833 static struct kern_feature_desc { 4834 const char *desc; 4835 feature_probe_fn probe; 4836 enum kern_feature_result res; 4837 } feature_probes[__FEAT_CNT] = { 4838 [FEAT_PROG_NAME] = { 4839 "BPF program name", probe_kern_prog_name, 4840 }, 4841 [FEAT_GLOBAL_DATA] = { 4842 "global variables", probe_kern_global_data, 4843 }, 4844 [FEAT_BTF] = { 4845 "minimal BTF", probe_kern_btf, 4846 }, 4847 [FEAT_BTF_FUNC] = { 4848 "BTF functions", probe_kern_btf_func, 4849 }, 4850 [FEAT_BTF_GLOBAL_FUNC] = { 4851 "BTF global function", probe_kern_btf_func_global, 4852 }, 4853 [FEAT_BTF_DATASEC] = { 4854 "BTF data section and variable", probe_kern_btf_datasec, 4855 }, 4856 [FEAT_ARRAY_MMAP] = { 4857 "ARRAY map mmap()", probe_kern_array_mmap, 4858 }, 4859 [FEAT_EXP_ATTACH_TYPE] = { 4860 "BPF_PROG_LOAD expected_attach_type attribute", 4861 probe_kern_exp_attach_type, 4862 }, 4863 [FEAT_PROBE_READ_KERN] = { 4864 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4865 }, 4866 [FEAT_PROG_BIND_MAP] = { 4867 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4868 }, 4869 [FEAT_MODULE_BTF] = { 4870 "module BTF support", probe_module_btf, 4871 }, 4872 [FEAT_BTF_FLOAT] = { 4873 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4874 }, 4875 [FEAT_PERF_LINK] = { 4876 "BPF perf link support", probe_perf_link, 4877 }, 4878 [FEAT_BTF_DECL_TAG] = { 4879 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 4880 }, 4881 [FEAT_BTF_TYPE_TAG] = { 4882 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 4883 }, 4884 [FEAT_MEMCG_ACCOUNT] = { 4885 "memcg-based memory accounting", probe_memcg_account, 4886 }, 4887 [FEAT_BPF_COOKIE] = { 4888 "BPF cookie support", probe_kern_bpf_cookie, 4889 }, 4890 [FEAT_BTF_ENUM64] = { 4891 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64, 4892 }, 4893 [FEAT_SYSCALL_WRAPPER] = { 4894 "Kernel using syscall wrapper", probe_kern_syscall_wrapper, 4895 }, 4896 }; 4897 4898 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4899 { 4900 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4901 int ret; 4902 4903 if (obj && obj->gen_loader) 4904 /* To generate loader program assume the latest kernel 4905 * to avoid doing extra prog_load, map_create syscalls. 4906 */ 4907 return true; 4908 4909 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4910 ret = feat->probe(); 4911 if (ret > 0) { 4912 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4913 } else if (ret == 0) { 4914 WRITE_ONCE(feat->res, FEAT_MISSING); 4915 } else { 4916 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4917 WRITE_ONCE(feat->res, FEAT_MISSING); 4918 } 4919 } 4920 4921 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4922 } 4923 4924 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4925 { 4926 struct bpf_map_info map_info; 4927 char msg[STRERR_BUFSIZE]; 4928 __u32 map_info_len = sizeof(map_info); 4929 int err; 4930 4931 memset(&map_info, 0, map_info_len); 4932 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len); 4933 if (err && errno == EINVAL) 4934 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 4935 if (err) { 4936 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 4937 libbpf_strerror_r(errno, msg, sizeof(msg))); 4938 return false; 4939 } 4940 4941 return (map_info.type == map->def.type && 4942 map_info.key_size == map->def.key_size && 4943 map_info.value_size == map->def.value_size && 4944 map_info.max_entries == map->def.max_entries && 4945 map_info.map_flags == map->def.map_flags && 4946 map_info.map_extra == map->map_extra); 4947 } 4948 4949 static int 4950 bpf_object__reuse_map(struct bpf_map *map) 4951 { 4952 char *cp, errmsg[STRERR_BUFSIZE]; 4953 int err, pin_fd; 4954 4955 pin_fd = bpf_obj_get(map->pin_path); 4956 if (pin_fd < 0) { 4957 err = -errno; 4958 if (err == -ENOENT) { 4959 pr_debug("found no pinned map to reuse at '%s'\n", 4960 map->pin_path); 4961 return 0; 4962 } 4963 4964 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4965 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4966 map->pin_path, cp); 4967 return err; 4968 } 4969 4970 if (!map_is_reuse_compat(map, pin_fd)) { 4971 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4972 map->pin_path); 4973 close(pin_fd); 4974 return -EINVAL; 4975 } 4976 4977 err = bpf_map__reuse_fd(map, pin_fd); 4978 close(pin_fd); 4979 if (err) 4980 return err; 4981 4982 map->pinned = true; 4983 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4984 4985 return 0; 4986 } 4987 4988 static int 4989 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4990 { 4991 enum libbpf_map_type map_type = map->libbpf_type; 4992 char *cp, errmsg[STRERR_BUFSIZE]; 4993 int err, zero = 0; 4994 4995 if (obj->gen_loader) { 4996 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 4997 map->mmaped, map->def.value_size); 4998 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 4999 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 5000 return 0; 5001 } 5002 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 5003 if (err) { 5004 err = -errno; 5005 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5006 pr_warn("Error setting initial map(%s) contents: %s\n", 5007 map->name, cp); 5008 return err; 5009 } 5010 5011 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5012 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5013 err = bpf_map_freeze(map->fd); 5014 if (err) { 5015 err = -errno; 5016 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5017 pr_warn("Error freezing map(%s) as read-only: %s\n", 5018 map->name, cp); 5019 return err; 5020 } 5021 } 5022 return 0; 5023 } 5024 5025 static void bpf_map__destroy(struct bpf_map *map); 5026 5027 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5028 { 5029 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5030 struct bpf_map_def *def = &map->def; 5031 const char *map_name = NULL; 5032 int err = 0; 5033 5034 if (kernel_supports(obj, FEAT_PROG_NAME)) 5035 map_name = map->name; 5036 create_attr.map_ifindex = map->map_ifindex; 5037 create_attr.map_flags = def->map_flags; 5038 create_attr.numa_node = map->numa_node; 5039 create_attr.map_extra = map->map_extra; 5040 5041 if (bpf_map__is_struct_ops(map)) 5042 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5043 5044 if (obj->btf && btf__fd(obj->btf) >= 0) { 5045 create_attr.btf_fd = btf__fd(obj->btf); 5046 create_attr.btf_key_type_id = map->btf_key_type_id; 5047 create_attr.btf_value_type_id = map->btf_value_type_id; 5048 } 5049 5050 if (bpf_map_type__is_map_in_map(def->type)) { 5051 if (map->inner_map) { 5052 err = bpf_object__create_map(obj, map->inner_map, true); 5053 if (err) { 5054 pr_warn("map '%s': failed to create inner map: %d\n", 5055 map->name, err); 5056 return err; 5057 } 5058 map->inner_map_fd = bpf_map__fd(map->inner_map); 5059 } 5060 if (map->inner_map_fd >= 0) 5061 create_attr.inner_map_fd = map->inner_map_fd; 5062 } 5063 5064 switch (def->type) { 5065 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5066 case BPF_MAP_TYPE_CGROUP_ARRAY: 5067 case BPF_MAP_TYPE_STACK_TRACE: 5068 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5069 case BPF_MAP_TYPE_HASH_OF_MAPS: 5070 case BPF_MAP_TYPE_DEVMAP: 5071 case BPF_MAP_TYPE_DEVMAP_HASH: 5072 case BPF_MAP_TYPE_CPUMAP: 5073 case BPF_MAP_TYPE_XSKMAP: 5074 case BPF_MAP_TYPE_SOCKMAP: 5075 case BPF_MAP_TYPE_SOCKHASH: 5076 case BPF_MAP_TYPE_QUEUE: 5077 case BPF_MAP_TYPE_STACK: 5078 create_attr.btf_fd = 0; 5079 create_attr.btf_key_type_id = 0; 5080 create_attr.btf_value_type_id = 0; 5081 map->btf_key_type_id = 0; 5082 map->btf_value_type_id = 0; 5083 default: 5084 break; 5085 } 5086 5087 if (obj->gen_loader) { 5088 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5089 def->key_size, def->value_size, def->max_entries, 5090 &create_attr, is_inner ? -1 : map - obj->maps); 5091 /* Pretend to have valid FD to pass various fd >= 0 checks. 5092 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 5093 */ 5094 map->fd = 0; 5095 } else { 5096 map->fd = bpf_map_create(def->type, map_name, 5097 def->key_size, def->value_size, 5098 def->max_entries, &create_attr); 5099 } 5100 if (map->fd < 0 && (create_attr.btf_key_type_id || 5101 create_attr.btf_value_type_id)) { 5102 char *cp, errmsg[STRERR_BUFSIZE]; 5103 5104 err = -errno; 5105 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5106 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 5107 map->name, cp, err); 5108 create_attr.btf_fd = 0; 5109 create_attr.btf_key_type_id = 0; 5110 create_attr.btf_value_type_id = 0; 5111 map->btf_key_type_id = 0; 5112 map->btf_value_type_id = 0; 5113 map->fd = bpf_map_create(def->type, map_name, 5114 def->key_size, def->value_size, 5115 def->max_entries, &create_attr); 5116 } 5117 5118 err = map->fd < 0 ? -errno : 0; 5119 5120 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5121 if (obj->gen_loader) 5122 map->inner_map->fd = -1; 5123 bpf_map__destroy(map->inner_map); 5124 zfree(&map->inner_map); 5125 } 5126 5127 return err; 5128 } 5129 5130 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5131 { 5132 const struct bpf_map *targ_map; 5133 unsigned int i; 5134 int fd, err = 0; 5135 5136 for (i = 0; i < map->init_slots_sz; i++) { 5137 if (!map->init_slots[i]) 5138 continue; 5139 5140 targ_map = map->init_slots[i]; 5141 fd = bpf_map__fd(targ_map); 5142 5143 if (obj->gen_loader) { 5144 bpf_gen__populate_outer_map(obj->gen_loader, 5145 map - obj->maps, i, 5146 targ_map - obj->maps); 5147 } else { 5148 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5149 } 5150 if (err) { 5151 err = -errno; 5152 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5153 map->name, i, targ_map->name, fd, err); 5154 return err; 5155 } 5156 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5157 map->name, i, targ_map->name, fd); 5158 } 5159 5160 zfree(&map->init_slots); 5161 map->init_slots_sz = 0; 5162 5163 return 0; 5164 } 5165 5166 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5167 { 5168 const struct bpf_program *targ_prog; 5169 unsigned int i; 5170 int fd, err; 5171 5172 if (obj->gen_loader) 5173 return -ENOTSUP; 5174 5175 for (i = 0; i < map->init_slots_sz; i++) { 5176 if (!map->init_slots[i]) 5177 continue; 5178 5179 targ_prog = map->init_slots[i]; 5180 fd = bpf_program__fd(targ_prog); 5181 5182 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5183 if (err) { 5184 err = -errno; 5185 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5186 map->name, i, targ_prog->name, fd, err); 5187 return err; 5188 } 5189 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5190 map->name, i, targ_prog->name, fd); 5191 } 5192 5193 zfree(&map->init_slots); 5194 map->init_slots_sz = 0; 5195 5196 return 0; 5197 } 5198 5199 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5200 { 5201 struct bpf_map *map; 5202 int i, err; 5203 5204 for (i = 0; i < obj->nr_maps; i++) { 5205 map = &obj->maps[i]; 5206 5207 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5208 continue; 5209 5210 err = init_prog_array_slots(obj, map); 5211 if (err < 0) { 5212 zclose(map->fd); 5213 return err; 5214 } 5215 } 5216 return 0; 5217 } 5218 5219 static int map_set_def_max_entries(struct bpf_map *map) 5220 { 5221 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5222 int nr_cpus; 5223 5224 nr_cpus = libbpf_num_possible_cpus(); 5225 if (nr_cpus < 0) { 5226 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5227 map->name, nr_cpus); 5228 return nr_cpus; 5229 } 5230 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5231 map->def.max_entries = nr_cpus; 5232 } 5233 5234 return 0; 5235 } 5236 5237 static int 5238 bpf_object__create_maps(struct bpf_object *obj) 5239 { 5240 struct bpf_map *map; 5241 char *cp, errmsg[STRERR_BUFSIZE]; 5242 unsigned int i, j; 5243 int err; 5244 bool retried; 5245 5246 for (i = 0; i < obj->nr_maps; i++) { 5247 map = &obj->maps[i]; 5248 5249 /* To support old kernels, we skip creating global data maps 5250 * (.rodata, .data, .kconfig, etc); later on, during program 5251 * loading, if we detect that at least one of the to-be-loaded 5252 * programs is referencing any global data map, we'll error 5253 * out with program name and relocation index logged. 5254 * This approach allows to accommodate Clang emitting 5255 * unnecessary .rodata.str1.1 sections for string literals, 5256 * but also it allows to have CO-RE applications that use 5257 * global variables in some of BPF programs, but not others. 5258 * If those global variable-using programs are not loaded at 5259 * runtime due to bpf_program__set_autoload(prog, false), 5260 * bpf_object loading will succeed just fine even on old 5261 * kernels. 5262 */ 5263 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5264 map->autocreate = false; 5265 5266 if (!map->autocreate) { 5267 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5268 continue; 5269 } 5270 5271 err = map_set_def_max_entries(map); 5272 if (err) 5273 goto err_out; 5274 5275 retried = false; 5276 retry: 5277 if (map->pin_path) { 5278 err = bpf_object__reuse_map(map); 5279 if (err) { 5280 pr_warn("map '%s': error reusing pinned map\n", 5281 map->name); 5282 goto err_out; 5283 } 5284 if (retried && map->fd < 0) { 5285 pr_warn("map '%s': cannot find pinned map\n", 5286 map->name); 5287 err = -ENOENT; 5288 goto err_out; 5289 } 5290 } 5291 5292 if (map->fd >= 0) { 5293 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5294 map->name, map->fd); 5295 } else { 5296 err = bpf_object__create_map(obj, map, false); 5297 if (err) 5298 goto err_out; 5299 5300 pr_debug("map '%s': created successfully, fd=%d\n", 5301 map->name, map->fd); 5302 5303 if (bpf_map__is_internal(map)) { 5304 err = bpf_object__populate_internal_map(obj, map); 5305 if (err < 0) { 5306 zclose(map->fd); 5307 goto err_out; 5308 } 5309 } 5310 5311 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5312 err = init_map_in_map_slots(obj, map); 5313 if (err < 0) { 5314 zclose(map->fd); 5315 goto err_out; 5316 } 5317 } 5318 } 5319 5320 if (map->pin_path && !map->pinned) { 5321 err = bpf_map__pin(map, NULL); 5322 if (err) { 5323 zclose(map->fd); 5324 if (!retried && err == -EEXIST) { 5325 retried = true; 5326 goto retry; 5327 } 5328 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5329 map->name, map->pin_path, err); 5330 goto err_out; 5331 } 5332 } 5333 } 5334 5335 return 0; 5336 5337 err_out: 5338 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5339 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5340 pr_perm_msg(err); 5341 for (j = 0; j < i; j++) 5342 zclose(obj->maps[j].fd); 5343 return err; 5344 } 5345 5346 static bool bpf_core_is_flavor_sep(const char *s) 5347 { 5348 /* check X___Y name pattern, where X and Y are not underscores */ 5349 return s[0] != '_' && /* X */ 5350 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5351 s[4] != '_'; /* Y */ 5352 } 5353 5354 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5355 * before last triple underscore. Struct name part after last triple 5356 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5357 */ 5358 size_t bpf_core_essential_name_len(const char *name) 5359 { 5360 size_t n = strlen(name); 5361 int i; 5362 5363 for (i = n - 5; i >= 0; i--) { 5364 if (bpf_core_is_flavor_sep(name + i)) 5365 return i + 1; 5366 } 5367 return n; 5368 } 5369 5370 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5371 { 5372 if (!cands) 5373 return; 5374 5375 free(cands->cands); 5376 free(cands); 5377 } 5378 5379 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5380 size_t local_essent_len, 5381 const struct btf *targ_btf, 5382 const char *targ_btf_name, 5383 int targ_start_id, 5384 struct bpf_core_cand_list *cands) 5385 { 5386 struct bpf_core_cand *new_cands, *cand; 5387 const struct btf_type *t, *local_t; 5388 const char *targ_name, *local_name; 5389 size_t targ_essent_len; 5390 int n, i; 5391 5392 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5393 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5394 5395 n = btf__type_cnt(targ_btf); 5396 for (i = targ_start_id; i < n; i++) { 5397 t = btf__type_by_id(targ_btf, i); 5398 if (!btf_kind_core_compat(t, local_t)) 5399 continue; 5400 5401 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5402 if (str_is_empty(targ_name)) 5403 continue; 5404 5405 targ_essent_len = bpf_core_essential_name_len(targ_name); 5406 if (targ_essent_len != local_essent_len) 5407 continue; 5408 5409 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5410 continue; 5411 5412 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5413 local_cand->id, btf_kind_str(local_t), 5414 local_name, i, btf_kind_str(t), targ_name, 5415 targ_btf_name); 5416 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5417 sizeof(*cands->cands)); 5418 if (!new_cands) 5419 return -ENOMEM; 5420 5421 cand = &new_cands[cands->len]; 5422 cand->btf = targ_btf; 5423 cand->id = i; 5424 5425 cands->cands = new_cands; 5426 cands->len++; 5427 } 5428 return 0; 5429 } 5430 5431 static int load_module_btfs(struct bpf_object *obj) 5432 { 5433 struct bpf_btf_info info; 5434 struct module_btf *mod_btf; 5435 struct btf *btf; 5436 char name[64]; 5437 __u32 id = 0, len; 5438 int err, fd; 5439 5440 if (obj->btf_modules_loaded) 5441 return 0; 5442 5443 if (obj->gen_loader) 5444 return 0; 5445 5446 /* don't do this again, even if we find no module BTFs */ 5447 obj->btf_modules_loaded = true; 5448 5449 /* kernel too old to support module BTFs */ 5450 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5451 return 0; 5452 5453 while (true) { 5454 err = bpf_btf_get_next_id(id, &id); 5455 if (err && errno == ENOENT) 5456 return 0; 5457 if (err) { 5458 err = -errno; 5459 pr_warn("failed to iterate BTF objects: %d\n", err); 5460 return err; 5461 } 5462 5463 fd = bpf_btf_get_fd_by_id(id); 5464 if (fd < 0) { 5465 if (errno == ENOENT) 5466 continue; /* expected race: BTF was unloaded */ 5467 err = -errno; 5468 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5469 return err; 5470 } 5471 5472 len = sizeof(info); 5473 memset(&info, 0, sizeof(info)); 5474 info.name = ptr_to_u64(name); 5475 info.name_len = sizeof(name); 5476 5477 err = bpf_obj_get_info_by_fd(fd, &info, &len); 5478 if (err) { 5479 err = -errno; 5480 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5481 goto err_out; 5482 } 5483 5484 /* ignore non-module BTFs */ 5485 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5486 close(fd); 5487 continue; 5488 } 5489 5490 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5491 err = libbpf_get_error(btf); 5492 if (err) { 5493 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5494 name, id, err); 5495 goto err_out; 5496 } 5497 5498 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5499 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5500 if (err) 5501 goto err_out; 5502 5503 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5504 5505 mod_btf->btf = btf; 5506 mod_btf->id = id; 5507 mod_btf->fd = fd; 5508 mod_btf->name = strdup(name); 5509 if (!mod_btf->name) { 5510 err = -ENOMEM; 5511 goto err_out; 5512 } 5513 continue; 5514 5515 err_out: 5516 close(fd); 5517 return err; 5518 } 5519 5520 return 0; 5521 } 5522 5523 static struct bpf_core_cand_list * 5524 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5525 { 5526 struct bpf_core_cand local_cand = {}; 5527 struct bpf_core_cand_list *cands; 5528 const struct btf *main_btf; 5529 const struct btf_type *local_t; 5530 const char *local_name; 5531 size_t local_essent_len; 5532 int err, i; 5533 5534 local_cand.btf = local_btf; 5535 local_cand.id = local_type_id; 5536 local_t = btf__type_by_id(local_btf, local_type_id); 5537 if (!local_t) 5538 return ERR_PTR(-EINVAL); 5539 5540 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5541 if (str_is_empty(local_name)) 5542 return ERR_PTR(-EINVAL); 5543 local_essent_len = bpf_core_essential_name_len(local_name); 5544 5545 cands = calloc(1, sizeof(*cands)); 5546 if (!cands) 5547 return ERR_PTR(-ENOMEM); 5548 5549 /* Attempt to find target candidates in vmlinux BTF first */ 5550 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5551 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5552 if (err) 5553 goto err_out; 5554 5555 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5556 if (cands->len) 5557 return cands; 5558 5559 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5560 if (obj->btf_vmlinux_override) 5561 return cands; 5562 5563 /* now look through module BTFs, trying to still find candidates */ 5564 err = load_module_btfs(obj); 5565 if (err) 5566 goto err_out; 5567 5568 for (i = 0; i < obj->btf_module_cnt; i++) { 5569 err = bpf_core_add_cands(&local_cand, local_essent_len, 5570 obj->btf_modules[i].btf, 5571 obj->btf_modules[i].name, 5572 btf__type_cnt(obj->btf_vmlinux), 5573 cands); 5574 if (err) 5575 goto err_out; 5576 } 5577 5578 return cands; 5579 err_out: 5580 bpf_core_free_cands(cands); 5581 return ERR_PTR(err); 5582 } 5583 5584 /* Check local and target types for compatibility. This check is used for 5585 * type-based CO-RE relocations and follow slightly different rules than 5586 * field-based relocations. This function assumes that root types were already 5587 * checked for name match. Beyond that initial root-level name check, names 5588 * are completely ignored. Compatibility rules are as follows: 5589 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5590 * kind should match for local and target types (i.e., STRUCT is not 5591 * compatible with UNION); 5592 * - for ENUMs, the size is ignored; 5593 * - for INT, size and signedness are ignored; 5594 * - for ARRAY, dimensionality is ignored, element types are checked for 5595 * compatibility recursively; 5596 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5597 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5598 * - FUNC_PROTOs are compatible if they have compatible signature: same 5599 * number of input args and compatible return and argument types. 5600 * These rules are not set in stone and probably will be adjusted as we get 5601 * more experience with using BPF CO-RE relocations. 5602 */ 5603 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5604 const struct btf *targ_btf, __u32 targ_id) 5605 { 5606 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5607 } 5608 5609 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5610 const struct btf *targ_btf, __u32 targ_id) 5611 { 5612 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5613 } 5614 5615 static size_t bpf_core_hash_fn(const long key, void *ctx) 5616 { 5617 return key; 5618 } 5619 5620 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx) 5621 { 5622 return k1 == k2; 5623 } 5624 5625 static int record_relo_core(struct bpf_program *prog, 5626 const struct bpf_core_relo *core_relo, int insn_idx) 5627 { 5628 struct reloc_desc *relos, *relo; 5629 5630 relos = libbpf_reallocarray(prog->reloc_desc, 5631 prog->nr_reloc + 1, sizeof(*relos)); 5632 if (!relos) 5633 return -ENOMEM; 5634 relo = &relos[prog->nr_reloc]; 5635 relo->type = RELO_CORE; 5636 relo->insn_idx = insn_idx; 5637 relo->core_relo = core_relo; 5638 prog->reloc_desc = relos; 5639 prog->nr_reloc++; 5640 return 0; 5641 } 5642 5643 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5644 { 5645 struct reloc_desc *relo; 5646 int i; 5647 5648 for (i = 0; i < prog->nr_reloc; i++) { 5649 relo = &prog->reloc_desc[i]; 5650 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5651 continue; 5652 5653 return relo->core_relo; 5654 } 5655 5656 return NULL; 5657 } 5658 5659 static int bpf_core_resolve_relo(struct bpf_program *prog, 5660 const struct bpf_core_relo *relo, 5661 int relo_idx, 5662 const struct btf *local_btf, 5663 struct hashmap *cand_cache, 5664 struct bpf_core_relo_res *targ_res) 5665 { 5666 struct bpf_core_spec specs_scratch[3] = {}; 5667 struct bpf_core_cand_list *cands = NULL; 5668 const char *prog_name = prog->name; 5669 const struct btf_type *local_type; 5670 const char *local_name; 5671 __u32 local_id = relo->type_id; 5672 int err; 5673 5674 local_type = btf__type_by_id(local_btf, local_id); 5675 if (!local_type) 5676 return -EINVAL; 5677 5678 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5679 if (!local_name) 5680 return -EINVAL; 5681 5682 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5683 !hashmap__find(cand_cache, local_id, &cands)) { 5684 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5685 if (IS_ERR(cands)) { 5686 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5687 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5688 local_name, PTR_ERR(cands)); 5689 return PTR_ERR(cands); 5690 } 5691 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL); 5692 if (err) { 5693 bpf_core_free_cands(cands); 5694 return err; 5695 } 5696 } 5697 5698 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5699 targ_res); 5700 } 5701 5702 static int 5703 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5704 { 5705 const struct btf_ext_info_sec *sec; 5706 struct bpf_core_relo_res targ_res; 5707 const struct bpf_core_relo *rec; 5708 const struct btf_ext_info *seg; 5709 struct hashmap_entry *entry; 5710 struct hashmap *cand_cache = NULL; 5711 struct bpf_program *prog; 5712 struct bpf_insn *insn; 5713 const char *sec_name; 5714 int i, err = 0, insn_idx, sec_idx, sec_num; 5715 5716 if (obj->btf_ext->core_relo_info.len == 0) 5717 return 0; 5718 5719 if (targ_btf_path) { 5720 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5721 err = libbpf_get_error(obj->btf_vmlinux_override); 5722 if (err) { 5723 pr_warn("failed to parse target BTF: %d\n", err); 5724 return err; 5725 } 5726 } 5727 5728 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5729 if (IS_ERR(cand_cache)) { 5730 err = PTR_ERR(cand_cache); 5731 goto out; 5732 } 5733 5734 seg = &obj->btf_ext->core_relo_info; 5735 sec_num = 0; 5736 for_each_btf_ext_sec(seg, sec) { 5737 sec_idx = seg->sec_idxs[sec_num]; 5738 sec_num++; 5739 5740 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5741 if (str_is_empty(sec_name)) { 5742 err = -EINVAL; 5743 goto out; 5744 } 5745 5746 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5747 5748 for_each_btf_ext_rec(seg, sec, i, rec) { 5749 if (rec->insn_off % BPF_INSN_SZ) 5750 return -EINVAL; 5751 insn_idx = rec->insn_off / BPF_INSN_SZ; 5752 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5753 if (!prog) { 5754 /* When __weak subprog is "overridden" by another instance 5755 * of the subprog from a different object file, linker still 5756 * appends all the .BTF.ext info that used to belong to that 5757 * eliminated subprogram. 5758 * This is similar to what x86-64 linker does for relocations. 5759 * So just ignore such relocations just like we ignore 5760 * subprog instructions when discovering subprograms. 5761 */ 5762 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5763 sec_name, i, insn_idx); 5764 continue; 5765 } 5766 /* no need to apply CO-RE relocation if the program is 5767 * not going to be loaded 5768 */ 5769 if (!prog->autoload) 5770 continue; 5771 5772 /* adjust insn_idx from section frame of reference to the local 5773 * program's frame of reference; (sub-)program code is not yet 5774 * relocated, so it's enough to just subtract in-section offset 5775 */ 5776 insn_idx = insn_idx - prog->sec_insn_off; 5777 if (insn_idx >= prog->insns_cnt) 5778 return -EINVAL; 5779 insn = &prog->insns[insn_idx]; 5780 5781 err = record_relo_core(prog, rec, insn_idx); 5782 if (err) { 5783 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5784 prog->name, i, err); 5785 goto out; 5786 } 5787 5788 if (prog->obj->gen_loader) 5789 continue; 5790 5791 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5792 if (err) { 5793 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5794 prog->name, i, err); 5795 goto out; 5796 } 5797 5798 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5799 if (err) { 5800 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5801 prog->name, i, insn_idx, err); 5802 goto out; 5803 } 5804 } 5805 } 5806 5807 out: 5808 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5809 btf__free(obj->btf_vmlinux_override); 5810 obj->btf_vmlinux_override = NULL; 5811 5812 if (!IS_ERR_OR_NULL(cand_cache)) { 5813 hashmap__for_each_entry(cand_cache, entry, i) { 5814 bpf_core_free_cands(entry->pvalue); 5815 } 5816 hashmap__free(cand_cache); 5817 } 5818 return err; 5819 } 5820 5821 /* base map load ldimm64 special constant, used also for log fixup logic */ 5822 #define MAP_LDIMM64_POISON_BASE 2001000000 5823 #define MAP_LDIMM64_POISON_PFX "200100" 5824 5825 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 5826 int insn_idx, struct bpf_insn *insn, 5827 int map_idx, const struct bpf_map *map) 5828 { 5829 int i; 5830 5831 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 5832 prog->name, relo_idx, insn_idx, map_idx, map->name); 5833 5834 /* we turn single ldimm64 into two identical invalid calls */ 5835 for (i = 0; i < 2; i++) { 5836 insn->code = BPF_JMP | BPF_CALL; 5837 insn->dst_reg = 0; 5838 insn->src_reg = 0; 5839 insn->off = 0; 5840 /* if this instruction is reachable (not a dead code), 5841 * verifier will complain with something like: 5842 * invalid func unknown#2001000123 5843 * where lower 123 is map index into obj->maps[] array 5844 */ 5845 insn->imm = MAP_LDIMM64_POISON_BASE + map_idx; 5846 5847 insn++; 5848 } 5849 } 5850 5851 /* Relocate data references within program code: 5852 * - map references; 5853 * - global variable references; 5854 * - extern references. 5855 */ 5856 static int 5857 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5858 { 5859 int i; 5860 5861 for (i = 0; i < prog->nr_reloc; i++) { 5862 struct reloc_desc *relo = &prog->reloc_desc[i]; 5863 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5864 const struct bpf_map *map; 5865 struct extern_desc *ext; 5866 5867 switch (relo->type) { 5868 case RELO_LD64: 5869 map = &obj->maps[relo->map_idx]; 5870 if (obj->gen_loader) { 5871 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 5872 insn[0].imm = relo->map_idx; 5873 } else if (map->autocreate) { 5874 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5875 insn[0].imm = map->fd; 5876 } else { 5877 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5878 relo->map_idx, map); 5879 } 5880 break; 5881 case RELO_DATA: 5882 map = &obj->maps[relo->map_idx]; 5883 insn[1].imm = insn[0].imm + relo->sym_off; 5884 if (obj->gen_loader) { 5885 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5886 insn[0].imm = relo->map_idx; 5887 } else if (map->autocreate) { 5888 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5889 insn[0].imm = map->fd; 5890 } else { 5891 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5892 relo->map_idx, map); 5893 } 5894 break; 5895 case RELO_EXTERN_VAR: 5896 ext = &obj->externs[relo->sym_off]; 5897 if (ext->type == EXT_KCFG) { 5898 if (obj->gen_loader) { 5899 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5900 insn[0].imm = obj->kconfig_map_idx; 5901 } else { 5902 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5903 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5904 } 5905 insn[1].imm = ext->kcfg.data_off; 5906 } else /* EXT_KSYM */ { 5907 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 5908 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 5909 insn[0].imm = ext->ksym.kernel_btf_id; 5910 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 5911 } else { /* typeless ksyms or unresolved typed ksyms */ 5912 insn[0].imm = (__u32)ext->ksym.addr; 5913 insn[1].imm = ext->ksym.addr >> 32; 5914 } 5915 } 5916 break; 5917 case RELO_EXTERN_FUNC: 5918 ext = &obj->externs[relo->sym_off]; 5919 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 5920 if (ext->is_set) { 5921 insn[0].imm = ext->ksym.kernel_btf_id; 5922 insn[0].off = ext->ksym.btf_fd_idx; 5923 } else { /* unresolved weak kfunc */ 5924 insn[0].imm = 0; 5925 insn[0].off = 0; 5926 } 5927 break; 5928 case RELO_SUBPROG_ADDR: 5929 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 5930 pr_warn("prog '%s': relo #%d: bad insn\n", 5931 prog->name, i); 5932 return -EINVAL; 5933 } 5934 /* handled already */ 5935 break; 5936 case RELO_CALL: 5937 /* handled already */ 5938 break; 5939 case RELO_CORE: 5940 /* will be handled by bpf_program_record_relos() */ 5941 break; 5942 default: 5943 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 5944 prog->name, i, relo->type); 5945 return -EINVAL; 5946 } 5947 } 5948 5949 return 0; 5950 } 5951 5952 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 5953 const struct bpf_program *prog, 5954 const struct btf_ext_info *ext_info, 5955 void **prog_info, __u32 *prog_rec_cnt, 5956 __u32 *prog_rec_sz) 5957 { 5958 void *copy_start = NULL, *copy_end = NULL; 5959 void *rec, *rec_end, *new_prog_info; 5960 const struct btf_ext_info_sec *sec; 5961 size_t old_sz, new_sz; 5962 int i, sec_num, sec_idx, off_adj; 5963 5964 sec_num = 0; 5965 for_each_btf_ext_sec(ext_info, sec) { 5966 sec_idx = ext_info->sec_idxs[sec_num]; 5967 sec_num++; 5968 if (prog->sec_idx != sec_idx) 5969 continue; 5970 5971 for_each_btf_ext_rec(ext_info, sec, i, rec) { 5972 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 5973 5974 if (insn_off < prog->sec_insn_off) 5975 continue; 5976 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 5977 break; 5978 5979 if (!copy_start) 5980 copy_start = rec; 5981 copy_end = rec + ext_info->rec_size; 5982 } 5983 5984 if (!copy_start) 5985 return -ENOENT; 5986 5987 /* append func/line info of a given (sub-)program to the main 5988 * program func/line info 5989 */ 5990 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 5991 new_sz = old_sz + (copy_end - copy_start); 5992 new_prog_info = realloc(*prog_info, new_sz); 5993 if (!new_prog_info) 5994 return -ENOMEM; 5995 *prog_info = new_prog_info; 5996 *prog_rec_cnt = new_sz / ext_info->rec_size; 5997 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 5998 5999 /* Kernel instruction offsets are in units of 8-byte 6000 * instructions, while .BTF.ext instruction offsets generated 6001 * by Clang are in units of bytes. So convert Clang offsets 6002 * into kernel offsets and adjust offset according to program 6003 * relocated position. 6004 */ 6005 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6006 rec = new_prog_info + old_sz; 6007 rec_end = new_prog_info + new_sz; 6008 for (; rec < rec_end; rec += ext_info->rec_size) { 6009 __u32 *insn_off = rec; 6010 6011 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6012 } 6013 *prog_rec_sz = ext_info->rec_size; 6014 return 0; 6015 } 6016 6017 return -ENOENT; 6018 } 6019 6020 static int 6021 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6022 struct bpf_program *main_prog, 6023 const struct bpf_program *prog) 6024 { 6025 int err; 6026 6027 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6028 * supprot func/line info 6029 */ 6030 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6031 return 0; 6032 6033 /* only attempt func info relocation if main program's func_info 6034 * relocation was successful 6035 */ 6036 if (main_prog != prog && !main_prog->func_info) 6037 goto line_info; 6038 6039 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6040 &main_prog->func_info, 6041 &main_prog->func_info_cnt, 6042 &main_prog->func_info_rec_size); 6043 if (err) { 6044 if (err != -ENOENT) { 6045 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6046 prog->name, err); 6047 return err; 6048 } 6049 if (main_prog->func_info) { 6050 /* 6051 * Some info has already been found but has problem 6052 * in the last btf_ext reloc. Must have to error out. 6053 */ 6054 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6055 return err; 6056 } 6057 /* Have problem loading the very first info. Ignore the rest. */ 6058 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6059 prog->name); 6060 } 6061 6062 line_info: 6063 /* don't relocate line info if main program's relocation failed */ 6064 if (main_prog != prog && !main_prog->line_info) 6065 return 0; 6066 6067 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6068 &main_prog->line_info, 6069 &main_prog->line_info_cnt, 6070 &main_prog->line_info_rec_size); 6071 if (err) { 6072 if (err != -ENOENT) { 6073 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6074 prog->name, err); 6075 return err; 6076 } 6077 if (main_prog->line_info) { 6078 /* 6079 * Some info has already been found but has problem 6080 * in the last btf_ext reloc. Must have to error out. 6081 */ 6082 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6083 return err; 6084 } 6085 /* Have problem loading the very first info. Ignore the rest. */ 6086 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6087 prog->name); 6088 } 6089 return 0; 6090 } 6091 6092 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6093 { 6094 size_t insn_idx = *(const size_t *)key; 6095 const struct reloc_desc *relo = elem; 6096 6097 if (insn_idx == relo->insn_idx) 6098 return 0; 6099 return insn_idx < relo->insn_idx ? -1 : 1; 6100 } 6101 6102 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6103 { 6104 if (!prog->nr_reloc) 6105 return NULL; 6106 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6107 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6108 } 6109 6110 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6111 { 6112 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6113 struct reloc_desc *relos; 6114 int i; 6115 6116 if (main_prog == subprog) 6117 return 0; 6118 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6119 if (!relos) 6120 return -ENOMEM; 6121 if (subprog->nr_reloc) 6122 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6123 sizeof(*relos) * subprog->nr_reloc); 6124 6125 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6126 relos[i].insn_idx += subprog->sub_insn_off; 6127 /* After insn_idx adjustment the 'relos' array is still sorted 6128 * by insn_idx and doesn't break bsearch. 6129 */ 6130 main_prog->reloc_desc = relos; 6131 main_prog->nr_reloc = new_cnt; 6132 return 0; 6133 } 6134 6135 static int 6136 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6137 struct bpf_program *prog) 6138 { 6139 size_t sub_insn_idx, insn_idx, new_cnt; 6140 struct bpf_program *subprog; 6141 struct bpf_insn *insns, *insn; 6142 struct reloc_desc *relo; 6143 int err; 6144 6145 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6146 if (err) 6147 return err; 6148 6149 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6150 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6151 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6152 continue; 6153 6154 relo = find_prog_insn_relo(prog, insn_idx); 6155 if (relo && relo->type == RELO_EXTERN_FUNC) 6156 /* kfunc relocations will be handled later 6157 * in bpf_object__relocate_data() 6158 */ 6159 continue; 6160 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6161 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6162 prog->name, insn_idx, relo->type); 6163 return -LIBBPF_ERRNO__RELOC; 6164 } 6165 if (relo) { 6166 /* sub-program instruction index is a combination of 6167 * an offset of a symbol pointed to by relocation and 6168 * call instruction's imm field; for global functions, 6169 * call always has imm = -1, but for static functions 6170 * relocation is against STT_SECTION and insn->imm 6171 * points to a start of a static function 6172 * 6173 * for subprog addr relocation, the relo->sym_off + insn->imm is 6174 * the byte offset in the corresponding section. 6175 */ 6176 if (relo->type == RELO_CALL) 6177 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6178 else 6179 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6180 } else if (insn_is_pseudo_func(insn)) { 6181 /* 6182 * RELO_SUBPROG_ADDR relo is always emitted even if both 6183 * functions are in the same section, so it shouldn't reach here. 6184 */ 6185 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6186 prog->name, insn_idx); 6187 return -LIBBPF_ERRNO__RELOC; 6188 } else { 6189 /* if subprogram call is to a static function within 6190 * the same ELF section, there won't be any relocation 6191 * emitted, but it also means there is no additional 6192 * offset necessary, insns->imm is relative to 6193 * instruction's original position within the section 6194 */ 6195 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6196 } 6197 6198 /* we enforce that sub-programs should be in .text section */ 6199 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6200 if (!subprog) { 6201 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6202 prog->name); 6203 return -LIBBPF_ERRNO__RELOC; 6204 } 6205 6206 /* if it's the first call instruction calling into this 6207 * subprogram (meaning this subprog hasn't been processed 6208 * yet) within the context of current main program: 6209 * - append it at the end of main program's instructions blog; 6210 * - process is recursively, while current program is put on hold; 6211 * - if that subprogram calls some other not yet processes 6212 * subprogram, same thing will happen recursively until 6213 * there are no more unprocesses subprograms left to append 6214 * and relocate. 6215 */ 6216 if (subprog->sub_insn_off == 0) { 6217 subprog->sub_insn_off = main_prog->insns_cnt; 6218 6219 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6220 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6221 if (!insns) { 6222 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6223 return -ENOMEM; 6224 } 6225 main_prog->insns = insns; 6226 main_prog->insns_cnt = new_cnt; 6227 6228 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6229 subprog->insns_cnt * sizeof(*insns)); 6230 6231 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6232 main_prog->name, subprog->insns_cnt, subprog->name); 6233 6234 /* The subprog insns are now appended. Append its relos too. */ 6235 err = append_subprog_relos(main_prog, subprog); 6236 if (err) 6237 return err; 6238 err = bpf_object__reloc_code(obj, main_prog, subprog); 6239 if (err) 6240 return err; 6241 } 6242 6243 /* main_prog->insns memory could have been re-allocated, so 6244 * calculate pointer again 6245 */ 6246 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6247 /* calculate correct instruction position within current main 6248 * prog; each main prog can have a different set of 6249 * subprograms appended (potentially in different order as 6250 * well), so position of any subprog can be different for 6251 * different main programs 6252 */ 6253 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6254 6255 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6256 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6257 } 6258 6259 return 0; 6260 } 6261 6262 /* 6263 * Relocate sub-program calls. 6264 * 6265 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6266 * main prog) is processed separately. For each subprog (non-entry functions, 6267 * that can be called from either entry progs or other subprogs) gets their 6268 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6269 * hasn't been yet appended and relocated within current main prog. Once its 6270 * relocated, sub_insn_off will point at the position within current main prog 6271 * where given subprog was appended. This will further be used to relocate all 6272 * the call instructions jumping into this subprog. 6273 * 6274 * We start with main program and process all call instructions. If the call 6275 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6276 * is zero), subprog instructions are appended at the end of main program's 6277 * instruction array. Then main program is "put on hold" while we recursively 6278 * process newly appended subprogram. If that subprogram calls into another 6279 * subprogram that hasn't been appended, new subprogram is appended again to 6280 * the *main* prog's instructions (subprog's instructions are always left 6281 * untouched, as they need to be in unmodified state for subsequent main progs 6282 * and subprog instructions are always sent only as part of a main prog) and 6283 * the process continues recursively. Once all the subprogs called from a main 6284 * prog or any of its subprogs are appended (and relocated), all their 6285 * positions within finalized instructions array are known, so it's easy to 6286 * rewrite call instructions with correct relative offsets, corresponding to 6287 * desired target subprog. 6288 * 6289 * Its important to realize that some subprogs might not be called from some 6290 * main prog and any of its called/used subprogs. Those will keep their 6291 * subprog->sub_insn_off as zero at all times and won't be appended to current 6292 * main prog and won't be relocated within the context of current main prog. 6293 * They might still be used from other main progs later. 6294 * 6295 * Visually this process can be shown as below. Suppose we have two main 6296 * programs mainA and mainB and BPF object contains three subprogs: subA, 6297 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6298 * subC both call subB: 6299 * 6300 * +--------+ +-------+ 6301 * | v v | 6302 * +--+---+ +--+-+-+ +---+--+ 6303 * | subA | | subB | | subC | 6304 * +--+---+ +------+ +---+--+ 6305 * ^ ^ 6306 * | | 6307 * +---+-------+ +------+----+ 6308 * | mainA | | mainB | 6309 * +-----------+ +-----------+ 6310 * 6311 * We'll start relocating mainA, will find subA, append it and start 6312 * processing sub A recursively: 6313 * 6314 * +-----------+------+ 6315 * | mainA | subA | 6316 * +-----------+------+ 6317 * 6318 * At this point we notice that subB is used from subA, so we append it and 6319 * relocate (there are no further subcalls from subB): 6320 * 6321 * +-----------+------+------+ 6322 * | mainA | subA | subB | 6323 * +-----------+------+------+ 6324 * 6325 * At this point, we relocate subA calls, then go one level up and finish with 6326 * relocatin mainA calls. mainA is done. 6327 * 6328 * For mainB process is similar but results in different order. We start with 6329 * mainB and skip subA and subB, as mainB never calls them (at least 6330 * directly), but we see subC is needed, so we append and start processing it: 6331 * 6332 * +-----------+------+ 6333 * | mainB | subC | 6334 * +-----------+------+ 6335 * Now we see subC needs subB, so we go back to it, append and relocate it: 6336 * 6337 * +-----------+------+------+ 6338 * | mainB | subC | subB | 6339 * +-----------+------+------+ 6340 * 6341 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6342 */ 6343 static int 6344 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6345 { 6346 struct bpf_program *subprog; 6347 int i, err; 6348 6349 /* mark all subprogs as not relocated (yet) within the context of 6350 * current main program 6351 */ 6352 for (i = 0; i < obj->nr_programs; i++) { 6353 subprog = &obj->programs[i]; 6354 if (!prog_is_subprog(obj, subprog)) 6355 continue; 6356 6357 subprog->sub_insn_off = 0; 6358 } 6359 6360 err = bpf_object__reloc_code(obj, prog, prog); 6361 if (err) 6362 return err; 6363 6364 return 0; 6365 } 6366 6367 static void 6368 bpf_object__free_relocs(struct bpf_object *obj) 6369 { 6370 struct bpf_program *prog; 6371 int i; 6372 6373 /* free up relocation descriptors */ 6374 for (i = 0; i < obj->nr_programs; i++) { 6375 prog = &obj->programs[i]; 6376 zfree(&prog->reloc_desc); 6377 prog->nr_reloc = 0; 6378 } 6379 } 6380 6381 static int cmp_relocs(const void *_a, const void *_b) 6382 { 6383 const struct reloc_desc *a = _a; 6384 const struct reloc_desc *b = _b; 6385 6386 if (a->insn_idx != b->insn_idx) 6387 return a->insn_idx < b->insn_idx ? -1 : 1; 6388 6389 /* no two relocations should have the same insn_idx, but ... */ 6390 if (a->type != b->type) 6391 return a->type < b->type ? -1 : 1; 6392 6393 return 0; 6394 } 6395 6396 static void bpf_object__sort_relos(struct bpf_object *obj) 6397 { 6398 int i; 6399 6400 for (i = 0; i < obj->nr_programs; i++) { 6401 struct bpf_program *p = &obj->programs[i]; 6402 6403 if (!p->nr_reloc) 6404 continue; 6405 6406 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6407 } 6408 } 6409 6410 static int 6411 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6412 { 6413 struct bpf_program *prog; 6414 size_t i, j; 6415 int err; 6416 6417 if (obj->btf_ext) { 6418 err = bpf_object__relocate_core(obj, targ_btf_path); 6419 if (err) { 6420 pr_warn("failed to perform CO-RE relocations: %d\n", 6421 err); 6422 return err; 6423 } 6424 bpf_object__sort_relos(obj); 6425 } 6426 6427 /* Before relocating calls pre-process relocations and mark 6428 * few ld_imm64 instructions that points to subprogs. 6429 * Otherwise bpf_object__reloc_code() later would have to consider 6430 * all ld_imm64 insns as relocation candidates. That would 6431 * reduce relocation speed, since amount of find_prog_insn_relo() 6432 * would increase and most of them will fail to find a relo. 6433 */ 6434 for (i = 0; i < obj->nr_programs; i++) { 6435 prog = &obj->programs[i]; 6436 for (j = 0; j < prog->nr_reloc; j++) { 6437 struct reloc_desc *relo = &prog->reloc_desc[j]; 6438 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6439 6440 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6441 if (relo->type == RELO_SUBPROG_ADDR) 6442 insn[0].src_reg = BPF_PSEUDO_FUNC; 6443 } 6444 } 6445 6446 /* relocate subprogram calls and append used subprograms to main 6447 * programs; each copy of subprogram code needs to be relocated 6448 * differently for each main program, because its code location might 6449 * have changed. 6450 * Append subprog relos to main programs to allow data relos to be 6451 * processed after text is completely relocated. 6452 */ 6453 for (i = 0; i < obj->nr_programs; i++) { 6454 prog = &obj->programs[i]; 6455 /* sub-program's sub-calls are relocated within the context of 6456 * its main program only 6457 */ 6458 if (prog_is_subprog(obj, prog)) 6459 continue; 6460 if (!prog->autoload) 6461 continue; 6462 6463 err = bpf_object__relocate_calls(obj, prog); 6464 if (err) { 6465 pr_warn("prog '%s': failed to relocate calls: %d\n", 6466 prog->name, err); 6467 return err; 6468 } 6469 } 6470 /* Process data relos for main programs */ 6471 for (i = 0; i < obj->nr_programs; i++) { 6472 prog = &obj->programs[i]; 6473 if (prog_is_subprog(obj, prog)) 6474 continue; 6475 if (!prog->autoload) 6476 continue; 6477 err = bpf_object__relocate_data(obj, prog); 6478 if (err) { 6479 pr_warn("prog '%s': failed to relocate data references: %d\n", 6480 prog->name, err); 6481 return err; 6482 } 6483 } 6484 6485 return 0; 6486 } 6487 6488 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6489 Elf64_Shdr *shdr, Elf_Data *data); 6490 6491 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6492 Elf64_Shdr *shdr, Elf_Data *data) 6493 { 6494 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6495 int i, j, nrels, new_sz; 6496 const struct btf_var_secinfo *vi = NULL; 6497 const struct btf_type *sec, *var, *def; 6498 struct bpf_map *map = NULL, *targ_map = NULL; 6499 struct bpf_program *targ_prog = NULL; 6500 bool is_prog_array, is_map_in_map; 6501 const struct btf_member *member; 6502 const char *name, *mname, *type; 6503 unsigned int moff; 6504 Elf64_Sym *sym; 6505 Elf64_Rel *rel; 6506 void *tmp; 6507 6508 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6509 return -EINVAL; 6510 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6511 if (!sec) 6512 return -EINVAL; 6513 6514 nrels = shdr->sh_size / shdr->sh_entsize; 6515 for (i = 0; i < nrels; i++) { 6516 rel = elf_rel_by_idx(data, i); 6517 if (!rel) { 6518 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6519 return -LIBBPF_ERRNO__FORMAT; 6520 } 6521 6522 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6523 if (!sym) { 6524 pr_warn(".maps relo #%d: symbol %zx not found\n", 6525 i, (size_t)ELF64_R_SYM(rel->r_info)); 6526 return -LIBBPF_ERRNO__FORMAT; 6527 } 6528 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6529 6530 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6531 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6532 (size_t)rel->r_offset, sym->st_name, name); 6533 6534 for (j = 0; j < obj->nr_maps; j++) { 6535 map = &obj->maps[j]; 6536 if (map->sec_idx != obj->efile.btf_maps_shndx) 6537 continue; 6538 6539 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6540 if (vi->offset <= rel->r_offset && 6541 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6542 break; 6543 } 6544 if (j == obj->nr_maps) { 6545 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6546 i, name, (size_t)rel->r_offset); 6547 return -EINVAL; 6548 } 6549 6550 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 6551 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 6552 type = is_map_in_map ? "map" : "prog"; 6553 if (is_map_in_map) { 6554 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6555 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6556 i, name); 6557 return -LIBBPF_ERRNO__RELOC; 6558 } 6559 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6560 map->def.key_size != sizeof(int)) { 6561 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6562 i, map->name, sizeof(int)); 6563 return -EINVAL; 6564 } 6565 targ_map = bpf_object__find_map_by_name(obj, name); 6566 if (!targ_map) { 6567 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 6568 i, name); 6569 return -ESRCH; 6570 } 6571 } else if (is_prog_array) { 6572 targ_prog = bpf_object__find_program_by_name(obj, name); 6573 if (!targ_prog) { 6574 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 6575 i, name); 6576 return -ESRCH; 6577 } 6578 if (targ_prog->sec_idx != sym->st_shndx || 6579 targ_prog->sec_insn_off * 8 != sym->st_value || 6580 prog_is_subprog(obj, targ_prog)) { 6581 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 6582 i, name); 6583 return -LIBBPF_ERRNO__RELOC; 6584 } 6585 } else { 6586 return -EINVAL; 6587 } 6588 6589 var = btf__type_by_id(obj->btf, vi->type); 6590 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6591 if (btf_vlen(def) == 0) 6592 return -EINVAL; 6593 member = btf_members(def) + btf_vlen(def) - 1; 6594 mname = btf__name_by_offset(obj->btf, member->name_off); 6595 if (strcmp(mname, "values")) 6596 return -EINVAL; 6597 6598 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6599 if (rel->r_offset - vi->offset < moff) 6600 return -EINVAL; 6601 6602 moff = rel->r_offset - vi->offset - moff; 6603 /* here we use BPF pointer size, which is always 64 bit, as we 6604 * are parsing ELF that was built for BPF target 6605 */ 6606 if (moff % bpf_ptr_sz) 6607 return -EINVAL; 6608 moff /= bpf_ptr_sz; 6609 if (moff >= map->init_slots_sz) { 6610 new_sz = moff + 1; 6611 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6612 if (!tmp) 6613 return -ENOMEM; 6614 map->init_slots = tmp; 6615 memset(map->init_slots + map->init_slots_sz, 0, 6616 (new_sz - map->init_slots_sz) * host_ptr_sz); 6617 map->init_slots_sz = new_sz; 6618 } 6619 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 6620 6621 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 6622 i, map->name, moff, type, name); 6623 } 6624 6625 return 0; 6626 } 6627 6628 static int bpf_object__collect_relos(struct bpf_object *obj) 6629 { 6630 int i, err; 6631 6632 for (i = 0; i < obj->efile.sec_cnt; i++) { 6633 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6634 Elf64_Shdr *shdr; 6635 Elf_Data *data; 6636 int idx; 6637 6638 if (sec_desc->sec_type != SEC_RELO) 6639 continue; 6640 6641 shdr = sec_desc->shdr; 6642 data = sec_desc->data; 6643 idx = shdr->sh_info; 6644 6645 if (shdr->sh_type != SHT_REL) { 6646 pr_warn("internal error at %d\n", __LINE__); 6647 return -LIBBPF_ERRNO__INTERNAL; 6648 } 6649 6650 if (idx == obj->efile.st_ops_shndx) 6651 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6652 else if (idx == obj->efile.btf_maps_shndx) 6653 err = bpf_object__collect_map_relos(obj, shdr, data); 6654 else 6655 err = bpf_object__collect_prog_relos(obj, shdr, data); 6656 if (err) 6657 return err; 6658 } 6659 6660 bpf_object__sort_relos(obj); 6661 return 0; 6662 } 6663 6664 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6665 { 6666 if (BPF_CLASS(insn->code) == BPF_JMP && 6667 BPF_OP(insn->code) == BPF_CALL && 6668 BPF_SRC(insn->code) == BPF_K && 6669 insn->src_reg == 0 && 6670 insn->dst_reg == 0) { 6671 *func_id = insn->imm; 6672 return true; 6673 } 6674 return false; 6675 } 6676 6677 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6678 { 6679 struct bpf_insn *insn = prog->insns; 6680 enum bpf_func_id func_id; 6681 int i; 6682 6683 if (obj->gen_loader) 6684 return 0; 6685 6686 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6687 if (!insn_is_helper_call(insn, &func_id)) 6688 continue; 6689 6690 /* on kernels that don't yet support 6691 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6692 * to bpf_probe_read() which works well for old kernels 6693 */ 6694 switch (func_id) { 6695 case BPF_FUNC_probe_read_kernel: 6696 case BPF_FUNC_probe_read_user: 6697 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6698 insn->imm = BPF_FUNC_probe_read; 6699 break; 6700 case BPF_FUNC_probe_read_kernel_str: 6701 case BPF_FUNC_probe_read_user_str: 6702 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6703 insn->imm = BPF_FUNC_probe_read_str; 6704 break; 6705 default: 6706 break; 6707 } 6708 } 6709 return 0; 6710 } 6711 6712 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6713 int *btf_obj_fd, int *btf_type_id); 6714 6715 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 6716 static int libbpf_prepare_prog_load(struct bpf_program *prog, 6717 struct bpf_prog_load_opts *opts, long cookie) 6718 { 6719 enum sec_def_flags def = cookie; 6720 6721 /* old kernels might not support specifying expected_attach_type */ 6722 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6723 opts->expected_attach_type = 0; 6724 6725 if (def & SEC_SLEEPABLE) 6726 opts->prog_flags |= BPF_F_SLEEPABLE; 6727 6728 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 6729 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 6730 6731 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 6732 int btf_obj_fd = 0, btf_type_id = 0, err; 6733 const char *attach_name; 6734 6735 attach_name = strchr(prog->sec_name, '/'); 6736 if (!attach_name) { 6737 /* if BPF program is annotated with just SEC("fentry") 6738 * (or similar) without declaratively specifying 6739 * target, then it is expected that target will be 6740 * specified with bpf_program__set_attach_target() at 6741 * runtime before BPF object load step. If not, then 6742 * there is nothing to load into the kernel as BPF 6743 * verifier won't be able to validate BPF program 6744 * correctness anyways. 6745 */ 6746 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 6747 prog->name); 6748 return -EINVAL; 6749 } 6750 attach_name++; /* skip over / */ 6751 6752 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6753 if (err) 6754 return err; 6755 6756 /* cache resolved BTF FD and BTF type ID in the prog */ 6757 prog->attach_btf_obj_fd = btf_obj_fd; 6758 prog->attach_btf_id = btf_type_id; 6759 6760 /* but by now libbpf common logic is not utilizing 6761 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 6762 * this callback is called after opts were populated by 6763 * libbpf, so this callback has to update opts explicitly here 6764 */ 6765 opts->attach_btf_obj_fd = btf_obj_fd; 6766 opts->attach_btf_id = btf_type_id; 6767 } 6768 return 0; 6769 } 6770 6771 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 6772 6773 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 6774 struct bpf_insn *insns, int insns_cnt, 6775 const char *license, __u32 kern_version, int *prog_fd) 6776 { 6777 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 6778 const char *prog_name = NULL; 6779 char *cp, errmsg[STRERR_BUFSIZE]; 6780 size_t log_buf_size = 0; 6781 char *log_buf = NULL, *tmp; 6782 int btf_fd, ret, err; 6783 bool own_log_buf = true; 6784 __u32 log_level = prog->log_level; 6785 6786 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6787 /* 6788 * The program type must be set. Most likely we couldn't find a proper 6789 * section definition at load time, and thus we didn't infer the type. 6790 */ 6791 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6792 prog->name, prog->sec_name); 6793 return -EINVAL; 6794 } 6795 6796 if (!insns || !insns_cnt) 6797 return -EINVAL; 6798 6799 load_attr.expected_attach_type = prog->expected_attach_type; 6800 if (kernel_supports(obj, FEAT_PROG_NAME)) 6801 prog_name = prog->name; 6802 load_attr.attach_prog_fd = prog->attach_prog_fd; 6803 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 6804 load_attr.attach_btf_id = prog->attach_btf_id; 6805 load_attr.kern_version = kern_version; 6806 load_attr.prog_ifindex = prog->prog_ifindex; 6807 6808 /* specify func_info/line_info only if kernel supports them */ 6809 btf_fd = bpf_object__btf_fd(obj); 6810 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 6811 load_attr.prog_btf_fd = btf_fd; 6812 load_attr.func_info = prog->func_info; 6813 load_attr.func_info_rec_size = prog->func_info_rec_size; 6814 load_attr.func_info_cnt = prog->func_info_cnt; 6815 load_attr.line_info = prog->line_info; 6816 load_attr.line_info_rec_size = prog->line_info_rec_size; 6817 load_attr.line_info_cnt = prog->line_info_cnt; 6818 } 6819 load_attr.log_level = log_level; 6820 load_attr.prog_flags = prog->prog_flags; 6821 load_attr.fd_array = obj->fd_array; 6822 6823 /* adjust load_attr if sec_def provides custom preload callback */ 6824 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 6825 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 6826 if (err < 0) { 6827 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 6828 prog->name, err); 6829 return err; 6830 } 6831 insns = prog->insns; 6832 insns_cnt = prog->insns_cnt; 6833 } 6834 6835 if (obj->gen_loader) { 6836 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 6837 license, insns, insns_cnt, &load_attr, 6838 prog - obj->programs); 6839 *prog_fd = -1; 6840 return 0; 6841 } 6842 6843 retry_load: 6844 /* if log_level is zero, we don't request logs initially even if 6845 * custom log_buf is specified; if the program load fails, then we'll 6846 * bump log_level to 1 and use either custom log_buf or we'll allocate 6847 * our own and retry the load to get details on what failed 6848 */ 6849 if (log_level) { 6850 if (prog->log_buf) { 6851 log_buf = prog->log_buf; 6852 log_buf_size = prog->log_size; 6853 own_log_buf = false; 6854 } else if (obj->log_buf) { 6855 log_buf = obj->log_buf; 6856 log_buf_size = obj->log_size; 6857 own_log_buf = false; 6858 } else { 6859 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 6860 tmp = realloc(log_buf, log_buf_size); 6861 if (!tmp) { 6862 ret = -ENOMEM; 6863 goto out; 6864 } 6865 log_buf = tmp; 6866 log_buf[0] = '\0'; 6867 own_log_buf = true; 6868 } 6869 } 6870 6871 load_attr.log_buf = log_buf; 6872 load_attr.log_size = log_buf_size; 6873 load_attr.log_level = log_level; 6874 6875 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 6876 if (ret >= 0) { 6877 if (log_level && own_log_buf) { 6878 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6879 prog->name, log_buf); 6880 } 6881 6882 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 6883 struct bpf_map *map; 6884 int i; 6885 6886 for (i = 0; i < obj->nr_maps; i++) { 6887 map = &prog->obj->maps[i]; 6888 if (map->libbpf_type != LIBBPF_MAP_RODATA) 6889 continue; 6890 6891 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 6892 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6893 pr_warn("prog '%s': failed to bind map '%s': %s\n", 6894 prog->name, map->real_name, cp); 6895 /* Don't fail hard if can't bind rodata. */ 6896 } 6897 } 6898 } 6899 6900 *prog_fd = ret; 6901 ret = 0; 6902 goto out; 6903 } 6904 6905 if (log_level == 0) { 6906 log_level = 1; 6907 goto retry_load; 6908 } 6909 /* On ENOSPC, increase log buffer size and retry, unless custom 6910 * log_buf is specified. 6911 * Be careful to not overflow u32, though. Kernel's log buf size limit 6912 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 6913 * multiply by 2 unless we are sure we'll fit within 32 bits. 6914 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 6915 */ 6916 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 6917 goto retry_load; 6918 6919 ret = -errno; 6920 6921 /* post-process verifier log to improve error descriptions */ 6922 fixup_verifier_log(prog, log_buf, log_buf_size); 6923 6924 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6925 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 6926 pr_perm_msg(ret); 6927 6928 if (own_log_buf && log_buf && log_buf[0] != '\0') { 6929 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6930 prog->name, log_buf); 6931 } 6932 6933 out: 6934 if (own_log_buf) 6935 free(log_buf); 6936 return ret; 6937 } 6938 6939 static char *find_prev_line(char *buf, char *cur) 6940 { 6941 char *p; 6942 6943 if (cur == buf) /* end of a log buf */ 6944 return NULL; 6945 6946 p = cur - 1; 6947 while (p - 1 >= buf && *(p - 1) != '\n') 6948 p--; 6949 6950 return p; 6951 } 6952 6953 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 6954 char *orig, size_t orig_sz, const char *patch) 6955 { 6956 /* size of the remaining log content to the right from the to-be-replaced part */ 6957 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 6958 size_t patch_sz = strlen(patch); 6959 6960 if (patch_sz != orig_sz) { 6961 /* If patch line(s) are longer than original piece of verifier log, 6962 * shift log contents by (patch_sz - orig_sz) bytes to the right 6963 * starting from after to-be-replaced part of the log. 6964 * 6965 * If patch line(s) are shorter than original piece of verifier log, 6966 * shift log contents by (orig_sz - patch_sz) bytes to the left 6967 * starting from after to-be-replaced part of the log 6968 * 6969 * We need to be careful about not overflowing available 6970 * buf_sz capacity. If that's the case, we'll truncate the end 6971 * of the original log, as necessary. 6972 */ 6973 if (patch_sz > orig_sz) { 6974 if (orig + patch_sz >= buf + buf_sz) { 6975 /* patch is big enough to cover remaining space completely */ 6976 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 6977 rem_sz = 0; 6978 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 6979 /* patch causes part of remaining log to be truncated */ 6980 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 6981 } 6982 } 6983 /* shift remaining log to the right by calculated amount */ 6984 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 6985 } 6986 6987 memcpy(orig, patch, patch_sz); 6988 } 6989 6990 static void fixup_log_failed_core_relo(struct bpf_program *prog, 6991 char *buf, size_t buf_sz, size_t log_sz, 6992 char *line1, char *line2, char *line3) 6993 { 6994 /* Expected log for failed and not properly guarded CO-RE relocation: 6995 * line1 -> 123: (85) call unknown#195896080 6996 * line2 -> invalid func unknown#195896080 6997 * line3 -> <anything else or end of buffer> 6998 * 6999 * "123" is the index of the instruction that was poisoned. We extract 7000 * instruction index to find corresponding CO-RE relocation and 7001 * replace this part of the log with more relevant information about 7002 * failed CO-RE relocation. 7003 */ 7004 const struct bpf_core_relo *relo; 7005 struct bpf_core_spec spec; 7006 char patch[512], spec_buf[256]; 7007 int insn_idx, err, spec_len; 7008 7009 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7010 return; 7011 7012 relo = find_relo_core(prog, insn_idx); 7013 if (!relo) 7014 return; 7015 7016 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7017 if (err) 7018 return; 7019 7020 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7021 snprintf(patch, sizeof(patch), 7022 "%d: <invalid CO-RE relocation>\n" 7023 "failed to resolve CO-RE relocation %s%s\n", 7024 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7025 7026 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7027 } 7028 7029 static void fixup_log_missing_map_load(struct bpf_program *prog, 7030 char *buf, size_t buf_sz, size_t log_sz, 7031 char *line1, char *line2, char *line3) 7032 { 7033 /* Expected log for failed and not properly guarded CO-RE relocation: 7034 * line1 -> 123: (85) call unknown#2001000345 7035 * line2 -> invalid func unknown#2001000345 7036 * line3 -> <anything else or end of buffer> 7037 * 7038 * "123" is the index of the instruction that was poisoned. 7039 * "345" in "2001000345" are map index in obj->maps to fetch map name. 7040 */ 7041 struct bpf_object *obj = prog->obj; 7042 const struct bpf_map *map; 7043 int insn_idx, map_idx; 7044 char patch[128]; 7045 7046 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7047 return; 7048 7049 map_idx -= MAP_LDIMM64_POISON_BASE; 7050 if (map_idx < 0 || map_idx >= obj->nr_maps) 7051 return; 7052 map = &obj->maps[map_idx]; 7053 7054 snprintf(patch, sizeof(patch), 7055 "%d: <invalid BPF map reference>\n" 7056 "BPF map '%s' is referenced but wasn't created\n", 7057 insn_idx, map->name); 7058 7059 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7060 } 7061 7062 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7063 { 7064 /* look for familiar error patterns in last N lines of the log */ 7065 const size_t max_last_line_cnt = 10; 7066 char *prev_line, *cur_line, *next_line; 7067 size_t log_sz; 7068 int i; 7069 7070 if (!buf) 7071 return; 7072 7073 log_sz = strlen(buf) + 1; 7074 next_line = buf + log_sz - 1; 7075 7076 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7077 cur_line = find_prev_line(buf, next_line); 7078 if (!cur_line) 7079 return; 7080 7081 /* failed CO-RE relocation case */ 7082 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7083 prev_line = find_prev_line(buf, cur_line); 7084 if (!prev_line) 7085 continue; 7086 7087 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7088 prev_line, cur_line, next_line); 7089 return; 7090 } else if (str_has_pfx(cur_line, "invalid func unknown#"MAP_LDIMM64_POISON_PFX)) { 7091 prev_line = find_prev_line(buf, cur_line); 7092 if (!prev_line) 7093 continue; 7094 7095 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7096 prev_line, cur_line, next_line); 7097 return; 7098 } 7099 } 7100 } 7101 7102 static int bpf_program_record_relos(struct bpf_program *prog) 7103 { 7104 struct bpf_object *obj = prog->obj; 7105 int i; 7106 7107 for (i = 0; i < prog->nr_reloc; i++) { 7108 struct reloc_desc *relo = &prog->reloc_desc[i]; 7109 struct extern_desc *ext = &obj->externs[relo->sym_off]; 7110 7111 switch (relo->type) { 7112 case RELO_EXTERN_VAR: 7113 if (ext->type != EXT_KSYM) 7114 continue; 7115 bpf_gen__record_extern(obj->gen_loader, ext->name, 7116 ext->is_weak, !ext->ksym.type_id, 7117 BTF_KIND_VAR, relo->insn_idx); 7118 break; 7119 case RELO_EXTERN_FUNC: 7120 bpf_gen__record_extern(obj->gen_loader, ext->name, 7121 ext->is_weak, false, BTF_KIND_FUNC, 7122 relo->insn_idx); 7123 break; 7124 case RELO_CORE: { 7125 struct bpf_core_relo cr = { 7126 .insn_off = relo->insn_idx * 8, 7127 .type_id = relo->core_relo->type_id, 7128 .access_str_off = relo->core_relo->access_str_off, 7129 .kind = relo->core_relo->kind, 7130 }; 7131 7132 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7133 break; 7134 } 7135 default: 7136 continue; 7137 } 7138 } 7139 return 0; 7140 } 7141 7142 static int 7143 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7144 { 7145 struct bpf_program *prog; 7146 size_t i; 7147 int err; 7148 7149 for (i = 0; i < obj->nr_programs; i++) { 7150 prog = &obj->programs[i]; 7151 err = bpf_object__sanitize_prog(obj, prog); 7152 if (err) 7153 return err; 7154 } 7155 7156 for (i = 0; i < obj->nr_programs; i++) { 7157 prog = &obj->programs[i]; 7158 if (prog_is_subprog(obj, prog)) 7159 continue; 7160 if (!prog->autoload) { 7161 pr_debug("prog '%s': skipped loading\n", prog->name); 7162 continue; 7163 } 7164 prog->log_level |= log_level; 7165 7166 if (obj->gen_loader) 7167 bpf_program_record_relos(prog); 7168 7169 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7170 obj->license, obj->kern_version, &prog->fd); 7171 if (err) { 7172 pr_warn("prog '%s': failed to load: %d\n", prog->name, err); 7173 return err; 7174 } 7175 } 7176 7177 bpf_object__free_relocs(obj); 7178 return 0; 7179 } 7180 7181 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7182 7183 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7184 { 7185 struct bpf_program *prog; 7186 int err; 7187 7188 bpf_object__for_each_program(prog, obj) { 7189 prog->sec_def = find_sec_def(prog->sec_name); 7190 if (!prog->sec_def) { 7191 /* couldn't guess, but user might manually specify */ 7192 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7193 prog->name, prog->sec_name); 7194 continue; 7195 } 7196 7197 prog->type = prog->sec_def->prog_type; 7198 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7199 7200 /* sec_def can have custom callback which should be called 7201 * after bpf_program is initialized to adjust its properties 7202 */ 7203 if (prog->sec_def->prog_setup_fn) { 7204 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7205 if (err < 0) { 7206 pr_warn("prog '%s': failed to initialize: %d\n", 7207 prog->name, err); 7208 return err; 7209 } 7210 } 7211 } 7212 7213 return 0; 7214 } 7215 7216 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7217 const struct bpf_object_open_opts *opts) 7218 { 7219 const char *obj_name, *kconfig, *btf_tmp_path; 7220 struct bpf_object *obj; 7221 char tmp_name[64]; 7222 int err; 7223 char *log_buf; 7224 size_t log_size; 7225 __u32 log_level; 7226 7227 if (elf_version(EV_CURRENT) == EV_NONE) { 7228 pr_warn("failed to init libelf for %s\n", 7229 path ? : "(mem buf)"); 7230 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7231 } 7232 7233 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7234 return ERR_PTR(-EINVAL); 7235 7236 obj_name = OPTS_GET(opts, object_name, NULL); 7237 if (obj_buf) { 7238 if (!obj_name) { 7239 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7240 (unsigned long)obj_buf, 7241 (unsigned long)obj_buf_sz); 7242 obj_name = tmp_name; 7243 } 7244 path = obj_name; 7245 pr_debug("loading object '%s' from buffer\n", obj_name); 7246 } 7247 7248 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7249 log_size = OPTS_GET(opts, kernel_log_size, 0); 7250 log_level = OPTS_GET(opts, kernel_log_level, 0); 7251 if (log_size > UINT_MAX) 7252 return ERR_PTR(-EINVAL); 7253 if (log_size && !log_buf) 7254 return ERR_PTR(-EINVAL); 7255 7256 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7257 if (IS_ERR(obj)) 7258 return obj; 7259 7260 obj->log_buf = log_buf; 7261 obj->log_size = log_size; 7262 obj->log_level = log_level; 7263 7264 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7265 if (btf_tmp_path) { 7266 if (strlen(btf_tmp_path) >= PATH_MAX) { 7267 err = -ENAMETOOLONG; 7268 goto out; 7269 } 7270 obj->btf_custom_path = strdup(btf_tmp_path); 7271 if (!obj->btf_custom_path) { 7272 err = -ENOMEM; 7273 goto out; 7274 } 7275 } 7276 7277 kconfig = OPTS_GET(opts, kconfig, NULL); 7278 if (kconfig) { 7279 obj->kconfig = strdup(kconfig); 7280 if (!obj->kconfig) { 7281 err = -ENOMEM; 7282 goto out; 7283 } 7284 } 7285 7286 err = bpf_object__elf_init(obj); 7287 err = err ? : bpf_object__check_endianness(obj); 7288 err = err ? : bpf_object__elf_collect(obj); 7289 err = err ? : bpf_object__collect_externs(obj); 7290 err = err ? : bpf_object_fixup_btf(obj); 7291 err = err ? : bpf_object__init_maps(obj, opts); 7292 err = err ? : bpf_object_init_progs(obj, opts); 7293 err = err ? : bpf_object__collect_relos(obj); 7294 if (err) 7295 goto out; 7296 7297 bpf_object__elf_finish(obj); 7298 7299 return obj; 7300 out: 7301 bpf_object__close(obj); 7302 return ERR_PTR(err); 7303 } 7304 7305 struct bpf_object * 7306 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7307 { 7308 if (!path) 7309 return libbpf_err_ptr(-EINVAL); 7310 7311 pr_debug("loading %s\n", path); 7312 7313 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7314 } 7315 7316 struct bpf_object *bpf_object__open(const char *path) 7317 { 7318 return bpf_object__open_file(path, NULL); 7319 } 7320 7321 struct bpf_object * 7322 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7323 const struct bpf_object_open_opts *opts) 7324 { 7325 if (!obj_buf || obj_buf_sz == 0) 7326 return libbpf_err_ptr(-EINVAL); 7327 7328 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7329 } 7330 7331 static int bpf_object_unload(struct bpf_object *obj) 7332 { 7333 size_t i; 7334 7335 if (!obj) 7336 return libbpf_err(-EINVAL); 7337 7338 for (i = 0; i < obj->nr_maps; i++) { 7339 zclose(obj->maps[i].fd); 7340 if (obj->maps[i].st_ops) 7341 zfree(&obj->maps[i].st_ops->kern_vdata); 7342 } 7343 7344 for (i = 0; i < obj->nr_programs; i++) 7345 bpf_program__unload(&obj->programs[i]); 7346 7347 return 0; 7348 } 7349 7350 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7351 { 7352 struct bpf_map *m; 7353 7354 bpf_object__for_each_map(m, obj) { 7355 if (!bpf_map__is_internal(m)) 7356 continue; 7357 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7358 m->def.map_flags ^= BPF_F_MMAPABLE; 7359 } 7360 7361 return 0; 7362 } 7363 7364 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 7365 { 7366 char sym_type, sym_name[500]; 7367 unsigned long long sym_addr; 7368 int ret, err = 0; 7369 FILE *f; 7370 7371 f = fopen("/proc/kallsyms", "r"); 7372 if (!f) { 7373 err = -errno; 7374 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7375 return err; 7376 } 7377 7378 while (true) { 7379 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7380 &sym_addr, &sym_type, sym_name); 7381 if (ret == EOF && feof(f)) 7382 break; 7383 if (ret != 3) { 7384 pr_warn("failed to read kallsyms entry: %d\n", ret); 7385 err = -EINVAL; 7386 break; 7387 } 7388 7389 err = cb(sym_addr, sym_type, sym_name, ctx); 7390 if (err) 7391 break; 7392 } 7393 7394 fclose(f); 7395 return err; 7396 } 7397 7398 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 7399 const char *sym_name, void *ctx) 7400 { 7401 struct bpf_object *obj = ctx; 7402 const struct btf_type *t; 7403 struct extern_desc *ext; 7404 7405 ext = find_extern_by_name(obj, sym_name); 7406 if (!ext || ext->type != EXT_KSYM) 7407 return 0; 7408 7409 t = btf__type_by_id(obj->btf, ext->btf_id); 7410 if (!btf_is_var(t)) 7411 return 0; 7412 7413 if (ext->is_set && ext->ksym.addr != sym_addr) { 7414 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 7415 sym_name, ext->ksym.addr, sym_addr); 7416 return -EINVAL; 7417 } 7418 if (!ext->is_set) { 7419 ext->is_set = true; 7420 ext->ksym.addr = sym_addr; 7421 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 7422 } 7423 return 0; 7424 } 7425 7426 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7427 { 7428 return libbpf_kallsyms_parse(kallsyms_cb, obj); 7429 } 7430 7431 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7432 __u16 kind, struct btf **res_btf, 7433 struct module_btf **res_mod_btf) 7434 { 7435 struct module_btf *mod_btf; 7436 struct btf *btf; 7437 int i, id, err; 7438 7439 btf = obj->btf_vmlinux; 7440 mod_btf = NULL; 7441 id = btf__find_by_name_kind(btf, ksym_name, kind); 7442 7443 if (id == -ENOENT) { 7444 err = load_module_btfs(obj); 7445 if (err) 7446 return err; 7447 7448 for (i = 0; i < obj->btf_module_cnt; i++) { 7449 /* we assume module_btf's BTF FD is always >0 */ 7450 mod_btf = &obj->btf_modules[i]; 7451 btf = mod_btf->btf; 7452 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7453 if (id != -ENOENT) 7454 break; 7455 } 7456 } 7457 if (id <= 0) 7458 return -ESRCH; 7459 7460 *res_btf = btf; 7461 *res_mod_btf = mod_btf; 7462 return id; 7463 } 7464 7465 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7466 struct extern_desc *ext) 7467 { 7468 const struct btf_type *targ_var, *targ_type; 7469 __u32 targ_type_id, local_type_id; 7470 struct module_btf *mod_btf = NULL; 7471 const char *targ_var_name; 7472 struct btf *btf = NULL; 7473 int id, err; 7474 7475 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7476 if (id < 0) { 7477 if (id == -ESRCH && ext->is_weak) 7478 return 0; 7479 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7480 ext->name); 7481 return id; 7482 } 7483 7484 /* find local type_id */ 7485 local_type_id = ext->ksym.type_id; 7486 7487 /* find target type_id */ 7488 targ_var = btf__type_by_id(btf, id); 7489 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7490 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7491 7492 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7493 btf, targ_type_id); 7494 if (err <= 0) { 7495 const struct btf_type *local_type; 7496 const char *targ_name, *local_name; 7497 7498 local_type = btf__type_by_id(obj->btf, local_type_id); 7499 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7500 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7501 7502 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7503 ext->name, local_type_id, 7504 btf_kind_str(local_type), local_name, targ_type_id, 7505 btf_kind_str(targ_type), targ_name); 7506 return -EINVAL; 7507 } 7508 7509 ext->is_set = true; 7510 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7511 ext->ksym.kernel_btf_id = id; 7512 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7513 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7514 7515 return 0; 7516 } 7517 7518 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7519 struct extern_desc *ext) 7520 { 7521 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7522 struct module_btf *mod_btf = NULL; 7523 const struct btf_type *kern_func; 7524 struct btf *kern_btf = NULL; 7525 int ret; 7526 7527 local_func_proto_id = ext->ksym.type_id; 7528 7529 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf); 7530 if (kfunc_id < 0) { 7531 if (kfunc_id == -ESRCH && ext->is_weak) 7532 return 0; 7533 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7534 ext->name); 7535 return kfunc_id; 7536 } 7537 7538 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7539 kfunc_proto_id = kern_func->type; 7540 7541 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7542 kern_btf, kfunc_proto_id); 7543 if (ret <= 0) { 7544 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n", 7545 ext->name, local_func_proto_id, kfunc_proto_id); 7546 return -EINVAL; 7547 } 7548 7549 /* set index for module BTF fd in fd_array, if unset */ 7550 if (mod_btf && !mod_btf->fd_array_idx) { 7551 /* insn->off is s16 */ 7552 if (obj->fd_array_cnt == INT16_MAX) { 7553 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7554 ext->name, mod_btf->fd_array_idx); 7555 return -E2BIG; 7556 } 7557 /* Cannot use index 0 for module BTF fd */ 7558 if (!obj->fd_array_cnt) 7559 obj->fd_array_cnt = 1; 7560 7561 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7562 obj->fd_array_cnt + 1); 7563 if (ret) 7564 return ret; 7565 mod_btf->fd_array_idx = obj->fd_array_cnt; 7566 /* we assume module BTF FD is always >0 */ 7567 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7568 } 7569 7570 ext->is_set = true; 7571 ext->ksym.kernel_btf_id = kfunc_id; 7572 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7573 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n", 7574 ext->name, kfunc_id); 7575 7576 return 0; 7577 } 7578 7579 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7580 { 7581 const struct btf_type *t; 7582 struct extern_desc *ext; 7583 int i, err; 7584 7585 for (i = 0; i < obj->nr_extern; i++) { 7586 ext = &obj->externs[i]; 7587 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7588 continue; 7589 7590 if (obj->gen_loader) { 7591 ext->is_set = true; 7592 ext->ksym.kernel_btf_obj_fd = 0; 7593 ext->ksym.kernel_btf_id = 0; 7594 continue; 7595 } 7596 t = btf__type_by_id(obj->btf, ext->btf_id); 7597 if (btf_is_var(t)) 7598 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7599 else 7600 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7601 if (err) 7602 return err; 7603 } 7604 return 0; 7605 } 7606 7607 static int bpf_object__resolve_externs(struct bpf_object *obj, 7608 const char *extra_kconfig) 7609 { 7610 bool need_config = false, need_kallsyms = false; 7611 bool need_vmlinux_btf = false; 7612 struct extern_desc *ext; 7613 void *kcfg_data = NULL; 7614 int err, i; 7615 7616 if (obj->nr_extern == 0) 7617 return 0; 7618 7619 if (obj->kconfig_map_idx >= 0) 7620 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7621 7622 for (i = 0; i < obj->nr_extern; i++) { 7623 ext = &obj->externs[i]; 7624 7625 if (ext->type == EXT_KSYM) { 7626 if (ext->ksym.type_id) 7627 need_vmlinux_btf = true; 7628 else 7629 need_kallsyms = true; 7630 continue; 7631 } else if (ext->type == EXT_KCFG) { 7632 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 7633 __u64 value = 0; 7634 7635 /* Kconfig externs need actual /proc/config.gz */ 7636 if (str_has_pfx(ext->name, "CONFIG_")) { 7637 need_config = true; 7638 continue; 7639 } 7640 7641 /* Virtual kcfg externs are customly handled by libbpf */ 7642 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7643 value = get_kernel_version(); 7644 if (!value) { 7645 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 7646 return -EINVAL; 7647 } 7648 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 7649 value = kernel_supports(obj, FEAT_BPF_COOKIE); 7650 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 7651 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 7652 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 7653 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 7654 * __kconfig externs, where LINUX_ ones are virtual and filled out 7655 * customly by libbpf (their values don't come from Kconfig). 7656 * If LINUX_xxx variable is not recognized by libbpf, but is marked 7657 * __weak, it defaults to zero value, just like for CONFIG_xxx 7658 * externs. 7659 */ 7660 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 7661 return -EINVAL; 7662 } 7663 7664 err = set_kcfg_value_num(ext, ext_ptr, value); 7665 if (err) 7666 return err; 7667 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 7668 ext->name, (long long)value); 7669 } else { 7670 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 7671 return -EINVAL; 7672 } 7673 } 7674 if (need_config && extra_kconfig) { 7675 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7676 if (err) 7677 return -EINVAL; 7678 need_config = false; 7679 for (i = 0; i < obj->nr_extern; i++) { 7680 ext = &obj->externs[i]; 7681 if (ext->type == EXT_KCFG && !ext->is_set) { 7682 need_config = true; 7683 break; 7684 } 7685 } 7686 } 7687 if (need_config) { 7688 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7689 if (err) 7690 return -EINVAL; 7691 } 7692 if (need_kallsyms) { 7693 err = bpf_object__read_kallsyms_file(obj); 7694 if (err) 7695 return -EINVAL; 7696 } 7697 if (need_vmlinux_btf) { 7698 err = bpf_object__resolve_ksyms_btf_id(obj); 7699 if (err) 7700 return -EINVAL; 7701 } 7702 for (i = 0; i < obj->nr_extern; i++) { 7703 ext = &obj->externs[i]; 7704 7705 if (!ext->is_set && !ext->is_weak) { 7706 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 7707 return -ESRCH; 7708 } else if (!ext->is_set) { 7709 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 7710 ext->name); 7711 } 7712 } 7713 7714 return 0; 7715 } 7716 7717 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 7718 { 7719 int err, i; 7720 7721 if (!obj) 7722 return libbpf_err(-EINVAL); 7723 7724 if (obj->loaded) { 7725 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7726 return libbpf_err(-EINVAL); 7727 } 7728 7729 if (obj->gen_loader) 7730 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 7731 7732 err = bpf_object__probe_loading(obj); 7733 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7734 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7735 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7736 err = err ? : bpf_object__sanitize_maps(obj); 7737 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7738 err = err ? : bpf_object__create_maps(obj); 7739 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 7740 err = err ? : bpf_object__load_progs(obj, extra_log_level); 7741 err = err ? : bpf_object_init_prog_arrays(obj); 7742 7743 if (obj->gen_loader) { 7744 /* reset FDs */ 7745 if (obj->btf) 7746 btf__set_fd(obj->btf, -1); 7747 for (i = 0; i < obj->nr_maps; i++) 7748 obj->maps[i].fd = -1; 7749 if (!err) 7750 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 7751 } 7752 7753 /* clean up fd_array */ 7754 zfree(&obj->fd_array); 7755 7756 /* clean up module BTFs */ 7757 for (i = 0; i < obj->btf_module_cnt; i++) { 7758 close(obj->btf_modules[i].fd); 7759 btf__free(obj->btf_modules[i].btf); 7760 free(obj->btf_modules[i].name); 7761 } 7762 free(obj->btf_modules); 7763 7764 /* clean up vmlinux BTF */ 7765 btf__free(obj->btf_vmlinux); 7766 obj->btf_vmlinux = NULL; 7767 7768 obj->loaded = true; /* doesn't matter if successfully or not */ 7769 7770 if (err) 7771 goto out; 7772 7773 return 0; 7774 out: 7775 /* unpin any maps that were auto-pinned during load */ 7776 for (i = 0; i < obj->nr_maps; i++) 7777 if (obj->maps[i].pinned && !obj->maps[i].reused) 7778 bpf_map__unpin(&obj->maps[i], NULL); 7779 7780 bpf_object_unload(obj); 7781 pr_warn("failed to load object '%s'\n", obj->path); 7782 return libbpf_err(err); 7783 } 7784 7785 int bpf_object__load(struct bpf_object *obj) 7786 { 7787 return bpf_object_load(obj, 0, NULL); 7788 } 7789 7790 static int make_parent_dir(const char *path) 7791 { 7792 char *cp, errmsg[STRERR_BUFSIZE]; 7793 char *dname, *dir; 7794 int err = 0; 7795 7796 dname = strdup(path); 7797 if (dname == NULL) 7798 return -ENOMEM; 7799 7800 dir = dirname(dname); 7801 if (mkdir(dir, 0700) && errno != EEXIST) 7802 err = -errno; 7803 7804 free(dname); 7805 if (err) { 7806 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7807 pr_warn("failed to mkdir %s: %s\n", path, cp); 7808 } 7809 return err; 7810 } 7811 7812 static int check_path(const char *path) 7813 { 7814 char *cp, errmsg[STRERR_BUFSIZE]; 7815 struct statfs st_fs; 7816 char *dname, *dir; 7817 int err = 0; 7818 7819 if (path == NULL) 7820 return -EINVAL; 7821 7822 dname = strdup(path); 7823 if (dname == NULL) 7824 return -ENOMEM; 7825 7826 dir = dirname(dname); 7827 if (statfs(dir, &st_fs)) { 7828 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7829 pr_warn("failed to statfs %s: %s\n", dir, cp); 7830 err = -errno; 7831 } 7832 free(dname); 7833 7834 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7835 pr_warn("specified path %s is not on BPF FS\n", path); 7836 err = -EINVAL; 7837 } 7838 7839 return err; 7840 } 7841 7842 int bpf_program__pin(struct bpf_program *prog, const char *path) 7843 { 7844 char *cp, errmsg[STRERR_BUFSIZE]; 7845 int err; 7846 7847 if (prog->fd < 0) { 7848 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 7849 return libbpf_err(-EINVAL); 7850 } 7851 7852 err = make_parent_dir(path); 7853 if (err) 7854 return libbpf_err(err); 7855 7856 err = check_path(path); 7857 if (err) 7858 return libbpf_err(err); 7859 7860 if (bpf_obj_pin(prog->fd, path)) { 7861 err = -errno; 7862 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7863 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp); 7864 return libbpf_err(err); 7865 } 7866 7867 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 7868 return 0; 7869 } 7870 7871 int bpf_program__unpin(struct bpf_program *prog, const char *path) 7872 { 7873 int err; 7874 7875 if (prog->fd < 0) { 7876 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 7877 return libbpf_err(-EINVAL); 7878 } 7879 7880 err = check_path(path); 7881 if (err) 7882 return libbpf_err(err); 7883 7884 err = unlink(path); 7885 if (err) 7886 return libbpf_err(-errno); 7887 7888 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 7889 return 0; 7890 } 7891 7892 int bpf_map__pin(struct bpf_map *map, const char *path) 7893 { 7894 char *cp, errmsg[STRERR_BUFSIZE]; 7895 int err; 7896 7897 if (map == NULL) { 7898 pr_warn("invalid map pointer\n"); 7899 return libbpf_err(-EINVAL); 7900 } 7901 7902 if (map->pin_path) { 7903 if (path && strcmp(path, map->pin_path)) { 7904 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7905 bpf_map__name(map), map->pin_path, path); 7906 return libbpf_err(-EINVAL); 7907 } else if (map->pinned) { 7908 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 7909 bpf_map__name(map), map->pin_path); 7910 return 0; 7911 } 7912 } else { 7913 if (!path) { 7914 pr_warn("missing a path to pin map '%s' at\n", 7915 bpf_map__name(map)); 7916 return libbpf_err(-EINVAL); 7917 } else if (map->pinned) { 7918 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 7919 return libbpf_err(-EEXIST); 7920 } 7921 7922 map->pin_path = strdup(path); 7923 if (!map->pin_path) { 7924 err = -errno; 7925 goto out_err; 7926 } 7927 } 7928 7929 err = make_parent_dir(map->pin_path); 7930 if (err) 7931 return libbpf_err(err); 7932 7933 err = check_path(map->pin_path); 7934 if (err) 7935 return libbpf_err(err); 7936 7937 if (bpf_obj_pin(map->fd, map->pin_path)) { 7938 err = -errno; 7939 goto out_err; 7940 } 7941 7942 map->pinned = true; 7943 pr_debug("pinned map '%s'\n", map->pin_path); 7944 7945 return 0; 7946 7947 out_err: 7948 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7949 pr_warn("failed to pin map: %s\n", cp); 7950 return libbpf_err(err); 7951 } 7952 7953 int bpf_map__unpin(struct bpf_map *map, const char *path) 7954 { 7955 int err; 7956 7957 if (map == NULL) { 7958 pr_warn("invalid map pointer\n"); 7959 return libbpf_err(-EINVAL); 7960 } 7961 7962 if (map->pin_path) { 7963 if (path && strcmp(path, map->pin_path)) { 7964 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7965 bpf_map__name(map), map->pin_path, path); 7966 return libbpf_err(-EINVAL); 7967 } 7968 path = map->pin_path; 7969 } else if (!path) { 7970 pr_warn("no path to unpin map '%s' from\n", 7971 bpf_map__name(map)); 7972 return libbpf_err(-EINVAL); 7973 } 7974 7975 err = check_path(path); 7976 if (err) 7977 return libbpf_err(err); 7978 7979 err = unlink(path); 7980 if (err != 0) 7981 return libbpf_err(-errno); 7982 7983 map->pinned = false; 7984 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 7985 7986 return 0; 7987 } 7988 7989 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 7990 { 7991 char *new = NULL; 7992 7993 if (path) { 7994 new = strdup(path); 7995 if (!new) 7996 return libbpf_err(-errno); 7997 } 7998 7999 free(map->pin_path); 8000 map->pin_path = new; 8001 return 0; 8002 } 8003 8004 __alias(bpf_map__pin_path) 8005 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8006 8007 const char *bpf_map__pin_path(const struct bpf_map *map) 8008 { 8009 return map->pin_path; 8010 } 8011 8012 bool bpf_map__is_pinned(const struct bpf_map *map) 8013 { 8014 return map->pinned; 8015 } 8016 8017 static void sanitize_pin_path(char *s) 8018 { 8019 /* bpffs disallows periods in path names */ 8020 while (*s) { 8021 if (*s == '.') 8022 *s = '_'; 8023 s++; 8024 } 8025 } 8026 8027 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8028 { 8029 struct bpf_map *map; 8030 int err; 8031 8032 if (!obj) 8033 return libbpf_err(-ENOENT); 8034 8035 if (!obj->loaded) { 8036 pr_warn("object not yet loaded; load it first\n"); 8037 return libbpf_err(-ENOENT); 8038 } 8039 8040 bpf_object__for_each_map(map, obj) { 8041 char *pin_path = NULL; 8042 char buf[PATH_MAX]; 8043 8044 if (!map->autocreate) 8045 continue; 8046 8047 if (path) { 8048 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8049 if (err) 8050 goto err_unpin_maps; 8051 sanitize_pin_path(buf); 8052 pin_path = buf; 8053 } else if (!map->pin_path) { 8054 continue; 8055 } 8056 8057 err = bpf_map__pin(map, pin_path); 8058 if (err) 8059 goto err_unpin_maps; 8060 } 8061 8062 return 0; 8063 8064 err_unpin_maps: 8065 while ((map = bpf_object__prev_map(obj, map))) { 8066 if (!map->pin_path) 8067 continue; 8068 8069 bpf_map__unpin(map, NULL); 8070 } 8071 8072 return libbpf_err(err); 8073 } 8074 8075 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8076 { 8077 struct bpf_map *map; 8078 int err; 8079 8080 if (!obj) 8081 return libbpf_err(-ENOENT); 8082 8083 bpf_object__for_each_map(map, obj) { 8084 char *pin_path = NULL; 8085 char buf[PATH_MAX]; 8086 8087 if (path) { 8088 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8089 if (err) 8090 return libbpf_err(err); 8091 sanitize_pin_path(buf); 8092 pin_path = buf; 8093 } else if (!map->pin_path) { 8094 continue; 8095 } 8096 8097 err = bpf_map__unpin(map, pin_path); 8098 if (err) 8099 return libbpf_err(err); 8100 } 8101 8102 return 0; 8103 } 8104 8105 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8106 { 8107 struct bpf_program *prog; 8108 char buf[PATH_MAX]; 8109 int err; 8110 8111 if (!obj) 8112 return libbpf_err(-ENOENT); 8113 8114 if (!obj->loaded) { 8115 pr_warn("object not yet loaded; load it first\n"); 8116 return libbpf_err(-ENOENT); 8117 } 8118 8119 bpf_object__for_each_program(prog, obj) { 8120 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8121 if (err) 8122 goto err_unpin_programs; 8123 8124 err = bpf_program__pin(prog, buf); 8125 if (err) 8126 goto err_unpin_programs; 8127 } 8128 8129 return 0; 8130 8131 err_unpin_programs: 8132 while ((prog = bpf_object__prev_program(obj, prog))) { 8133 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 8134 continue; 8135 8136 bpf_program__unpin(prog, buf); 8137 } 8138 8139 return libbpf_err(err); 8140 } 8141 8142 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8143 { 8144 struct bpf_program *prog; 8145 int err; 8146 8147 if (!obj) 8148 return libbpf_err(-ENOENT); 8149 8150 bpf_object__for_each_program(prog, obj) { 8151 char buf[PATH_MAX]; 8152 8153 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8154 if (err) 8155 return libbpf_err(err); 8156 8157 err = bpf_program__unpin(prog, buf); 8158 if (err) 8159 return libbpf_err(err); 8160 } 8161 8162 return 0; 8163 } 8164 8165 int bpf_object__pin(struct bpf_object *obj, const char *path) 8166 { 8167 int err; 8168 8169 err = bpf_object__pin_maps(obj, path); 8170 if (err) 8171 return libbpf_err(err); 8172 8173 err = bpf_object__pin_programs(obj, path); 8174 if (err) { 8175 bpf_object__unpin_maps(obj, path); 8176 return libbpf_err(err); 8177 } 8178 8179 return 0; 8180 } 8181 8182 static void bpf_map__destroy(struct bpf_map *map) 8183 { 8184 if (map->inner_map) { 8185 bpf_map__destroy(map->inner_map); 8186 zfree(&map->inner_map); 8187 } 8188 8189 zfree(&map->init_slots); 8190 map->init_slots_sz = 0; 8191 8192 if (map->mmaped) { 8193 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8194 map->mmaped = NULL; 8195 } 8196 8197 if (map->st_ops) { 8198 zfree(&map->st_ops->data); 8199 zfree(&map->st_ops->progs); 8200 zfree(&map->st_ops->kern_func_off); 8201 zfree(&map->st_ops); 8202 } 8203 8204 zfree(&map->name); 8205 zfree(&map->real_name); 8206 zfree(&map->pin_path); 8207 8208 if (map->fd >= 0) 8209 zclose(map->fd); 8210 } 8211 8212 void bpf_object__close(struct bpf_object *obj) 8213 { 8214 size_t i; 8215 8216 if (IS_ERR_OR_NULL(obj)) 8217 return; 8218 8219 usdt_manager_free(obj->usdt_man); 8220 obj->usdt_man = NULL; 8221 8222 bpf_gen__free(obj->gen_loader); 8223 bpf_object__elf_finish(obj); 8224 bpf_object_unload(obj); 8225 btf__free(obj->btf); 8226 btf_ext__free(obj->btf_ext); 8227 8228 for (i = 0; i < obj->nr_maps; i++) 8229 bpf_map__destroy(&obj->maps[i]); 8230 8231 zfree(&obj->btf_custom_path); 8232 zfree(&obj->kconfig); 8233 zfree(&obj->externs); 8234 obj->nr_extern = 0; 8235 8236 zfree(&obj->maps); 8237 obj->nr_maps = 0; 8238 8239 if (obj->programs && obj->nr_programs) { 8240 for (i = 0; i < obj->nr_programs; i++) 8241 bpf_program__exit(&obj->programs[i]); 8242 } 8243 zfree(&obj->programs); 8244 8245 free(obj); 8246 } 8247 8248 const char *bpf_object__name(const struct bpf_object *obj) 8249 { 8250 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8251 } 8252 8253 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8254 { 8255 return obj ? obj->kern_version : 0; 8256 } 8257 8258 struct btf *bpf_object__btf(const struct bpf_object *obj) 8259 { 8260 return obj ? obj->btf : NULL; 8261 } 8262 8263 int bpf_object__btf_fd(const struct bpf_object *obj) 8264 { 8265 return obj->btf ? btf__fd(obj->btf) : -1; 8266 } 8267 8268 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8269 { 8270 if (obj->loaded) 8271 return libbpf_err(-EINVAL); 8272 8273 obj->kern_version = kern_version; 8274 8275 return 0; 8276 } 8277 8278 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8279 { 8280 struct bpf_gen *gen; 8281 8282 if (!opts) 8283 return -EFAULT; 8284 if (!OPTS_VALID(opts, gen_loader_opts)) 8285 return -EINVAL; 8286 gen = calloc(sizeof(*gen), 1); 8287 if (!gen) 8288 return -ENOMEM; 8289 gen->opts = opts; 8290 obj->gen_loader = gen; 8291 return 0; 8292 } 8293 8294 static struct bpf_program * 8295 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8296 bool forward) 8297 { 8298 size_t nr_programs = obj->nr_programs; 8299 ssize_t idx; 8300 8301 if (!nr_programs) 8302 return NULL; 8303 8304 if (!p) 8305 /* Iter from the beginning */ 8306 return forward ? &obj->programs[0] : 8307 &obj->programs[nr_programs - 1]; 8308 8309 if (p->obj != obj) { 8310 pr_warn("error: program handler doesn't match object\n"); 8311 return errno = EINVAL, NULL; 8312 } 8313 8314 idx = (p - obj->programs) + (forward ? 1 : -1); 8315 if (idx >= obj->nr_programs || idx < 0) 8316 return NULL; 8317 return &obj->programs[idx]; 8318 } 8319 8320 struct bpf_program * 8321 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8322 { 8323 struct bpf_program *prog = prev; 8324 8325 do { 8326 prog = __bpf_program__iter(prog, obj, true); 8327 } while (prog && prog_is_subprog(obj, prog)); 8328 8329 return prog; 8330 } 8331 8332 struct bpf_program * 8333 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8334 { 8335 struct bpf_program *prog = next; 8336 8337 do { 8338 prog = __bpf_program__iter(prog, obj, false); 8339 } while (prog && prog_is_subprog(obj, prog)); 8340 8341 return prog; 8342 } 8343 8344 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8345 { 8346 prog->prog_ifindex = ifindex; 8347 } 8348 8349 const char *bpf_program__name(const struct bpf_program *prog) 8350 { 8351 return prog->name; 8352 } 8353 8354 const char *bpf_program__section_name(const struct bpf_program *prog) 8355 { 8356 return prog->sec_name; 8357 } 8358 8359 bool bpf_program__autoload(const struct bpf_program *prog) 8360 { 8361 return prog->autoload; 8362 } 8363 8364 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8365 { 8366 if (prog->obj->loaded) 8367 return libbpf_err(-EINVAL); 8368 8369 prog->autoload = autoload; 8370 return 0; 8371 } 8372 8373 bool bpf_program__autoattach(const struct bpf_program *prog) 8374 { 8375 return prog->autoattach; 8376 } 8377 8378 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 8379 { 8380 prog->autoattach = autoattach; 8381 } 8382 8383 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8384 { 8385 return prog->insns; 8386 } 8387 8388 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8389 { 8390 return prog->insns_cnt; 8391 } 8392 8393 int bpf_program__set_insns(struct bpf_program *prog, 8394 struct bpf_insn *new_insns, size_t new_insn_cnt) 8395 { 8396 struct bpf_insn *insns; 8397 8398 if (prog->obj->loaded) 8399 return -EBUSY; 8400 8401 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 8402 if (!insns) { 8403 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 8404 return -ENOMEM; 8405 } 8406 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 8407 8408 prog->insns = insns; 8409 prog->insns_cnt = new_insn_cnt; 8410 return 0; 8411 } 8412 8413 int bpf_program__fd(const struct bpf_program *prog) 8414 { 8415 if (!prog) 8416 return libbpf_err(-EINVAL); 8417 8418 if (prog->fd < 0) 8419 return libbpf_err(-ENOENT); 8420 8421 return prog->fd; 8422 } 8423 8424 __alias(bpf_program__type) 8425 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 8426 8427 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 8428 { 8429 return prog->type; 8430 } 8431 8432 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8433 { 8434 if (prog->obj->loaded) 8435 return libbpf_err(-EBUSY); 8436 8437 prog->type = type; 8438 return 0; 8439 } 8440 8441 __alias(bpf_program__expected_attach_type) 8442 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 8443 8444 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 8445 { 8446 return prog->expected_attach_type; 8447 } 8448 8449 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 8450 enum bpf_attach_type type) 8451 { 8452 if (prog->obj->loaded) 8453 return libbpf_err(-EBUSY); 8454 8455 prog->expected_attach_type = type; 8456 return 0; 8457 } 8458 8459 __u32 bpf_program__flags(const struct bpf_program *prog) 8460 { 8461 return prog->prog_flags; 8462 } 8463 8464 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 8465 { 8466 if (prog->obj->loaded) 8467 return libbpf_err(-EBUSY); 8468 8469 prog->prog_flags = flags; 8470 return 0; 8471 } 8472 8473 __u32 bpf_program__log_level(const struct bpf_program *prog) 8474 { 8475 return prog->log_level; 8476 } 8477 8478 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 8479 { 8480 if (prog->obj->loaded) 8481 return libbpf_err(-EBUSY); 8482 8483 prog->log_level = log_level; 8484 return 0; 8485 } 8486 8487 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 8488 { 8489 *log_size = prog->log_size; 8490 return prog->log_buf; 8491 } 8492 8493 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 8494 { 8495 if (log_size && !log_buf) 8496 return -EINVAL; 8497 if (prog->log_size > UINT_MAX) 8498 return -EINVAL; 8499 if (prog->obj->loaded) 8500 return -EBUSY; 8501 8502 prog->log_buf = log_buf; 8503 prog->log_size = log_size; 8504 return 0; 8505 } 8506 8507 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 8508 .sec = (char *)sec_pfx, \ 8509 .prog_type = BPF_PROG_TYPE_##ptype, \ 8510 .expected_attach_type = atype, \ 8511 .cookie = (long)(flags), \ 8512 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 8513 __VA_ARGS__ \ 8514 } 8515 8516 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8517 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8518 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8519 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8520 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8521 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8522 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8523 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8524 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8525 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8526 8527 static const struct bpf_sec_def section_defs[] = { 8528 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 8529 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 8530 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 8531 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8532 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8533 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8534 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8535 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8536 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8537 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8538 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8539 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8540 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8541 SEC_DEF("usdt+", KPROBE, 0, SEC_NONE, attach_usdt), 8542 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), 8543 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), 8544 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), 8545 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8546 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8547 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8548 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8549 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8550 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8551 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 8552 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 8553 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 8554 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 8555 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8556 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8557 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8558 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 8559 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 8560 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 8561 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 8562 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 8563 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 8564 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 8565 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 8566 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 8567 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 8568 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 8569 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 8570 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 8571 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 8572 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 8573 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 8574 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 8575 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 8576 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 8577 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 8578 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 8579 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 8580 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 8581 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 8582 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 8583 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 8584 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 8585 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 8586 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 8587 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 8588 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 8589 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 8590 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 8591 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 8592 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 8593 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 8594 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 8595 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 8596 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 8597 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 8598 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 8599 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 8600 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 8601 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 8602 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 8603 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 8604 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 8605 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 8606 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 8607 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 8608 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 8609 }; 8610 8611 static size_t custom_sec_def_cnt; 8612 static struct bpf_sec_def *custom_sec_defs; 8613 static struct bpf_sec_def custom_fallback_def; 8614 static bool has_custom_fallback_def; 8615 8616 static int last_custom_sec_def_handler_id; 8617 8618 int libbpf_register_prog_handler(const char *sec, 8619 enum bpf_prog_type prog_type, 8620 enum bpf_attach_type exp_attach_type, 8621 const struct libbpf_prog_handler_opts *opts) 8622 { 8623 struct bpf_sec_def *sec_def; 8624 8625 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 8626 return libbpf_err(-EINVAL); 8627 8628 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 8629 return libbpf_err(-E2BIG); 8630 8631 if (sec) { 8632 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 8633 sizeof(*sec_def)); 8634 if (!sec_def) 8635 return libbpf_err(-ENOMEM); 8636 8637 custom_sec_defs = sec_def; 8638 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 8639 } else { 8640 if (has_custom_fallback_def) 8641 return libbpf_err(-EBUSY); 8642 8643 sec_def = &custom_fallback_def; 8644 } 8645 8646 sec_def->sec = sec ? strdup(sec) : NULL; 8647 if (sec && !sec_def->sec) 8648 return libbpf_err(-ENOMEM); 8649 8650 sec_def->prog_type = prog_type; 8651 sec_def->expected_attach_type = exp_attach_type; 8652 sec_def->cookie = OPTS_GET(opts, cookie, 0); 8653 8654 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 8655 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 8656 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 8657 8658 sec_def->handler_id = ++last_custom_sec_def_handler_id; 8659 8660 if (sec) 8661 custom_sec_def_cnt++; 8662 else 8663 has_custom_fallback_def = true; 8664 8665 return sec_def->handler_id; 8666 } 8667 8668 int libbpf_unregister_prog_handler(int handler_id) 8669 { 8670 struct bpf_sec_def *sec_defs; 8671 int i; 8672 8673 if (handler_id <= 0) 8674 return libbpf_err(-EINVAL); 8675 8676 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 8677 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 8678 has_custom_fallback_def = false; 8679 return 0; 8680 } 8681 8682 for (i = 0; i < custom_sec_def_cnt; i++) { 8683 if (custom_sec_defs[i].handler_id == handler_id) 8684 break; 8685 } 8686 8687 if (i == custom_sec_def_cnt) 8688 return libbpf_err(-ENOENT); 8689 8690 free(custom_sec_defs[i].sec); 8691 for (i = i + 1; i < custom_sec_def_cnt; i++) 8692 custom_sec_defs[i - 1] = custom_sec_defs[i]; 8693 custom_sec_def_cnt--; 8694 8695 /* try to shrink the array, but it's ok if we couldn't */ 8696 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 8697 if (sec_defs) 8698 custom_sec_defs = sec_defs; 8699 8700 return 0; 8701 } 8702 8703 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 8704 { 8705 size_t len = strlen(sec_def->sec); 8706 8707 /* "type/" always has to have proper SEC("type/extras") form */ 8708 if (sec_def->sec[len - 1] == '/') { 8709 if (str_has_pfx(sec_name, sec_def->sec)) 8710 return true; 8711 return false; 8712 } 8713 8714 /* "type+" means it can be either exact SEC("type") or 8715 * well-formed SEC("type/extras") with proper '/' separator 8716 */ 8717 if (sec_def->sec[len - 1] == '+') { 8718 len--; 8719 /* not even a prefix */ 8720 if (strncmp(sec_name, sec_def->sec, len) != 0) 8721 return false; 8722 /* exact match or has '/' separator */ 8723 if (sec_name[len] == '\0' || sec_name[len] == '/') 8724 return true; 8725 return false; 8726 } 8727 8728 return strcmp(sec_name, sec_def->sec) == 0; 8729 } 8730 8731 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8732 { 8733 const struct bpf_sec_def *sec_def; 8734 int i, n; 8735 8736 n = custom_sec_def_cnt; 8737 for (i = 0; i < n; i++) { 8738 sec_def = &custom_sec_defs[i]; 8739 if (sec_def_matches(sec_def, sec_name)) 8740 return sec_def; 8741 } 8742 8743 n = ARRAY_SIZE(section_defs); 8744 for (i = 0; i < n; i++) { 8745 sec_def = §ion_defs[i]; 8746 if (sec_def_matches(sec_def, sec_name)) 8747 return sec_def; 8748 } 8749 8750 if (has_custom_fallback_def) 8751 return &custom_fallback_def; 8752 8753 return NULL; 8754 } 8755 8756 #define MAX_TYPE_NAME_SIZE 32 8757 8758 static char *libbpf_get_type_names(bool attach_type) 8759 { 8760 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8761 char *buf; 8762 8763 buf = malloc(len); 8764 if (!buf) 8765 return NULL; 8766 8767 buf[0] = '\0'; 8768 /* Forge string buf with all available names */ 8769 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8770 const struct bpf_sec_def *sec_def = §ion_defs[i]; 8771 8772 if (attach_type) { 8773 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 8774 continue; 8775 8776 if (!(sec_def->cookie & SEC_ATTACHABLE)) 8777 continue; 8778 } 8779 8780 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8781 free(buf); 8782 return NULL; 8783 } 8784 strcat(buf, " "); 8785 strcat(buf, section_defs[i].sec); 8786 } 8787 8788 return buf; 8789 } 8790 8791 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8792 enum bpf_attach_type *expected_attach_type) 8793 { 8794 const struct bpf_sec_def *sec_def; 8795 char *type_names; 8796 8797 if (!name) 8798 return libbpf_err(-EINVAL); 8799 8800 sec_def = find_sec_def(name); 8801 if (sec_def) { 8802 *prog_type = sec_def->prog_type; 8803 *expected_attach_type = sec_def->expected_attach_type; 8804 return 0; 8805 } 8806 8807 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8808 type_names = libbpf_get_type_names(false); 8809 if (type_names != NULL) { 8810 pr_debug("supported section(type) names are:%s\n", type_names); 8811 free(type_names); 8812 } 8813 8814 return libbpf_err(-ESRCH); 8815 } 8816 8817 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 8818 { 8819 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 8820 return NULL; 8821 8822 return attach_type_name[t]; 8823 } 8824 8825 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 8826 { 8827 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 8828 return NULL; 8829 8830 return link_type_name[t]; 8831 } 8832 8833 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 8834 { 8835 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 8836 return NULL; 8837 8838 return map_type_name[t]; 8839 } 8840 8841 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 8842 { 8843 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 8844 return NULL; 8845 8846 return prog_type_name[t]; 8847 } 8848 8849 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 8850 size_t offset) 8851 { 8852 struct bpf_map *map; 8853 size_t i; 8854 8855 for (i = 0; i < obj->nr_maps; i++) { 8856 map = &obj->maps[i]; 8857 if (!bpf_map__is_struct_ops(map)) 8858 continue; 8859 if (map->sec_offset <= offset && 8860 offset - map->sec_offset < map->def.value_size) 8861 return map; 8862 } 8863 8864 return NULL; 8865 } 8866 8867 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 8868 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 8869 Elf64_Shdr *shdr, Elf_Data *data) 8870 { 8871 const struct btf_member *member; 8872 struct bpf_struct_ops *st_ops; 8873 struct bpf_program *prog; 8874 unsigned int shdr_idx; 8875 const struct btf *btf; 8876 struct bpf_map *map; 8877 unsigned int moff, insn_idx; 8878 const char *name; 8879 __u32 member_idx; 8880 Elf64_Sym *sym; 8881 Elf64_Rel *rel; 8882 int i, nrels; 8883 8884 btf = obj->btf; 8885 nrels = shdr->sh_size / shdr->sh_entsize; 8886 for (i = 0; i < nrels; i++) { 8887 rel = elf_rel_by_idx(data, i); 8888 if (!rel) { 8889 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 8890 return -LIBBPF_ERRNO__FORMAT; 8891 } 8892 8893 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 8894 if (!sym) { 8895 pr_warn("struct_ops reloc: symbol %zx not found\n", 8896 (size_t)ELF64_R_SYM(rel->r_info)); 8897 return -LIBBPF_ERRNO__FORMAT; 8898 } 8899 8900 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 8901 map = find_struct_ops_map_by_offset(obj, rel->r_offset); 8902 if (!map) { 8903 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 8904 (size_t)rel->r_offset); 8905 return -EINVAL; 8906 } 8907 8908 moff = rel->r_offset - map->sec_offset; 8909 shdr_idx = sym->st_shndx; 8910 st_ops = map->st_ops; 8911 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 8912 map->name, 8913 (long long)(rel->r_info >> 32), 8914 (long long)sym->st_value, 8915 shdr_idx, (size_t)rel->r_offset, 8916 map->sec_offset, sym->st_name, name); 8917 8918 if (shdr_idx >= SHN_LORESERVE) { 8919 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 8920 map->name, (size_t)rel->r_offset, shdr_idx); 8921 return -LIBBPF_ERRNO__RELOC; 8922 } 8923 if (sym->st_value % BPF_INSN_SZ) { 8924 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 8925 map->name, (unsigned long long)sym->st_value); 8926 return -LIBBPF_ERRNO__FORMAT; 8927 } 8928 insn_idx = sym->st_value / BPF_INSN_SZ; 8929 8930 member = find_member_by_offset(st_ops->type, moff * 8); 8931 if (!member) { 8932 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 8933 map->name, moff); 8934 return -EINVAL; 8935 } 8936 member_idx = member - btf_members(st_ops->type); 8937 name = btf__name_by_offset(btf, member->name_off); 8938 8939 if (!resolve_func_ptr(btf, member->type, NULL)) { 8940 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 8941 map->name, name); 8942 return -EINVAL; 8943 } 8944 8945 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 8946 if (!prog) { 8947 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 8948 map->name, shdr_idx, name); 8949 return -EINVAL; 8950 } 8951 8952 /* prevent the use of BPF prog with invalid type */ 8953 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 8954 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 8955 map->name, prog->name); 8956 return -EINVAL; 8957 } 8958 8959 /* if we haven't yet processed this BPF program, record proper 8960 * attach_btf_id and member_idx 8961 */ 8962 if (!prog->attach_btf_id) { 8963 prog->attach_btf_id = st_ops->type_id; 8964 prog->expected_attach_type = member_idx; 8965 } 8966 8967 /* struct_ops BPF prog can be re-used between multiple 8968 * .struct_ops as long as it's the same struct_ops struct 8969 * definition and the same function pointer field 8970 */ 8971 if (prog->attach_btf_id != st_ops->type_id || 8972 prog->expected_attach_type != member_idx) { 8973 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 8974 map->name, prog->name, prog->sec_name, prog->type, 8975 prog->attach_btf_id, prog->expected_attach_type, name); 8976 return -EINVAL; 8977 } 8978 8979 st_ops->progs[member_idx] = prog; 8980 } 8981 8982 return 0; 8983 } 8984 8985 #define BTF_TRACE_PREFIX "btf_trace_" 8986 #define BTF_LSM_PREFIX "bpf_lsm_" 8987 #define BTF_ITER_PREFIX "bpf_iter_" 8988 #define BTF_MAX_NAME_SIZE 128 8989 8990 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 8991 const char **prefix, int *kind) 8992 { 8993 switch (attach_type) { 8994 case BPF_TRACE_RAW_TP: 8995 *prefix = BTF_TRACE_PREFIX; 8996 *kind = BTF_KIND_TYPEDEF; 8997 break; 8998 case BPF_LSM_MAC: 8999 case BPF_LSM_CGROUP: 9000 *prefix = BTF_LSM_PREFIX; 9001 *kind = BTF_KIND_FUNC; 9002 break; 9003 case BPF_TRACE_ITER: 9004 *prefix = BTF_ITER_PREFIX; 9005 *kind = BTF_KIND_FUNC; 9006 break; 9007 default: 9008 *prefix = ""; 9009 *kind = BTF_KIND_FUNC; 9010 } 9011 } 9012 9013 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9014 const char *name, __u32 kind) 9015 { 9016 char btf_type_name[BTF_MAX_NAME_SIZE]; 9017 int ret; 9018 9019 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9020 "%s%s", prefix, name); 9021 /* snprintf returns the number of characters written excluding the 9022 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9023 * indicates truncation. 9024 */ 9025 if (ret < 0 || ret >= sizeof(btf_type_name)) 9026 return -ENAMETOOLONG; 9027 return btf__find_by_name_kind(btf, btf_type_name, kind); 9028 } 9029 9030 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9031 enum bpf_attach_type attach_type) 9032 { 9033 const char *prefix; 9034 int kind; 9035 9036 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9037 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9038 } 9039 9040 int libbpf_find_vmlinux_btf_id(const char *name, 9041 enum bpf_attach_type attach_type) 9042 { 9043 struct btf *btf; 9044 int err; 9045 9046 btf = btf__load_vmlinux_btf(); 9047 err = libbpf_get_error(btf); 9048 if (err) { 9049 pr_warn("vmlinux BTF is not found\n"); 9050 return libbpf_err(err); 9051 } 9052 9053 err = find_attach_btf_id(btf, name, attach_type); 9054 if (err <= 0) 9055 pr_warn("%s is not found in vmlinux BTF\n", name); 9056 9057 btf__free(btf); 9058 return libbpf_err(err); 9059 } 9060 9061 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9062 { 9063 struct bpf_prog_info info; 9064 __u32 info_len = sizeof(info); 9065 struct btf *btf; 9066 int err; 9067 9068 memset(&info, 0, info_len); 9069 err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len); 9070 if (err) { 9071 pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n", 9072 attach_prog_fd, err); 9073 return err; 9074 } 9075 9076 err = -EINVAL; 9077 if (!info.btf_id) { 9078 pr_warn("The target program doesn't have BTF\n"); 9079 goto out; 9080 } 9081 btf = btf__load_from_kernel_by_id(info.btf_id); 9082 err = libbpf_get_error(btf); 9083 if (err) { 9084 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9085 goto out; 9086 } 9087 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9088 btf__free(btf); 9089 if (err <= 0) { 9090 pr_warn("%s is not found in prog's BTF\n", name); 9091 goto out; 9092 } 9093 out: 9094 return err; 9095 } 9096 9097 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9098 enum bpf_attach_type attach_type, 9099 int *btf_obj_fd, int *btf_type_id) 9100 { 9101 int ret, i; 9102 9103 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9104 if (ret > 0) { 9105 *btf_obj_fd = 0; /* vmlinux BTF */ 9106 *btf_type_id = ret; 9107 return 0; 9108 } 9109 if (ret != -ENOENT) 9110 return ret; 9111 9112 ret = load_module_btfs(obj); 9113 if (ret) 9114 return ret; 9115 9116 for (i = 0; i < obj->btf_module_cnt; i++) { 9117 const struct module_btf *mod = &obj->btf_modules[i]; 9118 9119 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9120 if (ret > 0) { 9121 *btf_obj_fd = mod->fd; 9122 *btf_type_id = ret; 9123 return 0; 9124 } 9125 if (ret == -ENOENT) 9126 continue; 9127 9128 return ret; 9129 } 9130 9131 return -ESRCH; 9132 } 9133 9134 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9135 int *btf_obj_fd, int *btf_type_id) 9136 { 9137 enum bpf_attach_type attach_type = prog->expected_attach_type; 9138 __u32 attach_prog_fd = prog->attach_prog_fd; 9139 int err = 0; 9140 9141 /* BPF program's BTF ID */ 9142 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 9143 if (!attach_prog_fd) { 9144 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 9145 return -EINVAL; 9146 } 9147 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9148 if (err < 0) { 9149 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9150 prog->name, attach_prog_fd, attach_name, err); 9151 return err; 9152 } 9153 *btf_obj_fd = 0; 9154 *btf_type_id = err; 9155 return 0; 9156 } 9157 9158 /* kernel/module BTF ID */ 9159 if (prog->obj->gen_loader) { 9160 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9161 *btf_obj_fd = 0; 9162 *btf_type_id = 1; 9163 } else { 9164 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9165 } 9166 if (err) { 9167 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n", 9168 prog->name, attach_name, err); 9169 return err; 9170 } 9171 return 0; 9172 } 9173 9174 int libbpf_attach_type_by_name(const char *name, 9175 enum bpf_attach_type *attach_type) 9176 { 9177 char *type_names; 9178 const struct bpf_sec_def *sec_def; 9179 9180 if (!name) 9181 return libbpf_err(-EINVAL); 9182 9183 sec_def = find_sec_def(name); 9184 if (!sec_def) { 9185 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9186 type_names = libbpf_get_type_names(true); 9187 if (type_names != NULL) { 9188 pr_debug("attachable section(type) names are:%s\n", type_names); 9189 free(type_names); 9190 } 9191 9192 return libbpf_err(-EINVAL); 9193 } 9194 9195 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9196 return libbpf_err(-EINVAL); 9197 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9198 return libbpf_err(-EINVAL); 9199 9200 *attach_type = sec_def->expected_attach_type; 9201 return 0; 9202 } 9203 9204 int bpf_map__fd(const struct bpf_map *map) 9205 { 9206 return map ? map->fd : libbpf_err(-EINVAL); 9207 } 9208 9209 static bool map_uses_real_name(const struct bpf_map *map) 9210 { 9211 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9212 * their user-visible name differs from kernel-visible name. Users see 9213 * such map's corresponding ELF section name as a map name. 9214 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9215 * maps to know which name has to be returned to the user. 9216 */ 9217 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9218 return true; 9219 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9220 return true; 9221 return false; 9222 } 9223 9224 const char *bpf_map__name(const struct bpf_map *map) 9225 { 9226 if (!map) 9227 return NULL; 9228 9229 if (map_uses_real_name(map)) 9230 return map->real_name; 9231 9232 return map->name; 9233 } 9234 9235 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9236 { 9237 return map->def.type; 9238 } 9239 9240 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9241 { 9242 if (map->fd >= 0) 9243 return libbpf_err(-EBUSY); 9244 map->def.type = type; 9245 return 0; 9246 } 9247 9248 __u32 bpf_map__map_flags(const struct bpf_map *map) 9249 { 9250 return map->def.map_flags; 9251 } 9252 9253 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9254 { 9255 if (map->fd >= 0) 9256 return libbpf_err(-EBUSY); 9257 map->def.map_flags = flags; 9258 return 0; 9259 } 9260 9261 __u64 bpf_map__map_extra(const struct bpf_map *map) 9262 { 9263 return map->map_extra; 9264 } 9265 9266 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9267 { 9268 if (map->fd >= 0) 9269 return libbpf_err(-EBUSY); 9270 map->map_extra = map_extra; 9271 return 0; 9272 } 9273 9274 __u32 bpf_map__numa_node(const struct bpf_map *map) 9275 { 9276 return map->numa_node; 9277 } 9278 9279 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9280 { 9281 if (map->fd >= 0) 9282 return libbpf_err(-EBUSY); 9283 map->numa_node = numa_node; 9284 return 0; 9285 } 9286 9287 __u32 bpf_map__key_size(const struct bpf_map *map) 9288 { 9289 return map->def.key_size; 9290 } 9291 9292 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9293 { 9294 if (map->fd >= 0) 9295 return libbpf_err(-EBUSY); 9296 map->def.key_size = size; 9297 return 0; 9298 } 9299 9300 __u32 bpf_map__value_size(const struct bpf_map *map) 9301 { 9302 return map->def.value_size; 9303 } 9304 9305 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9306 { 9307 if (map->fd >= 0) 9308 return libbpf_err(-EBUSY); 9309 map->def.value_size = size; 9310 return 0; 9311 } 9312 9313 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9314 { 9315 return map ? map->btf_key_type_id : 0; 9316 } 9317 9318 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9319 { 9320 return map ? map->btf_value_type_id : 0; 9321 } 9322 9323 int bpf_map__set_initial_value(struct bpf_map *map, 9324 const void *data, size_t size) 9325 { 9326 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9327 size != map->def.value_size || map->fd >= 0) 9328 return libbpf_err(-EINVAL); 9329 9330 memcpy(map->mmaped, data, size); 9331 return 0; 9332 } 9333 9334 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9335 { 9336 if (!map->mmaped) 9337 return NULL; 9338 *psize = map->def.value_size; 9339 return map->mmaped; 9340 } 9341 9342 bool bpf_map__is_internal(const struct bpf_map *map) 9343 { 9344 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9345 } 9346 9347 __u32 bpf_map__ifindex(const struct bpf_map *map) 9348 { 9349 return map->map_ifindex; 9350 } 9351 9352 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9353 { 9354 if (map->fd >= 0) 9355 return libbpf_err(-EBUSY); 9356 map->map_ifindex = ifindex; 9357 return 0; 9358 } 9359 9360 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9361 { 9362 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9363 pr_warn("error: unsupported map type\n"); 9364 return libbpf_err(-EINVAL); 9365 } 9366 if (map->inner_map_fd != -1) { 9367 pr_warn("error: inner_map_fd already specified\n"); 9368 return libbpf_err(-EINVAL); 9369 } 9370 if (map->inner_map) { 9371 bpf_map__destroy(map->inner_map); 9372 zfree(&map->inner_map); 9373 } 9374 map->inner_map_fd = fd; 9375 return 0; 9376 } 9377 9378 static struct bpf_map * 9379 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9380 { 9381 ssize_t idx; 9382 struct bpf_map *s, *e; 9383 9384 if (!obj || !obj->maps) 9385 return errno = EINVAL, NULL; 9386 9387 s = obj->maps; 9388 e = obj->maps + obj->nr_maps; 9389 9390 if ((m < s) || (m >= e)) { 9391 pr_warn("error in %s: map handler doesn't belong to object\n", 9392 __func__); 9393 return errno = EINVAL, NULL; 9394 } 9395 9396 idx = (m - obj->maps) + i; 9397 if (idx >= obj->nr_maps || idx < 0) 9398 return NULL; 9399 return &obj->maps[idx]; 9400 } 9401 9402 struct bpf_map * 9403 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 9404 { 9405 if (prev == NULL) 9406 return obj->maps; 9407 9408 return __bpf_map__iter(prev, obj, 1); 9409 } 9410 9411 struct bpf_map * 9412 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 9413 { 9414 if (next == NULL) { 9415 if (!obj->nr_maps) 9416 return NULL; 9417 return obj->maps + obj->nr_maps - 1; 9418 } 9419 9420 return __bpf_map__iter(next, obj, -1); 9421 } 9422 9423 struct bpf_map * 9424 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9425 { 9426 struct bpf_map *pos; 9427 9428 bpf_object__for_each_map(pos, obj) { 9429 /* if it's a special internal map name (which always starts 9430 * with dot) then check if that special name matches the 9431 * real map name (ELF section name) 9432 */ 9433 if (name[0] == '.') { 9434 if (pos->real_name && strcmp(pos->real_name, name) == 0) 9435 return pos; 9436 continue; 9437 } 9438 /* otherwise map name has to be an exact match */ 9439 if (map_uses_real_name(pos)) { 9440 if (strcmp(pos->real_name, name) == 0) 9441 return pos; 9442 continue; 9443 } 9444 if (strcmp(pos->name, name) == 0) 9445 return pos; 9446 } 9447 return errno = ENOENT, NULL; 9448 } 9449 9450 int 9451 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9452 { 9453 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9454 } 9455 9456 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 9457 size_t value_sz, bool check_value_sz) 9458 { 9459 if (map->fd <= 0) 9460 return -ENOENT; 9461 9462 if (map->def.key_size != key_sz) { 9463 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 9464 map->name, key_sz, map->def.key_size); 9465 return -EINVAL; 9466 } 9467 9468 if (!check_value_sz) 9469 return 0; 9470 9471 switch (map->def.type) { 9472 case BPF_MAP_TYPE_PERCPU_ARRAY: 9473 case BPF_MAP_TYPE_PERCPU_HASH: 9474 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 9475 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 9476 int num_cpu = libbpf_num_possible_cpus(); 9477 size_t elem_sz = roundup(map->def.value_size, 8); 9478 9479 if (value_sz != num_cpu * elem_sz) { 9480 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 9481 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 9482 return -EINVAL; 9483 } 9484 break; 9485 } 9486 default: 9487 if (map->def.value_size != value_sz) { 9488 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 9489 map->name, value_sz, map->def.value_size); 9490 return -EINVAL; 9491 } 9492 break; 9493 } 9494 return 0; 9495 } 9496 9497 int bpf_map__lookup_elem(const struct bpf_map *map, 9498 const void *key, size_t key_sz, 9499 void *value, size_t value_sz, __u64 flags) 9500 { 9501 int err; 9502 9503 err = validate_map_op(map, key_sz, value_sz, true); 9504 if (err) 9505 return libbpf_err(err); 9506 9507 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 9508 } 9509 9510 int bpf_map__update_elem(const struct bpf_map *map, 9511 const void *key, size_t key_sz, 9512 const void *value, size_t value_sz, __u64 flags) 9513 { 9514 int err; 9515 9516 err = validate_map_op(map, key_sz, value_sz, true); 9517 if (err) 9518 return libbpf_err(err); 9519 9520 return bpf_map_update_elem(map->fd, key, value, flags); 9521 } 9522 9523 int bpf_map__delete_elem(const struct bpf_map *map, 9524 const void *key, size_t key_sz, __u64 flags) 9525 { 9526 int err; 9527 9528 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 9529 if (err) 9530 return libbpf_err(err); 9531 9532 return bpf_map_delete_elem_flags(map->fd, key, flags); 9533 } 9534 9535 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 9536 const void *key, size_t key_sz, 9537 void *value, size_t value_sz, __u64 flags) 9538 { 9539 int err; 9540 9541 err = validate_map_op(map, key_sz, value_sz, true); 9542 if (err) 9543 return libbpf_err(err); 9544 9545 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 9546 } 9547 9548 int bpf_map__get_next_key(const struct bpf_map *map, 9549 const void *cur_key, void *next_key, size_t key_sz) 9550 { 9551 int err; 9552 9553 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 9554 if (err) 9555 return libbpf_err(err); 9556 9557 return bpf_map_get_next_key(map->fd, cur_key, next_key); 9558 } 9559 9560 long libbpf_get_error(const void *ptr) 9561 { 9562 if (!IS_ERR_OR_NULL(ptr)) 9563 return 0; 9564 9565 if (IS_ERR(ptr)) 9566 errno = -PTR_ERR(ptr); 9567 9568 /* If ptr == NULL, then errno should be already set by the failing 9569 * API, because libbpf never returns NULL on success and it now always 9570 * sets errno on error. So no extra errno handling for ptr == NULL 9571 * case. 9572 */ 9573 return -errno; 9574 } 9575 9576 /* Replace link's underlying BPF program with the new one */ 9577 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9578 { 9579 int ret; 9580 9581 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9582 return libbpf_err_errno(ret); 9583 } 9584 9585 /* Release "ownership" of underlying BPF resource (typically, BPF program 9586 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9587 * link, when destructed through bpf_link__destroy() call won't attempt to 9588 * detach/unregisted that BPF resource. This is useful in situations where, 9589 * say, attached BPF program has to outlive userspace program that attached it 9590 * in the system. Depending on type of BPF program, though, there might be 9591 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9592 * exit of userspace program doesn't trigger automatic detachment and clean up 9593 * inside the kernel. 9594 */ 9595 void bpf_link__disconnect(struct bpf_link *link) 9596 { 9597 link->disconnected = true; 9598 } 9599 9600 int bpf_link__destroy(struct bpf_link *link) 9601 { 9602 int err = 0; 9603 9604 if (IS_ERR_OR_NULL(link)) 9605 return 0; 9606 9607 if (!link->disconnected && link->detach) 9608 err = link->detach(link); 9609 if (link->pin_path) 9610 free(link->pin_path); 9611 if (link->dealloc) 9612 link->dealloc(link); 9613 else 9614 free(link); 9615 9616 return libbpf_err(err); 9617 } 9618 9619 int bpf_link__fd(const struct bpf_link *link) 9620 { 9621 return link->fd; 9622 } 9623 9624 const char *bpf_link__pin_path(const struct bpf_link *link) 9625 { 9626 return link->pin_path; 9627 } 9628 9629 static int bpf_link__detach_fd(struct bpf_link *link) 9630 { 9631 return libbpf_err_errno(close(link->fd)); 9632 } 9633 9634 struct bpf_link *bpf_link__open(const char *path) 9635 { 9636 struct bpf_link *link; 9637 int fd; 9638 9639 fd = bpf_obj_get(path); 9640 if (fd < 0) { 9641 fd = -errno; 9642 pr_warn("failed to open link at %s: %d\n", path, fd); 9643 return libbpf_err_ptr(fd); 9644 } 9645 9646 link = calloc(1, sizeof(*link)); 9647 if (!link) { 9648 close(fd); 9649 return libbpf_err_ptr(-ENOMEM); 9650 } 9651 link->detach = &bpf_link__detach_fd; 9652 link->fd = fd; 9653 9654 link->pin_path = strdup(path); 9655 if (!link->pin_path) { 9656 bpf_link__destroy(link); 9657 return libbpf_err_ptr(-ENOMEM); 9658 } 9659 9660 return link; 9661 } 9662 9663 int bpf_link__detach(struct bpf_link *link) 9664 { 9665 return bpf_link_detach(link->fd) ? -errno : 0; 9666 } 9667 9668 int bpf_link__pin(struct bpf_link *link, const char *path) 9669 { 9670 int err; 9671 9672 if (link->pin_path) 9673 return libbpf_err(-EBUSY); 9674 err = make_parent_dir(path); 9675 if (err) 9676 return libbpf_err(err); 9677 err = check_path(path); 9678 if (err) 9679 return libbpf_err(err); 9680 9681 link->pin_path = strdup(path); 9682 if (!link->pin_path) 9683 return libbpf_err(-ENOMEM); 9684 9685 if (bpf_obj_pin(link->fd, link->pin_path)) { 9686 err = -errno; 9687 zfree(&link->pin_path); 9688 return libbpf_err(err); 9689 } 9690 9691 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9692 return 0; 9693 } 9694 9695 int bpf_link__unpin(struct bpf_link *link) 9696 { 9697 int err; 9698 9699 if (!link->pin_path) 9700 return libbpf_err(-EINVAL); 9701 9702 err = unlink(link->pin_path); 9703 if (err != 0) 9704 return -errno; 9705 9706 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9707 zfree(&link->pin_path); 9708 return 0; 9709 } 9710 9711 struct bpf_link_perf { 9712 struct bpf_link link; 9713 int perf_event_fd; 9714 /* legacy kprobe support: keep track of probe identifier and type */ 9715 char *legacy_probe_name; 9716 bool legacy_is_kprobe; 9717 bool legacy_is_retprobe; 9718 }; 9719 9720 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 9721 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 9722 9723 static int bpf_link_perf_detach(struct bpf_link *link) 9724 { 9725 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9726 int err = 0; 9727 9728 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 9729 err = -errno; 9730 9731 if (perf_link->perf_event_fd != link->fd) 9732 close(perf_link->perf_event_fd); 9733 close(link->fd); 9734 9735 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 9736 if (perf_link->legacy_probe_name) { 9737 if (perf_link->legacy_is_kprobe) { 9738 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 9739 perf_link->legacy_is_retprobe); 9740 } else { 9741 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 9742 perf_link->legacy_is_retprobe); 9743 } 9744 } 9745 9746 return err; 9747 } 9748 9749 static void bpf_link_perf_dealloc(struct bpf_link *link) 9750 { 9751 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9752 9753 free(perf_link->legacy_probe_name); 9754 free(perf_link); 9755 } 9756 9757 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 9758 const struct bpf_perf_event_opts *opts) 9759 { 9760 char errmsg[STRERR_BUFSIZE]; 9761 struct bpf_link_perf *link; 9762 int prog_fd, link_fd = -1, err; 9763 9764 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 9765 return libbpf_err_ptr(-EINVAL); 9766 9767 if (pfd < 0) { 9768 pr_warn("prog '%s': invalid perf event FD %d\n", 9769 prog->name, pfd); 9770 return libbpf_err_ptr(-EINVAL); 9771 } 9772 prog_fd = bpf_program__fd(prog); 9773 if (prog_fd < 0) { 9774 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 9775 prog->name); 9776 return libbpf_err_ptr(-EINVAL); 9777 } 9778 9779 link = calloc(1, sizeof(*link)); 9780 if (!link) 9781 return libbpf_err_ptr(-ENOMEM); 9782 link->link.detach = &bpf_link_perf_detach; 9783 link->link.dealloc = &bpf_link_perf_dealloc; 9784 link->perf_event_fd = pfd; 9785 9786 if (kernel_supports(prog->obj, FEAT_PERF_LINK)) { 9787 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 9788 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 9789 9790 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 9791 if (link_fd < 0) { 9792 err = -errno; 9793 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 9794 prog->name, pfd, 9795 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9796 goto err_out; 9797 } 9798 link->link.fd = link_fd; 9799 } else { 9800 if (OPTS_GET(opts, bpf_cookie, 0)) { 9801 pr_warn("prog '%s': user context value is not supported\n", prog->name); 9802 err = -EOPNOTSUPP; 9803 goto err_out; 9804 } 9805 9806 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 9807 err = -errno; 9808 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 9809 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9810 if (err == -EPROTO) 9811 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 9812 prog->name, pfd); 9813 goto err_out; 9814 } 9815 link->link.fd = pfd; 9816 } 9817 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9818 err = -errno; 9819 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 9820 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9821 goto err_out; 9822 } 9823 9824 return &link->link; 9825 err_out: 9826 if (link_fd >= 0) 9827 close(link_fd); 9828 free(link); 9829 return libbpf_err_ptr(err); 9830 } 9831 9832 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 9833 { 9834 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 9835 } 9836 9837 /* 9838 * this function is expected to parse integer in the range of [0, 2^31-1] from 9839 * given file using scanf format string fmt. If actual parsed value is 9840 * negative, the result might be indistinguishable from error 9841 */ 9842 static int parse_uint_from_file(const char *file, const char *fmt) 9843 { 9844 char buf[STRERR_BUFSIZE]; 9845 int err, ret; 9846 FILE *f; 9847 9848 f = fopen(file, "r"); 9849 if (!f) { 9850 err = -errno; 9851 pr_debug("failed to open '%s': %s\n", file, 9852 libbpf_strerror_r(err, buf, sizeof(buf))); 9853 return err; 9854 } 9855 err = fscanf(f, fmt, &ret); 9856 if (err != 1) { 9857 err = err == EOF ? -EIO : -errno; 9858 pr_debug("failed to parse '%s': %s\n", file, 9859 libbpf_strerror_r(err, buf, sizeof(buf))); 9860 fclose(f); 9861 return err; 9862 } 9863 fclose(f); 9864 return ret; 9865 } 9866 9867 static int determine_kprobe_perf_type(void) 9868 { 9869 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 9870 9871 return parse_uint_from_file(file, "%d\n"); 9872 } 9873 9874 static int determine_uprobe_perf_type(void) 9875 { 9876 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 9877 9878 return parse_uint_from_file(file, "%d\n"); 9879 } 9880 9881 static int determine_kprobe_retprobe_bit(void) 9882 { 9883 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 9884 9885 return parse_uint_from_file(file, "config:%d\n"); 9886 } 9887 9888 static int determine_uprobe_retprobe_bit(void) 9889 { 9890 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 9891 9892 return parse_uint_from_file(file, "config:%d\n"); 9893 } 9894 9895 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 9896 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 9897 9898 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 9899 uint64_t offset, int pid, size_t ref_ctr_off) 9900 { 9901 const size_t attr_sz = sizeof(struct perf_event_attr); 9902 struct perf_event_attr attr; 9903 char errmsg[STRERR_BUFSIZE]; 9904 int type, pfd; 9905 9906 if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 9907 return -EINVAL; 9908 9909 memset(&attr, 0, attr_sz); 9910 9911 type = uprobe ? determine_uprobe_perf_type() 9912 : determine_kprobe_perf_type(); 9913 if (type < 0) { 9914 pr_warn("failed to determine %s perf type: %s\n", 9915 uprobe ? "uprobe" : "kprobe", 9916 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 9917 return type; 9918 } 9919 if (retprobe) { 9920 int bit = uprobe ? determine_uprobe_retprobe_bit() 9921 : determine_kprobe_retprobe_bit(); 9922 9923 if (bit < 0) { 9924 pr_warn("failed to determine %s retprobe bit: %s\n", 9925 uprobe ? "uprobe" : "kprobe", 9926 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 9927 return bit; 9928 } 9929 attr.config |= 1 << bit; 9930 } 9931 attr.size = attr_sz; 9932 attr.type = type; 9933 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9934 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 9935 attr.config2 = offset; /* kprobe_addr or probe_offset */ 9936 9937 /* pid filter is meaningful only for uprobes */ 9938 pfd = syscall(__NR_perf_event_open, &attr, 9939 pid < 0 ? -1 : pid /* pid */, 9940 pid == -1 ? 0 : -1 /* cpu */, 9941 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9942 return pfd >= 0 ? pfd : -errno; 9943 } 9944 9945 static int append_to_file(const char *file, const char *fmt, ...) 9946 { 9947 int fd, n, err = 0; 9948 va_list ap; 9949 9950 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 9951 if (fd < 0) 9952 return -errno; 9953 9954 va_start(ap, fmt); 9955 n = vdprintf(fd, fmt, ap); 9956 va_end(ap); 9957 9958 if (n < 0) 9959 err = -errno; 9960 9961 close(fd); 9962 return err; 9963 } 9964 9965 #define DEBUGFS "/sys/kernel/debug/tracing" 9966 #define TRACEFS "/sys/kernel/tracing" 9967 9968 static bool use_debugfs(void) 9969 { 9970 static int has_debugfs = -1; 9971 9972 if (has_debugfs < 0) 9973 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 9974 9975 return has_debugfs == 1; 9976 } 9977 9978 static const char *tracefs_path(void) 9979 { 9980 return use_debugfs() ? DEBUGFS : TRACEFS; 9981 } 9982 9983 static const char *tracefs_kprobe_events(void) 9984 { 9985 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 9986 } 9987 9988 static const char *tracefs_uprobe_events(void) 9989 { 9990 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 9991 } 9992 9993 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 9994 const char *kfunc_name, size_t offset) 9995 { 9996 static int index = 0; 9997 9998 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 9999 __sync_fetch_and_add(&index, 1)); 10000 } 10001 10002 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 10003 const char *kfunc_name, size_t offset) 10004 { 10005 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 10006 retprobe ? 'r' : 'p', 10007 retprobe ? "kretprobes" : "kprobes", 10008 probe_name, kfunc_name, offset); 10009 } 10010 10011 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 10012 { 10013 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 10014 retprobe ? "kretprobes" : "kprobes", probe_name); 10015 } 10016 10017 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10018 { 10019 char file[256]; 10020 10021 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10022 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 10023 10024 return parse_uint_from_file(file, "%d\n"); 10025 } 10026 10027 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 10028 const char *kfunc_name, size_t offset, int pid) 10029 { 10030 const size_t attr_sz = sizeof(struct perf_event_attr); 10031 struct perf_event_attr attr; 10032 char errmsg[STRERR_BUFSIZE]; 10033 int type, pfd, err; 10034 10035 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 10036 if (err < 0) { 10037 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 10038 kfunc_name, offset, 10039 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10040 return err; 10041 } 10042 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 10043 if (type < 0) { 10044 err = type; 10045 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 10046 kfunc_name, offset, 10047 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10048 goto err_clean_legacy; 10049 } 10050 10051 memset(&attr, 0, attr_sz); 10052 attr.size = attr_sz; 10053 attr.config = type; 10054 attr.type = PERF_TYPE_TRACEPOINT; 10055 10056 pfd = syscall(__NR_perf_event_open, &attr, 10057 pid < 0 ? -1 : pid, /* pid */ 10058 pid == -1 ? 0 : -1, /* cpu */ 10059 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10060 if (pfd < 0) { 10061 err = -errno; 10062 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10063 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10064 goto err_clean_legacy; 10065 } 10066 return pfd; 10067 10068 err_clean_legacy: 10069 /* Clear the newly added legacy kprobe_event */ 10070 remove_kprobe_event_legacy(probe_name, retprobe); 10071 return err; 10072 } 10073 10074 static const char *arch_specific_syscall_pfx(void) 10075 { 10076 #if defined(__x86_64__) 10077 return "x64"; 10078 #elif defined(__i386__) 10079 return "ia32"; 10080 #elif defined(__s390x__) 10081 return "s390x"; 10082 #elif defined(__s390__) 10083 return "s390"; 10084 #elif defined(__arm__) 10085 return "arm"; 10086 #elif defined(__aarch64__) 10087 return "arm64"; 10088 #elif defined(__mips__) 10089 return "mips"; 10090 #elif defined(__riscv) 10091 return "riscv"; 10092 #elif defined(__powerpc__) 10093 return "powerpc"; 10094 #elif defined(__powerpc64__) 10095 return "powerpc64"; 10096 #else 10097 return NULL; 10098 #endif 10099 } 10100 10101 static int probe_kern_syscall_wrapper(void) 10102 { 10103 char syscall_name[64]; 10104 const char *ksys_pfx; 10105 10106 ksys_pfx = arch_specific_syscall_pfx(); 10107 if (!ksys_pfx) 10108 return 0; 10109 10110 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 10111 10112 if (determine_kprobe_perf_type() >= 0) { 10113 int pfd; 10114 10115 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 10116 if (pfd >= 0) 10117 close(pfd); 10118 10119 return pfd >= 0 ? 1 : 0; 10120 } else { /* legacy mode */ 10121 char probe_name[128]; 10122 10123 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 10124 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 10125 return 0; 10126 10127 (void)remove_kprobe_event_legacy(probe_name, false); 10128 return 1; 10129 } 10130 } 10131 10132 struct bpf_link * 10133 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 10134 const char *func_name, 10135 const struct bpf_kprobe_opts *opts) 10136 { 10137 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10138 char errmsg[STRERR_BUFSIZE]; 10139 char *legacy_probe = NULL; 10140 struct bpf_link *link; 10141 size_t offset; 10142 bool retprobe, legacy; 10143 int pfd, err; 10144 10145 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 10146 return libbpf_err_ptr(-EINVAL); 10147 10148 retprobe = OPTS_GET(opts, retprobe, false); 10149 offset = OPTS_GET(opts, offset, 0); 10150 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10151 10152 legacy = determine_kprobe_perf_type() < 0; 10153 if (!legacy) { 10154 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 10155 func_name, offset, 10156 -1 /* pid */, 0 /* ref_ctr_off */); 10157 } else { 10158 char probe_name[256]; 10159 10160 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 10161 func_name, offset); 10162 10163 legacy_probe = strdup(probe_name); 10164 if (!legacy_probe) 10165 return libbpf_err_ptr(-ENOMEM); 10166 10167 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 10168 offset, -1 /* pid */); 10169 } 10170 if (pfd < 0) { 10171 err = -errno; 10172 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 10173 prog->name, retprobe ? "kretprobe" : "kprobe", 10174 func_name, offset, 10175 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10176 goto err_out; 10177 } 10178 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10179 err = libbpf_get_error(link); 10180 if (err) { 10181 close(pfd); 10182 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 10183 prog->name, retprobe ? "kretprobe" : "kprobe", 10184 func_name, offset, 10185 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10186 goto err_clean_legacy; 10187 } 10188 if (legacy) { 10189 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10190 10191 perf_link->legacy_probe_name = legacy_probe; 10192 perf_link->legacy_is_kprobe = true; 10193 perf_link->legacy_is_retprobe = retprobe; 10194 } 10195 10196 return link; 10197 10198 err_clean_legacy: 10199 if (legacy) 10200 remove_kprobe_event_legacy(legacy_probe, retprobe); 10201 err_out: 10202 free(legacy_probe); 10203 return libbpf_err_ptr(err); 10204 } 10205 10206 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 10207 bool retprobe, 10208 const char *func_name) 10209 { 10210 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 10211 .retprobe = retprobe, 10212 ); 10213 10214 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 10215 } 10216 10217 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 10218 const char *syscall_name, 10219 const struct bpf_ksyscall_opts *opts) 10220 { 10221 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 10222 char func_name[128]; 10223 10224 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 10225 return libbpf_err_ptr(-EINVAL); 10226 10227 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 10228 /* arch_specific_syscall_pfx() should never return NULL here 10229 * because it is guarded by kernel_supports(). However, since 10230 * compiler does not know that we have an explicit conditional 10231 * as well. 10232 */ 10233 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 10234 arch_specific_syscall_pfx() ? : "", syscall_name); 10235 } else { 10236 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 10237 } 10238 10239 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 10240 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10241 10242 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 10243 } 10244 10245 /* Adapted from perf/util/string.c */ 10246 static bool glob_match(const char *str, const char *pat) 10247 { 10248 while (*str && *pat && *pat != '*') { 10249 if (*pat == '?') { /* Matches any single character */ 10250 str++; 10251 pat++; 10252 continue; 10253 } 10254 if (*str != *pat) 10255 return false; 10256 str++; 10257 pat++; 10258 } 10259 /* Check wild card */ 10260 if (*pat == '*') { 10261 while (*pat == '*') 10262 pat++; 10263 if (!*pat) /* Tail wild card matches all */ 10264 return true; 10265 while (*str) 10266 if (glob_match(str++, pat)) 10267 return true; 10268 } 10269 return !*str && !*pat; 10270 } 10271 10272 struct kprobe_multi_resolve { 10273 const char *pattern; 10274 unsigned long *addrs; 10275 size_t cap; 10276 size_t cnt; 10277 }; 10278 10279 static int 10280 resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type, 10281 const char *sym_name, void *ctx) 10282 { 10283 struct kprobe_multi_resolve *res = ctx; 10284 int err; 10285 10286 if (!glob_match(sym_name, res->pattern)) 10287 return 0; 10288 10289 err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long), 10290 res->cnt + 1); 10291 if (err) 10292 return err; 10293 10294 res->addrs[res->cnt++] = (unsigned long) sym_addr; 10295 return 0; 10296 } 10297 10298 struct bpf_link * 10299 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 10300 const char *pattern, 10301 const struct bpf_kprobe_multi_opts *opts) 10302 { 10303 LIBBPF_OPTS(bpf_link_create_opts, lopts); 10304 struct kprobe_multi_resolve res = { 10305 .pattern = pattern, 10306 }; 10307 struct bpf_link *link = NULL; 10308 char errmsg[STRERR_BUFSIZE]; 10309 const unsigned long *addrs; 10310 int err, link_fd, prog_fd; 10311 const __u64 *cookies; 10312 const char **syms; 10313 bool retprobe; 10314 size_t cnt; 10315 10316 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 10317 return libbpf_err_ptr(-EINVAL); 10318 10319 syms = OPTS_GET(opts, syms, false); 10320 addrs = OPTS_GET(opts, addrs, false); 10321 cnt = OPTS_GET(opts, cnt, false); 10322 cookies = OPTS_GET(opts, cookies, false); 10323 10324 if (!pattern && !addrs && !syms) 10325 return libbpf_err_ptr(-EINVAL); 10326 if (pattern && (addrs || syms || cookies || cnt)) 10327 return libbpf_err_ptr(-EINVAL); 10328 if (!pattern && !cnt) 10329 return libbpf_err_ptr(-EINVAL); 10330 if (addrs && syms) 10331 return libbpf_err_ptr(-EINVAL); 10332 10333 if (pattern) { 10334 err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res); 10335 if (err) 10336 goto error; 10337 if (!res.cnt) { 10338 err = -ENOENT; 10339 goto error; 10340 } 10341 addrs = res.addrs; 10342 cnt = res.cnt; 10343 } 10344 10345 retprobe = OPTS_GET(opts, retprobe, false); 10346 10347 lopts.kprobe_multi.syms = syms; 10348 lopts.kprobe_multi.addrs = addrs; 10349 lopts.kprobe_multi.cookies = cookies; 10350 lopts.kprobe_multi.cnt = cnt; 10351 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 10352 10353 link = calloc(1, sizeof(*link)); 10354 if (!link) { 10355 err = -ENOMEM; 10356 goto error; 10357 } 10358 link->detach = &bpf_link__detach_fd; 10359 10360 prog_fd = bpf_program__fd(prog); 10361 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts); 10362 if (link_fd < 0) { 10363 err = -errno; 10364 pr_warn("prog '%s': failed to attach: %s\n", 10365 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10366 goto error; 10367 } 10368 link->fd = link_fd; 10369 free(res.addrs); 10370 return link; 10371 10372 error: 10373 free(link); 10374 free(res.addrs); 10375 return libbpf_err_ptr(err); 10376 } 10377 10378 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10379 { 10380 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 10381 unsigned long offset = 0; 10382 const char *func_name; 10383 char *func; 10384 int n; 10385 10386 *link = NULL; 10387 10388 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 10389 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 10390 return 0; 10391 10392 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 10393 if (opts.retprobe) 10394 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 10395 else 10396 func_name = prog->sec_name + sizeof("kprobe/") - 1; 10397 10398 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 10399 if (n < 1) { 10400 pr_warn("kprobe name is invalid: %s\n", func_name); 10401 return -EINVAL; 10402 } 10403 if (opts.retprobe && offset != 0) { 10404 free(func); 10405 pr_warn("kretprobes do not support offset specification\n"); 10406 return -EINVAL; 10407 } 10408 10409 opts.offset = offset; 10410 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 10411 free(func); 10412 return libbpf_get_error(*link); 10413 } 10414 10415 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10416 { 10417 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 10418 const char *syscall_name; 10419 10420 *link = NULL; 10421 10422 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 10423 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 10424 return 0; 10425 10426 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 10427 if (opts.retprobe) 10428 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 10429 else 10430 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 10431 10432 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 10433 return *link ? 0 : -errno; 10434 } 10435 10436 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10437 { 10438 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 10439 const char *spec; 10440 char *pattern; 10441 int n; 10442 10443 *link = NULL; 10444 10445 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 10446 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 10447 strcmp(prog->sec_name, "kretprobe.multi") == 0) 10448 return 0; 10449 10450 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 10451 if (opts.retprobe) 10452 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 10453 else 10454 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 10455 10456 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 10457 if (n < 1) { 10458 pr_warn("kprobe multi pattern is invalid: %s\n", pattern); 10459 return -EINVAL; 10460 } 10461 10462 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 10463 free(pattern); 10464 return libbpf_get_error(*link); 10465 } 10466 10467 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 10468 const char *binary_path, uint64_t offset) 10469 { 10470 int i; 10471 10472 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 10473 10474 /* sanitize binary_path in the probe name */ 10475 for (i = 0; buf[i]; i++) { 10476 if (!isalnum(buf[i])) 10477 buf[i] = '_'; 10478 } 10479 } 10480 10481 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 10482 const char *binary_path, size_t offset) 10483 { 10484 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 10485 retprobe ? 'r' : 'p', 10486 retprobe ? "uretprobes" : "uprobes", 10487 probe_name, binary_path, offset); 10488 } 10489 10490 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 10491 { 10492 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 10493 retprobe ? "uretprobes" : "uprobes", probe_name); 10494 } 10495 10496 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10497 { 10498 char file[512]; 10499 10500 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10501 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 10502 10503 return parse_uint_from_file(file, "%d\n"); 10504 } 10505 10506 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 10507 const char *binary_path, size_t offset, int pid) 10508 { 10509 const size_t attr_sz = sizeof(struct perf_event_attr); 10510 struct perf_event_attr attr; 10511 int type, pfd, err; 10512 10513 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 10514 if (err < 0) { 10515 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 10516 binary_path, (size_t)offset, err); 10517 return err; 10518 } 10519 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 10520 if (type < 0) { 10521 err = type; 10522 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 10523 binary_path, offset, err); 10524 goto err_clean_legacy; 10525 } 10526 10527 memset(&attr, 0, attr_sz); 10528 attr.size = attr_sz; 10529 attr.config = type; 10530 attr.type = PERF_TYPE_TRACEPOINT; 10531 10532 pfd = syscall(__NR_perf_event_open, &attr, 10533 pid < 0 ? -1 : pid, /* pid */ 10534 pid == -1 ? 0 : -1, /* cpu */ 10535 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10536 if (pfd < 0) { 10537 err = -errno; 10538 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 10539 goto err_clean_legacy; 10540 } 10541 return pfd; 10542 10543 err_clean_legacy: 10544 /* Clear the newly added legacy uprobe_event */ 10545 remove_uprobe_event_legacy(probe_name, retprobe); 10546 return err; 10547 } 10548 10549 /* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */ 10550 static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn) 10551 { 10552 while ((scn = elf_nextscn(elf, scn)) != NULL) { 10553 GElf_Shdr sh; 10554 10555 if (!gelf_getshdr(scn, &sh)) 10556 continue; 10557 if (sh.sh_type == sh_type) 10558 return scn; 10559 } 10560 return NULL; 10561 } 10562 10563 /* Find offset of function name in object specified by path. "name" matches 10564 * symbol name or name@@LIB for library functions. 10565 */ 10566 static long elf_find_func_offset(const char *binary_path, const char *name) 10567 { 10568 int fd, i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB }; 10569 bool is_shared_lib, is_name_qualified; 10570 char errmsg[STRERR_BUFSIZE]; 10571 long ret = -ENOENT; 10572 size_t name_len; 10573 GElf_Ehdr ehdr; 10574 Elf *elf; 10575 10576 fd = open(binary_path, O_RDONLY | O_CLOEXEC); 10577 if (fd < 0) { 10578 ret = -errno; 10579 pr_warn("failed to open %s: %s\n", binary_path, 10580 libbpf_strerror_r(ret, errmsg, sizeof(errmsg))); 10581 return ret; 10582 } 10583 elf = elf_begin(fd, ELF_C_READ_MMAP, NULL); 10584 if (!elf) { 10585 pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1)); 10586 close(fd); 10587 return -LIBBPF_ERRNO__FORMAT; 10588 } 10589 if (!gelf_getehdr(elf, &ehdr)) { 10590 pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1)); 10591 ret = -LIBBPF_ERRNO__FORMAT; 10592 goto out; 10593 } 10594 /* for shared lib case, we do not need to calculate relative offset */ 10595 is_shared_lib = ehdr.e_type == ET_DYN; 10596 10597 name_len = strlen(name); 10598 /* Does name specify "@@LIB"? */ 10599 is_name_qualified = strstr(name, "@@") != NULL; 10600 10601 /* Search SHT_DYNSYM, SHT_SYMTAB for symbol. This search order is used because if 10602 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically 10603 * linked binary may not have SHT_DYMSYM, so absence of a section should not be 10604 * reported as a warning/error. 10605 */ 10606 for (i = 0; i < ARRAY_SIZE(sh_types); i++) { 10607 size_t nr_syms, strtabidx, idx; 10608 Elf_Data *symbols = NULL; 10609 Elf_Scn *scn = NULL; 10610 int last_bind = -1; 10611 const char *sname; 10612 GElf_Shdr sh; 10613 10614 scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL); 10615 if (!scn) { 10616 pr_debug("elf: failed to find symbol table ELF sections in '%s'\n", 10617 binary_path); 10618 continue; 10619 } 10620 if (!gelf_getshdr(scn, &sh)) 10621 continue; 10622 strtabidx = sh.sh_link; 10623 symbols = elf_getdata(scn, 0); 10624 if (!symbols) { 10625 pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n", 10626 binary_path, elf_errmsg(-1)); 10627 ret = -LIBBPF_ERRNO__FORMAT; 10628 goto out; 10629 } 10630 nr_syms = symbols->d_size / sh.sh_entsize; 10631 10632 for (idx = 0; idx < nr_syms; idx++) { 10633 int curr_bind; 10634 GElf_Sym sym; 10635 Elf_Scn *sym_scn; 10636 GElf_Shdr sym_sh; 10637 10638 if (!gelf_getsym(symbols, idx, &sym)) 10639 continue; 10640 10641 if (GELF_ST_TYPE(sym.st_info) != STT_FUNC) 10642 continue; 10643 10644 sname = elf_strptr(elf, strtabidx, sym.st_name); 10645 if (!sname) 10646 continue; 10647 10648 curr_bind = GELF_ST_BIND(sym.st_info); 10649 10650 /* User can specify func, func@@LIB or func@@LIB_VERSION. */ 10651 if (strncmp(sname, name, name_len) != 0) 10652 continue; 10653 /* ...but we don't want a search for "foo" to match 'foo2" also, so any 10654 * additional characters in sname should be of the form "@@LIB". 10655 */ 10656 if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@') 10657 continue; 10658 10659 if (ret >= 0) { 10660 /* handle multiple matches */ 10661 if (last_bind != STB_WEAK && curr_bind != STB_WEAK) { 10662 /* Only accept one non-weak bind. */ 10663 pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n", 10664 sname, name, binary_path); 10665 ret = -LIBBPF_ERRNO__FORMAT; 10666 goto out; 10667 } else if (curr_bind == STB_WEAK) { 10668 /* already have a non-weak bind, and 10669 * this is a weak bind, so ignore. 10670 */ 10671 continue; 10672 } 10673 } 10674 10675 /* Transform symbol's virtual address (absolute for 10676 * binaries and relative for shared libs) into file 10677 * offset, which is what kernel is expecting for 10678 * uprobe/uretprobe attachment. 10679 * See Documentation/trace/uprobetracer.rst for more 10680 * details. 10681 * This is done by looking up symbol's containing 10682 * section's header and using it's virtual address 10683 * (sh_addr) and corresponding file offset (sh_offset) 10684 * to transform sym.st_value (virtual address) into 10685 * desired final file offset. 10686 */ 10687 sym_scn = elf_getscn(elf, sym.st_shndx); 10688 if (!sym_scn) 10689 continue; 10690 if (!gelf_getshdr(sym_scn, &sym_sh)) 10691 continue; 10692 10693 ret = sym.st_value - sym_sh.sh_addr + sym_sh.sh_offset; 10694 last_bind = curr_bind; 10695 } 10696 if (ret > 0) 10697 break; 10698 } 10699 10700 if (ret > 0) { 10701 pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path, 10702 ret); 10703 } else { 10704 if (ret == 0) { 10705 pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path, 10706 is_shared_lib ? "should not be 0 in a shared library" : 10707 "try using shared library path instead"); 10708 ret = -ENOENT; 10709 } else { 10710 pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path); 10711 } 10712 } 10713 out: 10714 elf_end(elf); 10715 close(fd); 10716 return ret; 10717 } 10718 10719 static const char *arch_specific_lib_paths(void) 10720 { 10721 /* 10722 * Based on https://packages.debian.org/sid/libc6. 10723 * 10724 * Assume that the traced program is built for the same architecture 10725 * as libbpf, which should cover the vast majority of cases. 10726 */ 10727 #if defined(__x86_64__) 10728 return "/lib/x86_64-linux-gnu"; 10729 #elif defined(__i386__) 10730 return "/lib/i386-linux-gnu"; 10731 #elif defined(__s390x__) 10732 return "/lib/s390x-linux-gnu"; 10733 #elif defined(__s390__) 10734 return "/lib/s390-linux-gnu"; 10735 #elif defined(__arm__) && defined(__SOFTFP__) 10736 return "/lib/arm-linux-gnueabi"; 10737 #elif defined(__arm__) && !defined(__SOFTFP__) 10738 return "/lib/arm-linux-gnueabihf"; 10739 #elif defined(__aarch64__) 10740 return "/lib/aarch64-linux-gnu"; 10741 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 10742 return "/lib/mips64el-linux-gnuabi64"; 10743 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 10744 return "/lib/mipsel-linux-gnu"; 10745 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 10746 return "/lib/powerpc64le-linux-gnu"; 10747 #elif defined(__sparc__) && defined(__arch64__) 10748 return "/lib/sparc64-linux-gnu"; 10749 #elif defined(__riscv) && __riscv_xlen == 64 10750 return "/lib/riscv64-linux-gnu"; 10751 #else 10752 return NULL; 10753 #endif 10754 } 10755 10756 /* Get full path to program/shared library. */ 10757 static int resolve_full_path(const char *file, char *result, size_t result_sz) 10758 { 10759 const char *search_paths[3] = {}; 10760 int i, perm; 10761 10762 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 10763 search_paths[0] = getenv("LD_LIBRARY_PATH"); 10764 search_paths[1] = "/usr/lib64:/usr/lib"; 10765 search_paths[2] = arch_specific_lib_paths(); 10766 perm = R_OK; 10767 } else { 10768 search_paths[0] = getenv("PATH"); 10769 search_paths[1] = "/usr/bin:/usr/sbin"; 10770 perm = R_OK | X_OK; 10771 } 10772 10773 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 10774 const char *s; 10775 10776 if (!search_paths[i]) 10777 continue; 10778 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 10779 char *next_path; 10780 int seg_len; 10781 10782 if (s[0] == ':') 10783 s++; 10784 next_path = strchr(s, ':'); 10785 seg_len = next_path ? next_path - s : strlen(s); 10786 if (!seg_len) 10787 continue; 10788 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 10789 /* ensure it has required permissions */ 10790 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 10791 continue; 10792 pr_debug("resolved '%s' to '%s'\n", file, result); 10793 return 0; 10794 } 10795 } 10796 return -ENOENT; 10797 } 10798 10799 LIBBPF_API struct bpf_link * 10800 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 10801 const char *binary_path, size_t func_offset, 10802 const struct bpf_uprobe_opts *opts) 10803 { 10804 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10805 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 10806 char full_binary_path[PATH_MAX]; 10807 struct bpf_link *link; 10808 size_t ref_ctr_off; 10809 int pfd, err; 10810 bool retprobe, legacy; 10811 const char *func_name; 10812 10813 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 10814 return libbpf_err_ptr(-EINVAL); 10815 10816 retprobe = OPTS_GET(opts, retprobe, false); 10817 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 10818 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10819 10820 if (!binary_path) 10821 return libbpf_err_ptr(-EINVAL); 10822 10823 if (!strchr(binary_path, '/')) { 10824 err = resolve_full_path(binary_path, full_binary_path, 10825 sizeof(full_binary_path)); 10826 if (err) { 10827 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 10828 prog->name, binary_path, err); 10829 return libbpf_err_ptr(err); 10830 } 10831 binary_path = full_binary_path; 10832 } 10833 func_name = OPTS_GET(opts, func_name, NULL); 10834 if (func_name) { 10835 long sym_off; 10836 10837 sym_off = elf_find_func_offset(binary_path, func_name); 10838 if (sym_off < 0) 10839 return libbpf_err_ptr(sym_off); 10840 func_offset += sym_off; 10841 } 10842 10843 legacy = determine_uprobe_perf_type() < 0; 10844 if (!legacy) { 10845 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 10846 func_offset, pid, ref_ctr_off); 10847 } else { 10848 char probe_name[PATH_MAX + 64]; 10849 10850 if (ref_ctr_off) 10851 return libbpf_err_ptr(-EINVAL); 10852 10853 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 10854 binary_path, func_offset); 10855 10856 legacy_probe = strdup(probe_name); 10857 if (!legacy_probe) 10858 return libbpf_err_ptr(-ENOMEM); 10859 10860 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 10861 binary_path, func_offset, pid); 10862 } 10863 if (pfd < 0) { 10864 err = -errno; 10865 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 10866 prog->name, retprobe ? "uretprobe" : "uprobe", 10867 binary_path, func_offset, 10868 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10869 goto err_out; 10870 } 10871 10872 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10873 err = libbpf_get_error(link); 10874 if (err) { 10875 close(pfd); 10876 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 10877 prog->name, retprobe ? "uretprobe" : "uprobe", 10878 binary_path, func_offset, 10879 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10880 goto err_clean_legacy; 10881 } 10882 if (legacy) { 10883 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10884 10885 perf_link->legacy_probe_name = legacy_probe; 10886 perf_link->legacy_is_kprobe = false; 10887 perf_link->legacy_is_retprobe = retprobe; 10888 } 10889 return link; 10890 10891 err_clean_legacy: 10892 if (legacy) 10893 remove_uprobe_event_legacy(legacy_probe, retprobe); 10894 err_out: 10895 free(legacy_probe); 10896 return libbpf_err_ptr(err); 10897 } 10898 10899 /* Format of u[ret]probe section definition supporting auto-attach: 10900 * u[ret]probe/binary:function[+offset] 10901 * 10902 * binary can be an absolute/relative path or a filename; the latter is resolved to a 10903 * full binary path via bpf_program__attach_uprobe_opts. 10904 * 10905 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 10906 * specified (and auto-attach is not possible) or the above format is specified for 10907 * auto-attach. 10908 */ 10909 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10910 { 10911 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 10912 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 10913 int n, ret = -EINVAL; 10914 long offset = 0; 10915 10916 *link = NULL; 10917 10918 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li", 10919 &probe_type, &binary_path, &func_name, &offset); 10920 switch (n) { 10921 case 1: 10922 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 10923 ret = 0; 10924 break; 10925 case 2: 10926 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 10927 prog->name, prog->sec_name); 10928 break; 10929 case 3: 10930 case 4: 10931 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 10932 strcmp(probe_type, "uretprobe.s") == 0; 10933 if (opts.retprobe && offset != 0) { 10934 pr_warn("prog '%s': uretprobes do not support offset specification\n", 10935 prog->name); 10936 break; 10937 } 10938 opts.func_name = func_name; 10939 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 10940 ret = libbpf_get_error(*link); 10941 break; 10942 default: 10943 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 10944 prog->sec_name); 10945 break; 10946 } 10947 free(probe_type); 10948 free(binary_path); 10949 free(func_name); 10950 10951 return ret; 10952 } 10953 10954 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 10955 bool retprobe, pid_t pid, 10956 const char *binary_path, 10957 size_t func_offset) 10958 { 10959 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 10960 10961 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 10962 } 10963 10964 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 10965 pid_t pid, const char *binary_path, 10966 const char *usdt_provider, const char *usdt_name, 10967 const struct bpf_usdt_opts *opts) 10968 { 10969 char resolved_path[512]; 10970 struct bpf_object *obj = prog->obj; 10971 struct bpf_link *link; 10972 __u64 usdt_cookie; 10973 int err; 10974 10975 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 10976 return libbpf_err_ptr(-EINVAL); 10977 10978 if (bpf_program__fd(prog) < 0) { 10979 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 10980 prog->name); 10981 return libbpf_err_ptr(-EINVAL); 10982 } 10983 10984 if (!binary_path) 10985 return libbpf_err_ptr(-EINVAL); 10986 10987 if (!strchr(binary_path, '/')) { 10988 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 10989 if (err) { 10990 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 10991 prog->name, binary_path, err); 10992 return libbpf_err_ptr(err); 10993 } 10994 binary_path = resolved_path; 10995 } 10996 10997 /* USDT manager is instantiated lazily on first USDT attach. It will 10998 * be destroyed together with BPF object in bpf_object__close(). 10999 */ 11000 if (IS_ERR(obj->usdt_man)) 11001 return libbpf_ptr(obj->usdt_man); 11002 if (!obj->usdt_man) { 11003 obj->usdt_man = usdt_manager_new(obj); 11004 if (IS_ERR(obj->usdt_man)) 11005 return libbpf_ptr(obj->usdt_man); 11006 } 11007 11008 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 11009 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 11010 usdt_provider, usdt_name, usdt_cookie); 11011 err = libbpf_get_error(link); 11012 if (err) 11013 return libbpf_err_ptr(err); 11014 return link; 11015 } 11016 11017 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11018 { 11019 char *path = NULL, *provider = NULL, *name = NULL; 11020 const char *sec_name; 11021 int n, err; 11022 11023 sec_name = bpf_program__section_name(prog); 11024 if (strcmp(sec_name, "usdt") == 0) { 11025 /* no auto-attach for just SEC("usdt") */ 11026 *link = NULL; 11027 return 0; 11028 } 11029 11030 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 11031 if (n != 3) { 11032 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 11033 sec_name); 11034 err = -EINVAL; 11035 } else { 11036 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 11037 provider, name, NULL); 11038 err = libbpf_get_error(*link); 11039 } 11040 free(path); 11041 free(provider); 11042 free(name); 11043 return err; 11044 } 11045 11046 static int determine_tracepoint_id(const char *tp_category, 11047 const char *tp_name) 11048 { 11049 char file[PATH_MAX]; 11050 int ret; 11051 11052 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11053 tracefs_path(), tp_category, tp_name); 11054 if (ret < 0) 11055 return -errno; 11056 if (ret >= sizeof(file)) { 11057 pr_debug("tracepoint %s/%s path is too long\n", 11058 tp_category, tp_name); 11059 return -E2BIG; 11060 } 11061 return parse_uint_from_file(file, "%d\n"); 11062 } 11063 11064 static int perf_event_open_tracepoint(const char *tp_category, 11065 const char *tp_name) 11066 { 11067 const size_t attr_sz = sizeof(struct perf_event_attr); 11068 struct perf_event_attr attr; 11069 char errmsg[STRERR_BUFSIZE]; 11070 int tp_id, pfd, err; 11071 11072 tp_id = determine_tracepoint_id(tp_category, tp_name); 11073 if (tp_id < 0) { 11074 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 11075 tp_category, tp_name, 11076 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 11077 return tp_id; 11078 } 11079 11080 memset(&attr, 0, attr_sz); 11081 attr.type = PERF_TYPE_TRACEPOINT; 11082 attr.size = attr_sz; 11083 attr.config = tp_id; 11084 11085 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 11086 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11087 if (pfd < 0) { 11088 err = -errno; 11089 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 11090 tp_category, tp_name, 11091 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11092 return err; 11093 } 11094 return pfd; 11095 } 11096 11097 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 11098 const char *tp_category, 11099 const char *tp_name, 11100 const struct bpf_tracepoint_opts *opts) 11101 { 11102 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11103 char errmsg[STRERR_BUFSIZE]; 11104 struct bpf_link *link; 11105 int pfd, err; 11106 11107 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 11108 return libbpf_err_ptr(-EINVAL); 11109 11110 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11111 11112 pfd = perf_event_open_tracepoint(tp_category, tp_name); 11113 if (pfd < 0) { 11114 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 11115 prog->name, tp_category, tp_name, 11116 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11117 return libbpf_err_ptr(pfd); 11118 } 11119 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11120 err = libbpf_get_error(link); 11121 if (err) { 11122 close(pfd); 11123 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 11124 prog->name, tp_category, tp_name, 11125 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11126 return libbpf_err_ptr(err); 11127 } 11128 return link; 11129 } 11130 11131 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 11132 const char *tp_category, 11133 const char *tp_name) 11134 { 11135 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 11136 } 11137 11138 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11139 { 11140 char *sec_name, *tp_cat, *tp_name; 11141 11142 *link = NULL; 11143 11144 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 11145 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 11146 return 0; 11147 11148 sec_name = strdup(prog->sec_name); 11149 if (!sec_name) 11150 return -ENOMEM; 11151 11152 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 11153 if (str_has_pfx(prog->sec_name, "tp/")) 11154 tp_cat = sec_name + sizeof("tp/") - 1; 11155 else 11156 tp_cat = sec_name + sizeof("tracepoint/") - 1; 11157 tp_name = strchr(tp_cat, '/'); 11158 if (!tp_name) { 11159 free(sec_name); 11160 return -EINVAL; 11161 } 11162 *tp_name = '\0'; 11163 tp_name++; 11164 11165 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 11166 free(sec_name); 11167 return libbpf_get_error(*link); 11168 } 11169 11170 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 11171 const char *tp_name) 11172 { 11173 char errmsg[STRERR_BUFSIZE]; 11174 struct bpf_link *link; 11175 int prog_fd, pfd; 11176 11177 prog_fd = bpf_program__fd(prog); 11178 if (prog_fd < 0) { 11179 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11180 return libbpf_err_ptr(-EINVAL); 11181 } 11182 11183 link = calloc(1, sizeof(*link)); 11184 if (!link) 11185 return libbpf_err_ptr(-ENOMEM); 11186 link->detach = &bpf_link__detach_fd; 11187 11188 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 11189 if (pfd < 0) { 11190 pfd = -errno; 11191 free(link); 11192 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 11193 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11194 return libbpf_err_ptr(pfd); 11195 } 11196 link->fd = pfd; 11197 return link; 11198 } 11199 11200 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11201 { 11202 static const char *const prefixes[] = { 11203 "raw_tp", 11204 "raw_tracepoint", 11205 "raw_tp.w", 11206 "raw_tracepoint.w", 11207 }; 11208 size_t i; 11209 const char *tp_name = NULL; 11210 11211 *link = NULL; 11212 11213 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 11214 size_t pfx_len; 11215 11216 if (!str_has_pfx(prog->sec_name, prefixes[i])) 11217 continue; 11218 11219 pfx_len = strlen(prefixes[i]); 11220 /* no auto-attach case of, e.g., SEC("raw_tp") */ 11221 if (prog->sec_name[pfx_len] == '\0') 11222 return 0; 11223 11224 if (prog->sec_name[pfx_len] != '/') 11225 continue; 11226 11227 tp_name = prog->sec_name + pfx_len + 1; 11228 break; 11229 } 11230 11231 if (!tp_name) { 11232 pr_warn("prog '%s': invalid section name '%s'\n", 11233 prog->name, prog->sec_name); 11234 return -EINVAL; 11235 } 11236 11237 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 11238 return libbpf_get_error(link); 11239 } 11240 11241 /* Common logic for all BPF program types that attach to a btf_id */ 11242 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 11243 const struct bpf_trace_opts *opts) 11244 { 11245 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 11246 char errmsg[STRERR_BUFSIZE]; 11247 struct bpf_link *link; 11248 int prog_fd, pfd; 11249 11250 if (!OPTS_VALID(opts, bpf_trace_opts)) 11251 return libbpf_err_ptr(-EINVAL); 11252 11253 prog_fd = bpf_program__fd(prog); 11254 if (prog_fd < 0) { 11255 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11256 return libbpf_err_ptr(-EINVAL); 11257 } 11258 11259 link = calloc(1, sizeof(*link)); 11260 if (!link) 11261 return libbpf_err_ptr(-ENOMEM); 11262 link->detach = &bpf_link__detach_fd; 11263 11264 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 11265 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 11266 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 11267 if (pfd < 0) { 11268 pfd = -errno; 11269 free(link); 11270 pr_warn("prog '%s': failed to attach: %s\n", 11271 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11272 return libbpf_err_ptr(pfd); 11273 } 11274 link->fd = pfd; 11275 return link; 11276 } 11277 11278 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 11279 { 11280 return bpf_program__attach_btf_id(prog, NULL); 11281 } 11282 11283 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 11284 const struct bpf_trace_opts *opts) 11285 { 11286 return bpf_program__attach_btf_id(prog, opts); 11287 } 11288 11289 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 11290 { 11291 return bpf_program__attach_btf_id(prog, NULL); 11292 } 11293 11294 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11295 { 11296 *link = bpf_program__attach_trace(prog); 11297 return libbpf_get_error(*link); 11298 } 11299 11300 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11301 { 11302 *link = bpf_program__attach_lsm(prog); 11303 return libbpf_get_error(*link); 11304 } 11305 11306 static struct bpf_link * 11307 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id, 11308 const char *target_name) 11309 { 11310 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 11311 .target_btf_id = btf_id); 11312 enum bpf_attach_type attach_type; 11313 char errmsg[STRERR_BUFSIZE]; 11314 struct bpf_link *link; 11315 int prog_fd, link_fd; 11316 11317 prog_fd = bpf_program__fd(prog); 11318 if (prog_fd < 0) { 11319 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11320 return libbpf_err_ptr(-EINVAL); 11321 } 11322 11323 link = calloc(1, sizeof(*link)); 11324 if (!link) 11325 return libbpf_err_ptr(-ENOMEM); 11326 link->detach = &bpf_link__detach_fd; 11327 11328 attach_type = bpf_program__expected_attach_type(prog); 11329 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 11330 if (link_fd < 0) { 11331 link_fd = -errno; 11332 free(link); 11333 pr_warn("prog '%s': failed to attach to %s: %s\n", 11334 prog->name, target_name, 11335 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11336 return libbpf_err_ptr(link_fd); 11337 } 11338 link->fd = link_fd; 11339 return link; 11340 } 11341 11342 struct bpf_link * 11343 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 11344 { 11345 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 11346 } 11347 11348 struct bpf_link * 11349 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 11350 { 11351 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 11352 } 11353 11354 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 11355 { 11356 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 11357 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 11358 } 11359 11360 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 11361 int target_fd, 11362 const char *attach_func_name) 11363 { 11364 int btf_id; 11365 11366 if (!!target_fd != !!attach_func_name) { 11367 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 11368 prog->name); 11369 return libbpf_err_ptr(-EINVAL); 11370 } 11371 11372 if (prog->type != BPF_PROG_TYPE_EXT) { 11373 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 11374 prog->name); 11375 return libbpf_err_ptr(-EINVAL); 11376 } 11377 11378 if (target_fd) { 11379 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 11380 if (btf_id < 0) 11381 return libbpf_err_ptr(btf_id); 11382 11383 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 11384 } else { 11385 /* no target, so use raw_tracepoint_open for compatibility 11386 * with old kernels 11387 */ 11388 return bpf_program__attach_trace(prog); 11389 } 11390 } 11391 11392 struct bpf_link * 11393 bpf_program__attach_iter(const struct bpf_program *prog, 11394 const struct bpf_iter_attach_opts *opts) 11395 { 11396 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 11397 char errmsg[STRERR_BUFSIZE]; 11398 struct bpf_link *link; 11399 int prog_fd, link_fd; 11400 __u32 target_fd = 0; 11401 11402 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 11403 return libbpf_err_ptr(-EINVAL); 11404 11405 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 11406 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 11407 11408 prog_fd = bpf_program__fd(prog); 11409 if (prog_fd < 0) { 11410 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11411 return libbpf_err_ptr(-EINVAL); 11412 } 11413 11414 link = calloc(1, sizeof(*link)); 11415 if (!link) 11416 return libbpf_err_ptr(-ENOMEM); 11417 link->detach = &bpf_link__detach_fd; 11418 11419 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 11420 &link_create_opts); 11421 if (link_fd < 0) { 11422 link_fd = -errno; 11423 free(link); 11424 pr_warn("prog '%s': failed to attach to iterator: %s\n", 11425 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11426 return libbpf_err_ptr(link_fd); 11427 } 11428 link->fd = link_fd; 11429 return link; 11430 } 11431 11432 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11433 { 11434 *link = bpf_program__attach_iter(prog, NULL); 11435 return libbpf_get_error(*link); 11436 } 11437 11438 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 11439 { 11440 struct bpf_link *link = NULL; 11441 int err; 11442 11443 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 11444 return libbpf_err_ptr(-EOPNOTSUPP); 11445 11446 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 11447 if (err) 11448 return libbpf_err_ptr(err); 11449 11450 /* When calling bpf_program__attach() explicitly, auto-attach support 11451 * is expected to work, so NULL returned link is considered an error. 11452 * This is different for skeleton's attach, see comment in 11453 * bpf_object__attach_skeleton(). 11454 */ 11455 if (!link) 11456 return libbpf_err_ptr(-EOPNOTSUPP); 11457 11458 return link; 11459 } 11460 11461 static int bpf_link__detach_struct_ops(struct bpf_link *link) 11462 { 11463 __u32 zero = 0; 11464 11465 if (bpf_map_delete_elem(link->fd, &zero)) 11466 return -errno; 11467 11468 return 0; 11469 } 11470 11471 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 11472 { 11473 struct bpf_struct_ops *st_ops; 11474 struct bpf_link *link; 11475 __u32 i, zero = 0; 11476 int err; 11477 11478 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 11479 return libbpf_err_ptr(-EINVAL); 11480 11481 link = calloc(1, sizeof(*link)); 11482 if (!link) 11483 return libbpf_err_ptr(-EINVAL); 11484 11485 st_ops = map->st_ops; 11486 for (i = 0; i < btf_vlen(st_ops->type); i++) { 11487 struct bpf_program *prog = st_ops->progs[i]; 11488 void *kern_data; 11489 int prog_fd; 11490 11491 if (!prog) 11492 continue; 11493 11494 prog_fd = bpf_program__fd(prog); 11495 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 11496 *(unsigned long *)kern_data = prog_fd; 11497 } 11498 11499 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 11500 if (err) { 11501 err = -errno; 11502 free(link); 11503 return libbpf_err_ptr(err); 11504 } 11505 11506 link->detach = bpf_link__detach_struct_ops; 11507 link->fd = map->fd; 11508 11509 return link; 11510 } 11511 11512 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 11513 void *private_data); 11514 11515 static enum bpf_perf_event_ret 11516 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 11517 void **copy_mem, size_t *copy_size, 11518 bpf_perf_event_print_t fn, void *private_data) 11519 { 11520 struct perf_event_mmap_page *header = mmap_mem; 11521 __u64 data_head = ring_buffer_read_head(header); 11522 __u64 data_tail = header->data_tail; 11523 void *base = ((__u8 *)header) + page_size; 11524 int ret = LIBBPF_PERF_EVENT_CONT; 11525 struct perf_event_header *ehdr; 11526 size_t ehdr_size; 11527 11528 while (data_head != data_tail) { 11529 ehdr = base + (data_tail & (mmap_size - 1)); 11530 ehdr_size = ehdr->size; 11531 11532 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 11533 void *copy_start = ehdr; 11534 size_t len_first = base + mmap_size - copy_start; 11535 size_t len_secnd = ehdr_size - len_first; 11536 11537 if (*copy_size < ehdr_size) { 11538 free(*copy_mem); 11539 *copy_mem = malloc(ehdr_size); 11540 if (!*copy_mem) { 11541 *copy_size = 0; 11542 ret = LIBBPF_PERF_EVENT_ERROR; 11543 break; 11544 } 11545 *copy_size = ehdr_size; 11546 } 11547 11548 memcpy(*copy_mem, copy_start, len_first); 11549 memcpy(*copy_mem + len_first, base, len_secnd); 11550 ehdr = *copy_mem; 11551 } 11552 11553 ret = fn(ehdr, private_data); 11554 data_tail += ehdr_size; 11555 if (ret != LIBBPF_PERF_EVENT_CONT) 11556 break; 11557 } 11558 11559 ring_buffer_write_tail(header, data_tail); 11560 return libbpf_err(ret); 11561 } 11562 11563 struct perf_buffer; 11564 11565 struct perf_buffer_params { 11566 struct perf_event_attr *attr; 11567 /* if event_cb is specified, it takes precendence */ 11568 perf_buffer_event_fn event_cb; 11569 /* sample_cb and lost_cb are higher-level common-case callbacks */ 11570 perf_buffer_sample_fn sample_cb; 11571 perf_buffer_lost_fn lost_cb; 11572 void *ctx; 11573 int cpu_cnt; 11574 int *cpus; 11575 int *map_keys; 11576 }; 11577 11578 struct perf_cpu_buf { 11579 struct perf_buffer *pb; 11580 void *base; /* mmap()'ed memory */ 11581 void *buf; /* for reconstructing segmented data */ 11582 size_t buf_size; 11583 int fd; 11584 int cpu; 11585 int map_key; 11586 }; 11587 11588 struct perf_buffer { 11589 perf_buffer_event_fn event_cb; 11590 perf_buffer_sample_fn sample_cb; 11591 perf_buffer_lost_fn lost_cb; 11592 void *ctx; /* passed into callbacks */ 11593 11594 size_t page_size; 11595 size_t mmap_size; 11596 struct perf_cpu_buf **cpu_bufs; 11597 struct epoll_event *events; 11598 int cpu_cnt; /* number of allocated CPU buffers */ 11599 int epoll_fd; /* perf event FD */ 11600 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 11601 }; 11602 11603 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 11604 struct perf_cpu_buf *cpu_buf) 11605 { 11606 if (!cpu_buf) 11607 return; 11608 if (cpu_buf->base && 11609 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 11610 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 11611 if (cpu_buf->fd >= 0) { 11612 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 11613 close(cpu_buf->fd); 11614 } 11615 free(cpu_buf->buf); 11616 free(cpu_buf); 11617 } 11618 11619 void perf_buffer__free(struct perf_buffer *pb) 11620 { 11621 int i; 11622 11623 if (IS_ERR_OR_NULL(pb)) 11624 return; 11625 if (pb->cpu_bufs) { 11626 for (i = 0; i < pb->cpu_cnt; i++) { 11627 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 11628 11629 if (!cpu_buf) 11630 continue; 11631 11632 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 11633 perf_buffer__free_cpu_buf(pb, cpu_buf); 11634 } 11635 free(pb->cpu_bufs); 11636 } 11637 if (pb->epoll_fd >= 0) 11638 close(pb->epoll_fd); 11639 free(pb->events); 11640 free(pb); 11641 } 11642 11643 static struct perf_cpu_buf * 11644 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 11645 int cpu, int map_key) 11646 { 11647 struct perf_cpu_buf *cpu_buf; 11648 char msg[STRERR_BUFSIZE]; 11649 int err; 11650 11651 cpu_buf = calloc(1, sizeof(*cpu_buf)); 11652 if (!cpu_buf) 11653 return ERR_PTR(-ENOMEM); 11654 11655 cpu_buf->pb = pb; 11656 cpu_buf->cpu = cpu; 11657 cpu_buf->map_key = map_key; 11658 11659 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 11660 -1, PERF_FLAG_FD_CLOEXEC); 11661 if (cpu_buf->fd < 0) { 11662 err = -errno; 11663 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 11664 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11665 goto error; 11666 } 11667 11668 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 11669 PROT_READ | PROT_WRITE, MAP_SHARED, 11670 cpu_buf->fd, 0); 11671 if (cpu_buf->base == MAP_FAILED) { 11672 cpu_buf->base = NULL; 11673 err = -errno; 11674 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 11675 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11676 goto error; 11677 } 11678 11679 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 11680 err = -errno; 11681 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 11682 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11683 goto error; 11684 } 11685 11686 return cpu_buf; 11687 11688 error: 11689 perf_buffer__free_cpu_buf(pb, cpu_buf); 11690 return (struct perf_cpu_buf *)ERR_PTR(err); 11691 } 11692 11693 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 11694 struct perf_buffer_params *p); 11695 11696 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 11697 perf_buffer_sample_fn sample_cb, 11698 perf_buffer_lost_fn lost_cb, 11699 void *ctx, 11700 const struct perf_buffer_opts *opts) 11701 { 11702 const size_t attr_sz = sizeof(struct perf_event_attr); 11703 struct perf_buffer_params p = {}; 11704 struct perf_event_attr attr; 11705 11706 if (!OPTS_VALID(opts, perf_buffer_opts)) 11707 return libbpf_err_ptr(-EINVAL); 11708 11709 memset(&attr, 0, attr_sz); 11710 attr.size = attr_sz; 11711 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 11712 attr.type = PERF_TYPE_SOFTWARE; 11713 attr.sample_type = PERF_SAMPLE_RAW; 11714 attr.sample_period = 1; 11715 attr.wakeup_events = 1; 11716 11717 p.attr = &attr; 11718 p.sample_cb = sample_cb; 11719 p.lost_cb = lost_cb; 11720 p.ctx = ctx; 11721 11722 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 11723 } 11724 11725 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 11726 struct perf_event_attr *attr, 11727 perf_buffer_event_fn event_cb, void *ctx, 11728 const struct perf_buffer_raw_opts *opts) 11729 { 11730 struct perf_buffer_params p = {}; 11731 11732 if (!attr) 11733 return libbpf_err_ptr(-EINVAL); 11734 11735 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 11736 return libbpf_err_ptr(-EINVAL); 11737 11738 p.attr = attr; 11739 p.event_cb = event_cb; 11740 p.ctx = ctx; 11741 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 11742 p.cpus = OPTS_GET(opts, cpus, NULL); 11743 p.map_keys = OPTS_GET(opts, map_keys, NULL); 11744 11745 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 11746 } 11747 11748 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 11749 struct perf_buffer_params *p) 11750 { 11751 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 11752 struct bpf_map_info map; 11753 char msg[STRERR_BUFSIZE]; 11754 struct perf_buffer *pb; 11755 bool *online = NULL; 11756 __u32 map_info_len; 11757 int err, i, j, n; 11758 11759 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 11760 pr_warn("page count should be power of two, but is %zu\n", 11761 page_cnt); 11762 return ERR_PTR(-EINVAL); 11763 } 11764 11765 /* best-effort sanity checks */ 11766 memset(&map, 0, sizeof(map)); 11767 map_info_len = sizeof(map); 11768 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 11769 if (err) { 11770 err = -errno; 11771 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 11772 * -EBADFD, -EFAULT, or -E2BIG on real error 11773 */ 11774 if (err != -EINVAL) { 11775 pr_warn("failed to get map info for map FD %d: %s\n", 11776 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 11777 return ERR_PTR(err); 11778 } 11779 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 11780 map_fd); 11781 } else { 11782 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 11783 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 11784 map.name); 11785 return ERR_PTR(-EINVAL); 11786 } 11787 } 11788 11789 pb = calloc(1, sizeof(*pb)); 11790 if (!pb) 11791 return ERR_PTR(-ENOMEM); 11792 11793 pb->event_cb = p->event_cb; 11794 pb->sample_cb = p->sample_cb; 11795 pb->lost_cb = p->lost_cb; 11796 pb->ctx = p->ctx; 11797 11798 pb->page_size = getpagesize(); 11799 pb->mmap_size = pb->page_size * page_cnt; 11800 pb->map_fd = map_fd; 11801 11802 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 11803 if (pb->epoll_fd < 0) { 11804 err = -errno; 11805 pr_warn("failed to create epoll instance: %s\n", 11806 libbpf_strerror_r(err, msg, sizeof(msg))); 11807 goto error; 11808 } 11809 11810 if (p->cpu_cnt > 0) { 11811 pb->cpu_cnt = p->cpu_cnt; 11812 } else { 11813 pb->cpu_cnt = libbpf_num_possible_cpus(); 11814 if (pb->cpu_cnt < 0) { 11815 err = pb->cpu_cnt; 11816 goto error; 11817 } 11818 if (map.max_entries && map.max_entries < pb->cpu_cnt) 11819 pb->cpu_cnt = map.max_entries; 11820 } 11821 11822 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 11823 if (!pb->events) { 11824 err = -ENOMEM; 11825 pr_warn("failed to allocate events: out of memory\n"); 11826 goto error; 11827 } 11828 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 11829 if (!pb->cpu_bufs) { 11830 err = -ENOMEM; 11831 pr_warn("failed to allocate buffers: out of memory\n"); 11832 goto error; 11833 } 11834 11835 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 11836 if (err) { 11837 pr_warn("failed to get online CPU mask: %d\n", err); 11838 goto error; 11839 } 11840 11841 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 11842 struct perf_cpu_buf *cpu_buf; 11843 int cpu, map_key; 11844 11845 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 11846 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 11847 11848 /* in case user didn't explicitly requested particular CPUs to 11849 * be attached to, skip offline/not present CPUs 11850 */ 11851 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 11852 continue; 11853 11854 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 11855 if (IS_ERR(cpu_buf)) { 11856 err = PTR_ERR(cpu_buf); 11857 goto error; 11858 } 11859 11860 pb->cpu_bufs[j] = cpu_buf; 11861 11862 err = bpf_map_update_elem(pb->map_fd, &map_key, 11863 &cpu_buf->fd, 0); 11864 if (err) { 11865 err = -errno; 11866 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 11867 cpu, map_key, cpu_buf->fd, 11868 libbpf_strerror_r(err, msg, sizeof(msg))); 11869 goto error; 11870 } 11871 11872 pb->events[j].events = EPOLLIN; 11873 pb->events[j].data.ptr = cpu_buf; 11874 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 11875 &pb->events[j]) < 0) { 11876 err = -errno; 11877 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 11878 cpu, cpu_buf->fd, 11879 libbpf_strerror_r(err, msg, sizeof(msg))); 11880 goto error; 11881 } 11882 j++; 11883 } 11884 pb->cpu_cnt = j; 11885 free(online); 11886 11887 return pb; 11888 11889 error: 11890 free(online); 11891 if (pb) 11892 perf_buffer__free(pb); 11893 return ERR_PTR(err); 11894 } 11895 11896 struct perf_sample_raw { 11897 struct perf_event_header header; 11898 uint32_t size; 11899 char data[]; 11900 }; 11901 11902 struct perf_sample_lost { 11903 struct perf_event_header header; 11904 uint64_t id; 11905 uint64_t lost; 11906 uint64_t sample_id; 11907 }; 11908 11909 static enum bpf_perf_event_ret 11910 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 11911 { 11912 struct perf_cpu_buf *cpu_buf = ctx; 11913 struct perf_buffer *pb = cpu_buf->pb; 11914 void *data = e; 11915 11916 /* user wants full control over parsing perf event */ 11917 if (pb->event_cb) 11918 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 11919 11920 switch (e->type) { 11921 case PERF_RECORD_SAMPLE: { 11922 struct perf_sample_raw *s = data; 11923 11924 if (pb->sample_cb) 11925 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 11926 break; 11927 } 11928 case PERF_RECORD_LOST: { 11929 struct perf_sample_lost *s = data; 11930 11931 if (pb->lost_cb) 11932 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 11933 break; 11934 } 11935 default: 11936 pr_warn("unknown perf sample type %d\n", e->type); 11937 return LIBBPF_PERF_EVENT_ERROR; 11938 } 11939 return LIBBPF_PERF_EVENT_CONT; 11940 } 11941 11942 static int perf_buffer__process_records(struct perf_buffer *pb, 11943 struct perf_cpu_buf *cpu_buf) 11944 { 11945 enum bpf_perf_event_ret ret; 11946 11947 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 11948 pb->page_size, &cpu_buf->buf, 11949 &cpu_buf->buf_size, 11950 perf_buffer__process_record, cpu_buf); 11951 if (ret != LIBBPF_PERF_EVENT_CONT) 11952 return ret; 11953 return 0; 11954 } 11955 11956 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 11957 { 11958 return pb->epoll_fd; 11959 } 11960 11961 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 11962 { 11963 int i, cnt, err; 11964 11965 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 11966 if (cnt < 0) 11967 return -errno; 11968 11969 for (i = 0; i < cnt; i++) { 11970 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 11971 11972 err = perf_buffer__process_records(pb, cpu_buf); 11973 if (err) { 11974 pr_warn("error while processing records: %d\n", err); 11975 return libbpf_err(err); 11976 } 11977 } 11978 return cnt; 11979 } 11980 11981 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 11982 * manager. 11983 */ 11984 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 11985 { 11986 return pb->cpu_cnt; 11987 } 11988 11989 /* 11990 * Return perf_event FD of a ring buffer in *buf_idx* slot of 11991 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 11992 * select()/poll()/epoll() Linux syscalls. 11993 */ 11994 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 11995 { 11996 struct perf_cpu_buf *cpu_buf; 11997 11998 if (buf_idx >= pb->cpu_cnt) 11999 return libbpf_err(-EINVAL); 12000 12001 cpu_buf = pb->cpu_bufs[buf_idx]; 12002 if (!cpu_buf) 12003 return libbpf_err(-ENOENT); 12004 12005 return cpu_buf->fd; 12006 } 12007 12008 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 12009 { 12010 struct perf_cpu_buf *cpu_buf; 12011 12012 if (buf_idx >= pb->cpu_cnt) 12013 return libbpf_err(-EINVAL); 12014 12015 cpu_buf = pb->cpu_bufs[buf_idx]; 12016 if (!cpu_buf) 12017 return libbpf_err(-ENOENT); 12018 12019 *buf = cpu_buf->base; 12020 *buf_size = pb->mmap_size; 12021 return 0; 12022 } 12023 12024 /* 12025 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 12026 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 12027 * consume, do nothing and return success. 12028 * Returns: 12029 * - 0 on success; 12030 * - <0 on failure. 12031 */ 12032 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 12033 { 12034 struct perf_cpu_buf *cpu_buf; 12035 12036 if (buf_idx >= pb->cpu_cnt) 12037 return libbpf_err(-EINVAL); 12038 12039 cpu_buf = pb->cpu_bufs[buf_idx]; 12040 if (!cpu_buf) 12041 return libbpf_err(-ENOENT); 12042 12043 return perf_buffer__process_records(pb, cpu_buf); 12044 } 12045 12046 int perf_buffer__consume(struct perf_buffer *pb) 12047 { 12048 int i, err; 12049 12050 for (i = 0; i < pb->cpu_cnt; i++) { 12051 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12052 12053 if (!cpu_buf) 12054 continue; 12055 12056 err = perf_buffer__process_records(pb, cpu_buf); 12057 if (err) { 12058 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 12059 return libbpf_err(err); 12060 } 12061 } 12062 return 0; 12063 } 12064 12065 int bpf_program__set_attach_target(struct bpf_program *prog, 12066 int attach_prog_fd, 12067 const char *attach_func_name) 12068 { 12069 int btf_obj_fd = 0, btf_id = 0, err; 12070 12071 if (!prog || attach_prog_fd < 0) 12072 return libbpf_err(-EINVAL); 12073 12074 if (prog->obj->loaded) 12075 return libbpf_err(-EINVAL); 12076 12077 if (attach_prog_fd && !attach_func_name) { 12078 /* remember attach_prog_fd and let bpf_program__load() find 12079 * BTF ID during the program load 12080 */ 12081 prog->attach_prog_fd = attach_prog_fd; 12082 return 0; 12083 } 12084 12085 if (attach_prog_fd) { 12086 btf_id = libbpf_find_prog_btf_id(attach_func_name, 12087 attach_prog_fd); 12088 if (btf_id < 0) 12089 return libbpf_err(btf_id); 12090 } else { 12091 if (!attach_func_name) 12092 return libbpf_err(-EINVAL); 12093 12094 /* load btf_vmlinux, if not yet */ 12095 err = bpf_object__load_vmlinux_btf(prog->obj, true); 12096 if (err) 12097 return libbpf_err(err); 12098 err = find_kernel_btf_id(prog->obj, attach_func_name, 12099 prog->expected_attach_type, 12100 &btf_obj_fd, &btf_id); 12101 if (err) 12102 return libbpf_err(err); 12103 } 12104 12105 prog->attach_btf_id = btf_id; 12106 prog->attach_btf_obj_fd = btf_obj_fd; 12107 prog->attach_prog_fd = attach_prog_fd; 12108 return 0; 12109 } 12110 12111 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 12112 { 12113 int err = 0, n, len, start, end = -1; 12114 bool *tmp; 12115 12116 *mask = NULL; 12117 *mask_sz = 0; 12118 12119 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 12120 while (*s) { 12121 if (*s == ',' || *s == '\n') { 12122 s++; 12123 continue; 12124 } 12125 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 12126 if (n <= 0 || n > 2) { 12127 pr_warn("Failed to get CPU range %s: %d\n", s, n); 12128 err = -EINVAL; 12129 goto cleanup; 12130 } else if (n == 1) { 12131 end = start; 12132 } 12133 if (start < 0 || start > end) { 12134 pr_warn("Invalid CPU range [%d,%d] in %s\n", 12135 start, end, s); 12136 err = -EINVAL; 12137 goto cleanup; 12138 } 12139 tmp = realloc(*mask, end + 1); 12140 if (!tmp) { 12141 err = -ENOMEM; 12142 goto cleanup; 12143 } 12144 *mask = tmp; 12145 memset(tmp + *mask_sz, 0, start - *mask_sz); 12146 memset(tmp + start, 1, end - start + 1); 12147 *mask_sz = end + 1; 12148 s += len; 12149 } 12150 if (!*mask_sz) { 12151 pr_warn("Empty CPU range\n"); 12152 return -EINVAL; 12153 } 12154 return 0; 12155 cleanup: 12156 free(*mask); 12157 *mask = NULL; 12158 return err; 12159 } 12160 12161 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 12162 { 12163 int fd, err = 0, len; 12164 char buf[128]; 12165 12166 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 12167 if (fd < 0) { 12168 err = -errno; 12169 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 12170 return err; 12171 } 12172 len = read(fd, buf, sizeof(buf)); 12173 close(fd); 12174 if (len <= 0) { 12175 err = len ? -errno : -EINVAL; 12176 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 12177 return err; 12178 } 12179 if (len >= sizeof(buf)) { 12180 pr_warn("CPU mask is too big in file %s\n", fcpu); 12181 return -E2BIG; 12182 } 12183 buf[len] = '\0'; 12184 12185 return parse_cpu_mask_str(buf, mask, mask_sz); 12186 } 12187 12188 int libbpf_num_possible_cpus(void) 12189 { 12190 static const char *fcpu = "/sys/devices/system/cpu/possible"; 12191 static int cpus; 12192 int err, n, i, tmp_cpus; 12193 bool *mask; 12194 12195 tmp_cpus = READ_ONCE(cpus); 12196 if (tmp_cpus > 0) 12197 return tmp_cpus; 12198 12199 err = parse_cpu_mask_file(fcpu, &mask, &n); 12200 if (err) 12201 return libbpf_err(err); 12202 12203 tmp_cpus = 0; 12204 for (i = 0; i < n; i++) { 12205 if (mask[i]) 12206 tmp_cpus++; 12207 } 12208 free(mask); 12209 12210 WRITE_ONCE(cpus, tmp_cpus); 12211 return tmp_cpus; 12212 } 12213 12214 static int populate_skeleton_maps(const struct bpf_object *obj, 12215 struct bpf_map_skeleton *maps, 12216 size_t map_cnt) 12217 { 12218 int i; 12219 12220 for (i = 0; i < map_cnt; i++) { 12221 struct bpf_map **map = maps[i].map; 12222 const char *name = maps[i].name; 12223 void **mmaped = maps[i].mmaped; 12224 12225 *map = bpf_object__find_map_by_name(obj, name); 12226 if (!*map) { 12227 pr_warn("failed to find skeleton map '%s'\n", name); 12228 return -ESRCH; 12229 } 12230 12231 /* externs shouldn't be pre-setup from user code */ 12232 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 12233 *mmaped = (*map)->mmaped; 12234 } 12235 return 0; 12236 } 12237 12238 static int populate_skeleton_progs(const struct bpf_object *obj, 12239 struct bpf_prog_skeleton *progs, 12240 size_t prog_cnt) 12241 { 12242 int i; 12243 12244 for (i = 0; i < prog_cnt; i++) { 12245 struct bpf_program **prog = progs[i].prog; 12246 const char *name = progs[i].name; 12247 12248 *prog = bpf_object__find_program_by_name(obj, name); 12249 if (!*prog) { 12250 pr_warn("failed to find skeleton program '%s'\n", name); 12251 return -ESRCH; 12252 } 12253 } 12254 return 0; 12255 } 12256 12257 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 12258 const struct bpf_object_open_opts *opts) 12259 { 12260 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 12261 .object_name = s->name, 12262 ); 12263 struct bpf_object *obj; 12264 int err; 12265 12266 /* Attempt to preserve opts->object_name, unless overriden by user 12267 * explicitly. Overwriting object name for skeletons is discouraged, 12268 * as it breaks global data maps, because they contain object name 12269 * prefix as their own map name prefix. When skeleton is generated, 12270 * bpftool is making an assumption that this name will stay the same. 12271 */ 12272 if (opts) { 12273 memcpy(&skel_opts, opts, sizeof(*opts)); 12274 if (!opts->object_name) 12275 skel_opts.object_name = s->name; 12276 } 12277 12278 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 12279 err = libbpf_get_error(obj); 12280 if (err) { 12281 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 12282 s->name, err); 12283 return libbpf_err(err); 12284 } 12285 12286 *s->obj = obj; 12287 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 12288 if (err) { 12289 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 12290 return libbpf_err(err); 12291 } 12292 12293 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 12294 if (err) { 12295 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 12296 return libbpf_err(err); 12297 } 12298 12299 return 0; 12300 } 12301 12302 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 12303 { 12304 int err, len, var_idx, i; 12305 const char *var_name; 12306 const struct bpf_map *map; 12307 struct btf *btf; 12308 __u32 map_type_id; 12309 const struct btf_type *map_type, *var_type; 12310 const struct bpf_var_skeleton *var_skel; 12311 struct btf_var_secinfo *var; 12312 12313 if (!s->obj) 12314 return libbpf_err(-EINVAL); 12315 12316 btf = bpf_object__btf(s->obj); 12317 if (!btf) { 12318 pr_warn("subskeletons require BTF at runtime (object %s)\n", 12319 bpf_object__name(s->obj)); 12320 return libbpf_err(-errno); 12321 } 12322 12323 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 12324 if (err) { 12325 pr_warn("failed to populate subskeleton maps: %d\n", err); 12326 return libbpf_err(err); 12327 } 12328 12329 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 12330 if (err) { 12331 pr_warn("failed to populate subskeleton maps: %d\n", err); 12332 return libbpf_err(err); 12333 } 12334 12335 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 12336 var_skel = &s->vars[var_idx]; 12337 map = *var_skel->map; 12338 map_type_id = bpf_map__btf_value_type_id(map); 12339 map_type = btf__type_by_id(btf, map_type_id); 12340 12341 if (!btf_is_datasec(map_type)) { 12342 pr_warn("type for map '%1$s' is not a datasec: %2$s", 12343 bpf_map__name(map), 12344 __btf_kind_str(btf_kind(map_type))); 12345 return libbpf_err(-EINVAL); 12346 } 12347 12348 len = btf_vlen(map_type); 12349 var = btf_var_secinfos(map_type); 12350 for (i = 0; i < len; i++, var++) { 12351 var_type = btf__type_by_id(btf, var->type); 12352 var_name = btf__name_by_offset(btf, var_type->name_off); 12353 if (strcmp(var_name, var_skel->name) == 0) { 12354 *var_skel->addr = map->mmaped + var->offset; 12355 break; 12356 } 12357 } 12358 } 12359 return 0; 12360 } 12361 12362 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 12363 { 12364 if (!s) 12365 return; 12366 free(s->maps); 12367 free(s->progs); 12368 free(s->vars); 12369 free(s); 12370 } 12371 12372 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 12373 { 12374 int i, err; 12375 12376 err = bpf_object__load(*s->obj); 12377 if (err) { 12378 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 12379 return libbpf_err(err); 12380 } 12381 12382 for (i = 0; i < s->map_cnt; i++) { 12383 struct bpf_map *map = *s->maps[i].map; 12384 size_t mmap_sz = bpf_map_mmap_sz(map); 12385 int prot, map_fd = bpf_map__fd(map); 12386 void **mmaped = s->maps[i].mmaped; 12387 12388 if (!mmaped) 12389 continue; 12390 12391 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 12392 *mmaped = NULL; 12393 continue; 12394 } 12395 12396 if (map->def.map_flags & BPF_F_RDONLY_PROG) 12397 prot = PROT_READ; 12398 else 12399 prot = PROT_READ | PROT_WRITE; 12400 12401 /* Remap anonymous mmap()-ed "map initialization image" as 12402 * a BPF map-backed mmap()-ed memory, but preserving the same 12403 * memory address. This will cause kernel to change process' 12404 * page table to point to a different piece of kernel memory, 12405 * but from userspace point of view memory address (and its 12406 * contents, being identical at this point) will stay the 12407 * same. This mapping will be released by bpf_object__close() 12408 * as per normal clean up procedure, so we don't need to worry 12409 * about it from skeleton's clean up perspective. 12410 */ 12411 *mmaped = mmap(map->mmaped, mmap_sz, prot, 12412 MAP_SHARED | MAP_FIXED, map_fd, 0); 12413 if (*mmaped == MAP_FAILED) { 12414 err = -errno; 12415 *mmaped = NULL; 12416 pr_warn("failed to re-mmap() map '%s': %d\n", 12417 bpf_map__name(map), err); 12418 return libbpf_err(err); 12419 } 12420 } 12421 12422 return 0; 12423 } 12424 12425 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 12426 { 12427 int i, err; 12428 12429 for (i = 0; i < s->prog_cnt; i++) { 12430 struct bpf_program *prog = *s->progs[i].prog; 12431 struct bpf_link **link = s->progs[i].link; 12432 12433 if (!prog->autoload || !prog->autoattach) 12434 continue; 12435 12436 /* auto-attaching not supported for this program */ 12437 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12438 continue; 12439 12440 /* if user already set the link manually, don't attempt auto-attach */ 12441 if (*link) 12442 continue; 12443 12444 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 12445 if (err) { 12446 pr_warn("prog '%s': failed to auto-attach: %d\n", 12447 bpf_program__name(prog), err); 12448 return libbpf_err(err); 12449 } 12450 12451 /* It's possible that for some SEC() definitions auto-attach 12452 * is supported in some cases (e.g., if definition completely 12453 * specifies target information), but is not in other cases. 12454 * SEC("uprobe") is one such case. If user specified target 12455 * binary and function name, such BPF program can be 12456 * auto-attached. But if not, it shouldn't trigger skeleton's 12457 * attach to fail. It should just be skipped. 12458 * attach_fn signals such case with returning 0 (no error) and 12459 * setting link to NULL. 12460 */ 12461 } 12462 12463 return 0; 12464 } 12465 12466 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 12467 { 12468 int i; 12469 12470 for (i = 0; i < s->prog_cnt; i++) { 12471 struct bpf_link **link = s->progs[i].link; 12472 12473 bpf_link__destroy(*link); 12474 *link = NULL; 12475 } 12476 } 12477 12478 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 12479 { 12480 if (!s) 12481 return; 12482 12483 if (s->progs) 12484 bpf_object__detach_skeleton(s); 12485 if (s->obj) 12486 bpf_object__close(*s->obj); 12487 free(s->maps); 12488 free(s->progs); 12489 free(s); 12490 } 12491