xref: /openbmc/linux/tools/lib/bpf/libbpf.c (revision a4767912)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * Common eBPF ELF object loading operations.
5  *
6  * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7  * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8  * Copyright (C) 2015 Huawei Inc.
9  * Copyright (C) 2017 Nicira, Inc.
10  * Copyright (C) 2019 Isovalent, Inc.
11  */
12 
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/list.h>
35 #include <linux/limits.h>
36 #include <linux/perf_event.h>
37 #include <linux/ring_buffer.h>
38 #include <linux/version.h>
39 #include <sys/epoll.h>
40 #include <sys/ioctl.h>
41 #include <sys/mman.h>
42 #include <sys/stat.h>
43 #include <sys/types.h>
44 #include <sys/vfs.h>
45 #include <sys/utsname.h>
46 #include <sys/resource.h>
47 #include <libelf.h>
48 #include <gelf.h>
49 #include <zlib.h>
50 
51 #include "libbpf.h"
52 #include "bpf.h"
53 #include "btf.h"
54 #include "str_error.h"
55 #include "libbpf_internal.h"
56 #include "hashmap.h"
57 
58 #ifndef EM_BPF
59 #define EM_BPF 247
60 #endif
61 
62 #ifndef BPF_FS_MAGIC
63 #define BPF_FS_MAGIC		0xcafe4a11
64 #endif
65 
66 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
67 
68 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
69  * compilation if user enables corresponding warning. Disable it explicitly.
70  */
71 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
72 
73 #define __printf(a, b)	__attribute__((format(printf, a, b)))
74 
75 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
76 static const struct btf_type *
77 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id);
78 
79 static int __base_pr(enum libbpf_print_level level, const char *format,
80 		     va_list args)
81 {
82 	if (level == LIBBPF_DEBUG)
83 		return 0;
84 
85 	return vfprintf(stderr, format, args);
86 }
87 
88 static libbpf_print_fn_t __libbpf_pr = __base_pr;
89 
90 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
91 {
92 	libbpf_print_fn_t old_print_fn = __libbpf_pr;
93 
94 	__libbpf_pr = fn;
95 	return old_print_fn;
96 }
97 
98 __printf(2, 3)
99 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
100 {
101 	va_list args;
102 
103 	if (!__libbpf_pr)
104 		return;
105 
106 	va_start(args, format);
107 	__libbpf_pr(level, format, args);
108 	va_end(args);
109 }
110 
111 static void pr_perm_msg(int err)
112 {
113 	struct rlimit limit;
114 	char buf[100];
115 
116 	if (err != -EPERM || geteuid() != 0)
117 		return;
118 
119 	err = getrlimit(RLIMIT_MEMLOCK, &limit);
120 	if (err)
121 		return;
122 
123 	if (limit.rlim_cur == RLIM_INFINITY)
124 		return;
125 
126 	if (limit.rlim_cur < 1024)
127 		snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
128 	else if (limit.rlim_cur < 1024*1024)
129 		snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
130 	else
131 		snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
132 
133 	pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
134 		buf);
135 }
136 
137 #define STRERR_BUFSIZE  128
138 
139 /* Copied from tools/perf/util/util.h */
140 #ifndef zfree
141 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
142 #endif
143 
144 #ifndef zclose
145 # define zclose(fd) ({			\
146 	int ___err = 0;			\
147 	if ((fd) >= 0)			\
148 		___err = close((fd));	\
149 	fd = -1;			\
150 	___err; })
151 #endif
152 
153 static inline __u64 ptr_to_u64(const void *ptr)
154 {
155 	return (__u64) (unsigned long) ptr;
156 }
157 
158 enum kern_feature_id {
159 	/* v4.14: kernel support for program & map names. */
160 	FEAT_PROG_NAME,
161 	/* v5.2: kernel support for global data sections. */
162 	FEAT_GLOBAL_DATA,
163 	/* BTF support */
164 	FEAT_BTF,
165 	/* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */
166 	FEAT_BTF_FUNC,
167 	/* BTF_KIND_VAR and BTF_KIND_DATASEC support */
168 	FEAT_BTF_DATASEC,
169 	/* BTF_FUNC_GLOBAL is supported */
170 	FEAT_BTF_GLOBAL_FUNC,
171 	/* BPF_F_MMAPABLE is supported for arrays */
172 	FEAT_ARRAY_MMAP,
173 	/* kernel support for expected_attach_type in BPF_PROG_LOAD */
174 	FEAT_EXP_ATTACH_TYPE,
175 	/* bpf_probe_read_{kernel,user}[_str] helpers */
176 	FEAT_PROBE_READ_KERN,
177 	/* BPF_PROG_BIND_MAP is supported */
178 	FEAT_PROG_BIND_MAP,
179 	__FEAT_CNT,
180 };
181 
182 static bool kernel_supports(enum kern_feature_id feat_id);
183 
184 enum reloc_type {
185 	RELO_LD64,
186 	RELO_CALL,
187 	RELO_DATA,
188 	RELO_EXTERN,
189 };
190 
191 struct reloc_desc {
192 	enum reloc_type type;
193 	int insn_idx;
194 	int map_idx;
195 	int sym_off;
196 	bool processed;
197 };
198 
199 struct bpf_sec_def;
200 
201 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_sec_def *sec,
202 					struct bpf_program *prog);
203 
204 struct bpf_sec_def {
205 	const char *sec;
206 	size_t len;
207 	enum bpf_prog_type prog_type;
208 	enum bpf_attach_type expected_attach_type;
209 	bool is_exp_attach_type_optional;
210 	bool is_attachable;
211 	bool is_attach_btf;
212 	bool is_sleepable;
213 	attach_fn_t attach_fn;
214 };
215 
216 /*
217  * bpf_prog should be a better name but it has been used in
218  * linux/filter.h.
219  */
220 struct bpf_program {
221 	const struct bpf_sec_def *sec_def;
222 	char *sec_name;
223 	size_t sec_idx;
224 	/* this program's instruction offset (in number of instructions)
225 	 * within its containing ELF section
226 	 */
227 	size_t sec_insn_off;
228 	/* number of original instructions in ELF section belonging to this
229 	 * program, not taking into account subprogram instructions possible
230 	 * appended later during relocation
231 	 */
232 	size_t sec_insn_cnt;
233 	/* Offset (in number of instructions) of the start of instruction
234 	 * belonging to this BPF program  within its containing main BPF
235 	 * program. For the entry-point (main) BPF program, this is always
236 	 * zero. For a sub-program, this gets reset before each of main BPF
237 	 * programs are processed and relocated and is used to determined
238 	 * whether sub-program was already appended to the main program, and
239 	 * if yes, at which instruction offset.
240 	 */
241 	size_t sub_insn_off;
242 
243 	char *name;
244 	/* sec_name with / replaced by _; makes recursive pinning
245 	 * in bpf_object__pin_programs easier
246 	 */
247 	char *pin_name;
248 
249 	/* instructions that belong to BPF program; insns[0] is located at
250 	 * sec_insn_off instruction within its ELF section in ELF file, so
251 	 * when mapping ELF file instruction index to the local instruction,
252 	 * one needs to subtract sec_insn_off; and vice versa.
253 	 */
254 	struct bpf_insn *insns;
255 	/* actual number of instruction in this BPF program's image; for
256 	 * entry-point BPF programs this includes the size of main program
257 	 * itself plus all the used sub-programs, appended at the end
258 	 */
259 	size_t insns_cnt;
260 
261 	struct reloc_desc *reloc_desc;
262 	int nr_reloc;
263 	int log_level;
264 
265 	struct {
266 		int nr;
267 		int *fds;
268 	} instances;
269 	bpf_program_prep_t preprocessor;
270 
271 	struct bpf_object *obj;
272 	void *priv;
273 	bpf_program_clear_priv_t clear_priv;
274 
275 	bool load;
276 	enum bpf_prog_type type;
277 	enum bpf_attach_type expected_attach_type;
278 	int prog_ifindex;
279 	__u32 attach_btf_id;
280 	__u32 attach_prog_fd;
281 	void *func_info;
282 	__u32 func_info_rec_size;
283 	__u32 func_info_cnt;
284 
285 	void *line_info;
286 	__u32 line_info_rec_size;
287 	__u32 line_info_cnt;
288 	__u32 prog_flags;
289 };
290 
291 struct bpf_struct_ops {
292 	const char *tname;
293 	const struct btf_type *type;
294 	struct bpf_program **progs;
295 	__u32 *kern_func_off;
296 	/* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
297 	void *data;
298 	/* e.g. struct bpf_struct_ops_tcp_congestion_ops in
299 	 *      btf_vmlinux's format.
300 	 * struct bpf_struct_ops_tcp_congestion_ops {
301 	 *	[... some other kernel fields ...]
302 	 *	struct tcp_congestion_ops data;
303 	 * }
304 	 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
305 	 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
306 	 * from "data".
307 	 */
308 	void *kern_vdata;
309 	__u32 type_id;
310 };
311 
312 #define DATA_SEC ".data"
313 #define BSS_SEC ".bss"
314 #define RODATA_SEC ".rodata"
315 #define KCONFIG_SEC ".kconfig"
316 #define KSYMS_SEC ".ksyms"
317 #define STRUCT_OPS_SEC ".struct_ops"
318 
319 enum libbpf_map_type {
320 	LIBBPF_MAP_UNSPEC,
321 	LIBBPF_MAP_DATA,
322 	LIBBPF_MAP_BSS,
323 	LIBBPF_MAP_RODATA,
324 	LIBBPF_MAP_KCONFIG,
325 };
326 
327 static const char * const libbpf_type_to_btf_name[] = {
328 	[LIBBPF_MAP_DATA]	= DATA_SEC,
329 	[LIBBPF_MAP_BSS]	= BSS_SEC,
330 	[LIBBPF_MAP_RODATA]	= RODATA_SEC,
331 	[LIBBPF_MAP_KCONFIG]	= KCONFIG_SEC,
332 };
333 
334 struct bpf_map {
335 	char *name;
336 	int fd;
337 	int sec_idx;
338 	size_t sec_offset;
339 	int map_ifindex;
340 	int inner_map_fd;
341 	struct bpf_map_def def;
342 	__u32 numa_node;
343 	__u32 btf_var_idx;
344 	__u32 btf_key_type_id;
345 	__u32 btf_value_type_id;
346 	__u32 btf_vmlinux_value_type_id;
347 	void *priv;
348 	bpf_map_clear_priv_t clear_priv;
349 	enum libbpf_map_type libbpf_type;
350 	void *mmaped;
351 	struct bpf_struct_ops *st_ops;
352 	struct bpf_map *inner_map;
353 	void **init_slots;
354 	int init_slots_sz;
355 	char *pin_path;
356 	bool pinned;
357 	bool reused;
358 };
359 
360 enum extern_type {
361 	EXT_UNKNOWN,
362 	EXT_KCFG,
363 	EXT_KSYM,
364 };
365 
366 enum kcfg_type {
367 	KCFG_UNKNOWN,
368 	KCFG_CHAR,
369 	KCFG_BOOL,
370 	KCFG_INT,
371 	KCFG_TRISTATE,
372 	KCFG_CHAR_ARR,
373 };
374 
375 struct extern_desc {
376 	enum extern_type type;
377 	int sym_idx;
378 	int btf_id;
379 	int sec_btf_id;
380 	const char *name;
381 	bool is_set;
382 	bool is_weak;
383 	union {
384 		struct {
385 			enum kcfg_type type;
386 			int sz;
387 			int align;
388 			int data_off;
389 			bool is_signed;
390 		} kcfg;
391 		struct {
392 			unsigned long long addr;
393 
394 			/* target btf_id of the corresponding kernel var. */
395 			int vmlinux_btf_id;
396 
397 			/* local btf_id of the ksym extern's type. */
398 			__u32 type_id;
399 		} ksym;
400 	};
401 };
402 
403 static LIST_HEAD(bpf_objects_list);
404 
405 struct bpf_object {
406 	char name[BPF_OBJ_NAME_LEN];
407 	char license[64];
408 	__u32 kern_version;
409 
410 	struct bpf_program *programs;
411 	size_t nr_programs;
412 	struct bpf_map *maps;
413 	size_t nr_maps;
414 	size_t maps_cap;
415 
416 	char *kconfig;
417 	struct extern_desc *externs;
418 	int nr_extern;
419 	int kconfig_map_idx;
420 	int rodata_map_idx;
421 
422 	bool loaded;
423 	bool has_subcalls;
424 
425 	/*
426 	 * Information when doing elf related work. Only valid if fd
427 	 * is valid.
428 	 */
429 	struct {
430 		int fd;
431 		const void *obj_buf;
432 		size_t obj_buf_sz;
433 		Elf *elf;
434 		GElf_Ehdr ehdr;
435 		Elf_Data *symbols;
436 		Elf_Data *data;
437 		Elf_Data *rodata;
438 		Elf_Data *bss;
439 		Elf_Data *st_ops_data;
440 		size_t shstrndx; /* section index for section name strings */
441 		size_t strtabidx;
442 		struct {
443 			GElf_Shdr shdr;
444 			Elf_Data *data;
445 		} *reloc_sects;
446 		int nr_reloc_sects;
447 		int maps_shndx;
448 		int btf_maps_shndx;
449 		__u32 btf_maps_sec_btf_id;
450 		int text_shndx;
451 		int symbols_shndx;
452 		int data_shndx;
453 		int rodata_shndx;
454 		int bss_shndx;
455 		int st_ops_shndx;
456 	} efile;
457 	/*
458 	 * All loaded bpf_object is linked in a list, which is
459 	 * hidden to caller. bpf_objects__<func> handlers deal with
460 	 * all objects.
461 	 */
462 	struct list_head list;
463 
464 	struct btf *btf;
465 	/* Parse and load BTF vmlinux if any of the programs in the object need
466 	 * it at load time.
467 	 */
468 	struct btf *btf_vmlinux;
469 	struct btf_ext *btf_ext;
470 
471 	void *priv;
472 	bpf_object_clear_priv_t clear_priv;
473 
474 	char path[];
475 };
476 #define obj_elf_valid(o)	((o)->efile.elf)
477 
478 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
479 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
480 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
481 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
482 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr);
483 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
484 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
485 static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx,
486 			      size_t off, __u32 sym_type, GElf_Sym *sym);
487 
488 void bpf_program__unload(struct bpf_program *prog)
489 {
490 	int i;
491 
492 	if (!prog)
493 		return;
494 
495 	/*
496 	 * If the object is opened but the program was never loaded,
497 	 * it is possible that prog->instances.nr == -1.
498 	 */
499 	if (prog->instances.nr > 0) {
500 		for (i = 0; i < prog->instances.nr; i++)
501 			zclose(prog->instances.fds[i]);
502 	} else if (prog->instances.nr != -1) {
503 		pr_warn("Internal error: instances.nr is %d\n",
504 			prog->instances.nr);
505 	}
506 
507 	prog->instances.nr = -1;
508 	zfree(&prog->instances.fds);
509 
510 	zfree(&prog->func_info);
511 	zfree(&prog->line_info);
512 }
513 
514 static void bpf_program__exit(struct bpf_program *prog)
515 {
516 	if (!prog)
517 		return;
518 
519 	if (prog->clear_priv)
520 		prog->clear_priv(prog, prog->priv);
521 
522 	prog->priv = NULL;
523 	prog->clear_priv = NULL;
524 
525 	bpf_program__unload(prog);
526 	zfree(&prog->name);
527 	zfree(&prog->sec_name);
528 	zfree(&prog->pin_name);
529 	zfree(&prog->insns);
530 	zfree(&prog->reloc_desc);
531 
532 	prog->nr_reloc = 0;
533 	prog->insns_cnt = 0;
534 	prog->sec_idx = -1;
535 }
536 
537 static char *__bpf_program__pin_name(struct bpf_program *prog)
538 {
539 	char *name, *p;
540 
541 	name = p = strdup(prog->sec_name);
542 	while ((p = strchr(p, '/')))
543 		*p = '_';
544 
545 	return name;
546 }
547 
548 static bool insn_is_subprog_call(const struct bpf_insn *insn)
549 {
550 	return BPF_CLASS(insn->code) == BPF_JMP &&
551 	       BPF_OP(insn->code) == BPF_CALL &&
552 	       BPF_SRC(insn->code) == BPF_K &&
553 	       insn->src_reg == BPF_PSEUDO_CALL &&
554 	       insn->dst_reg == 0 &&
555 	       insn->off == 0;
556 }
557 
558 static int
559 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
560 		      const char *name, size_t sec_idx, const char *sec_name,
561 		      size_t sec_off, void *insn_data, size_t insn_data_sz)
562 {
563 	if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
564 		pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
565 			sec_name, name, sec_off, insn_data_sz);
566 		return -EINVAL;
567 	}
568 
569 	memset(prog, 0, sizeof(*prog));
570 	prog->obj = obj;
571 
572 	prog->sec_idx = sec_idx;
573 	prog->sec_insn_off = sec_off / BPF_INSN_SZ;
574 	prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
575 	/* insns_cnt can later be increased by appending used subprograms */
576 	prog->insns_cnt = prog->sec_insn_cnt;
577 
578 	prog->type = BPF_PROG_TYPE_UNSPEC;
579 	prog->load = true;
580 
581 	prog->instances.fds = NULL;
582 	prog->instances.nr = -1;
583 
584 	prog->sec_name = strdup(sec_name);
585 	if (!prog->sec_name)
586 		goto errout;
587 
588 	prog->name = strdup(name);
589 	if (!prog->name)
590 		goto errout;
591 
592 	prog->pin_name = __bpf_program__pin_name(prog);
593 	if (!prog->pin_name)
594 		goto errout;
595 
596 	prog->insns = malloc(insn_data_sz);
597 	if (!prog->insns)
598 		goto errout;
599 	memcpy(prog->insns, insn_data, insn_data_sz);
600 
601 	return 0;
602 errout:
603 	pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
604 	bpf_program__exit(prog);
605 	return -ENOMEM;
606 }
607 
608 static int
609 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
610 			 const char *sec_name, int sec_idx)
611 {
612 	struct bpf_program *prog, *progs;
613 	void *data = sec_data->d_buf;
614 	size_t sec_sz = sec_data->d_size, sec_off, prog_sz;
615 	int nr_progs, err;
616 	const char *name;
617 	GElf_Sym sym;
618 
619 	progs = obj->programs;
620 	nr_progs = obj->nr_programs;
621 	sec_off = 0;
622 
623 	while (sec_off < sec_sz) {
624 		if (elf_sym_by_sec_off(obj, sec_idx, sec_off, STT_FUNC, &sym)) {
625 			pr_warn("sec '%s': failed to find program symbol at offset %zu\n",
626 				sec_name, sec_off);
627 			return -LIBBPF_ERRNO__FORMAT;
628 		}
629 
630 		prog_sz = sym.st_size;
631 
632 		name = elf_sym_str(obj, sym.st_name);
633 		if (!name) {
634 			pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
635 				sec_name, sec_off);
636 			return -LIBBPF_ERRNO__FORMAT;
637 		}
638 
639 		if (sec_off + prog_sz > sec_sz) {
640 			pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
641 				sec_name, sec_off);
642 			return -LIBBPF_ERRNO__FORMAT;
643 		}
644 
645 		pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
646 			 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
647 
648 		progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
649 		if (!progs) {
650 			/*
651 			 * In this case the original obj->programs
652 			 * is still valid, so don't need special treat for
653 			 * bpf_close_object().
654 			 */
655 			pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
656 				sec_name, name);
657 			return -ENOMEM;
658 		}
659 		obj->programs = progs;
660 
661 		prog = &progs[nr_progs];
662 
663 		err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
664 					    sec_off, data + sec_off, prog_sz);
665 		if (err)
666 			return err;
667 
668 		nr_progs++;
669 		obj->nr_programs = nr_progs;
670 
671 		sec_off += prog_sz;
672 	}
673 
674 	return 0;
675 }
676 
677 static __u32 get_kernel_version(void)
678 {
679 	__u32 major, minor, patch;
680 	struct utsname info;
681 
682 	uname(&info);
683 	if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3)
684 		return 0;
685 	return KERNEL_VERSION(major, minor, patch);
686 }
687 
688 static const struct btf_member *
689 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
690 {
691 	struct btf_member *m;
692 	int i;
693 
694 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
695 		if (btf_member_bit_offset(t, i) == bit_offset)
696 			return m;
697 	}
698 
699 	return NULL;
700 }
701 
702 static const struct btf_member *
703 find_member_by_name(const struct btf *btf, const struct btf_type *t,
704 		    const char *name)
705 {
706 	struct btf_member *m;
707 	int i;
708 
709 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
710 		if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
711 			return m;
712 	}
713 
714 	return NULL;
715 }
716 
717 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
718 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
719 				   const char *name, __u32 kind);
720 
721 static int
722 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
723 			   const struct btf_type **type, __u32 *type_id,
724 			   const struct btf_type **vtype, __u32 *vtype_id,
725 			   const struct btf_member **data_member)
726 {
727 	const struct btf_type *kern_type, *kern_vtype;
728 	const struct btf_member *kern_data_member;
729 	__s32 kern_vtype_id, kern_type_id;
730 	__u32 i;
731 
732 	kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
733 	if (kern_type_id < 0) {
734 		pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
735 			tname);
736 		return kern_type_id;
737 	}
738 	kern_type = btf__type_by_id(btf, kern_type_id);
739 
740 	/* Find the corresponding "map_value" type that will be used
741 	 * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
742 	 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
743 	 * btf_vmlinux.
744 	 */
745 	kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
746 						tname, BTF_KIND_STRUCT);
747 	if (kern_vtype_id < 0) {
748 		pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
749 			STRUCT_OPS_VALUE_PREFIX, tname);
750 		return kern_vtype_id;
751 	}
752 	kern_vtype = btf__type_by_id(btf, kern_vtype_id);
753 
754 	/* Find "struct tcp_congestion_ops" from
755 	 * struct bpf_struct_ops_tcp_congestion_ops {
756 	 *	[ ... ]
757 	 *	struct tcp_congestion_ops data;
758 	 * }
759 	 */
760 	kern_data_member = btf_members(kern_vtype);
761 	for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
762 		if (kern_data_member->type == kern_type_id)
763 			break;
764 	}
765 	if (i == btf_vlen(kern_vtype)) {
766 		pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
767 			tname, STRUCT_OPS_VALUE_PREFIX, tname);
768 		return -EINVAL;
769 	}
770 
771 	*type = kern_type;
772 	*type_id = kern_type_id;
773 	*vtype = kern_vtype;
774 	*vtype_id = kern_vtype_id;
775 	*data_member = kern_data_member;
776 
777 	return 0;
778 }
779 
780 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
781 {
782 	return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
783 }
784 
785 /* Init the map's fields that depend on kern_btf */
786 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
787 					 const struct btf *btf,
788 					 const struct btf *kern_btf)
789 {
790 	const struct btf_member *member, *kern_member, *kern_data_member;
791 	const struct btf_type *type, *kern_type, *kern_vtype;
792 	__u32 i, kern_type_id, kern_vtype_id, kern_data_off;
793 	struct bpf_struct_ops *st_ops;
794 	void *data, *kern_data;
795 	const char *tname;
796 	int err;
797 
798 	st_ops = map->st_ops;
799 	type = st_ops->type;
800 	tname = st_ops->tname;
801 	err = find_struct_ops_kern_types(kern_btf, tname,
802 					 &kern_type, &kern_type_id,
803 					 &kern_vtype, &kern_vtype_id,
804 					 &kern_data_member);
805 	if (err)
806 		return err;
807 
808 	pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
809 		 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
810 
811 	map->def.value_size = kern_vtype->size;
812 	map->btf_vmlinux_value_type_id = kern_vtype_id;
813 
814 	st_ops->kern_vdata = calloc(1, kern_vtype->size);
815 	if (!st_ops->kern_vdata)
816 		return -ENOMEM;
817 
818 	data = st_ops->data;
819 	kern_data_off = kern_data_member->offset / 8;
820 	kern_data = st_ops->kern_vdata + kern_data_off;
821 
822 	member = btf_members(type);
823 	for (i = 0; i < btf_vlen(type); i++, member++) {
824 		const struct btf_type *mtype, *kern_mtype;
825 		__u32 mtype_id, kern_mtype_id;
826 		void *mdata, *kern_mdata;
827 		__s64 msize, kern_msize;
828 		__u32 moff, kern_moff;
829 		__u32 kern_member_idx;
830 		const char *mname;
831 
832 		mname = btf__name_by_offset(btf, member->name_off);
833 		kern_member = find_member_by_name(kern_btf, kern_type, mname);
834 		if (!kern_member) {
835 			pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
836 				map->name, mname);
837 			return -ENOTSUP;
838 		}
839 
840 		kern_member_idx = kern_member - btf_members(kern_type);
841 		if (btf_member_bitfield_size(type, i) ||
842 		    btf_member_bitfield_size(kern_type, kern_member_idx)) {
843 			pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
844 				map->name, mname);
845 			return -ENOTSUP;
846 		}
847 
848 		moff = member->offset / 8;
849 		kern_moff = kern_member->offset / 8;
850 
851 		mdata = data + moff;
852 		kern_mdata = kern_data + kern_moff;
853 
854 		mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
855 		kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
856 						    &kern_mtype_id);
857 		if (BTF_INFO_KIND(mtype->info) !=
858 		    BTF_INFO_KIND(kern_mtype->info)) {
859 			pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
860 				map->name, mname, BTF_INFO_KIND(mtype->info),
861 				BTF_INFO_KIND(kern_mtype->info));
862 			return -ENOTSUP;
863 		}
864 
865 		if (btf_is_ptr(mtype)) {
866 			struct bpf_program *prog;
867 
868 			mtype = skip_mods_and_typedefs(btf, mtype->type, &mtype_id);
869 			kern_mtype = skip_mods_and_typedefs(kern_btf,
870 							    kern_mtype->type,
871 							    &kern_mtype_id);
872 			if (!btf_is_func_proto(mtype) ||
873 			    !btf_is_func_proto(kern_mtype)) {
874 				pr_warn("struct_ops init_kern %s: non func ptr %s is not supported\n",
875 					map->name, mname);
876 				return -ENOTSUP;
877 			}
878 
879 			prog = st_ops->progs[i];
880 			if (!prog) {
881 				pr_debug("struct_ops init_kern %s: func ptr %s is not set\n",
882 					 map->name, mname);
883 				continue;
884 			}
885 
886 			prog->attach_btf_id = kern_type_id;
887 			prog->expected_attach_type = kern_member_idx;
888 
889 			st_ops->kern_func_off[i] = kern_data_off + kern_moff;
890 
891 			pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
892 				 map->name, mname, prog->name, moff,
893 				 kern_moff);
894 
895 			continue;
896 		}
897 
898 		msize = btf__resolve_size(btf, mtype_id);
899 		kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
900 		if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
901 			pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
902 				map->name, mname, (ssize_t)msize,
903 				(ssize_t)kern_msize);
904 			return -ENOTSUP;
905 		}
906 
907 		pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
908 			 map->name, mname, (unsigned int)msize,
909 			 moff, kern_moff);
910 		memcpy(kern_mdata, mdata, msize);
911 	}
912 
913 	return 0;
914 }
915 
916 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
917 {
918 	struct bpf_map *map;
919 	size_t i;
920 	int err;
921 
922 	for (i = 0; i < obj->nr_maps; i++) {
923 		map = &obj->maps[i];
924 
925 		if (!bpf_map__is_struct_ops(map))
926 			continue;
927 
928 		err = bpf_map__init_kern_struct_ops(map, obj->btf,
929 						    obj->btf_vmlinux);
930 		if (err)
931 			return err;
932 	}
933 
934 	return 0;
935 }
936 
937 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj)
938 {
939 	const struct btf_type *type, *datasec;
940 	const struct btf_var_secinfo *vsi;
941 	struct bpf_struct_ops *st_ops;
942 	const char *tname, *var_name;
943 	__s32 type_id, datasec_id;
944 	const struct btf *btf;
945 	struct bpf_map *map;
946 	__u32 i;
947 
948 	if (obj->efile.st_ops_shndx == -1)
949 		return 0;
950 
951 	btf = obj->btf;
952 	datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC,
953 					    BTF_KIND_DATASEC);
954 	if (datasec_id < 0) {
955 		pr_warn("struct_ops init: DATASEC %s not found\n",
956 			STRUCT_OPS_SEC);
957 		return -EINVAL;
958 	}
959 
960 	datasec = btf__type_by_id(btf, datasec_id);
961 	vsi = btf_var_secinfos(datasec);
962 	for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
963 		type = btf__type_by_id(obj->btf, vsi->type);
964 		var_name = btf__name_by_offset(obj->btf, type->name_off);
965 
966 		type_id = btf__resolve_type(obj->btf, vsi->type);
967 		if (type_id < 0) {
968 			pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
969 				vsi->type, STRUCT_OPS_SEC);
970 			return -EINVAL;
971 		}
972 
973 		type = btf__type_by_id(obj->btf, type_id);
974 		tname = btf__name_by_offset(obj->btf, type->name_off);
975 		if (!tname[0]) {
976 			pr_warn("struct_ops init: anonymous type is not supported\n");
977 			return -ENOTSUP;
978 		}
979 		if (!btf_is_struct(type)) {
980 			pr_warn("struct_ops init: %s is not a struct\n", tname);
981 			return -EINVAL;
982 		}
983 
984 		map = bpf_object__add_map(obj);
985 		if (IS_ERR(map))
986 			return PTR_ERR(map);
987 
988 		map->sec_idx = obj->efile.st_ops_shndx;
989 		map->sec_offset = vsi->offset;
990 		map->name = strdup(var_name);
991 		if (!map->name)
992 			return -ENOMEM;
993 
994 		map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
995 		map->def.key_size = sizeof(int);
996 		map->def.value_size = type->size;
997 		map->def.max_entries = 1;
998 
999 		map->st_ops = calloc(1, sizeof(*map->st_ops));
1000 		if (!map->st_ops)
1001 			return -ENOMEM;
1002 		st_ops = map->st_ops;
1003 		st_ops->data = malloc(type->size);
1004 		st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1005 		st_ops->kern_func_off = malloc(btf_vlen(type) *
1006 					       sizeof(*st_ops->kern_func_off));
1007 		if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1008 			return -ENOMEM;
1009 
1010 		if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) {
1011 			pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1012 				var_name, STRUCT_OPS_SEC);
1013 			return -EINVAL;
1014 		}
1015 
1016 		memcpy(st_ops->data,
1017 		       obj->efile.st_ops_data->d_buf + vsi->offset,
1018 		       type->size);
1019 		st_ops->tname = tname;
1020 		st_ops->type = type;
1021 		st_ops->type_id = type_id;
1022 
1023 		pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1024 			 tname, type_id, var_name, vsi->offset);
1025 	}
1026 
1027 	return 0;
1028 }
1029 
1030 static struct bpf_object *bpf_object__new(const char *path,
1031 					  const void *obj_buf,
1032 					  size_t obj_buf_sz,
1033 					  const char *obj_name)
1034 {
1035 	struct bpf_object *obj;
1036 	char *end;
1037 
1038 	obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1039 	if (!obj) {
1040 		pr_warn("alloc memory failed for %s\n", path);
1041 		return ERR_PTR(-ENOMEM);
1042 	}
1043 
1044 	strcpy(obj->path, path);
1045 	if (obj_name) {
1046 		strncpy(obj->name, obj_name, sizeof(obj->name) - 1);
1047 		obj->name[sizeof(obj->name) - 1] = 0;
1048 	} else {
1049 		/* Using basename() GNU version which doesn't modify arg. */
1050 		strncpy(obj->name, basename((void *)path),
1051 			sizeof(obj->name) - 1);
1052 		end = strchr(obj->name, '.');
1053 		if (end)
1054 			*end = 0;
1055 	}
1056 
1057 	obj->efile.fd = -1;
1058 	/*
1059 	 * Caller of this function should also call
1060 	 * bpf_object__elf_finish() after data collection to return
1061 	 * obj_buf to user. If not, we should duplicate the buffer to
1062 	 * avoid user freeing them before elf finish.
1063 	 */
1064 	obj->efile.obj_buf = obj_buf;
1065 	obj->efile.obj_buf_sz = obj_buf_sz;
1066 	obj->efile.maps_shndx = -1;
1067 	obj->efile.btf_maps_shndx = -1;
1068 	obj->efile.data_shndx = -1;
1069 	obj->efile.rodata_shndx = -1;
1070 	obj->efile.bss_shndx = -1;
1071 	obj->efile.st_ops_shndx = -1;
1072 	obj->kconfig_map_idx = -1;
1073 	obj->rodata_map_idx = -1;
1074 
1075 	obj->kern_version = get_kernel_version();
1076 	obj->loaded = false;
1077 
1078 	INIT_LIST_HEAD(&obj->list);
1079 	list_add(&obj->list, &bpf_objects_list);
1080 	return obj;
1081 }
1082 
1083 static void bpf_object__elf_finish(struct bpf_object *obj)
1084 {
1085 	if (!obj_elf_valid(obj))
1086 		return;
1087 
1088 	if (obj->efile.elf) {
1089 		elf_end(obj->efile.elf);
1090 		obj->efile.elf = NULL;
1091 	}
1092 	obj->efile.symbols = NULL;
1093 	obj->efile.data = NULL;
1094 	obj->efile.rodata = NULL;
1095 	obj->efile.bss = NULL;
1096 	obj->efile.st_ops_data = NULL;
1097 
1098 	zfree(&obj->efile.reloc_sects);
1099 	obj->efile.nr_reloc_sects = 0;
1100 	zclose(obj->efile.fd);
1101 	obj->efile.obj_buf = NULL;
1102 	obj->efile.obj_buf_sz = 0;
1103 }
1104 
1105 /* if libelf is old and doesn't support mmap(), fall back to read() */
1106 #ifndef ELF_C_READ_MMAP
1107 #define ELF_C_READ_MMAP ELF_C_READ
1108 #endif
1109 
1110 static int bpf_object__elf_init(struct bpf_object *obj)
1111 {
1112 	int err = 0;
1113 	GElf_Ehdr *ep;
1114 
1115 	if (obj_elf_valid(obj)) {
1116 		pr_warn("elf: init internal error\n");
1117 		return -LIBBPF_ERRNO__LIBELF;
1118 	}
1119 
1120 	if (obj->efile.obj_buf_sz > 0) {
1121 		/*
1122 		 * obj_buf should have been validated by
1123 		 * bpf_object__open_buffer().
1124 		 */
1125 		obj->efile.elf = elf_memory((char *)obj->efile.obj_buf,
1126 					    obj->efile.obj_buf_sz);
1127 	} else {
1128 		obj->efile.fd = open(obj->path, O_RDONLY);
1129 		if (obj->efile.fd < 0) {
1130 			char errmsg[STRERR_BUFSIZE], *cp;
1131 
1132 			err = -errno;
1133 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1134 			pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1135 			return err;
1136 		}
1137 
1138 		obj->efile.elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1139 	}
1140 
1141 	if (!obj->efile.elf) {
1142 		pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1143 		err = -LIBBPF_ERRNO__LIBELF;
1144 		goto errout;
1145 	}
1146 
1147 	if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) {
1148 		pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1149 		err = -LIBBPF_ERRNO__FORMAT;
1150 		goto errout;
1151 	}
1152 	ep = &obj->efile.ehdr;
1153 
1154 	if (elf_getshdrstrndx(obj->efile.elf, &obj->efile.shstrndx)) {
1155 		pr_warn("elf: failed to get section names section index for %s: %s\n",
1156 			obj->path, elf_errmsg(-1));
1157 		err = -LIBBPF_ERRNO__FORMAT;
1158 		goto errout;
1159 	}
1160 
1161 	/* Elf is corrupted/truncated, avoid calling elf_strptr. */
1162 	if (!elf_rawdata(elf_getscn(obj->efile.elf, obj->efile.shstrndx), NULL)) {
1163 		pr_warn("elf: failed to get section names strings from %s: %s\n",
1164 			obj->path, elf_errmsg(-1));
1165 		return -LIBBPF_ERRNO__FORMAT;
1166 	}
1167 
1168 	/* Old LLVM set e_machine to EM_NONE */
1169 	if (ep->e_type != ET_REL ||
1170 	    (ep->e_machine && ep->e_machine != EM_BPF)) {
1171 		pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1172 		err = -LIBBPF_ERRNO__FORMAT;
1173 		goto errout;
1174 	}
1175 
1176 	return 0;
1177 errout:
1178 	bpf_object__elf_finish(obj);
1179 	return err;
1180 }
1181 
1182 static int bpf_object__check_endianness(struct bpf_object *obj)
1183 {
1184 #if __BYTE_ORDER == __LITTLE_ENDIAN
1185 	if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2LSB)
1186 		return 0;
1187 #elif __BYTE_ORDER == __BIG_ENDIAN
1188 	if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2MSB)
1189 		return 0;
1190 #else
1191 # error "Unrecognized __BYTE_ORDER__"
1192 #endif
1193 	pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1194 	return -LIBBPF_ERRNO__ENDIAN;
1195 }
1196 
1197 static int
1198 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1199 {
1200 	memcpy(obj->license, data, min(size, sizeof(obj->license) - 1));
1201 	pr_debug("license of %s is %s\n", obj->path, obj->license);
1202 	return 0;
1203 }
1204 
1205 static int
1206 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1207 {
1208 	__u32 kver;
1209 
1210 	if (size != sizeof(kver)) {
1211 		pr_warn("invalid kver section in %s\n", obj->path);
1212 		return -LIBBPF_ERRNO__FORMAT;
1213 	}
1214 	memcpy(&kver, data, sizeof(kver));
1215 	obj->kern_version = kver;
1216 	pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1217 	return 0;
1218 }
1219 
1220 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1221 {
1222 	if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1223 	    type == BPF_MAP_TYPE_HASH_OF_MAPS)
1224 		return true;
1225 	return false;
1226 }
1227 
1228 int bpf_object__section_size(const struct bpf_object *obj, const char *name,
1229 			     __u32 *size)
1230 {
1231 	int ret = -ENOENT;
1232 
1233 	*size = 0;
1234 	if (!name) {
1235 		return -EINVAL;
1236 	} else if (!strcmp(name, DATA_SEC)) {
1237 		if (obj->efile.data)
1238 			*size = obj->efile.data->d_size;
1239 	} else if (!strcmp(name, BSS_SEC)) {
1240 		if (obj->efile.bss)
1241 			*size = obj->efile.bss->d_size;
1242 	} else if (!strcmp(name, RODATA_SEC)) {
1243 		if (obj->efile.rodata)
1244 			*size = obj->efile.rodata->d_size;
1245 	} else if (!strcmp(name, STRUCT_OPS_SEC)) {
1246 		if (obj->efile.st_ops_data)
1247 			*size = obj->efile.st_ops_data->d_size;
1248 	} else {
1249 		Elf_Scn *scn = elf_sec_by_name(obj, name);
1250 		Elf_Data *data = elf_sec_data(obj, scn);
1251 
1252 		if (data) {
1253 			ret = 0; /* found it */
1254 			*size = data->d_size;
1255 		}
1256 	}
1257 
1258 	return *size ? 0 : ret;
1259 }
1260 
1261 int bpf_object__variable_offset(const struct bpf_object *obj, const char *name,
1262 				__u32 *off)
1263 {
1264 	Elf_Data *symbols = obj->efile.symbols;
1265 	const char *sname;
1266 	size_t si;
1267 
1268 	if (!name || !off)
1269 		return -EINVAL;
1270 
1271 	for (si = 0; si < symbols->d_size / sizeof(GElf_Sym); si++) {
1272 		GElf_Sym sym;
1273 
1274 		if (!gelf_getsym(symbols, si, &sym))
1275 			continue;
1276 		if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL ||
1277 		    GELF_ST_TYPE(sym.st_info) != STT_OBJECT)
1278 			continue;
1279 
1280 		sname = elf_sym_str(obj, sym.st_name);
1281 		if (!sname) {
1282 			pr_warn("failed to get sym name string for var %s\n",
1283 				name);
1284 			return -EIO;
1285 		}
1286 		if (strcmp(name, sname) == 0) {
1287 			*off = sym.st_value;
1288 			return 0;
1289 		}
1290 	}
1291 
1292 	return -ENOENT;
1293 }
1294 
1295 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1296 {
1297 	struct bpf_map *new_maps;
1298 	size_t new_cap;
1299 	int i;
1300 
1301 	if (obj->nr_maps < obj->maps_cap)
1302 		return &obj->maps[obj->nr_maps++];
1303 
1304 	new_cap = max((size_t)4, obj->maps_cap * 3 / 2);
1305 	new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps));
1306 	if (!new_maps) {
1307 		pr_warn("alloc maps for object failed\n");
1308 		return ERR_PTR(-ENOMEM);
1309 	}
1310 
1311 	obj->maps_cap = new_cap;
1312 	obj->maps = new_maps;
1313 
1314 	/* zero out new maps */
1315 	memset(obj->maps + obj->nr_maps, 0,
1316 	       (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps));
1317 	/*
1318 	 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin)
1319 	 * when failure (zclose won't close negative fd)).
1320 	 */
1321 	for (i = obj->nr_maps; i < obj->maps_cap; i++) {
1322 		obj->maps[i].fd = -1;
1323 		obj->maps[i].inner_map_fd = -1;
1324 	}
1325 
1326 	return &obj->maps[obj->nr_maps++];
1327 }
1328 
1329 static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1330 {
1331 	long page_sz = sysconf(_SC_PAGE_SIZE);
1332 	size_t map_sz;
1333 
1334 	map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries;
1335 	map_sz = roundup(map_sz, page_sz);
1336 	return map_sz;
1337 }
1338 
1339 static char *internal_map_name(struct bpf_object *obj,
1340 			       enum libbpf_map_type type)
1341 {
1342 	char map_name[BPF_OBJ_NAME_LEN], *p;
1343 	const char *sfx = libbpf_type_to_btf_name[type];
1344 	int sfx_len = max((size_t)7, strlen(sfx));
1345 	int pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1,
1346 			  strlen(obj->name));
1347 
1348 	snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1349 		 sfx_len, libbpf_type_to_btf_name[type]);
1350 
1351 	/* sanitise map name to characters allowed by kernel */
1352 	for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1353 		if (!isalnum(*p) && *p != '_' && *p != '.')
1354 			*p = '_';
1355 
1356 	return strdup(map_name);
1357 }
1358 
1359 static int
1360 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1361 			      int sec_idx, void *data, size_t data_sz)
1362 {
1363 	struct bpf_map_def *def;
1364 	struct bpf_map *map;
1365 	int err;
1366 
1367 	map = bpf_object__add_map(obj);
1368 	if (IS_ERR(map))
1369 		return PTR_ERR(map);
1370 
1371 	map->libbpf_type = type;
1372 	map->sec_idx = sec_idx;
1373 	map->sec_offset = 0;
1374 	map->name = internal_map_name(obj, type);
1375 	if (!map->name) {
1376 		pr_warn("failed to alloc map name\n");
1377 		return -ENOMEM;
1378 	}
1379 
1380 	def = &map->def;
1381 	def->type = BPF_MAP_TYPE_ARRAY;
1382 	def->key_size = sizeof(int);
1383 	def->value_size = data_sz;
1384 	def->max_entries = 1;
1385 	def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1386 			 ? BPF_F_RDONLY_PROG : 0;
1387 	def->map_flags |= BPF_F_MMAPABLE;
1388 
1389 	pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1390 		 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1391 
1392 	map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
1393 			   MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1394 	if (map->mmaped == MAP_FAILED) {
1395 		err = -errno;
1396 		map->mmaped = NULL;
1397 		pr_warn("failed to alloc map '%s' content buffer: %d\n",
1398 			map->name, err);
1399 		zfree(&map->name);
1400 		return err;
1401 	}
1402 
1403 	if (data)
1404 		memcpy(map->mmaped, data, data_sz);
1405 
1406 	pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1407 	return 0;
1408 }
1409 
1410 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1411 {
1412 	int err;
1413 
1414 	/*
1415 	 * Populate obj->maps with libbpf internal maps.
1416 	 */
1417 	if (obj->efile.data_shndx >= 0) {
1418 		err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1419 						    obj->efile.data_shndx,
1420 						    obj->efile.data->d_buf,
1421 						    obj->efile.data->d_size);
1422 		if (err)
1423 			return err;
1424 	}
1425 	if (obj->efile.rodata_shndx >= 0) {
1426 		err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1427 						    obj->efile.rodata_shndx,
1428 						    obj->efile.rodata->d_buf,
1429 						    obj->efile.rodata->d_size);
1430 		if (err)
1431 			return err;
1432 
1433 		obj->rodata_map_idx = obj->nr_maps - 1;
1434 	}
1435 	if (obj->efile.bss_shndx >= 0) {
1436 		err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1437 						    obj->efile.bss_shndx,
1438 						    NULL,
1439 						    obj->efile.bss->d_size);
1440 		if (err)
1441 			return err;
1442 	}
1443 	return 0;
1444 }
1445 
1446 
1447 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1448 					       const void *name)
1449 {
1450 	int i;
1451 
1452 	for (i = 0; i < obj->nr_extern; i++) {
1453 		if (strcmp(obj->externs[i].name, name) == 0)
1454 			return &obj->externs[i];
1455 	}
1456 	return NULL;
1457 }
1458 
1459 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1460 			      char value)
1461 {
1462 	switch (ext->kcfg.type) {
1463 	case KCFG_BOOL:
1464 		if (value == 'm') {
1465 			pr_warn("extern (kcfg) %s=%c should be tristate or char\n",
1466 				ext->name, value);
1467 			return -EINVAL;
1468 		}
1469 		*(bool *)ext_val = value == 'y' ? true : false;
1470 		break;
1471 	case KCFG_TRISTATE:
1472 		if (value == 'y')
1473 			*(enum libbpf_tristate *)ext_val = TRI_YES;
1474 		else if (value == 'm')
1475 			*(enum libbpf_tristate *)ext_val = TRI_MODULE;
1476 		else /* value == 'n' */
1477 			*(enum libbpf_tristate *)ext_val = TRI_NO;
1478 		break;
1479 	case KCFG_CHAR:
1480 		*(char *)ext_val = value;
1481 		break;
1482 	case KCFG_UNKNOWN:
1483 	case KCFG_INT:
1484 	case KCFG_CHAR_ARR:
1485 	default:
1486 		pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n",
1487 			ext->name, value);
1488 		return -EINVAL;
1489 	}
1490 	ext->is_set = true;
1491 	return 0;
1492 }
1493 
1494 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1495 			      const char *value)
1496 {
1497 	size_t len;
1498 
1499 	if (ext->kcfg.type != KCFG_CHAR_ARR) {
1500 		pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value);
1501 		return -EINVAL;
1502 	}
1503 
1504 	len = strlen(value);
1505 	if (value[len - 1] != '"') {
1506 		pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1507 			ext->name, value);
1508 		return -EINVAL;
1509 	}
1510 
1511 	/* strip quotes */
1512 	len -= 2;
1513 	if (len >= ext->kcfg.sz) {
1514 		pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n",
1515 			ext->name, value, len, ext->kcfg.sz - 1);
1516 		len = ext->kcfg.sz - 1;
1517 	}
1518 	memcpy(ext_val, value + 1, len);
1519 	ext_val[len] = '\0';
1520 	ext->is_set = true;
1521 	return 0;
1522 }
1523 
1524 static int parse_u64(const char *value, __u64 *res)
1525 {
1526 	char *value_end;
1527 	int err;
1528 
1529 	errno = 0;
1530 	*res = strtoull(value, &value_end, 0);
1531 	if (errno) {
1532 		err = -errno;
1533 		pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1534 		return err;
1535 	}
1536 	if (*value_end) {
1537 		pr_warn("failed to parse '%s' as integer completely\n", value);
1538 		return -EINVAL;
1539 	}
1540 	return 0;
1541 }
1542 
1543 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1544 {
1545 	int bit_sz = ext->kcfg.sz * 8;
1546 
1547 	if (ext->kcfg.sz == 8)
1548 		return true;
1549 
1550 	/* Validate that value stored in u64 fits in integer of `ext->sz`
1551 	 * bytes size without any loss of information. If the target integer
1552 	 * is signed, we rely on the following limits of integer type of
1553 	 * Y bits and subsequent transformation:
1554 	 *
1555 	 *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
1556 	 *            0 <= X + 2^(Y-1) <= 2^Y - 1
1557 	 *            0 <= X + 2^(Y-1) <  2^Y
1558 	 *
1559 	 *  For unsigned target integer, check that all the (64 - Y) bits are
1560 	 *  zero.
1561 	 */
1562 	if (ext->kcfg.is_signed)
1563 		return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1564 	else
1565 		return (v >> bit_sz) == 0;
1566 }
1567 
1568 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1569 			      __u64 value)
1570 {
1571 	if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1572 		pr_warn("extern (kcfg) %s=%llu should be integer\n",
1573 			ext->name, (unsigned long long)value);
1574 		return -EINVAL;
1575 	}
1576 	if (!is_kcfg_value_in_range(ext, value)) {
1577 		pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n",
1578 			ext->name, (unsigned long long)value, ext->kcfg.sz);
1579 		return -ERANGE;
1580 	}
1581 	switch (ext->kcfg.sz) {
1582 		case 1: *(__u8 *)ext_val = value; break;
1583 		case 2: *(__u16 *)ext_val = value; break;
1584 		case 4: *(__u32 *)ext_val = value; break;
1585 		case 8: *(__u64 *)ext_val = value; break;
1586 		default:
1587 			return -EINVAL;
1588 	}
1589 	ext->is_set = true;
1590 	return 0;
1591 }
1592 
1593 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1594 					    char *buf, void *data)
1595 {
1596 	struct extern_desc *ext;
1597 	char *sep, *value;
1598 	int len, err = 0;
1599 	void *ext_val;
1600 	__u64 num;
1601 
1602 	if (strncmp(buf, "CONFIG_", 7))
1603 		return 0;
1604 
1605 	sep = strchr(buf, '=');
1606 	if (!sep) {
1607 		pr_warn("failed to parse '%s': no separator\n", buf);
1608 		return -EINVAL;
1609 	}
1610 
1611 	/* Trim ending '\n' */
1612 	len = strlen(buf);
1613 	if (buf[len - 1] == '\n')
1614 		buf[len - 1] = '\0';
1615 	/* Split on '=' and ensure that a value is present. */
1616 	*sep = '\0';
1617 	if (!sep[1]) {
1618 		*sep = '=';
1619 		pr_warn("failed to parse '%s': no value\n", buf);
1620 		return -EINVAL;
1621 	}
1622 
1623 	ext = find_extern_by_name(obj, buf);
1624 	if (!ext || ext->is_set)
1625 		return 0;
1626 
1627 	ext_val = data + ext->kcfg.data_off;
1628 	value = sep + 1;
1629 
1630 	switch (*value) {
1631 	case 'y': case 'n': case 'm':
1632 		err = set_kcfg_value_tri(ext, ext_val, *value);
1633 		break;
1634 	case '"':
1635 		err = set_kcfg_value_str(ext, ext_val, value);
1636 		break;
1637 	default:
1638 		/* assume integer */
1639 		err = parse_u64(value, &num);
1640 		if (err) {
1641 			pr_warn("extern (kcfg) %s=%s should be integer\n",
1642 				ext->name, value);
1643 			return err;
1644 		}
1645 		err = set_kcfg_value_num(ext, ext_val, num);
1646 		break;
1647 	}
1648 	if (err)
1649 		return err;
1650 	pr_debug("extern (kcfg) %s=%s\n", ext->name, value);
1651 	return 0;
1652 }
1653 
1654 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1655 {
1656 	char buf[PATH_MAX];
1657 	struct utsname uts;
1658 	int len, err = 0;
1659 	gzFile file;
1660 
1661 	uname(&uts);
1662 	len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1663 	if (len < 0)
1664 		return -EINVAL;
1665 	else if (len >= PATH_MAX)
1666 		return -ENAMETOOLONG;
1667 
1668 	/* gzopen also accepts uncompressed files. */
1669 	file = gzopen(buf, "r");
1670 	if (!file)
1671 		file = gzopen("/proc/config.gz", "r");
1672 
1673 	if (!file) {
1674 		pr_warn("failed to open system Kconfig\n");
1675 		return -ENOENT;
1676 	}
1677 
1678 	while (gzgets(file, buf, sizeof(buf))) {
1679 		err = bpf_object__process_kconfig_line(obj, buf, data);
1680 		if (err) {
1681 			pr_warn("error parsing system Kconfig line '%s': %d\n",
1682 				buf, err);
1683 			goto out;
1684 		}
1685 	}
1686 
1687 out:
1688 	gzclose(file);
1689 	return err;
1690 }
1691 
1692 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
1693 					const char *config, void *data)
1694 {
1695 	char buf[PATH_MAX];
1696 	int err = 0;
1697 	FILE *file;
1698 
1699 	file = fmemopen((void *)config, strlen(config), "r");
1700 	if (!file) {
1701 		err = -errno;
1702 		pr_warn("failed to open in-memory Kconfig: %d\n", err);
1703 		return err;
1704 	}
1705 
1706 	while (fgets(buf, sizeof(buf), file)) {
1707 		err = bpf_object__process_kconfig_line(obj, buf, data);
1708 		if (err) {
1709 			pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
1710 				buf, err);
1711 			break;
1712 		}
1713 	}
1714 
1715 	fclose(file);
1716 	return err;
1717 }
1718 
1719 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
1720 {
1721 	struct extern_desc *last_ext = NULL, *ext;
1722 	size_t map_sz;
1723 	int i, err;
1724 
1725 	for (i = 0; i < obj->nr_extern; i++) {
1726 		ext = &obj->externs[i];
1727 		if (ext->type == EXT_KCFG)
1728 			last_ext = ext;
1729 	}
1730 
1731 	if (!last_ext)
1732 		return 0;
1733 
1734 	map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
1735 	err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
1736 					    obj->efile.symbols_shndx,
1737 					    NULL, map_sz);
1738 	if (err)
1739 		return err;
1740 
1741 	obj->kconfig_map_idx = obj->nr_maps - 1;
1742 
1743 	return 0;
1744 }
1745 
1746 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict)
1747 {
1748 	Elf_Data *symbols = obj->efile.symbols;
1749 	int i, map_def_sz = 0, nr_maps = 0, nr_syms;
1750 	Elf_Data *data = NULL;
1751 	Elf_Scn *scn;
1752 
1753 	if (obj->efile.maps_shndx < 0)
1754 		return 0;
1755 
1756 	if (!symbols)
1757 		return -EINVAL;
1758 
1759 
1760 	scn = elf_sec_by_idx(obj, obj->efile.maps_shndx);
1761 	data = elf_sec_data(obj, scn);
1762 	if (!scn || !data) {
1763 		pr_warn("elf: failed to get legacy map definitions for %s\n",
1764 			obj->path);
1765 		return -EINVAL;
1766 	}
1767 
1768 	/*
1769 	 * Count number of maps. Each map has a name.
1770 	 * Array of maps is not supported: only the first element is
1771 	 * considered.
1772 	 *
1773 	 * TODO: Detect array of map and report error.
1774 	 */
1775 	nr_syms = symbols->d_size / sizeof(GElf_Sym);
1776 	for (i = 0; i < nr_syms; i++) {
1777 		GElf_Sym sym;
1778 
1779 		if (!gelf_getsym(symbols, i, &sym))
1780 			continue;
1781 		if (sym.st_shndx != obj->efile.maps_shndx)
1782 			continue;
1783 		nr_maps++;
1784 	}
1785 	/* Assume equally sized map definitions */
1786 	pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n",
1787 		 nr_maps, data->d_size, obj->path);
1788 
1789 	if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) {
1790 		pr_warn("elf: unable to determine legacy map definition size in %s\n",
1791 			obj->path);
1792 		return -EINVAL;
1793 	}
1794 	map_def_sz = data->d_size / nr_maps;
1795 
1796 	/* Fill obj->maps using data in "maps" section.  */
1797 	for (i = 0; i < nr_syms; i++) {
1798 		GElf_Sym sym;
1799 		const char *map_name;
1800 		struct bpf_map_def *def;
1801 		struct bpf_map *map;
1802 
1803 		if (!gelf_getsym(symbols, i, &sym))
1804 			continue;
1805 		if (sym.st_shndx != obj->efile.maps_shndx)
1806 			continue;
1807 
1808 		map = bpf_object__add_map(obj);
1809 		if (IS_ERR(map))
1810 			return PTR_ERR(map);
1811 
1812 		map_name = elf_sym_str(obj, sym.st_name);
1813 		if (!map_name) {
1814 			pr_warn("failed to get map #%d name sym string for obj %s\n",
1815 				i, obj->path);
1816 			return -LIBBPF_ERRNO__FORMAT;
1817 		}
1818 
1819 		map->libbpf_type = LIBBPF_MAP_UNSPEC;
1820 		map->sec_idx = sym.st_shndx;
1821 		map->sec_offset = sym.st_value;
1822 		pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n",
1823 			 map_name, map->sec_idx, map->sec_offset);
1824 		if (sym.st_value + map_def_sz > data->d_size) {
1825 			pr_warn("corrupted maps section in %s: last map \"%s\" too small\n",
1826 				obj->path, map_name);
1827 			return -EINVAL;
1828 		}
1829 
1830 		map->name = strdup(map_name);
1831 		if (!map->name) {
1832 			pr_warn("failed to alloc map name\n");
1833 			return -ENOMEM;
1834 		}
1835 		pr_debug("map %d is \"%s\"\n", i, map->name);
1836 		def = (struct bpf_map_def *)(data->d_buf + sym.st_value);
1837 		/*
1838 		 * If the definition of the map in the object file fits in
1839 		 * bpf_map_def, copy it.  Any extra fields in our version
1840 		 * of bpf_map_def will default to zero as a result of the
1841 		 * calloc above.
1842 		 */
1843 		if (map_def_sz <= sizeof(struct bpf_map_def)) {
1844 			memcpy(&map->def, def, map_def_sz);
1845 		} else {
1846 			/*
1847 			 * Here the map structure being read is bigger than what
1848 			 * we expect, truncate if the excess bits are all zero.
1849 			 * If they are not zero, reject this map as
1850 			 * incompatible.
1851 			 */
1852 			char *b;
1853 
1854 			for (b = ((char *)def) + sizeof(struct bpf_map_def);
1855 			     b < ((char *)def) + map_def_sz; b++) {
1856 				if (*b != 0) {
1857 					pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n",
1858 						obj->path, map_name);
1859 					if (strict)
1860 						return -EINVAL;
1861 				}
1862 			}
1863 			memcpy(&map->def, def, sizeof(struct bpf_map_def));
1864 		}
1865 	}
1866 	return 0;
1867 }
1868 
1869 static const struct btf_type *
1870 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
1871 {
1872 	const struct btf_type *t = btf__type_by_id(btf, id);
1873 
1874 	if (res_id)
1875 		*res_id = id;
1876 
1877 	while (btf_is_mod(t) || btf_is_typedef(t)) {
1878 		if (res_id)
1879 			*res_id = t->type;
1880 		t = btf__type_by_id(btf, t->type);
1881 	}
1882 
1883 	return t;
1884 }
1885 
1886 static const struct btf_type *
1887 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
1888 {
1889 	const struct btf_type *t;
1890 
1891 	t = skip_mods_and_typedefs(btf, id, NULL);
1892 	if (!btf_is_ptr(t))
1893 		return NULL;
1894 
1895 	t = skip_mods_and_typedefs(btf, t->type, res_id);
1896 
1897 	return btf_is_func_proto(t) ? t : NULL;
1898 }
1899 
1900 static const char *btf_kind_str(const struct btf_type *t)
1901 {
1902 	switch (btf_kind(t)) {
1903 	case BTF_KIND_UNKN: return "void";
1904 	case BTF_KIND_INT: return "int";
1905 	case BTF_KIND_PTR: return "ptr";
1906 	case BTF_KIND_ARRAY: return "array";
1907 	case BTF_KIND_STRUCT: return "struct";
1908 	case BTF_KIND_UNION: return "union";
1909 	case BTF_KIND_ENUM: return "enum";
1910 	case BTF_KIND_FWD: return "fwd";
1911 	case BTF_KIND_TYPEDEF: return "typedef";
1912 	case BTF_KIND_VOLATILE: return "volatile";
1913 	case BTF_KIND_CONST: return "const";
1914 	case BTF_KIND_RESTRICT: return "restrict";
1915 	case BTF_KIND_FUNC: return "func";
1916 	case BTF_KIND_FUNC_PROTO: return "func_proto";
1917 	case BTF_KIND_VAR: return "var";
1918 	case BTF_KIND_DATASEC: return "datasec";
1919 	default: return "unknown";
1920 	}
1921 }
1922 
1923 /*
1924  * Fetch integer attribute of BTF map definition. Such attributes are
1925  * represented using a pointer to an array, in which dimensionality of array
1926  * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
1927  * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
1928  * type definition, while using only sizeof(void *) space in ELF data section.
1929  */
1930 static bool get_map_field_int(const char *map_name, const struct btf *btf,
1931 			      const struct btf_member *m, __u32 *res)
1932 {
1933 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
1934 	const char *name = btf__name_by_offset(btf, m->name_off);
1935 	const struct btf_array *arr_info;
1936 	const struct btf_type *arr_t;
1937 
1938 	if (!btf_is_ptr(t)) {
1939 		pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
1940 			map_name, name, btf_kind_str(t));
1941 		return false;
1942 	}
1943 
1944 	arr_t = btf__type_by_id(btf, t->type);
1945 	if (!arr_t) {
1946 		pr_warn("map '%s': attr '%s': type [%u] not found.\n",
1947 			map_name, name, t->type);
1948 		return false;
1949 	}
1950 	if (!btf_is_array(arr_t)) {
1951 		pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
1952 			map_name, name, btf_kind_str(arr_t));
1953 		return false;
1954 	}
1955 	arr_info = btf_array(arr_t);
1956 	*res = arr_info->nelems;
1957 	return true;
1958 }
1959 
1960 static int build_map_pin_path(struct bpf_map *map, const char *path)
1961 {
1962 	char buf[PATH_MAX];
1963 	int len;
1964 
1965 	if (!path)
1966 		path = "/sys/fs/bpf";
1967 
1968 	len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map));
1969 	if (len < 0)
1970 		return -EINVAL;
1971 	else if (len >= PATH_MAX)
1972 		return -ENAMETOOLONG;
1973 
1974 	return bpf_map__set_pin_path(map, buf);
1975 }
1976 
1977 
1978 static int parse_btf_map_def(struct bpf_object *obj,
1979 			     struct bpf_map *map,
1980 			     const struct btf_type *def,
1981 			     bool strict, bool is_inner,
1982 			     const char *pin_root_path)
1983 {
1984 	const struct btf_type *t;
1985 	const struct btf_member *m;
1986 	int vlen, i;
1987 
1988 	vlen = btf_vlen(def);
1989 	m = btf_members(def);
1990 	for (i = 0; i < vlen; i++, m++) {
1991 		const char *name = btf__name_by_offset(obj->btf, m->name_off);
1992 
1993 		if (!name) {
1994 			pr_warn("map '%s': invalid field #%d.\n", map->name, i);
1995 			return -EINVAL;
1996 		}
1997 		if (strcmp(name, "type") == 0) {
1998 			if (!get_map_field_int(map->name, obj->btf, m,
1999 					       &map->def.type))
2000 				return -EINVAL;
2001 			pr_debug("map '%s': found type = %u.\n",
2002 				 map->name, map->def.type);
2003 		} else if (strcmp(name, "max_entries") == 0) {
2004 			if (!get_map_field_int(map->name, obj->btf, m,
2005 					       &map->def.max_entries))
2006 				return -EINVAL;
2007 			pr_debug("map '%s': found max_entries = %u.\n",
2008 				 map->name, map->def.max_entries);
2009 		} else if (strcmp(name, "map_flags") == 0) {
2010 			if (!get_map_field_int(map->name, obj->btf, m,
2011 					       &map->def.map_flags))
2012 				return -EINVAL;
2013 			pr_debug("map '%s': found map_flags = %u.\n",
2014 				 map->name, map->def.map_flags);
2015 		} else if (strcmp(name, "numa_node") == 0) {
2016 			if (!get_map_field_int(map->name, obj->btf, m, &map->numa_node))
2017 				return -EINVAL;
2018 			pr_debug("map '%s': found numa_node = %u.\n", map->name, map->numa_node);
2019 		} else if (strcmp(name, "key_size") == 0) {
2020 			__u32 sz;
2021 
2022 			if (!get_map_field_int(map->name, obj->btf, m, &sz))
2023 				return -EINVAL;
2024 			pr_debug("map '%s': found key_size = %u.\n",
2025 				 map->name, sz);
2026 			if (map->def.key_size && map->def.key_size != sz) {
2027 				pr_warn("map '%s': conflicting key size %u != %u.\n",
2028 					map->name, map->def.key_size, sz);
2029 				return -EINVAL;
2030 			}
2031 			map->def.key_size = sz;
2032 		} else if (strcmp(name, "key") == 0) {
2033 			__s64 sz;
2034 
2035 			t = btf__type_by_id(obj->btf, m->type);
2036 			if (!t) {
2037 				pr_warn("map '%s': key type [%d] not found.\n",
2038 					map->name, m->type);
2039 				return -EINVAL;
2040 			}
2041 			if (!btf_is_ptr(t)) {
2042 				pr_warn("map '%s': key spec is not PTR: %s.\n",
2043 					map->name, btf_kind_str(t));
2044 				return -EINVAL;
2045 			}
2046 			sz = btf__resolve_size(obj->btf, t->type);
2047 			if (sz < 0) {
2048 				pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2049 					map->name, t->type, (ssize_t)sz);
2050 				return sz;
2051 			}
2052 			pr_debug("map '%s': found key [%u], sz = %zd.\n",
2053 				 map->name, t->type, (ssize_t)sz);
2054 			if (map->def.key_size && map->def.key_size != sz) {
2055 				pr_warn("map '%s': conflicting key size %u != %zd.\n",
2056 					map->name, map->def.key_size, (ssize_t)sz);
2057 				return -EINVAL;
2058 			}
2059 			map->def.key_size = sz;
2060 			map->btf_key_type_id = t->type;
2061 		} else if (strcmp(name, "value_size") == 0) {
2062 			__u32 sz;
2063 
2064 			if (!get_map_field_int(map->name, obj->btf, m, &sz))
2065 				return -EINVAL;
2066 			pr_debug("map '%s': found value_size = %u.\n",
2067 				 map->name, sz);
2068 			if (map->def.value_size && map->def.value_size != sz) {
2069 				pr_warn("map '%s': conflicting value size %u != %u.\n",
2070 					map->name, map->def.value_size, sz);
2071 				return -EINVAL;
2072 			}
2073 			map->def.value_size = sz;
2074 		} else if (strcmp(name, "value") == 0) {
2075 			__s64 sz;
2076 
2077 			t = btf__type_by_id(obj->btf, m->type);
2078 			if (!t) {
2079 				pr_warn("map '%s': value type [%d] not found.\n",
2080 					map->name, m->type);
2081 				return -EINVAL;
2082 			}
2083 			if (!btf_is_ptr(t)) {
2084 				pr_warn("map '%s': value spec is not PTR: %s.\n",
2085 					map->name, btf_kind_str(t));
2086 				return -EINVAL;
2087 			}
2088 			sz = btf__resolve_size(obj->btf, t->type);
2089 			if (sz < 0) {
2090 				pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2091 					map->name, t->type, (ssize_t)sz);
2092 				return sz;
2093 			}
2094 			pr_debug("map '%s': found value [%u], sz = %zd.\n",
2095 				 map->name, t->type, (ssize_t)sz);
2096 			if (map->def.value_size && map->def.value_size != sz) {
2097 				pr_warn("map '%s': conflicting value size %u != %zd.\n",
2098 					map->name, map->def.value_size, (ssize_t)sz);
2099 				return -EINVAL;
2100 			}
2101 			map->def.value_size = sz;
2102 			map->btf_value_type_id = t->type;
2103 		}
2104 		else if (strcmp(name, "values") == 0) {
2105 			int err;
2106 
2107 			if (is_inner) {
2108 				pr_warn("map '%s': multi-level inner maps not supported.\n",
2109 					map->name);
2110 				return -ENOTSUP;
2111 			}
2112 			if (i != vlen - 1) {
2113 				pr_warn("map '%s': '%s' member should be last.\n",
2114 					map->name, name);
2115 				return -EINVAL;
2116 			}
2117 			if (!bpf_map_type__is_map_in_map(map->def.type)) {
2118 				pr_warn("map '%s': should be map-in-map.\n",
2119 					map->name);
2120 				return -ENOTSUP;
2121 			}
2122 			if (map->def.value_size && map->def.value_size != 4) {
2123 				pr_warn("map '%s': conflicting value size %u != 4.\n",
2124 					map->name, map->def.value_size);
2125 				return -EINVAL;
2126 			}
2127 			map->def.value_size = 4;
2128 			t = btf__type_by_id(obj->btf, m->type);
2129 			if (!t) {
2130 				pr_warn("map '%s': map-in-map inner type [%d] not found.\n",
2131 					map->name, m->type);
2132 				return -EINVAL;
2133 			}
2134 			if (!btf_is_array(t) || btf_array(t)->nelems) {
2135 				pr_warn("map '%s': map-in-map inner spec is not a zero-sized array.\n",
2136 					map->name);
2137 				return -EINVAL;
2138 			}
2139 			t = skip_mods_and_typedefs(obj->btf, btf_array(t)->type,
2140 						   NULL);
2141 			if (!btf_is_ptr(t)) {
2142 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2143 					map->name, btf_kind_str(t));
2144 				return -EINVAL;
2145 			}
2146 			t = skip_mods_and_typedefs(obj->btf, t->type, NULL);
2147 			if (!btf_is_struct(t)) {
2148 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2149 					map->name, btf_kind_str(t));
2150 				return -EINVAL;
2151 			}
2152 
2153 			map->inner_map = calloc(1, sizeof(*map->inner_map));
2154 			if (!map->inner_map)
2155 				return -ENOMEM;
2156 			map->inner_map->sec_idx = obj->efile.btf_maps_shndx;
2157 			map->inner_map->name = malloc(strlen(map->name) +
2158 						      sizeof(".inner") + 1);
2159 			if (!map->inner_map->name)
2160 				return -ENOMEM;
2161 			sprintf(map->inner_map->name, "%s.inner", map->name);
2162 
2163 			err = parse_btf_map_def(obj, map->inner_map, t, strict,
2164 						true /* is_inner */, NULL);
2165 			if (err)
2166 				return err;
2167 		} else if (strcmp(name, "pinning") == 0) {
2168 			__u32 val;
2169 			int err;
2170 
2171 			if (is_inner) {
2172 				pr_debug("map '%s': inner def can't be pinned.\n",
2173 					 map->name);
2174 				return -EINVAL;
2175 			}
2176 			if (!get_map_field_int(map->name, obj->btf, m, &val))
2177 				return -EINVAL;
2178 			pr_debug("map '%s': found pinning = %u.\n",
2179 				 map->name, val);
2180 
2181 			if (val != LIBBPF_PIN_NONE &&
2182 			    val != LIBBPF_PIN_BY_NAME) {
2183 				pr_warn("map '%s': invalid pinning value %u.\n",
2184 					map->name, val);
2185 				return -EINVAL;
2186 			}
2187 			if (val == LIBBPF_PIN_BY_NAME) {
2188 				err = build_map_pin_path(map, pin_root_path);
2189 				if (err) {
2190 					pr_warn("map '%s': couldn't build pin path.\n",
2191 						map->name);
2192 					return err;
2193 				}
2194 			}
2195 		} else {
2196 			if (strict) {
2197 				pr_warn("map '%s': unknown field '%s'.\n",
2198 					map->name, name);
2199 				return -ENOTSUP;
2200 			}
2201 			pr_debug("map '%s': ignoring unknown field '%s'.\n",
2202 				 map->name, name);
2203 		}
2204 	}
2205 
2206 	if (map->def.type == BPF_MAP_TYPE_UNSPEC) {
2207 		pr_warn("map '%s': map type isn't specified.\n", map->name);
2208 		return -EINVAL;
2209 	}
2210 
2211 	return 0;
2212 }
2213 
2214 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2215 					 const struct btf_type *sec,
2216 					 int var_idx, int sec_idx,
2217 					 const Elf_Data *data, bool strict,
2218 					 const char *pin_root_path)
2219 {
2220 	const struct btf_type *var, *def;
2221 	const struct btf_var_secinfo *vi;
2222 	const struct btf_var *var_extra;
2223 	const char *map_name;
2224 	struct bpf_map *map;
2225 
2226 	vi = btf_var_secinfos(sec) + var_idx;
2227 	var = btf__type_by_id(obj->btf, vi->type);
2228 	var_extra = btf_var(var);
2229 	map_name = btf__name_by_offset(obj->btf, var->name_off);
2230 
2231 	if (map_name == NULL || map_name[0] == '\0') {
2232 		pr_warn("map #%d: empty name.\n", var_idx);
2233 		return -EINVAL;
2234 	}
2235 	if ((__u64)vi->offset + vi->size > data->d_size) {
2236 		pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2237 		return -EINVAL;
2238 	}
2239 	if (!btf_is_var(var)) {
2240 		pr_warn("map '%s': unexpected var kind %s.\n",
2241 			map_name, btf_kind_str(var));
2242 		return -EINVAL;
2243 	}
2244 	if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2245 	    var_extra->linkage != BTF_VAR_STATIC) {
2246 		pr_warn("map '%s': unsupported var linkage %u.\n",
2247 			map_name, var_extra->linkage);
2248 		return -EOPNOTSUPP;
2249 	}
2250 
2251 	def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2252 	if (!btf_is_struct(def)) {
2253 		pr_warn("map '%s': unexpected def kind %s.\n",
2254 			map_name, btf_kind_str(var));
2255 		return -EINVAL;
2256 	}
2257 	if (def->size > vi->size) {
2258 		pr_warn("map '%s': invalid def size.\n", map_name);
2259 		return -EINVAL;
2260 	}
2261 
2262 	map = bpf_object__add_map(obj);
2263 	if (IS_ERR(map))
2264 		return PTR_ERR(map);
2265 	map->name = strdup(map_name);
2266 	if (!map->name) {
2267 		pr_warn("map '%s': failed to alloc map name.\n", map_name);
2268 		return -ENOMEM;
2269 	}
2270 	map->libbpf_type = LIBBPF_MAP_UNSPEC;
2271 	map->def.type = BPF_MAP_TYPE_UNSPEC;
2272 	map->sec_idx = sec_idx;
2273 	map->sec_offset = vi->offset;
2274 	map->btf_var_idx = var_idx;
2275 	pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2276 		 map_name, map->sec_idx, map->sec_offset);
2277 
2278 	return parse_btf_map_def(obj, map, def, strict, false, pin_root_path);
2279 }
2280 
2281 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2282 					  const char *pin_root_path)
2283 {
2284 	const struct btf_type *sec = NULL;
2285 	int nr_types, i, vlen, err;
2286 	const struct btf_type *t;
2287 	const char *name;
2288 	Elf_Data *data;
2289 	Elf_Scn *scn;
2290 
2291 	if (obj->efile.btf_maps_shndx < 0)
2292 		return 0;
2293 
2294 	scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2295 	data = elf_sec_data(obj, scn);
2296 	if (!scn || !data) {
2297 		pr_warn("elf: failed to get %s map definitions for %s\n",
2298 			MAPS_ELF_SEC, obj->path);
2299 		return -EINVAL;
2300 	}
2301 
2302 	nr_types = btf__get_nr_types(obj->btf);
2303 	for (i = 1; i <= nr_types; i++) {
2304 		t = btf__type_by_id(obj->btf, i);
2305 		if (!btf_is_datasec(t))
2306 			continue;
2307 		name = btf__name_by_offset(obj->btf, t->name_off);
2308 		if (strcmp(name, MAPS_ELF_SEC) == 0) {
2309 			sec = t;
2310 			obj->efile.btf_maps_sec_btf_id = i;
2311 			break;
2312 		}
2313 	}
2314 
2315 	if (!sec) {
2316 		pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2317 		return -ENOENT;
2318 	}
2319 
2320 	vlen = btf_vlen(sec);
2321 	for (i = 0; i < vlen; i++) {
2322 		err = bpf_object__init_user_btf_map(obj, sec, i,
2323 						    obj->efile.btf_maps_shndx,
2324 						    data, strict,
2325 						    pin_root_path);
2326 		if (err)
2327 			return err;
2328 	}
2329 
2330 	return 0;
2331 }
2332 
2333 static int bpf_object__init_maps(struct bpf_object *obj,
2334 				 const struct bpf_object_open_opts *opts)
2335 {
2336 	const char *pin_root_path;
2337 	bool strict;
2338 	int err;
2339 
2340 	strict = !OPTS_GET(opts, relaxed_maps, false);
2341 	pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2342 
2343 	err = bpf_object__init_user_maps(obj, strict);
2344 	err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2345 	err = err ?: bpf_object__init_global_data_maps(obj);
2346 	err = err ?: bpf_object__init_kconfig_map(obj);
2347 	err = err ?: bpf_object__init_struct_ops_maps(obj);
2348 	if (err)
2349 		return err;
2350 
2351 	return 0;
2352 }
2353 
2354 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2355 {
2356 	GElf_Shdr sh;
2357 
2358 	if (elf_sec_hdr(obj, elf_sec_by_idx(obj, idx), &sh))
2359 		return false;
2360 
2361 	return sh.sh_flags & SHF_EXECINSTR;
2362 }
2363 
2364 static bool btf_needs_sanitization(struct bpf_object *obj)
2365 {
2366 	bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC);
2367 	bool has_datasec = kernel_supports(FEAT_BTF_DATASEC);
2368 	bool has_func = kernel_supports(FEAT_BTF_FUNC);
2369 
2370 	return !has_func || !has_datasec || !has_func_global;
2371 }
2372 
2373 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2374 {
2375 	bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC);
2376 	bool has_datasec = kernel_supports(FEAT_BTF_DATASEC);
2377 	bool has_func = kernel_supports(FEAT_BTF_FUNC);
2378 	struct btf_type *t;
2379 	int i, j, vlen;
2380 
2381 	for (i = 1; i <= btf__get_nr_types(btf); i++) {
2382 		t = (struct btf_type *)btf__type_by_id(btf, i);
2383 
2384 		if (!has_datasec && btf_is_var(t)) {
2385 			/* replace VAR with INT */
2386 			t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2387 			/*
2388 			 * using size = 1 is the safest choice, 4 will be too
2389 			 * big and cause kernel BTF validation failure if
2390 			 * original variable took less than 4 bytes
2391 			 */
2392 			t->size = 1;
2393 			*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2394 		} else if (!has_datasec && btf_is_datasec(t)) {
2395 			/* replace DATASEC with STRUCT */
2396 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
2397 			struct btf_member *m = btf_members(t);
2398 			struct btf_type *vt;
2399 			char *name;
2400 
2401 			name = (char *)btf__name_by_offset(btf, t->name_off);
2402 			while (*name) {
2403 				if (*name == '.')
2404 					*name = '_';
2405 				name++;
2406 			}
2407 
2408 			vlen = btf_vlen(t);
2409 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2410 			for (j = 0; j < vlen; j++, v++, m++) {
2411 				/* order of field assignments is important */
2412 				m->offset = v->offset * 8;
2413 				m->type = v->type;
2414 				/* preserve variable name as member name */
2415 				vt = (void *)btf__type_by_id(btf, v->type);
2416 				m->name_off = vt->name_off;
2417 			}
2418 		} else if (!has_func && btf_is_func_proto(t)) {
2419 			/* replace FUNC_PROTO with ENUM */
2420 			vlen = btf_vlen(t);
2421 			t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2422 			t->size = sizeof(__u32); /* kernel enforced */
2423 		} else if (!has_func && btf_is_func(t)) {
2424 			/* replace FUNC with TYPEDEF */
2425 			t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2426 		} else if (!has_func_global && btf_is_func(t)) {
2427 			/* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2428 			t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2429 		}
2430 	}
2431 }
2432 
2433 static bool libbpf_needs_btf(const struct bpf_object *obj)
2434 {
2435 	return obj->efile.btf_maps_shndx >= 0 ||
2436 	       obj->efile.st_ops_shndx >= 0 ||
2437 	       obj->nr_extern > 0;
2438 }
2439 
2440 static bool kernel_needs_btf(const struct bpf_object *obj)
2441 {
2442 	return obj->efile.st_ops_shndx >= 0;
2443 }
2444 
2445 static int bpf_object__init_btf(struct bpf_object *obj,
2446 				Elf_Data *btf_data,
2447 				Elf_Data *btf_ext_data)
2448 {
2449 	int err = -ENOENT;
2450 
2451 	if (btf_data) {
2452 		obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2453 		if (IS_ERR(obj->btf)) {
2454 			err = PTR_ERR(obj->btf);
2455 			obj->btf = NULL;
2456 			pr_warn("Error loading ELF section %s: %d.\n",
2457 				BTF_ELF_SEC, err);
2458 			goto out;
2459 		}
2460 		/* enforce 8-byte pointers for BPF-targeted BTFs */
2461 		btf__set_pointer_size(obj->btf, 8);
2462 		err = 0;
2463 	}
2464 	if (btf_ext_data) {
2465 		if (!obj->btf) {
2466 			pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2467 				 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2468 			goto out;
2469 		}
2470 		obj->btf_ext = btf_ext__new(btf_ext_data->d_buf,
2471 					    btf_ext_data->d_size);
2472 		if (IS_ERR(obj->btf_ext)) {
2473 			pr_warn("Error loading ELF section %s: %ld. Ignored and continue.\n",
2474 				BTF_EXT_ELF_SEC, PTR_ERR(obj->btf_ext));
2475 			obj->btf_ext = NULL;
2476 			goto out;
2477 		}
2478 	}
2479 out:
2480 	if (err && libbpf_needs_btf(obj)) {
2481 		pr_warn("BTF is required, but is missing or corrupted.\n");
2482 		return err;
2483 	}
2484 	return 0;
2485 }
2486 
2487 static int bpf_object__finalize_btf(struct bpf_object *obj)
2488 {
2489 	int err;
2490 
2491 	if (!obj->btf)
2492 		return 0;
2493 
2494 	err = btf__finalize_data(obj, obj->btf);
2495 	if (err) {
2496 		pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err);
2497 		return err;
2498 	}
2499 
2500 	return 0;
2501 }
2502 
2503 static inline bool libbpf_prog_needs_vmlinux_btf(struct bpf_program *prog)
2504 {
2505 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
2506 	    prog->type == BPF_PROG_TYPE_LSM)
2507 		return true;
2508 
2509 	/* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
2510 	 * also need vmlinux BTF
2511 	 */
2512 	if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
2513 		return true;
2514 
2515 	return false;
2516 }
2517 
2518 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj)
2519 {
2520 	bool need_vmlinux_btf = false;
2521 	struct bpf_program *prog;
2522 	int i, err;
2523 
2524 	/* CO-RE relocations need kernel BTF */
2525 	if (obj->btf_ext && obj->btf_ext->core_relo_info.len)
2526 		need_vmlinux_btf = true;
2527 
2528 	/* Support for typed ksyms needs kernel BTF */
2529 	for (i = 0; i < obj->nr_extern; i++) {
2530 		const struct extern_desc *ext;
2531 
2532 		ext = &obj->externs[i];
2533 		if (ext->type == EXT_KSYM && ext->ksym.type_id) {
2534 			need_vmlinux_btf = true;
2535 			break;
2536 		}
2537 	}
2538 
2539 	bpf_object__for_each_program(prog, obj) {
2540 		if (!prog->load)
2541 			continue;
2542 		if (libbpf_prog_needs_vmlinux_btf(prog)) {
2543 			need_vmlinux_btf = true;
2544 			break;
2545 		}
2546 	}
2547 
2548 	if (!need_vmlinux_btf)
2549 		return 0;
2550 
2551 	obj->btf_vmlinux = libbpf_find_kernel_btf();
2552 	if (IS_ERR(obj->btf_vmlinux)) {
2553 		err = PTR_ERR(obj->btf_vmlinux);
2554 		pr_warn("Error loading vmlinux BTF: %d\n", err);
2555 		obj->btf_vmlinux = NULL;
2556 		return err;
2557 	}
2558 	return 0;
2559 }
2560 
2561 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
2562 {
2563 	struct btf *kern_btf = obj->btf;
2564 	bool btf_mandatory, sanitize;
2565 	int err = 0;
2566 
2567 	if (!obj->btf)
2568 		return 0;
2569 
2570 	if (!kernel_supports(FEAT_BTF)) {
2571 		if (kernel_needs_btf(obj)) {
2572 			err = -EOPNOTSUPP;
2573 			goto report;
2574 		}
2575 		pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
2576 		return 0;
2577 	}
2578 
2579 	sanitize = btf_needs_sanitization(obj);
2580 	if (sanitize) {
2581 		const void *raw_data;
2582 		__u32 sz;
2583 
2584 		/* clone BTF to sanitize a copy and leave the original intact */
2585 		raw_data = btf__get_raw_data(obj->btf, &sz);
2586 		kern_btf = btf__new(raw_data, sz);
2587 		if (IS_ERR(kern_btf))
2588 			return PTR_ERR(kern_btf);
2589 
2590 		/* enforce 8-byte pointers for BPF-targeted BTFs */
2591 		btf__set_pointer_size(obj->btf, 8);
2592 		bpf_object__sanitize_btf(obj, kern_btf);
2593 	}
2594 
2595 	err = btf__load(kern_btf);
2596 	if (sanitize) {
2597 		if (!err) {
2598 			/* move fd to libbpf's BTF */
2599 			btf__set_fd(obj->btf, btf__fd(kern_btf));
2600 			btf__set_fd(kern_btf, -1);
2601 		}
2602 		btf__free(kern_btf);
2603 	}
2604 report:
2605 	if (err) {
2606 		btf_mandatory = kernel_needs_btf(obj);
2607 		pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
2608 			btf_mandatory ? "BTF is mandatory, can't proceed."
2609 				      : "BTF is optional, ignoring.");
2610 		if (!btf_mandatory)
2611 			err = 0;
2612 	}
2613 	return err;
2614 }
2615 
2616 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
2617 {
2618 	const char *name;
2619 
2620 	name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
2621 	if (!name) {
2622 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
2623 			off, obj->path, elf_errmsg(-1));
2624 		return NULL;
2625 	}
2626 
2627 	return name;
2628 }
2629 
2630 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
2631 {
2632 	const char *name;
2633 
2634 	name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
2635 	if (!name) {
2636 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
2637 			off, obj->path, elf_errmsg(-1));
2638 		return NULL;
2639 	}
2640 
2641 	return name;
2642 }
2643 
2644 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
2645 {
2646 	Elf_Scn *scn;
2647 
2648 	scn = elf_getscn(obj->efile.elf, idx);
2649 	if (!scn) {
2650 		pr_warn("elf: failed to get section(%zu) from %s: %s\n",
2651 			idx, obj->path, elf_errmsg(-1));
2652 		return NULL;
2653 	}
2654 	return scn;
2655 }
2656 
2657 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
2658 {
2659 	Elf_Scn *scn = NULL;
2660 	Elf *elf = obj->efile.elf;
2661 	const char *sec_name;
2662 
2663 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
2664 		sec_name = elf_sec_name(obj, scn);
2665 		if (!sec_name)
2666 			return NULL;
2667 
2668 		if (strcmp(sec_name, name) != 0)
2669 			continue;
2670 
2671 		return scn;
2672 	}
2673 	return NULL;
2674 }
2675 
2676 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr)
2677 {
2678 	if (!scn)
2679 		return -EINVAL;
2680 
2681 	if (gelf_getshdr(scn, hdr) != hdr) {
2682 		pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
2683 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
2684 		return -EINVAL;
2685 	}
2686 
2687 	return 0;
2688 }
2689 
2690 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
2691 {
2692 	const char *name;
2693 	GElf_Shdr sh;
2694 
2695 	if (!scn)
2696 		return NULL;
2697 
2698 	if (elf_sec_hdr(obj, scn, &sh))
2699 		return NULL;
2700 
2701 	name = elf_sec_str(obj, sh.sh_name);
2702 	if (!name) {
2703 		pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
2704 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
2705 		return NULL;
2706 	}
2707 
2708 	return name;
2709 }
2710 
2711 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
2712 {
2713 	Elf_Data *data;
2714 
2715 	if (!scn)
2716 		return NULL;
2717 
2718 	data = elf_getdata(scn, 0);
2719 	if (!data) {
2720 		pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
2721 			elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
2722 			obj->path, elf_errmsg(-1));
2723 		return NULL;
2724 	}
2725 
2726 	return data;
2727 }
2728 
2729 static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx,
2730 			      size_t off, __u32 sym_type, GElf_Sym *sym)
2731 {
2732 	Elf_Data *symbols = obj->efile.symbols;
2733 	size_t n = symbols->d_size / sizeof(GElf_Sym);
2734 	int i;
2735 
2736 	for (i = 0; i < n; i++) {
2737 		if (!gelf_getsym(symbols, i, sym))
2738 			continue;
2739 		if (sym->st_shndx != sec_idx || sym->st_value != off)
2740 			continue;
2741 		if (GELF_ST_TYPE(sym->st_info) != sym_type)
2742 			continue;
2743 		return 0;
2744 	}
2745 
2746 	return -ENOENT;
2747 }
2748 
2749 static bool is_sec_name_dwarf(const char *name)
2750 {
2751 	/* approximation, but the actual list is too long */
2752 	return strncmp(name, ".debug_", sizeof(".debug_") - 1) == 0;
2753 }
2754 
2755 static bool ignore_elf_section(GElf_Shdr *hdr, const char *name)
2756 {
2757 	/* no special handling of .strtab */
2758 	if (hdr->sh_type == SHT_STRTAB)
2759 		return true;
2760 
2761 	/* ignore .llvm_addrsig section as well */
2762 	if (hdr->sh_type == 0x6FFF4C03 /* SHT_LLVM_ADDRSIG */)
2763 		return true;
2764 
2765 	/* no subprograms will lead to an empty .text section, ignore it */
2766 	if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
2767 	    strcmp(name, ".text") == 0)
2768 		return true;
2769 
2770 	/* DWARF sections */
2771 	if (is_sec_name_dwarf(name))
2772 		return true;
2773 
2774 	if (strncmp(name, ".rel", sizeof(".rel") - 1) == 0) {
2775 		name += sizeof(".rel") - 1;
2776 		/* DWARF section relocations */
2777 		if (is_sec_name_dwarf(name))
2778 			return true;
2779 
2780 		/* .BTF and .BTF.ext don't need relocations */
2781 		if (strcmp(name, BTF_ELF_SEC) == 0 ||
2782 		    strcmp(name, BTF_EXT_ELF_SEC) == 0)
2783 			return true;
2784 	}
2785 
2786 	return false;
2787 }
2788 
2789 static int cmp_progs(const void *_a, const void *_b)
2790 {
2791 	const struct bpf_program *a = _a;
2792 	const struct bpf_program *b = _b;
2793 
2794 	if (a->sec_idx != b->sec_idx)
2795 		return a->sec_idx < b->sec_idx ? -1 : 1;
2796 
2797 	/* sec_insn_off can't be the same within the section */
2798 	return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
2799 }
2800 
2801 static int bpf_object__elf_collect(struct bpf_object *obj)
2802 {
2803 	Elf *elf = obj->efile.elf;
2804 	Elf_Data *btf_ext_data = NULL;
2805 	Elf_Data *btf_data = NULL;
2806 	int idx = 0, err = 0;
2807 	const char *name;
2808 	Elf_Data *data;
2809 	Elf_Scn *scn;
2810 	GElf_Shdr sh;
2811 
2812 	/* a bunch of ELF parsing functionality depends on processing symbols,
2813 	 * so do the first pass and find the symbol table
2814 	 */
2815 	scn = NULL;
2816 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
2817 		if (elf_sec_hdr(obj, scn, &sh))
2818 			return -LIBBPF_ERRNO__FORMAT;
2819 
2820 		if (sh.sh_type == SHT_SYMTAB) {
2821 			if (obj->efile.symbols) {
2822 				pr_warn("elf: multiple symbol tables in %s\n", obj->path);
2823 				return -LIBBPF_ERRNO__FORMAT;
2824 			}
2825 
2826 			data = elf_sec_data(obj, scn);
2827 			if (!data)
2828 				return -LIBBPF_ERRNO__FORMAT;
2829 
2830 			obj->efile.symbols = data;
2831 			obj->efile.symbols_shndx = elf_ndxscn(scn);
2832 			obj->efile.strtabidx = sh.sh_link;
2833 		}
2834 	}
2835 
2836 	scn = NULL;
2837 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
2838 		idx++;
2839 
2840 		if (elf_sec_hdr(obj, scn, &sh))
2841 			return -LIBBPF_ERRNO__FORMAT;
2842 
2843 		name = elf_sec_str(obj, sh.sh_name);
2844 		if (!name)
2845 			return -LIBBPF_ERRNO__FORMAT;
2846 
2847 		if (ignore_elf_section(&sh, name))
2848 			continue;
2849 
2850 		data = elf_sec_data(obj, scn);
2851 		if (!data)
2852 			return -LIBBPF_ERRNO__FORMAT;
2853 
2854 		pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
2855 			 idx, name, (unsigned long)data->d_size,
2856 			 (int)sh.sh_link, (unsigned long)sh.sh_flags,
2857 			 (int)sh.sh_type);
2858 
2859 		if (strcmp(name, "license") == 0) {
2860 			err = bpf_object__init_license(obj, data->d_buf, data->d_size);
2861 			if (err)
2862 				return err;
2863 		} else if (strcmp(name, "version") == 0) {
2864 			err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
2865 			if (err)
2866 				return err;
2867 		} else if (strcmp(name, "maps") == 0) {
2868 			obj->efile.maps_shndx = idx;
2869 		} else if (strcmp(name, MAPS_ELF_SEC) == 0) {
2870 			obj->efile.btf_maps_shndx = idx;
2871 		} else if (strcmp(name, BTF_ELF_SEC) == 0) {
2872 			btf_data = data;
2873 		} else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
2874 			btf_ext_data = data;
2875 		} else if (sh.sh_type == SHT_SYMTAB) {
2876 			/* already processed during the first pass above */
2877 		} else if (sh.sh_type == SHT_PROGBITS && data->d_size > 0) {
2878 			if (sh.sh_flags & SHF_EXECINSTR) {
2879 				if (strcmp(name, ".text") == 0)
2880 					obj->efile.text_shndx = idx;
2881 				err = bpf_object__add_programs(obj, data, name, idx);
2882 				if (err)
2883 					return err;
2884 			} else if (strcmp(name, DATA_SEC) == 0) {
2885 				obj->efile.data = data;
2886 				obj->efile.data_shndx = idx;
2887 			} else if (strcmp(name, RODATA_SEC) == 0) {
2888 				obj->efile.rodata = data;
2889 				obj->efile.rodata_shndx = idx;
2890 			} else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
2891 				obj->efile.st_ops_data = data;
2892 				obj->efile.st_ops_shndx = idx;
2893 			} else {
2894 				pr_info("elf: skipping unrecognized data section(%d) %s\n",
2895 					idx, name);
2896 			}
2897 		} else if (sh.sh_type == SHT_REL) {
2898 			int nr_sects = obj->efile.nr_reloc_sects;
2899 			void *sects = obj->efile.reloc_sects;
2900 			int sec = sh.sh_info; /* points to other section */
2901 
2902 			/* Only do relo for section with exec instructions */
2903 			if (!section_have_execinstr(obj, sec) &&
2904 			    strcmp(name, ".rel" STRUCT_OPS_SEC) &&
2905 			    strcmp(name, ".rel" MAPS_ELF_SEC)) {
2906 				pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
2907 					idx, name, sec,
2908 					elf_sec_name(obj, elf_sec_by_idx(obj, sec)) ?: "<?>");
2909 				continue;
2910 			}
2911 
2912 			sects = libbpf_reallocarray(sects, nr_sects + 1,
2913 						    sizeof(*obj->efile.reloc_sects));
2914 			if (!sects)
2915 				return -ENOMEM;
2916 
2917 			obj->efile.reloc_sects = sects;
2918 			obj->efile.nr_reloc_sects++;
2919 
2920 			obj->efile.reloc_sects[nr_sects].shdr = sh;
2921 			obj->efile.reloc_sects[nr_sects].data = data;
2922 		} else if (sh.sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) {
2923 			obj->efile.bss = data;
2924 			obj->efile.bss_shndx = idx;
2925 		} else {
2926 			pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
2927 				(size_t)sh.sh_size);
2928 		}
2929 	}
2930 
2931 	if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
2932 		pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
2933 		return -LIBBPF_ERRNO__FORMAT;
2934 	}
2935 
2936 	/* sort BPF programs by section name and in-section instruction offset
2937 	 * for faster search */
2938 	qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
2939 
2940 	return bpf_object__init_btf(obj, btf_data, btf_ext_data);
2941 }
2942 
2943 static bool sym_is_extern(const GElf_Sym *sym)
2944 {
2945 	int bind = GELF_ST_BIND(sym->st_info);
2946 	/* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
2947 	return sym->st_shndx == SHN_UNDEF &&
2948 	       (bind == STB_GLOBAL || bind == STB_WEAK) &&
2949 	       GELF_ST_TYPE(sym->st_info) == STT_NOTYPE;
2950 }
2951 
2952 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
2953 {
2954 	const struct btf_type *t;
2955 	const char *var_name;
2956 	int i, n;
2957 
2958 	if (!btf)
2959 		return -ESRCH;
2960 
2961 	n = btf__get_nr_types(btf);
2962 	for (i = 1; i <= n; i++) {
2963 		t = btf__type_by_id(btf, i);
2964 
2965 		if (!btf_is_var(t))
2966 			continue;
2967 
2968 		var_name = btf__name_by_offset(btf, t->name_off);
2969 		if (strcmp(var_name, ext_name))
2970 			continue;
2971 
2972 		if (btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
2973 			return -EINVAL;
2974 
2975 		return i;
2976 	}
2977 
2978 	return -ENOENT;
2979 }
2980 
2981 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
2982 	const struct btf_var_secinfo *vs;
2983 	const struct btf_type *t;
2984 	int i, j, n;
2985 
2986 	if (!btf)
2987 		return -ESRCH;
2988 
2989 	n = btf__get_nr_types(btf);
2990 	for (i = 1; i <= n; i++) {
2991 		t = btf__type_by_id(btf, i);
2992 
2993 		if (!btf_is_datasec(t))
2994 			continue;
2995 
2996 		vs = btf_var_secinfos(t);
2997 		for (j = 0; j < btf_vlen(t); j++, vs++) {
2998 			if (vs->type == ext_btf_id)
2999 				return i;
3000 		}
3001 	}
3002 
3003 	return -ENOENT;
3004 }
3005 
3006 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3007 				     bool *is_signed)
3008 {
3009 	const struct btf_type *t;
3010 	const char *name;
3011 
3012 	t = skip_mods_and_typedefs(btf, id, NULL);
3013 	name = btf__name_by_offset(btf, t->name_off);
3014 
3015 	if (is_signed)
3016 		*is_signed = false;
3017 	switch (btf_kind(t)) {
3018 	case BTF_KIND_INT: {
3019 		int enc = btf_int_encoding(t);
3020 
3021 		if (enc & BTF_INT_BOOL)
3022 			return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3023 		if (is_signed)
3024 			*is_signed = enc & BTF_INT_SIGNED;
3025 		if (t->size == 1)
3026 			return KCFG_CHAR;
3027 		if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3028 			return KCFG_UNKNOWN;
3029 		return KCFG_INT;
3030 	}
3031 	case BTF_KIND_ENUM:
3032 		if (t->size != 4)
3033 			return KCFG_UNKNOWN;
3034 		if (strcmp(name, "libbpf_tristate"))
3035 			return KCFG_UNKNOWN;
3036 		return KCFG_TRISTATE;
3037 	case BTF_KIND_ARRAY:
3038 		if (btf_array(t)->nelems == 0)
3039 			return KCFG_UNKNOWN;
3040 		if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3041 			return KCFG_UNKNOWN;
3042 		return KCFG_CHAR_ARR;
3043 	default:
3044 		return KCFG_UNKNOWN;
3045 	}
3046 }
3047 
3048 static int cmp_externs(const void *_a, const void *_b)
3049 {
3050 	const struct extern_desc *a = _a;
3051 	const struct extern_desc *b = _b;
3052 
3053 	if (a->type != b->type)
3054 		return a->type < b->type ? -1 : 1;
3055 
3056 	if (a->type == EXT_KCFG) {
3057 		/* descending order by alignment requirements */
3058 		if (a->kcfg.align != b->kcfg.align)
3059 			return a->kcfg.align > b->kcfg.align ? -1 : 1;
3060 		/* ascending order by size, within same alignment class */
3061 		if (a->kcfg.sz != b->kcfg.sz)
3062 			return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3063 	}
3064 
3065 	/* resolve ties by name */
3066 	return strcmp(a->name, b->name);
3067 }
3068 
3069 static int find_int_btf_id(const struct btf *btf)
3070 {
3071 	const struct btf_type *t;
3072 	int i, n;
3073 
3074 	n = btf__get_nr_types(btf);
3075 	for (i = 1; i <= n; i++) {
3076 		t = btf__type_by_id(btf, i);
3077 
3078 		if (btf_is_int(t) && btf_int_bits(t) == 32)
3079 			return i;
3080 	}
3081 
3082 	return 0;
3083 }
3084 
3085 static int bpf_object__collect_externs(struct bpf_object *obj)
3086 {
3087 	struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3088 	const struct btf_type *t;
3089 	struct extern_desc *ext;
3090 	int i, n, off;
3091 	const char *ext_name, *sec_name;
3092 	Elf_Scn *scn;
3093 	GElf_Shdr sh;
3094 
3095 	if (!obj->efile.symbols)
3096 		return 0;
3097 
3098 	scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3099 	if (elf_sec_hdr(obj, scn, &sh))
3100 		return -LIBBPF_ERRNO__FORMAT;
3101 
3102 	n = sh.sh_size / sh.sh_entsize;
3103 	pr_debug("looking for externs among %d symbols...\n", n);
3104 
3105 	for (i = 0; i < n; i++) {
3106 		GElf_Sym sym;
3107 
3108 		if (!gelf_getsym(obj->efile.symbols, i, &sym))
3109 			return -LIBBPF_ERRNO__FORMAT;
3110 		if (!sym_is_extern(&sym))
3111 			continue;
3112 		ext_name = elf_sym_str(obj, sym.st_name);
3113 		if (!ext_name || !ext_name[0])
3114 			continue;
3115 
3116 		ext = obj->externs;
3117 		ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3118 		if (!ext)
3119 			return -ENOMEM;
3120 		obj->externs = ext;
3121 		ext = &ext[obj->nr_extern];
3122 		memset(ext, 0, sizeof(*ext));
3123 		obj->nr_extern++;
3124 
3125 		ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3126 		if (ext->btf_id <= 0) {
3127 			pr_warn("failed to find BTF for extern '%s': %d\n",
3128 				ext_name, ext->btf_id);
3129 			return ext->btf_id;
3130 		}
3131 		t = btf__type_by_id(obj->btf, ext->btf_id);
3132 		ext->name = btf__name_by_offset(obj->btf, t->name_off);
3133 		ext->sym_idx = i;
3134 		ext->is_weak = GELF_ST_BIND(sym.st_info) == STB_WEAK;
3135 
3136 		ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3137 		if (ext->sec_btf_id <= 0) {
3138 			pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3139 				ext_name, ext->btf_id, ext->sec_btf_id);
3140 			return ext->sec_btf_id;
3141 		}
3142 		sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3143 		sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3144 
3145 		if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3146 			kcfg_sec = sec;
3147 			ext->type = EXT_KCFG;
3148 			ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3149 			if (ext->kcfg.sz <= 0) {
3150 				pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3151 					ext_name, ext->kcfg.sz);
3152 				return ext->kcfg.sz;
3153 			}
3154 			ext->kcfg.align = btf__align_of(obj->btf, t->type);
3155 			if (ext->kcfg.align <= 0) {
3156 				pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3157 					ext_name, ext->kcfg.align);
3158 				return -EINVAL;
3159 			}
3160 			ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3161 						        &ext->kcfg.is_signed);
3162 			if (ext->kcfg.type == KCFG_UNKNOWN) {
3163 				pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name);
3164 				return -ENOTSUP;
3165 			}
3166 		} else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3167 			ksym_sec = sec;
3168 			ext->type = EXT_KSYM;
3169 			skip_mods_and_typedefs(obj->btf, t->type,
3170 					       &ext->ksym.type_id);
3171 		} else {
3172 			pr_warn("unrecognized extern section '%s'\n", sec_name);
3173 			return -ENOTSUP;
3174 		}
3175 	}
3176 	pr_debug("collected %d externs total\n", obj->nr_extern);
3177 
3178 	if (!obj->nr_extern)
3179 		return 0;
3180 
3181 	/* sort externs by type, for kcfg ones also by (align, size, name) */
3182 	qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3183 
3184 	/* for .ksyms section, we need to turn all externs into allocated
3185 	 * variables in BTF to pass kernel verification; we do this by
3186 	 * pretending that each extern is a 8-byte variable
3187 	 */
3188 	if (ksym_sec) {
3189 		/* find existing 4-byte integer type in BTF to use for fake
3190 		 * extern variables in DATASEC
3191 		 */
3192 		int int_btf_id = find_int_btf_id(obj->btf);
3193 
3194 		for (i = 0; i < obj->nr_extern; i++) {
3195 			ext = &obj->externs[i];
3196 			if (ext->type != EXT_KSYM)
3197 				continue;
3198 			pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3199 				 i, ext->sym_idx, ext->name);
3200 		}
3201 
3202 		sec = ksym_sec;
3203 		n = btf_vlen(sec);
3204 		for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3205 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3206 			struct btf_type *vt;
3207 
3208 			vt = (void *)btf__type_by_id(obj->btf, vs->type);
3209 			ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3210 			ext = find_extern_by_name(obj, ext_name);
3211 			if (!ext) {
3212 				pr_warn("failed to find extern definition for BTF var '%s'\n",
3213 					ext_name);
3214 				return -ESRCH;
3215 			}
3216 			btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3217 			vt->type = int_btf_id;
3218 			vs->offset = off;
3219 			vs->size = sizeof(int);
3220 		}
3221 		sec->size = off;
3222 	}
3223 
3224 	if (kcfg_sec) {
3225 		sec = kcfg_sec;
3226 		/* for kcfg externs calculate their offsets within a .kconfig map */
3227 		off = 0;
3228 		for (i = 0; i < obj->nr_extern; i++) {
3229 			ext = &obj->externs[i];
3230 			if (ext->type != EXT_KCFG)
3231 				continue;
3232 
3233 			ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3234 			off = ext->kcfg.data_off + ext->kcfg.sz;
3235 			pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3236 				 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3237 		}
3238 		sec->size = off;
3239 		n = btf_vlen(sec);
3240 		for (i = 0; i < n; i++) {
3241 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3242 
3243 			t = btf__type_by_id(obj->btf, vs->type);
3244 			ext_name = btf__name_by_offset(obj->btf, t->name_off);
3245 			ext = find_extern_by_name(obj, ext_name);
3246 			if (!ext) {
3247 				pr_warn("failed to find extern definition for BTF var '%s'\n",
3248 					ext_name);
3249 				return -ESRCH;
3250 			}
3251 			btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3252 			vs->offset = ext->kcfg.data_off;
3253 		}
3254 	}
3255 	return 0;
3256 }
3257 
3258 struct bpf_program *
3259 bpf_object__find_program_by_title(const struct bpf_object *obj,
3260 				  const char *title)
3261 {
3262 	struct bpf_program *pos;
3263 
3264 	bpf_object__for_each_program(pos, obj) {
3265 		if (pos->sec_name && !strcmp(pos->sec_name, title))
3266 			return pos;
3267 	}
3268 	return NULL;
3269 }
3270 
3271 static bool prog_is_subprog(const struct bpf_object *obj,
3272 			    const struct bpf_program *prog)
3273 {
3274 	/* For legacy reasons, libbpf supports an entry-point BPF programs
3275 	 * without SEC() attribute, i.e., those in the .text section. But if
3276 	 * there are 2 or more such programs in the .text section, they all
3277 	 * must be subprograms called from entry-point BPF programs in
3278 	 * designated SEC()'tions, otherwise there is no way to distinguish
3279 	 * which of those programs should be loaded vs which are a subprogram.
3280 	 * Similarly, if there is a function/program in .text and at least one
3281 	 * other BPF program with custom SEC() attribute, then we just assume
3282 	 * .text programs are subprograms (even if they are not called from
3283 	 * other programs), because libbpf never explicitly supported mixing
3284 	 * SEC()-designated BPF programs and .text entry-point BPF programs.
3285 	 */
3286 	return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
3287 }
3288 
3289 struct bpf_program *
3290 bpf_object__find_program_by_name(const struct bpf_object *obj,
3291 				 const char *name)
3292 {
3293 	struct bpf_program *prog;
3294 
3295 	bpf_object__for_each_program(prog, obj) {
3296 		if (prog_is_subprog(obj, prog))
3297 			continue;
3298 		if (!strcmp(prog->name, name))
3299 			return prog;
3300 	}
3301 	return NULL;
3302 }
3303 
3304 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
3305 				      int shndx)
3306 {
3307 	return shndx == obj->efile.data_shndx ||
3308 	       shndx == obj->efile.bss_shndx ||
3309 	       shndx == obj->efile.rodata_shndx;
3310 }
3311 
3312 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
3313 				      int shndx)
3314 {
3315 	return shndx == obj->efile.maps_shndx ||
3316 	       shndx == obj->efile.btf_maps_shndx;
3317 }
3318 
3319 static enum libbpf_map_type
3320 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
3321 {
3322 	if (shndx == obj->efile.data_shndx)
3323 		return LIBBPF_MAP_DATA;
3324 	else if (shndx == obj->efile.bss_shndx)
3325 		return LIBBPF_MAP_BSS;
3326 	else if (shndx == obj->efile.rodata_shndx)
3327 		return LIBBPF_MAP_RODATA;
3328 	else if (shndx == obj->efile.symbols_shndx)
3329 		return LIBBPF_MAP_KCONFIG;
3330 	else
3331 		return LIBBPF_MAP_UNSPEC;
3332 }
3333 
3334 static int bpf_program__record_reloc(struct bpf_program *prog,
3335 				     struct reloc_desc *reloc_desc,
3336 				     __u32 insn_idx, const char *sym_name,
3337 				     const GElf_Sym *sym, const GElf_Rel *rel)
3338 {
3339 	struct bpf_insn *insn = &prog->insns[insn_idx];
3340 	size_t map_idx, nr_maps = prog->obj->nr_maps;
3341 	struct bpf_object *obj = prog->obj;
3342 	__u32 shdr_idx = sym->st_shndx;
3343 	enum libbpf_map_type type;
3344 	const char *sym_sec_name;
3345 	struct bpf_map *map;
3346 
3347 	reloc_desc->processed = false;
3348 
3349 	/* sub-program call relocation */
3350 	if (insn->code == (BPF_JMP | BPF_CALL)) {
3351 		if (insn->src_reg != BPF_PSEUDO_CALL) {
3352 			pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
3353 			return -LIBBPF_ERRNO__RELOC;
3354 		}
3355 		/* text_shndx can be 0, if no default "main" program exists */
3356 		if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
3357 			sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3358 			pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
3359 				prog->name, sym_name, sym_sec_name);
3360 			return -LIBBPF_ERRNO__RELOC;
3361 		}
3362 		if (sym->st_value % BPF_INSN_SZ) {
3363 			pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
3364 				prog->name, sym_name, (size_t)sym->st_value);
3365 			return -LIBBPF_ERRNO__RELOC;
3366 		}
3367 		reloc_desc->type = RELO_CALL;
3368 		reloc_desc->insn_idx = insn_idx;
3369 		reloc_desc->sym_off = sym->st_value;
3370 		return 0;
3371 	}
3372 
3373 	if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) {
3374 		pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
3375 			prog->name, sym_name, insn_idx, insn->code);
3376 		return -LIBBPF_ERRNO__RELOC;
3377 	}
3378 
3379 	if (sym_is_extern(sym)) {
3380 		int sym_idx = GELF_R_SYM(rel->r_info);
3381 		int i, n = obj->nr_extern;
3382 		struct extern_desc *ext;
3383 
3384 		for (i = 0; i < n; i++) {
3385 			ext = &obj->externs[i];
3386 			if (ext->sym_idx == sym_idx)
3387 				break;
3388 		}
3389 		if (i >= n) {
3390 			pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
3391 				prog->name, sym_name, sym_idx);
3392 			return -LIBBPF_ERRNO__RELOC;
3393 		}
3394 		pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
3395 			 prog->name, i, ext->name, ext->sym_idx, insn_idx);
3396 		reloc_desc->type = RELO_EXTERN;
3397 		reloc_desc->insn_idx = insn_idx;
3398 		reloc_desc->sym_off = i; /* sym_off stores extern index */
3399 		return 0;
3400 	}
3401 
3402 	if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
3403 		pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
3404 			prog->name, sym_name, shdr_idx);
3405 		return -LIBBPF_ERRNO__RELOC;
3406 	}
3407 
3408 	type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
3409 	sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3410 
3411 	/* generic map reference relocation */
3412 	if (type == LIBBPF_MAP_UNSPEC) {
3413 		if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
3414 			pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
3415 				prog->name, sym_name, sym_sec_name);
3416 			return -LIBBPF_ERRNO__RELOC;
3417 		}
3418 		for (map_idx = 0; map_idx < nr_maps; map_idx++) {
3419 			map = &obj->maps[map_idx];
3420 			if (map->libbpf_type != type ||
3421 			    map->sec_idx != sym->st_shndx ||
3422 			    map->sec_offset != sym->st_value)
3423 				continue;
3424 			pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
3425 				 prog->name, map_idx, map->name, map->sec_idx,
3426 				 map->sec_offset, insn_idx);
3427 			break;
3428 		}
3429 		if (map_idx >= nr_maps) {
3430 			pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
3431 				prog->name, sym_sec_name, (size_t)sym->st_value);
3432 			return -LIBBPF_ERRNO__RELOC;
3433 		}
3434 		reloc_desc->type = RELO_LD64;
3435 		reloc_desc->insn_idx = insn_idx;
3436 		reloc_desc->map_idx = map_idx;
3437 		reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
3438 		return 0;
3439 	}
3440 
3441 	/* global data map relocation */
3442 	if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
3443 		pr_warn("prog '%s': bad data relo against section '%s'\n",
3444 			prog->name, sym_sec_name);
3445 		return -LIBBPF_ERRNO__RELOC;
3446 	}
3447 	for (map_idx = 0; map_idx < nr_maps; map_idx++) {
3448 		map = &obj->maps[map_idx];
3449 		if (map->libbpf_type != type)
3450 			continue;
3451 		pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
3452 			 prog->name, map_idx, map->name, map->sec_idx,
3453 			 map->sec_offset, insn_idx);
3454 		break;
3455 	}
3456 	if (map_idx >= nr_maps) {
3457 		pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
3458 			prog->name, sym_sec_name);
3459 		return -LIBBPF_ERRNO__RELOC;
3460 	}
3461 
3462 	reloc_desc->type = RELO_DATA;
3463 	reloc_desc->insn_idx = insn_idx;
3464 	reloc_desc->map_idx = map_idx;
3465 	reloc_desc->sym_off = sym->st_value;
3466 	return 0;
3467 }
3468 
3469 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
3470 {
3471 	return insn_idx >= prog->sec_insn_off &&
3472 	       insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
3473 }
3474 
3475 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
3476 						 size_t sec_idx, size_t insn_idx)
3477 {
3478 	int l = 0, r = obj->nr_programs - 1, m;
3479 	struct bpf_program *prog;
3480 
3481 	while (l < r) {
3482 		m = l + (r - l + 1) / 2;
3483 		prog = &obj->programs[m];
3484 
3485 		if (prog->sec_idx < sec_idx ||
3486 		    (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
3487 			l = m;
3488 		else
3489 			r = m - 1;
3490 	}
3491 	/* matching program could be at index l, but it still might be the
3492 	 * wrong one, so we need to double check conditions for the last time
3493 	 */
3494 	prog = &obj->programs[l];
3495 	if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
3496 		return prog;
3497 	return NULL;
3498 }
3499 
3500 static int
3501 bpf_object__collect_prog_relos(struct bpf_object *obj, GElf_Shdr *shdr, Elf_Data *data)
3502 {
3503 	Elf_Data *symbols = obj->efile.symbols;
3504 	const char *relo_sec_name, *sec_name;
3505 	size_t sec_idx = shdr->sh_info;
3506 	struct bpf_program *prog;
3507 	struct reloc_desc *relos;
3508 	int err, i, nrels;
3509 	const char *sym_name;
3510 	__u32 insn_idx;
3511 	GElf_Sym sym;
3512 	GElf_Rel rel;
3513 
3514 	relo_sec_name = elf_sec_str(obj, shdr->sh_name);
3515 	sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
3516 	if (!relo_sec_name || !sec_name)
3517 		return -EINVAL;
3518 
3519 	pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
3520 		 relo_sec_name, sec_idx, sec_name);
3521 	nrels = shdr->sh_size / shdr->sh_entsize;
3522 
3523 	for (i = 0; i < nrels; i++) {
3524 		if (!gelf_getrel(data, i, &rel)) {
3525 			pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
3526 			return -LIBBPF_ERRNO__FORMAT;
3527 		}
3528 		if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
3529 			pr_warn("sec '%s': symbol 0x%zx not found for relo #%d\n",
3530 				relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i);
3531 			return -LIBBPF_ERRNO__FORMAT;
3532 		}
3533 		if (rel.r_offset % BPF_INSN_SZ) {
3534 			pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
3535 				relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i);
3536 			return -LIBBPF_ERRNO__FORMAT;
3537 		}
3538 
3539 		insn_idx = rel.r_offset / BPF_INSN_SZ;
3540 		/* relocations against static functions are recorded as
3541 		 * relocations against the section that contains a function;
3542 		 * in such case, symbol will be STT_SECTION and sym.st_name
3543 		 * will point to empty string (0), so fetch section name
3544 		 * instead
3545 		 */
3546 		if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && sym.st_name == 0)
3547 			sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym.st_shndx));
3548 		else
3549 			sym_name = elf_sym_str(obj, sym.st_name);
3550 		sym_name = sym_name ?: "<?";
3551 
3552 		pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
3553 			 relo_sec_name, i, insn_idx, sym_name);
3554 
3555 		prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
3556 		if (!prog) {
3557 			pr_warn("sec '%s': relo #%d: program not found in section '%s' for insn #%u\n",
3558 				relo_sec_name, i, sec_name, insn_idx);
3559 			return -LIBBPF_ERRNO__RELOC;
3560 		}
3561 
3562 		relos = libbpf_reallocarray(prog->reloc_desc,
3563 					    prog->nr_reloc + 1, sizeof(*relos));
3564 		if (!relos)
3565 			return -ENOMEM;
3566 		prog->reloc_desc = relos;
3567 
3568 		/* adjust insn_idx to local BPF program frame of reference */
3569 		insn_idx -= prog->sec_insn_off;
3570 		err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
3571 						insn_idx, sym_name, &sym, &rel);
3572 		if (err)
3573 			return err;
3574 
3575 		prog->nr_reloc++;
3576 	}
3577 	return 0;
3578 }
3579 
3580 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map)
3581 {
3582 	struct bpf_map_def *def = &map->def;
3583 	__u32 key_type_id = 0, value_type_id = 0;
3584 	int ret;
3585 
3586 	/* if it's BTF-defined map, we don't need to search for type IDs.
3587 	 * For struct_ops map, it does not need btf_key_type_id and
3588 	 * btf_value_type_id.
3589 	 */
3590 	if (map->sec_idx == obj->efile.btf_maps_shndx ||
3591 	    bpf_map__is_struct_ops(map))
3592 		return 0;
3593 
3594 	if (!bpf_map__is_internal(map)) {
3595 		ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size,
3596 					   def->value_size, &key_type_id,
3597 					   &value_type_id);
3598 	} else {
3599 		/*
3600 		 * LLVM annotates global data differently in BTF, that is,
3601 		 * only as '.data', '.bss' or '.rodata'.
3602 		 */
3603 		ret = btf__find_by_name(obj->btf,
3604 				libbpf_type_to_btf_name[map->libbpf_type]);
3605 	}
3606 	if (ret < 0)
3607 		return ret;
3608 
3609 	map->btf_key_type_id = key_type_id;
3610 	map->btf_value_type_id = bpf_map__is_internal(map) ?
3611 				 ret : value_type_id;
3612 	return 0;
3613 }
3614 
3615 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
3616 {
3617 	struct bpf_map_info info = {};
3618 	__u32 len = sizeof(info);
3619 	int new_fd, err;
3620 	char *new_name;
3621 
3622 	err = bpf_obj_get_info_by_fd(fd, &info, &len);
3623 	if (err)
3624 		return err;
3625 
3626 	new_name = strdup(info.name);
3627 	if (!new_name)
3628 		return -errno;
3629 
3630 	new_fd = open("/", O_RDONLY | O_CLOEXEC);
3631 	if (new_fd < 0) {
3632 		err = -errno;
3633 		goto err_free_new_name;
3634 	}
3635 
3636 	new_fd = dup3(fd, new_fd, O_CLOEXEC);
3637 	if (new_fd < 0) {
3638 		err = -errno;
3639 		goto err_close_new_fd;
3640 	}
3641 
3642 	err = zclose(map->fd);
3643 	if (err) {
3644 		err = -errno;
3645 		goto err_close_new_fd;
3646 	}
3647 	free(map->name);
3648 
3649 	map->fd = new_fd;
3650 	map->name = new_name;
3651 	map->def.type = info.type;
3652 	map->def.key_size = info.key_size;
3653 	map->def.value_size = info.value_size;
3654 	map->def.max_entries = info.max_entries;
3655 	map->def.map_flags = info.map_flags;
3656 	map->btf_key_type_id = info.btf_key_type_id;
3657 	map->btf_value_type_id = info.btf_value_type_id;
3658 	map->reused = true;
3659 
3660 	return 0;
3661 
3662 err_close_new_fd:
3663 	close(new_fd);
3664 err_free_new_name:
3665 	free(new_name);
3666 	return err;
3667 }
3668 
3669 __u32 bpf_map__max_entries(const struct bpf_map *map)
3670 {
3671 	return map->def.max_entries;
3672 }
3673 
3674 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
3675 {
3676 	if (map->fd >= 0)
3677 		return -EBUSY;
3678 	map->def.max_entries = max_entries;
3679 	return 0;
3680 }
3681 
3682 int bpf_map__resize(struct bpf_map *map, __u32 max_entries)
3683 {
3684 	if (!map || !max_entries)
3685 		return -EINVAL;
3686 
3687 	return bpf_map__set_max_entries(map, max_entries);
3688 }
3689 
3690 static int
3691 bpf_object__probe_loading(struct bpf_object *obj)
3692 {
3693 	struct bpf_load_program_attr attr;
3694 	char *cp, errmsg[STRERR_BUFSIZE];
3695 	struct bpf_insn insns[] = {
3696 		BPF_MOV64_IMM(BPF_REG_0, 0),
3697 		BPF_EXIT_INSN(),
3698 	};
3699 	int ret;
3700 
3701 	/* make sure basic loading works */
3702 
3703 	memset(&attr, 0, sizeof(attr));
3704 	attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3705 	attr.insns = insns;
3706 	attr.insns_cnt = ARRAY_SIZE(insns);
3707 	attr.license = "GPL";
3708 
3709 	ret = bpf_load_program_xattr(&attr, NULL, 0);
3710 	if (ret < 0) {
3711 		ret = errno;
3712 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
3713 		pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
3714 			"program. Make sure your kernel supports BPF "
3715 			"(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
3716 			"set to big enough value.\n", __func__, cp, ret);
3717 		return -ret;
3718 	}
3719 	close(ret);
3720 
3721 	return 0;
3722 }
3723 
3724 static int probe_fd(int fd)
3725 {
3726 	if (fd >= 0)
3727 		close(fd);
3728 	return fd >= 0;
3729 }
3730 
3731 static int probe_kern_prog_name(void)
3732 {
3733 	struct bpf_load_program_attr attr;
3734 	struct bpf_insn insns[] = {
3735 		BPF_MOV64_IMM(BPF_REG_0, 0),
3736 		BPF_EXIT_INSN(),
3737 	};
3738 	int ret;
3739 
3740 	/* make sure loading with name works */
3741 
3742 	memset(&attr, 0, sizeof(attr));
3743 	attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3744 	attr.insns = insns;
3745 	attr.insns_cnt = ARRAY_SIZE(insns);
3746 	attr.license = "GPL";
3747 	attr.name = "test";
3748 	ret = bpf_load_program_xattr(&attr, NULL, 0);
3749 	return probe_fd(ret);
3750 }
3751 
3752 static int probe_kern_global_data(void)
3753 {
3754 	struct bpf_load_program_attr prg_attr;
3755 	struct bpf_create_map_attr map_attr;
3756 	char *cp, errmsg[STRERR_BUFSIZE];
3757 	struct bpf_insn insns[] = {
3758 		BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
3759 		BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
3760 		BPF_MOV64_IMM(BPF_REG_0, 0),
3761 		BPF_EXIT_INSN(),
3762 	};
3763 	int ret, map;
3764 
3765 	memset(&map_attr, 0, sizeof(map_attr));
3766 	map_attr.map_type = BPF_MAP_TYPE_ARRAY;
3767 	map_attr.key_size = sizeof(int);
3768 	map_attr.value_size = 32;
3769 	map_attr.max_entries = 1;
3770 
3771 	map = bpf_create_map_xattr(&map_attr);
3772 	if (map < 0) {
3773 		ret = -errno;
3774 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
3775 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
3776 			__func__, cp, -ret);
3777 		return ret;
3778 	}
3779 
3780 	insns[0].imm = map;
3781 
3782 	memset(&prg_attr, 0, sizeof(prg_attr));
3783 	prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3784 	prg_attr.insns = insns;
3785 	prg_attr.insns_cnt = ARRAY_SIZE(insns);
3786 	prg_attr.license = "GPL";
3787 
3788 	ret = bpf_load_program_xattr(&prg_attr, NULL, 0);
3789 	close(map);
3790 	return probe_fd(ret);
3791 }
3792 
3793 static int probe_kern_btf(void)
3794 {
3795 	static const char strs[] = "\0int";
3796 	__u32 types[] = {
3797 		/* int */
3798 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
3799 	};
3800 
3801 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3802 					     strs, sizeof(strs)));
3803 }
3804 
3805 static int probe_kern_btf_func(void)
3806 {
3807 	static const char strs[] = "\0int\0x\0a";
3808 	/* void x(int a) {} */
3809 	__u32 types[] = {
3810 		/* int */
3811 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
3812 		/* FUNC_PROTO */                                /* [2] */
3813 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
3814 		BTF_PARAM_ENC(7, 1),
3815 		/* FUNC x */                                    /* [3] */
3816 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
3817 	};
3818 
3819 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3820 					     strs, sizeof(strs)));
3821 }
3822 
3823 static int probe_kern_btf_func_global(void)
3824 {
3825 	static const char strs[] = "\0int\0x\0a";
3826 	/* static void x(int a) {} */
3827 	__u32 types[] = {
3828 		/* int */
3829 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
3830 		/* FUNC_PROTO */                                /* [2] */
3831 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
3832 		BTF_PARAM_ENC(7, 1),
3833 		/* FUNC x BTF_FUNC_GLOBAL */                    /* [3] */
3834 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
3835 	};
3836 
3837 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3838 					     strs, sizeof(strs)));
3839 }
3840 
3841 static int probe_kern_btf_datasec(void)
3842 {
3843 	static const char strs[] = "\0x\0.data";
3844 	/* static int a; */
3845 	__u32 types[] = {
3846 		/* int */
3847 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
3848 		/* VAR x */                                     /* [2] */
3849 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
3850 		BTF_VAR_STATIC,
3851 		/* DATASEC val */                               /* [3] */
3852 		BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
3853 		BTF_VAR_SECINFO_ENC(2, 0, 4),
3854 	};
3855 
3856 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3857 					     strs, sizeof(strs)));
3858 }
3859 
3860 static int probe_kern_array_mmap(void)
3861 {
3862 	struct bpf_create_map_attr attr = {
3863 		.map_type = BPF_MAP_TYPE_ARRAY,
3864 		.map_flags = BPF_F_MMAPABLE,
3865 		.key_size = sizeof(int),
3866 		.value_size = sizeof(int),
3867 		.max_entries = 1,
3868 	};
3869 
3870 	return probe_fd(bpf_create_map_xattr(&attr));
3871 }
3872 
3873 static int probe_kern_exp_attach_type(void)
3874 {
3875 	struct bpf_load_program_attr attr;
3876 	struct bpf_insn insns[] = {
3877 		BPF_MOV64_IMM(BPF_REG_0, 0),
3878 		BPF_EXIT_INSN(),
3879 	};
3880 
3881 	memset(&attr, 0, sizeof(attr));
3882 	/* use any valid combination of program type and (optional)
3883 	 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
3884 	 * to see if kernel supports expected_attach_type field for
3885 	 * BPF_PROG_LOAD command
3886 	 */
3887 	attr.prog_type = BPF_PROG_TYPE_CGROUP_SOCK;
3888 	attr.expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE;
3889 	attr.insns = insns;
3890 	attr.insns_cnt = ARRAY_SIZE(insns);
3891 	attr.license = "GPL";
3892 
3893 	return probe_fd(bpf_load_program_xattr(&attr, NULL, 0));
3894 }
3895 
3896 static int probe_kern_probe_read_kernel(void)
3897 {
3898 	struct bpf_load_program_attr attr;
3899 	struct bpf_insn insns[] = {
3900 		BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),	/* r1 = r10 (fp) */
3901 		BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),	/* r1 += -8 */
3902 		BPF_MOV64_IMM(BPF_REG_2, 8),		/* r2 = 8 */
3903 		BPF_MOV64_IMM(BPF_REG_3, 0),		/* r3 = 0 */
3904 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
3905 		BPF_EXIT_INSN(),
3906 	};
3907 
3908 	memset(&attr, 0, sizeof(attr));
3909 	attr.prog_type = BPF_PROG_TYPE_KPROBE;
3910 	attr.insns = insns;
3911 	attr.insns_cnt = ARRAY_SIZE(insns);
3912 	attr.license = "GPL";
3913 
3914 	return probe_fd(bpf_load_program_xattr(&attr, NULL, 0));
3915 }
3916 
3917 static int probe_prog_bind_map(void)
3918 {
3919 	struct bpf_load_program_attr prg_attr;
3920 	struct bpf_create_map_attr map_attr;
3921 	char *cp, errmsg[STRERR_BUFSIZE];
3922 	struct bpf_insn insns[] = {
3923 		BPF_MOV64_IMM(BPF_REG_0, 0),
3924 		BPF_EXIT_INSN(),
3925 	};
3926 	int ret, map, prog;
3927 
3928 	memset(&map_attr, 0, sizeof(map_attr));
3929 	map_attr.map_type = BPF_MAP_TYPE_ARRAY;
3930 	map_attr.key_size = sizeof(int);
3931 	map_attr.value_size = 32;
3932 	map_attr.max_entries = 1;
3933 
3934 	map = bpf_create_map_xattr(&map_attr);
3935 	if (map < 0) {
3936 		ret = -errno;
3937 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
3938 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
3939 			__func__, cp, -ret);
3940 		return ret;
3941 	}
3942 
3943 	memset(&prg_attr, 0, sizeof(prg_attr));
3944 	prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3945 	prg_attr.insns = insns;
3946 	prg_attr.insns_cnt = ARRAY_SIZE(insns);
3947 	prg_attr.license = "GPL";
3948 
3949 	prog = bpf_load_program_xattr(&prg_attr, NULL, 0);
3950 	if (prog < 0) {
3951 		close(map);
3952 		return 0;
3953 	}
3954 
3955 	ret = bpf_prog_bind_map(prog, map, NULL);
3956 
3957 	close(map);
3958 	close(prog);
3959 
3960 	return ret >= 0;
3961 }
3962 
3963 enum kern_feature_result {
3964 	FEAT_UNKNOWN = 0,
3965 	FEAT_SUPPORTED = 1,
3966 	FEAT_MISSING = 2,
3967 };
3968 
3969 typedef int (*feature_probe_fn)(void);
3970 
3971 static struct kern_feature_desc {
3972 	const char *desc;
3973 	feature_probe_fn probe;
3974 	enum kern_feature_result res;
3975 } feature_probes[__FEAT_CNT] = {
3976 	[FEAT_PROG_NAME] = {
3977 		"BPF program name", probe_kern_prog_name,
3978 	},
3979 	[FEAT_GLOBAL_DATA] = {
3980 		"global variables", probe_kern_global_data,
3981 	},
3982 	[FEAT_BTF] = {
3983 		"minimal BTF", probe_kern_btf,
3984 	},
3985 	[FEAT_BTF_FUNC] = {
3986 		"BTF functions", probe_kern_btf_func,
3987 	},
3988 	[FEAT_BTF_GLOBAL_FUNC] = {
3989 		"BTF global function", probe_kern_btf_func_global,
3990 	},
3991 	[FEAT_BTF_DATASEC] = {
3992 		"BTF data section and variable", probe_kern_btf_datasec,
3993 	},
3994 	[FEAT_ARRAY_MMAP] = {
3995 		"ARRAY map mmap()", probe_kern_array_mmap,
3996 	},
3997 	[FEAT_EXP_ATTACH_TYPE] = {
3998 		"BPF_PROG_LOAD expected_attach_type attribute",
3999 		probe_kern_exp_attach_type,
4000 	},
4001 	[FEAT_PROBE_READ_KERN] = {
4002 		"bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4003 	},
4004 	[FEAT_PROG_BIND_MAP] = {
4005 		"BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4006 	}
4007 };
4008 
4009 static bool kernel_supports(enum kern_feature_id feat_id)
4010 {
4011 	struct kern_feature_desc *feat = &feature_probes[feat_id];
4012 	int ret;
4013 
4014 	if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4015 		ret = feat->probe();
4016 		if (ret > 0) {
4017 			WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4018 		} else if (ret == 0) {
4019 			WRITE_ONCE(feat->res, FEAT_MISSING);
4020 		} else {
4021 			pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4022 			WRITE_ONCE(feat->res, FEAT_MISSING);
4023 		}
4024 	}
4025 
4026 	return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4027 }
4028 
4029 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4030 {
4031 	struct bpf_map_info map_info = {};
4032 	char msg[STRERR_BUFSIZE];
4033 	__u32 map_info_len;
4034 
4035 	map_info_len = sizeof(map_info);
4036 
4037 	if (bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len)) {
4038 		pr_warn("failed to get map info for map FD %d: %s\n",
4039 			map_fd, libbpf_strerror_r(errno, msg, sizeof(msg)));
4040 		return false;
4041 	}
4042 
4043 	return (map_info.type == map->def.type &&
4044 		map_info.key_size == map->def.key_size &&
4045 		map_info.value_size == map->def.value_size &&
4046 		map_info.max_entries == map->def.max_entries &&
4047 		map_info.map_flags == map->def.map_flags);
4048 }
4049 
4050 static int
4051 bpf_object__reuse_map(struct bpf_map *map)
4052 {
4053 	char *cp, errmsg[STRERR_BUFSIZE];
4054 	int err, pin_fd;
4055 
4056 	pin_fd = bpf_obj_get(map->pin_path);
4057 	if (pin_fd < 0) {
4058 		err = -errno;
4059 		if (err == -ENOENT) {
4060 			pr_debug("found no pinned map to reuse at '%s'\n",
4061 				 map->pin_path);
4062 			return 0;
4063 		}
4064 
4065 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
4066 		pr_warn("couldn't retrieve pinned map '%s': %s\n",
4067 			map->pin_path, cp);
4068 		return err;
4069 	}
4070 
4071 	if (!map_is_reuse_compat(map, pin_fd)) {
4072 		pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
4073 			map->pin_path);
4074 		close(pin_fd);
4075 		return -EINVAL;
4076 	}
4077 
4078 	err = bpf_map__reuse_fd(map, pin_fd);
4079 	if (err) {
4080 		close(pin_fd);
4081 		return err;
4082 	}
4083 	map->pinned = true;
4084 	pr_debug("reused pinned map at '%s'\n", map->pin_path);
4085 
4086 	return 0;
4087 }
4088 
4089 static int
4090 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
4091 {
4092 	enum libbpf_map_type map_type = map->libbpf_type;
4093 	char *cp, errmsg[STRERR_BUFSIZE];
4094 	int err, zero = 0;
4095 
4096 	err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
4097 	if (err) {
4098 		err = -errno;
4099 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4100 		pr_warn("Error setting initial map(%s) contents: %s\n",
4101 			map->name, cp);
4102 		return err;
4103 	}
4104 
4105 	/* Freeze .rodata and .kconfig map as read-only from syscall side. */
4106 	if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
4107 		err = bpf_map_freeze(map->fd);
4108 		if (err) {
4109 			err = -errno;
4110 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4111 			pr_warn("Error freezing map(%s) as read-only: %s\n",
4112 				map->name, cp);
4113 			return err;
4114 		}
4115 	}
4116 	return 0;
4117 }
4118 
4119 static void bpf_map__destroy(struct bpf_map *map);
4120 
4121 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map)
4122 {
4123 	struct bpf_create_map_attr create_attr;
4124 	struct bpf_map_def *def = &map->def;
4125 
4126 	memset(&create_attr, 0, sizeof(create_attr));
4127 
4128 	if (kernel_supports(FEAT_PROG_NAME))
4129 		create_attr.name = map->name;
4130 	create_attr.map_ifindex = map->map_ifindex;
4131 	create_attr.map_type = def->type;
4132 	create_attr.map_flags = def->map_flags;
4133 	create_attr.key_size = def->key_size;
4134 	create_attr.value_size = def->value_size;
4135 	create_attr.numa_node = map->numa_node;
4136 
4137 	if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) {
4138 		int nr_cpus;
4139 
4140 		nr_cpus = libbpf_num_possible_cpus();
4141 		if (nr_cpus < 0) {
4142 			pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
4143 				map->name, nr_cpus);
4144 			return nr_cpus;
4145 		}
4146 		pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
4147 		create_attr.max_entries = nr_cpus;
4148 	} else {
4149 		create_attr.max_entries = def->max_entries;
4150 	}
4151 
4152 	if (bpf_map__is_struct_ops(map))
4153 		create_attr.btf_vmlinux_value_type_id =
4154 			map->btf_vmlinux_value_type_id;
4155 
4156 	create_attr.btf_fd = 0;
4157 	create_attr.btf_key_type_id = 0;
4158 	create_attr.btf_value_type_id = 0;
4159 	if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) {
4160 		create_attr.btf_fd = btf__fd(obj->btf);
4161 		create_attr.btf_key_type_id = map->btf_key_type_id;
4162 		create_attr.btf_value_type_id = map->btf_value_type_id;
4163 	}
4164 
4165 	if (bpf_map_type__is_map_in_map(def->type)) {
4166 		if (map->inner_map) {
4167 			int err;
4168 
4169 			err = bpf_object__create_map(obj, map->inner_map);
4170 			if (err) {
4171 				pr_warn("map '%s': failed to create inner map: %d\n",
4172 					map->name, err);
4173 				return err;
4174 			}
4175 			map->inner_map_fd = bpf_map__fd(map->inner_map);
4176 		}
4177 		if (map->inner_map_fd >= 0)
4178 			create_attr.inner_map_fd = map->inner_map_fd;
4179 	}
4180 
4181 	map->fd = bpf_create_map_xattr(&create_attr);
4182 	if (map->fd < 0 && (create_attr.btf_key_type_id ||
4183 			    create_attr.btf_value_type_id)) {
4184 		char *cp, errmsg[STRERR_BUFSIZE];
4185 		int err = -errno;
4186 
4187 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4188 		pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
4189 			map->name, cp, err);
4190 		create_attr.btf_fd = 0;
4191 		create_attr.btf_key_type_id = 0;
4192 		create_attr.btf_value_type_id = 0;
4193 		map->btf_key_type_id = 0;
4194 		map->btf_value_type_id = 0;
4195 		map->fd = bpf_create_map_xattr(&create_attr);
4196 	}
4197 
4198 	if (map->fd < 0)
4199 		return -errno;
4200 
4201 	if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
4202 		bpf_map__destroy(map->inner_map);
4203 		zfree(&map->inner_map);
4204 	}
4205 
4206 	return 0;
4207 }
4208 
4209 static int init_map_slots(struct bpf_map *map)
4210 {
4211 	const struct bpf_map *targ_map;
4212 	unsigned int i;
4213 	int fd, err;
4214 
4215 	for (i = 0; i < map->init_slots_sz; i++) {
4216 		if (!map->init_slots[i])
4217 			continue;
4218 
4219 		targ_map = map->init_slots[i];
4220 		fd = bpf_map__fd(targ_map);
4221 		err = bpf_map_update_elem(map->fd, &i, &fd, 0);
4222 		if (err) {
4223 			err = -errno;
4224 			pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
4225 				map->name, i, targ_map->name,
4226 				fd, err);
4227 			return err;
4228 		}
4229 		pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
4230 			 map->name, i, targ_map->name, fd);
4231 	}
4232 
4233 	zfree(&map->init_slots);
4234 	map->init_slots_sz = 0;
4235 
4236 	return 0;
4237 }
4238 
4239 static int
4240 bpf_object__create_maps(struct bpf_object *obj)
4241 {
4242 	struct bpf_map *map;
4243 	char *cp, errmsg[STRERR_BUFSIZE];
4244 	unsigned int i, j;
4245 	int err;
4246 
4247 	for (i = 0; i < obj->nr_maps; i++) {
4248 		map = &obj->maps[i];
4249 
4250 		if (map->pin_path) {
4251 			err = bpf_object__reuse_map(map);
4252 			if (err) {
4253 				pr_warn("map '%s': error reusing pinned map\n",
4254 					map->name);
4255 				goto err_out;
4256 			}
4257 		}
4258 
4259 		if (map->fd >= 0) {
4260 			pr_debug("map '%s': skipping creation (preset fd=%d)\n",
4261 				 map->name, map->fd);
4262 		} else {
4263 			err = bpf_object__create_map(obj, map);
4264 			if (err)
4265 				goto err_out;
4266 
4267 			pr_debug("map '%s': created successfully, fd=%d\n",
4268 				 map->name, map->fd);
4269 
4270 			if (bpf_map__is_internal(map)) {
4271 				err = bpf_object__populate_internal_map(obj, map);
4272 				if (err < 0) {
4273 					zclose(map->fd);
4274 					goto err_out;
4275 				}
4276 			}
4277 
4278 			if (map->init_slots_sz) {
4279 				err = init_map_slots(map);
4280 				if (err < 0) {
4281 					zclose(map->fd);
4282 					goto err_out;
4283 				}
4284 			}
4285 		}
4286 
4287 		if (map->pin_path && !map->pinned) {
4288 			err = bpf_map__pin(map, NULL);
4289 			if (err) {
4290 				pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
4291 					map->name, map->pin_path, err);
4292 				zclose(map->fd);
4293 				goto err_out;
4294 			}
4295 		}
4296 	}
4297 
4298 	return 0;
4299 
4300 err_out:
4301 	cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4302 	pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
4303 	pr_perm_msg(err);
4304 	for (j = 0; j < i; j++)
4305 		zclose(obj->maps[j].fd);
4306 	return err;
4307 }
4308 
4309 #define BPF_CORE_SPEC_MAX_LEN 64
4310 
4311 /* represents BPF CO-RE field or array element accessor */
4312 struct bpf_core_accessor {
4313 	__u32 type_id;		/* struct/union type or array element type */
4314 	__u32 idx;		/* field index or array index */
4315 	const char *name;	/* field name or NULL for array accessor */
4316 };
4317 
4318 struct bpf_core_spec {
4319 	const struct btf *btf;
4320 	/* high-level spec: named fields and array indices only */
4321 	struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN];
4322 	/* original unresolved (no skip_mods_or_typedefs) root type ID */
4323 	__u32 root_type_id;
4324 	/* CO-RE relocation kind */
4325 	enum bpf_core_relo_kind relo_kind;
4326 	/* high-level spec length */
4327 	int len;
4328 	/* raw, low-level spec: 1-to-1 with accessor spec string */
4329 	int raw_spec[BPF_CORE_SPEC_MAX_LEN];
4330 	/* raw spec length */
4331 	int raw_len;
4332 	/* field bit offset represented by spec */
4333 	__u32 bit_offset;
4334 };
4335 
4336 static bool str_is_empty(const char *s)
4337 {
4338 	return !s || !s[0];
4339 }
4340 
4341 static bool is_flex_arr(const struct btf *btf,
4342 			const struct bpf_core_accessor *acc,
4343 			const struct btf_array *arr)
4344 {
4345 	const struct btf_type *t;
4346 
4347 	/* not a flexible array, if not inside a struct or has non-zero size */
4348 	if (!acc->name || arr->nelems > 0)
4349 		return false;
4350 
4351 	/* has to be the last member of enclosing struct */
4352 	t = btf__type_by_id(btf, acc->type_id);
4353 	return acc->idx == btf_vlen(t) - 1;
4354 }
4355 
4356 static const char *core_relo_kind_str(enum bpf_core_relo_kind kind)
4357 {
4358 	switch (kind) {
4359 	case BPF_FIELD_BYTE_OFFSET: return "byte_off";
4360 	case BPF_FIELD_BYTE_SIZE: return "byte_sz";
4361 	case BPF_FIELD_EXISTS: return "field_exists";
4362 	case BPF_FIELD_SIGNED: return "signed";
4363 	case BPF_FIELD_LSHIFT_U64: return "lshift_u64";
4364 	case BPF_FIELD_RSHIFT_U64: return "rshift_u64";
4365 	case BPF_TYPE_ID_LOCAL: return "local_type_id";
4366 	case BPF_TYPE_ID_TARGET: return "target_type_id";
4367 	case BPF_TYPE_EXISTS: return "type_exists";
4368 	case BPF_TYPE_SIZE: return "type_size";
4369 	case BPF_ENUMVAL_EXISTS: return "enumval_exists";
4370 	case BPF_ENUMVAL_VALUE: return "enumval_value";
4371 	default: return "unknown";
4372 	}
4373 }
4374 
4375 static bool core_relo_is_field_based(enum bpf_core_relo_kind kind)
4376 {
4377 	switch (kind) {
4378 	case BPF_FIELD_BYTE_OFFSET:
4379 	case BPF_FIELD_BYTE_SIZE:
4380 	case BPF_FIELD_EXISTS:
4381 	case BPF_FIELD_SIGNED:
4382 	case BPF_FIELD_LSHIFT_U64:
4383 	case BPF_FIELD_RSHIFT_U64:
4384 		return true;
4385 	default:
4386 		return false;
4387 	}
4388 }
4389 
4390 static bool core_relo_is_type_based(enum bpf_core_relo_kind kind)
4391 {
4392 	switch (kind) {
4393 	case BPF_TYPE_ID_LOCAL:
4394 	case BPF_TYPE_ID_TARGET:
4395 	case BPF_TYPE_EXISTS:
4396 	case BPF_TYPE_SIZE:
4397 		return true;
4398 	default:
4399 		return false;
4400 	}
4401 }
4402 
4403 static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind)
4404 {
4405 	switch (kind) {
4406 	case BPF_ENUMVAL_EXISTS:
4407 	case BPF_ENUMVAL_VALUE:
4408 		return true;
4409 	default:
4410 		return false;
4411 	}
4412 }
4413 
4414 /*
4415  * Turn bpf_core_relo into a low- and high-level spec representation,
4416  * validating correctness along the way, as well as calculating resulting
4417  * field bit offset, specified by accessor string. Low-level spec captures
4418  * every single level of nestedness, including traversing anonymous
4419  * struct/union members. High-level one only captures semantically meaningful
4420  * "turning points": named fields and array indicies.
4421  * E.g., for this case:
4422  *
4423  *   struct sample {
4424  *       int __unimportant;
4425  *       struct {
4426  *           int __1;
4427  *           int __2;
4428  *           int a[7];
4429  *       };
4430  *   };
4431  *
4432  *   struct sample *s = ...;
4433  *
4434  *   int x = &s->a[3]; // access string = '0:1:2:3'
4435  *
4436  * Low-level spec has 1:1 mapping with each element of access string (it's
4437  * just a parsed access string representation): [0, 1, 2, 3].
4438  *
4439  * High-level spec will capture only 3 points:
4440  *   - intial zero-index access by pointer (&s->... is the same as &s[0]...);
4441  *   - field 'a' access (corresponds to '2' in low-level spec);
4442  *   - array element #3 access (corresponds to '3' in low-level spec).
4443  *
4444  * Type-based relocations (TYPE_EXISTS/TYPE_SIZE,
4445  * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their
4446  * spec and raw_spec are kept empty.
4447  *
4448  * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access
4449  * string to specify enumerator's value index that need to be relocated.
4450  */
4451 static int bpf_core_parse_spec(const struct btf *btf,
4452 			       __u32 type_id,
4453 			       const char *spec_str,
4454 			       enum bpf_core_relo_kind relo_kind,
4455 			       struct bpf_core_spec *spec)
4456 {
4457 	int access_idx, parsed_len, i;
4458 	struct bpf_core_accessor *acc;
4459 	const struct btf_type *t;
4460 	const char *name;
4461 	__u32 id;
4462 	__s64 sz;
4463 
4464 	if (str_is_empty(spec_str) || *spec_str == ':')
4465 		return -EINVAL;
4466 
4467 	memset(spec, 0, sizeof(*spec));
4468 	spec->btf = btf;
4469 	spec->root_type_id = type_id;
4470 	spec->relo_kind = relo_kind;
4471 
4472 	/* type-based relocations don't have a field access string */
4473 	if (core_relo_is_type_based(relo_kind)) {
4474 		if (strcmp(spec_str, "0"))
4475 			return -EINVAL;
4476 		return 0;
4477 	}
4478 
4479 	/* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */
4480 	while (*spec_str) {
4481 		if (*spec_str == ':')
4482 			++spec_str;
4483 		if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1)
4484 			return -EINVAL;
4485 		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
4486 			return -E2BIG;
4487 		spec_str += parsed_len;
4488 		spec->raw_spec[spec->raw_len++] = access_idx;
4489 	}
4490 
4491 	if (spec->raw_len == 0)
4492 		return -EINVAL;
4493 
4494 	t = skip_mods_and_typedefs(btf, type_id, &id);
4495 	if (!t)
4496 		return -EINVAL;
4497 
4498 	access_idx = spec->raw_spec[0];
4499 	acc = &spec->spec[0];
4500 	acc->type_id = id;
4501 	acc->idx = access_idx;
4502 	spec->len++;
4503 
4504 	if (core_relo_is_enumval_based(relo_kind)) {
4505 		if (!btf_is_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t))
4506 			return -EINVAL;
4507 
4508 		/* record enumerator name in a first accessor */
4509 		acc->name = btf__name_by_offset(btf, btf_enum(t)[access_idx].name_off);
4510 		return 0;
4511 	}
4512 
4513 	if (!core_relo_is_field_based(relo_kind))
4514 		return -EINVAL;
4515 
4516 	sz = btf__resolve_size(btf, id);
4517 	if (sz < 0)
4518 		return sz;
4519 	spec->bit_offset = access_idx * sz * 8;
4520 
4521 	for (i = 1; i < spec->raw_len; i++) {
4522 		t = skip_mods_and_typedefs(btf, id, &id);
4523 		if (!t)
4524 			return -EINVAL;
4525 
4526 		access_idx = spec->raw_spec[i];
4527 		acc = &spec->spec[spec->len];
4528 
4529 		if (btf_is_composite(t)) {
4530 			const struct btf_member *m;
4531 			__u32 bit_offset;
4532 
4533 			if (access_idx >= btf_vlen(t))
4534 				return -EINVAL;
4535 
4536 			bit_offset = btf_member_bit_offset(t, access_idx);
4537 			spec->bit_offset += bit_offset;
4538 
4539 			m = btf_members(t) + access_idx;
4540 			if (m->name_off) {
4541 				name = btf__name_by_offset(btf, m->name_off);
4542 				if (str_is_empty(name))
4543 					return -EINVAL;
4544 
4545 				acc->type_id = id;
4546 				acc->idx = access_idx;
4547 				acc->name = name;
4548 				spec->len++;
4549 			}
4550 
4551 			id = m->type;
4552 		} else if (btf_is_array(t)) {
4553 			const struct btf_array *a = btf_array(t);
4554 			bool flex;
4555 
4556 			t = skip_mods_and_typedefs(btf, a->type, &id);
4557 			if (!t)
4558 				return -EINVAL;
4559 
4560 			flex = is_flex_arr(btf, acc - 1, a);
4561 			if (!flex && access_idx >= a->nelems)
4562 				return -EINVAL;
4563 
4564 			spec->spec[spec->len].type_id = id;
4565 			spec->spec[spec->len].idx = access_idx;
4566 			spec->len++;
4567 
4568 			sz = btf__resolve_size(btf, id);
4569 			if (sz < 0)
4570 				return sz;
4571 			spec->bit_offset += access_idx * sz * 8;
4572 		} else {
4573 			pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n",
4574 				type_id, spec_str, i, id, btf_kind_str(t));
4575 			return -EINVAL;
4576 		}
4577 	}
4578 
4579 	return 0;
4580 }
4581 
4582 static bool bpf_core_is_flavor_sep(const char *s)
4583 {
4584 	/* check X___Y name pattern, where X and Y are not underscores */
4585 	return s[0] != '_' &&				      /* X */
4586 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
4587 	       s[4] != '_';				      /* Y */
4588 }
4589 
4590 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
4591  * before last triple underscore. Struct name part after last triple
4592  * underscore is ignored by BPF CO-RE relocation during relocation matching.
4593  */
4594 static size_t bpf_core_essential_name_len(const char *name)
4595 {
4596 	size_t n = strlen(name);
4597 	int i;
4598 
4599 	for (i = n - 5; i >= 0; i--) {
4600 		if (bpf_core_is_flavor_sep(name + i))
4601 			return i + 1;
4602 	}
4603 	return n;
4604 }
4605 
4606 /* dynamically sized list of type IDs */
4607 struct ids_vec {
4608 	__u32 *data;
4609 	int len;
4610 };
4611 
4612 static void bpf_core_free_cands(struct ids_vec *cand_ids)
4613 {
4614 	free(cand_ids->data);
4615 	free(cand_ids);
4616 }
4617 
4618 static struct ids_vec *bpf_core_find_cands(const struct btf *local_btf,
4619 					   __u32 local_type_id,
4620 					   const struct btf *targ_btf)
4621 {
4622 	size_t local_essent_len, targ_essent_len;
4623 	const char *local_name, *targ_name;
4624 	const struct btf_type *t, *local_t;
4625 	struct ids_vec *cand_ids;
4626 	__u32 *new_ids;
4627 	int i, err, n;
4628 
4629 	local_t = btf__type_by_id(local_btf, local_type_id);
4630 	if (!local_t)
4631 		return ERR_PTR(-EINVAL);
4632 
4633 	local_name = btf__name_by_offset(local_btf, local_t->name_off);
4634 	if (str_is_empty(local_name))
4635 		return ERR_PTR(-EINVAL);
4636 	local_essent_len = bpf_core_essential_name_len(local_name);
4637 
4638 	cand_ids = calloc(1, sizeof(*cand_ids));
4639 	if (!cand_ids)
4640 		return ERR_PTR(-ENOMEM);
4641 
4642 	n = btf__get_nr_types(targ_btf);
4643 	for (i = 1; i <= n; i++) {
4644 		t = btf__type_by_id(targ_btf, i);
4645 		if (btf_kind(t) != btf_kind(local_t))
4646 			continue;
4647 
4648 		targ_name = btf__name_by_offset(targ_btf, t->name_off);
4649 		if (str_is_empty(targ_name))
4650 			continue;
4651 
4652 		targ_essent_len = bpf_core_essential_name_len(targ_name);
4653 		if (targ_essent_len != local_essent_len)
4654 			continue;
4655 
4656 		if (strncmp(local_name, targ_name, local_essent_len) == 0) {
4657 			pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s\n",
4658 				 local_type_id, btf_kind_str(local_t),
4659 				 local_name, i, btf_kind_str(t), targ_name);
4660 			new_ids = libbpf_reallocarray(cand_ids->data,
4661 						      cand_ids->len + 1,
4662 						      sizeof(*cand_ids->data));
4663 			if (!new_ids) {
4664 				err = -ENOMEM;
4665 				goto err_out;
4666 			}
4667 			cand_ids->data = new_ids;
4668 			cand_ids->data[cand_ids->len++] = i;
4669 		}
4670 	}
4671 	return cand_ids;
4672 err_out:
4673 	bpf_core_free_cands(cand_ids);
4674 	return ERR_PTR(err);
4675 }
4676 
4677 /* Check two types for compatibility for the purpose of field access
4678  * relocation. const/volatile/restrict and typedefs are skipped to ensure we
4679  * are relocating semantically compatible entities:
4680  *   - any two STRUCTs/UNIONs are compatible and can be mixed;
4681  *   - any two FWDs are compatible, if their names match (modulo flavor suffix);
4682  *   - any two PTRs are always compatible;
4683  *   - for ENUMs, names should be the same (ignoring flavor suffix) or at
4684  *     least one of enums should be anonymous;
4685  *   - for ENUMs, check sizes, names are ignored;
4686  *   - for INT, size and signedness are ignored;
4687  *   - for ARRAY, dimensionality is ignored, element types are checked for
4688  *     compatibility recursively;
4689  *   - everything else shouldn't be ever a target of relocation.
4690  * These rules are not set in stone and probably will be adjusted as we get
4691  * more experience with using BPF CO-RE relocations.
4692  */
4693 static int bpf_core_fields_are_compat(const struct btf *local_btf,
4694 				      __u32 local_id,
4695 				      const struct btf *targ_btf,
4696 				      __u32 targ_id)
4697 {
4698 	const struct btf_type *local_type, *targ_type;
4699 
4700 recur:
4701 	local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
4702 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
4703 	if (!local_type || !targ_type)
4704 		return -EINVAL;
4705 
4706 	if (btf_is_composite(local_type) && btf_is_composite(targ_type))
4707 		return 1;
4708 	if (btf_kind(local_type) != btf_kind(targ_type))
4709 		return 0;
4710 
4711 	switch (btf_kind(local_type)) {
4712 	case BTF_KIND_PTR:
4713 		return 1;
4714 	case BTF_KIND_FWD:
4715 	case BTF_KIND_ENUM: {
4716 		const char *local_name, *targ_name;
4717 		size_t local_len, targ_len;
4718 
4719 		local_name = btf__name_by_offset(local_btf,
4720 						 local_type->name_off);
4721 		targ_name = btf__name_by_offset(targ_btf, targ_type->name_off);
4722 		local_len = bpf_core_essential_name_len(local_name);
4723 		targ_len = bpf_core_essential_name_len(targ_name);
4724 		/* one of them is anonymous or both w/ same flavor-less names */
4725 		return local_len == 0 || targ_len == 0 ||
4726 		       (local_len == targ_len &&
4727 			strncmp(local_name, targ_name, local_len) == 0);
4728 	}
4729 	case BTF_KIND_INT:
4730 		/* just reject deprecated bitfield-like integers; all other
4731 		 * integers are by default compatible between each other
4732 		 */
4733 		return btf_int_offset(local_type) == 0 &&
4734 		       btf_int_offset(targ_type) == 0;
4735 	case BTF_KIND_ARRAY:
4736 		local_id = btf_array(local_type)->type;
4737 		targ_id = btf_array(targ_type)->type;
4738 		goto recur;
4739 	default:
4740 		pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n",
4741 			btf_kind(local_type), local_id, targ_id);
4742 		return 0;
4743 	}
4744 }
4745 
4746 /*
4747  * Given single high-level named field accessor in local type, find
4748  * corresponding high-level accessor for a target type. Along the way,
4749  * maintain low-level spec for target as well. Also keep updating target
4750  * bit offset.
4751  *
4752  * Searching is performed through recursive exhaustive enumeration of all
4753  * fields of a struct/union. If there are any anonymous (embedded)
4754  * structs/unions, they are recursively searched as well. If field with
4755  * desired name is found, check compatibility between local and target types,
4756  * before returning result.
4757  *
4758  * 1 is returned, if field is found.
4759  * 0 is returned if no compatible field is found.
4760  * <0 is returned on error.
4761  */
4762 static int bpf_core_match_member(const struct btf *local_btf,
4763 				 const struct bpf_core_accessor *local_acc,
4764 				 const struct btf *targ_btf,
4765 				 __u32 targ_id,
4766 				 struct bpf_core_spec *spec,
4767 				 __u32 *next_targ_id)
4768 {
4769 	const struct btf_type *local_type, *targ_type;
4770 	const struct btf_member *local_member, *m;
4771 	const char *local_name, *targ_name;
4772 	__u32 local_id;
4773 	int i, n, found;
4774 
4775 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
4776 	if (!targ_type)
4777 		return -EINVAL;
4778 	if (!btf_is_composite(targ_type))
4779 		return 0;
4780 
4781 	local_id = local_acc->type_id;
4782 	local_type = btf__type_by_id(local_btf, local_id);
4783 	local_member = btf_members(local_type) + local_acc->idx;
4784 	local_name = btf__name_by_offset(local_btf, local_member->name_off);
4785 
4786 	n = btf_vlen(targ_type);
4787 	m = btf_members(targ_type);
4788 	for (i = 0; i < n; i++, m++) {
4789 		__u32 bit_offset;
4790 
4791 		bit_offset = btf_member_bit_offset(targ_type, i);
4792 
4793 		/* too deep struct/union/array nesting */
4794 		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
4795 			return -E2BIG;
4796 
4797 		/* speculate this member will be the good one */
4798 		spec->bit_offset += bit_offset;
4799 		spec->raw_spec[spec->raw_len++] = i;
4800 
4801 		targ_name = btf__name_by_offset(targ_btf, m->name_off);
4802 		if (str_is_empty(targ_name)) {
4803 			/* embedded struct/union, we need to go deeper */
4804 			found = bpf_core_match_member(local_btf, local_acc,
4805 						      targ_btf, m->type,
4806 						      spec, next_targ_id);
4807 			if (found) /* either found or error */
4808 				return found;
4809 		} else if (strcmp(local_name, targ_name) == 0) {
4810 			/* matching named field */
4811 			struct bpf_core_accessor *targ_acc;
4812 
4813 			targ_acc = &spec->spec[spec->len++];
4814 			targ_acc->type_id = targ_id;
4815 			targ_acc->idx = i;
4816 			targ_acc->name = targ_name;
4817 
4818 			*next_targ_id = m->type;
4819 			found = bpf_core_fields_are_compat(local_btf,
4820 							   local_member->type,
4821 							   targ_btf, m->type);
4822 			if (!found)
4823 				spec->len--; /* pop accessor */
4824 			return found;
4825 		}
4826 		/* member turned out not to be what we looked for */
4827 		spec->bit_offset -= bit_offset;
4828 		spec->raw_len--;
4829 	}
4830 
4831 	return 0;
4832 }
4833 
4834 /* Check local and target types for compatibility. This check is used for
4835  * type-based CO-RE relocations and follow slightly different rules than
4836  * field-based relocations. This function assumes that root types were already
4837  * checked for name match. Beyond that initial root-level name check, names
4838  * are completely ignored. Compatibility rules are as follows:
4839  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
4840  *     kind should match for local and target types (i.e., STRUCT is not
4841  *     compatible with UNION);
4842  *   - for ENUMs, the size is ignored;
4843  *   - for INT, size and signedness are ignored;
4844  *   - for ARRAY, dimensionality is ignored, element types are checked for
4845  *     compatibility recursively;
4846  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
4847  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
4848  *   - FUNC_PROTOs are compatible if they have compatible signature: same
4849  *     number of input args and compatible return and argument types.
4850  * These rules are not set in stone and probably will be adjusted as we get
4851  * more experience with using BPF CO-RE relocations.
4852  */
4853 static int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
4854 				     const struct btf *targ_btf, __u32 targ_id)
4855 {
4856 	const struct btf_type *local_type, *targ_type;
4857 	int depth = 32; /* max recursion depth */
4858 
4859 	/* caller made sure that names match (ignoring flavor suffix) */
4860 	local_type = btf__type_by_id(local_btf, local_id);
4861 	targ_type = btf__type_by_id(targ_btf, targ_id);
4862 	if (btf_kind(local_type) != btf_kind(targ_type))
4863 		return 0;
4864 
4865 recur:
4866 	depth--;
4867 	if (depth < 0)
4868 		return -EINVAL;
4869 
4870 	local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
4871 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
4872 	if (!local_type || !targ_type)
4873 		return -EINVAL;
4874 
4875 	if (btf_kind(local_type) != btf_kind(targ_type))
4876 		return 0;
4877 
4878 	switch (btf_kind(local_type)) {
4879 	case BTF_KIND_UNKN:
4880 	case BTF_KIND_STRUCT:
4881 	case BTF_KIND_UNION:
4882 	case BTF_KIND_ENUM:
4883 	case BTF_KIND_FWD:
4884 		return 1;
4885 	case BTF_KIND_INT:
4886 		/* just reject deprecated bitfield-like integers; all other
4887 		 * integers are by default compatible between each other
4888 		 */
4889 		return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0;
4890 	case BTF_KIND_PTR:
4891 		local_id = local_type->type;
4892 		targ_id = targ_type->type;
4893 		goto recur;
4894 	case BTF_KIND_ARRAY:
4895 		local_id = btf_array(local_type)->type;
4896 		targ_id = btf_array(targ_type)->type;
4897 		goto recur;
4898 	case BTF_KIND_FUNC_PROTO: {
4899 		struct btf_param *local_p = btf_params(local_type);
4900 		struct btf_param *targ_p = btf_params(targ_type);
4901 		__u16 local_vlen = btf_vlen(local_type);
4902 		__u16 targ_vlen = btf_vlen(targ_type);
4903 		int i, err;
4904 
4905 		if (local_vlen != targ_vlen)
4906 			return 0;
4907 
4908 		for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
4909 			skip_mods_and_typedefs(local_btf, local_p->type, &local_id);
4910 			skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id);
4911 			err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id);
4912 			if (err <= 0)
4913 				return err;
4914 		}
4915 
4916 		/* tail recurse for return type check */
4917 		skip_mods_and_typedefs(local_btf, local_type->type, &local_id);
4918 		skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id);
4919 		goto recur;
4920 	}
4921 	default:
4922 		pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n",
4923 			btf_kind_str(local_type), local_id, targ_id);
4924 		return 0;
4925 	}
4926 }
4927 
4928 /*
4929  * Try to match local spec to a target type and, if successful, produce full
4930  * target spec (high-level, low-level + bit offset).
4931  */
4932 static int bpf_core_spec_match(struct bpf_core_spec *local_spec,
4933 			       const struct btf *targ_btf, __u32 targ_id,
4934 			       struct bpf_core_spec *targ_spec)
4935 {
4936 	const struct btf_type *targ_type;
4937 	const struct bpf_core_accessor *local_acc;
4938 	struct bpf_core_accessor *targ_acc;
4939 	int i, sz, matched;
4940 
4941 	memset(targ_spec, 0, sizeof(*targ_spec));
4942 	targ_spec->btf = targ_btf;
4943 	targ_spec->root_type_id = targ_id;
4944 	targ_spec->relo_kind = local_spec->relo_kind;
4945 
4946 	if (core_relo_is_type_based(local_spec->relo_kind)) {
4947 		return bpf_core_types_are_compat(local_spec->btf,
4948 						 local_spec->root_type_id,
4949 						 targ_btf, targ_id);
4950 	}
4951 
4952 	local_acc = &local_spec->spec[0];
4953 	targ_acc = &targ_spec->spec[0];
4954 
4955 	if (core_relo_is_enumval_based(local_spec->relo_kind)) {
4956 		size_t local_essent_len, targ_essent_len;
4957 		const struct btf_enum *e;
4958 		const char *targ_name;
4959 
4960 		/* has to resolve to an enum */
4961 		targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id);
4962 		if (!btf_is_enum(targ_type))
4963 			return 0;
4964 
4965 		local_essent_len = bpf_core_essential_name_len(local_acc->name);
4966 
4967 		for (i = 0, e = btf_enum(targ_type); i < btf_vlen(targ_type); i++, e++) {
4968 			targ_name = btf__name_by_offset(targ_spec->btf, e->name_off);
4969 			targ_essent_len = bpf_core_essential_name_len(targ_name);
4970 			if (targ_essent_len != local_essent_len)
4971 				continue;
4972 			if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) {
4973 				targ_acc->type_id = targ_id;
4974 				targ_acc->idx = i;
4975 				targ_acc->name = targ_name;
4976 				targ_spec->len++;
4977 				targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
4978 				targ_spec->raw_len++;
4979 				return 1;
4980 			}
4981 		}
4982 		return 0;
4983 	}
4984 
4985 	if (!core_relo_is_field_based(local_spec->relo_kind))
4986 		return -EINVAL;
4987 
4988 	for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) {
4989 		targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id,
4990 						   &targ_id);
4991 		if (!targ_type)
4992 			return -EINVAL;
4993 
4994 		if (local_acc->name) {
4995 			matched = bpf_core_match_member(local_spec->btf,
4996 							local_acc,
4997 							targ_btf, targ_id,
4998 							targ_spec, &targ_id);
4999 			if (matched <= 0)
5000 				return matched;
5001 		} else {
5002 			/* for i=0, targ_id is already treated as array element
5003 			 * type (because it's the original struct), for others
5004 			 * we should find array element type first
5005 			 */
5006 			if (i > 0) {
5007 				const struct btf_array *a;
5008 				bool flex;
5009 
5010 				if (!btf_is_array(targ_type))
5011 					return 0;
5012 
5013 				a = btf_array(targ_type);
5014 				flex = is_flex_arr(targ_btf, targ_acc - 1, a);
5015 				if (!flex && local_acc->idx >= a->nelems)
5016 					return 0;
5017 				if (!skip_mods_and_typedefs(targ_btf, a->type,
5018 							    &targ_id))
5019 					return -EINVAL;
5020 			}
5021 
5022 			/* too deep struct/union/array nesting */
5023 			if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
5024 				return -E2BIG;
5025 
5026 			targ_acc->type_id = targ_id;
5027 			targ_acc->idx = local_acc->idx;
5028 			targ_acc->name = NULL;
5029 			targ_spec->len++;
5030 			targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
5031 			targ_spec->raw_len++;
5032 
5033 			sz = btf__resolve_size(targ_btf, targ_id);
5034 			if (sz < 0)
5035 				return sz;
5036 			targ_spec->bit_offset += local_acc->idx * sz * 8;
5037 		}
5038 	}
5039 
5040 	return 1;
5041 }
5042 
5043 static int bpf_core_calc_field_relo(const struct bpf_program *prog,
5044 				    const struct bpf_core_relo *relo,
5045 				    const struct bpf_core_spec *spec,
5046 				    __u32 *val, __u32 *field_sz, __u32 *type_id,
5047 				    bool *validate)
5048 {
5049 	const struct bpf_core_accessor *acc;
5050 	const struct btf_type *t;
5051 	__u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id;
5052 	const struct btf_member *m;
5053 	const struct btf_type *mt;
5054 	bool bitfield;
5055 	__s64 sz;
5056 
5057 	*field_sz = 0;
5058 
5059 	if (relo->kind == BPF_FIELD_EXISTS) {
5060 		*val = spec ? 1 : 0;
5061 		return 0;
5062 	}
5063 
5064 	if (!spec)
5065 		return -EUCLEAN; /* request instruction poisoning */
5066 
5067 	acc = &spec->spec[spec->len - 1];
5068 	t = btf__type_by_id(spec->btf, acc->type_id);
5069 
5070 	/* a[n] accessor needs special handling */
5071 	if (!acc->name) {
5072 		if (relo->kind == BPF_FIELD_BYTE_OFFSET) {
5073 			*val = spec->bit_offset / 8;
5074 			/* remember field size for load/store mem size */
5075 			sz = btf__resolve_size(spec->btf, acc->type_id);
5076 			if (sz < 0)
5077 				return -EINVAL;
5078 			*field_sz = sz;
5079 			*type_id = acc->type_id;
5080 		} else if (relo->kind == BPF_FIELD_BYTE_SIZE) {
5081 			sz = btf__resolve_size(spec->btf, acc->type_id);
5082 			if (sz < 0)
5083 				return -EINVAL;
5084 			*val = sz;
5085 		} else {
5086 			pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n",
5087 				prog->name, relo->kind, relo->insn_off / 8);
5088 			return -EINVAL;
5089 		}
5090 		if (validate)
5091 			*validate = true;
5092 		return 0;
5093 	}
5094 
5095 	m = btf_members(t) + acc->idx;
5096 	mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id);
5097 	bit_off = spec->bit_offset;
5098 	bit_sz = btf_member_bitfield_size(t, acc->idx);
5099 
5100 	bitfield = bit_sz > 0;
5101 	if (bitfield) {
5102 		byte_sz = mt->size;
5103 		byte_off = bit_off / 8 / byte_sz * byte_sz;
5104 		/* figure out smallest int size necessary for bitfield load */
5105 		while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) {
5106 			if (byte_sz >= 8) {
5107 				/* bitfield can't be read with 64-bit read */
5108 				pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n",
5109 					prog->name, relo->kind, relo->insn_off / 8);
5110 				return -E2BIG;
5111 			}
5112 			byte_sz *= 2;
5113 			byte_off = bit_off / 8 / byte_sz * byte_sz;
5114 		}
5115 	} else {
5116 		sz = btf__resolve_size(spec->btf, field_type_id);
5117 		if (sz < 0)
5118 			return -EINVAL;
5119 		byte_sz = sz;
5120 		byte_off = spec->bit_offset / 8;
5121 		bit_sz = byte_sz * 8;
5122 	}
5123 
5124 	/* for bitfields, all the relocatable aspects are ambiguous and we
5125 	 * might disagree with compiler, so turn off validation of expected
5126 	 * value, except for signedness
5127 	 */
5128 	if (validate)
5129 		*validate = !bitfield;
5130 
5131 	switch (relo->kind) {
5132 	case BPF_FIELD_BYTE_OFFSET:
5133 		*val = byte_off;
5134 		if (!bitfield) {
5135 			*field_sz = byte_sz;
5136 			*type_id = field_type_id;
5137 		}
5138 		break;
5139 	case BPF_FIELD_BYTE_SIZE:
5140 		*val = byte_sz;
5141 		break;
5142 	case BPF_FIELD_SIGNED:
5143 		/* enums will be assumed unsigned */
5144 		*val = btf_is_enum(mt) ||
5145 		       (btf_int_encoding(mt) & BTF_INT_SIGNED);
5146 		if (validate)
5147 			*validate = true; /* signedness is never ambiguous */
5148 		break;
5149 	case BPF_FIELD_LSHIFT_U64:
5150 #if __BYTE_ORDER == __LITTLE_ENDIAN
5151 		*val = 64 - (bit_off + bit_sz - byte_off  * 8);
5152 #else
5153 		*val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8);
5154 #endif
5155 		break;
5156 	case BPF_FIELD_RSHIFT_U64:
5157 		*val = 64 - bit_sz;
5158 		if (validate)
5159 			*validate = true; /* right shift is never ambiguous */
5160 		break;
5161 	case BPF_FIELD_EXISTS:
5162 	default:
5163 		return -EOPNOTSUPP;
5164 	}
5165 
5166 	return 0;
5167 }
5168 
5169 static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo,
5170 				   const struct bpf_core_spec *spec,
5171 				   __u32 *val)
5172 {
5173 	__s64 sz;
5174 
5175 	/* type-based relos return zero when target type is not found */
5176 	if (!spec) {
5177 		*val = 0;
5178 		return 0;
5179 	}
5180 
5181 	switch (relo->kind) {
5182 	case BPF_TYPE_ID_TARGET:
5183 		*val = spec->root_type_id;
5184 		break;
5185 	case BPF_TYPE_EXISTS:
5186 		*val = 1;
5187 		break;
5188 	case BPF_TYPE_SIZE:
5189 		sz = btf__resolve_size(spec->btf, spec->root_type_id);
5190 		if (sz < 0)
5191 			return -EINVAL;
5192 		*val = sz;
5193 		break;
5194 	case BPF_TYPE_ID_LOCAL:
5195 	/* BPF_TYPE_ID_LOCAL is handled specially and shouldn't get here */
5196 	default:
5197 		return -EOPNOTSUPP;
5198 	}
5199 
5200 	return 0;
5201 }
5202 
5203 static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo,
5204 				      const struct bpf_core_spec *spec,
5205 				      __u32 *val)
5206 {
5207 	const struct btf_type *t;
5208 	const struct btf_enum *e;
5209 
5210 	switch (relo->kind) {
5211 	case BPF_ENUMVAL_EXISTS:
5212 		*val = spec ? 1 : 0;
5213 		break;
5214 	case BPF_ENUMVAL_VALUE:
5215 		if (!spec)
5216 			return -EUCLEAN; /* request instruction poisoning */
5217 		t = btf__type_by_id(spec->btf, spec->spec[0].type_id);
5218 		e = btf_enum(t) + spec->spec[0].idx;
5219 		*val = e->val;
5220 		break;
5221 	default:
5222 		return -EOPNOTSUPP;
5223 	}
5224 
5225 	return 0;
5226 }
5227 
5228 struct bpf_core_relo_res
5229 {
5230 	/* expected value in the instruction, unless validate == false */
5231 	__u32 orig_val;
5232 	/* new value that needs to be patched up to */
5233 	__u32 new_val;
5234 	/* relocation unsuccessful, poison instruction, but don't fail load */
5235 	bool poison;
5236 	/* some relocations can't be validated against orig_val */
5237 	bool validate;
5238 	/* for field byte offset relocations or the forms:
5239 	 *     *(T *)(rX + <off>) = rY
5240 	 *     rX = *(T *)(rY + <off>),
5241 	 * we remember original and resolved field size to adjust direct
5242 	 * memory loads of pointers and integers; this is necessary for 32-bit
5243 	 * host kernel architectures, but also allows to automatically
5244 	 * relocate fields that were resized from, e.g., u32 to u64, etc.
5245 	 */
5246 	bool fail_memsz_adjust;
5247 	__u32 orig_sz;
5248 	__u32 orig_type_id;
5249 	__u32 new_sz;
5250 	__u32 new_type_id;
5251 };
5252 
5253 /* Calculate original and target relocation values, given local and target
5254  * specs and relocation kind. These values are calculated for each candidate.
5255  * If there are multiple candidates, resulting values should all be consistent
5256  * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity.
5257  * If instruction has to be poisoned, *poison will be set to true.
5258  */
5259 static int bpf_core_calc_relo(const struct bpf_program *prog,
5260 			      const struct bpf_core_relo *relo,
5261 			      int relo_idx,
5262 			      const struct bpf_core_spec *local_spec,
5263 			      const struct bpf_core_spec *targ_spec,
5264 			      struct bpf_core_relo_res *res)
5265 {
5266 	int err = -EOPNOTSUPP;
5267 
5268 	res->orig_val = 0;
5269 	res->new_val = 0;
5270 	res->poison = false;
5271 	res->validate = true;
5272 	res->fail_memsz_adjust = false;
5273 	res->orig_sz = res->new_sz = 0;
5274 	res->orig_type_id = res->new_type_id = 0;
5275 
5276 	if (core_relo_is_field_based(relo->kind)) {
5277 		err = bpf_core_calc_field_relo(prog, relo, local_spec,
5278 					       &res->orig_val, &res->orig_sz,
5279 					       &res->orig_type_id, &res->validate);
5280 		err = err ?: bpf_core_calc_field_relo(prog, relo, targ_spec,
5281 						      &res->new_val, &res->new_sz,
5282 						      &res->new_type_id, NULL);
5283 		if (err)
5284 			goto done;
5285 		/* Validate if it's safe to adjust load/store memory size.
5286 		 * Adjustments are performed only if original and new memory
5287 		 * sizes differ.
5288 		 */
5289 		res->fail_memsz_adjust = false;
5290 		if (res->orig_sz != res->new_sz) {
5291 			const struct btf_type *orig_t, *new_t;
5292 
5293 			orig_t = btf__type_by_id(local_spec->btf, res->orig_type_id);
5294 			new_t = btf__type_by_id(targ_spec->btf, res->new_type_id);
5295 
5296 			/* There are two use cases in which it's safe to
5297 			 * adjust load/store's mem size:
5298 			 *   - reading a 32-bit kernel pointer, while on BPF
5299 			 *   size pointers are always 64-bit; in this case
5300 			 *   it's safe to "downsize" instruction size due to
5301 			 *   pointer being treated as unsigned integer with
5302 			 *   zero-extended upper 32-bits;
5303 			 *   - reading unsigned integers, again due to
5304 			 *   zero-extension is preserving the value correctly.
5305 			 *
5306 			 * In all other cases it's incorrect to attempt to
5307 			 * load/store field because read value will be
5308 			 * incorrect, so we poison relocated instruction.
5309 			 */
5310 			if (btf_is_ptr(orig_t) && btf_is_ptr(new_t))
5311 				goto done;
5312 			if (btf_is_int(orig_t) && btf_is_int(new_t) &&
5313 			    btf_int_encoding(orig_t) != BTF_INT_SIGNED &&
5314 			    btf_int_encoding(new_t) != BTF_INT_SIGNED)
5315 				goto done;
5316 
5317 			/* mark as invalid mem size adjustment, but this will
5318 			 * only be checked for LDX/STX/ST insns
5319 			 */
5320 			res->fail_memsz_adjust = true;
5321 		}
5322 	} else if (core_relo_is_type_based(relo->kind)) {
5323 		err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val);
5324 		err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val);
5325 	} else if (core_relo_is_enumval_based(relo->kind)) {
5326 		err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val);
5327 		err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val);
5328 	}
5329 
5330 done:
5331 	if (err == -EUCLEAN) {
5332 		/* EUCLEAN is used to signal instruction poisoning request */
5333 		res->poison = true;
5334 		err = 0;
5335 	} else if (err == -EOPNOTSUPP) {
5336 		/* EOPNOTSUPP means unknown/unsupported relocation */
5337 		pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n",
5338 			prog->name, relo_idx, core_relo_kind_str(relo->kind),
5339 			relo->kind, relo->insn_off / 8);
5340 	}
5341 
5342 	return err;
5343 }
5344 
5345 /*
5346  * Turn instruction for which CO_RE relocation failed into invalid one with
5347  * distinct signature.
5348  */
5349 static void bpf_core_poison_insn(struct bpf_program *prog, int relo_idx,
5350 				 int insn_idx, struct bpf_insn *insn)
5351 {
5352 	pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n",
5353 		 prog->name, relo_idx, insn_idx);
5354 	insn->code = BPF_JMP | BPF_CALL;
5355 	insn->dst_reg = 0;
5356 	insn->src_reg = 0;
5357 	insn->off = 0;
5358 	/* if this instruction is reachable (not a dead code),
5359 	 * verifier will complain with the following message:
5360 	 * invalid func unknown#195896080
5361 	 */
5362 	insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */
5363 }
5364 
5365 static bool is_ldimm64(struct bpf_insn *insn)
5366 {
5367 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
5368 }
5369 
5370 static int insn_bpf_size_to_bytes(struct bpf_insn *insn)
5371 {
5372 	switch (BPF_SIZE(insn->code)) {
5373 	case BPF_DW: return 8;
5374 	case BPF_W: return 4;
5375 	case BPF_H: return 2;
5376 	case BPF_B: return 1;
5377 	default: return -1;
5378 	}
5379 }
5380 
5381 static int insn_bytes_to_bpf_size(__u32 sz)
5382 {
5383 	switch (sz) {
5384 	case 8: return BPF_DW;
5385 	case 4: return BPF_W;
5386 	case 2: return BPF_H;
5387 	case 1: return BPF_B;
5388 	default: return -1;
5389 	}
5390 }
5391 
5392 /*
5393  * Patch relocatable BPF instruction.
5394  *
5395  * Patched value is determined by relocation kind and target specification.
5396  * For existence relocations target spec will be NULL if field/type is not found.
5397  * Expected insn->imm value is determined using relocation kind and local
5398  * spec, and is checked before patching instruction. If actual insn->imm value
5399  * is wrong, bail out with error.
5400  *
5401  * Currently supported classes of BPF instruction are:
5402  * 1. rX = <imm> (assignment with immediate operand);
5403  * 2. rX += <imm> (arithmetic operations with immediate operand);
5404  * 3. rX = <imm64> (load with 64-bit immediate value);
5405  * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64};
5406  * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64};
5407  * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}.
5408  */
5409 static int bpf_core_patch_insn(struct bpf_program *prog,
5410 			       const struct bpf_core_relo *relo,
5411 			       int relo_idx,
5412 			       const struct bpf_core_relo_res *res)
5413 {
5414 	__u32 orig_val, new_val;
5415 	struct bpf_insn *insn;
5416 	int insn_idx;
5417 	__u8 class;
5418 
5419 	if (relo->insn_off % BPF_INSN_SZ)
5420 		return -EINVAL;
5421 	insn_idx = relo->insn_off / BPF_INSN_SZ;
5422 	/* adjust insn_idx from section frame of reference to the local
5423 	 * program's frame of reference; (sub-)program code is not yet
5424 	 * relocated, so it's enough to just subtract in-section offset
5425 	 */
5426 	insn_idx = insn_idx - prog->sec_insn_off;
5427 	insn = &prog->insns[insn_idx];
5428 	class = BPF_CLASS(insn->code);
5429 
5430 	if (res->poison) {
5431 poison:
5432 		/* poison second part of ldimm64 to avoid confusing error from
5433 		 * verifier about "unknown opcode 00"
5434 		 */
5435 		if (is_ldimm64(insn))
5436 			bpf_core_poison_insn(prog, relo_idx, insn_idx + 1, insn + 1);
5437 		bpf_core_poison_insn(prog, relo_idx, insn_idx, insn);
5438 		return 0;
5439 	}
5440 
5441 	orig_val = res->orig_val;
5442 	new_val = res->new_val;
5443 
5444 	switch (class) {
5445 	case BPF_ALU:
5446 	case BPF_ALU64:
5447 		if (BPF_SRC(insn->code) != BPF_K)
5448 			return -EINVAL;
5449 		if (res->validate && insn->imm != orig_val) {
5450 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n",
5451 				prog->name, relo_idx,
5452 				insn_idx, insn->imm, orig_val, new_val);
5453 			return -EINVAL;
5454 		}
5455 		orig_val = insn->imm;
5456 		insn->imm = new_val;
5457 		pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n",
5458 			 prog->name, relo_idx, insn_idx,
5459 			 orig_val, new_val);
5460 		break;
5461 	case BPF_LDX:
5462 	case BPF_ST:
5463 	case BPF_STX:
5464 		if (res->validate && insn->off != orig_val) {
5465 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %u -> %u\n",
5466 				prog->name, relo_idx, insn_idx, insn->off, orig_val, new_val);
5467 			return -EINVAL;
5468 		}
5469 		if (new_val > SHRT_MAX) {
5470 			pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n",
5471 				prog->name, relo_idx, insn_idx, new_val);
5472 			return -ERANGE;
5473 		}
5474 		if (res->fail_memsz_adjust) {
5475 			pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. "
5476 				"Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n",
5477 				prog->name, relo_idx, insn_idx);
5478 			goto poison;
5479 		}
5480 
5481 		orig_val = insn->off;
5482 		insn->off = new_val;
5483 		pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n",
5484 			 prog->name, relo_idx, insn_idx, orig_val, new_val);
5485 
5486 		if (res->new_sz != res->orig_sz) {
5487 			int insn_bytes_sz, insn_bpf_sz;
5488 
5489 			insn_bytes_sz = insn_bpf_size_to_bytes(insn);
5490 			if (insn_bytes_sz != res->orig_sz) {
5491 				pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n",
5492 					prog->name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz);
5493 				return -EINVAL;
5494 			}
5495 
5496 			insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz);
5497 			if (insn_bpf_sz < 0) {
5498 				pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n",
5499 					prog->name, relo_idx, insn_idx, res->new_sz);
5500 				return -EINVAL;
5501 			}
5502 
5503 			insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code);
5504 			pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n",
5505 				 prog->name, relo_idx, insn_idx, res->orig_sz, res->new_sz);
5506 		}
5507 		break;
5508 	case BPF_LD: {
5509 		__u64 imm;
5510 
5511 		if (!is_ldimm64(insn) ||
5512 		    insn[0].src_reg != 0 || insn[0].off != 0 ||
5513 		    insn_idx + 1 >= prog->insns_cnt ||
5514 		    insn[1].code != 0 || insn[1].dst_reg != 0 ||
5515 		    insn[1].src_reg != 0 || insn[1].off != 0) {
5516 			pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n",
5517 				prog->name, relo_idx, insn_idx);
5518 			return -EINVAL;
5519 		}
5520 
5521 		imm = insn[0].imm + ((__u64)insn[1].imm << 32);
5522 		if (res->validate && imm != orig_val) {
5523 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %u -> %u\n",
5524 				prog->name, relo_idx,
5525 				insn_idx, (unsigned long long)imm,
5526 				orig_val, new_val);
5527 			return -EINVAL;
5528 		}
5529 
5530 		insn[0].imm = new_val;
5531 		insn[1].imm = 0; /* currently only 32-bit values are supported */
5532 		pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %u\n",
5533 			 prog->name, relo_idx, insn_idx,
5534 			 (unsigned long long)imm, new_val);
5535 		break;
5536 	}
5537 	default:
5538 		pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n",
5539 			prog->name, relo_idx, insn_idx, insn->code,
5540 			insn->src_reg, insn->dst_reg, insn->off, insn->imm);
5541 		return -EINVAL;
5542 	}
5543 
5544 	return 0;
5545 }
5546 
5547 /* Output spec definition in the format:
5548  * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>,
5549  * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b
5550  */
5551 static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec)
5552 {
5553 	const struct btf_type *t;
5554 	const struct btf_enum *e;
5555 	const char *s;
5556 	__u32 type_id;
5557 	int i;
5558 
5559 	type_id = spec->root_type_id;
5560 	t = btf__type_by_id(spec->btf, type_id);
5561 	s = btf__name_by_offset(spec->btf, t->name_off);
5562 
5563 	libbpf_print(level, "[%u] %s %s", type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s);
5564 
5565 	if (core_relo_is_type_based(spec->relo_kind))
5566 		return;
5567 
5568 	if (core_relo_is_enumval_based(spec->relo_kind)) {
5569 		t = skip_mods_and_typedefs(spec->btf, type_id, NULL);
5570 		e = btf_enum(t) + spec->raw_spec[0];
5571 		s = btf__name_by_offset(spec->btf, e->name_off);
5572 
5573 		libbpf_print(level, "::%s = %u", s, e->val);
5574 		return;
5575 	}
5576 
5577 	if (core_relo_is_field_based(spec->relo_kind)) {
5578 		for (i = 0; i < spec->len; i++) {
5579 			if (spec->spec[i].name)
5580 				libbpf_print(level, ".%s", spec->spec[i].name);
5581 			else if (i > 0 || spec->spec[i].idx > 0)
5582 				libbpf_print(level, "[%u]", spec->spec[i].idx);
5583 		}
5584 
5585 		libbpf_print(level, " (");
5586 		for (i = 0; i < spec->raw_len; i++)
5587 			libbpf_print(level, "%s%d", i == 0 ? "" : ":", spec->raw_spec[i]);
5588 
5589 		if (spec->bit_offset % 8)
5590 			libbpf_print(level, " @ offset %u.%u)",
5591 				     spec->bit_offset / 8, spec->bit_offset % 8);
5592 		else
5593 			libbpf_print(level, " @ offset %u)", spec->bit_offset / 8);
5594 		return;
5595 	}
5596 }
5597 
5598 static size_t bpf_core_hash_fn(const void *key, void *ctx)
5599 {
5600 	return (size_t)key;
5601 }
5602 
5603 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx)
5604 {
5605 	return k1 == k2;
5606 }
5607 
5608 static void *u32_as_hash_key(__u32 x)
5609 {
5610 	return (void *)(uintptr_t)x;
5611 }
5612 
5613 /*
5614  * CO-RE relocate single instruction.
5615  *
5616  * The outline and important points of the algorithm:
5617  * 1. For given local type, find corresponding candidate target types.
5618  *    Candidate type is a type with the same "essential" name, ignoring
5619  *    everything after last triple underscore (___). E.g., `sample`,
5620  *    `sample___flavor_one`, `sample___flavor_another_one`, are all candidates
5621  *    for each other. Names with triple underscore are referred to as
5622  *    "flavors" and are useful, among other things, to allow to
5623  *    specify/support incompatible variations of the same kernel struct, which
5624  *    might differ between different kernel versions and/or build
5625  *    configurations.
5626  *
5627  *    N.B. Struct "flavors" could be generated by bpftool's BTF-to-C
5628  *    converter, when deduplicated BTF of a kernel still contains more than
5629  *    one different types with the same name. In that case, ___2, ___3, etc
5630  *    are appended starting from second name conflict. But start flavors are
5631  *    also useful to be defined "locally", in BPF program, to extract same
5632  *    data from incompatible changes between different kernel
5633  *    versions/configurations. For instance, to handle field renames between
5634  *    kernel versions, one can use two flavors of the struct name with the
5635  *    same common name and use conditional relocations to extract that field,
5636  *    depending on target kernel version.
5637  * 2. For each candidate type, try to match local specification to this
5638  *    candidate target type. Matching involves finding corresponding
5639  *    high-level spec accessors, meaning that all named fields should match,
5640  *    as well as all array accesses should be within the actual bounds. Also,
5641  *    types should be compatible (see bpf_core_fields_are_compat for details).
5642  * 3. It is supported and expected that there might be multiple flavors
5643  *    matching the spec. As long as all the specs resolve to the same set of
5644  *    offsets across all candidates, there is no error. If there is any
5645  *    ambiguity, CO-RE relocation will fail. This is necessary to accomodate
5646  *    imprefection of BTF deduplication, which can cause slight duplication of
5647  *    the same BTF type, if some directly or indirectly referenced (by
5648  *    pointer) type gets resolved to different actual types in different
5649  *    object files. If such situation occurs, deduplicated BTF will end up
5650  *    with two (or more) structurally identical types, which differ only in
5651  *    types they refer to through pointer. This should be OK in most cases and
5652  *    is not an error.
5653  * 4. Candidate types search is performed by linearly scanning through all
5654  *    types in target BTF. It is anticipated that this is overall more
5655  *    efficient memory-wise and not significantly worse (if not better)
5656  *    CPU-wise compared to prebuilding a map from all local type names to
5657  *    a list of candidate type names. It's also sped up by caching resolved
5658  *    list of matching candidates per each local "root" type ID, that has at
5659  *    least one bpf_core_relo associated with it. This list is shared
5660  *    between multiple relocations for the same type ID and is updated as some
5661  *    of the candidates are pruned due to structural incompatibility.
5662  */
5663 static int bpf_core_apply_relo(struct bpf_program *prog,
5664 			       const struct bpf_core_relo *relo,
5665 			       int relo_idx,
5666 			       const struct btf *local_btf,
5667 			       const struct btf *targ_btf,
5668 			       struct hashmap *cand_cache)
5669 {
5670 	struct bpf_core_spec local_spec, cand_spec, targ_spec = {};
5671 	const void *type_key = u32_as_hash_key(relo->type_id);
5672 	struct bpf_core_relo_res cand_res, targ_res;
5673 	const struct btf_type *local_type;
5674 	const char *local_name;
5675 	struct ids_vec *cand_ids;
5676 	__u32 local_id, cand_id;
5677 	const char *spec_str;
5678 	int i, j, err;
5679 
5680 	local_id = relo->type_id;
5681 	local_type = btf__type_by_id(local_btf, local_id);
5682 	if (!local_type)
5683 		return -EINVAL;
5684 
5685 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
5686 	if (!local_name)
5687 		return -EINVAL;
5688 
5689 	spec_str = btf__name_by_offset(local_btf, relo->access_str_off);
5690 	if (str_is_empty(spec_str))
5691 		return -EINVAL;
5692 
5693 	err = bpf_core_parse_spec(local_btf, local_id, spec_str, relo->kind, &local_spec);
5694 	if (err) {
5695 		pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n",
5696 			prog->name, relo_idx, local_id, btf_kind_str(local_type),
5697 			str_is_empty(local_name) ? "<anon>" : local_name,
5698 			spec_str, err);
5699 		return -EINVAL;
5700 	}
5701 
5702 	pr_debug("prog '%s': relo #%d: kind <%s> (%d), spec is ", prog->name,
5703 		 relo_idx, core_relo_kind_str(relo->kind), relo->kind);
5704 	bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec);
5705 	libbpf_print(LIBBPF_DEBUG, "\n");
5706 
5707 	/* TYPE_ID_LOCAL relo is special and doesn't need candidate search */
5708 	if (relo->kind == BPF_TYPE_ID_LOCAL) {
5709 		targ_res.validate = true;
5710 		targ_res.poison = false;
5711 		targ_res.orig_val = local_spec.root_type_id;
5712 		targ_res.new_val = local_spec.root_type_id;
5713 		goto patch_insn;
5714 	}
5715 
5716 	/* libbpf doesn't support candidate search for anonymous types */
5717 	if (str_is_empty(spec_str)) {
5718 		pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n",
5719 			prog->name, relo_idx, core_relo_kind_str(relo->kind), relo->kind);
5720 		return -EOPNOTSUPP;
5721 	}
5722 
5723 	if (!hashmap__find(cand_cache, type_key, (void **)&cand_ids)) {
5724 		cand_ids = bpf_core_find_cands(local_btf, local_id, targ_btf);
5725 		if (IS_ERR(cand_ids)) {
5726 			pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld",
5727 				prog->name, relo_idx, local_id, btf_kind_str(local_type),
5728 				local_name, PTR_ERR(cand_ids));
5729 			return PTR_ERR(cand_ids);
5730 		}
5731 		err = hashmap__set(cand_cache, type_key, cand_ids, NULL, NULL);
5732 		if (err) {
5733 			bpf_core_free_cands(cand_ids);
5734 			return err;
5735 		}
5736 	}
5737 
5738 	for (i = 0, j = 0; i < cand_ids->len; i++) {
5739 		cand_id = cand_ids->data[i];
5740 		err = bpf_core_spec_match(&local_spec, targ_btf, cand_id, &cand_spec);
5741 		if (err < 0) {
5742 			pr_warn("prog '%s': relo #%d: error matching candidate #%d ",
5743 				prog->name, relo_idx, i);
5744 			bpf_core_dump_spec(LIBBPF_WARN, &cand_spec);
5745 			libbpf_print(LIBBPF_WARN, ": %d\n", err);
5746 			return err;
5747 		}
5748 
5749 		pr_debug("prog '%s': relo #%d: %s candidate #%d ", prog->name,
5750 			 relo_idx, err == 0 ? "non-matching" : "matching", i);
5751 		bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec);
5752 		libbpf_print(LIBBPF_DEBUG, "\n");
5753 
5754 		if (err == 0)
5755 			continue;
5756 
5757 		err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, &cand_spec, &cand_res);
5758 		if (err)
5759 			return err;
5760 
5761 		if (j == 0) {
5762 			targ_res = cand_res;
5763 			targ_spec = cand_spec;
5764 		} else if (cand_spec.bit_offset != targ_spec.bit_offset) {
5765 			/* if there are many field relo candidates, they
5766 			 * should all resolve to the same bit offset
5767 			 */
5768 			pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n",
5769 				prog->name, relo_idx, cand_spec.bit_offset,
5770 				targ_spec.bit_offset);
5771 			return -EINVAL;
5772 		} else if (cand_res.poison != targ_res.poison || cand_res.new_val != targ_res.new_val) {
5773 			/* all candidates should result in the same relocation
5774 			 * decision and value, otherwise it's dangerous to
5775 			 * proceed due to ambiguity
5776 			 */
5777 			pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %u != %s %u\n",
5778 				prog->name, relo_idx,
5779 				cand_res.poison ? "failure" : "success", cand_res.new_val,
5780 				targ_res.poison ? "failure" : "success", targ_res.new_val);
5781 			return -EINVAL;
5782 		}
5783 
5784 		cand_ids->data[j++] = cand_spec.root_type_id;
5785 	}
5786 
5787 	/*
5788 	 * For BPF_FIELD_EXISTS relo or when used BPF program has field
5789 	 * existence checks or kernel version/config checks, it's expected
5790 	 * that we might not find any candidates. In this case, if field
5791 	 * wasn't found in any candidate, the list of candidates shouldn't
5792 	 * change at all, we'll just handle relocating appropriately,
5793 	 * depending on relo's kind.
5794 	 */
5795 	if (j > 0)
5796 		cand_ids->len = j;
5797 
5798 	/*
5799 	 * If no candidates were found, it might be both a programmer error,
5800 	 * as well as expected case, depending whether instruction w/
5801 	 * relocation is guarded in some way that makes it unreachable (dead
5802 	 * code) if relocation can't be resolved. This is handled in
5803 	 * bpf_core_patch_insn() uniformly by replacing that instruction with
5804 	 * BPF helper call insn (using invalid helper ID). If that instruction
5805 	 * is indeed unreachable, then it will be ignored and eliminated by
5806 	 * verifier. If it was an error, then verifier will complain and point
5807 	 * to a specific instruction number in its log.
5808 	 */
5809 	if (j == 0) {
5810 		pr_debug("prog '%s': relo #%d: no matching targets found\n",
5811 			 prog->name, relo_idx);
5812 
5813 		/* calculate single target relo result explicitly */
5814 		err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, NULL, &targ_res);
5815 		if (err)
5816 			return err;
5817 	}
5818 
5819 patch_insn:
5820 	/* bpf_core_patch_insn() should know how to handle missing targ_spec */
5821 	err = bpf_core_patch_insn(prog, relo, relo_idx, &targ_res);
5822 	if (err) {
5823 		pr_warn("prog '%s': relo #%d: failed to patch insn at offset %d: %d\n",
5824 			prog->name, relo_idx, relo->insn_off, err);
5825 		return -EINVAL;
5826 	}
5827 
5828 	return 0;
5829 }
5830 
5831 static int
5832 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5833 {
5834 	const struct btf_ext_info_sec *sec;
5835 	const struct bpf_core_relo *rec;
5836 	const struct btf_ext_info *seg;
5837 	struct hashmap_entry *entry;
5838 	struct hashmap *cand_cache = NULL;
5839 	struct bpf_program *prog;
5840 	struct btf *targ_btf;
5841 	const char *sec_name;
5842 	int i, err = 0, insn_idx, sec_idx;
5843 
5844 	if (obj->btf_ext->core_relo_info.len == 0)
5845 		return 0;
5846 
5847 	if (targ_btf_path)
5848 		targ_btf = btf__parse(targ_btf_path, NULL);
5849 	else
5850 		targ_btf = obj->btf_vmlinux;
5851 	if (IS_ERR_OR_NULL(targ_btf)) {
5852 		pr_warn("failed to get target BTF: %ld\n", PTR_ERR(targ_btf));
5853 		return PTR_ERR(targ_btf);
5854 	}
5855 
5856 	cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5857 	if (IS_ERR(cand_cache)) {
5858 		err = PTR_ERR(cand_cache);
5859 		goto out;
5860 	}
5861 
5862 	seg = &obj->btf_ext->core_relo_info;
5863 	for_each_btf_ext_sec(seg, sec) {
5864 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5865 		if (str_is_empty(sec_name)) {
5866 			err = -EINVAL;
5867 			goto out;
5868 		}
5869 		/* bpf_object's ELF is gone by now so it's not easy to find
5870 		 * section index by section name, but we can find *any*
5871 		 * bpf_program within desired section name and use it's
5872 		 * prog->sec_idx to do a proper search by section index and
5873 		 * instruction offset
5874 		 */
5875 		prog = NULL;
5876 		for (i = 0; i < obj->nr_programs; i++) {
5877 			prog = &obj->programs[i];
5878 			if (strcmp(prog->sec_name, sec_name) == 0)
5879 				break;
5880 		}
5881 		if (!prog) {
5882 			pr_warn("sec '%s': failed to find a BPF program\n", sec_name);
5883 			return -ENOENT;
5884 		}
5885 		sec_idx = prog->sec_idx;
5886 
5887 		pr_debug("sec '%s': found %d CO-RE relocations\n",
5888 			 sec_name, sec->num_info);
5889 
5890 		for_each_btf_ext_rec(seg, sec, i, rec) {
5891 			insn_idx = rec->insn_off / BPF_INSN_SZ;
5892 			prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5893 			if (!prog) {
5894 				pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n",
5895 					sec_name, insn_idx, i);
5896 				err = -EINVAL;
5897 				goto out;
5898 			}
5899 			/* no need to apply CO-RE relocation if the program is
5900 			 * not going to be loaded
5901 			 */
5902 			if (!prog->load)
5903 				continue;
5904 
5905 			err = bpf_core_apply_relo(prog, rec, i, obj->btf,
5906 						  targ_btf, cand_cache);
5907 			if (err) {
5908 				pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5909 					prog->name, i, err);
5910 				goto out;
5911 			}
5912 		}
5913 	}
5914 
5915 out:
5916 	/* obj->btf_vmlinux is freed at the end of object load phase */
5917 	if (targ_btf != obj->btf_vmlinux)
5918 		btf__free(targ_btf);
5919 	if (!IS_ERR_OR_NULL(cand_cache)) {
5920 		hashmap__for_each_entry(cand_cache, entry, i) {
5921 			bpf_core_free_cands(entry->value);
5922 		}
5923 		hashmap__free(cand_cache);
5924 	}
5925 	return err;
5926 }
5927 
5928 /* Relocate data references within program code:
5929  *  - map references;
5930  *  - global variable references;
5931  *  - extern references.
5932  */
5933 static int
5934 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
5935 {
5936 	int i;
5937 
5938 	for (i = 0; i < prog->nr_reloc; i++) {
5939 		struct reloc_desc *relo = &prog->reloc_desc[i];
5940 		struct bpf_insn *insn = &prog->insns[relo->insn_idx];
5941 		struct extern_desc *ext;
5942 
5943 		switch (relo->type) {
5944 		case RELO_LD64:
5945 			insn[0].src_reg = BPF_PSEUDO_MAP_FD;
5946 			insn[0].imm = obj->maps[relo->map_idx].fd;
5947 			relo->processed = true;
5948 			break;
5949 		case RELO_DATA:
5950 			insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5951 			insn[1].imm = insn[0].imm + relo->sym_off;
5952 			insn[0].imm = obj->maps[relo->map_idx].fd;
5953 			relo->processed = true;
5954 			break;
5955 		case RELO_EXTERN:
5956 			ext = &obj->externs[relo->sym_off];
5957 			if (ext->type == EXT_KCFG) {
5958 				insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5959 				insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
5960 				insn[1].imm = ext->kcfg.data_off;
5961 			} else /* EXT_KSYM */ {
5962 				if (ext->ksym.type_id) { /* typed ksyms */
5963 					insn[0].src_reg = BPF_PSEUDO_BTF_ID;
5964 					insn[0].imm = ext->ksym.vmlinux_btf_id;
5965 				} else { /* typeless ksyms */
5966 					insn[0].imm = (__u32)ext->ksym.addr;
5967 					insn[1].imm = ext->ksym.addr >> 32;
5968 				}
5969 			}
5970 			relo->processed = true;
5971 			break;
5972 		case RELO_CALL:
5973 			/* will be handled as a follow up pass */
5974 			break;
5975 		default:
5976 			pr_warn("prog '%s': relo #%d: bad relo type %d\n",
5977 				prog->name, i, relo->type);
5978 			return -EINVAL;
5979 		}
5980 	}
5981 
5982 	return 0;
5983 }
5984 
5985 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
5986 				    const struct bpf_program *prog,
5987 				    const struct btf_ext_info *ext_info,
5988 				    void **prog_info, __u32 *prog_rec_cnt,
5989 				    __u32 *prog_rec_sz)
5990 {
5991 	void *copy_start = NULL, *copy_end = NULL;
5992 	void *rec, *rec_end, *new_prog_info;
5993 	const struct btf_ext_info_sec *sec;
5994 	size_t old_sz, new_sz;
5995 	const char *sec_name;
5996 	int i, off_adj;
5997 
5998 	for_each_btf_ext_sec(ext_info, sec) {
5999 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
6000 		if (!sec_name)
6001 			return -EINVAL;
6002 		if (strcmp(sec_name, prog->sec_name) != 0)
6003 			continue;
6004 
6005 		for_each_btf_ext_rec(ext_info, sec, i, rec) {
6006 			__u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6007 
6008 			if (insn_off < prog->sec_insn_off)
6009 				continue;
6010 			if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6011 				break;
6012 
6013 			if (!copy_start)
6014 				copy_start = rec;
6015 			copy_end = rec + ext_info->rec_size;
6016 		}
6017 
6018 		if (!copy_start)
6019 			return -ENOENT;
6020 
6021 		/* append func/line info of a given (sub-)program to the main
6022 		 * program func/line info
6023 		 */
6024 		old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6025 		new_sz = old_sz + (copy_end - copy_start);
6026 		new_prog_info = realloc(*prog_info, new_sz);
6027 		if (!new_prog_info)
6028 			return -ENOMEM;
6029 		*prog_info = new_prog_info;
6030 		*prog_rec_cnt = new_sz / ext_info->rec_size;
6031 		memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6032 
6033 		/* Kernel instruction offsets are in units of 8-byte
6034 		 * instructions, while .BTF.ext instruction offsets generated
6035 		 * by Clang are in units of bytes. So convert Clang offsets
6036 		 * into kernel offsets and adjust offset according to program
6037 		 * relocated position.
6038 		 */
6039 		off_adj = prog->sub_insn_off - prog->sec_insn_off;
6040 		rec = new_prog_info + old_sz;
6041 		rec_end = new_prog_info + new_sz;
6042 		for (; rec < rec_end; rec += ext_info->rec_size) {
6043 			__u32 *insn_off = rec;
6044 
6045 			*insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6046 		}
6047 		*prog_rec_sz = ext_info->rec_size;
6048 		return 0;
6049 	}
6050 
6051 	return -ENOENT;
6052 }
6053 
6054 static int
6055 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6056 			      struct bpf_program *main_prog,
6057 			      const struct bpf_program *prog)
6058 {
6059 	int err;
6060 
6061 	/* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6062 	 * supprot func/line info
6063 	 */
6064 	if (!obj->btf_ext || !kernel_supports(FEAT_BTF_FUNC))
6065 		return 0;
6066 
6067 	/* only attempt func info relocation if main program's func_info
6068 	 * relocation was successful
6069 	 */
6070 	if (main_prog != prog && !main_prog->func_info)
6071 		goto line_info;
6072 
6073 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6074 				       &main_prog->func_info,
6075 				       &main_prog->func_info_cnt,
6076 				       &main_prog->func_info_rec_size);
6077 	if (err) {
6078 		if (err != -ENOENT) {
6079 			pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6080 				prog->name, err);
6081 			return err;
6082 		}
6083 		if (main_prog->func_info) {
6084 			/*
6085 			 * Some info has already been found but has problem
6086 			 * in the last btf_ext reloc. Must have to error out.
6087 			 */
6088 			pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6089 			return err;
6090 		}
6091 		/* Have problem loading the very first info. Ignore the rest. */
6092 		pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6093 			prog->name);
6094 	}
6095 
6096 line_info:
6097 	/* don't relocate line info if main program's relocation failed */
6098 	if (main_prog != prog && !main_prog->line_info)
6099 		return 0;
6100 
6101 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6102 				       &main_prog->line_info,
6103 				       &main_prog->line_info_cnt,
6104 				       &main_prog->line_info_rec_size);
6105 	if (err) {
6106 		if (err != -ENOENT) {
6107 			pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6108 				prog->name, err);
6109 			return err;
6110 		}
6111 		if (main_prog->line_info) {
6112 			/*
6113 			 * Some info has already been found but has problem
6114 			 * in the last btf_ext reloc. Must have to error out.
6115 			 */
6116 			pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6117 			return err;
6118 		}
6119 		/* Have problem loading the very first info. Ignore the rest. */
6120 		pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6121 			prog->name);
6122 	}
6123 	return 0;
6124 }
6125 
6126 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6127 {
6128 	size_t insn_idx = *(const size_t *)key;
6129 	const struct reloc_desc *relo = elem;
6130 
6131 	if (insn_idx == relo->insn_idx)
6132 		return 0;
6133 	return insn_idx < relo->insn_idx ? -1 : 1;
6134 }
6135 
6136 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6137 {
6138 	return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6139 		       sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6140 }
6141 
6142 static int
6143 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6144 		       struct bpf_program *prog)
6145 {
6146 	size_t sub_insn_idx, insn_idx, new_cnt;
6147 	struct bpf_program *subprog;
6148 	struct bpf_insn *insns, *insn;
6149 	struct reloc_desc *relo;
6150 	int err;
6151 
6152 	err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6153 	if (err)
6154 		return err;
6155 
6156 	for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6157 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6158 		if (!insn_is_subprog_call(insn))
6159 			continue;
6160 
6161 		relo = find_prog_insn_relo(prog, insn_idx);
6162 		if (relo && relo->type != RELO_CALL) {
6163 			pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6164 				prog->name, insn_idx, relo->type);
6165 			return -LIBBPF_ERRNO__RELOC;
6166 		}
6167 		if (relo) {
6168 			/* sub-program instruction index is a combination of
6169 			 * an offset of a symbol pointed to by relocation and
6170 			 * call instruction's imm field; for global functions,
6171 			 * call always has imm = -1, but for static functions
6172 			 * relocation is against STT_SECTION and insn->imm
6173 			 * points to a start of a static function
6174 			 */
6175 			sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6176 		} else {
6177 			/* if subprogram call is to a static function within
6178 			 * the same ELF section, there won't be any relocation
6179 			 * emitted, but it also means there is no additional
6180 			 * offset necessary, insns->imm is relative to
6181 			 * instruction's original position within the section
6182 			 */
6183 			sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6184 		}
6185 
6186 		/* we enforce that sub-programs should be in .text section */
6187 		subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6188 		if (!subprog) {
6189 			pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6190 				prog->name);
6191 			return -LIBBPF_ERRNO__RELOC;
6192 		}
6193 
6194 		/* if it's the first call instruction calling into this
6195 		 * subprogram (meaning this subprog hasn't been processed
6196 		 * yet) within the context of current main program:
6197 		 *   - append it at the end of main program's instructions blog;
6198 		 *   - process is recursively, while current program is put on hold;
6199 		 *   - if that subprogram calls some other not yet processes
6200 		 *   subprogram, same thing will happen recursively until
6201 		 *   there are no more unprocesses subprograms left to append
6202 		 *   and relocate.
6203 		 */
6204 		if (subprog->sub_insn_off == 0) {
6205 			subprog->sub_insn_off = main_prog->insns_cnt;
6206 
6207 			new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6208 			insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6209 			if (!insns) {
6210 				pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6211 				return -ENOMEM;
6212 			}
6213 			main_prog->insns = insns;
6214 			main_prog->insns_cnt = new_cnt;
6215 
6216 			memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6217 			       subprog->insns_cnt * sizeof(*insns));
6218 
6219 			pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6220 				 main_prog->name, subprog->insns_cnt, subprog->name);
6221 
6222 			err = bpf_object__reloc_code(obj, main_prog, subprog);
6223 			if (err)
6224 				return err;
6225 		}
6226 
6227 		/* main_prog->insns memory could have been re-allocated, so
6228 		 * calculate pointer again
6229 		 */
6230 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6231 		/* calculate correct instruction position within current main
6232 		 * prog; each main prog can have a different set of
6233 		 * subprograms appended (potentially in different order as
6234 		 * well), so position of any subprog can be different for
6235 		 * different main programs */
6236 		insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6237 
6238 		if (relo)
6239 			relo->processed = true;
6240 
6241 		pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6242 			 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6243 	}
6244 
6245 	return 0;
6246 }
6247 
6248 /*
6249  * Relocate sub-program calls.
6250  *
6251  * Algorithm operates as follows. Each entry-point BPF program (referred to as
6252  * main prog) is processed separately. For each subprog (non-entry functions,
6253  * that can be called from either entry progs or other subprogs) gets their
6254  * sub_insn_off reset to zero. This serves as indicator that this subprogram
6255  * hasn't been yet appended and relocated within current main prog. Once its
6256  * relocated, sub_insn_off will point at the position within current main prog
6257  * where given subprog was appended. This will further be used to relocate all
6258  * the call instructions jumping into this subprog.
6259  *
6260  * We start with main program and process all call instructions. If the call
6261  * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6262  * is zero), subprog instructions are appended at the end of main program's
6263  * instruction array. Then main program is "put on hold" while we recursively
6264  * process newly appended subprogram. If that subprogram calls into another
6265  * subprogram that hasn't been appended, new subprogram is appended again to
6266  * the *main* prog's instructions (subprog's instructions are always left
6267  * untouched, as they need to be in unmodified state for subsequent main progs
6268  * and subprog instructions are always sent only as part of a main prog) and
6269  * the process continues recursively. Once all the subprogs called from a main
6270  * prog or any of its subprogs are appended (and relocated), all their
6271  * positions within finalized instructions array are known, so it's easy to
6272  * rewrite call instructions with correct relative offsets, corresponding to
6273  * desired target subprog.
6274  *
6275  * Its important to realize that some subprogs might not be called from some
6276  * main prog and any of its called/used subprogs. Those will keep their
6277  * subprog->sub_insn_off as zero at all times and won't be appended to current
6278  * main prog and won't be relocated within the context of current main prog.
6279  * They might still be used from other main progs later.
6280  *
6281  * Visually this process can be shown as below. Suppose we have two main
6282  * programs mainA and mainB and BPF object contains three subprogs: subA,
6283  * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6284  * subC both call subB:
6285  *
6286  *        +--------+ +-------+
6287  *        |        v v       |
6288  *     +--+---+ +--+-+-+ +---+--+
6289  *     | subA | | subB | | subC |
6290  *     +--+---+ +------+ +---+--+
6291  *        ^                  ^
6292  *        |                  |
6293  *    +---+-------+   +------+----+
6294  *    |   mainA   |   |   mainB   |
6295  *    +-----------+   +-----------+
6296  *
6297  * We'll start relocating mainA, will find subA, append it and start
6298  * processing sub A recursively:
6299  *
6300  *    +-----------+------+
6301  *    |   mainA   | subA |
6302  *    +-----------+------+
6303  *
6304  * At this point we notice that subB is used from subA, so we append it and
6305  * relocate (there are no further subcalls from subB):
6306  *
6307  *    +-----------+------+------+
6308  *    |   mainA   | subA | subB |
6309  *    +-----------+------+------+
6310  *
6311  * At this point, we relocate subA calls, then go one level up and finish with
6312  * relocatin mainA calls. mainA is done.
6313  *
6314  * For mainB process is similar but results in different order. We start with
6315  * mainB and skip subA and subB, as mainB never calls them (at least
6316  * directly), but we see subC is needed, so we append and start processing it:
6317  *
6318  *    +-----------+------+
6319  *    |   mainB   | subC |
6320  *    +-----------+------+
6321  * Now we see subC needs subB, so we go back to it, append and relocate it:
6322  *
6323  *    +-----------+------+------+
6324  *    |   mainB   | subC | subB |
6325  *    +-----------+------+------+
6326  *
6327  * At this point we unwind recursion, relocate calls in subC, then in mainB.
6328  */
6329 static int
6330 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6331 {
6332 	struct bpf_program *subprog;
6333 	int i, j, err;
6334 
6335 	/* mark all subprogs as not relocated (yet) within the context of
6336 	 * current main program
6337 	 */
6338 	for (i = 0; i < obj->nr_programs; i++) {
6339 		subprog = &obj->programs[i];
6340 		if (!prog_is_subprog(obj, subprog))
6341 			continue;
6342 
6343 		subprog->sub_insn_off = 0;
6344 		for (j = 0; j < subprog->nr_reloc; j++)
6345 			if (subprog->reloc_desc[j].type == RELO_CALL)
6346 				subprog->reloc_desc[j].processed = false;
6347 	}
6348 
6349 	err = bpf_object__reloc_code(obj, prog, prog);
6350 	if (err)
6351 		return err;
6352 
6353 
6354 	return 0;
6355 }
6356 
6357 static int
6358 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6359 {
6360 	struct bpf_program *prog;
6361 	size_t i;
6362 	int err;
6363 
6364 	if (obj->btf_ext) {
6365 		err = bpf_object__relocate_core(obj, targ_btf_path);
6366 		if (err) {
6367 			pr_warn("failed to perform CO-RE relocations: %d\n",
6368 				err);
6369 			return err;
6370 		}
6371 	}
6372 	/* relocate data references first for all programs and sub-programs,
6373 	 * as they don't change relative to code locations, so subsequent
6374 	 * subprogram processing won't need to re-calculate any of them
6375 	 */
6376 	for (i = 0; i < obj->nr_programs; i++) {
6377 		prog = &obj->programs[i];
6378 		err = bpf_object__relocate_data(obj, prog);
6379 		if (err) {
6380 			pr_warn("prog '%s': failed to relocate data references: %d\n",
6381 				prog->name, err);
6382 			return err;
6383 		}
6384 	}
6385 	/* now relocate subprogram calls and append used subprograms to main
6386 	 * programs; each copy of subprogram code needs to be relocated
6387 	 * differently for each main program, because its code location might
6388 	 * have changed
6389 	 */
6390 	for (i = 0; i < obj->nr_programs; i++) {
6391 		prog = &obj->programs[i];
6392 		/* sub-program's sub-calls are relocated within the context of
6393 		 * its main program only
6394 		 */
6395 		if (prog_is_subprog(obj, prog))
6396 			continue;
6397 
6398 		err = bpf_object__relocate_calls(obj, prog);
6399 		if (err) {
6400 			pr_warn("prog '%s': failed to relocate calls: %d\n",
6401 				prog->name, err);
6402 			return err;
6403 		}
6404 	}
6405 	/* free up relocation descriptors */
6406 	for (i = 0; i < obj->nr_programs; i++) {
6407 		prog = &obj->programs[i];
6408 		zfree(&prog->reloc_desc);
6409 		prog->nr_reloc = 0;
6410 	}
6411 	return 0;
6412 }
6413 
6414 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6415 					    GElf_Shdr *shdr, Elf_Data *data);
6416 
6417 static int bpf_object__collect_map_relos(struct bpf_object *obj,
6418 					 GElf_Shdr *shdr, Elf_Data *data)
6419 {
6420 	const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6421 	int i, j, nrels, new_sz;
6422 	const struct btf_var_secinfo *vi = NULL;
6423 	const struct btf_type *sec, *var, *def;
6424 	struct bpf_map *map = NULL, *targ_map;
6425 	const struct btf_member *member;
6426 	const char *name, *mname;
6427 	Elf_Data *symbols;
6428 	unsigned int moff;
6429 	GElf_Sym sym;
6430 	GElf_Rel rel;
6431 	void *tmp;
6432 
6433 	if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6434 		return -EINVAL;
6435 	sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6436 	if (!sec)
6437 		return -EINVAL;
6438 
6439 	symbols = obj->efile.symbols;
6440 	nrels = shdr->sh_size / shdr->sh_entsize;
6441 	for (i = 0; i < nrels; i++) {
6442 		if (!gelf_getrel(data, i, &rel)) {
6443 			pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6444 			return -LIBBPF_ERRNO__FORMAT;
6445 		}
6446 		if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
6447 			pr_warn(".maps relo #%d: symbol %zx not found\n",
6448 				i, (size_t)GELF_R_SYM(rel.r_info));
6449 			return -LIBBPF_ERRNO__FORMAT;
6450 		}
6451 		name = elf_sym_str(obj, sym.st_name) ?: "<?>";
6452 		if (sym.st_shndx != obj->efile.btf_maps_shndx) {
6453 			pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6454 				i, name);
6455 			return -LIBBPF_ERRNO__RELOC;
6456 		}
6457 
6458 		pr_debug(".maps relo #%d: for %zd value %zd rel.r_offset %zu name %d ('%s')\n",
6459 			 i, (ssize_t)(rel.r_info >> 32), (size_t)sym.st_value,
6460 			 (size_t)rel.r_offset, sym.st_name, name);
6461 
6462 		for (j = 0; j < obj->nr_maps; j++) {
6463 			map = &obj->maps[j];
6464 			if (map->sec_idx != obj->efile.btf_maps_shndx)
6465 				continue;
6466 
6467 			vi = btf_var_secinfos(sec) + map->btf_var_idx;
6468 			if (vi->offset <= rel.r_offset &&
6469 			    rel.r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6470 				break;
6471 		}
6472 		if (j == obj->nr_maps) {
6473 			pr_warn(".maps relo #%d: cannot find map '%s' at rel.r_offset %zu\n",
6474 				i, name, (size_t)rel.r_offset);
6475 			return -EINVAL;
6476 		}
6477 
6478 		if (!bpf_map_type__is_map_in_map(map->def.type))
6479 			return -EINVAL;
6480 		if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6481 		    map->def.key_size != sizeof(int)) {
6482 			pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6483 				i, map->name, sizeof(int));
6484 			return -EINVAL;
6485 		}
6486 
6487 		targ_map = bpf_object__find_map_by_name(obj, name);
6488 		if (!targ_map)
6489 			return -ESRCH;
6490 
6491 		var = btf__type_by_id(obj->btf, vi->type);
6492 		def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6493 		if (btf_vlen(def) == 0)
6494 			return -EINVAL;
6495 		member = btf_members(def) + btf_vlen(def) - 1;
6496 		mname = btf__name_by_offset(obj->btf, member->name_off);
6497 		if (strcmp(mname, "values"))
6498 			return -EINVAL;
6499 
6500 		moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6501 		if (rel.r_offset - vi->offset < moff)
6502 			return -EINVAL;
6503 
6504 		moff = rel.r_offset - vi->offset - moff;
6505 		/* here we use BPF pointer size, which is always 64 bit, as we
6506 		 * are parsing ELF that was built for BPF target
6507 		 */
6508 		if (moff % bpf_ptr_sz)
6509 			return -EINVAL;
6510 		moff /= bpf_ptr_sz;
6511 		if (moff >= map->init_slots_sz) {
6512 			new_sz = moff + 1;
6513 			tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6514 			if (!tmp)
6515 				return -ENOMEM;
6516 			map->init_slots = tmp;
6517 			memset(map->init_slots + map->init_slots_sz, 0,
6518 			       (new_sz - map->init_slots_sz) * host_ptr_sz);
6519 			map->init_slots_sz = new_sz;
6520 		}
6521 		map->init_slots[moff] = targ_map;
6522 
6523 		pr_debug(".maps relo #%d: map '%s' slot [%d] points to map '%s'\n",
6524 			 i, map->name, moff, name);
6525 	}
6526 
6527 	return 0;
6528 }
6529 
6530 static int cmp_relocs(const void *_a, const void *_b)
6531 {
6532 	const struct reloc_desc *a = _a;
6533 	const struct reloc_desc *b = _b;
6534 
6535 	if (a->insn_idx != b->insn_idx)
6536 		return a->insn_idx < b->insn_idx ? -1 : 1;
6537 
6538 	/* no two relocations should have the same insn_idx, but ... */
6539 	if (a->type != b->type)
6540 		return a->type < b->type ? -1 : 1;
6541 
6542 	return 0;
6543 }
6544 
6545 static int bpf_object__collect_relos(struct bpf_object *obj)
6546 {
6547 	int i, err;
6548 
6549 	for (i = 0; i < obj->efile.nr_reloc_sects; i++) {
6550 		GElf_Shdr *shdr = &obj->efile.reloc_sects[i].shdr;
6551 		Elf_Data *data = obj->efile.reloc_sects[i].data;
6552 		int idx = shdr->sh_info;
6553 
6554 		if (shdr->sh_type != SHT_REL) {
6555 			pr_warn("internal error at %d\n", __LINE__);
6556 			return -LIBBPF_ERRNO__INTERNAL;
6557 		}
6558 
6559 		if (idx == obj->efile.st_ops_shndx)
6560 			err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6561 		else if (idx == obj->efile.btf_maps_shndx)
6562 			err = bpf_object__collect_map_relos(obj, shdr, data);
6563 		else
6564 			err = bpf_object__collect_prog_relos(obj, shdr, data);
6565 		if (err)
6566 			return err;
6567 	}
6568 
6569 	for (i = 0; i < obj->nr_programs; i++) {
6570 		struct bpf_program *p = &obj->programs[i];
6571 
6572 		if (!p->nr_reloc)
6573 			continue;
6574 
6575 		qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6576 	}
6577 	return 0;
6578 }
6579 
6580 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6581 {
6582 	if (BPF_CLASS(insn->code) == BPF_JMP &&
6583 	    BPF_OP(insn->code) == BPF_CALL &&
6584 	    BPF_SRC(insn->code) == BPF_K &&
6585 	    insn->src_reg == 0 &&
6586 	    insn->dst_reg == 0) {
6587 		    *func_id = insn->imm;
6588 		    return true;
6589 	}
6590 	return false;
6591 }
6592 
6593 static int bpf_object__sanitize_prog(struct bpf_object* obj, struct bpf_program *prog)
6594 {
6595 	struct bpf_insn *insn = prog->insns;
6596 	enum bpf_func_id func_id;
6597 	int i;
6598 
6599 	for (i = 0; i < prog->insns_cnt; i++, insn++) {
6600 		if (!insn_is_helper_call(insn, &func_id))
6601 			continue;
6602 
6603 		/* on kernels that don't yet support
6604 		 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6605 		 * to bpf_probe_read() which works well for old kernels
6606 		 */
6607 		switch (func_id) {
6608 		case BPF_FUNC_probe_read_kernel:
6609 		case BPF_FUNC_probe_read_user:
6610 			if (!kernel_supports(FEAT_PROBE_READ_KERN))
6611 				insn->imm = BPF_FUNC_probe_read;
6612 			break;
6613 		case BPF_FUNC_probe_read_kernel_str:
6614 		case BPF_FUNC_probe_read_user_str:
6615 			if (!kernel_supports(FEAT_PROBE_READ_KERN))
6616 				insn->imm = BPF_FUNC_probe_read_str;
6617 			break;
6618 		default:
6619 			break;
6620 		}
6621 	}
6622 	return 0;
6623 }
6624 
6625 static int
6626 load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt,
6627 	     char *license, __u32 kern_version, int *pfd)
6628 {
6629 	struct bpf_load_program_attr load_attr;
6630 	char *cp, errmsg[STRERR_BUFSIZE];
6631 	size_t log_buf_size = 0;
6632 	char *log_buf = NULL;
6633 	int btf_fd, ret;
6634 
6635 	if (!insns || !insns_cnt)
6636 		return -EINVAL;
6637 
6638 	memset(&load_attr, 0, sizeof(struct bpf_load_program_attr));
6639 	load_attr.prog_type = prog->type;
6640 	/* old kernels might not support specifying expected_attach_type */
6641 	if (!kernel_supports(FEAT_EXP_ATTACH_TYPE) && prog->sec_def &&
6642 	    prog->sec_def->is_exp_attach_type_optional)
6643 		load_attr.expected_attach_type = 0;
6644 	else
6645 		load_attr.expected_attach_type = prog->expected_attach_type;
6646 	if (kernel_supports(FEAT_PROG_NAME))
6647 		load_attr.name = prog->name;
6648 	load_attr.insns = insns;
6649 	load_attr.insns_cnt = insns_cnt;
6650 	load_attr.license = license;
6651 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
6652 	    prog->type == BPF_PROG_TYPE_LSM) {
6653 		load_attr.attach_btf_id = prog->attach_btf_id;
6654 	} else if (prog->type == BPF_PROG_TYPE_TRACING ||
6655 		   prog->type == BPF_PROG_TYPE_EXT) {
6656 		load_attr.attach_prog_fd = prog->attach_prog_fd;
6657 		load_attr.attach_btf_id = prog->attach_btf_id;
6658 	} else {
6659 		load_attr.kern_version = kern_version;
6660 		load_attr.prog_ifindex = prog->prog_ifindex;
6661 	}
6662 	/* specify func_info/line_info only if kernel supports them */
6663 	btf_fd = bpf_object__btf_fd(prog->obj);
6664 	if (btf_fd >= 0 && kernel_supports(FEAT_BTF_FUNC)) {
6665 		load_attr.prog_btf_fd = btf_fd;
6666 		load_attr.func_info = prog->func_info;
6667 		load_attr.func_info_rec_size = prog->func_info_rec_size;
6668 		load_attr.func_info_cnt = prog->func_info_cnt;
6669 		load_attr.line_info = prog->line_info;
6670 		load_attr.line_info_rec_size = prog->line_info_rec_size;
6671 		load_attr.line_info_cnt = prog->line_info_cnt;
6672 	}
6673 	load_attr.log_level = prog->log_level;
6674 	load_attr.prog_flags = prog->prog_flags;
6675 
6676 retry_load:
6677 	if (log_buf_size) {
6678 		log_buf = malloc(log_buf_size);
6679 		if (!log_buf)
6680 			return -ENOMEM;
6681 
6682 		*log_buf = 0;
6683 	}
6684 
6685 	ret = bpf_load_program_xattr(&load_attr, log_buf, log_buf_size);
6686 
6687 	if (ret >= 0) {
6688 		if (log_buf && load_attr.log_level)
6689 			pr_debug("verifier log:\n%s", log_buf);
6690 
6691 		if (prog->obj->rodata_map_idx >= 0 &&
6692 		    kernel_supports(FEAT_PROG_BIND_MAP)) {
6693 			struct bpf_map *rodata_map =
6694 				&prog->obj->maps[prog->obj->rodata_map_idx];
6695 
6696 			if (bpf_prog_bind_map(ret, bpf_map__fd(rodata_map), NULL)) {
6697 				cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6698 				pr_warn("prog '%s': failed to bind .rodata map: %s\n",
6699 					prog->name, cp);
6700 				/* Don't fail hard if can't bind rodata. */
6701 			}
6702 		}
6703 
6704 		*pfd = ret;
6705 		ret = 0;
6706 		goto out;
6707 	}
6708 
6709 	if (!log_buf || errno == ENOSPC) {
6710 		log_buf_size = max((size_t)BPF_LOG_BUF_SIZE,
6711 				   log_buf_size << 1);
6712 
6713 		free(log_buf);
6714 		goto retry_load;
6715 	}
6716 	ret = errno ? -errno : -LIBBPF_ERRNO__LOAD;
6717 	cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6718 	pr_warn("load bpf program failed: %s\n", cp);
6719 	pr_perm_msg(ret);
6720 
6721 	if (log_buf && log_buf[0] != '\0') {
6722 		ret = -LIBBPF_ERRNO__VERIFY;
6723 		pr_warn("-- BEGIN DUMP LOG ---\n");
6724 		pr_warn("\n%s\n", log_buf);
6725 		pr_warn("-- END LOG --\n");
6726 	} else if (load_attr.insns_cnt >= BPF_MAXINSNS) {
6727 		pr_warn("Program too large (%zu insns), at most %d insns\n",
6728 			load_attr.insns_cnt, BPF_MAXINSNS);
6729 		ret = -LIBBPF_ERRNO__PROG2BIG;
6730 	} else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) {
6731 		/* Wrong program type? */
6732 		int fd;
6733 
6734 		load_attr.prog_type = BPF_PROG_TYPE_KPROBE;
6735 		load_attr.expected_attach_type = 0;
6736 		fd = bpf_load_program_xattr(&load_attr, NULL, 0);
6737 		if (fd >= 0) {
6738 			close(fd);
6739 			ret = -LIBBPF_ERRNO__PROGTYPE;
6740 			goto out;
6741 		}
6742 	}
6743 
6744 out:
6745 	free(log_buf);
6746 	return ret;
6747 }
6748 
6749 static int libbpf_find_attach_btf_id(struct bpf_program *prog);
6750 
6751 int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_ver)
6752 {
6753 	int err = 0, fd, i, btf_id;
6754 
6755 	if (prog->obj->loaded) {
6756 		pr_warn("prog '%s': can't load after object was loaded\n", prog->name);
6757 		return -EINVAL;
6758 	}
6759 
6760 	if ((prog->type == BPF_PROG_TYPE_TRACING ||
6761 	     prog->type == BPF_PROG_TYPE_LSM ||
6762 	     prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) {
6763 		btf_id = libbpf_find_attach_btf_id(prog);
6764 		if (btf_id <= 0)
6765 			return btf_id;
6766 		prog->attach_btf_id = btf_id;
6767 	}
6768 
6769 	if (prog->instances.nr < 0 || !prog->instances.fds) {
6770 		if (prog->preprocessor) {
6771 			pr_warn("Internal error: can't load program '%s'\n",
6772 				prog->name);
6773 			return -LIBBPF_ERRNO__INTERNAL;
6774 		}
6775 
6776 		prog->instances.fds = malloc(sizeof(int));
6777 		if (!prog->instances.fds) {
6778 			pr_warn("Not enough memory for BPF fds\n");
6779 			return -ENOMEM;
6780 		}
6781 		prog->instances.nr = 1;
6782 		prog->instances.fds[0] = -1;
6783 	}
6784 
6785 	if (!prog->preprocessor) {
6786 		if (prog->instances.nr != 1) {
6787 			pr_warn("prog '%s': inconsistent nr(%d) != 1\n",
6788 				prog->name, prog->instances.nr);
6789 		}
6790 		err = load_program(prog, prog->insns, prog->insns_cnt,
6791 				   license, kern_ver, &fd);
6792 		if (!err)
6793 			prog->instances.fds[0] = fd;
6794 		goto out;
6795 	}
6796 
6797 	for (i = 0; i < prog->instances.nr; i++) {
6798 		struct bpf_prog_prep_result result;
6799 		bpf_program_prep_t preprocessor = prog->preprocessor;
6800 
6801 		memset(&result, 0, sizeof(result));
6802 		err = preprocessor(prog, i, prog->insns,
6803 				   prog->insns_cnt, &result);
6804 		if (err) {
6805 			pr_warn("Preprocessing the %dth instance of program '%s' failed\n",
6806 				i, prog->name);
6807 			goto out;
6808 		}
6809 
6810 		if (!result.new_insn_ptr || !result.new_insn_cnt) {
6811 			pr_debug("Skip loading the %dth instance of program '%s'\n",
6812 				 i, prog->name);
6813 			prog->instances.fds[i] = -1;
6814 			if (result.pfd)
6815 				*result.pfd = -1;
6816 			continue;
6817 		}
6818 
6819 		err = load_program(prog, result.new_insn_ptr,
6820 				   result.new_insn_cnt, license, kern_ver, &fd);
6821 		if (err) {
6822 			pr_warn("Loading the %dth instance of program '%s' failed\n",
6823 				i, prog->name);
6824 			goto out;
6825 		}
6826 
6827 		if (result.pfd)
6828 			*result.pfd = fd;
6829 		prog->instances.fds[i] = fd;
6830 	}
6831 out:
6832 	if (err)
6833 		pr_warn("failed to load program '%s'\n", prog->name);
6834 	zfree(&prog->insns);
6835 	prog->insns_cnt = 0;
6836 	return err;
6837 }
6838 
6839 static int
6840 bpf_object__load_progs(struct bpf_object *obj, int log_level)
6841 {
6842 	struct bpf_program *prog;
6843 	size_t i;
6844 	int err;
6845 
6846 	for (i = 0; i < obj->nr_programs; i++) {
6847 		prog = &obj->programs[i];
6848 		err = bpf_object__sanitize_prog(obj, prog);
6849 		if (err)
6850 			return err;
6851 	}
6852 
6853 	for (i = 0; i < obj->nr_programs; i++) {
6854 		prog = &obj->programs[i];
6855 		if (prog_is_subprog(obj, prog))
6856 			continue;
6857 		if (!prog->load) {
6858 			pr_debug("prog '%s': skipped loading\n", prog->name);
6859 			continue;
6860 		}
6861 		prog->log_level |= log_level;
6862 		err = bpf_program__load(prog, obj->license, obj->kern_version);
6863 		if (err)
6864 			return err;
6865 	}
6866 	return 0;
6867 }
6868 
6869 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
6870 
6871 static struct bpf_object *
6872 __bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz,
6873 		   const struct bpf_object_open_opts *opts)
6874 {
6875 	const char *obj_name, *kconfig;
6876 	struct bpf_program *prog;
6877 	struct bpf_object *obj;
6878 	char tmp_name[64];
6879 	int err;
6880 
6881 	if (elf_version(EV_CURRENT) == EV_NONE) {
6882 		pr_warn("failed to init libelf for %s\n",
6883 			path ? : "(mem buf)");
6884 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
6885 	}
6886 
6887 	if (!OPTS_VALID(opts, bpf_object_open_opts))
6888 		return ERR_PTR(-EINVAL);
6889 
6890 	obj_name = OPTS_GET(opts, object_name, NULL);
6891 	if (obj_buf) {
6892 		if (!obj_name) {
6893 			snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
6894 				 (unsigned long)obj_buf,
6895 				 (unsigned long)obj_buf_sz);
6896 			obj_name = tmp_name;
6897 		}
6898 		path = obj_name;
6899 		pr_debug("loading object '%s' from buffer\n", obj_name);
6900 	}
6901 
6902 	obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
6903 	if (IS_ERR(obj))
6904 		return obj;
6905 
6906 	kconfig = OPTS_GET(opts, kconfig, NULL);
6907 	if (kconfig) {
6908 		obj->kconfig = strdup(kconfig);
6909 		if (!obj->kconfig)
6910 			return ERR_PTR(-ENOMEM);
6911 	}
6912 
6913 	err = bpf_object__elf_init(obj);
6914 	err = err ? : bpf_object__check_endianness(obj);
6915 	err = err ? : bpf_object__elf_collect(obj);
6916 	err = err ? : bpf_object__collect_externs(obj);
6917 	err = err ? : bpf_object__finalize_btf(obj);
6918 	err = err ? : bpf_object__init_maps(obj, opts);
6919 	err = err ? : bpf_object__collect_relos(obj);
6920 	if (err)
6921 		goto out;
6922 	bpf_object__elf_finish(obj);
6923 
6924 	bpf_object__for_each_program(prog, obj) {
6925 		prog->sec_def = find_sec_def(prog->sec_name);
6926 		if (!prog->sec_def)
6927 			/* couldn't guess, but user might manually specify */
6928 			continue;
6929 
6930 		if (prog->sec_def->is_sleepable)
6931 			prog->prog_flags |= BPF_F_SLEEPABLE;
6932 		bpf_program__set_type(prog, prog->sec_def->prog_type);
6933 		bpf_program__set_expected_attach_type(prog,
6934 				prog->sec_def->expected_attach_type);
6935 
6936 		if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING ||
6937 		    prog->sec_def->prog_type == BPF_PROG_TYPE_EXT)
6938 			prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0);
6939 	}
6940 
6941 	return obj;
6942 out:
6943 	bpf_object__close(obj);
6944 	return ERR_PTR(err);
6945 }
6946 
6947 static struct bpf_object *
6948 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags)
6949 {
6950 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
6951 		.relaxed_maps = flags & MAPS_RELAX_COMPAT,
6952 	);
6953 
6954 	/* param validation */
6955 	if (!attr->file)
6956 		return NULL;
6957 
6958 	pr_debug("loading %s\n", attr->file);
6959 	return __bpf_object__open(attr->file, NULL, 0, &opts);
6960 }
6961 
6962 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr)
6963 {
6964 	return __bpf_object__open_xattr(attr, 0);
6965 }
6966 
6967 struct bpf_object *bpf_object__open(const char *path)
6968 {
6969 	struct bpf_object_open_attr attr = {
6970 		.file		= path,
6971 		.prog_type	= BPF_PROG_TYPE_UNSPEC,
6972 	};
6973 
6974 	return bpf_object__open_xattr(&attr);
6975 }
6976 
6977 struct bpf_object *
6978 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
6979 {
6980 	if (!path)
6981 		return ERR_PTR(-EINVAL);
6982 
6983 	pr_debug("loading %s\n", path);
6984 
6985 	return __bpf_object__open(path, NULL, 0, opts);
6986 }
6987 
6988 struct bpf_object *
6989 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
6990 		     const struct bpf_object_open_opts *opts)
6991 {
6992 	if (!obj_buf || obj_buf_sz == 0)
6993 		return ERR_PTR(-EINVAL);
6994 
6995 	return __bpf_object__open(NULL, obj_buf, obj_buf_sz, opts);
6996 }
6997 
6998 struct bpf_object *
6999 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz,
7000 			const char *name)
7001 {
7002 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
7003 		.object_name = name,
7004 		/* wrong default, but backwards-compatible */
7005 		.relaxed_maps = true,
7006 	);
7007 
7008 	/* returning NULL is wrong, but backwards-compatible */
7009 	if (!obj_buf || obj_buf_sz == 0)
7010 		return NULL;
7011 
7012 	return bpf_object__open_mem(obj_buf, obj_buf_sz, &opts);
7013 }
7014 
7015 int bpf_object__unload(struct bpf_object *obj)
7016 {
7017 	size_t i;
7018 
7019 	if (!obj)
7020 		return -EINVAL;
7021 
7022 	for (i = 0; i < obj->nr_maps; i++) {
7023 		zclose(obj->maps[i].fd);
7024 		if (obj->maps[i].st_ops)
7025 			zfree(&obj->maps[i].st_ops->kern_vdata);
7026 	}
7027 
7028 	for (i = 0; i < obj->nr_programs; i++)
7029 		bpf_program__unload(&obj->programs[i]);
7030 
7031 	return 0;
7032 }
7033 
7034 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7035 {
7036 	struct bpf_map *m;
7037 
7038 	bpf_object__for_each_map(m, obj) {
7039 		if (!bpf_map__is_internal(m))
7040 			continue;
7041 		if (!kernel_supports(FEAT_GLOBAL_DATA)) {
7042 			pr_warn("kernel doesn't support global data\n");
7043 			return -ENOTSUP;
7044 		}
7045 		if (!kernel_supports(FEAT_ARRAY_MMAP))
7046 			m->def.map_flags ^= BPF_F_MMAPABLE;
7047 	}
7048 
7049 	return 0;
7050 }
7051 
7052 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7053 {
7054 	char sym_type, sym_name[500];
7055 	unsigned long long sym_addr;
7056 	struct extern_desc *ext;
7057 	int ret, err = 0;
7058 	FILE *f;
7059 
7060 	f = fopen("/proc/kallsyms", "r");
7061 	if (!f) {
7062 		err = -errno;
7063 		pr_warn("failed to open /proc/kallsyms: %d\n", err);
7064 		return err;
7065 	}
7066 
7067 	while (true) {
7068 		ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7069 			     &sym_addr, &sym_type, sym_name);
7070 		if (ret == EOF && feof(f))
7071 			break;
7072 		if (ret != 3) {
7073 			pr_warn("failed to read kallsyms entry: %d\n", ret);
7074 			err = -EINVAL;
7075 			goto out;
7076 		}
7077 
7078 		ext = find_extern_by_name(obj, sym_name);
7079 		if (!ext || ext->type != EXT_KSYM)
7080 			continue;
7081 
7082 		if (ext->is_set && ext->ksym.addr != sym_addr) {
7083 			pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n",
7084 				sym_name, ext->ksym.addr, sym_addr);
7085 			err = -EINVAL;
7086 			goto out;
7087 		}
7088 		if (!ext->is_set) {
7089 			ext->is_set = true;
7090 			ext->ksym.addr = sym_addr;
7091 			pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr);
7092 		}
7093 	}
7094 
7095 out:
7096 	fclose(f);
7097 	return err;
7098 }
7099 
7100 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7101 {
7102 	struct extern_desc *ext;
7103 	int i, id;
7104 
7105 	for (i = 0; i < obj->nr_extern; i++) {
7106 		const struct btf_type *targ_var, *targ_type;
7107 		__u32 targ_type_id, local_type_id;
7108 		const char *targ_var_name;
7109 		int ret;
7110 
7111 		ext = &obj->externs[i];
7112 		if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7113 			continue;
7114 
7115 		id = btf__find_by_name_kind(obj->btf_vmlinux, ext->name,
7116 					    BTF_KIND_VAR);
7117 		if (id <= 0) {
7118 			pr_warn("extern (ksym) '%s': failed to find BTF ID in vmlinux BTF.\n",
7119 				ext->name);
7120 			return -ESRCH;
7121 		}
7122 
7123 		/* find local type_id */
7124 		local_type_id = ext->ksym.type_id;
7125 
7126 		/* find target type_id */
7127 		targ_var = btf__type_by_id(obj->btf_vmlinux, id);
7128 		targ_var_name = btf__name_by_offset(obj->btf_vmlinux,
7129 						    targ_var->name_off);
7130 		targ_type = skip_mods_and_typedefs(obj->btf_vmlinux,
7131 						   targ_var->type,
7132 						   &targ_type_id);
7133 
7134 		ret = bpf_core_types_are_compat(obj->btf, local_type_id,
7135 						obj->btf_vmlinux, targ_type_id);
7136 		if (ret <= 0) {
7137 			const struct btf_type *local_type;
7138 			const char *targ_name, *local_name;
7139 
7140 			local_type = btf__type_by_id(obj->btf, local_type_id);
7141 			local_name = btf__name_by_offset(obj->btf,
7142 							 local_type->name_off);
7143 			targ_name = btf__name_by_offset(obj->btf_vmlinux,
7144 							targ_type->name_off);
7145 
7146 			pr_warn("extern (ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7147 				ext->name, local_type_id,
7148 				btf_kind_str(local_type), local_name, targ_type_id,
7149 				btf_kind_str(targ_type), targ_name);
7150 			return -EINVAL;
7151 		}
7152 
7153 		ext->is_set = true;
7154 		ext->ksym.vmlinux_btf_id = id;
7155 		pr_debug("extern (ksym) '%s': resolved to [%d] %s %s\n",
7156 			 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7157 	}
7158 	return 0;
7159 }
7160 
7161 static int bpf_object__resolve_externs(struct bpf_object *obj,
7162 				       const char *extra_kconfig)
7163 {
7164 	bool need_config = false, need_kallsyms = false;
7165 	bool need_vmlinux_btf = false;
7166 	struct extern_desc *ext;
7167 	void *kcfg_data = NULL;
7168 	int err, i;
7169 
7170 	if (obj->nr_extern == 0)
7171 		return 0;
7172 
7173 	if (obj->kconfig_map_idx >= 0)
7174 		kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7175 
7176 	for (i = 0; i < obj->nr_extern; i++) {
7177 		ext = &obj->externs[i];
7178 
7179 		if (ext->type == EXT_KCFG &&
7180 		    strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7181 			void *ext_val = kcfg_data + ext->kcfg.data_off;
7182 			__u32 kver = get_kernel_version();
7183 
7184 			if (!kver) {
7185 				pr_warn("failed to get kernel version\n");
7186 				return -EINVAL;
7187 			}
7188 			err = set_kcfg_value_num(ext, ext_val, kver);
7189 			if (err)
7190 				return err;
7191 			pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver);
7192 		} else if (ext->type == EXT_KCFG &&
7193 			   strncmp(ext->name, "CONFIG_", 7) == 0) {
7194 			need_config = true;
7195 		} else if (ext->type == EXT_KSYM) {
7196 			if (ext->ksym.type_id)
7197 				need_vmlinux_btf = true;
7198 			else
7199 				need_kallsyms = true;
7200 		} else {
7201 			pr_warn("unrecognized extern '%s'\n", ext->name);
7202 			return -EINVAL;
7203 		}
7204 	}
7205 	if (need_config && extra_kconfig) {
7206 		err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7207 		if (err)
7208 			return -EINVAL;
7209 		need_config = false;
7210 		for (i = 0; i < obj->nr_extern; i++) {
7211 			ext = &obj->externs[i];
7212 			if (ext->type == EXT_KCFG && !ext->is_set) {
7213 				need_config = true;
7214 				break;
7215 			}
7216 		}
7217 	}
7218 	if (need_config) {
7219 		err = bpf_object__read_kconfig_file(obj, kcfg_data);
7220 		if (err)
7221 			return -EINVAL;
7222 	}
7223 	if (need_kallsyms) {
7224 		err = bpf_object__read_kallsyms_file(obj);
7225 		if (err)
7226 			return -EINVAL;
7227 	}
7228 	if (need_vmlinux_btf) {
7229 		err = bpf_object__resolve_ksyms_btf_id(obj);
7230 		if (err)
7231 			return -EINVAL;
7232 	}
7233 	for (i = 0; i < obj->nr_extern; i++) {
7234 		ext = &obj->externs[i];
7235 
7236 		if (!ext->is_set && !ext->is_weak) {
7237 			pr_warn("extern %s (strong) not resolved\n", ext->name);
7238 			return -ESRCH;
7239 		} else if (!ext->is_set) {
7240 			pr_debug("extern %s (weak) not resolved, defaulting to zero\n",
7241 				 ext->name);
7242 		}
7243 	}
7244 
7245 	return 0;
7246 }
7247 
7248 int bpf_object__load_xattr(struct bpf_object_load_attr *attr)
7249 {
7250 	struct bpf_object *obj;
7251 	int err, i;
7252 
7253 	if (!attr)
7254 		return -EINVAL;
7255 	obj = attr->obj;
7256 	if (!obj)
7257 		return -EINVAL;
7258 
7259 	if (obj->loaded) {
7260 		pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7261 		return -EINVAL;
7262 	}
7263 
7264 	err = bpf_object__probe_loading(obj);
7265 	err = err ? : bpf_object__load_vmlinux_btf(obj);
7266 	err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7267 	err = err ? : bpf_object__sanitize_and_load_btf(obj);
7268 	err = err ? : bpf_object__sanitize_maps(obj);
7269 	err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7270 	err = err ? : bpf_object__create_maps(obj);
7271 	err = err ? : bpf_object__relocate(obj, attr->target_btf_path);
7272 	err = err ? : bpf_object__load_progs(obj, attr->log_level);
7273 
7274 	btf__free(obj->btf_vmlinux);
7275 	obj->btf_vmlinux = NULL;
7276 
7277 	obj->loaded = true; /* doesn't matter if successfully or not */
7278 
7279 	if (err)
7280 		goto out;
7281 
7282 	return 0;
7283 out:
7284 	/* unpin any maps that were auto-pinned during load */
7285 	for (i = 0; i < obj->nr_maps; i++)
7286 		if (obj->maps[i].pinned && !obj->maps[i].reused)
7287 			bpf_map__unpin(&obj->maps[i], NULL);
7288 
7289 	bpf_object__unload(obj);
7290 	pr_warn("failed to load object '%s'\n", obj->path);
7291 	return err;
7292 }
7293 
7294 int bpf_object__load(struct bpf_object *obj)
7295 {
7296 	struct bpf_object_load_attr attr = {
7297 		.obj = obj,
7298 	};
7299 
7300 	return bpf_object__load_xattr(&attr);
7301 }
7302 
7303 static int make_parent_dir(const char *path)
7304 {
7305 	char *cp, errmsg[STRERR_BUFSIZE];
7306 	char *dname, *dir;
7307 	int err = 0;
7308 
7309 	dname = strdup(path);
7310 	if (dname == NULL)
7311 		return -ENOMEM;
7312 
7313 	dir = dirname(dname);
7314 	if (mkdir(dir, 0700) && errno != EEXIST)
7315 		err = -errno;
7316 
7317 	free(dname);
7318 	if (err) {
7319 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7320 		pr_warn("failed to mkdir %s: %s\n", path, cp);
7321 	}
7322 	return err;
7323 }
7324 
7325 static int check_path(const char *path)
7326 {
7327 	char *cp, errmsg[STRERR_BUFSIZE];
7328 	struct statfs st_fs;
7329 	char *dname, *dir;
7330 	int err = 0;
7331 
7332 	if (path == NULL)
7333 		return -EINVAL;
7334 
7335 	dname = strdup(path);
7336 	if (dname == NULL)
7337 		return -ENOMEM;
7338 
7339 	dir = dirname(dname);
7340 	if (statfs(dir, &st_fs)) {
7341 		cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7342 		pr_warn("failed to statfs %s: %s\n", dir, cp);
7343 		err = -errno;
7344 	}
7345 	free(dname);
7346 
7347 	if (!err && st_fs.f_type != BPF_FS_MAGIC) {
7348 		pr_warn("specified path %s is not on BPF FS\n", path);
7349 		err = -EINVAL;
7350 	}
7351 
7352 	return err;
7353 }
7354 
7355 int bpf_program__pin_instance(struct bpf_program *prog, const char *path,
7356 			      int instance)
7357 {
7358 	char *cp, errmsg[STRERR_BUFSIZE];
7359 	int err;
7360 
7361 	err = make_parent_dir(path);
7362 	if (err)
7363 		return err;
7364 
7365 	err = check_path(path);
7366 	if (err)
7367 		return err;
7368 
7369 	if (prog == NULL) {
7370 		pr_warn("invalid program pointer\n");
7371 		return -EINVAL;
7372 	}
7373 
7374 	if (instance < 0 || instance >= prog->instances.nr) {
7375 		pr_warn("invalid prog instance %d of prog %s (max %d)\n",
7376 			instance, prog->name, prog->instances.nr);
7377 		return -EINVAL;
7378 	}
7379 
7380 	if (bpf_obj_pin(prog->instances.fds[instance], path)) {
7381 		err = -errno;
7382 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
7383 		pr_warn("failed to pin program: %s\n", cp);
7384 		return err;
7385 	}
7386 	pr_debug("pinned program '%s'\n", path);
7387 
7388 	return 0;
7389 }
7390 
7391 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path,
7392 				int instance)
7393 {
7394 	int err;
7395 
7396 	err = check_path(path);
7397 	if (err)
7398 		return err;
7399 
7400 	if (prog == NULL) {
7401 		pr_warn("invalid program pointer\n");
7402 		return -EINVAL;
7403 	}
7404 
7405 	if (instance < 0 || instance >= prog->instances.nr) {
7406 		pr_warn("invalid prog instance %d of prog %s (max %d)\n",
7407 			instance, prog->name, prog->instances.nr);
7408 		return -EINVAL;
7409 	}
7410 
7411 	err = unlink(path);
7412 	if (err != 0)
7413 		return -errno;
7414 	pr_debug("unpinned program '%s'\n", path);
7415 
7416 	return 0;
7417 }
7418 
7419 int bpf_program__pin(struct bpf_program *prog, const char *path)
7420 {
7421 	int i, err;
7422 
7423 	err = make_parent_dir(path);
7424 	if (err)
7425 		return err;
7426 
7427 	err = check_path(path);
7428 	if (err)
7429 		return err;
7430 
7431 	if (prog == NULL) {
7432 		pr_warn("invalid program pointer\n");
7433 		return -EINVAL;
7434 	}
7435 
7436 	if (prog->instances.nr <= 0) {
7437 		pr_warn("no instances of prog %s to pin\n", prog->name);
7438 		return -EINVAL;
7439 	}
7440 
7441 	if (prog->instances.nr == 1) {
7442 		/* don't create subdirs when pinning single instance */
7443 		return bpf_program__pin_instance(prog, path, 0);
7444 	}
7445 
7446 	for (i = 0; i < prog->instances.nr; i++) {
7447 		char buf[PATH_MAX];
7448 		int len;
7449 
7450 		len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7451 		if (len < 0) {
7452 			err = -EINVAL;
7453 			goto err_unpin;
7454 		} else if (len >= PATH_MAX) {
7455 			err = -ENAMETOOLONG;
7456 			goto err_unpin;
7457 		}
7458 
7459 		err = bpf_program__pin_instance(prog, buf, i);
7460 		if (err)
7461 			goto err_unpin;
7462 	}
7463 
7464 	return 0;
7465 
7466 err_unpin:
7467 	for (i = i - 1; i >= 0; i--) {
7468 		char buf[PATH_MAX];
7469 		int len;
7470 
7471 		len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7472 		if (len < 0)
7473 			continue;
7474 		else if (len >= PATH_MAX)
7475 			continue;
7476 
7477 		bpf_program__unpin_instance(prog, buf, i);
7478 	}
7479 
7480 	rmdir(path);
7481 
7482 	return err;
7483 }
7484 
7485 int bpf_program__unpin(struct bpf_program *prog, const char *path)
7486 {
7487 	int i, err;
7488 
7489 	err = check_path(path);
7490 	if (err)
7491 		return err;
7492 
7493 	if (prog == NULL) {
7494 		pr_warn("invalid program pointer\n");
7495 		return -EINVAL;
7496 	}
7497 
7498 	if (prog->instances.nr <= 0) {
7499 		pr_warn("no instances of prog %s to pin\n", prog->name);
7500 		return -EINVAL;
7501 	}
7502 
7503 	if (prog->instances.nr == 1) {
7504 		/* don't create subdirs when pinning single instance */
7505 		return bpf_program__unpin_instance(prog, path, 0);
7506 	}
7507 
7508 	for (i = 0; i < prog->instances.nr; i++) {
7509 		char buf[PATH_MAX];
7510 		int len;
7511 
7512 		len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7513 		if (len < 0)
7514 			return -EINVAL;
7515 		else if (len >= PATH_MAX)
7516 			return -ENAMETOOLONG;
7517 
7518 		err = bpf_program__unpin_instance(prog, buf, i);
7519 		if (err)
7520 			return err;
7521 	}
7522 
7523 	err = rmdir(path);
7524 	if (err)
7525 		return -errno;
7526 
7527 	return 0;
7528 }
7529 
7530 int bpf_map__pin(struct bpf_map *map, const char *path)
7531 {
7532 	char *cp, errmsg[STRERR_BUFSIZE];
7533 	int err;
7534 
7535 	if (map == NULL) {
7536 		pr_warn("invalid map pointer\n");
7537 		return -EINVAL;
7538 	}
7539 
7540 	if (map->pin_path) {
7541 		if (path && strcmp(path, map->pin_path)) {
7542 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7543 				bpf_map__name(map), map->pin_path, path);
7544 			return -EINVAL;
7545 		} else if (map->pinned) {
7546 			pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
7547 				 bpf_map__name(map), map->pin_path);
7548 			return 0;
7549 		}
7550 	} else {
7551 		if (!path) {
7552 			pr_warn("missing a path to pin map '%s' at\n",
7553 				bpf_map__name(map));
7554 			return -EINVAL;
7555 		} else if (map->pinned) {
7556 			pr_warn("map '%s' already pinned\n", bpf_map__name(map));
7557 			return -EEXIST;
7558 		}
7559 
7560 		map->pin_path = strdup(path);
7561 		if (!map->pin_path) {
7562 			err = -errno;
7563 			goto out_err;
7564 		}
7565 	}
7566 
7567 	err = make_parent_dir(map->pin_path);
7568 	if (err)
7569 		return err;
7570 
7571 	err = check_path(map->pin_path);
7572 	if (err)
7573 		return err;
7574 
7575 	if (bpf_obj_pin(map->fd, map->pin_path)) {
7576 		err = -errno;
7577 		goto out_err;
7578 	}
7579 
7580 	map->pinned = true;
7581 	pr_debug("pinned map '%s'\n", map->pin_path);
7582 
7583 	return 0;
7584 
7585 out_err:
7586 	cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7587 	pr_warn("failed to pin map: %s\n", cp);
7588 	return err;
7589 }
7590 
7591 int bpf_map__unpin(struct bpf_map *map, const char *path)
7592 {
7593 	int err;
7594 
7595 	if (map == NULL) {
7596 		pr_warn("invalid map pointer\n");
7597 		return -EINVAL;
7598 	}
7599 
7600 	if (map->pin_path) {
7601 		if (path && strcmp(path, map->pin_path)) {
7602 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7603 				bpf_map__name(map), map->pin_path, path);
7604 			return -EINVAL;
7605 		}
7606 		path = map->pin_path;
7607 	} else if (!path) {
7608 		pr_warn("no path to unpin map '%s' from\n",
7609 			bpf_map__name(map));
7610 		return -EINVAL;
7611 	}
7612 
7613 	err = check_path(path);
7614 	if (err)
7615 		return err;
7616 
7617 	err = unlink(path);
7618 	if (err != 0)
7619 		return -errno;
7620 
7621 	map->pinned = false;
7622 	pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
7623 
7624 	return 0;
7625 }
7626 
7627 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
7628 {
7629 	char *new = NULL;
7630 
7631 	if (path) {
7632 		new = strdup(path);
7633 		if (!new)
7634 			return -errno;
7635 	}
7636 
7637 	free(map->pin_path);
7638 	map->pin_path = new;
7639 	return 0;
7640 }
7641 
7642 const char *bpf_map__get_pin_path(const struct bpf_map *map)
7643 {
7644 	return map->pin_path;
7645 }
7646 
7647 bool bpf_map__is_pinned(const struct bpf_map *map)
7648 {
7649 	return map->pinned;
7650 }
7651 
7652 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
7653 {
7654 	struct bpf_map *map;
7655 	int err;
7656 
7657 	if (!obj)
7658 		return -ENOENT;
7659 
7660 	if (!obj->loaded) {
7661 		pr_warn("object not yet loaded; load it first\n");
7662 		return -ENOENT;
7663 	}
7664 
7665 	bpf_object__for_each_map(map, obj) {
7666 		char *pin_path = NULL;
7667 		char buf[PATH_MAX];
7668 
7669 		if (path) {
7670 			int len;
7671 
7672 			len = snprintf(buf, PATH_MAX, "%s/%s", path,
7673 				       bpf_map__name(map));
7674 			if (len < 0) {
7675 				err = -EINVAL;
7676 				goto err_unpin_maps;
7677 			} else if (len >= PATH_MAX) {
7678 				err = -ENAMETOOLONG;
7679 				goto err_unpin_maps;
7680 			}
7681 			pin_path = buf;
7682 		} else if (!map->pin_path) {
7683 			continue;
7684 		}
7685 
7686 		err = bpf_map__pin(map, pin_path);
7687 		if (err)
7688 			goto err_unpin_maps;
7689 	}
7690 
7691 	return 0;
7692 
7693 err_unpin_maps:
7694 	while ((map = bpf_map__prev(map, obj))) {
7695 		if (!map->pin_path)
7696 			continue;
7697 
7698 		bpf_map__unpin(map, NULL);
7699 	}
7700 
7701 	return err;
7702 }
7703 
7704 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
7705 {
7706 	struct bpf_map *map;
7707 	int err;
7708 
7709 	if (!obj)
7710 		return -ENOENT;
7711 
7712 	bpf_object__for_each_map(map, obj) {
7713 		char *pin_path = NULL;
7714 		char buf[PATH_MAX];
7715 
7716 		if (path) {
7717 			int len;
7718 
7719 			len = snprintf(buf, PATH_MAX, "%s/%s", path,
7720 				       bpf_map__name(map));
7721 			if (len < 0)
7722 				return -EINVAL;
7723 			else if (len >= PATH_MAX)
7724 				return -ENAMETOOLONG;
7725 			pin_path = buf;
7726 		} else if (!map->pin_path) {
7727 			continue;
7728 		}
7729 
7730 		err = bpf_map__unpin(map, pin_path);
7731 		if (err)
7732 			return err;
7733 	}
7734 
7735 	return 0;
7736 }
7737 
7738 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
7739 {
7740 	struct bpf_program *prog;
7741 	int err;
7742 
7743 	if (!obj)
7744 		return -ENOENT;
7745 
7746 	if (!obj->loaded) {
7747 		pr_warn("object not yet loaded; load it first\n");
7748 		return -ENOENT;
7749 	}
7750 
7751 	bpf_object__for_each_program(prog, obj) {
7752 		char buf[PATH_MAX];
7753 		int len;
7754 
7755 		len = snprintf(buf, PATH_MAX, "%s/%s", path,
7756 			       prog->pin_name);
7757 		if (len < 0) {
7758 			err = -EINVAL;
7759 			goto err_unpin_programs;
7760 		} else if (len >= PATH_MAX) {
7761 			err = -ENAMETOOLONG;
7762 			goto err_unpin_programs;
7763 		}
7764 
7765 		err = bpf_program__pin(prog, buf);
7766 		if (err)
7767 			goto err_unpin_programs;
7768 	}
7769 
7770 	return 0;
7771 
7772 err_unpin_programs:
7773 	while ((prog = bpf_program__prev(prog, obj))) {
7774 		char buf[PATH_MAX];
7775 		int len;
7776 
7777 		len = snprintf(buf, PATH_MAX, "%s/%s", path,
7778 			       prog->pin_name);
7779 		if (len < 0)
7780 			continue;
7781 		else if (len >= PATH_MAX)
7782 			continue;
7783 
7784 		bpf_program__unpin(prog, buf);
7785 	}
7786 
7787 	return err;
7788 }
7789 
7790 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
7791 {
7792 	struct bpf_program *prog;
7793 	int err;
7794 
7795 	if (!obj)
7796 		return -ENOENT;
7797 
7798 	bpf_object__for_each_program(prog, obj) {
7799 		char buf[PATH_MAX];
7800 		int len;
7801 
7802 		len = snprintf(buf, PATH_MAX, "%s/%s", path,
7803 			       prog->pin_name);
7804 		if (len < 0)
7805 			return -EINVAL;
7806 		else if (len >= PATH_MAX)
7807 			return -ENAMETOOLONG;
7808 
7809 		err = bpf_program__unpin(prog, buf);
7810 		if (err)
7811 			return err;
7812 	}
7813 
7814 	return 0;
7815 }
7816 
7817 int bpf_object__pin(struct bpf_object *obj, const char *path)
7818 {
7819 	int err;
7820 
7821 	err = bpf_object__pin_maps(obj, path);
7822 	if (err)
7823 		return err;
7824 
7825 	err = bpf_object__pin_programs(obj, path);
7826 	if (err) {
7827 		bpf_object__unpin_maps(obj, path);
7828 		return err;
7829 	}
7830 
7831 	return 0;
7832 }
7833 
7834 static void bpf_map__destroy(struct bpf_map *map)
7835 {
7836 	if (map->clear_priv)
7837 		map->clear_priv(map, map->priv);
7838 	map->priv = NULL;
7839 	map->clear_priv = NULL;
7840 
7841 	if (map->inner_map) {
7842 		bpf_map__destroy(map->inner_map);
7843 		zfree(&map->inner_map);
7844 	}
7845 
7846 	zfree(&map->init_slots);
7847 	map->init_slots_sz = 0;
7848 
7849 	if (map->mmaped) {
7850 		munmap(map->mmaped, bpf_map_mmap_sz(map));
7851 		map->mmaped = NULL;
7852 	}
7853 
7854 	if (map->st_ops) {
7855 		zfree(&map->st_ops->data);
7856 		zfree(&map->st_ops->progs);
7857 		zfree(&map->st_ops->kern_func_off);
7858 		zfree(&map->st_ops);
7859 	}
7860 
7861 	zfree(&map->name);
7862 	zfree(&map->pin_path);
7863 
7864 	if (map->fd >= 0)
7865 		zclose(map->fd);
7866 }
7867 
7868 void bpf_object__close(struct bpf_object *obj)
7869 {
7870 	size_t i;
7871 
7872 	if (IS_ERR_OR_NULL(obj))
7873 		return;
7874 
7875 	if (obj->clear_priv)
7876 		obj->clear_priv(obj, obj->priv);
7877 
7878 	bpf_object__elf_finish(obj);
7879 	bpf_object__unload(obj);
7880 	btf__free(obj->btf);
7881 	btf_ext__free(obj->btf_ext);
7882 
7883 	for (i = 0; i < obj->nr_maps; i++)
7884 		bpf_map__destroy(&obj->maps[i]);
7885 
7886 	zfree(&obj->kconfig);
7887 	zfree(&obj->externs);
7888 	obj->nr_extern = 0;
7889 
7890 	zfree(&obj->maps);
7891 	obj->nr_maps = 0;
7892 
7893 	if (obj->programs && obj->nr_programs) {
7894 		for (i = 0; i < obj->nr_programs; i++)
7895 			bpf_program__exit(&obj->programs[i]);
7896 	}
7897 	zfree(&obj->programs);
7898 
7899 	list_del(&obj->list);
7900 	free(obj);
7901 }
7902 
7903 struct bpf_object *
7904 bpf_object__next(struct bpf_object *prev)
7905 {
7906 	struct bpf_object *next;
7907 
7908 	if (!prev)
7909 		next = list_first_entry(&bpf_objects_list,
7910 					struct bpf_object,
7911 					list);
7912 	else
7913 		next = list_next_entry(prev, list);
7914 
7915 	/* Empty list is noticed here so don't need checking on entry. */
7916 	if (&next->list == &bpf_objects_list)
7917 		return NULL;
7918 
7919 	return next;
7920 }
7921 
7922 const char *bpf_object__name(const struct bpf_object *obj)
7923 {
7924 	return obj ? obj->name : ERR_PTR(-EINVAL);
7925 }
7926 
7927 unsigned int bpf_object__kversion(const struct bpf_object *obj)
7928 {
7929 	return obj ? obj->kern_version : 0;
7930 }
7931 
7932 struct btf *bpf_object__btf(const struct bpf_object *obj)
7933 {
7934 	return obj ? obj->btf : NULL;
7935 }
7936 
7937 int bpf_object__btf_fd(const struct bpf_object *obj)
7938 {
7939 	return obj->btf ? btf__fd(obj->btf) : -1;
7940 }
7941 
7942 int bpf_object__set_priv(struct bpf_object *obj, void *priv,
7943 			 bpf_object_clear_priv_t clear_priv)
7944 {
7945 	if (obj->priv && obj->clear_priv)
7946 		obj->clear_priv(obj, obj->priv);
7947 
7948 	obj->priv = priv;
7949 	obj->clear_priv = clear_priv;
7950 	return 0;
7951 }
7952 
7953 void *bpf_object__priv(const struct bpf_object *obj)
7954 {
7955 	return obj ? obj->priv : ERR_PTR(-EINVAL);
7956 }
7957 
7958 static struct bpf_program *
7959 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
7960 		    bool forward)
7961 {
7962 	size_t nr_programs = obj->nr_programs;
7963 	ssize_t idx;
7964 
7965 	if (!nr_programs)
7966 		return NULL;
7967 
7968 	if (!p)
7969 		/* Iter from the beginning */
7970 		return forward ? &obj->programs[0] :
7971 			&obj->programs[nr_programs - 1];
7972 
7973 	if (p->obj != obj) {
7974 		pr_warn("error: program handler doesn't match object\n");
7975 		return NULL;
7976 	}
7977 
7978 	idx = (p - obj->programs) + (forward ? 1 : -1);
7979 	if (idx >= obj->nr_programs || idx < 0)
7980 		return NULL;
7981 	return &obj->programs[idx];
7982 }
7983 
7984 struct bpf_program *
7985 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj)
7986 {
7987 	struct bpf_program *prog = prev;
7988 
7989 	do {
7990 		prog = __bpf_program__iter(prog, obj, true);
7991 	} while (prog && prog_is_subprog(obj, prog));
7992 
7993 	return prog;
7994 }
7995 
7996 struct bpf_program *
7997 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj)
7998 {
7999 	struct bpf_program *prog = next;
8000 
8001 	do {
8002 		prog = __bpf_program__iter(prog, obj, false);
8003 	} while (prog && prog_is_subprog(obj, prog));
8004 
8005 	return prog;
8006 }
8007 
8008 int bpf_program__set_priv(struct bpf_program *prog, void *priv,
8009 			  bpf_program_clear_priv_t clear_priv)
8010 {
8011 	if (prog->priv && prog->clear_priv)
8012 		prog->clear_priv(prog, prog->priv);
8013 
8014 	prog->priv = priv;
8015 	prog->clear_priv = clear_priv;
8016 	return 0;
8017 }
8018 
8019 void *bpf_program__priv(const struct bpf_program *prog)
8020 {
8021 	return prog ? prog->priv : ERR_PTR(-EINVAL);
8022 }
8023 
8024 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8025 {
8026 	prog->prog_ifindex = ifindex;
8027 }
8028 
8029 const char *bpf_program__name(const struct bpf_program *prog)
8030 {
8031 	return prog->name;
8032 }
8033 
8034 const char *bpf_program__section_name(const struct bpf_program *prog)
8035 {
8036 	return prog->sec_name;
8037 }
8038 
8039 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy)
8040 {
8041 	const char *title;
8042 
8043 	title = prog->sec_name;
8044 	if (needs_copy) {
8045 		title = strdup(title);
8046 		if (!title) {
8047 			pr_warn("failed to strdup program title\n");
8048 			return ERR_PTR(-ENOMEM);
8049 		}
8050 	}
8051 
8052 	return title;
8053 }
8054 
8055 bool bpf_program__autoload(const struct bpf_program *prog)
8056 {
8057 	return prog->load;
8058 }
8059 
8060 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8061 {
8062 	if (prog->obj->loaded)
8063 		return -EINVAL;
8064 
8065 	prog->load = autoload;
8066 	return 0;
8067 }
8068 
8069 int bpf_program__fd(const struct bpf_program *prog)
8070 {
8071 	return bpf_program__nth_fd(prog, 0);
8072 }
8073 
8074 size_t bpf_program__size(const struct bpf_program *prog)
8075 {
8076 	return prog->insns_cnt * BPF_INSN_SZ;
8077 }
8078 
8079 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances,
8080 			  bpf_program_prep_t prep)
8081 {
8082 	int *instances_fds;
8083 
8084 	if (nr_instances <= 0 || !prep)
8085 		return -EINVAL;
8086 
8087 	if (prog->instances.nr > 0 || prog->instances.fds) {
8088 		pr_warn("Can't set pre-processor after loading\n");
8089 		return -EINVAL;
8090 	}
8091 
8092 	instances_fds = malloc(sizeof(int) * nr_instances);
8093 	if (!instances_fds) {
8094 		pr_warn("alloc memory failed for fds\n");
8095 		return -ENOMEM;
8096 	}
8097 
8098 	/* fill all fd with -1 */
8099 	memset(instances_fds, -1, sizeof(int) * nr_instances);
8100 
8101 	prog->instances.nr = nr_instances;
8102 	prog->instances.fds = instances_fds;
8103 	prog->preprocessor = prep;
8104 	return 0;
8105 }
8106 
8107 int bpf_program__nth_fd(const struct bpf_program *prog, int n)
8108 {
8109 	int fd;
8110 
8111 	if (!prog)
8112 		return -EINVAL;
8113 
8114 	if (n >= prog->instances.nr || n < 0) {
8115 		pr_warn("Can't get the %dth fd from program %s: only %d instances\n",
8116 			n, prog->name, prog->instances.nr);
8117 		return -EINVAL;
8118 	}
8119 
8120 	fd = prog->instances.fds[n];
8121 	if (fd < 0) {
8122 		pr_warn("%dth instance of program '%s' is invalid\n",
8123 			n, prog->name);
8124 		return -ENOENT;
8125 	}
8126 
8127 	return fd;
8128 }
8129 
8130 enum bpf_prog_type bpf_program__get_type(struct bpf_program *prog)
8131 {
8132 	return prog->type;
8133 }
8134 
8135 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8136 {
8137 	prog->type = type;
8138 }
8139 
8140 static bool bpf_program__is_type(const struct bpf_program *prog,
8141 				 enum bpf_prog_type type)
8142 {
8143 	return prog ? (prog->type == type) : false;
8144 }
8145 
8146 #define BPF_PROG_TYPE_FNS(NAME, TYPE)				\
8147 int bpf_program__set_##NAME(struct bpf_program *prog)		\
8148 {								\
8149 	if (!prog)						\
8150 		return -EINVAL;					\
8151 	bpf_program__set_type(prog, TYPE);			\
8152 	return 0;						\
8153 }								\
8154 								\
8155 bool bpf_program__is_##NAME(const struct bpf_program *prog)	\
8156 {								\
8157 	return bpf_program__is_type(prog, TYPE);		\
8158 }								\
8159 
8160 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER);
8161 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM);
8162 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE);
8163 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS);
8164 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT);
8165 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT);
8166 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT);
8167 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP);
8168 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT);
8169 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING);
8170 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS);
8171 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT);
8172 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP);
8173 
8174 enum bpf_attach_type
8175 bpf_program__get_expected_attach_type(struct bpf_program *prog)
8176 {
8177 	return prog->expected_attach_type;
8178 }
8179 
8180 void bpf_program__set_expected_attach_type(struct bpf_program *prog,
8181 					   enum bpf_attach_type type)
8182 {
8183 	prog->expected_attach_type = type;
8184 }
8185 
8186 #define BPF_PROG_SEC_IMPL(string, ptype, eatype, eatype_optional,	    \
8187 			  attachable, attach_btf)			    \
8188 	{								    \
8189 		.sec = string,						    \
8190 		.len = sizeof(string) - 1,				    \
8191 		.prog_type = ptype,					    \
8192 		.expected_attach_type = eatype,				    \
8193 		.is_exp_attach_type_optional = eatype_optional,		    \
8194 		.is_attachable = attachable,				    \
8195 		.is_attach_btf = attach_btf,				    \
8196 	}
8197 
8198 /* Programs that can NOT be attached. */
8199 #define BPF_PROG_SEC(string, ptype) BPF_PROG_SEC_IMPL(string, ptype, 0, 0, 0, 0)
8200 
8201 /* Programs that can be attached. */
8202 #define BPF_APROG_SEC(string, ptype, atype) \
8203 	BPF_PROG_SEC_IMPL(string, ptype, atype, true, 1, 0)
8204 
8205 /* Programs that must specify expected attach type at load time. */
8206 #define BPF_EAPROG_SEC(string, ptype, eatype) \
8207 	BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 1, 0)
8208 
8209 /* Programs that use BTF to identify attach point */
8210 #define BPF_PROG_BTF(string, ptype, eatype) \
8211 	BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 0, 1)
8212 
8213 /* Programs that can be attached but attach type can't be identified by section
8214  * name. Kept for backward compatibility.
8215  */
8216 #define BPF_APROG_COMPAT(string, ptype) BPF_PROG_SEC(string, ptype)
8217 
8218 #define SEC_DEF(sec_pfx, ptype, ...) {					    \
8219 	.sec = sec_pfx,							    \
8220 	.len = sizeof(sec_pfx) - 1,					    \
8221 	.prog_type = BPF_PROG_TYPE_##ptype,				    \
8222 	__VA_ARGS__							    \
8223 }
8224 
8225 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec,
8226 				      struct bpf_program *prog);
8227 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec,
8228 				  struct bpf_program *prog);
8229 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec,
8230 				      struct bpf_program *prog);
8231 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec,
8232 				     struct bpf_program *prog);
8233 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec,
8234 				   struct bpf_program *prog);
8235 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec,
8236 				    struct bpf_program *prog);
8237 
8238 static const struct bpf_sec_def section_defs[] = {
8239 	BPF_PROG_SEC("socket",			BPF_PROG_TYPE_SOCKET_FILTER),
8240 	BPF_PROG_SEC("sk_reuseport",		BPF_PROG_TYPE_SK_REUSEPORT),
8241 	SEC_DEF("kprobe/", KPROBE,
8242 		.attach_fn = attach_kprobe),
8243 	BPF_PROG_SEC("uprobe/",			BPF_PROG_TYPE_KPROBE),
8244 	SEC_DEF("kretprobe/", KPROBE,
8245 		.attach_fn = attach_kprobe),
8246 	BPF_PROG_SEC("uretprobe/",		BPF_PROG_TYPE_KPROBE),
8247 	BPF_PROG_SEC("classifier",		BPF_PROG_TYPE_SCHED_CLS),
8248 	BPF_PROG_SEC("action",			BPF_PROG_TYPE_SCHED_ACT),
8249 	SEC_DEF("tracepoint/", TRACEPOINT,
8250 		.attach_fn = attach_tp),
8251 	SEC_DEF("tp/", TRACEPOINT,
8252 		.attach_fn = attach_tp),
8253 	SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT,
8254 		.attach_fn = attach_raw_tp),
8255 	SEC_DEF("raw_tp/", RAW_TRACEPOINT,
8256 		.attach_fn = attach_raw_tp),
8257 	SEC_DEF("tp_btf/", TRACING,
8258 		.expected_attach_type = BPF_TRACE_RAW_TP,
8259 		.is_attach_btf = true,
8260 		.attach_fn = attach_trace),
8261 	SEC_DEF("fentry/", TRACING,
8262 		.expected_attach_type = BPF_TRACE_FENTRY,
8263 		.is_attach_btf = true,
8264 		.attach_fn = attach_trace),
8265 	SEC_DEF("fmod_ret/", TRACING,
8266 		.expected_attach_type = BPF_MODIFY_RETURN,
8267 		.is_attach_btf = true,
8268 		.attach_fn = attach_trace),
8269 	SEC_DEF("fexit/", TRACING,
8270 		.expected_attach_type = BPF_TRACE_FEXIT,
8271 		.is_attach_btf = true,
8272 		.attach_fn = attach_trace),
8273 	SEC_DEF("fentry.s/", TRACING,
8274 		.expected_attach_type = BPF_TRACE_FENTRY,
8275 		.is_attach_btf = true,
8276 		.is_sleepable = true,
8277 		.attach_fn = attach_trace),
8278 	SEC_DEF("fmod_ret.s/", TRACING,
8279 		.expected_attach_type = BPF_MODIFY_RETURN,
8280 		.is_attach_btf = true,
8281 		.is_sleepable = true,
8282 		.attach_fn = attach_trace),
8283 	SEC_DEF("fexit.s/", TRACING,
8284 		.expected_attach_type = BPF_TRACE_FEXIT,
8285 		.is_attach_btf = true,
8286 		.is_sleepable = true,
8287 		.attach_fn = attach_trace),
8288 	SEC_DEF("freplace/", EXT,
8289 		.is_attach_btf = true,
8290 		.attach_fn = attach_trace),
8291 	SEC_DEF("lsm/", LSM,
8292 		.is_attach_btf = true,
8293 		.expected_attach_type = BPF_LSM_MAC,
8294 		.attach_fn = attach_lsm),
8295 	SEC_DEF("lsm.s/", LSM,
8296 		.is_attach_btf = true,
8297 		.is_sleepable = true,
8298 		.expected_attach_type = BPF_LSM_MAC,
8299 		.attach_fn = attach_lsm),
8300 	SEC_DEF("iter/", TRACING,
8301 		.expected_attach_type = BPF_TRACE_ITER,
8302 		.is_attach_btf = true,
8303 		.attach_fn = attach_iter),
8304 	BPF_EAPROG_SEC("xdp_devmap/",		BPF_PROG_TYPE_XDP,
8305 						BPF_XDP_DEVMAP),
8306 	BPF_EAPROG_SEC("xdp_cpumap/",		BPF_PROG_TYPE_XDP,
8307 						BPF_XDP_CPUMAP),
8308 	BPF_APROG_SEC("xdp",			BPF_PROG_TYPE_XDP,
8309 						BPF_XDP),
8310 	BPF_PROG_SEC("perf_event",		BPF_PROG_TYPE_PERF_EVENT),
8311 	BPF_PROG_SEC("lwt_in",			BPF_PROG_TYPE_LWT_IN),
8312 	BPF_PROG_SEC("lwt_out",			BPF_PROG_TYPE_LWT_OUT),
8313 	BPF_PROG_SEC("lwt_xmit",		BPF_PROG_TYPE_LWT_XMIT),
8314 	BPF_PROG_SEC("lwt_seg6local",		BPF_PROG_TYPE_LWT_SEG6LOCAL),
8315 	BPF_APROG_SEC("cgroup_skb/ingress",	BPF_PROG_TYPE_CGROUP_SKB,
8316 						BPF_CGROUP_INET_INGRESS),
8317 	BPF_APROG_SEC("cgroup_skb/egress",	BPF_PROG_TYPE_CGROUP_SKB,
8318 						BPF_CGROUP_INET_EGRESS),
8319 	BPF_APROG_COMPAT("cgroup/skb",		BPF_PROG_TYPE_CGROUP_SKB),
8320 	BPF_EAPROG_SEC("cgroup/sock_create",	BPF_PROG_TYPE_CGROUP_SOCK,
8321 						BPF_CGROUP_INET_SOCK_CREATE),
8322 	BPF_EAPROG_SEC("cgroup/sock_release",	BPF_PROG_TYPE_CGROUP_SOCK,
8323 						BPF_CGROUP_INET_SOCK_RELEASE),
8324 	BPF_APROG_SEC("cgroup/sock",		BPF_PROG_TYPE_CGROUP_SOCK,
8325 						BPF_CGROUP_INET_SOCK_CREATE),
8326 	BPF_EAPROG_SEC("cgroup/post_bind4",	BPF_PROG_TYPE_CGROUP_SOCK,
8327 						BPF_CGROUP_INET4_POST_BIND),
8328 	BPF_EAPROG_SEC("cgroup/post_bind6",	BPF_PROG_TYPE_CGROUP_SOCK,
8329 						BPF_CGROUP_INET6_POST_BIND),
8330 	BPF_APROG_SEC("cgroup/dev",		BPF_PROG_TYPE_CGROUP_DEVICE,
8331 						BPF_CGROUP_DEVICE),
8332 	BPF_APROG_SEC("sockops",		BPF_PROG_TYPE_SOCK_OPS,
8333 						BPF_CGROUP_SOCK_OPS),
8334 	BPF_APROG_SEC("sk_skb/stream_parser",	BPF_PROG_TYPE_SK_SKB,
8335 						BPF_SK_SKB_STREAM_PARSER),
8336 	BPF_APROG_SEC("sk_skb/stream_verdict",	BPF_PROG_TYPE_SK_SKB,
8337 						BPF_SK_SKB_STREAM_VERDICT),
8338 	BPF_APROG_COMPAT("sk_skb",		BPF_PROG_TYPE_SK_SKB),
8339 	BPF_APROG_SEC("sk_msg",			BPF_PROG_TYPE_SK_MSG,
8340 						BPF_SK_MSG_VERDICT),
8341 	BPF_APROG_SEC("lirc_mode2",		BPF_PROG_TYPE_LIRC_MODE2,
8342 						BPF_LIRC_MODE2),
8343 	BPF_APROG_SEC("flow_dissector",		BPF_PROG_TYPE_FLOW_DISSECTOR,
8344 						BPF_FLOW_DISSECTOR),
8345 	BPF_EAPROG_SEC("cgroup/bind4",		BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8346 						BPF_CGROUP_INET4_BIND),
8347 	BPF_EAPROG_SEC("cgroup/bind6",		BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8348 						BPF_CGROUP_INET6_BIND),
8349 	BPF_EAPROG_SEC("cgroup/connect4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8350 						BPF_CGROUP_INET4_CONNECT),
8351 	BPF_EAPROG_SEC("cgroup/connect6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8352 						BPF_CGROUP_INET6_CONNECT),
8353 	BPF_EAPROG_SEC("cgroup/sendmsg4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8354 						BPF_CGROUP_UDP4_SENDMSG),
8355 	BPF_EAPROG_SEC("cgroup/sendmsg6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8356 						BPF_CGROUP_UDP6_SENDMSG),
8357 	BPF_EAPROG_SEC("cgroup/recvmsg4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8358 						BPF_CGROUP_UDP4_RECVMSG),
8359 	BPF_EAPROG_SEC("cgroup/recvmsg6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8360 						BPF_CGROUP_UDP6_RECVMSG),
8361 	BPF_EAPROG_SEC("cgroup/getpeername4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8362 						BPF_CGROUP_INET4_GETPEERNAME),
8363 	BPF_EAPROG_SEC("cgroup/getpeername6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8364 						BPF_CGROUP_INET6_GETPEERNAME),
8365 	BPF_EAPROG_SEC("cgroup/getsockname4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8366 						BPF_CGROUP_INET4_GETSOCKNAME),
8367 	BPF_EAPROG_SEC("cgroup/getsockname6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8368 						BPF_CGROUP_INET6_GETSOCKNAME),
8369 	BPF_EAPROG_SEC("cgroup/sysctl",		BPF_PROG_TYPE_CGROUP_SYSCTL,
8370 						BPF_CGROUP_SYSCTL),
8371 	BPF_EAPROG_SEC("cgroup/getsockopt",	BPF_PROG_TYPE_CGROUP_SOCKOPT,
8372 						BPF_CGROUP_GETSOCKOPT),
8373 	BPF_EAPROG_SEC("cgroup/setsockopt",	BPF_PROG_TYPE_CGROUP_SOCKOPT,
8374 						BPF_CGROUP_SETSOCKOPT),
8375 	BPF_PROG_SEC("struct_ops",		BPF_PROG_TYPE_STRUCT_OPS),
8376 	BPF_EAPROG_SEC("sk_lookup/",		BPF_PROG_TYPE_SK_LOOKUP,
8377 						BPF_SK_LOOKUP),
8378 };
8379 
8380 #undef BPF_PROG_SEC_IMPL
8381 #undef BPF_PROG_SEC
8382 #undef BPF_APROG_SEC
8383 #undef BPF_EAPROG_SEC
8384 #undef BPF_APROG_COMPAT
8385 #undef SEC_DEF
8386 
8387 #define MAX_TYPE_NAME_SIZE 32
8388 
8389 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
8390 {
8391 	int i, n = ARRAY_SIZE(section_defs);
8392 
8393 	for (i = 0; i < n; i++) {
8394 		if (strncmp(sec_name,
8395 			    section_defs[i].sec, section_defs[i].len))
8396 			continue;
8397 		return &section_defs[i];
8398 	}
8399 	return NULL;
8400 }
8401 
8402 static char *libbpf_get_type_names(bool attach_type)
8403 {
8404 	int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
8405 	char *buf;
8406 
8407 	buf = malloc(len);
8408 	if (!buf)
8409 		return NULL;
8410 
8411 	buf[0] = '\0';
8412 	/* Forge string buf with all available names */
8413 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8414 		if (attach_type && !section_defs[i].is_attachable)
8415 			continue;
8416 
8417 		if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
8418 			free(buf);
8419 			return NULL;
8420 		}
8421 		strcat(buf, " ");
8422 		strcat(buf, section_defs[i].sec);
8423 	}
8424 
8425 	return buf;
8426 }
8427 
8428 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
8429 			     enum bpf_attach_type *expected_attach_type)
8430 {
8431 	const struct bpf_sec_def *sec_def;
8432 	char *type_names;
8433 
8434 	if (!name)
8435 		return -EINVAL;
8436 
8437 	sec_def = find_sec_def(name);
8438 	if (sec_def) {
8439 		*prog_type = sec_def->prog_type;
8440 		*expected_attach_type = sec_def->expected_attach_type;
8441 		return 0;
8442 	}
8443 
8444 	pr_debug("failed to guess program type from ELF section '%s'\n", name);
8445 	type_names = libbpf_get_type_names(false);
8446 	if (type_names != NULL) {
8447 		pr_debug("supported section(type) names are:%s\n", type_names);
8448 		free(type_names);
8449 	}
8450 
8451 	return -ESRCH;
8452 }
8453 
8454 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
8455 						     size_t offset)
8456 {
8457 	struct bpf_map *map;
8458 	size_t i;
8459 
8460 	for (i = 0; i < obj->nr_maps; i++) {
8461 		map = &obj->maps[i];
8462 		if (!bpf_map__is_struct_ops(map))
8463 			continue;
8464 		if (map->sec_offset <= offset &&
8465 		    offset - map->sec_offset < map->def.value_size)
8466 			return map;
8467 	}
8468 
8469 	return NULL;
8470 }
8471 
8472 /* Collect the reloc from ELF and populate the st_ops->progs[] */
8473 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
8474 					    GElf_Shdr *shdr, Elf_Data *data)
8475 {
8476 	const struct btf_member *member;
8477 	struct bpf_struct_ops *st_ops;
8478 	struct bpf_program *prog;
8479 	unsigned int shdr_idx;
8480 	const struct btf *btf;
8481 	struct bpf_map *map;
8482 	Elf_Data *symbols;
8483 	unsigned int moff, insn_idx;
8484 	const char *name;
8485 	__u32 member_idx;
8486 	GElf_Sym sym;
8487 	GElf_Rel rel;
8488 	int i, nrels;
8489 
8490 	symbols = obj->efile.symbols;
8491 	btf = obj->btf;
8492 	nrels = shdr->sh_size / shdr->sh_entsize;
8493 	for (i = 0; i < nrels; i++) {
8494 		if (!gelf_getrel(data, i, &rel)) {
8495 			pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
8496 			return -LIBBPF_ERRNO__FORMAT;
8497 		}
8498 
8499 		if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
8500 			pr_warn("struct_ops reloc: symbol %zx not found\n",
8501 				(size_t)GELF_R_SYM(rel.r_info));
8502 			return -LIBBPF_ERRNO__FORMAT;
8503 		}
8504 
8505 		name = elf_sym_str(obj, sym.st_name) ?: "<?>";
8506 		map = find_struct_ops_map_by_offset(obj, rel.r_offset);
8507 		if (!map) {
8508 			pr_warn("struct_ops reloc: cannot find map at rel.r_offset %zu\n",
8509 				(size_t)rel.r_offset);
8510 			return -EINVAL;
8511 		}
8512 
8513 		moff = rel.r_offset - map->sec_offset;
8514 		shdr_idx = sym.st_shndx;
8515 		st_ops = map->st_ops;
8516 		pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel.r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
8517 			 map->name,
8518 			 (long long)(rel.r_info >> 32),
8519 			 (long long)sym.st_value,
8520 			 shdr_idx, (size_t)rel.r_offset,
8521 			 map->sec_offset, sym.st_name, name);
8522 
8523 		if (shdr_idx >= SHN_LORESERVE) {
8524 			pr_warn("struct_ops reloc %s: rel.r_offset %zu shdr_idx %u unsupported non-static function\n",
8525 				map->name, (size_t)rel.r_offset, shdr_idx);
8526 			return -LIBBPF_ERRNO__RELOC;
8527 		}
8528 		if (sym.st_value % BPF_INSN_SZ) {
8529 			pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
8530 				map->name, (unsigned long long)sym.st_value);
8531 			return -LIBBPF_ERRNO__FORMAT;
8532 		}
8533 		insn_idx = sym.st_value / BPF_INSN_SZ;
8534 
8535 		member = find_member_by_offset(st_ops->type, moff * 8);
8536 		if (!member) {
8537 			pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
8538 				map->name, moff);
8539 			return -EINVAL;
8540 		}
8541 		member_idx = member - btf_members(st_ops->type);
8542 		name = btf__name_by_offset(btf, member->name_off);
8543 
8544 		if (!resolve_func_ptr(btf, member->type, NULL)) {
8545 			pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
8546 				map->name, name);
8547 			return -EINVAL;
8548 		}
8549 
8550 		prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
8551 		if (!prog) {
8552 			pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
8553 				map->name, shdr_idx, name);
8554 			return -EINVAL;
8555 		}
8556 
8557 		if (prog->type == BPF_PROG_TYPE_UNSPEC) {
8558 			const struct bpf_sec_def *sec_def;
8559 
8560 			sec_def = find_sec_def(prog->sec_name);
8561 			if (sec_def &&
8562 			    sec_def->prog_type != BPF_PROG_TYPE_STRUCT_OPS) {
8563 				/* for pr_warn */
8564 				prog->type = sec_def->prog_type;
8565 				goto invalid_prog;
8566 			}
8567 
8568 			prog->type = BPF_PROG_TYPE_STRUCT_OPS;
8569 			prog->attach_btf_id = st_ops->type_id;
8570 			prog->expected_attach_type = member_idx;
8571 		} else if (prog->type != BPF_PROG_TYPE_STRUCT_OPS ||
8572 			   prog->attach_btf_id != st_ops->type_id ||
8573 			   prog->expected_attach_type != member_idx) {
8574 			goto invalid_prog;
8575 		}
8576 		st_ops->progs[member_idx] = prog;
8577 	}
8578 
8579 	return 0;
8580 
8581 invalid_prog:
8582 	pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
8583 		map->name, prog->name, prog->sec_name, prog->type,
8584 		prog->attach_btf_id, prog->expected_attach_type, name);
8585 	return -EINVAL;
8586 }
8587 
8588 #define BTF_TRACE_PREFIX "btf_trace_"
8589 #define BTF_LSM_PREFIX "bpf_lsm_"
8590 #define BTF_ITER_PREFIX "bpf_iter_"
8591 #define BTF_MAX_NAME_SIZE 128
8592 
8593 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
8594 				   const char *name, __u32 kind)
8595 {
8596 	char btf_type_name[BTF_MAX_NAME_SIZE];
8597 	int ret;
8598 
8599 	ret = snprintf(btf_type_name, sizeof(btf_type_name),
8600 		       "%s%s", prefix, name);
8601 	/* snprintf returns the number of characters written excluding the
8602 	 * the terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
8603 	 * indicates truncation.
8604 	 */
8605 	if (ret < 0 || ret >= sizeof(btf_type_name))
8606 		return -ENAMETOOLONG;
8607 	return btf__find_by_name_kind(btf, btf_type_name, kind);
8608 }
8609 
8610 static inline int __find_vmlinux_btf_id(struct btf *btf, const char *name,
8611 					enum bpf_attach_type attach_type)
8612 {
8613 	int err;
8614 
8615 	if (attach_type == BPF_TRACE_RAW_TP)
8616 		err = find_btf_by_prefix_kind(btf, BTF_TRACE_PREFIX, name,
8617 					      BTF_KIND_TYPEDEF);
8618 	else if (attach_type == BPF_LSM_MAC)
8619 		err = find_btf_by_prefix_kind(btf, BTF_LSM_PREFIX, name,
8620 					      BTF_KIND_FUNC);
8621 	else if (attach_type == BPF_TRACE_ITER)
8622 		err = find_btf_by_prefix_kind(btf, BTF_ITER_PREFIX, name,
8623 					      BTF_KIND_FUNC);
8624 	else
8625 		err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
8626 
8627 	if (err <= 0)
8628 		pr_warn("%s is not found in vmlinux BTF\n", name);
8629 
8630 	return err;
8631 }
8632 
8633 int libbpf_find_vmlinux_btf_id(const char *name,
8634 			       enum bpf_attach_type attach_type)
8635 {
8636 	struct btf *btf;
8637 	int err;
8638 
8639 	btf = libbpf_find_kernel_btf();
8640 	if (IS_ERR(btf)) {
8641 		pr_warn("vmlinux BTF is not found\n");
8642 		return -EINVAL;
8643 	}
8644 
8645 	err = __find_vmlinux_btf_id(btf, name, attach_type);
8646 	btf__free(btf);
8647 	return err;
8648 }
8649 
8650 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
8651 {
8652 	struct bpf_prog_info_linear *info_linear;
8653 	struct bpf_prog_info *info;
8654 	struct btf *btf = NULL;
8655 	int err = -EINVAL;
8656 
8657 	info_linear = bpf_program__get_prog_info_linear(attach_prog_fd, 0);
8658 	if (IS_ERR_OR_NULL(info_linear)) {
8659 		pr_warn("failed get_prog_info_linear for FD %d\n",
8660 			attach_prog_fd);
8661 		return -EINVAL;
8662 	}
8663 	info = &info_linear->info;
8664 	if (!info->btf_id) {
8665 		pr_warn("The target program doesn't have BTF\n");
8666 		goto out;
8667 	}
8668 	if (btf__get_from_id(info->btf_id, &btf)) {
8669 		pr_warn("Failed to get BTF of the program\n");
8670 		goto out;
8671 	}
8672 	err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
8673 	btf__free(btf);
8674 	if (err <= 0) {
8675 		pr_warn("%s is not found in prog's BTF\n", name);
8676 		goto out;
8677 	}
8678 out:
8679 	free(info_linear);
8680 	return err;
8681 }
8682 
8683 static int libbpf_find_attach_btf_id(struct bpf_program *prog)
8684 {
8685 	enum bpf_attach_type attach_type = prog->expected_attach_type;
8686 	__u32 attach_prog_fd = prog->attach_prog_fd;
8687 	const char *name = prog->sec_name;
8688 	int i, err;
8689 
8690 	if (!name)
8691 		return -EINVAL;
8692 
8693 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8694 		if (!section_defs[i].is_attach_btf)
8695 			continue;
8696 		if (strncmp(name, section_defs[i].sec, section_defs[i].len))
8697 			continue;
8698 		if (attach_prog_fd)
8699 			err = libbpf_find_prog_btf_id(name + section_defs[i].len,
8700 						      attach_prog_fd);
8701 		else
8702 			err = __find_vmlinux_btf_id(prog->obj->btf_vmlinux,
8703 						    name + section_defs[i].len,
8704 						    attach_type);
8705 		return err;
8706 	}
8707 	pr_warn("failed to identify btf_id based on ELF section name '%s'\n", name);
8708 	return -ESRCH;
8709 }
8710 
8711 int libbpf_attach_type_by_name(const char *name,
8712 			       enum bpf_attach_type *attach_type)
8713 {
8714 	char *type_names;
8715 	int i;
8716 
8717 	if (!name)
8718 		return -EINVAL;
8719 
8720 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8721 		if (strncmp(name, section_defs[i].sec, section_defs[i].len))
8722 			continue;
8723 		if (!section_defs[i].is_attachable)
8724 			return -EINVAL;
8725 		*attach_type = section_defs[i].expected_attach_type;
8726 		return 0;
8727 	}
8728 	pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
8729 	type_names = libbpf_get_type_names(true);
8730 	if (type_names != NULL) {
8731 		pr_debug("attachable section(type) names are:%s\n", type_names);
8732 		free(type_names);
8733 	}
8734 
8735 	return -EINVAL;
8736 }
8737 
8738 int bpf_map__fd(const struct bpf_map *map)
8739 {
8740 	return map ? map->fd : -EINVAL;
8741 }
8742 
8743 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map)
8744 {
8745 	return map ? &map->def : ERR_PTR(-EINVAL);
8746 }
8747 
8748 const char *bpf_map__name(const struct bpf_map *map)
8749 {
8750 	return map ? map->name : NULL;
8751 }
8752 
8753 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
8754 {
8755 	return map->def.type;
8756 }
8757 
8758 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
8759 {
8760 	if (map->fd >= 0)
8761 		return -EBUSY;
8762 	map->def.type = type;
8763 	return 0;
8764 }
8765 
8766 __u32 bpf_map__map_flags(const struct bpf_map *map)
8767 {
8768 	return map->def.map_flags;
8769 }
8770 
8771 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
8772 {
8773 	if (map->fd >= 0)
8774 		return -EBUSY;
8775 	map->def.map_flags = flags;
8776 	return 0;
8777 }
8778 
8779 __u32 bpf_map__numa_node(const struct bpf_map *map)
8780 {
8781 	return map->numa_node;
8782 }
8783 
8784 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
8785 {
8786 	if (map->fd >= 0)
8787 		return -EBUSY;
8788 	map->numa_node = numa_node;
8789 	return 0;
8790 }
8791 
8792 __u32 bpf_map__key_size(const struct bpf_map *map)
8793 {
8794 	return map->def.key_size;
8795 }
8796 
8797 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
8798 {
8799 	if (map->fd >= 0)
8800 		return -EBUSY;
8801 	map->def.key_size = size;
8802 	return 0;
8803 }
8804 
8805 __u32 bpf_map__value_size(const struct bpf_map *map)
8806 {
8807 	return map->def.value_size;
8808 }
8809 
8810 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
8811 {
8812 	if (map->fd >= 0)
8813 		return -EBUSY;
8814 	map->def.value_size = size;
8815 	return 0;
8816 }
8817 
8818 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
8819 {
8820 	return map ? map->btf_key_type_id : 0;
8821 }
8822 
8823 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
8824 {
8825 	return map ? map->btf_value_type_id : 0;
8826 }
8827 
8828 int bpf_map__set_priv(struct bpf_map *map, void *priv,
8829 		     bpf_map_clear_priv_t clear_priv)
8830 {
8831 	if (!map)
8832 		return -EINVAL;
8833 
8834 	if (map->priv) {
8835 		if (map->clear_priv)
8836 			map->clear_priv(map, map->priv);
8837 	}
8838 
8839 	map->priv = priv;
8840 	map->clear_priv = clear_priv;
8841 	return 0;
8842 }
8843 
8844 void *bpf_map__priv(const struct bpf_map *map)
8845 {
8846 	return map ? map->priv : ERR_PTR(-EINVAL);
8847 }
8848 
8849 int bpf_map__set_initial_value(struct bpf_map *map,
8850 			       const void *data, size_t size)
8851 {
8852 	if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
8853 	    size != map->def.value_size || map->fd >= 0)
8854 		return -EINVAL;
8855 
8856 	memcpy(map->mmaped, data, size);
8857 	return 0;
8858 }
8859 
8860 bool bpf_map__is_offload_neutral(const struct bpf_map *map)
8861 {
8862 	return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
8863 }
8864 
8865 bool bpf_map__is_internal(const struct bpf_map *map)
8866 {
8867 	return map->libbpf_type != LIBBPF_MAP_UNSPEC;
8868 }
8869 
8870 __u32 bpf_map__ifindex(const struct bpf_map *map)
8871 {
8872 	return map->map_ifindex;
8873 }
8874 
8875 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
8876 {
8877 	if (map->fd >= 0)
8878 		return -EBUSY;
8879 	map->map_ifindex = ifindex;
8880 	return 0;
8881 }
8882 
8883 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
8884 {
8885 	if (!bpf_map_type__is_map_in_map(map->def.type)) {
8886 		pr_warn("error: unsupported map type\n");
8887 		return -EINVAL;
8888 	}
8889 	if (map->inner_map_fd != -1) {
8890 		pr_warn("error: inner_map_fd already specified\n");
8891 		return -EINVAL;
8892 	}
8893 	map->inner_map_fd = fd;
8894 	return 0;
8895 }
8896 
8897 static struct bpf_map *
8898 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
8899 {
8900 	ssize_t idx;
8901 	struct bpf_map *s, *e;
8902 
8903 	if (!obj || !obj->maps)
8904 		return NULL;
8905 
8906 	s = obj->maps;
8907 	e = obj->maps + obj->nr_maps;
8908 
8909 	if ((m < s) || (m >= e)) {
8910 		pr_warn("error in %s: map handler doesn't belong to object\n",
8911 			 __func__);
8912 		return NULL;
8913 	}
8914 
8915 	idx = (m - obj->maps) + i;
8916 	if (idx >= obj->nr_maps || idx < 0)
8917 		return NULL;
8918 	return &obj->maps[idx];
8919 }
8920 
8921 struct bpf_map *
8922 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj)
8923 {
8924 	if (prev == NULL)
8925 		return obj->maps;
8926 
8927 	return __bpf_map__iter(prev, obj, 1);
8928 }
8929 
8930 struct bpf_map *
8931 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj)
8932 {
8933 	if (next == NULL) {
8934 		if (!obj->nr_maps)
8935 			return NULL;
8936 		return obj->maps + obj->nr_maps - 1;
8937 	}
8938 
8939 	return __bpf_map__iter(next, obj, -1);
8940 }
8941 
8942 struct bpf_map *
8943 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
8944 {
8945 	struct bpf_map *pos;
8946 
8947 	bpf_object__for_each_map(pos, obj) {
8948 		if (pos->name && !strcmp(pos->name, name))
8949 			return pos;
8950 	}
8951 	return NULL;
8952 }
8953 
8954 int
8955 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
8956 {
8957 	return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
8958 }
8959 
8960 struct bpf_map *
8961 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset)
8962 {
8963 	return ERR_PTR(-ENOTSUP);
8964 }
8965 
8966 long libbpf_get_error(const void *ptr)
8967 {
8968 	return PTR_ERR_OR_ZERO(ptr);
8969 }
8970 
8971 int bpf_prog_load(const char *file, enum bpf_prog_type type,
8972 		  struct bpf_object **pobj, int *prog_fd)
8973 {
8974 	struct bpf_prog_load_attr attr;
8975 
8976 	memset(&attr, 0, sizeof(struct bpf_prog_load_attr));
8977 	attr.file = file;
8978 	attr.prog_type = type;
8979 	attr.expected_attach_type = 0;
8980 
8981 	return bpf_prog_load_xattr(&attr, pobj, prog_fd);
8982 }
8983 
8984 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr,
8985 			struct bpf_object **pobj, int *prog_fd)
8986 {
8987 	struct bpf_object_open_attr open_attr = {};
8988 	struct bpf_program *prog, *first_prog = NULL;
8989 	struct bpf_object *obj;
8990 	struct bpf_map *map;
8991 	int err;
8992 
8993 	if (!attr)
8994 		return -EINVAL;
8995 	if (!attr->file)
8996 		return -EINVAL;
8997 
8998 	open_attr.file = attr->file;
8999 	open_attr.prog_type = attr->prog_type;
9000 
9001 	obj = bpf_object__open_xattr(&open_attr);
9002 	if (IS_ERR_OR_NULL(obj))
9003 		return -ENOENT;
9004 
9005 	bpf_object__for_each_program(prog, obj) {
9006 		enum bpf_attach_type attach_type = attr->expected_attach_type;
9007 		/*
9008 		 * to preserve backwards compatibility, bpf_prog_load treats
9009 		 * attr->prog_type, if specified, as an override to whatever
9010 		 * bpf_object__open guessed
9011 		 */
9012 		if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) {
9013 			bpf_program__set_type(prog, attr->prog_type);
9014 			bpf_program__set_expected_attach_type(prog,
9015 							      attach_type);
9016 		}
9017 		if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) {
9018 			/*
9019 			 * we haven't guessed from section name and user
9020 			 * didn't provide a fallback type, too bad...
9021 			 */
9022 			bpf_object__close(obj);
9023 			return -EINVAL;
9024 		}
9025 
9026 		prog->prog_ifindex = attr->ifindex;
9027 		prog->log_level = attr->log_level;
9028 		prog->prog_flags |= attr->prog_flags;
9029 		if (!first_prog)
9030 			first_prog = prog;
9031 	}
9032 
9033 	bpf_object__for_each_map(map, obj) {
9034 		if (!bpf_map__is_offload_neutral(map))
9035 			map->map_ifindex = attr->ifindex;
9036 	}
9037 
9038 	if (!first_prog) {
9039 		pr_warn("object file doesn't contain bpf program\n");
9040 		bpf_object__close(obj);
9041 		return -ENOENT;
9042 	}
9043 
9044 	err = bpf_object__load(obj);
9045 	if (err) {
9046 		bpf_object__close(obj);
9047 		return err;
9048 	}
9049 
9050 	*pobj = obj;
9051 	*prog_fd = bpf_program__fd(first_prog);
9052 	return 0;
9053 }
9054 
9055 struct bpf_link {
9056 	int (*detach)(struct bpf_link *link);
9057 	int (*destroy)(struct bpf_link *link);
9058 	char *pin_path;		/* NULL, if not pinned */
9059 	int fd;			/* hook FD, -1 if not applicable */
9060 	bool disconnected;
9061 };
9062 
9063 /* Replace link's underlying BPF program with the new one */
9064 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
9065 {
9066 	return bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
9067 }
9068 
9069 /* Release "ownership" of underlying BPF resource (typically, BPF program
9070  * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
9071  * link, when destructed through bpf_link__destroy() call won't attempt to
9072  * detach/unregisted that BPF resource. This is useful in situations where,
9073  * say, attached BPF program has to outlive userspace program that attached it
9074  * in the system. Depending on type of BPF program, though, there might be
9075  * additional steps (like pinning BPF program in BPF FS) necessary to ensure
9076  * exit of userspace program doesn't trigger automatic detachment and clean up
9077  * inside the kernel.
9078  */
9079 void bpf_link__disconnect(struct bpf_link *link)
9080 {
9081 	link->disconnected = true;
9082 }
9083 
9084 int bpf_link__destroy(struct bpf_link *link)
9085 {
9086 	int err = 0;
9087 
9088 	if (IS_ERR_OR_NULL(link))
9089 		return 0;
9090 
9091 	if (!link->disconnected && link->detach)
9092 		err = link->detach(link);
9093 	if (link->destroy)
9094 		link->destroy(link);
9095 	if (link->pin_path)
9096 		free(link->pin_path);
9097 	free(link);
9098 
9099 	return err;
9100 }
9101 
9102 int bpf_link__fd(const struct bpf_link *link)
9103 {
9104 	return link->fd;
9105 }
9106 
9107 const char *bpf_link__pin_path(const struct bpf_link *link)
9108 {
9109 	return link->pin_path;
9110 }
9111 
9112 static int bpf_link__detach_fd(struct bpf_link *link)
9113 {
9114 	return close(link->fd);
9115 }
9116 
9117 struct bpf_link *bpf_link__open(const char *path)
9118 {
9119 	struct bpf_link *link;
9120 	int fd;
9121 
9122 	fd = bpf_obj_get(path);
9123 	if (fd < 0) {
9124 		fd = -errno;
9125 		pr_warn("failed to open link at %s: %d\n", path, fd);
9126 		return ERR_PTR(fd);
9127 	}
9128 
9129 	link = calloc(1, sizeof(*link));
9130 	if (!link) {
9131 		close(fd);
9132 		return ERR_PTR(-ENOMEM);
9133 	}
9134 	link->detach = &bpf_link__detach_fd;
9135 	link->fd = fd;
9136 
9137 	link->pin_path = strdup(path);
9138 	if (!link->pin_path) {
9139 		bpf_link__destroy(link);
9140 		return ERR_PTR(-ENOMEM);
9141 	}
9142 
9143 	return link;
9144 }
9145 
9146 int bpf_link__detach(struct bpf_link *link)
9147 {
9148 	return bpf_link_detach(link->fd) ? -errno : 0;
9149 }
9150 
9151 int bpf_link__pin(struct bpf_link *link, const char *path)
9152 {
9153 	int err;
9154 
9155 	if (link->pin_path)
9156 		return -EBUSY;
9157 	err = make_parent_dir(path);
9158 	if (err)
9159 		return err;
9160 	err = check_path(path);
9161 	if (err)
9162 		return err;
9163 
9164 	link->pin_path = strdup(path);
9165 	if (!link->pin_path)
9166 		return -ENOMEM;
9167 
9168 	if (bpf_obj_pin(link->fd, link->pin_path)) {
9169 		err = -errno;
9170 		zfree(&link->pin_path);
9171 		return err;
9172 	}
9173 
9174 	pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
9175 	return 0;
9176 }
9177 
9178 int bpf_link__unpin(struct bpf_link *link)
9179 {
9180 	int err;
9181 
9182 	if (!link->pin_path)
9183 		return -EINVAL;
9184 
9185 	err = unlink(link->pin_path);
9186 	if (err != 0)
9187 		return -errno;
9188 
9189 	pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
9190 	zfree(&link->pin_path);
9191 	return 0;
9192 }
9193 
9194 static int bpf_link__detach_perf_event(struct bpf_link *link)
9195 {
9196 	int err;
9197 
9198 	err = ioctl(link->fd, PERF_EVENT_IOC_DISABLE, 0);
9199 	if (err)
9200 		err = -errno;
9201 
9202 	close(link->fd);
9203 	return err;
9204 }
9205 
9206 struct bpf_link *bpf_program__attach_perf_event(struct bpf_program *prog,
9207 						int pfd)
9208 {
9209 	char errmsg[STRERR_BUFSIZE];
9210 	struct bpf_link *link;
9211 	int prog_fd, err;
9212 
9213 	if (pfd < 0) {
9214 		pr_warn("prog '%s': invalid perf event FD %d\n",
9215 			prog->name, pfd);
9216 		return ERR_PTR(-EINVAL);
9217 	}
9218 	prog_fd = bpf_program__fd(prog);
9219 	if (prog_fd < 0) {
9220 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
9221 			prog->name);
9222 		return ERR_PTR(-EINVAL);
9223 	}
9224 
9225 	link = calloc(1, sizeof(*link));
9226 	if (!link)
9227 		return ERR_PTR(-ENOMEM);
9228 	link->detach = &bpf_link__detach_perf_event;
9229 	link->fd = pfd;
9230 
9231 	if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
9232 		err = -errno;
9233 		free(link);
9234 		pr_warn("prog '%s': failed to attach to pfd %d: %s\n",
9235 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9236 		if (err == -EPROTO)
9237 			pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
9238 				prog->name, pfd);
9239 		return ERR_PTR(err);
9240 	}
9241 	if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
9242 		err = -errno;
9243 		free(link);
9244 		pr_warn("prog '%s': failed to enable pfd %d: %s\n",
9245 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9246 		return ERR_PTR(err);
9247 	}
9248 	return link;
9249 }
9250 
9251 /*
9252  * this function is expected to parse integer in the range of [0, 2^31-1] from
9253  * given file using scanf format string fmt. If actual parsed value is
9254  * negative, the result might be indistinguishable from error
9255  */
9256 static int parse_uint_from_file(const char *file, const char *fmt)
9257 {
9258 	char buf[STRERR_BUFSIZE];
9259 	int err, ret;
9260 	FILE *f;
9261 
9262 	f = fopen(file, "r");
9263 	if (!f) {
9264 		err = -errno;
9265 		pr_debug("failed to open '%s': %s\n", file,
9266 			 libbpf_strerror_r(err, buf, sizeof(buf)));
9267 		return err;
9268 	}
9269 	err = fscanf(f, fmt, &ret);
9270 	if (err != 1) {
9271 		err = err == EOF ? -EIO : -errno;
9272 		pr_debug("failed to parse '%s': %s\n", file,
9273 			libbpf_strerror_r(err, buf, sizeof(buf)));
9274 		fclose(f);
9275 		return err;
9276 	}
9277 	fclose(f);
9278 	return ret;
9279 }
9280 
9281 static int determine_kprobe_perf_type(void)
9282 {
9283 	const char *file = "/sys/bus/event_source/devices/kprobe/type";
9284 
9285 	return parse_uint_from_file(file, "%d\n");
9286 }
9287 
9288 static int determine_uprobe_perf_type(void)
9289 {
9290 	const char *file = "/sys/bus/event_source/devices/uprobe/type";
9291 
9292 	return parse_uint_from_file(file, "%d\n");
9293 }
9294 
9295 static int determine_kprobe_retprobe_bit(void)
9296 {
9297 	const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
9298 
9299 	return parse_uint_from_file(file, "config:%d\n");
9300 }
9301 
9302 static int determine_uprobe_retprobe_bit(void)
9303 {
9304 	const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
9305 
9306 	return parse_uint_from_file(file, "config:%d\n");
9307 }
9308 
9309 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
9310 				 uint64_t offset, int pid)
9311 {
9312 	struct perf_event_attr attr = {};
9313 	char errmsg[STRERR_BUFSIZE];
9314 	int type, pfd, err;
9315 
9316 	type = uprobe ? determine_uprobe_perf_type()
9317 		      : determine_kprobe_perf_type();
9318 	if (type < 0) {
9319 		pr_warn("failed to determine %s perf type: %s\n",
9320 			uprobe ? "uprobe" : "kprobe",
9321 			libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
9322 		return type;
9323 	}
9324 	if (retprobe) {
9325 		int bit = uprobe ? determine_uprobe_retprobe_bit()
9326 				 : determine_kprobe_retprobe_bit();
9327 
9328 		if (bit < 0) {
9329 			pr_warn("failed to determine %s retprobe bit: %s\n",
9330 				uprobe ? "uprobe" : "kprobe",
9331 				libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
9332 			return bit;
9333 		}
9334 		attr.config |= 1 << bit;
9335 	}
9336 	attr.size = sizeof(attr);
9337 	attr.type = type;
9338 	attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
9339 	attr.config2 = offset;		 /* kprobe_addr or probe_offset */
9340 
9341 	/* pid filter is meaningful only for uprobes */
9342 	pfd = syscall(__NR_perf_event_open, &attr,
9343 		      pid < 0 ? -1 : pid /* pid */,
9344 		      pid == -1 ? 0 : -1 /* cpu */,
9345 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9346 	if (pfd < 0) {
9347 		err = -errno;
9348 		pr_warn("%s perf_event_open() failed: %s\n",
9349 			uprobe ? "uprobe" : "kprobe",
9350 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9351 		return err;
9352 	}
9353 	return pfd;
9354 }
9355 
9356 struct bpf_link *bpf_program__attach_kprobe(struct bpf_program *prog,
9357 					    bool retprobe,
9358 					    const char *func_name)
9359 {
9360 	char errmsg[STRERR_BUFSIZE];
9361 	struct bpf_link *link;
9362 	int pfd, err;
9363 
9364 	pfd = perf_event_open_probe(false /* uprobe */, retprobe, func_name,
9365 				    0 /* offset */, -1 /* pid */);
9366 	if (pfd < 0) {
9367 		pr_warn("prog '%s': failed to create %s '%s' perf event: %s\n",
9368 			prog->name, retprobe ? "kretprobe" : "kprobe", func_name,
9369 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9370 		return ERR_PTR(pfd);
9371 	}
9372 	link = bpf_program__attach_perf_event(prog, pfd);
9373 	if (IS_ERR(link)) {
9374 		close(pfd);
9375 		err = PTR_ERR(link);
9376 		pr_warn("prog '%s': failed to attach to %s '%s': %s\n",
9377 			prog->name, retprobe ? "kretprobe" : "kprobe", func_name,
9378 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9379 		return link;
9380 	}
9381 	return link;
9382 }
9383 
9384 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec,
9385 				      struct bpf_program *prog)
9386 {
9387 	const char *func_name;
9388 	bool retprobe;
9389 
9390 	func_name = prog->sec_name + sec->len;
9391 	retprobe = strcmp(sec->sec, "kretprobe/") == 0;
9392 
9393 	return bpf_program__attach_kprobe(prog, retprobe, func_name);
9394 }
9395 
9396 struct bpf_link *bpf_program__attach_uprobe(struct bpf_program *prog,
9397 					    bool retprobe, pid_t pid,
9398 					    const char *binary_path,
9399 					    size_t func_offset)
9400 {
9401 	char errmsg[STRERR_BUFSIZE];
9402 	struct bpf_link *link;
9403 	int pfd, err;
9404 
9405 	pfd = perf_event_open_probe(true /* uprobe */, retprobe,
9406 				    binary_path, func_offset, pid);
9407 	if (pfd < 0) {
9408 		pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
9409 			prog->name, retprobe ? "uretprobe" : "uprobe",
9410 			binary_path, func_offset,
9411 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9412 		return ERR_PTR(pfd);
9413 	}
9414 	link = bpf_program__attach_perf_event(prog, pfd);
9415 	if (IS_ERR(link)) {
9416 		close(pfd);
9417 		err = PTR_ERR(link);
9418 		pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
9419 			prog->name, retprobe ? "uretprobe" : "uprobe",
9420 			binary_path, func_offset,
9421 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9422 		return link;
9423 	}
9424 	return link;
9425 }
9426 
9427 static int determine_tracepoint_id(const char *tp_category,
9428 				   const char *tp_name)
9429 {
9430 	char file[PATH_MAX];
9431 	int ret;
9432 
9433 	ret = snprintf(file, sizeof(file),
9434 		       "/sys/kernel/debug/tracing/events/%s/%s/id",
9435 		       tp_category, tp_name);
9436 	if (ret < 0)
9437 		return -errno;
9438 	if (ret >= sizeof(file)) {
9439 		pr_debug("tracepoint %s/%s path is too long\n",
9440 			 tp_category, tp_name);
9441 		return -E2BIG;
9442 	}
9443 	return parse_uint_from_file(file, "%d\n");
9444 }
9445 
9446 static int perf_event_open_tracepoint(const char *tp_category,
9447 				      const char *tp_name)
9448 {
9449 	struct perf_event_attr attr = {};
9450 	char errmsg[STRERR_BUFSIZE];
9451 	int tp_id, pfd, err;
9452 
9453 	tp_id = determine_tracepoint_id(tp_category, tp_name);
9454 	if (tp_id < 0) {
9455 		pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
9456 			tp_category, tp_name,
9457 			libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
9458 		return tp_id;
9459 	}
9460 
9461 	attr.type = PERF_TYPE_TRACEPOINT;
9462 	attr.size = sizeof(attr);
9463 	attr.config = tp_id;
9464 
9465 	pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
9466 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9467 	if (pfd < 0) {
9468 		err = -errno;
9469 		pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
9470 			tp_category, tp_name,
9471 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9472 		return err;
9473 	}
9474 	return pfd;
9475 }
9476 
9477 struct bpf_link *bpf_program__attach_tracepoint(struct bpf_program *prog,
9478 						const char *tp_category,
9479 						const char *tp_name)
9480 {
9481 	char errmsg[STRERR_BUFSIZE];
9482 	struct bpf_link *link;
9483 	int pfd, err;
9484 
9485 	pfd = perf_event_open_tracepoint(tp_category, tp_name);
9486 	if (pfd < 0) {
9487 		pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
9488 			prog->name, tp_category, tp_name,
9489 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9490 		return ERR_PTR(pfd);
9491 	}
9492 	link = bpf_program__attach_perf_event(prog, pfd);
9493 	if (IS_ERR(link)) {
9494 		close(pfd);
9495 		err = PTR_ERR(link);
9496 		pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
9497 			prog->name, tp_category, tp_name,
9498 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9499 		return link;
9500 	}
9501 	return link;
9502 }
9503 
9504 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec,
9505 				  struct bpf_program *prog)
9506 {
9507 	char *sec_name, *tp_cat, *tp_name;
9508 	struct bpf_link *link;
9509 
9510 	sec_name = strdup(prog->sec_name);
9511 	if (!sec_name)
9512 		return ERR_PTR(-ENOMEM);
9513 
9514 	/* extract "tp/<category>/<name>" */
9515 	tp_cat = sec_name + sec->len;
9516 	tp_name = strchr(tp_cat, '/');
9517 	if (!tp_name) {
9518 		link = ERR_PTR(-EINVAL);
9519 		goto out;
9520 	}
9521 	*tp_name = '\0';
9522 	tp_name++;
9523 
9524 	link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
9525 out:
9526 	free(sec_name);
9527 	return link;
9528 }
9529 
9530 struct bpf_link *bpf_program__attach_raw_tracepoint(struct bpf_program *prog,
9531 						    const char *tp_name)
9532 {
9533 	char errmsg[STRERR_BUFSIZE];
9534 	struct bpf_link *link;
9535 	int prog_fd, pfd;
9536 
9537 	prog_fd = bpf_program__fd(prog);
9538 	if (prog_fd < 0) {
9539 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9540 		return ERR_PTR(-EINVAL);
9541 	}
9542 
9543 	link = calloc(1, sizeof(*link));
9544 	if (!link)
9545 		return ERR_PTR(-ENOMEM);
9546 	link->detach = &bpf_link__detach_fd;
9547 
9548 	pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
9549 	if (pfd < 0) {
9550 		pfd = -errno;
9551 		free(link);
9552 		pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
9553 			prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9554 		return ERR_PTR(pfd);
9555 	}
9556 	link->fd = pfd;
9557 	return link;
9558 }
9559 
9560 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec,
9561 				      struct bpf_program *prog)
9562 {
9563 	const char *tp_name = prog->sec_name + sec->len;
9564 
9565 	return bpf_program__attach_raw_tracepoint(prog, tp_name);
9566 }
9567 
9568 /* Common logic for all BPF program types that attach to a btf_id */
9569 static struct bpf_link *bpf_program__attach_btf_id(struct bpf_program *prog)
9570 {
9571 	char errmsg[STRERR_BUFSIZE];
9572 	struct bpf_link *link;
9573 	int prog_fd, pfd;
9574 
9575 	prog_fd = bpf_program__fd(prog);
9576 	if (prog_fd < 0) {
9577 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9578 		return ERR_PTR(-EINVAL);
9579 	}
9580 
9581 	link = calloc(1, sizeof(*link));
9582 	if (!link)
9583 		return ERR_PTR(-ENOMEM);
9584 	link->detach = &bpf_link__detach_fd;
9585 
9586 	pfd = bpf_raw_tracepoint_open(NULL, prog_fd);
9587 	if (pfd < 0) {
9588 		pfd = -errno;
9589 		free(link);
9590 		pr_warn("prog '%s': failed to attach: %s\n",
9591 			prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9592 		return ERR_PTR(pfd);
9593 	}
9594 	link->fd = pfd;
9595 	return (struct bpf_link *)link;
9596 }
9597 
9598 struct bpf_link *bpf_program__attach_trace(struct bpf_program *prog)
9599 {
9600 	return bpf_program__attach_btf_id(prog);
9601 }
9602 
9603 struct bpf_link *bpf_program__attach_lsm(struct bpf_program *prog)
9604 {
9605 	return bpf_program__attach_btf_id(prog);
9606 }
9607 
9608 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec,
9609 				     struct bpf_program *prog)
9610 {
9611 	return bpf_program__attach_trace(prog);
9612 }
9613 
9614 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec,
9615 				   struct bpf_program *prog)
9616 {
9617 	return bpf_program__attach_lsm(prog);
9618 }
9619 
9620 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec,
9621 				    struct bpf_program *prog)
9622 {
9623 	return bpf_program__attach_iter(prog, NULL);
9624 }
9625 
9626 static struct bpf_link *
9627 bpf_program__attach_fd(struct bpf_program *prog, int target_fd, int btf_id,
9628 		       const char *target_name)
9629 {
9630 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts,
9631 			    .target_btf_id = btf_id);
9632 	enum bpf_attach_type attach_type;
9633 	char errmsg[STRERR_BUFSIZE];
9634 	struct bpf_link *link;
9635 	int prog_fd, link_fd;
9636 
9637 	prog_fd = bpf_program__fd(prog);
9638 	if (prog_fd < 0) {
9639 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9640 		return ERR_PTR(-EINVAL);
9641 	}
9642 
9643 	link = calloc(1, sizeof(*link));
9644 	if (!link)
9645 		return ERR_PTR(-ENOMEM);
9646 	link->detach = &bpf_link__detach_fd;
9647 
9648 	attach_type = bpf_program__get_expected_attach_type(prog);
9649 	link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts);
9650 	if (link_fd < 0) {
9651 		link_fd = -errno;
9652 		free(link);
9653 		pr_warn("prog '%s': failed to attach to %s: %s\n",
9654 			prog->name, target_name,
9655 			libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
9656 		return ERR_PTR(link_fd);
9657 	}
9658 	link->fd = link_fd;
9659 	return link;
9660 }
9661 
9662 struct bpf_link *
9663 bpf_program__attach_cgroup(struct bpf_program *prog, int cgroup_fd)
9664 {
9665 	return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup");
9666 }
9667 
9668 struct bpf_link *
9669 bpf_program__attach_netns(struct bpf_program *prog, int netns_fd)
9670 {
9671 	return bpf_program__attach_fd(prog, netns_fd, 0, "netns");
9672 }
9673 
9674 struct bpf_link *bpf_program__attach_xdp(struct bpf_program *prog, int ifindex)
9675 {
9676 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
9677 	return bpf_program__attach_fd(prog, ifindex, 0, "xdp");
9678 }
9679 
9680 struct bpf_link *bpf_program__attach_freplace(struct bpf_program *prog,
9681 					      int target_fd,
9682 					      const char *attach_func_name)
9683 {
9684 	int btf_id;
9685 
9686 	if (!!target_fd != !!attach_func_name) {
9687 		pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
9688 			prog->name);
9689 		return ERR_PTR(-EINVAL);
9690 	}
9691 
9692 	if (prog->type != BPF_PROG_TYPE_EXT) {
9693 		pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
9694 			prog->name);
9695 		return ERR_PTR(-EINVAL);
9696 	}
9697 
9698 	if (target_fd) {
9699 		btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
9700 		if (btf_id < 0)
9701 			return ERR_PTR(btf_id);
9702 
9703 		return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace");
9704 	} else {
9705 		/* no target, so use raw_tracepoint_open for compatibility
9706 		 * with old kernels
9707 		 */
9708 		return bpf_program__attach_trace(prog);
9709 	}
9710 }
9711 
9712 struct bpf_link *
9713 bpf_program__attach_iter(struct bpf_program *prog,
9714 			 const struct bpf_iter_attach_opts *opts)
9715 {
9716 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
9717 	char errmsg[STRERR_BUFSIZE];
9718 	struct bpf_link *link;
9719 	int prog_fd, link_fd;
9720 	__u32 target_fd = 0;
9721 
9722 	if (!OPTS_VALID(opts, bpf_iter_attach_opts))
9723 		return ERR_PTR(-EINVAL);
9724 
9725 	link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
9726 	link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
9727 
9728 	prog_fd = bpf_program__fd(prog);
9729 	if (prog_fd < 0) {
9730 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9731 		return ERR_PTR(-EINVAL);
9732 	}
9733 
9734 	link = calloc(1, sizeof(*link));
9735 	if (!link)
9736 		return ERR_PTR(-ENOMEM);
9737 	link->detach = &bpf_link__detach_fd;
9738 
9739 	link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
9740 				  &link_create_opts);
9741 	if (link_fd < 0) {
9742 		link_fd = -errno;
9743 		free(link);
9744 		pr_warn("prog '%s': failed to attach to iterator: %s\n",
9745 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
9746 		return ERR_PTR(link_fd);
9747 	}
9748 	link->fd = link_fd;
9749 	return link;
9750 }
9751 
9752 struct bpf_link *bpf_program__attach(struct bpf_program *prog)
9753 {
9754 	const struct bpf_sec_def *sec_def;
9755 
9756 	sec_def = find_sec_def(prog->sec_name);
9757 	if (!sec_def || !sec_def->attach_fn)
9758 		return ERR_PTR(-ESRCH);
9759 
9760 	return sec_def->attach_fn(sec_def, prog);
9761 }
9762 
9763 static int bpf_link__detach_struct_ops(struct bpf_link *link)
9764 {
9765 	__u32 zero = 0;
9766 
9767 	if (bpf_map_delete_elem(link->fd, &zero))
9768 		return -errno;
9769 
9770 	return 0;
9771 }
9772 
9773 struct bpf_link *bpf_map__attach_struct_ops(struct bpf_map *map)
9774 {
9775 	struct bpf_struct_ops *st_ops;
9776 	struct bpf_link *link;
9777 	__u32 i, zero = 0;
9778 	int err;
9779 
9780 	if (!bpf_map__is_struct_ops(map) || map->fd == -1)
9781 		return ERR_PTR(-EINVAL);
9782 
9783 	link = calloc(1, sizeof(*link));
9784 	if (!link)
9785 		return ERR_PTR(-EINVAL);
9786 
9787 	st_ops = map->st_ops;
9788 	for (i = 0; i < btf_vlen(st_ops->type); i++) {
9789 		struct bpf_program *prog = st_ops->progs[i];
9790 		void *kern_data;
9791 		int prog_fd;
9792 
9793 		if (!prog)
9794 			continue;
9795 
9796 		prog_fd = bpf_program__fd(prog);
9797 		kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
9798 		*(unsigned long *)kern_data = prog_fd;
9799 	}
9800 
9801 	err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0);
9802 	if (err) {
9803 		err = -errno;
9804 		free(link);
9805 		return ERR_PTR(err);
9806 	}
9807 
9808 	link->detach = bpf_link__detach_struct_ops;
9809 	link->fd = map->fd;
9810 
9811 	return link;
9812 }
9813 
9814 enum bpf_perf_event_ret
9815 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
9816 			   void **copy_mem, size_t *copy_size,
9817 			   bpf_perf_event_print_t fn, void *private_data)
9818 {
9819 	struct perf_event_mmap_page *header = mmap_mem;
9820 	__u64 data_head = ring_buffer_read_head(header);
9821 	__u64 data_tail = header->data_tail;
9822 	void *base = ((__u8 *)header) + page_size;
9823 	int ret = LIBBPF_PERF_EVENT_CONT;
9824 	struct perf_event_header *ehdr;
9825 	size_t ehdr_size;
9826 
9827 	while (data_head != data_tail) {
9828 		ehdr = base + (data_tail & (mmap_size - 1));
9829 		ehdr_size = ehdr->size;
9830 
9831 		if (((void *)ehdr) + ehdr_size > base + mmap_size) {
9832 			void *copy_start = ehdr;
9833 			size_t len_first = base + mmap_size - copy_start;
9834 			size_t len_secnd = ehdr_size - len_first;
9835 
9836 			if (*copy_size < ehdr_size) {
9837 				free(*copy_mem);
9838 				*copy_mem = malloc(ehdr_size);
9839 				if (!*copy_mem) {
9840 					*copy_size = 0;
9841 					ret = LIBBPF_PERF_EVENT_ERROR;
9842 					break;
9843 				}
9844 				*copy_size = ehdr_size;
9845 			}
9846 
9847 			memcpy(*copy_mem, copy_start, len_first);
9848 			memcpy(*copy_mem + len_first, base, len_secnd);
9849 			ehdr = *copy_mem;
9850 		}
9851 
9852 		ret = fn(ehdr, private_data);
9853 		data_tail += ehdr_size;
9854 		if (ret != LIBBPF_PERF_EVENT_CONT)
9855 			break;
9856 	}
9857 
9858 	ring_buffer_write_tail(header, data_tail);
9859 	return ret;
9860 }
9861 
9862 struct perf_buffer;
9863 
9864 struct perf_buffer_params {
9865 	struct perf_event_attr *attr;
9866 	/* if event_cb is specified, it takes precendence */
9867 	perf_buffer_event_fn event_cb;
9868 	/* sample_cb and lost_cb are higher-level common-case callbacks */
9869 	perf_buffer_sample_fn sample_cb;
9870 	perf_buffer_lost_fn lost_cb;
9871 	void *ctx;
9872 	int cpu_cnt;
9873 	int *cpus;
9874 	int *map_keys;
9875 };
9876 
9877 struct perf_cpu_buf {
9878 	struct perf_buffer *pb;
9879 	void *base; /* mmap()'ed memory */
9880 	void *buf; /* for reconstructing segmented data */
9881 	size_t buf_size;
9882 	int fd;
9883 	int cpu;
9884 	int map_key;
9885 };
9886 
9887 struct perf_buffer {
9888 	perf_buffer_event_fn event_cb;
9889 	perf_buffer_sample_fn sample_cb;
9890 	perf_buffer_lost_fn lost_cb;
9891 	void *ctx; /* passed into callbacks */
9892 
9893 	size_t page_size;
9894 	size_t mmap_size;
9895 	struct perf_cpu_buf **cpu_bufs;
9896 	struct epoll_event *events;
9897 	int cpu_cnt; /* number of allocated CPU buffers */
9898 	int epoll_fd; /* perf event FD */
9899 	int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
9900 };
9901 
9902 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
9903 				      struct perf_cpu_buf *cpu_buf)
9904 {
9905 	if (!cpu_buf)
9906 		return;
9907 	if (cpu_buf->base &&
9908 	    munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
9909 		pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
9910 	if (cpu_buf->fd >= 0) {
9911 		ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
9912 		close(cpu_buf->fd);
9913 	}
9914 	free(cpu_buf->buf);
9915 	free(cpu_buf);
9916 }
9917 
9918 void perf_buffer__free(struct perf_buffer *pb)
9919 {
9920 	int i;
9921 
9922 	if (IS_ERR_OR_NULL(pb))
9923 		return;
9924 	if (pb->cpu_bufs) {
9925 		for (i = 0; i < pb->cpu_cnt; i++) {
9926 			struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
9927 
9928 			if (!cpu_buf)
9929 				continue;
9930 
9931 			bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
9932 			perf_buffer__free_cpu_buf(pb, cpu_buf);
9933 		}
9934 		free(pb->cpu_bufs);
9935 	}
9936 	if (pb->epoll_fd >= 0)
9937 		close(pb->epoll_fd);
9938 	free(pb->events);
9939 	free(pb);
9940 }
9941 
9942 static struct perf_cpu_buf *
9943 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
9944 			  int cpu, int map_key)
9945 {
9946 	struct perf_cpu_buf *cpu_buf;
9947 	char msg[STRERR_BUFSIZE];
9948 	int err;
9949 
9950 	cpu_buf = calloc(1, sizeof(*cpu_buf));
9951 	if (!cpu_buf)
9952 		return ERR_PTR(-ENOMEM);
9953 
9954 	cpu_buf->pb = pb;
9955 	cpu_buf->cpu = cpu;
9956 	cpu_buf->map_key = map_key;
9957 
9958 	cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
9959 			      -1, PERF_FLAG_FD_CLOEXEC);
9960 	if (cpu_buf->fd < 0) {
9961 		err = -errno;
9962 		pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
9963 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
9964 		goto error;
9965 	}
9966 
9967 	cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
9968 			     PROT_READ | PROT_WRITE, MAP_SHARED,
9969 			     cpu_buf->fd, 0);
9970 	if (cpu_buf->base == MAP_FAILED) {
9971 		cpu_buf->base = NULL;
9972 		err = -errno;
9973 		pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
9974 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
9975 		goto error;
9976 	}
9977 
9978 	if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
9979 		err = -errno;
9980 		pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
9981 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
9982 		goto error;
9983 	}
9984 
9985 	return cpu_buf;
9986 
9987 error:
9988 	perf_buffer__free_cpu_buf(pb, cpu_buf);
9989 	return (struct perf_cpu_buf *)ERR_PTR(err);
9990 }
9991 
9992 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
9993 					      struct perf_buffer_params *p);
9994 
9995 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
9996 				     const struct perf_buffer_opts *opts)
9997 {
9998 	struct perf_buffer_params p = {};
9999 	struct perf_event_attr attr = { 0, };
10000 
10001 	attr.config = PERF_COUNT_SW_BPF_OUTPUT;
10002 	attr.type = PERF_TYPE_SOFTWARE;
10003 	attr.sample_type = PERF_SAMPLE_RAW;
10004 	attr.sample_period = 1;
10005 	attr.wakeup_events = 1;
10006 
10007 	p.attr = &attr;
10008 	p.sample_cb = opts ? opts->sample_cb : NULL;
10009 	p.lost_cb = opts ? opts->lost_cb : NULL;
10010 	p.ctx = opts ? opts->ctx : NULL;
10011 
10012 	return __perf_buffer__new(map_fd, page_cnt, &p);
10013 }
10014 
10015 struct perf_buffer *
10016 perf_buffer__new_raw(int map_fd, size_t page_cnt,
10017 		     const struct perf_buffer_raw_opts *opts)
10018 {
10019 	struct perf_buffer_params p = {};
10020 
10021 	p.attr = opts->attr;
10022 	p.event_cb = opts->event_cb;
10023 	p.ctx = opts->ctx;
10024 	p.cpu_cnt = opts->cpu_cnt;
10025 	p.cpus = opts->cpus;
10026 	p.map_keys = opts->map_keys;
10027 
10028 	return __perf_buffer__new(map_fd, page_cnt, &p);
10029 }
10030 
10031 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
10032 					      struct perf_buffer_params *p)
10033 {
10034 	const char *online_cpus_file = "/sys/devices/system/cpu/online";
10035 	struct bpf_map_info map;
10036 	char msg[STRERR_BUFSIZE];
10037 	struct perf_buffer *pb;
10038 	bool *online = NULL;
10039 	__u32 map_info_len;
10040 	int err, i, j, n;
10041 
10042 	if (page_cnt & (page_cnt - 1)) {
10043 		pr_warn("page count should be power of two, but is %zu\n",
10044 			page_cnt);
10045 		return ERR_PTR(-EINVAL);
10046 	}
10047 
10048 	/* best-effort sanity checks */
10049 	memset(&map, 0, sizeof(map));
10050 	map_info_len = sizeof(map);
10051 	err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len);
10052 	if (err) {
10053 		err = -errno;
10054 		/* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
10055 		 * -EBADFD, -EFAULT, or -E2BIG on real error
10056 		 */
10057 		if (err != -EINVAL) {
10058 			pr_warn("failed to get map info for map FD %d: %s\n",
10059 				map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
10060 			return ERR_PTR(err);
10061 		}
10062 		pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
10063 			 map_fd);
10064 	} else {
10065 		if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
10066 			pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
10067 				map.name);
10068 			return ERR_PTR(-EINVAL);
10069 		}
10070 	}
10071 
10072 	pb = calloc(1, sizeof(*pb));
10073 	if (!pb)
10074 		return ERR_PTR(-ENOMEM);
10075 
10076 	pb->event_cb = p->event_cb;
10077 	pb->sample_cb = p->sample_cb;
10078 	pb->lost_cb = p->lost_cb;
10079 	pb->ctx = p->ctx;
10080 
10081 	pb->page_size = getpagesize();
10082 	pb->mmap_size = pb->page_size * page_cnt;
10083 	pb->map_fd = map_fd;
10084 
10085 	pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
10086 	if (pb->epoll_fd < 0) {
10087 		err = -errno;
10088 		pr_warn("failed to create epoll instance: %s\n",
10089 			libbpf_strerror_r(err, msg, sizeof(msg)));
10090 		goto error;
10091 	}
10092 
10093 	if (p->cpu_cnt > 0) {
10094 		pb->cpu_cnt = p->cpu_cnt;
10095 	} else {
10096 		pb->cpu_cnt = libbpf_num_possible_cpus();
10097 		if (pb->cpu_cnt < 0) {
10098 			err = pb->cpu_cnt;
10099 			goto error;
10100 		}
10101 		if (map.max_entries && map.max_entries < pb->cpu_cnt)
10102 			pb->cpu_cnt = map.max_entries;
10103 	}
10104 
10105 	pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
10106 	if (!pb->events) {
10107 		err = -ENOMEM;
10108 		pr_warn("failed to allocate events: out of memory\n");
10109 		goto error;
10110 	}
10111 	pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
10112 	if (!pb->cpu_bufs) {
10113 		err = -ENOMEM;
10114 		pr_warn("failed to allocate buffers: out of memory\n");
10115 		goto error;
10116 	}
10117 
10118 	err = parse_cpu_mask_file(online_cpus_file, &online, &n);
10119 	if (err) {
10120 		pr_warn("failed to get online CPU mask: %d\n", err);
10121 		goto error;
10122 	}
10123 
10124 	for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
10125 		struct perf_cpu_buf *cpu_buf;
10126 		int cpu, map_key;
10127 
10128 		cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
10129 		map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
10130 
10131 		/* in case user didn't explicitly requested particular CPUs to
10132 		 * be attached to, skip offline/not present CPUs
10133 		 */
10134 		if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
10135 			continue;
10136 
10137 		cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
10138 		if (IS_ERR(cpu_buf)) {
10139 			err = PTR_ERR(cpu_buf);
10140 			goto error;
10141 		}
10142 
10143 		pb->cpu_bufs[j] = cpu_buf;
10144 
10145 		err = bpf_map_update_elem(pb->map_fd, &map_key,
10146 					  &cpu_buf->fd, 0);
10147 		if (err) {
10148 			err = -errno;
10149 			pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
10150 				cpu, map_key, cpu_buf->fd,
10151 				libbpf_strerror_r(err, msg, sizeof(msg)));
10152 			goto error;
10153 		}
10154 
10155 		pb->events[j].events = EPOLLIN;
10156 		pb->events[j].data.ptr = cpu_buf;
10157 		if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
10158 			      &pb->events[j]) < 0) {
10159 			err = -errno;
10160 			pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
10161 				cpu, cpu_buf->fd,
10162 				libbpf_strerror_r(err, msg, sizeof(msg)));
10163 			goto error;
10164 		}
10165 		j++;
10166 	}
10167 	pb->cpu_cnt = j;
10168 	free(online);
10169 
10170 	return pb;
10171 
10172 error:
10173 	free(online);
10174 	if (pb)
10175 		perf_buffer__free(pb);
10176 	return ERR_PTR(err);
10177 }
10178 
10179 struct perf_sample_raw {
10180 	struct perf_event_header header;
10181 	uint32_t size;
10182 	char data[];
10183 };
10184 
10185 struct perf_sample_lost {
10186 	struct perf_event_header header;
10187 	uint64_t id;
10188 	uint64_t lost;
10189 	uint64_t sample_id;
10190 };
10191 
10192 static enum bpf_perf_event_ret
10193 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
10194 {
10195 	struct perf_cpu_buf *cpu_buf = ctx;
10196 	struct perf_buffer *pb = cpu_buf->pb;
10197 	void *data = e;
10198 
10199 	/* user wants full control over parsing perf event */
10200 	if (pb->event_cb)
10201 		return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
10202 
10203 	switch (e->type) {
10204 	case PERF_RECORD_SAMPLE: {
10205 		struct perf_sample_raw *s = data;
10206 
10207 		if (pb->sample_cb)
10208 			pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
10209 		break;
10210 	}
10211 	case PERF_RECORD_LOST: {
10212 		struct perf_sample_lost *s = data;
10213 
10214 		if (pb->lost_cb)
10215 			pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
10216 		break;
10217 	}
10218 	default:
10219 		pr_warn("unknown perf sample type %d\n", e->type);
10220 		return LIBBPF_PERF_EVENT_ERROR;
10221 	}
10222 	return LIBBPF_PERF_EVENT_CONT;
10223 }
10224 
10225 static int perf_buffer__process_records(struct perf_buffer *pb,
10226 					struct perf_cpu_buf *cpu_buf)
10227 {
10228 	enum bpf_perf_event_ret ret;
10229 
10230 	ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size,
10231 					 pb->page_size, &cpu_buf->buf,
10232 					 &cpu_buf->buf_size,
10233 					 perf_buffer__process_record, cpu_buf);
10234 	if (ret != LIBBPF_PERF_EVENT_CONT)
10235 		return ret;
10236 	return 0;
10237 }
10238 
10239 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
10240 {
10241 	return pb->epoll_fd;
10242 }
10243 
10244 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
10245 {
10246 	int i, cnt, err;
10247 
10248 	cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
10249 	for (i = 0; i < cnt; i++) {
10250 		struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
10251 
10252 		err = perf_buffer__process_records(pb, cpu_buf);
10253 		if (err) {
10254 			pr_warn("error while processing records: %d\n", err);
10255 			return err;
10256 		}
10257 	}
10258 	return cnt < 0 ? -errno : cnt;
10259 }
10260 
10261 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
10262  * manager.
10263  */
10264 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
10265 {
10266 	return pb->cpu_cnt;
10267 }
10268 
10269 /*
10270  * Return perf_event FD of a ring buffer in *buf_idx* slot of
10271  * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
10272  * select()/poll()/epoll() Linux syscalls.
10273  */
10274 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
10275 {
10276 	struct perf_cpu_buf *cpu_buf;
10277 
10278 	if (buf_idx >= pb->cpu_cnt)
10279 		return -EINVAL;
10280 
10281 	cpu_buf = pb->cpu_bufs[buf_idx];
10282 	if (!cpu_buf)
10283 		return -ENOENT;
10284 
10285 	return cpu_buf->fd;
10286 }
10287 
10288 /*
10289  * Consume data from perf ring buffer corresponding to slot *buf_idx* in
10290  * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
10291  * consume, do nothing and return success.
10292  * Returns:
10293  *   - 0 on success;
10294  *   - <0 on failure.
10295  */
10296 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
10297 {
10298 	struct perf_cpu_buf *cpu_buf;
10299 
10300 	if (buf_idx >= pb->cpu_cnt)
10301 		return -EINVAL;
10302 
10303 	cpu_buf = pb->cpu_bufs[buf_idx];
10304 	if (!cpu_buf)
10305 		return -ENOENT;
10306 
10307 	return perf_buffer__process_records(pb, cpu_buf);
10308 }
10309 
10310 int perf_buffer__consume(struct perf_buffer *pb)
10311 {
10312 	int i, err;
10313 
10314 	for (i = 0; i < pb->cpu_cnt; i++) {
10315 		struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
10316 
10317 		if (!cpu_buf)
10318 			continue;
10319 
10320 		err = perf_buffer__process_records(pb, cpu_buf);
10321 		if (err) {
10322 			pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
10323 			return err;
10324 		}
10325 	}
10326 	return 0;
10327 }
10328 
10329 struct bpf_prog_info_array_desc {
10330 	int	array_offset;	/* e.g. offset of jited_prog_insns */
10331 	int	count_offset;	/* e.g. offset of jited_prog_len */
10332 	int	size_offset;	/* > 0: offset of rec size,
10333 				 * < 0: fix size of -size_offset
10334 				 */
10335 };
10336 
10337 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = {
10338 	[BPF_PROG_INFO_JITED_INSNS] = {
10339 		offsetof(struct bpf_prog_info, jited_prog_insns),
10340 		offsetof(struct bpf_prog_info, jited_prog_len),
10341 		-1,
10342 	},
10343 	[BPF_PROG_INFO_XLATED_INSNS] = {
10344 		offsetof(struct bpf_prog_info, xlated_prog_insns),
10345 		offsetof(struct bpf_prog_info, xlated_prog_len),
10346 		-1,
10347 	},
10348 	[BPF_PROG_INFO_MAP_IDS] = {
10349 		offsetof(struct bpf_prog_info, map_ids),
10350 		offsetof(struct bpf_prog_info, nr_map_ids),
10351 		-(int)sizeof(__u32),
10352 	},
10353 	[BPF_PROG_INFO_JITED_KSYMS] = {
10354 		offsetof(struct bpf_prog_info, jited_ksyms),
10355 		offsetof(struct bpf_prog_info, nr_jited_ksyms),
10356 		-(int)sizeof(__u64),
10357 	},
10358 	[BPF_PROG_INFO_JITED_FUNC_LENS] = {
10359 		offsetof(struct bpf_prog_info, jited_func_lens),
10360 		offsetof(struct bpf_prog_info, nr_jited_func_lens),
10361 		-(int)sizeof(__u32),
10362 	},
10363 	[BPF_PROG_INFO_FUNC_INFO] = {
10364 		offsetof(struct bpf_prog_info, func_info),
10365 		offsetof(struct bpf_prog_info, nr_func_info),
10366 		offsetof(struct bpf_prog_info, func_info_rec_size),
10367 	},
10368 	[BPF_PROG_INFO_LINE_INFO] = {
10369 		offsetof(struct bpf_prog_info, line_info),
10370 		offsetof(struct bpf_prog_info, nr_line_info),
10371 		offsetof(struct bpf_prog_info, line_info_rec_size),
10372 	},
10373 	[BPF_PROG_INFO_JITED_LINE_INFO] = {
10374 		offsetof(struct bpf_prog_info, jited_line_info),
10375 		offsetof(struct bpf_prog_info, nr_jited_line_info),
10376 		offsetof(struct bpf_prog_info, jited_line_info_rec_size),
10377 	},
10378 	[BPF_PROG_INFO_PROG_TAGS] = {
10379 		offsetof(struct bpf_prog_info, prog_tags),
10380 		offsetof(struct bpf_prog_info, nr_prog_tags),
10381 		-(int)sizeof(__u8) * BPF_TAG_SIZE,
10382 	},
10383 
10384 };
10385 
10386 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info,
10387 					   int offset)
10388 {
10389 	__u32 *array = (__u32 *)info;
10390 
10391 	if (offset >= 0)
10392 		return array[offset / sizeof(__u32)];
10393 	return -(int)offset;
10394 }
10395 
10396 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info,
10397 					   int offset)
10398 {
10399 	__u64 *array = (__u64 *)info;
10400 
10401 	if (offset >= 0)
10402 		return array[offset / sizeof(__u64)];
10403 	return -(int)offset;
10404 }
10405 
10406 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset,
10407 					 __u32 val)
10408 {
10409 	__u32 *array = (__u32 *)info;
10410 
10411 	if (offset >= 0)
10412 		array[offset / sizeof(__u32)] = val;
10413 }
10414 
10415 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset,
10416 					 __u64 val)
10417 {
10418 	__u64 *array = (__u64 *)info;
10419 
10420 	if (offset >= 0)
10421 		array[offset / sizeof(__u64)] = val;
10422 }
10423 
10424 struct bpf_prog_info_linear *
10425 bpf_program__get_prog_info_linear(int fd, __u64 arrays)
10426 {
10427 	struct bpf_prog_info_linear *info_linear;
10428 	struct bpf_prog_info info = {};
10429 	__u32 info_len = sizeof(info);
10430 	__u32 data_len = 0;
10431 	int i, err;
10432 	void *ptr;
10433 
10434 	if (arrays >> BPF_PROG_INFO_LAST_ARRAY)
10435 		return ERR_PTR(-EINVAL);
10436 
10437 	/* step 1: get array dimensions */
10438 	err = bpf_obj_get_info_by_fd(fd, &info, &info_len);
10439 	if (err) {
10440 		pr_debug("can't get prog info: %s", strerror(errno));
10441 		return ERR_PTR(-EFAULT);
10442 	}
10443 
10444 	/* step 2: calculate total size of all arrays */
10445 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10446 		bool include_array = (arrays & (1UL << i)) > 0;
10447 		struct bpf_prog_info_array_desc *desc;
10448 		__u32 count, size;
10449 
10450 		desc = bpf_prog_info_array_desc + i;
10451 
10452 		/* kernel is too old to support this field */
10453 		if (info_len < desc->array_offset + sizeof(__u32) ||
10454 		    info_len < desc->count_offset + sizeof(__u32) ||
10455 		    (desc->size_offset > 0 && info_len < desc->size_offset))
10456 			include_array = false;
10457 
10458 		if (!include_array) {
10459 			arrays &= ~(1UL << i);	/* clear the bit */
10460 			continue;
10461 		}
10462 
10463 		count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
10464 		size  = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
10465 
10466 		data_len += count * size;
10467 	}
10468 
10469 	/* step 3: allocate continuous memory */
10470 	data_len = roundup(data_len, sizeof(__u64));
10471 	info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len);
10472 	if (!info_linear)
10473 		return ERR_PTR(-ENOMEM);
10474 
10475 	/* step 4: fill data to info_linear->info */
10476 	info_linear->arrays = arrays;
10477 	memset(&info_linear->info, 0, sizeof(info));
10478 	ptr = info_linear->data;
10479 
10480 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10481 		struct bpf_prog_info_array_desc *desc;
10482 		__u32 count, size;
10483 
10484 		if ((arrays & (1UL << i)) == 0)
10485 			continue;
10486 
10487 		desc  = bpf_prog_info_array_desc + i;
10488 		count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
10489 		size  = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
10490 		bpf_prog_info_set_offset_u32(&info_linear->info,
10491 					     desc->count_offset, count);
10492 		bpf_prog_info_set_offset_u32(&info_linear->info,
10493 					     desc->size_offset, size);
10494 		bpf_prog_info_set_offset_u64(&info_linear->info,
10495 					     desc->array_offset,
10496 					     ptr_to_u64(ptr));
10497 		ptr += count * size;
10498 	}
10499 
10500 	/* step 5: call syscall again to get required arrays */
10501 	err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len);
10502 	if (err) {
10503 		pr_debug("can't get prog info: %s", strerror(errno));
10504 		free(info_linear);
10505 		return ERR_PTR(-EFAULT);
10506 	}
10507 
10508 	/* step 6: verify the data */
10509 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10510 		struct bpf_prog_info_array_desc *desc;
10511 		__u32 v1, v2;
10512 
10513 		if ((arrays & (1UL << i)) == 0)
10514 			continue;
10515 
10516 		desc = bpf_prog_info_array_desc + i;
10517 		v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
10518 		v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
10519 						   desc->count_offset);
10520 		if (v1 != v2)
10521 			pr_warn("%s: mismatch in element count\n", __func__);
10522 
10523 		v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
10524 		v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
10525 						   desc->size_offset);
10526 		if (v1 != v2)
10527 			pr_warn("%s: mismatch in rec size\n", __func__);
10528 	}
10529 
10530 	/* step 7: update info_len and data_len */
10531 	info_linear->info_len = sizeof(struct bpf_prog_info);
10532 	info_linear->data_len = data_len;
10533 
10534 	return info_linear;
10535 }
10536 
10537 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear)
10538 {
10539 	int i;
10540 
10541 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10542 		struct bpf_prog_info_array_desc *desc;
10543 		__u64 addr, offs;
10544 
10545 		if ((info_linear->arrays & (1UL << i)) == 0)
10546 			continue;
10547 
10548 		desc = bpf_prog_info_array_desc + i;
10549 		addr = bpf_prog_info_read_offset_u64(&info_linear->info,
10550 						     desc->array_offset);
10551 		offs = addr - ptr_to_u64(info_linear->data);
10552 		bpf_prog_info_set_offset_u64(&info_linear->info,
10553 					     desc->array_offset, offs);
10554 	}
10555 }
10556 
10557 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear)
10558 {
10559 	int i;
10560 
10561 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10562 		struct bpf_prog_info_array_desc *desc;
10563 		__u64 addr, offs;
10564 
10565 		if ((info_linear->arrays & (1UL << i)) == 0)
10566 			continue;
10567 
10568 		desc = bpf_prog_info_array_desc + i;
10569 		offs = bpf_prog_info_read_offset_u64(&info_linear->info,
10570 						     desc->array_offset);
10571 		addr = offs + ptr_to_u64(info_linear->data);
10572 		bpf_prog_info_set_offset_u64(&info_linear->info,
10573 					     desc->array_offset, addr);
10574 	}
10575 }
10576 
10577 int bpf_program__set_attach_target(struct bpf_program *prog,
10578 				   int attach_prog_fd,
10579 				   const char *attach_func_name)
10580 {
10581 	int btf_id;
10582 
10583 	if (!prog || attach_prog_fd < 0 || !attach_func_name)
10584 		return -EINVAL;
10585 
10586 	if (attach_prog_fd)
10587 		btf_id = libbpf_find_prog_btf_id(attach_func_name,
10588 						 attach_prog_fd);
10589 	else
10590 		btf_id = libbpf_find_vmlinux_btf_id(attach_func_name,
10591 						    prog->expected_attach_type);
10592 
10593 	if (btf_id < 0)
10594 		return btf_id;
10595 
10596 	prog->attach_btf_id = btf_id;
10597 	prog->attach_prog_fd = attach_prog_fd;
10598 	return 0;
10599 }
10600 
10601 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
10602 {
10603 	int err = 0, n, len, start, end = -1;
10604 	bool *tmp;
10605 
10606 	*mask = NULL;
10607 	*mask_sz = 0;
10608 
10609 	/* Each sub string separated by ',' has format \d+-\d+ or \d+ */
10610 	while (*s) {
10611 		if (*s == ',' || *s == '\n') {
10612 			s++;
10613 			continue;
10614 		}
10615 		n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
10616 		if (n <= 0 || n > 2) {
10617 			pr_warn("Failed to get CPU range %s: %d\n", s, n);
10618 			err = -EINVAL;
10619 			goto cleanup;
10620 		} else if (n == 1) {
10621 			end = start;
10622 		}
10623 		if (start < 0 || start > end) {
10624 			pr_warn("Invalid CPU range [%d,%d] in %s\n",
10625 				start, end, s);
10626 			err = -EINVAL;
10627 			goto cleanup;
10628 		}
10629 		tmp = realloc(*mask, end + 1);
10630 		if (!tmp) {
10631 			err = -ENOMEM;
10632 			goto cleanup;
10633 		}
10634 		*mask = tmp;
10635 		memset(tmp + *mask_sz, 0, start - *mask_sz);
10636 		memset(tmp + start, 1, end - start + 1);
10637 		*mask_sz = end + 1;
10638 		s += len;
10639 	}
10640 	if (!*mask_sz) {
10641 		pr_warn("Empty CPU range\n");
10642 		return -EINVAL;
10643 	}
10644 	return 0;
10645 cleanup:
10646 	free(*mask);
10647 	*mask = NULL;
10648 	return err;
10649 }
10650 
10651 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
10652 {
10653 	int fd, err = 0, len;
10654 	char buf[128];
10655 
10656 	fd = open(fcpu, O_RDONLY);
10657 	if (fd < 0) {
10658 		err = -errno;
10659 		pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
10660 		return err;
10661 	}
10662 	len = read(fd, buf, sizeof(buf));
10663 	close(fd);
10664 	if (len <= 0) {
10665 		err = len ? -errno : -EINVAL;
10666 		pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
10667 		return err;
10668 	}
10669 	if (len >= sizeof(buf)) {
10670 		pr_warn("CPU mask is too big in file %s\n", fcpu);
10671 		return -E2BIG;
10672 	}
10673 	buf[len] = '\0';
10674 
10675 	return parse_cpu_mask_str(buf, mask, mask_sz);
10676 }
10677 
10678 int libbpf_num_possible_cpus(void)
10679 {
10680 	static const char *fcpu = "/sys/devices/system/cpu/possible";
10681 	static int cpus;
10682 	int err, n, i, tmp_cpus;
10683 	bool *mask;
10684 
10685 	tmp_cpus = READ_ONCE(cpus);
10686 	if (tmp_cpus > 0)
10687 		return tmp_cpus;
10688 
10689 	err = parse_cpu_mask_file(fcpu, &mask, &n);
10690 	if (err)
10691 		return err;
10692 
10693 	tmp_cpus = 0;
10694 	for (i = 0; i < n; i++) {
10695 		if (mask[i])
10696 			tmp_cpus++;
10697 	}
10698 	free(mask);
10699 
10700 	WRITE_ONCE(cpus, tmp_cpus);
10701 	return tmp_cpus;
10702 }
10703 
10704 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
10705 			      const struct bpf_object_open_opts *opts)
10706 {
10707 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
10708 		.object_name = s->name,
10709 	);
10710 	struct bpf_object *obj;
10711 	int i;
10712 
10713 	/* Attempt to preserve opts->object_name, unless overriden by user
10714 	 * explicitly. Overwriting object name for skeletons is discouraged,
10715 	 * as it breaks global data maps, because they contain object name
10716 	 * prefix as their own map name prefix. When skeleton is generated,
10717 	 * bpftool is making an assumption that this name will stay the same.
10718 	 */
10719 	if (opts) {
10720 		memcpy(&skel_opts, opts, sizeof(*opts));
10721 		if (!opts->object_name)
10722 			skel_opts.object_name = s->name;
10723 	}
10724 
10725 	obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
10726 	if (IS_ERR(obj)) {
10727 		pr_warn("failed to initialize skeleton BPF object '%s': %ld\n",
10728 			s->name, PTR_ERR(obj));
10729 		return PTR_ERR(obj);
10730 	}
10731 
10732 	*s->obj = obj;
10733 
10734 	for (i = 0; i < s->map_cnt; i++) {
10735 		struct bpf_map **map = s->maps[i].map;
10736 		const char *name = s->maps[i].name;
10737 		void **mmaped = s->maps[i].mmaped;
10738 
10739 		*map = bpf_object__find_map_by_name(obj, name);
10740 		if (!*map) {
10741 			pr_warn("failed to find skeleton map '%s'\n", name);
10742 			return -ESRCH;
10743 		}
10744 
10745 		/* externs shouldn't be pre-setup from user code */
10746 		if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
10747 			*mmaped = (*map)->mmaped;
10748 	}
10749 
10750 	for (i = 0; i < s->prog_cnt; i++) {
10751 		struct bpf_program **prog = s->progs[i].prog;
10752 		const char *name = s->progs[i].name;
10753 
10754 		*prog = bpf_object__find_program_by_name(obj, name);
10755 		if (!*prog) {
10756 			pr_warn("failed to find skeleton program '%s'\n", name);
10757 			return -ESRCH;
10758 		}
10759 	}
10760 
10761 	return 0;
10762 }
10763 
10764 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
10765 {
10766 	int i, err;
10767 
10768 	err = bpf_object__load(*s->obj);
10769 	if (err) {
10770 		pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
10771 		return err;
10772 	}
10773 
10774 	for (i = 0; i < s->map_cnt; i++) {
10775 		struct bpf_map *map = *s->maps[i].map;
10776 		size_t mmap_sz = bpf_map_mmap_sz(map);
10777 		int prot, map_fd = bpf_map__fd(map);
10778 		void **mmaped = s->maps[i].mmaped;
10779 
10780 		if (!mmaped)
10781 			continue;
10782 
10783 		if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
10784 			*mmaped = NULL;
10785 			continue;
10786 		}
10787 
10788 		if (map->def.map_flags & BPF_F_RDONLY_PROG)
10789 			prot = PROT_READ;
10790 		else
10791 			prot = PROT_READ | PROT_WRITE;
10792 
10793 		/* Remap anonymous mmap()-ed "map initialization image" as
10794 		 * a BPF map-backed mmap()-ed memory, but preserving the same
10795 		 * memory address. This will cause kernel to change process'
10796 		 * page table to point to a different piece of kernel memory,
10797 		 * but from userspace point of view memory address (and its
10798 		 * contents, being identical at this point) will stay the
10799 		 * same. This mapping will be released by bpf_object__close()
10800 		 * as per normal clean up procedure, so we don't need to worry
10801 		 * about it from skeleton's clean up perspective.
10802 		 */
10803 		*mmaped = mmap(map->mmaped, mmap_sz, prot,
10804 				MAP_SHARED | MAP_FIXED, map_fd, 0);
10805 		if (*mmaped == MAP_FAILED) {
10806 			err = -errno;
10807 			*mmaped = NULL;
10808 			pr_warn("failed to re-mmap() map '%s': %d\n",
10809 				 bpf_map__name(map), err);
10810 			return err;
10811 		}
10812 	}
10813 
10814 	return 0;
10815 }
10816 
10817 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
10818 {
10819 	int i;
10820 
10821 	for (i = 0; i < s->prog_cnt; i++) {
10822 		struct bpf_program *prog = *s->progs[i].prog;
10823 		struct bpf_link **link = s->progs[i].link;
10824 		const struct bpf_sec_def *sec_def;
10825 
10826 		if (!prog->load)
10827 			continue;
10828 
10829 		sec_def = find_sec_def(prog->sec_name);
10830 		if (!sec_def || !sec_def->attach_fn)
10831 			continue;
10832 
10833 		*link = sec_def->attach_fn(sec_def, prog);
10834 		if (IS_ERR(*link)) {
10835 			pr_warn("failed to auto-attach program '%s': %ld\n",
10836 				bpf_program__name(prog), PTR_ERR(*link));
10837 			return PTR_ERR(*link);
10838 		}
10839 	}
10840 
10841 	return 0;
10842 }
10843 
10844 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
10845 {
10846 	int i;
10847 
10848 	for (i = 0; i < s->prog_cnt; i++) {
10849 		struct bpf_link **link = s->progs[i].link;
10850 
10851 		bpf_link__destroy(*link);
10852 		*link = NULL;
10853 	}
10854 }
10855 
10856 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
10857 {
10858 	if (s->progs)
10859 		bpf_object__detach_skeleton(s);
10860 	if (s->obj)
10861 		bpf_object__close(*s->obj);
10862 	free(s->maps);
10863 	free(s->progs);
10864 	free(s);
10865 }
10866