1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/ring_buffer.h> 37 #include <sys/epoll.h> 38 #include <sys/ioctl.h> 39 #include <sys/mman.h> 40 #include <sys/stat.h> 41 #include <sys/types.h> 42 #include <sys/vfs.h> 43 #include <sys/utsname.h> 44 #include <sys/resource.h> 45 #include <libelf.h> 46 #include <gelf.h> 47 #include <zlib.h> 48 49 #include "libbpf.h" 50 #include "bpf.h" 51 #include "btf.h" 52 #include "str_error.h" 53 #include "libbpf_internal.h" 54 #include "hashmap.h" 55 #include "bpf_gen_internal.h" 56 57 #ifndef BPF_FS_MAGIC 58 #define BPF_FS_MAGIC 0xcafe4a11 59 #endif 60 61 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 62 63 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 64 * compilation if user enables corresponding warning. Disable it explicitly. 65 */ 66 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 67 68 #define __printf(a, b) __attribute__((format(printf, a, b))) 69 70 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 71 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 72 73 static const char * const attach_type_name[] = { 74 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 75 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 76 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 77 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 78 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 79 [BPF_CGROUP_DEVICE] = "cgroup_device", 80 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 81 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 82 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 83 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 84 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 85 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 86 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 87 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 88 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 89 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 90 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 91 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 92 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 93 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 94 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 95 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 96 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 97 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 98 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 99 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 100 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 101 [BPF_LIRC_MODE2] = "lirc_mode2", 102 [BPF_FLOW_DISSECTOR] = "flow_dissector", 103 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 104 [BPF_TRACE_FENTRY] = "trace_fentry", 105 [BPF_TRACE_FEXIT] = "trace_fexit", 106 [BPF_MODIFY_RETURN] = "modify_return", 107 [BPF_LSM_MAC] = "lsm_mac", 108 [BPF_LSM_CGROUP] = "lsm_cgroup", 109 [BPF_SK_LOOKUP] = "sk_lookup", 110 [BPF_TRACE_ITER] = "trace_iter", 111 [BPF_XDP_DEVMAP] = "xdp_devmap", 112 [BPF_XDP_CPUMAP] = "xdp_cpumap", 113 [BPF_XDP] = "xdp", 114 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 115 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 116 [BPF_PERF_EVENT] = "perf_event", 117 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 118 }; 119 120 static const char * const link_type_name[] = { 121 [BPF_LINK_TYPE_UNSPEC] = "unspec", 122 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 123 [BPF_LINK_TYPE_TRACING] = "tracing", 124 [BPF_LINK_TYPE_CGROUP] = "cgroup", 125 [BPF_LINK_TYPE_ITER] = "iter", 126 [BPF_LINK_TYPE_NETNS] = "netns", 127 [BPF_LINK_TYPE_XDP] = "xdp", 128 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 129 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 130 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 131 }; 132 133 static const char * const map_type_name[] = { 134 [BPF_MAP_TYPE_UNSPEC] = "unspec", 135 [BPF_MAP_TYPE_HASH] = "hash", 136 [BPF_MAP_TYPE_ARRAY] = "array", 137 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 138 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 139 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 140 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 141 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 142 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 143 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 144 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 145 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 146 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 147 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 148 [BPF_MAP_TYPE_DEVMAP] = "devmap", 149 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 150 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 151 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 152 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 153 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 154 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 155 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 156 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 157 [BPF_MAP_TYPE_QUEUE] = "queue", 158 [BPF_MAP_TYPE_STACK] = "stack", 159 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 160 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 161 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 162 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 163 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 164 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 165 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 166 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage", 167 }; 168 169 static const char * const prog_type_name[] = { 170 [BPF_PROG_TYPE_UNSPEC] = "unspec", 171 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 172 [BPF_PROG_TYPE_KPROBE] = "kprobe", 173 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 174 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 175 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 176 [BPF_PROG_TYPE_XDP] = "xdp", 177 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 178 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 179 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 180 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 181 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 182 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 183 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 184 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 185 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 186 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 187 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 188 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 189 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 190 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 191 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 192 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 193 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 194 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 195 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 196 [BPF_PROG_TYPE_TRACING] = "tracing", 197 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 198 [BPF_PROG_TYPE_EXT] = "ext", 199 [BPF_PROG_TYPE_LSM] = "lsm", 200 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 201 [BPF_PROG_TYPE_SYSCALL] = "syscall", 202 }; 203 204 static int __base_pr(enum libbpf_print_level level, const char *format, 205 va_list args) 206 { 207 if (level == LIBBPF_DEBUG) 208 return 0; 209 210 return vfprintf(stderr, format, args); 211 } 212 213 static libbpf_print_fn_t __libbpf_pr = __base_pr; 214 215 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 216 { 217 libbpf_print_fn_t old_print_fn = __libbpf_pr; 218 219 __libbpf_pr = fn; 220 return old_print_fn; 221 } 222 223 __printf(2, 3) 224 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 225 { 226 va_list args; 227 int old_errno; 228 229 if (!__libbpf_pr) 230 return; 231 232 old_errno = errno; 233 234 va_start(args, format); 235 __libbpf_pr(level, format, args); 236 va_end(args); 237 238 errno = old_errno; 239 } 240 241 static void pr_perm_msg(int err) 242 { 243 struct rlimit limit; 244 char buf[100]; 245 246 if (err != -EPERM || geteuid() != 0) 247 return; 248 249 err = getrlimit(RLIMIT_MEMLOCK, &limit); 250 if (err) 251 return; 252 253 if (limit.rlim_cur == RLIM_INFINITY) 254 return; 255 256 if (limit.rlim_cur < 1024) 257 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 258 else if (limit.rlim_cur < 1024*1024) 259 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 260 else 261 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 262 263 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 264 buf); 265 } 266 267 #define STRERR_BUFSIZE 128 268 269 /* Copied from tools/perf/util/util.h */ 270 #ifndef zfree 271 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 272 #endif 273 274 #ifndef zclose 275 # define zclose(fd) ({ \ 276 int ___err = 0; \ 277 if ((fd) >= 0) \ 278 ___err = close((fd)); \ 279 fd = -1; \ 280 ___err; }) 281 #endif 282 283 static inline __u64 ptr_to_u64(const void *ptr) 284 { 285 return (__u64) (unsigned long) ptr; 286 } 287 288 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 289 { 290 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 291 return 0; 292 } 293 294 __u32 libbpf_major_version(void) 295 { 296 return LIBBPF_MAJOR_VERSION; 297 } 298 299 __u32 libbpf_minor_version(void) 300 { 301 return LIBBPF_MINOR_VERSION; 302 } 303 304 const char *libbpf_version_string(void) 305 { 306 #define __S(X) #X 307 #define _S(X) __S(X) 308 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 309 #undef _S 310 #undef __S 311 } 312 313 enum reloc_type { 314 RELO_LD64, 315 RELO_CALL, 316 RELO_DATA, 317 RELO_EXTERN_VAR, 318 RELO_EXTERN_FUNC, 319 RELO_SUBPROG_ADDR, 320 RELO_CORE, 321 }; 322 323 struct reloc_desc { 324 enum reloc_type type; 325 int insn_idx; 326 union { 327 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 328 struct { 329 int map_idx; 330 int sym_off; 331 }; 332 }; 333 }; 334 335 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 336 enum sec_def_flags { 337 SEC_NONE = 0, 338 /* expected_attach_type is optional, if kernel doesn't support that */ 339 SEC_EXP_ATTACH_OPT = 1, 340 /* legacy, only used by libbpf_get_type_names() and 341 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 342 * This used to be associated with cgroup (and few other) BPF programs 343 * that were attachable through BPF_PROG_ATTACH command. Pretty 344 * meaningless nowadays, though. 345 */ 346 SEC_ATTACHABLE = 2, 347 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 348 /* attachment target is specified through BTF ID in either kernel or 349 * other BPF program's BTF object 350 */ 351 SEC_ATTACH_BTF = 4, 352 /* BPF program type allows sleeping/blocking in kernel */ 353 SEC_SLEEPABLE = 8, 354 /* BPF program support non-linear XDP buffer */ 355 SEC_XDP_FRAGS = 16, 356 }; 357 358 struct bpf_sec_def { 359 char *sec; 360 enum bpf_prog_type prog_type; 361 enum bpf_attach_type expected_attach_type; 362 long cookie; 363 int handler_id; 364 365 libbpf_prog_setup_fn_t prog_setup_fn; 366 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 367 libbpf_prog_attach_fn_t prog_attach_fn; 368 }; 369 370 /* 371 * bpf_prog should be a better name but it has been used in 372 * linux/filter.h. 373 */ 374 struct bpf_program { 375 char *name; 376 char *sec_name; 377 size_t sec_idx; 378 const struct bpf_sec_def *sec_def; 379 /* this program's instruction offset (in number of instructions) 380 * within its containing ELF section 381 */ 382 size_t sec_insn_off; 383 /* number of original instructions in ELF section belonging to this 384 * program, not taking into account subprogram instructions possible 385 * appended later during relocation 386 */ 387 size_t sec_insn_cnt; 388 /* Offset (in number of instructions) of the start of instruction 389 * belonging to this BPF program within its containing main BPF 390 * program. For the entry-point (main) BPF program, this is always 391 * zero. For a sub-program, this gets reset before each of main BPF 392 * programs are processed and relocated and is used to determined 393 * whether sub-program was already appended to the main program, and 394 * if yes, at which instruction offset. 395 */ 396 size_t sub_insn_off; 397 398 /* instructions that belong to BPF program; insns[0] is located at 399 * sec_insn_off instruction within its ELF section in ELF file, so 400 * when mapping ELF file instruction index to the local instruction, 401 * one needs to subtract sec_insn_off; and vice versa. 402 */ 403 struct bpf_insn *insns; 404 /* actual number of instruction in this BPF program's image; for 405 * entry-point BPF programs this includes the size of main program 406 * itself plus all the used sub-programs, appended at the end 407 */ 408 size_t insns_cnt; 409 410 struct reloc_desc *reloc_desc; 411 int nr_reloc; 412 413 /* BPF verifier log settings */ 414 char *log_buf; 415 size_t log_size; 416 __u32 log_level; 417 418 struct bpf_object *obj; 419 420 int fd; 421 bool autoload; 422 bool autoattach; 423 bool mark_btf_static; 424 enum bpf_prog_type type; 425 enum bpf_attach_type expected_attach_type; 426 427 int prog_ifindex; 428 __u32 attach_btf_obj_fd; 429 __u32 attach_btf_id; 430 __u32 attach_prog_fd; 431 432 void *func_info; 433 __u32 func_info_rec_size; 434 __u32 func_info_cnt; 435 436 void *line_info; 437 __u32 line_info_rec_size; 438 __u32 line_info_cnt; 439 __u32 prog_flags; 440 }; 441 442 struct bpf_struct_ops { 443 const char *tname; 444 const struct btf_type *type; 445 struct bpf_program **progs; 446 __u32 *kern_func_off; 447 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 448 void *data; 449 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 450 * btf_vmlinux's format. 451 * struct bpf_struct_ops_tcp_congestion_ops { 452 * [... some other kernel fields ...] 453 * struct tcp_congestion_ops data; 454 * } 455 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 456 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 457 * from "data". 458 */ 459 void *kern_vdata; 460 __u32 type_id; 461 }; 462 463 #define DATA_SEC ".data" 464 #define BSS_SEC ".bss" 465 #define RODATA_SEC ".rodata" 466 #define KCONFIG_SEC ".kconfig" 467 #define KSYMS_SEC ".ksyms" 468 #define STRUCT_OPS_SEC ".struct_ops" 469 470 enum libbpf_map_type { 471 LIBBPF_MAP_UNSPEC, 472 LIBBPF_MAP_DATA, 473 LIBBPF_MAP_BSS, 474 LIBBPF_MAP_RODATA, 475 LIBBPF_MAP_KCONFIG, 476 }; 477 478 struct bpf_map_def { 479 unsigned int type; 480 unsigned int key_size; 481 unsigned int value_size; 482 unsigned int max_entries; 483 unsigned int map_flags; 484 }; 485 486 struct bpf_map { 487 struct bpf_object *obj; 488 char *name; 489 /* real_name is defined for special internal maps (.rodata*, 490 * .data*, .bss, .kconfig) and preserves their original ELF section 491 * name. This is important to be able to find corresponding BTF 492 * DATASEC information. 493 */ 494 char *real_name; 495 int fd; 496 int sec_idx; 497 size_t sec_offset; 498 int map_ifindex; 499 int inner_map_fd; 500 struct bpf_map_def def; 501 __u32 numa_node; 502 __u32 btf_var_idx; 503 __u32 btf_key_type_id; 504 __u32 btf_value_type_id; 505 __u32 btf_vmlinux_value_type_id; 506 enum libbpf_map_type libbpf_type; 507 void *mmaped; 508 struct bpf_struct_ops *st_ops; 509 struct bpf_map *inner_map; 510 void **init_slots; 511 int init_slots_sz; 512 char *pin_path; 513 bool pinned; 514 bool reused; 515 bool autocreate; 516 __u64 map_extra; 517 }; 518 519 enum extern_type { 520 EXT_UNKNOWN, 521 EXT_KCFG, 522 EXT_KSYM, 523 }; 524 525 enum kcfg_type { 526 KCFG_UNKNOWN, 527 KCFG_CHAR, 528 KCFG_BOOL, 529 KCFG_INT, 530 KCFG_TRISTATE, 531 KCFG_CHAR_ARR, 532 }; 533 534 struct extern_desc { 535 enum extern_type type; 536 int sym_idx; 537 int btf_id; 538 int sec_btf_id; 539 const char *name; 540 bool is_set; 541 bool is_weak; 542 union { 543 struct { 544 enum kcfg_type type; 545 int sz; 546 int align; 547 int data_off; 548 bool is_signed; 549 } kcfg; 550 struct { 551 unsigned long long addr; 552 553 /* target btf_id of the corresponding kernel var. */ 554 int kernel_btf_obj_fd; 555 int kernel_btf_id; 556 557 /* local btf_id of the ksym extern's type. */ 558 __u32 type_id; 559 /* BTF fd index to be patched in for insn->off, this is 560 * 0 for vmlinux BTF, index in obj->fd_array for module 561 * BTF 562 */ 563 __s16 btf_fd_idx; 564 } ksym; 565 }; 566 }; 567 568 struct module_btf { 569 struct btf *btf; 570 char *name; 571 __u32 id; 572 int fd; 573 int fd_array_idx; 574 }; 575 576 enum sec_type { 577 SEC_UNUSED = 0, 578 SEC_RELO, 579 SEC_BSS, 580 SEC_DATA, 581 SEC_RODATA, 582 }; 583 584 struct elf_sec_desc { 585 enum sec_type sec_type; 586 Elf64_Shdr *shdr; 587 Elf_Data *data; 588 }; 589 590 struct elf_state { 591 int fd; 592 const void *obj_buf; 593 size_t obj_buf_sz; 594 Elf *elf; 595 Elf64_Ehdr *ehdr; 596 Elf_Data *symbols; 597 Elf_Data *st_ops_data; 598 size_t shstrndx; /* section index for section name strings */ 599 size_t strtabidx; 600 struct elf_sec_desc *secs; 601 size_t sec_cnt; 602 int btf_maps_shndx; 603 __u32 btf_maps_sec_btf_id; 604 int text_shndx; 605 int symbols_shndx; 606 int st_ops_shndx; 607 }; 608 609 struct usdt_manager; 610 611 struct bpf_object { 612 char name[BPF_OBJ_NAME_LEN]; 613 char license[64]; 614 __u32 kern_version; 615 616 struct bpf_program *programs; 617 size_t nr_programs; 618 struct bpf_map *maps; 619 size_t nr_maps; 620 size_t maps_cap; 621 622 char *kconfig; 623 struct extern_desc *externs; 624 int nr_extern; 625 int kconfig_map_idx; 626 627 bool loaded; 628 bool has_subcalls; 629 bool has_rodata; 630 631 struct bpf_gen *gen_loader; 632 633 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 634 struct elf_state efile; 635 636 struct btf *btf; 637 struct btf_ext *btf_ext; 638 639 /* Parse and load BTF vmlinux if any of the programs in the object need 640 * it at load time. 641 */ 642 struct btf *btf_vmlinux; 643 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 644 * override for vmlinux BTF. 645 */ 646 char *btf_custom_path; 647 /* vmlinux BTF override for CO-RE relocations */ 648 struct btf *btf_vmlinux_override; 649 /* Lazily initialized kernel module BTFs */ 650 struct module_btf *btf_modules; 651 bool btf_modules_loaded; 652 size_t btf_module_cnt; 653 size_t btf_module_cap; 654 655 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 656 char *log_buf; 657 size_t log_size; 658 __u32 log_level; 659 660 int *fd_array; 661 size_t fd_array_cap; 662 size_t fd_array_cnt; 663 664 struct usdt_manager *usdt_man; 665 666 char path[]; 667 }; 668 669 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 670 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 671 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 672 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 673 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 674 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 675 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 676 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 677 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 678 679 void bpf_program__unload(struct bpf_program *prog) 680 { 681 if (!prog) 682 return; 683 684 zclose(prog->fd); 685 686 zfree(&prog->func_info); 687 zfree(&prog->line_info); 688 } 689 690 static void bpf_program__exit(struct bpf_program *prog) 691 { 692 if (!prog) 693 return; 694 695 bpf_program__unload(prog); 696 zfree(&prog->name); 697 zfree(&prog->sec_name); 698 zfree(&prog->insns); 699 zfree(&prog->reloc_desc); 700 701 prog->nr_reloc = 0; 702 prog->insns_cnt = 0; 703 prog->sec_idx = -1; 704 } 705 706 static bool insn_is_subprog_call(const struct bpf_insn *insn) 707 { 708 return BPF_CLASS(insn->code) == BPF_JMP && 709 BPF_OP(insn->code) == BPF_CALL && 710 BPF_SRC(insn->code) == BPF_K && 711 insn->src_reg == BPF_PSEUDO_CALL && 712 insn->dst_reg == 0 && 713 insn->off == 0; 714 } 715 716 static bool is_call_insn(const struct bpf_insn *insn) 717 { 718 return insn->code == (BPF_JMP | BPF_CALL); 719 } 720 721 static bool insn_is_pseudo_func(struct bpf_insn *insn) 722 { 723 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 724 } 725 726 static int 727 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 728 const char *name, size_t sec_idx, const char *sec_name, 729 size_t sec_off, void *insn_data, size_t insn_data_sz) 730 { 731 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 732 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 733 sec_name, name, sec_off, insn_data_sz); 734 return -EINVAL; 735 } 736 737 memset(prog, 0, sizeof(*prog)); 738 prog->obj = obj; 739 740 prog->sec_idx = sec_idx; 741 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 742 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 743 /* insns_cnt can later be increased by appending used subprograms */ 744 prog->insns_cnt = prog->sec_insn_cnt; 745 746 prog->type = BPF_PROG_TYPE_UNSPEC; 747 prog->fd = -1; 748 749 /* libbpf's convention for SEC("?abc...") is that it's just like 750 * SEC("abc...") but the corresponding bpf_program starts out with 751 * autoload set to false. 752 */ 753 if (sec_name[0] == '?') { 754 prog->autoload = false; 755 /* from now on forget there was ? in section name */ 756 sec_name++; 757 } else { 758 prog->autoload = true; 759 } 760 761 prog->autoattach = true; 762 763 /* inherit object's log_level */ 764 prog->log_level = obj->log_level; 765 766 prog->sec_name = strdup(sec_name); 767 if (!prog->sec_name) 768 goto errout; 769 770 prog->name = strdup(name); 771 if (!prog->name) 772 goto errout; 773 774 prog->insns = malloc(insn_data_sz); 775 if (!prog->insns) 776 goto errout; 777 memcpy(prog->insns, insn_data, insn_data_sz); 778 779 return 0; 780 errout: 781 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 782 bpf_program__exit(prog); 783 return -ENOMEM; 784 } 785 786 static int 787 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 788 const char *sec_name, int sec_idx) 789 { 790 Elf_Data *symbols = obj->efile.symbols; 791 struct bpf_program *prog, *progs; 792 void *data = sec_data->d_buf; 793 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 794 int nr_progs, err, i; 795 const char *name; 796 Elf64_Sym *sym; 797 798 progs = obj->programs; 799 nr_progs = obj->nr_programs; 800 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 801 sec_off = 0; 802 803 for (i = 0; i < nr_syms; i++) { 804 sym = elf_sym_by_idx(obj, i); 805 806 if (sym->st_shndx != sec_idx) 807 continue; 808 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 809 continue; 810 811 prog_sz = sym->st_size; 812 sec_off = sym->st_value; 813 814 name = elf_sym_str(obj, sym->st_name); 815 if (!name) { 816 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 817 sec_name, sec_off); 818 return -LIBBPF_ERRNO__FORMAT; 819 } 820 821 if (sec_off + prog_sz > sec_sz) { 822 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 823 sec_name, sec_off); 824 return -LIBBPF_ERRNO__FORMAT; 825 } 826 827 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 828 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 829 return -ENOTSUP; 830 } 831 832 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 833 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 834 835 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 836 if (!progs) { 837 /* 838 * In this case the original obj->programs 839 * is still valid, so don't need special treat for 840 * bpf_close_object(). 841 */ 842 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 843 sec_name, name); 844 return -ENOMEM; 845 } 846 obj->programs = progs; 847 848 prog = &progs[nr_progs]; 849 850 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 851 sec_off, data + sec_off, prog_sz); 852 if (err) 853 return err; 854 855 /* if function is a global/weak symbol, but has restricted 856 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 857 * as static to enable more permissive BPF verification mode 858 * with more outside context available to BPF verifier 859 */ 860 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL 861 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 862 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 863 prog->mark_btf_static = true; 864 865 nr_progs++; 866 obj->nr_programs = nr_progs; 867 } 868 869 return 0; 870 } 871 872 static const struct btf_member * 873 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 874 { 875 struct btf_member *m; 876 int i; 877 878 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 879 if (btf_member_bit_offset(t, i) == bit_offset) 880 return m; 881 } 882 883 return NULL; 884 } 885 886 static const struct btf_member * 887 find_member_by_name(const struct btf *btf, const struct btf_type *t, 888 const char *name) 889 { 890 struct btf_member *m; 891 int i; 892 893 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 894 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 895 return m; 896 } 897 898 return NULL; 899 } 900 901 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 902 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 903 const char *name, __u32 kind); 904 905 static int 906 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 907 const struct btf_type **type, __u32 *type_id, 908 const struct btf_type **vtype, __u32 *vtype_id, 909 const struct btf_member **data_member) 910 { 911 const struct btf_type *kern_type, *kern_vtype; 912 const struct btf_member *kern_data_member; 913 __s32 kern_vtype_id, kern_type_id; 914 __u32 i; 915 916 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 917 if (kern_type_id < 0) { 918 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 919 tname); 920 return kern_type_id; 921 } 922 kern_type = btf__type_by_id(btf, kern_type_id); 923 924 /* Find the corresponding "map_value" type that will be used 925 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 926 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 927 * btf_vmlinux. 928 */ 929 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 930 tname, BTF_KIND_STRUCT); 931 if (kern_vtype_id < 0) { 932 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 933 STRUCT_OPS_VALUE_PREFIX, tname); 934 return kern_vtype_id; 935 } 936 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 937 938 /* Find "struct tcp_congestion_ops" from 939 * struct bpf_struct_ops_tcp_congestion_ops { 940 * [ ... ] 941 * struct tcp_congestion_ops data; 942 * } 943 */ 944 kern_data_member = btf_members(kern_vtype); 945 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 946 if (kern_data_member->type == kern_type_id) 947 break; 948 } 949 if (i == btf_vlen(kern_vtype)) { 950 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 951 tname, STRUCT_OPS_VALUE_PREFIX, tname); 952 return -EINVAL; 953 } 954 955 *type = kern_type; 956 *type_id = kern_type_id; 957 *vtype = kern_vtype; 958 *vtype_id = kern_vtype_id; 959 *data_member = kern_data_member; 960 961 return 0; 962 } 963 964 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 965 { 966 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 967 } 968 969 /* Init the map's fields that depend on kern_btf */ 970 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 971 const struct btf *btf, 972 const struct btf *kern_btf) 973 { 974 const struct btf_member *member, *kern_member, *kern_data_member; 975 const struct btf_type *type, *kern_type, *kern_vtype; 976 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 977 struct bpf_struct_ops *st_ops; 978 void *data, *kern_data; 979 const char *tname; 980 int err; 981 982 st_ops = map->st_ops; 983 type = st_ops->type; 984 tname = st_ops->tname; 985 err = find_struct_ops_kern_types(kern_btf, tname, 986 &kern_type, &kern_type_id, 987 &kern_vtype, &kern_vtype_id, 988 &kern_data_member); 989 if (err) 990 return err; 991 992 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 993 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 994 995 map->def.value_size = kern_vtype->size; 996 map->btf_vmlinux_value_type_id = kern_vtype_id; 997 998 st_ops->kern_vdata = calloc(1, kern_vtype->size); 999 if (!st_ops->kern_vdata) 1000 return -ENOMEM; 1001 1002 data = st_ops->data; 1003 kern_data_off = kern_data_member->offset / 8; 1004 kern_data = st_ops->kern_vdata + kern_data_off; 1005 1006 member = btf_members(type); 1007 for (i = 0; i < btf_vlen(type); i++, member++) { 1008 const struct btf_type *mtype, *kern_mtype; 1009 __u32 mtype_id, kern_mtype_id; 1010 void *mdata, *kern_mdata; 1011 __s64 msize, kern_msize; 1012 __u32 moff, kern_moff; 1013 __u32 kern_member_idx; 1014 const char *mname; 1015 1016 mname = btf__name_by_offset(btf, member->name_off); 1017 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1018 if (!kern_member) { 1019 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1020 map->name, mname); 1021 return -ENOTSUP; 1022 } 1023 1024 kern_member_idx = kern_member - btf_members(kern_type); 1025 if (btf_member_bitfield_size(type, i) || 1026 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1027 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1028 map->name, mname); 1029 return -ENOTSUP; 1030 } 1031 1032 moff = member->offset / 8; 1033 kern_moff = kern_member->offset / 8; 1034 1035 mdata = data + moff; 1036 kern_mdata = kern_data + kern_moff; 1037 1038 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1039 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1040 &kern_mtype_id); 1041 if (BTF_INFO_KIND(mtype->info) != 1042 BTF_INFO_KIND(kern_mtype->info)) { 1043 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1044 map->name, mname, BTF_INFO_KIND(mtype->info), 1045 BTF_INFO_KIND(kern_mtype->info)); 1046 return -ENOTSUP; 1047 } 1048 1049 if (btf_is_ptr(mtype)) { 1050 struct bpf_program *prog; 1051 1052 prog = st_ops->progs[i]; 1053 if (!prog) 1054 continue; 1055 1056 kern_mtype = skip_mods_and_typedefs(kern_btf, 1057 kern_mtype->type, 1058 &kern_mtype_id); 1059 1060 /* mtype->type must be a func_proto which was 1061 * guaranteed in bpf_object__collect_st_ops_relos(), 1062 * so only check kern_mtype for func_proto here. 1063 */ 1064 if (!btf_is_func_proto(kern_mtype)) { 1065 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1066 map->name, mname); 1067 return -ENOTSUP; 1068 } 1069 1070 prog->attach_btf_id = kern_type_id; 1071 prog->expected_attach_type = kern_member_idx; 1072 1073 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1074 1075 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1076 map->name, mname, prog->name, moff, 1077 kern_moff); 1078 1079 continue; 1080 } 1081 1082 msize = btf__resolve_size(btf, mtype_id); 1083 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1084 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1085 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1086 map->name, mname, (ssize_t)msize, 1087 (ssize_t)kern_msize); 1088 return -ENOTSUP; 1089 } 1090 1091 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1092 map->name, mname, (unsigned int)msize, 1093 moff, kern_moff); 1094 memcpy(kern_mdata, mdata, msize); 1095 } 1096 1097 return 0; 1098 } 1099 1100 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1101 { 1102 struct bpf_map *map; 1103 size_t i; 1104 int err; 1105 1106 for (i = 0; i < obj->nr_maps; i++) { 1107 map = &obj->maps[i]; 1108 1109 if (!bpf_map__is_struct_ops(map)) 1110 continue; 1111 1112 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1113 obj->btf_vmlinux); 1114 if (err) 1115 return err; 1116 } 1117 1118 return 0; 1119 } 1120 1121 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 1122 { 1123 const struct btf_type *type, *datasec; 1124 const struct btf_var_secinfo *vsi; 1125 struct bpf_struct_ops *st_ops; 1126 const char *tname, *var_name; 1127 __s32 type_id, datasec_id; 1128 const struct btf *btf; 1129 struct bpf_map *map; 1130 __u32 i; 1131 1132 if (obj->efile.st_ops_shndx == -1) 1133 return 0; 1134 1135 btf = obj->btf; 1136 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 1137 BTF_KIND_DATASEC); 1138 if (datasec_id < 0) { 1139 pr_warn("struct_ops init: DATASEC %s not found\n", 1140 STRUCT_OPS_SEC); 1141 return -EINVAL; 1142 } 1143 1144 datasec = btf__type_by_id(btf, datasec_id); 1145 vsi = btf_var_secinfos(datasec); 1146 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1147 type = btf__type_by_id(obj->btf, vsi->type); 1148 var_name = btf__name_by_offset(obj->btf, type->name_off); 1149 1150 type_id = btf__resolve_type(obj->btf, vsi->type); 1151 if (type_id < 0) { 1152 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1153 vsi->type, STRUCT_OPS_SEC); 1154 return -EINVAL; 1155 } 1156 1157 type = btf__type_by_id(obj->btf, type_id); 1158 tname = btf__name_by_offset(obj->btf, type->name_off); 1159 if (!tname[0]) { 1160 pr_warn("struct_ops init: anonymous type is not supported\n"); 1161 return -ENOTSUP; 1162 } 1163 if (!btf_is_struct(type)) { 1164 pr_warn("struct_ops init: %s is not a struct\n", tname); 1165 return -EINVAL; 1166 } 1167 1168 map = bpf_object__add_map(obj); 1169 if (IS_ERR(map)) 1170 return PTR_ERR(map); 1171 1172 map->sec_idx = obj->efile.st_ops_shndx; 1173 map->sec_offset = vsi->offset; 1174 map->name = strdup(var_name); 1175 if (!map->name) 1176 return -ENOMEM; 1177 1178 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1179 map->def.key_size = sizeof(int); 1180 map->def.value_size = type->size; 1181 map->def.max_entries = 1; 1182 1183 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1184 if (!map->st_ops) 1185 return -ENOMEM; 1186 st_ops = map->st_ops; 1187 st_ops->data = malloc(type->size); 1188 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1189 st_ops->kern_func_off = malloc(btf_vlen(type) * 1190 sizeof(*st_ops->kern_func_off)); 1191 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1192 return -ENOMEM; 1193 1194 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1195 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1196 var_name, STRUCT_OPS_SEC); 1197 return -EINVAL; 1198 } 1199 1200 memcpy(st_ops->data, 1201 obj->efile.st_ops_data->d_buf + vsi->offset, 1202 type->size); 1203 st_ops->tname = tname; 1204 st_ops->type = type; 1205 st_ops->type_id = type_id; 1206 1207 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1208 tname, type_id, var_name, vsi->offset); 1209 } 1210 1211 return 0; 1212 } 1213 1214 static struct bpf_object *bpf_object__new(const char *path, 1215 const void *obj_buf, 1216 size_t obj_buf_sz, 1217 const char *obj_name) 1218 { 1219 struct bpf_object *obj; 1220 char *end; 1221 1222 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1223 if (!obj) { 1224 pr_warn("alloc memory failed for %s\n", path); 1225 return ERR_PTR(-ENOMEM); 1226 } 1227 1228 strcpy(obj->path, path); 1229 if (obj_name) { 1230 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1231 } else { 1232 /* Using basename() GNU version which doesn't modify arg. */ 1233 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1234 end = strchr(obj->name, '.'); 1235 if (end) 1236 *end = 0; 1237 } 1238 1239 obj->efile.fd = -1; 1240 /* 1241 * Caller of this function should also call 1242 * bpf_object__elf_finish() after data collection to return 1243 * obj_buf to user. If not, we should duplicate the buffer to 1244 * avoid user freeing them before elf finish. 1245 */ 1246 obj->efile.obj_buf = obj_buf; 1247 obj->efile.obj_buf_sz = obj_buf_sz; 1248 obj->efile.btf_maps_shndx = -1; 1249 obj->efile.st_ops_shndx = -1; 1250 obj->kconfig_map_idx = -1; 1251 1252 obj->kern_version = get_kernel_version(); 1253 obj->loaded = false; 1254 1255 return obj; 1256 } 1257 1258 static void bpf_object__elf_finish(struct bpf_object *obj) 1259 { 1260 if (!obj->efile.elf) 1261 return; 1262 1263 elf_end(obj->efile.elf); 1264 obj->efile.elf = NULL; 1265 obj->efile.symbols = NULL; 1266 obj->efile.st_ops_data = NULL; 1267 1268 zfree(&obj->efile.secs); 1269 obj->efile.sec_cnt = 0; 1270 zclose(obj->efile.fd); 1271 obj->efile.obj_buf = NULL; 1272 obj->efile.obj_buf_sz = 0; 1273 } 1274 1275 static int bpf_object__elf_init(struct bpf_object *obj) 1276 { 1277 Elf64_Ehdr *ehdr; 1278 int err = 0; 1279 Elf *elf; 1280 1281 if (obj->efile.elf) { 1282 pr_warn("elf: init internal error\n"); 1283 return -LIBBPF_ERRNO__LIBELF; 1284 } 1285 1286 if (obj->efile.obj_buf_sz > 0) { 1287 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1288 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1289 } else { 1290 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1291 if (obj->efile.fd < 0) { 1292 char errmsg[STRERR_BUFSIZE], *cp; 1293 1294 err = -errno; 1295 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1296 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1297 return err; 1298 } 1299 1300 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1301 } 1302 1303 if (!elf) { 1304 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1305 err = -LIBBPF_ERRNO__LIBELF; 1306 goto errout; 1307 } 1308 1309 obj->efile.elf = elf; 1310 1311 if (elf_kind(elf) != ELF_K_ELF) { 1312 err = -LIBBPF_ERRNO__FORMAT; 1313 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1314 goto errout; 1315 } 1316 1317 if (gelf_getclass(elf) != ELFCLASS64) { 1318 err = -LIBBPF_ERRNO__FORMAT; 1319 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1320 goto errout; 1321 } 1322 1323 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1324 if (!obj->efile.ehdr) { 1325 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1326 err = -LIBBPF_ERRNO__FORMAT; 1327 goto errout; 1328 } 1329 1330 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1331 pr_warn("elf: failed to get section names section index for %s: %s\n", 1332 obj->path, elf_errmsg(-1)); 1333 err = -LIBBPF_ERRNO__FORMAT; 1334 goto errout; 1335 } 1336 1337 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1338 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1339 pr_warn("elf: failed to get section names strings from %s: %s\n", 1340 obj->path, elf_errmsg(-1)); 1341 err = -LIBBPF_ERRNO__FORMAT; 1342 goto errout; 1343 } 1344 1345 /* Old LLVM set e_machine to EM_NONE */ 1346 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1347 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1348 err = -LIBBPF_ERRNO__FORMAT; 1349 goto errout; 1350 } 1351 1352 return 0; 1353 errout: 1354 bpf_object__elf_finish(obj); 1355 return err; 1356 } 1357 1358 static int bpf_object__check_endianness(struct bpf_object *obj) 1359 { 1360 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1361 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1362 return 0; 1363 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1364 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1365 return 0; 1366 #else 1367 # error "Unrecognized __BYTE_ORDER__" 1368 #endif 1369 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1370 return -LIBBPF_ERRNO__ENDIAN; 1371 } 1372 1373 static int 1374 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1375 { 1376 if (!data) { 1377 pr_warn("invalid license section in %s\n", obj->path); 1378 return -LIBBPF_ERRNO__FORMAT; 1379 } 1380 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1381 * go over allowed ELF data section buffer 1382 */ 1383 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1384 pr_debug("license of %s is %s\n", obj->path, obj->license); 1385 return 0; 1386 } 1387 1388 static int 1389 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1390 { 1391 __u32 kver; 1392 1393 if (!data || size != sizeof(kver)) { 1394 pr_warn("invalid kver section in %s\n", obj->path); 1395 return -LIBBPF_ERRNO__FORMAT; 1396 } 1397 memcpy(&kver, data, sizeof(kver)); 1398 obj->kern_version = kver; 1399 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1400 return 0; 1401 } 1402 1403 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1404 { 1405 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1406 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1407 return true; 1408 return false; 1409 } 1410 1411 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1412 { 1413 Elf_Data *data; 1414 Elf_Scn *scn; 1415 1416 if (!name) 1417 return -EINVAL; 1418 1419 scn = elf_sec_by_name(obj, name); 1420 data = elf_sec_data(obj, scn); 1421 if (data) { 1422 *size = data->d_size; 1423 return 0; /* found it */ 1424 } 1425 1426 return -ENOENT; 1427 } 1428 1429 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1430 { 1431 Elf_Data *symbols = obj->efile.symbols; 1432 const char *sname; 1433 size_t si; 1434 1435 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1436 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1437 1438 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1439 continue; 1440 1441 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1442 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1443 continue; 1444 1445 sname = elf_sym_str(obj, sym->st_name); 1446 if (!sname) { 1447 pr_warn("failed to get sym name string for var %s\n", name); 1448 return ERR_PTR(-EIO); 1449 } 1450 if (strcmp(name, sname) == 0) 1451 return sym; 1452 } 1453 1454 return ERR_PTR(-ENOENT); 1455 } 1456 1457 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1458 { 1459 struct bpf_map *map; 1460 int err; 1461 1462 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1463 sizeof(*obj->maps), obj->nr_maps + 1); 1464 if (err) 1465 return ERR_PTR(err); 1466 1467 map = &obj->maps[obj->nr_maps++]; 1468 map->obj = obj; 1469 map->fd = -1; 1470 map->inner_map_fd = -1; 1471 map->autocreate = true; 1472 1473 return map; 1474 } 1475 1476 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1477 { 1478 long page_sz = sysconf(_SC_PAGE_SIZE); 1479 size_t map_sz; 1480 1481 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1482 map_sz = roundup(map_sz, page_sz); 1483 return map_sz; 1484 } 1485 1486 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1487 { 1488 char map_name[BPF_OBJ_NAME_LEN], *p; 1489 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1490 1491 /* This is one of the more confusing parts of libbpf for various 1492 * reasons, some of which are historical. The original idea for naming 1493 * internal names was to include as much of BPF object name prefix as 1494 * possible, so that it can be distinguished from similar internal 1495 * maps of a different BPF object. 1496 * As an example, let's say we have bpf_object named 'my_object_name' 1497 * and internal map corresponding to '.rodata' ELF section. The final 1498 * map name advertised to user and to the kernel will be 1499 * 'my_objec.rodata', taking first 8 characters of object name and 1500 * entire 7 characters of '.rodata'. 1501 * Somewhat confusingly, if internal map ELF section name is shorter 1502 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1503 * for the suffix, even though we only have 4 actual characters, and 1504 * resulting map will be called 'my_objec.bss', not even using all 15 1505 * characters allowed by the kernel. Oh well, at least the truncated 1506 * object name is somewhat consistent in this case. But if the map 1507 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1508 * (8 chars) and thus will be left with only first 7 characters of the 1509 * object name ('my_obje'). Happy guessing, user, that the final map 1510 * name will be "my_obje.kconfig". 1511 * Now, with libbpf starting to support arbitrarily named .rodata.* 1512 * and .data.* data sections, it's possible that ELF section name is 1513 * longer than allowed 15 chars, so we now need to be careful to take 1514 * only up to 15 first characters of ELF name, taking no BPF object 1515 * name characters at all. So '.rodata.abracadabra' will result in 1516 * '.rodata.abracad' kernel and user-visible name. 1517 * We need to keep this convoluted logic intact for .data, .bss and 1518 * .rodata maps, but for new custom .data.custom and .rodata.custom 1519 * maps we use their ELF names as is, not prepending bpf_object name 1520 * in front. We still need to truncate them to 15 characters for the 1521 * kernel. Full name can be recovered for such maps by using DATASEC 1522 * BTF type associated with such map's value type, though. 1523 */ 1524 if (sfx_len >= BPF_OBJ_NAME_LEN) 1525 sfx_len = BPF_OBJ_NAME_LEN - 1; 1526 1527 /* if there are two or more dots in map name, it's a custom dot map */ 1528 if (strchr(real_name + 1, '.') != NULL) 1529 pfx_len = 0; 1530 else 1531 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1532 1533 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1534 sfx_len, real_name); 1535 1536 /* sanitise map name to characters allowed by kernel */ 1537 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1538 if (!isalnum(*p) && *p != '_' && *p != '.') 1539 *p = '_'; 1540 1541 return strdup(map_name); 1542 } 1543 1544 static int 1545 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1546 1547 /* Internal BPF map is mmap()'able only if at least one of corresponding 1548 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1549 * variable and it's not marked as __hidden (which turns it into, effectively, 1550 * a STATIC variable). 1551 */ 1552 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1553 { 1554 const struct btf_type *t, *vt; 1555 struct btf_var_secinfo *vsi; 1556 int i, n; 1557 1558 if (!map->btf_value_type_id) 1559 return false; 1560 1561 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1562 if (!btf_is_datasec(t)) 1563 return false; 1564 1565 vsi = btf_var_secinfos(t); 1566 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1567 vt = btf__type_by_id(obj->btf, vsi->type); 1568 if (!btf_is_var(vt)) 1569 continue; 1570 1571 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1572 return true; 1573 } 1574 1575 return false; 1576 } 1577 1578 static int 1579 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1580 const char *real_name, int sec_idx, void *data, size_t data_sz) 1581 { 1582 struct bpf_map_def *def; 1583 struct bpf_map *map; 1584 int err; 1585 1586 map = bpf_object__add_map(obj); 1587 if (IS_ERR(map)) 1588 return PTR_ERR(map); 1589 1590 map->libbpf_type = type; 1591 map->sec_idx = sec_idx; 1592 map->sec_offset = 0; 1593 map->real_name = strdup(real_name); 1594 map->name = internal_map_name(obj, real_name); 1595 if (!map->real_name || !map->name) { 1596 zfree(&map->real_name); 1597 zfree(&map->name); 1598 return -ENOMEM; 1599 } 1600 1601 def = &map->def; 1602 def->type = BPF_MAP_TYPE_ARRAY; 1603 def->key_size = sizeof(int); 1604 def->value_size = data_sz; 1605 def->max_entries = 1; 1606 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1607 ? BPF_F_RDONLY_PROG : 0; 1608 1609 /* failures are fine because of maps like .rodata.str1.1 */ 1610 (void) map_fill_btf_type_info(obj, map); 1611 1612 if (map_is_mmapable(obj, map)) 1613 def->map_flags |= BPF_F_MMAPABLE; 1614 1615 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1616 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1617 1618 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1619 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1620 if (map->mmaped == MAP_FAILED) { 1621 err = -errno; 1622 map->mmaped = NULL; 1623 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1624 map->name, err); 1625 zfree(&map->real_name); 1626 zfree(&map->name); 1627 return err; 1628 } 1629 1630 if (data) 1631 memcpy(map->mmaped, data, data_sz); 1632 1633 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1634 return 0; 1635 } 1636 1637 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1638 { 1639 struct elf_sec_desc *sec_desc; 1640 const char *sec_name; 1641 int err = 0, sec_idx; 1642 1643 /* 1644 * Populate obj->maps with libbpf internal maps. 1645 */ 1646 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1647 sec_desc = &obj->efile.secs[sec_idx]; 1648 1649 /* Skip recognized sections with size 0. */ 1650 if (!sec_desc->data || sec_desc->data->d_size == 0) 1651 continue; 1652 1653 switch (sec_desc->sec_type) { 1654 case SEC_DATA: 1655 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1656 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1657 sec_name, sec_idx, 1658 sec_desc->data->d_buf, 1659 sec_desc->data->d_size); 1660 break; 1661 case SEC_RODATA: 1662 obj->has_rodata = true; 1663 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1664 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1665 sec_name, sec_idx, 1666 sec_desc->data->d_buf, 1667 sec_desc->data->d_size); 1668 break; 1669 case SEC_BSS: 1670 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1671 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1672 sec_name, sec_idx, 1673 NULL, 1674 sec_desc->data->d_size); 1675 break; 1676 default: 1677 /* skip */ 1678 break; 1679 } 1680 if (err) 1681 return err; 1682 } 1683 return 0; 1684 } 1685 1686 1687 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1688 const void *name) 1689 { 1690 int i; 1691 1692 for (i = 0; i < obj->nr_extern; i++) { 1693 if (strcmp(obj->externs[i].name, name) == 0) 1694 return &obj->externs[i]; 1695 } 1696 return NULL; 1697 } 1698 1699 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1700 char value) 1701 { 1702 switch (ext->kcfg.type) { 1703 case KCFG_BOOL: 1704 if (value == 'm') { 1705 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 1706 ext->name, value); 1707 return -EINVAL; 1708 } 1709 *(bool *)ext_val = value == 'y' ? true : false; 1710 break; 1711 case KCFG_TRISTATE: 1712 if (value == 'y') 1713 *(enum libbpf_tristate *)ext_val = TRI_YES; 1714 else if (value == 'm') 1715 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1716 else /* value == 'n' */ 1717 *(enum libbpf_tristate *)ext_val = TRI_NO; 1718 break; 1719 case KCFG_CHAR: 1720 *(char *)ext_val = value; 1721 break; 1722 case KCFG_UNKNOWN: 1723 case KCFG_INT: 1724 case KCFG_CHAR_ARR: 1725 default: 1726 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 1727 ext->name, value); 1728 return -EINVAL; 1729 } 1730 ext->is_set = true; 1731 return 0; 1732 } 1733 1734 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1735 const char *value) 1736 { 1737 size_t len; 1738 1739 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1740 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 1741 ext->name, value); 1742 return -EINVAL; 1743 } 1744 1745 len = strlen(value); 1746 if (value[len - 1] != '"') { 1747 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1748 ext->name, value); 1749 return -EINVAL; 1750 } 1751 1752 /* strip quotes */ 1753 len -= 2; 1754 if (len >= ext->kcfg.sz) { 1755 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 1756 ext->name, value, len, ext->kcfg.sz - 1); 1757 len = ext->kcfg.sz - 1; 1758 } 1759 memcpy(ext_val, value + 1, len); 1760 ext_val[len] = '\0'; 1761 ext->is_set = true; 1762 return 0; 1763 } 1764 1765 static int parse_u64(const char *value, __u64 *res) 1766 { 1767 char *value_end; 1768 int err; 1769 1770 errno = 0; 1771 *res = strtoull(value, &value_end, 0); 1772 if (errno) { 1773 err = -errno; 1774 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1775 return err; 1776 } 1777 if (*value_end) { 1778 pr_warn("failed to parse '%s' as integer completely\n", value); 1779 return -EINVAL; 1780 } 1781 return 0; 1782 } 1783 1784 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1785 { 1786 int bit_sz = ext->kcfg.sz * 8; 1787 1788 if (ext->kcfg.sz == 8) 1789 return true; 1790 1791 /* Validate that value stored in u64 fits in integer of `ext->sz` 1792 * bytes size without any loss of information. If the target integer 1793 * is signed, we rely on the following limits of integer type of 1794 * Y bits and subsequent transformation: 1795 * 1796 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1797 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1798 * 0 <= X + 2^(Y-1) < 2^Y 1799 * 1800 * For unsigned target integer, check that all the (64 - Y) bits are 1801 * zero. 1802 */ 1803 if (ext->kcfg.is_signed) 1804 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1805 else 1806 return (v >> bit_sz) == 0; 1807 } 1808 1809 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1810 __u64 value) 1811 { 1812 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 1813 ext->kcfg.type != KCFG_BOOL) { 1814 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 1815 ext->name, (unsigned long long)value); 1816 return -EINVAL; 1817 } 1818 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 1819 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 1820 ext->name, (unsigned long long)value); 1821 return -EINVAL; 1822 1823 } 1824 if (!is_kcfg_value_in_range(ext, value)) { 1825 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 1826 ext->name, (unsigned long long)value, ext->kcfg.sz); 1827 return -ERANGE; 1828 } 1829 switch (ext->kcfg.sz) { 1830 case 1: 1831 *(__u8 *)ext_val = value; 1832 break; 1833 case 2: 1834 *(__u16 *)ext_val = value; 1835 break; 1836 case 4: 1837 *(__u32 *)ext_val = value; 1838 break; 1839 case 8: 1840 *(__u64 *)ext_val = value; 1841 break; 1842 default: 1843 return -EINVAL; 1844 } 1845 ext->is_set = true; 1846 return 0; 1847 } 1848 1849 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1850 char *buf, void *data) 1851 { 1852 struct extern_desc *ext; 1853 char *sep, *value; 1854 int len, err = 0; 1855 void *ext_val; 1856 __u64 num; 1857 1858 if (!str_has_pfx(buf, "CONFIG_")) 1859 return 0; 1860 1861 sep = strchr(buf, '='); 1862 if (!sep) { 1863 pr_warn("failed to parse '%s': no separator\n", buf); 1864 return -EINVAL; 1865 } 1866 1867 /* Trim ending '\n' */ 1868 len = strlen(buf); 1869 if (buf[len - 1] == '\n') 1870 buf[len - 1] = '\0'; 1871 /* Split on '=' and ensure that a value is present. */ 1872 *sep = '\0'; 1873 if (!sep[1]) { 1874 *sep = '='; 1875 pr_warn("failed to parse '%s': no value\n", buf); 1876 return -EINVAL; 1877 } 1878 1879 ext = find_extern_by_name(obj, buf); 1880 if (!ext || ext->is_set) 1881 return 0; 1882 1883 ext_val = data + ext->kcfg.data_off; 1884 value = sep + 1; 1885 1886 switch (*value) { 1887 case 'y': case 'n': case 'm': 1888 err = set_kcfg_value_tri(ext, ext_val, *value); 1889 break; 1890 case '"': 1891 err = set_kcfg_value_str(ext, ext_val, value); 1892 break; 1893 default: 1894 /* assume integer */ 1895 err = parse_u64(value, &num); 1896 if (err) { 1897 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 1898 return err; 1899 } 1900 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1901 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 1902 return -EINVAL; 1903 } 1904 err = set_kcfg_value_num(ext, ext_val, num); 1905 break; 1906 } 1907 if (err) 1908 return err; 1909 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 1910 return 0; 1911 } 1912 1913 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1914 { 1915 char buf[PATH_MAX]; 1916 struct utsname uts; 1917 int len, err = 0; 1918 gzFile file; 1919 1920 uname(&uts); 1921 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1922 if (len < 0) 1923 return -EINVAL; 1924 else if (len >= PATH_MAX) 1925 return -ENAMETOOLONG; 1926 1927 /* gzopen also accepts uncompressed files. */ 1928 file = gzopen(buf, "r"); 1929 if (!file) 1930 file = gzopen("/proc/config.gz", "r"); 1931 1932 if (!file) { 1933 pr_warn("failed to open system Kconfig\n"); 1934 return -ENOENT; 1935 } 1936 1937 while (gzgets(file, buf, sizeof(buf))) { 1938 err = bpf_object__process_kconfig_line(obj, buf, data); 1939 if (err) { 1940 pr_warn("error parsing system Kconfig line '%s': %d\n", 1941 buf, err); 1942 goto out; 1943 } 1944 } 1945 1946 out: 1947 gzclose(file); 1948 return err; 1949 } 1950 1951 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1952 const char *config, void *data) 1953 { 1954 char buf[PATH_MAX]; 1955 int err = 0; 1956 FILE *file; 1957 1958 file = fmemopen((void *)config, strlen(config), "r"); 1959 if (!file) { 1960 err = -errno; 1961 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1962 return err; 1963 } 1964 1965 while (fgets(buf, sizeof(buf), file)) { 1966 err = bpf_object__process_kconfig_line(obj, buf, data); 1967 if (err) { 1968 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1969 buf, err); 1970 break; 1971 } 1972 } 1973 1974 fclose(file); 1975 return err; 1976 } 1977 1978 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1979 { 1980 struct extern_desc *last_ext = NULL, *ext; 1981 size_t map_sz; 1982 int i, err; 1983 1984 for (i = 0; i < obj->nr_extern; i++) { 1985 ext = &obj->externs[i]; 1986 if (ext->type == EXT_KCFG) 1987 last_ext = ext; 1988 } 1989 1990 if (!last_ext) 1991 return 0; 1992 1993 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 1994 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1995 ".kconfig", obj->efile.symbols_shndx, 1996 NULL, map_sz); 1997 if (err) 1998 return err; 1999 2000 obj->kconfig_map_idx = obj->nr_maps - 1; 2001 2002 return 0; 2003 } 2004 2005 const struct btf_type * 2006 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2007 { 2008 const struct btf_type *t = btf__type_by_id(btf, id); 2009 2010 if (res_id) 2011 *res_id = id; 2012 2013 while (btf_is_mod(t) || btf_is_typedef(t)) { 2014 if (res_id) 2015 *res_id = t->type; 2016 t = btf__type_by_id(btf, t->type); 2017 } 2018 2019 return t; 2020 } 2021 2022 static const struct btf_type * 2023 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2024 { 2025 const struct btf_type *t; 2026 2027 t = skip_mods_and_typedefs(btf, id, NULL); 2028 if (!btf_is_ptr(t)) 2029 return NULL; 2030 2031 t = skip_mods_and_typedefs(btf, t->type, res_id); 2032 2033 return btf_is_func_proto(t) ? t : NULL; 2034 } 2035 2036 static const char *__btf_kind_str(__u16 kind) 2037 { 2038 switch (kind) { 2039 case BTF_KIND_UNKN: return "void"; 2040 case BTF_KIND_INT: return "int"; 2041 case BTF_KIND_PTR: return "ptr"; 2042 case BTF_KIND_ARRAY: return "array"; 2043 case BTF_KIND_STRUCT: return "struct"; 2044 case BTF_KIND_UNION: return "union"; 2045 case BTF_KIND_ENUM: return "enum"; 2046 case BTF_KIND_FWD: return "fwd"; 2047 case BTF_KIND_TYPEDEF: return "typedef"; 2048 case BTF_KIND_VOLATILE: return "volatile"; 2049 case BTF_KIND_CONST: return "const"; 2050 case BTF_KIND_RESTRICT: return "restrict"; 2051 case BTF_KIND_FUNC: return "func"; 2052 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2053 case BTF_KIND_VAR: return "var"; 2054 case BTF_KIND_DATASEC: return "datasec"; 2055 case BTF_KIND_FLOAT: return "float"; 2056 case BTF_KIND_DECL_TAG: return "decl_tag"; 2057 case BTF_KIND_TYPE_TAG: return "type_tag"; 2058 case BTF_KIND_ENUM64: return "enum64"; 2059 default: return "unknown"; 2060 } 2061 } 2062 2063 const char *btf_kind_str(const struct btf_type *t) 2064 { 2065 return __btf_kind_str(btf_kind(t)); 2066 } 2067 2068 /* 2069 * Fetch integer attribute of BTF map definition. Such attributes are 2070 * represented using a pointer to an array, in which dimensionality of array 2071 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2072 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2073 * type definition, while using only sizeof(void *) space in ELF data section. 2074 */ 2075 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2076 const struct btf_member *m, __u32 *res) 2077 { 2078 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2079 const char *name = btf__name_by_offset(btf, m->name_off); 2080 const struct btf_array *arr_info; 2081 const struct btf_type *arr_t; 2082 2083 if (!btf_is_ptr(t)) { 2084 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2085 map_name, name, btf_kind_str(t)); 2086 return false; 2087 } 2088 2089 arr_t = btf__type_by_id(btf, t->type); 2090 if (!arr_t) { 2091 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2092 map_name, name, t->type); 2093 return false; 2094 } 2095 if (!btf_is_array(arr_t)) { 2096 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2097 map_name, name, btf_kind_str(arr_t)); 2098 return false; 2099 } 2100 arr_info = btf_array(arr_t); 2101 *res = arr_info->nelems; 2102 return true; 2103 } 2104 2105 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2106 { 2107 int len; 2108 2109 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2110 if (len < 0) 2111 return -EINVAL; 2112 if (len >= buf_sz) 2113 return -ENAMETOOLONG; 2114 2115 return 0; 2116 } 2117 2118 static int build_map_pin_path(struct bpf_map *map, const char *path) 2119 { 2120 char buf[PATH_MAX]; 2121 int err; 2122 2123 if (!path) 2124 path = "/sys/fs/bpf"; 2125 2126 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2127 if (err) 2128 return err; 2129 2130 return bpf_map__set_pin_path(map, buf); 2131 } 2132 2133 /* should match definition in bpf_helpers.h */ 2134 enum libbpf_pin_type { 2135 LIBBPF_PIN_NONE, 2136 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2137 LIBBPF_PIN_BY_NAME, 2138 }; 2139 2140 int parse_btf_map_def(const char *map_name, struct btf *btf, 2141 const struct btf_type *def_t, bool strict, 2142 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2143 { 2144 const struct btf_type *t; 2145 const struct btf_member *m; 2146 bool is_inner = inner_def == NULL; 2147 int vlen, i; 2148 2149 vlen = btf_vlen(def_t); 2150 m = btf_members(def_t); 2151 for (i = 0; i < vlen; i++, m++) { 2152 const char *name = btf__name_by_offset(btf, m->name_off); 2153 2154 if (!name) { 2155 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2156 return -EINVAL; 2157 } 2158 if (strcmp(name, "type") == 0) { 2159 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2160 return -EINVAL; 2161 map_def->parts |= MAP_DEF_MAP_TYPE; 2162 } else if (strcmp(name, "max_entries") == 0) { 2163 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2164 return -EINVAL; 2165 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2166 } else if (strcmp(name, "map_flags") == 0) { 2167 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2168 return -EINVAL; 2169 map_def->parts |= MAP_DEF_MAP_FLAGS; 2170 } else if (strcmp(name, "numa_node") == 0) { 2171 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2172 return -EINVAL; 2173 map_def->parts |= MAP_DEF_NUMA_NODE; 2174 } else if (strcmp(name, "key_size") == 0) { 2175 __u32 sz; 2176 2177 if (!get_map_field_int(map_name, btf, m, &sz)) 2178 return -EINVAL; 2179 if (map_def->key_size && map_def->key_size != sz) { 2180 pr_warn("map '%s': conflicting key size %u != %u.\n", 2181 map_name, map_def->key_size, sz); 2182 return -EINVAL; 2183 } 2184 map_def->key_size = sz; 2185 map_def->parts |= MAP_DEF_KEY_SIZE; 2186 } else if (strcmp(name, "key") == 0) { 2187 __s64 sz; 2188 2189 t = btf__type_by_id(btf, m->type); 2190 if (!t) { 2191 pr_warn("map '%s': key type [%d] not found.\n", 2192 map_name, m->type); 2193 return -EINVAL; 2194 } 2195 if (!btf_is_ptr(t)) { 2196 pr_warn("map '%s': key spec is not PTR: %s.\n", 2197 map_name, btf_kind_str(t)); 2198 return -EINVAL; 2199 } 2200 sz = btf__resolve_size(btf, t->type); 2201 if (sz < 0) { 2202 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2203 map_name, t->type, (ssize_t)sz); 2204 return sz; 2205 } 2206 if (map_def->key_size && map_def->key_size != sz) { 2207 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2208 map_name, map_def->key_size, (ssize_t)sz); 2209 return -EINVAL; 2210 } 2211 map_def->key_size = sz; 2212 map_def->key_type_id = t->type; 2213 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2214 } else if (strcmp(name, "value_size") == 0) { 2215 __u32 sz; 2216 2217 if (!get_map_field_int(map_name, btf, m, &sz)) 2218 return -EINVAL; 2219 if (map_def->value_size && map_def->value_size != sz) { 2220 pr_warn("map '%s': conflicting value size %u != %u.\n", 2221 map_name, map_def->value_size, sz); 2222 return -EINVAL; 2223 } 2224 map_def->value_size = sz; 2225 map_def->parts |= MAP_DEF_VALUE_SIZE; 2226 } else if (strcmp(name, "value") == 0) { 2227 __s64 sz; 2228 2229 t = btf__type_by_id(btf, m->type); 2230 if (!t) { 2231 pr_warn("map '%s': value type [%d] not found.\n", 2232 map_name, m->type); 2233 return -EINVAL; 2234 } 2235 if (!btf_is_ptr(t)) { 2236 pr_warn("map '%s': value spec is not PTR: %s.\n", 2237 map_name, btf_kind_str(t)); 2238 return -EINVAL; 2239 } 2240 sz = btf__resolve_size(btf, t->type); 2241 if (sz < 0) { 2242 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2243 map_name, t->type, (ssize_t)sz); 2244 return sz; 2245 } 2246 if (map_def->value_size && map_def->value_size != sz) { 2247 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2248 map_name, map_def->value_size, (ssize_t)sz); 2249 return -EINVAL; 2250 } 2251 map_def->value_size = sz; 2252 map_def->value_type_id = t->type; 2253 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2254 } 2255 else if (strcmp(name, "values") == 0) { 2256 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2257 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2258 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2259 char inner_map_name[128]; 2260 int err; 2261 2262 if (is_inner) { 2263 pr_warn("map '%s': multi-level inner maps not supported.\n", 2264 map_name); 2265 return -ENOTSUP; 2266 } 2267 if (i != vlen - 1) { 2268 pr_warn("map '%s': '%s' member should be last.\n", 2269 map_name, name); 2270 return -EINVAL; 2271 } 2272 if (!is_map_in_map && !is_prog_array) { 2273 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2274 map_name); 2275 return -ENOTSUP; 2276 } 2277 if (map_def->value_size && map_def->value_size != 4) { 2278 pr_warn("map '%s': conflicting value size %u != 4.\n", 2279 map_name, map_def->value_size); 2280 return -EINVAL; 2281 } 2282 map_def->value_size = 4; 2283 t = btf__type_by_id(btf, m->type); 2284 if (!t) { 2285 pr_warn("map '%s': %s type [%d] not found.\n", 2286 map_name, desc, m->type); 2287 return -EINVAL; 2288 } 2289 if (!btf_is_array(t) || btf_array(t)->nelems) { 2290 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2291 map_name, desc); 2292 return -EINVAL; 2293 } 2294 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2295 if (!btf_is_ptr(t)) { 2296 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2297 map_name, desc, btf_kind_str(t)); 2298 return -EINVAL; 2299 } 2300 t = skip_mods_and_typedefs(btf, t->type, NULL); 2301 if (is_prog_array) { 2302 if (!btf_is_func_proto(t)) { 2303 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2304 map_name, btf_kind_str(t)); 2305 return -EINVAL; 2306 } 2307 continue; 2308 } 2309 if (!btf_is_struct(t)) { 2310 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2311 map_name, btf_kind_str(t)); 2312 return -EINVAL; 2313 } 2314 2315 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2316 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2317 if (err) 2318 return err; 2319 2320 map_def->parts |= MAP_DEF_INNER_MAP; 2321 } else if (strcmp(name, "pinning") == 0) { 2322 __u32 val; 2323 2324 if (is_inner) { 2325 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2326 return -EINVAL; 2327 } 2328 if (!get_map_field_int(map_name, btf, m, &val)) 2329 return -EINVAL; 2330 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2331 pr_warn("map '%s': invalid pinning value %u.\n", 2332 map_name, val); 2333 return -EINVAL; 2334 } 2335 map_def->pinning = val; 2336 map_def->parts |= MAP_DEF_PINNING; 2337 } else if (strcmp(name, "map_extra") == 0) { 2338 __u32 map_extra; 2339 2340 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2341 return -EINVAL; 2342 map_def->map_extra = map_extra; 2343 map_def->parts |= MAP_DEF_MAP_EXTRA; 2344 } else { 2345 if (strict) { 2346 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2347 return -ENOTSUP; 2348 } 2349 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2350 } 2351 } 2352 2353 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2354 pr_warn("map '%s': map type isn't specified.\n", map_name); 2355 return -EINVAL; 2356 } 2357 2358 return 0; 2359 } 2360 2361 static size_t adjust_ringbuf_sz(size_t sz) 2362 { 2363 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2364 __u32 mul; 2365 2366 /* if user forgot to set any size, make sure they see error */ 2367 if (sz == 0) 2368 return 0; 2369 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2370 * a power-of-2 multiple of kernel's page size. If user diligently 2371 * satisified these conditions, pass the size through. 2372 */ 2373 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2374 return sz; 2375 2376 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2377 * user-set size to satisfy both user size request and kernel 2378 * requirements and substitute correct max_entries for map creation. 2379 */ 2380 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2381 if (mul * page_sz > sz) 2382 return mul * page_sz; 2383 } 2384 2385 /* if it's impossible to satisfy the conditions (i.e., user size is 2386 * very close to UINT_MAX but is not a power-of-2 multiple of 2387 * page_size) then just return original size and let kernel reject it 2388 */ 2389 return sz; 2390 } 2391 2392 static bool map_is_ringbuf(const struct bpf_map *map) 2393 { 2394 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2395 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2396 } 2397 2398 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2399 { 2400 map->def.type = def->map_type; 2401 map->def.key_size = def->key_size; 2402 map->def.value_size = def->value_size; 2403 map->def.max_entries = def->max_entries; 2404 map->def.map_flags = def->map_flags; 2405 map->map_extra = def->map_extra; 2406 2407 map->numa_node = def->numa_node; 2408 map->btf_key_type_id = def->key_type_id; 2409 map->btf_value_type_id = def->value_type_id; 2410 2411 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2412 if (map_is_ringbuf(map)) 2413 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2414 2415 if (def->parts & MAP_DEF_MAP_TYPE) 2416 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2417 2418 if (def->parts & MAP_DEF_KEY_TYPE) 2419 pr_debug("map '%s': found key [%u], sz = %u.\n", 2420 map->name, def->key_type_id, def->key_size); 2421 else if (def->parts & MAP_DEF_KEY_SIZE) 2422 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2423 2424 if (def->parts & MAP_DEF_VALUE_TYPE) 2425 pr_debug("map '%s': found value [%u], sz = %u.\n", 2426 map->name, def->value_type_id, def->value_size); 2427 else if (def->parts & MAP_DEF_VALUE_SIZE) 2428 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2429 2430 if (def->parts & MAP_DEF_MAX_ENTRIES) 2431 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2432 if (def->parts & MAP_DEF_MAP_FLAGS) 2433 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2434 if (def->parts & MAP_DEF_MAP_EXTRA) 2435 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2436 (unsigned long long)def->map_extra); 2437 if (def->parts & MAP_DEF_PINNING) 2438 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2439 if (def->parts & MAP_DEF_NUMA_NODE) 2440 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2441 2442 if (def->parts & MAP_DEF_INNER_MAP) 2443 pr_debug("map '%s': found inner map definition.\n", map->name); 2444 } 2445 2446 static const char *btf_var_linkage_str(__u32 linkage) 2447 { 2448 switch (linkage) { 2449 case BTF_VAR_STATIC: return "static"; 2450 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2451 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2452 default: return "unknown"; 2453 } 2454 } 2455 2456 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2457 const struct btf_type *sec, 2458 int var_idx, int sec_idx, 2459 const Elf_Data *data, bool strict, 2460 const char *pin_root_path) 2461 { 2462 struct btf_map_def map_def = {}, inner_def = {}; 2463 const struct btf_type *var, *def; 2464 const struct btf_var_secinfo *vi; 2465 const struct btf_var *var_extra; 2466 const char *map_name; 2467 struct bpf_map *map; 2468 int err; 2469 2470 vi = btf_var_secinfos(sec) + var_idx; 2471 var = btf__type_by_id(obj->btf, vi->type); 2472 var_extra = btf_var(var); 2473 map_name = btf__name_by_offset(obj->btf, var->name_off); 2474 2475 if (map_name == NULL || map_name[0] == '\0') { 2476 pr_warn("map #%d: empty name.\n", var_idx); 2477 return -EINVAL; 2478 } 2479 if ((__u64)vi->offset + vi->size > data->d_size) { 2480 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2481 return -EINVAL; 2482 } 2483 if (!btf_is_var(var)) { 2484 pr_warn("map '%s': unexpected var kind %s.\n", 2485 map_name, btf_kind_str(var)); 2486 return -EINVAL; 2487 } 2488 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2489 pr_warn("map '%s': unsupported map linkage %s.\n", 2490 map_name, btf_var_linkage_str(var_extra->linkage)); 2491 return -EOPNOTSUPP; 2492 } 2493 2494 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2495 if (!btf_is_struct(def)) { 2496 pr_warn("map '%s': unexpected def kind %s.\n", 2497 map_name, btf_kind_str(var)); 2498 return -EINVAL; 2499 } 2500 if (def->size > vi->size) { 2501 pr_warn("map '%s': invalid def size.\n", map_name); 2502 return -EINVAL; 2503 } 2504 2505 map = bpf_object__add_map(obj); 2506 if (IS_ERR(map)) 2507 return PTR_ERR(map); 2508 map->name = strdup(map_name); 2509 if (!map->name) { 2510 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2511 return -ENOMEM; 2512 } 2513 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2514 map->def.type = BPF_MAP_TYPE_UNSPEC; 2515 map->sec_idx = sec_idx; 2516 map->sec_offset = vi->offset; 2517 map->btf_var_idx = var_idx; 2518 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2519 map_name, map->sec_idx, map->sec_offset); 2520 2521 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2522 if (err) 2523 return err; 2524 2525 fill_map_from_def(map, &map_def); 2526 2527 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2528 err = build_map_pin_path(map, pin_root_path); 2529 if (err) { 2530 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2531 return err; 2532 } 2533 } 2534 2535 if (map_def.parts & MAP_DEF_INNER_MAP) { 2536 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2537 if (!map->inner_map) 2538 return -ENOMEM; 2539 map->inner_map->fd = -1; 2540 map->inner_map->sec_idx = sec_idx; 2541 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2542 if (!map->inner_map->name) 2543 return -ENOMEM; 2544 sprintf(map->inner_map->name, "%s.inner", map_name); 2545 2546 fill_map_from_def(map->inner_map, &inner_def); 2547 } 2548 2549 err = map_fill_btf_type_info(obj, map); 2550 if (err) 2551 return err; 2552 2553 return 0; 2554 } 2555 2556 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2557 const char *pin_root_path) 2558 { 2559 const struct btf_type *sec = NULL; 2560 int nr_types, i, vlen, err; 2561 const struct btf_type *t; 2562 const char *name; 2563 Elf_Data *data; 2564 Elf_Scn *scn; 2565 2566 if (obj->efile.btf_maps_shndx < 0) 2567 return 0; 2568 2569 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2570 data = elf_sec_data(obj, scn); 2571 if (!scn || !data) { 2572 pr_warn("elf: failed to get %s map definitions for %s\n", 2573 MAPS_ELF_SEC, obj->path); 2574 return -EINVAL; 2575 } 2576 2577 nr_types = btf__type_cnt(obj->btf); 2578 for (i = 1; i < nr_types; i++) { 2579 t = btf__type_by_id(obj->btf, i); 2580 if (!btf_is_datasec(t)) 2581 continue; 2582 name = btf__name_by_offset(obj->btf, t->name_off); 2583 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2584 sec = t; 2585 obj->efile.btf_maps_sec_btf_id = i; 2586 break; 2587 } 2588 } 2589 2590 if (!sec) { 2591 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2592 return -ENOENT; 2593 } 2594 2595 vlen = btf_vlen(sec); 2596 for (i = 0; i < vlen; i++) { 2597 err = bpf_object__init_user_btf_map(obj, sec, i, 2598 obj->efile.btf_maps_shndx, 2599 data, strict, 2600 pin_root_path); 2601 if (err) 2602 return err; 2603 } 2604 2605 return 0; 2606 } 2607 2608 static int bpf_object__init_maps(struct bpf_object *obj, 2609 const struct bpf_object_open_opts *opts) 2610 { 2611 const char *pin_root_path; 2612 bool strict; 2613 int err = 0; 2614 2615 strict = !OPTS_GET(opts, relaxed_maps, false); 2616 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2617 2618 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2619 err = err ?: bpf_object__init_global_data_maps(obj); 2620 err = err ?: bpf_object__init_kconfig_map(obj); 2621 err = err ?: bpf_object__init_struct_ops_maps(obj); 2622 2623 return err; 2624 } 2625 2626 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2627 { 2628 Elf64_Shdr *sh; 2629 2630 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2631 if (!sh) 2632 return false; 2633 2634 return sh->sh_flags & SHF_EXECINSTR; 2635 } 2636 2637 static bool btf_needs_sanitization(struct bpf_object *obj) 2638 { 2639 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2640 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2641 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2642 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2643 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2644 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2645 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2646 2647 return !has_func || !has_datasec || !has_func_global || !has_float || 2648 !has_decl_tag || !has_type_tag || !has_enum64; 2649 } 2650 2651 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2652 { 2653 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2654 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2655 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2656 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2657 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2658 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2659 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2660 int enum64_placeholder_id = 0; 2661 struct btf_type *t; 2662 int i, j, vlen; 2663 2664 for (i = 1; i < btf__type_cnt(btf); i++) { 2665 t = (struct btf_type *)btf__type_by_id(btf, i); 2666 2667 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2668 /* replace VAR/DECL_TAG with INT */ 2669 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2670 /* 2671 * using size = 1 is the safest choice, 4 will be too 2672 * big and cause kernel BTF validation failure if 2673 * original variable took less than 4 bytes 2674 */ 2675 t->size = 1; 2676 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2677 } else if (!has_datasec && btf_is_datasec(t)) { 2678 /* replace DATASEC with STRUCT */ 2679 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2680 struct btf_member *m = btf_members(t); 2681 struct btf_type *vt; 2682 char *name; 2683 2684 name = (char *)btf__name_by_offset(btf, t->name_off); 2685 while (*name) { 2686 if (*name == '.') 2687 *name = '_'; 2688 name++; 2689 } 2690 2691 vlen = btf_vlen(t); 2692 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2693 for (j = 0; j < vlen; j++, v++, m++) { 2694 /* order of field assignments is important */ 2695 m->offset = v->offset * 8; 2696 m->type = v->type; 2697 /* preserve variable name as member name */ 2698 vt = (void *)btf__type_by_id(btf, v->type); 2699 m->name_off = vt->name_off; 2700 } 2701 } else if (!has_func && btf_is_func_proto(t)) { 2702 /* replace FUNC_PROTO with ENUM */ 2703 vlen = btf_vlen(t); 2704 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2705 t->size = sizeof(__u32); /* kernel enforced */ 2706 } else if (!has_func && btf_is_func(t)) { 2707 /* replace FUNC with TYPEDEF */ 2708 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2709 } else if (!has_func_global && btf_is_func(t)) { 2710 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2711 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2712 } else if (!has_float && btf_is_float(t)) { 2713 /* replace FLOAT with an equally-sized empty STRUCT; 2714 * since C compilers do not accept e.g. "float" as a 2715 * valid struct name, make it anonymous 2716 */ 2717 t->name_off = 0; 2718 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2719 } else if (!has_type_tag && btf_is_type_tag(t)) { 2720 /* replace TYPE_TAG with a CONST */ 2721 t->name_off = 0; 2722 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2723 } else if (!has_enum64 && btf_is_enum(t)) { 2724 /* clear the kflag */ 2725 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 2726 } else if (!has_enum64 && btf_is_enum64(t)) { 2727 /* replace ENUM64 with a union */ 2728 struct btf_member *m; 2729 2730 if (enum64_placeholder_id == 0) { 2731 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 2732 if (enum64_placeholder_id < 0) 2733 return enum64_placeholder_id; 2734 2735 t = (struct btf_type *)btf__type_by_id(btf, i); 2736 } 2737 2738 m = btf_members(t); 2739 vlen = btf_vlen(t); 2740 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 2741 for (j = 0; j < vlen; j++, m++) { 2742 m->type = enum64_placeholder_id; 2743 m->offset = 0; 2744 } 2745 } 2746 } 2747 2748 return 0; 2749 } 2750 2751 static bool libbpf_needs_btf(const struct bpf_object *obj) 2752 { 2753 return obj->efile.btf_maps_shndx >= 0 || 2754 obj->efile.st_ops_shndx >= 0 || 2755 obj->nr_extern > 0; 2756 } 2757 2758 static bool kernel_needs_btf(const struct bpf_object *obj) 2759 { 2760 return obj->efile.st_ops_shndx >= 0; 2761 } 2762 2763 static int bpf_object__init_btf(struct bpf_object *obj, 2764 Elf_Data *btf_data, 2765 Elf_Data *btf_ext_data) 2766 { 2767 int err = -ENOENT; 2768 2769 if (btf_data) { 2770 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2771 err = libbpf_get_error(obj->btf); 2772 if (err) { 2773 obj->btf = NULL; 2774 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2775 goto out; 2776 } 2777 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2778 btf__set_pointer_size(obj->btf, 8); 2779 } 2780 if (btf_ext_data) { 2781 struct btf_ext_info *ext_segs[3]; 2782 int seg_num, sec_num; 2783 2784 if (!obj->btf) { 2785 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2786 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2787 goto out; 2788 } 2789 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2790 err = libbpf_get_error(obj->btf_ext); 2791 if (err) { 2792 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2793 BTF_EXT_ELF_SEC, err); 2794 obj->btf_ext = NULL; 2795 goto out; 2796 } 2797 2798 /* setup .BTF.ext to ELF section mapping */ 2799 ext_segs[0] = &obj->btf_ext->func_info; 2800 ext_segs[1] = &obj->btf_ext->line_info; 2801 ext_segs[2] = &obj->btf_ext->core_relo_info; 2802 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 2803 struct btf_ext_info *seg = ext_segs[seg_num]; 2804 const struct btf_ext_info_sec *sec; 2805 const char *sec_name; 2806 Elf_Scn *scn; 2807 2808 if (seg->sec_cnt == 0) 2809 continue; 2810 2811 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 2812 if (!seg->sec_idxs) { 2813 err = -ENOMEM; 2814 goto out; 2815 } 2816 2817 sec_num = 0; 2818 for_each_btf_ext_sec(seg, sec) { 2819 /* preventively increment index to avoid doing 2820 * this before every continue below 2821 */ 2822 sec_num++; 2823 2824 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 2825 if (str_is_empty(sec_name)) 2826 continue; 2827 scn = elf_sec_by_name(obj, sec_name); 2828 if (!scn) 2829 continue; 2830 2831 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 2832 } 2833 } 2834 } 2835 out: 2836 if (err && libbpf_needs_btf(obj)) { 2837 pr_warn("BTF is required, but is missing or corrupted.\n"); 2838 return err; 2839 } 2840 return 0; 2841 } 2842 2843 static int compare_vsi_off(const void *_a, const void *_b) 2844 { 2845 const struct btf_var_secinfo *a = _a; 2846 const struct btf_var_secinfo *b = _b; 2847 2848 return a->offset - b->offset; 2849 } 2850 2851 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2852 struct btf_type *t) 2853 { 2854 __u32 size = 0, i, vars = btf_vlen(t); 2855 const char *sec_name = btf__name_by_offset(btf, t->name_off); 2856 struct btf_var_secinfo *vsi; 2857 bool fixup_offsets = false; 2858 int err; 2859 2860 if (!sec_name) { 2861 pr_debug("No name found in string section for DATASEC kind.\n"); 2862 return -ENOENT; 2863 } 2864 2865 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 2866 * variable offsets set at the previous step. Further, not every 2867 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 2868 * all fixups altogether for such sections and go straight to sorting 2869 * VARs within their DATASEC. 2870 */ 2871 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 2872 goto sort_vars; 2873 2874 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 2875 * fix this up. But BPF static linker already fixes this up and fills 2876 * all the sizes and offsets during static linking. So this step has 2877 * to be optional. But the STV_HIDDEN handling is non-optional for any 2878 * non-extern DATASEC, so the variable fixup loop below handles both 2879 * functions at the same time, paying the cost of BTF VAR <-> ELF 2880 * symbol matching just once. 2881 */ 2882 if (t->size == 0) { 2883 err = find_elf_sec_sz(obj, sec_name, &size); 2884 if (err || !size) { 2885 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n", 2886 sec_name, size, err); 2887 return -ENOENT; 2888 } 2889 2890 t->size = size; 2891 fixup_offsets = true; 2892 } 2893 2894 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2895 const struct btf_type *t_var; 2896 struct btf_var *var; 2897 const char *var_name; 2898 Elf64_Sym *sym; 2899 2900 t_var = btf__type_by_id(btf, vsi->type); 2901 if (!t_var || !btf_is_var(t_var)) { 2902 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 2903 return -EINVAL; 2904 } 2905 2906 var = btf_var(t_var); 2907 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 2908 continue; 2909 2910 var_name = btf__name_by_offset(btf, t_var->name_off); 2911 if (!var_name) { 2912 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 2913 sec_name, i); 2914 return -ENOENT; 2915 } 2916 2917 sym = find_elf_var_sym(obj, var_name); 2918 if (IS_ERR(sym)) { 2919 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 2920 sec_name, var_name); 2921 return -ENOENT; 2922 } 2923 2924 if (fixup_offsets) 2925 vsi->offset = sym->st_value; 2926 2927 /* if variable is a global/weak symbol, but has restricted 2928 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 2929 * as static. This follows similar logic for functions (BPF 2930 * subprogs) and influences libbpf's further decisions about 2931 * whether to make global data BPF array maps as 2932 * BPF_F_MMAPABLE. 2933 */ 2934 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 2935 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 2936 var->linkage = BTF_VAR_STATIC; 2937 } 2938 2939 sort_vars: 2940 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 2941 return 0; 2942 } 2943 2944 static int bpf_object_fixup_btf(struct bpf_object *obj) 2945 { 2946 int i, n, err = 0; 2947 2948 if (!obj->btf) 2949 return 0; 2950 2951 n = btf__type_cnt(obj->btf); 2952 for (i = 1; i < n; i++) { 2953 struct btf_type *t = btf_type_by_id(obj->btf, i); 2954 2955 /* Loader needs to fix up some of the things compiler 2956 * couldn't get its hands on while emitting BTF. This 2957 * is section size and global variable offset. We use 2958 * the info from the ELF itself for this purpose. 2959 */ 2960 if (btf_is_datasec(t)) { 2961 err = btf_fixup_datasec(obj, obj->btf, t); 2962 if (err) 2963 return err; 2964 } 2965 } 2966 2967 return 0; 2968 } 2969 2970 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 2971 { 2972 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 2973 prog->type == BPF_PROG_TYPE_LSM) 2974 return true; 2975 2976 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2977 * also need vmlinux BTF 2978 */ 2979 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2980 return true; 2981 2982 return false; 2983 } 2984 2985 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 2986 { 2987 struct bpf_program *prog; 2988 int i; 2989 2990 /* CO-RE relocations need kernel BTF, only when btf_custom_path 2991 * is not specified 2992 */ 2993 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 2994 return true; 2995 2996 /* Support for typed ksyms needs kernel BTF */ 2997 for (i = 0; i < obj->nr_extern; i++) { 2998 const struct extern_desc *ext; 2999 3000 ext = &obj->externs[i]; 3001 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3002 return true; 3003 } 3004 3005 bpf_object__for_each_program(prog, obj) { 3006 if (!prog->autoload) 3007 continue; 3008 if (prog_needs_vmlinux_btf(prog)) 3009 return true; 3010 } 3011 3012 return false; 3013 } 3014 3015 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3016 { 3017 int err; 3018 3019 /* btf_vmlinux could be loaded earlier */ 3020 if (obj->btf_vmlinux || obj->gen_loader) 3021 return 0; 3022 3023 if (!force && !obj_needs_vmlinux_btf(obj)) 3024 return 0; 3025 3026 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3027 err = libbpf_get_error(obj->btf_vmlinux); 3028 if (err) { 3029 pr_warn("Error loading vmlinux BTF: %d\n", err); 3030 obj->btf_vmlinux = NULL; 3031 return err; 3032 } 3033 return 0; 3034 } 3035 3036 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3037 { 3038 struct btf *kern_btf = obj->btf; 3039 bool btf_mandatory, sanitize; 3040 int i, err = 0; 3041 3042 if (!obj->btf) 3043 return 0; 3044 3045 if (!kernel_supports(obj, FEAT_BTF)) { 3046 if (kernel_needs_btf(obj)) { 3047 err = -EOPNOTSUPP; 3048 goto report; 3049 } 3050 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3051 return 0; 3052 } 3053 3054 /* Even though some subprogs are global/weak, user might prefer more 3055 * permissive BPF verification process that BPF verifier performs for 3056 * static functions, taking into account more context from the caller 3057 * functions. In such case, they need to mark such subprogs with 3058 * __attribute__((visibility("hidden"))) and libbpf will adjust 3059 * corresponding FUNC BTF type to be marked as static and trigger more 3060 * involved BPF verification process. 3061 */ 3062 for (i = 0; i < obj->nr_programs; i++) { 3063 struct bpf_program *prog = &obj->programs[i]; 3064 struct btf_type *t; 3065 const char *name; 3066 int j, n; 3067 3068 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3069 continue; 3070 3071 n = btf__type_cnt(obj->btf); 3072 for (j = 1; j < n; j++) { 3073 t = btf_type_by_id(obj->btf, j); 3074 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3075 continue; 3076 3077 name = btf__str_by_offset(obj->btf, t->name_off); 3078 if (strcmp(name, prog->name) != 0) 3079 continue; 3080 3081 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3082 break; 3083 } 3084 } 3085 3086 sanitize = btf_needs_sanitization(obj); 3087 if (sanitize) { 3088 const void *raw_data; 3089 __u32 sz; 3090 3091 /* clone BTF to sanitize a copy and leave the original intact */ 3092 raw_data = btf__raw_data(obj->btf, &sz); 3093 kern_btf = btf__new(raw_data, sz); 3094 err = libbpf_get_error(kern_btf); 3095 if (err) 3096 return err; 3097 3098 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3099 btf__set_pointer_size(obj->btf, 8); 3100 err = bpf_object__sanitize_btf(obj, kern_btf); 3101 if (err) 3102 return err; 3103 } 3104 3105 if (obj->gen_loader) { 3106 __u32 raw_size = 0; 3107 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3108 3109 if (!raw_data) 3110 return -ENOMEM; 3111 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3112 /* Pretend to have valid FD to pass various fd >= 0 checks. 3113 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3114 */ 3115 btf__set_fd(kern_btf, 0); 3116 } else { 3117 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3118 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3119 obj->log_level ? 1 : 0); 3120 } 3121 if (sanitize) { 3122 if (!err) { 3123 /* move fd to libbpf's BTF */ 3124 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3125 btf__set_fd(kern_btf, -1); 3126 } 3127 btf__free(kern_btf); 3128 } 3129 report: 3130 if (err) { 3131 btf_mandatory = kernel_needs_btf(obj); 3132 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3133 btf_mandatory ? "BTF is mandatory, can't proceed." 3134 : "BTF is optional, ignoring."); 3135 if (!btf_mandatory) 3136 err = 0; 3137 } 3138 return err; 3139 } 3140 3141 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3142 { 3143 const char *name; 3144 3145 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3146 if (!name) { 3147 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3148 off, obj->path, elf_errmsg(-1)); 3149 return NULL; 3150 } 3151 3152 return name; 3153 } 3154 3155 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3156 { 3157 const char *name; 3158 3159 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3160 if (!name) { 3161 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3162 off, obj->path, elf_errmsg(-1)); 3163 return NULL; 3164 } 3165 3166 return name; 3167 } 3168 3169 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3170 { 3171 Elf_Scn *scn; 3172 3173 scn = elf_getscn(obj->efile.elf, idx); 3174 if (!scn) { 3175 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3176 idx, obj->path, elf_errmsg(-1)); 3177 return NULL; 3178 } 3179 return scn; 3180 } 3181 3182 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3183 { 3184 Elf_Scn *scn = NULL; 3185 Elf *elf = obj->efile.elf; 3186 const char *sec_name; 3187 3188 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3189 sec_name = elf_sec_name(obj, scn); 3190 if (!sec_name) 3191 return NULL; 3192 3193 if (strcmp(sec_name, name) != 0) 3194 continue; 3195 3196 return scn; 3197 } 3198 return NULL; 3199 } 3200 3201 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3202 { 3203 Elf64_Shdr *shdr; 3204 3205 if (!scn) 3206 return NULL; 3207 3208 shdr = elf64_getshdr(scn); 3209 if (!shdr) { 3210 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3211 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3212 return NULL; 3213 } 3214 3215 return shdr; 3216 } 3217 3218 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3219 { 3220 const char *name; 3221 Elf64_Shdr *sh; 3222 3223 if (!scn) 3224 return NULL; 3225 3226 sh = elf_sec_hdr(obj, scn); 3227 if (!sh) 3228 return NULL; 3229 3230 name = elf_sec_str(obj, sh->sh_name); 3231 if (!name) { 3232 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3233 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3234 return NULL; 3235 } 3236 3237 return name; 3238 } 3239 3240 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3241 { 3242 Elf_Data *data; 3243 3244 if (!scn) 3245 return NULL; 3246 3247 data = elf_getdata(scn, 0); 3248 if (!data) { 3249 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3250 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3251 obj->path, elf_errmsg(-1)); 3252 return NULL; 3253 } 3254 3255 return data; 3256 } 3257 3258 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3259 { 3260 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3261 return NULL; 3262 3263 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3264 } 3265 3266 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3267 { 3268 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3269 return NULL; 3270 3271 return (Elf64_Rel *)data->d_buf + idx; 3272 } 3273 3274 static bool is_sec_name_dwarf(const char *name) 3275 { 3276 /* approximation, but the actual list is too long */ 3277 return str_has_pfx(name, ".debug_"); 3278 } 3279 3280 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3281 { 3282 /* no special handling of .strtab */ 3283 if (hdr->sh_type == SHT_STRTAB) 3284 return true; 3285 3286 /* ignore .llvm_addrsig section as well */ 3287 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3288 return true; 3289 3290 /* no subprograms will lead to an empty .text section, ignore it */ 3291 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3292 strcmp(name, ".text") == 0) 3293 return true; 3294 3295 /* DWARF sections */ 3296 if (is_sec_name_dwarf(name)) 3297 return true; 3298 3299 if (str_has_pfx(name, ".rel")) { 3300 name += sizeof(".rel") - 1; 3301 /* DWARF section relocations */ 3302 if (is_sec_name_dwarf(name)) 3303 return true; 3304 3305 /* .BTF and .BTF.ext don't need relocations */ 3306 if (strcmp(name, BTF_ELF_SEC) == 0 || 3307 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3308 return true; 3309 } 3310 3311 return false; 3312 } 3313 3314 static int cmp_progs(const void *_a, const void *_b) 3315 { 3316 const struct bpf_program *a = _a; 3317 const struct bpf_program *b = _b; 3318 3319 if (a->sec_idx != b->sec_idx) 3320 return a->sec_idx < b->sec_idx ? -1 : 1; 3321 3322 /* sec_insn_off can't be the same within the section */ 3323 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3324 } 3325 3326 static int bpf_object__elf_collect(struct bpf_object *obj) 3327 { 3328 struct elf_sec_desc *sec_desc; 3329 Elf *elf = obj->efile.elf; 3330 Elf_Data *btf_ext_data = NULL; 3331 Elf_Data *btf_data = NULL; 3332 int idx = 0, err = 0; 3333 const char *name; 3334 Elf_Data *data; 3335 Elf_Scn *scn; 3336 Elf64_Shdr *sh; 3337 3338 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3339 * section. Since section count retrieved by elf_getshdrnum() does 3340 * include sec #0, it is already the necessary size of an array to keep 3341 * all the sections. 3342 */ 3343 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3344 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3345 obj->path, elf_errmsg(-1)); 3346 return -LIBBPF_ERRNO__FORMAT; 3347 } 3348 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3349 if (!obj->efile.secs) 3350 return -ENOMEM; 3351 3352 /* a bunch of ELF parsing functionality depends on processing symbols, 3353 * so do the first pass and find the symbol table 3354 */ 3355 scn = NULL; 3356 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3357 sh = elf_sec_hdr(obj, scn); 3358 if (!sh) 3359 return -LIBBPF_ERRNO__FORMAT; 3360 3361 if (sh->sh_type == SHT_SYMTAB) { 3362 if (obj->efile.symbols) { 3363 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3364 return -LIBBPF_ERRNO__FORMAT; 3365 } 3366 3367 data = elf_sec_data(obj, scn); 3368 if (!data) 3369 return -LIBBPF_ERRNO__FORMAT; 3370 3371 idx = elf_ndxscn(scn); 3372 3373 obj->efile.symbols = data; 3374 obj->efile.symbols_shndx = idx; 3375 obj->efile.strtabidx = sh->sh_link; 3376 } 3377 } 3378 3379 if (!obj->efile.symbols) { 3380 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3381 obj->path); 3382 return -ENOENT; 3383 } 3384 3385 scn = NULL; 3386 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3387 idx = elf_ndxscn(scn); 3388 sec_desc = &obj->efile.secs[idx]; 3389 3390 sh = elf_sec_hdr(obj, scn); 3391 if (!sh) 3392 return -LIBBPF_ERRNO__FORMAT; 3393 3394 name = elf_sec_str(obj, sh->sh_name); 3395 if (!name) 3396 return -LIBBPF_ERRNO__FORMAT; 3397 3398 if (ignore_elf_section(sh, name)) 3399 continue; 3400 3401 data = elf_sec_data(obj, scn); 3402 if (!data) 3403 return -LIBBPF_ERRNO__FORMAT; 3404 3405 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3406 idx, name, (unsigned long)data->d_size, 3407 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3408 (int)sh->sh_type); 3409 3410 if (strcmp(name, "license") == 0) { 3411 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3412 if (err) 3413 return err; 3414 } else if (strcmp(name, "version") == 0) { 3415 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3416 if (err) 3417 return err; 3418 } else if (strcmp(name, "maps") == 0) { 3419 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3420 return -ENOTSUP; 3421 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3422 obj->efile.btf_maps_shndx = idx; 3423 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3424 if (sh->sh_type != SHT_PROGBITS) 3425 return -LIBBPF_ERRNO__FORMAT; 3426 btf_data = data; 3427 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3428 if (sh->sh_type != SHT_PROGBITS) 3429 return -LIBBPF_ERRNO__FORMAT; 3430 btf_ext_data = data; 3431 } else if (sh->sh_type == SHT_SYMTAB) { 3432 /* already processed during the first pass above */ 3433 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3434 if (sh->sh_flags & SHF_EXECINSTR) { 3435 if (strcmp(name, ".text") == 0) 3436 obj->efile.text_shndx = idx; 3437 err = bpf_object__add_programs(obj, data, name, idx); 3438 if (err) 3439 return err; 3440 } else if (strcmp(name, DATA_SEC) == 0 || 3441 str_has_pfx(name, DATA_SEC ".")) { 3442 sec_desc->sec_type = SEC_DATA; 3443 sec_desc->shdr = sh; 3444 sec_desc->data = data; 3445 } else if (strcmp(name, RODATA_SEC) == 0 || 3446 str_has_pfx(name, RODATA_SEC ".")) { 3447 sec_desc->sec_type = SEC_RODATA; 3448 sec_desc->shdr = sh; 3449 sec_desc->data = data; 3450 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3451 obj->efile.st_ops_data = data; 3452 obj->efile.st_ops_shndx = idx; 3453 } else { 3454 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3455 idx, name); 3456 } 3457 } else if (sh->sh_type == SHT_REL) { 3458 int targ_sec_idx = sh->sh_info; /* points to other section */ 3459 3460 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3461 targ_sec_idx >= obj->efile.sec_cnt) 3462 return -LIBBPF_ERRNO__FORMAT; 3463 3464 /* Only do relo for section with exec instructions */ 3465 if (!section_have_execinstr(obj, targ_sec_idx) && 3466 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3467 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3468 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3469 idx, name, targ_sec_idx, 3470 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3471 continue; 3472 } 3473 3474 sec_desc->sec_type = SEC_RELO; 3475 sec_desc->shdr = sh; 3476 sec_desc->data = data; 3477 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 || 3478 str_has_pfx(name, BSS_SEC "."))) { 3479 sec_desc->sec_type = SEC_BSS; 3480 sec_desc->shdr = sh; 3481 sec_desc->data = data; 3482 } else { 3483 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3484 (size_t)sh->sh_size); 3485 } 3486 } 3487 3488 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3489 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3490 return -LIBBPF_ERRNO__FORMAT; 3491 } 3492 3493 /* sort BPF programs by section name and in-section instruction offset 3494 * for faster search 3495 */ 3496 if (obj->nr_programs) 3497 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3498 3499 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3500 } 3501 3502 static bool sym_is_extern(const Elf64_Sym *sym) 3503 { 3504 int bind = ELF64_ST_BIND(sym->st_info); 3505 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3506 return sym->st_shndx == SHN_UNDEF && 3507 (bind == STB_GLOBAL || bind == STB_WEAK) && 3508 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3509 } 3510 3511 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3512 { 3513 int bind = ELF64_ST_BIND(sym->st_info); 3514 int type = ELF64_ST_TYPE(sym->st_info); 3515 3516 /* in .text section */ 3517 if (sym->st_shndx != text_shndx) 3518 return false; 3519 3520 /* local function */ 3521 if (bind == STB_LOCAL && type == STT_SECTION) 3522 return true; 3523 3524 /* global function */ 3525 return bind == STB_GLOBAL && type == STT_FUNC; 3526 } 3527 3528 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3529 { 3530 const struct btf_type *t; 3531 const char *tname; 3532 int i, n; 3533 3534 if (!btf) 3535 return -ESRCH; 3536 3537 n = btf__type_cnt(btf); 3538 for (i = 1; i < n; i++) { 3539 t = btf__type_by_id(btf, i); 3540 3541 if (!btf_is_var(t) && !btf_is_func(t)) 3542 continue; 3543 3544 tname = btf__name_by_offset(btf, t->name_off); 3545 if (strcmp(tname, ext_name)) 3546 continue; 3547 3548 if (btf_is_var(t) && 3549 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3550 return -EINVAL; 3551 3552 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3553 return -EINVAL; 3554 3555 return i; 3556 } 3557 3558 return -ENOENT; 3559 } 3560 3561 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3562 const struct btf_var_secinfo *vs; 3563 const struct btf_type *t; 3564 int i, j, n; 3565 3566 if (!btf) 3567 return -ESRCH; 3568 3569 n = btf__type_cnt(btf); 3570 for (i = 1; i < n; i++) { 3571 t = btf__type_by_id(btf, i); 3572 3573 if (!btf_is_datasec(t)) 3574 continue; 3575 3576 vs = btf_var_secinfos(t); 3577 for (j = 0; j < btf_vlen(t); j++, vs++) { 3578 if (vs->type == ext_btf_id) 3579 return i; 3580 } 3581 } 3582 3583 return -ENOENT; 3584 } 3585 3586 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3587 bool *is_signed) 3588 { 3589 const struct btf_type *t; 3590 const char *name; 3591 3592 t = skip_mods_and_typedefs(btf, id, NULL); 3593 name = btf__name_by_offset(btf, t->name_off); 3594 3595 if (is_signed) 3596 *is_signed = false; 3597 switch (btf_kind(t)) { 3598 case BTF_KIND_INT: { 3599 int enc = btf_int_encoding(t); 3600 3601 if (enc & BTF_INT_BOOL) 3602 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3603 if (is_signed) 3604 *is_signed = enc & BTF_INT_SIGNED; 3605 if (t->size == 1) 3606 return KCFG_CHAR; 3607 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3608 return KCFG_UNKNOWN; 3609 return KCFG_INT; 3610 } 3611 case BTF_KIND_ENUM: 3612 if (t->size != 4) 3613 return KCFG_UNKNOWN; 3614 if (strcmp(name, "libbpf_tristate")) 3615 return KCFG_UNKNOWN; 3616 return KCFG_TRISTATE; 3617 case BTF_KIND_ENUM64: 3618 if (strcmp(name, "libbpf_tristate")) 3619 return KCFG_UNKNOWN; 3620 return KCFG_TRISTATE; 3621 case BTF_KIND_ARRAY: 3622 if (btf_array(t)->nelems == 0) 3623 return KCFG_UNKNOWN; 3624 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3625 return KCFG_UNKNOWN; 3626 return KCFG_CHAR_ARR; 3627 default: 3628 return KCFG_UNKNOWN; 3629 } 3630 } 3631 3632 static int cmp_externs(const void *_a, const void *_b) 3633 { 3634 const struct extern_desc *a = _a; 3635 const struct extern_desc *b = _b; 3636 3637 if (a->type != b->type) 3638 return a->type < b->type ? -1 : 1; 3639 3640 if (a->type == EXT_KCFG) { 3641 /* descending order by alignment requirements */ 3642 if (a->kcfg.align != b->kcfg.align) 3643 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3644 /* ascending order by size, within same alignment class */ 3645 if (a->kcfg.sz != b->kcfg.sz) 3646 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3647 } 3648 3649 /* resolve ties by name */ 3650 return strcmp(a->name, b->name); 3651 } 3652 3653 static int find_int_btf_id(const struct btf *btf) 3654 { 3655 const struct btf_type *t; 3656 int i, n; 3657 3658 n = btf__type_cnt(btf); 3659 for (i = 1; i < n; i++) { 3660 t = btf__type_by_id(btf, i); 3661 3662 if (btf_is_int(t) && btf_int_bits(t) == 32) 3663 return i; 3664 } 3665 3666 return 0; 3667 } 3668 3669 static int add_dummy_ksym_var(struct btf *btf) 3670 { 3671 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3672 const struct btf_var_secinfo *vs; 3673 const struct btf_type *sec; 3674 3675 if (!btf) 3676 return 0; 3677 3678 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3679 BTF_KIND_DATASEC); 3680 if (sec_btf_id < 0) 3681 return 0; 3682 3683 sec = btf__type_by_id(btf, sec_btf_id); 3684 vs = btf_var_secinfos(sec); 3685 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3686 const struct btf_type *vt; 3687 3688 vt = btf__type_by_id(btf, vs->type); 3689 if (btf_is_func(vt)) 3690 break; 3691 } 3692 3693 /* No func in ksyms sec. No need to add dummy var. */ 3694 if (i == btf_vlen(sec)) 3695 return 0; 3696 3697 int_btf_id = find_int_btf_id(btf); 3698 dummy_var_btf_id = btf__add_var(btf, 3699 "dummy_ksym", 3700 BTF_VAR_GLOBAL_ALLOCATED, 3701 int_btf_id); 3702 if (dummy_var_btf_id < 0) 3703 pr_warn("cannot create a dummy_ksym var\n"); 3704 3705 return dummy_var_btf_id; 3706 } 3707 3708 static int bpf_object__collect_externs(struct bpf_object *obj) 3709 { 3710 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3711 const struct btf_type *t; 3712 struct extern_desc *ext; 3713 int i, n, off, dummy_var_btf_id; 3714 const char *ext_name, *sec_name; 3715 Elf_Scn *scn; 3716 Elf64_Shdr *sh; 3717 3718 if (!obj->efile.symbols) 3719 return 0; 3720 3721 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3722 sh = elf_sec_hdr(obj, scn); 3723 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3724 return -LIBBPF_ERRNO__FORMAT; 3725 3726 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3727 if (dummy_var_btf_id < 0) 3728 return dummy_var_btf_id; 3729 3730 n = sh->sh_size / sh->sh_entsize; 3731 pr_debug("looking for externs among %d symbols...\n", n); 3732 3733 for (i = 0; i < n; i++) { 3734 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3735 3736 if (!sym) 3737 return -LIBBPF_ERRNO__FORMAT; 3738 if (!sym_is_extern(sym)) 3739 continue; 3740 ext_name = elf_sym_str(obj, sym->st_name); 3741 if (!ext_name || !ext_name[0]) 3742 continue; 3743 3744 ext = obj->externs; 3745 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3746 if (!ext) 3747 return -ENOMEM; 3748 obj->externs = ext; 3749 ext = &ext[obj->nr_extern]; 3750 memset(ext, 0, sizeof(*ext)); 3751 obj->nr_extern++; 3752 3753 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3754 if (ext->btf_id <= 0) { 3755 pr_warn("failed to find BTF for extern '%s': %d\n", 3756 ext_name, ext->btf_id); 3757 return ext->btf_id; 3758 } 3759 t = btf__type_by_id(obj->btf, ext->btf_id); 3760 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3761 ext->sym_idx = i; 3762 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3763 3764 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3765 if (ext->sec_btf_id <= 0) { 3766 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3767 ext_name, ext->btf_id, ext->sec_btf_id); 3768 return ext->sec_btf_id; 3769 } 3770 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3771 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3772 3773 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3774 if (btf_is_func(t)) { 3775 pr_warn("extern function %s is unsupported under %s section\n", 3776 ext->name, KCONFIG_SEC); 3777 return -ENOTSUP; 3778 } 3779 kcfg_sec = sec; 3780 ext->type = EXT_KCFG; 3781 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3782 if (ext->kcfg.sz <= 0) { 3783 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3784 ext_name, ext->kcfg.sz); 3785 return ext->kcfg.sz; 3786 } 3787 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3788 if (ext->kcfg.align <= 0) { 3789 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3790 ext_name, ext->kcfg.align); 3791 return -EINVAL; 3792 } 3793 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3794 &ext->kcfg.is_signed); 3795 if (ext->kcfg.type == KCFG_UNKNOWN) { 3796 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 3797 return -ENOTSUP; 3798 } 3799 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3800 ksym_sec = sec; 3801 ext->type = EXT_KSYM; 3802 skip_mods_and_typedefs(obj->btf, t->type, 3803 &ext->ksym.type_id); 3804 } else { 3805 pr_warn("unrecognized extern section '%s'\n", sec_name); 3806 return -ENOTSUP; 3807 } 3808 } 3809 pr_debug("collected %d externs total\n", obj->nr_extern); 3810 3811 if (!obj->nr_extern) 3812 return 0; 3813 3814 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3815 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3816 3817 /* for .ksyms section, we need to turn all externs into allocated 3818 * variables in BTF to pass kernel verification; we do this by 3819 * pretending that each extern is a 8-byte variable 3820 */ 3821 if (ksym_sec) { 3822 /* find existing 4-byte integer type in BTF to use for fake 3823 * extern variables in DATASEC 3824 */ 3825 int int_btf_id = find_int_btf_id(obj->btf); 3826 /* For extern function, a dummy_var added earlier 3827 * will be used to replace the vs->type and 3828 * its name string will be used to refill 3829 * the missing param's name. 3830 */ 3831 const struct btf_type *dummy_var; 3832 3833 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3834 for (i = 0; i < obj->nr_extern; i++) { 3835 ext = &obj->externs[i]; 3836 if (ext->type != EXT_KSYM) 3837 continue; 3838 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3839 i, ext->sym_idx, ext->name); 3840 } 3841 3842 sec = ksym_sec; 3843 n = btf_vlen(sec); 3844 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3845 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3846 struct btf_type *vt; 3847 3848 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3849 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3850 ext = find_extern_by_name(obj, ext_name); 3851 if (!ext) { 3852 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3853 btf_kind_str(vt), ext_name); 3854 return -ESRCH; 3855 } 3856 if (btf_is_func(vt)) { 3857 const struct btf_type *func_proto; 3858 struct btf_param *param; 3859 int j; 3860 3861 func_proto = btf__type_by_id(obj->btf, 3862 vt->type); 3863 param = btf_params(func_proto); 3864 /* Reuse the dummy_var string if the 3865 * func proto does not have param name. 3866 */ 3867 for (j = 0; j < btf_vlen(func_proto); j++) 3868 if (param[j].type && !param[j].name_off) 3869 param[j].name_off = 3870 dummy_var->name_off; 3871 vs->type = dummy_var_btf_id; 3872 vt->info &= ~0xffff; 3873 vt->info |= BTF_FUNC_GLOBAL; 3874 } else { 3875 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3876 vt->type = int_btf_id; 3877 } 3878 vs->offset = off; 3879 vs->size = sizeof(int); 3880 } 3881 sec->size = off; 3882 } 3883 3884 if (kcfg_sec) { 3885 sec = kcfg_sec; 3886 /* for kcfg externs calculate their offsets within a .kconfig map */ 3887 off = 0; 3888 for (i = 0; i < obj->nr_extern; i++) { 3889 ext = &obj->externs[i]; 3890 if (ext->type != EXT_KCFG) 3891 continue; 3892 3893 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3894 off = ext->kcfg.data_off + ext->kcfg.sz; 3895 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3896 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3897 } 3898 sec->size = off; 3899 n = btf_vlen(sec); 3900 for (i = 0; i < n; i++) { 3901 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3902 3903 t = btf__type_by_id(obj->btf, vs->type); 3904 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3905 ext = find_extern_by_name(obj, ext_name); 3906 if (!ext) { 3907 pr_warn("failed to find extern definition for BTF var '%s'\n", 3908 ext_name); 3909 return -ESRCH; 3910 } 3911 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3912 vs->offset = ext->kcfg.data_off; 3913 } 3914 } 3915 return 0; 3916 } 3917 3918 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 3919 { 3920 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3921 } 3922 3923 struct bpf_program * 3924 bpf_object__find_program_by_name(const struct bpf_object *obj, 3925 const char *name) 3926 { 3927 struct bpf_program *prog; 3928 3929 bpf_object__for_each_program(prog, obj) { 3930 if (prog_is_subprog(obj, prog)) 3931 continue; 3932 if (!strcmp(prog->name, name)) 3933 return prog; 3934 } 3935 return errno = ENOENT, NULL; 3936 } 3937 3938 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3939 int shndx) 3940 { 3941 switch (obj->efile.secs[shndx].sec_type) { 3942 case SEC_BSS: 3943 case SEC_DATA: 3944 case SEC_RODATA: 3945 return true; 3946 default: 3947 return false; 3948 } 3949 } 3950 3951 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3952 int shndx) 3953 { 3954 return shndx == obj->efile.btf_maps_shndx; 3955 } 3956 3957 static enum libbpf_map_type 3958 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3959 { 3960 if (shndx == obj->efile.symbols_shndx) 3961 return LIBBPF_MAP_KCONFIG; 3962 3963 switch (obj->efile.secs[shndx].sec_type) { 3964 case SEC_BSS: 3965 return LIBBPF_MAP_BSS; 3966 case SEC_DATA: 3967 return LIBBPF_MAP_DATA; 3968 case SEC_RODATA: 3969 return LIBBPF_MAP_RODATA; 3970 default: 3971 return LIBBPF_MAP_UNSPEC; 3972 } 3973 } 3974 3975 static int bpf_program__record_reloc(struct bpf_program *prog, 3976 struct reloc_desc *reloc_desc, 3977 __u32 insn_idx, const char *sym_name, 3978 const Elf64_Sym *sym, const Elf64_Rel *rel) 3979 { 3980 struct bpf_insn *insn = &prog->insns[insn_idx]; 3981 size_t map_idx, nr_maps = prog->obj->nr_maps; 3982 struct bpf_object *obj = prog->obj; 3983 __u32 shdr_idx = sym->st_shndx; 3984 enum libbpf_map_type type; 3985 const char *sym_sec_name; 3986 struct bpf_map *map; 3987 3988 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 3989 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 3990 prog->name, sym_name, insn_idx, insn->code); 3991 return -LIBBPF_ERRNO__RELOC; 3992 } 3993 3994 if (sym_is_extern(sym)) { 3995 int sym_idx = ELF64_R_SYM(rel->r_info); 3996 int i, n = obj->nr_extern; 3997 struct extern_desc *ext; 3998 3999 for (i = 0; i < n; i++) { 4000 ext = &obj->externs[i]; 4001 if (ext->sym_idx == sym_idx) 4002 break; 4003 } 4004 if (i >= n) { 4005 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4006 prog->name, sym_name, sym_idx); 4007 return -LIBBPF_ERRNO__RELOC; 4008 } 4009 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4010 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4011 if (insn->code == (BPF_JMP | BPF_CALL)) 4012 reloc_desc->type = RELO_EXTERN_FUNC; 4013 else 4014 reloc_desc->type = RELO_EXTERN_VAR; 4015 reloc_desc->insn_idx = insn_idx; 4016 reloc_desc->sym_off = i; /* sym_off stores extern index */ 4017 return 0; 4018 } 4019 4020 /* sub-program call relocation */ 4021 if (is_call_insn(insn)) { 4022 if (insn->src_reg != BPF_PSEUDO_CALL) { 4023 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4024 return -LIBBPF_ERRNO__RELOC; 4025 } 4026 /* text_shndx can be 0, if no default "main" program exists */ 4027 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4028 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4029 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4030 prog->name, sym_name, sym_sec_name); 4031 return -LIBBPF_ERRNO__RELOC; 4032 } 4033 if (sym->st_value % BPF_INSN_SZ) { 4034 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4035 prog->name, sym_name, (size_t)sym->st_value); 4036 return -LIBBPF_ERRNO__RELOC; 4037 } 4038 reloc_desc->type = RELO_CALL; 4039 reloc_desc->insn_idx = insn_idx; 4040 reloc_desc->sym_off = sym->st_value; 4041 return 0; 4042 } 4043 4044 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4045 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4046 prog->name, sym_name, shdr_idx); 4047 return -LIBBPF_ERRNO__RELOC; 4048 } 4049 4050 /* loading subprog addresses */ 4051 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4052 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4053 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4054 */ 4055 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4056 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4057 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4058 return -LIBBPF_ERRNO__RELOC; 4059 } 4060 4061 reloc_desc->type = RELO_SUBPROG_ADDR; 4062 reloc_desc->insn_idx = insn_idx; 4063 reloc_desc->sym_off = sym->st_value; 4064 return 0; 4065 } 4066 4067 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4068 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4069 4070 /* generic map reference relocation */ 4071 if (type == LIBBPF_MAP_UNSPEC) { 4072 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4073 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4074 prog->name, sym_name, sym_sec_name); 4075 return -LIBBPF_ERRNO__RELOC; 4076 } 4077 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4078 map = &obj->maps[map_idx]; 4079 if (map->libbpf_type != type || 4080 map->sec_idx != sym->st_shndx || 4081 map->sec_offset != sym->st_value) 4082 continue; 4083 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4084 prog->name, map_idx, map->name, map->sec_idx, 4085 map->sec_offset, insn_idx); 4086 break; 4087 } 4088 if (map_idx >= nr_maps) { 4089 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4090 prog->name, sym_sec_name, (size_t)sym->st_value); 4091 return -LIBBPF_ERRNO__RELOC; 4092 } 4093 reloc_desc->type = RELO_LD64; 4094 reloc_desc->insn_idx = insn_idx; 4095 reloc_desc->map_idx = map_idx; 4096 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4097 return 0; 4098 } 4099 4100 /* global data map relocation */ 4101 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4102 pr_warn("prog '%s': bad data relo against section '%s'\n", 4103 prog->name, sym_sec_name); 4104 return -LIBBPF_ERRNO__RELOC; 4105 } 4106 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4107 map = &obj->maps[map_idx]; 4108 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4109 continue; 4110 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4111 prog->name, map_idx, map->name, map->sec_idx, 4112 map->sec_offset, insn_idx); 4113 break; 4114 } 4115 if (map_idx >= nr_maps) { 4116 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4117 prog->name, sym_sec_name); 4118 return -LIBBPF_ERRNO__RELOC; 4119 } 4120 4121 reloc_desc->type = RELO_DATA; 4122 reloc_desc->insn_idx = insn_idx; 4123 reloc_desc->map_idx = map_idx; 4124 reloc_desc->sym_off = sym->st_value; 4125 return 0; 4126 } 4127 4128 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4129 { 4130 return insn_idx >= prog->sec_insn_off && 4131 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4132 } 4133 4134 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4135 size_t sec_idx, size_t insn_idx) 4136 { 4137 int l = 0, r = obj->nr_programs - 1, m; 4138 struct bpf_program *prog; 4139 4140 if (!obj->nr_programs) 4141 return NULL; 4142 4143 while (l < r) { 4144 m = l + (r - l + 1) / 2; 4145 prog = &obj->programs[m]; 4146 4147 if (prog->sec_idx < sec_idx || 4148 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4149 l = m; 4150 else 4151 r = m - 1; 4152 } 4153 /* matching program could be at index l, but it still might be the 4154 * wrong one, so we need to double check conditions for the last time 4155 */ 4156 prog = &obj->programs[l]; 4157 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4158 return prog; 4159 return NULL; 4160 } 4161 4162 static int 4163 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4164 { 4165 const char *relo_sec_name, *sec_name; 4166 size_t sec_idx = shdr->sh_info, sym_idx; 4167 struct bpf_program *prog; 4168 struct reloc_desc *relos; 4169 int err, i, nrels; 4170 const char *sym_name; 4171 __u32 insn_idx; 4172 Elf_Scn *scn; 4173 Elf_Data *scn_data; 4174 Elf64_Sym *sym; 4175 Elf64_Rel *rel; 4176 4177 if (sec_idx >= obj->efile.sec_cnt) 4178 return -EINVAL; 4179 4180 scn = elf_sec_by_idx(obj, sec_idx); 4181 scn_data = elf_sec_data(obj, scn); 4182 4183 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4184 sec_name = elf_sec_name(obj, scn); 4185 if (!relo_sec_name || !sec_name) 4186 return -EINVAL; 4187 4188 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4189 relo_sec_name, sec_idx, sec_name); 4190 nrels = shdr->sh_size / shdr->sh_entsize; 4191 4192 for (i = 0; i < nrels; i++) { 4193 rel = elf_rel_by_idx(data, i); 4194 if (!rel) { 4195 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4196 return -LIBBPF_ERRNO__FORMAT; 4197 } 4198 4199 sym_idx = ELF64_R_SYM(rel->r_info); 4200 sym = elf_sym_by_idx(obj, sym_idx); 4201 if (!sym) { 4202 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4203 relo_sec_name, sym_idx, i); 4204 return -LIBBPF_ERRNO__FORMAT; 4205 } 4206 4207 if (sym->st_shndx >= obj->efile.sec_cnt) { 4208 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4209 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4210 return -LIBBPF_ERRNO__FORMAT; 4211 } 4212 4213 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4214 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4215 relo_sec_name, (size_t)rel->r_offset, i); 4216 return -LIBBPF_ERRNO__FORMAT; 4217 } 4218 4219 insn_idx = rel->r_offset / BPF_INSN_SZ; 4220 /* relocations against static functions are recorded as 4221 * relocations against the section that contains a function; 4222 * in such case, symbol will be STT_SECTION and sym.st_name 4223 * will point to empty string (0), so fetch section name 4224 * instead 4225 */ 4226 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4227 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4228 else 4229 sym_name = elf_sym_str(obj, sym->st_name); 4230 sym_name = sym_name ?: "<?"; 4231 4232 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4233 relo_sec_name, i, insn_idx, sym_name); 4234 4235 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4236 if (!prog) { 4237 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4238 relo_sec_name, i, sec_name, insn_idx); 4239 continue; 4240 } 4241 4242 relos = libbpf_reallocarray(prog->reloc_desc, 4243 prog->nr_reloc + 1, sizeof(*relos)); 4244 if (!relos) 4245 return -ENOMEM; 4246 prog->reloc_desc = relos; 4247 4248 /* adjust insn_idx to local BPF program frame of reference */ 4249 insn_idx -= prog->sec_insn_off; 4250 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4251 insn_idx, sym_name, sym, rel); 4252 if (err) 4253 return err; 4254 4255 prog->nr_reloc++; 4256 } 4257 return 0; 4258 } 4259 4260 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4261 { 4262 int id; 4263 4264 if (!obj->btf) 4265 return -ENOENT; 4266 4267 /* if it's BTF-defined map, we don't need to search for type IDs. 4268 * For struct_ops map, it does not need btf_key_type_id and 4269 * btf_value_type_id. 4270 */ 4271 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4272 return 0; 4273 4274 /* 4275 * LLVM annotates global data differently in BTF, that is, 4276 * only as '.data', '.bss' or '.rodata'. 4277 */ 4278 if (!bpf_map__is_internal(map)) 4279 return -ENOENT; 4280 4281 id = btf__find_by_name(obj->btf, map->real_name); 4282 if (id < 0) 4283 return id; 4284 4285 map->btf_key_type_id = 0; 4286 map->btf_value_type_id = id; 4287 return 0; 4288 } 4289 4290 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4291 { 4292 char file[PATH_MAX], buff[4096]; 4293 FILE *fp; 4294 __u32 val; 4295 int err; 4296 4297 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4298 memset(info, 0, sizeof(*info)); 4299 4300 fp = fopen(file, "r"); 4301 if (!fp) { 4302 err = -errno; 4303 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4304 err); 4305 return err; 4306 } 4307 4308 while (fgets(buff, sizeof(buff), fp)) { 4309 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4310 info->type = val; 4311 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4312 info->key_size = val; 4313 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4314 info->value_size = val; 4315 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4316 info->max_entries = val; 4317 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4318 info->map_flags = val; 4319 } 4320 4321 fclose(fp); 4322 4323 return 0; 4324 } 4325 4326 bool bpf_map__autocreate(const struct bpf_map *map) 4327 { 4328 return map->autocreate; 4329 } 4330 4331 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4332 { 4333 if (map->obj->loaded) 4334 return libbpf_err(-EBUSY); 4335 4336 map->autocreate = autocreate; 4337 return 0; 4338 } 4339 4340 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4341 { 4342 struct bpf_map_info info; 4343 __u32 len = sizeof(info), name_len; 4344 int new_fd, err; 4345 char *new_name; 4346 4347 memset(&info, 0, len); 4348 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4349 if (err && errno == EINVAL) 4350 err = bpf_get_map_info_from_fdinfo(fd, &info); 4351 if (err) 4352 return libbpf_err(err); 4353 4354 name_len = strlen(info.name); 4355 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4356 new_name = strdup(map->name); 4357 else 4358 new_name = strdup(info.name); 4359 4360 if (!new_name) 4361 return libbpf_err(-errno); 4362 4363 new_fd = open("/", O_RDONLY | O_CLOEXEC); 4364 if (new_fd < 0) { 4365 err = -errno; 4366 goto err_free_new_name; 4367 } 4368 4369 new_fd = dup3(fd, new_fd, O_CLOEXEC); 4370 if (new_fd < 0) { 4371 err = -errno; 4372 goto err_close_new_fd; 4373 } 4374 4375 err = zclose(map->fd); 4376 if (err) { 4377 err = -errno; 4378 goto err_close_new_fd; 4379 } 4380 free(map->name); 4381 4382 map->fd = new_fd; 4383 map->name = new_name; 4384 map->def.type = info.type; 4385 map->def.key_size = info.key_size; 4386 map->def.value_size = info.value_size; 4387 map->def.max_entries = info.max_entries; 4388 map->def.map_flags = info.map_flags; 4389 map->btf_key_type_id = info.btf_key_type_id; 4390 map->btf_value_type_id = info.btf_value_type_id; 4391 map->reused = true; 4392 map->map_extra = info.map_extra; 4393 4394 return 0; 4395 4396 err_close_new_fd: 4397 close(new_fd); 4398 err_free_new_name: 4399 free(new_name); 4400 return libbpf_err(err); 4401 } 4402 4403 __u32 bpf_map__max_entries(const struct bpf_map *map) 4404 { 4405 return map->def.max_entries; 4406 } 4407 4408 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4409 { 4410 if (!bpf_map_type__is_map_in_map(map->def.type)) 4411 return errno = EINVAL, NULL; 4412 4413 return map->inner_map; 4414 } 4415 4416 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4417 { 4418 if (map->obj->loaded) 4419 return libbpf_err(-EBUSY); 4420 4421 map->def.max_entries = max_entries; 4422 4423 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4424 if (map_is_ringbuf(map)) 4425 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4426 4427 return 0; 4428 } 4429 4430 static int 4431 bpf_object__probe_loading(struct bpf_object *obj) 4432 { 4433 char *cp, errmsg[STRERR_BUFSIZE]; 4434 struct bpf_insn insns[] = { 4435 BPF_MOV64_IMM(BPF_REG_0, 0), 4436 BPF_EXIT_INSN(), 4437 }; 4438 int ret, insn_cnt = ARRAY_SIZE(insns); 4439 4440 if (obj->gen_loader) 4441 return 0; 4442 4443 ret = bump_rlimit_memlock(); 4444 if (ret) 4445 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4446 4447 /* make sure basic loading works */ 4448 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4449 if (ret < 0) 4450 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4451 if (ret < 0) { 4452 ret = errno; 4453 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4454 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4455 "program. Make sure your kernel supports BPF " 4456 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4457 "set to big enough value.\n", __func__, cp, ret); 4458 return -ret; 4459 } 4460 close(ret); 4461 4462 return 0; 4463 } 4464 4465 static int probe_fd(int fd) 4466 { 4467 if (fd >= 0) 4468 close(fd); 4469 return fd >= 0; 4470 } 4471 4472 static int probe_kern_prog_name(void) 4473 { 4474 const size_t attr_sz = offsetofend(union bpf_attr, prog_name); 4475 struct bpf_insn insns[] = { 4476 BPF_MOV64_IMM(BPF_REG_0, 0), 4477 BPF_EXIT_INSN(), 4478 }; 4479 union bpf_attr attr; 4480 int ret; 4481 4482 memset(&attr, 0, attr_sz); 4483 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4484 attr.license = ptr_to_u64("GPL"); 4485 attr.insns = ptr_to_u64(insns); 4486 attr.insn_cnt = (__u32)ARRAY_SIZE(insns); 4487 libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name)); 4488 4489 /* make sure loading with name works */ 4490 ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS); 4491 return probe_fd(ret); 4492 } 4493 4494 static int probe_kern_global_data(void) 4495 { 4496 char *cp, errmsg[STRERR_BUFSIZE]; 4497 struct bpf_insn insns[] = { 4498 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4499 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4500 BPF_MOV64_IMM(BPF_REG_0, 0), 4501 BPF_EXIT_INSN(), 4502 }; 4503 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4504 4505 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL); 4506 if (map < 0) { 4507 ret = -errno; 4508 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4509 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4510 __func__, cp, -ret); 4511 return ret; 4512 } 4513 4514 insns[0].imm = map; 4515 4516 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4517 close(map); 4518 return probe_fd(ret); 4519 } 4520 4521 static int probe_kern_btf(void) 4522 { 4523 static const char strs[] = "\0int"; 4524 __u32 types[] = { 4525 /* int */ 4526 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4527 }; 4528 4529 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4530 strs, sizeof(strs))); 4531 } 4532 4533 static int probe_kern_btf_func(void) 4534 { 4535 static const char strs[] = "\0int\0x\0a"; 4536 /* void x(int a) {} */ 4537 __u32 types[] = { 4538 /* int */ 4539 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4540 /* FUNC_PROTO */ /* [2] */ 4541 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4542 BTF_PARAM_ENC(7, 1), 4543 /* FUNC x */ /* [3] */ 4544 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4545 }; 4546 4547 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4548 strs, sizeof(strs))); 4549 } 4550 4551 static int probe_kern_btf_func_global(void) 4552 { 4553 static const char strs[] = "\0int\0x\0a"; 4554 /* static void x(int a) {} */ 4555 __u32 types[] = { 4556 /* int */ 4557 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4558 /* FUNC_PROTO */ /* [2] */ 4559 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4560 BTF_PARAM_ENC(7, 1), 4561 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4562 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4563 }; 4564 4565 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4566 strs, sizeof(strs))); 4567 } 4568 4569 static int probe_kern_btf_datasec(void) 4570 { 4571 static const char strs[] = "\0x\0.data"; 4572 /* static int a; */ 4573 __u32 types[] = { 4574 /* int */ 4575 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4576 /* VAR x */ /* [2] */ 4577 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4578 BTF_VAR_STATIC, 4579 /* DATASEC val */ /* [3] */ 4580 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4581 BTF_VAR_SECINFO_ENC(2, 0, 4), 4582 }; 4583 4584 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4585 strs, sizeof(strs))); 4586 } 4587 4588 static int probe_kern_btf_float(void) 4589 { 4590 static const char strs[] = "\0float"; 4591 __u32 types[] = { 4592 /* float */ 4593 BTF_TYPE_FLOAT_ENC(1, 4), 4594 }; 4595 4596 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4597 strs, sizeof(strs))); 4598 } 4599 4600 static int probe_kern_btf_decl_tag(void) 4601 { 4602 static const char strs[] = "\0tag"; 4603 __u32 types[] = { 4604 /* int */ 4605 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4606 /* VAR x */ /* [2] */ 4607 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4608 BTF_VAR_STATIC, 4609 /* attr */ 4610 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4611 }; 4612 4613 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4614 strs, sizeof(strs))); 4615 } 4616 4617 static int probe_kern_btf_type_tag(void) 4618 { 4619 static const char strs[] = "\0tag"; 4620 __u32 types[] = { 4621 /* int */ 4622 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4623 /* attr */ 4624 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4625 /* ptr */ 4626 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4627 }; 4628 4629 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4630 strs, sizeof(strs))); 4631 } 4632 4633 static int probe_kern_array_mmap(void) 4634 { 4635 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4636 int fd; 4637 4638 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts); 4639 return probe_fd(fd); 4640 } 4641 4642 static int probe_kern_exp_attach_type(void) 4643 { 4644 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4645 struct bpf_insn insns[] = { 4646 BPF_MOV64_IMM(BPF_REG_0, 0), 4647 BPF_EXIT_INSN(), 4648 }; 4649 int fd, insn_cnt = ARRAY_SIZE(insns); 4650 4651 /* use any valid combination of program type and (optional) 4652 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4653 * to see if kernel supports expected_attach_type field for 4654 * BPF_PROG_LOAD command 4655 */ 4656 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4657 return probe_fd(fd); 4658 } 4659 4660 static int probe_kern_probe_read_kernel(void) 4661 { 4662 struct bpf_insn insns[] = { 4663 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4664 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4665 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4666 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4667 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4668 BPF_EXIT_INSN(), 4669 }; 4670 int fd, insn_cnt = ARRAY_SIZE(insns); 4671 4672 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4673 return probe_fd(fd); 4674 } 4675 4676 static int probe_prog_bind_map(void) 4677 { 4678 char *cp, errmsg[STRERR_BUFSIZE]; 4679 struct bpf_insn insns[] = { 4680 BPF_MOV64_IMM(BPF_REG_0, 0), 4681 BPF_EXIT_INSN(), 4682 }; 4683 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4684 4685 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL); 4686 if (map < 0) { 4687 ret = -errno; 4688 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4689 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4690 __func__, cp, -ret); 4691 return ret; 4692 } 4693 4694 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4695 if (prog < 0) { 4696 close(map); 4697 return 0; 4698 } 4699 4700 ret = bpf_prog_bind_map(prog, map, NULL); 4701 4702 close(map); 4703 close(prog); 4704 4705 return ret >= 0; 4706 } 4707 4708 static int probe_module_btf(void) 4709 { 4710 static const char strs[] = "\0int"; 4711 __u32 types[] = { 4712 /* int */ 4713 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4714 }; 4715 struct bpf_btf_info info; 4716 __u32 len = sizeof(info); 4717 char name[16]; 4718 int fd, err; 4719 4720 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4721 if (fd < 0) 4722 return 0; /* BTF not supported at all */ 4723 4724 memset(&info, 0, sizeof(info)); 4725 info.name = ptr_to_u64(name); 4726 info.name_len = sizeof(name); 4727 4728 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4729 * kernel's module BTF support coincides with support for 4730 * name/name_len fields in struct bpf_btf_info. 4731 */ 4732 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4733 close(fd); 4734 return !err; 4735 } 4736 4737 static int probe_perf_link(void) 4738 { 4739 struct bpf_insn insns[] = { 4740 BPF_MOV64_IMM(BPF_REG_0, 0), 4741 BPF_EXIT_INSN(), 4742 }; 4743 int prog_fd, link_fd, err; 4744 4745 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4746 insns, ARRAY_SIZE(insns), NULL); 4747 if (prog_fd < 0) 4748 return -errno; 4749 4750 /* use invalid perf_event FD to get EBADF, if link is supported; 4751 * otherwise EINVAL should be returned 4752 */ 4753 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4754 err = -errno; /* close() can clobber errno */ 4755 4756 if (link_fd >= 0) 4757 close(link_fd); 4758 close(prog_fd); 4759 4760 return link_fd < 0 && err == -EBADF; 4761 } 4762 4763 static int probe_kern_bpf_cookie(void) 4764 { 4765 struct bpf_insn insns[] = { 4766 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie), 4767 BPF_EXIT_INSN(), 4768 }; 4769 int ret, insn_cnt = ARRAY_SIZE(insns); 4770 4771 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4772 return probe_fd(ret); 4773 } 4774 4775 static int probe_kern_btf_enum64(void) 4776 { 4777 static const char strs[] = "\0enum64"; 4778 __u32 types[] = { 4779 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8), 4780 }; 4781 4782 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4783 strs, sizeof(strs))); 4784 } 4785 4786 static int probe_kern_syscall_wrapper(void); 4787 4788 enum kern_feature_result { 4789 FEAT_UNKNOWN = 0, 4790 FEAT_SUPPORTED = 1, 4791 FEAT_MISSING = 2, 4792 }; 4793 4794 typedef int (*feature_probe_fn)(void); 4795 4796 static struct kern_feature_desc { 4797 const char *desc; 4798 feature_probe_fn probe; 4799 enum kern_feature_result res; 4800 } feature_probes[__FEAT_CNT] = { 4801 [FEAT_PROG_NAME] = { 4802 "BPF program name", probe_kern_prog_name, 4803 }, 4804 [FEAT_GLOBAL_DATA] = { 4805 "global variables", probe_kern_global_data, 4806 }, 4807 [FEAT_BTF] = { 4808 "minimal BTF", probe_kern_btf, 4809 }, 4810 [FEAT_BTF_FUNC] = { 4811 "BTF functions", probe_kern_btf_func, 4812 }, 4813 [FEAT_BTF_GLOBAL_FUNC] = { 4814 "BTF global function", probe_kern_btf_func_global, 4815 }, 4816 [FEAT_BTF_DATASEC] = { 4817 "BTF data section and variable", probe_kern_btf_datasec, 4818 }, 4819 [FEAT_ARRAY_MMAP] = { 4820 "ARRAY map mmap()", probe_kern_array_mmap, 4821 }, 4822 [FEAT_EXP_ATTACH_TYPE] = { 4823 "BPF_PROG_LOAD expected_attach_type attribute", 4824 probe_kern_exp_attach_type, 4825 }, 4826 [FEAT_PROBE_READ_KERN] = { 4827 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4828 }, 4829 [FEAT_PROG_BIND_MAP] = { 4830 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4831 }, 4832 [FEAT_MODULE_BTF] = { 4833 "module BTF support", probe_module_btf, 4834 }, 4835 [FEAT_BTF_FLOAT] = { 4836 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4837 }, 4838 [FEAT_PERF_LINK] = { 4839 "BPF perf link support", probe_perf_link, 4840 }, 4841 [FEAT_BTF_DECL_TAG] = { 4842 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 4843 }, 4844 [FEAT_BTF_TYPE_TAG] = { 4845 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 4846 }, 4847 [FEAT_MEMCG_ACCOUNT] = { 4848 "memcg-based memory accounting", probe_memcg_account, 4849 }, 4850 [FEAT_BPF_COOKIE] = { 4851 "BPF cookie support", probe_kern_bpf_cookie, 4852 }, 4853 [FEAT_BTF_ENUM64] = { 4854 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64, 4855 }, 4856 [FEAT_SYSCALL_WRAPPER] = { 4857 "Kernel using syscall wrapper", probe_kern_syscall_wrapper, 4858 }, 4859 }; 4860 4861 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4862 { 4863 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4864 int ret; 4865 4866 if (obj && obj->gen_loader) 4867 /* To generate loader program assume the latest kernel 4868 * to avoid doing extra prog_load, map_create syscalls. 4869 */ 4870 return true; 4871 4872 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4873 ret = feat->probe(); 4874 if (ret > 0) { 4875 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4876 } else if (ret == 0) { 4877 WRITE_ONCE(feat->res, FEAT_MISSING); 4878 } else { 4879 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4880 WRITE_ONCE(feat->res, FEAT_MISSING); 4881 } 4882 } 4883 4884 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4885 } 4886 4887 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4888 { 4889 struct bpf_map_info map_info; 4890 char msg[STRERR_BUFSIZE]; 4891 __u32 map_info_len = sizeof(map_info); 4892 int err; 4893 4894 memset(&map_info, 0, map_info_len); 4895 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len); 4896 if (err && errno == EINVAL) 4897 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 4898 if (err) { 4899 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 4900 libbpf_strerror_r(errno, msg, sizeof(msg))); 4901 return false; 4902 } 4903 4904 return (map_info.type == map->def.type && 4905 map_info.key_size == map->def.key_size && 4906 map_info.value_size == map->def.value_size && 4907 map_info.max_entries == map->def.max_entries && 4908 map_info.map_flags == map->def.map_flags && 4909 map_info.map_extra == map->map_extra); 4910 } 4911 4912 static int 4913 bpf_object__reuse_map(struct bpf_map *map) 4914 { 4915 char *cp, errmsg[STRERR_BUFSIZE]; 4916 int err, pin_fd; 4917 4918 pin_fd = bpf_obj_get(map->pin_path); 4919 if (pin_fd < 0) { 4920 err = -errno; 4921 if (err == -ENOENT) { 4922 pr_debug("found no pinned map to reuse at '%s'\n", 4923 map->pin_path); 4924 return 0; 4925 } 4926 4927 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4928 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4929 map->pin_path, cp); 4930 return err; 4931 } 4932 4933 if (!map_is_reuse_compat(map, pin_fd)) { 4934 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4935 map->pin_path); 4936 close(pin_fd); 4937 return -EINVAL; 4938 } 4939 4940 err = bpf_map__reuse_fd(map, pin_fd); 4941 close(pin_fd); 4942 if (err) 4943 return err; 4944 4945 map->pinned = true; 4946 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4947 4948 return 0; 4949 } 4950 4951 static int 4952 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4953 { 4954 enum libbpf_map_type map_type = map->libbpf_type; 4955 char *cp, errmsg[STRERR_BUFSIZE]; 4956 int err, zero = 0; 4957 4958 if (obj->gen_loader) { 4959 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 4960 map->mmaped, map->def.value_size); 4961 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 4962 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 4963 return 0; 4964 } 4965 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4966 if (err) { 4967 err = -errno; 4968 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4969 pr_warn("Error setting initial map(%s) contents: %s\n", 4970 map->name, cp); 4971 return err; 4972 } 4973 4974 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 4975 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 4976 err = bpf_map_freeze(map->fd); 4977 if (err) { 4978 err = -errno; 4979 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4980 pr_warn("Error freezing map(%s) as read-only: %s\n", 4981 map->name, cp); 4982 return err; 4983 } 4984 } 4985 return 0; 4986 } 4987 4988 static void bpf_map__destroy(struct bpf_map *map); 4989 4990 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 4991 { 4992 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 4993 struct bpf_map_def *def = &map->def; 4994 const char *map_name = NULL; 4995 int err = 0; 4996 4997 if (kernel_supports(obj, FEAT_PROG_NAME)) 4998 map_name = map->name; 4999 create_attr.map_ifindex = map->map_ifindex; 5000 create_attr.map_flags = def->map_flags; 5001 create_attr.numa_node = map->numa_node; 5002 create_attr.map_extra = map->map_extra; 5003 5004 if (bpf_map__is_struct_ops(map)) 5005 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5006 5007 if (obj->btf && btf__fd(obj->btf) >= 0) { 5008 create_attr.btf_fd = btf__fd(obj->btf); 5009 create_attr.btf_key_type_id = map->btf_key_type_id; 5010 create_attr.btf_value_type_id = map->btf_value_type_id; 5011 } 5012 5013 if (bpf_map_type__is_map_in_map(def->type)) { 5014 if (map->inner_map) { 5015 err = bpf_object__create_map(obj, map->inner_map, true); 5016 if (err) { 5017 pr_warn("map '%s': failed to create inner map: %d\n", 5018 map->name, err); 5019 return err; 5020 } 5021 map->inner_map_fd = bpf_map__fd(map->inner_map); 5022 } 5023 if (map->inner_map_fd >= 0) 5024 create_attr.inner_map_fd = map->inner_map_fd; 5025 } 5026 5027 switch (def->type) { 5028 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5029 case BPF_MAP_TYPE_CGROUP_ARRAY: 5030 case BPF_MAP_TYPE_STACK_TRACE: 5031 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5032 case BPF_MAP_TYPE_HASH_OF_MAPS: 5033 case BPF_MAP_TYPE_DEVMAP: 5034 case BPF_MAP_TYPE_DEVMAP_HASH: 5035 case BPF_MAP_TYPE_CPUMAP: 5036 case BPF_MAP_TYPE_XSKMAP: 5037 case BPF_MAP_TYPE_SOCKMAP: 5038 case BPF_MAP_TYPE_SOCKHASH: 5039 case BPF_MAP_TYPE_QUEUE: 5040 case BPF_MAP_TYPE_STACK: 5041 create_attr.btf_fd = 0; 5042 create_attr.btf_key_type_id = 0; 5043 create_attr.btf_value_type_id = 0; 5044 map->btf_key_type_id = 0; 5045 map->btf_value_type_id = 0; 5046 default: 5047 break; 5048 } 5049 5050 if (obj->gen_loader) { 5051 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5052 def->key_size, def->value_size, def->max_entries, 5053 &create_attr, is_inner ? -1 : map - obj->maps); 5054 /* Pretend to have valid FD to pass various fd >= 0 checks. 5055 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 5056 */ 5057 map->fd = 0; 5058 } else { 5059 map->fd = bpf_map_create(def->type, map_name, 5060 def->key_size, def->value_size, 5061 def->max_entries, &create_attr); 5062 } 5063 if (map->fd < 0 && (create_attr.btf_key_type_id || 5064 create_attr.btf_value_type_id)) { 5065 char *cp, errmsg[STRERR_BUFSIZE]; 5066 5067 err = -errno; 5068 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5069 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 5070 map->name, cp, err); 5071 create_attr.btf_fd = 0; 5072 create_attr.btf_key_type_id = 0; 5073 create_attr.btf_value_type_id = 0; 5074 map->btf_key_type_id = 0; 5075 map->btf_value_type_id = 0; 5076 map->fd = bpf_map_create(def->type, map_name, 5077 def->key_size, def->value_size, 5078 def->max_entries, &create_attr); 5079 } 5080 5081 err = map->fd < 0 ? -errno : 0; 5082 5083 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5084 if (obj->gen_loader) 5085 map->inner_map->fd = -1; 5086 bpf_map__destroy(map->inner_map); 5087 zfree(&map->inner_map); 5088 } 5089 5090 return err; 5091 } 5092 5093 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5094 { 5095 const struct bpf_map *targ_map; 5096 unsigned int i; 5097 int fd, err = 0; 5098 5099 for (i = 0; i < map->init_slots_sz; i++) { 5100 if (!map->init_slots[i]) 5101 continue; 5102 5103 targ_map = map->init_slots[i]; 5104 fd = bpf_map__fd(targ_map); 5105 5106 if (obj->gen_loader) { 5107 bpf_gen__populate_outer_map(obj->gen_loader, 5108 map - obj->maps, i, 5109 targ_map - obj->maps); 5110 } else { 5111 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5112 } 5113 if (err) { 5114 err = -errno; 5115 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5116 map->name, i, targ_map->name, fd, err); 5117 return err; 5118 } 5119 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5120 map->name, i, targ_map->name, fd); 5121 } 5122 5123 zfree(&map->init_slots); 5124 map->init_slots_sz = 0; 5125 5126 return 0; 5127 } 5128 5129 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5130 { 5131 const struct bpf_program *targ_prog; 5132 unsigned int i; 5133 int fd, err; 5134 5135 if (obj->gen_loader) 5136 return -ENOTSUP; 5137 5138 for (i = 0; i < map->init_slots_sz; i++) { 5139 if (!map->init_slots[i]) 5140 continue; 5141 5142 targ_prog = map->init_slots[i]; 5143 fd = bpf_program__fd(targ_prog); 5144 5145 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5146 if (err) { 5147 err = -errno; 5148 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5149 map->name, i, targ_prog->name, fd, err); 5150 return err; 5151 } 5152 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5153 map->name, i, targ_prog->name, fd); 5154 } 5155 5156 zfree(&map->init_slots); 5157 map->init_slots_sz = 0; 5158 5159 return 0; 5160 } 5161 5162 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5163 { 5164 struct bpf_map *map; 5165 int i, err; 5166 5167 for (i = 0; i < obj->nr_maps; i++) { 5168 map = &obj->maps[i]; 5169 5170 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5171 continue; 5172 5173 err = init_prog_array_slots(obj, map); 5174 if (err < 0) { 5175 zclose(map->fd); 5176 return err; 5177 } 5178 } 5179 return 0; 5180 } 5181 5182 static int map_set_def_max_entries(struct bpf_map *map) 5183 { 5184 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5185 int nr_cpus; 5186 5187 nr_cpus = libbpf_num_possible_cpus(); 5188 if (nr_cpus < 0) { 5189 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5190 map->name, nr_cpus); 5191 return nr_cpus; 5192 } 5193 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5194 map->def.max_entries = nr_cpus; 5195 } 5196 5197 return 0; 5198 } 5199 5200 static int 5201 bpf_object__create_maps(struct bpf_object *obj) 5202 { 5203 struct bpf_map *map; 5204 char *cp, errmsg[STRERR_BUFSIZE]; 5205 unsigned int i, j; 5206 int err; 5207 bool retried; 5208 5209 for (i = 0; i < obj->nr_maps; i++) { 5210 map = &obj->maps[i]; 5211 5212 /* To support old kernels, we skip creating global data maps 5213 * (.rodata, .data, .kconfig, etc); later on, during program 5214 * loading, if we detect that at least one of the to-be-loaded 5215 * programs is referencing any global data map, we'll error 5216 * out with program name and relocation index logged. 5217 * This approach allows to accommodate Clang emitting 5218 * unnecessary .rodata.str1.1 sections for string literals, 5219 * but also it allows to have CO-RE applications that use 5220 * global variables in some of BPF programs, but not others. 5221 * If those global variable-using programs are not loaded at 5222 * runtime due to bpf_program__set_autoload(prog, false), 5223 * bpf_object loading will succeed just fine even on old 5224 * kernels. 5225 */ 5226 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5227 map->autocreate = false; 5228 5229 if (!map->autocreate) { 5230 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5231 continue; 5232 } 5233 5234 err = map_set_def_max_entries(map); 5235 if (err) 5236 goto err_out; 5237 5238 retried = false; 5239 retry: 5240 if (map->pin_path) { 5241 err = bpf_object__reuse_map(map); 5242 if (err) { 5243 pr_warn("map '%s': error reusing pinned map\n", 5244 map->name); 5245 goto err_out; 5246 } 5247 if (retried && map->fd < 0) { 5248 pr_warn("map '%s': cannot find pinned map\n", 5249 map->name); 5250 err = -ENOENT; 5251 goto err_out; 5252 } 5253 } 5254 5255 if (map->fd >= 0) { 5256 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5257 map->name, map->fd); 5258 } else { 5259 err = bpf_object__create_map(obj, map, false); 5260 if (err) 5261 goto err_out; 5262 5263 pr_debug("map '%s': created successfully, fd=%d\n", 5264 map->name, map->fd); 5265 5266 if (bpf_map__is_internal(map)) { 5267 err = bpf_object__populate_internal_map(obj, map); 5268 if (err < 0) { 5269 zclose(map->fd); 5270 goto err_out; 5271 } 5272 } 5273 5274 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5275 err = init_map_in_map_slots(obj, map); 5276 if (err < 0) { 5277 zclose(map->fd); 5278 goto err_out; 5279 } 5280 } 5281 } 5282 5283 if (map->pin_path && !map->pinned) { 5284 err = bpf_map__pin(map, NULL); 5285 if (err) { 5286 zclose(map->fd); 5287 if (!retried && err == -EEXIST) { 5288 retried = true; 5289 goto retry; 5290 } 5291 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5292 map->name, map->pin_path, err); 5293 goto err_out; 5294 } 5295 } 5296 } 5297 5298 return 0; 5299 5300 err_out: 5301 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5302 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5303 pr_perm_msg(err); 5304 for (j = 0; j < i; j++) 5305 zclose(obj->maps[j].fd); 5306 return err; 5307 } 5308 5309 static bool bpf_core_is_flavor_sep(const char *s) 5310 { 5311 /* check X___Y name pattern, where X and Y are not underscores */ 5312 return s[0] != '_' && /* X */ 5313 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5314 s[4] != '_'; /* Y */ 5315 } 5316 5317 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5318 * before last triple underscore. Struct name part after last triple 5319 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5320 */ 5321 size_t bpf_core_essential_name_len(const char *name) 5322 { 5323 size_t n = strlen(name); 5324 int i; 5325 5326 for (i = n - 5; i >= 0; i--) { 5327 if (bpf_core_is_flavor_sep(name + i)) 5328 return i + 1; 5329 } 5330 return n; 5331 } 5332 5333 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5334 { 5335 if (!cands) 5336 return; 5337 5338 free(cands->cands); 5339 free(cands); 5340 } 5341 5342 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5343 size_t local_essent_len, 5344 const struct btf *targ_btf, 5345 const char *targ_btf_name, 5346 int targ_start_id, 5347 struct bpf_core_cand_list *cands) 5348 { 5349 struct bpf_core_cand *new_cands, *cand; 5350 const struct btf_type *t, *local_t; 5351 const char *targ_name, *local_name; 5352 size_t targ_essent_len; 5353 int n, i; 5354 5355 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5356 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5357 5358 n = btf__type_cnt(targ_btf); 5359 for (i = targ_start_id; i < n; i++) { 5360 t = btf__type_by_id(targ_btf, i); 5361 if (!btf_kind_core_compat(t, local_t)) 5362 continue; 5363 5364 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5365 if (str_is_empty(targ_name)) 5366 continue; 5367 5368 targ_essent_len = bpf_core_essential_name_len(targ_name); 5369 if (targ_essent_len != local_essent_len) 5370 continue; 5371 5372 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5373 continue; 5374 5375 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5376 local_cand->id, btf_kind_str(local_t), 5377 local_name, i, btf_kind_str(t), targ_name, 5378 targ_btf_name); 5379 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5380 sizeof(*cands->cands)); 5381 if (!new_cands) 5382 return -ENOMEM; 5383 5384 cand = &new_cands[cands->len]; 5385 cand->btf = targ_btf; 5386 cand->id = i; 5387 5388 cands->cands = new_cands; 5389 cands->len++; 5390 } 5391 return 0; 5392 } 5393 5394 static int load_module_btfs(struct bpf_object *obj) 5395 { 5396 struct bpf_btf_info info; 5397 struct module_btf *mod_btf; 5398 struct btf *btf; 5399 char name[64]; 5400 __u32 id = 0, len; 5401 int err, fd; 5402 5403 if (obj->btf_modules_loaded) 5404 return 0; 5405 5406 if (obj->gen_loader) 5407 return 0; 5408 5409 /* don't do this again, even if we find no module BTFs */ 5410 obj->btf_modules_loaded = true; 5411 5412 /* kernel too old to support module BTFs */ 5413 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5414 return 0; 5415 5416 while (true) { 5417 err = bpf_btf_get_next_id(id, &id); 5418 if (err && errno == ENOENT) 5419 return 0; 5420 if (err) { 5421 err = -errno; 5422 pr_warn("failed to iterate BTF objects: %d\n", err); 5423 return err; 5424 } 5425 5426 fd = bpf_btf_get_fd_by_id(id); 5427 if (fd < 0) { 5428 if (errno == ENOENT) 5429 continue; /* expected race: BTF was unloaded */ 5430 err = -errno; 5431 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5432 return err; 5433 } 5434 5435 len = sizeof(info); 5436 memset(&info, 0, sizeof(info)); 5437 info.name = ptr_to_u64(name); 5438 info.name_len = sizeof(name); 5439 5440 err = bpf_obj_get_info_by_fd(fd, &info, &len); 5441 if (err) { 5442 err = -errno; 5443 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5444 goto err_out; 5445 } 5446 5447 /* ignore non-module BTFs */ 5448 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5449 close(fd); 5450 continue; 5451 } 5452 5453 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5454 err = libbpf_get_error(btf); 5455 if (err) { 5456 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5457 name, id, err); 5458 goto err_out; 5459 } 5460 5461 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5462 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5463 if (err) 5464 goto err_out; 5465 5466 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5467 5468 mod_btf->btf = btf; 5469 mod_btf->id = id; 5470 mod_btf->fd = fd; 5471 mod_btf->name = strdup(name); 5472 if (!mod_btf->name) { 5473 err = -ENOMEM; 5474 goto err_out; 5475 } 5476 continue; 5477 5478 err_out: 5479 close(fd); 5480 return err; 5481 } 5482 5483 return 0; 5484 } 5485 5486 static struct bpf_core_cand_list * 5487 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5488 { 5489 struct bpf_core_cand local_cand = {}; 5490 struct bpf_core_cand_list *cands; 5491 const struct btf *main_btf; 5492 const struct btf_type *local_t; 5493 const char *local_name; 5494 size_t local_essent_len; 5495 int err, i; 5496 5497 local_cand.btf = local_btf; 5498 local_cand.id = local_type_id; 5499 local_t = btf__type_by_id(local_btf, local_type_id); 5500 if (!local_t) 5501 return ERR_PTR(-EINVAL); 5502 5503 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5504 if (str_is_empty(local_name)) 5505 return ERR_PTR(-EINVAL); 5506 local_essent_len = bpf_core_essential_name_len(local_name); 5507 5508 cands = calloc(1, sizeof(*cands)); 5509 if (!cands) 5510 return ERR_PTR(-ENOMEM); 5511 5512 /* Attempt to find target candidates in vmlinux BTF first */ 5513 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5514 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5515 if (err) 5516 goto err_out; 5517 5518 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5519 if (cands->len) 5520 return cands; 5521 5522 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5523 if (obj->btf_vmlinux_override) 5524 return cands; 5525 5526 /* now look through module BTFs, trying to still find candidates */ 5527 err = load_module_btfs(obj); 5528 if (err) 5529 goto err_out; 5530 5531 for (i = 0; i < obj->btf_module_cnt; i++) { 5532 err = bpf_core_add_cands(&local_cand, local_essent_len, 5533 obj->btf_modules[i].btf, 5534 obj->btf_modules[i].name, 5535 btf__type_cnt(obj->btf_vmlinux), 5536 cands); 5537 if (err) 5538 goto err_out; 5539 } 5540 5541 return cands; 5542 err_out: 5543 bpf_core_free_cands(cands); 5544 return ERR_PTR(err); 5545 } 5546 5547 /* Check local and target types for compatibility. This check is used for 5548 * type-based CO-RE relocations and follow slightly different rules than 5549 * field-based relocations. This function assumes that root types were already 5550 * checked for name match. Beyond that initial root-level name check, names 5551 * are completely ignored. Compatibility rules are as follows: 5552 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5553 * kind should match for local and target types (i.e., STRUCT is not 5554 * compatible with UNION); 5555 * - for ENUMs, the size is ignored; 5556 * - for INT, size and signedness are ignored; 5557 * - for ARRAY, dimensionality is ignored, element types are checked for 5558 * compatibility recursively; 5559 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5560 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5561 * - FUNC_PROTOs are compatible if they have compatible signature: same 5562 * number of input args and compatible return and argument types. 5563 * These rules are not set in stone and probably will be adjusted as we get 5564 * more experience with using BPF CO-RE relocations. 5565 */ 5566 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5567 const struct btf *targ_btf, __u32 targ_id) 5568 { 5569 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5570 } 5571 5572 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5573 const struct btf *targ_btf, __u32 targ_id) 5574 { 5575 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5576 } 5577 5578 static size_t bpf_core_hash_fn(const long key, void *ctx) 5579 { 5580 return key; 5581 } 5582 5583 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx) 5584 { 5585 return k1 == k2; 5586 } 5587 5588 static int record_relo_core(struct bpf_program *prog, 5589 const struct bpf_core_relo *core_relo, int insn_idx) 5590 { 5591 struct reloc_desc *relos, *relo; 5592 5593 relos = libbpf_reallocarray(prog->reloc_desc, 5594 prog->nr_reloc + 1, sizeof(*relos)); 5595 if (!relos) 5596 return -ENOMEM; 5597 relo = &relos[prog->nr_reloc]; 5598 relo->type = RELO_CORE; 5599 relo->insn_idx = insn_idx; 5600 relo->core_relo = core_relo; 5601 prog->reloc_desc = relos; 5602 prog->nr_reloc++; 5603 return 0; 5604 } 5605 5606 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5607 { 5608 struct reloc_desc *relo; 5609 int i; 5610 5611 for (i = 0; i < prog->nr_reloc; i++) { 5612 relo = &prog->reloc_desc[i]; 5613 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5614 continue; 5615 5616 return relo->core_relo; 5617 } 5618 5619 return NULL; 5620 } 5621 5622 static int bpf_core_resolve_relo(struct bpf_program *prog, 5623 const struct bpf_core_relo *relo, 5624 int relo_idx, 5625 const struct btf *local_btf, 5626 struct hashmap *cand_cache, 5627 struct bpf_core_relo_res *targ_res) 5628 { 5629 struct bpf_core_spec specs_scratch[3] = {}; 5630 struct bpf_core_cand_list *cands = NULL; 5631 const char *prog_name = prog->name; 5632 const struct btf_type *local_type; 5633 const char *local_name; 5634 __u32 local_id = relo->type_id; 5635 int err; 5636 5637 local_type = btf__type_by_id(local_btf, local_id); 5638 if (!local_type) 5639 return -EINVAL; 5640 5641 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5642 if (!local_name) 5643 return -EINVAL; 5644 5645 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5646 !hashmap__find(cand_cache, local_id, &cands)) { 5647 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5648 if (IS_ERR(cands)) { 5649 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5650 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5651 local_name, PTR_ERR(cands)); 5652 return PTR_ERR(cands); 5653 } 5654 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL); 5655 if (err) { 5656 bpf_core_free_cands(cands); 5657 return err; 5658 } 5659 } 5660 5661 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5662 targ_res); 5663 } 5664 5665 static int 5666 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5667 { 5668 const struct btf_ext_info_sec *sec; 5669 struct bpf_core_relo_res targ_res; 5670 const struct bpf_core_relo *rec; 5671 const struct btf_ext_info *seg; 5672 struct hashmap_entry *entry; 5673 struct hashmap *cand_cache = NULL; 5674 struct bpf_program *prog; 5675 struct bpf_insn *insn; 5676 const char *sec_name; 5677 int i, err = 0, insn_idx, sec_idx, sec_num; 5678 5679 if (obj->btf_ext->core_relo_info.len == 0) 5680 return 0; 5681 5682 if (targ_btf_path) { 5683 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5684 err = libbpf_get_error(obj->btf_vmlinux_override); 5685 if (err) { 5686 pr_warn("failed to parse target BTF: %d\n", err); 5687 return err; 5688 } 5689 } 5690 5691 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5692 if (IS_ERR(cand_cache)) { 5693 err = PTR_ERR(cand_cache); 5694 goto out; 5695 } 5696 5697 seg = &obj->btf_ext->core_relo_info; 5698 sec_num = 0; 5699 for_each_btf_ext_sec(seg, sec) { 5700 sec_idx = seg->sec_idxs[sec_num]; 5701 sec_num++; 5702 5703 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5704 if (str_is_empty(sec_name)) { 5705 err = -EINVAL; 5706 goto out; 5707 } 5708 5709 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5710 5711 for_each_btf_ext_rec(seg, sec, i, rec) { 5712 if (rec->insn_off % BPF_INSN_SZ) 5713 return -EINVAL; 5714 insn_idx = rec->insn_off / BPF_INSN_SZ; 5715 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5716 if (!prog) { 5717 /* When __weak subprog is "overridden" by another instance 5718 * of the subprog from a different object file, linker still 5719 * appends all the .BTF.ext info that used to belong to that 5720 * eliminated subprogram. 5721 * This is similar to what x86-64 linker does for relocations. 5722 * So just ignore such relocations just like we ignore 5723 * subprog instructions when discovering subprograms. 5724 */ 5725 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5726 sec_name, i, insn_idx); 5727 continue; 5728 } 5729 /* no need to apply CO-RE relocation if the program is 5730 * not going to be loaded 5731 */ 5732 if (!prog->autoload) 5733 continue; 5734 5735 /* adjust insn_idx from section frame of reference to the local 5736 * program's frame of reference; (sub-)program code is not yet 5737 * relocated, so it's enough to just subtract in-section offset 5738 */ 5739 insn_idx = insn_idx - prog->sec_insn_off; 5740 if (insn_idx >= prog->insns_cnt) 5741 return -EINVAL; 5742 insn = &prog->insns[insn_idx]; 5743 5744 err = record_relo_core(prog, rec, insn_idx); 5745 if (err) { 5746 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5747 prog->name, i, err); 5748 goto out; 5749 } 5750 5751 if (prog->obj->gen_loader) 5752 continue; 5753 5754 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5755 if (err) { 5756 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5757 prog->name, i, err); 5758 goto out; 5759 } 5760 5761 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5762 if (err) { 5763 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5764 prog->name, i, insn_idx, err); 5765 goto out; 5766 } 5767 } 5768 } 5769 5770 out: 5771 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5772 btf__free(obj->btf_vmlinux_override); 5773 obj->btf_vmlinux_override = NULL; 5774 5775 if (!IS_ERR_OR_NULL(cand_cache)) { 5776 hashmap__for_each_entry(cand_cache, entry, i) { 5777 bpf_core_free_cands(entry->pvalue); 5778 } 5779 hashmap__free(cand_cache); 5780 } 5781 return err; 5782 } 5783 5784 /* base map load ldimm64 special constant, used also for log fixup logic */ 5785 #define MAP_LDIMM64_POISON_BASE 2001000000 5786 #define MAP_LDIMM64_POISON_PFX "200100" 5787 5788 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 5789 int insn_idx, struct bpf_insn *insn, 5790 int map_idx, const struct bpf_map *map) 5791 { 5792 int i; 5793 5794 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 5795 prog->name, relo_idx, insn_idx, map_idx, map->name); 5796 5797 /* we turn single ldimm64 into two identical invalid calls */ 5798 for (i = 0; i < 2; i++) { 5799 insn->code = BPF_JMP | BPF_CALL; 5800 insn->dst_reg = 0; 5801 insn->src_reg = 0; 5802 insn->off = 0; 5803 /* if this instruction is reachable (not a dead code), 5804 * verifier will complain with something like: 5805 * invalid func unknown#2001000123 5806 * where lower 123 is map index into obj->maps[] array 5807 */ 5808 insn->imm = MAP_LDIMM64_POISON_BASE + map_idx; 5809 5810 insn++; 5811 } 5812 } 5813 5814 /* Relocate data references within program code: 5815 * - map references; 5816 * - global variable references; 5817 * - extern references. 5818 */ 5819 static int 5820 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5821 { 5822 int i; 5823 5824 for (i = 0; i < prog->nr_reloc; i++) { 5825 struct reloc_desc *relo = &prog->reloc_desc[i]; 5826 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5827 const struct bpf_map *map; 5828 struct extern_desc *ext; 5829 5830 switch (relo->type) { 5831 case RELO_LD64: 5832 map = &obj->maps[relo->map_idx]; 5833 if (obj->gen_loader) { 5834 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 5835 insn[0].imm = relo->map_idx; 5836 } else if (map->autocreate) { 5837 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5838 insn[0].imm = map->fd; 5839 } else { 5840 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5841 relo->map_idx, map); 5842 } 5843 break; 5844 case RELO_DATA: 5845 map = &obj->maps[relo->map_idx]; 5846 insn[1].imm = insn[0].imm + relo->sym_off; 5847 if (obj->gen_loader) { 5848 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5849 insn[0].imm = relo->map_idx; 5850 } else if (map->autocreate) { 5851 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5852 insn[0].imm = map->fd; 5853 } else { 5854 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5855 relo->map_idx, map); 5856 } 5857 break; 5858 case RELO_EXTERN_VAR: 5859 ext = &obj->externs[relo->sym_off]; 5860 if (ext->type == EXT_KCFG) { 5861 if (obj->gen_loader) { 5862 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5863 insn[0].imm = obj->kconfig_map_idx; 5864 } else { 5865 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5866 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5867 } 5868 insn[1].imm = ext->kcfg.data_off; 5869 } else /* EXT_KSYM */ { 5870 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 5871 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 5872 insn[0].imm = ext->ksym.kernel_btf_id; 5873 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 5874 } else { /* typeless ksyms or unresolved typed ksyms */ 5875 insn[0].imm = (__u32)ext->ksym.addr; 5876 insn[1].imm = ext->ksym.addr >> 32; 5877 } 5878 } 5879 break; 5880 case RELO_EXTERN_FUNC: 5881 ext = &obj->externs[relo->sym_off]; 5882 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 5883 if (ext->is_set) { 5884 insn[0].imm = ext->ksym.kernel_btf_id; 5885 insn[0].off = ext->ksym.btf_fd_idx; 5886 } else { /* unresolved weak kfunc */ 5887 insn[0].imm = 0; 5888 insn[0].off = 0; 5889 } 5890 break; 5891 case RELO_SUBPROG_ADDR: 5892 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 5893 pr_warn("prog '%s': relo #%d: bad insn\n", 5894 prog->name, i); 5895 return -EINVAL; 5896 } 5897 /* handled already */ 5898 break; 5899 case RELO_CALL: 5900 /* handled already */ 5901 break; 5902 case RELO_CORE: 5903 /* will be handled by bpf_program_record_relos() */ 5904 break; 5905 default: 5906 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 5907 prog->name, i, relo->type); 5908 return -EINVAL; 5909 } 5910 } 5911 5912 return 0; 5913 } 5914 5915 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 5916 const struct bpf_program *prog, 5917 const struct btf_ext_info *ext_info, 5918 void **prog_info, __u32 *prog_rec_cnt, 5919 __u32 *prog_rec_sz) 5920 { 5921 void *copy_start = NULL, *copy_end = NULL; 5922 void *rec, *rec_end, *new_prog_info; 5923 const struct btf_ext_info_sec *sec; 5924 size_t old_sz, new_sz; 5925 int i, sec_num, sec_idx, off_adj; 5926 5927 sec_num = 0; 5928 for_each_btf_ext_sec(ext_info, sec) { 5929 sec_idx = ext_info->sec_idxs[sec_num]; 5930 sec_num++; 5931 if (prog->sec_idx != sec_idx) 5932 continue; 5933 5934 for_each_btf_ext_rec(ext_info, sec, i, rec) { 5935 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 5936 5937 if (insn_off < prog->sec_insn_off) 5938 continue; 5939 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 5940 break; 5941 5942 if (!copy_start) 5943 copy_start = rec; 5944 copy_end = rec + ext_info->rec_size; 5945 } 5946 5947 if (!copy_start) 5948 return -ENOENT; 5949 5950 /* append func/line info of a given (sub-)program to the main 5951 * program func/line info 5952 */ 5953 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 5954 new_sz = old_sz + (copy_end - copy_start); 5955 new_prog_info = realloc(*prog_info, new_sz); 5956 if (!new_prog_info) 5957 return -ENOMEM; 5958 *prog_info = new_prog_info; 5959 *prog_rec_cnt = new_sz / ext_info->rec_size; 5960 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 5961 5962 /* Kernel instruction offsets are in units of 8-byte 5963 * instructions, while .BTF.ext instruction offsets generated 5964 * by Clang are in units of bytes. So convert Clang offsets 5965 * into kernel offsets and adjust offset according to program 5966 * relocated position. 5967 */ 5968 off_adj = prog->sub_insn_off - prog->sec_insn_off; 5969 rec = new_prog_info + old_sz; 5970 rec_end = new_prog_info + new_sz; 5971 for (; rec < rec_end; rec += ext_info->rec_size) { 5972 __u32 *insn_off = rec; 5973 5974 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 5975 } 5976 *prog_rec_sz = ext_info->rec_size; 5977 return 0; 5978 } 5979 5980 return -ENOENT; 5981 } 5982 5983 static int 5984 reloc_prog_func_and_line_info(const struct bpf_object *obj, 5985 struct bpf_program *main_prog, 5986 const struct bpf_program *prog) 5987 { 5988 int err; 5989 5990 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 5991 * supprot func/line info 5992 */ 5993 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 5994 return 0; 5995 5996 /* only attempt func info relocation if main program's func_info 5997 * relocation was successful 5998 */ 5999 if (main_prog != prog && !main_prog->func_info) 6000 goto line_info; 6001 6002 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6003 &main_prog->func_info, 6004 &main_prog->func_info_cnt, 6005 &main_prog->func_info_rec_size); 6006 if (err) { 6007 if (err != -ENOENT) { 6008 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6009 prog->name, err); 6010 return err; 6011 } 6012 if (main_prog->func_info) { 6013 /* 6014 * Some info has already been found but has problem 6015 * in the last btf_ext reloc. Must have to error out. 6016 */ 6017 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6018 return err; 6019 } 6020 /* Have problem loading the very first info. Ignore the rest. */ 6021 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6022 prog->name); 6023 } 6024 6025 line_info: 6026 /* don't relocate line info if main program's relocation failed */ 6027 if (main_prog != prog && !main_prog->line_info) 6028 return 0; 6029 6030 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6031 &main_prog->line_info, 6032 &main_prog->line_info_cnt, 6033 &main_prog->line_info_rec_size); 6034 if (err) { 6035 if (err != -ENOENT) { 6036 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6037 prog->name, err); 6038 return err; 6039 } 6040 if (main_prog->line_info) { 6041 /* 6042 * Some info has already been found but has problem 6043 * in the last btf_ext reloc. Must have to error out. 6044 */ 6045 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6046 return err; 6047 } 6048 /* Have problem loading the very first info. Ignore the rest. */ 6049 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6050 prog->name); 6051 } 6052 return 0; 6053 } 6054 6055 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6056 { 6057 size_t insn_idx = *(const size_t *)key; 6058 const struct reloc_desc *relo = elem; 6059 6060 if (insn_idx == relo->insn_idx) 6061 return 0; 6062 return insn_idx < relo->insn_idx ? -1 : 1; 6063 } 6064 6065 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6066 { 6067 if (!prog->nr_reloc) 6068 return NULL; 6069 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6070 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6071 } 6072 6073 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6074 { 6075 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6076 struct reloc_desc *relos; 6077 int i; 6078 6079 if (main_prog == subprog) 6080 return 0; 6081 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6082 if (!relos) 6083 return -ENOMEM; 6084 if (subprog->nr_reloc) 6085 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6086 sizeof(*relos) * subprog->nr_reloc); 6087 6088 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6089 relos[i].insn_idx += subprog->sub_insn_off; 6090 /* After insn_idx adjustment the 'relos' array is still sorted 6091 * by insn_idx and doesn't break bsearch. 6092 */ 6093 main_prog->reloc_desc = relos; 6094 main_prog->nr_reloc = new_cnt; 6095 return 0; 6096 } 6097 6098 static int 6099 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6100 struct bpf_program *prog) 6101 { 6102 size_t sub_insn_idx, insn_idx, new_cnt; 6103 struct bpf_program *subprog; 6104 struct bpf_insn *insns, *insn; 6105 struct reloc_desc *relo; 6106 int err; 6107 6108 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6109 if (err) 6110 return err; 6111 6112 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6113 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6114 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6115 continue; 6116 6117 relo = find_prog_insn_relo(prog, insn_idx); 6118 if (relo && relo->type == RELO_EXTERN_FUNC) 6119 /* kfunc relocations will be handled later 6120 * in bpf_object__relocate_data() 6121 */ 6122 continue; 6123 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6124 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6125 prog->name, insn_idx, relo->type); 6126 return -LIBBPF_ERRNO__RELOC; 6127 } 6128 if (relo) { 6129 /* sub-program instruction index is a combination of 6130 * an offset of a symbol pointed to by relocation and 6131 * call instruction's imm field; for global functions, 6132 * call always has imm = -1, but for static functions 6133 * relocation is against STT_SECTION and insn->imm 6134 * points to a start of a static function 6135 * 6136 * for subprog addr relocation, the relo->sym_off + insn->imm is 6137 * the byte offset in the corresponding section. 6138 */ 6139 if (relo->type == RELO_CALL) 6140 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6141 else 6142 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6143 } else if (insn_is_pseudo_func(insn)) { 6144 /* 6145 * RELO_SUBPROG_ADDR relo is always emitted even if both 6146 * functions are in the same section, so it shouldn't reach here. 6147 */ 6148 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6149 prog->name, insn_idx); 6150 return -LIBBPF_ERRNO__RELOC; 6151 } else { 6152 /* if subprogram call is to a static function within 6153 * the same ELF section, there won't be any relocation 6154 * emitted, but it also means there is no additional 6155 * offset necessary, insns->imm is relative to 6156 * instruction's original position within the section 6157 */ 6158 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6159 } 6160 6161 /* we enforce that sub-programs should be in .text section */ 6162 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6163 if (!subprog) { 6164 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6165 prog->name); 6166 return -LIBBPF_ERRNO__RELOC; 6167 } 6168 6169 /* if it's the first call instruction calling into this 6170 * subprogram (meaning this subprog hasn't been processed 6171 * yet) within the context of current main program: 6172 * - append it at the end of main program's instructions blog; 6173 * - process is recursively, while current program is put on hold; 6174 * - if that subprogram calls some other not yet processes 6175 * subprogram, same thing will happen recursively until 6176 * there are no more unprocesses subprograms left to append 6177 * and relocate. 6178 */ 6179 if (subprog->sub_insn_off == 0) { 6180 subprog->sub_insn_off = main_prog->insns_cnt; 6181 6182 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6183 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6184 if (!insns) { 6185 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6186 return -ENOMEM; 6187 } 6188 main_prog->insns = insns; 6189 main_prog->insns_cnt = new_cnt; 6190 6191 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6192 subprog->insns_cnt * sizeof(*insns)); 6193 6194 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6195 main_prog->name, subprog->insns_cnt, subprog->name); 6196 6197 /* The subprog insns are now appended. Append its relos too. */ 6198 err = append_subprog_relos(main_prog, subprog); 6199 if (err) 6200 return err; 6201 err = bpf_object__reloc_code(obj, main_prog, subprog); 6202 if (err) 6203 return err; 6204 } 6205 6206 /* main_prog->insns memory could have been re-allocated, so 6207 * calculate pointer again 6208 */ 6209 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6210 /* calculate correct instruction position within current main 6211 * prog; each main prog can have a different set of 6212 * subprograms appended (potentially in different order as 6213 * well), so position of any subprog can be different for 6214 * different main programs 6215 */ 6216 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6217 6218 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6219 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6220 } 6221 6222 return 0; 6223 } 6224 6225 /* 6226 * Relocate sub-program calls. 6227 * 6228 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6229 * main prog) is processed separately. For each subprog (non-entry functions, 6230 * that can be called from either entry progs or other subprogs) gets their 6231 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6232 * hasn't been yet appended and relocated within current main prog. Once its 6233 * relocated, sub_insn_off will point at the position within current main prog 6234 * where given subprog was appended. This will further be used to relocate all 6235 * the call instructions jumping into this subprog. 6236 * 6237 * We start with main program and process all call instructions. If the call 6238 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6239 * is zero), subprog instructions are appended at the end of main program's 6240 * instruction array. Then main program is "put on hold" while we recursively 6241 * process newly appended subprogram. If that subprogram calls into another 6242 * subprogram that hasn't been appended, new subprogram is appended again to 6243 * the *main* prog's instructions (subprog's instructions are always left 6244 * untouched, as they need to be in unmodified state for subsequent main progs 6245 * and subprog instructions are always sent only as part of a main prog) and 6246 * the process continues recursively. Once all the subprogs called from a main 6247 * prog or any of its subprogs are appended (and relocated), all their 6248 * positions within finalized instructions array are known, so it's easy to 6249 * rewrite call instructions with correct relative offsets, corresponding to 6250 * desired target subprog. 6251 * 6252 * Its important to realize that some subprogs might not be called from some 6253 * main prog and any of its called/used subprogs. Those will keep their 6254 * subprog->sub_insn_off as zero at all times and won't be appended to current 6255 * main prog and won't be relocated within the context of current main prog. 6256 * They might still be used from other main progs later. 6257 * 6258 * Visually this process can be shown as below. Suppose we have two main 6259 * programs mainA and mainB and BPF object contains three subprogs: subA, 6260 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6261 * subC both call subB: 6262 * 6263 * +--------+ +-------+ 6264 * | v v | 6265 * +--+---+ +--+-+-+ +---+--+ 6266 * | subA | | subB | | subC | 6267 * +--+---+ +------+ +---+--+ 6268 * ^ ^ 6269 * | | 6270 * +---+-------+ +------+----+ 6271 * | mainA | | mainB | 6272 * +-----------+ +-----------+ 6273 * 6274 * We'll start relocating mainA, will find subA, append it and start 6275 * processing sub A recursively: 6276 * 6277 * +-----------+------+ 6278 * | mainA | subA | 6279 * +-----------+------+ 6280 * 6281 * At this point we notice that subB is used from subA, so we append it and 6282 * relocate (there are no further subcalls from subB): 6283 * 6284 * +-----------+------+------+ 6285 * | mainA | subA | subB | 6286 * +-----------+------+------+ 6287 * 6288 * At this point, we relocate subA calls, then go one level up and finish with 6289 * relocatin mainA calls. mainA is done. 6290 * 6291 * For mainB process is similar but results in different order. We start with 6292 * mainB and skip subA and subB, as mainB never calls them (at least 6293 * directly), but we see subC is needed, so we append and start processing it: 6294 * 6295 * +-----------+------+ 6296 * | mainB | subC | 6297 * +-----------+------+ 6298 * Now we see subC needs subB, so we go back to it, append and relocate it: 6299 * 6300 * +-----------+------+------+ 6301 * | mainB | subC | subB | 6302 * +-----------+------+------+ 6303 * 6304 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6305 */ 6306 static int 6307 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6308 { 6309 struct bpf_program *subprog; 6310 int i, err; 6311 6312 /* mark all subprogs as not relocated (yet) within the context of 6313 * current main program 6314 */ 6315 for (i = 0; i < obj->nr_programs; i++) { 6316 subprog = &obj->programs[i]; 6317 if (!prog_is_subprog(obj, subprog)) 6318 continue; 6319 6320 subprog->sub_insn_off = 0; 6321 } 6322 6323 err = bpf_object__reloc_code(obj, prog, prog); 6324 if (err) 6325 return err; 6326 6327 return 0; 6328 } 6329 6330 static void 6331 bpf_object__free_relocs(struct bpf_object *obj) 6332 { 6333 struct bpf_program *prog; 6334 int i; 6335 6336 /* free up relocation descriptors */ 6337 for (i = 0; i < obj->nr_programs; i++) { 6338 prog = &obj->programs[i]; 6339 zfree(&prog->reloc_desc); 6340 prog->nr_reloc = 0; 6341 } 6342 } 6343 6344 static int cmp_relocs(const void *_a, const void *_b) 6345 { 6346 const struct reloc_desc *a = _a; 6347 const struct reloc_desc *b = _b; 6348 6349 if (a->insn_idx != b->insn_idx) 6350 return a->insn_idx < b->insn_idx ? -1 : 1; 6351 6352 /* no two relocations should have the same insn_idx, but ... */ 6353 if (a->type != b->type) 6354 return a->type < b->type ? -1 : 1; 6355 6356 return 0; 6357 } 6358 6359 static void bpf_object__sort_relos(struct bpf_object *obj) 6360 { 6361 int i; 6362 6363 for (i = 0; i < obj->nr_programs; i++) { 6364 struct bpf_program *p = &obj->programs[i]; 6365 6366 if (!p->nr_reloc) 6367 continue; 6368 6369 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6370 } 6371 } 6372 6373 static int 6374 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6375 { 6376 struct bpf_program *prog; 6377 size_t i, j; 6378 int err; 6379 6380 if (obj->btf_ext) { 6381 err = bpf_object__relocate_core(obj, targ_btf_path); 6382 if (err) { 6383 pr_warn("failed to perform CO-RE relocations: %d\n", 6384 err); 6385 return err; 6386 } 6387 bpf_object__sort_relos(obj); 6388 } 6389 6390 /* Before relocating calls pre-process relocations and mark 6391 * few ld_imm64 instructions that points to subprogs. 6392 * Otherwise bpf_object__reloc_code() later would have to consider 6393 * all ld_imm64 insns as relocation candidates. That would 6394 * reduce relocation speed, since amount of find_prog_insn_relo() 6395 * would increase and most of them will fail to find a relo. 6396 */ 6397 for (i = 0; i < obj->nr_programs; i++) { 6398 prog = &obj->programs[i]; 6399 for (j = 0; j < prog->nr_reloc; j++) { 6400 struct reloc_desc *relo = &prog->reloc_desc[j]; 6401 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6402 6403 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6404 if (relo->type == RELO_SUBPROG_ADDR) 6405 insn[0].src_reg = BPF_PSEUDO_FUNC; 6406 } 6407 } 6408 6409 /* relocate subprogram calls and append used subprograms to main 6410 * programs; each copy of subprogram code needs to be relocated 6411 * differently for each main program, because its code location might 6412 * have changed. 6413 * Append subprog relos to main programs to allow data relos to be 6414 * processed after text is completely relocated. 6415 */ 6416 for (i = 0; i < obj->nr_programs; i++) { 6417 prog = &obj->programs[i]; 6418 /* sub-program's sub-calls are relocated within the context of 6419 * its main program only 6420 */ 6421 if (prog_is_subprog(obj, prog)) 6422 continue; 6423 if (!prog->autoload) 6424 continue; 6425 6426 err = bpf_object__relocate_calls(obj, prog); 6427 if (err) { 6428 pr_warn("prog '%s': failed to relocate calls: %d\n", 6429 prog->name, err); 6430 return err; 6431 } 6432 } 6433 /* Process data relos for main programs */ 6434 for (i = 0; i < obj->nr_programs; i++) { 6435 prog = &obj->programs[i]; 6436 if (prog_is_subprog(obj, prog)) 6437 continue; 6438 if (!prog->autoload) 6439 continue; 6440 err = bpf_object__relocate_data(obj, prog); 6441 if (err) { 6442 pr_warn("prog '%s': failed to relocate data references: %d\n", 6443 prog->name, err); 6444 return err; 6445 } 6446 } 6447 6448 return 0; 6449 } 6450 6451 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6452 Elf64_Shdr *shdr, Elf_Data *data); 6453 6454 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6455 Elf64_Shdr *shdr, Elf_Data *data) 6456 { 6457 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6458 int i, j, nrels, new_sz; 6459 const struct btf_var_secinfo *vi = NULL; 6460 const struct btf_type *sec, *var, *def; 6461 struct bpf_map *map = NULL, *targ_map = NULL; 6462 struct bpf_program *targ_prog = NULL; 6463 bool is_prog_array, is_map_in_map; 6464 const struct btf_member *member; 6465 const char *name, *mname, *type; 6466 unsigned int moff; 6467 Elf64_Sym *sym; 6468 Elf64_Rel *rel; 6469 void *tmp; 6470 6471 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6472 return -EINVAL; 6473 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6474 if (!sec) 6475 return -EINVAL; 6476 6477 nrels = shdr->sh_size / shdr->sh_entsize; 6478 for (i = 0; i < nrels; i++) { 6479 rel = elf_rel_by_idx(data, i); 6480 if (!rel) { 6481 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6482 return -LIBBPF_ERRNO__FORMAT; 6483 } 6484 6485 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6486 if (!sym) { 6487 pr_warn(".maps relo #%d: symbol %zx not found\n", 6488 i, (size_t)ELF64_R_SYM(rel->r_info)); 6489 return -LIBBPF_ERRNO__FORMAT; 6490 } 6491 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6492 6493 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6494 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6495 (size_t)rel->r_offset, sym->st_name, name); 6496 6497 for (j = 0; j < obj->nr_maps; j++) { 6498 map = &obj->maps[j]; 6499 if (map->sec_idx != obj->efile.btf_maps_shndx) 6500 continue; 6501 6502 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6503 if (vi->offset <= rel->r_offset && 6504 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6505 break; 6506 } 6507 if (j == obj->nr_maps) { 6508 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6509 i, name, (size_t)rel->r_offset); 6510 return -EINVAL; 6511 } 6512 6513 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 6514 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 6515 type = is_map_in_map ? "map" : "prog"; 6516 if (is_map_in_map) { 6517 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6518 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6519 i, name); 6520 return -LIBBPF_ERRNO__RELOC; 6521 } 6522 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6523 map->def.key_size != sizeof(int)) { 6524 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6525 i, map->name, sizeof(int)); 6526 return -EINVAL; 6527 } 6528 targ_map = bpf_object__find_map_by_name(obj, name); 6529 if (!targ_map) { 6530 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 6531 i, name); 6532 return -ESRCH; 6533 } 6534 } else if (is_prog_array) { 6535 targ_prog = bpf_object__find_program_by_name(obj, name); 6536 if (!targ_prog) { 6537 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 6538 i, name); 6539 return -ESRCH; 6540 } 6541 if (targ_prog->sec_idx != sym->st_shndx || 6542 targ_prog->sec_insn_off * 8 != sym->st_value || 6543 prog_is_subprog(obj, targ_prog)) { 6544 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 6545 i, name); 6546 return -LIBBPF_ERRNO__RELOC; 6547 } 6548 } else { 6549 return -EINVAL; 6550 } 6551 6552 var = btf__type_by_id(obj->btf, vi->type); 6553 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6554 if (btf_vlen(def) == 0) 6555 return -EINVAL; 6556 member = btf_members(def) + btf_vlen(def) - 1; 6557 mname = btf__name_by_offset(obj->btf, member->name_off); 6558 if (strcmp(mname, "values")) 6559 return -EINVAL; 6560 6561 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6562 if (rel->r_offset - vi->offset < moff) 6563 return -EINVAL; 6564 6565 moff = rel->r_offset - vi->offset - moff; 6566 /* here we use BPF pointer size, which is always 64 bit, as we 6567 * are parsing ELF that was built for BPF target 6568 */ 6569 if (moff % bpf_ptr_sz) 6570 return -EINVAL; 6571 moff /= bpf_ptr_sz; 6572 if (moff >= map->init_slots_sz) { 6573 new_sz = moff + 1; 6574 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6575 if (!tmp) 6576 return -ENOMEM; 6577 map->init_slots = tmp; 6578 memset(map->init_slots + map->init_slots_sz, 0, 6579 (new_sz - map->init_slots_sz) * host_ptr_sz); 6580 map->init_slots_sz = new_sz; 6581 } 6582 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 6583 6584 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 6585 i, map->name, moff, type, name); 6586 } 6587 6588 return 0; 6589 } 6590 6591 static int bpf_object__collect_relos(struct bpf_object *obj) 6592 { 6593 int i, err; 6594 6595 for (i = 0; i < obj->efile.sec_cnt; i++) { 6596 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6597 Elf64_Shdr *shdr; 6598 Elf_Data *data; 6599 int idx; 6600 6601 if (sec_desc->sec_type != SEC_RELO) 6602 continue; 6603 6604 shdr = sec_desc->shdr; 6605 data = sec_desc->data; 6606 idx = shdr->sh_info; 6607 6608 if (shdr->sh_type != SHT_REL) { 6609 pr_warn("internal error at %d\n", __LINE__); 6610 return -LIBBPF_ERRNO__INTERNAL; 6611 } 6612 6613 if (idx == obj->efile.st_ops_shndx) 6614 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6615 else if (idx == obj->efile.btf_maps_shndx) 6616 err = bpf_object__collect_map_relos(obj, shdr, data); 6617 else 6618 err = bpf_object__collect_prog_relos(obj, shdr, data); 6619 if (err) 6620 return err; 6621 } 6622 6623 bpf_object__sort_relos(obj); 6624 return 0; 6625 } 6626 6627 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6628 { 6629 if (BPF_CLASS(insn->code) == BPF_JMP && 6630 BPF_OP(insn->code) == BPF_CALL && 6631 BPF_SRC(insn->code) == BPF_K && 6632 insn->src_reg == 0 && 6633 insn->dst_reg == 0) { 6634 *func_id = insn->imm; 6635 return true; 6636 } 6637 return false; 6638 } 6639 6640 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6641 { 6642 struct bpf_insn *insn = prog->insns; 6643 enum bpf_func_id func_id; 6644 int i; 6645 6646 if (obj->gen_loader) 6647 return 0; 6648 6649 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6650 if (!insn_is_helper_call(insn, &func_id)) 6651 continue; 6652 6653 /* on kernels that don't yet support 6654 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6655 * to bpf_probe_read() which works well for old kernels 6656 */ 6657 switch (func_id) { 6658 case BPF_FUNC_probe_read_kernel: 6659 case BPF_FUNC_probe_read_user: 6660 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6661 insn->imm = BPF_FUNC_probe_read; 6662 break; 6663 case BPF_FUNC_probe_read_kernel_str: 6664 case BPF_FUNC_probe_read_user_str: 6665 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6666 insn->imm = BPF_FUNC_probe_read_str; 6667 break; 6668 default: 6669 break; 6670 } 6671 } 6672 return 0; 6673 } 6674 6675 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6676 int *btf_obj_fd, int *btf_type_id); 6677 6678 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 6679 static int libbpf_prepare_prog_load(struct bpf_program *prog, 6680 struct bpf_prog_load_opts *opts, long cookie) 6681 { 6682 enum sec_def_flags def = cookie; 6683 6684 /* old kernels might not support specifying expected_attach_type */ 6685 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6686 opts->expected_attach_type = 0; 6687 6688 if (def & SEC_SLEEPABLE) 6689 opts->prog_flags |= BPF_F_SLEEPABLE; 6690 6691 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 6692 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 6693 6694 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 6695 int btf_obj_fd = 0, btf_type_id = 0, err; 6696 const char *attach_name; 6697 6698 attach_name = strchr(prog->sec_name, '/'); 6699 if (!attach_name) { 6700 /* if BPF program is annotated with just SEC("fentry") 6701 * (or similar) without declaratively specifying 6702 * target, then it is expected that target will be 6703 * specified with bpf_program__set_attach_target() at 6704 * runtime before BPF object load step. If not, then 6705 * there is nothing to load into the kernel as BPF 6706 * verifier won't be able to validate BPF program 6707 * correctness anyways. 6708 */ 6709 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 6710 prog->name); 6711 return -EINVAL; 6712 } 6713 attach_name++; /* skip over / */ 6714 6715 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6716 if (err) 6717 return err; 6718 6719 /* cache resolved BTF FD and BTF type ID in the prog */ 6720 prog->attach_btf_obj_fd = btf_obj_fd; 6721 prog->attach_btf_id = btf_type_id; 6722 6723 /* but by now libbpf common logic is not utilizing 6724 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 6725 * this callback is called after opts were populated by 6726 * libbpf, so this callback has to update opts explicitly here 6727 */ 6728 opts->attach_btf_obj_fd = btf_obj_fd; 6729 opts->attach_btf_id = btf_type_id; 6730 } 6731 return 0; 6732 } 6733 6734 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 6735 6736 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 6737 struct bpf_insn *insns, int insns_cnt, 6738 const char *license, __u32 kern_version, int *prog_fd) 6739 { 6740 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 6741 const char *prog_name = NULL; 6742 char *cp, errmsg[STRERR_BUFSIZE]; 6743 size_t log_buf_size = 0; 6744 char *log_buf = NULL, *tmp; 6745 int btf_fd, ret, err; 6746 bool own_log_buf = true; 6747 __u32 log_level = prog->log_level; 6748 6749 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6750 /* 6751 * The program type must be set. Most likely we couldn't find a proper 6752 * section definition at load time, and thus we didn't infer the type. 6753 */ 6754 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6755 prog->name, prog->sec_name); 6756 return -EINVAL; 6757 } 6758 6759 if (!insns || !insns_cnt) 6760 return -EINVAL; 6761 6762 load_attr.expected_attach_type = prog->expected_attach_type; 6763 if (kernel_supports(obj, FEAT_PROG_NAME)) 6764 prog_name = prog->name; 6765 load_attr.attach_prog_fd = prog->attach_prog_fd; 6766 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 6767 load_attr.attach_btf_id = prog->attach_btf_id; 6768 load_attr.kern_version = kern_version; 6769 load_attr.prog_ifindex = prog->prog_ifindex; 6770 6771 /* specify func_info/line_info only if kernel supports them */ 6772 btf_fd = bpf_object__btf_fd(obj); 6773 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 6774 load_attr.prog_btf_fd = btf_fd; 6775 load_attr.func_info = prog->func_info; 6776 load_attr.func_info_rec_size = prog->func_info_rec_size; 6777 load_attr.func_info_cnt = prog->func_info_cnt; 6778 load_attr.line_info = prog->line_info; 6779 load_attr.line_info_rec_size = prog->line_info_rec_size; 6780 load_attr.line_info_cnt = prog->line_info_cnt; 6781 } 6782 load_attr.log_level = log_level; 6783 load_attr.prog_flags = prog->prog_flags; 6784 load_attr.fd_array = obj->fd_array; 6785 6786 /* adjust load_attr if sec_def provides custom preload callback */ 6787 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 6788 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 6789 if (err < 0) { 6790 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 6791 prog->name, err); 6792 return err; 6793 } 6794 insns = prog->insns; 6795 insns_cnt = prog->insns_cnt; 6796 } 6797 6798 if (obj->gen_loader) { 6799 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 6800 license, insns, insns_cnt, &load_attr, 6801 prog - obj->programs); 6802 *prog_fd = -1; 6803 return 0; 6804 } 6805 6806 retry_load: 6807 /* if log_level is zero, we don't request logs initially even if 6808 * custom log_buf is specified; if the program load fails, then we'll 6809 * bump log_level to 1 and use either custom log_buf or we'll allocate 6810 * our own and retry the load to get details on what failed 6811 */ 6812 if (log_level) { 6813 if (prog->log_buf) { 6814 log_buf = prog->log_buf; 6815 log_buf_size = prog->log_size; 6816 own_log_buf = false; 6817 } else if (obj->log_buf) { 6818 log_buf = obj->log_buf; 6819 log_buf_size = obj->log_size; 6820 own_log_buf = false; 6821 } else { 6822 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 6823 tmp = realloc(log_buf, log_buf_size); 6824 if (!tmp) { 6825 ret = -ENOMEM; 6826 goto out; 6827 } 6828 log_buf = tmp; 6829 log_buf[0] = '\0'; 6830 own_log_buf = true; 6831 } 6832 } 6833 6834 load_attr.log_buf = log_buf; 6835 load_attr.log_size = log_buf_size; 6836 load_attr.log_level = log_level; 6837 6838 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 6839 if (ret >= 0) { 6840 if (log_level && own_log_buf) { 6841 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6842 prog->name, log_buf); 6843 } 6844 6845 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 6846 struct bpf_map *map; 6847 int i; 6848 6849 for (i = 0; i < obj->nr_maps; i++) { 6850 map = &prog->obj->maps[i]; 6851 if (map->libbpf_type != LIBBPF_MAP_RODATA) 6852 continue; 6853 6854 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 6855 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6856 pr_warn("prog '%s': failed to bind map '%s': %s\n", 6857 prog->name, map->real_name, cp); 6858 /* Don't fail hard if can't bind rodata. */ 6859 } 6860 } 6861 } 6862 6863 *prog_fd = ret; 6864 ret = 0; 6865 goto out; 6866 } 6867 6868 if (log_level == 0) { 6869 log_level = 1; 6870 goto retry_load; 6871 } 6872 /* On ENOSPC, increase log buffer size and retry, unless custom 6873 * log_buf is specified. 6874 * Be careful to not overflow u32, though. Kernel's log buf size limit 6875 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 6876 * multiply by 2 unless we are sure we'll fit within 32 bits. 6877 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 6878 */ 6879 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 6880 goto retry_load; 6881 6882 ret = -errno; 6883 6884 /* post-process verifier log to improve error descriptions */ 6885 fixup_verifier_log(prog, log_buf, log_buf_size); 6886 6887 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6888 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 6889 pr_perm_msg(ret); 6890 6891 if (own_log_buf && log_buf && log_buf[0] != '\0') { 6892 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6893 prog->name, log_buf); 6894 } 6895 6896 out: 6897 if (own_log_buf) 6898 free(log_buf); 6899 return ret; 6900 } 6901 6902 static char *find_prev_line(char *buf, char *cur) 6903 { 6904 char *p; 6905 6906 if (cur == buf) /* end of a log buf */ 6907 return NULL; 6908 6909 p = cur - 1; 6910 while (p - 1 >= buf && *(p - 1) != '\n') 6911 p--; 6912 6913 return p; 6914 } 6915 6916 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 6917 char *orig, size_t orig_sz, const char *patch) 6918 { 6919 /* size of the remaining log content to the right from the to-be-replaced part */ 6920 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 6921 size_t patch_sz = strlen(patch); 6922 6923 if (patch_sz != orig_sz) { 6924 /* If patch line(s) are longer than original piece of verifier log, 6925 * shift log contents by (patch_sz - orig_sz) bytes to the right 6926 * starting from after to-be-replaced part of the log. 6927 * 6928 * If patch line(s) are shorter than original piece of verifier log, 6929 * shift log contents by (orig_sz - patch_sz) bytes to the left 6930 * starting from after to-be-replaced part of the log 6931 * 6932 * We need to be careful about not overflowing available 6933 * buf_sz capacity. If that's the case, we'll truncate the end 6934 * of the original log, as necessary. 6935 */ 6936 if (patch_sz > orig_sz) { 6937 if (orig + patch_sz >= buf + buf_sz) { 6938 /* patch is big enough to cover remaining space completely */ 6939 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 6940 rem_sz = 0; 6941 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 6942 /* patch causes part of remaining log to be truncated */ 6943 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 6944 } 6945 } 6946 /* shift remaining log to the right by calculated amount */ 6947 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 6948 } 6949 6950 memcpy(orig, patch, patch_sz); 6951 } 6952 6953 static void fixup_log_failed_core_relo(struct bpf_program *prog, 6954 char *buf, size_t buf_sz, size_t log_sz, 6955 char *line1, char *line2, char *line3) 6956 { 6957 /* Expected log for failed and not properly guarded CO-RE relocation: 6958 * line1 -> 123: (85) call unknown#195896080 6959 * line2 -> invalid func unknown#195896080 6960 * line3 -> <anything else or end of buffer> 6961 * 6962 * "123" is the index of the instruction that was poisoned. We extract 6963 * instruction index to find corresponding CO-RE relocation and 6964 * replace this part of the log with more relevant information about 6965 * failed CO-RE relocation. 6966 */ 6967 const struct bpf_core_relo *relo; 6968 struct bpf_core_spec spec; 6969 char patch[512], spec_buf[256]; 6970 int insn_idx, err, spec_len; 6971 6972 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 6973 return; 6974 6975 relo = find_relo_core(prog, insn_idx); 6976 if (!relo) 6977 return; 6978 6979 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 6980 if (err) 6981 return; 6982 6983 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 6984 snprintf(patch, sizeof(patch), 6985 "%d: <invalid CO-RE relocation>\n" 6986 "failed to resolve CO-RE relocation %s%s\n", 6987 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 6988 6989 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 6990 } 6991 6992 static void fixup_log_missing_map_load(struct bpf_program *prog, 6993 char *buf, size_t buf_sz, size_t log_sz, 6994 char *line1, char *line2, char *line3) 6995 { 6996 /* Expected log for failed and not properly guarded CO-RE relocation: 6997 * line1 -> 123: (85) call unknown#2001000345 6998 * line2 -> invalid func unknown#2001000345 6999 * line3 -> <anything else or end of buffer> 7000 * 7001 * "123" is the index of the instruction that was poisoned. 7002 * "345" in "2001000345" are map index in obj->maps to fetch map name. 7003 */ 7004 struct bpf_object *obj = prog->obj; 7005 const struct bpf_map *map; 7006 int insn_idx, map_idx; 7007 char patch[128]; 7008 7009 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7010 return; 7011 7012 map_idx -= MAP_LDIMM64_POISON_BASE; 7013 if (map_idx < 0 || map_idx >= obj->nr_maps) 7014 return; 7015 map = &obj->maps[map_idx]; 7016 7017 snprintf(patch, sizeof(patch), 7018 "%d: <invalid BPF map reference>\n" 7019 "BPF map '%s' is referenced but wasn't created\n", 7020 insn_idx, map->name); 7021 7022 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7023 } 7024 7025 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7026 { 7027 /* look for familiar error patterns in last N lines of the log */ 7028 const size_t max_last_line_cnt = 10; 7029 char *prev_line, *cur_line, *next_line; 7030 size_t log_sz; 7031 int i; 7032 7033 if (!buf) 7034 return; 7035 7036 log_sz = strlen(buf) + 1; 7037 next_line = buf + log_sz - 1; 7038 7039 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7040 cur_line = find_prev_line(buf, next_line); 7041 if (!cur_line) 7042 return; 7043 7044 /* failed CO-RE relocation case */ 7045 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7046 prev_line = find_prev_line(buf, cur_line); 7047 if (!prev_line) 7048 continue; 7049 7050 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7051 prev_line, cur_line, next_line); 7052 return; 7053 } else if (str_has_pfx(cur_line, "invalid func unknown#"MAP_LDIMM64_POISON_PFX)) { 7054 prev_line = find_prev_line(buf, cur_line); 7055 if (!prev_line) 7056 continue; 7057 7058 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7059 prev_line, cur_line, next_line); 7060 return; 7061 } 7062 } 7063 } 7064 7065 static int bpf_program_record_relos(struct bpf_program *prog) 7066 { 7067 struct bpf_object *obj = prog->obj; 7068 int i; 7069 7070 for (i = 0; i < prog->nr_reloc; i++) { 7071 struct reloc_desc *relo = &prog->reloc_desc[i]; 7072 struct extern_desc *ext = &obj->externs[relo->sym_off]; 7073 7074 switch (relo->type) { 7075 case RELO_EXTERN_VAR: 7076 if (ext->type != EXT_KSYM) 7077 continue; 7078 bpf_gen__record_extern(obj->gen_loader, ext->name, 7079 ext->is_weak, !ext->ksym.type_id, 7080 BTF_KIND_VAR, relo->insn_idx); 7081 break; 7082 case RELO_EXTERN_FUNC: 7083 bpf_gen__record_extern(obj->gen_loader, ext->name, 7084 ext->is_weak, false, BTF_KIND_FUNC, 7085 relo->insn_idx); 7086 break; 7087 case RELO_CORE: { 7088 struct bpf_core_relo cr = { 7089 .insn_off = relo->insn_idx * 8, 7090 .type_id = relo->core_relo->type_id, 7091 .access_str_off = relo->core_relo->access_str_off, 7092 .kind = relo->core_relo->kind, 7093 }; 7094 7095 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7096 break; 7097 } 7098 default: 7099 continue; 7100 } 7101 } 7102 return 0; 7103 } 7104 7105 static int 7106 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7107 { 7108 struct bpf_program *prog; 7109 size_t i; 7110 int err; 7111 7112 for (i = 0; i < obj->nr_programs; i++) { 7113 prog = &obj->programs[i]; 7114 err = bpf_object__sanitize_prog(obj, prog); 7115 if (err) 7116 return err; 7117 } 7118 7119 for (i = 0; i < obj->nr_programs; i++) { 7120 prog = &obj->programs[i]; 7121 if (prog_is_subprog(obj, prog)) 7122 continue; 7123 if (!prog->autoload) { 7124 pr_debug("prog '%s': skipped loading\n", prog->name); 7125 continue; 7126 } 7127 prog->log_level |= log_level; 7128 7129 if (obj->gen_loader) 7130 bpf_program_record_relos(prog); 7131 7132 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7133 obj->license, obj->kern_version, &prog->fd); 7134 if (err) { 7135 pr_warn("prog '%s': failed to load: %d\n", prog->name, err); 7136 return err; 7137 } 7138 } 7139 7140 bpf_object__free_relocs(obj); 7141 return 0; 7142 } 7143 7144 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7145 7146 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7147 { 7148 struct bpf_program *prog; 7149 int err; 7150 7151 bpf_object__for_each_program(prog, obj) { 7152 prog->sec_def = find_sec_def(prog->sec_name); 7153 if (!prog->sec_def) { 7154 /* couldn't guess, but user might manually specify */ 7155 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7156 prog->name, prog->sec_name); 7157 continue; 7158 } 7159 7160 prog->type = prog->sec_def->prog_type; 7161 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7162 7163 /* sec_def can have custom callback which should be called 7164 * after bpf_program is initialized to adjust its properties 7165 */ 7166 if (prog->sec_def->prog_setup_fn) { 7167 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7168 if (err < 0) { 7169 pr_warn("prog '%s': failed to initialize: %d\n", 7170 prog->name, err); 7171 return err; 7172 } 7173 } 7174 } 7175 7176 return 0; 7177 } 7178 7179 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7180 const struct bpf_object_open_opts *opts) 7181 { 7182 const char *obj_name, *kconfig, *btf_tmp_path; 7183 struct bpf_object *obj; 7184 char tmp_name[64]; 7185 int err; 7186 char *log_buf; 7187 size_t log_size; 7188 __u32 log_level; 7189 7190 if (elf_version(EV_CURRENT) == EV_NONE) { 7191 pr_warn("failed to init libelf for %s\n", 7192 path ? : "(mem buf)"); 7193 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7194 } 7195 7196 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7197 return ERR_PTR(-EINVAL); 7198 7199 obj_name = OPTS_GET(opts, object_name, NULL); 7200 if (obj_buf) { 7201 if (!obj_name) { 7202 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7203 (unsigned long)obj_buf, 7204 (unsigned long)obj_buf_sz); 7205 obj_name = tmp_name; 7206 } 7207 path = obj_name; 7208 pr_debug("loading object '%s' from buffer\n", obj_name); 7209 } 7210 7211 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7212 log_size = OPTS_GET(opts, kernel_log_size, 0); 7213 log_level = OPTS_GET(opts, kernel_log_level, 0); 7214 if (log_size > UINT_MAX) 7215 return ERR_PTR(-EINVAL); 7216 if (log_size && !log_buf) 7217 return ERR_PTR(-EINVAL); 7218 7219 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7220 if (IS_ERR(obj)) 7221 return obj; 7222 7223 obj->log_buf = log_buf; 7224 obj->log_size = log_size; 7225 obj->log_level = log_level; 7226 7227 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7228 if (btf_tmp_path) { 7229 if (strlen(btf_tmp_path) >= PATH_MAX) { 7230 err = -ENAMETOOLONG; 7231 goto out; 7232 } 7233 obj->btf_custom_path = strdup(btf_tmp_path); 7234 if (!obj->btf_custom_path) { 7235 err = -ENOMEM; 7236 goto out; 7237 } 7238 } 7239 7240 kconfig = OPTS_GET(opts, kconfig, NULL); 7241 if (kconfig) { 7242 obj->kconfig = strdup(kconfig); 7243 if (!obj->kconfig) { 7244 err = -ENOMEM; 7245 goto out; 7246 } 7247 } 7248 7249 err = bpf_object__elf_init(obj); 7250 err = err ? : bpf_object__check_endianness(obj); 7251 err = err ? : bpf_object__elf_collect(obj); 7252 err = err ? : bpf_object__collect_externs(obj); 7253 err = err ? : bpf_object_fixup_btf(obj); 7254 err = err ? : bpf_object__init_maps(obj, opts); 7255 err = err ? : bpf_object_init_progs(obj, opts); 7256 err = err ? : bpf_object__collect_relos(obj); 7257 if (err) 7258 goto out; 7259 7260 bpf_object__elf_finish(obj); 7261 7262 return obj; 7263 out: 7264 bpf_object__close(obj); 7265 return ERR_PTR(err); 7266 } 7267 7268 struct bpf_object * 7269 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7270 { 7271 if (!path) 7272 return libbpf_err_ptr(-EINVAL); 7273 7274 pr_debug("loading %s\n", path); 7275 7276 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7277 } 7278 7279 struct bpf_object *bpf_object__open(const char *path) 7280 { 7281 return bpf_object__open_file(path, NULL); 7282 } 7283 7284 struct bpf_object * 7285 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7286 const struct bpf_object_open_opts *opts) 7287 { 7288 if (!obj_buf || obj_buf_sz == 0) 7289 return libbpf_err_ptr(-EINVAL); 7290 7291 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7292 } 7293 7294 static int bpf_object_unload(struct bpf_object *obj) 7295 { 7296 size_t i; 7297 7298 if (!obj) 7299 return libbpf_err(-EINVAL); 7300 7301 for (i = 0; i < obj->nr_maps; i++) { 7302 zclose(obj->maps[i].fd); 7303 if (obj->maps[i].st_ops) 7304 zfree(&obj->maps[i].st_ops->kern_vdata); 7305 } 7306 7307 for (i = 0; i < obj->nr_programs; i++) 7308 bpf_program__unload(&obj->programs[i]); 7309 7310 return 0; 7311 } 7312 7313 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7314 { 7315 struct bpf_map *m; 7316 7317 bpf_object__for_each_map(m, obj) { 7318 if (!bpf_map__is_internal(m)) 7319 continue; 7320 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7321 m->def.map_flags &= ~BPF_F_MMAPABLE; 7322 } 7323 7324 return 0; 7325 } 7326 7327 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 7328 { 7329 char sym_type, sym_name[500]; 7330 unsigned long long sym_addr; 7331 int ret, err = 0; 7332 FILE *f; 7333 7334 f = fopen("/proc/kallsyms", "r"); 7335 if (!f) { 7336 err = -errno; 7337 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7338 return err; 7339 } 7340 7341 while (true) { 7342 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7343 &sym_addr, &sym_type, sym_name); 7344 if (ret == EOF && feof(f)) 7345 break; 7346 if (ret != 3) { 7347 pr_warn("failed to read kallsyms entry: %d\n", ret); 7348 err = -EINVAL; 7349 break; 7350 } 7351 7352 err = cb(sym_addr, sym_type, sym_name, ctx); 7353 if (err) 7354 break; 7355 } 7356 7357 fclose(f); 7358 return err; 7359 } 7360 7361 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 7362 const char *sym_name, void *ctx) 7363 { 7364 struct bpf_object *obj = ctx; 7365 const struct btf_type *t; 7366 struct extern_desc *ext; 7367 7368 ext = find_extern_by_name(obj, sym_name); 7369 if (!ext || ext->type != EXT_KSYM) 7370 return 0; 7371 7372 t = btf__type_by_id(obj->btf, ext->btf_id); 7373 if (!btf_is_var(t)) 7374 return 0; 7375 7376 if (ext->is_set && ext->ksym.addr != sym_addr) { 7377 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 7378 sym_name, ext->ksym.addr, sym_addr); 7379 return -EINVAL; 7380 } 7381 if (!ext->is_set) { 7382 ext->is_set = true; 7383 ext->ksym.addr = sym_addr; 7384 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 7385 } 7386 return 0; 7387 } 7388 7389 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7390 { 7391 return libbpf_kallsyms_parse(kallsyms_cb, obj); 7392 } 7393 7394 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7395 __u16 kind, struct btf **res_btf, 7396 struct module_btf **res_mod_btf) 7397 { 7398 struct module_btf *mod_btf; 7399 struct btf *btf; 7400 int i, id, err; 7401 7402 btf = obj->btf_vmlinux; 7403 mod_btf = NULL; 7404 id = btf__find_by_name_kind(btf, ksym_name, kind); 7405 7406 if (id == -ENOENT) { 7407 err = load_module_btfs(obj); 7408 if (err) 7409 return err; 7410 7411 for (i = 0; i < obj->btf_module_cnt; i++) { 7412 /* we assume module_btf's BTF FD is always >0 */ 7413 mod_btf = &obj->btf_modules[i]; 7414 btf = mod_btf->btf; 7415 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7416 if (id != -ENOENT) 7417 break; 7418 } 7419 } 7420 if (id <= 0) 7421 return -ESRCH; 7422 7423 *res_btf = btf; 7424 *res_mod_btf = mod_btf; 7425 return id; 7426 } 7427 7428 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7429 struct extern_desc *ext) 7430 { 7431 const struct btf_type *targ_var, *targ_type; 7432 __u32 targ_type_id, local_type_id; 7433 struct module_btf *mod_btf = NULL; 7434 const char *targ_var_name; 7435 struct btf *btf = NULL; 7436 int id, err; 7437 7438 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7439 if (id < 0) { 7440 if (id == -ESRCH && ext->is_weak) 7441 return 0; 7442 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7443 ext->name); 7444 return id; 7445 } 7446 7447 /* find local type_id */ 7448 local_type_id = ext->ksym.type_id; 7449 7450 /* find target type_id */ 7451 targ_var = btf__type_by_id(btf, id); 7452 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7453 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7454 7455 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7456 btf, targ_type_id); 7457 if (err <= 0) { 7458 const struct btf_type *local_type; 7459 const char *targ_name, *local_name; 7460 7461 local_type = btf__type_by_id(obj->btf, local_type_id); 7462 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7463 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7464 7465 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7466 ext->name, local_type_id, 7467 btf_kind_str(local_type), local_name, targ_type_id, 7468 btf_kind_str(targ_type), targ_name); 7469 return -EINVAL; 7470 } 7471 7472 ext->is_set = true; 7473 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7474 ext->ksym.kernel_btf_id = id; 7475 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7476 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7477 7478 return 0; 7479 } 7480 7481 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7482 struct extern_desc *ext) 7483 { 7484 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7485 struct module_btf *mod_btf = NULL; 7486 const struct btf_type *kern_func; 7487 struct btf *kern_btf = NULL; 7488 int ret; 7489 7490 local_func_proto_id = ext->ksym.type_id; 7491 7492 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf); 7493 if (kfunc_id < 0) { 7494 if (kfunc_id == -ESRCH && ext->is_weak) 7495 return 0; 7496 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7497 ext->name); 7498 return kfunc_id; 7499 } 7500 7501 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7502 kfunc_proto_id = kern_func->type; 7503 7504 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7505 kern_btf, kfunc_proto_id); 7506 if (ret <= 0) { 7507 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n", 7508 ext->name, local_func_proto_id, kfunc_proto_id); 7509 return -EINVAL; 7510 } 7511 7512 /* set index for module BTF fd in fd_array, if unset */ 7513 if (mod_btf && !mod_btf->fd_array_idx) { 7514 /* insn->off is s16 */ 7515 if (obj->fd_array_cnt == INT16_MAX) { 7516 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7517 ext->name, mod_btf->fd_array_idx); 7518 return -E2BIG; 7519 } 7520 /* Cannot use index 0 for module BTF fd */ 7521 if (!obj->fd_array_cnt) 7522 obj->fd_array_cnt = 1; 7523 7524 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7525 obj->fd_array_cnt + 1); 7526 if (ret) 7527 return ret; 7528 mod_btf->fd_array_idx = obj->fd_array_cnt; 7529 /* we assume module BTF FD is always >0 */ 7530 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7531 } 7532 7533 ext->is_set = true; 7534 ext->ksym.kernel_btf_id = kfunc_id; 7535 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7536 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n", 7537 ext->name, kfunc_id); 7538 7539 return 0; 7540 } 7541 7542 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7543 { 7544 const struct btf_type *t; 7545 struct extern_desc *ext; 7546 int i, err; 7547 7548 for (i = 0; i < obj->nr_extern; i++) { 7549 ext = &obj->externs[i]; 7550 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7551 continue; 7552 7553 if (obj->gen_loader) { 7554 ext->is_set = true; 7555 ext->ksym.kernel_btf_obj_fd = 0; 7556 ext->ksym.kernel_btf_id = 0; 7557 continue; 7558 } 7559 t = btf__type_by_id(obj->btf, ext->btf_id); 7560 if (btf_is_var(t)) 7561 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7562 else 7563 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7564 if (err) 7565 return err; 7566 } 7567 return 0; 7568 } 7569 7570 static int bpf_object__resolve_externs(struct bpf_object *obj, 7571 const char *extra_kconfig) 7572 { 7573 bool need_config = false, need_kallsyms = false; 7574 bool need_vmlinux_btf = false; 7575 struct extern_desc *ext; 7576 void *kcfg_data = NULL; 7577 int err, i; 7578 7579 if (obj->nr_extern == 0) 7580 return 0; 7581 7582 if (obj->kconfig_map_idx >= 0) 7583 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7584 7585 for (i = 0; i < obj->nr_extern; i++) { 7586 ext = &obj->externs[i]; 7587 7588 if (ext->type == EXT_KSYM) { 7589 if (ext->ksym.type_id) 7590 need_vmlinux_btf = true; 7591 else 7592 need_kallsyms = true; 7593 continue; 7594 } else if (ext->type == EXT_KCFG) { 7595 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 7596 __u64 value = 0; 7597 7598 /* Kconfig externs need actual /proc/config.gz */ 7599 if (str_has_pfx(ext->name, "CONFIG_")) { 7600 need_config = true; 7601 continue; 7602 } 7603 7604 /* Virtual kcfg externs are customly handled by libbpf */ 7605 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7606 value = get_kernel_version(); 7607 if (!value) { 7608 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 7609 return -EINVAL; 7610 } 7611 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 7612 value = kernel_supports(obj, FEAT_BPF_COOKIE); 7613 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 7614 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 7615 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 7616 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 7617 * __kconfig externs, where LINUX_ ones are virtual and filled out 7618 * customly by libbpf (their values don't come from Kconfig). 7619 * If LINUX_xxx variable is not recognized by libbpf, but is marked 7620 * __weak, it defaults to zero value, just like for CONFIG_xxx 7621 * externs. 7622 */ 7623 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 7624 return -EINVAL; 7625 } 7626 7627 err = set_kcfg_value_num(ext, ext_ptr, value); 7628 if (err) 7629 return err; 7630 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 7631 ext->name, (long long)value); 7632 } else { 7633 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 7634 return -EINVAL; 7635 } 7636 } 7637 if (need_config && extra_kconfig) { 7638 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7639 if (err) 7640 return -EINVAL; 7641 need_config = false; 7642 for (i = 0; i < obj->nr_extern; i++) { 7643 ext = &obj->externs[i]; 7644 if (ext->type == EXT_KCFG && !ext->is_set) { 7645 need_config = true; 7646 break; 7647 } 7648 } 7649 } 7650 if (need_config) { 7651 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7652 if (err) 7653 return -EINVAL; 7654 } 7655 if (need_kallsyms) { 7656 err = bpf_object__read_kallsyms_file(obj); 7657 if (err) 7658 return -EINVAL; 7659 } 7660 if (need_vmlinux_btf) { 7661 err = bpf_object__resolve_ksyms_btf_id(obj); 7662 if (err) 7663 return -EINVAL; 7664 } 7665 for (i = 0; i < obj->nr_extern; i++) { 7666 ext = &obj->externs[i]; 7667 7668 if (!ext->is_set && !ext->is_weak) { 7669 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 7670 return -ESRCH; 7671 } else if (!ext->is_set) { 7672 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 7673 ext->name); 7674 } 7675 } 7676 7677 return 0; 7678 } 7679 7680 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 7681 { 7682 int err, i; 7683 7684 if (!obj) 7685 return libbpf_err(-EINVAL); 7686 7687 if (obj->loaded) { 7688 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7689 return libbpf_err(-EINVAL); 7690 } 7691 7692 if (obj->gen_loader) 7693 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 7694 7695 err = bpf_object__probe_loading(obj); 7696 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7697 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7698 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7699 err = err ? : bpf_object__sanitize_maps(obj); 7700 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7701 err = err ? : bpf_object__create_maps(obj); 7702 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 7703 err = err ? : bpf_object__load_progs(obj, extra_log_level); 7704 err = err ? : bpf_object_init_prog_arrays(obj); 7705 7706 if (obj->gen_loader) { 7707 /* reset FDs */ 7708 if (obj->btf) 7709 btf__set_fd(obj->btf, -1); 7710 for (i = 0; i < obj->nr_maps; i++) 7711 obj->maps[i].fd = -1; 7712 if (!err) 7713 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 7714 } 7715 7716 /* clean up fd_array */ 7717 zfree(&obj->fd_array); 7718 7719 /* clean up module BTFs */ 7720 for (i = 0; i < obj->btf_module_cnt; i++) { 7721 close(obj->btf_modules[i].fd); 7722 btf__free(obj->btf_modules[i].btf); 7723 free(obj->btf_modules[i].name); 7724 } 7725 free(obj->btf_modules); 7726 7727 /* clean up vmlinux BTF */ 7728 btf__free(obj->btf_vmlinux); 7729 obj->btf_vmlinux = NULL; 7730 7731 obj->loaded = true; /* doesn't matter if successfully or not */ 7732 7733 if (err) 7734 goto out; 7735 7736 return 0; 7737 out: 7738 /* unpin any maps that were auto-pinned during load */ 7739 for (i = 0; i < obj->nr_maps; i++) 7740 if (obj->maps[i].pinned && !obj->maps[i].reused) 7741 bpf_map__unpin(&obj->maps[i], NULL); 7742 7743 bpf_object_unload(obj); 7744 pr_warn("failed to load object '%s'\n", obj->path); 7745 return libbpf_err(err); 7746 } 7747 7748 int bpf_object__load(struct bpf_object *obj) 7749 { 7750 return bpf_object_load(obj, 0, NULL); 7751 } 7752 7753 static int make_parent_dir(const char *path) 7754 { 7755 char *cp, errmsg[STRERR_BUFSIZE]; 7756 char *dname, *dir; 7757 int err = 0; 7758 7759 dname = strdup(path); 7760 if (dname == NULL) 7761 return -ENOMEM; 7762 7763 dir = dirname(dname); 7764 if (mkdir(dir, 0700) && errno != EEXIST) 7765 err = -errno; 7766 7767 free(dname); 7768 if (err) { 7769 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7770 pr_warn("failed to mkdir %s: %s\n", path, cp); 7771 } 7772 return err; 7773 } 7774 7775 static int check_path(const char *path) 7776 { 7777 char *cp, errmsg[STRERR_BUFSIZE]; 7778 struct statfs st_fs; 7779 char *dname, *dir; 7780 int err = 0; 7781 7782 if (path == NULL) 7783 return -EINVAL; 7784 7785 dname = strdup(path); 7786 if (dname == NULL) 7787 return -ENOMEM; 7788 7789 dir = dirname(dname); 7790 if (statfs(dir, &st_fs)) { 7791 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7792 pr_warn("failed to statfs %s: %s\n", dir, cp); 7793 err = -errno; 7794 } 7795 free(dname); 7796 7797 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7798 pr_warn("specified path %s is not on BPF FS\n", path); 7799 err = -EINVAL; 7800 } 7801 7802 return err; 7803 } 7804 7805 int bpf_program__pin(struct bpf_program *prog, const char *path) 7806 { 7807 char *cp, errmsg[STRERR_BUFSIZE]; 7808 int err; 7809 7810 if (prog->fd < 0) { 7811 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 7812 return libbpf_err(-EINVAL); 7813 } 7814 7815 err = make_parent_dir(path); 7816 if (err) 7817 return libbpf_err(err); 7818 7819 err = check_path(path); 7820 if (err) 7821 return libbpf_err(err); 7822 7823 if (bpf_obj_pin(prog->fd, path)) { 7824 err = -errno; 7825 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7826 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp); 7827 return libbpf_err(err); 7828 } 7829 7830 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 7831 return 0; 7832 } 7833 7834 int bpf_program__unpin(struct bpf_program *prog, const char *path) 7835 { 7836 int err; 7837 7838 if (prog->fd < 0) { 7839 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 7840 return libbpf_err(-EINVAL); 7841 } 7842 7843 err = check_path(path); 7844 if (err) 7845 return libbpf_err(err); 7846 7847 err = unlink(path); 7848 if (err) 7849 return libbpf_err(-errno); 7850 7851 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 7852 return 0; 7853 } 7854 7855 int bpf_map__pin(struct bpf_map *map, const char *path) 7856 { 7857 char *cp, errmsg[STRERR_BUFSIZE]; 7858 int err; 7859 7860 if (map == NULL) { 7861 pr_warn("invalid map pointer\n"); 7862 return libbpf_err(-EINVAL); 7863 } 7864 7865 if (map->pin_path) { 7866 if (path && strcmp(path, map->pin_path)) { 7867 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7868 bpf_map__name(map), map->pin_path, path); 7869 return libbpf_err(-EINVAL); 7870 } else if (map->pinned) { 7871 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 7872 bpf_map__name(map), map->pin_path); 7873 return 0; 7874 } 7875 } else { 7876 if (!path) { 7877 pr_warn("missing a path to pin map '%s' at\n", 7878 bpf_map__name(map)); 7879 return libbpf_err(-EINVAL); 7880 } else if (map->pinned) { 7881 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 7882 return libbpf_err(-EEXIST); 7883 } 7884 7885 map->pin_path = strdup(path); 7886 if (!map->pin_path) { 7887 err = -errno; 7888 goto out_err; 7889 } 7890 } 7891 7892 err = make_parent_dir(map->pin_path); 7893 if (err) 7894 return libbpf_err(err); 7895 7896 err = check_path(map->pin_path); 7897 if (err) 7898 return libbpf_err(err); 7899 7900 if (bpf_obj_pin(map->fd, map->pin_path)) { 7901 err = -errno; 7902 goto out_err; 7903 } 7904 7905 map->pinned = true; 7906 pr_debug("pinned map '%s'\n", map->pin_path); 7907 7908 return 0; 7909 7910 out_err: 7911 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7912 pr_warn("failed to pin map: %s\n", cp); 7913 return libbpf_err(err); 7914 } 7915 7916 int bpf_map__unpin(struct bpf_map *map, const char *path) 7917 { 7918 int err; 7919 7920 if (map == NULL) { 7921 pr_warn("invalid map pointer\n"); 7922 return libbpf_err(-EINVAL); 7923 } 7924 7925 if (map->pin_path) { 7926 if (path && strcmp(path, map->pin_path)) { 7927 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7928 bpf_map__name(map), map->pin_path, path); 7929 return libbpf_err(-EINVAL); 7930 } 7931 path = map->pin_path; 7932 } else if (!path) { 7933 pr_warn("no path to unpin map '%s' from\n", 7934 bpf_map__name(map)); 7935 return libbpf_err(-EINVAL); 7936 } 7937 7938 err = check_path(path); 7939 if (err) 7940 return libbpf_err(err); 7941 7942 err = unlink(path); 7943 if (err != 0) 7944 return libbpf_err(-errno); 7945 7946 map->pinned = false; 7947 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 7948 7949 return 0; 7950 } 7951 7952 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 7953 { 7954 char *new = NULL; 7955 7956 if (path) { 7957 new = strdup(path); 7958 if (!new) 7959 return libbpf_err(-errno); 7960 } 7961 7962 free(map->pin_path); 7963 map->pin_path = new; 7964 return 0; 7965 } 7966 7967 __alias(bpf_map__pin_path) 7968 const char *bpf_map__get_pin_path(const struct bpf_map *map); 7969 7970 const char *bpf_map__pin_path(const struct bpf_map *map) 7971 { 7972 return map->pin_path; 7973 } 7974 7975 bool bpf_map__is_pinned(const struct bpf_map *map) 7976 { 7977 return map->pinned; 7978 } 7979 7980 static void sanitize_pin_path(char *s) 7981 { 7982 /* bpffs disallows periods in path names */ 7983 while (*s) { 7984 if (*s == '.') 7985 *s = '_'; 7986 s++; 7987 } 7988 } 7989 7990 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 7991 { 7992 struct bpf_map *map; 7993 int err; 7994 7995 if (!obj) 7996 return libbpf_err(-ENOENT); 7997 7998 if (!obj->loaded) { 7999 pr_warn("object not yet loaded; load it first\n"); 8000 return libbpf_err(-ENOENT); 8001 } 8002 8003 bpf_object__for_each_map(map, obj) { 8004 char *pin_path = NULL; 8005 char buf[PATH_MAX]; 8006 8007 if (!map->autocreate) 8008 continue; 8009 8010 if (path) { 8011 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8012 if (err) 8013 goto err_unpin_maps; 8014 sanitize_pin_path(buf); 8015 pin_path = buf; 8016 } else if (!map->pin_path) { 8017 continue; 8018 } 8019 8020 err = bpf_map__pin(map, pin_path); 8021 if (err) 8022 goto err_unpin_maps; 8023 } 8024 8025 return 0; 8026 8027 err_unpin_maps: 8028 while ((map = bpf_object__prev_map(obj, map))) { 8029 if (!map->pin_path) 8030 continue; 8031 8032 bpf_map__unpin(map, NULL); 8033 } 8034 8035 return libbpf_err(err); 8036 } 8037 8038 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8039 { 8040 struct bpf_map *map; 8041 int err; 8042 8043 if (!obj) 8044 return libbpf_err(-ENOENT); 8045 8046 bpf_object__for_each_map(map, obj) { 8047 char *pin_path = NULL; 8048 char buf[PATH_MAX]; 8049 8050 if (path) { 8051 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8052 if (err) 8053 return libbpf_err(err); 8054 sanitize_pin_path(buf); 8055 pin_path = buf; 8056 } else if (!map->pin_path) { 8057 continue; 8058 } 8059 8060 err = bpf_map__unpin(map, pin_path); 8061 if (err) 8062 return libbpf_err(err); 8063 } 8064 8065 return 0; 8066 } 8067 8068 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8069 { 8070 struct bpf_program *prog; 8071 char buf[PATH_MAX]; 8072 int err; 8073 8074 if (!obj) 8075 return libbpf_err(-ENOENT); 8076 8077 if (!obj->loaded) { 8078 pr_warn("object not yet loaded; load it first\n"); 8079 return libbpf_err(-ENOENT); 8080 } 8081 8082 bpf_object__for_each_program(prog, obj) { 8083 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8084 if (err) 8085 goto err_unpin_programs; 8086 8087 err = bpf_program__pin(prog, buf); 8088 if (err) 8089 goto err_unpin_programs; 8090 } 8091 8092 return 0; 8093 8094 err_unpin_programs: 8095 while ((prog = bpf_object__prev_program(obj, prog))) { 8096 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 8097 continue; 8098 8099 bpf_program__unpin(prog, buf); 8100 } 8101 8102 return libbpf_err(err); 8103 } 8104 8105 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8106 { 8107 struct bpf_program *prog; 8108 int err; 8109 8110 if (!obj) 8111 return libbpf_err(-ENOENT); 8112 8113 bpf_object__for_each_program(prog, obj) { 8114 char buf[PATH_MAX]; 8115 8116 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8117 if (err) 8118 return libbpf_err(err); 8119 8120 err = bpf_program__unpin(prog, buf); 8121 if (err) 8122 return libbpf_err(err); 8123 } 8124 8125 return 0; 8126 } 8127 8128 int bpf_object__pin(struct bpf_object *obj, const char *path) 8129 { 8130 int err; 8131 8132 err = bpf_object__pin_maps(obj, path); 8133 if (err) 8134 return libbpf_err(err); 8135 8136 err = bpf_object__pin_programs(obj, path); 8137 if (err) { 8138 bpf_object__unpin_maps(obj, path); 8139 return libbpf_err(err); 8140 } 8141 8142 return 0; 8143 } 8144 8145 static void bpf_map__destroy(struct bpf_map *map) 8146 { 8147 if (map->inner_map) { 8148 bpf_map__destroy(map->inner_map); 8149 zfree(&map->inner_map); 8150 } 8151 8152 zfree(&map->init_slots); 8153 map->init_slots_sz = 0; 8154 8155 if (map->mmaped) { 8156 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8157 map->mmaped = NULL; 8158 } 8159 8160 if (map->st_ops) { 8161 zfree(&map->st_ops->data); 8162 zfree(&map->st_ops->progs); 8163 zfree(&map->st_ops->kern_func_off); 8164 zfree(&map->st_ops); 8165 } 8166 8167 zfree(&map->name); 8168 zfree(&map->real_name); 8169 zfree(&map->pin_path); 8170 8171 if (map->fd >= 0) 8172 zclose(map->fd); 8173 } 8174 8175 void bpf_object__close(struct bpf_object *obj) 8176 { 8177 size_t i; 8178 8179 if (IS_ERR_OR_NULL(obj)) 8180 return; 8181 8182 usdt_manager_free(obj->usdt_man); 8183 obj->usdt_man = NULL; 8184 8185 bpf_gen__free(obj->gen_loader); 8186 bpf_object__elf_finish(obj); 8187 bpf_object_unload(obj); 8188 btf__free(obj->btf); 8189 btf_ext__free(obj->btf_ext); 8190 8191 for (i = 0; i < obj->nr_maps; i++) 8192 bpf_map__destroy(&obj->maps[i]); 8193 8194 zfree(&obj->btf_custom_path); 8195 zfree(&obj->kconfig); 8196 zfree(&obj->externs); 8197 obj->nr_extern = 0; 8198 8199 zfree(&obj->maps); 8200 obj->nr_maps = 0; 8201 8202 if (obj->programs && obj->nr_programs) { 8203 for (i = 0; i < obj->nr_programs; i++) 8204 bpf_program__exit(&obj->programs[i]); 8205 } 8206 zfree(&obj->programs); 8207 8208 free(obj); 8209 } 8210 8211 const char *bpf_object__name(const struct bpf_object *obj) 8212 { 8213 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8214 } 8215 8216 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8217 { 8218 return obj ? obj->kern_version : 0; 8219 } 8220 8221 struct btf *bpf_object__btf(const struct bpf_object *obj) 8222 { 8223 return obj ? obj->btf : NULL; 8224 } 8225 8226 int bpf_object__btf_fd(const struct bpf_object *obj) 8227 { 8228 return obj->btf ? btf__fd(obj->btf) : -1; 8229 } 8230 8231 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8232 { 8233 if (obj->loaded) 8234 return libbpf_err(-EINVAL); 8235 8236 obj->kern_version = kern_version; 8237 8238 return 0; 8239 } 8240 8241 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8242 { 8243 struct bpf_gen *gen; 8244 8245 if (!opts) 8246 return -EFAULT; 8247 if (!OPTS_VALID(opts, gen_loader_opts)) 8248 return -EINVAL; 8249 gen = calloc(sizeof(*gen), 1); 8250 if (!gen) 8251 return -ENOMEM; 8252 gen->opts = opts; 8253 obj->gen_loader = gen; 8254 return 0; 8255 } 8256 8257 static struct bpf_program * 8258 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8259 bool forward) 8260 { 8261 size_t nr_programs = obj->nr_programs; 8262 ssize_t idx; 8263 8264 if (!nr_programs) 8265 return NULL; 8266 8267 if (!p) 8268 /* Iter from the beginning */ 8269 return forward ? &obj->programs[0] : 8270 &obj->programs[nr_programs - 1]; 8271 8272 if (p->obj != obj) { 8273 pr_warn("error: program handler doesn't match object\n"); 8274 return errno = EINVAL, NULL; 8275 } 8276 8277 idx = (p - obj->programs) + (forward ? 1 : -1); 8278 if (idx >= obj->nr_programs || idx < 0) 8279 return NULL; 8280 return &obj->programs[idx]; 8281 } 8282 8283 struct bpf_program * 8284 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8285 { 8286 struct bpf_program *prog = prev; 8287 8288 do { 8289 prog = __bpf_program__iter(prog, obj, true); 8290 } while (prog && prog_is_subprog(obj, prog)); 8291 8292 return prog; 8293 } 8294 8295 struct bpf_program * 8296 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8297 { 8298 struct bpf_program *prog = next; 8299 8300 do { 8301 prog = __bpf_program__iter(prog, obj, false); 8302 } while (prog && prog_is_subprog(obj, prog)); 8303 8304 return prog; 8305 } 8306 8307 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8308 { 8309 prog->prog_ifindex = ifindex; 8310 } 8311 8312 const char *bpf_program__name(const struct bpf_program *prog) 8313 { 8314 return prog->name; 8315 } 8316 8317 const char *bpf_program__section_name(const struct bpf_program *prog) 8318 { 8319 return prog->sec_name; 8320 } 8321 8322 bool bpf_program__autoload(const struct bpf_program *prog) 8323 { 8324 return prog->autoload; 8325 } 8326 8327 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8328 { 8329 if (prog->obj->loaded) 8330 return libbpf_err(-EINVAL); 8331 8332 prog->autoload = autoload; 8333 return 0; 8334 } 8335 8336 bool bpf_program__autoattach(const struct bpf_program *prog) 8337 { 8338 return prog->autoattach; 8339 } 8340 8341 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 8342 { 8343 prog->autoattach = autoattach; 8344 } 8345 8346 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8347 { 8348 return prog->insns; 8349 } 8350 8351 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8352 { 8353 return prog->insns_cnt; 8354 } 8355 8356 int bpf_program__set_insns(struct bpf_program *prog, 8357 struct bpf_insn *new_insns, size_t new_insn_cnt) 8358 { 8359 struct bpf_insn *insns; 8360 8361 if (prog->obj->loaded) 8362 return -EBUSY; 8363 8364 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 8365 if (!insns) { 8366 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 8367 return -ENOMEM; 8368 } 8369 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 8370 8371 prog->insns = insns; 8372 prog->insns_cnt = new_insn_cnt; 8373 return 0; 8374 } 8375 8376 int bpf_program__fd(const struct bpf_program *prog) 8377 { 8378 if (!prog) 8379 return libbpf_err(-EINVAL); 8380 8381 if (prog->fd < 0) 8382 return libbpf_err(-ENOENT); 8383 8384 return prog->fd; 8385 } 8386 8387 __alias(bpf_program__type) 8388 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 8389 8390 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 8391 { 8392 return prog->type; 8393 } 8394 8395 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8396 { 8397 if (prog->obj->loaded) 8398 return libbpf_err(-EBUSY); 8399 8400 prog->type = type; 8401 return 0; 8402 } 8403 8404 __alias(bpf_program__expected_attach_type) 8405 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 8406 8407 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 8408 { 8409 return prog->expected_attach_type; 8410 } 8411 8412 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 8413 enum bpf_attach_type type) 8414 { 8415 if (prog->obj->loaded) 8416 return libbpf_err(-EBUSY); 8417 8418 prog->expected_attach_type = type; 8419 return 0; 8420 } 8421 8422 __u32 bpf_program__flags(const struct bpf_program *prog) 8423 { 8424 return prog->prog_flags; 8425 } 8426 8427 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 8428 { 8429 if (prog->obj->loaded) 8430 return libbpf_err(-EBUSY); 8431 8432 prog->prog_flags = flags; 8433 return 0; 8434 } 8435 8436 __u32 bpf_program__log_level(const struct bpf_program *prog) 8437 { 8438 return prog->log_level; 8439 } 8440 8441 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 8442 { 8443 if (prog->obj->loaded) 8444 return libbpf_err(-EBUSY); 8445 8446 prog->log_level = log_level; 8447 return 0; 8448 } 8449 8450 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 8451 { 8452 *log_size = prog->log_size; 8453 return prog->log_buf; 8454 } 8455 8456 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 8457 { 8458 if (log_size && !log_buf) 8459 return -EINVAL; 8460 if (prog->log_size > UINT_MAX) 8461 return -EINVAL; 8462 if (prog->obj->loaded) 8463 return -EBUSY; 8464 8465 prog->log_buf = log_buf; 8466 prog->log_size = log_size; 8467 return 0; 8468 } 8469 8470 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 8471 .sec = (char *)sec_pfx, \ 8472 .prog_type = BPF_PROG_TYPE_##ptype, \ 8473 .expected_attach_type = atype, \ 8474 .cookie = (long)(flags), \ 8475 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 8476 __VA_ARGS__ \ 8477 } 8478 8479 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8480 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8481 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8482 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8483 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8484 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8485 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8486 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8487 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8488 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8489 8490 static const struct bpf_sec_def section_defs[] = { 8491 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 8492 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 8493 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 8494 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8495 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8496 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8497 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8498 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8499 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8500 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8501 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8502 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8503 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8504 SEC_DEF("usdt+", KPROBE, 0, SEC_NONE, attach_usdt), 8505 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), 8506 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), 8507 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), 8508 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8509 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8510 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8511 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8512 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8513 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8514 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 8515 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 8516 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 8517 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 8518 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8519 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8520 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8521 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 8522 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 8523 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 8524 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 8525 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 8526 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 8527 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 8528 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 8529 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 8530 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 8531 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 8532 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 8533 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 8534 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 8535 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 8536 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 8537 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 8538 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 8539 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 8540 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 8541 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 8542 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 8543 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 8544 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 8545 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 8546 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 8547 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 8548 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 8549 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 8550 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 8551 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 8552 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 8553 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 8554 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 8555 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 8556 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 8557 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 8558 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 8559 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 8560 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 8561 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 8562 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 8563 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 8564 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 8565 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 8566 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 8567 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 8568 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 8569 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 8570 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 8571 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE), 8572 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 8573 }; 8574 8575 static size_t custom_sec_def_cnt; 8576 static struct bpf_sec_def *custom_sec_defs; 8577 static struct bpf_sec_def custom_fallback_def; 8578 static bool has_custom_fallback_def; 8579 8580 static int last_custom_sec_def_handler_id; 8581 8582 int libbpf_register_prog_handler(const char *sec, 8583 enum bpf_prog_type prog_type, 8584 enum bpf_attach_type exp_attach_type, 8585 const struct libbpf_prog_handler_opts *opts) 8586 { 8587 struct bpf_sec_def *sec_def; 8588 8589 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 8590 return libbpf_err(-EINVAL); 8591 8592 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 8593 return libbpf_err(-E2BIG); 8594 8595 if (sec) { 8596 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 8597 sizeof(*sec_def)); 8598 if (!sec_def) 8599 return libbpf_err(-ENOMEM); 8600 8601 custom_sec_defs = sec_def; 8602 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 8603 } else { 8604 if (has_custom_fallback_def) 8605 return libbpf_err(-EBUSY); 8606 8607 sec_def = &custom_fallback_def; 8608 } 8609 8610 sec_def->sec = sec ? strdup(sec) : NULL; 8611 if (sec && !sec_def->sec) 8612 return libbpf_err(-ENOMEM); 8613 8614 sec_def->prog_type = prog_type; 8615 sec_def->expected_attach_type = exp_attach_type; 8616 sec_def->cookie = OPTS_GET(opts, cookie, 0); 8617 8618 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 8619 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 8620 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 8621 8622 sec_def->handler_id = ++last_custom_sec_def_handler_id; 8623 8624 if (sec) 8625 custom_sec_def_cnt++; 8626 else 8627 has_custom_fallback_def = true; 8628 8629 return sec_def->handler_id; 8630 } 8631 8632 int libbpf_unregister_prog_handler(int handler_id) 8633 { 8634 struct bpf_sec_def *sec_defs; 8635 int i; 8636 8637 if (handler_id <= 0) 8638 return libbpf_err(-EINVAL); 8639 8640 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 8641 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 8642 has_custom_fallback_def = false; 8643 return 0; 8644 } 8645 8646 for (i = 0; i < custom_sec_def_cnt; i++) { 8647 if (custom_sec_defs[i].handler_id == handler_id) 8648 break; 8649 } 8650 8651 if (i == custom_sec_def_cnt) 8652 return libbpf_err(-ENOENT); 8653 8654 free(custom_sec_defs[i].sec); 8655 for (i = i + 1; i < custom_sec_def_cnt; i++) 8656 custom_sec_defs[i - 1] = custom_sec_defs[i]; 8657 custom_sec_def_cnt--; 8658 8659 /* try to shrink the array, but it's ok if we couldn't */ 8660 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 8661 if (sec_defs) 8662 custom_sec_defs = sec_defs; 8663 8664 return 0; 8665 } 8666 8667 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 8668 { 8669 size_t len = strlen(sec_def->sec); 8670 8671 /* "type/" always has to have proper SEC("type/extras") form */ 8672 if (sec_def->sec[len - 1] == '/') { 8673 if (str_has_pfx(sec_name, sec_def->sec)) 8674 return true; 8675 return false; 8676 } 8677 8678 /* "type+" means it can be either exact SEC("type") or 8679 * well-formed SEC("type/extras") with proper '/' separator 8680 */ 8681 if (sec_def->sec[len - 1] == '+') { 8682 len--; 8683 /* not even a prefix */ 8684 if (strncmp(sec_name, sec_def->sec, len) != 0) 8685 return false; 8686 /* exact match or has '/' separator */ 8687 if (sec_name[len] == '\0' || sec_name[len] == '/') 8688 return true; 8689 return false; 8690 } 8691 8692 return strcmp(sec_name, sec_def->sec) == 0; 8693 } 8694 8695 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8696 { 8697 const struct bpf_sec_def *sec_def; 8698 int i, n; 8699 8700 n = custom_sec_def_cnt; 8701 for (i = 0; i < n; i++) { 8702 sec_def = &custom_sec_defs[i]; 8703 if (sec_def_matches(sec_def, sec_name)) 8704 return sec_def; 8705 } 8706 8707 n = ARRAY_SIZE(section_defs); 8708 for (i = 0; i < n; i++) { 8709 sec_def = §ion_defs[i]; 8710 if (sec_def_matches(sec_def, sec_name)) 8711 return sec_def; 8712 } 8713 8714 if (has_custom_fallback_def) 8715 return &custom_fallback_def; 8716 8717 return NULL; 8718 } 8719 8720 #define MAX_TYPE_NAME_SIZE 32 8721 8722 static char *libbpf_get_type_names(bool attach_type) 8723 { 8724 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8725 char *buf; 8726 8727 buf = malloc(len); 8728 if (!buf) 8729 return NULL; 8730 8731 buf[0] = '\0'; 8732 /* Forge string buf with all available names */ 8733 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8734 const struct bpf_sec_def *sec_def = §ion_defs[i]; 8735 8736 if (attach_type) { 8737 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 8738 continue; 8739 8740 if (!(sec_def->cookie & SEC_ATTACHABLE)) 8741 continue; 8742 } 8743 8744 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8745 free(buf); 8746 return NULL; 8747 } 8748 strcat(buf, " "); 8749 strcat(buf, section_defs[i].sec); 8750 } 8751 8752 return buf; 8753 } 8754 8755 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8756 enum bpf_attach_type *expected_attach_type) 8757 { 8758 const struct bpf_sec_def *sec_def; 8759 char *type_names; 8760 8761 if (!name) 8762 return libbpf_err(-EINVAL); 8763 8764 sec_def = find_sec_def(name); 8765 if (sec_def) { 8766 *prog_type = sec_def->prog_type; 8767 *expected_attach_type = sec_def->expected_attach_type; 8768 return 0; 8769 } 8770 8771 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8772 type_names = libbpf_get_type_names(false); 8773 if (type_names != NULL) { 8774 pr_debug("supported section(type) names are:%s\n", type_names); 8775 free(type_names); 8776 } 8777 8778 return libbpf_err(-ESRCH); 8779 } 8780 8781 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 8782 { 8783 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 8784 return NULL; 8785 8786 return attach_type_name[t]; 8787 } 8788 8789 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 8790 { 8791 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 8792 return NULL; 8793 8794 return link_type_name[t]; 8795 } 8796 8797 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 8798 { 8799 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 8800 return NULL; 8801 8802 return map_type_name[t]; 8803 } 8804 8805 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 8806 { 8807 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 8808 return NULL; 8809 8810 return prog_type_name[t]; 8811 } 8812 8813 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 8814 size_t offset) 8815 { 8816 struct bpf_map *map; 8817 size_t i; 8818 8819 for (i = 0; i < obj->nr_maps; i++) { 8820 map = &obj->maps[i]; 8821 if (!bpf_map__is_struct_ops(map)) 8822 continue; 8823 if (map->sec_offset <= offset && 8824 offset - map->sec_offset < map->def.value_size) 8825 return map; 8826 } 8827 8828 return NULL; 8829 } 8830 8831 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 8832 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 8833 Elf64_Shdr *shdr, Elf_Data *data) 8834 { 8835 const struct btf_member *member; 8836 struct bpf_struct_ops *st_ops; 8837 struct bpf_program *prog; 8838 unsigned int shdr_idx; 8839 const struct btf *btf; 8840 struct bpf_map *map; 8841 unsigned int moff, insn_idx; 8842 const char *name; 8843 __u32 member_idx; 8844 Elf64_Sym *sym; 8845 Elf64_Rel *rel; 8846 int i, nrels; 8847 8848 btf = obj->btf; 8849 nrels = shdr->sh_size / shdr->sh_entsize; 8850 for (i = 0; i < nrels; i++) { 8851 rel = elf_rel_by_idx(data, i); 8852 if (!rel) { 8853 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 8854 return -LIBBPF_ERRNO__FORMAT; 8855 } 8856 8857 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 8858 if (!sym) { 8859 pr_warn("struct_ops reloc: symbol %zx not found\n", 8860 (size_t)ELF64_R_SYM(rel->r_info)); 8861 return -LIBBPF_ERRNO__FORMAT; 8862 } 8863 8864 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 8865 map = find_struct_ops_map_by_offset(obj, rel->r_offset); 8866 if (!map) { 8867 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 8868 (size_t)rel->r_offset); 8869 return -EINVAL; 8870 } 8871 8872 moff = rel->r_offset - map->sec_offset; 8873 shdr_idx = sym->st_shndx; 8874 st_ops = map->st_ops; 8875 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 8876 map->name, 8877 (long long)(rel->r_info >> 32), 8878 (long long)sym->st_value, 8879 shdr_idx, (size_t)rel->r_offset, 8880 map->sec_offset, sym->st_name, name); 8881 8882 if (shdr_idx >= SHN_LORESERVE) { 8883 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 8884 map->name, (size_t)rel->r_offset, shdr_idx); 8885 return -LIBBPF_ERRNO__RELOC; 8886 } 8887 if (sym->st_value % BPF_INSN_SZ) { 8888 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 8889 map->name, (unsigned long long)sym->st_value); 8890 return -LIBBPF_ERRNO__FORMAT; 8891 } 8892 insn_idx = sym->st_value / BPF_INSN_SZ; 8893 8894 member = find_member_by_offset(st_ops->type, moff * 8); 8895 if (!member) { 8896 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 8897 map->name, moff); 8898 return -EINVAL; 8899 } 8900 member_idx = member - btf_members(st_ops->type); 8901 name = btf__name_by_offset(btf, member->name_off); 8902 8903 if (!resolve_func_ptr(btf, member->type, NULL)) { 8904 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 8905 map->name, name); 8906 return -EINVAL; 8907 } 8908 8909 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 8910 if (!prog) { 8911 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 8912 map->name, shdr_idx, name); 8913 return -EINVAL; 8914 } 8915 8916 /* prevent the use of BPF prog with invalid type */ 8917 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 8918 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 8919 map->name, prog->name); 8920 return -EINVAL; 8921 } 8922 8923 /* if we haven't yet processed this BPF program, record proper 8924 * attach_btf_id and member_idx 8925 */ 8926 if (!prog->attach_btf_id) { 8927 prog->attach_btf_id = st_ops->type_id; 8928 prog->expected_attach_type = member_idx; 8929 } 8930 8931 /* struct_ops BPF prog can be re-used between multiple 8932 * .struct_ops as long as it's the same struct_ops struct 8933 * definition and the same function pointer field 8934 */ 8935 if (prog->attach_btf_id != st_ops->type_id || 8936 prog->expected_attach_type != member_idx) { 8937 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 8938 map->name, prog->name, prog->sec_name, prog->type, 8939 prog->attach_btf_id, prog->expected_attach_type, name); 8940 return -EINVAL; 8941 } 8942 8943 st_ops->progs[member_idx] = prog; 8944 } 8945 8946 return 0; 8947 } 8948 8949 #define BTF_TRACE_PREFIX "btf_trace_" 8950 #define BTF_LSM_PREFIX "bpf_lsm_" 8951 #define BTF_ITER_PREFIX "bpf_iter_" 8952 #define BTF_MAX_NAME_SIZE 128 8953 8954 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 8955 const char **prefix, int *kind) 8956 { 8957 switch (attach_type) { 8958 case BPF_TRACE_RAW_TP: 8959 *prefix = BTF_TRACE_PREFIX; 8960 *kind = BTF_KIND_TYPEDEF; 8961 break; 8962 case BPF_LSM_MAC: 8963 case BPF_LSM_CGROUP: 8964 *prefix = BTF_LSM_PREFIX; 8965 *kind = BTF_KIND_FUNC; 8966 break; 8967 case BPF_TRACE_ITER: 8968 *prefix = BTF_ITER_PREFIX; 8969 *kind = BTF_KIND_FUNC; 8970 break; 8971 default: 8972 *prefix = ""; 8973 *kind = BTF_KIND_FUNC; 8974 } 8975 } 8976 8977 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 8978 const char *name, __u32 kind) 8979 { 8980 char btf_type_name[BTF_MAX_NAME_SIZE]; 8981 int ret; 8982 8983 ret = snprintf(btf_type_name, sizeof(btf_type_name), 8984 "%s%s", prefix, name); 8985 /* snprintf returns the number of characters written excluding the 8986 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 8987 * indicates truncation. 8988 */ 8989 if (ret < 0 || ret >= sizeof(btf_type_name)) 8990 return -ENAMETOOLONG; 8991 return btf__find_by_name_kind(btf, btf_type_name, kind); 8992 } 8993 8994 static inline int find_attach_btf_id(struct btf *btf, const char *name, 8995 enum bpf_attach_type attach_type) 8996 { 8997 const char *prefix; 8998 int kind; 8999 9000 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9001 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9002 } 9003 9004 int libbpf_find_vmlinux_btf_id(const char *name, 9005 enum bpf_attach_type attach_type) 9006 { 9007 struct btf *btf; 9008 int err; 9009 9010 btf = btf__load_vmlinux_btf(); 9011 err = libbpf_get_error(btf); 9012 if (err) { 9013 pr_warn("vmlinux BTF is not found\n"); 9014 return libbpf_err(err); 9015 } 9016 9017 err = find_attach_btf_id(btf, name, attach_type); 9018 if (err <= 0) 9019 pr_warn("%s is not found in vmlinux BTF\n", name); 9020 9021 btf__free(btf); 9022 return libbpf_err(err); 9023 } 9024 9025 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9026 { 9027 struct bpf_prog_info info; 9028 __u32 info_len = sizeof(info); 9029 struct btf *btf; 9030 int err; 9031 9032 memset(&info, 0, info_len); 9033 err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len); 9034 if (err) { 9035 pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n", 9036 attach_prog_fd, err); 9037 return err; 9038 } 9039 9040 err = -EINVAL; 9041 if (!info.btf_id) { 9042 pr_warn("The target program doesn't have BTF\n"); 9043 goto out; 9044 } 9045 btf = btf__load_from_kernel_by_id(info.btf_id); 9046 err = libbpf_get_error(btf); 9047 if (err) { 9048 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9049 goto out; 9050 } 9051 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9052 btf__free(btf); 9053 if (err <= 0) { 9054 pr_warn("%s is not found in prog's BTF\n", name); 9055 goto out; 9056 } 9057 out: 9058 return err; 9059 } 9060 9061 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9062 enum bpf_attach_type attach_type, 9063 int *btf_obj_fd, int *btf_type_id) 9064 { 9065 int ret, i; 9066 9067 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9068 if (ret > 0) { 9069 *btf_obj_fd = 0; /* vmlinux BTF */ 9070 *btf_type_id = ret; 9071 return 0; 9072 } 9073 if (ret != -ENOENT) 9074 return ret; 9075 9076 ret = load_module_btfs(obj); 9077 if (ret) 9078 return ret; 9079 9080 for (i = 0; i < obj->btf_module_cnt; i++) { 9081 const struct module_btf *mod = &obj->btf_modules[i]; 9082 9083 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9084 if (ret > 0) { 9085 *btf_obj_fd = mod->fd; 9086 *btf_type_id = ret; 9087 return 0; 9088 } 9089 if (ret == -ENOENT) 9090 continue; 9091 9092 return ret; 9093 } 9094 9095 return -ESRCH; 9096 } 9097 9098 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9099 int *btf_obj_fd, int *btf_type_id) 9100 { 9101 enum bpf_attach_type attach_type = prog->expected_attach_type; 9102 __u32 attach_prog_fd = prog->attach_prog_fd; 9103 int err = 0; 9104 9105 /* BPF program's BTF ID */ 9106 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 9107 if (!attach_prog_fd) { 9108 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 9109 return -EINVAL; 9110 } 9111 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9112 if (err < 0) { 9113 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9114 prog->name, attach_prog_fd, attach_name, err); 9115 return err; 9116 } 9117 *btf_obj_fd = 0; 9118 *btf_type_id = err; 9119 return 0; 9120 } 9121 9122 /* kernel/module BTF ID */ 9123 if (prog->obj->gen_loader) { 9124 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9125 *btf_obj_fd = 0; 9126 *btf_type_id = 1; 9127 } else { 9128 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9129 } 9130 if (err) { 9131 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n", 9132 prog->name, attach_name, err); 9133 return err; 9134 } 9135 return 0; 9136 } 9137 9138 int libbpf_attach_type_by_name(const char *name, 9139 enum bpf_attach_type *attach_type) 9140 { 9141 char *type_names; 9142 const struct bpf_sec_def *sec_def; 9143 9144 if (!name) 9145 return libbpf_err(-EINVAL); 9146 9147 sec_def = find_sec_def(name); 9148 if (!sec_def) { 9149 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9150 type_names = libbpf_get_type_names(true); 9151 if (type_names != NULL) { 9152 pr_debug("attachable section(type) names are:%s\n", type_names); 9153 free(type_names); 9154 } 9155 9156 return libbpf_err(-EINVAL); 9157 } 9158 9159 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9160 return libbpf_err(-EINVAL); 9161 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9162 return libbpf_err(-EINVAL); 9163 9164 *attach_type = sec_def->expected_attach_type; 9165 return 0; 9166 } 9167 9168 int bpf_map__fd(const struct bpf_map *map) 9169 { 9170 return map ? map->fd : libbpf_err(-EINVAL); 9171 } 9172 9173 static bool map_uses_real_name(const struct bpf_map *map) 9174 { 9175 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9176 * their user-visible name differs from kernel-visible name. Users see 9177 * such map's corresponding ELF section name as a map name. 9178 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9179 * maps to know which name has to be returned to the user. 9180 */ 9181 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9182 return true; 9183 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9184 return true; 9185 return false; 9186 } 9187 9188 const char *bpf_map__name(const struct bpf_map *map) 9189 { 9190 if (!map) 9191 return NULL; 9192 9193 if (map_uses_real_name(map)) 9194 return map->real_name; 9195 9196 return map->name; 9197 } 9198 9199 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9200 { 9201 return map->def.type; 9202 } 9203 9204 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9205 { 9206 if (map->fd >= 0) 9207 return libbpf_err(-EBUSY); 9208 map->def.type = type; 9209 return 0; 9210 } 9211 9212 __u32 bpf_map__map_flags(const struct bpf_map *map) 9213 { 9214 return map->def.map_flags; 9215 } 9216 9217 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9218 { 9219 if (map->fd >= 0) 9220 return libbpf_err(-EBUSY); 9221 map->def.map_flags = flags; 9222 return 0; 9223 } 9224 9225 __u64 bpf_map__map_extra(const struct bpf_map *map) 9226 { 9227 return map->map_extra; 9228 } 9229 9230 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9231 { 9232 if (map->fd >= 0) 9233 return libbpf_err(-EBUSY); 9234 map->map_extra = map_extra; 9235 return 0; 9236 } 9237 9238 __u32 bpf_map__numa_node(const struct bpf_map *map) 9239 { 9240 return map->numa_node; 9241 } 9242 9243 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9244 { 9245 if (map->fd >= 0) 9246 return libbpf_err(-EBUSY); 9247 map->numa_node = numa_node; 9248 return 0; 9249 } 9250 9251 __u32 bpf_map__key_size(const struct bpf_map *map) 9252 { 9253 return map->def.key_size; 9254 } 9255 9256 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9257 { 9258 if (map->fd >= 0) 9259 return libbpf_err(-EBUSY); 9260 map->def.key_size = size; 9261 return 0; 9262 } 9263 9264 __u32 bpf_map__value_size(const struct bpf_map *map) 9265 { 9266 return map->def.value_size; 9267 } 9268 9269 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9270 { 9271 if (map->fd >= 0) 9272 return libbpf_err(-EBUSY); 9273 map->def.value_size = size; 9274 return 0; 9275 } 9276 9277 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9278 { 9279 return map ? map->btf_key_type_id : 0; 9280 } 9281 9282 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9283 { 9284 return map ? map->btf_value_type_id : 0; 9285 } 9286 9287 int bpf_map__set_initial_value(struct bpf_map *map, 9288 const void *data, size_t size) 9289 { 9290 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9291 size != map->def.value_size || map->fd >= 0) 9292 return libbpf_err(-EINVAL); 9293 9294 memcpy(map->mmaped, data, size); 9295 return 0; 9296 } 9297 9298 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9299 { 9300 if (!map->mmaped) 9301 return NULL; 9302 *psize = map->def.value_size; 9303 return map->mmaped; 9304 } 9305 9306 bool bpf_map__is_internal(const struct bpf_map *map) 9307 { 9308 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9309 } 9310 9311 __u32 bpf_map__ifindex(const struct bpf_map *map) 9312 { 9313 return map->map_ifindex; 9314 } 9315 9316 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9317 { 9318 if (map->fd >= 0) 9319 return libbpf_err(-EBUSY); 9320 map->map_ifindex = ifindex; 9321 return 0; 9322 } 9323 9324 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9325 { 9326 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9327 pr_warn("error: unsupported map type\n"); 9328 return libbpf_err(-EINVAL); 9329 } 9330 if (map->inner_map_fd != -1) { 9331 pr_warn("error: inner_map_fd already specified\n"); 9332 return libbpf_err(-EINVAL); 9333 } 9334 if (map->inner_map) { 9335 bpf_map__destroy(map->inner_map); 9336 zfree(&map->inner_map); 9337 } 9338 map->inner_map_fd = fd; 9339 return 0; 9340 } 9341 9342 static struct bpf_map * 9343 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9344 { 9345 ssize_t idx; 9346 struct bpf_map *s, *e; 9347 9348 if (!obj || !obj->maps) 9349 return errno = EINVAL, NULL; 9350 9351 s = obj->maps; 9352 e = obj->maps + obj->nr_maps; 9353 9354 if ((m < s) || (m >= e)) { 9355 pr_warn("error in %s: map handler doesn't belong to object\n", 9356 __func__); 9357 return errno = EINVAL, NULL; 9358 } 9359 9360 idx = (m - obj->maps) + i; 9361 if (idx >= obj->nr_maps || idx < 0) 9362 return NULL; 9363 return &obj->maps[idx]; 9364 } 9365 9366 struct bpf_map * 9367 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 9368 { 9369 if (prev == NULL) 9370 return obj->maps; 9371 9372 return __bpf_map__iter(prev, obj, 1); 9373 } 9374 9375 struct bpf_map * 9376 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 9377 { 9378 if (next == NULL) { 9379 if (!obj->nr_maps) 9380 return NULL; 9381 return obj->maps + obj->nr_maps - 1; 9382 } 9383 9384 return __bpf_map__iter(next, obj, -1); 9385 } 9386 9387 struct bpf_map * 9388 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9389 { 9390 struct bpf_map *pos; 9391 9392 bpf_object__for_each_map(pos, obj) { 9393 /* if it's a special internal map name (which always starts 9394 * with dot) then check if that special name matches the 9395 * real map name (ELF section name) 9396 */ 9397 if (name[0] == '.') { 9398 if (pos->real_name && strcmp(pos->real_name, name) == 0) 9399 return pos; 9400 continue; 9401 } 9402 /* otherwise map name has to be an exact match */ 9403 if (map_uses_real_name(pos)) { 9404 if (strcmp(pos->real_name, name) == 0) 9405 return pos; 9406 continue; 9407 } 9408 if (strcmp(pos->name, name) == 0) 9409 return pos; 9410 } 9411 return errno = ENOENT, NULL; 9412 } 9413 9414 int 9415 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9416 { 9417 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9418 } 9419 9420 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 9421 size_t value_sz, bool check_value_sz) 9422 { 9423 if (map->fd <= 0) 9424 return -ENOENT; 9425 9426 if (map->def.key_size != key_sz) { 9427 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 9428 map->name, key_sz, map->def.key_size); 9429 return -EINVAL; 9430 } 9431 9432 if (!check_value_sz) 9433 return 0; 9434 9435 switch (map->def.type) { 9436 case BPF_MAP_TYPE_PERCPU_ARRAY: 9437 case BPF_MAP_TYPE_PERCPU_HASH: 9438 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 9439 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 9440 int num_cpu = libbpf_num_possible_cpus(); 9441 size_t elem_sz = roundup(map->def.value_size, 8); 9442 9443 if (value_sz != num_cpu * elem_sz) { 9444 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 9445 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 9446 return -EINVAL; 9447 } 9448 break; 9449 } 9450 default: 9451 if (map->def.value_size != value_sz) { 9452 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 9453 map->name, value_sz, map->def.value_size); 9454 return -EINVAL; 9455 } 9456 break; 9457 } 9458 return 0; 9459 } 9460 9461 int bpf_map__lookup_elem(const struct bpf_map *map, 9462 const void *key, size_t key_sz, 9463 void *value, size_t value_sz, __u64 flags) 9464 { 9465 int err; 9466 9467 err = validate_map_op(map, key_sz, value_sz, true); 9468 if (err) 9469 return libbpf_err(err); 9470 9471 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 9472 } 9473 9474 int bpf_map__update_elem(const struct bpf_map *map, 9475 const void *key, size_t key_sz, 9476 const void *value, size_t value_sz, __u64 flags) 9477 { 9478 int err; 9479 9480 err = validate_map_op(map, key_sz, value_sz, true); 9481 if (err) 9482 return libbpf_err(err); 9483 9484 return bpf_map_update_elem(map->fd, key, value, flags); 9485 } 9486 9487 int bpf_map__delete_elem(const struct bpf_map *map, 9488 const void *key, size_t key_sz, __u64 flags) 9489 { 9490 int err; 9491 9492 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 9493 if (err) 9494 return libbpf_err(err); 9495 9496 return bpf_map_delete_elem_flags(map->fd, key, flags); 9497 } 9498 9499 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 9500 const void *key, size_t key_sz, 9501 void *value, size_t value_sz, __u64 flags) 9502 { 9503 int err; 9504 9505 err = validate_map_op(map, key_sz, value_sz, true); 9506 if (err) 9507 return libbpf_err(err); 9508 9509 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 9510 } 9511 9512 int bpf_map__get_next_key(const struct bpf_map *map, 9513 const void *cur_key, void *next_key, size_t key_sz) 9514 { 9515 int err; 9516 9517 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 9518 if (err) 9519 return libbpf_err(err); 9520 9521 return bpf_map_get_next_key(map->fd, cur_key, next_key); 9522 } 9523 9524 long libbpf_get_error(const void *ptr) 9525 { 9526 if (!IS_ERR_OR_NULL(ptr)) 9527 return 0; 9528 9529 if (IS_ERR(ptr)) 9530 errno = -PTR_ERR(ptr); 9531 9532 /* If ptr == NULL, then errno should be already set by the failing 9533 * API, because libbpf never returns NULL on success and it now always 9534 * sets errno on error. So no extra errno handling for ptr == NULL 9535 * case. 9536 */ 9537 return -errno; 9538 } 9539 9540 /* Replace link's underlying BPF program with the new one */ 9541 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9542 { 9543 int ret; 9544 9545 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9546 return libbpf_err_errno(ret); 9547 } 9548 9549 /* Release "ownership" of underlying BPF resource (typically, BPF program 9550 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9551 * link, when destructed through bpf_link__destroy() call won't attempt to 9552 * detach/unregisted that BPF resource. This is useful in situations where, 9553 * say, attached BPF program has to outlive userspace program that attached it 9554 * in the system. Depending on type of BPF program, though, there might be 9555 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9556 * exit of userspace program doesn't trigger automatic detachment and clean up 9557 * inside the kernel. 9558 */ 9559 void bpf_link__disconnect(struct bpf_link *link) 9560 { 9561 link->disconnected = true; 9562 } 9563 9564 int bpf_link__destroy(struct bpf_link *link) 9565 { 9566 int err = 0; 9567 9568 if (IS_ERR_OR_NULL(link)) 9569 return 0; 9570 9571 if (!link->disconnected && link->detach) 9572 err = link->detach(link); 9573 if (link->pin_path) 9574 free(link->pin_path); 9575 if (link->dealloc) 9576 link->dealloc(link); 9577 else 9578 free(link); 9579 9580 return libbpf_err(err); 9581 } 9582 9583 int bpf_link__fd(const struct bpf_link *link) 9584 { 9585 return link->fd; 9586 } 9587 9588 const char *bpf_link__pin_path(const struct bpf_link *link) 9589 { 9590 return link->pin_path; 9591 } 9592 9593 static int bpf_link__detach_fd(struct bpf_link *link) 9594 { 9595 return libbpf_err_errno(close(link->fd)); 9596 } 9597 9598 struct bpf_link *bpf_link__open(const char *path) 9599 { 9600 struct bpf_link *link; 9601 int fd; 9602 9603 fd = bpf_obj_get(path); 9604 if (fd < 0) { 9605 fd = -errno; 9606 pr_warn("failed to open link at %s: %d\n", path, fd); 9607 return libbpf_err_ptr(fd); 9608 } 9609 9610 link = calloc(1, sizeof(*link)); 9611 if (!link) { 9612 close(fd); 9613 return libbpf_err_ptr(-ENOMEM); 9614 } 9615 link->detach = &bpf_link__detach_fd; 9616 link->fd = fd; 9617 9618 link->pin_path = strdup(path); 9619 if (!link->pin_path) { 9620 bpf_link__destroy(link); 9621 return libbpf_err_ptr(-ENOMEM); 9622 } 9623 9624 return link; 9625 } 9626 9627 int bpf_link__detach(struct bpf_link *link) 9628 { 9629 return bpf_link_detach(link->fd) ? -errno : 0; 9630 } 9631 9632 int bpf_link__pin(struct bpf_link *link, const char *path) 9633 { 9634 int err; 9635 9636 if (link->pin_path) 9637 return libbpf_err(-EBUSY); 9638 err = make_parent_dir(path); 9639 if (err) 9640 return libbpf_err(err); 9641 err = check_path(path); 9642 if (err) 9643 return libbpf_err(err); 9644 9645 link->pin_path = strdup(path); 9646 if (!link->pin_path) 9647 return libbpf_err(-ENOMEM); 9648 9649 if (bpf_obj_pin(link->fd, link->pin_path)) { 9650 err = -errno; 9651 zfree(&link->pin_path); 9652 return libbpf_err(err); 9653 } 9654 9655 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9656 return 0; 9657 } 9658 9659 int bpf_link__unpin(struct bpf_link *link) 9660 { 9661 int err; 9662 9663 if (!link->pin_path) 9664 return libbpf_err(-EINVAL); 9665 9666 err = unlink(link->pin_path); 9667 if (err != 0) 9668 return -errno; 9669 9670 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9671 zfree(&link->pin_path); 9672 return 0; 9673 } 9674 9675 struct bpf_link_perf { 9676 struct bpf_link link; 9677 int perf_event_fd; 9678 /* legacy kprobe support: keep track of probe identifier and type */ 9679 char *legacy_probe_name; 9680 bool legacy_is_kprobe; 9681 bool legacy_is_retprobe; 9682 }; 9683 9684 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 9685 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 9686 9687 static int bpf_link_perf_detach(struct bpf_link *link) 9688 { 9689 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9690 int err = 0; 9691 9692 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 9693 err = -errno; 9694 9695 if (perf_link->perf_event_fd != link->fd) 9696 close(perf_link->perf_event_fd); 9697 close(link->fd); 9698 9699 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 9700 if (perf_link->legacy_probe_name) { 9701 if (perf_link->legacy_is_kprobe) { 9702 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 9703 perf_link->legacy_is_retprobe); 9704 } else { 9705 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 9706 perf_link->legacy_is_retprobe); 9707 } 9708 } 9709 9710 return err; 9711 } 9712 9713 static void bpf_link_perf_dealloc(struct bpf_link *link) 9714 { 9715 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9716 9717 free(perf_link->legacy_probe_name); 9718 free(perf_link); 9719 } 9720 9721 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 9722 const struct bpf_perf_event_opts *opts) 9723 { 9724 char errmsg[STRERR_BUFSIZE]; 9725 struct bpf_link_perf *link; 9726 int prog_fd, link_fd = -1, err; 9727 9728 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 9729 return libbpf_err_ptr(-EINVAL); 9730 9731 if (pfd < 0) { 9732 pr_warn("prog '%s': invalid perf event FD %d\n", 9733 prog->name, pfd); 9734 return libbpf_err_ptr(-EINVAL); 9735 } 9736 prog_fd = bpf_program__fd(prog); 9737 if (prog_fd < 0) { 9738 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 9739 prog->name); 9740 return libbpf_err_ptr(-EINVAL); 9741 } 9742 9743 link = calloc(1, sizeof(*link)); 9744 if (!link) 9745 return libbpf_err_ptr(-ENOMEM); 9746 link->link.detach = &bpf_link_perf_detach; 9747 link->link.dealloc = &bpf_link_perf_dealloc; 9748 link->perf_event_fd = pfd; 9749 9750 if (kernel_supports(prog->obj, FEAT_PERF_LINK)) { 9751 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 9752 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 9753 9754 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 9755 if (link_fd < 0) { 9756 err = -errno; 9757 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 9758 prog->name, pfd, 9759 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9760 goto err_out; 9761 } 9762 link->link.fd = link_fd; 9763 } else { 9764 if (OPTS_GET(opts, bpf_cookie, 0)) { 9765 pr_warn("prog '%s': user context value is not supported\n", prog->name); 9766 err = -EOPNOTSUPP; 9767 goto err_out; 9768 } 9769 9770 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 9771 err = -errno; 9772 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 9773 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9774 if (err == -EPROTO) 9775 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 9776 prog->name, pfd); 9777 goto err_out; 9778 } 9779 link->link.fd = pfd; 9780 } 9781 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9782 err = -errno; 9783 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 9784 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9785 goto err_out; 9786 } 9787 9788 return &link->link; 9789 err_out: 9790 if (link_fd >= 0) 9791 close(link_fd); 9792 free(link); 9793 return libbpf_err_ptr(err); 9794 } 9795 9796 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 9797 { 9798 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 9799 } 9800 9801 /* 9802 * this function is expected to parse integer in the range of [0, 2^31-1] from 9803 * given file using scanf format string fmt. If actual parsed value is 9804 * negative, the result might be indistinguishable from error 9805 */ 9806 static int parse_uint_from_file(const char *file, const char *fmt) 9807 { 9808 char buf[STRERR_BUFSIZE]; 9809 int err, ret; 9810 FILE *f; 9811 9812 f = fopen(file, "r"); 9813 if (!f) { 9814 err = -errno; 9815 pr_debug("failed to open '%s': %s\n", file, 9816 libbpf_strerror_r(err, buf, sizeof(buf))); 9817 return err; 9818 } 9819 err = fscanf(f, fmt, &ret); 9820 if (err != 1) { 9821 err = err == EOF ? -EIO : -errno; 9822 pr_debug("failed to parse '%s': %s\n", file, 9823 libbpf_strerror_r(err, buf, sizeof(buf))); 9824 fclose(f); 9825 return err; 9826 } 9827 fclose(f); 9828 return ret; 9829 } 9830 9831 static int determine_kprobe_perf_type(void) 9832 { 9833 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 9834 9835 return parse_uint_from_file(file, "%d\n"); 9836 } 9837 9838 static int determine_uprobe_perf_type(void) 9839 { 9840 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 9841 9842 return parse_uint_from_file(file, "%d\n"); 9843 } 9844 9845 static int determine_kprobe_retprobe_bit(void) 9846 { 9847 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 9848 9849 return parse_uint_from_file(file, "config:%d\n"); 9850 } 9851 9852 static int determine_uprobe_retprobe_bit(void) 9853 { 9854 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 9855 9856 return parse_uint_from_file(file, "config:%d\n"); 9857 } 9858 9859 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 9860 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 9861 9862 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 9863 uint64_t offset, int pid, size_t ref_ctr_off) 9864 { 9865 const size_t attr_sz = sizeof(struct perf_event_attr); 9866 struct perf_event_attr attr; 9867 char errmsg[STRERR_BUFSIZE]; 9868 int type, pfd; 9869 9870 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 9871 return -EINVAL; 9872 9873 memset(&attr, 0, attr_sz); 9874 9875 type = uprobe ? determine_uprobe_perf_type() 9876 : determine_kprobe_perf_type(); 9877 if (type < 0) { 9878 pr_warn("failed to determine %s perf type: %s\n", 9879 uprobe ? "uprobe" : "kprobe", 9880 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 9881 return type; 9882 } 9883 if (retprobe) { 9884 int bit = uprobe ? determine_uprobe_retprobe_bit() 9885 : determine_kprobe_retprobe_bit(); 9886 9887 if (bit < 0) { 9888 pr_warn("failed to determine %s retprobe bit: %s\n", 9889 uprobe ? "uprobe" : "kprobe", 9890 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 9891 return bit; 9892 } 9893 attr.config |= 1 << bit; 9894 } 9895 attr.size = attr_sz; 9896 attr.type = type; 9897 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9898 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 9899 attr.config2 = offset; /* kprobe_addr or probe_offset */ 9900 9901 /* pid filter is meaningful only for uprobes */ 9902 pfd = syscall(__NR_perf_event_open, &attr, 9903 pid < 0 ? -1 : pid /* pid */, 9904 pid == -1 ? 0 : -1 /* cpu */, 9905 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9906 return pfd >= 0 ? pfd : -errno; 9907 } 9908 9909 static int append_to_file(const char *file, const char *fmt, ...) 9910 { 9911 int fd, n, err = 0; 9912 va_list ap; 9913 9914 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 9915 if (fd < 0) 9916 return -errno; 9917 9918 va_start(ap, fmt); 9919 n = vdprintf(fd, fmt, ap); 9920 va_end(ap); 9921 9922 if (n < 0) 9923 err = -errno; 9924 9925 close(fd); 9926 return err; 9927 } 9928 9929 #define DEBUGFS "/sys/kernel/debug/tracing" 9930 #define TRACEFS "/sys/kernel/tracing" 9931 9932 static bool use_debugfs(void) 9933 { 9934 static int has_debugfs = -1; 9935 9936 if (has_debugfs < 0) 9937 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 9938 9939 return has_debugfs == 1; 9940 } 9941 9942 static const char *tracefs_path(void) 9943 { 9944 return use_debugfs() ? DEBUGFS : TRACEFS; 9945 } 9946 9947 static const char *tracefs_kprobe_events(void) 9948 { 9949 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 9950 } 9951 9952 static const char *tracefs_uprobe_events(void) 9953 { 9954 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 9955 } 9956 9957 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 9958 const char *kfunc_name, size_t offset) 9959 { 9960 static int index = 0; 9961 int i; 9962 9963 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 9964 __sync_fetch_and_add(&index, 1)); 9965 9966 /* sanitize binary_path in the probe name */ 9967 for (i = 0; buf[i]; i++) { 9968 if (!isalnum(buf[i])) 9969 buf[i] = '_'; 9970 } 9971 } 9972 9973 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 9974 const char *kfunc_name, size_t offset) 9975 { 9976 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 9977 retprobe ? 'r' : 'p', 9978 retprobe ? "kretprobes" : "kprobes", 9979 probe_name, kfunc_name, offset); 9980 } 9981 9982 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 9983 { 9984 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 9985 retprobe ? "kretprobes" : "kprobes", probe_name); 9986 } 9987 9988 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 9989 { 9990 char file[256]; 9991 9992 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 9993 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 9994 9995 return parse_uint_from_file(file, "%d\n"); 9996 } 9997 9998 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 9999 const char *kfunc_name, size_t offset, int pid) 10000 { 10001 const size_t attr_sz = sizeof(struct perf_event_attr); 10002 struct perf_event_attr attr; 10003 char errmsg[STRERR_BUFSIZE]; 10004 int type, pfd, err; 10005 10006 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 10007 if (err < 0) { 10008 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 10009 kfunc_name, offset, 10010 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10011 return err; 10012 } 10013 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 10014 if (type < 0) { 10015 err = type; 10016 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 10017 kfunc_name, offset, 10018 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10019 goto err_clean_legacy; 10020 } 10021 10022 memset(&attr, 0, attr_sz); 10023 attr.size = attr_sz; 10024 attr.config = type; 10025 attr.type = PERF_TYPE_TRACEPOINT; 10026 10027 pfd = syscall(__NR_perf_event_open, &attr, 10028 pid < 0 ? -1 : pid, /* pid */ 10029 pid == -1 ? 0 : -1, /* cpu */ 10030 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10031 if (pfd < 0) { 10032 err = -errno; 10033 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10034 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10035 goto err_clean_legacy; 10036 } 10037 return pfd; 10038 10039 err_clean_legacy: 10040 /* Clear the newly added legacy kprobe_event */ 10041 remove_kprobe_event_legacy(probe_name, retprobe); 10042 return err; 10043 } 10044 10045 static const char *arch_specific_syscall_pfx(void) 10046 { 10047 #if defined(__x86_64__) 10048 return "x64"; 10049 #elif defined(__i386__) 10050 return "ia32"; 10051 #elif defined(__s390x__) 10052 return "s390x"; 10053 #elif defined(__s390__) 10054 return "s390"; 10055 #elif defined(__arm__) 10056 return "arm"; 10057 #elif defined(__aarch64__) 10058 return "arm64"; 10059 #elif defined(__mips__) 10060 return "mips"; 10061 #elif defined(__riscv) 10062 return "riscv"; 10063 #elif defined(__powerpc__) 10064 return "powerpc"; 10065 #elif defined(__powerpc64__) 10066 return "powerpc64"; 10067 #else 10068 return NULL; 10069 #endif 10070 } 10071 10072 static int probe_kern_syscall_wrapper(void) 10073 { 10074 char syscall_name[64]; 10075 const char *ksys_pfx; 10076 10077 ksys_pfx = arch_specific_syscall_pfx(); 10078 if (!ksys_pfx) 10079 return 0; 10080 10081 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 10082 10083 if (determine_kprobe_perf_type() >= 0) { 10084 int pfd; 10085 10086 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 10087 if (pfd >= 0) 10088 close(pfd); 10089 10090 return pfd >= 0 ? 1 : 0; 10091 } else { /* legacy mode */ 10092 char probe_name[128]; 10093 10094 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 10095 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 10096 return 0; 10097 10098 (void)remove_kprobe_event_legacy(probe_name, false); 10099 return 1; 10100 } 10101 } 10102 10103 struct bpf_link * 10104 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 10105 const char *func_name, 10106 const struct bpf_kprobe_opts *opts) 10107 { 10108 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10109 char errmsg[STRERR_BUFSIZE]; 10110 char *legacy_probe = NULL; 10111 struct bpf_link *link; 10112 size_t offset; 10113 bool retprobe, legacy; 10114 int pfd, err; 10115 10116 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 10117 return libbpf_err_ptr(-EINVAL); 10118 10119 retprobe = OPTS_GET(opts, retprobe, false); 10120 offset = OPTS_GET(opts, offset, 0); 10121 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10122 10123 legacy = determine_kprobe_perf_type() < 0; 10124 if (!legacy) { 10125 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 10126 func_name, offset, 10127 -1 /* pid */, 0 /* ref_ctr_off */); 10128 } else { 10129 char probe_name[256]; 10130 10131 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 10132 func_name, offset); 10133 10134 legacy_probe = strdup(probe_name); 10135 if (!legacy_probe) 10136 return libbpf_err_ptr(-ENOMEM); 10137 10138 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 10139 offset, -1 /* pid */); 10140 } 10141 if (pfd < 0) { 10142 err = -errno; 10143 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 10144 prog->name, retprobe ? "kretprobe" : "kprobe", 10145 func_name, offset, 10146 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10147 goto err_out; 10148 } 10149 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10150 err = libbpf_get_error(link); 10151 if (err) { 10152 close(pfd); 10153 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 10154 prog->name, retprobe ? "kretprobe" : "kprobe", 10155 func_name, offset, 10156 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10157 goto err_clean_legacy; 10158 } 10159 if (legacy) { 10160 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10161 10162 perf_link->legacy_probe_name = legacy_probe; 10163 perf_link->legacy_is_kprobe = true; 10164 perf_link->legacy_is_retprobe = retprobe; 10165 } 10166 10167 return link; 10168 10169 err_clean_legacy: 10170 if (legacy) 10171 remove_kprobe_event_legacy(legacy_probe, retprobe); 10172 err_out: 10173 free(legacy_probe); 10174 return libbpf_err_ptr(err); 10175 } 10176 10177 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 10178 bool retprobe, 10179 const char *func_name) 10180 { 10181 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 10182 .retprobe = retprobe, 10183 ); 10184 10185 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 10186 } 10187 10188 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 10189 const char *syscall_name, 10190 const struct bpf_ksyscall_opts *opts) 10191 { 10192 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 10193 char func_name[128]; 10194 10195 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 10196 return libbpf_err_ptr(-EINVAL); 10197 10198 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 10199 /* arch_specific_syscall_pfx() should never return NULL here 10200 * because it is guarded by kernel_supports(). However, since 10201 * compiler does not know that we have an explicit conditional 10202 * as well. 10203 */ 10204 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 10205 arch_specific_syscall_pfx() ? : "", syscall_name); 10206 } else { 10207 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 10208 } 10209 10210 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 10211 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10212 10213 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 10214 } 10215 10216 /* Adapted from perf/util/string.c */ 10217 static bool glob_match(const char *str, const char *pat) 10218 { 10219 while (*str && *pat && *pat != '*') { 10220 if (*pat == '?') { /* Matches any single character */ 10221 str++; 10222 pat++; 10223 continue; 10224 } 10225 if (*str != *pat) 10226 return false; 10227 str++; 10228 pat++; 10229 } 10230 /* Check wild card */ 10231 if (*pat == '*') { 10232 while (*pat == '*') 10233 pat++; 10234 if (!*pat) /* Tail wild card matches all */ 10235 return true; 10236 while (*str) 10237 if (glob_match(str++, pat)) 10238 return true; 10239 } 10240 return !*str && !*pat; 10241 } 10242 10243 struct kprobe_multi_resolve { 10244 const char *pattern; 10245 unsigned long *addrs; 10246 size_t cap; 10247 size_t cnt; 10248 }; 10249 10250 static int 10251 resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type, 10252 const char *sym_name, void *ctx) 10253 { 10254 struct kprobe_multi_resolve *res = ctx; 10255 int err; 10256 10257 if (!glob_match(sym_name, res->pattern)) 10258 return 0; 10259 10260 err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long), 10261 res->cnt + 1); 10262 if (err) 10263 return err; 10264 10265 res->addrs[res->cnt++] = (unsigned long) sym_addr; 10266 return 0; 10267 } 10268 10269 struct bpf_link * 10270 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 10271 const char *pattern, 10272 const struct bpf_kprobe_multi_opts *opts) 10273 { 10274 LIBBPF_OPTS(bpf_link_create_opts, lopts); 10275 struct kprobe_multi_resolve res = { 10276 .pattern = pattern, 10277 }; 10278 struct bpf_link *link = NULL; 10279 char errmsg[STRERR_BUFSIZE]; 10280 const unsigned long *addrs; 10281 int err, link_fd, prog_fd; 10282 const __u64 *cookies; 10283 const char **syms; 10284 bool retprobe; 10285 size_t cnt; 10286 10287 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 10288 return libbpf_err_ptr(-EINVAL); 10289 10290 syms = OPTS_GET(opts, syms, false); 10291 addrs = OPTS_GET(opts, addrs, false); 10292 cnt = OPTS_GET(opts, cnt, false); 10293 cookies = OPTS_GET(opts, cookies, false); 10294 10295 if (!pattern && !addrs && !syms) 10296 return libbpf_err_ptr(-EINVAL); 10297 if (pattern && (addrs || syms || cookies || cnt)) 10298 return libbpf_err_ptr(-EINVAL); 10299 if (!pattern && !cnt) 10300 return libbpf_err_ptr(-EINVAL); 10301 if (addrs && syms) 10302 return libbpf_err_ptr(-EINVAL); 10303 10304 if (pattern) { 10305 err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res); 10306 if (err) 10307 goto error; 10308 if (!res.cnt) { 10309 err = -ENOENT; 10310 goto error; 10311 } 10312 addrs = res.addrs; 10313 cnt = res.cnt; 10314 } 10315 10316 retprobe = OPTS_GET(opts, retprobe, false); 10317 10318 lopts.kprobe_multi.syms = syms; 10319 lopts.kprobe_multi.addrs = addrs; 10320 lopts.kprobe_multi.cookies = cookies; 10321 lopts.kprobe_multi.cnt = cnt; 10322 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 10323 10324 link = calloc(1, sizeof(*link)); 10325 if (!link) { 10326 err = -ENOMEM; 10327 goto error; 10328 } 10329 link->detach = &bpf_link__detach_fd; 10330 10331 prog_fd = bpf_program__fd(prog); 10332 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts); 10333 if (link_fd < 0) { 10334 err = -errno; 10335 pr_warn("prog '%s': failed to attach: %s\n", 10336 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10337 goto error; 10338 } 10339 link->fd = link_fd; 10340 free(res.addrs); 10341 return link; 10342 10343 error: 10344 free(link); 10345 free(res.addrs); 10346 return libbpf_err_ptr(err); 10347 } 10348 10349 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10350 { 10351 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 10352 unsigned long offset = 0; 10353 const char *func_name; 10354 char *func; 10355 int n; 10356 10357 *link = NULL; 10358 10359 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 10360 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 10361 return 0; 10362 10363 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 10364 if (opts.retprobe) 10365 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 10366 else 10367 func_name = prog->sec_name + sizeof("kprobe/") - 1; 10368 10369 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 10370 if (n < 1) { 10371 pr_warn("kprobe name is invalid: %s\n", func_name); 10372 return -EINVAL; 10373 } 10374 if (opts.retprobe && offset != 0) { 10375 free(func); 10376 pr_warn("kretprobes do not support offset specification\n"); 10377 return -EINVAL; 10378 } 10379 10380 opts.offset = offset; 10381 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 10382 free(func); 10383 return libbpf_get_error(*link); 10384 } 10385 10386 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10387 { 10388 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 10389 const char *syscall_name; 10390 10391 *link = NULL; 10392 10393 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 10394 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 10395 return 0; 10396 10397 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 10398 if (opts.retprobe) 10399 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 10400 else 10401 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 10402 10403 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 10404 return *link ? 0 : -errno; 10405 } 10406 10407 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10408 { 10409 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 10410 const char *spec; 10411 char *pattern; 10412 int n; 10413 10414 *link = NULL; 10415 10416 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 10417 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 10418 strcmp(prog->sec_name, "kretprobe.multi") == 0) 10419 return 0; 10420 10421 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 10422 if (opts.retprobe) 10423 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 10424 else 10425 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 10426 10427 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 10428 if (n < 1) { 10429 pr_warn("kprobe multi pattern is invalid: %s\n", pattern); 10430 return -EINVAL; 10431 } 10432 10433 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 10434 free(pattern); 10435 return libbpf_get_error(*link); 10436 } 10437 10438 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 10439 const char *binary_path, uint64_t offset) 10440 { 10441 int i; 10442 10443 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 10444 10445 /* sanitize binary_path in the probe name */ 10446 for (i = 0; buf[i]; i++) { 10447 if (!isalnum(buf[i])) 10448 buf[i] = '_'; 10449 } 10450 } 10451 10452 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 10453 const char *binary_path, size_t offset) 10454 { 10455 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 10456 retprobe ? 'r' : 'p', 10457 retprobe ? "uretprobes" : "uprobes", 10458 probe_name, binary_path, offset); 10459 } 10460 10461 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 10462 { 10463 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 10464 retprobe ? "uretprobes" : "uprobes", probe_name); 10465 } 10466 10467 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10468 { 10469 char file[512]; 10470 10471 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10472 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 10473 10474 return parse_uint_from_file(file, "%d\n"); 10475 } 10476 10477 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 10478 const char *binary_path, size_t offset, int pid) 10479 { 10480 const size_t attr_sz = sizeof(struct perf_event_attr); 10481 struct perf_event_attr attr; 10482 int type, pfd, err; 10483 10484 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 10485 if (err < 0) { 10486 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 10487 binary_path, (size_t)offset, err); 10488 return err; 10489 } 10490 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 10491 if (type < 0) { 10492 err = type; 10493 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 10494 binary_path, offset, err); 10495 goto err_clean_legacy; 10496 } 10497 10498 memset(&attr, 0, attr_sz); 10499 attr.size = attr_sz; 10500 attr.config = type; 10501 attr.type = PERF_TYPE_TRACEPOINT; 10502 10503 pfd = syscall(__NR_perf_event_open, &attr, 10504 pid < 0 ? -1 : pid, /* pid */ 10505 pid == -1 ? 0 : -1, /* cpu */ 10506 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10507 if (pfd < 0) { 10508 err = -errno; 10509 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 10510 goto err_clean_legacy; 10511 } 10512 return pfd; 10513 10514 err_clean_legacy: 10515 /* Clear the newly added legacy uprobe_event */ 10516 remove_uprobe_event_legacy(probe_name, retprobe); 10517 return err; 10518 } 10519 10520 /* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */ 10521 static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn) 10522 { 10523 while ((scn = elf_nextscn(elf, scn)) != NULL) { 10524 GElf_Shdr sh; 10525 10526 if (!gelf_getshdr(scn, &sh)) 10527 continue; 10528 if (sh.sh_type == sh_type) 10529 return scn; 10530 } 10531 return NULL; 10532 } 10533 10534 /* Find offset of function name in object specified by path. "name" matches 10535 * symbol name or name@@LIB for library functions. 10536 */ 10537 static long elf_find_func_offset(const char *binary_path, const char *name) 10538 { 10539 int fd, i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB }; 10540 bool is_shared_lib, is_name_qualified; 10541 char errmsg[STRERR_BUFSIZE]; 10542 long ret = -ENOENT; 10543 size_t name_len; 10544 GElf_Ehdr ehdr; 10545 Elf *elf; 10546 10547 fd = open(binary_path, O_RDONLY | O_CLOEXEC); 10548 if (fd < 0) { 10549 ret = -errno; 10550 pr_warn("failed to open %s: %s\n", binary_path, 10551 libbpf_strerror_r(ret, errmsg, sizeof(errmsg))); 10552 return ret; 10553 } 10554 elf = elf_begin(fd, ELF_C_READ_MMAP, NULL); 10555 if (!elf) { 10556 pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1)); 10557 close(fd); 10558 return -LIBBPF_ERRNO__FORMAT; 10559 } 10560 if (!gelf_getehdr(elf, &ehdr)) { 10561 pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1)); 10562 ret = -LIBBPF_ERRNO__FORMAT; 10563 goto out; 10564 } 10565 /* for shared lib case, we do not need to calculate relative offset */ 10566 is_shared_lib = ehdr.e_type == ET_DYN; 10567 10568 name_len = strlen(name); 10569 /* Does name specify "@@LIB"? */ 10570 is_name_qualified = strstr(name, "@@") != NULL; 10571 10572 /* Search SHT_DYNSYM, SHT_SYMTAB for symbol. This search order is used because if 10573 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically 10574 * linked binary may not have SHT_DYMSYM, so absence of a section should not be 10575 * reported as a warning/error. 10576 */ 10577 for (i = 0; i < ARRAY_SIZE(sh_types); i++) { 10578 size_t nr_syms, strtabidx, idx; 10579 Elf_Data *symbols = NULL; 10580 Elf_Scn *scn = NULL; 10581 int last_bind = -1; 10582 const char *sname; 10583 GElf_Shdr sh; 10584 10585 scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL); 10586 if (!scn) { 10587 pr_debug("elf: failed to find symbol table ELF sections in '%s'\n", 10588 binary_path); 10589 continue; 10590 } 10591 if (!gelf_getshdr(scn, &sh)) 10592 continue; 10593 strtabidx = sh.sh_link; 10594 symbols = elf_getdata(scn, 0); 10595 if (!symbols) { 10596 pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n", 10597 binary_path, elf_errmsg(-1)); 10598 ret = -LIBBPF_ERRNO__FORMAT; 10599 goto out; 10600 } 10601 nr_syms = symbols->d_size / sh.sh_entsize; 10602 10603 for (idx = 0; idx < nr_syms; idx++) { 10604 int curr_bind; 10605 GElf_Sym sym; 10606 Elf_Scn *sym_scn; 10607 GElf_Shdr sym_sh; 10608 10609 if (!gelf_getsym(symbols, idx, &sym)) 10610 continue; 10611 10612 if (GELF_ST_TYPE(sym.st_info) != STT_FUNC) 10613 continue; 10614 10615 sname = elf_strptr(elf, strtabidx, sym.st_name); 10616 if (!sname) 10617 continue; 10618 10619 curr_bind = GELF_ST_BIND(sym.st_info); 10620 10621 /* User can specify func, func@@LIB or func@@LIB_VERSION. */ 10622 if (strncmp(sname, name, name_len) != 0) 10623 continue; 10624 /* ...but we don't want a search for "foo" to match 'foo2" also, so any 10625 * additional characters in sname should be of the form "@@LIB". 10626 */ 10627 if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@') 10628 continue; 10629 10630 if (ret >= 0) { 10631 /* handle multiple matches */ 10632 if (last_bind != STB_WEAK && curr_bind != STB_WEAK) { 10633 /* Only accept one non-weak bind. */ 10634 pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n", 10635 sname, name, binary_path); 10636 ret = -LIBBPF_ERRNO__FORMAT; 10637 goto out; 10638 } else if (curr_bind == STB_WEAK) { 10639 /* already have a non-weak bind, and 10640 * this is a weak bind, so ignore. 10641 */ 10642 continue; 10643 } 10644 } 10645 10646 /* Transform symbol's virtual address (absolute for 10647 * binaries and relative for shared libs) into file 10648 * offset, which is what kernel is expecting for 10649 * uprobe/uretprobe attachment. 10650 * See Documentation/trace/uprobetracer.rst for more 10651 * details. 10652 * This is done by looking up symbol's containing 10653 * section's header and using it's virtual address 10654 * (sh_addr) and corresponding file offset (sh_offset) 10655 * to transform sym.st_value (virtual address) into 10656 * desired final file offset. 10657 */ 10658 sym_scn = elf_getscn(elf, sym.st_shndx); 10659 if (!sym_scn) 10660 continue; 10661 if (!gelf_getshdr(sym_scn, &sym_sh)) 10662 continue; 10663 10664 ret = sym.st_value - sym_sh.sh_addr + sym_sh.sh_offset; 10665 last_bind = curr_bind; 10666 } 10667 if (ret > 0) 10668 break; 10669 } 10670 10671 if (ret > 0) { 10672 pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path, 10673 ret); 10674 } else { 10675 if (ret == 0) { 10676 pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path, 10677 is_shared_lib ? "should not be 0 in a shared library" : 10678 "try using shared library path instead"); 10679 ret = -ENOENT; 10680 } else { 10681 pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path); 10682 } 10683 } 10684 out: 10685 elf_end(elf); 10686 close(fd); 10687 return ret; 10688 } 10689 10690 static const char *arch_specific_lib_paths(void) 10691 { 10692 /* 10693 * Based on https://packages.debian.org/sid/libc6. 10694 * 10695 * Assume that the traced program is built for the same architecture 10696 * as libbpf, which should cover the vast majority of cases. 10697 */ 10698 #if defined(__x86_64__) 10699 return "/lib/x86_64-linux-gnu"; 10700 #elif defined(__i386__) 10701 return "/lib/i386-linux-gnu"; 10702 #elif defined(__s390x__) 10703 return "/lib/s390x-linux-gnu"; 10704 #elif defined(__s390__) 10705 return "/lib/s390-linux-gnu"; 10706 #elif defined(__arm__) && defined(__SOFTFP__) 10707 return "/lib/arm-linux-gnueabi"; 10708 #elif defined(__arm__) && !defined(__SOFTFP__) 10709 return "/lib/arm-linux-gnueabihf"; 10710 #elif defined(__aarch64__) 10711 return "/lib/aarch64-linux-gnu"; 10712 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 10713 return "/lib/mips64el-linux-gnuabi64"; 10714 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 10715 return "/lib/mipsel-linux-gnu"; 10716 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 10717 return "/lib/powerpc64le-linux-gnu"; 10718 #elif defined(__sparc__) && defined(__arch64__) 10719 return "/lib/sparc64-linux-gnu"; 10720 #elif defined(__riscv) && __riscv_xlen == 64 10721 return "/lib/riscv64-linux-gnu"; 10722 #else 10723 return NULL; 10724 #endif 10725 } 10726 10727 /* Get full path to program/shared library. */ 10728 static int resolve_full_path(const char *file, char *result, size_t result_sz) 10729 { 10730 const char *search_paths[3] = {}; 10731 int i, perm; 10732 10733 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 10734 search_paths[0] = getenv("LD_LIBRARY_PATH"); 10735 search_paths[1] = "/usr/lib64:/usr/lib"; 10736 search_paths[2] = arch_specific_lib_paths(); 10737 perm = R_OK; 10738 } else { 10739 search_paths[0] = getenv("PATH"); 10740 search_paths[1] = "/usr/bin:/usr/sbin"; 10741 perm = R_OK | X_OK; 10742 } 10743 10744 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 10745 const char *s; 10746 10747 if (!search_paths[i]) 10748 continue; 10749 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 10750 char *next_path; 10751 int seg_len; 10752 10753 if (s[0] == ':') 10754 s++; 10755 next_path = strchr(s, ':'); 10756 seg_len = next_path ? next_path - s : strlen(s); 10757 if (!seg_len) 10758 continue; 10759 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 10760 /* ensure it has required permissions */ 10761 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 10762 continue; 10763 pr_debug("resolved '%s' to '%s'\n", file, result); 10764 return 0; 10765 } 10766 } 10767 return -ENOENT; 10768 } 10769 10770 LIBBPF_API struct bpf_link * 10771 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 10772 const char *binary_path, size_t func_offset, 10773 const struct bpf_uprobe_opts *opts) 10774 { 10775 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10776 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 10777 char full_binary_path[PATH_MAX]; 10778 struct bpf_link *link; 10779 size_t ref_ctr_off; 10780 int pfd, err; 10781 bool retprobe, legacy; 10782 const char *func_name; 10783 10784 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 10785 return libbpf_err_ptr(-EINVAL); 10786 10787 retprobe = OPTS_GET(opts, retprobe, false); 10788 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 10789 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10790 10791 if (!binary_path) 10792 return libbpf_err_ptr(-EINVAL); 10793 10794 if (!strchr(binary_path, '/')) { 10795 err = resolve_full_path(binary_path, full_binary_path, 10796 sizeof(full_binary_path)); 10797 if (err) { 10798 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 10799 prog->name, binary_path, err); 10800 return libbpf_err_ptr(err); 10801 } 10802 binary_path = full_binary_path; 10803 } 10804 func_name = OPTS_GET(opts, func_name, NULL); 10805 if (func_name) { 10806 long sym_off; 10807 10808 sym_off = elf_find_func_offset(binary_path, func_name); 10809 if (sym_off < 0) 10810 return libbpf_err_ptr(sym_off); 10811 func_offset += sym_off; 10812 } 10813 10814 legacy = determine_uprobe_perf_type() < 0; 10815 if (!legacy) { 10816 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 10817 func_offset, pid, ref_ctr_off); 10818 } else { 10819 char probe_name[PATH_MAX + 64]; 10820 10821 if (ref_ctr_off) 10822 return libbpf_err_ptr(-EINVAL); 10823 10824 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 10825 binary_path, func_offset); 10826 10827 legacy_probe = strdup(probe_name); 10828 if (!legacy_probe) 10829 return libbpf_err_ptr(-ENOMEM); 10830 10831 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 10832 binary_path, func_offset, pid); 10833 } 10834 if (pfd < 0) { 10835 err = -errno; 10836 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 10837 prog->name, retprobe ? "uretprobe" : "uprobe", 10838 binary_path, func_offset, 10839 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10840 goto err_out; 10841 } 10842 10843 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10844 err = libbpf_get_error(link); 10845 if (err) { 10846 close(pfd); 10847 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 10848 prog->name, retprobe ? "uretprobe" : "uprobe", 10849 binary_path, func_offset, 10850 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10851 goto err_clean_legacy; 10852 } 10853 if (legacy) { 10854 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10855 10856 perf_link->legacy_probe_name = legacy_probe; 10857 perf_link->legacy_is_kprobe = false; 10858 perf_link->legacy_is_retprobe = retprobe; 10859 } 10860 return link; 10861 10862 err_clean_legacy: 10863 if (legacy) 10864 remove_uprobe_event_legacy(legacy_probe, retprobe); 10865 err_out: 10866 free(legacy_probe); 10867 return libbpf_err_ptr(err); 10868 } 10869 10870 /* Format of u[ret]probe section definition supporting auto-attach: 10871 * u[ret]probe/binary:function[+offset] 10872 * 10873 * binary can be an absolute/relative path or a filename; the latter is resolved to a 10874 * full binary path via bpf_program__attach_uprobe_opts. 10875 * 10876 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 10877 * specified (and auto-attach is not possible) or the above format is specified for 10878 * auto-attach. 10879 */ 10880 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10881 { 10882 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 10883 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 10884 int n, ret = -EINVAL; 10885 long offset = 0; 10886 10887 *link = NULL; 10888 10889 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li", 10890 &probe_type, &binary_path, &func_name, &offset); 10891 switch (n) { 10892 case 1: 10893 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 10894 ret = 0; 10895 break; 10896 case 2: 10897 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 10898 prog->name, prog->sec_name); 10899 break; 10900 case 3: 10901 case 4: 10902 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 10903 strcmp(probe_type, "uretprobe.s") == 0; 10904 if (opts.retprobe && offset != 0) { 10905 pr_warn("prog '%s': uretprobes do not support offset specification\n", 10906 prog->name); 10907 break; 10908 } 10909 opts.func_name = func_name; 10910 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 10911 ret = libbpf_get_error(*link); 10912 break; 10913 default: 10914 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 10915 prog->sec_name); 10916 break; 10917 } 10918 free(probe_type); 10919 free(binary_path); 10920 free(func_name); 10921 10922 return ret; 10923 } 10924 10925 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 10926 bool retprobe, pid_t pid, 10927 const char *binary_path, 10928 size_t func_offset) 10929 { 10930 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 10931 10932 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 10933 } 10934 10935 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 10936 pid_t pid, const char *binary_path, 10937 const char *usdt_provider, const char *usdt_name, 10938 const struct bpf_usdt_opts *opts) 10939 { 10940 char resolved_path[512]; 10941 struct bpf_object *obj = prog->obj; 10942 struct bpf_link *link; 10943 __u64 usdt_cookie; 10944 int err; 10945 10946 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 10947 return libbpf_err_ptr(-EINVAL); 10948 10949 if (bpf_program__fd(prog) < 0) { 10950 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 10951 prog->name); 10952 return libbpf_err_ptr(-EINVAL); 10953 } 10954 10955 if (!binary_path) 10956 return libbpf_err_ptr(-EINVAL); 10957 10958 if (!strchr(binary_path, '/')) { 10959 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 10960 if (err) { 10961 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 10962 prog->name, binary_path, err); 10963 return libbpf_err_ptr(err); 10964 } 10965 binary_path = resolved_path; 10966 } 10967 10968 /* USDT manager is instantiated lazily on first USDT attach. It will 10969 * be destroyed together with BPF object in bpf_object__close(). 10970 */ 10971 if (IS_ERR(obj->usdt_man)) 10972 return libbpf_ptr(obj->usdt_man); 10973 if (!obj->usdt_man) { 10974 obj->usdt_man = usdt_manager_new(obj); 10975 if (IS_ERR(obj->usdt_man)) 10976 return libbpf_ptr(obj->usdt_man); 10977 } 10978 10979 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 10980 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 10981 usdt_provider, usdt_name, usdt_cookie); 10982 err = libbpf_get_error(link); 10983 if (err) 10984 return libbpf_err_ptr(err); 10985 return link; 10986 } 10987 10988 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10989 { 10990 char *path = NULL, *provider = NULL, *name = NULL; 10991 const char *sec_name; 10992 int n, err; 10993 10994 sec_name = bpf_program__section_name(prog); 10995 if (strcmp(sec_name, "usdt") == 0) { 10996 /* no auto-attach for just SEC("usdt") */ 10997 *link = NULL; 10998 return 0; 10999 } 11000 11001 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 11002 if (n != 3) { 11003 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 11004 sec_name); 11005 err = -EINVAL; 11006 } else { 11007 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 11008 provider, name, NULL); 11009 err = libbpf_get_error(*link); 11010 } 11011 free(path); 11012 free(provider); 11013 free(name); 11014 return err; 11015 } 11016 11017 static int determine_tracepoint_id(const char *tp_category, 11018 const char *tp_name) 11019 { 11020 char file[PATH_MAX]; 11021 int ret; 11022 11023 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11024 tracefs_path(), tp_category, tp_name); 11025 if (ret < 0) 11026 return -errno; 11027 if (ret >= sizeof(file)) { 11028 pr_debug("tracepoint %s/%s path is too long\n", 11029 tp_category, tp_name); 11030 return -E2BIG; 11031 } 11032 return parse_uint_from_file(file, "%d\n"); 11033 } 11034 11035 static int perf_event_open_tracepoint(const char *tp_category, 11036 const char *tp_name) 11037 { 11038 const size_t attr_sz = sizeof(struct perf_event_attr); 11039 struct perf_event_attr attr; 11040 char errmsg[STRERR_BUFSIZE]; 11041 int tp_id, pfd, err; 11042 11043 tp_id = determine_tracepoint_id(tp_category, tp_name); 11044 if (tp_id < 0) { 11045 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 11046 tp_category, tp_name, 11047 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 11048 return tp_id; 11049 } 11050 11051 memset(&attr, 0, attr_sz); 11052 attr.type = PERF_TYPE_TRACEPOINT; 11053 attr.size = attr_sz; 11054 attr.config = tp_id; 11055 11056 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 11057 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11058 if (pfd < 0) { 11059 err = -errno; 11060 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 11061 tp_category, tp_name, 11062 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11063 return err; 11064 } 11065 return pfd; 11066 } 11067 11068 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 11069 const char *tp_category, 11070 const char *tp_name, 11071 const struct bpf_tracepoint_opts *opts) 11072 { 11073 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11074 char errmsg[STRERR_BUFSIZE]; 11075 struct bpf_link *link; 11076 int pfd, err; 11077 11078 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 11079 return libbpf_err_ptr(-EINVAL); 11080 11081 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11082 11083 pfd = perf_event_open_tracepoint(tp_category, tp_name); 11084 if (pfd < 0) { 11085 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 11086 prog->name, tp_category, tp_name, 11087 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11088 return libbpf_err_ptr(pfd); 11089 } 11090 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11091 err = libbpf_get_error(link); 11092 if (err) { 11093 close(pfd); 11094 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 11095 prog->name, tp_category, tp_name, 11096 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11097 return libbpf_err_ptr(err); 11098 } 11099 return link; 11100 } 11101 11102 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 11103 const char *tp_category, 11104 const char *tp_name) 11105 { 11106 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 11107 } 11108 11109 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11110 { 11111 char *sec_name, *tp_cat, *tp_name; 11112 11113 *link = NULL; 11114 11115 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 11116 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 11117 return 0; 11118 11119 sec_name = strdup(prog->sec_name); 11120 if (!sec_name) 11121 return -ENOMEM; 11122 11123 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 11124 if (str_has_pfx(prog->sec_name, "tp/")) 11125 tp_cat = sec_name + sizeof("tp/") - 1; 11126 else 11127 tp_cat = sec_name + sizeof("tracepoint/") - 1; 11128 tp_name = strchr(tp_cat, '/'); 11129 if (!tp_name) { 11130 free(sec_name); 11131 return -EINVAL; 11132 } 11133 *tp_name = '\0'; 11134 tp_name++; 11135 11136 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 11137 free(sec_name); 11138 return libbpf_get_error(*link); 11139 } 11140 11141 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 11142 const char *tp_name) 11143 { 11144 char errmsg[STRERR_BUFSIZE]; 11145 struct bpf_link *link; 11146 int prog_fd, pfd; 11147 11148 prog_fd = bpf_program__fd(prog); 11149 if (prog_fd < 0) { 11150 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11151 return libbpf_err_ptr(-EINVAL); 11152 } 11153 11154 link = calloc(1, sizeof(*link)); 11155 if (!link) 11156 return libbpf_err_ptr(-ENOMEM); 11157 link->detach = &bpf_link__detach_fd; 11158 11159 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 11160 if (pfd < 0) { 11161 pfd = -errno; 11162 free(link); 11163 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 11164 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11165 return libbpf_err_ptr(pfd); 11166 } 11167 link->fd = pfd; 11168 return link; 11169 } 11170 11171 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11172 { 11173 static const char *const prefixes[] = { 11174 "raw_tp", 11175 "raw_tracepoint", 11176 "raw_tp.w", 11177 "raw_tracepoint.w", 11178 }; 11179 size_t i; 11180 const char *tp_name = NULL; 11181 11182 *link = NULL; 11183 11184 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 11185 size_t pfx_len; 11186 11187 if (!str_has_pfx(prog->sec_name, prefixes[i])) 11188 continue; 11189 11190 pfx_len = strlen(prefixes[i]); 11191 /* no auto-attach case of, e.g., SEC("raw_tp") */ 11192 if (prog->sec_name[pfx_len] == '\0') 11193 return 0; 11194 11195 if (prog->sec_name[pfx_len] != '/') 11196 continue; 11197 11198 tp_name = prog->sec_name + pfx_len + 1; 11199 break; 11200 } 11201 11202 if (!tp_name) { 11203 pr_warn("prog '%s': invalid section name '%s'\n", 11204 prog->name, prog->sec_name); 11205 return -EINVAL; 11206 } 11207 11208 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 11209 return libbpf_get_error(*link); 11210 } 11211 11212 /* Common logic for all BPF program types that attach to a btf_id */ 11213 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 11214 const struct bpf_trace_opts *opts) 11215 { 11216 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 11217 char errmsg[STRERR_BUFSIZE]; 11218 struct bpf_link *link; 11219 int prog_fd, pfd; 11220 11221 if (!OPTS_VALID(opts, bpf_trace_opts)) 11222 return libbpf_err_ptr(-EINVAL); 11223 11224 prog_fd = bpf_program__fd(prog); 11225 if (prog_fd < 0) { 11226 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11227 return libbpf_err_ptr(-EINVAL); 11228 } 11229 11230 link = calloc(1, sizeof(*link)); 11231 if (!link) 11232 return libbpf_err_ptr(-ENOMEM); 11233 link->detach = &bpf_link__detach_fd; 11234 11235 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 11236 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 11237 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 11238 if (pfd < 0) { 11239 pfd = -errno; 11240 free(link); 11241 pr_warn("prog '%s': failed to attach: %s\n", 11242 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11243 return libbpf_err_ptr(pfd); 11244 } 11245 link->fd = pfd; 11246 return link; 11247 } 11248 11249 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 11250 { 11251 return bpf_program__attach_btf_id(prog, NULL); 11252 } 11253 11254 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 11255 const struct bpf_trace_opts *opts) 11256 { 11257 return bpf_program__attach_btf_id(prog, opts); 11258 } 11259 11260 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 11261 { 11262 return bpf_program__attach_btf_id(prog, NULL); 11263 } 11264 11265 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11266 { 11267 *link = bpf_program__attach_trace(prog); 11268 return libbpf_get_error(*link); 11269 } 11270 11271 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11272 { 11273 *link = bpf_program__attach_lsm(prog); 11274 return libbpf_get_error(*link); 11275 } 11276 11277 static struct bpf_link * 11278 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id, 11279 const char *target_name) 11280 { 11281 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 11282 .target_btf_id = btf_id); 11283 enum bpf_attach_type attach_type; 11284 char errmsg[STRERR_BUFSIZE]; 11285 struct bpf_link *link; 11286 int prog_fd, link_fd; 11287 11288 prog_fd = bpf_program__fd(prog); 11289 if (prog_fd < 0) { 11290 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11291 return libbpf_err_ptr(-EINVAL); 11292 } 11293 11294 link = calloc(1, sizeof(*link)); 11295 if (!link) 11296 return libbpf_err_ptr(-ENOMEM); 11297 link->detach = &bpf_link__detach_fd; 11298 11299 attach_type = bpf_program__expected_attach_type(prog); 11300 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 11301 if (link_fd < 0) { 11302 link_fd = -errno; 11303 free(link); 11304 pr_warn("prog '%s': failed to attach to %s: %s\n", 11305 prog->name, target_name, 11306 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11307 return libbpf_err_ptr(link_fd); 11308 } 11309 link->fd = link_fd; 11310 return link; 11311 } 11312 11313 struct bpf_link * 11314 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 11315 { 11316 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 11317 } 11318 11319 struct bpf_link * 11320 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 11321 { 11322 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 11323 } 11324 11325 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 11326 { 11327 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 11328 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 11329 } 11330 11331 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 11332 int target_fd, 11333 const char *attach_func_name) 11334 { 11335 int btf_id; 11336 11337 if (!!target_fd != !!attach_func_name) { 11338 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 11339 prog->name); 11340 return libbpf_err_ptr(-EINVAL); 11341 } 11342 11343 if (prog->type != BPF_PROG_TYPE_EXT) { 11344 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 11345 prog->name); 11346 return libbpf_err_ptr(-EINVAL); 11347 } 11348 11349 if (target_fd) { 11350 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 11351 if (btf_id < 0) 11352 return libbpf_err_ptr(btf_id); 11353 11354 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 11355 } else { 11356 /* no target, so use raw_tracepoint_open for compatibility 11357 * with old kernels 11358 */ 11359 return bpf_program__attach_trace(prog); 11360 } 11361 } 11362 11363 struct bpf_link * 11364 bpf_program__attach_iter(const struct bpf_program *prog, 11365 const struct bpf_iter_attach_opts *opts) 11366 { 11367 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 11368 char errmsg[STRERR_BUFSIZE]; 11369 struct bpf_link *link; 11370 int prog_fd, link_fd; 11371 __u32 target_fd = 0; 11372 11373 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 11374 return libbpf_err_ptr(-EINVAL); 11375 11376 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 11377 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 11378 11379 prog_fd = bpf_program__fd(prog); 11380 if (prog_fd < 0) { 11381 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11382 return libbpf_err_ptr(-EINVAL); 11383 } 11384 11385 link = calloc(1, sizeof(*link)); 11386 if (!link) 11387 return libbpf_err_ptr(-ENOMEM); 11388 link->detach = &bpf_link__detach_fd; 11389 11390 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 11391 &link_create_opts); 11392 if (link_fd < 0) { 11393 link_fd = -errno; 11394 free(link); 11395 pr_warn("prog '%s': failed to attach to iterator: %s\n", 11396 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11397 return libbpf_err_ptr(link_fd); 11398 } 11399 link->fd = link_fd; 11400 return link; 11401 } 11402 11403 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11404 { 11405 *link = bpf_program__attach_iter(prog, NULL); 11406 return libbpf_get_error(*link); 11407 } 11408 11409 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 11410 { 11411 struct bpf_link *link = NULL; 11412 int err; 11413 11414 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 11415 return libbpf_err_ptr(-EOPNOTSUPP); 11416 11417 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 11418 if (err) 11419 return libbpf_err_ptr(err); 11420 11421 /* When calling bpf_program__attach() explicitly, auto-attach support 11422 * is expected to work, so NULL returned link is considered an error. 11423 * This is different for skeleton's attach, see comment in 11424 * bpf_object__attach_skeleton(). 11425 */ 11426 if (!link) 11427 return libbpf_err_ptr(-EOPNOTSUPP); 11428 11429 return link; 11430 } 11431 11432 static int bpf_link__detach_struct_ops(struct bpf_link *link) 11433 { 11434 __u32 zero = 0; 11435 11436 if (bpf_map_delete_elem(link->fd, &zero)) 11437 return -errno; 11438 11439 return 0; 11440 } 11441 11442 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 11443 { 11444 struct bpf_struct_ops *st_ops; 11445 struct bpf_link *link; 11446 __u32 i, zero = 0; 11447 int err; 11448 11449 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 11450 return libbpf_err_ptr(-EINVAL); 11451 11452 link = calloc(1, sizeof(*link)); 11453 if (!link) 11454 return libbpf_err_ptr(-EINVAL); 11455 11456 st_ops = map->st_ops; 11457 for (i = 0; i < btf_vlen(st_ops->type); i++) { 11458 struct bpf_program *prog = st_ops->progs[i]; 11459 void *kern_data; 11460 int prog_fd; 11461 11462 if (!prog) 11463 continue; 11464 11465 prog_fd = bpf_program__fd(prog); 11466 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 11467 *(unsigned long *)kern_data = prog_fd; 11468 } 11469 11470 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 11471 if (err) { 11472 err = -errno; 11473 free(link); 11474 return libbpf_err_ptr(err); 11475 } 11476 11477 link->detach = bpf_link__detach_struct_ops; 11478 link->fd = map->fd; 11479 11480 return link; 11481 } 11482 11483 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 11484 void *private_data); 11485 11486 static enum bpf_perf_event_ret 11487 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 11488 void **copy_mem, size_t *copy_size, 11489 bpf_perf_event_print_t fn, void *private_data) 11490 { 11491 struct perf_event_mmap_page *header = mmap_mem; 11492 __u64 data_head = ring_buffer_read_head(header); 11493 __u64 data_tail = header->data_tail; 11494 void *base = ((__u8 *)header) + page_size; 11495 int ret = LIBBPF_PERF_EVENT_CONT; 11496 struct perf_event_header *ehdr; 11497 size_t ehdr_size; 11498 11499 while (data_head != data_tail) { 11500 ehdr = base + (data_tail & (mmap_size - 1)); 11501 ehdr_size = ehdr->size; 11502 11503 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 11504 void *copy_start = ehdr; 11505 size_t len_first = base + mmap_size - copy_start; 11506 size_t len_secnd = ehdr_size - len_first; 11507 11508 if (*copy_size < ehdr_size) { 11509 free(*copy_mem); 11510 *copy_mem = malloc(ehdr_size); 11511 if (!*copy_mem) { 11512 *copy_size = 0; 11513 ret = LIBBPF_PERF_EVENT_ERROR; 11514 break; 11515 } 11516 *copy_size = ehdr_size; 11517 } 11518 11519 memcpy(*copy_mem, copy_start, len_first); 11520 memcpy(*copy_mem + len_first, base, len_secnd); 11521 ehdr = *copy_mem; 11522 } 11523 11524 ret = fn(ehdr, private_data); 11525 data_tail += ehdr_size; 11526 if (ret != LIBBPF_PERF_EVENT_CONT) 11527 break; 11528 } 11529 11530 ring_buffer_write_tail(header, data_tail); 11531 return libbpf_err(ret); 11532 } 11533 11534 struct perf_buffer; 11535 11536 struct perf_buffer_params { 11537 struct perf_event_attr *attr; 11538 /* if event_cb is specified, it takes precendence */ 11539 perf_buffer_event_fn event_cb; 11540 /* sample_cb and lost_cb are higher-level common-case callbacks */ 11541 perf_buffer_sample_fn sample_cb; 11542 perf_buffer_lost_fn lost_cb; 11543 void *ctx; 11544 int cpu_cnt; 11545 int *cpus; 11546 int *map_keys; 11547 }; 11548 11549 struct perf_cpu_buf { 11550 struct perf_buffer *pb; 11551 void *base; /* mmap()'ed memory */ 11552 void *buf; /* for reconstructing segmented data */ 11553 size_t buf_size; 11554 int fd; 11555 int cpu; 11556 int map_key; 11557 }; 11558 11559 struct perf_buffer { 11560 perf_buffer_event_fn event_cb; 11561 perf_buffer_sample_fn sample_cb; 11562 perf_buffer_lost_fn lost_cb; 11563 void *ctx; /* passed into callbacks */ 11564 11565 size_t page_size; 11566 size_t mmap_size; 11567 struct perf_cpu_buf **cpu_bufs; 11568 struct epoll_event *events; 11569 int cpu_cnt; /* number of allocated CPU buffers */ 11570 int epoll_fd; /* perf event FD */ 11571 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 11572 }; 11573 11574 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 11575 struct perf_cpu_buf *cpu_buf) 11576 { 11577 if (!cpu_buf) 11578 return; 11579 if (cpu_buf->base && 11580 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 11581 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 11582 if (cpu_buf->fd >= 0) { 11583 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 11584 close(cpu_buf->fd); 11585 } 11586 free(cpu_buf->buf); 11587 free(cpu_buf); 11588 } 11589 11590 void perf_buffer__free(struct perf_buffer *pb) 11591 { 11592 int i; 11593 11594 if (IS_ERR_OR_NULL(pb)) 11595 return; 11596 if (pb->cpu_bufs) { 11597 for (i = 0; i < pb->cpu_cnt; i++) { 11598 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 11599 11600 if (!cpu_buf) 11601 continue; 11602 11603 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 11604 perf_buffer__free_cpu_buf(pb, cpu_buf); 11605 } 11606 free(pb->cpu_bufs); 11607 } 11608 if (pb->epoll_fd >= 0) 11609 close(pb->epoll_fd); 11610 free(pb->events); 11611 free(pb); 11612 } 11613 11614 static struct perf_cpu_buf * 11615 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 11616 int cpu, int map_key) 11617 { 11618 struct perf_cpu_buf *cpu_buf; 11619 char msg[STRERR_BUFSIZE]; 11620 int err; 11621 11622 cpu_buf = calloc(1, sizeof(*cpu_buf)); 11623 if (!cpu_buf) 11624 return ERR_PTR(-ENOMEM); 11625 11626 cpu_buf->pb = pb; 11627 cpu_buf->cpu = cpu; 11628 cpu_buf->map_key = map_key; 11629 11630 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 11631 -1, PERF_FLAG_FD_CLOEXEC); 11632 if (cpu_buf->fd < 0) { 11633 err = -errno; 11634 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 11635 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11636 goto error; 11637 } 11638 11639 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 11640 PROT_READ | PROT_WRITE, MAP_SHARED, 11641 cpu_buf->fd, 0); 11642 if (cpu_buf->base == MAP_FAILED) { 11643 cpu_buf->base = NULL; 11644 err = -errno; 11645 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 11646 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11647 goto error; 11648 } 11649 11650 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 11651 err = -errno; 11652 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 11653 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11654 goto error; 11655 } 11656 11657 return cpu_buf; 11658 11659 error: 11660 perf_buffer__free_cpu_buf(pb, cpu_buf); 11661 return (struct perf_cpu_buf *)ERR_PTR(err); 11662 } 11663 11664 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 11665 struct perf_buffer_params *p); 11666 11667 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 11668 perf_buffer_sample_fn sample_cb, 11669 perf_buffer_lost_fn lost_cb, 11670 void *ctx, 11671 const struct perf_buffer_opts *opts) 11672 { 11673 const size_t attr_sz = sizeof(struct perf_event_attr); 11674 struct perf_buffer_params p = {}; 11675 struct perf_event_attr attr; 11676 __u32 sample_period; 11677 11678 if (!OPTS_VALID(opts, perf_buffer_opts)) 11679 return libbpf_err_ptr(-EINVAL); 11680 11681 sample_period = OPTS_GET(opts, sample_period, 1); 11682 if (!sample_period) 11683 sample_period = 1; 11684 11685 memset(&attr, 0, attr_sz); 11686 attr.size = attr_sz; 11687 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 11688 attr.type = PERF_TYPE_SOFTWARE; 11689 attr.sample_type = PERF_SAMPLE_RAW; 11690 attr.sample_period = sample_period; 11691 attr.wakeup_events = sample_period; 11692 11693 p.attr = &attr; 11694 p.sample_cb = sample_cb; 11695 p.lost_cb = lost_cb; 11696 p.ctx = ctx; 11697 11698 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 11699 } 11700 11701 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 11702 struct perf_event_attr *attr, 11703 perf_buffer_event_fn event_cb, void *ctx, 11704 const struct perf_buffer_raw_opts *opts) 11705 { 11706 struct perf_buffer_params p = {}; 11707 11708 if (!attr) 11709 return libbpf_err_ptr(-EINVAL); 11710 11711 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 11712 return libbpf_err_ptr(-EINVAL); 11713 11714 p.attr = attr; 11715 p.event_cb = event_cb; 11716 p.ctx = ctx; 11717 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 11718 p.cpus = OPTS_GET(opts, cpus, NULL); 11719 p.map_keys = OPTS_GET(opts, map_keys, NULL); 11720 11721 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 11722 } 11723 11724 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 11725 struct perf_buffer_params *p) 11726 { 11727 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 11728 struct bpf_map_info map; 11729 char msg[STRERR_BUFSIZE]; 11730 struct perf_buffer *pb; 11731 bool *online = NULL; 11732 __u32 map_info_len; 11733 int err, i, j, n; 11734 11735 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 11736 pr_warn("page count should be power of two, but is %zu\n", 11737 page_cnt); 11738 return ERR_PTR(-EINVAL); 11739 } 11740 11741 /* best-effort sanity checks */ 11742 memset(&map, 0, sizeof(map)); 11743 map_info_len = sizeof(map); 11744 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 11745 if (err) { 11746 err = -errno; 11747 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 11748 * -EBADFD, -EFAULT, or -E2BIG on real error 11749 */ 11750 if (err != -EINVAL) { 11751 pr_warn("failed to get map info for map FD %d: %s\n", 11752 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 11753 return ERR_PTR(err); 11754 } 11755 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 11756 map_fd); 11757 } else { 11758 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 11759 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 11760 map.name); 11761 return ERR_PTR(-EINVAL); 11762 } 11763 } 11764 11765 pb = calloc(1, sizeof(*pb)); 11766 if (!pb) 11767 return ERR_PTR(-ENOMEM); 11768 11769 pb->event_cb = p->event_cb; 11770 pb->sample_cb = p->sample_cb; 11771 pb->lost_cb = p->lost_cb; 11772 pb->ctx = p->ctx; 11773 11774 pb->page_size = getpagesize(); 11775 pb->mmap_size = pb->page_size * page_cnt; 11776 pb->map_fd = map_fd; 11777 11778 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 11779 if (pb->epoll_fd < 0) { 11780 err = -errno; 11781 pr_warn("failed to create epoll instance: %s\n", 11782 libbpf_strerror_r(err, msg, sizeof(msg))); 11783 goto error; 11784 } 11785 11786 if (p->cpu_cnt > 0) { 11787 pb->cpu_cnt = p->cpu_cnt; 11788 } else { 11789 pb->cpu_cnt = libbpf_num_possible_cpus(); 11790 if (pb->cpu_cnt < 0) { 11791 err = pb->cpu_cnt; 11792 goto error; 11793 } 11794 if (map.max_entries && map.max_entries < pb->cpu_cnt) 11795 pb->cpu_cnt = map.max_entries; 11796 } 11797 11798 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 11799 if (!pb->events) { 11800 err = -ENOMEM; 11801 pr_warn("failed to allocate events: out of memory\n"); 11802 goto error; 11803 } 11804 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 11805 if (!pb->cpu_bufs) { 11806 err = -ENOMEM; 11807 pr_warn("failed to allocate buffers: out of memory\n"); 11808 goto error; 11809 } 11810 11811 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 11812 if (err) { 11813 pr_warn("failed to get online CPU mask: %d\n", err); 11814 goto error; 11815 } 11816 11817 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 11818 struct perf_cpu_buf *cpu_buf; 11819 int cpu, map_key; 11820 11821 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 11822 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 11823 11824 /* in case user didn't explicitly requested particular CPUs to 11825 * be attached to, skip offline/not present CPUs 11826 */ 11827 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 11828 continue; 11829 11830 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 11831 if (IS_ERR(cpu_buf)) { 11832 err = PTR_ERR(cpu_buf); 11833 goto error; 11834 } 11835 11836 pb->cpu_bufs[j] = cpu_buf; 11837 11838 err = bpf_map_update_elem(pb->map_fd, &map_key, 11839 &cpu_buf->fd, 0); 11840 if (err) { 11841 err = -errno; 11842 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 11843 cpu, map_key, cpu_buf->fd, 11844 libbpf_strerror_r(err, msg, sizeof(msg))); 11845 goto error; 11846 } 11847 11848 pb->events[j].events = EPOLLIN; 11849 pb->events[j].data.ptr = cpu_buf; 11850 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 11851 &pb->events[j]) < 0) { 11852 err = -errno; 11853 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 11854 cpu, cpu_buf->fd, 11855 libbpf_strerror_r(err, msg, sizeof(msg))); 11856 goto error; 11857 } 11858 j++; 11859 } 11860 pb->cpu_cnt = j; 11861 free(online); 11862 11863 return pb; 11864 11865 error: 11866 free(online); 11867 if (pb) 11868 perf_buffer__free(pb); 11869 return ERR_PTR(err); 11870 } 11871 11872 struct perf_sample_raw { 11873 struct perf_event_header header; 11874 uint32_t size; 11875 char data[]; 11876 }; 11877 11878 struct perf_sample_lost { 11879 struct perf_event_header header; 11880 uint64_t id; 11881 uint64_t lost; 11882 uint64_t sample_id; 11883 }; 11884 11885 static enum bpf_perf_event_ret 11886 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 11887 { 11888 struct perf_cpu_buf *cpu_buf = ctx; 11889 struct perf_buffer *pb = cpu_buf->pb; 11890 void *data = e; 11891 11892 /* user wants full control over parsing perf event */ 11893 if (pb->event_cb) 11894 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 11895 11896 switch (e->type) { 11897 case PERF_RECORD_SAMPLE: { 11898 struct perf_sample_raw *s = data; 11899 11900 if (pb->sample_cb) 11901 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 11902 break; 11903 } 11904 case PERF_RECORD_LOST: { 11905 struct perf_sample_lost *s = data; 11906 11907 if (pb->lost_cb) 11908 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 11909 break; 11910 } 11911 default: 11912 pr_warn("unknown perf sample type %d\n", e->type); 11913 return LIBBPF_PERF_EVENT_ERROR; 11914 } 11915 return LIBBPF_PERF_EVENT_CONT; 11916 } 11917 11918 static int perf_buffer__process_records(struct perf_buffer *pb, 11919 struct perf_cpu_buf *cpu_buf) 11920 { 11921 enum bpf_perf_event_ret ret; 11922 11923 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 11924 pb->page_size, &cpu_buf->buf, 11925 &cpu_buf->buf_size, 11926 perf_buffer__process_record, cpu_buf); 11927 if (ret != LIBBPF_PERF_EVENT_CONT) 11928 return ret; 11929 return 0; 11930 } 11931 11932 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 11933 { 11934 return pb->epoll_fd; 11935 } 11936 11937 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 11938 { 11939 int i, cnt, err; 11940 11941 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 11942 if (cnt < 0) 11943 return -errno; 11944 11945 for (i = 0; i < cnt; i++) { 11946 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 11947 11948 err = perf_buffer__process_records(pb, cpu_buf); 11949 if (err) { 11950 pr_warn("error while processing records: %d\n", err); 11951 return libbpf_err(err); 11952 } 11953 } 11954 return cnt; 11955 } 11956 11957 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 11958 * manager. 11959 */ 11960 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 11961 { 11962 return pb->cpu_cnt; 11963 } 11964 11965 /* 11966 * Return perf_event FD of a ring buffer in *buf_idx* slot of 11967 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 11968 * select()/poll()/epoll() Linux syscalls. 11969 */ 11970 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 11971 { 11972 struct perf_cpu_buf *cpu_buf; 11973 11974 if (buf_idx >= pb->cpu_cnt) 11975 return libbpf_err(-EINVAL); 11976 11977 cpu_buf = pb->cpu_bufs[buf_idx]; 11978 if (!cpu_buf) 11979 return libbpf_err(-ENOENT); 11980 11981 return cpu_buf->fd; 11982 } 11983 11984 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 11985 { 11986 struct perf_cpu_buf *cpu_buf; 11987 11988 if (buf_idx >= pb->cpu_cnt) 11989 return libbpf_err(-EINVAL); 11990 11991 cpu_buf = pb->cpu_bufs[buf_idx]; 11992 if (!cpu_buf) 11993 return libbpf_err(-ENOENT); 11994 11995 *buf = cpu_buf->base; 11996 *buf_size = pb->mmap_size; 11997 return 0; 11998 } 11999 12000 /* 12001 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 12002 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 12003 * consume, do nothing and return success. 12004 * Returns: 12005 * - 0 on success; 12006 * - <0 on failure. 12007 */ 12008 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 12009 { 12010 struct perf_cpu_buf *cpu_buf; 12011 12012 if (buf_idx >= pb->cpu_cnt) 12013 return libbpf_err(-EINVAL); 12014 12015 cpu_buf = pb->cpu_bufs[buf_idx]; 12016 if (!cpu_buf) 12017 return libbpf_err(-ENOENT); 12018 12019 return perf_buffer__process_records(pb, cpu_buf); 12020 } 12021 12022 int perf_buffer__consume(struct perf_buffer *pb) 12023 { 12024 int i, err; 12025 12026 for (i = 0; i < pb->cpu_cnt; i++) { 12027 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12028 12029 if (!cpu_buf) 12030 continue; 12031 12032 err = perf_buffer__process_records(pb, cpu_buf); 12033 if (err) { 12034 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 12035 return libbpf_err(err); 12036 } 12037 } 12038 return 0; 12039 } 12040 12041 int bpf_program__set_attach_target(struct bpf_program *prog, 12042 int attach_prog_fd, 12043 const char *attach_func_name) 12044 { 12045 int btf_obj_fd = 0, btf_id = 0, err; 12046 12047 if (!prog || attach_prog_fd < 0) 12048 return libbpf_err(-EINVAL); 12049 12050 if (prog->obj->loaded) 12051 return libbpf_err(-EINVAL); 12052 12053 if (attach_prog_fd && !attach_func_name) { 12054 /* remember attach_prog_fd and let bpf_program__load() find 12055 * BTF ID during the program load 12056 */ 12057 prog->attach_prog_fd = attach_prog_fd; 12058 return 0; 12059 } 12060 12061 if (attach_prog_fd) { 12062 btf_id = libbpf_find_prog_btf_id(attach_func_name, 12063 attach_prog_fd); 12064 if (btf_id < 0) 12065 return libbpf_err(btf_id); 12066 } else { 12067 if (!attach_func_name) 12068 return libbpf_err(-EINVAL); 12069 12070 /* load btf_vmlinux, if not yet */ 12071 err = bpf_object__load_vmlinux_btf(prog->obj, true); 12072 if (err) 12073 return libbpf_err(err); 12074 err = find_kernel_btf_id(prog->obj, attach_func_name, 12075 prog->expected_attach_type, 12076 &btf_obj_fd, &btf_id); 12077 if (err) 12078 return libbpf_err(err); 12079 } 12080 12081 prog->attach_btf_id = btf_id; 12082 prog->attach_btf_obj_fd = btf_obj_fd; 12083 prog->attach_prog_fd = attach_prog_fd; 12084 return 0; 12085 } 12086 12087 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 12088 { 12089 int err = 0, n, len, start, end = -1; 12090 bool *tmp; 12091 12092 *mask = NULL; 12093 *mask_sz = 0; 12094 12095 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 12096 while (*s) { 12097 if (*s == ',' || *s == '\n') { 12098 s++; 12099 continue; 12100 } 12101 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 12102 if (n <= 0 || n > 2) { 12103 pr_warn("Failed to get CPU range %s: %d\n", s, n); 12104 err = -EINVAL; 12105 goto cleanup; 12106 } else if (n == 1) { 12107 end = start; 12108 } 12109 if (start < 0 || start > end) { 12110 pr_warn("Invalid CPU range [%d,%d] in %s\n", 12111 start, end, s); 12112 err = -EINVAL; 12113 goto cleanup; 12114 } 12115 tmp = realloc(*mask, end + 1); 12116 if (!tmp) { 12117 err = -ENOMEM; 12118 goto cleanup; 12119 } 12120 *mask = tmp; 12121 memset(tmp + *mask_sz, 0, start - *mask_sz); 12122 memset(tmp + start, 1, end - start + 1); 12123 *mask_sz = end + 1; 12124 s += len; 12125 } 12126 if (!*mask_sz) { 12127 pr_warn("Empty CPU range\n"); 12128 return -EINVAL; 12129 } 12130 return 0; 12131 cleanup: 12132 free(*mask); 12133 *mask = NULL; 12134 return err; 12135 } 12136 12137 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 12138 { 12139 int fd, err = 0, len; 12140 char buf[128]; 12141 12142 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 12143 if (fd < 0) { 12144 err = -errno; 12145 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 12146 return err; 12147 } 12148 len = read(fd, buf, sizeof(buf)); 12149 close(fd); 12150 if (len <= 0) { 12151 err = len ? -errno : -EINVAL; 12152 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 12153 return err; 12154 } 12155 if (len >= sizeof(buf)) { 12156 pr_warn("CPU mask is too big in file %s\n", fcpu); 12157 return -E2BIG; 12158 } 12159 buf[len] = '\0'; 12160 12161 return parse_cpu_mask_str(buf, mask, mask_sz); 12162 } 12163 12164 int libbpf_num_possible_cpus(void) 12165 { 12166 static const char *fcpu = "/sys/devices/system/cpu/possible"; 12167 static int cpus; 12168 int err, n, i, tmp_cpus; 12169 bool *mask; 12170 12171 tmp_cpus = READ_ONCE(cpus); 12172 if (tmp_cpus > 0) 12173 return tmp_cpus; 12174 12175 err = parse_cpu_mask_file(fcpu, &mask, &n); 12176 if (err) 12177 return libbpf_err(err); 12178 12179 tmp_cpus = 0; 12180 for (i = 0; i < n; i++) { 12181 if (mask[i]) 12182 tmp_cpus++; 12183 } 12184 free(mask); 12185 12186 WRITE_ONCE(cpus, tmp_cpus); 12187 return tmp_cpus; 12188 } 12189 12190 static int populate_skeleton_maps(const struct bpf_object *obj, 12191 struct bpf_map_skeleton *maps, 12192 size_t map_cnt) 12193 { 12194 int i; 12195 12196 for (i = 0; i < map_cnt; i++) { 12197 struct bpf_map **map = maps[i].map; 12198 const char *name = maps[i].name; 12199 void **mmaped = maps[i].mmaped; 12200 12201 *map = bpf_object__find_map_by_name(obj, name); 12202 if (!*map) { 12203 pr_warn("failed to find skeleton map '%s'\n", name); 12204 return -ESRCH; 12205 } 12206 12207 /* externs shouldn't be pre-setup from user code */ 12208 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 12209 *mmaped = (*map)->mmaped; 12210 } 12211 return 0; 12212 } 12213 12214 static int populate_skeleton_progs(const struct bpf_object *obj, 12215 struct bpf_prog_skeleton *progs, 12216 size_t prog_cnt) 12217 { 12218 int i; 12219 12220 for (i = 0; i < prog_cnt; i++) { 12221 struct bpf_program **prog = progs[i].prog; 12222 const char *name = progs[i].name; 12223 12224 *prog = bpf_object__find_program_by_name(obj, name); 12225 if (!*prog) { 12226 pr_warn("failed to find skeleton program '%s'\n", name); 12227 return -ESRCH; 12228 } 12229 } 12230 return 0; 12231 } 12232 12233 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 12234 const struct bpf_object_open_opts *opts) 12235 { 12236 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 12237 .object_name = s->name, 12238 ); 12239 struct bpf_object *obj; 12240 int err; 12241 12242 /* Attempt to preserve opts->object_name, unless overriden by user 12243 * explicitly. Overwriting object name for skeletons is discouraged, 12244 * as it breaks global data maps, because they contain object name 12245 * prefix as their own map name prefix. When skeleton is generated, 12246 * bpftool is making an assumption that this name will stay the same. 12247 */ 12248 if (opts) { 12249 memcpy(&skel_opts, opts, sizeof(*opts)); 12250 if (!opts->object_name) 12251 skel_opts.object_name = s->name; 12252 } 12253 12254 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 12255 err = libbpf_get_error(obj); 12256 if (err) { 12257 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 12258 s->name, err); 12259 return libbpf_err(err); 12260 } 12261 12262 *s->obj = obj; 12263 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 12264 if (err) { 12265 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 12266 return libbpf_err(err); 12267 } 12268 12269 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 12270 if (err) { 12271 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 12272 return libbpf_err(err); 12273 } 12274 12275 return 0; 12276 } 12277 12278 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 12279 { 12280 int err, len, var_idx, i; 12281 const char *var_name; 12282 const struct bpf_map *map; 12283 struct btf *btf; 12284 __u32 map_type_id; 12285 const struct btf_type *map_type, *var_type; 12286 const struct bpf_var_skeleton *var_skel; 12287 struct btf_var_secinfo *var; 12288 12289 if (!s->obj) 12290 return libbpf_err(-EINVAL); 12291 12292 btf = bpf_object__btf(s->obj); 12293 if (!btf) { 12294 pr_warn("subskeletons require BTF at runtime (object %s)\n", 12295 bpf_object__name(s->obj)); 12296 return libbpf_err(-errno); 12297 } 12298 12299 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 12300 if (err) { 12301 pr_warn("failed to populate subskeleton maps: %d\n", err); 12302 return libbpf_err(err); 12303 } 12304 12305 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 12306 if (err) { 12307 pr_warn("failed to populate subskeleton maps: %d\n", err); 12308 return libbpf_err(err); 12309 } 12310 12311 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 12312 var_skel = &s->vars[var_idx]; 12313 map = *var_skel->map; 12314 map_type_id = bpf_map__btf_value_type_id(map); 12315 map_type = btf__type_by_id(btf, map_type_id); 12316 12317 if (!btf_is_datasec(map_type)) { 12318 pr_warn("type for map '%1$s' is not a datasec: %2$s", 12319 bpf_map__name(map), 12320 __btf_kind_str(btf_kind(map_type))); 12321 return libbpf_err(-EINVAL); 12322 } 12323 12324 len = btf_vlen(map_type); 12325 var = btf_var_secinfos(map_type); 12326 for (i = 0; i < len; i++, var++) { 12327 var_type = btf__type_by_id(btf, var->type); 12328 var_name = btf__name_by_offset(btf, var_type->name_off); 12329 if (strcmp(var_name, var_skel->name) == 0) { 12330 *var_skel->addr = map->mmaped + var->offset; 12331 break; 12332 } 12333 } 12334 } 12335 return 0; 12336 } 12337 12338 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 12339 { 12340 if (!s) 12341 return; 12342 free(s->maps); 12343 free(s->progs); 12344 free(s->vars); 12345 free(s); 12346 } 12347 12348 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 12349 { 12350 int i, err; 12351 12352 err = bpf_object__load(*s->obj); 12353 if (err) { 12354 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 12355 return libbpf_err(err); 12356 } 12357 12358 for (i = 0; i < s->map_cnt; i++) { 12359 struct bpf_map *map = *s->maps[i].map; 12360 size_t mmap_sz = bpf_map_mmap_sz(map); 12361 int prot, map_fd = bpf_map__fd(map); 12362 void **mmaped = s->maps[i].mmaped; 12363 12364 if (!mmaped) 12365 continue; 12366 12367 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 12368 *mmaped = NULL; 12369 continue; 12370 } 12371 12372 if (map->def.map_flags & BPF_F_RDONLY_PROG) 12373 prot = PROT_READ; 12374 else 12375 prot = PROT_READ | PROT_WRITE; 12376 12377 /* Remap anonymous mmap()-ed "map initialization image" as 12378 * a BPF map-backed mmap()-ed memory, but preserving the same 12379 * memory address. This will cause kernel to change process' 12380 * page table to point to a different piece of kernel memory, 12381 * but from userspace point of view memory address (and its 12382 * contents, being identical at this point) will stay the 12383 * same. This mapping will be released by bpf_object__close() 12384 * as per normal clean up procedure, so we don't need to worry 12385 * about it from skeleton's clean up perspective. 12386 */ 12387 *mmaped = mmap(map->mmaped, mmap_sz, prot, 12388 MAP_SHARED | MAP_FIXED, map_fd, 0); 12389 if (*mmaped == MAP_FAILED) { 12390 err = -errno; 12391 *mmaped = NULL; 12392 pr_warn("failed to re-mmap() map '%s': %d\n", 12393 bpf_map__name(map), err); 12394 return libbpf_err(err); 12395 } 12396 } 12397 12398 return 0; 12399 } 12400 12401 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 12402 { 12403 int i, err; 12404 12405 for (i = 0; i < s->prog_cnt; i++) { 12406 struct bpf_program *prog = *s->progs[i].prog; 12407 struct bpf_link **link = s->progs[i].link; 12408 12409 if (!prog->autoload || !prog->autoattach) 12410 continue; 12411 12412 /* auto-attaching not supported for this program */ 12413 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12414 continue; 12415 12416 /* if user already set the link manually, don't attempt auto-attach */ 12417 if (*link) 12418 continue; 12419 12420 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 12421 if (err) { 12422 pr_warn("prog '%s': failed to auto-attach: %d\n", 12423 bpf_program__name(prog), err); 12424 return libbpf_err(err); 12425 } 12426 12427 /* It's possible that for some SEC() definitions auto-attach 12428 * is supported in some cases (e.g., if definition completely 12429 * specifies target information), but is not in other cases. 12430 * SEC("uprobe") is one such case. If user specified target 12431 * binary and function name, such BPF program can be 12432 * auto-attached. But if not, it shouldn't trigger skeleton's 12433 * attach to fail. It should just be skipped. 12434 * attach_fn signals such case with returning 0 (no error) and 12435 * setting link to NULL. 12436 */ 12437 } 12438 12439 return 0; 12440 } 12441 12442 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 12443 { 12444 int i; 12445 12446 for (i = 0; i < s->prog_cnt; i++) { 12447 struct bpf_link **link = s->progs[i].link; 12448 12449 bpf_link__destroy(*link); 12450 *link = NULL; 12451 } 12452 } 12453 12454 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 12455 { 12456 if (!s) 12457 return; 12458 12459 if (s->progs) 12460 bpf_object__detach_skeleton(s); 12461 if (s->obj) 12462 bpf_object__close(*s->obj); 12463 free(s->maps); 12464 free(s->progs); 12465 free(s); 12466 } 12467