xref: /openbmc/linux/tools/lib/bpf/libbpf.c (revision 911b8eac)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * Common eBPF ELF object loading operations.
5  *
6  * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7  * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8  * Copyright (C) 2015 Huawei Inc.
9  * Copyright (C) 2017 Nicira, Inc.
10  * Copyright (C) 2019 Isovalent, Inc.
11  */
12 
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/list.h>
35 #include <linux/limits.h>
36 #include <linux/perf_event.h>
37 #include <linux/ring_buffer.h>
38 #include <linux/version.h>
39 #include <sys/epoll.h>
40 #include <sys/ioctl.h>
41 #include <sys/mman.h>
42 #include <sys/stat.h>
43 #include <sys/types.h>
44 #include <sys/vfs.h>
45 #include <sys/utsname.h>
46 #include <sys/resource.h>
47 #include <libelf.h>
48 #include <gelf.h>
49 #include <zlib.h>
50 
51 #include "libbpf.h"
52 #include "bpf.h"
53 #include "btf.h"
54 #include "str_error.h"
55 #include "libbpf_internal.h"
56 #include "hashmap.h"
57 
58 #ifndef EM_BPF
59 #define EM_BPF 247
60 #endif
61 
62 #ifndef BPF_FS_MAGIC
63 #define BPF_FS_MAGIC		0xcafe4a11
64 #endif
65 
66 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
67 
68 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
69  * compilation if user enables corresponding warning. Disable it explicitly.
70  */
71 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
72 
73 #define __printf(a, b)	__attribute__((format(printf, a, b)))
74 
75 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
76 static const struct btf_type *
77 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id);
78 
79 static int __base_pr(enum libbpf_print_level level, const char *format,
80 		     va_list args)
81 {
82 	if (level == LIBBPF_DEBUG)
83 		return 0;
84 
85 	return vfprintf(stderr, format, args);
86 }
87 
88 static libbpf_print_fn_t __libbpf_pr = __base_pr;
89 
90 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
91 {
92 	libbpf_print_fn_t old_print_fn = __libbpf_pr;
93 
94 	__libbpf_pr = fn;
95 	return old_print_fn;
96 }
97 
98 __printf(2, 3)
99 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
100 {
101 	va_list args;
102 
103 	if (!__libbpf_pr)
104 		return;
105 
106 	va_start(args, format);
107 	__libbpf_pr(level, format, args);
108 	va_end(args);
109 }
110 
111 static void pr_perm_msg(int err)
112 {
113 	struct rlimit limit;
114 	char buf[100];
115 
116 	if (err != -EPERM || geteuid() != 0)
117 		return;
118 
119 	err = getrlimit(RLIMIT_MEMLOCK, &limit);
120 	if (err)
121 		return;
122 
123 	if (limit.rlim_cur == RLIM_INFINITY)
124 		return;
125 
126 	if (limit.rlim_cur < 1024)
127 		snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
128 	else if (limit.rlim_cur < 1024*1024)
129 		snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
130 	else
131 		snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
132 
133 	pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
134 		buf);
135 }
136 
137 #define STRERR_BUFSIZE  128
138 
139 /* Copied from tools/perf/util/util.h */
140 #ifndef zfree
141 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
142 #endif
143 
144 #ifndef zclose
145 # define zclose(fd) ({			\
146 	int ___err = 0;			\
147 	if ((fd) >= 0)			\
148 		___err = close((fd));	\
149 	fd = -1;			\
150 	___err; })
151 #endif
152 
153 static inline __u64 ptr_to_u64(const void *ptr)
154 {
155 	return (__u64) (unsigned long) ptr;
156 }
157 
158 enum kern_feature_id {
159 	/* v4.14: kernel support for program & map names. */
160 	FEAT_PROG_NAME,
161 	/* v5.2: kernel support for global data sections. */
162 	FEAT_GLOBAL_DATA,
163 	/* BTF support */
164 	FEAT_BTF,
165 	/* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */
166 	FEAT_BTF_FUNC,
167 	/* BTF_KIND_VAR and BTF_KIND_DATASEC support */
168 	FEAT_BTF_DATASEC,
169 	/* BTF_FUNC_GLOBAL is supported */
170 	FEAT_BTF_GLOBAL_FUNC,
171 	/* BPF_F_MMAPABLE is supported for arrays */
172 	FEAT_ARRAY_MMAP,
173 	/* kernel support for expected_attach_type in BPF_PROG_LOAD */
174 	FEAT_EXP_ATTACH_TYPE,
175 	/* bpf_probe_read_{kernel,user}[_str] helpers */
176 	FEAT_PROBE_READ_KERN,
177 	/* BPF_PROG_BIND_MAP is supported */
178 	FEAT_PROG_BIND_MAP,
179 	__FEAT_CNT,
180 };
181 
182 static bool kernel_supports(enum kern_feature_id feat_id);
183 
184 enum reloc_type {
185 	RELO_LD64,
186 	RELO_CALL,
187 	RELO_DATA,
188 	RELO_EXTERN,
189 };
190 
191 struct reloc_desc {
192 	enum reloc_type type;
193 	int insn_idx;
194 	int map_idx;
195 	int sym_off;
196 	bool processed;
197 };
198 
199 struct bpf_sec_def;
200 
201 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_sec_def *sec,
202 					struct bpf_program *prog);
203 
204 struct bpf_sec_def {
205 	const char *sec;
206 	size_t len;
207 	enum bpf_prog_type prog_type;
208 	enum bpf_attach_type expected_attach_type;
209 	bool is_exp_attach_type_optional;
210 	bool is_attachable;
211 	bool is_attach_btf;
212 	bool is_sleepable;
213 	attach_fn_t attach_fn;
214 };
215 
216 /*
217  * bpf_prog should be a better name but it has been used in
218  * linux/filter.h.
219  */
220 struct bpf_program {
221 	const struct bpf_sec_def *sec_def;
222 	char *sec_name;
223 	size_t sec_idx;
224 	/* this program's instruction offset (in number of instructions)
225 	 * within its containing ELF section
226 	 */
227 	size_t sec_insn_off;
228 	/* number of original instructions in ELF section belonging to this
229 	 * program, not taking into account subprogram instructions possible
230 	 * appended later during relocation
231 	 */
232 	size_t sec_insn_cnt;
233 	/* Offset (in number of instructions) of the start of instruction
234 	 * belonging to this BPF program  within its containing main BPF
235 	 * program. For the entry-point (main) BPF program, this is always
236 	 * zero. For a sub-program, this gets reset before each of main BPF
237 	 * programs are processed and relocated and is used to determined
238 	 * whether sub-program was already appended to the main program, and
239 	 * if yes, at which instruction offset.
240 	 */
241 	size_t sub_insn_off;
242 
243 	char *name;
244 	/* sec_name with / replaced by _; makes recursive pinning
245 	 * in bpf_object__pin_programs easier
246 	 */
247 	char *pin_name;
248 
249 	/* instructions that belong to BPF program; insns[0] is located at
250 	 * sec_insn_off instruction within its ELF section in ELF file, so
251 	 * when mapping ELF file instruction index to the local instruction,
252 	 * one needs to subtract sec_insn_off; and vice versa.
253 	 */
254 	struct bpf_insn *insns;
255 	/* actual number of instruction in this BPF program's image; for
256 	 * entry-point BPF programs this includes the size of main program
257 	 * itself plus all the used sub-programs, appended at the end
258 	 */
259 	size_t insns_cnt;
260 
261 	struct reloc_desc *reloc_desc;
262 	int nr_reloc;
263 	int log_level;
264 
265 	struct {
266 		int nr;
267 		int *fds;
268 	} instances;
269 	bpf_program_prep_t preprocessor;
270 
271 	struct bpf_object *obj;
272 	void *priv;
273 	bpf_program_clear_priv_t clear_priv;
274 
275 	bool load;
276 	enum bpf_prog_type type;
277 	enum bpf_attach_type expected_attach_type;
278 	int prog_ifindex;
279 	__u32 attach_btf_id;
280 	__u32 attach_prog_fd;
281 	void *func_info;
282 	__u32 func_info_rec_size;
283 	__u32 func_info_cnt;
284 
285 	void *line_info;
286 	__u32 line_info_rec_size;
287 	__u32 line_info_cnt;
288 	__u32 prog_flags;
289 };
290 
291 struct bpf_struct_ops {
292 	const char *tname;
293 	const struct btf_type *type;
294 	struct bpf_program **progs;
295 	__u32 *kern_func_off;
296 	/* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
297 	void *data;
298 	/* e.g. struct bpf_struct_ops_tcp_congestion_ops in
299 	 *      btf_vmlinux's format.
300 	 * struct bpf_struct_ops_tcp_congestion_ops {
301 	 *	[... some other kernel fields ...]
302 	 *	struct tcp_congestion_ops data;
303 	 * }
304 	 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
305 	 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
306 	 * from "data".
307 	 */
308 	void *kern_vdata;
309 	__u32 type_id;
310 };
311 
312 #define DATA_SEC ".data"
313 #define BSS_SEC ".bss"
314 #define RODATA_SEC ".rodata"
315 #define KCONFIG_SEC ".kconfig"
316 #define KSYMS_SEC ".ksyms"
317 #define STRUCT_OPS_SEC ".struct_ops"
318 
319 enum libbpf_map_type {
320 	LIBBPF_MAP_UNSPEC,
321 	LIBBPF_MAP_DATA,
322 	LIBBPF_MAP_BSS,
323 	LIBBPF_MAP_RODATA,
324 	LIBBPF_MAP_KCONFIG,
325 };
326 
327 static const char * const libbpf_type_to_btf_name[] = {
328 	[LIBBPF_MAP_DATA]	= DATA_SEC,
329 	[LIBBPF_MAP_BSS]	= BSS_SEC,
330 	[LIBBPF_MAP_RODATA]	= RODATA_SEC,
331 	[LIBBPF_MAP_KCONFIG]	= KCONFIG_SEC,
332 };
333 
334 struct bpf_map {
335 	char *name;
336 	int fd;
337 	int sec_idx;
338 	size_t sec_offset;
339 	int map_ifindex;
340 	int inner_map_fd;
341 	struct bpf_map_def def;
342 	__u32 numa_node;
343 	__u32 btf_var_idx;
344 	__u32 btf_key_type_id;
345 	__u32 btf_value_type_id;
346 	__u32 btf_vmlinux_value_type_id;
347 	void *priv;
348 	bpf_map_clear_priv_t clear_priv;
349 	enum libbpf_map_type libbpf_type;
350 	void *mmaped;
351 	struct bpf_struct_ops *st_ops;
352 	struct bpf_map *inner_map;
353 	void **init_slots;
354 	int init_slots_sz;
355 	char *pin_path;
356 	bool pinned;
357 	bool reused;
358 };
359 
360 enum extern_type {
361 	EXT_UNKNOWN,
362 	EXT_KCFG,
363 	EXT_KSYM,
364 };
365 
366 enum kcfg_type {
367 	KCFG_UNKNOWN,
368 	KCFG_CHAR,
369 	KCFG_BOOL,
370 	KCFG_INT,
371 	KCFG_TRISTATE,
372 	KCFG_CHAR_ARR,
373 };
374 
375 struct extern_desc {
376 	enum extern_type type;
377 	int sym_idx;
378 	int btf_id;
379 	int sec_btf_id;
380 	const char *name;
381 	bool is_set;
382 	bool is_weak;
383 	union {
384 		struct {
385 			enum kcfg_type type;
386 			int sz;
387 			int align;
388 			int data_off;
389 			bool is_signed;
390 		} kcfg;
391 		struct {
392 			unsigned long long addr;
393 		} ksym;
394 	};
395 };
396 
397 static LIST_HEAD(bpf_objects_list);
398 
399 struct bpf_object {
400 	char name[BPF_OBJ_NAME_LEN];
401 	char license[64];
402 	__u32 kern_version;
403 
404 	struct bpf_program *programs;
405 	size_t nr_programs;
406 	struct bpf_map *maps;
407 	size_t nr_maps;
408 	size_t maps_cap;
409 
410 	char *kconfig;
411 	struct extern_desc *externs;
412 	int nr_extern;
413 	int kconfig_map_idx;
414 	int rodata_map_idx;
415 
416 	bool loaded;
417 	bool has_subcalls;
418 
419 	/*
420 	 * Information when doing elf related work. Only valid if fd
421 	 * is valid.
422 	 */
423 	struct {
424 		int fd;
425 		const void *obj_buf;
426 		size_t obj_buf_sz;
427 		Elf *elf;
428 		GElf_Ehdr ehdr;
429 		Elf_Data *symbols;
430 		Elf_Data *data;
431 		Elf_Data *rodata;
432 		Elf_Data *bss;
433 		Elf_Data *st_ops_data;
434 		size_t shstrndx; /* section index for section name strings */
435 		size_t strtabidx;
436 		struct {
437 			GElf_Shdr shdr;
438 			Elf_Data *data;
439 		} *reloc_sects;
440 		int nr_reloc_sects;
441 		int maps_shndx;
442 		int btf_maps_shndx;
443 		__u32 btf_maps_sec_btf_id;
444 		int text_shndx;
445 		int symbols_shndx;
446 		int data_shndx;
447 		int rodata_shndx;
448 		int bss_shndx;
449 		int st_ops_shndx;
450 	} efile;
451 	/*
452 	 * All loaded bpf_object is linked in a list, which is
453 	 * hidden to caller. bpf_objects__<func> handlers deal with
454 	 * all objects.
455 	 */
456 	struct list_head list;
457 
458 	struct btf *btf;
459 	/* Parse and load BTF vmlinux if any of the programs in the object need
460 	 * it at load time.
461 	 */
462 	struct btf *btf_vmlinux;
463 	struct btf_ext *btf_ext;
464 
465 	void *priv;
466 	bpf_object_clear_priv_t clear_priv;
467 
468 	char path[];
469 };
470 #define obj_elf_valid(o)	((o)->efile.elf)
471 
472 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
473 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
474 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
475 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
476 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr);
477 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
478 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
479 static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx,
480 			      size_t off, __u32 sym_type, GElf_Sym *sym);
481 
482 void bpf_program__unload(struct bpf_program *prog)
483 {
484 	int i;
485 
486 	if (!prog)
487 		return;
488 
489 	/*
490 	 * If the object is opened but the program was never loaded,
491 	 * it is possible that prog->instances.nr == -1.
492 	 */
493 	if (prog->instances.nr > 0) {
494 		for (i = 0; i < prog->instances.nr; i++)
495 			zclose(prog->instances.fds[i]);
496 	} else if (prog->instances.nr != -1) {
497 		pr_warn("Internal error: instances.nr is %d\n",
498 			prog->instances.nr);
499 	}
500 
501 	prog->instances.nr = -1;
502 	zfree(&prog->instances.fds);
503 
504 	zfree(&prog->func_info);
505 	zfree(&prog->line_info);
506 }
507 
508 static void bpf_program__exit(struct bpf_program *prog)
509 {
510 	if (!prog)
511 		return;
512 
513 	if (prog->clear_priv)
514 		prog->clear_priv(prog, prog->priv);
515 
516 	prog->priv = NULL;
517 	prog->clear_priv = NULL;
518 
519 	bpf_program__unload(prog);
520 	zfree(&prog->name);
521 	zfree(&prog->sec_name);
522 	zfree(&prog->pin_name);
523 	zfree(&prog->insns);
524 	zfree(&prog->reloc_desc);
525 
526 	prog->nr_reloc = 0;
527 	prog->insns_cnt = 0;
528 	prog->sec_idx = -1;
529 }
530 
531 static char *__bpf_program__pin_name(struct bpf_program *prog)
532 {
533 	char *name, *p;
534 
535 	name = p = strdup(prog->sec_name);
536 	while ((p = strchr(p, '/')))
537 		*p = '_';
538 
539 	return name;
540 }
541 
542 static bool insn_is_subprog_call(const struct bpf_insn *insn)
543 {
544 	return BPF_CLASS(insn->code) == BPF_JMP &&
545 	       BPF_OP(insn->code) == BPF_CALL &&
546 	       BPF_SRC(insn->code) == BPF_K &&
547 	       insn->src_reg == BPF_PSEUDO_CALL &&
548 	       insn->dst_reg == 0 &&
549 	       insn->off == 0;
550 }
551 
552 static int
553 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
554 		      const char *name, size_t sec_idx, const char *sec_name,
555 		      size_t sec_off, void *insn_data, size_t insn_data_sz)
556 {
557 	int i;
558 
559 	if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
560 		pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
561 			sec_name, name, sec_off, insn_data_sz);
562 		return -EINVAL;
563 	}
564 
565 	memset(prog, 0, sizeof(*prog));
566 	prog->obj = obj;
567 
568 	prog->sec_idx = sec_idx;
569 	prog->sec_insn_off = sec_off / BPF_INSN_SZ;
570 	prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
571 	/* insns_cnt can later be increased by appending used subprograms */
572 	prog->insns_cnt = prog->sec_insn_cnt;
573 
574 	prog->type = BPF_PROG_TYPE_UNSPEC;
575 	prog->load = true;
576 
577 	prog->instances.fds = NULL;
578 	prog->instances.nr = -1;
579 
580 	prog->sec_name = strdup(sec_name);
581 	if (!prog->sec_name)
582 		goto errout;
583 
584 	prog->name = strdup(name);
585 	if (!prog->name)
586 		goto errout;
587 
588 	prog->pin_name = __bpf_program__pin_name(prog);
589 	if (!prog->pin_name)
590 		goto errout;
591 
592 	prog->insns = malloc(insn_data_sz);
593 	if (!prog->insns)
594 		goto errout;
595 	memcpy(prog->insns, insn_data, insn_data_sz);
596 
597 	for (i = 0; i < prog->insns_cnt; i++) {
598 		if (insn_is_subprog_call(&prog->insns[i])) {
599 			obj->has_subcalls = true;
600 			break;
601 		}
602 	}
603 
604 	return 0;
605 errout:
606 	pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
607 	bpf_program__exit(prog);
608 	return -ENOMEM;
609 }
610 
611 static int
612 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
613 			 const char *sec_name, int sec_idx)
614 {
615 	struct bpf_program *prog, *progs;
616 	void *data = sec_data->d_buf;
617 	size_t sec_sz = sec_data->d_size, sec_off, prog_sz;
618 	int nr_progs, err;
619 	const char *name;
620 	GElf_Sym sym;
621 
622 	progs = obj->programs;
623 	nr_progs = obj->nr_programs;
624 	sec_off = 0;
625 
626 	while (sec_off < sec_sz) {
627 		if (elf_sym_by_sec_off(obj, sec_idx, sec_off, STT_FUNC, &sym)) {
628 			pr_warn("sec '%s': failed to find program symbol at offset %zu\n",
629 				sec_name, sec_off);
630 			return -LIBBPF_ERRNO__FORMAT;
631 		}
632 
633 		prog_sz = sym.st_size;
634 
635 		name = elf_sym_str(obj, sym.st_name);
636 		if (!name) {
637 			pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
638 				sec_name, sec_off);
639 			return -LIBBPF_ERRNO__FORMAT;
640 		}
641 
642 		if (sec_off + prog_sz > sec_sz) {
643 			pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
644 				sec_name, sec_off);
645 			return -LIBBPF_ERRNO__FORMAT;
646 		}
647 
648 		pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
649 			 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
650 
651 		progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
652 		if (!progs) {
653 			/*
654 			 * In this case the original obj->programs
655 			 * is still valid, so don't need special treat for
656 			 * bpf_close_object().
657 			 */
658 			pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
659 				sec_name, name);
660 			return -ENOMEM;
661 		}
662 		obj->programs = progs;
663 
664 		prog = &progs[nr_progs];
665 
666 		err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
667 					    sec_off, data + sec_off, prog_sz);
668 		if (err)
669 			return err;
670 
671 		nr_progs++;
672 		obj->nr_programs = nr_progs;
673 
674 		sec_off += prog_sz;
675 	}
676 
677 	return 0;
678 }
679 
680 static __u32 get_kernel_version(void)
681 {
682 	__u32 major, minor, patch;
683 	struct utsname info;
684 
685 	uname(&info);
686 	if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3)
687 		return 0;
688 	return KERNEL_VERSION(major, minor, patch);
689 }
690 
691 static const struct btf_member *
692 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
693 {
694 	struct btf_member *m;
695 	int i;
696 
697 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
698 		if (btf_member_bit_offset(t, i) == bit_offset)
699 			return m;
700 	}
701 
702 	return NULL;
703 }
704 
705 static const struct btf_member *
706 find_member_by_name(const struct btf *btf, const struct btf_type *t,
707 		    const char *name)
708 {
709 	struct btf_member *m;
710 	int i;
711 
712 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
713 		if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
714 			return m;
715 	}
716 
717 	return NULL;
718 }
719 
720 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
721 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
722 				   const char *name, __u32 kind);
723 
724 static int
725 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
726 			   const struct btf_type **type, __u32 *type_id,
727 			   const struct btf_type **vtype, __u32 *vtype_id,
728 			   const struct btf_member **data_member)
729 {
730 	const struct btf_type *kern_type, *kern_vtype;
731 	const struct btf_member *kern_data_member;
732 	__s32 kern_vtype_id, kern_type_id;
733 	__u32 i;
734 
735 	kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
736 	if (kern_type_id < 0) {
737 		pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
738 			tname);
739 		return kern_type_id;
740 	}
741 	kern_type = btf__type_by_id(btf, kern_type_id);
742 
743 	/* Find the corresponding "map_value" type that will be used
744 	 * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
745 	 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
746 	 * btf_vmlinux.
747 	 */
748 	kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
749 						tname, BTF_KIND_STRUCT);
750 	if (kern_vtype_id < 0) {
751 		pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
752 			STRUCT_OPS_VALUE_PREFIX, tname);
753 		return kern_vtype_id;
754 	}
755 	kern_vtype = btf__type_by_id(btf, kern_vtype_id);
756 
757 	/* Find "struct tcp_congestion_ops" from
758 	 * struct bpf_struct_ops_tcp_congestion_ops {
759 	 *	[ ... ]
760 	 *	struct tcp_congestion_ops data;
761 	 * }
762 	 */
763 	kern_data_member = btf_members(kern_vtype);
764 	for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
765 		if (kern_data_member->type == kern_type_id)
766 			break;
767 	}
768 	if (i == btf_vlen(kern_vtype)) {
769 		pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
770 			tname, STRUCT_OPS_VALUE_PREFIX, tname);
771 		return -EINVAL;
772 	}
773 
774 	*type = kern_type;
775 	*type_id = kern_type_id;
776 	*vtype = kern_vtype;
777 	*vtype_id = kern_vtype_id;
778 	*data_member = kern_data_member;
779 
780 	return 0;
781 }
782 
783 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
784 {
785 	return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
786 }
787 
788 /* Init the map's fields that depend on kern_btf */
789 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
790 					 const struct btf *btf,
791 					 const struct btf *kern_btf)
792 {
793 	const struct btf_member *member, *kern_member, *kern_data_member;
794 	const struct btf_type *type, *kern_type, *kern_vtype;
795 	__u32 i, kern_type_id, kern_vtype_id, kern_data_off;
796 	struct bpf_struct_ops *st_ops;
797 	void *data, *kern_data;
798 	const char *tname;
799 	int err;
800 
801 	st_ops = map->st_ops;
802 	type = st_ops->type;
803 	tname = st_ops->tname;
804 	err = find_struct_ops_kern_types(kern_btf, tname,
805 					 &kern_type, &kern_type_id,
806 					 &kern_vtype, &kern_vtype_id,
807 					 &kern_data_member);
808 	if (err)
809 		return err;
810 
811 	pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
812 		 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
813 
814 	map->def.value_size = kern_vtype->size;
815 	map->btf_vmlinux_value_type_id = kern_vtype_id;
816 
817 	st_ops->kern_vdata = calloc(1, kern_vtype->size);
818 	if (!st_ops->kern_vdata)
819 		return -ENOMEM;
820 
821 	data = st_ops->data;
822 	kern_data_off = kern_data_member->offset / 8;
823 	kern_data = st_ops->kern_vdata + kern_data_off;
824 
825 	member = btf_members(type);
826 	for (i = 0; i < btf_vlen(type); i++, member++) {
827 		const struct btf_type *mtype, *kern_mtype;
828 		__u32 mtype_id, kern_mtype_id;
829 		void *mdata, *kern_mdata;
830 		__s64 msize, kern_msize;
831 		__u32 moff, kern_moff;
832 		__u32 kern_member_idx;
833 		const char *mname;
834 
835 		mname = btf__name_by_offset(btf, member->name_off);
836 		kern_member = find_member_by_name(kern_btf, kern_type, mname);
837 		if (!kern_member) {
838 			pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
839 				map->name, mname);
840 			return -ENOTSUP;
841 		}
842 
843 		kern_member_idx = kern_member - btf_members(kern_type);
844 		if (btf_member_bitfield_size(type, i) ||
845 		    btf_member_bitfield_size(kern_type, kern_member_idx)) {
846 			pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
847 				map->name, mname);
848 			return -ENOTSUP;
849 		}
850 
851 		moff = member->offset / 8;
852 		kern_moff = kern_member->offset / 8;
853 
854 		mdata = data + moff;
855 		kern_mdata = kern_data + kern_moff;
856 
857 		mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
858 		kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
859 						    &kern_mtype_id);
860 		if (BTF_INFO_KIND(mtype->info) !=
861 		    BTF_INFO_KIND(kern_mtype->info)) {
862 			pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
863 				map->name, mname, BTF_INFO_KIND(mtype->info),
864 				BTF_INFO_KIND(kern_mtype->info));
865 			return -ENOTSUP;
866 		}
867 
868 		if (btf_is_ptr(mtype)) {
869 			struct bpf_program *prog;
870 
871 			mtype = skip_mods_and_typedefs(btf, mtype->type, &mtype_id);
872 			kern_mtype = skip_mods_and_typedefs(kern_btf,
873 							    kern_mtype->type,
874 							    &kern_mtype_id);
875 			if (!btf_is_func_proto(mtype) ||
876 			    !btf_is_func_proto(kern_mtype)) {
877 				pr_warn("struct_ops init_kern %s: non func ptr %s is not supported\n",
878 					map->name, mname);
879 				return -ENOTSUP;
880 			}
881 
882 			prog = st_ops->progs[i];
883 			if (!prog) {
884 				pr_debug("struct_ops init_kern %s: func ptr %s is not set\n",
885 					 map->name, mname);
886 				continue;
887 			}
888 
889 			prog->attach_btf_id = kern_type_id;
890 			prog->expected_attach_type = kern_member_idx;
891 
892 			st_ops->kern_func_off[i] = kern_data_off + kern_moff;
893 
894 			pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
895 				 map->name, mname, prog->name, moff,
896 				 kern_moff);
897 
898 			continue;
899 		}
900 
901 		msize = btf__resolve_size(btf, mtype_id);
902 		kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
903 		if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
904 			pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
905 				map->name, mname, (ssize_t)msize,
906 				(ssize_t)kern_msize);
907 			return -ENOTSUP;
908 		}
909 
910 		pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
911 			 map->name, mname, (unsigned int)msize,
912 			 moff, kern_moff);
913 		memcpy(kern_mdata, mdata, msize);
914 	}
915 
916 	return 0;
917 }
918 
919 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
920 {
921 	struct bpf_map *map;
922 	size_t i;
923 	int err;
924 
925 	for (i = 0; i < obj->nr_maps; i++) {
926 		map = &obj->maps[i];
927 
928 		if (!bpf_map__is_struct_ops(map))
929 			continue;
930 
931 		err = bpf_map__init_kern_struct_ops(map, obj->btf,
932 						    obj->btf_vmlinux);
933 		if (err)
934 			return err;
935 	}
936 
937 	return 0;
938 }
939 
940 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj)
941 {
942 	const struct btf_type *type, *datasec;
943 	const struct btf_var_secinfo *vsi;
944 	struct bpf_struct_ops *st_ops;
945 	const char *tname, *var_name;
946 	__s32 type_id, datasec_id;
947 	const struct btf *btf;
948 	struct bpf_map *map;
949 	__u32 i;
950 
951 	if (obj->efile.st_ops_shndx == -1)
952 		return 0;
953 
954 	btf = obj->btf;
955 	datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC,
956 					    BTF_KIND_DATASEC);
957 	if (datasec_id < 0) {
958 		pr_warn("struct_ops init: DATASEC %s not found\n",
959 			STRUCT_OPS_SEC);
960 		return -EINVAL;
961 	}
962 
963 	datasec = btf__type_by_id(btf, datasec_id);
964 	vsi = btf_var_secinfos(datasec);
965 	for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
966 		type = btf__type_by_id(obj->btf, vsi->type);
967 		var_name = btf__name_by_offset(obj->btf, type->name_off);
968 
969 		type_id = btf__resolve_type(obj->btf, vsi->type);
970 		if (type_id < 0) {
971 			pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
972 				vsi->type, STRUCT_OPS_SEC);
973 			return -EINVAL;
974 		}
975 
976 		type = btf__type_by_id(obj->btf, type_id);
977 		tname = btf__name_by_offset(obj->btf, type->name_off);
978 		if (!tname[0]) {
979 			pr_warn("struct_ops init: anonymous type is not supported\n");
980 			return -ENOTSUP;
981 		}
982 		if (!btf_is_struct(type)) {
983 			pr_warn("struct_ops init: %s is not a struct\n", tname);
984 			return -EINVAL;
985 		}
986 
987 		map = bpf_object__add_map(obj);
988 		if (IS_ERR(map))
989 			return PTR_ERR(map);
990 
991 		map->sec_idx = obj->efile.st_ops_shndx;
992 		map->sec_offset = vsi->offset;
993 		map->name = strdup(var_name);
994 		if (!map->name)
995 			return -ENOMEM;
996 
997 		map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
998 		map->def.key_size = sizeof(int);
999 		map->def.value_size = type->size;
1000 		map->def.max_entries = 1;
1001 
1002 		map->st_ops = calloc(1, sizeof(*map->st_ops));
1003 		if (!map->st_ops)
1004 			return -ENOMEM;
1005 		st_ops = map->st_ops;
1006 		st_ops->data = malloc(type->size);
1007 		st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1008 		st_ops->kern_func_off = malloc(btf_vlen(type) *
1009 					       sizeof(*st_ops->kern_func_off));
1010 		if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1011 			return -ENOMEM;
1012 
1013 		if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) {
1014 			pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1015 				var_name, STRUCT_OPS_SEC);
1016 			return -EINVAL;
1017 		}
1018 
1019 		memcpy(st_ops->data,
1020 		       obj->efile.st_ops_data->d_buf + vsi->offset,
1021 		       type->size);
1022 		st_ops->tname = tname;
1023 		st_ops->type = type;
1024 		st_ops->type_id = type_id;
1025 
1026 		pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1027 			 tname, type_id, var_name, vsi->offset);
1028 	}
1029 
1030 	return 0;
1031 }
1032 
1033 static struct bpf_object *bpf_object__new(const char *path,
1034 					  const void *obj_buf,
1035 					  size_t obj_buf_sz,
1036 					  const char *obj_name)
1037 {
1038 	struct bpf_object *obj;
1039 	char *end;
1040 
1041 	obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1042 	if (!obj) {
1043 		pr_warn("alloc memory failed for %s\n", path);
1044 		return ERR_PTR(-ENOMEM);
1045 	}
1046 
1047 	strcpy(obj->path, path);
1048 	if (obj_name) {
1049 		strncpy(obj->name, obj_name, sizeof(obj->name) - 1);
1050 		obj->name[sizeof(obj->name) - 1] = 0;
1051 	} else {
1052 		/* Using basename() GNU version which doesn't modify arg. */
1053 		strncpy(obj->name, basename((void *)path),
1054 			sizeof(obj->name) - 1);
1055 		end = strchr(obj->name, '.');
1056 		if (end)
1057 			*end = 0;
1058 	}
1059 
1060 	obj->efile.fd = -1;
1061 	/*
1062 	 * Caller of this function should also call
1063 	 * bpf_object__elf_finish() after data collection to return
1064 	 * obj_buf to user. If not, we should duplicate the buffer to
1065 	 * avoid user freeing them before elf finish.
1066 	 */
1067 	obj->efile.obj_buf = obj_buf;
1068 	obj->efile.obj_buf_sz = obj_buf_sz;
1069 	obj->efile.maps_shndx = -1;
1070 	obj->efile.btf_maps_shndx = -1;
1071 	obj->efile.data_shndx = -1;
1072 	obj->efile.rodata_shndx = -1;
1073 	obj->efile.bss_shndx = -1;
1074 	obj->efile.st_ops_shndx = -1;
1075 	obj->kconfig_map_idx = -1;
1076 	obj->rodata_map_idx = -1;
1077 
1078 	obj->kern_version = get_kernel_version();
1079 	obj->loaded = false;
1080 
1081 	INIT_LIST_HEAD(&obj->list);
1082 	list_add(&obj->list, &bpf_objects_list);
1083 	return obj;
1084 }
1085 
1086 static void bpf_object__elf_finish(struct bpf_object *obj)
1087 {
1088 	if (!obj_elf_valid(obj))
1089 		return;
1090 
1091 	if (obj->efile.elf) {
1092 		elf_end(obj->efile.elf);
1093 		obj->efile.elf = NULL;
1094 	}
1095 	obj->efile.symbols = NULL;
1096 	obj->efile.data = NULL;
1097 	obj->efile.rodata = NULL;
1098 	obj->efile.bss = NULL;
1099 	obj->efile.st_ops_data = NULL;
1100 
1101 	zfree(&obj->efile.reloc_sects);
1102 	obj->efile.nr_reloc_sects = 0;
1103 	zclose(obj->efile.fd);
1104 	obj->efile.obj_buf = NULL;
1105 	obj->efile.obj_buf_sz = 0;
1106 }
1107 
1108 /* if libelf is old and doesn't support mmap(), fall back to read() */
1109 #ifndef ELF_C_READ_MMAP
1110 #define ELF_C_READ_MMAP ELF_C_READ
1111 #endif
1112 
1113 static int bpf_object__elf_init(struct bpf_object *obj)
1114 {
1115 	int err = 0;
1116 	GElf_Ehdr *ep;
1117 
1118 	if (obj_elf_valid(obj)) {
1119 		pr_warn("elf: init internal error\n");
1120 		return -LIBBPF_ERRNO__LIBELF;
1121 	}
1122 
1123 	if (obj->efile.obj_buf_sz > 0) {
1124 		/*
1125 		 * obj_buf should have been validated by
1126 		 * bpf_object__open_buffer().
1127 		 */
1128 		obj->efile.elf = elf_memory((char *)obj->efile.obj_buf,
1129 					    obj->efile.obj_buf_sz);
1130 	} else {
1131 		obj->efile.fd = open(obj->path, O_RDONLY);
1132 		if (obj->efile.fd < 0) {
1133 			char errmsg[STRERR_BUFSIZE], *cp;
1134 
1135 			err = -errno;
1136 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1137 			pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1138 			return err;
1139 		}
1140 
1141 		obj->efile.elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1142 	}
1143 
1144 	if (!obj->efile.elf) {
1145 		pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1146 		err = -LIBBPF_ERRNO__LIBELF;
1147 		goto errout;
1148 	}
1149 
1150 	if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) {
1151 		pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1152 		err = -LIBBPF_ERRNO__FORMAT;
1153 		goto errout;
1154 	}
1155 	ep = &obj->efile.ehdr;
1156 
1157 	if (elf_getshdrstrndx(obj->efile.elf, &obj->efile.shstrndx)) {
1158 		pr_warn("elf: failed to get section names section index for %s: %s\n",
1159 			obj->path, elf_errmsg(-1));
1160 		err = -LIBBPF_ERRNO__FORMAT;
1161 		goto errout;
1162 	}
1163 
1164 	/* Elf is corrupted/truncated, avoid calling elf_strptr. */
1165 	if (!elf_rawdata(elf_getscn(obj->efile.elf, obj->efile.shstrndx), NULL)) {
1166 		pr_warn("elf: failed to get section names strings from %s: %s\n",
1167 			obj->path, elf_errmsg(-1));
1168 		return -LIBBPF_ERRNO__FORMAT;
1169 	}
1170 
1171 	/* Old LLVM set e_machine to EM_NONE */
1172 	if (ep->e_type != ET_REL ||
1173 	    (ep->e_machine && ep->e_machine != EM_BPF)) {
1174 		pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1175 		err = -LIBBPF_ERRNO__FORMAT;
1176 		goto errout;
1177 	}
1178 
1179 	return 0;
1180 errout:
1181 	bpf_object__elf_finish(obj);
1182 	return err;
1183 }
1184 
1185 static int bpf_object__check_endianness(struct bpf_object *obj)
1186 {
1187 #if __BYTE_ORDER == __LITTLE_ENDIAN
1188 	if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2LSB)
1189 		return 0;
1190 #elif __BYTE_ORDER == __BIG_ENDIAN
1191 	if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2MSB)
1192 		return 0;
1193 #else
1194 # error "Unrecognized __BYTE_ORDER__"
1195 #endif
1196 	pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1197 	return -LIBBPF_ERRNO__ENDIAN;
1198 }
1199 
1200 static int
1201 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1202 {
1203 	memcpy(obj->license, data, min(size, sizeof(obj->license) - 1));
1204 	pr_debug("license of %s is %s\n", obj->path, obj->license);
1205 	return 0;
1206 }
1207 
1208 static int
1209 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1210 {
1211 	__u32 kver;
1212 
1213 	if (size != sizeof(kver)) {
1214 		pr_warn("invalid kver section in %s\n", obj->path);
1215 		return -LIBBPF_ERRNO__FORMAT;
1216 	}
1217 	memcpy(&kver, data, sizeof(kver));
1218 	obj->kern_version = kver;
1219 	pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1220 	return 0;
1221 }
1222 
1223 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1224 {
1225 	if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1226 	    type == BPF_MAP_TYPE_HASH_OF_MAPS)
1227 		return true;
1228 	return false;
1229 }
1230 
1231 int bpf_object__section_size(const struct bpf_object *obj, const char *name,
1232 			     __u32 *size)
1233 {
1234 	int ret = -ENOENT;
1235 
1236 	*size = 0;
1237 	if (!name) {
1238 		return -EINVAL;
1239 	} else if (!strcmp(name, DATA_SEC)) {
1240 		if (obj->efile.data)
1241 			*size = obj->efile.data->d_size;
1242 	} else if (!strcmp(name, BSS_SEC)) {
1243 		if (obj->efile.bss)
1244 			*size = obj->efile.bss->d_size;
1245 	} else if (!strcmp(name, RODATA_SEC)) {
1246 		if (obj->efile.rodata)
1247 			*size = obj->efile.rodata->d_size;
1248 	} else if (!strcmp(name, STRUCT_OPS_SEC)) {
1249 		if (obj->efile.st_ops_data)
1250 			*size = obj->efile.st_ops_data->d_size;
1251 	} else {
1252 		Elf_Scn *scn = elf_sec_by_name(obj, name);
1253 		Elf_Data *data = elf_sec_data(obj, scn);
1254 
1255 		if (data) {
1256 			ret = 0; /* found it */
1257 			*size = data->d_size;
1258 		}
1259 	}
1260 
1261 	return *size ? 0 : ret;
1262 }
1263 
1264 int bpf_object__variable_offset(const struct bpf_object *obj, const char *name,
1265 				__u32 *off)
1266 {
1267 	Elf_Data *symbols = obj->efile.symbols;
1268 	const char *sname;
1269 	size_t si;
1270 
1271 	if (!name || !off)
1272 		return -EINVAL;
1273 
1274 	for (si = 0; si < symbols->d_size / sizeof(GElf_Sym); si++) {
1275 		GElf_Sym sym;
1276 
1277 		if (!gelf_getsym(symbols, si, &sym))
1278 			continue;
1279 		if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL ||
1280 		    GELF_ST_TYPE(sym.st_info) != STT_OBJECT)
1281 			continue;
1282 
1283 		sname = elf_sym_str(obj, sym.st_name);
1284 		if (!sname) {
1285 			pr_warn("failed to get sym name string for var %s\n",
1286 				name);
1287 			return -EIO;
1288 		}
1289 		if (strcmp(name, sname) == 0) {
1290 			*off = sym.st_value;
1291 			return 0;
1292 		}
1293 	}
1294 
1295 	return -ENOENT;
1296 }
1297 
1298 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1299 {
1300 	struct bpf_map *new_maps;
1301 	size_t new_cap;
1302 	int i;
1303 
1304 	if (obj->nr_maps < obj->maps_cap)
1305 		return &obj->maps[obj->nr_maps++];
1306 
1307 	new_cap = max((size_t)4, obj->maps_cap * 3 / 2);
1308 	new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps));
1309 	if (!new_maps) {
1310 		pr_warn("alloc maps for object failed\n");
1311 		return ERR_PTR(-ENOMEM);
1312 	}
1313 
1314 	obj->maps_cap = new_cap;
1315 	obj->maps = new_maps;
1316 
1317 	/* zero out new maps */
1318 	memset(obj->maps + obj->nr_maps, 0,
1319 	       (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps));
1320 	/*
1321 	 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin)
1322 	 * when failure (zclose won't close negative fd)).
1323 	 */
1324 	for (i = obj->nr_maps; i < obj->maps_cap; i++) {
1325 		obj->maps[i].fd = -1;
1326 		obj->maps[i].inner_map_fd = -1;
1327 	}
1328 
1329 	return &obj->maps[obj->nr_maps++];
1330 }
1331 
1332 static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1333 {
1334 	long page_sz = sysconf(_SC_PAGE_SIZE);
1335 	size_t map_sz;
1336 
1337 	map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries;
1338 	map_sz = roundup(map_sz, page_sz);
1339 	return map_sz;
1340 }
1341 
1342 static char *internal_map_name(struct bpf_object *obj,
1343 			       enum libbpf_map_type type)
1344 {
1345 	char map_name[BPF_OBJ_NAME_LEN], *p;
1346 	const char *sfx = libbpf_type_to_btf_name[type];
1347 	int sfx_len = max((size_t)7, strlen(sfx));
1348 	int pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1,
1349 			  strlen(obj->name));
1350 
1351 	snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1352 		 sfx_len, libbpf_type_to_btf_name[type]);
1353 
1354 	/* sanitise map name to characters allowed by kernel */
1355 	for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1356 		if (!isalnum(*p) && *p != '_' && *p != '.')
1357 			*p = '_';
1358 
1359 	return strdup(map_name);
1360 }
1361 
1362 static int
1363 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1364 			      int sec_idx, void *data, size_t data_sz)
1365 {
1366 	struct bpf_map_def *def;
1367 	struct bpf_map *map;
1368 	int err;
1369 
1370 	map = bpf_object__add_map(obj);
1371 	if (IS_ERR(map))
1372 		return PTR_ERR(map);
1373 
1374 	map->libbpf_type = type;
1375 	map->sec_idx = sec_idx;
1376 	map->sec_offset = 0;
1377 	map->name = internal_map_name(obj, type);
1378 	if (!map->name) {
1379 		pr_warn("failed to alloc map name\n");
1380 		return -ENOMEM;
1381 	}
1382 
1383 	def = &map->def;
1384 	def->type = BPF_MAP_TYPE_ARRAY;
1385 	def->key_size = sizeof(int);
1386 	def->value_size = data_sz;
1387 	def->max_entries = 1;
1388 	def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1389 			 ? BPF_F_RDONLY_PROG : 0;
1390 	def->map_flags |= BPF_F_MMAPABLE;
1391 
1392 	pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1393 		 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1394 
1395 	map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
1396 			   MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1397 	if (map->mmaped == MAP_FAILED) {
1398 		err = -errno;
1399 		map->mmaped = NULL;
1400 		pr_warn("failed to alloc map '%s' content buffer: %d\n",
1401 			map->name, err);
1402 		zfree(&map->name);
1403 		return err;
1404 	}
1405 
1406 	if (data)
1407 		memcpy(map->mmaped, data, data_sz);
1408 
1409 	pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1410 	return 0;
1411 }
1412 
1413 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1414 {
1415 	int err;
1416 
1417 	/*
1418 	 * Populate obj->maps with libbpf internal maps.
1419 	 */
1420 	if (obj->efile.data_shndx >= 0) {
1421 		err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1422 						    obj->efile.data_shndx,
1423 						    obj->efile.data->d_buf,
1424 						    obj->efile.data->d_size);
1425 		if (err)
1426 			return err;
1427 	}
1428 	if (obj->efile.rodata_shndx >= 0) {
1429 		err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1430 						    obj->efile.rodata_shndx,
1431 						    obj->efile.rodata->d_buf,
1432 						    obj->efile.rodata->d_size);
1433 		if (err)
1434 			return err;
1435 
1436 		obj->rodata_map_idx = obj->nr_maps - 1;
1437 	}
1438 	if (obj->efile.bss_shndx >= 0) {
1439 		err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1440 						    obj->efile.bss_shndx,
1441 						    NULL,
1442 						    obj->efile.bss->d_size);
1443 		if (err)
1444 			return err;
1445 	}
1446 	return 0;
1447 }
1448 
1449 
1450 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1451 					       const void *name)
1452 {
1453 	int i;
1454 
1455 	for (i = 0; i < obj->nr_extern; i++) {
1456 		if (strcmp(obj->externs[i].name, name) == 0)
1457 			return &obj->externs[i];
1458 	}
1459 	return NULL;
1460 }
1461 
1462 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1463 			      char value)
1464 {
1465 	switch (ext->kcfg.type) {
1466 	case KCFG_BOOL:
1467 		if (value == 'm') {
1468 			pr_warn("extern (kcfg) %s=%c should be tristate or char\n",
1469 				ext->name, value);
1470 			return -EINVAL;
1471 		}
1472 		*(bool *)ext_val = value == 'y' ? true : false;
1473 		break;
1474 	case KCFG_TRISTATE:
1475 		if (value == 'y')
1476 			*(enum libbpf_tristate *)ext_val = TRI_YES;
1477 		else if (value == 'm')
1478 			*(enum libbpf_tristate *)ext_val = TRI_MODULE;
1479 		else /* value == 'n' */
1480 			*(enum libbpf_tristate *)ext_val = TRI_NO;
1481 		break;
1482 	case KCFG_CHAR:
1483 		*(char *)ext_val = value;
1484 		break;
1485 	case KCFG_UNKNOWN:
1486 	case KCFG_INT:
1487 	case KCFG_CHAR_ARR:
1488 	default:
1489 		pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n",
1490 			ext->name, value);
1491 		return -EINVAL;
1492 	}
1493 	ext->is_set = true;
1494 	return 0;
1495 }
1496 
1497 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1498 			      const char *value)
1499 {
1500 	size_t len;
1501 
1502 	if (ext->kcfg.type != KCFG_CHAR_ARR) {
1503 		pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value);
1504 		return -EINVAL;
1505 	}
1506 
1507 	len = strlen(value);
1508 	if (value[len - 1] != '"') {
1509 		pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1510 			ext->name, value);
1511 		return -EINVAL;
1512 	}
1513 
1514 	/* strip quotes */
1515 	len -= 2;
1516 	if (len >= ext->kcfg.sz) {
1517 		pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n",
1518 			ext->name, value, len, ext->kcfg.sz - 1);
1519 		len = ext->kcfg.sz - 1;
1520 	}
1521 	memcpy(ext_val, value + 1, len);
1522 	ext_val[len] = '\0';
1523 	ext->is_set = true;
1524 	return 0;
1525 }
1526 
1527 static int parse_u64(const char *value, __u64 *res)
1528 {
1529 	char *value_end;
1530 	int err;
1531 
1532 	errno = 0;
1533 	*res = strtoull(value, &value_end, 0);
1534 	if (errno) {
1535 		err = -errno;
1536 		pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1537 		return err;
1538 	}
1539 	if (*value_end) {
1540 		pr_warn("failed to parse '%s' as integer completely\n", value);
1541 		return -EINVAL;
1542 	}
1543 	return 0;
1544 }
1545 
1546 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1547 {
1548 	int bit_sz = ext->kcfg.sz * 8;
1549 
1550 	if (ext->kcfg.sz == 8)
1551 		return true;
1552 
1553 	/* Validate that value stored in u64 fits in integer of `ext->sz`
1554 	 * bytes size without any loss of information. If the target integer
1555 	 * is signed, we rely on the following limits of integer type of
1556 	 * Y bits and subsequent transformation:
1557 	 *
1558 	 *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
1559 	 *            0 <= X + 2^(Y-1) <= 2^Y - 1
1560 	 *            0 <= X + 2^(Y-1) <  2^Y
1561 	 *
1562 	 *  For unsigned target integer, check that all the (64 - Y) bits are
1563 	 *  zero.
1564 	 */
1565 	if (ext->kcfg.is_signed)
1566 		return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1567 	else
1568 		return (v >> bit_sz) == 0;
1569 }
1570 
1571 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1572 			      __u64 value)
1573 {
1574 	if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1575 		pr_warn("extern (kcfg) %s=%llu should be integer\n",
1576 			ext->name, (unsigned long long)value);
1577 		return -EINVAL;
1578 	}
1579 	if (!is_kcfg_value_in_range(ext, value)) {
1580 		pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n",
1581 			ext->name, (unsigned long long)value, ext->kcfg.sz);
1582 		return -ERANGE;
1583 	}
1584 	switch (ext->kcfg.sz) {
1585 		case 1: *(__u8 *)ext_val = value; break;
1586 		case 2: *(__u16 *)ext_val = value; break;
1587 		case 4: *(__u32 *)ext_val = value; break;
1588 		case 8: *(__u64 *)ext_val = value; break;
1589 		default:
1590 			return -EINVAL;
1591 	}
1592 	ext->is_set = true;
1593 	return 0;
1594 }
1595 
1596 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1597 					    char *buf, void *data)
1598 {
1599 	struct extern_desc *ext;
1600 	char *sep, *value;
1601 	int len, err = 0;
1602 	void *ext_val;
1603 	__u64 num;
1604 
1605 	if (strncmp(buf, "CONFIG_", 7))
1606 		return 0;
1607 
1608 	sep = strchr(buf, '=');
1609 	if (!sep) {
1610 		pr_warn("failed to parse '%s': no separator\n", buf);
1611 		return -EINVAL;
1612 	}
1613 
1614 	/* Trim ending '\n' */
1615 	len = strlen(buf);
1616 	if (buf[len - 1] == '\n')
1617 		buf[len - 1] = '\0';
1618 	/* Split on '=' and ensure that a value is present. */
1619 	*sep = '\0';
1620 	if (!sep[1]) {
1621 		*sep = '=';
1622 		pr_warn("failed to parse '%s': no value\n", buf);
1623 		return -EINVAL;
1624 	}
1625 
1626 	ext = find_extern_by_name(obj, buf);
1627 	if (!ext || ext->is_set)
1628 		return 0;
1629 
1630 	ext_val = data + ext->kcfg.data_off;
1631 	value = sep + 1;
1632 
1633 	switch (*value) {
1634 	case 'y': case 'n': case 'm':
1635 		err = set_kcfg_value_tri(ext, ext_val, *value);
1636 		break;
1637 	case '"':
1638 		err = set_kcfg_value_str(ext, ext_val, value);
1639 		break;
1640 	default:
1641 		/* assume integer */
1642 		err = parse_u64(value, &num);
1643 		if (err) {
1644 			pr_warn("extern (kcfg) %s=%s should be integer\n",
1645 				ext->name, value);
1646 			return err;
1647 		}
1648 		err = set_kcfg_value_num(ext, ext_val, num);
1649 		break;
1650 	}
1651 	if (err)
1652 		return err;
1653 	pr_debug("extern (kcfg) %s=%s\n", ext->name, value);
1654 	return 0;
1655 }
1656 
1657 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1658 {
1659 	char buf[PATH_MAX];
1660 	struct utsname uts;
1661 	int len, err = 0;
1662 	gzFile file;
1663 
1664 	uname(&uts);
1665 	len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1666 	if (len < 0)
1667 		return -EINVAL;
1668 	else if (len >= PATH_MAX)
1669 		return -ENAMETOOLONG;
1670 
1671 	/* gzopen also accepts uncompressed files. */
1672 	file = gzopen(buf, "r");
1673 	if (!file)
1674 		file = gzopen("/proc/config.gz", "r");
1675 
1676 	if (!file) {
1677 		pr_warn("failed to open system Kconfig\n");
1678 		return -ENOENT;
1679 	}
1680 
1681 	while (gzgets(file, buf, sizeof(buf))) {
1682 		err = bpf_object__process_kconfig_line(obj, buf, data);
1683 		if (err) {
1684 			pr_warn("error parsing system Kconfig line '%s': %d\n",
1685 				buf, err);
1686 			goto out;
1687 		}
1688 	}
1689 
1690 out:
1691 	gzclose(file);
1692 	return err;
1693 }
1694 
1695 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
1696 					const char *config, void *data)
1697 {
1698 	char buf[PATH_MAX];
1699 	int err = 0;
1700 	FILE *file;
1701 
1702 	file = fmemopen((void *)config, strlen(config), "r");
1703 	if (!file) {
1704 		err = -errno;
1705 		pr_warn("failed to open in-memory Kconfig: %d\n", err);
1706 		return err;
1707 	}
1708 
1709 	while (fgets(buf, sizeof(buf), file)) {
1710 		err = bpf_object__process_kconfig_line(obj, buf, data);
1711 		if (err) {
1712 			pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
1713 				buf, err);
1714 			break;
1715 		}
1716 	}
1717 
1718 	fclose(file);
1719 	return err;
1720 }
1721 
1722 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
1723 {
1724 	struct extern_desc *last_ext = NULL, *ext;
1725 	size_t map_sz;
1726 	int i, err;
1727 
1728 	for (i = 0; i < obj->nr_extern; i++) {
1729 		ext = &obj->externs[i];
1730 		if (ext->type == EXT_KCFG)
1731 			last_ext = ext;
1732 	}
1733 
1734 	if (!last_ext)
1735 		return 0;
1736 
1737 	map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
1738 	err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
1739 					    obj->efile.symbols_shndx,
1740 					    NULL, map_sz);
1741 	if (err)
1742 		return err;
1743 
1744 	obj->kconfig_map_idx = obj->nr_maps - 1;
1745 
1746 	return 0;
1747 }
1748 
1749 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict)
1750 {
1751 	Elf_Data *symbols = obj->efile.symbols;
1752 	int i, map_def_sz = 0, nr_maps = 0, nr_syms;
1753 	Elf_Data *data = NULL;
1754 	Elf_Scn *scn;
1755 
1756 	if (obj->efile.maps_shndx < 0)
1757 		return 0;
1758 
1759 	if (!symbols)
1760 		return -EINVAL;
1761 
1762 
1763 	scn = elf_sec_by_idx(obj, obj->efile.maps_shndx);
1764 	data = elf_sec_data(obj, scn);
1765 	if (!scn || !data) {
1766 		pr_warn("elf: failed to get legacy map definitions for %s\n",
1767 			obj->path);
1768 		return -EINVAL;
1769 	}
1770 
1771 	/*
1772 	 * Count number of maps. Each map has a name.
1773 	 * Array of maps is not supported: only the first element is
1774 	 * considered.
1775 	 *
1776 	 * TODO: Detect array of map and report error.
1777 	 */
1778 	nr_syms = symbols->d_size / sizeof(GElf_Sym);
1779 	for (i = 0; i < nr_syms; i++) {
1780 		GElf_Sym sym;
1781 
1782 		if (!gelf_getsym(symbols, i, &sym))
1783 			continue;
1784 		if (sym.st_shndx != obj->efile.maps_shndx)
1785 			continue;
1786 		nr_maps++;
1787 	}
1788 	/* Assume equally sized map definitions */
1789 	pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n",
1790 		 nr_maps, data->d_size, obj->path);
1791 
1792 	if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) {
1793 		pr_warn("elf: unable to determine legacy map definition size in %s\n",
1794 			obj->path);
1795 		return -EINVAL;
1796 	}
1797 	map_def_sz = data->d_size / nr_maps;
1798 
1799 	/* Fill obj->maps using data in "maps" section.  */
1800 	for (i = 0; i < nr_syms; i++) {
1801 		GElf_Sym sym;
1802 		const char *map_name;
1803 		struct bpf_map_def *def;
1804 		struct bpf_map *map;
1805 
1806 		if (!gelf_getsym(symbols, i, &sym))
1807 			continue;
1808 		if (sym.st_shndx != obj->efile.maps_shndx)
1809 			continue;
1810 
1811 		map = bpf_object__add_map(obj);
1812 		if (IS_ERR(map))
1813 			return PTR_ERR(map);
1814 
1815 		map_name = elf_sym_str(obj, sym.st_name);
1816 		if (!map_name) {
1817 			pr_warn("failed to get map #%d name sym string for obj %s\n",
1818 				i, obj->path);
1819 			return -LIBBPF_ERRNO__FORMAT;
1820 		}
1821 
1822 		map->libbpf_type = LIBBPF_MAP_UNSPEC;
1823 		map->sec_idx = sym.st_shndx;
1824 		map->sec_offset = sym.st_value;
1825 		pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n",
1826 			 map_name, map->sec_idx, map->sec_offset);
1827 		if (sym.st_value + map_def_sz > data->d_size) {
1828 			pr_warn("corrupted maps section in %s: last map \"%s\" too small\n",
1829 				obj->path, map_name);
1830 			return -EINVAL;
1831 		}
1832 
1833 		map->name = strdup(map_name);
1834 		if (!map->name) {
1835 			pr_warn("failed to alloc map name\n");
1836 			return -ENOMEM;
1837 		}
1838 		pr_debug("map %d is \"%s\"\n", i, map->name);
1839 		def = (struct bpf_map_def *)(data->d_buf + sym.st_value);
1840 		/*
1841 		 * If the definition of the map in the object file fits in
1842 		 * bpf_map_def, copy it.  Any extra fields in our version
1843 		 * of bpf_map_def will default to zero as a result of the
1844 		 * calloc above.
1845 		 */
1846 		if (map_def_sz <= sizeof(struct bpf_map_def)) {
1847 			memcpy(&map->def, def, map_def_sz);
1848 		} else {
1849 			/*
1850 			 * Here the map structure being read is bigger than what
1851 			 * we expect, truncate if the excess bits are all zero.
1852 			 * If they are not zero, reject this map as
1853 			 * incompatible.
1854 			 */
1855 			char *b;
1856 
1857 			for (b = ((char *)def) + sizeof(struct bpf_map_def);
1858 			     b < ((char *)def) + map_def_sz; b++) {
1859 				if (*b != 0) {
1860 					pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n",
1861 						obj->path, map_name);
1862 					if (strict)
1863 						return -EINVAL;
1864 				}
1865 			}
1866 			memcpy(&map->def, def, sizeof(struct bpf_map_def));
1867 		}
1868 	}
1869 	return 0;
1870 }
1871 
1872 static const struct btf_type *
1873 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
1874 {
1875 	const struct btf_type *t = btf__type_by_id(btf, id);
1876 
1877 	if (res_id)
1878 		*res_id = id;
1879 
1880 	while (btf_is_mod(t) || btf_is_typedef(t)) {
1881 		if (res_id)
1882 			*res_id = t->type;
1883 		t = btf__type_by_id(btf, t->type);
1884 	}
1885 
1886 	return t;
1887 }
1888 
1889 static const struct btf_type *
1890 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
1891 {
1892 	const struct btf_type *t;
1893 
1894 	t = skip_mods_and_typedefs(btf, id, NULL);
1895 	if (!btf_is_ptr(t))
1896 		return NULL;
1897 
1898 	t = skip_mods_and_typedefs(btf, t->type, res_id);
1899 
1900 	return btf_is_func_proto(t) ? t : NULL;
1901 }
1902 
1903 static const char *btf_kind_str(const struct btf_type *t)
1904 {
1905 	switch (btf_kind(t)) {
1906 	case BTF_KIND_UNKN: return "void";
1907 	case BTF_KIND_INT: return "int";
1908 	case BTF_KIND_PTR: return "ptr";
1909 	case BTF_KIND_ARRAY: return "array";
1910 	case BTF_KIND_STRUCT: return "struct";
1911 	case BTF_KIND_UNION: return "union";
1912 	case BTF_KIND_ENUM: return "enum";
1913 	case BTF_KIND_FWD: return "fwd";
1914 	case BTF_KIND_TYPEDEF: return "typedef";
1915 	case BTF_KIND_VOLATILE: return "volatile";
1916 	case BTF_KIND_CONST: return "const";
1917 	case BTF_KIND_RESTRICT: return "restrict";
1918 	case BTF_KIND_FUNC: return "func";
1919 	case BTF_KIND_FUNC_PROTO: return "func_proto";
1920 	case BTF_KIND_VAR: return "var";
1921 	case BTF_KIND_DATASEC: return "datasec";
1922 	default: return "unknown";
1923 	}
1924 }
1925 
1926 /*
1927  * Fetch integer attribute of BTF map definition. Such attributes are
1928  * represented using a pointer to an array, in which dimensionality of array
1929  * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
1930  * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
1931  * type definition, while using only sizeof(void *) space in ELF data section.
1932  */
1933 static bool get_map_field_int(const char *map_name, const struct btf *btf,
1934 			      const struct btf_member *m, __u32 *res)
1935 {
1936 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
1937 	const char *name = btf__name_by_offset(btf, m->name_off);
1938 	const struct btf_array *arr_info;
1939 	const struct btf_type *arr_t;
1940 
1941 	if (!btf_is_ptr(t)) {
1942 		pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
1943 			map_name, name, btf_kind_str(t));
1944 		return false;
1945 	}
1946 
1947 	arr_t = btf__type_by_id(btf, t->type);
1948 	if (!arr_t) {
1949 		pr_warn("map '%s': attr '%s': type [%u] not found.\n",
1950 			map_name, name, t->type);
1951 		return false;
1952 	}
1953 	if (!btf_is_array(arr_t)) {
1954 		pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
1955 			map_name, name, btf_kind_str(arr_t));
1956 		return false;
1957 	}
1958 	arr_info = btf_array(arr_t);
1959 	*res = arr_info->nelems;
1960 	return true;
1961 }
1962 
1963 static int build_map_pin_path(struct bpf_map *map, const char *path)
1964 {
1965 	char buf[PATH_MAX];
1966 	int len;
1967 
1968 	if (!path)
1969 		path = "/sys/fs/bpf";
1970 
1971 	len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map));
1972 	if (len < 0)
1973 		return -EINVAL;
1974 	else if (len >= PATH_MAX)
1975 		return -ENAMETOOLONG;
1976 
1977 	return bpf_map__set_pin_path(map, buf);
1978 }
1979 
1980 
1981 static int parse_btf_map_def(struct bpf_object *obj,
1982 			     struct bpf_map *map,
1983 			     const struct btf_type *def,
1984 			     bool strict, bool is_inner,
1985 			     const char *pin_root_path)
1986 {
1987 	const struct btf_type *t;
1988 	const struct btf_member *m;
1989 	int vlen, i;
1990 
1991 	vlen = btf_vlen(def);
1992 	m = btf_members(def);
1993 	for (i = 0; i < vlen; i++, m++) {
1994 		const char *name = btf__name_by_offset(obj->btf, m->name_off);
1995 
1996 		if (!name) {
1997 			pr_warn("map '%s': invalid field #%d.\n", map->name, i);
1998 			return -EINVAL;
1999 		}
2000 		if (strcmp(name, "type") == 0) {
2001 			if (!get_map_field_int(map->name, obj->btf, m,
2002 					       &map->def.type))
2003 				return -EINVAL;
2004 			pr_debug("map '%s': found type = %u.\n",
2005 				 map->name, map->def.type);
2006 		} else if (strcmp(name, "max_entries") == 0) {
2007 			if (!get_map_field_int(map->name, obj->btf, m,
2008 					       &map->def.max_entries))
2009 				return -EINVAL;
2010 			pr_debug("map '%s': found max_entries = %u.\n",
2011 				 map->name, map->def.max_entries);
2012 		} else if (strcmp(name, "map_flags") == 0) {
2013 			if (!get_map_field_int(map->name, obj->btf, m,
2014 					       &map->def.map_flags))
2015 				return -EINVAL;
2016 			pr_debug("map '%s': found map_flags = %u.\n",
2017 				 map->name, map->def.map_flags);
2018 		} else if (strcmp(name, "numa_node") == 0) {
2019 			if (!get_map_field_int(map->name, obj->btf, m, &map->numa_node))
2020 				return -EINVAL;
2021 			pr_debug("map '%s': found numa_node = %u.\n", map->name, map->numa_node);
2022 		} else if (strcmp(name, "key_size") == 0) {
2023 			__u32 sz;
2024 
2025 			if (!get_map_field_int(map->name, obj->btf, m, &sz))
2026 				return -EINVAL;
2027 			pr_debug("map '%s': found key_size = %u.\n",
2028 				 map->name, sz);
2029 			if (map->def.key_size && map->def.key_size != sz) {
2030 				pr_warn("map '%s': conflicting key size %u != %u.\n",
2031 					map->name, map->def.key_size, sz);
2032 				return -EINVAL;
2033 			}
2034 			map->def.key_size = sz;
2035 		} else if (strcmp(name, "key") == 0) {
2036 			__s64 sz;
2037 
2038 			t = btf__type_by_id(obj->btf, m->type);
2039 			if (!t) {
2040 				pr_warn("map '%s': key type [%d] not found.\n",
2041 					map->name, m->type);
2042 				return -EINVAL;
2043 			}
2044 			if (!btf_is_ptr(t)) {
2045 				pr_warn("map '%s': key spec is not PTR: %s.\n",
2046 					map->name, btf_kind_str(t));
2047 				return -EINVAL;
2048 			}
2049 			sz = btf__resolve_size(obj->btf, t->type);
2050 			if (sz < 0) {
2051 				pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2052 					map->name, t->type, (ssize_t)sz);
2053 				return sz;
2054 			}
2055 			pr_debug("map '%s': found key [%u], sz = %zd.\n",
2056 				 map->name, t->type, (ssize_t)sz);
2057 			if (map->def.key_size && map->def.key_size != sz) {
2058 				pr_warn("map '%s': conflicting key size %u != %zd.\n",
2059 					map->name, map->def.key_size, (ssize_t)sz);
2060 				return -EINVAL;
2061 			}
2062 			map->def.key_size = sz;
2063 			map->btf_key_type_id = t->type;
2064 		} else if (strcmp(name, "value_size") == 0) {
2065 			__u32 sz;
2066 
2067 			if (!get_map_field_int(map->name, obj->btf, m, &sz))
2068 				return -EINVAL;
2069 			pr_debug("map '%s': found value_size = %u.\n",
2070 				 map->name, sz);
2071 			if (map->def.value_size && map->def.value_size != sz) {
2072 				pr_warn("map '%s': conflicting value size %u != %u.\n",
2073 					map->name, map->def.value_size, sz);
2074 				return -EINVAL;
2075 			}
2076 			map->def.value_size = sz;
2077 		} else if (strcmp(name, "value") == 0) {
2078 			__s64 sz;
2079 
2080 			t = btf__type_by_id(obj->btf, m->type);
2081 			if (!t) {
2082 				pr_warn("map '%s': value type [%d] not found.\n",
2083 					map->name, m->type);
2084 				return -EINVAL;
2085 			}
2086 			if (!btf_is_ptr(t)) {
2087 				pr_warn("map '%s': value spec is not PTR: %s.\n",
2088 					map->name, btf_kind_str(t));
2089 				return -EINVAL;
2090 			}
2091 			sz = btf__resolve_size(obj->btf, t->type);
2092 			if (sz < 0) {
2093 				pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2094 					map->name, t->type, (ssize_t)sz);
2095 				return sz;
2096 			}
2097 			pr_debug("map '%s': found value [%u], sz = %zd.\n",
2098 				 map->name, t->type, (ssize_t)sz);
2099 			if (map->def.value_size && map->def.value_size != sz) {
2100 				pr_warn("map '%s': conflicting value size %u != %zd.\n",
2101 					map->name, map->def.value_size, (ssize_t)sz);
2102 				return -EINVAL;
2103 			}
2104 			map->def.value_size = sz;
2105 			map->btf_value_type_id = t->type;
2106 		}
2107 		else if (strcmp(name, "values") == 0) {
2108 			int err;
2109 
2110 			if (is_inner) {
2111 				pr_warn("map '%s': multi-level inner maps not supported.\n",
2112 					map->name);
2113 				return -ENOTSUP;
2114 			}
2115 			if (i != vlen - 1) {
2116 				pr_warn("map '%s': '%s' member should be last.\n",
2117 					map->name, name);
2118 				return -EINVAL;
2119 			}
2120 			if (!bpf_map_type__is_map_in_map(map->def.type)) {
2121 				pr_warn("map '%s': should be map-in-map.\n",
2122 					map->name);
2123 				return -ENOTSUP;
2124 			}
2125 			if (map->def.value_size && map->def.value_size != 4) {
2126 				pr_warn("map '%s': conflicting value size %u != 4.\n",
2127 					map->name, map->def.value_size);
2128 				return -EINVAL;
2129 			}
2130 			map->def.value_size = 4;
2131 			t = btf__type_by_id(obj->btf, m->type);
2132 			if (!t) {
2133 				pr_warn("map '%s': map-in-map inner type [%d] not found.\n",
2134 					map->name, m->type);
2135 				return -EINVAL;
2136 			}
2137 			if (!btf_is_array(t) || btf_array(t)->nelems) {
2138 				pr_warn("map '%s': map-in-map inner spec is not a zero-sized array.\n",
2139 					map->name);
2140 				return -EINVAL;
2141 			}
2142 			t = skip_mods_and_typedefs(obj->btf, btf_array(t)->type,
2143 						   NULL);
2144 			if (!btf_is_ptr(t)) {
2145 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2146 					map->name, btf_kind_str(t));
2147 				return -EINVAL;
2148 			}
2149 			t = skip_mods_and_typedefs(obj->btf, t->type, NULL);
2150 			if (!btf_is_struct(t)) {
2151 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2152 					map->name, btf_kind_str(t));
2153 				return -EINVAL;
2154 			}
2155 
2156 			map->inner_map = calloc(1, sizeof(*map->inner_map));
2157 			if (!map->inner_map)
2158 				return -ENOMEM;
2159 			map->inner_map->sec_idx = obj->efile.btf_maps_shndx;
2160 			map->inner_map->name = malloc(strlen(map->name) +
2161 						      sizeof(".inner") + 1);
2162 			if (!map->inner_map->name)
2163 				return -ENOMEM;
2164 			sprintf(map->inner_map->name, "%s.inner", map->name);
2165 
2166 			err = parse_btf_map_def(obj, map->inner_map, t, strict,
2167 						true /* is_inner */, NULL);
2168 			if (err)
2169 				return err;
2170 		} else if (strcmp(name, "pinning") == 0) {
2171 			__u32 val;
2172 			int err;
2173 
2174 			if (is_inner) {
2175 				pr_debug("map '%s': inner def can't be pinned.\n",
2176 					 map->name);
2177 				return -EINVAL;
2178 			}
2179 			if (!get_map_field_int(map->name, obj->btf, m, &val))
2180 				return -EINVAL;
2181 			pr_debug("map '%s': found pinning = %u.\n",
2182 				 map->name, val);
2183 
2184 			if (val != LIBBPF_PIN_NONE &&
2185 			    val != LIBBPF_PIN_BY_NAME) {
2186 				pr_warn("map '%s': invalid pinning value %u.\n",
2187 					map->name, val);
2188 				return -EINVAL;
2189 			}
2190 			if (val == LIBBPF_PIN_BY_NAME) {
2191 				err = build_map_pin_path(map, pin_root_path);
2192 				if (err) {
2193 					pr_warn("map '%s': couldn't build pin path.\n",
2194 						map->name);
2195 					return err;
2196 				}
2197 			}
2198 		} else {
2199 			if (strict) {
2200 				pr_warn("map '%s': unknown field '%s'.\n",
2201 					map->name, name);
2202 				return -ENOTSUP;
2203 			}
2204 			pr_debug("map '%s': ignoring unknown field '%s'.\n",
2205 				 map->name, name);
2206 		}
2207 	}
2208 
2209 	if (map->def.type == BPF_MAP_TYPE_UNSPEC) {
2210 		pr_warn("map '%s': map type isn't specified.\n", map->name);
2211 		return -EINVAL;
2212 	}
2213 
2214 	return 0;
2215 }
2216 
2217 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2218 					 const struct btf_type *sec,
2219 					 int var_idx, int sec_idx,
2220 					 const Elf_Data *data, bool strict,
2221 					 const char *pin_root_path)
2222 {
2223 	const struct btf_type *var, *def;
2224 	const struct btf_var_secinfo *vi;
2225 	const struct btf_var *var_extra;
2226 	const char *map_name;
2227 	struct bpf_map *map;
2228 
2229 	vi = btf_var_secinfos(sec) + var_idx;
2230 	var = btf__type_by_id(obj->btf, vi->type);
2231 	var_extra = btf_var(var);
2232 	map_name = btf__name_by_offset(obj->btf, var->name_off);
2233 
2234 	if (map_name == NULL || map_name[0] == '\0') {
2235 		pr_warn("map #%d: empty name.\n", var_idx);
2236 		return -EINVAL;
2237 	}
2238 	if ((__u64)vi->offset + vi->size > data->d_size) {
2239 		pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2240 		return -EINVAL;
2241 	}
2242 	if (!btf_is_var(var)) {
2243 		pr_warn("map '%s': unexpected var kind %s.\n",
2244 			map_name, btf_kind_str(var));
2245 		return -EINVAL;
2246 	}
2247 	if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2248 	    var_extra->linkage != BTF_VAR_STATIC) {
2249 		pr_warn("map '%s': unsupported var linkage %u.\n",
2250 			map_name, var_extra->linkage);
2251 		return -EOPNOTSUPP;
2252 	}
2253 
2254 	def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2255 	if (!btf_is_struct(def)) {
2256 		pr_warn("map '%s': unexpected def kind %s.\n",
2257 			map_name, btf_kind_str(var));
2258 		return -EINVAL;
2259 	}
2260 	if (def->size > vi->size) {
2261 		pr_warn("map '%s': invalid def size.\n", map_name);
2262 		return -EINVAL;
2263 	}
2264 
2265 	map = bpf_object__add_map(obj);
2266 	if (IS_ERR(map))
2267 		return PTR_ERR(map);
2268 	map->name = strdup(map_name);
2269 	if (!map->name) {
2270 		pr_warn("map '%s': failed to alloc map name.\n", map_name);
2271 		return -ENOMEM;
2272 	}
2273 	map->libbpf_type = LIBBPF_MAP_UNSPEC;
2274 	map->def.type = BPF_MAP_TYPE_UNSPEC;
2275 	map->sec_idx = sec_idx;
2276 	map->sec_offset = vi->offset;
2277 	map->btf_var_idx = var_idx;
2278 	pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2279 		 map_name, map->sec_idx, map->sec_offset);
2280 
2281 	return parse_btf_map_def(obj, map, def, strict, false, pin_root_path);
2282 }
2283 
2284 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2285 					  const char *pin_root_path)
2286 {
2287 	const struct btf_type *sec = NULL;
2288 	int nr_types, i, vlen, err;
2289 	const struct btf_type *t;
2290 	const char *name;
2291 	Elf_Data *data;
2292 	Elf_Scn *scn;
2293 
2294 	if (obj->efile.btf_maps_shndx < 0)
2295 		return 0;
2296 
2297 	scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2298 	data = elf_sec_data(obj, scn);
2299 	if (!scn || !data) {
2300 		pr_warn("elf: failed to get %s map definitions for %s\n",
2301 			MAPS_ELF_SEC, obj->path);
2302 		return -EINVAL;
2303 	}
2304 
2305 	nr_types = btf__get_nr_types(obj->btf);
2306 	for (i = 1; i <= nr_types; i++) {
2307 		t = btf__type_by_id(obj->btf, i);
2308 		if (!btf_is_datasec(t))
2309 			continue;
2310 		name = btf__name_by_offset(obj->btf, t->name_off);
2311 		if (strcmp(name, MAPS_ELF_SEC) == 0) {
2312 			sec = t;
2313 			obj->efile.btf_maps_sec_btf_id = i;
2314 			break;
2315 		}
2316 	}
2317 
2318 	if (!sec) {
2319 		pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2320 		return -ENOENT;
2321 	}
2322 
2323 	vlen = btf_vlen(sec);
2324 	for (i = 0; i < vlen; i++) {
2325 		err = bpf_object__init_user_btf_map(obj, sec, i,
2326 						    obj->efile.btf_maps_shndx,
2327 						    data, strict,
2328 						    pin_root_path);
2329 		if (err)
2330 			return err;
2331 	}
2332 
2333 	return 0;
2334 }
2335 
2336 static int bpf_object__init_maps(struct bpf_object *obj,
2337 				 const struct bpf_object_open_opts *opts)
2338 {
2339 	const char *pin_root_path;
2340 	bool strict;
2341 	int err;
2342 
2343 	strict = !OPTS_GET(opts, relaxed_maps, false);
2344 	pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2345 
2346 	err = bpf_object__init_user_maps(obj, strict);
2347 	err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2348 	err = err ?: bpf_object__init_global_data_maps(obj);
2349 	err = err ?: bpf_object__init_kconfig_map(obj);
2350 	err = err ?: bpf_object__init_struct_ops_maps(obj);
2351 	if (err)
2352 		return err;
2353 
2354 	return 0;
2355 }
2356 
2357 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2358 {
2359 	GElf_Shdr sh;
2360 
2361 	if (elf_sec_hdr(obj, elf_sec_by_idx(obj, idx), &sh))
2362 		return false;
2363 
2364 	return sh.sh_flags & SHF_EXECINSTR;
2365 }
2366 
2367 static bool btf_needs_sanitization(struct bpf_object *obj)
2368 {
2369 	bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC);
2370 	bool has_datasec = kernel_supports(FEAT_BTF_DATASEC);
2371 	bool has_func = kernel_supports(FEAT_BTF_FUNC);
2372 
2373 	return !has_func || !has_datasec || !has_func_global;
2374 }
2375 
2376 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2377 {
2378 	bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC);
2379 	bool has_datasec = kernel_supports(FEAT_BTF_DATASEC);
2380 	bool has_func = kernel_supports(FEAT_BTF_FUNC);
2381 	struct btf_type *t;
2382 	int i, j, vlen;
2383 
2384 	for (i = 1; i <= btf__get_nr_types(btf); i++) {
2385 		t = (struct btf_type *)btf__type_by_id(btf, i);
2386 
2387 		if (!has_datasec && btf_is_var(t)) {
2388 			/* replace VAR with INT */
2389 			t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2390 			/*
2391 			 * using size = 1 is the safest choice, 4 will be too
2392 			 * big and cause kernel BTF validation failure if
2393 			 * original variable took less than 4 bytes
2394 			 */
2395 			t->size = 1;
2396 			*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2397 		} else if (!has_datasec && btf_is_datasec(t)) {
2398 			/* replace DATASEC with STRUCT */
2399 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
2400 			struct btf_member *m = btf_members(t);
2401 			struct btf_type *vt;
2402 			char *name;
2403 
2404 			name = (char *)btf__name_by_offset(btf, t->name_off);
2405 			while (*name) {
2406 				if (*name == '.')
2407 					*name = '_';
2408 				name++;
2409 			}
2410 
2411 			vlen = btf_vlen(t);
2412 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2413 			for (j = 0; j < vlen; j++, v++, m++) {
2414 				/* order of field assignments is important */
2415 				m->offset = v->offset * 8;
2416 				m->type = v->type;
2417 				/* preserve variable name as member name */
2418 				vt = (void *)btf__type_by_id(btf, v->type);
2419 				m->name_off = vt->name_off;
2420 			}
2421 		} else if (!has_func && btf_is_func_proto(t)) {
2422 			/* replace FUNC_PROTO with ENUM */
2423 			vlen = btf_vlen(t);
2424 			t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2425 			t->size = sizeof(__u32); /* kernel enforced */
2426 		} else if (!has_func && btf_is_func(t)) {
2427 			/* replace FUNC with TYPEDEF */
2428 			t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2429 		} else if (!has_func_global && btf_is_func(t)) {
2430 			/* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2431 			t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2432 		}
2433 	}
2434 }
2435 
2436 static bool libbpf_needs_btf(const struct bpf_object *obj)
2437 {
2438 	return obj->efile.btf_maps_shndx >= 0 ||
2439 	       obj->efile.st_ops_shndx >= 0 ||
2440 	       obj->nr_extern > 0;
2441 }
2442 
2443 static bool kernel_needs_btf(const struct bpf_object *obj)
2444 {
2445 	return obj->efile.st_ops_shndx >= 0;
2446 }
2447 
2448 static int bpf_object__init_btf(struct bpf_object *obj,
2449 				Elf_Data *btf_data,
2450 				Elf_Data *btf_ext_data)
2451 {
2452 	int err = -ENOENT;
2453 
2454 	if (btf_data) {
2455 		obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2456 		if (IS_ERR(obj->btf)) {
2457 			err = PTR_ERR(obj->btf);
2458 			obj->btf = NULL;
2459 			pr_warn("Error loading ELF section %s: %d.\n",
2460 				BTF_ELF_SEC, err);
2461 			goto out;
2462 		}
2463 		/* enforce 8-byte pointers for BPF-targeted BTFs */
2464 		btf__set_pointer_size(obj->btf, 8);
2465 		err = 0;
2466 	}
2467 	if (btf_ext_data) {
2468 		if (!obj->btf) {
2469 			pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2470 				 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2471 			goto out;
2472 		}
2473 		obj->btf_ext = btf_ext__new(btf_ext_data->d_buf,
2474 					    btf_ext_data->d_size);
2475 		if (IS_ERR(obj->btf_ext)) {
2476 			pr_warn("Error loading ELF section %s: %ld. Ignored and continue.\n",
2477 				BTF_EXT_ELF_SEC, PTR_ERR(obj->btf_ext));
2478 			obj->btf_ext = NULL;
2479 			goto out;
2480 		}
2481 	}
2482 out:
2483 	if (err && libbpf_needs_btf(obj)) {
2484 		pr_warn("BTF is required, but is missing or corrupted.\n");
2485 		return err;
2486 	}
2487 	return 0;
2488 }
2489 
2490 static int bpf_object__finalize_btf(struct bpf_object *obj)
2491 {
2492 	int err;
2493 
2494 	if (!obj->btf)
2495 		return 0;
2496 
2497 	err = btf__finalize_data(obj, obj->btf);
2498 	if (err) {
2499 		pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err);
2500 		return err;
2501 	}
2502 
2503 	return 0;
2504 }
2505 
2506 static inline bool libbpf_prog_needs_vmlinux_btf(struct bpf_program *prog)
2507 {
2508 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
2509 	    prog->type == BPF_PROG_TYPE_LSM)
2510 		return true;
2511 
2512 	/* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
2513 	 * also need vmlinux BTF
2514 	 */
2515 	if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
2516 		return true;
2517 
2518 	return false;
2519 }
2520 
2521 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj)
2522 {
2523 	bool need_vmlinux_btf = false;
2524 	struct bpf_program *prog;
2525 	int err;
2526 
2527 	/* CO-RE relocations need kernel BTF */
2528 	if (obj->btf_ext && obj->btf_ext->core_relo_info.len)
2529 		need_vmlinux_btf = true;
2530 
2531 	bpf_object__for_each_program(prog, obj) {
2532 		if (!prog->load)
2533 			continue;
2534 		if (libbpf_prog_needs_vmlinux_btf(prog)) {
2535 			need_vmlinux_btf = true;
2536 			break;
2537 		}
2538 	}
2539 
2540 	if (!need_vmlinux_btf)
2541 		return 0;
2542 
2543 	obj->btf_vmlinux = libbpf_find_kernel_btf();
2544 	if (IS_ERR(obj->btf_vmlinux)) {
2545 		err = PTR_ERR(obj->btf_vmlinux);
2546 		pr_warn("Error loading vmlinux BTF: %d\n", err);
2547 		obj->btf_vmlinux = NULL;
2548 		return err;
2549 	}
2550 	return 0;
2551 }
2552 
2553 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
2554 {
2555 	struct btf *kern_btf = obj->btf;
2556 	bool btf_mandatory, sanitize;
2557 	int err = 0;
2558 
2559 	if (!obj->btf)
2560 		return 0;
2561 
2562 	if (!kernel_supports(FEAT_BTF)) {
2563 		if (kernel_needs_btf(obj)) {
2564 			err = -EOPNOTSUPP;
2565 			goto report;
2566 		}
2567 		pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
2568 		return 0;
2569 	}
2570 
2571 	sanitize = btf_needs_sanitization(obj);
2572 	if (sanitize) {
2573 		const void *raw_data;
2574 		__u32 sz;
2575 
2576 		/* clone BTF to sanitize a copy and leave the original intact */
2577 		raw_data = btf__get_raw_data(obj->btf, &sz);
2578 		kern_btf = btf__new(raw_data, sz);
2579 		if (IS_ERR(kern_btf))
2580 			return PTR_ERR(kern_btf);
2581 
2582 		/* enforce 8-byte pointers for BPF-targeted BTFs */
2583 		btf__set_pointer_size(obj->btf, 8);
2584 		bpf_object__sanitize_btf(obj, kern_btf);
2585 	}
2586 
2587 	err = btf__load(kern_btf);
2588 	if (sanitize) {
2589 		if (!err) {
2590 			/* move fd to libbpf's BTF */
2591 			btf__set_fd(obj->btf, btf__fd(kern_btf));
2592 			btf__set_fd(kern_btf, -1);
2593 		}
2594 		btf__free(kern_btf);
2595 	}
2596 report:
2597 	if (err) {
2598 		btf_mandatory = kernel_needs_btf(obj);
2599 		pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
2600 			btf_mandatory ? "BTF is mandatory, can't proceed."
2601 				      : "BTF is optional, ignoring.");
2602 		if (!btf_mandatory)
2603 			err = 0;
2604 	}
2605 	return err;
2606 }
2607 
2608 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
2609 {
2610 	const char *name;
2611 
2612 	name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
2613 	if (!name) {
2614 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
2615 			off, obj->path, elf_errmsg(-1));
2616 		return NULL;
2617 	}
2618 
2619 	return name;
2620 }
2621 
2622 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
2623 {
2624 	const char *name;
2625 
2626 	name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
2627 	if (!name) {
2628 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
2629 			off, obj->path, elf_errmsg(-1));
2630 		return NULL;
2631 	}
2632 
2633 	return name;
2634 }
2635 
2636 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
2637 {
2638 	Elf_Scn *scn;
2639 
2640 	scn = elf_getscn(obj->efile.elf, idx);
2641 	if (!scn) {
2642 		pr_warn("elf: failed to get section(%zu) from %s: %s\n",
2643 			idx, obj->path, elf_errmsg(-1));
2644 		return NULL;
2645 	}
2646 	return scn;
2647 }
2648 
2649 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
2650 {
2651 	Elf_Scn *scn = NULL;
2652 	Elf *elf = obj->efile.elf;
2653 	const char *sec_name;
2654 
2655 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
2656 		sec_name = elf_sec_name(obj, scn);
2657 		if (!sec_name)
2658 			return NULL;
2659 
2660 		if (strcmp(sec_name, name) != 0)
2661 			continue;
2662 
2663 		return scn;
2664 	}
2665 	return NULL;
2666 }
2667 
2668 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr)
2669 {
2670 	if (!scn)
2671 		return -EINVAL;
2672 
2673 	if (gelf_getshdr(scn, hdr) != hdr) {
2674 		pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
2675 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
2676 		return -EINVAL;
2677 	}
2678 
2679 	return 0;
2680 }
2681 
2682 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
2683 {
2684 	const char *name;
2685 	GElf_Shdr sh;
2686 
2687 	if (!scn)
2688 		return NULL;
2689 
2690 	if (elf_sec_hdr(obj, scn, &sh))
2691 		return NULL;
2692 
2693 	name = elf_sec_str(obj, sh.sh_name);
2694 	if (!name) {
2695 		pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
2696 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
2697 		return NULL;
2698 	}
2699 
2700 	return name;
2701 }
2702 
2703 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
2704 {
2705 	Elf_Data *data;
2706 
2707 	if (!scn)
2708 		return NULL;
2709 
2710 	data = elf_getdata(scn, 0);
2711 	if (!data) {
2712 		pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
2713 			elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
2714 			obj->path, elf_errmsg(-1));
2715 		return NULL;
2716 	}
2717 
2718 	return data;
2719 }
2720 
2721 static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx,
2722 			      size_t off, __u32 sym_type, GElf_Sym *sym)
2723 {
2724 	Elf_Data *symbols = obj->efile.symbols;
2725 	size_t n = symbols->d_size / sizeof(GElf_Sym);
2726 	int i;
2727 
2728 	for (i = 0; i < n; i++) {
2729 		if (!gelf_getsym(symbols, i, sym))
2730 			continue;
2731 		if (sym->st_shndx != sec_idx || sym->st_value != off)
2732 			continue;
2733 		if (GELF_ST_TYPE(sym->st_info) != sym_type)
2734 			continue;
2735 		return 0;
2736 	}
2737 
2738 	return -ENOENT;
2739 }
2740 
2741 static bool is_sec_name_dwarf(const char *name)
2742 {
2743 	/* approximation, but the actual list is too long */
2744 	return strncmp(name, ".debug_", sizeof(".debug_") - 1) == 0;
2745 }
2746 
2747 static bool ignore_elf_section(GElf_Shdr *hdr, const char *name)
2748 {
2749 	/* no special handling of .strtab */
2750 	if (hdr->sh_type == SHT_STRTAB)
2751 		return true;
2752 
2753 	/* ignore .llvm_addrsig section as well */
2754 	if (hdr->sh_type == 0x6FFF4C03 /* SHT_LLVM_ADDRSIG */)
2755 		return true;
2756 
2757 	/* no subprograms will lead to an empty .text section, ignore it */
2758 	if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
2759 	    strcmp(name, ".text") == 0)
2760 		return true;
2761 
2762 	/* DWARF sections */
2763 	if (is_sec_name_dwarf(name))
2764 		return true;
2765 
2766 	if (strncmp(name, ".rel", sizeof(".rel") - 1) == 0) {
2767 		name += sizeof(".rel") - 1;
2768 		/* DWARF section relocations */
2769 		if (is_sec_name_dwarf(name))
2770 			return true;
2771 
2772 		/* .BTF and .BTF.ext don't need relocations */
2773 		if (strcmp(name, BTF_ELF_SEC) == 0 ||
2774 		    strcmp(name, BTF_EXT_ELF_SEC) == 0)
2775 			return true;
2776 	}
2777 
2778 	return false;
2779 }
2780 
2781 static int cmp_progs(const void *_a, const void *_b)
2782 {
2783 	const struct bpf_program *a = _a;
2784 	const struct bpf_program *b = _b;
2785 
2786 	if (a->sec_idx != b->sec_idx)
2787 		return a->sec_idx < b->sec_idx ? -1 : 1;
2788 
2789 	/* sec_insn_off can't be the same within the section */
2790 	return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
2791 }
2792 
2793 static int bpf_object__elf_collect(struct bpf_object *obj)
2794 {
2795 	Elf *elf = obj->efile.elf;
2796 	Elf_Data *btf_ext_data = NULL;
2797 	Elf_Data *btf_data = NULL;
2798 	int idx = 0, err = 0;
2799 	const char *name;
2800 	Elf_Data *data;
2801 	Elf_Scn *scn;
2802 	GElf_Shdr sh;
2803 
2804 	/* a bunch of ELF parsing functionality depends on processing symbols,
2805 	 * so do the first pass and find the symbol table
2806 	 */
2807 	scn = NULL;
2808 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
2809 		if (elf_sec_hdr(obj, scn, &sh))
2810 			return -LIBBPF_ERRNO__FORMAT;
2811 
2812 		if (sh.sh_type == SHT_SYMTAB) {
2813 			if (obj->efile.symbols) {
2814 				pr_warn("elf: multiple symbol tables in %s\n", obj->path);
2815 				return -LIBBPF_ERRNO__FORMAT;
2816 			}
2817 
2818 			data = elf_sec_data(obj, scn);
2819 			if (!data)
2820 				return -LIBBPF_ERRNO__FORMAT;
2821 
2822 			obj->efile.symbols = data;
2823 			obj->efile.symbols_shndx = elf_ndxscn(scn);
2824 			obj->efile.strtabidx = sh.sh_link;
2825 		}
2826 	}
2827 
2828 	scn = NULL;
2829 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
2830 		idx++;
2831 
2832 		if (elf_sec_hdr(obj, scn, &sh))
2833 			return -LIBBPF_ERRNO__FORMAT;
2834 
2835 		name = elf_sec_str(obj, sh.sh_name);
2836 		if (!name)
2837 			return -LIBBPF_ERRNO__FORMAT;
2838 
2839 		if (ignore_elf_section(&sh, name))
2840 			continue;
2841 
2842 		data = elf_sec_data(obj, scn);
2843 		if (!data)
2844 			return -LIBBPF_ERRNO__FORMAT;
2845 
2846 		pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
2847 			 idx, name, (unsigned long)data->d_size,
2848 			 (int)sh.sh_link, (unsigned long)sh.sh_flags,
2849 			 (int)sh.sh_type);
2850 
2851 		if (strcmp(name, "license") == 0) {
2852 			err = bpf_object__init_license(obj, data->d_buf, data->d_size);
2853 			if (err)
2854 				return err;
2855 		} else if (strcmp(name, "version") == 0) {
2856 			err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
2857 			if (err)
2858 				return err;
2859 		} else if (strcmp(name, "maps") == 0) {
2860 			obj->efile.maps_shndx = idx;
2861 		} else if (strcmp(name, MAPS_ELF_SEC) == 0) {
2862 			obj->efile.btf_maps_shndx = idx;
2863 		} else if (strcmp(name, BTF_ELF_SEC) == 0) {
2864 			btf_data = data;
2865 		} else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
2866 			btf_ext_data = data;
2867 		} else if (sh.sh_type == SHT_SYMTAB) {
2868 			/* already processed during the first pass above */
2869 		} else if (sh.sh_type == SHT_PROGBITS && data->d_size > 0) {
2870 			if (sh.sh_flags & SHF_EXECINSTR) {
2871 				if (strcmp(name, ".text") == 0)
2872 					obj->efile.text_shndx = idx;
2873 				err = bpf_object__add_programs(obj, data, name, idx);
2874 				if (err)
2875 					return err;
2876 			} else if (strcmp(name, DATA_SEC) == 0) {
2877 				obj->efile.data = data;
2878 				obj->efile.data_shndx = idx;
2879 			} else if (strcmp(name, RODATA_SEC) == 0) {
2880 				obj->efile.rodata = data;
2881 				obj->efile.rodata_shndx = idx;
2882 			} else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
2883 				obj->efile.st_ops_data = data;
2884 				obj->efile.st_ops_shndx = idx;
2885 			} else {
2886 				pr_info("elf: skipping unrecognized data section(%d) %s\n",
2887 					idx, name);
2888 			}
2889 		} else if (sh.sh_type == SHT_REL) {
2890 			int nr_sects = obj->efile.nr_reloc_sects;
2891 			void *sects = obj->efile.reloc_sects;
2892 			int sec = sh.sh_info; /* points to other section */
2893 
2894 			/* Only do relo for section with exec instructions */
2895 			if (!section_have_execinstr(obj, sec) &&
2896 			    strcmp(name, ".rel" STRUCT_OPS_SEC) &&
2897 			    strcmp(name, ".rel" MAPS_ELF_SEC)) {
2898 				pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
2899 					idx, name, sec,
2900 					elf_sec_name(obj, elf_sec_by_idx(obj, sec)) ?: "<?>");
2901 				continue;
2902 			}
2903 
2904 			sects = libbpf_reallocarray(sects, nr_sects + 1,
2905 						    sizeof(*obj->efile.reloc_sects));
2906 			if (!sects)
2907 				return -ENOMEM;
2908 
2909 			obj->efile.reloc_sects = sects;
2910 			obj->efile.nr_reloc_sects++;
2911 
2912 			obj->efile.reloc_sects[nr_sects].shdr = sh;
2913 			obj->efile.reloc_sects[nr_sects].data = data;
2914 		} else if (sh.sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) {
2915 			obj->efile.bss = data;
2916 			obj->efile.bss_shndx = idx;
2917 		} else {
2918 			pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
2919 				(size_t)sh.sh_size);
2920 		}
2921 	}
2922 
2923 	if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
2924 		pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
2925 		return -LIBBPF_ERRNO__FORMAT;
2926 	}
2927 
2928 	/* sort BPF programs by section name and in-section instruction offset
2929 	 * for faster search */
2930 	qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
2931 
2932 	return bpf_object__init_btf(obj, btf_data, btf_ext_data);
2933 }
2934 
2935 static bool sym_is_extern(const GElf_Sym *sym)
2936 {
2937 	int bind = GELF_ST_BIND(sym->st_info);
2938 	/* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
2939 	return sym->st_shndx == SHN_UNDEF &&
2940 	       (bind == STB_GLOBAL || bind == STB_WEAK) &&
2941 	       GELF_ST_TYPE(sym->st_info) == STT_NOTYPE;
2942 }
2943 
2944 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
2945 {
2946 	const struct btf_type *t;
2947 	const char *var_name;
2948 	int i, n;
2949 
2950 	if (!btf)
2951 		return -ESRCH;
2952 
2953 	n = btf__get_nr_types(btf);
2954 	for (i = 1; i <= n; i++) {
2955 		t = btf__type_by_id(btf, i);
2956 
2957 		if (!btf_is_var(t))
2958 			continue;
2959 
2960 		var_name = btf__name_by_offset(btf, t->name_off);
2961 		if (strcmp(var_name, ext_name))
2962 			continue;
2963 
2964 		if (btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
2965 			return -EINVAL;
2966 
2967 		return i;
2968 	}
2969 
2970 	return -ENOENT;
2971 }
2972 
2973 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
2974 	const struct btf_var_secinfo *vs;
2975 	const struct btf_type *t;
2976 	int i, j, n;
2977 
2978 	if (!btf)
2979 		return -ESRCH;
2980 
2981 	n = btf__get_nr_types(btf);
2982 	for (i = 1; i <= n; i++) {
2983 		t = btf__type_by_id(btf, i);
2984 
2985 		if (!btf_is_datasec(t))
2986 			continue;
2987 
2988 		vs = btf_var_secinfos(t);
2989 		for (j = 0; j < btf_vlen(t); j++, vs++) {
2990 			if (vs->type == ext_btf_id)
2991 				return i;
2992 		}
2993 	}
2994 
2995 	return -ENOENT;
2996 }
2997 
2998 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
2999 				     bool *is_signed)
3000 {
3001 	const struct btf_type *t;
3002 	const char *name;
3003 
3004 	t = skip_mods_and_typedefs(btf, id, NULL);
3005 	name = btf__name_by_offset(btf, t->name_off);
3006 
3007 	if (is_signed)
3008 		*is_signed = false;
3009 	switch (btf_kind(t)) {
3010 	case BTF_KIND_INT: {
3011 		int enc = btf_int_encoding(t);
3012 
3013 		if (enc & BTF_INT_BOOL)
3014 			return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3015 		if (is_signed)
3016 			*is_signed = enc & BTF_INT_SIGNED;
3017 		if (t->size == 1)
3018 			return KCFG_CHAR;
3019 		if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3020 			return KCFG_UNKNOWN;
3021 		return KCFG_INT;
3022 	}
3023 	case BTF_KIND_ENUM:
3024 		if (t->size != 4)
3025 			return KCFG_UNKNOWN;
3026 		if (strcmp(name, "libbpf_tristate"))
3027 			return KCFG_UNKNOWN;
3028 		return KCFG_TRISTATE;
3029 	case BTF_KIND_ARRAY:
3030 		if (btf_array(t)->nelems == 0)
3031 			return KCFG_UNKNOWN;
3032 		if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3033 			return KCFG_UNKNOWN;
3034 		return KCFG_CHAR_ARR;
3035 	default:
3036 		return KCFG_UNKNOWN;
3037 	}
3038 }
3039 
3040 static int cmp_externs(const void *_a, const void *_b)
3041 {
3042 	const struct extern_desc *a = _a;
3043 	const struct extern_desc *b = _b;
3044 
3045 	if (a->type != b->type)
3046 		return a->type < b->type ? -1 : 1;
3047 
3048 	if (a->type == EXT_KCFG) {
3049 		/* descending order by alignment requirements */
3050 		if (a->kcfg.align != b->kcfg.align)
3051 			return a->kcfg.align > b->kcfg.align ? -1 : 1;
3052 		/* ascending order by size, within same alignment class */
3053 		if (a->kcfg.sz != b->kcfg.sz)
3054 			return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3055 	}
3056 
3057 	/* resolve ties by name */
3058 	return strcmp(a->name, b->name);
3059 }
3060 
3061 static int find_int_btf_id(const struct btf *btf)
3062 {
3063 	const struct btf_type *t;
3064 	int i, n;
3065 
3066 	n = btf__get_nr_types(btf);
3067 	for (i = 1; i <= n; i++) {
3068 		t = btf__type_by_id(btf, i);
3069 
3070 		if (btf_is_int(t) && btf_int_bits(t) == 32)
3071 			return i;
3072 	}
3073 
3074 	return 0;
3075 }
3076 
3077 static int bpf_object__collect_externs(struct bpf_object *obj)
3078 {
3079 	struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3080 	const struct btf_type *t;
3081 	struct extern_desc *ext;
3082 	int i, n, off;
3083 	const char *ext_name, *sec_name;
3084 	Elf_Scn *scn;
3085 	GElf_Shdr sh;
3086 
3087 	if (!obj->efile.symbols)
3088 		return 0;
3089 
3090 	scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3091 	if (elf_sec_hdr(obj, scn, &sh))
3092 		return -LIBBPF_ERRNO__FORMAT;
3093 
3094 	n = sh.sh_size / sh.sh_entsize;
3095 	pr_debug("looking for externs among %d symbols...\n", n);
3096 
3097 	for (i = 0; i < n; i++) {
3098 		GElf_Sym sym;
3099 
3100 		if (!gelf_getsym(obj->efile.symbols, i, &sym))
3101 			return -LIBBPF_ERRNO__FORMAT;
3102 		if (!sym_is_extern(&sym))
3103 			continue;
3104 		ext_name = elf_sym_str(obj, sym.st_name);
3105 		if (!ext_name || !ext_name[0])
3106 			continue;
3107 
3108 		ext = obj->externs;
3109 		ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3110 		if (!ext)
3111 			return -ENOMEM;
3112 		obj->externs = ext;
3113 		ext = &ext[obj->nr_extern];
3114 		memset(ext, 0, sizeof(*ext));
3115 		obj->nr_extern++;
3116 
3117 		ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3118 		if (ext->btf_id <= 0) {
3119 			pr_warn("failed to find BTF for extern '%s': %d\n",
3120 				ext_name, ext->btf_id);
3121 			return ext->btf_id;
3122 		}
3123 		t = btf__type_by_id(obj->btf, ext->btf_id);
3124 		ext->name = btf__name_by_offset(obj->btf, t->name_off);
3125 		ext->sym_idx = i;
3126 		ext->is_weak = GELF_ST_BIND(sym.st_info) == STB_WEAK;
3127 
3128 		ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3129 		if (ext->sec_btf_id <= 0) {
3130 			pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3131 				ext_name, ext->btf_id, ext->sec_btf_id);
3132 			return ext->sec_btf_id;
3133 		}
3134 		sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3135 		sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3136 
3137 		if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3138 			kcfg_sec = sec;
3139 			ext->type = EXT_KCFG;
3140 			ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3141 			if (ext->kcfg.sz <= 0) {
3142 				pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3143 					ext_name, ext->kcfg.sz);
3144 				return ext->kcfg.sz;
3145 			}
3146 			ext->kcfg.align = btf__align_of(obj->btf, t->type);
3147 			if (ext->kcfg.align <= 0) {
3148 				pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3149 					ext_name, ext->kcfg.align);
3150 				return -EINVAL;
3151 			}
3152 			ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3153 						        &ext->kcfg.is_signed);
3154 			if (ext->kcfg.type == KCFG_UNKNOWN) {
3155 				pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name);
3156 				return -ENOTSUP;
3157 			}
3158 		} else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3159 			const struct btf_type *vt;
3160 
3161 			ksym_sec = sec;
3162 			ext->type = EXT_KSYM;
3163 
3164 			vt = skip_mods_and_typedefs(obj->btf, t->type, NULL);
3165 			if (!btf_is_void(vt)) {
3166 				pr_warn("extern (ksym) '%s' is not typeless (void)\n", ext_name);
3167 				return -ENOTSUP;
3168 			}
3169 		} else {
3170 			pr_warn("unrecognized extern section '%s'\n", sec_name);
3171 			return -ENOTSUP;
3172 		}
3173 	}
3174 	pr_debug("collected %d externs total\n", obj->nr_extern);
3175 
3176 	if (!obj->nr_extern)
3177 		return 0;
3178 
3179 	/* sort externs by type, for kcfg ones also by (align, size, name) */
3180 	qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3181 
3182 	/* for .ksyms section, we need to turn all externs into allocated
3183 	 * variables in BTF to pass kernel verification; we do this by
3184 	 * pretending that each extern is a 8-byte variable
3185 	 */
3186 	if (ksym_sec) {
3187 		/* find existing 4-byte integer type in BTF to use for fake
3188 		 * extern variables in DATASEC
3189 		 */
3190 		int int_btf_id = find_int_btf_id(obj->btf);
3191 
3192 		for (i = 0; i < obj->nr_extern; i++) {
3193 			ext = &obj->externs[i];
3194 			if (ext->type != EXT_KSYM)
3195 				continue;
3196 			pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3197 				 i, ext->sym_idx, ext->name);
3198 		}
3199 
3200 		sec = ksym_sec;
3201 		n = btf_vlen(sec);
3202 		for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3203 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3204 			struct btf_type *vt;
3205 
3206 			vt = (void *)btf__type_by_id(obj->btf, vs->type);
3207 			ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3208 			ext = find_extern_by_name(obj, ext_name);
3209 			if (!ext) {
3210 				pr_warn("failed to find extern definition for BTF var '%s'\n",
3211 					ext_name);
3212 				return -ESRCH;
3213 			}
3214 			btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3215 			vt->type = int_btf_id;
3216 			vs->offset = off;
3217 			vs->size = sizeof(int);
3218 		}
3219 		sec->size = off;
3220 	}
3221 
3222 	if (kcfg_sec) {
3223 		sec = kcfg_sec;
3224 		/* for kcfg externs calculate their offsets within a .kconfig map */
3225 		off = 0;
3226 		for (i = 0; i < obj->nr_extern; i++) {
3227 			ext = &obj->externs[i];
3228 			if (ext->type != EXT_KCFG)
3229 				continue;
3230 
3231 			ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3232 			off = ext->kcfg.data_off + ext->kcfg.sz;
3233 			pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3234 				 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3235 		}
3236 		sec->size = off;
3237 		n = btf_vlen(sec);
3238 		for (i = 0; i < n; i++) {
3239 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3240 
3241 			t = btf__type_by_id(obj->btf, vs->type);
3242 			ext_name = btf__name_by_offset(obj->btf, t->name_off);
3243 			ext = find_extern_by_name(obj, ext_name);
3244 			if (!ext) {
3245 				pr_warn("failed to find extern definition for BTF var '%s'\n",
3246 					ext_name);
3247 				return -ESRCH;
3248 			}
3249 			btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3250 			vs->offset = ext->kcfg.data_off;
3251 		}
3252 	}
3253 	return 0;
3254 }
3255 
3256 struct bpf_program *
3257 bpf_object__find_program_by_title(const struct bpf_object *obj,
3258 				  const char *title)
3259 {
3260 	struct bpf_program *pos;
3261 
3262 	bpf_object__for_each_program(pos, obj) {
3263 		if (pos->sec_name && !strcmp(pos->sec_name, title))
3264 			return pos;
3265 	}
3266 	return NULL;
3267 }
3268 
3269 static bool prog_is_subprog(const struct bpf_object *obj,
3270 			    const struct bpf_program *prog)
3271 {
3272 	return prog->sec_idx == obj->efile.text_shndx && obj->has_subcalls;
3273 }
3274 
3275 struct bpf_program *
3276 bpf_object__find_program_by_name(const struct bpf_object *obj,
3277 				 const char *name)
3278 {
3279 	struct bpf_program *prog;
3280 
3281 	bpf_object__for_each_program(prog, obj) {
3282 		if (prog_is_subprog(obj, prog))
3283 			continue;
3284 		if (!strcmp(prog->name, name))
3285 			return prog;
3286 	}
3287 	return NULL;
3288 }
3289 
3290 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
3291 				      int shndx)
3292 {
3293 	return shndx == obj->efile.data_shndx ||
3294 	       shndx == obj->efile.bss_shndx ||
3295 	       shndx == obj->efile.rodata_shndx;
3296 }
3297 
3298 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
3299 				      int shndx)
3300 {
3301 	return shndx == obj->efile.maps_shndx ||
3302 	       shndx == obj->efile.btf_maps_shndx;
3303 }
3304 
3305 static enum libbpf_map_type
3306 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
3307 {
3308 	if (shndx == obj->efile.data_shndx)
3309 		return LIBBPF_MAP_DATA;
3310 	else if (shndx == obj->efile.bss_shndx)
3311 		return LIBBPF_MAP_BSS;
3312 	else if (shndx == obj->efile.rodata_shndx)
3313 		return LIBBPF_MAP_RODATA;
3314 	else if (shndx == obj->efile.symbols_shndx)
3315 		return LIBBPF_MAP_KCONFIG;
3316 	else
3317 		return LIBBPF_MAP_UNSPEC;
3318 }
3319 
3320 static int bpf_program__record_reloc(struct bpf_program *prog,
3321 				     struct reloc_desc *reloc_desc,
3322 				     __u32 insn_idx, const char *sym_name,
3323 				     const GElf_Sym *sym, const GElf_Rel *rel)
3324 {
3325 	struct bpf_insn *insn = &prog->insns[insn_idx];
3326 	size_t map_idx, nr_maps = prog->obj->nr_maps;
3327 	struct bpf_object *obj = prog->obj;
3328 	__u32 shdr_idx = sym->st_shndx;
3329 	enum libbpf_map_type type;
3330 	const char *sym_sec_name;
3331 	struct bpf_map *map;
3332 
3333 	reloc_desc->processed = false;
3334 
3335 	/* sub-program call relocation */
3336 	if (insn->code == (BPF_JMP | BPF_CALL)) {
3337 		if (insn->src_reg != BPF_PSEUDO_CALL) {
3338 			pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
3339 			return -LIBBPF_ERRNO__RELOC;
3340 		}
3341 		/* text_shndx can be 0, if no default "main" program exists */
3342 		if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
3343 			sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3344 			pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
3345 				prog->name, sym_name, sym_sec_name);
3346 			return -LIBBPF_ERRNO__RELOC;
3347 		}
3348 		if (sym->st_value % BPF_INSN_SZ) {
3349 			pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
3350 				prog->name, sym_name, (size_t)sym->st_value);
3351 			return -LIBBPF_ERRNO__RELOC;
3352 		}
3353 		reloc_desc->type = RELO_CALL;
3354 		reloc_desc->insn_idx = insn_idx;
3355 		reloc_desc->sym_off = sym->st_value;
3356 		return 0;
3357 	}
3358 
3359 	if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) {
3360 		pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
3361 			prog->name, sym_name, insn_idx, insn->code);
3362 		return -LIBBPF_ERRNO__RELOC;
3363 	}
3364 
3365 	if (sym_is_extern(sym)) {
3366 		int sym_idx = GELF_R_SYM(rel->r_info);
3367 		int i, n = obj->nr_extern;
3368 		struct extern_desc *ext;
3369 
3370 		for (i = 0; i < n; i++) {
3371 			ext = &obj->externs[i];
3372 			if (ext->sym_idx == sym_idx)
3373 				break;
3374 		}
3375 		if (i >= n) {
3376 			pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
3377 				prog->name, sym_name, sym_idx);
3378 			return -LIBBPF_ERRNO__RELOC;
3379 		}
3380 		pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
3381 			 prog->name, i, ext->name, ext->sym_idx, insn_idx);
3382 		reloc_desc->type = RELO_EXTERN;
3383 		reloc_desc->insn_idx = insn_idx;
3384 		reloc_desc->sym_off = i; /* sym_off stores extern index */
3385 		return 0;
3386 	}
3387 
3388 	if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
3389 		pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
3390 			prog->name, sym_name, shdr_idx);
3391 		return -LIBBPF_ERRNO__RELOC;
3392 	}
3393 
3394 	type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
3395 	sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3396 
3397 	/* generic map reference relocation */
3398 	if (type == LIBBPF_MAP_UNSPEC) {
3399 		if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
3400 			pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
3401 				prog->name, sym_name, sym_sec_name);
3402 			return -LIBBPF_ERRNO__RELOC;
3403 		}
3404 		for (map_idx = 0; map_idx < nr_maps; map_idx++) {
3405 			map = &obj->maps[map_idx];
3406 			if (map->libbpf_type != type ||
3407 			    map->sec_idx != sym->st_shndx ||
3408 			    map->sec_offset != sym->st_value)
3409 				continue;
3410 			pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
3411 				 prog->name, map_idx, map->name, map->sec_idx,
3412 				 map->sec_offset, insn_idx);
3413 			break;
3414 		}
3415 		if (map_idx >= nr_maps) {
3416 			pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
3417 				prog->name, sym_sec_name, (size_t)sym->st_value);
3418 			return -LIBBPF_ERRNO__RELOC;
3419 		}
3420 		reloc_desc->type = RELO_LD64;
3421 		reloc_desc->insn_idx = insn_idx;
3422 		reloc_desc->map_idx = map_idx;
3423 		reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
3424 		return 0;
3425 	}
3426 
3427 	/* global data map relocation */
3428 	if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
3429 		pr_warn("prog '%s': bad data relo against section '%s'\n",
3430 			prog->name, sym_sec_name);
3431 		return -LIBBPF_ERRNO__RELOC;
3432 	}
3433 	for (map_idx = 0; map_idx < nr_maps; map_idx++) {
3434 		map = &obj->maps[map_idx];
3435 		if (map->libbpf_type != type)
3436 			continue;
3437 		pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
3438 			 prog->name, map_idx, map->name, map->sec_idx,
3439 			 map->sec_offset, insn_idx);
3440 		break;
3441 	}
3442 	if (map_idx >= nr_maps) {
3443 		pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
3444 			prog->name, sym_sec_name);
3445 		return -LIBBPF_ERRNO__RELOC;
3446 	}
3447 
3448 	reloc_desc->type = RELO_DATA;
3449 	reloc_desc->insn_idx = insn_idx;
3450 	reloc_desc->map_idx = map_idx;
3451 	reloc_desc->sym_off = sym->st_value;
3452 	return 0;
3453 }
3454 
3455 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
3456 {
3457 	return insn_idx >= prog->sec_insn_off &&
3458 	       insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
3459 }
3460 
3461 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
3462 						 size_t sec_idx, size_t insn_idx)
3463 {
3464 	int l = 0, r = obj->nr_programs - 1, m;
3465 	struct bpf_program *prog;
3466 
3467 	while (l < r) {
3468 		m = l + (r - l + 1) / 2;
3469 		prog = &obj->programs[m];
3470 
3471 		if (prog->sec_idx < sec_idx ||
3472 		    (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
3473 			l = m;
3474 		else
3475 			r = m - 1;
3476 	}
3477 	/* matching program could be at index l, but it still might be the
3478 	 * wrong one, so we need to double check conditions for the last time
3479 	 */
3480 	prog = &obj->programs[l];
3481 	if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
3482 		return prog;
3483 	return NULL;
3484 }
3485 
3486 static int
3487 bpf_object__collect_prog_relos(struct bpf_object *obj, GElf_Shdr *shdr, Elf_Data *data)
3488 {
3489 	Elf_Data *symbols = obj->efile.symbols;
3490 	const char *relo_sec_name, *sec_name;
3491 	size_t sec_idx = shdr->sh_info;
3492 	struct bpf_program *prog;
3493 	struct reloc_desc *relos;
3494 	int err, i, nrels;
3495 	const char *sym_name;
3496 	__u32 insn_idx;
3497 	GElf_Sym sym;
3498 	GElf_Rel rel;
3499 
3500 	relo_sec_name = elf_sec_str(obj, shdr->sh_name);
3501 	sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
3502 	if (!relo_sec_name || !sec_name)
3503 		return -EINVAL;
3504 
3505 	pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
3506 		 relo_sec_name, sec_idx, sec_name);
3507 	nrels = shdr->sh_size / shdr->sh_entsize;
3508 
3509 	for (i = 0; i < nrels; i++) {
3510 		if (!gelf_getrel(data, i, &rel)) {
3511 			pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
3512 			return -LIBBPF_ERRNO__FORMAT;
3513 		}
3514 		if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
3515 			pr_warn("sec '%s': symbol 0x%zx not found for relo #%d\n",
3516 				relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i);
3517 			return -LIBBPF_ERRNO__FORMAT;
3518 		}
3519 		if (rel.r_offset % BPF_INSN_SZ) {
3520 			pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
3521 				relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i);
3522 			return -LIBBPF_ERRNO__FORMAT;
3523 		}
3524 
3525 		insn_idx = rel.r_offset / BPF_INSN_SZ;
3526 		/* relocations against static functions are recorded as
3527 		 * relocations against the section that contains a function;
3528 		 * in such case, symbol will be STT_SECTION and sym.st_name
3529 		 * will point to empty string (0), so fetch section name
3530 		 * instead
3531 		 */
3532 		if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && sym.st_name == 0)
3533 			sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym.st_shndx));
3534 		else
3535 			sym_name = elf_sym_str(obj, sym.st_name);
3536 		sym_name = sym_name ?: "<?";
3537 
3538 		pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
3539 			 relo_sec_name, i, insn_idx, sym_name);
3540 
3541 		prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
3542 		if (!prog) {
3543 			pr_warn("sec '%s': relo #%d: program not found in section '%s' for insn #%u\n",
3544 				relo_sec_name, i, sec_name, insn_idx);
3545 			return -LIBBPF_ERRNO__RELOC;
3546 		}
3547 
3548 		relos = libbpf_reallocarray(prog->reloc_desc,
3549 					    prog->nr_reloc + 1, sizeof(*relos));
3550 		if (!relos)
3551 			return -ENOMEM;
3552 		prog->reloc_desc = relos;
3553 
3554 		/* adjust insn_idx to local BPF program frame of reference */
3555 		insn_idx -= prog->sec_insn_off;
3556 		err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
3557 						insn_idx, sym_name, &sym, &rel);
3558 		if (err)
3559 			return err;
3560 
3561 		prog->nr_reloc++;
3562 	}
3563 	return 0;
3564 }
3565 
3566 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map)
3567 {
3568 	struct bpf_map_def *def = &map->def;
3569 	__u32 key_type_id = 0, value_type_id = 0;
3570 	int ret;
3571 
3572 	/* if it's BTF-defined map, we don't need to search for type IDs.
3573 	 * For struct_ops map, it does not need btf_key_type_id and
3574 	 * btf_value_type_id.
3575 	 */
3576 	if (map->sec_idx == obj->efile.btf_maps_shndx ||
3577 	    bpf_map__is_struct_ops(map))
3578 		return 0;
3579 
3580 	if (!bpf_map__is_internal(map)) {
3581 		ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size,
3582 					   def->value_size, &key_type_id,
3583 					   &value_type_id);
3584 	} else {
3585 		/*
3586 		 * LLVM annotates global data differently in BTF, that is,
3587 		 * only as '.data', '.bss' or '.rodata'.
3588 		 */
3589 		ret = btf__find_by_name(obj->btf,
3590 				libbpf_type_to_btf_name[map->libbpf_type]);
3591 	}
3592 	if (ret < 0)
3593 		return ret;
3594 
3595 	map->btf_key_type_id = key_type_id;
3596 	map->btf_value_type_id = bpf_map__is_internal(map) ?
3597 				 ret : value_type_id;
3598 	return 0;
3599 }
3600 
3601 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
3602 {
3603 	struct bpf_map_info info = {};
3604 	__u32 len = sizeof(info);
3605 	int new_fd, err;
3606 	char *new_name;
3607 
3608 	err = bpf_obj_get_info_by_fd(fd, &info, &len);
3609 	if (err)
3610 		return err;
3611 
3612 	new_name = strdup(info.name);
3613 	if (!new_name)
3614 		return -errno;
3615 
3616 	new_fd = open("/", O_RDONLY | O_CLOEXEC);
3617 	if (new_fd < 0) {
3618 		err = -errno;
3619 		goto err_free_new_name;
3620 	}
3621 
3622 	new_fd = dup3(fd, new_fd, O_CLOEXEC);
3623 	if (new_fd < 0) {
3624 		err = -errno;
3625 		goto err_close_new_fd;
3626 	}
3627 
3628 	err = zclose(map->fd);
3629 	if (err) {
3630 		err = -errno;
3631 		goto err_close_new_fd;
3632 	}
3633 	free(map->name);
3634 
3635 	map->fd = new_fd;
3636 	map->name = new_name;
3637 	map->def.type = info.type;
3638 	map->def.key_size = info.key_size;
3639 	map->def.value_size = info.value_size;
3640 	map->def.max_entries = info.max_entries;
3641 	map->def.map_flags = info.map_flags;
3642 	map->btf_key_type_id = info.btf_key_type_id;
3643 	map->btf_value_type_id = info.btf_value_type_id;
3644 	map->reused = true;
3645 
3646 	return 0;
3647 
3648 err_close_new_fd:
3649 	close(new_fd);
3650 err_free_new_name:
3651 	free(new_name);
3652 	return err;
3653 }
3654 
3655 __u32 bpf_map__max_entries(const struct bpf_map *map)
3656 {
3657 	return map->def.max_entries;
3658 }
3659 
3660 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
3661 {
3662 	if (map->fd >= 0)
3663 		return -EBUSY;
3664 	map->def.max_entries = max_entries;
3665 	return 0;
3666 }
3667 
3668 int bpf_map__resize(struct bpf_map *map, __u32 max_entries)
3669 {
3670 	if (!map || !max_entries)
3671 		return -EINVAL;
3672 
3673 	return bpf_map__set_max_entries(map, max_entries);
3674 }
3675 
3676 static int
3677 bpf_object__probe_loading(struct bpf_object *obj)
3678 {
3679 	struct bpf_load_program_attr attr;
3680 	char *cp, errmsg[STRERR_BUFSIZE];
3681 	struct bpf_insn insns[] = {
3682 		BPF_MOV64_IMM(BPF_REG_0, 0),
3683 		BPF_EXIT_INSN(),
3684 	};
3685 	int ret;
3686 
3687 	/* make sure basic loading works */
3688 
3689 	memset(&attr, 0, sizeof(attr));
3690 	attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3691 	attr.insns = insns;
3692 	attr.insns_cnt = ARRAY_SIZE(insns);
3693 	attr.license = "GPL";
3694 
3695 	ret = bpf_load_program_xattr(&attr, NULL, 0);
3696 	if (ret < 0) {
3697 		ret = errno;
3698 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
3699 		pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
3700 			"program. Make sure your kernel supports BPF "
3701 			"(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
3702 			"set to big enough value.\n", __func__, cp, ret);
3703 		return -ret;
3704 	}
3705 	close(ret);
3706 
3707 	return 0;
3708 }
3709 
3710 static int probe_fd(int fd)
3711 {
3712 	if (fd >= 0)
3713 		close(fd);
3714 	return fd >= 0;
3715 }
3716 
3717 static int probe_kern_prog_name(void)
3718 {
3719 	struct bpf_load_program_attr attr;
3720 	struct bpf_insn insns[] = {
3721 		BPF_MOV64_IMM(BPF_REG_0, 0),
3722 		BPF_EXIT_INSN(),
3723 	};
3724 	int ret;
3725 
3726 	/* make sure loading with name works */
3727 
3728 	memset(&attr, 0, sizeof(attr));
3729 	attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3730 	attr.insns = insns;
3731 	attr.insns_cnt = ARRAY_SIZE(insns);
3732 	attr.license = "GPL";
3733 	attr.name = "test";
3734 	ret = bpf_load_program_xattr(&attr, NULL, 0);
3735 	return probe_fd(ret);
3736 }
3737 
3738 static int probe_kern_global_data(void)
3739 {
3740 	struct bpf_load_program_attr prg_attr;
3741 	struct bpf_create_map_attr map_attr;
3742 	char *cp, errmsg[STRERR_BUFSIZE];
3743 	struct bpf_insn insns[] = {
3744 		BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
3745 		BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
3746 		BPF_MOV64_IMM(BPF_REG_0, 0),
3747 		BPF_EXIT_INSN(),
3748 	};
3749 	int ret, map;
3750 
3751 	memset(&map_attr, 0, sizeof(map_attr));
3752 	map_attr.map_type = BPF_MAP_TYPE_ARRAY;
3753 	map_attr.key_size = sizeof(int);
3754 	map_attr.value_size = 32;
3755 	map_attr.max_entries = 1;
3756 
3757 	map = bpf_create_map_xattr(&map_attr);
3758 	if (map < 0) {
3759 		ret = -errno;
3760 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
3761 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
3762 			__func__, cp, -ret);
3763 		return ret;
3764 	}
3765 
3766 	insns[0].imm = map;
3767 
3768 	memset(&prg_attr, 0, sizeof(prg_attr));
3769 	prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3770 	prg_attr.insns = insns;
3771 	prg_attr.insns_cnt = ARRAY_SIZE(insns);
3772 	prg_attr.license = "GPL";
3773 
3774 	ret = bpf_load_program_xattr(&prg_attr, NULL, 0);
3775 	close(map);
3776 	return probe_fd(ret);
3777 }
3778 
3779 static int probe_kern_btf(void)
3780 {
3781 	static const char strs[] = "\0int";
3782 	__u32 types[] = {
3783 		/* int */
3784 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
3785 	};
3786 
3787 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3788 					     strs, sizeof(strs)));
3789 }
3790 
3791 static int probe_kern_btf_func(void)
3792 {
3793 	static const char strs[] = "\0int\0x\0a";
3794 	/* void x(int a) {} */
3795 	__u32 types[] = {
3796 		/* int */
3797 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
3798 		/* FUNC_PROTO */                                /* [2] */
3799 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
3800 		BTF_PARAM_ENC(7, 1),
3801 		/* FUNC x */                                    /* [3] */
3802 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
3803 	};
3804 
3805 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3806 					     strs, sizeof(strs)));
3807 }
3808 
3809 static int probe_kern_btf_func_global(void)
3810 {
3811 	static const char strs[] = "\0int\0x\0a";
3812 	/* static void x(int a) {} */
3813 	__u32 types[] = {
3814 		/* int */
3815 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
3816 		/* FUNC_PROTO */                                /* [2] */
3817 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
3818 		BTF_PARAM_ENC(7, 1),
3819 		/* FUNC x BTF_FUNC_GLOBAL */                    /* [3] */
3820 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
3821 	};
3822 
3823 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3824 					     strs, sizeof(strs)));
3825 }
3826 
3827 static int probe_kern_btf_datasec(void)
3828 {
3829 	static const char strs[] = "\0x\0.data";
3830 	/* static int a; */
3831 	__u32 types[] = {
3832 		/* int */
3833 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
3834 		/* VAR x */                                     /* [2] */
3835 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
3836 		BTF_VAR_STATIC,
3837 		/* DATASEC val */                               /* [3] */
3838 		BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
3839 		BTF_VAR_SECINFO_ENC(2, 0, 4),
3840 	};
3841 
3842 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3843 					     strs, sizeof(strs)));
3844 }
3845 
3846 static int probe_kern_array_mmap(void)
3847 {
3848 	struct bpf_create_map_attr attr = {
3849 		.map_type = BPF_MAP_TYPE_ARRAY,
3850 		.map_flags = BPF_F_MMAPABLE,
3851 		.key_size = sizeof(int),
3852 		.value_size = sizeof(int),
3853 		.max_entries = 1,
3854 	};
3855 
3856 	return probe_fd(bpf_create_map_xattr(&attr));
3857 }
3858 
3859 static int probe_kern_exp_attach_type(void)
3860 {
3861 	struct bpf_load_program_attr attr;
3862 	struct bpf_insn insns[] = {
3863 		BPF_MOV64_IMM(BPF_REG_0, 0),
3864 		BPF_EXIT_INSN(),
3865 	};
3866 
3867 	memset(&attr, 0, sizeof(attr));
3868 	/* use any valid combination of program type and (optional)
3869 	 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
3870 	 * to see if kernel supports expected_attach_type field for
3871 	 * BPF_PROG_LOAD command
3872 	 */
3873 	attr.prog_type = BPF_PROG_TYPE_CGROUP_SOCK;
3874 	attr.expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE;
3875 	attr.insns = insns;
3876 	attr.insns_cnt = ARRAY_SIZE(insns);
3877 	attr.license = "GPL";
3878 
3879 	return probe_fd(bpf_load_program_xattr(&attr, NULL, 0));
3880 }
3881 
3882 static int probe_kern_probe_read_kernel(void)
3883 {
3884 	struct bpf_load_program_attr attr;
3885 	struct bpf_insn insns[] = {
3886 		BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),	/* r1 = r10 (fp) */
3887 		BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),	/* r1 += -8 */
3888 		BPF_MOV64_IMM(BPF_REG_2, 8),		/* r2 = 8 */
3889 		BPF_MOV64_IMM(BPF_REG_3, 0),		/* r3 = 0 */
3890 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
3891 		BPF_EXIT_INSN(),
3892 	};
3893 
3894 	memset(&attr, 0, sizeof(attr));
3895 	attr.prog_type = BPF_PROG_TYPE_KPROBE;
3896 	attr.insns = insns;
3897 	attr.insns_cnt = ARRAY_SIZE(insns);
3898 	attr.license = "GPL";
3899 
3900 	return probe_fd(bpf_load_program_xattr(&attr, NULL, 0));
3901 }
3902 
3903 static int probe_prog_bind_map(void)
3904 {
3905 	struct bpf_load_program_attr prg_attr;
3906 	struct bpf_create_map_attr map_attr;
3907 	char *cp, errmsg[STRERR_BUFSIZE];
3908 	struct bpf_insn insns[] = {
3909 		BPF_MOV64_IMM(BPF_REG_0, 0),
3910 		BPF_EXIT_INSN(),
3911 	};
3912 	int ret, map, prog;
3913 
3914 	memset(&map_attr, 0, sizeof(map_attr));
3915 	map_attr.map_type = BPF_MAP_TYPE_ARRAY;
3916 	map_attr.key_size = sizeof(int);
3917 	map_attr.value_size = 32;
3918 	map_attr.max_entries = 1;
3919 
3920 	map = bpf_create_map_xattr(&map_attr);
3921 	if (map < 0) {
3922 		ret = -errno;
3923 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
3924 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
3925 			__func__, cp, -ret);
3926 		return ret;
3927 	}
3928 
3929 	memset(&prg_attr, 0, sizeof(prg_attr));
3930 	prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3931 	prg_attr.insns = insns;
3932 	prg_attr.insns_cnt = ARRAY_SIZE(insns);
3933 	prg_attr.license = "GPL";
3934 
3935 	prog = bpf_load_program_xattr(&prg_attr, NULL, 0);
3936 	if (prog < 0) {
3937 		close(map);
3938 		return 0;
3939 	}
3940 
3941 	ret = bpf_prog_bind_map(prog, map, NULL);
3942 
3943 	close(map);
3944 	close(prog);
3945 
3946 	return ret >= 0;
3947 }
3948 
3949 enum kern_feature_result {
3950 	FEAT_UNKNOWN = 0,
3951 	FEAT_SUPPORTED = 1,
3952 	FEAT_MISSING = 2,
3953 };
3954 
3955 typedef int (*feature_probe_fn)(void);
3956 
3957 static struct kern_feature_desc {
3958 	const char *desc;
3959 	feature_probe_fn probe;
3960 	enum kern_feature_result res;
3961 } feature_probes[__FEAT_CNT] = {
3962 	[FEAT_PROG_NAME] = {
3963 		"BPF program name", probe_kern_prog_name,
3964 	},
3965 	[FEAT_GLOBAL_DATA] = {
3966 		"global variables", probe_kern_global_data,
3967 	},
3968 	[FEAT_BTF] = {
3969 		"minimal BTF", probe_kern_btf,
3970 	},
3971 	[FEAT_BTF_FUNC] = {
3972 		"BTF functions", probe_kern_btf_func,
3973 	},
3974 	[FEAT_BTF_GLOBAL_FUNC] = {
3975 		"BTF global function", probe_kern_btf_func_global,
3976 	},
3977 	[FEAT_BTF_DATASEC] = {
3978 		"BTF data section and variable", probe_kern_btf_datasec,
3979 	},
3980 	[FEAT_ARRAY_MMAP] = {
3981 		"ARRAY map mmap()", probe_kern_array_mmap,
3982 	},
3983 	[FEAT_EXP_ATTACH_TYPE] = {
3984 		"BPF_PROG_LOAD expected_attach_type attribute",
3985 		probe_kern_exp_attach_type,
3986 	},
3987 	[FEAT_PROBE_READ_KERN] = {
3988 		"bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
3989 	},
3990 	[FEAT_PROG_BIND_MAP] = {
3991 		"BPF_PROG_BIND_MAP support", probe_prog_bind_map,
3992 	}
3993 };
3994 
3995 static bool kernel_supports(enum kern_feature_id feat_id)
3996 {
3997 	struct kern_feature_desc *feat = &feature_probes[feat_id];
3998 	int ret;
3999 
4000 	if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4001 		ret = feat->probe();
4002 		if (ret > 0) {
4003 			WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4004 		} else if (ret == 0) {
4005 			WRITE_ONCE(feat->res, FEAT_MISSING);
4006 		} else {
4007 			pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4008 			WRITE_ONCE(feat->res, FEAT_MISSING);
4009 		}
4010 	}
4011 
4012 	return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4013 }
4014 
4015 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4016 {
4017 	struct bpf_map_info map_info = {};
4018 	char msg[STRERR_BUFSIZE];
4019 	__u32 map_info_len;
4020 
4021 	map_info_len = sizeof(map_info);
4022 
4023 	if (bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len)) {
4024 		pr_warn("failed to get map info for map FD %d: %s\n",
4025 			map_fd, libbpf_strerror_r(errno, msg, sizeof(msg)));
4026 		return false;
4027 	}
4028 
4029 	return (map_info.type == map->def.type &&
4030 		map_info.key_size == map->def.key_size &&
4031 		map_info.value_size == map->def.value_size &&
4032 		map_info.max_entries == map->def.max_entries &&
4033 		map_info.map_flags == map->def.map_flags);
4034 }
4035 
4036 static int
4037 bpf_object__reuse_map(struct bpf_map *map)
4038 {
4039 	char *cp, errmsg[STRERR_BUFSIZE];
4040 	int err, pin_fd;
4041 
4042 	pin_fd = bpf_obj_get(map->pin_path);
4043 	if (pin_fd < 0) {
4044 		err = -errno;
4045 		if (err == -ENOENT) {
4046 			pr_debug("found no pinned map to reuse at '%s'\n",
4047 				 map->pin_path);
4048 			return 0;
4049 		}
4050 
4051 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
4052 		pr_warn("couldn't retrieve pinned map '%s': %s\n",
4053 			map->pin_path, cp);
4054 		return err;
4055 	}
4056 
4057 	if (!map_is_reuse_compat(map, pin_fd)) {
4058 		pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
4059 			map->pin_path);
4060 		close(pin_fd);
4061 		return -EINVAL;
4062 	}
4063 
4064 	err = bpf_map__reuse_fd(map, pin_fd);
4065 	if (err) {
4066 		close(pin_fd);
4067 		return err;
4068 	}
4069 	map->pinned = true;
4070 	pr_debug("reused pinned map at '%s'\n", map->pin_path);
4071 
4072 	return 0;
4073 }
4074 
4075 static int
4076 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
4077 {
4078 	enum libbpf_map_type map_type = map->libbpf_type;
4079 	char *cp, errmsg[STRERR_BUFSIZE];
4080 	int err, zero = 0;
4081 
4082 	err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
4083 	if (err) {
4084 		err = -errno;
4085 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4086 		pr_warn("Error setting initial map(%s) contents: %s\n",
4087 			map->name, cp);
4088 		return err;
4089 	}
4090 
4091 	/* Freeze .rodata and .kconfig map as read-only from syscall side. */
4092 	if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
4093 		err = bpf_map_freeze(map->fd);
4094 		if (err) {
4095 			err = -errno;
4096 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4097 			pr_warn("Error freezing map(%s) as read-only: %s\n",
4098 				map->name, cp);
4099 			return err;
4100 		}
4101 	}
4102 	return 0;
4103 }
4104 
4105 static void bpf_map__destroy(struct bpf_map *map);
4106 
4107 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map)
4108 {
4109 	struct bpf_create_map_attr create_attr;
4110 	struct bpf_map_def *def = &map->def;
4111 
4112 	memset(&create_attr, 0, sizeof(create_attr));
4113 
4114 	if (kernel_supports(FEAT_PROG_NAME))
4115 		create_attr.name = map->name;
4116 	create_attr.map_ifindex = map->map_ifindex;
4117 	create_attr.map_type = def->type;
4118 	create_attr.map_flags = def->map_flags;
4119 	create_attr.key_size = def->key_size;
4120 	create_attr.value_size = def->value_size;
4121 	create_attr.numa_node = map->numa_node;
4122 
4123 	if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) {
4124 		int nr_cpus;
4125 
4126 		nr_cpus = libbpf_num_possible_cpus();
4127 		if (nr_cpus < 0) {
4128 			pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
4129 				map->name, nr_cpus);
4130 			return nr_cpus;
4131 		}
4132 		pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
4133 		create_attr.max_entries = nr_cpus;
4134 	} else {
4135 		create_attr.max_entries = def->max_entries;
4136 	}
4137 
4138 	if (bpf_map__is_struct_ops(map))
4139 		create_attr.btf_vmlinux_value_type_id =
4140 			map->btf_vmlinux_value_type_id;
4141 
4142 	create_attr.btf_fd = 0;
4143 	create_attr.btf_key_type_id = 0;
4144 	create_attr.btf_value_type_id = 0;
4145 	if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) {
4146 		create_attr.btf_fd = btf__fd(obj->btf);
4147 		create_attr.btf_key_type_id = map->btf_key_type_id;
4148 		create_attr.btf_value_type_id = map->btf_value_type_id;
4149 	}
4150 
4151 	if (bpf_map_type__is_map_in_map(def->type)) {
4152 		if (map->inner_map) {
4153 			int err;
4154 
4155 			err = bpf_object__create_map(obj, map->inner_map);
4156 			if (err) {
4157 				pr_warn("map '%s': failed to create inner map: %d\n",
4158 					map->name, err);
4159 				return err;
4160 			}
4161 			map->inner_map_fd = bpf_map__fd(map->inner_map);
4162 		}
4163 		if (map->inner_map_fd >= 0)
4164 			create_attr.inner_map_fd = map->inner_map_fd;
4165 	}
4166 
4167 	map->fd = bpf_create_map_xattr(&create_attr);
4168 	if (map->fd < 0 && (create_attr.btf_key_type_id ||
4169 			    create_attr.btf_value_type_id)) {
4170 		char *cp, errmsg[STRERR_BUFSIZE];
4171 		int err = -errno;
4172 
4173 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4174 		pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
4175 			map->name, cp, err);
4176 		create_attr.btf_fd = 0;
4177 		create_attr.btf_key_type_id = 0;
4178 		create_attr.btf_value_type_id = 0;
4179 		map->btf_key_type_id = 0;
4180 		map->btf_value_type_id = 0;
4181 		map->fd = bpf_create_map_xattr(&create_attr);
4182 	}
4183 
4184 	if (map->fd < 0)
4185 		return -errno;
4186 
4187 	if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
4188 		bpf_map__destroy(map->inner_map);
4189 		zfree(&map->inner_map);
4190 	}
4191 
4192 	return 0;
4193 }
4194 
4195 static int
4196 bpf_object__create_maps(struct bpf_object *obj)
4197 {
4198 	struct bpf_map *map;
4199 	char *cp, errmsg[STRERR_BUFSIZE];
4200 	unsigned int i, j;
4201 	int err;
4202 
4203 	for (i = 0; i < obj->nr_maps; i++) {
4204 		map = &obj->maps[i];
4205 
4206 		if (map->pin_path) {
4207 			err = bpf_object__reuse_map(map);
4208 			if (err) {
4209 				pr_warn("map '%s': error reusing pinned map\n",
4210 					map->name);
4211 				goto err_out;
4212 			}
4213 		}
4214 
4215 		if (map->fd >= 0) {
4216 			pr_debug("map '%s': skipping creation (preset fd=%d)\n",
4217 				 map->name, map->fd);
4218 			continue;
4219 		}
4220 
4221 		err = bpf_object__create_map(obj, map);
4222 		if (err)
4223 			goto err_out;
4224 
4225 		pr_debug("map '%s': created successfully, fd=%d\n", map->name,
4226 			 map->fd);
4227 
4228 		if (bpf_map__is_internal(map)) {
4229 			err = bpf_object__populate_internal_map(obj, map);
4230 			if (err < 0) {
4231 				zclose(map->fd);
4232 				goto err_out;
4233 			}
4234 		}
4235 
4236 		if (map->init_slots_sz) {
4237 			for (j = 0; j < map->init_slots_sz; j++) {
4238 				const struct bpf_map *targ_map;
4239 				int fd;
4240 
4241 				if (!map->init_slots[j])
4242 					continue;
4243 
4244 				targ_map = map->init_slots[j];
4245 				fd = bpf_map__fd(targ_map);
4246 				err = bpf_map_update_elem(map->fd, &j, &fd, 0);
4247 				if (err) {
4248 					err = -errno;
4249 					pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
4250 						map->name, j, targ_map->name,
4251 						fd, err);
4252 					goto err_out;
4253 				}
4254 				pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
4255 					 map->name, j, targ_map->name, fd);
4256 			}
4257 			zfree(&map->init_slots);
4258 			map->init_slots_sz = 0;
4259 		}
4260 
4261 		if (map->pin_path && !map->pinned) {
4262 			err = bpf_map__pin(map, NULL);
4263 			if (err) {
4264 				pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
4265 					map->name, map->pin_path, err);
4266 				zclose(map->fd);
4267 				goto err_out;
4268 			}
4269 		}
4270 	}
4271 
4272 	return 0;
4273 
4274 err_out:
4275 	cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4276 	pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
4277 	pr_perm_msg(err);
4278 	for (j = 0; j < i; j++)
4279 		zclose(obj->maps[j].fd);
4280 	return err;
4281 }
4282 
4283 #define BPF_CORE_SPEC_MAX_LEN 64
4284 
4285 /* represents BPF CO-RE field or array element accessor */
4286 struct bpf_core_accessor {
4287 	__u32 type_id;		/* struct/union type or array element type */
4288 	__u32 idx;		/* field index or array index */
4289 	const char *name;	/* field name or NULL for array accessor */
4290 };
4291 
4292 struct bpf_core_spec {
4293 	const struct btf *btf;
4294 	/* high-level spec: named fields and array indices only */
4295 	struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN];
4296 	/* original unresolved (no skip_mods_or_typedefs) root type ID */
4297 	__u32 root_type_id;
4298 	/* CO-RE relocation kind */
4299 	enum bpf_core_relo_kind relo_kind;
4300 	/* high-level spec length */
4301 	int len;
4302 	/* raw, low-level spec: 1-to-1 with accessor spec string */
4303 	int raw_spec[BPF_CORE_SPEC_MAX_LEN];
4304 	/* raw spec length */
4305 	int raw_len;
4306 	/* field bit offset represented by spec */
4307 	__u32 bit_offset;
4308 };
4309 
4310 static bool str_is_empty(const char *s)
4311 {
4312 	return !s || !s[0];
4313 }
4314 
4315 static bool is_flex_arr(const struct btf *btf,
4316 			const struct bpf_core_accessor *acc,
4317 			const struct btf_array *arr)
4318 {
4319 	const struct btf_type *t;
4320 
4321 	/* not a flexible array, if not inside a struct or has non-zero size */
4322 	if (!acc->name || arr->nelems > 0)
4323 		return false;
4324 
4325 	/* has to be the last member of enclosing struct */
4326 	t = btf__type_by_id(btf, acc->type_id);
4327 	return acc->idx == btf_vlen(t) - 1;
4328 }
4329 
4330 static const char *core_relo_kind_str(enum bpf_core_relo_kind kind)
4331 {
4332 	switch (kind) {
4333 	case BPF_FIELD_BYTE_OFFSET: return "byte_off";
4334 	case BPF_FIELD_BYTE_SIZE: return "byte_sz";
4335 	case BPF_FIELD_EXISTS: return "field_exists";
4336 	case BPF_FIELD_SIGNED: return "signed";
4337 	case BPF_FIELD_LSHIFT_U64: return "lshift_u64";
4338 	case BPF_FIELD_RSHIFT_U64: return "rshift_u64";
4339 	case BPF_TYPE_ID_LOCAL: return "local_type_id";
4340 	case BPF_TYPE_ID_TARGET: return "target_type_id";
4341 	case BPF_TYPE_EXISTS: return "type_exists";
4342 	case BPF_TYPE_SIZE: return "type_size";
4343 	case BPF_ENUMVAL_EXISTS: return "enumval_exists";
4344 	case BPF_ENUMVAL_VALUE: return "enumval_value";
4345 	default: return "unknown";
4346 	}
4347 }
4348 
4349 static bool core_relo_is_field_based(enum bpf_core_relo_kind kind)
4350 {
4351 	switch (kind) {
4352 	case BPF_FIELD_BYTE_OFFSET:
4353 	case BPF_FIELD_BYTE_SIZE:
4354 	case BPF_FIELD_EXISTS:
4355 	case BPF_FIELD_SIGNED:
4356 	case BPF_FIELD_LSHIFT_U64:
4357 	case BPF_FIELD_RSHIFT_U64:
4358 		return true;
4359 	default:
4360 		return false;
4361 	}
4362 }
4363 
4364 static bool core_relo_is_type_based(enum bpf_core_relo_kind kind)
4365 {
4366 	switch (kind) {
4367 	case BPF_TYPE_ID_LOCAL:
4368 	case BPF_TYPE_ID_TARGET:
4369 	case BPF_TYPE_EXISTS:
4370 	case BPF_TYPE_SIZE:
4371 		return true;
4372 	default:
4373 		return false;
4374 	}
4375 }
4376 
4377 static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind)
4378 {
4379 	switch (kind) {
4380 	case BPF_ENUMVAL_EXISTS:
4381 	case BPF_ENUMVAL_VALUE:
4382 		return true;
4383 	default:
4384 		return false;
4385 	}
4386 }
4387 
4388 /*
4389  * Turn bpf_core_relo into a low- and high-level spec representation,
4390  * validating correctness along the way, as well as calculating resulting
4391  * field bit offset, specified by accessor string. Low-level spec captures
4392  * every single level of nestedness, including traversing anonymous
4393  * struct/union members. High-level one only captures semantically meaningful
4394  * "turning points": named fields and array indicies.
4395  * E.g., for this case:
4396  *
4397  *   struct sample {
4398  *       int __unimportant;
4399  *       struct {
4400  *           int __1;
4401  *           int __2;
4402  *           int a[7];
4403  *       };
4404  *   };
4405  *
4406  *   struct sample *s = ...;
4407  *
4408  *   int x = &s->a[3]; // access string = '0:1:2:3'
4409  *
4410  * Low-level spec has 1:1 mapping with each element of access string (it's
4411  * just a parsed access string representation): [0, 1, 2, 3].
4412  *
4413  * High-level spec will capture only 3 points:
4414  *   - intial zero-index access by pointer (&s->... is the same as &s[0]...);
4415  *   - field 'a' access (corresponds to '2' in low-level spec);
4416  *   - array element #3 access (corresponds to '3' in low-level spec).
4417  *
4418  * Type-based relocations (TYPE_EXISTS/TYPE_SIZE,
4419  * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their
4420  * spec and raw_spec are kept empty.
4421  *
4422  * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access
4423  * string to specify enumerator's value index that need to be relocated.
4424  */
4425 static int bpf_core_parse_spec(const struct btf *btf,
4426 			       __u32 type_id,
4427 			       const char *spec_str,
4428 			       enum bpf_core_relo_kind relo_kind,
4429 			       struct bpf_core_spec *spec)
4430 {
4431 	int access_idx, parsed_len, i;
4432 	struct bpf_core_accessor *acc;
4433 	const struct btf_type *t;
4434 	const char *name;
4435 	__u32 id;
4436 	__s64 sz;
4437 
4438 	if (str_is_empty(spec_str) || *spec_str == ':')
4439 		return -EINVAL;
4440 
4441 	memset(spec, 0, sizeof(*spec));
4442 	spec->btf = btf;
4443 	spec->root_type_id = type_id;
4444 	spec->relo_kind = relo_kind;
4445 
4446 	/* type-based relocations don't have a field access string */
4447 	if (core_relo_is_type_based(relo_kind)) {
4448 		if (strcmp(spec_str, "0"))
4449 			return -EINVAL;
4450 		return 0;
4451 	}
4452 
4453 	/* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */
4454 	while (*spec_str) {
4455 		if (*spec_str == ':')
4456 			++spec_str;
4457 		if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1)
4458 			return -EINVAL;
4459 		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
4460 			return -E2BIG;
4461 		spec_str += parsed_len;
4462 		spec->raw_spec[spec->raw_len++] = access_idx;
4463 	}
4464 
4465 	if (spec->raw_len == 0)
4466 		return -EINVAL;
4467 
4468 	t = skip_mods_and_typedefs(btf, type_id, &id);
4469 	if (!t)
4470 		return -EINVAL;
4471 
4472 	access_idx = spec->raw_spec[0];
4473 	acc = &spec->spec[0];
4474 	acc->type_id = id;
4475 	acc->idx = access_idx;
4476 	spec->len++;
4477 
4478 	if (core_relo_is_enumval_based(relo_kind)) {
4479 		if (!btf_is_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t))
4480 			return -EINVAL;
4481 
4482 		/* record enumerator name in a first accessor */
4483 		acc->name = btf__name_by_offset(btf, btf_enum(t)[access_idx].name_off);
4484 		return 0;
4485 	}
4486 
4487 	if (!core_relo_is_field_based(relo_kind))
4488 		return -EINVAL;
4489 
4490 	sz = btf__resolve_size(btf, id);
4491 	if (sz < 0)
4492 		return sz;
4493 	spec->bit_offset = access_idx * sz * 8;
4494 
4495 	for (i = 1; i < spec->raw_len; i++) {
4496 		t = skip_mods_and_typedefs(btf, id, &id);
4497 		if (!t)
4498 			return -EINVAL;
4499 
4500 		access_idx = spec->raw_spec[i];
4501 		acc = &spec->spec[spec->len];
4502 
4503 		if (btf_is_composite(t)) {
4504 			const struct btf_member *m;
4505 			__u32 bit_offset;
4506 
4507 			if (access_idx >= btf_vlen(t))
4508 				return -EINVAL;
4509 
4510 			bit_offset = btf_member_bit_offset(t, access_idx);
4511 			spec->bit_offset += bit_offset;
4512 
4513 			m = btf_members(t) + access_idx;
4514 			if (m->name_off) {
4515 				name = btf__name_by_offset(btf, m->name_off);
4516 				if (str_is_empty(name))
4517 					return -EINVAL;
4518 
4519 				acc->type_id = id;
4520 				acc->idx = access_idx;
4521 				acc->name = name;
4522 				spec->len++;
4523 			}
4524 
4525 			id = m->type;
4526 		} else if (btf_is_array(t)) {
4527 			const struct btf_array *a = btf_array(t);
4528 			bool flex;
4529 
4530 			t = skip_mods_and_typedefs(btf, a->type, &id);
4531 			if (!t)
4532 				return -EINVAL;
4533 
4534 			flex = is_flex_arr(btf, acc - 1, a);
4535 			if (!flex && access_idx >= a->nelems)
4536 				return -EINVAL;
4537 
4538 			spec->spec[spec->len].type_id = id;
4539 			spec->spec[spec->len].idx = access_idx;
4540 			spec->len++;
4541 
4542 			sz = btf__resolve_size(btf, id);
4543 			if (sz < 0)
4544 				return sz;
4545 			spec->bit_offset += access_idx * sz * 8;
4546 		} else {
4547 			pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n",
4548 				type_id, spec_str, i, id, btf_kind_str(t));
4549 			return -EINVAL;
4550 		}
4551 	}
4552 
4553 	return 0;
4554 }
4555 
4556 static bool bpf_core_is_flavor_sep(const char *s)
4557 {
4558 	/* check X___Y name pattern, where X and Y are not underscores */
4559 	return s[0] != '_' &&				      /* X */
4560 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
4561 	       s[4] != '_';				      /* Y */
4562 }
4563 
4564 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
4565  * before last triple underscore. Struct name part after last triple
4566  * underscore is ignored by BPF CO-RE relocation during relocation matching.
4567  */
4568 static size_t bpf_core_essential_name_len(const char *name)
4569 {
4570 	size_t n = strlen(name);
4571 	int i;
4572 
4573 	for (i = n - 5; i >= 0; i--) {
4574 		if (bpf_core_is_flavor_sep(name + i))
4575 			return i + 1;
4576 	}
4577 	return n;
4578 }
4579 
4580 /* dynamically sized list of type IDs */
4581 struct ids_vec {
4582 	__u32 *data;
4583 	int len;
4584 };
4585 
4586 static void bpf_core_free_cands(struct ids_vec *cand_ids)
4587 {
4588 	free(cand_ids->data);
4589 	free(cand_ids);
4590 }
4591 
4592 static struct ids_vec *bpf_core_find_cands(const struct btf *local_btf,
4593 					   __u32 local_type_id,
4594 					   const struct btf *targ_btf)
4595 {
4596 	size_t local_essent_len, targ_essent_len;
4597 	const char *local_name, *targ_name;
4598 	const struct btf_type *t, *local_t;
4599 	struct ids_vec *cand_ids;
4600 	__u32 *new_ids;
4601 	int i, err, n;
4602 
4603 	local_t = btf__type_by_id(local_btf, local_type_id);
4604 	if (!local_t)
4605 		return ERR_PTR(-EINVAL);
4606 
4607 	local_name = btf__name_by_offset(local_btf, local_t->name_off);
4608 	if (str_is_empty(local_name))
4609 		return ERR_PTR(-EINVAL);
4610 	local_essent_len = bpf_core_essential_name_len(local_name);
4611 
4612 	cand_ids = calloc(1, sizeof(*cand_ids));
4613 	if (!cand_ids)
4614 		return ERR_PTR(-ENOMEM);
4615 
4616 	n = btf__get_nr_types(targ_btf);
4617 	for (i = 1; i <= n; i++) {
4618 		t = btf__type_by_id(targ_btf, i);
4619 		if (btf_kind(t) != btf_kind(local_t))
4620 			continue;
4621 
4622 		targ_name = btf__name_by_offset(targ_btf, t->name_off);
4623 		if (str_is_empty(targ_name))
4624 			continue;
4625 
4626 		targ_essent_len = bpf_core_essential_name_len(targ_name);
4627 		if (targ_essent_len != local_essent_len)
4628 			continue;
4629 
4630 		if (strncmp(local_name, targ_name, local_essent_len) == 0) {
4631 			pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s\n",
4632 				 local_type_id, btf_kind_str(local_t),
4633 				 local_name, i, btf_kind_str(t), targ_name);
4634 			new_ids = libbpf_reallocarray(cand_ids->data,
4635 						      cand_ids->len + 1,
4636 						      sizeof(*cand_ids->data));
4637 			if (!new_ids) {
4638 				err = -ENOMEM;
4639 				goto err_out;
4640 			}
4641 			cand_ids->data = new_ids;
4642 			cand_ids->data[cand_ids->len++] = i;
4643 		}
4644 	}
4645 	return cand_ids;
4646 err_out:
4647 	bpf_core_free_cands(cand_ids);
4648 	return ERR_PTR(err);
4649 }
4650 
4651 /* Check two types for compatibility for the purpose of field access
4652  * relocation. const/volatile/restrict and typedefs are skipped to ensure we
4653  * are relocating semantically compatible entities:
4654  *   - any two STRUCTs/UNIONs are compatible and can be mixed;
4655  *   - any two FWDs are compatible, if their names match (modulo flavor suffix);
4656  *   - any two PTRs are always compatible;
4657  *   - for ENUMs, names should be the same (ignoring flavor suffix) or at
4658  *     least one of enums should be anonymous;
4659  *   - for ENUMs, check sizes, names are ignored;
4660  *   - for INT, size and signedness are ignored;
4661  *   - for ARRAY, dimensionality is ignored, element types are checked for
4662  *     compatibility recursively;
4663  *   - everything else shouldn't be ever a target of relocation.
4664  * These rules are not set in stone and probably will be adjusted as we get
4665  * more experience with using BPF CO-RE relocations.
4666  */
4667 static int bpf_core_fields_are_compat(const struct btf *local_btf,
4668 				      __u32 local_id,
4669 				      const struct btf *targ_btf,
4670 				      __u32 targ_id)
4671 {
4672 	const struct btf_type *local_type, *targ_type;
4673 
4674 recur:
4675 	local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
4676 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
4677 	if (!local_type || !targ_type)
4678 		return -EINVAL;
4679 
4680 	if (btf_is_composite(local_type) && btf_is_composite(targ_type))
4681 		return 1;
4682 	if (btf_kind(local_type) != btf_kind(targ_type))
4683 		return 0;
4684 
4685 	switch (btf_kind(local_type)) {
4686 	case BTF_KIND_PTR:
4687 		return 1;
4688 	case BTF_KIND_FWD:
4689 	case BTF_KIND_ENUM: {
4690 		const char *local_name, *targ_name;
4691 		size_t local_len, targ_len;
4692 
4693 		local_name = btf__name_by_offset(local_btf,
4694 						 local_type->name_off);
4695 		targ_name = btf__name_by_offset(targ_btf, targ_type->name_off);
4696 		local_len = bpf_core_essential_name_len(local_name);
4697 		targ_len = bpf_core_essential_name_len(targ_name);
4698 		/* one of them is anonymous or both w/ same flavor-less names */
4699 		return local_len == 0 || targ_len == 0 ||
4700 		       (local_len == targ_len &&
4701 			strncmp(local_name, targ_name, local_len) == 0);
4702 	}
4703 	case BTF_KIND_INT:
4704 		/* just reject deprecated bitfield-like integers; all other
4705 		 * integers are by default compatible between each other
4706 		 */
4707 		return btf_int_offset(local_type) == 0 &&
4708 		       btf_int_offset(targ_type) == 0;
4709 	case BTF_KIND_ARRAY:
4710 		local_id = btf_array(local_type)->type;
4711 		targ_id = btf_array(targ_type)->type;
4712 		goto recur;
4713 	default:
4714 		pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n",
4715 			btf_kind(local_type), local_id, targ_id);
4716 		return 0;
4717 	}
4718 }
4719 
4720 /*
4721  * Given single high-level named field accessor in local type, find
4722  * corresponding high-level accessor for a target type. Along the way,
4723  * maintain low-level spec for target as well. Also keep updating target
4724  * bit offset.
4725  *
4726  * Searching is performed through recursive exhaustive enumeration of all
4727  * fields of a struct/union. If there are any anonymous (embedded)
4728  * structs/unions, they are recursively searched as well. If field with
4729  * desired name is found, check compatibility between local and target types,
4730  * before returning result.
4731  *
4732  * 1 is returned, if field is found.
4733  * 0 is returned if no compatible field is found.
4734  * <0 is returned on error.
4735  */
4736 static int bpf_core_match_member(const struct btf *local_btf,
4737 				 const struct bpf_core_accessor *local_acc,
4738 				 const struct btf *targ_btf,
4739 				 __u32 targ_id,
4740 				 struct bpf_core_spec *spec,
4741 				 __u32 *next_targ_id)
4742 {
4743 	const struct btf_type *local_type, *targ_type;
4744 	const struct btf_member *local_member, *m;
4745 	const char *local_name, *targ_name;
4746 	__u32 local_id;
4747 	int i, n, found;
4748 
4749 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
4750 	if (!targ_type)
4751 		return -EINVAL;
4752 	if (!btf_is_composite(targ_type))
4753 		return 0;
4754 
4755 	local_id = local_acc->type_id;
4756 	local_type = btf__type_by_id(local_btf, local_id);
4757 	local_member = btf_members(local_type) + local_acc->idx;
4758 	local_name = btf__name_by_offset(local_btf, local_member->name_off);
4759 
4760 	n = btf_vlen(targ_type);
4761 	m = btf_members(targ_type);
4762 	for (i = 0; i < n; i++, m++) {
4763 		__u32 bit_offset;
4764 
4765 		bit_offset = btf_member_bit_offset(targ_type, i);
4766 
4767 		/* too deep struct/union/array nesting */
4768 		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
4769 			return -E2BIG;
4770 
4771 		/* speculate this member will be the good one */
4772 		spec->bit_offset += bit_offset;
4773 		spec->raw_spec[spec->raw_len++] = i;
4774 
4775 		targ_name = btf__name_by_offset(targ_btf, m->name_off);
4776 		if (str_is_empty(targ_name)) {
4777 			/* embedded struct/union, we need to go deeper */
4778 			found = bpf_core_match_member(local_btf, local_acc,
4779 						      targ_btf, m->type,
4780 						      spec, next_targ_id);
4781 			if (found) /* either found or error */
4782 				return found;
4783 		} else if (strcmp(local_name, targ_name) == 0) {
4784 			/* matching named field */
4785 			struct bpf_core_accessor *targ_acc;
4786 
4787 			targ_acc = &spec->spec[spec->len++];
4788 			targ_acc->type_id = targ_id;
4789 			targ_acc->idx = i;
4790 			targ_acc->name = targ_name;
4791 
4792 			*next_targ_id = m->type;
4793 			found = bpf_core_fields_are_compat(local_btf,
4794 							   local_member->type,
4795 							   targ_btf, m->type);
4796 			if (!found)
4797 				spec->len--; /* pop accessor */
4798 			return found;
4799 		}
4800 		/* member turned out not to be what we looked for */
4801 		spec->bit_offset -= bit_offset;
4802 		spec->raw_len--;
4803 	}
4804 
4805 	return 0;
4806 }
4807 
4808 /* Check local and target types for compatibility. This check is used for
4809  * type-based CO-RE relocations and follow slightly different rules than
4810  * field-based relocations. This function assumes that root types were already
4811  * checked for name match. Beyond that initial root-level name check, names
4812  * are completely ignored. Compatibility rules are as follows:
4813  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
4814  *     kind should match for local and target types (i.e., STRUCT is not
4815  *     compatible with UNION);
4816  *   - for ENUMs, the size is ignored;
4817  *   - for INT, size and signedness are ignored;
4818  *   - for ARRAY, dimensionality is ignored, element types are checked for
4819  *     compatibility recursively;
4820  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
4821  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
4822  *   - FUNC_PROTOs are compatible if they have compatible signature: same
4823  *     number of input args and compatible return and argument types.
4824  * These rules are not set in stone and probably will be adjusted as we get
4825  * more experience with using BPF CO-RE relocations.
4826  */
4827 static int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
4828 				     const struct btf *targ_btf, __u32 targ_id)
4829 {
4830 	const struct btf_type *local_type, *targ_type;
4831 	int depth = 32; /* max recursion depth */
4832 
4833 	/* caller made sure that names match (ignoring flavor suffix) */
4834 	local_type = btf__type_by_id(local_btf, local_id);
4835 	targ_type = btf__type_by_id(targ_btf, targ_id);
4836 	if (btf_kind(local_type) != btf_kind(targ_type))
4837 		return 0;
4838 
4839 recur:
4840 	depth--;
4841 	if (depth < 0)
4842 		return -EINVAL;
4843 
4844 	local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
4845 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
4846 	if (!local_type || !targ_type)
4847 		return -EINVAL;
4848 
4849 	if (btf_kind(local_type) != btf_kind(targ_type))
4850 		return 0;
4851 
4852 	switch (btf_kind(local_type)) {
4853 	case BTF_KIND_UNKN:
4854 	case BTF_KIND_STRUCT:
4855 	case BTF_KIND_UNION:
4856 	case BTF_KIND_ENUM:
4857 	case BTF_KIND_FWD:
4858 		return 1;
4859 	case BTF_KIND_INT:
4860 		/* just reject deprecated bitfield-like integers; all other
4861 		 * integers are by default compatible between each other
4862 		 */
4863 		return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0;
4864 	case BTF_KIND_PTR:
4865 		local_id = local_type->type;
4866 		targ_id = targ_type->type;
4867 		goto recur;
4868 	case BTF_KIND_ARRAY:
4869 		local_id = btf_array(local_type)->type;
4870 		targ_id = btf_array(targ_type)->type;
4871 		goto recur;
4872 	case BTF_KIND_FUNC_PROTO: {
4873 		struct btf_param *local_p = btf_params(local_type);
4874 		struct btf_param *targ_p = btf_params(targ_type);
4875 		__u16 local_vlen = btf_vlen(local_type);
4876 		__u16 targ_vlen = btf_vlen(targ_type);
4877 		int i, err;
4878 
4879 		if (local_vlen != targ_vlen)
4880 			return 0;
4881 
4882 		for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
4883 			skip_mods_and_typedefs(local_btf, local_p->type, &local_id);
4884 			skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id);
4885 			err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id);
4886 			if (err <= 0)
4887 				return err;
4888 		}
4889 
4890 		/* tail recurse for return type check */
4891 		skip_mods_and_typedefs(local_btf, local_type->type, &local_id);
4892 		skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id);
4893 		goto recur;
4894 	}
4895 	default:
4896 		pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n",
4897 			btf_kind_str(local_type), local_id, targ_id);
4898 		return 0;
4899 	}
4900 }
4901 
4902 /*
4903  * Try to match local spec to a target type and, if successful, produce full
4904  * target spec (high-level, low-level + bit offset).
4905  */
4906 static int bpf_core_spec_match(struct bpf_core_spec *local_spec,
4907 			       const struct btf *targ_btf, __u32 targ_id,
4908 			       struct bpf_core_spec *targ_spec)
4909 {
4910 	const struct btf_type *targ_type;
4911 	const struct bpf_core_accessor *local_acc;
4912 	struct bpf_core_accessor *targ_acc;
4913 	int i, sz, matched;
4914 
4915 	memset(targ_spec, 0, sizeof(*targ_spec));
4916 	targ_spec->btf = targ_btf;
4917 	targ_spec->root_type_id = targ_id;
4918 	targ_spec->relo_kind = local_spec->relo_kind;
4919 
4920 	if (core_relo_is_type_based(local_spec->relo_kind)) {
4921 		return bpf_core_types_are_compat(local_spec->btf,
4922 						 local_spec->root_type_id,
4923 						 targ_btf, targ_id);
4924 	}
4925 
4926 	local_acc = &local_spec->spec[0];
4927 	targ_acc = &targ_spec->spec[0];
4928 
4929 	if (core_relo_is_enumval_based(local_spec->relo_kind)) {
4930 		size_t local_essent_len, targ_essent_len;
4931 		const struct btf_enum *e;
4932 		const char *targ_name;
4933 
4934 		/* has to resolve to an enum */
4935 		targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id);
4936 		if (!btf_is_enum(targ_type))
4937 			return 0;
4938 
4939 		local_essent_len = bpf_core_essential_name_len(local_acc->name);
4940 
4941 		for (i = 0, e = btf_enum(targ_type); i < btf_vlen(targ_type); i++, e++) {
4942 			targ_name = btf__name_by_offset(targ_spec->btf, e->name_off);
4943 			targ_essent_len = bpf_core_essential_name_len(targ_name);
4944 			if (targ_essent_len != local_essent_len)
4945 				continue;
4946 			if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) {
4947 				targ_acc->type_id = targ_id;
4948 				targ_acc->idx = i;
4949 				targ_acc->name = targ_name;
4950 				targ_spec->len++;
4951 				targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
4952 				targ_spec->raw_len++;
4953 				return 1;
4954 			}
4955 		}
4956 		return 0;
4957 	}
4958 
4959 	if (!core_relo_is_field_based(local_spec->relo_kind))
4960 		return -EINVAL;
4961 
4962 	for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) {
4963 		targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id,
4964 						   &targ_id);
4965 		if (!targ_type)
4966 			return -EINVAL;
4967 
4968 		if (local_acc->name) {
4969 			matched = bpf_core_match_member(local_spec->btf,
4970 							local_acc,
4971 							targ_btf, targ_id,
4972 							targ_spec, &targ_id);
4973 			if (matched <= 0)
4974 				return matched;
4975 		} else {
4976 			/* for i=0, targ_id is already treated as array element
4977 			 * type (because it's the original struct), for others
4978 			 * we should find array element type first
4979 			 */
4980 			if (i > 0) {
4981 				const struct btf_array *a;
4982 				bool flex;
4983 
4984 				if (!btf_is_array(targ_type))
4985 					return 0;
4986 
4987 				a = btf_array(targ_type);
4988 				flex = is_flex_arr(targ_btf, targ_acc - 1, a);
4989 				if (!flex && local_acc->idx >= a->nelems)
4990 					return 0;
4991 				if (!skip_mods_and_typedefs(targ_btf, a->type,
4992 							    &targ_id))
4993 					return -EINVAL;
4994 			}
4995 
4996 			/* too deep struct/union/array nesting */
4997 			if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
4998 				return -E2BIG;
4999 
5000 			targ_acc->type_id = targ_id;
5001 			targ_acc->idx = local_acc->idx;
5002 			targ_acc->name = NULL;
5003 			targ_spec->len++;
5004 			targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
5005 			targ_spec->raw_len++;
5006 
5007 			sz = btf__resolve_size(targ_btf, targ_id);
5008 			if (sz < 0)
5009 				return sz;
5010 			targ_spec->bit_offset += local_acc->idx * sz * 8;
5011 		}
5012 	}
5013 
5014 	return 1;
5015 }
5016 
5017 static int bpf_core_calc_field_relo(const struct bpf_program *prog,
5018 				    const struct bpf_core_relo *relo,
5019 				    const struct bpf_core_spec *spec,
5020 				    __u32 *val, bool *validate)
5021 {
5022 	const struct bpf_core_accessor *acc;
5023 	const struct btf_type *t;
5024 	__u32 byte_off, byte_sz, bit_off, bit_sz;
5025 	const struct btf_member *m;
5026 	const struct btf_type *mt;
5027 	bool bitfield;
5028 	__s64 sz;
5029 
5030 	if (relo->kind == BPF_FIELD_EXISTS) {
5031 		*val = spec ? 1 : 0;
5032 		return 0;
5033 	}
5034 
5035 	if (!spec)
5036 		return -EUCLEAN; /* request instruction poisoning */
5037 
5038 	acc = &spec->spec[spec->len - 1];
5039 	t = btf__type_by_id(spec->btf, acc->type_id);
5040 
5041 	/* a[n] accessor needs special handling */
5042 	if (!acc->name) {
5043 		if (relo->kind == BPF_FIELD_BYTE_OFFSET) {
5044 			*val = spec->bit_offset / 8;
5045 		} else if (relo->kind == BPF_FIELD_BYTE_SIZE) {
5046 			sz = btf__resolve_size(spec->btf, acc->type_id);
5047 			if (sz < 0)
5048 				return -EINVAL;
5049 			*val = sz;
5050 		} else {
5051 			pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n",
5052 				prog->name, relo->kind, relo->insn_off / 8);
5053 			return -EINVAL;
5054 		}
5055 		if (validate)
5056 			*validate = true;
5057 		return 0;
5058 	}
5059 
5060 	m = btf_members(t) + acc->idx;
5061 	mt = skip_mods_and_typedefs(spec->btf, m->type, NULL);
5062 	bit_off = spec->bit_offset;
5063 	bit_sz = btf_member_bitfield_size(t, acc->idx);
5064 
5065 	bitfield = bit_sz > 0;
5066 	if (bitfield) {
5067 		byte_sz = mt->size;
5068 		byte_off = bit_off / 8 / byte_sz * byte_sz;
5069 		/* figure out smallest int size necessary for bitfield load */
5070 		while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) {
5071 			if (byte_sz >= 8) {
5072 				/* bitfield can't be read with 64-bit read */
5073 				pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n",
5074 					prog->name, relo->kind, relo->insn_off / 8);
5075 				return -E2BIG;
5076 			}
5077 			byte_sz *= 2;
5078 			byte_off = bit_off / 8 / byte_sz * byte_sz;
5079 		}
5080 	} else {
5081 		sz = btf__resolve_size(spec->btf, m->type);
5082 		if (sz < 0)
5083 			return -EINVAL;
5084 		byte_sz = sz;
5085 		byte_off = spec->bit_offset / 8;
5086 		bit_sz = byte_sz * 8;
5087 	}
5088 
5089 	/* for bitfields, all the relocatable aspects are ambiguous and we
5090 	 * might disagree with compiler, so turn off validation of expected
5091 	 * value, except for signedness
5092 	 */
5093 	if (validate)
5094 		*validate = !bitfield;
5095 
5096 	switch (relo->kind) {
5097 	case BPF_FIELD_BYTE_OFFSET:
5098 		*val = byte_off;
5099 		break;
5100 	case BPF_FIELD_BYTE_SIZE:
5101 		*val = byte_sz;
5102 		break;
5103 	case BPF_FIELD_SIGNED:
5104 		/* enums will be assumed unsigned */
5105 		*val = btf_is_enum(mt) ||
5106 		       (btf_int_encoding(mt) & BTF_INT_SIGNED);
5107 		if (validate)
5108 			*validate = true; /* signedness is never ambiguous */
5109 		break;
5110 	case BPF_FIELD_LSHIFT_U64:
5111 #if __BYTE_ORDER == __LITTLE_ENDIAN
5112 		*val = 64 - (bit_off + bit_sz - byte_off  * 8);
5113 #else
5114 		*val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8);
5115 #endif
5116 		break;
5117 	case BPF_FIELD_RSHIFT_U64:
5118 		*val = 64 - bit_sz;
5119 		if (validate)
5120 			*validate = true; /* right shift is never ambiguous */
5121 		break;
5122 	case BPF_FIELD_EXISTS:
5123 	default:
5124 		return -EOPNOTSUPP;
5125 	}
5126 
5127 	return 0;
5128 }
5129 
5130 static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo,
5131 				   const struct bpf_core_spec *spec,
5132 				   __u32 *val)
5133 {
5134 	__s64 sz;
5135 
5136 	/* type-based relos return zero when target type is not found */
5137 	if (!spec) {
5138 		*val = 0;
5139 		return 0;
5140 	}
5141 
5142 	switch (relo->kind) {
5143 	case BPF_TYPE_ID_TARGET:
5144 		*val = spec->root_type_id;
5145 		break;
5146 	case BPF_TYPE_EXISTS:
5147 		*val = 1;
5148 		break;
5149 	case BPF_TYPE_SIZE:
5150 		sz = btf__resolve_size(spec->btf, spec->root_type_id);
5151 		if (sz < 0)
5152 			return -EINVAL;
5153 		*val = sz;
5154 		break;
5155 	case BPF_TYPE_ID_LOCAL:
5156 	/* BPF_TYPE_ID_LOCAL is handled specially and shouldn't get here */
5157 	default:
5158 		return -EOPNOTSUPP;
5159 	}
5160 
5161 	return 0;
5162 }
5163 
5164 static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo,
5165 				      const struct bpf_core_spec *spec,
5166 				      __u32 *val)
5167 {
5168 	const struct btf_type *t;
5169 	const struct btf_enum *e;
5170 
5171 	switch (relo->kind) {
5172 	case BPF_ENUMVAL_EXISTS:
5173 		*val = spec ? 1 : 0;
5174 		break;
5175 	case BPF_ENUMVAL_VALUE:
5176 		if (!spec)
5177 			return -EUCLEAN; /* request instruction poisoning */
5178 		t = btf__type_by_id(spec->btf, spec->spec[0].type_id);
5179 		e = btf_enum(t) + spec->spec[0].idx;
5180 		*val = e->val;
5181 		break;
5182 	default:
5183 		return -EOPNOTSUPP;
5184 	}
5185 
5186 	return 0;
5187 }
5188 
5189 struct bpf_core_relo_res
5190 {
5191 	/* expected value in the instruction, unless validate == false */
5192 	__u32 orig_val;
5193 	/* new value that needs to be patched up to */
5194 	__u32 new_val;
5195 	/* relocation unsuccessful, poison instruction, but don't fail load */
5196 	bool poison;
5197 	/* some relocations can't be validated against orig_val */
5198 	bool validate;
5199 };
5200 
5201 /* Calculate original and target relocation values, given local and target
5202  * specs and relocation kind. These values are calculated for each candidate.
5203  * If there are multiple candidates, resulting values should all be consistent
5204  * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity.
5205  * If instruction has to be poisoned, *poison will be set to true.
5206  */
5207 static int bpf_core_calc_relo(const struct bpf_program *prog,
5208 			      const struct bpf_core_relo *relo,
5209 			      int relo_idx,
5210 			      const struct bpf_core_spec *local_spec,
5211 			      const struct bpf_core_spec *targ_spec,
5212 			      struct bpf_core_relo_res *res)
5213 {
5214 	int err = -EOPNOTSUPP;
5215 
5216 	res->orig_val = 0;
5217 	res->new_val = 0;
5218 	res->poison = false;
5219 	res->validate = true;
5220 
5221 	if (core_relo_is_field_based(relo->kind)) {
5222 		err = bpf_core_calc_field_relo(prog, relo, local_spec, &res->orig_val, &res->validate);
5223 		err = err ?: bpf_core_calc_field_relo(prog, relo, targ_spec, &res->new_val, NULL);
5224 	} else if (core_relo_is_type_based(relo->kind)) {
5225 		err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val);
5226 		err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val);
5227 	} else if (core_relo_is_enumval_based(relo->kind)) {
5228 		err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val);
5229 		err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val);
5230 	}
5231 
5232 	if (err == -EUCLEAN) {
5233 		/* EUCLEAN is used to signal instruction poisoning request */
5234 		res->poison = true;
5235 		err = 0;
5236 	} else if (err == -EOPNOTSUPP) {
5237 		/* EOPNOTSUPP means unknown/unsupported relocation */
5238 		pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n",
5239 			prog->name, relo_idx, core_relo_kind_str(relo->kind),
5240 			relo->kind, relo->insn_off / 8);
5241 	}
5242 
5243 	return err;
5244 }
5245 
5246 /*
5247  * Turn instruction for which CO_RE relocation failed into invalid one with
5248  * distinct signature.
5249  */
5250 static void bpf_core_poison_insn(struct bpf_program *prog, int relo_idx,
5251 				 int insn_idx, struct bpf_insn *insn)
5252 {
5253 	pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n",
5254 		 prog->name, relo_idx, insn_idx);
5255 	insn->code = BPF_JMP | BPF_CALL;
5256 	insn->dst_reg = 0;
5257 	insn->src_reg = 0;
5258 	insn->off = 0;
5259 	/* if this instruction is reachable (not a dead code),
5260 	 * verifier will complain with the following message:
5261 	 * invalid func unknown#195896080
5262 	 */
5263 	insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */
5264 }
5265 
5266 static bool is_ldimm64(struct bpf_insn *insn)
5267 {
5268 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
5269 }
5270 
5271 /*
5272  * Patch relocatable BPF instruction.
5273  *
5274  * Patched value is determined by relocation kind and target specification.
5275  * For existence relocations target spec will be NULL if field/type is not found.
5276  * Expected insn->imm value is determined using relocation kind and local
5277  * spec, and is checked before patching instruction. If actual insn->imm value
5278  * is wrong, bail out with error.
5279  *
5280  * Currently three kinds of BPF instructions are supported:
5281  * 1. rX = <imm> (assignment with immediate operand);
5282  * 2. rX += <imm> (arithmetic operations with immediate operand);
5283  * 3. rX = <imm64> (load with 64-bit immediate value).
5284  */
5285 static int bpf_core_patch_insn(struct bpf_program *prog,
5286 			       const struct bpf_core_relo *relo,
5287 			       int relo_idx,
5288 			       const struct bpf_core_relo_res *res)
5289 {
5290 	__u32 orig_val, new_val;
5291 	struct bpf_insn *insn;
5292 	int insn_idx;
5293 	__u8 class;
5294 
5295 	if (relo->insn_off % BPF_INSN_SZ)
5296 		return -EINVAL;
5297 	insn_idx = relo->insn_off / BPF_INSN_SZ;
5298 	/* adjust insn_idx from section frame of reference to the local
5299 	 * program's frame of reference; (sub-)program code is not yet
5300 	 * relocated, so it's enough to just subtract in-section offset
5301 	 */
5302 	insn_idx = insn_idx - prog->sec_insn_off;
5303 	insn = &prog->insns[insn_idx];
5304 	class = BPF_CLASS(insn->code);
5305 
5306 	if (res->poison) {
5307 		/* poison second part of ldimm64 to avoid confusing error from
5308 		 * verifier about "unknown opcode 00"
5309 		 */
5310 		if (is_ldimm64(insn))
5311 			bpf_core_poison_insn(prog, relo_idx, insn_idx + 1, insn + 1);
5312 		bpf_core_poison_insn(prog, relo_idx, insn_idx, insn);
5313 		return 0;
5314 	}
5315 
5316 	orig_val = res->orig_val;
5317 	new_val = res->new_val;
5318 
5319 	switch (class) {
5320 	case BPF_ALU:
5321 	case BPF_ALU64:
5322 		if (BPF_SRC(insn->code) != BPF_K)
5323 			return -EINVAL;
5324 		if (res->validate && insn->imm != orig_val) {
5325 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n",
5326 				prog->name, relo_idx,
5327 				insn_idx, insn->imm, orig_val, new_val);
5328 			return -EINVAL;
5329 		}
5330 		orig_val = insn->imm;
5331 		insn->imm = new_val;
5332 		pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n",
5333 			 prog->name, relo_idx, insn_idx,
5334 			 orig_val, new_val);
5335 		break;
5336 	case BPF_LDX:
5337 	case BPF_ST:
5338 	case BPF_STX:
5339 		if (res->validate && insn->off != orig_val) {
5340 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %u -> %u\n",
5341 				prog->name, relo_idx, insn_idx, insn->off, orig_val, new_val);
5342 			return -EINVAL;
5343 		}
5344 		if (new_val > SHRT_MAX) {
5345 			pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n",
5346 				prog->name, relo_idx, insn_idx, new_val);
5347 			return -ERANGE;
5348 		}
5349 		orig_val = insn->off;
5350 		insn->off = new_val;
5351 		pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n",
5352 			 prog->name, relo_idx, insn_idx, orig_val, new_val);
5353 		break;
5354 	case BPF_LD: {
5355 		__u64 imm;
5356 
5357 		if (!is_ldimm64(insn) ||
5358 		    insn[0].src_reg != 0 || insn[0].off != 0 ||
5359 		    insn_idx + 1 >= prog->insns_cnt ||
5360 		    insn[1].code != 0 || insn[1].dst_reg != 0 ||
5361 		    insn[1].src_reg != 0 || insn[1].off != 0) {
5362 			pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n",
5363 				prog->name, relo_idx, insn_idx);
5364 			return -EINVAL;
5365 		}
5366 
5367 		imm = insn[0].imm + ((__u64)insn[1].imm << 32);
5368 		if (res->validate && imm != orig_val) {
5369 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %u -> %u\n",
5370 				prog->name, relo_idx,
5371 				insn_idx, (unsigned long long)imm,
5372 				orig_val, new_val);
5373 			return -EINVAL;
5374 		}
5375 
5376 		insn[0].imm = new_val;
5377 		insn[1].imm = 0; /* currently only 32-bit values are supported */
5378 		pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %u\n",
5379 			 prog->name, relo_idx, insn_idx,
5380 			 (unsigned long long)imm, new_val);
5381 		break;
5382 	}
5383 	default:
5384 		pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n",
5385 			prog->name, relo_idx, insn_idx, insn->code,
5386 			insn->src_reg, insn->dst_reg, insn->off, insn->imm);
5387 		return -EINVAL;
5388 	}
5389 
5390 	return 0;
5391 }
5392 
5393 /* Output spec definition in the format:
5394  * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>,
5395  * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b
5396  */
5397 static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec)
5398 {
5399 	const struct btf_type *t;
5400 	const struct btf_enum *e;
5401 	const char *s;
5402 	__u32 type_id;
5403 	int i;
5404 
5405 	type_id = spec->root_type_id;
5406 	t = btf__type_by_id(spec->btf, type_id);
5407 	s = btf__name_by_offset(spec->btf, t->name_off);
5408 
5409 	libbpf_print(level, "[%u] %s %s", type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s);
5410 
5411 	if (core_relo_is_type_based(spec->relo_kind))
5412 		return;
5413 
5414 	if (core_relo_is_enumval_based(spec->relo_kind)) {
5415 		t = skip_mods_and_typedefs(spec->btf, type_id, NULL);
5416 		e = btf_enum(t) + spec->raw_spec[0];
5417 		s = btf__name_by_offset(spec->btf, e->name_off);
5418 
5419 		libbpf_print(level, "::%s = %u", s, e->val);
5420 		return;
5421 	}
5422 
5423 	if (core_relo_is_field_based(spec->relo_kind)) {
5424 		for (i = 0; i < spec->len; i++) {
5425 			if (spec->spec[i].name)
5426 				libbpf_print(level, ".%s", spec->spec[i].name);
5427 			else if (i > 0 || spec->spec[i].idx > 0)
5428 				libbpf_print(level, "[%u]", spec->spec[i].idx);
5429 		}
5430 
5431 		libbpf_print(level, " (");
5432 		for (i = 0; i < spec->raw_len; i++)
5433 			libbpf_print(level, "%s%d", i == 0 ? "" : ":", spec->raw_spec[i]);
5434 
5435 		if (spec->bit_offset % 8)
5436 			libbpf_print(level, " @ offset %u.%u)",
5437 				     spec->bit_offset / 8, spec->bit_offset % 8);
5438 		else
5439 			libbpf_print(level, " @ offset %u)", spec->bit_offset / 8);
5440 		return;
5441 	}
5442 }
5443 
5444 static size_t bpf_core_hash_fn(const void *key, void *ctx)
5445 {
5446 	return (size_t)key;
5447 }
5448 
5449 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx)
5450 {
5451 	return k1 == k2;
5452 }
5453 
5454 static void *u32_as_hash_key(__u32 x)
5455 {
5456 	return (void *)(uintptr_t)x;
5457 }
5458 
5459 /*
5460  * CO-RE relocate single instruction.
5461  *
5462  * The outline and important points of the algorithm:
5463  * 1. For given local type, find corresponding candidate target types.
5464  *    Candidate type is a type with the same "essential" name, ignoring
5465  *    everything after last triple underscore (___). E.g., `sample`,
5466  *    `sample___flavor_one`, `sample___flavor_another_one`, are all candidates
5467  *    for each other. Names with triple underscore are referred to as
5468  *    "flavors" and are useful, among other things, to allow to
5469  *    specify/support incompatible variations of the same kernel struct, which
5470  *    might differ between different kernel versions and/or build
5471  *    configurations.
5472  *
5473  *    N.B. Struct "flavors" could be generated by bpftool's BTF-to-C
5474  *    converter, when deduplicated BTF of a kernel still contains more than
5475  *    one different types with the same name. In that case, ___2, ___3, etc
5476  *    are appended starting from second name conflict. But start flavors are
5477  *    also useful to be defined "locally", in BPF program, to extract same
5478  *    data from incompatible changes between different kernel
5479  *    versions/configurations. For instance, to handle field renames between
5480  *    kernel versions, one can use two flavors of the struct name with the
5481  *    same common name and use conditional relocations to extract that field,
5482  *    depending on target kernel version.
5483  * 2. For each candidate type, try to match local specification to this
5484  *    candidate target type. Matching involves finding corresponding
5485  *    high-level spec accessors, meaning that all named fields should match,
5486  *    as well as all array accesses should be within the actual bounds. Also,
5487  *    types should be compatible (see bpf_core_fields_are_compat for details).
5488  * 3. It is supported and expected that there might be multiple flavors
5489  *    matching the spec. As long as all the specs resolve to the same set of
5490  *    offsets across all candidates, there is no error. If there is any
5491  *    ambiguity, CO-RE relocation will fail. This is necessary to accomodate
5492  *    imprefection of BTF deduplication, which can cause slight duplication of
5493  *    the same BTF type, if some directly or indirectly referenced (by
5494  *    pointer) type gets resolved to different actual types in different
5495  *    object files. If such situation occurs, deduplicated BTF will end up
5496  *    with two (or more) structurally identical types, which differ only in
5497  *    types they refer to through pointer. This should be OK in most cases and
5498  *    is not an error.
5499  * 4. Candidate types search is performed by linearly scanning through all
5500  *    types in target BTF. It is anticipated that this is overall more
5501  *    efficient memory-wise and not significantly worse (if not better)
5502  *    CPU-wise compared to prebuilding a map from all local type names to
5503  *    a list of candidate type names. It's also sped up by caching resolved
5504  *    list of matching candidates per each local "root" type ID, that has at
5505  *    least one bpf_core_relo associated with it. This list is shared
5506  *    between multiple relocations for the same type ID and is updated as some
5507  *    of the candidates are pruned due to structural incompatibility.
5508  */
5509 static int bpf_core_apply_relo(struct bpf_program *prog,
5510 			       const struct bpf_core_relo *relo,
5511 			       int relo_idx,
5512 			       const struct btf *local_btf,
5513 			       const struct btf *targ_btf,
5514 			       struct hashmap *cand_cache)
5515 {
5516 	struct bpf_core_spec local_spec, cand_spec, targ_spec = {};
5517 	const void *type_key = u32_as_hash_key(relo->type_id);
5518 	struct bpf_core_relo_res cand_res, targ_res;
5519 	const struct btf_type *local_type;
5520 	const char *local_name;
5521 	struct ids_vec *cand_ids;
5522 	__u32 local_id, cand_id;
5523 	const char *spec_str;
5524 	int i, j, err;
5525 
5526 	local_id = relo->type_id;
5527 	local_type = btf__type_by_id(local_btf, local_id);
5528 	if (!local_type)
5529 		return -EINVAL;
5530 
5531 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
5532 	if (!local_name)
5533 		return -EINVAL;
5534 
5535 	spec_str = btf__name_by_offset(local_btf, relo->access_str_off);
5536 	if (str_is_empty(spec_str))
5537 		return -EINVAL;
5538 
5539 	err = bpf_core_parse_spec(local_btf, local_id, spec_str, relo->kind, &local_spec);
5540 	if (err) {
5541 		pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n",
5542 			prog->name, relo_idx, local_id, btf_kind_str(local_type),
5543 			str_is_empty(local_name) ? "<anon>" : local_name,
5544 			spec_str, err);
5545 		return -EINVAL;
5546 	}
5547 
5548 	pr_debug("prog '%s': relo #%d: kind <%s> (%d), spec is ", prog->name,
5549 		 relo_idx, core_relo_kind_str(relo->kind), relo->kind);
5550 	bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec);
5551 	libbpf_print(LIBBPF_DEBUG, "\n");
5552 
5553 	/* TYPE_ID_LOCAL relo is special and doesn't need candidate search */
5554 	if (relo->kind == BPF_TYPE_ID_LOCAL) {
5555 		targ_res.validate = true;
5556 		targ_res.poison = false;
5557 		targ_res.orig_val = local_spec.root_type_id;
5558 		targ_res.new_val = local_spec.root_type_id;
5559 		goto patch_insn;
5560 	}
5561 
5562 	/* libbpf doesn't support candidate search for anonymous types */
5563 	if (str_is_empty(spec_str)) {
5564 		pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n",
5565 			prog->name, relo_idx, core_relo_kind_str(relo->kind), relo->kind);
5566 		return -EOPNOTSUPP;
5567 	}
5568 
5569 	if (!hashmap__find(cand_cache, type_key, (void **)&cand_ids)) {
5570 		cand_ids = bpf_core_find_cands(local_btf, local_id, targ_btf);
5571 		if (IS_ERR(cand_ids)) {
5572 			pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld",
5573 				prog->name, relo_idx, local_id, btf_kind_str(local_type),
5574 				local_name, PTR_ERR(cand_ids));
5575 			return PTR_ERR(cand_ids);
5576 		}
5577 		err = hashmap__set(cand_cache, type_key, cand_ids, NULL, NULL);
5578 		if (err) {
5579 			bpf_core_free_cands(cand_ids);
5580 			return err;
5581 		}
5582 	}
5583 
5584 	for (i = 0, j = 0; i < cand_ids->len; i++) {
5585 		cand_id = cand_ids->data[i];
5586 		err = bpf_core_spec_match(&local_spec, targ_btf, cand_id, &cand_spec);
5587 		if (err < 0) {
5588 			pr_warn("prog '%s': relo #%d: error matching candidate #%d ",
5589 				prog->name, relo_idx, i);
5590 			bpf_core_dump_spec(LIBBPF_WARN, &cand_spec);
5591 			libbpf_print(LIBBPF_WARN, ": %d\n", err);
5592 			return err;
5593 		}
5594 
5595 		pr_debug("prog '%s': relo #%d: %s candidate #%d ", prog->name,
5596 			 relo_idx, err == 0 ? "non-matching" : "matching", i);
5597 		bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec);
5598 		libbpf_print(LIBBPF_DEBUG, "\n");
5599 
5600 		if (err == 0)
5601 			continue;
5602 
5603 		err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, &cand_spec, &cand_res);
5604 		if (err)
5605 			return err;
5606 
5607 		if (j == 0) {
5608 			targ_res = cand_res;
5609 			targ_spec = cand_spec;
5610 		} else if (cand_spec.bit_offset != targ_spec.bit_offset) {
5611 			/* if there are many field relo candidates, they
5612 			 * should all resolve to the same bit offset
5613 			 */
5614 			pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n",
5615 				prog->name, relo_idx, cand_spec.bit_offset,
5616 				targ_spec.bit_offset);
5617 			return -EINVAL;
5618 		} else if (cand_res.poison != targ_res.poison || cand_res.new_val != targ_res.new_val) {
5619 			/* all candidates should result in the same relocation
5620 			 * decision and value, otherwise it's dangerous to
5621 			 * proceed due to ambiguity
5622 			 */
5623 			pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %u != %s %u\n",
5624 				prog->name, relo_idx,
5625 				cand_res.poison ? "failure" : "success", cand_res.new_val,
5626 				targ_res.poison ? "failure" : "success", targ_res.new_val);
5627 			return -EINVAL;
5628 		}
5629 
5630 		cand_ids->data[j++] = cand_spec.root_type_id;
5631 	}
5632 
5633 	/*
5634 	 * For BPF_FIELD_EXISTS relo or when used BPF program has field
5635 	 * existence checks or kernel version/config checks, it's expected
5636 	 * that we might not find any candidates. In this case, if field
5637 	 * wasn't found in any candidate, the list of candidates shouldn't
5638 	 * change at all, we'll just handle relocating appropriately,
5639 	 * depending on relo's kind.
5640 	 */
5641 	if (j > 0)
5642 		cand_ids->len = j;
5643 
5644 	/*
5645 	 * If no candidates were found, it might be both a programmer error,
5646 	 * as well as expected case, depending whether instruction w/
5647 	 * relocation is guarded in some way that makes it unreachable (dead
5648 	 * code) if relocation can't be resolved. This is handled in
5649 	 * bpf_core_patch_insn() uniformly by replacing that instruction with
5650 	 * BPF helper call insn (using invalid helper ID). If that instruction
5651 	 * is indeed unreachable, then it will be ignored and eliminated by
5652 	 * verifier. If it was an error, then verifier will complain and point
5653 	 * to a specific instruction number in its log.
5654 	 */
5655 	if (j == 0) {
5656 		pr_debug("prog '%s': relo #%d: no matching targets found\n",
5657 			 prog->name, relo_idx);
5658 
5659 		/* calculate single target relo result explicitly */
5660 		err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, NULL, &targ_res);
5661 		if (err)
5662 			return err;
5663 	}
5664 
5665 patch_insn:
5666 	/* bpf_core_patch_insn() should know how to handle missing targ_spec */
5667 	err = bpf_core_patch_insn(prog, relo, relo_idx, &targ_res);
5668 	if (err) {
5669 		pr_warn("prog '%s': relo #%d: failed to patch insn at offset %d: %d\n",
5670 			prog->name, relo_idx, relo->insn_off, err);
5671 		return -EINVAL;
5672 	}
5673 
5674 	return 0;
5675 }
5676 
5677 static int
5678 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5679 {
5680 	const struct btf_ext_info_sec *sec;
5681 	const struct bpf_core_relo *rec;
5682 	const struct btf_ext_info *seg;
5683 	struct hashmap_entry *entry;
5684 	struct hashmap *cand_cache = NULL;
5685 	struct bpf_program *prog;
5686 	struct btf *targ_btf;
5687 	const char *sec_name;
5688 	int i, err = 0, insn_idx, sec_idx;
5689 
5690 	if (obj->btf_ext->core_relo_info.len == 0)
5691 		return 0;
5692 
5693 	if (targ_btf_path)
5694 		targ_btf = btf__parse_elf(targ_btf_path, NULL);
5695 	else
5696 		targ_btf = obj->btf_vmlinux;
5697 	if (IS_ERR_OR_NULL(targ_btf)) {
5698 		pr_warn("failed to get target BTF: %ld\n", PTR_ERR(targ_btf));
5699 		return PTR_ERR(targ_btf);
5700 	}
5701 
5702 	cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5703 	if (IS_ERR(cand_cache)) {
5704 		err = PTR_ERR(cand_cache);
5705 		goto out;
5706 	}
5707 
5708 	seg = &obj->btf_ext->core_relo_info;
5709 	for_each_btf_ext_sec(seg, sec) {
5710 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5711 		if (str_is_empty(sec_name)) {
5712 			err = -EINVAL;
5713 			goto out;
5714 		}
5715 		/* bpf_object's ELF is gone by now so it's not easy to find
5716 		 * section index by section name, but we can find *any*
5717 		 * bpf_program within desired section name and use it's
5718 		 * prog->sec_idx to do a proper search by section index and
5719 		 * instruction offset
5720 		 */
5721 		prog = NULL;
5722 		for (i = 0; i < obj->nr_programs; i++) {
5723 			prog = &obj->programs[i];
5724 			if (strcmp(prog->sec_name, sec_name) == 0)
5725 				break;
5726 		}
5727 		if (!prog) {
5728 			pr_warn("sec '%s': failed to find a BPF program\n", sec_name);
5729 			return -ENOENT;
5730 		}
5731 		sec_idx = prog->sec_idx;
5732 
5733 		pr_debug("sec '%s': found %d CO-RE relocations\n",
5734 			 sec_name, sec->num_info);
5735 
5736 		for_each_btf_ext_rec(seg, sec, i, rec) {
5737 			insn_idx = rec->insn_off / BPF_INSN_SZ;
5738 			prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5739 			if (!prog) {
5740 				pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n",
5741 					sec_name, insn_idx, i);
5742 				err = -EINVAL;
5743 				goto out;
5744 			}
5745 
5746 			err = bpf_core_apply_relo(prog, rec, i, obj->btf,
5747 						  targ_btf, cand_cache);
5748 			if (err) {
5749 				pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5750 					prog->name, i, err);
5751 				goto out;
5752 			}
5753 		}
5754 	}
5755 
5756 out:
5757 	/* obj->btf_vmlinux is freed at the end of object load phase */
5758 	if (targ_btf != obj->btf_vmlinux)
5759 		btf__free(targ_btf);
5760 	if (!IS_ERR_OR_NULL(cand_cache)) {
5761 		hashmap__for_each_entry(cand_cache, entry, i) {
5762 			bpf_core_free_cands(entry->value);
5763 		}
5764 		hashmap__free(cand_cache);
5765 	}
5766 	return err;
5767 }
5768 
5769 /* Relocate data references within program code:
5770  *  - map references;
5771  *  - global variable references;
5772  *  - extern references.
5773  */
5774 static int
5775 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
5776 {
5777 	int i;
5778 
5779 	for (i = 0; i < prog->nr_reloc; i++) {
5780 		struct reloc_desc *relo = &prog->reloc_desc[i];
5781 		struct bpf_insn *insn = &prog->insns[relo->insn_idx];
5782 		struct extern_desc *ext;
5783 
5784 		switch (relo->type) {
5785 		case RELO_LD64:
5786 			insn[0].src_reg = BPF_PSEUDO_MAP_FD;
5787 			insn[0].imm = obj->maps[relo->map_idx].fd;
5788 			relo->processed = true;
5789 			break;
5790 		case RELO_DATA:
5791 			insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5792 			insn[1].imm = insn[0].imm + relo->sym_off;
5793 			insn[0].imm = obj->maps[relo->map_idx].fd;
5794 			relo->processed = true;
5795 			break;
5796 		case RELO_EXTERN:
5797 			ext = &obj->externs[relo->sym_off];
5798 			if (ext->type == EXT_KCFG) {
5799 				insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5800 				insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
5801 				insn[1].imm = ext->kcfg.data_off;
5802 			} else /* EXT_KSYM */ {
5803 				insn[0].imm = (__u32)ext->ksym.addr;
5804 				insn[1].imm = ext->ksym.addr >> 32;
5805 			}
5806 			relo->processed = true;
5807 			break;
5808 		case RELO_CALL:
5809 			/* will be handled as a follow up pass */
5810 			break;
5811 		default:
5812 			pr_warn("prog '%s': relo #%d: bad relo type %d\n",
5813 				prog->name, i, relo->type);
5814 			return -EINVAL;
5815 		}
5816 	}
5817 
5818 	return 0;
5819 }
5820 
5821 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
5822 				    const struct bpf_program *prog,
5823 				    const struct btf_ext_info *ext_info,
5824 				    void **prog_info, __u32 *prog_rec_cnt,
5825 				    __u32 *prog_rec_sz)
5826 {
5827 	void *copy_start = NULL, *copy_end = NULL;
5828 	void *rec, *rec_end, *new_prog_info;
5829 	const struct btf_ext_info_sec *sec;
5830 	size_t old_sz, new_sz;
5831 	const char *sec_name;
5832 	int i, off_adj;
5833 
5834 	for_each_btf_ext_sec(ext_info, sec) {
5835 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5836 		if (!sec_name)
5837 			return -EINVAL;
5838 		if (strcmp(sec_name, prog->sec_name) != 0)
5839 			continue;
5840 
5841 		for_each_btf_ext_rec(ext_info, sec, i, rec) {
5842 			__u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
5843 
5844 			if (insn_off < prog->sec_insn_off)
5845 				continue;
5846 			if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
5847 				break;
5848 
5849 			if (!copy_start)
5850 				copy_start = rec;
5851 			copy_end = rec + ext_info->rec_size;
5852 		}
5853 
5854 		if (!copy_start)
5855 			return -ENOENT;
5856 
5857 		/* append func/line info of a given (sub-)program to the main
5858 		 * program func/line info
5859 		 */
5860 		old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
5861 		new_sz = old_sz + (copy_end - copy_start);
5862 		new_prog_info = realloc(*prog_info, new_sz);
5863 		if (!new_prog_info)
5864 			return -ENOMEM;
5865 		*prog_info = new_prog_info;
5866 		*prog_rec_cnt = new_sz / ext_info->rec_size;
5867 		memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
5868 
5869 		/* Kernel instruction offsets are in units of 8-byte
5870 		 * instructions, while .BTF.ext instruction offsets generated
5871 		 * by Clang are in units of bytes. So convert Clang offsets
5872 		 * into kernel offsets and adjust offset according to program
5873 		 * relocated position.
5874 		 */
5875 		off_adj = prog->sub_insn_off - prog->sec_insn_off;
5876 		rec = new_prog_info + old_sz;
5877 		rec_end = new_prog_info + new_sz;
5878 		for (; rec < rec_end; rec += ext_info->rec_size) {
5879 			__u32 *insn_off = rec;
5880 
5881 			*insn_off = *insn_off / BPF_INSN_SZ + off_adj;
5882 		}
5883 		*prog_rec_sz = ext_info->rec_size;
5884 		return 0;
5885 	}
5886 
5887 	return -ENOENT;
5888 }
5889 
5890 static int
5891 reloc_prog_func_and_line_info(const struct bpf_object *obj,
5892 			      struct bpf_program *main_prog,
5893 			      const struct bpf_program *prog)
5894 {
5895 	int err;
5896 
5897 	/* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
5898 	 * supprot func/line info
5899 	 */
5900 	if (!obj->btf_ext || !kernel_supports(FEAT_BTF_FUNC))
5901 		return 0;
5902 
5903 	/* only attempt func info relocation if main program's func_info
5904 	 * relocation was successful
5905 	 */
5906 	if (main_prog != prog && !main_prog->func_info)
5907 		goto line_info;
5908 
5909 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
5910 				       &main_prog->func_info,
5911 				       &main_prog->func_info_cnt,
5912 				       &main_prog->func_info_rec_size);
5913 	if (err) {
5914 		if (err != -ENOENT) {
5915 			pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
5916 				prog->name, err);
5917 			return err;
5918 		}
5919 		if (main_prog->func_info) {
5920 			/*
5921 			 * Some info has already been found but has problem
5922 			 * in the last btf_ext reloc. Must have to error out.
5923 			 */
5924 			pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
5925 			return err;
5926 		}
5927 		/* Have problem loading the very first info. Ignore the rest. */
5928 		pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
5929 			prog->name);
5930 	}
5931 
5932 line_info:
5933 	/* don't relocate line info if main program's relocation failed */
5934 	if (main_prog != prog && !main_prog->line_info)
5935 		return 0;
5936 
5937 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
5938 				       &main_prog->line_info,
5939 				       &main_prog->line_info_cnt,
5940 				       &main_prog->line_info_rec_size);
5941 	if (err) {
5942 		if (err != -ENOENT) {
5943 			pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
5944 				prog->name, err);
5945 			return err;
5946 		}
5947 		if (main_prog->line_info) {
5948 			/*
5949 			 * Some info has already been found but has problem
5950 			 * in the last btf_ext reloc. Must have to error out.
5951 			 */
5952 			pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
5953 			return err;
5954 		}
5955 		/* Have problem loading the very first info. Ignore the rest. */
5956 		pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
5957 			prog->name);
5958 	}
5959 	return 0;
5960 }
5961 
5962 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
5963 {
5964 	size_t insn_idx = *(const size_t *)key;
5965 	const struct reloc_desc *relo = elem;
5966 
5967 	if (insn_idx == relo->insn_idx)
5968 		return 0;
5969 	return insn_idx < relo->insn_idx ? -1 : 1;
5970 }
5971 
5972 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
5973 {
5974 	return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
5975 		       sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
5976 }
5977 
5978 static int
5979 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
5980 		       struct bpf_program *prog)
5981 {
5982 	size_t sub_insn_idx, insn_idx, new_cnt;
5983 	struct bpf_program *subprog;
5984 	struct bpf_insn *insns, *insn;
5985 	struct reloc_desc *relo;
5986 	int err;
5987 
5988 	err = reloc_prog_func_and_line_info(obj, main_prog, prog);
5989 	if (err)
5990 		return err;
5991 
5992 	for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
5993 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
5994 		if (!insn_is_subprog_call(insn))
5995 			continue;
5996 
5997 		relo = find_prog_insn_relo(prog, insn_idx);
5998 		if (relo && relo->type != RELO_CALL) {
5999 			pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6000 				prog->name, insn_idx, relo->type);
6001 			return -LIBBPF_ERRNO__RELOC;
6002 		}
6003 		if (relo) {
6004 			/* sub-program instruction index is a combination of
6005 			 * an offset of a symbol pointed to by relocation and
6006 			 * call instruction's imm field; for global functions,
6007 			 * call always has imm = -1, but for static functions
6008 			 * relocation is against STT_SECTION and insn->imm
6009 			 * points to a start of a static function
6010 			 */
6011 			sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6012 		} else {
6013 			/* if subprogram call is to a static function within
6014 			 * the same ELF section, there won't be any relocation
6015 			 * emitted, but it also means there is no additional
6016 			 * offset necessary, insns->imm is relative to
6017 			 * instruction's original position within the section
6018 			 */
6019 			sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6020 		}
6021 
6022 		/* we enforce that sub-programs should be in .text section */
6023 		subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6024 		if (!subprog) {
6025 			pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6026 				prog->name);
6027 			return -LIBBPF_ERRNO__RELOC;
6028 		}
6029 
6030 		/* if it's the first call instruction calling into this
6031 		 * subprogram (meaning this subprog hasn't been processed
6032 		 * yet) within the context of current main program:
6033 		 *   - append it at the end of main program's instructions blog;
6034 		 *   - process is recursively, while current program is put on hold;
6035 		 *   - if that subprogram calls some other not yet processes
6036 		 *   subprogram, same thing will happen recursively until
6037 		 *   there are no more unprocesses subprograms left to append
6038 		 *   and relocate.
6039 		 */
6040 		if (subprog->sub_insn_off == 0) {
6041 			subprog->sub_insn_off = main_prog->insns_cnt;
6042 
6043 			new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6044 			insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6045 			if (!insns) {
6046 				pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6047 				return -ENOMEM;
6048 			}
6049 			main_prog->insns = insns;
6050 			main_prog->insns_cnt = new_cnt;
6051 
6052 			memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6053 			       subprog->insns_cnt * sizeof(*insns));
6054 
6055 			pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6056 				 main_prog->name, subprog->insns_cnt, subprog->name);
6057 
6058 			err = bpf_object__reloc_code(obj, main_prog, subprog);
6059 			if (err)
6060 				return err;
6061 		}
6062 
6063 		/* main_prog->insns memory could have been re-allocated, so
6064 		 * calculate pointer again
6065 		 */
6066 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6067 		/* calculate correct instruction position within current main
6068 		 * prog; each main prog can have a different set of
6069 		 * subprograms appended (potentially in different order as
6070 		 * well), so position of any subprog can be different for
6071 		 * different main programs */
6072 		insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6073 
6074 		if (relo)
6075 			relo->processed = true;
6076 
6077 		pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6078 			 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6079 	}
6080 
6081 	return 0;
6082 }
6083 
6084 /*
6085  * Relocate sub-program calls.
6086  *
6087  * Algorithm operates as follows. Each entry-point BPF program (referred to as
6088  * main prog) is processed separately. For each subprog (non-entry functions,
6089  * that can be called from either entry progs or other subprogs) gets their
6090  * sub_insn_off reset to zero. This serves as indicator that this subprogram
6091  * hasn't been yet appended and relocated within current main prog. Once its
6092  * relocated, sub_insn_off will point at the position within current main prog
6093  * where given subprog was appended. This will further be used to relocate all
6094  * the call instructions jumping into this subprog.
6095  *
6096  * We start with main program and process all call instructions. If the call
6097  * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6098  * is zero), subprog instructions are appended at the end of main program's
6099  * instruction array. Then main program is "put on hold" while we recursively
6100  * process newly appended subprogram. If that subprogram calls into another
6101  * subprogram that hasn't been appended, new subprogram is appended again to
6102  * the *main* prog's instructions (subprog's instructions are always left
6103  * untouched, as they need to be in unmodified state for subsequent main progs
6104  * and subprog instructions are always sent only as part of a main prog) and
6105  * the process continues recursively. Once all the subprogs called from a main
6106  * prog or any of its subprogs are appended (and relocated), all their
6107  * positions within finalized instructions array are known, so it's easy to
6108  * rewrite call instructions with correct relative offsets, corresponding to
6109  * desired target subprog.
6110  *
6111  * Its important to realize that some subprogs might not be called from some
6112  * main prog and any of its called/used subprogs. Those will keep their
6113  * subprog->sub_insn_off as zero at all times and won't be appended to current
6114  * main prog and won't be relocated within the context of current main prog.
6115  * They might still be used from other main progs later.
6116  *
6117  * Visually this process can be shown as below. Suppose we have two main
6118  * programs mainA and mainB and BPF object contains three subprogs: subA,
6119  * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6120  * subC both call subB:
6121  *
6122  *        +--------+ +-------+
6123  *        |        v v       |
6124  *     +--+---+ +--+-+-+ +---+--+
6125  *     | subA | | subB | | subC |
6126  *     +--+---+ +------+ +---+--+
6127  *        ^                  ^
6128  *        |                  |
6129  *    +---+-------+   +------+----+
6130  *    |   mainA   |   |   mainB   |
6131  *    +-----------+   +-----------+
6132  *
6133  * We'll start relocating mainA, will find subA, append it and start
6134  * processing sub A recursively:
6135  *
6136  *    +-----------+------+
6137  *    |   mainA   | subA |
6138  *    +-----------+------+
6139  *
6140  * At this point we notice that subB is used from subA, so we append it and
6141  * relocate (there are no further subcalls from subB):
6142  *
6143  *    +-----------+------+------+
6144  *    |   mainA   | subA | subB |
6145  *    +-----------+------+------+
6146  *
6147  * At this point, we relocate subA calls, then go one level up and finish with
6148  * relocatin mainA calls. mainA is done.
6149  *
6150  * For mainB process is similar but results in different order. We start with
6151  * mainB and skip subA and subB, as mainB never calls them (at least
6152  * directly), but we see subC is needed, so we append and start processing it:
6153  *
6154  *    +-----------+------+
6155  *    |   mainB   | subC |
6156  *    +-----------+------+
6157  * Now we see subC needs subB, so we go back to it, append and relocate it:
6158  *
6159  *    +-----------+------+------+
6160  *    |   mainB   | subC | subB |
6161  *    +-----------+------+------+
6162  *
6163  * At this point we unwind recursion, relocate calls in subC, then in mainB.
6164  */
6165 static int
6166 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6167 {
6168 	struct bpf_program *subprog;
6169 	int i, j, err;
6170 
6171 	/* mark all subprogs as not relocated (yet) within the context of
6172 	 * current main program
6173 	 */
6174 	for (i = 0; i < obj->nr_programs; i++) {
6175 		subprog = &obj->programs[i];
6176 		if (!prog_is_subprog(obj, subprog))
6177 			continue;
6178 
6179 		subprog->sub_insn_off = 0;
6180 		for (j = 0; j < subprog->nr_reloc; j++)
6181 			if (subprog->reloc_desc[j].type == RELO_CALL)
6182 				subprog->reloc_desc[j].processed = false;
6183 	}
6184 
6185 	err = bpf_object__reloc_code(obj, prog, prog);
6186 	if (err)
6187 		return err;
6188 
6189 
6190 	return 0;
6191 }
6192 
6193 static int
6194 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6195 {
6196 	struct bpf_program *prog;
6197 	size_t i;
6198 	int err;
6199 
6200 	if (obj->btf_ext) {
6201 		err = bpf_object__relocate_core(obj, targ_btf_path);
6202 		if (err) {
6203 			pr_warn("failed to perform CO-RE relocations: %d\n",
6204 				err);
6205 			return err;
6206 		}
6207 	}
6208 	/* relocate data references first for all programs and sub-programs,
6209 	 * as they don't change relative to code locations, so subsequent
6210 	 * subprogram processing won't need to re-calculate any of them
6211 	 */
6212 	for (i = 0; i < obj->nr_programs; i++) {
6213 		prog = &obj->programs[i];
6214 		err = bpf_object__relocate_data(obj, prog);
6215 		if (err) {
6216 			pr_warn("prog '%s': failed to relocate data references: %d\n",
6217 				prog->name, err);
6218 			return err;
6219 		}
6220 	}
6221 	/* now relocate subprogram calls and append used subprograms to main
6222 	 * programs; each copy of subprogram code needs to be relocated
6223 	 * differently for each main program, because its code location might
6224 	 * have changed
6225 	 */
6226 	for (i = 0; i < obj->nr_programs; i++) {
6227 		prog = &obj->programs[i];
6228 		/* sub-program's sub-calls are relocated within the context of
6229 		 * its main program only
6230 		 */
6231 		if (prog_is_subprog(obj, prog))
6232 			continue;
6233 
6234 		err = bpf_object__relocate_calls(obj, prog);
6235 		if (err) {
6236 			pr_warn("prog '%s': failed to relocate calls: %d\n",
6237 				prog->name, err);
6238 			return err;
6239 		}
6240 	}
6241 	/* free up relocation descriptors */
6242 	for (i = 0; i < obj->nr_programs; i++) {
6243 		prog = &obj->programs[i];
6244 		zfree(&prog->reloc_desc);
6245 		prog->nr_reloc = 0;
6246 	}
6247 	return 0;
6248 }
6249 
6250 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6251 					    GElf_Shdr *shdr, Elf_Data *data);
6252 
6253 static int bpf_object__collect_map_relos(struct bpf_object *obj,
6254 					 GElf_Shdr *shdr, Elf_Data *data)
6255 {
6256 	const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6257 	int i, j, nrels, new_sz;
6258 	const struct btf_var_secinfo *vi = NULL;
6259 	const struct btf_type *sec, *var, *def;
6260 	struct bpf_map *map = NULL, *targ_map;
6261 	const struct btf_member *member;
6262 	const char *name, *mname;
6263 	Elf_Data *symbols;
6264 	unsigned int moff;
6265 	GElf_Sym sym;
6266 	GElf_Rel rel;
6267 	void *tmp;
6268 
6269 	if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6270 		return -EINVAL;
6271 	sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6272 	if (!sec)
6273 		return -EINVAL;
6274 
6275 	symbols = obj->efile.symbols;
6276 	nrels = shdr->sh_size / shdr->sh_entsize;
6277 	for (i = 0; i < nrels; i++) {
6278 		if (!gelf_getrel(data, i, &rel)) {
6279 			pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6280 			return -LIBBPF_ERRNO__FORMAT;
6281 		}
6282 		if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
6283 			pr_warn(".maps relo #%d: symbol %zx not found\n",
6284 				i, (size_t)GELF_R_SYM(rel.r_info));
6285 			return -LIBBPF_ERRNO__FORMAT;
6286 		}
6287 		name = elf_sym_str(obj, sym.st_name) ?: "<?>";
6288 		if (sym.st_shndx != obj->efile.btf_maps_shndx) {
6289 			pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6290 				i, name);
6291 			return -LIBBPF_ERRNO__RELOC;
6292 		}
6293 
6294 		pr_debug(".maps relo #%d: for %zd value %zd rel.r_offset %zu name %d ('%s')\n",
6295 			 i, (ssize_t)(rel.r_info >> 32), (size_t)sym.st_value,
6296 			 (size_t)rel.r_offset, sym.st_name, name);
6297 
6298 		for (j = 0; j < obj->nr_maps; j++) {
6299 			map = &obj->maps[j];
6300 			if (map->sec_idx != obj->efile.btf_maps_shndx)
6301 				continue;
6302 
6303 			vi = btf_var_secinfos(sec) + map->btf_var_idx;
6304 			if (vi->offset <= rel.r_offset &&
6305 			    rel.r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6306 				break;
6307 		}
6308 		if (j == obj->nr_maps) {
6309 			pr_warn(".maps relo #%d: cannot find map '%s' at rel.r_offset %zu\n",
6310 				i, name, (size_t)rel.r_offset);
6311 			return -EINVAL;
6312 		}
6313 
6314 		if (!bpf_map_type__is_map_in_map(map->def.type))
6315 			return -EINVAL;
6316 		if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6317 		    map->def.key_size != sizeof(int)) {
6318 			pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6319 				i, map->name, sizeof(int));
6320 			return -EINVAL;
6321 		}
6322 
6323 		targ_map = bpf_object__find_map_by_name(obj, name);
6324 		if (!targ_map)
6325 			return -ESRCH;
6326 
6327 		var = btf__type_by_id(obj->btf, vi->type);
6328 		def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6329 		if (btf_vlen(def) == 0)
6330 			return -EINVAL;
6331 		member = btf_members(def) + btf_vlen(def) - 1;
6332 		mname = btf__name_by_offset(obj->btf, member->name_off);
6333 		if (strcmp(mname, "values"))
6334 			return -EINVAL;
6335 
6336 		moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6337 		if (rel.r_offset - vi->offset < moff)
6338 			return -EINVAL;
6339 
6340 		moff = rel.r_offset - vi->offset - moff;
6341 		/* here we use BPF pointer size, which is always 64 bit, as we
6342 		 * are parsing ELF that was built for BPF target
6343 		 */
6344 		if (moff % bpf_ptr_sz)
6345 			return -EINVAL;
6346 		moff /= bpf_ptr_sz;
6347 		if (moff >= map->init_slots_sz) {
6348 			new_sz = moff + 1;
6349 			tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6350 			if (!tmp)
6351 				return -ENOMEM;
6352 			map->init_slots = tmp;
6353 			memset(map->init_slots + map->init_slots_sz, 0,
6354 			       (new_sz - map->init_slots_sz) * host_ptr_sz);
6355 			map->init_slots_sz = new_sz;
6356 		}
6357 		map->init_slots[moff] = targ_map;
6358 
6359 		pr_debug(".maps relo #%d: map '%s' slot [%d] points to map '%s'\n",
6360 			 i, map->name, moff, name);
6361 	}
6362 
6363 	return 0;
6364 }
6365 
6366 static int cmp_relocs(const void *_a, const void *_b)
6367 {
6368 	const struct reloc_desc *a = _a;
6369 	const struct reloc_desc *b = _b;
6370 
6371 	if (a->insn_idx != b->insn_idx)
6372 		return a->insn_idx < b->insn_idx ? -1 : 1;
6373 
6374 	/* no two relocations should have the same insn_idx, but ... */
6375 	if (a->type != b->type)
6376 		return a->type < b->type ? -1 : 1;
6377 
6378 	return 0;
6379 }
6380 
6381 static int bpf_object__collect_relos(struct bpf_object *obj)
6382 {
6383 	int i, err;
6384 
6385 	for (i = 0; i < obj->efile.nr_reloc_sects; i++) {
6386 		GElf_Shdr *shdr = &obj->efile.reloc_sects[i].shdr;
6387 		Elf_Data *data = obj->efile.reloc_sects[i].data;
6388 		int idx = shdr->sh_info;
6389 
6390 		if (shdr->sh_type != SHT_REL) {
6391 			pr_warn("internal error at %d\n", __LINE__);
6392 			return -LIBBPF_ERRNO__INTERNAL;
6393 		}
6394 
6395 		if (idx == obj->efile.st_ops_shndx)
6396 			err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6397 		else if (idx == obj->efile.btf_maps_shndx)
6398 			err = bpf_object__collect_map_relos(obj, shdr, data);
6399 		else
6400 			err = bpf_object__collect_prog_relos(obj, shdr, data);
6401 		if (err)
6402 			return err;
6403 	}
6404 
6405 	for (i = 0; i < obj->nr_programs; i++) {
6406 		struct bpf_program *p = &obj->programs[i];
6407 
6408 		if (!p->nr_reloc)
6409 			continue;
6410 
6411 		qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6412 	}
6413 	return 0;
6414 }
6415 
6416 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6417 {
6418 	if (BPF_CLASS(insn->code) == BPF_JMP &&
6419 	    BPF_OP(insn->code) == BPF_CALL &&
6420 	    BPF_SRC(insn->code) == BPF_K &&
6421 	    insn->src_reg == 0 &&
6422 	    insn->dst_reg == 0) {
6423 		    *func_id = insn->imm;
6424 		    return true;
6425 	}
6426 	return false;
6427 }
6428 
6429 static int bpf_object__sanitize_prog(struct bpf_object* obj, struct bpf_program *prog)
6430 {
6431 	struct bpf_insn *insn = prog->insns;
6432 	enum bpf_func_id func_id;
6433 	int i;
6434 
6435 	for (i = 0; i < prog->insns_cnt; i++, insn++) {
6436 		if (!insn_is_helper_call(insn, &func_id))
6437 			continue;
6438 
6439 		/* on kernels that don't yet support
6440 		 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6441 		 * to bpf_probe_read() which works well for old kernels
6442 		 */
6443 		switch (func_id) {
6444 		case BPF_FUNC_probe_read_kernel:
6445 		case BPF_FUNC_probe_read_user:
6446 			if (!kernel_supports(FEAT_PROBE_READ_KERN))
6447 				insn->imm = BPF_FUNC_probe_read;
6448 			break;
6449 		case BPF_FUNC_probe_read_kernel_str:
6450 		case BPF_FUNC_probe_read_user_str:
6451 			if (!kernel_supports(FEAT_PROBE_READ_KERN))
6452 				insn->imm = BPF_FUNC_probe_read_str;
6453 			break;
6454 		default:
6455 			break;
6456 		}
6457 	}
6458 	return 0;
6459 }
6460 
6461 static int
6462 load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt,
6463 	     char *license, __u32 kern_version, int *pfd)
6464 {
6465 	struct bpf_load_program_attr load_attr;
6466 	char *cp, errmsg[STRERR_BUFSIZE];
6467 	size_t log_buf_size = 0;
6468 	char *log_buf = NULL;
6469 	int btf_fd, ret;
6470 
6471 	if (!insns || !insns_cnt)
6472 		return -EINVAL;
6473 
6474 	memset(&load_attr, 0, sizeof(struct bpf_load_program_attr));
6475 	load_attr.prog_type = prog->type;
6476 	/* old kernels might not support specifying expected_attach_type */
6477 	if (!kernel_supports(FEAT_EXP_ATTACH_TYPE) && prog->sec_def &&
6478 	    prog->sec_def->is_exp_attach_type_optional)
6479 		load_attr.expected_attach_type = 0;
6480 	else
6481 		load_attr.expected_attach_type = prog->expected_attach_type;
6482 	if (kernel_supports(FEAT_PROG_NAME))
6483 		load_attr.name = prog->name;
6484 	load_attr.insns = insns;
6485 	load_attr.insns_cnt = insns_cnt;
6486 	load_attr.license = license;
6487 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
6488 	    prog->type == BPF_PROG_TYPE_LSM) {
6489 		load_attr.attach_btf_id = prog->attach_btf_id;
6490 	} else if (prog->type == BPF_PROG_TYPE_TRACING ||
6491 		   prog->type == BPF_PROG_TYPE_EXT) {
6492 		load_attr.attach_prog_fd = prog->attach_prog_fd;
6493 		load_attr.attach_btf_id = prog->attach_btf_id;
6494 	} else {
6495 		load_attr.kern_version = kern_version;
6496 		load_attr.prog_ifindex = prog->prog_ifindex;
6497 	}
6498 	/* specify func_info/line_info only if kernel supports them */
6499 	btf_fd = bpf_object__btf_fd(prog->obj);
6500 	if (btf_fd >= 0 && kernel_supports(FEAT_BTF_FUNC)) {
6501 		load_attr.prog_btf_fd = btf_fd;
6502 		load_attr.func_info = prog->func_info;
6503 		load_attr.func_info_rec_size = prog->func_info_rec_size;
6504 		load_attr.func_info_cnt = prog->func_info_cnt;
6505 		load_attr.line_info = prog->line_info;
6506 		load_attr.line_info_rec_size = prog->line_info_rec_size;
6507 		load_attr.line_info_cnt = prog->line_info_cnt;
6508 	}
6509 	load_attr.log_level = prog->log_level;
6510 	load_attr.prog_flags = prog->prog_flags;
6511 
6512 retry_load:
6513 	if (log_buf_size) {
6514 		log_buf = malloc(log_buf_size);
6515 		if (!log_buf)
6516 			return -ENOMEM;
6517 
6518 		*log_buf = 0;
6519 	}
6520 
6521 	ret = bpf_load_program_xattr(&load_attr, log_buf, log_buf_size);
6522 
6523 	if (ret >= 0) {
6524 		if (log_buf && load_attr.log_level)
6525 			pr_debug("verifier log:\n%s", log_buf);
6526 
6527 		if (prog->obj->rodata_map_idx >= 0 &&
6528 		    kernel_supports(FEAT_PROG_BIND_MAP)) {
6529 			struct bpf_map *rodata_map =
6530 				&prog->obj->maps[prog->obj->rodata_map_idx];
6531 
6532 			if (bpf_prog_bind_map(ret, bpf_map__fd(rodata_map), NULL)) {
6533 				cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6534 				pr_warn("prog '%s': failed to bind .rodata map: %s\n",
6535 					prog->name, cp);
6536 				/* Don't fail hard if can't bind rodata. */
6537 			}
6538 		}
6539 
6540 		*pfd = ret;
6541 		ret = 0;
6542 		goto out;
6543 	}
6544 
6545 	if (!log_buf || errno == ENOSPC) {
6546 		log_buf_size = max((size_t)BPF_LOG_BUF_SIZE,
6547 				   log_buf_size << 1);
6548 
6549 		free(log_buf);
6550 		goto retry_load;
6551 	}
6552 	ret = errno ? -errno : -LIBBPF_ERRNO__LOAD;
6553 	cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6554 	pr_warn("load bpf program failed: %s\n", cp);
6555 	pr_perm_msg(ret);
6556 
6557 	if (log_buf && log_buf[0] != '\0') {
6558 		ret = -LIBBPF_ERRNO__VERIFY;
6559 		pr_warn("-- BEGIN DUMP LOG ---\n");
6560 		pr_warn("\n%s\n", log_buf);
6561 		pr_warn("-- END LOG --\n");
6562 	} else if (load_attr.insns_cnt >= BPF_MAXINSNS) {
6563 		pr_warn("Program too large (%zu insns), at most %d insns\n",
6564 			load_attr.insns_cnt, BPF_MAXINSNS);
6565 		ret = -LIBBPF_ERRNO__PROG2BIG;
6566 	} else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) {
6567 		/* Wrong program type? */
6568 		int fd;
6569 
6570 		load_attr.prog_type = BPF_PROG_TYPE_KPROBE;
6571 		load_attr.expected_attach_type = 0;
6572 		fd = bpf_load_program_xattr(&load_attr, NULL, 0);
6573 		if (fd >= 0) {
6574 			close(fd);
6575 			ret = -LIBBPF_ERRNO__PROGTYPE;
6576 			goto out;
6577 		}
6578 	}
6579 
6580 out:
6581 	free(log_buf);
6582 	return ret;
6583 }
6584 
6585 static int libbpf_find_attach_btf_id(struct bpf_program *prog);
6586 
6587 int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_ver)
6588 {
6589 	int err = 0, fd, i, btf_id;
6590 
6591 	if (prog->obj->loaded) {
6592 		pr_warn("prog '%s': can't load after object was loaded\n", prog->name);
6593 		return -EINVAL;
6594 	}
6595 
6596 	if ((prog->type == BPF_PROG_TYPE_TRACING ||
6597 	     prog->type == BPF_PROG_TYPE_LSM ||
6598 	     prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) {
6599 		btf_id = libbpf_find_attach_btf_id(prog);
6600 		if (btf_id <= 0)
6601 			return btf_id;
6602 		prog->attach_btf_id = btf_id;
6603 	}
6604 
6605 	if (prog->instances.nr < 0 || !prog->instances.fds) {
6606 		if (prog->preprocessor) {
6607 			pr_warn("Internal error: can't load program '%s'\n",
6608 				prog->name);
6609 			return -LIBBPF_ERRNO__INTERNAL;
6610 		}
6611 
6612 		prog->instances.fds = malloc(sizeof(int));
6613 		if (!prog->instances.fds) {
6614 			pr_warn("Not enough memory for BPF fds\n");
6615 			return -ENOMEM;
6616 		}
6617 		prog->instances.nr = 1;
6618 		prog->instances.fds[0] = -1;
6619 	}
6620 
6621 	if (!prog->preprocessor) {
6622 		if (prog->instances.nr != 1) {
6623 			pr_warn("prog '%s': inconsistent nr(%d) != 1\n",
6624 				prog->name, prog->instances.nr);
6625 		}
6626 		err = load_program(prog, prog->insns, prog->insns_cnt,
6627 				   license, kern_ver, &fd);
6628 		if (!err)
6629 			prog->instances.fds[0] = fd;
6630 		goto out;
6631 	}
6632 
6633 	for (i = 0; i < prog->instances.nr; i++) {
6634 		struct bpf_prog_prep_result result;
6635 		bpf_program_prep_t preprocessor = prog->preprocessor;
6636 
6637 		memset(&result, 0, sizeof(result));
6638 		err = preprocessor(prog, i, prog->insns,
6639 				   prog->insns_cnt, &result);
6640 		if (err) {
6641 			pr_warn("Preprocessing the %dth instance of program '%s' failed\n",
6642 				i, prog->name);
6643 			goto out;
6644 		}
6645 
6646 		if (!result.new_insn_ptr || !result.new_insn_cnt) {
6647 			pr_debug("Skip loading the %dth instance of program '%s'\n",
6648 				 i, prog->name);
6649 			prog->instances.fds[i] = -1;
6650 			if (result.pfd)
6651 				*result.pfd = -1;
6652 			continue;
6653 		}
6654 
6655 		err = load_program(prog, result.new_insn_ptr,
6656 				   result.new_insn_cnt, license, kern_ver, &fd);
6657 		if (err) {
6658 			pr_warn("Loading the %dth instance of program '%s' failed\n",
6659 				i, prog->name);
6660 			goto out;
6661 		}
6662 
6663 		if (result.pfd)
6664 			*result.pfd = fd;
6665 		prog->instances.fds[i] = fd;
6666 	}
6667 out:
6668 	if (err)
6669 		pr_warn("failed to load program '%s'\n", prog->name);
6670 	zfree(&prog->insns);
6671 	prog->insns_cnt = 0;
6672 	return err;
6673 }
6674 
6675 static int
6676 bpf_object__load_progs(struct bpf_object *obj, int log_level)
6677 {
6678 	struct bpf_program *prog;
6679 	size_t i;
6680 	int err;
6681 
6682 	for (i = 0; i < obj->nr_programs; i++) {
6683 		prog = &obj->programs[i];
6684 		err = bpf_object__sanitize_prog(obj, prog);
6685 		if (err)
6686 			return err;
6687 	}
6688 
6689 	for (i = 0; i < obj->nr_programs; i++) {
6690 		prog = &obj->programs[i];
6691 		if (prog_is_subprog(obj, prog))
6692 			continue;
6693 		if (!prog->load) {
6694 			pr_debug("prog '%s': skipped loading\n", prog->name);
6695 			continue;
6696 		}
6697 		prog->log_level |= log_level;
6698 		err = bpf_program__load(prog, obj->license, obj->kern_version);
6699 		if (err)
6700 			return err;
6701 	}
6702 	return 0;
6703 }
6704 
6705 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
6706 
6707 static struct bpf_object *
6708 __bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz,
6709 		   const struct bpf_object_open_opts *opts)
6710 {
6711 	const char *obj_name, *kconfig;
6712 	struct bpf_program *prog;
6713 	struct bpf_object *obj;
6714 	char tmp_name[64];
6715 	int err;
6716 
6717 	if (elf_version(EV_CURRENT) == EV_NONE) {
6718 		pr_warn("failed to init libelf for %s\n",
6719 			path ? : "(mem buf)");
6720 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
6721 	}
6722 
6723 	if (!OPTS_VALID(opts, bpf_object_open_opts))
6724 		return ERR_PTR(-EINVAL);
6725 
6726 	obj_name = OPTS_GET(opts, object_name, NULL);
6727 	if (obj_buf) {
6728 		if (!obj_name) {
6729 			snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
6730 				 (unsigned long)obj_buf,
6731 				 (unsigned long)obj_buf_sz);
6732 			obj_name = tmp_name;
6733 		}
6734 		path = obj_name;
6735 		pr_debug("loading object '%s' from buffer\n", obj_name);
6736 	}
6737 
6738 	obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
6739 	if (IS_ERR(obj))
6740 		return obj;
6741 
6742 	kconfig = OPTS_GET(opts, kconfig, NULL);
6743 	if (kconfig) {
6744 		obj->kconfig = strdup(kconfig);
6745 		if (!obj->kconfig)
6746 			return ERR_PTR(-ENOMEM);
6747 	}
6748 
6749 	err = bpf_object__elf_init(obj);
6750 	err = err ? : bpf_object__check_endianness(obj);
6751 	err = err ? : bpf_object__elf_collect(obj);
6752 	err = err ? : bpf_object__collect_externs(obj);
6753 	err = err ? : bpf_object__finalize_btf(obj);
6754 	err = err ? : bpf_object__init_maps(obj, opts);
6755 	err = err ? : bpf_object__collect_relos(obj);
6756 	if (err)
6757 		goto out;
6758 	bpf_object__elf_finish(obj);
6759 
6760 	bpf_object__for_each_program(prog, obj) {
6761 		prog->sec_def = find_sec_def(prog->sec_name);
6762 		if (!prog->sec_def)
6763 			/* couldn't guess, but user might manually specify */
6764 			continue;
6765 
6766 		if (prog->sec_def->is_sleepable)
6767 			prog->prog_flags |= BPF_F_SLEEPABLE;
6768 		bpf_program__set_type(prog, prog->sec_def->prog_type);
6769 		bpf_program__set_expected_attach_type(prog,
6770 				prog->sec_def->expected_attach_type);
6771 
6772 		if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING ||
6773 		    prog->sec_def->prog_type == BPF_PROG_TYPE_EXT)
6774 			prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0);
6775 	}
6776 
6777 	return obj;
6778 out:
6779 	bpf_object__close(obj);
6780 	return ERR_PTR(err);
6781 }
6782 
6783 static struct bpf_object *
6784 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags)
6785 {
6786 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
6787 		.relaxed_maps = flags & MAPS_RELAX_COMPAT,
6788 	);
6789 
6790 	/* param validation */
6791 	if (!attr->file)
6792 		return NULL;
6793 
6794 	pr_debug("loading %s\n", attr->file);
6795 	return __bpf_object__open(attr->file, NULL, 0, &opts);
6796 }
6797 
6798 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr)
6799 {
6800 	return __bpf_object__open_xattr(attr, 0);
6801 }
6802 
6803 struct bpf_object *bpf_object__open(const char *path)
6804 {
6805 	struct bpf_object_open_attr attr = {
6806 		.file		= path,
6807 		.prog_type	= BPF_PROG_TYPE_UNSPEC,
6808 	};
6809 
6810 	return bpf_object__open_xattr(&attr);
6811 }
6812 
6813 struct bpf_object *
6814 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
6815 {
6816 	if (!path)
6817 		return ERR_PTR(-EINVAL);
6818 
6819 	pr_debug("loading %s\n", path);
6820 
6821 	return __bpf_object__open(path, NULL, 0, opts);
6822 }
6823 
6824 struct bpf_object *
6825 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
6826 		     const struct bpf_object_open_opts *opts)
6827 {
6828 	if (!obj_buf || obj_buf_sz == 0)
6829 		return ERR_PTR(-EINVAL);
6830 
6831 	return __bpf_object__open(NULL, obj_buf, obj_buf_sz, opts);
6832 }
6833 
6834 struct bpf_object *
6835 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz,
6836 			const char *name)
6837 {
6838 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
6839 		.object_name = name,
6840 		/* wrong default, but backwards-compatible */
6841 		.relaxed_maps = true,
6842 	);
6843 
6844 	/* returning NULL is wrong, but backwards-compatible */
6845 	if (!obj_buf || obj_buf_sz == 0)
6846 		return NULL;
6847 
6848 	return bpf_object__open_mem(obj_buf, obj_buf_sz, &opts);
6849 }
6850 
6851 int bpf_object__unload(struct bpf_object *obj)
6852 {
6853 	size_t i;
6854 
6855 	if (!obj)
6856 		return -EINVAL;
6857 
6858 	for (i = 0; i < obj->nr_maps; i++) {
6859 		zclose(obj->maps[i].fd);
6860 		if (obj->maps[i].st_ops)
6861 			zfree(&obj->maps[i].st_ops->kern_vdata);
6862 	}
6863 
6864 	for (i = 0; i < obj->nr_programs; i++)
6865 		bpf_program__unload(&obj->programs[i]);
6866 
6867 	return 0;
6868 }
6869 
6870 static int bpf_object__sanitize_maps(struct bpf_object *obj)
6871 {
6872 	struct bpf_map *m;
6873 
6874 	bpf_object__for_each_map(m, obj) {
6875 		if (!bpf_map__is_internal(m))
6876 			continue;
6877 		if (!kernel_supports(FEAT_GLOBAL_DATA)) {
6878 			pr_warn("kernel doesn't support global data\n");
6879 			return -ENOTSUP;
6880 		}
6881 		if (!kernel_supports(FEAT_ARRAY_MMAP))
6882 			m->def.map_flags ^= BPF_F_MMAPABLE;
6883 	}
6884 
6885 	return 0;
6886 }
6887 
6888 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
6889 {
6890 	char sym_type, sym_name[500];
6891 	unsigned long long sym_addr;
6892 	struct extern_desc *ext;
6893 	int ret, err = 0;
6894 	FILE *f;
6895 
6896 	f = fopen("/proc/kallsyms", "r");
6897 	if (!f) {
6898 		err = -errno;
6899 		pr_warn("failed to open /proc/kallsyms: %d\n", err);
6900 		return err;
6901 	}
6902 
6903 	while (true) {
6904 		ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
6905 			     &sym_addr, &sym_type, sym_name);
6906 		if (ret == EOF && feof(f))
6907 			break;
6908 		if (ret != 3) {
6909 			pr_warn("failed to read kallsyms entry: %d\n", ret);
6910 			err = -EINVAL;
6911 			goto out;
6912 		}
6913 
6914 		ext = find_extern_by_name(obj, sym_name);
6915 		if (!ext || ext->type != EXT_KSYM)
6916 			continue;
6917 
6918 		if (ext->is_set && ext->ksym.addr != sym_addr) {
6919 			pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n",
6920 				sym_name, ext->ksym.addr, sym_addr);
6921 			err = -EINVAL;
6922 			goto out;
6923 		}
6924 		if (!ext->is_set) {
6925 			ext->is_set = true;
6926 			ext->ksym.addr = sym_addr;
6927 			pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr);
6928 		}
6929 	}
6930 
6931 out:
6932 	fclose(f);
6933 	return err;
6934 }
6935 
6936 static int bpf_object__resolve_externs(struct bpf_object *obj,
6937 				       const char *extra_kconfig)
6938 {
6939 	bool need_config = false, need_kallsyms = false;
6940 	struct extern_desc *ext;
6941 	void *kcfg_data = NULL;
6942 	int err, i;
6943 
6944 	if (obj->nr_extern == 0)
6945 		return 0;
6946 
6947 	if (obj->kconfig_map_idx >= 0)
6948 		kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
6949 
6950 	for (i = 0; i < obj->nr_extern; i++) {
6951 		ext = &obj->externs[i];
6952 
6953 		if (ext->type == EXT_KCFG &&
6954 		    strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
6955 			void *ext_val = kcfg_data + ext->kcfg.data_off;
6956 			__u32 kver = get_kernel_version();
6957 
6958 			if (!kver) {
6959 				pr_warn("failed to get kernel version\n");
6960 				return -EINVAL;
6961 			}
6962 			err = set_kcfg_value_num(ext, ext_val, kver);
6963 			if (err)
6964 				return err;
6965 			pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver);
6966 		} else if (ext->type == EXT_KCFG &&
6967 			   strncmp(ext->name, "CONFIG_", 7) == 0) {
6968 			need_config = true;
6969 		} else if (ext->type == EXT_KSYM) {
6970 			need_kallsyms = true;
6971 		} else {
6972 			pr_warn("unrecognized extern '%s'\n", ext->name);
6973 			return -EINVAL;
6974 		}
6975 	}
6976 	if (need_config && extra_kconfig) {
6977 		err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
6978 		if (err)
6979 			return -EINVAL;
6980 		need_config = false;
6981 		for (i = 0; i < obj->nr_extern; i++) {
6982 			ext = &obj->externs[i];
6983 			if (ext->type == EXT_KCFG && !ext->is_set) {
6984 				need_config = true;
6985 				break;
6986 			}
6987 		}
6988 	}
6989 	if (need_config) {
6990 		err = bpf_object__read_kconfig_file(obj, kcfg_data);
6991 		if (err)
6992 			return -EINVAL;
6993 	}
6994 	if (need_kallsyms) {
6995 		err = bpf_object__read_kallsyms_file(obj);
6996 		if (err)
6997 			return -EINVAL;
6998 	}
6999 	for (i = 0; i < obj->nr_extern; i++) {
7000 		ext = &obj->externs[i];
7001 
7002 		if (!ext->is_set && !ext->is_weak) {
7003 			pr_warn("extern %s (strong) not resolved\n", ext->name);
7004 			return -ESRCH;
7005 		} else if (!ext->is_set) {
7006 			pr_debug("extern %s (weak) not resolved, defaulting to zero\n",
7007 				 ext->name);
7008 		}
7009 	}
7010 
7011 	return 0;
7012 }
7013 
7014 int bpf_object__load_xattr(struct bpf_object_load_attr *attr)
7015 {
7016 	struct bpf_object *obj;
7017 	int err, i;
7018 
7019 	if (!attr)
7020 		return -EINVAL;
7021 	obj = attr->obj;
7022 	if (!obj)
7023 		return -EINVAL;
7024 
7025 	if (obj->loaded) {
7026 		pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7027 		return -EINVAL;
7028 	}
7029 
7030 	err = bpf_object__probe_loading(obj);
7031 	err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7032 	err = err ? : bpf_object__sanitize_and_load_btf(obj);
7033 	err = err ? : bpf_object__sanitize_maps(obj);
7034 	err = err ? : bpf_object__load_vmlinux_btf(obj);
7035 	err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7036 	err = err ? : bpf_object__create_maps(obj);
7037 	err = err ? : bpf_object__relocate(obj, attr->target_btf_path);
7038 	err = err ? : bpf_object__load_progs(obj, attr->log_level);
7039 
7040 	btf__free(obj->btf_vmlinux);
7041 	obj->btf_vmlinux = NULL;
7042 
7043 	obj->loaded = true; /* doesn't matter if successfully or not */
7044 
7045 	if (err)
7046 		goto out;
7047 
7048 	return 0;
7049 out:
7050 	/* unpin any maps that were auto-pinned during load */
7051 	for (i = 0; i < obj->nr_maps; i++)
7052 		if (obj->maps[i].pinned && !obj->maps[i].reused)
7053 			bpf_map__unpin(&obj->maps[i], NULL);
7054 
7055 	bpf_object__unload(obj);
7056 	pr_warn("failed to load object '%s'\n", obj->path);
7057 	return err;
7058 }
7059 
7060 int bpf_object__load(struct bpf_object *obj)
7061 {
7062 	struct bpf_object_load_attr attr = {
7063 		.obj = obj,
7064 	};
7065 
7066 	return bpf_object__load_xattr(&attr);
7067 }
7068 
7069 static int make_parent_dir(const char *path)
7070 {
7071 	char *cp, errmsg[STRERR_BUFSIZE];
7072 	char *dname, *dir;
7073 	int err = 0;
7074 
7075 	dname = strdup(path);
7076 	if (dname == NULL)
7077 		return -ENOMEM;
7078 
7079 	dir = dirname(dname);
7080 	if (mkdir(dir, 0700) && errno != EEXIST)
7081 		err = -errno;
7082 
7083 	free(dname);
7084 	if (err) {
7085 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7086 		pr_warn("failed to mkdir %s: %s\n", path, cp);
7087 	}
7088 	return err;
7089 }
7090 
7091 static int check_path(const char *path)
7092 {
7093 	char *cp, errmsg[STRERR_BUFSIZE];
7094 	struct statfs st_fs;
7095 	char *dname, *dir;
7096 	int err = 0;
7097 
7098 	if (path == NULL)
7099 		return -EINVAL;
7100 
7101 	dname = strdup(path);
7102 	if (dname == NULL)
7103 		return -ENOMEM;
7104 
7105 	dir = dirname(dname);
7106 	if (statfs(dir, &st_fs)) {
7107 		cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7108 		pr_warn("failed to statfs %s: %s\n", dir, cp);
7109 		err = -errno;
7110 	}
7111 	free(dname);
7112 
7113 	if (!err && st_fs.f_type != BPF_FS_MAGIC) {
7114 		pr_warn("specified path %s is not on BPF FS\n", path);
7115 		err = -EINVAL;
7116 	}
7117 
7118 	return err;
7119 }
7120 
7121 int bpf_program__pin_instance(struct bpf_program *prog, const char *path,
7122 			      int instance)
7123 {
7124 	char *cp, errmsg[STRERR_BUFSIZE];
7125 	int err;
7126 
7127 	err = make_parent_dir(path);
7128 	if (err)
7129 		return err;
7130 
7131 	err = check_path(path);
7132 	if (err)
7133 		return err;
7134 
7135 	if (prog == NULL) {
7136 		pr_warn("invalid program pointer\n");
7137 		return -EINVAL;
7138 	}
7139 
7140 	if (instance < 0 || instance >= prog->instances.nr) {
7141 		pr_warn("invalid prog instance %d of prog %s (max %d)\n",
7142 			instance, prog->name, prog->instances.nr);
7143 		return -EINVAL;
7144 	}
7145 
7146 	if (bpf_obj_pin(prog->instances.fds[instance], path)) {
7147 		err = -errno;
7148 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
7149 		pr_warn("failed to pin program: %s\n", cp);
7150 		return err;
7151 	}
7152 	pr_debug("pinned program '%s'\n", path);
7153 
7154 	return 0;
7155 }
7156 
7157 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path,
7158 				int instance)
7159 {
7160 	int err;
7161 
7162 	err = check_path(path);
7163 	if (err)
7164 		return err;
7165 
7166 	if (prog == NULL) {
7167 		pr_warn("invalid program pointer\n");
7168 		return -EINVAL;
7169 	}
7170 
7171 	if (instance < 0 || instance >= prog->instances.nr) {
7172 		pr_warn("invalid prog instance %d of prog %s (max %d)\n",
7173 			instance, prog->name, prog->instances.nr);
7174 		return -EINVAL;
7175 	}
7176 
7177 	err = unlink(path);
7178 	if (err != 0)
7179 		return -errno;
7180 	pr_debug("unpinned program '%s'\n", path);
7181 
7182 	return 0;
7183 }
7184 
7185 int bpf_program__pin(struct bpf_program *prog, const char *path)
7186 {
7187 	int i, err;
7188 
7189 	err = make_parent_dir(path);
7190 	if (err)
7191 		return err;
7192 
7193 	err = check_path(path);
7194 	if (err)
7195 		return err;
7196 
7197 	if (prog == NULL) {
7198 		pr_warn("invalid program pointer\n");
7199 		return -EINVAL;
7200 	}
7201 
7202 	if (prog->instances.nr <= 0) {
7203 		pr_warn("no instances of prog %s to pin\n", prog->name);
7204 		return -EINVAL;
7205 	}
7206 
7207 	if (prog->instances.nr == 1) {
7208 		/* don't create subdirs when pinning single instance */
7209 		return bpf_program__pin_instance(prog, path, 0);
7210 	}
7211 
7212 	for (i = 0; i < prog->instances.nr; i++) {
7213 		char buf[PATH_MAX];
7214 		int len;
7215 
7216 		len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7217 		if (len < 0) {
7218 			err = -EINVAL;
7219 			goto err_unpin;
7220 		} else if (len >= PATH_MAX) {
7221 			err = -ENAMETOOLONG;
7222 			goto err_unpin;
7223 		}
7224 
7225 		err = bpf_program__pin_instance(prog, buf, i);
7226 		if (err)
7227 			goto err_unpin;
7228 	}
7229 
7230 	return 0;
7231 
7232 err_unpin:
7233 	for (i = i - 1; i >= 0; i--) {
7234 		char buf[PATH_MAX];
7235 		int len;
7236 
7237 		len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7238 		if (len < 0)
7239 			continue;
7240 		else if (len >= PATH_MAX)
7241 			continue;
7242 
7243 		bpf_program__unpin_instance(prog, buf, i);
7244 	}
7245 
7246 	rmdir(path);
7247 
7248 	return err;
7249 }
7250 
7251 int bpf_program__unpin(struct bpf_program *prog, const char *path)
7252 {
7253 	int i, err;
7254 
7255 	err = check_path(path);
7256 	if (err)
7257 		return err;
7258 
7259 	if (prog == NULL) {
7260 		pr_warn("invalid program pointer\n");
7261 		return -EINVAL;
7262 	}
7263 
7264 	if (prog->instances.nr <= 0) {
7265 		pr_warn("no instances of prog %s to pin\n", prog->name);
7266 		return -EINVAL;
7267 	}
7268 
7269 	if (prog->instances.nr == 1) {
7270 		/* don't create subdirs when pinning single instance */
7271 		return bpf_program__unpin_instance(prog, path, 0);
7272 	}
7273 
7274 	for (i = 0; i < prog->instances.nr; i++) {
7275 		char buf[PATH_MAX];
7276 		int len;
7277 
7278 		len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7279 		if (len < 0)
7280 			return -EINVAL;
7281 		else if (len >= PATH_MAX)
7282 			return -ENAMETOOLONG;
7283 
7284 		err = bpf_program__unpin_instance(prog, buf, i);
7285 		if (err)
7286 			return err;
7287 	}
7288 
7289 	err = rmdir(path);
7290 	if (err)
7291 		return -errno;
7292 
7293 	return 0;
7294 }
7295 
7296 int bpf_map__pin(struct bpf_map *map, const char *path)
7297 {
7298 	char *cp, errmsg[STRERR_BUFSIZE];
7299 	int err;
7300 
7301 	if (map == NULL) {
7302 		pr_warn("invalid map pointer\n");
7303 		return -EINVAL;
7304 	}
7305 
7306 	if (map->pin_path) {
7307 		if (path && strcmp(path, map->pin_path)) {
7308 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7309 				bpf_map__name(map), map->pin_path, path);
7310 			return -EINVAL;
7311 		} else if (map->pinned) {
7312 			pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
7313 				 bpf_map__name(map), map->pin_path);
7314 			return 0;
7315 		}
7316 	} else {
7317 		if (!path) {
7318 			pr_warn("missing a path to pin map '%s' at\n",
7319 				bpf_map__name(map));
7320 			return -EINVAL;
7321 		} else if (map->pinned) {
7322 			pr_warn("map '%s' already pinned\n", bpf_map__name(map));
7323 			return -EEXIST;
7324 		}
7325 
7326 		map->pin_path = strdup(path);
7327 		if (!map->pin_path) {
7328 			err = -errno;
7329 			goto out_err;
7330 		}
7331 	}
7332 
7333 	err = make_parent_dir(map->pin_path);
7334 	if (err)
7335 		return err;
7336 
7337 	err = check_path(map->pin_path);
7338 	if (err)
7339 		return err;
7340 
7341 	if (bpf_obj_pin(map->fd, map->pin_path)) {
7342 		err = -errno;
7343 		goto out_err;
7344 	}
7345 
7346 	map->pinned = true;
7347 	pr_debug("pinned map '%s'\n", map->pin_path);
7348 
7349 	return 0;
7350 
7351 out_err:
7352 	cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7353 	pr_warn("failed to pin map: %s\n", cp);
7354 	return err;
7355 }
7356 
7357 int bpf_map__unpin(struct bpf_map *map, const char *path)
7358 {
7359 	int err;
7360 
7361 	if (map == NULL) {
7362 		pr_warn("invalid map pointer\n");
7363 		return -EINVAL;
7364 	}
7365 
7366 	if (map->pin_path) {
7367 		if (path && strcmp(path, map->pin_path)) {
7368 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7369 				bpf_map__name(map), map->pin_path, path);
7370 			return -EINVAL;
7371 		}
7372 		path = map->pin_path;
7373 	} else if (!path) {
7374 		pr_warn("no path to unpin map '%s' from\n",
7375 			bpf_map__name(map));
7376 		return -EINVAL;
7377 	}
7378 
7379 	err = check_path(path);
7380 	if (err)
7381 		return err;
7382 
7383 	err = unlink(path);
7384 	if (err != 0)
7385 		return -errno;
7386 
7387 	map->pinned = false;
7388 	pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
7389 
7390 	return 0;
7391 }
7392 
7393 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
7394 {
7395 	char *new = NULL;
7396 
7397 	if (path) {
7398 		new = strdup(path);
7399 		if (!new)
7400 			return -errno;
7401 	}
7402 
7403 	free(map->pin_path);
7404 	map->pin_path = new;
7405 	return 0;
7406 }
7407 
7408 const char *bpf_map__get_pin_path(const struct bpf_map *map)
7409 {
7410 	return map->pin_path;
7411 }
7412 
7413 bool bpf_map__is_pinned(const struct bpf_map *map)
7414 {
7415 	return map->pinned;
7416 }
7417 
7418 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
7419 {
7420 	struct bpf_map *map;
7421 	int err;
7422 
7423 	if (!obj)
7424 		return -ENOENT;
7425 
7426 	if (!obj->loaded) {
7427 		pr_warn("object not yet loaded; load it first\n");
7428 		return -ENOENT;
7429 	}
7430 
7431 	bpf_object__for_each_map(map, obj) {
7432 		char *pin_path = NULL;
7433 		char buf[PATH_MAX];
7434 
7435 		if (path) {
7436 			int len;
7437 
7438 			len = snprintf(buf, PATH_MAX, "%s/%s", path,
7439 				       bpf_map__name(map));
7440 			if (len < 0) {
7441 				err = -EINVAL;
7442 				goto err_unpin_maps;
7443 			} else if (len >= PATH_MAX) {
7444 				err = -ENAMETOOLONG;
7445 				goto err_unpin_maps;
7446 			}
7447 			pin_path = buf;
7448 		} else if (!map->pin_path) {
7449 			continue;
7450 		}
7451 
7452 		err = bpf_map__pin(map, pin_path);
7453 		if (err)
7454 			goto err_unpin_maps;
7455 	}
7456 
7457 	return 0;
7458 
7459 err_unpin_maps:
7460 	while ((map = bpf_map__prev(map, obj))) {
7461 		if (!map->pin_path)
7462 			continue;
7463 
7464 		bpf_map__unpin(map, NULL);
7465 	}
7466 
7467 	return err;
7468 }
7469 
7470 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
7471 {
7472 	struct bpf_map *map;
7473 	int err;
7474 
7475 	if (!obj)
7476 		return -ENOENT;
7477 
7478 	bpf_object__for_each_map(map, obj) {
7479 		char *pin_path = NULL;
7480 		char buf[PATH_MAX];
7481 
7482 		if (path) {
7483 			int len;
7484 
7485 			len = snprintf(buf, PATH_MAX, "%s/%s", path,
7486 				       bpf_map__name(map));
7487 			if (len < 0)
7488 				return -EINVAL;
7489 			else if (len >= PATH_MAX)
7490 				return -ENAMETOOLONG;
7491 			pin_path = buf;
7492 		} else if (!map->pin_path) {
7493 			continue;
7494 		}
7495 
7496 		err = bpf_map__unpin(map, pin_path);
7497 		if (err)
7498 			return err;
7499 	}
7500 
7501 	return 0;
7502 }
7503 
7504 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
7505 {
7506 	struct bpf_program *prog;
7507 	int err;
7508 
7509 	if (!obj)
7510 		return -ENOENT;
7511 
7512 	if (!obj->loaded) {
7513 		pr_warn("object not yet loaded; load it first\n");
7514 		return -ENOENT;
7515 	}
7516 
7517 	bpf_object__for_each_program(prog, obj) {
7518 		char buf[PATH_MAX];
7519 		int len;
7520 
7521 		len = snprintf(buf, PATH_MAX, "%s/%s", path,
7522 			       prog->pin_name);
7523 		if (len < 0) {
7524 			err = -EINVAL;
7525 			goto err_unpin_programs;
7526 		} else if (len >= PATH_MAX) {
7527 			err = -ENAMETOOLONG;
7528 			goto err_unpin_programs;
7529 		}
7530 
7531 		err = bpf_program__pin(prog, buf);
7532 		if (err)
7533 			goto err_unpin_programs;
7534 	}
7535 
7536 	return 0;
7537 
7538 err_unpin_programs:
7539 	while ((prog = bpf_program__prev(prog, obj))) {
7540 		char buf[PATH_MAX];
7541 		int len;
7542 
7543 		len = snprintf(buf, PATH_MAX, "%s/%s", path,
7544 			       prog->pin_name);
7545 		if (len < 0)
7546 			continue;
7547 		else if (len >= PATH_MAX)
7548 			continue;
7549 
7550 		bpf_program__unpin(prog, buf);
7551 	}
7552 
7553 	return err;
7554 }
7555 
7556 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
7557 {
7558 	struct bpf_program *prog;
7559 	int err;
7560 
7561 	if (!obj)
7562 		return -ENOENT;
7563 
7564 	bpf_object__for_each_program(prog, obj) {
7565 		char buf[PATH_MAX];
7566 		int len;
7567 
7568 		len = snprintf(buf, PATH_MAX, "%s/%s", path,
7569 			       prog->pin_name);
7570 		if (len < 0)
7571 			return -EINVAL;
7572 		else if (len >= PATH_MAX)
7573 			return -ENAMETOOLONG;
7574 
7575 		err = bpf_program__unpin(prog, buf);
7576 		if (err)
7577 			return err;
7578 	}
7579 
7580 	return 0;
7581 }
7582 
7583 int bpf_object__pin(struct bpf_object *obj, const char *path)
7584 {
7585 	int err;
7586 
7587 	err = bpf_object__pin_maps(obj, path);
7588 	if (err)
7589 		return err;
7590 
7591 	err = bpf_object__pin_programs(obj, path);
7592 	if (err) {
7593 		bpf_object__unpin_maps(obj, path);
7594 		return err;
7595 	}
7596 
7597 	return 0;
7598 }
7599 
7600 static void bpf_map__destroy(struct bpf_map *map)
7601 {
7602 	if (map->clear_priv)
7603 		map->clear_priv(map, map->priv);
7604 	map->priv = NULL;
7605 	map->clear_priv = NULL;
7606 
7607 	if (map->inner_map) {
7608 		bpf_map__destroy(map->inner_map);
7609 		zfree(&map->inner_map);
7610 	}
7611 
7612 	zfree(&map->init_slots);
7613 	map->init_slots_sz = 0;
7614 
7615 	if (map->mmaped) {
7616 		munmap(map->mmaped, bpf_map_mmap_sz(map));
7617 		map->mmaped = NULL;
7618 	}
7619 
7620 	if (map->st_ops) {
7621 		zfree(&map->st_ops->data);
7622 		zfree(&map->st_ops->progs);
7623 		zfree(&map->st_ops->kern_func_off);
7624 		zfree(&map->st_ops);
7625 	}
7626 
7627 	zfree(&map->name);
7628 	zfree(&map->pin_path);
7629 
7630 	if (map->fd >= 0)
7631 		zclose(map->fd);
7632 }
7633 
7634 void bpf_object__close(struct bpf_object *obj)
7635 {
7636 	size_t i;
7637 
7638 	if (IS_ERR_OR_NULL(obj))
7639 		return;
7640 
7641 	if (obj->clear_priv)
7642 		obj->clear_priv(obj, obj->priv);
7643 
7644 	bpf_object__elf_finish(obj);
7645 	bpf_object__unload(obj);
7646 	btf__free(obj->btf);
7647 	btf_ext__free(obj->btf_ext);
7648 
7649 	for (i = 0; i < obj->nr_maps; i++)
7650 		bpf_map__destroy(&obj->maps[i]);
7651 
7652 	zfree(&obj->kconfig);
7653 	zfree(&obj->externs);
7654 	obj->nr_extern = 0;
7655 
7656 	zfree(&obj->maps);
7657 	obj->nr_maps = 0;
7658 
7659 	if (obj->programs && obj->nr_programs) {
7660 		for (i = 0; i < obj->nr_programs; i++)
7661 			bpf_program__exit(&obj->programs[i]);
7662 	}
7663 	zfree(&obj->programs);
7664 
7665 	list_del(&obj->list);
7666 	free(obj);
7667 }
7668 
7669 struct bpf_object *
7670 bpf_object__next(struct bpf_object *prev)
7671 {
7672 	struct bpf_object *next;
7673 
7674 	if (!prev)
7675 		next = list_first_entry(&bpf_objects_list,
7676 					struct bpf_object,
7677 					list);
7678 	else
7679 		next = list_next_entry(prev, list);
7680 
7681 	/* Empty list is noticed here so don't need checking on entry. */
7682 	if (&next->list == &bpf_objects_list)
7683 		return NULL;
7684 
7685 	return next;
7686 }
7687 
7688 const char *bpf_object__name(const struct bpf_object *obj)
7689 {
7690 	return obj ? obj->name : ERR_PTR(-EINVAL);
7691 }
7692 
7693 unsigned int bpf_object__kversion(const struct bpf_object *obj)
7694 {
7695 	return obj ? obj->kern_version : 0;
7696 }
7697 
7698 struct btf *bpf_object__btf(const struct bpf_object *obj)
7699 {
7700 	return obj ? obj->btf : NULL;
7701 }
7702 
7703 int bpf_object__btf_fd(const struct bpf_object *obj)
7704 {
7705 	return obj->btf ? btf__fd(obj->btf) : -1;
7706 }
7707 
7708 int bpf_object__set_priv(struct bpf_object *obj, void *priv,
7709 			 bpf_object_clear_priv_t clear_priv)
7710 {
7711 	if (obj->priv && obj->clear_priv)
7712 		obj->clear_priv(obj, obj->priv);
7713 
7714 	obj->priv = priv;
7715 	obj->clear_priv = clear_priv;
7716 	return 0;
7717 }
7718 
7719 void *bpf_object__priv(const struct bpf_object *obj)
7720 {
7721 	return obj ? obj->priv : ERR_PTR(-EINVAL);
7722 }
7723 
7724 static struct bpf_program *
7725 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
7726 		    bool forward)
7727 {
7728 	size_t nr_programs = obj->nr_programs;
7729 	ssize_t idx;
7730 
7731 	if (!nr_programs)
7732 		return NULL;
7733 
7734 	if (!p)
7735 		/* Iter from the beginning */
7736 		return forward ? &obj->programs[0] :
7737 			&obj->programs[nr_programs - 1];
7738 
7739 	if (p->obj != obj) {
7740 		pr_warn("error: program handler doesn't match object\n");
7741 		return NULL;
7742 	}
7743 
7744 	idx = (p - obj->programs) + (forward ? 1 : -1);
7745 	if (idx >= obj->nr_programs || idx < 0)
7746 		return NULL;
7747 	return &obj->programs[idx];
7748 }
7749 
7750 struct bpf_program *
7751 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj)
7752 {
7753 	struct bpf_program *prog = prev;
7754 
7755 	do {
7756 		prog = __bpf_program__iter(prog, obj, true);
7757 	} while (prog && prog_is_subprog(obj, prog));
7758 
7759 	return prog;
7760 }
7761 
7762 struct bpf_program *
7763 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj)
7764 {
7765 	struct bpf_program *prog = next;
7766 
7767 	do {
7768 		prog = __bpf_program__iter(prog, obj, false);
7769 	} while (prog && prog_is_subprog(obj, prog));
7770 
7771 	return prog;
7772 }
7773 
7774 int bpf_program__set_priv(struct bpf_program *prog, void *priv,
7775 			  bpf_program_clear_priv_t clear_priv)
7776 {
7777 	if (prog->priv && prog->clear_priv)
7778 		prog->clear_priv(prog, prog->priv);
7779 
7780 	prog->priv = priv;
7781 	prog->clear_priv = clear_priv;
7782 	return 0;
7783 }
7784 
7785 void *bpf_program__priv(const struct bpf_program *prog)
7786 {
7787 	return prog ? prog->priv : ERR_PTR(-EINVAL);
7788 }
7789 
7790 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
7791 {
7792 	prog->prog_ifindex = ifindex;
7793 }
7794 
7795 const char *bpf_program__name(const struct bpf_program *prog)
7796 {
7797 	return prog->name;
7798 }
7799 
7800 const char *bpf_program__section_name(const struct bpf_program *prog)
7801 {
7802 	return prog->sec_name;
7803 }
7804 
7805 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy)
7806 {
7807 	const char *title;
7808 
7809 	title = prog->sec_name;
7810 	if (needs_copy) {
7811 		title = strdup(title);
7812 		if (!title) {
7813 			pr_warn("failed to strdup program title\n");
7814 			return ERR_PTR(-ENOMEM);
7815 		}
7816 	}
7817 
7818 	return title;
7819 }
7820 
7821 bool bpf_program__autoload(const struct bpf_program *prog)
7822 {
7823 	return prog->load;
7824 }
7825 
7826 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
7827 {
7828 	if (prog->obj->loaded)
7829 		return -EINVAL;
7830 
7831 	prog->load = autoload;
7832 	return 0;
7833 }
7834 
7835 int bpf_program__fd(const struct bpf_program *prog)
7836 {
7837 	return bpf_program__nth_fd(prog, 0);
7838 }
7839 
7840 size_t bpf_program__size(const struct bpf_program *prog)
7841 {
7842 	return prog->insns_cnt * BPF_INSN_SZ;
7843 }
7844 
7845 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances,
7846 			  bpf_program_prep_t prep)
7847 {
7848 	int *instances_fds;
7849 
7850 	if (nr_instances <= 0 || !prep)
7851 		return -EINVAL;
7852 
7853 	if (prog->instances.nr > 0 || prog->instances.fds) {
7854 		pr_warn("Can't set pre-processor after loading\n");
7855 		return -EINVAL;
7856 	}
7857 
7858 	instances_fds = malloc(sizeof(int) * nr_instances);
7859 	if (!instances_fds) {
7860 		pr_warn("alloc memory failed for fds\n");
7861 		return -ENOMEM;
7862 	}
7863 
7864 	/* fill all fd with -1 */
7865 	memset(instances_fds, -1, sizeof(int) * nr_instances);
7866 
7867 	prog->instances.nr = nr_instances;
7868 	prog->instances.fds = instances_fds;
7869 	prog->preprocessor = prep;
7870 	return 0;
7871 }
7872 
7873 int bpf_program__nth_fd(const struct bpf_program *prog, int n)
7874 {
7875 	int fd;
7876 
7877 	if (!prog)
7878 		return -EINVAL;
7879 
7880 	if (n >= prog->instances.nr || n < 0) {
7881 		pr_warn("Can't get the %dth fd from program %s: only %d instances\n",
7882 			n, prog->name, prog->instances.nr);
7883 		return -EINVAL;
7884 	}
7885 
7886 	fd = prog->instances.fds[n];
7887 	if (fd < 0) {
7888 		pr_warn("%dth instance of program '%s' is invalid\n",
7889 			n, prog->name);
7890 		return -ENOENT;
7891 	}
7892 
7893 	return fd;
7894 }
7895 
7896 enum bpf_prog_type bpf_program__get_type(struct bpf_program *prog)
7897 {
7898 	return prog->type;
7899 }
7900 
7901 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
7902 {
7903 	prog->type = type;
7904 }
7905 
7906 static bool bpf_program__is_type(const struct bpf_program *prog,
7907 				 enum bpf_prog_type type)
7908 {
7909 	return prog ? (prog->type == type) : false;
7910 }
7911 
7912 #define BPF_PROG_TYPE_FNS(NAME, TYPE)				\
7913 int bpf_program__set_##NAME(struct bpf_program *prog)		\
7914 {								\
7915 	if (!prog)						\
7916 		return -EINVAL;					\
7917 	bpf_program__set_type(prog, TYPE);			\
7918 	return 0;						\
7919 }								\
7920 								\
7921 bool bpf_program__is_##NAME(const struct bpf_program *prog)	\
7922 {								\
7923 	return bpf_program__is_type(prog, TYPE);		\
7924 }								\
7925 
7926 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER);
7927 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM);
7928 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE);
7929 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS);
7930 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT);
7931 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT);
7932 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT);
7933 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP);
7934 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT);
7935 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING);
7936 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS);
7937 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT);
7938 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP);
7939 
7940 enum bpf_attach_type
7941 bpf_program__get_expected_attach_type(struct bpf_program *prog)
7942 {
7943 	return prog->expected_attach_type;
7944 }
7945 
7946 void bpf_program__set_expected_attach_type(struct bpf_program *prog,
7947 					   enum bpf_attach_type type)
7948 {
7949 	prog->expected_attach_type = type;
7950 }
7951 
7952 #define BPF_PROG_SEC_IMPL(string, ptype, eatype, eatype_optional,	    \
7953 			  attachable, attach_btf)			    \
7954 	{								    \
7955 		.sec = string,						    \
7956 		.len = sizeof(string) - 1,				    \
7957 		.prog_type = ptype,					    \
7958 		.expected_attach_type = eatype,				    \
7959 		.is_exp_attach_type_optional = eatype_optional,		    \
7960 		.is_attachable = attachable,				    \
7961 		.is_attach_btf = attach_btf,				    \
7962 	}
7963 
7964 /* Programs that can NOT be attached. */
7965 #define BPF_PROG_SEC(string, ptype) BPF_PROG_SEC_IMPL(string, ptype, 0, 0, 0, 0)
7966 
7967 /* Programs that can be attached. */
7968 #define BPF_APROG_SEC(string, ptype, atype) \
7969 	BPF_PROG_SEC_IMPL(string, ptype, atype, true, 1, 0)
7970 
7971 /* Programs that must specify expected attach type at load time. */
7972 #define BPF_EAPROG_SEC(string, ptype, eatype) \
7973 	BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 1, 0)
7974 
7975 /* Programs that use BTF to identify attach point */
7976 #define BPF_PROG_BTF(string, ptype, eatype) \
7977 	BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 0, 1)
7978 
7979 /* Programs that can be attached but attach type can't be identified by section
7980  * name. Kept for backward compatibility.
7981  */
7982 #define BPF_APROG_COMPAT(string, ptype) BPF_PROG_SEC(string, ptype)
7983 
7984 #define SEC_DEF(sec_pfx, ptype, ...) {					    \
7985 	.sec = sec_pfx,							    \
7986 	.len = sizeof(sec_pfx) - 1,					    \
7987 	.prog_type = BPF_PROG_TYPE_##ptype,				    \
7988 	__VA_ARGS__							    \
7989 }
7990 
7991 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec,
7992 				      struct bpf_program *prog);
7993 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec,
7994 				  struct bpf_program *prog);
7995 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec,
7996 				      struct bpf_program *prog);
7997 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec,
7998 				     struct bpf_program *prog);
7999 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec,
8000 				   struct bpf_program *prog);
8001 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec,
8002 				    struct bpf_program *prog);
8003 
8004 static const struct bpf_sec_def section_defs[] = {
8005 	BPF_PROG_SEC("socket",			BPF_PROG_TYPE_SOCKET_FILTER),
8006 	BPF_PROG_SEC("sk_reuseport",		BPF_PROG_TYPE_SK_REUSEPORT),
8007 	SEC_DEF("kprobe/", KPROBE,
8008 		.attach_fn = attach_kprobe),
8009 	BPF_PROG_SEC("uprobe/",			BPF_PROG_TYPE_KPROBE),
8010 	SEC_DEF("kretprobe/", KPROBE,
8011 		.attach_fn = attach_kprobe),
8012 	BPF_PROG_SEC("uretprobe/",		BPF_PROG_TYPE_KPROBE),
8013 	BPF_PROG_SEC("classifier",		BPF_PROG_TYPE_SCHED_CLS),
8014 	BPF_PROG_SEC("action",			BPF_PROG_TYPE_SCHED_ACT),
8015 	SEC_DEF("tracepoint/", TRACEPOINT,
8016 		.attach_fn = attach_tp),
8017 	SEC_DEF("tp/", TRACEPOINT,
8018 		.attach_fn = attach_tp),
8019 	SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT,
8020 		.attach_fn = attach_raw_tp),
8021 	SEC_DEF("raw_tp/", RAW_TRACEPOINT,
8022 		.attach_fn = attach_raw_tp),
8023 	SEC_DEF("tp_btf/", TRACING,
8024 		.expected_attach_type = BPF_TRACE_RAW_TP,
8025 		.is_attach_btf = true,
8026 		.attach_fn = attach_trace),
8027 	SEC_DEF("fentry/", TRACING,
8028 		.expected_attach_type = BPF_TRACE_FENTRY,
8029 		.is_attach_btf = true,
8030 		.attach_fn = attach_trace),
8031 	SEC_DEF("fmod_ret/", TRACING,
8032 		.expected_attach_type = BPF_MODIFY_RETURN,
8033 		.is_attach_btf = true,
8034 		.attach_fn = attach_trace),
8035 	SEC_DEF("fexit/", TRACING,
8036 		.expected_attach_type = BPF_TRACE_FEXIT,
8037 		.is_attach_btf = true,
8038 		.attach_fn = attach_trace),
8039 	SEC_DEF("fentry.s/", TRACING,
8040 		.expected_attach_type = BPF_TRACE_FENTRY,
8041 		.is_attach_btf = true,
8042 		.is_sleepable = true,
8043 		.attach_fn = attach_trace),
8044 	SEC_DEF("fmod_ret.s/", TRACING,
8045 		.expected_attach_type = BPF_MODIFY_RETURN,
8046 		.is_attach_btf = true,
8047 		.is_sleepable = true,
8048 		.attach_fn = attach_trace),
8049 	SEC_DEF("fexit.s/", TRACING,
8050 		.expected_attach_type = BPF_TRACE_FEXIT,
8051 		.is_attach_btf = true,
8052 		.is_sleepable = true,
8053 		.attach_fn = attach_trace),
8054 	SEC_DEF("freplace/", EXT,
8055 		.is_attach_btf = true,
8056 		.attach_fn = attach_trace),
8057 	SEC_DEF("lsm/", LSM,
8058 		.is_attach_btf = true,
8059 		.expected_attach_type = BPF_LSM_MAC,
8060 		.attach_fn = attach_lsm),
8061 	SEC_DEF("lsm.s/", LSM,
8062 		.is_attach_btf = true,
8063 		.is_sleepable = true,
8064 		.expected_attach_type = BPF_LSM_MAC,
8065 		.attach_fn = attach_lsm),
8066 	SEC_DEF("iter/", TRACING,
8067 		.expected_attach_type = BPF_TRACE_ITER,
8068 		.is_attach_btf = true,
8069 		.attach_fn = attach_iter),
8070 	BPF_EAPROG_SEC("xdp_devmap/",		BPF_PROG_TYPE_XDP,
8071 						BPF_XDP_DEVMAP),
8072 	BPF_EAPROG_SEC("xdp_cpumap/",		BPF_PROG_TYPE_XDP,
8073 						BPF_XDP_CPUMAP),
8074 	BPF_EAPROG_SEC("xdp",			BPF_PROG_TYPE_XDP,
8075 						BPF_XDP),
8076 	BPF_PROG_SEC("perf_event",		BPF_PROG_TYPE_PERF_EVENT),
8077 	BPF_PROG_SEC("lwt_in",			BPF_PROG_TYPE_LWT_IN),
8078 	BPF_PROG_SEC("lwt_out",			BPF_PROG_TYPE_LWT_OUT),
8079 	BPF_PROG_SEC("lwt_xmit",		BPF_PROG_TYPE_LWT_XMIT),
8080 	BPF_PROG_SEC("lwt_seg6local",		BPF_PROG_TYPE_LWT_SEG6LOCAL),
8081 	BPF_APROG_SEC("cgroup_skb/ingress",	BPF_PROG_TYPE_CGROUP_SKB,
8082 						BPF_CGROUP_INET_INGRESS),
8083 	BPF_APROG_SEC("cgroup_skb/egress",	BPF_PROG_TYPE_CGROUP_SKB,
8084 						BPF_CGROUP_INET_EGRESS),
8085 	BPF_APROG_COMPAT("cgroup/skb",		BPF_PROG_TYPE_CGROUP_SKB),
8086 	BPF_EAPROG_SEC("cgroup/sock_create",	BPF_PROG_TYPE_CGROUP_SOCK,
8087 						BPF_CGROUP_INET_SOCK_CREATE),
8088 	BPF_EAPROG_SEC("cgroup/sock_release",	BPF_PROG_TYPE_CGROUP_SOCK,
8089 						BPF_CGROUP_INET_SOCK_RELEASE),
8090 	BPF_APROG_SEC("cgroup/sock",		BPF_PROG_TYPE_CGROUP_SOCK,
8091 						BPF_CGROUP_INET_SOCK_CREATE),
8092 	BPF_EAPROG_SEC("cgroup/post_bind4",	BPF_PROG_TYPE_CGROUP_SOCK,
8093 						BPF_CGROUP_INET4_POST_BIND),
8094 	BPF_EAPROG_SEC("cgroup/post_bind6",	BPF_PROG_TYPE_CGROUP_SOCK,
8095 						BPF_CGROUP_INET6_POST_BIND),
8096 	BPF_APROG_SEC("cgroup/dev",		BPF_PROG_TYPE_CGROUP_DEVICE,
8097 						BPF_CGROUP_DEVICE),
8098 	BPF_APROG_SEC("sockops",		BPF_PROG_TYPE_SOCK_OPS,
8099 						BPF_CGROUP_SOCK_OPS),
8100 	BPF_APROG_SEC("sk_skb/stream_parser",	BPF_PROG_TYPE_SK_SKB,
8101 						BPF_SK_SKB_STREAM_PARSER),
8102 	BPF_APROG_SEC("sk_skb/stream_verdict",	BPF_PROG_TYPE_SK_SKB,
8103 						BPF_SK_SKB_STREAM_VERDICT),
8104 	BPF_APROG_COMPAT("sk_skb",		BPF_PROG_TYPE_SK_SKB),
8105 	BPF_APROG_SEC("sk_msg",			BPF_PROG_TYPE_SK_MSG,
8106 						BPF_SK_MSG_VERDICT),
8107 	BPF_APROG_SEC("lirc_mode2",		BPF_PROG_TYPE_LIRC_MODE2,
8108 						BPF_LIRC_MODE2),
8109 	BPF_APROG_SEC("flow_dissector",		BPF_PROG_TYPE_FLOW_DISSECTOR,
8110 						BPF_FLOW_DISSECTOR),
8111 	BPF_EAPROG_SEC("cgroup/bind4",		BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8112 						BPF_CGROUP_INET4_BIND),
8113 	BPF_EAPROG_SEC("cgroup/bind6",		BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8114 						BPF_CGROUP_INET6_BIND),
8115 	BPF_EAPROG_SEC("cgroup/connect4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8116 						BPF_CGROUP_INET4_CONNECT),
8117 	BPF_EAPROG_SEC("cgroup/connect6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8118 						BPF_CGROUP_INET6_CONNECT),
8119 	BPF_EAPROG_SEC("cgroup/sendmsg4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8120 						BPF_CGROUP_UDP4_SENDMSG),
8121 	BPF_EAPROG_SEC("cgroup/sendmsg6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8122 						BPF_CGROUP_UDP6_SENDMSG),
8123 	BPF_EAPROG_SEC("cgroup/recvmsg4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8124 						BPF_CGROUP_UDP4_RECVMSG),
8125 	BPF_EAPROG_SEC("cgroup/recvmsg6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8126 						BPF_CGROUP_UDP6_RECVMSG),
8127 	BPF_EAPROG_SEC("cgroup/getpeername4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8128 						BPF_CGROUP_INET4_GETPEERNAME),
8129 	BPF_EAPROG_SEC("cgroup/getpeername6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8130 						BPF_CGROUP_INET6_GETPEERNAME),
8131 	BPF_EAPROG_SEC("cgroup/getsockname4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8132 						BPF_CGROUP_INET4_GETSOCKNAME),
8133 	BPF_EAPROG_SEC("cgroup/getsockname6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8134 						BPF_CGROUP_INET6_GETSOCKNAME),
8135 	BPF_EAPROG_SEC("cgroup/sysctl",		BPF_PROG_TYPE_CGROUP_SYSCTL,
8136 						BPF_CGROUP_SYSCTL),
8137 	BPF_EAPROG_SEC("cgroup/getsockopt",	BPF_PROG_TYPE_CGROUP_SOCKOPT,
8138 						BPF_CGROUP_GETSOCKOPT),
8139 	BPF_EAPROG_SEC("cgroup/setsockopt",	BPF_PROG_TYPE_CGROUP_SOCKOPT,
8140 						BPF_CGROUP_SETSOCKOPT),
8141 	BPF_PROG_SEC("struct_ops",		BPF_PROG_TYPE_STRUCT_OPS),
8142 	BPF_EAPROG_SEC("sk_lookup/",		BPF_PROG_TYPE_SK_LOOKUP,
8143 						BPF_SK_LOOKUP),
8144 };
8145 
8146 #undef BPF_PROG_SEC_IMPL
8147 #undef BPF_PROG_SEC
8148 #undef BPF_APROG_SEC
8149 #undef BPF_EAPROG_SEC
8150 #undef BPF_APROG_COMPAT
8151 #undef SEC_DEF
8152 
8153 #define MAX_TYPE_NAME_SIZE 32
8154 
8155 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
8156 {
8157 	int i, n = ARRAY_SIZE(section_defs);
8158 
8159 	for (i = 0; i < n; i++) {
8160 		if (strncmp(sec_name,
8161 			    section_defs[i].sec, section_defs[i].len))
8162 			continue;
8163 		return &section_defs[i];
8164 	}
8165 	return NULL;
8166 }
8167 
8168 static char *libbpf_get_type_names(bool attach_type)
8169 {
8170 	int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
8171 	char *buf;
8172 
8173 	buf = malloc(len);
8174 	if (!buf)
8175 		return NULL;
8176 
8177 	buf[0] = '\0';
8178 	/* Forge string buf with all available names */
8179 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8180 		if (attach_type && !section_defs[i].is_attachable)
8181 			continue;
8182 
8183 		if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
8184 			free(buf);
8185 			return NULL;
8186 		}
8187 		strcat(buf, " ");
8188 		strcat(buf, section_defs[i].sec);
8189 	}
8190 
8191 	return buf;
8192 }
8193 
8194 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
8195 			     enum bpf_attach_type *expected_attach_type)
8196 {
8197 	const struct bpf_sec_def *sec_def;
8198 	char *type_names;
8199 
8200 	if (!name)
8201 		return -EINVAL;
8202 
8203 	sec_def = find_sec_def(name);
8204 	if (sec_def) {
8205 		*prog_type = sec_def->prog_type;
8206 		*expected_attach_type = sec_def->expected_attach_type;
8207 		return 0;
8208 	}
8209 
8210 	pr_debug("failed to guess program type from ELF section '%s'\n", name);
8211 	type_names = libbpf_get_type_names(false);
8212 	if (type_names != NULL) {
8213 		pr_debug("supported section(type) names are:%s\n", type_names);
8214 		free(type_names);
8215 	}
8216 
8217 	return -ESRCH;
8218 }
8219 
8220 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
8221 						     size_t offset)
8222 {
8223 	struct bpf_map *map;
8224 	size_t i;
8225 
8226 	for (i = 0; i < obj->nr_maps; i++) {
8227 		map = &obj->maps[i];
8228 		if (!bpf_map__is_struct_ops(map))
8229 			continue;
8230 		if (map->sec_offset <= offset &&
8231 		    offset - map->sec_offset < map->def.value_size)
8232 			return map;
8233 	}
8234 
8235 	return NULL;
8236 }
8237 
8238 /* Collect the reloc from ELF and populate the st_ops->progs[] */
8239 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
8240 					    GElf_Shdr *shdr, Elf_Data *data)
8241 {
8242 	const struct btf_member *member;
8243 	struct bpf_struct_ops *st_ops;
8244 	struct bpf_program *prog;
8245 	unsigned int shdr_idx;
8246 	const struct btf *btf;
8247 	struct bpf_map *map;
8248 	Elf_Data *symbols;
8249 	unsigned int moff, insn_idx;
8250 	const char *name;
8251 	__u32 member_idx;
8252 	GElf_Sym sym;
8253 	GElf_Rel rel;
8254 	int i, nrels;
8255 
8256 	symbols = obj->efile.symbols;
8257 	btf = obj->btf;
8258 	nrels = shdr->sh_size / shdr->sh_entsize;
8259 	for (i = 0; i < nrels; i++) {
8260 		if (!gelf_getrel(data, i, &rel)) {
8261 			pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
8262 			return -LIBBPF_ERRNO__FORMAT;
8263 		}
8264 
8265 		if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
8266 			pr_warn("struct_ops reloc: symbol %zx not found\n",
8267 				(size_t)GELF_R_SYM(rel.r_info));
8268 			return -LIBBPF_ERRNO__FORMAT;
8269 		}
8270 
8271 		name = elf_sym_str(obj, sym.st_name) ?: "<?>";
8272 		map = find_struct_ops_map_by_offset(obj, rel.r_offset);
8273 		if (!map) {
8274 			pr_warn("struct_ops reloc: cannot find map at rel.r_offset %zu\n",
8275 				(size_t)rel.r_offset);
8276 			return -EINVAL;
8277 		}
8278 
8279 		moff = rel.r_offset - map->sec_offset;
8280 		shdr_idx = sym.st_shndx;
8281 		st_ops = map->st_ops;
8282 		pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel.r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
8283 			 map->name,
8284 			 (long long)(rel.r_info >> 32),
8285 			 (long long)sym.st_value,
8286 			 shdr_idx, (size_t)rel.r_offset,
8287 			 map->sec_offset, sym.st_name, name);
8288 
8289 		if (shdr_idx >= SHN_LORESERVE) {
8290 			pr_warn("struct_ops reloc %s: rel.r_offset %zu shdr_idx %u unsupported non-static function\n",
8291 				map->name, (size_t)rel.r_offset, shdr_idx);
8292 			return -LIBBPF_ERRNO__RELOC;
8293 		}
8294 		if (sym.st_value % BPF_INSN_SZ) {
8295 			pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
8296 				map->name, (unsigned long long)sym.st_value);
8297 			return -LIBBPF_ERRNO__FORMAT;
8298 		}
8299 		insn_idx = sym.st_value / BPF_INSN_SZ;
8300 
8301 		member = find_member_by_offset(st_ops->type, moff * 8);
8302 		if (!member) {
8303 			pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
8304 				map->name, moff);
8305 			return -EINVAL;
8306 		}
8307 		member_idx = member - btf_members(st_ops->type);
8308 		name = btf__name_by_offset(btf, member->name_off);
8309 
8310 		if (!resolve_func_ptr(btf, member->type, NULL)) {
8311 			pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
8312 				map->name, name);
8313 			return -EINVAL;
8314 		}
8315 
8316 		prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
8317 		if (!prog) {
8318 			pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
8319 				map->name, shdr_idx, name);
8320 			return -EINVAL;
8321 		}
8322 
8323 		if (prog->type == BPF_PROG_TYPE_UNSPEC) {
8324 			const struct bpf_sec_def *sec_def;
8325 
8326 			sec_def = find_sec_def(prog->sec_name);
8327 			if (sec_def &&
8328 			    sec_def->prog_type != BPF_PROG_TYPE_STRUCT_OPS) {
8329 				/* for pr_warn */
8330 				prog->type = sec_def->prog_type;
8331 				goto invalid_prog;
8332 			}
8333 
8334 			prog->type = BPF_PROG_TYPE_STRUCT_OPS;
8335 			prog->attach_btf_id = st_ops->type_id;
8336 			prog->expected_attach_type = member_idx;
8337 		} else if (prog->type != BPF_PROG_TYPE_STRUCT_OPS ||
8338 			   prog->attach_btf_id != st_ops->type_id ||
8339 			   prog->expected_attach_type != member_idx) {
8340 			goto invalid_prog;
8341 		}
8342 		st_ops->progs[member_idx] = prog;
8343 	}
8344 
8345 	return 0;
8346 
8347 invalid_prog:
8348 	pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
8349 		map->name, prog->name, prog->sec_name, prog->type,
8350 		prog->attach_btf_id, prog->expected_attach_type, name);
8351 	return -EINVAL;
8352 }
8353 
8354 #define BTF_TRACE_PREFIX "btf_trace_"
8355 #define BTF_LSM_PREFIX "bpf_lsm_"
8356 #define BTF_ITER_PREFIX "bpf_iter_"
8357 #define BTF_MAX_NAME_SIZE 128
8358 
8359 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
8360 				   const char *name, __u32 kind)
8361 {
8362 	char btf_type_name[BTF_MAX_NAME_SIZE];
8363 	int ret;
8364 
8365 	ret = snprintf(btf_type_name, sizeof(btf_type_name),
8366 		       "%s%s", prefix, name);
8367 	/* snprintf returns the number of characters written excluding the
8368 	 * the terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
8369 	 * indicates truncation.
8370 	 */
8371 	if (ret < 0 || ret >= sizeof(btf_type_name))
8372 		return -ENAMETOOLONG;
8373 	return btf__find_by_name_kind(btf, btf_type_name, kind);
8374 }
8375 
8376 static inline int __find_vmlinux_btf_id(struct btf *btf, const char *name,
8377 					enum bpf_attach_type attach_type)
8378 {
8379 	int err;
8380 
8381 	if (attach_type == BPF_TRACE_RAW_TP)
8382 		err = find_btf_by_prefix_kind(btf, BTF_TRACE_PREFIX, name,
8383 					      BTF_KIND_TYPEDEF);
8384 	else if (attach_type == BPF_LSM_MAC)
8385 		err = find_btf_by_prefix_kind(btf, BTF_LSM_PREFIX, name,
8386 					      BTF_KIND_FUNC);
8387 	else if (attach_type == BPF_TRACE_ITER)
8388 		err = find_btf_by_prefix_kind(btf, BTF_ITER_PREFIX, name,
8389 					      BTF_KIND_FUNC);
8390 	else
8391 		err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
8392 
8393 	if (err <= 0)
8394 		pr_warn("%s is not found in vmlinux BTF\n", name);
8395 
8396 	return err;
8397 }
8398 
8399 int libbpf_find_vmlinux_btf_id(const char *name,
8400 			       enum bpf_attach_type attach_type)
8401 {
8402 	struct btf *btf;
8403 	int err;
8404 
8405 	btf = libbpf_find_kernel_btf();
8406 	if (IS_ERR(btf)) {
8407 		pr_warn("vmlinux BTF is not found\n");
8408 		return -EINVAL;
8409 	}
8410 
8411 	err = __find_vmlinux_btf_id(btf, name, attach_type);
8412 	btf__free(btf);
8413 	return err;
8414 }
8415 
8416 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
8417 {
8418 	struct bpf_prog_info_linear *info_linear;
8419 	struct bpf_prog_info *info;
8420 	struct btf *btf = NULL;
8421 	int err = -EINVAL;
8422 
8423 	info_linear = bpf_program__get_prog_info_linear(attach_prog_fd, 0);
8424 	if (IS_ERR_OR_NULL(info_linear)) {
8425 		pr_warn("failed get_prog_info_linear for FD %d\n",
8426 			attach_prog_fd);
8427 		return -EINVAL;
8428 	}
8429 	info = &info_linear->info;
8430 	if (!info->btf_id) {
8431 		pr_warn("The target program doesn't have BTF\n");
8432 		goto out;
8433 	}
8434 	if (btf__get_from_id(info->btf_id, &btf)) {
8435 		pr_warn("Failed to get BTF of the program\n");
8436 		goto out;
8437 	}
8438 	err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
8439 	btf__free(btf);
8440 	if (err <= 0) {
8441 		pr_warn("%s is not found in prog's BTF\n", name);
8442 		goto out;
8443 	}
8444 out:
8445 	free(info_linear);
8446 	return err;
8447 }
8448 
8449 static int libbpf_find_attach_btf_id(struct bpf_program *prog)
8450 {
8451 	enum bpf_attach_type attach_type = prog->expected_attach_type;
8452 	__u32 attach_prog_fd = prog->attach_prog_fd;
8453 	const char *name = prog->sec_name;
8454 	int i, err;
8455 
8456 	if (!name)
8457 		return -EINVAL;
8458 
8459 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8460 		if (!section_defs[i].is_attach_btf)
8461 			continue;
8462 		if (strncmp(name, section_defs[i].sec, section_defs[i].len))
8463 			continue;
8464 		if (attach_prog_fd)
8465 			err = libbpf_find_prog_btf_id(name + section_defs[i].len,
8466 						      attach_prog_fd);
8467 		else
8468 			err = __find_vmlinux_btf_id(prog->obj->btf_vmlinux,
8469 						    name + section_defs[i].len,
8470 						    attach_type);
8471 		return err;
8472 	}
8473 	pr_warn("failed to identify btf_id based on ELF section name '%s'\n", name);
8474 	return -ESRCH;
8475 }
8476 
8477 int libbpf_attach_type_by_name(const char *name,
8478 			       enum bpf_attach_type *attach_type)
8479 {
8480 	char *type_names;
8481 	int i;
8482 
8483 	if (!name)
8484 		return -EINVAL;
8485 
8486 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8487 		if (strncmp(name, section_defs[i].sec, section_defs[i].len))
8488 			continue;
8489 		if (!section_defs[i].is_attachable)
8490 			return -EINVAL;
8491 		*attach_type = section_defs[i].expected_attach_type;
8492 		return 0;
8493 	}
8494 	pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
8495 	type_names = libbpf_get_type_names(true);
8496 	if (type_names != NULL) {
8497 		pr_debug("attachable section(type) names are:%s\n", type_names);
8498 		free(type_names);
8499 	}
8500 
8501 	return -EINVAL;
8502 }
8503 
8504 int bpf_map__fd(const struct bpf_map *map)
8505 {
8506 	return map ? map->fd : -EINVAL;
8507 }
8508 
8509 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map)
8510 {
8511 	return map ? &map->def : ERR_PTR(-EINVAL);
8512 }
8513 
8514 const char *bpf_map__name(const struct bpf_map *map)
8515 {
8516 	return map ? map->name : NULL;
8517 }
8518 
8519 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
8520 {
8521 	return map->def.type;
8522 }
8523 
8524 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
8525 {
8526 	if (map->fd >= 0)
8527 		return -EBUSY;
8528 	map->def.type = type;
8529 	return 0;
8530 }
8531 
8532 __u32 bpf_map__map_flags(const struct bpf_map *map)
8533 {
8534 	return map->def.map_flags;
8535 }
8536 
8537 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
8538 {
8539 	if (map->fd >= 0)
8540 		return -EBUSY;
8541 	map->def.map_flags = flags;
8542 	return 0;
8543 }
8544 
8545 __u32 bpf_map__numa_node(const struct bpf_map *map)
8546 {
8547 	return map->numa_node;
8548 }
8549 
8550 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
8551 {
8552 	if (map->fd >= 0)
8553 		return -EBUSY;
8554 	map->numa_node = numa_node;
8555 	return 0;
8556 }
8557 
8558 __u32 bpf_map__key_size(const struct bpf_map *map)
8559 {
8560 	return map->def.key_size;
8561 }
8562 
8563 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
8564 {
8565 	if (map->fd >= 0)
8566 		return -EBUSY;
8567 	map->def.key_size = size;
8568 	return 0;
8569 }
8570 
8571 __u32 bpf_map__value_size(const struct bpf_map *map)
8572 {
8573 	return map->def.value_size;
8574 }
8575 
8576 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
8577 {
8578 	if (map->fd >= 0)
8579 		return -EBUSY;
8580 	map->def.value_size = size;
8581 	return 0;
8582 }
8583 
8584 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
8585 {
8586 	return map ? map->btf_key_type_id : 0;
8587 }
8588 
8589 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
8590 {
8591 	return map ? map->btf_value_type_id : 0;
8592 }
8593 
8594 int bpf_map__set_priv(struct bpf_map *map, void *priv,
8595 		     bpf_map_clear_priv_t clear_priv)
8596 {
8597 	if (!map)
8598 		return -EINVAL;
8599 
8600 	if (map->priv) {
8601 		if (map->clear_priv)
8602 			map->clear_priv(map, map->priv);
8603 	}
8604 
8605 	map->priv = priv;
8606 	map->clear_priv = clear_priv;
8607 	return 0;
8608 }
8609 
8610 void *bpf_map__priv(const struct bpf_map *map)
8611 {
8612 	return map ? map->priv : ERR_PTR(-EINVAL);
8613 }
8614 
8615 int bpf_map__set_initial_value(struct bpf_map *map,
8616 			       const void *data, size_t size)
8617 {
8618 	if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
8619 	    size != map->def.value_size || map->fd >= 0)
8620 		return -EINVAL;
8621 
8622 	memcpy(map->mmaped, data, size);
8623 	return 0;
8624 }
8625 
8626 bool bpf_map__is_offload_neutral(const struct bpf_map *map)
8627 {
8628 	return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
8629 }
8630 
8631 bool bpf_map__is_internal(const struct bpf_map *map)
8632 {
8633 	return map->libbpf_type != LIBBPF_MAP_UNSPEC;
8634 }
8635 
8636 __u32 bpf_map__ifindex(const struct bpf_map *map)
8637 {
8638 	return map->map_ifindex;
8639 }
8640 
8641 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
8642 {
8643 	if (map->fd >= 0)
8644 		return -EBUSY;
8645 	map->map_ifindex = ifindex;
8646 	return 0;
8647 }
8648 
8649 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
8650 {
8651 	if (!bpf_map_type__is_map_in_map(map->def.type)) {
8652 		pr_warn("error: unsupported map type\n");
8653 		return -EINVAL;
8654 	}
8655 	if (map->inner_map_fd != -1) {
8656 		pr_warn("error: inner_map_fd already specified\n");
8657 		return -EINVAL;
8658 	}
8659 	map->inner_map_fd = fd;
8660 	return 0;
8661 }
8662 
8663 static struct bpf_map *
8664 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
8665 {
8666 	ssize_t idx;
8667 	struct bpf_map *s, *e;
8668 
8669 	if (!obj || !obj->maps)
8670 		return NULL;
8671 
8672 	s = obj->maps;
8673 	e = obj->maps + obj->nr_maps;
8674 
8675 	if ((m < s) || (m >= e)) {
8676 		pr_warn("error in %s: map handler doesn't belong to object\n",
8677 			 __func__);
8678 		return NULL;
8679 	}
8680 
8681 	idx = (m - obj->maps) + i;
8682 	if (idx >= obj->nr_maps || idx < 0)
8683 		return NULL;
8684 	return &obj->maps[idx];
8685 }
8686 
8687 struct bpf_map *
8688 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj)
8689 {
8690 	if (prev == NULL)
8691 		return obj->maps;
8692 
8693 	return __bpf_map__iter(prev, obj, 1);
8694 }
8695 
8696 struct bpf_map *
8697 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj)
8698 {
8699 	if (next == NULL) {
8700 		if (!obj->nr_maps)
8701 			return NULL;
8702 		return obj->maps + obj->nr_maps - 1;
8703 	}
8704 
8705 	return __bpf_map__iter(next, obj, -1);
8706 }
8707 
8708 struct bpf_map *
8709 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
8710 {
8711 	struct bpf_map *pos;
8712 
8713 	bpf_object__for_each_map(pos, obj) {
8714 		if (pos->name && !strcmp(pos->name, name))
8715 			return pos;
8716 	}
8717 	return NULL;
8718 }
8719 
8720 int
8721 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
8722 {
8723 	return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
8724 }
8725 
8726 struct bpf_map *
8727 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset)
8728 {
8729 	return ERR_PTR(-ENOTSUP);
8730 }
8731 
8732 long libbpf_get_error(const void *ptr)
8733 {
8734 	return PTR_ERR_OR_ZERO(ptr);
8735 }
8736 
8737 int bpf_prog_load(const char *file, enum bpf_prog_type type,
8738 		  struct bpf_object **pobj, int *prog_fd)
8739 {
8740 	struct bpf_prog_load_attr attr;
8741 
8742 	memset(&attr, 0, sizeof(struct bpf_prog_load_attr));
8743 	attr.file = file;
8744 	attr.prog_type = type;
8745 	attr.expected_attach_type = 0;
8746 
8747 	return bpf_prog_load_xattr(&attr, pobj, prog_fd);
8748 }
8749 
8750 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr,
8751 			struct bpf_object **pobj, int *prog_fd)
8752 {
8753 	struct bpf_object_open_attr open_attr = {};
8754 	struct bpf_program *prog, *first_prog = NULL;
8755 	struct bpf_object *obj;
8756 	struct bpf_map *map;
8757 	int err;
8758 
8759 	if (!attr)
8760 		return -EINVAL;
8761 	if (!attr->file)
8762 		return -EINVAL;
8763 
8764 	open_attr.file = attr->file;
8765 	open_attr.prog_type = attr->prog_type;
8766 
8767 	obj = bpf_object__open_xattr(&open_attr);
8768 	if (IS_ERR_OR_NULL(obj))
8769 		return -ENOENT;
8770 
8771 	bpf_object__for_each_program(prog, obj) {
8772 		enum bpf_attach_type attach_type = attr->expected_attach_type;
8773 		/*
8774 		 * to preserve backwards compatibility, bpf_prog_load treats
8775 		 * attr->prog_type, if specified, as an override to whatever
8776 		 * bpf_object__open guessed
8777 		 */
8778 		if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) {
8779 			bpf_program__set_type(prog, attr->prog_type);
8780 			bpf_program__set_expected_attach_type(prog,
8781 							      attach_type);
8782 		}
8783 		if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) {
8784 			/*
8785 			 * we haven't guessed from section name and user
8786 			 * didn't provide a fallback type, too bad...
8787 			 */
8788 			bpf_object__close(obj);
8789 			return -EINVAL;
8790 		}
8791 
8792 		prog->prog_ifindex = attr->ifindex;
8793 		prog->log_level = attr->log_level;
8794 		prog->prog_flags |= attr->prog_flags;
8795 		if (!first_prog)
8796 			first_prog = prog;
8797 	}
8798 
8799 	bpf_object__for_each_map(map, obj) {
8800 		if (!bpf_map__is_offload_neutral(map))
8801 			map->map_ifindex = attr->ifindex;
8802 	}
8803 
8804 	if (!first_prog) {
8805 		pr_warn("object file doesn't contain bpf program\n");
8806 		bpf_object__close(obj);
8807 		return -ENOENT;
8808 	}
8809 
8810 	err = bpf_object__load(obj);
8811 	if (err) {
8812 		bpf_object__close(obj);
8813 		return err;
8814 	}
8815 
8816 	*pobj = obj;
8817 	*prog_fd = bpf_program__fd(first_prog);
8818 	return 0;
8819 }
8820 
8821 struct bpf_link {
8822 	int (*detach)(struct bpf_link *link);
8823 	int (*destroy)(struct bpf_link *link);
8824 	char *pin_path;		/* NULL, if not pinned */
8825 	int fd;			/* hook FD, -1 if not applicable */
8826 	bool disconnected;
8827 };
8828 
8829 /* Replace link's underlying BPF program with the new one */
8830 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
8831 {
8832 	return bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
8833 }
8834 
8835 /* Release "ownership" of underlying BPF resource (typically, BPF program
8836  * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
8837  * link, when destructed through bpf_link__destroy() call won't attempt to
8838  * detach/unregisted that BPF resource. This is useful in situations where,
8839  * say, attached BPF program has to outlive userspace program that attached it
8840  * in the system. Depending on type of BPF program, though, there might be
8841  * additional steps (like pinning BPF program in BPF FS) necessary to ensure
8842  * exit of userspace program doesn't trigger automatic detachment and clean up
8843  * inside the kernel.
8844  */
8845 void bpf_link__disconnect(struct bpf_link *link)
8846 {
8847 	link->disconnected = true;
8848 }
8849 
8850 int bpf_link__destroy(struct bpf_link *link)
8851 {
8852 	int err = 0;
8853 
8854 	if (IS_ERR_OR_NULL(link))
8855 		return 0;
8856 
8857 	if (!link->disconnected && link->detach)
8858 		err = link->detach(link);
8859 	if (link->destroy)
8860 		link->destroy(link);
8861 	if (link->pin_path)
8862 		free(link->pin_path);
8863 	free(link);
8864 
8865 	return err;
8866 }
8867 
8868 int bpf_link__fd(const struct bpf_link *link)
8869 {
8870 	return link->fd;
8871 }
8872 
8873 const char *bpf_link__pin_path(const struct bpf_link *link)
8874 {
8875 	return link->pin_path;
8876 }
8877 
8878 static int bpf_link__detach_fd(struct bpf_link *link)
8879 {
8880 	return close(link->fd);
8881 }
8882 
8883 struct bpf_link *bpf_link__open(const char *path)
8884 {
8885 	struct bpf_link *link;
8886 	int fd;
8887 
8888 	fd = bpf_obj_get(path);
8889 	if (fd < 0) {
8890 		fd = -errno;
8891 		pr_warn("failed to open link at %s: %d\n", path, fd);
8892 		return ERR_PTR(fd);
8893 	}
8894 
8895 	link = calloc(1, sizeof(*link));
8896 	if (!link) {
8897 		close(fd);
8898 		return ERR_PTR(-ENOMEM);
8899 	}
8900 	link->detach = &bpf_link__detach_fd;
8901 	link->fd = fd;
8902 
8903 	link->pin_path = strdup(path);
8904 	if (!link->pin_path) {
8905 		bpf_link__destroy(link);
8906 		return ERR_PTR(-ENOMEM);
8907 	}
8908 
8909 	return link;
8910 }
8911 
8912 int bpf_link__detach(struct bpf_link *link)
8913 {
8914 	return bpf_link_detach(link->fd) ? -errno : 0;
8915 }
8916 
8917 int bpf_link__pin(struct bpf_link *link, const char *path)
8918 {
8919 	int err;
8920 
8921 	if (link->pin_path)
8922 		return -EBUSY;
8923 	err = make_parent_dir(path);
8924 	if (err)
8925 		return err;
8926 	err = check_path(path);
8927 	if (err)
8928 		return err;
8929 
8930 	link->pin_path = strdup(path);
8931 	if (!link->pin_path)
8932 		return -ENOMEM;
8933 
8934 	if (bpf_obj_pin(link->fd, link->pin_path)) {
8935 		err = -errno;
8936 		zfree(&link->pin_path);
8937 		return err;
8938 	}
8939 
8940 	pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
8941 	return 0;
8942 }
8943 
8944 int bpf_link__unpin(struct bpf_link *link)
8945 {
8946 	int err;
8947 
8948 	if (!link->pin_path)
8949 		return -EINVAL;
8950 
8951 	err = unlink(link->pin_path);
8952 	if (err != 0)
8953 		return -errno;
8954 
8955 	pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
8956 	zfree(&link->pin_path);
8957 	return 0;
8958 }
8959 
8960 static int bpf_link__detach_perf_event(struct bpf_link *link)
8961 {
8962 	int err;
8963 
8964 	err = ioctl(link->fd, PERF_EVENT_IOC_DISABLE, 0);
8965 	if (err)
8966 		err = -errno;
8967 
8968 	close(link->fd);
8969 	return err;
8970 }
8971 
8972 struct bpf_link *bpf_program__attach_perf_event(struct bpf_program *prog,
8973 						int pfd)
8974 {
8975 	char errmsg[STRERR_BUFSIZE];
8976 	struct bpf_link *link;
8977 	int prog_fd, err;
8978 
8979 	if (pfd < 0) {
8980 		pr_warn("prog '%s': invalid perf event FD %d\n",
8981 			prog->name, pfd);
8982 		return ERR_PTR(-EINVAL);
8983 	}
8984 	prog_fd = bpf_program__fd(prog);
8985 	if (prog_fd < 0) {
8986 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
8987 			prog->name);
8988 		return ERR_PTR(-EINVAL);
8989 	}
8990 
8991 	link = calloc(1, sizeof(*link));
8992 	if (!link)
8993 		return ERR_PTR(-ENOMEM);
8994 	link->detach = &bpf_link__detach_perf_event;
8995 	link->fd = pfd;
8996 
8997 	if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
8998 		err = -errno;
8999 		free(link);
9000 		pr_warn("prog '%s': failed to attach to pfd %d: %s\n",
9001 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9002 		if (err == -EPROTO)
9003 			pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
9004 				prog->name, pfd);
9005 		return ERR_PTR(err);
9006 	}
9007 	if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
9008 		err = -errno;
9009 		free(link);
9010 		pr_warn("prog '%s': failed to enable pfd %d: %s\n",
9011 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9012 		return ERR_PTR(err);
9013 	}
9014 	return link;
9015 }
9016 
9017 /*
9018  * this function is expected to parse integer in the range of [0, 2^31-1] from
9019  * given file using scanf format string fmt. If actual parsed value is
9020  * negative, the result might be indistinguishable from error
9021  */
9022 static int parse_uint_from_file(const char *file, const char *fmt)
9023 {
9024 	char buf[STRERR_BUFSIZE];
9025 	int err, ret;
9026 	FILE *f;
9027 
9028 	f = fopen(file, "r");
9029 	if (!f) {
9030 		err = -errno;
9031 		pr_debug("failed to open '%s': %s\n", file,
9032 			 libbpf_strerror_r(err, buf, sizeof(buf)));
9033 		return err;
9034 	}
9035 	err = fscanf(f, fmt, &ret);
9036 	if (err != 1) {
9037 		err = err == EOF ? -EIO : -errno;
9038 		pr_debug("failed to parse '%s': %s\n", file,
9039 			libbpf_strerror_r(err, buf, sizeof(buf)));
9040 		fclose(f);
9041 		return err;
9042 	}
9043 	fclose(f);
9044 	return ret;
9045 }
9046 
9047 static int determine_kprobe_perf_type(void)
9048 {
9049 	const char *file = "/sys/bus/event_source/devices/kprobe/type";
9050 
9051 	return parse_uint_from_file(file, "%d\n");
9052 }
9053 
9054 static int determine_uprobe_perf_type(void)
9055 {
9056 	const char *file = "/sys/bus/event_source/devices/uprobe/type";
9057 
9058 	return parse_uint_from_file(file, "%d\n");
9059 }
9060 
9061 static int determine_kprobe_retprobe_bit(void)
9062 {
9063 	const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
9064 
9065 	return parse_uint_from_file(file, "config:%d\n");
9066 }
9067 
9068 static int determine_uprobe_retprobe_bit(void)
9069 {
9070 	const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
9071 
9072 	return parse_uint_from_file(file, "config:%d\n");
9073 }
9074 
9075 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
9076 				 uint64_t offset, int pid)
9077 {
9078 	struct perf_event_attr attr = {};
9079 	char errmsg[STRERR_BUFSIZE];
9080 	int type, pfd, err;
9081 
9082 	type = uprobe ? determine_uprobe_perf_type()
9083 		      : determine_kprobe_perf_type();
9084 	if (type < 0) {
9085 		pr_warn("failed to determine %s perf type: %s\n",
9086 			uprobe ? "uprobe" : "kprobe",
9087 			libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
9088 		return type;
9089 	}
9090 	if (retprobe) {
9091 		int bit = uprobe ? determine_uprobe_retprobe_bit()
9092 				 : determine_kprobe_retprobe_bit();
9093 
9094 		if (bit < 0) {
9095 			pr_warn("failed to determine %s retprobe bit: %s\n",
9096 				uprobe ? "uprobe" : "kprobe",
9097 				libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
9098 			return bit;
9099 		}
9100 		attr.config |= 1 << bit;
9101 	}
9102 	attr.size = sizeof(attr);
9103 	attr.type = type;
9104 	attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
9105 	attr.config2 = offset;		 /* kprobe_addr or probe_offset */
9106 
9107 	/* pid filter is meaningful only for uprobes */
9108 	pfd = syscall(__NR_perf_event_open, &attr,
9109 		      pid < 0 ? -1 : pid /* pid */,
9110 		      pid == -1 ? 0 : -1 /* cpu */,
9111 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9112 	if (pfd < 0) {
9113 		err = -errno;
9114 		pr_warn("%s perf_event_open() failed: %s\n",
9115 			uprobe ? "uprobe" : "kprobe",
9116 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9117 		return err;
9118 	}
9119 	return pfd;
9120 }
9121 
9122 struct bpf_link *bpf_program__attach_kprobe(struct bpf_program *prog,
9123 					    bool retprobe,
9124 					    const char *func_name)
9125 {
9126 	char errmsg[STRERR_BUFSIZE];
9127 	struct bpf_link *link;
9128 	int pfd, err;
9129 
9130 	pfd = perf_event_open_probe(false /* uprobe */, retprobe, func_name,
9131 				    0 /* offset */, -1 /* pid */);
9132 	if (pfd < 0) {
9133 		pr_warn("prog '%s': failed to create %s '%s' perf event: %s\n",
9134 			prog->name, retprobe ? "kretprobe" : "kprobe", func_name,
9135 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9136 		return ERR_PTR(pfd);
9137 	}
9138 	link = bpf_program__attach_perf_event(prog, pfd);
9139 	if (IS_ERR(link)) {
9140 		close(pfd);
9141 		err = PTR_ERR(link);
9142 		pr_warn("prog '%s': failed to attach to %s '%s': %s\n",
9143 			prog->name, retprobe ? "kretprobe" : "kprobe", func_name,
9144 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9145 		return link;
9146 	}
9147 	return link;
9148 }
9149 
9150 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec,
9151 				      struct bpf_program *prog)
9152 {
9153 	const char *func_name;
9154 	bool retprobe;
9155 
9156 	func_name = prog->sec_name + sec->len;
9157 	retprobe = strcmp(sec->sec, "kretprobe/") == 0;
9158 
9159 	return bpf_program__attach_kprobe(prog, retprobe, func_name);
9160 }
9161 
9162 struct bpf_link *bpf_program__attach_uprobe(struct bpf_program *prog,
9163 					    bool retprobe, pid_t pid,
9164 					    const char *binary_path,
9165 					    size_t func_offset)
9166 {
9167 	char errmsg[STRERR_BUFSIZE];
9168 	struct bpf_link *link;
9169 	int pfd, err;
9170 
9171 	pfd = perf_event_open_probe(true /* uprobe */, retprobe,
9172 				    binary_path, func_offset, pid);
9173 	if (pfd < 0) {
9174 		pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
9175 			prog->name, retprobe ? "uretprobe" : "uprobe",
9176 			binary_path, func_offset,
9177 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9178 		return ERR_PTR(pfd);
9179 	}
9180 	link = bpf_program__attach_perf_event(prog, pfd);
9181 	if (IS_ERR(link)) {
9182 		close(pfd);
9183 		err = PTR_ERR(link);
9184 		pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
9185 			prog->name, retprobe ? "uretprobe" : "uprobe",
9186 			binary_path, func_offset,
9187 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9188 		return link;
9189 	}
9190 	return link;
9191 }
9192 
9193 static int determine_tracepoint_id(const char *tp_category,
9194 				   const char *tp_name)
9195 {
9196 	char file[PATH_MAX];
9197 	int ret;
9198 
9199 	ret = snprintf(file, sizeof(file),
9200 		       "/sys/kernel/debug/tracing/events/%s/%s/id",
9201 		       tp_category, tp_name);
9202 	if (ret < 0)
9203 		return -errno;
9204 	if (ret >= sizeof(file)) {
9205 		pr_debug("tracepoint %s/%s path is too long\n",
9206 			 tp_category, tp_name);
9207 		return -E2BIG;
9208 	}
9209 	return parse_uint_from_file(file, "%d\n");
9210 }
9211 
9212 static int perf_event_open_tracepoint(const char *tp_category,
9213 				      const char *tp_name)
9214 {
9215 	struct perf_event_attr attr = {};
9216 	char errmsg[STRERR_BUFSIZE];
9217 	int tp_id, pfd, err;
9218 
9219 	tp_id = determine_tracepoint_id(tp_category, tp_name);
9220 	if (tp_id < 0) {
9221 		pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
9222 			tp_category, tp_name,
9223 			libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
9224 		return tp_id;
9225 	}
9226 
9227 	attr.type = PERF_TYPE_TRACEPOINT;
9228 	attr.size = sizeof(attr);
9229 	attr.config = tp_id;
9230 
9231 	pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
9232 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9233 	if (pfd < 0) {
9234 		err = -errno;
9235 		pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
9236 			tp_category, tp_name,
9237 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9238 		return err;
9239 	}
9240 	return pfd;
9241 }
9242 
9243 struct bpf_link *bpf_program__attach_tracepoint(struct bpf_program *prog,
9244 						const char *tp_category,
9245 						const char *tp_name)
9246 {
9247 	char errmsg[STRERR_BUFSIZE];
9248 	struct bpf_link *link;
9249 	int pfd, err;
9250 
9251 	pfd = perf_event_open_tracepoint(tp_category, tp_name);
9252 	if (pfd < 0) {
9253 		pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
9254 			prog->name, tp_category, tp_name,
9255 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9256 		return ERR_PTR(pfd);
9257 	}
9258 	link = bpf_program__attach_perf_event(prog, pfd);
9259 	if (IS_ERR(link)) {
9260 		close(pfd);
9261 		err = PTR_ERR(link);
9262 		pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
9263 			prog->name, tp_category, tp_name,
9264 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9265 		return link;
9266 	}
9267 	return link;
9268 }
9269 
9270 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec,
9271 				  struct bpf_program *prog)
9272 {
9273 	char *sec_name, *tp_cat, *tp_name;
9274 	struct bpf_link *link;
9275 
9276 	sec_name = strdup(prog->sec_name);
9277 	if (!sec_name)
9278 		return ERR_PTR(-ENOMEM);
9279 
9280 	/* extract "tp/<category>/<name>" */
9281 	tp_cat = sec_name + sec->len;
9282 	tp_name = strchr(tp_cat, '/');
9283 	if (!tp_name) {
9284 		link = ERR_PTR(-EINVAL);
9285 		goto out;
9286 	}
9287 	*tp_name = '\0';
9288 	tp_name++;
9289 
9290 	link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
9291 out:
9292 	free(sec_name);
9293 	return link;
9294 }
9295 
9296 struct bpf_link *bpf_program__attach_raw_tracepoint(struct bpf_program *prog,
9297 						    const char *tp_name)
9298 {
9299 	char errmsg[STRERR_BUFSIZE];
9300 	struct bpf_link *link;
9301 	int prog_fd, pfd;
9302 
9303 	prog_fd = bpf_program__fd(prog);
9304 	if (prog_fd < 0) {
9305 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9306 		return ERR_PTR(-EINVAL);
9307 	}
9308 
9309 	link = calloc(1, sizeof(*link));
9310 	if (!link)
9311 		return ERR_PTR(-ENOMEM);
9312 	link->detach = &bpf_link__detach_fd;
9313 
9314 	pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
9315 	if (pfd < 0) {
9316 		pfd = -errno;
9317 		free(link);
9318 		pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
9319 			prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9320 		return ERR_PTR(pfd);
9321 	}
9322 	link->fd = pfd;
9323 	return link;
9324 }
9325 
9326 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec,
9327 				      struct bpf_program *prog)
9328 {
9329 	const char *tp_name = prog->sec_name + sec->len;
9330 
9331 	return bpf_program__attach_raw_tracepoint(prog, tp_name);
9332 }
9333 
9334 /* Common logic for all BPF program types that attach to a btf_id */
9335 static struct bpf_link *bpf_program__attach_btf_id(struct bpf_program *prog)
9336 {
9337 	char errmsg[STRERR_BUFSIZE];
9338 	struct bpf_link *link;
9339 	int prog_fd, pfd;
9340 
9341 	prog_fd = bpf_program__fd(prog);
9342 	if (prog_fd < 0) {
9343 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9344 		return ERR_PTR(-EINVAL);
9345 	}
9346 
9347 	link = calloc(1, sizeof(*link));
9348 	if (!link)
9349 		return ERR_PTR(-ENOMEM);
9350 	link->detach = &bpf_link__detach_fd;
9351 
9352 	pfd = bpf_raw_tracepoint_open(NULL, prog_fd);
9353 	if (pfd < 0) {
9354 		pfd = -errno;
9355 		free(link);
9356 		pr_warn("prog '%s': failed to attach: %s\n",
9357 			prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9358 		return ERR_PTR(pfd);
9359 	}
9360 	link->fd = pfd;
9361 	return (struct bpf_link *)link;
9362 }
9363 
9364 struct bpf_link *bpf_program__attach_trace(struct bpf_program *prog)
9365 {
9366 	return bpf_program__attach_btf_id(prog);
9367 }
9368 
9369 struct bpf_link *bpf_program__attach_lsm(struct bpf_program *prog)
9370 {
9371 	return bpf_program__attach_btf_id(prog);
9372 }
9373 
9374 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec,
9375 				     struct bpf_program *prog)
9376 {
9377 	return bpf_program__attach_trace(prog);
9378 }
9379 
9380 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec,
9381 				   struct bpf_program *prog)
9382 {
9383 	return bpf_program__attach_lsm(prog);
9384 }
9385 
9386 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec,
9387 				    struct bpf_program *prog)
9388 {
9389 	return bpf_program__attach_iter(prog, NULL);
9390 }
9391 
9392 static struct bpf_link *
9393 bpf_program__attach_fd(struct bpf_program *prog, int target_fd,
9394 		       const char *target_name)
9395 {
9396 	enum bpf_attach_type attach_type;
9397 	char errmsg[STRERR_BUFSIZE];
9398 	struct bpf_link *link;
9399 	int prog_fd, link_fd;
9400 
9401 	prog_fd = bpf_program__fd(prog);
9402 	if (prog_fd < 0) {
9403 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9404 		return ERR_PTR(-EINVAL);
9405 	}
9406 
9407 	link = calloc(1, sizeof(*link));
9408 	if (!link)
9409 		return ERR_PTR(-ENOMEM);
9410 	link->detach = &bpf_link__detach_fd;
9411 
9412 	attach_type = bpf_program__get_expected_attach_type(prog);
9413 	link_fd = bpf_link_create(prog_fd, target_fd, attach_type, NULL);
9414 	if (link_fd < 0) {
9415 		link_fd = -errno;
9416 		free(link);
9417 		pr_warn("prog '%s': failed to attach to %s: %s\n",
9418 			prog->name, target_name,
9419 			libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
9420 		return ERR_PTR(link_fd);
9421 	}
9422 	link->fd = link_fd;
9423 	return link;
9424 }
9425 
9426 struct bpf_link *
9427 bpf_program__attach_cgroup(struct bpf_program *prog, int cgroup_fd)
9428 {
9429 	return bpf_program__attach_fd(prog, cgroup_fd, "cgroup");
9430 }
9431 
9432 struct bpf_link *
9433 bpf_program__attach_netns(struct bpf_program *prog, int netns_fd)
9434 {
9435 	return bpf_program__attach_fd(prog, netns_fd, "netns");
9436 }
9437 
9438 struct bpf_link *bpf_program__attach_xdp(struct bpf_program *prog, int ifindex)
9439 {
9440 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
9441 	return bpf_program__attach_fd(prog, ifindex, "xdp");
9442 }
9443 
9444 struct bpf_link *
9445 bpf_program__attach_iter(struct bpf_program *prog,
9446 			 const struct bpf_iter_attach_opts *opts)
9447 {
9448 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
9449 	char errmsg[STRERR_BUFSIZE];
9450 	struct bpf_link *link;
9451 	int prog_fd, link_fd;
9452 	__u32 target_fd = 0;
9453 
9454 	if (!OPTS_VALID(opts, bpf_iter_attach_opts))
9455 		return ERR_PTR(-EINVAL);
9456 
9457 	link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
9458 	link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
9459 
9460 	prog_fd = bpf_program__fd(prog);
9461 	if (prog_fd < 0) {
9462 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9463 		return ERR_PTR(-EINVAL);
9464 	}
9465 
9466 	link = calloc(1, sizeof(*link));
9467 	if (!link)
9468 		return ERR_PTR(-ENOMEM);
9469 	link->detach = &bpf_link__detach_fd;
9470 
9471 	link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
9472 				  &link_create_opts);
9473 	if (link_fd < 0) {
9474 		link_fd = -errno;
9475 		free(link);
9476 		pr_warn("prog '%s': failed to attach to iterator: %s\n",
9477 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
9478 		return ERR_PTR(link_fd);
9479 	}
9480 	link->fd = link_fd;
9481 	return link;
9482 }
9483 
9484 struct bpf_link *bpf_program__attach(struct bpf_program *prog)
9485 {
9486 	const struct bpf_sec_def *sec_def;
9487 
9488 	sec_def = find_sec_def(prog->sec_name);
9489 	if (!sec_def || !sec_def->attach_fn)
9490 		return ERR_PTR(-ESRCH);
9491 
9492 	return sec_def->attach_fn(sec_def, prog);
9493 }
9494 
9495 static int bpf_link__detach_struct_ops(struct bpf_link *link)
9496 {
9497 	__u32 zero = 0;
9498 
9499 	if (bpf_map_delete_elem(link->fd, &zero))
9500 		return -errno;
9501 
9502 	return 0;
9503 }
9504 
9505 struct bpf_link *bpf_map__attach_struct_ops(struct bpf_map *map)
9506 {
9507 	struct bpf_struct_ops *st_ops;
9508 	struct bpf_link *link;
9509 	__u32 i, zero = 0;
9510 	int err;
9511 
9512 	if (!bpf_map__is_struct_ops(map) || map->fd == -1)
9513 		return ERR_PTR(-EINVAL);
9514 
9515 	link = calloc(1, sizeof(*link));
9516 	if (!link)
9517 		return ERR_PTR(-EINVAL);
9518 
9519 	st_ops = map->st_ops;
9520 	for (i = 0; i < btf_vlen(st_ops->type); i++) {
9521 		struct bpf_program *prog = st_ops->progs[i];
9522 		void *kern_data;
9523 		int prog_fd;
9524 
9525 		if (!prog)
9526 			continue;
9527 
9528 		prog_fd = bpf_program__fd(prog);
9529 		kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
9530 		*(unsigned long *)kern_data = prog_fd;
9531 	}
9532 
9533 	err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0);
9534 	if (err) {
9535 		err = -errno;
9536 		free(link);
9537 		return ERR_PTR(err);
9538 	}
9539 
9540 	link->detach = bpf_link__detach_struct_ops;
9541 	link->fd = map->fd;
9542 
9543 	return link;
9544 }
9545 
9546 enum bpf_perf_event_ret
9547 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
9548 			   void **copy_mem, size_t *copy_size,
9549 			   bpf_perf_event_print_t fn, void *private_data)
9550 {
9551 	struct perf_event_mmap_page *header = mmap_mem;
9552 	__u64 data_head = ring_buffer_read_head(header);
9553 	__u64 data_tail = header->data_tail;
9554 	void *base = ((__u8 *)header) + page_size;
9555 	int ret = LIBBPF_PERF_EVENT_CONT;
9556 	struct perf_event_header *ehdr;
9557 	size_t ehdr_size;
9558 
9559 	while (data_head != data_tail) {
9560 		ehdr = base + (data_tail & (mmap_size - 1));
9561 		ehdr_size = ehdr->size;
9562 
9563 		if (((void *)ehdr) + ehdr_size > base + mmap_size) {
9564 			void *copy_start = ehdr;
9565 			size_t len_first = base + mmap_size - copy_start;
9566 			size_t len_secnd = ehdr_size - len_first;
9567 
9568 			if (*copy_size < ehdr_size) {
9569 				free(*copy_mem);
9570 				*copy_mem = malloc(ehdr_size);
9571 				if (!*copy_mem) {
9572 					*copy_size = 0;
9573 					ret = LIBBPF_PERF_EVENT_ERROR;
9574 					break;
9575 				}
9576 				*copy_size = ehdr_size;
9577 			}
9578 
9579 			memcpy(*copy_mem, copy_start, len_first);
9580 			memcpy(*copy_mem + len_first, base, len_secnd);
9581 			ehdr = *copy_mem;
9582 		}
9583 
9584 		ret = fn(ehdr, private_data);
9585 		data_tail += ehdr_size;
9586 		if (ret != LIBBPF_PERF_EVENT_CONT)
9587 			break;
9588 	}
9589 
9590 	ring_buffer_write_tail(header, data_tail);
9591 	return ret;
9592 }
9593 
9594 struct perf_buffer;
9595 
9596 struct perf_buffer_params {
9597 	struct perf_event_attr *attr;
9598 	/* if event_cb is specified, it takes precendence */
9599 	perf_buffer_event_fn event_cb;
9600 	/* sample_cb and lost_cb are higher-level common-case callbacks */
9601 	perf_buffer_sample_fn sample_cb;
9602 	perf_buffer_lost_fn lost_cb;
9603 	void *ctx;
9604 	int cpu_cnt;
9605 	int *cpus;
9606 	int *map_keys;
9607 };
9608 
9609 struct perf_cpu_buf {
9610 	struct perf_buffer *pb;
9611 	void *base; /* mmap()'ed memory */
9612 	void *buf; /* for reconstructing segmented data */
9613 	size_t buf_size;
9614 	int fd;
9615 	int cpu;
9616 	int map_key;
9617 };
9618 
9619 struct perf_buffer {
9620 	perf_buffer_event_fn event_cb;
9621 	perf_buffer_sample_fn sample_cb;
9622 	perf_buffer_lost_fn lost_cb;
9623 	void *ctx; /* passed into callbacks */
9624 
9625 	size_t page_size;
9626 	size_t mmap_size;
9627 	struct perf_cpu_buf **cpu_bufs;
9628 	struct epoll_event *events;
9629 	int cpu_cnt; /* number of allocated CPU buffers */
9630 	int epoll_fd; /* perf event FD */
9631 	int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
9632 };
9633 
9634 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
9635 				      struct perf_cpu_buf *cpu_buf)
9636 {
9637 	if (!cpu_buf)
9638 		return;
9639 	if (cpu_buf->base &&
9640 	    munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
9641 		pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
9642 	if (cpu_buf->fd >= 0) {
9643 		ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
9644 		close(cpu_buf->fd);
9645 	}
9646 	free(cpu_buf->buf);
9647 	free(cpu_buf);
9648 }
9649 
9650 void perf_buffer__free(struct perf_buffer *pb)
9651 {
9652 	int i;
9653 
9654 	if (IS_ERR_OR_NULL(pb))
9655 		return;
9656 	if (pb->cpu_bufs) {
9657 		for (i = 0; i < pb->cpu_cnt; i++) {
9658 			struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
9659 
9660 			if (!cpu_buf)
9661 				continue;
9662 
9663 			bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
9664 			perf_buffer__free_cpu_buf(pb, cpu_buf);
9665 		}
9666 		free(pb->cpu_bufs);
9667 	}
9668 	if (pb->epoll_fd >= 0)
9669 		close(pb->epoll_fd);
9670 	free(pb->events);
9671 	free(pb);
9672 }
9673 
9674 static struct perf_cpu_buf *
9675 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
9676 			  int cpu, int map_key)
9677 {
9678 	struct perf_cpu_buf *cpu_buf;
9679 	char msg[STRERR_BUFSIZE];
9680 	int err;
9681 
9682 	cpu_buf = calloc(1, sizeof(*cpu_buf));
9683 	if (!cpu_buf)
9684 		return ERR_PTR(-ENOMEM);
9685 
9686 	cpu_buf->pb = pb;
9687 	cpu_buf->cpu = cpu;
9688 	cpu_buf->map_key = map_key;
9689 
9690 	cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
9691 			      -1, PERF_FLAG_FD_CLOEXEC);
9692 	if (cpu_buf->fd < 0) {
9693 		err = -errno;
9694 		pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
9695 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
9696 		goto error;
9697 	}
9698 
9699 	cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
9700 			     PROT_READ | PROT_WRITE, MAP_SHARED,
9701 			     cpu_buf->fd, 0);
9702 	if (cpu_buf->base == MAP_FAILED) {
9703 		cpu_buf->base = NULL;
9704 		err = -errno;
9705 		pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
9706 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
9707 		goto error;
9708 	}
9709 
9710 	if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
9711 		err = -errno;
9712 		pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
9713 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
9714 		goto error;
9715 	}
9716 
9717 	return cpu_buf;
9718 
9719 error:
9720 	perf_buffer__free_cpu_buf(pb, cpu_buf);
9721 	return (struct perf_cpu_buf *)ERR_PTR(err);
9722 }
9723 
9724 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
9725 					      struct perf_buffer_params *p);
9726 
9727 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
9728 				     const struct perf_buffer_opts *opts)
9729 {
9730 	struct perf_buffer_params p = {};
9731 	struct perf_event_attr attr = { 0, };
9732 
9733 	attr.config = PERF_COUNT_SW_BPF_OUTPUT;
9734 	attr.type = PERF_TYPE_SOFTWARE;
9735 	attr.sample_type = PERF_SAMPLE_RAW;
9736 	attr.sample_period = 1;
9737 	attr.wakeup_events = 1;
9738 
9739 	p.attr = &attr;
9740 	p.sample_cb = opts ? opts->sample_cb : NULL;
9741 	p.lost_cb = opts ? opts->lost_cb : NULL;
9742 	p.ctx = opts ? opts->ctx : NULL;
9743 
9744 	return __perf_buffer__new(map_fd, page_cnt, &p);
9745 }
9746 
9747 struct perf_buffer *
9748 perf_buffer__new_raw(int map_fd, size_t page_cnt,
9749 		     const struct perf_buffer_raw_opts *opts)
9750 {
9751 	struct perf_buffer_params p = {};
9752 
9753 	p.attr = opts->attr;
9754 	p.event_cb = opts->event_cb;
9755 	p.ctx = opts->ctx;
9756 	p.cpu_cnt = opts->cpu_cnt;
9757 	p.cpus = opts->cpus;
9758 	p.map_keys = opts->map_keys;
9759 
9760 	return __perf_buffer__new(map_fd, page_cnt, &p);
9761 }
9762 
9763 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
9764 					      struct perf_buffer_params *p)
9765 {
9766 	const char *online_cpus_file = "/sys/devices/system/cpu/online";
9767 	struct bpf_map_info map;
9768 	char msg[STRERR_BUFSIZE];
9769 	struct perf_buffer *pb;
9770 	bool *online = NULL;
9771 	__u32 map_info_len;
9772 	int err, i, j, n;
9773 
9774 	if (page_cnt & (page_cnt - 1)) {
9775 		pr_warn("page count should be power of two, but is %zu\n",
9776 			page_cnt);
9777 		return ERR_PTR(-EINVAL);
9778 	}
9779 
9780 	/* best-effort sanity checks */
9781 	memset(&map, 0, sizeof(map));
9782 	map_info_len = sizeof(map);
9783 	err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len);
9784 	if (err) {
9785 		err = -errno;
9786 		/* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
9787 		 * -EBADFD, -EFAULT, or -E2BIG on real error
9788 		 */
9789 		if (err != -EINVAL) {
9790 			pr_warn("failed to get map info for map FD %d: %s\n",
9791 				map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
9792 			return ERR_PTR(err);
9793 		}
9794 		pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
9795 			 map_fd);
9796 	} else {
9797 		if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
9798 			pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
9799 				map.name);
9800 			return ERR_PTR(-EINVAL);
9801 		}
9802 	}
9803 
9804 	pb = calloc(1, sizeof(*pb));
9805 	if (!pb)
9806 		return ERR_PTR(-ENOMEM);
9807 
9808 	pb->event_cb = p->event_cb;
9809 	pb->sample_cb = p->sample_cb;
9810 	pb->lost_cb = p->lost_cb;
9811 	pb->ctx = p->ctx;
9812 
9813 	pb->page_size = getpagesize();
9814 	pb->mmap_size = pb->page_size * page_cnt;
9815 	pb->map_fd = map_fd;
9816 
9817 	pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
9818 	if (pb->epoll_fd < 0) {
9819 		err = -errno;
9820 		pr_warn("failed to create epoll instance: %s\n",
9821 			libbpf_strerror_r(err, msg, sizeof(msg)));
9822 		goto error;
9823 	}
9824 
9825 	if (p->cpu_cnt > 0) {
9826 		pb->cpu_cnt = p->cpu_cnt;
9827 	} else {
9828 		pb->cpu_cnt = libbpf_num_possible_cpus();
9829 		if (pb->cpu_cnt < 0) {
9830 			err = pb->cpu_cnt;
9831 			goto error;
9832 		}
9833 		if (map.max_entries && map.max_entries < pb->cpu_cnt)
9834 			pb->cpu_cnt = map.max_entries;
9835 	}
9836 
9837 	pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
9838 	if (!pb->events) {
9839 		err = -ENOMEM;
9840 		pr_warn("failed to allocate events: out of memory\n");
9841 		goto error;
9842 	}
9843 	pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
9844 	if (!pb->cpu_bufs) {
9845 		err = -ENOMEM;
9846 		pr_warn("failed to allocate buffers: out of memory\n");
9847 		goto error;
9848 	}
9849 
9850 	err = parse_cpu_mask_file(online_cpus_file, &online, &n);
9851 	if (err) {
9852 		pr_warn("failed to get online CPU mask: %d\n", err);
9853 		goto error;
9854 	}
9855 
9856 	for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
9857 		struct perf_cpu_buf *cpu_buf;
9858 		int cpu, map_key;
9859 
9860 		cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
9861 		map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
9862 
9863 		/* in case user didn't explicitly requested particular CPUs to
9864 		 * be attached to, skip offline/not present CPUs
9865 		 */
9866 		if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
9867 			continue;
9868 
9869 		cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
9870 		if (IS_ERR(cpu_buf)) {
9871 			err = PTR_ERR(cpu_buf);
9872 			goto error;
9873 		}
9874 
9875 		pb->cpu_bufs[j] = cpu_buf;
9876 
9877 		err = bpf_map_update_elem(pb->map_fd, &map_key,
9878 					  &cpu_buf->fd, 0);
9879 		if (err) {
9880 			err = -errno;
9881 			pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
9882 				cpu, map_key, cpu_buf->fd,
9883 				libbpf_strerror_r(err, msg, sizeof(msg)));
9884 			goto error;
9885 		}
9886 
9887 		pb->events[j].events = EPOLLIN;
9888 		pb->events[j].data.ptr = cpu_buf;
9889 		if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
9890 			      &pb->events[j]) < 0) {
9891 			err = -errno;
9892 			pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
9893 				cpu, cpu_buf->fd,
9894 				libbpf_strerror_r(err, msg, sizeof(msg)));
9895 			goto error;
9896 		}
9897 		j++;
9898 	}
9899 	pb->cpu_cnt = j;
9900 	free(online);
9901 
9902 	return pb;
9903 
9904 error:
9905 	free(online);
9906 	if (pb)
9907 		perf_buffer__free(pb);
9908 	return ERR_PTR(err);
9909 }
9910 
9911 struct perf_sample_raw {
9912 	struct perf_event_header header;
9913 	uint32_t size;
9914 	char data[];
9915 };
9916 
9917 struct perf_sample_lost {
9918 	struct perf_event_header header;
9919 	uint64_t id;
9920 	uint64_t lost;
9921 	uint64_t sample_id;
9922 };
9923 
9924 static enum bpf_perf_event_ret
9925 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
9926 {
9927 	struct perf_cpu_buf *cpu_buf = ctx;
9928 	struct perf_buffer *pb = cpu_buf->pb;
9929 	void *data = e;
9930 
9931 	/* user wants full control over parsing perf event */
9932 	if (pb->event_cb)
9933 		return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
9934 
9935 	switch (e->type) {
9936 	case PERF_RECORD_SAMPLE: {
9937 		struct perf_sample_raw *s = data;
9938 
9939 		if (pb->sample_cb)
9940 			pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
9941 		break;
9942 	}
9943 	case PERF_RECORD_LOST: {
9944 		struct perf_sample_lost *s = data;
9945 
9946 		if (pb->lost_cb)
9947 			pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
9948 		break;
9949 	}
9950 	default:
9951 		pr_warn("unknown perf sample type %d\n", e->type);
9952 		return LIBBPF_PERF_EVENT_ERROR;
9953 	}
9954 	return LIBBPF_PERF_EVENT_CONT;
9955 }
9956 
9957 static int perf_buffer__process_records(struct perf_buffer *pb,
9958 					struct perf_cpu_buf *cpu_buf)
9959 {
9960 	enum bpf_perf_event_ret ret;
9961 
9962 	ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size,
9963 					 pb->page_size, &cpu_buf->buf,
9964 					 &cpu_buf->buf_size,
9965 					 perf_buffer__process_record, cpu_buf);
9966 	if (ret != LIBBPF_PERF_EVENT_CONT)
9967 		return ret;
9968 	return 0;
9969 }
9970 
9971 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
9972 {
9973 	return pb->epoll_fd;
9974 }
9975 
9976 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
9977 {
9978 	int i, cnt, err;
9979 
9980 	cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
9981 	for (i = 0; i < cnt; i++) {
9982 		struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
9983 
9984 		err = perf_buffer__process_records(pb, cpu_buf);
9985 		if (err) {
9986 			pr_warn("error while processing records: %d\n", err);
9987 			return err;
9988 		}
9989 	}
9990 	return cnt < 0 ? -errno : cnt;
9991 }
9992 
9993 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
9994  * manager.
9995  */
9996 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
9997 {
9998 	return pb->cpu_cnt;
9999 }
10000 
10001 /*
10002  * Return perf_event FD of a ring buffer in *buf_idx* slot of
10003  * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
10004  * select()/poll()/epoll() Linux syscalls.
10005  */
10006 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
10007 {
10008 	struct perf_cpu_buf *cpu_buf;
10009 
10010 	if (buf_idx >= pb->cpu_cnt)
10011 		return -EINVAL;
10012 
10013 	cpu_buf = pb->cpu_bufs[buf_idx];
10014 	if (!cpu_buf)
10015 		return -ENOENT;
10016 
10017 	return cpu_buf->fd;
10018 }
10019 
10020 /*
10021  * Consume data from perf ring buffer corresponding to slot *buf_idx* in
10022  * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
10023  * consume, do nothing and return success.
10024  * Returns:
10025  *   - 0 on success;
10026  *   - <0 on failure.
10027  */
10028 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
10029 {
10030 	struct perf_cpu_buf *cpu_buf;
10031 
10032 	if (buf_idx >= pb->cpu_cnt)
10033 		return -EINVAL;
10034 
10035 	cpu_buf = pb->cpu_bufs[buf_idx];
10036 	if (!cpu_buf)
10037 		return -ENOENT;
10038 
10039 	return perf_buffer__process_records(pb, cpu_buf);
10040 }
10041 
10042 int perf_buffer__consume(struct perf_buffer *pb)
10043 {
10044 	int i, err;
10045 
10046 	for (i = 0; i < pb->cpu_cnt; i++) {
10047 		struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
10048 
10049 		if (!cpu_buf)
10050 			continue;
10051 
10052 		err = perf_buffer__process_records(pb, cpu_buf);
10053 		if (err) {
10054 			pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
10055 			return err;
10056 		}
10057 	}
10058 	return 0;
10059 }
10060 
10061 struct bpf_prog_info_array_desc {
10062 	int	array_offset;	/* e.g. offset of jited_prog_insns */
10063 	int	count_offset;	/* e.g. offset of jited_prog_len */
10064 	int	size_offset;	/* > 0: offset of rec size,
10065 				 * < 0: fix size of -size_offset
10066 				 */
10067 };
10068 
10069 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = {
10070 	[BPF_PROG_INFO_JITED_INSNS] = {
10071 		offsetof(struct bpf_prog_info, jited_prog_insns),
10072 		offsetof(struct bpf_prog_info, jited_prog_len),
10073 		-1,
10074 	},
10075 	[BPF_PROG_INFO_XLATED_INSNS] = {
10076 		offsetof(struct bpf_prog_info, xlated_prog_insns),
10077 		offsetof(struct bpf_prog_info, xlated_prog_len),
10078 		-1,
10079 	},
10080 	[BPF_PROG_INFO_MAP_IDS] = {
10081 		offsetof(struct bpf_prog_info, map_ids),
10082 		offsetof(struct bpf_prog_info, nr_map_ids),
10083 		-(int)sizeof(__u32),
10084 	},
10085 	[BPF_PROG_INFO_JITED_KSYMS] = {
10086 		offsetof(struct bpf_prog_info, jited_ksyms),
10087 		offsetof(struct bpf_prog_info, nr_jited_ksyms),
10088 		-(int)sizeof(__u64),
10089 	},
10090 	[BPF_PROG_INFO_JITED_FUNC_LENS] = {
10091 		offsetof(struct bpf_prog_info, jited_func_lens),
10092 		offsetof(struct bpf_prog_info, nr_jited_func_lens),
10093 		-(int)sizeof(__u32),
10094 	},
10095 	[BPF_PROG_INFO_FUNC_INFO] = {
10096 		offsetof(struct bpf_prog_info, func_info),
10097 		offsetof(struct bpf_prog_info, nr_func_info),
10098 		offsetof(struct bpf_prog_info, func_info_rec_size),
10099 	},
10100 	[BPF_PROG_INFO_LINE_INFO] = {
10101 		offsetof(struct bpf_prog_info, line_info),
10102 		offsetof(struct bpf_prog_info, nr_line_info),
10103 		offsetof(struct bpf_prog_info, line_info_rec_size),
10104 	},
10105 	[BPF_PROG_INFO_JITED_LINE_INFO] = {
10106 		offsetof(struct bpf_prog_info, jited_line_info),
10107 		offsetof(struct bpf_prog_info, nr_jited_line_info),
10108 		offsetof(struct bpf_prog_info, jited_line_info_rec_size),
10109 	},
10110 	[BPF_PROG_INFO_PROG_TAGS] = {
10111 		offsetof(struct bpf_prog_info, prog_tags),
10112 		offsetof(struct bpf_prog_info, nr_prog_tags),
10113 		-(int)sizeof(__u8) * BPF_TAG_SIZE,
10114 	},
10115 
10116 };
10117 
10118 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info,
10119 					   int offset)
10120 {
10121 	__u32 *array = (__u32 *)info;
10122 
10123 	if (offset >= 0)
10124 		return array[offset / sizeof(__u32)];
10125 	return -(int)offset;
10126 }
10127 
10128 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info,
10129 					   int offset)
10130 {
10131 	__u64 *array = (__u64 *)info;
10132 
10133 	if (offset >= 0)
10134 		return array[offset / sizeof(__u64)];
10135 	return -(int)offset;
10136 }
10137 
10138 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset,
10139 					 __u32 val)
10140 {
10141 	__u32 *array = (__u32 *)info;
10142 
10143 	if (offset >= 0)
10144 		array[offset / sizeof(__u32)] = val;
10145 }
10146 
10147 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset,
10148 					 __u64 val)
10149 {
10150 	__u64 *array = (__u64 *)info;
10151 
10152 	if (offset >= 0)
10153 		array[offset / sizeof(__u64)] = val;
10154 }
10155 
10156 struct bpf_prog_info_linear *
10157 bpf_program__get_prog_info_linear(int fd, __u64 arrays)
10158 {
10159 	struct bpf_prog_info_linear *info_linear;
10160 	struct bpf_prog_info info = {};
10161 	__u32 info_len = sizeof(info);
10162 	__u32 data_len = 0;
10163 	int i, err;
10164 	void *ptr;
10165 
10166 	if (arrays >> BPF_PROG_INFO_LAST_ARRAY)
10167 		return ERR_PTR(-EINVAL);
10168 
10169 	/* step 1: get array dimensions */
10170 	err = bpf_obj_get_info_by_fd(fd, &info, &info_len);
10171 	if (err) {
10172 		pr_debug("can't get prog info: %s", strerror(errno));
10173 		return ERR_PTR(-EFAULT);
10174 	}
10175 
10176 	/* step 2: calculate total size of all arrays */
10177 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10178 		bool include_array = (arrays & (1UL << i)) > 0;
10179 		struct bpf_prog_info_array_desc *desc;
10180 		__u32 count, size;
10181 
10182 		desc = bpf_prog_info_array_desc + i;
10183 
10184 		/* kernel is too old to support this field */
10185 		if (info_len < desc->array_offset + sizeof(__u32) ||
10186 		    info_len < desc->count_offset + sizeof(__u32) ||
10187 		    (desc->size_offset > 0 && info_len < desc->size_offset))
10188 			include_array = false;
10189 
10190 		if (!include_array) {
10191 			arrays &= ~(1UL << i);	/* clear the bit */
10192 			continue;
10193 		}
10194 
10195 		count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
10196 		size  = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
10197 
10198 		data_len += count * size;
10199 	}
10200 
10201 	/* step 3: allocate continuous memory */
10202 	data_len = roundup(data_len, sizeof(__u64));
10203 	info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len);
10204 	if (!info_linear)
10205 		return ERR_PTR(-ENOMEM);
10206 
10207 	/* step 4: fill data to info_linear->info */
10208 	info_linear->arrays = arrays;
10209 	memset(&info_linear->info, 0, sizeof(info));
10210 	ptr = info_linear->data;
10211 
10212 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10213 		struct bpf_prog_info_array_desc *desc;
10214 		__u32 count, size;
10215 
10216 		if ((arrays & (1UL << i)) == 0)
10217 			continue;
10218 
10219 		desc  = bpf_prog_info_array_desc + i;
10220 		count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
10221 		size  = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
10222 		bpf_prog_info_set_offset_u32(&info_linear->info,
10223 					     desc->count_offset, count);
10224 		bpf_prog_info_set_offset_u32(&info_linear->info,
10225 					     desc->size_offset, size);
10226 		bpf_prog_info_set_offset_u64(&info_linear->info,
10227 					     desc->array_offset,
10228 					     ptr_to_u64(ptr));
10229 		ptr += count * size;
10230 	}
10231 
10232 	/* step 5: call syscall again to get required arrays */
10233 	err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len);
10234 	if (err) {
10235 		pr_debug("can't get prog info: %s", strerror(errno));
10236 		free(info_linear);
10237 		return ERR_PTR(-EFAULT);
10238 	}
10239 
10240 	/* step 6: verify the data */
10241 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10242 		struct bpf_prog_info_array_desc *desc;
10243 		__u32 v1, v2;
10244 
10245 		if ((arrays & (1UL << i)) == 0)
10246 			continue;
10247 
10248 		desc = bpf_prog_info_array_desc + i;
10249 		v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
10250 		v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
10251 						   desc->count_offset);
10252 		if (v1 != v2)
10253 			pr_warn("%s: mismatch in element count\n", __func__);
10254 
10255 		v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
10256 		v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
10257 						   desc->size_offset);
10258 		if (v1 != v2)
10259 			pr_warn("%s: mismatch in rec size\n", __func__);
10260 	}
10261 
10262 	/* step 7: update info_len and data_len */
10263 	info_linear->info_len = sizeof(struct bpf_prog_info);
10264 	info_linear->data_len = data_len;
10265 
10266 	return info_linear;
10267 }
10268 
10269 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear)
10270 {
10271 	int i;
10272 
10273 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10274 		struct bpf_prog_info_array_desc *desc;
10275 		__u64 addr, offs;
10276 
10277 		if ((info_linear->arrays & (1UL << i)) == 0)
10278 			continue;
10279 
10280 		desc = bpf_prog_info_array_desc + i;
10281 		addr = bpf_prog_info_read_offset_u64(&info_linear->info,
10282 						     desc->array_offset);
10283 		offs = addr - ptr_to_u64(info_linear->data);
10284 		bpf_prog_info_set_offset_u64(&info_linear->info,
10285 					     desc->array_offset, offs);
10286 	}
10287 }
10288 
10289 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear)
10290 {
10291 	int i;
10292 
10293 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10294 		struct bpf_prog_info_array_desc *desc;
10295 		__u64 addr, offs;
10296 
10297 		if ((info_linear->arrays & (1UL << i)) == 0)
10298 			continue;
10299 
10300 		desc = bpf_prog_info_array_desc + i;
10301 		offs = bpf_prog_info_read_offset_u64(&info_linear->info,
10302 						     desc->array_offset);
10303 		addr = offs + ptr_to_u64(info_linear->data);
10304 		bpf_prog_info_set_offset_u64(&info_linear->info,
10305 					     desc->array_offset, addr);
10306 	}
10307 }
10308 
10309 int bpf_program__set_attach_target(struct bpf_program *prog,
10310 				   int attach_prog_fd,
10311 				   const char *attach_func_name)
10312 {
10313 	int btf_id;
10314 
10315 	if (!prog || attach_prog_fd < 0 || !attach_func_name)
10316 		return -EINVAL;
10317 
10318 	if (attach_prog_fd)
10319 		btf_id = libbpf_find_prog_btf_id(attach_func_name,
10320 						 attach_prog_fd);
10321 	else
10322 		btf_id = __find_vmlinux_btf_id(prog->obj->btf_vmlinux,
10323 					       attach_func_name,
10324 					       prog->expected_attach_type);
10325 
10326 	if (btf_id < 0)
10327 		return btf_id;
10328 
10329 	prog->attach_btf_id = btf_id;
10330 	prog->attach_prog_fd = attach_prog_fd;
10331 	return 0;
10332 }
10333 
10334 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
10335 {
10336 	int err = 0, n, len, start, end = -1;
10337 	bool *tmp;
10338 
10339 	*mask = NULL;
10340 	*mask_sz = 0;
10341 
10342 	/* Each sub string separated by ',' has format \d+-\d+ or \d+ */
10343 	while (*s) {
10344 		if (*s == ',' || *s == '\n') {
10345 			s++;
10346 			continue;
10347 		}
10348 		n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
10349 		if (n <= 0 || n > 2) {
10350 			pr_warn("Failed to get CPU range %s: %d\n", s, n);
10351 			err = -EINVAL;
10352 			goto cleanup;
10353 		} else if (n == 1) {
10354 			end = start;
10355 		}
10356 		if (start < 0 || start > end) {
10357 			pr_warn("Invalid CPU range [%d,%d] in %s\n",
10358 				start, end, s);
10359 			err = -EINVAL;
10360 			goto cleanup;
10361 		}
10362 		tmp = realloc(*mask, end + 1);
10363 		if (!tmp) {
10364 			err = -ENOMEM;
10365 			goto cleanup;
10366 		}
10367 		*mask = tmp;
10368 		memset(tmp + *mask_sz, 0, start - *mask_sz);
10369 		memset(tmp + start, 1, end - start + 1);
10370 		*mask_sz = end + 1;
10371 		s += len;
10372 	}
10373 	if (!*mask_sz) {
10374 		pr_warn("Empty CPU range\n");
10375 		return -EINVAL;
10376 	}
10377 	return 0;
10378 cleanup:
10379 	free(*mask);
10380 	*mask = NULL;
10381 	return err;
10382 }
10383 
10384 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
10385 {
10386 	int fd, err = 0, len;
10387 	char buf[128];
10388 
10389 	fd = open(fcpu, O_RDONLY);
10390 	if (fd < 0) {
10391 		err = -errno;
10392 		pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
10393 		return err;
10394 	}
10395 	len = read(fd, buf, sizeof(buf));
10396 	close(fd);
10397 	if (len <= 0) {
10398 		err = len ? -errno : -EINVAL;
10399 		pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
10400 		return err;
10401 	}
10402 	if (len >= sizeof(buf)) {
10403 		pr_warn("CPU mask is too big in file %s\n", fcpu);
10404 		return -E2BIG;
10405 	}
10406 	buf[len] = '\0';
10407 
10408 	return parse_cpu_mask_str(buf, mask, mask_sz);
10409 }
10410 
10411 int libbpf_num_possible_cpus(void)
10412 {
10413 	static const char *fcpu = "/sys/devices/system/cpu/possible";
10414 	static int cpus;
10415 	int err, n, i, tmp_cpus;
10416 	bool *mask;
10417 
10418 	tmp_cpus = READ_ONCE(cpus);
10419 	if (tmp_cpus > 0)
10420 		return tmp_cpus;
10421 
10422 	err = parse_cpu_mask_file(fcpu, &mask, &n);
10423 	if (err)
10424 		return err;
10425 
10426 	tmp_cpus = 0;
10427 	for (i = 0; i < n; i++) {
10428 		if (mask[i])
10429 			tmp_cpus++;
10430 	}
10431 	free(mask);
10432 
10433 	WRITE_ONCE(cpus, tmp_cpus);
10434 	return tmp_cpus;
10435 }
10436 
10437 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
10438 			      const struct bpf_object_open_opts *opts)
10439 {
10440 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
10441 		.object_name = s->name,
10442 	);
10443 	struct bpf_object *obj;
10444 	int i;
10445 
10446 	/* Attempt to preserve opts->object_name, unless overriden by user
10447 	 * explicitly. Overwriting object name for skeletons is discouraged,
10448 	 * as it breaks global data maps, because they contain object name
10449 	 * prefix as their own map name prefix. When skeleton is generated,
10450 	 * bpftool is making an assumption that this name will stay the same.
10451 	 */
10452 	if (opts) {
10453 		memcpy(&skel_opts, opts, sizeof(*opts));
10454 		if (!opts->object_name)
10455 			skel_opts.object_name = s->name;
10456 	}
10457 
10458 	obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
10459 	if (IS_ERR(obj)) {
10460 		pr_warn("failed to initialize skeleton BPF object '%s': %ld\n",
10461 			s->name, PTR_ERR(obj));
10462 		return PTR_ERR(obj);
10463 	}
10464 
10465 	*s->obj = obj;
10466 
10467 	for (i = 0; i < s->map_cnt; i++) {
10468 		struct bpf_map **map = s->maps[i].map;
10469 		const char *name = s->maps[i].name;
10470 		void **mmaped = s->maps[i].mmaped;
10471 
10472 		*map = bpf_object__find_map_by_name(obj, name);
10473 		if (!*map) {
10474 			pr_warn("failed to find skeleton map '%s'\n", name);
10475 			return -ESRCH;
10476 		}
10477 
10478 		/* externs shouldn't be pre-setup from user code */
10479 		if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
10480 			*mmaped = (*map)->mmaped;
10481 	}
10482 
10483 	for (i = 0; i < s->prog_cnt; i++) {
10484 		struct bpf_program **prog = s->progs[i].prog;
10485 		const char *name = s->progs[i].name;
10486 
10487 		*prog = bpf_object__find_program_by_name(obj, name);
10488 		if (!*prog) {
10489 			pr_warn("failed to find skeleton program '%s'\n", name);
10490 			return -ESRCH;
10491 		}
10492 	}
10493 
10494 	return 0;
10495 }
10496 
10497 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
10498 {
10499 	int i, err;
10500 
10501 	err = bpf_object__load(*s->obj);
10502 	if (err) {
10503 		pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
10504 		return err;
10505 	}
10506 
10507 	for (i = 0; i < s->map_cnt; i++) {
10508 		struct bpf_map *map = *s->maps[i].map;
10509 		size_t mmap_sz = bpf_map_mmap_sz(map);
10510 		int prot, map_fd = bpf_map__fd(map);
10511 		void **mmaped = s->maps[i].mmaped;
10512 
10513 		if (!mmaped)
10514 			continue;
10515 
10516 		if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
10517 			*mmaped = NULL;
10518 			continue;
10519 		}
10520 
10521 		if (map->def.map_flags & BPF_F_RDONLY_PROG)
10522 			prot = PROT_READ;
10523 		else
10524 			prot = PROT_READ | PROT_WRITE;
10525 
10526 		/* Remap anonymous mmap()-ed "map initialization image" as
10527 		 * a BPF map-backed mmap()-ed memory, but preserving the same
10528 		 * memory address. This will cause kernel to change process'
10529 		 * page table to point to a different piece of kernel memory,
10530 		 * but from userspace point of view memory address (and its
10531 		 * contents, being identical at this point) will stay the
10532 		 * same. This mapping will be released by bpf_object__close()
10533 		 * as per normal clean up procedure, so we don't need to worry
10534 		 * about it from skeleton's clean up perspective.
10535 		 */
10536 		*mmaped = mmap(map->mmaped, mmap_sz, prot,
10537 				MAP_SHARED | MAP_FIXED, map_fd, 0);
10538 		if (*mmaped == MAP_FAILED) {
10539 			err = -errno;
10540 			*mmaped = NULL;
10541 			pr_warn("failed to re-mmap() map '%s': %d\n",
10542 				 bpf_map__name(map), err);
10543 			return err;
10544 		}
10545 	}
10546 
10547 	return 0;
10548 }
10549 
10550 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
10551 {
10552 	int i;
10553 
10554 	for (i = 0; i < s->prog_cnt; i++) {
10555 		struct bpf_program *prog = *s->progs[i].prog;
10556 		struct bpf_link **link = s->progs[i].link;
10557 		const struct bpf_sec_def *sec_def;
10558 
10559 		if (!prog->load)
10560 			continue;
10561 
10562 		sec_def = find_sec_def(prog->sec_name);
10563 		if (!sec_def || !sec_def->attach_fn)
10564 			continue;
10565 
10566 		*link = sec_def->attach_fn(sec_def, prog);
10567 		if (IS_ERR(*link)) {
10568 			pr_warn("failed to auto-attach program '%s': %ld\n",
10569 				bpf_program__name(prog), PTR_ERR(*link));
10570 			return PTR_ERR(*link);
10571 		}
10572 	}
10573 
10574 	return 0;
10575 }
10576 
10577 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
10578 {
10579 	int i;
10580 
10581 	for (i = 0; i < s->prog_cnt; i++) {
10582 		struct bpf_link **link = s->progs[i].link;
10583 
10584 		bpf_link__destroy(*link);
10585 		*link = NULL;
10586 	}
10587 }
10588 
10589 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
10590 {
10591 	if (s->progs)
10592 		bpf_object__detach_skeleton(s);
10593 	if (s->obj)
10594 		bpf_object__close(*s->obj);
10595 	free(s->maps);
10596 	free(s->progs);
10597 	free(s);
10598 }
10599