1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/list.h> 35 #include <linux/limits.h> 36 #include <linux/perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <linux/version.h> 39 #include <sys/epoll.h> 40 #include <sys/ioctl.h> 41 #include <sys/mman.h> 42 #include <sys/stat.h> 43 #include <sys/types.h> 44 #include <sys/vfs.h> 45 #include <sys/utsname.h> 46 #include <sys/resource.h> 47 #include <libelf.h> 48 #include <gelf.h> 49 #include <zlib.h> 50 51 #include "libbpf.h" 52 #include "bpf.h" 53 #include "btf.h" 54 #include "str_error.h" 55 #include "libbpf_internal.h" 56 #include "hashmap.h" 57 58 #ifndef EM_BPF 59 #define EM_BPF 247 60 #endif 61 62 #ifndef BPF_FS_MAGIC 63 #define BPF_FS_MAGIC 0xcafe4a11 64 #endif 65 66 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 67 68 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 69 * compilation if user enables corresponding warning. Disable it explicitly. 70 */ 71 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 72 73 #define __printf(a, b) __attribute__((format(printf, a, b))) 74 75 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 76 static const struct btf_type * 77 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id); 78 79 static int __base_pr(enum libbpf_print_level level, const char *format, 80 va_list args) 81 { 82 if (level == LIBBPF_DEBUG) 83 return 0; 84 85 return vfprintf(stderr, format, args); 86 } 87 88 static libbpf_print_fn_t __libbpf_pr = __base_pr; 89 90 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 91 { 92 libbpf_print_fn_t old_print_fn = __libbpf_pr; 93 94 __libbpf_pr = fn; 95 return old_print_fn; 96 } 97 98 __printf(2, 3) 99 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 100 { 101 va_list args; 102 103 if (!__libbpf_pr) 104 return; 105 106 va_start(args, format); 107 __libbpf_pr(level, format, args); 108 va_end(args); 109 } 110 111 static void pr_perm_msg(int err) 112 { 113 struct rlimit limit; 114 char buf[100]; 115 116 if (err != -EPERM || geteuid() != 0) 117 return; 118 119 err = getrlimit(RLIMIT_MEMLOCK, &limit); 120 if (err) 121 return; 122 123 if (limit.rlim_cur == RLIM_INFINITY) 124 return; 125 126 if (limit.rlim_cur < 1024) 127 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 128 else if (limit.rlim_cur < 1024*1024) 129 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 130 else 131 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 132 133 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 134 buf); 135 } 136 137 #define STRERR_BUFSIZE 128 138 139 /* Copied from tools/perf/util/util.h */ 140 #ifndef zfree 141 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 142 #endif 143 144 #ifndef zclose 145 # define zclose(fd) ({ \ 146 int ___err = 0; \ 147 if ((fd) >= 0) \ 148 ___err = close((fd)); \ 149 fd = -1; \ 150 ___err; }) 151 #endif 152 153 static inline __u64 ptr_to_u64(const void *ptr) 154 { 155 return (__u64) (unsigned long) ptr; 156 } 157 158 enum kern_feature_id { 159 /* v4.14: kernel support for program & map names. */ 160 FEAT_PROG_NAME, 161 /* v5.2: kernel support for global data sections. */ 162 FEAT_GLOBAL_DATA, 163 /* BTF support */ 164 FEAT_BTF, 165 /* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */ 166 FEAT_BTF_FUNC, 167 /* BTF_KIND_VAR and BTF_KIND_DATASEC support */ 168 FEAT_BTF_DATASEC, 169 /* BTF_FUNC_GLOBAL is supported */ 170 FEAT_BTF_GLOBAL_FUNC, 171 /* BPF_F_MMAPABLE is supported for arrays */ 172 FEAT_ARRAY_MMAP, 173 /* kernel support for expected_attach_type in BPF_PROG_LOAD */ 174 FEAT_EXP_ATTACH_TYPE, 175 /* bpf_probe_read_{kernel,user}[_str] helpers */ 176 FEAT_PROBE_READ_KERN, 177 /* BPF_PROG_BIND_MAP is supported */ 178 FEAT_PROG_BIND_MAP, 179 __FEAT_CNT, 180 }; 181 182 static bool kernel_supports(enum kern_feature_id feat_id); 183 184 enum reloc_type { 185 RELO_LD64, 186 RELO_CALL, 187 RELO_DATA, 188 RELO_EXTERN, 189 }; 190 191 struct reloc_desc { 192 enum reloc_type type; 193 int insn_idx; 194 int map_idx; 195 int sym_off; 196 bool processed; 197 }; 198 199 struct bpf_sec_def; 200 201 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_sec_def *sec, 202 struct bpf_program *prog); 203 204 struct bpf_sec_def { 205 const char *sec; 206 size_t len; 207 enum bpf_prog_type prog_type; 208 enum bpf_attach_type expected_attach_type; 209 bool is_exp_attach_type_optional; 210 bool is_attachable; 211 bool is_attach_btf; 212 bool is_sleepable; 213 attach_fn_t attach_fn; 214 }; 215 216 /* 217 * bpf_prog should be a better name but it has been used in 218 * linux/filter.h. 219 */ 220 struct bpf_program { 221 const struct bpf_sec_def *sec_def; 222 char *sec_name; 223 size_t sec_idx; 224 /* this program's instruction offset (in number of instructions) 225 * within its containing ELF section 226 */ 227 size_t sec_insn_off; 228 /* number of original instructions in ELF section belonging to this 229 * program, not taking into account subprogram instructions possible 230 * appended later during relocation 231 */ 232 size_t sec_insn_cnt; 233 /* Offset (in number of instructions) of the start of instruction 234 * belonging to this BPF program within its containing main BPF 235 * program. For the entry-point (main) BPF program, this is always 236 * zero. For a sub-program, this gets reset before each of main BPF 237 * programs are processed and relocated and is used to determined 238 * whether sub-program was already appended to the main program, and 239 * if yes, at which instruction offset. 240 */ 241 size_t sub_insn_off; 242 243 char *name; 244 /* sec_name with / replaced by _; makes recursive pinning 245 * in bpf_object__pin_programs easier 246 */ 247 char *pin_name; 248 249 /* instructions that belong to BPF program; insns[0] is located at 250 * sec_insn_off instruction within its ELF section in ELF file, so 251 * when mapping ELF file instruction index to the local instruction, 252 * one needs to subtract sec_insn_off; and vice versa. 253 */ 254 struct bpf_insn *insns; 255 /* actual number of instruction in this BPF program's image; for 256 * entry-point BPF programs this includes the size of main program 257 * itself plus all the used sub-programs, appended at the end 258 */ 259 size_t insns_cnt; 260 261 struct reloc_desc *reloc_desc; 262 int nr_reloc; 263 int log_level; 264 265 struct { 266 int nr; 267 int *fds; 268 } instances; 269 bpf_program_prep_t preprocessor; 270 271 struct bpf_object *obj; 272 void *priv; 273 bpf_program_clear_priv_t clear_priv; 274 275 bool load; 276 enum bpf_prog_type type; 277 enum bpf_attach_type expected_attach_type; 278 int prog_ifindex; 279 __u32 attach_btf_id; 280 __u32 attach_prog_fd; 281 void *func_info; 282 __u32 func_info_rec_size; 283 __u32 func_info_cnt; 284 285 void *line_info; 286 __u32 line_info_rec_size; 287 __u32 line_info_cnt; 288 __u32 prog_flags; 289 }; 290 291 struct bpf_struct_ops { 292 const char *tname; 293 const struct btf_type *type; 294 struct bpf_program **progs; 295 __u32 *kern_func_off; 296 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 297 void *data; 298 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 299 * btf_vmlinux's format. 300 * struct bpf_struct_ops_tcp_congestion_ops { 301 * [... some other kernel fields ...] 302 * struct tcp_congestion_ops data; 303 * } 304 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 305 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 306 * from "data". 307 */ 308 void *kern_vdata; 309 __u32 type_id; 310 }; 311 312 #define DATA_SEC ".data" 313 #define BSS_SEC ".bss" 314 #define RODATA_SEC ".rodata" 315 #define KCONFIG_SEC ".kconfig" 316 #define KSYMS_SEC ".ksyms" 317 #define STRUCT_OPS_SEC ".struct_ops" 318 319 enum libbpf_map_type { 320 LIBBPF_MAP_UNSPEC, 321 LIBBPF_MAP_DATA, 322 LIBBPF_MAP_BSS, 323 LIBBPF_MAP_RODATA, 324 LIBBPF_MAP_KCONFIG, 325 }; 326 327 static const char * const libbpf_type_to_btf_name[] = { 328 [LIBBPF_MAP_DATA] = DATA_SEC, 329 [LIBBPF_MAP_BSS] = BSS_SEC, 330 [LIBBPF_MAP_RODATA] = RODATA_SEC, 331 [LIBBPF_MAP_KCONFIG] = KCONFIG_SEC, 332 }; 333 334 struct bpf_map { 335 char *name; 336 int fd; 337 int sec_idx; 338 size_t sec_offset; 339 int map_ifindex; 340 int inner_map_fd; 341 struct bpf_map_def def; 342 __u32 numa_node; 343 __u32 btf_var_idx; 344 __u32 btf_key_type_id; 345 __u32 btf_value_type_id; 346 __u32 btf_vmlinux_value_type_id; 347 void *priv; 348 bpf_map_clear_priv_t clear_priv; 349 enum libbpf_map_type libbpf_type; 350 void *mmaped; 351 struct bpf_struct_ops *st_ops; 352 struct bpf_map *inner_map; 353 void **init_slots; 354 int init_slots_sz; 355 char *pin_path; 356 bool pinned; 357 bool reused; 358 }; 359 360 enum extern_type { 361 EXT_UNKNOWN, 362 EXT_KCFG, 363 EXT_KSYM, 364 }; 365 366 enum kcfg_type { 367 KCFG_UNKNOWN, 368 KCFG_CHAR, 369 KCFG_BOOL, 370 KCFG_INT, 371 KCFG_TRISTATE, 372 KCFG_CHAR_ARR, 373 }; 374 375 struct extern_desc { 376 enum extern_type type; 377 int sym_idx; 378 int btf_id; 379 int sec_btf_id; 380 const char *name; 381 bool is_set; 382 bool is_weak; 383 union { 384 struct { 385 enum kcfg_type type; 386 int sz; 387 int align; 388 int data_off; 389 bool is_signed; 390 } kcfg; 391 struct { 392 unsigned long long addr; 393 394 /* target btf_id of the corresponding kernel var. */ 395 int vmlinux_btf_id; 396 397 /* local btf_id of the ksym extern's type. */ 398 __u32 type_id; 399 } ksym; 400 }; 401 }; 402 403 static LIST_HEAD(bpf_objects_list); 404 405 struct bpf_object { 406 char name[BPF_OBJ_NAME_LEN]; 407 char license[64]; 408 __u32 kern_version; 409 410 struct bpf_program *programs; 411 size_t nr_programs; 412 struct bpf_map *maps; 413 size_t nr_maps; 414 size_t maps_cap; 415 416 char *kconfig; 417 struct extern_desc *externs; 418 int nr_extern; 419 int kconfig_map_idx; 420 int rodata_map_idx; 421 422 bool loaded; 423 bool has_subcalls; 424 425 /* 426 * Information when doing elf related work. Only valid if fd 427 * is valid. 428 */ 429 struct { 430 int fd; 431 const void *obj_buf; 432 size_t obj_buf_sz; 433 Elf *elf; 434 GElf_Ehdr ehdr; 435 Elf_Data *symbols; 436 Elf_Data *data; 437 Elf_Data *rodata; 438 Elf_Data *bss; 439 Elf_Data *st_ops_data; 440 size_t shstrndx; /* section index for section name strings */ 441 size_t strtabidx; 442 struct { 443 GElf_Shdr shdr; 444 Elf_Data *data; 445 } *reloc_sects; 446 int nr_reloc_sects; 447 int maps_shndx; 448 int btf_maps_shndx; 449 __u32 btf_maps_sec_btf_id; 450 int text_shndx; 451 int symbols_shndx; 452 int data_shndx; 453 int rodata_shndx; 454 int bss_shndx; 455 int st_ops_shndx; 456 } efile; 457 /* 458 * All loaded bpf_object is linked in a list, which is 459 * hidden to caller. bpf_objects__<func> handlers deal with 460 * all objects. 461 */ 462 struct list_head list; 463 464 struct btf *btf; 465 /* Parse and load BTF vmlinux if any of the programs in the object need 466 * it at load time. 467 */ 468 struct btf *btf_vmlinux; 469 struct btf_ext *btf_ext; 470 471 void *priv; 472 bpf_object_clear_priv_t clear_priv; 473 474 char path[]; 475 }; 476 #define obj_elf_valid(o) ((o)->efile.elf) 477 478 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 479 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 480 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 481 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 482 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr); 483 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 484 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 485 static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx, 486 size_t off, __u32 sym_type, GElf_Sym *sym); 487 488 void bpf_program__unload(struct bpf_program *prog) 489 { 490 int i; 491 492 if (!prog) 493 return; 494 495 /* 496 * If the object is opened but the program was never loaded, 497 * it is possible that prog->instances.nr == -1. 498 */ 499 if (prog->instances.nr > 0) { 500 for (i = 0; i < prog->instances.nr; i++) 501 zclose(prog->instances.fds[i]); 502 } else if (prog->instances.nr != -1) { 503 pr_warn("Internal error: instances.nr is %d\n", 504 prog->instances.nr); 505 } 506 507 prog->instances.nr = -1; 508 zfree(&prog->instances.fds); 509 510 zfree(&prog->func_info); 511 zfree(&prog->line_info); 512 } 513 514 static void bpf_program__exit(struct bpf_program *prog) 515 { 516 if (!prog) 517 return; 518 519 if (prog->clear_priv) 520 prog->clear_priv(prog, prog->priv); 521 522 prog->priv = NULL; 523 prog->clear_priv = NULL; 524 525 bpf_program__unload(prog); 526 zfree(&prog->name); 527 zfree(&prog->sec_name); 528 zfree(&prog->pin_name); 529 zfree(&prog->insns); 530 zfree(&prog->reloc_desc); 531 532 prog->nr_reloc = 0; 533 prog->insns_cnt = 0; 534 prog->sec_idx = -1; 535 } 536 537 static char *__bpf_program__pin_name(struct bpf_program *prog) 538 { 539 char *name, *p; 540 541 name = p = strdup(prog->sec_name); 542 while ((p = strchr(p, '/'))) 543 *p = '_'; 544 545 return name; 546 } 547 548 static bool insn_is_subprog_call(const struct bpf_insn *insn) 549 { 550 return BPF_CLASS(insn->code) == BPF_JMP && 551 BPF_OP(insn->code) == BPF_CALL && 552 BPF_SRC(insn->code) == BPF_K && 553 insn->src_reg == BPF_PSEUDO_CALL && 554 insn->dst_reg == 0 && 555 insn->off == 0; 556 } 557 558 static int 559 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 560 const char *name, size_t sec_idx, const char *sec_name, 561 size_t sec_off, void *insn_data, size_t insn_data_sz) 562 { 563 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 564 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 565 sec_name, name, sec_off, insn_data_sz); 566 return -EINVAL; 567 } 568 569 memset(prog, 0, sizeof(*prog)); 570 prog->obj = obj; 571 572 prog->sec_idx = sec_idx; 573 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 574 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 575 /* insns_cnt can later be increased by appending used subprograms */ 576 prog->insns_cnt = prog->sec_insn_cnt; 577 578 prog->type = BPF_PROG_TYPE_UNSPEC; 579 prog->load = true; 580 581 prog->instances.fds = NULL; 582 prog->instances.nr = -1; 583 584 prog->sec_name = strdup(sec_name); 585 if (!prog->sec_name) 586 goto errout; 587 588 prog->name = strdup(name); 589 if (!prog->name) 590 goto errout; 591 592 prog->pin_name = __bpf_program__pin_name(prog); 593 if (!prog->pin_name) 594 goto errout; 595 596 prog->insns = malloc(insn_data_sz); 597 if (!prog->insns) 598 goto errout; 599 memcpy(prog->insns, insn_data, insn_data_sz); 600 601 return 0; 602 errout: 603 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 604 bpf_program__exit(prog); 605 return -ENOMEM; 606 } 607 608 static int 609 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 610 const char *sec_name, int sec_idx) 611 { 612 struct bpf_program *prog, *progs; 613 void *data = sec_data->d_buf; 614 size_t sec_sz = sec_data->d_size, sec_off, prog_sz; 615 int nr_progs, err; 616 const char *name; 617 GElf_Sym sym; 618 619 progs = obj->programs; 620 nr_progs = obj->nr_programs; 621 sec_off = 0; 622 623 while (sec_off < sec_sz) { 624 if (elf_sym_by_sec_off(obj, sec_idx, sec_off, STT_FUNC, &sym)) { 625 pr_warn("sec '%s': failed to find program symbol at offset %zu\n", 626 sec_name, sec_off); 627 return -LIBBPF_ERRNO__FORMAT; 628 } 629 630 prog_sz = sym.st_size; 631 632 name = elf_sym_str(obj, sym.st_name); 633 if (!name) { 634 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 635 sec_name, sec_off); 636 return -LIBBPF_ERRNO__FORMAT; 637 } 638 639 if (sec_off + prog_sz > sec_sz) { 640 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 641 sec_name, sec_off); 642 return -LIBBPF_ERRNO__FORMAT; 643 } 644 645 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 646 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 647 648 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 649 if (!progs) { 650 /* 651 * In this case the original obj->programs 652 * is still valid, so don't need special treat for 653 * bpf_close_object(). 654 */ 655 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 656 sec_name, name); 657 return -ENOMEM; 658 } 659 obj->programs = progs; 660 661 prog = &progs[nr_progs]; 662 663 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 664 sec_off, data + sec_off, prog_sz); 665 if (err) 666 return err; 667 668 nr_progs++; 669 obj->nr_programs = nr_progs; 670 671 sec_off += prog_sz; 672 } 673 674 return 0; 675 } 676 677 static __u32 get_kernel_version(void) 678 { 679 __u32 major, minor, patch; 680 struct utsname info; 681 682 uname(&info); 683 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 684 return 0; 685 return KERNEL_VERSION(major, minor, patch); 686 } 687 688 static const struct btf_member * 689 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 690 { 691 struct btf_member *m; 692 int i; 693 694 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 695 if (btf_member_bit_offset(t, i) == bit_offset) 696 return m; 697 } 698 699 return NULL; 700 } 701 702 static const struct btf_member * 703 find_member_by_name(const struct btf *btf, const struct btf_type *t, 704 const char *name) 705 { 706 struct btf_member *m; 707 int i; 708 709 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 710 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 711 return m; 712 } 713 714 return NULL; 715 } 716 717 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 718 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 719 const char *name, __u32 kind); 720 721 static int 722 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 723 const struct btf_type **type, __u32 *type_id, 724 const struct btf_type **vtype, __u32 *vtype_id, 725 const struct btf_member **data_member) 726 { 727 const struct btf_type *kern_type, *kern_vtype; 728 const struct btf_member *kern_data_member; 729 __s32 kern_vtype_id, kern_type_id; 730 __u32 i; 731 732 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 733 if (kern_type_id < 0) { 734 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 735 tname); 736 return kern_type_id; 737 } 738 kern_type = btf__type_by_id(btf, kern_type_id); 739 740 /* Find the corresponding "map_value" type that will be used 741 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 742 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 743 * btf_vmlinux. 744 */ 745 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 746 tname, BTF_KIND_STRUCT); 747 if (kern_vtype_id < 0) { 748 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 749 STRUCT_OPS_VALUE_PREFIX, tname); 750 return kern_vtype_id; 751 } 752 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 753 754 /* Find "struct tcp_congestion_ops" from 755 * struct bpf_struct_ops_tcp_congestion_ops { 756 * [ ... ] 757 * struct tcp_congestion_ops data; 758 * } 759 */ 760 kern_data_member = btf_members(kern_vtype); 761 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 762 if (kern_data_member->type == kern_type_id) 763 break; 764 } 765 if (i == btf_vlen(kern_vtype)) { 766 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 767 tname, STRUCT_OPS_VALUE_PREFIX, tname); 768 return -EINVAL; 769 } 770 771 *type = kern_type; 772 *type_id = kern_type_id; 773 *vtype = kern_vtype; 774 *vtype_id = kern_vtype_id; 775 *data_member = kern_data_member; 776 777 return 0; 778 } 779 780 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 781 { 782 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 783 } 784 785 /* Init the map's fields that depend on kern_btf */ 786 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 787 const struct btf *btf, 788 const struct btf *kern_btf) 789 { 790 const struct btf_member *member, *kern_member, *kern_data_member; 791 const struct btf_type *type, *kern_type, *kern_vtype; 792 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 793 struct bpf_struct_ops *st_ops; 794 void *data, *kern_data; 795 const char *tname; 796 int err; 797 798 st_ops = map->st_ops; 799 type = st_ops->type; 800 tname = st_ops->tname; 801 err = find_struct_ops_kern_types(kern_btf, tname, 802 &kern_type, &kern_type_id, 803 &kern_vtype, &kern_vtype_id, 804 &kern_data_member); 805 if (err) 806 return err; 807 808 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 809 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 810 811 map->def.value_size = kern_vtype->size; 812 map->btf_vmlinux_value_type_id = kern_vtype_id; 813 814 st_ops->kern_vdata = calloc(1, kern_vtype->size); 815 if (!st_ops->kern_vdata) 816 return -ENOMEM; 817 818 data = st_ops->data; 819 kern_data_off = kern_data_member->offset / 8; 820 kern_data = st_ops->kern_vdata + kern_data_off; 821 822 member = btf_members(type); 823 for (i = 0; i < btf_vlen(type); i++, member++) { 824 const struct btf_type *mtype, *kern_mtype; 825 __u32 mtype_id, kern_mtype_id; 826 void *mdata, *kern_mdata; 827 __s64 msize, kern_msize; 828 __u32 moff, kern_moff; 829 __u32 kern_member_idx; 830 const char *mname; 831 832 mname = btf__name_by_offset(btf, member->name_off); 833 kern_member = find_member_by_name(kern_btf, kern_type, mname); 834 if (!kern_member) { 835 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 836 map->name, mname); 837 return -ENOTSUP; 838 } 839 840 kern_member_idx = kern_member - btf_members(kern_type); 841 if (btf_member_bitfield_size(type, i) || 842 btf_member_bitfield_size(kern_type, kern_member_idx)) { 843 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 844 map->name, mname); 845 return -ENOTSUP; 846 } 847 848 moff = member->offset / 8; 849 kern_moff = kern_member->offset / 8; 850 851 mdata = data + moff; 852 kern_mdata = kern_data + kern_moff; 853 854 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 855 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 856 &kern_mtype_id); 857 if (BTF_INFO_KIND(mtype->info) != 858 BTF_INFO_KIND(kern_mtype->info)) { 859 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 860 map->name, mname, BTF_INFO_KIND(mtype->info), 861 BTF_INFO_KIND(kern_mtype->info)); 862 return -ENOTSUP; 863 } 864 865 if (btf_is_ptr(mtype)) { 866 struct bpf_program *prog; 867 868 mtype = skip_mods_and_typedefs(btf, mtype->type, &mtype_id); 869 kern_mtype = skip_mods_and_typedefs(kern_btf, 870 kern_mtype->type, 871 &kern_mtype_id); 872 if (!btf_is_func_proto(mtype) || 873 !btf_is_func_proto(kern_mtype)) { 874 pr_warn("struct_ops init_kern %s: non func ptr %s is not supported\n", 875 map->name, mname); 876 return -ENOTSUP; 877 } 878 879 prog = st_ops->progs[i]; 880 if (!prog) { 881 pr_debug("struct_ops init_kern %s: func ptr %s is not set\n", 882 map->name, mname); 883 continue; 884 } 885 886 prog->attach_btf_id = kern_type_id; 887 prog->expected_attach_type = kern_member_idx; 888 889 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 890 891 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 892 map->name, mname, prog->name, moff, 893 kern_moff); 894 895 continue; 896 } 897 898 msize = btf__resolve_size(btf, mtype_id); 899 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 900 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 901 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 902 map->name, mname, (ssize_t)msize, 903 (ssize_t)kern_msize); 904 return -ENOTSUP; 905 } 906 907 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 908 map->name, mname, (unsigned int)msize, 909 moff, kern_moff); 910 memcpy(kern_mdata, mdata, msize); 911 } 912 913 return 0; 914 } 915 916 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 917 { 918 struct bpf_map *map; 919 size_t i; 920 int err; 921 922 for (i = 0; i < obj->nr_maps; i++) { 923 map = &obj->maps[i]; 924 925 if (!bpf_map__is_struct_ops(map)) 926 continue; 927 928 err = bpf_map__init_kern_struct_ops(map, obj->btf, 929 obj->btf_vmlinux); 930 if (err) 931 return err; 932 } 933 934 return 0; 935 } 936 937 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 938 { 939 const struct btf_type *type, *datasec; 940 const struct btf_var_secinfo *vsi; 941 struct bpf_struct_ops *st_ops; 942 const char *tname, *var_name; 943 __s32 type_id, datasec_id; 944 const struct btf *btf; 945 struct bpf_map *map; 946 __u32 i; 947 948 if (obj->efile.st_ops_shndx == -1) 949 return 0; 950 951 btf = obj->btf; 952 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 953 BTF_KIND_DATASEC); 954 if (datasec_id < 0) { 955 pr_warn("struct_ops init: DATASEC %s not found\n", 956 STRUCT_OPS_SEC); 957 return -EINVAL; 958 } 959 960 datasec = btf__type_by_id(btf, datasec_id); 961 vsi = btf_var_secinfos(datasec); 962 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 963 type = btf__type_by_id(obj->btf, vsi->type); 964 var_name = btf__name_by_offset(obj->btf, type->name_off); 965 966 type_id = btf__resolve_type(obj->btf, vsi->type); 967 if (type_id < 0) { 968 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 969 vsi->type, STRUCT_OPS_SEC); 970 return -EINVAL; 971 } 972 973 type = btf__type_by_id(obj->btf, type_id); 974 tname = btf__name_by_offset(obj->btf, type->name_off); 975 if (!tname[0]) { 976 pr_warn("struct_ops init: anonymous type is not supported\n"); 977 return -ENOTSUP; 978 } 979 if (!btf_is_struct(type)) { 980 pr_warn("struct_ops init: %s is not a struct\n", tname); 981 return -EINVAL; 982 } 983 984 map = bpf_object__add_map(obj); 985 if (IS_ERR(map)) 986 return PTR_ERR(map); 987 988 map->sec_idx = obj->efile.st_ops_shndx; 989 map->sec_offset = vsi->offset; 990 map->name = strdup(var_name); 991 if (!map->name) 992 return -ENOMEM; 993 994 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 995 map->def.key_size = sizeof(int); 996 map->def.value_size = type->size; 997 map->def.max_entries = 1; 998 999 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1000 if (!map->st_ops) 1001 return -ENOMEM; 1002 st_ops = map->st_ops; 1003 st_ops->data = malloc(type->size); 1004 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1005 st_ops->kern_func_off = malloc(btf_vlen(type) * 1006 sizeof(*st_ops->kern_func_off)); 1007 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1008 return -ENOMEM; 1009 1010 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1011 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1012 var_name, STRUCT_OPS_SEC); 1013 return -EINVAL; 1014 } 1015 1016 memcpy(st_ops->data, 1017 obj->efile.st_ops_data->d_buf + vsi->offset, 1018 type->size); 1019 st_ops->tname = tname; 1020 st_ops->type = type; 1021 st_ops->type_id = type_id; 1022 1023 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1024 tname, type_id, var_name, vsi->offset); 1025 } 1026 1027 return 0; 1028 } 1029 1030 static struct bpf_object *bpf_object__new(const char *path, 1031 const void *obj_buf, 1032 size_t obj_buf_sz, 1033 const char *obj_name) 1034 { 1035 struct bpf_object *obj; 1036 char *end; 1037 1038 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1039 if (!obj) { 1040 pr_warn("alloc memory failed for %s\n", path); 1041 return ERR_PTR(-ENOMEM); 1042 } 1043 1044 strcpy(obj->path, path); 1045 if (obj_name) { 1046 strncpy(obj->name, obj_name, sizeof(obj->name) - 1); 1047 obj->name[sizeof(obj->name) - 1] = 0; 1048 } else { 1049 /* Using basename() GNU version which doesn't modify arg. */ 1050 strncpy(obj->name, basename((void *)path), 1051 sizeof(obj->name) - 1); 1052 end = strchr(obj->name, '.'); 1053 if (end) 1054 *end = 0; 1055 } 1056 1057 obj->efile.fd = -1; 1058 /* 1059 * Caller of this function should also call 1060 * bpf_object__elf_finish() after data collection to return 1061 * obj_buf to user. If not, we should duplicate the buffer to 1062 * avoid user freeing them before elf finish. 1063 */ 1064 obj->efile.obj_buf = obj_buf; 1065 obj->efile.obj_buf_sz = obj_buf_sz; 1066 obj->efile.maps_shndx = -1; 1067 obj->efile.btf_maps_shndx = -1; 1068 obj->efile.data_shndx = -1; 1069 obj->efile.rodata_shndx = -1; 1070 obj->efile.bss_shndx = -1; 1071 obj->efile.st_ops_shndx = -1; 1072 obj->kconfig_map_idx = -1; 1073 obj->rodata_map_idx = -1; 1074 1075 obj->kern_version = get_kernel_version(); 1076 obj->loaded = false; 1077 1078 INIT_LIST_HEAD(&obj->list); 1079 list_add(&obj->list, &bpf_objects_list); 1080 return obj; 1081 } 1082 1083 static void bpf_object__elf_finish(struct bpf_object *obj) 1084 { 1085 if (!obj_elf_valid(obj)) 1086 return; 1087 1088 if (obj->efile.elf) { 1089 elf_end(obj->efile.elf); 1090 obj->efile.elf = NULL; 1091 } 1092 obj->efile.symbols = NULL; 1093 obj->efile.data = NULL; 1094 obj->efile.rodata = NULL; 1095 obj->efile.bss = NULL; 1096 obj->efile.st_ops_data = NULL; 1097 1098 zfree(&obj->efile.reloc_sects); 1099 obj->efile.nr_reloc_sects = 0; 1100 zclose(obj->efile.fd); 1101 obj->efile.obj_buf = NULL; 1102 obj->efile.obj_buf_sz = 0; 1103 } 1104 1105 /* if libelf is old and doesn't support mmap(), fall back to read() */ 1106 #ifndef ELF_C_READ_MMAP 1107 #define ELF_C_READ_MMAP ELF_C_READ 1108 #endif 1109 1110 static int bpf_object__elf_init(struct bpf_object *obj) 1111 { 1112 int err = 0; 1113 GElf_Ehdr *ep; 1114 1115 if (obj_elf_valid(obj)) { 1116 pr_warn("elf: init internal error\n"); 1117 return -LIBBPF_ERRNO__LIBELF; 1118 } 1119 1120 if (obj->efile.obj_buf_sz > 0) { 1121 /* 1122 * obj_buf should have been validated by 1123 * bpf_object__open_buffer(). 1124 */ 1125 obj->efile.elf = elf_memory((char *)obj->efile.obj_buf, 1126 obj->efile.obj_buf_sz); 1127 } else { 1128 obj->efile.fd = open(obj->path, O_RDONLY); 1129 if (obj->efile.fd < 0) { 1130 char errmsg[STRERR_BUFSIZE], *cp; 1131 1132 err = -errno; 1133 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1134 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1135 return err; 1136 } 1137 1138 obj->efile.elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1139 } 1140 1141 if (!obj->efile.elf) { 1142 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1143 err = -LIBBPF_ERRNO__LIBELF; 1144 goto errout; 1145 } 1146 1147 if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) { 1148 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1149 err = -LIBBPF_ERRNO__FORMAT; 1150 goto errout; 1151 } 1152 ep = &obj->efile.ehdr; 1153 1154 if (elf_getshdrstrndx(obj->efile.elf, &obj->efile.shstrndx)) { 1155 pr_warn("elf: failed to get section names section index for %s: %s\n", 1156 obj->path, elf_errmsg(-1)); 1157 err = -LIBBPF_ERRNO__FORMAT; 1158 goto errout; 1159 } 1160 1161 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1162 if (!elf_rawdata(elf_getscn(obj->efile.elf, obj->efile.shstrndx), NULL)) { 1163 pr_warn("elf: failed to get section names strings from %s: %s\n", 1164 obj->path, elf_errmsg(-1)); 1165 return -LIBBPF_ERRNO__FORMAT; 1166 } 1167 1168 /* Old LLVM set e_machine to EM_NONE */ 1169 if (ep->e_type != ET_REL || 1170 (ep->e_machine && ep->e_machine != EM_BPF)) { 1171 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1172 err = -LIBBPF_ERRNO__FORMAT; 1173 goto errout; 1174 } 1175 1176 return 0; 1177 errout: 1178 bpf_object__elf_finish(obj); 1179 return err; 1180 } 1181 1182 static int bpf_object__check_endianness(struct bpf_object *obj) 1183 { 1184 #if __BYTE_ORDER == __LITTLE_ENDIAN 1185 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2LSB) 1186 return 0; 1187 #elif __BYTE_ORDER == __BIG_ENDIAN 1188 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2MSB) 1189 return 0; 1190 #else 1191 # error "Unrecognized __BYTE_ORDER__" 1192 #endif 1193 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1194 return -LIBBPF_ERRNO__ENDIAN; 1195 } 1196 1197 static int 1198 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1199 { 1200 memcpy(obj->license, data, min(size, sizeof(obj->license) - 1)); 1201 pr_debug("license of %s is %s\n", obj->path, obj->license); 1202 return 0; 1203 } 1204 1205 static int 1206 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1207 { 1208 __u32 kver; 1209 1210 if (size != sizeof(kver)) { 1211 pr_warn("invalid kver section in %s\n", obj->path); 1212 return -LIBBPF_ERRNO__FORMAT; 1213 } 1214 memcpy(&kver, data, sizeof(kver)); 1215 obj->kern_version = kver; 1216 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1217 return 0; 1218 } 1219 1220 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1221 { 1222 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1223 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1224 return true; 1225 return false; 1226 } 1227 1228 int bpf_object__section_size(const struct bpf_object *obj, const char *name, 1229 __u32 *size) 1230 { 1231 int ret = -ENOENT; 1232 1233 *size = 0; 1234 if (!name) { 1235 return -EINVAL; 1236 } else if (!strcmp(name, DATA_SEC)) { 1237 if (obj->efile.data) 1238 *size = obj->efile.data->d_size; 1239 } else if (!strcmp(name, BSS_SEC)) { 1240 if (obj->efile.bss) 1241 *size = obj->efile.bss->d_size; 1242 } else if (!strcmp(name, RODATA_SEC)) { 1243 if (obj->efile.rodata) 1244 *size = obj->efile.rodata->d_size; 1245 } else if (!strcmp(name, STRUCT_OPS_SEC)) { 1246 if (obj->efile.st_ops_data) 1247 *size = obj->efile.st_ops_data->d_size; 1248 } else { 1249 Elf_Scn *scn = elf_sec_by_name(obj, name); 1250 Elf_Data *data = elf_sec_data(obj, scn); 1251 1252 if (data) { 1253 ret = 0; /* found it */ 1254 *size = data->d_size; 1255 } 1256 } 1257 1258 return *size ? 0 : ret; 1259 } 1260 1261 int bpf_object__variable_offset(const struct bpf_object *obj, const char *name, 1262 __u32 *off) 1263 { 1264 Elf_Data *symbols = obj->efile.symbols; 1265 const char *sname; 1266 size_t si; 1267 1268 if (!name || !off) 1269 return -EINVAL; 1270 1271 for (si = 0; si < symbols->d_size / sizeof(GElf_Sym); si++) { 1272 GElf_Sym sym; 1273 1274 if (!gelf_getsym(symbols, si, &sym)) 1275 continue; 1276 if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL || 1277 GELF_ST_TYPE(sym.st_info) != STT_OBJECT) 1278 continue; 1279 1280 sname = elf_sym_str(obj, sym.st_name); 1281 if (!sname) { 1282 pr_warn("failed to get sym name string for var %s\n", 1283 name); 1284 return -EIO; 1285 } 1286 if (strcmp(name, sname) == 0) { 1287 *off = sym.st_value; 1288 return 0; 1289 } 1290 } 1291 1292 return -ENOENT; 1293 } 1294 1295 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1296 { 1297 struct bpf_map *new_maps; 1298 size_t new_cap; 1299 int i; 1300 1301 if (obj->nr_maps < obj->maps_cap) 1302 return &obj->maps[obj->nr_maps++]; 1303 1304 new_cap = max((size_t)4, obj->maps_cap * 3 / 2); 1305 new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps)); 1306 if (!new_maps) { 1307 pr_warn("alloc maps for object failed\n"); 1308 return ERR_PTR(-ENOMEM); 1309 } 1310 1311 obj->maps_cap = new_cap; 1312 obj->maps = new_maps; 1313 1314 /* zero out new maps */ 1315 memset(obj->maps + obj->nr_maps, 0, 1316 (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps)); 1317 /* 1318 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin) 1319 * when failure (zclose won't close negative fd)). 1320 */ 1321 for (i = obj->nr_maps; i < obj->maps_cap; i++) { 1322 obj->maps[i].fd = -1; 1323 obj->maps[i].inner_map_fd = -1; 1324 } 1325 1326 return &obj->maps[obj->nr_maps++]; 1327 } 1328 1329 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1330 { 1331 long page_sz = sysconf(_SC_PAGE_SIZE); 1332 size_t map_sz; 1333 1334 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1335 map_sz = roundup(map_sz, page_sz); 1336 return map_sz; 1337 } 1338 1339 static char *internal_map_name(struct bpf_object *obj, 1340 enum libbpf_map_type type) 1341 { 1342 char map_name[BPF_OBJ_NAME_LEN], *p; 1343 const char *sfx = libbpf_type_to_btf_name[type]; 1344 int sfx_len = max((size_t)7, strlen(sfx)); 1345 int pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, 1346 strlen(obj->name)); 1347 1348 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1349 sfx_len, libbpf_type_to_btf_name[type]); 1350 1351 /* sanitise map name to characters allowed by kernel */ 1352 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1353 if (!isalnum(*p) && *p != '_' && *p != '.') 1354 *p = '_'; 1355 1356 return strdup(map_name); 1357 } 1358 1359 static int 1360 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1361 int sec_idx, void *data, size_t data_sz) 1362 { 1363 struct bpf_map_def *def; 1364 struct bpf_map *map; 1365 int err; 1366 1367 map = bpf_object__add_map(obj); 1368 if (IS_ERR(map)) 1369 return PTR_ERR(map); 1370 1371 map->libbpf_type = type; 1372 map->sec_idx = sec_idx; 1373 map->sec_offset = 0; 1374 map->name = internal_map_name(obj, type); 1375 if (!map->name) { 1376 pr_warn("failed to alloc map name\n"); 1377 return -ENOMEM; 1378 } 1379 1380 def = &map->def; 1381 def->type = BPF_MAP_TYPE_ARRAY; 1382 def->key_size = sizeof(int); 1383 def->value_size = data_sz; 1384 def->max_entries = 1; 1385 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1386 ? BPF_F_RDONLY_PROG : 0; 1387 def->map_flags |= BPF_F_MMAPABLE; 1388 1389 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1390 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1391 1392 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1393 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1394 if (map->mmaped == MAP_FAILED) { 1395 err = -errno; 1396 map->mmaped = NULL; 1397 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1398 map->name, err); 1399 zfree(&map->name); 1400 return err; 1401 } 1402 1403 if (data) 1404 memcpy(map->mmaped, data, data_sz); 1405 1406 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1407 return 0; 1408 } 1409 1410 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1411 { 1412 int err; 1413 1414 /* 1415 * Populate obj->maps with libbpf internal maps. 1416 */ 1417 if (obj->efile.data_shndx >= 0) { 1418 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1419 obj->efile.data_shndx, 1420 obj->efile.data->d_buf, 1421 obj->efile.data->d_size); 1422 if (err) 1423 return err; 1424 } 1425 if (obj->efile.rodata_shndx >= 0) { 1426 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1427 obj->efile.rodata_shndx, 1428 obj->efile.rodata->d_buf, 1429 obj->efile.rodata->d_size); 1430 if (err) 1431 return err; 1432 1433 obj->rodata_map_idx = obj->nr_maps - 1; 1434 } 1435 if (obj->efile.bss_shndx >= 0) { 1436 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1437 obj->efile.bss_shndx, 1438 NULL, 1439 obj->efile.bss->d_size); 1440 if (err) 1441 return err; 1442 } 1443 return 0; 1444 } 1445 1446 1447 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1448 const void *name) 1449 { 1450 int i; 1451 1452 for (i = 0; i < obj->nr_extern; i++) { 1453 if (strcmp(obj->externs[i].name, name) == 0) 1454 return &obj->externs[i]; 1455 } 1456 return NULL; 1457 } 1458 1459 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1460 char value) 1461 { 1462 switch (ext->kcfg.type) { 1463 case KCFG_BOOL: 1464 if (value == 'm') { 1465 pr_warn("extern (kcfg) %s=%c should be tristate or char\n", 1466 ext->name, value); 1467 return -EINVAL; 1468 } 1469 *(bool *)ext_val = value == 'y' ? true : false; 1470 break; 1471 case KCFG_TRISTATE: 1472 if (value == 'y') 1473 *(enum libbpf_tristate *)ext_val = TRI_YES; 1474 else if (value == 'm') 1475 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1476 else /* value == 'n' */ 1477 *(enum libbpf_tristate *)ext_val = TRI_NO; 1478 break; 1479 case KCFG_CHAR: 1480 *(char *)ext_val = value; 1481 break; 1482 case KCFG_UNKNOWN: 1483 case KCFG_INT: 1484 case KCFG_CHAR_ARR: 1485 default: 1486 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n", 1487 ext->name, value); 1488 return -EINVAL; 1489 } 1490 ext->is_set = true; 1491 return 0; 1492 } 1493 1494 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1495 const char *value) 1496 { 1497 size_t len; 1498 1499 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1500 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value); 1501 return -EINVAL; 1502 } 1503 1504 len = strlen(value); 1505 if (value[len - 1] != '"') { 1506 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1507 ext->name, value); 1508 return -EINVAL; 1509 } 1510 1511 /* strip quotes */ 1512 len -= 2; 1513 if (len >= ext->kcfg.sz) { 1514 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n", 1515 ext->name, value, len, ext->kcfg.sz - 1); 1516 len = ext->kcfg.sz - 1; 1517 } 1518 memcpy(ext_val, value + 1, len); 1519 ext_val[len] = '\0'; 1520 ext->is_set = true; 1521 return 0; 1522 } 1523 1524 static int parse_u64(const char *value, __u64 *res) 1525 { 1526 char *value_end; 1527 int err; 1528 1529 errno = 0; 1530 *res = strtoull(value, &value_end, 0); 1531 if (errno) { 1532 err = -errno; 1533 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1534 return err; 1535 } 1536 if (*value_end) { 1537 pr_warn("failed to parse '%s' as integer completely\n", value); 1538 return -EINVAL; 1539 } 1540 return 0; 1541 } 1542 1543 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1544 { 1545 int bit_sz = ext->kcfg.sz * 8; 1546 1547 if (ext->kcfg.sz == 8) 1548 return true; 1549 1550 /* Validate that value stored in u64 fits in integer of `ext->sz` 1551 * bytes size without any loss of information. If the target integer 1552 * is signed, we rely on the following limits of integer type of 1553 * Y bits and subsequent transformation: 1554 * 1555 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1556 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1557 * 0 <= X + 2^(Y-1) < 2^Y 1558 * 1559 * For unsigned target integer, check that all the (64 - Y) bits are 1560 * zero. 1561 */ 1562 if (ext->kcfg.is_signed) 1563 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1564 else 1565 return (v >> bit_sz) == 0; 1566 } 1567 1568 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1569 __u64 value) 1570 { 1571 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1572 pr_warn("extern (kcfg) %s=%llu should be integer\n", 1573 ext->name, (unsigned long long)value); 1574 return -EINVAL; 1575 } 1576 if (!is_kcfg_value_in_range(ext, value)) { 1577 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n", 1578 ext->name, (unsigned long long)value, ext->kcfg.sz); 1579 return -ERANGE; 1580 } 1581 switch (ext->kcfg.sz) { 1582 case 1: *(__u8 *)ext_val = value; break; 1583 case 2: *(__u16 *)ext_val = value; break; 1584 case 4: *(__u32 *)ext_val = value; break; 1585 case 8: *(__u64 *)ext_val = value; break; 1586 default: 1587 return -EINVAL; 1588 } 1589 ext->is_set = true; 1590 return 0; 1591 } 1592 1593 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1594 char *buf, void *data) 1595 { 1596 struct extern_desc *ext; 1597 char *sep, *value; 1598 int len, err = 0; 1599 void *ext_val; 1600 __u64 num; 1601 1602 if (strncmp(buf, "CONFIG_", 7)) 1603 return 0; 1604 1605 sep = strchr(buf, '='); 1606 if (!sep) { 1607 pr_warn("failed to parse '%s': no separator\n", buf); 1608 return -EINVAL; 1609 } 1610 1611 /* Trim ending '\n' */ 1612 len = strlen(buf); 1613 if (buf[len - 1] == '\n') 1614 buf[len - 1] = '\0'; 1615 /* Split on '=' and ensure that a value is present. */ 1616 *sep = '\0'; 1617 if (!sep[1]) { 1618 *sep = '='; 1619 pr_warn("failed to parse '%s': no value\n", buf); 1620 return -EINVAL; 1621 } 1622 1623 ext = find_extern_by_name(obj, buf); 1624 if (!ext || ext->is_set) 1625 return 0; 1626 1627 ext_val = data + ext->kcfg.data_off; 1628 value = sep + 1; 1629 1630 switch (*value) { 1631 case 'y': case 'n': case 'm': 1632 err = set_kcfg_value_tri(ext, ext_val, *value); 1633 break; 1634 case '"': 1635 err = set_kcfg_value_str(ext, ext_val, value); 1636 break; 1637 default: 1638 /* assume integer */ 1639 err = parse_u64(value, &num); 1640 if (err) { 1641 pr_warn("extern (kcfg) %s=%s should be integer\n", 1642 ext->name, value); 1643 return err; 1644 } 1645 err = set_kcfg_value_num(ext, ext_val, num); 1646 break; 1647 } 1648 if (err) 1649 return err; 1650 pr_debug("extern (kcfg) %s=%s\n", ext->name, value); 1651 return 0; 1652 } 1653 1654 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1655 { 1656 char buf[PATH_MAX]; 1657 struct utsname uts; 1658 int len, err = 0; 1659 gzFile file; 1660 1661 uname(&uts); 1662 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1663 if (len < 0) 1664 return -EINVAL; 1665 else if (len >= PATH_MAX) 1666 return -ENAMETOOLONG; 1667 1668 /* gzopen also accepts uncompressed files. */ 1669 file = gzopen(buf, "r"); 1670 if (!file) 1671 file = gzopen("/proc/config.gz", "r"); 1672 1673 if (!file) { 1674 pr_warn("failed to open system Kconfig\n"); 1675 return -ENOENT; 1676 } 1677 1678 while (gzgets(file, buf, sizeof(buf))) { 1679 err = bpf_object__process_kconfig_line(obj, buf, data); 1680 if (err) { 1681 pr_warn("error parsing system Kconfig line '%s': %d\n", 1682 buf, err); 1683 goto out; 1684 } 1685 } 1686 1687 out: 1688 gzclose(file); 1689 return err; 1690 } 1691 1692 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1693 const char *config, void *data) 1694 { 1695 char buf[PATH_MAX]; 1696 int err = 0; 1697 FILE *file; 1698 1699 file = fmemopen((void *)config, strlen(config), "r"); 1700 if (!file) { 1701 err = -errno; 1702 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1703 return err; 1704 } 1705 1706 while (fgets(buf, sizeof(buf), file)) { 1707 err = bpf_object__process_kconfig_line(obj, buf, data); 1708 if (err) { 1709 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1710 buf, err); 1711 break; 1712 } 1713 } 1714 1715 fclose(file); 1716 return err; 1717 } 1718 1719 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1720 { 1721 struct extern_desc *last_ext = NULL, *ext; 1722 size_t map_sz; 1723 int i, err; 1724 1725 for (i = 0; i < obj->nr_extern; i++) { 1726 ext = &obj->externs[i]; 1727 if (ext->type == EXT_KCFG) 1728 last_ext = ext; 1729 } 1730 1731 if (!last_ext) 1732 return 0; 1733 1734 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 1735 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1736 obj->efile.symbols_shndx, 1737 NULL, map_sz); 1738 if (err) 1739 return err; 1740 1741 obj->kconfig_map_idx = obj->nr_maps - 1; 1742 1743 return 0; 1744 } 1745 1746 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) 1747 { 1748 Elf_Data *symbols = obj->efile.symbols; 1749 int i, map_def_sz = 0, nr_maps = 0, nr_syms; 1750 Elf_Data *data = NULL; 1751 Elf_Scn *scn; 1752 1753 if (obj->efile.maps_shndx < 0) 1754 return 0; 1755 1756 if (!symbols) 1757 return -EINVAL; 1758 1759 1760 scn = elf_sec_by_idx(obj, obj->efile.maps_shndx); 1761 data = elf_sec_data(obj, scn); 1762 if (!scn || !data) { 1763 pr_warn("elf: failed to get legacy map definitions for %s\n", 1764 obj->path); 1765 return -EINVAL; 1766 } 1767 1768 /* 1769 * Count number of maps. Each map has a name. 1770 * Array of maps is not supported: only the first element is 1771 * considered. 1772 * 1773 * TODO: Detect array of map and report error. 1774 */ 1775 nr_syms = symbols->d_size / sizeof(GElf_Sym); 1776 for (i = 0; i < nr_syms; i++) { 1777 GElf_Sym sym; 1778 1779 if (!gelf_getsym(symbols, i, &sym)) 1780 continue; 1781 if (sym.st_shndx != obj->efile.maps_shndx) 1782 continue; 1783 nr_maps++; 1784 } 1785 /* Assume equally sized map definitions */ 1786 pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n", 1787 nr_maps, data->d_size, obj->path); 1788 1789 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) { 1790 pr_warn("elf: unable to determine legacy map definition size in %s\n", 1791 obj->path); 1792 return -EINVAL; 1793 } 1794 map_def_sz = data->d_size / nr_maps; 1795 1796 /* Fill obj->maps using data in "maps" section. */ 1797 for (i = 0; i < nr_syms; i++) { 1798 GElf_Sym sym; 1799 const char *map_name; 1800 struct bpf_map_def *def; 1801 struct bpf_map *map; 1802 1803 if (!gelf_getsym(symbols, i, &sym)) 1804 continue; 1805 if (sym.st_shndx != obj->efile.maps_shndx) 1806 continue; 1807 1808 map = bpf_object__add_map(obj); 1809 if (IS_ERR(map)) 1810 return PTR_ERR(map); 1811 1812 map_name = elf_sym_str(obj, sym.st_name); 1813 if (!map_name) { 1814 pr_warn("failed to get map #%d name sym string for obj %s\n", 1815 i, obj->path); 1816 return -LIBBPF_ERRNO__FORMAT; 1817 } 1818 1819 map->libbpf_type = LIBBPF_MAP_UNSPEC; 1820 map->sec_idx = sym.st_shndx; 1821 map->sec_offset = sym.st_value; 1822 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n", 1823 map_name, map->sec_idx, map->sec_offset); 1824 if (sym.st_value + map_def_sz > data->d_size) { 1825 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n", 1826 obj->path, map_name); 1827 return -EINVAL; 1828 } 1829 1830 map->name = strdup(map_name); 1831 if (!map->name) { 1832 pr_warn("failed to alloc map name\n"); 1833 return -ENOMEM; 1834 } 1835 pr_debug("map %d is \"%s\"\n", i, map->name); 1836 def = (struct bpf_map_def *)(data->d_buf + sym.st_value); 1837 /* 1838 * If the definition of the map in the object file fits in 1839 * bpf_map_def, copy it. Any extra fields in our version 1840 * of bpf_map_def will default to zero as a result of the 1841 * calloc above. 1842 */ 1843 if (map_def_sz <= sizeof(struct bpf_map_def)) { 1844 memcpy(&map->def, def, map_def_sz); 1845 } else { 1846 /* 1847 * Here the map structure being read is bigger than what 1848 * we expect, truncate if the excess bits are all zero. 1849 * If they are not zero, reject this map as 1850 * incompatible. 1851 */ 1852 char *b; 1853 1854 for (b = ((char *)def) + sizeof(struct bpf_map_def); 1855 b < ((char *)def) + map_def_sz; b++) { 1856 if (*b != 0) { 1857 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n", 1858 obj->path, map_name); 1859 if (strict) 1860 return -EINVAL; 1861 } 1862 } 1863 memcpy(&map->def, def, sizeof(struct bpf_map_def)); 1864 } 1865 } 1866 return 0; 1867 } 1868 1869 static const struct btf_type * 1870 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 1871 { 1872 const struct btf_type *t = btf__type_by_id(btf, id); 1873 1874 if (res_id) 1875 *res_id = id; 1876 1877 while (btf_is_mod(t) || btf_is_typedef(t)) { 1878 if (res_id) 1879 *res_id = t->type; 1880 t = btf__type_by_id(btf, t->type); 1881 } 1882 1883 return t; 1884 } 1885 1886 static const struct btf_type * 1887 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 1888 { 1889 const struct btf_type *t; 1890 1891 t = skip_mods_and_typedefs(btf, id, NULL); 1892 if (!btf_is_ptr(t)) 1893 return NULL; 1894 1895 t = skip_mods_and_typedefs(btf, t->type, res_id); 1896 1897 return btf_is_func_proto(t) ? t : NULL; 1898 } 1899 1900 static const char *btf_kind_str(const struct btf_type *t) 1901 { 1902 switch (btf_kind(t)) { 1903 case BTF_KIND_UNKN: return "void"; 1904 case BTF_KIND_INT: return "int"; 1905 case BTF_KIND_PTR: return "ptr"; 1906 case BTF_KIND_ARRAY: return "array"; 1907 case BTF_KIND_STRUCT: return "struct"; 1908 case BTF_KIND_UNION: return "union"; 1909 case BTF_KIND_ENUM: return "enum"; 1910 case BTF_KIND_FWD: return "fwd"; 1911 case BTF_KIND_TYPEDEF: return "typedef"; 1912 case BTF_KIND_VOLATILE: return "volatile"; 1913 case BTF_KIND_CONST: return "const"; 1914 case BTF_KIND_RESTRICT: return "restrict"; 1915 case BTF_KIND_FUNC: return "func"; 1916 case BTF_KIND_FUNC_PROTO: return "func_proto"; 1917 case BTF_KIND_VAR: return "var"; 1918 case BTF_KIND_DATASEC: return "datasec"; 1919 default: return "unknown"; 1920 } 1921 } 1922 1923 /* 1924 * Fetch integer attribute of BTF map definition. Such attributes are 1925 * represented using a pointer to an array, in which dimensionality of array 1926 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 1927 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 1928 * type definition, while using only sizeof(void *) space in ELF data section. 1929 */ 1930 static bool get_map_field_int(const char *map_name, const struct btf *btf, 1931 const struct btf_member *m, __u32 *res) 1932 { 1933 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 1934 const char *name = btf__name_by_offset(btf, m->name_off); 1935 const struct btf_array *arr_info; 1936 const struct btf_type *arr_t; 1937 1938 if (!btf_is_ptr(t)) { 1939 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 1940 map_name, name, btf_kind_str(t)); 1941 return false; 1942 } 1943 1944 arr_t = btf__type_by_id(btf, t->type); 1945 if (!arr_t) { 1946 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 1947 map_name, name, t->type); 1948 return false; 1949 } 1950 if (!btf_is_array(arr_t)) { 1951 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 1952 map_name, name, btf_kind_str(arr_t)); 1953 return false; 1954 } 1955 arr_info = btf_array(arr_t); 1956 *res = arr_info->nelems; 1957 return true; 1958 } 1959 1960 static int build_map_pin_path(struct bpf_map *map, const char *path) 1961 { 1962 char buf[PATH_MAX]; 1963 int len; 1964 1965 if (!path) 1966 path = "/sys/fs/bpf"; 1967 1968 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 1969 if (len < 0) 1970 return -EINVAL; 1971 else if (len >= PATH_MAX) 1972 return -ENAMETOOLONG; 1973 1974 return bpf_map__set_pin_path(map, buf); 1975 } 1976 1977 1978 static int parse_btf_map_def(struct bpf_object *obj, 1979 struct bpf_map *map, 1980 const struct btf_type *def, 1981 bool strict, bool is_inner, 1982 const char *pin_root_path) 1983 { 1984 const struct btf_type *t; 1985 const struct btf_member *m; 1986 int vlen, i; 1987 1988 vlen = btf_vlen(def); 1989 m = btf_members(def); 1990 for (i = 0; i < vlen; i++, m++) { 1991 const char *name = btf__name_by_offset(obj->btf, m->name_off); 1992 1993 if (!name) { 1994 pr_warn("map '%s': invalid field #%d.\n", map->name, i); 1995 return -EINVAL; 1996 } 1997 if (strcmp(name, "type") == 0) { 1998 if (!get_map_field_int(map->name, obj->btf, m, 1999 &map->def.type)) 2000 return -EINVAL; 2001 pr_debug("map '%s': found type = %u.\n", 2002 map->name, map->def.type); 2003 } else if (strcmp(name, "max_entries") == 0) { 2004 if (!get_map_field_int(map->name, obj->btf, m, 2005 &map->def.max_entries)) 2006 return -EINVAL; 2007 pr_debug("map '%s': found max_entries = %u.\n", 2008 map->name, map->def.max_entries); 2009 } else if (strcmp(name, "map_flags") == 0) { 2010 if (!get_map_field_int(map->name, obj->btf, m, 2011 &map->def.map_flags)) 2012 return -EINVAL; 2013 pr_debug("map '%s': found map_flags = %u.\n", 2014 map->name, map->def.map_flags); 2015 } else if (strcmp(name, "numa_node") == 0) { 2016 if (!get_map_field_int(map->name, obj->btf, m, &map->numa_node)) 2017 return -EINVAL; 2018 pr_debug("map '%s': found numa_node = %u.\n", map->name, map->numa_node); 2019 } else if (strcmp(name, "key_size") == 0) { 2020 __u32 sz; 2021 2022 if (!get_map_field_int(map->name, obj->btf, m, &sz)) 2023 return -EINVAL; 2024 pr_debug("map '%s': found key_size = %u.\n", 2025 map->name, sz); 2026 if (map->def.key_size && map->def.key_size != sz) { 2027 pr_warn("map '%s': conflicting key size %u != %u.\n", 2028 map->name, map->def.key_size, sz); 2029 return -EINVAL; 2030 } 2031 map->def.key_size = sz; 2032 } else if (strcmp(name, "key") == 0) { 2033 __s64 sz; 2034 2035 t = btf__type_by_id(obj->btf, m->type); 2036 if (!t) { 2037 pr_warn("map '%s': key type [%d] not found.\n", 2038 map->name, m->type); 2039 return -EINVAL; 2040 } 2041 if (!btf_is_ptr(t)) { 2042 pr_warn("map '%s': key spec is not PTR: %s.\n", 2043 map->name, btf_kind_str(t)); 2044 return -EINVAL; 2045 } 2046 sz = btf__resolve_size(obj->btf, t->type); 2047 if (sz < 0) { 2048 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2049 map->name, t->type, (ssize_t)sz); 2050 return sz; 2051 } 2052 pr_debug("map '%s': found key [%u], sz = %zd.\n", 2053 map->name, t->type, (ssize_t)sz); 2054 if (map->def.key_size && map->def.key_size != sz) { 2055 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2056 map->name, map->def.key_size, (ssize_t)sz); 2057 return -EINVAL; 2058 } 2059 map->def.key_size = sz; 2060 map->btf_key_type_id = t->type; 2061 } else if (strcmp(name, "value_size") == 0) { 2062 __u32 sz; 2063 2064 if (!get_map_field_int(map->name, obj->btf, m, &sz)) 2065 return -EINVAL; 2066 pr_debug("map '%s': found value_size = %u.\n", 2067 map->name, sz); 2068 if (map->def.value_size && map->def.value_size != sz) { 2069 pr_warn("map '%s': conflicting value size %u != %u.\n", 2070 map->name, map->def.value_size, sz); 2071 return -EINVAL; 2072 } 2073 map->def.value_size = sz; 2074 } else if (strcmp(name, "value") == 0) { 2075 __s64 sz; 2076 2077 t = btf__type_by_id(obj->btf, m->type); 2078 if (!t) { 2079 pr_warn("map '%s': value type [%d] not found.\n", 2080 map->name, m->type); 2081 return -EINVAL; 2082 } 2083 if (!btf_is_ptr(t)) { 2084 pr_warn("map '%s': value spec is not PTR: %s.\n", 2085 map->name, btf_kind_str(t)); 2086 return -EINVAL; 2087 } 2088 sz = btf__resolve_size(obj->btf, t->type); 2089 if (sz < 0) { 2090 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2091 map->name, t->type, (ssize_t)sz); 2092 return sz; 2093 } 2094 pr_debug("map '%s': found value [%u], sz = %zd.\n", 2095 map->name, t->type, (ssize_t)sz); 2096 if (map->def.value_size && map->def.value_size != sz) { 2097 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2098 map->name, map->def.value_size, (ssize_t)sz); 2099 return -EINVAL; 2100 } 2101 map->def.value_size = sz; 2102 map->btf_value_type_id = t->type; 2103 } 2104 else if (strcmp(name, "values") == 0) { 2105 int err; 2106 2107 if (is_inner) { 2108 pr_warn("map '%s': multi-level inner maps not supported.\n", 2109 map->name); 2110 return -ENOTSUP; 2111 } 2112 if (i != vlen - 1) { 2113 pr_warn("map '%s': '%s' member should be last.\n", 2114 map->name, name); 2115 return -EINVAL; 2116 } 2117 if (!bpf_map_type__is_map_in_map(map->def.type)) { 2118 pr_warn("map '%s': should be map-in-map.\n", 2119 map->name); 2120 return -ENOTSUP; 2121 } 2122 if (map->def.value_size && map->def.value_size != 4) { 2123 pr_warn("map '%s': conflicting value size %u != 4.\n", 2124 map->name, map->def.value_size); 2125 return -EINVAL; 2126 } 2127 map->def.value_size = 4; 2128 t = btf__type_by_id(obj->btf, m->type); 2129 if (!t) { 2130 pr_warn("map '%s': map-in-map inner type [%d] not found.\n", 2131 map->name, m->type); 2132 return -EINVAL; 2133 } 2134 if (!btf_is_array(t) || btf_array(t)->nelems) { 2135 pr_warn("map '%s': map-in-map inner spec is not a zero-sized array.\n", 2136 map->name); 2137 return -EINVAL; 2138 } 2139 t = skip_mods_and_typedefs(obj->btf, btf_array(t)->type, 2140 NULL); 2141 if (!btf_is_ptr(t)) { 2142 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2143 map->name, btf_kind_str(t)); 2144 return -EINVAL; 2145 } 2146 t = skip_mods_and_typedefs(obj->btf, t->type, NULL); 2147 if (!btf_is_struct(t)) { 2148 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2149 map->name, btf_kind_str(t)); 2150 return -EINVAL; 2151 } 2152 2153 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2154 if (!map->inner_map) 2155 return -ENOMEM; 2156 map->inner_map->sec_idx = obj->efile.btf_maps_shndx; 2157 map->inner_map->name = malloc(strlen(map->name) + 2158 sizeof(".inner") + 1); 2159 if (!map->inner_map->name) 2160 return -ENOMEM; 2161 sprintf(map->inner_map->name, "%s.inner", map->name); 2162 2163 err = parse_btf_map_def(obj, map->inner_map, t, strict, 2164 true /* is_inner */, NULL); 2165 if (err) 2166 return err; 2167 } else if (strcmp(name, "pinning") == 0) { 2168 __u32 val; 2169 int err; 2170 2171 if (is_inner) { 2172 pr_debug("map '%s': inner def can't be pinned.\n", 2173 map->name); 2174 return -EINVAL; 2175 } 2176 if (!get_map_field_int(map->name, obj->btf, m, &val)) 2177 return -EINVAL; 2178 pr_debug("map '%s': found pinning = %u.\n", 2179 map->name, val); 2180 2181 if (val != LIBBPF_PIN_NONE && 2182 val != LIBBPF_PIN_BY_NAME) { 2183 pr_warn("map '%s': invalid pinning value %u.\n", 2184 map->name, val); 2185 return -EINVAL; 2186 } 2187 if (val == LIBBPF_PIN_BY_NAME) { 2188 err = build_map_pin_path(map, pin_root_path); 2189 if (err) { 2190 pr_warn("map '%s': couldn't build pin path.\n", 2191 map->name); 2192 return err; 2193 } 2194 } 2195 } else { 2196 if (strict) { 2197 pr_warn("map '%s': unknown field '%s'.\n", 2198 map->name, name); 2199 return -ENOTSUP; 2200 } 2201 pr_debug("map '%s': ignoring unknown field '%s'.\n", 2202 map->name, name); 2203 } 2204 } 2205 2206 if (map->def.type == BPF_MAP_TYPE_UNSPEC) { 2207 pr_warn("map '%s': map type isn't specified.\n", map->name); 2208 return -EINVAL; 2209 } 2210 2211 return 0; 2212 } 2213 2214 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2215 const struct btf_type *sec, 2216 int var_idx, int sec_idx, 2217 const Elf_Data *data, bool strict, 2218 const char *pin_root_path) 2219 { 2220 const struct btf_type *var, *def; 2221 const struct btf_var_secinfo *vi; 2222 const struct btf_var *var_extra; 2223 const char *map_name; 2224 struct bpf_map *map; 2225 2226 vi = btf_var_secinfos(sec) + var_idx; 2227 var = btf__type_by_id(obj->btf, vi->type); 2228 var_extra = btf_var(var); 2229 map_name = btf__name_by_offset(obj->btf, var->name_off); 2230 2231 if (map_name == NULL || map_name[0] == '\0') { 2232 pr_warn("map #%d: empty name.\n", var_idx); 2233 return -EINVAL; 2234 } 2235 if ((__u64)vi->offset + vi->size > data->d_size) { 2236 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2237 return -EINVAL; 2238 } 2239 if (!btf_is_var(var)) { 2240 pr_warn("map '%s': unexpected var kind %s.\n", 2241 map_name, btf_kind_str(var)); 2242 return -EINVAL; 2243 } 2244 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED && 2245 var_extra->linkage != BTF_VAR_STATIC) { 2246 pr_warn("map '%s': unsupported var linkage %u.\n", 2247 map_name, var_extra->linkage); 2248 return -EOPNOTSUPP; 2249 } 2250 2251 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2252 if (!btf_is_struct(def)) { 2253 pr_warn("map '%s': unexpected def kind %s.\n", 2254 map_name, btf_kind_str(var)); 2255 return -EINVAL; 2256 } 2257 if (def->size > vi->size) { 2258 pr_warn("map '%s': invalid def size.\n", map_name); 2259 return -EINVAL; 2260 } 2261 2262 map = bpf_object__add_map(obj); 2263 if (IS_ERR(map)) 2264 return PTR_ERR(map); 2265 map->name = strdup(map_name); 2266 if (!map->name) { 2267 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2268 return -ENOMEM; 2269 } 2270 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2271 map->def.type = BPF_MAP_TYPE_UNSPEC; 2272 map->sec_idx = sec_idx; 2273 map->sec_offset = vi->offset; 2274 map->btf_var_idx = var_idx; 2275 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2276 map_name, map->sec_idx, map->sec_offset); 2277 2278 return parse_btf_map_def(obj, map, def, strict, false, pin_root_path); 2279 } 2280 2281 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2282 const char *pin_root_path) 2283 { 2284 const struct btf_type *sec = NULL; 2285 int nr_types, i, vlen, err; 2286 const struct btf_type *t; 2287 const char *name; 2288 Elf_Data *data; 2289 Elf_Scn *scn; 2290 2291 if (obj->efile.btf_maps_shndx < 0) 2292 return 0; 2293 2294 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2295 data = elf_sec_data(obj, scn); 2296 if (!scn || !data) { 2297 pr_warn("elf: failed to get %s map definitions for %s\n", 2298 MAPS_ELF_SEC, obj->path); 2299 return -EINVAL; 2300 } 2301 2302 nr_types = btf__get_nr_types(obj->btf); 2303 for (i = 1; i <= nr_types; i++) { 2304 t = btf__type_by_id(obj->btf, i); 2305 if (!btf_is_datasec(t)) 2306 continue; 2307 name = btf__name_by_offset(obj->btf, t->name_off); 2308 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2309 sec = t; 2310 obj->efile.btf_maps_sec_btf_id = i; 2311 break; 2312 } 2313 } 2314 2315 if (!sec) { 2316 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2317 return -ENOENT; 2318 } 2319 2320 vlen = btf_vlen(sec); 2321 for (i = 0; i < vlen; i++) { 2322 err = bpf_object__init_user_btf_map(obj, sec, i, 2323 obj->efile.btf_maps_shndx, 2324 data, strict, 2325 pin_root_path); 2326 if (err) 2327 return err; 2328 } 2329 2330 return 0; 2331 } 2332 2333 static int bpf_object__init_maps(struct bpf_object *obj, 2334 const struct bpf_object_open_opts *opts) 2335 { 2336 const char *pin_root_path; 2337 bool strict; 2338 int err; 2339 2340 strict = !OPTS_GET(opts, relaxed_maps, false); 2341 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2342 2343 err = bpf_object__init_user_maps(obj, strict); 2344 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2345 err = err ?: bpf_object__init_global_data_maps(obj); 2346 err = err ?: bpf_object__init_kconfig_map(obj); 2347 err = err ?: bpf_object__init_struct_ops_maps(obj); 2348 if (err) 2349 return err; 2350 2351 return 0; 2352 } 2353 2354 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2355 { 2356 GElf_Shdr sh; 2357 2358 if (elf_sec_hdr(obj, elf_sec_by_idx(obj, idx), &sh)) 2359 return false; 2360 2361 return sh.sh_flags & SHF_EXECINSTR; 2362 } 2363 2364 static bool btf_needs_sanitization(struct bpf_object *obj) 2365 { 2366 bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC); 2367 bool has_datasec = kernel_supports(FEAT_BTF_DATASEC); 2368 bool has_func = kernel_supports(FEAT_BTF_FUNC); 2369 2370 return !has_func || !has_datasec || !has_func_global; 2371 } 2372 2373 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2374 { 2375 bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC); 2376 bool has_datasec = kernel_supports(FEAT_BTF_DATASEC); 2377 bool has_func = kernel_supports(FEAT_BTF_FUNC); 2378 struct btf_type *t; 2379 int i, j, vlen; 2380 2381 for (i = 1; i <= btf__get_nr_types(btf); i++) { 2382 t = (struct btf_type *)btf__type_by_id(btf, i); 2383 2384 if (!has_datasec && btf_is_var(t)) { 2385 /* replace VAR with INT */ 2386 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2387 /* 2388 * using size = 1 is the safest choice, 4 will be too 2389 * big and cause kernel BTF validation failure if 2390 * original variable took less than 4 bytes 2391 */ 2392 t->size = 1; 2393 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2394 } else if (!has_datasec && btf_is_datasec(t)) { 2395 /* replace DATASEC with STRUCT */ 2396 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2397 struct btf_member *m = btf_members(t); 2398 struct btf_type *vt; 2399 char *name; 2400 2401 name = (char *)btf__name_by_offset(btf, t->name_off); 2402 while (*name) { 2403 if (*name == '.') 2404 *name = '_'; 2405 name++; 2406 } 2407 2408 vlen = btf_vlen(t); 2409 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2410 for (j = 0; j < vlen; j++, v++, m++) { 2411 /* order of field assignments is important */ 2412 m->offset = v->offset * 8; 2413 m->type = v->type; 2414 /* preserve variable name as member name */ 2415 vt = (void *)btf__type_by_id(btf, v->type); 2416 m->name_off = vt->name_off; 2417 } 2418 } else if (!has_func && btf_is_func_proto(t)) { 2419 /* replace FUNC_PROTO with ENUM */ 2420 vlen = btf_vlen(t); 2421 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2422 t->size = sizeof(__u32); /* kernel enforced */ 2423 } else if (!has_func && btf_is_func(t)) { 2424 /* replace FUNC with TYPEDEF */ 2425 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2426 } else if (!has_func_global && btf_is_func(t)) { 2427 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2428 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2429 } 2430 } 2431 } 2432 2433 static bool libbpf_needs_btf(const struct bpf_object *obj) 2434 { 2435 return obj->efile.btf_maps_shndx >= 0 || 2436 obj->efile.st_ops_shndx >= 0 || 2437 obj->nr_extern > 0; 2438 } 2439 2440 static bool kernel_needs_btf(const struct bpf_object *obj) 2441 { 2442 return obj->efile.st_ops_shndx >= 0; 2443 } 2444 2445 static int bpf_object__init_btf(struct bpf_object *obj, 2446 Elf_Data *btf_data, 2447 Elf_Data *btf_ext_data) 2448 { 2449 int err = -ENOENT; 2450 2451 if (btf_data) { 2452 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2453 if (IS_ERR(obj->btf)) { 2454 err = PTR_ERR(obj->btf); 2455 obj->btf = NULL; 2456 pr_warn("Error loading ELF section %s: %d.\n", 2457 BTF_ELF_SEC, err); 2458 goto out; 2459 } 2460 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2461 btf__set_pointer_size(obj->btf, 8); 2462 err = 0; 2463 } 2464 if (btf_ext_data) { 2465 if (!obj->btf) { 2466 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2467 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2468 goto out; 2469 } 2470 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, 2471 btf_ext_data->d_size); 2472 if (IS_ERR(obj->btf_ext)) { 2473 pr_warn("Error loading ELF section %s: %ld. Ignored and continue.\n", 2474 BTF_EXT_ELF_SEC, PTR_ERR(obj->btf_ext)); 2475 obj->btf_ext = NULL; 2476 goto out; 2477 } 2478 } 2479 out: 2480 if (err && libbpf_needs_btf(obj)) { 2481 pr_warn("BTF is required, but is missing or corrupted.\n"); 2482 return err; 2483 } 2484 return 0; 2485 } 2486 2487 static int bpf_object__finalize_btf(struct bpf_object *obj) 2488 { 2489 int err; 2490 2491 if (!obj->btf) 2492 return 0; 2493 2494 err = btf__finalize_data(obj, obj->btf); 2495 if (err) { 2496 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2497 return err; 2498 } 2499 2500 return 0; 2501 } 2502 2503 static inline bool libbpf_prog_needs_vmlinux_btf(struct bpf_program *prog) 2504 { 2505 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 2506 prog->type == BPF_PROG_TYPE_LSM) 2507 return true; 2508 2509 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2510 * also need vmlinux BTF 2511 */ 2512 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2513 return true; 2514 2515 return false; 2516 } 2517 2518 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj) 2519 { 2520 bool need_vmlinux_btf = false; 2521 struct bpf_program *prog; 2522 int i, err; 2523 2524 /* CO-RE relocations need kernel BTF */ 2525 if (obj->btf_ext && obj->btf_ext->core_relo_info.len) 2526 need_vmlinux_btf = true; 2527 2528 /* Support for typed ksyms needs kernel BTF */ 2529 for (i = 0; i < obj->nr_extern; i++) { 2530 const struct extern_desc *ext; 2531 2532 ext = &obj->externs[i]; 2533 if (ext->type == EXT_KSYM && ext->ksym.type_id) { 2534 need_vmlinux_btf = true; 2535 break; 2536 } 2537 } 2538 2539 bpf_object__for_each_program(prog, obj) { 2540 if (!prog->load) 2541 continue; 2542 if (libbpf_prog_needs_vmlinux_btf(prog)) { 2543 need_vmlinux_btf = true; 2544 break; 2545 } 2546 } 2547 2548 if (!need_vmlinux_btf) 2549 return 0; 2550 2551 obj->btf_vmlinux = libbpf_find_kernel_btf(); 2552 if (IS_ERR(obj->btf_vmlinux)) { 2553 err = PTR_ERR(obj->btf_vmlinux); 2554 pr_warn("Error loading vmlinux BTF: %d\n", err); 2555 obj->btf_vmlinux = NULL; 2556 return err; 2557 } 2558 return 0; 2559 } 2560 2561 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 2562 { 2563 struct btf *kern_btf = obj->btf; 2564 bool btf_mandatory, sanitize; 2565 int err = 0; 2566 2567 if (!obj->btf) 2568 return 0; 2569 2570 if (!kernel_supports(FEAT_BTF)) { 2571 if (kernel_needs_btf(obj)) { 2572 err = -EOPNOTSUPP; 2573 goto report; 2574 } 2575 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 2576 return 0; 2577 } 2578 2579 sanitize = btf_needs_sanitization(obj); 2580 if (sanitize) { 2581 const void *raw_data; 2582 __u32 sz; 2583 2584 /* clone BTF to sanitize a copy and leave the original intact */ 2585 raw_data = btf__get_raw_data(obj->btf, &sz); 2586 kern_btf = btf__new(raw_data, sz); 2587 if (IS_ERR(kern_btf)) 2588 return PTR_ERR(kern_btf); 2589 2590 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2591 btf__set_pointer_size(obj->btf, 8); 2592 bpf_object__sanitize_btf(obj, kern_btf); 2593 } 2594 2595 err = btf__load(kern_btf); 2596 if (sanitize) { 2597 if (!err) { 2598 /* move fd to libbpf's BTF */ 2599 btf__set_fd(obj->btf, btf__fd(kern_btf)); 2600 btf__set_fd(kern_btf, -1); 2601 } 2602 btf__free(kern_btf); 2603 } 2604 report: 2605 if (err) { 2606 btf_mandatory = kernel_needs_btf(obj); 2607 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 2608 btf_mandatory ? "BTF is mandatory, can't proceed." 2609 : "BTF is optional, ignoring."); 2610 if (!btf_mandatory) 2611 err = 0; 2612 } 2613 return err; 2614 } 2615 2616 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 2617 { 2618 const char *name; 2619 2620 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 2621 if (!name) { 2622 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 2623 off, obj->path, elf_errmsg(-1)); 2624 return NULL; 2625 } 2626 2627 return name; 2628 } 2629 2630 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 2631 { 2632 const char *name; 2633 2634 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 2635 if (!name) { 2636 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 2637 off, obj->path, elf_errmsg(-1)); 2638 return NULL; 2639 } 2640 2641 return name; 2642 } 2643 2644 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 2645 { 2646 Elf_Scn *scn; 2647 2648 scn = elf_getscn(obj->efile.elf, idx); 2649 if (!scn) { 2650 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 2651 idx, obj->path, elf_errmsg(-1)); 2652 return NULL; 2653 } 2654 return scn; 2655 } 2656 2657 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 2658 { 2659 Elf_Scn *scn = NULL; 2660 Elf *elf = obj->efile.elf; 2661 const char *sec_name; 2662 2663 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2664 sec_name = elf_sec_name(obj, scn); 2665 if (!sec_name) 2666 return NULL; 2667 2668 if (strcmp(sec_name, name) != 0) 2669 continue; 2670 2671 return scn; 2672 } 2673 return NULL; 2674 } 2675 2676 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr) 2677 { 2678 if (!scn) 2679 return -EINVAL; 2680 2681 if (gelf_getshdr(scn, hdr) != hdr) { 2682 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 2683 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 2684 return -EINVAL; 2685 } 2686 2687 return 0; 2688 } 2689 2690 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 2691 { 2692 const char *name; 2693 GElf_Shdr sh; 2694 2695 if (!scn) 2696 return NULL; 2697 2698 if (elf_sec_hdr(obj, scn, &sh)) 2699 return NULL; 2700 2701 name = elf_sec_str(obj, sh.sh_name); 2702 if (!name) { 2703 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 2704 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 2705 return NULL; 2706 } 2707 2708 return name; 2709 } 2710 2711 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 2712 { 2713 Elf_Data *data; 2714 2715 if (!scn) 2716 return NULL; 2717 2718 data = elf_getdata(scn, 0); 2719 if (!data) { 2720 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 2721 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 2722 obj->path, elf_errmsg(-1)); 2723 return NULL; 2724 } 2725 2726 return data; 2727 } 2728 2729 static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx, 2730 size_t off, __u32 sym_type, GElf_Sym *sym) 2731 { 2732 Elf_Data *symbols = obj->efile.symbols; 2733 size_t n = symbols->d_size / sizeof(GElf_Sym); 2734 int i; 2735 2736 for (i = 0; i < n; i++) { 2737 if (!gelf_getsym(symbols, i, sym)) 2738 continue; 2739 if (sym->st_shndx != sec_idx || sym->st_value != off) 2740 continue; 2741 if (GELF_ST_TYPE(sym->st_info) != sym_type) 2742 continue; 2743 return 0; 2744 } 2745 2746 return -ENOENT; 2747 } 2748 2749 static bool is_sec_name_dwarf(const char *name) 2750 { 2751 /* approximation, but the actual list is too long */ 2752 return strncmp(name, ".debug_", sizeof(".debug_") - 1) == 0; 2753 } 2754 2755 static bool ignore_elf_section(GElf_Shdr *hdr, const char *name) 2756 { 2757 /* no special handling of .strtab */ 2758 if (hdr->sh_type == SHT_STRTAB) 2759 return true; 2760 2761 /* ignore .llvm_addrsig section as well */ 2762 if (hdr->sh_type == 0x6FFF4C03 /* SHT_LLVM_ADDRSIG */) 2763 return true; 2764 2765 /* no subprograms will lead to an empty .text section, ignore it */ 2766 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 2767 strcmp(name, ".text") == 0) 2768 return true; 2769 2770 /* DWARF sections */ 2771 if (is_sec_name_dwarf(name)) 2772 return true; 2773 2774 if (strncmp(name, ".rel", sizeof(".rel") - 1) == 0) { 2775 name += sizeof(".rel") - 1; 2776 /* DWARF section relocations */ 2777 if (is_sec_name_dwarf(name)) 2778 return true; 2779 2780 /* .BTF and .BTF.ext don't need relocations */ 2781 if (strcmp(name, BTF_ELF_SEC) == 0 || 2782 strcmp(name, BTF_EXT_ELF_SEC) == 0) 2783 return true; 2784 } 2785 2786 return false; 2787 } 2788 2789 static int cmp_progs(const void *_a, const void *_b) 2790 { 2791 const struct bpf_program *a = _a; 2792 const struct bpf_program *b = _b; 2793 2794 if (a->sec_idx != b->sec_idx) 2795 return a->sec_idx < b->sec_idx ? -1 : 1; 2796 2797 /* sec_insn_off can't be the same within the section */ 2798 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 2799 } 2800 2801 static int bpf_object__elf_collect(struct bpf_object *obj) 2802 { 2803 Elf *elf = obj->efile.elf; 2804 Elf_Data *btf_ext_data = NULL; 2805 Elf_Data *btf_data = NULL; 2806 int idx = 0, err = 0; 2807 const char *name; 2808 Elf_Data *data; 2809 Elf_Scn *scn; 2810 GElf_Shdr sh; 2811 2812 /* a bunch of ELF parsing functionality depends on processing symbols, 2813 * so do the first pass and find the symbol table 2814 */ 2815 scn = NULL; 2816 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2817 if (elf_sec_hdr(obj, scn, &sh)) 2818 return -LIBBPF_ERRNO__FORMAT; 2819 2820 if (sh.sh_type == SHT_SYMTAB) { 2821 if (obj->efile.symbols) { 2822 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 2823 return -LIBBPF_ERRNO__FORMAT; 2824 } 2825 2826 data = elf_sec_data(obj, scn); 2827 if (!data) 2828 return -LIBBPF_ERRNO__FORMAT; 2829 2830 obj->efile.symbols = data; 2831 obj->efile.symbols_shndx = elf_ndxscn(scn); 2832 obj->efile.strtabidx = sh.sh_link; 2833 } 2834 } 2835 2836 scn = NULL; 2837 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2838 idx++; 2839 2840 if (elf_sec_hdr(obj, scn, &sh)) 2841 return -LIBBPF_ERRNO__FORMAT; 2842 2843 name = elf_sec_str(obj, sh.sh_name); 2844 if (!name) 2845 return -LIBBPF_ERRNO__FORMAT; 2846 2847 if (ignore_elf_section(&sh, name)) 2848 continue; 2849 2850 data = elf_sec_data(obj, scn); 2851 if (!data) 2852 return -LIBBPF_ERRNO__FORMAT; 2853 2854 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 2855 idx, name, (unsigned long)data->d_size, 2856 (int)sh.sh_link, (unsigned long)sh.sh_flags, 2857 (int)sh.sh_type); 2858 2859 if (strcmp(name, "license") == 0) { 2860 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 2861 if (err) 2862 return err; 2863 } else if (strcmp(name, "version") == 0) { 2864 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 2865 if (err) 2866 return err; 2867 } else if (strcmp(name, "maps") == 0) { 2868 obj->efile.maps_shndx = idx; 2869 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 2870 obj->efile.btf_maps_shndx = idx; 2871 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 2872 btf_data = data; 2873 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 2874 btf_ext_data = data; 2875 } else if (sh.sh_type == SHT_SYMTAB) { 2876 /* already processed during the first pass above */ 2877 } else if (sh.sh_type == SHT_PROGBITS && data->d_size > 0) { 2878 if (sh.sh_flags & SHF_EXECINSTR) { 2879 if (strcmp(name, ".text") == 0) 2880 obj->efile.text_shndx = idx; 2881 err = bpf_object__add_programs(obj, data, name, idx); 2882 if (err) 2883 return err; 2884 } else if (strcmp(name, DATA_SEC) == 0) { 2885 obj->efile.data = data; 2886 obj->efile.data_shndx = idx; 2887 } else if (strcmp(name, RODATA_SEC) == 0) { 2888 obj->efile.rodata = data; 2889 obj->efile.rodata_shndx = idx; 2890 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 2891 obj->efile.st_ops_data = data; 2892 obj->efile.st_ops_shndx = idx; 2893 } else { 2894 pr_info("elf: skipping unrecognized data section(%d) %s\n", 2895 idx, name); 2896 } 2897 } else if (sh.sh_type == SHT_REL) { 2898 int nr_sects = obj->efile.nr_reloc_sects; 2899 void *sects = obj->efile.reloc_sects; 2900 int sec = sh.sh_info; /* points to other section */ 2901 2902 /* Only do relo for section with exec instructions */ 2903 if (!section_have_execinstr(obj, sec) && 2904 strcmp(name, ".rel" STRUCT_OPS_SEC) && 2905 strcmp(name, ".rel" MAPS_ELF_SEC)) { 2906 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 2907 idx, name, sec, 2908 elf_sec_name(obj, elf_sec_by_idx(obj, sec)) ?: "<?>"); 2909 continue; 2910 } 2911 2912 sects = libbpf_reallocarray(sects, nr_sects + 1, 2913 sizeof(*obj->efile.reloc_sects)); 2914 if (!sects) 2915 return -ENOMEM; 2916 2917 obj->efile.reloc_sects = sects; 2918 obj->efile.nr_reloc_sects++; 2919 2920 obj->efile.reloc_sects[nr_sects].shdr = sh; 2921 obj->efile.reloc_sects[nr_sects].data = data; 2922 } else if (sh.sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 2923 obj->efile.bss = data; 2924 obj->efile.bss_shndx = idx; 2925 } else { 2926 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 2927 (size_t)sh.sh_size); 2928 } 2929 } 2930 2931 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 2932 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 2933 return -LIBBPF_ERRNO__FORMAT; 2934 } 2935 2936 /* sort BPF programs by section name and in-section instruction offset 2937 * for faster search */ 2938 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 2939 2940 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 2941 } 2942 2943 static bool sym_is_extern(const GElf_Sym *sym) 2944 { 2945 int bind = GELF_ST_BIND(sym->st_info); 2946 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 2947 return sym->st_shndx == SHN_UNDEF && 2948 (bind == STB_GLOBAL || bind == STB_WEAK) && 2949 GELF_ST_TYPE(sym->st_info) == STT_NOTYPE; 2950 } 2951 2952 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 2953 { 2954 const struct btf_type *t; 2955 const char *var_name; 2956 int i, n; 2957 2958 if (!btf) 2959 return -ESRCH; 2960 2961 n = btf__get_nr_types(btf); 2962 for (i = 1; i <= n; i++) { 2963 t = btf__type_by_id(btf, i); 2964 2965 if (!btf_is_var(t)) 2966 continue; 2967 2968 var_name = btf__name_by_offset(btf, t->name_off); 2969 if (strcmp(var_name, ext_name)) 2970 continue; 2971 2972 if (btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 2973 return -EINVAL; 2974 2975 return i; 2976 } 2977 2978 return -ENOENT; 2979 } 2980 2981 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 2982 const struct btf_var_secinfo *vs; 2983 const struct btf_type *t; 2984 int i, j, n; 2985 2986 if (!btf) 2987 return -ESRCH; 2988 2989 n = btf__get_nr_types(btf); 2990 for (i = 1; i <= n; i++) { 2991 t = btf__type_by_id(btf, i); 2992 2993 if (!btf_is_datasec(t)) 2994 continue; 2995 2996 vs = btf_var_secinfos(t); 2997 for (j = 0; j < btf_vlen(t); j++, vs++) { 2998 if (vs->type == ext_btf_id) 2999 return i; 3000 } 3001 } 3002 3003 return -ENOENT; 3004 } 3005 3006 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3007 bool *is_signed) 3008 { 3009 const struct btf_type *t; 3010 const char *name; 3011 3012 t = skip_mods_and_typedefs(btf, id, NULL); 3013 name = btf__name_by_offset(btf, t->name_off); 3014 3015 if (is_signed) 3016 *is_signed = false; 3017 switch (btf_kind(t)) { 3018 case BTF_KIND_INT: { 3019 int enc = btf_int_encoding(t); 3020 3021 if (enc & BTF_INT_BOOL) 3022 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3023 if (is_signed) 3024 *is_signed = enc & BTF_INT_SIGNED; 3025 if (t->size == 1) 3026 return KCFG_CHAR; 3027 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3028 return KCFG_UNKNOWN; 3029 return KCFG_INT; 3030 } 3031 case BTF_KIND_ENUM: 3032 if (t->size != 4) 3033 return KCFG_UNKNOWN; 3034 if (strcmp(name, "libbpf_tristate")) 3035 return KCFG_UNKNOWN; 3036 return KCFG_TRISTATE; 3037 case BTF_KIND_ARRAY: 3038 if (btf_array(t)->nelems == 0) 3039 return KCFG_UNKNOWN; 3040 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3041 return KCFG_UNKNOWN; 3042 return KCFG_CHAR_ARR; 3043 default: 3044 return KCFG_UNKNOWN; 3045 } 3046 } 3047 3048 static int cmp_externs(const void *_a, const void *_b) 3049 { 3050 const struct extern_desc *a = _a; 3051 const struct extern_desc *b = _b; 3052 3053 if (a->type != b->type) 3054 return a->type < b->type ? -1 : 1; 3055 3056 if (a->type == EXT_KCFG) { 3057 /* descending order by alignment requirements */ 3058 if (a->kcfg.align != b->kcfg.align) 3059 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3060 /* ascending order by size, within same alignment class */ 3061 if (a->kcfg.sz != b->kcfg.sz) 3062 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3063 } 3064 3065 /* resolve ties by name */ 3066 return strcmp(a->name, b->name); 3067 } 3068 3069 static int find_int_btf_id(const struct btf *btf) 3070 { 3071 const struct btf_type *t; 3072 int i, n; 3073 3074 n = btf__get_nr_types(btf); 3075 for (i = 1; i <= n; i++) { 3076 t = btf__type_by_id(btf, i); 3077 3078 if (btf_is_int(t) && btf_int_bits(t) == 32) 3079 return i; 3080 } 3081 3082 return 0; 3083 } 3084 3085 static int bpf_object__collect_externs(struct bpf_object *obj) 3086 { 3087 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3088 const struct btf_type *t; 3089 struct extern_desc *ext; 3090 int i, n, off; 3091 const char *ext_name, *sec_name; 3092 Elf_Scn *scn; 3093 GElf_Shdr sh; 3094 3095 if (!obj->efile.symbols) 3096 return 0; 3097 3098 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3099 if (elf_sec_hdr(obj, scn, &sh)) 3100 return -LIBBPF_ERRNO__FORMAT; 3101 3102 n = sh.sh_size / sh.sh_entsize; 3103 pr_debug("looking for externs among %d symbols...\n", n); 3104 3105 for (i = 0; i < n; i++) { 3106 GElf_Sym sym; 3107 3108 if (!gelf_getsym(obj->efile.symbols, i, &sym)) 3109 return -LIBBPF_ERRNO__FORMAT; 3110 if (!sym_is_extern(&sym)) 3111 continue; 3112 ext_name = elf_sym_str(obj, sym.st_name); 3113 if (!ext_name || !ext_name[0]) 3114 continue; 3115 3116 ext = obj->externs; 3117 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3118 if (!ext) 3119 return -ENOMEM; 3120 obj->externs = ext; 3121 ext = &ext[obj->nr_extern]; 3122 memset(ext, 0, sizeof(*ext)); 3123 obj->nr_extern++; 3124 3125 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3126 if (ext->btf_id <= 0) { 3127 pr_warn("failed to find BTF for extern '%s': %d\n", 3128 ext_name, ext->btf_id); 3129 return ext->btf_id; 3130 } 3131 t = btf__type_by_id(obj->btf, ext->btf_id); 3132 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3133 ext->sym_idx = i; 3134 ext->is_weak = GELF_ST_BIND(sym.st_info) == STB_WEAK; 3135 3136 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3137 if (ext->sec_btf_id <= 0) { 3138 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3139 ext_name, ext->btf_id, ext->sec_btf_id); 3140 return ext->sec_btf_id; 3141 } 3142 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3143 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3144 3145 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3146 kcfg_sec = sec; 3147 ext->type = EXT_KCFG; 3148 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3149 if (ext->kcfg.sz <= 0) { 3150 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3151 ext_name, ext->kcfg.sz); 3152 return ext->kcfg.sz; 3153 } 3154 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3155 if (ext->kcfg.align <= 0) { 3156 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3157 ext_name, ext->kcfg.align); 3158 return -EINVAL; 3159 } 3160 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3161 &ext->kcfg.is_signed); 3162 if (ext->kcfg.type == KCFG_UNKNOWN) { 3163 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name); 3164 return -ENOTSUP; 3165 } 3166 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3167 ksym_sec = sec; 3168 ext->type = EXT_KSYM; 3169 skip_mods_and_typedefs(obj->btf, t->type, 3170 &ext->ksym.type_id); 3171 } else { 3172 pr_warn("unrecognized extern section '%s'\n", sec_name); 3173 return -ENOTSUP; 3174 } 3175 } 3176 pr_debug("collected %d externs total\n", obj->nr_extern); 3177 3178 if (!obj->nr_extern) 3179 return 0; 3180 3181 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3182 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3183 3184 /* for .ksyms section, we need to turn all externs into allocated 3185 * variables in BTF to pass kernel verification; we do this by 3186 * pretending that each extern is a 8-byte variable 3187 */ 3188 if (ksym_sec) { 3189 /* find existing 4-byte integer type in BTF to use for fake 3190 * extern variables in DATASEC 3191 */ 3192 int int_btf_id = find_int_btf_id(obj->btf); 3193 3194 for (i = 0; i < obj->nr_extern; i++) { 3195 ext = &obj->externs[i]; 3196 if (ext->type != EXT_KSYM) 3197 continue; 3198 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3199 i, ext->sym_idx, ext->name); 3200 } 3201 3202 sec = ksym_sec; 3203 n = btf_vlen(sec); 3204 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3205 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3206 struct btf_type *vt; 3207 3208 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3209 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3210 ext = find_extern_by_name(obj, ext_name); 3211 if (!ext) { 3212 pr_warn("failed to find extern definition for BTF var '%s'\n", 3213 ext_name); 3214 return -ESRCH; 3215 } 3216 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3217 vt->type = int_btf_id; 3218 vs->offset = off; 3219 vs->size = sizeof(int); 3220 } 3221 sec->size = off; 3222 } 3223 3224 if (kcfg_sec) { 3225 sec = kcfg_sec; 3226 /* for kcfg externs calculate their offsets within a .kconfig map */ 3227 off = 0; 3228 for (i = 0; i < obj->nr_extern; i++) { 3229 ext = &obj->externs[i]; 3230 if (ext->type != EXT_KCFG) 3231 continue; 3232 3233 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3234 off = ext->kcfg.data_off + ext->kcfg.sz; 3235 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3236 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3237 } 3238 sec->size = off; 3239 n = btf_vlen(sec); 3240 for (i = 0; i < n; i++) { 3241 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3242 3243 t = btf__type_by_id(obj->btf, vs->type); 3244 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3245 ext = find_extern_by_name(obj, ext_name); 3246 if (!ext) { 3247 pr_warn("failed to find extern definition for BTF var '%s'\n", 3248 ext_name); 3249 return -ESRCH; 3250 } 3251 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3252 vs->offset = ext->kcfg.data_off; 3253 } 3254 } 3255 return 0; 3256 } 3257 3258 struct bpf_program * 3259 bpf_object__find_program_by_title(const struct bpf_object *obj, 3260 const char *title) 3261 { 3262 struct bpf_program *pos; 3263 3264 bpf_object__for_each_program(pos, obj) { 3265 if (pos->sec_name && !strcmp(pos->sec_name, title)) 3266 return pos; 3267 } 3268 return NULL; 3269 } 3270 3271 static bool prog_is_subprog(const struct bpf_object *obj, 3272 const struct bpf_program *prog) 3273 { 3274 /* For legacy reasons, libbpf supports an entry-point BPF programs 3275 * without SEC() attribute, i.e., those in the .text section. But if 3276 * there are 2 or more such programs in the .text section, they all 3277 * must be subprograms called from entry-point BPF programs in 3278 * designated SEC()'tions, otherwise there is no way to distinguish 3279 * which of those programs should be loaded vs which are a subprogram. 3280 * Similarly, if there is a function/program in .text and at least one 3281 * other BPF program with custom SEC() attribute, then we just assume 3282 * .text programs are subprograms (even if they are not called from 3283 * other programs), because libbpf never explicitly supported mixing 3284 * SEC()-designated BPF programs and .text entry-point BPF programs. 3285 */ 3286 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3287 } 3288 3289 struct bpf_program * 3290 bpf_object__find_program_by_name(const struct bpf_object *obj, 3291 const char *name) 3292 { 3293 struct bpf_program *prog; 3294 3295 bpf_object__for_each_program(prog, obj) { 3296 if (prog_is_subprog(obj, prog)) 3297 continue; 3298 if (!strcmp(prog->name, name)) 3299 return prog; 3300 } 3301 return NULL; 3302 } 3303 3304 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3305 int shndx) 3306 { 3307 return shndx == obj->efile.data_shndx || 3308 shndx == obj->efile.bss_shndx || 3309 shndx == obj->efile.rodata_shndx; 3310 } 3311 3312 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3313 int shndx) 3314 { 3315 return shndx == obj->efile.maps_shndx || 3316 shndx == obj->efile.btf_maps_shndx; 3317 } 3318 3319 static enum libbpf_map_type 3320 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3321 { 3322 if (shndx == obj->efile.data_shndx) 3323 return LIBBPF_MAP_DATA; 3324 else if (shndx == obj->efile.bss_shndx) 3325 return LIBBPF_MAP_BSS; 3326 else if (shndx == obj->efile.rodata_shndx) 3327 return LIBBPF_MAP_RODATA; 3328 else if (shndx == obj->efile.symbols_shndx) 3329 return LIBBPF_MAP_KCONFIG; 3330 else 3331 return LIBBPF_MAP_UNSPEC; 3332 } 3333 3334 static int bpf_program__record_reloc(struct bpf_program *prog, 3335 struct reloc_desc *reloc_desc, 3336 __u32 insn_idx, const char *sym_name, 3337 const GElf_Sym *sym, const GElf_Rel *rel) 3338 { 3339 struct bpf_insn *insn = &prog->insns[insn_idx]; 3340 size_t map_idx, nr_maps = prog->obj->nr_maps; 3341 struct bpf_object *obj = prog->obj; 3342 __u32 shdr_idx = sym->st_shndx; 3343 enum libbpf_map_type type; 3344 const char *sym_sec_name; 3345 struct bpf_map *map; 3346 3347 reloc_desc->processed = false; 3348 3349 /* sub-program call relocation */ 3350 if (insn->code == (BPF_JMP | BPF_CALL)) { 3351 if (insn->src_reg != BPF_PSEUDO_CALL) { 3352 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 3353 return -LIBBPF_ERRNO__RELOC; 3354 } 3355 /* text_shndx can be 0, if no default "main" program exists */ 3356 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 3357 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3358 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 3359 prog->name, sym_name, sym_sec_name); 3360 return -LIBBPF_ERRNO__RELOC; 3361 } 3362 if (sym->st_value % BPF_INSN_SZ) { 3363 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 3364 prog->name, sym_name, (size_t)sym->st_value); 3365 return -LIBBPF_ERRNO__RELOC; 3366 } 3367 reloc_desc->type = RELO_CALL; 3368 reloc_desc->insn_idx = insn_idx; 3369 reloc_desc->sym_off = sym->st_value; 3370 return 0; 3371 } 3372 3373 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) { 3374 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 3375 prog->name, sym_name, insn_idx, insn->code); 3376 return -LIBBPF_ERRNO__RELOC; 3377 } 3378 3379 if (sym_is_extern(sym)) { 3380 int sym_idx = GELF_R_SYM(rel->r_info); 3381 int i, n = obj->nr_extern; 3382 struct extern_desc *ext; 3383 3384 for (i = 0; i < n; i++) { 3385 ext = &obj->externs[i]; 3386 if (ext->sym_idx == sym_idx) 3387 break; 3388 } 3389 if (i >= n) { 3390 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 3391 prog->name, sym_name, sym_idx); 3392 return -LIBBPF_ERRNO__RELOC; 3393 } 3394 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 3395 prog->name, i, ext->name, ext->sym_idx, insn_idx); 3396 reloc_desc->type = RELO_EXTERN; 3397 reloc_desc->insn_idx = insn_idx; 3398 reloc_desc->sym_off = i; /* sym_off stores extern index */ 3399 return 0; 3400 } 3401 3402 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 3403 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 3404 prog->name, sym_name, shdr_idx); 3405 return -LIBBPF_ERRNO__RELOC; 3406 } 3407 3408 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 3409 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3410 3411 /* generic map reference relocation */ 3412 if (type == LIBBPF_MAP_UNSPEC) { 3413 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 3414 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 3415 prog->name, sym_name, sym_sec_name); 3416 return -LIBBPF_ERRNO__RELOC; 3417 } 3418 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3419 map = &obj->maps[map_idx]; 3420 if (map->libbpf_type != type || 3421 map->sec_idx != sym->st_shndx || 3422 map->sec_offset != sym->st_value) 3423 continue; 3424 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 3425 prog->name, map_idx, map->name, map->sec_idx, 3426 map->sec_offset, insn_idx); 3427 break; 3428 } 3429 if (map_idx >= nr_maps) { 3430 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 3431 prog->name, sym_sec_name, (size_t)sym->st_value); 3432 return -LIBBPF_ERRNO__RELOC; 3433 } 3434 reloc_desc->type = RELO_LD64; 3435 reloc_desc->insn_idx = insn_idx; 3436 reloc_desc->map_idx = map_idx; 3437 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 3438 return 0; 3439 } 3440 3441 /* global data map relocation */ 3442 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 3443 pr_warn("prog '%s': bad data relo against section '%s'\n", 3444 prog->name, sym_sec_name); 3445 return -LIBBPF_ERRNO__RELOC; 3446 } 3447 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3448 map = &obj->maps[map_idx]; 3449 if (map->libbpf_type != type) 3450 continue; 3451 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 3452 prog->name, map_idx, map->name, map->sec_idx, 3453 map->sec_offset, insn_idx); 3454 break; 3455 } 3456 if (map_idx >= nr_maps) { 3457 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 3458 prog->name, sym_sec_name); 3459 return -LIBBPF_ERRNO__RELOC; 3460 } 3461 3462 reloc_desc->type = RELO_DATA; 3463 reloc_desc->insn_idx = insn_idx; 3464 reloc_desc->map_idx = map_idx; 3465 reloc_desc->sym_off = sym->st_value; 3466 return 0; 3467 } 3468 3469 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 3470 { 3471 return insn_idx >= prog->sec_insn_off && 3472 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 3473 } 3474 3475 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 3476 size_t sec_idx, size_t insn_idx) 3477 { 3478 int l = 0, r = obj->nr_programs - 1, m; 3479 struct bpf_program *prog; 3480 3481 while (l < r) { 3482 m = l + (r - l + 1) / 2; 3483 prog = &obj->programs[m]; 3484 3485 if (prog->sec_idx < sec_idx || 3486 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 3487 l = m; 3488 else 3489 r = m - 1; 3490 } 3491 /* matching program could be at index l, but it still might be the 3492 * wrong one, so we need to double check conditions for the last time 3493 */ 3494 prog = &obj->programs[l]; 3495 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 3496 return prog; 3497 return NULL; 3498 } 3499 3500 static int 3501 bpf_object__collect_prog_relos(struct bpf_object *obj, GElf_Shdr *shdr, Elf_Data *data) 3502 { 3503 Elf_Data *symbols = obj->efile.symbols; 3504 const char *relo_sec_name, *sec_name; 3505 size_t sec_idx = shdr->sh_info; 3506 struct bpf_program *prog; 3507 struct reloc_desc *relos; 3508 int err, i, nrels; 3509 const char *sym_name; 3510 __u32 insn_idx; 3511 GElf_Sym sym; 3512 GElf_Rel rel; 3513 3514 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 3515 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 3516 if (!relo_sec_name || !sec_name) 3517 return -EINVAL; 3518 3519 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 3520 relo_sec_name, sec_idx, sec_name); 3521 nrels = shdr->sh_size / shdr->sh_entsize; 3522 3523 for (i = 0; i < nrels; i++) { 3524 if (!gelf_getrel(data, i, &rel)) { 3525 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 3526 return -LIBBPF_ERRNO__FORMAT; 3527 } 3528 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 3529 pr_warn("sec '%s': symbol 0x%zx not found for relo #%d\n", 3530 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i); 3531 return -LIBBPF_ERRNO__FORMAT; 3532 } 3533 if (rel.r_offset % BPF_INSN_SZ) { 3534 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 3535 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i); 3536 return -LIBBPF_ERRNO__FORMAT; 3537 } 3538 3539 insn_idx = rel.r_offset / BPF_INSN_SZ; 3540 /* relocations against static functions are recorded as 3541 * relocations against the section that contains a function; 3542 * in such case, symbol will be STT_SECTION and sym.st_name 3543 * will point to empty string (0), so fetch section name 3544 * instead 3545 */ 3546 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && sym.st_name == 0) 3547 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym.st_shndx)); 3548 else 3549 sym_name = elf_sym_str(obj, sym.st_name); 3550 sym_name = sym_name ?: "<?"; 3551 3552 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 3553 relo_sec_name, i, insn_idx, sym_name); 3554 3555 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 3556 if (!prog) { 3557 pr_warn("sec '%s': relo #%d: program not found in section '%s' for insn #%u\n", 3558 relo_sec_name, i, sec_name, insn_idx); 3559 return -LIBBPF_ERRNO__RELOC; 3560 } 3561 3562 relos = libbpf_reallocarray(prog->reloc_desc, 3563 prog->nr_reloc + 1, sizeof(*relos)); 3564 if (!relos) 3565 return -ENOMEM; 3566 prog->reloc_desc = relos; 3567 3568 /* adjust insn_idx to local BPF program frame of reference */ 3569 insn_idx -= prog->sec_insn_off; 3570 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 3571 insn_idx, sym_name, &sym, &rel); 3572 if (err) 3573 return err; 3574 3575 prog->nr_reloc++; 3576 } 3577 return 0; 3578 } 3579 3580 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 3581 { 3582 struct bpf_map_def *def = &map->def; 3583 __u32 key_type_id = 0, value_type_id = 0; 3584 int ret; 3585 3586 /* if it's BTF-defined map, we don't need to search for type IDs. 3587 * For struct_ops map, it does not need btf_key_type_id and 3588 * btf_value_type_id. 3589 */ 3590 if (map->sec_idx == obj->efile.btf_maps_shndx || 3591 bpf_map__is_struct_ops(map)) 3592 return 0; 3593 3594 if (!bpf_map__is_internal(map)) { 3595 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size, 3596 def->value_size, &key_type_id, 3597 &value_type_id); 3598 } else { 3599 /* 3600 * LLVM annotates global data differently in BTF, that is, 3601 * only as '.data', '.bss' or '.rodata'. 3602 */ 3603 ret = btf__find_by_name(obj->btf, 3604 libbpf_type_to_btf_name[map->libbpf_type]); 3605 } 3606 if (ret < 0) 3607 return ret; 3608 3609 map->btf_key_type_id = key_type_id; 3610 map->btf_value_type_id = bpf_map__is_internal(map) ? 3611 ret : value_type_id; 3612 return 0; 3613 } 3614 3615 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 3616 { 3617 struct bpf_map_info info = {}; 3618 __u32 len = sizeof(info); 3619 int new_fd, err; 3620 char *new_name; 3621 3622 err = bpf_obj_get_info_by_fd(fd, &info, &len); 3623 if (err) 3624 return err; 3625 3626 new_name = strdup(info.name); 3627 if (!new_name) 3628 return -errno; 3629 3630 new_fd = open("/", O_RDONLY | O_CLOEXEC); 3631 if (new_fd < 0) { 3632 err = -errno; 3633 goto err_free_new_name; 3634 } 3635 3636 new_fd = dup3(fd, new_fd, O_CLOEXEC); 3637 if (new_fd < 0) { 3638 err = -errno; 3639 goto err_close_new_fd; 3640 } 3641 3642 err = zclose(map->fd); 3643 if (err) { 3644 err = -errno; 3645 goto err_close_new_fd; 3646 } 3647 free(map->name); 3648 3649 map->fd = new_fd; 3650 map->name = new_name; 3651 map->def.type = info.type; 3652 map->def.key_size = info.key_size; 3653 map->def.value_size = info.value_size; 3654 map->def.max_entries = info.max_entries; 3655 map->def.map_flags = info.map_flags; 3656 map->btf_key_type_id = info.btf_key_type_id; 3657 map->btf_value_type_id = info.btf_value_type_id; 3658 map->reused = true; 3659 3660 return 0; 3661 3662 err_close_new_fd: 3663 close(new_fd); 3664 err_free_new_name: 3665 free(new_name); 3666 return err; 3667 } 3668 3669 __u32 bpf_map__max_entries(const struct bpf_map *map) 3670 { 3671 return map->def.max_entries; 3672 } 3673 3674 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 3675 { 3676 if (map->fd >= 0) 3677 return -EBUSY; 3678 map->def.max_entries = max_entries; 3679 return 0; 3680 } 3681 3682 int bpf_map__resize(struct bpf_map *map, __u32 max_entries) 3683 { 3684 if (!map || !max_entries) 3685 return -EINVAL; 3686 3687 return bpf_map__set_max_entries(map, max_entries); 3688 } 3689 3690 static int 3691 bpf_object__probe_loading(struct bpf_object *obj) 3692 { 3693 struct bpf_load_program_attr attr; 3694 char *cp, errmsg[STRERR_BUFSIZE]; 3695 struct bpf_insn insns[] = { 3696 BPF_MOV64_IMM(BPF_REG_0, 0), 3697 BPF_EXIT_INSN(), 3698 }; 3699 int ret; 3700 3701 /* make sure basic loading works */ 3702 3703 memset(&attr, 0, sizeof(attr)); 3704 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3705 attr.insns = insns; 3706 attr.insns_cnt = ARRAY_SIZE(insns); 3707 attr.license = "GPL"; 3708 3709 ret = bpf_load_program_xattr(&attr, NULL, 0); 3710 if (ret < 0) { 3711 ret = errno; 3712 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 3713 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 3714 "program. Make sure your kernel supports BPF " 3715 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 3716 "set to big enough value.\n", __func__, cp, ret); 3717 return -ret; 3718 } 3719 close(ret); 3720 3721 return 0; 3722 } 3723 3724 static int probe_fd(int fd) 3725 { 3726 if (fd >= 0) 3727 close(fd); 3728 return fd >= 0; 3729 } 3730 3731 static int probe_kern_prog_name(void) 3732 { 3733 struct bpf_load_program_attr attr; 3734 struct bpf_insn insns[] = { 3735 BPF_MOV64_IMM(BPF_REG_0, 0), 3736 BPF_EXIT_INSN(), 3737 }; 3738 int ret; 3739 3740 /* make sure loading with name works */ 3741 3742 memset(&attr, 0, sizeof(attr)); 3743 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3744 attr.insns = insns; 3745 attr.insns_cnt = ARRAY_SIZE(insns); 3746 attr.license = "GPL"; 3747 attr.name = "test"; 3748 ret = bpf_load_program_xattr(&attr, NULL, 0); 3749 return probe_fd(ret); 3750 } 3751 3752 static int probe_kern_global_data(void) 3753 { 3754 struct bpf_load_program_attr prg_attr; 3755 struct bpf_create_map_attr map_attr; 3756 char *cp, errmsg[STRERR_BUFSIZE]; 3757 struct bpf_insn insns[] = { 3758 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 3759 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 3760 BPF_MOV64_IMM(BPF_REG_0, 0), 3761 BPF_EXIT_INSN(), 3762 }; 3763 int ret, map; 3764 3765 memset(&map_attr, 0, sizeof(map_attr)); 3766 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 3767 map_attr.key_size = sizeof(int); 3768 map_attr.value_size = 32; 3769 map_attr.max_entries = 1; 3770 3771 map = bpf_create_map_xattr(&map_attr); 3772 if (map < 0) { 3773 ret = -errno; 3774 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 3775 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 3776 __func__, cp, -ret); 3777 return ret; 3778 } 3779 3780 insns[0].imm = map; 3781 3782 memset(&prg_attr, 0, sizeof(prg_attr)); 3783 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3784 prg_attr.insns = insns; 3785 prg_attr.insns_cnt = ARRAY_SIZE(insns); 3786 prg_attr.license = "GPL"; 3787 3788 ret = bpf_load_program_xattr(&prg_attr, NULL, 0); 3789 close(map); 3790 return probe_fd(ret); 3791 } 3792 3793 static int probe_kern_btf(void) 3794 { 3795 static const char strs[] = "\0int"; 3796 __u32 types[] = { 3797 /* int */ 3798 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 3799 }; 3800 3801 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3802 strs, sizeof(strs))); 3803 } 3804 3805 static int probe_kern_btf_func(void) 3806 { 3807 static const char strs[] = "\0int\0x\0a"; 3808 /* void x(int a) {} */ 3809 __u32 types[] = { 3810 /* int */ 3811 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3812 /* FUNC_PROTO */ /* [2] */ 3813 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 3814 BTF_PARAM_ENC(7, 1), 3815 /* FUNC x */ /* [3] */ 3816 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 3817 }; 3818 3819 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3820 strs, sizeof(strs))); 3821 } 3822 3823 static int probe_kern_btf_func_global(void) 3824 { 3825 static const char strs[] = "\0int\0x\0a"; 3826 /* static void x(int a) {} */ 3827 __u32 types[] = { 3828 /* int */ 3829 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3830 /* FUNC_PROTO */ /* [2] */ 3831 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 3832 BTF_PARAM_ENC(7, 1), 3833 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 3834 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 3835 }; 3836 3837 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3838 strs, sizeof(strs))); 3839 } 3840 3841 static int probe_kern_btf_datasec(void) 3842 { 3843 static const char strs[] = "\0x\0.data"; 3844 /* static int a; */ 3845 __u32 types[] = { 3846 /* int */ 3847 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3848 /* VAR x */ /* [2] */ 3849 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 3850 BTF_VAR_STATIC, 3851 /* DATASEC val */ /* [3] */ 3852 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 3853 BTF_VAR_SECINFO_ENC(2, 0, 4), 3854 }; 3855 3856 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3857 strs, sizeof(strs))); 3858 } 3859 3860 static int probe_kern_array_mmap(void) 3861 { 3862 struct bpf_create_map_attr attr = { 3863 .map_type = BPF_MAP_TYPE_ARRAY, 3864 .map_flags = BPF_F_MMAPABLE, 3865 .key_size = sizeof(int), 3866 .value_size = sizeof(int), 3867 .max_entries = 1, 3868 }; 3869 3870 return probe_fd(bpf_create_map_xattr(&attr)); 3871 } 3872 3873 static int probe_kern_exp_attach_type(void) 3874 { 3875 struct bpf_load_program_attr attr; 3876 struct bpf_insn insns[] = { 3877 BPF_MOV64_IMM(BPF_REG_0, 0), 3878 BPF_EXIT_INSN(), 3879 }; 3880 3881 memset(&attr, 0, sizeof(attr)); 3882 /* use any valid combination of program type and (optional) 3883 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 3884 * to see if kernel supports expected_attach_type field for 3885 * BPF_PROG_LOAD command 3886 */ 3887 attr.prog_type = BPF_PROG_TYPE_CGROUP_SOCK; 3888 attr.expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE; 3889 attr.insns = insns; 3890 attr.insns_cnt = ARRAY_SIZE(insns); 3891 attr.license = "GPL"; 3892 3893 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0)); 3894 } 3895 3896 static int probe_kern_probe_read_kernel(void) 3897 { 3898 struct bpf_load_program_attr attr; 3899 struct bpf_insn insns[] = { 3900 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 3901 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 3902 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 3903 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 3904 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 3905 BPF_EXIT_INSN(), 3906 }; 3907 3908 memset(&attr, 0, sizeof(attr)); 3909 attr.prog_type = BPF_PROG_TYPE_KPROBE; 3910 attr.insns = insns; 3911 attr.insns_cnt = ARRAY_SIZE(insns); 3912 attr.license = "GPL"; 3913 3914 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0)); 3915 } 3916 3917 static int probe_prog_bind_map(void) 3918 { 3919 struct bpf_load_program_attr prg_attr; 3920 struct bpf_create_map_attr map_attr; 3921 char *cp, errmsg[STRERR_BUFSIZE]; 3922 struct bpf_insn insns[] = { 3923 BPF_MOV64_IMM(BPF_REG_0, 0), 3924 BPF_EXIT_INSN(), 3925 }; 3926 int ret, map, prog; 3927 3928 memset(&map_attr, 0, sizeof(map_attr)); 3929 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 3930 map_attr.key_size = sizeof(int); 3931 map_attr.value_size = 32; 3932 map_attr.max_entries = 1; 3933 3934 map = bpf_create_map_xattr(&map_attr); 3935 if (map < 0) { 3936 ret = -errno; 3937 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 3938 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 3939 __func__, cp, -ret); 3940 return ret; 3941 } 3942 3943 memset(&prg_attr, 0, sizeof(prg_attr)); 3944 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3945 prg_attr.insns = insns; 3946 prg_attr.insns_cnt = ARRAY_SIZE(insns); 3947 prg_attr.license = "GPL"; 3948 3949 prog = bpf_load_program_xattr(&prg_attr, NULL, 0); 3950 if (prog < 0) { 3951 close(map); 3952 return 0; 3953 } 3954 3955 ret = bpf_prog_bind_map(prog, map, NULL); 3956 3957 close(map); 3958 close(prog); 3959 3960 return ret >= 0; 3961 } 3962 3963 enum kern_feature_result { 3964 FEAT_UNKNOWN = 0, 3965 FEAT_SUPPORTED = 1, 3966 FEAT_MISSING = 2, 3967 }; 3968 3969 typedef int (*feature_probe_fn)(void); 3970 3971 static struct kern_feature_desc { 3972 const char *desc; 3973 feature_probe_fn probe; 3974 enum kern_feature_result res; 3975 } feature_probes[__FEAT_CNT] = { 3976 [FEAT_PROG_NAME] = { 3977 "BPF program name", probe_kern_prog_name, 3978 }, 3979 [FEAT_GLOBAL_DATA] = { 3980 "global variables", probe_kern_global_data, 3981 }, 3982 [FEAT_BTF] = { 3983 "minimal BTF", probe_kern_btf, 3984 }, 3985 [FEAT_BTF_FUNC] = { 3986 "BTF functions", probe_kern_btf_func, 3987 }, 3988 [FEAT_BTF_GLOBAL_FUNC] = { 3989 "BTF global function", probe_kern_btf_func_global, 3990 }, 3991 [FEAT_BTF_DATASEC] = { 3992 "BTF data section and variable", probe_kern_btf_datasec, 3993 }, 3994 [FEAT_ARRAY_MMAP] = { 3995 "ARRAY map mmap()", probe_kern_array_mmap, 3996 }, 3997 [FEAT_EXP_ATTACH_TYPE] = { 3998 "BPF_PROG_LOAD expected_attach_type attribute", 3999 probe_kern_exp_attach_type, 4000 }, 4001 [FEAT_PROBE_READ_KERN] = { 4002 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4003 }, 4004 [FEAT_PROG_BIND_MAP] = { 4005 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4006 } 4007 }; 4008 4009 static bool kernel_supports(enum kern_feature_id feat_id) 4010 { 4011 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4012 int ret; 4013 4014 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4015 ret = feat->probe(); 4016 if (ret > 0) { 4017 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4018 } else if (ret == 0) { 4019 WRITE_ONCE(feat->res, FEAT_MISSING); 4020 } else { 4021 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4022 WRITE_ONCE(feat->res, FEAT_MISSING); 4023 } 4024 } 4025 4026 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4027 } 4028 4029 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4030 { 4031 struct bpf_map_info map_info = {}; 4032 char msg[STRERR_BUFSIZE]; 4033 __u32 map_info_len; 4034 4035 map_info_len = sizeof(map_info); 4036 4037 if (bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len)) { 4038 pr_warn("failed to get map info for map FD %d: %s\n", 4039 map_fd, libbpf_strerror_r(errno, msg, sizeof(msg))); 4040 return false; 4041 } 4042 4043 return (map_info.type == map->def.type && 4044 map_info.key_size == map->def.key_size && 4045 map_info.value_size == map->def.value_size && 4046 map_info.max_entries == map->def.max_entries && 4047 map_info.map_flags == map->def.map_flags); 4048 } 4049 4050 static int 4051 bpf_object__reuse_map(struct bpf_map *map) 4052 { 4053 char *cp, errmsg[STRERR_BUFSIZE]; 4054 int err, pin_fd; 4055 4056 pin_fd = bpf_obj_get(map->pin_path); 4057 if (pin_fd < 0) { 4058 err = -errno; 4059 if (err == -ENOENT) { 4060 pr_debug("found no pinned map to reuse at '%s'\n", 4061 map->pin_path); 4062 return 0; 4063 } 4064 4065 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4066 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4067 map->pin_path, cp); 4068 return err; 4069 } 4070 4071 if (!map_is_reuse_compat(map, pin_fd)) { 4072 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4073 map->pin_path); 4074 close(pin_fd); 4075 return -EINVAL; 4076 } 4077 4078 err = bpf_map__reuse_fd(map, pin_fd); 4079 if (err) { 4080 close(pin_fd); 4081 return err; 4082 } 4083 map->pinned = true; 4084 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4085 4086 return 0; 4087 } 4088 4089 static int 4090 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4091 { 4092 enum libbpf_map_type map_type = map->libbpf_type; 4093 char *cp, errmsg[STRERR_BUFSIZE]; 4094 int err, zero = 0; 4095 4096 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4097 if (err) { 4098 err = -errno; 4099 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4100 pr_warn("Error setting initial map(%s) contents: %s\n", 4101 map->name, cp); 4102 return err; 4103 } 4104 4105 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 4106 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 4107 err = bpf_map_freeze(map->fd); 4108 if (err) { 4109 err = -errno; 4110 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4111 pr_warn("Error freezing map(%s) as read-only: %s\n", 4112 map->name, cp); 4113 return err; 4114 } 4115 } 4116 return 0; 4117 } 4118 4119 static void bpf_map__destroy(struct bpf_map *map); 4120 4121 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map) 4122 { 4123 struct bpf_create_map_attr create_attr; 4124 struct bpf_map_def *def = &map->def; 4125 4126 memset(&create_attr, 0, sizeof(create_attr)); 4127 4128 if (kernel_supports(FEAT_PROG_NAME)) 4129 create_attr.name = map->name; 4130 create_attr.map_ifindex = map->map_ifindex; 4131 create_attr.map_type = def->type; 4132 create_attr.map_flags = def->map_flags; 4133 create_attr.key_size = def->key_size; 4134 create_attr.value_size = def->value_size; 4135 create_attr.numa_node = map->numa_node; 4136 4137 if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) { 4138 int nr_cpus; 4139 4140 nr_cpus = libbpf_num_possible_cpus(); 4141 if (nr_cpus < 0) { 4142 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 4143 map->name, nr_cpus); 4144 return nr_cpus; 4145 } 4146 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 4147 create_attr.max_entries = nr_cpus; 4148 } else { 4149 create_attr.max_entries = def->max_entries; 4150 } 4151 4152 if (bpf_map__is_struct_ops(map)) 4153 create_attr.btf_vmlinux_value_type_id = 4154 map->btf_vmlinux_value_type_id; 4155 4156 create_attr.btf_fd = 0; 4157 create_attr.btf_key_type_id = 0; 4158 create_attr.btf_value_type_id = 0; 4159 if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) { 4160 create_attr.btf_fd = btf__fd(obj->btf); 4161 create_attr.btf_key_type_id = map->btf_key_type_id; 4162 create_attr.btf_value_type_id = map->btf_value_type_id; 4163 } 4164 4165 if (bpf_map_type__is_map_in_map(def->type)) { 4166 if (map->inner_map) { 4167 int err; 4168 4169 err = bpf_object__create_map(obj, map->inner_map); 4170 if (err) { 4171 pr_warn("map '%s': failed to create inner map: %d\n", 4172 map->name, err); 4173 return err; 4174 } 4175 map->inner_map_fd = bpf_map__fd(map->inner_map); 4176 } 4177 if (map->inner_map_fd >= 0) 4178 create_attr.inner_map_fd = map->inner_map_fd; 4179 } 4180 4181 map->fd = bpf_create_map_xattr(&create_attr); 4182 if (map->fd < 0 && (create_attr.btf_key_type_id || 4183 create_attr.btf_value_type_id)) { 4184 char *cp, errmsg[STRERR_BUFSIZE]; 4185 int err = -errno; 4186 4187 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4188 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 4189 map->name, cp, err); 4190 create_attr.btf_fd = 0; 4191 create_attr.btf_key_type_id = 0; 4192 create_attr.btf_value_type_id = 0; 4193 map->btf_key_type_id = 0; 4194 map->btf_value_type_id = 0; 4195 map->fd = bpf_create_map_xattr(&create_attr); 4196 } 4197 4198 if (map->fd < 0) 4199 return -errno; 4200 4201 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 4202 bpf_map__destroy(map->inner_map); 4203 zfree(&map->inner_map); 4204 } 4205 4206 return 0; 4207 } 4208 4209 static int init_map_slots(struct bpf_map *map) 4210 { 4211 const struct bpf_map *targ_map; 4212 unsigned int i; 4213 int fd, err; 4214 4215 for (i = 0; i < map->init_slots_sz; i++) { 4216 if (!map->init_slots[i]) 4217 continue; 4218 4219 targ_map = map->init_slots[i]; 4220 fd = bpf_map__fd(targ_map); 4221 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 4222 if (err) { 4223 err = -errno; 4224 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 4225 map->name, i, targ_map->name, 4226 fd, err); 4227 return err; 4228 } 4229 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 4230 map->name, i, targ_map->name, fd); 4231 } 4232 4233 zfree(&map->init_slots); 4234 map->init_slots_sz = 0; 4235 4236 return 0; 4237 } 4238 4239 static int 4240 bpf_object__create_maps(struct bpf_object *obj) 4241 { 4242 struct bpf_map *map; 4243 char *cp, errmsg[STRERR_BUFSIZE]; 4244 unsigned int i, j; 4245 int err; 4246 4247 for (i = 0; i < obj->nr_maps; i++) { 4248 map = &obj->maps[i]; 4249 4250 if (map->pin_path) { 4251 err = bpf_object__reuse_map(map); 4252 if (err) { 4253 pr_warn("map '%s': error reusing pinned map\n", 4254 map->name); 4255 goto err_out; 4256 } 4257 } 4258 4259 if (map->fd >= 0) { 4260 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 4261 map->name, map->fd); 4262 } else { 4263 err = bpf_object__create_map(obj, map); 4264 if (err) 4265 goto err_out; 4266 4267 pr_debug("map '%s': created successfully, fd=%d\n", 4268 map->name, map->fd); 4269 4270 if (bpf_map__is_internal(map)) { 4271 err = bpf_object__populate_internal_map(obj, map); 4272 if (err < 0) { 4273 zclose(map->fd); 4274 goto err_out; 4275 } 4276 } 4277 4278 if (map->init_slots_sz) { 4279 err = init_map_slots(map); 4280 if (err < 0) { 4281 zclose(map->fd); 4282 goto err_out; 4283 } 4284 } 4285 } 4286 4287 if (map->pin_path && !map->pinned) { 4288 err = bpf_map__pin(map, NULL); 4289 if (err) { 4290 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 4291 map->name, map->pin_path, err); 4292 zclose(map->fd); 4293 goto err_out; 4294 } 4295 } 4296 } 4297 4298 return 0; 4299 4300 err_out: 4301 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4302 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 4303 pr_perm_msg(err); 4304 for (j = 0; j < i; j++) 4305 zclose(obj->maps[j].fd); 4306 return err; 4307 } 4308 4309 #define BPF_CORE_SPEC_MAX_LEN 64 4310 4311 /* represents BPF CO-RE field or array element accessor */ 4312 struct bpf_core_accessor { 4313 __u32 type_id; /* struct/union type or array element type */ 4314 __u32 idx; /* field index or array index */ 4315 const char *name; /* field name or NULL for array accessor */ 4316 }; 4317 4318 struct bpf_core_spec { 4319 const struct btf *btf; 4320 /* high-level spec: named fields and array indices only */ 4321 struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN]; 4322 /* original unresolved (no skip_mods_or_typedefs) root type ID */ 4323 __u32 root_type_id; 4324 /* CO-RE relocation kind */ 4325 enum bpf_core_relo_kind relo_kind; 4326 /* high-level spec length */ 4327 int len; 4328 /* raw, low-level spec: 1-to-1 with accessor spec string */ 4329 int raw_spec[BPF_CORE_SPEC_MAX_LEN]; 4330 /* raw spec length */ 4331 int raw_len; 4332 /* field bit offset represented by spec */ 4333 __u32 bit_offset; 4334 }; 4335 4336 static bool str_is_empty(const char *s) 4337 { 4338 return !s || !s[0]; 4339 } 4340 4341 static bool is_flex_arr(const struct btf *btf, 4342 const struct bpf_core_accessor *acc, 4343 const struct btf_array *arr) 4344 { 4345 const struct btf_type *t; 4346 4347 /* not a flexible array, if not inside a struct or has non-zero size */ 4348 if (!acc->name || arr->nelems > 0) 4349 return false; 4350 4351 /* has to be the last member of enclosing struct */ 4352 t = btf__type_by_id(btf, acc->type_id); 4353 return acc->idx == btf_vlen(t) - 1; 4354 } 4355 4356 static const char *core_relo_kind_str(enum bpf_core_relo_kind kind) 4357 { 4358 switch (kind) { 4359 case BPF_FIELD_BYTE_OFFSET: return "byte_off"; 4360 case BPF_FIELD_BYTE_SIZE: return "byte_sz"; 4361 case BPF_FIELD_EXISTS: return "field_exists"; 4362 case BPF_FIELD_SIGNED: return "signed"; 4363 case BPF_FIELD_LSHIFT_U64: return "lshift_u64"; 4364 case BPF_FIELD_RSHIFT_U64: return "rshift_u64"; 4365 case BPF_TYPE_ID_LOCAL: return "local_type_id"; 4366 case BPF_TYPE_ID_TARGET: return "target_type_id"; 4367 case BPF_TYPE_EXISTS: return "type_exists"; 4368 case BPF_TYPE_SIZE: return "type_size"; 4369 case BPF_ENUMVAL_EXISTS: return "enumval_exists"; 4370 case BPF_ENUMVAL_VALUE: return "enumval_value"; 4371 default: return "unknown"; 4372 } 4373 } 4374 4375 static bool core_relo_is_field_based(enum bpf_core_relo_kind kind) 4376 { 4377 switch (kind) { 4378 case BPF_FIELD_BYTE_OFFSET: 4379 case BPF_FIELD_BYTE_SIZE: 4380 case BPF_FIELD_EXISTS: 4381 case BPF_FIELD_SIGNED: 4382 case BPF_FIELD_LSHIFT_U64: 4383 case BPF_FIELD_RSHIFT_U64: 4384 return true; 4385 default: 4386 return false; 4387 } 4388 } 4389 4390 static bool core_relo_is_type_based(enum bpf_core_relo_kind kind) 4391 { 4392 switch (kind) { 4393 case BPF_TYPE_ID_LOCAL: 4394 case BPF_TYPE_ID_TARGET: 4395 case BPF_TYPE_EXISTS: 4396 case BPF_TYPE_SIZE: 4397 return true; 4398 default: 4399 return false; 4400 } 4401 } 4402 4403 static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind) 4404 { 4405 switch (kind) { 4406 case BPF_ENUMVAL_EXISTS: 4407 case BPF_ENUMVAL_VALUE: 4408 return true; 4409 default: 4410 return false; 4411 } 4412 } 4413 4414 /* 4415 * Turn bpf_core_relo into a low- and high-level spec representation, 4416 * validating correctness along the way, as well as calculating resulting 4417 * field bit offset, specified by accessor string. Low-level spec captures 4418 * every single level of nestedness, including traversing anonymous 4419 * struct/union members. High-level one only captures semantically meaningful 4420 * "turning points": named fields and array indicies. 4421 * E.g., for this case: 4422 * 4423 * struct sample { 4424 * int __unimportant; 4425 * struct { 4426 * int __1; 4427 * int __2; 4428 * int a[7]; 4429 * }; 4430 * }; 4431 * 4432 * struct sample *s = ...; 4433 * 4434 * int x = &s->a[3]; // access string = '0:1:2:3' 4435 * 4436 * Low-level spec has 1:1 mapping with each element of access string (it's 4437 * just a parsed access string representation): [0, 1, 2, 3]. 4438 * 4439 * High-level spec will capture only 3 points: 4440 * - intial zero-index access by pointer (&s->... is the same as &s[0]...); 4441 * - field 'a' access (corresponds to '2' in low-level spec); 4442 * - array element #3 access (corresponds to '3' in low-level spec). 4443 * 4444 * Type-based relocations (TYPE_EXISTS/TYPE_SIZE, 4445 * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their 4446 * spec and raw_spec are kept empty. 4447 * 4448 * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access 4449 * string to specify enumerator's value index that need to be relocated. 4450 */ 4451 static int bpf_core_parse_spec(const struct btf *btf, 4452 __u32 type_id, 4453 const char *spec_str, 4454 enum bpf_core_relo_kind relo_kind, 4455 struct bpf_core_spec *spec) 4456 { 4457 int access_idx, parsed_len, i; 4458 struct bpf_core_accessor *acc; 4459 const struct btf_type *t; 4460 const char *name; 4461 __u32 id; 4462 __s64 sz; 4463 4464 if (str_is_empty(spec_str) || *spec_str == ':') 4465 return -EINVAL; 4466 4467 memset(spec, 0, sizeof(*spec)); 4468 spec->btf = btf; 4469 spec->root_type_id = type_id; 4470 spec->relo_kind = relo_kind; 4471 4472 /* type-based relocations don't have a field access string */ 4473 if (core_relo_is_type_based(relo_kind)) { 4474 if (strcmp(spec_str, "0")) 4475 return -EINVAL; 4476 return 0; 4477 } 4478 4479 /* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */ 4480 while (*spec_str) { 4481 if (*spec_str == ':') 4482 ++spec_str; 4483 if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1) 4484 return -EINVAL; 4485 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 4486 return -E2BIG; 4487 spec_str += parsed_len; 4488 spec->raw_spec[spec->raw_len++] = access_idx; 4489 } 4490 4491 if (spec->raw_len == 0) 4492 return -EINVAL; 4493 4494 t = skip_mods_and_typedefs(btf, type_id, &id); 4495 if (!t) 4496 return -EINVAL; 4497 4498 access_idx = spec->raw_spec[0]; 4499 acc = &spec->spec[0]; 4500 acc->type_id = id; 4501 acc->idx = access_idx; 4502 spec->len++; 4503 4504 if (core_relo_is_enumval_based(relo_kind)) { 4505 if (!btf_is_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t)) 4506 return -EINVAL; 4507 4508 /* record enumerator name in a first accessor */ 4509 acc->name = btf__name_by_offset(btf, btf_enum(t)[access_idx].name_off); 4510 return 0; 4511 } 4512 4513 if (!core_relo_is_field_based(relo_kind)) 4514 return -EINVAL; 4515 4516 sz = btf__resolve_size(btf, id); 4517 if (sz < 0) 4518 return sz; 4519 spec->bit_offset = access_idx * sz * 8; 4520 4521 for (i = 1; i < spec->raw_len; i++) { 4522 t = skip_mods_and_typedefs(btf, id, &id); 4523 if (!t) 4524 return -EINVAL; 4525 4526 access_idx = spec->raw_spec[i]; 4527 acc = &spec->spec[spec->len]; 4528 4529 if (btf_is_composite(t)) { 4530 const struct btf_member *m; 4531 __u32 bit_offset; 4532 4533 if (access_idx >= btf_vlen(t)) 4534 return -EINVAL; 4535 4536 bit_offset = btf_member_bit_offset(t, access_idx); 4537 spec->bit_offset += bit_offset; 4538 4539 m = btf_members(t) + access_idx; 4540 if (m->name_off) { 4541 name = btf__name_by_offset(btf, m->name_off); 4542 if (str_is_empty(name)) 4543 return -EINVAL; 4544 4545 acc->type_id = id; 4546 acc->idx = access_idx; 4547 acc->name = name; 4548 spec->len++; 4549 } 4550 4551 id = m->type; 4552 } else if (btf_is_array(t)) { 4553 const struct btf_array *a = btf_array(t); 4554 bool flex; 4555 4556 t = skip_mods_and_typedefs(btf, a->type, &id); 4557 if (!t) 4558 return -EINVAL; 4559 4560 flex = is_flex_arr(btf, acc - 1, a); 4561 if (!flex && access_idx >= a->nelems) 4562 return -EINVAL; 4563 4564 spec->spec[spec->len].type_id = id; 4565 spec->spec[spec->len].idx = access_idx; 4566 spec->len++; 4567 4568 sz = btf__resolve_size(btf, id); 4569 if (sz < 0) 4570 return sz; 4571 spec->bit_offset += access_idx * sz * 8; 4572 } else { 4573 pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n", 4574 type_id, spec_str, i, id, btf_kind_str(t)); 4575 return -EINVAL; 4576 } 4577 } 4578 4579 return 0; 4580 } 4581 4582 static bool bpf_core_is_flavor_sep(const char *s) 4583 { 4584 /* check X___Y name pattern, where X and Y are not underscores */ 4585 return s[0] != '_' && /* X */ 4586 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 4587 s[4] != '_'; /* Y */ 4588 } 4589 4590 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 4591 * before last triple underscore. Struct name part after last triple 4592 * underscore is ignored by BPF CO-RE relocation during relocation matching. 4593 */ 4594 static size_t bpf_core_essential_name_len(const char *name) 4595 { 4596 size_t n = strlen(name); 4597 int i; 4598 4599 for (i = n - 5; i >= 0; i--) { 4600 if (bpf_core_is_flavor_sep(name + i)) 4601 return i + 1; 4602 } 4603 return n; 4604 } 4605 4606 /* dynamically sized list of type IDs */ 4607 struct ids_vec { 4608 __u32 *data; 4609 int len; 4610 }; 4611 4612 static void bpf_core_free_cands(struct ids_vec *cand_ids) 4613 { 4614 free(cand_ids->data); 4615 free(cand_ids); 4616 } 4617 4618 static struct ids_vec *bpf_core_find_cands(const struct btf *local_btf, 4619 __u32 local_type_id, 4620 const struct btf *targ_btf) 4621 { 4622 size_t local_essent_len, targ_essent_len; 4623 const char *local_name, *targ_name; 4624 const struct btf_type *t, *local_t; 4625 struct ids_vec *cand_ids; 4626 __u32 *new_ids; 4627 int i, err, n; 4628 4629 local_t = btf__type_by_id(local_btf, local_type_id); 4630 if (!local_t) 4631 return ERR_PTR(-EINVAL); 4632 4633 local_name = btf__name_by_offset(local_btf, local_t->name_off); 4634 if (str_is_empty(local_name)) 4635 return ERR_PTR(-EINVAL); 4636 local_essent_len = bpf_core_essential_name_len(local_name); 4637 4638 cand_ids = calloc(1, sizeof(*cand_ids)); 4639 if (!cand_ids) 4640 return ERR_PTR(-ENOMEM); 4641 4642 n = btf__get_nr_types(targ_btf); 4643 for (i = 1; i <= n; i++) { 4644 t = btf__type_by_id(targ_btf, i); 4645 if (btf_kind(t) != btf_kind(local_t)) 4646 continue; 4647 4648 targ_name = btf__name_by_offset(targ_btf, t->name_off); 4649 if (str_is_empty(targ_name)) 4650 continue; 4651 4652 targ_essent_len = bpf_core_essential_name_len(targ_name); 4653 if (targ_essent_len != local_essent_len) 4654 continue; 4655 4656 if (strncmp(local_name, targ_name, local_essent_len) == 0) { 4657 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s\n", 4658 local_type_id, btf_kind_str(local_t), 4659 local_name, i, btf_kind_str(t), targ_name); 4660 new_ids = libbpf_reallocarray(cand_ids->data, 4661 cand_ids->len + 1, 4662 sizeof(*cand_ids->data)); 4663 if (!new_ids) { 4664 err = -ENOMEM; 4665 goto err_out; 4666 } 4667 cand_ids->data = new_ids; 4668 cand_ids->data[cand_ids->len++] = i; 4669 } 4670 } 4671 return cand_ids; 4672 err_out: 4673 bpf_core_free_cands(cand_ids); 4674 return ERR_PTR(err); 4675 } 4676 4677 /* Check two types for compatibility for the purpose of field access 4678 * relocation. const/volatile/restrict and typedefs are skipped to ensure we 4679 * are relocating semantically compatible entities: 4680 * - any two STRUCTs/UNIONs are compatible and can be mixed; 4681 * - any two FWDs are compatible, if their names match (modulo flavor suffix); 4682 * - any two PTRs are always compatible; 4683 * - for ENUMs, names should be the same (ignoring flavor suffix) or at 4684 * least one of enums should be anonymous; 4685 * - for ENUMs, check sizes, names are ignored; 4686 * - for INT, size and signedness are ignored; 4687 * - for ARRAY, dimensionality is ignored, element types are checked for 4688 * compatibility recursively; 4689 * - everything else shouldn't be ever a target of relocation. 4690 * These rules are not set in stone and probably will be adjusted as we get 4691 * more experience with using BPF CO-RE relocations. 4692 */ 4693 static int bpf_core_fields_are_compat(const struct btf *local_btf, 4694 __u32 local_id, 4695 const struct btf *targ_btf, 4696 __u32 targ_id) 4697 { 4698 const struct btf_type *local_type, *targ_type; 4699 4700 recur: 4701 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 4702 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 4703 if (!local_type || !targ_type) 4704 return -EINVAL; 4705 4706 if (btf_is_composite(local_type) && btf_is_composite(targ_type)) 4707 return 1; 4708 if (btf_kind(local_type) != btf_kind(targ_type)) 4709 return 0; 4710 4711 switch (btf_kind(local_type)) { 4712 case BTF_KIND_PTR: 4713 return 1; 4714 case BTF_KIND_FWD: 4715 case BTF_KIND_ENUM: { 4716 const char *local_name, *targ_name; 4717 size_t local_len, targ_len; 4718 4719 local_name = btf__name_by_offset(local_btf, 4720 local_type->name_off); 4721 targ_name = btf__name_by_offset(targ_btf, targ_type->name_off); 4722 local_len = bpf_core_essential_name_len(local_name); 4723 targ_len = bpf_core_essential_name_len(targ_name); 4724 /* one of them is anonymous or both w/ same flavor-less names */ 4725 return local_len == 0 || targ_len == 0 || 4726 (local_len == targ_len && 4727 strncmp(local_name, targ_name, local_len) == 0); 4728 } 4729 case BTF_KIND_INT: 4730 /* just reject deprecated bitfield-like integers; all other 4731 * integers are by default compatible between each other 4732 */ 4733 return btf_int_offset(local_type) == 0 && 4734 btf_int_offset(targ_type) == 0; 4735 case BTF_KIND_ARRAY: 4736 local_id = btf_array(local_type)->type; 4737 targ_id = btf_array(targ_type)->type; 4738 goto recur; 4739 default: 4740 pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n", 4741 btf_kind(local_type), local_id, targ_id); 4742 return 0; 4743 } 4744 } 4745 4746 /* 4747 * Given single high-level named field accessor in local type, find 4748 * corresponding high-level accessor for a target type. Along the way, 4749 * maintain low-level spec for target as well. Also keep updating target 4750 * bit offset. 4751 * 4752 * Searching is performed through recursive exhaustive enumeration of all 4753 * fields of a struct/union. If there are any anonymous (embedded) 4754 * structs/unions, they are recursively searched as well. If field with 4755 * desired name is found, check compatibility between local and target types, 4756 * before returning result. 4757 * 4758 * 1 is returned, if field is found. 4759 * 0 is returned if no compatible field is found. 4760 * <0 is returned on error. 4761 */ 4762 static int bpf_core_match_member(const struct btf *local_btf, 4763 const struct bpf_core_accessor *local_acc, 4764 const struct btf *targ_btf, 4765 __u32 targ_id, 4766 struct bpf_core_spec *spec, 4767 __u32 *next_targ_id) 4768 { 4769 const struct btf_type *local_type, *targ_type; 4770 const struct btf_member *local_member, *m; 4771 const char *local_name, *targ_name; 4772 __u32 local_id; 4773 int i, n, found; 4774 4775 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 4776 if (!targ_type) 4777 return -EINVAL; 4778 if (!btf_is_composite(targ_type)) 4779 return 0; 4780 4781 local_id = local_acc->type_id; 4782 local_type = btf__type_by_id(local_btf, local_id); 4783 local_member = btf_members(local_type) + local_acc->idx; 4784 local_name = btf__name_by_offset(local_btf, local_member->name_off); 4785 4786 n = btf_vlen(targ_type); 4787 m = btf_members(targ_type); 4788 for (i = 0; i < n; i++, m++) { 4789 __u32 bit_offset; 4790 4791 bit_offset = btf_member_bit_offset(targ_type, i); 4792 4793 /* too deep struct/union/array nesting */ 4794 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 4795 return -E2BIG; 4796 4797 /* speculate this member will be the good one */ 4798 spec->bit_offset += bit_offset; 4799 spec->raw_spec[spec->raw_len++] = i; 4800 4801 targ_name = btf__name_by_offset(targ_btf, m->name_off); 4802 if (str_is_empty(targ_name)) { 4803 /* embedded struct/union, we need to go deeper */ 4804 found = bpf_core_match_member(local_btf, local_acc, 4805 targ_btf, m->type, 4806 spec, next_targ_id); 4807 if (found) /* either found or error */ 4808 return found; 4809 } else if (strcmp(local_name, targ_name) == 0) { 4810 /* matching named field */ 4811 struct bpf_core_accessor *targ_acc; 4812 4813 targ_acc = &spec->spec[spec->len++]; 4814 targ_acc->type_id = targ_id; 4815 targ_acc->idx = i; 4816 targ_acc->name = targ_name; 4817 4818 *next_targ_id = m->type; 4819 found = bpf_core_fields_are_compat(local_btf, 4820 local_member->type, 4821 targ_btf, m->type); 4822 if (!found) 4823 spec->len--; /* pop accessor */ 4824 return found; 4825 } 4826 /* member turned out not to be what we looked for */ 4827 spec->bit_offset -= bit_offset; 4828 spec->raw_len--; 4829 } 4830 4831 return 0; 4832 } 4833 4834 /* Check local and target types for compatibility. This check is used for 4835 * type-based CO-RE relocations and follow slightly different rules than 4836 * field-based relocations. This function assumes that root types were already 4837 * checked for name match. Beyond that initial root-level name check, names 4838 * are completely ignored. Compatibility rules are as follows: 4839 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 4840 * kind should match for local and target types (i.e., STRUCT is not 4841 * compatible with UNION); 4842 * - for ENUMs, the size is ignored; 4843 * - for INT, size and signedness are ignored; 4844 * - for ARRAY, dimensionality is ignored, element types are checked for 4845 * compatibility recursively; 4846 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 4847 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 4848 * - FUNC_PROTOs are compatible if they have compatible signature: same 4849 * number of input args and compatible return and argument types. 4850 * These rules are not set in stone and probably will be adjusted as we get 4851 * more experience with using BPF CO-RE relocations. 4852 */ 4853 static int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 4854 const struct btf *targ_btf, __u32 targ_id) 4855 { 4856 const struct btf_type *local_type, *targ_type; 4857 int depth = 32; /* max recursion depth */ 4858 4859 /* caller made sure that names match (ignoring flavor suffix) */ 4860 local_type = btf__type_by_id(local_btf, local_id); 4861 targ_type = btf__type_by_id(targ_btf, targ_id); 4862 if (btf_kind(local_type) != btf_kind(targ_type)) 4863 return 0; 4864 4865 recur: 4866 depth--; 4867 if (depth < 0) 4868 return -EINVAL; 4869 4870 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 4871 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 4872 if (!local_type || !targ_type) 4873 return -EINVAL; 4874 4875 if (btf_kind(local_type) != btf_kind(targ_type)) 4876 return 0; 4877 4878 switch (btf_kind(local_type)) { 4879 case BTF_KIND_UNKN: 4880 case BTF_KIND_STRUCT: 4881 case BTF_KIND_UNION: 4882 case BTF_KIND_ENUM: 4883 case BTF_KIND_FWD: 4884 return 1; 4885 case BTF_KIND_INT: 4886 /* just reject deprecated bitfield-like integers; all other 4887 * integers are by default compatible between each other 4888 */ 4889 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0; 4890 case BTF_KIND_PTR: 4891 local_id = local_type->type; 4892 targ_id = targ_type->type; 4893 goto recur; 4894 case BTF_KIND_ARRAY: 4895 local_id = btf_array(local_type)->type; 4896 targ_id = btf_array(targ_type)->type; 4897 goto recur; 4898 case BTF_KIND_FUNC_PROTO: { 4899 struct btf_param *local_p = btf_params(local_type); 4900 struct btf_param *targ_p = btf_params(targ_type); 4901 __u16 local_vlen = btf_vlen(local_type); 4902 __u16 targ_vlen = btf_vlen(targ_type); 4903 int i, err; 4904 4905 if (local_vlen != targ_vlen) 4906 return 0; 4907 4908 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { 4909 skip_mods_and_typedefs(local_btf, local_p->type, &local_id); 4910 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id); 4911 err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id); 4912 if (err <= 0) 4913 return err; 4914 } 4915 4916 /* tail recurse for return type check */ 4917 skip_mods_and_typedefs(local_btf, local_type->type, &local_id); 4918 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id); 4919 goto recur; 4920 } 4921 default: 4922 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n", 4923 btf_kind_str(local_type), local_id, targ_id); 4924 return 0; 4925 } 4926 } 4927 4928 /* 4929 * Try to match local spec to a target type and, if successful, produce full 4930 * target spec (high-level, low-level + bit offset). 4931 */ 4932 static int bpf_core_spec_match(struct bpf_core_spec *local_spec, 4933 const struct btf *targ_btf, __u32 targ_id, 4934 struct bpf_core_spec *targ_spec) 4935 { 4936 const struct btf_type *targ_type; 4937 const struct bpf_core_accessor *local_acc; 4938 struct bpf_core_accessor *targ_acc; 4939 int i, sz, matched; 4940 4941 memset(targ_spec, 0, sizeof(*targ_spec)); 4942 targ_spec->btf = targ_btf; 4943 targ_spec->root_type_id = targ_id; 4944 targ_spec->relo_kind = local_spec->relo_kind; 4945 4946 if (core_relo_is_type_based(local_spec->relo_kind)) { 4947 return bpf_core_types_are_compat(local_spec->btf, 4948 local_spec->root_type_id, 4949 targ_btf, targ_id); 4950 } 4951 4952 local_acc = &local_spec->spec[0]; 4953 targ_acc = &targ_spec->spec[0]; 4954 4955 if (core_relo_is_enumval_based(local_spec->relo_kind)) { 4956 size_t local_essent_len, targ_essent_len; 4957 const struct btf_enum *e; 4958 const char *targ_name; 4959 4960 /* has to resolve to an enum */ 4961 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id); 4962 if (!btf_is_enum(targ_type)) 4963 return 0; 4964 4965 local_essent_len = bpf_core_essential_name_len(local_acc->name); 4966 4967 for (i = 0, e = btf_enum(targ_type); i < btf_vlen(targ_type); i++, e++) { 4968 targ_name = btf__name_by_offset(targ_spec->btf, e->name_off); 4969 targ_essent_len = bpf_core_essential_name_len(targ_name); 4970 if (targ_essent_len != local_essent_len) 4971 continue; 4972 if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) { 4973 targ_acc->type_id = targ_id; 4974 targ_acc->idx = i; 4975 targ_acc->name = targ_name; 4976 targ_spec->len++; 4977 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 4978 targ_spec->raw_len++; 4979 return 1; 4980 } 4981 } 4982 return 0; 4983 } 4984 4985 if (!core_relo_is_field_based(local_spec->relo_kind)) 4986 return -EINVAL; 4987 4988 for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) { 4989 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, 4990 &targ_id); 4991 if (!targ_type) 4992 return -EINVAL; 4993 4994 if (local_acc->name) { 4995 matched = bpf_core_match_member(local_spec->btf, 4996 local_acc, 4997 targ_btf, targ_id, 4998 targ_spec, &targ_id); 4999 if (matched <= 0) 5000 return matched; 5001 } else { 5002 /* for i=0, targ_id is already treated as array element 5003 * type (because it's the original struct), for others 5004 * we should find array element type first 5005 */ 5006 if (i > 0) { 5007 const struct btf_array *a; 5008 bool flex; 5009 5010 if (!btf_is_array(targ_type)) 5011 return 0; 5012 5013 a = btf_array(targ_type); 5014 flex = is_flex_arr(targ_btf, targ_acc - 1, a); 5015 if (!flex && local_acc->idx >= a->nelems) 5016 return 0; 5017 if (!skip_mods_and_typedefs(targ_btf, a->type, 5018 &targ_id)) 5019 return -EINVAL; 5020 } 5021 5022 /* too deep struct/union/array nesting */ 5023 if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 5024 return -E2BIG; 5025 5026 targ_acc->type_id = targ_id; 5027 targ_acc->idx = local_acc->idx; 5028 targ_acc->name = NULL; 5029 targ_spec->len++; 5030 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 5031 targ_spec->raw_len++; 5032 5033 sz = btf__resolve_size(targ_btf, targ_id); 5034 if (sz < 0) 5035 return sz; 5036 targ_spec->bit_offset += local_acc->idx * sz * 8; 5037 } 5038 } 5039 5040 return 1; 5041 } 5042 5043 static int bpf_core_calc_field_relo(const struct bpf_program *prog, 5044 const struct bpf_core_relo *relo, 5045 const struct bpf_core_spec *spec, 5046 __u32 *val, __u32 *field_sz, __u32 *type_id, 5047 bool *validate) 5048 { 5049 const struct bpf_core_accessor *acc; 5050 const struct btf_type *t; 5051 __u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id; 5052 const struct btf_member *m; 5053 const struct btf_type *mt; 5054 bool bitfield; 5055 __s64 sz; 5056 5057 *field_sz = 0; 5058 5059 if (relo->kind == BPF_FIELD_EXISTS) { 5060 *val = spec ? 1 : 0; 5061 return 0; 5062 } 5063 5064 if (!spec) 5065 return -EUCLEAN; /* request instruction poisoning */ 5066 5067 acc = &spec->spec[spec->len - 1]; 5068 t = btf__type_by_id(spec->btf, acc->type_id); 5069 5070 /* a[n] accessor needs special handling */ 5071 if (!acc->name) { 5072 if (relo->kind == BPF_FIELD_BYTE_OFFSET) { 5073 *val = spec->bit_offset / 8; 5074 /* remember field size for load/store mem size */ 5075 sz = btf__resolve_size(spec->btf, acc->type_id); 5076 if (sz < 0) 5077 return -EINVAL; 5078 *field_sz = sz; 5079 *type_id = acc->type_id; 5080 } else if (relo->kind == BPF_FIELD_BYTE_SIZE) { 5081 sz = btf__resolve_size(spec->btf, acc->type_id); 5082 if (sz < 0) 5083 return -EINVAL; 5084 *val = sz; 5085 } else { 5086 pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n", 5087 prog->name, relo->kind, relo->insn_off / 8); 5088 return -EINVAL; 5089 } 5090 if (validate) 5091 *validate = true; 5092 return 0; 5093 } 5094 5095 m = btf_members(t) + acc->idx; 5096 mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id); 5097 bit_off = spec->bit_offset; 5098 bit_sz = btf_member_bitfield_size(t, acc->idx); 5099 5100 bitfield = bit_sz > 0; 5101 if (bitfield) { 5102 byte_sz = mt->size; 5103 byte_off = bit_off / 8 / byte_sz * byte_sz; 5104 /* figure out smallest int size necessary for bitfield load */ 5105 while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) { 5106 if (byte_sz >= 8) { 5107 /* bitfield can't be read with 64-bit read */ 5108 pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n", 5109 prog->name, relo->kind, relo->insn_off / 8); 5110 return -E2BIG; 5111 } 5112 byte_sz *= 2; 5113 byte_off = bit_off / 8 / byte_sz * byte_sz; 5114 } 5115 } else { 5116 sz = btf__resolve_size(spec->btf, field_type_id); 5117 if (sz < 0) 5118 return -EINVAL; 5119 byte_sz = sz; 5120 byte_off = spec->bit_offset / 8; 5121 bit_sz = byte_sz * 8; 5122 } 5123 5124 /* for bitfields, all the relocatable aspects are ambiguous and we 5125 * might disagree with compiler, so turn off validation of expected 5126 * value, except for signedness 5127 */ 5128 if (validate) 5129 *validate = !bitfield; 5130 5131 switch (relo->kind) { 5132 case BPF_FIELD_BYTE_OFFSET: 5133 *val = byte_off; 5134 if (!bitfield) { 5135 *field_sz = byte_sz; 5136 *type_id = field_type_id; 5137 } 5138 break; 5139 case BPF_FIELD_BYTE_SIZE: 5140 *val = byte_sz; 5141 break; 5142 case BPF_FIELD_SIGNED: 5143 /* enums will be assumed unsigned */ 5144 *val = btf_is_enum(mt) || 5145 (btf_int_encoding(mt) & BTF_INT_SIGNED); 5146 if (validate) 5147 *validate = true; /* signedness is never ambiguous */ 5148 break; 5149 case BPF_FIELD_LSHIFT_U64: 5150 #if __BYTE_ORDER == __LITTLE_ENDIAN 5151 *val = 64 - (bit_off + bit_sz - byte_off * 8); 5152 #else 5153 *val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8); 5154 #endif 5155 break; 5156 case BPF_FIELD_RSHIFT_U64: 5157 *val = 64 - bit_sz; 5158 if (validate) 5159 *validate = true; /* right shift is never ambiguous */ 5160 break; 5161 case BPF_FIELD_EXISTS: 5162 default: 5163 return -EOPNOTSUPP; 5164 } 5165 5166 return 0; 5167 } 5168 5169 static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo, 5170 const struct bpf_core_spec *spec, 5171 __u32 *val) 5172 { 5173 __s64 sz; 5174 5175 /* type-based relos return zero when target type is not found */ 5176 if (!spec) { 5177 *val = 0; 5178 return 0; 5179 } 5180 5181 switch (relo->kind) { 5182 case BPF_TYPE_ID_TARGET: 5183 *val = spec->root_type_id; 5184 break; 5185 case BPF_TYPE_EXISTS: 5186 *val = 1; 5187 break; 5188 case BPF_TYPE_SIZE: 5189 sz = btf__resolve_size(spec->btf, spec->root_type_id); 5190 if (sz < 0) 5191 return -EINVAL; 5192 *val = sz; 5193 break; 5194 case BPF_TYPE_ID_LOCAL: 5195 /* BPF_TYPE_ID_LOCAL is handled specially and shouldn't get here */ 5196 default: 5197 return -EOPNOTSUPP; 5198 } 5199 5200 return 0; 5201 } 5202 5203 static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo, 5204 const struct bpf_core_spec *spec, 5205 __u32 *val) 5206 { 5207 const struct btf_type *t; 5208 const struct btf_enum *e; 5209 5210 switch (relo->kind) { 5211 case BPF_ENUMVAL_EXISTS: 5212 *val = spec ? 1 : 0; 5213 break; 5214 case BPF_ENUMVAL_VALUE: 5215 if (!spec) 5216 return -EUCLEAN; /* request instruction poisoning */ 5217 t = btf__type_by_id(spec->btf, spec->spec[0].type_id); 5218 e = btf_enum(t) + spec->spec[0].idx; 5219 *val = e->val; 5220 break; 5221 default: 5222 return -EOPNOTSUPP; 5223 } 5224 5225 return 0; 5226 } 5227 5228 struct bpf_core_relo_res 5229 { 5230 /* expected value in the instruction, unless validate == false */ 5231 __u32 orig_val; 5232 /* new value that needs to be patched up to */ 5233 __u32 new_val; 5234 /* relocation unsuccessful, poison instruction, but don't fail load */ 5235 bool poison; 5236 /* some relocations can't be validated against orig_val */ 5237 bool validate; 5238 /* for field byte offset relocations or the forms: 5239 * *(T *)(rX + <off>) = rY 5240 * rX = *(T *)(rY + <off>), 5241 * we remember original and resolved field size to adjust direct 5242 * memory loads of pointers and integers; this is necessary for 32-bit 5243 * host kernel architectures, but also allows to automatically 5244 * relocate fields that were resized from, e.g., u32 to u64, etc. 5245 */ 5246 bool fail_memsz_adjust; 5247 __u32 orig_sz; 5248 __u32 orig_type_id; 5249 __u32 new_sz; 5250 __u32 new_type_id; 5251 }; 5252 5253 /* Calculate original and target relocation values, given local and target 5254 * specs and relocation kind. These values are calculated for each candidate. 5255 * If there are multiple candidates, resulting values should all be consistent 5256 * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity. 5257 * If instruction has to be poisoned, *poison will be set to true. 5258 */ 5259 static int bpf_core_calc_relo(const struct bpf_program *prog, 5260 const struct bpf_core_relo *relo, 5261 int relo_idx, 5262 const struct bpf_core_spec *local_spec, 5263 const struct bpf_core_spec *targ_spec, 5264 struct bpf_core_relo_res *res) 5265 { 5266 int err = -EOPNOTSUPP; 5267 5268 res->orig_val = 0; 5269 res->new_val = 0; 5270 res->poison = false; 5271 res->validate = true; 5272 res->fail_memsz_adjust = false; 5273 res->orig_sz = res->new_sz = 0; 5274 res->orig_type_id = res->new_type_id = 0; 5275 5276 if (core_relo_is_field_based(relo->kind)) { 5277 err = bpf_core_calc_field_relo(prog, relo, local_spec, 5278 &res->orig_val, &res->orig_sz, 5279 &res->orig_type_id, &res->validate); 5280 err = err ?: bpf_core_calc_field_relo(prog, relo, targ_spec, 5281 &res->new_val, &res->new_sz, 5282 &res->new_type_id, NULL); 5283 if (err) 5284 goto done; 5285 /* Validate if it's safe to adjust load/store memory size. 5286 * Adjustments are performed only if original and new memory 5287 * sizes differ. 5288 */ 5289 res->fail_memsz_adjust = false; 5290 if (res->orig_sz != res->new_sz) { 5291 const struct btf_type *orig_t, *new_t; 5292 5293 orig_t = btf__type_by_id(local_spec->btf, res->orig_type_id); 5294 new_t = btf__type_by_id(targ_spec->btf, res->new_type_id); 5295 5296 /* There are two use cases in which it's safe to 5297 * adjust load/store's mem size: 5298 * - reading a 32-bit kernel pointer, while on BPF 5299 * size pointers are always 64-bit; in this case 5300 * it's safe to "downsize" instruction size due to 5301 * pointer being treated as unsigned integer with 5302 * zero-extended upper 32-bits; 5303 * - reading unsigned integers, again due to 5304 * zero-extension is preserving the value correctly. 5305 * 5306 * In all other cases it's incorrect to attempt to 5307 * load/store field because read value will be 5308 * incorrect, so we poison relocated instruction. 5309 */ 5310 if (btf_is_ptr(orig_t) && btf_is_ptr(new_t)) 5311 goto done; 5312 if (btf_is_int(orig_t) && btf_is_int(new_t) && 5313 btf_int_encoding(orig_t) != BTF_INT_SIGNED && 5314 btf_int_encoding(new_t) != BTF_INT_SIGNED) 5315 goto done; 5316 5317 /* mark as invalid mem size adjustment, but this will 5318 * only be checked for LDX/STX/ST insns 5319 */ 5320 res->fail_memsz_adjust = true; 5321 } 5322 } else if (core_relo_is_type_based(relo->kind)) { 5323 err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val); 5324 err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val); 5325 } else if (core_relo_is_enumval_based(relo->kind)) { 5326 err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val); 5327 err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val); 5328 } 5329 5330 done: 5331 if (err == -EUCLEAN) { 5332 /* EUCLEAN is used to signal instruction poisoning request */ 5333 res->poison = true; 5334 err = 0; 5335 } else if (err == -EOPNOTSUPP) { 5336 /* EOPNOTSUPP means unknown/unsupported relocation */ 5337 pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n", 5338 prog->name, relo_idx, core_relo_kind_str(relo->kind), 5339 relo->kind, relo->insn_off / 8); 5340 } 5341 5342 return err; 5343 } 5344 5345 /* 5346 * Turn instruction for which CO_RE relocation failed into invalid one with 5347 * distinct signature. 5348 */ 5349 static void bpf_core_poison_insn(struct bpf_program *prog, int relo_idx, 5350 int insn_idx, struct bpf_insn *insn) 5351 { 5352 pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n", 5353 prog->name, relo_idx, insn_idx); 5354 insn->code = BPF_JMP | BPF_CALL; 5355 insn->dst_reg = 0; 5356 insn->src_reg = 0; 5357 insn->off = 0; 5358 /* if this instruction is reachable (not a dead code), 5359 * verifier will complain with the following message: 5360 * invalid func unknown#195896080 5361 */ 5362 insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */ 5363 } 5364 5365 static bool is_ldimm64(struct bpf_insn *insn) 5366 { 5367 return insn->code == (BPF_LD | BPF_IMM | BPF_DW); 5368 } 5369 5370 static int insn_bpf_size_to_bytes(struct bpf_insn *insn) 5371 { 5372 switch (BPF_SIZE(insn->code)) { 5373 case BPF_DW: return 8; 5374 case BPF_W: return 4; 5375 case BPF_H: return 2; 5376 case BPF_B: return 1; 5377 default: return -1; 5378 } 5379 } 5380 5381 static int insn_bytes_to_bpf_size(__u32 sz) 5382 { 5383 switch (sz) { 5384 case 8: return BPF_DW; 5385 case 4: return BPF_W; 5386 case 2: return BPF_H; 5387 case 1: return BPF_B; 5388 default: return -1; 5389 } 5390 } 5391 5392 /* 5393 * Patch relocatable BPF instruction. 5394 * 5395 * Patched value is determined by relocation kind and target specification. 5396 * For existence relocations target spec will be NULL if field/type is not found. 5397 * Expected insn->imm value is determined using relocation kind and local 5398 * spec, and is checked before patching instruction. If actual insn->imm value 5399 * is wrong, bail out with error. 5400 * 5401 * Currently supported classes of BPF instruction are: 5402 * 1. rX = <imm> (assignment with immediate operand); 5403 * 2. rX += <imm> (arithmetic operations with immediate operand); 5404 * 3. rX = <imm64> (load with 64-bit immediate value); 5405 * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64}; 5406 * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64}; 5407 * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}. 5408 */ 5409 static int bpf_core_patch_insn(struct bpf_program *prog, 5410 const struct bpf_core_relo *relo, 5411 int relo_idx, 5412 const struct bpf_core_relo_res *res) 5413 { 5414 __u32 orig_val, new_val; 5415 struct bpf_insn *insn; 5416 int insn_idx; 5417 __u8 class; 5418 5419 if (relo->insn_off % BPF_INSN_SZ) 5420 return -EINVAL; 5421 insn_idx = relo->insn_off / BPF_INSN_SZ; 5422 /* adjust insn_idx from section frame of reference to the local 5423 * program's frame of reference; (sub-)program code is not yet 5424 * relocated, so it's enough to just subtract in-section offset 5425 */ 5426 insn_idx = insn_idx - prog->sec_insn_off; 5427 insn = &prog->insns[insn_idx]; 5428 class = BPF_CLASS(insn->code); 5429 5430 if (res->poison) { 5431 poison: 5432 /* poison second part of ldimm64 to avoid confusing error from 5433 * verifier about "unknown opcode 00" 5434 */ 5435 if (is_ldimm64(insn)) 5436 bpf_core_poison_insn(prog, relo_idx, insn_idx + 1, insn + 1); 5437 bpf_core_poison_insn(prog, relo_idx, insn_idx, insn); 5438 return 0; 5439 } 5440 5441 orig_val = res->orig_val; 5442 new_val = res->new_val; 5443 5444 switch (class) { 5445 case BPF_ALU: 5446 case BPF_ALU64: 5447 if (BPF_SRC(insn->code) != BPF_K) 5448 return -EINVAL; 5449 if (res->validate && insn->imm != orig_val) { 5450 pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n", 5451 prog->name, relo_idx, 5452 insn_idx, insn->imm, orig_val, new_val); 5453 return -EINVAL; 5454 } 5455 orig_val = insn->imm; 5456 insn->imm = new_val; 5457 pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n", 5458 prog->name, relo_idx, insn_idx, 5459 orig_val, new_val); 5460 break; 5461 case BPF_LDX: 5462 case BPF_ST: 5463 case BPF_STX: 5464 if (res->validate && insn->off != orig_val) { 5465 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %u -> %u\n", 5466 prog->name, relo_idx, insn_idx, insn->off, orig_val, new_val); 5467 return -EINVAL; 5468 } 5469 if (new_val > SHRT_MAX) { 5470 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n", 5471 prog->name, relo_idx, insn_idx, new_val); 5472 return -ERANGE; 5473 } 5474 if (res->fail_memsz_adjust) { 5475 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. " 5476 "Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n", 5477 prog->name, relo_idx, insn_idx); 5478 goto poison; 5479 } 5480 5481 orig_val = insn->off; 5482 insn->off = new_val; 5483 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n", 5484 prog->name, relo_idx, insn_idx, orig_val, new_val); 5485 5486 if (res->new_sz != res->orig_sz) { 5487 int insn_bytes_sz, insn_bpf_sz; 5488 5489 insn_bytes_sz = insn_bpf_size_to_bytes(insn); 5490 if (insn_bytes_sz != res->orig_sz) { 5491 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n", 5492 prog->name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz); 5493 return -EINVAL; 5494 } 5495 5496 insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz); 5497 if (insn_bpf_sz < 0) { 5498 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n", 5499 prog->name, relo_idx, insn_idx, res->new_sz); 5500 return -EINVAL; 5501 } 5502 5503 insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code); 5504 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n", 5505 prog->name, relo_idx, insn_idx, res->orig_sz, res->new_sz); 5506 } 5507 break; 5508 case BPF_LD: { 5509 __u64 imm; 5510 5511 if (!is_ldimm64(insn) || 5512 insn[0].src_reg != 0 || insn[0].off != 0 || 5513 insn_idx + 1 >= prog->insns_cnt || 5514 insn[1].code != 0 || insn[1].dst_reg != 0 || 5515 insn[1].src_reg != 0 || insn[1].off != 0) { 5516 pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n", 5517 prog->name, relo_idx, insn_idx); 5518 return -EINVAL; 5519 } 5520 5521 imm = insn[0].imm + ((__u64)insn[1].imm << 32); 5522 if (res->validate && imm != orig_val) { 5523 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %u -> %u\n", 5524 prog->name, relo_idx, 5525 insn_idx, (unsigned long long)imm, 5526 orig_val, new_val); 5527 return -EINVAL; 5528 } 5529 5530 insn[0].imm = new_val; 5531 insn[1].imm = 0; /* currently only 32-bit values are supported */ 5532 pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %u\n", 5533 prog->name, relo_idx, insn_idx, 5534 (unsigned long long)imm, new_val); 5535 break; 5536 } 5537 default: 5538 pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n", 5539 prog->name, relo_idx, insn_idx, insn->code, 5540 insn->src_reg, insn->dst_reg, insn->off, insn->imm); 5541 return -EINVAL; 5542 } 5543 5544 return 0; 5545 } 5546 5547 /* Output spec definition in the format: 5548 * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>, 5549 * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b 5550 */ 5551 static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec) 5552 { 5553 const struct btf_type *t; 5554 const struct btf_enum *e; 5555 const char *s; 5556 __u32 type_id; 5557 int i; 5558 5559 type_id = spec->root_type_id; 5560 t = btf__type_by_id(spec->btf, type_id); 5561 s = btf__name_by_offset(spec->btf, t->name_off); 5562 5563 libbpf_print(level, "[%u] %s %s", type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s); 5564 5565 if (core_relo_is_type_based(spec->relo_kind)) 5566 return; 5567 5568 if (core_relo_is_enumval_based(spec->relo_kind)) { 5569 t = skip_mods_and_typedefs(spec->btf, type_id, NULL); 5570 e = btf_enum(t) + spec->raw_spec[0]; 5571 s = btf__name_by_offset(spec->btf, e->name_off); 5572 5573 libbpf_print(level, "::%s = %u", s, e->val); 5574 return; 5575 } 5576 5577 if (core_relo_is_field_based(spec->relo_kind)) { 5578 for (i = 0; i < spec->len; i++) { 5579 if (spec->spec[i].name) 5580 libbpf_print(level, ".%s", spec->spec[i].name); 5581 else if (i > 0 || spec->spec[i].idx > 0) 5582 libbpf_print(level, "[%u]", spec->spec[i].idx); 5583 } 5584 5585 libbpf_print(level, " ("); 5586 for (i = 0; i < spec->raw_len; i++) 5587 libbpf_print(level, "%s%d", i == 0 ? "" : ":", spec->raw_spec[i]); 5588 5589 if (spec->bit_offset % 8) 5590 libbpf_print(level, " @ offset %u.%u)", 5591 spec->bit_offset / 8, spec->bit_offset % 8); 5592 else 5593 libbpf_print(level, " @ offset %u)", spec->bit_offset / 8); 5594 return; 5595 } 5596 } 5597 5598 static size_t bpf_core_hash_fn(const void *key, void *ctx) 5599 { 5600 return (size_t)key; 5601 } 5602 5603 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 5604 { 5605 return k1 == k2; 5606 } 5607 5608 static void *u32_as_hash_key(__u32 x) 5609 { 5610 return (void *)(uintptr_t)x; 5611 } 5612 5613 /* 5614 * CO-RE relocate single instruction. 5615 * 5616 * The outline and important points of the algorithm: 5617 * 1. For given local type, find corresponding candidate target types. 5618 * Candidate type is a type with the same "essential" name, ignoring 5619 * everything after last triple underscore (___). E.g., `sample`, 5620 * `sample___flavor_one`, `sample___flavor_another_one`, are all candidates 5621 * for each other. Names with triple underscore are referred to as 5622 * "flavors" and are useful, among other things, to allow to 5623 * specify/support incompatible variations of the same kernel struct, which 5624 * might differ between different kernel versions and/or build 5625 * configurations. 5626 * 5627 * N.B. Struct "flavors" could be generated by bpftool's BTF-to-C 5628 * converter, when deduplicated BTF of a kernel still contains more than 5629 * one different types with the same name. In that case, ___2, ___3, etc 5630 * are appended starting from second name conflict. But start flavors are 5631 * also useful to be defined "locally", in BPF program, to extract same 5632 * data from incompatible changes between different kernel 5633 * versions/configurations. For instance, to handle field renames between 5634 * kernel versions, one can use two flavors of the struct name with the 5635 * same common name and use conditional relocations to extract that field, 5636 * depending on target kernel version. 5637 * 2. For each candidate type, try to match local specification to this 5638 * candidate target type. Matching involves finding corresponding 5639 * high-level spec accessors, meaning that all named fields should match, 5640 * as well as all array accesses should be within the actual bounds. Also, 5641 * types should be compatible (see bpf_core_fields_are_compat for details). 5642 * 3. It is supported and expected that there might be multiple flavors 5643 * matching the spec. As long as all the specs resolve to the same set of 5644 * offsets across all candidates, there is no error. If there is any 5645 * ambiguity, CO-RE relocation will fail. This is necessary to accomodate 5646 * imprefection of BTF deduplication, which can cause slight duplication of 5647 * the same BTF type, if some directly or indirectly referenced (by 5648 * pointer) type gets resolved to different actual types in different 5649 * object files. If such situation occurs, deduplicated BTF will end up 5650 * with two (or more) structurally identical types, which differ only in 5651 * types they refer to through pointer. This should be OK in most cases and 5652 * is not an error. 5653 * 4. Candidate types search is performed by linearly scanning through all 5654 * types in target BTF. It is anticipated that this is overall more 5655 * efficient memory-wise and not significantly worse (if not better) 5656 * CPU-wise compared to prebuilding a map from all local type names to 5657 * a list of candidate type names. It's also sped up by caching resolved 5658 * list of matching candidates per each local "root" type ID, that has at 5659 * least one bpf_core_relo associated with it. This list is shared 5660 * between multiple relocations for the same type ID and is updated as some 5661 * of the candidates are pruned due to structural incompatibility. 5662 */ 5663 static int bpf_core_apply_relo(struct bpf_program *prog, 5664 const struct bpf_core_relo *relo, 5665 int relo_idx, 5666 const struct btf *local_btf, 5667 const struct btf *targ_btf, 5668 struct hashmap *cand_cache) 5669 { 5670 struct bpf_core_spec local_spec, cand_spec, targ_spec = {}; 5671 const void *type_key = u32_as_hash_key(relo->type_id); 5672 struct bpf_core_relo_res cand_res, targ_res; 5673 const struct btf_type *local_type; 5674 const char *local_name; 5675 struct ids_vec *cand_ids; 5676 __u32 local_id, cand_id; 5677 const char *spec_str; 5678 int i, j, err; 5679 5680 local_id = relo->type_id; 5681 local_type = btf__type_by_id(local_btf, local_id); 5682 if (!local_type) 5683 return -EINVAL; 5684 5685 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5686 if (!local_name) 5687 return -EINVAL; 5688 5689 spec_str = btf__name_by_offset(local_btf, relo->access_str_off); 5690 if (str_is_empty(spec_str)) 5691 return -EINVAL; 5692 5693 err = bpf_core_parse_spec(local_btf, local_id, spec_str, relo->kind, &local_spec); 5694 if (err) { 5695 pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n", 5696 prog->name, relo_idx, local_id, btf_kind_str(local_type), 5697 str_is_empty(local_name) ? "<anon>" : local_name, 5698 spec_str, err); 5699 return -EINVAL; 5700 } 5701 5702 pr_debug("prog '%s': relo #%d: kind <%s> (%d), spec is ", prog->name, 5703 relo_idx, core_relo_kind_str(relo->kind), relo->kind); 5704 bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec); 5705 libbpf_print(LIBBPF_DEBUG, "\n"); 5706 5707 /* TYPE_ID_LOCAL relo is special and doesn't need candidate search */ 5708 if (relo->kind == BPF_TYPE_ID_LOCAL) { 5709 targ_res.validate = true; 5710 targ_res.poison = false; 5711 targ_res.orig_val = local_spec.root_type_id; 5712 targ_res.new_val = local_spec.root_type_id; 5713 goto patch_insn; 5714 } 5715 5716 /* libbpf doesn't support candidate search for anonymous types */ 5717 if (str_is_empty(spec_str)) { 5718 pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n", 5719 prog->name, relo_idx, core_relo_kind_str(relo->kind), relo->kind); 5720 return -EOPNOTSUPP; 5721 } 5722 5723 if (!hashmap__find(cand_cache, type_key, (void **)&cand_ids)) { 5724 cand_ids = bpf_core_find_cands(local_btf, local_id, targ_btf); 5725 if (IS_ERR(cand_ids)) { 5726 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld", 5727 prog->name, relo_idx, local_id, btf_kind_str(local_type), 5728 local_name, PTR_ERR(cand_ids)); 5729 return PTR_ERR(cand_ids); 5730 } 5731 err = hashmap__set(cand_cache, type_key, cand_ids, NULL, NULL); 5732 if (err) { 5733 bpf_core_free_cands(cand_ids); 5734 return err; 5735 } 5736 } 5737 5738 for (i = 0, j = 0; i < cand_ids->len; i++) { 5739 cand_id = cand_ids->data[i]; 5740 err = bpf_core_spec_match(&local_spec, targ_btf, cand_id, &cand_spec); 5741 if (err < 0) { 5742 pr_warn("prog '%s': relo #%d: error matching candidate #%d ", 5743 prog->name, relo_idx, i); 5744 bpf_core_dump_spec(LIBBPF_WARN, &cand_spec); 5745 libbpf_print(LIBBPF_WARN, ": %d\n", err); 5746 return err; 5747 } 5748 5749 pr_debug("prog '%s': relo #%d: %s candidate #%d ", prog->name, 5750 relo_idx, err == 0 ? "non-matching" : "matching", i); 5751 bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec); 5752 libbpf_print(LIBBPF_DEBUG, "\n"); 5753 5754 if (err == 0) 5755 continue; 5756 5757 err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, &cand_spec, &cand_res); 5758 if (err) 5759 return err; 5760 5761 if (j == 0) { 5762 targ_res = cand_res; 5763 targ_spec = cand_spec; 5764 } else if (cand_spec.bit_offset != targ_spec.bit_offset) { 5765 /* if there are many field relo candidates, they 5766 * should all resolve to the same bit offset 5767 */ 5768 pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n", 5769 prog->name, relo_idx, cand_spec.bit_offset, 5770 targ_spec.bit_offset); 5771 return -EINVAL; 5772 } else if (cand_res.poison != targ_res.poison || cand_res.new_val != targ_res.new_val) { 5773 /* all candidates should result in the same relocation 5774 * decision and value, otherwise it's dangerous to 5775 * proceed due to ambiguity 5776 */ 5777 pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %u != %s %u\n", 5778 prog->name, relo_idx, 5779 cand_res.poison ? "failure" : "success", cand_res.new_val, 5780 targ_res.poison ? "failure" : "success", targ_res.new_val); 5781 return -EINVAL; 5782 } 5783 5784 cand_ids->data[j++] = cand_spec.root_type_id; 5785 } 5786 5787 /* 5788 * For BPF_FIELD_EXISTS relo or when used BPF program has field 5789 * existence checks or kernel version/config checks, it's expected 5790 * that we might not find any candidates. In this case, if field 5791 * wasn't found in any candidate, the list of candidates shouldn't 5792 * change at all, we'll just handle relocating appropriately, 5793 * depending on relo's kind. 5794 */ 5795 if (j > 0) 5796 cand_ids->len = j; 5797 5798 /* 5799 * If no candidates were found, it might be both a programmer error, 5800 * as well as expected case, depending whether instruction w/ 5801 * relocation is guarded in some way that makes it unreachable (dead 5802 * code) if relocation can't be resolved. This is handled in 5803 * bpf_core_patch_insn() uniformly by replacing that instruction with 5804 * BPF helper call insn (using invalid helper ID). If that instruction 5805 * is indeed unreachable, then it will be ignored and eliminated by 5806 * verifier. If it was an error, then verifier will complain and point 5807 * to a specific instruction number in its log. 5808 */ 5809 if (j == 0) { 5810 pr_debug("prog '%s': relo #%d: no matching targets found\n", 5811 prog->name, relo_idx); 5812 5813 /* calculate single target relo result explicitly */ 5814 err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, NULL, &targ_res); 5815 if (err) 5816 return err; 5817 } 5818 5819 patch_insn: 5820 /* bpf_core_patch_insn() should know how to handle missing targ_spec */ 5821 err = bpf_core_patch_insn(prog, relo, relo_idx, &targ_res); 5822 if (err) { 5823 pr_warn("prog '%s': relo #%d: failed to patch insn at offset %d: %d\n", 5824 prog->name, relo_idx, relo->insn_off, err); 5825 return -EINVAL; 5826 } 5827 5828 return 0; 5829 } 5830 5831 static int 5832 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5833 { 5834 const struct btf_ext_info_sec *sec; 5835 const struct bpf_core_relo *rec; 5836 const struct btf_ext_info *seg; 5837 struct hashmap_entry *entry; 5838 struct hashmap *cand_cache = NULL; 5839 struct bpf_program *prog; 5840 struct btf *targ_btf; 5841 const char *sec_name; 5842 int i, err = 0, insn_idx, sec_idx; 5843 5844 if (obj->btf_ext->core_relo_info.len == 0) 5845 return 0; 5846 5847 if (targ_btf_path) 5848 targ_btf = btf__parse(targ_btf_path, NULL); 5849 else 5850 targ_btf = obj->btf_vmlinux; 5851 if (IS_ERR_OR_NULL(targ_btf)) { 5852 pr_warn("failed to get target BTF: %ld\n", PTR_ERR(targ_btf)); 5853 return PTR_ERR(targ_btf); 5854 } 5855 5856 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5857 if (IS_ERR(cand_cache)) { 5858 err = PTR_ERR(cand_cache); 5859 goto out; 5860 } 5861 5862 seg = &obj->btf_ext->core_relo_info; 5863 for_each_btf_ext_sec(seg, sec) { 5864 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5865 if (str_is_empty(sec_name)) { 5866 err = -EINVAL; 5867 goto out; 5868 } 5869 /* bpf_object's ELF is gone by now so it's not easy to find 5870 * section index by section name, but we can find *any* 5871 * bpf_program within desired section name and use it's 5872 * prog->sec_idx to do a proper search by section index and 5873 * instruction offset 5874 */ 5875 prog = NULL; 5876 for (i = 0; i < obj->nr_programs; i++) { 5877 prog = &obj->programs[i]; 5878 if (strcmp(prog->sec_name, sec_name) == 0) 5879 break; 5880 } 5881 if (!prog) { 5882 pr_warn("sec '%s': failed to find a BPF program\n", sec_name); 5883 return -ENOENT; 5884 } 5885 sec_idx = prog->sec_idx; 5886 5887 pr_debug("sec '%s': found %d CO-RE relocations\n", 5888 sec_name, sec->num_info); 5889 5890 for_each_btf_ext_rec(seg, sec, i, rec) { 5891 insn_idx = rec->insn_off / BPF_INSN_SZ; 5892 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5893 if (!prog) { 5894 pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n", 5895 sec_name, insn_idx, i); 5896 err = -EINVAL; 5897 goto out; 5898 } 5899 /* no need to apply CO-RE relocation if the program is 5900 * not going to be loaded 5901 */ 5902 if (!prog->load) 5903 continue; 5904 5905 err = bpf_core_apply_relo(prog, rec, i, obj->btf, 5906 targ_btf, cand_cache); 5907 if (err) { 5908 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5909 prog->name, i, err); 5910 goto out; 5911 } 5912 } 5913 } 5914 5915 out: 5916 /* obj->btf_vmlinux is freed at the end of object load phase */ 5917 if (targ_btf != obj->btf_vmlinux) 5918 btf__free(targ_btf); 5919 if (!IS_ERR_OR_NULL(cand_cache)) { 5920 hashmap__for_each_entry(cand_cache, entry, i) { 5921 bpf_core_free_cands(entry->value); 5922 } 5923 hashmap__free(cand_cache); 5924 } 5925 return err; 5926 } 5927 5928 /* Relocate data references within program code: 5929 * - map references; 5930 * - global variable references; 5931 * - extern references. 5932 */ 5933 static int 5934 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5935 { 5936 int i; 5937 5938 for (i = 0; i < prog->nr_reloc; i++) { 5939 struct reloc_desc *relo = &prog->reloc_desc[i]; 5940 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5941 struct extern_desc *ext; 5942 5943 switch (relo->type) { 5944 case RELO_LD64: 5945 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5946 insn[0].imm = obj->maps[relo->map_idx].fd; 5947 relo->processed = true; 5948 break; 5949 case RELO_DATA: 5950 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5951 insn[1].imm = insn[0].imm + relo->sym_off; 5952 insn[0].imm = obj->maps[relo->map_idx].fd; 5953 relo->processed = true; 5954 break; 5955 case RELO_EXTERN: 5956 ext = &obj->externs[relo->sym_off]; 5957 if (ext->type == EXT_KCFG) { 5958 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5959 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5960 insn[1].imm = ext->kcfg.data_off; 5961 } else /* EXT_KSYM */ { 5962 if (ext->ksym.type_id) { /* typed ksyms */ 5963 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 5964 insn[0].imm = ext->ksym.vmlinux_btf_id; 5965 } else { /* typeless ksyms */ 5966 insn[0].imm = (__u32)ext->ksym.addr; 5967 insn[1].imm = ext->ksym.addr >> 32; 5968 } 5969 } 5970 relo->processed = true; 5971 break; 5972 case RELO_CALL: 5973 /* will be handled as a follow up pass */ 5974 break; 5975 default: 5976 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 5977 prog->name, i, relo->type); 5978 return -EINVAL; 5979 } 5980 } 5981 5982 return 0; 5983 } 5984 5985 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 5986 const struct bpf_program *prog, 5987 const struct btf_ext_info *ext_info, 5988 void **prog_info, __u32 *prog_rec_cnt, 5989 __u32 *prog_rec_sz) 5990 { 5991 void *copy_start = NULL, *copy_end = NULL; 5992 void *rec, *rec_end, *new_prog_info; 5993 const struct btf_ext_info_sec *sec; 5994 size_t old_sz, new_sz; 5995 const char *sec_name; 5996 int i, off_adj; 5997 5998 for_each_btf_ext_sec(ext_info, sec) { 5999 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 6000 if (!sec_name) 6001 return -EINVAL; 6002 if (strcmp(sec_name, prog->sec_name) != 0) 6003 continue; 6004 6005 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6006 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6007 6008 if (insn_off < prog->sec_insn_off) 6009 continue; 6010 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6011 break; 6012 6013 if (!copy_start) 6014 copy_start = rec; 6015 copy_end = rec + ext_info->rec_size; 6016 } 6017 6018 if (!copy_start) 6019 return -ENOENT; 6020 6021 /* append func/line info of a given (sub-)program to the main 6022 * program func/line info 6023 */ 6024 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6025 new_sz = old_sz + (copy_end - copy_start); 6026 new_prog_info = realloc(*prog_info, new_sz); 6027 if (!new_prog_info) 6028 return -ENOMEM; 6029 *prog_info = new_prog_info; 6030 *prog_rec_cnt = new_sz / ext_info->rec_size; 6031 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6032 6033 /* Kernel instruction offsets are in units of 8-byte 6034 * instructions, while .BTF.ext instruction offsets generated 6035 * by Clang are in units of bytes. So convert Clang offsets 6036 * into kernel offsets and adjust offset according to program 6037 * relocated position. 6038 */ 6039 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6040 rec = new_prog_info + old_sz; 6041 rec_end = new_prog_info + new_sz; 6042 for (; rec < rec_end; rec += ext_info->rec_size) { 6043 __u32 *insn_off = rec; 6044 6045 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6046 } 6047 *prog_rec_sz = ext_info->rec_size; 6048 return 0; 6049 } 6050 6051 return -ENOENT; 6052 } 6053 6054 static int 6055 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6056 struct bpf_program *main_prog, 6057 const struct bpf_program *prog) 6058 { 6059 int err; 6060 6061 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6062 * supprot func/line info 6063 */ 6064 if (!obj->btf_ext || !kernel_supports(FEAT_BTF_FUNC)) 6065 return 0; 6066 6067 /* only attempt func info relocation if main program's func_info 6068 * relocation was successful 6069 */ 6070 if (main_prog != prog && !main_prog->func_info) 6071 goto line_info; 6072 6073 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6074 &main_prog->func_info, 6075 &main_prog->func_info_cnt, 6076 &main_prog->func_info_rec_size); 6077 if (err) { 6078 if (err != -ENOENT) { 6079 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6080 prog->name, err); 6081 return err; 6082 } 6083 if (main_prog->func_info) { 6084 /* 6085 * Some info has already been found but has problem 6086 * in the last btf_ext reloc. Must have to error out. 6087 */ 6088 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6089 return err; 6090 } 6091 /* Have problem loading the very first info. Ignore the rest. */ 6092 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6093 prog->name); 6094 } 6095 6096 line_info: 6097 /* don't relocate line info if main program's relocation failed */ 6098 if (main_prog != prog && !main_prog->line_info) 6099 return 0; 6100 6101 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6102 &main_prog->line_info, 6103 &main_prog->line_info_cnt, 6104 &main_prog->line_info_rec_size); 6105 if (err) { 6106 if (err != -ENOENT) { 6107 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6108 prog->name, err); 6109 return err; 6110 } 6111 if (main_prog->line_info) { 6112 /* 6113 * Some info has already been found but has problem 6114 * in the last btf_ext reloc. Must have to error out. 6115 */ 6116 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6117 return err; 6118 } 6119 /* Have problem loading the very first info. Ignore the rest. */ 6120 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6121 prog->name); 6122 } 6123 return 0; 6124 } 6125 6126 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6127 { 6128 size_t insn_idx = *(const size_t *)key; 6129 const struct reloc_desc *relo = elem; 6130 6131 if (insn_idx == relo->insn_idx) 6132 return 0; 6133 return insn_idx < relo->insn_idx ? -1 : 1; 6134 } 6135 6136 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6137 { 6138 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6139 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6140 } 6141 6142 static int 6143 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6144 struct bpf_program *prog) 6145 { 6146 size_t sub_insn_idx, insn_idx, new_cnt; 6147 struct bpf_program *subprog; 6148 struct bpf_insn *insns, *insn; 6149 struct reloc_desc *relo; 6150 int err; 6151 6152 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6153 if (err) 6154 return err; 6155 6156 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6157 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6158 if (!insn_is_subprog_call(insn)) 6159 continue; 6160 6161 relo = find_prog_insn_relo(prog, insn_idx); 6162 if (relo && relo->type != RELO_CALL) { 6163 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6164 prog->name, insn_idx, relo->type); 6165 return -LIBBPF_ERRNO__RELOC; 6166 } 6167 if (relo) { 6168 /* sub-program instruction index is a combination of 6169 * an offset of a symbol pointed to by relocation and 6170 * call instruction's imm field; for global functions, 6171 * call always has imm = -1, but for static functions 6172 * relocation is against STT_SECTION and insn->imm 6173 * points to a start of a static function 6174 */ 6175 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6176 } else { 6177 /* if subprogram call is to a static function within 6178 * the same ELF section, there won't be any relocation 6179 * emitted, but it also means there is no additional 6180 * offset necessary, insns->imm is relative to 6181 * instruction's original position within the section 6182 */ 6183 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6184 } 6185 6186 /* we enforce that sub-programs should be in .text section */ 6187 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6188 if (!subprog) { 6189 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6190 prog->name); 6191 return -LIBBPF_ERRNO__RELOC; 6192 } 6193 6194 /* if it's the first call instruction calling into this 6195 * subprogram (meaning this subprog hasn't been processed 6196 * yet) within the context of current main program: 6197 * - append it at the end of main program's instructions blog; 6198 * - process is recursively, while current program is put on hold; 6199 * - if that subprogram calls some other not yet processes 6200 * subprogram, same thing will happen recursively until 6201 * there are no more unprocesses subprograms left to append 6202 * and relocate. 6203 */ 6204 if (subprog->sub_insn_off == 0) { 6205 subprog->sub_insn_off = main_prog->insns_cnt; 6206 6207 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6208 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6209 if (!insns) { 6210 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6211 return -ENOMEM; 6212 } 6213 main_prog->insns = insns; 6214 main_prog->insns_cnt = new_cnt; 6215 6216 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6217 subprog->insns_cnt * sizeof(*insns)); 6218 6219 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6220 main_prog->name, subprog->insns_cnt, subprog->name); 6221 6222 err = bpf_object__reloc_code(obj, main_prog, subprog); 6223 if (err) 6224 return err; 6225 } 6226 6227 /* main_prog->insns memory could have been re-allocated, so 6228 * calculate pointer again 6229 */ 6230 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6231 /* calculate correct instruction position within current main 6232 * prog; each main prog can have a different set of 6233 * subprograms appended (potentially in different order as 6234 * well), so position of any subprog can be different for 6235 * different main programs */ 6236 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6237 6238 if (relo) 6239 relo->processed = true; 6240 6241 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6242 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6243 } 6244 6245 return 0; 6246 } 6247 6248 /* 6249 * Relocate sub-program calls. 6250 * 6251 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6252 * main prog) is processed separately. For each subprog (non-entry functions, 6253 * that can be called from either entry progs or other subprogs) gets their 6254 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6255 * hasn't been yet appended and relocated within current main prog. Once its 6256 * relocated, sub_insn_off will point at the position within current main prog 6257 * where given subprog was appended. This will further be used to relocate all 6258 * the call instructions jumping into this subprog. 6259 * 6260 * We start with main program and process all call instructions. If the call 6261 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6262 * is zero), subprog instructions are appended at the end of main program's 6263 * instruction array. Then main program is "put on hold" while we recursively 6264 * process newly appended subprogram. If that subprogram calls into another 6265 * subprogram that hasn't been appended, new subprogram is appended again to 6266 * the *main* prog's instructions (subprog's instructions are always left 6267 * untouched, as they need to be in unmodified state for subsequent main progs 6268 * and subprog instructions are always sent only as part of a main prog) and 6269 * the process continues recursively. Once all the subprogs called from a main 6270 * prog or any of its subprogs are appended (and relocated), all their 6271 * positions within finalized instructions array are known, so it's easy to 6272 * rewrite call instructions with correct relative offsets, corresponding to 6273 * desired target subprog. 6274 * 6275 * Its important to realize that some subprogs might not be called from some 6276 * main prog and any of its called/used subprogs. Those will keep their 6277 * subprog->sub_insn_off as zero at all times and won't be appended to current 6278 * main prog and won't be relocated within the context of current main prog. 6279 * They might still be used from other main progs later. 6280 * 6281 * Visually this process can be shown as below. Suppose we have two main 6282 * programs mainA and mainB and BPF object contains three subprogs: subA, 6283 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6284 * subC both call subB: 6285 * 6286 * +--------+ +-------+ 6287 * | v v | 6288 * +--+---+ +--+-+-+ +---+--+ 6289 * | subA | | subB | | subC | 6290 * +--+---+ +------+ +---+--+ 6291 * ^ ^ 6292 * | | 6293 * +---+-------+ +------+----+ 6294 * | mainA | | mainB | 6295 * +-----------+ +-----------+ 6296 * 6297 * We'll start relocating mainA, will find subA, append it and start 6298 * processing sub A recursively: 6299 * 6300 * +-----------+------+ 6301 * | mainA | subA | 6302 * +-----------+------+ 6303 * 6304 * At this point we notice that subB is used from subA, so we append it and 6305 * relocate (there are no further subcalls from subB): 6306 * 6307 * +-----------+------+------+ 6308 * | mainA | subA | subB | 6309 * +-----------+------+------+ 6310 * 6311 * At this point, we relocate subA calls, then go one level up and finish with 6312 * relocatin mainA calls. mainA is done. 6313 * 6314 * For mainB process is similar but results in different order. We start with 6315 * mainB and skip subA and subB, as mainB never calls them (at least 6316 * directly), but we see subC is needed, so we append and start processing it: 6317 * 6318 * +-----------+------+ 6319 * | mainB | subC | 6320 * +-----------+------+ 6321 * Now we see subC needs subB, so we go back to it, append and relocate it: 6322 * 6323 * +-----------+------+------+ 6324 * | mainB | subC | subB | 6325 * +-----------+------+------+ 6326 * 6327 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6328 */ 6329 static int 6330 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6331 { 6332 struct bpf_program *subprog; 6333 int i, j, err; 6334 6335 /* mark all subprogs as not relocated (yet) within the context of 6336 * current main program 6337 */ 6338 for (i = 0; i < obj->nr_programs; i++) { 6339 subprog = &obj->programs[i]; 6340 if (!prog_is_subprog(obj, subprog)) 6341 continue; 6342 6343 subprog->sub_insn_off = 0; 6344 for (j = 0; j < subprog->nr_reloc; j++) 6345 if (subprog->reloc_desc[j].type == RELO_CALL) 6346 subprog->reloc_desc[j].processed = false; 6347 } 6348 6349 err = bpf_object__reloc_code(obj, prog, prog); 6350 if (err) 6351 return err; 6352 6353 6354 return 0; 6355 } 6356 6357 static int 6358 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6359 { 6360 struct bpf_program *prog; 6361 size_t i; 6362 int err; 6363 6364 if (obj->btf_ext) { 6365 err = bpf_object__relocate_core(obj, targ_btf_path); 6366 if (err) { 6367 pr_warn("failed to perform CO-RE relocations: %d\n", 6368 err); 6369 return err; 6370 } 6371 } 6372 /* relocate data references first for all programs and sub-programs, 6373 * as they don't change relative to code locations, so subsequent 6374 * subprogram processing won't need to re-calculate any of them 6375 */ 6376 for (i = 0; i < obj->nr_programs; i++) { 6377 prog = &obj->programs[i]; 6378 err = bpf_object__relocate_data(obj, prog); 6379 if (err) { 6380 pr_warn("prog '%s': failed to relocate data references: %d\n", 6381 prog->name, err); 6382 return err; 6383 } 6384 } 6385 /* now relocate subprogram calls and append used subprograms to main 6386 * programs; each copy of subprogram code needs to be relocated 6387 * differently for each main program, because its code location might 6388 * have changed 6389 */ 6390 for (i = 0; i < obj->nr_programs; i++) { 6391 prog = &obj->programs[i]; 6392 /* sub-program's sub-calls are relocated within the context of 6393 * its main program only 6394 */ 6395 if (prog_is_subprog(obj, prog)) 6396 continue; 6397 6398 err = bpf_object__relocate_calls(obj, prog); 6399 if (err) { 6400 pr_warn("prog '%s': failed to relocate calls: %d\n", 6401 prog->name, err); 6402 return err; 6403 } 6404 } 6405 /* free up relocation descriptors */ 6406 for (i = 0; i < obj->nr_programs; i++) { 6407 prog = &obj->programs[i]; 6408 zfree(&prog->reloc_desc); 6409 prog->nr_reloc = 0; 6410 } 6411 return 0; 6412 } 6413 6414 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6415 GElf_Shdr *shdr, Elf_Data *data); 6416 6417 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6418 GElf_Shdr *shdr, Elf_Data *data) 6419 { 6420 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6421 int i, j, nrels, new_sz; 6422 const struct btf_var_secinfo *vi = NULL; 6423 const struct btf_type *sec, *var, *def; 6424 struct bpf_map *map = NULL, *targ_map; 6425 const struct btf_member *member; 6426 const char *name, *mname; 6427 Elf_Data *symbols; 6428 unsigned int moff; 6429 GElf_Sym sym; 6430 GElf_Rel rel; 6431 void *tmp; 6432 6433 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6434 return -EINVAL; 6435 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6436 if (!sec) 6437 return -EINVAL; 6438 6439 symbols = obj->efile.symbols; 6440 nrels = shdr->sh_size / shdr->sh_entsize; 6441 for (i = 0; i < nrels; i++) { 6442 if (!gelf_getrel(data, i, &rel)) { 6443 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6444 return -LIBBPF_ERRNO__FORMAT; 6445 } 6446 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 6447 pr_warn(".maps relo #%d: symbol %zx not found\n", 6448 i, (size_t)GELF_R_SYM(rel.r_info)); 6449 return -LIBBPF_ERRNO__FORMAT; 6450 } 6451 name = elf_sym_str(obj, sym.st_name) ?: "<?>"; 6452 if (sym.st_shndx != obj->efile.btf_maps_shndx) { 6453 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6454 i, name); 6455 return -LIBBPF_ERRNO__RELOC; 6456 } 6457 6458 pr_debug(".maps relo #%d: for %zd value %zd rel.r_offset %zu name %d ('%s')\n", 6459 i, (ssize_t)(rel.r_info >> 32), (size_t)sym.st_value, 6460 (size_t)rel.r_offset, sym.st_name, name); 6461 6462 for (j = 0; j < obj->nr_maps; j++) { 6463 map = &obj->maps[j]; 6464 if (map->sec_idx != obj->efile.btf_maps_shndx) 6465 continue; 6466 6467 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6468 if (vi->offset <= rel.r_offset && 6469 rel.r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6470 break; 6471 } 6472 if (j == obj->nr_maps) { 6473 pr_warn(".maps relo #%d: cannot find map '%s' at rel.r_offset %zu\n", 6474 i, name, (size_t)rel.r_offset); 6475 return -EINVAL; 6476 } 6477 6478 if (!bpf_map_type__is_map_in_map(map->def.type)) 6479 return -EINVAL; 6480 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6481 map->def.key_size != sizeof(int)) { 6482 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6483 i, map->name, sizeof(int)); 6484 return -EINVAL; 6485 } 6486 6487 targ_map = bpf_object__find_map_by_name(obj, name); 6488 if (!targ_map) 6489 return -ESRCH; 6490 6491 var = btf__type_by_id(obj->btf, vi->type); 6492 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6493 if (btf_vlen(def) == 0) 6494 return -EINVAL; 6495 member = btf_members(def) + btf_vlen(def) - 1; 6496 mname = btf__name_by_offset(obj->btf, member->name_off); 6497 if (strcmp(mname, "values")) 6498 return -EINVAL; 6499 6500 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6501 if (rel.r_offset - vi->offset < moff) 6502 return -EINVAL; 6503 6504 moff = rel.r_offset - vi->offset - moff; 6505 /* here we use BPF pointer size, which is always 64 bit, as we 6506 * are parsing ELF that was built for BPF target 6507 */ 6508 if (moff % bpf_ptr_sz) 6509 return -EINVAL; 6510 moff /= bpf_ptr_sz; 6511 if (moff >= map->init_slots_sz) { 6512 new_sz = moff + 1; 6513 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6514 if (!tmp) 6515 return -ENOMEM; 6516 map->init_slots = tmp; 6517 memset(map->init_slots + map->init_slots_sz, 0, 6518 (new_sz - map->init_slots_sz) * host_ptr_sz); 6519 map->init_slots_sz = new_sz; 6520 } 6521 map->init_slots[moff] = targ_map; 6522 6523 pr_debug(".maps relo #%d: map '%s' slot [%d] points to map '%s'\n", 6524 i, map->name, moff, name); 6525 } 6526 6527 return 0; 6528 } 6529 6530 static int cmp_relocs(const void *_a, const void *_b) 6531 { 6532 const struct reloc_desc *a = _a; 6533 const struct reloc_desc *b = _b; 6534 6535 if (a->insn_idx != b->insn_idx) 6536 return a->insn_idx < b->insn_idx ? -1 : 1; 6537 6538 /* no two relocations should have the same insn_idx, but ... */ 6539 if (a->type != b->type) 6540 return a->type < b->type ? -1 : 1; 6541 6542 return 0; 6543 } 6544 6545 static int bpf_object__collect_relos(struct bpf_object *obj) 6546 { 6547 int i, err; 6548 6549 for (i = 0; i < obj->efile.nr_reloc_sects; i++) { 6550 GElf_Shdr *shdr = &obj->efile.reloc_sects[i].shdr; 6551 Elf_Data *data = obj->efile.reloc_sects[i].data; 6552 int idx = shdr->sh_info; 6553 6554 if (shdr->sh_type != SHT_REL) { 6555 pr_warn("internal error at %d\n", __LINE__); 6556 return -LIBBPF_ERRNO__INTERNAL; 6557 } 6558 6559 if (idx == obj->efile.st_ops_shndx) 6560 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6561 else if (idx == obj->efile.btf_maps_shndx) 6562 err = bpf_object__collect_map_relos(obj, shdr, data); 6563 else 6564 err = bpf_object__collect_prog_relos(obj, shdr, data); 6565 if (err) 6566 return err; 6567 } 6568 6569 for (i = 0; i < obj->nr_programs; i++) { 6570 struct bpf_program *p = &obj->programs[i]; 6571 6572 if (!p->nr_reloc) 6573 continue; 6574 6575 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6576 } 6577 return 0; 6578 } 6579 6580 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6581 { 6582 if (BPF_CLASS(insn->code) == BPF_JMP && 6583 BPF_OP(insn->code) == BPF_CALL && 6584 BPF_SRC(insn->code) == BPF_K && 6585 insn->src_reg == 0 && 6586 insn->dst_reg == 0) { 6587 *func_id = insn->imm; 6588 return true; 6589 } 6590 return false; 6591 } 6592 6593 static int bpf_object__sanitize_prog(struct bpf_object* obj, struct bpf_program *prog) 6594 { 6595 struct bpf_insn *insn = prog->insns; 6596 enum bpf_func_id func_id; 6597 int i; 6598 6599 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6600 if (!insn_is_helper_call(insn, &func_id)) 6601 continue; 6602 6603 /* on kernels that don't yet support 6604 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6605 * to bpf_probe_read() which works well for old kernels 6606 */ 6607 switch (func_id) { 6608 case BPF_FUNC_probe_read_kernel: 6609 case BPF_FUNC_probe_read_user: 6610 if (!kernel_supports(FEAT_PROBE_READ_KERN)) 6611 insn->imm = BPF_FUNC_probe_read; 6612 break; 6613 case BPF_FUNC_probe_read_kernel_str: 6614 case BPF_FUNC_probe_read_user_str: 6615 if (!kernel_supports(FEAT_PROBE_READ_KERN)) 6616 insn->imm = BPF_FUNC_probe_read_str; 6617 break; 6618 default: 6619 break; 6620 } 6621 } 6622 return 0; 6623 } 6624 6625 static int 6626 load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt, 6627 char *license, __u32 kern_version, int *pfd) 6628 { 6629 struct bpf_load_program_attr load_attr; 6630 char *cp, errmsg[STRERR_BUFSIZE]; 6631 size_t log_buf_size = 0; 6632 char *log_buf = NULL; 6633 int btf_fd, ret; 6634 6635 if (!insns || !insns_cnt) 6636 return -EINVAL; 6637 6638 memset(&load_attr, 0, sizeof(struct bpf_load_program_attr)); 6639 load_attr.prog_type = prog->type; 6640 /* old kernels might not support specifying expected_attach_type */ 6641 if (!kernel_supports(FEAT_EXP_ATTACH_TYPE) && prog->sec_def && 6642 prog->sec_def->is_exp_attach_type_optional) 6643 load_attr.expected_attach_type = 0; 6644 else 6645 load_attr.expected_attach_type = prog->expected_attach_type; 6646 if (kernel_supports(FEAT_PROG_NAME)) 6647 load_attr.name = prog->name; 6648 load_attr.insns = insns; 6649 load_attr.insns_cnt = insns_cnt; 6650 load_attr.license = license; 6651 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 6652 prog->type == BPF_PROG_TYPE_LSM) { 6653 load_attr.attach_btf_id = prog->attach_btf_id; 6654 } else if (prog->type == BPF_PROG_TYPE_TRACING || 6655 prog->type == BPF_PROG_TYPE_EXT) { 6656 load_attr.attach_prog_fd = prog->attach_prog_fd; 6657 load_attr.attach_btf_id = prog->attach_btf_id; 6658 } else { 6659 load_attr.kern_version = kern_version; 6660 load_attr.prog_ifindex = prog->prog_ifindex; 6661 } 6662 /* specify func_info/line_info only if kernel supports them */ 6663 btf_fd = bpf_object__btf_fd(prog->obj); 6664 if (btf_fd >= 0 && kernel_supports(FEAT_BTF_FUNC)) { 6665 load_attr.prog_btf_fd = btf_fd; 6666 load_attr.func_info = prog->func_info; 6667 load_attr.func_info_rec_size = prog->func_info_rec_size; 6668 load_attr.func_info_cnt = prog->func_info_cnt; 6669 load_attr.line_info = prog->line_info; 6670 load_attr.line_info_rec_size = prog->line_info_rec_size; 6671 load_attr.line_info_cnt = prog->line_info_cnt; 6672 } 6673 load_attr.log_level = prog->log_level; 6674 load_attr.prog_flags = prog->prog_flags; 6675 6676 retry_load: 6677 if (log_buf_size) { 6678 log_buf = malloc(log_buf_size); 6679 if (!log_buf) 6680 return -ENOMEM; 6681 6682 *log_buf = 0; 6683 } 6684 6685 ret = bpf_load_program_xattr(&load_attr, log_buf, log_buf_size); 6686 6687 if (ret >= 0) { 6688 if (log_buf && load_attr.log_level) 6689 pr_debug("verifier log:\n%s", log_buf); 6690 6691 if (prog->obj->rodata_map_idx >= 0 && 6692 kernel_supports(FEAT_PROG_BIND_MAP)) { 6693 struct bpf_map *rodata_map = 6694 &prog->obj->maps[prog->obj->rodata_map_idx]; 6695 6696 if (bpf_prog_bind_map(ret, bpf_map__fd(rodata_map), NULL)) { 6697 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6698 pr_warn("prog '%s': failed to bind .rodata map: %s\n", 6699 prog->name, cp); 6700 /* Don't fail hard if can't bind rodata. */ 6701 } 6702 } 6703 6704 *pfd = ret; 6705 ret = 0; 6706 goto out; 6707 } 6708 6709 if (!log_buf || errno == ENOSPC) { 6710 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, 6711 log_buf_size << 1); 6712 6713 free(log_buf); 6714 goto retry_load; 6715 } 6716 ret = errno ? -errno : -LIBBPF_ERRNO__LOAD; 6717 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6718 pr_warn("load bpf program failed: %s\n", cp); 6719 pr_perm_msg(ret); 6720 6721 if (log_buf && log_buf[0] != '\0') { 6722 ret = -LIBBPF_ERRNO__VERIFY; 6723 pr_warn("-- BEGIN DUMP LOG ---\n"); 6724 pr_warn("\n%s\n", log_buf); 6725 pr_warn("-- END LOG --\n"); 6726 } else if (load_attr.insns_cnt >= BPF_MAXINSNS) { 6727 pr_warn("Program too large (%zu insns), at most %d insns\n", 6728 load_attr.insns_cnt, BPF_MAXINSNS); 6729 ret = -LIBBPF_ERRNO__PROG2BIG; 6730 } else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) { 6731 /* Wrong program type? */ 6732 int fd; 6733 6734 load_attr.prog_type = BPF_PROG_TYPE_KPROBE; 6735 load_attr.expected_attach_type = 0; 6736 fd = bpf_load_program_xattr(&load_attr, NULL, 0); 6737 if (fd >= 0) { 6738 close(fd); 6739 ret = -LIBBPF_ERRNO__PROGTYPE; 6740 goto out; 6741 } 6742 } 6743 6744 out: 6745 free(log_buf); 6746 return ret; 6747 } 6748 6749 static int libbpf_find_attach_btf_id(struct bpf_program *prog); 6750 6751 int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_ver) 6752 { 6753 int err = 0, fd, i, btf_id; 6754 6755 if (prog->obj->loaded) { 6756 pr_warn("prog '%s': can't load after object was loaded\n", prog->name); 6757 return -EINVAL; 6758 } 6759 6760 if ((prog->type == BPF_PROG_TYPE_TRACING || 6761 prog->type == BPF_PROG_TYPE_LSM || 6762 prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) { 6763 btf_id = libbpf_find_attach_btf_id(prog); 6764 if (btf_id <= 0) 6765 return btf_id; 6766 prog->attach_btf_id = btf_id; 6767 } 6768 6769 if (prog->instances.nr < 0 || !prog->instances.fds) { 6770 if (prog->preprocessor) { 6771 pr_warn("Internal error: can't load program '%s'\n", 6772 prog->name); 6773 return -LIBBPF_ERRNO__INTERNAL; 6774 } 6775 6776 prog->instances.fds = malloc(sizeof(int)); 6777 if (!prog->instances.fds) { 6778 pr_warn("Not enough memory for BPF fds\n"); 6779 return -ENOMEM; 6780 } 6781 prog->instances.nr = 1; 6782 prog->instances.fds[0] = -1; 6783 } 6784 6785 if (!prog->preprocessor) { 6786 if (prog->instances.nr != 1) { 6787 pr_warn("prog '%s': inconsistent nr(%d) != 1\n", 6788 prog->name, prog->instances.nr); 6789 } 6790 err = load_program(prog, prog->insns, prog->insns_cnt, 6791 license, kern_ver, &fd); 6792 if (!err) 6793 prog->instances.fds[0] = fd; 6794 goto out; 6795 } 6796 6797 for (i = 0; i < prog->instances.nr; i++) { 6798 struct bpf_prog_prep_result result; 6799 bpf_program_prep_t preprocessor = prog->preprocessor; 6800 6801 memset(&result, 0, sizeof(result)); 6802 err = preprocessor(prog, i, prog->insns, 6803 prog->insns_cnt, &result); 6804 if (err) { 6805 pr_warn("Preprocessing the %dth instance of program '%s' failed\n", 6806 i, prog->name); 6807 goto out; 6808 } 6809 6810 if (!result.new_insn_ptr || !result.new_insn_cnt) { 6811 pr_debug("Skip loading the %dth instance of program '%s'\n", 6812 i, prog->name); 6813 prog->instances.fds[i] = -1; 6814 if (result.pfd) 6815 *result.pfd = -1; 6816 continue; 6817 } 6818 6819 err = load_program(prog, result.new_insn_ptr, 6820 result.new_insn_cnt, license, kern_ver, &fd); 6821 if (err) { 6822 pr_warn("Loading the %dth instance of program '%s' failed\n", 6823 i, prog->name); 6824 goto out; 6825 } 6826 6827 if (result.pfd) 6828 *result.pfd = fd; 6829 prog->instances.fds[i] = fd; 6830 } 6831 out: 6832 if (err) 6833 pr_warn("failed to load program '%s'\n", prog->name); 6834 zfree(&prog->insns); 6835 prog->insns_cnt = 0; 6836 return err; 6837 } 6838 6839 static int 6840 bpf_object__load_progs(struct bpf_object *obj, int log_level) 6841 { 6842 struct bpf_program *prog; 6843 size_t i; 6844 int err; 6845 6846 for (i = 0; i < obj->nr_programs; i++) { 6847 prog = &obj->programs[i]; 6848 err = bpf_object__sanitize_prog(obj, prog); 6849 if (err) 6850 return err; 6851 } 6852 6853 for (i = 0; i < obj->nr_programs; i++) { 6854 prog = &obj->programs[i]; 6855 if (prog_is_subprog(obj, prog)) 6856 continue; 6857 if (!prog->load) { 6858 pr_debug("prog '%s': skipped loading\n", prog->name); 6859 continue; 6860 } 6861 prog->log_level |= log_level; 6862 err = bpf_program__load(prog, obj->license, obj->kern_version); 6863 if (err) 6864 return err; 6865 } 6866 return 0; 6867 } 6868 6869 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 6870 6871 static struct bpf_object * 6872 __bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz, 6873 const struct bpf_object_open_opts *opts) 6874 { 6875 const char *obj_name, *kconfig; 6876 struct bpf_program *prog; 6877 struct bpf_object *obj; 6878 char tmp_name[64]; 6879 int err; 6880 6881 if (elf_version(EV_CURRENT) == EV_NONE) { 6882 pr_warn("failed to init libelf for %s\n", 6883 path ? : "(mem buf)"); 6884 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 6885 } 6886 6887 if (!OPTS_VALID(opts, bpf_object_open_opts)) 6888 return ERR_PTR(-EINVAL); 6889 6890 obj_name = OPTS_GET(opts, object_name, NULL); 6891 if (obj_buf) { 6892 if (!obj_name) { 6893 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 6894 (unsigned long)obj_buf, 6895 (unsigned long)obj_buf_sz); 6896 obj_name = tmp_name; 6897 } 6898 path = obj_name; 6899 pr_debug("loading object '%s' from buffer\n", obj_name); 6900 } 6901 6902 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 6903 if (IS_ERR(obj)) 6904 return obj; 6905 6906 kconfig = OPTS_GET(opts, kconfig, NULL); 6907 if (kconfig) { 6908 obj->kconfig = strdup(kconfig); 6909 if (!obj->kconfig) 6910 return ERR_PTR(-ENOMEM); 6911 } 6912 6913 err = bpf_object__elf_init(obj); 6914 err = err ? : bpf_object__check_endianness(obj); 6915 err = err ? : bpf_object__elf_collect(obj); 6916 err = err ? : bpf_object__collect_externs(obj); 6917 err = err ? : bpf_object__finalize_btf(obj); 6918 err = err ? : bpf_object__init_maps(obj, opts); 6919 err = err ? : bpf_object__collect_relos(obj); 6920 if (err) 6921 goto out; 6922 bpf_object__elf_finish(obj); 6923 6924 bpf_object__for_each_program(prog, obj) { 6925 prog->sec_def = find_sec_def(prog->sec_name); 6926 if (!prog->sec_def) 6927 /* couldn't guess, but user might manually specify */ 6928 continue; 6929 6930 if (prog->sec_def->is_sleepable) 6931 prog->prog_flags |= BPF_F_SLEEPABLE; 6932 bpf_program__set_type(prog, prog->sec_def->prog_type); 6933 bpf_program__set_expected_attach_type(prog, 6934 prog->sec_def->expected_attach_type); 6935 6936 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING || 6937 prog->sec_def->prog_type == BPF_PROG_TYPE_EXT) 6938 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0); 6939 } 6940 6941 return obj; 6942 out: 6943 bpf_object__close(obj); 6944 return ERR_PTR(err); 6945 } 6946 6947 static struct bpf_object * 6948 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags) 6949 { 6950 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 6951 .relaxed_maps = flags & MAPS_RELAX_COMPAT, 6952 ); 6953 6954 /* param validation */ 6955 if (!attr->file) 6956 return NULL; 6957 6958 pr_debug("loading %s\n", attr->file); 6959 return __bpf_object__open(attr->file, NULL, 0, &opts); 6960 } 6961 6962 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr) 6963 { 6964 return __bpf_object__open_xattr(attr, 0); 6965 } 6966 6967 struct bpf_object *bpf_object__open(const char *path) 6968 { 6969 struct bpf_object_open_attr attr = { 6970 .file = path, 6971 .prog_type = BPF_PROG_TYPE_UNSPEC, 6972 }; 6973 6974 return bpf_object__open_xattr(&attr); 6975 } 6976 6977 struct bpf_object * 6978 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 6979 { 6980 if (!path) 6981 return ERR_PTR(-EINVAL); 6982 6983 pr_debug("loading %s\n", path); 6984 6985 return __bpf_object__open(path, NULL, 0, opts); 6986 } 6987 6988 struct bpf_object * 6989 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 6990 const struct bpf_object_open_opts *opts) 6991 { 6992 if (!obj_buf || obj_buf_sz == 0) 6993 return ERR_PTR(-EINVAL); 6994 6995 return __bpf_object__open(NULL, obj_buf, obj_buf_sz, opts); 6996 } 6997 6998 struct bpf_object * 6999 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz, 7000 const char *name) 7001 { 7002 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7003 .object_name = name, 7004 /* wrong default, but backwards-compatible */ 7005 .relaxed_maps = true, 7006 ); 7007 7008 /* returning NULL is wrong, but backwards-compatible */ 7009 if (!obj_buf || obj_buf_sz == 0) 7010 return NULL; 7011 7012 return bpf_object__open_mem(obj_buf, obj_buf_sz, &opts); 7013 } 7014 7015 int bpf_object__unload(struct bpf_object *obj) 7016 { 7017 size_t i; 7018 7019 if (!obj) 7020 return -EINVAL; 7021 7022 for (i = 0; i < obj->nr_maps; i++) { 7023 zclose(obj->maps[i].fd); 7024 if (obj->maps[i].st_ops) 7025 zfree(&obj->maps[i].st_ops->kern_vdata); 7026 } 7027 7028 for (i = 0; i < obj->nr_programs; i++) 7029 bpf_program__unload(&obj->programs[i]); 7030 7031 return 0; 7032 } 7033 7034 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7035 { 7036 struct bpf_map *m; 7037 7038 bpf_object__for_each_map(m, obj) { 7039 if (!bpf_map__is_internal(m)) 7040 continue; 7041 if (!kernel_supports(FEAT_GLOBAL_DATA)) { 7042 pr_warn("kernel doesn't support global data\n"); 7043 return -ENOTSUP; 7044 } 7045 if (!kernel_supports(FEAT_ARRAY_MMAP)) 7046 m->def.map_flags ^= BPF_F_MMAPABLE; 7047 } 7048 7049 return 0; 7050 } 7051 7052 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7053 { 7054 char sym_type, sym_name[500]; 7055 unsigned long long sym_addr; 7056 struct extern_desc *ext; 7057 int ret, err = 0; 7058 FILE *f; 7059 7060 f = fopen("/proc/kallsyms", "r"); 7061 if (!f) { 7062 err = -errno; 7063 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7064 return err; 7065 } 7066 7067 while (true) { 7068 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7069 &sym_addr, &sym_type, sym_name); 7070 if (ret == EOF && feof(f)) 7071 break; 7072 if (ret != 3) { 7073 pr_warn("failed to read kallsyms entry: %d\n", ret); 7074 err = -EINVAL; 7075 goto out; 7076 } 7077 7078 ext = find_extern_by_name(obj, sym_name); 7079 if (!ext || ext->type != EXT_KSYM) 7080 continue; 7081 7082 if (ext->is_set && ext->ksym.addr != sym_addr) { 7083 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n", 7084 sym_name, ext->ksym.addr, sym_addr); 7085 err = -EINVAL; 7086 goto out; 7087 } 7088 if (!ext->is_set) { 7089 ext->is_set = true; 7090 ext->ksym.addr = sym_addr; 7091 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr); 7092 } 7093 } 7094 7095 out: 7096 fclose(f); 7097 return err; 7098 } 7099 7100 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7101 { 7102 struct extern_desc *ext; 7103 int i, id; 7104 7105 for (i = 0; i < obj->nr_extern; i++) { 7106 const struct btf_type *targ_var, *targ_type; 7107 __u32 targ_type_id, local_type_id; 7108 const char *targ_var_name; 7109 int ret; 7110 7111 ext = &obj->externs[i]; 7112 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7113 continue; 7114 7115 id = btf__find_by_name_kind(obj->btf_vmlinux, ext->name, 7116 BTF_KIND_VAR); 7117 if (id <= 0) { 7118 pr_warn("extern (ksym) '%s': failed to find BTF ID in vmlinux BTF.\n", 7119 ext->name); 7120 return -ESRCH; 7121 } 7122 7123 /* find local type_id */ 7124 local_type_id = ext->ksym.type_id; 7125 7126 /* find target type_id */ 7127 targ_var = btf__type_by_id(obj->btf_vmlinux, id); 7128 targ_var_name = btf__name_by_offset(obj->btf_vmlinux, 7129 targ_var->name_off); 7130 targ_type = skip_mods_and_typedefs(obj->btf_vmlinux, 7131 targ_var->type, 7132 &targ_type_id); 7133 7134 ret = bpf_core_types_are_compat(obj->btf, local_type_id, 7135 obj->btf_vmlinux, targ_type_id); 7136 if (ret <= 0) { 7137 const struct btf_type *local_type; 7138 const char *targ_name, *local_name; 7139 7140 local_type = btf__type_by_id(obj->btf, local_type_id); 7141 local_name = btf__name_by_offset(obj->btf, 7142 local_type->name_off); 7143 targ_name = btf__name_by_offset(obj->btf_vmlinux, 7144 targ_type->name_off); 7145 7146 pr_warn("extern (ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7147 ext->name, local_type_id, 7148 btf_kind_str(local_type), local_name, targ_type_id, 7149 btf_kind_str(targ_type), targ_name); 7150 return -EINVAL; 7151 } 7152 7153 ext->is_set = true; 7154 ext->ksym.vmlinux_btf_id = id; 7155 pr_debug("extern (ksym) '%s': resolved to [%d] %s %s\n", 7156 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7157 } 7158 return 0; 7159 } 7160 7161 static int bpf_object__resolve_externs(struct bpf_object *obj, 7162 const char *extra_kconfig) 7163 { 7164 bool need_config = false, need_kallsyms = false; 7165 bool need_vmlinux_btf = false; 7166 struct extern_desc *ext; 7167 void *kcfg_data = NULL; 7168 int err, i; 7169 7170 if (obj->nr_extern == 0) 7171 return 0; 7172 7173 if (obj->kconfig_map_idx >= 0) 7174 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7175 7176 for (i = 0; i < obj->nr_extern; i++) { 7177 ext = &obj->externs[i]; 7178 7179 if (ext->type == EXT_KCFG && 7180 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7181 void *ext_val = kcfg_data + ext->kcfg.data_off; 7182 __u32 kver = get_kernel_version(); 7183 7184 if (!kver) { 7185 pr_warn("failed to get kernel version\n"); 7186 return -EINVAL; 7187 } 7188 err = set_kcfg_value_num(ext, ext_val, kver); 7189 if (err) 7190 return err; 7191 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver); 7192 } else if (ext->type == EXT_KCFG && 7193 strncmp(ext->name, "CONFIG_", 7) == 0) { 7194 need_config = true; 7195 } else if (ext->type == EXT_KSYM) { 7196 if (ext->ksym.type_id) 7197 need_vmlinux_btf = true; 7198 else 7199 need_kallsyms = true; 7200 } else { 7201 pr_warn("unrecognized extern '%s'\n", ext->name); 7202 return -EINVAL; 7203 } 7204 } 7205 if (need_config && extra_kconfig) { 7206 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7207 if (err) 7208 return -EINVAL; 7209 need_config = false; 7210 for (i = 0; i < obj->nr_extern; i++) { 7211 ext = &obj->externs[i]; 7212 if (ext->type == EXT_KCFG && !ext->is_set) { 7213 need_config = true; 7214 break; 7215 } 7216 } 7217 } 7218 if (need_config) { 7219 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7220 if (err) 7221 return -EINVAL; 7222 } 7223 if (need_kallsyms) { 7224 err = bpf_object__read_kallsyms_file(obj); 7225 if (err) 7226 return -EINVAL; 7227 } 7228 if (need_vmlinux_btf) { 7229 err = bpf_object__resolve_ksyms_btf_id(obj); 7230 if (err) 7231 return -EINVAL; 7232 } 7233 for (i = 0; i < obj->nr_extern; i++) { 7234 ext = &obj->externs[i]; 7235 7236 if (!ext->is_set && !ext->is_weak) { 7237 pr_warn("extern %s (strong) not resolved\n", ext->name); 7238 return -ESRCH; 7239 } else if (!ext->is_set) { 7240 pr_debug("extern %s (weak) not resolved, defaulting to zero\n", 7241 ext->name); 7242 } 7243 } 7244 7245 return 0; 7246 } 7247 7248 int bpf_object__load_xattr(struct bpf_object_load_attr *attr) 7249 { 7250 struct bpf_object *obj; 7251 int err, i; 7252 7253 if (!attr) 7254 return -EINVAL; 7255 obj = attr->obj; 7256 if (!obj) 7257 return -EINVAL; 7258 7259 if (obj->loaded) { 7260 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7261 return -EINVAL; 7262 } 7263 7264 err = bpf_object__probe_loading(obj); 7265 err = err ? : bpf_object__load_vmlinux_btf(obj); 7266 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7267 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7268 err = err ? : bpf_object__sanitize_maps(obj); 7269 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7270 err = err ? : bpf_object__create_maps(obj); 7271 err = err ? : bpf_object__relocate(obj, attr->target_btf_path); 7272 err = err ? : bpf_object__load_progs(obj, attr->log_level); 7273 7274 btf__free(obj->btf_vmlinux); 7275 obj->btf_vmlinux = NULL; 7276 7277 obj->loaded = true; /* doesn't matter if successfully or not */ 7278 7279 if (err) 7280 goto out; 7281 7282 return 0; 7283 out: 7284 /* unpin any maps that were auto-pinned during load */ 7285 for (i = 0; i < obj->nr_maps; i++) 7286 if (obj->maps[i].pinned && !obj->maps[i].reused) 7287 bpf_map__unpin(&obj->maps[i], NULL); 7288 7289 bpf_object__unload(obj); 7290 pr_warn("failed to load object '%s'\n", obj->path); 7291 return err; 7292 } 7293 7294 int bpf_object__load(struct bpf_object *obj) 7295 { 7296 struct bpf_object_load_attr attr = { 7297 .obj = obj, 7298 }; 7299 7300 return bpf_object__load_xattr(&attr); 7301 } 7302 7303 static int make_parent_dir(const char *path) 7304 { 7305 char *cp, errmsg[STRERR_BUFSIZE]; 7306 char *dname, *dir; 7307 int err = 0; 7308 7309 dname = strdup(path); 7310 if (dname == NULL) 7311 return -ENOMEM; 7312 7313 dir = dirname(dname); 7314 if (mkdir(dir, 0700) && errno != EEXIST) 7315 err = -errno; 7316 7317 free(dname); 7318 if (err) { 7319 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7320 pr_warn("failed to mkdir %s: %s\n", path, cp); 7321 } 7322 return err; 7323 } 7324 7325 static int check_path(const char *path) 7326 { 7327 char *cp, errmsg[STRERR_BUFSIZE]; 7328 struct statfs st_fs; 7329 char *dname, *dir; 7330 int err = 0; 7331 7332 if (path == NULL) 7333 return -EINVAL; 7334 7335 dname = strdup(path); 7336 if (dname == NULL) 7337 return -ENOMEM; 7338 7339 dir = dirname(dname); 7340 if (statfs(dir, &st_fs)) { 7341 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7342 pr_warn("failed to statfs %s: %s\n", dir, cp); 7343 err = -errno; 7344 } 7345 free(dname); 7346 7347 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7348 pr_warn("specified path %s is not on BPF FS\n", path); 7349 err = -EINVAL; 7350 } 7351 7352 return err; 7353 } 7354 7355 int bpf_program__pin_instance(struct bpf_program *prog, const char *path, 7356 int instance) 7357 { 7358 char *cp, errmsg[STRERR_BUFSIZE]; 7359 int err; 7360 7361 err = make_parent_dir(path); 7362 if (err) 7363 return err; 7364 7365 err = check_path(path); 7366 if (err) 7367 return err; 7368 7369 if (prog == NULL) { 7370 pr_warn("invalid program pointer\n"); 7371 return -EINVAL; 7372 } 7373 7374 if (instance < 0 || instance >= prog->instances.nr) { 7375 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7376 instance, prog->name, prog->instances.nr); 7377 return -EINVAL; 7378 } 7379 7380 if (bpf_obj_pin(prog->instances.fds[instance], path)) { 7381 err = -errno; 7382 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7383 pr_warn("failed to pin program: %s\n", cp); 7384 return err; 7385 } 7386 pr_debug("pinned program '%s'\n", path); 7387 7388 return 0; 7389 } 7390 7391 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, 7392 int instance) 7393 { 7394 int err; 7395 7396 err = check_path(path); 7397 if (err) 7398 return err; 7399 7400 if (prog == NULL) { 7401 pr_warn("invalid program pointer\n"); 7402 return -EINVAL; 7403 } 7404 7405 if (instance < 0 || instance >= prog->instances.nr) { 7406 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7407 instance, prog->name, prog->instances.nr); 7408 return -EINVAL; 7409 } 7410 7411 err = unlink(path); 7412 if (err != 0) 7413 return -errno; 7414 pr_debug("unpinned program '%s'\n", path); 7415 7416 return 0; 7417 } 7418 7419 int bpf_program__pin(struct bpf_program *prog, const char *path) 7420 { 7421 int i, err; 7422 7423 err = make_parent_dir(path); 7424 if (err) 7425 return err; 7426 7427 err = check_path(path); 7428 if (err) 7429 return err; 7430 7431 if (prog == NULL) { 7432 pr_warn("invalid program pointer\n"); 7433 return -EINVAL; 7434 } 7435 7436 if (prog->instances.nr <= 0) { 7437 pr_warn("no instances of prog %s to pin\n", prog->name); 7438 return -EINVAL; 7439 } 7440 7441 if (prog->instances.nr == 1) { 7442 /* don't create subdirs when pinning single instance */ 7443 return bpf_program__pin_instance(prog, path, 0); 7444 } 7445 7446 for (i = 0; i < prog->instances.nr; i++) { 7447 char buf[PATH_MAX]; 7448 int len; 7449 7450 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7451 if (len < 0) { 7452 err = -EINVAL; 7453 goto err_unpin; 7454 } else if (len >= PATH_MAX) { 7455 err = -ENAMETOOLONG; 7456 goto err_unpin; 7457 } 7458 7459 err = bpf_program__pin_instance(prog, buf, i); 7460 if (err) 7461 goto err_unpin; 7462 } 7463 7464 return 0; 7465 7466 err_unpin: 7467 for (i = i - 1; i >= 0; i--) { 7468 char buf[PATH_MAX]; 7469 int len; 7470 7471 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7472 if (len < 0) 7473 continue; 7474 else if (len >= PATH_MAX) 7475 continue; 7476 7477 bpf_program__unpin_instance(prog, buf, i); 7478 } 7479 7480 rmdir(path); 7481 7482 return err; 7483 } 7484 7485 int bpf_program__unpin(struct bpf_program *prog, const char *path) 7486 { 7487 int i, err; 7488 7489 err = check_path(path); 7490 if (err) 7491 return err; 7492 7493 if (prog == NULL) { 7494 pr_warn("invalid program pointer\n"); 7495 return -EINVAL; 7496 } 7497 7498 if (prog->instances.nr <= 0) { 7499 pr_warn("no instances of prog %s to pin\n", prog->name); 7500 return -EINVAL; 7501 } 7502 7503 if (prog->instances.nr == 1) { 7504 /* don't create subdirs when pinning single instance */ 7505 return bpf_program__unpin_instance(prog, path, 0); 7506 } 7507 7508 for (i = 0; i < prog->instances.nr; i++) { 7509 char buf[PATH_MAX]; 7510 int len; 7511 7512 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7513 if (len < 0) 7514 return -EINVAL; 7515 else if (len >= PATH_MAX) 7516 return -ENAMETOOLONG; 7517 7518 err = bpf_program__unpin_instance(prog, buf, i); 7519 if (err) 7520 return err; 7521 } 7522 7523 err = rmdir(path); 7524 if (err) 7525 return -errno; 7526 7527 return 0; 7528 } 7529 7530 int bpf_map__pin(struct bpf_map *map, const char *path) 7531 { 7532 char *cp, errmsg[STRERR_BUFSIZE]; 7533 int err; 7534 7535 if (map == NULL) { 7536 pr_warn("invalid map pointer\n"); 7537 return -EINVAL; 7538 } 7539 7540 if (map->pin_path) { 7541 if (path && strcmp(path, map->pin_path)) { 7542 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7543 bpf_map__name(map), map->pin_path, path); 7544 return -EINVAL; 7545 } else if (map->pinned) { 7546 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 7547 bpf_map__name(map), map->pin_path); 7548 return 0; 7549 } 7550 } else { 7551 if (!path) { 7552 pr_warn("missing a path to pin map '%s' at\n", 7553 bpf_map__name(map)); 7554 return -EINVAL; 7555 } else if (map->pinned) { 7556 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 7557 return -EEXIST; 7558 } 7559 7560 map->pin_path = strdup(path); 7561 if (!map->pin_path) { 7562 err = -errno; 7563 goto out_err; 7564 } 7565 } 7566 7567 err = make_parent_dir(map->pin_path); 7568 if (err) 7569 return err; 7570 7571 err = check_path(map->pin_path); 7572 if (err) 7573 return err; 7574 7575 if (bpf_obj_pin(map->fd, map->pin_path)) { 7576 err = -errno; 7577 goto out_err; 7578 } 7579 7580 map->pinned = true; 7581 pr_debug("pinned map '%s'\n", map->pin_path); 7582 7583 return 0; 7584 7585 out_err: 7586 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7587 pr_warn("failed to pin map: %s\n", cp); 7588 return err; 7589 } 7590 7591 int bpf_map__unpin(struct bpf_map *map, const char *path) 7592 { 7593 int err; 7594 7595 if (map == NULL) { 7596 pr_warn("invalid map pointer\n"); 7597 return -EINVAL; 7598 } 7599 7600 if (map->pin_path) { 7601 if (path && strcmp(path, map->pin_path)) { 7602 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7603 bpf_map__name(map), map->pin_path, path); 7604 return -EINVAL; 7605 } 7606 path = map->pin_path; 7607 } else if (!path) { 7608 pr_warn("no path to unpin map '%s' from\n", 7609 bpf_map__name(map)); 7610 return -EINVAL; 7611 } 7612 7613 err = check_path(path); 7614 if (err) 7615 return err; 7616 7617 err = unlink(path); 7618 if (err != 0) 7619 return -errno; 7620 7621 map->pinned = false; 7622 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 7623 7624 return 0; 7625 } 7626 7627 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 7628 { 7629 char *new = NULL; 7630 7631 if (path) { 7632 new = strdup(path); 7633 if (!new) 7634 return -errno; 7635 } 7636 7637 free(map->pin_path); 7638 map->pin_path = new; 7639 return 0; 7640 } 7641 7642 const char *bpf_map__get_pin_path(const struct bpf_map *map) 7643 { 7644 return map->pin_path; 7645 } 7646 7647 bool bpf_map__is_pinned(const struct bpf_map *map) 7648 { 7649 return map->pinned; 7650 } 7651 7652 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 7653 { 7654 struct bpf_map *map; 7655 int err; 7656 7657 if (!obj) 7658 return -ENOENT; 7659 7660 if (!obj->loaded) { 7661 pr_warn("object not yet loaded; load it first\n"); 7662 return -ENOENT; 7663 } 7664 7665 bpf_object__for_each_map(map, obj) { 7666 char *pin_path = NULL; 7667 char buf[PATH_MAX]; 7668 7669 if (path) { 7670 int len; 7671 7672 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7673 bpf_map__name(map)); 7674 if (len < 0) { 7675 err = -EINVAL; 7676 goto err_unpin_maps; 7677 } else if (len >= PATH_MAX) { 7678 err = -ENAMETOOLONG; 7679 goto err_unpin_maps; 7680 } 7681 pin_path = buf; 7682 } else if (!map->pin_path) { 7683 continue; 7684 } 7685 7686 err = bpf_map__pin(map, pin_path); 7687 if (err) 7688 goto err_unpin_maps; 7689 } 7690 7691 return 0; 7692 7693 err_unpin_maps: 7694 while ((map = bpf_map__prev(map, obj))) { 7695 if (!map->pin_path) 7696 continue; 7697 7698 bpf_map__unpin(map, NULL); 7699 } 7700 7701 return err; 7702 } 7703 7704 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 7705 { 7706 struct bpf_map *map; 7707 int err; 7708 7709 if (!obj) 7710 return -ENOENT; 7711 7712 bpf_object__for_each_map(map, obj) { 7713 char *pin_path = NULL; 7714 char buf[PATH_MAX]; 7715 7716 if (path) { 7717 int len; 7718 7719 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7720 bpf_map__name(map)); 7721 if (len < 0) 7722 return -EINVAL; 7723 else if (len >= PATH_MAX) 7724 return -ENAMETOOLONG; 7725 pin_path = buf; 7726 } else if (!map->pin_path) { 7727 continue; 7728 } 7729 7730 err = bpf_map__unpin(map, pin_path); 7731 if (err) 7732 return err; 7733 } 7734 7735 return 0; 7736 } 7737 7738 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 7739 { 7740 struct bpf_program *prog; 7741 int err; 7742 7743 if (!obj) 7744 return -ENOENT; 7745 7746 if (!obj->loaded) { 7747 pr_warn("object not yet loaded; load it first\n"); 7748 return -ENOENT; 7749 } 7750 7751 bpf_object__for_each_program(prog, obj) { 7752 char buf[PATH_MAX]; 7753 int len; 7754 7755 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7756 prog->pin_name); 7757 if (len < 0) { 7758 err = -EINVAL; 7759 goto err_unpin_programs; 7760 } else if (len >= PATH_MAX) { 7761 err = -ENAMETOOLONG; 7762 goto err_unpin_programs; 7763 } 7764 7765 err = bpf_program__pin(prog, buf); 7766 if (err) 7767 goto err_unpin_programs; 7768 } 7769 7770 return 0; 7771 7772 err_unpin_programs: 7773 while ((prog = bpf_program__prev(prog, obj))) { 7774 char buf[PATH_MAX]; 7775 int len; 7776 7777 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7778 prog->pin_name); 7779 if (len < 0) 7780 continue; 7781 else if (len >= PATH_MAX) 7782 continue; 7783 7784 bpf_program__unpin(prog, buf); 7785 } 7786 7787 return err; 7788 } 7789 7790 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 7791 { 7792 struct bpf_program *prog; 7793 int err; 7794 7795 if (!obj) 7796 return -ENOENT; 7797 7798 bpf_object__for_each_program(prog, obj) { 7799 char buf[PATH_MAX]; 7800 int len; 7801 7802 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7803 prog->pin_name); 7804 if (len < 0) 7805 return -EINVAL; 7806 else if (len >= PATH_MAX) 7807 return -ENAMETOOLONG; 7808 7809 err = bpf_program__unpin(prog, buf); 7810 if (err) 7811 return err; 7812 } 7813 7814 return 0; 7815 } 7816 7817 int bpf_object__pin(struct bpf_object *obj, const char *path) 7818 { 7819 int err; 7820 7821 err = bpf_object__pin_maps(obj, path); 7822 if (err) 7823 return err; 7824 7825 err = bpf_object__pin_programs(obj, path); 7826 if (err) { 7827 bpf_object__unpin_maps(obj, path); 7828 return err; 7829 } 7830 7831 return 0; 7832 } 7833 7834 static void bpf_map__destroy(struct bpf_map *map) 7835 { 7836 if (map->clear_priv) 7837 map->clear_priv(map, map->priv); 7838 map->priv = NULL; 7839 map->clear_priv = NULL; 7840 7841 if (map->inner_map) { 7842 bpf_map__destroy(map->inner_map); 7843 zfree(&map->inner_map); 7844 } 7845 7846 zfree(&map->init_slots); 7847 map->init_slots_sz = 0; 7848 7849 if (map->mmaped) { 7850 munmap(map->mmaped, bpf_map_mmap_sz(map)); 7851 map->mmaped = NULL; 7852 } 7853 7854 if (map->st_ops) { 7855 zfree(&map->st_ops->data); 7856 zfree(&map->st_ops->progs); 7857 zfree(&map->st_ops->kern_func_off); 7858 zfree(&map->st_ops); 7859 } 7860 7861 zfree(&map->name); 7862 zfree(&map->pin_path); 7863 7864 if (map->fd >= 0) 7865 zclose(map->fd); 7866 } 7867 7868 void bpf_object__close(struct bpf_object *obj) 7869 { 7870 size_t i; 7871 7872 if (IS_ERR_OR_NULL(obj)) 7873 return; 7874 7875 if (obj->clear_priv) 7876 obj->clear_priv(obj, obj->priv); 7877 7878 bpf_object__elf_finish(obj); 7879 bpf_object__unload(obj); 7880 btf__free(obj->btf); 7881 btf_ext__free(obj->btf_ext); 7882 7883 for (i = 0; i < obj->nr_maps; i++) 7884 bpf_map__destroy(&obj->maps[i]); 7885 7886 zfree(&obj->kconfig); 7887 zfree(&obj->externs); 7888 obj->nr_extern = 0; 7889 7890 zfree(&obj->maps); 7891 obj->nr_maps = 0; 7892 7893 if (obj->programs && obj->nr_programs) { 7894 for (i = 0; i < obj->nr_programs; i++) 7895 bpf_program__exit(&obj->programs[i]); 7896 } 7897 zfree(&obj->programs); 7898 7899 list_del(&obj->list); 7900 free(obj); 7901 } 7902 7903 struct bpf_object * 7904 bpf_object__next(struct bpf_object *prev) 7905 { 7906 struct bpf_object *next; 7907 7908 if (!prev) 7909 next = list_first_entry(&bpf_objects_list, 7910 struct bpf_object, 7911 list); 7912 else 7913 next = list_next_entry(prev, list); 7914 7915 /* Empty list is noticed here so don't need checking on entry. */ 7916 if (&next->list == &bpf_objects_list) 7917 return NULL; 7918 7919 return next; 7920 } 7921 7922 const char *bpf_object__name(const struct bpf_object *obj) 7923 { 7924 return obj ? obj->name : ERR_PTR(-EINVAL); 7925 } 7926 7927 unsigned int bpf_object__kversion(const struct bpf_object *obj) 7928 { 7929 return obj ? obj->kern_version : 0; 7930 } 7931 7932 struct btf *bpf_object__btf(const struct bpf_object *obj) 7933 { 7934 return obj ? obj->btf : NULL; 7935 } 7936 7937 int bpf_object__btf_fd(const struct bpf_object *obj) 7938 { 7939 return obj->btf ? btf__fd(obj->btf) : -1; 7940 } 7941 7942 int bpf_object__set_priv(struct bpf_object *obj, void *priv, 7943 bpf_object_clear_priv_t clear_priv) 7944 { 7945 if (obj->priv && obj->clear_priv) 7946 obj->clear_priv(obj, obj->priv); 7947 7948 obj->priv = priv; 7949 obj->clear_priv = clear_priv; 7950 return 0; 7951 } 7952 7953 void *bpf_object__priv(const struct bpf_object *obj) 7954 { 7955 return obj ? obj->priv : ERR_PTR(-EINVAL); 7956 } 7957 7958 static struct bpf_program * 7959 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 7960 bool forward) 7961 { 7962 size_t nr_programs = obj->nr_programs; 7963 ssize_t idx; 7964 7965 if (!nr_programs) 7966 return NULL; 7967 7968 if (!p) 7969 /* Iter from the beginning */ 7970 return forward ? &obj->programs[0] : 7971 &obj->programs[nr_programs - 1]; 7972 7973 if (p->obj != obj) { 7974 pr_warn("error: program handler doesn't match object\n"); 7975 return NULL; 7976 } 7977 7978 idx = (p - obj->programs) + (forward ? 1 : -1); 7979 if (idx >= obj->nr_programs || idx < 0) 7980 return NULL; 7981 return &obj->programs[idx]; 7982 } 7983 7984 struct bpf_program * 7985 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj) 7986 { 7987 struct bpf_program *prog = prev; 7988 7989 do { 7990 prog = __bpf_program__iter(prog, obj, true); 7991 } while (prog && prog_is_subprog(obj, prog)); 7992 7993 return prog; 7994 } 7995 7996 struct bpf_program * 7997 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj) 7998 { 7999 struct bpf_program *prog = next; 8000 8001 do { 8002 prog = __bpf_program__iter(prog, obj, false); 8003 } while (prog && prog_is_subprog(obj, prog)); 8004 8005 return prog; 8006 } 8007 8008 int bpf_program__set_priv(struct bpf_program *prog, void *priv, 8009 bpf_program_clear_priv_t clear_priv) 8010 { 8011 if (prog->priv && prog->clear_priv) 8012 prog->clear_priv(prog, prog->priv); 8013 8014 prog->priv = priv; 8015 prog->clear_priv = clear_priv; 8016 return 0; 8017 } 8018 8019 void *bpf_program__priv(const struct bpf_program *prog) 8020 { 8021 return prog ? prog->priv : ERR_PTR(-EINVAL); 8022 } 8023 8024 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8025 { 8026 prog->prog_ifindex = ifindex; 8027 } 8028 8029 const char *bpf_program__name(const struct bpf_program *prog) 8030 { 8031 return prog->name; 8032 } 8033 8034 const char *bpf_program__section_name(const struct bpf_program *prog) 8035 { 8036 return prog->sec_name; 8037 } 8038 8039 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy) 8040 { 8041 const char *title; 8042 8043 title = prog->sec_name; 8044 if (needs_copy) { 8045 title = strdup(title); 8046 if (!title) { 8047 pr_warn("failed to strdup program title\n"); 8048 return ERR_PTR(-ENOMEM); 8049 } 8050 } 8051 8052 return title; 8053 } 8054 8055 bool bpf_program__autoload(const struct bpf_program *prog) 8056 { 8057 return prog->load; 8058 } 8059 8060 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8061 { 8062 if (prog->obj->loaded) 8063 return -EINVAL; 8064 8065 prog->load = autoload; 8066 return 0; 8067 } 8068 8069 int bpf_program__fd(const struct bpf_program *prog) 8070 { 8071 return bpf_program__nth_fd(prog, 0); 8072 } 8073 8074 size_t bpf_program__size(const struct bpf_program *prog) 8075 { 8076 return prog->insns_cnt * BPF_INSN_SZ; 8077 } 8078 8079 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances, 8080 bpf_program_prep_t prep) 8081 { 8082 int *instances_fds; 8083 8084 if (nr_instances <= 0 || !prep) 8085 return -EINVAL; 8086 8087 if (prog->instances.nr > 0 || prog->instances.fds) { 8088 pr_warn("Can't set pre-processor after loading\n"); 8089 return -EINVAL; 8090 } 8091 8092 instances_fds = malloc(sizeof(int) * nr_instances); 8093 if (!instances_fds) { 8094 pr_warn("alloc memory failed for fds\n"); 8095 return -ENOMEM; 8096 } 8097 8098 /* fill all fd with -1 */ 8099 memset(instances_fds, -1, sizeof(int) * nr_instances); 8100 8101 prog->instances.nr = nr_instances; 8102 prog->instances.fds = instances_fds; 8103 prog->preprocessor = prep; 8104 return 0; 8105 } 8106 8107 int bpf_program__nth_fd(const struct bpf_program *prog, int n) 8108 { 8109 int fd; 8110 8111 if (!prog) 8112 return -EINVAL; 8113 8114 if (n >= prog->instances.nr || n < 0) { 8115 pr_warn("Can't get the %dth fd from program %s: only %d instances\n", 8116 n, prog->name, prog->instances.nr); 8117 return -EINVAL; 8118 } 8119 8120 fd = prog->instances.fds[n]; 8121 if (fd < 0) { 8122 pr_warn("%dth instance of program '%s' is invalid\n", 8123 n, prog->name); 8124 return -ENOENT; 8125 } 8126 8127 return fd; 8128 } 8129 8130 enum bpf_prog_type bpf_program__get_type(struct bpf_program *prog) 8131 { 8132 return prog->type; 8133 } 8134 8135 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8136 { 8137 prog->type = type; 8138 } 8139 8140 static bool bpf_program__is_type(const struct bpf_program *prog, 8141 enum bpf_prog_type type) 8142 { 8143 return prog ? (prog->type == type) : false; 8144 } 8145 8146 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \ 8147 int bpf_program__set_##NAME(struct bpf_program *prog) \ 8148 { \ 8149 if (!prog) \ 8150 return -EINVAL; \ 8151 bpf_program__set_type(prog, TYPE); \ 8152 return 0; \ 8153 } \ 8154 \ 8155 bool bpf_program__is_##NAME(const struct bpf_program *prog) \ 8156 { \ 8157 return bpf_program__is_type(prog, TYPE); \ 8158 } \ 8159 8160 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER); 8161 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM); 8162 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE); 8163 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS); 8164 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT); 8165 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT); 8166 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT); 8167 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP); 8168 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT); 8169 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING); 8170 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS); 8171 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT); 8172 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP); 8173 8174 enum bpf_attach_type 8175 bpf_program__get_expected_attach_type(struct bpf_program *prog) 8176 { 8177 return prog->expected_attach_type; 8178 } 8179 8180 void bpf_program__set_expected_attach_type(struct bpf_program *prog, 8181 enum bpf_attach_type type) 8182 { 8183 prog->expected_attach_type = type; 8184 } 8185 8186 #define BPF_PROG_SEC_IMPL(string, ptype, eatype, eatype_optional, \ 8187 attachable, attach_btf) \ 8188 { \ 8189 .sec = string, \ 8190 .len = sizeof(string) - 1, \ 8191 .prog_type = ptype, \ 8192 .expected_attach_type = eatype, \ 8193 .is_exp_attach_type_optional = eatype_optional, \ 8194 .is_attachable = attachable, \ 8195 .is_attach_btf = attach_btf, \ 8196 } 8197 8198 /* Programs that can NOT be attached. */ 8199 #define BPF_PROG_SEC(string, ptype) BPF_PROG_SEC_IMPL(string, ptype, 0, 0, 0, 0) 8200 8201 /* Programs that can be attached. */ 8202 #define BPF_APROG_SEC(string, ptype, atype) \ 8203 BPF_PROG_SEC_IMPL(string, ptype, atype, true, 1, 0) 8204 8205 /* Programs that must specify expected attach type at load time. */ 8206 #define BPF_EAPROG_SEC(string, ptype, eatype) \ 8207 BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 1, 0) 8208 8209 /* Programs that use BTF to identify attach point */ 8210 #define BPF_PROG_BTF(string, ptype, eatype) \ 8211 BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 0, 1) 8212 8213 /* Programs that can be attached but attach type can't be identified by section 8214 * name. Kept for backward compatibility. 8215 */ 8216 #define BPF_APROG_COMPAT(string, ptype) BPF_PROG_SEC(string, ptype) 8217 8218 #define SEC_DEF(sec_pfx, ptype, ...) { \ 8219 .sec = sec_pfx, \ 8220 .len = sizeof(sec_pfx) - 1, \ 8221 .prog_type = BPF_PROG_TYPE_##ptype, \ 8222 __VA_ARGS__ \ 8223 } 8224 8225 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 8226 struct bpf_program *prog); 8227 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 8228 struct bpf_program *prog); 8229 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 8230 struct bpf_program *prog); 8231 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 8232 struct bpf_program *prog); 8233 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec, 8234 struct bpf_program *prog); 8235 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec, 8236 struct bpf_program *prog); 8237 8238 static const struct bpf_sec_def section_defs[] = { 8239 BPF_PROG_SEC("socket", BPF_PROG_TYPE_SOCKET_FILTER), 8240 BPF_PROG_SEC("sk_reuseport", BPF_PROG_TYPE_SK_REUSEPORT), 8241 SEC_DEF("kprobe/", KPROBE, 8242 .attach_fn = attach_kprobe), 8243 BPF_PROG_SEC("uprobe/", BPF_PROG_TYPE_KPROBE), 8244 SEC_DEF("kretprobe/", KPROBE, 8245 .attach_fn = attach_kprobe), 8246 BPF_PROG_SEC("uretprobe/", BPF_PROG_TYPE_KPROBE), 8247 BPF_PROG_SEC("classifier", BPF_PROG_TYPE_SCHED_CLS), 8248 BPF_PROG_SEC("action", BPF_PROG_TYPE_SCHED_ACT), 8249 SEC_DEF("tracepoint/", TRACEPOINT, 8250 .attach_fn = attach_tp), 8251 SEC_DEF("tp/", TRACEPOINT, 8252 .attach_fn = attach_tp), 8253 SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT, 8254 .attach_fn = attach_raw_tp), 8255 SEC_DEF("raw_tp/", RAW_TRACEPOINT, 8256 .attach_fn = attach_raw_tp), 8257 SEC_DEF("tp_btf/", TRACING, 8258 .expected_attach_type = BPF_TRACE_RAW_TP, 8259 .is_attach_btf = true, 8260 .attach_fn = attach_trace), 8261 SEC_DEF("fentry/", TRACING, 8262 .expected_attach_type = BPF_TRACE_FENTRY, 8263 .is_attach_btf = true, 8264 .attach_fn = attach_trace), 8265 SEC_DEF("fmod_ret/", TRACING, 8266 .expected_attach_type = BPF_MODIFY_RETURN, 8267 .is_attach_btf = true, 8268 .attach_fn = attach_trace), 8269 SEC_DEF("fexit/", TRACING, 8270 .expected_attach_type = BPF_TRACE_FEXIT, 8271 .is_attach_btf = true, 8272 .attach_fn = attach_trace), 8273 SEC_DEF("fentry.s/", TRACING, 8274 .expected_attach_type = BPF_TRACE_FENTRY, 8275 .is_attach_btf = true, 8276 .is_sleepable = true, 8277 .attach_fn = attach_trace), 8278 SEC_DEF("fmod_ret.s/", TRACING, 8279 .expected_attach_type = BPF_MODIFY_RETURN, 8280 .is_attach_btf = true, 8281 .is_sleepable = true, 8282 .attach_fn = attach_trace), 8283 SEC_DEF("fexit.s/", TRACING, 8284 .expected_attach_type = BPF_TRACE_FEXIT, 8285 .is_attach_btf = true, 8286 .is_sleepable = true, 8287 .attach_fn = attach_trace), 8288 SEC_DEF("freplace/", EXT, 8289 .is_attach_btf = true, 8290 .attach_fn = attach_trace), 8291 SEC_DEF("lsm/", LSM, 8292 .is_attach_btf = true, 8293 .expected_attach_type = BPF_LSM_MAC, 8294 .attach_fn = attach_lsm), 8295 SEC_DEF("lsm.s/", LSM, 8296 .is_attach_btf = true, 8297 .is_sleepable = true, 8298 .expected_attach_type = BPF_LSM_MAC, 8299 .attach_fn = attach_lsm), 8300 SEC_DEF("iter/", TRACING, 8301 .expected_attach_type = BPF_TRACE_ITER, 8302 .is_attach_btf = true, 8303 .attach_fn = attach_iter), 8304 BPF_EAPROG_SEC("xdp_devmap/", BPF_PROG_TYPE_XDP, 8305 BPF_XDP_DEVMAP), 8306 BPF_EAPROG_SEC("xdp_cpumap/", BPF_PROG_TYPE_XDP, 8307 BPF_XDP_CPUMAP), 8308 BPF_APROG_SEC("xdp", BPF_PROG_TYPE_XDP, 8309 BPF_XDP), 8310 BPF_PROG_SEC("perf_event", BPF_PROG_TYPE_PERF_EVENT), 8311 BPF_PROG_SEC("lwt_in", BPF_PROG_TYPE_LWT_IN), 8312 BPF_PROG_SEC("lwt_out", BPF_PROG_TYPE_LWT_OUT), 8313 BPF_PROG_SEC("lwt_xmit", BPF_PROG_TYPE_LWT_XMIT), 8314 BPF_PROG_SEC("lwt_seg6local", BPF_PROG_TYPE_LWT_SEG6LOCAL), 8315 BPF_APROG_SEC("cgroup_skb/ingress", BPF_PROG_TYPE_CGROUP_SKB, 8316 BPF_CGROUP_INET_INGRESS), 8317 BPF_APROG_SEC("cgroup_skb/egress", BPF_PROG_TYPE_CGROUP_SKB, 8318 BPF_CGROUP_INET_EGRESS), 8319 BPF_APROG_COMPAT("cgroup/skb", BPF_PROG_TYPE_CGROUP_SKB), 8320 BPF_EAPROG_SEC("cgroup/sock_create", BPF_PROG_TYPE_CGROUP_SOCK, 8321 BPF_CGROUP_INET_SOCK_CREATE), 8322 BPF_EAPROG_SEC("cgroup/sock_release", BPF_PROG_TYPE_CGROUP_SOCK, 8323 BPF_CGROUP_INET_SOCK_RELEASE), 8324 BPF_APROG_SEC("cgroup/sock", BPF_PROG_TYPE_CGROUP_SOCK, 8325 BPF_CGROUP_INET_SOCK_CREATE), 8326 BPF_EAPROG_SEC("cgroup/post_bind4", BPF_PROG_TYPE_CGROUP_SOCK, 8327 BPF_CGROUP_INET4_POST_BIND), 8328 BPF_EAPROG_SEC("cgroup/post_bind6", BPF_PROG_TYPE_CGROUP_SOCK, 8329 BPF_CGROUP_INET6_POST_BIND), 8330 BPF_APROG_SEC("cgroup/dev", BPF_PROG_TYPE_CGROUP_DEVICE, 8331 BPF_CGROUP_DEVICE), 8332 BPF_APROG_SEC("sockops", BPF_PROG_TYPE_SOCK_OPS, 8333 BPF_CGROUP_SOCK_OPS), 8334 BPF_APROG_SEC("sk_skb/stream_parser", BPF_PROG_TYPE_SK_SKB, 8335 BPF_SK_SKB_STREAM_PARSER), 8336 BPF_APROG_SEC("sk_skb/stream_verdict", BPF_PROG_TYPE_SK_SKB, 8337 BPF_SK_SKB_STREAM_VERDICT), 8338 BPF_APROG_COMPAT("sk_skb", BPF_PROG_TYPE_SK_SKB), 8339 BPF_APROG_SEC("sk_msg", BPF_PROG_TYPE_SK_MSG, 8340 BPF_SK_MSG_VERDICT), 8341 BPF_APROG_SEC("lirc_mode2", BPF_PROG_TYPE_LIRC_MODE2, 8342 BPF_LIRC_MODE2), 8343 BPF_APROG_SEC("flow_dissector", BPF_PROG_TYPE_FLOW_DISSECTOR, 8344 BPF_FLOW_DISSECTOR), 8345 BPF_EAPROG_SEC("cgroup/bind4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8346 BPF_CGROUP_INET4_BIND), 8347 BPF_EAPROG_SEC("cgroup/bind6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8348 BPF_CGROUP_INET6_BIND), 8349 BPF_EAPROG_SEC("cgroup/connect4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8350 BPF_CGROUP_INET4_CONNECT), 8351 BPF_EAPROG_SEC("cgroup/connect6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8352 BPF_CGROUP_INET6_CONNECT), 8353 BPF_EAPROG_SEC("cgroup/sendmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8354 BPF_CGROUP_UDP4_SENDMSG), 8355 BPF_EAPROG_SEC("cgroup/sendmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8356 BPF_CGROUP_UDP6_SENDMSG), 8357 BPF_EAPROG_SEC("cgroup/recvmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8358 BPF_CGROUP_UDP4_RECVMSG), 8359 BPF_EAPROG_SEC("cgroup/recvmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8360 BPF_CGROUP_UDP6_RECVMSG), 8361 BPF_EAPROG_SEC("cgroup/getpeername4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8362 BPF_CGROUP_INET4_GETPEERNAME), 8363 BPF_EAPROG_SEC("cgroup/getpeername6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8364 BPF_CGROUP_INET6_GETPEERNAME), 8365 BPF_EAPROG_SEC("cgroup/getsockname4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8366 BPF_CGROUP_INET4_GETSOCKNAME), 8367 BPF_EAPROG_SEC("cgroup/getsockname6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8368 BPF_CGROUP_INET6_GETSOCKNAME), 8369 BPF_EAPROG_SEC("cgroup/sysctl", BPF_PROG_TYPE_CGROUP_SYSCTL, 8370 BPF_CGROUP_SYSCTL), 8371 BPF_EAPROG_SEC("cgroup/getsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 8372 BPF_CGROUP_GETSOCKOPT), 8373 BPF_EAPROG_SEC("cgroup/setsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 8374 BPF_CGROUP_SETSOCKOPT), 8375 BPF_PROG_SEC("struct_ops", BPF_PROG_TYPE_STRUCT_OPS), 8376 BPF_EAPROG_SEC("sk_lookup/", BPF_PROG_TYPE_SK_LOOKUP, 8377 BPF_SK_LOOKUP), 8378 }; 8379 8380 #undef BPF_PROG_SEC_IMPL 8381 #undef BPF_PROG_SEC 8382 #undef BPF_APROG_SEC 8383 #undef BPF_EAPROG_SEC 8384 #undef BPF_APROG_COMPAT 8385 #undef SEC_DEF 8386 8387 #define MAX_TYPE_NAME_SIZE 32 8388 8389 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8390 { 8391 int i, n = ARRAY_SIZE(section_defs); 8392 8393 for (i = 0; i < n; i++) { 8394 if (strncmp(sec_name, 8395 section_defs[i].sec, section_defs[i].len)) 8396 continue; 8397 return §ion_defs[i]; 8398 } 8399 return NULL; 8400 } 8401 8402 static char *libbpf_get_type_names(bool attach_type) 8403 { 8404 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8405 char *buf; 8406 8407 buf = malloc(len); 8408 if (!buf) 8409 return NULL; 8410 8411 buf[0] = '\0'; 8412 /* Forge string buf with all available names */ 8413 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8414 if (attach_type && !section_defs[i].is_attachable) 8415 continue; 8416 8417 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8418 free(buf); 8419 return NULL; 8420 } 8421 strcat(buf, " "); 8422 strcat(buf, section_defs[i].sec); 8423 } 8424 8425 return buf; 8426 } 8427 8428 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8429 enum bpf_attach_type *expected_attach_type) 8430 { 8431 const struct bpf_sec_def *sec_def; 8432 char *type_names; 8433 8434 if (!name) 8435 return -EINVAL; 8436 8437 sec_def = find_sec_def(name); 8438 if (sec_def) { 8439 *prog_type = sec_def->prog_type; 8440 *expected_attach_type = sec_def->expected_attach_type; 8441 return 0; 8442 } 8443 8444 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8445 type_names = libbpf_get_type_names(false); 8446 if (type_names != NULL) { 8447 pr_debug("supported section(type) names are:%s\n", type_names); 8448 free(type_names); 8449 } 8450 8451 return -ESRCH; 8452 } 8453 8454 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 8455 size_t offset) 8456 { 8457 struct bpf_map *map; 8458 size_t i; 8459 8460 for (i = 0; i < obj->nr_maps; i++) { 8461 map = &obj->maps[i]; 8462 if (!bpf_map__is_struct_ops(map)) 8463 continue; 8464 if (map->sec_offset <= offset && 8465 offset - map->sec_offset < map->def.value_size) 8466 return map; 8467 } 8468 8469 return NULL; 8470 } 8471 8472 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 8473 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 8474 GElf_Shdr *shdr, Elf_Data *data) 8475 { 8476 const struct btf_member *member; 8477 struct bpf_struct_ops *st_ops; 8478 struct bpf_program *prog; 8479 unsigned int shdr_idx; 8480 const struct btf *btf; 8481 struct bpf_map *map; 8482 Elf_Data *symbols; 8483 unsigned int moff, insn_idx; 8484 const char *name; 8485 __u32 member_idx; 8486 GElf_Sym sym; 8487 GElf_Rel rel; 8488 int i, nrels; 8489 8490 symbols = obj->efile.symbols; 8491 btf = obj->btf; 8492 nrels = shdr->sh_size / shdr->sh_entsize; 8493 for (i = 0; i < nrels; i++) { 8494 if (!gelf_getrel(data, i, &rel)) { 8495 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 8496 return -LIBBPF_ERRNO__FORMAT; 8497 } 8498 8499 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 8500 pr_warn("struct_ops reloc: symbol %zx not found\n", 8501 (size_t)GELF_R_SYM(rel.r_info)); 8502 return -LIBBPF_ERRNO__FORMAT; 8503 } 8504 8505 name = elf_sym_str(obj, sym.st_name) ?: "<?>"; 8506 map = find_struct_ops_map_by_offset(obj, rel.r_offset); 8507 if (!map) { 8508 pr_warn("struct_ops reloc: cannot find map at rel.r_offset %zu\n", 8509 (size_t)rel.r_offset); 8510 return -EINVAL; 8511 } 8512 8513 moff = rel.r_offset - map->sec_offset; 8514 shdr_idx = sym.st_shndx; 8515 st_ops = map->st_ops; 8516 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel.r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 8517 map->name, 8518 (long long)(rel.r_info >> 32), 8519 (long long)sym.st_value, 8520 shdr_idx, (size_t)rel.r_offset, 8521 map->sec_offset, sym.st_name, name); 8522 8523 if (shdr_idx >= SHN_LORESERVE) { 8524 pr_warn("struct_ops reloc %s: rel.r_offset %zu shdr_idx %u unsupported non-static function\n", 8525 map->name, (size_t)rel.r_offset, shdr_idx); 8526 return -LIBBPF_ERRNO__RELOC; 8527 } 8528 if (sym.st_value % BPF_INSN_SZ) { 8529 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 8530 map->name, (unsigned long long)sym.st_value); 8531 return -LIBBPF_ERRNO__FORMAT; 8532 } 8533 insn_idx = sym.st_value / BPF_INSN_SZ; 8534 8535 member = find_member_by_offset(st_ops->type, moff * 8); 8536 if (!member) { 8537 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 8538 map->name, moff); 8539 return -EINVAL; 8540 } 8541 member_idx = member - btf_members(st_ops->type); 8542 name = btf__name_by_offset(btf, member->name_off); 8543 8544 if (!resolve_func_ptr(btf, member->type, NULL)) { 8545 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 8546 map->name, name); 8547 return -EINVAL; 8548 } 8549 8550 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 8551 if (!prog) { 8552 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 8553 map->name, shdr_idx, name); 8554 return -EINVAL; 8555 } 8556 8557 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 8558 const struct bpf_sec_def *sec_def; 8559 8560 sec_def = find_sec_def(prog->sec_name); 8561 if (sec_def && 8562 sec_def->prog_type != BPF_PROG_TYPE_STRUCT_OPS) { 8563 /* for pr_warn */ 8564 prog->type = sec_def->prog_type; 8565 goto invalid_prog; 8566 } 8567 8568 prog->type = BPF_PROG_TYPE_STRUCT_OPS; 8569 prog->attach_btf_id = st_ops->type_id; 8570 prog->expected_attach_type = member_idx; 8571 } else if (prog->type != BPF_PROG_TYPE_STRUCT_OPS || 8572 prog->attach_btf_id != st_ops->type_id || 8573 prog->expected_attach_type != member_idx) { 8574 goto invalid_prog; 8575 } 8576 st_ops->progs[member_idx] = prog; 8577 } 8578 8579 return 0; 8580 8581 invalid_prog: 8582 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 8583 map->name, prog->name, prog->sec_name, prog->type, 8584 prog->attach_btf_id, prog->expected_attach_type, name); 8585 return -EINVAL; 8586 } 8587 8588 #define BTF_TRACE_PREFIX "btf_trace_" 8589 #define BTF_LSM_PREFIX "bpf_lsm_" 8590 #define BTF_ITER_PREFIX "bpf_iter_" 8591 #define BTF_MAX_NAME_SIZE 128 8592 8593 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 8594 const char *name, __u32 kind) 8595 { 8596 char btf_type_name[BTF_MAX_NAME_SIZE]; 8597 int ret; 8598 8599 ret = snprintf(btf_type_name, sizeof(btf_type_name), 8600 "%s%s", prefix, name); 8601 /* snprintf returns the number of characters written excluding the 8602 * the terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 8603 * indicates truncation. 8604 */ 8605 if (ret < 0 || ret >= sizeof(btf_type_name)) 8606 return -ENAMETOOLONG; 8607 return btf__find_by_name_kind(btf, btf_type_name, kind); 8608 } 8609 8610 static inline int __find_vmlinux_btf_id(struct btf *btf, const char *name, 8611 enum bpf_attach_type attach_type) 8612 { 8613 int err; 8614 8615 if (attach_type == BPF_TRACE_RAW_TP) 8616 err = find_btf_by_prefix_kind(btf, BTF_TRACE_PREFIX, name, 8617 BTF_KIND_TYPEDEF); 8618 else if (attach_type == BPF_LSM_MAC) 8619 err = find_btf_by_prefix_kind(btf, BTF_LSM_PREFIX, name, 8620 BTF_KIND_FUNC); 8621 else if (attach_type == BPF_TRACE_ITER) 8622 err = find_btf_by_prefix_kind(btf, BTF_ITER_PREFIX, name, 8623 BTF_KIND_FUNC); 8624 else 8625 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 8626 8627 if (err <= 0) 8628 pr_warn("%s is not found in vmlinux BTF\n", name); 8629 8630 return err; 8631 } 8632 8633 int libbpf_find_vmlinux_btf_id(const char *name, 8634 enum bpf_attach_type attach_type) 8635 { 8636 struct btf *btf; 8637 int err; 8638 8639 btf = libbpf_find_kernel_btf(); 8640 if (IS_ERR(btf)) { 8641 pr_warn("vmlinux BTF is not found\n"); 8642 return -EINVAL; 8643 } 8644 8645 err = __find_vmlinux_btf_id(btf, name, attach_type); 8646 btf__free(btf); 8647 return err; 8648 } 8649 8650 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 8651 { 8652 struct bpf_prog_info_linear *info_linear; 8653 struct bpf_prog_info *info; 8654 struct btf *btf = NULL; 8655 int err = -EINVAL; 8656 8657 info_linear = bpf_program__get_prog_info_linear(attach_prog_fd, 0); 8658 if (IS_ERR_OR_NULL(info_linear)) { 8659 pr_warn("failed get_prog_info_linear for FD %d\n", 8660 attach_prog_fd); 8661 return -EINVAL; 8662 } 8663 info = &info_linear->info; 8664 if (!info->btf_id) { 8665 pr_warn("The target program doesn't have BTF\n"); 8666 goto out; 8667 } 8668 if (btf__get_from_id(info->btf_id, &btf)) { 8669 pr_warn("Failed to get BTF of the program\n"); 8670 goto out; 8671 } 8672 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 8673 btf__free(btf); 8674 if (err <= 0) { 8675 pr_warn("%s is not found in prog's BTF\n", name); 8676 goto out; 8677 } 8678 out: 8679 free(info_linear); 8680 return err; 8681 } 8682 8683 static int libbpf_find_attach_btf_id(struct bpf_program *prog) 8684 { 8685 enum bpf_attach_type attach_type = prog->expected_attach_type; 8686 __u32 attach_prog_fd = prog->attach_prog_fd; 8687 const char *name = prog->sec_name; 8688 int i, err; 8689 8690 if (!name) 8691 return -EINVAL; 8692 8693 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8694 if (!section_defs[i].is_attach_btf) 8695 continue; 8696 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 8697 continue; 8698 if (attach_prog_fd) 8699 err = libbpf_find_prog_btf_id(name + section_defs[i].len, 8700 attach_prog_fd); 8701 else 8702 err = __find_vmlinux_btf_id(prog->obj->btf_vmlinux, 8703 name + section_defs[i].len, 8704 attach_type); 8705 return err; 8706 } 8707 pr_warn("failed to identify btf_id based on ELF section name '%s'\n", name); 8708 return -ESRCH; 8709 } 8710 8711 int libbpf_attach_type_by_name(const char *name, 8712 enum bpf_attach_type *attach_type) 8713 { 8714 char *type_names; 8715 int i; 8716 8717 if (!name) 8718 return -EINVAL; 8719 8720 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8721 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 8722 continue; 8723 if (!section_defs[i].is_attachable) 8724 return -EINVAL; 8725 *attach_type = section_defs[i].expected_attach_type; 8726 return 0; 8727 } 8728 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 8729 type_names = libbpf_get_type_names(true); 8730 if (type_names != NULL) { 8731 pr_debug("attachable section(type) names are:%s\n", type_names); 8732 free(type_names); 8733 } 8734 8735 return -EINVAL; 8736 } 8737 8738 int bpf_map__fd(const struct bpf_map *map) 8739 { 8740 return map ? map->fd : -EINVAL; 8741 } 8742 8743 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map) 8744 { 8745 return map ? &map->def : ERR_PTR(-EINVAL); 8746 } 8747 8748 const char *bpf_map__name(const struct bpf_map *map) 8749 { 8750 return map ? map->name : NULL; 8751 } 8752 8753 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 8754 { 8755 return map->def.type; 8756 } 8757 8758 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 8759 { 8760 if (map->fd >= 0) 8761 return -EBUSY; 8762 map->def.type = type; 8763 return 0; 8764 } 8765 8766 __u32 bpf_map__map_flags(const struct bpf_map *map) 8767 { 8768 return map->def.map_flags; 8769 } 8770 8771 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 8772 { 8773 if (map->fd >= 0) 8774 return -EBUSY; 8775 map->def.map_flags = flags; 8776 return 0; 8777 } 8778 8779 __u32 bpf_map__numa_node(const struct bpf_map *map) 8780 { 8781 return map->numa_node; 8782 } 8783 8784 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 8785 { 8786 if (map->fd >= 0) 8787 return -EBUSY; 8788 map->numa_node = numa_node; 8789 return 0; 8790 } 8791 8792 __u32 bpf_map__key_size(const struct bpf_map *map) 8793 { 8794 return map->def.key_size; 8795 } 8796 8797 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 8798 { 8799 if (map->fd >= 0) 8800 return -EBUSY; 8801 map->def.key_size = size; 8802 return 0; 8803 } 8804 8805 __u32 bpf_map__value_size(const struct bpf_map *map) 8806 { 8807 return map->def.value_size; 8808 } 8809 8810 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 8811 { 8812 if (map->fd >= 0) 8813 return -EBUSY; 8814 map->def.value_size = size; 8815 return 0; 8816 } 8817 8818 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 8819 { 8820 return map ? map->btf_key_type_id : 0; 8821 } 8822 8823 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 8824 { 8825 return map ? map->btf_value_type_id : 0; 8826 } 8827 8828 int bpf_map__set_priv(struct bpf_map *map, void *priv, 8829 bpf_map_clear_priv_t clear_priv) 8830 { 8831 if (!map) 8832 return -EINVAL; 8833 8834 if (map->priv) { 8835 if (map->clear_priv) 8836 map->clear_priv(map, map->priv); 8837 } 8838 8839 map->priv = priv; 8840 map->clear_priv = clear_priv; 8841 return 0; 8842 } 8843 8844 void *bpf_map__priv(const struct bpf_map *map) 8845 { 8846 return map ? map->priv : ERR_PTR(-EINVAL); 8847 } 8848 8849 int bpf_map__set_initial_value(struct bpf_map *map, 8850 const void *data, size_t size) 8851 { 8852 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 8853 size != map->def.value_size || map->fd >= 0) 8854 return -EINVAL; 8855 8856 memcpy(map->mmaped, data, size); 8857 return 0; 8858 } 8859 8860 bool bpf_map__is_offload_neutral(const struct bpf_map *map) 8861 { 8862 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 8863 } 8864 8865 bool bpf_map__is_internal(const struct bpf_map *map) 8866 { 8867 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 8868 } 8869 8870 __u32 bpf_map__ifindex(const struct bpf_map *map) 8871 { 8872 return map->map_ifindex; 8873 } 8874 8875 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 8876 { 8877 if (map->fd >= 0) 8878 return -EBUSY; 8879 map->map_ifindex = ifindex; 8880 return 0; 8881 } 8882 8883 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 8884 { 8885 if (!bpf_map_type__is_map_in_map(map->def.type)) { 8886 pr_warn("error: unsupported map type\n"); 8887 return -EINVAL; 8888 } 8889 if (map->inner_map_fd != -1) { 8890 pr_warn("error: inner_map_fd already specified\n"); 8891 return -EINVAL; 8892 } 8893 map->inner_map_fd = fd; 8894 return 0; 8895 } 8896 8897 static struct bpf_map * 8898 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 8899 { 8900 ssize_t idx; 8901 struct bpf_map *s, *e; 8902 8903 if (!obj || !obj->maps) 8904 return NULL; 8905 8906 s = obj->maps; 8907 e = obj->maps + obj->nr_maps; 8908 8909 if ((m < s) || (m >= e)) { 8910 pr_warn("error in %s: map handler doesn't belong to object\n", 8911 __func__); 8912 return NULL; 8913 } 8914 8915 idx = (m - obj->maps) + i; 8916 if (idx >= obj->nr_maps || idx < 0) 8917 return NULL; 8918 return &obj->maps[idx]; 8919 } 8920 8921 struct bpf_map * 8922 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj) 8923 { 8924 if (prev == NULL) 8925 return obj->maps; 8926 8927 return __bpf_map__iter(prev, obj, 1); 8928 } 8929 8930 struct bpf_map * 8931 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj) 8932 { 8933 if (next == NULL) { 8934 if (!obj->nr_maps) 8935 return NULL; 8936 return obj->maps + obj->nr_maps - 1; 8937 } 8938 8939 return __bpf_map__iter(next, obj, -1); 8940 } 8941 8942 struct bpf_map * 8943 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 8944 { 8945 struct bpf_map *pos; 8946 8947 bpf_object__for_each_map(pos, obj) { 8948 if (pos->name && !strcmp(pos->name, name)) 8949 return pos; 8950 } 8951 return NULL; 8952 } 8953 8954 int 8955 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 8956 { 8957 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 8958 } 8959 8960 struct bpf_map * 8961 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset) 8962 { 8963 return ERR_PTR(-ENOTSUP); 8964 } 8965 8966 long libbpf_get_error(const void *ptr) 8967 { 8968 return PTR_ERR_OR_ZERO(ptr); 8969 } 8970 8971 int bpf_prog_load(const char *file, enum bpf_prog_type type, 8972 struct bpf_object **pobj, int *prog_fd) 8973 { 8974 struct bpf_prog_load_attr attr; 8975 8976 memset(&attr, 0, sizeof(struct bpf_prog_load_attr)); 8977 attr.file = file; 8978 attr.prog_type = type; 8979 attr.expected_attach_type = 0; 8980 8981 return bpf_prog_load_xattr(&attr, pobj, prog_fd); 8982 } 8983 8984 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr, 8985 struct bpf_object **pobj, int *prog_fd) 8986 { 8987 struct bpf_object_open_attr open_attr = {}; 8988 struct bpf_program *prog, *first_prog = NULL; 8989 struct bpf_object *obj; 8990 struct bpf_map *map; 8991 int err; 8992 8993 if (!attr) 8994 return -EINVAL; 8995 if (!attr->file) 8996 return -EINVAL; 8997 8998 open_attr.file = attr->file; 8999 open_attr.prog_type = attr->prog_type; 9000 9001 obj = bpf_object__open_xattr(&open_attr); 9002 if (IS_ERR_OR_NULL(obj)) 9003 return -ENOENT; 9004 9005 bpf_object__for_each_program(prog, obj) { 9006 enum bpf_attach_type attach_type = attr->expected_attach_type; 9007 /* 9008 * to preserve backwards compatibility, bpf_prog_load treats 9009 * attr->prog_type, if specified, as an override to whatever 9010 * bpf_object__open guessed 9011 */ 9012 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) { 9013 bpf_program__set_type(prog, attr->prog_type); 9014 bpf_program__set_expected_attach_type(prog, 9015 attach_type); 9016 } 9017 if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) { 9018 /* 9019 * we haven't guessed from section name and user 9020 * didn't provide a fallback type, too bad... 9021 */ 9022 bpf_object__close(obj); 9023 return -EINVAL; 9024 } 9025 9026 prog->prog_ifindex = attr->ifindex; 9027 prog->log_level = attr->log_level; 9028 prog->prog_flags |= attr->prog_flags; 9029 if (!first_prog) 9030 first_prog = prog; 9031 } 9032 9033 bpf_object__for_each_map(map, obj) { 9034 if (!bpf_map__is_offload_neutral(map)) 9035 map->map_ifindex = attr->ifindex; 9036 } 9037 9038 if (!first_prog) { 9039 pr_warn("object file doesn't contain bpf program\n"); 9040 bpf_object__close(obj); 9041 return -ENOENT; 9042 } 9043 9044 err = bpf_object__load(obj); 9045 if (err) { 9046 bpf_object__close(obj); 9047 return err; 9048 } 9049 9050 *pobj = obj; 9051 *prog_fd = bpf_program__fd(first_prog); 9052 return 0; 9053 } 9054 9055 struct bpf_link { 9056 int (*detach)(struct bpf_link *link); 9057 int (*destroy)(struct bpf_link *link); 9058 char *pin_path; /* NULL, if not pinned */ 9059 int fd; /* hook FD, -1 if not applicable */ 9060 bool disconnected; 9061 }; 9062 9063 /* Replace link's underlying BPF program with the new one */ 9064 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9065 { 9066 return bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9067 } 9068 9069 /* Release "ownership" of underlying BPF resource (typically, BPF program 9070 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9071 * link, when destructed through bpf_link__destroy() call won't attempt to 9072 * detach/unregisted that BPF resource. This is useful in situations where, 9073 * say, attached BPF program has to outlive userspace program that attached it 9074 * in the system. Depending on type of BPF program, though, there might be 9075 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9076 * exit of userspace program doesn't trigger automatic detachment and clean up 9077 * inside the kernel. 9078 */ 9079 void bpf_link__disconnect(struct bpf_link *link) 9080 { 9081 link->disconnected = true; 9082 } 9083 9084 int bpf_link__destroy(struct bpf_link *link) 9085 { 9086 int err = 0; 9087 9088 if (IS_ERR_OR_NULL(link)) 9089 return 0; 9090 9091 if (!link->disconnected && link->detach) 9092 err = link->detach(link); 9093 if (link->destroy) 9094 link->destroy(link); 9095 if (link->pin_path) 9096 free(link->pin_path); 9097 free(link); 9098 9099 return err; 9100 } 9101 9102 int bpf_link__fd(const struct bpf_link *link) 9103 { 9104 return link->fd; 9105 } 9106 9107 const char *bpf_link__pin_path(const struct bpf_link *link) 9108 { 9109 return link->pin_path; 9110 } 9111 9112 static int bpf_link__detach_fd(struct bpf_link *link) 9113 { 9114 return close(link->fd); 9115 } 9116 9117 struct bpf_link *bpf_link__open(const char *path) 9118 { 9119 struct bpf_link *link; 9120 int fd; 9121 9122 fd = bpf_obj_get(path); 9123 if (fd < 0) { 9124 fd = -errno; 9125 pr_warn("failed to open link at %s: %d\n", path, fd); 9126 return ERR_PTR(fd); 9127 } 9128 9129 link = calloc(1, sizeof(*link)); 9130 if (!link) { 9131 close(fd); 9132 return ERR_PTR(-ENOMEM); 9133 } 9134 link->detach = &bpf_link__detach_fd; 9135 link->fd = fd; 9136 9137 link->pin_path = strdup(path); 9138 if (!link->pin_path) { 9139 bpf_link__destroy(link); 9140 return ERR_PTR(-ENOMEM); 9141 } 9142 9143 return link; 9144 } 9145 9146 int bpf_link__detach(struct bpf_link *link) 9147 { 9148 return bpf_link_detach(link->fd) ? -errno : 0; 9149 } 9150 9151 int bpf_link__pin(struct bpf_link *link, const char *path) 9152 { 9153 int err; 9154 9155 if (link->pin_path) 9156 return -EBUSY; 9157 err = make_parent_dir(path); 9158 if (err) 9159 return err; 9160 err = check_path(path); 9161 if (err) 9162 return err; 9163 9164 link->pin_path = strdup(path); 9165 if (!link->pin_path) 9166 return -ENOMEM; 9167 9168 if (bpf_obj_pin(link->fd, link->pin_path)) { 9169 err = -errno; 9170 zfree(&link->pin_path); 9171 return err; 9172 } 9173 9174 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9175 return 0; 9176 } 9177 9178 int bpf_link__unpin(struct bpf_link *link) 9179 { 9180 int err; 9181 9182 if (!link->pin_path) 9183 return -EINVAL; 9184 9185 err = unlink(link->pin_path); 9186 if (err != 0) 9187 return -errno; 9188 9189 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9190 zfree(&link->pin_path); 9191 return 0; 9192 } 9193 9194 static int bpf_link__detach_perf_event(struct bpf_link *link) 9195 { 9196 int err; 9197 9198 err = ioctl(link->fd, PERF_EVENT_IOC_DISABLE, 0); 9199 if (err) 9200 err = -errno; 9201 9202 close(link->fd); 9203 return err; 9204 } 9205 9206 struct bpf_link *bpf_program__attach_perf_event(struct bpf_program *prog, 9207 int pfd) 9208 { 9209 char errmsg[STRERR_BUFSIZE]; 9210 struct bpf_link *link; 9211 int prog_fd, err; 9212 9213 if (pfd < 0) { 9214 pr_warn("prog '%s': invalid perf event FD %d\n", 9215 prog->name, pfd); 9216 return ERR_PTR(-EINVAL); 9217 } 9218 prog_fd = bpf_program__fd(prog); 9219 if (prog_fd < 0) { 9220 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 9221 prog->name); 9222 return ERR_PTR(-EINVAL); 9223 } 9224 9225 link = calloc(1, sizeof(*link)); 9226 if (!link) 9227 return ERR_PTR(-ENOMEM); 9228 link->detach = &bpf_link__detach_perf_event; 9229 link->fd = pfd; 9230 9231 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 9232 err = -errno; 9233 free(link); 9234 pr_warn("prog '%s': failed to attach to pfd %d: %s\n", 9235 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9236 if (err == -EPROTO) 9237 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 9238 prog->name, pfd); 9239 return ERR_PTR(err); 9240 } 9241 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9242 err = -errno; 9243 free(link); 9244 pr_warn("prog '%s': failed to enable pfd %d: %s\n", 9245 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9246 return ERR_PTR(err); 9247 } 9248 return link; 9249 } 9250 9251 /* 9252 * this function is expected to parse integer in the range of [0, 2^31-1] from 9253 * given file using scanf format string fmt. If actual parsed value is 9254 * negative, the result might be indistinguishable from error 9255 */ 9256 static int parse_uint_from_file(const char *file, const char *fmt) 9257 { 9258 char buf[STRERR_BUFSIZE]; 9259 int err, ret; 9260 FILE *f; 9261 9262 f = fopen(file, "r"); 9263 if (!f) { 9264 err = -errno; 9265 pr_debug("failed to open '%s': %s\n", file, 9266 libbpf_strerror_r(err, buf, sizeof(buf))); 9267 return err; 9268 } 9269 err = fscanf(f, fmt, &ret); 9270 if (err != 1) { 9271 err = err == EOF ? -EIO : -errno; 9272 pr_debug("failed to parse '%s': %s\n", file, 9273 libbpf_strerror_r(err, buf, sizeof(buf))); 9274 fclose(f); 9275 return err; 9276 } 9277 fclose(f); 9278 return ret; 9279 } 9280 9281 static int determine_kprobe_perf_type(void) 9282 { 9283 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 9284 9285 return parse_uint_from_file(file, "%d\n"); 9286 } 9287 9288 static int determine_uprobe_perf_type(void) 9289 { 9290 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 9291 9292 return parse_uint_from_file(file, "%d\n"); 9293 } 9294 9295 static int determine_kprobe_retprobe_bit(void) 9296 { 9297 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 9298 9299 return parse_uint_from_file(file, "config:%d\n"); 9300 } 9301 9302 static int determine_uprobe_retprobe_bit(void) 9303 { 9304 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 9305 9306 return parse_uint_from_file(file, "config:%d\n"); 9307 } 9308 9309 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 9310 uint64_t offset, int pid) 9311 { 9312 struct perf_event_attr attr = {}; 9313 char errmsg[STRERR_BUFSIZE]; 9314 int type, pfd, err; 9315 9316 type = uprobe ? determine_uprobe_perf_type() 9317 : determine_kprobe_perf_type(); 9318 if (type < 0) { 9319 pr_warn("failed to determine %s perf type: %s\n", 9320 uprobe ? "uprobe" : "kprobe", 9321 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 9322 return type; 9323 } 9324 if (retprobe) { 9325 int bit = uprobe ? determine_uprobe_retprobe_bit() 9326 : determine_kprobe_retprobe_bit(); 9327 9328 if (bit < 0) { 9329 pr_warn("failed to determine %s retprobe bit: %s\n", 9330 uprobe ? "uprobe" : "kprobe", 9331 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 9332 return bit; 9333 } 9334 attr.config |= 1 << bit; 9335 } 9336 attr.size = sizeof(attr); 9337 attr.type = type; 9338 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 9339 attr.config2 = offset; /* kprobe_addr or probe_offset */ 9340 9341 /* pid filter is meaningful only for uprobes */ 9342 pfd = syscall(__NR_perf_event_open, &attr, 9343 pid < 0 ? -1 : pid /* pid */, 9344 pid == -1 ? 0 : -1 /* cpu */, 9345 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9346 if (pfd < 0) { 9347 err = -errno; 9348 pr_warn("%s perf_event_open() failed: %s\n", 9349 uprobe ? "uprobe" : "kprobe", 9350 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9351 return err; 9352 } 9353 return pfd; 9354 } 9355 9356 struct bpf_link *bpf_program__attach_kprobe(struct bpf_program *prog, 9357 bool retprobe, 9358 const char *func_name) 9359 { 9360 char errmsg[STRERR_BUFSIZE]; 9361 struct bpf_link *link; 9362 int pfd, err; 9363 9364 pfd = perf_event_open_probe(false /* uprobe */, retprobe, func_name, 9365 0 /* offset */, -1 /* pid */); 9366 if (pfd < 0) { 9367 pr_warn("prog '%s': failed to create %s '%s' perf event: %s\n", 9368 prog->name, retprobe ? "kretprobe" : "kprobe", func_name, 9369 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9370 return ERR_PTR(pfd); 9371 } 9372 link = bpf_program__attach_perf_event(prog, pfd); 9373 if (IS_ERR(link)) { 9374 close(pfd); 9375 err = PTR_ERR(link); 9376 pr_warn("prog '%s': failed to attach to %s '%s': %s\n", 9377 prog->name, retprobe ? "kretprobe" : "kprobe", func_name, 9378 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9379 return link; 9380 } 9381 return link; 9382 } 9383 9384 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 9385 struct bpf_program *prog) 9386 { 9387 const char *func_name; 9388 bool retprobe; 9389 9390 func_name = prog->sec_name + sec->len; 9391 retprobe = strcmp(sec->sec, "kretprobe/") == 0; 9392 9393 return bpf_program__attach_kprobe(prog, retprobe, func_name); 9394 } 9395 9396 struct bpf_link *bpf_program__attach_uprobe(struct bpf_program *prog, 9397 bool retprobe, pid_t pid, 9398 const char *binary_path, 9399 size_t func_offset) 9400 { 9401 char errmsg[STRERR_BUFSIZE]; 9402 struct bpf_link *link; 9403 int pfd, err; 9404 9405 pfd = perf_event_open_probe(true /* uprobe */, retprobe, 9406 binary_path, func_offset, pid); 9407 if (pfd < 0) { 9408 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 9409 prog->name, retprobe ? "uretprobe" : "uprobe", 9410 binary_path, func_offset, 9411 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9412 return ERR_PTR(pfd); 9413 } 9414 link = bpf_program__attach_perf_event(prog, pfd); 9415 if (IS_ERR(link)) { 9416 close(pfd); 9417 err = PTR_ERR(link); 9418 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 9419 prog->name, retprobe ? "uretprobe" : "uprobe", 9420 binary_path, func_offset, 9421 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9422 return link; 9423 } 9424 return link; 9425 } 9426 9427 static int determine_tracepoint_id(const char *tp_category, 9428 const char *tp_name) 9429 { 9430 char file[PATH_MAX]; 9431 int ret; 9432 9433 ret = snprintf(file, sizeof(file), 9434 "/sys/kernel/debug/tracing/events/%s/%s/id", 9435 tp_category, tp_name); 9436 if (ret < 0) 9437 return -errno; 9438 if (ret >= sizeof(file)) { 9439 pr_debug("tracepoint %s/%s path is too long\n", 9440 tp_category, tp_name); 9441 return -E2BIG; 9442 } 9443 return parse_uint_from_file(file, "%d\n"); 9444 } 9445 9446 static int perf_event_open_tracepoint(const char *tp_category, 9447 const char *tp_name) 9448 { 9449 struct perf_event_attr attr = {}; 9450 char errmsg[STRERR_BUFSIZE]; 9451 int tp_id, pfd, err; 9452 9453 tp_id = determine_tracepoint_id(tp_category, tp_name); 9454 if (tp_id < 0) { 9455 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 9456 tp_category, tp_name, 9457 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 9458 return tp_id; 9459 } 9460 9461 attr.type = PERF_TYPE_TRACEPOINT; 9462 attr.size = sizeof(attr); 9463 attr.config = tp_id; 9464 9465 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 9466 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9467 if (pfd < 0) { 9468 err = -errno; 9469 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 9470 tp_category, tp_name, 9471 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9472 return err; 9473 } 9474 return pfd; 9475 } 9476 9477 struct bpf_link *bpf_program__attach_tracepoint(struct bpf_program *prog, 9478 const char *tp_category, 9479 const char *tp_name) 9480 { 9481 char errmsg[STRERR_BUFSIZE]; 9482 struct bpf_link *link; 9483 int pfd, err; 9484 9485 pfd = perf_event_open_tracepoint(tp_category, tp_name); 9486 if (pfd < 0) { 9487 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 9488 prog->name, tp_category, tp_name, 9489 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9490 return ERR_PTR(pfd); 9491 } 9492 link = bpf_program__attach_perf_event(prog, pfd); 9493 if (IS_ERR(link)) { 9494 close(pfd); 9495 err = PTR_ERR(link); 9496 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 9497 prog->name, tp_category, tp_name, 9498 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9499 return link; 9500 } 9501 return link; 9502 } 9503 9504 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 9505 struct bpf_program *prog) 9506 { 9507 char *sec_name, *tp_cat, *tp_name; 9508 struct bpf_link *link; 9509 9510 sec_name = strdup(prog->sec_name); 9511 if (!sec_name) 9512 return ERR_PTR(-ENOMEM); 9513 9514 /* extract "tp/<category>/<name>" */ 9515 tp_cat = sec_name + sec->len; 9516 tp_name = strchr(tp_cat, '/'); 9517 if (!tp_name) { 9518 link = ERR_PTR(-EINVAL); 9519 goto out; 9520 } 9521 *tp_name = '\0'; 9522 tp_name++; 9523 9524 link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 9525 out: 9526 free(sec_name); 9527 return link; 9528 } 9529 9530 struct bpf_link *bpf_program__attach_raw_tracepoint(struct bpf_program *prog, 9531 const char *tp_name) 9532 { 9533 char errmsg[STRERR_BUFSIZE]; 9534 struct bpf_link *link; 9535 int prog_fd, pfd; 9536 9537 prog_fd = bpf_program__fd(prog); 9538 if (prog_fd < 0) { 9539 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 9540 return ERR_PTR(-EINVAL); 9541 } 9542 9543 link = calloc(1, sizeof(*link)); 9544 if (!link) 9545 return ERR_PTR(-ENOMEM); 9546 link->detach = &bpf_link__detach_fd; 9547 9548 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 9549 if (pfd < 0) { 9550 pfd = -errno; 9551 free(link); 9552 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 9553 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9554 return ERR_PTR(pfd); 9555 } 9556 link->fd = pfd; 9557 return link; 9558 } 9559 9560 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 9561 struct bpf_program *prog) 9562 { 9563 const char *tp_name = prog->sec_name + sec->len; 9564 9565 return bpf_program__attach_raw_tracepoint(prog, tp_name); 9566 } 9567 9568 /* Common logic for all BPF program types that attach to a btf_id */ 9569 static struct bpf_link *bpf_program__attach_btf_id(struct bpf_program *prog) 9570 { 9571 char errmsg[STRERR_BUFSIZE]; 9572 struct bpf_link *link; 9573 int prog_fd, pfd; 9574 9575 prog_fd = bpf_program__fd(prog); 9576 if (prog_fd < 0) { 9577 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 9578 return ERR_PTR(-EINVAL); 9579 } 9580 9581 link = calloc(1, sizeof(*link)); 9582 if (!link) 9583 return ERR_PTR(-ENOMEM); 9584 link->detach = &bpf_link__detach_fd; 9585 9586 pfd = bpf_raw_tracepoint_open(NULL, prog_fd); 9587 if (pfd < 0) { 9588 pfd = -errno; 9589 free(link); 9590 pr_warn("prog '%s': failed to attach: %s\n", 9591 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9592 return ERR_PTR(pfd); 9593 } 9594 link->fd = pfd; 9595 return (struct bpf_link *)link; 9596 } 9597 9598 struct bpf_link *bpf_program__attach_trace(struct bpf_program *prog) 9599 { 9600 return bpf_program__attach_btf_id(prog); 9601 } 9602 9603 struct bpf_link *bpf_program__attach_lsm(struct bpf_program *prog) 9604 { 9605 return bpf_program__attach_btf_id(prog); 9606 } 9607 9608 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 9609 struct bpf_program *prog) 9610 { 9611 return bpf_program__attach_trace(prog); 9612 } 9613 9614 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec, 9615 struct bpf_program *prog) 9616 { 9617 return bpf_program__attach_lsm(prog); 9618 } 9619 9620 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec, 9621 struct bpf_program *prog) 9622 { 9623 return bpf_program__attach_iter(prog, NULL); 9624 } 9625 9626 static struct bpf_link * 9627 bpf_program__attach_fd(struct bpf_program *prog, int target_fd, int btf_id, 9628 const char *target_name) 9629 { 9630 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 9631 .target_btf_id = btf_id); 9632 enum bpf_attach_type attach_type; 9633 char errmsg[STRERR_BUFSIZE]; 9634 struct bpf_link *link; 9635 int prog_fd, link_fd; 9636 9637 prog_fd = bpf_program__fd(prog); 9638 if (prog_fd < 0) { 9639 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 9640 return ERR_PTR(-EINVAL); 9641 } 9642 9643 link = calloc(1, sizeof(*link)); 9644 if (!link) 9645 return ERR_PTR(-ENOMEM); 9646 link->detach = &bpf_link__detach_fd; 9647 9648 attach_type = bpf_program__get_expected_attach_type(prog); 9649 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 9650 if (link_fd < 0) { 9651 link_fd = -errno; 9652 free(link); 9653 pr_warn("prog '%s': failed to attach to %s: %s\n", 9654 prog->name, target_name, 9655 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 9656 return ERR_PTR(link_fd); 9657 } 9658 link->fd = link_fd; 9659 return link; 9660 } 9661 9662 struct bpf_link * 9663 bpf_program__attach_cgroup(struct bpf_program *prog, int cgroup_fd) 9664 { 9665 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 9666 } 9667 9668 struct bpf_link * 9669 bpf_program__attach_netns(struct bpf_program *prog, int netns_fd) 9670 { 9671 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 9672 } 9673 9674 struct bpf_link *bpf_program__attach_xdp(struct bpf_program *prog, int ifindex) 9675 { 9676 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 9677 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 9678 } 9679 9680 struct bpf_link *bpf_program__attach_freplace(struct bpf_program *prog, 9681 int target_fd, 9682 const char *attach_func_name) 9683 { 9684 int btf_id; 9685 9686 if (!!target_fd != !!attach_func_name) { 9687 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 9688 prog->name); 9689 return ERR_PTR(-EINVAL); 9690 } 9691 9692 if (prog->type != BPF_PROG_TYPE_EXT) { 9693 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 9694 prog->name); 9695 return ERR_PTR(-EINVAL); 9696 } 9697 9698 if (target_fd) { 9699 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 9700 if (btf_id < 0) 9701 return ERR_PTR(btf_id); 9702 9703 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 9704 } else { 9705 /* no target, so use raw_tracepoint_open for compatibility 9706 * with old kernels 9707 */ 9708 return bpf_program__attach_trace(prog); 9709 } 9710 } 9711 9712 struct bpf_link * 9713 bpf_program__attach_iter(struct bpf_program *prog, 9714 const struct bpf_iter_attach_opts *opts) 9715 { 9716 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 9717 char errmsg[STRERR_BUFSIZE]; 9718 struct bpf_link *link; 9719 int prog_fd, link_fd; 9720 __u32 target_fd = 0; 9721 9722 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 9723 return ERR_PTR(-EINVAL); 9724 9725 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 9726 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 9727 9728 prog_fd = bpf_program__fd(prog); 9729 if (prog_fd < 0) { 9730 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 9731 return ERR_PTR(-EINVAL); 9732 } 9733 9734 link = calloc(1, sizeof(*link)); 9735 if (!link) 9736 return ERR_PTR(-ENOMEM); 9737 link->detach = &bpf_link__detach_fd; 9738 9739 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 9740 &link_create_opts); 9741 if (link_fd < 0) { 9742 link_fd = -errno; 9743 free(link); 9744 pr_warn("prog '%s': failed to attach to iterator: %s\n", 9745 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 9746 return ERR_PTR(link_fd); 9747 } 9748 link->fd = link_fd; 9749 return link; 9750 } 9751 9752 struct bpf_link *bpf_program__attach(struct bpf_program *prog) 9753 { 9754 const struct bpf_sec_def *sec_def; 9755 9756 sec_def = find_sec_def(prog->sec_name); 9757 if (!sec_def || !sec_def->attach_fn) 9758 return ERR_PTR(-ESRCH); 9759 9760 return sec_def->attach_fn(sec_def, prog); 9761 } 9762 9763 static int bpf_link__detach_struct_ops(struct bpf_link *link) 9764 { 9765 __u32 zero = 0; 9766 9767 if (bpf_map_delete_elem(link->fd, &zero)) 9768 return -errno; 9769 9770 return 0; 9771 } 9772 9773 struct bpf_link *bpf_map__attach_struct_ops(struct bpf_map *map) 9774 { 9775 struct bpf_struct_ops *st_ops; 9776 struct bpf_link *link; 9777 __u32 i, zero = 0; 9778 int err; 9779 9780 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 9781 return ERR_PTR(-EINVAL); 9782 9783 link = calloc(1, sizeof(*link)); 9784 if (!link) 9785 return ERR_PTR(-EINVAL); 9786 9787 st_ops = map->st_ops; 9788 for (i = 0; i < btf_vlen(st_ops->type); i++) { 9789 struct bpf_program *prog = st_ops->progs[i]; 9790 void *kern_data; 9791 int prog_fd; 9792 9793 if (!prog) 9794 continue; 9795 9796 prog_fd = bpf_program__fd(prog); 9797 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 9798 *(unsigned long *)kern_data = prog_fd; 9799 } 9800 9801 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 9802 if (err) { 9803 err = -errno; 9804 free(link); 9805 return ERR_PTR(err); 9806 } 9807 9808 link->detach = bpf_link__detach_struct_ops; 9809 link->fd = map->fd; 9810 9811 return link; 9812 } 9813 9814 enum bpf_perf_event_ret 9815 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 9816 void **copy_mem, size_t *copy_size, 9817 bpf_perf_event_print_t fn, void *private_data) 9818 { 9819 struct perf_event_mmap_page *header = mmap_mem; 9820 __u64 data_head = ring_buffer_read_head(header); 9821 __u64 data_tail = header->data_tail; 9822 void *base = ((__u8 *)header) + page_size; 9823 int ret = LIBBPF_PERF_EVENT_CONT; 9824 struct perf_event_header *ehdr; 9825 size_t ehdr_size; 9826 9827 while (data_head != data_tail) { 9828 ehdr = base + (data_tail & (mmap_size - 1)); 9829 ehdr_size = ehdr->size; 9830 9831 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 9832 void *copy_start = ehdr; 9833 size_t len_first = base + mmap_size - copy_start; 9834 size_t len_secnd = ehdr_size - len_first; 9835 9836 if (*copy_size < ehdr_size) { 9837 free(*copy_mem); 9838 *copy_mem = malloc(ehdr_size); 9839 if (!*copy_mem) { 9840 *copy_size = 0; 9841 ret = LIBBPF_PERF_EVENT_ERROR; 9842 break; 9843 } 9844 *copy_size = ehdr_size; 9845 } 9846 9847 memcpy(*copy_mem, copy_start, len_first); 9848 memcpy(*copy_mem + len_first, base, len_secnd); 9849 ehdr = *copy_mem; 9850 } 9851 9852 ret = fn(ehdr, private_data); 9853 data_tail += ehdr_size; 9854 if (ret != LIBBPF_PERF_EVENT_CONT) 9855 break; 9856 } 9857 9858 ring_buffer_write_tail(header, data_tail); 9859 return ret; 9860 } 9861 9862 struct perf_buffer; 9863 9864 struct perf_buffer_params { 9865 struct perf_event_attr *attr; 9866 /* if event_cb is specified, it takes precendence */ 9867 perf_buffer_event_fn event_cb; 9868 /* sample_cb and lost_cb are higher-level common-case callbacks */ 9869 perf_buffer_sample_fn sample_cb; 9870 perf_buffer_lost_fn lost_cb; 9871 void *ctx; 9872 int cpu_cnt; 9873 int *cpus; 9874 int *map_keys; 9875 }; 9876 9877 struct perf_cpu_buf { 9878 struct perf_buffer *pb; 9879 void *base; /* mmap()'ed memory */ 9880 void *buf; /* for reconstructing segmented data */ 9881 size_t buf_size; 9882 int fd; 9883 int cpu; 9884 int map_key; 9885 }; 9886 9887 struct perf_buffer { 9888 perf_buffer_event_fn event_cb; 9889 perf_buffer_sample_fn sample_cb; 9890 perf_buffer_lost_fn lost_cb; 9891 void *ctx; /* passed into callbacks */ 9892 9893 size_t page_size; 9894 size_t mmap_size; 9895 struct perf_cpu_buf **cpu_bufs; 9896 struct epoll_event *events; 9897 int cpu_cnt; /* number of allocated CPU buffers */ 9898 int epoll_fd; /* perf event FD */ 9899 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 9900 }; 9901 9902 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 9903 struct perf_cpu_buf *cpu_buf) 9904 { 9905 if (!cpu_buf) 9906 return; 9907 if (cpu_buf->base && 9908 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 9909 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 9910 if (cpu_buf->fd >= 0) { 9911 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 9912 close(cpu_buf->fd); 9913 } 9914 free(cpu_buf->buf); 9915 free(cpu_buf); 9916 } 9917 9918 void perf_buffer__free(struct perf_buffer *pb) 9919 { 9920 int i; 9921 9922 if (IS_ERR_OR_NULL(pb)) 9923 return; 9924 if (pb->cpu_bufs) { 9925 for (i = 0; i < pb->cpu_cnt; i++) { 9926 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 9927 9928 if (!cpu_buf) 9929 continue; 9930 9931 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 9932 perf_buffer__free_cpu_buf(pb, cpu_buf); 9933 } 9934 free(pb->cpu_bufs); 9935 } 9936 if (pb->epoll_fd >= 0) 9937 close(pb->epoll_fd); 9938 free(pb->events); 9939 free(pb); 9940 } 9941 9942 static struct perf_cpu_buf * 9943 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 9944 int cpu, int map_key) 9945 { 9946 struct perf_cpu_buf *cpu_buf; 9947 char msg[STRERR_BUFSIZE]; 9948 int err; 9949 9950 cpu_buf = calloc(1, sizeof(*cpu_buf)); 9951 if (!cpu_buf) 9952 return ERR_PTR(-ENOMEM); 9953 9954 cpu_buf->pb = pb; 9955 cpu_buf->cpu = cpu; 9956 cpu_buf->map_key = map_key; 9957 9958 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 9959 -1, PERF_FLAG_FD_CLOEXEC); 9960 if (cpu_buf->fd < 0) { 9961 err = -errno; 9962 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 9963 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 9964 goto error; 9965 } 9966 9967 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 9968 PROT_READ | PROT_WRITE, MAP_SHARED, 9969 cpu_buf->fd, 0); 9970 if (cpu_buf->base == MAP_FAILED) { 9971 cpu_buf->base = NULL; 9972 err = -errno; 9973 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 9974 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 9975 goto error; 9976 } 9977 9978 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9979 err = -errno; 9980 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 9981 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 9982 goto error; 9983 } 9984 9985 return cpu_buf; 9986 9987 error: 9988 perf_buffer__free_cpu_buf(pb, cpu_buf); 9989 return (struct perf_cpu_buf *)ERR_PTR(err); 9990 } 9991 9992 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 9993 struct perf_buffer_params *p); 9994 9995 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 9996 const struct perf_buffer_opts *opts) 9997 { 9998 struct perf_buffer_params p = {}; 9999 struct perf_event_attr attr = { 0, }; 10000 10001 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 10002 attr.type = PERF_TYPE_SOFTWARE; 10003 attr.sample_type = PERF_SAMPLE_RAW; 10004 attr.sample_period = 1; 10005 attr.wakeup_events = 1; 10006 10007 p.attr = &attr; 10008 p.sample_cb = opts ? opts->sample_cb : NULL; 10009 p.lost_cb = opts ? opts->lost_cb : NULL; 10010 p.ctx = opts ? opts->ctx : NULL; 10011 10012 return __perf_buffer__new(map_fd, page_cnt, &p); 10013 } 10014 10015 struct perf_buffer * 10016 perf_buffer__new_raw(int map_fd, size_t page_cnt, 10017 const struct perf_buffer_raw_opts *opts) 10018 { 10019 struct perf_buffer_params p = {}; 10020 10021 p.attr = opts->attr; 10022 p.event_cb = opts->event_cb; 10023 p.ctx = opts->ctx; 10024 p.cpu_cnt = opts->cpu_cnt; 10025 p.cpus = opts->cpus; 10026 p.map_keys = opts->map_keys; 10027 10028 return __perf_buffer__new(map_fd, page_cnt, &p); 10029 } 10030 10031 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 10032 struct perf_buffer_params *p) 10033 { 10034 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 10035 struct bpf_map_info map; 10036 char msg[STRERR_BUFSIZE]; 10037 struct perf_buffer *pb; 10038 bool *online = NULL; 10039 __u32 map_info_len; 10040 int err, i, j, n; 10041 10042 if (page_cnt & (page_cnt - 1)) { 10043 pr_warn("page count should be power of two, but is %zu\n", 10044 page_cnt); 10045 return ERR_PTR(-EINVAL); 10046 } 10047 10048 /* best-effort sanity checks */ 10049 memset(&map, 0, sizeof(map)); 10050 map_info_len = sizeof(map); 10051 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 10052 if (err) { 10053 err = -errno; 10054 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 10055 * -EBADFD, -EFAULT, or -E2BIG on real error 10056 */ 10057 if (err != -EINVAL) { 10058 pr_warn("failed to get map info for map FD %d: %s\n", 10059 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 10060 return ERR_PTR(err); 10061 } 10062 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 10063 map_fd); 10064 } else { 10065 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 10066 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 10067 map.name); 10068 return ERR_PTR(-EINVAL); 10069 } 10070 } 10071 10072 pb = calloc(1, sizeof(*pb)); 10073 if (!pb) 10074 return ERR_PTR(-ENOMEM); 10075 10076 pb->event_cb = p->event_cb; 10077 pb->sample_cb = p->sample_cb; 10078 pb->lost_cb = p->lost_cb; 10079 pb->ctx = p->ctx; 10080 10081 pb->page_size = getpagesize(); 10082 pb->mmap_size = pb->page_size * page_cnt; 10083 pb->map_fd = map_fd; 10084 10085 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 10086 if (pb->epoll_fd < 0) { 10087 err = -errno; 10088 pr_warn("failed to create epoll instance: %s\n", 10089 libbpf_strerror_r(err, msg, sizeof(msg))); 10090 goto error; 10091 } 10092 10093 if (p->cpu_cnt > 0) { 10094 pb->cpu_cnt = p->cpu_cnt; 10095 } else { 10096 pb->cpu_cnt = libbpf_num_possible_cpus(); 10097 if (pb->cpu_cnt < 0) { 10098 err = pb->cpu_cnt; 10099 goto error; 10100 } 10101 if (map.max_entries && map.max_entries < pb->cpu_cnt) 10102 pb->cpu_cnt = map.max_entries; 10103 } 10104 10105 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 10106 if (!pb->events) { 10107 err = -ENOMEM; 10108 pr_warn("failed to allocate events: out of memory\n"); 10109 goto error; 10110 } 10111 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 10112 if (!pb->cpu_bufs) { 10113 err = -ENOMEM; 10114 pr_warn("failed to allocate buffers: out of memory\n"); 10115 goto error; 10116 } 10117 10118 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 10119 if (err) { 10120 pr_warn("failed to get online CPU mask: %d\n", err); 10121 goto error; 10122 } 10123 10124 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 10125 struct perf_cpu_buf *cpu_buf; 10126 int cpu, map_key; 10127 10128 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 10129 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 10130 10131 /* in case user didn't explicitly requested particular CPUs to 10132 * be attached to, skip offline/not present CPUs 10133 */ 10134 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 10135 continue; 10136 10137 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 10138 if (IS_ERR(cpu_buf)) { 10139 err = PTR_ERR(cpu_buf); 10140 goto error; 10141 } 10142 10143 pb->cpu_bufs[j] = cpu_buf; 10144 10145 err = bpf_map_update_elem(pb->map_fd, &map_key, 10146 &cpu_buf->fd, 0); 10147 if (err) { 10148 err = -errno; 10149 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 10150 cpu, map_key, cpu_buf->fd, 10151 libbpf_strerror_r(err, msg, sizeof(msg))); 10152 goto error; 10153 } 10154 10155 pb->events[j].events = EPOLLIN; 10156 pb->events[j].data.ptr = cpu_buf; 10157 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 10158 &pb->events[j]) < 0) { 10159 err = -errno; 10160 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 10161 cpu, cpu_buf->fd, 10162 libbpf_strerror_r(err, msg, sizeof(msg))); 10163 goto error; 10164 } 10165 j++; 10166 } 10167 pb->cpu_cnt = j; 10168 free(online); 10169 10170 return pb; 10171 10172 error: 10173 free(online); 10174 if (pb) 10175 perf_buffer__free(pb); 10176 return ERR_PTR(err); 10177 } 10178 10179 struct perf_sample_raw { 10180 struct perf_event_header header; 10181 uint32_t size; 10182 char data[]; 10183 }; 10184 10185 struct perf_sample_lost { 10186 struct perf_event_header header; 10187 uint64_t id; 10188 uint64_t lost; 10189 uint64_t sample_id; 10190 }; 10191 10192 static enum bpf_perf_event_ret 10193 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 10194 { 10195 struct perf_cpu_buf *cpu_buf = ctx; 10196 struct perf_buffer *pb = cpu_buf->pb; 10197 void *data = e; 10198 10199 /* user wants full control over parsing perf event */ 10200 if (pb->event_cb) 10201 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 10202 10203 switch (e->type) { 10204 case PERF_RECORD_SAMPLE: { 10205 struct perf_sample_raw *s = data; 10206 10207 if (pb->sample_cb) 10208 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 10209 break; 10210 } 10211 case PERF_RECORD_LOST: { 10212 struct perf_sample_lost *s = data; 10213 10214 if (pb->lost_cb) 10215 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 10216 break; 10217 } 10218 default: 10219 pr_warn("unknown perf sample type %d\n", e->type); 10220 return LIBBPF_PERF_EVENT_ERROR; 10221 } 10222 return LIBBPF_PERF_EVENT_CONT; 10223 } 10224 10225 static int perf_buffer__process_records(struct perf_buffer *pb, 10226 struct perf_cpu_buf *cpu_buf) 10227 { 10228 enum bpf_perf_event_ret ret; 10229 10230 ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size, 10231 pb->page_size, &cpu_buf->buf, 10232 &cpu_buf->buf_size, 10233 perf_buffer__process_record, cpu_buf); 10234 if (ret != LIBBPF_PERF_EVENT_CONT) 10235 return ret; 10236 return 0; 10237 } 10238 10239 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 10240 { 10241 return pb->epoll_fd; 10242 } 10243 10244 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 10245 { 10246 int i, cnt, err; 10247 10248 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 10249 for (i = 0; i < cnt; i++) { 10250 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 10251 10252 err = perf_buffer__process_records(pb, cpu_buf); 10253 if (err) { 10254 pr_warn("error while processing records: %d\n", err); 10255 return err; 10256 } 10257 } 10258 return cnt < 0 ? -errno : cnt; 10259 } 10260 10261 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 10262 * manager. 10263 */ 10264 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 10265 { 10266 return pb->cpu_cnt; 10267 } 10268 10269 /* 10270 * Return perf_event FD of a ring buffer in *buf_idx* slot of 10271 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 10272 * select()/poll()/epoll() Linux syscalls. 10273 */ 10274 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 10275 { 10276 struct perf_cpu_buf *cpu_buf; 10277 10278 if (buf_idx >= pb->cpu_cnt) 10279 return -EINVAL; 10280 10281 cpu_buf = pb->cpu_bufs[buf_idx]; 10282 if (!cpu_buf) 10283 return -ENOENT; 10284 10285 return cpu_buf->fd; 10286 } 10287 10288 /* 10289 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 10290 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 10291 * consume, do nothing and return success. 10292 * Returns: 10293 * - 0 on success; 10294 * - <0 on failure. 10295 */ 10296 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 10297 { 10298 struct perf_cpu_buf *cpu_buf; 10299 10300 if (buf_idx >= pb->cpu_cnt) 10301 return -EINVAL; 10302 10303 cpu_buf = pb->cpu_bufs[buf_idx]; 10304 if (!cpu_buf) 10305 return -ENOENT; 10306 10307 return perf_buffer__process_records(pb, cpu_buf); 10308 } 10309 10310 int perf_buffer__consume(struct perf_buffer *pb) 10311 { 10312 int i, err; 10313 10314 for (i = 0; i < pb->cpu_cnt; i++) { 10315 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 10316 10317 if (!cpu_buf) 10318 continue; 10319 10320 err = perf_buffer__process_records(pb, cpu_buf); 10321 if (err) { 10322 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 10323 return err; 10324 } 10325 } 10326 return 0; 10327 } 10328 10329 struct bpf_prog_info_array_desc { 10330 int array_offset; /* e.g. offset of jited_prog_insns */ 10331 int count_offset; /* e.g. offset of jited_prog_len */ 10332 int size_offset; /* > 0: offset of rec size, 10333 * < 0: fix size of -size_offset 10334 */ 10335 }; 10336 10337 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = { 10338 [BPF_PROG_INFO_JITED_INSNS] = { 10339 offsetof(struct bpf_prog_info, jited_prog_insns), 10340 offsetof(struct bpf_prog_info, jited_prog_len), 10341 -1, 10342 }, 10343 [BPF_PROG_INFO_XLATED_INSNS] = { 10344 offsetof(struct bpf_prog_info, xlated_prog_insns), 10345 offsetof(struct bpf_prog_info, xlated_prog_len), 10346 -1, 10347 }, 10348 [BPF_PROG_INFO_MAP_IDS] = { 10349 offsetof(struct bpf_prog_info, map_ids), 10350 offsetof(struct bpf_prog_info, nr_map_ids), 10351 -(int)sizeof(__u32), 10352 }, 10353 [BPF_PROG_INFO_JITED_KSYMS] = { 10354 offsetof(struct bpf_prog_info, jited_ksyms), 10355 offsetof(struct bpf_prog_info, nr_jited_ksyms), 10356 -(int)sizeof(__u64), 10357 }, 10358 [BPF_PROG_INFO_JITED_FUNC_LENS] = { 10359 offsetof(struct bpf_prog_info, jited_func_lens), 10360 offsetof(struct bpf_prog_info, nr_jited_func_lens), 10361 -(int)sizeof(__u32), 10362 }, 10363 [BPF_PROG_INFO_FUNC_INFO] = { 10364 offsetof(struct bpf_prog_info, func_info), 10365 offsetof(struct bpf_prog_info, nr_func_info), 10366 offsetof(struct bpf_prog_info, func_info_rec_size), 10367 }, 10368 [BPF_PROG_INFO_LINE_INFO] = { 10369 offsetof(struct bpf_prog_info, line_info), 10370 offsetof(struct bpf_prog_info, nr_line_info), 10371 offsetof(struct bpf_prog_info, line_info_rec_size), 10372 }, 10373 [BPF_PROG_INFO_JITED_LINE_INFO] = { 10374 offsetof(struct bpf_prog_info, jited_line_info), 10375 offsetof(struct bpf_prog_info, nr_jited_line_info), 10376 offsetof(struct bpf_prog_info, jited_line_info_rec_size), 10377 }, 10378 [BPF_PROG_INFO_PROG_TAGS] = { 10379 offsetof(struct bpf_prog_info, prog_tags), 10380 offsetof(struct bpf_prog_info, nr_prog_tags), 10381 -(int)sizeof(__u8) * BPF_TAG_SIZE, 10382 }, 10383 10384 }; 10385 10386 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info, 10387 int offset) 10388 { 10389 __u32 *array = (__u32 *)info; 10390 10391 if (offset >= 0) 10392 return array[offset / sizeof(__u32)]; 10393 return -(int)offset; 10394 } 10395 10396 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info, 10397 int offset) 10398 { 10399 __u64 *array = (__u64 *)info; 10400 10401 if (offset >= 0) 10402 return array[offset / sizeof(__u64)]; 10403 return -(int)offset; 10404 } 10405 10406 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset, 10407 __u32 val) 10408 { 10409 __u32 *array = (__u32 *)info; 10410 10411 if (offset >= 0) 10412 array[offset / sizeof(__u32)] = val; 10413 } 10414 10415 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset, 10416 __u64 val) 10417 { 10418 __u64 *array = (__u64 *)info; 10419 10420 if (offset >= 0) 10421 array[offset / sizeof(__u64)] = val; 10422 } 10423 10424 struct bpf_prog_info_linear * 10425 bpf_program__get_prog_info_linear(int fd, __u64 arrays) 10426 { 10427 struct bpf_prog_info_linear *info_linear; 10428 struct bpf_prog_info info = {}; 10429 __u32 info_len = sizeof(info); 10430 __u32 data_len = 0; 10431 int i, err; 10432 void *ptr; 10433 10434 if (arrays >> BPF_PROG_INFO_LAST_ARRAY) 10435 return ERR_PTR(-EINVAL); 10436 10437 /* step 1: get array dimensions */ 10438 err = bpf_obj_get_info_by_fd(fd, &info, &info_len); 10439 if (err) { 10440 pr_debug("can't get prog info: %s", strerror(errno)); 10441 return ERR_PTR(-EFAULT); 10442 } 10443 10444 /* step 2: calculate total size of all arrays */ 10445 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10446 bool include_array = (arrays & (1UL << i)) > 0; 10447 struct bpf_prog_info_array_desc *desc; 10448 __u32 count, size; 10449 10450 desc = bpf_prog_info_array_desc + i; 10451 10452 /* kernel is too old to support this field */ 10453 if (info_len < desc->array_offset + sizeof(__u32) || 10454 info_len < desc->count_offset + sizeof(__u32) || 10455 (desc->size_offset > 0 && info_len < desc->size_offset)) 10456 include_array = false; 10457 10458 if (!include_array) { 10459 arrays &= ~(1UL << i); /* clear the bit */ 10460 continue; 10461 } 10462 10463 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 10464 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 10465 10466 data_len += count * size; 10467 } 10468 10469 /* step 3: allocate continuous memory */ 10470 data_len = roundup(data_len, sizeof(__u64)); 10471 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len); 10472 if (!info_linear) 10473 return ERR_PTR(-ENOMEM); 10474 10475 /* step 4: fill data to info_linear->info */ 10476 info_linear->arrays = arrays; 10477 memset(&info_linear->info, 0, sizeof(info)); 10478 ptr = info_linear->data; 10479 10480 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10481 struct bpf_prog_info_array_desc *desc; 10482 __u32 count, size; 10483 10484 if ((arrays & (1UL << i)) == 0) 10485 continue; 10486 10487 desc = bpf_prog_info_array_desc + i; 10488 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 10489 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 10490 bpf_prog_info_set_offset_u32(&info_linear->info, 10491 desc->count_offset, count); 10492 bpf_prog_info_set_offset_u32(&info_linear->info, 10493 desc->size_offset, size); 10494 bpf_prog_info_set_offset_u64(&info_linear->info, 10495 desc->array_offset, 10496 ptr_to_u64(ptr)); 10497 ptr += count * size; 10498 } 10499 10500 /* step 5: call syscall again to get required arrays */ 10501 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len); 10502 if (err) { 10503 pr_debug("can't get prog info: %s", strerror(errno)); 10504 free(info_linear); 10505 return ERR_PTR(-EFAULT); 10506 } 10507 10508 /* step 6: verify the data */ 10509 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10510 struct bpf_prog_info_array_desc *desc; 10511 __u32 v1, v2; 10512 10513 if ((arrays & (1UL << i)) == 0) 10514 continue; 10515 10516 desc = bpf_prog_info_array_desc + i; 10517 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 10518 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 10519 desc->count_offset); 10520 if (v1 != v2) 10521 pr_warn("%s: mismatch in element count\n", __func__); 10522 10523 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 10524 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 10525 desc->size_offset); 10526 if (v1 != v2) 10527 pr_warn("%s: mismatch in rec size\n", __func__); 10528 } 10529 10530 /* step 7: update info_len and data_len */ 10531 info_linear->info_len = sizeof(struct bpf_prog_info); 10532 info_linear->data_len = data_len; 10533 10534 return info_linear; 10535 } 10536 10537 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear) 10538 { 10539 int i; 10540 10541 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10542 struct bpf_prog_info_array_desc *desc; 10543 __u64 addr, offs; 10544 10545 if ((info_linear->arrays & (1UL << i)) == 0) 10546 continue; 10547 10548 desc = bpf_prog_info_array_desc + i; 10549 addr = bpf_prog_info_read_offset_u64(&info_linear->info, 10550 desc->array_offset); 10551 offs = addr - ptr_to_u64(info_linear->data); 10552 bpf_prog_info_set_offset_u64(&info_linear->info, 10553 desc->array_offset, offs); 10554 } 10555 } 10556 10557 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear) 10558 { 10559 int i; 10560 10561 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10562 struct bpf_prog_info_array_desc *desc; 10563 __u64 addr, offs; 10564 10565 if ((info_linear->arrays & (1UL << i)) == 0) 10566 continue; 10567 10568 desc = bpf_prog_info_array_desc + i; 10569 offs = bpf_prog_info_read_offset_u64(&info_linear->info, 10570 desc->array_offset); 10571 addr = offs + ptr_to_u64(info_linear->data); 10572 bpf_prog_info_set_offset_u64(&info_linear->info, 10573 desc->array_offset, addr); 10574 } 10575 } 10576 10577 int bpf_program__set_attach_target(struct bpf_program *prog, 10578 int attach_prog_fd, 10579 const char *attach_func_name) 10580 { 10581 int btf_id; 10582 10583 if (!prog || attach_prog_fd < 0 || !attach_func_name) 10584 return -EINVAL; 10585 10586 if (attach_prog_fd) 10587 btf_id = libbpf_find_prog_btf_id(attach_func_name, 10588 attach_prog_fd); 10589 else 10590 btf_id = libbpf_find_vmlinux_btf_id(attach_func_name, 10591 prog->expected_attach_type); 10592 10593 if (btf_id < 0) 10594 return btf_id; 10595 10596 prog->attach_btf_id = btf_id; 10597 prog->attach_prog_fd = attach_prog_fd; 10598 return 0; 10599 } 10600 10601 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 10602 { 10603 int err = 0, n, len, start, end = -1; 10604 bool *tmp; 10605 10606 *mask = NULL; 10607 *mask_sz = 0; 10608 10609 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 10610 while (*s) { 10611 if (*s == ',' || *s == '\n') { 10612 s++; 10613 continue; 10614 } 10615 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 10616 if (n <= 0 || n > 2) { 10617 pr_warn("Failed to get CPU range %s: %d\n", s, n); 10618 err = -EINVAL; 10619 goto cleanup; 10620 } else if (n == 1) { 10621 end = start; 10622 } 10623 if (start < 0 || start > end) { 10624 pr_warn("Invalid CPU range [%d,%d] in %s\n", 10625 start, end, s); 10626 err = -EINVAL; 10627 goto cleanup; 10628 } 10629 tmp = realloc(*mask, end + 1); 10630 if (!tmp) { 10631 err = -ENOMEM; 10632 goto cleanup; 10633 } 10634 *mask = tmp; 10635 memset(tmp + *mask_sz, 0, start - *mask_sz); 10636 memset(tmp + start, 1, end - start + 1); 10637 *mask_sz = end + 1; 10638 s += len; 10639 } 10640 if (!*mask_sz) { 10641 pr_warn("Empty CPU range\n"); 10642 return -EINVAL; 10643 } 10644 return 0; 10645 cleanup: 10646 free(*mask); 10647 *mask = NULL; 10648 return err; 10649 } 10650 10651 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 10652 { 10653 int fd, err = 0, len; 10654 char buf[128]; 10655 10656 fd = open(fcpu, O_RDONLY); 10657 if (fd < 0) { 10658 err = -errno; 10659 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 10660 return err; 10661 } 10662 len = read(fd, buf, sizeof(buf)); 10663 close(fd); 10664 if (len <= 0) { 10665 err = len ? -errno : -EINVAL; 10666 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 10667 return err; 10668 } 10669 if (len >= sizeof(buf)) { 10670 pr_warn("CPU mask is too big in file %s\n", fcpu); 10671 return -E2BIG; 10672 } 10673 buf[len] = '\0'; 10674 10675 return parse_cpu_mask_str(buf, mask, mask_sz); 10676 } 10677 10678 int libbpf_num_possible_cpus(void) 10679 { 10680 static const char *fcpu = "/sys/devices/system/cpu/possible"; 10681 static int cpus; 10682 int err, n, i, tmp_cpus; 10683 bool *mask; 10684 10685 tmp_cpus = READ_ONCE(cpus); 10686 if (tmp_cpus > 0) 10687 return tmp_cpus; 10688 10689 err = parse_cpu_mask_file(fcpu, &mask, &n); 10690 if (err) 10691 return err; 10692 10693 tmp_cpus = 0; 10694 for (i = 0; i < n; i++) { 10695 if (mask[i]) 10696 tmp_cpus++; 10697 } 10698 free(mask); 10699 10700 WRITE_ONCE(cpus, tmp_cpus); 10701 return tmp_cpus; 10702 } 10703 10704 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 10705 const struct bpf_object_open_opts *opts) 10706 { 10707 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 10708 .object_name = s->name, 10709 ); 10710 struct bpf_object *obj; 10711 int i; 10712 10713 /* Attempt to preserve opts->object_name, unless overriden by user 10714 * explicitly. Overwriting object name for skeletons is discouraged, 10715 * as it breaks global data maps, because they contain object name 10716 * prefix as their own map name prefix. When skeleton is generated, 10717 * bpftool is making an assumption that this name will stay the same. 10718 */ 10719 if (opts) { 10720 memcpy(&skel_opts, opts, sizeof(*opts)); 10721 if (!opts->object_name) 10722 skel_opts.object_name = s->name; 10723 } 10724 10725 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 10726 if (IS_ERR(obj)) { 10727 pr_warn("failed to initialize skeleton BPF object '%s': %ld\n", 10728 s->name, PTR_ERR(obj)); 10729 return PTR_ERR(obj); 10730 } 10731 10732 *s->obj = obj; 10733 10734 for (i = 0; i < s->map_cnt; i++) { 10735 struct bpf_map **map = s->maps[i].map; 10736 const char *name = s->maps[i].name; 10737 void **mmaped = s->maps[i].mmaped; 10738 10739 *map = bpf_object__find_map_by_name(obj, name); 10740 if (!*map) { 10741 pr_warn("failed to find skeleton map '%s'\n", name); 10742 return -ESRCH; 10743 } 10744 10745 /* externs shouldn't be pre-setup from user code */ 10746 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 10747 *mmaped = (*map)->mmaped; 10748 } 10749 10750 for (i = 0; i < s->prog_cnt; i++) { 10751 struct bpf_program **prog = s->progs[i].prog; 10752 const char *name = s->progs[i].name; 10753 10754 *prog = bpf_object__find_program_by_name(obj, name); 10755 if (!*prog) { 10756 pr_warn("failed to find skeleton program '%s'\n", name); 10757 return -ESRCH; 10758 } 10759 } 10760 10761 return 0; 10762 } 10763 10764 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 10765 { 10766 int i, err; 10767 10768 err = bpf_object__load(*s->obj); 10769 if (err) { 10770 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 10771 return err; 10772 } 10773 10774 for (i = 0; i < s->map_cnt; i++) { 10775 struct bpf_map *map = *s->maps[i].map; 10776 size_t mmap_sz = bpf_map_mmap_sz(map); 10777 int prot, map_fd = bpf_map__fd(map); 10778 void **mmaped = s->maps[i].mmaped; 10779 10780 if (!mmaped) 10781 continue; 10782 10783 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 10784 *mmaped = NULL; 10785 continue; 10786 } 10787 10788 if (map->def.map_flags & BPF_F_RDONLY_PROG) 10789 prot = PROT_READ; 10790 else 10791 prot = PROT_READ | PROT_WRITE; 10792 10793 /* Remap anonymous mmap()-ed "map initialization image" as 10794 * a BPF map-backed mmap()-ed memory, but preserving the same 10795 * memory address. This will cause kernel to change process' 10796 * page table to point to a different piece of kernel memory, 10797 * but from userspace point of view memory address (and its 10798 * contents, being identical at this point) will stay the 10799 * same. This mapping will be released by bpf_object__close() 10800 * as per normal clean up procedure, so we don't need to worry 10801 * about it from skeleton's clean up perspective. 10802 */ 10803 *mmaped = mmap(map->mmaped, mmap_sz, prot, 10804 MAP_SHARED | MAP_FIXED, map_fd, 0); 10805 if (*mmaped == MAP_FAILED) { 10806 err = -errno; 10807 *mmaped = NULL; 10808 pr_warn("failed to re-mmap() map '%s': %d\n", 10809 bpf_map__name(map), err); 10810 return err; 10811 } 10812 } 10813 10814 return 0; 10815 } 10816 10817 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 10818 { 10819 int i; 10820 10821 for (i = 0; i < s->prog_cnt; i++) { 10822 struct bpf_program *prog = *s->progs[i].prog; 10823 struct bpf_link **link = s->progs[i].link; 10824 const struct bpf_sec_def *sec_def; 10825 10826 if (!prog->load) 10827 continue; 10828 10829 sec_def = find_sec_def(prog->sec_name); 10830 if (!sec_def || !sec_def->attach_fn) 10831 continue; 10832 10833 *link = sec_def->attach_fn(sec_def, prog); 10834 if (IS_ERR(*link)) { 10835 pr_warn("failed to auto-attach program '%s': %ld\n", 10836 bpf_program__name(prog), PTR_ERR(*link)); 10837 return PTR_ERR(*link); 10838 } 10839 } 10840 10841 return 0; 10842 } 10843 10844 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 10845 { 10846 int i; 10847 10848 for (i = 0; i < s->prog_cnt; i++) { 10849 struct bpf_link **link = s->progs[i].link; 10850 10851 bpf_link__destroy(*link); 10852 *link = NULL; 10853 } 10854 } 10855 10856 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 10857 { 10858 if (s->progs) 10859 bpf_object__detach_skeleton(s); 10860 if (s->obj) 10861 bpf_object__close(*s->obj); 10862 free(s->maps); 10863 free(s->progs); 10864 free(s); 10865 } 10866