1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/list.h> 35 #include <linux/limits.h> 36 #include <linux/perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <linux/version.h> 39 #include <sys/epoll.h> 40 #include <sys/ioctl.h> 41 #include <sys/mman.h> 42 #include <sys/stat.h> 43 #include <sys/types.h> 44 #include <sys/vfs.h> 45 #include <sys/utsname.h> 46 #include <sys/resource.h> 47 #include <libelf.h> 48 #include <gelf.h> 49 #include <zlib.h> 50 51 #include "libbpf.h" 52 #include "bpf.h" 53 #include "btf.h" 54 #include "str_error.h" 55 #include "libbpf_internal.h" 56 #include "hashmap.h" 57 58 #ifndef EM_BPF 59 #define EM_BPF 247 60 #endif 61 62 #ifndef BPF_FS_MAGIC 63 #define BPF_FS_MAGIC 0xcafe4a11 64 #endif 65 66 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 67 68 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 69 * compilation if user enables corresponding warning. Disable it explicitly. 70 */ 71 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 72 73 #define __printf(a, b) __attribute__((format(printf, a, b))) 74 75 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 76 static const struct btf_type * 77 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id); 78 79 static int __base_pr(enum libbpf_print_level level, const char *format, 80 va_list args) 81 { 82 if (level == LIBBPF_DEBUG) 83 return 0; 84 85 return vfprintf(stderr, format, args); 86 } 87 88 static libbpf_print_fn_t __libbpf_pr = __base_pr; 89 90 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 91 { 92 libbpf_print_fn_t old_print_fn = __libbpf_pr; 93 94 __libbpf_pr = fn; 95 return old_print_fn; 96 } 97 98 __printf(2, 3) 99 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 100 { 101 va_list args; 102 103 if (!__libbpf_pr) 104 return; 105 106 va_start(args, format); 107 __libbpf_pr(level, format, args); 108 va_end(args); 109 } 110 111 static void pr_perm_msg(int err) 112 { 113 struct rlimit limit; 114 char buf[100]; 115 116 if (err != -EPERM || geteuid() != 0) 117 return; 118 119 err = getrlimit(RLIMIT_MEMLOCK, &limit); 120 if (err) 121 return; 122 123 if (limit.rlim_cur == RLIM_INFINITY) 124 return; 125 126 if (limit.rlim_cur < 1024) 127 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 128 else if (limit.rlim_cur < 1024*1024) 129 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 130 else 131 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 132 133 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 134 buf); 135 } 136 137 #define STRERR_BUFSIZE 128 138 139 /* Copied from tools/perf/util/util.h */ 140 #ifndef zfree 141 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 142 #endif 143 144 #ifndef zclose 145 # define zclose(fd) ({ \ 146 int ___err = 0; \ 147 if ((fd) >= 0) \ 148 ___err = close((fd)); \ 149 fd = -1; \ 150 ___err; }) 151 #endif 152 153 static inline __u64 ptr_to_u64(const void *ptr) 154 { 155 return (__u64) (unsigned long) ptr; 156 } 157 158 enum kern_feature_id { 159 /* v4.14: kernel support for program & map names. */ 160 FEAT_PROG_NAME, 161 /* v5.2: kernel support for global data sections. */ 162 FEAT_GLOBAL_DATA, 163 /* BTF support */ 164 FEAT_BTF, 165 /* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */ 166 FEAT_BTF_FUNC, 167 /* BTF_KIND_VAR and BTF_KIND_DATASEC support */ 168 FEAT_BTF_DATASEC, 169 /* BTF_FUNC_GLOBAL is supported */ 170 FEAT_BTF_GLOBAL_FUNC, 171 /* BPF_F_MMAPABLE is supported for arrays */ 172 FEAT_ARRAY_MMAP, 173 /* kernel support for expected_attach_type in BPF_PROG_LOAD */ 174 FEAT_EXP_ATTACH_TYPE, 175 /* bpf_probe_read_{kernel,user}[_str] helpers */ 176 FEAT_PROBE_READ_KERN, 177 /* BPF_PROG_BIND_MAP is supported */ 178 FEAT_PROG_BIND_MAP, 179 __FEAT_CNT, 180 }; 181 182 static bool kernel_supports(enum kern_feature_id feat_id); 183 184 enum reloc_type { 185 RELO_LD64, 186 RELO_CALL, 187 RELO_DATA, 188 RELO_EXTERN, 189 }; 190 191 struct reloc_desc { 192 enum reloc_type type; 193 int insn_idx; 194 int map_idx; 195 int sym_off; 196 bool processed; 197 }; 198 199 struct bpf_sec_def; 200 201 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_sec_def *sec, 202 struct bpf_program *prog); 203 204 struct bpf_sec_def { 205 const char *sec; 206 size_t len; 207 enum bpf_prog_type prog_type; 208 enum bpf_attach_type expected_attach_type; 209 bool is_exp_attach_type_optional; 210 bool is_attachable; 211 bool is_attach_btf; 212 bool is_sleepable; 213 attach_fn_t attach_fn; 214 }; 215 216 /* 217 * bpf_prog should be a better name but it has been used in 218 * linux/filter.h. 219 */ 220 struct bpf_program { 221 const struct bpf_sec_def *sec_def; 222 char *sec_name; 223 size_t sec_idx; 224 /* this program's instruction offset (in number of instructions) 225 * within its containing ELF section 226 */ 227 size_t sec_insn_off; 228 /* number of original instructions in ELF section belonging to this 229 * program, not taking into account subprogram instructions possible 230 * appended later during relocation 231 */ 232 size_t sec_insn_cnt; 233 /* Offset (in number of instructions) of the start of instruction 234 * belonging to this BPF program within its containing main BPF 235 * program. For the entry-point (main) BPF program, this is always 236 * zero. For a sub-program, this gets reset before each of main BPF 237 * programs are processed and relocated and is used to determined 238 * whether sub-program was already appended to the main program, and 239 * if yes, at which instruction offset. 240 */ 241 size_t sub_insn_off; 242 243 char *name; 244 /* sec_name with / replaced by _; makes recursive pinning 245 * in bpf_object__pin_programs easier 246 */ 247 char *pin_name; 248 249 /* instructions that belong to BPF program; insns[0] is located at 250 * sec_insn_off instruction within its ELF section in ELF file, so 251 * when mapping ELF file instruction index to the local instruction, 252 * one needs to subtract sec_insn_off; and vice versa. 253 */ 254 struct bpf_insn *insns; 255 /* actual number of instruction in this BPF program's image; for 256 * entry-point BPF programs this includes the size of main program 257 * itself plus all the used sub-programs, appended at the end 258 */ 259 size_t insns_cnt; 260 261 struct reloc_desc *reloc_desc; 262 int nr_reloc; 263 int log_level; 264 265 struct { 266 int nr; 267 int *fds; 268 } instances; 269 bpf_program_prep_t preprocessor; 270 271 struct bpf_object *obj; 272 void *priv; 273 bpf_program_clear_priv_t clear_priv; 274 275 bool load; 276 enum bpf_prog_type type; 277 enum bpf_attach_type expected_attach_type; 278 int prog_ifindex; 279 __u32 attach_btf_id; 280 __u32 attach_prog_fd; 281 void *func_info; 282 __u32 func_info_rec_size; 283 __u32 func_info_cnt; 284 285 void *line_info; 286 __u32 line_info_rec_size; 287 __u32 line_info_cnt; 288 __u32 prog_flags; 289 }; 290 291 struct bpf_struct_ops { 292 const char *tname; 293 const struct btf_type *type; 294 struct bpf_program **progs; 295 __u32 *kern_func_off; 296 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 297 void *data; 298 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 299 * btf_vmlinux's format. 300 * struct bpf_struct_ops_tcp_congestion_ops { 301 * [... some other kernel fields ...] 302 * struct tcp_congestion_ops data; 303 * } 304 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 305 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 306 * from "data". 307 */ 308 void *kern_vdata; 309 __u32 type_id; 310 }; 311 312 #define DATA_SEC ".data" 313 #define BSS_SEC ".bss" 314 #define RODATA_SEC ".rodata" 315 #define KCONFIG_SEC ".kconfig" 316 #define KSYMS_SEC ".ksyms" 317 #define STRUCT_OPS_SEC ".struct_ops" 318 319 enum libbpf_map_type { 320 LIBBPF_MAP_UNSPEC, 321 LIBBPF_MAP_DATA, 322 LIBBPF_MAP_BSS, 323 LIBBPF_MAP_RODATA, 324 LIBBPF_MAP_KCONFIG, 325 }; 326 327 static const char * const libbpf_type_to_btf_name[] = { 328 [LIBBPF_MAP_DATA] = DATA_SEC, 329 [LIBBPF_MAP_BSS] = BSS_SEC, 330 [LIBBPF_MAP_RODATA] = RODATA_SEC, 331 [LIBBPF_MAP_KCONFIG] = KCONFIG_SEC, 332 }; 333 334 struct bpf_map { 335 char *name; 336 int fd; 337 int sec_idx; 338 size_t sec_offset; 339 int map_ifindex; 340 int inner_map_fd; 341 struct bpf_map_def def; 342 __u32 numa_node; 343 __u32 btf_var_idx; 344 __u32 btf_key_type_id; 345 __u32 btf_value_type_id; 346 __u32 btf_vmlinux_value_type_id; 347 void *priv; 348 bpf_map_clear_priv_t clear_priv; 349 enum libbpf_map_type libbpf_type; 350 void *mmaped; 351 struct bpf_struct_ops *st_ops; 352 struct bpf_map *inner_map; 353 void **init_slots; 354 int init_slots_sz; 355 char *pin_path; 356 bool pinned; 357 bool reused; 358 }; 359 360 enum extern_type { 361 EXT_UNKNOWN, 362 EXT_KCFG, 363 EXT_KSYM, 364 }; 365 366 enum kcfg_type { 367 KCFG_UNKNOWN, 368 KCFG_CHAR, 369 KCFG_BOOL, 370 KCFG_INT, 371 KCFG_TRISTATE, 372 KCFG_CHAR_ARR, 373 }; 374 375 struct extern_desc { 376 enum extern_type type; 377 int sym_idx; 378 int btf_id; 379 int sec_btf_id; 380 const char *name; 381 bool is_set; 382 bool is_weak; 383 union { 384 struct { 385 enum kcfg_type type; 386 int sz; 387 int align; 388 int data_off; 389 bool is_signed; 390 } kcfg; 391 struct { 392 unsigned long long addr; 393 } ksym; 394 }; 395 }; 396 397 static LIST_HEAD(bpf_objects_list); 398 399 struct bpf_object { 400 char name[BPF_OBJ_NAME_LEN]; 401 char license[64]; 402 __u32 kern_version; 403 404 struct bpf_program *programs; 405 size_t nr_programs; 406 struct bpf_map *maps; 407 size_t nr_maps; 408 size_t maps_cap; 409 410 char *kconfig; 411 struct extern_desc *externs; 412 int nr_extern; 413 int kconfig_map_idx; 414 int rodata_map_idx; 415 416 bool loaded; 417 bool has_subcalls; 418 419 /* 420 * Information when doing elf related work. Only valid if fd 421 * is valid. 422 */ 423 struct { 424 int fd; 425 const void *obj_buf; 426 size_t obj_buf_sz; 427 Elf *elf; 428 GElf_Ehdr ehdr; 429 Elf_Data *symbols; 430 Elf_Data *data; 431 Elf_Data *rodata; 432 Elf_Data *bss; 433 Elf_Data *st_ops_data; 434 size_t shstrndx; /* section index for section name strings */ 435 size_t strtabidx; 436 struct { 437 GElf_Shdr shdr; 438 Elf_Data *data; 439 } *reloc_sects; 440 int nr_reloc_sects; 441 int maps_shndx; 442 int btf_maps_shndx; 443 __u32 btf_maps_sec_btf_id; 444 int text_shndx; 445 int symbols_shndx; 446 int data_shndx; 447 int rodata_shndx; 448 int bss_shndx; 449 int st_ops_shndx; 450 } efile; 451 /* 452 * All loaded bpf_object is linked in a list, which is 453 * hidden to caller. bpf_objects__<func> handlers deal with 454 * all objects. 455 */ 456 struct list_head list; 457 458 struct btf *btf; 459 /* Parse and load BTF vmlinux if any of the programs in the object need 460 * it at load time. 461 */ 462 struct btf *btf_vmlinux; 463 struct btf_ext *btf_ext; 464 465 void *priv; 466 bpf_object_clear_priv_t clear_priv; 467 468 char path[]; 469 }; 470 #define obj_elf_valid(o) ((o)->efile.elf) 471 472 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 473 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 474 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 475 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 476 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr); 477 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 478 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 479 static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx, 480 size_t off, __u32 sym_type, GElf_Sym *sym); 481 482 void bpf_program__unload(struct bpf_program *prog) 483 { 484 int i; 485 486 if (!prog) 487 return; 488 489 /* 490 * If the object is opened but the program was never loaded, 491 * it is possible that prog->instances.nr == -1. 492 */ 493 if (prog->instances.nr > 0) { 494 for (i = 0; i < prog->instances.nr; i++) 495 zclose(prog->instances.fds[i]); 496 } else if (prog->instances.nr != -1) { 497 pr_warn("Internal error: instances.nr is %d\n", 498 prog->instances.nr); 499 } 500 501 prog->instances.nr = -1; 502 zfree(&prog->instances.fds); 503 504 zfree(&prog->func_info); 505 zfree(&prog->line_info); 506 } 507 508 static void bpf_program__exit(struct bpf_program *prog) 509 { 510 if (!prog) 511 return; 512 513 if (prog->clear_priv) 514 prog->clear_priv(prog, prog->priv); 515 516 prog->priv = NULL; 517 prog->clear_priv = NULL; 518 519 bpf_program__unload(prog); 520 zfree(&prog->name); 521 zfree(&prog->sec_name); 522 zfree(&prog->pin_name); 523 zfree(&prog->insns); 524 zfree(&prog->reloc_desc); 525 526 prog->nr_reloc = 0; 527 prog->insns_cnt = 0; 528 prog->sec_idx = -1; 529 } 530 531 static char *__bpf_program__pin_name(struct bpf_program *prog) 532 { 533 char *name, *p; 534 535 name = p = strdup(prog->sec_name); 536 while ((p = strchr(p, '/'))) 537 *p = '_'; 538 539 return name; 540 } 541 542 static bool insn_is_subprog_call(const struct bpf_insn *insn) 543 { 544 return BPF_CLASS(insn->code) == BPF_JMP && 545 BPF_OP(insn->code) == BPF_CALL && 546 BPF_SRC(insn->code) == BPF_K && 547 insn->src_reg == BPF_PSEUDO_CALL && 548 insn->dst_reg == 0 && 549 insn->off == 0; 550 } 551 552 static int 553 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 554 const char *name, size_t sec_idx, const char *sec_name, 555 size_t sec_off, void *insn_data, size_t insn_data_sz) 556 { 557 int i; 558 559 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 560 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 561 sec_name, name, sec_off, insn_data_sz); 562 return -EINVAL; 563 } 564 565 memset(prog, 0, sizeof(*prog)); 566 prog->obj = obj; 567 568 prog->sec_idx = sec_idx; 569 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 570 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 571 /* insns_cnt can later be increased by appending used subprograms */ 572 prog->insns_cnt = prog->sec_insn_cnt; 573 574 prog->type = BPF_PROG_TYPE_UNSPEC; 575 prog->load = true; 576 577 prog->instances.fds = NULL; 578 prog->instances.nr = -1; 579 580 prog->sec_name = strdup(sec_name); 581 if (!prog->sec_name) 582 goto errout; 583 584 prog->name = strdup(name); 585 if (!prog->name) 586 goto errout; 587 588 prog->pin_name = __bpf_program__pin_name(prog); 589 if (!prog->pin_name) 590 goto errout; 591 592 prog->insns = malloc(insn_data_sz); 593 if (!prog->insns) 594 goto errout; 595 memcpy(prog->insns, insn_data, insn_data_sz); 596 597 for (i = 0; i < prog->insns_cnt; i++) { 598 if (insn_is_subprog_call(&prog->insns[i])) { 599 obj->has_subcalls = true; 600 break; 601 } 602 } 603 604 return 0; 605 errout: 606 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 607 bpf_program__exit(prog); 608 return -ENOMEM; 609 } 610 611 static int 612 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 613 const char *sec_name, int sec_idx) 614 { 615 struct bpf_program *prog, *progs; 616 void *data = sec_data->d_buf; 617 size_t sec_sz = sec_data->d_size, sec_off, prog_sz; 618 int nr_progs, err; 619 const char *name; 620 GElf_Sym sym; 621 622 progs = obj->programs; 623 nr_progs = obj->nr_programs; 624 sec_off = 0; 625 626 while (sec_off < sec_sz) { 627 if (elf_sym_by_sec_off(obj, sec_idx, sec_off, STT_FUNC, &sym)) { 628 pr_warn("sec '%s': failed to find program symbol at offset %zu\n", 629 sec_name, sec_off); 630 return -LIBBPF_ERRNO__FORMAT; 631 } 632 633 prog_sz = sym.st_size; 634 635 name = elf_sym_str(obj, sym.st_name); 636 if (!name) { 637 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 638 sec_name, sec_off); 639 return -LIBBPF_ERRNO__FORMAT; 640 } 641 642 if (sec_off + prog_sz > sec_sz) { 643 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 644 sec_name, sec_off); 645 return -LIBBPF_ERRNO__FORMAT; 646 } 647 648 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 649 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 650 651 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 652 if (!progs) { 653 /* 654 * In this case the original obj->programs 655 * is still valid, so don't need special treat for 656 * bpf_close_object(). 657 */ 658 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 659 sec_name, name); 660 return -ENOMEM; 661 } 662 obj->programs = progs; 663 664 prog = &progs[nr_progs]; 665 666 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 667 sec_off, data + sec_off, prog_sz); 668 if (err) 669 return err; 670 671 nr_progs++; 672 obj->nr_programs = nr_progs; 673 674 sec_off += prog_sz; 675 } 676 677 return 0; 678 } 679 680 static __u32 get_kernel_version(void) 681 { 682 __u32 major, minor, patch; 683 struct utsname info; 684 685 uname(&info); 686 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 687 return 0; 688 return KERNEL_VERSION(major, minor, patch); 689 } 690 691 static const struct btf_member * 692 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 693 { 694 struct btf_member *m; 695 int i; 696 697 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 698 if (btf_member_bit_offset(t, i) == bit_offset) 699 return m; 700 } 701 702 return NULL; 703 } 704 705 static const struct btf_member * 706 find_member_by_name(const struct btf *btf, const struct btf_type *t, 707 const char *name) 708 { 709 struct btf_member *m; 710 int i; 711 712 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 713 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 714 return m; 715 } 716 717 return NULL; 718 } 719 720 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 721 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 722 const char *name, __u32 kind); 723 724 static int 725 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 726 const struct btf_type **type, __u32 *type_id, 727 const struct btf_type **vtype, __u32 *vtype_id, 728 const struct btf_member **data_member) 729 { 730 const struct btf_type *kern_type, *kern_vtype; 731 const struct btf_member *kern_data_member; 732 __s32 kern_vtype_id, kern_type_id; 733 __u32 i; 734 735 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 736 if (kern_type_id < 0) { 737 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 738 tname); 739 return kern_type_id; 740 } 741 kern_type = btf__type_by_id(btf, kern_type_id); 742 743 /* Find the corresponding "map_value" type that will be used 744 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 745 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 746 * btf_vmlinux. 747 */ 748 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 749 tname, BTF_KIND_STRUCT); 750 if (kern_vtype_id < 0) { 751 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 752 STRUCT_OPS_VALUE_PREFIX, tname); 753 return kern_vtype_id; 754 } 755 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 756 757 /* Find "struct tcp_congestion_ops" from 758 * struct bpf_struct_ops_tcp_congestion_ops { 759 * [ ... ] 760 * struct tcp_congestion_ops data; 761 * } 762 */ 763 kern_data_member = btf_members(kern_vtype); 764 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 765 if (kern_data_member->type == kern_type_id) 766 break; 767 } 768 if (i == btf_vlen(kern_vtype)) { 769 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 770 tname, STRUCT_OPS_VALUE_PREFIX, tname); 771 return -EINVAL; 772 } 773 774 *type = kern_type; 775 *type_id = kern_type_id; 776 *vtype = kern_vtype; 777 *vtype_id = kern_vtype_id; 778 *data_member = kern_data_member; 779 780 return 0; 781 } 782 783 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 784 { 785 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 786 } 787 788 /* Init the map's fields that depend on kern_btf */ 789 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 790 const struct btf *btf, 791 const struct btf *kern_btf) 792 { 793 const struct btf_member *member, *kern_member, *kern_data_member; 794 const struct btf_type *type, *kern_type, *kern_vtype; 795 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 796 struct bpf_struct_ops *st_ops; 797 void *data, *kern_data; 798 const char *tname; 799 int err; 800 801 st_ops = map->st_ops; 802 type = st_ops->type; 803 tname = st_ops->tname; 804 err = find_struct_ops_kern_types(kern_btf, tname, 805 &kern_type, &kern_type_id, 806 &kern_vtype, &kern_vtype_id, 807 &kern_data_member); 808 if (err) 809 return err; 810 811 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 812 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 813 814 map->def.value_size = kern_vtype->size; 815 map->btf_vmlinux_value_type_id = kern_vtype_id; 816 817 st_ops->kern_vdata = calloc(1, kern_vtype->size); 818 if (!st_ops->kern_vdata) 819 return -ENOMEM; 820 821 data = st_ops->data; 822 kern_data_off = kern_data_member->offset / 8; 823 kern_data = st_ops->kern_vdata + kern_data_off; 824 825 member = btf_members(type); 826 for (i = 0; i < btf_vlen(type); i++, member++) { 827 const struct btf_type *mtype, *kern_mtype; 828 __u32 mtype_id, kern_mtype_id; 829 void *mdata, *kern_mdata; 830 __s64 msize, kern_msize; 831 __u32 moff, kern_moff; 832 __u32 kern_member_idx; 833 const char *mname; 834 835 mname = btf__name_by_offset(btf, member->name_off); 836 kern_member = find_member_by_name(kern_btf, kern_type, mname); 837 if (!kern_member) { 838 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 839 map->name, mname); 840 return -ENOTSUP; 841 } 842 843 kern_member_idx = kern_member - btf_members(kern_type); 844 if (btf_member_bitfield_size(type, i) || 845 btf_member_bitfield_size(kern_type, kern_member_idx)) { 846 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 847 map->name, mname); 848 return -ENOTSUP; 849 } 850 851 moff = member->offset / 8; 852 kern_moff = kern_member->offset / 8; 853 854 mdata = data + moff; 855 kern_mdata = kern_data + kern_moff; 856 857 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 858 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 859 &kern_mtype_id); 860 if (BTF_INFO_KIND(mtype->info) != 861 BTF_INFO_KIND(kern_mtype->info)) { 862 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 863 map->name, mname, BTF_INFO_KIND(mtype->info), 864 BTF_INFO_KIND(kern_mtype->info)); 865 return -ENOTSUP; 866 } 867 868 if (btf_is_ptr(mtype)) { 869 struct bpf_program *prog; 870 871 mtype = skip_mods_and_typedefs(btf, mtype->type, &mtype_id); 872 kern_mtype = skip_mods_and_typedefs(kern_btf, 873 kern_mtype->type, 874 &kern_mtype_id); 875 if (!btf_is_func_proto(mtype) || 876 !btf_is_func_proto(kern_mtype)) { 877 pr_warn("struct_ops init_kern %s: non func ptr %s is not supported\n", 878 map->name, mname); 879 return -ENOTSUP; 880 } 881 882 prog = st_ops->progs[i]; 883 if (!prog) { 884 pr_debug("struct_ops init_kern %s: func ptr %s is not set\n", 885 map->name, mname); 886 continue; 887 } 888 889 prog->attach_btf_id = kern_type_id; 890 prog->expected_attach_type = kern_member_idx; 891 892 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 893 894 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 895 map->name, mname, prog->name, moff, 896 kern_moff); 897 898 continue; 899 } 900 901 msize = btf__resolve_size(btf, mtype_id); 902 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 903 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 904 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 905 map->name, mname, (ssize_t)msize, 906 (ssize_t)kern_msize); 907 return -ENOTSUP; 908 } 909 910 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 911 map->name, mname, (unsigned int)msize, 912 moff, kern_moff); 913 memcpy(kern_mdata, mdata, msize); 914 } 915 916 return 0; 917 } 918 919 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 920 { 921 struct bpf_map *map; 922 size_t i; 923 int err; 924 925 for (i = 0; i < obj->nr_maps; i++) { 926 map = &obj->maps[i]; 927 928 if (!bpf_map__is_struct_ops(map)) 929 continue; 930 931 err = bpf_map__init_kern_struct_ops(map, obj->btf, 932 obj->btf_vmlinux); 933 if (err) 934 return err; 935 } 936 937 return 0; 938 } 939 940 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 941 { 942 const struct btf_type *type, *datasec; 943 const struct btf_var_secinfo *vsi; 944 struct bpf_struct_ops *st_ops; 945 const char *tname, *var_name; 946 __s32 type_id, datasec_id; 947 const struct btf *btf; 948 struct bpf_map *map; 949 __u32 i; 950 951 if (obj->efile.st_ops_shndx == -1) 952 return 0; 953 954 btf = obj->btf; 955 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 956 BTF_KIND_DATASEC); 957 if (datasec_id < 0) { 958 pr_warn("struct_ops init: DATASEC %s not found\n", 959 STRUCT_OPS_SEC); 960 return -EINVAL; 961 } 962 963 datasec = btf__type_by_id(btf, datasec_id); 964 vsi = btf_var_secinfos(datasec); 965 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 966 type = btf__type_by_id(obj->btf, vsi->type); 967 var_name = btf__name_by_offset(obj->btf, type->name_off); 968 969 type_id = btf__resolve_type(obj->btf, vsi->type); 970 if (type_id < 0) { 971 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 972 vsi->type, STRUCT_OPS_SEC); 973 return -EINVAL; 974 } 975 976 type = btf__type_by_id(obj->btf, type_id); 977 tname = btf__name_by_offset(obj->btf, type->name_off); 978 if (!tname[0]) { 979 pr_warn("struct_ops init: anonymous type is not supported\n"); 980 return -ENOTSUP; 981 } 982 if (!btf_is_struct(type)) { 983 pr_warn("struct_ops init: %s is not a struct\n", tname); 984 return -EINVAL; 985 } 986 987 map = bpf_object__add_map(obj); 988 if (IS_ERR(map)) 989 return PTR_ERR(map); 990 991 map->sec_idx = obj->efile.st_ops_shndx; 992 map->sec_offset = vsi->offset; 993 map->name = strdup(var_name); 994 if (!map->name) 995 return -ENOMEM; 996 997 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 998 map->def.key_size = sizeof(int); 999 map->def.value_size = type->size; 1000 map->def.max_entries = 1; 1001 1002 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1003 if (!map->st_ops) 1004 return -ENOMEM; 1005 st_ops = map->st_ops; 1006 st_ops->data = malloc(type->size); 1007 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1008 st_ops->kern_func_off = malloc(btf_vlen(type) * 1009 sizeof(*st_ops->kern_func_off)); 1010 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1011 return -ENOMEM; 1012 1013 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1014 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1015 var_name, STRUCT_OPS_SEC); 1016 return -EINVAL; 1017 } 1018 1019 memcpy(st_ops->data, 1020 obj->efile.st_ops_data->d_buf + vsi->offset, 1021 type->size); 1022 st_ops->tname = tname; 1023 st_ops->type = type; 1024 st_ops->type_id = type_id; 1025 1026 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1027 tname, type_id, var_name, vsi->offset); 1028 } 1029 1030 return 0; 1031 } 1032 1033 static struct bpf_object *bpf_object__new(const char *path, 1034 const void *obj_buf, 1035 size_t obj_buf_sz, 1036 const char *obj_name) 1037 { 1038 struct bpf_object *obj; 1039 char *end; 1040 1041 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1042 if (!obj) { 1043 pr_warn("alloc memory failed for %s\n", path); 1044 return ERR_PTR(-ENOMEM); 1045 } 1046 1047 strcpy(obj->path, path); 1048 if (obj_name) { 1049 strncpy(obj->name, obj_name, sizeof(obj->name) - 1); 1050 obj->name[sizeof(obj->name) - 1] = 0; 1051 } else { 1052 /* Using basename() GNU version which doesn't modify arg. */ 1053 strncpy(obj->name, basename((void *)path), 1054 sizeof(obj->name) - 1); 1055 end = strchr(obj->name, '.'); 1056 if (end) 1057 *end = 0; 1058 } 1059 1060 obj->efile.fd = -1; 1061 /* 1062 * Caller of this function should also call 1063 * bpf_object__elf_finish() after data collection to return 1064 * obj_buf to user. If not, we should duplicate the buffer to 1065 * avoid user freeing them before elf finish. 1066 */ 1067 obj->efile.obj_buf = obj_buf; 1068 obj->efile.obj_buf_sz = obj_buf_sz; 1069 obj->efile.maps_shndx = -1; 1070 obj->efile.btf_maps_shndx = -1; 1071 obj->efile.data_shndx = -1; 1072 obj->efile.rodata_shndx = -1; 1073 obj->efile.bss_shndx = -1; 1074 obj->efile.st_ops_shndx = -1; 1075 obj->kconfig_map_idx = -1; 1076 obj->rodata_map_idx = -1; 1077 1078 obj->kern_version = get_kernel_version(); 1079 obj->loaded = false; 1080 1081 INIT_LIST_HEAD(&obj->list); 1082 list_add(&obj->list, &bpf_objects_list); 1083 return obj; 1084 } 1085 1086 static void bpf_object__elf_finish(struct bpf_object *obj) 1087 { 1088 if (!obj_elf_valid(obj)) 1089 return; 1090 1091 if (obj->efile.elf) { 1092 elf_end(obj->efile.elf); 1093 obj->efile.elf = NULL; 1094 } 1095 obj->efile.symbols = NULL; 1096 obj->efile.data = NULL; 1097 obj->efile.rodata = NULL; 1098 obj->efile.bss = NULL; 1099 obj->efile.st_ops_data = NULL; 1100 1101 zfree(&obj->efile.reloc_sects); 1102 obj->efile.nr_reloc_sects = 0; 1103 zclose(obj->efile.fd); 1104 obj->efile.obj_buf = NULL; 1105 obj->efile.obj_buf_sz = 0; 1106 } 1107 1108 /* if libelf is old and doesn't support mmap(), fall back to read() */ 1109 #ifndef ELF_C_READ_MMAP 1110 #define ELF_C_READ_MMAP ELF_C_READ 1111 #endif 1112 1113 static int bpf_object__elf_init(struct bpf_object *obj) 1114 { 1115 int err = 0; 1116 GElf_Ehdr *ep; 1117 1118 if (obj_elf_valid(obj)) { 1119 pr_warn("elf: init internal error\n"); 1120 return -LIBBPF_ERRNO__LIBELF; 1121 } 1122 1123 if (obj->efile.obj_buf_sz > 0) { 1124 /* 1125 * obj_buf should have been validated by 1126 * bpf_object__open_buffer(). 1127 */ 1128 obj->efile.elf = elf_memory((char *)obj->efile.obj_buf, 1129 obj->efile.obj_buf_sz); 1130 } else { 1131 obj->efile.fd = open(obj->path, O_RDONLY); 1132 if (obj->efile.fd < 0) { 1133 char errmsg[STRERR_BUFSIZE], *cp; 1134 1135 err = -errno; 1136 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1137 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1138 return err; 1139 } 1140 1141 obj->efile.elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1142 } 1143 1144 if (!obj->efile.elf) { 1145 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1146 err = -LIBBPF_ERRNO__LIBELF; 1147 goto errout; 1148 } 1149 1150 if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) { 1151 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1152 err = -LIBBPF_ERRNO__FORMAT; 1153 goto errout; 1154 } 1155 ep = &obj->efile.ehdr; 1156 1157 if (elf_getshdrstrndx(obj->efile.elf, &obj->efile.shstrndx)) { 1158 pr_warn("elf: failed to get section names section index for %s: %s\n", 1159 obj->path, elf_errmsg(-1)); 1160 err = -LIBBPF_ERRNO__FORMAT; 1161 goto errout; 1162 } 1163 1164 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1165 if (!elf_rawdata(elf_getscn(obj->efile.elf, obj->efile.shstrndx), NULL)) { 1166 pr_warn("elf: failed to get section names strings from %s: %s\n", 1167 obj->path, elf_errmsg(-1)); 1168 return -LIBBPF_ERRNO__FORMAT; 1169 } 1170 1171 /* Old LLVM set e_machine to EM_NONE */ 1172 if (ep->e_type != ET_REL || 1173 (ep->e_machine && ep->e_machine != EM_BPF)) { 1174 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1175 err = -LIBBPF_ERRNO__FORMAT; 1176 goto errout; 1177 } 1178 1179 return 0; 1180 errout: 1181 bpf_object__elf_finish(obj); 1182 return err; 1183 } 1184 1185 static int bpf_object__check_endianness(struct bpf_object *obj) 1186 { 1187 #if __BYTE_ORDER == __LITTLE_ENDIAN 1188 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2LSB) 1189 return 0; 1190 #elif __BYTE_ORDER == __BIG_ENDIAN 1191 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2MSB) 1192 return 0; 1193 #else 1194 # error "Unrecognized __BYTE_ORDER__" 1195 #endif 1196 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1197 return -LIBBPF_ERRNO__ENDIAN; 1198 } 1199 1200 static int 1201 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1202 { 1203 memcpy(obj->license, data, min(size, sizeof(obj->license) - 1)); 1204 pr_debug("license of %s is %s\n", obj->path, obj->license); 1205 return 0; 1206 } 1207 1208 static int 1209 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1210 { 1211 __u32 kver; 1212 1213 if (size != sizeof(kver)) { 1214 pr_warn("invalid kver section in %s\n", obj->path); 1215 return -LIBBPF_ERRNO__FORMAT; 1216 } 1217 memcpy(&kver, data, sizeof(kver)); 1218 obj->kern_version = kver; 1219 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1220 return 0; 1221 } 1222 1223 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1224 { 1225 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1226 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1227 return true; 1228 return false; 1229 } 1230 1231 int bpf_object__section_size(const struct bpf_object *obj, const char *name, 1232 __u32 *size) 1233 { 1234 int ret = -ENOENT; 1235 1236 *size = 0; 1237 if (!name) { 1238 return -EINVAL; 1239 } else if (!strcmp(name, DATA_SEC)) { 1240 if (obj->efile.data) 1241 *size = obj->efile.data->d_size; 1242 } else if (!strcmp(name, BSS_SEC)) { 1243 if (obj->efile.bss) 1244 *size = obj->efile.bss->d_size; 1245 } else if (!strcmp(name, RODATA_SEC)) { 1246 if (obj->efile.rodata) 1247 *size = obj->efile.rodata->d_size; 1248 } else if (!strcmp(name, STRUCT_OPS_SEC)) { 1249 if (obj->efile.st_ops_data) 1250 *size = obj->efile.st_ops_data->d_size; 1251 } else { 1252 Elf_Scn *scn = elf_sec_by_name(obj, name); 1253 Elf_Data *data = elf_sec_data(obj, scn); 1254 1255 if (data) { 1256 ret = 0; /* found it */ 1257 *size = data->d_size; 1258 } 1259 } 1260 1261 return *size ? 0 : ret; 1262 } 1263 1264 int bpf_object__variable_offset(const struct bpf_object *obj, const char *name, 1265 __u32 *off) 1266 { 1267 Elf_Data *symbols = obj->efile.symbols; 1268 const char *sname; 1269 size_t si; 1270 1271 if (!name || !off) 1272 return -EINVAL; 1273 1274 for (si = 0; si < symbols->d_size / sizeof(GElf_Sym); si++) { 1275 GElf_Sym sym; 1276 1277 if (!gelf_getsym(symbols, si, &sym)) 1278 continue; 1279 if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL || 1280 GELF_ST_TYPE(sym.st_info) != STT_OBJECT) 1281 continue; 1282 1283 sname = elf_sym_str(obj, sym.st_name); 1284 if (!sname) { 1285 pr_warn("failed to get sym name string for var %s\n", 1286 name); 1287 return -EIO; 1288 } 1289 if (strcmp(name, sname) == 0) { 1290 *off = sym.st_value; 1291 return 0; 1292 } 1293 } 1294 1295 return -ENOENT; 1296 } 1297 1298 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1299 { 1300 struct bpf_map *new_maps; 1301 size_t new_cap; 1302 int i; 1303 1304 if (obj->nr_maps < obj->maps_cap) 1305 return &obj->maps[obj->nr_maps++]; 1306 1307 new_cap = max((size_t)4, obj->maps_cap * 3 / 2); 1308 new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps)); 1309 if (!new_maps) { 1310 pr_warn("alloc maps for object failed\n"); 1311 return ERR_PTR(-ENOMEM); 1312 } 1313 1314 obj->maps_cap = new_cap; 1315 obj->maps = new_maps; 1316 1317 /* zero out new maps */ 1318 memset(obj->maps + obj->nr_maps, 0, 1319 (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps)); 1320 /* 1321 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin) 1322 * when failure (zclose won't close negative fd)). 1323 */ 1324 for (i = obj->nr_maps; i < obj->maps_cap; i++) { 1325 obj->maps[i].fd = -1; 1326 obj->maps[i].inner_map_fd = -1; 1327 } 1328 1329 return &obj->maps[obj->nr_maps++]; 1330 } 1331 1332 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1333 { 1334 long page_sz = sysconf(_SC_PAGE_SIZE); 1335 size_t map_sz; 1336 1337 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1338 map_sz = roundup(map_sz, page_sz); 1339 return map_sz; 1340 } 1341 1342 static char *internal_map_name(struct bpf_object *obj, 1343 enum libbpf_map_type type) 1344 { 1345 char map_name[BPF_OBJ_NAME_LEN], *p; 1346 const char *sfx = libbpf_type_to_btf_name[type]; 1347 int sfx_len = max((size_t)7, strlen(sfx)); 1348 int pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, 1349 strlen(obj->name)); 1350 1351 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1352 sfx_len, libbpf_type_to_btf_name[type]); 1353 1354 /* sanitise map name to characters allowed by kernel */ 1355 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1356 if (!isalnum(*p) && *p != '_' && *p != '.') 1357 *p = '_'; 1358 1359 return strdup(map_name); 1360 } 1361 1362 static int 1363 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1364 int sec_idx, void *data, size_t data_sz) 1365 { 1366 struct bpf_map_def *def; 1367 struct bpf_map *map; 1368 int err; 1369 1370 map = bpf_object__add_map(obj); 1371 if (IS_ERR(map)) 1372 return PTR_ERR(map); 1373 1374 map->libbpf_type = type; 1375 map->sec_idx = sec_idx; 1376 map->sec_offset = 0; 1377 map->name = internal_map_name(obj, type); 1378 if (!map->name) { 1379 pr_warn("failed to alloc map name\n"); 1380 return -ENOMEM; 1381 } 1382 1383 def = &map->def; 1384 def->type = BPF_MAP_TYPE_ARRAY; 1385 def->key_size = sizeof(int); 1386 def->value_size = data_sz; 1387 def->max_entries = 1; 1388 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1389 ? BPF_F_RDONLY_PROG : 0; 1390 def->map_flags |= BPF_F_MMAPABLE; 1391 1392 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1393 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1394 1395 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1396 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1397 if (map->mmaped == MAP_FAILED) { 1398 err = -errno; 1399 map->mmaped = NULL; 1400 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1401 map->name, err); 1402 zfree(&map->name); 1403 return err; 1404 } 1405 1406 if (data) 1407 memcpy(map->mmaped, data, data_sz); 1408 1409 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1410 return 0; 1411 } 1412 1413 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1414 { 1415 int err; 1416 1417 /* 1418 * Populate obj->maps with libbpf internal maps. 1419 */ 1420 if (obj->efile.data_shndx >= 0) { 1421 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1422 obj->efile.data_shndx, 1423 obj->efile.data->d_buf, 1424 obj->efile.data->d_size); 1425 if (err) 1426 return err; 1427 } 1428 if (obj->efile.rodata_shndx >= 0) { 1429 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1430 obj->efile.rodata_shndx, 1431 obj->efile.rodata->d_buf, 1432 obj->efile.rodata->d_size); 1433 if (err) 1434 return err; 1435 1436 obj->rodata_map_idx = obj->nr_maps - 1; 1437 } 1438 if (obj->efile.bss_shndx >= 0) { 1439 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1440 obj->efile.bss_shndx, 1441 NULL, 1442 obj->efile.bss->d_size); 1443 if (err) 1444 return err; 1445 } 1446 return 0; 1447 } 1448 1449 1450 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1451 const void *name) 1452 { 1453 int i; 1454 1455 for (i = 0; i < obj->nr_extern; i++) { 1456 if (strcmp(obj->externs[i].name, name) == 0) 1457 return &obj->externs[i]; 1458 } 1459 return NULL; 1460 } 1461 1462 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1463 char value) 1464 { 1465 switch (ext->kcfg.type) { 1466 case KCFG_BOOL: 1467 if (value == 'm') { 1468 pr_warn("extern (kcfg) %s=%c should be tristate or char\n", 1469 ext->name, value); 1470 return -EINVAL; 1471 } 1472 *(bool *)ext_val = value == 'y' ? true : false; 1473 break; 1474 case KCFG_TRISTATE: 1475 if (value == 'y') 1476 *(enum libbpf_tristate *)ext_val = TRI_YES; 1477 else if (value == 'm') 1478 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1479 else /* value == 'n' */ 1480 *(enum libbpf_tristate *)ext_val = TRI_NO; 1481 break; 1482 case KCFG_CHAR: 1483 *(char *)ext_val = value; 1484 break; 1485 case KCFG_UNKNOWN: 1486 case KCFG_INT: 1487 case KCFG_CHAR_ARR: 1488 default: 1489 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n", 1490 ext->name, value); 1491 return -EINVAL; 1492 } 1493 ext->is_set = true; 1494 return 0; 1495 } 1496 1497 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1498 const char *value) 1499 { 1500 size_t len; 1501 1502 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1503 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value); 1504 return -EINVAL; 1505 } 1506 1507 len = strlen(value); 1508 if (value[len - 1] != '"') { 1509 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1510 ext->name, value); 1511 return -EINVAL; 1512 } 1513 1514 /* strip quotes */ 1515 len -= 2; 1516 if (len >= ext->kcfg.sz) { 1517 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n", 1518 ext->name, value, len, ext->kcfg.sz - 1); 1519 len = ext->kcfg.sz - 1; 1520 } 1521 memcpy(ext_val, value + 1, len); 1522 ext_val[len] = '\0'; 1523 ext->is_set = true; 1524 return 0; 1525 } 1526 1527 static int parse_u64(const char *value, __u64 *res) 1528 { 1529 char *value_end; 1530 int err; 1531 1532 errno = 0; 1533 *res = strtoull(value, &value_end, 0); 1534 if (errno) { 1535 err = -errno; 1536 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1537 return err; 1538 } 1539 if (*value_end) { 1540 pr_warn("failed to parse '%s' as integer completely\n", value); 1541 return -EINVAL; 1542 } 1543 return 0; 1544 } 1545 1546 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1547 { 1548 int bit_sz = ext->kcfg.sz * 8; 1549 1550 if (ext->kcfg.sz == 8) 1551 return true; 1552 1553 /* Validate that value stored in u64 fits in integer of `ext->sz` 1554 * bytes size without any loss of information. If the target integer 1555 * is signed, we rely on the following limits of integer type of 1556 * Y bits and subsequent transformation: 1557 * 1558 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1559 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1560 * 0 <= X + 2^(Y-1) < 2^Y 1561 * 1562 * For unsigned target integer, check that all the (64 - Y) bits are 1563 * zero. 1564 */ 1565 if (ext->kcfg.is_signed) 1566 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1567 else 1568 return (v >> bit_sz) == 0; 1569 } 1570 1571 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1572 __u64 value) 1573 { 1574 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1575 pr_warn("extern (kcfg) %s=%llu should be integer\n", 1576 ext->name, (unsigned long long)value); 1577 return -EINVAL; 1578 } 1579 if (!is_kcfg_value_in_range(ext, value)) { 1580 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n", 1581 ext->name, (unsigned long long)value, ext->kcfg.sz); 1582 return -ERANGE; 1583 } 1584 switch (ext->kcfg.sz) { 1585 case 1: *(__u8 *)ext_val = value; break; 1586 case 2: *(__u16 *)ext_val = value; break; 1587 case 4: *(__u32 *)ext_val = value; break; 1588 case 8: *(__u64 *)ext_val = value; break; 1589 default: 1590 return -EINVAL; 1591 } 1592 ext->is_set = true; 1593 return 0; 1594 } 1595 1596 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1597 char *buf, void *data) 1598 { 1599 struct extern_desc *ext; 1600 char *sep, *value; 1601 int len, err = 0; 1602 void *ext_val; 1603 __u64 num; 1604 1605 if (strncmp(buf, "CONFIG_", 7)) 1606 return 0; 1607 1608 sep = strchr(buf, '='); 1609 if (!sep) { 1610 pr_warn("failed to parse '%s': no separator\n", buf); 1611 return -EINVAL; 1612 } 1613 1614 /* Trim ending '\n' */ 1615 len = strlen(buf); 1616 if (buf[len - 1] == '\n') 1617 buf[len - 1] = '\0'; 1618 /* Split on '=' and ensure that a value is present. */ 1619 *sep = '\0'; 1620 if (!sep[1]) { 1621 *sep = '='; 1622 pr_warn("failed to parse '%s': no value\n", buf); 1623 return -EINVAL; 1624 } 1625 1626 ext = find_extern_by_name(obj, buf); 1627 if (!ext || ext->is_set) 1628 return 0; 1629 1630 ext_val = data + ext->kcfg.data_off; 1631 value = sep + 1; 1632 1633 switch (*value) { 1634 case 'y': case 'n': case 'm': 1635 err = set_kcfg_value_tri(ext, ext_val, *value); 1636 break; 1637 case '"': 1638 err = set_kcfg_value_str(ext, ext_val, value); 1639 break; 1640 default: 1641 /* assume integer */ 1642 err = parse_u64(value, &num); 1643 if (err) { 1644 pr_warn("extern (kcfg) %s=%s should be integer\n", 1645 ext->name, value); 1646 return err; 1647 } 1648 err = set_kcfg_value_num(ext, ext_val, num); 1649 break; 1650 } 1651 if (err) 1652 return err; 1653 pr_debug("extern (kcfg) %s=%s\n", ext->name, value); 1654 return 0; 1655 } 1656 1657 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1658 { 1659 char buf[PATH_MAX]; 1660 struct utsname uts; 1661 int len, err = 0; 1662 gzFile file; 1663 1664 uname(&uts); 1665 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1666 if (len < 0) 1667 return -EINVAL; 1668 else if (len >= PATH_MAX) 1669 return -ENAMETOOLONG; 1670 1671 /* gzopen also accepts uncompressed files. */ 1672 file = gzopen(buf, "r"); 1673 if (!file) 1674 file = gzopen("/proc/config.gz", "r"); 1675 1676 if (!file) { 1677 pr_warn("failed to open system Kconfig\n"); 1678 return -ENOENT; 1679 } 1680 1681 while (gzgets(file, buf, sizeof(buf))) { 1682 err = bpf_object__process_kconfig_line(obj, buf, data); 1683 if (err) { 1684 pr_warn("error parsing system Kconfig line '%s': %d\n", 1685 buf, err); 1686 goto out; 1687 } 1688 } 1689 1690 out: 1691 gzclose(file); 1692 return err; 1693 } 1694 1695 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1696 const char *config, void *data) 1697 { 1698 char buf[PATH_MAX]; 1699 int err = 0; 1700 FILE *file; 1701 1702 file = fmemopen((void *)config, strlen(config), "r"); 1703 if (!file) { 1704 err = -errno; 1705 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1706 return err; 1707 } 1708 1709 while (fgets(buf, sizeof(buf), file)) { 1710 err = bpf_object__process_kconfig_line(obj, buf, data); 1711 if (err) { 1712 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1713 buf, err); 1714 break; 1715 } 1716 } 1717 1718 fclose(file); 1719 return err; 1720 } 1721 1722 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1723 { 1724 struct extern_desc *last_ext = NULL, *ext; 1725 size_t map_sz; 1726 int i, err; 1727 1728 for (i = 0; i < obj->nr_extern; i++) { 1729 ext = &obj->externs[i]; 1730 if (ext->type == EXT_KCFG) 1731 last_ext = ext; 1732 } 1733 1734 if (!last_ext) 1735 return 0; 1736 1737 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 1738 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1739 obj->efile.symbols_shndx, 1740 NULL, map_sz); 1741 if (err) 1742 return err; 1743 1744 obj->kconfig_map_idx = obj->nr_maps - 1; 1745 1746 return 0; 1747 } 1748 1749 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) 1750 { 1751 Elf_Data *symbols = obj->efile.symbols; 1752 int i, map_def_sz = 0, nr_maps = 0, nr_syms; 1753 Elf_Data *data = NULL; 1754 Elf_Scn *scn; 1755 1756 if (obj->efile.maps_shndx < 0) 1757 return 0; 1758 1759 if (!symbols) 1760 return -EINVAL; 1761 1762 1763 scn = elf_sec_by_idx(obj, obj->efile.maps_shndx); 1764 data = elf_sec_data(obj, scn); 1765 if (!scn || !data) { 1766 pr_warn("elf: failed to get legacy map definitions for %s\n", 1767 obj->path); 1768 return -EINVAL; 1769 } 1770 1771 /* 1772 * Count number of maps. Each map has a name. 1773 * Array of maps is not supported: only the first element is 1774 * considered. 1775 * 1776 * TODO: Detect array of map and report error. 1777 */ 1778 nr_syms = symbols->d_size / sizeof(GElf_Sym); 1779 for (i = 0; i < nr_syms; i++) { 1780 GElf_Sym sym; 1781 1782 if (!gelf_getsym(symbols, i, &sym)) 1783 continue; 1784 if (sym.st_shndx != obj->efile.maps_shndx) 1785 continue; 1786 nr_maps++; 1787 } 1788 /* Assume equally sized map definitions */ 1789 pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n", 1790 nr_maps, data->d_size, obj->path); 1791 1792 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) { 1793 pr_warn("elf: unable to determine legacy map definition size in %s\n", 1794 obj->path); 1795 return -EINVAL; 1796 } 1797 map_def_sz = data->d_size / nr_maps; 1798 1799 /* Fill obj->maps using data in "maps" section. */ 1800 for (i = 0; i < nr_syms; i++) { 1801 GElf_Sym sym; 1802 const char *map_name; 1803 struct bpf_map_def *def; 1804 struct bpf_map *map; 1805 1806 if (!gelf_getsym(symbols, i, &sym)) 1807 continue; 1808 if (sym.st_shndx != obj->efile.maps_shndx) 1809 continue; 1810 1811 map = bpf_object__add_map(obj); 1812 if (IS_ERR(map)) 1813 return PTR_ERR(map); 1814 1815 map_name = elf_sym_str(obj, sym.st_name); 1816 if (!map_name) { 1817 pr_warn("failed to get map #%d name sym string for obj %s\n", 1818 i, obj->path); 1819 return -LIBBPF_ERRNO__FORMAT; 1820 } 1821 1822 map->libbpf_type = LIBBPF_MAP_UNSPEC; 1823 map->sec_idx = sym.st_shndx; 1824 map->sec_offset = sym.st_value; 1825 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n", 1826 map_name, map->sec_idx, map->sec_offset); 1827 if (sym.st_value + map_def_sz > data->d_size) { 1828 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n", 1829 obj->path, map_name); 1830 return -EINVAL; 1831 } 1832 1833 map->name = strdup(map_name); 1834 if (!map->name) { 1835 pr_warn("failed to alloc map name\n"); 1836 return -ENOMEM; 1837 } 1838 pr_debug("map %d is \"%s\"\n", i, map->name); 1839 def = (struct bpf_map_def *)(data->d_buf + sym.st_value); 1840 /* 1841 * If the definition of the map in the object file fits in 1842 * bpf_map_def, copy it. Any extra fields in our version 1843 * of bpf_map_def will default to zero as a result of the 1844 * calloc above. 1845 */ 1846 if (map_def_sz <= sizeof(struct bpf_map_def)) { 1847 memcpy(&map->def, def, map_def_sz); 1848 } else { 1849 /* 1850 * Here the map structure being read is bigger than what 1851 * we expect, truncate if the excess bits are all zero. 1852 * If they are not zero, reject this map as 1853 * incompatible. 1854 */ 1855 char *b; 1856 1857 for (b = ((char *)def) + sizeof(struct bpf_map_def); 1858 b < ((char *)def) + map_def_sz; b++) { 1859 if (*b != 0) { 1860 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n", 1861 obj->path, map_name); 1862 if (strict) 1863 return -EINVAL; 1864 } 1865 } 1866 memcpy(&map->def, def, sizeof(struct bpf_map_def)); 1867 } 1868 } 1869 return 0; 1870 } 1871 1872 static const struct btf_type * 1873 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 1874 { 1875 const struct btf_type *t = btf__type_by_id(btf, id); 1876 1877 if (res_id) 1878 *res_id = id; 1879 1880 while (btf_is_mod(t) || btf_is_typedef(t)) { 1881 if (res_id) 1882 *res_id = t->type; 1883 t = btf__type_by_id(btf, t->type); 1884 } 1885 1886 return t; 1887 } 1888 1889 static const struct btf_type * 1890 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 1891 { 1892 const struct btf_type *t; 1893 1894 t = skip_mods_and_typedefs(btf, id, NULL); 1895 if (!btf_is_ptr(t)) 1896 return NULL; 1897 1898 t = skip_mods_and_typedefs(btf, t->type, res_id); 1899 1900 return btf_is_func_proto(t) ? t : NULL; 1901 } 1902 1903 static const char *btf_kind_str(const struct btf_type *t) 1904 { 1905 switch (btf_kind(t)) { 1906 case BTF_KIND_UNKN: return "void"; 1907 case BTF_KIND_INT: return "int"; 1908 case BTF_KIND_PTR: return "ptr"; 1909 case BTF_KIND_ARRAY: return "array"; 1910 case BTF_KIND_STRUCT: return "struct"; 1911 case BTF_KIND_UNION: return "union"; 1912 case BTF_KIND_ENUM: return "enum"; 1913 case BTF_KIND_FWD: return "fwd"; 1914 case BTF_KIND_TYPEDEF: return "typedef"; 1915 case BTF_KIND_VOLATILE: return "volatile"; 1916 case BTF_KIND_CONST: return "const"; 1917 case BTF_KIND_RESTRICT: return "restrict"; 1918 case BTF_KIND_FUNC: return "func"; 1919 case BTF_KIND_FUNC_PROTO: return "func_proto"; 1920 case BTF_KIND_VAR: return "var"; 1921 case BTF_KIND_DATASEC: return "datasec"; 1922 default: return "unknown"; 1923 } 1924 } 1925 1926 /* 1927 * Fetch integer attribute of BTF map definition. Such attributes are 1928 * represented using a pointer to an array, in which dimensionality of array 1929 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 1930 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 1931 * type definition, while using only sizeof(void *) space in ELF data section. 1932 */ 1933 static bool get_map_field_int(const char *map_name, const struct btf *btf, 1934 const struct btf_member *m, __u32 *res) 1935 { 1936 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 1937 const char *name = btf__name_by_offset(btf, m->name_off); 1938 const struct btf_array *arr_info; 1939 const struct btf_type *arr_t; 1940 1941 if (!btf_is_ptr(t)) { 1942 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 1943 map_name, name, btf_kind_str(t)); 1944 return false; 1945 } 1946 1947 arr_t = btf__type_by_id(btf, t->type); 1948 if (!arr_t) { 1949 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 1950 map_name, name, t->type); 1951 return false; 1952 } 1953 if (!btf_is_array(arr_t)) { 1954 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 1955 map_name, name, btf_kind_str(arr_t)); 1956 return false; 1957 } 1958 arr_info = btf_array(arr_t); 1959 *res = arr_info->nelems; 1960 return true; 1961 } 1962 1963 static int build_map_pin_path(struct bpf_map *map, const char *path) 1964 { 1965 char buf[PATH_MAX]; 1966 int len; 1967 1968 if (!path) 1969 path = "/sys/fs/bpf"; 1970 1971 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 1972 if (len < 0) 1973 return -EINVAL; 1974 else if (len >= PATH_MAX) 1975 return -ENAMETOOLONG; 1976 1977 return bpf_map__set_pin_path(map, buf); 1978 } 1979 1980 1981 static int parse_btf_map_def(struct bpf_object *obj, 1982 struct bpf_map *map, 1983 const struct btf_type *def, 1984 bool strict, bool is_inner, 1985 const char *pin_root_path) 1986 { 1987 const struct btf_type *t; 1988 const struct btf_member *m; 1989 int vlen, i; 1990 1991 vlen = btf_vlen(def); 1992 m = btf_members(def); 1993 for (i = 0; i < vlen; i++, m++) { 1994 const char *name = btf__name_by_offset(obj->btf, m->name_off); 1995 1996 if (!name) { 1997 pr_warn("map '%s': invalid field #%d.\n", map->name, i); 1998 return -EINVAL; 1999 } 2000 if (strcmp(name, "type") == 0) { 2001 if (!get_map_field_int(map->name, obj->btf, m, 2002 &map->def.type)) 2003 return -EINVAL; 2004 pr_debug("map '%s': found type = %u.\n", 2005 map->name, map->def.type); 2006 } else if (strcmp(name, "max_entries") == 0) { 2007 if (!get_map_field_int(map->name, obj->btf, m, 2008 &map->def.max_entries)) 2009 return -EINVAL; 2010 pr_debug("map '%s': found max_entries = %u.\n", 2011 map->name, map->def.max_entries); 2012 } else if (strcmp(name, "map_flags") == 0) { 2013 if (!get_map_field_int(map->name, obj->btf, m, 2014 &map->def.map_flags)) 2015 return -EINVAL; 2016 pr_debug("map '%s': found map_flags = %u.\n", 2017 map->name, map->def.map_flags); 2018 } else if (strcmp(name, "numa_node") == 0) { 2019 if (!get_map_field_int(map->name, obj->btf, m, &map->numa_node)) 2020 return -EINVAL; 2021 pr_debug("map '%s': found numa_node = %u.\n", map->name, map->numa_node); 2022 } else if (strcmp(name, "key_size") == 0) { 2023 __u32 sz; 2024 2025 if (!get_map_field_int(map->name, obj->btf, m, &sz)) 2026 return -EINVAL; 2027 pr_debug("map '%s': found key_size = %u.\n", 2028 map->name, sz); 2029 if (map->def.key_size && map->def.key_size != sz) { 2030 pr_warn("map '%s': conflicting key size %u != %u.\n", 2031 map->name, map->def.key_size, sz); 2032 return -EINVAL; 2033 } 2034 map->def.key_size = sz; 2035 } else if (strcmp(name, "key") == 0) { 2036 __s64 sz; 2037 2038 t = btf__type_by_id(obj->btf, m->type); 2039 if (!t) { 2040 pr_warn("map '%s': key type [%d] not found.\n", 2041 map->name, m->type); 2042 return -EINVAL; 2043 } 2044 if (!btf_is_ptr(t)) { 2045 pr_warn("map '%s': key spec is not PTR: %s.\n", 2046 map->name, btf_kind_str(t)); 2047 return -EINVAL; 2048 } 2049 sz = btf__resolve_size(obj->btf, t->type); 2050 if (sz < 0) { 2051 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2052 map->name, t->type, (ssize_t)sz); 2053 return sz; 2054 } 2055 pr_debug("map '%s': found key [%u], sz = %zd.\n", 2056 map->name, t->type, (ssize_t)sz); 2057 if (map->def.key_size && map->def.key_size != sz) { 2058 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2059 map->name, map->def.key_size, (ssize_t)sz); 2060 return -EINVAL; 2061 } 2062 map->def.key_size = sz; 2063 map->btf_key_type_id = t->type; 2064 } else if (strcmp(name, "value_size") == 0) { 2065 __u32 sz; 2066 2067 if (!get_map_field_int(map->name, obj->btf, m, &sz)) 2068 return -EINVAL; 2069 pr_debug("map '%s': found value_size = %u.\n", 2070 map->name, sz); 2071 if (map->def.value_size && map->def.value_size != sz) { 2072 pr_warn("map '%s': conflicting value size %u != %u.\n", 2073 map->name, map->def.value_size, sz); 2074 return -EINVAL; 2075 } 2076 map->def.value_size = sz; 2077 } else if (strcmp(name, "value") == 0) { 2078 __s64 sz; 2079 2080 t = btf__type_by_id(obj->btf, m->type); 2081 if (!t) { 2082 pr_warn("map '%s': value type [%d] not found.\n", 2083 map->name, m->type); 2084 return -EINVAL; 2085 } 2086 if (!btf_is_ptr(t)) { 2087 pr_warn("map '%s': value spec is not PTR: %s.\n", 2088 map->name, btf_kind_str(t)); 2089 return -EINVAL; 2090 } 2091 sz = btf__resolve_size(obj->btf, t->type); 2092 if (sz < 0) { 2093 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2094 map->name, t->type, (ssize_t)sz); 2095 return sz; 2096 } 2097 pr_debug("map '%s': found value [%u], sz = %zd.\n", 2098 map->name, t->type, (ssize_t)sz); 2099 if (map->def.value_size && map->def.value_size != sz) { 2100 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2101 map->name, map->def.value_size, (ssize_t)sz); 2102 return -EINVAL; 2103 } 2104 map->def.value_size = sz; 2105 map->btf_value_type_id = t->type; 2106 } 2107 else if (strcmp(name, "values") == 0) { 2108 int err; 2109 2110 if (is_inner) { 2111 pr_warn("map '%s': multi-level inner maps not supported.\n", 2112 map->name); 2113 return -ENOTSUP; 2114 } 2115 if (i != vlen - 1) { 2116 pr_warn("map '%s': '%s' member should be last.\n", 2117 map->name, name); 2118 return -EINVAL; 2119 } 2120 if (!bpf_map_type__is_map_in_map(map->def.type)) { 2121 pr_warn("map '%s': should be map-in-map.\n", 2122 map->name); 2123 return -ENOTSUP; 2124 } 2125 if (map->def.value_size && map->def.value_size != 4) { 2126 pr_warn("map '%s': conflicting value size %u != 4.\n", 2127 map->name, map->def.value_size); 2128 return -EINVAL; 2129 } 2130 map->def.value_size = 4; 2131 t = btf__type_by_id(obj->btf, m->type); 2132 if (!t) { 2133 pr_warn("map '%s': map-in-map inner type [%d] not found.\n", 2134 map->name, m->type); 2135 return -EINVAL; 2136 } 2137 if (!btf_is_array(t) || btf_array(t)->nelems) { 2138 pr_warn("map '%s': map-in-map inner spec is not a zero-sized array.\n", 2139 map->name); 2140 return -EINVAL; 2141 } 2142 t = skip_mods_and_typedefs(obj->btf, btf_array(t)->type, 2143 NULL); 2144 if (!btf_is_ptr(t)) { 2145 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2146 map->name, btf_kind_str(t)); 2147 return -EINVAL; 2148 } 2149 t = skip_mods_and_typedefs(obj->btf, t->type, NULL); 2150 if (!btf_is_struct(t)) { 2151 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2152 map->name, btf_kind_str(t)); 2153 return -EINVAL; 2154 } 2155 2156 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2157 if (!map->inner_map) 2158 return -ENOMEM; 2159 map->inner_map->sec_idx = obj->efile.btf_maps_shndx; 2160 map->inner_map->name = malloc(strlen(map->name) + 2161 sizeof(".inner") + 1); 2162 if (!map->inner_map->name) 2163 return -ENOMEM; 2164 sprintf(map->inner_map->name, "%s.inner", map->name); 2165 2166 err = parse_btf_map_def(obj, map->inner_map, t, strict, 2167 true /* is_inner */, NULL); 2168 if (err) 2169 return err; 2170 } else if (strcmp(name, "pinning") == 0) { 2171 __u32 val; 2172 int err; 2173 2174 if (is_inner) { 2175 pr_debug("map '%s': inner def can't be pinned.\n", 2176 map->name); 2177 return -EINVAL; 2178 } 2179 if (!get_map_field_int(map->name, obj->btf, m, &val)) 2180 return -EINVAL; 2181 pr_debug("map '%s': found pinning = %u.\n", 2182 map->name, val); 2183 2184 if (val != LIBBPF_PIN_NONE && 2185 val != LIBBPF_PIN_BY_NAME) { 2186 pr_warn("map '%s': invalid pinning value %u.\n", 2187 map->name, val); 2188 return -EINVAL; 2189 } 2190 if (val == LIBBPF_PIN_BY_NAME) { 2191 err = build_map_pin_path(map, pin_root_path); 2192 if (err) { 2193 pr_warn("map '%s': couldn't build pin path.\n", 2194 map->name); 2195 return err; 2196 } 2197 } 2198 } else { 2199 if (strict) { 2200 pr_warn("map '%s': unknown field '%s'.\n", 2201 map->name, name); 2202 return -ENOTSUP; 2203 } 2204 pr_debug("map '%s': ignoring unknown field '%s'.\n", 2205 map->name, name); 2206 } 2207 } 2208 2209 if (map->def.type == BPF_MAP_TYPE_UNSPEC) { 2210 pr_warn("map '%s': map type isn't specified.\n", map->name); 2211 return -EINVAL; 2212 } 2213 2214 return 0; 2215 } 2216 2217 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2218 const struct btf_type *sec, 2219 int var_idx, int sec_idx, 2220 const Elf_Data *data, bool strict, 2221 const char *pin_root_path) 2222 { 2223 const struct btf_type *var, *def; 2224 const struct btf_var_secinfo *vi; 2225 const struct btf_var *var_extra; 2226 const char *map_name; 2227 struct bpf_map *map; 2228 2229 vi = btf_var_secinfos(sec) + var_idx; 2230 var = btf__type_by_id(obj->btf, vi->type); 2231 var_extra = btf_var(var); 2232 map_name = btf__name_by_offset(obj->btf, var->name_off); 2233 2234 if (map_name == NULL || map_name[0] == '\0') { 2235 pr_warn("map #%d: empty name.\n", var_idx); 2236 return -EINVAL; 2237 } 2238 if ((__u64)vi->offset + vi->size > data->d_size) { 2239 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2240 return -EINVAL; 2241 } 2242 if (!btf_is_var(var)) { 2243 pr_warn("map '%s': unexpected var kind %s.\n", 2244 map_name, btf_kind_str(var)); 2245 return -EINVAL; 2246 } 2247 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED && 2248 var_extra->linkage != BTF_VAR_STATIC) { 2249 pr_warn("map '%s': unsupported var linkage %u.\n", 2250 map_name, var_extra->linkage); 2251 return -EOPNOTSUPP; 2252 } 2253 2254 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2255 if (!btf_is_struct(def)) { 2256 pr_warn("map '%s': unexpected def kind %s.\n", 2257 map_name, btf_kind_str(var)); 2258 return -EINVAL; 2259 } 2260 if (def->size > vi->size) { 2261 pr_warn("map '%s': invalid def size.\n", map_name); 2262 return -EINVAL; 2263 } 2264 2265 map = bpf_object__add_map(obj); 2266 if (IS_ERR(map)) 2267 return PTR_ERR(map); 2268 map->name = strdup(map_name); 2269 if (!map->name) { 2270 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2271 return -ENOMEM; 2272 } 2273 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2274 map->def.type = BPF_MAP_TYPE_UNSPEC; 2275 map->sec_idx = sec_idx; 2276 map->sec_offset = vi->offset; 2277 map->btf_var_idx = var_idx; 2278 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2279 map_name, map->sec_idx, map->sec_offset); 2280 2281 return parse_btf_map_def(obj, map, def, strict, false, pin_root_path); 2282 } 2283 2284 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2285 const char *pin_root_path) 2286 { 2287 const struct btf_type *sec = NULL; 2288 int nr_types, i, vlen, err; 2289 const struct btf_type *t; 2290 const char *name; 2291 Elf_Data *data; 2292 Elf_Scn *scn; 2293 2294 if (obj->efile.btf_maps_shndx < 0) 2295 return 0; 2296 2297 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2298 data = elf_sec_data(obj, scn); 2299 if (!scn || !data) { 2300 pr_warn("elf: failed to get %s map definitions for %s\n", 2301 MAPS_ELF_SEC, obj->path); 2302 return -EINVAL; 2303 } 2304 2305 nr_types = btf__get_nr_types(obj->btf); 2306 for (i = 1; i <= nr_types; i++) { 2307 t = btf__type_by_id(obj->btf, i); 2308 if (!btf_is_datasec(t)) 2309 continue; 2310 name = btf__name_by_offset(obj->btf, t->name_off); 2311 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2312 sec = t; 2313 obj->efile.btf_maps_sec_btf_id = i; 2314 break; 2315 } 2316 } 2317 2318 if (!sec) { 2319 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2320 return -ENOENT; 2321 } 2322 2323 vlen = btf_vlen(sec); 2324 for (i = 0; i < vlen; i++) { 2325 err = bpf_object__init_user_btf_map(obj, sec, i, 2326 obj->efile.btf_maps_shndx, 2327 data, strict, 2328 pin_root_path); 2329 if (err) 2330 return err; 2331 } 2332 2333 return 0; 2334 } 2335 2336 static int bpf_object__init_maps(struct bpf_object *obj, 2337 const struct bpf_object_open_opts *opts) 2338 { 2339 const char *pin_root_path; 2340 bool strict; 2341 int err; 2342 2343 strict = !OPTS_GET(opts, relaxed_maps, false); 2344 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2345 2346 err = bpf_object__init_user_maps(obj, strict); 2347 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2348 err = err ?: bpf_object__init_global_data_maps(obj); 2349 err = err ?: bpf_object__init_kconfig_map(obj); 2350 err = err ?: bpf_object__init_struct_ops_maps(obj); 2351 if (err) 2352 return err; 2353 2354 return 0; 2355 } 2356 2357 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2358 { 2359 GElf_Shdr sh; 2360 2361 if (elf_sec_hdr(obj, elf_sec_by_idx(obj, idx), &sh)) 2362 return false; 2363 2364 return sh.sh_flags & SHF_EXECINSTR; 2365 } 2366 2367 static bool btf_needs_sanitization(struct bpf_object *obj) 2368 { 2369 bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC); 2370 bool has_datasec = kernel_supports(FEAT_BTF_DATASEC); 2371 bool has_func = kernel_supports(FEAT_BTF_FUNC); 2372 2373 return !has_func || !has_datasec || !has_func_global; 2374 } 2375 2376 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2377 { 2378 bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC); 2379 bool has_datasec = kernel_supports(FEAT_BTF_DATASEC); 2380 bool has_func = kernel_supports(FEAT_BTF_FUNC); 2381 struct btf_type *t; 2382 int i, j, vlen; 2383 2384 for (i = 1; i <= btf__get_nr_types(btf); i++) { 2385 t = (struct btf_type *)btf__type_by_id(btf, i); 2386 2387 if (!has_datasec && btf_is_var(t)) { 2388 /* replace VAR with INT */ 2389 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2390 /* 2391 * using size = 1 is the safest choice, 4 will be too 2392 * big and cause kernel BTF validation failure if 2393 * original variable took less than 4 bytes 2394 */ 2395 t->size = 1; 2396 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2397 } else if (!has_datasec && btf_is_datasec(t)) { 2398 /* replace DATASEC with STRUCT */ 2399 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2400 struct btf_member *m = btf_members(t); 2401 struct btf_type *vt; 2402 char *name; 2403 2404 name = (char *)btf__name_by_offset(btf, t->name_off); 2405 while (*name) { 2406 if (*name == '.') 2407 *name = '_'; 2408 name++; 2409 } 2410 2411 vlen = btf_vlen(t); 2412 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2413 for (j = 0; j < vlen; j++, v++, m++) { 2414 /* order of field assignments is important */ 2415 m->offset = v->offset * 8; 2416 m->type = v->type; 2417 /* preserve variable name as member name */ 2418 vt = (void *)btf__type_by_id(btf, v->type); 2419 m->name_off = vt->name_off; 2420 } 2421 } else if (!has_func && btf_is_func_proto(t)) { 2422 /* replace FUNC_PROTO with ENUM */ 2423 vlen = btf_vlen(t); 2424 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2425 t->size = sizeof(__u32); /* kernel enforced */ 2426 } else if (!has_func && btf_is_func(t)) { 2427 /* replace FUNC with TYPEDEF */ 2428 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2429 } else if (!has_func_global && btf_is_func(t)) { 2430 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2431 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2432 } 2433 } 2434 } 2435 2436 static bool libbpf_needs_btf(const struct bpf_object *obj) 2437 { 2438 return obj->efile.btf_maps_shndx >= 0 || 2439 obj->efile.st_ops_shndx >= 0 || 2440 obj->nr_extern > 0; 2441 } 2442 2443 static bool kernel_needs_btf(const struct bpf_object *obj) 2444 { 2445 return obj->efile.st_ops_shndx >= 0; 2446 } 2447 2448 static int bpf_object__init_btf(struct bpf_object *obj, 2449 Elf_Data *btf_data, 2450 Elf_Data *btf_ext_data) 2451 { 2452 int err = -ENOENT; 2453 2454 if (btf_data) { 2455 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2456 if (IS_ERR(obj->btf)) { 2457 err = PTR_ERR(obj->btf); 2458 obj->btf = NULL; 2459 pr_warn("Error loading ELF section %s: %d.\n", 2460 BTF_ELF_SEC, err); 2461 goto out; 2462 } 2463 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2464 btf__set_pointer_size(obj->btf, 8); 2465 err = 0; 2466 } 2467 if (btf_ext_data) { 2468 if (!obj->btf) { 2469 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2470 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2471 goto out; 2472 } 2473 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, 2474 btf_ext_data->d_size); 2475 if (IS_ERR(obj->btf_ext)) { 2476 pr_warn("Error loading ELF section %s: %ld. Ignored and continue.\n", 2477 BTF_EXT_ELF_SEC, PTR_ERR(obj->btf_ext)); 2478 obj->btf_ext = NULL; 2479 goto out; 2480 } 2481 } 2482 out: 2483 if (err && libbpf_needs_btf(obj)) { 2484 pr_warn("BTF is required, but is missing or corrupted.\n"); 2485 return err; 2486 } 2487 return 0; 2488 } 2489 2490 static int bpf_object__finalize_btf(struct bpf_object *obj) 2491 { 2492 int err; 2493 2494 if (!obj->btf) 2495 return 0; 2496 2497 err = btf__finalize_data(obj, obj->btf); 2498 if (err) { 2499 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2500 return err; 2501 } 2502 2503 return 0; 2504 } 2505 2506 static inline bool libbpf_prog_needs_vmlinux_btf(struct bpf_program *prog) 2507 { 2508 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 2509 prog->type == BPF_PROG_TYPE_LSM) 2510 return true; 2511 2512 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2513 * also need vmlinux BTF 2514 */ 2515 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2516 return true; 2517 2518 return false; 2519 } 2520 2521 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj) 2522 { 2523 bool need_vmlinux_btf = false; 2524 struct bpf_program *prog; 2525 int err; 2526 2527 /* CO-RE relocations need kernel BTF */ 2528 if (obj->btf_ext && obj->btf_ext->core_relo_info.len) 2529 need_vmlinux_btf = true; 2530 2531 bpf_object__for_each_program(prog, obj) { 2532 if (!prog->load) 2533 continue; 2534 if (libbpf_prog_needs_vmlinux_btf(prog)) { 2535 need_vmlinux_btf = true; 2536 break; 2537 } 2538 } 2539 2540 if (!need_vmlinux_btf) 2541 return 0; 2542 2543 obj->btf_vmlinux = libbpf_find_kernel_btf(); 2544 if (IS_ERR(obj->btf_vmlinux)) { 2545 err = PTR_ERR(obj->btf_vmlinux); 2546 pr_warn("Error loading vmlinux BTF: %d\n", err); 2547 obj->btf_vmlinux = NULL; 2548 return err; 2549 } 2550 return 0; 2551 } 2552 2553 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 2554 { 2555 struct btf *kern_btf = obj->btf; 2556 bool btf_mandatory, sanitize; 2557 int err = 0; 2558 2559 if (!obj->btf) 2560 return 0; 2561 2562 if (!kernel_supports(FEAT_BTF)) { 2563 if (kernel_needs_btf(obj)) { 2564 err = -EOPNOTSUPP; 2565 goto report; 2566 } 2567 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 2568 return 0; 2569 } 2570 2571 sanitize = btf_needs_sanitization(obj); 2572 if (sanitize) { 2573 const void *raw_data; 2574 __u32 sz; 2575 2576 /* clone BTF to sanitize a copy and leave the original intact */ 2577 raw_data = btf__get_raw_data(obj->btf, &sz); 2578 kern_btf = btf__new(raw_data, sz); 2579 if (IS_ERR(kern_btf)) 2580 return PTR_ERR(kern_btf); 2581 2582 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2583 btf__set_pointer_size(obj->btf, 8); 2584 bpf_object__sanitize_btf(obj, kern_btf); 2585 } 2586 2587 err = btf__load(kern_btf); 2588 if (sanitize) { 2589 if (!err) { 2590 /* move fd to libbpf's BTF */ 2591 btf__set_fd(obj->btf, btf__fd(kern_btf)); 2592 btf__set_fd(kern_btf, -1); 2593 } 2594 btf__free(kern_btf); 2595 } 2596 report: 2597 if (err) { 2598 btf_mandatory = kernel_needs_btf(obj); 2599 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 2600 btf_mandatory ? "BTF is mandatory, can't proceed." 2601 : "BTF is optional, ignoring."); 2602 if (!btf_mandatory) 2603 err = 0; 2604 } 2605 return err; 2606 } 2607 2608 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 2609 { 2610 const char *name; 2611 2612 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 2613 if (!name) { 2614 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 2615 off, obj->path, elf_errmsg(-1)); 2616 return NULL; 2617 } 2618 2619 return name; 2620 } 2621 2622 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 2623 { 2624 const char *name; 2625 2626 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 2627 if (!name) { 2628 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 2629 off, obj->path, elf_errmsg(-1)); 2630 return NULL; 2631 } 2632 2633 return name; 2634 } 2635 2636 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 2637 { 2638 Elf_Scn *scn; 2639 2640 scn = elf_getscn(obj->efile.elf, idx); 2641 if (!scn) { 2642 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 2643 idx, obj->path, elf_errmsg(-1)); 2644 return NULL; 2645 } 2646 return scn; 2647 } 2648 2649 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 2650 { 2651 Elf_Scn *scn = NULL; 2652 Elf *elf = obj->efile.elf; 2653 const char *sec_name; 2654 2655 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2656 sec_name = elf_sec_name(obj, scn); 2657 if (!sec_name) 2658 return NULL; 2659 2660 if (strcmp(sec_name, name) != 0) 2661 continue; 2662 2663 return scn; 2664 } 2665 return NULL; 2666 } 2667 2668 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr) 2669 { 2670 if (!scn) 2671 return -EINVAL; 2672 2673 if (gelf_getshdr(scn, hdr) != hdr) { 2674 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 2675 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 2676 return -EINVAL; 2677 } 2678 2679 return 0; 2680 } 2681 2682 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 2683 { 2684 const char *name; 2685 GElf_Shdr sh; 2686 2687 if (!scn) 2688 return NULL; 2689 2690 if (elf_sec_hdr(obj, scn, &sh)) 2691 return NULL; 2692 2693 name = elf_sec_str(obj, sh.sh_name); 2694 if (!name) { 2695 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 2696 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 2697 return NULL; 2698 } 2699 2700 return name; 2701 } 2702 2703 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 2704 { 2705 Elf_Data *data; 2706 2707 if (!scn) 2708 return NULL; 2709 2710 data = elf_getdata(scn, 0); 2711 if (!data) { 2712 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 2713 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 2714 obj->path, elf_errmsg(-1)); 2715 return NULL; 2716 } 2717 2718 return data; 2719 } 2720 2721 static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx, 2722 size_t off, __u32 sym_type, GElf_Sym *sym) 2723 { 2724 Elf_Data *symbols = obj->efile.symbols; 2725 size_t n = symbols->d_size / sizeof(GElf_Sym); 2726 int i; 2727 2728 for (i = 0; i < n; i++) { 2729 if (!gelf_getsym(symbols, i, sym)) 2730 continue; 2731 if (sym->st_shndx != sec_idx || sym->st_value != off) 2732 continue; 2733 if (GELF_ST_TYPE(sym->st_info) != sym_type) 2734 continue; 2735 return 0; 2736 } 2737 2738 return -ENOENT; 2739 } 2740 2741 static bool is_sec_name_dwarf(const char *name) 2742 { 2743 /* approximation, but the actual list is too long */ 2744 return strncmp(name, ".debug_", sizeof(".debug_") - 1) == 0; 2745 } 2746 2747 static bool ignore_elf_section(GElf_Shdr *hdr, const char *name) 2748 { 2749 /* no special handling of .strtab */ 2750 if (hdr->sh_type == SHT_STRTAB) 2751 return true; 2752 2753 /* ignore .llvm_addrsig section as well */ 2754 if (hdr->sh_type == 0x6FFF4C03 /* SHT_LLVM_ADDRSIG */) 2755 return true; 2756 2757 /* no subprograms will lead to an empty .text section, ignore it */ 2758 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 2759 strcmp(name, ".text") == 0) 2760 return true; 2761 2762 /* DWARF sections */ 2763 if (is_sec_name_dwarf(name)) 2764 return true; 2765 2766 if (strncmp(name, ".rel", sizeof(".rel") - 1) == 0) { 2767 name += sizeof(".rel") - 1; 2768 /* DWARF section relocations */ 2769 if (is_sec_name_dwarf(name)) 2770 return true; 2771 2772 /* .BTF and .BTF.ext don't need relocations */ 2773 if (strcmp(name, BTF_ELF_SEC) == 0 || 2774 strcmp(name, BTF_EXT_ELF_SEC) == 0) 2775 return true; 2776 } 2777 2778 return false; 2779 } 2780 2781 static int cmp_progs(const void *_a, const void *_b) 2782 { 2783 const struct bpf_program *a = _a; 2784 const struct bpf_program *b = _b; 2785 2786 if (a->sec_idx != b->sec_idx) 2787 return a->sec_idx < b->sec_idx ? -1 : 1; 2788 2789 /* sec_insn_off can't be the same within the section */ 2790 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 2791 } 2792 2793 static int bpf_object__elf_collect(struct bpf_object *obj) 2794 { 2795 Elf *elf = obj->efile.elf; 2796 Elf_Data *btf_ext_data = NULL; 2797 Elf_Data *btf_data = NULL; 2798 int idx = 0, err = 0; 2799 const char *name; 2800 Elf_Data *data; 2801 Elf_Scn *scn; 2802 GElf_Shdr sh; 2803 2804 /* a bunch of ELF parsing functionality depends on processing symbols, 2805 * so do the first pass and find the symbol table 2806 */ 2807 scn = NULL; 2808 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2809 if (elf_sec_hdr(obj, scn, &sh)) 2810 return -LIBBPF_ERRNO__FORMAT; 2811 2812 if (sh.sh_type == SHT_SYMTAB) { 2813 if (obj->efile.symbols) { 2814 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 2815 return -LIBBPF_ERRNO__FORMAT; 2816 } 2817 2818 data = elf_sec_data(obj, scn); 2819 if (!data) 2820 return -LIBBPF_ERRNO__FORMAT; 2821 2822 obj->efile.symbols = data; 2823 obj->efile.symbols_shndx = elf_ndxscn(scn); 2824 obj->efile.strtabidx = sh.sh_link; 2825 } 2826 } 2827 2828 scn = NULL; 2829 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2830 idx++; 2831 2832 if (elf_sec_hdr(obj, scn, &sh)) 2833 return -LIBBPF_ERRNO__FORMAT; 2834 2835 name = elf_sec_str(obj, sh.sh_name); 2836 if (!name) 2837 return -LIBBPF_ERRNO__FORMAT; 2838 2839 if (ignore_elf_section(&sh, name)) 2840 continue; 2841 2842 data = elf_sec_data(obj, scn); 2843 if (!data) 2844 return -LIBBPF_ERRNO__FORMAT; 2845 2846 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 2847 idx, name, (unsigned long)data->d_size, 2848 (int)sh.sh_link, (unsigned long)sh.sh_flags, 2849 (int)sh.sh_type); 2850 2851 if (strcmp(name, "license") == 0) { 2852 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 2853 if (err) 2854 return err; 2855 } else if (strcmp(name, "version") == 0) { 2856 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 2857 if (err) 2858 return err; 2859 } else if (strcmp(name, "maps") == 0) { 2860 obj->efile.maps_shndx = idx; 2861 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 2862 obj->efile.btf_maps_shndx = idx; 2863 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 2864 btf_data = data; 2865 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 2866 btf_ext_data = data; 2867 } else if (sh.sh_type == SHT_SYMTAB) { 2868 /* already processed during the first pass above */ 2869 } else if (sh.sh_type == SHT_PROGBITS && data->d_size > 0) { 2870 if (sh.sh_flags & SHF_EXECINSTR) { 2871 if (strcmp(name, ".text") == 0) 2872 obj->efile.text_shndx = idx; 2873 err = bpf_object__add_programs(obj, data, name, idx); 2874 if (err) 2875 return err; 2876 } else if (strcmp(name, DATA_SEC) == 0) { 2877 obj->efile.data = data; 2878 obj->efile.data_shndx = idx; 2879 } else if (strcmp(name, RODATA_SEC) == 0) { 2880 obj->efile.rodata = data; 2881 obj->efile.rodata_shndx = idx; 2882 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 2883 obj->efile.st_ops_data = data; 2884 obj->efile.st_ops_shndx = idx; 2885 } else { 2886 pr_info("elf: skipping unrecognized data section(%d) %s\n", 2887 idx, name); 2888 } 2889 } else if (sh.sh_type == SHT_REL) { 2890 int nr_sects = obj->efile.nr_reloc_sects; 2891 void *sects = obj->efile.reloc_sects; 2892 int sec = sh.sh_info; /* points to other section */ 2893 2894 /* Only do relo for section with exec instructions */ 2895 if (!section_have_execinstr(obj, sec) && 2896 strcmp(name, ".rel" STRUCT_OPS_SEC) && 2897 strcmp(name, ".rel" MAPS_ELF_SEC)) { 2898 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 2899 idx, name, sec, 2900 elf_sec_name(obj, elf_sec_by_idx(obj, sec)) ?: "<?>"); 2901 continue; 2902 } 2903 2904 sects = libbpf_reallocarray(sects, nr_sects + 1, 2905 sizeof(*obj->efile.reloc_sects)); 2906 if (!sects) 2907 return -ENOMEM; 2908 2909 obj->efile.reloc_sects = sects; 2910 obj->efile.nr_reloc_sects++; 2911 2912 obj->efile.reloc_sects[nr_sects].shdr = sh; 2913 obj->efile.reloc_sects[nr_sects].data = data; 2914 } else if (sh.sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 2915 obj->efile.bss = data; 2916 obj->efile.bss_shndx = idx; 2917 } else { 2918 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 2919 (size_t)sh.sh_size); 2920 } 2921 } 2922 2923 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 2924 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 2925 return -LIBBPF_ERRNO__FORMAT; 2926 } 2927 2928 /* sort BPF programs by section name and in-section instruction offset 2929 * for faster search */ 2930 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 2931 2932 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 2933 } 2934 2935 static bool sym_is_extern(const GElf_Sym *sym) 2936 { 2937 int bind = GELF_ST_BIND(sym->st_info); 2938 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 2939 return sym->st_shndx == SHN_UNDEF && 2940 (bind == STB_GLOBAL || bind == STB_WEAK) && 2941 GELF_ST_TYPE(sym->st_info) == STT_NOTYPE; 2942 } 2943 2944 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 2945 { 2946 const struct btf_type *t; 2947 const char *var_name; 2948 int i, n; 2949 2950 if (!btf) 2951 return -ESRCH; 2952 2953 n = btf__get_nr_types(btf); 2954 for (i = 1; i <= n; i++) { 2955 t = btf__type_by_id(btf, i); 2956 2957 if (!btf_is_var(t)) 2958 continue; 2959 2960 var_name = btf__name_by_offset(btf, t->name_off); 2961 if (strcmp(var_name, ext_name)) 2962 continue; 2963 2964 if (btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 2965 return -EINVAL; 2966 2967 return i; 2968 } 2969 2970 return -ENOENT; 2971 } 2972 2973 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 2974 const struct btf_var_secinfo *vs; 2975 const struct btf_type *t; 2976 int i, j, n; 2977 2978 if (!btf) 2979 return -ESRCH; 2980 2981 n = btf__get_nr_types(btf); 2982 for (i = 1; i <= n; i++) { 2983 t = btf__type_by_id(btf, i); 2984 2985 if (!btf_is_datasec(t)) 2986 continue; 2987 2988 vs = btf_var_secinfos(t); 2989 for (j = 0; j < btf_vlen(t); j++, vs++) { 2990 if (vs->type == ext_btf_id) 2991 return i; 2992 } 2993 } 2994 2995 return -ENOENT; 2996 } 2997 2998 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 2999 bool *is_signed) 3000 { 3001 const struct btf_type *t; 3002 const char *name; 3003 3004 t = skip_mods_and_typedefs(btf, id, NULL); 3005 name = btf__name_by_offset(btf, t->name_off); 3006 3007 if (is_signed) 3008 *is_signed = false; 3009 switch (btf_kind(t)) { 3010 case BTF_KIND_INT: { 3011 int enc = btf_int_encoding(t); 3012 3013 if (enc & BTF_INT_BOOL) 3014 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3015 if (is_signed) 3016 *is_signed = enc & BTF_INT_SIGNED; 3017 if (t->size == 1) 3018 return KCFG_CHAR; 3019 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3020 return KCFG_UNKNOWN; 3021 return KCFG_INT; 3022 } 3023 case BTF_KIND_ENUM: 3024 if (t->size != 4) 3025 return KCFG_UNKNOWN; 3026 if (strcmp(name, "libbpf_tristate")) 3027 return KCFG_UNKNOWN; 3028 return KCFG_TRISTATE; 3029 case BTF_KIND_ARRAY: 3030 if (btf_array(t)->nelems == 0) 3031 return KCFG_UNKNOWN; 3032 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3033 return KCFG_UNKNOWN; 3034 return KCFG_CHAR_ARR; 3035 default: 3036 return KCFG_UNKNOWN; 3037 } 3038 } 3039 3040 static int cmp_externs(const void *_a, const void *_b) 3041 { 3042 const struct extern_desc *a = _a; 3043 const struct extern_desc *b = _b; 3044 3045 if (a->type != b->type) 3046 return a->type < b->type ? -1 : 1; 3047 3048 if (a->type == EXT_KCFG) { 3049 /* descending order by alignment requirements */ 3050 if (a->kcfg.align != b->kcfg.align) 3051 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3052 /* ascending order by size, within same alignment class */ 3053 if (a->kcfg.sz != b->kcfg.sz) 3054 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3055 } 3056 3057 /* resolve ties by name */ 3058 return strcmp(a->name, b->name); 3059 } 3060 3061 static int find_int_btf_id(const struct btf *btf) 3062 { 3063 const struct btf_type *t; 3064 int i, n; 3065 3066 n = btf__get_nr_types(btf); 3067 for (i = 1; i <= n; i++) { 3068 t = btf__type_by_id(btf, i); 3069 3070 if (btf_is_int(t) && btf_int_bits(t) == 32) 3071 return i; 3072 } 3073 3074 return 0; 3075 } 3076 3077 static int bpf_object__collect_externs(struct bpf_object *obj) 3078 { 3079 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3080 const struct btf_type *t; 3081 struct extern_desc *ext; 3082 int i, n, off; 3083 const char *ext_name, *sec_name; 3084 Elf_Scn *scn; 3085 GElf_Shdr sh; 3086 3087 if (!obj->efile.symbols) 3088 return 0; 3089 3090 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3091 if (elf_sec_hdr(obj, scn, &sh)) 3092 return -LIBBPF_ERRNO__FORMAT; 3093 3094 n = sh.sh_size / sh.sh_entsize; 3095 pr_debug("looking for externs among %d symbols...\n", n); 3096 3097 for (i = 0; i < n; i++) { 3098 GElf_Sym sym; 3099 3100 if (!gelf_getsym(obj->efile.symbols, i, &sym)) 3101 return -LIBBPF_ERRNO__FORMAT; 3102 if (!sym_is_extern(&sym)) 3103 continue; 3104 ext_name = elf_sym_str(obj, sym.st_name); 3105 if (!ext_name || !ext_name[0]) 3106 continue; 3107 3108 ext = obj->externs; 3109 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3110 if (!ext) 3111 return -ENOMEM; 3112 obj->externs = ext; 3113 ext = &ext[obj->nr_extern]; 3114 memset(ext, 0, sizeof(*ext)); 3115 obj->nr_extern++; 3116 3117 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3118 if (ext->btf_id <= 0) { 3119 pr_warn("failed to find BTF for extern '%s': %d\n", 3120 ext_name, ext->btf_id); 3121 return ext->btf_id; 3122 } 3123 t = btf__type_by_id(obj->btf, ext->btf_id); 3124 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3125 ext->sym_idx = i; 3126 ext->is_weak = GELF_ST_BIND(sym.st_info) == STB_WEAK; 3127 3128 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3129 if (ext->sec_btf_id <= 0) { 3130 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3131 ext_name, ext->btf_id, ext->sec_btf_id); 3132 return ext->sec_btf_id; 3133 } 3134 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3135 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3136 3137 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3138 kcfg_sec = sec; 3139 ext->type = EXT_KCFG; 3140 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3141 if (ext->kcfg.sz <= 0) { 3142 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3143 ext_name, ext->kcfg.sz); 3144 return ext->kcfg.sz; 3145 } 3146 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3147 if (ext->kcfg.align <= 0) { 3148 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3149 ext_name, ext->kcfg.align); 3150 return -EINVAL; 3151 } 3152 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3153 &ext->kcfg.is_signed); 3154 if (ext->kcfg.type == KCFG_UNKNOWN) { 3155 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name); 3156 return -ENOTSUP; 3157 } 3158 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3159 const struct btf_type *vt; 3160 3161 ksym_sec = sec; 3162 ext->type = EXT_KSYM; 3163 3164 vt = skip_mods_and_typedefs(obj->btf, t->type, NULL); 3165 if (!btf_is_void(vt)) { 3166 pr_warn("extern (ksym) '%s' is not typeless (void)\n", ext_name); 3167 return -ENOTSUP; 3168 } 3169 } else { 3170 pr_warn("unrecognized extern section '%s'\n", sec_name); 3171 return -ENOTSUP; 3172 } 3173 } 3174 pr_debug("collected %d externs total\n", obj->nr_extern); 3175 3176 if (!obj->nr_extern) 3177 return 0; 3178 3179 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3180 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3181 3182 /* for .ksyms section, we need to turn all externs into allocated 3183 * variables in BTF to pass kernel verification; we do this by 3184 * pretending that each extern is a 8-byte variable 3185 */ 3186 if (ksym_sec) { 3187 /* find existing 4-byte integer type in BTF to use for fake 3188 * extern variables in DATASEC 3189 */ 3190 int int_btf_id = find_int_btf_id(obj->btf); 3191 3192 for (i = 0; i < obj->nr_extern; i++) { 3193 ext = &obj->externs[i]; 3194 if (ext->type != EXT_KSYM) 3195 continue; 3196 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3197 i, ext->sym_idx, ext->name); 3198 } 3199 3200 sec = ksym_sec; 3201 n = btf_vlen(sec); 3202 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3203 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3204 struct btf_type *vt; 3205 3206 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3207 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3208 ext = find_extern_by_name(obj, ext_name); 3209 if (!ext) { 3210 pr_warn("failed to find extern definition for BTF var '%s'\n", 3211 ext_name); 3212 return -ESRCH; 3213 } 3214 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3215 vt->type = int_btf_id; 3216 vs->offset = off; 3217 vs->size = sizeof(int); 3218 } 3219 sec->size = off; 3220 } 3221 3222 if (kcfg_sec) { 3223 sec = kcfg_sec; 3224 /* for kcfg externs calculate their offsets within a .kconfig map */ 3225 off = 0; 3226 for (i = 0; i < obj->nr_extern; i++) { 3227 ext = &obj->externs[i]; 3228 if (ext->type != EXT_KCFG) 3229 continue; 3230 3231 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3232 off = ext->kcfg.data_off + ext->kcfg.sz; 3233 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3234 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3235 } 3236 sec->size = off; 3237 n = btf_vlen(sec); 3238 for (i = 0; i < n; i++) { 3239 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3240 3241 t = btf__type_by_id(obj->btf, vs->type); 3242 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3243 ext = find_extern_by_name(obj, ext_name); 3244 if (!ext) { 3245 pr_warn("failed to find extern definition for BTF var '%s'\n", 3246 ext_name); 3247 return -ESRCH; 3248 } 3249 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3250 vs->offset = ext->kcfg.data_off; 3251 } 3252 } 3253 return 0; 3254 } 3255 3256 struct bpf_program * 3257 bpf_object__find_program_by_title(const struct bpf_object *obj, 3258 const char *title) 3259 { 3260 struct bpf_program *pos; 3261 3262 bpf_object__for_each_program(pos, obj) { 3263 if (pos->sec_name && !strcmp(pos->sec_name, title)) 3264 return pos; 3265 } 3266 return NULL; 3267 } 3268 3269 static bool prog_is_subprog(const struct bpf_object *obj, 3270 const struct bpf_program *prog) 3271 { 3272 return prog->sec_idx == obj->efile.text_shndx && obj->has_subcalls; 3273 } 3274 3275 struct bpf_program * 3276 bpf_object__find_program_by_name(const struct bpf_object *obj, 3277 const char *name) 3278 { 3279 struct bpf_program *prog; 3280 3281 bpf_object__for_each_program(prog, obj) { 3282 if (prog_is_subprog(obj, prog)) 3283 continue; 3284 if (!strcmp(prog->name, name)) 3285 return prog; 3286 } 3287 return NULL; 3288 } 3289 3290 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3291 int shndx) 3292 { 3293 return shndx == obj->efile.data_shndx || 3294 shndx == obj->efile.bss_shndx || 3295 shndx == obj->efile.rodata_shndx; 3296 } 3297 3298 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3299 int shndx) 3300 { 3301 return shndx == obj->efile.maps_shndx || 3302 shndx == obj->efile.btf_maps_shndx; 3303 } 3304 3305 static enum libbpf_map_type 3306 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3307 { 3308 if (shndx == obj->efile.data_shndx) 3309 return LIBBPF_MAP_DATA; 3310 else if (shndx == obj->efile.bss_shndx) 3311 return LIBBPF_MAP_BSS; 3312 else if (shndx == obj->efile.rodata_shndx) 3313 return LIBBPF_MAP_RODATA; 3314 else if (shndx == obj->efile.symbols_shndx) 3315 return LIBBPF_MAP_KCONFIG; 3316 else 3317 return LIBBPF_MAP_UNSPEC; 3318 } 3319 3320 static int bpf_program__record_reloc(struct bpf_program *prog, 3321 struct reloc_desc *reloc_desc, 3322 __u32 insn_idx, const char *sym_name, 3323 const GElf_Sym *sym, const GElf_Rel *rel) 3324 { 3325 struct bpf_insn *insn = &prog->insns[insn_idx]; 3326 size_t map_idx, nr_maps = prog->obj->nr_maps; 3327 struct bpf_object *obj = prog->obj; 3328 __u32 shdr_idx = sym->st_shndx; 3329 enum libbpf_map_type type; 3330 const char *sym_sec_name; 3331 struct bpf_map *map; 3332 3333 reloc_desc->processed = false; 3334 3335 /* sub-program call relocation */ 3336 if (insn->code == (BPF_JMP | BPF_CALL)) { 3337 if (insn->src_reg != BPF_PSEUDO_CALL) { 3338 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 3339 return -LIBBPF_ERRNO__RELOC; 3340 } 3341 /* text_shndx can be 0, if no default "main" program exists */ 3342 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 3343 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3344 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 3345 prog->name, sym_name, sym_sec_name); 3346 return -LIBBPF_ERRNO__RELOC; 3347 } 3348 if (sym->st_value % BPF_INSN_SZ) { 3349 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 3350 prog->name, sym_name, (size_t)sym->st_value); 3351 return -LIBBPF_ERRNO__RELOC; 3352 } 3353 reloc_desc->type = RELO_CALL; 3354 reloc_desc->insn_idx = insn_idx; 3355 reloc_desc->sym_off = sym->st_value; 3356 return 0; 3357 } 3358 3359 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) { 3360 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 3361 prog->name, sym_name, insn_idx, insn->code); 3362 return -LIBBPF_ERRNO__RELOC; 3363 } 3364 3365 if (sym_is_extern(sym)) { 3366 int sym_idx = GELF_R_SYM(rel->r_info); 3367 int i, n = obj->nr_extern; 3368 struct extern_desc *ext; 3369 3370 for (i = 0; i < n; i++) { 3371 ext = &obj->externs[i]; 3372 if (ext->sym_idx == sym_idx) 3373 break; 3374 } 3375 if (i >= n) { 3376 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 3377 prog->name, sym_name, sym_idx); 3378 return -LIBBPF_ERRNO__RELOC; 3379 } 3380 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 3381 prog->name, i, ext->name, ext->sym_idx, insn_idx); 3382 reloc_desc->type = RELO_EXTERN; 3383 reloc_desc->insn_idx = insn_idx; 3384 reloc_desc->sym_off = i; /* sym_off stores extern index */ 3385 return 0; 3386 } 3387 3388 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 3389 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 3390 prog->name, sym_name, shdr_idx); 3391 return -LIBBPF_ERRNO__RELOC; 3392 } 3393 3394 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 3395 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3396 3397 /* generic map reference relocation */ 3398 if (type == LIBBPF_MAP_UNSPEC) { 3399 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 3400 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 3401 prog->name, sym_name, sym_sec_name); 3402 return -LIBBPF_ERRNO__RELOC; 3403 } 3404 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3405 map = &obj->maps[map_idx]; 3406 if (map->libbpf_type != type || 3407 map->sec_idx != sym->st_shndx || 3408 map->sec_offset != sym->st_value) 3409 continue; 3410 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 3411 prog->name, map_idx, map->name, map->sec_idx, 3412 map->sec_offset, insn_idx); 3413 break; 3414 } 3415 if (map_idx >= nr_maps) { 3416 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 3417 prog->name, sym_sec_name, (size_t)sym->st_value); 3418 return -LIBBPF_ERRNO__RELOC; 3419 } 3420 reloc_desc->type = RELO_LD64; 3421 reloc_desc->insn_idx = insn_idx; 3422 reloc_desc->map_idx = map_idx; 3423 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 3424 return 0; 3425 } 3426 3427 /* global data map relocation */ 3428 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 3429 pr_warn("prog '%s': bad data relo against section '%s'\n", 3430 prog->name, sym_sec_name); 3431 return -LIBBPF_ERRNO__RELOC; 3432 } 3433 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3434 map = &obj->maps[map_idx]; 3435 if (map->libbpf_type != type) 3436 continue; 3437 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 3438 prog->name, map_idx, map->name, map->sec_idx, 3439 map->sec_offset, insn_idx); 3440 break; 3441 } 3442 if (map_idx >= nr_maps) { 3443 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 3444 prog->name, sym_sec_name); 3445 return -LIBBPF_ERRNO__RELOC; 3446 } 3447 3448 reloc_desc->type = RELO_DATA; 3449 reloc_desc->insn_idx = insn_idx; 3450 reloc_desc->map_idx = map_idx; 3451 reloc_desc->sym_off = sym->st_value; 3452 return 0; 3453 } 3454 3455 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 3456 { 3457 return insn_idx >= prog->sec_insn_off && 3458 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 3459 } 3460 3461 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 3462 size_t sec_idx, size_t insn_idx) 3463 { 3464 int l = 0, r = obj->nr_programs - 1, m; 3465 struct bpf_program *prog; 3466 3467 while (l < r) { 3468 m = l + (r - l + 1) / 2; 3469 prog = &obj->programs[m]; 3470 3471 if (prog->sec_idx < sec_idx || 3472 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 3473 l = m; 3474 else 3475 r = m - 1; 3476 } 3477 /* matching program could be at index l, but it still might be the 3478 * wrong one, so we need to double check conditions for the last time 3479 */ 3480 prog = &obj->programs[l]; 3481 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 3482 return prog; 3483 return NULL; 3484 } 3485 3486 static int 3487 bpf_object__collect_prog_relos(struct bpf_object *obj, GElf_Shdr *shdr, Elf_Data *data) 3488 { 3489 Elf_Data *symbols = obj->efile.symbols; 3490 const char *relo_sec_name, *sec_name; 3491 size_t sec_idx = shdr->sh_info; 3492 struct bpf_program *prog; 3493 struct reloc_desc *relos; 3494 int err, i, nrels; 3495 const char *sym_name; 3496 __u32 insn_idx; 3497 GElf_Sym sym; 3498 GElf_Rel rel; 3499 3500 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 3501 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 3502 if (!relo_sec_name || !sec_name) 3503 return -EINVAL; 3504 3505 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 3506 relo_sec_name, sec_idx, sec_name); 3507 nrels = shdr->sh_size / shdr->sh_entsize; 3508 3509 for (i = 0; i < nrels; i++) { 3510 if (!gelf_getrel(data, i, &rel)) { 3511 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 3512 return -LIBBPF_ERRNO__FORMAT; 3513 } 3514 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 3515 pr_warn("sec '%s': symbol 0x%zx not found for relo #%d\n", 3516 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i); 3517 return -LIBBPF_ERRNO__FORMAT; 3518 } 3519 if (rel.r_offset % BPF_INSN_SZ) { 3520 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 3521 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i); 3522 return -LIBBPF_ERRNO__FORMAT; 3523 } 3524 3525 insn_idx = rel.r_offset / BPF_INSN_SZ; 3526 /* relocations against static functions are recorded as 3527 * relocations against the section that contains a function; 3528 * in such case, symbol will be STT_SECTION and sym.st_name 3529 * will point to empty string (0), so fetch section name 3530 * instead 3531 */ 3532 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && sym.st_name == 0) 3533 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym.st_shndx)); 3534 else 3535 sym_name = elf_sym_str(obj, sym.st_name); 3536 sym_name = sym_name ?: "<?"; 3537 3538 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 3539 relo_sec_name, i, insn_idx, sym_name); 3540 3541 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 3542 if (!prog) { 3543 pr_warn("sec '%s': relo #%d: program not found in section '%s' for insn #%u\n", 3544 relo_sec_name, i, sec_name, insn_idx); 3545 return -LIBBPF_ERRNO__RELOC; 3546 } 3547 3548 relos = libbpf_reallocarray(prog->reloc_desc, 3549 prog->nr_reloc + 1, sizeof(*relos)); 3550 if (!relos) 3551 return -ENOMEM; 3552 prog->reloc_desc = relos; 3553 3554 /* adjust insn_idx to local BPF program frame of reference */ 3555 insn_idx -= prog->sec_insn_off; 3556 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 3557 insn_idx, sym_name, &sym, &rel); 3558 if (err) 3559 return err; 3560 3561 prog->nr_reloc++; 3562 } 3563 return 0; 3564 } 3565 3566 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 3567 { 3568 struct bpf_map_def *def = &map->def; 3569 __u32 key_type_id = 0, value_type_id = 0; 3570 int ret; 3571 3572 /* if it's BTF-defined map, we don't need to search for type IDs. 3573 * For struct_ops map, it does not need btf_key_type_id and 3574 * btf_value_type_id. 3575 */ 3576 if (map->sec_idx == obj->efile.btf_maps_shndx || 3577 bpf_map__is_struct_ops(map)) 3578 return 0; 3579 3580 if (!bpf_map__is_internal(map)) { 3581 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size, 3582 def->value_size, &key_type_id, 3583 &value_type_id); 3584 } else { 3585 /* 3586 * LLVM annotates global data differently in BTF, that is, 3587 * only as '.data', '.bss' or '.rodata'. 3588 */ 3589 ret = btf__find_by_name(obj->btf, 3590 libbpf_type_to_btf_name[map->libbpf_type]); 3591 } 3592 if (ret < 0) 3593 return ret; 3594 3595 map->btf_key_type_id = key_type_id; 3596 map->btf_value_type_id = bpf_map__is_internal(map) ? 3597 ret : value_type_id; 3598 return 0; 3599 } 3600 3601 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 3602 { 3603 struct bpf_map_info info = {}; 3604 __u32 len = sizeof(info); 3605 int new_fd, err; 3606 char *new_name; 3607 3608 err = bpf_obj_get_info_by_fd(fd, &info, &len); 3609 if (err) 3610 return err; 3611 3612 new_name = strdup(info.name); 3613 if (!new_name) 3614 return -errno; 3615 3616 new_fd = open("/", O_RDONLY | O_CLOEXEC); 3617 if (new_fd < 0) { 3618 err = -errno; 3619 goto err_free_new_name; 3620 } 3621 3622 new_fd = dup3(fd, new_fd, O_CLOEXEC); 3623 if (new_fd < 0) { 3624 err = -errno; 3625 goto err_close_new_fd; 3626 } 3627 3628 err = zclose(map->fd); 3629 if (err) { 3630 err = -errno; 3631 goto err_close_new_fd; 3632 } 3633 free(map->name); 3634 3635 map->fd = new_fd; 3636 map->name = new_name; 3637 map->def.type = info.type; 3638 map->def.key_size = info.key_size; 3639 map->def.value_size = info.value_size; 3640 map->def.max_entries = info.max_entries; 3641 map->def.map_flags = info.map_flags; 3642 map->btf_key_type_id = info.btf_key_type_id; 3643 map->btf_value_type_id = info.btf_value_type_id; 3644 map->reused = true; 3645 3646 return 0; 3647 3648 err_close_new_fd: 3649 close(new_fd); 3650 err_free_new_name: 3651 free(new_name); 3652 return err; 3653 } 3654 3655 __u32 bpf_map__max_entries(const struct bpf_map *map) 3656 { 3657 return map->def.max_entries; 3658 } 3659 3660 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 3661 { 3662 if (map->fd >= 0) 3663 return -EBUSY; 3664 map->def.max_entries = max_entries; 3665 return 0; 3666 } 3667 3668 int bpf_map__resize(struct bpf_map *map, __u32 max_entries) 3669 { 3670 if (!map || !max_entries) 3671 return -EINVAL; 3672 3673 return bpf_map__set_max_entries(map, max_entries); 3674 } 3675 3676 static int 3677 bpf_object__probe_loading(struct bpf_object *obj) 3678 { 3679 struct bpf_load_program_attr attr; 3680 char *cp, errmsg[STRERR_BUFSIZE]; 3681 struct bpf_insn insns[] = { 3682 BPF_MOV64_IMM(BPF_REG_0, 0), 3683 BPF_EXIT_INSN(), 3684 }; 3685 int ret; 3686 3687 /* make sure basic loading works */ 3688 3689 memset(&attr, 0, sizeof(attr)); 3690 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3691 attr.insns = insns; 3692 attr.insns_cnt = ARRAY_SIZE(insns); 3693 attr.license = "GPL"; 3694 3695 ret = bpf_load_program_xattr(&attr, NULL, 0); 3696 if (ret < 0) { 3697 ret = errno; 3698 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 3699 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 3700 "program. Make sure your kernel supports BPF " 3701 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 3702 "set to big enough value.\n", __func__, cp, ret); 3703 return -ret; 3704 } 3705 close(ret); 3706 3707 return 0; 3708 } 3709 3710 static int probe_fd(int fd) 3711 { 3712 if (fd >= 0) 3713 close(fd); 3714 return fd >= 0; 3715 } 3716 3717 static int probe_kern_prog_name(void) 3718 { 3719 struct bpf_load_program_attr attr; 3720 struct bpf_insn insns[] = { 3721 BPF_MOV64_IMM(BPF_REG_0, 0), 3722 BPF_EXIT_INSN(), 3723 }; 3724 int ret; 3725 3726 /* make sure loading with name works */ 3727 3728 memset(&attr, 0, sizeof(attr)); 3729 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3730 attr.insns = insns; 3731 attr.insns_cnt = ARRAY_SIZE(insns); 3732 attr.license = "GPL"; 3733 attr.name = "test"; 3734 ret = bpf_load_program_xattr(&attr, NULL, 0); 3735 return probe_fd(ret); 3736 } 3737 3738 static int probe_kern_global_data(void) 3739 { 3740 struct bpf_load_program_attr prg_attr; 3741 struct bpf_create_map_attr map_attr; 3742 char *cp, errmsg[STRERR_BUFSIZE]; 3743 struct bpf_insn insns[] = { 3744 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 3745 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 3746 BPF_MOV64_IMM(BPF_REG_0, 0), 3747 BPF_EXIT_INSN(), 3748 }; 3749 int ret, map; 3750 3751 memset(&map_attr, 0, sizeof(map_attr)); 3752 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 3753 map_attr.key_size = sizeof(int); 3754 map_attr.value_size = 32; 3755 map_attr.max_entries = 1; 3756 3757 map = bpf_create_map_xattr(&map_attr); 3758 if (map < 0) { 3759 ret = -errno; 3760 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 3761 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 3762 __func__, cp, -ret); 3763 return ret; 3764 } 3765 3766 insns[0].imm = map; 3767 3768 memset(&prg_attr, 0, sizeof(prg_attr)); 3769 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3770 prg_attr.insns = insns; 3771 prg_attr.insns_cnt = ARRAY_SIZE(insns); 3772 prg_attr.license = "GPL"; 3773 3774 ret = bpf_load_program_xattr(&prg_attr, NULL, 0); 3775 close(map); 3776 return probe_fd(ret); 3777 } 3778 3779 static int probe_kern_btf(void) 3780 { 3781 static const char strs[] = "\0int"; 3782 __u32 types[] = { 3783 /* int */ 3784 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 3785 }; 3786 3787 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3788 strs, sizeof(strs))); 3789 } 3790 3791 static int probe_kern_btf_func(void) 3792 { 3793 static const char strs[] = "\0int\0x\0a"; 3794 /* void x(int a) {} */ 3795 __u32 types[] = { 3796 /* int */ 3797 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3798 /* FUNC_PROTO */ /* [2] */ 3799 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 3800 BTF_PARAM_ENC(7, 1), 3801 /* FUNC x */ /* [3] */ 3802 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 3803 }; 3804 3805 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3806 strs, sizeof(strs))); 3807 } 3808 3809 static int probe_kern_btf_func_global(void) 3810 { 3811 static const char strs[] = "\0int\0x\0a"; 3812 /* static void x(int a) {} */ 3813 __u32 types[] = { 3814 /* int */ 3815 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3816 /* FUNC_PROTO */ /* [2] */ 3817 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 3818 BTF_PARAM_ENC(7, 1), 3819 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 3820 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 3821 }; 3822 3823 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3824 strs, sizeof(strs))); 3825 } 3826 3827 static int probe_kern_btf_datasec(void) 3828 { 3829 static const char strs[] = "\0x\0.data"; 3830 /* static int a; */ 3831 __u32 types[] = { 3832 /* int */ 3833 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3834 /* VAR x */ /* [2] */ 3835 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 3836 BTF_VAR_STATIC, 3837 /* DATASEC val */ /* [3] */ 3838 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 3839 BTF_VAR_SECINFO_ENC(2, 0, 4), 3840 }; 3841 3842 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3843 strs, sizeof(strs))); 3844 } 3845 3846 static int probe_kern_array_mmap(void) 3847 { 3848 struct bpf_create_map_attr attr = { 3849 .map_type = BPF_MAP_TYPE_ARRAY, 3850 .map_flags = BPF_F_MMAPABLE, 3851 .key_size = sizeof(int), 3852 .value_size = sizeof(int), 3853 .max_entries = 1, 3854 }; 3855 3856 return probe_fd(bpf_create_map_xattr(&attr)); 3857 } 3858 3859 static int probe_kern_exp_attach_type(void) 3860 { 3861 struct bpf_load_program_attr attr; 3862 struct bpf_insn insns[] = { 3863 BPF_MOV64_IMM(BPF_REG_0, 0), 3864 BPF_EXIT_INSN(), 3865 }; 3866 3867 memset(&attr, 0, sizeof(attr)); 3868 /* use any valid combination of program type and (optional) 3869 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 3870 * to see if kernel supports expected_attach_type field for 3871 * BPF_PROG_LOAD command 3872 */ 3873 attr.prog_type = BPF_PROG_TYPE_CGROUP_SOCK; 3874 attr.expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE; 3875 attr.insns = insns; 3876 attr.insns_cnt = ARRAY_SIZE(insns); 3877 attr.license = "GPL"; 3878 3879 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0)); 3880 } 3881 3882 static int probe_kern_probe_read_kernel(void) 3883 { 3884 struct bpf_load_program_attr attr; 3885 struct bpf_insn insns[] = { 3886 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 3887 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 3888 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 3889 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 3890 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 3891 BPF_EXIT_INSN(), 3892 }; 3893 3894 memset(&attr, 0, sizeof(attr)); 3895 attr.prog_type = BPF_PROG_TYPE_KPROBE; 3896 attr.insns = insns; 3897 attr.insns_cnt = ARRAY_SIZE(insns); 3898 attr.license = "GPL"; 3899 3900 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0)); 3901 } 3902 3903 static int probe_prog_bind_map(void) 3904 { 3905 struct bpf_load_program_attr prg_attr; 3906 struct bpf_create_map_attr map_attr; 3907 char *cp, errmsg[STRERR_BUFSIZE]; 3908 struct bpf_insn insns[] = { 3909 BPF_MOV64_IMM(BPF_REG_0, 0), 3910 BPF_EXIT_INSN(), 3911 }; 3912 int ret, map, prog; 3913 3914 memset(&map_attr, 0, sizeof(map_attr)); 3915 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 3916 map_attr.key_size = sizeof(int); 3917 map_attr.value_size = 32; 3918 map_attr.max_entries = 1; 3919 3920 map = bpf_create_map_xattr(&map_attr); 3921 if (map < 0) { 3922 ret = -errno; 3923 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 3924 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 3925 __func__, cp, -ret); 3926 return ret; 3927 } 3928 3929 memset(&prg_attr, 0, sizeof(prg_attr)); 3930 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3931 prg_attr.insns = insns; 3932 prg_attr.insns_cnt = ARRAY_SIZE(insns); 3933 prg_attr.license = "GPL"; 3934 3935 prog = bpf_load_program_xattr(&prg_attr, NULL, 0); 3936 if (prog < 0) { 3937 close(map); 3938 return 0; 3939 } 3940 3941 ret = bpf_prog_bind_map(prog, map, NULL); 3942 3943 close(map); 3944 close(prog); 3945 3946 return ret >= 0; 3947 } 3948 3949 enum kern_feature_result { 3950 FEAT_UNKNOWN = 0, 3951 FEAT_SUPPORTED = 1, 3952 FEAT_MISSING = 2, 3953 }; 3954 3955 typedef int (*feature_probe_fn)(void); 3956 3957 static struct kern_feature_desc { 3958 const char *desc; 3959 feature_probe_fn probe; 3960 enum kern_feature_result res; 3961 } feature_probes[__FEAT_CNT] = { 3962 [FEAT_PROG_NAME] = { 3963 "BPF program name", probe_kern_prog_name, 3964 }, 3965 [FEAT_GLOBAL_DATA] = { 3966 "global variables", probe_kern_global_data, 3967 }, 3968 [FEAT_BTF] = { 3969 "minimal BTF", probe_kern_btf, 3970 }, 3971 [FEAT_BTF_FUNC] = { 3972 "BTF functions", probe_kern_btf_func, 3973 }, 3974 [FEAT_BTF_GLOBAL_FUNC] = { 3975 "BTF global function", probe_kern_btf_func_global, 3976 }, 3977 [FEAT_BTF_DATASEC] = { 3978 "BTF data section and variable", probe_kern_btf_datasec, 3979 }, 3980 [FEAT_ARRAY_MMAP] = { 3981 "ARRAY map mmap()", probe_kern_array_mmap, 3982 }, 3983 [FEAT_EXP_ATTACH_TYPE] = { 3984 "BPF_PROG_LOAD expected_attach_type attribute", 3985 probe_kern_exp_attach_type, 3986 }, 3987 [FEAT_PROBE_READ_KERN] = { 3988 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 3989 }, 3990 [FEAT_PROG_BIND_MAP] = { 3991 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 3992 } 3993 }; 3994 3995 static bool kernel_supports(enum kern_feature_id feat_id) 3996 { 3997 struct kern_feature_desc *feat = &feature_probes[feat_id]; 3998 int ret; 3999 4000 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4001 ret = feat->probe(); 4002 if (ret > 0) { 4003 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4004 } else if (ret == 0) { 4005 WRITE_ONCE(feat->res, FEAT_MISSING); 4006 } else { 4007 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4008 WRITE_ONCE(feat->res, FEAT_MISSING); 4009 } 4010 } 4011 4012 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4013 } 4014 4015 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4016 { 4017 struct bpf_map_info map_info = {}; 4018 char msg[STRERR_BUFSIZE]; 4019 __u32 map_info_len; 4020 4021 map_info_len = sizeof(map_info); 4022 4023 if (bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len)) { 4024 pr_warn("failed to get map info for map FD %d: %s\n", 4025 map_fd, libbpf_strerror_r(errno, msg, sizeof(msg))); 4026 return false; 4027 } 4028 4029 return (map_info.type == map->def.type && 4030 map_info.key_size == map->def.key_size && 4031 map_info.value_size == map->def.value_size && 4032 map_info.max_entries == map->def.max_entries && 4033 map_info.map_flags == map->def.map_flags); 4034 } 4035 4036 static int 4037 bpf_object__reuse_map(struct bpf_map *map) 4038 { 4039 char *cp, errmsg[STRERR_BUFSIZE]; 4040 int err, pin_fd; 4041 4042 pin_fd = bpf_obj_get(map->pin_path); 4043 if (pin_fd < 0) { 4044 err = -errno; 4045 if (err == -ENOENT) { 4046 pr_debug("found no pinned map to reuse at '%s'\n", 4047 map->pin_path); 4048 return 0; 4049 } 4050 4051 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4052 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4053 map->pin_path, cp); 4054 return err; 4055 } 4056 4057 if (!map_is_reuse_compat(map, pin_fd)) { 4058 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4059 map->pin_path); 4060 close(pin_fd); 4061 return -EINVAL; 4062 } 4063 4064 err = bpf_map__reuse_fd(map, pin_fd); 4065 if (err) { 4066 close(pin_fd); 4067 return err; 4068 } 4069 map->pinned = true; 4070 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4071 4072 return 0; 4073 } 4074 4075 static int 4076 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4077 { 4078 enum libbpf_map_type map_type = map->libbpf_type; 4079 char *cp, errmsg[STRERR_BUFSIZE]; 4080 int err, zero = 0; 4081 4082 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4083 if (err) { 4084 err = -errno; 4085 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4086 pr_warn("Error setting initial map(%s) contents: %s\n", 4087 map->name, cp); 4088 return err; 4089 } 4090 4091 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 4092 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 4093 err = bpf_map_freeze(map->fd); 4094 if (err) { 4095 err = -errno; 4096 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4097 pr_warn("Error freezing map(%s) as read-only: %s\n", 4098 map->name, cp); 4099 return err; 4100 } 4101 } 4102 return 0; 4103 } 4104 4105 static void bpf_map__destroy(struct bpf_map *map); 4106 4107 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map) 4108 { 4109 struct bpf_create_map_attr create_attr; 4110 struct bpf_map_def *def = &map->def; 4111 4112 memset(&create_attr, 0, sizeof(create_attr)); 4113 4114 if (kernel_supports(FEAT_PROG_NAME)) 4115 create_attr.name = map->name; 4116 create_attr.map_ifindex = map->map_ifindex; 4117 create_attr.map_type = def->type; 4118 create_attr.map_flags = def->map_flags; 4119 create_attr.key_size = def->key_size; 4120 create_attr.value_size = def->value_size; 4121 create_attr.numa_node = map->numa_node; 4122 4123 if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) { 4124 int nr_cpus; 4125 4126 nr_cpus = libbpf_num_possible_cpus(); 4127 if (nr_cpus < 0) { 4128 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 4129 map->name, nr_cpus); 4130 return nr_cpus; 4131 } 4132 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 4133 create_attr.max_entries = nr_cpus; 4134 } else { 4135 create_attr.max_entries = def->max_entries; 4136 } 4137 4138 if (bpf_map__is_struct_ops(map)) 4139 create_attr.btf_vmlinux_value_type_id = 4140 map->btf_vmlinux_value_type_id; 4141 4142 create_attr.btf_fd = 0; 4143 create_attr.btf_key_type_id = 0; 4144 create_attr.btf_value_type_id = 0; 4145 if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) { 4146 create_attr.btf_fd = btf__fd(obj->btf); 4147 create_attr.btf_key_type_id = map->btf_key_type_id; 4148 create_attr.btf_value_type_id = map->btf_value_type_id; 4149 } 4150 4151 if (bpf_map_type__is_map_in_map(def->type)) { 4152 if (map->inner_map) { 4153 int err; 4154 4155 err = bpf_object__create_map(obj, map->inner_map); 4156 if (err) { 4157 pr_warn("map '%s': failed to create inner map: %d\n", 4158 map->name, err); 4159 return err; 4160 } 4161 map->inner_map_fd = bpf_map__fd(map->inner_map); 4162 } 4163 if (map->inner_map_fd >= 0) 4164 create_attr.inner_map_fd = map->inner_map_fd; 4165 } 4166 4167 map->fd = bpf_create_map_xattr(&create_attr); 4168 if (map->fd < 0 && (create_attr.btf_key_type_id || 4169 create_attr.btf_value_type_id)) { 4170 char *cp, errmsg[STRERR_BUFSIZE]; 4171 int err = -errno; 4172 4173 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4174 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 4175 map->name, cp, err); 4176 create_attr.btf_fd = 0; 4177 create_attr.btf_key_type_id = 0; 4178 create_attr.btf_value_type_id = 0; 4179 map->btf_key_type_id = 0; 4180 map->btf_value_type_id = 0; 4181 map->fd = bpf_create_map_xattr(&create_attr); 4182 } 4183 4184 if (map->fd < 0) 4185 return -errno; 4186 4187 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 4188 bpf_map__destroy(map->inner_map); 4189 zfree(&map->inner_map); 4190 } 4191 4192 return 0; 4193 } 4194 4195 static int 4196 bpf_object__create_maps(struct bpf_object *obj) 4197 { 4198 struct bpf_map *map; 4199 char *cp, errmsg[STRERR_BUFSIZE]; 4200 unsigned int i, j; 4201 int err; 4202 4203 for (i = 0; i < obj->nr_maps; i++) { 4204 map = &obj->maps[i]; 4205 4206 if (map->pin_path) { 4207 err = bpf_object__reuse_map(map); 4208 if (err) { 4209 pr_warn("map '%s': error reusing pinned map\n", 4210 map->name); 4211 goto err_out; 4212 } 4213 } 4214 4215 if (map->fd >= 0) { 4216 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 4217 map->name, map->fd); 4218 continue; 4219 } 4220 4221 err = bpf_object__create_map(obj, map); 4222 if (err) 4223 goto err_out; 4224 4225 pr_debug("map '%s': created successfully, fd=%d\n", map->name, 4226 map->fd); 4227 4228 if (bpf_map__is_internal(map)) { 4229 err = bpf_object__populate_internal_map(obj, map); 4230 if (err < 0) { 4231 zclose(map->fd); 4232 goto err_out; 4233 } 4234 } 4235 4236 if (map->init_slots_sz) { 4237 for (j = 0; j < map->init_slots_sz; j++) { 4238 const struct bpf_map *targ_map; 4239 int fd; 4240 4241 if (!map->init_slots[j]) 4242 continue; 4243 4244 targ_map = map->init_slots[j]; 4245 fd = bpf_map__fd(targ_map); 4246 err = bpf_map_update_elem(map->fd, &j, &fd, 0); 4247 if (err) { 4248 err = -errno; 4249 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 4250 map->name, j, targ_map->name, 4251 fd, err); 4252 goto err_out; 4253 } 4254 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 4255 map->name, j, targ_map->name, fd); 4256 } 4257 zfree(&map->init_slots); 4258 map->init_slots_sz = 0; 4259 } 4260 4261 if (map->pin_path && !map->pinned) { 4262 err = bpf_map__pin(map, NULL); 4263 if (err) { 4264 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 4265 map->name, map->pin_path, err); 4266 zclose(map->fd); 4267 goto err_out; 4268 } 4269 } 4270 } 4271 4272 return 0; 4273 4274 err_out: 4275 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4276 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 4277 pr_perm_msg(err); 4278 for (j = 0; j < i; j++) 4279 zclose(obj->maps[j].fd); 4280 return err; 4281 } 4282 4283 #define BPF_CORE_SPEC_MAX_LEN 64 4284 4285 /* represents BPF CO-RE field or array element accessor */ 4286 struct bpf_core_accessor { 4287 __u32 type_id; /* struct/union type or array element type */ 4288 __u32 idx; /* field index or array index */ 4289 const char *name; /* field name or NULL for array accessor */ 4290 }; 4291 4292 struct bpf_core_spec { 4293 const struct btf *btf; 4294 /* high-level spec: named fields and array indices only */ 4295 struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN]; 4296 /* original unresolved (no skip_mods_or_typedefs) root type ID */ 4297 __u32 root_type_id; 4298 /* CO-RE relocation kind */ 4299 enum bpf_core_relo_kind relo_kind; 4300 /* high-level spec length */ 4301 int len; 4302 /* raw, low-level spec: 1-to-1 with accessor spec string */ 4303 int raw_spec[BPF_CORE_SPEC_MAX_LEN]; 4304 /* raw spec length */ 4305 int raw_len; 4306 /* field bit offset represented by spec */ 4307 __u32 bit_offset; 4308 }; 4309 4310 static bool str_is_empty(const char *s) 4311 { 4312 return !s || !s[0]; 4313 } 4314 4315 static bool is_flex_arr(const struct btf *btf, 4316 const struct bpf_core_accessor *acc, 4317 const struct btf_array *arr) 4318 { 4319 const struct btf_type *t; 4320 4321 /* not a flexible array, if not inside a struct or has non-zero size */ 4322 if (!acc->name || arr->nelems > 0) 4323 return false; 4324 4325 /* has to be the last member of enclosing struct */ 4326 t = btf__type_by_id(btf, acc->type_id); 4327 return acc->idx == btf_vlen(t) - 1; 4328 } 4329 4330 static const char *core_relo_kind_str(enum bpf_core_relo_kind kind) 4331 { 4332 switch (kind) { 4333 case BPF_FIELD_BYTE_OFFSET: return "byte_off"; 4334 case BPF_FIELD_BYTE_SIZE: return "byte_sz"; 4335 case BPF_FIELD_EXISTS: return "field_exists"; 4336 case BPF_FIELD_SIGNED: return "signed"; 4337 case BPF_FIELD_LSHIFT_U64: return "lshift_u64"; 4338 case BPF_FIELD_RSHIFT_U64: return "rshift_u64"; 4339 case BPF_TYPE_ID_LOCAL: return "local_type_id"; 4340 case BPF_TYPE_ID_TARGET: return "target_type_id"; 4341 case BPF_TYPE_EXISTS: return "type_exists"; 4342 case BPF_TYPE_SIZE: return "type_size"; 4343 case BPF_ENUMVAL_EXISTS: return "enumval_exists"; 4344 case BPF_ENUMVAL_VALUE: return "enumval_value"; 4345 default: return "unknown"; 4346 } 4347 } 4348 4349 static bool core_relo_is_field_based(enum bpf_core_relo_kind kind) 4350 { 4351 switch (kind) { 4352 case BPF_FIELD_BYTE_OFFSET: 4353 case BPF_FIELD_BYTE_SIZE: 4354 case BPF_FIELD_EXISTS: 4355 case BPF_FIELD_SIGNED: 4356 case BPF_FIELD_LSHIFT_U64: 4357 case BPF_FIELD_RSHIFT_U64: 4358 return true; 4359 default: 4360 return false; 4361 } 4362 } 4363 4364 static bool core_relo_is_type_based(enum bpf_core_relo_kind kind) 4365 { 4366 switch (kind) { 4367 case BPF_TYPE_ID_LOCAL: 4368 case BPF_TYPE_ID_TARGET: 4369 case BPF_TYPE_EXISTS: 4370 case BPF_TYPE_SIZE: 4371 return true; 4372 default: 4373 return false; 4374 } 4375 } 4376 4377 static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind) 4378 { 4379 switch (kind) { 4380 case BPF_ENUMVAL_EXISTS: 4381 case BPF_ENUMVAL_VALUE: 4382 return true; 4383 default: 4384 return false; 4385 } 4386 } 4387 4388 /* 4389 * Turn bpf_core_relo into a low- and high-level spec representation, 4390 * validating correctness along the way, as well as calculating resulting 4391 * field bit offset, specified by accessor string. Low-level spec captures 4392 * every single level of nestedness, including traversing anonymous 4393 * struct/union members. High-level one only captures semantically meaningful 4394 * "turning points": named fields and array indicies. 4395 * E.g., for this case: 4396 * 4397 * struct sample { 4398 * int __unimportant; 4399 * struct { 4400 * int __1; 4401 * int __2; 4402 * int a[7]; 4403 * }; 4404 * }; 4405 * 4406 * struct sample *s = ...; 4407 * 4408 * int x = &s->a[3]; // access string = '0:1:2:3' 4409 * 4410 * Low-level spec has 1:1 mapping with each element of access string (it's 4411 * just a parsed access string representation): [0, 1, 2, 3]. 4412 * 4413 * High-level spec will capture only 3 points: 4414 * - intial zero-index access by pointer (&s->... is the same as &s[0]...); 4415 * - field 'a' access (corresponds to '2' in low-level spec); 4416 * - array element #3 access (corresponds to '3' in low-level spec). 4417 * 4418 * Type-based relocations (TYPE_EXISTS/TYPE_SIZE, 4419 * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their 4420 * spec and raw_spec are kept empty. 4421 * 4422 * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access 4423 * string to specify enumerator's value index that need to be relocated. 4424 */ 4425 static int bpf_core_parse_spec(const struct btf *btf, 4426 __u32 type_id, 4427 const char *spec_str, 4428 enum bpf_core_relo_kind relo_kind, 4429 struct bpf_core_spec *spec) 4430 { 4431 int access_idx, parsed_len, i; 4432 struct bpf_core_accessor *acc; 4433 const struct btf_type *t; 4434 const char *name; 4435 __u32 id; 4436 __s64 sz; 4437 4438 if (str_is_empty(spec_str) || *spec_str == ':') 4439 return -EINVAL; 4440 4441 memset(spec, 0, sizeof(*spec)); 4442 spec->btf = btf; 4443 spec->root_type_id = type_id; 4444 spec->relo_kind = relo_kind; 4445 4446 /* type-based relocations don't have a field access string */ 4447 if (core_relo_is_type_based(relo_kind)) { 4448 if (strcmp(spec_str, "0")) 4449 return -EINVAL; 4450 return 0; 4451 } 4452 4453 /* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */ 4454 while (*spec_str) { 4455 if (*spec_str == ':') 4456 ++spec_str; 4457 if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1) 4458 return -EINVAL; 4459 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 4460 return -E2BIG; 4461 spec_str += parsed_len; 4462 spec->raw_spec[spec->raw_len++] = access_idx; 4463 } 4464 4465 if (spec->raw_len == 0) 4466 return -EINVAL; 4467 4468 t = skip_mods_and_typedefs(btf, type_id, &id); 4469 if (!t) 4470 return -EINVAL; 4471 4472 access_idx = spec->raw_spec[0]; 4473 acc = &spec->spec[0]; 4474 acc->type_id = id; 4475 acc->idx = access_idx; 4476 spec->len++; 4477 4478 if (core_relo_is_enumval_based(relo_kind)) { 4479 if (!btf_is_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t)) 4480 return -EINVAL; 4481 4482 /* record enumerator name in a first accessor */ 4483 acc->name = btf__name_by_offset(btf, btf_enum(t)[access_idx].name_off); 4484 return 0; 4485 } 4486 4487 if (!core_relo_is_field_based(relo_kind)) 4488 return -EINVAL; 4489 4490 sz = btf__resolve_size(btf, id); 4491 if (sz < 0) 4492 return sz; 4493 spec->bit_offset = access_idx * sz * 8; 4494 4495 for (i = 1; i < spec->raw_len; i++) { 4496 t = skip_mods_and_typedefs(btf, id, &id); 4497 if (!t) 4498 return -EINVAL; 4499 4500 access_idx = spec->raw_spec[i]; 4501 acc = &spec->spec[spec->len]; 4502 4503 if (btf_is_composite(t)) { 4504 const struct btf_member *m; 4505 __u32 bit_offset; 4506 4507 if (access_idx >= btf_vlen(t)) 4508 return -EINVAL; 4509 4510 bit_offset = btf_member_bit_offset(t, access_idx); 4511 spec->bit_offset += bit_offset; 4512 4513 m = btf_members(t) + access_idx; 4514 if (m->name_off) { 4515 name = btf__name_by_offset(btf, m->name_off); 4516 if (str_is_empty(name)) 4517 return -EINVAL; 4518 4519 acc->type_id = id; 4520 acc->idx = access_idx; 4521 acc->name = name; 4522 spec->len++; 4523 } 4524 4525 id = m->type; 4526 } else if (btf_is_array(t)) { 4527 const struct btf_array *a = btf_array(t); 4528 bool flex; 4529 4530 t = skip_mods_and_typedefs(btf, a->type, &id); 4531 if (!t) 4532 return -EINVAL; 4533 4534 flex = is_flex_arr(btf, acc - 1, a); 4535 if (!flex && access_idx >= a->nelems) 4536 return -EINVAL; 4537 4538 spec->spec[spec->len].type_id = id; 4539 spec->spec[spec->len].idx = access_idx; 4540 spec->len++; 4541 4542 sz = btf__resolve_size(btf, id); 4543 if (sz < 0) 4544 return sz; 4545 spec->bit_offset += access_idx * sz * 8; 4546 } else { 4547 pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n", 4548 type_id, spec_str, i, id, btf_kind_str(t)); 4549 return -EINVAL; 4550 } 4551 } 4552 4553 return 0; 4554 } 4555 4556 static bool bpf_core_is_flavor_sep(const char *s) 4557 { 4558 /* check X___Y name pattern, where X and Y are not underscores */ 4559 return s[0] != '_' && /* X */ 4560 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 4561 s[4] != '_'; /* Y */ 4562 } 4563 4564 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 4565 * before last triple underscore. Struct name part after last triple 4566 * underscore is ignored by BPF CO-RE relocation during relocation matching. 4567 */ 4568 static size_t bpf_core_essential_name_len(const char *name) 4569 { 4570 size_t n = strlen(name); 4571 int i; 4572 4573 for (i = n - 5; i >= 0; i--) { 4574 if (bpf_core_is_flavor_sep(name + i)) 4575 return i + 1; 4576 } 4577 return n; 4578 } 4579 4580 /* dynamically sized list of type IDs */ 4581 struct ids_vec { 4582 __u32 *data; 4583 int len; 4584 }; 4585 4586 static void bpf_core_free_cands(struct ids_vec *cand_ids) 4587 { 4588 free(cand_ids->data); 4589 free(cand_ids); 4590 } 4591 4592 static struct ids_vec *bpf_core_find_cands(const struct btf *local_btf, 4593 __u32 local_type_id, 4594 const struct btf *targ_btf) 4595 { 4596 size_t local_essent_len, targ_essent_len; 4597 const char *local_name, *targ_name; 4598 const struct btf_type *t, *local_t; 4599 struct ids_vec *cand_ids; 4600 __u32 *new_ids; 4601 int i, err, n; 4602 4603 local_t = btf__type_by_id(local_btf, local_type_id); 4604 if (!local_t) 4605 return ERR_PTR(-EINVAL); 4606 4607 local_name = btf__name_by_offset(local_btf, local_t->name_off); 4608 if (str_is_empty(local_name)) 4609 return ERR_PTR(-EINVAL); 4610 local_essent_len = bpf_core_essential_name_len(local_name); 4611 4612 cand_ids = calloc(1, sizeof(*cand_ids)); 4613 if (!cand_ids) 4614 return ERR_PTR(-ENOMEM); 4615 4616 n = btf__get_nr_types(targ_btf); 4617 for (i = 1; i <= n; i++) { 4618 t = btf__type_by_id(targ_btf, i); 4619 if (btf_kind(t) != btf_kind(local_t)) 4620 continue; 4621 4622 targ_name = btf__name_by_offset(targ_btf, t->name_off); 4623 if (str_is_empty(targ_name)) 4624 continue; 4625 4626 targ_essent_len = bpf_core_essential_name_len(targ_name); 4627 if (targ_essent_len != local_essent_len) 4628 continue; 4629 4630 if (strncmp(local_name, targ_name, local_essent_len) == 0) { 4631 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s\n", 4632 local_type_id, btf_kind_str(local_t), 4633 local_name, i, btf_kind_str(t), targ_name); 4634 new_ids = libbpf_reallocarray(cand_ids->data, 4635 cand_ids->len + 1, 4636 sizeof(*cand_ids->data)); 4637 if (!new_ids) { 4638 err = -ENOMEM; 4639 goto err_out; 4640 } 4641 cand_ids->data = new_ids; 4642 cand_ids->data[cand_ids->len++] = i; 4643 } 4644 } 4645 return cand_ids; 4646 err_out: 4647 bpf_core_free_cands(cand_ids); 4648 return ERR_PTR(err); 4649 } 4650 4651 /* Check two types for compatibility for the purpose of field access 4652 * relocation. const/volatile/restrict and typedefs are skipped to ensure we 4653 * are relocating semantically compatible entities: 4654 * - any two STRUCTs/UNIONs are compatible and can be mixed; 4655 * - any two FWDs are compatible, if their names match (modulo flavor suffix); 4656 * - any two PTRs are always compatible; 4657 * - for ENUMs, names should be the same (ignoring flavor suffix) or at 4658 * least one of enums should be anonymous; 4659 * - for ENUMs, check sizes, names are ignored; 4660 * - for INT, size and signedness are ignored; 4661 * - for ARRAY, dimensionality is ignored, element types are checked for 4662 * compatibility recursively; 4663 * - everything else shouldn't be ever a target of relocation. 4664 * These rules are not set in stone and probably will be adjusted as we get 4665 * more experience with using BPF CO-RE relocations. 4666 */ 4667 static int bpf_core_fields_are_compat(const struct btf *local_btf, 4668 __u32 local_id, 4669 const struct btf *targ_btf, 4670 __u32 targ_id) 4671 { 4672 const struct btf_type *local_type, *targ_type; 4673 4674 recur: 4675 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 4676 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 4677 if (!local_type || !targ_type) 4678 return -EINVAL; 4679 4680 if (btf_is_composite(local_type) && btf_is_composite(targ_type)) 4681 return 1; 4682 if (btf_kind(local_type) != btf_kind(targ_type)) 4683 return 0; 4684 4685 switch (btf_kind(local_type)) { 4686 case BTF_KIND_PTR: 4687 return 1; 4688 case BTF_KIND_FWD: 4689 case BTF_KIND_ENUM: { 4690 const char *local_name, *targ_name; 4691 size_t local_len, targ_len; 4692 4693 local_name = btf__name_by_offset(local_btf, 4694 local_type->name_off); 4695 targ_name = btf__name_by_offset(targ_btf, targ_type->name_off); 4696 local_len = bpf_core_essential_name_len(local_name); 4697 targ_len = bpf_core_essential_name_len(targ_name); 4698 /* one of them is anonymous or both w/ same flavor-less names */ 4699 return local_len == 0 || targ_len == 0 || 4700 (local_len == targ_len && 4701 strncmp(local_name, targ_name, local_len) == 0); 4702 } 4703 case BTF_KIND_INT: 4704 /* just reject deprecated bitfield-like integers; all other 4705 * integers are by default compatible between each other 4706 */ 4707 return btf_int_offset(local_type) == 0 && 4708 btf_int_offset(targ_type) == 0; 4709 case BTF_KIND_ARRAY: 4710 local_id = btf_array(local_type)->type; 4711 targ_id = btf_array(targ_type)->type; 4712 goto recur; 4713 default: 4714 pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n", 4715 btf_kind(local_type), local_id, targ_id); 4716 return 0; 4717 } 4718 } 4719 4720 /* 4721 * Given single high-level named field accessor in local type, find 4722 * corresponding high-level accessor for a target type. Along the way, 4723 * maintain low-level spec for target as well. Also keep updating target 4724 * bit offset. 4725 * 4726 * Searching is performed through recursive exhaustive enumeration of all 4727 * fields of a struct/union. If there are any anonymous (embedded) 4728 * structs/unions, they are recursively searched as well. If field with 4729 * desired name is found, check compatibility between local and target types, 4730 * before returning result. 4731 * 4732 * 1 is returned, if field is found. 4733 * 0 is returned if no compatible field is found. 4734 * <0 is returned on error. 4735 */ 4736 static int bpf_core_match_member(const struct btf *local_btf, 4737 const struct bpf_core_accessor *local_acc, 4738 const struct btf *targ_btf, 4739 __u32 targ_id, 4740 struct bpf_core_spec *spec, 4741 __u32 *next_targ_id) 4742 { 4743 const struct btf_type *local_type, *targ_type; 4744 const struct btf_member *local_member, *m; 4745 const char *local_name, *targ_name; 4746 __u32 local_id; 4747 int i, n, found; 4748 4749 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 4750 if (!targ_type) 4751 return -EINVAL; 4752 if (!btf_is_composite(targ_type)) 4753 return 0; 4754 4755 local_id = local_acc->type_id; 4756 local_type = btf__type_by_id(local_btf, local_id); 4757 local_member = btf_members(local_type) + local_acc->idx; 4758 local_name = btf__name_by_offset(local_btf, local_member->name_off); 4759 4760 n = btf_vlen(targ_type); 4761 m = btf_members(targ_type); 4762 for (i = 0; i < n; i++, m++) { 4763 __u32 bit_offset; 4764 4765 bit_offset = btf_member_bit_offset(targ_type, i); 4766 4767 /* too deep struct/union/array nesting */ 4768 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 4769 return -E2BIG; 4770 4771 /* speculate this member will be the good one */ 4772 spec->bit_offset += bit_offset; 4773 spec->raw_spec[spec->raw_len++] = i; 4774 4775 targ_name = btf__name_by_offset(targ_btf, m->name_off); 4776 if (str_is_empty(targ_name)) { 4777 /* embedded struct/union, we need to go deeper */ 4778 found = bpf_core_match_member(local_btf, local_acc, 4779 targ_btf, m->type, 4780 spec, next_targ_id); 4781 if (found) /* either found or error */ 4782 return found; 4783 } else if (strcmp(local_name, targ_name) == 0) { 4784 /* matching named field */ 4785 struct bpf_core_accessor *targ_acc; 4786 4787 targ_acc = &spec->spec[spec->len++]; 4788 targ_acc->type_id = targ_id; 4789 targ_acc->idx = i; 4790 targ_acc->name = targ_name; 4791 4792 *next_targ_id = m->type; 4793 found = bpf_core_fields_are_compat(local_btf, 4794 local_member->type, 4795 targ_btf, m->type); 4796 if (!found) 4797 spec->len--; /* pop accessor */ 4798 return found; 4799 } 4800 /* member turned out not to be what we looked for */ 4801 spec->bit_offset -= bit_offset; 4802 spec->raw_len--; 4803 } 4804 4805 return 0; 4806 } 4807 4808 /* Check local and target types for compatibility. This check is used for 4809 * type-based CO-RE relocations and follow slightly different rules than 4810 * field-based relocations. This function assumes that root types were already 4811 * checked for name match. Beyond that initial root-level name check, names 4812 * are completely ignored. Compatibility rules are as follows: 4813 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 4814 * kind should match for local and target types (i.e., STRUCT is not 4815 * compatible with UNION); 4816 * - for ENUMs, the size is ignored; 4817 * - for INT, size and signedness are ignored; 4818 * - for ARRAY, dimensionality is ignored, element types are checked for 4819 * compatibility recursively; 4820 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 4821 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 4822 * - FUNC_PROTOs are compatible if they have compatible signature: same 4823 * number of input args and compatible return and argument types. 4824 * These rules are not set in stone and probably will be adjusted as we get 4825 * more experience with using BPF CO-RE relocations. 4826 */ 4827 static int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 4828 const struct btf *targ_btf, __u32 targ_id) 4829 { 4830 const struct btf_type *local_type, *targ_type; 4831 int depth = 32; /* max recursion depth */ 4832 4833 /* caller made sure that names match (ignoring flavor suffix) */ 4834 local_type = btf__type_by_id(local_btf, local_id); 4835 targ_type = btf__type_by_id(targ_btf, targ_id); 4836 if (btf_kind(local_type) != btf_kind(targ_type)) 4837 return 0; 4838 4839 recur: 4840 depth--; 4841 if (depth < 0) 4842 return -EINVAL; 4843 4844 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 4845 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 4846 if (!local_type || !targ_type) 4847 return -EINVAL; 4848 4849 if (btf_kind(local_type) != btf_kind(targ_type)) 4850 return 0; 4851 4852 switch (btf_kind(local_type)) { 4853 case BTF_KIND_UNKN: 4854 case BTF_KIND_STRUCT: 4855 case BTF_KIND_UNION: 4856 case BTF_KIND_ENUM: 4857 case BTF_KIND_FWD: 4858 return 1; 4859 case BTF_KIND_INT: 4860 /* just reject deprecated bitfield-like integers; all other 4861 * integers are by default compatible between each other 4862 */ 4863 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0; 4864 case BTF_KIND_PTR: 4865 local_id = local_type->type; 4866 targ_id = targ_type->type; 4867 goto recur; 4868 case BTF_KIND_ARRAY: 4869 local_id = btf_array(local_type)->type; 4870 targ_id = btf_array(targ_type)->type; 4871 goto recur; 4872 case BTF_KIND_FUNC_PROTO: { 4873 struct btf_param *local_p = btf_params(local_type); 4874 struct btf_param *targ_p = btf_params(targ_type); 4875 __u16 local_vlen = btf_vlen(local_type); 4876 __u16 targ_vlen = btf_vlen(targ_type); 4877 int i, err; 4878 4879 if (local_vlen != targ_vlen) 4880 return 0; 4881 4882 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { 4883 skip_mods_and_typedefs(local_btf, local_p->type, &local_id); 4884 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id); 4885 err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id); 4886 if (err <= 0) 4887 return err; 4888 } 4889 4890 /* tail recurse for return type check */ 4891 skip_mods_and_typedefs(local_btf, local_type->type, &local_id); 4892 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id); 4893 goto recur; 4894 } 4895 default: 4896 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n", 4897 btf_kind_str(local_type), local_id, targ_id); 4898 return 0; 4899 } 4900 } 4901 4902 /* 4903 * Try to match local spec to a target type and, if successful, produce full 4904 * target spec (high-level, low-level + bit offset). 4905 */ 4906 static int bpf_core_spec_match(struct bpf_core_spec *local_spec, 4907 const struct btf *targ_btf, __u32 targ_id, 4908 struct bpf_core_spec *targ_spec) 4909 { 4910 const struct btf_type *targ_type; 4911 const struct bpf_core_accessor *local_acc; 4912 struct bpf_core_accessor *targ_acc; 4913 int i, sz, matched; 4914 4915 memset(targ_spec, 0, sizeof(*targ_spec)); 4916 targ_spec->btf = targ_btf; 4917 targ_spec->root_type_id = targ_id; 4918 targ_spec->relo_kind = local_spec->relo_kind; 4919 4920 if (core_relo_is_type_based(local_spec->relo_kind)) { 4921 return bpf_core_types_are_compat(local_spec->btf, 4922 local_spec->root_type_id, 4923 targ_btf, targ_id); 4924 } 4925 4926 local_acc = &local_spec->spec[0]; 4927 targ_acc = &targ_spec->spec[0]; 4928 4929 if (core_relo_is_enumval_based(local_spec->relo_kind)) { 4930 size_t local_essent_len, targ_essent_len; 4931 const struct btf_enum *e; 4932 const char *targ_name; 4933 4934 /* has to resolve to an enum */ 4935 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id); 4936 if (!btf_is_enum(targ_type)) 4937 return 0; 4938 4939 local_essent_len = bpf_core_essential_name_len(local_acc->name); 4940 4941 for (i = 0, e = btf_enum(targ_type); i < btf_vlen(targ_type); i++, e++) { 4942 targ_name = btf__name_by_offset(targ_spec->btf, e->name_off); 4943 targ_essent_len = bpf_core_essential_name_len(targ_name); 4944 if (targ_essent_len != local_essent_len) 4945 continue; 4946 if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) { 4947 targ_acc->type_id = targ_id; 4948 targ_acc->idx = i; 4949 targ_acc->name = targ_name; 4950 targ_spec->len++; 4951 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 4952 targ_spec->raw_len++; 4953 return 1; 4954 } 4955 } 4956 return 0; 4957 } 4958 4959 if (!core_relo_is_field_based(local_spec->relo_kind)) 4960 return -EINVAL; 4961 4962 for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) { 4963 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, 4964 &targ_id); 4965 if (!targ_type) 4966 return -EINVAL; 4967 4968 if (local_acc->name) { 4969 matched = bpf_core_match_member(local_spec->btf, 4970 local_acc, 4971 targ_btf, targ_id, 4972 targ_spec, &targ_id); 4973 if (matched <= 0) 4974 return matched; 4975 } else { 4976 /* for i=0, targ_id is already treated as array element 4977 * type (because it's the original struct), for others 4978 * we should find array element type first 4979 */ 4980 if (i > 0) { 4981 const struct btf_array *a; 4982 bool flex; 4983 4984 if (!btf_is_array(targ_type)) 4985 return 0; 4986 4987 a = btf_array(targ_type); 4988 flex = is_flex_arr(targ_btf, targ_acc - 1, a); 4989 if (!flex && local_acc->idx >= a->nelems) 4990 return 0; 4991 if (!skip_mods_and_typedefs(targ_btf, a->type, 4992 &targ_id)) 4993 return -EINVAL; 4994 } 4995 4996 /* too deep struct/union/array nesting */ 4997 if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 4998 return -E2BIG; 4999 5000 targ_acc->type_id = targ_id; 5001 targ_acc->idx = local_acc->idx; 5002 targ_acc->name = NULL; 5003 targ_spec->len++; 5004 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 5005 targ_spec->raw_len++; 5006 5007 sz = btf__resolve_size(targ_btf, targ_id); 5008 if (sz < 0) 5009 return sz; 5010 targ_spec->bit_offset += local_acc->idx * sz * 8; 5011 } 5012 } 5013 5014 return 1; 5015 } 5016 5017 static int bpf_core_calc_field_relo(const struct bpf_program *prog, 5018 const struct bpf_core_relo *relo, 5019 const struct bpf_core_spec *spec, 5020 __u32 *val, bool *validate) 5021 { 5022 const struct bpf_core_accessor *acc; 5023 const struct btf_type *t; 5024 __u32 byte_off, byte_sz, bit_off, bit_sz; 5025 const struct btf_member *m; 5026 const struct btf_type *mt; 5027 bool bitfield; 5028 __s64 sz; 5029 5030 if (relo->kind == BPF_FIELD_EXISTS) { 5031 *val = spec ? 1 : 0; 5032 return 0; 5033 } 5034 5035 if (!spec) 5036 return -EUCLEAN; /* request instruction poisoning */ 5037 5038 acc = &spec->spec[spec->len - 1]; 5039 t = btf__type_by_id(spec->btf, acc->type_id); 5040 5041 /* a[n] accessor needs special handling */ 5042 if (!acc->name) { 5043 if (relo->kind == BPF_FIELD_BYTE_OFFSET) { 5044 *val = spec->bit_offset / 8; 5045 } else if (relo->kind == BPF_FIELD_BYTE_SIZE) { 5046 sz = btf__resolve_size(spec->btf, acc->type_id); 5047 if (sz < 0) 5048 return -EINVAL; 5049 *val = sz; 5050 } else { 5051 pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n", 5052 prog->name, relo->kind, relo->insn_off / 8); 5053 return -EINVAL; 5054 } 5055 if (validate) 5056 *validate = true; 5057 return 0; 5058 } 5059 5060 m = btf_members(t) + acc->idx; 5061 mt = skip_mods_and_typedefs(spec->btf, m->type, NULL); 5062 bit_off = spec->bit_offset; 5063 bit_sz = btf_member_bitfield_size(t, acc->idx); 5064 5065 bitfield = bit_sz > 0; 5066 if (bitfield) { 5067 byte_sz = mt->size; 5068 byte_off = bit_off / 8 / byte_sz * byte_sz; 5069 /* figure out smallest int size necessary for bitfield load */ 5070 while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) { 5071 if (byte_sz >= 8) { 5072 /* bitfield can't be read with 64-bit read */ 5073 pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n", 5074 prog->name, relo->kind, relo->insn_off / 8); 5075 return -E2BIG; 5076 } 5077 byte_sz *= 2; 5078 byte_off = bit_off / 8 / byte_sz * byte_sz; 5079 } 5080 } else { 5081 sz = btf__resolve_size(spec->btf, m->type); 5082 if (sz < 0) 5083 return -EINVAL; 5084 byte_sz = sz; 5085 byte_off = spec->bit_offset / 8; 5086 bit_sz = byte_sz * 8; 5087 } 5088 5089 /* for bitfields, all the relocatable aspects are ambiguous and we 5090 * might disagree with compiler, so turn off validation of expected 5091 * value, except for signedness 5092 */ 5093 if (validate) 5094 *validate = !bitfield; 5095 5096 switch (relo->kind) { 5097 case BPF_FIELD_BYTE_OFFSET: 5098 *val = byte_off; 5099 break; 5100 case BPF_FIELD_BYTE_SIZE: 5101 *val = byte_sz; 5102 break; 5103 case BPF_FIELD_SIGNED: 5104 /* enums will be assumed unsigned */ 5105 *val = btf_is_enum(mt) || 5106 (btf_int_encoding(mt) & BTF_INT_SIGNED); 5107 if (validate) 5108 *validate = true; /* signedness is never ambiguous */ 5109 break; 5110 case BPF_FIELD_LSHIFT_U64: 5111 #if __BYTE_ORDER == __LITTLE_ENDIAN 5112 *val = 64 - (bit_off + bit_sz - byte_off * 8); 5113 #else 5114 *val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8); 5115 #endif 5116 break; 5117 case BPF_FIELD_RSHIFT_U64: 5118 *val = 64 - bit_sz; 5119 if (validate) 5120 *validate = true; /* right shift is never ambiguous */ 5121 break; 5122 case BPF_FIELD_EXISTS: 5123 default: 5124 return -EOPNOTSUPP; 5125 } 5126 5127 return 0; 5128 } 5129 5130 static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo, 5131 const struct bpf_core_spec *spec, 5132 __u32 *val) 5133 { 5134 __s64 sz; 5135 5136 /* type-based relos return zero when target type is not found */ 5137 if (!spec) { 5138 *val = 0; 5139 return 0; 5140 } 5141 5142 switch (relo->kind) { 5143 case BPF_TYPE_ID_TARGET: 5144 *val = spec->root_type_id; 5145 break; 5146 case BPF_TYPE_EXISTS: 5147 *val = 1; 5148 break; 5149 case BPF_TYPE_SIZE: 5150 sz = btf__resolve_size(spec->btf, spec->root_type_id); 5151 if (sz < 0) 5152 return -EINVAL; 5153 *val = sz; 5154 break; 5155 case BPF_TYPE_ID_LOCAL: 5156 /* BPF_TYPE_ID_LOCAL is handled specially and shouldn't get here */ 5157 default: 5158 return -EOPNOTSUPP; 5159 } 5160 5161 return 0; 5162 } 5163 5164 static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo, 5165 const struct bpf_core_spec *spec, 5166 __u32 *val) 5167 { 5168 const struct btf_type *t; 5169 const struct btf_enum *e; 5170 5171 switch (relo->kind) { 5172 case BPF_ENUMVAL_EXISTS: 5173 *val = spec ? 1 : 0; 5174 break; 5175 case BPF_ENUMVAL_VALUE: 5176 if (!spec) 5177 return -EUCLEAN; /* request instruction poisoning */ 5178 t = btf__type_by_id(spec->btf, spec->spec[0].type_id); 5179 e = btf_enum(t) + spec->spec[0].idx; 5180 *val = e->val; 5181 break; 5182 default: 5183 return -EOPNOTSUPP; 5184 } 5185 5186 return 0; 5187 } 5188 5189 struct bpf_core_relo_res 5190 { 5191 /* expected value in the instruction, unless validate == false */ 5192 __u32 orig_val; 5193 /* new value that needs to be patched up to */ 5194 __u32 new_val; 5195 /* relocation unsuccessful, poison instruction, but don't fail load */ 5196 bool poison; 5197 /* some relocations can't be validated against orig_val */ 5198 bool validate; 5199 }; 5200 5201 /* Calculate original and target relocation values, given local and target 5202 * specs and relocation kind. These values are calculated for each candidate. 5203 * If there are multiple candidates, resulting values should all be consistent 5204 * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity. 5205 * If instruction has to be poisoned, *poison will be set to true. 5206 */ 5207 static int bpf_core_calc_relo(const struct bpf_program *prog, 5208 const struct bpf_core_relo *relo, 5209 int relo_idx, 5210 const struct bpf_core_spec *local_spec, 5211 const struct bpf_core_spec *targ_spec, 5212 struct bpf_core_relo_res *res) 5213 { 5214 int err = -EOPNOTSUPP; 5215 5216 res->orig_val = 0; 5217 res->new_val = 0; 5218 res->poison = false; 5219 res->validate = true; 5220 5221 if (core_relo_is_field_based(relo->kind)) { 5222 err = bpf_core_calc_field_relo(prog, relo, local_spec, &res->orig_val, &res->validate); 5223 err = err ?: bpf_core_calc_field_relo(prog, relo, targ_spec, &res->new_val, NULL); 5224 } else if (core_relo_is_type_based(relo->kind)) { 5225 err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val); 5226 err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val); 5227 } else if (core_relo_is_enumval_based(relo->kind)) { 5228 err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val); 5229 err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val); 5230 } 5231 5232 if (err == -EUCLEAN) { 5233 /* EUCLEAN is used to signal instruction poisoning request */ 5234 res->poison = true; 5235 err = 0; 5236 } else if (err == -EOPNOTSUPP) { 5237 /* EOPNOTSUPP means unknown/unsupported relocation */ 5238 pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n", 5239 prog->name, relo_idx, core_relo_kind_str(relo->kind), 5240 relo->kind, relo->insn_off / 8); 5241 } 5242 5243 return err; 5244 } 5245 5246 /* 5247 * Turn instruction for which CO_RE relocation failed into invalid one with 5248 * distinct signature. 5249 */ 5250 static void bpf_core_poison_insn(struct bpf_program *prog, int relo_idx, 5251 int insn_idx, struct bpf_insn *insn) 5252 { 5253 pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n", 5254 prog->name, relo_idx, insn_idx); 5255 insn->code = BPF_JMP | BPF_CALL; 5256 insn->dst_reg = 0; 5257 insn->src_reg = 0; 5258 insn->off = 0; 5259 /* if this instruction is reachable (not a dead code), 5260 * verifier will complain with the following message: 5261 * invalid func unknown#195896080 5262 */ 5263 insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */ 5264 } 5265 5266 static bool is_ldimm64(struct bpf_insn *insn) 5267 { 5268 return insn->code == (BPF_LD | BPF_IMM | BPF_DW); 5269 } 5270 5271 /* 5272 * Patch relocatable BPF instruction. 5273 * 5274 * Patched value is determined by relocation kind and target specification. 5275 * For existence relocations target spec will be NULL if field/type is not found. 5276 * Expected insn->imm value is determined using relocation kind and local 5277 * spec, and is checked before patching instruction. If actual insn->imm value 5278 * is wrong, bail out with error. 5279 * 5280 * Currently three kinds of BPF instructions are supported: 5281 * 1. rX = <imm> (assignment with immediate operand); 5282 * 2. rX += <imm> (arithmetic operations with immediate operand); 5283 * 3. rX = <imm64> (load with 64-bit immediate value). 5284 */ 5285 static int bpf_core_patch_insn(struct bpf_program *prog, 5286 const struct bpf_core_relo *relo, 5287 int relo_idx, 5288 const struct bpf_core_relo_res *res) 5289 { 5290 __u32 orig_val, new_val; 5291 struct bpf_insn *insn; 5292 int insn_idx; 5293 __u8 class; 5294 5295 if (relo->insn_off % BPF_INSN_SZ) 5296 return -EINVAL; 5297 insn_idx = relo->insn_off / BPF_INSN_SZ; 5298 /* adjust insn_idx from section frame of reference to the local 5299 * program's frame of reference; (sub-)program code is not yet 5300 * relocated, so it's enough to just subtract in-section offset 5301 */ 5302 insn_idx = insn_idx - prog->sec_insn_off; 5303 insn = &prog->insns[insn_idx]; 5304 class = BPF_CLASS(insn->code); 5305 5306 if (res->poison) { 5307 /* poison second part of ldimm64 to avoid confusing error from 5308 * verifier about "unknown opcode 00" 5309 */ 5310 if (is_ldimm64(insn)) 5311 bpf_core_poison_insn(prog, relo_idx, insn_idx + 1, insn + 1); 5312 bpf_core_poison_insn(prog, relo_idx, insn_idx, insn); 5313 return 0; 5314 } 5315 5316 orig_val = res->orig_val; 5317 new_val = res->new_val; 5318 5319 switch (class) { 5320 case BPF_ALU: 5321 case BPF_ALU64: 5322 if (BPF_SRC(insn->code) != BPF_K) 5323 return -EINVAL; 5324 if (res->validate && insn->imm != orig_val) { 5325 pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n", 5326 prog->name, relo_idx, 5327 insn_idx, insn->imm, orig_val, new_val); 5328 return -EINVAL; 5329 } 5330 orig_val = insn->imm; 5331 insn->imm = new_val; 5332 pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n", 5333 prog->name, relo_idx, insn_idx, 5334 orig_val, new_val); 5335 break; 5336 case BPF_LDX: 5337 case BPF_ST: 5338 case BPF_STX: 5339 if (res->validate && insn->off != orig_val) { 5340 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %u -> %u\n", 5341 prog->name, relo_idx, insn_idx, insn->off, orig_val, new_val); 5342 return -EINVAL; 5343 } 5344 if (new_val > SHRT_MAX) { 5345 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n", 5346 prog->name, relo_idx, insn_idx, new_val); 5347 return -ERANGE; 5348 } 5349 orig_val = insn->off; 5350 insn->off = new_val; 5351 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n", 5352 prog->name, relo_idx, insn_idx, orig_val, new_val); 5353 break; 5354 case BPF_LD: { 5355 __u64 imm; 5356 5357 if (!is_ldimm64(insn) || 5358 insn[0].src_reg != 0 || insn[0].off != 0 || 5359 insn_idx + 1 >= prog->insns_cnt || 5360 insn[1].code != 0 || insn[1].dst_reg != 0 || 5361 insn[1].src_reg != 0 || insn[1].off != 0) { 5362 pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n", 5363 prog->name, relo_idx, insn_idx); 5364 return -EINVAL; 5365 } 5366 5367 imm = insn[0].imm + ((__u64)insn[1].imm << 32); 5368 if (res->validate && imm != orig_val) { 5369 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %u -> %u\n", 5370 prog->name, relo_idx, 5371 insn_idx, (unsigned long long)imm, 5372 orig_val, new_val); 5373 return -EINVAL; 5374 } 5375 5376 insn[0].imm = new_val; 5377 insn[1].imm = 0; /* currently only 32-bit values are supported */ 5378 pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %u\n", 5379 prog->name, relo_idx, insn_idx, 5380 (unsigned long long)imm, new_val); 5381 break; 5382 } 5383 default: 5384 pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n", 5385 prog->name, relo_idx, insn_idx, insn->code, 5386 insn->src_reg, insn->dst_reg, insn->off, insn->imm); 5387 return -EINVAL; 5388 } 5389 5390 return 0; 5391 } 5392 5393 /* Output spec definition in the format: 5394 * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>, 5395 * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b 5396 */ 5397 static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec) 5398 { 5399 const struct btf_type *t; 5400 const struct btf_enum *e; 5401 const char *s; 5402 __u32 type_id; 5403 int i; 5404 5405 type_id = spec->root_type_id; 5406 t = btf__type_by_id(spec->btf, type_id); 5407 s = btf__name_by_offset(spec->btf, t->name_off); 5408 5409 libbpf_print(level, "[%u] %s %s", type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s); 5410 5411 if (core_relo_is_type_based(spec->relo_kind)) 5412 return; 5413 5414 if (core_relo_is_enumval_based(spec->relo_kind)) { 5415 t = skip_mods_and_typedefs(spec->btf, type_id, NULL); 5416 e = btf_enum(t) + spec->raw_spec[0]; 5417 s = btf__name_by_offset(spec->btf, e->name_off); 5418 5419 libbpf_print(level, "::%s = %u", s, e->val); 5420 return; 5421 } 5422 5423 if (core_relo_is_field_based(spec->relo_kind)) { 5424 for (i = 0; i < spec->len; i++) { 5425 if (spec->spec[i].name) 5426 libbpf_print(level, ".%s", spec->spec[i].name); 5427 else if (i > 0 || spec->spec[i].idx > 0) 5428 libbpf_print(level, "[%u]", spec->spec[i].idx); 5429 } 5430 5431 libbpf_print(level, " ("); 5432 for (i = 0; i < spec->raw_len; i++) 5433 libbpf_print(level, "%s%d", i == 0 ? "" : ":", spec->raw_spec[i]); 5434 5435 if (spec->bit_offset % 8) 5436 libbpf_print(level, " @ offset %u.%u)", 5437 spec->bit_offset / 8, spec->bit_offset % 8); 5438 else 5439 libbpf_print(level, " @ offset %u)", spec->bit_offset / 8); 5440 return; 5441 } 5442 } 5443 5444 static size_t bpf_core_hash_fn(const void *key, void *ctx) 5445 { 5446 return (size_t)key; 5447 } 5448 5449 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 5450 { 5451 return k1 == k2; 5452 } 5453 5454 static void *u32_as_hash_key(__u32 x) 5455 { 5456 return (void *)(uintptr_t)x; 5457 } 5458 5459 /* 5460 * CO-RE relocate single instruction. 5461 * 5462 * The outline and important points of the algorithm: 5463 * 1. For given local type, find corresponding candidate target types. 5464 * Candidate type is a type with the same "essential" name, ignoring 5465 * everything after last triple underscore (___). E.g., `sample`, 5466 * `sample___flavor_one`, `sample___flavor_another_one`, are all candidates 5467 * for each other. Names with triple underscore are referred to as 5468 * "flavors" and are useful, among other things, to allow to 5469 * specify/support incompatible variations of the same kernel struct, which 5470 * might differ between different kernel versions and/or build 5471 * configurations. 5472 * 5473 * N.B. Struct "flavors" could be generated by bpftool's BTF-to-C 5474 * converter, when deduplicated BTF of a kernel still contains more than 5475 * one different types with the same name. In that case, ___2, ___3, etc 5476 * are appended starting from second name conflict. But start flavors are 5477 * also useful to be defined "locally", in BPF program, to extract same 5478 * data from incompatible changes between different kernel 5479 * versions/configurations. For instance, to handle field renames between 5480 * kernel versions, one can use two flavors of the struct name with the 5481 * same common name and use conditional relocations to extract that field, 5482 * depending on target kernel version. 5483 * 2. For each candidate type, try to match local specification to this 5484 * candidate target type. Matching involves finding corresponding 5485 * high-level spec accessors, meaning that all named fields should match, 5486 * as well as all array accesses should be within the actual bounds. Also, 5487 * types should be compatible (see bpf_core_fields_are_compat for details). 5488 * 3. It is supported and expected that there might be multiple flavors 5489 * matching the spec. As long as all the specs resolve to the same set of 5490 * offsets across all candidates, there is no error. If there is any 5491 * ambiguity, CO-RE relocation will fail. This is necessary to accomodate 5492 * imprefection of BTF deduplication, which can cause slight duplication of 5493 * the same BTF type, if some directly or indirectly referenced (by 5494 * pointer) type gets resolved to different actual types in different 5495 * object files. If such situation occurs, deduplicated BTF will end up 5496 * with two (or more) structurally identical types, which differ only in 5497 * types they refer to through pointer. This should be OK in most cases and 5498 * is not an error. 5499 * 4. Candidate types search is performed by linearly scanning through all 5500 * types in target BTF. It is anticipated that this is overall more 5501 * efficient memory-wise and not significantly worse (if not better) 5502 * CPU-wise compared to prebuilding a map from all local type names to 5503 * a list of candidate type names. It's also sped up by caching resolved 5504 * list of matching candidates per each local "root" type ID, that has at 5505 * least one bpf_core_relo associated with it. This list is shared 5506 * between multiple relocations for the same type ID and is updated as some 5507 * of the candidates are pruned due to structural incompatibility. 5508 */ 5509 static int bpf_core_apply_relo(struct bpf_program *prog, 5510 const struct bpf_core_relo *relo, 5511 int relo_idx, 5512 const struct btf *local_btf, 5513 const struct btf *targ_btf, 5514 struct hashmap *cand_cache) 5515 { 5516 struct bpf_core_spec local_spec, cand_spec, targ_spec = {}; 5517 const void *type_key = u32_as_hash_key(relo->type_id); 5518 struct bpf_core_relo_res cand_res, targ_res; 5519 const struct btf_type *local_type; 5520 const char *local_name; 5521 struct ids_vec *cand_ids; 5522 __u32 local_id, cand_id; 5523 const char *spec_str; 5524 int i, j, err; 5525 5526 local_id = relo->type_id; 5527 local_type = btf__type_by_id(local_btf, local_id); 5528 if (!local_type) 5529 return -EINVAL; 5530 5531 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5532 if (!local_name) 5533 return -EINVAL; 5534 5535 spec_str = btf__name_by_offset(local_btf, relo->access_str_off); 5536 if (str_is_empty(spec_str)) 5537 return -EINVAL; 5538 5539 err = bpf_core_parse_spec(local_btf, local_id, spec_str, relo->kind, &local_spec); 5540 if (err) { 5541 pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n", 5542 prog->name, relo_idx, local_id, btf_kind_str(local_type), 5543 str_is_empty(local_name) ? "<anon>" : local_name, 5544 spec_str, err); 5545 return -EINVAL; 5546 } 5547 5548 pr_debug("prog '%s': relo #%d: kind <%s> (%d), spec is ", prog->name, 5549 relo_idx, core_relo_kind_str(relo->kind), relo->kind); 5550 bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec); 5551 libbpf_print(LIBBPF_DEBUG, "\n"); 5552 5553 /* TYPE_ID_LOCAL relo is special and doesn't need candidate search */ 5554 if (relo->kind == BPF_TYPE_ID_LOCAL) { 5555 targ_res.validate = true; 5556 targ_res.poison = false; 5557 targ_res.orig_val = local_spec.root_type_id; 5558 targ_res.new_val = local_spec.root_type_id; 5559 goto patch_insn; 5560 } 5561 5562 /* libbpf doesn't support candidate search for anonymous types */ 5563 if (str_is_empty(spec_str)) { 5564 pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n", 5565 prog->name, relo_idx, core_relo_kind_str(relo->kind), relo->kind); 5566 return -EOPNOTSUPP; 5567 } 5568 5569 if (!hashmap__find(cand_cache, type_key, (void **)&cand_ids)) { 5570 cand_ids = bpf_core_find_cands(local_btf, local_id, targ_btf); 5571 if (IS_ERR(cand_ids)) { 5572 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld", 5573 prog->name, relo_idx, local_id, btf_kind_str(local_type), 5574 local_name, PTR_ERR(cand_ids)); 5575 return PTR_ERR(cand_ids); 5576 } 5577 err = hashmap__set(cand_cache, type_key, cand_ids, NULL, NULL); 5578 if (err) { 5579 bpf_core_free_cands(cand_ids); 5580 return err; 5581 } 5582 } 5583 5584 for (i = 0, j = 0; i < cand_ids->len; i++) { 5585 cand_id = cand_ids->data[i]; 5586 err = bpf_core_spec_match(&local_spec, targ_btf, cand_id, &cand_spec); 5587 if (err < 0) { 5588 pr_warn("prog '%s': relo #%d: error matching candidate #%d ", 5589 prog->name, relo_idx, i); 5590 bpf_core_dump_spec(LIBBPF_WARN, &cand_spec); 5591 libbpf_print(LIBBPF_WARN, ": %d\n", err); 5592 return err; 5593 } 5594 5595 pr_debug("prog '%s': relo #%d: %s candidate #%d ", prog->name, 5596 relo_idx, err == 0 ? "non-matching" : "matching", i); 5597 bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec); 5598 libbpf_print(LIBBPF_DEBUG, "\n"); 5599 5600 if (err == 0) 5601 continue; 5602 5603 err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, &cand_spec, &cand_res); 5604 if (err) 5605 return err; 5606 5607 if (j == 0) { 5608 targ_res = cand_res; 5609 targ_spec = cand_spec; 5610 } else if (cand_spec.bit_offset != targ_spec.bit_offset) { 5611 /* if there are many field relo candidates, they 5612 * should all resolve to the same bit offset 5613 */ 5614 pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n", 5615 prog->name, relo_idx, cand_spec.bit_offset, 5616 targ_spec.bit_offset); 5617 return -EINVAL; 5618 } else if (cand_res.poison != targ_res.poison || cand_res.new_val != targ_res.new_val) { 5619 /* all candidates should result in the same relocation 5620 * decision and value, otherwise it's dangerous to 5621 * proceed due to ambiguity 5622 */ 5623 pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %u != %s %u\n", 5624 prog->name, relo_idx, 5625 cand_res.poison ? "failure" : "success", cand_res.new_val, 5626 targ_res.poison ? "failure" : "success", targ_res.new_val); 5627 return -EINVAL; 5628 } 5629 5630 cand_ids->data[j++] = cand_spec.root_type_id; 5631 } 5632 5633 /* 5634 * For BPF_FIELD_EXISTS relo or when used BPF program has field 5635 * existence checks or kernel version/config checks, it's expected 5636 * that we might not find any candidates. In this case, if field 5637 * wasn't found in any candidate, the list of candidates shouldn't 5638 * change at all, we'll just handle relocating appropriately, 5639 * depending on relo's kind. 5640 */ 5641 if (j > 0) 5642 cand_ids->len = j; 5643 5644 /* 5645 * If no candidates were found, it might be both a programmer error, 5646 * as well as expected case, depending whether instruction w/ 5647 * relocation is guarded in some way that makes it unreachable (dead 5648 * code) if relocation can't be resolved. This is handled in 5649 * bpf_core_patch_insn() uniformly by replacing that instruction with 5650 * BPF helper call insn (using invalid helper ID). If that instruction 5651 * is indeed unreachable, then it will be ignored and eliminated by 5652 * verifier. If it was an error, then verifier will complain and point 5653 * to a specific instruction number in its log. 5654 */ 5655 if (j == 0) { 5656 pr_debug("prog '%s': relo #%d: no matching targets found\n", 5657 prog->name, relo_idx); 5658 5659 /* calculate single target relo result explicitly */ 5660 err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, NULL, &targ_res); 5661 if (err) 5662 return err; 5663 } 5664 5665 patch_insn: 5666 /* bpf_core_patch_insn() should know how to handle missing targ_spec */ 5667 err = bpf_core_patch_insn(prog, relo, relo_idx, &targ_res); 5668 if (err) { 5669 pr_warn("prog '%s': relo #%d: failed to patch insn at offset %d: %d\n", 5670 prog->name, relo_idx, relo->insn_off, err); 5671 return -EINVAL; 5672 } 5673 5674 return 0; 5675 } 5676 5677 static int 5678 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5679 { 5680 const struct btf_ext_info_sec *sec; 5681 const struct bpf_core_relo *rec; 5682 const struct btf_ext_info *seg; 5683 struct hashmap_entry *entry; 5684 struct hashmap *cand_cache = NULL; 5685 struct bpf_program *prog; 5686 struct btf *targ_btf; 5687 const char *sec_name; 5688 int i, err = 0, insn_idx, sec_idx; 5689 5690 if (obj->btf_ext->core_relo_info.len == 0) 5691 return 0; 5692 5693 if (targ_btf_path) 5694 targ_btf = btf__parse_elf(targ_btf_path, NULL); 5695 else 5696 targ_btf = obj->btf_vmlinux; 5697 if (IS_ERR_OR_NULL(targ_btf)) { 5698 pr_warn("failed to get target BTF: %ld\n", PTR_ERR(targ_btf)); 5699 return PTR_ERR(targ_btf); 5700 } 5701 5702 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5703 if (IS_ERR(cand_cache)) { 5704 err = PTR_ERR(cand_cache); 5705 goto out; 5706 } 5707 5708 seg = &obj->btf_ext->core_relo_info; 5709 for_each_btf_ext_sec(seg, sec) { 5710 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5711 if (str_is_empty(sec_name)) { 5712 err = -EINVAL; 5713 goto out; 5714 } 5715 /* bpf_object's ELF is gone by now so it's not easy to find 5716 * section index by section name, but we can find *any* 5717 * bpf_program within desired section name and use it's 5718 * prog->sec_idx to do a proper search by section index and 5719 * instruction offset 5720 */ 5721 prog = NULL; 5722 for (i = 0; i < obj->nr_programs; i++) { 5723 prog = &obj->programs[i]; 5724 if (strcmp(prog->sec_name, sec_name) == 0) 5725 break; 5726 } 5727 if (!prog) { 5728 pr_warn("sec '%s': failed to find a BPF program\n", sec_name); 5729 return -ENOENT; 5730 } 5731 sec_idx = prog->sec_idx; 5732 5733 pr_debug("sec '%s': found %d CO-RE relocations\n", 5734 sec_name, sec->num_info); 5735 5736 for_each_btf_ext_rec(seg, sec, i, rec) { 5737 insn_idx = rec->insn_off / BPF_INSN_SZ; 5738 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5739 if (!prog) { 5740 pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n", 5741 sec_name, insn_idx, i); 5742 err = -EINVAL; 5743 goto out; 5744 } 5745 5746 err = bpf_core_apply_relo(prog, rec, i, obj->btf, 5747 targ_btf, cand_cache); 5748 if (err) { 5749 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5750 prog->name, i, err); 5751 goto out; 5752 } 5753 } 5754 } 5755 5756 out: 5757 /* obj->btf_vmlinux is freed at the end of object load phase */ 5758 if (targ_btf != obj->btf_vmlinux) 5759 btf__free(targ_btf); 5760 if (!IS_ERR_OR_NULL(cand_cache)) { 5761 hashmap__for_each_entry(cand_cache, entry, i) { 5762 bpf_core_free_cands(entry->value); 5763 } 5764 hashmap__free(cand_cache); 5765 } 5766 return err; 5767 } 5768 5769 /* Relocate data references within program code: 5770 * - map references; 5771 * - global variable references; 5772 * - extern references. 5773 */ 5774 static int 5775 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5776 { 5777 int i; 5778 5779 for (i = 0; i < prog->nr_reloc; i++) { 5780 struct reloc_desc *relo = &prog->reloc_desc[i]; 5781 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5782 struct extern_desc *ext; 5783 5784 switch (relo->type) { 5785 case RELO_LD64: 5786 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5787 insn[0].imm = obj->maps[relo->map_idx].fd; 5788 relo->processed = true; 5789 break; 5790 case RELO_DATA: 5791 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5792 insn[1].imm = insn[0].imm + relo->sym_off; 5793 insn[0].imm = obj->maps[relo->map_idx].fd; 5794 relo->processed = true; 5795 break; 5796 case RELO_EXTERN: 5797 ext = &obj->externs[relo->sym_off]; 5798 if (ext->type == EXT_KCFG) { 5799 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5800 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5801 insn[1].imm = ext->kcfg.data_off; 5802 } else /* EXT_KSYM */ { 5803 insn[0].imm = (__u32)ext->ksym.addr; 5804 insn[1].imm = ext->ksym.addr >> 32; 5805 } 5806 relo->processed = true; 5807 break; 5808 case RELO_CALL: 5809 /* will be handled as a follow up pass */ 5810 break; 5811 default: 5812 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 5813 prog->name, i, relo->type); 5814 return -EINVAL; 5815 } 5816 } 5817 5818 return 0; 5819 } 5820 5821 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 5822 const struct bpf_program *prog, 5823 const struct btf_ext_info *ext_info, 5824 void **prog_info, __u32 *prog_rec_cnt, 5825 __u32 *prog_rec_sz) 5826 { 5827 void *copy_start = NULL, *copy_end = NULL; 5828 void *rec, *rec_end, *new_prog_info; 5829 const struct btf_ext_info_sec *sec; 5830 size_t old_sz, new_sz; 5831 const char *sec_name; 5832 int i, off_adj; 5833 5834 for_each_btf_ext_sec(ext_info, sec) { 5835 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5836 if (!sec_name) 5837 return -EINVAL; 5838 if (strcmp(sec_name, prog->sec_name) != 0) 5839 continue; 5840 5841 for_each_btf_ext_rec(ext_info, sec, i, rec) { 5842 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 5843 5844 if (insn_off < prog->sec_insn_off) 5845 continue; 5846 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 5847 break; 5848 5849 if (!copy_start) 5850 copy_start = rec; 5851 copy_end = rec + ext_info->rec_size; 5852 } 5853 5854 if (!copy_start) 5855 return -ENOENT; 5856 5857 /* append func/line info of a given (sub-)program to the main 5858 * program func/line info 5859 */ 5860 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 5861 new_sz = old_sz + (copy_end - copy_start); 5862 new_prog_info = realloc(*prog_info, new_sz); 5863 if (!new_prog_info) 5864 return -ENOMEM; 5865 *prog_info = new_prog_info; 5866 *prog_rec_cnt = new_sz / ext_info->rec_size; 5867 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 5868 5869 /* Kernel instruction offsets are in units of 8-byte 5870 * instructions, while .BTF.ext instruction offsets generated 5871 * by Clang are in units of bytes. So convert Clang offsets 5872 * into kernel offsets and adjust offset according to program 5873 * relocated position. 5874 */ 5875 off_adj = prog->sub_insn_off - prog->sec_insn_off; 5876 rec = new_prog_info + old_sz; 5877 rec_end = new_prog_info + new_sz; 5878 for (; rec < rec_end; rec += ext_info->rec_size) { 5879 __u32 *insn_off = rec; 5880 5881 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 5882 } 5883 *prog_rec_sz = ext_info->rec_size; 5884 return 0; 5885 } 5886 5887 return -ENOENT; 5888 } 5889 5890 static int 5891 reloc_prog_func_and_line_info(const struct bpf_object *obj, 5892 struct bpf_program *main_prog, 5893 const struct bpf_program *prog) 5894 { 5895 int err; 5896 5897 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 5898 * supprot func/line info 5899 */ 5900 if (!obj->btf_ext || !kernel_supports(FEAT_BTF_FUNC)) 5901 return 0; 5902 5903 /* only attempt func info relocation if main program's func_info 5904 * relocation was successful 5905 */ 5906 if (main_prog != prog && !main_prog->func_info) 5907 goto line_info; 5908 5909 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 5910 &main_prog->func_info, 5911 &main_prog->func_info_cnt, 5912 &main_prog->func_info_rec_size); 5913 if (err) { 5914 if (err != -ENOENT) { 5915 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 5916 prog->name, err); 5917 return err; 5918 } 5919 if (main_prog->func_info) { 5920 /* 5921 * Some info has already been found but has problem 5922 * in the last btf_ext reloc. Must have to error out. 5923 */ 5924 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 5925 return err; 5926 } 5927 /* Have problem loading the very first info. Ignore the rest. */ 5928 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 5929 prog->name); 5930 } 5931 5932 line_info: 5933 /* don't relocate line info if main program's relocation failed */ 5934 if (main_prog != prog && !main_prog->line_info) 5935 return 0; 5936 5937 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 5938 &main_prog->line_info, 5939 &main_prog->line_info_cnt, 5940 &main_prog->line_info_rec_size); 5941 if (err) { 5942 if (err != -ENOENT) { 5943 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 5944 prog->name, err); 5945 return err; 5946 } 5947 if (main_prog->line_info) { 5948 /* 5949 * Some info has already been found but has problem 5950 * in the last btf_ext reloc. Must have to error out. 5951 */ 5952 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 5953 return err; 5954 } 5955 /* Have problem loading the very first info. Ignore the rest. */ 5956 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 5957 prog->name); 5958 } 5959 return 0; 5960 } 5961 5962 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 5963 { 5964 size_t insn_idx = *(const size_t *)key; 5965 const struct reloc_desc *relo = elem; 5966 5967 if (insn_idx == relo->insn_idx) 5968 return 0; 5969 return insn_idx < relo->insn_idx ? -1 : 1; 5970 } 5971 5972 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 5973 { 5974 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 5975 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 5976 } 5977 5978 static int 5979 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 5980 struct bpf_program *prog) 5981 { 5982 size_t sub_insn_idx, insn_idx, new_cnt; 5983 struct bpf_program *subprog; 5984 struct bpf_insn *insns, *insn; 5985 struct reloc_desc *relo; 5986 int err; 5987 5988 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 5989 if (err) 5990 return err; 5991 5992 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 5993 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 5994 if (!insn_is_subprog_call(insn)) 5995 continue; 5996 5997 relo = find_prog_insn_relo(prog, insn_idx); 5998 if (relo && relo->type != RELO_CALL) { 5999 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6000 prog->name, insn_idx, relo->type); 6001 return -LIBBPF_ERRNO__RELOC; 6002 } 6003 if (relo) { 6004 /* sub-program instruction index is a combination of 6005 * an offset of a symbol pointed to by relocation and 6006 * call instruction's imm field; for global functions, 6007 * call always has imm = -1, but for static functions 6008 * relocation is against STT_SECTION and insn->imm 6009 * points to a start of a static function 6010 */ 6011 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6012 } else { 6013 /* if subprogram call is to a static function within 6014 * the same ELF section, there won't be any relocation 6015 * emitted, but it also means there is no additional 6016 * offset necessary, insns->imm is relative to 6017 * instruction's original position within the section 6018 */ 6019 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6020 } 6021 6022 /* we enforce that sub-programs should be in .text section */ 6023 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6024 if (!subprog) { 6025 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6026 prog->name); 6027 return -LIBBPF_ERRNO__RELOC; 6028 } 6029 6030 /* if it's the first call instruction calling into this 6031 * subprogram (meaning this subprog hasn't been processed 6032 * yet) within the context of current main program: 6033 * - append it at the end of main program's instructions blog; 6034 * - process is recursively, while current program is put on hold; 6035 * - if that subprogram calls some other not yet processes 6036 * subprogram, same thing will happen recursively until 6037 * there are no more unprocesses subprograms left to append 6038 * and relocate. 6039 */ 6040 if (subprog->sub_insn_off == 0) { 6041 subprog->sub_insn_off = main_prog->insns_cnt; 6042 6043 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6044 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6045 if (!insns) { 6046 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6047 return -ENOMEM; 6048 } 6049 main_prog->insns = insns; 6050 main_prog->insns_cnt = new_cnt; 6051 6052 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6053 subprog->insns_cnt * sizeof(*insns)); 6054 6055 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6056 main_prog->name, subprog->insns_cnt, subprog->name); 6057 6058 err = bpf_object__reloc_code(obj, main_prog, subprog); 6059 if (err) 6060 return err; 6061 } 6062 6063 /* main_prog->insns memory could have been re-allocated, so 6064 * calculate pointer again 6065 */ 6066 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6067 /* calculate correct instruction position within current main 6068 * prog; each main prog can have a different set of 6069 * subprograms appended (potentially in different order as 6070 * well), so position of any subprog can be different for 6071 * different main programs */ 6072 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6073 6074 if (relo) 6075 relo->processed = true; 6076 6077 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6078 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6079 } 6080 6081 return 0; 6082 } 6083 6084 /* 6085 * Relocate sub-program calls. 6086 * 6087 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6088 * main prog) is processed separately. For each subprog (non-entry functions, 6089 * that can be called from either entry progs or other subprogs) gets their 6090 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6091 * hasn't been yet appended and relocated within current main prog. Once its 6092 * relocated, sub_insn_off will point at the position within current main prog 6093 * where given subprog was appended. This will further be used to relocate all 6094 * the call instructions jumping into this subprog. 6095 * 6096 * We start with main program and process all call instructions. If the call 6097 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6098 * is zero), subprog instructions are appended at the end of main program's 6099 * instruction array. Then main program is "put on hold" while we recursively 6100 * process newly appended subprogram. If that subprogram calls into another 6101 * subprogram that hasn't been appended, new subprogram is appended again to 6102 * the *main* prog's instructions (subprog's instructions are always left 6103 * untouched, as they need to be in unmodified state for subsequent main progs 6104 * and subprog instructions are always sent only as part of a main prog) and 6105 * the process continues recursively. Once all the subprogs called from a main 6106 * prog or any of its subprogs are appended (and relocated), all their 6107 * positions within finalized instructions array are known, so it's easy to 6108 * rewrite call instructions with correct relative offsets, corresponding to 6109 * desired target subprog. 6110 * 6111 * Its important to realize that some subprogs might not be called from some 6112 * main prog and any of its called/used subprogs. Those will keep their 6113 * subprog->sub_insn_off as zero at all times and won't be appended to current 6114 * main prog and won't be relocated within the context of current main prog. 6115 * They might still be used from other main progs later. 6116 * 6117 * Visually this process can be shown as below. Suppose we have two main 6118 * programs mainA and mainB and BPF object contains three subprogs: subA, 6119 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6120 * subC both call subB: 6121 * 6122 * +--------+ +-------+ 6123 * | v v | 6124 * +--+---+ +--+-+-+ +---+--+ 6125 * | subA | | subB | | subC | 6126 * +--+---+ +------+ +---+--+ 6127 * ^ ^ 6128 * | | 6129 * +---+-------+ +------+----+ 6130 * | mainA | | mainB | 6131 * +-----------+ +-----------+ 6132 * 6133 * We'll start relocating mainA, will find subA, append it and start 6134 * processing sub A recursively: 6135 * 6136 * +-----------+------+ 6137 * | mainA | subA | 6138 * +-----------+------+ 6139 * 6140 * At this point we notice that subB is used from subA, so we append it and 6141 * relocate (there are no further subcalls from subB): 6142 * 6143 * +-----------+------+------+ 6144 * | mainA | subA | subB | 6145 * +-----------+------+------+ 6146 * 6147 * At this point, we relocate subA calls, then go one level up and finish with 6148 * relocatin mainA calls. mainA is done. 6149 * 6150 * For mainB process is similar but results in different order. We start with 6151 * mainB and skip subA and subB, as mainB never calls them (at least 6152 * directly), but we see subC is needed, so we append and start processing it: 6153 * 6154 * +-----------+------+ 6155 * | mainB | subC | 6156 * +-----------+------+ 6157 * Now we see subC needs subB, so we go back to it, append and relocate it: 6158 * 6159 * +-----------+------+------+ 6160 * | mainB | subC | subB | 6161 * +-----------+------+------+ 6162 * 6163 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6164 */ 6165 static int 6166 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6167 { 6168 struct bpf_program *subprog; 6169 int i, j, err; 6170 6171 /* mark all subprogs as not relocated (yet) within the context of 6172 * current main program 6173 */ 6174 for (i = 0; i < obj->nr_programs; i++) { 6175 subprog = &obj->programs[i]; 6176 if (!prog_is_subprog(obj, subprog)) 6177 continue; 6178 6179 subprog->sub_insn_off = 0; 6180 for (j = 0; j < subprog->nr_reloc; j++) 6181 if (subprog->reloc_desc[j].type == RELO_CALL) 6182 subprog->reloc_desc[j].processed = false; 6183 } 6184 6185 err = bpf_object__reloc_code(obj, prog, prog); 6186 if (err) 6187 return err; 6188 6189 6190 return 0; 6191 } 6192 6193 static int 6194 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6195 { 6196 struct bpf_program *prog; 6197 size_t i; 6198 int err; 6199 6200 if (obj->btf_ext) { 6201 err = bpf_object__relocate_core(obj, targ_btf_path); 6202 if (err) { 6203 pr_warn("failed to perform CO-RE relocations: %d\n", 6204 err); 6205 return err; 6206 } 6207 } 6208 /* relocate data references first for all programs and sub-programs, 6209 * as they don't change relative to code locations, so subsequent 6210 * subprogram processing won't need to re-calculate any of them 6211 */ 6212 for (i = 0; i < obj->nr_programs; i++) { 6213 prog = &obj->programs[i]; 6214 err = bpf_object__relocate_data(obj, prog); 6215 if (err) { 6216 pr_warn("prog '%s': failed to relocate data references: %d\n", 6217 prog->name, err); 6218 return err; 6219 } 6220 } 6221 /* now relocate subprogram calls and append used subprograms to main 6222 * programs; each copy of subprogram code needs to be relocated 6223 * differently for each main program, because its code location might 6224 * have changed 6225 */ 6226 for (i = 0; i < obj->nr_programs; i++) { 6227 prog = &obj->programs[i]; 6228 /* sub-program's sub-calls are relocated within the context of 6229 * its main program only 6230 */ 6231 if (prog_is_subprog(obj, prog)) 6232 continue; 6233 6234 err = bpf_object__relocate_calls(obj, prog); 6235 if (err) { 6236 pr_warn("prog '%s': failed to relocate calls: %d\n", 6237 prog->name, err); 6238 return err; 6239 } 6240 } 6241 /* free up relocation descriptors */ 6242 for (i = 0; i < obj->nr_programs; i++) { 6243 prog = &obj->programs[i]; 6244 zfree(&prog->reloc_desc); 6245 prog->nr_reloc = 0; 6246 } 6247 return 0; 6248 } 6249 6250 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6251 GElf_Shdr *shdr, Elf_Data *data); 6252 6253 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6254 GElf_Shdr *shdr, Elf_Data *data) 6255 { 6256 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6257 int i, j, nrels, new_sz; 6258 const struct btf_var_secinfo *vi = NULL; 6259 const struct btf_type *sec, *var, *def; 6260 struct bpf_map *map = NULL, *targ_map; 6261 const struct btf_member *member; 6262 const char *name, *mname; 6263 Elf_Data *symbols; 6264 unsigned int moff; 6265 GElf_Sym sym; 6266 GElf_Rel rel; 6267 void *tmp; 6268 6269 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6270 return -EINVAL; 6271 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6272 if (!sec) 6273 return -EINVAL; 6274 6275 symbols = obj->efile.symbols; 6276 nrels = shdr->sh_size / shdr->sh_entsize; 6277 for (i = 0; i < nrels; i++) { 6278 if (!gelf_getrel(data, i, &rel)) { 6279 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6280 return -LIBBPF_ERRNO__FORMAT; 6281 } 6282 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 6283 pr_warn(".maps relo #%d: symbol %zx not found\n", 6284 i, (size_t)GELF_R_SYM(rel.r_info)); 6285 return -LIBBPF_ERRNO__FORMAT; 6286 } 6287 name = elf_sym_str(obj, sym.st_name) ?: "<?>"; 6288 if (sym.st_shndx != obj->efile.btf_maps_shndx) { 6289 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6290 i, name); 6291 return -LIBBPF_ERRNO__RELOC; 6292 } 6293 6294 pr_debug(".maps relo #%d: for %zd value %zd rel.r_offset %zu name %d ('%s')\n", 6295 i, (ssize_t)(rel.r_info >> 32), (size_t)sym.st_value, 6296 (size_t)rel.r_offset, sym.st_name, name); 6297 6298 for (j = 0; j < obj->nr_maps; j++) { 6299 map = &obj->maps[j]; 6300 if (map->sec_idx != obj->efile.btf_maps_shndx) 6301 continue; 6302 6303 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6304 if (vi->offset <= rel.r_offset && 6305 rel.r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6306 break; 6307 } 6308 if (j == obj->nr_maps) { 6309 pr_warn(".maps relo #%d: cannot find map '%s' at rel.r_offset %zu\n", 6310 i, name, (size_t)rel.r_offset); 6311 return -EINVAL; 6312 } 6313 6314 if (!bpf_map_type__is_map_in_map(map->def.type)) 6315 return -EINVAL; 6316 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6317 map->def.key_size != sizeof(int)) { 6318 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6319 i, map->name, sizeof(int)); 6320 return -EINVAL; 6321 } 6322 6323 targ_map = bpf_object__find_map_by_name(obj, name); 6324 if (!targ_map) 6325 return -ESRCH; 6326 6327 var = btf__type_by_id(obj->btf, vi->type); 6328 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6329 if (btf_vlen(def) == 0) 6330 return -EINVAL; 6331 member = btf_members(def) + btf_vlen(def) - 1; 6332 mname = btf__name_by_offset(obj->btf, member->name_off); 6333 if (strcmp(mname, "values")) 6334 return -EINVAL; 6335 6336 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6337 if (rel.r_offset - vi->offset < moff) 6338 return -EINVAL; 6339 6340 moff = rel.r_offset - vi->offset - moff; 6341 /* here we use BPF pointer size, which is always 64 bit, as we 6342 * are parsing ELF that was built for BPF target 6343 */ 6344 if (moff % bpf_ptr_sz) 6345 return -EINVAL; 6346 moff /= bpf_ptr_sz; 6347 if (moff >= map->init_slots_sz) { 6348 new_sz = moff + 1; 6349 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6350 if (!tmp) 6351 return -ENOMEM; 6352 map->init_slots = tmp; 6353 memset(map->init_slots + map->init_slots_sz, 0, 6354 (new_sz - map->init_slots_sz) * host_ptr_sz); 6355 map->init_slots_sz = new_sz; 6356 } 6357 map->init_slots[moff] = targ_map; 6358 6359 pr_debug(".maps relo #%d: map '%s' slot [%d] points to map '%s'\n", 6360 i, map->name, moff, name); 6361 } 6362 6363 return 0; 6364 } 6365 6366 static int cmp_relocs(const void *_a, const void *_b) 6367 { 6368 const struct reloc_desc *a = _a; 6369 const struct reloc_desc *b = _b; 6370 6371 if (a->insn_idx != b->insn_idx) 6372 return a->insn_idx < b->insn_idx ? -1 : 1; 6373 6374 /* no two relocations should have the same insn_idx, but ... */ 6375 if (a->type != b->type) 6376 return a->type < b->type ? -1 : 1; 6377 6378 return 0; 6379 } 6380 6381 static int bpf_object__collect_relos(struct bpf_object *obj) 6382 { 6383 int i, err; 6384 6385 for (i = 0; i < obj->efile.nr_reloc_sects; i++) { 6386 GElf_Shdr *shdr = &obj->efile.reloc_sects[i].shdr; 6387 Elf_Data *data = obj->efile.reloc_sects[i].data; 6388 int idx = shdr->sh_info; 6389 6390 if (shdr->sh_type != SHT_REL) { 6391 pr_warn("internal error at %d\n", __LINE__); 6392 return -LIBBPF_ERRNO__INTERNAL; 6393 } 6394 6395 if (idx == obj->efile.st_ops_shndx) 6396 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6397 else if (idx == obj->efile.btf_maps_shndx) 6398 err = bpf_object__collect_map_relos(obj, shdr, data); 6399 else 6400 err = bpf_object__collect_prog_relos(obj, shdr, data); 6401 if (err) 6402 return err; 6403 } 6404 6405 for (i = 0; i < obj->nr_programs; i++) { 6406 struct bpf_program *p = &obj->programs[i]; 6407 6408 if (!p->nr_reloc) 6409 continue; 6410 6411 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6412 } 6413 return 0; 6414 } 6415 6416 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6417 { 6418 if (BPF_CLASS(insn->code) == BPF_JMP && 6419 BPF_OP(insn->code) == BPF_CALL && 6420 BPF_SRC(insn->code) == BPF_K && 6421 insn->src_reg == 0 && 6422 insn->dst_reg == 0) { 6423 *func_id = insn->imm; 6424 return true; 6425 } 6426 return false; 6427 } 6428 6429 static int bpf_object__sanitize_prog(struct bpf_object* obj, struct bpf_program *prog) 6430 { 6431 struct bpf_insn *insn = prog->insns; 6432 enum bpf_func_id func_id; 6433 int i; 6434 6435 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6436 if (!insn_is_helper_call(insn, &func_id)) 6437 continue; 6438 6439 /* on kernels that don't yet support 6440 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6441 * to bpf_probe_read() which works well for old kernels 6442 */ 6443 switch (func_id) { 6444 case BPF_FUNC_probe_read_kernel: 6445 case BPF_FUNC_probe_read_user: 6446 if (!kernel_supports(FEAT_PROBE_READ_KERN)) 6447 insn->imm = BPF_FUNC_probe_read; 6448 break; 6449 case BPF_FUNC_probe_read_kernel_str: 6450 case BPF_FUNC_probe_read_user_str: 6451 if (!kernel_supports(FEAT_PROBE_READ_KERN)) 6452 insn->imm = BPF_FUNC_probe_read_str; 6453 break; 6454 default: 6455 break; 6456 } 6457 } 6458 return 0; 6459 } 6460 6461 static int 6462 load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt, 6463 char *license, __u32 kern_version, int *pfd) 6464 { 6465 struct bpf_load_program_attr load_attr; 6466 char *cp, errmsg[STRERR_BUFSIZE]; 6467 size_t log_buf_size = 0; 6468 char *log_buf = NULL; 6469 int btf_fd, ret; 6470 6471 if (!insns || !insns_cnt) 6472 return -EINVAL; 6473 6474 memset(&load_attr, 0, sizeof(struct bpf_load_program_attr)); 6475 load_attr.prog_type = prog->type; 6476 /* old kernels might not support specifying expected_attach_type */ 6477 if (!kernel_supports(FEAT_EXP_ATTACH_TYPE) && prog->sec_def && 6478 prog->sec_def->is_exp_attach_type_optional) 6479 load_attr.expected_attach_type = 0; 6480 else 6481 load_attr.expected_attach_type = prog->expected_attach_type; 6482 if (kernel_supports(FEAT_PROG_NAME)) 6483 load_attr.name = prog->name; 6484 load_attr.insns = insns; 6485 load_attr.insns_cnt = insns_cnt; 6486 load_attr.license = license; 6487 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 6488 prog->type == BPF_PROG_TYPE_LSM) { 6489 load_attr.attach_btf_id = prog->attach_btf_id; 6490 } else if (prog->type == BPF_PROG_TYPE_TRACING || 6491 prog->type == BPF_PROG_TYPE_EXT) { 6492 load_attr.attach_prog_fd = prog->attach_prog_fd; 6493 load_attr.attach_btf_id = prog->attach_btf_id; 6494 } else { 6495 load_attr.kern_version = kern_version; 6496 load_attr.prog_ifindex = prog->prog_ifindex; 6497 } 6498 /* specify func_info/line_info only if kernel supports them */ 6499 btf_fd = bpf_object__btf_fd(prog->obj); 6500 if (btf_fd >= 0 && kernel_supports(FEAT_BTF_FUNC)) { 6501 load_attr.prog_btf_fd = btf_fd; 6502 load_attr.func_info = prog->func_info; 6503 load_attr.func_info_rec_size = prog->func_info_rec_size; 6504 load_attr.func_info_cnt = prog->func_info_cnt; 6505 load_attr.line_info = prog->line_info; 6506 load_attr.line_info_rec_size = prog->line_info_rec_size; 6507 load_attr.line_info_cnt = prog->line_info_cnt; 6508 } 6509 load_attr.log_level = prog->log_level; 6510 load_attr.prog_flags = prog->prog_flags; 6511 6512 retry_load: 6513 if (log_buf_size) { 6514 log_buf = malloc(log_buf_size); 6515 if (!log_buf) 6516 return -ENOMEM; 6517 6518 *log_buf = 0; 6519 } 6520 6521 ret = bpf_load_program_xattr(&load_attr, log_buf, log_buf_size); 6522 6523 if (ret >= 0) { 6524 if (log_buf && load_attr.log_level) 6525 pr_debug("verifier log:\n%s", log_buf); 6526 6527 if (prog->obj->rodata_map_idx >= 0 && 6528 kernel_supports(FEAT_PROG_BIND_MAP)) { 6529 struct bpf_map *rodata_map = 6530 &prog->obj->maps[prog->obj->rodata_map_idx]; 6531 6532 if (bpf_prog_bind_map(ret, bpf_map__fd(rodata_map), NULL)) { 6533 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6534 pr_warn("prog '%s': failed to bind .rodata map: %s\n", 6535 prog->name, cp); 6536 /* Don't fail hard if can't bind rodata. */ 6537 } 6538 } 6539 6540 *pfd = ret; 6541 ret = 0; 6542 goto out; 6543 } 6544 6545 if (!log_buf || errno == ENOSPC) { 6546 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, 6547 log_buf_size << 1); 6548 6549 free(log_buf); 6550 goto retry_load; 6551 } 6552 ret = errno ? -errno : -LIBBPF_ERRNO__LOAD; 6553 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6554 pr_warn("load bpf program failed: %s\n", cp); 6555 pr_perm_msg(ret); 6556 6557 if (log_buf && log_buf[0] != '\0') { 6558 ret = -LIBBPF_ERRNO__VERIFY; 6559 pr_warn("-- BEGIN DUMP LOG ---\n"); 6560 pr_warn("\n%s\n", log_buf); 6561 pr_warn("-- END LOG --\n"); 6562 } else if (load_attr.insns_cnt >= BPF_MAXINSNS) { 6563 pr_warn("Program too large (%zu insns), at most %d insns\n", 6564 load_attr.insns_cnt, BPF_MAXINSNS); 6565 ret = -LIBBPF_ERRNO__PROG2BIG; 6566 } else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) { 6567 /* Wrong program type? */ 6568 int fd; 6569 6570 load_attr.prog_type = BPF_PROG_TYPE_KPROBE; 6571 load_attr.expected_attach_type = 0; 6572 fd = bpf_load_program_xattr(&load_attr, NULL, 0); 6573 if (fd >= 0) { 6574 close(fd); 6575 ret = -LIBBPF_ERRNO__PROGTYPE; 6576 goto out; 6577 } 6578 } 6579 6580 out: 6581 free(log_buf); 6582 return ret; 6583 } 6584 6585 static int libbpf_find_attach_btf_id(struct bpf_program *prog); 6586 6587 int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_ver) 6588 { 6589 int err = 0, fd, i, btf_id; 6590 6591 if (prog->obj->loaded) { 6592 pr_warn("prog '%s': can't load after object was loaded\n", prog->name); 6593 return -EINVAL; 6594 } 6595 6596 if ((prog->type == BPF_PROG_TYPE_TRACING || 6597 prog->type == BPF_PROG_TYPE_LSM || 6598 prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) { 6599 btf_id = libbpf_find_attach_btf_id(prog); 6600 if (btf_id <= 0) 6601 return btf_id; 6602 prog->attach_btf_id = btf_id; 6603 } 6604 6605 if (prog->instances.nr < 0 || !prog->instances.fds) { 6606 if (prog->preprocessor) { 6607 pr_warn("Internal error: can't load program '%s'\n", 6608 prog->name); 6609 return -LIBBPF_ERRNO__INTERNAL; 6610 } 6611 6612 prog->instances.fds = malloc(sizeof(int)); 6613 if (!prog->instances.fds) { 6614 pr_warn("Not enough memory for BPF fds\n"); 6615 return -ENOMEM; 6616 } 6617 prog->instances.nr = 1; 6618 prog->instances.fds[0] = -1; 6619 } 6620 6621 if (!prog->preprocessor) { 6622 if (prog->instances.nr != 1) { 6623 pr_warn("prog '%s': inconsistent nr(%d) != 1\n", 6624 prog->name, prog->instances.nr); 6625 } 6626 err = load_program(prog, prog->insns, prog->insns_cnt, 6627 license, kern_ver, &fd); 6628 if (!err) 6629 prog->instances.fds[0] = fd; 6630 goto out; 6631 } 6632 6633 for (i = 0; i < prog->instances.nr; i++) { 6634 struct bpf_prog_prep_result result; 6635 bpf_program_prep_t preprocessor = prog->preprocessor; 6636 6637 memset(&result, 0, sizeof(result)); 6638 err = preprocessor(prog, i, prog->insns, 6639 prog->insns_cnt, &result); 6640 if (err) { 6641 pr_warn("Preprocessing the %dth instance of program '%s' failed\n", 6642 i, prog->name); 6643 goto out; 6644 } 6645 6646 if (!result.new_insn_ptr || !result.new_insn_cnt) { 6647 pr_debug("Skip loading the %dth instance of program '%s'\n", 6648 i, prog->name); 6649 prog->instances.fds[i] = -1; 6650 if (result.pfd) 6651 *result.pfd = -1; 6652 continue; 6653 } 6654 6655 err = load_program(prog, result.new_insn_ptr, 6656 result.new_insn_cnt, license, kern_ver, &fd); 6657 if (err) { 6658 pr_warn("Loading the %dth instance of program '%s' failed\n", 6659 i, prog->name); 6660 goto out; 6661 } 6662 6663 if (result.pfd) 6664 *result.pfd = fd; 6665 prog->instances.fds[i] = fd; 6666 } 6667 out: 6668 if (err) 6669 pr_warn("failed to load program '%s'\n", prog->name); 6670 zfree(&prog->insns); 6671 prog->insns_cnt = 0; 6672 return err; 6673 } 6674 6675 static int 6676 bpf_object__load_progs(struct bpf_object *obj, int log_level) 6677 { 6678 struct bpf_program *prog; 6679 size_t i; 6680 int err; 6681 6682 for (i = 0; i < obj->nr_programs; i++) { 6683 prog = &obj->programs[i]; 6684 err = bpf_object__sanitize_prog(obj, prog); 6685 if (err) 6686 return err; 6687 } 6688 6689 for (i = 0; i < obj->nr_programs; i++) { 6690 prog = &obj->programs[i]; 6691 if (prog_is_subprog(obj, prog)) 6692 continue; 6693 if (!prog->load) { 6694 pr_debug("prog '%s': skipped loading\n", prog->name); 6695 continue; 6696 } 6697 prog->log_level |= log_level; 6698 err = bpf_program__load(prog, obj->license, obj->kern_version); 6699 if (err) 6700 return err; 6701 } 6702 return 0; 6703 } 6704 6705 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 6706 6707 static struct bpf_object * 6708 __bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz, 6709 const struct bpf_object_open_opts *opts) 6710 { 6711 const char *obj_name, *kconfig; 6712 struct bpf_program *prog; 6713 struct bpf_object *obj; 6714 char tmp_name[64]; 6715 int err; 6716 6717 if (elf_version(EV_CURRENT) == EV_NONE) { 6718 pr_warn("failed to init libelf for %s\n", 6719 path ? : "(mem buf)"); 6720 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 6721 } 6722 6723 if (!OPTS_VALID(opts, bpf_object_open_opts)) 6724 return ERR_PTR(-EINVAL); 6725 6726 obj_name = OPTS_GET(opts, object_name, NULL); 6727 if (obj_buf) { 6728 if (!obj_name) { 6729 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 6730 (unsigned long)obj_buf, 6731 (unsigned long)obj_buf_sz); 6732 obj_name = tmp_name; 6733 } 6734 path = obj_name; 6735 pr_debug("loading object '%s' from buffer\n", obj_name); 6736 } 6737 6738 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 6739 if (IS_ERR(obj)) 6740 return obj; 6741 6742 kconfig = OPTS_GET(opts, kconfig, NULL); 6743 if (kconfig) { 6744 obj->kconfig = strdup(kconfig); 6745 if (!obj->kconfig) 6746 return ERR_PTR(-ENOMEM); 6747 } 6748 6749 err = bpf_object__elf_init(obj); 6750 err = err ? : bpf_object__check_endianness(obj); 6751 err = err ? : bpf_object__elf_collect(obj); 6752 err = err ? : bpf_object__collect_externs(obj); 6753 err = err ? : bpf_object__finalize_btf(obj); 6754 err = err ? : bpf_object__init_maps(obj, opts); 6755 err = err ? : bpf_object__collect_relos(obj); 6756 if (err) 6757 goto out; 6758 bpf_object__elf_finish(obj); 6759 6760 bpf_object__for_each_program(prog, obj) { 6761 prog->sec_def = find_sec_def(prog->sec_name); 6762 if (!prog->sec_def) 6763 /* couldn't guess, but user might manually specify */ 6764 continue; 6765 6766 if (prog->sec_def->is_sleepable) 6767 prog->prog_flags |= BPF_F_SLEEPABLE; 6768 bpf_program__set_type(prog, prog->sec_def->prog_type); 6769 bpf_program__set_expected_attach_type(prog, 6770 prog->sec_def->expected_attach_type); 6771 6772 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING || 6773 prog->sec_def->prog_type == BPF_PROG_TYPE_EXT) 6774 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0); 6775 } 6776 6777 return obj; 6778 out: 6779 bpf_object__close(obj); 6780 return ERR_PTR(err); 6781 } 6782 6783 static struct bpf_object * 6784 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags) 6785 { 6786 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 6787 .relaxed_maps = flags & MAPS_RELAX_COMPAT, 6788 ); 6789 6790 /* param validation */ 6791 if (!attr->file) 6792 return NULL; 6793 6794 pr_debug("loading %s\n", attr->file); 6795 return __bpf_object__open(attr->file, NULL, 0, &opts); 6796 } 6797 6798 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr) 6799 { 6800 return __bpf_object__open_xattr(attr, 0); 6801 } 6802 6803 struct bpf_object *bpf_object__open(const char *path) 6804 { 6805 struct bpf_object_open_attr attr = { 6806 .file = path, 6807 .prog_type = BPF_PROG_TYPE_UNSPEC, 6808 }; 6809 6810 return bpf_object__open_xattr(&attr); 6811 } 6812 6813 struct bpf_object * 6814 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 6815 { 6816 if (!path) 6817 return ERR_PTR(-EINVAL); 6818 6819 pr_debug("loading %s\n", path); 6820 6821 return __bpf_object__open(path, NULL, 0, opts); 6822 } 6823 6824 struct bpf_object * 6825 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 6826 const struct bpf_object_open_opts *opts) 6827 { 6828 if (!obj_buf || obj_buf_sz == 0) 6829 return ERR_PTR(-EINVAL); 6830 6831 return __bpf_object__open(NULL, obj_buf, obj_buf_sz, opts); 6832 } 6833 6834 struct bpf_object * 6835 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz, 6836 const char *name) 6837 { 6838 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 6839 .object_name = name, 6840 /* wrong default, but backwards-compatible */ 6841 .relaxed_maps = true, 6842 ); 6843 6844 /* returning NULL is wrong, but backwards-compatible */ 6845 if (!obj_buf || obj_buf_sz == 0) 6846 return NULL; 6847 6848 return bpf_object__open_mem(obj_buf, obj_buf_sz, &opts); 6849 } 6850 6851 int bpf_object__unload(struct bpf_object *obj) 6852 { 6853 size_t i; 6854 6855 if (!obj) 6856 return -EINVAL; 6857 6858 for (i = 0; i < obj->nr_maps; i++) { 6859 zclose(obj->maps[i].fd); 6860 if (obj->maps[i].st_ops) 6861 zfree(&obj->maps[i].st_ops->kern_vdata); 6862 } 6863 6864 for (i = 0; i < obj->nr_programs; i++) 6865 bpf_program__unload(&obj->programs[i]); 6866 6867 return 0; 6868 } 6869 6870 static int bpf_object__sanitize_maps(struct bpf_object *obj) 6871 { 6872 struct bpf_map *m; 6873 6874 bpf_object__for_each_map(m, obj) { 6875 if (!bpf_map__is_internal(m)) 6876 continue; 6877 if (!kernel_supports(FEAT_GLOBAL_DATA)) { 6878 pr_warn("kernel doesn't support global data\n"); 6879 return -ENOTSUP; 6880 } 6881 if (!kernel_supports(FEAT_ARRAY_MMAP)) 6882 m->def.map_flags ^= BPF_F_MMAPABLE; 6883 } 6884 6885 return 0; 6886 } 6887 6888 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 6889 { 6890 char sym_type, sym_name[500]; 6891 unsigned long long sym_addr; 6892 struct extern_desc *ext; 6893 int ret, err = 0; 6894 FILE *f; 6895 6896 f = fopen("/proc/kallsyms", "r"); 6897 if (!f) { 6898 err = -errno; 6899 pr_warn("failed to open /proc/kallsyms: %d\n", err); 6900 return err; 6901 } 6902 6903 while (true) { 6904 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 6905 &sym_addr, &sym_type, sym_name); 6906 if (ret == EOF && feof(f)) 6907 break; 6908 if (ret != 3) { 6909 pr_warn("failed to read kallsyms entry: %d\n", ret); 6910 err = -EINVAL; 6911 goto out; 6912 } 6913 6914 ext = find_extern_by_name(obj, sym_name); 6915 if (!ext || ext->type != EXT_KSYM) 6916 continue; 6917 6918 if (ext->is_set && ext->ksym.addr != sym_addr) { 6919 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n", 6920 sym_name, ext->ksym.addr, sym_addr); 6921 err = -EINVAL; 6922 goto out; 6923 } 6924 if (!ext->is_set) { 6925 ext->is_set = true; 6926 ext->ksym.addr = sym_addr; 6927 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr); 6928 } 6929 } 6930 6931 out: 6932 fclose(f); 6933 return err; 6934 } 6935 6936 static int bpf_object__resolve_externs(struct bpf_object *obj, 6937 const char *extra_kconfig) 6938 { 6939 bool need_config = false, need_kallsyms = false; 6940 struct extern_desc *ext; 6941 void *kcfg_data = NULL; 6942 int err, i; 6943 6944 if (obj->nr_extern == 0) 6945 return 0; 6946 6947 if (obj->kconfig_map_idx >= 0) 6948 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 6949 6950 for (i = 0; i < obj->nr_extern; i++) { 6951 ext = &obj->externs[i]; 6952 6953 if (ext->type == EXT_KCFG && 6954 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 6955 void *ext_val = kcfg_data + ext->kcfg.data_off; 6956 __u32 kver = get_kernel_version(); 6957 6958 if (!kver) { 6959 pr_warn("failed to get kernel version\n"); 6960 return -EINVAL; 6961 } 6962 err = set_kcfg_value_num(ext, ext_val, kver); 6963 if (err) 6964 return err; 6965 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver); 6966 } else if (ext->type == EXT_KCFG && 6967 strncmp(ext->name, "CONFIG_", 7) == 0) { 6968 need_config = true; 6969 } else if (ext->type == EXT_KSYM) { 6970 need_kallsyms = true; 6971 } else { 6972 pr_warn("unrecognized extern '%s'\n", ext->name); 6973 return -EINVAL; 6974 } 6975 } 6976 if (need_config && extra_kconfig) { 6977 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 6978 if (err) 6979 return -EINVAL; 6980 need_config = false; 6981 for (i = 0; i < obj->nr_extern; i++) { 6982 ext = &obj->externs[i]; 6983 if (ext->type == EXT_KCFG && !ext->is_set) { 6984 need_config = true; 6985 break; 6986 } 6987 } 6988 } 6989 if (need_config) { 6990 err = bpf_object__read_kconfig_file(obj, kcfg_data); 6991 if (err) 6992 return -EINVAL; 6993 } 6994 if (need_kallsyms) { 6995 err = bpf_object__read_kallsyms_file(obj); 6996 if (err) 6997 return -EINVAL; 6998 } 6999 for (i = 0; i < obj->nr_extern; i++) { 7000 ext = &obj->externs[i]; 7001 7002 if (!ext->is_set && !ext->is_weak) { 7003 pr_warn("extern %s (strong) not resolved\n", ext->name); 7004 return -ESRCH; 7005 } else if (!ext->is_set) { 7006 pr_debug("extern %s (weak) not resolved, defaulting to zero\n", 7007 ext->name); 7008 } 7009 } 7010 7011 return 0; 7012 } 7013 7014 int bpf_object__load_xattr(struct bpf_object_load_attr *attr) 7015 { 7016 struct bpf_object *obj; 7017 int err, i; 7018 7019 if (!attr) 7020 return -EINVAL; 7021 obj = attr->obj; 7022 if (!obj) 7023 return -EINVAL; 7024 7025 if (obj->loaded) { 7026 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7027 return -EINVAL; 7028 } 7029 7030 err = bpf_object__probe_loading(obj); 7031 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7032 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7033 err = err ? : bpf_object__sanitize_maps(obj); 7034 err = err ? : bpf_object__load_vmlinux_btf(obj); 7035 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7036 err = err ? : bpf_object__create_maps(obj); 7037 err = err ? : bpf_object__relocate(obj, attr->target_btf_path); 7038 err = err ? : bpf_object__load_progs(obj, attr->log_level); 7039 7040 btf__free(obj->btf_vmlinux); 7041 obj->btf_vmlinux = NULL; 7042 7043 obj->loaded = true; /* doesn't matter if successfully or not */ 7044 7045 if (err) 7046 goto out; 7047 7048 return 0; 7049 out: 7050 /* unpin any maps that were auto-pinned during load */ 7051 for (i = 0; i < obj->nr_maps; i++) 7052 if (obj->maps[i].pinned && !obj->maps[i].reused) 7053 bpf_map__unpin(&obj->maps[i], NULL); 7054 7055 bpf_object__unload(obj); 7056 pr_warn("failed to load object '%s'\n", obj->path); 7057 return err; 7058 } 7059 7060 int bpf_object__load(struct bpf_object *obj) 7061 { 7062 struct bpf_object_load_attr attr = { 7063 .obj = obj, 7064 }; 7065 7066 return bpf_object__load_xattr(&attr); 7067 } 7068 7069 static int make_parent_dir(const char *path) 7070 { 7071 char *cp, errmsg[STRERR_BUFSIZE]; 7072 char *dname, *dir; 7073 int err = 0; 7074 7075 dname = strdup(path); 7076 if (dname == NULL) 7077 return -ENOMEM; 7078 7079 dir = dirname(dname); 7080 if (mkdir(dir, 0700) && errno != EEXIST) 7081 err = -errno; 7082 7083 free(dname); 7084 if (err) { 7085 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7086 pr_warn("failed to mkdir %s: %s\n", path, cp); 7087 } 7088 return err; 7089 } 7090 7091 static int check_path(const char *path) 7092 { 7093 char *cp, errmsg[STRERR_BUFSIZE]; 7094 struct statfs st_fs; 7095 char *dname, *dir; 7096 int err = 0; 7097 7098 if (path == NULL) 7099 return -EINVAL; 7100 7101 dname = strdup(path); 7102 if (dname == NULL) 7103 return -ENOMEM; 7104 7105 dir = dirname(dname); 7106 if (statfs(dir, &st_fs)) { 7107 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7108 pr_warn("failed to statfs %s: %s\n", dir, cp); 7109 err = -errno; 7110 } 7111 free(dname); 7112 7113 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7114 pr_warn("specified path %s is not on BPF FS\n", path); 7115 err = -EINVAL; 7116 } 7117 7118 return err; 7119 } 7120 7121 int bpf_program__pin_instance(struct bpf_program *prog, const char *path, 7122 int instance) 7123 { 7124 char *cp, errmsg[STRERR_BUFSIZE]; 7125 int err; 7126 7127 err = make_parent_dir(path); 7128 if (err) 7129 return err; 7130 7131 err = check_path(path); 7132 if (err) 7133 return err; 7134 7135 if (prog == NULL) { 7136 pr_warn("invalid program pointer\n"); 7137 return -EINVAL; 7138 } 7139 7140 if (instance < 0 || instance >= prog->instances.nr) { 7141 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7142 instance, prog->name, prog->instances.nr); 7143 return -EINVAL; 7144 } 7145 7146 if (bpf_obj_pin(prog->instances.fds[instance], path)) { 7147 err = -errno; 7148 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7149 pr_warn("failed to pin program: %s\n", cp); 7150 return err; 7151 } 7152 pr_debug("pinned program '%s'\n", path); 7153 7154 return 0; 7155 } 7156 7157 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, 7158 int instance) 7159 { 7160 int err; 7161 7162 err = check_path(path); 7163 if (err) 7164 return err; 7165 7166 if (prog == NULL) { 7167 pr_warn("invalid program pointer\n"); 7168 return -EINVAL; 7169 } 7170 7171 if (instance < 0 || instance >= prog->instances.nr) { 7172 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7173 instance, prog->name, prog->instances.nr); 7174 return -EINVAL; 7175 } 7176 7177 err = unlink(path); 7178 if (err != 0) 7179 return -errno; 7180 pr_debug("unpinned program '%s'\n", path); 7181 7182 return 0; 7183 } 7184 7185 int bpf_program__pin(struct bpf_program *prog, const char *path) 7186 { 7187 int i, err; 7188 7189 err = make_parent_dir(path); 7190 if (err) 7191 return err; 7192 7193 err = check_path(path); 7194 if (err) 7195 return err; 7196 7197 if (prog == NULL) { 7198 pr_warn("invalid program pointer\n"); 7199 return -EINVAL; 7200 } 7201 7202 if (prog->instances.nr <= 0) { 7203 pr_warn("no instances of prog %s to pin\n", prog->name); 7204 return -EINVAL; 7205 } 7206 7207 if (prog->instances.nr == 1) { 7208 /* don't create subdirs when pinning single instance */ 7209 return bpf_program__pin_instance(prog, path, 0); 7210 } 7211 7212 for (i = 0; i < prog->instances.nr; i++) { 7213 char buf[PATH_MAX]; 7214 int len; 7215 7216 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7217 if (len < 0) { 7218 err = -EINVAL; 7219 goto err_unpin; 7220 } else if (len >= PATH_MAX) { 7221 err = -ENAMETOOLONG; 7222 goto err_unpin; 7223 } 7224 7225 err = bpf_program__pin_instance(prog, buf, i); 7226 if (err) 7227 goto err_unpin; 7228 } 7229 7230 return 0; 7231 7232 err_unpin: 7233 for (i = i - 1; i >= 0; i--) { 7234 char buf[PATH_MAX]; 7235 int len; 7236 7237 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7238 if (len < 0) 7239 continue; 7240 else if (len >= PATH_MAX) 7241 continue; 7242 7243 bpf_program__unpin_instance(prog, buf, i); 7244 } 7245 7246 rmdir(path); 7247 7248 return err; 7249 } 7250 7251 int bpf_program__unpin(struct bpf_program *prog, const char *path) 7252 { 7253 int i, err; 7254 7255 err = check_path(path); 7256 if (err) 7257 return err; 7258 7259 if (prog == NULL) { 7260 pr_warn("invalid program pointer\n"); 7261 return -EINVAL; 7262 } 7263 7264 if (prog->instances.nr <= 0) { 7265 pr_warn("no instances of prog %s to pin\n", prog->name); 7266 return -EINVAL; 7267 } 7268 7269 if (prog->instances.nr == 1) { 7270 /* don't create subdirs when pinning single instance */ 7271 return bpf_program__unpin_instance(prog, path, 0); 7272 } 7273 7274 for (i = 0; i < prog->instances.nr; i++) { 7275 char buf[PATH_MAX]; 7276 int len; 7277 7278 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7279 if (len < 0) 7280 return -EINVAL; 7281 else if (len >= PATH_MAX) 7282 return -ENAMETOOLONG; 7283 7284 err = bpf_program__unpin_instance(prog, buf, i); 7285 if (err) 7286 return err; 7287 } 7288 7289 err = rmdir(path); 7290 if (err) 7291 return -errno; 7292 7293 return 0; 7294 } 7295 7296 int bpf_map__pin(struct bpf_map *map, const char *path) 7297 { 7298 char *cp, errmsg[STRERR_BUFSIZE]; 7299 int err; 7300 7301 if (map == NULL) { 7302 pr_warn("invalid map pointer\n"); 7303 return -EINVAL; 7304 } 7305 7306 if (map->pin_path) { 7307 if (path && strcmp(path, map->pin_path)) { 7308 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7309 bpf_map__name(map), map->pin_path, path); 7310 return -EINVAL; 7311 } else if (map->pinned) { 7312 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 7313 bpf_map__name(map), map->pin_path); 7314 return 0; 7315 } 7316 } else { 7317 if (!path) { 7318 pr_warn("missing a path to pin map '%s' at\n", 7319 bpf_map__name(map)); 7320 return -EINVAL; 7321 } else if (map->pinned) { 7322 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 7323 return -EEXIST; 7324 } 7325 7326 map->pin_path = strdup(path); 7327 if (!map->pin_path) { 7328 err = -errno; 7329 goto out_err; 7330 } 7331 } 7332 7333 err = make_parent_dir(map->pin_path); 7334 if (err) 7335 return err; 7336 7337 err = check_path(map->pin_path); 7338 if (err) 7339 return err; 7340 7341 if (bpf_obj_pin(map->fd, map->pin_path)) { 7342 err = -errno; 7343 goto out_err; 7344 } 7345 7346 map->pinned = true; 7347 pr_debug("pinned map '%s'\n", map->pin_path); 7348 7349 return 0; 7350 7351 out_err: 7352 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7353 pr_warn("failed to pin map: %s\n", cp); 7354 return err; 7355 } 7356 7357 int bpf_map__unpin(struct bpf_map *map, const char *path) 7358 { 7359 int err; 7360 7361 if (map == NULL) { 7362 pr_warn("invalid map pointer\n"); 7363 return -EINVAL; 7364 } 7365 7366 if (map->pin_path) { 7367 if (path && strcmp(path, map->pin_path)) { 7368 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7369 bpf_map__name(map), map->pin_path, path); 7370 return -EINVAL; 7371 } 7372 path = map->pin_path; 7373 } else if (!path) { 7374 pr_warn("no path to unpin map '%s' from\n", 7375 bpf_map__name(map)); 7376 return -EINVAL; 7377 } 7378 7379 err = check_path(path); 7380 if (err) 7381 return err; 7382 7383 err = unlink(path); 7384 if (err != 0) 7385 return -errno; 7386 7387 map->pinned = false; 7388 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 7389 7390 return 0; 7391 } 7392 7393 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 7394 { 7395 char *new = NULL; 7396 7397 if (path) { 7398 new = strdup(path); 7399 if (!new) 7400 return -errno; 7401 } 7402 7403 free(map->pin_path); 7404 map->pin_path = new; 7405 return 0; 7406 } 7407 7408 const char *bpf_map__get_pin_path(const struct bpf_map *map) 7409 { 7410 return map->pin_path; 7411 } 7412 7413 bool bpf_map__is_pinned(const struct bpf_map *map) 7414 { 7415 return map->pinned; 7416 } 7417 7418 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 7419 { 7420 struct bpf_map *map; 7421 int err; 7422 7423 if (!obj) 7424 return -ENOENT; 7425 7426 if (!obj->loaded) { 7427 pr_warn("object not yet loaded; load it first\n"); 7428 return -ENOENT; 7429 } 7430 7431 bpf_object__for_each_map(map, obj) { 7432 char *pin_path = NULL; 7433 char buf[PATH_MAX]; 7434 7435 if (path) { 7436 int len; 7437 7438 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7439 bpf_map__name(map)); 7440 if (len < 0) { 7441 err = -EINVAL; 7442 goto err_unpin_maps; 7443 } else if (len >= PATH_MAX) { 7444 err = -ENAMETOOLONG; 7445 goto err_unpin_maps; 7446 } 7447 pin_path = buf; 7448 } else if (!map->pin_path) { 7449 continue; 7450 } 7451 7452 err = bpf_map__pin(map, pin_path); 7453 if (err) 7454 goto err_unpin_maps; 7455 } 7456 7457 return 0; 7458 7459 err_unpin_maps: 7460 while ((map = bpf_map__prev(map, obj))) { 7461 if (!map->pin_path) 7462 continue; 7463 7464 bpf_map__unpin(map, NULL); 7465 } 7466 7467 return err; 7468 } 7469 7470 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 7471 { 7472 struct bpf_map *map; 7473 int err; 7474 7475 if (!obj) 7476 return -ENOENT; 7477 7478 bpf_object__for_each_map(map, obj) { 7479 char *pin_path = NULL; 7480 char buf[PATH_MAX]; 7481 7482 if (path) { 7483 int len; 7484 7485 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7486 bpf_map__name(map)); 7487 if (len < 0) 7488 return -EINVAL; 7489 else if (len >= PATH_MAX) 7490 return -ENAMETOOLONG; 7491 pin_path = buf; 7492 } else if (!map->pin_path) { 7493 continue; 7494 } 7495 7496 err = bpf_map__unpin(map, pin_path); 7497 if (err) 7498 return err; 7499 } 7500 7501 return 0; 7502 } 7503 7504 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 7505 { 7506 struct bpf_program *prog; 7507 int err; 7508 7509 if (!obj) 7510 return -ENOENT; 7511 7512 if (!obj->loaded) { 7513 pr_warn("object not yet loaded; load it first\n"); 7514 return -ENOENT; 7515 } 7516 7517 bpf_object__for_each_program(prog, obj) { 7518 char buf[PATH_MAX]; 7519 int len; 7520 7521 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7522 prog->pin_name); 7523 if (len < 0) { 7524 err = -EINVAL; 7525 goto err_unpin_programs; 7526 } else if (len >= PATH_MAX) { 7527 err = -ENAMETOOLONG; 7528 goto err_unpin_programs; 7529 } 7530 7531 err = bpf_program__pin(prog, buf); 7532 if (err) 7533 goto err_unpin_programs; 7534 } 7535 7536 return 0; 7537 7538 err_unpin_programs: 7539 while ((prog = bpf_program__prev(prog, obj))) { 7540 char buf[PATH_MAX]; 7541 int len; 7542 7543 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7544 prog->pin_name); 7545 if (len < 0) 7546 continue; 7547 else if (len >= PATH_MAX) 7548 continue; 7549 7550 bpf_program__unpin(prog, buf); 7551 } 7552 7553 return err; 7554 } 7555 7556 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 7557 { 7558 struct bpf_program *prog; 7559 int err; 7560 7561 if (!obj) 7562 return -ENOENT; 7563 7564 bpf_object__for_each_program(prog, obj) { 7565 char buf[PATH_MAX]; 7566 int len; 7567 7568 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7569 prog->pin_name); 7570 if (len < 0) 7571 return -EINVAL; 7572 else if (len >= PATH_MAX) 7573 return -ENAMETOOLONG; 7574 7575 err = bpf_program__unpin(prog, buf); 7576 if (err) 7577 return err; 7578 } 7579 7580 return 0; 7581 } 7582 7583 int bpf_object__pin(struct bpf_object *obj, const char *path) 7584 { 7585 int err; 7586 7587 err = bpf_object__pin_maps(obj, path); 7588 if (err) 7589 return err; 7590 7591 err = bpf_object__pin_programs(obj, path); 7592 if (err) { 7593 bpf_object__unpin_maps(obj, path); 7594 return err; 7595 } 7596 7597 return 0; 7598 } 7599 7600 static void bpf_map__destroy(struct bpf_map *map) 7601 { 7602 if (map->clear_priv) 7603 map->clear_priv(map, map->priv); 7604 map->priv = NULL; 7605 map->clear_priv = NULL; 7606 7607 if (map->inner_map) { 7608 bpf_map__destroy(map->inner_map); 7609 zfree(&map->inner_map); 7610 } 7611 7612 zfree(&map->init_slots); 7613 map->init_slots_sz = 0; 7614 7615 if (map->mmaped) { 7616 munmap(map->mmaped, bpf_map_mmap_sz(map)); 7617 map->mmaped = NULL; 7618 } 7619 7620 if (map->st_ops) { 7621 zfree(&map->st_ops->data); 7622 zfree(&map->st_ops->progs); 7623 zfree(&map->st_ops->kern_func_off); 7624 zfree(&map->st_ops); 7625 } 7626 7627 zfree(&map->name); 7628 zfree(&map->pin_path); 7629 7630 if (map->fd >= 0) 7631 zclose(map->fd); 7632 } 7633 7634 void bpf_object__close(struct bpf_object *obj) 7635 { 7636 size_t i; 7637 7638 if (IS_ERR_OR_NULL(obj)) 7639 return; 7640 7641 if (obj->clear_priv) 7642 obj->clear_priv(obj, obj->priv); 7643 7644 bpf_object__elf_finish(obj); 7645 bpf_object__unload(obj); 7646 btf__free(obj->btf); 7647 btf_ext__free(obj->btf_ext); 7648 7649 for (i = 0; i < obj->nr_maps; i++) 7650 bpf_map__destroy(&obj->maps[i]); 7651 7652 zfree(&obj->kconfig); 7653 zfree(&obj->externs); 7654 obj->nr_extern = 0; 7655 7656 zfree(&obj->maps); 7657 obj->nr_maps = 0; 7658 7659 if (obj->programs && obj->nr_programs) { 7660 for (i = 0; i < obj->nr_programs; i++) 7661 bpf_program__exit(&obj->programs[i]); 7662 } 7663 zfree(&obj->programs); 7664 7665 list_del(&obj->list); 7666 free(obj); 7667 } 7668 7669 struct bpf_object * 7670 bpf_object__next(struct bpf_object *prev) 7671 { 7672 struct bpf_object *next; 7673 7674 if (!prev) 7675 next = list_first_entry(&bpf_objects_list, 7676 struct bpf_object, 7677 list); 7678 else 7679 next = list_next_entry(prev, list); 7680 7681 /* Empty list is noticed here so don't need checking on entry. */ 7682 if (&next->list == &bpf_objects_list) 7683 return NULL; 7684 7685 return next; 7686 } 7687 7688 const char *bpf_object__name(const struct bpf_object *obj) 7689 { 7690 return obj ? obj->name : ERR_PTR(-EINVAL); 7691 } 7692 7693 unsigned int bpf_object__kversion(const struct bpf_object *obj) 7694 { 7695 return obj ? obj->kern_version : 0; 7696 } 7697 7698 struct btf *bpf_object__btf(const struct bpf_object *obj) 7699 { 7700 return obj ? obj->btf : NULL; 7701 } 7702 7703 int bpf_object__btf_fd(const struct bpf_object *obj) 7704 { 7705 return obj->btf ? btf__fd(obj->btf) : -1; 7706 } 7707 7708 int bpf_object__set_priv(struct bpf_object *obj, void *priv, 7709 bpf_object_clear_priv_t clear_priv) 7710 { 7711 if (obj->priv && obj->clear_priv) 7712 obj->clear_priv(obj, obj->priv); 7713 7714 obj->priv = priv; 7715 obj->clear_priv = clear_priv; 7716 return 0; 7717 } 7718 7719 void *bpf_object__priv(const struct bpf_object *obj) 7720 { 7721 return obj ? obj->priv : ERR_PTR(-EINVAL); 7722 } 7723 7724 static struct bpf_program * 7725 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 7726 bool forward) 7727 { 7728 size_t nr_programs = obj->nr_programs; 7729 ssize_t idx; 7730 7731 if (!nr_programs) 7732 return NULL; 7733 7734 if (!p) 7735 /* Iter from the beginning */ 7736 return forward ? &obj->programs[0] : 7737 &obj->programs[nr_programs - 1]; 7738 7739 if (p->obj != obj) { 7740 pr_warn("error: program handler doesn't match object\n"); 7741 return NULL; 7742 } 7743 7744 idx = (p - obj->programs) + (forward ? 1 : -1); 7745 if (idx >= obj->nr_programs || idx < 0) 7746 return NULL; 7747 return &obj->programs[idx]; 7748 } 7749 7750 struct bpf_program * 7751 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj) 7752 { 7753 struct bpf_program *prog = prev; 7754 7755 do { 7756 prog = __bpf_program__iter(prog, obj, true); 7757 } while (prog && prog_is_subprog(obj, prog)); 7758 7759 return prog; 7760 } 7761 7762 struct bpf_program * 7763 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj) 7764 { 7765 struct bpf_program *prog = next; 7766 7767 do { 7768 prog = __bpf_program__iter(prog, obj, false); 7769 } while (prog && prog_is_subprog(obj, prog)); 7770 7771 return prog; 7772 } 7773 7774 int bpf_program__set_priv(struct bpf_program *prog, void *priv, 7775 bpf_program_clear_priv_t clear_priv) 7776 { 7777 if (prog->priv && prog->clear_priv) 7778 prog->clear_priv(prog, prog->priv); 7779 7780 prog->priv = priv; 7781 prog->clear_priv = clear_priv; 7782 return 0; 7783 } 7784 7785 void *bpf_program__priv(const struct bpf_program *prog) 7786 { 7787 return prog ? prog->priv : ERR_PTR(-EINVAL); 7788 } 7789 7790 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 7791 { 7792 prog->prog_ifindex = ifindex; 7793 } 7794 7795 const char *bpf_program__name(const struct bpf_program *prog) 7796 { 7797 return prog->name; 7798 } 7799 7800 const char *bpf_program__section_name(const struct bpf_program *prog) 7801 { 7802 return prog->sec_name; 7803 } 7804 7805 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy) 7806 { 7807 const char *title; 7808 7809 title = prog->sec_name; 7810 if (needs_copy) { 7811 title = strdup(title); 7812 if (!title) { 7813 pr_warn("failed to strdup program title\n"); 7814 return ERR_PTR(-ENOMEM); 7815 } 7816 } 7817 7818 return title; 7819 } 7820 7821 bool bpf_program__autoload(const struct bpf_program *prog) 7822 { 7823 return prog->load; 7824 } 7825 7826 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 7827 { 7828 if (prog->obj->loaded) 7829 return -EINVAL; 7830 7831 prog->load = autoload; 7832 return 0; 7833 } 7834 7835 int bpf_program__fd(const struct bpf_program *prog) 7836 { 7837 return bpf_program__nth_fd(prog, 0); 7838 } 7839 7840 size_t bpf_program__size(const struct bpf_program *prog) 7841 { 7842 return prog->insns_cnt * BPF_INSN_SZ; 7843 } 7844 7845 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances, 7846 bpf_program_prep_t prep) 7847 { 7848 int *instances_fds; 7849 7850 if (nr_instances <= 0 || !prep) 7851 return -EINVAL; 7852 7853 if (prog->instances.nr > 0 || prog->instances.fds) { 7854 pr_warn("Can't set pre-processor after loading\n"); 7855 return -EINVAL; 7856 } 7857 7858 instances_fds = malloc(sizeof(int) * nr_instances); 7859 if (!instances_fds) { 7860 pr_warn("alloc memory failed for fds\n"); 7861 return -ENOMEM; 7862 } 7863 7864 /* fill all fd with -1 */ 7865 memset(instances_fds, -1, sizeof(int) * nr_instances); 7866 7867 prog->instances.nr = nr_instances; 7868 prog->instances.fds = instances_fds; 7869 prog->preprocessor = prep; 7870 return 0; 7871 } 7872 7873 int bpf_program__nth_fd(const struct bpf_program *prog, int n) 7874 { 7875 int fd; 7876 7877 if (!prog) 7878 return -EINVAL; 7879 7880 if (n >= prog->instances.nr || n < 0) { 7881 pr_warn("Can't get the %dth fd from program %s: only %d instances\n", 7882 n, prog->name, prog->instances.nr); 7883 return -EINVAL; 7884 } 7885 7886 fd = prog->instances.fds[n]; 7887 if (fd < 0) { 7888 pr_warn("%dth instance of program '%s' is invalid\n", 7889 n, prog->name); 7890 return -ENOENT; 7891 } 7892 7893 return fd; 7894 } 7895 7896 enum bpf_prog_type bpf_program__get_type(struct bpf_program *prog) 7897 { 7898 return prog->type; 7899 } 7900 7901 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 7902 { 7903 prog->type = type; 7904 } 7905 7906 static bool bpf_program__is_type(const struct bpf_program *prog, 7907 enum bpf_prog_type type) 7908 { 7909 return prog ? (prog->type == type) : false; 7910 } 7911 7912 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \ 7913 int bpf_program__set_##NAME(struct bpf_program *prog) \ 7914 { \ 7915 if (!prog) \ 7916 return -EINVAL; \ 7917 bpf_program__set_type(prog, TYPE); \ 7918 return 0; \ 7919 } \ 7920 \ 7921 bool bpf_program__is_##NAME(const struct bpf_program *prog) \ 7922 { \ 7923 return bpf_program__is_type(prog, TYPE); \ 7924 } \ 7925 7926 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER); 7927 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM); 7928 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE); 7929 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS); 7930 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT); 7931 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT); 7932 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT); 7933 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP); 7934 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT); 7935 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING); 7936 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS); 7937 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT); 7938 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP); 7939 7940 enum bpf_attach_type 7941 bpf_program__get_expected_attach_type(struct bpf_program *prog) 7942 { 7943 return prog->expected_attach_type; 7944 } 7945 7946 void bpf_program__set_expected_attach_type(struct bpf_program *prog, 7947 enum bpf_attach_type type) 7948 { 7949 prog->expected_attach_type = type; 7950 } 7951 7952 #define BPF_PROG_SEC_IMPL(string, ptype, eatype, eatype_optional, \ 7953 attachable, attach_btf) \ 7954 { \ 7955 .sec = string, \ 7956 .len = sizeof(string) - 1, \ 7957 .prog_type = ptype, \ 7958 .expected_attach_type = eatype, \ 7959 .is_exp_attach_type_optional = eatype_optional, \ 7960 .is_attachable = attachable, \ 7961 .is_attach_btf = attach_btf, \ 7962 } 7963 7964 /* Programs that can NOT be attached. */ 7965 #define BPF_PROG_SEC(string, ptype) BPF_PROG_SEC_IMPL(string, ptype, 0, 0, 0, 0) 7966 7967 /* Programs that can be attached. */ 7968 #define BPF_APROG_SEC(string, ptype, atype) \ 7969 BPF_PROG_SEC_IMPL(string, ptype, atype, true, 1, 0) 7970 7971 /* Programs that must specify expected attach type at load time. */ 7972 #define BPF_EAPROG_SEC(string, ptype, eatype) \ 7973 BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 1, 0) 7974 7975 /* Programs that use BTF to identify attach point */ 7976 #define BPF_PROG_BTF(string, ptype, eatype) \ 7977 BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 0, 1) 7978 7979 /* Programs that can be attached but attach type can't be identified by section 7980 * name. Kept for backward compatibility. 7981 */ 7982 #define BPF_APROG_COMPAT(string, ptype) BPF_PROG_SEC(string, ptype) 7983 7984 #define SEC_DEF(sec_pfx, ptype, ...) { \ 7985 .sec = sec_pfx, \ 7986 .len = sizeof(sec_pfx) - 1, \ 7987 .prog_type = BPF_PROG_TYPE_##ptype, \ 7988 __VA_ARGS__ \ 7989 } 7990 7991 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 7992 struct bpf_program *prog); 7993 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 7994 struct bpf_program *prog); 7995 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 7996 struct bpf_program *prog); 7997 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 7998 struct bpf_program *prog); 7999 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec, 8000 struct bpf_program *prog); 8001 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec, 8002 struct bpf_program *prog); 8003 8004 static const struct bpf_sec_def section_defs[] = { 8005 BPF_PROG_SEC("socket", BPF_PROG_TYPE_SOCKET_FILTER), 8006 BPF_PROG_SEC("sk_reuseport", BPF_PROG_TYPE_SK_REUSEPORT), 8007 SEC_DEF("kprobe/", KPROBE, 8008 .attach_fn = attach_kprobe), 8009 BPF_PROG_SEC("uprobe/", BPF_PROG_TYPE_KPROBE), 8010 SEC_DEF("kretprobe/", KPROBE, 8011 .attach_fn = attach_kprobe), 8012 BPF_PROG_SEC("uretprobe/", BPF_PROG_TYPE_KPROBE), 8013 BPF_PROG_SEC("classifier", BPF_PROG_TYPE_SCHED_CLS), 8014 BPF_PROG_SEC("action", BPF_PROG_TYPE_SCHED_ACT), 8015 SEC_DEF("tracepoint/", TRACEPOINT, 8016 .attach_fn = attach_tp), 8017 SEC_DEF("tp/", TRACEPOINT, 8018 .attach_fn = attach_tp), 8019 SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT, 8020 .attach_fn = attach_raw_tp), 8021 SEC_DEF("raw_tp/", RAW_TRACEPOINT, 8022 .attach_fn = attach_raw_tp), 8023 SEC_DEF("tp_btf/", TRACING, 8024 .expected_attach_type = BPF_TRACE_RAW_TP, 8025 .is_attach_btf = true, 8026 .attach_fn = attach_trace), 8027 SEC_DEF("fentry/", TRACING, 8028 .expected_attach_type = BPF_TRACE_FENTRY, 8029 .is_attach_btf = true, 8030 .attach_fn = attach_trace), 8031 SEC_DEF("fmod_ret/", TRACING, 8032 .expected_attach_type = BPF_MODIFY_RETURN, 8033 .is_attach_btf = true, 8034 .attach_fn = attach_trace), 8035 SEC_DEF("fexit/", TRACING, 8036 .expected_attach_type = BPF_TRACE_FEXIT, 8037 .is_attach_btf = true, 8038 .attach_fn = attach_trace), 8039 SEC_DEF("fentry.s/", TRACING, 8040 .expected_attach_type = BPF_TRACE_FENTRY, 8041 .is_attach_btf = true, 8042 .is_sleepable = true, 8043 .attach_fn = attach_trace), 8044 SEC_DEF("fmod_ret.s/", TRACING, 8045 .expected_attach_type = BPF_MODIFY_RETURN, 8046 .is_attach_btf = true, 8047 .is_sleepable = true, 8048 .attach_fn = attach_trace), 8049 SEC_DEF("fexit.s/", TRACING, 8050 .expected_attach_type = BPF_TRACE_FEXIT, 8051 .is_attach_btf = true, 8052 .is_sleepable = true, 8053 .attach_fn = attach_trace), 8054 SEC_DEF("freplace/", EXT, 8055 .is_attach_btf = true, 8056 .attach_fn = attach_trace), 8057 SEC_DEF("lsm/", LSM, 8058 .is_attach_btf = true, 8059 .expected_attach_type = BPF_LSM_MAC, 8060 .attach_fn = attach_lsm), 8061 SEC_DEF("lsm.s/", LSM, 8062 .is_attach_btf = true, 8063 .is_sleepable = true, 8064 .expected_attach_type = BPF_LSM_MAC, 8065 .attach_fn = attach_lsm), 8066 SEC_DEF("iter/", TRACING, 8067 .expected_attach_type = BPF_TRACE_ITER, 8068 .is_attach_btf = true, 8069 .attach_fn = attach_iter), 8070 BPF_EAPROG_SEC("xdp_devmap/", BPF_PROG_TYPE_XDP, 8071 BPF_XDP_DEVMAP), 8072 BPF_EAPROG_SEC("xdp_cpumap/", BPF_PROG_TYPE_XDP, 8073 BPF_XDP_CPUMAP), 8074 BPF_EAPROG_SEC("xdp", BPF_PROG_TYPE_XDP, 8075 BPF_XDP), 8076 BPF_PROG_SEC("perf_event", BPF_PROG_TYPE_PERF_EVENT), 8077 BPF_PROG_SEC("lwt_in", BPF_PROG_TYPE_LWT_IN), 8078 BPF_PROG_SEC("lwt_out", BPF_PROG_TYPE_LWT_OUT), 8079 BPF_PROG_SEC("lwt_xmit", BPF_PROG_TYPE_LWT_XMIT), 8080 BPF_PROG_SEC("lwt_seg6local", BPF_PROG_TYPE_LWT_SEG6LOCAL), 8081 BPF_APROG_SEC("cgroup_skb/ingress", BPF_PROG_TYPE_CGROUP_SKB, 8082 BPF_CGROUP_INET_INGRESS), 8083 BPF_APROG_SEC("cgroup_skb/egress", BPF_PROG_TYPE_CGROUP_SKB, 8084 BPF_CGROUP_INET_EGRESS), 8085 BPF_APROG_COMPAT("cgroup/skb", BPF_PROG_TYPE_CGROUP_SKB), 8086 BPF_EAPROG_SEC("cgroup/sock_create", BPF_PROG_TYPE_CGROUP_SOCK, 8087 BPF_CGROUP_INET_SOCK_CREATE), 8088 BPF_EAPROG_SEC("cgroup/sock_release", BPF_PROG_TYPE_CGROUP_SOCK, 8089 BPF_CGROUP_INET_SOCK_RELEASE), 8090 BPF_APROG_SEC("cgroup/sock", BPF_PROG_TYPE_CGROUP_SOCK, 8091 BPF_CGROUP_INET_SOCK_CREATE), 8092 BPF_EAPROG_SEC("cgroup/post_bind4", BPF_PROG_TYPE_CGROUP_SOCK, 8093 BPF_CGROUP_INET4_POST_BIND), 8094 BPF_EAPROG_SEC("cgroup/post_bind6", BPF_PROG_TYPE_CGROUP_SOCK, 8095 BPF_CGROUP_INET6_POST_BIND), 8096 BPF_APROG_SEC("cgroup/dev", BPF_PROG_TYPE_CGROUP_DEVICE, 8097 BPF_CGROUP_DEVICE), 8098 BPF_APROG_SEC("sockops", BPF_PROG_TYPE_SOCK_OPS, 8099 BPF_CGROUP_SOCK_OPS), 8100 BPF_APROG_SEC("sk_skb/stream_parser", BPF_PROG_TYPE_SK_SKB, 8101 BPF_SK_SKB_STREAM_PARSER), 8102 BPF_APROG_SEC("sk_skb/stream_verdict", BPF_PROG_TYPE_SK_SKB, 8103 BPF_SK_SKB_STREAM_VERDICT), 8104 BPF_APROG_COMPAT("sk_skb", BPF_PROG_TYPE_SK_SKB), 8105 BPF_APROG_SEC("sk_msg", BPF_PROG_TYPE_SK_MSG, 8106 BPF_SK_MSG_VERDICT), 8107 BPF_APROG_SEC("lirc_mode2", BPF_PROG_TYPE_LIRC_MODE2, 8108 BPF_LIRC_MODE2), 8109 BPF_APROG_SEC("flow_dissector", BPF_PROG_TYPE_FLOW_DISSECTOR, 8110 BPF_FLOW_DISSECTOR), 8111 BPF_EAPROG_SEC("cgroup/bind4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8112 BPF_CGROUP_INET4_BIND), 8113 BPF_EAPROG_SEC("cgroup/bind6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8114 BPF_CGROUP_INET6_BIND), 8115 BPF_EAPROG_SEC("cgroup/connect4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8116 BPF_CGROUP_INET4_CONNECT), 8117 BPF_EAPROG_SEC("cgroup/connect6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8118 BPF_CGROUP_INET6_CONNECT), 8119 BPF_EAPROG_SEC("cgroup/sendmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8120 BPF_CGROUP_UDP4_SENDMSG), 8121 BPF_EAPROG_SEC("cgroup/sendmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8122 BPF_CGROUP_UDP6_SENDMSG), 8123 BPF_EAPROG_SEC("cgroup/recvmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8124 BPF_CGROUP_UDP4_RECVMSG), 8125 BPF_EAPROG_SEC("cgroup/recvmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8126 BPF_CGROUP_UDP6_RECVMSG), 8127 BPF_EAPROG_SEC("cgroup/getpeername4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8128 BPF_CGROUP_INET4_GETPEERNAME), 8129 BPF_EAPROG_SEC("cgroup/getpeername6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8130 BPF_CGROUP_INET6_GETPEERNAME), 8131 BPF_EAPROG_SEC("cgroup/getsockname4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8132 BPF_CGROUP_INET4_GETSOCKNAME), 8133 BPF_EAPROG_SEC("cgroup/getsockname6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8134 BPF_CGROUP_INET6_GETSOCKNAME), 8135 BPF_EAPROG_SEC("cgroup/sysctl", BPF_PROG_TYPE_CGROUP_SYSCTL, 8136 BPF_CGROUP_SYSCTL), 8137 BPF_EAPROG_SEC("cgroup/getsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 8138 BPF_CGROUP_GETSOCKOPT), 8139 BPF_EAPROG_SEC("cgroup/setsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 8140 BPF_CGROUP_SETSOCKOPT), 8141 BPF_PROG_SEC("struct_ops", BPF_PROG_TYPE_STRUCT_OPS), 8142 BPF_EAPROG_SEC("sk_lookup/", BPF_PROG_TYPE_SK_LOOKUP, 8143 BPF_SK_LOOKUP), 8144 }; 8145 8146 #undef BPF_PROG_SEC_IMPL 8147 #undef BPF_PROG_SEC 8148 #undef BPF_APROG_SEC 8149 #undef BPF_EAPROG_SEC 8150 #undef BPF_APROG_COMPAT 8151 #undef SEC_DEF 8152 8153 #define MAX_TYPE_NAME_SIZE 32 8154 8155 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8156 { 8157 int i, n = ARRAY_SIZE(section_defs); 8158 8159 for (i = 0; i < n; i++) { 8160 if (strncmp(sec_name, 8161 section_defs[i].sec, section_defs[i].len)) 8162 continue; 8163 return §ion_defs[i]; 8164 } 8165 return NULL; 8166 } 8167 8168 static char *libbpf_get_type_names(bool attach_type) 8169 { 8170 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8171 char *buf; 8172 8173 buf = malloc(len); 8174 if (!buf) 8175 return NULL; 8176 8177 buf[0] = '\0'; 8178 /* Forge string buf with all available names */ 8179 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8180 if (attach_type && !section_defs[i].is_attachable) 8181 continue; 8182 8183 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8184 free(buf); 8185 return NULL; 8186 } 8187 strcat(buf, " "); 8188 strcat(buf, section_defs[i].sec); 8189 } 8190 8191 return buf; 8192 } 8193 8194 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8195 enum bpf_attach_type *expected_attach_type) 8196 { 8197 const struct bpf_sec_def *sec_def; 8198 char *type_names; 8199 8200 if (!name) 8201 return -EINVAL; 8202 8203 sec_def = find_sec_def(name); 8204 if (sec_def) { 8205 *prog_type = sec_def->prog_type; 8206 *expected_attach_type = sec_def->expected_attach_type; 8207 return 0; 8208 } 8209 8210 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8211 type_names = libbpf_get_type_names(false); 8212 if (type_names != NULL) { 8213 pr_debug("supported section(type) names are:%s\n", type_names); 8214 free(type_names); 8215 } 8216 8217 return -ESRCH; 8218 } 8219 8220 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 8221 size_t offset) 8222 { 8223 struct bpf_map *map; 8224 size_t i; 8225 8226 for (i = 0; i < obj->nr_maps; i++) { 8227 map = &obj->maps[i]; 8228 if (!bpf_map__is_struct_ops(map)) 8229 continue; 8230 if (map->sec_offset <= offset && 8231 offset - map->sec_offset < map->def.value_size) 8232 return map; 8233 } 8234 8235 return NULL; 8236 } 8237 8238 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 8239 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 8240 GElf_Shdr *shdr, Elf_Data *data) 8241 { 8242 const struct btf_member *member; 8243 struct bpf_struct_ops *st_ops; 8244 struct bpf_program *prog; 8245 unsigned int shdr_idx; 8246 const struct btf *btf; 8247 struct bpf_map *map; 8248 Elf_Data *symbols; 8249 unsigned int moff, insn_idx; 8250 const char *name; 8251 __u32 member_idx; 8252 GElf_Sym sym; 8253 GElf_Rel rel; 8254 int i, nrels; 8255 8256 symbols = obj->efile.symbols; 8257 btf = obj->btf; 8258 nrels = shdr->sh_size / shdr->sh_entsize; 8259 for (i = 0; i < nrels; i++) { 8260 if (!gelf_getrel(data, i, &rel)) { 8261 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 8262 return -LIBBPF_ERRNO__FORMAT; 8263 } 8264 8265 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 8266 pr_warn("struct_ops reloc: symbol %zx not found\n", 8267 (size_t)GELF_R_SYM(rel.r_info)); 8268 return -LIBBPF_ERRNO__FORMAT; 8269 } 8270 8271 name = elf_sym_str(obj, sym.st_name) ?: "<?>"; 8272 map = find_struct_ops_map_by_offset(obj, rel.r_offset); 8273 if (!map) { 8274 pr_warn("struct_ops reloc: cannot find map at rel.r_offset %zu\n", 8275 (size_t)rel.r_offset); 8276 return -EINVAL; 8277 } 8278 8279 moff = rel.r_offset - map->sec_offset; 8280 shdr_idx = sym.st_shndx; 8281 st_ops = map->st_ops; 8282 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel.r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 8283 map->name, 8284 (long long)(rel.r_info >> 32), 8285 (long long)sym.st_value, 8286 shdr_idx, (size_t)rel.r_offset, 8287 map->sec_offset, sym.st_name, name); 8288 8289 if (shdr_idx >= SHN_LORESERVE) { 8290 pr_warn("struct_ops reloc %s: rel.r_offset %zu shdr_idx %u unsupported non-static function\n", 8291 map->name, (size_t)rel.r_offset, shdr_idx); 8292 return -LIBBPF_ERRNO__RELOC; 8293 } 8294 if (sym.st_value % BPF_INSN_SZ) { 8295 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 8296 map->name, (unsigned long long)sym.st_value); 8297 return -LIBBPF_ERRNO__FORMAT; 8298 } 8299 insn_idx = sym.st_value / BPF_INSN_SZ; 8300 8301 member = find_member_by_offset(st_ops->type, moff * 8); 8302 if (!member) { 8303 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 8304 map->name, moff); 8305 return -EINVAL; 8306 } 8307 member_idx = member - btf_members(st_ops->type); 8308 name = btf__name_by_offset(btf, member->name_off); 8309 8310 if (!resolve_func_ptr(btf, member->type, NULL)) { 8311 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 8312 map->name, name); 8313 return -EINVAL; 8314 } 8315 8316 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 8317 if (!prog) { 8318 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 8319 map->name, shdr_idx, name); 8320 return -EINVAL; 8321 } 8322 8323 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 8324 const struct bpf_sec_def *sec_def; 8325 8326 sec_def = find_sec_def(prog->sec_name); 8327 if (sec_def && 8328 sec_def->prog_type != BPF_PROG_TYPE_STRUCT_OPS) { 8329 /* for pr_warn */ 8330 prog->type = sec_def->prog_type; 8331 goto invalid_prog; 8332 } 8333 8334 prog->type = BPF_PROG_TYPE_STRUCT_OPS; 8335 prog->attach_btf_id = st_ops->type_id; 8336 prog->expected_attach_type = member_idx; 8337 } else if (prog->type != BPF_PROG_TYPE_STRUCT_OPS || 8338 prog->attach_btf_id != st_ops->type_id || 8339 prog->expected_attach_type != member_idx) { 8340 goto invalid_prog; 8341 } 8342 st_ops->progs[member_idx] = prog; 8343 } 8344 8345 return 0; 8346 8347 invalid_prog: 8348 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 8349 map->name, prog->name, prog->sec_name, prog->type, 8350 prog->attach_btf_id, prog->expected_attach_type, name); 8351 return -EINVAL; 8352 } 8353 8354 #define BTF_TRACE_PREFIX "btf_trace_" 8355 #define BTF_LSM_PREFIX "bpf_lsm_" 8356 #define BTF_ITER_PREFIX "bpf_iter_" 8357 #define BTF_MAX_NAME_SIZE 128 8358 8359 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 8360 const char *name, __u32 kind) 8361 { 8362 char btf_type_name[BTF_MAX_NAME_SIZE]; 8363 int ret; 8364 8365 ret = snprintf(btf_type_name, sizeof(btf_type_name), 8366 "%s%s", prefix, name); 8367 /* snprintf returns the number of characters written excluding the 8368 * the terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 8369 * indicates truncation. 8370 */ 8371 if (ret < 0 || ret >= sizeof(btf_type_name)) 8372 return -ENAMETOOLONG; 8373 return btf__find_by_name_kind(btf, btf_type_name, kind); 8374 } 8375 8376 static inline int __find_vmlinux_btf_id(struct btf *btf, const char *name, 8377 enum bpf_attach_type attach_type) 8378 { 8379 int err; 8380 8381 if (attach_type == BPF_TRACE_RAW_TP) 8382 err = find_btf_by_prefix_kind(btf, BTF_TRACE_PREFIX, name, 8383 BTF_KIND_TYPEDEF); 8384 else if (attach_type == BPF_LSM_MAC) 8385 err = find_btf_by_prefix_kind(btf, BTF_LSM_PREFIX, name, 8386 BTF_KIND_FUNC); 8387 else if (attach_type == BPF_TRACE_ITER) 8388 err = find_btf_by_prefix_kind(btf, BTF_ITER_PREFIX, name, 8389 BTF_KIND_FUNC); 8390 else 8391 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 8392 8393 if (err <= 0) 8394 pr_warn("%s is not found in vmlinux BTF\n", name); 8395 8396 return err; 8397 } 8398 8399 int libbpf_find_vmlinux_btf_id(const char *name, 8400 enum bpf_attach_type attach_type) 8401 { 8402 struct btf *btf; 8403 int err; 8404 8405 btf = libbpf_find_kernel_btf(); 8406 if (IS_ERR(btf)) { 8407 pr_warn("vmlinux BTF is not found\n"); 8408 return -EINVAL; 8409 } 8410 8411 err = __find_vmlinux_btf_id(btf, name, attach_type); 8412 btf__free(btf); 8413 return err; 8414 } 8415 8416 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 8417 { 8418 struct bpf_prog_info_linear *info_linear; 8419 struct bpf_prog_info *info; 8420 struct btf *btf = NULL; 8421 int err = -EINVAL; 8422 8423 info_linear = bpf_program__get_prog_info_linear(attach_prog_fd, 0); 8424 if (IS_ERR_OR_NULL(info_linear)) { 8425 pr_warn("failed get_prog_info_linear for FD %d\n", 8426 attach_prog_fd); 8427 return -EINVAL; 8428 } 8429 info = &info_linear->info; 8430 if (!info->btf_id) { 8431 pr_warn("The target program doesn't have BTF\n"); 8432 goto out; 8433 } 8434 if (btf__get_from_id(info->btf_id, &btf)) { 8435 pr_warn("Failed to get BTF of the program\n"); 8436 goto out; 8437 } 8438 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 8439 btf__free(btf); 8440 if (err <= 0) { 8441 pr_warn("%s is not found in prog's BTF\n", name); 8442 goto out; 8443 } 8444 out: 8445 free(info_linear); 8446 return err; 8447 } 8448 8449 static int libbpf_find_attach_btf_id(struct bpf_program *prog) 8450 { 8451 enum bpf_attach_type attach_type = prog->expected_attach_type; 8452 __u32 attach_prog_fd = prog->attach_prog_fd; 8453 const char *name = prog->sec_name; 8454 int i, err; 8455 8456 if (!name) 8457 return -EINVAL; 8458 8459 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8460 if (!section_defs[i].is_attach_btf) 8461 continue; 8462 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 8463 continue; 8464 if (attach_prog_fd) 8465 err = libbpf_find_prog_btf_id(name + section_defs[i].len, 8466 attach_prog_fd); 8467 else 8468 err = __find_vmlinux_btf_id(prog->obj->btf_vmlinux, 8469 name + section_defs[i].len, 8470 attach_type); 8471 return err; 8472 } 8473 pr_warn("failed to identify btf_id based on ELF section name '%s'\n", name); 8474 return -ESRCH; 8475 } 8476 8477 int libbpf_attach_type_by_name(const char *name, 8478 enum bpf_attach_type *attach_type) 8479 { 8480 char *type_names; 8481 int i; 8482 8483 if (!name) 8484 return -EINVAL; 8485 8486 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8487 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 8488 continue; 8489 if (!section_defs[i].is_attachable) 8490 return -EINVAL; 8491 *attach_type = section_defs[i].expected_attach_type; 8492 return 0; 8493 } 8494 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 8495 type_names = libbpf_get_type_names(true); 8496 if (type_names != NULL) { 8497 pr_debug("attachable section(type) names are:%s\n", type_names); 8498 free(type_names); 8499 } 8500 8501 return -EINVAL; 8502 } 8503 8504 int bpf_map__fd(const struct bpf_map *map) 8505 { 8506 return map ? map->fd : -EINVAL; 8507 } 8508 8509 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map) 8510 { 8511 return map ? &map->def : ERR_PTR(-EINVAL); 8512 } 8513 8514 const char *bpf_map__name(const struct bpf_map *map) 8515 { 8516 return map ? map->name : NULL; 8517 } 8518 8519 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 8520 { 8521 return map->def.type; 8522 } 8523 8524 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 8525 { 8526 if (map->fd >= 0) 8527 return -EBUSY; 8528 map->def.type = type; 8529 return 0; 8530 } 8531 8532 __u32 bpf_map__map_flags(const struct bpf_map *map) 8533 { 8534 return map->def.map_flags; 8535 } 8536 8537 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 8538 { 8539 if (map->fd >= 0) 8540 return -EBUSY; 8541 map->def.map_flags = flags; 8542 return 0; 8543 } 8544 8545 __u32 bpf_map__numa_node(const struct bpf_map *map) 8546 { 8547 return map->numa_node; 8548 } 8549 8550 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 8551 { 8552 if (map->fd >= 0) 8553 return -EBUSY; 8554 map->numa_node = numa_node; 8555 return 0; 8556 } 8557 8558 __u32 bpf_map__key_size(const struct bpf_map *map) 8559 { 8560 return map->def.key_size; 8561 } 8562 8563 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 8564 { 8565 if (map->fd >= 0) 8566 return -EBUSY; 8567 map->def.key_size = size; 8568 return 0; 8569 } 8570 8571 __u32 bpf_map__value_size(const struct bpf_map *map) 8572 { 8573 return map->def.value_size; 8574 } 8575 8576 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 8577 { 8578 if (map->fd >= 0) 8579 return -EBUSY; 8580 map->def.value_size = size; 8581 return 0; 8582 } 8583 8584 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 8585 { 8586 return map ? map->btf_key_type_id : 0; 8587 } 8588 8589 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 8590 { 8591 return map ? map->btf_value_type_id : 0; 8592 } 8593 8594 int bpf_map__set_priv(struct bpf_map *map, void *priv, 8595 bpf_map_clear_priv_t clear_priv) 8596 { 8597 if (!map) 8598 return -EINVAL; 8599 8600 if (map->priv) { 8601 if (map->clear_priv) 8602 map->clear_priv(map, map->priv); 8603 } 8604 8605 map->priv = priv; 8606 map->clear_priv = clear_priv; 8607 return 0; 8608 } 8609 8610 void *bpf_map__priv(const struct bpf_map *map) 8611 { 8612 return map ? map->priv : ERR_PTR(-EINVAL); 8613 } 8614 8615 int bpf_map__set_initial_value(struct bpf_map *map, 8616 const void *data, size_t size) 8617 { 8618 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 8619 size != map->def.value_size || map->fd >= 0) 8620 return -EINVAL; 8621 8622 memcpy(map->mmaped, data, size); 8623 return 0; 8624 } 8625 8626 bool bpf_map__is_offload_neutral(const struct bpf_map *map) 8627 { 8628 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 8629 } 8630 8631 bool bpf_map__is_internal(const struct bpf_map *map) 8632 { 8633 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 8634 } 8635 8636 __u32 bpf_map__ifindex(const struct bpf_map *map) 8637 { 8638 return map->map_ifindex; 8639 } 8640 8641 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 8642 { 8643 if (map->fd >= 0) 8644 return -EBUSY; 8645 map->map_ifindex = ifindex; 8646 return 0; 8647 } 8648 8649 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 8650 { 8651 if (!bpf_map_type__is_map_in_map(map->def.type)) { 8652 pr_warn("error: unsupported map type\n"); 8653 return -EINVAL; 8654 } 8655 if (map->inner_map_fd != -1) { 8656 pr_warn("error: inner_map_fd already specified\n"); 8657 return -EINVAL; 8658 } 8659 map->inner_map_fd = fd; 8660 return 0; 8661 } 8662 8663 static struct bpf_map * 8664 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 8665 { 8666 ssize_t idx; 8667 struct bpf_map *s, *e; 8668 8669 if (!obj || !obj->maps) 8670 return NULL; 8671 8672 s = obj->maps; 8673 e = obj->maps + obj->nr_maps; 8674 8675 if ((m < s) || (m >= e)) { 8676 pr_warn("error in %s: map handler doesn't belong to object\n", 8677 __func__); 8678 return NULL; 8679 } 8680 8681 idx = (m - obj->maps) + i; 8682 if (idx >= obj->nr_maps || idx < 0) 8683 return NULL; 8684 return &obj->maps[idx]; 8685 } 8686 8687 struct bpf_map * 8688 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj) 8689 { 8690 if (prev == NULL) 8691 return obj->maps; 8692 8693 return __bpf_map__iter(prev, obj, 1); 8694 } 8695 8696 struct bpf_map * 8697 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj) 8698 { 8699 if (next == NULL) { 8700 if (!obj->nr_maps) 8701 return NULL; 8702 return obj->maps + obj->nr_maps - 1; 8703 } 8704 8705 return __bpf_map__iter(next, obj, -1); 8706 } 8707 8708 struct bpf_map * 8709 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 8710 { 8711 struct bpf_map *pos; 8712 8713 bpf_object__for_each_map(pos, obj) { 8714 if (pos->name && !strcmp(pos->name, name)) 8715 return pos; 8716 } 8717 return NULL; 8718 } 8719 8720 int 8721 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 8722 { 8723 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 8724 } 8725 8726 struct bpf_map * 8727 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset) 8728 { 8729 return ERR_PTR(-ENOTSUP); 8730 } 8731 8732 long libbpf_get_error(const void *ptr) 8733 { 8734 return PTR_ERR_OR_ZERO(ptr); 8735 } 8736 8737 int bpf_prog_load(const char *file, enum bpf_prog_type type, 8738 struct bpf_object **pobj, int *prog_fd) 8739 { 8740 struct bpf_prog_load_attr attr; 8741 8742 memset(&attr, 0, sizeof(struct bpf_prog_load_attr)); 8743 attr.file = file; 8744 attr.prog_type = type; 8745 attr.expected_attach_type = 0; 8746 8747 return bpf_prog_load_xattr(&attr, pobj, prog_fd); 8748 } 8749 8750 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr, 8751 struct bpf_object **pobj, int *prog_fd) 8752 { 8753 struct bpf_object_open_attr open_attr = {}; 8754 struct bpf_program *prog, *first_prog = NULL; 8755 struct bpf_object *obj; 8756 struct bpf_map *map; 8757 int err; 8758 8759 if (!attr) 8760 return -EINVAL; 8761 if (!attr->file) 8762 return -EINVAL; 8763 8764 open_attr.file = attr->file; 8765 open_attr.prog_type = attr->prog_type; 8766 8767 obj = bpf_object__open_xattr(&open_attr); 8768 if (IS_ERR_OR_NULL(obj)) 8769 return -ENOENT; 8770 8771 bpf_object__for_each_program(prog, obj) { 8772 enum bpf_attach_type attach_type = attr->expected_attach_type; 8773 /* 8774 * to preserve backwards compatibility, bpf_prog_load treats 8775 * attr->prog_type, if specified, as an override to whatever 8776 * bpf_object__open guessed 8777 */ 8778 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) { 8779 bpf_program__set_type(prog, attr->prog_type); 8780 bpf_program__set_expected_attach_type(prog, 8781 attach_type); 8782 } 8783 if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) { 8784 /* 8785 * we haven't guessed from section name and user 8786 * didn't provide a fallback type, too bad... 8787 */ 8788 bpf_object__close(obj); 8789 return -EINVAL; 8790 } 8791 8792 prog->prog_ifindex = attr->ifindex; 8793 prog->log_level = attr->log_level; 8794 prog->prog_flags |= attr->prog_flags; 8795 if (!first_prog) 8796 first_prog = prog; 8797 } 8798 8799 bpf_object__for_each_map(map, obj) { 8800 if (!bpf_map__is_offload_neutral(map)) 8801 map->map_ifindex = attr->ifindex; 8802 } 8803 8804 if (!first_prog) { 8805 pr_warn("object file doesn't contain bpf program\n"); 8806 bpf_object__close(obj); 8807 return -ENOENT; 8808 } 8809 8810 err = bpf_object__load(obj); 8811 if (err) { 8812 bpf_object__close(obj); 8813 return err; 8814 } 8815 8816 *pobj = obj; 8817 *prog_fd = bpf_program__fd(first_prog); 8818 return 0; 8819 } 8820 8821 struct bpf_link { 8822 int (*detach)(struct bpf_link *link); 8823 int (*destroy)(struct bpf_link *link); 8824 char *pin_path; /* NULL, if not pinned */ 8825 int fd; /* hook FD, -1 if not applicable */ 8826 bool disconnected; 8827 }; 8828 8829 /* Replace link's underlying BPF program with the new one */ 8830 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 8831 { 8832 return bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 8833 } 8834 8835 /* Release "ownership" of underlying BPF resource (typically, BPF program 8836 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 8837 * link, when destructed through bpf_link__destroy() call won't attempt to 8838 * detach/unregisted that BPF resource. This is useful in situations where, 8839 * say, attached BPF program has to outlive userspace program that attached it 8840 * in the system. Depending on type of BPF program, though, there might be 8841 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 8842 * exit of userspace program doesn't trigger automatic detachment and clean up 8843 * inside the kernel. 8844 */ 8845 void bpf_link__disconnect(struct bpf_link *link) 8846 { 8847 link->disconnected = true; 8848 } 8849 8850 int bpf_link__destroy(struct bpf_link *link) 8851 { 8852 int err = 0; 8853 8854 if (IS_ERR_OR_NULL(link)) 8855 return 0; 8856 8857 if (!link->disconnected && link->detach) 8858 err = link->detach(link); 8859 if (link->destroy) 8860 link->destroy(link); 8861 if (link->pin_path) 8862 free(link->pin_path); 8863 free(link); 8864 8865 return err; 8866 } 8867 8868 int bpf_link__fd(const struct bpf_link *link) 8869 { 8870 return link->fd; 8871 } 8872 8873 const char *bpf_link__pin_path(const struct bpf_link *link) 8874 { 8875 return link->pin_path; 8876 } 8877 8878 static int bpf_link__detach_fd(struct bpf_link *link) 8879 { 8880 return close(link->fd); 8881 } 8882 8883 struct bpf_link *bpf_link__open(const char *path) 8884 { 8885 struct bpf_link *link; 8886 int fd; 8887 8888 fd = bpf_obj_get(path); 8889 if (fd < 0) { 8890 fd = -errno; 8891 pr_warn("failed to open link at %s: %d\n", path, fd); 8892 return ERR_PTR(fd); 8893 } 8894 8895 link = calloc(1, sizeof(*link)); 8896 if (!link) { 8897 close(fd); 8898 return ERR_PTR(-ENOMEM); 8899 } 8900 link->detach = &bpf_link__detach_fd; 8901 link->fd = fd; 8902 8903 link->pin_path = strdup(path); 8904 if (!link->pin_path) { 8905 bpf_link__destroy(link); 8906 return ERR_PTR(-ENOMEM); 8907 } 8908 8909 return link; 8910 } 8911 8912 int bpf_link__detach(struct bpf_link *link) 8913 { 8914 return bpf_link_detach(link->fd) ? -errno : 0; 8915 } 8916 8917 int bpf_link__pin(struct bpf_link *link, const char *path) 8918 { 8919 int err; 8920 8921 if (link->pin_path) 8922 return -EBUSY; 8923 err = make_parent_dir(path); 8924 if (err) 8925 return err; 8926 err = check_path(path); 8927 if (err) 8928 return err; 8929 8930 link->pin_path = strdup(path); 8931 if (!link->pin_path) 8932 return -ENOMEM; 8933 8934 if (bpf_obj_pin(link->fd, link->pin_path)) { 8935 err = -errno; 8936 zfree(&link->pin_path); 8937 return err; 8938 } 8939 8940 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 8941 return 0; 8942 } 8943 8944 int bpf_link__unpin(struct bpf_link *link) 8945 { 8946 int err; 8947 8948 if (!link->pin_path) 8949 return -EINVAL; 8950 8951 err = unlink(link->pin_path); 8952 if (err != 0) 8953 return -errno; 8954 8955 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 8956 zfree(&link->pin_path); 8957 return 0; 8958 } 8959 8960 static int bpf_link__detach_perf_event(struct bpf_link *link) 8961 { 8962 int err; 8963 8964 err = ioctl(link->fd, PERF_EVENT_IOC_DISABLE, 0); 8965 if (err) 8966 err = -errno; 8967 8968 close(link->fd); 8969 return err; 8970 } 8971 8972 struct bpf_link *bpf_program__attach_perf_event(struct bpf_program *prog, 8973 int pfd) 8974 { 8975 char errmsg[STRERR_BUFSIZE]; 8976 struct bpf_link *link; 8977 int prog_fd, err; 8978 8979 if (pfd < 0) { 8980 pr_warn("prog '%s': invalid perf event FD %d\n", 8981 prog->name, pfd); 8982 return ERR_PTR(-EINVAL); 8983 } 8984 prog_fd = bpf_program__fd(prog); 8985 if (prog_fd < 0) { 8986 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 8987 prog->name); 8988 return ERR_PTR(-EINVAL); 8989 } 8990 8991 link = calloc(1, sizeof(*link)); 8992 if (!link) 8993 return ERR_PTR(-ENOMEM); 8994 link->detach = &bpf_link__detach_perf_event; 8995 link->fd = pfd; 8996 8997 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 8998 err = -errno; 8999 free(link); 9000 pr_warn("prog '%s': failed to attach to pfd %d: %s\n", 9001 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9002 if (err == -EPROTO) 9003 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 9004 prog->name, pfd); 9005 return ERR_PTR(err); 9006 } 9007 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9008 err = -errno; 9009 free(link); 9010 pr_warn("prog '%s': failed to enable pfd %d: %s\n", 9011 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9012 return ERR_PTR(err); 9013 } 9014 return link; 9015 } 9016 9017 /* 9018 * this function is expected to parse integer in the range of [0, 2^31-1] from 9019 * given file using scanf format string fmt. If actual parsed value is 9020 * negative, the result might be indistinguishable from error 9021 */ 9022 static int parse_uint_from_file(const char *file, const char *fmt) 9023 { 9024 char buf[STRERR_BUFSIZE]; 9025 int err, ret; 9026 FILE *f; 9027 9028 f = fopen(file, "r"); 9029 if (!f) { 9030 err = -errno; 9031 pr_debug("failed to open '%s': %s\n", file, 9032 libbpf_strerror_r(err, buf, sizeof(buf))); 9033 return err; 9034 } 9035 err = fscanf(f, fmt, &ret); 9036 if (err != 1) { 9037 err = err == EOF ? -EIO : -errno; 9038 pr_debug("failed to parse '%s': %s\n", file, 9039 libbpf_strerror_r(err, buf, sizeof(buf))); 9040 fclose(f); 9041 return err; 9042 } 9043 fclose(f); 9044 return ret; 9045 } 9046 9047 static int determine_kprobe_perf_type(void) 9048 { 9049 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 9050 9051 return parse_uint_from_file(file, "%d\n"); 9052 } 9053 9054 static int determine_uprobe_perf_type(void) 9055 { 9056 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 9057 9058 return parse_uint_from_file(file, "%d\n"); 9059 } 9060 9061 static int determine_kprobe_retprobe_bit(void) 9062 { 9063 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 9064 9065 return parse_uint_from_file(file, "config:%d\n"); 9066 } 9067 9068 static int determine_uprobe_retprobe_bit(void) 9069 { 9070 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 9071 9072 return parse_uint_from_file(file, "config:%d\n"); 9073 } 9074 9075 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 9076 uint64_t offset, int pid) 9077 { 9078 struct perf_event_attr attr = {}; 9079 char errmsg[STRERR_BUFSIZE]; 9080 int type, pfd, err; 9081 9082 type = uprobe ? determine_uprobe_perf_type() 9083 : determine_kprobe_perf_type(); 9084 if (type < 0) { 9085 pr_warn("failed to determine %s perf type: %s\n", 9086 uprobe ? "uprobe" : "kprobe", 9087 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 9088 return type; 9089 } 9090 if (retprobe) { 9091 int bit = uprobe ? determine_uprobe_retprobe_bit() 9092 : determine_kprobe_retprobe_bit(); 9093 9094 if (bit < 0) { 9095 pr_warn("failed to determine %s retprobe bit: %s\n", 9096 uprobe ? "uprobe" : "kprobe", 9097 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 9098 return bit; 9099 } 9100 attr.config |= 1 << bit; 9101 } 9102 attr.size = sizeof(attr); 9103 attr.type = type; 9104 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 9105 attr.config2 = offset; /* kprobe_addr or probe_offset */ 9106 9107 /* pid filter is meaningful only for uprobes */ 9108 pfd = syscall(__NR_perf_event_open, &attr, 9109 pid < 0 ? -1 : pid /* pid */, 9110 pid == -1 ? 0 : -1 /* cpu */, 9111 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9112 if (pfd < 0) { 9113 err = -errno; 9114 pr_warn("%s perf_event_open() failed: %s\n", 9115 uprobe ? "uprobe" : "kprobe", 9116 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9117 return err; 9118 } 9119 return pfd; 9120 } 9121 9122 struct bpf_link *bpf_program__attach_kprobe(struct bpf_program *prog, 9123 bool retprobe, 9124 const char *func_name) 9125 { 9126 char errmsg[STRERR_BUFSIZE]; 9127 struct bpf_link *link; 9128 int pfd, err; 9129 9130 pfd = perf_event_open_probe(false /* uprobe */, retprobe, func_name, 9131 0 /* offset */, -1 /* pid */); 9132 if (pfd < 0) { 9133 pr_warn("prog '%s': failed to create %s '%s' perf event: %s\n", 9134 prog->name, retprobe ? "kretprobe" : "kprobe", func_name, 9135 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9136 return ERR_PTR(pfd); 9137 } 9138 link = bpf_program__attach_perf_event(prog, pfd); 9139 if (IS_ERR(link)) { 9140 close(pfd); 9141 err = PTR_ERR(link); 9142 pr_warn("prog '%s': failed to attach to %s '%s': %s\n", 9143 prog->name, retprobe ? "kretprobe" : "kprobe", func_name, 9144 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9145 return link; 9146 } 9147 return link; 9148 } 9149 9150 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 9151 struct bpf_program *prog) 9152 { 9153 const char *func_name; 9154 bool retprobe; 9155 9156 func_name = prog->sec_name + sec->len; 9157 retprobe = strcmp(sec->sec, "kretprobe/") == 0; 9158 9159 return bpf_program__attach_kprobe(prog, retprobe, func_name); 9160 } 9161 9162 struct bpf_link *bpf_program__attach_uprobe(struct bpf_program *prog, 9163 bool retprobe, pid_t pid, 9164 const char *binary_path, 9165 size_t func_offset) 9166 { 9167 char errmsg[STRERR_BUFSIZE]; 9168 struct bpf_link *link; 9169 int pfd, err; 9170 9171 pfd = perf_event_open_probe(true /* uprobe */, retprobe, 9172 binary_path, func_offset, pid); 9173 if (pfd < 0) { 9174 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 9175 prog->name, retprobe ? "uretprobe" : "uprobe", 9176 binary_path, func_offset, 9177 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9178 return ERR_PTR(pfd); 9179 } 9180 link = bpf_program__attach_perf_event(prog, pfd); 9181 if (IS_ERR(link)) { 9182 close(pfd); 9183 err = PTR_ERR(link); 9184 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 9185 prog->name, retprobe ? "uretprobe" : "uprobe", 9186 binary_path, func_offset, 9187 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9188 return link; 9189 } 9190 return link; 9191 } 9192 9193 static int determine_tracepoint_id(const char *tp_category, 9194 const char *tp_name) 9195 { 9196 char file[PATH_MAX]; 9197 int ret; 9198 9199 ret = snprintf(file, sizeof(file), 9200 "/sys/kernel/debug/tracing/events/%s/%s/id", 9201 tp_category, tp_name); 9202 if (ret < 0) 9203 return -errno; 9204 if (ret >= sizeof(file)) { 9205 pr_debug("tracepoint %s/%s path is too long\n", 9206 tp_category, tp_name); 9207 return -E2BIG; 9208 } 9209 return parse_uint_from_file(file, "%d\n"); 9210 } 9211 9212 static int perf_event_open_tracepoint(const char *tp_category, 9213 const char *tp_name) 9214 { 9215 struct perf_event_attr attr = {}; 9216 char errmsg[STRERR_BUFSIZE]; 9217 int tp_id, pfd, err; 9218 9219 tp_id = determine_tracepoint_id(tp_category, tp_name); 9220 if (tp_id < 0) { 9221 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 9222 tp_category, tp_name, 9223 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 9224 return tp_id; 9225 } 9226 9227 attr.type = PERF_TYPE_TRACEPOINT; 9228 attr.size = sizeof(attr); 9229 attr.config = tp_id; 9230 9231 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 9232 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9233 if (pfd < 0) { 9234 err = -errno; 9235 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 9236 tp_category, tp_name, 9237 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9238 return err; 9239 } 9240 return pfd; 9241 } 9242 9243 struct bpf_link *bpf_program__attach_tracepoint(struct bpf_program *prog, 9244 const char *tp_category, 9245 const char *tp_name) 9246 { 9247 char errmsg[STRERR_BUFSIZE]; 9248 struct bpf_link *link; 9249 int pfd, err; 9250 9251 pfd = perf_event_open_tracepoint(tp_category, tp_name); 9252 if (pfd < 0) { 9253 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 9254 prog->name, tp_category, tp_name, 9255 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9256 return ERR_PTR(pfd); 9257 } 9258 link = bpf_program__attach_perf_event(prog, pfd); 9259 if (IS_ERR(link)) { 9260 close(pfd); 9261 err = PTR_ERR(link); 9262 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 9263 prog->name, tp_category, tp_name, 9264 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9265 return link; 9266 } 9267 return link; 9268 } 9269 9270 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 9271 struct bpf_program *prog) 9272 { 9273 char *sec_name, *tp_cat, *tp_name; 9274 struct bpf_link *link; 9275 9276 sec_name = strdup(prog->sec_name); 9277 if (!sec_name) 9278 return ERR_PTR(-ENOMEM); 9279 9280 /* extract "tp/<category>/<name>" */ 9281 tp_cat = sec_name + sec->len; 9282 tp_name = strchr(tp_cat, '/'); 9283 if (!tp_name) { 9284 link = ERR_PTR(-EINVAL); 9285 goto out; 9286 } 9287 *tp_name = '\0'; 9288 tp_name++; 9289 9290 link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 9291 out: 9292 free(sec_name); 9293 return link; 9294 } 9295 9296 struct bpf_link *bpf_program__attach_raw_tracepoint(struct bpf_program *prog, 9297 const char *tp_name) 9298 { 9299 char errmsg[STRERR_BUFSIZE]; 9300 struct bpf_link *link; 9301 int prog_fd, pfd; 9302 9303 prog_fd = bpf_program__fd(prog); 9304 if (prog_fd < 0) { 9305 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 9306 return ERR_PTR(-EINVAL); 9307 } 9308 9309 link = calloc(1, sizeof(*link)); 9310 if (!link) 9311 return ERR_PTR(-ENOMEM); 9312 link->detach = &bpf_link__detach_fd; 9313 9314 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 9315 if (pfd < 0) { 9316 pfd = -errno; 9317 free(link); 9318 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 9319 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9320 return ERR_PTR(pfd); 9321 } 9322 link->fd = pfd; 9323 return link; 9324 } 9325 9326 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 9327 struct bpf_program *prog) 9328 { 9329 const char *tp_name = prog->sec_name + sec->len; 9330 9331 return bpf_program__attach_raw_tracepoint(prog, tp_name); 9332 } 9333 9334 /* Common logic for all BPF program types that attach to a btf_id */ 9335 static struct bpf_link *bpf_program__attach_btf_id(struct bpf_program *prog) 9336 { 9337 char errmsg[STRERR_BUFSIZE]; 9338 struct bpf_link *link; 9339 int prog_fd, pfd; 9340 9341 prog_fd = bpf_program__fd(prog); 9342 if (prog_fd < 0) { 9343 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 9344 return ERR_PTR(-EINVAL); 9345 } 9346 9347 link = calloc(1, sizeof(*link)); 9348 if (!link) 9349 return ERR_PTR(-ENOMEM); 9350 link->detach = &bpf_link__detach_fd; 9351 9352 pfd = bpf_raw_tracepoint_open(NULL, prog_fd); 9353 if (pfd < 0) { 9354 pfd = -errno; 9355 free(link); 9356 pr_warn("prog '%s': failed to attach: %s\n", 9357 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9358 return ERR_PTR(pfd); 9359 } 9360 link->fd = pfd; 9361 return (struct bpf_link *)link; 9362 } 9363 9364 struct bpf_link *bpf_program__attach_trace(struct bpf_program *prog) 9365 { 9366 return bpf_program__attach_btf_id(prog); 9367 } 9368 9369 struct bpf_link *bpf_program__attach_lsm(struct bpf_program *prog) 9370 { 9371 return bpf_program__attach_btf_id(prog); 9372 } 9373 9374 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 9375 struct bpf_program *prog) 9376 { 9377 return bpf_program__attach_trace(prog); 9378 } 9379 9380 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec, 9381 struct bpf_program *prog) 9382 { 9383 return bpf_program__attach_lsm(prog); 9384 } 9385 9386 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec, 9387 struct bpf_program *prog) 9388 { 9389 return bpf_program__attach_iter(prog, NULL); 9390 } 9391 9392 static struct bpf_link * 9393 bpf_program__attach_fd(struct bpf_program *prog, int target_fd, 9394 const char *target_name) 9395 { 9396 enum bpf_attach_type attach_type; 9397 char errmsg[STRERR_BUFSIZE]; 9398 struct bpf_link *link; 9399 int prog_fd, link_fd; 9400 9401 prog_fd = bpf_program__fd(prog); 9402 if (prog_fd < 0) { 9403 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 9404 return ERR_PTR(-EINVAL); 9405 } 9406 9407 link = calloc(1, sizeof(*link)); 9408 if (!link) 9409 return ERR_PTR(-ENOMEM); 9410 link->detach = &bpf_link__detach_fd; 9411 9412 attach_type = bpf_program__get_expected_attach_type(prog); 9413 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, NULL); 9414 if (link_fd < 0) { 9415 link_fd = -errno; 9416 free(link); 9417 pr_warn("prog '%s': failed to attach to %s: %s\n", 9418 prog->name, target_name, 9419 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 9420 return ERR_PTR(link_fd); 9421 } 9422 link->fd = link_fd; 9423 return link; 9424 } 9425 9426 struct bpf_link * 9427 bpf_program__attach_cgroup(struct bpf_program *prog, int cgroup_fd) 9428 { 9429 return bpf_program__attach_fd(prog, cgroup_fd, "cgroup"); 9430 } 9431 9432 struct bpf_link * 9433 bpf_program__attach_netns(struct bpf_program *prog, int netns_fd) 9434 { 9435 return bpf_program__attach_fd(prog, netns_fd, "netns"); 9436 } 9437 9438 struct bpf_link *bpf_program__attach_xdp(struct bpf_program *prog, int ifindex) 9439 { 9440 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 9441 return bpf_program__attach_fd(prog, ifindex, "xdp"); 9442 } 9443 9444 struct bpf_link * 9445 bpf_program__attach_iter(struct bpf_program *prog, 9446 const struct bpf_iter_attach_opts *opts) 9447 { 9448 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 9449 char errmsg[STRERR_BUFSIZE]; 9450 struct bpf_link *link; 9451 int prog_fd, link_fd; 9452 __u32 target_fd = 0; 9453 9454 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 9455 return ERR_PTR(-EINVAL); 9456 9457 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 9458 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 9459 9460 prog_fd = bpf_program__fd(prog); 9461 if (prog_fd < 0) { 9462 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 9463 return ERR_PTR(-EINVAL); 9464 } 9465 9466 link = calloc(1, sizeof(*link)); 9467 if (!link) 9468 return ERR_PTR(-ENOMEM); 9469 link->detach = &bpf_link__detach_fd; 9470 9471 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 9472 &link_create_opts); 9473 if (link_fd < 0) { 9474 link_fd = -errno; 9475 free(link); 9476 pr_warn("prog '%s': failed to attach to iterator: %s\n", 9477 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 9478 return ERR_PTR(link_fd); 9479 } 9480 link->fd = link_fd; 9481 return link; 9482 } 9483 9484 struct bpf_link *bpf_program__attach(struct bpf_program *prog) 9485 { 9486 const struct bpf_sec_def *sec_def; 9487 9488 sec_def = find_sec_def(prog->sec_name); 9489 if (!sec_def || !sec_def->attach_fn) 9490 return ERR_PTR(-ESRCH); 9491 9492 return sec_def->attach_fn(sec_def, prog); 9493 } 9494 9495 static int bpf_link__detach_struct_ops(struct bpf_link *link) 9496 { 9497 __u32 zero = 0; 9498 9499 if (bpf_map_delete_elem(link->fd, &zero)) 9500 return -errno; 9501 9502 return 0; 9503 } 9504 9505 struct bpf_link *bpf_map__attach_struct_ops(struct bpf_map *map) 9506 { 9507 struct bpf_struct_ops *st_ops; 9508 struct bpf_link *link; 9509 __u32 i, zero = 0; 9510 int err; 9511 9512 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 9513 return ERR_PTR(-EINVAL); 9514 9515 link = calloc(1, sizeof(*link)); 9516 if (!link) 9517 return ERR_PTR(-EINVAL); 9518 9519 st_ops = map->st_ops; 9520 for (i = 0; i < btf_vlen(st_ops->type); i++) { 9521 struct bpf_program *prog = st_ops->progs[i]; 9522 void *kern_data; 9523 int prog_fd; 9524 9525 if (!prog) 9526 continue; 9527 9528 prog_fd = bpf_program__fd(prog); 9529 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 9530 *(unsigned long *)kern_data = prog_fd; 9531 } 9532 9533 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 9534 if (err) { 9535 err = -errno; 9536 free(link); 9537 return ERR_PTR(err); 9538 } 9539 9540 link->detach = bpf_link__detach_struct_ops; 9541 link->fd = map->fd; 9542 9543 return link; 9544 } 9545 9546 enum bpf_perf_event_ret 9547 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 9548 void **copy_mem, size_t *copy_size, 9549 bpf_perf_event_print_t fn, void *private_data) 9550 { 9551 struct perf_event_mmap_page *header = mmap_mem; 9552 __u64 data_head = ring_buffer_read_head(header); 9553 __u64 data_tail = header->data_tail; 9554 void *base = ((__u8 *)header) + page_size; 9555 int ret = LIBBPF_PERF_EVENT_CONT; 9556 struct perf_event_header *ehdr; 9557 size_t ehdr_size; 9558 9559 while (data_head != data_tail) { 9560 ehdr = base + (data_tail & (mmap_size - 1)); 9561 ehdr_size = ehdr->size; 9562 9563 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 9564 void *copy_start = ehdr; 9565 size_t len_first = base + mmap_size - copy_start; 9566 size_t len_secnd = ehdr_size - len_first; 9567 9568 if (*copy_size < ehdr_size) { 9569 free(*copy_mem); 9570 *copy_mem = malloc(ehdr_size); 9571 if (!*copy_mem) { 9572 *copy_size = 0; 9573 ret = LIBBPF_PERF_EVENT_ERROR; 9574 break; 9575 } 9576 *copy_size = ehdr_size; 9577 } 9578 9579 memcpy(*copy_mem, copy_start, len_first); 9580 memcpy(*copy_mem + len_first, base, len_secnd); 9581 ehdr = *copy_mem; 9582 } 9583 9584 ret = fn(ehdr, private_data); 9585 data_tail += ehdr_size; 9586 if (ret != LIBBPF_PERF_EVENT_CONT) 9587 break; 9588 } 9589 9590 ring_buffer_write_tail(header, data_tail); 9591 return ret; 9592 } 9593 9594 struct perf_buffer; 9595 9596 struct perf_buffer_params { 9597 struct perf_event_attr *attr; 9598 /* if event_cb is specified, it takes precendence */ 9599 perf_buffer_event_fn event_cb; 9600 /* sample_cb and lost_cb are higher-level common-case callbacks */ 9601 perf_buffer_sample_fn sample_cb; 9602 perf_buffer_lost_fn lost_cb; 9603 void *ctx; 9604 int cpu_cnt; 9605 int *cpus; 9606 int *map_keys; 9607 }; 9608 9609 struct perf_cpu_buf { 9610 struct perf_buffer *pb; 9611 void *base; /* mmap()'ed memory */ 9612 void *buf; /* for reconstructing segmented data */ 9613 size_t buf_size; 9614 int fd; 9615 int cpu; 9616 int map_key; 9617 }; 9618 9619 struct perf_buffer { 9620 perf_buffer_event_fn event_cb; 9621 perf_buffer_sample_fn sample_cb; 9622 perf_buffer_lost_fn lost_cb; 9623 void *ctx; /* passed into callbacks */ 9624 9625 size_t page_size; 9626 size_t mmap_size; 9627 struct perf_cpu_buf **cpu_bufs; 9628 struct epoll_event *events; 9629 int cpu_cnt; /* number of allocated CPU buffers */ 9630 int epoll_fd; /* perf event FD */ 9631 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 9632 }; 9633 9634 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 9635 struct perf_cpu_buf *cpu_buf) 9636 { 9637 if (!cpu_buf) 9638 return; 9639 if (cpu_buf->base && 9640 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 9641 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 9642 if (cpu_buf->fd >= 0) { 9643 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 9644 close(cpu_buf->fd); 9645 } 9646 free(cpu_buf->buf); 9647 free(cpu_buf); 9648 } 9649 9650 void perf_buffer__free(struct perf_buffer *pb) 9651 { 9652 int i; 9653 9654 if (IS_ERR_OR_NULL(pb)) 9655 return; 9656 if (pb->cpu_bufs) { 9657 for (i = 0; i < pb->cpu_cnt; i++) { 9658 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 9659 9660 if (!cpu_buf) 9661 continue; 9662 9663 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 9664 perf_buffer__free_cpu_buf(pb, cpu_buf); 9665 } 9666 free(pb->cpu_bufs); 9667 } 9668 if (pb->epoll_fd >= 0) 9669 close(pb->epoll_fd); 9670 free(pb->events); 9671 free(pb); 9672 } 9673 9674 static struct perf_cpu_buf * 9675 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 9676 int cpu, int map_key) 9677 { 9678 struct perf_cpu_buf *cpu_buf; 9679 char msg[STRERR_BUFSIZE]; 9680 int err; 9681 9682 cpu_buf = calloc(1, sizeof(*cpu_buf)); 9683 if (!cpu_buf) 9684 return ERR_PTR(-ENOMEM); 9685 9686 cpu_buf->pb = pb; 9687 cpu_buf->cpu = cpu; 9688 cpu_buf->map_key = map_key; 9689 9690 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 9691 -1, PERF_FLAG_FD_CLOEXEC); 9692 if (cpu_buf->fd < 0) { 9693 err = -errno; 9694 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 9695 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 9696 goto error; 9697 } 9698 9699 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 9700 PROT_READ | PROT_WRITE, MAP_SHARED, 9701 cpu_buf->fd, 0); 9702 if (cpu_buf->base == MAP_FAILED) { 9703 cpu_buf->base = NULL; 9704 err = -errno; 9705 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 9706 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 9707 goto error; 9708 } 9709 9710 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9711 err = -errno; 9712 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 9713 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 9714 goto error; 9715 } 9716 9717 return cpu_buf; 9718 9719 error: 9720 perf_buffer__free_cpu_buf(pb, cpu_buf); 9721 return (struct perf_cpu_buf *)ERR_PTR(err); 9722 } 9723 9724 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 9725 struct perf_buffer_params *p); 9726 9727 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 9728 const struct perf_buffer_opts *opts) 9729 { 9730 struct perf_buffer_params p = {}; 9731 struct perf_event_attr attr = { 0, }; 9732 9733 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 9734 attr.type = PERF_TYPE_SOFTWARE; 9735 attr.sample_type = PERF_SAMPLE_RAW; 9736 attr.sample_period = 1; 9737 attr.wakeup_events = 1; 9738 9739 p.attr = &attr; 9740 p.sample_cb = opts ? opts->sample_cb : NULL; 9741 p.lost_cb = opts ? opts->lost_cb : NULL; 9742 p.ctx = opts ? opts->ctx : NULL; 9743 9744 return __perf_buffer__new(map_fd, page_cnt, &p); 9745 } 9746 9747 struct perf_buffer * 9748 perf_buffer__new_raw(int map_fd, size_t page_cnt, 9749 const struct perf_buffer_raw_opts *opts) 9750 { 9751 struct perf_buffer_params p = {}; 9752 9753 p.attr = opts->attr; 9754 p.event_cb = opts->event_cb; 9755 p.ctx = opts->ctx; 9756 p.cpu_cnt = opts->cpu_cnt; 9757 p.cpus = opts->cpus; 9758 p.map_keys = opts->map_keys; 9759 9760 return __perf_buffer__new(map_fd, page_cnt, &p); 9761 } 9762 9763 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 9764 struct perf_buffer_params *p) 9765 { 9766 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 9767 struct bpf_map_info map; 9768 char msg[STRERR_BUFSIZE]; 9769 struct perf_buffer *pb; 9770 bool *online = NULL; 9771 __u32 map_info_len; 9772 int err, i, j, n; 9773 9774 if (page_cnt & (page_cnt - 1)) { 9775 pr_warn("page count should be power of two, but is %zu\n", 9776 page_cnt); 9777 return ERR_PTR(-EINVAL); 9778 } 9779 9780 /* best-effort sanity checks */ 9781 memset(&map, 0, sizeof(map)); 9782 map_info_len = sizeof(map); 9783 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 9784 if (err) { 9785 err = -errno; 9786 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 9787 * -EBADFD, -EFAULT, or -E2BIG on real error 9788 */ 9789 if (err != -EINVAL) { 9790 pr_warn("failed to get map info for map FD %d: %s\n", 9791 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 9792 return ERR_PTR(err); 9793 } 9794 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 9795 map_fd); 9796 } else { 9797 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 9798 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 9799 map.name); 9800 return ERR_PTR(-EINVAL); 9801 } 9802 } 9803 9804 pb = calloc(1, sizeof(*pb)); 9805 if (!pb) 9806 return ERR_PTR(-ENOMEM); 9807 9808 pb->event_cb = p->event_cb; 9809 pb->sample_cb = p->sample_cb; 9810 pb->lost_cb = p->lost_cb; 9811 pb->ctx = p->ctx; 9812 9813 pb->page_size = getpagesize(); 9814 pb->mmap_size = pb->page_size * page_cnt; 9815 pb->map_fd = map_fd; 9816 9817 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 9818 if (pb->epoll_fd < 0) { 9819 err = -errno; 9820 pr_warn("failed to create epoll instance: %s\n", 9821 libbpf_strerror_r(err, msg, sizeof(msg))); 9822 goto error; 9823 } 9824 9825 if (p->cpu_cnt > 0) { 9826 pb->cpu_cnt = p->cpu_cnt; 9827 } else { 9828 pb->cpu_cnt = libbpf_num_possible_cpus(); 9829 if (pb->cpu_cnt < 0) { 9830 err = pb->cpu_cnt; 9831 goto error; 9832 } 9833 if (map.max_entries && map.max_entries < pb->cpu_cnt) 9834 pb->cpu_cnt = map.max_entries; 9835 } 9836 9837 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 9838 if (!pb->events) { 9839 err = -ENOMEM; 9840 pr_warn("failed to allocate events: out of memory\n"); 9841 goto error; 9842 } 9843 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 9844 if (!pb->cpu_bufs) { 9845 err = -ENOMEM; 9846 pr_warn("failed to allocate buffers: out of memory\n"); 9847 goto error; 9848 } 9849 9850 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 9851 if (err) { 9852 pr_warn("failed to get online CPU mask: %d\n", err); 9853 goto error; 9854 } 9855 9856 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 9857 struct perf_cpu_buf *cpu_buf; 9858 int cpu, map_key; 9859 9860 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 9861 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 9862 9863 /* in case user didn't explicitly requested particular CPUs to 9864 * be attached to, skip offline/not present CPUs 9865 */ 9866 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 9867 continue; 9868 9869 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 9870 if (IS_ERR(cpu_buf)) { 9871 err = PTR_ERR(cpu_buf); 9872 goto error; 9873 } 9874 9875 pb->cpu_bufs[j] = cpu_buf; 9876 9877 err = bpf_map_update_elem(pb->map_fd, &map_key, 9878 &cpu_buf->fd, 0); 9879 if (err) { 9880 err = -errno; 9881 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 9882 cpu, map_key, cpu_buf->fd, 9883 libbpf_strerror_r(err, msg, sizeof(msg))); 9884 goto error; 9885 } 9886 9887 pb->events[j].events = EPOLLIN; 9888 pb->events[j].data.ptr = cpu_buf; 9889 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 9890 &pb->events[j]) < 0) { 9891 err = -errno; 9892 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 9893 cpu, cpu_buf->fd, 9894 libbpf_strerror_r(err, msg, sizeof(msg))); 9895 goto error; 9896 } 9897 j++; 9898 } 9899 pb->cpu_cnt = j; 9900 free(online); 9901 9902 return pb; 9903 9904 error: 9905 free(online); 9906 if (pb) 9907 perf_buffer__free(pb); 9908 return ERR_PTR(err); 9909 } 9910 9911 struct perf_sample_raw { 9912 struct perf_event_header header; 9913 uint32_t size; 9914 char data[]; 9915 }; 9916 9917 struct perf_sample_lost { 9918 struct perf_event_header header; 9919 uint64_t id; 9920 uint64_t lost; 9921 uint64_t sample_id; 9922 }; 9923 9924 static enum bpf_perf_event_ret 9925 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 9926 { 9927 struct perf_cpu_buf *cpu_buf = ctx; 9928 struct perf_buffer *pb = cpu_buf->pb; 9929 void *data = e; 9930 9931 /* user wants full control over parsing perf event */ 9932 if (pb->event_cb) 9933 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 9934 9935 switch (e->type) { 9936 case PERF_RECORD_SAMPLE: { 9937 struct perf_sample_raw *s = data; 9938 9939 if (pb->sample_cb) 9940 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 9941 break; 9942 } 9943 case PERF_RECORD_LOST: { 9944 struct perf_sample_lost *s = data; 9945 9946 if (pb->lost_cb) 9947 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 9948 break; 9949 } 9950 default: 9951 pr_warn("unknown perf sample type %d\n", e->type); 9952 return LIBBPF_PERF_EVENT_ERROR; 9953 } 9954 return LIBBPF_PERF_EVENT_CONT; 9955 } 9956 9957 static int perf_buffer__process_records(struct perf_buffer *pb, 9958 struct perf_cpu_buf *cpu_buf) 9959 { 9960 enum bpf_perf_event_ret ret; 9961 9962 ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size, 9963 pb->page_size, &cpu_buf->buf, 9964 &cpu_buf->buf_size, 9965 perf_buffer__process_record, cpu_buf); 9966 if (ret != LIBBPF_PERF_EVENT_CONT) 9967 return ret; 9968 return 0; 9969 } 9970 9971 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 9972 { 9973 return pb->epoll_fd; 9974 } 9975 9976 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 9977 { 9978 int i, cnt, err; 9979 9980 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 9981 for (i = 0; i < cnt; i++) { 9982 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 9983 9984 err = perf_buffer__process_records(pb, cpu_buf); 9985 if (err) { 9986 pr_warn("error while processing records: %d\n", err); 9987 return err; 9988 } 9989 } 9990 return cnt < 0 ? -errno : cnt; 9991 } 9992 9993 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 9994 * manager. 9995 */ 9996 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 9997 { 9998 return pb->cpu_cnt; 9999 } 10000 10001 /* 10002 * Return perf_event FD of a ring buffer in *buf_idx* slot of 10003 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 10004 * select()/poll()/epoll() Linux syscalls. 10005 */ 10006 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 10007 { 10008 struct perf_cpu_buf *cpu_buf; 10009 10010 if (buf_idx >= pb->cpu_cnt) 10011 return -EINVAL; 10012 10013 cpu_buf = pb->cpu_bufs[buf_idx]; 10014 if (!cpu_buf) 10015 return -ENOENT; 10016 10017 return cpu_buf->fd; 10018 } 10019 10020 /* 10021 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 10022 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 10023 * consume, do nothing and return success. 10024 * Returns: 10025 * - 0 on success; 10026 * - <0 on failure. 10027 */ 10028 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 10029 { 10030 struct perf_cpu_buf *cpu_buf; 10031 10032 if (buf_idx >= pb->cpu_cnt) 10033 return -EINVAL; 10034 10035 cpu_buf = pb->cpu_bufs[buf_idx]; 10036 if (!cpu_buf) 10037 return -ENOENT; 10038 10039 return perf_buffer__process_records(pb, cpu_buf); 10040 } 10041 10042 int perf_buffer__consume(struct perf_buffer *pb) 10043 { 10044 int i, err; 10045 10046 for (i = 0; i < pb->cpu_cnt; i++) { 10047 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 10048 10049 if (!cpu_buf) 10050 continue; 10051 10052 err = perf_buffer__process_records(pb, cpu_buf); 10053 if (err) { 10054 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 10055 return err; 10056 } 10057 } 10058 return 0; 10059 } 10060 10061 struct bpf_prog_info_array_desc { 10062 int array_offset; /* e.g. offset of jited_prog_insns */ 10063 int count_offset; /* e.g. offset of jited_prog_len */ 10064 int size_offset; /* > 0: offset of rec size, 10065 * < 0: fix size of -size_offset 10066 */ 10067 }; 10068 10069 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = { 10070 [BPF_PROG_INFO_JITED_INSNS] = { 10071 offsetof(struct bpf_prog_info, jited_prog_insns), 10072 offsetof(struct bpf_prog_info, jited_prog_len), 10073 -1, 10074 }, 10075 [BPF_PROG_INFO_XLATED_INSNS] = { 10076 offsetof(struct bpf_prog_info, xlated_prog_insns), 10077 offsetof(struct bpf_prog_info, xlated_prog_len), 10078 -1, 10079 }, 10080 [BPF_PROG_INFO_MAP_IDS] = { 10081 offsetof(struct bpf_prog_info, map_ids), 10082 offsetof(struct bpf_prog_info, nr_map_ids), 10083 -(int)sizeof(__u32), 10084 }, 10085 [BPF_PROG_INFO_JITED_KSYMS] = { 10086 offsetof(struct bpf_prog_info, jited_ksyms), 10087 offsetof(struct bpf_prog_info, nr_jited_ksyms), 10088 -(int)sizeof(__u64), 10089 }, 10090 [BPF_PROG_INFO_JITED_FUNC_LENS] = { 10091 offsetof(struct bpf_prog_info, jited_func_lens), 10092 offsetof(struct bpf_prog_info, nr_jited_func_lens), 10093 -(int)sizeof(__u32), 10094 }, 10095 [BPF_PROG_INFO_FUNC_INFO] = { 10096 offsetof(struct bpf_prog_info, func_info), 10097 offsetof(struct bpf_prog_info, nr_func_info), 10098 offsetof(struct bpf_prog_info, func_info_rec_size), 10099 }, 10100 [BPF_PROG_INFO_LINE_INFO] = { 10101 offsetof(struct bpf_prog_info, line_info), 10102 offsetof(struct bpf_prog_info, nr_line_info), 10103 offsetof(struct bpf_prog_info, line_info_rec_size), 10104 }, 10105 [BPF_PROG_INFO_JITED_LINE_INFO] = { 10106 offsetof(struct bpf_prog_info, jited_line_info), 10107 offsetof(struct bpf_prog_info, nr_jited_line_info), 10108 offsetof(struct bpf_prog_info, jited_line_info_rec_size), 10109 }, 10110 [BPF_PROG_INFO_PROG_TAGS] = { 10111 offsetof(struct bpf_prog_info, prog_tags), 10112 offsetof(struct bpf_prog_info, nr_prog_tags), 10113 -(int)sizeof(__u8) * BPF_TAG_SIZE, 10114 }, 10115 10116 }; 10117 10118 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info, 10119 int offset) 10120 { 10121 __u32 *array = (__u32 *)info; 10122 10123 if (offset >= 0) 10124 return array[offset / sizeof(__u32)]; 10125 return -(int)offset; 10126 } 10127 10128 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info, 10129 int offset) 10130 { 10131 __u64 *array = (__u64 *)info; 10132 10133 if (offset >= 0) 10134 return array[offset / sizeof(__u64)]; 10135 return -(int)offset; 10136 } 10137 10138 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset, 10139 __u32 val) 10140 { 10141 __u32 *array = (__u32 *)info; 10142 10143 if (offset >= 0) 10144 array[offset / sizeof(__u32)] = val; 10145 } 10146 10147 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset, 10148 __u64 val) 10149 { 10150 __u64 *array = (__u64 *)info; 10151 10152 if (offset >= 0) 10153 array[offset / sizeof(__u64)] = val; 10154 } 10155 10156 struct bpf_prog_info_linear * 10157 bpf_program__get_prog_info_linear(int fd, __u64 arrays) 10158 { 10159 struct bpf_prog_info_linear *info_linear; 10160 struct bpf_prog_info info = {}; 10161 __u32 info_len = sizeof(info); 10162 __u32 data_len = 0; 10163 int i, err; 10164 void *ptr; 10165 10166 if (arrays >> BPF_PROG_INFO_LAST_ARRAY) 10167 return ERR_PTR(-EINVAL); 10168 10169 /* step 1: get array dimensions */ 10170 err = bpf_obj_get_info_by_fd(fd, &info, &info_len); 10171 if (err) { 10172 pr_debug("can't get prog info: %s", strerror(errno)); 10173 return ERR_PTR(-EFAULT); 10174 } 10175 10176 /* step 2: calculate total size of all arrays */ 10177 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10178 bool include_array = (arrays & (1UL << i)) > 0; 10179 struct bpf_prog_info_array_desc *desc; 10180 __u32 count, size; 10181 10182 desc = bpf_prog_info_array_desc + i; 10183 10184 /* kernel is too old to support this field */ 10185 if (info_len < desc->array_offset + sizeof(__u32) || 10186 info_len < desc->count_offset + sizeof(__u32) || 10187 (desc->size_offset > 0 && info_len < desc->size_offset)) 10188 include_array = false; 10189 10190 if (!include_array) { 10191 arrays &= ~(1UL << i); /* clear the bit */ 10192 continue; 10193 } 10194 10195 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 10196 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 10197 10198 data_len += count * size; 10199 } 10200 10201 /* step 3: allocate continuous memory */ 10202 data_len = roundup(data_len, sizeof(__u64)); 10203 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len); 10204 if (!info_linear) 10205 return ERR_PTR(-ENOMEM); 10206 10207 /* step 4: fill data to info_linear->info */ 10208 info_linear->arrays = arrays; 10209 memset(&info_linear->info, 0, sizeof(info)); 10210 ptr = info_linear->data; 10211 10212 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10213 struct bpf_prog_info_array_desc *desc; 10214 __u32 count, size; 10215 10216 if ((arrays & (1UL << i)) == 0) 10217 continue; 10218 10219 desc = bpf_prog_info_array_desc + i; 10220 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 10221 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 10222 bpf_prog_info_set_offset_u32(&info_linear->info, 10223 desc->count_offset, count); 10224 bpf_prog_info_set_offset_u32(&info_linear->info, 10225 desc->size_offset, size); 10226 bpf_prog_info_set_offset_u64(&info_linear->info, 10227 desc->array_offset, 10228 ptr_to_u64(ptr)); 10229 ptr += count * size; 10230 } 10231 10232 /* step 5: call syscall again to get required arrays */ 10233 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len); 10234 if (err) { 10235 pr_debug("can't get prog info: %s", strerror(errno)); 10236 free(info_linear); 10237 return ERR_PTR(-EFAULT); 10238 } 10239 10240 /* step 6: verify the data */ 10241 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10242 struct bpf_prog_info_array_desc *desc; 10243 __u32 v1, v2; 10244 10245 if ((arrays & (1UL << i)) == 0) 10246 continue; 10247 10248 desc = bpf_prog_info_array_desc + i; 10249 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 10250 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 10251 desc->count_offset); 10252 if (v1 != v2) 10253 pr_warn("%s: mismatch in element count\n", __func__); 10254 10255 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 10256 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 10257 desc->size_offset); 10258 if (v1 != v2) 10259 pr_warn("%s: mismatch in rec size\n", __func__); 10260 } 10261 10262 /* step 7: update info_len and data_len */ 10263 info_linear->info_len = sizeof(struct bpf_prog_info); 10264 info_linear->data_len = data_len; 10265 10266 return info_linear; 10267 } 10268 10269 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear) 10270 { 10271 int i; 10272 10273 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10274 struct bpf_prog_info_array_desc *desc; 10275 __u64 addr, offs; 10276 10277 if ((info_linear->arrays & (1UL << i)) == 0) 10278 continue; 10279 10280 desc = bpf_prog_info_array_desc + i; 10281 addr = bpf_prog_info_read_offset_u64(&info_linear->info, 10282 desc->array_offset); 10283 offs = addr - ptr_to_u64(info_linear->data); 10284 bpf_prog_info_set_offset_u64(&info_linear->info, 10285 desc->array_offset, offs); 10286 } 10287 } 10288 10289 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear) 10290 { 10291 int i; 10292 10293 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10294 struct bpf_prog_info_array_desc *desc; 10295 __u64 addr, offs; 10296 10297 if ((info_linear->arrays & (1UL << i)) == 0) 10298 continue; 10299 10300 desc = bpf_prog_info_array_desc + i; 10301 offs = bpf_prog_info_read_offset_u64(&info_linear->info, 10302 desc->array_offset); 10303 addr = offs + ptr_to_u64(info_linear->data); 10304 bpf_prog_info_set_offset_u64(&info_linear->info, 10305 desc->array_offset, addr); 10306 } 10307 } 10308 10309 int bpf_program__set_attach_target(struct bpf_program *prog, 10310 int attach_prog_fd, 10311 const char *attach_func_name) 10312 { 10313 int btf_id; 10314 10315 if (!prog || attach_prog_fd < 0 || !attach_func_name) 10316 return -EINVAL; 10317 10318 if (attach_prog_fd) 10319 btf_id = libbpf_find_prog_btf_id(attach_func_name, 10320 attach_prog_fd); 10321 else 10322 btf_id = __find_vmlinux_btf_id(prog->obj->btf_vmlinux, 10323 attach_func_name, 10324 prog->expected_attach_type); 10325 10326 if (btf_id < 0) 10327 return btf_id; 10328 10329 prog->attach_btf_id = btf_id; 10330 prog->attach_prog_fd = attach_prog_fd; 10331 return 0; 10332 } 10333 10334 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 10335 { 10336 int err = 0, n, len, start, end = -1; 10337 bool *tmp; 10338 10339 *mask = NULL; 10340 *mask_sz = 0; 10341 10342 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 10343 while (*s) { 10344 if (*s == ',' || *s == '\n') { 10345 s++; 10346 continue; 10347 } 10348 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 10349 if (n <= 0 || n > 2) { 10350 pr_warn("Failed to get CPU range %s: %d\n", s, n); 10351 err = -EINVAL; 10352 goto cleanup; 10353 } else if (n == 1) { 10354 end = start; 10355 } 10356 if (start < 0 || start > end) { 10357 pr_warn("Invalid CPU range [%d,%d] in %s\n", 10358 start, end, s); 10359 err = -EINVAL; 10360 goto cleanup; 10361 } 10362 tmp = realloc(*mask, end + 1); 10363 if (!tmp) { 10364 err = -ENOMEM; 10365 goto cleanup; 10366 } 10367 *mask = tmp; 10368 memset(tmp + *mask_sz, 0, start - *mask_sz); 10369 memset(tmp + start, 1, end - start + 1); 10370 *mask_sz = end + 1; 10371 s += len; 10372 } 10373 if (!*mask_sz) { 10374 pr_warn("Empty CPU range\n"); 10375 return -EINVAL; 10376 } 10377 return 0; 10378 cleanup: 10379 free(*mask); 10380 *mask = NULL; 10381 return err; 10382 } 10383 10384 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 10385 { 10386 int fd, err = 0, len; 10387 char buf[128]; 10388 10389 fd = open(fcpu, O_RDONLY); 10390 if (fd < 0) { 10391 err = -errno; 10392 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 10393 return err; 10394 } 10395 len = read(fd, buf, sizeof(buf)); 10396 close(fd); 10397 if (len <= 0) { 10398 err = len ? -errno : -EINVAL; 10399 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 10400 return err; 10401 } 10402 if (len >= sizeof(buf)) { 10403 pr_warn("CPU mask is too big in file %s\n", fcpu); 10404 return -E2BIG; 10405 } 10406 buf[len] = '\0'; 10407 10408 return parse_cpu_mask_str(buf, mask, mask_sz); 10409 } 10410 10411 int libbpf_num_possible_cpus(void) 10412 { 10413 static const char *fcpu = "/sys/devices/system/cpu/possible"; 10414 static int cpus; 10415 int err, n, i, tmp_cpus; 10416 bool *mask; 10417 10418 tmp_cpus = READ_ONCE(cpus); 10419 if (tmp_cpus > 0) 10420 return tmp_cpus; 10421 10422 err = parse_cpu_mask_file(fcpu, &mask, &n); 10423 if (err) 10424 return err; 10425 10426 tmp_cpus = 0; 10427 for (i = 0; i < n; i++) { 10428 if (mask[i]) 10429 tmp_cpus++; 10430 } 10431 free(mask); 10432 10433 WRITE_ONCE(cpus, tmp_cpus); 10434 return tmp_cpus; 10435 } 10436 10437 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 10438 const struct bpf_object_open_opts *opts) 10439 { 10440 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 10441 .object_name = s->name, 10442 ); 10443 struct bpf_object *obj; 10444 int i; 10445 10446 /* Attempt to preserve opts->object_name, unless overriden by user 10447 * explicitly. Overwriting object name for skeletons is discouraged, 10448 * as it breaks global data maps, because they contain object name 10449 * prefix as their own map name prefix. When skeleton is generated, 10450 * bpftool is making an assumption that this name will stay the same. 10451 */ 10452 if (opts) { 10453 memcpy(&skel_opts, opts, sizeof(*opts)); 10454 if (!opts->object_name) 10455 skel_opts.object_name = s->name; 10456 } 10457 10458 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 10459 if (IS_ERR(obj)) { 10460 pr_warn("failed to initialize skeleton BPF object '%s': %ld\n", 10461 s->name, PTR_ERR(obj)); 10462 return PTR_ERR(obj); 10463 } 10464 10465 *s->obj = obj; 10466 10467 for (i = 0; i < s->map_cnt; i++) { 10468 struct bpf_map **map = s->maps[i].map; 10469 const char *name = s->maps[i].name; 10470 void **mmaped = s->maps[i].mmaped; 10471 10472 *map = bpf_object__find_map_by_name(obj, name); 10473 if (!*map) { 10474 pr_warn("failed to find skeleton map '%s'\n", name); 10475 return -ESRCH; 10476 } 10477 10478 /* externs shouldn't be pre-setup from user code */ 10479 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 10480 *mmaped = (*map)->mmaped; 10481 } 10482 10483 for (i = 0; i < s->prog_cnt; i++) { 10484 struct bpf_program **prog = s->progs[i].prog; 10485 const char *name = s->progs[i].name; 10486 10487 *prog = bpf_object__find_program_by_name(obj, name); 10488 if (!*prog) { 10489 pr_warn("failed to find skeleton program '%s'\n", name); 10490 return -ESRCH; 10491 } 10492 } 10493 10494 return 0; 10495 } 10496 10497 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 10498 { 10499 int i, err; 10500 10501 err = bpf_object__load(*s->obj); 10502 if (err) { 10503 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 10504 return err; 10505 } 10506 10507 for (i = 0; i < s->map_cnt; i++) { 10508 struct bpf_map *map = *s->maps[i].map; 10509 size_t mmap_sz = bpf_map_mmap_sz(map); 10510 int prot, map_fd = bpf_map__fd(map); 10511 void **mmaped = s->maps[i].mmaped; 10512 10513 if (!mmaped) 10514 continue; 10515 10516 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 10517 *mmaped = NULL; 10518 continue; 10519 } 10520 10521 if (map->def.map_flags & BPF_F_RDONLY_PROG) 10522 prot = PROT_READ; 10523 else 10524 prot = PROT_READ | PROT_WRITE; 10525 10526 /* Remap anonymous mmap()-ed "map initialization image" as 10527 * a BPF map-backed mmap()-ed memory, but preserving the same 10528 * memory address. This will cause kernel to change process' 10529 * page table to point to a different piece of kernel memory, 10530 * but from userspace point of view memory address (and its 10531 * contents, being identical at this point) will stay the 10532 * same. This mapping will be released by bpf_object__close() 10533 * as per normal clean up procedure, so we don't need to worry 10534 * about it from skeleton's clean up perspective. 10535 */ 10536 *mmaped = mmap(map->mmaped, mmap_sz, prot, 10537 MAP_SHARED | MAP_FIXED, map_fd, 0); 10538 if (*mmaped == MAP_FAILED) { 10539 err = -errno; 10540 *mmaped = NULL; 10541 pr_warn("failed to re-mmap() map '%s': %d\n", 10542 bpf_map__name(map), err); 10543 return err; 10544 } 10545 } 10546 10547 return 0; 10548 } 10549 10550 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 10551 { 10552 int i; 10553 10554 for (i = 0; i < s->prog_cnt; i++) { 10555 struct bpf_program *prog = *s->progs[i].prog; 10556 struct bpf_link **link = s->progs[i].link; 10557 const struct bpf_sec_def *sec_def; 10558 10559 if (!prog->load) 10560 continue; 10561 10562 sec_def = find_sec_def(prog->sec_name); 10563 if (!sec_def || !sec_def->attach_fn) 10564 continue; 10565 10566 *link = sec_def->attach_fn(sec_def, prog); 10567 if (IS_ERR(*link)) { 10568 pr_warn("failed to auto-attach program '%s': %ld\n", 10569 bpf_program__name(prog), PTR_ERR(*link)); 10570 return PTR_ERR(*link); 10571 } 10572 } 10573 10574 return 0; 10575 } 10576 10577 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 10578 { 10579 int i; 10580 10581 for (i = 0; i < s->prog_cnt; i++) { 10582 struct bpf_link **link = s->progs[i].link; 10583 10584 bpf_link__destroy(*link); 10585 *link = NULL; 10586 } 10587 } 10588 10589 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 10590 { 10591 if (s->progs) 10592 bpf_object__detach_skeleton(s); 10593 if (s->obj) 10594 bpf_object__close(*s->obj); 10595 free(s->maps); 10596 free(s->progs); 10597 free(s); 10598 } 10599