1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/list.h> 35 #include <linux/limits.h> 36 #include <linux/perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <linux/version.h> 39 #include <sys/epoll.h> 40 #include <sys/ioctl.h> 41 #include <sys/mman.h> 42 #include <sys/stat.h> 43 #include <sys/types.h> 44 #include <sys/vfs.h> 45 #include <sys/utsname.h> 46 #include <sys/resource.h> 47 #include <libelf.h> 48 #include <gelf.h> 49 #include <zlib.h> 50 51 #include "libbpf.h" 52 #include "bpf.h" 53 #include "btf.h" 54 #include "str_error.h" 55 #include "libbpf_internal.h" 56 #include "hashmap.h" 57 58 #ifndef EM_BPF 59 #define EM_BPF 247 60 #endif 61 62 #ifndef BPF_FS_MAGIC 63 #define BPF_FS_MAGIC 0xcafe4a11 64 #endif 65 66 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 67 68 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 69 * compilation if user enables corresponding warning. Disable it explicitly. 70 */ 71 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 72 73 #define __printf(a, b) __attribute__((format(printf, a, b))) 74 75 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 76 static const struct btf_type * 77 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id); 78 79 static int __base_pr(enum libbpf_print_level level, const char *format, 80 va_list args) 81 { 82 if (level == LIBBPF_DEBUG) 83 return 0; 84 85 return vfprintf(stderr, format, args); 86 } 87 88 static libbpf_print_fn_t __libbpf_pr = __base_pr; 89 90 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 91 { 92 libbpf_print_fn_t old_print_fn = __libbpf_pr; 93 94 __libbpf_pr = fn; 95 return old_print_fn; 96 } 97 98 __printf(2, 3) 99 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 100 { 101 va_list args; 102 103 if (!__libbpf_pr) 104 return; 105 106 va_start(args, format); 107 __libbpf_pr(level, format, args); 108 va_end(args); 109 } 110 111 static void pr_perm_msg(int err) 112 { 113 struct rlimit limit; 114 char buf[100]; 115 116 if (err != -EPERM || geteuid() != 0) 117 return; 118 119 err = getrlimit(RLIMIT_MEMLOCK, &limit); 120 if (err) 121 return; 122 123 if (limit.rlim_cur == RLIM_INFINITY) 124 return; 125 126 if (limit.rlim_cur < 1024) 127 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 128 else if (limit.rlim_cur < 1024*1024) 129 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 130 else 131 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 132 133 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 134 buf); 135 } 136 137 #define STRERR_BUFSIZE 128 138 139 /* Copied from tools/perf/util/util.h */ 140 #ifndef zfree 141 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 142 #endif 143 144 #ifndef zclose 145 # define zclose(fd) ({ \ 146 int ___err = 0; \ 147 if ((fd) >= 0) \ 148 ___err = close((fd)); \ 149 fd = -1; \ 150 ___err; }) 151 #endif 152 153 static inline __u64 ptr_to_u64(const void *ptr) 154 { 155 return (__u64) (unsigned long) ptr; 156 } 157 158 enum kern_feature_id { 159 /* v4.14: kernel support for program & map names. */ 160 FEAT_PROG_NAME, 161 /* v5.2: kernel support for global data sections. */ 162 FEAT_GLOBAL_DATA, 163 /* BTF support */ 164 FEAT_BTF, 165 /* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */ 166 FEAT_BTF_FUNC, 167 /* BTF_KIND_VAR and BTF_KIND_DATASEC support */ 168 FEAT_BTF_DATASEC, 169 /* BTF_FUNC_GLOBAL is supported */ 170 FEAT_BTF_GLOBAL_FUNC, 171 /* BPF_F_MMAPABLE is supported for arrays */ 172 FEAT_ARRAY_MMAP, 173 /* kernel support for expected_attach_type in BPF_PROG_LOAD */ 174 FEAT_EXP_ATTACH_TYPE, 175 /* bpf_probe_read_{kernel,user}[_str] helpers */ 176 FEAT_PROBE_READ_KERN, 177 /* BPF_PROG_BIND_MAP is supported */ 178 FEAT_PROG_BIND_MAP, 179 /* Kernel support for module BTFs */ 180 FEAT_MODULE_BTF, 181 __FEAT_CNT, 182 }; 183 184 static bool kernel_supports(enum kern_feature_id feat_id); 185 186 enum reloc_type { 187 RELO_LD64, 188 RELO_CALL, 189 RELO_DATA, 190 RELO_EXTERN, 191 }; 192 193 struct reloc_desc { 194 enum reloc_type type; 195 int insn_idx; 196 int map_idx; 197 int sym_off; 198 bool processed; 199 }; 200 201 struct bpf_sec_def; 202 203 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_sec_def *sec, 204 struct bpf_program *prog); 205 206 struct bpf_sec_def { 207 const char *sec; 208 size_t len; 209 enum bpf_prog_type prog_type; 210 enum bpf_attach_type expected_attach_type; 211 bool is_exp_attach_type_optional; 212 bool is_attachable; 213 bool is_attach_btf; 214 bool is_sleepable; 215 attach_fn_t attach_fn; 216 }; 217 218 /* 219 * bpf_prog should be a better name but it has been used in 220 * linux/filter.h. 221 */ 222 struct bpf_program { 223 const struct bpf_sec_def *sec_def; 224 char *sec_name; 225 size_t sec_idx; 226 /* this program's instruction offset (in number of instructions) 227 * within its containing ELF section 228 */ 229 size_t sec_insn_off; 230 /* number of original instructions in ELF section belonging to this 231 * program, not taking into account subprogram instructions possible 232 * appended later during relocation 233 */ 234 size_t sec_insn_cnt; 235 /* Offset (in number of instructions) of the start of instruction 236 * belonging to this BPF program within its containing main BPF 237 * program. For the entry-point (main) BPF program, this is always 238 * zero. For a sub-program, this gets reset before each of main BPF 239 * programs are processed and relocated and is used to determined 240 * whether sub-program was already appended to the main program, and 241 * if yes, at which instruction offset. 242 */ 243 size_t sub_insn_off; 244 245 char *name; 246 /* sec_name with / replaced by _; makes recursive pinning 247 * in bpf_object__pin_programs easier 248 */ 249 char *pin_name; 250 251 /* instructions that belong to BPF program; insns[0] is located at 252 * sec_insn_off instruction within its ELF section in ELF file, so 253 * when mapping ELF file instruction index to the local instruction, 254 * one needs to subtract sec_insn_off; and vice versa. 255 */ 256 struct bpf_insn *insns; 257 /* actual number of instruction in this BPF program's image; for 258 * entry-point BPF programs this includes the size of main program 259 * itself plus all the used sub-programs, appended at the end 260 */ 261 size_t insns_cnt; 262 263 struct reloc_desc *reloc_desc; 264 int nr_reloc; 265 int log_level; 266 267 struct { 268 int nr; 269 int *fds; 270 } instances; 271 bpf_program_prep_t preprocessor; 272 273 struct bpf_object *obj; 274 void *priv; 275 bpf_program_clear_priv_t clear_priv; 276 277 bool load; 278 enum bpf_prog_type type; 279 enum bpf_attach_type expected_attach_type; 280 int prog_ifindex; 281 __u32 attach_btf_obj_fd; 282 __u32 attach_btf_id; 283 __u32 attach_prog_fd; 284 void *func_info; 285 __u32 func_info_rec_size; 286 __u32 func_info_cnt; 287 288 void *line_info; 289 __u32 line_info_rec_size; 290 __u32 line_info_cnt; 291 __u32 prog_flags; 292 }; 293 294 struct bpf_struct_ops { 295 const char *tname; 296 const struct btf_type *type; 297 struct bpf_program **progs; 298 __u32 *kern_func_off; 299 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 300 void *data; 301 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 302 * btf_vmlinux's format. 303 * struct bpf_struct_ops_tcp_congestion_ops { 304 * [... some other kernel fields ...] 305 * struct tcp_congestion_ops data; 306 * } 307 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 308 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 309 * from "data". 310 */ 311 void *kern_vdata; 312 __u32 type_id; 313 }; 314 315 #define DATA_SEC ".data" 316 #define BSS_SEC ".bss" 317 #define RODATA_SEC ".rodata" 318 #define KCONFIG_SEC ".kconfig" 319 #define KSYMS_SEC ".ksyms" 320 #define STRUCT_OPS_SEC ".struct_ops" 321 322 enum libbpf_map_type { 323 LIBBPF_MAP_UNSPEC, 324 LIBBPF_MAP_DATA, 325 LIBBPF_MAP_BSS, 326 LIBBPF_MAP_RODATA, 327 LIBBPF_MAP_KCONFIG, 328 }; 329 330 static const char * const libbpf_type_to_btf_name[] = { 331 [LIBBPF_MAP_DATA] = DATA_SEC, 332 [LIBBPF_MAP_BSS] = BSS_SEC, 333 [LIBBPF_MAP_RODATA] = RODATA_SEC, 334 [LIBBPF_MAP_KCONFIG] = KCONFIG_SEC, 335 }; 336 337 struct bpf_map { 338 char *name; 339 int fd; 340 int sec_idx; 341 size_t sec_offset; 342 int map_ifindex; 343 int inner_map_fd; 344 struct bpf_map_def def; 345 __u32 numa_node; 346 __u32 btf_var_idx; 347 __u32 btf_key_type_id; 348 __u32 btf_value_type_id; 349 __u32 btf_vmlinux_value_type_id; 350 void *priv; 351 bpf_map_clear_priv_t clear_priv; 352 enum libbpf_map_type libbpf_type; 353 void *mmaped; 354 struct bpf_struct_ops *st_ops; 355 struct bpf_map *inner_map; 356 void **init_slots; 357 int init_slots_sz; 358 char *pin_path; 359 bool pinned; 360 bool reused; 361 }; 362 363 enum extern_type { 364 EXT_UNKNOWN, 365 EXT_KCFG, 366 EXT_KSYM, 367 }; 368 369 enum kcfg_type { 370 KCFG_UNKNOWN, 371 KCFG_CHAR, 372 KCFG_BOOL, 373 KCFG_INT, 374 KCFG_TRISTATE, 375 KCFG_CHAR_ARR, 376 }; 377 378 struct extern_desc { 379 enum extern_type type; 380 int sym_idx; 381 int btf_id; 382 int sec_btf_id; 383 const char *name; 384 bool is_set; 385 bool is_weak; 386 union { 387 struct { 388 enum kcfg_type type; 389 int sz; 390 int align; 391 int data_off; 392 bool is_signed; 393 } kcfg; 394 struct { 395 unsigned long long addr; 396 397 /* target btf_id of the corresponding kernel var. */ 398 int kernel_btf_obj_fd; 399 int kernel_btf_id; 400 401 /* local btf_id of the ksym extern's type. */ 402 __u32 type_id; 403 } ksym; 404 }; 405 }; 406 407 static LIST_HEAD(bpf_objects_list); 408 409 struct module_btf { 410 struct btf *btf; 411 char *name; 412 __u32 id; 413 int fd; 414 }; 415 416 struct bpf_object { 417 char name[BPF_OBJ_NAME_LEN]; 418 char license[64]; 419 __u32 kern_version; 420 421 struct bpf_program *programs; 422 size_t nr_programs; 423 struct bpf_map *maps; 424 size_t nr_maps; 425 size_t maps_cap; 426 427 char *kconfig; 428 struct extern_desc *externs; 429 int nr_extern; 430 int kconfig_map_idx; 431 int rodata_map_idx; 432 433 bool loaded; 434 bool has_subcalls; 435 436 /* 437 * Information when doing elf related work. Only valid if fd 438 * is valid. 439 */ 440 struct { 441 int fd; 442 const void *obj_buf; 443 size_t obj_buf_sz; 444 Elf *elf; 445 GElf_Ehdr ehdr; 446 Elf_Data *symbols; 447 Elf_Data *data; 448 Elf_Data *rodata; 449 Elf_Data *bss; 450 Elf_Data *st_ops_data; 451 size_t shstrndx; /* section index for section name strings */ 452 size_t strtabidx; 453 struct { 454 GElf_Shdr shdr; 455 Elf_Data *data; 456 } *reloc_sects; 457 int nr_reloc_sects; 458 int maps_shndx; 459 int btf_maps_shndx; 460 __u32 btf_maps_sec_btf_id; 461 int text_shndx; 462 int symbols_shndx; 463 int data_shndx; 464 int rodata_shndx; 465 int bss_shndx; 466 int st_ops_shndx; 467 } efile; 468 /* 469 * All loaded bpf_object is linked in a list, which is 470 * hidden to caller. bpf_objects__<func> handlers deal with 471 * all objects. 472 */ 473 struct list_head list; 474 475 struct btf *btf; 476 struct btf_ext *btf_ext; 477 478 /* Parse and load BTF vmlinux if any of the programs in the object need 479 * it at load time. 480 */ 481 struct btf *btf_vmlinux; 482 /* vmlinux BTF override for CO-RE relocations */ 483 struct btf *btf_vmlinux_override; 484 /* Lazily initialized kernel module BTFs */ 485 struct module_btf *btf_modules; 486 bool btf_modules_loaded; 487 size_t btf_module_cnt; 488 size_t btf_module_cap; 489 490 void *priv; 491 bpf_object_clear_priv_t clear_priv; 492 493 char path[]; 494 }; 495 #define obj_elf_valid(o) ((o)->efile.elf) 496 497 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 498 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 499 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 500 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 501 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr); 502 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 503 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 504 static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx, 505 size_t off, __u32 sym_type, GElf_Sym *sym); 506 507 void bpf_program__unload(struct bpf_program *prog) 508 { 509 int i; 510 511 if (!prog) 512 return; 513 514 /* 515 * If the object is opened but the program was never loaded, 516 * it is possible that prog->instances.nr == -1. 517 */ 518 if (prog->instances.nr > 0) { 519 for (i = 0; i < prog->instances.nr; i++) 520 zclose(prog->instances.fds[i]); 521 } else if (prog->instances.nr != -1) { 522 pr_warn("Internal error: instances.nr is %d\n", 523 prog->instances.nr); 524 } 525 526 prog->instances.nr = -1; 527 zfree(&prog->instances.fds); 528 529 zfree(&prog->func_info); 530 zfree(&prog->line_info); 531 } 532 533 static void bpf_program__exit(struct bpf_program *prog) 534 { 535 if (!prog) 536 return; 537 538 if (prog->clear_priv) 539 prog->clear_priv(prog, prog->priv); 540 541 prog->priv = NULL; 542 prog->clear_priv = NULL; 543 544 bpf_program__unload(prog); 545 zfree(&prog->name); 546 zfree(&prog->sec_name); 547 zfree(&prog->pin_name); 548 zfree(&prog->insns); 549 zfree(&prog->reloc_desc); 550 551 prog->nr_reloc = 0; 552 prog->insns_cnt = 0; 553 prog->sec_idx = -1; 554 } 555 556 static char *__bpf_program__pin_name(struct bpf_program *prog) 557 { 558 char *name, *p; 559 560 name = p = strdup(prog->sec_name); 561 while ((p = strchr(p, '/'))) 562 *p = '_'; 563 564 return name; 565 } 566 567 static bool insn_is_subprog_call(const struct bpf_insn *insn) 568 { 569 return BPF_CLASS(insn->code) == BPF_JMP && 570 BPF_OP(insn->code) == BPF_CALL && 571 BPF_SRC(insn->code) == BPF_K && 572 insn->src_reg == BPF_PSEUDO_CALL && 573 insn->dst_reg == 0 && 574 insn->off == 0; 575 } 576 577 static int 578 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 579 const char *name, size_t sec_idx, const char *sec_name, 580 size_t sec_off, void *insn_data, size_t insn_data_sz) 581 { 582 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 583 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 584 sec_name, name, sec_off, insn_data_sz); 585 return -EINVAL; 586 } 587 588 memset(prog, 0, sizeof(*prog)); 589 prog->obj = obj; 590 591 prog->sec_idx = sec_idx; 592 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 593 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 594 /* insns_cnt can later be increased by appending used subprograms */ 595 prog->insns_cnt = prog->sec_insn_cnt; 596 597 prog->type = BPF_PROG_TYPE_UNSPEC; 598 prog->load = true; 599 600 prog->instances.fds = NULL; 601 prog->instances.nr = -1; 602 603 prog->sec_name = strdup(sec_name); 604 if (!prog->sec_name) 605 goto errout; 606 607 prog->name = strdup(name); 608 if (!prog->name) 609 goto errout; 610 611 prog->pin_name = __bpf_program__pin_name(prog); 612 if (!prog->pin_name) 613 goto errout; 614 615 prog->insns = malloc(insn_data_sz); 616 if (!prog->insns) 617 goto errout; 618 memcpy(prog->insns, insn_data, insn_data_sz); 619 620 return 0; 621 errout: 622 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 623 bpf_program__exit(prog); 624 return -ENOMEM; 625 } 626 627 static int 628 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 629 const char *sec_name, int sec_idx) 630 { 631 struct bpf_program *prog, *progs; 632 void *data = sec_data->d_buf; 633 size_t sec_sz = sec_data->d_size, sec_off, prog_sz; 634 int nr_progs, err; 635 const char *name; 636 GElf_Sym sym; 637 638 progs = obj->programs; 639 nr_progs = obj->nr_programs; 640 sec_off = 0; 641 642 while (sec_off < sec_sz) { 643 if (elf_sym_by_sec_off(obj, sec_idx, sec_off, STT_FUNC, &sym)) { 644 pr_warn("sec '%s': failed to find program symbol at offset %zu\n", 645 sec_name, sec_off); 646 return -LIBBPF_ERRNO__FORMAT; 647 } 648 649 prog_sz = sym.st_size; 650 651 name = elf_sym_str(obj, sym.st_name); 652 if (!name) { 653 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 654 sec_name, sec_off); 655 return -LIBBPF_ERRNO__FORMAT; 656 } 657 658 if (sec_off + prog_sz > sec_sz) { 659 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 660 sec_name, sec_off); 661 return -LIBBPF_ERRNO__FORMAT; 662 } 663 664 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 665 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 666 667 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 668 if (!progs) { 669 /* 670 * In this case the original obj->programs 671 * is still valid, so don't need special treat for 672 * bpf_close_object(). 673 */ 674 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 675 sec_name, name); 676 return -ENOMEM; 677 } 678 obj->programs = progs; 679 680 prog = &progs[nr_progs]; 681 682 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 683 sec_off, data + sec_off, prog_sz); 684 if (err) 685 return err; 686 687 nr_progs++; 688 obj->nr_programs = nr_progs; 689 690 sec_off += prog_sz; 691 } 692 693 return 0; 694 } 695 696 static __u32 get_kernel_version(void) 697 { 698 __u32 major, minor, patch; 699 struct utsname info; 700 701 uname(&info); 702 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 703 return 0; 704 return KERNEL_VERSION(major, minor, patch); 705 } 706 707 static const struct btf_member * 708 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 709 { 710 struct btf_member *m; 711 int i; 712 713 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 714 if (btf_member_bit_offset(t, i) == bit_offset) 715 return m; 716 } 717 718 return NULL; 719 } 720 721 static const struct btf_member * 722 find_member_by_name(const struct btf *btf, const struct btf_type *t, 723 const char *name) 724 { 725 struct btf_member *m; 726 int i; 727 728 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 729 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 730 return m; 731 } 732 733 return NULL; 734 } 735 736 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 737 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 738 const char *name, __u32 kind); 739 740 static int 741 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 742 const struct btf_type **type, __u32 *type_id, 743 const struct btf_type **vtype, __u32 *vtype_id, 744 const struct btf_member **data_member) 745 { 746 const struct btf_type *kern_type, *kern_vtype; 747 const struct btf_member *kern_data_member; 748 __s32 kern_vtype_id, kern_type_id; 749 __u32 i; 750 751 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 752 if (kern_type_id < 0) { 753 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 754 tname); 755 return kern_type_id; 756 } 757 kern_type = btf__type_by_id(btf, kern_type_id); 758 759 /* Find the corresponding "map_value" type that will be used 760 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 761 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 762 * btf_vmlinux. 763 */ 764 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 765 tname, BTF_KIND_STRUCT); 766 if (kern_vtype_id < 0) { 767 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 768 STRUCT_OPS_VALUE_PREFIX, tname); 769 return kern_vtype_id; 770 } 771 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 772 773 /* Find "struct tcp_congestion_ops" from 774 * struct bpf_struct_ops_tcp_congestion_ops { 775 * [ ... ] 776 * struct tcp_congestion_ops data; 777 * } 778 */ 779 kern_data_member = btf_members(kern_vtype); 780 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 781 if (kern_data_member->type == kern_type_id) 782 break; 783 } 784 if (i == btf_vlen(kern_vtype)) { 785 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 786 tname, STRUCT_OPS_VALUE_PREFIX, tname); 787 return -EINVAL; 788 } 789 790 *type = kern_type; 791 *type_id = kern_type_id; 792 *vtype = kern_vtype; 793 *vtype_id = kern_vtype_id; 794 *data_member = kern_data_member; 795 796 return 0; 797 } 798 799 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 800 { 801 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 802 } 803 804 /* Init the map's fields that depend on kern_btf */ 805 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 806 const struct btf *btf, 807 const struct btf *kern_btf) 808 { 809 const struct btf_member *member, *kern_member, *kern_data_member; 810 const struct btf_type *type, *kern_type, *kern_vtype; 811 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 812 struct bpf_struct_ops *st_ops; 813 void *data, *kern_data; 814 const char *tname; 815 int err; 816 817 st_ops = map->st_ops; 818 type = st_ops->type; 819 tname = st_ops->tname; 820 err = find_struct_ops_kern_types(kern_btf, tname, 821 &kern_type, &kern_type_id, 822 &kern_vtype, &kern_vtype_id, 823 &kern_data_member); 824 if (err) 825 return err; 826 827 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 828 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 829 830 map->def.value_size = kern_vtype->size; 831 map->btf_vmlinux_value_type_id = kern_vtype_id; 832 833 st_ops->kern_vdata = calloc(1, kern_vtype->size); 834 if (!st_ops->kern_vdata) 835 return -ENOMEM; 836 837 data = st_ops->data; 838 kern_data_off = kern_data_member->offset / 8; 839 kern_data = st_ops->kern_vdata + kern_data_off; 840 841 member = btf_members(type); 842 for (i = 0; i < btf_vlen(type); i++, member++) { 843 const struct btf_type *mtype, *kern_mtype; 844 __u32 mtype_id, kern_mtype_id; 845 void *mdata, *kern_mdata; 846 __s64 msize, kern_msize; 847 __u32 moff, kern_moff; 848 __u32 kern_member_idx; 849 const char *mname; 850 851 mname = btf__name_by_offset(btf, member->name_off); 852 kern_member = find_member_by_name(kern_btf, kern_type, mname); 853 if (!kern_member) { 854 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 855 map->name, mname); 856 return -ENOTSUP; 857 } 858 859 kern_member_idx = kern_member - btf_members(kern_type); 860 if (btf_member_bitfield_size(type, i) || 861 btf_member_bitfield_size(kern_type, kern_member_idx)) { 862 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 863 map->name, mname); 864 return -ENOTSUP; 865 } 866 867 moff = member->offset / 8; 868 kern_moff = kern_member->offset / 8; 869 870 mdata = data + moff; 871 kern_mdata = kern_data + kern_moff; 872 873 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 874 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 875 &kern_mtype_id); 876 if (BTF_INFO_KIND(mtype->info) != 877 BTF_INFO_KIND(kern_mtype->info)) { 878 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 879 map->name, mname, BTF_INFO_KIND(mtype->info), 880 BTF_INFO_KIND(kern_mtype->info)); 881 return -ENOTSUP; 882 } 883 884 if (btf_is_ptr(mtype)) { 885 struct bpf_program *prog; 886 887 prog = st_ops->progs[i]; 888 if (!prog) 889 continue; 890 891 kern_mtype = skip_mods_and_typedefs(kern_btf, 892 kern_mtype->type, 893 &kern_mtype_id); 894 895 /* mtype->type must be a func_proto which was 896 * guaranteed in bpf_object__collect_st_ops_relos(), 897 * so only check kern_mtype for func_proto here. 898 */ 899 if (!btf_is_func_proto(kern_mtype)) { 900 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 901 map->name, mname); 902 return -ENOTSUP; 903 } 904 905 prog->attach_btf_id = kern_type_id; 906 prog->expected_attach_type = kern_member_idx; 907 908 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 909 910 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 911 map->name, mname, prog->name, moff, 912 kern_moff); 913 914 continue; 915 } 916 917 msize = btf__resolve_size(btf, mtype_id); 918 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 919 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 920 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 921 map->name, mname, (ssize_t)msize, 922 (ssize_t)kern_msize); 923 return -ENOTSUP; 924 } 925 926 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 927 map->name, mname, (unsigned int)msize, 928 moff, kern_moff); 929 memcpy(kern_mdata, mdata, msize); 930 } 931 932 return 0; 933 } 934 935 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 936 { 937 struct bpf_map *map; 938 size_t i; 939 int err; 940 941 for (i = 0; i < obj->nr_maps; i++) { 942 map = &obj->maps[i]; 943 944 if (!bpf_map__is_struct_ops(map)) 945 continue; 946 947 err = bpf_map__init_kern_struct_ops(map, obj->btf, 948 obj->btf_vmlinux); 949 if (err) 950 return err; 951 } 952 953 return 0; 954 } 955 956 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 957 { 958 const struct btf_type *type, *datasec; 959 const struct btf_var_secinfo *vsi; 960 struct bpf_struct_ops *st_ops; 961 const char *tname, *var_name; 962 __s32 type_id, datasec_id; 963 const struct btf *btf; 964 struct bpf_map *map; 965 __u32 i; 966 967 if (obj->efile.st_ops_shndx == -1) 968 return 0; 969 970 btf = obj->btf; 971 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 972 BTF_KIND_DATASEC); 973 if (datasec_id < 0) { 974 pr_warn("struct_ops init: DATASEC %s not found\n", 975 STRUCT_OPS_SEC); 976 return -EINVAL; 977 } 978 979 datasec = btf__type_by_id(btf, datasec_id); 980 vsi = btf_var_secinfos(datasec); 981 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 982 type = btf__type_by_id(obj->btf, vsi->type); 983 var_name = btf__name_by_offset(obj->btf, type->name_off); 984 985 type_id = btf__resolve_type(obj->btf, vsi->type); 986 if (type_id < 0) { 987 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 988 vsi->type, STRUCT_OPS_SEC); 989 return -EINVAL; 990 } 991 992 type = btf__type_by_id(obj->btf, type_id); 993 tname = btf__name_by_offset(obj->btf, type->name_off); 994 if (!tname[0]) { 995 pr_warn("struct_ops init: anonymous type is not supported\n"); 996 return -ENOTSUP; 997 } 998 if (!btf_is_struct(type)) { 999 pr_warn("struct_ops init: %s is not a struct\n", tname); 1000 return -EINVAL; 1001 } 1002 1003 map = bpf_object__add_map(obj); 1004 if (IS_ERR(map)) 1005 return PTR_ERR(map); 1006 1007 map->sec_idx = obj->efile.st_ops_shndx; 1008 map->sec_offset = vsi->offset; 1009 map->name = strdup(var_name); 1010 if (!map->name) 1011 return -ENOMEM; 1012 1013 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1014 map->def.key_size = sizeof(int); 1015 map->def.value_size = type->size; 1016 map->def.max_entries = 1; 1017 1018 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1019 if (!map->st_ops) 1020 return -ENOMEM; 1021 st_ops = map->st_ops; 1022 st_ops->data = malloc(type->size); 1023 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1024 st_ops->kern_func_off = malloc(btf_vlen(type) * 1025 sizeof(*st_ops->kern_func_off)); 1026 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1027 return -ENOMEM; 1028 1029 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1030 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1031 var_name, STRUCT_OPS_SEC); 1032 return -EINVAL; 1033 } 1034 1035 memcpy(st_ops->data, 1036 obj->efile.st_ops_data->d_buf + vsi->offset, 1037 type->size); 1038 st_ops->tname = tname; 1039 st_ops->type = type; 1040 st_ops->type_id = type_id; 1041 1042 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1043 tname, type_id, var_name, vsi->offset); 1044 } 1045 1046 return 0; 1047 } 1048 1049 static struct bpf_object *bpf_object__new(const char *path, 1050 const void *obj_buf, 1051 size_t obj_buf_sz, 1052 const char *obj_name) 1053 { 1054 struct bpf_object *obj; 1055 char *end; 1056 1057 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1058 if (!obj) { 1059 pr_warn("alloc memory failed for %s\n", path); 1060 return ERR_PTR(-ENOMEM); 1061 } 1062 1063 strcpy(obj->path, path); 1064 if (obj_name) { 1065 strncpy(obj->name, obj_name, sizeof(obj->name) - 1); 1066 obj->name[sizeof(obj->name) - 1] = 0; 1067 } else { 1068 /* Using basename() GNU version which doesn't modify arg. */ 1069 strncpy(obj->name, basename((void *)path), 1070 sizeof(obj->name) - 1); 1071 end = strchr(obj->name, '.'); 1072 if (end) 1073 *end = 0; 1074 } 1075 1076 obj->efile.fd = -1; 1077 /* 1078 * Caller of this function should also call 1079 * bpf_object__elf_finish() after data collection to return 1080 * obj_buf to user. If not, we should duplicate the buffer to 1081 * avoid user freeing them before elf finish. 1082 */ 1083 obj->efile.obj_buf = obj_buf; 1084 obj->efile.obj_buf_sz = obj_buf_sz; 1085 obj->efile.maps_shndx = -1; 1086 obj->efile.btf_maps_shndx = -1; 1087 obj->efile.data_shndx = -1; 1088 obj->efile.rodata_shndx = -1; 1089 obj->efile.bss_shndx = -1; 1090 obj->efile.st_ops_shndx = -1; 1091 obj->kconfig_map_idx = -1; 1092 obj->rodata_map_idx = -1; 1093 1094 obj->kern_version = get_kernel_version(); 1095 obj->loaded = false; 1096 1097 INIT_LIST_HEAD(&obj->list); 1098 list_add(&obj->list, &bpf_objects_list); 1099 return obj; 1100 } 1101 1102 static void bpf_object__elf_finish(struct bpf_object *obj) 1103 { 1104 if (!obj_elf_valid(obj)) 1105 return; 1106 1107 if (obj->efile.elf) { 1108 elf_end(obj->efile.elf); 1109 obj->efile.elf = NULL; 1110 } 1111 obj->efile.symbols = NULL; 1112 obj->efile.data = NULL; 1113 obj->efile.rodata = NULL; 1114 obj->efile.bss = NULL; 1115 obj->efile.st_ops_data = NULL; 1116 1117 zfree(&obj->efile.reloc_sects); 1118 obj->efile.nr_reloc_sects = 0; 1119 zclose(obj->efile.fd); 1120 obj->efile.obj_buf = NULL; 1121 obj->efile.obj_buf_sz = 0; 1122 } 1123 1124 /* if libelf is old and doesn't support mmap(), fall back to read() */ 1125 #ifndef ELF_C_READ_MMAP 1126 #define ELF_C_READ_MMAP ELF_C_READ 1127 #endif 1128 1129 static int bpf_object__elf_init(struct bpf_object *obj) 1130 { 1131 int err = 0; 1132 GElf_Ehdr *ep; 1133 1134 if (obj_elf_valid(obj)) { 1135 pr_warn("elf: init internal error\n"); 1136 return -LIBBPF_ERRNO__LIBELF; 1137 } 1138 1139 if (obj->efile.obj_buf_sz > 0) { 1140 /* 1141 * obj_buf should have been validated by 1142 * bpf_object__open_buffer(). 1143 */ 1144 obj->efile.elf = elf_memory((char *)obj->efile.obj_buf, 1145 obj->efile.obj_buf_sz); 1146 } else { 1147 obj->efile.fd = open(obj->path, O_RDONLY); 1148 if (obj->efile.fd < 0) { 1149 char errmsg[STRERR_BUFSIZE], *cp; 1150 1151 err = -errno; 1152 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1153 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1154 return err; 1155 } 1156 1157 obj->efile.elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1158 } 1159 1160 if (!obj->efile.elf) { 1161 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1162 err = -LIBBPF_ERRNO__LIBELF; 1163 goto errout; 1164 } 1165 1166 if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) { 1167 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1168 err = -LIBBPF_ERRNO__FORMAT; 1169 goto errout; 1170 } 1171 ep = &obj->efile.ehdr; 1172 1173 if (elf_getshdrstrndx(obj->efile.elf, &obj->efile.shstrndx)) { 1174 pr_warn("elf: failed to get section names section index for %s: %s\n", 1175 obj->path, elf_errmsg(-1)); 1176 err = -LIBBPF_ERRNO__FORMAT; 1177 goto errout; 1178 } 1179 1180 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1181 if (!elf_rawdata(elf_getscn(obj->efile.elf, obj->efile.shstrndx), NULL)) { 1182 pr_warn("elf: failed to get section names strings from %s: %s\n", 1183 obj->path, elf_errmsg(-1)); 1184 err = -LIBBPF_ERRNO__FORMAT; 1185 goto errout; 1186 } 1187 1188 /* Old LLVM set e_machine to EM_NONE */ 1189 if (ep->e_type != ET_REL || 1190 (ep->e_machine && ep->e_machine != EM_BPF)) { 1191 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1192 err = -LIBBPF_ERRNO__FORMAT; 1193 goto errout; 1194 } 1195 1196 return 0; 1197 errout: 1198 bpf_object__elf_finish(obj); 1199 return err; 1200 } 1201 1202 static int bpf_object__check_endianness(struct bpf_object *obj) 1203 { 1204 #if __BYTE_ORDER == __LITTLE_ENDIAN 1205 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2LSB) 1206 return 0; 1207 #elif __BYTE_ORDER == __BIG_ENDIAN 1208 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2MSB) 1209 return 0; 1210 #else 1211 # error "Unrecognized __BYTE_ORDER__" 1212 #endif 1213 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1214 return -LIBBPF_ERRNO__ENDIAN; 1215 } 1216 1217 static int 1218 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1219 { 1220 memcpy(obj->license, data, min(size, sizeof(obj->license) - 1)); 1221 pr_debug("license of %s is %s\n", obj->path, obj->license); 1222 return 0; 1223 } 1224 1225 static int 1226 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1227 { 1228 __u32 kver; 1229 1230 if (size != sizeof(kver)) { 1231 pr_warn("invalid kver section in %s\n", obj->path); 1232 return -LIBBPF_ERRNO__FORMAT; 1233 } 1234 memcpy(&kver, data, sizeof(kver)); 1235 obj->kern_version = kver; 1236 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1237 return 0; 1238 } 1239 1240 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1241 { 1242 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1243 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1244 return true; 1245 return false; 1246 } 1247 1248 int bpf_object__section_size(const struct bpf_object *obj, const char *name, 1249 __u32 *size) 1250 { 1251 int ret = -ENOENT; 1252 1253 *size = 0; 1254 if (!name) { 1255 return -EINVAL; 1256 } else if (!strcmp(name, DATA_SEC)) { 1257 if (obj->efile.data) 1258 *size = obj->efile.data->d_size; 1259 } else if (!strcmp(name, BSS_SEC)) { 1260 if (obj->efile.bss) 1261 *size = obj->efile.bss->d_size; 1262 } else if (!strcmp(name, RODATA_SEC)) { 1263 if (obj->efile.rodata) 1264 *size = obj->efile.rodata->d_size; 1265 } else if (!strcmp(name, STRUCT_OPS_SEC)) { 1266 if (obj->efile.st_ops_data) 1267 *size = obj->efile.st_ops_data->d_size; 1268 } else { 1269 Elf_Scn *scn = elf_sec_by_name(obj, name); 1270 Elf_Data *data = elf_sec_data(obj, scn); 1271 1272 if (data) { 1273 ret = 0; /* found it */ 1274 *size = data->d_size; 1275 } 1276 } 1277 1278 return *size ? 0 : ret; 1279 } 1280 1281 int bpf_object__variable_offset(const struct bpf_object *obj, const char *name, 1282 __u32 *off) 1283 { 1284 Elf_Data *symbols = obj->efile.symbols; 1285 const char *sname; 1286 size_t si; 1287 1288 if (!name || !off) 1289 return -EINVAL; 1290 1291 for (si = 0; si < symbols->d_size / sizeof(GElf_Sym); si++) { 1292 GElf_Sym sym; 1293 1294 if (!gelf_getsym(symbols, si, &sym)) 1295 continue; 1296 if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL || 1297 GELF_ST_TYPE(sym.st_info) != STT_OBJECT) 1298 continue; 1299 1300 sname = elf_sym_str(obj, sym.st_name); 1301 if (!sname) { 1302 pr_warn("failed to get sym name string for var %s\n", 1303 name); 1304 return -EIO; 1305 } 1306 if (strcmp(name, sname) == 0) { 1307 *off = sym.st_value; 1308 return 0; 1309 } 1310 } 1311 1312 return -ENOENT; 1313 } 1314 1315 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1316 { 1317 struct bpf_map *new_maps; 1318 size_t new_cap; 1319 int i; 1320 1321 if (obj->nr_maps < obj->maps_cap) 1322 return &obj->maps[obj->nr_maps++]; 1323 1324 new_cap = max((size_t)4, obj->maps_cap * 3 / 2); 1325 new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps)); 1326 if (!new_maps) { 1327 pr_warn("alloc maps for object failed\n"); 1328 return ERR_PTR(-ENOMEM); 1329 } 1330 1331 obj->maps_cap = new_cap; 1332 obj->maps = new_maps; 1333 1334 /* zero out new maps */ 1335 memset(obj->maps + obj->nr_maps, 0, 1336 (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps)); 1337 /* 1338 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin) 1339 * when failure (zclose won't close negative fd)). 1340 */ 1341 for (i = obj->nr_maps; i < obj->maps_cap; i++) { 1342 obj->maps[i].fd = -1; 1343 obj->maps[i].inner_map_fd = -1; 1344 } 1345 1346 return &obj->maps[obj->nr_maps++]; 1347 } 1348 1349 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1350 { 1351 long page_sz = sysconf(_SC_PAGE_SIZE); 1352 size_t map_sz; 1353 1354 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1355 map_sz = roundup(map_sz, page_sz); 1356 return map_sz; 1357 } 1358 1359 static char *internal_map_name(struct bpf_object *obj, 1360 enum libbpf_map_type type) 1361 { 1362 char map_name[BPF_OBJ_NAME_LEN], *p; 1363 const char *sfx = libbpf_type_to_btf_name[type]; 1364 int sfx_len = max((size_t)7, strlen(sfx)); 1365 int pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, 1366 strlen(obj->name)); 1367 1368 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1369 sfx_len, libbpf_type_to_btf_name[type]); 1370 1371 /* sanitise map name to characters allowed by kernel */ 1372 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1373 if (!isalnum(*p) && *p != '_' && *p != '.') 1374 *p = '_'; 1375 1376 return strdup(map_name); 1377 } 1378 1379 static int 1380 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1381 int sec_idx, void *data, size_t data_sz) 1382 { 1383 struct bpf_map_def *def; 1384 struct bpf_map *map; 1385 int err; 1386 1387 map = bpf_object__add_map(obj); 1388 if (IS_ERR(map)) 1389 return PTR_ERR(map); 1390 1391 map->libbpf_type = type; 1392 map->sec_idx = sec_idx; 1393 map->sec_offset = 0; 1394 map->name = internal_map_name(obj, type); 1395 if (!map->name) { 1396 pr_warn("failed to alloc map name\n"); 1397 return -ENOMEM; 1398 } 1399 1400 def = &map->def; 1401 def->type = BPF_MAP_TYPE_ARRAY; 1402 def->key_size = sizeof(int); 1403 def->value_size = data_sz; 1404 def->max_entries = 1; 1405 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1406 ? BPF_F_RDONLY_PROG : 0; 1407 def->map_flags |= BPF_F_MMAPABLE; 1408 1409 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1410 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1411 1412 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1413 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1414 if (map->mmaped == MAP_FAILED) { 1415 err = -errno; 1416 map->mmaped = NULL; 1417 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1418 map->name, err); 1419 zfree(&map->name); 1420 return err; 1421 } 1422 1423 if (data) 1424 memcpy(map->mmaped, data, data_sz); 1425 1426 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1427 return 0; 1428 } 1429 1430 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1431 { 1432 int err; 1433 1434 /* 1435 * Populate obj->maps with libbpf internal maps. 1436 */ 1437 if (obj->efile.data_shndx >= 0) { 1438 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1439 obj->efile.data_shndx, 1440 obj->efile.data->d_buf, 1441 obj->efile.data->d_size); 1442 if (err) 1443 return err; 1444 } 1445 if (obj->efile.rodata_shndx >= 0) { 1446 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1447 obj->efile.rodata_shndx, 1448 obj->efile.rodata->d_buf, 1449 obj->efile.rodata->d_size); 1450 if (err) 1451 return err; 1452 1453 obj->rodata_map_idx = obj->nr_maps - 1; 1454 } 1455 if (obj->efile.bss_shndx >= 0) { 1456 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1457 obj->efile.bss_shndx, 1458 NULL, 1459 obj->efile.bss->d_size); 1460 if (err) 1461 return err; 1462 } 1463 return 0; 1464 } 1465 1466 1467 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1468 const void *name) 1469 { 1470 int i; 1471 1472 for (i = 0; i < obj->nr_extern; i++) { 1473 if (strcmp(obj->externs[i].name, name) == 0) 1474 return &obj->externs[i]; 1475 } 1476 return NULL; 1477 } 1478 1479 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1480 char value) 1481 { 1482 switch (ext->kcfg.type) { 1483 case KCFG_BOOL: 1484 if (value == 'm') { 1485 pr_warn("extern (kcfg) %s=%c should be tristate or char\n", 1486 ext->name, value); 1487 return -EINVAL; 1488 } 1489 *(bool *)ext_val = value == 'y' ? true : false; 1490 break; 1491 case KCFG_TRISTATE: 1492 if (value == 'y') 1493 *(enum libbpf_tristate *)ext_val = TRI_YES; 1494 else if (value == 'm') 1495 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1496 else /* value == 'n' */ 1497 *(enum libbpf_tristate *)ext_val = TRI_NO; 1498 break; 1499 case KCFG_CHAR: 1500 *(char *)ext_val = value; 1501 break; 1502 case KCFG_UNKNOWN: 1503 case KCFG_INT: 1504 case KCFG_CHAR_ARR: 1505 default: 1506 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n", 1507 ext->name, value); 1508 return -EINVAL; 1509 } 1510 ext->is_set = true; 1511 return 0; 1512 } 1513 1514 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1515 const char *value) 1516 { 1517 size_t len; 1518 1519 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1520 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value); 1521 return -EINVAL; 1522 } 1523 1524 len = strlen(value); 1525 if (value[len - 1] != '"') { 1526 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1527 ext->name, value); 1528 return -EINVAL; 1529 } 1530 1531 /* strip quotes */ 1532 len -= 2; 1533 if (len >= ext->kcfg.sz) { 1534 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n", 1535 ext->name, value, len, ext->kcfg.sz - 1); 1536 len = ext->kcfg.sz - 1; 1537 } 1538 memcpy(ext_val, value + 1, len); 1539 ext_val[len] = '\0'; 1540 ext->is_set = true; 1541 return 0; 1542 } 1543 1544 static int parse_u64(const char *value, __u64 *res) 1545 { 1546 char *value_end; 1547 int err; 1548 1549 errno = 0; 1550 *res = strtoull(value, &value_end, 0); 1551 if (errno) { 1552 err = -errno; 1553 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1554 return err; 1555 } 1556 if (*value_end) { 1557 pr_warn("failed to parse '%s' as integer completely\n", value); 1558 return -EINVAL; 1559 } 1560 return 0; 1561 } 1562 1563 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1564 { 1565 int bit_sz = ext->kcfg.sz * 8; 1566 1567 if (ext->kcfg.sz == 8) 1568 return true; 1569 1570 /* Validate that value stored in u64 fits in integer of `ext->sz` 1571 * bytes size without any loss of information. If the target integer 1572 * is signed, we rely on the following limits of integer type of 1573 * Y bits and subsequent transformation: 1574 * 1575 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1576 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1577 * 0 <= X + 2^(Y-1) < 2^Y 1578 * 1579 * For unsigned target integer, check that all the (64 - Y) bits are 1580 * zero. 1581 */ 1582 if (ext->kcfg.is_signed) 1583 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1584 else 1585 return (v >> bit_sz) == 0; 1586 } 1587 1588 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1589 __u64 value) 1590 { 1591 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1592 pr_warn("extern (kcfg) %s=%llu should be integer\n", 1593 ext->name, (unsigned long long)value); 1594 return -EINVAL; 1595 } 1596 if (!is_kcfg_value_in_range(ext, value)) { 1597 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n", 1598 ext->name, (unsigned long long)value, ext->kcfg.sz); 1599 return -ERANGE; 1600 } 1601 switch (ext->kcfg.sz) { 1602 case 1: *(__u8 *)ext_val = value; break; 1603 case 2: *(__u16 *)ext_val = value; break; 1604 case 4: *(__u32 *)ext_val = value; break; 1605 case 8: *(__u64 *)ext_val = value; break; 1606 default: 1607 return -EINVAL; 1608 } 1609 ext->is_set = true; 1610 return 0; 1611 } 1612 1613 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1614 char *buf, void *data) 1615 { 1616 struct extern_desc *ext; 1617 char *sep, *value; 1618 int len, err = 0; 1619 void *ext_val; 1620 __u64 num; 1621 1622 if (strncmp(buf, "CONFIG_", 7)) 1623 return 0; 1624 1625 sep = strchr(buf, '='); 1626 if (!sep) { 1627 pr_warn("failed to parse '%s': no separator\n", buf); 1628 return -EINVAL; 1629 } 1630 1631 /* Trim ending '\n' */ 1632 len = strlen(buf); 1633 if (buf[len - 1] == '\n') 1634 buf[len - 1] = '\0'; 1635 /* Split on '=' and ensure that a value is present. */ 1636 *sep = '\0'; 1637 if (!sep[1]) { 1638 *sep = '='; 1639 pr_warn("failed to parse '%s': no value\n", buf); 1640 return -EINVAL; 1641 } 1642 1643 ext = find_extern_by_name(obj, buf); 1644 if (!ext || ext->is_set) 1645 return 0; 1646 1647 ext_val = data + ext->kcfg.data_off; 1648 value = sep + 1; 1649 1650 switch (*value) { 1651 case 'y': case 'n': case 'm': 1652 err = set_kcfg_value_tri(ext, ext_val, *value); 1653 break; 1654 case '"': 1655 err = set_kcfg_value_str(ext, ext_val, value); 1656 break; 1657 default: 1658 /* assume integer */ 1659 err = parse_u64(value, &num); 1660 if (err) { 1661 pr_warn("extern (kcfg) %s=%s should be integer\n", 1662 ext->name, value); 1663 return err; 1664 } 1665 err = set_kcfg_value_num(ext, ext_val, num); 1666 break; 1667 } 1668 if (err) 1669 return err; 1670 pr_debug("extern (kcfg) %s=%s\n", ext->name, value); 1671 return 0; 1672 } 1673 1674 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1675 { 1676 char buf[PATH_MAX]; 1677 struct utsname uts; 1678 int len, err = 0; 1679 gzFile file; 1680 1681 uname(&uts); 1682 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1683 if (len < 0) 1684 return -EINVAL; 1685 else if (len >= PATH_MAX) 1686 return -ENAMETOOLONG; 1687 1688 /* gzopen also accepts uncompressed files. */ 1689 file = gzopen(buf, "r"); 1690 if (!file) 1691 file = gzopen("/proc/config.gz", "r"); 1692 1693 if (!file) { 1694 pr_warn("failed to open system Kconfig\n"); 1695 return -ENOENT; 1696 } 1697 1698 while (gzgets(file, buf, sizeof(buf))) { 1699 err = bpf_object__process_kconfig_line(obj, buf, data); 1700 if (err) { 1701 pr_warn("error parsing system Kconfig line '%s': %d\n", 1702 buf, err); 1703 goto out; 1704 } 1705 } 1706 1707 out: 1708 gzclose(file); 1709 return err; 1710 } 1711 1712 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1713 const char *config, void *data) 1714 { 1715 char buf[PATH_MAX]; 1716 int err = 0; 1717 FILE *file; 1718 1719 file = fmemopen((void *)config, strlen(config), "r"); 1720 if (!file) { 1721 err = -errno; 1722 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1723 return err; 1724 } 1725 1726 while (fgets(buf, sizeof(buf), file)) { 1727 err = bpf_object__process_kconfig_line(obj, buf, data); 1728 if (err) { 1729 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1730 buf, err); 1731 break; 1732 } 1733 } 1734 1735 fclose(file); 1736 return err; 1737 } 1738 1739 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1740 { 1741 struct extern_desc *last_ext = NULL, *ext; 1742 size_t map_sz; 1743 int i, err; 1744 1745 for (i = 0; i < obj->nr_extern; i++) { 1746 ext = &obj->externs[i]; 1747 if (ext->type == EXT_KCFG) 1748 last_ext = ext; 1749 } 1750 1751 if (!last_ext) 1752 return 0; 1753 1754 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 1755 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1756 obj->efile.symbols_shndx, 1757 NULL, map_sz); 1758 if (err) 1759 return err; 1760 1761 obj->kconfig_map_idx = obj->nr_maps - 1; 1762 1763 return 0; 1764 } 1765 1766 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) 1767 { 1768 Elf_Data *symbols = obj->efile.symbols; 1769 int i, map_def_sz = 0, nr_maps = 0, nr_syms; 1770 Elf_Data *data = NULL; 1771 Elf_Scn *scn; 1772 1773 if (obj->efile.maps_shndx < 0) 1774 return 0; 1775 1776 if (!symbols) 1777 return -EINVAL; 1778 1779 1780 scn = elf_sec_by_idx(obj, obj->efile.maps_shndx); 1781 data = elf_sec_data(obj, scn); 1782 if (!scn || !data) { 1783 pr_warn("elf: failed to get legacy map definitions for %s\n", 1784 obj->path); 1785 return -EINVAL; 1786 } 1787 1788 /* 1789 * Count number of maps. Each map has a name. 1790 * Array of maps is not supported: only the first element is 1791 * considered. 1792 * 1793 * TODO: Detect array of map and report error. 1794 */ 1795 nr_syms = symbols->d_size / sizeof(GElf_Sym); 1796 for (i = 0; i < nr_syms; i++) { 1797 GElf_Sym sym; 1798 1799 if (!gelf_getsym(symbols, i, &sym)) 1800 continue; 1801 if (sym.st_shndx != obj->efile.maps_shndx) 1802 continue; 1803 nr_maps++; 1804 } 1805 /* Assume equally sized map definitions */ 1806 pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n", 1807 nr_maps, data->d_size, obj->path); 1808 1809 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) { 1810 pr_warn("elf: unable to determine legacy map definition size in %s\n", 1811 obj->path); 1812 return -EINVAL; 1813 } 1814 map_def_sz = data->d_size / nr_maps; 1815 1816 /* Fill obj->maps using data in "maps" section. */ 1817 for (i = 0; i < nr_syms; i++) { 1818 GElf_Sym sym; 1819 const char *map_name; 1820 struct bpf_map_def *def; 1821 struct bpf_map *map; 1822 1823 if (!gelf_getsym(symbols, i, &sym)) 1824 continue; 1825 if (sym.st_shndx != obj->efile.maps_shndx) 1826 continue; 1827 1828 map = bpf_object__add_map(obj); 1829 if (IS_ERR(map)) 1830 return PTR_ERR(map); 1831 1832 map_name = elf_sym_str(obj, sym.st_name); 1833 if (!map_name) { 1834 pr_warn("failed to get map #%d name sym string for obj %s\n", 1835 i, obj->path); 1836 return -LIBBPF_ERRNO__FORMAT; 1837 } 1838 1839 map->libbpf_type = LIBBPF_MAP_UNSPEC; 1840 map->sec_idx = sym.st_shndx; 1841 map->sec_offset = sym.st_value; 1842 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n", 1843 map_name, map->sec_idx, map->sec_offset); 1844 if (sym.st_value + map_def_sz > data->d_size) { 1845 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n", 1846 obj->path, map_name); 1847 return -EINVAL; 1848 } 1849 1850 map->name = strdup(map_name); 1851 if (!map->name) { 1852 pr_warn("failed to alloc map name\n"); 1853 return -ENOMEM; 1854 } 1855 pr_debug("map %d is \"%s\"\n", i, map->name); 1856 def = (struct bpf_map_def *)(data->d_buf + sym.st_value); 1857 /* 1858 * If the definition of the map in the object file fits in 1859 * bpf_map_def, copy it. Any extra fields in our version 1860 * of bpf_map_def will default to zero as a result of the 1861 * calloc above. 1862 */ 1863 if (map_def_sz <= sizeof(struct bpf_map_def)) { 1864 memcpy(&map->def, def, map_def_sz); 1865 } else { 1866 /* 1867 * Here the map structure being read is bigger than what 1868 * we expect, truncate if the excess bits are all zero. 1869 * If they are not zero, reject this map as 1870 * incompatible. 1871 */ 1872 char *b; 1873 1874 for (b = ((char *)def) + sizeof(struct bpf_map_def); 1875 b < ((char *)def) + map_def_sz; b++) { 1876 if (*b != 0) { 1877 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n", 1878 obj->path, map_name); 1879 if (strict) 1880 return -EINVAL; 1881 } 1882 } 1883 memcpy(&map->def, def, sizeof(struct bpf_map_def)); 1884 } 1885 } 1886 return 0; 1887 } 1888 1889 static const struct btf_type * 1890 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 1891 { 1892 const struct btf_type *t = btf__type_by_id(btf, id); 1893 1894 if (res_id) 1895 *res_id = id; 1896 1897 while (btf_is_mod(t) || btf_is_typedef(t)) { 1898 if (res_id) 1899 *res_id = t->type; 1900 t = btf__type_by_id(btf, t->type); 1901 } 1902 1903 return t; 1904 } 1905 1906 static const struct btf_type * 1907 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 1908 { 1909 const struct btf_type *t; 1910 1911 t = skip_mods_and_typedefs(btf, id, NULL); 1912 if (!btf_is_ptr(t)) 1913 return NULL; 1914 1915 t = skip_mods_and_typedefs(btf, t->type, res_id); 1916 1917 return btf_is_func_proto(t) ? t : NULL; 1918 } 1919 1920 static const char *btf_kind_str(const struct btf_type *t) 1921 { 1922 switch (btf_kind(t)) { 1923 case BTF_KIND_UNKN: return "void"; 1924 case BTF_KIND_INT: return "int"; 1925 case BTF_KIND_PTR: return "ptr"; 1926 case BTF_KIND_ARRAY: return "array"; 1927 case BTF_KIND_STRUCT: return "struct"; 1928 case BTF_KIND_UNION: return "union"; 1929 case BTF_KIND_ENUM: return "enum"; 1930 case BTF_KIND_FWD: return "fwd"; 1931 case BTF_KIND_TYPEDEF: return "typedef"; 1932 case BTF_KIND_VOLATILE: return "volatile"; 1933 case BTF_KIND_CONST: return "const"; 1934 case BTF_KIND_RESTRICT: return "restrict"; 1935 case BTF_KIND_FUNC: return "func"; 1936 case BTF_KIND_FUNC_PROTO: return "func_proto"; 1937 case BTF_KIND_VAR: return "var"; 1938 case BTF_KIND_DATASEC: return "datasec"; 1939 default: return "unknown"; 1940 } 1941 } 1942 1943 /* 1944 * Fetch integer attribute of BTF map definition. Such attributes are 1945 * represented using a pointer to an array, in which dimensionality of array 1946 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 1947 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 1948 * type definition, while using only sizeof(void *) space in ELF data section. 1949 */ 1950 static bool get_map_field_int(const char *map_name, const struct btf *btf, 1951 const struct btf_member *m, __u32 *res) 1952 { 1953 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 1954 const char *name = btf__name_by_offset(btf, m->name_off); 1955 const struct btf_array *arr_info; 1956 const struct btf_type *arr_t; 1957 1958 if (!btf_is_ptr(t)) { 1959 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 1960 map_name, name, btf_kind_str(t)); 1961 return false; 1962 } 1963 1964 arr_t = btf__type_by_id(btf, t->type); 1965 if (!arr_t) { 1966 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 1967 map_name, name, t->type); 1968 return false; 1969 } 1970 if (!btf_is_array(arr_t)) { 1971 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 1972 map_name, name, btf_kind_str(arr_t)); 1973 return false; 1974 } 1975 arr_info = btf_array(arr_t); 1976 *res = arr_info->nelems; 1977 return true; 1978 } 1979 1980 static int build_map_pin_path(struct bpf_map *map, const char *path) 1981 { 1982 char buf[PATH_MAX]; 1983 int len; 1984 1985 if (!path) 1986 path = "/sys/fs/bpf"; 1987 1988 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 1989 if (len < 0) 1990 return -EINVAL; 1991 else if (len >= PATH_MAX) 1992 return -ENAMETOOLONG; 1993 1994 return bpf_map__set_pin_path(map, buf); 1995 } 1996 1997 1998 static int parse_btf_map_def(struct bpf_object *obj, 1999 struct bpf_map *map, 2000 const struct btf_type *def, 2001 bool strict, bool is_inner, 2002 const char *pin_root_path) 2003 { 2004 const struct btf_type *t; 2005 const struct btf_member *m; 2006 int vlen, i; 2007 2008 vlen = btf_vlen(def); 2009 m = btf_members(def); 2010 for (i = 0; i < vlen; i++, m++) { 2011 const char *name = btf__name_by_offset(obj->btf, m->name_off); 2012 2013 if (!name) { 2014 pr_warn("map '%s': invalid field #%d.\n", map->name, i); 2015 return -EINVAL; 2016 } 2017 if (strcmp(name, "type") == 0) { 2018 if (!get_map_field_int(map->name, obj->btf, m, 2019 &map->def.type)) 2020 return -EINVAL; 2021 pr_debug("map '%s': found type = %u.\n", 2022 map->name, map->def.type); 2023 } else if (strcmp(name, "max_entries") == 0) { 2024 if (!get_map_field_int(map->name, obj->btf, m, 2025 &map->def.max_entries)) 2026 return -EINVAL; 2027 pr_debug("map '%s': found max_entries = %u.\n", 2028 map->name, map->def.max_entries); 2029 } else if (strcmp(name, "map_flags") == 0) { 2030 if (!get_map_field_int(map->name, obj->btf, m, 2031 &map->def.map_flags)) 2032 return -EINVAL; 2033 pr_debug("map '%s': found map_flags = %u.\n", 2034 map->name, map->def.map_flags); 2035 } else if (strcmp(name, "numa_node") == 0) { 2036 if (!get_map_field_int(map->name, obj->btf, m, &map->numa_node)) 2037 return -EINVAL; 2038 pr_debug("map '%s': found numa_node = %u.\n", map->name, map->numa_node); 2039 } else if (strcmp(name, "key_size") == 0) { 2040 __u32 sz; 2041 2042 if (!get_map_field_int(map->name, obj->btf, m, &sz)) 2043 return -EINVAL; 2044 pr_debug("map '%s': found key_size = %u.\n", 2045 map->name, sz); 2046 if (map->def.key_size && map->def.key_size != sz) { 2047 pr_warn("map '%s': conflicting key size %u != %u.\n", 2048 map->name, map->def.key_size, sz); 2049 return -EINVAL; 2050 } 2051 map->def.key_size = sz; 2052 } else if (strcmp(name, "key") == 0) { 2053 __s64 sz; 2054 2055 t = btf__type_by_id(obj->btf, m->type); 2056 if (!t) { 2057 pr_warn("map '%s': key type [%d] not found.\n", 2058 map->name, m->type); 2059 return -EINVAL; 2060 } 2061 if (!btf_is_ptr(t)) { 2062 pr_warn("map '%s': key spec is not PTR: %s.\n", 2063 map->name, btf_kind_str(t)); 2064 return -EINVAL; 2065 } 2066 sz = btf__resolve_size(obj->btf, t->type); 2067 if (sz < 0) { 2068 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2069 map->name, t->type, (ssize_t)sz); 2070 return sz; 2071 } 2072 pr_debug("map '%s': found key [%u], sz = %zd.\n", 2073 map->name, t->type, (ssize_t)sz); 2074 if (map->def.key_size && map->def.key_size != sz) { 2075 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2076 map->name, map->def.key_size, (ssize_t)sz); 2077 return -EINVAL; 2078 } 2079 map->def.key_size = sz; 2080 map->btf_key_type_id = t->type; 2081 } else if (strcmp(name, "value_size") == 0) { 2082 __u32 sz; 2083 2084 if (!get_map_field_int(map->name, obj->btf, m, &sz)) 2085 return -EINVAL; 2086 pr_debug("map '%s': found value_size = %u.\n", 2087 map->name, sz); 2088 if (map->def.value_size && map->def.value_size != sz) { 2089 pr_warn("map '%s': conflicting value size %u != %u.\n", 2090 map->name, map->def.value_size, sz); 2091 return -EINVAL; 2092 } 2093 map->def.value_size = sz; 2094 } else if (strcmp(name, "value") == 0) { 2095 __s64 sz; 2096 2097 t = btf__type_by_id(obj->btf, m->type); 2098 if (!t) { 2099 pr_warn("map '%s': value type [%d] not found.\n", 2100 map->name, m->type); 2101 return -EINVAL; 2102 } 2103 if (!btf_is_ptr(t)) { 2104 pr_warn("map '%s': value spec is not PTR: %s.\n", 2105 map->name, btf_kind_str(t)); 2106 return -EINVAL; 2107 } 2108 sz = btf__resolve_size(obj->btf, t->type); 2109 if (sz < 0) { 2110 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2111 map->name, t->type, (ssize_t)sz); 2112 return sz; 2113 } 2114 pr_debug("map '%s': found value [%u], sz = %zd.\n", 2115 map->name, t->type, (ssize_t)sz); 2116 if (map->def.value_size && map->def.value_size != sz) { 2117 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2118 map->name, map->def.value_size, (ssize_t)sz); 2119 return -EINVAL; 2120 } 2121 map->def.value_size = sz; 2122 map->btf_value_type_id = t->type; 2123 } 2124 else if (strcmp(name, "values") == 0) { 2125 int err; 2126 2127 if (is_inner) { 2128 pr_warn("map '%s': multi-level inner maps not supported.\n", 2129 map->name); 2130 return -ENOTSUP; 2131 } 2132 if (i != vlen - 1) { 2133 pr_warn("map '%s': '%s' member should be last.\n", 2134 map->name, name); 2135 return -EINVAL; 2136 } 2137 if (!bpf_map_type__is_map_in_map(map->def.type)) { 2138 pr_warn("map '%s': should be map-in-map.\n", 2139 map->name); 2140 return -ENOTSUP; 2141 } 2142 if (map->def.value_size && map->def.value_size != 4) { 2143 pr_warn("map '%s': conflicting value size %u != 4.\n", 2144 map->name, map->def.value_size); 2145 return -EINVAL; 2146 } 2147 map->def.value_size = 4; 2148 t = btf__type_by_id(obj->btf, m->type); 2149 if (!t) { 2150 pr_warn("map '%s': map-in-map inner type [%d] not found.\n", 2151 map->name, m->type); 2152 return -EINVAL; 2153 } 2154 if (!btf_is_array(t) || btf_array(t)->nelems) { 2155 pr_warn("map '%s': map-in-map inner spec is not a zero-sized array.\n", 2156 map->name); 2157 return -EINVAL; 2158 } 2159 t = skip_mods_and_typedefs(obj->btf, btf_array(t)->type, 2160 NULL); 2161 if (!btf_is_ptr(t)) { 2162 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2163 map->name, btf_kind_str(t)); 2164 return -EINVAL; 2165 } 2166 t = skip_mods_and_typedefs(obj->btf, t->type, NULL); 2167 if (!btf_is_struct(t)) { 2168 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2169 map->name, btf_kind_str(t)); 2170 return -EINVAL; 2171 } 2172 2173 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2174 if (!map->inner_map) 2175 return -ENOMEM; 2176 map->inner_map->sec_idx = obj->efile.btf_maps_shndx; 2177 map->inner_map->name = malloc(strlen(map->name) + 2178 sizeof(".inner") + 1); 2179 if (!map->inner_map->name) 2180 return -ENOMEM; 2181 sprintf(map->inner_map->name, "%s.inner", map->name); 2182 2183 err = parse_btf_map_def(obj, map->inner_map, t, strict, 2184 true /* is_inner */, NULL); 2185 if (err) 2186 return err; 2187 } else if (strcmp(name, "pinning") == 0) { 2188 __u32 val; 2189 int err; 2190 2191 if (is_inner) { 2192 pr_debug("map '%s': inner def can't be pinned.\n", 2193 map->name); 2194 return -EINVAL; 2195 } 2196 if (!get_map_field_int(map->name, obj->btf, m, &val)) 2197 return -EINVAL; 2198 pr_debug("map '%s': found pinning = %u.\n", 2199 map->name, val); 2200 2201 if (val != LIBBPF_PIN_NONE && 2202 val != LIBBPF_PIN_BY_NAME) { 2203 pr_warn("map '%s': invalid pinning value %u.\n", 2204 map->name, val); 2205 return -EINVAL; 2206 } 2207 if (val == LIBBPF_PIN_BY_NAME) { 2208 err = build_map_pin_path(map, pin_root_path); 2209 if (err) { 2210 pr_warn("map '%s': couldn't build pin path.\n", 2211 map->name); 2212 return err; 2213 } 2214 } 2215 } else { 2216 if (strict) { 2217 pr_warn("map '%s': unknown field '%s'.\n", 2218 map->name, name); 2219 return -ENOTSUP; 2220 } 2221 pr_debug("map '%s': ignoring unknown field '%s'.\n", 2222 map->name, name); 2223 } 2224 } 2225 2226 if (map->def.type == BPF_MAP_TYPE_UNSPEC) { 2227 pr_warn("map '%s': map type isn't specified.\n", map->name); 2228 return -EINVAL; 2229 } 2230 2231 return 0; 2232 } 2233 2234 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2235 const struct btf_type *sec, 2236 int var_idx, int sec_idx, 2237 const Elf_Data *data, bool strict, 2238 const char *pin_root_path) 2239 { 2240 const struct btf_type *var, *def; 2241 const struct btf_var_secinfo *vi; 2242 const struct btf_var *var_extra; 2243 const char *map_name; 2244 struct bpf_map *map; 2245 2246 vi = btf_var_secinfos(sec) + var_idx; 2247 var = btf__type_by_id(obj->btf, vi->type); 2248 var_extra = btf_var(var); 2249 map_name = btf__name_by_offset(obj->btf, var->name_off); 2250 2251 if (map_name == NULL || map_name[0] == '\0') { 2252 pr_warn("map #%d: empty name.\n", var_idx); 2253 return -EINVAL; 2254 } 2255 if ((__u64)vi->offset + vi->size > data->d_size) { 2256 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2257 return -EINVAL; 2258 } 2259 if (!btf_is_var(var)) { 2260 pr_warn("map '%s': unexpected var kind %s.\n", 2261 map_name, btf_kind_str(var)); 2262 return -EINVAL; 2263 } 2264 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED && 2265 var_extra->linkage != BTF_VAR_STATIC) { 2266 pr_warn("map '%s': unsupported var linkage %u.\n", 2267 map_name, var_extra->linkage); 2268 return -EOPNOTSUPP; 2269 } 2270 2271 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2272 if (!btf_is_struct(def)) { 2273 pr_warn("map '%s': unexpected def kind %s.\n", 2274 map_name, btf_kind_str(var)); 2275 return -EINVAL; 2276 } 2277 if (def->size > vi->size) { 2278 pr_warn("map '%s': invalid def size.\n", map_name); 2279 return -EINVAL; 2280 } 2281 2282 map = bpf_object__add_map(obj); 2283 if (IS_ERR(map)) 2284 return PTR_ERR(map); 2285 map->name = strdup(map_name); 2286 if (!map->name) { 2287 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2288 return -ENOMEM; 2289 } 2290 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2291 map->def.type = BPF_MAP_TYPE_UNSPEC; 2292 map->sec_idx = sec_idx; 2293 map->sec_offset = vi->offset; 2294 map->btf_var_idx = var_idx; 2295 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2296 map_name, map->sec_idx, map->sec_offset); 2297 2298 return parse_btf_map_def(obj, map, def, strict, false, pin_root_path); 2299 } 2300 2301 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2302 const char *pin_root_path) 2303 { 2304 const struct btf_type *sec = NULL; 2305 int nr_types, i, vlen, err; 2306 const struct btf_type *t; 2307 const char *name; 2308 Elf_Data *data; 2309 Elf_Scn *scn; 2310 2311 if (obj->efile.btf_maps_shndx < 0) 2312 return 0; 2313 2314 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2315 data = elf_sec_data(obj, scn); 2316 if (!scn || !data) { 2317 pr_warn("elf: failed to get %s map definitions for %s\n", 2318 MAPS_ELF_SEC, obj->path); 2319 return -EINVAL; 2320 } 2321 2322 nr_types = btf__get_nr_types(obj->btf); 2323 for (i = 1; i <= nr_types; i++) { 2324 t = btf__type_by_id(obj->btf, i); 2325 if (!btf_is_datasec(t)) 2326 continue; 2327 name = btf__name_by_offset(obj->btf, t->name_off); 2328 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2329 sec = t; 2330 obj->efile.btf_maps_sec_btf_id = i; 2331 break; 2332 } 2333 } 2334 2335 if (!sec) { 2336 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2337 return -ENOENT; 2338 } 2339 2340 vlen = btf_vlen(sec); 2341 for (i = 0; i < vlen; i++) { 2342 err = bpf_object__init_user_btf_map(obj, sec, i, 2343 obj->efile.btf_maps_shndx, 2344 data, strict, 2345 pin_root_path); 2346 if (err) 2347 return err; 2348 } 2349 2350 return 0; 2351 } 2352 2353 static int bpf_object__init_maps(struct bpf_object *obj, 2354 const struct bpf_object_open_opts *opts) 2355 { 2356 const char *pin_root_path; 2357 bool strict; 2358 int err; 2359 2360 strict = !OPTS_GET(opts, relaxed_maps, false); 2361 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2362 2363 err = bpf_object__init_user_maps(obj, strict); 2364 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2365 err = err ?: bpf_object__init_global_data_maps(obj); 2366 err = err ?: bpf_object__init_kconfig_map(obj); 2367 err = err ?: bpf_object__init_struct_ops_maps(obj); 2368 if (err) 2369 return err; 2370 2371 return 0; 2372 } 2373 2374 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2375 { 2376 GElf_Shdr sh; 2377 2378 if (elf_sec_hdr(obj, elf_sec_by_idx(obj, idx), &sh)) 2379 return false; 2380 2381 return sh.sh_flags & SHF_EXECINSTR; 2382 } 2383 2384 static bool btf_needs_sanitization(struct bpf_object *obj) 2385 { 2386 bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC); 2387 bool has_datasec = kernel_supports(FEAT_BTF_DATASEC); 2388 bool has_func = kernel_supports(FEAT_BTF_FUNC); 2389 2390 return !has_func || !has_datasec || !has_func_global; 2391 } 2392 2393 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2394 { 2395 bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC); 2396 bool has_datasec = kernel_supports(FEAT_BTF_DATASEC); 2397 bool has_func = kernel_supports(FEAT_BTF_FUNC); 2398 struct btf_type *t; 2399 int i, j, vlen; 2400 2401 for (i = 1; i <= btf__get_nr_types(btf); i++) { 2402 t = (struct btf_type *)btf__type_by_id(btf, i); 2403 2404 if (!has_datasec && btf_is_var(t)) { 2405 /* replace VAR with INT */ 2406 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2407 /* 2408 * using size = 1 is the safest choice, 4 will be too 2409 * big and cause kernel BTF validation failure if 2410 * original variable took less than 4 bytes 2411 */ 2412 t->size = 1; 2413 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2414 } else if (!has_datasec && btf_is_datasec(t)) { 2415 /* replace DATASEC with STRUCT */ 2416 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2417 struct btf_member *m = btf_members(t); 2418 struct btf_type *vt; 2419 char *name; 2420 2421 name = (char *)btf__name_by_offset(btf, t->name_off); 2422 while (*name) { 2423 if (*name == '.') 2424 *name = '_'; 2425 name++; 2426 } 2427 2428 vlen = btf_vlen(t); 2429 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2430 for (j = 0; j < vlen; j++, v++, m++) { 2431 /* order of field assignments is important */ 2432 m->offset = v->offset * 8; 2433 m->type = v->type; 2434 /* preserve variable name as member name */ 2435 vt = (void *)btf__type_by_id(btf, v->type); 2436 m->name_off = vt->name_off; 2437 } 2438 } else if (!has_func && btf_is_func_proto(t)) { 2439 /* replace FUNC_PROTO with ENUM */ 2440 vlen = btf_vlen(t); 2441 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2442 t->size = sizeof(__u32); /* kernel enforced */ 2443 } else if (!has_func && btf_is_func(t)) { 2444 /* replace FUNC with TYPEDEF */ 2445 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2446 } else if (!has_func_global && btf_is_func(t)) { 2447 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2448 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2449 } 2450 } 2451 } 2452 2453 static bool libbpf_needs_btf(const struct bpf_object *obj) 2454 { 2455 return obj->efile.btf_maps_shndx >= 0 || 2456 obj->efile.st_ops_shndx >= 0 || 2457 obj->nr_extern > 0; 2458 } 2459 2460 static bool kernel_needs_btf(const struct bpf_object *obj) 2461 { 2462 return obj->efile.st_ops_shndx >= 0; 2463 } 2464 2465 static int bpf_object__init_btf(struct bpf_object *obj, 2466 Elf_Data *btf_data, 2467 Elf_Data *btf_ext_data) 2468 { 2469 int err = -ENOENT; 2470 2471 if (btf_data) { 2472 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2473 if (IS_ERR(obj->btf)) { 2474 err = PTR_ERR(obj->btf); 2475 obj->btf = NULL; 2476 pr_warn("Error loading ELF section %s: %d.\n", 2477 BTF_ELF_SEC, err); 2478 goto out; 2479 } 2480 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2481 btf__set_pointer_size(obj->btf, 8); 2482 err = 0; 2483 } 2484 if (btf_ext_data) { 2485 if (!obj->btf) { 2486 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2487 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2488 goto out; 2489 } 2490 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, 2491 btf_ext_data->d_size); 2492 if (IS_ERR(obj->btf_ext)) { 2493 pr_warn("Error loading ELF section %s: %ld. Ignored and continue.\n", 2494 BTF_EXT_ELF_SEC, PTR_ERR(obj->btf_ext)); 2495 obj->btf_ext = NULL; 2496 goto out; 2497 } 2498 } 2499 out: 2500 if (err && libbpf_needs_btf(obj)) { 2501 pr_warn("BTF is required, but is missing or corrupted.\n"); 2502 return err; 2503 } 2504 return 0; 2505 } 2506 2507 static int bpf_object__finalize_btf(struct bpf_object *obj) 2508 { 2509 int err; 2510 2511 if (!obj->btf) 2512 return 0; 2513 2514 err = btf__finalize_data(obj, obj->btf); 2515 if (err) { 2516 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2517 return err; 2518 } 2519 2520 return 0; 2521 } 2522 2523 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 2524 { 2525 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 2526 prog->type == BPF_PROG_TYPE_LSM) 2527 return true; 2528 2529 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2530 * also need vmlinux BTF 2531 */ 2532 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2533 return true; 2534 2535 return false; 2536 } 2537 2538 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 2539 { 2540 struct bpf_program *prog; 2541 int i; 2542 2543 /* CO-RE relocations need kernel BTF */ 2544 if (obj->btf_ext && obj->btf_ext->core_relo_info.len) 2545 return true; 2546 2547 /* Support for typed ksyms needs kernel BTF */ 2548 for (i = 0; i < obj->nr_extern; i++) { 2549 const struct extern_desc *ext; 2550 2551 ext = &obj->externs[i]; 2552 if (ext->type == EXT_KSYM && ext->ksym.type_id) 2553 return true; 2554 } 2555 2556 bpf_object__for_each_program(prog, obj) { 2557 if (!prog->load) 2558 continue; 2559 if (prog_needs_vmlinux_btf(prog)) 2560 return true; 2561 } 2562 2563 return false; 2564 } 2565 2566 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 2567 { 2568 int err; 2569 2570 /* btf_vmlinux could be loaded earlier */ 2571 if (obj->btf_vmlinux) 2572 return 0; 2573 2574 if (!force && !obj_needs_vmlinux_btf(obj)) 2575 return 0; 2576 2577 obj->btf_vmlinux = libbpf_find_kernel_btf(); 2578 if (IS_ERR(obj->btf_vmlinux)) { 2579 err = PTR_ERR(obj->btf_vmlinux); 2580 pr_warn("Error loading vmlinux BTF: %d\n", err); 2581 obj->btf_vmlinux = NULL; 2582 return err; 2583 } 2584 return 0; 2585 } 2586 2587 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 2588 { 2589 struct btf *kern_btf = obj->btf; 2590 bool btf_mandatory, sanitize; 2591 int err = 0; 2592 2593 if (!obj->btf) 2594 return 0; 2595 2596 if (!kernel_supports(FEAT_BTF)) { 2597 if (kernel_needs_btf(obj)) { 2598 err = -EOPNOTSUPP; 2599 goto report; 2600 } 2601 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 2602 return 0; 2603 } 2604 2605 sanitize = btf_needs_sanitization(obj); 2606 if (sanitize) { 2607 const void *raw_data; 2608 __u32 sz; 2609 2610 /* clone BTF to sanitize a copy and leave the original intact */ 2611 raw_data = btf__get_raw_data(obj->btf, &sz); 2612 kern_btf = btf__new(raw_data, sz); 2613 if (IS_ERR(kern_btf)) 2614 return PTR_ERR(kern_btf); 2615 2616 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2617 btf__set_pointer_size(obj->btf, 8); 2618 bpf_object__sanitize_btf(obj, kern_btf); 2619 } 2620 2621 err = btf__load(kern_btf); 2622 if (sanitize) { 2623 if (!err) { 2624 /* move fd to libbpf's BTF */ 2625 btf__set_fd(obj->btf, btf__fd(kern_btf)); 2626 btf__set_fd(kern_btf, -1); 2627 } 2628 btf__free(kern_btf); 2629 } 2630 report: 2631 if (err) { 2632 btf_mandatory = kernel_needs_btf(obj); 2633 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 2634 btf_mandatory ? "BTF is mandatory, can't proceed." 2635 : "BTF is optional, ignoring."); 2636 if (!btf_mandatory) 2637 err = 0; 2638 } 2639 return err; 2640 } 2641 2642 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 2643 { 2644 const char *name; 2645 2646 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 2647 if (!name) { 2648 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 2649 off, obj->path, elf_errmsg(-1)); 2650 return NULL; 2651 } 2652 2653 return name; 2654 } 2655 2656 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 2657 { 2658 const char *name; 2659 2660 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 2661 if (!name) { 2662 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 2663 off, obj->path, elf_errmsg(-1)); 2664 return NULL; 2665 } 2666 2667 return name; 2668 } 2669 2670 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 2671 { 2672 Elf_Scn *scn; 2673 2674 scn = elf_getscn(obj->efile.elf, idx); 2675 if (!scn) { 2676 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 2677 idx, obj->path, elf_errmsg(-1)); 2678 return NULL; 2679 } 2680 return scn; 2681 } 2682 2683 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 2684 { 2685 Elf_Scn *scn = NULL; 2686 Elf *elf = obj->efile.elf; 2687 const char *sec_name; 2688 2689 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2690 sec_name = elf_sec_name(obj, scn); 2691 if (!sec_name) 2692 return NULL; 2693 2694 if (strcmp(sec_name, name) != 0) 2695 continue; 2696 2697 return scn; 2698 } 2699 return NULL; 2700 } 2701 2702 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr) 2703 { 2704 if (!scn) 2705 return -EINVAL; 2706 2707 if (gelf_getshdr(scn, hdr) != hdr) { 2708 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 2709 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 2710 return -EINVAL; 2711 } 2712 2713 return 0; 2714 } 2715 2716 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 2717 { 2718 const char *name; 2719 GElf_Shdr sh; 2720 2721 if (!scn) 2722 return NULL; 2723 2724 if (elf_sec_hdr(obj, scn, &sh)) 2725 return NULL; 2726 2727 name = elf_sec_str(obj, sh.sh_name); 2728 if (!name) { 2729 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 2730 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 2731 return NULL; 2732 } 2733 2734 return name; 2735 } 2736 2737 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 2738 { 2739 Elf_Data *data; 2740 2741 if (!scn) 2742 return NULL; 2743 2744 data = elf_getdata(scn, 0); 2745 if (!data) { 2746 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 2747 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 2748 obj->path, elf_errmsg(-1)); 2749 return NULL; 2750 } 2751 2752 return data; 2753 } 2754 2755 static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx, 2756 size_t off, __u32 sym_type, GElf_Sym *sym) 2757 { 2758 Elf_Data *symbols = obj->efile.symbols; 2759 size_t n = symbols->d_size / sizeof(GElf_Sym); 2760 int i; 2761 2762 for (i = 0; i < n; i++) { 2763 if (!gelf_getsym(symbols, i, sym)) 2764 continue; 2765 if (sym->st_shndx != sec_idx || sym->st_value != off) 2766 continue; 2767 if (GELF_ST_TYPE(sym->st_info) != sym_type) 2768 continue; 2769 return 0; 2770 } 2771 2772 return -ENOENT; 2773 } 2774 2775 static bool is_sec_name_dwarf(const char *name) 2776 { 2777 /* approximation, but the actual list is too long */ 2778 return strncmp(name, ".debug_", sizeof(".debug_") - 1) == 0; 2779 } 2780 2781 static bool ignore_elf_section(GElf_Shdr *hdr, const char *name) 2782 { 2783 /* no special handling of .strtab */ 2784 if (hdr->sh_type == SHT_STRTAB) 2785 return true; 2786 2787 /* ignore .llvm_addrsig section as well */ 2788 if (hdr->sh_type == 0x6FFF4C03 /* SHT_LLVM_ADDRSIG */) 2789 return true; 2790 2791 /* no subprograms will lead to an empty .text section, ignore it */ 2792 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 2793 strcmp(name, ".text") == 0) 2794 return true; 2795 2796 /* DWARF sections */ 2797 if (is_sec_name_dwarf(name)) 2798 return true; 2799 2800 if (strncmp(name, ".rel", sizeof(".rel") - 1) == 0) { 2801 name += sizeof(".rel") - 1; 2802 /* DWARF section relocations */ 2803 if (is_sec_name_dwarf(name)) 2804 return true; 2805 2806 /* .BTF and .BTF.ext don't need relocations */ 2807 if (strcmp(name, BTF_ELF_SEC) == 0 || 2808 strcmp(name, BTF_EXT_ELF_SEC) == 0) 2809 return true; 2810 } 2811 2812 return false; 2813 } 2814 2815 static int cmp_progs(const void *_a, const void *_b) 2816 { 2817 const struct bpf_program *a = _a; 2818 const struct bpf_program *b = _b; 2819 2820 if (a->sec_idx != b->sec_idx) 2821 return a->sec_idx < b->sec_idx ? -1 : 1; 2822 2823 /* sec_insn_off can't be the same within the section */ 2824 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 2825 } 2826 2827 static int bpf_object__elf_collect(struct bpf_object *obj) 2828 { 2829 Elf *elf = obj->efile.elf; 2830 Elf_Data *btf_ext_data = NULL; 2831 Elf_Data *btf_data = NULL; 2832 int idx = 0, err = 0; 2833 const char *name; 2834 Elf_Data *data; 2835 Elf_Scn *scn; 2836 GElf_Shdr sh; 2837 2838 /* a bunch of ELF parsing functionality depends on processing symbols, 2839 * so do the first pass and find the symbol table 2840 */ 2841 scn = NULL; 2842 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2843 if (elf_sec_hdr(obj, scn, &sh)) 2844 return -LIBBPF_ERRNO__FORMAT; 2845 2846 if (sh.sh_type == SHT_SYMTAB) { 2847 if (obj->efile.symbols) { 2848 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 2849 return -LIBBPF_ERRNO__FORMAT; 2850 } 2851 2852 data = elf_sec_data(obj, scn); 2853 if (!data) 2854 return -LIBBPF_ERRNO__FORMAT; 2855 2856 obj->efile.symbols = data; 2857 obj->efile.symbols_shndx = elf_ndxscn(scn); 2858 obj->efile.strtabidx = sh.sh_link; 2859 } 2860 } 2861 2862 scn = NULL; 2863 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2864 idx++; 2865 2866 if (elf_sec_hdr(obj, scn, &sh)) 2867 return -LIBBPF_ERRNO__FORMAT; 2868 2869 name = elf_sec_str(obj, sh.sh_name); 2870 if (!name) 2871 return -LIBBPF_ERRNO__FORMAT; 2872 2873 if (ignore_elf_section(&sh, name)) 2874 continue; 2875 2876 data = elf_sec_data(obj, scn); 2877 if (!data) 2878 return -LIBBPF_ERRNO__FORMAT; 2879 2880 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 2881 idx, name, (unsigned long)data->d_size, 2882 (int)sh.sh_link, (unsigned long)sh.sh_flags, 2883 (int)sh.sh_type); 2884 2885 if (strcmp(name, "license") == 0) { 2886 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 2887 if (err) 2888 return err; 2889 } else if (strcmp(name, "version") == 0) { 2890 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 2891 if (err) 2892 return err; 2893 } else if (strcmp(name, "maps") == 0) { 2894 obj->efile.maps_shndx = idx; 2895 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 2896 obj->efile.btf_maps_shndx = idx; 2897 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 2898 btf_data = data; 2899 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 2900 btf_ext_data = data; 2901 } else if (sh.sh_type == SHT_SYMTAB) { 2902 /* already processed during the first pass above */ 2903 } else if (sh.sh_type == SHT_PROGBITS && data->d_size > 0) { 2904 if (sh.sh_flags & SHF_EXECINSTR) { 2905 if (strcmp(name, ".text") == 0) 2906 obj->efile.text_shndx = idx; 2907 err = bpf_object__add_programs(obj, data, name, idx); 2908 if (err) 2909 return err; 2910 } else if (strcmp(name, DATA_SEC) == 0) { 2911 obj->efile.data = data; 2912 obj->efile.data_shndx = idx; 2913 } else if (strcmp(name, RODATA_SEC) == 0) { 2914 obj->efile.rodata = data; 2915 obj->efile.rodata_shndx = idx; 2916 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 2917 obj->efile.st_ops_data = data; 2918 obj->efile.st_ops_shndx = idx; 2919 } else { 2920 pr_info("elf: skipping unrecognized data section(%d) %s\n", 2921 idx, name); 2922 } 2923 } else if (sh.sh_type == SHT_REL) { 2924 int nr_sects = obj->efile.nr_reloc_sects; 2925 void *sects = obj->efile.reloc_sects; 2926 int sec = sh.sh_info; /* points to other section */ 2927 2928 /* Only do relo for section with exec instructions */ 2929 if (!section_have_execinstr(obj, sec) && 2930 strcmp(name, ".rel" STRUCT_OPS_SEC) && 2931 strcmp(name, ".rel" MAPS_ELF_SEC)) { 2932 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 2933 idx, name, sec, 2934 elf_sec_name(obj, elf_sec_by_idx(obj, sec)) ?: "<?>"); 2935 continue; 2936 } 2937 2938 sects = libbpf_reallocarray(sects, nr_sects + 1, 2939 sizeof(*obj->efile.reloc_sects)); 2940 if (!sects) 2941 return -ENOMEM; 2942 2943 obj->efile.reloc_sects = sects; 2944 obj->efile.nr_reloc_sects++; 2945 2946 obj->efile.reloc_sects[nr_sects].shdr = sh; 2947 obj->efile.reloc_sects[nr_sects].data = data; 2948 } else if (sh.sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 2949 obj->efile.bss = data; 2950 obj->efile.bss_shndx = idx; 2951 } else { 2952 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 2953 (size_t)sh.sh_size); 2954 } 2955 } 2956 2957 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 2958 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 2959 return -LIBBPF_ERRNO__FORMAT; 2960 } 2961 2962 /* sort BPF programs by section name and in-section instruction offset 2963 * for faster search */ 2964 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 2965 2966 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 2967 } 2968 2969 static bool sym_is_extern(const GElf_Sym *sym) 2970 { 2971 int bind = GELF_ST_BIND(sym->st_info); 2972 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 2973 return sym->st_shndx == SHN_UNDEF && 2974 (bind == STB_GLOBAL || bind == STB_WEAK) && 2975 GELF_ST_TYPE(sym->st_info) == STT_NOTYPE; 2976 } 2977 2978 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 2979 { 2980 const struct btf_type *t; 2981 const char *var_name; 2982 int i, n; 2983 2984 if (!btf) 2985 return -ESRCH; 2986 2987 n = btf__get_nr_types(btf); 2988 for (i = 1; i <= n; i++) { 2989 t = btf__type_by_id(btf, i); 2990 2991 if (!btf_is_var(t)) 2992 continue; 2993 2994 var_name = btf__name_by_offset(btf, t->name_off); 2995 if (strcmp(var_name, ext_name)) 2996 continue; 2997 2998 if (btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 2999 return -EINVAL; 3000 3001 return i; 3002 } 3003 3004 return -ENOENT; 3005 } 3006 3007 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3008 const struct btf_var_secinfo *vs; 3009 const struct btf_type *t; 3010 int i, j, n; 3011 3012 if (!btf) 3013 return -ESRCH; 3014 3015 n = btf__get_nr_types(btf); 3016 for (i = 1; i <= n; i++) { 3017 t = btf__type_by_id(btf, i); 3018 3019 if (!btf_is_datasec(t)) 3020 continue; 3021 3022 vs = btf_var_secinfos(t); 3023 for (j = 0; j < btf_vlen(t); j++, vs++) { 3024 if (vs->type == ext_btf_id) 3025 return i; 3026 } 3027 } 3028 3029 return -ENOENT; 3030 } 3031 3032 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3033 bool *is_signed) 3034 { 3035 const struct btf_type *t; 3036 const char *name; 3037 3038 t = skip_mods_and_typedefs(btf, id, NULL); 3039 name = btf__name_by_offset(btf, t->name_off); 3040 3041 if (is_signed) 3042 *is_signed = false; 3043 switch (btf_kind(t)) { 3044 case BTF_KIND_INT: { 3045 int enc = btf_int_encoding(t); 3046 3047 if (enc & BTF_INT_BOOL) 3048 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3049 if (is_signed) 3050 *is_signed = enc & BTF_INT_SIGNED; 3051 if (t->size == 1) 3052 return KCFG_CHAR; 3053 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3054 return KCFG_UNKNOWN; 3055 return KCFG_INT; 3056 } 3057 case BTF_KIND_ENUM: 3058 if (t->size != 4) 3059 return KCFG_UNKNOWN; 3060 if (strcmp(name, "libbpf_tristate")) 3061 return KCFG_UNKNOWN; 3062 return KCFG_TRISTATE; 3063 case BTF_KIND_ARRAY: 3064 if (btf_array(t)->nelems == 0) 3065 return KCFG_UNKNOWN; 3066 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3067 return KCFG_UNKNOWN; 3068 return KCFG_CHAR_ARR; 3069 default: 3070 return KCFG_UNKNOWN; 3071 } 3072 } 3073 3074 static int cmp_externs(const void *_a, const void *_b) 3075 { 3076 const struct extern_desc *a = _a; 3077 const struct extern_desc *b = _b; 3078 3079 if (a->type != b->type) 3080 return a->type < b->type ? -1 : 1; 3081 3082 if (a->type == EXT_KCFG) { 3083 /* descending order by alignment requirements */ 3084 if (a->kcfg.align != b->kcfg.align) 3085 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3086 /* ascending order by size, within same alignment class */ 3087 if (a->kcfg.sz != b->kcfg.sz) 3088 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3089 } 3090 3091 /* resolve ties by name */ 3092 return strcmp(a->name, b->name); 3093 } 3094 3095 static int find_int_btf_id(const struct btf *btf) 3096 { 3097 const struct btf_type *t; 3098 int i, n; 3099 3100 n = btf__get_nr_types(btf); 3101 for (i = 1; i <= n; i++) { 3102 t = btf__type_by_id(btf, i); 3103 3104 if (btf_is_int(t) && btf_int_bits(t) == 32) 3105 return i; 3106 } 3107 3108 return 0; 3109 } 3110 3111 static int bpf_object__collect_externs(struct bpf_object *obj) 3112 { 3113 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3114 const struct btf_type *t; 3115 struct extern_desc *ext; 3116 int i, n, off; 3117 const char *ext_name, *sec_name; 3118 Elf_Scn *scn; 3119 GElf_Shdr sh; 3120 3121 if (!obj->efile.symbols) 3122 return 0; 3123 3124 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3125 if (elf_sec_hdr(obj, scn, &sh)) 3126 return -LIBBPF_ERRNO__FORMAT; 3127 3128 n = sh.sh_size / sh.sh_entsize; 3129 pr_debug("looking for externs among %d symbols...\n", n); 3130 3131 for (i = 0; i < n; i++) { 3132 GElf_Sym sym; 3133 3134 if (!gelf_getsym(obj->efile.symbols, i, &sym)) 3135 return -LIBBPF_ERRNO__FORMAT; 3136 if (!sym_is_extern(&sym)) 3137 continue; 3138 ext_name = elf_sym_str(obj, sym.st_name); 3139 if (!ext_name || !ext_name[0]) 3140 continue; 3141 3142 ext = obj->externs; 3143 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3144 if (!ext) 3145 return -ENOMEM; 3146 obj->externs = ext; 3147 ext = &ext[obj->nr_extern]; 3148 memset(ext, 0, sizeof(*ext)); 3149 obj->nr_extern++; 3150 3151 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3152 if (ext->btf_id <= 0) { 3153 pr_warn("failed to find BTF for extern '%s': %d\n", 3154 ext_name, ext->btf_id); 3155 return ext->btf_id; 3156 } 3157 t = btf__type_by_id(obj->btf, ext->btf_id); 3158 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3159 ext->sym_idx = i; 3160 ext->is_weak = GELF_ST_BIND(sym.st_info) == STB_WEAK; 3161 3162 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3163 if (ext->sec_btf_id <= 0) { 3164 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3165 ext_name, ext->btf_id, ext->sec_btf_id); 3166 return ext->sec_btf_id; 3167 } 3168 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3169 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3170 3171 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3172 kcfg_sec = sec; 3173 ext->type = EXT_KCFG; 3174 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3175 if (ext->kcfg.sz <= 0) { 3176 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3177 ext_name, ext->kcfg.sz); 3178 return ext->kcfg.sz; 3179 } 3180 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3181 if (ext->kcfg.align <= 0) { 3182 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3183 ext_name, ext->kcfg.align); 3184 return -EINVAL; 3185 } 3186 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3187 &ext->kcfg.is_signed); 3188 if (ext->kcfg.type == KCFG_UNKNOWN) { 3189 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name); 3190 return -ENOTSUP; 3191 } 3192 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3193 ksym_sec = sec; 3194 ext->type = EXT_KSYM; 3195 skip_mods_and_typedefs(obj->btf, t->type, 3196 &ext->ksym.type_id); 3197 } else { 3198 pr_warn("unrecognized extern section '%s'\n", sec_name); 3199 return -ENOTSUP; 3200 } 3201 } 3202 pr_debug("collected %d externs total\n", obj->nr_extern); 3203 3204 if (!obj->nr_extern) 3205 return 0; 3206 3207 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3208 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3209 3210 /* for .ksyms section, we need to turn all externs into allocated 3211 * variables in BTF to pass kernel verification; we do this by 3212 * pretending that each extern is a 8-byte variable 3213 */ 3214 if (ksym_sec) { 3215 /* find existing 4-byte integer type in BTF to use for fake 3216 * extern variables in DATASEC 3217 */ 3218 int int_btf_id = find_int_btf_id(obj->btf); 3219 3220 for (i = 0; i < obj->nr_extern; i++) { 3221 ext = &obj->externs[i]; 3222 if (ext->type != EXT_KSYM) 3223 continue; 3224 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3225 i, ext->sym_idx, ext->name); 3226 } 3227 3228 sec = ksym_sec; 3229 n = btf_vlen(sec); 3230 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3231 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3232 struct btf_type *vt; 3233 3234 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3235 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3236 ext = find_extern_by_name(obj, ext_name); 3237 if (!ext) { 3238 pr_warn("failed to find extern definition for BTF var '%s'\n", 3239 ext_name); 3240 return -ESRCH; 3241 } 3242 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3243 vt->type = int_btf_id; 3244 vs->offset = off; 3245 vs->size = sizeof(int); 3246 } 3247 sec->size = off; 3248 } 3249 3250 if (kcfg_sec) { 3251 sec = kcfg_sec; 3252 /* for kcfg externs calculate their offsets within a .kconfig map */ 3253 off = 0; 3254 for (i = 0; i < obj->nr_extern; i++) { 3255 ext = &obj->externs[i]; 3256 if (ext->type != EXT_KCFG) 3257 continue; 3258 3259 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3260 off = ext->kcfg.data_off + ext->kcfg.sz; 3261 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3262 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3263 } 3264 sec->size = off; 3265 n = btf_vlen(sec); 3266 for (i = 0; i < n; i++) { 3267 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3268 3269 t = btf__type_by_id(obj->btf, vs->type); 3270 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3271 ext = find_extern_by_name(obj, ext_name); 3272 if (!ext) { 3273 pr_warn("failed to find extern definition for BTF var '%s'\n", 3274 ext_name); 3275 return -ESRCH; 3276 } 3277 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3278 vs->offset = ext->kcfg.data_off; 3279 } 3280 } 3281 return 0; 3282 } 3283 3284 struct bpf_program * 3285 bpf_object__find_program_by_title(const struct bpf_object *obj, 3286 const char *title) 3287 { 3288 struct bpf_program *pos; 3289 3290 bpf_object__for_each_program(pos, obj) { 3291 if (pos->sec_name && !strcmp(pos->sec_name, title)) 3292 return pos; 3293 } 3294 return NULL; 3295 } 3296 3297 static bool prog_is_subprog(const struct bpf_object *obj, 3298 const struct bpf_program *prog) 3299 { 3300 /* For legacy reasons, libbpf supports an entry-point BPF programs 3301 * without SEC() attribute, i.e., those in the .text section. But if 3302 * there are 2 or more such programs in the .text section, they all 3303 * must be subprograms called from entry-point BPF programs in 3304 * designated SEC()'tions, otherwise there is no way to distinguish 3305 * which of those programs should be loaded vs which are a subprogram. 3306 * Similarly, if there is a function/program in .text and at least one 3307 * other BPF program with custom SEC() attribute, then we just assume 3308 * .text programs are subprograms (even if they are not called from 3309 * other programs), because libbpf never explicitly supported mixing 3310 * SEC()-designated BPF programs and .text entry-point BPF programs. 3311 */ 3312 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3313 } 3314 3315 struct bpf_program * 3316 bpf_object__find_program_by_name(const struct bpf_object *obj, 3317 const char *name) 3318 { 3319 struct bpf_program *prog; 3320 3321 bpf_object__for_each_program(prog, obj) { 3322 if (prog_is_subprog(obj, prog)) 3323 continue; 3324 if (!strcmp(prog->name, name)) 3325 return prog; 3326 } 3327 return NULL; 3328 } 3329 3330 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3331 int shndx) 3332 { 3333 return shndx == obj->efile.data_shndx || 3334 shndx == obj->efile.bss_shndx || 3335 shndx == obj->efile.rodata_shndx; 3336 } 3337 3338 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3339 int shndx) 3340 { 3341 return shndx == obj->efile.maps_shndx || 3342 shndx == obj->efile.btf_maps_shndx; 3343 } 3344 3345 static enum libbpf_map_type 3346 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3347 { 3348 if (shndx == obj->efile.data_shndx) 3349 return LIBBPF_MAP_DATA; 3350 else if (shndx == obj->efile.bss_shndx) 3351 return LIBBPF_MAP_BSS; 3352 else if (shndx == obj->efile.rodata_shndx) 3353 return LIBBPF_MAP_RODATA; 3354 else if (shndx == obj->efile.symbols_shndx) 3355 return LIBBPF_MAP_KCONFIG; 3356 else 3357 return LIBBPF_MAP_UNSPEC; 3358 } 3359 3360 static int bpf_program__record_reloc(struct bpf_program *prog, 3361 struct reloc_desc *reloc_desc, 3362 __u32 insn_idx, const char *sym_name, 3363 const GElf_Sym *sym, const GElf_Rel *rel) 3364 { 3365 struct bpf_insn *insn = &prog->insns[insn_idx]; 3366 size_t map_idx, nr_maps = prog->obj->nr_maps; 3367 struct bpf_object *obj = prog->obj; 3368 __u32 shdr_idx = sym->st_shndx; 3369 enum libbpf_map_type type; 3370 const char *sym_sec_name; 3371 struct bpf_map *map; 3372 3373 reloc_desc->processed = false; 3374 3375 /* sub-program call relocation */ 3376 if (insn->code == (BPF_JMP | BPF_CALL)) { 3377 if (insn->src_reg != BPF_PSEUDO_CALL) { 3378 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 3379 return -LIBBPF_ERRNO__RELOC; 3380 } 3381 /* text_shndx can be 0, if no default "main" program exists */ 3382 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 3383 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3384 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 3385 prog->name, sym_name, sym_sec_name); 3386 return -LIBBPF_ERRNO__RELOC; 3387 } 3388 if (sym->st_value % BPF_INSN_SZ) { 3389 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 3390 prog->name, sym_name, (size_t)sym->st_value); 3391 return -LIBBPF_ERRNO__RELOC; 3392 } 3393 reloc_desc->type = RELO_CALL; 3394 reloc_desc->insn_idx = insn_idx; 3395 reloc_desc->sym_off = sym->st_value; 3396 return 0; 3397 } 3398 3399 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) { 3400 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 3401 prog->name, sym_name, insn_idx, insn->code); 3402 return -LIBBPF_ERRNO__RELOC; 3403 } 3404 3405 if (sym_is_extern(sym)) { 3406 int sym_idx = GELF_R_SYM(rel->r_info); 3407 int i, n = obj->nr_extern; 3408 struct extern_desc *ext; 3409 3410 for (i = 0; i < n; i++) { 3411 ext = &obj->externs[i]; 3412 if (ext->sym_idx == sym_idx) 3413 break; 3414 } 3415 if (i >= n) { 3416 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 3417 prog->name, sym_name, sym_idx); 3418 return -LIBBPF_ERRNO__RELOC; 3419 } 3420 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 3421 prog->name, i, ext->name, ext->sym_idx, insn_idx); 3422 reloc_desc->type = RELO_EXTERN; 3423 reloc_desc->insn_idx = insn_idx; 3424 reloc_desc->sym_off = i; /* sym_off stores extern index */ 3425 return 0; 3426 } 3427 3428 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 3429 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 3430 prog->name, sym_name, shdr_idx); 3431 return -LIBBPF_ERRNO__RELOC; 3432 } 3433 3434 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 3435 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3436 3437 /* generic map reference relocation */ 3438 if (type == LIBBPF_MAP_UNSPEC) { 3439 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 3440 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 3441 prog->name, sym_name, sym_sec_name); 3442 return -LIBBPF_ERRNO__RELOC; 3443 } 3444 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3445 map = &obj->maps[map_idx]; 3446 if (map->libbpf_type != type || 3447 map->sec_idx != sym->st_shndx || 3448 map->sec_offset != sym->st_value) 3449 continue; 3450 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 3451 prog->name, map_idx, map->name, map->sec_idx, 3452 map->sec_offset, insn_idx); 3453 break; 3454 } 3455 if (map_idx >= nr_maps) { 3456 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 3457 prog->name, sym_sec_name, (size_t)sym->st_value); 3458 return -LIBBPF_ERRNO__RELOC; 3459 } 3460 reloc_desc->type = RELO_LD64; 3461 reloc_desc->insn_idx = insn_idx; 3462 reloc_desc->map_idx = map_idx; 3463 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 3464 return 0; 3465 } 3466 3467 /* global data map relocation */ 3468 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 3469 pr_warn("prog '%s': bad data relo against section '%s'\n", 3470 prog->name, sym_sec_name); 3471 return -LIBBPF_ERRNO__RELOC; 3472 } 3473 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3474 map = &obj->maps[map_idx]; 3475 if (map->libbpf_type != type) 3476 continue; 3477 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 3478 prog->name, map_idx, map->name, map->sec_idx, 3479 map->sec_offset, insn_idx); 3480 break; 3481 } 3482 if (map_idx >= nr_maps) { 3483 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 3484 prog->name, sym_sec_name); 3485 return -LIBBPF_ERRNO__RELOC; 3486 } 3487 3488 reloc_desc->type = RELO_DATA; 3489 reloc_desc->insn_idx = insn_idx; 3490 reloc_desc->map_idx = map_idx; 3491 reloc_desc->sym_off = sym->st_value; 3492 return 0; 3493 } 3494 3495 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 3496 { 3497 return insn_idx >= prog->sec_insn_off && 3498 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 3499 } 3500 3501 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 3502 size_t sec_idx, size_t insn_idx) 3503 { 3504 int l = 0, r = obj->nr_programs - 1, m; 3505 struct bpf_program *prog; 3506 3507 while (l < r) { 3508 m = l + (r - l + 1) / 2; 3509 prog = &obj->programs[m]; 3510 3511 if (prog->sec_idx < sec_idx || 3512 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 3513 l = m; 3514 else 3515 r = m - 1; 3516 } 3517 /* matching program could be at index l, but it still might be the 3518 * wrong one, so we need to double check conditions for the last time 3519 */ 3520 prog = &obj->programs[l]; 3521 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 3522 return prog; 3523 return NULL; 3524 } 3525 3526 static int 3527 bpf_object__collect_prog_relos(struct bpf_object *obj, GElf_Shdr *shdr, Elf_Data *data) 3528 { 3529 Elf_Data *symbols = obj->efile.symbols; 3530 const char *relo_sec_name, *sec_name; 3531 size_t sec_idx = shdr->sh_info; 3532 struct bpf_program *prog; 3533 struct reloc_desc *relos; 3534 int err, i, nrels; 3535 const char *sym_name; 3536 __u32 insn_idx; 3537 GElf_Sym sym; 3538 GElf_Rel rel; 3539 3540 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 3541 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 3542 if (!relo_sec_name || !sec_name) 3543 return -EINVAL; 3544 3545 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 3546 relo_sec_name, sec_idx, sec_name); 3547 nrels = shdr->sh_size / shdr->sh_entsize; 3548 3549 for (i = 0; i < nrels; i++) { 3550 if (!gelf_getrel(data, i, &rel)) { 3551 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 3552 return -LIBBPF_ERRNO__FORMAT; 3553 } 3554 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 3555 pr_warn("sec '%s': symbol 0x%zx not found for relo #%d\n", 3556 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i); 3557 return -LIBBPF_ERRNO__FORMAT; 3558 } 3559 if (rel.r_offset % BPF_INSN_SZ) { 3560 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 3561 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i); 3562 return -LIBBPF_ERRNO__FORMAT; 3563 } 3564 3565 insn_idx = rel.r_offset / BPF_INSN_SZ; 3566 /* relocations against static functions are recorded as 3567 * relocations against the section that contains a function; 3568 * in such case, symbol will be STT_SECTION and sym.st_name 3569 * will point to empty string (0), so fetch section name 3570 * instead 3571 */ 3572 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && sym.st_name == 0) 3573 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym.st_shndx)); 3574 else 3575 sym_name = elf_sym_str(obj, sym.st_name); 3576 sym_name = sym_name ?: "<?"; 3577 3578 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 3579 relo_sec_name, i, insn_idx, sym_name); 3580 3581 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 3582 if (!prog) { 3583 pr_warn("sec '%s': relo #%d: program not found in section '%s' for insn #%u\n", 3584 relo_sec_name, i, sec_name, insn_idx); 3585 return -LIBBPF_ERRNO__RELOC; 3586 } 3587 3588 relos = libbpf_reallocarray(prog->reloc_desc, 3589 prog->nr_reloc + 1, sizeof(*relos)); 3590 if (!relos) 3591 return -ENOMEM; 3592 prog->reloc_desc = relos; 3593 3594 /* adjust insn_idx to local BPF program frame of reference */ 3595 insn_idx -= prog->sec_insn_off; 3596 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 3597 insn_idx, sym_name, &sym, &rel); 3598 if (err) 3599 return err; 3600 3601 prog->nr_reloc++; 3602 } 3603 return 0; 3604 } 3605 3606 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 3607 { 3608 struct bpf_map_def *def = &map->def; 3609 __u32 key_type_id = 0, value_type_id = 0; 3610 int ret; 3611 3612 /* if it's BTF-defined map, we don't need to search for type IDs. 3613 * For struct_ops map, it does not need btf_key_type_id and 3614 * btf_value_type_id. 3615 */ 3616 if (map->sec_idx == obj->efile.btf_maps_shndx || 3617 bpf_map__is_struct_ops(map)) 3618 return 0; 3619 3620 if (!bpf_map__is_internal(map)) { 3621 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size, 3622 def->value_size, &key_type_id, 3623 &value_type_id); 3624 } else { 3625 /* 3626 * LLVM annotates global data differently in BTF, that is, 3627 * only as '.data', '.bss' or '.rodata'. 3628 */ 3629 ret = btf__find_by_name(obj->btf, 3630 libbpf_type_to_btf_name[map->libbpf_type]); 3631 } 3632 if (ret < 0) 3633 return ret; 3634 3635 map->btf_key_type_id = key_type_id; 3636 map->btf_value_type_id = bpf_map__is_internal(map) ? 3637 ret : value_type_id; 3638 return 0; 3639 } 3640 3641 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 3642 { 3643 struct bpf_map_info info = {}; 3644 __u32 len = sizeof(info); 3645 int new_fd, err; 3646 char *new_name; 3647 3648 err = bpf_obj_get_info_by_fd(fd, &info, &len); 3649 if (err) 3650 return err; 3651 3652 new_name = strdup(info.name); 3653 if (!new_name) 3654 return -errno; 3655 3656 new_fd = open("/", O_RDONLY | O_CLOEXEC); 3657 if (new_fd < 0) { 3658 err = -errno; 3659 goto err_free_new_name; 3660 } 3661 3662 new_fd = dup3(fd, new_fd, O_CLOEXEC); 3663 if (new_fd < 0) { 3664 err = -errno; 3665 goto err_close_new_fd; 3666 } 3667 3668 err = zclose(map->fd); 3669 if (err) { 3670 err = -errno; 3671 goto err_close_new_fd; 3672 } 3673 free(map->name); 3674 3675 map->fd = new_fd; 3676 map->name = new_name; 3677 map->def.type = info.type; 3678 map->def.key_size = info.key_size; 3679 map->def.value_size = info.value_size; 3680 map->def.max_entries = info.max_entries; 3681 map->def.map_flags = info.map_flags; 3682 map->btf_key_type_id = info.btf_key_type_id; 3683 map->btf_value_type_id = info.btf_value_type_id; 3684 map->reused = true; 3685 3686 return 0; 3687 3688 err_close_new_fd: 3689 close(new_fd); 3690 err_free_new_name: 3691 free(new_name); 3692 return err; 3693 } 3694 3695 __u32 bpf_map__max_entries(const struct bpf_map *map) 3696 { 3697 return map->def.max_entries; 3698 } 3699 3700 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 3701 { 3702 if (map->fd >= 0) 3703 return -EBUSY; 3704 map->def.max_entries = max_entries; 3705 return 0; 3706 } 3707 3708 int bpf_map__resize(struct bpf_map *map, __u32 max_entries) 3709 { 3710 if (!map || !max_entries) 3711 return -EINVAL; 3712 3713 return bpf_map__set_max_entries(map, max_entries); 3714 } 3715 3716 static int 3717 bpf_object__probe_loading(struct bpf_object *obj) 3718 { 3719 struct bpf_load_program_attr attr; 3720 char *cp, errmsg[STRERR_BUFSIZE]; 3721 struct bpf_insn insns[] = { 3722 BPF_MOV64_IMM(BPF_REG_0, 0), 3723 BPF_EXIT_INSN(), 3724 }; 3725 int ret; 3726 3727 /* make sure basic loading works */ 3728 3729 memset(&attr, 0, sizeof(attr)); 3730 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3731 attr.insns = insns; 3732 attr.insns_cnt = ARRAY_SIZE(insns); 3733 attr.license = "GPL"; 3734 3735 ret = bpf_load_program_xattr(&attr, NULL, 0); 3736 if (ret < 0) { 3737 ret = errno; 3738 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 3739 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 3740 "program. Make sure your kernel supports BPF " 3741 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 3742 "set to big enough value.\n", __func__, cp, ret); 3743 return -ret; 3744 } 3745 close(ret); 3746 3747 return 0; 3748 } 3749 3750 static int probe_fd(int fd) 3751 { 3752 if (fd >= 0) 3753 close(fd); 3754 return fd >= 0; 3755 } 3756 3757 static int probe_kern_prog_name(void) 3758 { 3759 struct bpf_load_program_attr attr; 3760 struct bpf_insn insns[] = { 3761 BPF_MOV64_IMM(BPF_REG_0, 0), 3762 BPF_EXIT_INSN(), 3763 }; 3764 int ret; 3765 3766 /* make sure loading with name works */ 3767 3768 memset(&attr, 0, sizeof(attr)); 3769 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3770 attr.insns = insns; 3771 attr.insns_cnt = ARRAY_SIZE(insns); 3772 attr.license = "GPL"; 3773 attr.name = "test"; 3774 ret = bpf_load_program_xattr(&attr, NULL, 0); 3775 return probe_fd(ret); 3776 } 3777 3778 static int probe_kern_global_data(void) 3779 { 3780 struct bpf_load_program_attr prg_attr; 3781 struct bpf_create_map_attr map_attr; 3782 char *cp, errmsg[STRERR_BUFSIZE]; 3783 struct bpf_insn insns[] = { 3784 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 3785 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 3786 BPF_MOV64_IMM(BPF_REG_0, 0), 3787 BPF_EXIT_INSN(), 3788 }; 3789 int ret, map; 3790 3791 memset(&map_attr, 0, sizeof(map_attr)); 3792 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 3793 map_attr.key_size = sizeof(int); 3794 map_attr.value_size = 32; 3795 map_attr.max_entries = 1; 3796 3797 map = bpf_create_map_xattr(&map_attr); 3798 if (map < 0) { 3799 ret = -errno; 3800 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 3801 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 3802 __func__, cp, -ret); 3803 return ret; 3804 } 3805 3806 insns[0].imm = map; 3807 3808 memset(&prg_attr, 0, sizeof(prg_attr)); 3809 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3810 prg_attr.insns = insns; 3811 prg_attr.insns_cnt = ARRAY_SIZE(insns); 3812 prg_attr.license = "GPL"; 3813 3814 ret = bpf_load_program_xattr(&prg_attr, NULL, 0); 3815 close(map); 3816 return probe_fd(ret); 3817 } 3818 3819 static int probe_kern_btf(void) 3820 { 3821 static const char strs[] = "\0int"; 3822 __u32 types[] = { 3823 /* int */ 3824 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 3825 }; 3826 3827 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3828 strs, sizeof(strs))); 3829 } 3830 3831 static int probe_kern_btf_func(void) 3832 { 3833 static const char strs[] = "\0int\0x\0a"; 3834 /* void x(int a) {} */ 3835 __u32 types[] = { 3836 /* int */ 3837 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3838 /* FUNC_PROTO */ /* [2] */ 3839 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 3840 BTF_PARAM_ENC(7, 1), 3841 /* FUNC x */ /* [3] */ 3842 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 3843 }; 3844 3845 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3846 strs, sizeof(strs))); 3847 } 3848 3849 static int probe_kern_btf_func_global(void) 3850 { 3851 static const char strs[] = "\0int\0x\0a"; 3852 /* static void x(int a) {} */ 3853 __u32 types[] = { 3854 /* int */ 3855 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3856 /* FUNC_PROTO */ /* [2] */ 3857 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 3858 BTF_PARAM_ENC(7, 1), 3859 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 3860 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 3861 }; 3862 3863 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3864 strs, sizeof(strs))); 3865 } 3866 3867 static int probe_kern_btf_datasec(void) 3868 { 3869 static const char strs[] = "\0x\0.data"; 3870 /* static int a; */ 3871 __u32 types[] = { 3872 /* int */ 3873 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3874 /* VAR x */ /* [2] */ 3875 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 3876 BTF_VAR_STATIC, 3877 /* DATASEC val */ /* [3] */ 3878 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 3879 BTF_VAR_SECINFO_ENC(2, 0, 4), 3880 }; 3881 3882 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3883 strs, sizeof(strs))); 3884 } 3885 3886 static int probe_kern_array_mmap(void) 3887 { 3888 struct bpf_create_map_attr attr = { 3889 .map_type = BPF_MAP_TYPE_ARRAY, 3890 .map_flags = BPF_F_MMAPABLE, 3891 .key_size = sizeof(int), 3892 .value_size = sizeof(int), 3893 .max_entries = 1, 3894 }; 3895 3896 return probe_fd(bpf_create_map_xattr(&attr)); 3897 } 3898 3899 static int probe_kern_exp_attach_type(void) 3900 { 3901 struct bpf_load_program_attr attr; 3902 struct bpf_insn insns[] = { 3903 BPF_MOV64_IMM(BPF_REG_0, 0), 3904 BPF_EXIT_INSN(), 3905 }; 3906 3907 memset(&attr, 0, sizeof(attr)); 3908 /* use any valid combination of program type and (optional) 3909 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 3910 * to see if kernel supports expected_attach_type field for 3911 * BPF_PROG_LOAD command 3912 */ 3913 attr.prog_type = BPF_PROG_TYPE_CGROUP_SOCK; 3914 attr.expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE; 3915 attr.insns = insns; 3916 attr.insns_cnt = ARRAY_SIZE(insns); 3917 attr.license = "GPL"; 3918 3919 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0)); 3920 } 3921 3922 static int probe_kern_probe_read_kernel(void) 3923 { 3924 struct bpf_load_program_attr attr; 3925 struct bpf_insn insns[] = { 3926 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 3927 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 3928 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 3929 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 3930 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 3931 BPF_EXIT_INSN(), 3932 }; 3933 3934 memset(&attr, 0, sizeof(attr)); 3935 attr.prog_type = BPF_PROG_TYPE_KPROBE; 3936 attr.insns = insns; 3937 attr.insns_cnt = ARRAY_SIZE(insns); 3938 attr.license = "GPL"; 3939 3940 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0)); 3941 } 3942 3943 static int probe_prog_bind_map(void) 3944 { 3945 struct bpf_load_program_attr prg_attr; 3946 struct bpf_create_map_attr map_attr; 3947 char *cp, errmsg[STRERR_BUFSIZE]; 3948 struct bpf_insn insns[] = { 3949 BPF_MOV64_IMM(BPF_REG_0, 0), 3950 BPF_EXIT_INSN(), 3951 }; 3952 int ret, map, prog; 3953 3954 memset(&map_attr, 0, sizeof(map_attr)); 3955 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 3956 map_attr.key_size = sizeof(int); 3957 map_attr.value_size = 32; 3958 map_attr.max_entries = 1; 3959 3960 map = bpf_create_map_xattr(&map_attr); 3961 if (map < 0) { 3962 ret = -errno; 3963 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 3964 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 3965 __func__, cp, -ret); 3966 return ret; 3967 } 3968 3969 memset(&prg_attr, 0, sizeof(prg_attr)); 3970 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3971 prg_attr.insns = insns; 3972 prg_attr.insns_cnt = ARRAY_SIZE(insns); 3973 prg_attr.license = "GPL"; 3974 3975 prog = bpf_load_program_xattr(&prg_attr, NULL, 0); 3976 if (prog < 0) { 3977 close(map); 3978 return 0; 3979 } 3980 3981 ret = bpf_prog_bind_map(prog, map, NULL); 3982 3983 close(map); 3984 close(prog); 3985 3986 return ret >= 0; 3987 } 3988 3989 static int probe_module_btf(void) 3990 { 3991 static const char strs[] = "\0int"; 3992 __u32 types[] = { 3993 /* int */ 3994 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 3995 }; 3996 struct bpf_btf_info info; 3997 __u32 len = sizeof(info); 3998 char name[16]; 3999 int fd, err; 4000 4001 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4002 if (fd < 0) 4003 return 0; /* BTF not supported at all */ 4004 4005 memset(&info, 0, sizeof(info)); 4006 info.name = ptr_to_u64(name); 4007 info.name_len = sizeof(name); 4008 4009 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4010 * kernel's module BTF support coincides with support for 4011 * name/name_len fields in struct bpf_btf_info. 4012 */ 4013 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4014 close(fd); 4015 return !err; 4016 } 4017 4018 enum kern_feature_result { 4019 FEAT_UNKNOWN = 0, 4020 FEAT_SUPPORTED = 1, 4021 FEAT_MISSING = 2, 4022 }; 4023 4024 typedef int (*feature_probe_fn)(void); 4025 4026 static struct kern_feature_desc { 4027 const char *desc; 4028 feature_probe_fn probe; 4029 enum kern_feature_result res; 4030 } feature_probes[__FEAT_CNT] = { 4031 [FEAT_PROG_NAME] = { 4032 "BPF program name", probe_kern_prog_name, 4033 }, 4034 [FEAT_GLOBAL_DATA] = { 4035 "global variables", probe_kern_global_data, 4036 }, 4037 [FEAT_BTF] = { 4038 "minimal BTF", probe_kern_btf, 4039 }, 4040 [FEAT_BTF_FUNC] = { 4041 "BTF functions", probe_kern_btf_func, 4042 }, 4043 [FEAT_BTF_GLOBAL_FUNC] = { 4044 "BTF global function", probe_kern_btf_func_global, 4045 }, 4046 [FEAT_BTF_DATASEC] = { 4047 "BTF data section and variable", probe_kern_btf_datasec, 4048 }, 4049 [FEAT_ARRAY_MMAP] = { 4050 "ARRAY map mmap()", probe_kern_array_mmap, 4051 }, 4052 [FEAT_EXP_ATTACH_TYPE] = { 4053 "BPF_PROG_LOAD expected_attach_type attribute", 4054 probe_kern_exp_attach_type, 4055 }, 4056 [FEAT_PROBE_READ_KERN] = { 4057 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4058 }, 4059 [FEAT_PROG_BIND_MAP] = { 4060 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4061 }, 4062 [FEAT_MODULE_BTF] = { 4063 "module BTF support", probe_module_btf, 4064 }, 4065 }; 4066 4067 static bool kernel_supports(enum kern_feature_id feat_id) 4068 { 4069 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4070 int ret; 4071 4072 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4073 ret = feat->probe(); 4074 if (ret > 0) { 4075 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4076 } else if (ret == 0) { 4077 WRITE_ONCE(feat->res, FEAT_MISSING); 4078 } else { 4079 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4080 WRITE_ONCE(feat->res, FEAT_MISSING); 4081 } 4082 } 4083 4084 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4085 } 4086 4087 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4088 { 4089 struct bpf_map_info map_info = {}; 4090 char msg[STRERR_BUFSIZE]; 4091 __u32 map_info_len; 4092 4093 map_info_len = sizeof(map_info); 4094 4095 if (bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len)) { 4096 pr_warn("failed to get map info for map FD %d: %s\n", 4097 map_fd, libbpf_strerror_r(errno, msg, sizeof(msg))); 4098 return false; 4099 } 4100 4101 return (map_info.type == map->def.type && 4102 map_info.key_size == map->def.key_size && 4103 map_info.value_size == map->def.value_size && 4104 map_info.max_entries == map->def.max_entries && 4105 map_info.map_flags == map->def.map_flags); 4106 } 4107 4108 static int 4109 bpf_object__reuse_map(struct bpf_map *map) 4110 { 4111 char *cp, errmsg[STRERR_BUFSIZE]; 4112 int err, pin_fd; 4113 4114 pin_fd = bpf_obj_get(map->pin_path); 4115 if (pin_fd < 0) { 4116 err = -errno; 4117 if (err == -ENOENT) { 4118 pr_debug("found no pinned map to reuse at '%s'\n", 4119 map->pin_path); 4120 return 0; 4121 } 4122 4123 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4124 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4125 map->pin_path, cp); 4126 return err; 4127 } 4128 4129 if (!map_is_reuse_compat(map, pin_fd)) { 4130 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4131 map->pin_path); 4132 close(pin_fd); 4133 return -EINVAL; 4134 } 4135 4136 err = bpf_map__reuse_fd(map, pin_fd); 4137 if (err) { 4138 close(pin_fd); 4139 return err; 4140 } 4141 map->pinned = true; 4142 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4143 4144 return 0; 4145 } 4146 4147 static int 4148 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4149 { 4150 enum libbpf_map_type map_type = map->libbpf_type; 4151 char *cp, errmsg[STRERR_BUFSIZE]; 4152 int err, zero = 0; 4153 4154 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4155 if (err) { 4156 err = -errno; 4157 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4158 pr_warn("Error setting initial map(%s) contents: %s\n", 4159 map->name, cp); 4160 return err; 4161 } 4162 4163 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 4164 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 4165 err = bpf_map_freeze(map->fd); 4166 if (err) { 4167 err = -errno; 4168 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4169 pr_warn("Error freezing map(%s) as read-only: %s\n", 4170 map->name, cp); 4171 return err; 4172 } 4173 } 4174 return 0; 4175 } 4176 4177 static void bpf_map__destroy(struct bpf_map *map); 4178 4179 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map) 4180 { 4181 struct bpf_create_map_attr create_attr; 4182 struct bpf_map_def *def = &map->def; 4183 4184 memset(&create_attr, 0, sizeof(create_attr)); 4185 4186 if (kernel_supports(FEAT_PROG_NAME)) 4187 create_attr.name = map->name; 4188 create_attr.map_ifindex = map->map_ifindex; 4189 create_attr.map_type = def->type; 4190 create_attr.map_flags = def->map_flags; 4191 create_attr.key_size = def->key_size; 4192 create_attr.value_size = def->value_size; 4193 create_attr.numa_node = map->numa_node; 4194 4195 if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) { 4196 int nr_cpus; 4197 4198 nr_cpus = libbpf_num_possible_cpus(); 4199 if (nr_cpus < 0) { 4200 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 4201 map->name, nr_cpus); 4202 return nr_cpus; 4203 } 4204 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 4205 create_attr.max_entries = nr_cpus; 4206 } else { 4207 create_attr.max_entries = def->max_entries; 4208 } 4209 4210 if (bpf_map__is_struct_ops(map)) 4211 create_attr.btf_vmlinux_value_type_id = 4212 map->btf_vmlinux_value_type_id; 4213 4214 create_attr.btf_fd = 0; 4215 create_attr.btf_key_type_id = 0; 4216 create_attr.btf_value_type_id = 0; 4217 if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) { 4218 create_attr.btf_fd = btf__fd(obj->btf); 4219 create_attr.btf_key_type_id = map->btf_key_type_id; 4220 create_attr.btf_value_type_id = map->btf_value_type_id; 4221 } 4222 4223 if (bpf_map_type__is_map_in_map(def->type)) { 4224 if (map->inner_map) { 4225 int err; 4226 4227 err = bpf_object__create_map(obj, map->inner_map); 4228 if (err) { 4229 pr_warn("map '%s': failed to create inner map: %d\n", 4230 map->name, err); 4231 return err; 4232 } 4233 map->inner_map_fd = bpf_map__fd(map->inner_map); 4234 } 4235 if (map->inner_map_fd >= 0) 4236 create_attr.inner_map_fd = map->inner_map_fd; 4237 } 4238 4239 map->fd = bpf_create_map_xattr(&create_attr); 4240 if (map->fd < 0 && (create_attr.btf_key_type_id || 4241 create_attr.btf_value_type_id)) { 4242 char *cp, errmsg[STRERR_BUFSIZE]; 4243 int err = -errno; 4244 4245 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4246 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 4247 map->name, cp, err); 4248 create_attr.btf_fd = 0; 4249 create_attr.btf_key_type_id = 0; 4250 create_attr.btf_value_type_id = 0; 4251 map->btf_key_type_id = 0; 4252 map->btf_value_type_id = 0; 4253 map->fd = bpf_create_map_xattr(&create_attr); 4254 } 4255 4256 if (map->fd < 0) 4257 return -errno; 4258 4259 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 4260 bpf_map__destroy(map->inner_map); 4261 zfree(&map->inner_map); 4262 } 4263 4264 return 0; 4265 } 4266 4267 static int init_map_slots(struct bpf_map *map) 4268 { 4269 const struct bpf_map *targ_map; 4270 unsigned int i; 4271 int fd, err; 4272 4273 for (i = 0; i < map->init_slots_sz; i++) { 4274 if (!map->init_slots[i]) 4275 continue; 4276 4277 targ_map = map->init_slots[i]; 4278 fd = bpf_map__fd(targ_map); 4279 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 4280 if (err) { 4281 err = -errno; 4282 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 4283 map->name, i, targ_map->name, 4284 fd, err); 4285 return err; 4286 } 4287 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 4288 map->name, i, targ_map->name, fd); 4289 } 4290 4291 zfree(&map->init_slots); 4292 map->init_slots_sz = 0; 4293 4294 return 0; 4295 } 4296 4297 static int 4298 bpf_object__create_maps(struct bpf_object *obj) 4299 { 4300 struct bpf_map *map; 4301 char *cp, errmsg[STRERR_BUFSIZE]; 4302 unsigned int i, j; 4303 int err; 4304 4305 for (i = 0; i < obj->nr_maps; i++) { 4306 map = &obj->maps[i]; 4307 4308 if (map->pin_path) { 4309 err = bpf_object__reuse_map(map); 4310 if (err) { 4311 pr_warn("map '%s': error reusing pinned map\n", 4312 map->name); 4313 goto err_out; 4314 } 4315 } 4316 4317 if (map->fd >= 0) { 4318 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 4319 map->name, map->fd); 4320 } else { 4321 err = bpf_object__create_map(obj, map); 4322 if (err) 4323 goto err_out; 4324 4325 pr_debug("map '%s': created successfully, fd=%d\n", 4326 map->name, map->fd); 4327 4328 if (bpf_map__is_internal(map)) { 4329 err = bpf_object__populate_internal_map(obj, map); 4330 if (err < 0) { 4331 zclose(map->fd); 4332 goto err_out; 4333 } 4334 } 4335 4336 if (map->init_slots_sz) { 4337 err = init_map_slots(map); 4338 if (err < 0) { 4339 zclose(map->fd); 4340 goto err_out; 4341 } 4342 } 4343 } 4344 4345 if (map->pin_path && !map->pinned) { 4346 err = bpf_map__pin(map, NULL); 4347 if (err) { 4348 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 4349 map->name, map->pin_path, err); 4350 zclose(map->fd); 4351 goto err_out; 4352 } 4353 } 4354 } 4355 4356 return 0; 4357 4358 err_out: 4359 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4360 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 4361 pr_perm_msg(err); 4362 for (j = 0; j < i; j++) 4363 zclose(obj->maps[j].fd); 4364 return err; 4365 } 4366 4367 #define BPF_CORE_SPEC_MAX_LEN 64 4368 4369 /* represents BPF CO-RE field or array element accessor */ 4370 struct bpf_core_accessor { 4371 __u32 type_id; /* struct/union type or array element type */ 4372 __u32 idx; /* field index or array index */ 4373 const char *name; /* field name or NULL for array accessor */ 4374 }; 4375 4376 struct bpf_core_spec { 4377 const struct btf *btf; 4378 /* high-level spec: named fields and array indices only */ 4379 struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN]; 4380 /* original unresolved (no skip_mods_or_typedefs) root type ID */ 4381 __u32 root_type_id; 4382 /* CO-RE relocation kind */ 4383 enum bpf_core_relo_kind relo_kind; 4384 /* high-level spec length */ 4385 int len; 4386 /* raw, low-level spec: 1-to-1 with accessor spec string */ 4387 int raw_spec[BPF_CORE_SPEC_MAX_LEN]; 4388 /* raw spec length */ 4389 int raw_len; 4390 /* field bit offset represented by spec */ 4391 __u32 bit_offset; 4392 }; 4393 4394 static bool str_is_empty(const char *s) 4395 { 4396 return !s || !s[0]; 4397 } 4398 4399 static bool is_flex_arr(const struct btf *btf, 4400 const struct bpf_core_accessor *acc, 4401 const struct btf_array *arr) 4402 { 4403 const struct btf_type *t; 4404 4405 /* not a flexible array, if not inside a struct or has non-zero size */ 4406 if (!acc->name || arr->nelems > 0) 4407 return false; 4408 4409 /* has to be the last member of enclosing struct */ 4410 t = btf__type_by_id(btf, acc->type_id); 4411 return acc->idx == btf_vlen(t) - 1; 4412 } 4413 4414 static const char *core_relo_kind_str(enum bpf_core_relo_kind kind) 4415 { 4416 switch (kind) { 4417 case BPF_FIELD_BYTE_OFFSET: return "byte_off"; 4418 case BPF_FIELD_BYTE_SIZE: return "byte_sz"; 4419 case BPF_FIELD_EXISTS: return "field_exists"; 4420 case BPF_FIELD_SIGNED: return "signed"; 4421 case BPF_FIELD_LSHIFT_U64: return "lshift_u64"; 4422 case BPF_FIELD_RSHIFT_U64: return "rshift_u64"; 4423 case BPF_TYPE_ID_LOCAL: return "local_type_id"; 4424 case BPF_TYPE_ID_TARGET: return "target_type_id"; 4425 case BPF_TYPE_EXISTS: return "type_exists"; 4426 case BPF_TYPE_SIZE: return "type_size"; 4427 case BPF_ENUMVAL_EXISTS: return "enumval_exists"; 4428 case BPF_ENUMVAL_VALUE: return "enumval_value"; 4429 default: return "unknown"; 4430 } 4431 } 4432 4433 static bool core_relo_is_field_based(enum bpf_core_relo_kind kind) 4434 { 4435 switch (kind) { 4436 case BPF_FIELD_BYTE_OFFSET: 4437 case BPF_FIELD_BYTE_SIZE: 4438 case BPF_FIELD_EXISTS: 4439 case BPF_FIELD_SIGNED: 4440 case BPF_FIELD_LSHIFT_U64: 4441 case BPF_FIELD_RSHIFT_U64: 4442 return true; 4443 default: 4444 return false; 4445 } 4446 } 4447 4448 static bool core_relo_is_type_based(enum bpf_core_relo_kind kind) 4449 { 4450 switch (kind) { 4451 case BPF_TYPE_ID_LOCAL: 4452 case BPF_TYPE_ID_TARGET: 4453 case BPF_TYPE_EXISTS: 4454 case BPF_TYPE_SIZE: 4455 return true; 4456 default: 4457 return false; 4458 } 4459 } 4460 4461 static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind) 4462 { 4463 switch (kind) { 4464 case BPF_ENUMVAL_EXISTS: 4465 case BPF_ENUMVAL_VALUE: 4466 return true; 4467 default: 4468 return false; 4469 } 4470 } 4471 4472 /* 4473 * Turn bpf_core_relo into a low- and high-level spec representation, 4474 * validating correctness along the way, as well as calculating resulting 4475 * field bit offset, specified by accessor string. Low-level spec captures 4476 * every single level of nestedness, including traversing anonymous 4477 * struct/union members. High-level one only captures semantically meaningful 4478 * "turning points": named fields and array indicies. 4479 * E.g., for this case: 4480 * 4481 * struct sample { 4482 * int __unimportant; 4483 * struct { 4484 * int __1; 4485 * int __2; 4486 * int a[7]; 4487 * }; 4488 * }; 4489 * 4490 * struct sample *s = ...; 4491 * 4492 * int x = &s->a[3]; // access string = '0:1:2:3' 4493 * 4494 * Low-level spec has 1:1 mapping with each element of access string (it's 4495 * just a parsed access string representation): [0, 1, 2, 3]. 4496 * 4497 * High-level spec will capture only 3 points: 4498 * - intial zero-index access by pointer (&s->... is the same as &s[0]...); 4499 * - field 'a' access (corresponds to '2' in low-level spec); 4500 * - array element #3 access (corresponds to '3' in low-level spec). 4501 * 4502 * Type-based relocations (TYPE_EXISTS/TYPE_SIZE, 4503 * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their 4504 * spec and raw_spec are kept empty. 4505 * 4506 * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access 4507 * string to specify enumerator's value index that need to be relocated. 4508 */ 4509 static int bpf_core_parse_spec(const struct btf *btf, 4510 __u32 type_id, 4511 const char *spec_str, 4512 enum bpf_core_relo_kind relo_kind, 4513 struct bpf_core_spec *spec) 4514 { 4515 int access_idx, parsed_len, i; 4516 struct bpf_core_accessor *acc; 4517 const struct btf_type *t; 4518 const char *name; 4519 __u32 id; 4520 __s64 sz; 4521 4522 if (str_is_empty(spec_str) || *spec_str == ':') 4523 return -EINVAL; 4524 4525 memset(spec, 0, sizeof(*spec)); 4526 spec->btf = btf; 4527 spec->root_type_id = type_id; 4528 spec->relo_kind = relo_kind; 4529 4530 /* type-based relocations don't have a field access string */ 4531 if (core_relo_is_type_based(relo_kind)) { 4532 if (strcmp(spec_str, "0")) 4533 return -EINVAL; 4534 return 0; 4535 } 4536 4537 /* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */ 4538 while (*spec_str) { 4539 if (*spec_str == ':') 4540 ++spec_str; 4541 if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1) 4542 return -EINVAL; 4543 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 4544 return -E2BIG; 4545 spec_str += parsed_len; 4546 spec->raw_spec[spec->raw_len++] = access_idx; 4547 } 4548 4549 if (spec->raw_len == 0) 4550 return -EINVAL; 4551 4552 t = skip_mods_and_typedefs(btf, type_id, &id); 4553 if (!t) 4554 return -EINVAL; 4555 4556 access_idx = spec->raw_spec[0]; 4557 acc = &spec->spec[0]; 4558 acc->type_id = id; 4559 acc->idx = access_idx; 4560 spec->len++; 4561 4562 if (core_relo_is_enumval_based(relo_kind)) { 4563 if (!btf_is_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t)) 4564 return -EINVAL; 4565 4566 /* record enumerator name in a first accessor */ 4567 acc->name = btf__name_by_offset(btf, btf_enum(t)[access_idx].name_off); 4568 return 0; 4569 } 4570 4571 if (!core_relo_is_field_based(relo_kind)) 4572 return -EINVAL; 4573 4574 sz = btf__resolve_size(btf, id); 4575 if (sz < 0) 4576 return sz; 4577 spec->bit_offset = access_idx * sz * 8; 4578 4579 for (i = 1; i < spec->raw_len; i++) { 4580 t = skip_mods_and_typedefs(btf, id, &id); 4581 if (!t) 4582 return -EINVAL; 4583 4584 access_idx = spec->raw_spec[i]; 4585 acc = &spec->spec[spec->len]; 4586 4587 if (btf_is_composite(t)) { 4588 const struct btf_member *m; 4589 __u32 bit_offset; 4590 4591 if (access_idx >= btf_vlen(t)) 4592 return -EINVAL; 4593 4594 bit_offset = btf_member_bit_offset(t, access_idx); 4595 spec->bit_offset += bit_offset; 4596 4597 m = btf_members(t) + access_idx; 4598 if (m->name_off) { 4599 name = btf__name_by_offset(btf, m->name_off); 4600 if (str_is_empty(name)) 4601 return -EINVAL; 4602 4603 acc->type_id = id; 4604 acc->idx = access_idx; 4605 acc->name = name; 4606 spec->len++; 4607 } 4608 4609 id = m->type; 4610 } else if (btf_is_array(t)) { 4611 const struct btf_array *a = btf_array(t); 4612 bool flex; 4613 4614 t = skip_mods_and_typedefs(btf, a->type, &id); 4615 if (!t) 4616 return -EINVAL; 4617 4618 flex = is_flex_arr(btf, acc - 1, a); 4619 if (!flex && access_idx >= a->nelems) 4620 return -EINVAL; 4621 4622 spec->spec[spec->len].type_id = id; 4623 spec->spec[spec->len].idx = access_idx; 4624 spec->len++; 4625 4626 sz = btf__resolve_size(btf, id); 4627 if (sz < 0) 4628 return sz; 4629 spec->bit_offset += access_idx * sz * 8; 4630 } else { 4631 pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n", 4632 type_id, spec_str, i, id, btf_kind_str(t)); 4633 return -EINVAL; 4634 } 4635 } 4636 4637 return 0; 4638 } 4639 4640 static bool bpf_core_is_flavor_sep(const char *s) 4641 { 4642 /* check X___Y name pattern, where X and Y are not underscores */ 4643 return s[0] != '_' && /* X */ 4644 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 4645 s[4] != '_'; /* Y */ 4646 } 4647 4648 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 4649 * before last triple underscore. Struct name part after last triple 4650 * underscore is ignored by BPF CO-RE relocation during relocation matching. 4651 */ 4652 static size_t bpf_core_essential_name_len(const char *name) 4653 { 4654 size_t n = strlen(name); 4655 int i; 4656 4657 for (i = n - 5; i >= 0; i--) { 4658 if (bpf_core_is_flavor_sep(name + i)) 4659 return i + 1; 4660 } 4661 return n; 4662 } 4663 4664 struct core_cand 4665 { 4666 const struct btf *btf; 4667 const struct btf_type *t; 4668 const char *name; 4669 __u32 id; 4670 }; 4671 4672 /* dynamically sized list of type IDs and its associated struct btf */ 4673 struct core_cand_list { 4674 struct core_cand *cands; 4675 int len; 4676 }; 4677 4678 static void bpf_core_free_cands(struct core_cand_list *cands) 4679 { 4680 free(cands->cands); 4681 free(cands); 4682 } 4683 4684 static int bpf_core_add_cands(struct core_cand *local_cand, 4685 size_t local_essent_len, 4686 const struct btf *targ_btf, 4687 const char *targ_btf_name, 4688 int targ_start_id, 4689 struct core_cand_list *cands) 4690 { 4691 struct core_cand *new_cands, *cand; 4692 const struct btf_type *t; 4693 const char *targ_name; 4694 size_t targ_essent_len; 4695 int n, i; 4696 4697 n = btf__get_nr_types(targ_btf); 4698 for (i = targ_start_id; i <= n; i++) { 4699 t = btf__type_by_id(targ_btf, i); 4700 if (btf_kind(t) != btf_kind(local_cand->t)) 4701 continue; 4702 4703 targ_name = btf__name_by_offset(targ_btf, t->name_off); 4704 if (str_is_empty(targ_name)) 4705 continue; 4706 4707 targ_essent_len = bpf_core_essential_name_len(targ_name); 4708 if (targ_essent_len != local_essent_len) 4709 continue; 4710 4711 if (strncmp(local_cand->name, targ_name, local_essent_len) != 0) 4712 continue; 4713 4714 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 4715 local_cand->id, btf_kind_str(local_cand->t), 4716 local_cand->name, i, btf_kind_str(t), targ_name, 4717 targ_btf_name); 4718 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 4719 sizeof(*cands->cands)); 4720 if (!new_cands) 4721 return -ENOMEM; 4722 4723 cand = &new_cands[cands->len]; 4724 cand->btf = targ_btf; 4725 cand->t = t; 4726 cand->name = targ_name; 4727 cand->id = i; 4728 4729 cands->cands = new_cands; 4730 cands->len++; 4731 } 4732 return 0; 4733 } 4734 4735 static int load_module_btfs(struct bpf_object *obj) 4736 { 4737 struct bpf_btf_info info; 4738 struct module_btf *mod_btf; 4739 struct btf *btf; 4740 char name[64]; 4741 __u32 id = 0, len; 4742 int err, fd; 4743 4744 if (obj->btf_modules_loaded) 4745 return 0; 4746 4747 /* don't do this again, even if we find no module BTFs */ 4748 obj->btf_modules_loaded = true; 4749 4750 /* kernel too old to support module BTFs */ 4751 if (!kernel_supports(FEAT_MODULE_BTF)) 4752 return 0; 4753 4754 while (true) { 4755 err = bpf_btf_get_next_id(id, &id); 4756 if (err && errno == ENOENT) 4757 return 0; 4758 if (err) { 4759 err = -errno; 4760 pr_warn("failed to iterate BTF objects: %d\n", err); 4761 return err; 4762 } 4763 4764 fd = bpf_btf_get_fd_by_id(id); 4765 if (fd < 0) { 4766 if (errno == ENOENT) 4767 continue; /* expected race: BTF was unloaded */ 4768 err = -errno; 4769 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 4770 return err; 4771 } 4772 4773 len = sizeof(info); 4774 memset(&info, 0, sizeof(info)); 4775 info.name = ptr_to_u64(name); 4776 info.name_len = sizeof(name); 4777 4778 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4779 if (err) { 4780 err = -errno; 4781 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 4782 goto err_out; 4783 } 4784 4785 /* ignore non-module BTFs */ 4786 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 4787 close(fd); 4788 continue; 4789 } 4790 4791 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 4792 if (IS_ERR(btf)) { 4793 pr_warn("failed to load module [%s]'s BTF object #%d: %ld\n", 4794 name, id, PTR_ERR(btf)); 4795 err = PTR_ERR(btf); 4796 goto err_out; 4797 } 4798 4799 err = btf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 4800 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 4801 if (err) 4802 goto err_out; 4803 4804 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 4805 4806 mod_btf->btf = btf; 4807 mod_btf->id = id; 4808 mod_btf->fd = fd; 4809 mod_btf->name = strdup(name); 4810 if (!mod_btf->name) { 4811 err = -ENOMEM; 4812 goto err_out; 4813 } 4814 continue; 4815 4816 err_out: 4817 close(fd); 4818 return err; 4819 } 4820 4821 return 0; 4822 } 4823 4824 static struct core_cand_list * 4825 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 4826 { 4827 struct core_cand local_cand = {}; 4828 struct core_cand_list *cands; 4829 const struct btf *main_btf; 4830 size_t local_essent_len; 4831 int err, i; 4832 4833 local_cand.btf = local_btf; 4834 local_cand.t = btf__type_by_id(local_btf, local_type_id); 4835 if (!local_cand.t) 4836 return ERR_PTR(-EINVAL); 4837 4838 local_cand.name = btf__name_by_offset(local_btf, local_cand.t->name_off); 4839 if (str_is_empty(local_cand.name)) 4840 return ERR_PTR(-EINVAL); 4841 local_essent_len = bpf_core_essential_name_len(local_cand.name); 4842 4843 cands = calloc(1, sizeof(*cands)); 4844 if (!cands) 4845 return ERR_PTR(-ENOMEM); 4846 4847 /* Attempt to find target candidates in vmlinux BTF first */ 4848 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 4849 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 4850 if (err) 4851 goto err_out; 4852 4853 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 4854 if (cands->len) 4855 return cands; 4856 4857 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 4858 if (obj->btf_vmlinux_override) 4859 return cands; 4860 4861 /* now look through module BTFs, trying to still find candidates */ 4862 err = load_module_btfs(obj); 4863 if (err) 4864 goto err_out; 4865 4866 for (i = 0; i < obj->btf_module_cnt; i++) { 4867 err = bpf_core_add_cands(&local_cand, local_essent_len, 4868 obj->btf_modules[i].btf, 4869 obj->btf_modules[i].name, 4870 btf__get_nr_types(obj->btf_vmlinux) + 1, 4871 cands); 4872 if (err) 4873 goto err_out; 4874 } 4875 4876 return cands; 4877 err_out: 4878 bpf_core_free_cands(cands); 4879 return ERR_PTR(err); 4880 } 4881 4882 /* Check two types for compatibility for the purpose of field access 4883 * relocation. const/volatile/restrict and typedefs are skipped to ensure we 4884 * are relocating semantically compatible entities: 4885 * - any two STRUCTs/UNIONs are compatible and can be mixed; 4886 * - any two FWDs are compatible, if their names match (modulo flavor suffix); 4887 * - any two PTRs are always compatible; 4888 * - for ENUMs, names should be the same (ignoring flavor suffix) or at 4889 * least one of enums should be anonymous; 4890 * - for ENUMs, check sizes, names are ignored; 4891 * - for INT, size and signedness are ignored; 4892 * - for ARRAY, dimensionality is ignored, element types are checked for 4893 * compatibility recursively; 4894 * - everything else shouldn't be ever a target of relocation. 4895 * These rules are not set in stone and probably will be adjusted as we get 4896 * more experience with using BPF CO-RE relocations. 4897 */ 4898 static int bpf_core_fields_are_compat(const struct btf *local_btf, 4899 __u32 local_id, 4900 const struct btf *targ_btf, 4901 __u32 targ_id) 4902 { 4903 const struct btf_type *local_type, *targ_type; 4904 4905 recur: 4906 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 4907 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 4908 if (!local_type || !targ_type) 4909 return -EINVAL; 4910 4911 if (btf_is_composite(local_type) && btf_is_composite(targ_type)) 4912 return 1; 4913 if (btf_kind(local_type) != btf_kind(targ_type)) 4914 return 0; 4915 4916 switch (btf_kind(local_type)) { 4917 case BTF_KIND_PTR: 4918 return 1; 4919 case BTF_KIND_FWD: 4920 case BTF_KIND_ENUM: { 4921 const char *local_name, *targ_name; 4922 size_t local_len, targ_len; 4923 4924 local_name = btf__name_by_offset(local_btf, 4925 local_type->name_off); 4926 targ_name = btf__name_by_offset(targ_btf, targ_type->name_off); 4927 local_len = bpf_core_essential_name_len(local_name); 4928 targ_len = bpf_core_essential_name_len(targ_name); 4929 /* one of them is anonymous or both w/ same flavor-less names */ 4930 return local_len == 0 || targ_len == 0 || 4931 (local_len == targ_len && 4932 strncmp(local_name, targ_name, local_len) == 0); 4933 } 4934 case BTF_KIND_INT: 4935 /* just reject deprecated bitfield-like integers; all other 4936 * integers are by default compatible between each other 4937 */ 4938 return btf_int_offset(local_type) == 0 && 4939 btf_int_offset(targ_type) == 0; 4940 case BTF_KIND_ARRAY: 4941 local_id = btf_array(local_type)->type; 4942 targ_id = btf_array(targ_type)->type; 4943 goto recur; 4944 default: 4945 pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n", 4946 btf_kind(local_type), local_id, targ_id); 4947 return 0; 4948 } 4949 } 4950 4951 /* 4952 * Given single high-level named field accessor in local type, find 4953 * corresponding high-level accessor for a target type. Along the way, 4954 * maintain low-level spec for target as well. Also keep updating target 4955 * bit offset. 4956 * 4957 * Searching is performed through recursive exhaustive enumeration of all 4958 * fields of a struct/union. If there are any anonymous (embedded) 4959 * structs/unions, they are recursively searched as well. If field with 4960 * desired name is found, check compatibility between local and target types, 4961 * before returning result. 4962 * 4963 * 1 is returned, if field is found. 4964 * 0 is returned if no compatible field is found. 4965 * <0 is returned on error. 4966 */ 4967 static int bpf_core_match_member(const struct btf *local_btf, 4968 const struct bpf_core_accessor *local_acc, 4969 const struct btf *targ_btf, 4970 __u32 targ_id, 4971 struct bpf_core_spec *spec, 4972 __u32 *next_targ_id) 4973 { 4974 const struct btf_type *local_type, *targ_type; 4975 const struct btf_member *local_member, *m; 4976 const char *local_name, *targ_name; 4977 __u32 local_id; 4978 int i, n, found; 4979 4980 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 4981 if (!targ_type) 4982 return -EINVAL; 4983 if (!btf_is_composite(targ_type)) 4984 return 0; 4985 4986 local_id = local_acc->type_id; 4987 local_type = btf__type_by_id(local_btf, local_id); 4988 local_member = btf_members(local_type) + local_acc->idx; 4989 local_name = btf__name_by_offset(local_btf, local_member->name_off); 4990 4991 n = btf_vlen(targ_type); 4992 m = btf_members(targ_type); 4993 for (i = 0; i < n; i++, m++) { 4994 __u32 bit_offset; 4995 4996 bit_offset = btf_member_bit_offset(targ_type, i); 4997 4998 /* too deep struct/union/array nesting */ 4999 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 5000 return -E2BIG; 5001 5002 /* speculate this member will be the good one */ 5003 spec->bit_offset += bit_offset; 5004 spec->raw_spec[spec->raw_len++] = i; 5005 5006 targ_name = btf__name_by_offset(targ_btf, m->name_off); 5007 if (str_is_empty(targ_name)) { 5008 /* embedded struct/union, we need to go deeper */ 5009 found = bpf_core_match_member(local_btf, local_acc, 5010 targ_btf, m->type, 5011 spec, next_targ_id); 5012 if (found) /* either found or error */ 5013 return found; 5014 } else if (strcmp(local_name, targ_name) == 0) { 5015 /* matching named field */ 5016 struct bpf_core_accessor *targ_acc; 5017 5018 targ_acc = &spec->spec[spec->len++]; 5019 targ_acc->type_id = targ_id; 5020 targ_acc->idx = i; 5021 targ_acc->name = targ_name; 5022 5023 *next_targ_id = m->type; 5024 found = bpf_core_fields_are_compat(local_btf, 5025 local_member->type, 5026 targ_btf, m->type); 5027 if (!found) 5028 spec->len--; /* pop accessor */ 5029 return found; 5030 } 5031 /* member turned out not to be what we looked for */ 5032 spec->bit_offset -= bit_offset; 5033 spec->raw_len--; 5034 } 5035 5036 return 0; 5037 } 5038 5039 /* Check local and target types for compatibility. This check is used for 5040 * type-based CO-RE relocations and follow slightly different rules than 5041 * field-based relocations. This function assumes that root types were already 5042 * checked for name match. Beyond that initial root-level name check, names 5043 * are completely ignored. Compatibility rules are as follows: 5044 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5045 * kind should match for local and target types (i.e., STRUCT is not 5046 * compatible with UNION); 5047 * - for ENUMs, the size is ignored; 5048 * - for INT, size and signedness are ignored; 5049 * - for ARRAY, dimensionality is ignored, element types are checked for 5050 * compatibility recursively; 5051 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5052 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5053 * - FUNC_PROTOs are compatible if they have compatible signature: same 5054 * number of input args and compatible return and argument types. 5055 * These rules are not set in stone and probably will be adjusted as we get 5056 * more experience with using BPF CO-RE relocations. 5057 */ 5058 static int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5059 const struct btf *targ_btf, __u32 targ_id) 5060 { 5061 const struct btf_type *local_type, *targ_type; 5062 int depth = 32; /* max recursion depth */ 5063 5064 /* caller made sure that names match (ignoring flavor suffix) */ 5065 local_type = btf__type_by_id(local_btf, local_id); 5066 targ_type = btf__type_by_id(targ_btf, targ_id); 5067 if (btf_kind(local_type) != btf_kind(targ_type)) 5068 return 0; 5069 5070 recur: 5071 depth--; 5072 if (depth < 0) 5073 return -EINVAL; 5074 5075 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 5076 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 5077 if (!local_type || !targ_type) 5078 return -EINVAL; 5079 5080 if (btf_kind(local_type) != btf_kind(targ_type)) 5081 return 0; 5082 5083 switch (btf_kind(local_type)) { 5084 case BTF_KIND_UNKN: 5085 case BTF_KIND_STRUCT: 5086 case BTF_KIND_UNION: 5087 case BTF_KIND_ENUM: 5088 case BTF_KIND_FWD: 5089 return 1; 5090 case BTF_KIND_INT: 5091 /* just reject deprecated bitfield-like integers; all other 5092 * integers are by default compatible between each other 5093 */ 5094 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0; 5095 case BTF_KIND_PTR: 5096 local_id = local_type->type; 5097 targ_id = targ_type->type; 5098 goto recur; 5099 case BTF_KIND_ARRAY: 5100 local_id = btf_array(local_type)->type; 5101 targ_id = btf_array(targ_type)->type; 5102 goto recur; 5103 case BTF_KIND_FUNC_PROTO: { 5104 struct btf_param *local_p = btf_params(local_type); 5105 struct btf_param *targ_p = btf_params(targ_type); 5106 __u16 local_vlen = btf_vlen(local_type); 5107 __u16 targ_vlen = btf_vlen(targ_type); 5108 int i, err; 5109 5110 if (local_vlen != targ_vlen) 5111 return 0; 5112 5113 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { 5114 skip_mods_and_typedefs(local_btf, local_p->type, &local_id); 5115 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id); 5116 err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id); 5117 if (err <= 0) 5118 return err; 5119 } 5120 5121 /* tail recurse for return type check */ 5122 skip_mods_and_typedefs(local_btf, local_type->type, &local_id); 5123 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id); 5124 goto recur; 5125 } 5126 default: 5127 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n", 5128 btf_kind_str(local_type), local_id, targ_id); 5129 return 0; 5130 } 5131 } 5132 5133 /* 5134 * Try to match local spec to a target type and, if successful, produce full 5135 * target spec (high-level, low-level + bit offset). 5136 */ 5137 static int bpf_core_spec_match(struct bpf_core_spec *local_spec, 5138 const struct btf *targ_btf, __u32 targ_id, 5139 struct bpf_core_spec *targ_spec) 5140 { 5141 const struct btf_type *targ_type; 5142 const struct bpf_core_accessor *local_acc; 5143 struct bpf_core_accessor *targ_acc; 5144 int i, sz, matched; 5145 5146 memset(targ_spec, 0, sizeof(*targ_spec)); 5147 targ_spec->btf = targ_btf; 5148 targ_spec->root_type_id = targ_id; 5149 targ_spec->relo_kind = local_spec->relo_kind; 5150 5151 if (core_relo_is_type_based(local_spec->relo_kind)) { 5152 return bpf_core_types_are_compat(local_spec->btf, 5153 local_spec->root_type_id, 5154 targ_btf, targ_id); 5155 } 5156 5157 local_acc = &local_spec->spec[0]; 5158 targ_acc = &targ_spec->spec[0]; 5159 5160 if (core_relo_is_enumval_based(local_spec->relo_kind)) { 5161 size_t local_essent_len, targ_essent_len; 5162 const struct btf_enum *e; 5163 const char *targ_name; 5164 5165 /* has to resolve to an enum */ 5166 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id); 5167 if (!btf_is_enum(targ_type)) 5168 return 0; 5169 5170 local_essent_len = bpf_core_essential_name_len(local_acc->name); 5171 5172 for (i = 0, e = btf_enum(targ_type); i < btf_vlen(targ_type); i++, e++) { 5173 targ_name = btf__name_by_offset(targ_spec->btf, e->name_off); 5174 targ_essent_len = bpf_core_essential_name_len(targ_name); 5175 if (targ_essent_len != local_essent_len) 5176 continue; 5177 if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) { 5178 targ_acc->type_id = targ_id; 5179 targ_acc->idx = i; 5180 targ_acc->name = targ_name; 5181 targ_spec->len++; 5182 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 5183 targ_spec->raw_len++; 5184 return 1; 5185 } 5186 } 5187 return 0; 5188 } 5189 5190 if (!core_relo_is_field_based(local_spec->relo_kind)) 5191 return -EINVAL; 5192 5193 for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) { 5194 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, 5195 &targ_id); 5196 if (!targ_type) 5197 return -EINVAL; 5198 5199 if (local_acc->name) { 5200 matched = bpf_core_match_member(local_spec->btf, 5201 local_acc, 5202 targ_btf, targ_id, 5203 targ_spec, &targ_id); 5204 if (matched <= 0) 5205 return matched; 5206 } else { 5207 /* for i=0, targ_id is already treated as array element 5208 * type (because it's the original struct), for others 5209 * we should find array element type first 5210 */ 5211 if (i > 0) { 5212 const struct btf_array *a; 5213 bool flex; 5214 5215 if (!btf_is_array(targ_type)) 5216 return 0; 5217 5218 a = btf_array(targ_type); 5219 flex = is_flex_arr(targ_btf, targ_acc - 1, a); 5220 if (!flex && local_acc->idx >= a->nelems) 5221 return 0; 5222 if (!skip_mods_and_typedefs(targ_btf, a->type, 5223 &targ_id)) 5224 return -EINVAL; 5225 } 5226 5227 /* too deep struct/union/array nesting */ 5228 if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 5229 return -E2BIG; 5230 5231 targ_acc->type_id = targ_id; 5232 targ_acc->idx = local_acc->idx; 5233 targ_acc->name = NULL; 5234 targ_spec->len++; 5235 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 5236 targ_spec->raw_len++; 5237 5238 sz = btf__resolve_size(targ_btf, targ_id); 5239 if (sz < 0) 5240 return sz; 5241 targ_spec->bit_offset += local_acc->idx * sz * 8; 5242 } 5243 } 5244 5245 return 1; 5246 } 5247 5248 static int bpf_core_calc_field_relo(const struct bpf_program *prog, 5249 const struct bpf_core_relo *relo, 5250 const struct bpf_core_spec *spec, 5251 __u32 *val, __u32 *field_sz, __u32 *type_id, 5252 bool *validate) 5253 { 5254 const struct bpf_core_accessor *acc; 5255 const struct btf_type *t; 5256 __u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id; 5257 const struct btf_member *m; 5258 const struct btf_type *mt; 5259 bool bitfield; 5260 __s64 sz; 5261 5262 *field_sz = 0; 5263 5264 if (relo->kind == BPF_FIELD_EXISTS) { 5265 *val = spec ? 1 : 0; 5266 return 0; 5267 } 5268 5269 if (!spec) 5270 return -EUCLEAN; /* request instruction poisoning */ 5271 5272 acc = &spec->spec[spec->len - 1]; 5273 t = btf__type_by_id(spec->btf, acc->type_id); 5274 5275 /* a[n] accessor needs special handling */ 5276 if (!acc->name) { 5277 if (relo->kind == BPF_FIELD_BYTE_OFFSET) { 5278 *val = spec->bit_offset / 8; 5279 /* remember field size for load/store mem size */ 5280 sz = btf__resolve_size(spec->btf, acc->type_id); 5281 if (sz < 0) 5282 return -EINVAL; 5283 *field_sz = sz; 5284 *type_id = acc->type_id; 5285 } else if (relo->kind == BPF_FIELD_BYTE_SIZE) { 5286 sz = btf__resolve_size(spec->btf, acc->type_id); 5287 if (sz < 0) 5288 return -EINVAL; 5289 *val = sz; 5290 } else { 5291 pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n", 5292 prog->name, relo->kind, relo->insn_off / 8); 5293 return -EINVAL; 5294 } 5295 if (validate) 5296 *validate = true; 5297 return 0; 5298 } 5299 5300 m = btf_members(t) + acc->idx; 5301 mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id); 5302 bit_off = spec->bit_offset; 5303 bit_sz = btf_member_bitfield_size(t, acc->idx); 5304 5305 bitfield = bit_sz > 0; 5306 if (bitfield) { 5307 byte_sz = mt->size; 5308 byte_off = bit_off / 8 / byte_sz * byte_sz; 5309 /* figure out smallest int size necessary for bitfield load */ 5310 while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) { 5311 if (byte_sz >= 8) { 5312 /* bitfield can't be read with 64-bit read */ 5313 pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n", 5314 prog->name, relo->kind, relo->insn_off / 8); 5315 return -E2BIG; 5316 } 5317 byte_sz *= 2; 5318 byte_off = bit_off / 8 / byte_sz * byte_sz; 5319 } 5320 } else { 5321 sz = btf__resolve_size(spec->btf, field_type_id); 5322 if (sz < 0) 5323 return -EINVAL; 5324 byte_sz = sz; 5325 byte_off = spec->bit_offset / 8; 5326 bit_sz = byte_sz * 8; 5327 } 5328 5329 /* for bitfields, all the relocatable aspects are ambiguous and we 5330 * might disagree with compiler, so turn off validation of expected 5331 * value, except for signedness 5332 */ 5333 if (validate) 5334 *validate = !bitfield; 5335 5336 switch (relo->kind) { 5337 case BPF_FIELD_BYTE_OFFSET: 5338 *val = byte_off; 5339 if (!bitfield) { 5340 *field_sz = byte_sz; 5341 *type_id = field_type_id; 5342 } 5343 break; 5344 case BPF_FIELD_BYTE_SIZE: 5345 *val = byte_sz; 5346 break; 5347 case BPF_FIELD_SIGNED: 5348 /* enums will be assumed unsigned */ 5349 *val = btf_is_enum(mt) || 5350 (btf_int_encoding(mt) & BTF_INT_SIGNED); 5351 if (validate) 5352 *validate = true; /* signedness is never ambiguous */ 5353 break; 5354 case BPF_FIELD_LSHIFT_U64: 5355 #if __BYTE_ORDER == __LITTLE_ENDIAN 5356 *val = 64 - (bit_off + bit_sz - byte_off * 8); 5357 #else 5358 *val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8); 5359 #endif 5360 break; 5361 case BPF_FIELD_RSHIFT_U64: 5362 *val = 64 - bit_sz; 5363 if (validate) 5364 *validate = true; /* right shift is never ambiguous */ 5365 break; 5366 case BPF_FIELD_EXISTS: 5367 default: 5368 return -EOPNOTSUPP; 5369 } 5370 5371 return 0; 5372 } 5373 5374 static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo, 5375 const struct bpf_core_spec *spec, 5376 __u32 *val) 5377 { 5378 __s64 sz; 5379 5380 /* type-based relos return zero when target type is not found */ 5381 if (!spec) { 5382 *val = 0; 5383 return 0; 5384 } 5385 5386 switch (relo->kind) { 5387 case BPF_TYPE_ID_TARGET: 5388 *val = spec->root_type_id; 5389 break; 5390 case BPF_TYPE_EXISTS: 5391 *val = 1; 5392 break; 5393 case BPF_TYPE_SIZE: 5394 sz = btf__resolve_size(spec->btf, spec->root_type_id); 5395 if (sz < 0) 5396 return -EINVAL; 5397 *val = sz; 5398 break; 5399 case BPF_TYPE_ID_LOCAL: 5400 /* BPF_TYPE_ID_LOCAL is handled specially and shouldn't get here */ 5401 default: 5402 return -EOPNOTSUPP; 5403 } 5404 5405 return 0; 5406 } 5407 5408 static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo, 5409 const struct bpf_core_spec *spec, 5410 __u32 *val) 5411 { 5412 const struct btf_type *t; 5413 const struct btf_enum *e; 5414 5415 switch (relo->kind) { 5416 case BPF_ENUMVAL_EXISTS: 5417 *val = spec ? 1 : 0; 5418 break; 5419 case BPF_ENUMVAL_VALUE: 5420 if (!spec) 5421 return -EUCLEAN; /* request instruction poisoning */ 5422 t = btf__type_by_id(spec->btf, spec->spec[0].type_id); 5423 e = btf_enum(t) + spec->spec[0].idx; 5424 *val = e->val; 5425 break; 5426 default: 5427 return -EOPNOTSUPP; 5428 } 5429 5430 return 0; 5431 } 5432 5433 struct bpf_core_relo_res 5434 { 5435 /* expected value in the instruction, unless validate == false */ 5436 __u32 orig_val; 5437 /* new value that needs to be patched up to */ 5438 __u32 new_val; 5439 /* relocation unsuccessful, poison instruction, but don't fail load */ 5440 bool poison; 5441 /* some relocations can't be validated against orig_val */ 5442 bool validate; 5443 /* for field byte offset relocations or the forms: 5444 * *(T *)(rX + <off>) = rY 5445 * rX = *(T *)(rY + <off>), 5446 * we remember original and resolved field size to adjust direct 5447 * memory loads of pointers and integers; this is necessary for 32-bit 5448 * host kernel architectures, but also allows to automatically 5449 * relocate fields that were resized from, e.g., u32 to u64, etc. 5450 */ 5451 bool fail_memsz_adjust; 5452 __u32 orig_sz; 5453 __u32 orig_type_id; 5454 __u32 new_sz; 5455 __u32 new_type_id; 5456 }; 5457 5458 /* Calculate original and target relocation values, given local and target 5459 * specs and relocation kind. These values are calculated for each candidate. 5460 * If there are multiple candidates, resulting values should all be consistent 5461 * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity. 5462 * If instruction has to be poisoned, *poison will be set to true. 5463 */ 5464 static int bpf_core_calc_relo(const struct bpf_program *prog, 5465 const struct bpf_core_relo *relo, 5466 int relo_idx, 5467 const struct bpf_core_spec *local_spec, 5468 const struct bpf_core_spec *targ_spec, 5469 struct bpf_core_relo_res *res) 5470 { 5471 int err = -EOPNOTSUPP; 5472 5473 res->orig_val = 0; 5474 res->new_val = 0; 5475 res->poison = false; 5476 res->validate = true; 5477 res->fail_memsz_adjust = false; 5478 res->orig_sz = res->new_sz = 0; 5479 res->orig_type_id = res->new_type_id = 0; 5480 5481 if (core_relo_is_field_based(relo->kind)) { 5482 err = bpf_core_calc_field_relo(prog, relo, local_spec, 5483 &res->orig_val, &res->orig_sz, 5484 &res->orig_type_id, &res->validate); 5485 err = err ?: bpf_core_calc_field_relo(prog, relo, targ_spec, 5486 &res->new_val, &res->new_sz, 5487 &res->new_type_id, NULL); 5488 if (err) 5489 goto done; 5490 /* Validate if it's safe to adjust load/store memory size. 5491 * Adjustments are performed only if original and new memory 5492 * sizes differ. 5493 */ 5494 res->fail_memsz_adjust = false; 5495 if (res->orig_sz != res->new_sz) { 5496 const struct btf_type *orig_t, *new_t; 5497 5498 orig_t = btf__type_by_id(local_spec->btf, res->orig_type_id); 5499 new_t = btf__type_by_id(targ_spec->btf, res->new_type_id); 5500 5501 /* There are two use cases in which it's safe to 5502 * adjust load/store's mem size: 5503 * - reading a 32-bit kernel pointer, while on BPF 5504 * size pointers are always 64-bit; in this case 5505 * it's safe to "downsize" instruction size due to 5506 * pointer being treated as unsigned integer with 5507 * zero-extended upper 32-bits; 5508 * - reading unsigned integers, again due to 5509 * zero-extension is preserving the value correctly. 5510 * 5511 * In all other cases it's incorrect to attempt to 5512 * load/store field because read value will be 5513 * incorrect, so we poison relocated instruction. 5514 */ 5515 if (btf_is_ptr(orig_t) && btf_is_ptr(new_t)) 5516 goto done; 5517 if (btf_is_int(orig_t) && btf_is_int(new_t) && 5518 btf_int_encoding(orig_t) != BTF_INT_SIGNED && 5519 btf_int_encoding(new_t) != BTF_INT_SIGNED) 5520 goto done; 5521 5522 /* mark as invalid mem size adjustment, but this will 5523 * only be checked for LDX/STX/ST insns 5524 */ 5525 res->fail_memsz_adjust = true; 5526 } 5527 } else if (core_relo_is_type_based(relo->kind)) { 5528 err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val); 5529 err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val); 5530 } else if (core_relo_is_enumval_based(relo->kind)) { 5531 err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val); 5532 err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val); 5533 } 5534 5535 done: 5536 if (err == -EUCLEAN) { 5537 /* EUCLEAN is used to signal instruction poisoning request */ 5538 res->poison = true; 5539 err = 0; 5540 } else if (err == -EOPNOTSUPP) { 5541 /* EOPNOTSUPP means unknown/unsupported relocation */ 5542 pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n", 5543 prog->name, relo_idx, core_relo_kind_str(relo->kind), 5544 relo->kind, relo->insn_off / 8); 5545 } 5546 5547 return err; 5548 } 5549 5550 /* 5551 * Turn instruction for which CO_RE relocation failed into invalid one with 5552 * distinct signature. 5553 */ 5554 static void bpf_core_poison_insn(struct bpf_program *prog, int relo_idx, 5555 int insn_idx, struct bpf_insn *insn) 5556 { 5557 pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n", 5558 prog->name, relo_idx, insn_idx); 5559 insn->code = BPF_JMP | BPF_CALL; 5560 insn->dst_reg = 0; 5561 insn->src_reg = 0; 5562 insn->off = 0; 5563 /* if this instruction is reachable (not a dead code), 5564 * verifier will complain with the following message: 5565 * invalid func unknown#195896080 5566 */ 5567 insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */ 5568 } 5569 5570 static bool is_ldimm64(struct bpf_insn *insn) 5571 { 5572 return insn->code == (BPF_LD | BPF_IMM | BPF_DW); 5573 } 5574 5575 static int insn_bpf_size_to_bytes(struct bpf_insn *insn) 5576 { 5577 switch (BPF_SIZE(insn->code)) { 5578 case BPF_DW: return 8; 5579 case BPF_W: return 4; 5580 case BPF_H: return 2; 5581 case BPF_B: return 1; 5582 default: return -1; 5583 } 5584 } 5585 5586 static int insn_bytes_to_bpf_size(__u32 sz) 5587 { 5588 switch (sz) { 5589 case 8: return BPF_DW; 5590 case 4: return BPF_W; 5591 case 2: return BPF_H; 5592 case 1: return BPF_B; 5593 default: return -1; 5594 } 5595 } 5596 5597 /* 5598 * Patch relocatable BPF instruction. 5599 * 5600 * Patched value is determined by relocation kind and target specification. 5601 * For existence relocations target spec will be NULL if field/type is not found. 5602 * Expected insn->imm value is determined using relocation kind and local 5603 * spec, and is checked before patching instruction. If actual insn->imm value 5604 * is wrong, bail out with error. 5605 * 5606 * Currently supported classes of BPF instruction are: 5607 * 1. rX = <imm> (assignment with immediate operand); 5608 * 2. rX += <imm> (arithmetic operations with immediate operand); 5609 * 3. rX = <imm64> (load with 64-bit immediate value); 5610 * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64}; 5611 * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64}; 5612 * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}. 5613 */ 5614 static int bpf_core_patch_insn(struct bpf_program *prog, 5615 const struct bpf_core_relo *relo, 5616 int relo_idx, 5617 const struct bpf_core_relo_res *res) 5618 { 5619 __u32 orig_val, new_val; 5620 struct bpf_insn *insn; 5621 int insn_idx; 5622 __u8 class; 5623 5624 if (relo->insn_off % BPF_INSN_SZ) 5625 return -EINVAL; 5626 insn_idx = relo->insn_off / BPF_INSN_SZ; 5627 /* adjust insn_idx from section frame of reference to the local 5628 * program's frame of reference; (sub-)program code is not yet 5629 * relocated, so it's enough to just subtract in-section offset 5630 */ 5631 insn_idx = insn_idx - prog->sec_insn_off; 5632 insn = &prog->insns[insn_idx]; 5633 class = BPF_CLASS(insn->code); 5634 5635 if (res->poison) { 5636 poison: 5637 /* poison second part of ldimm64 to avoid confusing error from 5638 * verifier about "unknown opcode 00" 5639 */ 5640 if (is_ldimm64(insn)) 5641 bpf_core_poison_insn(prog, relo_idx, insn_idx + 1, insn + 1); 5642 bpf_core_poison_insn(prog, relo_idx, insn_idx, insn); 5643 return 0; 5644 } 5645 5646 orig_val = res->orig_val; 5647 new_val = res->new_val; 5648 5649 switch (class) { 5650 case BPF_ALU: 5651 case BPF_ALU64: 5652 if (BPF_SRC(insn->code) != BPF_K) 5653 return -EINVAL; 5654 if (res->validate && insn->imm != orig_val) { 5655 pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n", 5656 prog->name, relo_idx, 5657 insn_idx, insn->imm, orig_val, new_val); 5658 return -EINVAL; 5659 } 5660 orig_val = insn->imm; 5661 insn->imm = new_val; 5662 pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n", 5663 prog->name, relo_idx, insn_idx, 5664 orig_val, new_val); 5665 break; 5666 case BPF_LDX: 5667 case BPF_ST: 5668 case BPF_STX: 5669 if (res->validate && insn->off != orig_val) { 5670 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %u -> %u\n", 5671 prog->name, relo_idx, insn_idx, insn->off, orig_val, new_val); 5672 return -EINVAL; 5673 } 5674 if (new_val > SHRT_MAX) { 5675 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n", 5676 prog->name, relo_idx, insn_idx, new_val); 5677 return -ERANGE; 5678 } 5679 if (res->fail_memsz_adjust) { 5680 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. " 5681 "Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n", 5682 prog->name, relo_idx, insn_idx); 5683 goto poison; 5684 } 5685 5686 orig_val = insn->off; 5687 insn->off = new_val; 5688 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n", 5689 prog->name, relo_idx, insn_idx, orig_val, new_val); 5690 5691 if (res->new_sz != res->orig_sz) { 5692 int insn_bytes_sz, insn_bpf_sz; 5693 5694 insn_bytes_sz = insn_bpf_size_to_bytes(insn); 5695 if (insn_bytes_sz != res->orig_sz) { 5696 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n", 5697 prog->name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz); 5698 return -EINVAL; 5699 } 5700 5701 insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz); 5702 if (insn_bpf_sz < 0) { 5703 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n", 5704 prog->name, relo_idx, insn_idx, res->new_sz); 5705 return -EINVAL; 5706 } 5707 5708 insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code); 5709 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n", 5710 prog->name, relo_idx, insn_idx, res->orig_sz, res->new_sz); 5711 } 5712 break; 5713 case BPF_LD: { 5714 __u64 imm; 5715 5716 if (!is_ldimm64(insn) || 5717 insn[0].src_reg != 0 || insn[0].off != 0 || 5718 insn_idx + 1 >= prog->insns_cnt || 5719 insn[1].code != 0 || insn[1].dst_reg != 0 || 5720 insn[1].src_reg != 0 || insn[1].off != 0) { 5721 pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n", 5722 prog->name, relo_idx, insn_idx); 5723 return -EINVAL; 5724 } 5725 5726 imm = insn[0].imm + ((__u64)insn[1].imm << 32); 5727 if (res->validate && imm != orig_val) { 5728 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %u -> %u\n", 5729 prog->name, relo_idx, 5730 insn_idx, (unsigned long long)imm, 5731 orig_val, new_val); 5732 return -EINVAL; 5733 } 5734 5735 insn[0].imm = new_val; 5736 insn[1].imm = 0; /* currently only 32-bit values are supported */ 5737 pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %u\n", 5738 prog->name, relo_idx, insn_idx, 5739 (unsigned long long)imm, new_val); 5740 break; 5741 } 5742 default: 5743 pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n", 5744 prog->name, relo_idx, insn_idx, insn->code, 5745 insn->src_reg, insn->dst_reg, insn->off, insn->imm); 5746 return -EINVAL; 5747 } 5748 5749 return 0; 5750 } 5751 5752 /* Output spec definition in the format: 5753 * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>, 5754 * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b 5755 */ 5756 static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec) 5757 { 5758 const struct btf_type *t; 5759 const struct btf_enum *e; 5760 const char *s; 5761 __u32 type_id; 5762 int i; 5763 5764 type_id = spec->root_type_id; 5765 t = btf__type_by_id(spec->btf, type_id); 5766 s = btf__name_by_offset(spec->btf, t->name_off); 5767 5768 libbpf_print(level, "[%u] %s %s", type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s); 5769 5770 if (core_relo_is_type_based(spec->relo_kind)) 5771 return; 5772 5773 if (core_relo_is_enumval_based(spec->relo_kind)) { 5774 t = skip_mods_and_typedefs(spec->btf, type_id, NULL); 5775 e = btf_enum(t) + spec->raw_spec[0]; 5776 s = btf__name_by_offset(spec->btf, e->name_off); 5777 5778 libbpf_print(level, "::%s = %u", s, e->val); 5779 return; 5780 } 5781 5782 if (core_relo_is_field_based(spec->relo_kind)) { 5783 for (i = 0; i < spec->len; i++) { 5784 if (spec->spec[i].name) 5785 libbpf_print(level, ".%s", spec->spec[i].name); 5786 else if (i > 0 || spec->spec[i].idx > 0) 5787 libbpf_print(level, "[%u]", spec->spec[i].idx); 5788 } 5789 5790 libbpf_print(level, " ("); 5791 for (i = 0; i < spec->raw_len; i++) 5792 libbpf_print(level, "%s%d", i == 0 ? "" : ":", spec->raw_spec[i]); 5793 5794 if (spec->bit_offset % 8) 5795 libbpf_print(level, " @ offset %u.%u)", 5796 spec->bit_offset / 8, spec->bit_offset % 8); 5797 else 5798 libbpf_print(level, " @ offset %u)", spec->bit_offset / 8); 5799 return; 5800 } 5801 } 5802 5803 static size_t bpf_core_hash_fn(const void *key, void *ctx) 5804 { 5805 return (size_t)key; 5806 } 5807 5808 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 5809 { 5810 return k1 == k2; 5811 } 5812 5813 static void *u32_as_hash_key(__u32 x) 5814 { 5815 return (void *)(uintptr_t)x; 5816 } 5817 5818 /* 5819 * CO-RE relocate single instruction. 5820 * 5821 * The outline and important points of the algorithm: 5822 * 1. For given local type, find corresponding candidate target types. 5823 * Candidate type is a type with the same "essential" name, ignoring 5824 * everything after last triple underscore (___). E.g., `sample`, 5825 * `sample___flavor_one`, `sample___flavor_another_one`, are all candidates 5826 * for each other. Names with triple underscore are referred to as 5827 * "flavors" and are useful, among other things, to allow to 5828 * specify/support incompatible variations of the same kernel struct, which 5829 * might differ between different kernel versions and/or build 5830 * configurations. 5831 * 5832 * N.B. Struct "flavors" could be generated by bpftool's BTF-to-C 5833 * converter, when deduplicated BTF of a kernel still contains more than 5834 * one different types with the same name. In that case, ___2, ___3, etc 5835 * are appended starting from second name conflict. But start flavors are 5836 * also useful to be defined "locally", in BPF program, to extract same 5837 * data from incompatible changes between different kernel 5838 * versions/configurations. For instance, to handle field renames between 5839 * kernel versions, one can use two flavors of the struct name with the 5840 * same common name and use conditional relocations to extract that field, 5841 * depending on target kernel version. 5842 * 2. For each candidate type, try to match local specification to this 5843 * candidate target type. Matching involves finding corresponding 5844 * high-level spec accessors, meaning that all named fields should match, 5845 * as well as all array accesses should be within the actual bounds. Also, 5846 * types should be compatible (see bpf_core_fields_are_compat for details). 5847 * 3. It is supported and expected that there might be multiple flavors 5848 * matching the spec. As long as all the specs resolve to the same set of 5849 * offsets across all candidates, there is no error. If there is any 5850 * ambiguity, CO-RE relocation will fail. This is necessary to accomodate 5851 * imprefection of BTF deduplication, which can cause slight duplication of 5852 * the same BTF type, if some directly or indirectly referenced (by 5853 * pointer) type gets resolved to different actual types in different 5854 * object files. If such situation occurs, deduplicated BTF will end up 5855 * with two (or more) structurally identical types, which differ only in 5856 * types they refer to through pointer. This should be OK in most cases and 5857 * is not an error. 5858 * 4. Candidate types search is performed by linearly scanning through all 5859 * types in target BTF. It is anticipated that this is overall more 5860 * efficient memory-wise and not significantly worse (if not better) 5861 * CPU-wise compared to prebuilding a map from all local type names to 5862 * a list of candidate type names. It's also sped up by caching resolved 5863 * list of matching candidates per each local "root" type ID, that has at 5864 * least one bpf_core_relo associated with it. This list is shared 5865 * between multiple relocations for the same type ID and is updated as some 5866 * of the candidates are pruned due to structural incompatibility. 5867 */ 5868 static int bpf_core_apply_relo(struct bpf_program *prog, 5869 const struct bpf_core_relo *relo, 5870 int relo_idx, 5871 const struct btf *local_btf, 5872 struct hashmap *cand_cache) 5873 { 5874 struct bpf_core_spec local_spec, cand_spec, targ_spec = {}; 5875 const void *type_key = u32_as_hash_key(relo->type_id); 5876 struct bpf_core_relo_res cand_res, targ_res; 5877 const struct btf_type *local_type; 5878 const char *local_name; 5879 struct core_cand_list *cands = NULL; 5880 __u32 local_id; 5881 const char *spec_str; 5882 int i, j, err; 5883 5884 local_id = relo->type_id; 5885 local_type = btf__type_by_id(local_btf, local_id); 5886 if (!local_type) 5887 return -EINVAL; 5888 5889 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5890 if (!local_name) 5891 return -EINVAL; 5892 5893 spec_str = btf__name_by_offset(local_btf, relo->access_str_off); 5894 if (str_is_empty(spec_str)) 5895 return -EINVAL; 5896 5897 err = bpf_core_parse_spec(local_btf, local_id, spec_str, relo->kind, &local_spec); 5898 if (err) { 5899 pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n", 5900 prog->name, relo_idx, local_id, btf_kind_str(local_type), 5901 str_is_empty(local_name) ? "<anon>" : local_name, 5902 spec_str, err); 5903 return -EINVAL; 5904 } 5905 5906 pr_debug("prog '%s': relo #%d: kind <%s> (%d), spec is ", prog->name, 5907 relo_idx, core_relo_kind_str(relo->kind), relo->kind); 5908 bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec); 5909 libbpf_print(LIBBPF_DEBUG, "\n"); 5910 5911 /* TYPE_ID_LOCAL relo is special and doesn't need candidate search */ 5912 if (relo->kind == BPF_TYPE_ID_LOCAL) { 5913 targ_res.validate = true; 5914 targ_res.poison = false; 5915 targ_res.orig_val = local_spec.root_type_id; 5916 targ_res.new_val = local_spec.root_type_id; 5917 goto patch_insn; 5918 } 5919 5920 /* libbpf doesn't support candidate search for anonymous types */ 5921 if (str_is_empty(spec_str)) { 5922 pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n", 5923 prog->name, relo_idx, core_relo_kind_str(relo->kind), relo->kind); 5924 return -EOPNOTSUPP; 5925 } 5926 5927 if (!hashmap__find(cand_cache, type_key, (void **)&cands)) { 5928 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5929 if (IS_ERR(cands)) { 5930 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5931 prog->name, relo_idx, local_id, btf_kind_str(local_type), 5932 local_name, PTR_ERR(cands)); 5933 return PTR_ERR(cands); 5934 } 5935 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL); 5936 if (err) { 5937 bpf_core_free_cands(cands); 5938 return err; 5939 } 5940 } 5941 5942 for (i = 0, j = 0; i < cands->len; i++) { 5943 err = bpf_core_spec_match(&local_spec, cands->cands[i].btf, 5944 cands->cands[i].id, &cand_spec); 5945 if (err < 0) { 5946 pr_warn("prog '%s': relo #%d: error matching candidate #%d ", 5947 prog->name, relo_idx, i); 5948 bpf_core_dump_spec(LIBBPF_WARN, &cand_spec); 5949 libbpf_print(LIBBPF_WARN, ": %d\n", err); 5950 return err; 5951 } 5952 5953 pr_debug("prog '%s': relo #%d: %s candidate #%d ", prog->name, 5954 relo_idx, err == 0 ? "non-matching" : "matching", i); 5955 bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec); 5956 libbpf_print(LIBBPF_DEBUG, "\n"); 5957 5958 if (err == 0) 5959 continue; 5960 5961 err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, &cand_spec, &cand_res); 5962 if (err) 5963 return err; 5964 5965 if (j == 0) { 5966 targ_res = cand_res; 5967 targ_spec = cand_spec; 5968 } else if (cand_spec.bit_offset != targ_spec.bit_offset) { 5969 /* if there are many field relo candidates, they 5970 * should all resolve to the same bit offset 5971 */ 5972 pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n", 5973 prog->name, relo_idx, cand_spec.bit_offset, 5974 targ_spec.bit_offset); 5975 return -EINVAL; 5976 } else if (cand_res.poison != targ_res.poison || cand_res.new_val != targ_res.new_val) { 5977 /* all candidates should result in the same relocation 5978 * decision and value, otherwise it's dangerous to 5979 * proceed due to ambiguity 5980 */ 5981 pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %u != %s %u\n", 5982 prog->name, relo_idx, 5983 cand_res.poison ? "failure" : "success", cand_res.new_val, 5984 targ_res.poison ? "failure" : "success", targ_res.new_val); 5985 return -EINVAL; 5986 } 5987 5988 cands->cands[j++] = cands->cands[i]; 5989 } 5990 5991 /* 5992 * For BPF_FIELD_EXISTS relo or when used BPF program has field 5993 * existence checks or kernel version/config checks, it's expected 5994 * that we might not find any candidates. In this case, if field 5995 * wasn't found in any candidate, the list of candidates shouldn't 5996 * change at all, we'll just handle relocating appropriately, 5997 * depending on relo's kind. 5998 */ 5999 if (j > 0) 6000 cands->len = j; 6001 6002 /* 6003 * If no candidates were found, it might be both a programmer error, 6004 * as well as expected case, depending whether instruction w/ 6005 * relocation is guarded in some way that makes it unreachable (dead 6006 * code) if relocation can't be resolved. This is handled in 6007 * bpf_core_patch_insn() uniformly by replacing that instruction with 6008 * BPF helper call insn (using invalid helper ID). If that instruction 6009 * is indeed unreachable, then it will be ignored and eliminated by 6010 * verifier. If it was an error, then verifier will complain and point 6011 * to a specific instruction number in its log. 6012 */ 6013 if (j == 0) { 6014 pr_debug("prog '%s': relo #%d: no matching targets found\n", 6015 prog->name, relo_idx); 6016 6017 /* calculate single target relo result explicitly */ 6018 err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, NULL, &targ_res); 6019 if (err) 6020 return err; 6021 } 6022 6023 patch_insn: 6024 /* bpf_core_patch_insn() should know how to handle missing targ_spec */ 6025 err = bpf_core_patch_insn(prog, relo, relo_idx, &targ_res); 6026 if (err) { 6027 pr_warn("prog '%s': relo #%d: failed to patch insn at offset %d: %d\n", 6028 prog->name, relo_idx, relo->insn_off, err); 6029 return -EINVAL; 6030 } 6031 6032 return 0; 6033 } 6034 6035 static int 6036 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 6037 { 6038 const struct btf_ext_info_sec *sec; 6039 const struct bpf_core_relo *rec; 6040 const struct btf_ext_info *seg; 6041 struct hashmap_entry *entry; 6042 struct hashmap *cand_cache = NULL; 6043 struct bpf_program *prog; 6044 const char *sec_name; 6045 int i, err = 0, insn_idx, sec_idx; 6046 6047 if (obj->btf_ext->core_relo_info.len == 0) 6048 return 0; 6049 6050 if (targ_btf_path) { 6051 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 6052 if (IS_ERR_OR_NULL(obj->btf_vmlinux_override)) { 6053 err = PTR_ERR(obj->btf_vmlinux_override); 6054 pr_warn("failed to parse target BTF: %d\n", err); 6055 return err; 6056 } 6057 } 6058 6059 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 6060 if (IS_ERR(cand_cache)) { 6061 err = PTR_ERR(cand_cache); 6062 goto out; 6063 } 6064 6065 seg = &obj->btf_ext->core_relo_info; 6066 for_each_btf_ext_sec(seg, sec) { 6067 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 6068 if (str_is_empty(sec_name)) { 6069 err = -EINVAL; 6070 goto out; 6071 } 6072 /* bpf_object's ELF is gone by now so it's not easy to find 6073 * section index by section name, but we can find *any* 6074 * bpf_program within desired section name and use it's 6075 * prog->sec_idx to do a proper search by section index and 6076 * instruction offset 6077 */ 6078 prog = NULL; 6079 for (i = 0; i < obj->nr_programs; i++) { 6080 prog = &obj->programs[i]; 6081 if (strcmp(prog->sec_name, sec_name) == 0) 6082 break; 6083 } 6084 if (!prog) { 6085 pr_warn("sec '%s': failed to find a BPF program\n", sec_name); 6086 return -ENOENT; 6087 } 6088 sec_idx = prog->sec_idx; 6089 6090 pr_debug("sec '%s': found %d CO-RE relocations\n", 6091 sec_name, sec->num_info); 6092 6093 for_each_btf_ext_rec(seg, sec, i, rec) { 6094 insn_idx = rec->insn_off / BPF_INSN_SZ; 6095 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 6096 if (!prog) { 6097 pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n", 6098 sec_name, insn_idx, i); 6099 err = -EINVAL; 6100 goto out; 6101 } 6102 /* no need to apply CO-RE relocation if the program is 6103 * not going to be loaded 6104 */ 6105 if (!prog->load) 6106 continue; 6107 6108 err = bpf_core_apply_relo(prog, rec, i, obj->btf, cand_cache); 6109 if (err) { 6110 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 6111 prog->name, i, err); 6112 goto out; 6113 } 6114 } 6115 } 6116 6117 out: 6118 /* obj->btf_vmlinux and module BTFs are freed after object load */ 6119 btf__free(obj->btf_vmlinux_override); 6120 obj->btf_vmlinux_override = NULL; 6121 6122 if (!IS_ERR_OR_NULL(cand_cache)) { 6123 hashmap__for_each_entry(cand_cache, entry, i) { 6124 bpf_core_free_cands(entry->value); 6125 } 6126 hashmap__free(cand_cache); 6127 } 6128 return err; 6129 } 6130 6131 /* Relocate data references within program code: 6132 * - map references; 6133 * - global variable references; 6134 * - extern references. 6135 */ 6136 static int 6137 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 6138 { 6139 int i; 6140 6141 for (i = 0; i < prog->nr_reloc; i++) { 6142 struct reloc_desc *relo = &prog->reloc_desc[i]; 6143 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6144 struct extern_desc *ext; 6145 6146 switch (relo->type) { 6147 case RELO_LD64: 6148 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 6149 insn[0].imm = obj->maps[relo->map_idx].fd; 6150 relo->processed = true; 6151 break; 6152 case RELO_DATA: 6153 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6154 insn[1].imm = insn[0].imm + relo->sym_off; 6155 insn[0].imm = obj->maps[relo->map_idx].fd; 6156 relo->processed = true; 6157 break; 6158 case RELO_EXTERN: 6159 ext = &obj->externs[relo->sym_off]; 6160 if (ext->type == EXT_KCFG) { 6161 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6162 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 6163 insn[1].imm = ext->kcfg.data_off; 6164 } else /* EXT_KSYM */ { 6165 if (ext->ksym.type_id) { /* typed ksyms */ 6166 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 6167 insn[0].imm = ext->ksym.kernel_btf_id; 6168 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 6169 } else { /* typeless ksyms */ 6170 insn[0].imm = (__u32)ext->ksym.addr; 6171 insn[1].imm = ext->ksym.addr >> 32; 6172 } 6173 } 6174 relo->processed = true; 6175 break; 6176 case RELO_CALL: 6177 /* will be handled as a follow up pass */ 6178 break; 6179 default: 6180 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6181 prog->name, i, relo->type); 6182 return -EINVAL; 6183 } 6184 } 6185 6186 return 0; 6187 } 6188 6189 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6190 const struct bpf_program *prog, 6191 const struct btf_ext_info *ext_info, 6192 void **prog_info, __u32 *prog_rec_cnt, 6193 __u32 *prog_rec_sz) 6194 { 6195 void *copy_start = NULL, *copy_end = NULL; 6196 void *rec, *rec_end, *new_prog_info; 6197 const struct btf_ext_info_sec *sec; 6198 size_t old_sz, new_sz; 6199 const char *sec_name; 6200 int i, off_adj; 6201 6202 for_each_btf_ext_sec(ext_info, sec) { 6203 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 6204 if (!sec_name) 6205 return -EINVAL; 6206 if (strcmp(sec_name, prog->sec_name) != 0) 6207 continue; 6208 6209 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6210 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6211 6212 if (insn_off < prog->sec_insn_off) 6213 continue; 6214 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6215 break; 6216 6217 if (!copy_start) 6218 copy_start = rec; 6219 copy_end = rec + ext_info->rec_size; 6220 } 6221 6222 if (!copy_start) 6223 return -ENOENT; 6224 6225 /* append func/line info of a given (sub-)program to the main 6226 * program func/line info 6227 */ 6228 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6229 new_sz = old_sz + (copy_end - copy_start); 6230 new_prog_info = realloc(*prog_info, new_sz); 6231 if (!new_prog_info) 6232 return -ENOMEM; 6233 *prog_info = new_prog_info; 6234 *prog_rec_cnt = new_sz / ext_info->rec_size; 6235 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6236 6237 /* Kernel instruction offsets are in units of 8-byte 6238 * instructions, while .BTF.ext instruction offsets generated 6239 * by Clang are in units of bytes. So convert Clang offsets 6240 * into kernel offsets and adjust offset according to program 6241 * relocated position. 6242 */ 6243 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6244 rec = new_prog_info + old_sz; 6245 rec_end = new_prog_info + new_sz; 6246 for (; rec < rec_end; rec += ext_info->rec_size) { 6247 __u32 *insn_off = rec; 6248 6249 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6250 } 6251 *prog_rec_sz = ext_info->rec_size; 6252 return 0; 6253 } 6254 6255 return -ENOENT; 6256 } 6257 6258 static int 6259 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6260 struct bpf_program *main_prog, 6261 const struct bpf_program *prog) 6262 { 6263 int err; 6264 6265 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6266 * supprot func/line info 6267 */ 6268 if (!obj->btf_ext || !kernel_supports(FEAT_BTF_FUNC)) 6269 return 0; 6270 6271 /* only attempt func info relocation if main program's func_info 6272 * relocation was successful 6273 */ 6274 if (main_prog != prog && !main_prog->func_info) 6275 goto line_info; 6276 6277 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6278 &main_prog->func_info, 6279 &main_prog->func_info_cnt, 6280 &main_prog->func_info_rec_size); 6281 if (err) { 6282 if (err != -ENOENT) { 6283 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6284 prog->name, err); 6285 return err; 6286 } 6287 if (main_prog->func_info) { 6288 /* 6289 * Some info has already been found but has problem 6290 * in the last btf_ext reloc. Must have to error out. 6291 */ 6292 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6293 return err; 6294 } 6295 /* Have problem loading the very first info. Ignore the rest. */ 6296 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6297 prog->name); 6298 } 6299 6300 line_info: 6301 /* don't relocate line info if main program's relocation failed */ 6302 if (main_prog != prog && !main_prog->line_info) 6303 return 0; 6304 6305 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6306 &main_prog->line_info, 6307 &main_prog->line_info_cnt, 6308 &main_prog->line_info_rec_size); 6309 if (err) { 6310 if (err != -ENOENT) { 6311 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6312 prog->name, err); 6313 return err; 6314 } 6315 if (main_prog->line_info) { 6316 /* 6317 * Some info has already been found but has problem 6318 * in the last btf_ext reloc. Must have to error out. 6319 */ 6320 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6321 return err; 6322 } 6323 /* Have problem loading the very first info. Ignore the rest. */ 6324 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6325 prog->name); 6326 } 6327 return 0; 6328 } 6329 6330 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6331 { 6332 size_t insn_idx = *(const size_t *)key; 6333 const struct reloc_desc *relo = elem; 6334 6335 if (insn_idx == relo->insn_idx) 6336 return 0; 6337 return insn_idx < relo->insn_idx ? -1 : 1; 6338 } 6339 6340 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6341 { 6342 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6343 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6344 } 6345 6346 static int 6347 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6348 struct bpf_program *prog) 6349 { 6350 size_t sub_insn_idx, insn_idx, new_cnt; 6351 struct bpf_program *subprog; 6352 struct bpf_insn *insns, *insn; 6353 struct reloc_desc *relo; 6354 int err; 6355 6356 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6357 if (err) 6358 return err; 6359 6360 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6361 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6362 if (!insn_is_subprog_call(insn)) 6363 continue; 6364 6365 relo = find_prog_insn_relo(prog, insn_idx); 6366 if (relo && relo->type != RELO_CALL) { 6367 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6368 prog->name, insn_idx, relo->type); 6369 return -LIBBPF_ERRNO__RELOC; 6370 } 6371 if (relo) { 6372 /* sub-program instruction index is a combination of 6373 * an offset of a symbol pointed to by relocation and 6374 * call instruction's imm field; for global functions, 6375 * call always has imm = -1, but for static functions 6376 * relocation is against STT_SECTION and insn->imm 6377 * points to a start of a static function 6378 */ 6379 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6380 } else { 6381 /* if subprogram call is to a static function within 6382 * the same ELF section, there won't be any relocation 6383 * emitted, but it also means there is no additional 6384 * offset necessary, insns->imm is relative to 6385 * instruction's original position within the section 6386 */ 6387 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6388 } 6389 6390 /* we enforce that sub-programs should be in .text section */ 6391 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6392 if (!subprog) { 6393 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6394 prog->name); 6395 return -LIBBPF_ERRNO__RELOC; 6396 } 6397 6398 /* if it's the first call instruction calling into this 6399 * subprogram (meaning this subprog hasn't been processed 6400 * yet) within the context of current main program: 6401 * - append it at the end of main program's instructions blog; 6402 * - process is recursively, while current program is put on hold; 6403 * - if that subprogram calls some other not yet processes 6404 * subprogram, same thing will happen recursively until 6405 * there are no more unprocesses subprograms left to append 6406 * and relocate. 6407 */ 6408 if (subprog->sub_insn_off == 0) { 6409 subprog->sub_insn_off = main_prog->insns_cnt; 6410 6411 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6412 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6413 if (!insns) { 6414 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6415 return -ENOMEM; 6416 } 6417 main_prog->insns = insns; 6418 main_prog->insns_cnt = new_cnt; 6419 6420 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6421 subprog->insns_cnt * sizeof(*insns)); 6422 6423 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6424 main_prog->name, subprog->insns_cnt, subprog->name); 6425 6426 err = bpf_object__reloc_code(obj, main_prog, subprog); 6427 if (err) 6428 return err; 6429 } 6430 6431 /* main_prog->insns memory could have been re-allocated, so 6432 * calculate pointer again 6433 */ 6434 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6435 /* calculate correct instruction position within current main 6436 * prog; each main prog can have a different set of 6437 * subprograms appended (potentially in different order as 6438 * well), so position of any subprog can be different for 6439 * different main programs */ 6440 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6441 6442 if (relo) 6443 relo->processed = true; 6444 6445 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6446 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6447 } 6448 6449 return 0; 6450 } 6451 6452 /* 6453 * Relocate sub-program calls. 6454 * 6455 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6456 * main prog) is processed separately. For each subprog (non-entry functions, 6457 * that can be called from either entry progs or other subprogs) gets their 6458 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6459 * hasn't been yet appended and relocated within current main prog. Once its 6460 * relocated, sub_insn_off will point at the position within current main prog 6461 * where given subprog was appended. This will further be used to relocate all 6462 * the call instructions jumping into this subprog. 6463 * 6464 * We start with main program and process all call instructions. If the call 6465 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6466 * is zero), subprog instructions are appended at the end of main program's 6467 * instruction array. Then main program is "put on hold" while we recursively 6468 * process newly appended subprogram. If that subprogram calls into another 6469 * subprogram that hasn't been appended, new subprogram is appended again to 6470 * the *main* prog's instructions (subprog's instructions are always left 6471 * untouched, as they need to be in unmodified state for subsequent main progs 6472 * and subprog instructions are always sent only as part of a main prog) and 6473 * the process continues recursively. Once all the subprogs called from a main 6474 * prog or any of its subprogs are appended (and relocated), all their 6475 * positions within finalized instructions array are known, so it's easy to 6476 * rewrite call instructions with correct relative offsets, corresponding to 6477 * desired target subprog. 6478 * 6479 * Its important to realize that some subprogs might not be called from some 6480 * main prog and any of its called/used subprogs. Those will keep their 6481 * subprog->sub_insn_off as zero at all times and won't be appended to current 6482 * main prog and won't be relocated within the context of current main prog. 6483 * They might still be used from other main progs later. 6484 * 6485 * Visually this process can be shown as below. Suppose we have two main 6486 * programs mainA and mainB and BPF object contains three subprogs: subA, 6487 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6488 * subC both call subB: 6489 * 6490 * +--------+ +-------+ 6491 * | v v | 6492 * +--+---+ +--+-+-+ +---+--+ 6493 * | subA | | subB | | subC | 6494 * +--+---+ +------+ +---+--+ 6495 * ^ ^ 6496 * | | 6497 * +---+-------+ +------+----+ 6498 * | mainA | | mainB | 6499 * +-----------+ +-----------+ 6500 * 6501 * We'll start relocating mainA, will find subA, append it and start 6502 * processing sub A recursively: 6503 * 6504 * +-----------+------+ 6505 * | mainA | subA | 6506 * +-----------+------+ 6507 * 6508 * At this point we notice that subB is used from subA, so we append it and 6509 * relocate (there are no further subcalls from subB): 6510 * 6511 * +-----------+------+------+ 6512 * | mainA | subA | subB | 6513 * +-----------+------+------+ 6514 * 6515 * At this point, we relocate subA calls, then go one level up and finish with 6516 * relocatin mainA calls. mainA is done. 6517 * 6518 * For mainB process is similar but results in different order. We start with 6519 * mainB and skip subA and subB, as mainB never calls them (at least 6520 * directly), but we see subC is needed, so we append and start processing it: 6521 * 6522 * +-----------+------+ 6523 * | mainB | subC | 6524 * +-----------+------+ 6525 * Now we see subC needs subB, so we go back to it, append and relocate it: 6526 * 6527 * +-----------+------+------+ 6528 * | mainB | subC | subB | 6529 * +-----------+------+------+ 6530 * 6531 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6532 */ 6533 static int 6534 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6535 { 6536 struct bpf_program *subprog; 6537 int i, j, err; 6538 6539 /* mark all subprogs as not relocated (yet) within the context of 6540 * current main program 6541 */ 6542 for (i = 0; i < obj->nr_programs; i++) { 6543 subprog = &obj->programs[i]; 6544 if (!prog_is_subprog(obj, subprog)) 6545 continue; 6546 6547 subprog->sub_insn_off = 0; 6548 for (j = 0; j < subprog->nr_reloc; j++) 6549 if (subprog->reloc_desc[j].type == RELO_CALL) 6550 subprog->reloc_desc[j].processed = false; 6551 } 6552 6553 err = bpf_object__reloc_code(obj, prog, prog); 6554 if (err) 6555 return err; 6556 6557 6558 return 0; 6559 } 6560 6561 static int 6562 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6563 { 6564 struct bpf_program *prog; 6565 size_t i; 6566 int err; 6567 6568 if (obj->btf_ext) { 6569 err = bpf_object__relocate_core(obj, targ_btf_path); 6570 if (err) { 6571 pr_warn("failed to perform CO-RE relocations: %d\n", 6572 err); 6573 return err; 6574 } 6575 } 6576 /* relocate data references first for all programs and sub-programs, 6577 * as they don't change relative to code locations, so subsequent 6578 * subprogram processing won't need to re-calculate any of them 6579 */ 6580 for (i = 0; i < obj->nr_programs; i++) { 6581 prog = &obj->programs[i]; 6582 err = bpf_object__relocate_data(obj, prog); 6583 if (err) { 6584 pr_warn("prog '%s': failed to relocate data references: %d\n", 6585 prog->name, err); 6586 return err; 6587 } 6588 } 6589 /* now relocate subprogram calls and append used subprograms to main 6590 * programs; each copy of subprogram code needs to be relocated 6591 * differently for each main program, because its code location might 6592 * have changed 6593 */ 6594 for (i = 0; i < obj->nr_programs; i++) { 6595 prog = &obj->programs[i]; 6596 /* sub-program's sub-calls are relocated within the context of 6597 * its main program only 6598 */ 6599 if (prog_is_subprog(obj, prog)) 6600 continue; 6601 6602 err = bpf_object__relocate_calls(obj, prog); 6603 if (err) { 6604 pr_warn("prog '%s': failed to relocate calls: %d\n", 6605 prog->name, err); 6606 return err; 6607 } 6608 } 6609 /* free up relocation descriptors */ 6610 for (i = 0; i < obj->nr_programs; i++) { 6611 prog = &obj->programs[i]; 6612 zfree(&prog->reloc_desc); 6613 prog->nr_reloc = 0; 6614 } 6615 return 0; 6616 } 6617 6618 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6619 GElf_Shdr *shdr, Elf_Data *data); 6620 6621 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6622 GElf_Shdr *shdr, Elf_Data *data) 6623 { 6624 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6625 int i, j, nrels, new_sz; 6626 const struct btf_var_secinfo *vi = NULL; 6627 const struct btf_type *sec, *var, *def; 6628 struct bpf_map *map = NULL, *targ_map; 6629 const struct btf_member *member; 6630 const char *name, *mname; 6631 Elf_Data *symbols; 6632 unsigned int moff; 6633 GElf_Sym sym; 6634 GElf_Rel rel; 6635 void *tmp; 6636 6637 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6638 return -EINVAL; 6639 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6640 if (!sec) 6641 return -EINVAL; 6642 6643 symbols = obj->efile.symbols; 6644 nrels = shdr->sh_size / shdr->sh_entsize; 6645 for (i = 0; i < nrels; i++) { 6646 if (!gelf_getrel(data, i, &rel)) { 6647 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6648 return -LIBBPF_ERRNO__FORMAT; 6649 } 6650 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 6651 pr_warn(".maps relo #%d: symbol %zx not found\n", 6652 i, (size_t)GELF_R_SYM(rel.r_info)); 6653 return -LIBBPF_ERRNO__FORMAT; 6654 } 6655 name = elf_sym_str(obj, sym.st_name) ?: "<?>"; 6656 if (sym.st_shndx != obj->efile.btf_maps_shndx) { 6657 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6658 i, name); 6659 return -LIBBPF_ERRNO__RELOC; 6660 } 6661 6662 pr_debug(".maps relo #%d: for %zd value %zd rel.r_offset %zu name %d ('%s')\n", 6663 i, (ssize_t)(rel.r_info >> 32), (size_t)sym.st_value, 6664 (size_t)rel.r_offset, sym.st_name, name); 6665 6666 for (j = 0; j < obj->nr_maps; j++) { 6667 map = &obj->maps[j]; 6668 if (map->sec_idx != obj->efile.btf_maps_shndx) 6669 continue; 6670 6671 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6672 if (vi->offset <= rel.r_offset && 6673 rel.r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6674 break; 6675 } 6676 if (j == obj->nr_maps) { 6677 pr_warn(".maps relo #%d: cannot find map '%s' at rel.r_offset %zu\n", 6678 i, name, (size_t)rel.r_offset); 6679 return -EINVAL; 6680 } 6681 6682 if (!bpf_map_type__is_map_in_map(map->def.type)) 6683 return -EINVAL; 6684 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6685 map->def.key_size != sizeof(int)) { 6686 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6687 i, map->name, sizeof(int)); 6688 return -EINVAL; 6689 } 6690 6691 targ_map = bpf_object__find_map_by_name(obj, name); 6692 if (!targ_map) 6693 return -ESRCH; 6694 6695 var = btf__type_by_id(obj->btf, vi->type); 6696 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6697 if (btf_vlen(def) == 0) 6698 return -EINVAL; 6699 member = btf_members(def) + btf_vlen(def) - 1; 6700 mname = btf__name_by_offset(obj->btf, member->name_off); 6701 if (strcmp(mname, "values")) 6702 return -EINVAL; 6703 6704 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6705 if (rel.r_offset - vi->offset < moff) 6706 return -EINVAL; 6707 6708 moff = rel.r_offset - vi->offset - moff; 6709 /* here we use BPF pointer size, which is always 64 bit, as we 6710 * are parsing ELF that was built for BPF target 6711 */ 6712 if (moff % bpf_ptr_sz) 6713 return -EINVAL; 6714 moff /= bpf_ptr_sz; 6715 if (moff >= map->init_slots_sz) { 6716 new_sz = moff + 1; 6717 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6718 if (!tmp) 6719 return -ENOMEM; 6720 map->init_slots = tmp; 6721 memset(map->init_slots + map->init_slots_sz, 0, 6722 (new_sz - map->init_slots_sz) * host_ptr_sz); 6723 map->init_slots_sz = new_sz; 6724 } 6725 map->init_slots[moff] = targ_map; 6726 6727 pr_debug(".maps relo #%d: map '%s' slot [%d] points to map '%s'\n", 6728 i, map->name, moff, name); 6729 } 6730 6731 return 0; 6732 } 6733 6734 static int cmp_relocs(const void *_a, const void *_b) 6735 { 6736 const struct reloc_desc *a = _a; 6737 const struct reloc_desc *b = _b; 6738 6739 if (a->insn_idx != b->insn_idx) 6740 return a->insn_idx < b->insn_idx ? -1 : 1; 6741 6742 /* no two relocations should have the same insn_idx, but ... */ 6743 if (a->type != b->type) 6744 return a->type < b->type ? -1 : 1; 6745 6746 return 0; 6747 } 6748 6749 static int bpf_object__collect_relos(struct bpf_object *obj) 6750 { 6751 int i, err; 6752 6753 for (i = 0; i < obj->efile.nr_reloc_sects; i++) { 6754 GElf_Shdr *shdr = &obj->efile.reloc_sects[i].shdr; 6755 Elf_Data *data = obj->efile.reloc_sects[i].data; 6756 int idx = shdr->sh_info; 6757 6758 if (shdr->sh_type != SHT_REL) { 6759 pr_warn("internal error at %d\n", __LINE__); 6760 return -LIBBPF_ERRNO__INTERNAL; 6761 } 6762 6763 if (idx == obj->efile.st_ops_shndx) 6764 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6765 else if (idx == obj->efile.btf_maps_shndx) 6766 err = bpf_object__collect_map_relos(obj, shdr, data); 6767 else 6768 err = bpf_object__collect_prog_relos(obj, shdr, data); 6769 if (err) 6770 return err; 6771 } 6772 6773 for (i = 0; i < obj->nr_programs; i++) { 6774 struct bpf_program *p = &obj->programs[i]; 6775 6776 if (!p->nr_reloc) 6777 continue; 6778 6779 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6780 } 6781 return 0; 6782 } 6783 6784 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6785 { 6786 if (BPF_CLASS(insn->code) == BPF_JMP && 6787 BPF_OP(insn->code) == BPF_CALL && 6788 BPF_SRC(insn->code) == BPF_K && 6789 insn->src_reg == 0 && 6790 insn->dst_reg == 0) { 6791 *func_id = insn->imm; 6792 return true; 6793 } 6794 return false; 6795 } 6796 6797 static int bpf_object__sanitize_prog(struct bpf_object* obj, struct bpf_program *prog) 6798 { 6799 struct bpf_insn *insn = prog->insns; 6800 enum bpf_func_id func_id; 6801 int i; 6802 6803 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6804 if (!insn_is_helper_call(insn, &func_id)) 6805 continue; 6806 6807 /* on kernels that don't yet support 6808 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6809 * to bpf_probe_read() which works well for old kernels 6810 */ 6811 switch (func_id) { 6812 case BPF_FUNC_probe_read_kernel: 6813 case BPF_FUNC_probe_read_user: 6814 if (!kernel_supports(FEAT_PROBE_READ_KERN)) 6815 insn->imm = BPF_FUNC_probe_read; 6816 break; 6817 case BPF_FUNC_probe_read_kernel_str: 6818 case BPF_FUNC_probe_read_user_str: 6819 if (!kernel_supports(FEAT_PROBE_READ_KERN)) 6820 insn->imm = BPF_FUNC_probe_read_str; 6821 break; 6822 default: 6823 break; 6824 } 6825 } 6826 return 0; 6827 } 6828 6829 static int 6830 load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt, 6831 char *license, __u32 kern_version, int *pfd) 6832 { 6833 struct bpf_prog_load_params load_attr = {}; 6834 char *cp, errmsg[STRERR_BUFSIZE]; 6835 size_t log_buf_size = 0; 6836 char *log_buf = NULL; 6837 int btf_fd, ret; 6838 6839 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6840 /* 6841 * The program type must be set. Most likely we couldn't find a proper 6842 * section definition at load time, and thus we didn't infer the type. 6843 */ 6844 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6845 prog->name, prog->sec_name); 6846 return -EINVAL; 6847 } 6848 6849 if (!insns || !insns_cnt) 6850 return -EINVAL; 6851 6852 load_attr.prog_type = prog->type; 6853 /* old kernels might not support specifying expected_attach_type */ 6854 if (!kernel_supports(FEAT_EXP_ATTACH_TYPE) && prog->sec_def && 6855 prog->sec_def->is_exp_attach_type_optional) 6856 load_attr.expected_attach_type = 0; 6857 else 6858 load_attr.expected_attach_type = prog->expected_attach_type; 6859 if (kernel_supports(FEAT_PROG_NAME)) 6860 load_attr.name = prog->name; 6861 load_attr.insns = insns; 6862 load_attr.insn_cnt = insns_cnt; 6863 load_attr.license = license; 6864 load_attr.attach_btf_id = prog->attach_btf_id; 6865 if (prog->attach_prog_fd) 6866 load_attr.attach_prog_fd = prog->attach_prog_fd; 6867 else 6868 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 6869 load_attr.attach_btf_id = prog->attach_btf_id; 6870 load_attr.kern_version = kern_version; 6871 load_attr.prog_ifindex = prog->prog_ifindex; 6872 6873 /* specify func_info/line_info only if kernel supports them */ 6874 btf_fd = bpf_object__btf_fd(prog->obj); 6875 if (btf_fd >= 0 && kernel_supports(FEAT_BTF_FUNC)) { 6876 load_attr.prog_btf_fd = btf_fd; 6877 load_attr.func_info = prog->func_info; 6878 load_attr.func_info_rec_size = prog->func_info_rec_size; 6879 load_attr.func_info_cnt = prog->func_info_cnt; 6880 load_attr.line_info = prog->line_info; 6881 load_attr.line_info_rec_size = prog->line_info_rec_size; 6882 load_attr.line_info_cnt = prog->line_info_cnt; 6883 } 6884 load_attr.log_level = prog->log_level; 6885 load_attr.prog_flags = prog->prog_flags; 6886 6887 retry_load: 6888 if (log_buf_size) { 6889 log_buf = malloc(log_buf_size); 6890 if (!log_buf) 6891 return -ENOMEM; 6892 6893 *log_buf = 0; 6894 } 6895 6896 load_attr.log_buf = log_buf; 6897 load_attr.log_buf_sz = log_buf_size; 6898 ret = libbpf__bpf_prog_load(&load_attr); 6899 6900 if (ret >= 0) { 6901 if (log_buf && load_attr.log_level) 6902 pr_debug("verifier log:\n%s", log_buf); 6903 6904 if (prog->obj->rodata_map_idx >= 0 && 6905 kernel_supports(FEAT_PROG_BIND_MAP)) { 6906 struct bpf_map *rodata_map = 6907 &prog->obj->maps[prog->obj->rodata_map_idx]; 6908 6909 if (bpf_prog_bind_map(ret, bpf_map__fd(rodata_map), NULL)) { 6910 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6911 pr_warn("prog '%s': failed to bind .rodata map: %s\n", 6912 prog->name, cp); 6913 /* Don't fail hard if can't bind rodata. */ 6914 } 6915 } 6916 6917 *pfd = ret; 6918 ret = 0; 6919 goto out; 6920 } 6921 6922 if (!log_buf || errno == ENOSPC) { 6923 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, 6924 log_buf_size << 1); 6925 6926 free(log_buf); 6927 goto retry_load; 6928 } 6929 ret = errno ? -errno : -LIBBPF_ERRNO__LOAD; 6930 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6931 pr_warn("load bpf program failed: %s\n", cp); 6932 pr_perm_msg(ret); 6933 6934 if (log_buf && log_buf[0] != '\0') { 6935 ret = -LIBBPF_ERRNO__VERIFY; 6936 pr_warn("-- BEGIN DUMP LOG ---\n"); 6937 pr_warn("\n%s\n", log_buf); 6938 pr_warn("-- END LOG --\n"); 6939 } else if (load_attr.insn_cnt >= BPF_MAXINSNS) { 6940 pr_warn("Program too large (%zu insns), at most %d insns\n", 6941 load_attr.insn_cnt, BPF_MAXINSNS); 6942 ret = -LIBBPF_ERRNO__PROG2BIG; 6943 } else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) { 6944 /* Wrong program type? */ 6945 int fd; 6946 6947 load_attr.prog_type = BPF_PROG_TYPE_KPROBE; 6948 load_attr.expected_attach_type = 0; 6949 load_attr.log_buf = NULL; 6950 load_attr.log_buf_sz = 0; 6951 fd = libbpf__bpf_prog_load(&load_attr); 6952 if (fd >= 0) { 6953 close(fd); 6954 ret = -LIBBPF_ERRNO__PROGTYPE; 6955 goto out; 6956 } 6957 } 6958 6959 out: 6960 free(log_buf); 6961 return ret; 6962 } 6963 6964 static int libbpf_find_attach_btf_id(struct bpf_program *prog, int *btf_obj_fd, int *btf_type_id); 6965 6966 int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_ver) 6967 { 6968 int err = 0, fd, i; 6969 6970 if (prog->obj->loaded) { 6971 pr_warn("prog '%s': can't load after object was loaded\n", prog->name); 6972 return -EINVAL; 6973 } 6974 6975 if ((prog->type == BPF_PROG_TYPE_TRACING || 6976 prog->type == BPF_PROG_TYPE_LSM || 6977 prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) { 6978 int btf_obj_fd = 0, btf_type_id = 0; 6979 6980 err = libbpf_find_attach_btf_id(prog, &btf_obj_fd, &btf_type_id); 6981 if (err) 6982 return err; 6983 6984 prog->attach_btf_obj_fd = btf_obj_fd; 6985 prog->attach_btf_id = btf_type_id; 6986 } 6987 6988 if (prog->instances.nr < 0 || !prog->instances.fds) { 6989 if (prog->preprocessor) { 6990 pr_warn("Internal error: can't load program '%s'\n", 6991 prog->name); 6992 return -LIBBPF_ERRNO__INTERNAL; 6993 } 6994 6995 prog->instances.fds = malloc(sizeof(int)); 6996 if (!prog->instances.fds) { 6997 pr_warn("Not enough memory for BPF fds\n"); 6998 return -ENOMEM; 6999 } 7000 prog->instances.nr = 1; 7001 prog->instances.fds[0] = -1; 7002 } 7003 7004 if (!prog->preprocessor) { 7005 if (prog->instances.nr != 1) { 7006 pr_warn("prog '%s': inconsistent nr(%d) != 1\n", 7007 prog->name, prog->instances.nr); 7008 } 7009 err = load_program(prog, prog->insns, prog->insns_cnt, 7010 license, kern_ver, &fd); 7011 if (!err) 7012 prog->instances.fds[0] = fd; 7013 goto out; 7014 } 7015 7016 for (i = 0; i < prog->instances.nr; i++) { 7017 struct bpf_prog_prep_result result; 7018 bpf_program_prep_t preprocessor = prog->preprocessor; 7019 7020 memset(&result, 0, sizeof(result)); 7021 err = preprocessor(prog, i, prog->insns, 7022 prog->insns_cnt, &result); 7023 if (err) { 7024 pr_warn("Preprocessing the %dth instance of program '%s' failed\n", 7025 i, prog->name); 7026 goto out; 7027 } 7028 7029 if (!result.new_insn_ptr || !result.new_insn_cnt) { 7030 pr_debug("Skip loading the %dth instance of program '%s'\n", 7031 i, prog->name); 7032 prog->instances.fds[i] = -1; 7033 if (result.pfd) 7034 *result.pfd = -1; 7035 continue; 7036 } 7037 7038 err = load_program(prog, result.new_insn_ptr, 7039 result.new_insn_cnt, license, kern_ver, &fd); 7040 if (err) { 7041 pr_warn("Loading the %dth instance of program '%s' failed\n", 7042 i, prog->name); 7043 goto out; 7044 } 7045 7046 if (result.pfd) 7047 *result.pfd = fd; 7048 prog->instances.fds[i] = fd; 7049 } 7050 out: 7051 if (err) 7052 pr_warn("failed to load program '%s'\n", prog->name); 7053 zfree(&prog->insns); 7054 prog->insns_cnt = 0; 7055 return err; 7056 } 7057 7058 static int 7059 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7060 { 7061 struct bpf_program *prog; 7062 size_t i; 7063 int err; 7064 7065 for (i = 0; i < obj->nr_programs; i++) { 7066 prog = &obj->programs[i]; 7067 err = bpf_object__sanitize_prog(obj, prog); 7068 if (err) 7069 return err; 7070 } 7071 7072 for (i = 0; i < obj->nr_programs; i++) { 7073 prog = &obj->programs[i]; 7074 if (prog_is_subprog(obj, prog)) 7075 continue; 7076 if (!prog->load) { 7077 pr_debug("prog '%s': skipped loading\n", prog->name); 7078 continue; 7079 } 7080 prog->log_level |= log_level; 7081 err = bpf_program__load(prog, obj->license, obj->kern_version); 7082 if (err) 7083 return err; 7084 } 7085 return 0; 7086 } 7087 7088 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7089 7090 static struct bpf_object * 7091 __bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7092 const struct bpf_object_open_opts *opts) 7093 { 7094 const char *obj_name, *kconfig; 7095 struct bpf_program *prog; 7096 struct bpf_object *obj; 7097 char tmp_name[64]; 7098 int err; 7099 7100 if (elf_version(EV_CURRENT) == EV_NONE) { 7101 pr_warn("failed to init libelf for %s\n", 7102 path ? : "(mem buf)"); 7103 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7104 } 7105 7106 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7107 return ERR_PTR(-EINVAL); 7108 7109 obj_name = OPTS_GET(opts, object_name, NULL); 7110 if (obj_buf) { 7111 if (!obj_name) { 7112 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7113 (unsigned long)obj_buf, 7114 (unsigned long)obj_buf_sz); 7115 obj_name = tmp_name; 7116 } 7117 path = obj_name; 7118 pr_debug("loading object '%s' from buffer\n", obj_name); 7119 } 7120 7121 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7122 if (IS_ERR(obj)) 7123 return obj; 7124 7125 kconfig = OPTS_GET(opts, kconfig, NULL); 7126 if (kconfig) { 7127 obj->kconfig = strdup(kconfig); 7128 if (!obj->kconfig) 7129 return ERR_PTR(-ENOMEM); 7130 } 7131 7132 err = bpf_object__elf_init(obj); 7133 err = err ? : bpf_object__check_endianness(obj); 7134 err = err ? : bpf_object__elf_collect(obj); 7135 err = err ? : bpf_object__collect_externs(obj); 7136 err = err ? : bpf_object__finalize_btf(obj); 7137 err = err ? : bpf_object__init_maps(obj, opts); 7138 err = err ? : bpf_object__collect_relos(obj); 7139 if (err) 7140 goto out; 7141 bpf_object__elf_finish(obj); 7142 7143 bpf_object__for_each_program(prog, obj) { 7144 prog->sec_def = find_sec_def(prog->sec_name); 7145 if (!prog->sec_def) { 7146 /* couldn't guess, but user might manually specify */ 7147 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7148 prog->name, prog->sec_name); 7149 continue; 7150 } 7151 7152 if (prog->sec_def->is_sleepable) 7153 prog->prog_flags |= BPF_F_SLEEPABLE; 7154 bpf_program__set_type(prog, prog->sec_def->prog_type); 7155 bpf_program__set_expected_attach_type(prog, 7156 prog->sec_def->expected_attach_type); 7157 7158 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING || 7159 prog->sec_def->prog_type == BPF_PROG_TYPE_EXT) 7160 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0); 7161 } 7162 7163 return obj; 7164 out: 7165 bpf_object__close(obj); 7166 return ERR_PTR(err); 7167 } 7168 7169 static struct bpf_object * 7170 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags) 7171 { 7172 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7173 .relaxed_maps = flags & MAPS_RELAX_COMPAT, 7174 ); 7175 7176 /* param validation */ 7177 if (!attr->file) 7178 return NULL; 7179 7180 pr_debug("loading %s\n", attr->file); 7181 return __bpf_object__open(attr->file, NULL, 0, &opts); 7182 } 7183 7184 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr) 7185 { 7186 return __bpf_object__open_xattr(attr, 0); 7187 } 7188 7189 struct bpf_object *bpf_object__open(const char *path) 7190 { 7191 struct bpf_object_open_attr attr = { 7192 .file = path, 7193 .prog_type = BPF_PROG_TYPE_UNSPEC, 7194 }; 7195 7196 return bpf_object__open_xattr(&attr); 7197 } 7198 7199 struct bpf_object * 7200 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7201 { 7202 if (!path) 7203 return ERR_PTR(-EINVAL); 7204 7205 pr_debug("loading %s\n", path); 7206 7207 return __bpf_object__open(path, NULL, 0, opts); 7208 } 7209 7210 struct bpf_object * 7211 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7212 const struct bpf_object_open_opts *opts) 7213 { 7214 if (!obj_buf || obj_buf_sz == 0) 7215 return ERR_PTR(-EINVAL); 7216 7217 return __bpf_object__open(NULL, obj_buf, obj_buf_sz, opts); 7218 } 7219 7220 struct bpf_object * 7221 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz, 7222 const char *name) 7223 { 7224 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7225 .object_name = name, 7226 /* wrong default, but backwards-compatible */ 7227 .relaxed_maps = true, 7228 ); 7229 7230 /* returning NULL is wrong, but backwards-compatible */ 7231 if (!obj_buf || obj_buf_sz == 0) 7232 return NULL; 7233 7234 return bpf_object__open_mem(obj_buf, obj_buf_sz, &opts); 7235 } 7236 7237 int bpf_object__unload(struct bpf_object *obj) 7238 { 7239 size_t i; 7240 7241 if (!obj) 7242 return -EINVAL; 7243 7244 for (i = 0; i < obj->nr_maps; i++) { 7245 zclose(obj->maps[i].fd); 7246 if (obj->maps[i].st_ops) 7247 zfree(&obj->maps[i].st_ops->kern_vdata); 7248 } 7249 7250 for (i = 0; i < obj->nr_programs; i++) 7251 bpf_program__unload(&obj->programs[i]); 7252 7253 return 0; 7254 } 7255 7256 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7257 { 7258 struct bpf_map *m; 7259 7260 bpf_object__for_each_map(m, obj) { 7261 if (!bpf_map__is_internal(m)) 7262 continue; 7263 if (!kernel_supports(FEAT_GLOBAL_DATA)) { 7264 pr_warn("kernel doesn't support global data\n"); 7265 return -ENOTSUP; 7266 } 7267 if (!kernel_supports(FEAT_ARRAY_MMAP)) 7268 m->def.map_flags ^= BPF_F_MMAPABLE; 7269 } 7270 7271 return 0; 7272 } 7273 7274 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7275 { 7276 char sym_type, sym_name[500]; 7277 unsigned long long sym_addr; 7278 struct extern_desc *ext; 7279 int ret, err = 0; 7280 FILE *f; 7281 7282 f = fopen("/proc/kallsyms", "r"); 7283 if (!f) { 7284 err = -errno; 7285 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7286 return err; 7287 } 7288 7289 while (true) { 7290 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7291 &sym_addr, &sym_type, sym_name); 7292 if (ret == EOF && feof(f)) 7293 break; 7294 if (ret != 3) { 7295 pr_warn("failed to read kallsyms entry: %d\n", ret); 7296 err = -EINVAL; 7297 goto out; 7298 } 7299 7300 ext = find_extern_by_name(obj, sym_name); 7301 if (!ext || ext->type != EXT_KSYM) 7302 continue; 7303 7304 if (ext->is_set && ext->ksym.addr != sym_addr) { 7305 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n", 7306 sym_name, ext->ksym.addr, sym_addr); 7307 err = -EINVAL; 7308 goto out; 7309 } 7310 if (!ext->is_set) { 7311 ext->is_set = true; 7312 ext->ksym.addr = sym_addr; 7313 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr); 7314 } 7315 } 7316 7317 out: 7318 fclose(f); 7319 return err; 7320 } 7321 7322 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7323 { 7324 struct extern_desc *ext; 7325 struct btf *btf; 7326 int i, j, id, btf_fd, err; 7327 7328 for (i = 0; i < obj->nr_extern; i++) { 7329 const struct btf_type *targ_var, *targ_type; 7330 __u32 targ_type_id, local_type_id; 7331 const char *targ_var_name; 7332 int ret; 7333 7334 ext = &obj->externs[i]; 7335 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7336 continue; 7337 7338 btf = obj->btf_vmlinux; 7339 btf_fd = 0; 7340 id = btf__find_by_name_kind(btf, ext->name, BTF_KIND_VAR); 7341 if (id == -ENOENT) { 7342 err = load_module_btfs(obj); 7343 if (err) 7344 return err; 7345 7346 for (j = 0; j < obj->btf_module_cnt; j++) { 7347 btf = obj->btf_modules[j].btf; 7348 /* we assume module BTF FD is always >0 */ 7349 btf_fd = obj->btf_modules[j].fd; 7350 id = btf__find_by_name_kind(btf, ext->name, BTF_KIND_VAR); 7351 if (id != -ENOENT) 7352 break; 7353 } 7354 } 7355 if (id <= 0) { 7356 pr_warn("extern (ksym) '%s': failed to find BTF ID in kernel BTF(s).\n", 7357 ext->name); 7358 return -ESRCH; 7359 } 7360 7361 /* find local type_id */ 7362 local_type_id = ext->ksym.type_id; 7363 7364 /* find target type_id */ 7365 targ_var = btf__type_by_id(btf, id); 7366 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7367 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7368 7369 ret = bpf_core_types_are_compat(obj->btf, local_type_id, 7370 btf, targ_type_id); 7371 if (ret <= 0) { 7372 const struct btf_type *local_type; 7373 const char *targ_name, *local_name; 7374 7375 local_type = btf__type_by_id(obj->btf, local_type_id); 7376 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7377 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7378 7379 pr_warn("extern (ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7380 ext->name, local_type_id, 7381 btf_kind_str(local_type), local_name, targ_type_id, 7382 btf_kind_str(targ_type), targ_name); 7383 return -EINVAL; 7384 } 7385 7386 ext->is_set = true; 7387 ext->ksym.kernel_btf_obj_fd = btf_fd; 7388 ext->ksym.kernel_btf_id = id; 7389 pr_debug("extern (ksym) '%s': resolved to [%d] %s %s\n", 7390 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7391 } 7392 return 0; 7393 } 7394 7395 static int bpf_object__resolve_externs(struct bpf_object *obj, 7396 const char *extra_kconfig) 7397 { 7398 bool need_config = false, need_kallsyms = false; 7399 bool need_vmlinux_btf = false; 7400 struct extern_desc *ext; 7401 void *kcfg_data = NULL; 7402 int err, i; 7403 7404 if (obj->nr_extern == 0) 7405 return 0; 7406 7407 if (obj->kconfig_map_idx >= 0) 7408 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7409 7410 for (i = 0; i < obj->nr_extern; i++) { 7411 ext = &obj->externs[i]; 7412 7413 if (ext->type == EXT_KCFG && 7414 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7415 void *ext_val = kcfg_data + ext->kcfg.data_off; 7416 __u32 kver = get_kernel_version(); 7417 7418 if (!kver) { 7419 pr_warn("failed to get kernel version\n"); 7420 return -EINVAL; 7421 } 7422 err = set_kcfg_value_num(ext, ext_val, kver); 7423 if (err) 7424 return err; 7425 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver); 7426 } else if (ext->type == EXT_KCFG && 7427 strncmp(ext->name, "CONFIG_", 7) == 0) { 7428 need_config = true; 7429 } else if (ext->type == EXT_KSYM) { 7430 if (ext->ksym.type_id) 7431 need_vmlinux_btf = true; 7432 else 7433 need_kallsyms = true; 7434 } else { 7435 pr_warn("unrecognized extern '%s'\n", ext->name); 7436 return -EINVAL; 7437 } 7438 } 7439 if (need_config && extra_kconfig) { 7440 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7441 if (err) 7442 return -EINVAL; 7443 need_config = false; 7444 for (i = 0; i < obj->nr_extern; i++) { 7445 ext = &obj->externs[i]; 7446 if (ext->type == EXT_KCFG && !ext->is_set) { 7447 need_config = true; 7448 break; 7449 } 7450 } 7451 } 7452 if (need_config) { 7453 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7454 if (err) 7455 return -EINVAL; 7456 } 7457 if (need_kallsyms) { 7458 err = bpf_object__read_kallsyms_file(obj); 7459 if (err) 7460 return -EINVAL; 7461 } 7462 if (need_vmlinux_btf) { 7463 err = bpf_object__resolve_ksyms_btf_id(obj); 7464 if (err) 7465 return -EINVAL; 7466 } 7467 for (i = 0; i < obj->nr_extern; i++) { 7468 ext = &obj->externs[i]; 7469 7470 if (!ext->is_set && !ext->is_weak) { 7471 pr_warn("extern %s (strong) not resolved\n", ext->name); 7472 return -ESRCH; 7473 } else if (!ext->is_set) { 7474 pr_debug("extern %s (weak) not resolved, defaulting to zero\n", 7475 ext->name); 7476 } 7477 } 7478 7479 return 0; 7480 } 7481 7482 int bpf_object__load_xattr(struct bpf_object_load_attr *attr) 7483 { 7484 struct bpf_object *obj; 7485 int err, i; 7486 7487 if (!attr) 7488 return -EINVAL; 7489 obj = attr->obj; 7490 if (!obj) 7491 return -EINVAL; 7492 7493 if (obj->loaded) { 7494 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7495 return -EINVAL; 7496 } 7497 7498 err = bpf_object__probe_loading(obj); 7499 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7500 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7501 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7502 err = err ? : bpf_object__sanitize_maps(obj); 7503 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7504 err = err ? : bpf_object__create_maps(obj); 7505 err = err ? : bpf_object__relocate(obj, attr->target_btf_path); 7506 err = err ? : bpf_object__load_progs(obj, attr->log_level); 7507 7508 /* clean up module BTFs */ 7509 for (i = 0; i < obj->btf_module_cnt; i++) { 7510 close(obj->btf_modules[i].fd); 7511 btf__free(obj->btf_modules[i].btf); 7512 free(obj->btf_modules[i].name); 7513 } 7514 free(obj->btf_modules); 7515 7516 /* clean up vmlinux BTF */ 7517 btf__free(obj->btf_vmlinux); 7518 obj->btf_vmlinux = NULL; 7519 7520 obj->loaded = true; /* doesn't matter if successfully or not */ 7521 7522 if (err) 7523 goto out; 7524 7525 return 0; 7526 out: 7527 /* unpin any maps that were auto-pinned during load */ 7528 for (i = 0; i < obj->nr_maps; i++) 7529 if (obj->maps[i].pinned && !obj->maps[i].reused) 7530 bpf_map__unpin(&obj->maps[i], NULL); 7531 7532 bpf_object__unload(obj); 7533 pr_warn("failed to load object '%s'\n", obj->path); 7534 return err; 7535 } 7536 7537 int bpf_object__load(struct bpf_object *obj) 7538 { 7539 struct bpf_object_load_attr attr = { 7540 .obj = obj, 7541 }; 7542 7543 return bpf_object__load_xattr(&attr); 7544 } 7545 7546 static int make_parent_dir(const char *path) 7547 { 7548 char *cp, errmsg[STRERR_BUFSIZE]; 7549 char *dname, *dir; 7550 int err = 0; 7551 7552 dname = strdup(path); 7553 if (dname == NULL) 7554 return -ENOMEM; 7555 7556 dir = dirname(dname); 7557 if (mkdir(dir, 0700) && errno != EEXIST) 7558 err = -errno; 7559 7560 free(dname); 7561 if (err) { 7562 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7563 pr_warn("failed to mkdir %s: %s\n", path, cp); 7564 } 7565 return err; 7566 } 7567 7568 static int check_path(const char *path) 7569 { 7570 char *cp, errmsg[STRERR_BUFSIZE]; 7571 struct statfs st_fs; 7572 char *dname, *dir; 7573 int err = 0; 7574 7575 if (path == NULL) 7576 return -EINVAL; 7577 7578 dname = strdup(path); 7579 if (dname == NULL) 7580 return -ENOMEM; 7581 7582 dir = dirname(dname); 7583 if (statfs(dir, &st_fs)) { 7584 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7585 pr_warn("failed to statfs %s: %s\n", dir, cp); 7586 err = -errno; 7587 } 7588 free(dname); 7589 7590 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7591 pr_warn("specified path %s is not on BPF FS\n", path); 7592 err = -EINVAL; 7593 } 7594 7595 return err; 7596 } 7597 7598 int bpf_program__pin_instance(struct bpf_program *prog, const char *path, 7599 int instance) 7600 { 7601 char *cp, errmsg[STRERR_BUFSIZE]; 7602 int err; 7603 7604 err = make_parent_dir(path); 7605 if (err) 7606 return err; 7607 7608 err = check_path(path); 7609 if (err) 7610 return err; 7611 7612 if (prog == NULL) { 7613 pr_warn("invalid program pointer\n"); 7614 return -EINVAL; 7615 } 7616 7617 if (instance < 0 || instance >= prog->instances.nr) { 7618 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7619 instance, prog->name, prog->instances.nr); 7620 return -EINVAL; 7621 } 7622 7623 if (bpf_obj_pin(prog->instances.fds[instance], path)) { 7624 err = -errno; 7625 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7626 pr_warn("failed to pin program: %s\n", cp); 7627 return err; 7628 } 7629 pr_debug("pinned program '%s'\n", path); 7630 7631 return 0; 7632 } 7633 7634 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, 7635 int instance) 7636 { 7637 int err; 7638 7639 err = check_path(path); 7640 if (err) 7641 return err; 7642 7643 if (prog == NULL) { 7644 pr_warn("invalid program pointer\n"); 7645 return -EINVAL; 7646 } 7647 7648 if (instance < 0 || instance >= prog->instances.nr) { 7649 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7650 instance, prog->name, prog->instances.nr); 7651 return -EINVAL; 7652 } 7653 7654 err = unlink(path); 7655 if (err != 0) 7656 return -errno; 7657 pr_debug("unpinned program '%s'\n", path); 7658 7659 return 0; 7660 } 7661 7662 int bpf_program__pin(struct bpf_program *prog, const char *path) 7663 { 7664 int i, err; 7665 7666 err = make_parent_dir(path); 7667 if (err) 7668 return err; 7669 7670 err = check_path(path); 7671 if (err) 7672 return err; 7673 7674 if (prog == NULL) { 7675 pr_warn("invalid program pointer\n"); 7676 return -EINVAL; 7677 } 7678 7679 if (prog->instances.nr <= 0) { 7680 pr_warn("no instances of prog %s to pin\n", prog->name); 7681 return -EINVAL; 7682 } 7683 7684 if (prog->instances.nr == 1) { 7685 /* don't create subdirs when pinning single instance */ 7686 return bpf_program__pin_instance(prog, path, 0); 7687 } 7688 7689 for (i = 0; i < prog->instances.nr; i++) { 7690 char buf[PATH_MAX]; 7691 int len; 7692 7693 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7694 if (len < 0) { 7695 err = -EINVAL; 7696 goto err_unpin; 7697 } else if (len >= PATH_MAX) { 7698 err = -ENAMETOOLONG; 7699 goto err_unpin; 7700 } 7701 7702 err = bpf_program__pin_instance(prog, buf, i); 7703 if (err) 7704 goto err_unpin; 7705 } 7706 7707 return 0; 7708 7709 err_unpin: 7710 for (i = i - 1; i >= 0; i--) { 7711 char buf[PATH_MAX]; 7712 int len; 7713 7714 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7715 if (len < 0) 7716 continue; 7717 else if (len >= PATH_MAX) 7718 continue; 7719 7720 bpf_program__unpin_instance(prog, buf, i); 7721 } 7722 7723 rmdir(path); 7724 7725 return err; 7726 } 7727 7728 int bpf_program__unpin(struct bpf_program *prog, const char *path) 7729 { 7730 int i, err; 7731 7732 err = check_path(path); 7733 if (err) 7734 return err; 7735 7736 if (prog == NULL) { 7737 pr_warn("invalid program pointer\n"); 7738 return -EINVAL; 7739 } 7740 7741 if (prog->instances.nr <= 0) { 7742 pr_warn("no instances of prog %s to pin\n", prog->name); 7743 return -EINVAL; 7744 } 7745 7746 if (prog->instances.nr == 1) { 7747 /* don't create subdirs when pinning single instance */ 7748 return bpf_program__unpin_instance(prog, path, 0); 7749 } 7750 7751 for (i = 0; i < prog->instances.nr; i++) { 7752 char buf[PATH_MAX]; 7753 int len; 7754 7755 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7756 if (len < 0) 7757 return -EINVAL; 7758 else if (len >= PATH_MAX) 7759 return -ENAMETOOLONG; 7760 7761 err = bpf_program__unpin_instance(prog, buf, i); 7762 if (err) 7763 return err; 7764 } 7765 7766 err = rmdir(path); 7767 if (err) 7768 return -errno; 7769 7770 return 0; 7771 } 7772 7773 int bpf_map__pin(struct bpf_map *map, const char *path) 7774 { 7775 char *cp, errmsg[STRERR_BUFSIZE]; 7776 int err; 7777 7778 if (map == NULL) { 7779 pr_warn("invalid map pointer\n"); 7780 return -EINVAL; 7781 } 7782 7783 if (map->pin_path) { 7784 if (path && strcmp(path, map->pin_path)) { 7785 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7786 bpf_map__name(map), map->pin_path, path); 7787 return -EINVAL; 7788 } else if (map->pinned) { 7789 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 7790 bpf_map__name(map), map->pin_path); 7791 return 0; 7792 } 7793 } else { 7794 if (!path) { 7795 pr_warn("missing a path to pin map '%s' at\n", 7796 bpf_map__name(map)); 7797 return -EINVAL; 7798 } else if (map->pinned) { 7799 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 7800 return -EEXIST; 7801 } 7802 7803 map->pin_path = strdup(path); 7804 if (!map->pin_path) { 7805 err = -errno; 7806 goto out_err; 7807 } 7808 } 7809 7810 err = make_parent_dir(map->pin_path); 7811 if (err) 7812 return err; 7813 7814 err = check_path(map->pin_path); 7815 if (err) 7816 return err; 7817 7818 if (bpf_obj_pin(map->fd, map->pin_path)) { 7819 err = -errno; 7820 goto out_err; 7821 } 7822 7823 map->pinned = true; 7824 pr_debug("pinned map '%s'\n", map->pin_path); 7825 7826 return 0; 7827 7828 out_err: 7829 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7830 pr_warn("failed to pin map: %s\n", cp); 7831 return err; 7832 } 7833 7834 int bpf_map__unpin(struct bpf_map *map, const char *path) 7835 { 7836 int err; 7837 7838 if (map == NULL) { 7839 pr_warn("invalid map pointer\n"); 7840 return -EINVAL; 7841 } 7842 7843 if (map->pin_path) { 7844 if (path && strcmp(path, map->pin_path)) { 7845 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7846 bpf_map__name(map), map->pin_path, path); 7847 return -EINVAL; 7848 } 7849 path = map->pin_path; 7850 } else if (!path) { 7851 pr_warn("no path to unpin map '%s' from\n", 7852 bpf_map__name(map)); 7853 return -EINVAL; 7854 } 7855 7856 err = check_path(path); 7857 if (err) 7858 return err; 7859 7860 err = unlink(path); 7861 if (err != 0) 7862 return -errno; 7863 7864 map->pinned = false; 7865 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 7866 7867 return 0; 7868 } 7869 7870 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 7871 { 7872 char *new = NULL; 7873 7874 if (path) { 7875 new = strdup(path); 7876 if (!new) 7877 return -errno; 7878 } 7879 7880 free(map->pin_path); 7881 map->pin_path = new; 7882 return 0; 7883 } 7884 7885 const char *bpf_map__get_pin_path(const struct bpf_map *map) 7886 { 7887 return map->pin_path; 7888 } 7889 7890 bool bpf_map__is_pinned(const struct bpf_map *map) 7891 { 7892 return map->pinned; 7893 } 7894 7895 static void sanitize_pin_path(char *s) 7896 { 7897 /* bpffs disallows periods in path names */ 7898 while (*s) { 7899 if (*s == '.') 7900 *s = '_'; 7901 s++; 7902 } 7903 } 7904 7905 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 7906 { 7907 struct bpf_map *map; 7908 int err; 7909 7910 if (!obj) 7911 return -ENOENT; 7912 7913 if (!obj->loaded) { 7914 pr_warn("object not yet loaded; load it first\n"); 7915 return -ENOENT; 7916 } 7917 7918 bpf_object__for_each_map(map, obj) { 7919 char *pin_path = NULL; 7920 char buf[PATH_MAX]; 7921 7922 if (path) { 7923 int len; 7924 7925 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7926 bpf_map__name(map)); 7927 if (len < 0) { 7928 err = -EINVAL; 7929 goto err_unpin_maps; 7930 } else if (len >= PATH_MAX) { 7931 err = -ENAMETOOLONG; 7932 goto err_unpin_maps; 7933 } 7934 sanitize_pin_path(buf); 7935 pin_path = buf; 7936 } else if (!map->pin_path) { 7937 continue; 7938 } 7939 7940 err = bpf_map__pin(map, pin_path); 7941 if (err) 7942 goto err_unpin_maps; 7943 } 7944 7945 return 0; 7946 7947 err_unpin_maps: 7948 while ((map = bpf_map__prev(map, obj))) { 7949 if (!map->pin_path) 7950 continue; 7951 7952 bpf_map__unpin(map, NULL); 7953 } 7954 7955 return err; 7956 } 7957 7958 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 7959 { 7960 struct bpf_map *map; 7961 int err; 7962 7963 if (!obj) 7964 return -ENOENT; 7965 7966 bpf_object__for_each_map(map, obj) { 7967 char *pin_path = NULL; 7968 char buf[PATH_MAX]; 7969 7970 if (path) { 7971 int len; 7972 7973 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7974 bpf_map__name(map)); 7975 if (len < 0) 7976 return -EINVAL; 7977 else if (len >= PATH_MAX) 7978 return -ENAMETOOLONG; 7979 sanitize_pin_path(buf); 7980 pin_path = buf; 7981 } else if (!map->pin_path) { 7982 continue; 7983 } 7984 7985 err = bpf_map__unpin(map, pin_path); 7986 if (err) 7987 return err; 7988 } 7989 7990 return 0; 7991 } 7992 7993 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 7994 { 7995 struct bpf_program *prog; 7996 int err; 7997 7998 if (!obj) 7999 return -ENOENT; 8000 8001 if (!obj->loaded) { 8002 pr_warn("object not yet loaded; load it first\n"); 8003 return -ENOENT; 8004 } 8005 8006 bpf_object__for_each_program(prog, obj) { 8007 char buf[PATH_MAX]; 8008 int len; 8009 8010 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8011 prog->pin_name); 8012 if (len < 0) { 8013 err = -EINVAL; 8014 goto err_unpin_programs; 8015 } else if (len >= PATH_MAX) { 8016 err = -ENAMETOOLONG; 8017 goto err_unpin_programs; 8018 } 8019 8020 err = bpf_program__pin(prog, buf); 8021 if (err) 8022 goto err_unpin_programs; 8023 } 8024 8025 return 0; 8026 8027 err_unpin_programs: 8028 while ((prog = bpf_program__prev(prog, obj))) { 8029 char buf[PATH_MAX]; 8030 int len; 8031 8032 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8033 prog->pin_name); 8034 if (len < 0) 8035 continue; 8036 else if (len >= PATH_MAX) 8037 continue; 8038 8039 bpf_program__unpin(prog, buf); 8040 } 8041 8042 return err; 8043 } 8044 8045 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8046 { 8047 struct bpf_program *prog; 8048 int err; 8049 8050 if (!obj) 8051 return -ENOENT; 8052 8053 bpf_object__for_each_program(prog, obj) { 8054 char buf[PATH_MAX]; 8055 int len; 8056 8057 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8058 prog->pin_name); 8059 if (len < 0) 8060 return -EINVAL; 8061 else if (len >= PATH_MAX) 8062 return -ENAMETOOLONG; 8063 8064 err = bpf_program__unpin(prog, buf); 8065 if (err) 8066 return err; 8067 } 8068 8069 return 0; 8070 } 8071 8072 int bpf_object__pin(struct bpf_object *obj, const char *path) 8073 { 8074 int err; 8075 8076 err = bpf_object__pin_maps(obj, path); 8077 if (err) 8078 return err; 8079 8080 err = bpf_object__pin_programs(obj, path); 8081 if (err) { 8082 bpf_object__unpin_maps(obj, path); 8083 return err; 8084 } 8085 8086 return 0; 8087 } 8088 8089 static void bpf_map__destroy(struct bpf_map *map) 8090 { 8091 if (map->clear_priv) 8092 map->clear_priv(map, map->priv); 8093 map->priv = NULL; 8094 map->clear_priv = NULL; 8095 8096 if (map->inner_map) { 8097 bpf_map__destroy(map->inner_map); 8098 zfree(&map->inner_map); 8099 } 8100 8101 zfree(&map->init_slots); 8102 map->init_slots_sz = 0; 8103 8104 if (map->mmaped) { 8105 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8106 map->mmaped = NULL; 8107 } 8108 8109 if (map->st_ops) { 8110 zfree(&map->st_ops->data); 8111 zfree(&map->st_ops->progs); 8112 zfree(&map->st_ops->kern_func_off); 8113 zfree(&map->st_ops); 8114 } 8115 8116 zfree(&map->name); 8117 zfree(&map->pin_path); 8118 8119 if (map->fd >= 0) 8120 zclose(map->fd); 8121 } 8122 8123 void bpf_object__close(struct bpf_object *obj) 8124 { 8125 size_t i; 8126 8127 if (IS_ERR_OR_NULL(obj)) 8128 return; 8129 8130 if (obj->clear_priv) 8131 obj->clear_priv(obj, obj->priv); 8132 8133 bpf_object__elf_finish(obj); 8134 bpf_object__unload(obj); 8135 btf__free(obj->btf); 8136 btf_ext__free(obj->btf_ext); 8137 8138 for (i = 0; i < obj->nr_maps; i++) 8139 bpf_map__destroy(&obj->maps[i]); 8140 8141 zfree(&obj->kconfig); 8142 zfree(&obj->externs); 8143 obj->nr_extern = 0; 8144 8145 zfree(&obj->maps); 8146 obj->nr_maps = 0; 8147 8148 if (obj->programs && obj->nr_programs) { 8149 for (i = 0; i < obj->nr_programs; i++) 8150 bpf_program__exit(&obj->programs[i]); 8151 } 8152 zfree(&obj->programs); 8153 8154 list_del(&obj->list); 8155 free(obj); 8156 } 8157 8158 struct bpf_object * 8159 bpf_object__next(struct bpf_object *prev) 8160 { 8161 struct bpf_object *next; 8162 8163 if (!prev) 8164 next = list_first_entry(&bpf_objects_list, 8165 struct bpf_object, 8166 list); 8167 else 8168 next = list_next_entry(prev, list); 8169 8170 /* Empty list is noticed here so don't need checking on entry. */ 8171 if (&next->list == &bpf_objects_list) 8172 return NULL; 8173 8174 return next; 8175 } 8176 8177 const char *bpf_object__name(const struct bpf_object *obj) 8178 { 8179 return obj ? obj->name : ERR_PTR(-EINVAL); 8180 } 8181 8182 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8183 { 8184 return obj ? obj->kern_version : 0; 8185 } 8186 8187 struct btf *bpf_object__btf(const struct bpf_object *obj) 8188 { 8189 return obj ? obj->btf : NULL; 8190 } 8191 8192 int bpf_object__btf_fd(const struct bpf_object *obj) 8193 { 8194 return obj->btf ? btf__fd(obj->btf) : -1; 8195 } 8196 8197 int bpf_object__set_priv(struct bpf_object *obj, void *priv, 8198 bpf_object_clear_priv_t clear_priv) 8199 { 8200 if (obj->priv && obj->clear_priv) 8201 obj->clear_priv(obj, obj->priv); 8202 8203 obj->priv = priv; 8204 obj->clear_priv = clear_priv; 8205 return 0; 8206 } 8207 8208 void *bpf_object__priv(const struct bpf_object *obj) 8209 { 8210 return obj ? obj->priv : ERR_PTR(-EINVAL); 8211 } 8212 8213 static struct bpf_program * 8214 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8215 bool forward) 8216 { 8217 size_t nr_programs = obj->nr_programs; 8218 ssize_t idx; 8219 8220 if (!nr_programs) 8221 return NULL; 8222 8223 if (!p) 8224 /* Iter from the beginning */ 8225 return forward ? &obj->programs[0] : 8226 &obj->programs[nr_programs - 1]; 8227 8228 if (p->obj != obj) { 8229 pr_warn("error: program handler doesn't match object\n"); 8230 return NULL; 8231 } 8232 8233 idx = (p - obj->programs) + (forward ? 1 : -1); 8234 if (idx >= obj->nr_programs || idx < 0) 8235 return NULL; 8236 return &obj->programs[idx]; 8237 } 8238 8239 struct bpf_program * 8240 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj) 8241 { 8242 struct bpf_program *prog = prev; 8243 8244 do { 8245 prog = __bpf_program__iter(prog, obj, true); 8246 } while (prog && prog_is_subprog(obj, prog)); 8247 8248 return prog; 8249 } 8250 8251 struct bpf_program * 8252 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj) 8253 { 8254 struct bpf_program *prog = next; 8255 8256 do { 8257 prog = __bpf_program__iter(prog, obj, false); 8258 } while (prog && prog_is_subprog(obj, prog)); 8259 8260 return prog; 8261 } 8262 8263 int bpf_program__set_priv(struct bpf_program *prog, void *priv, 8264 bpf_program_clear_priv_t clear_priv) 8265 { 8266 if (prog->priv && prog->clear_priv) 8267 prog->clear_priv(prog, prog->priv); 8268 8269 prog->priv = priv; 8270 prog->clear_priv = clear_priv; 8271 return 0; 8272 } 8273 8274 void *bpf_program__priv(const struct bpf_program *prog) 8275 { 8276 return prog ? prog->priv : ERR_PTR(-EINVAL); 8277 } 8278 8279 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8280 { 8281 prog->prog_ifindex = ifindex; 8282 } 8283 8284 const char *bpf_program__name(const struct bpf_program *prog) 8285 { 8286 return prog->name; 8287 } 8288 8289 const char *bpf_program__section_name(const struct bpf_program *prog) 8290 { 8291 return prog->sec_name; 8292 } 8293 8294 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy) 8295 { 8296 const char *title; 8297 8298 title = prog->sec_name; 8299 if (needs_copy) { 8300 title = strdup(title); 8301 if (!title) { 8302 pr_warn("failed to strdup program title\n"); 8303 return ERR_PTR(-ENOMEM); 8304 } 8305 } 8306 8307 return title; 8308 } 8309 8310 bool bpf_program__autoload(const struct bpf_program *prog) 8311 { 8312 return prog->load; 8313 } 8314 8315 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8316 { 8317 if (prog->obj->loaded) 8318 return -EINVAL; 8319 8320 prog->load = autoload; 8321 return 0; 8322 } 8323 8324 int bpf_program__fd(const struct bpf_program *prog) 8325 { 8326 return bpf_program__nth_fd(prog, 0); 8327 } 8328 8329 size_t bpf_program__size(const struct bpf_program *prog) 8330 { 8331 return prog->insns_cnt * BPF_INSN_SZ; 8332 } 8333 8334 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances, 8335 bpf_program_prep_t prep) 8336 { 8337 int *instances_fds; 8338 8339 if (nr_instances <= 0 || !prep) 8340 return -EINVAL; 8341 8342 if (prog->instances.nr > 0 || prog->instances.fds) { 8343 pr_warn("Can't set pre-processor after loading\n"); 8344 return -EINVAL; 8345 } 8346 8347 instances_fds = malloc(sizeof(int) * nr_instances); 8348 if (!instances_fds) { 8349 pr_warn("alloc memory failed for fds\n"); 8350 return -ENOMEM; 8351 } 8352 8353 /* fill all fd with -1 */ 8354 memset(instances_fds, -1, sizeof(int) * nr_instances); 8355 8356 prog->instances.nr = nr_instances; 8357 prog->instances.fds = instances_fds; 8358 prog->preprocessor = prep; 8359 return 0; 8360 } 8361 8362 int bpf_program__nth_fd(const struct bpf_program *prog, int n) 8363 { 8364 int fd; 8365 8366 if (!prog) 8367 return -EINVAL; 8368 8369 if (n >= prog->instances.nr || n < 0) { 8370 pr_warn("Can't get the %dth fd from program %s: only %d instances\n", 8371 n, prog->name, prog->instances.nr); 8372 return -EINVAL; 8373 } 8374 8375 fd = prog->instances.fds[n]; 8376 if (fd < 0) { 8377 pr_warn("%dth instance of program '%s' is invalid\n", 8378 n, prog->name); 8379 return -ENOENT; 8380 } 8381 8382 return fd; 8383 } 8384 8385 enum bpf_prog_type bpf_program__get_type(struct bpf_program *prog) 8386 { 8387 return prog->type; 8388 } 8389 8390 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8391 { 8392 prog->type = type; 8393 } 8394 8395 static bool bpf_program__is_type(const struct bpf_program *prog, 8396 enum bpf_prog_type type) 8397 { 8398 return prog ? (prog->type == type) : false; 8399 } 8400 8401 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \ 8402 int bpf_program__set_##NAME(struct bpf_program *prog) \ 8403 { \ 8404 if (!prog) \ 8405 return -EINVAL; \ 8406 bpf_program__set_type(prog, TYPE); \ 8407 return 0; \ 8408 } \ 8409 \ 8410 bool bpf_program__is_##NAME(const struct bpf_program *prog) \ 8411 { \ 8412 return bpf_program__is_type(prog, TYPE); \ 8413 } \ 8414 8415 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER); 8416 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM); 8417 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE); 8418 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS); 8419 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT); 8420 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT); 8421 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT); 8422 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP); 8423 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT); 8424 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING); 8425 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS); 8426 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT); 8427 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP); 8428 8429 enum bpf_attach_type 8430 bpf_program__get_expected_attach_type(struct bpf_program *prog) 8431 { 8432 return prog->expected_attach_type; 8433 } 8434 8435 void bpf_program__set_expected_attach_type(struct bpf_program *prog, 8436 enum bpf_attach_type type) 8437 { 8438 prog->expected_attach_type = type; 8439 } 8440 8441 #define BPF_PROG_SEC_IMPL(string, ptype, eatype, eatype_optional, \ 8442 attachable, attach_btf) \ 8443 { \ 8444 .sec = string, \ 8445 .len = sizeof(string) - 1, \ 8446 .prog_type = ptype, \ 8447 .expected_attach_type = eatype, \ 8448 .is_exp_attach_type_optional = eatype_optional, \ 8449 .is_attachable = attachable, \ 8450 .is_attach_btf = attach_btf, \ 8451 } 8452 8453 /* Programs that can NOT be attached. */ 8454 #define BPF_PROG_SEC(string, ptype) BPF_PROG_SEC_IMPL(string, ptype, 0, 0, 0, 0) 8455 8456 /* Programs that can be attached. */ 8457 #define BPF_APROG_SEC(string, ptype, atype) \ 8458 BPF_PROG_SEC_IMPL(string, ptype, atype, true, 1, 0) 8459 8460 /* Programs that must specify expected attach type at load time. */ 8461 #define BPF_EAPROG_SEC(string, ptype, eatype) \ 8462 BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 1, 0) 8463 8464 /* Programs that use BTF to identify attach point */ 8465 #define BPF_PROG_BTF(string, ptype, eatype) \ 8466 BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 0, 1) 8467 8468 /* Programs that can be attached but attach type can't be identified by section 8469 * name. Kept for backward compatibility. 8470 */ 8471 #define BPF_APROG_COMPAT(string, ptype) BPF_PROG_SEC(string, ptype) 8472 8473 #define SEC_DEF(sec_pfx, ptype, ...) { \ 8474 .sec = sec_pfx, \ 8475 .len = sizeof(sec_pfx) - 1, \ 8476 .prog_type = BPF_PROG_TYPE_##ptype, \ 8477 __VA_ARGS__ \ 8478 } 8479 8480 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 8481 struct bpf_program *prog); 8482 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 8483 struct bpf_program *prog); 8484 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 8485 struct bpf_program *prog); 8486 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 8487 struct bpf_program *prog); 8488 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec, 8489 struct bpf_program *prog); 8490 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec, 8491 struct bpf_program *prog); 8492 8493 static const struct bpf_sec_def section_defs[] = { 8494 BPF_PROG_SEC("socket", BPF_PROG_TYPE_SOCKET_FILTER), 8495 BPF_PROG_SEC("sk_reuseport", BPF_PROG_TYPE_SK_REUSEPORT), 8496 SEC_DEF("kprobe/", KPROBE, 8497 .attach_fn = attach_kprobe), 8498 BPF_PROG_SEC("uprobe/", BPF_PROG_TYPE_KPROBE), 8499 SEC_DEF("kretprobe/", KPROBE, 8500 .attach_fn = attach_kprobe), 8501 BPF_PROG_SEC("uretprobe/", BPF_PROG_TYPE_KPROBE), 8502 BPF_PROG_SEC("classifier", BPF_PROG_TYPE_SCHED_CLS), 8503 BPF_PROG_SEC("action", BPF_PROG_TYPE_SCHED_ACT), 8504 SEC_DEF("tracepoint/", TRACEPOINT, 8505 .attach_fn = attach_tp), 8506 SEC_DEF("tp/", TRACEPOINT, 8507 .attach_fn = attach_tp), 8508 SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT, 8509 .attach_fn = attach_raw_tp), 8510 SEC_DEF("raw_tp/", RAW_TRACEPOINT, 8511 .attach_fn = attach_raw_tp), 8512 SEC_DEF("tp_btf/", TRACING, 8513 .expected_attach_type = BPF_TRACE_RAW_TP, 8514 .is_attach_btf = true, 8515 .attach_fn = attach_trace), 8516 SEC_DEF("fentry/", TRACING, 8517 .expected_attach_type = BPF_TRACE_FENTRY, 8518 .is_attach_btf = true, 8519 .attach_fn = attach_trace), 8520 SEC_DEF("fmod_ret/", TRACING, 8521 .expected_attach_type = BPF_MODIFY_RETURN, 8522 .is_attach_btf = true, 8523 .attach_fn = attach_trace), 8524 SEC_DEF("fexit/", TRACING, 8525 .expected_attach_type = BPF_TRACE_FEXIT, 8526 .is_attach_btf = true, 8527 .attach_fn = attach_trace), 8528 SEC_DEF("fentry.s/", TRACING, 8529 .expected_attach_type = BPF_TRACE_FENTRY, 8530 .is_attach_btf = true, 8531 .is_sleepable = true, 8532 .attach_fn = attach_trace), 8533 SEC_DEF("fmod_ret.s/", TRACING, 8534 .expected_attach_type = BPF_MODIFY_RETURN, 8535 .is_attach_btf = true, 8536 .is_sleepable = true, 8537 .attach_fn = attach_trace), 8538 SEC_DEF("fexit.s/", TRACING, 8539 .expected_attach_type = BPF_TRACE_FEXIT, 8540 .is_attach_btf = true, 8541 .is_sleepable = true, 8542 .attach_fn = attach_trace), 8543 SEC_DEF("freplace/", EXT, 8544 .is_attach_btf = true, 8545 .attach_fn = attach_trace), 8546 SEC_DEF("lsm/", LSM, 8547 .is_attach_btf = true, 8548 .expected_attach_type = BPF_LSM_MAC, 8549 .attach_fn = attach_lsm), 8550 SEC_DEF("lsm.s/", LSM, 8551 .is_attach_btf = true, 8552 .is_sleepable = true, 8553 .expected_attach_type = BPF_LSM_MAC, 8554 .attach_fn = attach_lsm), 8555 SEC_DEF("iter/", TRACING, 8556 .expected_attach_type = BPF_TRACE_ITER, 8557 .is_attach_btf = true, 8558 .attach_fn = attach_iter), 8559 BPF_EAPROG_SEC("xdp_devmap/", BPF_PROG_TYPE_XDP, 8560 BPF_XDP_DEVMAP), 8561 BPF_EAPROG_SEC("xdp_cpumap/", BPF_PROG_TYPE_XDP, 8562 BPF_XDP_CPUMAP), 8563 BPF_APROG_SEC("xdp", BPF_PROG_TYPE_XDP, 8564 BPF_XDP), 8565 BPF_PROG_SEC("perf_event", BPF_PROG_TYPE_PERF_EVENT), 8566 BPF_PROG_SEC("lwt_in", BPF_PROG_TYPE_LWT_IN), 8567 BPF_PROG_SEC("lwt_out", BPF_PROG_TYPE_LWT_OUT), 8568 BPF_PROG_SEC("lwt_xmit", BPF_PROG_TYPE_LWT_XMIT), 8569 BPF_PROG_SEC("lwt_seg6local", BPF_PROG_TYPE_LWT_SEG6LOCAL), 8570 BPF_APROG_SEC("cgroup_skb/ingress", BPF_PROG_TYPE_CGROUP_SKB, 8571 BPF_CGROUP_INET_INGRESS), 8572 BPF_APROG_SEC("cgroup_skb/egress", BPF_PROG_TYPE_CGROUP_SKB, 8573 BPF_CGROUP_INET_EGRESS), 8574 BPF_APROG_COMPAT("cgroup/skb", BPF_PROG_TYPE_CGROUP_SKB), 8575 BPF_EAPROG_SEC("cgroup/sock_create", BPF_PROG_TYPE_CGROUP_SOCK, 8576 BPF_CGROUP_INET_SOCK_CREATE), 8577 BPF_EAPROG_SEC("cgroup/sock_release", BPF_PROG_TYPE_CGROUP_SOCK, 8578 BPF_CGROUP_INET_SOCK_RELEASE), 8579 BPF_APROG_SEC("cgroup/sock", BPF_PROG_TYPE_CGROUP_SOCK, 8580 BPF_CGROUP_INET_SOCK_CREATE), 8581 BPF_EAPROG_SEC("cgroup/post_bind4", BPF_PROG_TYPE_CGROUP_SOCK, 8582 BPF_CGROUP_INET4_POST_BIND), 8583 BPF_EAPROG_SEC("cgroup/post_bind6", BPF_PROG_TYPE_CGROUP_SOCK, 8584 BPF_CGROUP_INET6_POST_BIND), 8585 BPF_APROG_SEC("cgroup/dev", BPF_PROG_TYPE_CGROUP_DEVICE, 8586 BPF_CGROUP_DEVICE), 8587 BPF_APROG_SEC("sockops", BPF_PROG_TYPE_SOCK_OPS, 8588 BPF_CGROUP_SOCK_OPS), 8589 BPF_APROG_SEC("sk_skb/stream_parser", BPF_PROG_TYPE_SK_SKB, 8590 BPF_SK_SKB_STREAM_PARSER), 8591 BPF_APROG_SEC("sk_skb/stream_verdict", BPF_PROG_TYPE_SK_SKB, 8592 BPF_SK_SKB_STREAM_VERDICT), 8593 BPF_APROG_COMPAT("sk_skb", BPF_PROG_TYPE_SK_SKB), 8594 BPF_APROG_SEC("sk_msg", BPF_PROG_TYPE_SK_MSG, 8595 BPF_SK_MSG_VERDICT), 8596 BPF_APROG_SEC("lirc_mode2", BPF_PROG_TYPE_LIRC_MODE2, 8597 BPF_LIRC_MODE2), 8598 BPF_APROG_SEC("flow_dissector", BPF_PROG_TYPE_FLOW_DISSECTOR, 8599 BPF_FLOW_DISSECTOR), 8600 BPF_EAPROG_SEC("cgroup/bind4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8601 BPF_CGROUP_INET4_BIND), 8602 BPF_EAPROG_SEC("cgroup/bind6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8603 BPF_CGROUP_INET6_BIND), 8604 BPF_EAPROG_SEC("cgroup/connect4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8605 BPF_CGROUP_INET4_CONNECT), 8606 BPF_EAPROG_SEC("cgroup/connect6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8607 BPF_CGROUP_INET6_CONNECT), 8608 BPF_EAPROG_SEC("cgroup/sendmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8609 BPF_CGROUP_UDP4_SENDMSG), 8610 BPF_EAPROG_SEC("cgroup/sendmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8611 BPF_CGROUP_UDP6_SENDMSG), 8612 BPF_EAPROG_SEC("cgroup/recvmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8613 BPF_CGROUP_UDP4_RECVMSG), 8614 BPF_EAPROG_SEC("cgroup/recvmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8615 BPF_CGROUP_UDP6_RECVMSG), 8616 BPF_EAPROG_SEC("cgroup/getpeername4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8617 BPF_CGROUP_INET4_GETPEERNAME), 8618 BPF_EAPROG_SEC("cgroup/getpeername6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8619 BPF_CGROUP_INET6_GETPEERNAME), 8620 BPF_EAPROG_SEC("cgroup/getsockname4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8621 BPF_CGROUP_INET4_GETSOCKNAME), 8622 BPF_EAPROG_SEC("cgroup/getsockname6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8623 BPF_CGROUP_INET6_GETSOCKNAME), 8624 BPF_EAPROG_SEC("cgroup/sysctl", BPF_PROG_TYPE_CGROUP_SYSCTL, 8625 BPF_CGROUP_SYSCTL), 8626 BPF_EAPROG_SEC("cgroup/getsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 8627 BPF_CGROUP_GETSOCKOPT), 8628 BPF_EAPROG_SEC("cgroup/setsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 8629 BPF_CGROUP_SETSOCKOPT), 8630 BPF_PROG_SEC("struct_ops", BPF_PROG_TYPE_STRUCT_OPS), 8631 BPF_EAPROG_SEC("sk_lookup/", BPF_PROG_TYPE_SK_LOOKUP, 8632 BPF_SK_LOOKUP), 8633 }; 8634 8635 #undef BPF_PROG_SEC_IMPL 8636 #undef BPF_PROG_SEC 8637 #undef BPF_APROG_SEC 8638 #undef BPF_EAPROG_SEC 8639 #undef BPF_APROG_COMPAT 8640 #undef SEC_DEF 8641 8642 #define MAX_TYPE_NAME_SIZE 32 8643 8644 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8645 { 8646 int i, n = ARRAY_SIZE(section_defs); 8647 8648 for (i = 0; i < n; i++) { 8649 if (strncmp(sec_name, 8650 section_defs[i].sec, section_defs[i].len)) 8651 continue; 8652 return §ion_defs[i]; 8653 } 8654 return NULL; 8655 } 8656 8657 static char *libbpf_get_type_names(bool attach_type) 8658 { 8659 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8660 char *buf; 8661 8662 buf = malloc(len); 8663 if (!buf) 8664 return NULL; 8665 8666 buf[0] = '\0'; 8667 /* Forge string buf with all available names */ 8668 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8669 if (attach_type && !section_defs[i].is_attachable) 8670 continue; 8671 8672 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8673 free(buf); 8674 return NULL; 8675 } 8676 strcat(buf, " "); 8677 strcat(buf, section_defs[i].sec); 8678 } 8679 8680 return buf; 8681 } 8682 8683 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8684 enum bpf_attach_type *expected_attach_type) 8685 { 8686 const struct bpf_sec_def *sec_def; 8687 char *type_names; 8688 8689 if (!name) 8690 return -EINVAL; 8691 8692 sec_def = find_sec_def(name); 8693 if (sec_def) { 8694 *prog_type = sec_def->prog_type; 8695 *expected_attach_type = sec_def->expected_attach_type; 8696 return 0; 8697 } 8698 8699 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8700 type_names = libbpf_get_type_names(false); 8701 if (type_names != NULL) { 8702 pr_debug("supported section(type) names are:%s\n", type_names); 8703 free(type_names); 8704 } 8705 8706 return -ESRCH; 8707 } 8708 8709 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 8710 size_t offset) 8711 { 8712 struct bpf_map *map; 8713 size_t i; 8714 8715 for (i = 0; i < obj->nr_maps; i++) { 8716 map = &obj->maps[i]; 8717 if (!bpf_map__is_struct_ops(map)) 8718 continue; 8719 if (map->sec_offset <= offset && 8720 offset - map->sec_offset < map->def.value_size) 8721 return map; 8722 } 8723 8724 return NULL; 8725 } 8726 8727 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 8728 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 8729 GElf_Shdr *shdr, Elf_Data *data) 8730 { 8731 const struct btf_member *member; 8732 struct bpf_struct_ops *st_ops; 8733 struct bpf_program *prog; 8734 unsigned int shdr_idx; 8735 const struct btf *btf; 8736 struct bpf_map *map; 8737 Elf_Data *symbols; 8738 unsigned int moff, insn_idx; 8739 const char *name; 8740 __u32 member_idx; 8741 GElf_Sym sym; 8742 GElf_Rel rel; 8743 int i, nrels; 8744 8745 symbols = obj->efile.symbols; 8746 btf = obj->btf; 8747 nrels = shdr->sh_size / shdr->sh_entsize; 8748 for (i = 0; i < nrels; i++) { 8749 if (!gelf_getrel(data, i, &rel)) { 8750 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 8751 return -LIBBPF_ERRNO__FORMAT; 8752 } 8753 8754 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 8755 pr_warn("struct_ops reloc: symbol %zx not found\n", 8756 (size_t)GELF_R_SYM(rel.r_info)); 8757 return -LIBBPF_ERRNO__FORMAT; 8758 } 8759 8760 name = elf_sym_str(obj, sym.st_name) ?: "<?>"; 8761 map = find_struct_ops_map_by_offset(obj, rel.r_offset); 8762 if (!map) { 8763 pr_warn("struct_ops reloc: cannot find map at rel.r_offset %zu\n", 8764 (size_t)rel.r_offset); 8765 return -EINVAL; 8766 } 8767 8768 moff = rel.r_offset - map->sec_offset; 8769 shdr_idx = sym.st_shndx; 8770 st_ops = map->st_ops; 8771 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel.r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 8772 map->name, 8773 (long long)(rel.r_info >> 32), 8774 (long long)sym.st_value, 8775 shdr_idx, (size_t)rel.r_offset, 8776 map->sec_offset, sym.st_name, name); 8777 8778 if (shdr_idx >= SHN_LORESERVE) { 8779 pr_warn("struct_ops reloc %s: rel.r_offset %zu shdr_idx %u unsupported non-static function\n", 8780 map->name, (size_t)rel.r_offset, shdr_idx); 8781 return -LIBBPF_ERRNO__RELOC; 8782 } 8783 if (sym.st_value % BPF_INSN_SZ) { 8784 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 8785 map->name, (unsigned long long)sym.st_value); 8786 return -LIBBPF_ERRNO__FORMAT; 8787 } 8788 insn_idx = sym.st_value / BPF_INSN_SZ; 8789 8790 member = find_member_by_offset(st_ops->type, moff * 8); 8791 if (!member) { 8792 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 8793 map->name, moff); 8794 return -EINVAL; 8795 } 8796 member_idx = member - btf_members(st_ops->type); 8797 name = btf__name_by_offset(btf, member->name_off); 8798 8799 if (!resolve_func_ptr(btf, member->type, NULL)) { 8800 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 8801 map->name, name); 8802 return -EINVAL; 8803 } 8804 8805 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 8806 if (!prog) { 8807 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 8808 map->name, shdr_idx, name); 8809 return -EINVAL; 8810 } 8811 8812 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 8813 const struct bpf_sec_def *sec_def; 8814 8815 sec_def = find_sec_def(prog->sec_name); 8816 if (sec_def && 8817 sec_def->prog_type != BPF_PROG_TYPE_STRUCT_OPS) { 8818 /* for pr_warn */ 8819 prog->type = sec_def->prog_type; 8820 goto invalid_prog; 8821 } 8822 8823 prog->type = BPF_PROG_TYPE_STRUCT_OPS; 8824 prog->attach_btf_id = st_ops->type_id; 8825 prog->expected_attach_type = member_idx; 8826 } else if (prog->type != BPF_PROG_TYPE_STRUCT_OPS || 8827 prog->attach_btf_id != st_ops->type_id || 8828 prog->expected_attach_type != member_idx) { 8829 goto invalid_prog; 8830 } 8831 st_ops->progs[member_idx] = prog; 8832 } 8833 8834 return 0; 8835 8836 invalid_prog: 8837 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 8838 map->name, prog->name, prog->sec_name, prog->type, 8839 prog->attach_btf_id, prog->expected_attach_type, name); 8840 return -EINVAL; 8841 } 8842 8843 #define BTF_TRACE_PREFIX "btf_trace_" 8844 #define BTF_LSM_PREFIX "bpf_lsm_" 8845 #define BTF_ITER_PREFIX "bpf_iter_" 8846 #define BTF_MAX_NAME_SIZE 128 8847 8848 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 8849 const char *name, __u32 kind) 8850 { 8851 char btf_type_name[BTF_MAX_NAME_SIZE]; 8852 int ret; 8853 8854 ret = snprintf(btf_type_name, sizeof(btf_type_name), 8855 "%s%s", prefix, name); 8856 /* snprintf returns the number of characters written excluding the 8857 * the terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 8858 * indicates truncation. 8859 */ 8860 if (ret < 0 || ret >= sizeof(btf_type_name)) 8861 return -ENAMETOOLONG; 8862 return btf__find_by_name_kind(btf, btf_type_name, kind); 8863 } 8864 8865 static inline int find_attach_btf_id(struct btf *btf, const char *name, 8866 enum bpf_attach_type attach_type) 8867 { 8868 int err; 8869 8870 if (attach_type == BPF_TRACE_RAW_TP) 8871 err = find_btf_by_prefix_kind(btf, BTF_TRACE_PREFIX, name, 8872 BTF_KIND_TYPEDEF); 8873 else if (attach_type == BPF_LSM_MAC) 8874 err = find_btf_by_prefix_kind(btf, BTF_LSM_PREFIX, name, 8875 BTF_KIND_FUNC); 8876 else if (attach_type == BPF_TRACE_ITER) 8877 err = find_btf_by_prefix_kind(btf, BTF_ITER_PREFIX, name, 8878 BTF_KIND_FUNC); 8879 else 8880 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 8881 8882 return err; 8883 } 8884 8885 int libbpf_find_vmlinux_btf_id(const char *name, 8886 enum bpf_attach_type attach_type) 8887 { 8888 struct btf *btf; 8889 int err; 8890 8891 btf = libbpf_find_kernel_btf(); 8892 if (IS_ERR(btf)) { 8893 pr_warn("vmlinux BTF is not found\n"); 8894 return -EINVAL; 8895 } 8896 8897 err = find_attach_btf_id(btf, name, attach_type); 8898 if (err <= 0) 8899 pr_warn("%s is not found in vmlinux BTF\n", name); 8900 8901 btf__free(btf); 8902 return err; 8903 } 8904 8905 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 8906 { 8907 struct bpf_prog_info_linear *info_linear; 8908 struct bpf_prog_info *info; 8909 struct btf *btf = NULL; 8910 int err = -EINVAL; 8911 8912 info_linear = bpf_program__get_prog_info_linear(attach_prog_fd, 0); 8913 if (IS_ERR_OR_NULL(info_linear)) { 8914 pr_warn("failed get_prog_info_linear for FD %d\n", 8915 attach_prog_fd); 8916 return -EINVAL; 8917 } 8918 info = &info_linear->info; 8919 if (!info->btf_id) { 8920 pr_warn("The target program doesn't have BTF\n"); 8921 goto out; 8922 } 8923 if (btf__get_from_id(info->btf_id, &btf)) { 8924 pr_warn("Failed to get BTF of the program\n"); 8925 goto out; 8926 } 8927 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 8928 btf__free(btf); 8929 if (err <= 0) { 8930 pr_warn("%s is not found in prog's BTF\n", name); 8931 goto out; 8932 } 8933 out: 8934 free(info_linear); 8935 return err; 8936 } 8937 8938 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 8939 enum bpf_attach_type attach_type, 8940 int *btf_obj_fd, int *btf_type_id) 8941 { 8942 int ret, i; 8943 8944 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 8945 if (ret > 0) { 8946 *btf_obj_fd = 0; /* vmlinux BTF */ 8947 *btf_type_id = ret; 8948 return 0; 8949 } 8950 if (ret != -ENOENT) 8951 return ret; 8952 8953 ret = load_module_btfs(obj); 8954 if (ret) 8955 return ret; 8956 8957 for (i = 0; i < obj->btf_module_cnt; i++) { 8958 const struct module_btf *mod = &obj->btf_modules[i]; 8959 8960 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 8961 if (ret > 0) { 8962 *btf_obj_fd = mod->fd; 8963 *btf_type_id = ret; 8964 return 0; 8965 } 8966 if (ret == -ENOENT) 8967 continue; 8968 8969 return ret; 8970 } 8971 8972 return -ESRCH; 8973 } 8974 8975 static int libbpf_find_attach_btf_id(struct bpf_program *prog, int *btf_obj_fd, int *btf_type_id) 8976 { 8977 enum bpf_attach_type attach_type = prog->expected_attach_type; 8978 __u32 attach_prog_fd = prog->attach_prog_fd; 8979 const char *name = prog->sec_name, *attach_name; 8980 const struct bpf_sec_def *sec = NULL; 8981 int i, err; 8982 8983 if (!name) 8984 return -EINVAL; 8985 8986 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8987 if (!section_defs[i].is_attach_btf) 8988 continue; 8989 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 8990 continue; 8991 8992 sec = §ion_defs[i]; 8993 break; 8994 } 8995 8996 if (!sec) { 8997 pr_warn("failed to identify BTF ID based on ELF section name '%s'\n", name); 8998 return -ESRCH; 8999 } 9000 attach_name = name + sec->len; 9001 9002 /* BPF program's BTF ID */ 9003 if (attach_prog_fd) { 9004 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9005 if (err < 0) { 9006 pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9007 attach_prog_fd, attach_name, err); 9008 return err; 9009 } 9010 *btf_obj_fd = 0; 9011 *btf_type_id = err; 9012 return 0; 9013 } 9014 9015 /* kernel/module BTF ID */ 9016 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9017 if (err) { 9018 pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err); 9019 return err; 9020 } 9021 return 0; 9022 } 9023 9024 int libbpf_attach_type_by_name(const char *name, 9025 enum bpf_attach_type *attach_type) 9026 { 9027 char *type_names; 9028 int i; 9029 9030 if (!name) 9031 return -EINVAL; 9032 9033 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9034 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 9035 continue; 9036 if (!section_defs[i].is_attachable) 9037 return -EINVAL; 9038 *attach_type = section_defs[i].expected_attach_type; 9039 return 0; 9040 } 9041 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9042 type_names = libbpf_get_type_names(true); 9043 if (type_names != NULL) { 9044 pr_debug("attachable section(type) names are:%s\n", type_names); 9045 free(type_names); 9046 } 9047 9048 return -EINVAL; 9049 } 9050 9051 int bpf_map__fd(const struct bpf_map *map) 9052 { 9053 return map ? map->fd : -EINVAL; 9054 } 9055 9056 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map) 9057 { 9058 return map ? &map->def : ERR_PTR(-EINVAL); 9059 } 9060 9061 const char *bpf_map__name(const struct bpf_map *map) 9062 { 9063 return map ? map->name : NULL; 9064 } 9065 9066 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9067 { 9068 return map->def.type; 9069 } 9070 9071 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9072 { 9073 if (map->fd >= 0) 9074 return -EBUSY; 9075 map->def.type = type; 9076 return 0; 9077 } 9078 9079 __u32 bpf_map__map_flags(const struct bpf_map *map) 9080 { 9081 return map->def.map_flags; 9082 } 9083 9084 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9085 { 9086 if (map->fd >= 0) 9087 return -EBUSY; 9088 map->def.map_flags = flags; 9089 return 0; 9090 } 9091 9092 __u32 bpf_map__numa_node(const struct bpf_map *map) 9093 { 9094 return map->numa_node; 9095 } 9096 9097 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9098 { 9099 if (map->fd >= 0) 9100 return -EBUSY; 9101 map->numa_node = numa_node; 9102 return 0; 9103 } 9104 9105 __u32 bpf_map__key_size(const struct bpf_map *map) 9106 { 9107 return map->def.key_size; 9108 } 9109 9110 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9111 { 9112 if (map->fd >= 0) 9113 return -EBUSY; 9114 map->def.key_size = size; 9115 return 0; 9116 } 9117 9118 __u32 bpf_map__value_size(const struct bpf_map *map) 9119 { 9120 return map->def.value_size; 9121 } 9122 9123 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9124 { 9125 if (map->fd >= 0) 9126 return -EBUSY; 9127 map->def.value_size = size; 9128 return 0; 9129 } 9130 9131 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9132 { 9133 return map ? map->btf_key_type_id : 0; 9134 } 9135 9136 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9137 { 9138 return map ? map->btf_value_type_id : 0; 9139 } 9140 9141 int bpf_map__set_priv(struct bpf_map *map, void *priv, 9142 bpf_map_clear_priv_t clear_priv) 9143 { 9144 if (!map) 9145 return -EINVAL; 9146 9147 if (map->priv) { 9148 if (map->clear_priv) 9149 map->clear_priv(map, map->priv); 9150 } 9151 9152 map->priv = priv; 9153 map->clear_priv = clear_priv; 9154 return 0; 9155 } 9156 9157 void *bpf_map__priv(const struct bpf_map *map) 9158 { 9159 return map ? map->priv : ERR_PTR(-EINVAL); 9160 } 9161 9162 int bpf_map__set_initial_value(struct bpf_map *map, 9163 const void *data, size_t size) 9164 { 9165 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9166 size != map->def.value_size || map->fd >= 0) 9167 return -EINVAL; 9168 9169 memcpy(map->mmaped, data, size); 9170 return 0; 9171 } 9172 9173 bool bpf_map__is_offload_neutral(const struct bpf_map *map) 9174 { 9175 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 9176 } 9177 9178 bool bpf_map__is_internal(const struct bpf_map *map) 9179 { 9180 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9181 } 9182 9183 __u32 bpf_map__ifindex(const struct bpf_map *map) 9184 { 9185 return map->map_ifindex; 9186 } 9187 9188 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9189 { 9190 if (map->fd >= 0) 9191 return -EBUSY; 9192 map->map_ifindex = ifindex; 9193 return 0; 9194 } 9195 9196 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9197 { 9198 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9199 pr_warn("error: unsupported map type\n"); 9200 return -EINVAL; 9201 } 9202 if (map->inner_map_fd != -1) { 9203 pr_warn("error: inner_map_fd already specified\n"); 9204 return -EINVAL; 9205 } 9206 map->inner_map_fd = fd; 9207 return 0; 9208 } 9209 9210 static struct bpf_map * 9211 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9212 { 9213 ssize_t idx; 9214 struct bpf_map *s, *e; 9215 9216 if (!obj || !obj->maps) 9217 return NULL; 9218 9219 s = obj->maps; 9220 e = obj->maps + obj->nr_maps; 9221 9222 if ((m < s) || (m >= e)) { 9223 pr_warn("error in %s: map handler doesn't belong to object\n", 9224 __func__); 9225 return NULL; 9226 } 9227 9228 idx = (m - obj->maps) + i; 9229 if (idx >= obj->nr_maps || idx < 0) 9230 return NULL; 9231 return &obj->maps[idx]; 9232 } 9233 9234 struct bpf_map * 9235 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj) 9236 { 9237 if (prev == NULL) 9238 return obj->maps; 9239 9240 return __bpf_map__iter(prev, obj, 1); 9241 } 9242 9243 struct bpf_map * 9244 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj) 9245 { 9246 if (next == NULL) { 9247 if (!obj->nr_maps) 9248 return NULL; 9249 return obj->maps + obj->nr_maps - 1; 9250 } 9251 9252 return __bpf_map__iter(next, obj, -1); 9253 } 9254 9255 struct bpf_map * 9256 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9257 { 9258 struct bpf_map *pos; 9259 9260 bpf_object__for_each_map(pos, obj) { 9261 if (pos->name && !strcmp(pos->name, name)) 9262 return pos; 9263 } 9264 return NULL; 9265 } 9266 9267 int 9268 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9269 { 9270 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9271 } 9272 9273 struct bpf_map * 9274 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset) 9275 { 9276 return ERR_PTR(-ENOTSUP); 9277 } 9278 9279 long libbpf_get_error(const void *ptr) 9280 { 9281 return PTR_ERR_OR_ZERO(ptr); 9282 } 9283 9284 int bpf_prog_load(const char *file, enum bpf_prog_type type, 9285 struct bpf_object **pobj, int *prog_fd) 9286 { 9287 struct bpf_prog_load_attr attr; 9288 9289 memset(&attr, 0, sizeof(struct bpf_prog_load_attr)); 9290 attr.file = file; 9291 attr.prog_type = type; 9292 attr.expected_attach_type = 0; 9293 9294 return bpf_prog_load_xattr(&attr, pobj, prog_fd); 9295 } 9296 9297 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr, 9298 struct bpf_object **pobj, int *prog_fd) 9299 { 9300 struct bpf_object_open_attr open_attr = {}; 9301 struct bpf_program *prog, *first_prog = NULL; 9302 struct bpf_object *obj; 9303 struct bpf_map *map; 9304 int err; 9305 9306 if (!attr) 9307 return -EINVAL; 9308 if (!attr->file) 9309 return -EINVAL; 9310 9311 open_attr.file = attr->file; 9312 open_attr.prog_type = attr->prog_type; 9313 9314 obj = bpf_object__open_xattr(&open_attr); 9315 if (IS_ERR_OR_NULL(obj)) 9316 return -ENOENT; 9317 9318 bpf_object__for_each_program(prog, obj) { 9319 enum bpf_attach_type attach_type = attr->expected_attach_type; 9320 /* 9321 * to preserve backwards compatibility, bpf_prog_load treats 9322 * attr->prog_type, if specified, as an override to whatever 9323 * bpf_object__open guessed 9324 */ 9325 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) { 9326 bpf_program__set_type(prog, attr->prog_type); 9327 bpf_program__set_expected_attach_type(prog, 9328 attach_type); 9329 } 9330 if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) { 9331 /* 9332 * we haven't guessed from section name and user 9333 * didn't provide a fallback type, too bad... 9334 */ 9335 bpf_object__close(obj); 9336 return -EINVAL; 9337 } 9338 9339 prog->prog_ifindex = attr->ifindex; 9340 prog->log_level = attr->log_level; 9341 prog->prog_flags |= attr->prog_flags; 9342 if (!first_prog) 9343 first_prog = prog; 9344 } 9345 9346 bpf_object__for_each_map(map, obj) { 9347 if (!bpf_map__is_offload_neutral(map)) 9348 map->map_ifindex = attr->ifindex; 9349 } 9350 9351 if (!first_prog) { 9352 pr_warn("object file doesn't contain bpf program\n"); 9353 bpf_object__close(obj); 9354 return -ENOENT; 9355 } 9356 9357 err = bpf_object__load(obj); 9358 if (err) { 9359 bpf_object__close(obj); 9360 return err; 9361 } 9362 9363 *pobj = obj; 9364 *prog_fd = bpf_program__fd(first_prog); 9365 return 0; 9366 } 9367 9368 struct bpf_link { 9369 int (*detach)(struct bpf_link *link); 9370 int (*destroy)(struct bpf_link *link); 9371 char *pin_path; /* NULL, if not pinned */ 9372 int fd; /* hook FD, -1 if not applicable */ 9373 bool disconnected; 9374 }; 9375 9376 /* Replace link's underlying BPF program with the new one */ 9377 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9378 { 9379 return bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9380 } 9381 9382 /* Release "ownership" of underlying BPF resource (typically, BPF program 9383 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9384 * link, when destructed through bpf_link__destroy() call won't attempt to 9385 * detach/unregisted that BPF resource. This is useful in situations where, 9386 * say, attached BPF program has to outlive userspace program that attached it 9387 * in the system. Depending on type of BPF program, though, there might be 9388 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9389 * exit of userspace program doesn't trigger automatic detachment and clean up 9390 * inside the kernel. 9391 */ 9392 void bpf_link__disconnect(struct bpf_link *link) 9393 { 9394 link->disconnected = true; 9395 } 9396 9397 int bpf_link__destroy(struct bpf_link *link) 9398 { 9399 int err = 0; 9400 9401 if (IS_ERR_OR_NULL(link)) 9402 return 0; 9403 9404 if (!link->disconnected && link->detach) 9405 err = link->detach(link); 9406 if (link->destroy) 9407 link->destroy(link); 9408 if (link->pin_path) 9409 free(link->pin_path); 9410 free(link); 9411 9412 return err; 9413 } 9414 9415 int bpf_link__fd(const struct bpf_link *link) 9416 { 9417 return link->fd; 9418 } 9419 9420 const char *bpf_link__pin_path(const struct bpf_link *link) 9421 { 9422 return link->pin_path; 9423 } 9424 9425 static int bpf_link__detach_fd(struct bpf_link *link) 9426 { 9427 return close(link->fd); 9428 } 9429 9430 struct bpf_link *bpf_link__open(const char *path) 9431 { 9432 struct bpf_link *link; 9433 int fd; 9434 9435 fd = bpf_obj_get(path); 9436 if (fd < 0) { 9437 fd = -errno; 9438 pr_warn("failed to open link at %s: %d\n", path, fd); 9439 return ERR_PTR(fd); 9440 } 9441 9442 link = calloc(1, sizeof(*link)); 9443 if (!link) { 9444 close(fd); 9445 return ERR_PTR(-ENOMEM); 9446 } 9447 link->detach = &bpf_link__detach_fd; 9448 link->fd = fd; 9449 9450 link->pin_path = strdup(path); 9451 if (!link->pin_path) { 9452 bpf_link__destroy(link); 9453 return ERR_PTR(-ENOMEM); 9454 } 9455 9456 return link; 9457 } 9458 9459 int bpf_link__detach(struct bpf_link *link) 9460 { 9461 return bpf_link_detach(link->fd) ? -errno : 0; 9462 } 9463 9464 int bpf_link__pin(struct bpf_link *link, const char *path) 9465 { 9466 int err; 9467 9468 if (link->pin_path) 9469 return -EBUSY; 9470 err = make_parent_dir(path); 9471 if (err) 9472 return err; 9473 err = check_path(path); 9474 if (err) 9475 return err; 9476 9477 link->pin_path = strdup(path); 9478 if (!link->pin_path) 9479 return -ENOMEM; 9480 9481 if (bpf_obj_pin(link->fd, link->pin_path)) { 9482 err = -errno; 9483 zfree(&link->pin_path); 9484 return err; 9485 } 9486 9487 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9488 return 0; 9489 } 9490 9491 int bpf_link__unpin(struct bpf_link *link) 9492 { 9493 int err; 9494 9495 if (!link->pin_path) 9496 return -EINVAL; 9497 9498 err = unlink(link->pin_path); 9499 if (err != 0) 9500 return -errno; 9501 9502 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9503 zfree(&link->pin_path); 9504 return 0; 9505 } 9506 9507 static int bpf_link__detach_perf_event(struct bpf_link *link) 9508 { 9509 int err; 9510 9511 err = ioctl(link->fd, PERF_EVENT_IOC_DISABLE, 0); 9512 if (err) 9513 err = -errno; 9514 9515 close(link->fd); 9516 return err; 9517 } 9518 9519 struct bpf_link *bpf_program__attach_perf_event(struct bpf_program *prog, 9520 int pfd) 9521 { 9522 char errmsg[STRERR_BUFSIZE]; 9523 struct bpf_link *link; 9524 int prog_fd, err; 9525 9526 if (pfd < 0) { 9527 pr_warn("prog '%s': invalid perf event FD %d\n", 9528 prog->name, pfd); 9529 return ERR_PTR(-EINVAL); 9530 } 9531 prog_fd = bpf_program__fd(prog); 9532 if (prog_fd < 0) { 9533 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 9534 prog->name); 9535 return ERR_PTR(-EINVAL); 9536 } 9537 9538 link = calloc(1, sizeof(*link)); 9539 if (!link) 9540 return ERR_PTR(-ENOMEM); 9541 link->detach = &bpf_link__detach_perf_event; 9542 link->fd = pfd; 9543 9544 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 9545 err = -errno; 9546 free(link); 9547 pr_warn("prog '%s': failed to attach to pfd %d: %s\n", 9548 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9549 if (err == -EPROTO) 9550 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 9551 prog->name, pfd); 9552 return ERR_PTR(err); 9553 } 9554 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9555 err = -errno; 9556 free(link); 9557 pr_warn("prog '%s': failed to enable pfd %d: %s\n", 9558 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9559 return ERR_PTR(err); 9560 } 9561 return link; 9562 } 9563 9564 /* 9565 * this function is expected to parse integer in the range of [0, 2^31-1] from 9566 * given file using scanf format string fmt. If actual parsed value is 9567 * negative, the result might be indistinguishable from error 9568 */ 9569 static int parse_uint_from_file(const char *file, const char *fmt) 9570 { 9571 char buf[STRERR_BUFSIZE]; 9572 int err, ret; 9573 FILE *f; 9574 9575 f = fopen(file, "r"); 9576 if (!f) { 9577 err = -errno; 9578 pr_debug("failed to open '%s': %s\n", file, 9579 libbpf_strerror_r(err, buf, sizeof(buf))); 9580 return err; 9581 } 9582 err = fscanf(f, fmt, &ret); 9583 if (err != 1) { 9584 err = err == EOF ? -EIO : -errno; 9585 pr_debug("failed to parse '%s': %s\n", file, 9586 libbpf_strerror_r(err, buf, sizeof(buf))); 9587 fclose(f); 9588 return err; 9589 } 9590 fclose(f); 9591 return ret; 9592 } 9593 9594 static int determine_kprobe_perf_type(void) 9595 { 9596 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 9597 9598 return parse_uint_from_file(file, "%d\n"); 9599 } 9600 9601 static int determine_uprobe_perf_type(void) 9602 { 9603 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 9604 9605 return parse_uint_from_file(file, "%d\n"); 9606 } 9607 9608 static int determine_kprobe_retprobe_bit(void) 9609 { 9610 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 9611 9612 return parse_uint_from_file(file, "config:%d\n"); 9613 } 9614 9615 static int determine_uprobe_retprobe_bit(void) 9616 { 9617 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 9618 9619 return parse_uint_from_file(file, "config:%d\n"); 9620 } 9621 9622 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 9623 uint64_t offset, int pid) 9624 { 9625 struct perf_event_attr attr = {}; 9626 char errmsg[STRERR_BUFSIZE]; 9627 int type, pfd, err; 9628 9629 type = uprobe ? determine_uprobe_perf_type() 9630 : determine_kprobe_perf_type(); 9631 if (type < 0) { 9632 pr_warn("failed to determine %s perf type: %s\n", 9633 uprobe ? "uprobe" : "kprobe", 9634 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 9635 return type; 9636 } 9637 if (retprobe) { 9638 int bit = uprobe ? determine_uprobe_retprobe_bit() 9639 : determine_kprobe_retprobe_bit(); 9640 9641 if (bit < 0) { 9642 pr_warn("failed to determine %s retprobe bit: %s\n", 9643 uprobe ? "uprobe" : "kprobe", 9644 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 9645 return bit; 9646 } 9647 attr.config |= 1 << bit; 9648 } 9649 attr.size = sizeof(attr); 9650 attr.type = type; 9651 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 9652 attr.config2 = offset; /* kprobe_addr or probe_offset */ 9653 9654 /* pid filter is meaningful only for uprobes */ 9655 pfd = syscall(__NR_perf_event_open, &attr, 9656 pid < 0 ? -1 : pid /* pid */, 9657 pid == -1 ? 0 : -1 /* cpu */, 9658 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9659 if (pfd < 0) { 9660 err = -errno; 9661 pr_warn("%s perf_event_open() failed: %s\n", 9662 uprobe ? "uprobe" : "kprobe", 9663 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9664 return err; 9665 } 9666 return pfd; 9667 } 9668 9669 struct bpf_link *bpf_program__attach_kprobe(struct bpf_program *prog, 9670 bool retprobe, 9671 const char *func_name) 9672 { 9673 char errmsg[STRERR_BUFSIZE]; 9674 struct bpf_link *link; 9675 int pfd, err; 9676 9677 pfd = perf_event_open_probe(false /* uprobe */, retprobe, func_name, 9678 0 /* offset */, -1 /* pid */); 9679 if (pfd < 0) { 9680 pr_warn("prog '%s': failed to create %s '%s' perf event: %s\n", 9681 prog->name, retprobe ? "kretprobe" : "kprobe", func_name, 9682 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9683 return ERR_PTR(pfd); 9684 } 9685 link = bpf_program__attach_perf_event(prog, pfd); 9686 if (IS_ERR(link)) { 9687 close(pfd); 9688 err = PTR_ERR(link); 9689 pr_warn("prog '%s': failed to attach to %s '%s': %s\n", 9690 prog->name, retprobe ? "kretprobe" : "kprobe", func_name, 9691 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9692 return link; 9693 } 9694 return link; 9695 } 9696 9697 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 9698 struct bpf_program *prog) 9699 { 9700 const char *func_name; 9701 bool retprobe; 9702 9703 func_name = prog->sec_name + sec->len; 9704 retprobe = strcmp(sec->sec, "kretprobe/") == 0; 9705 9706 return bpf_program__attach_kprobe(prog, retprobe, func_name); 9707 } 9708 9709 struct bpf_link *bpf_program__attach_uprobe(struct bpf_program *prog, 9710 bool retprobe, pid_t pid, 9711 const char *binary_path, 9712 size_t func_offset) 9713 { 9714 char errmsg[STRERR_BUFSIZE]; 9715 struct bpf_link *link; 9716 int pfd, err; 9717 9718 pfd = perf_event_open_probe(true /* uprobe */, retprobe, 9719 binary_path, func_offset, pid); 9720 if (pfd < 0) { 9721 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 9722 prog->name, retprobe ? "uretprobe" : "uprobe", 9723 binary_path, func_offset, 9724 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9725 return ERR_PTR(pfd); 9726 } 9727 link = bpf_program__attach_perf_event(prog, pfd); 9728 if (IS_ERR(link)) { 9729 close(pfd); 9730 err = PTR_ERR(link); 9731 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 9732 prog->name, retprobe ? "uretprobe" : "uprobe", 9733 binary_path, func_offset, 9734 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9735 return link; 9736 } 9737 return link; 9738 } 9739 9740 static int determine_tracepoint_id(const char *tp_category, 9741 const char *tp_name) 9742 { 9743 char file[PATH_MAX]; 9744 int ret; 9745 9746 ret = snprintf(file, sizeof(file), 9747 "/sys/kernel/debug/tracing/events/%s/%s/id", 9748 tp_category, tp_name); 9749 if (ret < 0) 9750 return -errno; 9751 if (ret >= sizeof(file)) { 9752 pr_debug("tracepoint %s/%s path is too long\n", 9753 tp_category, tp_name); 9754 return -E2BIG; 9755 } 9756 return parse_uint_from_file(file, "%d\n"); 9757 } 9758 9759 static int perf_event_open_tracepoint(const char *tp_category, 9760 const char *tp_name) 9761 { 9762 struct perf_event_attr attr = {}; 9763 char errmsg[STRERR_BUFSIZE]; 9764 int tp_id, pfd, err; 9765 9766 tp_id = determine_tracepoint_id(tp_category, tp_name); 9767 if (tp_id < 0) { 9768 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 9769 tp_category, tp_name, 9770 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 9771 return tp_id; 9772 } 9773 9774 attr.type = PERF_TYPE_TRACEPOINT; 9775 attr.size = sizeof(attr); 9776 attr.config = tp_id; 9777 9778 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 9779 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9780 if (pfd < 0) { 9781 err = -errno; 9782 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 9783 tp_category, tp_name, 9784 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9785 return err; 9786 } 9787 return pfd; 9788 } 9789 9790 struct bpf_link *bpf_program__attach_tracepoint(struct bpf_program *prog, 9791 const char *tp_category, 9792 const char *tp_name) 9793 { 9794 char errmsg[STRERR_BUFSIZE]; 9795 struct bpf_link *link; 9796 int pfd, err; 9797 9798 pfd = perf_event_open_tracepoint(tp_category, tp_name); 9799 if (pfd < 0) { 9800 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 9801 prog->name, tp_category, tp_name, 9802 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9803 return ERR_PTR(pfd); 9804 } 9805 link = bpf_program__attach_perf_event(prog, pfd); 9806 if (IS_ERR(link)) { 9807 close(pfd); 9808 err = PTR_ERR(link); 9809 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 9810 prog->name, tp_category, tp_name, 9811 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9812 return link; 9813 } 9814 return link; 9815 } 9816 9817 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 9818 struct bpf_program *prog) 9819 { 9820 char *sec_name, *tp_cat, *tp_name; 9821 struct bpf_link *link; 9822 9823 sec_name = strdup(prog->sec_name); 9824 if (!sec_name) 9825 return ERR_PTR(-ENOMEM); 9826 9827 /* extract "tp/<category>/<name>" */ 9828 tp_cat = sec_name + sec->len; 9829 tp_name = strchr(tp_cat, '/'); 9830 if (!tp_name) { 9831 link = ERR_PTR(-EINVAL); 9832 goto out; 9833 } 9834 *tp_name = '\0'; 9835 tp_name++; 9836 9837 link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 9838 out: 9839 free(sec_name); 9840 return link; 9841 } 9842 9843 struct bpf_link *bpf_program__attach_raw_tracepoint(struct bpf_program *prog, 9844 const char *tp_name) 9845 { 9846 char errmsg[STRERR_BUFSIZE]; 9847 struct bpf_link *link; 9848 int prog_fd, pfd; 9849 9850 prog_fd = bpf_program__fd(prog); 9851 if (prog_fd < 0) { 9852 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 9853 return ERR_PTR(-EINVAL); 9854 } 9855 9856 link = calloc(1, sizeof(*link)); 9857 if (!link) 9858 return ERR_PTR(-ENOMEM); 9859 link->detach = &bpf_link__detach_fd; 9860 9861 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 9862 if (pfd < 0) { 9863 pfd = -errno; 9864 free(link); 9865 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 9866 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9867 return ERR_PTR(pfd); 9868 } 9869 link->fd = pfd; 9870 return link; 9871 } 9872 9873 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 9874 struct bpf_program *prog) 9875 { 9876 const char *tp_name = prog->sec_name + sec->len; 9877 9878 return bpf_program__attach_raw_tracepoint(prog, tp_name); 9879 } 9880 9881 /* Common logic for all BPF program types that attach to a btf_id */ 9882 static struct bpf_link *bpf_program__attach_btf_id(struct bpf_program *prog) 9883 { 9884 char errmsg[STRERR_BUFSIZE]; 9885 struct bpf_link *link; 9886 int prog_fd, pfd; 9887 9888 prog_fd = bpf_program__fd(prog); 9889 if (prog_fd < 0) { 9890 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 9891 return ERR_PTR(-EINVAL); 9892 } 9893 9894 link = calloc(1, sizeof(*link)); 9895 if (!link) 9896 return ERR_PTR(-ENOMEM); 9897 link->detach = &bpf_link__detach_fd; 9898 9899 pfd = bpf_raw_tracepoint_open(NULL, prog_fd); 9900 if (pfd < 0) { 9901 pfd = -errno; 9902 free(link); 9903 pr_warn("prog '%s': failed to attach: %s\n", 9904 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9905 return ERR_PTR(pfd); 9906 } 9907 link->fd = pfd; 9908 return (struct bpf_link *)link; 9909 } 9910 9911 struct bpf_link *bpf_program__attach_trace(struct bpf_program *prog) 9912 { 9913 return bpf_program__attach_btf_id(prog); 9914 } 9915 9916 struct bpf_link *bpf_program__attach_lsm(struct bpf_program *prog) 9917 { 9918 return bpf_program__attach_btf_id(prog); 9919 } 9920 9921 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 9922 struct bpf_program *prog) 9923 { 9924 return bpf_program__attach_trace(prog); 9925 } 9926 9927 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec, 9928 struct bpf_program *prog) 9929 { 9930 return bpf_program__attach_lsm(prog); 9931 } 9932 9933 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec, 9934 struct bpf_program *prog) 9935 { 9936 return bpf_program__attach_iter(prog, NULL); 9937 } 9938 9939 static struct bpf_link * 9940 bpf_program__attach_fd(struct bpf_program *prog, int target_fd, int btf_id, 9941 const char *target_name) 9942 { 9943 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 9944 .target_btf_id = btf_id); 9945 enum bpf_attach_type attach_type; 9946 char errmsg[STRERR_BUFSIZE]; 9947 struct bpf_link *link; 9948 int prog_fd, link_fd; 9949 9950 prog_fd = bpf_program__fd(prog); 9951 if (prog_fd < 0) { 9952 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 9953 return ERR_PTR(-EINVAL); 9954 } 9955 9956 link = calloc(1, sizeof(*link)); 9957 if (!link) 9958 return ERR_PTR(-ENOMEM); 9959 link->detach = &bpf_link__detach_fd; 9960 9961 attach_type = bpf_program__get_expected_attach_type(prog); 9962 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 9963 if (link_fd < 0) { 9964 link_fd = -errno; 9965 free(link); 9966 pr_warn("prog '%s': failed to attach to %s: %s\n", 9967 prog->name, target_name, 9968 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 9969 return ERR_PTR(link_fd); 9970 } 9971 link->fd = link_fd; 9972 return link; 9973 } 9974 9975 struct bpf_link * 9976 bpf_program__attach_cgroup(struct bpf_program *prog, int cgroup_fd) 9977 { 9978 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 9979 } 9980 9981 struct bpf_link * 9982 bpf_program__attach_netns(struct bpf_program *prog, int netns_fd) 9983 { 9984 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 9985 } 9986 9987 struct bpf_link *bpf_program__attach_xdp(struct bpf_program *prog, int ifindex) 9988 { 9989 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 9990 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 9991 } 9992 9993 struct bpf_link *bpf_program__attach_freplace(struct bpf_program *prog, 9994 int target_fd, 9995 const char *attach_func_name) 9996 { 9997 int btf_id; 9998 9999 if (!!target_fd != !!attach_func_name) { 10000 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 10001 prog->name); 10002 return ERR_PTR(-EINVAL); 10003 } 10004 10005 if (prog->type != BPF_PROG_TYPE_EXT) { 10006 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 10007 prog->name); 10008 return ERR_PTR(-EINVAL); 10009 } 10010 10011 if (target_fd) { 10012 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 10013 if (btf_id < 0) 10014 return ERR_PTR(btf_id); 10015 10016 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 10017 } else { 10018 /* no target, so use raw_tracepoint_open for compatibility 10019 * with old kernels 10020 */ 10021 return bpf_program__attach_trace(prog); 10022 } 10023 } 10024 10025 struct bpf_link * 10026 bpf_program__attach_iter(struct bpf_program *prog, 10027 const struct bpf_iter_attach_opts *opts) 10028 { 10029 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 10030 char errmsg[STRERR_BUFSIZE]; 10031 struct bpf_link *link; 10032 int prog_fd, link_fd; 10033 __u32 target_fd = 0; 10034 10035 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 10036 return ERR_PTR(-EINVAL); 10037 10038 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 10039 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 10040 10041 prog_fd = bpf_program__fd(prog); 10042 if (prog_fd < 0) { 10043 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10044 return ERR_PTR(-EINVAL); 10045 } 10046 10047 link = calloc(1, sizeof(*link)); 10048 if (!link) 10049 return ERR_PTR(-ENOMEM); 10050 link->detach = &bpf_link__detach_fd; 10051 10052 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 10053 &link_create_opts); 10054 if (link_fd < 0) { 10055 link_fd = -errno; 10056 free(link); 10057 pr_warn("prog '%s': failed to attach to iterator: %s\n", 10058 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 10059 return ERR_PTR(link_fd); 10060 } 10061 link->fd = link_fd; 10062 return link; 10063 } 10064 10065 struct bpf_link *bpf_program__attach(struct bpf_program *prog) 10066 { 10067 const struct bpf_sec_def *sec_def; 10068 10069 sec_def = find_sec_def(prog->sec_name); 10070 if (!sec_def || !sec_def->attach_fn) 10071 return ERR_PTR(-ESRCH); 10072 10073 return sec_def->attach_fn(sec_def, prog); 10074 } 10075 10076 static int bpf_link__detach_struct_ops(struct bpf_link *link) 10077 { 10078 __u32 zero = 0; 10079 10080 if (bpf_map_delete_elem(link->fd, &zero)) 10081 return -errno; 10082 10083 return 0; 10084 } 10085 10086 struct bpf_link *bpf_map__attach_struct_ops(struct bpf_map *map) 10087 { 10088 struct bpf_struct_ops *st_ops; 10089 struct bpf_link *link; 10090 __u32 i, zero = 0; 10091 int err; 10092 10093 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 10094 return ERR_PTR(-EINVAL); 10095 10096 link = calloc(1, sizeof(*link)); 10097 if (!link) 10098 return ERR_PTR(-EINVAL); 10099 10100 st_ops = map->st_ops; 10101 for (i = 0; i < btf_vlen(st_ops->type); i++) { 10102 struct bpf_program *prog = st_ops->progs[i]; 10103 void *kern_data; 10104 int prog_fd; 10105 10106 if (!prog) 10107 continue; 10108 10109 prog_fd = bpf_program__fd(prog); 10110 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 10111 *(unsigned long *)kern_data = prog_fd; 10112 } 10113 10114 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 10115 if (err) { 10116 err = -errno; 10117 free(link); 10118 return ERR_PTR(err); 10119 } 10120 10121 link->detach = bpf_link__detach_struct_ops; 10122 link->fd = map->fd; 10123 10124 return link; 10125 } 10126 10127 enum bpf_perf_event_ret 10128 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 10129 void **copy_mem, size_t *copy_size, 10130 bpf_perf_event_print_t fn, void *private_data) 10131 { 10132 struct perf_event_mmap_page *header = mmap_mem; 10133 __u64 data_head = ring_buffer_read_head(header); 10134 __u64 data_tail = header->data_tail; 10135 void *base = ((__u8 *)header) + page_size; 10136 int ret = LIBBPF_PERF_EVENT_CONT; 10137 struct perf_event_header *ehdr; 10138 size_t ehdr_size; 10139 10140 while (data_head != data_tail) { 10141 ehdr = base + (data_tail & (mmap_size - 1)); 10142 ehdr_size = ehdr->size; 10143 10144 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 10145 void *copy_start = ehdr; 10146 size_t len_first = base + mmap_size - copy_start; 10147 size_t len_secnd = ehdr_size - len_first; 10148 10149 if (*copy_size < ehdr_size) { 10150 free(*copy_mem); 10151 *copy_mem = malloc(ehdr_size); 10152 if (!*copy_mem) { 10153 *copy_size = 0; 10154 ret = LIBBPF_PERF_EVENT_ERROR; 10155 break; 10156 } 10157 *copy_size = ehdr_size; 10158 } 10159 10160 memcpy(*copy_mem, copy_start, len_first); 10161 memcpy(*copy_mem + len_first, base, len_secnd); 10162 ehdr = *copy_mem; 10163 } 10164 10165 ret = fn(ehdr, private_data); 10166 data_tail += ehdr_size; 10167 if (ret != LIBBPF_PERF_EVENT_CONT) 10168 break; 10169 } 10170 10171 ring_buffer_write_tail(header, data_tail); 10172 return ret; 10173 } 10174 10175 struct perf_buffer; 10176 10177 struct perf_buffer_params { 10178 struct perf_event_attr *attr; 10179 /* if event_cb is specified, it takes precendence */ 10180 perf_buffer_event_fn event_cb; 10181 /* sample_cb and lost_cb are higher-level common-case callbacks */ 10182 perf_buffer_sample_fn sample_cb; 10183 perf_buffer_lost_fn lost_cb; 10184 void *ctx; 10185 int cpu_cnt; 10186 int *cpus; 10187 int *map_keys; 10188 }; 10189 10190 struct perf_cpu_buf { 10191 struct perf_buffer *pb; 10192 void *base; /* mmap()'ed memory */ 10193 void *buf; /* for reconstructing segmented data */ 10194 size_t buf_size; 10195 int fd; 10196 int cpu; 10197 int map_key; 10198 }; 10199 10200 struct perf_buffer { 10201 perf_buffer_event_fn event_cb; 10202 perf_buffer_sample_fn sample_cb; 10203 perf_buffer_lost_fn lost_cb; 10204 void *ctx; /* passed into callbacks */ 10205 10206 size_t page_size; 10207 size_t mmap_size; 10208 struct perf_cpu_buf **cpu_bufs; 10209 struct epoll_event *events; 10210 int cpu_cnt; /* number of allocated CPU buffers */ 10211 int epoll_fd; /* perf event FD */ 10212 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 10213 }; 10214 10215 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 10216 struct perf_cpu_buf *cpu_buf) 10217 { 10218 if (!cpu_buf) 10219 return; 10220 if (cpu_buf->base && 10221 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 10222 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 10223 if (cpu_buf->fd >= 0) { 10224 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 10225 close(cpu_buf->fd); 10226 } 10227 free(cpu_buf->buf); 10228 free(cpu_buf); 10229 } 10230 10231 void perf_buffer__free(struct perf_buffer *pb) 10232 { 10233 int i; 10234 10235 if (IS_ERR_OR_NULL(pb)) 10236 return; 10237 if (pb->cpu_bufs) { 10238 for (i = 0; i < pb->cpu_cnt; i++) { 10239 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 10240 10241 if (!cpu_buf) 10242 continue; 10243 10244 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 10245 perf_buffer__free_cpu_buf(pb, cpu_buf); 10246 } 10247 free(pb->cpu_bufs); 10248 } 10249 if (pb->epoll_fd >= 0) 10250 close(pb->epoll_fd); 10251 free(pb->events); 10252 free(pb); 10253 } 10254 10255 static struct perf_cpu_buf * 10256 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 10257 int cpu, int map_key) 10258 { 10259 struct perf_cpu_buf *cpu_buf; 10260 char msg[STRERR_BUFSIZE]; 10261 int err; 10262 10263 cpu_buf = calloc(1, sizeof(*cpu_buf)); 10264 if (!cpu_buf) 10265 return ERR_PTR(-ENOMEM); 10266 10267 cpu_buf->pb = pb; 10268 cpu_buf->cpu = cpu; 10269 cpu_buf->map_key = map_key; 10270 10271 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 10272 -1, PERF_FLAG_FD_CLOEXEC); 10273 if (cpu_buf->fd < 0) { 10274 err = -errno; 10275 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 10276 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10277 goto error; 10278 } 10279 10280 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 10281 PROT_READ | PROT_WRITE, MAP_SHARED, 10282 cpu_buf->fd, 0); 10283 if (cpu_buf->base == MAP_FAILED) { 10284 cpu_buf->base = NULL; 10285 err = -errno; 10286 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 10287 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10288 goto error; 10289 } 10290 10291 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10292 err = -errno; 10293 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 10294 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10295 goto error; 10296 } 10297 10298 return cpu_buf; 10299 10300 error: 10301 perf_buffer__free_cpu_buf(pb, cpu_buf); 10302 return (struct perf_cpu_buf *)ERR_PTR(err); 10303 } 10304 10305 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 10306 struct perf_buffer_params *p); 10307 10308 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 10309 const struct perf_buffer_opts *opts) 10310 { 10311 struct perf_buffer_params p = {}; 10312 struct perf_event_attr attr = { 0, }; 10313 10314 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 10315 attr.type = PERF_TYPE_SOFTWARE; 10316 attr.sample_type = PERF_SAMPLE_RAW; 10317 attr.sample_period = 1; 10318 attr.wakeup_events = 1; 10319 10320 p.attr = &attr; 10321 p.sample_cb = opts ? opts->sample_cb : NULL; 10322 p.lost_cb = opts ? opts->lost_cb : NULL; 10323 p.ctx = opts ? opts->ctx : NULL; 10324 10325 return __perf_buffer__new(map_fd, page_cnt, &p); 10326 } 10327 10328 struct perf_buffer * 10329 perf_buffer__new_raw(int map_fd, size_t page_cnt, 10330 const struct perf_buffer_raw_opts *opts) 10331 { 10332 struct perf_buffer_params p = {}; 10333 10334 p.attr = opts->attr; 10335 p.event_cb = opts->event_cb; 10336 p.ctx = opts->ctx; 10337 p.cpu_cnt = opts->cpu_cnt; 10338 p.cpus = opts->cpus; 10339 p.map_keys = opts->map_keys; 10340 10341 return __perf_buffer__new(map_fd, page_cnt, &p); 10342 } 10343 10344 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 10345 struct perf_buffer_params *p) 10346 { 10347 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 10348 struct bpf_map_info map; 10349 char msg[STRERR_BUFSIZE]; 10350 struct perf_buffer *pb; 10351 bool *online = NULL; 10352 __u32 map_info_len; 10353 int err, i, j, n; 10354 10355 if (page_cnt & (page_cnt - 1)) { 10356 pr_warn("page count should be power of two, but is %zu\n", 10357 page_cnt); 10358 return ERR_PTR(-EINVAL); 10359 } 10360 10361 /* best-effort sanity checks */ 10362 memset(&map, 0, sizeof(map)); 10363 map_info_len = sizeof(map); 10364 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 10365 if (err) { 10366 err = -errno; 10367 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 10368 * -EBADFD, -EFAULT, or -E2BIG on real error 10369 */ 10370 if (err != -EINVAL) { 10371 pr_warn("failed to get map info for map FD %d: %s\n", 10372 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 10373 return ERR_PTR(err); 10374 } 10375 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 10376 map_fd); 10377 } else { 10378 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 10379 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 10380 map.name); 10381 return ERR_PTR(-EINVAL); 10382 } 10383 } 10384 10385 pb = calloc(1, sizeof(*pb)); 10386 if (!pb) 10387 return ERR_PTR(-ENOMEM); 10388 10389 pb->event_cb = p->event_cb; 10390 pb->sample_cb = p->sample_cb; 10391 pb->lost_cb = p->lost_cb; 10392 pb->ctx = p->ctx; 10393 10394 pb->page_size = getpagesize(); 10395 pb->mmap_size = pb->page_size * page_cnt; 10396 pb->map_fd = map_fd; 10397 10398 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 10399 if (pb->epoll_fd < 0) { 10400 err = -errno; 10401 pr_warn("failed to create epoll instance: %s\n", 10402 libbpf_strerror_r(err, msg, sizeof(msg))); 10403 goto error; 10404 } 10405 10406 if (p->cpu_cnt > 0) { 10407 pb->cpu_cnt = p->cpu_cnt; 10408 } else { 10409 pb->cpu_cnt = libbpf_num_possible_cpus(); 10410 if (pb->cpu_cnt < 0) { 10411 err = pb->cpu_cnt; 10412 goto error; 10413 } 10414 if (map.max_entries && map.max_entries < pb->cpu_cnt) 10415 pb->cpu_cnt = map.max_entries; 10416 } 10417 10418 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 10419 if (!pb->events) { 10420 err = -ENOMEM; 10421 pr_warn("failed to allocate events: out of memory\n"); 10422 goto error; 10423 } 10424 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 10425 if (!pb->cpu_bufs) { 10426 err = -ENOMEM; 10427 pr_warn("failed to allocate buffers: out of memory\n"); 10428 goto error; 10429 } 10430 10431 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 10432 if (err) { 10433 pr_warn("failed to get online CPU mask: %d\n", err); 10434 goto error; 10435 } 10436 10437 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 10438 struct perf_cpu_buf *cpu_buf; 10439 int cpu, map_key; 10440 10441 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 10442 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 10443 10444 /* in case user didn't explicitly requested particular CPUs to 10445 * be attached to, skip offline/not present CPUs 10446 */ 10447 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 10448 continue; 10449 10450 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 10451 if (IS_ERR(cpu_buf)) { 10452 err = PTR_ERR(cpu_buf); 10453 goto error; 10454 } 10455 10456 pb->cpu_bufs[j] = cpu_buf; 10457 10458 err = bpf_map_update_elem(pb->map_fd, &map_key, 10459 &cpu_buf->fd, 0); 10460 if (err) { 10461 err = -errno; 10462 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 10463 cpu, map_key, cpu_buf->fd, 10464 libbpf_strerror_r(err, msg, sizeof(msg))); 10465 goto error; 10466 } 10467 10468 pb->events[j].events = EPOLLIN; 10469 pb->events[j].data.ptr = cpu_buf; 10470 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 10471 &pb->events[j]) < 0) { 10472 err = -errno; 10473 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 10474 cpu, cpu_buf->fd, 10475 libbpf_strerror_r(err, msg, sizeof(msg))); 10476 goto error; 10477 } 10478 j++; 10479 } 10480 pb->cpu_cnt = j; 10481 free(online); 10482 10483 return pb; 10484 10485 error: 10486 free(online); 10487 if (pb) 10488 perf_buffer__free(pb); 10489 return ERR_PTR(err); 10490 } 10491 10492 struct perf_sample_raw { 10493 struct perf_event_header header; 10494 uint32_t size; 10495 char data[]; 10496 }; 10497 10498 struct perf_sample_lost { 10499 struct perf_event_header header; 10500 uint64_t id; 10501 uint64_t lost; 10502 uint64_t sample_id; 10503 }; 10504 10505 static enum bpf_perf_event_ret 10506 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 10507 { 10508 struct perf_cpu_buf *cpu_buf = ctx; 10509 struct perf_buffer *pb = cpu_buf->pb; 10510 void *data = e; 10511 10512 /* user wants full control over parsing perf event */ 10513 if (pb->event_cb) 10514 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 10515 10516 switch (e->type) { 10517 case PERF_RECORD_SAMPLE: { 10518 struct perf_sample_raw *s = data; 10519 10520 if (pb->sample_cb) 10521 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 10522 break; 10523 } 10524 case PERF_RECORD_LOST: { 10525 struct perf_sample_lost *s = data; 10526 10527 if (pb->lost_cb) 10528 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 10529 break; 10530 } 10531 default: 10532 pr_warn("unknown perf sample type %d\n", e->type); 10533 return LIBBPF_PERF_EVENT_ERROR; 10534 } 10535 return LIBBPF_PERF_EVENT_CONT; 10536 } 10537 10538 static int perf_buffer__process_records(struct perf_buffer *pb, 10539 struct perf_cpu_buf *cpu_buf) 10540 { 10541 enum bpf_perf_event_ret ret; 10542 10543 ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size, 10544 pb->page_size, &cpu_buf->buf, 10545 &cpu_buf->buf_size, 10546 perf_buffer__process_record, cpu_buf); 10547 if (ret != LIBBPF_PERF_EVENT_CONT) 10548 return ret; 10549 return 0; 10550 } 10551 10552 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 10553 { 10554 return pb->epoll_fd; 10555 } 10556 10557 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 10558 { 10559 int i, cnt, err; 10560 10561 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 10562 for (i = 0; i < cnt; i++) { 10563 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 10564 10565 err = perf_buffer__process_records(pb, cpu_buf); 10566 if (err) { 10567 pr_warn("error while processing records: %d\n", err); 10568 return err; 10569 } 10570 } 10571 return cnt < 0 ? -errno : cnt; 10572 } 10573 10574 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 10575 * manager. 10576 */ 10577 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 10578 { 10579 return pb->cpu_cnt; 10580 } 10581 10582 /* 10583 * Return perf_event FD of a ring buffer in *buf_idx* slot of 10584 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 10585 * select()/poll()/epoll() Linux syscalls. 10586 */ 10587 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 10588 { 10589 struct perf_cpu_buf *cpu_buf; 10590 10591 if (buf_idx >= pb->cpu_cnt) 10592 return -EINVAL; 10593 10594 cpu_buf = pb->cpu_bufs[buf_idx]; 10595 if (!cpu_buf) 10596 return -ENOENT; 10597 10598 return cpu_buf->fd; 10599 } 10600 10601 /* 10602 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 10603 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 10604 * consume, do nothing and return success. 10605 * Returns: 10606 * - 0 on success; 10607 * - <0 on failure. 10608 */ 10609 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 10610 { 10611 struct perf_cpu_buf *cpu_buf; 10612 10613 if (buf_idx >= pb->cpu_cnt) 10614 return -EINVAL; 10615 10616 cpu_buf = pb->cpu_bufs[buf_idx]; 10617 if (!cpu_buf) 10618 return -ENOENT; 10619 10620 return perf_buffer__process_records(pb, cpu_buf); 10621 } 10622 10623 int perf_buffer__consume(struct perf_buffer *pb) 10624 { 10625 int i, err; 10626 10627 for (i = 0; i < pb->cpu_cnt; i++) { 10628 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 10629 10630 if (!cpu_buf) 10631 continue; 10632 10633 err = perf_buffer__process_records(pb, cpu_buf); 10634 if (err) { 10635 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 10636 return err; 10637 } 10638 } 10639 return 0; 10640 } 10641 10642 struct bpf_prog_info_array_desc { 10643 int array_offset; /* e.g. offset of jited_prog_insns */ 10644 int count_offset; /* e.g. offset of jited_prog_len */ 10645 int size_offset; /* > 0: offset of rec size, 10646 * < 0: fix size of -size_offset 10647 */ 10648 }; 10649 10650 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = { 10651 [BPF_PROG_INFO_JITED_INSNS] = { 10652 offsetof(struct bpf_prog_info, jited_prog_insns), 10653 offsetof(struct bpf_prog_info, jited_prog_len), 10654 -1, 10655 }, 10656 [BPF_PROG_INFO_XLATED_INSNS] = { 10657 offsetof(struct bpf_prog_info, xlated_prog_insns), 10658 offsetof(struct bpf_prog_info, xlated_prog_len), 10659 -1, 10660 }, 10661 [BPF_PROG_INFO_MAP_IDS] = { 10662 offsetof(struct bpf_prog_info, map_ids), 10663 offsetof(struct bpf_prog_info, nr_map_ids), 10664 -(int)sizeof(__u32), 10665 }, 10666 [BPF_PROG_INFO_JITED_KSYMS] = { 10667 offsetof(struct bpf_prog_info, jited_ksyms), 10668 offsetof(struct bpf_prog_info, nr_jited_ksyms), 10669 -(int)sizeof(__u64), 10670 }, 10671 [BPF_PROG_INFO_JITED_FUNC_LENS] = { 10672 offsetof(struct bpf_prog_info, jited_func_lens), 10673 offsetof(struct bpf_prog_info, nr_jited_func_lens), 10674 -(int)sizeof(__u32), 10675 }, 10676 [BPF_PROG_INFO_FUNC_INFO] = { 10677 offsetof(struct bpf_prog_info, func_info), 10678 offsetof(struct bpf_prog_info, nr_func_info), 10679 offsetof(struct bpf_prog_info, func_info_rec_size), 10680 }, 10681 [BPF_PROG_INFO_LINE_INFO] = { 10682 offsetof(struct bpf_prog_info, line_info), 10683 offsetof(struct bpf_prog_info, nr_line_info), 10684 offsetof(struct bpf_prog_info, line_info_rec_size), 10685 }, 10686 [BPF_PROG_INFO_JITED_LINE_INFO] = { 10687 offsetof(struct bpf_prog_info, jited_line_info), 10688 offsetof(struct bpf_prog_info, nr_jited_line_info), 10689 offsetof(struct bpf_prog_info, jited_line_info_rec_size), 10690 }, 10691 [BPF_PROG_INFO_PROG_TAGS] = { 10692 offsetof(struct bpf_prog_info, prog_tags), 10693 offsetof(struct bpf_prog_info, nr_prog_tags), 10694 -(int)sizeof(__u8) * BPF_TAG_SIZE, 10695 }, 10696 10697 }; 10698 10699 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info, 10700 int offset) 10701 { 10702 __u32 *array = (__u32 *)info; 10703 10704 if (offset >= 0) 10705 return array[offset / sizeof(__u32)]; 10706 return -(int)offset; 10707 } 10708 10709 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info, 10710 int offset) 10711 { 10712 __u64 *array = (__u64 *)info; 10713 10714 if (offset >= 0) 10715 return array[offset / sizeof(__u64)]; 10716 return -(int)offset; 10717 } 10718 10719 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset, 10720 __u32 val) 10721 { 10722 __u32 *array = (__u32 *)info; 10723 10724 if (offset >= 0) 10725 array[offset / sizeof(__u32)] = val; 10726 } 10727 10728 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset, 10729 __u64 val) 10730 { 10731 __u64 *array = (__u64 *)info; 10732 10733 if (offset >= 0) 10734 array[offset / sizeof(__u64)] = val; 10735 } 10736 10737 struct bpf_prog_info_linear * 10738 bpf_program__get_prog_info_linear(int fd, __u64 arrays) 10739 { 10740 struct bpf_prog_info_linear *info_linear; 10741 struct bpf_prog_info info = {}; 10742 __u32 info_len = sizeof(info); 10743 __u32 data_len = 0; 10744 int i, err; 10745 void *ptr; 10746 10747 if (arrays >> BPF_PROG_INFO_LAST_ARRAY) 10748 return ERR_PTR(-EINVAL); 10749 10750 /* step 1: get array dimensions */ 10751 err = bpf_obj_get_info_by_fd(fd, &info, &info_len); 10752 if (err) { 10753 pr_debug("can't get prog info: %s", strerror(errno)); 10754 return ERR_PTR(-EFAULT); 10755 } 10756 10757 /* step 2: calculate total size of all arrays */ 10758 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10759 bool include_array = (arrays & (1UL << i)) > 0; 10760 struct bpf_prog_info_array_desc *desc; 10761 __u32 count, size; 10762 10763 desc = bpf_prog_info_array_desc + i; 10764 10765 /* kernel is too old to support this field */ 10766 if (info_len < desc->array_offset + sizeof(__u32) || 10767 info_len < desc->count_offset + sizeof(__u32) || 10768 (desc->size_offset > 0 && info_len < desc->size_offset)) 10769 include_array = false; 10770 10771 if (!include_array) { 10772 arrays &= ~(1UL << i); /* clear the bit */ 10773 continue; 10774 } 10775 10776 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 10777 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 10778 10779 data_len += count * size; 10780 } 10781 10782 /* step 3: allocate continuous memory */ 10783 data_len = roundup(data_len, sizeof(__u64)); 10784 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len); 10785 if (!info_linear) 10786 return ERR_PTR(-ENOMEM); 10787 10788 /* step 4: fill data to info_linear->info */ 10789 info_linear->arrays = arrays; 10790 memset(&info_linear->info, 0, sizeof(info)); 10791 ptr = info_linear->data; 10792 10793 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10794 struct bpf_prog_info_array_desc *desc; 10795 __u32 count, size; 10796 10797 if ((arrays & (1UL << i)) == 0) 10798 continue; 10799 10800 desc = bpf_prog_info_array_desc + i; 10801 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 10802 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 10803 bpf_prog_info_set_offset_u32(&info_linear->info, 10804 desc->count_offset, count); 10805 bpf_prog_info_set_offset_u32(&info_linear->info, 10806 desc->size_offset, size); 10807 bpf_prog_info_set_offset_u64(&info_linear->info, 10808 desc->array_offset, 10809 ptr_to_u64(ptr)); 10810 ptr += count * size; 10811 } 10812 10813 /* step 5: call syscall again to get required arrays */ 10814 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len); 10815 if (err) { 10816 pr_debug("can't get prog info: %s", strerror(errno)); 10817 free(info_linear); 10818 return ERR_PTR(-EFAULT); 10819 } 10820 10821 /* step 6: verify the data */ 10822 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10823 struct bpf_prog_info_array_desc *desc; 10824 __u32 v1, v2; 10825 10826 if ((arrays & (1UL << i)) == 0) 10827 continue; 10828 10829 desc = bpf_prog_info_array_desc + i; 10830 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 10831 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 10832 desc->count_offset); 10833 if (v1 != v2) 10834 pr_warn("%s: mismatch in element count\n", __func__); 10835 10836 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 10837 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 10838 desc->size_offset); 10839 if (v1 != v2) 10840 pr_warn("%s: mismatch in rec size\n", __func__); 10841 } 10842 10843 /* step 7: update info_len and data_len */ 10844 info_linear->info_len = sizeof(struct bpf_prog_info); 10845 info_linear->data_len = data_len; 10846 10847 return info_linear; 10848 } 10849 10850 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear) 10851 { 10852 int i; 10853 10854 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10855 struct bpf_prog_info_array_desc *desc; 10856 __u64 addr, offs; 10857 10858 if ((info_linear->arrays & (1UL << i)) == 0) 10859 continue; 10860 10861 desc = bpf_prog_info_array_desc + i; 10862 addr = bpf_prog_info_read_offset_u64(&info_linear->info, 10863 desc->array_offset); 10864 offs = addr - ptr_to_u64(info_linear->data); 10865 bpf_prog_info_set_offset_u64(&info_linear->info, 10866 desc->array_offset, offs); 10867 } 10868 } 10869 10870 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear) 10871 { 10872 int i; 10873 10874 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10875 struct bpf_prog_info_array_desc *desc; 10876 __u64 addr, offs; 10877 10878 if ((info_linear->arrays & (1UL << i)) == 0) 10879 continue; 10880 10881 desc = bpf_prog_info_array_desc + i; 10882 offs = bpf_prog_info_read_offset_u64(&info_linear->info, 10883 desc->array_offset); 10884 addr = offs + ptr_to_u64(info_linear->data); 10885 bpf_prog_info_set_offset_u64(&info_linear->info, 10886 desc->array_offset, addr); 10887 } 10888 } 10889 10890 int bpf_program__set_attach_target(struct bpf_program *prog, 10891 int attach_prog_fd, 10892 const char *attach_func_name) 10893 { 10894 int btf_obj_fd = 0, btf_id = 0, err; 10895 10896 if (!prog || attach_prog_fd < 0 || !attach_func_name) 10897 return -EINVAL; 10898 10899 if (prog->obj->loaded) 10900 return -EINVAL; 10901 10902 if (attach_prog_fd) { 10903 btf_id = libbpf_find_prog_btf_id(attach_func_name, 10904 attach_prog_fd); 10905 if (btf_id < 0) 10906 return btf_id; 10907 } else { 10908 /* load btf_vmlinux, if not yet */ 10909 err = bpf_object__load_vmlinux_btf(prog->obj, true); 10910 if (err) 10911 return err; 10912 err = find_kernel_btf_id(prog->obj, attach_func_name, 10913 prog->expected_attach_type, 10914 &btf_obj_fd, &btf_id); 10915 if (err) 10916 return err; 10917 } 10918 10919 prog->attach_btf_id = btf_id; 10920 prog->attach_btf_obj_fd = btf_obj_fd; 10921 prog->attach_prog_fd = attach_prog_fd; 10922 return 0; 10923 } 10924 10925 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 10926 { 10927 int err = 0, n, len, start, end = -1; 10928 bool *tmp; 10929 10930 *mask = NULL; 10931 *mask_sz = 0; 10932 10933 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 10934 while (*s) { 10935 if (*s == ',' || *s == '\n') { 10936 s++; 10937 continue; 10938 } 10939 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 10940 if (n <= 0 || n > 2) { 10941 pr_warn("Failed to get CPU range %s: %d\n", s, n); 10942 err = -EINVAL; 10943 goto cleanup; 10944 } else if (n == 1) { 10945 end = start; 10946 } 10947 if (start < 0 || start > end) { 10948 pr_warn("Invalid CPU range [%d,%d] in %s\n", 10949 start, end, s); 10950 err = -EINVAL; 10951 goto cleanup; 10952 } 10953 tmp = realloc(*mask, end + 1); 10954 if (!tmp) { 10955 err = -ENOMEM; 10956 goto cleanup; 10957 } 10958 *mask = tmp; 10959 memset(tmp + *mask_sz, 0, start - *mask_sz); 10960 memset(tmp + start, 1, end - start + 1); 10961 *mask_sz = end + 1; 10962 s += len; 10963 } 10964 if (!*mask_sz) { 10965 pr_warn("Empty CPU range\n"); 10966 return -EINVAL; 10967 } 10968 return 0; 10969 cleanup: 10970 free(*mask); 10971 *mask = NULL; 10972 return err; 10973 } 10974 10975 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 10976 { 10977 int fd, err = 0, len; 10978 char buf[128]; 10979 10980 fd = open(fcpu, O_RDONLY); 10981 if (fd < 0) { 10982 err = -errno; 10983 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 10984 return err; 10985 } 10986 len = read(fd, buf, sizeof(buf)); 10987 close(fd); 10988 if (len <= 0) { 10989 err = len ? -errno : -EINVAL; 10990 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 10991 return err; 10992 } 10993 if (len >= sizeof(buf)) { 10994 pr_warn("CPU mask is too big in file %s\n", fcpu); 10995 return -E2BIG; 10996 } 10997 buf[len] = '\0'; 10998 10999 return parse_cpu_mask_str(buf, mask, mask_sz); 11000 } 11001 11002 int libbpf_num_possible_cpus(void) 11003 { 11004 static const char *fcpu = "/sys/devices/system/cpu/possible"; 11005 static int cpus; 11006 int err, n, i, tmp_cpus; 11007 bool *mask; 11008 11009 tmp_cpus = READ_ONCE(cpus); 11010 if (tmp_cpus > 0) 11011 return tmp_cpus; 11012 11013 err = parse_cpu_mask_file(fcpu, &mask, &n); 11014 if (err) 11015 return err; 11016 11017 tmp_cpus = 0; 11018 for (i = 0; i < n; i++) { 11019 if (mask[i]) 11020 tmp_cpus++; 11021 } 11022 free(mask); 11023 11024 WRITE_ONCE(cpus, tmp_cpus); 11025 return tmp_cpus; 11026 } 11027 11028 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 11029 const struct bpf_object_open_opts *opts) 11030 { 11031 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 11032 .object_name = s->name, 11033 ); 11034 struct bpf_object *obj; 11035 int i; 11036 11037 /* Attempt to preserve opts->object_name, unless overriden by user 11038 * explicitly. Overwriting object name for skeletons is discouraged, 11039 * as it breaks global data maps, because they contain object name 11040 * prefix as their own map name prefix. When skeleton is generated, 11041 * bpftool is making an assumption that this name will stay the same. 11042 */ 11043 if (opts) { 11044 memcpy(&skel_opts, opts, sizeof(*opts)); 11045 if (!opts->object_name) 11046 skel_opts.object_name = s->name; 11047 } 11048 11049 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 11050 if (IS_ERR(obj)) { 11051 pr_warn("failed to initialize skeleton BPF object '%s': %ld\n", 11052 s->name, PTR_ERR(obj)); 11053 return PTR_ERR(obj); 11054 } 11055 11056 *s->obj = obj; 11057 11058 for (i = 0; i < s->map_cnt; i++) { 11059 struct bpf_map **map = s->maps[i].map; 11060 const char *name = s->maps[i].name; 11061 void **mmaped = s->maps[i].mmaped; 11062 11063 *map = bpf_object__find_map_by_name(obj, name); 11064 if (!*map) { 11065 pr_warn("failed to find skeleton map '%s'\n", name); 11066 return -ESRCH; 11067 } 11068 11069 /* externs shouldn't be pre-setup from user code */ 11070 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 11071 *mmaped = (*map)->mmaped; 11072 } 11073 11074 for (i = 0; i < s->prog_cnt; i++) { 11075 struct bpf_program **prog = s->progs[i].prog; 11076 const char *name = s->progs[i].name; 11077 11078 *prog = bpf_object__find_program_by_name(obj, name); 11079 if (!*prog) { 11080 pr_warn("failed to find skeleton program '%s'\n", name); 11081 return -ESRCH; 11082 } 11083 } 11084 11085 return 0; 11086 } 11087 11088 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 11089 { 11090 int i, err; 11091 11092 err = bpf_object__load(*s->obj); 11093 if (err) { 11094 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 11095 return err; 11096 } 11097 11098 for (i = 0; i < s->map_cnt; i++) { 11099 struct bpf_map *map = *s->maps[i].map; 11100 size_t mmap_sz = bpf_map_mmap_sz(map); 11101 int prot, map_fd = bpf_map__fd(map); 11102 void **mmaped = s->maps[i].mmaped; 11103 11104 if (!mmaped) 11105 continue; 11106 11107 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 11108 *mmaped = NULL; 11109 continue; 11110 } 11111 11112 if (map->def.map_flags & BPF_F_RDONLY_PROG) 11113 prot = PROT_READ; 11114 else 11115 prot = PROT_READ | PROT_WRITE; 11116 11117 /* Remap anonymous mmap()-ed "map initialization image" as 11118 * a BPF map-backed mmap()-ed memory, but preserving the same 11119 * memory address. This will cause kernel to change process' 11120 * page table to point to a different piece of kernel memory, 11121 * but from userspace point of view memory address (and its 11122 * contents, being identical at this point) will stay the 11123 * same. This mapping will be released by bpf_object__close() 11124 * as per normal clean up procedure, so we don't need to worry 11125 * about it from skeleton's clean up perspective. 11126 */ 11127 *mmaped = mmap(map->mmaped, mmap_sz, prot, 11128 MAP_SHARED | MAP_FIXED, map_fd, 0); 11129 if (*mmaped == MAP_FAILED) { 11130 err = -errno; 11131 *mmaped = NULL; 11132 pr_warn("failed to re-mmap() map '%s': %d\n", 11133 bpf_map__name(map), err); 11134 return err; 11135 } 11136 } 11137 11138 return 0; 11139 } 11140 11141 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 11142 { 11143 int i; 11144 11145 for (i = 0; i < s->prog_cnt; i++) { 11146 struct bpf_program *prog = *s->progs[i].prog; 11147 struct bpf_link **link = s->progs[i].link; 11148 const struct bpf_sec_def *sec_def; 11149 11150 if (!prog->load) 11151 continue; 11152 11153 sec_def = find_sec_def(prog->sec_name); 11154 if (!sec_def || !sec_def->attach_fn) 11155 continue; 11156 11157 *link = sec_def->attach_fn(sec_def, prog); 11158 if (IS_ERR(*link)) { 11159 pr_warn("failed to auto-attach program '%s': %ld\n", 11160 bpf_program__name(prog), PTR_ERR(*link)); 11161 return PTR_ERR(*link); 11162 } 11163 } 11164 11165 return 0; 11166 } 11167 11168 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 11169 { 11170 int i; 11171 11172 for (i = 0; i < s->prog_cnt; i++) { 11173 struct bpf_link **link = s->progs[i].link; 11174 11175 bpf_link__destroy(*link); 11176 *link = NULL; 11177 } 11178 } 11179 11180 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 11181 { 11182 if (s->progs) 11183 bpf_object__detach_skeleton(s); 11184 if (s->obj) 11185 bpf_object__close(*s->obj); 11186 free(s->maps); 11187 free(s->progs); 11188 free(s); 11189 } 11190