1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/ring_buffer.h> 37 #include <sys/epoll.h> 38 #include <sys/ioctl.h> 39 #include <sys/mman.h> 40 #include <sys/stat.h> 41 #include <sys/types.h> 42 #include <sys/vfs.h> 43 #include <sys/utsname.h> 44 #include <sys/resource.h> 45 #include <libelf.h> 46 #include <gelf.h> 47 #include <zlib.h> 48 49 #include "libbpf.h" 50 #include "bpf.h" 51 #include "btf.h" 52 #include "str_error.h" 53 #include "libbpf_internal.h" 54 #include "hashmap.h" 55 #include "bpf_gen_internal.h" 56 #include "zip.h" 57 58 #ifndef BPF_FS_MAGIC 59 #define BPF_FS_MAGIC 0xcafe4a11 60 #endif 61 62 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 63 64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 65 * compilation if user enables corresponding warning. Disable it explicitly. 66 */ 67 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 68 69 #define __printf(a, b) __attribute__((format(printf, a, b))) 70 71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 73 74 static const char * const attach_type_name[] = { 75 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 76 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 77 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 78 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 79 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 80 [BPF_CGROUP_DEVICE] = "cgroup_device", 81 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 82 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 83 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 84 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 85 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 86 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 87 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 88 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 89 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 90 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 91 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 92 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 93 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 94 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 95 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 96 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 97 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 98 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 99 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 100 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 101 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 102 [BPF_LIRC_MODE2] = "lirc_mode2", 103 [BPF_FLOW_DISSECTOR] = "flow_dissector", 104 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 105 [BPF_TRACE_FENTRY] = "trace_fentry", 106 [BPF_TRACE_FEXIT] = "trace_fexit", 107 [BPF_MODIFY_RETURN] = "modify_return", 108 [BPF_LSM_MAC] = "lsm_mac", 109 [BPF_LSM_CGROUP] = "lsm_cgroup", 110 [BPF_SK_LOOKUP] = "sk_lookup", 111 [BPF_TRACE_ITER] = "trace_iter", 112 [BPF_XDP_DEVMAP] = "xdp_devmap", 113 [BPF_XDP_CPUMAP] = "xdp_cpumap", 114 [BPF_XDP] = "xdp", 115 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 116 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 117 [BPF_PERF_EVENT] = "perf_event", 118 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 119 [BPF_STRUCT_OPS] = "struct_ops", 120 }; 121 122 static const char * const link_type_name[] = { 123 [BPF_LINK_TYPE_UNSPEC] = "unspec", 124 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 125 [BPF_LINK_TYPE_TRACING] = "tracing", 126 [BPF_LINK_TYPE_CGROUP] = "cgroup", 127 [BPF_LINK_TYPE_ITER] = "iter", 128 [BPF_LINK_TYPE_NETNS] = "netns", 129 [BPF_LINK_TYPE_XDP] = "xdp", 130 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 131 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 132 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 133 [BPF_LINK_TYPE_NETFILTER] = "netfilter", 134 }; 135 136 static const char * const map_type_name[] = { 137 [BPF_MAP_TYPE_UNSPEC] = "unspec", 138 [BPF_MAP_TYPE_HASH] = "hash", 139 [BPF_MAP_TYPE_ARRAY] = "array", 140 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 141 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 142 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 143 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 144 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 145 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 146 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 147 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 148 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 149 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 150 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 151 [BPF_MAP_TYPE_DEVMAP] = "devmap", 152 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 153 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 154 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 155 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 156 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 157 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 158 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 159 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 160 [BPF_MAP_TYPE_QUEUE] = "queue", 161 [BPF_MAP_TYPE_STACK] = "stack", 162 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 163 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 164 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 165 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 166 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 167 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 168 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 169 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage", 170 }; 171 172 static const char * const prog_type_name[] = { 173 [BPF_PROG_TYPE_UNSPEC] = "unspec", 174 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 175 [BPF_PROG_TYPE_KPROBE] = "kprobe", 176 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 177 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 178 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 179 [BPF_PROG_TYPE_XDP] = "xdp", 180 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 181 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 182 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 183 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 184 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 185 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 186 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 187 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 188 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 189 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 190 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 191 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 192 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 193 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 194 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 195 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 196 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 197 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 198 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 199 [BPF_PROG_TYPE_TRACING] = "tracing", 200 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 201 [BPF_PROG_TYPE_EXT] = "ext", 202 [BPF_PROG_TYPE_LSM] = "lsm", 203 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 204 [BPF_PROG_TYPE_SYSCALL] = "syscall", 205 [BPF_PROG_TYPE_NETFILTER] = "netfilter", 206 }; 207 208 static int __base_pr(enum libbpf_print_level level, const char *format, 209 va_list args) 210 { 211 if (level == LIBBPF_DEBUG) 212 return 0; 213 214 return vfprintf(stderr, format, args); 215 } 216 217 static libbpf_print_fn_t __libbpf_pr = __base_pr; 218 219 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 220 { 221 libbpf_print_fn_t old_print_fn; 222 223 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED); 224 225 return old_print_fn; 226 } 227 228 __printf(2, 3) 229 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 230 { 231 va_list args; 232 int old_errno; 233 libbpf_print_fn_t print_fn; 234 235 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED); 236 if (!print_fn) 237 return; 238 239 old_errno = errno; 240 241 va_start(args, format); 242 __libbpf_pr(level, format, args); 243 va_end(args); 244 245 errno = old_errno; 246 } 247 248 static void pr_perm_msg(int err) 249 { 250 struct rlimit limit; 251 char buf[100]; 252 253 if (err != -EPERM || geteuid() != 0) 254 return; 255 256 err = getrlimit(RLIMIT_MEMLOCK, &limit); 257 if (err) 258 return; 259 260 if (limit.rlim_cur == RLIM_INFINITY) 261 return; 262 263 if (limit.rlim_cur < 1024) 264 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 265 else if (limit.rlim_cur < 1024*1024) 266 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 267 else 268 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 269 270 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 271 buf); 272 } 273 274 #define STRERR_BUFSIZE 128 275 276 /* Copied from tools/perf/util/util.h */ 277 #ifndef zfree 278 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 279 #endif 280 281 #ifndef zclose 282 # define zclose(fd) ({ \ 283 int ___err = 0; \ 284 if ((fd) >= 0) \ 285 ___err = close((fd)); \ 286 fd = -1; \ 287 ___err; }) 288 #endif 289 290 static inline __u64 ptr_to_u64(const void *ptr) 291 { 292 return (__u64) (unsigned long) ptr; 293 } 294 295 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 296 { 297 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 298 return 0; 299 } 300 301 __u32 libbpf_major_version(void) 302 { 303 return LIBBPF_MAJOR_VERSION; 304 } 305 306 __u32 libbpf_minor_version(void) 307 { 308 return LIBBPF_MINOR_VERSION; 309 } 310 311 const char *libbpf_version_string(void) 312 { 313 #define __S(X) #X 314 #define _S(X) __S(X) 315 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 316 #undef _S 317 #undef __S 318 } 319 320 enum reloc_type { 321 RELO_LD64, 322 RELO_CALL, 323 RELO_DATA, 324 RELO_EXTERN_LD64, 325 RELO_EXTERN_CALL, 326 RELO_SUBPROG_ADDR, 327 RELO_CORE, 328 }; 329 330 struct reloc_desc { 331 enum reloc_type type; 332 int insn_idx; 333 union { 334 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 335 struct { 336 int map_idx; 337 int sym_off; 338 int ext_idx; 339 }; 340 }; 341 }; 342 343 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 344 enum sec_def_flags { 345 SEC_NONE = 0, 346 /* expected_attach_type is optional, if kernel doesn't support that */ 347 SEC_EXP_ATTACH_OPT = 1, 348 /* legacy, only used by libbpf_get_type_names() and 349 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 350 * This used to be associated with cgroup (and few other) BPF programs 351 * that were attachable through BPF_PROG_ATTACH command. Pretty 352 * meaningless nowadays, though. 353 */ 354 SEC_ATTACHABLE = 2, 355 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 356 /* attachment target is specified through BTF ID in either kernel or 357 * other BPF program's BTF object 358 */ 359 SEC_ATTACH_BTF = 4, 360 /* BPF program type allows sleeping/blocking in kernel */ 361 SEC_SLEEPABLE = 8, 362 /* BPF program support non-linear XDP buffer */ 363 SEC_XDP_FRAGS = 16, 364 }; 365 366 struct bpf_sec_def { 367 char *sec; 368 enum bpf_prog_type prog_type; 369 enum bpf_attach_type expected_attach_type; 370 long cookie; 371 int handler_id; 372 373 libbpf_prog_setup_fn_t prog_setup_fn; 374 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 375 libbpf_prog_attach_fn_t prog_attach_fn; 376 }; 377 378 /* 379 * bpf_prog should be a better name but it has been used in 380 * linux/filter.h. 381 */ 382 struct bpf_program { 383 char *name; 384 char *sec_name; 385 size_t sec_idx; 386 const struct bpf_sec_def *sec_def; 387 /* this program's instruction offset (in number of instructions) 388 * within its containing ELF section 389 */ 390 size_t sec_insn_off; 391 /* number of original instructions in ELF section belonging to this 392 * program, not taking into account subprogram instructions possible 393 * appended later during relocation 394 */ 395 size_t sec_insn_cnt; 396 /* Offset (in number of instructions) of the start of instruction 397 * belonging to this BPF program within its containing main BPF 398 * program. For the entry-point (main) BPF program, this is always 399 * zero. For a sub-program, this gets reset before each of main BPF 400 * programs are processed and relocated and is used to determined 401 * whether sub-program was already appended to the main program, and 402 * if yes, at which instruction offset. 403 */ 404 size_t sub_insn_off; 405 406 /* instructions that belong to BPF program; insns[0] is located at 407 * sec_insn_off instruction within its ELF section in ELF file, so 408 * when mapping ELF file instruction index to the local instruction, 409 * one needs to subtract sec_insn_off; and vice versa. 410 */ 411 struct bpf_insn *insns; 412 /* actual number of instruction in this BPF program's image; for 413 * entry-point BPF programs this includes the size of main program 414 * itself plus all the used sub-programs, appended at the end 415 */ 416 size_t insns_cnt; 417 418 struct reloc_desc *reloc_desc; 419 int nr_reloc; 420 421 /* BPF verifier log settings */ 422 char *log_buf; 423 size_t log_size; 424 __u32 log_level; 425 426 struct bpf_object *obj; 427 428 int fd; 429 bool autoload; 430 bool autoattach; 431 bool mark_btf_static; 432 enum bpf_prog_type type; 433 enum bpf_attach_type expected_attach_type; 434 435 int prog_ifindex; 436 __u32 attach_btf_obj_fd; 437 __u32 attach_btf_id; 438 __u32 attach_prog_fd; 439 440 void *func_info; 441 __u32 func_info_rec_size; 442 __u32 func_info_cnt; 443 444 void *line_info; 445 __u32 line_info_rec_size; 446 __u32 line_info_cnt; 447 __u32 prog_flags; 448 }; 449 450 struct bpf_struct_ops { 451 const char *tname; 452 const struct btf_type *type; 453 struct bpf_program **progs; 454 __u32 *kern_func_off; 455 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 456 void *data; 457 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 458 * btf_vmlinux's format. 459 * struct bpf_struct_ops_tcp_congestion_ops { 460 * [... some other kernel fields ...] 461 * struct tcp_congestion_ops data; 462 * } 463 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 464 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 465 * from "data". 466 */ 467 void *kern_vdata; 468 __u32 type_id; 469 }; 470 471 #define DATA_SEC ".data" 472 #define BSS_SEC ".bss" 473 #define RODATA_SEC ".rodata" 474 #define KCONFIG_SEC ".kconfig" 475 #define KSYMS_SEC ".ksyms" 476 #define STRUCT_OPS_SEC ".struct_ops" 477 #define STRUCT_OPS_LINK_SEC ".struct_ops.link" 478 479 enum libbpf_map_type { 480 LIBBPF_MAP_UNSPEC, 481 LIBBPF_MAP_DATA, 482 LIBBPF_MAP_BSS, 483 LIBBPF_MAP_RODATA, 484 LIBBPF_MAP_KCONFIG, 485 }; 486 487 struct bpf_map_def { 488 unsigned int type; 489 unsigned int key_size; 490 unsigned int value_size; 491 unsigned int max_entries; 492 unsigned int map_flags; 493 }; 494 495 struct bpf_map { 496 struct bpf_object *obj; 497 char *name; 498 /* real_name is defined for special internal maps (.rodata*, 499 * .data*, .bss, .kconfig) and preserves their original ELF section 500 * name. This is important to be able to find corresponding BTF 501 * DATASEC information. 502 */ 503 char *real_name; 504 int fd; 505 int sec_idx; 506 size_t sec_offset; 507 int map_ifindex; 508 int inner_map_fd; 509 struct bpf_map_def def; 510 __u32 numa_node; 511 __u32 btf_var_idx; 512 __u32 btf_key_type_id; 513 __u32 btf_value_type_id; 514 __u32 btf_vmlinux_value_type_id; 515 enum libbpf_map_type libbpf_type; 516 void *mmaped; 517 struct bpf_struct_ops *st_ops; 518 struct bpf_map *inner_map; 519 void **init_slots; 520 int init_slots_sz; 521 char *pin_path; 522 bool pinned; 523 bool reused; 524 bool autocreate; 525 __u64 map_extra; 526 }; 527 528 enum extern_type { 529 EXT_UNKNOWN, 530 EXT_KCFG, 531 EXT_KSYM, 532 }; 533 534 enum kcfg_type { 535 KCFG_UNKNOWN, 536 KCFG_CHAR, 537 KCFG_BOOL, 538 KCFG_INT, 539 KCFG_TRISTATE, 540 KCFG_CHAR_ARR, 541 }; 542 543 struct extern_desc { 544 enum extern_type type; 545 int sym_idx; 546 int btf_id; 547 int sec_btf_id; 548 const char *name; 549 bool is_set; 550 bool is_weak; 551 union { 552 struct { 553 enum kcfg_type type; 554 int sz; 555 int align; 556 int data_off; 557 bool is_signed; 558 } kcfg; 559 struct { 560 unsigned long long addr; 561 562 /* target btf_id of the corresponding kernel var. */ 563 int kernel_btf_obj_fd; 564 int kernel_btf_id; 565 566 /* local btf_id of the ksym extern's type. */ 567 __u32 type_id; 568 /* BTF fd index to be patched in for insn->off, this is 569 * 0 for vmlinux BTF, index in obj->fd_array for module 570 * BTF 571 */ 572 __s16 btf_fd_idx; 573 } ksym; 574 }; 575 }; 576 577 struct module_btf { 578 struct btf *btf; 579 char *name; 580 __u32 id; 581 int fd; 582 int fd_array_idx; 583 }; 584 585 enum sec_type { 586 SEC_UNUSED = 0, 587 SEC_RELO, 588 SEC_BSS, 589 SEC_DATA, 590 SEC_RODATA, 591 }; 592 593 struct elf_sec_desc { 594 enum sec_type sec_type; 595 Elf64_Shdr *shdr; 596 Elf_Data *data; 597 }; 598 599 struct elf_state { 600 int fd; 601 const void *obj_buf; 602 size_t obj_buf_sz; 603 Elf *elf; 604 Elf64_Ehdr *ehdr; 605 Elf_Data *symbols; 606 Elf_Data *st_ops_data; 607 Elf_Data *st_ops_link_data; 608 size_t shstrndx; /* section index for section name strings */ 609 size_t strtabidx; 610 struct elf_sec_desc *secs; 611 size_t sec_cnt; 612 int btf_maps_shndx; 613 __u32 btf_maps_sec_btf_id; 614 int text_shndx; 615 int symbols_shndx; 616 int st_ops_shndx; 617 int st_ops_link_shndx; 618 }; 619 620 struct usdt_manager; 621 622 struct bpf_object { 623 char name[BPF_OBJ_NAME_LEN]; 624 char license[64]; 625 __u32 kern_version; 626 627 struct bpf_program *programs; 628 size_t nr_programs; 629 struct bpf_map *maps; 630 size_t nr_maps; 631 size_t maps_cap; 632 633 char *kconfig; 634 struct extern_desc *externs; 635 int nr_extern; 636 int kconfig_map_idx; 637 638 bool loaded; 639 bool has_subcalls; 640 bool has_rodata; 641 642 struct bpf_gen *gen_loader; 643 644 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 645 struct elf_state efile; 646 647 struct btf *btf; 648 struct btf_ext *btf_ext; 649 650 /* Parse and load BTF vmlinux if any of the programs in the object need 651 * it at load time. 652 */ 653 struct btf *btf_vmlinux; 654 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 655 * override for vmlinux BTF. 656 */ 657 char *btf_custom_path; 658 /* vmlinux BTF override for CO-RE relocations */ 659 struct btf *btf_vmlinux_override; 660 /* Lazily initialized kernel module BTFs */ 661 struct module_btf *btf_modules; 662 bool btf_modules_loaded; 663 size_t btf_module_cnt; 664 size_t btf_module_cap; 665 666 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 667 char *log_buf; 668 size_t log_size; 669 __u32 log_level; 670 671 int *fd_array; 672 size_t fd_array_cap; 673 size_t fd_array_cnt; 674 675 struct usdt_manager *usdt_man; 676 677 char path[]; 678 }; 679 680 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 681 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 682 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 683 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 684 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 685 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 686 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 687 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 688 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 689 690 void bpf_program__unload(struct bpf_program *prog) 691 { 692 if (!prog) 693 return; 694 695 zclose(prog->fd); 696 697 zfree(&prog->func_info); 698 zfree(&prog->line_info); 699 } 700 701 static void bpf_program__exit(struct bpf_program *prog) 702 { 703 if (!prog) 704 return; 705 706 bpf_program__unload(prog); 707 zfree(&prog->name); 708 zfree(&prog->sec_name); 709 zfree(&prog->insns); 710 zfree(&prog->reloc_desc); 711 712 prog->nr_reloc = 0; 713 prog->insns_cnt = 0; 714 prog->sec_idx = -1; 715 } 716 717 static bool insn_is_subprog_call(const struct bpf_insn *insn) 718 { 719 return BPF_CLASS(insn->code) == BPF_JMP && 720 BPF_OP(insn->code) == BPF_CALL && 721 BPF_SRC(insn->code) == BPF_K && 722 insn->src_reg == BPF_PSEUDO_CALL && 723 insn->dst_reg == 0 && 724 insn->off == 0; 725 } 726 727 static bool is_call_insn(const struct bpf_insn *insn) 728 { 729 return insn->code == (BPF_JMP | BPF_CALL); 730 } 731 732 static bool insn_is_pseudo_func(struct bpf_insn *insn) 733 { 734 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 735 } 736 737 static int 738 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 739 const char *name, size_t sec_idx, const char *sec_name, 740 size_t sec_off, void *insn_data, size_t insn_data_sz) 741 { 742 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 743 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 744 sec_name, name, sec_off, insn_data_sz); 745 return -EINVAL; 746 } 747 748 memset(prog, 0, sizeof(*prog)); 749 prog->obj = obj; 750 751 prog->sec_idx = sec_idx; 752 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 753 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 754 /* insns_cnt can later be increased by appending used subprograms */ 755 prog->insns_cnt = prog->sec_insn_cnt; 756 757 prog->type = BPF_PROG_TYPE_UNSPEC; 758 prog->fd = -1; 759 760 /* libbpf's convention for SEC("?abc...") is that it's just like 761 * SEC("abc...") but the corresponding bpf_program starts out with 762 * autoload set to false. 763 */ 764 if (sec_name[0] == '?') { 765 prog->autoload = false; 766 /* from now on forget there was ? in section name */ 767 sec_name++; 768 } else { 769 prog->autoload = true; 770 } 771 772 prog->autoattach = true; 773 774 /* inherit object's log_level */ 775 prog->log_level = obj->log_level; 776 777 prog->sec_name = strdup(sec_name); 778 if (!prog->sec_name) 779 goto errout; 780 781 prog->name = strdup(name); 782 if (!prog->name) 783 goto errout; 784 785 prog->insns = malloc(insn_data_sz); 786 if (!prog->insns) 787 goto errout; 788 memcpy(prog->insns, insn_data, insn_data_sz); 789 790 return 0; 791 errout: 792 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 793 bpf_program__exit(prog); 794 return -ENOMEM; 795 } 796 797 static int 798 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 799 const char *sec_name, int sec_idx) 800 { 801 Elf_Data *symbols = obj->efile.symbols; 802 struct bpf_program *prog, *progs; 803 void *data = sec_data->d_buf; 804 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 805 int nr_progs, err, i; 806 const char *name; 807 Elf64_Sym *sym; 808 809 progs = obj->programs; 810 nr_progs = obj->nr_programs; 811 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 812 813 for (i = 0; i < nr_syms; i++) { 814 sym = elf_sym_by_idx(obj, i); 815 816 if (sym->st_shndx != sec_idx) 817 continue; 818 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 819 continue; 820 821 prog_sz = sym->st_size; 822 sec_off = sym->st_value; 823 824 name = elf_sym_str(obj, sym->st_name); 825 if (!name) { 826 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 827 sec_name, sec_off); 828 return -LIBBPF_ERRNO__FORMAT; 829 } 830 831 if (sec_off + prog_sz > sec_sz) { 832 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 833 sec_name, sec_off); 834 return -LIBBPF_ERRNO__FORMAT; 835 } 836 837 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 838 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 839 return -ENOTSUP; 840 } 841 842 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 843 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 844 845 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 846 if (!progs) { 847 /* 848 * In this case the original obj->programs 849 * is still valid, so don't need special treat for 850 * bpf_close_object(). 851 */ 852 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 853 sec_name, name); 854 return -ENOMEM; 855 } 856 obj->programs = progs; 857 858 prog = &progs[nr_progs]; 859 860 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 861 sec_off, data + sec_off, prog_sz); 862 if (err) 863 return err; 864 865 /* if function is a global/weak symbol, but has restricted 866 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 867 * as static to enable more permissive BPF verification mode 868 * with more outside context available to BPF verifier 869 */ 870 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL 871 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 872 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 873 prog->mark_btf_static = true; 874 875 nr_progs++; 876 obj->nr_programs = nr_progs; 877 } 878 879 return 0; 880 } 881 882 static const struct btf_member * 883 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 884 { 885 struct btf_member *m; 886 int i; 887 888 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 889 if (btf_member_bit_offset(t, i) == bit_offset) 890 return m; 891 } 892 893 return NULL; 894 } 895 896 static const struct btf_member * 897 find_member_by_name(const struct btf *btf, const struct btf_type *t, 898 const char *name) 899 { 900 struct btf_member *m; 901 int i; 902 903 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 904 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 905 return m; 906 } 907 908 return NULL; 909 } 910 911 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 912 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 913 const char *name, __u32 kind); 914 915 static int 916 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 917 const struct btf_type **type, __u32 *type_id, 918 const struct btf_type **vtype, __u32 *vtype_id, 919 const struct btf_member **data_member) 920 { 921 const struct btf_type *kern_type, *kern_vtype; 922 const struct btf_member *kern_data_member; 923 __s32 kern_vtype_id, kern_type_id; 924 __u32 i; 925 926 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 927 if (kern_type_id < 0) { 928 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 929 tname); 930 return kern_type_id; 931 } 932 kern_type = btf__type_by_id(btf, kern_type_id); 933 934 /* Find the corresponding "map_value" type that will be used 935 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 936 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 937 * btf_vmlinux. 938 */ 939 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 940 tname, BTF_KIND_STRUCT); 941 if (kern_vtype_id < 0) { 942 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 943 STRUCT_OPS_VALUE_PREFIX, tname); 944 return kern_vtype_id; 945 } 946 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 947 948 /* Find "struct tcp_congestion_ops" from 949 * struct bpf_struct_ops_tcp_congestion_ops { 950 * [ ... ] 951 * struct tcp_congestion_ops data; 952 * } 953 */ 954 kern_data_member = btf_members(kern_vtype); 955 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 956 if (kern_data_member->type == kern_type_id) 957 break; 958 } 959 if (i == btf_vlen(kern_vtype)) { 960 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 961 tname, STRUCT_OPS_VALUE_PREFIX, tname); 962 return -EINVAL; 963 } 964 965 *type = kern_type; 966 *type_id = kern_type_id; 967 *vtype = kern_vtype; 968 *vtype_id = kern_vtype_id; 969 *data_member = kern_data_member; 970 971 return 0; 972 } 973 974 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 975 { 976 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 977 } 978 979 /* Init the map's fields that depend on kern_btf */ 980 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 981 const struct btf *btf, 982 const struct btf *kern_btf) 983 { 984 const struct btf_member *member, *kern_member, *kern_data_member; 985 const struct btf_type *type, *kern_type, *kern_vtype; 986 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 987 struct bpf_struct_ops *st_ops; 988 void *data, *kern_data; 989 const char *tname; 990 int err; 991 992 st_ops = map->st_ops; 993 type = st_ops->type; 994 tname = st_ops->tname; 995 err = find_struct_ops_kern_types(kern_btf, tname, 996 &kern_type, &kern_type_id, 997 &kern_vtype, &kern_vtype_id, 998 &kern_data_member); 999 if (err) 1000 return err; 1001 1002 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1003 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1004 1005 map->def.value_size = kern_vtype->size; 1006 map->btf_vmlinux_value_type_id = kern_vtype_id; 1007 1008 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1009 if (!st_ops->kern_vdata) 1010 return -ENOMEM; 1011 1012 data = st_ops->data; 1013 kern_data_off = kern_data_member->offset / 8; 1014 kern_data = st_ops->kern_vdata + kern_data_off; 1015 1016 member = btf_members(type); 1017 for (i = 0; i < btf_vlen(type); i++, member++) { 1018 const struct btf_type *mtype, *kern_mtype; 1019 __u32 mtype_id, kern_mtype_id; 1020 void *mdata, *kern_mdata; 1021 __s64 msize, kern_msize; 1022 __u32 moff, kern_moff; 1023 __u32 kern_member_idx; 1024 const char *mname; 1025 1026 mname = btf__name_by_offset(btf, member->name_off); 1027 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1028 if (!kern_member) { 1029 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1030 map->name, mname); 1031 return -ENOTSUP; 1032 } 1033 1034 kern_member_idx = kern_member - btf_members(kern_type); 1035 if (btf_member_bitfield_size(type, i) || 1036 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1037 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1038 map->name, mname); 1039 return -ENOTSUP; 1040 } 1041 1042 moff = member->offset / 8; 1043 kern_moff = kern_member->offset / 8; 1044 1045 mdata = data + moff; 1046 kern_mdata = kern_data + kern_moff; 1047 1048 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1049 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1050 &kern_mtype_id); 1051 if (BTF_INFO_KIND(mtype->info) != 1052 BTF_INFO_KIND(kern_mtype->info)) { 1053 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1054 map->name, mname, BTF_INFO_KIND(mtype->info), 1055 BTF_INFO_KIND(kern_mtype->info)); 1056 return -ENOTSUP; 1057 } 1058 1059 if (btf_is_ptr(mtype)) { 1060 struct bpf_program *prog; 1061 1062 prog = st_ops->progs[i]; 1063 if (!prog) 1064 continue; 1065 1066 kern_mtype = skip_mods_and_typedefs(kern_btf, 1067 kern_mtype->type, 1068 &kern_mtype_id); 1069 1070 /* mtype->type must be a func_proto which was 1071 * guaranteed in bpf_object__collect_st_ops_relos(), 1072 * so only check kern_mtype for func_proto here. 1073 */ 1074 if (!btf_is_func_proto(kern_mtype)) { 1075 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1076 map->name, mname); 1077 return -ENOTSUP; 1078 } 1079 1080 prog->attach_btf_id = kern_type_id; 1081 prog->expected_attach_type = kern_member_idx; 1082 1083 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1084 1085 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1086 map->name, mname, prog->name, moff, 1087 kern_moff); 1088 1089 continue; 1090 } 1091 1092 msize = btf__resolve_size(btf, mtype_id); 1093 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1094 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1095 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1096 map->name, mname, (ssize_t)msize, 1097 (ssize_t)kern_msize); 1098 return -ENOTSUP; 1099 } 1100 1101 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1102 map->name, mname, (unsigned int)msize, 1103 moff, kern_moff); 1104 memcpy(kern_mdata, mdata, msize); 1105 } 1106 1107 return 0; 1108 } 1109 1110 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1111 { 1112 struct bpf_map *map; 1113 size_t i; 1114 int err; 1115 1116 for (i = 0; i < obj->nr_maps; i++) { 1117 map = &obj->maps[i]; 1118 1119 if (!bpf_map__is_struct_ops(map)) 1120 continue; 1121 1122 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1123 obj->btf_vmlinux); 1124 if (err) 1125 return err; 1126 } 1127 1128 return 0; 1129 } 1130 1131 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name, 1132 int shndx, Elf_Data *data, __u32 map_flags) 1133 { 1134 const struct btf_type *type, *datasec; 1135 const struct btf_var_secinfo *vsi; 1136 struct bpf_struct_ops *st_ops; 1137 const char *tname, *var_name; 1138 __s32 type_id, datasec_id; 1139 const struct btf *btf; 1140 struct bpf_map *map; 1141 __u32 i; 1142 1143 if (shndx == -1) 1144 return 0; 1145 1146 btf = obj->btf; 1147 datasec_id = btf__find_by_name_kind(btf, sec_name, 1148 BTF_KIND_DATASEC); 1149 if (datasec_id < 0) { 1150 pr_warn("struct_ops init: DATASEC %s not found\n", 1151 sec_name); 1152 return -EINVAL; 1153 } 1154 1155 datasec = btf__type_by_id(btf, datasec_id); 1156 vsi = btf_var_secinfos(datasec); 1157 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1158 type = btf__type_by_id(obj->btf, vsi->type); 1159 var_name = btf__name_by_offset(obj->btf, type->name_off); 1160 1161 type_id = btf__resolve_type(obj->btf, vsi->type); 1162 if (type_id < 0) { 1163 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1164 vsi->type, sec_name); 1165 return -EINVAL; 1166 } 1167 1168 type = btf__type_by_id(obj->btf, type_id); 1169 tname = btf__name_by_offset(obj->btf, type->name_off); 1170 if (!tname[0]) { 1171 pr_warn("struct_ops init: anonymous type is not supported\n"); 1172 return -ENOTSUP; 1173 } 1174 if (!btf_is_struct(type)) { 1175 pr_warn("struct_ops init: %s is not a struct\n", tname); 1176 return -EINVAL; 1177 } 1178 1179 map = bpf_object__add_map(obj); 1180 if (IS_ERR(map)) 1181 return PTR_ERR(map); 1182 1183 map->sec_idx = shndx; 1184 map->sec_offset = vsi->offset; 1185 map->name = strdup(var_name); 1186 if (!map->name) 1187 return -ENOMEM; 1188 1189 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1190 map->def.key_size = sizeof(int); 1191 map->def.value_size = type->size; 1192 map->def.max_entries = 1; 1193 map->def.map_flags = map_flags; 1194 1195 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1196 if (!map->st_ops) 1197 return -ENOMEM; 1198 st_ops = map->st_ops; 1199 st_ops->data = malloc(type->size); 1200 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1201 st_ops->kern_func_off = malloc(btf_vlen(type) * 1202 sizeof(*st_ops->kern_func_off)); 1203 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1204 return -ENOMEM; 1205 1206 if (vsi->offset + type->size > data->d_size) { 1207 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1208 var_name, sec_name); 1209 return -EINVAL; 1210 } 1211 1212 memcpy(st_ops->data, 1213 data->d_buf + vsi->offset, 1214 type->size); 1215 st_ops->tname = tname; 1216 st_ops->type = type; 1217 st_ops->type_id = type_id; 1218 1219 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1220 tname, type_id, var_name, vsi->offset); 1221 } 1222 1223 return 0; 1224 } 1225 1226 static int bpf_object_init_struct_ops(struct bpf_object *obj) 1227 { 1228 int err; 1229 1230 err = init_struct_ops_maps(obj, STRUCT_OPS_SEC, obj->efile.st_ops_shndx, 1231 obj->efile.st_ops_data, 0); 1232 err = err ?: init_struct_ops_maps(obj, STRUCT_OPS_LINK_SEC, 1233 obj->efile.st_ops_link_shndx, 1234 obj->efile.st_ops_link_data, 1235 BPF_F_LINK); 1236 return err; 1237 } 1238 1239 static struct bpf_object *bpf_object__new(const char *path, 1240 const void *obj_buf, 1241 size_t obj_buf_sz, 1242 const char *obj_name) 1243 { 1244 struct bpf_object *obj; 1245 char *end; 1246 1247 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1248 if (!obj) { 1249 pr_warn("alloc memory failed for %s\n", path); 1250 return ERR_PTR(-ENOMEM); 1251 } 1252 1253 strcpy(obj->path, path); 1254 if (obj_name) { 1255 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1256 } else { 1257 /* Using basename() GNU version which doesn't modify arg. */ 1258 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1259 end = strchr(obj->name, '.'); 1260 if (end) 1261 *end = 0; 1262 } 1263 1264 obj->efile.fd = -1; 1265 /* 1266 * Caller of this function should also call 1267 * bpf_object__elf_finish() after data collection to return 1268 * obj_buf to user. If not, we should duplicate the buffer to 1269 * avoid user freeing them before elf finish. 1270 */ 1271 obj->efile.obj_buf = obj_buf; 1272 obj->efile.obj_buf_sz = obj_buf_sz; 1273 obj->efile.btf_maps_shndx = -1; 1274 obj->efile.st_ops_shndx = -1; 1275 obj->efile.st_ops_link_shndx = -1; 1276 obj->kconfig_map_idx = -1; 1277 1278 obj->kern_version = get_kernel_version(); 1279 obj->loaded = false; 1280 1281 return obj; 1282 } 1283 1284 static void bpf_object__elf_finish(struct bpf_object *obj) 1285 { 1286 if (!obj->efile.elf) 1287 return; 1288 1289 elf_end(obj->efile.elf); 1290 obj->efile.elf = NULL; 1291 obj->efile.symbols = NULL; 1292 obj->efile.st_ops_data = NULL; 1293 obj->efile.st_ops_link_data = NULL; 1294 1295 zfree(&obj->efile.secs); 1296 obj->efile.sec_cnt = 0; 1297 zclose(obj->efile.fd); 1298 obj->efile.obj_buf = NULL; 1299 obj->efile.obj_buf_sz = 0; 1300 } 1301 1302 static int bpf_object__elf_init(struct bpf_object *obj) 1303 { 1304 Elf64_Ehdr *ehdr; 1305 int err = 0; 1306 Elf *elf; 1307 1308 if (obj->efile.elf) { 1309 pr_warn("elf: init internal error\n"); 1310 return -LIBBPF_ERRNO__LIBELF; 1311 } 1312 1313 if (obj->efile.obj_buf_sz > 0) { 1314 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1315 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1316 } else { 1317 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1318 if (obj->efile.fd < 0) { 1319 char errmsg[STRERR_BUFSIZE], *cp; 1320 1321 err = -errno; 1322 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1323 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1324 return err; 1325 } 1326 1327 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1328 } 1329 1330 if (!elf) { 1331 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1332 err = -LIBBPF_ERRNO__LIBELF; 1333 goto errout; 1334 } 1335 1336 obj->efile.elf = elf; 1337 1338 if (elf_kind(elf) != ELF_K_ELF) { 1339 err = -LIBBPF_ERRNO__FORMAT; 1340 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1341 goto errout; 1342 } 1343 1344 if (gelf_getclass(elf) != ELFCLASS64) { 1345 err = -LIBBPF_ERRNO__FORMAT; 1346 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1347 goto errout; 1348 } 1349 1350 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1351 if (!obj->efile.ehdr) { 1352 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1353 err = -LIBBPF_ERRNO__FORMAT; 1354 goto errout; 1355 } 1356 1357 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1358 pr_warn("elf: failed to get section names section index for %s: %s\n", 1359 obj->path, elf_errmsg(-1)); 1360 err = -LIBBPF_ERRNO__FORMAT; 1361 goto errout; 1362 } 1363 1364 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 1365 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1366 pr_warn("elf: failed to get section names strings from %s: %s\n", 1367 obj->path, elf_errmsg(-1)); 1368 err = -LIBBPF_ERRNO__FORMAT; 1369 goto errout; 1370 } 1371 1372 /* Old LLVM set e_machine to EM_NONE */ 1373 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1374 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1375 err = -LIBBPF_ERRNO__FORMAT; 1376 goto errout; 1377 } 1378 1379 return 0; 1380 errout: 1381 bpf_object__elf_finish(obj); 1382 return err; 1383 } 1384 1385 static int bpf_object__check_endianness(struct bpf_object *obj) 1386 { 1387 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1388 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1389 return 0; 1390 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1391 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1392 return 0; 1393 #else 1394 # error "Unrecognized __BYTE_ORDER__" 1395 #endif 1396 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1397 return -LIBBPF_ERRNO__ENDIAN; 1398 } 1399 1400 static int 1401 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1402 { 1403 if (!data) { 1404 pr_warn("invalid license section in %s\n", obj->path); 1405 return -LIBBPF_ERRNO__FORMAT; 1406 } 1407 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1408 * go over allowed ELF data section buffer 1409 */ 1410 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1411 pr_debug("license of %s is %s\n", obj->path, obj->license); 1412 return 0; 1413 } 1414 1415 static int 1416 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1417 { 1418 __u32 kver; 1419 1420 if (!data || size != sizeof(kver)) { 1421 pr_warn("invalid kver section in %s\n", obj->path); 1422 return -LIBBPF_ERRNO__FORMAT; 1423 } 1424 memcpy(&kver, data, sizeof(kver)); 1425 obj->kern_version = kver; 1426 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1427 return 0; 1428 } 1429 1430 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1431 { 1432 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1433 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1434 return true; 1435 return false; 1436 } 1437 1438 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1439 { 1440 Elf_Data *data; 1441 Elf_Scn *scn; 1442 1443 if (!name) 1444 return -EINVAL; 1445 1446 scn = elf_sec_by_name(obj, name); 1447 data = elf_sec_data(obj, scn); 1448 if (data) { 1449 *size = data->d_size; 1450 return 0; /* found it */ 1451 } 1452 1453 return -ENOENT; 1454 } 1455 1456 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1457 { 1458 Elf_Data *symbols = obj->efile.symbols; 1459 const char *sname; 1460 size_t si; 1461 1462 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1463 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1464 1465 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1466 continue; 1467 1468 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1469 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1470 continue; 1471 1472 sname = elf_sym_str(obj, sym->st_name); 1473 if (!sname) { 1474 pr_warn("failed to get sym name string for var %s\n", name); 1475 return ERR_PTR(-EIO); 1476 } 1477 if (strcmp(name, sname) == 0) 1478 return sym; 1479 } 1480 1481 return ERR_PTR(-ENOENT); 1482 } 1483 1484 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1485 { 1486 struct bpf_map *map; 1487 int err; 1488 1489 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1490 sizeof(*obj->maps), obj->nr_maps + 1); 1491 if (err) 1492 return ERR_PTR(err); 1493 1494 map = &obj->maps[obj->nr_maps++]; 1495 map->obj = obj; 1496 map->fd = -1; 1497 map->inner_map_fd = -1; 1498 map->autocreate = true; 1499 1500 return map; 1501 } 1502 1503 static size_t bpf_map_mmap_sz(unsigned int value_sz, unsigned int max_entries) 1504 { 1505 const long page_sz = sysconf(_SC_PAGE_SIZE); 1506 size_t map_sz; 1507 1508 map_sz = (size_t)roundup(value_sz, 8) * max_entries; 1509 map_sz = roundup(map_sz, page_sz); 1510 return map_sz; 1511 } 1512 1513 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz) 1514 { 1515 void *mmaped; 1516 1517 if (!map->mmaped) 1518 return -EINVAL; 1519 1520 if (old_sz == new_sz) 1521 return 0; 1522 1523 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1524 if (mmaped == MAP_FAILED) 1525 return -errno; 1526 1527 memcpy(mmaped, map->mmaped, min(old_sz, new_sz)); 1528 munmap(map->mmaped, old_sz); 1529 map->mmaped = mmaped; 1530 return 0; 1531 } 1532 1533 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1534 { 1535 char map_name[BPF_OBJ_NAME_LEN], *p; 1536 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1537 1538 /* This is one of the more confusing parts of libbpf for various 1539 * reasons, some of which are historical. The original idea for naming 1540 * internal names was to include as much of BPF object name prefix as 1541 * possible, so that it can be distinguished from similar internal 1542 * maps of a different BPF object. 1543 * As an example, let's say we have bpf_object named 'my_object_name' 1544 * and internal map corresponding to '.rodata' ELF section. The final 1545 * map name advertised to user and to the kernel will be 1546 * 'my_objec.rodata', taking first 8 characters of object name and 1547 * entire 7 characters of '.rodata'. 1548 * Somewhat confusingly, if internal map ELF section name is shorter 1549 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1550 * for the suffix, even though we only have 4 actual characters, and 1551 * resulting map will be called 'my_objec.bss', not even using all 15 1552 * characters allowed by the kernel. Oh well, at least the truncated 1553 * object name is somewhat consistent in this case. But if the map 1554 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1555 * (8 chars) and thus will be left with only first 7 characters of the 1556 * object name ('my_obje'). Happy guessing, user, that the final map 1557 * name will be "my_obje.kconfig". 1558 * Now, with libbpf starting to support arbitrarily named .rodata.* 1559 * and .data.* data sections, it's possible that ELF section name is 1560 * longer than allowed 15 chars, so we now need to be careful to take 1561 * only up to 15 first characters of ELF name, taking no BPF object 1562 * name characters at all. So '.rodata.abracadabra' will result in 1563 * '.rodata.abracad' kernel and user-visible name. 1564 * We need to keep this convoluted logic intact for .data, .bss and 1565 * .rodata maps, but for new custom .data.custom and .rodata.custom 1566 * maps we use their ELF names as is, not prepending bpf_object name 1567 * in front. We still need to truncate them to 15 characters for the 1568 * kernel. Full name can be recovered for such maps by using DATASEC 1569 * BTF type associated with such map's value type, though. 1570 */ 1571 if (sfx_len >= BPF_OBJ_NAME_LEN) 1572 sfx_len = BPF_OBJ_NAME_LEN - 1; 1573 1574 /* if there are two or more dots in map name, it's a custom dot map */ 1575 if (strchr(real_name + 1, '.') != NULL) 1576 pfx_len = 0; 1577 else 1578 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1579 1580 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1581 sfx_len, real_name); 1582 1583 /* sanitise map name to characters allowed by kernel */ 1584 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1585 if (!isalnum(*p) && *p != '_' && *p != '.') 1586 *p = '_'; 1587 1588 return strdup(map_name); 1589 } 1590 1591 static int 1592 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1593 1594 /* Internal BPF map is mmap()'able only if at least one of corresponding 1595 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1596 * variable and it's not marked as __hidden (which turns it into, effectively, 1597 * a STATIC variable). 1598 */ 1599 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1600 { 1601 const struct btf_type *t, *vt; 1602 struct btf_var_secinfo *vsi; 1603 int i, n; 1604 1605 if (!map->btf_value_type_id) 1606 return false; 1607 1608 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1609 if (!btf_is_datasec(t)) 1610 return false; 1611 1612 vsi = btf_var_secinfos(t); 1613 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1614 vt = btf__type_by_id(obj->btf, vsi->type); 1615 if (!btf_is_var(vt)) 1616 continue; 1617 1618 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1619 return true; 1620 } 1621 1622 return false; 1623 } 1624 1625 static int 1626 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1627 const char *real_name, int sec_idx, void *data, size_t data_sz) 1628 { 1629 struct bpf_map_def *def; 1630 struct bpf_map *map; 1631 size_t mmap_sz; 1632 int err; 1633 1634 map = bpf_object__add_map(obj); 1635 if (IS_ERR(map)) 1636 return PTR_ERR(map); 1637 1638 map->libbpf_type = type; 1639 map->sec_idx = sec_idx; 1640 map->sec_offset = 0; 1641 map->real_name = strdup(real_name); 1642 map->name = internal_map_name(obj, real_name); 1643 if (!map->real_name || !map->name) { 1644 zfree(&map->real_name); 1645 zfree(&map->name); 1646 return -ENOMEM; 1647 } 1648 1649 def = &map->def; 1650 def->type = BPF_MAP_TYPE_ARRAY; 1651 def->key_size = sizeof(int); 1652 def->value_size = data_sz; 1653 def->max_entries = 1; 1654 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1655 ? BPF_F_RDONLY_PROG : 0; 1656 1657 /* failures are fine because of maps like .rodata.str1.1 */ 1658 (void) map_fill_btf_type_info(obj, map); 1659 1660 if (map_is_mmapable(obj, map)) 1661 def->map_flags |= BPF_F_MMAPABLE; 1662 1663 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1664 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1665 1666 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 1667 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE, 1668 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1669 if (map->mmaped == MAP_FAILED) { 1670 err = -errno; 1671 map->mmaped = NULL; 1672 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1673 map->name, err); 1674 zfree(&map->real_name); 1675 zfree(&map->name); 1676 return err; 1677 } 1678 1679 if (data) 1680 memcpy(map->mmaped, data, data_sz); 1681 1682 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1683 return 0; 1684 } 1685 1686 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1687 { 1688 struct elf_sec_desc *sec_desc; 1689 const char *sec_name; 1690 int err = 0, sec_idx; 1691 1692 /* 1693 * Populate obj->maps with libbpf internal maps. 1694 */ 1695 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1696 sec_desc = &obj->efile.secs[sec_idx]; 1697 1698 /* Skip recognized sections with size 0. */ 1699 if (!sec_desc->data || sec_desc->data->d_size == 0) 1700 continue; 1701 1702 switch (sec_desc->sec_type) { 1703 case SEC_DATA: 1704 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1705 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1706 sec_name, sec_idx, 1707 sec_desc->data->d_buf, 1708 sec_desc->data->d_size); 1709 break; 1710 case SEC_RODATA: 1711 obj->has_rodata = true; 1712 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1713 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1714 sec_name, sec_idx, 1715 sec_desc->data->d_buf, 1716 sec_desc->data->d_size); 1717 break; 1718 case SEC_BSS: 1719 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1720 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1721 sec_name, sec_idx, 1722 NULL, 1723 sec_desc->data->d_size); 1724 break; 1725 default: 1726 /* skip */ 1727 break; 1728 } 1729 if (err) 1730 return err; 1731 } 1732 return 0; 1733 } 1734 1735 1736 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1737 const void *name) 1738 { 1739 int i; 1740 1741 for (i = 0; i < obj->nr_extern; i++) { 1742 if (strcmp(obj->externs[i].name, name) == 0) 1743 return &obj->externs[i]; 1744 } 1745 return NULL; 1746 } 1747 1748 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1749 char value) 1750 { 1751 switch (ext->kcfg.type) { 1752 case KCFG_BOOL: 1753 if (value == 'm') { 1754 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 1755 ext->name, value); 1756 return -EINVAL; 1757 } 1758 *(bool *)ext_val = value == 'y' ? true : false; 1759 break; 1760 case KCFG_TRISTATE: 1761 if (value == 'y') 1762 *(enum libbpf_tristate *)ext_val = TRI_YES; 1763 else if (value == 'm') 1764 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1765 else /* value == 'n' */ 1766 *(enum libbpf_tristate *)ext_val = TRI_NO; 1767 break; 1768 case KCFG_CHAR: 1769 *(char *)ext_val = value; 1770 break; 1771 case KCFG_UNKNOWN: 1772 case KCFG_INT: 1773 case KCFG_CHAR_ARR: 1774 default: 1775 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 1776 ext->name, value); 1777 return -EINVAL; 1778 } 1779 ext->is_set = true; 1780 return 0; 1781 } 1782 1783 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1784 const char *value) 1785 { 1786 size_t len; 1787 1788 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1789 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 1790 ext->name, value); 1791 return -EINVAL; 1792 } 1793 1794 len = strlen(value); 1795 if (value[len - 1] != '"') { 1796 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1797 ext->name, value); 1798 return -EINVAL; 1799 } 1800 1801 /* strip quotes */ 1802 len -= 2; 1803 if (len >= ext->kcfg.sz) { 1804 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 1805 ext->name, value, len, ext->kcfg.sz - 1); 1806 len = ext->kcfg.sz - 1; 1807 } 1808 memcpy(ext_val, value + 1, len); 1809 ext_val[len] = '\0'; 1810 ext->is_set = true; 1811 return 0; 1812 } 1813 1814 static int parse_u64(const char *value, __u64 *res) 1815 { 1816 char *value_end; 1817 int err; 1818 1819 errno = 0; 1820 *res = strtoull(value, &value_end, 0); 1821 if (errno) { 1822 err = -errno; 1823 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1824 return err; 1825 } 1826 if (*value_end) { 1827 pr_warn("failed to parse '%s' as integer completely\n", value); 1828 return -EINVAL; 1829 } 1830 return 0; 1831 } 1832 1833 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1834 { 1835 int bit_sz = ext->kcfg.sz * 8; 1836 1837 if (ext->kcfg.sz == 8) 1838 return true; 1839 1840 /* Validate that value stored in u64 fits in integer of `ext->sz` 1841 * bytes size without any loss of information. If the target integer 1842 * is signed, we rely on the following limits of integer type of 1843 * Y bits and subsequent transformation: 1844 * 1845 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1846 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1847 * 0 <= X + 2^(Y-1) < 2^Y 1848 * 1849 * For unsigned target integer, check that all the (64 - Y) bits are 1850 * zero. 1851 */ 1852 if (ext->kcfg.is_signed) 1853 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1854 else 1855 return (v >> bit_sz) == 0; 1856 } 1857 1858 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1859 __u64 value) 1860 { 1861 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 1862 ext->kcfg.type != KCFG_BOOL) { 1863 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 1864 ext->name, (unsigned long long)value); 1865 return -EINVAL; 1866 } 1867 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 1868 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 1869 ext->name, (unsigned long long)value); 1870 return -EINVAL; 1871 1872 } 1873 if (!is_kcfg_value_in_range(ext, value)) { 1874 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 1875 ext->name, (unsigned long long)value, ext->kcfg.sz); 1876 return -ERANGE; 1877 } 1878 switch (ext->kcfg.sz) { 1879 case 1: 1880 *(__u8 *)ext_val = value; 1881 break; 1882 case 2: 1883 *(__u16 *)ext_val = value; 1884 break; 1885 case 4: 1886 *(__u32 *)ext_val = value; 1887 break; 1888 case 8: 1889 *(__u64 *)ext_val = value; 1890 break; 1891 default: 1892 return -EINVAL; 1893 } 1894 ext->is_set = true; 1895 return 0; 1896 } 1897 1898 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1899 char *buf, void *data) 1900 { 1901 struct extern_desc *ext; 1902 char *sep, *value; 1903 int len, err = 0; 1904 void *ext_val; 1905 __u64 num; 1906 1907 if (!str_has_pfx(buf, "CONFIG_")) 1908 return 0; 1909 1910 sep = strchr(buf, '='); 1911 if (!sep) { 1912 pr_warn("failed to parse '%s': no separator\n", buf); 1913 return -EINVAL; 1914 } 1915 1916 /* Trim ending '\n' */ 1917 len = strlen(buf); 1918 if (buf[len - 1] == '\n') 1919 buf[len - 1] = '\0'; 1920 /* Split on '=' and ensure that a value is present. */ 1921 *sep = '\0'; 1922 if (!sep[1]) { 1923 *sep = '='; 1924 pr_warn("failed to parse '%s': no value\n", buf); 1925 return -EINVAL; 1926 } 1927 1928 ext = find_extern_by_name(obj, buf); 1929 if (!ext || ext->is_set) 1930 return 0; 1931 1932 ext_val = data + ext->kcfg.data_off; 1933 value = sep + 1; 1934 1935 switch (*value) { 1936 case 'y': case 'n': case 'm': 1937 err = set_kcfg_value_tri(ext, ext_val, *value); 1938 break; 1939 case '"': 1940 err = set_kcfg_value_str(ext, ext_val, value); 1941 break; 1942 default: 1943 /* assume integer */ 1944 err = parse_u64(value, &num); 1945 if (err) { 1946 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 1947 return err; 1948 } 1949 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1950 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 1951 return -EINVAL; 1952 } 1953 err = set_kcfg_value_num(ext, ext_val, num); 1954 break; 1955 } 1956 if (err) 1957 return err; 1958 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 1959 return 0; 1960 } 1961 1962 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1963 { 1964 char buf[PATH_MAX]; 1965 struct utsname uts; 1966 int len, err = 0; 1967 gzFile file; 1968 1969 uname(&uts); 1970 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1971 if (len < 0) 1972 return -EINVAL; 1973 else if (len >= PATH_MAX) 1974 return -ENAMETOOLONG; 1975 1976 /* gzopen also accepts uncompressed files. */ 1977 file = gzopen(buf, "r"); 1978 if (!file) 1979 file = gzopen("/proc/config.gz", "r"); 1980 1981 if (!file) { 1982 pr_warn("failed to open system Kconfig\n"); 1983 return -ENOENT; 1984 } 1985 1986 while (gzgets(file, buf, sizeof(buf))) { 1987 err = bpf_object__process_kconfig_line(obj, buf, data); 1988 if (err) { 1989 pr_warn("error parsing system Kconfig line '%s': %d\n", 1990 buf, err); 1991 goto out; 1992 } 1993 } 1994 1995 out: 1996 gzclose(file); 1997 return err; 1998 } 1999 2000 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 2001 const char *config, void *data) 2002 { 2003 char buf[PATH_MAX]; 2004 int err = 0; 2005 FILE *file; 2006 2007 file = fmemopen((void *)config, strlen(config), "r"); 2008 if (!file) { 2009 err = -errno; 2010 pr_warn("failed to open in-memory Kconfig: %d\n", err); 2011 return err; 2012 } 2013 2014 while (fgets(buf, sizeof(buf), file)) { 2015 err = bpf_object__process_kconfig_line(obj, buf, data); 2016 if (err) { 2017 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 2018 buf, err); 2019 break; 2020 } 2021 } 2022 2023 fclose(file); 2024 return err; 2025 } 2026 2027 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2028 { 2029 struct extern_desc *last_ext = NULL, *ext; 2030 size_t map_sz; 2031 int i, err; 2032 2033 for (i = 0; i < obj->nr_extern; i++) { 2034 ext = &obj->externs[i]; 2035 if (ext->type == EXT_KCFG) 2036 last_ext = ext; 2037 } 2038 2039 if (!last_ext) 2040 return 0; 2041 2042 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2043 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2044 ".kconfig", obj->efile.symbols_shndx, 2045 NULL, map_sz); 2046 if (err) 2047 return err; 2048 2049 obj->kconfig_map_idx = obj->nr_maps - 1; 2050 2051 return 0; 2052 } 2053 2054 const struct btf_type * 2055 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2056 { 2057 const struct btf_type *t = btf__type_by_id(btf, id); 2058 2059 if (res_id) 2060 *res_id = id; 2061 2062 while (btf_is_mod(t) || btf_is_typedef(t)) { 2063 if (res_id) 2064 *res_id = t->type; 2065 t = btf__type_by_id(btf, t->type); 2066 } 2067 2068 return t; 2069 } 2070 2071 static const struct btf_type * 2072 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2073 { 2074 const struct btf_type *t; 2075 2076 t = skip_mods_and_typedefs(btf, id, NULL); 2077 if (!btf_is_ptr(t)) 2078 return NULL; 2079 2080 t = skip_mods_and_typedefs(btf, t->type, res_id); 2081 2082 return btf_is_func_proto(t) ? t : NULL; 2083 } 2084 2085 static const char *__btf_kind_str(__u16 kind) 2086 { 2087 switch (kind) { 2088 case BTF_KIND_UNKN: return "void"; 2089 case BTF_KIND_INT: return "int"; 2090 case BTF_KIND_PTR: return "ptr"; 2091 case BTF_KIND_ARRAY: return "array"; 2092 case BTF_KIND_STRUCT: return "struct"; 2093 case BTF_KIND_UNION: return "union"; 2094 case BTF_KIND_ENUM: return "enum"; 2095 case BTF_KIND_FWD: return "fwd"; 2096 case BTF_KIND_TYPEDEF: return "typedef"; 2097 case BTF_KIND_VOLATILE: return "volatile"; 2098 case BTF_KIND_CONST: return "const"; 2099 case BTF_KIND_RESTRICT: return "restrict"; 2100 case BTF_KIND_FUNC: return "func"; 2101 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2102 case BTF_KIND_VAR: return "var"; 2103 case BTF_KIND_DATASEC: return "datasec"; 2104 case BTF_KIND_FLOAT: return "float"; 2105 case BTF_KIND_DECL_TAG: return "decl_tag"; 2106 case BTF_KIND_TYPE_TAG: return "type_tag"; 2107 case BTF_KIND_ENUM64: return "enum64"; 2108 default: return "unknown"; 2109 } 2110 } 2111 2112 const char *btf_kind_str(const struct btf_type *t) 2113 { 2114 return __btf_kind_str(btf_kind(t)); 2115 } 2116 2117 /* 2118 * Fetch integer attribute of BTF map definition. Such attributes are 2119 * represented using a pointer to an array, in which dimensionality of array 2120 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2121 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2122 * type definition, while using only sizeof(void *) space in ELF data section. 2123 */ 2124 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2125 const struct btf_member *m, __u32 *res) 2126 { 2127 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2128 const char *name = btf__name_by_offset(btf, m->name_off); 2129 const struct btf_array *arr_info; 2130 const struct btf_type *arr_t; 2131 2132 if (!btf_is_ptr(t)) { 2133 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2134 map_name, name, btf_kind_str(t)); 2135 return false; 2136 } 2137 2138 arr_t = btf__type_by_id(btf, t->type); 2139 if (!arr_t) { 2140 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2141 map_name, name, t->type); 2142 return false; 2143 } 2144 if (!btf_is_array(arr_t)) { 2145 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2146 map_name, name, btf_kind_str(arr_t)); 2147 return false; 2148 } 2149 arr_info = btf_array(arr_t); 2150 *res = arr_info->nelems; 2151 return true; 2152 } 2153 2154 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2155 { 2156 int len; 2157 2158 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2159 if (len < 0) 2160 return -EINVAL; 2161 if (len >= buf_sz) 2162 return -ENAMETOOLONG; 2163 2164 return 0; 2165 } 2166 2167 static int build_map_pin_path(struct bpf_map *map, const char *path) 2168 { 2169 char buf[PATH_MAX]; 2170 int err; 2171 2172 if (!path) 2173 path = "/sys/fs/bpf"; 2174 2175 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2176 if (err) 2177 return err; 2178 2179 return bpf_map__set_pin_path(map, buf); 2180 } 2181 2182 /* should match definition in bpf_helpers.h */ 2183 enum libbpf_pin_type { 2184 LIBBPF_PIN_NONE, 2185 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2186 LIBBPF_PIN_BY_NAME, 2187 }; 2188 2189 int parse_btf_map_def(const char *map_name, struct btf *btf, 2190 const struct btf_type *def_t, bool strict, 2191 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2192 { 2193 const struct btf_type *t; 2194 const struct btf_member *m; 2195 bool is_inner = inner_def == NULL; 2196 int vlen, i; 2197 2198 vlen = btf_vlen(def_t); 2199 m = btf_members(def_t); 2200 for (i = 0; i < vlen; i++, m++) { 2201 const char *name = btf__name_by_offset(btf, m->name_off); 2202 2203 if (!name) { 2204 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2205 return -EINVAL; 2206 } 2207 if (strcmp(name, "type") == 0) { 2208 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2209 return -EINVAL; 2210 map_def->parts |= MAP_DEF_MAP_TYPE; 2211 } else if (strcmp(name, "max_entries") == 0) { 2212 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2213 return -EINVAL; 2214 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2215 } else if (strcmp(name, "map_flags") == 0) { 2216 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2217 return -EINVAL; 2218 map_def->parts |= MAP_DEF_MAP_FLAGS; 2219 } else if (strcmp(name, "numa_node") == 0) { 2220 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2221 return -EINVAL; 2222 map_def->parts |= MAP_DEF_NUMA_NODE; 2223 } else if (strcmp(name, "key_size") == 0) { 2224 __u32 sz; 2225 2226 if (!get_map_field_int(map_name, btf, m, &sz)) 2227 return -EINVAL; 2228 if (map_def->key_size && map_def->key_size != sz) { 2229 pr_warn("map '%s': conflicting key size %u != %u.\n", 2230 map_name, map_def->key_size, sz); 2231 return -EINVAL; 2232 } 2233 map_def->key_size = sz; 2234 map_def->parts |= MAP_DEF_KEY_SIZE; 2235 } else if (strcmp(name, "key") == 0) { 2236 __s64 sz; 2237 2238 t = btf__type_by_id(btf, m->type); 2239 if (!t) { 2240 pr_warn("map '%s': key type [%d] not found.\n", 2241 map_name, m->type); 2242 return -EINVAL; 2243 } 2244 if (!btf_is_ptr(t)) { 2245 pr_warn("map '%s': key spec is not PTR: %s.\n", 2246 map_name, btf_kind_str(t)); 2247 return -EINVAL; 2248 } 2249 sz = btf__resolve_size(btf, t->type); 2250 if (sz < 0) { 2251 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2252 map_name, t->type, (ssize_t)sz); 2253 return sz; 2254 } 2255 if (map_def->key_size && map_def->key_size != sz) { 2256 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2257 map_name, map_def->key_size, (ssize_t)sz); 2258 return -EINVAL; 2259 } 2260 map_def->key_size = sz; 2261 map_def->key_type_id = t->type; 2262 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2263 } else if (strcmp(name, "value_size") == 0) { 2264 __u32 sz; 2265 2266 if (!get_map_field_int(map_name, btf, m, &sz)) 2267 return -EINVAL; 2268 if (map_def->value_size && map_def->value_size != sz) { 2269 pr_warn("map '%s': conflicting value size %u != %u.\n", 2270 map_name, map_def->value_size, sz); 2271 return -EINVAL; 2272 } 2273 map_def->value_size = sz; 2274 map_def->parts |= MAP_DEF_VALUE_SIZE; 2275 } else if (strcmp(name, "value") == 0) { 2276 __s64 sz; 2277 2278 t = btf__type_by_id(btf, m->type); 2279 if (!t) { 2280 pr_warn("map '%s': value type [%d] not found.\n", 2281 map_name, m->type); 2282 return -EINVAL; 2283 } 2284 if (!btf_is_ptr(t)) { 2285 pr_warn("map '%s': value spec is not PTR: %s.\n", 2286 map_name, btf_kind_str(t)); 2287 return -EINVAL; 2288 } 2289 sz = btf__resolve_size(btf, t->type); 2290 if (sz < 0) { 2291 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2292 map_name, t->type, (ssize_t)sz); 2293 return sz; 2294 } 2295 if (map_def->value_size && map_def->value_size != sz) { 2296 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2297 map_name, map_def->value_size, (ssize_t)sz); 2298 return -EINVAL; 2299 } 2300 map_def->value_size = sz; 2301 map_def->value_type_id = t->type; 2302 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2303 } 2304 else if (strcmp(name, "values") == 0) { 2305 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2306 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2307 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2308 char inner_map_name[128]; 2309 int err; 2310 2311 if (is_inner) { 2312 pr_warn("map '%s': multi-level inner maps not supported.\n", 2313 map_name); 2314 return -ENOTSUP; 2315 } 2316 if (i != vlen - 1) { 2317 pr_warn("map '%s': '%s' member should be last.\n", 2318 map_name, name); 2319 return -EINVAL; 2320 } 2321 if (!is_map_in_map && !is_prog_array) { 2322 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2323 map_name); 2324 return -ENOTSUP; 2325 } 2326 if (map_def->value_size && map_def->value_size != 4) { 2327 pr_warn("map '%s': conflicting value size %u != 4.\n", 2328 map_name, map_def->value_size); 2329 return -EINVAL; 2330 } 2331 map_def->value_size = 4; 2332 t = btf__type_by_id(btf, m->type); 2333 if (!t) { 2334 pr_warn("map '%s': %s type [%d] not found.\n", 2335 map_name, desc, m->type); 2336 return -EINVAL; 2337 } 2338 if (!btf_is_array(t) || btf_array(t)->nelems) { 2339 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2340 map_name, desc); 2341 return -EINVAL; 2342 } 2343 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2344 if (!btf_is_ptr(t)) { 2345 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2346 map_name, desc, btf_kind_str(t)); 2347 return -EINVAL; 2348 } 2349 t = skip_mods_and_typedefs(btf, t->type, NULL); 2350 if (is_prog_array) { 2351 if (!btf_is_func_proto(t)) { 2352 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2353 map_name, btf_kind_str(t)); 2354 return -EINVAL; 2355 } 2356 continue; 2357 } 2358 if (!btf_is_struct(t)) { 2359 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2360 map_name, btf_kind_str(t)); 2361 return -EINVAL; 2362 } 2363 2364 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2365 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2366 if (err) 2367 return err; 2368 2369 map_def->parts |= MAP_DEF_INNER_MAP; 2370 } else if (strcmp(name, "pinning") == 0) { 2371 __u32 val; 2372 2373 if (is_inner) { 2374 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2375 return -EINVAL; 2376 } 2377 if (!get_map_field_int(map_name, btf, m, &val)) 2378 return -EINVAL; 2379 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2380 pr_warn("map '%s': invalid pinning value %u.\n", 2381 map_name, val); 2382 return -EINVAL; 2383 } 2384 map_def->pinning = val; 2385 map_def->parts |= MAP_DEF_PINNING; 2386 } else if (strcmp(name, "map_extra") == 0) { 2387 __u32 map_extra; 2388 2389 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2390 return -EINVAL; 2391 map_def->map_extra = map_extra; 2392 map_def->parts |= MAP_DEF_MAP_EXTRA; 2393 } else { 2394 if (strict) { 2395 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2396 return -ENOTSUP; 2397 } 2398 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2399 } 2400 } 2401 2402 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2403 pr_warn("map '%s': map type isn't specified.\n", map_name); 2404 return -EINVAL; 2405 } 2406 2407 return 0; 2408 } 2409 2410 static size_t adjust_ringbuf_sz(size_t sz) 2411 { 2412 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2413 __u32 mul; 2414 2415 /* if user forgot to set any size, make sure they see error */ 2416 if (sz == 0) 2417 return 0; 2418 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2419 * a power-of-2 multiple of kernel's page size. If user diligently 2420 * satisified these conditions, pass the size through. 2421 */ 2422 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2423 return sz; 2424 2425 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2426 * user-set size to satisfy both user size request and kernel 2427 * requirements and substitute correct max_entries for map creation. 2428 */ 2429 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2430 if (mul * page_sz > sz) 2431 return mul * page_sz; 2432 } 2433 2434 /* if it's impossible to satisfy the conditions (i.e., user size is 2435 * very close to UINT_MAX but is not a power-of-2 multiple of 2436 * page_size) then just return original size and let kernel reject it 2437 */ 2438 return sz; 2439 } 2440 2441 static bool map_is_ringbuf(const struct bpf_map *map) 2442 { 2443 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2444 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2445 } 2446 2447 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2448 { 2449 map->def.type = def->map_type; 2450 map->def.key_size = def->key_size; 2451 map->def.value_size = def->value_size; 2452 map->def.max_entries = def->max_entries; 2453 map->def.map_flags = def->map_flags; 2454 map->map_extra = def->map_extra; 2455 2456 map->numa_node = def->numa_node; 2457 map->btf_key_type_id = def->key_type_id; 2458 map->btf_value_type_id = def->value_type_id; 2459 2460 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2461 if (map_is_ringbuf(map)) 2462 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2463 2464 if (def->parts & MAP_DEF_MAP_TYPE) 2465 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2466 2467 if (def->parts & MAP_DEF_KEY_TYPE) 2468 pr_debug("map '%s': found key [%u], sz = %u.\n", 2469 map->name, def->key_type_id, def->key_size); 2470 else if (def->parts & MAP_DEF_KEY_SIZE) 2471 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2472 2473 if (def->parts & MAP_DEF_VALUE_TYPE) 2474 pr_debug("map '%s': found value [%u], sz = %u.\n", 2475 map->name, def->value_type_id, def->value_size); 2476 else if (def->parts & MAP_DEF_VALUE_SIZE) 2477 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2478 2479 if (def->parts & MAP_DEF_MAX_ENTRIES) 2480 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2481 if (def->parts & MAP_DEF_MAP_FLAGS) 2482 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2483 if (def->parts & MAP_DEF_MAP_EXTRA) 2484 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2485 (unsigned long long)def->map_extra); 2486 if (def->parts & MAP_DEF_PINNING) 2487 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2488 if (def->parts & MAP_DEF_NUMA_NODE) 2489 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2490 2491 if (def->parts & MAP_DEF_INNER_MAP) 2492 pr_debug("map '%s': found inner map definition.\n", map->name); 2493 } 2494 2495 static const char *btf_var_linkage_str(__u32 linkage) 2496 { 2497 switch (linkage) { 2498 case BTF_VAR_STATIC: return "static"; 2499 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2500 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2501 default: return "unknown"; 2502 } 2503 } 2504 2505 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2506 const struct btf_type *sec, 2507 int var_idx, int sec_idx, 2508 const Elf_Data *data, bool strict, 2509 const char *pin_root_path) 2510 { 2511 struct btf_map_def map_def = {}, inner_def = {}; 2512 const struct btf_type *var, *def; 2513 const struct btf_var_secinfo *vi; 2514 const struct btf_var *var_extra; 2515 const char *map_name; 2516 struct bpf_map *map; 2517 int err; 2518 2519 vi = btf_var_secinfos(sec) + var_idx; 2520 var = btf__type_by_id(obj->btf, vi->type); 2521 var_extra = btf_var(var); 2522 map_name = btf__name_by_offset(obj->btf, var->name_off); 2523 2524 if (map_name == NULL || map_name[0] == '\0') { 2525 pr_warn("map #%d: empty name.\n", var_idx); 2526 return -EINVAL; 2527 } 2528 if ((__u64)vi->offset + vi->size > data->d_size) { 2529 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2530 return -EINVAL; 2531 } 2532 if (!btf_is_var(var)) { 2533 pr_warn("map '%s': unexpected var kind %s.\n", 2534 map_name, btf_kind_str(var)); 2535 return -EINVAL; 2536 } 2537 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2538 pr_warn("map '%s': unsupported map linkage %s.\n", 2539 map_name, btf_var_linkage_str(var_extra->linkage)); 2540 return -EOPNOTSUPP; 2541 } 2542 2543 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2544 if (!btf_is_struct(def)) { 2545 pr_warn("map '%s': unexpected def kind %s.\n", 2546 map_name, btf_kind_str(var)); 2547 return -EINVAL; 2548 } 2549 if (def->size > vi->size) { 2550 pr_warn("map '%s': invalid def size.\n", map_name); 2551 return -EINVAL; 2552 } 2553 2554 map = bpf_object__add_map(obj); 2555 if (IS_ERR(map)) 2556 return PTR_ERR(map); 2557 map->name = strdup(map_name); 2558 if (!map->name) { 2559 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2560 return -ENOMEM; 2561 } 2562 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2563 map->def.type = BPF_MAP_TYPE_UNSPEC; 2564 map->sec_idx = sec_idx; 2565 map->sec_offset = vi->offset; 2566 map->btf_var_idx = var_idx; 2567 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2568 map_name, map->sec_idx, map->sec_offset); 2569 2570 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2571 if (err) 2572 return err; 2573 2574 fill_map_from_def(map, &map_def); 2575 2576 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2577 err = build_map_pin_path(map, pin_root_path); 2578 if (err) { 2579 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2580 return err; 2581 } 2582 } 2583 2584 if (map_def.parts & MAP_DEF_INNER_MAP) { 2585 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2586 if (!map->inner_map) 2587 return -ENOMEM; 2588 map->inner_map->fd = -1; 2589 map->inner_map->sec_idx = sec_idx; 2590 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2591 if (!map->inner_map->name) 2592 return -ENOMEM; 2593 sprintf(map->inner_map->name, "%s.inner", map_name); 2594 2595 fill_map_from_def(map->inner_map, &inner_def); 2596 } 2597 2598 err = map_fill_btf_type_info(obj, map); 2599 if (err) 2600 return err; 2601 2602 return 0; 2603 } 2604 2605 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2606 const char *pin_root_path) 2607 { 2608 const struct btf_type *sec = NULL; 2609 int nr_types, i, vlen, err; 2610 const struct btf_type *t; 2611 const char *name; 2612 Elf_Data *data; 2613 Elf_Scn *scn; 2614 2615 if (obj->efile.btf_maps_shndx < 0) 2616 return 0; 2617 2618 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2619 data = elf_sec_data(obj, scn); 2620 if (!scn || !data) { 2621 pr_warn("elf: failed to get %s map definitions for %s\n", 2622 MAPS_ELF_SEC, obj->path); 2623 return -EINVAL; 2624 } 2625 2626 nr_types = btf__type_cnt(obj->btf); 2627 for (i = 1; i < nr_types; i++) { 2628 t = btf__type_by_id(obj->btf, i); 2629 if (!btf_is_datasec(t)) 2630 continue; 2631 name = btf__name_by_offset(obj->btf, t->name_off); 2632 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2633 sec = t; 2634 obj->efile.btf_maps_sec_btf_id = i; 2635 break; 2636 } 2637 } 2638 2639 if (!sec) { 2640 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2641 return -ENOENT; 2642 } 2643 2644 vlen = btf_vlen(sec); 2645 for (i = 0; i < vlen; i++) { 2646 err = bpf_object__init_user_btf_map(obj, sec, i, 2647 obj->efile.btf_maps_shndx, 2648 data, strict, 2649 pin_root_path); 2650 if (err) 2651 return err; 2652 } 2653 2654 return 0; 2655 } 2656 2657 static int bpf_object__init_maps(struct bpf_object *obj, 2658 const struct bpf_object_open_opts *opts) 2659 { 2660 const char *pin_root_path; 2661 bool strict; 2662 int err = 0; 2663 2664 strict = !OPTS_GET(opts, relaxed_maps, false); 2665 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2666 2667 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2668 err = err ?: bpf_object__init_global_data_maps(obj); 2669 err = err ?: bpf_object__init_kconfig_map(obj); 2670 err = err ?: bpf_object_init_struct_ops(obj); 2671 2672 return err; 2673 } 2674 2675 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2676 { 2677 Elf64_Shdr *sh; 2678 2679 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2680 if (!sh) 2681 return false; 2682 2683 return sh->sh_flags & SHF_EXECINSTR; 2684 } 2685 2686 static bool btf_needs_sanitization(struct bpf_object *obj) 2687 { 2688 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2689 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2690 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2691 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2692 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2693 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2694 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2695 2696 return !has_func || !has_datasec || !has_func_global || !has_float || 2697 !has_decl_tag || !has_type_tag || !has_enum64; 2698 } 2699 2700 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2701 { 2702 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2703 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2704 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2705 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2706 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2707 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2708 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2709 int enum64_placeholder_id = 0; 2710 struct btf_type *t; 2711 int i, j, vlen; 2712 2713 for (i = 1; i < btf__type_cnt(btf); i++) { 2714 t = (struct btf_type *)btf__type_by_id(btf, i); 2715 2716 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2717 /* replace VAR/DECL_TAG with INT */ 2718 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2719 /* 2720 * using size = 1 is the safest choice, 4 will be too 2721 * big and cause kernel BTF validation failure if 2722 * original variable took less than 4 bytes 2723 */ 2724 t->size = 1; 2725 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2726 } else if (!has_datasec && btf_is_datasec(t)) { 2727 /* replace DATASEC with STRUCT */ 2728 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2729 struct btf_member *m = btf_members(t); 2730 struct btf_type *vt; 2731 char *name; 2732 2733 name = (char *)btf__name_by_offset(btf, t->name_off); 2734 while (*name) { 2735 if (*name == '.') 2736 *name = '_'; 2737 name++; 2738 } 2739 2740 vlen = btf_vlen(t); 2741 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2742 for (j = 0; j < vlen; j++, v++, m++) { 2743 /* order of field assignments is important */ 2744 m->offset = v->offset * 8; 2745 m->type = v->type; 2746 /* preserve variable name as member name */ 2747 vt = (void *)btf__type_by_id(btf, v->type); 2748 m->name_off = vt->name_off; 2749 } 2750 } else if (!has_func && btf_is_func_proto(t)) { 2751 /* replace FUNC_PROTO with ENUM */ 2752 vlen = btf_vlen(t); 2753 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2754 t->size = sizeof(__u32); /* kernel enforced */ 2755 } else if (!has_func && btf_is_func(t)) { 2756 /* replace FUNC with TYPEDEF */ 2757 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2758 } else if (!has_func_global && btf_is_func(t)) { 2759 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2760 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2761 } else if (!has_float && btf_is_float(t)) { 2762 /* replace FLOAT with an equally-sized empty STRUCT; 2763 * since C compilers do not accept e.g. "float" as a 2764 * valid struct name, make it anonymous 2765 */ 2766 t->name_off = 0; 2767 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2768 } else if (!has_type_tag && btf_is_type_tag(t)) { 2769 /* replace TYPE_TAG with a CONST */ 2770 t->name_off = 0; 2771 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2772 } else if (!has_enum64 && btf_is_enum(t)) { 2773 /* clear the kflag */ 2774 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 2775 } else if (!has_enum64 && btf_is_enum64(t)) { 2776 /* replace ENUM64 with a union */ 2777 struct btf_member *m; 2778 2779 if (enum64_placeholder_id == 0) { 2780 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 2781 if (enum64_placeholder_id < 0) 2782 return enum64_placeholder_id; 2783 2784 t = (struct btf_type *)btf__type_by_id(btf, i); 2785 } 2786 2787 m = btf_members(t); 2788 vlen = btf_vlen(t); 2789 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 2790 for (j = 0; j < vlen; j++, m++) { 2791 m->type = enum64_placeholder_id; 2792 m->offset = 0; 2793 } 2794 } 2795 } 2796 2797 return 0; 2798 } 2799 2800 static bool libbpf_needs_btf(const struct bpf_object *obj) 2801 { 2802 return obj->efile.btf_maps_shndx >= 0 || 2803 obj->efile.st_ops_shndx >= 0 || 2804 obj->efile.st_ops_link_shndx >= 0 || 2805 obj->nr_extern > 0; 2806 } 2807 2808 static bool kernel_needs_btf(const struct bpf_object *obj) 2809 { 2810 return obj->efile.st_ops_shndx >= 0 || obj->efile.st_ops_link_shndx >= 0; 2811 } 2812 2813 static int bpf_object__init_btf(struct bpf_object *obj, 2814 Elf_Data *btf_data, 2815 Elf_Data *btf_ext_data) 2816 { 2817 int err = -ENOENT; 2818 2819 if (btf_data) { 2820 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2821 err = libbpf_get_error(obj->btf); 2822 if (err) { 2823 obj->btf = NULL; 2824 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2825 goto out; 2826 } 2827 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2828 btf__set_pointer_size(obj->btf, 8); 2829 } 2830 if (btf_ext_data) { 2831 struct btf_ext_info *ext_segs[3]; 2832 int seg_num, sec_num; 2833 2834 if (!obj->btf) { 2835 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2836 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2837 goto out; 2838 } 2839 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2840 err = libbpf_get_error(obj->btf_ext); 2841 if (err) { 2842 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2843 BTF_EXT_ELF_SEC, err); 2844 obj->btf_ext = NULL; 2845 goto out; 2846 } 2847 2848 /* setup .BTF.ext to ELF section mapping */ 2849 ext_segs[0] = &obj->btf_ext->func_info; 2850 ext_segs[1] = &obj->btf_ext->line_info; 2851 ext_segs[2] = &obj->btf_ext->core_relo_info; 2852 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 2853 struct btf_ext_info *seg = ext_segs[seg_num]; 2854 const struct btf_ext_info_sec *sec; 2855 const char *sec_name; 2856 Elf_Scn *scn; 2857 2858 if (seg->sec_cnt == 0) 2859 continue; 2860 2861 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 2862 if (!seg->sec_idxs) { 2863 err = -ENOMEM; 2864 goto out; 2865 } 2866 2867 sec_num = 0; 2868 for_each_btf_ext_sec(seg, sec) { 2869 /* preventively increment index to avoid doing 2870 * this before every continue below 2871 */ 2872 sec_num++; 2873 2874 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 2875 if (str_is_empty(sec_name)) 2876 continue; 2877 scn = elf_sec_by_name(obj, sec_name); 2878 if (!scn) 2879 continue; 2880 2881 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 2882 } 2883 } 2884 } 2885 out: 2886 if (err && libbpf_needs_btf(obj)) { 2887 pr_warn("BTF is required, but is missing or corrupted.\n"); 2888 return err; 2889 } 2890 return 0; 2891 } 2892 2893 static int compare_vsi_off(const void *_a, const void *_b) 2894 { 2895 const struct btf_var_secinfo *a = _a; 2896 const struct btf_var_secinfo *b = _b; 2897 2898 return a->offset - b->offset; 2899 } 2900 2901 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2902 struct btf_type *t) 2903 { 2904 __u32 size = 0, i, vars = btf_vlen(t); 2905 const char *sec_name = btf__name_by_offset(btf, t->name_off); 2906 struct btf_var_secinfo *vsi; 2907 bool fixup_offsets = false; 2908 int err; 2909 2910 if (!sec_name) { 2911 pr_debug("No name found in string section for DATASEC kind.\n"); 2912 return -ENOENT; 2913 } 2914 2915 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 2916 * variable offsets set at the previous step. Further, not every 2917 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 2918 * all fixups altogether for such sections and go straight to sorting 2919 * VARs within their DATASEC. 2920 */ 2921 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 2922 goto sort_vars; 2923 2924 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 2925 * fix this up. But BPF static linker already fixes this up and fills 2926 * all the sizes and offsets during static linking. So this step has 2927 * to be optional. But the STV_HIDDEN handling is non-optional for any 2928 * non-extern DATASEC, so the variable fixup loop below handles both 2929 * functions at the same time, paying the cost of BTF VAR <-> ELF 2930 * symbol matching just once. 2931 */ 2932 if (t->size == 0) { 2933 err = find_elf_sec_sz(obj, sec_name, &size); 2934 if (err || !size) { 2935 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n", 2936 sec_name, size, err); 2937 return -ENOENT; 2938 } 2939 2940 t->size = size; 2941 fixup_offsets = true; 2942 } 2943 2944 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2945 const struct btf_type *t_var; 2946 struct btf_var *var; 2947 const char *var_name; 2948 Elf64_Sym *sym; 2949 2950 t_var = btf__type_by_id(btf, vsi->type); 2951 if (!t_var || !btf_is_var(t_var)) { 2952 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 2953 return -EINVAL; 2954 } 2955 2956 var = btf_var(t_var); 2957 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 2958 continue; 2959 2960 var_name = btf__name_by_offset(btf, t_var->name_off); 2961 if (!var_name) { 2962 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 2963 sec_name, i); 2964 return -ENOENT; 2965 } 2966 2967 sym = find_elf_var_sym(obj, var_name); 2968 if (IS_ERR(sym)) { 2969 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 2970 sec_name, var_name); 2971 return -ENOENT; 2972 } 2973 2974 if (fixup_offsets) 2975 vsi->offset = sym->st_value; 2976 2977 /* if variable is a global/weak symbol, but has restricted 2978 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 2979 * as static. This follows similar logic for functions (BPF 2980 * subprogs) and influences libbpf's further decisions about 2981 * whether to make global data BPF array maps as 2982 * BPF_F_MMAPABLE. 2983 */ 2984 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 2985 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 2986 var->linkage = BTF_VAR_STATIC; 2987 } 2988 2989 sort_vars: 2990 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 2991 return 0; 2992 } 2993 2994 static int bpf_object_fixup_btf(struct bpf_object *obj) 2995 { 2996 int i, n, err = 0; 2997 2998 if (!obj->btf) 2999 return 0; 3000 3001 n = btf__type_cnt(obj->btf); 3002 for (i = 1; i < n; i++) { 3003 struct btf_type *t = btf_type_by_id(obj->btf, i); 3004 3005 /* Loader needs to fix up some of the things compiler 3006 * couldn't get its hands on while emitting BTF. This 3007 * is section size and global variable offset. We use 3008 * the info from the ELF itself for this purpose. 3009 */ 3010 if (btf_is_datasec(t)) { 3011 err = btf_fixup_datasec(obj, obj->btf, t); 3012 if (err) 3013 return err; 3014 } 3015 } 3016 3017 return 0; 3018 } 3019 3020 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 3021 { 3022 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3023 prog->type == BPF_PROG_TYPE_LSM) 3024 return true; 3025 3026 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3027 * also need vmlinux BTF 3028 */ 3029 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3030 return true; 3031 3032 return false; 3033 } 3034 3035 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3036 { 3037 struct bpf_program *prog; 3038 int i; 3039 3040 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3041 * is not specified 3042 */ 3043 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3044 return true; 3045 3046 /* Support for typed ksyms needs kernel BTF */ 3047 for (i = 0; i < obj->nr_extern; i++) { 3048 const struct extern_desc *ext; 3049 3050 ext = &obj->externs[i]; 3051 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3052 return true; 3053 } 3054 3055 bpf_object__for_each_program(prog, obj) { 3056 if (!prog->autoload) 3057 continue; 3058 if (prog_needs_vmlinux_btf(prog)) 3059 return true; 3060 } 3061 3062 return false; 3063 } 3064 3065 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3066 { 3067 int err; 3068 3069 /* btf_vmlinux could be loaded earlier */ 3070 if (obj->btf_vmlinux || obj->gen_loader) 3071 return 0; 3072 3073 if (!force && !obj_needs_vmlinux_btf(obj)) 3074 return 0; 3075 3076 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3077 err = libbpf_get_error(obj->btf_vmlinux); 3078 if (err) { 3079 pr_warn("Error loading vmlinux BTF: %d\n", err); 3080 obj->btf_vmlinux = NULL; 3081 return err; 3082 } 3083 return 0; 3084 } 3085 3086 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3087 { 3088 struct btf *kern_btf = obj->btf; 3089 bool btf_mandatory, sanitize; 3090 int i, err = 0; 3091 3092 if (!obj->btf) 3093 return 0; 3094 3095 if (!kernel_supports(obj, FEAT_BTF)) { 3096 if (kernel_needs_btf(obj)) { 3097 err = -EOPNOTSUPP; 3098 goto report; 3099 } 3100 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3101 return 0; 3102 } 3103 3104 /* Even though some subprogs are global/weak, user might prefer more 3105 * permissive BPF verification process that BPF verifier performs for 3106 * static functions, taking into account more context from the caller 3107 * functions. In such case, they need to mark such subprogs with 3108 * __attribute__((visibility("hidden"))) and libbpf will adjust 3109 * corresponding FUNC BTF type to be marked as static and trigger more 3110 * involved BPF verification process. 3111 */ 3112 for (i = 0; i < obj->nr_programs; i++) { 3113 struct bpf_program *prog = &obj->programs[i]; 3114 struct btf_type *t; 3115 const char *name; 3116 int j, n; 3117 3118 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3119 continue; 3120 3121 n = btf__type_cnt(obj->btf); 3122 for (j = 1; j < n; j++) { 3123 t = btf_type_by_id(obj->btf, j); 3124 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3125 continue; 3126 3127 name = btf__str_by_offset(obj->btf, t->name_off); 3128 if (strcmp(name, prog->name) != 0) 3129 continue; 3130 3131 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3132 break; 3133 } 3134 } 3135 3136 sanitize = btf_needs_sanitization(obj); 3137 if (sanitize) { 3138 const void *raw_data; 3139 __u32 sz; 3140 3141 /* clone BTF to sanitize a copy and leave the original intact */ 3142 raw_data = btf__raw_data(obj->btf, &sz); 3143 kern_btf = btf__new(raw_data, sz); 3144 err = libbpf_get_error(kern_btf); 3145 if (err) 3146 return err; 3147 3148 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3149 btf__set_pointer_size(obj->btf, 8); 3150 err = bpf_object__sanitize_btf(obj, kern_btf); 3151 if (err) 3152 return err; 3153 } 3154 3155 if (obj->gen_loader) { 3156 __u32 raw_size = 0; 3157 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3158 3159 if (!raw_data) 3160 return -ENOMEM; 3161 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3162 /* Pretend to have valid FD to pass various fd >= 0 checks. 3163 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3164 */ 3165 btf__set_fd(kern_btf, 0); 3166 } else { 3167 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3168 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3169 obj->log_level ? 1 : 0); 3170 } 3171 if (sanitize) { 3172 if (!err) { 3173 /* move fd to libbpf's BTF */ 3174 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3175 btf__set_fd(kern_btf, -1); 3176 } 3177 btf__free(kern_btf); 3178 } 3179 report: 3180 if (err) { 3181 btf_mandatory = kernel_needs_btf(obj); 3182 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3183 btf_mandatory ? "BTF is mandatory, can't proceed." 3184 : "BTF is optional, ignoring."); 3185 if (!btf_mandatory) 3186 err = 0; 3187 } 3188 return err; 3189 } 3190 3191 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3192 { 3193 const char *name; 3194 3195 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3196 if (!name) { 3197 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3198 off, obj->path, elf_errmsg(-1)); 3199 return NULL; 3200 } 3201 3202 return name; 3203 } 3204 3205 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3206 { 3207 const char *name; 3208 3209 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3210 if (!name) { 3211 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3212 off, obj->path, elf_errmsg(-1)); 3213 return NULL; 3214 } 3215 3216 return name; 3217 } 3218 3219 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3220 { 3221 Elf_Scn *scn; 3222 3223 scn = elf_getscn(obj->efile.elf, idx); 3224 if (!scn) { 3225 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3226 idx, obj->path, elf_errmsg(-1)); 3227 return NULL; 3228 } 3229 return scn; 3230 } 3231 3232 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3233 { 3234 Elf_Scn *scn = NULL; 3235 Elf *elf = obj->efile.elf; 3236 const char *sec_name; 3237 3238 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3239 sec_name = elf_sec_name(obj, scn); 3240 if (!sec_name) 3241 return NULL; 3242 3243 if (strcmp(sec_name, name) != 0) 3244 continue; 3245 3246 return scn; 3247 } 3248 return NULL; 3249 } 3250 3251 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3252 { 3253 Elf64_Shdr *shdr; 3254 3255 if (!scn) 3256 return NULL; 3257 3258 shdr = elf64_getshdr(scn); 3259 if (!shdr) { 3260 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3261 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3262 return NULL; 3263 } 3264 3265 return shdr; 3266 } 3267 3268 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3269 { 3270 const char *name; 3271 Elf64_Shdr *sh; 3272 3273 if (!scn) 3274 return NULL; 3275 3276 sh = elf_sec_hdr(obj, scn); 3277 if (!sh) 3278 return NULL; 3279 3280 name = elf_sec_str(obj, sh->sh_name); 3281 if (!name) { 3282 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3283 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3284 return NULL; 3285 } 3286 3287 return name; 3288 } 3289 3290 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3291 { 3292 Elf_Data *data; 3293 3294 if (!scn) 3295 return NULL; 3296 3297 data = elf_getdata(scn, 0); 3298 if (!data) { 3299 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3300 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3301 obj->path, elf_errmsg(-1)); 3302 return NULL; 3303 } 3304 3305 return data; 3306 } 3307 3308 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3309 { 3310 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3311 return NULL; 3312 3313 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3314 } 3315 3316 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3317 { 3318 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3319 return NULL; 3320 3321 return (Elf64_Rel *)data->d_buf + idx; 3322 } 3323 3324 static bool is_sec_name_dwarf(const char *name) 3325 { 3326 /* approximation, but the actual list is too long */ 3327 return str_has_pfx(name, ".debug_"); 3328 } 3329 3330 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3331 { 3332 /* no special handling of .strtab */ 3333 if (hdr->sh_type == SHT_STRTAB) 3334 return true; 3335 3336 /* ignore .llvm_addrsig section as well */ 3337 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3338 return true; 3339 3340 /* no subprograms will lead to an empty .text section, ignore it */ 3341 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3342 strcmp(name, ".text") == 0) 3343 return true; 3344 3345 /* DWARF sections */ 3346 if (is_sec_name_dwarf(name)) 3347 return true; 3348 3349 if (str_has_pfx(name, ".rel")) { 3350 name += sizeof(".rel") - 1; 3351 /* DWARF section relocations */ 3352 if (is_sec_name_dwarf(name)) 3353 return true; 3354 3355 /* .BTF and .BTF.ext don't need relocations */ 3356 if (strcmp(name, BTF_ELF_SEC) == 0 || 3357 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3358 return true; 3359 } 3360 3361 return false; 3362 } 3363 3364 static int cmp_progs(const void *_a, const void *_b) 3365 { 3366 const struct bpf_program *a = _a; 3367 const struct bpf_program *b = _b; 3368 3369 if (a->sec_idx != b->sec_idx) 3370 return a->sec_idx < b->sec_idx ? -1 : 1; 3371 3372 /* sec_insn_off can't be the same within the section */ 3373 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3374 } 3375 3376 static int bpf_object__elf_collect(struct bpf_object *obj) 3377 { 3378 struct elf_sec_desc *sec_desc; 3379 Elf *elf = obj->efile.elf; 3380 Elf_Data *btf_ext_data = NULL; 3381 Elf_Data *btf_data = NULL; 3382 int idx = 0, err = 0; 3383 const char *name; 3384 Elf_Data *data; 3385 Elf_Scn *scn; 3386 Elf64_Shdr *sh; 3387 3388 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3389 * section. Since section count retrieved by elf_getshdrnum() does 3390 * include sec #0, it is already the necessary size of an array to keep 3391 * all the sections. 3392 */ 3393 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3394 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3395 obj->path, elf_errmsg(-1)); 3396 return -LIBBPF_ERRNO__FORMAT; 3397 } 3398 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3399 if (!obj->efile.secs) 3400 return -ENOMEM; 3401 3402 /* a bunch of ELF parsing functionality depends on processing symbols, 3403 * so do the first pass and find the symbol table 3404 */ 3405 scn = NULL; 3406 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3407 sh = elf_sec_hdr(obj, scn); 3408 if (!sh) 3409 return -LIBBPF_ERRNO__FORMAT; 3410 3411 if (sh->sh_type == SHT_SYMTAB) { 3412 if (obj->efile.symbols) { 3413 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3414 return -LIBBPF_ERRNO__FORMAT; 3415 } 3416 3417 data = elf_sec_data(obj, scn); 3418 if (!data) 3419 return -LIBBPF_ERRNO__FORMAT; 3420 3421 idx = elf_ndxscn(scn); 3422 3423 obj->efile.symbols = data; 3424 obj->efile.symbols_shndx = idx; 3425 obj->efile.strtabidx = sh->sh_link; 3426 } 3427 } 3428 3429 if (!obj->efile.symbols) { 3430 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3431 obj->path); 3432 return -ENOENT; 3433 } 3434 3435 scn = NULL; 3436 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3437 idx = elf_ndxscn(scn); 3438 sec_desc = &obj->efile.secs[idx]; 3439 3440 sh = elf_sec_hdr(obj, scn); 3441 if (!sh) 3442 return -LIBBPF_ERRNO__FORMAT; 3443 3444 name = elf_sec_str(obj, sh->sh_name); 3445 if (!name) 3446 return -LIBBPF_ERRNO__FORMAT; 3447 3448 if (ignore_elf_section(sh, name)) 3449 continue; 3450 3451 data = elf_sec_data(obj, scn); 3452 if (!data) 3453 return -LIBBPF_ERRNO__FORMAT; 3454 3455 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3456 idx, name, (unsigned long)data->d_size, 3457 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3458 (int)sh->sh_type); 3459 3460 if (strcmp(name, "license") == 0) { 3461 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3462 if (err) 3463 return err; 3464 } else if (strcmp(name, "version") == 0) { 3465 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3466 if (err) 3467 return err; 3468 } else if (strcmp(name, "maps") == 0) { 3469 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3470 return -ENOTSUP; 3471 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3472 obj->efile.btf_maps_shndx = idx; 3473 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3474 if (sh->sh_type != SHT_PROGBITS) 3475 return -LIBBPF_ERRNO__FORMAT; 3476 btf_data = data; 3477 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3478 if (sh->sh_type != SHT_PROGBITS) 3479 return -LIBBPF_ERRNO__FORMAT; 3480 btf_ext_data = data; 3481 } else if (sh->sh_type == SHT_SYMTAB) { 3482 /* already processed during the first pass above */ 3483 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3484 if (sh->sh_flags & SHF_EXECINSTR) { 3485 if (strcmp(name, ".text") == 0) 3486 obj->efile.text_shndx = idx; 3487 err = bpf_object__add_programs(obj, data, name, idx); 3488 if (err) 3489 return err; 3490 } else if (strcmp(name, DATA_SEC) == 0 || 3491 str_has_pfx(name, DATA_SEC ".")) { 3492 sec_desc->sec_type = SEC_DATA; 3493 sec_desc->shdr = sh; 3494 sec_desc->data = data; 3495 } else if (strcmp(name, RODATA_SEC) == 0 || 3496 str_has_pfx(name, RODATA_SEC ".")) { 3497 sec_desc->sec_type = SEC_RODATA; 3498 sec_desc->shdr = sh; 3499 sec_desc->data = data; 3500 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3501 obj->efile.st_ops_data = data; 3502 obj->efile.st_ops_shndx = idx; 3503 } else if (strcmp(name, STRUCT_OPS_LINK_SEC) == 0) { 3504 obj->efile.st_ops_link_data = data; 3505 obj->efile.st_ops_link_shndx = idx; 3506 } else { 3507 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3508 idx, name); 3509 } 3510 } else if (sh->sh_type == SHT_REL) { 3511 int targ_sec_idx = sh->sh_info; /* points to other section */ 3512 3513 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3514 targ_sec_idx >= obj->efile.sec_cnt) 3515 return -LIBBPF_ERRNO__FORMAT; 3516 3517 /* Only do relo for section with exec instructions */ 3518 if (!section_have_execinstr(obj, targ_sec_idx) && 3519 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3520 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) && 3521 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3522 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3523 idx, name, targ_sec_idx, 3524 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3525 continue; 3526 } 3527 3528 sec_desc->sec_type = SEC_RELO; 3529 sec_desc->shdr = sh; 3530 sec_desc->data = data; 3531 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 || 3532 str_has_pfx(name, BSS_SEC "."))) { 3533 sec_desc->sec_type = SEC_BSS; 3534 sec_desc->shdr = sh; 3535 sec_desc->data = data; 3536 } else { 3537 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3538 (size_t)sh->sh_size); 3539 } 3540 } 3541 3542 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3543 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3544 return -LIBBPF_ERRNO__FORMAT; 3545 } 3546 3547 /* sort BPF programs by section name and in-section instruction offset 3548 * for faster search 3549 */ 3550 if (obj->nr_programs) 3551 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3552 3553 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3554 } 3555 3556 static bool sym_is_extern(const Elf64_Sym *sym) 3557 { 3558 int bind = ELF64_ST_BIND(sym->st_info); 3559 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3560 return sym->st_shndx == SHN_UNDEF && 3561 (bind == STB_GLOBAL || bind == STB_WEAK) && 3562 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3563 } 3564 3565 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3566 { 3567 int bind = ELF64_ST_BIND(sym->st_info); 3568 int type = ELF64_ST_TYPE(sym->st_info); 3569 3570 /* in .text section */ 3571 if (sym->st_shndx != text_shndx) 3572 return false; 3573 3574 /* local function */ 3575 if (bind == STB_LOCAL && type == STT_SECTION) 3576 return true; 3577 3578 /* global function */ 3579 return bind == STB_GLOBAL && type == STT_FUNC; 3580 } 3581 3582 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3583 { 3584 const struct btf_type *t; 3585 const char *tname; 3586 int i, n; 3587 3588 if (!btf) 3589 return -ESRCH; 3590 3591 n = btf__type_cnt(btf); 3592 for (i = 1; i < n; i++) { 3593 t = btf__type_by_id(btf, i); 3594 3595 if (!btf_is_var(t) && !btf_is_func(t)) 3596 continue; 3597 3598 tname = btf__name_by_offset(btf, t->name_off); 3599 if (strcmp(tname, ext_name)) 3600 continue; 3601 3602 if (btf_is_var(t) && 3603 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3604 return -EINVAL; 3605 3606 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3607 return -EINVAL; 3608 3609 return i; 3610 } 3611 3612 return -ENOENT; 3613 } 3614 3615 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3616 const struct btf_var_secinfo *vs; 3617 const struct btf_type *t; 3618 int i, j, n; 3619 3620 if (!btf) 3621 return -ESRCH; 3622 3623 n = btf__type_cnt(btf); 3624 for (i = 1; i < n; i++) { 3625 t = btf__type_by_id(btf, i); 3626 3627 if (!btf_is_datasec(t)) 3628 continue; 3629 3630 vs = btf_var_secinfos(t); 3631 for (j = 0; j < btf_vlen(t); j++, vs++) { 3632 if (vs->type == ext_btf_id) 3633 return i; 3634 } 3635 } 3636 3637 return -ENOENT; 3638 } 3639 3640 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3641 bool *is_signed) 3642 { 3643 const struct btf_type *t; 3644 const char *name; 3645 3646 t = skip_mods_and_typedefs(btf, id, NULL); 3647 name = btf__name_by_offset(btf, t->name_off); 3648 3649 if (is_signed) 3650 *is_signed = false; 3651 switch (btf_kind(t)) { 3652 case BTF_KIND_INT: { 3653 int enc = btf_int_encoding(t); 3654 3655 if (enc & BTF_INT_BOOL) 3656 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3657 if (is_signed) 3658 *is_signed = enc & BTF_INT_SIGNED; 3659 if (t->size == 1) 3660 return KCFG_CHAR; 3661 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3662 return KCFG_UNKNOWN; 3663 return KCFG_INT; 3664 } 3665 case BTF_KIND_ENUM: 3666 if (t->size != 4) 3667 return KCFG_UNKNOWN; 3668 if (strcmp(name, "libbpf_tristate")) 3669 return KCFG_UNKNOWN; 3670 return KCFG_TRISTATE; 3671 case BTF_KIND_ENUM64: 3672 if (strcmp(name, "libbpf_tristate")) 3673 return KCFG_UNKNOWN; 3674 return KCFG_TRISTATE; 3675 case BTF_KIND_ARRAY: 3676 if (btf_array(t)->nelems == 0) 3677 return KCFG_UNKNOWN; 3678 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3679 return KCFG_UNKNOWN; 3680 return KCFG_CHAR_ARR; 3681 default: 3682 return KCFG_UNKNOWN; 3683 } 3684 } 3685 3686 static int cmp_externs(const void *_a, const void *_b) 3687 { 3688 const struct extern_desc *a = _a; 3689 const struct extern_desc *b = _b; 3690 3691 if (a->type != b->type) 3692 return a->type < b->type ? -1 : 1; 3693 3694 if (a->type == EXT_KCFG) { 3695 /* descending order by alignment requirements */ 3696 if (a->kcfg.align != b->kcfg.align) 3697 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3698 /* ascending order by size, within same alignment class */ 3699 if (a->kcfg.sz != b->kcfg.sz) 3700 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3701 } 3702 3703 /* resolve ties by name */ 3704 return strcmp(a->name, b->name); 3705 } 3706 3707 static int find_int_btf_id(const struct btf *btf) 3708 { 3709 const struct btf_type *t; 3710 int i, n; 3711 3712 n = btf__type_cnt(btf); 3713 for (i = 1; i < n; i++) { 3714 t = btf__type_by_id(btf, i); 3715 3716 if (btf_is_int(t) && btf_int_bits(t) == 32) 3717 return i; 3718 } 3719 3720 return 0; 3721 } 3722 3723 static int add_dummy_ksym_var(struct btf *btf) 3724 { 3725 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3726 const struct btf_var_secinfo *vs; 3727 const struct btf_type *sec; 3728 3729 if (!btf) 3730 return 0; 3731 3732 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3733 BTF_KIND_DATASEC); 3734 if (sec_btf_id < 0) 3735 return 0; 3736 3737 sec = btf__type_by_id(btf, sec_btf_id); 3738 vs = btf_var_secinfos(sec); 3739 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3740 const struct btf_type *vt; 3741 3742 vt = btf__type_by_id(btf, vs->type); 3743 if (btf_is_func(vt)) 3744 break; 3745 } 3746 3747 /* No func in ksyms sec. No need to add dummy var. */ 3748 if (i == btf_vlen(sec)) 3749 return 0; 3750 3751 int_btf_id = find_int_btf_id(btf); 3752 dummy_var_btf_id = btf__add_var(btf, 3753 "dummy_ksym", 3754 BTF_VAR_GLOBAL_ALLOCATED, 3755 int_btf_id); 3756 if (dummy_var_btf_id < 0) 3757 pr_warn("cannot create a dummy_ksym var\n"); 3758 3759 return dummy_var_btf_id; 3760 } 3761 3762 static int bpf_object__collect_externs(struct bpf_object *obj) 3763 { 3764 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3765 const struct btf_type *t; 3766 struct extern_desc *ext; 3767 int i, n, off, dummy_var_btf_id; 3768 const char *ext_name, *sec_name; 3769 Elf_Scn *scn; 3770 Elf64_Shdr *sh; 3771 3772 if (!obj->efile.symbols) 3773 return 0; 3774 3775 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3776 sh = elf_sec_hdr(obj, scn); 3777 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3778 return -LIBBPF_ERRNO__FORMAT; 3779 3780 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3781 if (dummy_var_btf_id < 0) 3782 return dummy_var_btf_id; 3783 3784 n = sh->sh_size / sh->sh_entsize; 3785 pr_debug("looking for externs among %d symbols...\n", n); 3786 3787 for (i = 0; i < n; i++) { 3788 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3789 3790 if (!sym) 3791 return -LIBBPF_ERRNO__FORMAT; 3792 if (!sym_is_extern(sym)) 3793 continue; 3794 ext_name = elf_sym_str(obj, sym->st_name); 3795 if (!ext_name || !ext_name[0]) 3796 continue; 3797 3798 ext = obj->externs; 3799 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3800 if (!ext) 3801 return -ENOMEM; 3802 obj->externs = ext; 3803 ext = &ext[obj->nr_extern]; 3804 memset(ext, 0, sizeof(*ext)); 3805 obj->nr_extern++; 3806 3807 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3808 if (ext->btf_id <= 0) { 3809 pr_warn("failed to find BTF for extern '%s': %d\n", 3810 ext_name, ext->btf_id); 3811 return ext->btf_id; 3812 } 3813 t = btf__type_by_id(obj->btf, ext->btf_id); 3814 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3815 ext->sym_idx = i; 3816 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3817 3818 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3819 if (ext->sec_btf_id <= 0) { 3820 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3821 ext_name, ext->btf_id, ext->sec_btf_id); 3822 return ext->sec_btf_id; 3823 } 3824 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3825 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3826 3827 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3828 if (btf_is_func(t)) { 3829 pr_warn("extern function %s is unsupported under %s section\n", 3830 ext->name, KCONFIG_SEC); 3831 return -ENOTSUP; 3832 } 3833 kcfg_sec = sec; 3834 ext->type = EXT_KCFG; 3835 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3836 if (ext->kcfg.sz <= 0) { 3837 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3838 ext_name, ext->kcfg.sz); 3839 return ext->kcfg.sz; 3840 } 3841 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3842 if (ext->kcfg.align <= 0) { 3843 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3844 ext_name, ext->kcfg.align); 3845 return -EINVAL; 3846 } 3847 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3848 &ext->kcfg.is_signed); 3849 if (ext->kcfg.type == KCFG_UNKNOWN) { 3850 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 3851 return -ENOTSUP; 3852 } 3853 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3854 ksym_sec = sec; 3855 ext->type = EXT_KSYM; 3856 skip_mods_and_typedefs(obj->btf, t->type, 3857 &ext->ksym.type_id); 3858 } else { 3859 pr_warn("unrecognized extern section '%s'\n", sec_name); 3860 return -ENOTSUP; 3861 } 3862 } 3863 pr_debug("collected %d externs total\n", obj->nr_extern); 3864 3865 if (!obj->nr_extern) 3866 return 0; 3867 3868 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3869 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3870 3871 /* for .ksyms section, we need to turn all externs into allocated 3872 * variables in BTF to pass kernel verification; we do this by 3873 * pretending that each extern is a 8-byte variable 3874 */ 3875 if (ksym_sec) { 3876 /* find existing 4-byte integer type in BTF to use for fake 3877 * extern variables in DATASEC 3878 */ 3879 int int_btf_id = find_int_btf_id(obj->btf); 3880 /* For extern function, a dummy_var added earlier 3881 * will be used to replace the vs->type and 3882 * its name string will be used to refill 3883 * the missing param's name. 3884 */ 3885 const struct btf_type *dummy_var; 3886 3887 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3888 for (i = 0; i < obj->nr_extern; i++) { 3889 ext = &obj->externs[i]; 3890 if (ext->type != EXT_KSYM) 3891 continue; 3892 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3893 i, ext->sym_idx, ext->name); 3894 } 3895 3896 sec = ksym_sec; 3897 n = btf_vlen(sec); 3898 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3899 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3900 struct btf_type *vt; 3901 3902 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3903 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3904 ext = find_extern_by_name(obj, ext_name); 3905 if (!ext) { 3906 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3907 btf_kind_str(vt), ext_name); 3908 return -ESRCH; 3909 } 3910 if (btf_is_func(vt)) { 3911 const struct btf_type *func_proto; 3912 struct btf_param *param; 3913 int j; 3914 3915 func_proto = btf__type_by_id(obj->btf, 3916 vt->type); 3917 param = btf_params(func_proto); 3918 /* Reuse the dummy_var string if the 3919 * func proto does not have param name. 3920 */ 3921 for (j = 0; j < btf_vlen(func_proto); j++) 3922 if (param[j].type && !param[j].name_off) 3923 param[j].name_off = 3924 dummy_var->name_off; 3925 vs->type = dummy_var_btf_id; 3926 vt->info &= ~0xffff; 3927 vt->info |= BTF_FUNC_GLOBAL; 3928 } else { 3929 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3930 vt->type = int_btf_id; 3931 } 3932 vs->offset = off; 3933 vs->size = sizeof(int); 3934 } 3935 sec->size = off; 3936 } 3937 3938 if (kcfg_sec) { 3939 sec = kcfg_sec; 3940 /* for kcfg externs calculate their offsets within a .kconfig map */ 3941 off = 0; 3942 for (i = 0; i < obj->nr_extern; i++) { 3943 ext = &obj->externs[i]; 3944 if (ext->type != EXT_KCFG) 3945 continue; 3946 3947 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3948 off = ext->kcfg.data_off + ext->kcfg.sz; 3949 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3950 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3951 } 3952 sec->size = off; 3953 n = btf_vlen(sec); 3954 for (i = 0; i < n; i++) { 3955 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3956 3957 t = btf__type_by_id(obj->btf, vs->type); 3958 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3959 ext = find_extern_by_name(obj, ext_name); 3960 if (!ext) { 3961 pr_warn("failed to find extern definition for BTF var '%s'\n", 3962 ext_name); 3963 return -ESRCH; 3964 } 3965 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3966 vs->offset = ext->kcfg.data_off; 3967 } 3968 } 3969 return 0; 3970 } 3971 3972 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 3973 { 3974 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3975 } 3976 3977 struct bpf_program * 3978 bpf_object__find_program_by_name(const struct bpf_object *obj, 3979 const char *name) 3980 { 3981 struct bpf_program *prog; 3982 3983 bpf_object__for_each_program(prog, obj) { 3984 if (prog_is_subprog(obj, prog)) 3985 continue; 3986 if (!strcmp(prog->name, name)) 3987 return prog; 3988 } 3989 return errno = ENOENT, NULL; 3990 } 3991 3992 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3993 int shndx) 3994 { 3995 switch (obj->efile.secs[shndx].sec_type) { 3996 case SEC_BSS: 3997 case SEC_DATA: 3998 case SEC_RODATA: 3999 return true; 4000 default: 4001 return false; 4002 } 4003 } 4004 4005 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 4006 int shndx) 4007 { 4008 return shndx == obj->efile.btf_maps_shndx; 4009 } 4010 4011 static enum libbpf_map_type 4012 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 4013 { 4014 if (shndx == obj->efile.symbols_shndx) 4015 return LIBBPF_MAP_KCONFIG; 4016 4017 switch (obj->efile.secs[shndx].sec_type) { 4018 case SEC_BSS: 4019 return LIBBPF_MAP_BSS; 4020 case SEC_DATA: 4021 return LIBBPF_MAP_DATA; 4022 case SEC_RODATA: 4023 return LIBBPF_MAP_RODATA; 4024 default: 4025 return LIBBPF_MAP_UNSPEC; 4026 } 4027 } 4028 4029 static int bpf_program__record_reloc(struct bpf_program *prog, 4030 struct reloc_desc *reloc_desc, 4031 __u32 insn_idx, const char *sym_name, 4032 const Elf64_Sym *sym, const Elf64_Rel *rel) 4033 { 4034 struct bpf_insn *insn = &prog->insns[insn_idx]; 4035 size_t map_idx, nr_maps = prog->obj->nr_maps; 4036 struct bpf_object *obj = prog->obj; 4037 __u32 shdr_idx = sym->st_shndx; 4038 enum libbpf_map_type type; 4039 const char *sym_sec_name; 4040 struct bpf_map *map; 4041 4042 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4043 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4044 prog->name, sym_name, insn_idx, insn->code); 4045 return -LIBBPF_ERRNO__RELOC; 4046 } 4047 4048 if (sym_is_extern(sym)) { 4049 int sym_idx = ELF64_R_SYM(rel->r_info); 4050 int i, n = obj->nr_extern; 4051 struct extern_desc *ext; 4052 4053 for (i = 0; i < n; i++) { 4054 ext = &obj->externs[i]; 4055 if (ext->sym_idx == sym_idx) 4056 break; 4057 } 4058 if (i >= n) { 4059 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4060 prog->name, sym_name, sym_idx); 4061 return -LIBBPF_ERRNO__RELOC; 4062 } 4063 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4064 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4065 if (insn->code == (BPF_JMP | BPF_CALL)) 4066 reloc_desc->type = RELO_EXTERN_CALL; 4067 else 4068 reloc_desc->type = RELO_EXTERN_LD64; 4069 reloc_desc->insn_idx = insn_idx; 4070 reloc_desc->ext_idx = i; 4071 return 0; 4072 } 4073 4074 /* sub-program call relocation */ 4075 if (is_call_insn(insn)) { 4076 if (insn->src_reg != BPF_PSEUDO_CALL) { 4077 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4078 return -LIBBPF_ERRNO__RELOC; 4079 } 4080 /* text_shndx can be 0, if no default "main" program exists */ 4081 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4082 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4083 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4084 prog->name, sym_name, sym_sec_name); 4085 return -LIBBPF_ERRNO__RELOC; 4086 } 4087 if (sym->st_value % BPF_INSN_SZ) { 4088 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4089 prog->name, sym_name, (size_t)sym->st_value); 4090 return -LIBBPF_ERRNO__RELOC; 4091 } 4092 reloc_desc->type = RELO_CALL; 4093 reloc_desc->insn_idx = insn_idx; 4094 reloc_desc->sym_off = sym->st_value; 4095 return 0; 4096 } 4097 4098 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4099 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4100 prog->name, sym_name, shdr_idx); 4101 return -LIBBPF_ERRNO__RELOC; 4102 } 4103 4104 /* loading subprog addresses */ 4105 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4106 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4107 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4108 */ 4109 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4110 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4111 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4112 return -LIBBPF_ERRNO__RELOC; 4113 } 4114 4115 reloc_desc->type = RELO_SUBPROG_ADDR; 4116 reloc_desc->insn_idx = insn_idx; 4117 reloc_desc->sym_off = sym->st_value; 4118 return 0; 4119 } 4120 4121 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4122 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4123 4124 /* generic map reference relocation */ 4125 if (type == LIBBPF_MAP_UNSPEC) { 4126 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4127 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4128 prog->name, sym_name, sym_sec_name); 4129 return -LIBBPF_ERRNO__RELOC; 4130 } 4131 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4132 map = &obj->maps[map_idx]; 4133 if (map->libbpf_type != type || 4134 map->sec_idx != sym->st_shndx || 4135 map->sec_offset != sym->st_value) 4136 continue; 4137 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4138 prog->name, map_idx, map->name, map->sec_idx, 4139 map->sec_offset, insn_idx); 4140 break; 4141 } 4142 if (map_idx >= nr_maps) { 4143 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4144 prog->name, sym_sec_name, (size_t)sym->st_value); 4145 return -LIBBPF_ERRNO__RELOC; 4146 } 4147 reloc_desc->type = RELO_LD64; 4148 reloc_desc->insn_idx = insn_idx; 4149 reloc_desc->map_idx = map_idx; 4150 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4151 return 0; 4152 } 4153 4154 /* global data map relocation */ 4155 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4156 pr_warn("prog '%s': bad data relo against section '%s'\n", 4157 prog->name, sym_sec_name); 4158 return -LIBBPF_ERRNO__RELOC; 4159 } 4160 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4161 map = &obj->maps[map_idx]; 4162 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4163 continue; 4164 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4165 prog->name, map_idx, map->name, map->sec_idx, 4166 map->sec_offset, insn_idx); 4167 break; 4168 } 4169 if (map_idx >= nr_maps) { 4170 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4171 prog->name, sym_sec_name); 4172 return -LIBBPF_ERRNO__RELOC; 4173 } 4174 4175 reloc_desc->type = RELO_DATA; 4176 reloc_desc->insn_idx = insn_idx; 4177 reloc_desc->map_idx = map_idx; 4178 reloc_desc->sym_off = sym->st_value; 4179 return 0; 4180 } 4181 4182 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4183 { 4184 return insn_idx >= prog->sec_insn_off && 4185 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4186 } 4187 4188 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4189 size_t sec_idx, size_t insn_idx) 4190 { 4191 int l = 0, r = obj->nr_programs - 1, m; 4192 struct bpf_program *prog; 4193 4194 if (!obj->nr_programs) 4195 return NULL; 4196 4197 while (l < r) { 4198 m = l + (r - l + 1) / 2; 4199 prog = &obj->programs[m]; 4200 4201 if (prog->sec_idx < sec_idx || 4202 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4203 l = m; 4204 else 4205 r = m - 1; 4206 } 4207 /* matching program could be at index l, but it still might be the 4208 * wrong one, so we need to double check conditions for the last time 4209 */ 4210 prog = &obj->programs[l]; 4211 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4212 return prog; 4213 return NULL; 4214 } 4215 4216 static int 4217 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4218 { 4219 const char *relo_sec_name, *sec_name; 4220 size_t sec_idx = shdr->sh_info, sym_idx; 4221 struct bpf_program *prog; 4222 struct reloc_desc *relos; 4223 int err, i, nrels; 4224 const char *sym_name; 4225 __u32 insn_idx; 4226 Elf_Scn *scn; 4227 Elf_Data *scn_data; 4228 Elf64_Sym *sym; 4229 Elf64_Rel *rel; 4230 4231 if (sec_idx >= obj->efile.sec_cnt) 4232 return -EINVAL; 4233 4234 scn = elf_sec_by_idx(obj, sec_idx); 4235 scn_data = elf_sec_data(obj, scn); 4236 4237 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4238 sec_name = elf_sec_name(obj, scn); 4239 if (!relo_sec_name || !sec_name) 4240 return -EINVAL; 4241 4242 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4243 relo_sec_name, sec_idx, sec_name); 4244 nrels = shdr->sh_size / shdr->sh_entsize; 4245 4246 for (i = 0; i < nrels; i++) { 4247 rel = elf_rel_by_idx(data, i); 4248 if (!rel) { 4249 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4250 return -LIBBPF_ERRNO__FORMAT; 4251 } 4252 4253 sym_idx = ELF64_R_SYM(rel->r_info); 4254 sym = elf_sym_by_idx(obj, sym_idx); 4255 if (!sym) { 4256 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4257 relo_sec_name, sym_idx, i); 4258 return -LIBBPF_ERRNO__FORMAT; 4259 } 4260 4261 if (sym->st_shndx >= obj->efile.sec_cnt) { 4262 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4263 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4264 return -LIBBPF_ERRNO__FORMAT; 4265 } 4266 4267 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4268 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4269 relo_sec_name, (size_t)rel->r_offset, i); 4270 return -LIBBPF_ERRNO__FORMAT; 4271 } 4272 4273 insn_idx = rel->r_offset / BPF_INSN_SZ; 4274 /* relocations against static functions are recorded as 4275 * relocations against the section that contains a function; 4276 * in such case, symbol will be STT_SECTION and sym.st_name 4277 * will point to empty string (0), so fetch section name 4278 * instead 4279 */ 4280 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4281 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4282 else 4283 sym_name = elf_sym_str(obj, sym->st_name); 4284 sym_name = sym_name ?: "<?"; 4285 4286 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4287 relo_sec_name, i, insn_idx, sym_name); 4288 4289 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4290 if (!prog) { 4291 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4292 relo_sec_name, i, sec_name, insn_idx); 4293 continue; 4294 } 4295 4296 relos = libbpf_reallocarray(prog->reloc_desc, 4297 prog->nr_reloc + 1, sizeof(*relos)); 4298 if (!relos) 4299 return -ENOMEM; 4300 prog->reloc_desc = relos; 4301 4302 /* adjust insn_idx to local BPF program frame of reference */ 4303 insn_idx -= prog->sec_insn_off; 4304 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4305 insn_idx, sym_name, sym, rel); 4306 if (err) 4307 return err; 4308 4309 prog->nr_reloc++; 4310 } 4311 return 0; 4312 } 4313 4314 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4315 { 4316 int id; 4317 4318 if (!obj->btf) 4319 return -ENOENT; 4320 4321 /* if it's BTF-defined map, we don't need to search for type IDs. 4322 * For struct_ops map, it does not need btf_key_type_id and 4323 * btf_value_type_id. 4324 */ 4325 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4326 return 0; 4327 4328 /* 4329 * LLVM annotates global data differently in BTF, that is, 4330 * only as '.data', '.bss' or '.rodata'. 4331 */ 4332 if (!bpf_map__is_internal(map)) 4333 return -ENOENT; 4334 4335 id = btf__find_by_name(obj->btf, map->real_name); 4336 if (id < 0) 4337 return id; 4338 4339 map->btf_key_type_id = 0; 4340 map->btf_value_type_id = id; 4341 return 0; 4342 } 4343 4344 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4345 { 4346 char file[PATH_MAX], buff[4096]; 4347 FILE *fp; 4348 __u32 val; 4349 int err; 4350 4351 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4352 memset(info, 0, sizeof(*info)); 4353 4354 fp = fopen(file, "re"); 4355 if (!fp) { 4356 err = -errno; 4357 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4358 err); 4359 return err; 4360 } 4361 4362 while (fgets(buff, sizeof(buff), fp)) { 4363 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4364 info->type = val; 4365 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4366 info->key_size = val; 4367 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4368 info->value_size = val; 4369 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4370 info->max_entries = val; 4371 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4372 info->map_flags = val; 4373 } 4374 4375 fclose(fp); 4376 4377 return 0; 4378 } 4379 4380 bool bpf_map__autocreate(const struct bpf_map *map) 4381 { 4382 return map->autocreate; 4383 } 4384 4385 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4386 { 4387 if (map->obj->loaded) 4388 return libbpf_err(-EBUSY); 4389 4390 map->autocreate = autocreate; 4391 return 0; 4392 } 4393 4394 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4395 { 4396 struct bpf_map_info info; 4397 __u32 len = sizeof(info), name_len; 4398 int new_fd, err; 4399 char *new_name; 4400 4401 memset(&info, 0, len); 4402 err = bpf_map_get_info_by_fd(fd, &info, &len); 4403 if (err && errno == EINVAL) 4404 err = bpf_get_map_info_from_fdinfo(fd, &info); 4405 if (err) 4406 return libbpf_err(err); 4407 4408 name_len = strlen(info.name); 4409 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4410 new_name = strdup(map->name); 4411 else 4412 new_name = strdup(info.name); 4413 4414 if (!new_name) 4415 return libbpf_err(-errno); 4416 4417 /* 4418 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set. 4419 * This is similar to what we do in ensure_good_fd(), but without 4420 * closing original FD. 4421 */ 4422 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3); 4423 if (new_fd < 0) { 4424 err = -errno; 4425 goto err_free_new_name; 4426 } 4427 4428 err = zclose(map->fd); 4429 if (err) { 4430 err = -errno; 4431 goto err_close_new_fd; 4432 } 4433 free(map->name); 4434 4435 map->fd = new_fd; 4436 map->name = new_name; 4437 map->def.type = info.type; 4438 map->def.key_size = info.key_size; 4439 map->def.value_size = info.value_size; 4440 map->def.max_entries = info.max_entries; 4441 map->def.map_flags = info.map_flags; 4442 map->btf_key_type_id = info.btf_key_type_id; 4443 map->btf_value_type_id = info.btf_value_type_id; 4444 map->reused = true; 4445 map->map_extra = info.map_extra; 4446 4447 return 0; 4448 4449 err_close_new_fd: 4450 close(new_fd); 4451 err_free_new_name: 4452 free(new_name); 4453 return libbpf_err(err); 4454 } 4455 4456 __u32 bpf_map__max_entries(const struct bpf_map *map) 4457 { 4458 return map->def.max_entries; 4459 } 4460 4461 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4462 { 4463 if (!bpf_map_type__is_map_in_map(map->def.type)) 4464 return errno = EINVAL, NULL; 4465 4466 return map->inner_map; 4467 } 4468 4469 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4470 { 4471 if (map->obj->loaded) 4472 return libbpf_err(-EBUSY); 4473 4474 map->def.max_entries = max_entries; 4475 4476 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4477 if (map_is_ringbuf(map)) 4478 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4479 4480 return 0; 4481 } 4482 4483 static int 4484 bpf_object__probe_loading(struct bpf_object *obj) 4485 { 4486 char *cp, errmsg[STRERR_BUFSIZE]; 4487 struct bpf_insn insns[] = { 4488 BPF_MOV64_IMM(BPF_REG_0, 0), 4489 BPF_EXIT_INSN(), 4490 }; 4491 int ret, insn_cnt = ARRAY_SIZE(insns); 4492 4493 if (obj->gen_loader) 4494 return 0; 4495 4496 ret = bump_rlimit_memlock(); 4497 if (ret) 4498 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4499 4500 /* make sure basic loading works */ 4501 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4502 if (ret < 0) 4503 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4504 if (ret < 0) { 4505 ret = errno; 4506 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4507 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4508 "program. Make sure your kernel supports BPF " 4509 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4510 "set to big enough value.\n", __func__, cp, ret); 4511 return -ret; 4512 } 4513 close(ret); 4514 4515 return 0; 4516 } 4517 4518 static int probe_fd(int fd) 4519 { 4520 if (fd >= 0) 4521 close(fd); 4522 return fd >= 0; 4523 } 4524 4525 static int probe_kern_prog_name(void) 4526 { 4527 const size_t attr_sz = offsetofend(union bpf_attr, prog_name); 4528 struct bpf_insn insns[] = { 4529 BPF_MOV64_IMM(BPF_REG_0, 0), 4530 BPF_EXIT_INSN(), 4531 }; 4532 union bpf_attr attr; 4533 int ret; 4534 4535 memset(&attr, 0, attr_sz); 4536 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4537 attr.license = ptr_to_u64("GPL"); 4538 attr.insns = ptr_to_u64(insns); 4539 attr.insn_cnt = (__u32)ARRAY_SIZE(insns); 4540 libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name)); 4541 4542 /* make sure loading with name works */ 4543 ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS); 4544 return probe_fd(ret); 4545 } 4546 4547 static int probe_kern_global_data(void) 4548 { 4549 char *cp, errmsg[STRERR_BUFSIZE]; 4550 struct bpf_insn insns[] = { 4551 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4552 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4553 BPF_MOV64_IMM(BPF_REG_0, 0), 4554 BPF_EXIT_INSN(), 4555 }; 4556 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4557 4558 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL); 4559 if (map < 0) { 4560 ret = -errno; 4561 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4562 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4563 __func__, cp, -ret); 4564 return ret; 4565 } 4566 4567 insns[0].imm = map; 4568 4569 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4570 close(map); 4571 return probe_fd(ret); 4572 } 4573 4574 static int probe_kern_btf(void) 4575 { 4576 static const char strs[] = "\0int"; 4577 __u32 types[] = { 4578 /* int */ 4579 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4580 }; 4581 4582 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4583 strs, sizeof(strs))); 4584 } 4585 4586 static int probe_kern_btf_func(void) 4587 { 4588 static const char strs[] = "\0int\0x\0a"; 4589 /* void x(int a) {} */ 4590 __u32 types[] = { 4591 /* int */ 4592 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4593 /* FUNC_PROTO */ /* [2] */ 4594 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4595 BTF_PARAM_ENC(7, 1), 4596 /* FUNC x */ /* [3] */ 4597 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4598 }; 4599 4600 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4601 strs, sizeof(strs))); 4602 } 4603 4604 static int probe_kern_btf_func_global(void) 4605 { 4606 static const char strs[] = "\0int\0x\0a"; 4607 /* static void x(int a) {} */ 4608 __u32 types[] = { 4609 /* int */ 4610 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4611 /* FUNC_PROTO */ /* [2] */ 4612 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4613 BTF_PARAM_ENC(7, 1), 4614 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4615 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4616 }; 4617 4618 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4619 strs, sizeof(strs))); 4620 } 4621 4622 static int probe_kern_btf_datasec(void) 4623 { 4624 static const char strs[] = "\0x\0.data"; 4625 /* static int a; */ 4626 __u32 types[] = { 4627 /* int */ 4628 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4629 /* VAR x */ /* [2] */ 4630 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4631 BTF_VAR_STATIC, 4632 /* DATASEC val */ /* [3] */ 4633 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4634 BTF_VAR_SECINFO_ENC(2, 0, 4), 4635 }; 4636 4637 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4638 strs, sizeof(strs))); 4639 } 4640 4641 static int probe_kern_btf_float(void) 4642 { 4643 static const char strs[] = "\0float"; 4644 __u32 types[] = { 4645 /* float */ 4646 BTF_TYPE_FLOAT_ENC(1, 4), 4647 }; 4648 4649 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4650 strs, sizeof(strs))); 4651 } 4652 4653 static int probe_kern_btf_decl_tag(void) 4654 { 4655 static const char strs[] = "\0tag"; 4656 __u32 types[] = { 4657 /* int */ 4658 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4659 /* VAR x */ /* [2] */ 4660 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4661 BTF_VAR_STATIC, 4662 /* attr */ 4663 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4664 }; 4665 4666 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4667 strs, sizeof(strs))); 4668 } 4669 4670 static int probe_kern_btf_type_tag(void) 4671 { 4672 static const char strs[] = "\0tag"; 4673 __u32 types[] = { 4674 /* int */ 4675 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4676 /* attr */ 4677 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4678 /* ptr */ 4679 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4680 }; 4681 4682 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4683 strs, sizeof(strs))); 4684 } 4685 4686 static int probe_kern_array_mmap(void) 4687 { 4688 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4689 int fd; 4690 4691 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts); 4692 return probe_fd(fd); 4693 } 4694 4695 static int probe_kern_exp_attach_type(void) 4696 { 4697 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4698 struct bpf_insn insns[] = { 4699 BPF_MOV64_IMM(BPF_REG_0, 0), 4700 BPF_EXIT_INSN(), 4701 }; 4702 int fd, insn_cnt = ARRAY_SIZE(insns); 4703 4704 /* use any valid combination of program type and (optional) 4705 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4706 * to see if kernel supports expected_attach_type field for 4707 * BPF_PROG_LOAD command 4708 */ 4709 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4710 return probe_fd(fd); 4711 } 4712 4713 static int probe_kern_probe_read_kernel(void) 4714 { 4715 struct bpf_insn insns[] = { 4716 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4717 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4718 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4719 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4720 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4721 BPF_EXIT_INSN(), 4722 }; 4723 int fd, insn_cnt = ARRAY_SIZE(insns); 4724 4725 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4726 return probe_fd(fd); 4727 } 4728 4729 static int probe_prog_bind_map(void) 4730 { 4731 char *cp, errmsg[STRERR_BUFSIZE]; 4732 struct bpf_insn insns[] = { 4733 BPF_MOV64_IMM(BPF_REG_0, 0), 4734 BPF_EXIT_INSN(), 4735 }; 4736 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4737 4738 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL); 4739 if (map < 0) { 4740 ret = -errno; 4741 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4742 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4743 __func__, cp, -ret); 4744 return ret; 4745 } 4746 4747 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4748 if (prog < 0) { 4749 close(map); 4750 return 0; 4751 } 4752 4753 ret = bpf_prog_bind_map(prog, map, NULL); 4754 4755 close(map); 4756 close(prog); 4757 4758 return ret >= 0; 4759 } 4760 4761 static int probe_module_btf(void) 4762 { 4763 static const char strs[] = "\0int"; 4764 __u32 types[] = { 4765 /* int */ 4766 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4767 }; 4768 struct bpf_btf_info info; 4769 __u32 len = sizeof(info); 4770 char name[16]; 4771 int fd, err; 4772 4773 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4774 if (fd < 0) 4775 return 0; /* BTF not supported at all */ 4776 4777 memset(&info, 0, sizeof(info)); 4778 info.name = ptr_to_u64(name); 4779 info.name_len = sizeof(name); 4780 4781 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4782 * kernel's module BTF support coincides with support for 4783 * name/name_len fields in struct bpf_btf_info. 4784 */ 4785 err = bpf_btf_get_info_by_fd(fd, &info, &len); 4786 close(fd); 4787 return !err; 4788 } 4789 4790 static int probe_perf_link(void) 4791 { 4792 struct bpf_insn insns[] = { 4793 BPF_MOV64_IMM(BPF_REG_0, 0), 4794 BPF_EXIT_INSN(), 4795 }; 4796 int prog_fd, link_fd, err; 4797 4798 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4799 insns, ARRAY_SIZE(insns), NULL); 4800 if (prog_fd < 0) 4801 return -errno; 4802 4803 /* use invalid perf_event FD to get EBADF, if link is supported; 4804 * otherwise EINVAL should be returned 4805 */ 4806 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4807 err = -errno; /* close() can clobber errno */ 4808 4809 if (link_fd >= 0) 4810 close(link_fd); 4811 close(prog_fd); 4812 4813 return link_fd < 0 && err == -EBADF; 4814 } 4815 4816 static int probe_kern_bpf_cookie(void) 4817 { 4818 struct bpf_insn insns[] = { 4819 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie), 4820 BPF_EXIT_INSN(), 4821 }; 4822 int ret, insn_cnt = ARRAY_SIZE(insns); 4823 4824 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4825 return probe_fd(ret); 4826 } 4827 4828 static int probe_kern_btf_enum64(void) 4829 { 4830 static const char strs[] = "\0enum64"; 4831 __u32 types[] = { 4832 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8), 4833 }; 4834 4835 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4836 strs, sizeof(strs))); 4837 } 4838 4839 static int probe_kern_syscall_wrapper(void); 4840 4841 enum kern_feature_result { 4842 FEAT_UNKNOWN = 0, 4843 FEAT_SUPPORTED = 1, 4844 FEAT_MISSING = 2, 4845 }; 4846 4847 typedef int (*feature_probe_fn)(void); 4848 4849 static struct kern_feature_desc { 4850 const char *desc; 4851 feature_probe_fn probe; 4852 enum kern_feature_result res; 4853 } feature_probes[__FEAT_CNT] = { 4854 [FEAT_PROG_NAME] = { 4855 "BPF program name", probe_kern_prog_name, 4856 }, 4857 [FEAT_GLOBAL_DATA] = { 4858 "global variables", probe_kern_global_data, 4859 }, 4860 [FEAT_BTF] = { 4861 "minimal BTF", probe_kern_btf, 4862 }, 4863 [FEAT_BTF_FUNC] = { 4864 "BTF functions", probe_kern_btf_func, 4865 }, 4866 [FEAT_BTF_GLOBAL_FUNC] = { 4867 "BTF global function", probe_kern_btf_func_global, 4868 }, 4869 [FEAT_BTF_DATASEC] = { 4870 "BTF data section and variable", probe_kern_btf_datasec, 4871 }, 4872 [FEAT_ARRAY_MMAP] = { 4873 "ARRAY map mmap()", probe_kern_array_mmap, 4874 }, 4875 [FEAT_EXP_ATTACH_TYPE] = { 4876 "BPF_PROG_LOAD expected_attach_type attribute", 4877 probe_kern_exp_attach_type, 4878 }, 4879 [FEAT_PROBE_READ_KERN] = { 4880 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4881 }, 4882 [FEAT_PROG_BIND_MAP] = { 4883 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4884 }, 4885 [FEAT_MODULE_BTF] = { 4886 "module BTF support", probe_module_btf, 4887 }, 4888 [FEAT_BTF_FLOAT] = { 4889 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4890 }, 4891 [FEAT_PERF_LINK] = { 4892 "BPF perf link support", probe_perf_link, 4893 }, 4894 [FEAT_BTF_DECL_TAG] = { 4895 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 4896 }, 4897 [FEAT_BTF_TYPE_TAG] = { 4898 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 4899 }, 4900 [FEAT_MEMCG_ACCOUNT] = { 4901 "memcg-based memory accounting", probe_memcg_account, 4902 }, 4903 [FEAT_BPF_COOKIE] = { 4904 "BPF cookie support", probe_kern_bpf_cookie, 4905 }, 4906 [FEAT_BTF_ENUM64] = { 4907 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64, 4908 }, 4909 [FEAT_SYSCALL_WRAPPER] = { 4910 "Kernel using syscall wrapper", probe_kern_syscall_wrapper, 4911 }, 4912 }; 4913 4914 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4915 { 4916 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4917 int ret; 4918 4919 if (obj && obj->gen_loader) 4920 /* To generate loader program assume the latest kernel 4921 * to avoid doing extra prog_load, map_create syscalls. 4922 */ 4923 return true; 4924 4925 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4926 ret = feat->probe(); 4927 if (ret > 0) { 4928 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4929 } else if (ret == 0) { 4930 WRITE_ONCE(feat->res, FEAT_MISSING); 4931 } else { 4932 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4933 WRITE_ONCE(feat->res, FEAT_MISSING); 4934 } 4935 } 4936 4937 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4938 } 4939 4940 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4941 { 4942 struct bpf_map_info map_info; 4943 char msg[STRERR_BUFSIZE]; 4944 __u32 map_info_len = sizeof(map_info); 4945 int err; 4946 4947 memset(&map_info, 0, map_info_len); 4948 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len); 4949 if (err && errno == EINVAL) 4950 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 4951 if (err) { 4952 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 4953 libbpf_strerror_r(errno, msg, sizeof(msg))); 4954 return false; 4955 } 4956 4957 return (map_info.type == map->def.type && 4958 map_info.key_size == map->def.key_size && 4959 map_info.value_size == map->def.value_size && 4960 map_info.max_entries == map->def.max_entries && 4961 map_info.map_flags == map->def.map_flags && 4962 map_info.map_extra == map->map_extra); 4963 } 4964 4965 static int 4966 bpf_object__reuse_map(struct bpf_map *map) 4967 { 4968 char *cp, errmsg[STRERR_BUFSIZE]; 4969 int err, pin_fd; 4970 4971 pin_fd = bpf_obj_get(map->pin_path); 4972 if (pin_fd < 0) { 4973 err = -errno; 4974 if (err == -ENOENT) { 4975 pr_debug("found no pinned map to reuse at '%s'\n", 4976 map->pin_path); 4977 return 0; 4978 } 4979 4980 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4981 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4982 map->pin_path, cp); 4983 return err; 4984 } 4985 4986 if (!map_is_reuse_compat(map, pin_fd)) { 4987 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4988 map->pin_path); 4989 close(pin_fd); 4990 return -EINVAL; 4991 } 4992 4993 err = bpf_map__reuse_fd(map, pin_fd); 4994 close(pin_fd); 4995 if (err) 4996 return err; 4997 4998 map->pinned = true; 4999 pr_debug("reused pinned map at '%s'\n", map->pin_path); 5000 5001 return 0; 5002 } 5003 5004 static int 5005 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 5006 { 5007 enum libbpf_map_type map_type = map->libbpf_type; 5008 char *cp, errmsg[STRERR_BUFSIZE]; 5009 int err, zero = 0; 5010 5011 if (obj->gen_loader) { 5012 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 5013 map->mmaped, map->def.value_size); 5014 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 5015 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 5016 return 0; 5017 } 5018 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 5019 if (err) { 5020 err = -errno; 5021 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5022 pr_warn("Error setting initial map(%s) contents: %s\n", 5023 map->name, cp); 5024 return err; 5025 } 5026 5027 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5028 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5029 err = bpf_map_freeze(map->fd); 5030 if (err) { 5031 err = -errno; 5032 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5033 pr_warn("Error freezing map(%s) as read-only: %s\n", 5034 map->name, cp); 5035 return err; 5036 } 5037 } 5038 return 0; 5039 } 5040 5041 static void bpf_map__destroy(struct bpf_map *map); 5042 5043 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5044 { 5045 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5046 struct bpf_map_def *def = &map->def; 5047 const char *map_name = NULL; 5048 int err = 0; 5049 5050 if (kernel_supports(obj, FEAT_PROG_NAME)) 5051 map_name = map->name; 5052 create_attr.map_ifindex = map->map_ifindex; 5053 create_attr.map_flags = def->map_flags; 5054 create_attr.numa_node = map->numa_node; 5055 create_attr.map_extra = map->map_extra; 5056 5057 if (bpf_map__is_struct_ops(map)) 5058 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5059 5060 if (obj->btf && btf__fd(obj->btf) >= 0) { 5061 create_attr.btf_fd = btf__fd(obj->btf); 5062 create_attr.btf_key_type_id = map->btf_key_type_id; 5063 create_attr.btf_value_type_id = map->btf_value_type_id; 5064 } 5065 5066 if (bpf_map_type__is_map_in_map(def->type)) { 5067 if (map->inner_map) { 5068 err = bpf_object__create_map(obj, map->inner_map, true); 5069 if (err) { 5070 pr_warn("map '%s': failed to create inner map: %d\n", 5071 map->name, err); 5072 return err; 5073 } 5074 map->inner_map_fd = bpf_map__fd(map->inner_map); 5075 } 5076 if (map->inner_map_fd >= 0) 5077 create_attr.inner_map_fd = map->inner_map_fd; 5078 } 5079 5080 switch (def->type) { 5081 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5082 case BPF_MAP_TYPE_CGROUP_ARRAY: 5083 case BPF_MAP_TYPE_STACK_TRACE: 5084 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5085 case BPF_MAP_TYPE_HASH_OF_MAPS: 5086 case BPF_MAP_TYPE_DEVMAP: 5087 case BPF_MAP_TYPE_DEVMAP_HASH: 5088 case BPF_MAP_TYPE_CPUMAP: 5089 case BPF_MAP_TYPE_XSKMAP: 5090 case BPF_MAP_TYPE_SOCKMAP: 5091 case BPF_MAP_TYPE_SOCKHASH: 5092 case BPF_MAP_TYPE_QUEUE: 5093 case BPF_MAP_TYPE_STACK: 5094 create_attr.btf_fd = 0; 5095 create_attr.btf_key_type_id = 0; 5096 create_attr.btf_value_type_id = 0; 5097 map->btf_key_type_id = 0; 5098 map->btf_value_type_id = 0; 5099 default: 5100 break; 5101 } 5102 5103 if (obj->gen_loader) { 5104 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5105 def->key_size, def->value_size, def->max_entries, 5106 &create_attr, is_inner ? -1 : map - obj->maps); 5107 /* Pretend to have valid FD to pass various fd >= 0 checks. 5108 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 5109 */ 5110 map->fd = 0; 5111 } else { 5112 map->fd = bpf_map_create(def->type, map_name, 5113 def->key_size, def->value_size, 5114 def->max_entries, &create_attr); 5115 } 5116 if (map->fd < 0 && (create_attr.btf_key_type_id || 5117 create_attr.btf_value_type_id)) { 5118 char *cp, errmsg[STRERR_BUFSIZE]; 5119 5120 err = -errno; 5121 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5122 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 5123 map->name, cp, err); 5124 create_attr.btf_fd = 0; 5125 create_attr.btf_key_type_id = 0; 5126 create_attr.btf_value_type_id = 0; 5127 map->btf_key_type_id = 0; 5128 map->btf_value_type_id = 0; 5129 map->fd = bpf_map_create(def->type, map_name, 5130 def->key_size, def->value_size, 5131 def->max_entries, &create_attr); 5132 } 5133 5134 err = map->fd < 0 ? -errno : 0; 5135 5136 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5137 if (obj->gen_loader) 5138 map->inner_map->fd = -1; 5139 bpf_map__destroy(map->inner_map); 5140 zfree(&map->inner_map); 5141 } 5142 5143 return err; 5144 } 5145 5146 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5147 { 5148 const struct bpf_map *targ_map; 5149 unsigned int i; 5150 int fd, err = 0; 5151 5152 for (i = 0; i < map->init_slots_sz; i++) { 5153 if (!map->init_slots[i]) 5154 continue; 5155 5156 targ_map = map->init_slots[i]; 5157 fd = bpf_map__fd(targ_map); 5158 5159 if (obj->gen_loader) { 5160 bpf_gen__populate_outer_map(obj->gen_loader, 5161 map - obj->maps, i, 5162 targ_map - obj->maps); 5163 } else { 5164 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5165 } 5166 if (err) { 5167 err = -errno; 5168 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5169 map->name, i, targ_map->name, fd, err); 5170 return err; 5171 } 5172 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5173 map->name, i, targ_map->name, fd); 5174 } 5175 5176 zfree(&map->init_slots); 5177 map->init_slots_sz = 0; 5178 5179 return 0; 5180 } 5181 5182 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5183 { 5184 const struct bpf_program *targ_prog; 5185 unsigned int i; 5186 int fd, err; 5187 5188 if (obj->gen_loader) 5189 return -ENOTSUP; 5190 5191 for (i = 0; i < map->init_slots_sz; i++) { 5192 if (!map->init_slots[i]) 5193 continue; 5194 5195 targ_prog = map->init_slots[i]; 5196 fd = bpf_program__fd(targ_prog); 5197 5198 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5199 if (err) { 5200 err = -errno; 5201 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5202 map->name, i, targ_prog->name, fd, err); 5203 return err; 5204 } 5205 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5206 map->name, i, targ_prog->name, fd); 5207 } 5208 5209 zfree(&map->init_slots); 5210 map->init_slots_sz = 0; 5211 5212 return 0; 5213 } 5214 5215 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5216 { 5217 struct bpf_map *map; 5218 int i, err; 5219 5220 for (i = 0; i < obj->nr_maps; i++) { 5221 map = &obj->maps[i]; 5222 5223 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5224 continue; 5225 5226 err = init_prog_array_slots(obj, map); 5227 if (err < 0) { 5228 zclose(map->fd); 5229 return err; 5230 } 5231 } 5232 return 0; 5233 } 5234 5235 static int map_set_def_max_entries(struct bpf_map *map) 5236 { 5237 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5238 int nr_cpus; 5239 5240 nr_cpus = libbpf_num_possible_cpus(); 5241 if (nr_cpus < 0) { 5242 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5243 map->name, nr_cpus); 5244 return nr_cpus; 5245 } 5246 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5247 map->def.max_entries = nr_cpus; 5248 } 5249 5250 return 0; 5251 } 5252 5253 static int 5254 bpf_object__create_maps(struct bpf_object *obj) 5255 { 5256 struct bpf_map *map; 5257 char *cp, errmsg[STRERR_BUFSIZE]; 5258 unsigned int i, j; 5259 int err; 5260 bool retried; 5261 5262 for (i = 0; i < obj->nr_maps; i++) { 5263 map = &obj->maps[i]; 5264 5265 /* To support old kernels, we skip creating global data maps 5266 * (.rodata, .data, .kconfig, etc); later on, during program 5267 * loading, if we detect that at least one of the to-be-loaded 5268 * programs is referencing any global data map, we'll error 5269 * out with program name and relocation index logged. 5270 * This approach allows to accommodate Clang emitting 5271 * unnecessary .rodata.str1.1 sections for string literals, 5272 * but also it allows to have CO-RE applications that use 5273 * global variables in some of BPF programs, but not others. 5274 * If those global variable-using programs are not loaded at 5275 * runtime due to bpf_program__set_autoload(prog, false), 5276 * bpf_object loading will succeed just fine even on old 5277 * kernels. 5278 */ 5279 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5280 map->autocreate = false; 5281 5282 if (!map->autocreate) { 5283 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5284 continue; 5285 } 5286 5287 err = map_set_def_max_entries(map); 5288 if (err) 5289 goto err_out; 5290 5291 retried = false; 5292 retry: 5293 if (map->pin_path) { 5294 err = bpf_object__reuse_map(map); 5295 if (err) { 5296 pr_warn("map '%s': error reusing pinned map\n", 5297 map->name); 5298 goto err_out; 5299 } 5300 if (retried && map->fd < 0) { 5301 pr_warn("map '%s': cannot find pinned map\n", 5302 map->name); 5303 err = -ENOENT; 5304 goto err_out; 5305 } 5306 } 5307 5308 if (map->fd >= 0) { 5309 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5310 map->name, map->fd); 5311 } else { 5312 err = bpf_object__create_map(obj, map, false); 5313 if (err) 5314 goto err_out; 5315 5316 pr_debug("map '%s': created successfully, fd=%d\n", 5317 map->name, map->fd); 5318 5319 if (bpf_map__is_internal(map)) { 5320 err = bpf_object__populate_internal_map(obj, map); 5321 if (err < 0) { 5322 zclose(map->fd); 5323 goto err_out; 5324 } 5325 } 5326 5327 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5328 err = init_map_in_map_slots(obj, map); 5329 if (err < 0) { 5330 zclose(map->fd); 5331 goto err_out; 5332 } 5333 } 5334 } 5335 5336 if (map->pin_path && !map->pinned) { 5337 err = bpf_map__pin(map, NULL); 5338 if (err) { 5339 zclose(map->fd); 5340 if (!retried && err == -EEXIST) { 5341 retried = true; 5342 goto retry; 5343 } 5344 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5345 map->name, map->pin_path, err); 5346 goto err_out; 5347 } 5348 } 5349 } 5350 5351 return 0; 5352 5353 err_out: 5354 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5355 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5356 pr_perm_msg(err); 5357 for (j = 0; j < i; j++) 5358 zclose(obj->maps[j].fd); 5359 return err; 5360 } 5361 5362 static bool bpf_core_is_flavor_sep(const char *s) 5363 { 5364 /* check X___Y name pattern, where X and Y are not underscores */ 5365 return s[0] != '_' && /* X */ 5366 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5367 s[4] != '_'; /* Y */ 5368 } 5369 5370 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5371 * before last triple underscore. Struct name part after last triple 5372 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5373 */ 5374 size_t bpf_core_essential_name_len(const char *name) 5375 { 5376 size_t n = strlen(name); 5377 int i; 5378 5379 for (i = n - 5; i >= 0; i--) { 5380 if (bpf_core_is_flavor_sep(name + i)) 5381 return i + 1; 5382 } 5383 return n; 5384 } 5385 5386 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5387 { 5388 if (!cands) 5389 return; 5390 5391 free(cands->cands); 5392 free(cands); 5393 } 5394 5395 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5396 size_t local_essent_len, 5397 const struct btf *targ_btf, 5398 const char *targ_btf_name, 5399 int targ_start_id, 5400 struct bpf_core_cand_list *cands) 5401 { 5402 struct bpf_core_cand *new_cands, *cand; 5403 const struct btf_type *t, *local_t; 5404 const char *targ_name, *local_name; 5405 size_t targ_essent_len; 5406 int n, i; 5407 5408 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5409 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5410 5411 n = btf__type_cnt(targ_btf); 5412 for (i = targ_start_id; i < n; i++) { 5413 t = btf__type_by_id(targ_btf, i); 5414 if (!btf_kind_core_compat(t, local_t)) 5415 continue; 5416 5417 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5418 if (str_is_empty(targ_name)) 5419 continue; 5420 5421 targ_essent_len = bpf_core_essential_name_len(targ_name); 5422 if (targ_essent_len != local_essent_len) 5423 continue; 5424 5425 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5426 continue; 5427 5428 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5429 local_cand->id, btf_kind_str(local_t), 5430 local_name, i, btf_kind_str(t), targ_name, 5431 targ_btf_name); 5432 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5433 sizeof(*cands->cands)); 5434 if (!new_cands) 5435 return -ENOMEM; 5436 5437 cand = &new_cands[cands->len]; 5438 cand->btf = targ_btf; 5439 cand->id = i; 5440 5441 cands->cands = new_cands; 5442 cands->len++; 5443 } 5444 return 0; 5445 } 5446 5447 static int load_module_btfs(struct bpf_object *obj) 5448 { 5449 struct bpf_btf_info info; 5450 struct module_btf *mod_btf; 5451 struct btf *btf; 5452 char name[64]; 5453 __u32 id = 0, len; 5454 int err, fd; 5455 5456 if (obj->btf_modules_loaded) 5457 return 0; 5458 5459 if (obj->gen_loader) 5460 return 0; 5461 5462 /* don't do this again, even if we find no module BTFs */ 5463 obj->btf_modules_loaded = true; 5464 5465 /* kernel too old to support module BTFs */ 5466 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5467 return 0; 5468 5469 while (true) { 5470 err = bpf_btf_get_next_id(id, &id); 5471 if (err && errno == ENOENT) 5472 return 0; 5473 if (err) { 5474 err = -errno; 5475 pr_warn("failed to iterate BTF objects: %d\n", err); 5476 return err; 5477 } 5478 5479 fd = bpf_btf_get_fd_by_id(id); 5480 if (fd < 0) { 5481 if (errno == ENOENT) 5482 continue; /* expected race: BTF was unloaded */ 5483 err = -errno; 5484 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5485 return err; 5486 } 5487 5488 len = sizeof(info); 5489 memset(&info, 0, sizeof(info)); 5490 info.name = ptr_to_u64(name); 5491 info.name_len = sizeof(name); 5492 5493 err = bpf_btf_get_info_by_fd(fd, &info, &len); 5494 if (err) { 5495 err = -errno; 5496 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5497 goto err_out; 5498 } 5499 5500 /* ignore non-module BTFs */ 5501 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5502 close(fd); 5503 continue; 5504 } 5505 5506 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5507 err = libbpf_get_error(btf); 5508 if (err) { 5509 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5510 name, id, err); 5511 goto err_out; 5512 } 5513 5514 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5515 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5516 if (err) 5517 goto err_out; 5518 5519 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5520 5521 mod_btf->btf = btf; 5522 mod_btf->id = id; 5523 mod_btf->fd = fd; 5524 mod_btf->name = strdup(name); 5525 if (!mod_btf->name) { 5526 err = -ENOMEM; 5527 goto err_out; 5528 } 5529 continue; 5530 5531 err_out: 5532 close(fd); 5533 return err; 5534 } 5535 5536 return 0; 5537 } 5538 5539 static struct bpf_core_cand_list * 5540 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5541 { 5542 struct bpf_core_cand local_cand = {}; 5543 struct bpf_core_cand_list *cands; 5544 const struct btf *main_btf; 5545 const struct btf_type *local_t; 5546 const char *local_name; 5547 size_t local_essent_len; 5548 int err, i; 5549 5550 local_cand.btf = local_btf; 5551 local_cand.id = local_type_id; 5552 local_t = btf__type_by_id(local_btf, local_type_id); 5553 if (!local_t) 5554 return ERR_PTR(-EINVAL); 5555 5556 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5557 if (str_is_empty(local_name)) 5558 return ERR_PTR(-EINVAL); 5559 local_essent_len = bpf_core_essential_name_len(local_name); 5560 5561 cands = calloc(1, sizeof(*cands)); 5562 if (!cands) 5563 return ERR_PTR(-ENOMEM); 5564 5565 /* Attempt to find target candidates in vmlinux BTF first */ 5566 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5567 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5568 if (err) 5569 goto err_out; 5570 5571 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5572 if (cands->len) 5573 return cands; 5574 5575 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5576 if (obj->btf_vmlinux_override) 5577 return cands; 5578 5579 /* now look through module BTFs, trying to still find candidates */ 5580 err = load_module_btfs(obj); 5581 if (err) 5582 goto err_out; 5583 5584 for (i = 0; i < obj->btf_module_cnt; i++) { 5585 err = bpf_core_add_cands(&local_cand, local_essent_len, 5586 obj->btf_modules[i].btf, 5587 obj->btf_modules[i].name, 5588 btf__type_cnt(obj->btf_vmlinux), 5589 cands); 5590 if (err) 5591 goto err_out; 5592 } 5593 5594 return cands; 5595 err_out: 5596 bpf_core_free_cands(cands); 5597 return ERR_PTR(err); 5598 } 5599 5600 /* Check local and target types for compatibility. This check is used for 5601 * type-based CO-RE relocations and follow slightly different rules than 5602 * field-based relocations. This function assumes that root types were already 5603 * checked for name match. Beyond that initial root-level name check, names 5604 * are completely ignored. Compatibility rules are as follows: 5605 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5606 * kind should match for local and target types (i.e., STRUCT is not 5607 * compatible with UNION); 5608 * - for ENUMs, the size is ignored; 5609 * - for INT, size and signedness are ignored; 5610 * - for ARRAY, dimensionality is ignored, element types are checked for 5611 * compatibility recursively; 5612 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5613 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5614 * - FUNC_PROTOs are compatible if they have compatible signature: same 5615 * number of input args and compatible return and argument types. 5616 * These rules are not set in stone and probably will be adjusted as we get 5617 * more experience with using BPF CO-RE relocations. 5618 */ 5619 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5620 const struct btf *targ_btf, __u32 targ_id) 5621 { 5622 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5623 } 5624 5625 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5626 const struct btf *targ_btf, __u32 targ_id) 5627 { 5628 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5629 } 5630 5631 static size_t bpf_core_hash_fn(const long key, void *ctx) 5632 { 5633 return key; 5634 } 5635 5636 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx) 5637 { 5638 return k1 == k2; 5639 } 5640 5641 static int record_relo_core(struct bpf_program *prog, 5642 const struct bpf_core_relo *core_relo, int insn_idx) 5643 { 5644 struct reloc_desc *relos, *relo; 5645 5646 relos = libbpf_reallocarray(prog->reloc_desc, 5647 prog->nr_reloc + 1, sizeof(*relos)); 5648 if (!relos) 5649 return -ENOMEM; 5650 relo = &relos[prog->nr_reloc]; 5651 relo->type = RELO_CORE; 5652 relo->insn_idx = insn_idx; 5653 relo->core_relo = core_relo; 5654 prog->reloc_desc = relos; 5655 prog->nr_reloc++; 5656 return 0; 5657 } 5658 5659 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5660 { 5661 struct reloc_desc *relo; 5662 int i; 5663 5664 for (i = 0; i < prog->nr_reloc; i++) { 5665 relo = &prog->reloc_desc[i]; 5666 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5667 continue; 5668 5669 return relo->core_relo; 5670 } 5671 5672 return NULL; 5673 } 5674 5675 static int bpf_core_resolve_relo(struct bpf_program *prog, 5676 const struct bpf_core_relo *relo, 5677 int relo_idx, 5678 const struct btf *local_btf, 5679 struct hashmap *cand_cache, 5680 struct bpf_core_relo_res *targ_res) 5681 { 5682 struct bpf_core_spec specs_scratch[3] = {}; 5683 struct bpf_core_cand_list *cands = NULL; 5684 const char *prog_name = prog->name; 5685 const struct btf_type *local_type; 5686 const char *local_name; 5687 __u32 local_id = relo->type_id; 5688 int err; 5689 5690 local_type = btf__type_by_id(local_btf, local_id); 5691 if (!local_type) 5692 return -EINVAL; 5693 5694 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5695 if (!local_name) 5696 return -EINVAL; 5697 5698 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5699 !hashmap__find(cand_cache, local_id, &cands)) { 5700 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5701 if (IS_ERR(cands)) { 5702 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5703 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5704 local_name, PTR_ERR(cands)); 5705 return PTR_ERR(cands); 5706 } 5707 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL); 5708 if (err) { 5709 bpf_core_free_cands(cands); 5710 return err; 5711 } 5712 } 5713 5714 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5715 targ_res); 5716 } 5717 5718 static int 5719 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5720 { 5721 const struct btf_ext_info_sec *sec; 5722 struct bpf_core_relo_res targ_res; 5723 const struct bpf_core_relo *rec; 5724 const struct btf_ext_info *seg; 5725 struct hashmap_entry *entry; 5726 struct hashmap *cand_cache = NULL; 5727 struct bpf_program *prog; 5728 struct bpf_insn *insn; 5729 const char *sec_name; 5730 int i, err = 0, insn_idx, sec_idx, sec_num; 5731 5732 if (obj->btf_ext->core_relo_info.len == 0) 5733 return 0; 5734 5735 if (targ_btf_path) { 5736 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5737 err = libbpf_get_error(obj->btf_vmlinux_override); 5738 if (err) { 5739 pr_warn("failed to parse target BTF: %d\n", err); 5740 return err; 5741 } 5742 } 5743 5744 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5745 if (IS_ERR(cand_cache)) { 5746 err = PTR_ERR(cand_cache); 5747 goto out; 5748 } 5749 5750 seg = &obj->btf_ext->core_relo_info; 5751 sec_num = 0; 5752 for_each_btf_ext_sec(seg, sec) { 5753 sec_idx = seg->sec_idxs[sec_num]; 5754 sec_num++; 5755 5756 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5757 if (str_is_empty(sec_name)) { 5758 err = -EINVAL; 5759 goto out; 5760 } 5761 5762 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5763 5764 for_each_btf_ext_rec(seg, sec, i, rec) { 5765 if (rec->insn_off % BPF_INSN_SZ) 5766 return -EINVAL; 5767 insn_idx = rec->insn_off / BPF_INSN_SZ; 5768 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5769 if (!prog) { 5770 /* When __weak subprog is "overridden" by another instance 5771 * of the subprog from a different object file, linker still 5772 * appends all the .BTF.ext info that used to belong to that 5773 * eliminated subprogram. 5774 * This is similar to what x86-64 linker does for relocations. 5775 * So just ignore such relocations just like we ignore 5776 * subprog instructions when discovering subprograms. 5777 */ 5778 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5779 sec_name, i, insn_idx); 5780 continue; 5781 } 5782 /* no need to apply CO-RE relocation if the program is 5783 * not going to be loaded 5784 */ 5785 if (!prog->autoload) 5786 continue; 5787 5788 /* adjust insn_idx from section frame of reference to the local 5789 * program's frame of reference; (sub-)program code is not yet 5790 * relocated, so it's enough to just subtract in-section offset 5791 */ 5792 insn_idx = insn_idx - prog->sec_insn_off; 5793 if (insn_idx >= prog->insns_cnt) 5794 return -EINVAL; 5795 insn = &prog->insns[insn_idx]; 5796 5797 err = record_relo_core(prog, rec, insn_idx); 5798 if (err) { 5799 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5800 prog->name, i, err); 5801 goto out; 5802 } 5803 5804 if (prog->obj->gen_loader) 5805 continue; 5806 5807 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5808 if (err) { 5809 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5810 prog->name, i, err); 5811 goto out; 5812 } 5813 5814 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5815 if (err) { 5816 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5817 prog->name, i, insn_idx, err); 5818 goto out; 5819 } 5820 } 5821 } 5822 5823 out: 5824 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5825 btf__free(obj->btf_vmlinux_override); 5826 obj->btf_vmlinux_override = NULL; 5827 5828 if (!IS_ERR_OR_NULL(cand_cache)) { 5829 hashmap__for_each_entry(cand_cache, entry, i) { 5830 bpf_core_free_cands(entry->pvalue); 5831 } 5832 hashmap__free(cand_cache); 5833 } 5834 return err; 5835 } 5836 5837 /* base map load ldimm64 special constant, used also for log fixup logic */ 5838 #define POISON_LDIMM64_MAP_BASE 2001000000 5839 #define POISON_LDIMM64_MAP_PFX "200100" 5840 5841 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 5842 int insn_idx, struct bpf_insn *insn, 5843 int map_idx, const struct bpf_map *map) 5844 { 5845 int i; 5846 5847 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 5848 prog->name, relo_idx, insn_idx, map_idx, map->name); 5849 5850 /* we turn single ldimm64 into two identical invalid calls */ 5851 for (i = 0; i < 2; i++) { 5852 insn->code = BPF_JMP | BPF_CALL; 5853 insn->dst_reg = 0; 5854 insn->src_reg = 0; 5855 insn->off = 0; 5856 /* if this instruction is reachable (not a dead code), 5857 * verifier will complain with something like: 5858 * invalid func unknown#2001000123 5859 * where lower 123 is map index into obj->maps[] array 5860 */ 5861 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx; 5862 5863 insn++; 5864 } 5865 } 5866 5867 /* unresolved kfunc call special constant, used also for log fixup logic */ 5868 #define POISON_CALL_KFUNC_BASE 2002000000 5869 #define POISON_CALL_KFUNC_PFX "2002" 5870 5871 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx, 5872 int insn_idx, struct bpf_insn *insn, 5873 int ext_idx, const struct extern_desc *ext) 5874 { 5875 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n", 5876 prog->name, relo_idx, insn_idx, ext->name); 5877 5878 /* we turn kfunc call into invalid helper call with identifiable constant */ 5879 insn->code = BPF_JMP | BPF_CALL; 5880 insn->dst_reg = 0; 5881 insn->src_reg = 0; 5882 insn->off = 0; 5883 /* if this instruction is reachable (not a dead code), 5884 * verifier will complain with something like: 5885 * invalid func unknown#2001000123 5886 * where lower 123 is extern index into obj->externs[] array 5887 */ 5888 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx; 5889 } 5890 5891 /* Relocate data references within program code: 5892 * - map references; 5893 * - global variable references; 5894 * - extern references. 5895 */ 5896 static int 5897 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5898 { 5899 int i; 5900 5901 for (i = 0; i < prog->nr_reloc; i++) { 5902 struct reloc_desc *relo = &prog->reloc_desc[i]; 5903 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5904 const struct bpf_map *map; 5905 struct extern_desc *ext; 5906 5907 switch (relo->type) { 5908 case RELO_LD64: 5909 map = &obj->maps[relo->map_idx]; 5910 if (obj->gen_loader) { 5911 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 5912 insn[0].imm = relo->map_idx; 5913 } else if (map->autocreate) { 5914 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5915 insn[0].imm = map->fd; 5916 } else { 5917 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5918 relo->map_idx, map); 5919 } 5920 break; 5921 case RELO_DATA: 5922 map = &obj->maps[relo->map_idx]; 5923 insn[1].imm = insn[0].imm + relo->sym_off; 5924 if (obj->gen_loader) { 5925 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5926 insn[0].imm = relo->map_idx; 5927 } else if (map->autocreate) { 5928 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5929 insn[0].imm = map->fd; 5930 } else { 5931 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5932 relo->map_idx, map); 5933 } 5934 break; 5935 case RELO_EXTERN_LD64: 5936 ext = &obj->externs[relo->ext_idx]; 5937 if (ext->type == EXT_KCFG) { 5938 if (obj->gen_loader) { 5939 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5940 insn[0].imm = obj->kconfig_map_idx; 5941 } else { 5942 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5943 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5944 } 5945 insn[1].imm = ext->kcfg.data_off; 5946 } else /* EXT_KSYM */ { 5947 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 5948 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 5949 insn[0].imm = ext->ksym.kernel_btf_id; 5950 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 5951 } else { /* typeless ksyms or unresolved typed ksyms */ 5952 insn[0].imm = (__u32)ext->ksym.addr; 5953 insn[1].imm = ext->ksym.addr >> 32; 5954 } 5955 } 5956 break; 5957 case RELO_EXTERN_CALL: 5958 ext = &obj->externs[relo->ext_idx]; 5959 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 5960 if (ext->is_set) { 5961 insn[0].imm = ext->ksym.kernel_btf_id; 5962 insn[0].off = ext->ksym.btf_fd_idx; 5963 } else { /* unresolved weak kfunc call */ 5964 poison_kfunc_call(prog, i, relo->insn_idx, insn, 5965 relo->ext_idx, ext); 5966 } 5967 break; 5968 case RELO_SUBPROG_ADDR: 5969 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 5970 pr_warn("prog '%s': relo #%d: bad insn\n", 5971 prog->name, i); 5972 return -EINVAL; 5973 } 5974 /* handled already */ 5975 break; 5976 case RELO_CALL: 5977 /* handled already */ 5978 break; 5979 case RELO_CORE: 5980 /* will be handled by bpf_program_record_relos() */ 5981 break; 5982 default: 5983 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 5984 prog->name, i, relo->type); 5985 return -EINVAL; 5986 } 5987 } 5988 5989 return 0; 5990 } 5991 5992 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 5993 const struct bpf_program *prog, 5994 const struct btf_ext_info *ext_info, 5995 void **prog_info, __u32 *prog_rec_cnt, 5996 __u32 *prog_rec_sz) 5997 { 5998 void *copy_start = NULL, *copy_end = NULL; 5999 void *rec, *rec_end, *new_prog_info; 6000 const struct btf_ext_info_sec *sec; 6001 size_t old_sz, new_sz; 6002 int i, sec_num, sec_idx, off_adj; 6003 6004 sec_num = 0; 6005 for_each_btf_ext_sec(ext_info, sec) { 6006 sec_idx = ext_info->sec_idxs[sec_num]; 6007 sec_num++; 6008 if (prog->sec_idx != sec_idx) 6009 continue; 6010 6011 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6012 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6013 6014 if (insn_off < prog->sec_insn_off) 6015 continue; 6016 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6017 break; 6018 6019 if (!copy_start) 6020 copy_start = rec; 6021 copy_end = rec + ext_info->rec_size; 6022 } 6023 6024 if (!copy_start) 6025 return -ENOENT; 6026 6027 /* append func/line info of a given (sub-)program to the main 6028 * program func/line info 6029 */ 6030 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6031 new_sz = old_sz + (copy_end - copy_start); 6032 new_prog_info = realloc(*prog_info, new_sz); 6033 if (!new_prog_info) 6034 return -ENOMEM; 6035 *prog_info = new_prog_info; 6036 *prog_rec_cnt = new_sz / ext_info->rec_size; 6037 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6038 6039 /* Kernel instruction offsets are in units of 8-byte 6040 * instructions, while .BTF.ext instruction offsets generated 6041 * by Clang are in units of bytes. So convert Clang offsets 6042 * into kernel offsets and adjust offset according to program 6043 * relocated position. 6044 */ 6045 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6046 rec = new_prog_info + old_sz; 6047 rec_end = new_prog_info + new_sz; 6048 for (; rec < rec_end; rec += ext_info->rec_size) { 6049 __u32 *insn_off = rec; 6050 6051 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6052 } 6053 *prog_rec_sz = ext_info->rec_size; 6054 return 0; 6055 } 6056 6057 return -ENOENT; 6058 } 6059 6060 static int 6061 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6062 struct bpf_program *main_prog, 6063 const struct bpf_program *prog) 6064 { 6065 int err; 6066 6067 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6068 * supprot func/line info 6069 */ 6070 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6071 return 0; 6072 6073 /* only attempt func info relocation if main program's func_info 6074 * relocation was successful 6075 */ 6076 if (main_prog != prog && !main_prog->func_info) 6077 goto line_info; 6078 6079 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6080 &main_prog->func_info, 6081 &main_prog->func_info_cnt, 6082 &main_prog->func_info_rec_size); 6083 if (err) { 6084 if (err != -ENOENT) { 6085 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6086 prog->name, err); 6087 return err; 6088 } 6089 if (main_prog->func_info) { 6090 /* 6091 * Some info has already been found but has problem 6092 * in the last btf_ext reloc. Must have to error out. 6093 */ 6094 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6095 return err; 6096 } 6097 /* Have problem loading the very first info. Ignore the rest. */ 6098 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6099 prog->name); 6100 } 6101 6102 line_info: 6103 /* don't relocate line info if main program's relocation failed */ 6104 if (main_prog != prog && !main_prog->line_info) 6105 return 0; 6106 6107 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6108 &main_prog->line_info, 6109 &main_prog->line_info_cnt, 6110 &main_prog->line_info_rec_size); 6111 if (err) { 6112 if (err != -ENOENT) { 6113 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6114 prog->name, err); 6115 return err; 6116 } 6117 if (main_prog->line_info) { 6118 /* 6119 * Some info has already been found but has problem 6120 * in the last btf_ext reloc. Must have to error out. 6121 */ 6122 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6123 return err; 6124 } 6125 /* Have problem loading the very first info. Ignore the rest. */ 6126 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6127 prog->name); 6128 } 6129 return 0; 6130 } 6131 6132 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6133 { 6134 size_t insn_idx = *(const size_t *)key; 6135 const struct reloc_desc *relo = elem; 6136 6137 if (insn_idx == relo->insn_idx) 6138 return 0; 6139 return insn_idx < relo->insn_idx ? -1 : 1; 6140 } 6141 6142 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6143 { 6144 if (!prog->nr_reloc) 6145 return NULL; 6146 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6147 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6148 } 6149 6150 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6151 { 6152 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6153 struct reloc_desc *relos; 6154 int i; 6155 6156 if (main_prog == subprog) 6157 return 0; 6158 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6159 if (!relos) 6160 return -ENOMEM; 6161 if (subprog->nr_reloc) 6162 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6163 sizeof(*relos) * subprog->nr_reloc); 6164 6165 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6166 relos[i].insn_idx += subprog->sub_insn_off; 6167 /* After insn_idx adjustment the 'relos' array is still sorted 6168 * by insn_idx and doesn't break bsearch. 6169 */ 6170 main_prog->reloc_desc = relos; 6171 main_prog->nr_reloc = new_cnt; 6172 return 0; 6173 } 6174 6175 static int 6176 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6177 struct bpf_program *prog) 6178 { 6179 size_t sub_insn_idx, insn_idx, new_cnt; 6180 struct bpf_program *subprog; 6181 struct bpf_insn *insns, *insn; 6182 struct reloc_desc *relo; 6183 int err; 6184 6185 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6186 if (err) 6187 return err; 6188 6189 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6190 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6191 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6192 continue; 6193 6194 relo = find_prog_insn_relo(prog, insn_idx); 6195 if (relo && relo->type == RELO_EXTERN_CALL) 6196 /* kfunc relocations will be handled later 6197 * in bpf_object__relocate_data() 6198 */ 6199 continue; 6200 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6201 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6202 prog->name, insn_idx, relo->type); 6203 return -LIBBPF_ERRNO__RELOC; 6204 } 6205 if (relo) { 6206 /* sub-program instruction index is a combination of 6207 * an offset of a symbol pointed to by relocation and 6208 * call instruction's imm field; for global functions, 6209 * call always has imm = -1, but for static functions 6210 * relocation is against STT_SECTION and insn->imm 6211 * points to a start of a static function 6212 * 6213 * for subprog addr relocation, the relo->sym_off + insn->imm is 6214 * the byte offset in the corresponding section. 6215 */ 6216 if (relo->type == RELO_CALL) 6217 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6218 else 6219 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6220 } else if (insn_is_pseudo_func(insn)) { 6221 /* 6222 * RELO_SUBPROG_ADDR relo is always emitted even if both 6223 * functions are in the same section, so it shouldn't reach here. 6224 */ 6225 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6226 prog->name, insn_idx); 6227 return -LIBBPF_ERRNO__RELOC; 6228 } else { 6229 /* if subprogram call is to a static function within 6230 * the same ELF section, there won't be any relocation 6231 * emitted, but it also means there is no additional 6232 * offset necessary, insns->imm is relative to 6233 * instruction's original position within the section 6234 */ 6235 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6236 } 6237 6238 /* we enforce that sub-programs should be in .text section */ 6239 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6240 if (!subprog) { 6241 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6242 prog->name); 6243 return -LIBBPF_ERRNO__RELOC; 6244 } 6245 6246 /* if it's the first call instruction calling into this 6247 * subprogram (meaning this subprog hasn't been processed 6248 * yet) within the context of current main program: 6249 * - append it at the end of main program's instructions blog; 6250 * - process is recursively, while current program is put on hold; 6251 * - if that subprogram calls some other not yet processes 6252 * subprogram, same thing will happen recursively until 6253 * there are no more unprocesses subprograms left to append 6254 * and relocate. 6255 */ 6256 if (subprog->sub_insn_off == 0) { 6257 subprog->sub_insn_off = main_prog->insns_cnt; 6258 6259 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6260 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6261 if (!insns) { 6262 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6263 return -ENOMEM; 6264 } 6265 main_prog->insns = insns; 6266 main_prog->insns_cnt = new_cnt; 6267 6268 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6269 subprog->insns_cnt * sizeof(*insns)); 6270 6271 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6272 main_prog->name, subprog->insns_cnt, subprog->name); 6273 6274 /* The subprog insns are now appended. Append its relos too. */ 6275 err = append_subprog_relos(main_prog, subprog); 6276 if (err) 6277 return err; 6278 err = bpf_object__reloc_code(obj, main_prog, subprog); 6279 if (err) 6280 return err; 6281 } 6282 6283 /* main_prog->insns memory could have been re-allocated, so 6284 * calculate pointer again 6285 */ 6286 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6287 /* calculate correct instruction position within current main 6288 * prog; each main prog can have a different set of 6289 * subprograms appended (potentially in different order as 6290 * well), so position of any subprog can be different for 6291 * different main programs 6292 */ 6293 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6294 6295 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6296 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6297 } 6298 6299 return 0; 6300 } 6301 6302 /* 6303 * Relocate sub-program calls. 6304 * 6305 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6306 * main prog) is processed separately. For each subprog (non-entry functions, 6307 * that can be called from either entry progs or other subprogs) gets their 6308 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6309 * hasn't been yet appended and relocated within current main prog. Once its 6310 * relocated, sub_insn_off will point at the position within current main prog 6311 * where given subprog was appended. This will further be used to relocate all 6312 * the call instructions jumping into this subprog. 6313 * 6314 * We start with main program and process all call instructions. If the call 6315 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6316 * is zero), subprog instructions are appended at the end of main program's 6317 * instruction array. Then main program is "put on hold" while we recursively 6318 * process newly appended subprogram. If that subprogram calls into another 6319 * subprogram that hasn't been appended, new subprogram is appended again to 6320 * the *main* prog's instructions (subprog's instructions are always left 6321 * untouched, as they need to be in unmodified state for subsequent main progs 6322 * and subprog instructions are always sent only as part of a main prog) and 6323 * the process continues recursively. Once all the subprogs called from a main 6324 * prog or any of its subprogs are appended (and relocated), all their 6325 * positions within finalized instructions array are known, so it's easy to 6326 * rewrite call instructions with correct relative offsets, corresponding to 6327 * desired target subprog. 6328 * 6329 * Its important to realize that some subprogs might not be called from some 6330 * main prog and any of its called/used subprogs. Those will keep their 6331 * subprog->sub_insn_off as zero at all times and won't be appended to current 6332 * main prog and won't be relocated within the context of current main prog. 6333 * They might still be used from other main progs later. 6334 * 6335 * Visually this process can be shown as below. Suppose we have two main 6336 * programs mainA and mainB and BPF object contains three subprogs: subA, 6337 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6338 * subC both call subB: 6339 * 6340 * +--------+ +-------+ 6341 * | v v | 6342 * +--+---+ +--+-+-+ +---+--+ 6343 * | subA | | subB | | subC | 6344 * +--+---+ +------+ +---+--+ 6345 * ^ ^ 6346 * | | 6347 * +---+-------+ +------+----+ 6348 * | mainA | | mainB | 6349 * +-----------+ +-----------+ 6350 * 6351 * We'll start relocating mainA, will find subA, append it and start 6352 * processing sub A recursively: 6353 * 6354 * +-----------+------+ 6355 * | mainA | subA | 6356 * +-----------+------+ 6357 * 6358 * At this point we notice that subB is used from subA, so we append it and 6359 * relocate (there are no further subcalls from subB): 6360 * 6361 * +-----------+------+------+ 6362 * | mainA | subA | subB | 6363 * +-----------+------+------+ 6364 * 6365 * At this point, we relocate subA calls, then go one level up and finish with 6366 * relocatin mainA calls. mainA is done. 6367 * 6368 * For mainB process is similar but results in different order. We start with 6369 * mainB and skip subA and subB, as mainB never calls them (at least 6370 * directly), but we see subC is needed, so we append and start processing it: 6371 * 6372 * +-----------+------+ 6373 * | mainB | subC | 6374 * +-----------+------+ 6375 * Now we see subC needs subB, so we go back to it, append and relocate it: 6376 * 6377 * +-----------+------+------+ 6378 * | mainB | subC | subB | 6379 * +-----------+------+------+ 6380 * 6381 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6382 */ 6383 static int 6384 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6385 { 6386 struct bpf_program *subprog; 6387 int i, err; 6388 6389 /* mark all subprogs as not relocated (yet) within the context of 6390 * current main program 6391 */ 6392 for (i = 0; i < obj->nr_programs; i++) { 6393 subprog = &obj->programs[i]; 6394 if (!prog_is_subprog(obj, subprog)) 6395 continue; 6396 6397 subprog->sub_insn_off = 0; 6398 } 6399 6400 err = bpf_object__reloc_code(obj, prog, prog); 6401 if (err) 6402 return err; 6403 6404 return 0; 6405 } 6406 6407 static void 6408 bpf_object__free_relocs(struct bpf_object *obj) 6409 { 6410 struct bpf_program *prog; 6411 int i; 6412 6413 /* free up relocation descriptors */ 6414 for (i = 0; i < obj->nr_programs; i++) { 6415 prog = &obj->programs[i]; 6416 zfree(&prog->reloc_desc); 6417 prog->nr_reloc = 0; 6418 } 6419 } 6420 6421 static int cmp_relocs(const void *_a, const void *_b) 6422 { 6423 const struct reloc_desc *a = _a; 6424 const struct reloc_desc *b = _b; 6425 6426 if (a->insn_idx != b->insn_idx) 6427 return a->insn_idx < b->insn_idx ? -1 : 1; 6428 6429 /* no two relocations should have the same insn_idx, but ... */ 6430 if (a->type != b->type) 6431 return a->type < b->type ? -1 : 1; 6432 6433 return 0; 6434 } 6435 6436 static void bpf_object__sort_relos(struct bpf_object *obj) 6437 { 6438 int i; 6439 6440 for (i = 0; i < obj->nr_programs; i++) { 6441 struct bpf_program *p = &obj->programs[i]; 6442 6443 if (!p->nr_reloc) 6444 continue; 6445 6446 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6447 } 6448 } 6449 6450 static int 6451 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6452 { 6453 struct bpf_program *prog; 6454 size_t i, j; 6455 int err; 6456 6457 if (obj->btf_ext) { 6458 err = bpf_object__relocate_core(obj, targ_btf_path); 6459 if (err) { 6460 pr_warn("failed to perform CO-RE relocations: %d\n", 6461 err); 6462 return err; 6463 } 6464 bpf_object__sort_relos(obj); 6465 } 6466 6467 /* Before relocating calls pre-process relocations and mark 6468 * few ld_imm64 instructions that points to subprogs. 6469 * Otherwise bpf_object__reloc_code() later would have to consider 6470 * all ld_imm64 insns as relocation candidates. That would 6471 * reduce relocation speed, since amount of find_prog_insn_relo() 6472 * would increase and most of them will fail to find a relo. 6473 */ 6474 for (i = 0; i < obj->nr_programs; i++) { 6475 prog = &obj->programs[i]; 6476 for (j = 0; j < prog->nr_reloc; j++) { 6477 struct reloc_desc *relo = &prog->reloc_desc[j]; 6478 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6479 6480 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6481 if (relo->type == RELO_SUBPROG_ADDR) 6482 insn[0].src_reg = BPF_PSEUDO_FUNC; 6483 } 6484 } 6485 6486 /* relocate subprogram calls and append used subprograms to main 6487 * programs; each copy of subprogram code needs to be relocated 6488 * differently for each main program, because its code location might 6489 * have changed. 6490 * Append subprog relos to main programs to allow data relos to be 6491 * processed after text is completely relocated. 6492 */ 6493 for (i = 0; i < obj->nr_programs; i++) { 6494 prog = &obj->programs[i]; 6495 /* sub-program's sub-calls are relocated within the context of 6496 * its main program only 6497 */ 6498 if (prog_is_subprog(obj, prog)) 6499 continue; 6500 if (!prog->autoload) 6501 continue; 6502 6503 err = bpf_object__relocate_calls(obj, prog); 6504 if (err) { 6505 pr_warn("prog '%s': failed to relocate calls: %d\n", 6506 prog->name, err); 6507 return err; 6508 } 6509 } 6510 /* Process data relos for main programs */ 6511 for (i = 0; i < obj->nr_programs; i++) { 6512 prog = &obj->programs[i]; 6513 if (prog_is_subprog(obj, prog)) 6514 continue; 6515 if (!prog->autoload) 6516 continue; 6517 err = bpf_object__relocate_data(obj, prog); 6518 if (err) { 6519 pr_warn("prog '%s': failed to relocate data references: %d\n", 6520 prog->name, err); 6521 return err; 6522 } 6523 } 6524 6525 return 0; 6526 } 6527 6528 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6529 Elf64_Shdr *shdr, Elf_Data *data); 6530 6531 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6532 Elf64_Shdr *shdr, Elf_Data *data) 6533 { 6534 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6535 int i, j, nrels, new_sz; 6536 const struct btf_var_secinfo *vi = NULL; 6537 const struct btf_type *sec, *var, *def; 6538 struct bpf_map *map = NULL, *targ_map = NULL; 6539 struct bpf_program *targ_prog = NULL; 6540 bool is_prog_array, is_map_in_map; 6541 const struct btf_member *member; 6542 const char *name, *mname, *type; 6543 unsigned int moff; 6544 Elf64_Sym *sym; 6545 Elf64_Rel *rel; 6546 void *tmp; 6547 6548 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6549 return -EINVAL; 6550 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6551 if (!sec) 6552 return -EINVAL; 6553 6554 nrels = shdr->sh_size / shdr->sh_entsize; 6555 for (i = 0; i < nrels; i++) { 6556 rel = elf_rel_by_idx(data, i); 6557 if (!rel) { 6558 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6559 return -LIBBPF_ERRNO__FORMAT; 6560 } 6561 6562 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6563 if (!sym) { 6564 pr_warn(".maps relo #%d: symbol %zx not found\n", 6565 i, (size_t)ELF64_R_SYM(rel->r_info)); 6566 return -LIBBPF_ERRNO__FORMAT; 6567 } 6568 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6569 6570 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6571 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6572 (size_t)rel->r_offset, sym->st_name, name); 6573 6574 for (j = 0; j < obj->nr_maps; j++) { 6575 map = &obj->maps[j]; 6576 if (map->sec_idx != obj->efile.btf_maps_shndx) 6577 continue; 6578 6579 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6580 if (vi->offset <= rel->r_offset && 6581 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6582 break; 6583 } 6584 if (j == obj->nr_maps) { 6585 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6586 i, name, (size_t)rel->r_offset); 6587 return -EINVAL; 6588 } 6589 6590 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 6591 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 6592 type = is_map_in_map ? "map" : "prog"; 6593 if (is_map_in_map) { 6594 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6595 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6596 i, name); 6597 return -LIBBPF_ERRNO__RELOC; 6598 } 6599 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6600 map->def.key_size != sizeof(int)) { 6601 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6602 i, map->name, sizeof(int)); 6603 return -EINVAL; 6604 } 6605 targ_map = bpf_object__find_map_by_name(obj, name); 6606 if (!targ_map) { 6607 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 6608 i, name); 6609 return -ESRCH; 6610 } 6611 } else if (is_prog_array) { 6612 targ_prog = bpf_object__find_program_by_name(obj, name); 6613 if (!targ_prog) { 6614 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 6615 i, name); 6616 return -ESRCH; 6617 } 6618 if (targ_prog->sec_idx != sym->st_shndx || 6619 targ_prog->sec_insn_off * 8 != sym->st_value || 6620 prog_is_subprog(obj, targ_prog)) { 6621 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 6622 i, name); 6623 return -LIBBPF_ERRNO__RELOC; 6624 } 6625 } else { 6626 return -EINVAL; 6627 } 6628 6629 var = btf__type_by_id(obj->btf, vi->type); 6630 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6631 if (btf_vlen(def) == 0) 6632 return -EINVAL; 6633 member = btf_members(def) + btf_vlen(def) - 1; 6634 mname = btf__name_by_offset(obj->btf, member->name_off); 6635 if (strcmp(mname, "values")) 6636 return -EINVAL; 6637 6638 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6639 if (rel->r_offset - vi->offset < moff) 6640 return -EINVAL; 6641 6642 moff = rel->r_offset - vi->offset - moff; 6643 /* here we use BPF pointer size, which is always 64 bit, as we 6644 * are parsing ELF that was built for BPF target 6645 */ 6646 if (moff % bpf_ptr_sz) 6647 return -EINVAL; 6648 moff /= bpf_ptr_sz; 6649 if (moff >= map->init_slots_sz) { 6650 new_sz = moff + 1; 6651 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6652 if (!tmp) 6653 return -ENOMEM; 6654 map->init_slots = tmp; 6655 memset(map->init_slots + map->init_slots_sz, 0, 6656 (new_sz - map->init_slots_sz) * host_ptr_sz); 6657 map->init_slots_sz = new_sz; 6658 } 6659 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 6660 6661 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 6662 i, map->name, moff, type, name); 6663 } 6664 6665 return 0; 6666 } 6667 6668 static int bpf_object__collect_relos(struct bpf_object *obj) 6669 { 6670 int i, err; 6671 6672 for (i = 0; i < obj->efile.sec_cnt; i++) { 6673 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6674 Elf64_Shdr *shdr; 6675 Elf_Data *data; 6676 int idx; 6677 6678 if (sec_desc->sec_type != SEC_RELO) 6679 continue; 6680 6681 shdr = sec_desc->shdr; 6682 data = sec_desc->data; 6683 idx = shdr->sh_info; 6684 6685 if (shdr->sh_type != SHT_REL) { 6686 pr_warn("internal error at %d\n", __LINE__); 6687 return -LIBBPF_ERRNO__INTERNAL; 6688 } 6689 6690 if (idx == obj->efile.st_ops_shndx || idx == obj->efile.st_ops_link_shndx) 6691 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6692 else if (idx == obj->efile.btf_maps_shndx) 6693 err = bpf_object__collect_map_relos(obj, shdr, data); 6694 else 6695 err = bpf_object__collect_prog_relos(obj, shdr, data); 6696 if (err) 6697 return err; 6698 } 6699 6700 bpf_object__sort_relos(obj); 6701 return 0; 6702 } 6703 6704 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6705 { 6706 if (BPF_CLASS(insn->code) == BPF_JMP && 6707 BPF_OP(insn->code) == BPF_CALL && 6708 BPF_SRC(insn->code) == BPF_K && 6709 insn->src_reg == 0 && 6710 insn->dst_reg == 0) { 6711 *func_id = insn->imm; 6712 return true; 6713 } 6714 return false; 6715 } 6716 6717 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6718 { 6719 struct bpf_insn *insn = prog->insns; 6720 enum bpf_func_id func_id; 6721 int i; 6722 6723 if (obj->gen_loader) 6724 return 0; 6725 6726 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6727 if (!insn_is_helper_call(insn, &func_id)) 6728 continue; 6729 6730 /* on kernels that don't yet support 6731 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6732 * to bpf_probe_read() which works well for old kernels 6733 */ 6734 switch (func_id) { 6735 case BPF_FUNC_probe_read_kernel: 6736 case BPF_FUNC_probe_read_user: 6737 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6738 insn->imm = BPF_FUNC_probe_read; 6739 break; 6740 case BPF_FUNC_probe_read_kernel_str: 6741 case BPF_FUNC_probe_read_user_str: 6742 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6743 insn->imm = BPF_FUNC_probe_read_str; 6744 break; 6745 default: 6746 break; 6747 } 6748 } 6749 return 0; 6750 } 6751 6752 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6753 int *btf_obj_fd, int *btf_type_id); 6754 6755 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 6756 static int libbpf_prepare_prog_load(struct bpf_program *prog, 6757 struct bpf_prog_load_opts *opts, long cookie) 6758 { 6759 enum sec_def_flags def = cookie; 6760 6761 /* old kernels might not support specifying expected_attach_type */ 6762 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6763 opts->expected_attach_type = 0; 6764 6765 if (def & SEC_SLEEPABLE) 6766 opts->prog_flags |= BPF_F_SLEEPABLE; 6767 6768 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 6769 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 6770 6771 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 6772 int btf_obj_fd = 0, btf_type_id = 0, err; 6773 const char *attach_name; 6774 6775 attach_name = strchr(prog->sec_name, '/'); 6776 if (!attach_name) { 6777 /* if BPF program is annotated with just SEC("fentry") 6778 * (or similar) without declaratively specifying 6779 * target, then it is expected that target will be 6780 * specified with bpf_program__set_attach_target() at 6781 * runtime before BPF object load step. If not, then 6782 * there is nothing to load into the kernel as BPF 6783 * verifier won't be able to validate BPF program 6784 * correctness anyways. 6785 */ 6786 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 6787 prog->name); 6788 return -EINVAL; 6789 } 6790 attach_name++; /* skip over / */ 6791 6792 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6793 if (err) 6794 return err; 6795 6796 /* cache resolved BTF FD and BTF type ID in the prog */ 6797 prog->attach_btf_obj_fd = btf_obj_fd; 6798 prog->attach_btf_id = btf_type_id; 6799 6800 /* but by now libbpf common logic is not utilizing 6801 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 6802 * this callback is called after opts were populated by 6803 * libbpf, so this callback has to update opts explicitly here 6804 */ 6805 opts->attach_btf_obj_fd = btf_obj_fd; 6806 opts->attach_btf_id = btf_type_id; 6807 } 6808 return 0; 6809 } 6810 6811 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 6812 6813 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 6814 struct bpf_insn *insns, int insns_cnt, 6815 const char *license, __u32 kern_version, int *prog_fd) 6816 { 6817 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 6818 const char *prog_name = NULL; 6819 char *cp, errmsg[STRERR_BUFSIZE]; 6820 size_t log_buf_size = 0; 6821 char *log_buf = NULL, *tmp; 6822 int btf_fd, ret, err; 6823 bool own_log_buf = true; 6824 __u32 log_level = prog->log_level; 6825 6826 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6827 /* 6828 * The program type must be set. Most likely we couldn't find a proper 6829 * section definition at load time, and thus we didn't infer the type. 6830 */ 6831 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6832 prog->name, prog->sec_name); 6833 return -EINVAL; 6834 } 6835 6836 if (!insns || !insns_cnt) 6837 return -EINVAL; 6838 6839 load_attr.expected_attach_type = prog->expected_attach_type; 6840 if (kernel_supports(obj, FEAT_PROG_NAME)) 6841 prog_name = prog->name; 6842 load_attr.attach_prog_fd = prog->attach_prog_fd; 6843 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 6844 load_attr.attach_btf_id = prog->attach_btf_id; 6845 load_attr.kern_version = kern_version; 6846 load_attr.prog_ifindex = prog->prog_ifindex; 6847 6848 /* specify func_info/line_info only if kernel supports them */ 6849 btf_fd = bpf_object__btf_fd(obj); 6850 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 6851 load_attr.prog_btf_fd = btf_fd; 6852 load_attr.func_info = prog->func_info; 6853 load_attr.func_info_rec_size = prog->func_info_rec_size; 6854 load_attr.func_info_cnt = prog->func_info_cnt; 6855 load_attr.line_info = prog->line_info; 6856 load_attr.line_info_rec_size = prog->line_info_rec_size; 6857 load_attr.line_info_cnt = prog->line_info_cnt; 6858 } 6859 load_attr.log_level = log_level; 6860 load_attr.prog_flags = prog->prog_flags; 6861 load_attr.fd_array = obj->fd_array; 6862 6863 /* adjust load_attr if sec_def provides custom preload callback */ 6864 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 6865 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 6866 if (err < 0) { 6867 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 6868 prog->name, err); 6869 return err; 6870 } 6871 insns = prog->insns; 6872 insns_cnt = prog->insns_cnt; 6873 } 6874 6875 if (obj->gen_loader) { 6876 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 6877 license, insns, insns_cnt, &load_attr, 6878 prog - obj->programs); 6879 *prog_fd = -1; 6880 return 0; 6881 } 6882 6883 retry_load: 6884 /* if log_level is zero, we don't request logs initially even if 6885 * custom log_buf is specified; if the program load fails, then we'll 6886 * bump log_level to 1 and use either custom log_buf or we'll allocate 6887 * our own and retry the load to get details on what failed 6888 */ 6889 if (log_level) { 6890 if (prog->log_buf) { 6891 log_buf = prog->log_buf; 6892 log_buf_size = prog->log_size; 6893 own_log_buf = false; 6894 } else if (obj->log_buf) { 6895 log_buf = obj->log_buf; 6896 log_buf_size = obj->log_size; 6897 own_log_buf = false; 6898 } else { 6899 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 6900 tmp = realloc(log_buf, log_buf_size); 6901 if (!tmp) { 6902 ret = -ENOMEM; 6903 goto out; 6904 } 6905 log_buf = tmp; 6906 log_buf[0] = '\0'; 6907 own_log_buf = true; 6908 } 6909 } 6910 6911 load_attr.log_buf = log_buf; 6912 load_attr.log_size = log_buf_size; 6913 load_attr.log_level = log_level; 6914 6915 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 6916 if (ret >= 0) { 6917 if (log_level && own_log_buf) { 6918 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6919 prog->name, log_buf); 6920 } 6921 6922 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 6923 struct bpf_map *map; 6924 int i; 6925 6926 for (i = 0; i < obj->nr_maps; i++) { 6927 map = &prog->obj->maps[i]; 6928 if (map->libbpf_type != LIBBPF_MAP_RODATA) 6929 continue; 6930 6931 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 6932 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6933 pr_warn("prog '%s': failed to bind map '%s': %s\n", 6934 prog->name, map->real_name, cp); 6935 /* Don't fail hard if can't bind rodata. */ 6936 } 6937 } 6938 } 6939 6940 *prog_fd = ret; 6941 ret = 0; 6942 goto out; 6943 } 6944 6945 if (log_level == 0) { 6946 log_level = 1; 6947 goto retry_load; 6948 } 6949 /* On ENOSPC, increase log buffer size and retry, unless custom 6950 * log_buf is specified. 6951 * Be careful to not overflow u32, though. Kernel's log buf size limit 6952 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 6953 * multiply by 2 unless we are sure we'll fit within 32 bits. 6954 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 6955 */ 6956 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 6957 goto retry_load; 6958 6959 ret = -errno; 6960 6961 /* post-process verifier log to improve error descriptions */ 6962 fixup_verifier_log(prog, log_buf, log_buf_size); 6963 6964 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6965 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 6966 pr_perm_msg(ret); 6967 6968 if (own_log_buf && log_buf && log_buf[0] != '\0') { 6969 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6970 prog->name, log_buf); 6971 } 6972 6973 out: 6974 if (own_log_buf) 6975 free(log_buf); 6976 return ret; 6977 } 6978 6979 static char *find_prev_line(char *buf, char *cur) 6980 { 6981 char *p; 6982 6983 if (cur == buf) /* end of a log buf */ 6984 return NULL; 6985 6986 p = cur - 1; 6987 while (p - 1 >= buf && *(p - 1) != '\n') 6988 p--; 6989 6990 return p; 6991 } 6992 6993 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 6994 char *orig, size_t orig_sz, const char *patch) 6995 { 6996 /* size of the remaining log content to the right from the to-be-replaced part */ 6997 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 6998 size_t patch_sz = strlen(patch); 6999 7000 if (patch_sz != orig_sz) { 7001 /* If patch line(s) are longer than original piece of verifier log, 7002 * shift log contents by (patch_sz - orig_sz) bytes to the right 7003 * starting from after to-be-replaced part of the log. 7004 * 7005 * If patch line(s) are shorter than original piece of verifier log, 7006 * shift log contents by (orig_sz - patch_sz) bytes to the left 7007 * starting from after to-be-replaced part of the log 7008 * 7009 * We need to be careful about not overflowing available 7010 * buf_sz capacity. If that's the case, we'll truncate the end 7011 * of the original log, as necessary. 7012 */ 7013 if (patch_sz > orig_sz) { 7014 if (orig + patch_sz >= buf + buf_sz) { 7015 /* patch is big enough to cover remaining space completely */ 7016 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 7017 rem_sz = 0; 7018 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 7019 /* patch causes part of remaining log to be truncated */ 7020 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 7021 } 7022 } 7023 /* shift remaining log to the right by calculated amount */ 7024 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 7025 } 7026 7027 memcpy(orig, patch, patch_sz); 7028 } 7029 7030 static void fixup_log_failed_core_relo(struct bpf_program *prog, 7031 char *buf, size_t buf_sz, size_t log_sz, 7032 char *line1, char *line2, char *line3) 7033 { 7034 /* Expected log for failed and not properly guarded CO-RE relocation: 7035 * line1 -> 123: (85) call unknown#195896080 7036 * line2 -> invalid func unknown#195896080 7037 * line3 -> <anything else or end of buffer> 7038 * 7039 * "123" is the index of the instruction that was poisoned. We extract 7040 * instruction index to find corresponding CO-RE relocation and 7041 * replace this part of the log with more relevant information about 7042 * failed CO-RE relocation. 7043 */ 7044 const struct bpf_core_relo *relo; 7045 struct bpf_core_spec spec; 7046 char patch[512], spec_buf[256]; 7047 int insn_idx, err, spec_len; 7048 7049 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7050 return; 7051 7052 relo = find_relo_core(prog, insn_idx); 7053 if (!relo) 7054 return; 7055 7056 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7057 if (err) 7058 return; 7059 7060 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7061 snprintf(patch, sizeof(patch), 7062 "%d: <invalid CO-RE relocation>\n" 7063 "failed to resolve CO-RE relocation %s%s\n", 7064 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7065 7066 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7067 } 7068 7069 static void fixup_log_missing_map_load(struct bpf_program *prog, 7070 char *buf, size_t buf_sz, size_t log_sz, 7071 char *line1, char *line2, char *line3) 7072 { 7073 /* Expected log for failed and not properly guarded map reference: 7074 * line1 -> 123: (85) call unknown#2001000345 7075 * line2 -> invalid func unknown#2001000345 7076 * line3 -> <anything else or end of buffer> 7077 * 7078 * "123" is the index of the instruction that was poisoned. 7079 * "345" in "2001000345" is a map index in obj->maps to fetch map name. 7080 */ 7081 struct bpf_object *obj = prog->obj; 7082 const struct bpf_map *map; 7083 int insn_idx, map_idx; 7084 char patch[128]; 7085 7086 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7087 return; 7088 7089 map_idx -= POISON_LDIMM64_MAP_BASE; 7090 if (map_idx < 0 || map_idx >= obj->nr_maps) 7091 return; 7092 map = &obj->maps[map_idx]; 7093 7094 snprintf(patch, sizeof(patch), 7095 "%d: <invalid BPF map reference>\n" 7096 "BPF map '%s' is referenced but wasn't created\n", 7097 insn_idx, map->name); 7098 7099 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7100 } 7101 7102 static void fixup_log_missing_kfunc_call(struct bpf_program *prog, 7103 char *buf, size_t buf_sz, size_t log_sz, 7104 char *line1, char *line2, char *line3) 7105 { 7106 /* Expected log for failed and not properly guarded kfunc call: 7107 * line1 -> 123: (85) call unknown#2002000345 7108 * line2 -> invalid func unknown#2002000345 7109 * line3 -> <anything else or end of buffer> 7110 * 7111 * "123" is the index of the instruction that was poisoned. 7112 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name. 7113 */ 7114 struct bpf_object *obj = prog->obj; 7115 const struct extern_desc *ext; 7116 int insn_idx, ext_idx; 7117 char patch[128]; 7118 7119 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2) 7120 return; 7121 7122 ext_idx -= POISON_CALL_KFUNC_BASE; 7123 if (ext_idx < 0 || ext_idx >= obj->nr_extern) 7124 return; 7125 ext = &obj->externs[ext_idx]; 7126 7127 snprintf(patch, sizeof(patch), 7128 "%d: <invalid kfunc call>\n" 7129 "kfunc '%s' is referenced but wasn't resolved\n", 7130 insn_idx, ext->name); 7131 7132 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7133 } 7134 7135 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7136 { 7137 /* look for familiar error patterns in last N lines of the log */ 7138 const size_t max_last_line_cnt = 10; 7139 char *prev_line, *cur_line, *next_line; 7140 size_t log_sz; 7141 int i; 7142 7143 if (!buf) 7144 return; 7145 7146 log_sz = strlen(buf) + 1; 7147 next_line = buf + log_sz - 1; 7148 7149 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7150 cur_line = find_prev_line(buf, next_line); 7151 if (!cur_line) 7152 return; 7153 7154 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7155 prev_line = find_prev_line(buf, cur_line); 7156 if (!prev_line) 7157 continue; 7158 7159 /* failed CO-RE relocation case */ 7160 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7161 prev_line, cur_line, next_line); 7162 return; 7163 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) { 7164 prev_line = find_prev_line(buf, cur_line); 7165 if (!prev_line) 7166 continue; 7167 7168 /* reference to uncreated BPF map */ 7169 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7170 prev_line, cur_line, next_line); 7171 return; 7172 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) { 7173 prev_line = find_prev_line(buf, cur_line); 7174 if (!prev_line) 7175 continue; 7176 7177 /* reference to unresolved kfunc */ 7178 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz, 7179 prev_line, cur_line, next_line); 7180 return; 7181 } 7182 } 7183 } 7184 7185 static int bpf_program_record_relos(struct bpf_program *prog) 7186 { 7187 struct bpf_object *obj = prog->obj; 7188 int i; 7189 7190 for (i = 0; i < prog->nr_reloc; i++) { 7191 struct reloc_desc *relo = &prog->reloc_desc[i]; 7192 struct extern_desc *ext = &obj->externs[relo->ext_idx]; 7193 int kind; 7194 7195 switch (relo->type) { 7196 case RELO_EXTERN_LD64: 7197 if (ext->type != EXT_KSYM) 7198 continue; 7199 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ? 7200 BTF_KIND_VAR : BTF_KIND_FUNC; 7201 bpf_gen__record_extern(obj->gen_loader, ext->name, 7202 ext->is_weak, !ext->ksym.type_id, 7203 true, kind, relo->insn_idx); 7204 break; 7205 case RELO_EXTERN_CALL: 7206 bpf_gen__record_extern(obj->gen_loader, ext->name, 7207 ext->is_weak, false, false, BTF_KIND_FUNC, 7208 relo->insn_idx); 7209 break; 7210 case RELO_CORE: { 7211 struct bpf_core_relo cr = { 7212 .insn_off = relo->insn_idx * 8, 7213 .type_id = relo->core_relo->type_id, 7214 .access_str_off = relo->core_relo->access_str_off, 7215 .kind = relo->core_relo->kind, 7216 }; 7217 7218 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7219 break; 7220 } 7221 default: 7222 continue; 7223 } 7224 } 7225 return 0; 7226 } 7227 7228 static int 7229 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7230 { 7231 struct bpf_program *prog; 7232 size_t i; 7233 int err; 7234 7235 for (i = 0; i < obj->nr_programs; i++) { 7236 prog = &obj->programs[i]; 7237 err = bpf_object__sanitize_prog(obj, prog); 7238 if (err) 7239 return err; 7240 } 7241 7242 for (i = 0; i < obj->nr_programs; i++) { 7243 prog = &obj->programs[i]; 7244 if (prog_is_subprog(obj, prog)) 7245 continue; 7246 if (!prog->autoload) { 7247 pr_debug("prog '%s': skipped loading\n", prog->name); 7248 continue; 7249 } 7250 prog->log_level |= log_level; 7251 7252 if (obj->gen_loader) 7253 bpf_program_record_relos(prog); 7254 7255 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7256 obj->license, obj->kern_version, &prog->fd); 7257 if (err) { 7258 pr_warn("prog '%s': failed to load: %d\n", prog->name, err); 7259 return err; 7260 } 7261 } 7262 7263 bpf_object__free_relocs(obj); 7264 return 0; 7265 } 7266 7267 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7268 7269 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7270 { 7271 struct bpf_program *prog; 7272 int err; 7273 7274 bpf_object__for_each_program(prog, obj) { 7275 prog->sec_def = find_sec_def(prog->sec_name); 7276 if (!prog->sec_def) { 7277 /* couldn't guess, but user might manually specify */ 7278 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7279 prog->name, prog->sec_name); 7280 continue; 7281 } 7282 7283 prog->type = prog->sec_def->prog_type; 7284 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7285 7286 /* sec_def can have custom callback which should be called 7287 * after bpf_program is initialized to adjust its properties 7288 */ 7289 if (prog->sec_def->prog_setup_fn) { 7290 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7291 if (err < 0) { 7292 pr_warn("prog '%s': failed to initialize: %d\n", 7293 prog->name, err); 7294 return err; 7295 } 7296 } 7297 } 7298 7299 return 0; 7300 } 7301 7302 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7303 const struct bpf_object_open_opts *opts) 7304 { 7305 const char *obj_name, *kconfig, *btf_tmp_path; 7306 struct bpf_object *obj; 7307 char tmp_name[64]; 7308 int err; 7309 char *log_buf; 7310 size_t log_size; 7311 __u32 log_level; 7312 7313 if (elf_version(EV_CURRENT) == EV_NONE) { 7314 pr_warn("failed to init libelf for %s\n", 7315 path ? : "(mem buf)"); 7316 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7317 } 7318 7319 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7320 return ERR_PTR(-EINVAL); 7321 7322 obj_name = OPTS_GET(opts, object_name, NULL); 7323 if (obj_buf) { 7324 if (!obj_name) { 7325 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7326 (unsigned long)obj_buf, 7327 (unsigned long)obj_buf_sz); 7328 obj_name = tmp_name; 7329 } 7330 path = obj_name; 7331 pr_debug("loading object '%s' from buffer\n", obj_name); 7332 } 7333 7334 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7335 log_size = OPTS_GET(opts, kernel_log_size, 0); 7336 log_level = OPTS_GET(opts, kernel_log_level, 0); 7337 if (log_size > UINT_MAX) 7338 return ERR_PTR(-EINVAL); 7339 if (log_size && !log_buf) 7340 return ERR_PTR(-EINVAL); 7341 7342 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7343 if (IS_ERR(obj)) 7344 return obj; 7345 7346 obj->log_buf = log_buf; 7347 obj->log_size = log_size; 7348 obj->log_level = log_level; 7349 7350 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7351 if (btf_tmp_path) { 7352 if (strlen(btf_tmp_path) >= PATH_MAX) { 7353 err = -ENAMETOOLONG; 7354 goto out; 7355 } 7356 obj->btf_custom_path = strdup(btf_tmp_path); 7357 if (!obj->btf_custom_path) { 7358 err = -ENOMEM; 7359 goto out; 7360 } 7361 } 7362 7363 kconfig = OPTS_GET(opts, kconfig, NULL); 7364 if (kconfig) { 7365 obj->kconfig = strdup(kconfig); 7366 if (!obj->kconfig) { 7367 err = -ENOMEM; 7368 goto out; 7369 } 7370 } 7371 7372 err = bpf_object__elf_init(obj); 7373 err = err ? : bpf_object__check_endianness(obj); 7374 err = err ? : bpf_object__elf_collect(obj); 7375 err = err ? : bpf_object__collect_externs(obj); 7376 err = err ? : bpf_object_fixup_btf(obj); 7377 err = err ? : bpf_object__init_maps(obj, opts); 7378 err = err ? : bpf_object_init_progs(obj, opts); 7379 err = err ? : bpf_object__collect_relos(obj); 7380 if (err) 7381 goto out; 7382 7383 bpf_object__elf_finish(obj); 7384 7385 return obj; 7386 out: 7387 bpf_object__close(obj); 7388 return ERR_PTR(err); 7389 } 7390 7391 struct bpf_object * 7392 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7393 { 7394 if (!path) 7395 return libbpf_err_ptr(-EINVAL); 7396 7397 pr_debug("loading %s\n", path); 7398 7399 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7400 } 7401 7402 struct bpf_object *bpf_object__open(const char *path) 7403 { 7404 return bpf_object__open_file(path, NULL); 7405 } 7406 7407 struct bpf_object * 7408 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7409 const struct bpf_object_open_opts *opts) 7410 { 7411 if (!obj_buf || obj_buf_sz == 0) 7412 return libbpf_err_ptr(-EINVAL); 7413 7414 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7415 } 7416 7417 static int bpf_object_unload(struct bpf_object *obj) 7418 { 7419 size_t i; 7420 7421 if (!obj) 7422 return libbpf_err(-EINVAL); 7423 7424 for (i = 0; i < obj->nr_maps; i++) { 7425 zclose(obj->maps[i].fd); 7426 if (obj->maps[i].st_ops) 7427 zfree(&obj->maps[i].st_ops->kern_vdata); 7428 } 7429 7430 for (i = 0; i < obj->nr_programs; i++) 7431 bpf_program__unload(&obj->programs[i]); 7432 7433 return 0; 7434 } 7435 7436 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7437 { 7438 struct bpf_map *m; 7439 7440 bpf_object__for_each_map(m, obj) { 7441 if (!bpf_map__is_internal(m)) 7442 continue; 7443 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7444 m->def.map_flags &= ~BPF_F_MMAPABLE; 7445 } 7446 7447 return 0; 7448 } 7449 7450 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 7451 { 7452 char sym_type, sym_name[500]; 7453 unsigned long long sym_addr; 7454 int ret, err = 0; 7455 FILE *f; 7456 7457 f = fopen("/proc/kallsyms", "re"); 7458 if (!f) { 7459 err = -errno; 7460 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7461 return err; 7462 } 7463 7464 while (true) { 7465 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7466 &sym_addr, &sym_type, sym_name); 7467 if (ret == EOF && feof(f)) 7468 break; 7469 if (ret != 3) { 7470 pr_warn("failed to read kallsyms entry: %d\n", ret); 7471 err = -EINVAL; 7472 break; 7473 } 7474 7475 err = cb(sym_addr, sym_type, sym_name, ctx); 7476 if (err) 7477 break; 7478 } 7479 7480 fclose(f); 7481 return err; 7482 } 7483 7484 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 7485 const char *sym_name, void *ctx) 7486 { 7487 struct bpf_object *obj = ctx; 7488 const struct btf_type *t; 7489 struct extern_desc *ext; 7490 7491 ext = find_extern_by_name(obj, sym_name); 7492 if (!ext || ext->type != EXT_KSYM) 7493 return 0; 7494 7495 t = btf__type_by_id(obj->btf, ext->btf_id); 7496 if (!btf_is_var(t)) 7497 return 0; 7498 7499 if (ext->is_set && ext->ksym.addr != sym_addr) { 7500 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 7501 sym_name, ext->ksym.addr, sym_addr); 7502 return -EINVAL; 7503 } 7504 if (!ext->is_set) { 7505 ext->is_set = true; 7506 ext->ksym.addr = sym_addr; 7507 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 7508 } 7509 return 0; 7510 } 7511 7512 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7513 { 7514 return libbpf_kallsyms_parse(kallsyms_cb, obj); 7515 } 7516 7517 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7518 __u16 kind, struct btf **res_btf, 7519 struct module_btf **res_mod_btf) 7520 { 7521 struct module_btf *mod_btf; 7522 struct btf *btf; 7523 int i, id, err; 7524 7525 btf = obj->btf_vmlinux; 7526 mod_btf = NULL; 7527 id = btf__find_by_name_kind(btf, ksym_name, kind); 7528 7529 if (id == -ENOENT) { 7530 err = load_module_btfs(obj); 7531 if (err) 7532 return err; 7533 7534 for (i = 0; i < obj->btf_module_cnt; i++) { 7535 /* we assume module_btf's BTF FD is always >0 */ 7536 mod_btf = &obj->btf_modules[i]; 7537 btf = mod_btf->btf; 7538 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7539 if (id != -ENOENT) 7540 break; 7541 } 7542 } 7543 if (id <= 0) 7544 return -ESRCH; 7545 7546 *res_btf = btf; 7547 *res_mod_btf = mod_btf; 7548 return id; 7549 } 7550 7551 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7552 struct extern_desc *ext) 7553 { 7554 const struct btf_type *targ_var, *targ_type; 7555 __u32 targ_type_id, local_type_id; 7556 struct module_btf *mod_btf = NULL; 7557 const char *targ_var_name; 7558 struct btf *btf = NULL; 7559 int id, err; 7560 7561 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7562 if (id < 0) { 7563 if (id == -ESRCH && ext->is_weak) 7564 return 0; 7565 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7566 ext->name); 7567 return id; 7568 } 7569 7570 /* find local type_id */ 7571 local_type_id = ext->ksym.type_id; 7572 7573 /* find target type_id */ 7574 targ_var = btf__type_by_id(btf, id); 7575 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7576 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7577 7578 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7579 btf, targ_type_id); 7580 if (err <= 0) { 7581 const struct btf_type *local_type; 7582 const char *targ_name, *local_name; 7583 7584 local_type = btf__type_by_id(obj->btf, local_type_id); 7585 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7586 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7587 7588 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7589 ext->name, local_type_id, 7590 btf_kind_str(local_type), local_name, targ_type_id, 7591 btf_kind_str(targ_type), targ_name); 7592 return -EINVAL; 7593 } 7594 7595 ext->is_set = true; 7596 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7597 ext->ksym.kernel_btf_id = id; 7598 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7599 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7600 7601 return 0; 7602 } 7603 7604 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7605 struct extern_desc *ext) 7606 { 7607 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7608 struct module_btf *mod_btf = NULL; 7609 const struct btf_type *kern_func; 7610 struct btf *kern_btf = NULL; 7611 int ret; 7612 7613 local_func_proto_id = ext->ksym.type_id; 7614 7615 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf); 7616 if (kfunc_id < 0) { 7617 if (kfunc_id == -ESRCH && ext->is_weak) 7618 return 0; 7619 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7620 ext->name); 7621 return kfunc_id; 7622 } 7623 7624 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7625 kfunc_proto_id = kern_func->type; 7626 7627 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7628 kern_btf, kfunc_proto_id); 7629 if (ret <= 0) { 7630 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n", 7631 ext->name, local_func_proto_id, 7632 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id); 7633 return -EINVAL; 7634 } 7635 7636 /* set index for module BTF fd in fd_array, if unset */ 7637 if (mod_btf && !mod_btf->fd_array_idx) { 7638 /* insn->off is s16 */ 7639 if (obj->fd_array_cnt == INT16_MAX) { 7640 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7641 ext->name, mod_btf->fd_array_idx); 7642 return -E2BIG; 7643 } 7644 /* Cannot use index 0 for module BTF fd */ 7645 if (!obj->fd_array_cnt) 7646 obj->fd_array_cnt = 1; 7647 7648 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7649 obj->fd_array_cnt + 1); 7650 if (ret) 7651 return ret; 7652 mod_btf->fd_array_idx = obj->fd_array_cnt; 7653 /* we assume module BTF FD is always >0 */ 7654 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7655 } 7656 7657 ext->is_set = true; 7658 ext->ksym.kernel_btf_id = kfunc_id; 7659 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7660 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data() 7661 * populates FD into ld_imm64 insn when it's used to point to kfunc. 7662 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call. 7663 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64. 7664 */ 7665 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7666 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n", 7667 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id); 7668 7669 return 0; 7670 } 7671 7672 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7673 { 7674 const struct btf_type *t; 7675 struct extern_desc *ext; 7676 int i, err; 7677 7678 for (i = 0; i < obj->nr_extern; i++) { 7679 ext = &obj->externs[i]; 7680 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7681 continue; 7682 7683 if (obj->gen_loader) { 7684 ext->is_set = true; 7685 ext->ksym.kernel_btf_obj_fd = 0; 7686 ext->ksym.kernel_btf_id = 0; 7687 continue; 7688 } 7689 t = btf__type_by_id(obj->btf, ext->btf_id); 7690 if (btf_is_var(t)) 7691 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7692 else 7693 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7694 if (err) 7695 return err; 7696 } 7697 return 0; 7698 } 7699 7700 static int bpf_object__resolve_externs(struct bpf_object *obj, 7701 const char *extra_kconfig) 7702 { 7703 bool need_config = false, need_kallsyms = false; 7704 bool need_vmlinux_btf = false; 7705 struct extern_desc *ext; 7706 void *kcfg_data = NULL; 7707 int err, i; 7708 7709 if (obj->nr_extern == 0) 7710 return 0; 7711 7712 if (obj->kconfig_map_idx >= 0) 7713 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7714 7715 for (i = 0; i < obj->nr_extern; i++) { 7716 ext = &obj->externs[i]; 7717 7718 if (ext->type == EXT_KSYM) { 7719 if (ext->ksym.type_id) 7720 need_vmlinux_btf = true; 7721 else 7722 need_kallsyms = true; 7723 continue; 7724 } else if (ext->type == EXT_KCFG) { 7725 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 7726 __u64 value = 0; 7727 7728 /* Kconfig externs need actual /proc/config.gz */ 7729 if (str_has_pfx(ext->name, "CONFIG_")) { 7730 need_config = true; 7731 continue; 7732 } 7733 7734 /* Virtual kcfg externs are customly handled by libbpf */ 7735 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7736 value = get_kernel_version(); 7737 if (!value) { 7738 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 7739 return -EINVAL; 7740 } 7741 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 7742 value = kernel_supports(obj, FEAT_BPF_COOKIE); 7743 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 7744 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 7745 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 7746 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 7747 * __kconfig externs, where LINUX_ ones are virtual and filled out 7748 * customly by libbpf (their values don't come from Kconfig). 7749 * If LINUX_xxx variable is not recognized by libbpf, but is marked 7750 * __weak, it defaults to zero value, just like for CONFIG_xxx 7751 * externs. 7752 */ 7753 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 7754 return -EINVAL; 7755 } 7756 7757 err = set_kcfg_value_num(ext, ext_ptr, value); 7758 if (err) 7759 return err; 7760 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 7761 ext->name, (long long)value); 7762 } else { 7763 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 7764 return -EINVAL; 7765 } 7766 } 7767 if (need_config && extra_kconfig) { 7768 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7769 if (err) 7770 return -EINVAL; 7771 need_config = false; 7772 for (i = 0; i < obj->nr_extern; i++) { 7773 ext = &obj->externs[i]; 7774 if (ext->type == EXT_KCFG && !ext->is_set) { 7775 need_config = true; 7776 break; 7777 } 7778 } 7779 } 7780 if (need_config) { 7781 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7782 if (err) 7783 return -EINVAL; 7784 } 7785 if (need_kallsyms) { 7786 err = bpf_object__read_kallsyms_file(obj); 7787 if (err) 7788 return -EINVAL; 7789 } 7790 if (need_vmlinux_btf) { 7791 err = bpf_object__resolve_ksyms_btf_id(obj); 7792 if (err) 7793 return -EINVAL; 7794 } 7795 for (i = 0; i < obj->nr_extern; i++) { 7796 ext = &obj->externs[i]; 7797 7798 if (!ext->is_set && !ext->is_weak) { 7799 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 7800 return -ESRCH; 7801 } else if (!ext->is_set) { 7802 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 7803 ext->name); 7804 } 7805 } 7806 7807 return 0; 7808 } 7809 7810 static void bpf_map_prepare_vdata(const struct bpf_map *map) 7811 { 7812 struct bpf_struct_ops *st_ops; 7813 __u32 i; 7814 7815 st_ops = map->st_ops; 7816 for (i = 0; i < btf_vlen(st_ops->type); i++) { 7817 struct bpf_program *prog = st_ops->progs[i]; 7818 void *kern_data; 7819 int prog_fd; 7820 7821 if (!prog) 7822 continue; 7823 7824 prog_fd = bpf_program__fd(prog); 7825 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 7826 *(unsigned long *)kern_data = prog_fd; 7827 } 7828 } 7829 7830 static int bpf_object_prepare_struct_ops(struct bpf_object *obj) 7831 { 7832 int i; 7833 7834 for (i = 0; i < obj->nr_maps; i++) 7835 if (bpf_map__is_struct_ops(&obj->maps[i])) 7836 bpf_map_prepare_vdata(&obj->maps[i]); 7837 7838 return 0; 7839 } 7840 7841 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 7842 { 7843 int err, i; 7844 7845 if (!obj) 7846 return libbpf_err(-EINVAL); 7847 7848 if (obj->loaded) { 7849 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7850 return libbpf_err(-EINVAL); 7851 } 7852 7853 if (obj->gen_loader) 7854 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 7855 7856 err = bpf_object__probe_loading(obj); 7857 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7858 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7859 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7860 err = err ? : bpf_object__sanitize_maps(obj); 7861 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7862 err = err ? : bpf_object__create_maps(obj); 7863 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 7864 err = err ? : bpf_object__load_progs(obj, extra_log_level); 7865 err = err ? : bpf_object_init_prog_arrays(obj); 7866 err = err ? : bpf_object_prepare_struct_ops(obj); 7867 7868 if (obj->gen_loader) { 7869 /* reset FDs */ 7870 if (obj->btf) 7871 btf__set_fd(obj->btf, -1); 7872 for (i = 0; i < obj->nr_maps; i++) 7873 obj->maps[i].fd = -1; 7874 if (!err) 7875 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 7876 } 7877 7878 /* clean up fd_array */ 7879 zfree(&obj->fd_array); 7880 7881 /* clean up module BTFs */ 7882 for (i = 0; i < obj->btf_module_cnt; i++) { 7883 close(obj->btf_modules[i].fd); 7884 btf__free(obj->btf_modules[i].btf); 7885 free(obj->btf_modules[i].name); 7886 } 7887 free(obj->btf_modules); 7888 7889 /* clean up vmlinux BTF */ 7890 btf__free(obj->btf_vmlinux); 7891 obj->btf_vmlinux = NULL; 7892 7893 obj->loaded = true; /* doesn't matter if successfully or not */ 7894 7895 if (err) 7896 goto out; 7897 7898 return 0; 7899 out: 7900 /* unpin any maps that were auto-pinned during load */ 7901 for (i = 0; i < obj->nr_maps; i++) 7902 if (obj->maps[i].pinned && !obj->maps[i].reused) 7903 bpf_map__unpin(&obj->maps[i], NULL); 7904 7905 bpf_object_unload(obj); 7906 pr_warn("failed to load object '%s'\n", obj->path); 7907 return libbpf_err(err); 7908 } 7909 7910 int bpf_object__load(struct bpf_object *obj) 7911 { 7912 return bpf_object_load(obj, 0, NULL); 7913 } 7914 7915 static int make_parent_dir(const char *path) 7916 { 7917 char *cp, errmsg[STRERR_BUFSIZE]; 7918 char *dname, *dir; 7919 int err = 0; 7920 7921 dname = strdup(path); 7922 if (dname == NULL) 7923 return -ENOMEM; 7924 7925 dir = dirname(dname); 7926 if (mkdir(dir, 0700) && errno != EEXIST) 7927 err = -errno; 7928 7929 free(dname); 7930 if (err) { 7931 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7932 pr_warn("failed to mkdir %s: %s\n", path, cp); 7933 } 7934 return err; 7935 } 7936 7937 static int check_path(const char *path) 7938 { 7939 char *cp, errmsg[STRERR_BUFSIZE]; 7940 struct statfs st_fs; 7941 char *dname, *dir; 7942 int err = 0; 7943 7944 if (path == NULL) 7945 return -EINVAL; 7946 7947 dname = strdup(path); 7948 if (dname == NULL) 7949 return -ENOMEM; 7950 7951 dir = dirname(dname); 7952 if (statfs(dir, &st_fs)) { 7953 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7954 pr_warn("failed to statfs %s: %s\n", dir, cp); 7955 err = -errno; 7956 } 7957 free(dname); 7958 7959 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7960 pr_warn("specified path %s is not on BPF FS\n", path); 7961 err = -EINVAL; 7962 } 7963 7964 return err; 7965 } 7966 7967 int bpf_program__pin(struct bpf_program *prog, const char *path) 7968 { 7969 char *cp, errmsg[STRERR_BUFSIZE]; 7970 int err; 7971 7972 if (prog->fd < 0) { 7973 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 7974 return libbpf_err(-EINVAL); 7975 } 7976 7977 err = make_parent_dir(path); 7978 if (err) 7979 return libbpf_err(err); 7980 7981 err = check_path(path); 7982 if (err) 7983 return libbpf_err(err); 7984 7985 if (bpf_obj_pin(prog->fd, path)) { 7986 err = -errno; 7987 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7988 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp); 7989 return libbpf_err(err); 7990 } 7991 7992 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 7993 return 0; 7994 } 7995 7996 int bpf_program__unpin(struct bpf_program *prog, const char *path) 7997 { 7998 int err; 7999 8000 if (prog->fd < 0) { 8001 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 8002 return libbpf_err(-EINVAL); 8003 } 8004 8005 err = check_path(path); 8006 if (err) 8007 return libbpf_err(err); 8008 8009 err = unlink(path); 8010 if (err) 8011 return libbpf_err(-errno); 8012 8013 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 8014 return 0; 8015 } 8016 8017 int bpf_map__pin(struct bpf_map *map, const char *path) 8018 { 8019 char *cp, errmsg[STRERR_BUFSIZE]; 8020 int err; 8021 8022 if (map == NULL) { 8023 pr_warn("invalid map pointer\n"); 8024 return libbpf_err(-EINVAL); 8025 } 8026 8027 if (map->pin_path) { 8028 if (path && strcmp(path, map->pin_path)) { 8029 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8030 bpf_map__name(map), map->pin_path, path); 8031 return libbpf_err(-EINVAL); 8032 } else if (map->pinned) { 8033 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8034 bpf_map__name(map), map->pin_path); 8035 return 0; 8036 } 8037 } else { 8038 if (!path) { 8039 pr_warn("missing a path to pin map '%s' at\n", 8040 bpf_map__name(map)); 8041 return libbpf_err(-EINVAL); 8042 } else if (map->pinned) { 8043 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8044 return libbpf_err(-EEXIST); 8045 } 8046 8047 map->pin_path = strdup(path); 8048 if (!map->pin_path) { 8049 err = -errno; 8050 goto out_err; 8051 } 8052 } 8053 8054 err = make_parent_dir(map->pin_path); 8055 if (err) 8056 return libbpf_err(err); 8057 8058 err = check_path(map->pin_path); 8059 if (err) 8060 return libbpf_err(err); 8061 8062 if (bpf_obj_pin(map->fd, map->pin_path)) { 8063 err = -errno; 8064 goto out_err; 8065 } 8066 8067 map->pinned = true; 8068 pr_debug("pinned map '%s'\n", map->pin_path); 8069 8070 return 0; 8071 8072 out_err: 8073 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8074 pr_warn("failed to pin map: %s\n", cp); 8075 return libbpf_err(err); 8076 } 8077 8078 int bpf_map__unpin(struct bpf_map *map, const char *path) 8079 { 8080 int err; 8081 8082 if (map == NULL) { 8083 pr_warn("invalid map pointer\n"); 8084 return libbpf_err(-EINVAL); 8085 } 8086 8087 if (map->pin_path) { 8088 if (path && strcmp(path, map->pin_path)) { 8089 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8090 bpf_map__name(map), map->pin_path, path); 8091 return libbpf_err(-EINVAL); 8092 } 8093 path = map->pin_path; 8094 } else if (!path) { 8095 pr_warn("no path to unpin map '%s' from\n", 8096 bpf_map__name(map)); 8097 return libbpf_err(-EINVAL); 8098 } 8099 8100 err = check_path(path); 8101 if (err) 8102 return libbpf_err(err); 8103 8104 err = unlink(path); 8105 if (err != 0) 8106 return libbpf_err(-errno); 8107 8108 map->pinned = false; 8109 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8110 8111 return 0; 8112 } 8113 8114 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8115 { 8116 char *new = NULL; 8117 8118 if (path) { 8119 new = strdup(path); 8120 if (!new) 8121 return libbpf_err(-errno); 8122 } 8123 8124 free(map->pin_path); 8125 map->pin_path = new; 8126 return 0; 8127 } 8128 8129 __alias(bpf_map__pin_path) 8130 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8131 8132 const char *bpf_map__pin_path(const struct bpf_map *map) 8133 { 8134 return map->pin_path; 8135 } 8136 8137 bool bpf_map__is_pinned(const struct bpf_map *map) 8138 { 8139 return map->pinned; 8140 } 8141 8142 static void sanitize_pin_path(char *s) 8143 { 8144 /* bpffs disallows periods in path names */ 8145 while (*s) { 8146 if (*s == '.') 8147 *s = '_'; 8148 s++; 8149 } 8150 } 8151 8152 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8153 { 8154 struct bpf_map *map; 8155 int err; 8156 8157 if (!obj) 8158 return libbpf_err(-ENOENT); 8159 8160 if (!obj->loaded) { 8161 pr_warn("object not yet loaded; load it first\n"); 8162 return libbpf_err(-ENOENT); 8163 } 8164 8165 bpf_object__for_each_map(map, obj) { 8166 char *pin_path = NULL; 8167 char buf[PATH_MAX]; 8168 8169 if (!map->autocreate) 8170 continue; 8171 8172 if (path) { 8173 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8174 if (err) 8175 goto err_unpin_maps; 8176 sanitize_pin_path(buf); 8177 pin_path = buf; 8178 } else if (!map->pin_path) { 8179 continue; 8180 } 8181 8182 err = bpf_map__pin(map, pin_path); 8183 if (err) 8184 goto err_unpin_maps; 8185 } 8186 8187 return 0; 8188 8189 err_unpin_maps: 8190 while ((map = bpf_object__prev_map(obj, map))) { 8191 if (!map->pin_path) 8192 continue; 8193 8194 bpf_map__unpin(map, NULL); 8195 } 8196 8197 return libbpf_err(err); 8198 } 8199 8200 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8201 { 8202 struct bpf_map *map; 8203 int err; 8204 8205 if (!obj) 8206 return libbpf_err(-ENOENT); 8207 8208 bpf_object__for_each_map(map, obj) { 8209 char *pin_path = NULL; 8210 char buf[PATH_MAX]; 8211 8212 if (path) { 8213 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8214 if (err) 8215 return libbpf_err(err); 8216 sanitize_pin_path(buf); 8217 pin_path = buf; 8218 } else if (!map->pin_path) { 8219 continue; 8220 } 8221 8222 err = bpf_map__unpin(map, pin_path); 8223 if (err) 8224 return libbpf_err(err); 8225 } 8226 8227 return 0; 8228 } 8229 8230 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8231 { 8232 struct bpf_program *prog; 8233 char buf[PATH_MAX]; 8234 int err; 8235 8236 if (!obj) 8237 return libbpf_err(-ENOENT); 8238 8239 if (!obj->loaded) { 8240 pr_warn("object not yet loaded; load it first\n"); 8241 return libbpf_err(-ENOENT); 8242 } 8243 8244 bpf_object__for_each_program(prog, obj) { 8245 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8246 if (err) 8247 goto err_unpin_programs; 8248 8249 err = bpf_program__pin(prog, buf); 8250 if (err) 8251 goto err_unpin_programs; 8252 } 8253 8254 return 0; 8255 8256 err_unpin_programs: 8257 while ((prog = bpf_object__prev_program(obj, prog))) { 8258 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 8259 continue; 8260 8261 bpf_program__unpin(prog, buf); 8262 } 8263 8264 return libbpf_err(err); 8265 } 8266 8267 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8268 { 8269 struct bpf_program *prog; 8270 int err; 8271 8272 if (!obj) 8273 return libbpf_err(-ENOENT); 8274 8275 bpf_object__for_each_program(prog, obj) { 8276 char buf[PATH_MAX]; 8277 8278 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8279 if (err) 8280 return libbpf_err(err); 8281 8282 err = bpf_program__unpin(prog, buf); 8283 if (err) 8284 return libbpf_err(err); 8285 } 8286 8287 return 0; 8288 } 8289 8290 int bpf_object__pin(struct bpf_object *obj, const char *path) 8291 { 8292 int err; 8293 8294 err = bpf_object__pin_maps(obj, path); 8295 if (err) 8296 return libbpf_err(err); 8297 8298 err = bpf_object__pin_programs(obj, path); 8299 if (err) { 8300 bpf_object__unpin_maps(obj, path); 8301 return libbpf_err(err); 8302 } 8303 8304 return 0; 8305 } 8306 8307 static void bpf_map__destroy(struct bpf_map *map) 8308 { 8309 if (map->inner_map) { 8310 bpf_map__destroy(map->inner_map); 8311 zfree(&map->inner_map); 8312 } 8313 8314 zfree(&map->init_slots); 8315 map->init_slots_sz = 0; 8316 8317 if (map->mmaped) { 8318 size_t mmap_sz; 8319 8320 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 8321 munmap(map->mmaped, mmap_sz); 8322 map->mmaped = NULL; 8323 } 8324 8325 if (map->st_ops) { 8326 zfree(&map->st_ops->data); 8327 zfree(&map->st_ops->progs); 8328 zfree(&map->st_ops->kern_func_off); 8329 zfree(&map->st_ops); 8330 } 8331 8332 zfree(&map->name); 8333 zfree(&map->real_name); 8334 zfree(&map->pin_path); 8335 8336 if (map->fd >= 0) 8337 zclose(map->fd); 8338 } 8339 8340 void bpf_object__close(struct bpf_object *obj) 8341 { 8342 size_t i; 8343 8344 if (IS_ERR_OR_NULL(obj)) 8345 return; 8346 8347 usdt_manager_free(obj->usdt_man); 8348 obj->usdt_man = NULL; 8349 8350 bpf_gen__free(obj->gen_loader); 8351 bpf_object__elf_finish(obj); 8352 bpf_object_unload(obj); 8353 btf__free(obj->btf); 8354 btf_ext__free(obj->btf_ext); 8355 8356 for (i = 0; i < obj->nr_maps; i++) 8357 bpf_map__destroy(&obj->maps[i]); 8358 8359 zfree(&obj->btf_custom_path); 8360 zfree(&obj->kconfig); 8361 zfree(&obj->externs); 8362 obj->nr_extern = 0; 8363 8364 zfree(&obj->maps); 8365 obj->nr_maps = 0; 8366 8367 if (obj->programs && obj->nr_programs) { 8368 for (i = 0; i < obj->nr_programs; i++) 8369 bpf_program__exit(&obj->programs[i]); 8370 } 8371 zfree(&obj->programs); 8372 8373 free(obj); 8374 } 8375 8376 const char *bpf_object__name(const struct bpf_object *obj) 8377 { 8378 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8379 } 8380 8381 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8382 { 8383 return obj ? obj->kern_version : 0; 8384 } 8385 8386 struct btf *bpf_object__btf(const struct bpf_object *obj) 8387 { 8388 return obj ? obj->btf : NULL; 8389 } 8390 8391 int bpf_object__btf_fd(const struct bpf_object *obj) 8392 { 8393 return obj->btf ? btf__fd(obj->btf) : -1; 8394 } 8395 8396 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8397 { 8398 if (obj->loaded) 8399 return libbpf_err(-EINVAL); 8400 8401 obj->kern_version = kern_version; 8402 8403 return 0; 8404 } 8405 8406 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8407 { 8408 struct bpf_gen *gen; 8409 8410 if (!opts) 8411 return -EFAULT; 8412 if (!OPTS_VALID(opts, gen_loader_opts)) 8413 return -EINVAL; 8414 gen = calloc(sizeof(*gen), 1); 8415 if (!gen) 8416 return -ENOMEM; 8417 gen->opts = opts; 8418 obj->gen_loader = gen; 8419 return 0; 8420 } 8421 8422 static struct bpf_program * 8423 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8424 bool forward) 8425 { 8426 size_t nr_programs = obj->nr_programs; 8427 ssize_t idx; 8428 8429 if (!nr_programs) 8430 return NULL; 8431 8432 if (!p) 8433 /* Iter from the beginning */ 8434 return forward ? &obj->programs[0] : 8435 &obj->programs[nr_programs - 1]; 8436 8437 if (p->obj != obj) { 8438 pr_warn("error: program handler doesn't match object\n"); 8439 return errno = EINVAL, NULL; 8440 } 8441 8442 idx = (p - obj->programs) + (forward ? 1 : -1); 8443 if (idx >= obj->nr_programs || idx < 0) 8444 return NULL; 8445 return &obj->programs[idx]; 8446 } 8447 8448 struct bpf_program * 8449 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8450 { 8451 struct bpf_program *prog = prev; 8452 8453 do { 8454 prog = __bpf_program__iter(prog, obj, true); 8455 } while (prog && prog_is_subprog(obj, prog)); 8456 8457 return prog; 8458 } 8459 8460 struct bpf_program * 8461 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8462 { 8463 struct bpf_program *prog = next; 8464 8465 do { 8466 prog = __bpf_program__iter(prog, obj, false); 8467 } while (prog && prog_is_subprog(obj, prog)); 8468 8469 return prog; 8470 } 8471 8472 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8473 { 8474 prog->prog_ifindex = ifindex; 8475 } 8476 8477 const char *bpf_program__name(const struct bpf_program *prog) 8478 { 8479 return prog->name; 8480 } 8481 8482 const char *bpf_program__section_name(const struct bpf_program *prog) 8483 { 8484 return prog->sec_name; 8485 } 8486 8487 bool bpf_program__autoload(const struct bpf_program *prog) 8488 { 8489 return prog->autoload; 8490 } 8491 8492 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8493 { 8494 if (prog->obj->loaded) 8495 return libbpf_err(-EINVAL); 8496 8497 prog->autoload = autoload; 8498 return 0; 8499 } 8500 8501 bool bpf_program__autoattach(const struct bpf_program *prog) 8502 { 8503 return prog->autoattach; 8504 } 8505 8506 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 8507 { 8508 prog->autoattach = autoattach; 8509 } 8510 8511 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8512 { 8513 return prog->insns; 8514 } 8515 8516 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8517 { 8518 return prog->insns_cnt; 8519 } 8520 8521 int bpf_program__set_insns(struct bpf_program *prog, 8522 struct bpf_insn *new_insns, size_t new_insn_cnt) 8523 { 8524 struct bpf_insn *insns; 8525 8526 if (prog->obj->loaded) 8527 return -EBUSY; 8528 8529 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 8530 if (!insns) { 8531 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 8532 return -ENOMEM; 8533 } 8534 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 8535 8536 prog->insns = insns; 8537 prog->insns_cnt = new_insn_cnt; 8538 return 0; 8539 } 8540 8541 int bpf_program__fd(const struct bpf_program *prog) 8542 { 8543 if (!prog) 8544 return libbpf_err(-EINVAL); 8545 8546 if (prog->fd < 0) 8547 return libbpf_err(-ENOENT); 8548 8549 return prog->fd; 8550 } 8551 8552 __alias(bpf_program__type) 8553 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 8554 8555 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 8556 { 8557 return prog->type; 8558 } 8559 8560 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8561 { 8562 if (prog->obj->loaded) 8563 return libbpf_err(-EBUSY); 8564 8565 prog->type = type; 8566 prog->sec_def = NULL; 8567 return 0; 8568 } 8569 8570 __alias(bpf_program__expected_attach_type) 8571 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 8572 8573 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 8574 { 8575 return prog->expected_attach_type; 8576 } 8577 8578 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 8579 enum bpf_attach_type type) 8580 { 8581 if (prog->obj->loaded) 8582 return libbpf_err(-EBUSY); 8583 8584 prog->expected_attach_type = type; 8585 return 0; 8586 } 8587 8588 __u32 bpf_program__flags(const struct bpf_program *prog) 8589 { 8590 return prog->prog_flags; 8591 } 8592 8593 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 8594 { 8595 if (prog->obj->loaded) 8596 return libbpf_err(-EBUSY); 8597 8598 prog->prog_flags = flags; 8599 return 0; 8600 } 8601 8602 __u32 bpf_program__log_level(const struct bpf_program *prog) 8603 { 8604 return prog->log_level; 8605 } 8606 8607 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 8608 { 8609 if (prog->obj->loaded) 8610 return libbpf_err(-EBUSY); 8611 8612 prog->log_level = log_level; 8613 return 0; 8614 } 8615 8616 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 8617 { 8618 *log_size = prog->log_size; 8619 return prog->log_buf; 8620 } 8621 8622 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 8623 { 8624 if (log_size && !log_buf) 8625 return -EINVAL; 8626 if (prog->log_size > UINT_MAX) 8627 return -EINVAL; 8628 if (prog->obj->loaded) 8629 return -EBUSY; 8630 8631 prog->log_buf = log_buf; 8632 prog->log_size = log_size; 8633 return 0; 8634 } 8635 8636 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 8637 .sec = (char *)sec_pfx, \ 8638 .prog_type = BPF_PROG_TYPE_##ptype, \ 8639 .expected_attach_type = atype, \ 8640 .cookie = (long)(flags), \ 8641 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 8642 __VA_ARGS__ \ 8643 } 8644 8645 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8646 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8647 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8648 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8649 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8650 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8651 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8652 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8653 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8654 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8655 8656 static const struct bpf_sec_def section_defs[] = { 8657 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 8658 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 8659 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 8660 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8661 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8662 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8663 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8664 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8665 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8666 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8667 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8668 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8669 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8670 SEC_DEF("usdt+", KPROBE, 0, SEC_NONE, attach_usdt), 8671 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), 8672 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), 8673 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), 8674 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8675 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8676 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8677 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8678 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8679 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8680 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 8681 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 8682 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 8683 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 8684 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8685 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8686 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8687 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 8688 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 8689 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 8690 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 8691 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 8692 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 8693 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 8694 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 8695 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 8696 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 8697 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 8698 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 8699 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 8700 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 8701 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 8702 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 8703 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 8704 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 8705 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 8706 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 8707 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 8708 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 8709 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 8710 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 8711 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 8712 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 8713 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 8714 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 8715 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 8716 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 8717 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 8718 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 8719 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 8720 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 8721 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 8722 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 8723 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 8724 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 8725 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 8726 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 8727 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 8728 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 8729 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 8730 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 8731 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 8732 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 8733 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 8734 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 8735 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 8736 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 8737 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE), 8738 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 8739 SEC_DEF("netfilter", NETFILTER, 0, SEC_NONE), 8740 }; 8741 8742 static size_t custom_sec_def_cnt; 8743 static struct bpf_sec_def *custom_sec_defs; 8744 static struct bpf_sec_def custom_fallback_def; 8745 static bool has_custom_fallback_def; 8746 8747 static int last_custom_sec_def_handler_id; 8748 8749 int libbpf_register_prog_handler(const char *sec, 8750 enum bpf_prog_type prog_type, 8751 enum bpf_attach_type exp_attach_type, 8752 const struct libbpf_prog_handler_opts *opts) 8753 { 8754 struct bpf_sec_def *sec_def; 8755 8756 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 8757 return libbpf_err(-EINVAL); 8758 8759 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 8760 return libbpf_err(-E2BIG); 8761 8762 if (sec) { 8763 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 8764 sizeof(*sec_def)); 8765 if (!sec_def) 8766 return libbpf_err(-ENOMEM); 8767 8768 custom_sec_defs = sec_def; 8769 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 8770 } else { 8771 if (has_custom_fallback_def) 8772 return libbpf_err(-EBUSY); 8773 8774 sec_def = &custom_fallback_def; 8775 } 8776 8777 sec_def->sec = sec ? strdup(sec) : NULL; 8778 if (sec && !sec_def->sec) 8779 return libbpf_err(-ENOMEM); 8780 8781 sec_def->prog_type = prog_type; 8782 sec_def->expected_attach_type = exp_attach_type; 8783 sec_def->cookie = OPTS_GET(opts, cookie, 0); 8784 8785 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 8786 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 8787 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 8788 8789 sec_def->handler_id = ++last_custom_sec_def_handler_id; 8790 8791 if (sec) 8792 custom_sec_def_cnt++; 8793 else 8794 has_custom_fallback_def = true; 8795 8796 return sec_def->handler_id; 8797 } 8798 8799 int libbpf_unregister_prog_handler(int handler_id) 8800 { 8801 struct bpf_sec_def *sec_defs; 8802 int i; 8803 8804 if (handler_id <= 0) 8805 return libbpf_err(-EINVAL); 8806 8807 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 8808 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 8809 has_custom_fallback_def = false; 8810 return 0; 8811 } 8812 8813 for (i = 0; i < custom_sec_def_cnt; i++) { 8814 if (custom_sec_defs[i].handler_id == handler_id) 8815 break; 8816 } 8817 8818 if (i == custom_sec_def_cnt) 8819 return libbpf_err(-ENOENT); 8820 8821 free(custom_sec_defs[i].sec); 8822 for (i = i + 1; i < custom_sec_def_cnt; i++) 8823 custom_sec_defs[i - 1] = custom_sec_defs[i]; 8824 custom_sec_def_cnt--; 8825 8826 /* try to shrink the array, but it's ok if we couldn't */ 8827 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 8828 if (sec_defs) 8829 custom_sec_defs = sec_defs; 8830 8831 return 0; 8832 } 8833 8834 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 8835 { 8836 size_t len = strlen(sec_def->sec); 8837 8838 /* "type/" always has to have proper SEC("type/extras") form */ 8839 if (sec_def->sec[len - 1] == '/') { 8840 if (str_has_pfx(sec_name, sec_def->sec)) 8841 return true; 8842 return false; 8843 } 8844 8845 /* "type+" means it can be either exact SEC("type") or 8846 * well-formed SEC("type/extras") with proper '/' separator 8847 */ 8848 if (sec_def->sec[len - 1] == '+') { 8849 len--; 8850 /* not even a prefix */ 8851 if (strncmp(sec_name, sec_def->sec, len) != 0) 8852 return false; 8853 /* exact match or has '/' separator */ 8854 if (sec_name[len] == '\0' || sec_name[len] == '/') 8855 return true; 8856 return false; 8857 } 8858 8859 return strcmp(sec_name, sec_def->sec) == 0; 8860 } 8861 8862 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8863 { 8864 const struct bpf_sec_def *sec_def; 8865 int i, n; 8866 8867 n = custom_sec_def_cnt; 8868 for (i = 0; i < n; i++) { 8869 sec_def = &custom_sec_defs[i]; 8870 if (sec_def_matches(sec_def, sec_name)) 8871 return sec_def; 8872 } 8873 8874 n = ARRAY_SIZE(section_defs); 8875 for (i = 0; i < n; i++) { 8876 sec_def = §ion_defs[i]; 8877 if (sec_def_matches(sec_def, sec_name)) 8878 return sec_def; 8879 } 8880 8881 if (has_custom_fallback_def) 8882 return &custom_fallback_def; 8883 8884 return NULL; 8885 } 8886 8887 #define MAX_TYPE_NAME_SIZE 32 8888 8889 static char *libbpf_get_type_names(bool attach_type) 8890 { 8891 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8892 char *buf; 8893 8894 buf = malloc(len); 8895 if (!buf) 8896 return NULL; 8897 8898 buf[0] = '\0'; 8899 /* Forge string buf with all available names */ 8900 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8901 const struct bpf_sec_def *sec_def = §ion_defs[i]; 8902 8903 if (attach_type) { 8904 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 8905 continue; 8906 8907 if (!(sec_def->cookie & SEC_ATTACHABLE)) 8908 continue; 8909 } 8910 8911 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8912 free(buf); 8913 return NULL; 8914 } 8915 strcat(buf, " "); 8916 strcat(buf, section_defs[i].sec); 8917 } 8918 8919 return buf; 8920 } 8921 8922 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8923 enum bpf_attach_type *expected_attach_type) 8924 { 8925 const struct bpf_sec_def *sec_def; 8926 char *type_names; 8927 8928 if (!name) 8929 return libbpf_err(-EINVAL); 8930 8931 sec_def = find_sec_def(name); 8932 if (sec_def) { 8933 *prog_type = sec_def->prog_type; 8934 *expected_attach_type = sec_def->expected_attach_type; 8935 return 0; 8936 } 8937 8938 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8939 type_names = libbpf_get_type_names(false); 8940 if (type_names != NULL) { 8941 pr_debug("supported section(type) names are:%s\n", type_names); 8942 free(type_names); 8943 } 8944 8945 return libbpf_err(-ESRCH); 8946 } 8947 8948 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 8949 { 8950 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 8951 return NULL; 8952 8953 return attach_type_name[t]; 8954 } 8955 8956 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 8957 { 8958 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 8959 return NULL; 8960 8961 return link_type_name[t]; 8962 } 8963 8964 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 8965 { 8966 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 8967 return NULL; 8968 8969 return map_type_name[t]; 8970 } 8971 8972 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 8973 { 8974 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 8975 return NULL; 8976 8977 return prog_type_name[t]; 8978 } 8979 8980 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 8981 int sec_idx, 8982 size_t offset) 8983 { 8984 struct bpf_map *map; 8985 size_t i; 8986 8987 for (i = 0; i < obj->nr_maps; i++) { 8988 map = &obj->maps[i]; 8989 if (!bpf_map__is_struct_ops(map)) 8990 continue; 8991 if (map->sec_idx == sec_idx && 8992 map->sec_offset <= offset && 8993 offset - map->sec_offset < map->def.value_size) 8994 return map; 8995 } 8996 8997 return NULL; 8998 } 8999 9000 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 9001 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9002 Elf64_Shdr *shdr, Elf_Data *data) 9003 { 9004 const struct btf_member *member; 9005 struct bpf_struct_ops *st_ops; 9006 struct bpf_program *prog; 9007 unsigned int shdr_idx; 9008 const struct btf *btf; 9009 struct bpf_map *map; 9010 unsigned int moff, insn_idx; 9011 const char *name; 9012 __u32 member_idx; 9013 Elf64_Sym *sym; 9014 Elf64_Rel *rel; 9015 int i, nrels; 9016 9017 btf = obj->btf; 9018 nrels = shdr->sh_size / shdr->sh_entsize; 9019 for (i = 0; i < nrels; i++) { 9020 rel = elf_rel_by_idx(data, i); 9021 if (!rel) { 9022 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9023 return -LIBBPF_ERRNO__FORMAT; 9024 } 9025 9026 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 9027 if (!sym) { 9028 pr_warn("struct_ops reloc: symbol %zx not found\n", 9029 (size_t)ELF64_R_SYM(rel->r_info)); 9030 return -LIBBPF_ERRNO__FORMAT; 9031 } 9032 9033 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 9034 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset); 9035 if (!map) { 9036 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 9037 (size_t)rel->r_offset); 9038 return -EINVAL; 9039 } 9040 9041 moff = rel->r_offset - map->sec_offset; 9042 shdr_idx = sym->st_shndx; 9043 st_ops = map->st_ops; 9044 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9045 map->name, 9046 (long long)(rel->r_info >> 32), 9047 (long long)sym->st_value, 9048 shdr_idx, (size_t)rel->r_offset, 9049 map->sec_offset, sym->st_name, name); 9050 9051 if (shdr_idx >= SHN_LORESERVE) { 9052 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9053 map->name, (size_t)rel->r_offset, shdr_idx); 9054 return -LIBBPF_ERRNO__RELOC; 9055 } 9056 if (sym->st_value % BPF_INSN_SZ) { 9057 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9058 map->name, (unsigned long long)sym->st_value); 9059 return -LIBBPF_ERRNO__FORMAT; 9060 } 9061 insn_idx = sym->st_value / BPF_INSN_SZ; 9062 9063 member = find_member_by_offset(st_ops->type, moff * 8); 9064 if (!member) { 9065 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9066 map->name, moff); 9067 return -EINVAL; 9068 } 9069 member_idx = member - btf_members(st_ops->type); 9070 name = btf__name_by_offset(btf, member->name_off); 9071 9072 if (!resolve_func_ptr(btf, member->type, NULL)) { 9073 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9074 map->name, name); 9075 return -EINVAL; 9076 } 9077 9078 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9079 if (!prog) { 9080 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9081 map->name, shdr_idx, name); 9082 return -EINVAL; 9083 } 9084 9085 /* prevent the use of BPF prog with invalid type */ 9086 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9087 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9088 map->name, prog->name); 9089 return -EINVAL; 9090 } 9091 9092 /* if we haven't yet processed this BPF program, record proper 9093 * attach_btf_id and member_idx 9094 */ 9095 if (!prog->attach_btf_id) { 9096 prog->attach_btf_id = st_ops->type_id; 9097 prog->expected_attach_type = member_idx; 9098 } 9099 9100 /* struct_ops BPF prog can be re-used between multiple 9101 * .struct_ops & .struct_ops.link as long as it's the 9102 * same struct_ops struct definition and the same 9103 * function pointer field 9104 */ 9105 if (prog->attach_btf_id != st_ops->type_id || 9106 prog->expected_attach_type != member_idx) { 9107 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 9108 map->name, prog->name, prog->sec_name, prog->type, 9109 prog->attach_btf_id, prog->expected_attach_type, name); 9110 return -EINVAL; 9111 } 9112 9113 st_ops->progs[member_idx] = prog; 9114 } 9115 9116 return 0; 9117 } 9118 9119 #define BTF_TRACE_PREFIX "btf_trace_" 9120 #define BTF_LSM_PREFIX "bpf_lsm_" 9121 #define BTF_ITER_PREFIX "bpf_iter_" 9122 #define BTF_MAX_NAME_SIZE 128 9123 9124 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9125 const char **prefix, int *kind) 9126 { 9127 switch (attach_type) { 9128 case BPF_TRACE_RAW_TP: 9129 *prefix = BTF_TRACE_PREFIX; 9130 *kind = BTF_KIND_TYPEDEF; 9131 break; 9132 case BPF_LSM_MAC: 9133 case BPF_LSM_CGROUP: 9134 *prefix = BTF_LSM_PREFIX; 9135 *kind = BTF_KIND_FUNC; 9136 break; 9137 case BPF_TRACE_ITER: 9138 *prefix = BTF_ITER_PREFIX; 9139 *kind = BTF_KIND_FUNC; 9140 break; 9141 default: 9142 *prefix = ""; 9143 *kind = BTF_KIND_FUNC; 9144 } 9145 } 9146 9147 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9148 const char *name, __u32 kind) 9149 { 9150 char btf_type_name[BTF_MAX_NAME_SIZE]; 9151 int ret; 9152 9153 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9154 "%s%s", prefix, name); 9155 /* snprintf returns the number of characters written excluding the 9156 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9157 * indicates truncation. 9158 */ 9159 if (ret < 0 || ret >= sizeof(btf_type_name)) 9160 return -ENAMETOOLONG; 9161 return btf__find_by_name_kind(btf, btf_type_name, kind); 9162 } 9163 9164 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9165 enum bpf_attach_type attach_type) 9166 { 9167 const char *prefix; 9168 int kind; 9169 9170 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9171 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9172 } 9173 9174 int libbpf_find_vmlinux_btf_id(const char *name, 9175 enum bpf_attach_type attach_type) 9176 { 9177 struct btf *btf; 9178 int err; 9179 9180 btf = btf__load_vmlinux_btf(); 9181 err = libbpf_get_error(btf); 9182 if (err) { 9183 pr_warn("vmlinux BTF is not found\n"); 9184 return libbpf_err(err); 9185 } 9186 9187 err = find_attach_btf_id(btf, name, attach_type); 9188 if (err <= 0) 9189 pr_warn("%s is not found in vmlinux BTF\n", name); 9190 9191 btf__free(btf); 9192 return libbpf_err(err); 9193 } 9194 9195 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9196 { 9197 struct bpf_prog_info info; 9198 __u32 info_len = sizeof(info); 9199 struct btf *btf; 9200 int err; 9201 9202 memset(&info, 0, info_len); 9203 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len); 9204 if (err) { 9205 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n", 9206 attach_prog_fd, err); 9207 return err; 9208 } 9209 9210 err = -EINVAL; 9211 if (!info.btf_id) { 9212 pr_warn("The target program doesn't have BTF\n"); 9213 goto out; 9214 } 9215 btf = btf__load_from_kernel_by_id(info.btf_id); 9216 err = libbpf_get_error(btf); 9217 if (err) { 9218 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9219 goto out; 9220 } 9221 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9222 btf__free(btf); 9223 if (err <= 0) { 9224 pr_warn("%s is not found in prog's BTF\n", name); 9225 goto out; 9226 } 9227 out: 9228 return err; 9229 } 9230 9231 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9232 enum bpf_attach_type attach_type, 9233 int *btf_obj_fd, int *btf_type_id) 9234 { 9235 int ret, i; 9236 9237 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9238 if (ret > 0) { 9239 *btf_obj_fd = 0; /* vmlinux BTF */ 9240 *btf_type_id = ret; 9241 return 0; 9242 } 9243 if (ret != -ENOENT) 9244 return ret; 9245 9246 ret = load_module_btfs(obj); 9247 if (ret) 9248 return ret; 9249 9250 for (i = 0; i < obj->btf_module_cnt; i++) { 9251 const struct module_btf *mod = &obj->btf_modules[i]; 9252 9253 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9254 if (ret > 0) { 9255 *btf_obj_fd = mod->fd; 9256 *btf_type_id = ret; 9257 return 0; 9258 } 9259 if (ret == -ENOENT) 9260 continue; 9261 9262 return ret; 9263 } 9264 9265 return -ESRCH; 9266 } 9267 9268 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9269 int *btf_obj_fd, int *btf_type_id) 9270 { 9271 enum bpf_attach_type attach_type = prog->expected_attach_type; 9272 __u32 attach_prog_fd = prog->attach_prog_fd; 9273 int err = 0; 9274 9275 /* BPF program's BTF ID */ 9276 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 9277 if (!attach_prog_fd) { 9278 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 9279 return -EINVAL; 9280 } 9281 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9282 if (err < 0) { 9283 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9284 prog->name, attach_prog_fd, attach_name, err); 9285 return err; 9286 } 9287 *btf_obj_fd = 0; 9288 *btf_type_id = err; 9289 return 0; 9290 } 9291 9292 /* kernel/module BTF ID */ 9293 if (prog->obj->gen_loader) { 9294 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9295 *btf_obj_fd = 0; 9296 *btf_type_id = 1; 9297 } else { 9298 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9299 } 9300 if (err) { 9301 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n", 9302 prog->name, attach_name, err); 9303 return err; 9304 } 9305 return 0; 9306 } 9307 9308 int libbpf_attach_type_by_name(const char *name, 9309 enum bpf_attach_type *attach_type) 9310 { 9311 char *type_names; 9312 const struct bpf_sec_def *sec_def; 9313 9314 if (!name) 9315 return libbpf_err(-EINVAL); 9316 9317 sec_def = find_sec_def(name); 9318 if (!sec_def) { 9319 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9320 type_names = libbpf_get_type_names(true); 9321 if (type_names != NULL) { 9322 pr_debug("attachable section(type) names are:%s\n", type_names); 9323 free(type_names); 9324 } 9325 9326 return libbpf_err(-EINVAL); 9327 } 9328 9329 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9330 return libbpf_err(-EINVAL); 9331 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9332 return libbpf_err(-EINVAL); 9333 9334 *attach_type = sec_def->expected_attach_type; 9335 return 0; 9336 } 9337 9338 int bpf_map__fd(const struct bpf_map *map) 9339 { 9340 return map ? map->fd : libbpf_err(-EINVAL); 9341 } 9342 9343 static bool map_uses_real_name(const struct bpf_map *map) 9344 { 9345 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9346 * their user-visible name differs from kernel-visible name. Users see 9347 * such map's corresponding ELF section name as a map name. 9348 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9349 * maps to know which name has to be returned to the user. 9350 */ 9351 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9352 return true; 9353 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9354 return true; 9355 return false; 9356 } 9357 9358 const char *bpf_map__name(const struct bpf_map *map) 9359 { 9360 if (!map) 9361 return NULL; 9362 9363 if (map_uses_real_name(map)) 9364 return map->real_name; 9365 9366 return map->name; 9367 } 9368 9369 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9370 { 9371 return map->def.type; 9372 } 9373 9374 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9375 { 9376 if (map->fd >= 0) 9377 return libbpf_err(-EBUSY); 9378 map->def.type = type; 9379 return 0; 9380 } 9381 9382 __u32 bpf_map__map_flags(const struct bpf_map *map) 9383 { 9384 return map->def.map_flags; 9385 } 9386 9387 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9388 { 9389 if (map->fd >= 0) 9390 return libbpf_err(-EBUSY); 9391 map->def.map_flags = flags; 9392 return 0; 9393 } 9394 9395 __u64 bpf_map__map_extra(const struct bpf_map *map) 9396 { 9397 return map->map_extra; 9398 } 9399 9400 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9401 { 9402 if (map->fd >= 0) 9403 return libbpf_err(-EBUSY); 9404 map->map_extra = map_extra; 9405 return 0; 9406 } 9407 9408 __u32 bpf_map__numa_node(const struct bpf_map *map) 9409 { 9410 return map->numa_node; 9411 } 9412 9413 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9414 { 9415 if (map->fd >= 0) 9416 return libbpf_err(-EBUSY); 9417 map->numa_node = numa_node; 9418 return 0; 9419 } 9420 9421 __u32 bpf_map__key_size(const struct bpf_map *map) 9422 { 9423 return map->def.key_size; 9424 } 9425 9426 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9427 { 9428 if (map->fd >= 0) 9429 return libbpf_err(-EBUSY); 9430 map->def.key_size = size; 9431 return 0; 9432 } 9433 9434 __u32 bpf_map__value_size(const struct bpf_map *map) 9435 { 9436 return map->def.value_size; 9437 } 9438 9439 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size) 9440 { 9441 struct btf *btf; 9442 struct btf_type *datasec_type, *var_type; 9443 struct btf_var_secinfo *var; 9444 const struct btf_type *array_type; 9445 const struct btf_array *array; 9446 int vlen, element_sz, new_array_id; 9447 __u32 nr_elements; 9448 9449 /* check btf existence */ 9450 btf = bpf_object__btf(map->obj); 9451 if (!btf) 9452 return -ENOENT; 9453 9454 /* verify map is datasec */ 9455 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map)); 9456 if (!btf_is_datasec(datasec_type)) { 9457 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n", 9458 bpf_map__name(map)); 9459 return -EINVAL; 9460 } 9461 9462 /* verify datasec has at least one var */ 9463 vlen = btf_vlen(datasec_type); 9464 if (vlen == 0) { 9465 pr_warn("map '%s': cannot be resized, map value datasec is empty\n", 9466 bpf_map__name(map)); 9467 return -EINVAL; 9468 } 9469 9470 /* verify last var in the datasec is an array */ 9471 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 9472 var_type = btf_type_by_id(btf, var->type); 9473 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL); 9474 if (!btf_is_array(array_type)) { 9475 pr_warn("map '%s': cannot be resized, last var must be an array\n", 9476 bpf_map__name(map)); 9477 return -EINVAL; 9478 } 9479 9480 /* verify request size aligns with array */ 9481 array = btf_array(array_type); 9482 element_sz = btf__resolve_size(btf, array->type); 9483 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) { 9484 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n", 9485 bpf_map__name(map), element_sz, size); 9486 return -EINVAL; 9487 } 9488 9489 /* create a new array based on the existing array, but with new length */ 9490 nr_elements = (size - var->offset) / element_sz; 9491 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements); 9492 if (new_array_id < 0) 9493 return new_array_id; 9494 9495 /* adding a new btf type invalidates existing pointers to btf objects, 9496 * so refresh pointers before proceeding 9497 */ 9498 datasec_type = btf_type_by_id(btf, map->btf_value_type_id); 9499 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 9500 var_type = btf_type_by_id(btf, var->type); 9501 9502 /* finally update btf info */ 9503 datasec_type->size = size; 9504 var->size = size - var->offset; 9505 var_type->type = new_array_id; 9506 9507 return 0; 9508 } 9509 9510 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9511 { 9512 if (map->fd >= 0) 9513 return libbpf_err(-EBUSY); 9514 9515 if (map->mmaped) { 9516 int err; 9517 size_t mmap_old_sz, mmap_new_sz; 9518 9519 mmap_old_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 9520 mmap_new_sz = bpf_map_mmap_sz(size, map->def.max_entries); 9521 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz); 9522 if (err) { 9523 pr_warn("map '%s': failed to resize memory-mapped region: %d\n", 9524 bpf_map__name(map), err); 9525 return err; 9526 } 9527 err = map_btf_datasec_resize(map, size); 9528 if (err && err != -ENOENT) { 9529 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n", 9530 bpf_map__name(map), err); 9531 map->btf_value_type_id = 0; 9532 map->btf_key_type_id = 0; 9533 } 9534 } 9535 9536 map->def.value_size = size; 9537 return 0; 9538 } 9539 9540 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9541 { 9542 return map ? map->btf_key_type_id : 0; 9543 } 9544 9545 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9546 { 9547 return map ? map->btf_value_type_id : 0; 9548 } 9549 9550 int bpf_map__set_initial_value(struct bpf_map *map, 9551 const void *data, size_t size) 9552 { 9553 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9554 size != map->def.value_size || map->fd >= 0) 9555 return libbpf_err(-EINVAL); 9556 9557 memcpy(map->mmaped, data, size); 9558 return 0; 9559 } 9560 9561 void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9562 { 9563 if (!map->mmaped) 9564 return NULL; 9565 *psize = map->def.value_size; 9566 return map->mmaped; 9567 } 9568 9569 bool bpf_map__is_internal(const struct bpf_map *map) 9570 { 9571 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9572 } 9573 9574 __u32 bpf_map__ifindex(const struct bpf_map *map) 9575 { 9576 return map->map_ifindex; 9577 } 9578 9579 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9580 { 9581 if (map->fd >= 0) 9582 return libbpf_err(-EBUSY); 9583 map->map_ifindex = ifindex; 9584 return 0; 9585 } 9586 9587 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9588 { 9589 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9590 pr_warn("error: unsupported map type\n"); 9591 return libbpf_err(-EINVAL); 9592 } 9593 if (map->inner_map_fd != -1) { 9594 pr_warn("error: inner_map_fd already specified\n"); 9595 return libbpf_err(-EINVAL); 9596 } 9597 if (map->inner_map) { 9598 bpf_map__destroy(map->inner_map); 9599 zfree(&map->inner_map); 9600 } 9601 map->inner_map_fd = fd; 9602 return 0; 9603 } 9604 9605 static struct bpf_map * 9606 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9607 { 9608 ssize_t idx; 9609 struct bpf_map *s, *e; 9610 9611 if (!obj || !obj->maps) 9612 return errno = EINVAL, NULL; 9613 9614 s = obj->maps; 9615 e = obj->maps + obj->nr_maps; 9616 9617 if ((m < s) || (m >= e)) { 9618 pr_warn("error in %s: map handler doesn't belong to object\n", 9619 __func__); 9620 return errno = EINVAL, NULL; 9621 } 9622 9623 idx = (m - obj->maps) + i; 9624 if (idx >= obj->nr_maps || idx < 0) 9625 return NULL; 9626 return &obj->maps[idx]; 9627 } 9628 9629 struct bpf_map * 9630 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 9631 { 9632 if (prev == NULL) 9633 return obj->maps; 9634 9635 return __bpf_map__iter(prev, obj, 1); 9636 } 9637 9638 struct bpf_map * 9639 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 9640 { 9641 if (next == NULL) { 9642 if (!obj->nr_maps) 9643 return NULL; 9644 return obj->maps + obj->nr_maps - 1; 9645 } 9646 9647 return __bpf_map__iter(next, obj, -1); 9648 } 9649 9650 struct bpf_map * 9651 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9652 { 9653 struct bpf_map *pos; 9654 9655 bpf_object__for_each_map(pos, obj) { 9656 /* if it's a special internal map name (which always starts 9657 * with dot) then check if that special name matches the 9658 * real map name (ELF section name) 9659 */ 9660 if (name[0] == '.') { 9661 if (pos->real_name && strcmp(pos->real_name, name) == 0) 9662 return pos; 9663 continue; 9664 } 9665 /* otherwise map name has to be an exact match */ 9666 if (map_uses_real_name(pos)) { 9667 if (strcmp(pos->real_name, name) == 0) 9668 return pos; 9669 continue; 9670 } 9671 if (strcmp(pos->name, name) == 0) 9672 return pos; 9673 } 9674 return errno = ENOENT, NULL; 9675 } 9676 9677 int 9678 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9679 { 9680 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9681 } 9682 9683 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 9684 size_t value_sz, bool check_value_sz) 9685 { 9686 if (map->fd <= 0) 9687 return -ENOENT; 9688 9689 if (map->def.key_size != key_sz) { 9690 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 9691 map->name, key_sz, map->def.key_size); 9692 return -EINVAL; 9693 } 9694 9695 if (!check_value_sz) 9696 return 0; 9697 9698 switch (map->def.type) { 9699 case BPF_MAP_TYPE_PERCPU_ARRAY: 9700 case BPF_MAP_TYPE_PERCPU_HASH: 9701 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 9702 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 9703 int num_cpu = libbpf_num_possible_cpus(); 9704 size_t elem_sz = roundup(map->def.value_size, 8); 9705 9706 if (value_sz != num_cpu * elem_sz) { 9707 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 9708 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 9709 return -EINVAL; 9710 } 9711 break; 9712 } 9713 default: 9714 if (map->def.value_size != value_sz) { 9715 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 9716 map->name, value_sz, map->def.value_size); 9717 return -EINVAL; 9718 } 9719 break; 9720 } 9721 return 0; 9722 } 9723 9724 int bpf_map__lookup_elem(const struct bpf_map *map, 9725 const void *key, size_t key_sz, 9726 void *value, size_t value_sz, __u64 flags) 9727 { 9728 int err; 9729 9730 err = validate_map_op(map, key_sz, value_sz, true); 9731 if (err) 9732 return libbpf_err(err); 9733 9734 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 9735 } 9736 9737 int bpf_map__update_elem(const struct bpf_map *map, 9738 const void *key, size_t key_sz, 9739 const void *value, size_t value_sz, __u64 flags) 9740 { 9741 int err; 9742 9743 err = validate_map_op(map, key_sz, value_sz, true); 9744 if (err) 9745 return libbpf_err(err); 9746 9747 return bpf_map_update_elem(map->fd, key, value, flags); 9748 } 9749 9750 int bpf_map__delete_elem(const struct bpf_map *map, 9751 const void *key, size_t key_sz, __u64 flags) 9752 { 9753 int err; 9754 9755 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 9756 if (err) 9757 return libbpf_err(err); 9758 9759 return bpf_map_delete_elem_flags(map->fd, key, flags); 9760 } 9761 9762 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 9763 const void *key, size_t key_sz, 9764 void *value, size_t value_sz, __u64 flags) 9765 { 9766 int err; 9767 9768 err = validate_map_op(map, key_sz, value_sz, true); 9769 if (err) 9770 return libbpf_err(err); 9771 9772 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 9773 } 9774 9775 int bpf_map__get_next_key(const struct bpf_map *map, 9776 const void *cur_key, void *next_key, size_t key_sz) 9777 { 9778 int err; 9779 9780 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 9781 if (err) 9782 return libbpf_err(err); 9783 9784 return bpf_map_get_next_key(map->fd, cur_key, next_key); 9785 } 9786 9787 long libbpf_get_error(const void *ptr) 9788 { 9789 if (!IS_ERR_OR_NULL(ptr)) 9790 return 0; 9791 9792 if (IS_ERR(ptr)) 9793 errno = -PTR_ERR(ptr); 9794 9795 /* If ptr == NULL, then errno should be already set by the failing 9796 * API, because libbpf never returns NULL on success and it now always 9797 * sets errno on error. So no extra errno handling for ptr == NULL 9798 * case. 9799 */ 9800 return -errno; 9801 } 9802 9803 /* Replace link's underlying BPF program with the new one */ 9804 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9805 { 9806 int ret; 9807 9808 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9809 return libbpf_err_errno(ret); 9810 } 9811 9812 /* Release "ownership" of underlying BPF resource (typically, BPF program 9813 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9814 * link, when destructed through bpf_link__destroy() call won't attempt to 9815 * detach/unregisted that BPF resource. This is useful in situations where, 9816 * say, attached BPF program has to outlive userspace program that attached it 9817 * in the system. Depending on type of BPF program, though, there might be 9818 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9819 * exit of userspace program doesn't trigger automatic detachment and clean up 9820 * inside the kernel. 9821 */ 9822 void bpf_link__disconnect(struct bpf_link *link) 9823 { 9824 link->disconnected = true; 9825 } 9826 9827 int bpf_link__destroy(struct bpf_link *link) 9828 { 9829 int err = 0; 9830 9831 if (IS_ERR_OR_NULL(link)) 9832 return 0; 9833 9834 if (!link->disconnected && link->detach) 9835 err = link->detach(link); 9836 if (link->pin_path) 9837 free(link->pin_path); 9838 if (link->dealloc) 9839 link->dealloc(link); 9840 else 9841 free(link); 9842 9843 return libbpf_err(err); 9844 } 9845 9846 int bpf_link__fd(const struct bpf_link *link) 9847 { 9848 return link->fd; 9849 } 9850 9851 const char *bpf_link__pin_path(const struct bpf_link *link) 9852 { 9853 return link->pin_path; 9854 } 9855 9856 static int bpf_link__detach_fd(struct bpf_link *link) 9857 { 9858 return libbpf_err_errno(close(link->fd)); 9859 } 9860 9861 struct bpf_link *bpf_link__open(const char *path) 9862 { 9863 struct bpf_link *link; 9864 int fd; 9865 9866 fd = bpf_obj_get(path); 9867 if (fd < 0) { 9868 fd = -errno; 9869 pr_warn("failed to open link at %s: %d\n", path, fd); 9870 return libbpf_err_ptr(fd); 9871 } 9872 9873 link = calloc(1, sizeof(*link)); 9874 if (!link) { 9875 close(fd); 9876 return libbpf_err_ptr(-ENOMEM); 9877 } 9878 link->detach = &bpf_link__detach_fd; 9879 link->fd = fd; 9880 9881 link->pin_path = strdup(path); 9882 if (!link->pin_path) { 9883 bpf_link__destroy(link); 9884 return libbpf_err_ptr(-ENOMEM); 9885 } 9886 9887 return link; 9888 } 9889 9890 int bpf_link__detach(struct bpf_link *link) 9891 { 9892 return bpf_link_detach(link->fd) ? -errno : 0; 9893 } 9894 9895 int bpf_link__pin(struct bpf_link *link, const char *path) 9896 { 9897 int err; 9898 9899 if (link->pin_path) 9900 return libbpf_err(-EBUSY); 9901 err = make_parent_dir(path); 9902 if (err) 9903 return libbpf_err(err); 9904 err = check_path(path); 9905 if (err) 9906 return libbpf_err(err); 9907 9908 link->pin_path = strdup(path); 9909 if (!link->pin_path) 9910 return libbpf_err(-ENOMEM); 9911 9912 if (bpf_obj_pin(link->fd, link->pin_path)) { 9913 err = -errno; 9914 zfree(&link->pin_path); 9915 return libbpf_err(err); 9916 } 9917 9918 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9919 return 0; 9920 } 9921 9922 int bpf_link__unpin(struct bpf_link *link) 9923 { 9924 int err; 9925 9926 if (!link->pin_path) 9927 return libbpf_err(-EINVAL); 9928 9929 err = unlink(link->pin_path); 9930 if (err != 0) 9931 return -errno; 9932 9933 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9934 zfree(&link->pin_path); 9935 return 0; 9936 } 9937 9938 struct bpf_link_perf { 9939 struct bpf_link link; 9940 int perf_event_fd; 9941 /* legacy kprobe support: keep track of probe identifier and type */ 9942 char *legacy_probe_name; 9943 bool legacy_is_kprobe; 9944 bool legacy_is_retprobe; 9945 }; 9946 9947 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 9948 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 9949 9950 static int bpf_link_perf_detach(struct bpf_link *link) 9951 { 9952 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9953 int err = 0; 9954 9955 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 9956 err = -errno; 9957 9958 if (perf_link->perf_event_fd != link->fd) 9959 close(perf_link->perf_event_fd); 9960 close(link->fd); 9961 9962 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 9963 if (perf_link->legacy_probe_name) { 9964 if (perf_link->legacy_is_kprobe) { 9965 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 9966 perf_link->legacy_is_retprobe); 9967 } else { 9968 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 9969 perf_link->legacy_is_retprobe); 9970 } 9971 } 9972 9973 return err; 9974 } 9975 9976 static void bpf_link_perf_dealloc(struct bpf_link *link) 9977 { 9978 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9979 9980 free(perf_link->legacy_probe_name); 9981 free(perf_link); 9982 } 9983 9984 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 9985 const struct bpf_perf_event_opts *opts) 9986 { 9987 char errmsg[STRERR_BUFSIZE]; 9988 struct bpf_link_perf *link; 9989 int prog_fd, link_fd = -1, err; 9990 bool force_ioctl_attach; 9991 9992 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 9993 return libbpf_err_ptr(-EINVAL); 9994 9995 if (pfd < 0) { 9996 pr_warn("prog '%s': invalid perf event FD %d\n", 9997 prog->name, pfd); 9998 return libbpf_err_ptr(-EINVAL); 9999 } 10000 prog_fd = bpf_program__fd(prog); 10001 if (prog_fd < 0) { 10002 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 10003 prog->name); 10004 return libbpf_err_ptr(-EINVAL); 10005 } 10006 10007 link = calloc(1, sizeof(*link)); 10008 if (!link) 10009 return libbpf_err_ptr(-ENOMEM); 10010 link->link.detach = &bpf_link_perf_detach; 10011 link->link.dealloc = &bpf_link_perf_dealloc; 10012 link->perf_event_fd = pfd; 10013 10014 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false); 10015 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) { 10016 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 10017 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 10018 10019 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 10020 if (link_fd < 0) { 10021 err = -errno; 10022 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 10023 prog->name, pfd, 10024 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10025 goto err_out; 10026 } 10027 link->link.fd = link_fd; 10028 } else { 10029 if (OPTS_GET(opts, bpf_cookie, 0)) { 10030 pr_warn("prog '%s': user context value is not supported\n", prog->name); 10031 err = -EOPNOTSUPP; 10032 goto err_out; 10033 } 10034 10035 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 10036 err = -errno; 10037 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 10038 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10039 if (err == -EPROTO) 10040 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 10041 prog->name, pfd); 10042 goto err_out; 10043 } 10044 link->link.fd = pfd; 10045 } 10046 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10047 err = -errno; 10048 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 10049 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10050 goto err_out; 10051 } 10052 10053 return &link->link; 10054 err_out: 10055 if (link_fd >= 0) 10056 close(link_fd); 10057 free(link); 10058 return libbpf_err_ptr(err); 10059 } 10060 10061 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 10062 { 10063 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 10064 } 10065 10066 /* 10067 * this function is expected to parse integer in the range of [0, 2^31-1] from 10068 * given file using scanf format string fmt. If actual parsed value is 10069 * negative, the result might be indistinguishable from error 10070 */ 10071 static int parse_uint_from_file(const char *file, const char *fmt) 10072 { 10073 char buf[STRERR_BUFSIZE]; 10074 int err, ret; 10075 FILE *f; 10076 10077 f = fopen(file, "re"); 10078 if (!f) { 10079 err = -errno; 10080 pr_debug("failed to open '%s': %s\n", file, 10081 libbpf_strerror_r(err, buf, sizeof(buf))); 10082 return err; 10083 } 10084 err = fscanf(f, fmt, &ret); 10085 if (err != 1) { 10086 err = err == EOF ? -EIO : -errno; 10087 pr_debug("failed to parse '%s': %s\n", file, 10088 libbpf_strerror_r(err, buf, sizeof(buf))); 10089 fclose(f); 10090 return err; 10091 } 10092 fclose(f); 10093 return ret; 10094 } 10095 10096 static int determine_kprobe_perf_type(void) 10097 { 10098 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 10099 10100 return parse_uint_from_file(file, "%d\n"); 10101 } 10102 10103 static int determine_uprobe_perf_type(void) 10104 { 10105 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 10106 10107 return parse_uint_from_file(file, "%d\n"); 10108 } 10109 10110 static int determine_kprobe_retprobe_bit(void) 10111 { 10112 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 10113 10114 return parse_uint_from_file(file, "config:%d\n"); 10115 } 10116 10117 static int determine_uprobe_retprobe_bit(void) 10118 { 10119 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 10120 10121 return parse_uint_from_file(file, "config:%d\n"); 10122 } 10123 10124 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 10125 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 10126 10127 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 10128 uint64_t offset, int pid, size_t ref_ctr_off) 10129 { 10130 const size_t attr_sz = sizeof(struct perf_event_attr); 10131 struct perf_event_attr attr; 10132 char errmsg[STRERR_BUFSIZE]; 10133 int type, pfd; 10134 10135 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 10136 return -EINVAL; 10137 10138 memset(&attr, 0, attr_sz); 10139 10140 type = uprobe ? determine_uprobe_perf_type() 10141 : determine_kprobe_perf_type(); 10142 if (type < 0) { 10143 pr_warn("failed to determine %s perf type: %s\n", 10144 uprobe ? "uprobe" : "kprobe", 10145 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10146 return type; 10147 } 10148 if (retprobe) { 10149 int bit = uprobe ? determine_uprobe_retprobe_bit() 10150 : determine_kprobe_retprobe_bit(); 10151 10152 if (bit < 0) { 10153 pr_warn("failed to determine %s retprobe bit: %s\n", 10154 uprobe ? "uprobe" : "kprobe", 10155 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 10156 return bit; 10157 } 10158 attr.config |= 1 << bit; 10159 } 10160 attr.size = attr_sz; 10161 attr.type = type; 10162 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10163 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 10164 attr.config2 = offset; /* kprobe_addr or probe_offset */ 10165 10166 /* pid filter is meaningful only for uprobes */ 10167 pfd = syscall(__NR_perf_event_open, &attr, 10168 pid < 0 ? -1 : pid /* pid */, 10169 pid == -1 ? 0 : -1 /* cpu */, 10170 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10171 return pfd >= 0 ? pfd : -errno; 10172 } 10173 10174 static int append_to_file(const char *file, const char *fmt, ...) 10175 { 10176 int fd, n, err = 0; 10177 va_list ap; 10178 char buf[1024]; 10179 10180 va_start(ap, fmt); 10181 n = vsnprintf(buf, sizeof(buf), fmt, ap); 10182 va_end(ap); 10183 10184 if (n < 0 || n >= sizeof(buf)) 10185 return -EINVAL; 10186 10187 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 10188 if (fd < 0) 10189 return -errno; 10190 10191 if (write(fd, buf, n) < 0) 10192 err = -errno; 10193 10194 close(fd); 10195 return err; 10196 } 10197 10198 #define DEBUGFS "/sys/kernel/debug/tracing" 10199 #define TRACEFS "/sys/kernel/tracing" 10200 10201 static bool use_debugfs(void) 10202 { 10203 static int has_debugfs = -1; 10204 10205 if (has_debugfs < 0) 10206 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 10207 10208 return has_debugfs == 1; 10209 } 10210 10211 static const char *tracefs_path(void) 10212 { 10213 return use_debugfs() ? DEBUGFS : TRACEFS; 10214 } 10215 10216 static const char *tracefs_kprobe_events(void) 10217 { 10218 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 10219 } 10220 10221 static const char *tracefs_uprobe_events(void) 10222 { 10223 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 10224 } 10225 10226 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 10227 const char *kfunc_name, size_t offset) 10228 { 10229 static int index = 0; 10230 int i; 10231 10232 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 10233 __sync_fetch_and_add(&index, 1)); 10234 10235 /* sanitize binary_path in the probe name */ 10236 for (i = 0; buf[i]; i++) { 10237 if (!isalnum(buf[i])) 10238 buf[i] = '_'; 10239 } 10240 } 10241 10242 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 10243 const char *kfunc_name, size_t offset) 10244 { 10245 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 10246 retprobe ? 'r' : 'p', 10247 retprobe ? "kretprobes" : "kprobes", 10248 probe_name, kfunc_name, offset); 10249 } 10250 10251 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 10252 { 10253 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 10254 retprobe ? "kretprobes" : "kprobes", probe_name); 10255 } 10256 10257 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10258 { 10259 char file[256]; 10260 10261 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10262 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 10263 10264 return parse_uint_from_file(file, "%d\n"); 10265 } 10266 10267 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 10268 const char *kfunc_name, size_t offset, int pid) 10269 { 10270 const size_t attr_sz = sizeof(struct perf_event_attr); 10271 struct perf_event_attr attr; 10272 char errmsg[STRERR_BUFSIZE]; 10273 int type, pfd, err; 10274 10275 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 10276 if (err < 0) { 10277 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 10278 kfunc_name, offset, 10279 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10280 return err; 10281 } 10282 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 10283 if (type < 0) { 10284 err = type; 10285 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 10286 kfunc_name, offset, 10287 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10288 goto err_clean_legacy; 10289 } 10290 10291 memset(&attr, 0, attr_sz); 10292 attr.size = attr_sz; 10293 attr.config = type; 10294 attr.type = PERF_TYPE_TRACEPOINT; 10295 10296 pfd = syscall(__NR_perf_event_open, &attr, 10297 pid < 0 ? -1 : pid, /* pid */ 10298 pid == -1 ? 0 : -1, /* cpu */ 10299 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10300 if (pfd < 0) { 10301 err = -errno; 10302 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10303 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10304 goto err_clean_legacy; 10305 } 10306 return pfd; 10307 10308 err_clean_legacy: 10309 /* Clear the newly added legacy kprobe_event */ 10310 remove_kprobe_event_legacy(probe_name, retprobe); 10311 return err; 10312 } 10313 10314 static const char *arch_specific_syscall_pfx(void) 10315 { 10316 #if defined(__x86_64__) 10317 return "x64"; 10318 #elif defined(__i386__) 10319 return "ia32"; 10320 #elif defined(__s390x__) 10321 return "s390x"; 10322 #elif defined(__s390__) 10323 return "s390"; 10324 #elif defined(__arm__) 10325 return "arm"; 10326 #elif defined(__aarch64__) 10327 return "arm64"; 10328 #elif defined(__mips__) 10329 return "mips"; 10330 #elif defined(__riscv) 10331 return "riscv"; 10332 #elif defined(__powerpc__) 10333 return "powerpc"; 10334 #elif defined(__powerpc64__) 10335 return "powerpc64"; 10336 #else 10337 return NULL; 10338 #endif 10339 } 10340 10341 static int probe_kern_syscall_wrapper(void) 10342 { 10343 char syscall_name[64]; 10344 const char *ksys_pfx; 10345 10346 ksys_pfx = arch_specific_syscall_pfx(); 10347 if (!ksys_pfx) 10348 return 0; 10349 10350 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 10351 10352 if (determine_kprobe_perf_type() >= 0) { 10353 int pfd; 10354 10355 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 10356 if (pfd >= 0) 10357 close(pfd); 10358 10359 return pfd >= 0 ? 1 : 0; 10360 } else { /* legacy mode */ 10361 char probe_name[128]; 10362 10363 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 10364 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 10365 return 0; 10366 10367 (void)remove_kprobe_event_legacy(probe_name, false); 10368 return 1; 10369 } 10370 } 10371 10372 struct bpf_link * 10373 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 10374 const char *func_name, 10375 const struct bpf_kprobe_opts *opts) 10376 { 10377 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10378 enum probe_attach_mode attach_mode; 10379 char errmsg[STRERR_BUFSIZE]; 10380 char *legacy_probe = NULL; 10381 struct bpf_link *link; 10382 size_t offset; 10383 bool retprobe, legacy; 10384 int pfd, err; 10385 10386 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 10387 return libbpf_err_ptr(-EINVAL); 10388 10389 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 10390 retprobe = OPTS_GET(opts, retprobe, false); 10391 offset = OPTS_GET(opts, offset, 0); 10392 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10393 10394 legacy = determine_kprobe_perf_type() < 0; 10395 switch (attach_mode) { 10396 case PROBE_ATTACH_MODE_LEGACY: 10397 legacy = true; 10398 pe_opts.force_ioctl_attach = true; 10399 break; 10400 case PROBE_ATTACH_MODE_PERF: 10401 if (legacy) 10402 return libbpf_err_ptr(-ENOTSUP); 10403 pe_opts.force_ioctl_attach = true; 10404 break; 10405 case PROBE_ATTACH_MODE_LINK: 10406 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 10407 return libbpf_err_ptr(-ENOTSUP); 10408 break; 10409 case PROBE_ATTACH_MODE_DEFAULT: 10410 break; 10411 default: 10412 return libbpf_err_ptr(-EINVAL); 10413 } 10414 10415 if (!legacy) { 10416 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 10417 func_name, offset, 10418 -1 /* pid */, 0 /* ref_ctr_off */); 10419 } else { 10420 char probe_name[256]; 10421 10422 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 10423 func_name, offset); 10424 10425 legacy_probe = strdup(probe_name); 10426 if (!legacy_probe) 10427 return libbpf_err_ptr(-ENOMEM); 10428 10429 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 10430 offset, -1 /* pid */); 10431 } 10432 if (pfd < 0) { 10433 err = -errno; 10434 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 10435 prog->name, retprobe ? "kretprobe" : "kprobe", 10436 func_name, offset, 10437 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10438 goto err_out; 10439 } 10440 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10441 err = libbpf_get_error(link); 10442 if (err) { 10443 close(pfd); 10444 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 10445 prog->name, retprobe ? "kretprobe" : "kprobe", 10446 func_name, offset, 10447 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10448 goto err_clean_legacy; 10449 } 10450 if (legacy) { 10451 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10452 10453 perf_link->legacy_probe_name = legacy_probe; 10454 perf_link->legacy_is_kprobe = true; 10455 perf_link->legacy_is_retprobe = retprobe; 10456 } 10457 10458 return link; 10459 10460 err_clean_legacy: 10461 if (legacy) 10462 remove_kprobe_event_legacy(legacy_probe, retprobe); 10463 err_out: 10464 free(legacy_probe); 10465 return libbpf_err_ptr(err); 10466 } 10467 10468 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 10469 bool retprobe, 10470 const char *func_name) 10471 { 10472 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 10473 .retprobe = retprobe, 10474 ); 10475 10476 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 10477 } 10478 10479 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 10480 const char *syscall_name, 10481 const struct bpf_ksyscall_opts *opts) 10482 { 10483 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 10484 char func_name[128]; 10485 10486 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 10487 return libbpf_err_ptr(-EINVAL); 10488 10489 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 10490 /* arch_specific_syscall_pfx() should never return NULL here 10491 * because it is guarded by kernel_supports(). However, since 10492 * compiler does not know that we have an explicit conditional 10493 * as well. 10494 */ 10495 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 10496 arch_specific_syscall_pfx() ? : "", syscall_name); 10497 } else { 10498 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 10499 } 10500 10501 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 10502 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10503 10504 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 10505 } 10506 10507 /* Adapted from perf/util/string.c */ 10508 static bool glob_match(const char *str, const char *pat) 10509 { 10510 while (*str && *pat && *pat != '*') { 10511 if (*pat == '?') { /* Matches any single character */ 10512 str++; 10513 pat++; 10514 continue; 10515 } 10516 if (*str != *pat) 10517 return false; 10518 str++; 10519 pat++; 10520 } 10521 /* Check wild card */ 10522 if (*pat == '*') { 10523 while (*pat == '*') 10524 pat++; 10525 if (!*pat) /* Tail wild card matches all */ 10526 return true; 10527 while (*str) 10528 if (glob_match(str++, pat)) 10529 return true; 10530 } 10531 return !*str && !*pat; 10532 } 10533 10534 struct kprobe_multi_resolve { 10535 const char *pattern; 10536 unsigned long *addrs; 10537 size_t cap; 10538 size_t cnt; 10539 }; 10540 10541 static int 10542 resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type, 10543 const char *sym_name, void *ctx) 10544 { 10545 struct kprobe_multi_resolve *res = ctx; 10546 int err; 10547 10548 if (!glob_match(sym_name, res->pattern)) 10549 return 0; 10550 10551 err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long), 10552 res->cnt + 1); 10553 if (err) 10554 return err; 10555 10556 res->addrs[res->cnt++] = (unsigned long) sym_addr; 10557 return 0; 10558 } 10559 10560 struct bpf_link * 10561 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 10562 const char *pattern, 10563 const struct bpf_kprobe_multi_opts *opts) 10564 { 10565 LIBBPF_OPTS(bpf_link_create_opts, lopts); 10566 struct kprobe_multi_resolve res = { 10567 .pattern = pattern, 10568 }; 10569 struct bpf_link *link = NULL; 10570 char errmsg[STRERR_BUFSIZE]; 10571 const unsigned long *addrs; 10572 int err, link_fd, prog_fd; 10573 const __u64 *cookies; 10574 const char **syms; 10575 bool retprobe; 10576 size_t cnt; 10577 10578 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 10579 return libbpf_err_ptr(-EINVAL); 10580 10581 syms = OPTS_GET(opts, syms, false); 10582 addrs = OPTS_GET(opts, addrs, false); 10583 cnt = OPTS_GET(opts, cnt, false); 10584 cookies = OPTS_GET(opts, cookies, false); 10585 10586 if (!pattern && !addrs && !syms) 10587 return libbpf_err_ptr(-EINVAL); 10588 if (pattern && (addrs || syms || cookies || cnt)) 10589 return libbpf_err_ptr(-EINVAL); 10590 if (!pattern && !cnt) 10591 return libbpf_err_ptr(-EINVAL); 10592 if (addrs && syms) 10593 return libbpf_err_ptr(-EINVAL); 10594 10595 if (pattern) { 10596 err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res); 10597 if (err) 10598 goto error; 10599 if (!res.cnt) { 10600 err = -ENOENT; 10601 goto error; 10602 } 10603 addrs = res.addrs; 10604 cnt = res.cnt; 10605 } 10606 10607 retprobe = OPTS_GET(opts, retprobe, false); 10608 10609 lopts.kprobe_multi.syms = syms; 10610 lopts.kprobe_multi.addrs = addrs; 10611 lopts.kprobe_multi.cookies = cookies; 10612 lopts.kprobe_multi.cnt = cnt; 10613 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 10614 10615 link = calloc(1, sizeof(*link)); 10616 if (!link) { 10617 err = -ENOMEM; 10618 goto error; 10619 } 10620 link->detach = &bpf_link__detach_fd; 10621 10622 prog_fd = bpf_program__fd(prog); 10623 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts); 10624 if (link_fd < 0) { 10625 err = -errno; 10626 pr_warn("prog '%s': failed to attach: %s\n", 10627 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10628 goto error; 10629 } 10630 link->fd = link_fd; 10631 free(res.addrs); 10632 return link; 10633 10634 error: 10635 free(link); 10636 free(res.addrs); 10637 return libbpf_err_ptr(err); 10638 } 10639 10640 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10641 { 10642 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 10643 unsigned long offset = 0; 10644 const char *func_name; 10645 char *func; 10646 int n; 10647 10648 *link = NULL; 10649 10650 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 10651 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 10652 return 0; 10653 10654 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 10655 if (opts.retprobe) 10656 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 10657 else 10658 func_name = prog->sec_name + sizeof("kprobe/") - 1; 10659 10660 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 10661 if (n < 1) { 10662 pr_warn("kprobe name is invalid: %s\n", func_name); 10663 return -EINVAL; 10664 } 10665 if (opts.retprobe && offset != 0) { 10666 free(func); 10667 pr_warn("kretprobes do not support offset specification\n"); 10668 return -EINVAL; 10669 } 10670 10671 opts.offset = offset; 10672 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 10673 free(func); 10674 return libbpf_get_error(*link); 10675 } 10676 10677 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10678 { 10679 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 10680 const char *syscall_name; 10681 10682 *link = NULL; 10683 10684 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 10685 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 10686 return 0; 10687 10688 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 10689 if (opts.retprobe) 10690 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 10691 else 10692 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 10693 10694 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 10695 return *link ? 0 : -errno; 10696 } 10697 10698 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10699 { 10700 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 10701 const char *spec; 10702 char *pattern; 10703 int n; 10704 10705 *link = NULL; 10706 10707 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 10708 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 10709 strcmp(prog->sec_name, "kretprobe.multi") == 0) 10710 return 0; 10711 10712 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 10713 if (opts.retprobe) 10714 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 10715 else 10716 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 10717 10718 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 10719 if (n < 1) { 10720 pr_warn("kprobe multi pattern is invalid: %s\n", pattern); 10721 return -EINVAL; 10722 } 10723 10724 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 10725 free(pattern); 10726 return libbpf_get_error(*link); 10727 } 10728 10729 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 10730 const char *binary_path, uint64_t offset) 10731 { 10732 int i; 10733 10734 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 10735 10736 /* sanitize binary_path in the probe name */ 10737 for (i = 0; buf[i]; i++) { 10738 if (!isalnum(buf[i])) 10739 buf[i] = '_'; 10740 } 10741 } 10742 10743 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 10744 const char *binary_path, size_t offset) 10745 { 10746 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 10747 retprobe ? 'r' : 'p', 10748 retprobe ? "uretprobes" : "uprobes", 10749 probe_name, binary_path, offset); 10750 } 10751 10752 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 10753 { 10754 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 10755 retprobe ? "uretprobes" : "uprobes", probe_name); 10756 } 10757 10758 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10759 { 10760 char file[512]; 10761 10762 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10763 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 10764 10765 return parse_uint_from_file(file, "%d\n"); 10766 } 10767 10768 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 10769 const char *binary_path, size_t offset, int pid) 10770 { 10771 const size_t attr_sz = sizeof(struct perf_event_attr); 10772 struct perf_event_attr attr; 10773 int type, pfd, err; 10774 10775 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 10776 if (err < 0) { 10777 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 10778 binary_path, (size_t)offset, err); 10779 return err; 10780 } 10781 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 10782 if (type < 0) { 10783 err = type; 10784 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 10785 binary_path, offset, err); 10786 goto err_clean_legacy; 10787 } 10788 10789 memset(&attr, 0, attr_sz); 10790 attr.size = attr_sz; 10791 attr.config = type; 10792 attr.type = PERF_TYPE_TRACEPOINT; 10793 10794 pfd = syscall(__NR_perf_event_open, &attr, 10795 pid < 0 ? -1 : pid, /* pid */ 10796 pid == -1 ? 0 : -1, /* cpu */ 10797 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10798 if (pfd < 0) { 10799 err = -errno; 10800 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 10801 goto err_clean_legacy; 10802 } 10803 return pfd; 10804 10805 err_clean_legacy: 10806 /* Clear the newly added legacy uprobe_event */ 10807 remove_uprobe_event_legacy(probe_name, retprobe); 10808 return err; 10809 } 10810 10811 /* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */ 10812 static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn) 10813 { 10814 while ((scn = elf_nextscn(elf, scn)) != NULL) { 10815 GElf_Shdr sh; 10816 10817 if (!gelf_getshdr(scn, &sh)) 10818 continue; 10819 if (sh.sh_type == sh_type) 10820 return scn; 10821 } 10822 return NULL; 10823 } 10824 10825 /* Find offset of function name in the provided ELF object. "binary_path" is 10826 * the path to the ELF binary represented by "elf", and only used for error 10827 * reporting matters. "name" matches symbol name or name@@LIB for library 10828 * functions. 10829 */ 10830 static long elf_find_func_offset(Elf *elf, const char *binary_path, const char *name) 10831 { 10832 int i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB }; 10833 bool is_shared_lib, is_name_qualified; 10834 long ret = -ENOENT; 10835 size_t name_len; 10836 GElf_Ehdr ehdr; 10837 10838 if (!gelf_getehdr(elf, &ehdr)) { 10839 pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1)); 10840 ret = -LIBBPF_ERRNO__FORMAT; 10841 goto out; 10842 } 10843 /* for shared lib case, we do not need to calculate relative offset */ 10844 is_shared_lib = ehdr.e_type == ET_DYN; 10845 10846 name_len = strlen(name); 10847 /* Does name specify "@@LIB"? */ 10848 is_name_qualified = strstr(name, "@@") != NULL; 10849 10850 /* Search SHT_DYNSYM, SHT_SYMTAB for symbol. This search order is used because if 10851 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically 10852 * linked binary may not have SHT_DYMSYM, so absence of a section should not be 10853 * reported as a warning/error. 10854 */ 10855 for (i = 0; i < ARRAY_SIZE(sh_types); i++) { 10856 size_t nr_syms, strtabidx, idx; 10857 Elf_Data *symbols = NULL; 10858 Elf_Scn *scn = NULL; 10859 int last_bind = -1; 10860 const char *sname; 10861 GElf_Shdr sh; 10862 10863 scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL); 10864 if (!scn) { 10865 pr_debug("elf: failed to find symbol table ELF sections in '%s'\n", 10866 binary_path); 10867 continue; 10868 } 10869 if (!gelf_getshdr(scn, &sh)) 10870 continue; 10871 strtabidx = sh.sh_link; 10872 symbols = elf_getdata(scn, 0); 10873 if (!symbols) { 10874 pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n", 10875 binary_path, elf_errmsg(-1)); 10876 ret = -LIBBPF_ERRNO__FORMAT; 10877 goto out; 10878 } 10879 nr_syms = symbols->d_size / sh.sh_entsize; 10880 10881 for (idx = 0; idx < nr_syms; idx++) { 10882 int curr_bind; 10883 GElf_Sym sym; 10884 Elf_Scn *sym_scn; 10885 GElf_Shdr sym_sh; 10886 10887 if (!gelf_getsym(symbols, idx, &sym)) 10888 continue; 10889 10890 if (GELF_ST_TYPE(sym.st_info) != STT_FUNC) 10891 continue; 10892 10893 sname = elf_strptr(elf, strtabidx, sym.st_name); 10894 if (!sname) 10895 continue; 10896 10897 curr_bind = GELF_ST_BIND(sym.st_info); 10898 10899 /* User can specify func, func@@LIB or func@@LIB_VERSION. */ 10900 if (strncmp(sname, name, name_len) != 0) 10901 continue; 10902 /* ...but we don't want a search for "foo" to match 'foo2" also, so any 10903 * additional characters in sname should be of the form "@@LIB". 10904 */ 10905 if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@') 10906 continue; 10907 10908 if (ret >= 0) { 10909 /* handle multiple matches */ 10910 if (last_bind != STB_WEAK && curr_bind != STB_WEAK) { 10911 /* Only accept one non-weak bind. */ 10912 pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n", 10913 sname, name, binary_path); 10914 ret = -LIBBPF_ERRNO__FORMAT; 10915 goto out; 10916 } else if (curr_bind == STB_WEAK) { 10917 /* already have a non-weak bind, and 10918 * this is a weak bind, so ignore. 10919 */ 10920 continue; 10921 } 10922 } 10923 10924 /* Transform symbol's virtual address (absolute for 10925 * binaries and relative for shared libs) into file 10926 * offset, which is what kernel is expecting for 10927 * uprobe/uretprobe attachment. 10928 * See Documentation/trace/uprobetracer.rst for more 10929 * details. 10930 * This is done by looking up symbol's containing 10931 * section's header and using it's virtual address 10932 * (sh_addr) and corresponding file offset (sh_offset) 10933 * to transform sym.st_value (virtual address) into 10934 * desired final file offset. 10935 */ 10936 sym_scn = elf_getscn(elf, sym.st_shndx); 10937 if (!sym_scn) 10938 continue; 10939 if (!gelf_getshdr(sym_scn, &sym_sh)) 10940 continue; 10941 10942 ret = sym.st_value - sym_sh.sh_addr + sym_sh.sh_offset; 10943 last_bind = curr_bind; 10944 } 10945 if (ret > 0) 10946 break; 10947 } 10948 10949 if (ret > 0) { 10950 pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path, 10951 ret); 10952 } else { 10953 if (ret == 0) { 10954 pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path, 10955 is_shared_lib ? "should not be 0 in a shared library" : 10956 "try using shared library path instead"); 10957 ret = -ENOENT; 10958 } else { 10959 pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path); 10960 } 10961 } 10962 out: 10963 return ret; 10964 } 10965 10966 /* Find offset of function name in ELF object specified by path. "name" matches 10967 * symbol name or name@@LIB for library functions. 10968 */ 10969 static long elf_find_func_offset_from_file(const char *binary_path, const char *name) 10970 { 10971 char errmsg[STRERR_BUFSIZE]; 10972 long ret = -ENOENT; 10973 Elf *elf; 10974 int fd; 10975 10976 fd = open(binary_path, O_RDONLY | O_CLOEXEC); 10977 if (fd < 0) { 10978 ret = -errno; 10979 pr_warn("failed to open %s: %s\n", binary_path, 10980 libbpf_strerror_r(ret, errmsg, sizeof(errmsg))); 10981 return ret; 10982 } 10983 elf = elf_begin(fd, ELF_C_READ_MMAP, NULL); 10984 if (!elf) { 10985 pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1)); 10986 close(fd); 10987 return -LIBBPF_ERRNO__FORMAT; 10988 } 10989 10990 ret = elf_find_func_offset(elf, binary_path, name); 10991 elf_end(elf); 10992 close(fd); 10993 return ret; 10994 } 10995 10996 /* Find offset of function name in archive specified by path. Currently 10997 * supported are .zip files that do not compress their contents, as used on 10998 * Android in the form of APKs, for example. "file_name" is the name of the ELF 10999 * file inside the archive. "func_name" matches symbol name or name@@LIB for 11000 * library functions. 11001 * 11002 * An overview of the APK format specifically provided here: 11003 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents 11004 */ 11005 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name, 11006 const char *func_name) 11007 { 11008 struct zip_archive *archive; 11009 struct zip_entry entry; 11010 long ret; 11011 Elf *elf; 11012 11013 archive = zip_archive_open(archive_path); 11014 if (IS_ERR(archive)) { 11015 ret = PTR_ERR(archive); 11016 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret); 11017 return ret; 11018 } 11019 11020 ret = zip_archive_find_entry(archive, file_name, &entry); 11021 if (ret) { 11022 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name, 11023 archive_path, ret); 11024 goto out; 11025 } 11026 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path, 11027 (unsigned long)entry.data_offset); 11028 11029 if (entry.compression) { 11030 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name, 11031 archive_path); 11032 ret = -LIBBPF_ERRNO__FORMAT; 11033 goto out; 11034 } 11035 11036 elf = elf_memory((void *)entry.data, entry.data_length); 11037 if (!elf) { 11038 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path, 11039 elf_errmsg(-1)); 11040 ret = -LIBBPF_ERRNO__LIBELF; 11041 goto out; 11042 } 11043 11044 ret = elf_find_func_offset(elf, file_name, func_name); 11045 if (ret > 0) { 11046 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n", 11047 func_name, file_name, archive_path, entry.data_offset, ret, 11048 ret + entry.data_offset); 11049 ret += entry.data_offset; 11050 } 11051 elf_end(elf); 11052 11053 out: 11054 zip_archive_close(archive); 11055 return ret; 11056 } 11057 11058 static const char *arch_specific_lib_paths(void) 11059 { 11060 /* 11061 * Based on https://packages.debian.org/sid/libc6. 11062 * 11063 * Assume that the traced program is built for the same architecture 11064 * as libbpf, which should cover the vast majority of cases. 11065 */ 11066 #if defined(__x86_64__) 11067 return "/lib/x86_64-linux-gnu"; 11068 #elif defined(__i386__) 11069 return "/lib/i386-linux-gnu"; 11070 #elif defined(__s390x__) 11071 return "/lib/s390x-linux-gnu"; 11072 #elif defined(__s390__) 11073 return "/lib/s390-linux-gnu"; 11074 #elif defined(__arm__) && defined(__SOFTFP__) 11075 return "/lib/arm-linux-gnueabi"; 11076 #elif defined(__arm__) && !defined(__SOFTFP__) 11077 return "/lib/arm-linux-gnueabihf"; 11078 #elif defined(__aarch64__) 11079 return "/lib/aarch64-linux-gnu"; 11080 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 11081 return "/lib/mips64el-linux-gnuabi64"; 11082 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 11083 return "/lib/mipsel-linux-gnu"; 11084 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 11085 return "/lib/powerpc64le-linux-gnu"; 11086 #elif defined(__sparc__) && defined(__arch64__) 11087 return "/lib/sparc64-linux-gnu"; 11088 #elif defined(__riscv) && __riscv_xlen == 64 11089 return "/lib/riscv64-linux-gnu"; 11090 #else 11091 return NULL; 11092 #endif 11093 } 11094 11095 /* Get full path to program/shared library. */ 11096 static int resolve_full_path(const char *file, char *result, size_t result_sz) 11097 { 11098 const char *search_paths[3] = {}; 11099 int i, perm; 11100 11101 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 11102 search_paths[0] = getenv("LD_LIBRARY_PATH"); 11103 search_paths[1] = "/usr/lib64:/usr/lib"; 11104 search_paths[2] = arch_specific_lib_paths(); 11105 perm = R_OK; 11106 } else { 11107 search_paths[0] = getenv("PATH"); 11108 search_paths[1] = "/usr/bin:/usr/sbin"; 11109 perm = R_OK | X_OK; 11110 } 11111 11112 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 11113 const char *s; 11114 11115 if (!search_paths[i]) 11116 continue; 11117 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 11118 char *next_path; 11119 int seg_len; 11120 11121 if (s[0] == ':') 11122 s++; 11123 next_path = strchr(s, ':'); 11124 seg_len = next_path ? next_path - s : strlen(s); 11125 if (!seg_len) 11126 continue; 11127 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 11128 /* ensure it has required permissions */ 11129 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 11130 continue; 11131 pr_debug("resolved '%s' to '%s'\n", file, result); 11132 return 0; 11133 } 11134 } 11135 return -ENOENT; 11136 } 11137 11138 LIBBPF_API struct bpf_link * 11139 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 11140 const char *binary_path, size_t func_offset, 11141 const struct bpf_uprobe_opts *opts) 11142 { 11143 const char *archive_path = NULL, *archive_sep = NULL; 11144 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 11145 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11146 enum probe_attach_mode attach_mode; 11147 char full_path[PATH_MAX]; 11148 struct bpf_link *link; 11149 size_t ref_ctr_off; 11150 int pfd, err; 11151 bool retprobe, legacy; 11152 const char *func_name; 11153 11154 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11155 return libbpf_err_ptr(-EINVAL); 11156 11157 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11158 retprobe = OPTS_GET(opts, retprobe, false); 11159 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 11160 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11161 11162 if (!binary_path) 11163 return libbpf_err_ptr(-EINVAL); 11164 11165 /* Check if "binary_path" refers to an archive. */ 11166 archive_sep = strstr(binary_path, "!/"); 11167 if (archive_sep) { 11168 full_path[0] = '\0'; 11169 libbpf_strlcpy(full_path, binary_path, 11170 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1))); 11171 archive_path = full_path; 11172 binary_path = archive_sep + 2; 11173 } else if (!strchr(binary_path, '/')) { 11174 err = resolve_full_path(binary_path, full_path, sizeof(full_path)); 11175 if (err) { 11176 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11177 prog->name, binary_path, err); 11178 return libbpf_err_ptr(err); 11179 } 11180 binary_path = full_path; 11181 } 11182 func_name = OPTS_GET(opts, func_name, NULL); 11183 if (func_name) { 11184 long sym_off; 11185 11186 if (archive_path) { 11187 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path, 11188 func_name); 11189 binary_path = archive_path; 11190 } else { 11191 sym_off = elf_find_func_offset_from_file(binary_path, func_name); 11192 } 11193 if (sym_off < 0) 11194 return libbpf_err_ptr(sym_off); 11195 func_offset += sym_off; 11196 } 11197 11198 legacy = determine_uprobe_perf_type() < 0; 11199 switch (attach_mode) { 11200 case PROBE_ATTACH_MODE_LEGACY: 11201 legacy = true; 11202 pe_opts.force_ioctl_attach = true; 11203 break; 11204 case PROBE_ATTACH_MODE_PERF: 11205 if (legacy) 11206 return libbpf_err_ptr(-ENOTSUP); 11207 pe_opts.force_ioctl_attach = true; 11208 break; 11209 case PROBE_ATTACH_MODE_LINK: 11210 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11211 return libbpf_err_ptr(-ENOTSUP); 11212 break; 11213 case PROBE_ATTACH_MODE_DEFAULT: 11214 break; 11215 default: 11216 return libbpf_err_ptr(-EINVAL); 11217 } 11218 11219 if (!legacy) { 11220 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 11221 func_offset, pid, ref_ctr_off); 11222 } else { 11223 char probe_name[PATH_MAX + 64]; 11224 11225 if (ref_ctr_off) 11226 return libbpf_err_ptr(-EINVAL); 11227 11228 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 11229 binary_path, func_offset); 11230 11231 legacy_probe = strdup(probe_name); 11232 if (!legacy_probe) 11233 return libbpf_err_ptr(-ENOMEM); 11234 11235 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 11236 binary_path, func_offset, pid); 11237 } 11238 if (pfd < 0) { 11239 err = -errno; 11240 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 11241 prog->name, retprobe ? "uretprobe" : "uprobe", 11242 binary_path, func_offset, 11243 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11244 goto err_out; 11245 } 11246 11247 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11248 err = libbpf_get_error(link); 11249 if (err) { 11250 close(pfd); 11251 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 11252 prog->name, retprobe ? "uretprobe" : "uprobe", 11253 binary_path, func_offset, 11254 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11255 goto err_clean_legacy; 11256 } 11257 if (legacy) { 11258 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11259 11260 perf_link->legacy_probe_name = legacy_probe; 11261 perf_link->legacy_is_kprobe = false; 11262 perf_link->legacy_is_retprobe = retprobe; 11263 } 11264 return link; 11265 11266 err_clean_legacy: 11267 if (legacy) 11268 remove_uprobe_event_legacy(legacy_probe, retprobe); 11269 err_out: 11270 free(legacy_probe); 11271 return libbpf_err_ptr(err); 11272 } 11273 11274 /* Format of u[ret]probe section definition supporting auto-attach: 11275 * u[ret]probe/binary:function[+offset] 11276 * 11277 * binary can be an absolute/relative path or a filename; the latter is resolved to a 11278 * full binary path via bpf_program__attach_uprobe_opts. 11279 * 11280 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 11281 * specified (and auto-attach is not possible) or the above format is specified for 11282 * auto-attach. 11283 */ 11284 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11285 { 11286 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 11287 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11288 int n, ret = -EINVAL; 11289 long offset = 0; 11290 11291 *link = NULL; 11292 11293 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li", 11294 &probe_type, &binary_path, &func_name, &offset); 11295 switch (n) { 11296 case 1: 11297 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11298 ret = 0; 11299 break; 11300 case 2: 11301 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 11302 prog->name, prog->sec_name); 11303 break; 11304 case 3: 11305 case 4: 11306 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 11307 strcmp(probe_type, "uretprobe.s") == 0; 11308 if (opts.retprobe && offset != 0) { 11309 pr_warn("prog '%s': uretprobes do not support offset specification\n", 11310 prog->name); 11311 break; 11312 } 11313 opts.func_name = func_name; 11314 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 11315 ret = libbpf_get_error(*link); 11316 break; 11317 default: 11318 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11319 prog->sec_name); 11320 break; 11321 } 11322 free(probe_type); 11323 free(binary_path); 11324 free(func_name); 11325 11326 return ret; 11327 } 11328 11329 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 11330 bool retprobe, pid_t pid, 11331 const char *binary_path, 11332 size_t func_offset) 11333 { 11334 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 11335 11336 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 11337 } 11338 11339 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 11340 pid_t pid, const char *binary_path, 11341 const char *usdt_provider, const char *usdt_name, 11342 const struct bpf_usdt_opts *opts) 11343 { 11344 char resolved_path[512]; 11345 struct bpf_object *obj = prog->obj; 11346 struct bpf_link *link; 11347 __u64 usdt_cookie; 11348 int err; 11349 11350 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11351 return libbpf_err_ptr(-EINVAL); 11352 11353 if (bpf_program__fd(prog) < 0) { 11354 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 11355 prog->name); 11356 return libbpf_err_ptr(-EINVAL); 11357 } 11358 11359 if (!binary_path) 11360 return libbpf_err_ptr(-EINVAL); 11361 11362 if (!strchr(binary_path, '/')) { 11363 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 11364 if (err) { 11365 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11366 prog->name, binary_path, err); 11367 return libbpf_err_ptr(err); 11368 } 11369 binary_path = resolved_path; 11370 } 11371 11372 /* USDT manager is instantiated lazily on first USDT attach. It will 11373 * be destroyed together with BPF object in bpf_object__close(). 11374 */ 11375 if (IS_ERR(obj->usdt_man)) 11376 return libbpf_ptr(obj->usdt_man); 11377 if (!obj->usdt_man) { 11378 obj->usdt_man = usdt_manager_new(obj); 11379 if (IS_ERR(obj->usdt_man)) 11380 return libbpf_ptr(obj->usdt_man); 11381 } 11382 11383 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 11384 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 11385 usdt_provider, usdt_name, usdt_cookie); 11386 err = libbpf_get_error(link); 11387 if (err) 11388 return libbpf_err_ptr(err); 11389 return link; 11390 } 11391 11392 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11393 { 11394 char *path = NULL, *provider = NULL, *name = NULL; 11395 const char *sec_name; 11396 int n, err; 11397 11398 sec_name = bpf_program__section_name(prog); 11399 if (strcmp(sec_name, "usdt") == 0) { 11400 /* no auto-attach for just SEC("usdt") */ 11401 *link = NULL; 11402 return 0; 11403 } 11404 11405 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 11406 if (n != 3) { 11407 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 11408 sec_name); 11409 err = -EINVAL; 11410 } else { 11411 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 11412 provider, name, NULL); 11413 err = libbpf_get_error(*link); 11414 } 11415 free(path); 11416 free(provider); 11417 free(name); 11418 return err; 11419 } 11420 11421 static int determine_tracepoint_id(const char *tp_category, 11422 const char *tp_name) 11423 { 11424 char file[PATH_MAX]; 11425 int ret; 11426 11427 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11428 tracefs_path(), tp_category, tp_name); 11429 if (ret < 0) 11430 return -errno; 11431 if (ret >= sizeof(file)) { 11432 pr_debug("tracepoint %s/%s path is too long\n", 11433 tp_category, tp_name); 11434 return -E2BIG; 11435 } 11436 return parse_uint_from_file(file, "%d\n"); 11437 } 11438 11439 static int perf_event_open_tracepoint(const char *tp_category, 11440 const char *tp_name) 11441 { 11442 const size_t attr_sz = sizeof(struct perf_event_attr); 11443 struct perf_event_attr attr; 11444 char errmsg[STRERR_BUFSIZE]; 11445 int tp_id, pfd, err; 11446 11447 tp_id = determine_tracepoint_id(tp_category, tp_name); 11448 if (tp_id < 0) { 11449 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 11450 tp_category, tp_name, 11451 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 11452 return tp_id; 11453 } 11454 11455 memset(&attr, 0, attr_sz); 11456 attr.type = PERF_TYPE_TRACEPOINT; 11457 attr.size = attr_sz; 11458 attr.config = tp_id; 11459 11460 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 11461 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11462 if (pfd < 0) { 11463 err = -errno; 11464 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 11465 tp_category, tp_name, 11466 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11467 return err; 11468 } 11469 return pfd; 11470 } 11471 11472 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 11473 const char *tp_category, 11474 const char *tp_name, 11475 const struct bpf_tracepoint_opts *opts) 11476 { 11477 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11478 char errmsg[STRERR_BUFSIZE]; 11479 struct bpf_link *link; 11480 int pfd, err; 11481 11482 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 11483 return libbpf_err_ptr(-EINVAL); 11484 11485 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11486 11487 pfd = perf_event_open_tracepoint(tp_category, tp_name); 11488 if (pfd < 0) { 11489 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 11490 prog->name, tp_category, tp_name, 11491 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11492 return libbpf_err_ptr(pfd); 11493 } 11494 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11495 err = libbpf_get_error(link); 11496 if (err) { 11497 close(pfd); 11498 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 11499 prog->name, tp_category, tp_name, 11500 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11501 return libbpf_err_ptr(err); 11502 } 11503 return link; 11504 } 11505 11506 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 11507 const char *tp_category, 11508 const char *tp_name) 11509 { 11510 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 11511 } 11512 11513 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11514 { 11515 char *sec_name, *tp_cat, *tp_name; 11516 11517 *link = NULL; 11518 11519 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 11520 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 11521 return 0; 11522 11523 sec_name = strdup(prog->sec_name); 11524 if (!sec_name) 11525 return -ENOMEM; 11526 11527 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 11528 if (str_has_pfx(prog->sec_name, "tp/")) 11529 tp_cat = sec_name + sizeof("tp/") - 1; 11530 else 11531 tp_cat = sec_name + sizeof("tracepoint/") - 1; 11532 tp_name = strchr(tp_cat, '/'); 11533 if (!tp_name) { 11534 free(sec_name); 11535 return -EINVAL; 11536 } 11537 *tp_name = '\0'; 11538 tp_name++; 11539 11540 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 11541 free(sec_name); 11542 return libbpf_get_error(*link); 11543 } 11544 11545 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 11546 const char *tp_name) 11547 { 11548 char errmsg[STRERR_BUFSIZE]; 11549 struct bpf_link *link; 11550 int prog_fd, pfd; 11551 11552 prog_fd = bpf_program__fd(prog); 11553 if (prog_fd < 0) { 11554 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11555 return libbpf_err_ptr(-EINVAL); 11556 } 11557 11558 link = calloc(1, sizeof(*link)); 11559 if (!link) 11560 return libbpf_err_ptr(-ENOMEM); 11561 link->detach = &bpf_link__detach_fd; 11562 11563 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 11564 if (pfd < 0) { 11565 pfd = -errno; 11566 free(link); 11567 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 11568 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11569 return libbpf_err_ptr(pfd); 11570 } 11571 link->fd = pfd; 11572 return link; 11573 } 11574 11575 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11576 { 11577 static const char *const prefixes[] = { 11578 "raw_tp", 11579 "raw_tracepoint", 11580 "raw_tp.w", 11581 "raw_tracepoint.w", 11582 }; 11583 size_t i; 11584 const char *tp_name = NULL; 11585 11586 *link = NULL; 11587 11588 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 11589 size_t pfx_len; 11590 11591 if (!str_has_pfx(prog->sec_name, prefixes[i])) 11592 continue; 11593 11594 pfx_len = strlen(prefixes[i]); 11595 /* no auto-attach case of, e.g., SEC("raw_tp") */ 11596 if (prog->sec_name[pfx_len] == '\0') 11597 return 0; 11598 11599 if (prog->sec_name[pfx_len] != '/') 11600 continue; 11601 11602 tp_name = prog->sec_name + pfx_len + 1; 11603 break; 11604 } 11605 11606 if (!tp_name) { 11607 pr_warn("prog '%s': invalid section name '%s'\n", 11608 prog->name, prog->sec_name); 11609 return -EINVAL; 11610 } 11611 11612 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 11613 return libbpf_get_error(*link); 11614 } 11615 11616 /* Common logic for all BPF program types that attach to a btf_id */ 11617 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 11618 const struct bpf_trace_opts *opts) 11619 { 11620 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 11621 char errmsg[STRERR_BUFSIZE]; 11622 struct bpf_link *link; 11623 int prog_fd, pfd; 11624 11625 if (!OPTS_VALID(opts, bpf_trace_opts)) 11626 return libbpf_err_ptr(-EINVAL); 11627 11628 prog_fd = bpf_program__fd(prog); 11629 if (prog_fd < 0) { 11630 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11631 return libbpf_err_ptr(-EINVAL); 11632 } 11633 11634 link = calloc(1, sizeof(*link)); 11635 if (!link) 11636 return libbpf_err_ptr(-ENOMEM); 11637 link->detach = &bpf_link__detach_fd; 11638 11639 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 11640 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 11641 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 11642 if (pfd < 0) { 11643 pfd = -errno; 11644 free(link); 11645 pr_warn("prog '%s': failed to attach: %s\n", 11646 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11647 return libbpf_err_ptr(pfd); 11648 } 11649 link->fd = pfd; 11650 return link; 11651 } 11652 11653 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 11654 { 11655 return bpf_program__attach_btf_id(prog, NULL); 11656 } 11657 11658 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 11659 const struct bpf_trace_opts *opts) 11660 { 11661 return bpf_program__attach_btf_id(prog, opts); 11662 } 11663 11664 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 11665 { 11666 return bpf_program__attach_btf_id(prog, NULL); 11667 } 11668 11669 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11670 { 11671 *link = bpf_program__attach_trace(prog); 11672 return libbpf_get_error(*link); 11673 } 11674 11675 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11676 { 11677 *link = bpf_program__attach_lsm(prog); 11678 return libbpf_get_error(*link); 11679 } 11680 11681 static struct bpf_link * 11682 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id, 11683 const char *target_name) 11684 { 11685 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 11686 .target_btf_id = btf_id); 11687 enum bpf_attach_type attach_type; 11688 char errmsg[STRERR_BUFSIZE]; 11689 struct bpf_link *link; 11690 int prog_fd, link_fd; 11691 11692 prog_fd = bpf_program__fd(prog); 11693 if (prog_fd < 0) { 11694 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11695 return libbpf_err_ptr(-EINVAL); 11696 } 11697 11698 link = calloc(1, sizeof(*link)); 11699 if (!link) 11700 return libbpf_err_ptr(-ENOMEM); 11701 link->detach = &bpf_link__detach_fd; 11702 11703 attach_type = bpf_program__expected_attach_type(prog); 11704 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 11705 if (link_fd < 0) { 11706 link_fd = -errno; 11707 free(link); 11708 pr_warn("prog '%s': failed to attach to %s: %s\n", 11709 prog->name, target_name, 11710 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11711 return libbpf_err_ptr(link_fd); 11712 } 11713 link->fd = link_fd; 11714 return link; 11715 } 11716 11717 struct bpf_link * 11718 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 11719 { 11720 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 11721 } 11722 11723 struct bpf_link * 11724 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 11725 { 11726 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 11727 } 11728 11729 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 11730 { 11731 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 11732 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 11733 } 11734 11735 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 11736 int target_fd, 11737 const char *attach_func_name) 11738 { 11739 int btf_id; 11740 11741 if (!!target_fd != !!attach_func_name) { 11742 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 11743 prog->name); 11744 return libbpf_err_ptr(-EINVAL); 11745 } 11746 11747 if (prog->type != BPF_PROG_TYPE_EXT) { 11748 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 11749 prog->name); 11750 return libbpf_err_ptr(-EINVAL); 11751 } 11752 11753 if (target_fd) { 11754 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 11755 if (btf_id < 0) 11756 return libbpf_err_ptr(btf_id); 11757 11758 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 11759 } else { 11760 /* no target, so use raw_tracepoint_open for compatibility 11761 * with old kernels 11762 */ 11763 return bpf_program__attach_trace(prog); 11764 } 11765 } 11766 11767 struct bpf_link * 11768 bpf_program__attach_iter(const struct bpf_program *prog, 11769 const struct bpf_iter_attach_opts *opts) 11770 { 11771 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 11772 char errmsg[STRERR_BUFSIZE]; 11773 struct bpf_link *link; 11774 int prog_fd, link_fd; 11775 __u32 target_fd = 0; 11776 11777 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 11778 return libbpf_err_ptr(-EINVAL); 11779 11780 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 11781 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 11782 11783 prog_fd = bpf_program__fd(prog); 11784 if (prog_fd < 0) { 11785 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11786 return libbpf_err_ptr(-EINVAL); 11787 } 11788 11789 link = calloc(1, sizeof(*link)); 11790 if (!link) 11791 return libbpf_err_ptr(-ENOMEM); 11792 link->detach = &bpf_link__detach_fd; 11793 11794 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 11795 &link_create_opts); 11796 if (link_fd < 0) { 11797 link_fd = -errno; 11798 free(link); 11799 pr_warn("prog '%s': failed to attach to iterator: %s\n", 11800 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11801 return libbpf_err_ptr(link_fd); 11802 } 11803 link->fd = link_fd; 11804 return link; 11805 } 11806 11807 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11808 { 11809 *link = bpf_program__attach_iter(prog, NULL); 11810 return libbpf_get_error(*link); 11811 } 11812 11813 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 11814 { 11815 struct bpf_link *link = NULL; 11816 int err; 11817 11818 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 11819 return libbpf_err_ptr(-EOPNOTSUPP); 11820 11821 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 11822 if (err) 11823 return libbpf_err_ptr(err); 11824 11825 /* When calling bpf_program__attach() explicitly, auto-attach support 11826 * is expected to work, so NULL returned link is considered an error. 11827 * This is different for skeleton's attach, see comment in 11828 * bpf_object__attach_skeleton(). 11829 */ 11830 if (!link) 11831 return libbpf_err_ptr(-EOPNOTSUPP); 11832 11833 return link; 11834 } 11835 11836 struct bpf_link_struct_ops { 11837 struct bpf_link link; 11838 int map_fd; 11839 }; 11840 11841 static int bpf_link__detach_struct_ops(struct bpf_link *link) 11842 { 11843 struct bpf_link_struct_ops *st_link; 11844 __u32 zero = 0; 11845 11846 st_link = container_of(link, struct bpf_link_struct_ops, link); 11847 11848 if (st_link->map_fd < 0) 11849 /* w/o a real link */ 11850 return bpf_map_delete_elem(link->fd, &zero); 11851 11852 return close(link->fd); 11853 } 11854 11855 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 11856 { 11857 struct bpf_link_struct_ops *link; 11858 __u32 zero = 0; 11859 int err, fd; 11860 11861 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 11862 return libbpf_err_ptr(-EINVAL); 11863 11864 link = calloc(1, sizeof(*link)); 11865 if (!link) 11866 return libbpf_err_ptr(-EINVAL); 11867 11868 /* kern_vdata should be prepared during the loading phase. */ 11869 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 11870 /* It can be EBUSY if the map has been used to create or 11871 * update a link before. We don't allow updating the value of 11872 * a struct_ops once it is set. That ensures that the value 11873 * never changed. So, it is safe to skip EBUSY. 11874 */ 11875 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) { 11876 free(link); 11877 return libbpf_err_ptr(err); 11878 } 11879 11880 link->link.detach = bpf_link__detach_struct_ops; 11881 11882 if (!(map->def.map_flags & BPF_F_LINK)) { 11883 /* w/o a real link */ 11884 link->link.fd = map->fd; 11885 link->map_fd = -1; 11886 return &link->link; 11887 } 11888 11889 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL); 11890 if (fd < 0) { 11891 free(link); 11892 return libbpf_err_ptr(fd); 11893 } 11894 11895 link->link.fd = fd; 11896 link->map_fd = map->fd; 11897 11898 return &link->link; 11899 } 11900 11901 /* 11902 * Swap the back struct_ops of a link with a new struct_ops map. 11903 */ 11904 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map) 11905 { 11906 struct bpf_link_struct_ops *st_ops_link; 11907 __u32 zero = 0; 11908 int err; 11909 11910 if (!bpf_map__is_struct_ops(map) || map->fd < 0) 11911 return -EINVAL; 11912 11913 st_ops_link = container_of(link, struct bpf_link_struct_ops, link); 11914 /* Ensure the type of a link is correct */ 11915 if (st_ops_link->map_fd < 0) 11916 return -EINVAL; 11917 11918 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 11919 /* It can be EBUSY if the map has been used to create or 11920 * update a link before. We don't allow updating the value of 11921 * a struct_ops once it is set. That ensures that the value 11922 * never changed. So, it is safe to skip EBUSY. 11923 */ 11924 if (err && err != -EBUSY) 11925 return err; 11926 11927 err = bpf_link_update(link->fd, map->fd, NULL); 11928 if (err < 0) 11929 return err; 11930 11931 st_ops_link->map_fd = map->fd; 11932 11933 return 0; 11934 } 11935 11936 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 11937 void *private_data); 11938 11939 static enum bpf_perf_event_ret 11940 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 11941 void **copy_mem, size_t *copy_size, 11942 bpf_perf_event_print_t fn, void *private_data) 11943 { 11944 struct perf_event_mmap_page *header = mmap_mem; 11945 __u64 data_head = ring_buffer_read_head(header); 11946 __u64 data_tail = header->data_tail; 11947 void *base = ((__u8 *)header) + page_size; 11948 int ret = LIBBPF_PERF_EVENT_CONT; 11949 struct perf_event_header *ehdr; 11950 size_t ehdr_size; 11951 11952 while (data_head != data_tail) { 11953 ehdr = base + (data_tail & (mmap_size - 1)); 11954 ehdr_size = ehdr->size; 11955 11956 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 11957 void *copy_start = ehdr; 11958 size_t len_first = base + mmap_size - copy_start; 11959 size_t len_secnd = ehdr_size - len_first; 11960 11961 if (*copy_size < ehdr_size) { 11962 free(*copy_mem); 11963 *copy_mem = malloc(ehdr_size); 11964 if (!*copy_mem) { 11965 *copy_size = 0; 11966 ret = LIBBPF_PERF_EVENT_ERROR; 11967 break; 11968 } 11969 *copy_size = ehdr_size; 11970 } 11971 11972 memcpy(*copy_mem, copy_start, len_first); 11973 memcpy(*copy_mem + len_first, base, len_secnd); 11974 ehdr = *copy_mem; 11975 } 11976 11977 ret = fn(ehdr, private_data); 11978 data_tail += ehdr_size; 11979 if (ret != LIBBPF_PERF_EVENT_CONT) 11980 break; 11981 } 11982 11983 ring_buffer_write_tail(header, data_tail); 11984 return libbpf_err(ret); 11985 } 11986 11987 struct perf_buffer; 11988 11989 struct perf_buffer_params { 11990 struct perf_event_attr *attr; 11991 /* if event_cb is specified, it takes precendence */ 11992 perf_buffer_event_fn event_cb; 11993 /* sample_cb and lost_cb are higher-level common-case callbacks */ 11994 perf_buffer_sample_fn sample_cb; 11995 perf_buffer_lost_fn lost_cb; 11996 void *ctx; 11997 int cpu_cnt; 11998 int *cpus; 11999 int *map_keys; 12000 }; 12001 12002 struct perf_cpu_buf { 12003 struct perf_buffer *pb; 12004 void *base; /* mmap()'ed memory */ 12005 void *buf; /* for reconstructing segmented data */ 12006 size_t buf_size; 12007 int fd; 12008 int cpu; 12009 int map_key; 12010 }; 12011 12012 struct perf_buffer { 12013 perf_buffer_event_fn event_cb; 12014 perf_buffer_sample_fn sample_cb; 12015 perf_buffer_lost_fn lost_cb; 12016 void *ctx; /* passed into callbacks */ 12017 12018 size_t page_size; 12019 size_t mmap_size; 12020 struct perf_cpu_buf **cpu_bufs; 12021 struct epoll_event *events; 12022 int cpu_cnt; /* number of allocated CPU buffers */ 12023 int epoll_fd; /* perf event FD */ 12024 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 12025 }; 12026 12027 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 12028 struct perf_cpu_buf *cpu_buf) 12029 { 12030 if (!cpu_buf) 12031 return; 12032 if (cpu_buf->base && 12033 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 12034 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 12035 if (cpu_buf->fd >= 0) { 12036 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 12037 close(cpu_buf->fd); 12038 } 12039 free(cpu_buf->buf); 12040 free(cpu_buf); 12041 } 12042 12043 void perf_buffer__free(struct perf_buffer *pb) 12044 { 12045 int i; 12046 12047 if (IS_ERR_OR_NULL(pb)) 12048 return; 12049 if (pb->cpu_bufs) { 12050 for (i = 0; i < pb->cpu_cnt; i++) { 12051 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12052 12053 if (!cpu_buf) 12054 continue; 12055 12056 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 12057 perf_buffer__free_cpu_buf(pb, cpu_buf); 12058 } 12059 free(pb->cpu_bufs); 12060 } 12061 if (pb->epoll_fd >= 0) 12062 close(pb->epoll_fd); 12063 free(pb->events); 12064 free(pb); 12065 } 12066 12067 static struct perf_cpu_buf * 12068 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 12069 int cpu, int map_key) 12070 { 12071 struct perf_cpu_buf *cpu_buf; 12072 char msg[STRERR_BUFSIZE]; 12073 int err; 12074 12075 cpu_buf = calloc(1, sizeof(*cpu_buf)); 12076 if (!cpu_buf) 12077 return ERR_PTR(-ENOMEM); 12078 12079 cpu_buf->pb = pb; 12080 cpu_buf->cpu = cpu; 12081 cpu_buf->map_key = map_key; 12082 12083 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 12084 -1, PERF_FLAG_FD_CLOEXEC); 12085 if (cpu_buf->fd < 0) { 12086 err = -errno; 12087 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 12088 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12089 goto error; 12090 } 12091 12092 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 12093 PROT_READ | PROT_WRITE, MAP_SHARED, 12094 cpu_buf->fd, 0); 12095 if (cpu_buf->base == MAP_FAILED) { 12096 cpu_buf->base = NULL; 12097 err = -errno; 12098 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 12099 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12100 goto error; 12101 } 12102 12103 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 12104 err = -errno; 12105 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 12106 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12107 goto error; 12108 } 12109 12110 return cpu_buf; 12111 12112 error: 12113 perf_buffer__free_cpu_buf(pb, cpu_buf); 12114 return (struct perf_cpu_buf *)ERR_PTR(err); 12115 } 12116 12117 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 12118 struct perf_buffer_params *p); 12119 12120 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 12121 perf_buffer_sample_fn sample_cb, 12122 perf_buffer_lost_fn lost_cb, 12123 void *ctx, 12124 const struct perf_buffer_opts *opts) 12125 { 12126 const size_t attr_sz = sizeof(struct perf_event_attr); 12127 struct perf_buffer_params p = {}; 12128 struct perf_event_attr attr; 12129 __u32 sample_period; 12130 12131 if (!OPTS_VALID(opts, perf_buffer_opts)) 12132 return libbpf_err_ptr(-EINVAL); 12133 12134 sample_period = OPTS_GET(opts, sample_period, 1); 12135 if (!sample_period) 12136 sample_period = 1; 12137 12138 memset(&attr, 0, attr_sz); 12139 attr.size = attr_sz; 12140 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 12141 attr.type = PERF_TYPE_SOFTWARE; 12142 attr.sample_type = PERF_SAMPLE_RAW; 12143 attr.sample_period = sample_period; 12144 attr.wakeup_events = sample_period; 12145 12146 p.attr = &attr; 12147 p.sample_cb = sample_cb; 12148 p.lost_cb = lost_cb; 12149 p.ctx = ctx; 12150 12151 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 12152 } 12153 12154 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 12155 struct perf_event_attr *attr, 12156 perf_buffer_event_fn event_cb, void *ctx, 12157 const struct perf_buffer_raw_opts *opts) 12158 { 12159 struct perf_buffer_params p = {}; 12160 12161 if (!attr) 12162 return libbpf_err_ptr(-EINVAL); 12163 12164 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 12165 return libbpf_err_ptr(-EINVAL); 12166 12167 p.attr = attr; 12168 p.event_cb = event_cb; 12169 p.ctx = ctx; 12170 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 12171 p.cpus = OPTS_GET(opts, cpus, NULL); 12172 p.map_keys = OPTS_GET(opts, map_keys, NULL); 12173 12174 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 12175 } 12176 12177 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 12178 struct perf_buffer_params *p) 12179 { 12180 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 12181 struct bpf_map_info map; 12182 char msg[STRERR_BUFSIZE]; 12183 struct perf_buffer *pb; 12184 bool *online = NULL; 12185 __u32 map_info_len; 12186 int err, i, j, n; 12187 12188 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 12189 pr_warn("page count should be power of two, but is %zu\n", 12190 page_cnt); 12191 return ERR_PTR(-EINVAL); 12192 } 12193 12194 /* best-effort sanity checks */ 12195 memset(&map, 0, sizeof(map)); 12196 map_info_len = sizeof(map); 12197 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len); 12198 if (err) { 12199 err = -errno; 12200 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 12201 * -EBADFD, -EFAULT, or -E2BIG on real error 12202 */ 12203 if (err != -EINVAL) { 12204 pr_warn("failed to get map info for map FD %d: %s\n", 12205 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 12206 return ERR_PTR(err); 12207 } 12208 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 12209 map_fd); 12210 } else { 12211 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 12212 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 12213 map.name); 12214 return ERR_PTR(-EINVAL); 12215 } 12216 } 12217 12218 pb = calloc(1, sizeof(*pb)); 12219 if (!pb) 12220 return ERR_PTR(-ENOMEM); 12221 12222 pb->event_cb = p->event_cb; 12223 pb->sample_cb = p->sample_cb; 12224 pb->lost_cb = p->lost_cb; 12225 pb->ctx = p->ctx; 12226 12227 pb->page_size = getpagesize(); 12228 pb->mmap_size = pb->page_size * page_cnt; 12229 pb->map_fd = map_fd; 12230 12231 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 12232 if (pb->epoll_fd < 0) { 12233 err = -errno; 12234 pr_warn("failed to create epoll instance: %s\n", 12235 libbpf_strerror_r(err, msg, sizeof(msg))); 12236 goto error; 12237 } 12238 12239 if (p->cpu_cnt > 0) { 12240 pb->cpu_cnt = p->cpu_cnt; 12241 } else { 12242 pb->cpu_cnt = libbpf_num_possible_cpus(); 12243 if (pb->cpu_cnt < 0) { 12244 err = pb->cpu_cnt; 12245 goto error; 12246 } 12247 if (map.max_entries && map.max_entries < pb->cpu_cnt) 12248 pb->cpu_cnt = map.max_entries; 12249 } 12250 12251 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 12252 if (!pb->events) { 12253 err = -ENOMEM; 12254 pr_warn("failed to allocate events: out of memory\n"); 12255 goto error; 12256 } 12257 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 12258 if (!pb->cpu_bufs) { 12259 err = -ENOMEM; 12260 pr_warn("failed to allocate buffers: out of memory\n"); 12261 goto error; 12262 } 12263 12264 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 12265 if (err) { 12266 pr_warn("failed to get online CPU mask: %d\n", err); 12267 goto error; 12268 } 12269 12270 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 12271 struct perf_cpu_buf *cpu_buf; 12272 int cpu, map_key; 12273 12274 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 12275 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 12276 12277 /* in case user didn't explicitly requested particular CPUs to 12278 * be attached to, skip offline/not present CPUs 12279 */ 12280 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 12281 continue; 12282 12283 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 12284 if (IS_ERR(cpu_buf)) { 12285 err = PTR_ERR(cpu_buf); 12286 goto error; 12287 } 12288 12289 pb->cpu_bufs[j] = cpu_buf; 12290 12291 err = bpf_map_update_elem(pb->map_fd, &map_key, 12292 &cpu_buf->fd, 0); 12293 if (err) { 12294 err = -errno; 12295 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 12296 cpu, map_key, cpu_buf->fd, 12297 libbpf_strerror_r(err, msg, sizeof(msg))); 12298 goto error; 12299 } 12300 12301 pb->events[j].events = EPOLLIN; 12302 pb->events[j].data.ptr = cpu_buf; 12303 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 12304 &pb->events[j]) < 0) { 12305 err = -errno; 12306 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 12307 cpu, cpu_buf->fd, 12308 libbpf_strerror_r(err, msg, sizeof(msg))); 12309 goto error; 12310 } 12311 j++; 12312 } 12313 pb->cpu_cnt = j; 12314 free(online); 12315 12316 return pb; 12317 12318 error: 12319 free(online); 12320 if (pb) 12321 perf_buffer__free(pb); 12322 return ERR_PTR(err); 12323 } 12324 12325 struct perf_sample_raw { 12326 struct perf_event_header header; 12327 uint32_t size; 12328 char data[]; 12329 }; 12330 12331 struct perf_sample_lost { 12332 struct perf_event_header header; 12333 uint64_t id; 12334 uint64_t lost; 12335 uint64_t sample_id; 12336 }; 12337 12338 static enum bpf_perf_event_ret 12339 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 12340 { 12341 struct perf_cpu_buf *cpu_buf = ctx; 12342 struct perf_buffer *pb = cpu_buf->pb; 12343 void *data = e; 12344 12345 /* user wants full control over parsing perf event */ 12346 if (pb->event_cb) 12347 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 12348 12349 switch (e->type) { 12350 case PERF_RECORD_SAMPLE: { 12351 struct perf_sample_raw *s = data; 12352 12353 if (pb->sample_cb) 12354 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 12355 break; 12356 } 12357 case PERF_RECORD_LOST: { 12358 struct perf_sample_lost *s = data; 12359 12360 if (pb->lost_cb) 12361 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 12362 break; 12363 } 12364 default: 12365 pr_warn("unknown perf sample type %d\n", e->type); 12366 return LIBBPF_PERF_EVENT_ERROR; 12367 } 12368 return LIBBPF_PERF_EVENT_CONT; 12369 } 12370 12371 static int perf_buffer__process_records(struct perf_buffer *pb, 12372 struct perf_cpu_buf *cpu_buf) 12373 { 12374 enum bpf_perf_event_ret ret; 12375 12376 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 12377 pb->page_size, &cpu_buf->buf, 12378 &cpu_buf->buf_size, 12379 perf_buffer__process_record, cpu_buf); 12380 if (ret != LIBBPF_PERF_EVENT_CONT) 12381 return ret; 12382 return 0; 12383 } 12384 12385 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 12386 { 12387 return pb->epoll_fd; 12388 } 12389 12390 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 12391 { 12392 int i, cnt, err; 12393 12394 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 12395 if (cnt < 0) 12396 return -errno; 12397 12398 for (i = 0; i < cnt; i++) { 12399 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 12400 12401 err = perf_buffer__process_records(pb, cpu_buf); 12402 if (err) { 12403 pr_warn("error while processing records: %d\n", err); 12404 return libbpf_err(err); 12405 } 12406 } 12407 return cnt; 12408 } 12409 12410 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 12411 * manager. 12412 */ 12413 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 12414 { 12415 return pb->cpu_cnt; 12416 } 12417 12418 /* 12419 * Return perf_event FD of a ring buffer in *buf_idx* slot of 12420 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 12421 * select()/poll()/epoll() Linux syscalls. 12422 */ 12423 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 12424 { 12425 struct perf_cpu_buf *cpu_buf; 12426 12427 if (buf_idx >= pb->cpu_cnt) 12428 return libbpf_err(-EINVAL); 12429 12430 cpu_buf = pb->cpu_bufs[buf_idx]; 12431 if (!cpu_buf) 12432 return libbpf_err(-ENOENT); 12433 12434 return cpu_buf->fd; 12435 } 12436 12437 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 12438 { 12439 struct perf_cpu_buf *cpu_buf; 12440 12441 if (buf_idx >= pb->cpu_cnt) 12442 return libbpf_err(-EINVAL); 12443 12444 cpu_buf = pb->cpu_bufs[buf_idx]; 12445 if (!cpu_buf) 12446 return libbpf_err(-ENOENT); 12447 12448 *buf = cpu_buf->base; 12449 *buf_size = pb->mmap_size; 12450 return 0; 12451 } 12452 12453 /* 12454 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 12455 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 12456 * consume, do nothing and return success. 12457 * Returns: 12458 * - 0 on success; 12459 * - <0 on failure. 12460 */ 12461 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 12462 { 12463 struct perf_cpu_buf *cpu_buf; 12464 12465 if (buf_idx >= pb->cpu_cnt) 12466 return libbpf_err(-EINVAL); 12467 12468 cpu_buf = pb->cpu_bufs[buf_idx]; 12469 if (!cpu_buf) 12470 return libbpf_err(-ENOENT); 12471 12472 return perf_buffer__process_records(pb, cpu_buf); 12473 } 12474 12475 int perf_buffer__consume(struct perf_buffer *pb) 12476 { 12477 int i, err; 12478 12479 for (i = 0; i < pb->cpu_cnt; i++) { 12480 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12481 12482 if (!cpu_buf) 12483 continue; 12484 12485 err = perf_buffer__process_records(pb, cpu_buf); 12486 if (err) { 12487 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 12488 return libbpf_err(err); 12489 } 12490 } 12491 return 0; 12492 } 12493 12494 int bpf_program__set_attach_target(struct bpf_program *prog, 12495 int attach_prog_fd, 12496 const char *attach_func_name) 12497 { 12498 int btf_obj_fd = 0, btf_id = 0, err; 12499 12500 if (!prog || attach_prog_fd < 0) 12501 return libbpf_err(-EINVAL); 12502 12503 if (prog->obj->loaded) 12504 return libbpf_err(-EINVAL); 12505 12506 if (attach_prog_fd && !attach_func_name) { 12507 /* remember attach_prog_fd and let bpf_program__load() find 12508 * BTF ID during the program load 12509 */ 12510 prog->attach_prog_fd = attach_prog_fd; 12511 return 0; 12512 } 12513 12514 if (attach_prog_fd) { 12515 btf_id = libbpf_find_prog_btf_id(attach_func_name, 12516 attach_prog_fd); 12517 if (btf_id < 0) 12518 return libbpf_err(btf_id); 12519 } else { 12520 if (!attach_func_name) 12521 return libbpf_err(-EINVAL); 12522 12523 /* load btf_vmlinux, if not yet */ 12524 err = bpf_object__load_vmlinux_btf(prog->obj, true); 12525 if (err) 12526 return libbpf_err(err); 12527 err = find_kernel_btf_id(prog->obj, attach_func_name, 12528 prog->expected_attach_type, 12529 &btf_obj_fd, &btf_id); 12530 if (err) 12531 return libbpf_err(err); 12532 } 12533 12534 prog->attach_btf_id = btf_id; 12535 prog->attach_btf_obj_fd = btf_obj_fd; 12536 prog->attach_prog_fd = attach_prog_fd; 12537 return 0; 12538 } 12539 12540 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 12541 { 12542 int err = 0, n, len, start, end = -1; 12543 bool *tmp; 12544 12545 *mask = NULL; 12546 *mask_sz = 0; 12547 12548 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 12549 while (*s) { 12550 if (*s == ',' || *s == '\n') { 12551 s++; 12552 continue; 12553 } 12554 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 12555 if (n <= 0 || n > 2) { 12556 pr_warn("Failed to get CPU range %s: %d\n", s, n); 12557 err = -EINVAL; 12558 goto cleanup; 12559 } else if (n == 1) { 12560 end = start; 12561 } 12562 if (start < 0 || start > end) { 12563 pr_warn("Invalid CPU range [%d,%d] in %s\n", 12564 start, end, s); 12565 err = -EINVAL; 12566 goto cleanup; 12567 } 12568 tmp = realloc(*mask, end + 1); 12569 if (!tmp) { 12570 err = -ENOMEM; 12571 goto cleanup; 12572 } 12573 *mask = tmp; 12574 memset(tmp + *mask_sz, 0, start - *mask_sz); 12575 memset(tmp + start, 1, end - start + 1); 12576 *mask_sz = end + 1; 12577 s += len; 12578 } 12579 if (!*mask_sz) { 12580 pr_warn("Empty CPU range\n"); 12581 return -EINVAL; 12582 } 12583 return 0; 12584 cleanup: 12585 free(*mask); 12586 *mask = NULL; 12587 return err; 12588 } 12589 12590 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 12591 { 12592 int fd, err = 0, len; 12593 char buf[128]; 12594 12595 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 12596 if (fd < 0) { 12597 err = -errno; 12598 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 12599 return err; 12600 } 12601 len = read(fd, buf, sizeof(buf)); 12602 close(fd); 12603 if (len <= 0) { 12604 err = len ? -errno : -EINVAL; 12605 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 12606 return err; 12607 } 12608 if (len >= sizeof(buf)) { 12609 pr_warn("CPU mask is too big in file %s\n", fcpu); 12610 return -E2BIG; 12611 } 12612 buf[len] = '\0'; 12613 12614 return parse_cpu_mask_str(buf, mask, mask_sz); 12615 } 12616 12617 int libbpf_num_possible_cpus(void) 12618 { 12619 static const char *fcpu = "/sys/devices/system/cpu/possible"; 12620 static int cpus; 12621 int err, n, i, tmp_cpus; 12622 bool *mask; 12623 12624 tmp_cpus = READ_ONCE(cpus); 12625 if (tmp_cpus > 0) 12626 return tmp_cpus; 12627 12628 err = parse_cpu_mask_file(fcpu, &mask, &n); 12629 if (err) 12630 return libbpf_err(err); 12631 12632 tmp_cpus = 0; 12633 for (i = 0; i < n; i++) { 12634 if (mask[i]) 12635 tmp_cpus++; 12636 } 12637 free(mask); 12638 12639 WRITE_ONCE(cpus, tmp_cpus); 12640 return tmp_cpus; 12641 } 12642 12643 static int populate_skeleton_maps(const struct bpf_object *obj, 12644 struct bpf_map_skeleton *maps, 12645 size_t map_cnt) 12646 { 12647 int i; 12648 12649 for (i = 0; i < map_cnt; i++) { 12650 struct bpf_map **map = maps[i].map; 12651 const char *name = maps[i].name; 12652 void **mmaped = maps[i].mmaped; 12653 12654 *map = bpf_object__find_map_by_name(obj, name); 12655 if (!*map) { 12656 pr_warn("failed to find skeleton map '%s'\n", name); 12657 return -ESRCH; 12658 } 12659 12660 /* externs shouldn't be pre-setup from user code */ 12661 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 12662 *mmaped = (*map)->mmaped; 12663 } 12664 return 0; 12665 } 12666 12667 static int populate_skeleton_progs(const struct bpf_object *obj, 12668 struct bpf_prog_skeleton *progs, 12669 size_t prog_cnt) 12670 { 12671 int i; 12672 12673 for (i = 0; i < prog_cnt; i++) { 12674 struct bpf_program **prog = progs[i].prog; 12675 const char *name = progs[i].name; 12676 12677 *prog = bpf_object__find_program_by_name(obj, name); 12678 if (!*prog) { 12679 pr_warn("failed to find skeleton program '%s'\n", name); 12680 return -ESRCH; 12681 } 12682 } 12683 return 0; 12684 } 12685 12686 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 12687 const struct bpf_object_open_opts *opts) 12688 { 12689 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 12690 .object_name = s->name, 12691 ); 12692 struct bpf_object *obj; 12693 int err; 12694 12695 /* Attempt to preserve opts->object_name, unless overriden by user 12696 * explicitly. Overwriting object name for skeletons is discouraged, 12697 * as it breaks global data maps, because they contain object name 12698 * prefix as their own map name prefix. When skeleton is generated, 12699 * bpftool is making an assumption that this name will stay the same. 12700 */ 12701 if (opts) { 12702 memcpy(&skel_opts, opts, sizeof(*opts)); 12703 if (!opts->object_name) 12704 skel_opts.object_name = s->name; 12705 } 12706 12707 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 12708 err = libbpf_get_error(obj); 12709 if (err) { 12710 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 12711 s->name, err); 12712 return libbpf_err(err); 12713 } 12714 12715 *s->obj = obj; 12716 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 12717 if (err) { 12718 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 12719 return libbpf_err(err); 12720 } 12721 12722 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 12723 if (err) { 12724 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 12725 return libbpf_err(err); 12726 } 12727 12728 return 0; 12729 } 12730 12731 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 12732 { 12733 int err, len, var_idx, i; 12734 const char *var_name; 12735 const struct bpf_map *map; 12736 struct btf *btf; 12737 __u32 map_type_id; 12738 const struct btf_type *map_type, *var_type; 12739 const struct bpf_var_skeleton *var_skel; 12740 struct btf_var_secinfo *var; 12741 12742 if (!s->obj) 12743 return libbpf_err(-EINVAL); 12744 12745 btf = bpf_object__btf(s->obj); 12746 if (!btf) { 12747 pr_warn("subskeletons require BTF at runtime (object %s)\n", 12748 bpf_object__name(s->obj)); 12749 return libbpf_err(-errno); 12750 } 12751 12752 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 12753 if (err) { 12754 pr_warn("failed to populate subskeleton maps: %d\n", err); 12755 return libbpf_err(err); 12756 } 12757 12758 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 12759 if (err) { 12760 pr_warn("failed to populate subskeleton maps: %d\n", err); 12761 return libbpf_err(err); 12762 } 12763 12764 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 12765 var_skel = &s->vars[var_idx]; 12766 map = *var_skel->map; 12767 map_type_id = bpf_map__btf_value_type_id(map); 12768 map_type = btf__type_by_id(btf, map_type_id); 12769 12770 if (!btf_is_datasec(map_type)) { 12771 pr_warn("type for map '%1$s' is not a datasec: %2$s", 12772 bpf_map__name(map), 12773 __btf_kind_str(btf_kind(map_type))); 12774 return libbpf_err(-EINVAL); 12775 } 12776 12777 len = btf_vlen(map_type); 12778 var = btf_var_secinfos(map_type); 12779 for (i = 0; i < len; i++, var++) { 12780 var_type = btf__type_by_id(btf, var->type); 12781 var_name = btf__name_by_offset(btf, var_type->name_off); 12782 if (strcmp(var_name, var_skel->name) == 0) { 12783 *var_skel->addr = map->mmaped + var->offset; 12784 break; 12785 } 12786 } 12787 } 12788 return 0; 12789 } 12790 12791 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 12792 { 12793 if (!s) 12794 return; 12795 free(s->maps); 12796 free(s->progs); 12797 free(s->vars); 12798 free(s); 12799 } 12800 12801 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 12802 { 12803 int i, err; 12804 12805 err = bpf_object__load(*s->obj); 12806 if (err) { 12807 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 12808 return libbpf_err(err); 12809 } 12810 12811 for (i = 0; i < s->map_cnt; i++) { 12812 struct bpf_map *map = *s->maps[i].map; 12813 size_t mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 12814 int prot, map_fd = bpf_map__fd(map); 12815 void **mmaped = s->maps[i].mmaped; 12816 12817 if (!mmaped) 12818 continue; 12819 12820 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 12821 *mmaped = NULL; 12822 continue; 12823 } 12824 12825 if (map->def.map_flags & BPF_F_RDONLY_PROG) 12826 prot = PROT_READ; 12827 else 12828 prot = PROT_READ | PROT_WRITE; 12829 12830 /* Remap anonymous mmap()-ed "map initialization image" as 12831 * a BPF map-backed mmap()-ed memory, but preserving the same 12832 * memory address. This will cause kernel to change process' 12833 * page table to point to a different piece of kernel memory, 12834 * but from userspace point of view memory address (and its 12835 * contents, being identical at this point) will stay the 12836 * same. This mapping will be released by bpf_object__close() 12837 * as per normal clean up procedure, so we don't need to worry 12838 * about it from skeleton's clean up perspective. 12839 */ 12840 *mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0); 12841 if (*mmaped == MAP_FAILED) { 12842 err = -errno; 12843 *mmaped = NULL; 12844 pr_warn("failed to re-mmap() map '%s': %d\n", 12845 bpf_map__name(map), err); 12846 return libbpf_err(err); 12847 } 12848 } 12849 12850 return 0; 12851 } 12852 12853 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 12854 { 12855 int i, err; 12856 12857 for (i = 0; i < s->prog_cnt; i++) { 12858 struct bpf_program *prog = *s->progs[i].prog; 12859 struct bpf_link **link = s->progs[i].link; 12860 12861 if (!prog->autoload || !prog->autoattach) 12862 continue; 12863 12864 /* auto-attaching not supported for this program */ 12865 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12866 continue; 12867 12868 /* if user already set the link manually, don't attempt auto-attach */ 12869 if (*link) 12870 continue; 12871 12872 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 12873 if (err) { 12874 pr_warn("prog '%s': failed to auto-attach: %d\n", 12875 bpf_program__name(prog), err); 12876 return libbpf_err(err); 12877 } 12878 12879 /* It's possible that for some SEC() definitions auto-attach 12880 * is supported in some cases (e.g., if definition completely 12881 * specifies target information), but is not in other cases. 12882 * SEC("uprobe") is one such case. If user specified target 12883 * binary and function name, such BPF program can be 12884 * auto-attached. But if not, it shouldn't trigger skeleton's 12885 * attach to fail. It should just be skipped. 12886 * attach_fn signals such case with returning 0 (no error) and 12887 * setting link to NULL. 12888 */ 12889 } 12890 12891 return 0; 12892 } 12893 12894 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 12895 { 12896 int i; 12897 12898 for (i = 0; i < s->prog_cnt; i++) { 12899 struct bpf_link **link = s->progs[i].link; 12900 12901 bpf_link__destroy(*link); 12902 *link = NULL; 12903 } 12904 } 12905 12906 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 12907 { 12908 if (!s) 12909 return; 12910 12911 if (s->progs) 12912 bpf_object__detach_skeleton(s); 12913 if (s->obj) 12914 bpf_object__close(*s->obj); 12915 free(s->maps); 12916 free(s->progs); 12917 free(s); 12918 } 12919