xref: /openbmc/linux/tools/lib/bpf/libbpf.c (revision 8ab59da2)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * Common eBPF ELF object loading operations.
5  *
6  * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7  * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8  * Copyright (C) 2015 Huawei Inc.
9  * Copyright (C) 2017 Nicira, Inc.
10  * Copyright (C) 2019 Isovalent, Inc.
11  */
12 
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/limits.h>
35 #include <linux/perf_event.h>
36 #include <linux/ring_buffer.h>
37 #include <linux/version.h>
38 #include <sys/epoll.h>
39 #include <sys/ioctl.h>
40 #include <sys/mman.h>
41 #include <sys/stat.h>
42 #include <sys/types.h>
43 #include <sys/vfs.h>
44 #include <sys/utsname.h>
45 #include <sys/resource.h>
46 #include <libelf.h>
47 #include <gelf.h>
48 #include <zlib.h>
49 
50 #include "libbpf.h"
51 #include "bpf.h"
52 #include "btf.h"
53 #include "str_error.h"
54 #include "libbpf_internal.h"
55 #include "hashmap.h"
56 #include "bpf_gen_internal.h"
57 
58 #ifndef BPF_FS_MAGIC
59 #define BPF_FS_MAGIC		0xcafe4a11
60 #endif
61 
62 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
63 
64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
65  * compilation if user enables corresponding warning. Disable it explicitly.
66  */
67 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
68 
69 #define __printf(a, b)	__attribute__((format(printf, a, b)))
70 
71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
73 
74 static const char * const attach_type_name[] = {
75 	[BPF_CGROUP_INET_INGRESS]	= "cgroup_inet_ingress",
76 	[BPF_CGROUP_INET_EGRESS]	= "cgroup_inet_egress",
77 	[BPF_CGROUP_INET_SOCK_CREATE]	= "cgroup_inet_sock_create",
78 	[BPF_CGROUP_INET_SOCK_RELEASE]	= "cgroup_inet_sock_release",
79 	[BPF_CGROUP_SOCK_OPS]		= "cgroup_sock_ops",
80 	[BPF_CGROUP_DEVICE]		= "cgroup_device",
81 	[BPF_CGROUP_INET4_BIND]		= "cgroup_inet4_bind",
82 	[BPF_CGROUP_INET6_BIND]		= "cgroup_inet6_bind",
83 	[BPF_CGROUP_INET4_CONNECT]	= "cgroup_inet4_connect",
84 	[BPF_CGROUP_INET6_CONNECT]	= "cgroup_inet6_connect",
85 	[BPF_CGROUP_INET4_POST_BIND]	= "cgroup_inet4_post_bind",
86 	[BPF_CGROUP_INET6_POST_BIND]	= "cgroup_inet6_post_bind",
87 	[BPF_CGROUP_INET4_GETPEERNAME]	= "cgroup_inet4_getpeername",
88 	[BPF_CGROUP_INET6_GETPEERNAME]	= "cgroup_inet6_getpeername",
89 	[BPF_CGROUP_INET4_GETSOCKNAME]	= "cgroup_inet4_getsockname",
90 	[BPF_CGROUP_INET6_GETSOCKNAME]	= "cgroup_inet6_getsockname",
91 	[BPF_CGROUP_UDP4_SENDMSG]	= "cgroup_udp4_sendmsg",
92 	[BPF_CGROUP_UDP6_SENDMSG]	= "cgroup_udp6_sendmsg",
93 	[BPF_CGROUP_SYSCTL]		= "cgroup_sysctl",
94 	[BPF_CGROUP_UDP4_RECVMSG]	= "cgroup_udp4_recvmsg",
95 	[BPF_CGROUP_UDP6_RECVMSG]	= "cgroup_udp6_recvmsg",
96 	[BPF_CGROUP_GETSOCKOPT]		= "cgroup_getsockopt",
97 	[BPF_CGROUP_SETSOCKOPT]		= "cgroup_setsockopt",
98 	[BPF_SK_SKB_STREAM_PARSER]	= "sk_skb_stream_parser",
99 	[BPF_SK_SKB_STREAM_VERDICT]	= "sk_skb_stream_verdict",
100 	[BPF_SK_SKB_VERDICT]		= "sk_skb_verdict",
101 	[BPF_SK_MSG_VERDICT]		= "sk_msg_verdict",
102 	[BPF_LIRC_MODE2]		= "lirc_mode2",
103 	[BPF_FLOW_DISSECTOR]		= "flow_dissector",
104 	[BPF_TRACE_RAW_TP]		= "trace_raw_tp",
105 	[BPF_TRACE_FENTRY]		= "trace_fentry",
106 	[BPF_TRACE_FEXIT]		= "trace_fexit",
107 	[BPF_MODIFY_RETURN]		= "modify_return",
108 	[BPF_LSM_MAC]			= "lsm_mac",
109 	[BPF_LSM_CGROUP]		= "lsm_cgroup",
110 	[BPF_SK_LOOKUP]			= "sk_lookup",
111 	[BPF_TRACE_ITER]		= "trace_iter",
112 	[BPF_XDP_DEVMAP]		= "xdp_devmap",
113 	[BPF_XDP_CPUMAP]		= "xdp_cpumap",
114 	[BPF_XDP]			= "xdp",
115 	[BPF_SK_REUSEPORT_SELECT]	= "sk_reuseport_select",
116 	[BPF_SK_REUSEPORT_SELECT_OR_MIGRATE]	= "sk_reuseport_select_or_migrate",
117 	[BPF_PERF_EVENT]		= "perf_event",
118 	[BPF_TRACE_KPROBE_MULTI]	= "trace_kprobe_multi",
119 };
120 
121 static const char * const link_type_name[] = {
122 	[BPF_LINK_TYPE_UNSPEC]			= "unspec",
123 	[BPF_LINK_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
124 	[BPF_LINK_TYPE_TRACING]			= "tracing",
125 	[BPF_LINK_TYPE_CGROUP]			= "cgroup",
126 	[BPF_LINK_TYPE_ITER]			= "iter",
127 	[BPF_LINK_TYPE_NETNS]			= "netns",
128 	[BPF_LINK_TYPE_XDP]			= "xdp",
129 	[BPF_LINK_TYPE_PERF_EVENT]		= "perf_event",
130 	[BPF_LINK_TYPE_KPROBE_MULTI]		= "kprobe_multi",
131 	[BPF_LINK_TYPE_STRUCT_OPS]		= "struct_ops",
132 };
133 
134 static const char * const map_type_name[] = {
135 	[BPF_MAP_TYPE_UNSPEC]			= "unspec",
136 	[BPF_MAP_TYPE_HASH]			= "hash",
137 	[BPF_MAP_TYPE_ARRAY]			= "array",
138 	[BPF_MAP_TYPE_PROG_ARRAY]		= "prog_array",
139 	[BPF_MAP_TYPE_PERF_EVENT_ARRAY]		= "perf_event_array",
140 	[BPF_MAP_TYPE_PERCPU_HASH]		= "percpu_hash",
141 	[BPF_MAP_TYPE_PERCPU_ARRAY]		= "percpu_array",
142 	[BPF_MAP_TYPE_STACK_TRACE]		= "stack_trace",
143 	[BPF_MAP_TYPE_CGROUP_ARRAY]		= "cgroup_array",
144 	[BPF_MAP_TYPE_LRU_HASH]			= "lru_hash",
145 	[BPF_MAP_TYPE_LRU_PERCPU_HASH]		= "lru_percpu_hash",
146 	[BPF_MAP_TYPE_LPM_TRIE]			= "lpm_trie",
147 	[BPF_MAP_TYPE_ARRAY_OF_MAPS]		= "array_of_maps",
148 	[BPF_MAP_TYPE_HASH_OF_MAPS]		= "hash_of_maps",
149 	[BPF_MAP_TYPE_DEVMAP]			= "devmap",
150 	[BPF_MAP_TYPE_DEVMAP_HASH]		= "devmap_hash",
151 	[BPF_MAP_TYPE_SOCKMAP]			= "sockmap",
152 	[BPF_MAP_TYPE_CPUMAP]			= "cpumap",
153 	[BPF_MAP_TYPE_XSKMAP]			= "xskmap",
154 	[BPF_MAP_TYPE_SOCKHASH]			= "sockhash",
155 	[BPF_MAP_TYPE_CGROUP_STORAGE]		= "cgroup_storage",
156 	[BPF_MAP_TYPE_REUSEPORT_SOCKARRAY]	= "reuseport_sockarray",
157 	[BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE]	= "percpu_cgroup_storage",
158 	[BPF_MAP_TYPE_QUEUE]			= "queue",
159 	[BPF_MAP_TYPE_STACK]			= "stack",
160 	[BPF_MAP_TYPE_SK_STORAGE]		= "sk_storage",
161 	[BPF_MAP_TYPE_STRUCT_OPS]		= "struct_ops",
162 	[BPF_MAP_TYPE_RINGBUF]			= "ringbuf",
163 	[BPF_MAP_TYPE_INODE_STORAGE]		= "inode_storage",
164 	[BPF_MAP_TYPE_TASK_STORAGE]		= "task_storage",
165 	[BPF_MAP_TYPE_BLOOM_FILTER]		= "bloom_filter",
166 	[BPF_MAP_TYPE_USER_RINGBUF]             = "user_ringbuf",
167 };
168 
169 static const char * const prog_type_name[] = {
170 	[BPF_PROG_TYPE_UNSPEC]			= "unspec",
171 	[BPF_PROG_TYPE_SOCKET_FILTER]		= "socket_filter",
172 	[BPF_PROG_TYPE_KPROBE]			= "kprobe",
173 	[BPF_PROG_TYPE_SCHED_CLS]		= "sched_cls",
174 	[BPF_PROG_TYPE_SCHED_ACT]		= "sched_act",
175 	[BPF_PROG_TYPE_TRACEPOINT]		= "tracepoint",
176 	[BPF_PROG_TYPE_XDP]			= "xdp",
177 	[BPF_PROG_TYPE_PERF_EVENT]		= "perf_event",
178 	[BPF_PROG_TYPE_CGROUP_SKB]		= "cgroup_skb",
179 	[BPF_PROG_TYPE_CGROUP_SOCK]		= "cgroup_sock",
180 	[BPF_PROG_TYPE_LWT_IN]			= "lwt_in",
181 	[BPF_PROG_TYPE_LWT_OUT]			= "lwt_out",
182 	[BPF_PROG_TYPE_LWT_XMIT]		= "lwt_xmit",
183 	[BPF_PROG_TYPE_SOCK_OPS]		= "sock_ops",
184 	[BPF_PROG_TYPE_SK_SKB]			= "sk_skb",
185 	[BPF_PROG_TYPE_CGROUP_DEVICE]		= "cgroup_device",
186 	[BPF_PROG_TYPE_SK_MSG]			= "sk_msg",
187 	[BPF_PROG_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
188 	[BPF_PROG_TYPE_CGROUP_SOCK_ADDR]	= "cgroup_sock_addr",
189 	[BPF_PROG_TYPE_LWT_SEG6LOCAL]		= "lwt_seg6local",
190 	[BPF_PROG_TYPE_LIRC_MODE2]		= "lirc_mode2",
191 	[BPF_PROG_TYPE_SK_REUSEPORT]		= "sk_reuseport",
192 	[BPF_PROG_TYPE_FLOW_DISSECTOR]		= "flow_dissector",
193 	[BPF_PROG_TYPE_CGROUP_SYSCTL]		= "cgroup_sysctl",
194 	[BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE]	= "raw_tracepoint_writable",
195 	[BPF_PROG_TYPE_CGROUP_SOCKOPT]		= "cgroup_sockopt",
196 	[BPF_PROG_TYPE_TRACING]			= "tracing",
197 	[BPF_PROG_TYPE_STRUCT_OPS]		= "struct_ops",
198 	[BPF_PROG_TYPE_EXT]			= "ext",
199 	[BPF_PROG_TYPE_LSM]			= "lsm",
200 	[BPF_PROG_TYPE_SK_LOOKUP]		= "sk_lookup",
201 	[BPF_PROG_TYPE_SYSCALL]			= "syscall",
202 };
203 
204 static int __base_pr(enum libbpf_print_level level, const char *format,
205 		     va_list args)
206 {
207 	if (level == LIBBPF_DEBUG)
208 		return 0;
209 
210 	return vfprintf(stderr, format, args);
211 }
212 
213 static libbpf_print_fn_t __libbpf_pr = __base_pr;
214 
215 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
216 {
217 	libbpf_print_fn_t old_print_fn = __libbpf_pr;
218 
219 	__libbpf_pr = fn;
220 	return old_print_fn;
221 }
222 
223 __printf(2, 3)
224 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
225 {
226 	va_list args;
227 	int old_errno;
228 
229 	if (!__libbpf_pr)
230 		return;
231 
232 	old_errno = errno;
233 
234 	va_start(args, format);
235 	__libbpf_pr(level, format, args);
236 	va_end(args);
237 
238 	errno = old_errno;
239 }
240 
241 static void pr_perm_msg(int err)
242 {
243 	struct rlimit limit;
244 	char buf[100];
245 
246 	if (err != -EPERM || geteuid() != 0)
247 		return;
248 
249 	err = getrlimit(RLIMIT_MEMLOCK, &limit);
250 	if (err)
251 		return;
252 
253 	if (limit.rlim_cur == RLIM_INFINITY)
254 		return;
255 
256 	if (limit.rlim_cur < 1024)
257 		snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
258 	else if (limit.rlim_cur < 1024*1024)
259 		snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
260 	else
261 		snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
262 
263 	pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
264 		buf);
265 }
266 
267 #define STRERR_BUFSIZE  128
268 
269 /* Copied from tools/perf/util/util.h */
270 #ifndef zfree
271 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
272 #endif
273 
274 #ifndef zclose
275 # define zclose(fd) ({			\
276 	int ___err = 0;			\
277 	if ((fd) >= 0)			\
278 		___err = close((fd));	\
279 	fd = -1;			\
280 	___err; })
281 #endif
282 
283 static inline __u64 ptr_to_u64(const void *ptr)
284 {
285 	return (__u64) (unsigned long) ptr;
286 }
287 
288 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
289 {
290 	/* as of v1.0 libbpf_set_strict_mode() is a no-op */
291 	return 0;
292 }
293 
294 __u32 libbpf_major_version(void)
295 {
296 	return LIBBPF_MAJOR_VERSION;
297 }
298 
299 __u32 libbpf_minor_version(void)
300 {
301 	return LIBBPF_MINOR_VERSION;
302 }
303 
304 const char *libbpf_version_string(void)
305 {
306 #define __S(X) #X
307 #define _S(X) __S(X)
308 	return  "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
309 #undef _S
310 #undef __S
311 }
312 
313 enum reloc_type {
314 	RELO_LD64,
315 	RELO_CALL,
316 	RELO_DATA,
317 	RELO_EXTERN_VAR,
318 	RELO_EXTERN_FUNC,
319 	RELO_SUBPROG_ADDR,
320 	RELO_CORE,
321 };
322 
323 struct reloc_desc {
324 	enum reloc_type type;
325 	int insn_idx;
326 	union {
327 		const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
328 		struct {
329 			int map_idx;
330 			int sym_off;
331 		};
332 	};
333 };
334 
335 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
336 enum sec_def_flags {
337 	SEC_NONE = 0,
338 	/* expected_attach_type is optional, if kernel doesn't support that */
339 	SEC_EXP_ATTACH_OPT = 1,
340 	/* legacy, only used by libbpf_get_type_names() and
341 	 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
342 	 * This used to be associated with cgroup (and few other) BPF programs
343 	 * that were attachable through BPF_PROG_ATTACH command. Pretty
344 	 * meaningless nowadays, though.
345 	 */
346 	SEC_ATTACHABLE = 2,
347 	SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
348 	/* attachment target is specified through BTF ID in either kernel or
349 	 * other BPF program's BTF object */
350 	SEC_ATTACH_BTF = 4,
351 	/* BPF program type allows sleeping/blocking in kernel */
352 	SEC_SLEEPABLE = 8,
353 	/* BPF program support non-linear XDP buffer */
354 	SEC_XDP_FRAGS = 16,
355 };
356 
357 struct bpf_sec_def {
358 	char *sec;
359 	enum bpf_prog_type prog_type;
360 	enum bpf_attach_type expected_attach_type;
361 	long cookie;
362 	int handler_id;
363 
364 	libbpf_prog_setup_fn_t prog_setup_fn;
365 	libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
366 	libbpf_prog_attach_fn_t prog_attach_fn;
367 };
368 
369 /*
370  * bpf_prog should be a better name but it has been used in
371  * linux/filter.h.
372  */
373 struct bpf_program {
374 	char *name;
375 	char *sec_name;
376 	size_t sec_idx;
377 	const struct bpf_sec_def *sec_def;
378 	/* this program's instruction offset (in number of instructions)
379 	 * within its containing ELF section
380 	 */
381 	size_t sec_insn_off;
382 	/* number of original instructions in ELF section belonging to this
383 	 * program, not taking into account subprogram instructions possible
384 	 * appended later during relocation
385 	 */
386 	size_t sec_insn_cnt;
387 	/* Offset (in number of instructions) of the start of instruction
388 	 * belonging to this BPF program  within its containing main BPF
389 	 * program. For the entry-point (main) BPF program, this is always
390 	 * zero. For a sub-program, this gets reset before each of main BPF
391 	 * programs are processed and relocated and is used to determined
392 	 * whether sub-program was already appended to the main program, and
393 	 * if yes, at which instruction offset.
394 	 */
395 	size_t sub_insn_off;
396 
397 	/* instructions that belong to BPF program; insns[0] is located at
398 	 * sec_insn_off instruction within its ELF section in ELF file, so
399 	 * when mapping ELF file instruction index to the local instruction,
400 	 * one needs to subtract sec_insn_off; and vice versa.
401 	 */
402 	struct bpf_insn *insns;
403 	/* actual number of instruction in this BPF program's image; for
404 	 * entry-point BPF programs this includes the size of main program
405 	 * itself plus all the used sub-programs, appended at the end
406 	 */
407 	size_t insns_cnt;
408 
409 	struct reloc_desc *reloc_desc;
410 	int nr_reloc;
411 
412 	/* BPF verifier log settings */
413 	char *log_buf;
414 	size_t log_size;
415 	__u32 log_level;
416 
417 	struct bpf_object *obj;
418 
419 	int fd;
420 	bool autoload;
421 	bool autoattach;
422 	bool mark_btf_static;
423 	enum bpf_prog_type type;
424 	enum bpf_attach_type expected_attach_type;
425 
426 	int prog_ifindex;
427 	__u32 attach_btf_obj_fd;
428 	__u32 attach_btf_id;
429 	__u32 attach_prog_fd;
430 
431 	void *func_info;
432 	__u32 func_info_rec_size;
433 	__u32 func_info_cnt;
434 
435 	void *line_info;
436 	__u32 line_info_rec_size;
437 	__u32 line_info_cnt;
438 	__u32 prog_flags;
439 };
440 
441 struct bpf_struct_ops {
442 	const char *tname;
443 	const struct btf_type *type;
444 	struct bpf_program **progs;
445 	__u32 *kern_func_off;
446 	/* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
447 	void *data;
448 	/* e.g. struct bpf_struct_ops_tcp_congestion_ops in
449 	 *      btf_vmlinux's format.
450 	 * struct bpf_struct_ops_tcp_congestion_ops {
451 	 *	[... some other kernel fields ...]
452 	 *	struct tcp_congestion_ops data;
453 	 * }
454 	 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
455 	 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
456 	 * from "data".
457 	 */
458 	void *kern_vdata;
459 	__u32 type_id;
460 };
461 
462 #define DATA_SEC ".data"
463 #define BSS_SEC ".bss"
464 #define RODATA_SEC ".rodata"
465 #define KCONFIG_SEC ".kconfig"
466 #define KSYMS_SEC ".ksyms"
467 #define STRUCT_OPS_SEC ".struct_ops"
468 
469 enum libbpf_map_type {
470 	LIBBPF_MAP_UNSPEC,
471 	LIBBPF_MAP_DATA,
472 	LIBBPF_MAP_BSS,
473 	LIBBPF_MAP_RODATA,
474 	LIBBPF_MAP_KCONFIG,
475 };
476 
477 struct bpf_map_def {
478 	unsigned int type;
479 	unsigned int key_size;
480 	unsigned int value_size;
481 	unsigned int max_entries;
482 	unsigned int map_flags;
483 };
484 
485 struct bpf_map {
486 	struct bpf_object *obj;
487 	char *name;
488 	/* real_name is defined for special internal maps (.rodata*,
489 	 * .data*, .bss, .kconfig) and preserves their original ELF section
490 	 * name. This is important to be be able to find corresponding BTF
491 	 * DATASEC information.
492 	 */
493 	char *real_name;
494 	int fd;
495 	int sec_idx;
496 	size_t sec_offset;
497 	int map_ifindex;
498 	int inner_map_fd;
499 	struct bpf_map_def def;
500 	__u32 numa_node;
501 	__u32 btf_var_idx;
502 	__u32 btf_key_type_id;
503 	__u32 btf_value_type_id;
504 	__u32 btf_vmlinux_value_type_id;
505 	enum libbpf_map_type libbpf_type;
506 	void *mmaped;
507 	struct bpf_struct_ops *st_ops;
508 	struct bpf_map *inner_map;
509 	void **init_slots;
510 	int init_slots_sz;
511 	char *pin_path;
512 	bool pinned;
513 	bool reused;
514 	bool autocreate;
515 	__u64 map_extra;
516 };
517 
518 enum extern_type {
519 	EXT_UNKNOWN,
520 	EXT_KCFG,
521 	EXT_KSYM,
522 };
523 
524 enum kcfg_type {
525 	KCFG_UNKNOWN,
526 	KCFG_CHAR,
527 	KCFG_BOOL,
528 	KCFG_INT,
529 	KCFG_TRISTATE,
530 	KCFG_CHAR_ARR,
531 };
532 
533 struct extern_desc {
534 	enum extern_type type;
535 	int sym_idx;
536 	int btf_id;
537 	int sec_btf_id;
538 	const char *name;
539 	bool is_set;
540 	bool is_weak;
541 	union {
542 		struct {
543 			enum kcfg_type type;
544 			int sz;
545 			int align;
546 			int data_off;
547 			bool is_signed;
548 		} kcfg;
549 		struct {
550 			unsigned long long addr;
551 
552 			/* target btf_id of the corresponding kernel var. */
553 			int kernel_btf_obj_fd;
554 			int kernel_btf_id;
555 
556 			/* local btf_id of the ksym extern's type. */
557 			__u32 type_id;
558 			/* BTF fd index to be patched in for insn->off, this is
559 			 * 0 for vmlinux BTF, index in obj->fd_array for module
560 			 * BTF
561 			 */
562 			__s16 btf_fd_idx;
563 		} ksym;
564 	};
565 };
566 
567 struct module_btf {
568 	struct btf *btf;
569 	char *name;
570 	__u32 id;
571 	int fd;
572 	int fd_array_idx;
573 };
574 
575 enum sec_type {
576 	SEC_UNUSED = 0,
577 	SEC_RELO,
578 	SEC_BSS,
579 	SEC_DATA,
580 	SEC_RODATA,
581 };
582 
583 struct elf_sec_desc {
584 	enum sec_type sec_type;
585 	Elf64_Shdr *shdr;
586 	Elf_Data *data;
587 };
588 
589 struct elf_state {
590 	int fd;
591 	const void *obj_buf;
592 	size_t obj_buf_sz;
593 	Elf *elf;
594 	Elf64_Ehdr *ehdr;
595 	Elf_Data *symbols;
596 	Elf_Data *st_ops_data;
597 	size_t shstrndx; /* section index for section name strings */
598 	size_t strtabidx;
599 	struct elf_sec_desc *secs;
600 	int sec_cnt;
601 	int btf_maps_shndx;
602 	__u32 btf_maps_sec_btf_id;
603 	int text_shndx;
604 	int symbols_shndx;
605 	int st_ops_shndx;
606 };
607 
608 struct usdt_manager;
609 
610 struct bpf_object {
611 	char name[BPF_OBJ_NAME_LEN];
612 	char license[64];
613 	__u32 kern_version;
614 
615 	struct bpf_program *programs;
616 	size_t nr_programs;
617 	struct bpf_map *maps;
618 	size_t nr_maps;
619 	size_t maps_cap;
620 
621 	char *kconfig;
622 	struct extern_desc *externs;
623 	int nr_extern;
624 	int kconfig_map_idx;
625 
626 	bool loaded;
627 	bool has_subcalls;
628 	bool has_rodata;
629 
630 	struct bpf_gen *gen_loader;
631 
632 	/* Information when doing ELF related work. Only valid if efile.elf is not NULL */
633 	struct elf_state efile;
634 
635 	struct btf *btf;
636 	struct btf_ext *btf_ext;
637 
638 	/* Parse and load BTF vmlinux if any of the programs in the object need
639 	 * it at load time.
640 	 */
641 	struct btf *btf_vmlinux;
642 	/* Path to the custom BTF to be used for BPF CO-RE relocations as an
643 	 * override for vmlinux BTF.
644 	 */
645 	char *btf_custom_path;
646 	/* vmlinux BTF override for CO-RE relocations */
647 	struct btf *btf_vmlinux_override;
648 	/* Lazily initialized kernel module BTFs */
649 	struct module_btf *btf_modules;
650 	bool btf_modules_loaded;
651 	size_t btf_module_cnt;
652 	size_t btf_module_cap;
653 
654 	/* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
655 	char *log_buf;
656 	size_t log_size;
657 	__u32 log_level;
658 
659 	int *fd_array;
660 	size_t fd_array_cap;
661 	size_t fd_array_cnt;
662 
663 	struct usdt_manager *usdt_man;
664 
665 	char path[];
666 };
667 
668 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
669 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
670 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
671 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
672 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
673 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
674 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
675 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
676 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
677 
678 void bpf_program__unload(struct bpf_program *prog)
679 {
680 	if (!prog)
681 		return;
682 
683 	zclose(prog->fd);
684 
685 	zfree(&prog->func_info);
686 	zfree(&prog->line_info);
687 }
688 
689 static void bpf_program__exit(struct bpf_program *prog)
690 {
691 	if (!prog)
692 		return;
693 
694 	bpf_program__unload(prog);
695 	zfree(&prog->name);
696 	zfree(&prog->sec_name);
697 	zfree(&prog->insns);
698 	zfree(&prog->reloc_desc);
699 
700 	prog->nr_reloc = 0;
701 	prog->insns_cnt = 0;
702 	prog->sec_idx = -1;
703 }
704 
705 static bool insn_is_subprog_call(const struct bpf_insn *insn)
706 {
707 	return BPF_CLASS(insn->code) == BPF_JMP &&
708 	       BPF_OP(insn->code) == BPF_CALL &&
709 	       BPF_SRC(insn->code) == BPF_K &&
710 	       insn->src_reg == BPF_PSEUDO_CALL &&
711 	       insn->dst_reg == 0 &&
712 	       insn->off == 0;
713 }
714 
715 static bool is_call_insn(const struct bpf_insn *insn)
716 {
717 	return insn->code == (BPF_JMP | BPF_CALL);
718 }
719 
720 static bool insn_is_pseudo_func(struct bpf_insn *insn)
721 {
722 	return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
723 }
724 
725 static int
726 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
727 		      const char *name, size_t sec_idx, const char *sec_name,
728 		      size_t sec_off, void *insn_data, size_t insn_data_sz)
729 {
730 	if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
731 		pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
732 			sec_name, name, sec_off, insn_data_sz);
733 		return -EINVAL;
734 	}
735 
736 	memset(prog, 0, sizeof(*prog));
737 	prog->obj = obj;
738 
739 	prog->sec_idx = sec_idx;
740 	prog->sec_insn_off = sec_off / BPF_INSN_SZ;
741 	prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
742 	/* insns_cnt can later be increased by appending used subprograms */
743 	prog->insns_cnt = prog->sec_insn_cnt;
744 
745 	prog->type = BPF_PROG_TYPE_UNSPEC;
746 	prog->fd = -1;
747 
748 	/* libbpf's convention for SEC("?abc...") is that it's just like
749 	 * SEC("abc...") but the corresponding bpf_program starts out with
750 	 * autoload set to false.
751 	 */
752 	if (sec_name[0] == '?') {
753 		prog->autoload = false;
754 		/* from now on forget there was ? in section name */
755 		sec_name++;
756 	} else {
757 		prog->autoload = true;
758 	}
759 
760 	prog->autoattach = true;
761 
762 	/* inherit object's log_level */
763 	prog->log_level = obj->log_level;
764 
765 	prog->sec_name = strdup(sec_name);
766 	if (!prog->sec_name)
767 		goto errout;
768 
769 	prog->name = strdup(name);
770 	if (!prog->name)
771 		goto errout;
772 
773 	prog->insns = malloc(insn_data_sz);
774 	if (!prog->insns)
775 		goto errout;
776 	memcpy(prog->insns, insn_data, insn_data_sz);
777 
778 	return 0;
779 errout:
780 	pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
781 	bpf_program__exit(prog);
782 	return -ENOMEM;
783 }
784 
785 static int
786 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
787 			 const char *sec_name, int sec_idx)
788 {
789 	Elf_Data *symbols = obj->efile.symbols;
790 	struct bpf_program *prog, *progs;
791 	void *data = sec_data->d_buf;
792 	size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
793 	int nr_progs, err, i;
794 	const char *name;
795 	Elf64_Sym *sym;
796 
797 	progs = obj->programs;
798 	nr_progs = obj->nr_programs;
799 	nr_syms = symbols->d_size / sizeof(Elf64_Sym);
800 	sec_off = 0;
801 
802 	for (i = 0; i < nr_syms; i++) {
803 		sym = elf_sym_by_idx(obj, i);
804 
805 		if (sym->st_shndx != sec_idx)
806 			continue;
807 		if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
808 			continue;
809 
810 		prog_sz = sym->st_size;
811 		sec_off = sym->st_value;
812 
813 		name = elf_sym_str(obj, sym->st_name);
814 		if (!name) {
815 			pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
816 				sec_name, sec_off);
817 			return -LIBBPF_ERRNO__FORMAT;
818 		}
819 
820 		if (sec_off + prog_sz > sec_sz) {
821 			pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
822 				sec_name, sec_off);
823 			return -LIBBPF_ERRNO__FORMAT;
824 		}
825 
826 		if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
827 			pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
828 			return -ENOTSUP;
829 		}
830 
831 		pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
832 			 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
833 
834 		progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
835 		if (!progs) {
836 			/*
837 			 * In this case the original obj->programs
838 			 * is still valid, so don't need special treat for
839 			 * bpf_close_object().
840 			 */
841 			pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
842 				sec_name, name);
843 			return -ENOMEM;
844 		}
845 		obj->programs = progs;
846 
847 		prog = &progs[nr_progs];
848 
849 		err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
850 					    sec_off, data + sec_off, prog_sz);
851 		if (err)
852 			return err;
853 
854 		/* if function is a global/weak symbol, but has restricted
855 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
856 		 * as static to enable more permissive BPF verification mode
857 		 * with more outside context available to BPF verifier
858 		 */
859 		if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL
860 		    && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
861 			|| ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
862 			prog->mark_btf_static = true;
863 
864 		nr_progs++;
865 		obj->nr_programs = nr_progs;
866 	}
867 
868 	return 0;
869 }
870 
871 __u32 get_kernel_version(void)
872 {
873 	/* On Ubuntu LINUX_VERSION_CODE doesn't correspond to info.release,
874 	 * but Ubuntu provides /proc/version_signature file, as described at
875 	 * https://ubuntu.com/kernel, with an example contents below, which we
876 	 * can use to get a proper LINUX_VERSION_CODE.
877 	 *
878 	 *   Ubuntu 5.4.0-12.15-generic 5.4.8
879 	 *
880 	 * In the above, 5.4.8 is what kernel is actually expecting, while
881 	 * uname() call will return 5.4.0 in info.release.
882 	 */
883 	const char *ubuntu_kver_file = "/proc/version_signature";
884 	__u32 major, minor, patch;
885 	struct utsname info;
886 
887 	if (faccessat(AT_FDCWD, ubuntu_kver_file, R_OK, AT_EACCESS) == 0) {
888 		FILE *f;
889 
890 		f = fopen(ubuntu_kver_file, "r");
891 		if (f) {
892 			if (fscanf(f, "%*s %*s %d.%d.%d\n", &major, &minor, &patch) == 3) {
893 				fclose(f);
894 				return KERNEL_VERSION(major, minor, patch);
895 			}
896 			fclose(f);
897 		}
898 		/* something went wrong, fall back to uname() approach */
899 	}
900 
901 	uname(&info);
902 	if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3)
903 		return 0;
904 	return KERNEL_VERSION(major, minor, patch);
905 }
906 
907 static const struct btf_member *
908 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
909 {
910 	struct btf_member *m;
911 	int i;
912 
913 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
914 		if (btf_member_bit_offset(t, i) == bit_offset)
915 			return m;
916 	}
917 
918 	return NULL;
919 }
920 
921 static const struct btf_member *
922 find_member_by_name(const struct btf *btf, const struct btf_type *t,
923 		    const char *name)
924 {
925 	struct btf_member *m;
926 	int i;
927 
928 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
929 		if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
930 			return m;
931 	}
932 
933 	return NULL;
934 }
935 
936 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
937 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
938 				   const char *name, __u32 kind);
939 
940 static int
941 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
942 			   const struct btf_type **type, __u32 *type_id,
943 			   const struct btf_type **vtype, __u32 *vtype_id,
944 			   const struct btf_member **data_member)
945 {
946 	const struct btf_type *kern_type, *kern_vtype;
947 	const struct btf_member *kern_data_member;
948 	__s32 kern_vtype_id, kern_type_id;
949 	__u32 i;
950 
951 	kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
952 	if (kern_type_id < 0) {
953 		pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
954 			tname);
955 		return kern_type_id;
956 	}
957 	kern_type = btf__type_by_id(btf, kern_type_id);
958 
959 	/* Find the corresponding "map_value" type that will be used
960 	 * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
961 	 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
962 	 * btf_vmlinux.
963 	 */
964 	kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
965 						tname, BTF_KIND_STRUCT);
966 	if (kern_vtype_id < 0) {
967 		pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
968 			STRUCT_OPS_VALUE_PREFIX, tname);
969 		return kern_vtype_id;
970 	}
971 	kern_vtype = btf__type_by_id(btf, kern_vtype_id);
972 
973 	/* Find "struct tcp_congestion_ops" from
974 	 * struct bpf_struct_ops_tcp_congestion_ops {
975 	 *	[ ... ]
976 	 *	struct tcp_congestion_ops data;
977 	 * }
978 	 */
979 	kern_data_member = btf_members(kern_vtype);
980 	for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
981 		if (kern_data_member->type == kern_type_id)
982 			break;
983 	}
984 	if (i == btf_vlen(kern_vtype)) {
985 		pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
986 			tname, STRUCT_OPS_VALUE_PREFIX, tname);
987 		return -EINVAL;
988 	}
989 
990 	*type = kern_type;
991 	*type_id = kern_type_id;
992 	*vtype = kern_vtype;
993 	*vtype_id = kern_vtype_id;
994 	*data_member = kern_data_member;
995 
996 	return 0;
997 }
998 
999 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
1000 {
1001 	return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
1002 }
1003 
1004 /* Init the map's fields that depend on kern_btf */
1005 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
1006 					 const struct btf *btf,
1007 					 const struct btf *kern_btf)
1008 {
1009 	const struct btf_member *member, *kern_member, *kern_data_member;
1010 	const struct btf_type *type, *kern_type, *kern_vtype;
1011 	__u32 i, kern_type_id, kern_vtype_id, kern_data_off;
1012 	struct bpf_struct_ops *st_ops;
1013 	void *data, *kern_data;
1014 	const char *tname;
1015 	int err;
1016 
1017 	st_ops = map->st_ops;
1018 	type = st_ops->type;
1019 	tname = st_ops->tname;
1020 	err = find_struct_ops_kern_types(kern_btf, tname,
1021 					 &kern_type, &kern_type_id,
1022 					 &kern_vtype, &kern_vtype_id,
1023 					 &kern_data_member);
1024 	if (err)
1025 		return err;
1026 
1027 	pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1028 		 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1029 
1030 	map->def.value_size = kern_vtype->size;
1031 	map->btf_vmlinux_value_type_id = kern_vtype_id;
1032 
1033 	st_ops->kern_vdata = calloc(1, kern_vtype->size);
1034 	if (!st_ops->kern_vdata)
1035 		return -ENOMEM;
1036 
1037 	data = st_ops->data;
1038 	kern_data_off = kern_data_member->offset / 8;
1039 	kern_data = st_ops->kern_vdata + kern_data_off;
1040 
1041 	member = btf_members(type);
1042 	for (i = 0; i < btf_vlen(type); i++, member++) {
1043 		const struct btf_type *mtype, *kern_mtype;
1044 		__u32 mtype_id, kern_mtype_id;
1045 		void *mdata, *kern_mdata;
1046 		__s64 msize, kern_msize;
1047 		__u32 moff, kern_moff;
1048 		__u32 kern_member_idx;
1049 		const char *mname;
1050 
1051 		mname = btf__name_by_offset(btf, member->name_off);
1052 		kern_member = find_member_by_name(kern_btf, kern_type, mname);
1053 		if (!kern_member) {
1054 			pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1055 				map->name, mname);
1056 			return -ENOTSUP;
1057 		}
1058 
1059 		kern_member_idx = kern_member - btf_members(kern_type);
1060 		if (btf_member_bitfield_size(type, i) ||
1061 		    btf_member_bitfield_size(kern_type, kern_member_idx)) {
1062 			pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1063 				map->name, mname);
1064 			return -ENOTSUP;
1065 		}
1066 
1067 		moff = member->offset / 8;
1068 		kern_moff = kern_member->offset / 8;
1069 
1070 		mdata = data + moff;
1071 		kern_mdata = kern_data + kern_moff;
1072 
1073 		mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1074 		kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1075 						    &kern_mtype_id);
1076 		if (BTF_INFO_KIND(mtype->info) !=
1077 		    BTF_INFO_KIND(kern_mtype->info)) {
1078 			pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1079 				map->name, mname, BTF_INFO_KIND(mtype->info),
1080 				BTF_INFO_KIND(kern_mtype->info));
1081 			return -ENOTSUP;
1082 		}
1083 
1084 		if (btf_is_ptr(mtype)) {
1085 			struct bpf_program *prog;
1086 
1087 			prog = st_ops->progs[i];
1088 			if (!prog)
1089 				continue;
1090 
1091 			kern_mtype = skip_mods_and_typedefs(kern_btf,
1092 							    kern_mtype->type,
1093 							    &kern_mtype_id);
1094 
1095 			/* mtype->type must be a func_proto which was
1096 			 * guaranteed in bpf_object__collect_st_ops_relos(),
1097 			 * so only check kern_mtype for func_proto here.
1098 			 */
1099 			if (!btf_is_func_proto(kern_mtype)) {
1100 				pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1101 					map->name, mname);
1102 				return -ENOTSUP;
1103 			}
1104 
1105 			prog->attach_btf_id = kern_type_id;
1106 			prog->expected_attach_type = kern_member_idx;
1107 
1108 			st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1109 
1110 			pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1111 				 map->name, mname, prog->name, moff,
1112 				 kern_moff);
1113 
1114 			continue;
1115 		}
1116 
1117 		msize = btf__resolve_size(btf, mtype_id);
1118 		kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1119 		if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1120 			pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1121 				map->name, mname, (ssize_t)msize,
1122 				(ssize_t)kern_msize);
1123 			return -ENOTSUP;
1124 		}
1125 
1126 		pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1127 			 map->name, mname, (unsigned int)msize,
1128 			 moff, kern_moff);
1129 		memcpy(kern_mdata, mdata, msize);
1130 	}
1131 
1132 	return 0;
1133 }
1134 
1135 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1136 {
1137 	struct bpf_map *map;
1138 	size_t i;
1139 	int err;
1140 
1141 	for (i = 0; i < obj->nr_maps; i++) {
1142 		map = &obj->maps[i];
1143 
1144 		if (!bpf_map__is_struct_ops(map))
1145 			continue;
1146 
1147 		err = bpf_map__init_kern_struct_ops(map, obj->btf,
1148 						    obj->btf_vmlinux);
1149 		if (err)
1150 			return err;
1151 	}
1152 
1153 	return 0;
1154 }
1155 
1156 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj)
1157 {
1158 	const struct btf_type *type, *datasec;
1159 	const struct btf_var_secinfo *vsi;
1160 	struct bpf_struct_ops *st_ops;
1161 	const char *tname, *var_name;
1162 	__s32 type_id, datasec_id;
1163 	const struct btf *btf;
1164 	struct bpf_map *map;
1165 	__u32 i;
1166 
1167 	if (obj->efile.st_ops_shndx == -1)
1168 		return 0;
1169 
1170 	btf = obj->btf;
1171 	datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC,
1172 					    BTF_KIND_DATASEC);
1173 	if (datasec_id < 0) {
1174 		pr_warn("struct_ops init: DATASEC %s not found\n",
1175 			STRUCT_OPS_SEC);
1176 		return -EINVAL;
1177 	}
1178 
1179 	datasec = btf__type_by_id(btf, datasec_id);
1180 	vsi = btf_var_secinfos(datasec);
1181 	for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1182 		type = btf__type_by_id(obj->btf, vsi->type);
1183 		var_name = btf__name_by_offset(obj->btf, type->name_off);
1184 
1185 		type_id = btf__resolve_type(obj->btf, vsi->type);
1186 		if (type_id < 0) {
1187 			pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1188 				vsi->type, STRUCT_OPS_SEC);
1189 			return -EINVAL;
1190 		}
1191 
1192 		type = btf__type_by_id(obj->btf, type_id);
1193 		tname = btf__name_by_offset(obj->btf, type->name_off);
1194 		if (!tname[0]) {
1195 			pr_warn("struct_ops init: anonymous type is not supported\n");
1196 			return -ENOTSUP;
1197 		}
1198 		if (!btf_is_struct(type)) {
1199 			pr_warn("struct_ops init: %s is not a struct\n", tname);
1200 			return -EINVAL;
1201 		}
1202 
1203 		map = bpf_object__add_map(obj);
1204 		if (IS_ERR(map))
1205 			return PTR_ERR(map);
1206 
1207 		map->sec_idx = obj->efile.st_ops_shndx;
1208 		map->sec_offset = vsi->offset;
1209 		map->name = strdup(var_name);
1210 		if (!map->name)
1211 			return -ENOMEM;
1212 
1213 		map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1214 		map->def.key_size = sizeof(int);
1215 		map->def.value_size = type->size;
1216 		map->def.max_entries = 1;
1217 
1218 		map->st_ops = calloc(1, sizeof(*map->st_ops));
1219 		if (!map->st_ops)
1220 			return -ENOMEM;
1221 		st_ops = map->st_ops;
1222 		st_ops->data = malloc(type->size);
1223 		st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1224 		st_ops->kern_func_off = malloc(btf_vlen(type) *
1225 					       sizeof(*st_ops->kern_func_off));
1226 		if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1227 			return -ENOMEM;
1228 
1229 		if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) {
1230 			pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1231 				var_name, STRUCT_OPS_SEC);
1232 			return -EINVAL;
1233 		}
1234 
1235 		memcpy(st_ops->data,
1236 		       obj->efile.st_ops_data->d_buf + vsi->offset,
1237 		       type->size);
1238 		st_ops->tname = tname;
1239 		st_ops->type = type;
1240 		st_ops->type_id = type_id;
1241 
1242 		pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1243 			 tname, type_id, var_name, vsi->offset);
1244 	}
1245 
1246 	return 0;
1247 }
1248 
1249 static struct bpf_object *bpf_object__new(const char *path,
1250 					  const void *obj_buf,
1251 					  size_t obj_buf_sz,
1252 					  const char *obj_name)
1253 {
1254 	struct bpf_object *obj;
1255 	char *end;
1256 
1257 	obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1258 	if (!obj) {
1259 		pr_warn("alloc memory failed for %s\n", path);
1260 		return ERR_PTR(-ENOMEM);
1261 	}
1262 
1263 	strcpy(obj->path, path);
1264 	if (obj_name) {
1265 		libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1266 	} else {
1267 		/* Using basename() GNU version which doesn't modify arg. */
1268 		libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1269 		end = strchr(obj->name, '.');
1270 		if (end)
1271 			*end = 0;
1272 	}
1273 
1274 	obj->efile.fd = -1;
1275 	/*
1276 	 * Caller of this function should also call
1277 	 * bpf_object__elf_finish() after data collection to return
1278 	 * obj_buf to user. If not, we should duplicate the buffer to
1279 	 * avoid user freeing them before elf finish.
1280 	 */
1281 	obj->efile.obj_buf = obj_buf;
1282 	obj->efile.obj_buf_sz = obj_buf_sz;
1283 	obj->efile.btf_maps_shndx = -1;
1284 	obj->efile.st_ops_shndx = -1;
1285 	obj->kconfig_map_idx = -1;
1286 
1287 	obj->kern_version = get_kernel_version();
1288 	obj->loaded = false;
1289 
1290 	return obj;
1291 }
1292 
1293 static void bpf_object__elf_finish(struct bpf_object *obj)
1294 {
1295 	if (!obj->efile.elf)
1296 		return;
1297 
1298 	elf_end(obj->efile.elf);
1299 	obj->efile.elf = NULL;
1300 	obj->efile.symbols = NULL;
1301 	obj->efile.st_ops_data = NULL;
1302 
1303 	zfree(&obj->efile.secs);
1304 	obj->efile.sec_cnt = 0;
1305 	zclose(obj->efile.fd);
1306 	obj->efile.obj_buf = NULL;
1307 	obj->efile.obj_buf_sz = 0;
1308 }
1309 
1310 static int bpf_object__elf_init(struct bpf_object *obj)
1311 {
1312 	Elf64_Ehdr *ehdr;
1313 	int err = 0;
1314 	Elf *elf;
1315 
1316 	if (obj->efile.elf) {
1317 		pr_warn("elf: init internal error\n");
1318 		return -LIBBPF_ERRNO__LIBELF;
1319 	}
1320 
1321 	if (obj->efile.obj_buf_sz > 0) {
1322 		/* obj_buf should have been validated by bpf_object__open_mem(). */
1323 		elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1324 	} else {
1325 		obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1326 		if (obj->efile.fd < 0) {
1327 			char errmsg[STRERR_BUFSIZE], *cp;
1328 
1329 			err = -errno;
1330 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1331 			pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1332 			return err;
1333 		}
1334 
1335 		elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1336 	}
1337 
1338 	if (!elf) {
1339 		pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1340 		err = -LIBBPF_ERRNO__LIBELF;
1341 		goto errout;
1342 	}
1343 
1344 	obj->efile.elf = elf;
1345 
1346 	if (elf_kind(elf) != ELF_K_ELF) {
1347 		err = -LIBBPF_ERRNO__FORMAT;
1348 		pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1349 		goto errout;
1350 	}
1351 
1352 	if (gelf_getclass(elf) != ELFCLASS64) {
1353 		err = -LIBBPF_ERRNO__FORMAT;
1354 		pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1355 		goto errout;
1356 	}
1357 
1358 	obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1359 	if (!obj->efile.ehdr) {
1360 		pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1361 		err = -LIBBPF_ERRNO__FORMAT;
1362 		goto errout;
1363 	}
1364 
1365 	if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1366 		pr_warn("elf: failed to get section names section index for %s: %s\n",
1367 			obj->path, elf_errmsg(-1));
1368 		err = -LIBBPF_ERRNO__FORMAT;
1369 		goto errout;
1370 	}
1371 
1372 	/* Elf is corrupted/truncated, avoid calling elf_strptr. */
1373 	if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1374 		pr_warn("elf: failed to get section names strings from %s: %s\n",
1375 			obj->path, elf_errmsg(-1));
1376 		err = -LIBBPF_ERRNO__FORMAT;
1377 		goto errout;
1378 	}
1379 
1380 	/* Old LLVM set e_machine to EM_NONE */
1381 	if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1382 		pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1383 		err = -LIBBPF_ERRNO__FORMAT;
1384 		goto errout;
1385 	}
1386 
1387 	return 0;
1388 errout:
1389 	bpf_object__elf_finish(obj);
1390 	return err;
1391 }
1392 
1393 static int bpf_object__check_endianness(struct bpf_object *obj)
1394 {
1395 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1396 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1397 		return 0;
1398 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1399 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1400 		return 0;
1401 #else
1402 # error "Unrecognized __BYTE_ORDER__"
1403 #endif
1404 	pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1405 	return -LIBBPF_ERRNO__ENDIAN;
1406 }
1407 
1408 static int
1409 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1410 {
1411 	/* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1412 	 * go over allowed ELF data section buffer
1413 	 */
1414 	libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1415 	pr_debug("license of %s is %s\n", obj->path, obj->license);
1416 	return 0;
1417 }
1418 
1419 static int
1420 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1421 {
1422 	__u32 kver;
1423 
1424 	if (size != sizeof(kver)) {
1425 		pr_warn("invalid kver section in %s\n", obj->path);
1426 		return -LIBBPF_ERRNO__FORMAT;
1427 	}
1428 	memcpy(&kver, data, sizeof(kver));
1429 	obj->kern_version = kver;
1430 	pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1431 	return 0;
1432 }
1433 
1434 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1435 {
1436 	if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1437 	    type == BPF_MAP_TYPE_HASH_OF_MAPS)
1438 		return true;
1439 	return false;
1440 }
1441 
1442 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1443 {
1444 	Elf_Data *data;
1445 	Elf_Scn *scn;
1446 
1447 	if (!name)
1448 		return -EINVAL;
1449 
1450 	scn = elf_sec_by_name(obj, name);
1451 	data = elf_sec_data(obj, scn);
1452 	if (data) {
1453 		*size = data->d_size;
1454 		return 0; /* found it */
1455 	}
1456 
1457 	return -ENOENT;
1458 }
1459 
1460 static int find_elf_var_offset(const struct bpf_object *obj, const char *name, __u32 *off)
1461 {
1462 	Elf_Data *symbols = obj->efile.symbols;
1463 	const char *sname;
1464 	size_t si;
1465 
1466 	if (!name || !off)
1467 		return -EINVAL;
1468 
1469 	for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1470 		Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1471 
1472 		if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1473 			continue;
1474 
1475 		if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1476 		    ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1477 			continue;
1478 
1479 		sname = elf_sym_str(obj, sym->st_name);
1480 		if (!sname) {
1481 			pr_warn("failed to get sym name string for var %s\n", name);
1482 			return -EIO;
1483 		}
1484 		if (strcmp(name, sname) == 0) {
1485 			*off = sym->st_value;
1486 			return 0;
1487 		}
1488 	}
1489 
1490 	return -ENOENT;
1491 }
1492 
1493 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1494 {
1495 	struct bpf_map *map;
1496 	int err;
1497 
1498 	err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1499 				sizeof(*obj->maps), obj->nr_maps + 1);
1500 	if (err)
1501 		return ERR_PTR(err);
1502 
1503 	map = &obj->maps[obj->nr_maps++];
1504 	map->obj = obj;
1505 	map->fd = -1;
1506 	map->inner_map_fd = -1;
1507 	map->autocreate = true;
1508 
1509 	return map;
1510 }
1511 
1512 static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1513 {
1514 	long page_sz = sysconf(_SC_PAGE_SIZE);
1515 	size_t map_sz;
1516 
1517 	map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries;
1518 	map_sz = roundup(map_sz, page_sz);
1519 	return map_sz;
1520 }
1521 
1522 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1523 {
1524 	char map_name[BPF_OBJ_NAME_LEN], *p;
1525 	int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1526 
1527 	/* This is one of the more confusing parts of libbpf for various
1528 	 * reasons, some of which are historical. The original idea for naming
1529 	 * internal names was to include as much of BPF object name prefix as
1530 	 * possible, so that it can be distinguished from similar internal
1531 	 * maps of a different BPF object.
1532 	 * As an example, let's say we have bpf_object named 'my_object_name'
1533 	 * and internal map corresponding to '.rodata' ELF section. The final
1534 	 * map name advertised to user and to the kernel will be
1535 	 * 'my_objec.rodata', taking first 8 characters of object name and
1536 	 * entire 7 characters of '.rodata'.
1537 	 * Somewhat confusingly, if internal map ELF section name is shorter
1538 	 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1539 	 * for the suffix, even though we only have 4 actual characters, and
1540 	 * resulting map will be called 'my_objec.bss', not even using all 15
1541 	 * characters allowed by the kernel. Oh well, at least the truncated
1542 	 * object name is somewhat consistent in this case. But if the map
1543 	 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1544 	 * (8 chars) and thus will be left with only first 7 characters of the
1545 	 * object name ('my_obje'). Happy guessing, user, that the final map
1546 	 * name will be "my_obje.kconfig".
1547 	 * Now, with libbpf starting to support arbitrarily named .rodata.*
1548 	 * and .data.* data sections, it's possible that ELF section name is
1549 	 * longer than allowed 15 chars, so we now need to be careful to take
1550 	 * only up to 15 first characters of ELF name, taking no BPF object
1551 	 * name characters at all. So '.rodata.abracadabra' will result in
1552 	 * '.rodata.abracad' kernel and user-visible name.
1553 	 * We need to keep this convoluted logic intact for .data, .bss and
1554 	 * .rodata maps, but for new custom .data.custom and .rodata.custom
1555 	 * maps we use their ELF names as is, not prepending bpf_object name
1556 	 * in front. We still need to truncate them to 15 characters for the
1557 	 * kernel. Full name can be recovered for such maps by using DATASEC
1558 	 * BTF type associated with such map's value type, though.
1559 	 */
1560 	if (sfx_len >= BPF_OBJ_NAME_LEN)
1561 		sfx_len = BPF_OBJ_NAME_LEN - 1;
1562 
1563 	/* if there are two or more dots in map name, it's a custom dot map */
1564 	if (strchr(real_name + 1, '.') != NULL)
1565 		pfx_len = 0;
1566 	else
1567 		pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1568 
1569 	snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1570 		 sfx_len, real_name);
1571 
1572 	/* sanitise map name to characters allowed by kernel */
1573 	for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1574 		if (!isalnum(*p) && *p != '_' && *p != '.')
1575 			*p = '_';
1576 
1577 	return strdup(map_name);
1578 }
1579 
1580 static int
1581 bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map);
1582 
1583 static int
1584 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1585 			      const char *real_name, int sec_idx, void *data, size_t data_sz)
1586 {
1587 	struct bpf_map_def *def;
1588 	struct bpf_map *map;
1589 	int err;
1590 
1591 	map = bpf_object__add_map(obj);
1592 	if (IS_ERR(map))
1593 		return PTR_ERR(map);
1594 
1595 	map->libbpf_type = type;
1596 	map->sec_idx = sec_idx;
1597 	map->sec_offset = 0;
1598 	map->real_name = strdup(real_name);
1599 	map->name = internal_map_name(obj, real_name);
1600 	if (!map->real_name || !map->name) {
1601 		zfree(&map->real_name);
1602 		zfree(&map->name);
1603 		return -ENOMEM;
1604 	}
1605 
1606 	def = &map->def;
1607 	def->type = BPF_MAP_TYPE_ARRAY;
1608 	def->key_size = sizeof(int);
1609 	def->value_size = data_sz;
1610 	def->max_entries = 1;
1611 	def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1612 			 ? BPF_F_RDONLY_PROG : 0;
1613 	def->map_flags |= BPF_F_MMAPABLE;
1614 
1615 	pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1616 		 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1617 
1618 	map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
1619 			   MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1620 	if (map->mmaped == MAP_FAILED) {
1621 		err = -errno;
1622 		map->mmaped = NULL;
1623 		pr_warn("failed to alloc map '%s' content buffer: %d\n",
1624 			map->name, err);
1625 		zfree(&map->real_name);
1626 		zfree(&map->name);
1627 		return err;
1628 	}
1629 
1630 	/* failures are fine because of maps like .rodata.str1.1 */
1631 	(void) bpf_map_find_btf_info(obj, map);
1632 
1633 	if (data)
1634 		memcpy(map->mmaped, data, data_sz);
1635 
1636 	pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1637 	return 0;
1638 }
1639 
1640 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1641 {
1642 	struct elf_sec_desc *sec_desc;
1643 	const char *sec_name;
1644 	int err = 0, sec_idx;
1645 
1646 	/*
1647 	 * Populate obj->maps with libbpf internal maps.
1648 	 */
1649 	for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1650 		sec_desc = &obj->efile.secs[sec_idx];
1651 
1652 		/* Skip recognized sections with size 0. */
1653 		if (!sec_desc->data || sec_desc->data->d_size == 0)
1654 			continue;
1655 
1656 		switch (sec_desc->sec_type) {
1657 		case SEC_DATA:
1658 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1659 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1660 							    sec_name, sec_idx,
1661 							    sec_desc->data->d_buf,
1662 							    sec_desc->data->d_size);
1663 			break;
1664 		case SEC_RODATA:
1665 			obj->has_rodata = true;
1666 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1667 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1668 							    sec_name, sec_idx,
1669 							    sec_desc->data->d_buf,
1670 							    sec_desc->data->d_size);
1671 			break;
1672 		case SEC_BSS:
1673 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1674 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1675 							    sec_name, sec_idx,
1676 							    NULL,
1677 							    sec_desc->data->d_size);
1678 			break;
1679 		default:
1680 			/* skip */
1681 			break;
1682 		}
1683 		if (err)
1684 			return err;
1685 	}
1686 	return 0;
1687 }
1688 
1689 
1690 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1691 					       const void *name)
1692 {
1693 	int i;
1694 
1695 	for (i = 0; i < obj->nr_extern; i++) {
1696 		if (strcmp(obj->externs[i].name, name) == 0)
1697 			return &obj->externs[i];
1698 	}
1699 	return NULL;
1700 }
1701 
1702 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1703 			      char value)
1704 {
1705 	switch (ext->kcfg.type) {
1706 	case KCFG_BOOL:
1707 		if (value == 'm') {
1708 			pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
1709 				ext->name, value);
1710 			return -EINVAL;
1711 		}
1712 		*(bool *)ext_val = value == 'y' ? true : false;
1713 		break;
1714 	case KCFG_TRISTATE:
1715 		if (value == 'y')
1716 			*(enum libbpf_tristate *)ext_val = TRI_YES;
1717 		else if (value == 'm')
1718 			*(enum libbpf_tristate *)ext_val = TRI_MODULE;
1719 		else /* value == 'n' */
1720 			*(enum libbpf_tristate *)ext_val = TRI_NO;
1721 		break;
1722 	case KCFG_CHAR:
1723 		*(char *)ext_val = value;
1724 		break;
1725 	case KCFG_UNKNOWN:
1726 	case KCFG_INT:
1727 	case KCFG_CHAR_ARR:
1728 	default:
1729 		pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
1730 			ext->name, value);
1731 		return -EINVAL;
1732 	}
1733 	ext->is_set = true;
1734 	return 0;
1735 }
1736 
1737 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1738 			      const char *value)
1739 {
1740 	size_t len;
1741 
1742 	if (ext->kcfg.type != KCFG_CHAR_ARR) {
1743 		pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
1744 			ext->name, value);
1745 		return -EINVAL;
1746 	}
1747 
1748 	len = strlen(value);
1749 	if (value[len - 1] != '"') {
1750 		pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1751 			ext->name, value);
1752 		return -EINVAL;
1753 	}
1754 
1755 	/* strip quotes */
1756 	len -= 2;
1757 	if (len >= ext->kcfg.sz) {
1758 		pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
1759 			ext->name, value, len, ext->kcfg.sz - 1);
1760 		len = ext->kcfg.sz - 1;
1761 	}
1762 	memcpy(ext_val, value + 1, len);
1763 	ext_val[len] = '\0';
1764 	ext->is_set = true;
1765 	return 0;
1766 }
1767 
1768 static int parse_u64(const char *value, __u64 *res)
1769 {
1770 	char *value_end;
1771 	int err;
1772 
1773 	errno = 0;
1774 	*res = strtoull(value, &value_end, 0);
1775 	if (errno) {
1776 		err = -errno;
1777 		pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1778 		return err;
1779 	}
1780 	if (*value_end) {
1781 		pr_warn("failed to parse '%s' as integer completely\n", value);
1782 		return -EINVAL;
1783 	}
1784 	return 0;
1785 }
1786 
1787 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1788 {
1789 	int bit_sz = ext->kcfg.sz * 8;
1790 
1791 	if (ext->kcfg.sz == 8)
1792 		return true;
1793 
1794 	/* Validate that value stored in u64 fits in integer of `ext->sz`
1795 	 * bytes size without any loss of information. If the target integer
1796 	 * is signed, we rely on the following limits of integer type of
1797 	 * Y bits and subsequent transformation:
1798 	 *
1799 	 *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
1800 	 *            0 <= X + 2^(Y-1) <= 2^Y - 1
1801 	 *            0 <= X + 2^(Y-1) <  2^Y
1802 	 *
1803 	 *  For unsigned target integer, check that all the (64 - Y) bits are
1804 	 *  zero.
1805 	 */
1806 	if (ext->kcfg.is_signed)
1807 		return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1808 	else
1809 		return (v >> bit_sz) == 0;
1810 }
1811 
1812 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1813 			      __u64 value)
1814 {
1815 	if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
1816 	    ext->kcfg.type != KCFG_BOOL) {
1817 		pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
1818 			ext->name, (unsigned long long)value);
1819 		return -EINVAL;
1820 	}
1821 	if (ext->kcfg.type == KCFG_BOOL && value > 1) {
1822 		pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
1823 			ext->name, (unsigned long long)value);
1824 		return -EINVAL;
1825 
1826 	}
1827 	if (!is_kcfg_value_in_range(ext, value)) {
1828 		pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
1829 			ext->name, (unsigned long long)value, ext->kcfg.sz);
1830 		return -ERANGE;
1831 	}
1832 	switch (ext->kcfg.sz) {
1833 		case 1: *(__u8 *)ext_val = value; break;
1834 		case 2: *(__u16 *)ext_val = value; break;
1835 		case 4: *(__u32 *)ext_val = value; break;
1836 		case 8: *(__u64 *)ext_val = value; break;
1837 		default:
1838 			return -EINVAL;
1839 	}
1840 	ext->is_set = true;
1841 	return 0;
1842 }
1843 
1844 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1845 					    char *buf, void *data)
1846 {
1847 	struct extern_desc *ext;
1848 	char *sep, *value;
1849 	int len, err = 0;
1850 	void *ext_val;
1851 	__u64 num;
1852 
1853 	if (!str_has_pfx(buf, "CONFIG_"))
1854 		return 0;
1855 
1856 	sep = strchr(buf, '=');
1857 	if (!sep) {
1858 		pr_warn("failed to parse '%s': no separator\n", buf);
1859 		return -EINVAL;
1860 	}
1861 
1862 	/* Trim ending '\n' */
1863 	len = strlen(buf);
1864 	if (buf[len - 1] == '\n')
1865 		buf[len - 1] = '\0';
1866 	/* Split on '=' and ensure that a value is present. */
1867 	*sep = '\0';
1868 	if (!sep[1]) {
1869 		*sep = '=';
1870 		pr_warn("failed to parse '%s': no value\n", buf);
1871 		return -EINVAL;
1872 	}
1873 
1874 	ext = find_extern_by_name(obj, buf);
1875 	if (!ext || ext->is_set)
1876 		return 0;
1877 
1878 	ext_val = data + ext->kcfg.data_off;
1879 	value = sep + 1;
1880 
1881 	switch (*value) {
1882 	case 'y': case 'n': case 'm':
1883 		err = set_kcfg_value_tri(ext, ext_val, *value);
1884 		break;
1885 	case '"':
1886 		err = set_kcfg_value_str(ext, ext_val, value);
1887 		break;
1888 	default:
1889 		/* assume integer */
1890 		err = parse_u64(value, &num);
1891 		if (err) {
1892 			pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
1893 			return err;
1894 		}
1895 		if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1896 			pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
1897 			return -EINVAL;
1898 		}
1899 		err = set_kcfg_value_num(ext, ext_val, num);
1900 		break;
1901 	}
1902 	if (err)
1903 		return err;
1904 	pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
1905 	return 0;
1906 }
1907 
1908 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1909 {
1910 	char buf[PATH_MAX];
1911 	struct utsname uts;
1912 	int len, err = 0;
1913 	gzFile file;
1914 
1915 	uname(&uts);
1916 	len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1917 	if (len < 0)
1918 		return -EINVAL;
1919 	else if (len >= PATH_MAX)
1920 		return -ENAMETOOLONG;
1921 
1922 	/* gzopen also accepts uncompressed files. */
1923 	file = gzopen(buf, "r");
1924 	if (!file)
1925 		file = gzopen("/proc/config.gz", "r");
1926 
1927 	if (!file) {
1928 		pr_warn("failed to open system Kconfig\n");
1929 		return -ENOENT;
1930 	}
1931 
1932 	while (gzgets(file, buf, sizeof(buf))) {
1933 		err = bpf_object__process_kconfig_line(obj, buf, data);
1934 		if (err) {
1935 			pr_warn("error parsing system Kconfig line '%s': %d\n",
1936 				buf, err);
1937 			goto out;
1938 		}
1939 	}
1940 
1941 out:
1942 	gzclose(file);
1943 	return err;
1944 }
1945 
1946 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
1947 					const char *config, void *data)
1948 {
1949 	char buf[PATH_MAX];
1950 	int err = 0;
1951 	FILE *file;
1952 
1953 	file = fmemopen((void *)config, strlen(config), "r");
1954 	if (!file) {
1955 		err = -errno;
1956 		pr_warn("failed to open in-memory Kconfig: %d\n", err);
1957 		return err;
1958 	}
1959 
1960 	while (fgets(buf, sizeof(buf), file)) {
1961 		err = bpf_object__process_kconfig_line(obj, buf, data);
1962 		if (err) {
1963 			pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
1964 				buf, err);
1965 			break;
1966 		}
1967 	}
1968 
1969 	fclose(file);
1970 	return err;
1971 }
1972 
1973 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
1974 {
1975 	struct extern_desc *last_ext = NULL, *ext;
1976 	size_t map_sz;
1977 	int i, err;
1978 
1979 	for (i = 0; i < obj->nr_extern; i++) {
1980 		ext = &obj->externs[i];
1981 		if (ext->type == EXT_KCFG)
1982 			last_ext = ext;
1983 	}
1984 
1985 	if (!last_ext)
1986 		return 0;
1987 
1988 	map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
1989 	err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
1990 					    ".kconfig", obj->efile.symbols_shndx,
1991 					    NULL, map_sz);
1992 	if (err)
1993 		return err;
1994 
1995 	obj->kconfig_map_idx = obj->nr_maps - 1;
1996 
1997 	return 0;
1998 }
1999 
2000 const struct btf_type *
2001 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2002 {
2003 	const struct btf_type *t = btf__type_by_id(btf, id);
2004 
2005 	if (res_id)
2006 		*res_id = id;
2007 
2008 	while (btf_is_mod(t) || btf_is_typedef(t)) {
2009 		if (res_id)
2010 			*res_id = t->type;
2011 		t = btf__type_by_id(btf, t->type);
2012 	}
2013 
2014 	return t;
2015 }
2016 
2017 static const struct btf_type *
2018 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2019 {
2020 	const struct btf_type *t;
2021 
2022 	t = skip_mods_and_typedefs(btf, id, NULL);
2023 	if (!btf_is_ptr(t))
2024 		return NULL;
2025 
2026 	t = skip_mods_and_typedefs(btf, t->type, res_id);
2027 
2028 	return btf_is_func_proto(t) ? t : NULL;
2029 }
2030 
2031 static const char *__btf_kind_str(__u16 kind)
2032 {
2033 	switch (kind) {
2034 	case BTF_KIND_UNKN: return "void";
2035 	case BTF_KIND_INT: return "int";
2036 	case BTF_KIND_PTR: return "ptr";
2037 	case BTF_KIND_ARRAY: return "array";
2038 	case BTF_KIND_STRUCT: return "struct";
2039 	case BTF_KIND_UNION: return "union";
2040 	case BTF_KIND_ENUM: return "enum";
2041 	case BTF_KIND_FWD: return "fwd";
2042 	case BTF_KIND_TYPEDEF: return "typedef";
2043 	case BTF_KIND_VOLATILE: return "volatile";
2044 	case BTF_KIND_CONST: return "const";
2045 	case BTF_KIND_RESTRICT: return "restrict";
2046 	case BTF_KIND_FUNC: return "func";
2047 	case BTF_KIND_FUNC_PROTO: return "func_proto";
2048 	case BTF_KIND_VAR: return "var";
2049 	case BTF_KIND_DATASEC: return "datasec";
2050 	case BTF_KIND_FLOAT: return "float";
2051 	case BTF_KIND_DECL_TAG: return "decl_tag";
2052 	case BTF_KIND_TYPE_TAG: return "type_tag";
2053 	case BTF_KIND_ENUM64: return "enum64";
2054 	default: return "unknown";
2055 	}
2056 }
2057 
2058 const char *btf_kind_str(const struct btf_type *t)
2059 {
2060 	return __btf_kind_str(btf_kind(t));
2061 }
2062 
2063 /*
2064  * Fetch integer attribute of BTF map definition. Such attributes are
2065  * represented using a pointer to an array, in which dimensionality of array
2066  * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2067  * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2068  * type definition, while using only sizeof(void *) space in ELF data section.
2069  */
2070 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2071 			      const struct btf_member *m, __u32 *res)
2072 {
2073 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2074 	const char *name = btf__name_by_offset(btf, m->name_off);
2075 	const struct btf_array *arr_info;
2076 	const struct btf_type *arr_t;
2077 
2078 	if (!btf_is_ptr(t)) {
2079 		pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2080 			map_name, name, btf_kind_str(t));
2081 		return false;
2082 	}
2083 
2084 	arr_t = btf__type_by_id(btf, t->type);
2085 	if (!arr_t) {
2086 		pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2087 			map_name, name, t->type);
2088 		return false;
2089 	}
2090 	if (!btf_is_array(arr_t)) {
2091 		pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2092 			map_name, name, btf_kind_str(arr_t));
2093 		return false;
2094 	}
2095 	arr_info = btf_array(arr_t);
2096 	*res = arr_info->nelems;
2097 	return true;
2098 }
2099 
2100 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2101 {
2102 	int len;
2103 
2104 	len = snprintf(buf, buf_sz, "%s/%s", path, name);
2105 	if (len < 0)
2106 		return -EINVAL;
2107 	if (len >= buf_sz)
2108 		return -ENAMETOOLONG;
2109 
2110 	return 0;
2111 }
2112 
2113 static int build_map_pin_path(struct bpf_map *map, const char *path)
2114 {
2115 	char buf[PATH_MAX];
2116 	int err;
2117 
2118 	if (!path)
2119 		path = "/sys/fs/bpf";
2120 
2121 	err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2122 	if (err)
2123 		return err;
2124 
2125 	return bpf_map__set_pin_path(map, buf);
2126 }
2127 
2128 /* should match definition in bpf_helpers.h */
2129 enum libbpf_pin_type {
2130 	LIBBPF_PIN_NONE,
2131 	/* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2132 	LIBBPF_PIN_BY_NAME,
2133 };
2134 
2135 int parse_btf_map_def(const char *map_name, struct btf *btf,
2136 		      const struct btf_type *def_t, bool strict,
2137 		      struct btf_map_def *map_def, struct btf_map_def *inner_def)
2138 {
2139 	const struct btf_type *t;
2140 	const struct btf_member *m;
2141 	bool is_inner = inner_def == NULL;
2142 	int vlen, i;
2143 
2144 	vlen = btf_vlen(def_t);
2145 	m = btf_members(def_t);
2146 	for (i = 0; i < vlen; i++, m++) {
2147 		const char *name = btf__name_by_offset(btf, m->name_off);
2148 
2149 		if (!name) {
2150 			pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2151 			return -EINVAL;
2152 		}
2153 		if (strcmp(name, "type") == 0) {
2154 			if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2155 				return -EINVAL;
2156 			map_def->parts |= MAP_DEF_MAP_TYPE;
2157 		} else if (strcmp(name, "max_entries") == 0) {
2158 			if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2159 				return -EINVAL;
2160 			map_def->parts |= MAP_DEF_MAX_ENTRIES;
2161 		} else if (strcmp(name, "map_flags") == 0) {
2162 			if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2163 				return -EINVAL;
2164 			map_def->parts |= MAP_DEF_MAP_FLAGS;
2165 		} else if (strcmp(name, "numa_node") == 0) {
2166 			if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2167 				return -EINVAL;
2168 			map_def->parts |= MAP_DEF_NUMA_NODE;
2169 		} else if (strcmp(name, "key_size") == 0) {
2170 			__u32 sz;
2171 
2172 			if (!get_map_field_int(map_name, btf, m, &sz))
2173 				return -EINVAL;
2174 			if (map_def->key_size && map_def->key_size != sz) {
2175 				pr_warn("map '%s': conflicting key size %u != %u.\n",
2176 					map_name, map_def->key_size, sz);
2177 				return -EINVAL;
2178 			}
2179 			map_def->key_size = sz;
2180 			map_def->parts |= MAP_DEF_KEY_SIZE;
2181 		} else if (strcmp(name, "key") == 0) {
2182 			__s64 sz;
2183 
2184 			t = btf__type_by_id(btf, m->type);
2185 			if (!t) {
2186 				pr_warn("map '%s': key type [%d] not found.\n",
2187 					map_name, m->type);
2188 				return -EINVAL;
2189 			}
2190 			if (!btf_is_ptr(t)) {
2191 				pr_warn("map '%s': key spec is not PTR: %s.\n",
2192 					map_name, btf_kind_str(t));
2193 				return -EINVAL;
2194 			}
2195 			sz = btf__resolve_size(btf, t->type);
2196 			if (sz < 0) {
2197 				pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2198 					map_name, t->type, (ssize_t)sz);
2199 				return sz;
2200 			}
2201 			if (map_def->key_size && map_def->key_size != sz) {
2202 				pr_warn("map '%s': conflicting key size %u != %zd.\n",
2203 					map_name, map_def->key_size, (ssize_t)sz);
2204 				return -EINVAL;
2205 			}
2206 			map_def->key_size = sz;
2207 			map_def->key_type_id = t->type;
2208 			map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2209 		} else if (strcmp(name, "value_size") == 0) {
2210 			__u32 sz;
2211 
2212 			if (!get_map_field_int(map_name, btf, m, &sz))
2213 				return -EINVAL;
2214 			if (map_def->value_size && map_def->value_size != sz) {
2215 				pr_warn("map '%s': conflicting value size %u != %u.\n",
2216 					map_name, map_def->value_size, sz);
2217 				return -EINVAL;
2218 			}
2219 			map_def->value_size = sz;
2220 			map_def->parts |= MAP_DEF_VALUE_SIZE;
2221 		} else if (strcmp(name, "value") == 0) {
2222 			__s64 sz;
2223 
2224 			t = btf__type_by_id(btf, m->type);
2225 			if (!t) {
2226 				pr_warn("map '%s': value type [%d] not found.\n",
2227 					map_name, m->type);
2228 				return -EINVAL;
2229 			}
2230 			if (!btf_is_ptr(t)) {
2231 				pr_warn("map '%s': value spec is not PTR: %s.\n",
2232 					map_name, btf_kind_str(t));
2233 				return -EINVAL;
2234 			}
2235 			sz = btf__resolve_size(btf, t->type);
2236 			if (sz < 0) {
2237 				pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2238 					map_name, t->type, (ssize_t)sz);
2239 				return sz;
2240 			}
2241 			if (map_def->value_size && map_def->value_size != sz) {
2242 				pr_warn("map '%s': conflicting value size %u != %zd.\n",
2243 					map_name, map_def->value_size, (ssize_t)sz);
2244 				return -EINVAL;
2245 			}
2246 			map_def->value_size = sz;
2247 			map_def->value_type_id = t->type;
2248 			map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2249 		}
2250 		else if (strcmp(name, "values") == 0) {
2251 			bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2252 			bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2253 			const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2254 			char inner_map_name[128];
2255 			int err;
2256 
2257 			if (is_inner) {
2258 				pr_warn("map '%s': multi-level inner maps not supported.\n",
2259 					map_name);
2260 				return -ENOTSUP;
2261 			}
2262 			if (i != vlen - 1) {
2263 				pr_warn("map '%s': '%s' member should be last.\n",
2264 					map_name, name);
2265 				return -EINVAL;
2266 			}
2267 			if (!is_map_in_map && !is_prog_array) {
2268 				pr_warn("map '%s': should be map-in-map or prog-array.\n",
2269 					map_name);
2270 				return -ENOTSUP;
2271 			}
2272 			if (map_def->value_size && map_def->value_size != 4) {
2273 				pr_warn("map '%s': conflicting value size %u != 4.\n",
2274 					map_name, map_def->value_size);
2275 				return -EINVAL;
2276 			}
2277 			map_def->value_size = 4;
2278 			t = btf__type_by_id(btf, m->type);
2279 			if (!t) {
2280 				pr_warn("map '%s': %s type [%d] not found.\n",
2281 					map_name, desc, m->type);
2282 				return -EINVAL;
2283 			}
2284 			if (!btf_is_array(t) || btf_array(t)->nelems) {
2285 				pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2286 					map_name, desc);
2287 				return -EINVAL;
2288 			}
2289 			t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2290 			if (!btf_is_ptr(t)) {
2291 				pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2292 					map_name, desc, btf_kind_str(t));
2293 				return -EINVAL;
2294 			}
2295 			t = skip_mods_and_typedefs(btf, t->type, NULL);
2296 			if (is_prog_array) {
2297 				if (!btf_is_func_proto(t)) {
2298 					pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2299 						map_name, btf_kind_str(t));
2300 					return -EINVAL;
2301 				}
2302 				continue;
2303 			}
2304 			if (!btf_is_struct(t)) {
2305 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2306 					map_name, btf_kind_str(t));
2307 				return -EINVAL;
2308 			}
2309 
2310 			snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2311 			err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2312 			if (err)
2313 				return err;
2314 
2315 			map_def->parts |= MAP_DEF_INNER_MAP;
2316 		} else if (strcmp(name, "pinning") == 0) {
2317 			__u32 val;
2318 
2319 			if (is_inner) {
2320 				pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2321 				return -EINVAL;
2322 			}
2323 			if (!get_map_field_int(map_name, btf, m, &val))
2324 				return -EINVAL;
2325 			if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2326 				pr_warn("map '%s': invalid pinning value %u.\n",
2327 					map_name, val);
2328 				return -EINVAL;
2329 			}
2330 			map_def->pinning = val;
2331 			map_def->parts |= MAP_DEF_PINNING;
2332 		} else if (strcmp(name, "map_extra") == 0) {
2333 			__u32 map_extra;
2334 
2335 			if (!get_map_field_int(map_name, btf, m, &map_extra))
2336 				return -EINVAL;
2337 			map_def->map_extra = map_extra;
2338 			map_def->parts |= MAP_DEF_MAP_EXTRA;
2339 		} else {
2340 			if (strict) {
2341 				pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2342 				return -ENOTSUP;
2343 			}
2344 			pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2345 		}
2346 	}
2347 
2348 	if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2349 		pr_warn("map '%s': map type isn't specified.\n", map_name);
2350 		return -EINVAL;
2351 	}
2352 
2353 	return 0;
2354 }
2355 
2356 static size_t adjust_ringbuf_sz(size_t sz)
2357 {
2358 	__u32 page_sz = sysconf(_SC_PAGE_SIZE);
2359 	__u32 mul;
2360 
2361 	/* if user forgot to set any size, make sure they see error */
2362 	if (sz == 0)
2363 		return 0;
2364 	/* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2365 	 * a power-of-2 multiple of kernel's page size. If user diligently
2366 	 * satisified these conditions, pass the size through.
2367 	 */
2368 	if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2369 		return sz;
2370 
2371 	/* Otherwise find closest (page_sz * power_of_2) product bigger than
2372 	 * user-set size to satisfy both user size request and kernel
2373 	 * requirements and substitute correct max_entries for map creation.
2374 	 */
2375 	for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2376 		if (mul * page_sz > sz)
2377 			return mul * page_sz;
2378 	}
2379 
2380 	/* if it's impossible to satisfy the conditions (i.e., user size is
2381 	 * very close to UINT_MAX but is not a power-of-2 multiple of
2382 	 * page_size) then just return original size and let kernel reject it
2383 	 */
2384 	return sz;
2385 }
2386 
2387 static bool map_is_ringbuf(const struct bpf_map *map)
2388 {
2389 	return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2390 	       map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2391 }
2392 
2393 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2394 {
2395 	map->def.type = def->map_type;
2396 	map->def.key_size = def->key_size;
2397 	map->def.value_size = def->value_size;
2398 	map->def.max_entries = def->max_entries;
2399 	map->def.map_flags = def->map_flags;
2400 	map->map_extra = def->map_extra;
2401 
2402 	map->numa_node = def->numa_node;
2403 	map->btf_key_type_id = def->key_type_id;
2404 	map->btf_value_type_id = def->value_type_id;
2405 
2406 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2407 	if (map_is_ringbuf(map))
2408 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2409 
2410 	if (def->parts & MAP_DEF_MAP_TYPE)
2411 		pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2412 
2413 	if (def->parts & MAP_DEF_KEY_TYPE)
2414 		pr_debug("map '%s': found key [%u], sz = %u.\n",
2415 			 map->name, def->key_type_id, def->key_size);
2416 	else if (def->parts & MAP_DEF_KEY_SIZE)
2417 		pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2418 
2419 	if (def->parts & MAP_DEF_VALUE_TYPE)
2420 		pr_debug("map '%s': found value [%u], sz = %u.\n",
2421 			 map->name, def->value_type_id, def->value_size);
2422 	else if (def->parts & MAP_DEF_VALUE_SIZE)
2423 		pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2424 
2425 	if (def->parts & MAP_DEF_MAX_ENTRIES)
2426 		pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2427 	if (def->parts & MAP_DEF_MAP_FLAGS)
2428 		pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2429 	if (def->parts & MAP_DEF_MAP_EXTRA)
2430 		pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2431 			 (unsigned long long)def->map_extra);
2432 	if (def->parts & MAP_DEF_PINNING)
2433 		pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2434 	if (def->parts & MAP_DEF_NUMA_NODE)
2435 		pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2436 
2437 	if (def->parts & MAP_DEF_INNER_MAP)
2438 		pr_debug("map '%s': found inner map definition.\n", map->name);
2439 }
2440 
2441 static const char *btf_var_linkage_str(__u32 linkage)
2442 {
2443 	switch (linkage) {
2444 	case BTF_VAR_STATIC: return "static";
2445 	case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2446 	case BTF_VAR_GLOBAL_EXTERN: return "extern";
2447 	default: return "unknown";
2448 	}
2449 }
2450 
2451 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2452 					 const struct btf_type *sec,
2453 					 int var_idx, int sec_idx,
2454 					 const Elf_Data *data, bool strict,
2455 					 const char *pin_root_path)
2456 {
2457 	struct btf_map_def map_def = {}, inner_def = {};
2458 	const struct btf_type *var, *def;
2459 	const struct btf_var_secinfo *vi;
2460 	const struct btf_var *var_extra;
2461 	const char *map_name;
2462 	struct bpf_map *map;
2463 	int err;
2464 
2465 	vi = btf_var_secinfos(sec) + var_idx;
2466 	var = btf__type_by_id(obj->btf, vi->type);
2467 	var_extra = btf_var(var);
2468 	map_name = btf__name_by_offset(obj->btf, var->name_off);
2469 
2470 	if (map_name == NULL || map_name[0] == '\0') {
2471 		pr_warn("map #%d: empty name.\n", var_idx);
2472 		return -EINVAL;
2473 	}
2474 	if ((__u64)vi->offset + vi->size > data->d_size) {
2475 		pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2476 		return -EINVAL;
2477 	}
2478 	if (!btf_is_var(var)) {
2479 		pr_warn("map '%s': unexpected var kind %s.\n",
2480 			map_name, btf_kind_str(var));
2481 		return -EINVAL;
2482 	}
2483 	if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2484 		pr_warn("map '%s': unsupported map linkage %s.\n",
2485 			map_name, btf_var_linkage_str(var_extra->linkage));
2486 		return -EOPNOTSUPP;
2487 	}
2488 
2489 	def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2490 	if (!btf_is_struct(def)) {
2491 		pr_warn("map '%s': unexpected def kind %s.\n",
2492 			map_name, btf_kind_str(var));
2493 		return -EINVAL;
2494 	}
2495 	if (def->size > vi->size) {
2496 		pr_warn("map '%s': invalid def size.\n", map_name);
2497 		return -EINVAL;
2498 	}
2499 
2500 	map = bpf_object__add_map(obj);
2501 	if (IS_ERR(map))
2502 		return PTR_ERR(map);
2503 	map->name = strdup(map_name);
2504 	if (!map->name) {
2505 		pr_warn("map '%s': failed to alloc map name.\n", map_name);
2506 		return -ENOMEM;
2507 	}
2508 	map->libbpf_type = LIBBPF_MAP_UNSPEC;
2509 	map->def.type = BPF_MAP_TYPE_UNSPEC;
2510 	map->sec_idx = sec_idx;
2511 	map->sec_offset = vi->offset;
2512 	map->btf_var_idx = var_idx;
2513 	pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2514 		 map_name, map->sec_idx, map->sec_offset);
2515 
2516 	err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2517 	if (err)
2518 		return err;
2519 
2520 	fill_map_from_def(map, &map_def);
2521 
2522 	if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2523 		err = build_map_pin_path(map, pin_root_path);
2524 		if (err) {
2525 			pr_warn("map '%s': couldn't build pin path.\n", map->name);
2526 			return err;
2527 		}
2528 	}
2529 
2530 	if (map_def.parts & MAP_DEF_INNER_MAP) {
2531 		map->inner_map = calloc(1, sizeof(*map->inner_map));
2532 		if (!map->inner_map)
2533 			return -ENOMEM;
2534 		map->inner_map->fd = -1;
2535 		map->inner_map->sec_idx = sec_idx;
2536 		map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2537 		if (!map->inner_map->name)
2538 			return -ENOMEM;
2539 		sprintf(map->inner_map->name, "%s.inner", map_name);
2540 
2541 		fill_map_from_def(map->inner_map, &inner_def);
2542 	}
2543 
2544 	err = bpf_map_find_btf_info(obj, map);
2545 	if (err)
2546 		return err;
2547 
2548 	return 0;
2549 }
2550 
2551 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2552 					  const char *pin_root_path)
2553 {
2554 	const struct btf_type *sec = NULL;
2555 	int nr_types, i, vlen, err;
2556 	const struct btf_type *t;
2557 	const char *name;
2558 	Elf_Data *data;
2559 	Elf_Scn *scn;
2560 
2561 	if (obj->efile.btf_maps_shndx < 0)
2562 		return 0;
2563 
2564 	scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2565 	data = elf_sec_data(obj, scn);
2566 	if (!scn || !data) {
2567 		pr_warn("elf: failed to get %s map definitions for %s\n",
2568 			MAPS_ELF_SEC, obj->path);
2569 		return -EINVAL;
2570 	}
2571 
2572 	nr_types = btf__type_cnt(obj->btf);
2573 	for (i = 1; i < nr_types; i++) {
2574 		t = btf__type_by_id(obj->btf, i);
2575 		if (!btf_is_datasec(t))
2576 			continue;
2577 		name = btf__name_by_offset(obj->btf, t->name_off);
2578 		if (strcmp(name, MAPS_ELF_SEC) == 0) {
2579 			sec = t;
2580 			obj->efile.btf_maps_sec_btf_id = i;
2581 			break;
2582 		}
2583 	}
2584 
2585 	if (!sec) {
2586 		pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2587 		return -ENOENT;
2588 	}
2589 
2590 	vlen = btf_vlen(sec);
2591 	for (i = 0; i < vlen; i++) {
2592 		err = bpf_object__init_user_btf_map(obj, sec, i,
2593 						    obj->efile.btf_maps_shndx,
2594 						    data, strict,
2595 						    pin_root_path);
2596 		if (err)
2597 			return err;
2598 	}
2599 
2600 	return 0;
2601 }
2602 
2603 static int bpf_object__init_maps(struct bpf_object *obj,
2604 				 const struct bpf_object_open_opts *opts)
2605 {
2606 	const char *pin_root_path;
2607 	bool strict;
2608 	int err = 0;
2609 
2610 	strict = !OPTS_GET(opts, relaxed_maps, false);
2611 	pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2612 
2613 	err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2614 	err = err ?: bpf_object__init_global_data_maps(obj);
2615 	err = err ?: bpf_object__init_kconfig_map(obj);
2616 	err = err ?: bpf_object__init_struct_ops_maps(obj);
2617 
2618 	return err;
2619 }
2620 
2621 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2622 {
2623 	Elf64_Shdr *sh;
2624 
2625 	sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2626 	if (!sh)
2627 		return false;
2628 
2629 	return sh->sh_flags & SHF_EXECINSTR;
2630 }
2631 
2632 static bool btf_needs_sanitization(struct bpf_object *obj)
2633 {
2634 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2635 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2636 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2637 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2638 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2639 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2640 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2641 
2642 	return !has_func || !has_datasec || !has_func_global || !has_float ||
2643 	       !has_decl_tag || !has_type_tag || !has_enum64;
2644 }
2645 
2646 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2647 {
2648 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2649 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2650 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2651 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2652 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2653 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2654 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2655 	int enum64_placeholder_id = 0;
2656 	struct btf_type *t;
2657 	int i, j, vlen;
2658 
2659 	for (i = 1; i < btf__type_cnt(btf); i++) {
2660 		t = (struct btf_type *)btf__type_by_id(btf, i);
2661 
2662 		if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
2663 			/* replace VAR/DECL_TAG with INT */
2664 			t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2665 			/*
2666 			 * using size = 1 is the safest choice, 4 will be too
2667 			 * big and cause kernel BTF validation failure if
2668 			 * original variable took less than 4 bytes
2669 			 */
2670 			t->size = 1;
2671 			*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2672 		} else if (!has_datasec && btf_is_datasec(t)) {
2673 			/* replace DATASEC with STRUCT */
2674 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
2675 			struct btf_member *m = btf_members(t);
2676 			struct btf_type *vt;
2677 			char *name;
2678 
2679 			name = (char *)btf__name_by_offset(btf, t->name_off);
2680 			while (*name) {
2681 				if (*name == '.')
2682 					*name = '_';
2683 				name++;
2684 			}
2685 
2686 			vlen = btf_vlen(t);
2687 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2688 			for (j = 0; j < vlen; j++, v++, m++) {
2689 				/* order of field assignments is important */
2690 				m->offset = v->offset * 8;
2691 				m->type = v->type;
2692 				/* preserve variable name as member name */
2693 				vt = (void *)btf__type_by_id(btf, v->type);
2694 				m->name_off = vt->name_off;
2695 			}
2696 		} else if (!has_func && btf_is_func_proto(t)) {
2697 			/* replace FUNC_PROTO with ENUM */
2698 			vlen = btf_vlen(t);
2699 			t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2700 			t->size = sizeof(__u32); /* kernel enforced */
2701 		} else if (!has_func && btf_is_func(t)) {
2702 			/* replace FUNC with TYPEDEF */
2703 			t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2704 		} else if (!has_func_global && btf_is_func(t)) {
2705 			/* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2706 			t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2707 		} else if (!has_float && btf_is_float(t)) {
2708 			/* replace FLOAT with an equally-sized empty STRUCT;
2709 			 * since C compilers do not accept e.g. "float" as a
2710 			 * valid struct name, make it anonymous
2711 			 */
2712 			t->name_off = 0;
2713 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2714 		} else if (!has_type_tag && btf_is_type_tag(t)) {
2715 			/* replace TYPE_TAG with a CONST */
2716 			t->name_off = 0;
2717 			t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
2718 		} else if (!has_enum64 && btf_is_enum(t)) {
2719 			/* clear the kflag */
2720 			t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
2721 		} else if (!has_enum64 && btf_is_enum64(t)) {
2722 			/* replace ENUM64 with a union */
2723 			struct btf_member *m;
2724 
2725 			if (enum64_placeholder_id == 0) {
2726 				enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
2727 				if (enum64_placeholder_id < 0)
2728 					return enum64_placeholder_id;
2729 
2730 				t = (struct btf_type *)btf__type_by_id(btf, i);
2731 			}
2732 
2733 			m = btf_members(t);
2734 			vlen = btf_vlen(t);
2735 			t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
2736 			for (j = 0; j < vlen; j++, m++) {
2737 				m->type = enum64_placeholder_id;
2738 				m->offset = 0;
2739 			}
2740                 }
2741 	}
2742 
2743 	return 0;
2744 }
2745 
2746 static bool libbpf_needs_btf(const struct bpf_object *obj)
2747 {
2748 	return obj->efile.btf_maps_shndx >= 0 ||
2749 	       obj->efile.st_ops_shndx >= 0 ||
2750 	       obj->nr_extern > 0;
2751 }
2752 
2753 static bool kernel_needs_btf(const struct bpf_object *obj)
2754 {
2755 	return obj->efile.st_ops_shndx >= 0;
2756 }
2757 
2758 static int bpf_object__init_btf(struct bpf_object *obj,
2759 				Elf_Data *btf_data,
2760 				Elf_Data *btf_ext_data)
2761 {
2762 	int err = -ENOENT;
2763 
2764 	if (btf_data) {
2765 		obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2766 		err = libbpf_get_error(obj->btf);
2767 		if (err) {
2768 			obj->btf = NULL;
2769 			pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
2770 			goto out;
2771 		}
2772 		/* enforce 8-byte pointers for BPF-targeted BTFs */
2773 		btf__set_pointer_size(obj->btf, 8);
2774 	}
2775 	if (btf_ext_data) {
2776 		struct btf_ext_info *ext_segs[3];
2777 		int seg_num, sec_num;
2778 
2779 		if (!obj->btf) {
2780 			pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2781 				 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2782 			goto out;
2783 		}
2784 		obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
2785 		err = libbpf_get_error(obj->btf_ext);
2786 		if (err) {
2787 			pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
2788 				BTF_EXT_ELF_SEC, err);
2789 			obj->btf_ext = NULL;
2790 			goto out;
2791 		}
2792 
2793 		/* setup .BTF.ext to ELF section mapping */
2794 		ext_segs[0] = &obj->btf_ext->func_info;
2795 		ext_segs[1] = &obj->btf_ext->line_info;
2796 		ext_segs[2] = &obj->btf_ext->core_relo_info;
2797 		for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
2798 			struct btf_ext_info *seg = ext_segs[seg_num];
2799 			const struct btf_ext_info_sec *sec;
2800 			const char *sec_name;
2801 			Elf_Scn *scn;
2802 
2803 			if (seg->sec_cnt == 0)
2804 				continue;
2805 
2806 			seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
2807 			if (!seg->sec_idxs) {
2808 				err = -ENOMEM;
2809 				goto out;
2810 			}
2811 
2812 			sec_num = 0;
2813 			for_each_btf_ext_sec(seg, sec) {
2814 				/* preventively increment index to avoid doing
2815 				 * this before every continue below
2816 				 */
2817 				sec_num++;
2818 
2819 				sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
2820 				if (str_is_empty(sec_name))
2821 					continue;
2822 				scn = elf_sec_by_name(obj, sec_name);
2823 				if (!scn)
2824 					continue;
2825 
2826 				seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
2827 			}
2828 		}
2829 	}
2830 out:
2831 	if (err && libbpf_needs_btf(obj)) {
2832 		pr_warn("BTF is required, but is missing or corrupted.\n");
2833 		return err;
2834 	}
2835 	return 0;
2836 }
2837 
2838 static int compare_vsi_off(const void *_a, const void *_b)
2839 {
2840 	const struct btf_var_secinfo *a = _a;
2841 	const struct btf_var_secinfo *b = _b;
2842 
2843 	return a->offset - b->offset;
2844 }
2845 
2846 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
2847 			     struct btf_type *t)
2848 {
2849 	__u32 size = 0, off = 0, i, vars = btf_vlen(t);
2850 	const char *name = btf__name_by_offset(btf, t->name_off);
2851 	const struct btf_type *t_var;
2852 	struct btf_var_secinfo *vsi;
2853 	const struct btf_var *var;
2854 	int ret;
2855 
2856 	if (!name) {
2857 		pr_debug("No name found in string section for DATASEC kind.\n");
2858 		return -ENOENT;
2859 	}
2860 
2861 	/* .extern datasec size and var offsets were set correctly during
2862 	 * extern collection step, so just skip straight to sorting variables
2863 	 */
2864 	if (t->size)
2865 		goto sort_vars;
2866 
2867 	ret = find_elf_sec_sz(obj, name, &size);
2868 	if (ret || !size) {
2869 		pr_debug("Invalid size for section %s: %u bytes\n", name, size);
2870 		return -ENOENT;
2871 	}
2872 
2873 	t->size = size;
2874 
2875 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
2876 		t_var = btf__type_by_id(btf, vsi->type);
2877 		if (!t_var || !btf_is_var(t_var)) {
2878 			pr_debug("Non-VAR type seen in section %s\n", name);
2879 			return -EINVAL;
2880 		}
2881 
2882 		var = btf_var(t_var);
2883 		if (var->linkage == BTF_VAR_STATIC)
2884 			continue;
2885 
2886 		name = btf__name_by_offset(btf, t_var->name_off);
2887 		if (!name) {
2888 			pr_debug("No name found in string section for VAR kind\n");
2889 			return -ENOENT;
2890 		}
2891 
2892 		ret = find_elf_var_offset(obj, name, &off);
2893 		if (ret) {
2894 			pr_debug("No offset found in symbol table for VAR %s\n",
2895 				 name);
2896 			return -ENOENT;
2897 		}
2898 
2899 		vsi->offset = off;
2900 	}
2901 
2902 sort_vars:
2903 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
2904 	return 0;
2905 }
2906 
2907 static int btf_finalize_data(struct bpf_object *obj, struct btf *btf)
2908 {
2909 	int err = 0;
2910 	__u32 i, n = btf__type_cnt(btf);
2911 
2912 	for (i = 1; i < n; i++) {
2913 		struct btf_type *t = btf_type_by_id(btf, i);
2914 
2915 		/* Loader needs to fix up some of the things compiler
2916 		 * couldn't get its hands on while emitting BTF. This
2917 		 * is section size and global variable offset. We use
2918 		 * the info from the ELF itself for this purpose.
2919 		 */
2920 		if (btf_is_datasec(t)) {
2921 			err = btf_fixup_datasec(obj, btf, t);
2922 			if (err)
2923 				break;
2924 		}
2925 	}
2926 
2927 	return libbpf_err(err);
2928 }
2929 
2930 static int bpf_object__finalize_btf(struct bpf_object *obj)
2931 {
2932 	int err;
2933 
2934 	if (!obj->btf)
2935 		return 0;
2936 
2937 	err = btf_finalize_data(obj, obj->btf);
2938 	if (err) {
2939 		pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err);
2940 		return err;
2941 	}
2942 
2943 	return 0;
2944 }
2945 
2946 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
2947 {
2948 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
2949 	    prog->type == BPF_PROG_TYPE_LSM)
2950 		return true;
2951 
2952 	/* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
2953 	 * also need vmlinux BTF
2954 	 */
2955 	if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
2956 		return true;
2957 
2958 	return false;
2959 }
2960 
2961 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
2962 {
2963 	struct bpf_program *prog;
2964 	int i;
2965 
2966 	/* CO-RE relocations need kernel BTF, only when btf_custom_path
2967 	 * is not specified
2968 	 */
2969 	if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
2970 		return true;
2971 
2972 	/* Support for typed ksyms needs kernel BTF */
2973 	for (i = 0; i < obj->nr_extern; i++) {
2974 		const struct extern_desc *ext;
2975 
2976 		ext = &obj->externs[i];
2977 		if (ext->type == EXT_KSYM && ext->ksym.type_id)
2978 			return true;
2979 	}
2980 
2981 	bpf_object__for_each_program(prog, obj) {
2982 		if (!prog->autoload)
2983 			continue;
2984 		if (prog_needs_vmlinux_btf(prog))
2985 			return true;
2986 	}
2987 
2988 	return false;
2989 }
2990 
2991 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
2992 {
2993 	int err;
2994 
2995 	/* btf_vmlinux could be loaded earlier */
2996 	if (obj->btf_vmlinux || obj->gen_loader)
2997 		return 0;
2998 
2999 	if (!force && !obj_needs_vmlinux_btf(obj))
3000 		return 0;
3001 
3002 	obj->btf_vmlinux = btf__load_vmlinux_btf();
3003 	err = libbpf_get_error(obj->btf_vmlinux);
3004 	if (err) {
3005 		pr_warn("Error loading vmlinux BTF: %d\n", err);
3006 		obj->btf_vmlinux = NULL;
3007 		return err;
3008 	}
3009 	return 0;
3010 }
3011 
3012 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3013 {
3014 	struct btf *kern_btf = obj->btf;
3015 	bool btf_mandatory, sanitize;
3016 	int i, err = 0;
3017 
3018 	if (!obj->btf)
3019 		return 0;
3020 
3021 	if (!kernel_supports(obj, FEAT_BTF)) {
3022 		if (kernel_needs_btf(obj)) {
3023 			err = -EOPNOTSUPP;
3024 			goto report;
3025 		}
3026 		pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3027 		return 0;
3028 	}
3029 
3030 	/* Even though some subprogs are global/weak, user might prefer more
3031 	 * permissive BPF verification process that BPF verifier performs for
3032 	 * static functions, taking into account more context from the caller
3033 	 * functions. In such case, they need to mark such subprogs with
3034 	 * __attribute__((visibility("hidden"))) and libbpf will adjust
3035 	 * corresponding FUNC BTF type to be marked as static and trigger more
3036 	 * involved BPF verification process.
3037 	 */
3038 	for (i = 0; i < obj->nr_programs; i++) {
3039 		struct bpf_program *prog = &obj->programs[i];
3040 		struct btf_type *t;
3041 		const char *name;
3042 		int j, n;
3043 
3044 		if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3045 			continue;
3046 
3047 		n = btf__type_cnt(obj->btf);
3048 		for (j = 1; j < n; j++) {
3049 			t = btf_type_by_id(obj->btf, j);
3050 			if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3051 				continue;
3052 
3053 			name = btf__str_by_offset(obj->btf, t->name_off);
3054 			if (strcmp(name, prog->name) != 0)
3055 				continue;
3056 
3057 			t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3058 			break;
3059 		}
3060 	}
3061 
3062 	sanitize = btf_needs_sanitization(obj);
3063 	if (sanitize) {
3064 		const void *raw_data;
3065 		__u32 sz;
3066 
3067 		/* clone BTF to sanitize a copy and leave the original intact */
3068 		raw_data = btf__raw_data(obj->btf, &sz);
3069 		kern_btf = btf__new(raw_data, sz);
3070 		err = libbpf_get_error(kern_btf);
3071 		if (err)
3072 			return err;
3073 
3074 		/* enforce 8-byte pointers for BPF-targeted BTFs */
3075 		btf__set_pointer_size(obj->btf, 8);
3076 		err = bpf_object__sanitize_btf(obj, kern_btf);
3077 		if (err)
3078 			return err;
3079 	}
3080 
3081 	if (obj->gen_loader) {
3082 		__u32 raw_size = 0;
3083 		const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3084 
3085 		if (!raw_data)
3086 			return -ENOMEM;
3087 		bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3088 		/* Pretend to have valid FD to pass various fd >= 0 checks.
3089 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3090 		 */
3091 		btf__set_fd(kern_btf, 0);
3092 	} else {
3093 		/* currently BPF_BTF_LOAD only supports log_level 1 */
3094 		err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3095 					   obj->log_level ? 1 : 0);
3096 	}
3097 	if (sanitize) {
3098 		if (!err) {
3099 			/* move fd to libbpf's BTF */
3100 			btf__set_fd(obj->btf, btf__fd(kern_btf));
3101 			btf__set_fd(kern_btf, -1);
3102 		}
3103 		btf__free(kern_btf);
3104 	}
3105 report:
3106 	if (err) {
3107 		btf_mandatory = kernel_needs_btf(obj);
3108 		pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3109 			btf_mandatory ? "BTF is mandatory, can't proceed."
3110 				      : "BTF is optional, ignoring.");
3111 		if (!btf_mandatory)
3112 			err = 0;
3113 	}
3114 	return err;
3115 }
3116 
3117 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3118 {
3119 	const char *name;
3120 
3121 	name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3122 	if (!name) {
3123 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3124 			off, obj->path, elf_errmsg(-1));
3125 		return NULL;
3126 	}
3127 
3128 	return name;
3129 }
3130 
3131 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3132 {
3133 	const char *name;
3134 
3135 	name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3136 	if (!name) {
3137 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3138 			off, obj->path, elf_errmsg(-1));
3139 		return NULL;
3140 	}
3141 
3142 	return name;
3143 }
3144 
3145 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3146 {
3147 	Elf_Scn *scn;
3148 
3149 	scn = elf_getscn(obj->efile.elf, idx);
3150 	if (!scn) {
3151 		pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3152 			idx, obj->path, elf_errmsg(-1));
3153 		return NULL;
3154 	}
3155 	return scn;
3156 }
3157 
3158 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3159 {
3160 	Elf_Scn *scn = NULL;
3161 	Elf *elf = obj->efile.elf;
3162 	const char *sec_name;
3163 
3164 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3165 		sec_name = elf_sec_name(obj, scn);
3166 		if (!sec_name)
3167 			return NULL;
3168 
3169 		if (strcmp(sec_name, name) != 0)
3170 			continue;
3171 
3172 		return scn;
3173 	}
3174 	return NULL;
3175 }
3176 
3177 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3178 {
3179 	Elf64_Shdr *shdr;
3180 
3181 	if (!scn)
3182 		return NULL;
3183 
3184 	shdr = elf64_getshdr(scn);
3185 	if (!shdr) {
3186 		pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3187 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3188 		return NULL;
3189 	}
3190 
3191 	return shdr;
3192 }
3193 
3194 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3195 {
3196 	const char *name;
3197 	Elf64_Shdr *sh;
3198 
3199 	if (!scn)
3200 		return NULL;
3201 
3202 	sh = elf_sec_hdr(obj, scn);
3203 	if (!sh)
3204 		return NULL;
3205 
3206 	name = elf_sec_str(obj, sh->sh_name);
3207 	if (!name) {
3208 		pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3209 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3210 		return NULL;
3211 	}
3212 
3213 	return name;
3214 }
3215 
3216 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3217 {
3218 	Elf_Data *data;
3219 
3220 	if (!scn)
3221 		return NULL;
3222 
3223 	data = elf_getdata(scn, 0);
3224 	if (!data) {
3225 		pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3226 			elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3227 			obj->path, elf_errmsg(-1));
3228 		return NULL;
3229 	}
3230 
3231 	return data;
3232 }
3233 
3234 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3235 {
3236 	if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3237 		return NULL;
3238 
3239 	return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3240 }
3241 
3242 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3243 {
3244 	if (idx >= data->d_size / sizeof(Elf64_Rel))
3245 		return NULL;
3246 
3247 	return (Elf64_Rel *)data->d_buf + idx;
3248 }
3249 
3250 static bool is_sec_name_dwarf(const char *name)
3251 {
3252 	/* approximation, but the actual list is too long */
3253 	return str_has_pfx(name, ".debug_");
3254 }
3255 
3256 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3257 {
3258 	/* no special handling of .strtab */
3259 	if (hdr->sh_type == SHT_STRTAB)
3260 		return true;
3261 
3262 	/* ignore .llvm_addrsig section as well */
3263 	if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3264 		return true;
3265 
3266 	/* no subprograms will lead to an empty .text section, ignore it */
3267 	if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3268 	    strcmp(name, ".text") == 0)
3269 		return true;
3270 
3271 	/* DWARF sections */
3272 	if (is_sec_name_dwarf(name))
3273 		return true;
3274 
3275 	if (str_has_pfx(name, ".rel")) {
3276 		name += sizeof(".rel") - 1;
3277 		/* DWARF section relocations */
3278 		if (is_sec_name_dwarf(name))
3279 			return true;
3280 
3281 		/* .BTF and .BTF.ext don't need relocations */
3282 		if (strcmp(name, BTF_ELF_SEC) == 0 ||
3283 		    strcmp(name, BTF_EXT_ELF_SEC) == 0)
3284 			return true;
3285 	}
3286 
3287 	return false;
3288 }
3289 
3290 static int cmp_progs(const void *_a, const void *_b)
3291 {
3292 	const struct bpf_program *a = _a;
3293 	const struct bpf_program *b = _b;
3294 
3295 	if (a->sec_idx != b->sec_idx)
3296 		return a->sec_idx < b->sec_idx ? -1 : 1;
3297 
3298 	/* sec_insn_off can't be the same within the section */
3299 	return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3300 }
3301 
3302 static int bpf_object__elf_collect(struct bpf_object *obj)
3303 {
3304 	struct elf_sec_desc *sec_desc;
3305 	Elf *elf = obj->efile.elf;
3306 	Elf_Data *btf_ext_data = NULL;
3307 	Elf_Data *btf_data = NULL;
3308 	int idx = 0, err = 0;
3309 	const char *name;
3310 	Elf_Data *data;
3311 	Elf_Scn *scn;
3312 	Elf64_Shdr *sh;
3313 
3314 	/* ELF section indices are 0-based, but sec #0 is special "invalid"
3315 	 * section. e_shnum does include sec #0, so e_shnum is the necessary
3316 	 * size of an array to keep all the sections.
3317 	 */
3318 	obj->efile.sec_cnt = obj->efile.ehdr->e_shnum;
3319 	obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3320 	if (!obj->efile.secs)
3321 		return -ENOMEM;
3322 
3323 	/* a bunch of ELF parsing functionality depends on processing symbols,
3324 	 * so do the first pass and find the symbol table
3325 	 */
3326 	scn = NULL;
3327 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3328 		sh = elf_sec_hdr(obj, scn);
3329 		if (!sh)
3330 			return -LIBBPF_ERRNO__FORMAT;
3331 
3332 		if (sh->sh_type == SHT_SYMTAB) {
3333 			if (obj->efile.symbols) {
3334 				pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3335 				return -LIBBPF_ERRNO__FORMAT;
3336 			}
3337 
3338 			data = elf_sec_data(obj, scn);
3339 			if (!data)
3340 				return -LIBBPF_ERRNO__FORMAT;
3341 
3342 			idx = elf_ndxscn(scn);
3343 
3344 			obj->efile.symbols = data;
3345 			obj->efile.symbols_shndx = idx;
3346 			obj->efile.strtabidx = sh->sh_link;
3347 		}
3348 	}
3349 
3350 	if (!obj->efile.symbols) {
3351 		pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3352 			obj->path);
3353 		return -ENOENT;
3354 	}
3355 
3356 	scn = NULL;
3357 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3358 		idx = elf_ndxscn(scn);
3359 		sec_desc = &obj->efile.secs[idx];
3360 
3361 		sh = elf_sec_hdr(obj, scn);
3362 		if (!sh)
3363 			return -LIBBPF_ERRNO__FORMAT;
3364 
3365 		name = elf_sec_str(obj, sh->sh_name);
3366 		if (!name)
3367 			return -LIBBPF_ERRNO__FORMAT;
3368 
3369 		if (ignore_elf_section(sh, name))
3370 			continue;
3371 
3372 		data = elf_sec_data(obj, scn);
3373 		if (!data)
3374 			return -LIBBPF_ERRNO__FORMAT;
3375 
3376 		pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3377 			 idx, name, (unsigned long)data->d_size,
3378 			 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3379 			 (int)sh->sh_type);
3380 
3381 		if (strcmp(name, "license") == 0) {
3382 			err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3383 			if (err)
3384 				return err;
3385 		} else if (strcmp(name, "version") == 0) {
3386 			err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3387 			if (err)
3388 				return err;
3389 		} else if (strcmp(name, "maps") == 0) {
3390 			pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3391 			return -ENOTSUP;
3392 		} else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3393 			obj->efile.btf_maps_shndx = idx;
3394 		} else if (strcmp(name, BTF_ELF_SEC) == 0) {
3395 			if (sh->sh_type != SHT_PROGBITS)
3396 				return -LIBBPF_ERRNO__FORMAT;
3397 			btf_data = data;
3398 		} else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3399 			if (sh->sh_type != SHT_PROGBITS)
3400 				return -LIBBPF_ERRNO__FORMAT;
3401 			btf_ext_data = data;
3402 		} else if (sh->sh_type == SHT_SYMTAB) {
3403 			/* already processed during the first pass above */
3404 		} else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3405 			if (sh->sh_flags & SHF_EXECINSTR) {
3406 				if (strcmp(name, ".text") == 0)
3407 					obj->efile.text_shndx = idx;
3408 				err = bpf_object__add_programs(obj, data, name, idx);
3409 				if (err)
3410 					return err;
3411 			} else if (strcmp(name, DATA_SEC) == 0 ||
3412 				   str_has_pfx(name, DATA_SEC ".")) {
3413 				sec_desc->sec_type = SEC_DATA;
3414 				sec_desc->shdr = sh;
3415 				sec_desc->data = data;
3416 			} else if (strcmp(name, RODATA_SEC) == 0 ||
3417 				   str_has_pfx(name, RODATA_SEC ".")) {
3418 				sec_desc->sec_type = SEC_RODATA;
3419 				sec_desc->shdr = sh;
3420 				sec_desc->data = data;
3421 			} else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
3422 				obj->efile.st_ops_data = data;
3423 				obj->efile.st_ops_shndx = idx;
3424 			} else {
3425 				pr_info("elf: skipping unrecognized data section(%d) %s\n",
3426 					idx, name);
3427 			}
3428 		} else if (sh->sh_type == SHT_REL) {
3429 			int targ_sec_idx = sh->sh_info; /* points to other section */
3430 
3431 			if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3432 			    targ_sec_idx >= obj->efile.sec_cnt)
3433 				return -LIBBPF_ERRNO__FORMAT;
3434 
3435 			/* Only do relo for section with exec instructions */
3436 			if (!section_have_execinstr(obj, targ_sec_idx) &&
3437 			    strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3438 			    strcmp(name, ".rel" MAPS_ELF_SEC)) {
3439 				pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3440 					idx, name, targ_sec_idx,
3441 					elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3442 				continue;
3443 			}
3444 
3445 			sec_desc->sec_type = SEC_RELO;
3446 			sec_desc->shdr = sh;
3447 			sec_desc->data = data;
3448 		} else if (sh->sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) {
3449 			sec_desc->sec_type = SEC_BSS;
3450 			sec_desc->shdr = sh;
3451 			sec_desc->data = data;
3452 		} else {
3453 			pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3454 				(size_t)sh->sh_size);
3455 		}
3456 	}
3457 
3458 	if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3459 		pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3460 		return -LIBBPF_ERRNO__FORMAT;
3461 	}
3462 
3463 	/* sort BPF programs by section name and in-section instruction offset
3464 	 * for faster search */
3465 	if (obj->nr_programs)
3466 		qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3467 
3468 	return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3469 }
3470 
3471 static bool sym_is_extern(const Elf64_Sym *sym)
3472 {
3473 	int bind = ELF64_ST_BIND(sym->st_info);
3474 	/* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3475 	return sym->st_shndx == SHN_UNDEF &&
3476 	       (bind == STB_GLOBAL || bind == STB_WEAK) &&
3477 	       ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3478 }
3479 
3480 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3481 {
3482 	int bind = ELF64_ST_BIND(sym->st_info);
3483 	int type = ELF64_ST_TYPE(sym->st_info);
3484 
3485 	/* in .text section */
3486 	if (sym->st_shndx != text_shndx)
3487 		return false;
3488 
3489 	/* local function */
3490 	if (bind == STB_LOCAL && type == STT_SECTION)
3491 		return true;
3492 
3493 	/* global function */
3494 	return bind == STB_GLOBAL && type == STT_FUNC;
3495 }
3496 
3497 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3498 {
3499 	const struct btf_type *t;
3500 	const char *tname;
3501 	int i, n;
3502 
3503 	if (!btf)
3504 		return -ESRCH;
3505 
3506 	n = btf__type_cnt(btf);
3507 	for (i = 1; i < n; i++) {
3508 		t = btf__type_by_id(btf, i);
3509 
3510 		if (!btf_is_var(t) && !btf_is_func(t))
3511 			continue;
3512 
3513 		tname = btf__name_by_offset(btf, t->name_off);
3514 		if (strcmp(tname, ext_name))
3515 			continue;
3516 
3517 		if (btf_is_var(t) &&
3518 		    btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3519 			return -EINVAL;
3520 
3521 		if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3522 			return -EINVAL;
3523 
3524 		return i;
3525 	}
3526 
3527 	return -ENOENT;
3528 }
3529 
3530 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3531 	const struct btf_var_secinfo *vs;
3532 	const struct btf_type *t;
3533 	int i, j, n;
3534 
3535 	if (!btf)
3536 		return -ESRCH;
3537 
3538 	n = btf__type_cnt(btf);
3539 	for (i = 1; i < n; i++) {
3540 		t = btf__type_by_id(btf, i);
3541 
3542 		if (!btf_is_datasec(t))
3543 			continue;
3544 
3545 		vs = btf_var_secinfos(t);
3546 		for (j = 0; j < btf_vlen(t); j++, vs++) {
3547 			if (vs->type == ext_btf_id)
3548 				return i;
3549 		}
3550 	}
3551 
3552 	return -ENOENT;
3553 }
3554 
3555 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3556 				     bool *is_signed)
3557 {
3558 	const struct btf_type *t;
3559 	const char *name;
3560 
3561 	t = skip_mods_and_typedefs(btf, id, NULL);
3562 	name = btf__name_by_offset(btf, t->name_off);
3563 
3564 	if (is_signed)
3565 		*is_signed = false;
3566 	switch (btf_kind(t)) {
3567 	case BTF_KIND_INT: {
3568 		int enc = btf_int_encoding(t);
3569 
3570 		if (enc & BTF_INT_BOOL)
3571 			return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3572 		if (is_signed)
3573 			*is_signed = enc & BTF_INT_SIGNED;
3574 		if (t->size == 1)
3575 			return KCFG_CHAR;
3576 		if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3577 			return KCFG_UNKNOWN;
3578 		return KCFG_INT;
3579 	}
3580 	case BTF_KIND_ENUM:
3581 		if (t->size != 4)
3582 			return KCFG_UNKNOWN;
3583 		if (strcmp(name, "libbpf_tristate"))
3584 			return KCFG_UNKNOWN;
3585 		return KCFG_TRISTATE;
3586 	case BTF_KIND_ENUM64:
3587 		if (strcmp(name, "libbpf_tristate"))
3588 			return KCFG_UNKNOWN;
3589 		return KCFG_TRISTATE;
3590 	case BTF_KIND_ARRAY:
3591 		if (btf_array(t)->nelems == 0)
3592 			return KCFG_UNKNOWN;
3593 		if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3594 			return KCFG_UNKNOWN;
3595 		return KCFG_CHAR_ARR;
3596 	default:
3597 		return KCFG_UNKNOWN;
3598 	}
3599 }
3600 
3601 static int cmp_externs(const void *_a, const void *_b)
3602 {
3603 	const struct extern_desc *a = _a;
3604 	const struct extern_desc *b = _b;
3605 
3606 	if (a->type != b->type)
3607 		return a->type < b->type ? -1 : 1;
3608 
3609 	if (a->type == EXT_KCFG) {
3610 		/* descending order by alignment requirements */
3611 		if (a->kcfg.align != b->kcfg.align)
3612 			return a->kcfg.align > b->kcfg.align ? -1 : 1;
3613 		/* ascending order by size, within same alignment class */
3614 		if (a->kcfg.sz != b->kcfg.sz)
3615 			return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3616 	}
3617 
3618 	/* resolve ties by name */
3619 	return strcmp(a->name, b->name);
3620 }
3621 
3622 static int find_int_btf_id(const struct btf *btf)
3623 {
3624 	const struct btf_type *t;
3625 	int i, n;
3626 
3627 	n = btf__type_cnt(btf);
3628 	for (i = 1; i < n; i++) {
3629 		t = btf__type_by_id(btf, i);
3630 
3631 		if (btf_is_int(t) && btf_int_bits(t) == 32)
3632 			return i;
3633 	}
3634 
3635 	return 0;
3636 }
3637 
3638 static int add_dummy_ksym_var(struct btf *btf)
3639 {
3640 	int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
3641 	const struct btf_var_secinfo *vs;
3642 	const struct btf_type *sec;
3643 
3644 	if (!btf)
3645 		return 0;
3646 
3647 	sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
3648 					    BTF_KIND_DATASEC);
3649 	if (sec_btf_id < 0)
3650 		return 0;
3651 
3652 	sec = btf__type_by_id(btf, sec_btf_id);
3653 	vs = btf_var_secinfos(sec);
3654 	for (i = 0; i < btf_vlen(sec); i++, vs++) {
3655 		const struct btf_type *vt;
3656 
3657 		vt = btf__type_by_id(btf, vs->type);
3658 		if (btf_is_func(vt))
3659 			break;
3660 	}
3661 
3662 	/* No func in ksyms sec.  No need to add dummy var. */
3663 	if (i == btf_vlen(sec))
3664 		return 0;
3665 
3666 	int_btf_id = find_int_btf_id(btf);
3667 	dummy_var_btf_id = btf__add_var(btf,
3668 					"dummy_ksym",
3669 					BTF_VAR_GLOBAL_ALLOCATED,
3670 					int_btf_id);
3671 	if (dummy_var_btf_id < 0)
3672 		pr_warn("cannot create a dummy_ksym var\n");
3673 
3674 	return dummy_var_btf_id;
3675 }
3676 
3677 static int bpf_object__collect_externs(struct bpf_object *obj)
3678 {
3679 	struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3680 	const struct btf_type *t;
3681 	struct extern_desc *ext;
3682 	int i, n, off, dummy_var_btf_id;
3683 	const char *ext_name, *sec_name;
3684 	Elf_Scn *scn;
3685 	Elf64_Shdr *sh;
3686 
3687 	if (!obj->efile.symbols)
3688 		return 0;
3689 
3690 	scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3691 	sh = elf_sec_hdr(obj, scn);
3692 	if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
3693 		return -LIBBPF_ERRNO__FORMAT;
3694 
3695 	dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
3696 	if (dummy_var_btf_id < 0)
3697 		return dummy_var_btf_id;
3698 
3699 	n = sh->sh_size / sh->sh_entsize;
3700 	pr_debug("looking for externs among %d symbols...\n", n);
3701 
3702 	for (i = 0; i < n; i++) {
3703 		Elf64_Sym *sym = elf_sym_by_idx(obj, i);
3704 
3705 		if (!sym)
3706 			return -LIBBPF_ERRNO__FORMAT;
3707 		if (!sym_is_extern(sym))
3708 			continue;
3709 		ext_name = elf_sym_str(obj, sym->st_name);
3710 		if (!ext_name || !ext_name[0])
3711 			continue;
3712 
3713 		ext = obj->externs;
3714 		ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3715 		if (!ext)
3716 			return -ENOMEM;
3717 		obj->externs = ext;
3718 		ext = &ext[obj->nr_extern];
3719 		memset(ext, 0, sizeof(*ext));
3720 		obj->nr_extern++;
3721 
3722 		ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3723 		if (ext->btf_id <= 0) {
3724 			pr_warn("failed to find BTF for extern '%s': %d\n",
3725 				ext_name, ext->btf_id);
3726 			return ext->btf_id;
3727 		}
3728 		t = btf__type_by_id(obj->btf, ext->btf_id);
3729 		ext->name = btf__name_by_offset(obj->btf, t->name_off);
3730 		ext->sym_idx = i;
3731 		ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
3732 
3733 		ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3734 		if (ext->sec_btf_id <= 0) {
3735 			pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3736 				ext_name, ext->btf_id, ext->sec_btf_id);
3737 			return ext->sec_btf_id;
3738 		}
3739 		sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3740 		sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3741 
3742 		if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3743 			if (btf_is_func(t)) {
3744 				pr_warn("extern function %s is unsupported under %s section\n",
3745 					ext->name, KCONFIG_SEC);
3746 				return -ENOTSUP;
3747 			}
3748 			kcfg_sec = sec;
3749 			ext->type = EXT_KCFG;
3750 			ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3751 			if (ext->kcfg.sz <= 0) {
3752 				pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3753 					ext_name, ext->kcfg.sz);
3754 				return ext->kcfg.sz;
3755 			}
3756 			ext->kcfg.align = btf__align_of(obj->btf, t->type);
3757 			if (ext->kcfg.align <= 0) {
3758 				pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3759 					ext_name, ext->kcfg.align);
3760 				return -EINVAL;
3761 			}
3762 			ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3763 						        &ext->kcfg.is_signed);
3764 			if (ext->kcfg.type == KCFG_UNKNOWN) {
3765 				pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
3766 				return -ENOTSUP;
3767 			}
3768 		} else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3769 			ksym_sec = sec;
3770 			ext->type = EXT_KSYM;
3771 			skip_mods_and_typedefs(obj->btf, t->type,
3772 					       &ext->ksym.type_id);
3773 		} else {
3774 			pr_warn("unrecognized extern section '%s'\n", sec_name);
3775 			return -ENOTSUP;
3776 		}
3777 	}
3778 	pr_debug("collected %d externs total\n", obj->nr_extern);
3779 
3780 	if (!obj->nr_extern)
3781 		return 0;
3782 
3783 	/* sort externs by type, for kcfg ones also by (align, size, name) */
3784 	qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3785 
3786 	/* for .ksyms section, we need to turn all externs into allocated
3787 	 * variables in BTF to pass kernel verification; we do this by
3788 	 * pretending that each extern is a 8-byte variable
3789 	 */
3790 	if (ksym_sec) {
3791 		/* find existing 4-byte integer type in BTF to use for fake
3792 		 * extern variables in DATASEC
3793 		 */
3794 		int int_btf_id = find_int_btf_id(obj->btf);
3795 		/* For extern function, a dummy_var added earlier
3796 		 * will be used to replace the vs->type and
3797 		 * its name string will be used to refill
3798 		 * the missing param's name.
3799 		 */
3800 		const struct btf_type *dummy_var;
3801 
3802 		dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
3803 		for (i = 0; i < obj->nr_extern; i++) {
3804 			ext = &obj->externs[i];
3805 			if (ext->type != EXT_KSYM)
3806 				continue;
3807 			pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3808 				 i, ext->sym_idx, ext->name);
3809 		}
3810 
3811 		sec = ksym_sec;
3812 		n = btf_vlen(sec);
3813 		for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3814 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3815 			struct btf_type *vt;
3816 
3817 			vt = (void *)btf__type_by_id(obj->btf, vs->type);
3818 			ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3819 			ext = find_extern_by_name(obj, ext_name);
3820 			if (!ext) {
3821 				pr_warn("failed to find extern definition for BTF %s '%s'\n",
3822 					btf_kind_str(vt), ext_name);
3823 				return -ESRCH;
3824 			}
3825 			if (btf_is_func(vt)) {
3826 				const struct btf_type *func_proto;
3827 				struct btf_param *param;
3828 				int j;
3829 
3830 				func_proto = btf__type_by_id(obj->btf,
3831 							     vt->type);
3832 				param = btf_params(func_proto);
3833 				/* Reuse the dummy_var string if the
3834 				 * func proto does not have param name.
3835 				 */
3836 				for (j = 0; j < btf_vlen(func_proto); j++)
3837 					if (param[j].type && !param[j].name_off)
3838 						param[j].name_off =
3839 							dummy_var->name_off;
3840 				vs->type = dummy_var_btf_id;
3841 				vt->info &= ~0xffff;
3842 				vt->info |= BTF_FUNC_GLOBAL;
3843 			} else {
3844 				btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3845 				vt->type = int_btf_id;
3846 			}
3847 			vs->offset = off;
3848 			vs->size = sizeof(int);
3849 		}
3850 		sec->size = off;
3851 	}
3852 
3853 	if (kcfg_sec) {
3854 		sec = kcfg_sec;
3855 		/* for kcfg externs calculate their offsets within a .kconfig map */
3856 		off = 0;
3857 		for (i = 0; i < obj->nr_extern; i++) {
3858 			ext = &obj->externs[i];
3859 			if (ext->type != EXT_KCFG)
3860 				continue;
3861 
3862 			ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3863 			off = ext->kcfg.data_off + ext->kcfg.sz;
3864 			pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3865 				 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3866 		}
3867 		sec->size = off;
3868 		n = btf_vlen(sec);
3869 		for (i = 0; i < n; i++) {
3870 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3871 
3872 			t = btf__type_by_id(obj->btf, vs->type);
3873 			ext_name = btf__name_by_offset(obj->btf, t->name_off);
3874 			ext = find_extern_by_name(obj, ext_name);
3875 			if (!ext) {
3876 				pr_warn("failed to find extern definition for BTF var '%s'\n",
3877 					ext_name);
3878 				return -ESRCH;
3879 			}
3880 			btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3881 			vs->offset = ext->kcfg.data_off;
3882 		}
3883 	}
3884 	return 0;
3885 }
3886 
3887 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
3888 {
3889 	return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
3890 }
3891 
3892 struct bpf_program *
3893 bpf_object__find_program_by_name(const struct bpf_object *obj,
3894 				 const char *name)
3895 {
3896 	struct bpf_program *prog;
3897 
3898 	bpf_object__for_each_program(prog, obj) {
3899 		if (prog_is_subprog(obj, prog))
3900 			continue;
3901 		if (!strcmp(prog->name, name))
3902 			return prog;
3903 	}
3904 	return errno = ENOENT, NULL;
3905 }
3906 
3907 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
3908 				      int shndx)
3909 {
3910 	switch (obj->efile.secs[shndx].sec_type) {
3911 	case SEC_BSS:
3912 	case SEC_DATA:
3913 	case SEC_RODATA:
3914 		return true;
3915 	default:
3916 		return false;
3917 	}
3918 }
3919 
3920 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
3921 				      int shndx)
3922 {
3923 	return shndx == obj->efile.btf_maps_shndx;
3924 }
3925 
3926 static enum libbpf_map_type
3927 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
3928 {
3929 	if (shndx == obj->efile.symbols_shndx)
3930 		return LIBBPF_MAP_KCONFIG;
3931 
3932 	switch (obj->efile.secs[shndx].sec_type) {
3933 	case SEC_BSS:
3934 		return LIBBPF_MAP_BSS;
3935 	case SEC_DATA:
3936 		return LIBBPF_MAP_DATA;
3937 	case SEC_RODATA:
3938 		return LIBBPF_MAP_RODATA;
3939 	default:
3940 		return LIBBPF_MAP_UNSPEC;
3941 	}
3942 }
3943 
3944 static int bpf_program__record_reloc(struct bpf_program *prog,
3945 				     struct reloc_desc *reloc_desc,
3946 				     __u32 insn_idx, const char *sym_name,
3947 				     const Elf64_Sym *sym, const Elf64_Rel *rel)
3948 {
3949 	struct bpf_insn *insn = &prog->insns[insn_idx];
3950 	size_t map_idx, nr_maps = prog->obj->nr_maps;
3951 	struct bpf_object *obj = prog->obj;
3952 	__u32 shdr_idx = sym->st_shndx;
3953 	enum libbpf_map_type type;
3954 	const char *sym_sec_name;
3955 	struct bpf_map *map;
3956 
3957 	if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
3958 		pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
3959 			prog->name, sym_name, insn_idx, insn->code);
3960 		return -LIBBPF_ERRNO__RELOC;
3961 	}
3962 
3963 	if (sym_is_extern(sym)) {
3964 		int sym_idx = ELF64_R_SYM(rel->r_info);
3965 		int i, n = obj->nr_extern;
3966 		struct extern_desc *ext;
3967 
3968 		for (i = 0; i < n; i++) {
3969 			ext = &obj->externs[i];
3970 			if (ext->sym_idx == sym_idx)
3971 				break;
3972 		}
3973 		if (i >= n) {
3974 			pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
3975 				prog->name, sym_name, sym_idx);
3976 			return -LIBBPF_ERRNO__RELOC;
3977 		}
3978 		pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
3979 			 prog->name, i, ext->name, ext->sym_idx, insn_idx);
3980 		if (insn->code == (BPF_JMP | BPF_CALL))
3981 			reloc_desc->type = RELO_EXTERN_FUNC;
3982 		else
3983 			reloc_desc->type = RELO_EXTERN_VAR;
3984 		reloc_desc->insn_idx = insn_idx;
3985 		reloc_desc->sym_off = i; /* sym_off stores extern index */
3986 		return 0;
3987 	}
3988 
3989 	/* sub-program call relocation */
3990 	if (is_call_insn(insn)) {
3991 		if (insn->src_reg != BPF_PSEUDO_CALL) {
3992 			pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
3993 			return -LIBBPF_ERRNO__RELOC;
3994 		}
3995 		/* text_shndx can be 0, if no default "main" program exists */
3996 		if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
3997 			sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3998 			pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
3999 				prog->name, sym_name, sym_sec_name);
4000 			return -LIBBPF_ERRNO__RELOC;
4001 		}
4002 		if (sym->st_value % BPF_INSN_SZ) {
4003 			pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4004 				prog->name, sym_name, (size_t)sym->st_value);
4005 			return -LIBBPF_ERRNO__RELOC;
4006 		}
4007 		reloc_desc->type = RELO_CALL;
4008 		reloc_desc->insn_idx = insn_idx;
4009 		reloc_desc->sym_off = sym->st_value;
4010 		return 0;
4011 	}
4012 
4013 	if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4014 		pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4015 			prog->name, sym_name, shdr_idx);
4016 		return -LIBBPF_ERRNO__RELOC;
4017 	}
4018 
4019 	/* loading subprog addresses */
4020 	if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4021 		/* global_func: sym->st_value = offset in the section, insn->imm = 0.
4022 		 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4023 		 */
4024 		if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4025 			pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4026 				prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4027 			return -LIBBPF_ERRNO__RELOC;
4028 		}
4029 
4030 		reloc_desc->type = RELO_SUBPROG_ADDR;
4031 		reloc_desc->insn_idx = insn_idx;
4032 		reloc_desc->sym_off = sym->st_value;
4033 		return 0;
4034 	}
4035 
4036 	type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4037 	sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4038 
4039 	/* generic map reference relocation */
4040 	if (type == LIBBPF_MAP_UNSPEC) {
4041 		if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4042 			pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4043 				prog->name, sym_name, sym_sec_name);
4044 			return -LIBBPF_ERRNO__RELOC;
4045 		}
4046 		for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4047 			map = &obj->maps[map_idx];
4048 			if (map->libbpf_type != type ||
4049 			    map->sec_idx != sym->st_shndx ||
4050 			    map->sec_offset != sym->st_value)
4051 				continue;
4052 			pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4053 				 prog->name, map_idx, map->name, map->sec_idx,
4054 				 map->sec_offset, insn_idx);
4055 			break;
4056 		}
4057 		if (map_idx >= nr_maps) {
4058 			pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4059 				prog->name, sym_sec_name, (size_t)sym->st_value);
4060 			return -LIBBPF_ERRNO__RELOC;
4061 		}
4062 		reloc_desc->type = RELO_LD64;
4063 		reloc_desc->insn_idx = insn_idx;
4064 		reloc_desc->map_idx = map_idx;
4065 		reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4066 		return 0;
4067 	}
4068 
4069 	/* global data map relocation */
4070 	if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4071 		pr_warn("prog '%s': bad data relo against section '%s'\n",
4072 			prog->name, sym_sec_name);
4073 		return -LIBBPF_ERRNO__RELOC;
4074 	}
4075 	for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4076 		map = &obj->maps[map_idx];
4077 		if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4078 			continue;
4079 		pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4080 			 prog->name, map_idx, map->name, map->sec_idx,
4081 			 map->sec_offset, insn_idx);
4082 		break;
4083 	}
4084 	if (map_idx >= nr_maps) {
4085 		pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4086 			prog->name, sym_sec_name);
4087 		return -LIBBPF_ERRNO__RELOC;
4088 	}
4089 
4090 	reloc_desc->type = RELO_DATA;
4091 	reloc_desc->insn_idx = insn_idx;
4092 	reloc_desc->map_idx = map_idx;
4093 	reloc_desc->sym_off = sym->st_value;
4094 	return 0;
4095 }
4096 
4097 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4098 {
4099 	return insn_idx >= prog->sec_insn_off &&
4100 	       insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4101 }
4102 
4103 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4104 						 size_t sec_idx, size_t insn_idx)
4105 {
4106 	int l = 0, r = obj->nr_programs - 1, m;
4107 	struct bpf_program *prog;
4108 
4109 	while (l < r) {
4110 		m = l + (r - l + 1) / 2;
4111 		prog = &obj->programs[m];
4112 
4113 		if (prog->sec_idx < sec_idx ||
4114 		    (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4115 			l = m;
4116 		else
4117 			r = m - 1;
4118 	}
4119 	/* matching program could be at index l, but it still might be the
4120 	 * wrong one, so we need to double check conditions for the last time
4121 	 */
4122 	prog = &obj->programs[l];
4123 	if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4124 		return prog;
4125 	return NULL;
4126 }
4127 
4128 static int
4129 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4130 {
4131 	const char *relo_sec_name, *sec_name;
4132 	size_t sec_idx = shdr->sh_info, sym_idx;
4133 	struct bpf_program *prog;
4134 	struct reloc_desc *relos;
4135 	int err, i, nrels;
4136 	const char *sym_name;
4137 	__u32 insn_idx;
4138 	Elf_Scn *scn;
4139 	Elf_Data *scn_data;
4140 	Elf64_Sym *sym;
4141 	Elf64_Rel *rel;
4142 
4143 	if (sec_idx >= obj->efile.sec_cnt)
4144 		return -EINVAL;
4145 
4146 	scn = elf_sec_by_idx(obj, sec_idx);
4147 	scn_data = elf_sec_data(obj, scn);
4148 
4149 	relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4150 	sec_name = elf_sec_name(obj, scn);
4151 	if (!relo_sec_name || !sec_name)
4152 		return -EINVAL;
4153 
4154 	pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4155 		 relo_sec_name, sec_idx, sec_name);
4156 	nrels = shdr->sh_size / shdr->sh_entsize;
4157 
4158 	for (i = 0; i < nrels; i++) {
4159 		rel = elf_rel_by_idx(data, i);
4160 		if (!rel) {
4161 			pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4162 			return -LIBBPF_ERRNO__FORMAT;
4163 		}
4164 
4165 		sym_idx = ELF64_R_SYM(rel->r_info);
4166 		sym = elf_sym_by_idx(obj, sym_idx);
4167 		if (!sym) {
4168 			pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4169 				relo_sec_name, sym_idx, i);
4170 			return -LIBBPF_ERRNO__FORMAT;
4171 		}
4172 
4173 		if (sym->st_shndx >= obj->efile.sec_cnt) {
4174 			pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4175 				relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4176 			return -LIBBPF_ERRNO__FORMAT;
4177 		}
4178 
4179 		if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4180 			pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4181 				relo_sec_name, (size_t)rel->r_offset, i);
4182 			return -LIBBPF_ERRNO__FORMAT;
4183 		}
4184 
4185 		insn_idx = rel->r_offset / BPF_INSN_SZ;
4186 		/* relocations against static functions are recorded as
4187 		 * relocations against the section that contains a function;
4188 		 * in such case, symbol will be STT_SECTION and sym.st_name
4189 		 * will point to empty string (0), so fetch section name
4190 		 * instead
4191 		 */
4192 		if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4193 			sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4194 		else
4195 			sym_name = elf_sym_str(obj, sym->st_name);
4196 		sym_name = sym_name ?: "<?";
4197 
4198 		pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4199 			 relo_sec_name, i, insn_idx, sym_name);
4200 
4201 		prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4202 		if (!prog) {
4203 			pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4204 				relo_sec_name, i, sec_name, insn_idx);
4205 			continue;
4206 		}
4207 
4208 		relos = libbpf_reallocarray(prog->reloc_desc,
4209 					    prog->nr_reloc + 1, sizeof(*relos));
4210 		if (!relos)
4211 			return -ENOMEM;
4212 		prog->reloc_desc = relos;
4213 
4214 		/* adjust insn_idx to local BPF program frame of reference */
4215 		insn_idx -= prog->sec_insn_off;
4216 		err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4217 						insn_idx, sym_name, sym, rel);
4218 		if (err)
4219 			return err;
4220 
4221 		prog->nr_reloc++;
4222 	}
4223 	return 0;
4224 }
4225 
4226 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map)
4227 {
4228 	int id;
4229 
4230 	if (!obj->btf)
4231 		return -ENOENT;
4232 
4233 	/* if it's BTF-defined map, we don't need to search for type IDs.
4234 	 * For struct_ops map, it does not need btf_key_type_id and
4235 	 * btf_value_type_id.
4236 	 */
4237 	if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4238 		return 0;
4239 
4240 	/*
4241 	 * LLVM annotates global data differently in BTF, that is,
4242 	 * only as '.data', '.bss' or '.rodata'.
4243 	 */
4244 	if (!bpf_map__is_internal(map))
4245 		return -ENOENT;
4246 
4247 	id = btf__find_by_name(obj->btf, map->real_name);
4248 	if (id < 0)
4249 		return id;
4250 
4251 	map->btf_key_type_id = 0;
4252 	map->btf_value_type_id = id;
4253 	return 0;
4254 }
4255 
4256 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4257 {
4258 	char file[PATH_MAX], buff[4096];
4259 	FILE *fp;
4260 	__u32 val;
4261 	int err;
4262 
4263 	snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4264 	memset(info, 0, sizeof(*info));
4265 
4266 	fp = fopen(file, "r");
4267 	if (!fp) {
4268 		err = -errno;
4269 		pr_warn("failed to open %s: %d. No procfs support?\n", file,
4270 			err);
4271 		return err;
4272 	}
4273 
4274 	while (fgets(buff, sizeof(buff), fp)) {
4275 		if (sscanf(buff, "map_type:\t%u", &val) == 1)
4276 			info->type = val;
4277 		else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4278 			info->key_size = val;
4279 		else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4280 			info->value_size = val;
4281 		else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4282 			info->max_entries = val;
4283 		else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4284 			info->map_flags = val;
4285 	}
4286 
4287 	fclose(fp);
4288 
4289 	return 0;
4290 }
4291 
4292 bool bpf_map__autocreate(const struct bpf_map *map)
4293 {
4294 	return map->autocreate;
4295 }
4296 
4297 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4298 {
4299 	if (map->obj->loaded)
4300 		return libbpf_err(-EBUSY);
4301 
4302 	map->autocreate = autocreate;
4303 	return 0;
4304 }
4305 
4306 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4307 {
4308 	struct bpf_map_info info;
4309 	__u32 len = sizeof(info), name_len;
4310 	int new_fd, err;
4311 	char *new_name;
4312 
4313 	memset(&info, 0, len);
4314 	err = bpf_obj_get_info_by_fd(fd, &info, &len);
4315 	if (err && errno == EINVAL)
4316 		err = bpf_get_map_info_from_fdinfo(fd, &info);
4317 	if (err)
4318 		return libbpf_err(err);
4319 
4320 	name_len = strlen(info.name);
4321 	if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4322 		new_name = strdup(map->name);
4323 	else
4324 		new_name = strdup(info.name);
4325 
4326 	if (!new_name)
4327 		return libbpf_err(-errno);
4328 
4329 	new_fd = open("/", O_RDONLY | O_CLOEXEC);
4330 	if (new_fd < 0) {
4331 		err = -errno;
4332 		goto err_free_new_name;
4333 	}
4334 
4335 	new_fd = dup3(fd, new_fd, O_CLOEXEC);
4336 	if (new_fd < 0) {
4337 		err = -errno;
4338 		goto err_close_new_fd;
4339 	}
4340 
4341 	err = zclose(map->fd);
4342 	if (err) {
4343 		err = -errno;
4344 		goto err_close_new_fd;
4345 	}
4346 	free(map->name);
4347 
4348 	map->fd = new_fd;
4349 	map->name = new_name;
4350 	map->def.type = info.type;
4351 	map->def.key_size = info.key_size;
4352 	map->def.value_size = info.value_size;
4353 	map->def.max_entries = info.max_entries;
4354 	map->def.map_flags = info.map_flags;
4355 	map->btf_key_type_id = info.btf_key_type_id;
4356 	map->btf_value_type_id = info.btf_value_type_id;
4357 	map->reused = true;
4358 	map->map_extra = info.map_extra;
4359 
4360 	return 0;
4361 
4362 err_close_new_fd:
4363 	close(new_fd);
4364 err_free_new_name:
4365 	free(new_name);
4366 	return libbpf_err(err);
4367 }
4368 
4369 __u32 bpf_map__max_entries(const struct bpf_map *map)
4370 {
4371 	return map->def.max_entries;
4372 }
4373 
4374 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4375 {
4376 	if (!bpf_map_type__is_map_in_map(map->def.type))
4377 		return errno = EINVAL, NULL;
4378 
4379 	return map->inner_map;
4380 }
4381 
4382 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4383 {
4384 	if (map->obj->loaded)
4385 		return libbpf_err(-EBUSY);
4386 
4387 	map->def.max_entries = max_entries;
4388 
4389 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4390 	if (map_is_ringbuf(map))
4391 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4392 
4393 	return 0;
4394 }
4395 
4396 static int
4397 bpf_object__probe_loading(struct bpf_object *obj)
4398 {
4399 	char *cp, errmsg[STRERR_BUFSIZE];
4400 	struct bpf_insn insns[] = {
4401 		BPF_MOV64_IMM(BPF_REG_0, 0),
4402 		BPF_EXIT_INSN(),
4403 	};
4404 	int ret, insn_cnt = ARRAY_SIZE(insns);
4405 
4406 	if (obj->gen_loader)
4407 		return 0;
4408 
4409 	ret = bump_rlimit_memlock();
4410 	if (ret)
4411 		pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4412 
4413 	/* make sure basic loading works */
4414 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4415 	if (ret < 0)
4416 		ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4417 	if (ret < 0) {
4418 		ret = errno;
4419 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4420 		pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4421 			"program. Make sure your kernel supports BPF "
4422 			"(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4423 			"set to big enough value.\n", __func__, cp, ret);
4424 		return -ret;
4425 	}
4426 	close(ret);
4427 
4428 	return 0;
4429 }
4430 
4431 static int probe_fd(int fd)
4432 {
4433 	if (fd >= 0)
4434 		close(fd);
4435 	return fd >= 0;
4436 }
4437 
4438 static int probe_kern_prog_name(void)
4439 {
4440 	const size_t attr_sz = offsetofend(union bpf_attr, prog_name);
4441 	struct bpf_insn insns[] = {
4442 		BPF_MOV64_IMM(BPF_REG_0, 0),
4443 		BPF_EXIT_INSN(),
4444 	};
4445 	union bpf_attr attr;
4446 	int ret;
4447 
4448 	memset(&attr, 0, attr_sz);
4449 	attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4450 	attr.license = ptr_to_u64("GPL");
4451 	attr.insns = ptr_to_u64(insns);
4452 	attr.insn_cnt = (__u32)ARRAY_SIZE(insns);
4453 	libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name));
4454 
4455 	/* make sure loading with name works */
4456 	ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS);
4457 	return probe_fd(ret);
4458 }
4459 
4460 static int probe_kern_global_data(void)
4461 {
4462 	char *cp, errmsg[STRERR_BUFSIZE];
4463 	struct bpf_insn insns[] = {
4464 		BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
4465 		BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
4466 		BPF_MOV64_IMM(BPF_REG_0, 0),
4467 		BPF_EXIT_INSN(),
4468 	};
4469 	int ret, map, insn_cnt = ARRAY_SIZE(insns);
4470 
4471 	map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL);
4472 	if (map < 0) {
4473 		ret = -errno;
4474 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4475 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4476 			__func__, cp, -ret);
4477 		return ret;
4478 	}
4479 
4480 	insns[0].imm = map;
4481 
4482 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4483 	close(map);
4484 	return probe_fd(ret);
4485 }
4486 
4487 static int probe_kern_btf(void)
4488 {
4489 	static const char strs[] = "\0int";
4490 	__u32 types[] = {
4491 		/* int */
4492 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4493 	};
4494 
4495 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4496 					     strs, sizeof(strs)));
4497 }
4498 
4499 static int probe_kern_btf_func(void)
4500 {
4501 	static const char strs[] = "\0int\0x\0a";
4502 	/* void x(int a) {} */
4503 	__u32 types[] = {
4504 		/* int */
4505 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4506 		/* FUNC_PROTO */                                /* [2] */
4507 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4508 		BTF_PARAM_ENC(7, 1),
4509 		/* FUNC x */                                    /* [3] */
4510 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
4511 	};
4512 
4513 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4514 					     strs, sizeof(strs)));
4515 }
4516 
4517 static int probe_kern_btf_func_global(void)
4518 {
4519 	static const char strs[] = "\0int\0x\0a";
4520 	/* static void x(int a) {} */
4521 	__u32 types[] = {
4522 		/* int */
4523 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4524 		/* FUNC_PROTO */                                /* [2] */
4525 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4526 		BTF_PARAM_ENC(7, 1),
4527 		/* FUNC x BTF_FUNC_GLOBAL */                    /* [3] */
4528 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
4529 	};
4530 
4531 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4532 					     strs, sizeof(strs)));
4533 }
4534 
4535 static int probe_kern_btf_datasec(void)
4536 {
4537 	static const char strs[] = "\0x\0.data";
4538 	/* static int a; */
4539 	__u32 types[] = {
4540 		/* int */
4541 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4542 		/* VAR x */                                     /* [2] */
4543 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4544 		BTF_VAR_STATIC,
4545 		/* DATASEC val */                               /* [3] */
4546 		BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
4547 		BTF_VAR_SECINFO_ENC(2, 0, 4),
4548 	};
4549 
4550 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4551 					     strs, sizeof(strs)));
4552 }
4553 
4554 static int probe_kern_btf_float(void)
4555 {
4556 	static const char strs[] = "\0float";
4557 	__u32 types[] = {
4558 		/* float */
4559 		BTF_TYPE_FLOAT_ENC(1, 4),
4560 	};
4561 
4562 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4563 					     strs, sizeof(strs)));
4564 }
4565 
4566 static int probe_kern_btf_decl_tag(void)
4567 {
4568 	static const char strs[] = "\0tag";
4569 	__u32 types[] = {
4570 		/* int */
4571 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4572 		/* VAR x */                                     /* [2] */
4573 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4574 		BTF_VAR_STATIC,
4575 		/* attr */
4576 		BTF_TYPE_DECL_TAG_ENC(1, 2, -1),
4577 	};
4578 
4579 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4580 					     strs, sizeof(strs)));
4581 }
4582 
4583 static int probe_kern_btf_type_tag(void)
4584 {
4585 	static const char strs[] = "\0tag";
4586 	__u32 types[] = {
4587 		/* int */
4588 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),		/* [1] */
4589 		/* attr */
4590 		BTF_TYPE_TYPE_TAG_ENC(1, 1),				/* [2] */
4591 		/* ptr */
4592 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2),	/* [3] */
4593 	};
4594 
4595 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4596 					     strs, sizeof(strs)));
4597 }
4598 
4599 static int probe_kern_array_mmap(void)
4600 {
4601 	LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE);
4602 	int fd;
4603 
4604 	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts);
4605 	return probe_fd(fd);
4606 }
4607 
4608 static int probe_kern_exp_attach_type(void)
4609 {
4610 	LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE);
4611 	struct bpf_insn insns[] = {
4612 		BPF_MOV64_IMM(BPF_REG_0, 0),
4613 		BPF_EXIT_INSN(),
4614 	};
4615 	int fd, insn_cnt = ARRAY_SIZE(insns);
4616 
4617 	/* use any valid combination of program type and (optional)
4618 	 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
4619 	 * to see if kernel supports expected_attach_type field for
4620 	 * BPF_PROG_LOAD command
4621 	 */
4622 	fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts);
4623 	return probe_fd(fd);
4624 }
4625 
4626 static int probe_kern_probe_read_kernel(void)
4627 {
4628 	struct bpf_insn insns[] = {
4629 		BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),	/* r1 = r10 (fp) */
4630 		BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),	/* r1 += -8 */
4631 		BPF_MOV64_IMM(BPF_REG_2, 8),		/* r2 = 8 */
4632 		BPF_MOV64_IMM(BPF_REG_3, 0),		/* r3 = 0 */
4633 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
4634 		BPF_EXIT_INSN(),
4635 	};
4636 	int fd, insn_cnt = ARRAY_SIZE(insns);
4637 
4638 	fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4639 	return probe_fd(fd);
4640 }
4641 
4642 static int probe_prog_bind_map(void)
4643 {
4644 	char *cp, errmsg[STRERR_BUFSIZE];
4645 	struct bpf_insn insns[] = {
4646 		BPF_MOV64_IMM(BPF_REG_0, 0),
4647 		BPF_EXIT_INSN(),
4648 	};
4649 	int ret, map, prog, insn_cnt = ARRAY_SIZE(insns);
4650 
4651 	map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL);
4652 	if (map < 0) {
4653 		ret = -errno;
4654 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4655 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4656 			__func__, cp, -ret);
4657 		return ret;
4658 	}
4659 
4660 	prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4661 	if (prog < 0) {
4662 		close(map);
4663 		return 0;
4664 	}
4665 
4666 	ret = bpf_prog_bind_map(prog, map, NULL);
4667 
4668 	close(map);
4669 	close(prog);
4670 
4671 	return ret >= 0;
4672 }
4673 
4674 static int probe_module_btf(void)
4675 {
4676 	static const char strs[] = "\0int";
4677 	__u32 types[] = {
4678 		/* int */
4679 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4680 	};
4681 	struct bpf_btf_info info;
4682 	__u32 len = sizeof(info);
4683 	char name[16];
4684 	int fd, err;
4685 
4686 	fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4687 	if (fd < 0)
4688 		return 0; /* BTF not supported at all */
4689 
4690 	memset(&info, 0, sizeof(info));
4691 	info.name = ptr_to_u64(name);
4692 	info.name_len = sizeof(name);
4693 
4694 	/* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4695 	 * kernel's module BTF support coincides with support for
4696 	 * name/name_len fields in struct bpf_btf_info.
4697 	 */
4698 	err = bpf_obj_get_info_by_fd(fd, &info, &len);
4699 	close(fd);
4700 	return !err;
4701 }
4702 
4703 static int probe_perf_link(void)
4704 {
4705 	struct bpf_insn insns[] = {
4706 		BPF_MOV64_IMM(BPF_REG_0, 0),
4707 		BPF_EXIT_INSN(),
4708 	};
4709 	int prog_fd, link_fd, err;
4710 
4711 	prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL",
4712 				insns, ARRAY_SIZE(insns), NULL);
4713 	if (prog_fd < 0)
4714 		return -errno;
4715 
4716 	/* use invalid perf_event FD to get EBADF, if link is supported;
4717 	 * otherwise EINVAL should be returned
4718 	 */
4719 	link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL);
4720 	err = -errno; /* close() can clobber errno */
4721 
4722 	if (link_fd >= 0)
4723 		close(link_fd);
4724 	close(prog_fd);
4725 
4726 	return link_fd < 0 && err == -EBADF;
4727 }
4728 
4729 static int probe_kern_bpf_cookie(void)
4730 {
4731 	struct bpf_insn insns[] = {
4732 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie),
4733 		BPF_EXIT_INSN(),
4734 	};
4735 	int ret, insn_cnt = ARRAY_SIZE(insns);
4736 
4737 	ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL);
4738 	return probe_fd(ret);
4739 }
4740 
4741 static int probe_kern_btf_enum64(void)
4742 {
4743 	static const char strs[] = "\0enum64";
4744 	__u32 types[] = {
4745 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8),
4746 	};
4747 
4748 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4749 					     strs, sizeof(strs)));
4750 }
4751 
4752 static int probe_kern_syscall_wrapper(void);
4753 
4754 enum kern_feature_result {
4755 	FEAT_UNKNOWN = 0,
4756 	FEAT_SUPPORTED = 1,
4757 	FEAT_MISSING = 2,
4758 };
4759 
4760 typedef int (*feature_probe_fn)(void);
4761 
4762 static struct kern_feature_desc {
4763 	const char *desc;
4764 	feature_probe_fn probe;
4765 	enum kern_feature_result res;
4766 } feature_probes[__FEAT_CNT] = {
4767 	[FEAT_PROG_NAME] = {
4768 		"BPF program name", probe_kern_prog_name,
4769 	},
4770 	[FEAT_GLOBAL_DATA] = {
4771 		"global variables", probe_kern_global_data,
4772 	},
4773 	[FEAT_BTF] = {
4774 		"minimal BTF", probe_kern_btf,
4775 	},
4776 	[FEAT_BTF_FUNC] = {
4777 		"BTF functions", probe_kern_btf_func,
4778 	},
4779 	[FEAT_BTF_GLOBAL_FUNC] = {
4780 		"BTF global function", probe_kern_btf_func_global,
4781 	},
4782 	[FEAT_BTF_DATASEC] = {
4783 		"BTF data section and variable", probe_kern_btf_datasec,
4784 	},
4785 	[FEAT_ARRAY_MMAP] = {
4786 		"ARRAY map mmap()", probe_kern_array_mmap,
4787 	},
4788 	[FEAT_EXP_ATTACH_TYPE] = {
4789 		"BPF_PROG_LOAD expected_attach_type attribute",
4790 		probe_kern_exp_attach_type,
4791 	},
4792 	[FEAT_PROBE_READ_KERN] = {
4793 		"bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4794 	},
4795 	[FEAT_PROG_BIND_MAP] = {
4796 		"BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4797 	},
4798 	[FEAT_MODULE_BTF] = {
4799 		"module BTF support", probe_module_btf,
4800 	},
4801 	[FEAT_BTF_FLOAT] = {
4802 		"BTF_KIND_FLOAT support", probe_kern_btf_float,
4803 	},
4804 	[FEAT_PERF_LINK] = {
4805 		"BPF perf link support", probe_perf_link,
4806 	},
4807 	[FEAT_BTF_DECL_TAG] = {
4808 		"BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag,
4809 	},
4810 	[FEAT_BTF_TYPE_TAG] = {
4811 		"BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag,
4812 	},
4813 	[FEAT_MEMCG_ACCOUNT] = {
4814 		"memcg-based memory accounting", probe_memcg_account,
4815 	},
4816 	[FEAT_BPF_COOKIE] = {
4817 		"BPF cookie support", probe_kern_bpf_cookie,
4818 	},
4819 	[FEAT_BTF_ENUM64] = {
4820 		"BTF_KIND_ENUM64 support", probe_kern_btf_enum64,
4821 	},
4822 	[FEAT_SYSCALL_WRAPPER] = {
4823 		"Kernel using syscall wrapper", probe_kern_syscall_wrapper,
4824 	},
4825 };
4826 
4827 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
4828 {
4829 	struct kern_feature_desc *feat = &feature_probes[feat_id];
4830 	int ret;
4831 
4832 	if (obj && obj->gen_loader)
4833 		/* To generate loader program assume the latest kernel
4834 		 * to avoid doing extra prog_load, map_create syscalls.
4835 		 */
4836 		return true;
4837 
4838 	if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4839 		ret = feat->probe();
4840 		if (ret > 0) {
4841 			WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4842 		} else if (ret == 0) {
4843 			WRITE_ONCE(feat->res, FEAT_MISSING);
4844 		} else {
4845 			pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4846 			WRITE_ONCE(feat->res, FEAT_MISSING);
4847 		}
4848 	}
4849 
4850 	return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4851 }
4852 
4853 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4854 {
4855 	struct bpf_map_info map_info;
4856 	char msg[STRERR_BUFSIZE];
4857 	__u32 map_info_len = sizeof(map_info);
4858 	int err;
4859 
4860 	memset(&map_info, 0, map_info_len);
4861 	err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len);
4862 	if (err && errno == EINVAL)
4863 		err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
4864 	if (err) {
4865 		pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
4866 			libbpf_strerror_r(errno, msg, sizeof(msg)));
4867 		return false;
4868 	}
4869 
4870 	return (map_info.type == map->def.type &&
4871 		map_info.key_size == map->def.key_size &&
4872 		map_info.value_size == map->def.value_size &&
4873 		map_info.max_entries == map->def.max_entries &&
4874 		map_info.map_flags == map->def.map_flags &&
4875 		map_info.map_extra == map->map_extra);
4876 }
4877 
4878 static int
4879 bpf_object__reuse_map(struct bpf_map *map)
4880 {
4881 	char *cp, errmsg[STRERR_BUFSIZE];
4882 	int err, pin_fd;
4883 
4884 	pin_fd = bpf_obj_get(map->pin_path);
4885 	if (pin_fd < 0) {
4886 		err = -errno;
4887 		if (err == -ENOENT) {
4888 			pr_debug("found no pinned map to reuse at '%s'\n",
4889 				 map->pin_path);
4890 			return 0;
4891 		}
4892 
4893 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
4894 		pr_warn("couldn't retrieve pinned map '%s': %s\n",
4895 			map->pin_path, cp);
4896 		return err;
4897 	}
4898 
4899 	if (!map_is_reuse_compat(map, pin_fd)) {
4900 		pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
4901 			map->pin_path);
4902 		close(pin_fd);
4903 		return -EINVAL;
4904 	}
4905 
4906 	err = bpf_map__reuse_fd(map, pin_fd);
4907 	close(pin_fd);
4908 	if (err) {
4909 		return err;
4910 	}
4911 	map->pinned = true;
4912 	pr_debug("reused pinned map at '%s'\n", map->pin_path);
4913 
4914 	return 0;
4915 }
4916 
4917 static int
4918 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
4919 {
4920 	enum libbpf_map_type map_type = map->libbpf_type;
4921 	char *cp, errmsg[STRERR_BUFSIZE];
4922 	int err, zero = 0;
4923 
4924 	if (obj->gen_loader) {
4925 		bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
4926 					 map->mmaped, map->def.value_size);
4927 		if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
4928 			bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
4929 		return 0;
4930 	}
4931 	err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
4932 	if (err) {
4933 		err = -errno;
4934 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4935 		pr_warn("Error setting initial map(%s) contents: %s\n",
4936 			map->name, cp);
4937 		return err;
4938 	}
4939 
4940 	/* Freeze .rodata and .kconfig map as read-only from syscall side. */
4941 	if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
4942 		err = bpf_map_freeze(map->fd);
4943 		if (err) {
4944 			err = -errno;
4945 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4946 			pr_warn("Error freezing map(%s) as read-only: %s\n",
4947 				map->name, cp);
4948 			return err;
4949 		}
4950 	}
4951 	return 0;
4952 }
4953 
4954 static void bpf_map__destroy(struct bpf_map *map);
4955 
4956 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
4957 {
4958 	LIBBPF_OPTS(bpf_map_create_opts, create_attr);
4959 	struct bpf_map_def *def = &map->def;
4960 	const char *map_name = NULL;
4961 	int err = 0;
4962 
4963 	if (kernel_supports(obj, FEAT_PROG_NAME))
4964 		map_name = map->name;
4965 	create_attr.map_ifindex = map->map_ifindex;
4966 	create_attr.map_flags = def->map_flags;
4967 	create_attr.numa_node = map->numa_node;
4968 	create_attr.map_extra = map->map_extra;
4969 
4970 	if (bpf_map__is_struct_ops(map))
4971 		create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
4972 
4973 	if (obj->btf && btf__fd(obj->btf) >= 0) {
4974 		create_attr.btf_fd = btf__fd(obj->btf);
4975 		create_attr.btf_key_type_id = map->btf_key_type_id;
4976 		create_attr.btf_value_type_id = map->btf_value_type_id;
4977 	}
4978 
4979 	if (bpf_map_type__is_map_in_map(def->type)) {
4980 		if (map->inner_map) {
4981 			err = bpf_object__create_map(obj, map->inner_map, true);
4982 			if (err) {
4983 				pr_warn("map '%s': failed to create inner map: %d\n",
4984 					map->name, err);
4985 				return err;
4986 			}
4987 			map->inner_map_fd = bpf_map__fd(map->inner_map);
4988 		}
4989 		if (map->inner_map_fd >= 0)
4990 			create_attr.inner_map_fd = map->inner_map_fd;
4991 	}
4992 
4993 	switch (def->type) {
4994 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4995 	case BPF_MAP_TYPE_CGROUP_ARRAY:
4996 	case BPF_MAP_TYPE_STACK_TRACE:
4997 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
4998 	case BPF_MAP_TYPE_HASH_OF_MAPS:
4999 	case BPF_MAP_TYPE_DEVMAP:
5000 	case BPF_MAP_TYPE_DEVMAP_HASH:
5001 	case BPF_MAP_TYPE_CPUMAP:
5002 	case BPF_MAP_TYPE_XSKMAP:
5003 	case BPF_MAP_TYPE_SOCKMAP:
5004 	case BPF_MAP_TYPE_SOCKHASH:
5005 	case BPF_MAP_TYPE_QUEUE:
5006 	case BPF_MAP_TYPE_STACK:
5007 		create_attr.btf_fd = 0;
5008 		create_attr.btf_key_type_id = 0;
5009 		create_attr.btf_value_type_id = 0;
5010 		map->btf_key_type_id = 0;
5011 		map->btf_value_type_id = 0;
5012 	default:
5013 		break;
5014 	}
5015 
5016 	if (obj->gen_loader) {
5017 		bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5018 				    def->key_size, def->value_size, def->max_entries,
5019 				    &create_attr, is_inner ? -1 : map - obj->maps);
5020 		/* Pretend to have valid FD to pass various fd >= 0 checks.
5021 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
5022 		 */
5023 		map->fd = 0;
5024 	} else {
5025 		map->fd = bpf_map_create(def->type, map_name,
5026 					 def->key_size, def->value_size,
5027 					 def->max_entries, &create_attr);
5028 	}
5029 	if (map->fd < 0 && (create_attr.btf_key_type_id ||
5030 			    create_attr.btf_value_type_id)) {
5031 		char *cp, errmsg[STRERR_BUFSIZE];
5032 
5033 		err = -errno;
5034 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5035 		pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
5036 			map->name, cp, err);
5037 		create_attr.btf_fd = 0;
5038 		create_attr.btf_key_type_id = 0;
5039 		create_attr.btf_value_type_id = 0;
5040 		map->btf_key_type_id = 0;
5041 		map->btf_value_type_id = 0;
5042 		map->fd = bpf_map_create(def->type, map_name,
5043 					 def->key_size, def->value_size,
5044 					 def->max_entries, &create_attr);
5045 	}
5046 
5047 	err = map->fd < 0 ? -errno : 0;
5048 
5049 	if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5050 		if (obj->gen_loader)
5051 			map->inner_map->fd = -1;
5052 		bpf_map__destroy(map->inner_map);
5053 		zfree(&map->inner_map);
5054 	}
5055 
5056 	return err;
5057 }
5058 
5059 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5060 {
5061 	const struct bpf_map *targ_map;
5062 	unsigned int i;
5063 	int fd, err = 0;
5064 
5065 	for (i = 0; i < map->init_slots_sz; i++) {
5066 		if (!map->init_slots[i])
5067 			continue;
5068 
5069 		targ_map = map->init_slots[i];
5070 		fd = bpf_map__fd(targ_map);
5071 
5072 		if (obj->gen_loader) {
5073 			bpf_gen__populate_outer_map(obj->gen_loader,
5074 						    map - obj->maps, i,
5075 						    targ_map - obj->maps);
5076 		} else {
5077 			err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5078 		}
5079 		if (err) {
5080 			err = -errno;
5081 			pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5082 				map->name, i, targ_map->name, fd, err);
5083 			return err;
5084 		}
5085 		pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5086 			 map->name, i, targ_map->name, fd);
5087 	}
5088 
5089 	zfree(&map->init_slots);
5090 	map->init_slots_sz = 0;
5091 
5092 	return 0;
5093 }
5094 
5095 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5096 {
5097 	const struct bpf_program *targ_prog;
5098 	unsigned int i;
5099 	int fd, err;
5100 
5101 	if (obj->gen_loader)
5102 		return -ENOTSUP;
5103 
5104 	for (i = 0; i < map->init_slots_sz; i++) {
5105 		if (!map->init_slots[i])
5106 			continue;
5107 
5108 		targ_prog = map->init_slots[i];
5109 		fd = bpf_program__fd(targ_prog);
5110 
5111 		err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5112 		if (err) {
5113 			err = -errno;
5114 			pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5115 				map->name, i, targ_prog->name, fd, err);
5116 			return err;
5117 		}
5118 		pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5119 			 map->name, i, targ_prog->name, fd);
5120 	}
5121 
5122 	zfree(&map->init_slots);
5123 	map->init_slots_sz = 0;
5124 
5125 	return 0;
5126 }
5127 
5128 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5129 {
5130 	struct bpf_map *map;
5131 	int i, err;
5132 
5133 	for (i = 0; i < obj->nr_maps; i++) {
5134 		map = &obj->maps[i];
5135 
5136 		if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5137 			continue;
5138 
5139 		err = init_prog_array_slots(obj, map);
5140 		if (err < 0) {
5141 			zclose(map->fd);
5142 			return err;
5143 		}
5144 	}
5145 	return 0;
5146 }
5147 
5148 static int map_set_def_max_entries(struct bpf_map *map)
5149 {
5150 	if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5151 		int nr_cpus;
5152 
5153 		nr_cpus = libbpf_num_possible_cpus();
5154 		if (nr_cpus < 0) {
5155 			pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5156 				map->name, nr_cpus);
5157 			return nr_cpus;
5158 		}
5159 		pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5160 		map->def.max_entries = nr_cpus;
5161 	}
5162 
5163 	return 0;
5164 }
5165 
5166 static int
5167 bpf_object__create_maps(struct bpf_object *obj)
5168 {
5169 	struct bpf_map *map;
5170 	char *cp, errmsg[STRERR_BUFSIZE];
5171 	unsigned int i, j;
5172 	int err;
5173 	bool retried;
5174 
5175 	for (i = 0; i < obj->nr_maps; i++) {
5176 		map = &obj->maps[i];
5177 
5178 		/* To support old kernels, we skip creating global data maps
5179 		 * (.rodata, .data, .kconfig, etc); later on, during program
5180 		 * loading, if we detect that at least one of the to-be-loaded
5181 		 * programs is referencing any global data map, we'll error
5182 		 * out with program name and relocation index logged.
5183 		 * This approach allows to accommodate Clang emitting
5184 		 * unnecessary .rodata.str1.1 sections for string literals,
5185 		 * but also it allows to have CO-RE applications that use
5186 		 * global variables in some of BPF programs, but not others.
5187 		 * If those global variable-using programs are not loaded at
5188 		 * runtime due to bpf_program__set_autoload(prog, false),
5189 		 * bpf_object loading will succeed just fine even on old
5190 		 * kernels.
5191 		 */
5192 		if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5193 			map->autocreate = false;
5194 
5195 		if (!map->autocreate) {
5196 			pr_debug("map '%s': skipped auto-creating...\n", map->name);
5197 			continue;
5198 		}
5199 
5200 		err = map_set_def_max_entries(map);
5201 		if (err)
5202 			goto err_out;
5203 
5204 		retried = false;
5205 retry:
5206 		if (map->pin_path) {
5207 			err = bpf_object__reuse_map(map);
5208 			if (err) {
5209 				pr_warn("map '%s': error reusing pinned map\n",
5210 					map->name);
5211 				goto err_out;
5212 			}
5213 			if (retried && map->fd < 0) {
5214 				pr_warn("map '%s': cannot find pinned map\n",
5215 					map->name);
5216 				err = -ENOENT;
5217 				goto err_out;
5218 			}
5219 		}
5220 
5221 		if (map->fd >= 0) {
5222 			pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5223 				 map->name, map->fd);
5224 		} else {
5225 			err = bpf_object__create_map(obj, map, false);
5226 			if (err)
5227 				goto err_out;
5228 
5229 			pr_debug("map '%s': created successfully, fd=%d\n",
5230 				 map->name, map->fd);
5231 
5232 			if (bpf_map__is_internal(map)) {
5233 				err = bpf_object__populate_internal_map(obj, map);
5234 				if (err < 0) {
5235 					zclose(map->fd);
5236 					goto err_out;
5237 				}
5238 			}
5239 
5240 			if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5241 				err = init_map_in_map_slots(obj, map);
5242 				if (err < 0) {
5243 					zclose(map->fd);
5244 					goto err_out;
5245 				}
5246 			}
5247 		}
5248 
5249 		if (map->pin_path && !map->pinned) {
5250 			err = bpf_map__pin(map, NULL);
5251 			if (err) {
5252 				zclose(map->fd);
5253 				if (!retried && err == -EEXIST) {
5254 					retried = true;
5255 					goto retry;
5256 				}
5257 				pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5258 					map->name, map->pin_path, err);
5259 				goto err_out;
5260 			}
5261 		}
5262 	}
5263 
5264 	return 0;
5265 
5266 err_out:
5267 	cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5268 	pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5269 	pr_perm_msg(err);
5270 	for (j = 0; j < i; j++)
5271 		zclose(obj->maps[j].fd);
5272 	return err;
5273 }
5274 
5275 static bool bpf_core_is_flavor_sep(const char *s)
5276 {
5277 	/* check X___Y name pattern, where X and Y are not underscores */
5278 	return s[0] != '_' &&				      /* X */
5279 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
5280 	       s[4] != '_';				      /* Y */
5281 }
5282 
5283 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5284  * before last triple underscore. Struct name part after last triple
5285  * underscore is ignored by BPF CO-RE relocation during relocation matching.
5286  */
5287 size_t bpf_core_essential_name_len(const char *name)
5288 {
5289 	size_t n = strlen(name);
5290 	int i;
5291 
5292 	for (i = n - 5; i >= 0; i--) {
5293 		if (bpf_core_is_flavor_sep(name + i))
5294 			return i + 1;
5295 	}
5296 	return n;
5297 }
5298 
5299 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5300 {
5301 	if (!cands)
5302 		return;
5303 
5304 	free(cands->cands);
5305 	free(cands);
5306 }
5307 
5308 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5309 		       size_t local_essent_len,
5310 		       const struct btf *targ_btf,
5311 		       const char *targ_btf_name,
5312 		       int targ_start_id,
5313 		       struct bpf_core_cand_list *cands)
5314 {
5315 	struct bpf_core_cand *new_cands, *cand;
5316 	const struct btf_type *t, *local_t;
5317 	const char *targ_name, *local_name;
5318 	size_t targ_essent_len;
5319 	int n, i;
5320 
5321 	local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5322 	local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5323 
5324 	n = btf__type_cnt(targ_btf);
5325 	for (i = targ_start_id; i < n; i++) {
5326 		t = btf__type_by_id(targ_btf, i);
5327 		if (!btf_kind_core_compat(t, local_t))
5328 			continue;
5329 
5330 		targ_name = btf__name_by_offset(targ_btf, t->name_off);
5331 		if (str_is_empty(targ_name))
5332 			continue;
5333 
5334 		targ_essent_len = bpf_core_essential_name_len(targ_name);
5335 		if (targ_essent_len != local_essent_len)
5336 			continue;
5337 
5338 		if (strncmp(local_name, targ_name, local_essent_len) != 0)
5339 			continue;
5340 
5341 		pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5342 			 local_cand->id, btf_kind_str(local_t),
5343 			 local_name, i, btf_kind_str(t), targ_name,
5344 			 targ_btf_name);
5345 		new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5346 					      sizeof(*cands->cands));
5347 		if (!new_cands)
5348 			return -ENOMEM;
5349 
5350 		cand = &new_cands[cands->len];
5351 		cand->btf = targ_btf;
5352 		cand->id = i;
5353 
5354 		cands->cands = new_cands;
5355 		cands->len++;
5356 	}
5357 	return 0;
5358 }
5359 
5360 static int load_module_btfs(struct bpf_object *obj)
5361 {
5362 	struct bpf_btf_info info;
5363 	struct module_btf *mod_btf;
5364 	struct btf *btf;
5365 	char name[64];
5366 	__u32 id = 0, len;
5367 	int err, fd;
5368 
5369 	if (obj->btf_modules_loaded)
5370 		return 0;
5371 
5372 	if (obj->gen_loader)
5373 		return 0;
5374 
5375 	/* don't do this again, even if we find no module BTFs */
5376 	obj->btf_modules_loaded = true;
5377 
5378 	/* kernel too old to support module BTFs */
5379 	if (!kernel_supports(obj, FEAT_MODULE_BTF))
5380 		return 0;
5381 
5382 	while (true) {
5383 		err = bpf_btf_get_next_id(id, &id);
5384 		if (err && errno == ENOENT)
5385 			return 0;
5386 		if (err) {
5387 			err = -errno;
5388 			pr_warn("failed to iterate BTF objects: %d\n", err);
5389 			return err;
5390 		}
5391 
5392 		fd = bpf_btf_get_fd_by_id(id);
5393 		if (fd < 0) {
5394 			if (errno == ENOENT)
5395 				continue; /* expected race: BTF was unloaded */
5396 			err = -errno;
5397 			pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5398 			return err;
5399 		}
5400 
5401 		len = sizeof(info);
5402 		memset(&info, 0, sizeof(info));
5403 		info.name = ptr_to_u64(name);
5404 		info.name_len = sizeof(name);
5405 
5406 		err = bpf_obj_get_info_by_fd(fd, &info, &len);
5407 		if (err) {
5408 			err = -errno;
5409 			pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5410 			goto err_out;
5411 		}
5412 
5413 		/* ignore non-module BTFs */
5414 		if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5415 			close(fd);
5416 			continue;
5417 		}
5418 
5419 		btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5420 		err = libbpf_get_error(btf);
5421 		if (err) {
5422 			pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5423 				name, id, err);
5424 			goto err_out;
5425 		}
5426 
5427 		err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5428 				        sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5429 		if (err)
5430 			goto err_out;
5431 
5432 		mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5433 
5434 		mod_btf->btf = btf;
5435 		mod_btf->id = id;
5436 		mod_btf->fd = fd;
5437 		mod_btf->name = strdup(name);
5438 		if (!mod_btf->name) {
5439 			err = -ENOMEM;
5440 			goto err_out;
5441 		}
5442 		continue;
5443 
5444 err_out:
5445 		close(fd);
5446 		return err;
5447 	}
5448 
5449 	return 0;
5450 }
5451 
5452 static struct bpf_core_cand_list *
5453 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5454 {
5455 	struct bpf_core_cand local_cand = {};
5456 	struct bpf_core_cand_list *cands;
5457 	const struct btf *main_btf;
5458 	const struct btf_type *local_t;
5459 	const char *local_name;
5460 	size_t local_essent_len;
5461 	int err, i;
5462 
5463 	local_cand.btf = local_btf;
5464 	local_cand.id = local_type_id;
5465 	local_t = btf__type_by_id(local_btf, local_type_id);
5466 	if (!local_t)
5467 		return ERR_PTR(-EINVAL);
5468 
5469 	local_name = btf__name_by_offset(local_btf, local_t->name_off);
5470 	if (str_is_empty(local_name))
5471 		return ERR_PTR(-EINVAL);
5472 	local_essent_len = bpf_core_essential_name_len(local_name);
5473 
5474 	cands = calloc(1, sizeof(*cands));
5475 	if (!cands)
5476 		return ERR_PTR(-ENOMEM);
5477 
5478 	/* Attempt to find target candidates in vmlinux BTF first */
5479 	main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5480 	err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5481 	if (err)
5482 		goto err_out;
5483 
5484 	/* if vmlinux BTF has any candidate, don't got for module BTFs */
5485 	if (cands->len)
5486 		return cands;
5487 
5488 	/* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5489 	if (obj->btf_vmlinux_override)
5490 		return cands;
5491 
5492 	/* now look through module BTFs, trying to still find candidates */
5493 	err = load_module_btfs(obj);
5494 	if (err)
5495 		goto err_out;
5496 
5497 	for (i = 0; i < obj->btf_module_cnt; i++) {
5498 		err = bpf_core_add_cands(&local_cand, local_essent_len,
5499 					 obj->btf_modules[i].btf,
5500 					 obj->btf_modules[i].name,
5501 					 btf__type_cnt(obj->btf_vmlinux),
5502 					 cands);
5503 		if (err)
5504 			goto err_out;
5505 	}
5506 
5507 	return cands;
5508 err_out:
5509 	bpf_core_free_cands(cands);
5510 	return ERR_PTR(err);
5511 }
5512 
5513 /* Check local and target types for compatibility. This check is used for
5514  * type-based CO-RE relocations and follow slightly different rules than
5515  * field-based relocations. This function assumes that root types were already
5516  * checked for name match. Beyond that initial root-level name check, names
5517  * are completely ignored. Compatibility rules are as follows:
5518  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5519  *     kind should match for local and target types (i.e., STRUCT is not
5520  *     compatible with UNION);
5521  *   - for ENUMs, the size is ignored;
5522  *   - for INT, size and signedness are ignored;
5523  *   - for ARRAY, dimensionality is ignored, element types are checked for
5524  *     compatibility recursively;
5525  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
5526  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5527  *   - FUNC_PROTOs are compatible if they have compatible signature: same
5528  *     number of input args and compatible return and argument types.
5529  * These rules are not set in stone and probably will be adjusted as we get
5530  * more experience with using BPF CO-RE relocations.
5531  */
5532 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5533 			      const struct btf *targ_btf, __u32 targ_id)
5534 {
5535 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5536 }
5537 
5538 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5539 			 const struct btf *targ_btf, __u32 targ_id)
5540 {
5541 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5542 }
5543 
5544 static size_t bpf_core_hash_fn(const void *key, void *ctx)
5545 {
5546 	return (size_t)key;
5547 }
5548 
5549 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx)
5550 {
5551 	return k1 == k2;
5552 }
5553 
5554 static void *u32_as_hash_key(__u32 x)
5555 {
5556 	return (void *)(uintptr_t)x;
5557 }
5558 
5559 static int record_relo_core(struct bpf_program *prog,
5560 			    const struct bpf_core_relo *core_relo, int insn_idx)
5561 {
5562 	struct reloc_desc *relos, *relo;
5563 
5564 	relos = libbpf_reallocarray(prog->reloc_desc,
5565 				    prog->nr_reloc + 1, sizeof(*relos));
5566 	if (!relos)
5567 		return -ENOMEM;
5568 	relo = &relos[prog->nr_reloc];
5569 	relo->type = RELO_CORE;
5570 	relo->insn_idx = insn_idx;
5571 	relo->core_relo = core_relo;
5572 	prog->reloc_desc = relos;
5573 	prog->nr_reloc++;
5574 	return 0;
5575 }
5576 
5577 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5578 {
5579 	struct reloc_desc *relo;
5580 	int i;
5581 
5582 	for (i = 0; i < prog->nr_reloc; i++) {
5583 		relo = &prog->reloc_desc[i];
5584 		if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5585 			continue;
5586 
5587 		return relo->core_relo;
5588 	}
5589 
5590 	return NULL;
5591 }
5592 
5593 static int bpf_core_resolve_relo(struct bpf_program *prog,
5594 				 const struct bpf_core_relo *relo,
5595 				 int relo_idx,
5596 				 const struct btf *local_btf,
5597 				 struct hashmap *cand_cache,
5598 				 struct bpf_core_relo_res *targ_res)
5599 {
5600 	struct bpf_core_spec specs_scratch[3] = {};
5601 	const void *type_key = u32_as_hash_key(relo->type_id);
5602 	struct bpf_core_cand_list *cands = NULL;
5603 	const char *prog_name = prog->name;
5604 	const struct btf_type *local_type;
5605 	const char *local_name;
5606 	__u32 local_id = relo->type_id;
5607 	int err;
5608 
5609 	local_type = btf__type_by_id(local_btf, local_id);
5610 	if (!local_type)
5611 		return -EINVAL;
5612 
5613 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
5614 	if (!local_name)
5615 		return -EINVAL;
5616 
5617 	if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5618 	    !hashmap__find(cand_cache, type_key, (void **)&cands)) {
5619 		cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5620 		if (IS_ERR(cands)) {
5621 			pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5622 				prog_name, relo_idx, local_id, btf_kind_str(local_type),
5623 				local_name, PTR_ERR(cands));
5624 			return PTR_ERR(cands);
5625 		}
5626 		err = hashmap__set(cand_cache, type_key, cands, NULL, NULL);
5627 		if (err) {
5628 			bpf_core_free_cands(cands);
5629 			return err;
5630 		}
5631 	}
5632 
5633 	return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5634 				       targ_res);
5635 }
5636 
5637 static int
5638 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5639 {
5640 	const struct btf_ext_info_sec *sec;
5641 	struct bpf_core_relo_res targ_res;
5642 	const struct bpf_core_relo *rec;
5643 	const struct btf_ext_info *seg;
5644 	struct hashmap_entry *entry;
5645 	struct hashmap *cand_cache = NULL;
5646 	struct bpf_program *prog;
5647 	struct bpf_insn *insn;
5648 	const char *sec_name;
5649 	int i, err = 0, insn_idx, sec_idx, sec_num;
5650 
5651 	if (obj->btf_ext->core_relo_info.len == 0)
5652 		return 0;
5653 
5654 	if (targ_btf_path) {
5655 		obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5656 		err = libbpf_get_error(obj->btf_vmlinux_override);
5657 		if (err) {
5658 			pr_warn("failed to parse target BTF: %d\n", err);
5659 			return err;
5660 		}
5661 	}
5662 
5663 	cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5664 	if (IS_ERR(cand_cache)) {
5665 		err = PTR_ERR(cand_cache);
5666 		goto out;
5667 	}
5668 
5669 	seg = &obj->btf_ext->core_relo_info;
5670 	sec_num = 0;
5671 	for_each_btf_ext_sec(seg, sec) {
5672 		sec_idx = seg->sec_idxs[sec_num];
5673 		sec_num++;
5674 
5675 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5676 		if (str_is_empty(sec_name)) {
5677 			err = -EINVAL;
5678 			goto out;
5679 		}
5680 
5681 		pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5682 
5683 		for_each_btf_ext_rec(seg, sec, i, rec) {
5684 			if (rec->insn_off % BPF_INSN_SZ)
5685 				return -EINVAL;
5686 			insn_idx = rec->insn_off / BPF_INSN_SZ;
5687 			prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5688 			if (!prog) {
5689 				/* When __weak subprog is "overridden" by another instance
5690 				 * of the subprog from a different object file, linker still
5691 				 * appends all the .BTF.ext info that used to belong to that
5692 				 * eliminated subprogram.
5693 				 * This is similar to what x86-64 linker does for relocations.
5694 				 * So just ignore such relocations just like we ignore
5695 				 * subprog instructions when discovering subprograms.
5696 				 */
5697 				pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5698 					 sec_name, i, insn_idx);
5699 				continue;
5700 			}
5701 			/* no need to apply CO-RE relocation if the program is
5702 			 * not going to be loaded
5703 			 */
5704 			if (!prog->autoload)
5705 				continue;
5706 
5707 			/* adjust insn_idx from section frame of reference to the local
5708 			 * program's frame of reference; (sub-)program code is not yet
5709 			 * relocated, so it's enough to just subtract in-section offset
5710 			 */
5711 			insn_idx = insn_idx - prog->sec_insn_off;
5712 			if (insn_idx >= prog->insns_cnt)
5713 				return -EINVAL;
5714 			insn = &prog->insns[insn_idx];
5715 
5716 			err = record_relo_core(prog, rec, insn_idx);
5717 			if (err) {
5718 				pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5719 					prog->name, i, err);
5720 				goto out;
5721 			}
5722 
5723 			if (prog->obj->gen_loader)
5724 				continue;
5725 
5726 			err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5727 			if (err) {
5728 				pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5729 					prog->name, i, err);
5730 				goto out;
5731 			}
5732 
5733 			err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5734 			if (err) {
5735 				pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5736 					prog->name, i, insn_idx, err);
5737 				goto out;
5738 			}
5739 		}
5740 	}
5741 
5742 out:
5743 	/* obj->btf_vmlinux and module BTFs are freed after object load */
5744 	btf__free(obj->btf_vmlinux_override);
5745 	obj->btf_vmlinux_override = NULL;
5746 
5747 	if (!IS_ERR_OR_NULL(cand_cache)) {
5748 		hashmap__for_each_entry(cand_cache, entry, i) {
5749 			bpf_core_free_cands(entry->value);
5750 		}
5751 		hashmap__free(cand_cache);
5752 	}
5753 	return err;
5754 }
5755 
5756 /* base map load ldimm64 special constant, used also for log fixup logic */
5757 #define MAP_LDIMM64_POISON_BASE 2001000000
5758 #define MAP_LDIMM64_POISON_PFX "200100"
5759 
5760 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
5761 			       int insn_idx, struct bpf_insn *insn,
5762 			       int map_idx, const struct bpf_map *map)
5763 {
5764 	int i;
5765 
5766 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
5767 		 prog->name, relo_idx, insn_idx, map_idx, map->name);
5768 
5769 	/* we turn single ldimm64 into two identical invalid calls */
5770 	for (i = 0; i < 2; i++) {
5771 		insn->code = BPF_JMP | BPF_CALL;
5772 		insn->dst_reg = 0;
5773 		insn->src_reg = 0;
5774 		insn->off = 0;
5775 		/* if this instruction is reachable (not a dead code),
5776 		 * verifier will complain with something like:
5777 		 * invalid func unknown#2001000123
5778 		 * where lower 123 is map index into obj->maps[] array
5779 		 */
5780 		insn->imm = MAP_LDIMM64_POISON_BASE + map_idx;
5781 
5782 		insn++;
5783 	}
5784 }
5785 
5786 /* Relocate data references within program code:
5787  *  - map references;
5788  *  - global variable references;
5789  *  - extern references.
5790  */
5791 static int
5792 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
5793 {
5794 	int i;
5795 
5796 	for (i = 0; i < prog->nr_reloc; i++) {
5797 		struct reloc_desc *relo = &prog->reloc_desc[i];
5798 		struct bpf_insn *insn = &prog->insns[relo->insn_idx];
5799 		const struct bpf_map *map;
5800 		struct extern_desc *ext;
5801 
5802 		switch (relo->type) {
5803 		case RELO_LD64:
5804 			map = &obj->maps[relo->map_idx];
5805 			if (obj->gen_loader) {
5806 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
5807 				insn[0].imm = relo->map_idx;
5808 			} else if (map->autocreate) {
5809 				insn[0].src_reg = BPF_PSEUDO_MAP_FD;
5810 				insn[0].imm = map->fd;
5811 			} else {
5812 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5813 						   relo->map_idx, map);
5814 			}
5815 			break;
5816 		case RELO_DATA:
5817 			map = &obj->maps[relo->map_idx];
5818 			insn[1].imm = insn[0].imm + relo->sym_off;
5819 			if (obj->gen_loader) {
5820 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5821 				insn[0].imm = relo->map_idx;
5822 			} else if (map->autocreate) {
5823 				insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5824 				insn[0].imm = map->fd;
5825 			} else {
5826 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5827 						   relo->map_idx, map);
5828 			}
5829 			break;
5830 		case RELO_EXTERN_VAR:
5831 			ext = &obj->externs[relo->sym_off];
5832 			if (ext->type == EXT_KCFG) {
5833 				if (obj->gen_loader) {
5834 					insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5835 					insn[0].imm = obj->kconfig_map_idx;
5836 				} else {
5837 					insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5838 					insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
5839 				}
5840 				insn[1].imm = ext->kcfg.data_off;
5841 			} else /* EXT_KSYM */ {
5842 				if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
5843 					insn[0].src_reg = BPF_PSEUDO_BTF_ID;
5844 					insn[0].imm = ext->ksym.kernel_btf_id;
5845 					insn[1].imm = ext->ksym.kernel_btf_obj_fd;
5846 				} else { /* typeless ksyms or unresolved typed ksyms */
5847 					insn[0].imm = (__u32)ext->ksym.addr;
5848 					insn[1].imm = ext->ksym.addr >> 32;
5849 				}
5850 			}
5851 			break;
5852 		case RELO_EXTERN_FUNC:
5853 			ext = &obj->externs[relo->sym_off];
5854 			insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
5855 			if (ext->is_set) {
5856 				insn[0].imm = ext->ksym.kernel_btf_id;
5857 				insn[0].off = ext->ksym.btf_fd_idx;
5858 			} else { /* unresolved weak kfunc */
5859 				insn[0].imm = 0;
5860 				insn[0].off = 0;
5861 			}
5862 			break;
5863 		case RELO_SUBPROG_ADDR:
5864 			if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
5865 				pr_warn("prog '%s': relo #%d: bad insn\n",
5866 					prog->name, i);
5867 				return -EINVAL;
5868 			}
5869 			/* handled already */
5870 			break;
5871 		case RELO_CALL:
5872 			/* handled already */
5873 			break;
5874 		case RELO_CORE:
5875 			/* will be handled by bpf_program_record_relos() */
5876 			break;
5877 		default:
5878 			pr_warn("prog '%s': relo #%d: bad relo type %d\n",
5879 				prog->name, i, relo->type);
5880 			return -EINVAL;
5881 		}
5882 	}
5883 
5884 	return 0;
5885 }
5886 
5887 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
5888 				    const struct bpf_program *prog,
5889 				    const struct btf_ext_info *ext_info,
5890 				    void **prog_info, __u32 *prog_rec_cnt,
5891 				    __u32 *prog_rec_sz)
5892 {
5893 	void *copy_start = NULL, *copy_end = NULL;
5894 	void *rec, *rec_end, *new_prog_info;
5895 	const struct btf_ext_info_sec *sec;
5896 	size_t old_sz, new_sz;
5897 	int i, sec_num, sec_idx, off_adj;
5898 
5899 	sec_num = 0;
5900 	for_each_btf_ext_sec(ext_info, sec) {
5901 		sec_idx = ext_info->sec_idxs[sec_num];
5902 		sec_num++;
5903 		if (prog->sec_idx != sec_idx)
5904 			continue;
5905 
5906 		for_each_btf_ext_rec(ext_info, sec, i, rec) {
5907 			__u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
5908 
5909 			if (insn_off < prog->sec_insn_off)
5910 				continue;
5911 			if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
5912 				break;
5913 
5914 			if (!copy_start)
5915 				copy_start = rec;
5916 			copy_end = rec + ext_info->rec_size;
5917 		}
5918 
5919 		if (!copy_start)
5920 			return -ENOENT;
5921 
5922 		/* append func/line info of a given (sub-)program to the main
5923 		 * program func/line info
5924 		 */
5925 		old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
5926 		new_sz = old_sz + (copy_end - copy_start);
5927 		new_prog_info = realloc(*prog_info, new_sz);
5928 		if (!new_prog_info)
5929 			return -ENOMEM;
5930 		*prog_info = new_prog_info;
5931 		*prog_rec_cnt = new_sz / ext_info->rec_size;
5932 		memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
5933 
5934 		/* Kernel instruction offsets are in units of 8-byte
5935 		 * instructions, while .BTF.ext instruction offsets generated
5936 		 * by Clang are in units of bytes. So convert Clang offsets
5937 		 * into kernel offsets and adjust offset according to program
5938 		 * relocated position.
5939 		 */
5940 		off_adj = prog->sub_insn_off - prog->sec_insn_off;
5941 		rec = new_prog_info + old_sz;
5942 		rec_end = new_prog_info + new_sz;
5943 		for (; rec < rec_end; rec += ext_info->rec_size) {
5944 			__u32 *insn_off = rec;
5945 
5946 			*insn_off = *insn_off / BPF_INSN_SZ + off_adj;
5947 		}
5948 		*prog_rec_sz = ext_info->rec_size;
5949 		return 0;
5950 	}
5951 
5952 	return -ENOENT;
5953 }
5954 
5955 static int
5956 reloc_prog_func_and_line_info(const struct bpf_object *obj,
5957 			      struct bpf_program *main_prog,
5958 			      const struct bpf_program *prog)
5959 {
5960 	int err;
5961 
5962 	/* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
5963 	 * supprot func/line info
5964 	 */
5965 	if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
5966 		return 0;
5967 
5968 	/* only attempt func info relocation if main program's func_info
5969 	 * relocation was successful
5970 	 */
5971 	if (main_prog != prog && !main_prog->func_info)
5972 		goto line_info;
5973 
5974 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
5975 				       &main_prog->func_info,
5976 				       &main_prog->func_info_cnt,
5977 				       &main_prog->func_info_rec_size);
5978 	if (err) {
5979 		if (err != -ENOENT) {
5980 			pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
5981 				prog->name, err);
5982 			return err;
5983 		}
5984 		if (main_prog->func_info) {
5985 			/*
5986 			 * Some info has already been found but has problem
5987 			 * in the last btf_ext reloc. Must have to error out.
5988 			 */
5989 			pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
5990 			return err;
5991 		}
5992 		/* Have problem loading the very first info. Ignore the rest. */
5993 		pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
5994 			prog->name);
5995 	}
5996 
5997 line_info:
5998 	/* don't relocate line info if main program's relocation failed */
5999 	if (main_prog != prog && !main_prog->line_info)
6000 		return 0;
6001 
6002 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6003 				       &main_prog->line_info,
6004 				       &main_prog->line_info_cnt,
6005 				       &main_prog->line_info_rec_size);
6006 	if (err) {
6007 		if (err != -ENOENT) {
6008 			pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6009 				prog->name, err);
6010 			return err;
6011 		}
6012 		if (main_prog->line_info) {
6013 			/*
6014 			 * Some info has already been found but has problem
6015 			 * in the last btf_ext reloc. Must have to error out.
6016 			 */
6017 			pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6018 			return err;
6019 		}
6020 		/* Have problem loading the very first info. Ignore the rest. */
6021 		pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6022 			prog->name);
6023 	}
6024 	return 0;
6025 }
6026 
6027 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6028 {
6029 	size_t insn_idx = *(const size_t *)key;
6030 	const struct reloc_desc *relo = elem;
6031 
6032 	if (insn_idx == relo->insn_idx)
6033 		return 0;
6034 	return insn_idx < relo->insn_idx ? -1 : 1;
6035 }
6036 
6037 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6038 {
6039 	if (!prog->nr_reloc)
6040 		return NULL;
6041 	return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6042 		       sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6043 }
6044 
6045 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6046 {
6047 	int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6048 	struct reloc_desc *relos;
6049 	int i;
6050 
6051 	if (main_prog == subprog)
6052 		return 0;
6053 	relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6054 	if (!relos)
6055 		return -ENOMEM;
6056 	if (subprog->nr_reloc)
6057 		memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6058 		       sizeof(*relos) * subprog->nr_reloc);
6059 
6060 	for (i = main_prog->nr_reloc; i < new_cnt; i++)
6061 		relos[i].insn_idx += subprog->sub_insn_off;
6062 	/* After insn_idx adjustment the 'relos' array is still sorted
6063 	 * by insn_idx and doesn't break bsearch.
6064 	 */
6065 	main_prog->reloc_desc = relos;
6066 	main_prog->nr_reloc = new_cnt;
6067 	return 0;
6068 }
6069 
6070 static int
6071 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6072 		       struct bpf_program *prog)
6073 {
6074 	size_t sub_insn_idx, insn_idx, new_cnt;
6075 	struct bpf_program *subprog;
6076 	struct bpf_insn *insns, *insn;
6077 	struct reloc_desc *relo;
6078 	int err;
6079 
6080 	err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6081 	if (err)
6082 		return err;
6083 
6084 	for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6085 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6086 		if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6087 			continue;
6088 
6089 		relo = find_prog_insn_relo(prog, insn_idx);
6090 		if (relo && relo->type == RELO_EXTERN_FUNC)
6091 			/* kfunc relocations will be handled later
6092 			 * in bpf_object__relocate_data()
6093 			 */
6094 			continue;
6095 		if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6096 			pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6097 				prog->name, insn_idx, relo->type);
6098 			return -LIBBPF_ERRNO__RELOC;
6099 		}
6100 		if (relo) {
6101 			/* sub-program instruction index is a combination of
6102 			 * an offset of a symbol pointed to by relocation and
6103 			 * call instruction's imm field; for global functions,
6104 			 * call always has imm = -1, but for static functions
6105 			 * relocation is against STT_SECTION and insn->imm
6106 			 * points to a start of a static function
6107 			 *
6108 			 * for subprog addr relocation, the relo->sym_off + insn->imm is
6109 			 * the byte offset in the corresponding section.
6110 			 */
6111 			if (relo->type == RELO_CALL)
6112 				sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6113 			else
6114 				sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6115 		} else if (insn_is_pseudo_func(insn)) {
6116 			/*
6117 			 * RELO_SUBPROG_ADDR relo is always emitted even if both
6118 			 * functions are in the same section, so it shouldn't reach here.
6119 			 */
6120 			pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6121 				prog->name, insn_idx);
6122 			return -LIBBPF_ERRNO__RELOC;
6123 		} else {
6124 			/* if subprogram call is to a static function within
6125 			 * the same ELF section, there won't be any relocation
6126 			 * emitted, but it also means there is no additional
6127 			 * offset necessary, insns->imm is relative to
6128 			 * instruction's original position within the section
6129 			 */
6130 			sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6131 		}
6132 
6133 		/* we enforce that sub-programs should be in .text section */
6134 		subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6135 		if (!subprog) {
6136 			pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6137 				prog->name);
6138 			return -LIBBPF_ERRNO__RELOC;
6139 		}
6140 
6141 		/* if it's the first call instruction calling into this
6142 		 * subprogram (meaning this subprog hasn't been processed
6143 		 * yet) within the context of current main program:
6144 		 *   - append it at the end of main program's instructions blog;
6145 		 *   - process is recursively, while current program is put on hold;
6146 		 *   - if that subprogram calls some other not yet processes
6147 		 *   subprogram, same thing will happen recursively until
6148 		 *   there are no more unprocesses subprograms left to append
6149 		 *   and relocate.
6150 		 */
6151 		if (subprog->sub_insn_off == 0) {
6152 			subprog->sub_insn_off = main_prog->insns_cnt;
6153 
6154 			new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6155 			insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6156 			if (!insns) {
6157 				pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6158 				return -ENOMEM;
6159 			}
6160 			main_prog->insns = insns;
6161 			main_prog->insns_cnt = new_cnt;
6162 
6163 			memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6164 			       subprog->insns_cnt * sizeof(*insns));
6165 
6166 			pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6167 				 main_prog->name, subprog->insns_cnt, subprog->name);
6168 
6169 			/* The subprog insns are now appended. Append its relos too. */
6170 			err = append_subprog_relos(main_prog, subprog);
6171 			if (err)
6172 				return err;
6173 			err = bpf_object__reloc_code(obj, main_prog, subprog);
6174 			if (err)
6175 				return err;
6176 		}
6177 
6178 		/* main_prog->insns memory could have been re-allocated, so
6179 		 * calculate pointer again
6180 		 */
6181 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6182 		/* calculate correct instruction position within current main
6183 		 * prog; each main prog can have a different set of
6184 		 * subprograms appended (potentially in different order as
6185 		 * well), so position of any subprog can be different for
6186 		 * different main programs */
6187 		insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6188 
6189 		pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6190 			 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6191 	}
6192 
6193 	return 0;
6194 }
6195 
6196 /*
6197  * Relocate sub-program calls.
6198  *
6199  * Algorithm operates as follows. Each entry-point BPF program (referred to as
6200  * main prog) is processed separately. For each subprog (non-entry functions,
6201  * that can be called from either entry progs or other subprogs) gets their
6202  * sub_insn_off reset to zero. This serves as indicator that this subprogram
6203  * hasn't been yet appended and relocated within current main prog. Once its
6204  * relocated, sub_insn_off will point at the position within current main prog
6205  * where given subprog was appended. This will further be used to relocate all
6206  * the call instructions jumping into this subprog.
6207  *
6208  * We start with main program and process all call instructions. If the call
6209  * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6210  * is zero), subprog instructions are appended at the end of main program's
6211  * instruction array. Then main program is "put on hold" while we recursively
6212  * process newly appended subprogram. If that subprogram calls into another
6213  * subprogram that hasn't been appended, new subprogram is appended again to
6214  * the *main* prog's instructions (subprog's instructions are always left
6215  * untouched, as they need to be in unmodified state for subsequent main progs
6216  * and subprog instructions are always sent only as part of a main prog) and
6217  * the process continues recursively. Once all the subprogs called from a main
6218  * prog or any of its subprogs are appended (and relocated), all their
6219  * positions within finalized instructions array are known, so it's easy to
6220  * rewrite call instructions with correct relative offsets, corresponding to
6221  * desired target subprog.
6222  *
6223  * Its important to realize that some subprogs might not be called from some
6224  * main prog and any of its called/used subprogs. Those will keep their
6225  * subprog->sub_insn_off as zero at all times and won't be appended to current
6226  * main prog and won't be relocated within the context of current main prog.
6227  * They might still be used from other main progs later.
6228  *
6229  * Visually this process can be shown as below. Suppose we have two main
6230  * programs mainA and mainB and BPF object contains three subprogs: subA,
6231  * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6232  * subC both call subB:
6233  *
6234  *        +--------+ +-------+
6235  *        |        v v       |
6236  *     +--+---+ +--+-+-+ +---+--+
6237  *     | subA | | subB | | subC |
6238  *     +--+---+ +------+ +---+--+
6239  *        ^                  ^
6240  *        |                  |
6241  *    +---+-------+   +------+----+
6242  *    |   mainA   |   |   mainB   |
6243  *    +-----------+   +-----------+
6244  *
6245  * We'll start relocating mainA, will find subA, append it and start
6246  * processing sub A recursively:
6247  *
6248  *    +-----------+------+
6249  *    |   mainA   | subA |
6250  *    +-----------+------+
6251  *
6252  * At this point we notice that subB is used from subA, so we append it and
6253  * relocate (there are no further subcalls from subB):
6254  *
6255  *    +-----------+------+------+
6256  *    |   mainA   | subA | subB |
6257  *    +-----------+------+------+
6258  *
6259  * At this point, we relocate subA calls, then go one level up and finish with
6260  * relocatin mainA calls. mainA is done.
6261  *
6262  * For mainB process is similar but results in different order. We start with
6263  * mainB and skip subA and subB, as mainB never calls them (at least
6264  * directly), but we see subC is needed, so we append and start processing it:
6265  *
6266  *    +-----------+------+
6267  *    |   mainB   | subC |
6268  *    +-----------+------+
6269  * Now we see subC needs subB, so we go back to it, append and relocate it:
6270  *
6271  *    +-----------+------+------+
6272  *    |   mainB   | subC | subB |
6273  *    +-----------+------+------+
6274  *
6275  * At this point we unwind recursion, relocate calls in subC, then in mainB.
6276  */
6277 static int
6278 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6279 {
6280 	struct bpf_program *subprog;
6281 	int i, err;
6282 
6283 	/* mark all subprogs as not relocated (yet) within the context of
6284 	 * current main program
6285 	 */
6286 	for (i = 0; i < obj->nr_programs; i++) {
6287 		subprog = &obj->programs[i];
6288 		if (!prog_is_subprog(obj, subprog))
6289 			continue;
6290 
6291 		subprog->sub_insn_off = 0;
6292 	}
6293 
6294 	err = bpf_object__reloc_code(obj, prog, prog);
6295 	if (err)
6296 		return err;
6297 
6298 	return 0;
6299 }
6300 
6301 static void
6302 bpf_object__free_relocs(struct bpf_object *obj)
6303 {
6304 	struct bpf_program *prog;
6305 	int i;
6306 
6307 	/* free up relocation descriptors */
6308 	for (i = 0; i < obj->nr_programs; i++) {
6309 		prog = &obj->programs[i];
6310 		zfree(&prog->reloc_desc);
6311 		prog->nr_reloc = 0;
6312 	}
6313 }
6314 
6315 static int cmp_relocs(const void *_a, const void *_b)
6316 {
6317 	const struct reloc_desc *a = _a;
6318 	const struct reloc_desc *b = _b;
6319 
6320 	if (a->insn_idx != b->insn_idx)
6321 		return a->insn_idx < b->insn_idx ? -1 : 1;
6322 
6323 	/* no two relocations should have the same insn_idx, but ... */
6324 	if (a->type != b->type)
6325 		return a->type < b->type ? -1 : 1;
6326 
6327 	return 0;
6328 }
6329 
6330 static void bpf_object__sort_relos(struct bpf_object *obj)
6331 {
6332 	int i;
6333 
6334 	for (i = 0; i < obj->nr_programs; i++) {
6335 		struct bpf_program *p = &obj->programs[i];
6336 
6337 		if (!p->nr_reloc)
6338 			continue;
6339 
6340 		qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6341 	}
6342 }
6343 
6344 static int
6345 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6346 {
6347 	struct bpf_program *prog;
6348 	size_t i, j;
6349 	int err;
6350 
6351 	if (obj->btf_ext) {
6352 		err = bpf_object__relocate_core(obj, targ_btf_path);
6353 		if (err) {
6354 			pr_warn("failed to perform CO-RE relocations: %d\n",
6355 				err);
6356 			return err;
6357 		}
6358 		bpf_object__sort_relos(obj);
6359 	}
6360 
6361 	/* Before relocating calls pre-process relocations and mark
6362 	 * few ld_imm64 instructions that points to subprogs.
6363 	 * Otherwise bpf_object__reloc_code() later would have to consider
6364 	 * all ld_imm64 insns as relocation candidates. That would
6365 	 * reduce relocation speed, since amount of find_prog_insn_relo()
6366 	 * would increase and most of them will fail to find a relo.
6367 	 */
6368 	for (i = 0; i < obj->nr_programs; i++) {
6369 		prog = &obj->programs[i];
6370 		for (j = 0; j < prog->nr_reloc; j++) {
6371 			struct reloc_desc *relo = &prog->reloc_desc[j];
6372 			struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6373 
6374 			/* mark the insn, so it's recognized by insn_is_pseudo_func() */
6375 			if (relo->type == RELO_SUBPROG_ADDR)
6376 				insn[0].src_reg = BPF_PSEUDO_FUNC;
6377 		}
6378 	}
6379 
6380 	/* relocate subprogram calls and append used subprograms to main
6381 	 * programs; each copy of subprogram code needs to be relocated
6382 	 * differently for each main program, because its code location might
6383 	 * have changed.
6384 	 * Append subprog relos to main programs to allow data relos to be
6385 	 * processed after text is completely relocated.
6386 	 */
6387 	for (i = 0; i < obj->nr_programs; i++) {
6388 		prog = &obj->programs[i];
6389 		/* sub-program's sub-calls are relocated within the context of
6390 		 * its main program only
6391 		 */
6392 		if (prog_is_subprog(obj, prog))
6393 			continue;
6394 		if (!prog->autoload)
6395 			continue;
6396 
6397 		err = bpf_object__relocate_calls(obj, prog);
6398 		if (err) {
6399 			pr_warn("prog '%s': failed to relocate calls: %d\n",
6400 				prog->name, err);
6401 			return err;
6402 		}
6403 	}
6404 	/* Process data relos for main programs */
6405 	for (i = 0; i < obj->nr_programs; i++) {
6406 		prog = &obj->programs[i];
6407 		if (prog_is_subprog(obj, prog))
6408 			continue;
6409 		if (!prog->autoload)
6410 			continue;
6411 		err = bpf_object__relocate_data(obj, prog);
6412 		if (err) {
6413 			pr_warn("prog '%s': failed to relocate data references: %d\n",
6414 				prog->name, err);
6415 			return err;
6416 		}
6417 	}
6418 
6419 	return 0;
6420 }
6421 
6422 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6423 					    Elf64_Shdr *shdr, Elf_Data *data);
6424 
6425 static int bpf_object__collect_map_relos(struct bpf_object *obj,
6426 					 Elf64_Shdr *shdr, Elf_Data *data)
6427 {
6428 	const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6429 	int i, j, nrels, new_sz;
6430 	const struct btf_var_secinfo *vi = NULL;
6431 	const struct btf_type *sec, *var, *def;
6432 	struct bpf_map *map = NULL, *targ_map = NULL;
6433 	struct bpf_program *targ_prog = NULL;
6434 	bool is_prog_array, is_map_in_map;
6435 	const struct btf_member *member;
6436 	const char *name, *mname, *type;
6437 	unsigned int moff;
6438 	Elf64_Sym *sym;
6439 	Elf64_Rel *rel;
6440 	void *tmp;
6441 
6442 	if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6443 		return -EINVAL;
6444 	sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6445 	if (!sec)
6446 		return -EINVAL;
6447 
6448 	nrels = shdr->sh_size / shdr->sh_entsize;
6449 	for (i = 0; i < nrels; i++) {
6450 		rel = elf_rel_by_idx(data, i);
6451 		if (!rel) {
6452 			pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6453 			return -LIBBPF_ERRNO__FORMAT;
6454 		}
6455 
6456 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
6457 		if (!sym) {
6458 			pr_warn(".maps relo #%d: symbol %zx not found\n",
6459 				i, (size_t)ELF64_R_SYM(rel->r_info));
6460 			return -LIBBPF_ERRNO__FORMAT;
6461 		}
6462 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
6463 
6464 		pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
6465 			 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
6466 			 (size_t)rel->r_offset, sym->st_name, name);
6467 
6468 		for (j = 0; j < obj->nr_maps; j++) {
6469 			map = &obj->maps[j];
6470 			if (map->sec_idx != obj->efile.btf_maps_shndx)
6471 				continue;
6472 
6473 			vi = btf_var_secinfos(sec) + map->btf_var_idx;
6474 			if (vi->offset <= rel->r_offset &&
6475 			    rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6476 				break;
6477 		}
6478 		if (j == obj->nr_maps) {
6479 			pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
6480 				i, name, (size_t)rel->r_offset);
6481 			return -EINVAL;
6482 		}
6483 
6484 		is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
6485 		is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
6486 		type = is_map_in_map ? "map" : "prog";
6487 		if (is_map_in_map) {
6488 			if (sym->st_shndx != obj->efile.btf_maps_shndx) {
6489 				pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6490 					i, name);
6491 				return -LIBBPF_ERRNO__RELOC;
6492 			}
6493 			if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6494 			    map->def.key_size != sizeof(int)) {
6495 				pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6496 					i, map->name, sizeof(int));
6497 				return -EINVAL;
6498 			}
6499 			targ_map = bpf_object__find_map_by_name(obj, name);
6500 			if (!targ_map) {
6501 				pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
6502 					i, name);
6503 				return -ESRCH;
6504 			}
6505 		} else if (is_prog_array) {
6506 			targ_prog = bpf_object__find_program_by_name(obj, name);
6507 			if (!targ_prog) {
6508 				pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
6509 					i, name);
6510 				return -ESRCH;
6511 			}
6512 			if (targ_prog->sec_idx != sym->st_shndx ||
6513 			    targ_prog->sec_insn_off * 8 != sym->st_value ||
6514 			    prog_is_subprog(obj, targ_prog)) {
6515 				pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
6516 					i, name);
6517 				return -LIBBPF_ERRNO__RELOC;
6518 			}
6519 		} else {
6520 			return -EINVAL;
6521 		}
6522 
6523 		var = btf__type_by_id(obj->btf, vi->type);
6524 		def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6525 		if (btf_vlen(def) == 0)
6526 			return -EINVAL;
6527 		member = btf_members(def) + btf_vlen(def) - 1;
6528 		mname = btf__name_by_offset(obj->btf, member->name_off);
6529 		if (strcmp(mname, "values"))
6530 			return -EINVAL;
6531 
6532 		moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6533 		if (rel->r_offset - vi->offset < moff)
6534 			return -EINVAL;
6535 
6536 		moff = rel->r_offset - vi->offset - moff;
6537 		/* here we use BPF pointer size, which is always 64 bit, as we
6538 		 * are parsing ELF that was built for BPF target
6539 		 */
6540 		if (moff % bpf_ptr_sz)
6541 			return -EINVAL;
6542 		moff /= bpf_ptr_sz;
6543 		if (moff >= map->init_slots_sz) {
6544 			new_sz = moff + 1;
6545 			tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6546 			if (!tmp)
6547 				return -ENOMEM;
6548 			map->init_slots = tmp;
6549 			memset(map->init_slots + map->init_slots_sz, 0,
6550 			       (new_sz - map->init_slots_sz) * host_ptr_sz);
6551 			map->init_slots_sz = new_sz;
6552 		}
6553 		map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
6554 
6555 		pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
6556 			 i, map->name, moff, type, name);
6557 	}
6558 
6559 	return 0;
6560 }
6561 
6562 static int bpf_object__collect_relos(struct bpf_object *obj)
6563 {
6564 	int i, err;
6565 
6566 	for (i = 0; i < obj->efile.sec_cnt; i++) {
6567 		struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
6568 		Elf64_Shdr *shdr;
6569 		Elf_Data *data;
6570 		int idx;
6571 
6572 		if (sec_desc->sec_type != SEC_RELO)
6573 			continue;
6574 
6575 		shdr = sec_desc->shdr;
6576 		data = sec_desc->data;
6577 		idx = shdr->sh_info;
6578 
6579 		if (shdr->sh_type != SHT_REL) {
6580 			pr_warn("internal error at %d\n", __LINE__);
6581 			return -LIBBPF_ERRNO__INTERNAL;
6582 		}
6583 
6584 		if (idx == obj->efile.st_ops_shndx)
6585 			err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6586 		else if (idx == obj->efile.btf_maps_shndx)
6587 			err = bpf_object__collect_map_relos(obj, shdr, data);
6588 		else
6589 			err = bpf_object__collect_prog_relos(obj, shdr, data);
6590 		if (err)
6591 			return err;
6592 	}
6593 
6594 	bpf_object__sort_relos(obj);
6595 	return 0;
6596 }
6597 
6598 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6599 {
6600 	if (BPF_CLASS(insn->code) == BPF_JMP &&
6601 	    BPF_OP(insn->code) == BPF_CALL &&
6602 	    BPF_SRC(insn->code) == BPF_K &&
6603 	    insn->src_reg == 0 &&
6604 	    insn->dst_reg == 0) {
6605 		    *func_id = insn->imm;
6606 		    return true;
6607 	}
6608 	return false;
6609 }
6610 
6611 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
6612 {
6613 	struct bpf_insn *insn = prog->insns;
6614 	enum bpf_func_id func_id;
6615 	int i;
6616 
6617 	if (obj->gen_loader)
6618 		return 0;
6619 
6620 	for (i = 0; i < prog->insns_cnt; i++, insn++) {
6621 		if (!insn_is_helper_call(insn, &func_id))
6622 			continue;
6623 
6624 		/* on kernels that don't yet support
6625 		 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6626 		 * to bpf_probe_read() which works well for old kernels
6627 		 */
6628 		switch (func_id) {
6629 		case BPF_FUNC_probe_read_kernel:
6630 		case BPF_FUNC_probe_read_user:
6631 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6632 				insn->imm = BPF_FUNC_probe_read;
6633 			break;
6634 		case BPF_FUNC_probe_read_kernel_str:
6635 		case BPF_FUNC_probe_read_user_str:
6636 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6637 				insn->imm = BPF_FUNC_probe_read_str;
6638 			break;
6639 		default:
6640 			break;
6641 		}
6642 	}
6643 	return 0;
6644 }
6645 
6646 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
6647 				     int *btf_obj_fd, int *btf_type_id);
6648 
6649 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
6650 static int libbpf_prepare_prog_load(struct bpf_program *prog,
6651 				    struct bpf_prog_load_opts *opts, long cookie)
6652 {
6653 	enum sec_def_flags def = cookie;
6654 
6655 	/* old kernels might not support specifying expected_attach_type */
6656 	if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
6657 		opts->expected_attach_type = 0;
6658 
6659 	if (def & SEC_SLEEPABLE)
6660 		opts->prog_flags |= BPF_F_SLEEPABLE;
6661 
6662 	if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
6663 		opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
6664 
6665 	if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
6666 		int btf_obj_fd = 0, btf_type_id = 0, err;
6667 		const char *attach_name;
6668 
6669 		attach_name = strchr(prog->sec_name, '/');
6670 		if (!attach_name) {
6671 			/* if BPF program is annotated with just SEC("fentry")
6672 			 * (or similar) without declaratively specifying
6673 			 * target, then it is expected that target will be
6674 			 * specified with bpf_program__set_attach_target() at
6675 			 * runtime before BPF object load step. If not, then
6676 			 * there is nothing to load into the kernel as BPF
6677 			 * verifier won't be able to validate BPF program
6678 			 * correctness anyways.
6679 			 */
6680 			pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
6681 				prog->name);
6682 			return -EINVAL;
6683 		}
6684 		attach_name++; /* skip over / */
6685 
6686 		err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
6687 		if (err)
6688 			return err;
6689 
6690 		/* cache resolved BTF FD and BTF type ID in the prog */
6691 		prog->attach_btf_obj_fd = btf_obj_fd;
6692 		prog->attach_btf_id = btf_type_id;
6693 
6694 		/* but by now libbpf common logic is not utilizing
6695 		 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
6696 		 * this callback is called after opts were populated by
6697 		 * libbpf, so this callback has to update opts explicitly here
6698 		 */
6699 		opts->attach_btf_obj_fd = btf_obj_fd;
6700 		opts->attach_btf_id = btf_type_id;
6701 	}
6702 	return 0;
6703 }
6704 
6705 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
6706 
6707 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
6708 				struct bpf_insn *insns, int insns_cnt,
6709 				const char *license, __u32 kern_version, int *prog_fd)
6710 {
6711 	LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
6712 	const char *prog_name = NULL;
6713 	char *cp, errmsg[STRERR_BUFSIZE];
6714 	size_t log_buf_size = 0;
6715 	char *log_buf = NULL, *tmp;
6716 	int btf_fd, ret, err;
6717 	bool own_log_buf = true;
6718 	__u32 log_level = prog->log_level;
6719 
6720 	if (prog->type == BPF_PROG_TYPE_UNSPEC) {
6721 		/*
6722 		 * The program type must be set.  Most likely we couldn't find a proper
6723 		 * section definition at load time, and thus we didn't infer the type.
6724 		 */
6725 		pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
6726 			prog->name, prog->sec_name);
6727 		return -EINVAL;
6728 	}
6729 
6730 	if (!insns || !insns_cnt)
6731 		return -EINVAL;
6732 
6733 	load_attr.expected_attach_type = prog->expected_attach_type;
6734 	if (kernel_supports(obj, FEAT_PROG_NAME))
6735 		prog_name = prog->name;
6736 	load_attr.attach_prog_fd = prog->attach_prog_fd;
6737 	load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
6738 	load_attr.attach_btf_id = prog->attach_btf_id;
6739 	load_attr.kern_version = kern_version;
6740 	load_attr.prog_ifindex = prog->prog_ifindex;
6741 
6742 	/* specify func_info/line_info only if kernel supports them */
6743 	btf_fd = bpf_object__btf_fd(obj);
6744 	if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
6745 		load_attr.prog_btf_fd = btf_fd;
6746 		load_attr.func_info = prog->func_info;
6747 		load_attr.func_info_rec_size = prog->func_info_rec_size;
6748 		load_attr.func_info_cnt = prog->func_info_cnt;
6749 		load_attr.line_info = prog->line_info;
6750 		load_attr.line_info_rec_size = prog->line_info_rec_size;
6751 		load_attr.line_info_cnt = prog->line_info_cnt;
6752 	}
6753 	load_attr.log_level = log_level;
6754 	load_attr.prog_flags = prog->prog_flags;
6755 	load_attr.fd_array = obj->fd_array;
6756 
6757 	/* adjust load_attr if sec_def provides custom preload callback */
6758 	if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
6759 		err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
6760 		if (err < 0) {
6761 			pr_warn("prog '%s': failed to prepare load attributes: %d\n",
6762 				prog->name, err);
6763 			return err;
6764 		}
6765 		insns = prog->insns;
6766 		insns_cnt = prog->insns_cnt;
6767 	}
6768 
6769 	if (obj->gen_loader) {
6770 		bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
6771 				   license, insns, insns_cnt, &load_attr,
6772 				   prog - obj->programs);
6773 		*prog_fd = -1;
6774 		return 0;
6775 	}
6776 
6777 retry_load:
6778 	/* if log_level is zero, we don't request logs initially even if
6779 	 * custom log_buf is specified; if the program load fails, then we'll
6780 	 * bump log_level to 1 and use either custom log_buf or we'll allocate
6781 	 * our own and retry the load to get details on what failed
6782 	 */
6783 	if (log_level) {
6784 		if (prog->log_buf) {
6785 			log_buf = prog->log_buf;
6786 			log_buf_size = prog->log_size;
6787 			own_log_buf = false;
6788 		} else if (obj->log_buf) {
6789 			log_buf = obj->log_buf;
6790 			log_buf_size = obj->log_size;
6791 			own_log_buf = false;
6792 		} else {
6793 			log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
6794 			tmp = realloc(log_buf, log_buf_size);
6795 			if (!tmp) {
6796 				ret = -ENOMEM;
6797 				goto out;
6798 			}
6799 			log_buf = tmp;
6800 			log_buf[0] = '\0';
6801 			own_log_buf = true;
6802 		}
6803 	}
6804 
6805 	load_attr.log_buf = log_buf;
6806 	load_attr.log_size = log_buf_size;
6807 	load_attr.log_level = log_level;
6808 
6809 	ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
6810 	if (ret >= 0) {
6811 		if (log_level && own_log_buf) {
6812 			pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6813 				 prog->name, log_buf);
6814 		}
6815 
6816 		if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
6817 			struct bpf_map *map;
6818 			int i;
6819 
6820 			for (i = 0; i < obj->nr_maps; i++) {
6821 				map = &prog->obj->maps[i];
6822 				if (map->libbpf_type != LIBBPF_MAP_RODATA)
6823 					continue;
6824 
6825 				if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) {
6826 					cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6827 					pr_warn("prog '%s': failed to bind map '%s': %s\n",
6828 						prog->name, map->real_name, cp);
6829 					/* Don't fail hard if can't bind rodata. */
6830 				}
6831 			}
6832 		}
6833 
6834 		*prog_fd = ret;
6835 		ret = 0;
6836 		goto out;
6837 	}
6838 
6839 	if (log_level == 0) {
6840 		log_level = 1;
6841 		goto retry_load;
6842 	}
6843 	/* On ENOSPC, increase log buffer size and retry, unless custom
6844 	 * log_buf is specified.
6845 	 * Be careful to not overflow u32, though. Kernel's log buf size limit
6846 	 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
6847 	 * multiply by 2 unless we are sure we'll fit within 32 bits.
6848 	 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
6849 	 */
6850 	if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
6851 		goto retry_load;
6852 
6853 	ret = -errno;
6854 
6855 	/* post-process verifier log to improve error descriptions */
6856 	fixup_verifier_log(prog, log_buf, log_buf_size);
6857 
6858 	cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6859 	pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
6860 	pr_perm_msg(ret);
6861 
6862 	if (own_log_buf && log_buf && log_buf[0] != '\0') {
6863 		pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6864 			prog->name, log_buf);
6865 	}
6866 
6867 out:
6868 	if (own_log_buf)
6869 		free(log_buf);
6870 	return ret;
6871 }
6872 
6873 static char *find_prev_line(char *buf, char *cur)
6874 {
6875 	char *p;
6876 
6877 	if (cur == buf) /* end of a log buf */
6878 		return NULL;
6879 
6880 	p = cur - 1;
6881 	while (p - 1 >= buf && *(p - 1) != '\n')
6882 		p--;
6883 
6884 	return p;
6885 }
6886 
6887 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
6888 		      char *orig, size_t orig_sz, const char *patch)
6889 {
6890 	/* size of the remaining log content to the right from the to-be-replaced part */
6891 	size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
6892 	size_t patch_sz = strlen(patch);
6893 
6894 	if (patch_sz != orig_sz) {
6895 		/* If patch line(s) are longer than original piece of verifier log,
6896 		 * shift log contents by (patch_sz - orig_sz) bytes to the right
6897 		 * starting from after to-be-replaced part of the log.
6898 		 *
6899 		 * If patch line(s) are shorter than original piece of verifier log,
6900 		 * shift log contents by (orig_sz - patch_sz) bytes to the left
6901 		 * starting from after to-be-replaced part of the log
6902 		 *
6903 		 * We need to be careful about not overflowing available
6904 		 * buf_sz capacity. If that's the case, we'll truncate the end
6905 		 * of the original log, as necessary.
6906 		 */
6907 		if (patch_sz > orig_sz) {
6908 			if (orig + patch_sz >= buf + buf_sz) {
6909 				/* patch is big enough to cover remaining space completely */
6910 				patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
6911 				rem_sz = 0;
6912 			} else if (patch_sz - orig_sz > buf_sz - log_sz) {
6913 				/* patch causes part of remaining log to be truncated */
6914 				rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
6915 			}
6916 		}
6917 		/* shift remaining log to the right by calculated amount */
6918 		memmove(orig + patch_sz, orig + orig_sz, rem_sz);
6919 	}
6920 
6921 	memcpy(orig, patch, patch_sz);
6922 }
6923 
6924 static void fixup_log_failed_core_relo(struct bpf_program *prog,
6925 				       char *buf, size_t buf_sz, size_t log_sz,
6926 				       char *line1, char *line2, char *line3)
6927 {
6928 	/* Expected log for failed and not properly guarded CO-RE relocation:
6929 	 * line1 -> 123: (85) call unknown#195896080
6930 	 * line2 -> invalid func unknown#195896080
6931 	 * line3 -> <anything else or end of buffer>
6932 	 *
6933 	 * "123" is the index of the instruction that was poisoned. We extract
6934 	 * instruction index to find corresponding CO-RE relocation and
6935 	 * replace this part of the log with more relevant information about
6936 	 * failed CO-RE relocation.
6937 	 */
6938 	const struct bpf_core_relo *relo;
6939 	struct bpf_core_spec spec;
6940 	char patch[512], spec_buf[256];
6941 	int insn_idx, err, spec_len;
6942 
6943 	if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
6944 		return;
6945 
6946 	relo = find_relo_core(prog, insn_idx);
6947 	if (!relo)
6948 		return;
6949 
6950 	err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
6951 	if (err)
6952 		return;
6953 
6954 	spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
6955 	snprintf(patch, sizeof(patch),
6956 		 "%d: <invalid CO-RE relocation>\n"
6957 		 "failed to resolve CO-RE relocation %s%s\n",
6958 		 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
6959 
6960 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
6961 }
6962 
6963 static void fixup_log_missing_map_load(struct bpf_program *prog,
6964 				       char *buf, size_t buf_sz, size_t log_sz,
6965 				       char *line1, char *line2, char *line3)
6966 {
6967 	/* Expected log for failed and not properly guarded CO-RE relocation:
6968 	 * line1 -> 123: (85) call unknown#2001000345
6969 	 * line2 -> invalid func unknown#2001000345
6970 	 * line3 -> <anything else or end of buffer>
6971 	 *
6972 	 * "123" is the index of the instruction that was poisoned.
6973 	 * "345" in "2001000345" are map index in obj->maps to fetch map name.
6974 	 */
6975 	struct bpf_object *obj = prog->obj;
6976 	const struct bpf_map *map;
6977 	int insn_idx, map_idx;
6978 	char patch[128];
6979 
6980 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
6981 		return;
6982 
6983 	map_idx -= MAP_LDIMM64_POISON_BASE;
6984 	if (map_idx < 0 || map_idx >= obj->nr_maps)
6985 		return;
6986 	map = &obj->maps[map_idx];
6987 
6988 	snprintf(patch, sizeof(patch),
6989 		 "%d: <invalid BPF map reference>\n"
6990 		 "BPF map '%s' is referenced but wasn't created\n",
6991 		 insn_idx, map->name);
6992 
6993 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
6994 }
6995 
6996 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
6997 {
6998 	/* look for familiar error patterns in last N lines of the log */
6999 	const size_t max_last_line_cnt = 10;
7000 	char *prev_line, *cur_line, *next_line;
7001 	size_t log_sz;
7002 	int i;
7003 
7004 	if (!buf)
7005 		return;
7006 
7007 	log_sz = strlen(buf) + 1;
7008 	next_line = buf + log_sz - 1;
7009 
7010 	for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7011 		cur_line = find_prev_line(buf, next_line);
7012 		if (!cur_line)
7013 			return;
7014 
7015 		/* failed CO-RE relocation case */
7016 		if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7017 			prev_line = find_prev_line(buf, cur_line);
7018 			if (!prev_line)
7019 				continue;
7020 
7021 			fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7022 						   prev_line, cur_line, next_line);
7023 			return;
7024 		} else if (str_has_pfx(cur_line, "invalid func unknown#"MAP_LDIMM64_POISON_PFX)) {
7025 			prev_line = find_prev_line(buf, cur_line);
7026 			if (!prev_line)
7027 				continue;
7028 
7029 			fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7030 						   prev_line, cur_line, next_line);
7031 			return;
7032 		}
7033 	}
7034 }
7035 
7036 static int bpf_program_record_relos(struct bpf_program *prog)
7037 {
7038 	struct bpf_object *obj = prog->obj;
7039 	int i;
7040 
7041 	for (i = 0; i < prog->nr_reloc; i++) {
7042 		struct reloc_desc *relo = &prog->reloc_desc[i];
7043 		struct extern_desc *ext = &obj->externs[relo->sym_off];
7044 
7045 		switch (relo->type) {
7046 		case RELO_EXTERN_VAR:
7047 			if (ext->type != EXT_KSYM)
7048 				continue;
7049 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7050 					       ext->is_weak, !ext->ksym.type_id,
7051 					       BTF_KIND_VAR, relo->insn_idx);
7052 			break;
7053 		case RELO_EXTERN_FUNC:
7054 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7055 					       ext->is_weak, false, BTF_KIND_FUNC,
7056 					       relo->insn_idx);
7057 			break;
7058 		case RELO_CORE: {
7059 			struct bpf_core_relo cr = {
7060 				.insn_off = relo->insn_idx * 8,
7061 				.type_id = relo->core_relo->type_id,
7062 				.access_str_off = relo->core_relo->access_str_off,
7063 				.kind = relo->core_relo->kind,
7064 			};
7065 
7066 			bpf_gen__record_relo_core(obj->gen_loader, &cr);
7067 			break;
7068 		}
7069 		default:
7070 			continue;
7071 		}
7072 	}
7073 	return 0;
7074 }
7075 
7076 static int
7077 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7078 {
7079 	struct bpf_program *prog;
7080 	size_t i;
7081 	int err;
7082 
7083 	for (i = 0; i < obj->nr_programs; i++) {
7084 		prog = &obj->programs[i];
7085 		err = bpf_object__sanitize_prog(obj, prog);
7086 		if (err)
7087 			return err;
7088 	}
7089 
7090 	for (i = 0; i < obj->nr_programs; i++) {
7091 		prog = &obj->programs[i];
7092 		if (prog_is_subprog(obj, prog))
7093 			continue;
7094 		if (!prog->autoload) {
7095 			pr_debug("prog '%s': skipped loading\n", prog->name);
7096 			continue;
7097 		}
7098 		prog->log_level |= log_level;
7099 
7100 		if (obj->gen_loader)
7101 			bpf_program_record_relos(prog);
7102 
7103 		err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7104 					   obj->license, obj->kern_version, &prog->fd);
7105 		if (err) {
7106 			pr_warn("prog '%s': failed to load: %d\n", prog->name, err);
7107 			return err;
7108 		}
7109 	}
7110 
7111 	bpf_object__free_relocs(obj);
7112 	return 0;
7113 }
7114 
7115 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7116 
7117 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7118 {
7119 	struct bpf_program *prog;
7120 	int err;
7121 
7122 	bpf_object__for_each_program(prog, obj) {
7123 		prog->sec_def = find_sec_def(prog->sec_name);
7124 		if (!prog->sec_def) {
7125 			/* couldn't guess, but user might manually specify */
7126 			pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7127 				prog->name, prog->sec_name);
7128 			continue;
7129 		}
7130 
7131 		prog->type = prog->sec_def->prog_type;
7132 		prog->expected_attach_type = prog->sec_def->expected_attach_type;
7133 
7134 		/* sec_def can have custom callback which should be called
7135 		 * after bpf_program is initialized to adjust its properties
7136 		 */
7137 		if (prog->sec_def->prog_setup_fn) {
7138 			err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7139 			if (err < 0) {
7140 				pr_warn("prog '%s': failed to initialize: %d\n",
7141 					prog->name, err);
7142 				return err;
7143 			}
7144 		}
7145 	}
7146 
7147 	return 0;
7148 }
7149 
7150 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7151 					  const struct bpf_object_open_opts *opts)
7152 {
7153 	const char *obj_name, *kconfig, *btf_tmp_path;
7154 	struct bpf_object *obj;
7155 	char tmp_name[64];
7156 	int err;
7157 	char *log_buf;
7158 	size_t log_size;
7159 	__u32 log_level;
7160 
7161 	if (elf_version(EV_CURRENT) == EV_NONE) {
7162 		pr_warn("failed to init libelf for %s\n",
7163 			path ? : "(mem buf)");
7164 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7165 	}
7166 
7167 	if (!OPTS_VALID(opts, bpf_object_open_opts))
7168 		return ERR_PTR(-EINVAL);
7169 
7170 	obj_name = OPTS_GET(opts, object_name, NULL);
7171 	if (obj_buf) {
7172 		if (!obj_name) {
7173 			snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7174 				 (unsigned long)obj_buf,
7175 				 (unsigned long)obj_buf_sz);
7176 			obj_name = tmp_name;
7177 		}
7178 		path = obj_name;
7179 		pr_debug("loading object '%s' from buffer\n", obj_name);
7180 	}
7181 
7182 	log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7183 	log_size = OPTS_GET(opts, kernel_log_size, 0);
7184 	log_level = OPTS_GET(opts, kernel_log_level, 0);
7185 	if (log_size > UINT_MAX)
7186 		return ERR_PTR(-EINVAL);
7187 	if (log_size && !log_buf)
7188 		return ERR_PTR(-EINVAL);
7189 
7190 	obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7191 	if (IS_ERR(obj))
7192 		return obj;
7193 
7194 	obj->log_buf = log_buf;
7195 	obj->log_size = log_size;
7196 	obj->log_level = log_level;
7197 
7198 	btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7199 	if (btf_tmp_path) {
7200 		if (strlen(btf_tmp_path) >= PATH_MAX) {
7201 			err = -ENAMETOOLONG;
7202 			goto out;
7203 		}
7204 		obj->btf_custom_path = strdup(btf_tmp_path);
7205 		if (!obj->btf_custom_path) {
7206 			err = -ENOMEM;
7207 			goto out;
7208 		}
7209 	}
7210 
7211 	kconfig = OPTS_GET(opts, kconfig, NULL);
7212 	if (kconfig) {
7213 		obj->kconfig = strdup(kconfig);
7214 		if (!obj->kconfig) {
7215 			err = -ENOMEM;
7216 			goto out;
7217 		}
7218 	}
7219 
7220 	err = bpf_object__elf_init(obj);
7221 	err = err ? : bpf_object__check_endianness(obj);
7222 	err = err ? : bpf_object__elf_collect(obj);
7223 	err = err ? : bpf_object__collect_externs(obj);
7224 	err = err ? : bpf_object__finalize_btf(obj);
7225 	err = err ? : bpf_object__init_maps(obj, opts);
7226 	err = err ? : bpf_object_init_progs(obj, opts);
7227 	err = err ? : bpf_object__collect_relos(obj);
7228 	if (err)
7229 		goto out;
7230 
7231 	bpf_object__elf_finish(obj);
7232 
7233 	return obj;
7234 out:
7235 	bpf_object__close(obj);
7236 	return ERR_PTR(err);
7237 }
7238 
7239 struct bpf_object *
7240 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7241 {
7242 	if (!path)
7243 		return libbpf_err_ptr(-EINVAL);
7244 
7245 	pr_debug("loading %s\n", path);
7246 
7247 	return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
7248 }
7249 
7250 struct bpf_object *bpf_object__open(const char *path)
7251 {
7252 	return bpf_object__open_file(path, NULL);
7253 }
7254 
7255 struct bpf_object *
7256 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7257 		     const struct bpf_object_open_opts *opts)
7258 {
7259 	if (!obj_buf || obj_buf_sz == 0)
7260 		return libbpf_err_ptr(-EINVAL);
7261 
7262 	return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
7263 }
7264 
7265 static int bpf_object_unload(struct bpf_object *obj)
7266 {
7267 	size_t i;
7268 
7269 	if (!obj)
7270 		return libbpf_err(-EINVAL);
7271 
7272 	for (i = 0; i < obj->nr_maps; i++) {
7273 		zclose(obj->maps[i].fd);
7274 		if (obj->maps[i].st_ops)
7275 			zfree(&obj->maps[i].st_ops->kern_vdata);
7276 	}
7277 
7278 	for (i = 0; i < obj->nr_programs; i++)
7279 		bpf_program__unload(&obj->programs[i]);
7280 
7281 	return 0;
7282 }
7283 
7284 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7285 {
7286 	struct bpf_map *m;
7287 
7288 	bpf_object__for_each_map(m, obj) {
7289 		if (!bpf_map__is_internal(m))
7290 			continue;
7291 		if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
7292 			m->def.map_flags ^= BPF_F_MMAPABLE;
7293 	}
7294 
7295 	return 0;
7296 }
7297 
7298 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
7299 {
7300 	char sym_type, sym_name[500];
7301 	unsigned long long sym_addr;
7302 	int ret, err = 0;
7303 	FILE *f;
7304 
7305 	f = fopen("/proc/kallsyms", "r");
7306 	if (!f) {
7307 		err = -errno;
7308 		pr_warn("failed to open /proc/kallsyms: %d\n", err);
7309 		return err;
7310 	}
7311 
7312 	while (true) {
7313 		ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7314 			     &sym_addr, &sym_type, sym_name);
7315 		if (ret == EOF && feof(f))
7316 			break;
7317 		if (ret != 3) {
7318 			pr_warn("failed to read kallsyms entry: %d\n", ret);
7319 			err = -EINVAL;
7320 			break;
7321 		}
7322 
7323 		err = cb(sym_addr, sym_type, sym_name, ctx);
7324 		if (err)
7325 			break;
7326 	}
7327 
7328 	fclose(f);
7329 	return err;
7330 }
7331 
7332 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
7333 		       const char *sym_name, void *ctx)
7334 {
7335 	struct bpf_object *obj = ctx;
7336 	const struct btf_type *t;
7337 	struct extern_desc *ext;
7338 
7339 	ext = find_extern_by_name(obj, sym_name);
7340 	if (!ext || ext->type != EXT_KSYM)
7341 		return 0;
7342 
7343 	t = btf__type_by_id(obj->btf, ext->btf_id);
7344 	if (!btf_is_var(t))
7345 		return 0;
7346 
7347 	if (ext->is_set && ext->ksym.addr != sym_addr) {
7348 		pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
7349 			sym_name, ext->ksym.addr, sym_addr);
7350 		return -EINVAL;
7351 	}
7352 	if (!ext->is_set) {
7353 		ext->is_set = true;
7354 		ext->ksym.addr = sym_addr;
7355 		pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
7356 	}
7357 	return 0;
7358 }
7359 
7360 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7361 {
7362 	return libbpf_kallsyms_parse(kallsyms_cb, obj);
7363 }
7364 
7365 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
7366 			    __u16 kind, struct btf **res_btf,
7367 			    struct module_btf **res_mod_btf)
7368 {
7369 	struct module_btf *mod_btf;
7370 	struct btf *btf;
7371 	int i, id, err;
7372 
7373 	btf = obj->btf_vmlinux;
7374 	mod_btf = NULL;
7375 	id = btf__find_by_name_kind(btf, ksym_name, kind);
7376 
7377 	if (id == -ENOENT) {
7378 		err = load_module_btfs(obj);
7379 		if (err)
7380 			return err;
7381 
7382 		for (i = 0; i < obj->btf_module_cnt; i++) {
7383 			/* we assume module_btf's BTF FD is always >0 */
7384 			mod_btf = &obj->btf_modules[i];
7385 			btf = mod_btf->btf;
7386 			id = btf__find_by_name_kind_own(btf, ksym_name, kind);
7387 			if (id != -ENOENT)
7388 				break;
7389 		}
7390 	}
7391 	if (id <= 0)
7392 		return -ESRCH;
7393 
7394 	*res_btf = btf;
7395 	*res_mod_btf = mod_btf;
7396 	return id;
7397 }
7398 
7399 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
7400 					       struct extern_desc *ext)
7401 {
7402 	const struct btf_type *targ_var, *targ_type;
7403 	__u32 targ_type_id, local_type_id;
7404 	struct module_btf *mod_btf = NULL;
7405 	const char *targ_var_name;
7406 	struct btf *btf = NULL;
7407 	int id, err;
7408 
7409 	id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
7410 	if (id < 0) {
7411 		if (id == -ESRCH && ext->is_weak)
7412 			return 0;
7413 		pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
7414 			ext->name);
7415 		return id;
7416 	}
7417 
7418 	/* find local type_id */
7419 	local_type_id = ext->ksym.type_id;
7420 
7421 	/* find target type_id */
7422 	targ_var = btf__type_by_id(btf, id);
7423 	targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
7424 	targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
7425 
7426 	err = bpf_core_types_are_compat(obj->btf, local_type_id,
7427 					btf, targ_type_id);
7428 	if (err <= 0) {
7429 		const struct btf_type *local_type;
7430 		const char *targ_name, *local_name;
7431 
7432 		local_type = btf__type_by_id(obj->btf, local_type_id);
7433 		local_name = btf__name_by_offset(obj->btf, local_type->name_off);
7434 		targ_name = btf__name_by_offset(btf, targ_type->name_off);
7435 
7436 		pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7437 			ext->name, local_type_id,
7438 			btf_kind_str(local_type), local_name, targ_type_id,
7439 			btf_kind_str(targ_type), targ_name);
7440 		return -EINVAL;
7441 	}
7442 
7443 	ext->is_set = true;
7444 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7445 	ext->ksym.kernel_btf_id = id;
7446 	pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
7447 		 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7448 
7449 	return 0;
7450 }
7451 
7452 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
7453 						struct extern_desc *ext)
7454 {
7455 	int local_func_proto_id, kfunc_proto_id, kfunc_id;
7456 	struct module_btf *mod_btf = NULL;
7457 	const struct btf_type *kern_func;
7458 	struct btf *kern_btf = NULL;
7459 	int ret;
7460 
7461 	local_func_proto_id = ext->ksym.type_id;
7462 
7463 	kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf);
7464 	if (kfunc_id < 0) {
7465 		if (kfunc_id == -ESRCH && ext->is_weak)
7466 			return 0;
7467 		pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
7468 			ext->name);
7469 		return kfunc_id;
7470 	}
7471 
7472 	kern_func = btf__type_by_id(kern_btf, kfunc_id);
7473 	kfunc_proto_id = kern_func->type;
7474 
7475 	ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
7476 					kern_btf, kfunc_proto_id);
7477 	if (ret <= 0) {
7478 		pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n",
7479 			ext->name, local_func_proto_id, kfunc_proto_id);
7480 		return -EINVAL;
7481 	}
7482 
7483 	/* set index for module BTF fd in fd_array, if unset */
7484 	if (mod_btf && !mod_btf->fd_array_idx) {
7485 		/* insn->off is s16 */
7486 		if (obj->fd_array_cnt == INT16_MAX) {
7487 			pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
7488 				ext->name, mod_btf->fd_array_idx);
7489 			return -E2BIG;
7490 		}
7491 		/* Cannot use index 0 for module BTF fd */
7492 		if (!obj->fd_array_cnt)
7493 			obj->fd_array_cnt = 1;
7494 
7495 		ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
7496 					obj->fd_array_cnt + 1);
7497 		if (ret)
7498 			return ret;
7499 		mod_btf->fd_array_idx = obj->fd_array_cnt;
7500 		/* we assume module BTF FD is always >0 */
7501 		obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
7502 	}
7503 
7504 	ext->is_set = true;
7505 	ext->ksym.kernel_btf_id = kfunc_id;
7506 	ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
7507 	pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n",
7508 		 ext->name, kfunc_id);
7509 
7510 	return 0;
7511 }
7512 
7513 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7514 {
7515 	const struct btf_type *t;
7516 	struct extern_desc *ext;
7517 	int i, err;
7518 
7519 	for (i = 0; i < obj->nr_extern; i++) {
7520 		ext = &obj->externs[i];
7521 		if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7522 			continue;
7523 
7524 		if (obj->gen_loader) {
7525 			ext->is_set = true;
7526 			ext->ksym.kernel_btf_obj_fd = 0;
7527 			ext->ksym.kernel_btf_id = 0;
7528 			continue;
7529 		}
7530 		t = btf__type_by_id(obj->btf, ext->btf_id);
7531 		if (btf_is_var(t))
7532 			err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
7533 		else
7534 			err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
7535 		if (err)
7536 			return err;
7537 	}
7538 	return 0;
7539 }
7540 
7541 static int bpf_object__resolve_externs(struct bpf_object *obj,
7542 				       const char *extra_kconfig)
7543 {
7544 	bool need_config = false, need_kallsyms = false;
7545 	bool need_vmlinux_btf = false;
7546 	struct extern_desc *ext;
7547 	void *kcfg_data = NULL;
7548 	int err, i;
7549 
7550 	if (obj->nr_extern == 0)
7551 		return 0;
7552 
7553 	if (obj->kconfig_map_idx >= 0)
7554 		kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7555 
7556 	for (i = 0; i < obj->nr_extern; i++) {
7557 		ext = &obj->externs[i];
7558 
7559 		if (ext->type == EXT_KSYM) {
7560 			if (ext->ksym.type_id)
7561 				need_vmlinux_btf = true;
7562 			else
7563 				need_kallsyms = true;
7564 			continue;
7565 		} else if (ext->type == EXT_KCFG) {
7566 			void *ext_ptr = kcfg_data + ext->kcfg.data_off;
7567 			__u64 value = 0;
7568 
7569 			/* Kconfig externs need actual /proc/config.gz */
7570 			if (str_has_pfx(ext->name, "CONFIG_")) {
7571 				need_config = true;
7572 				continue;
7573 			}
7574 
7575 			/* Virtual kcfg externs are customly handled by libbpf */
7576 			if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7577 				value = get_kernel_version();
7578 				if (!value) {
7579 					pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
7580 					return -EINVAL;
7581 				}
7582 			} else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
7583 				value = kernel_supports(obj, FEAT_BPF_COOKIE);
7584 			} else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
7585 				value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
7586 			} else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
7587 				/* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
7588 				 * __kconfig externs, where LINUX_ ones are virtual and filled out
7589 				 * customly by libbpf (their values don't come from Kconfig).
7590 				 * If LINUX_xxx variable is not recognized by libbpf, but is marked
7591 				 * __weak, it defaults to zero value, just like for CONFIG_xxx
7592 				 * externs.
7593 				 */
7594 				pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
7595 				return -EINVAL;
7596 			}
7597 
7598 			err = set_kcfg_value_num(ext, ext_ptr, value);
7599 			if (err)
7600 				return err;
7601 			pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
7602 				 ext->name, (long long)value);
7603 		} else {
7604 			pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
7605 			return -EINVAL;
7606 		}
7607 	}
7608 	if (need_config && extra_kconfig) {
7609 		err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7610 		if (err)
7611 			return -EINVAL;
7612 		need_config = false;
7613 		for (i = 0; i < obj->nr_extern; i++) {
7614 			ext = &obj->externs[i];
7615 			if (ext->type == EXT_KCFG && !ext->is_set) {
7616 				need_config = true;
7617 				break;
7618 			}
7619 		}
7620 	}
7621 	if (need_config) {
7622 		err = bpf_object__read_kconfig_file(obj, kcfg_data);
7623 		if (err)
7624 			return -EINVAL;
7625 	}
7626 	if (need_kallsyms) {
7627 		err = bpf_object__read_kallsyms_file(obj);
7628 		if (err)
7629 			return -EINVAL;
7630 	}
7631 	if (need_vmlinux_btf) {
7632 		err = bpf_object__resolve_ksyms_btf_id(obj);
7633 		if (err)
7634 			return -EINVAL;
7635 	}
7636 	for (i = 0; i < obj->nr_extern; i++) {
7637 		ext = &obj->externs[i];
7638 
7639 		if (!ext->is_set && !ext->is_weak) {
7640 			pr_warn("extern '%s' (strong): not resolved\n", ext->name);
7641 			return -ESRCH;
7642 		} else if (!ext->is_set) {
7643 			pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
7644 				 ext->name);
7645 		}
7646 	}
7647 
7648 	return 0;
7649 }
7650 
7651 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
7652 {
7653 	int err, i;
7654 
7655 	if (!obj)
7656 		return libbpf_err(-EINVAL);
7657 
7658 	if (obj->loaded) {
7659 		pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7660 		return libbpf_err(-EINVAL);
7661 	}
7662 
7663 	if (obj->gen_loader)
7664 		bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
7665 
7666 	err = bpf_object__probe_loading(obj);
7667 	err = err ? : bpf_object__load_vmlinux_btf(obj, false);
7668 	err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7669 	err = err ? : bpf_object__sanitize_and_load_btf(obj);
7670 	err = err ? : bpf_object__sanitize_maps(obj);
7671 	err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7672 	err = err ? : bpf_object__create_maps(obj);
7673 	err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
7674 	err = err ? : bpf_object__load_progs(obj, extra_log_level);
7675 	err = err ? : bpf_object_init_prog_arrays(obj);
7676 
7677 	if (obj->gen_loader) {
7678 		/* reset FDs */
7679 		if (obj->btf)
7680 			btf__set_fd(obj->btf, -1);
7681 		for (i = 0; i < obj->nr_maps; i++)
7682 			obj->maps[i].fd = -1;
7683 		if (!err)
7684 			err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
7685 	}
7686 
7687 	/* clean up fd_array */
7688 	zfree(&obj->fd_array);
7689 
7690 	/* clean up module BTFs */
7691 	for (i = 0; i < obj->btf_module_cnt; i++) {
7692 		close(obj->btf_modules[i].fd);
7693 		btf__free(obj->btf_modules[i].btf);
7694 		free(obj->btf_modules[i].name);
7695 	}
7696 	free(obj->btf_modules);
7697 
7698 	/* clean up vmlinux BTF */
7699 	btf__free(obj->btf_vmlinux);
7700 	obj->btf_vmlinux = NULL;
7701 
7702 	obj->loaded = true; /* doesn't matter if successfully or not */
7703 
7704 	if (err)
7705 		goto out;
7706 
7707 	return 0;
7708 out:
7709 	/* unpin any maps that were auto-pinned during load */
7710 	for (i = 0; i < obj->nr_maps; i++)
7711 		if (obj->maps[i].pinned && !obj->maps[i].reused)
7712 			bpf_map__unpin(&obj->maps[i], NULL);
7713 
7714 	bpf_object_unload(obj);
7715 	pr_warn("failed to load object '%s'\n", obj->path);
7716 	return libbpf_err(err);
7717 }
7718 
7719 int bpf_object__load(struct bpf_object *obj)
7720 {
7721 	return bpf_object_load(obj, 0, NULL);
7722 }
7723 
7724 static int make_parent_dir(const char *path)
7725 {
7726 	char *cp, errmsg[STRERR_BUFSIZE];
7727 	char *dname, *dir;
7728 	int err = 0;
7729 
7730 	dname = strdup(path);
7731 	if (dname == NULL)
7732 		return -ENOMEM;
7733 
7734 	dir = dirname(dname);
7735 	if (mkdir(dir, 0700) && errno != EEXIST)
7736 		err = -errno;
7737 
7738 	free(dname);
7739 	if (err) {
7740 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7741 		pr_warn("failed to mkdir %s: %s\n", path, cp);
7742 	}
7743 	return err;
7744 }
7745 
7746 static int check_path(const char *path)
7747 {
7748 	char *cp, errmsg[STRERR_BUFSIZE];
7749 	struct statfs st_fs;
7750 	char *dname, *dir;
7751 	int err = 0;
7752 
7753 	if (path == NULL)
7754 		return -EINVAL;
7755 
7756 	dname = strdup(path);
7757 	if (dname == NULL)
7758 		return -ENOMEM;
7759 
7760 	dir = dirname(dname);
7761 	if (statfs(dir, &st_fs)) {
7762 		cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7763 		pr_warn("failed to statfs %s: %s\n", dir, cp);
7764 		err = -errno;
7765 	}
7766 	free(dname);
7767 
7768 	if (!err && st_fs.f_type != BPF_FS_MAGIC) {
7769 		pr_warn("specified path %s is not on BPF FS\n", path);
7770 		err = -EINVAL;
7771 	}
7772 
7773 	return err;
7774 }
7775 
7776 int bpf_program__pin(struct bpf_program *prog, const char *path)
7777 {
7778 	char *cp, errmsg[STRERR_BUFSIZE];
7779 	int err;
7780 
7781 	if (prog->fd < 0) {
7782 		pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
7783 		return libbpf_err(-EINVAL);
7784 	}
7785 
7786 	err = make_parent_dir(path);
7787 	if (err)
7788 		return libbpf_err(err);
7789 
7790 	err = check_path(path);
7791 	if (err)
7792 		return libbpf_err(err);
7793 
7794 	if (bpf_obj_pin(prog->fd, path)) {
7795 		err = -errno;
7796 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
7797 		pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp);
7798 		return libbpf_err(err);
7799 	}
7800 
7801 	pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
7802 	return 0;
7803 }
7804 
7805 int bpf_program__unpin(struct bpf_program *prog, const char *path)
7806 {
7807 	int err;
7808 
7809 	if (prog->fd < 0) {
7810 		pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
7811 		return libbpf_err(-EINVAL);
7812 	}
7813 
7814 	err = check_path(path);
7815 	if (err)
7816 		return libbpf_err(err);
7817 
7818 	err = unlink(path);
7819 	if (err)
7820 		return libbpf_err(-errno);
7821 
7822 	pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
7823 	return 0;
7824 }
7825 
7826 int bpf_map__pin(struct bpf_map *map, const char *path)
7827 {
7828 	char *cp, errmsg[STRERR_BUFSIZE];
7829 	int err;
7830 
7831 	if (map == NULL) {
7832 		pr_warn("invalid map pointer\n");
7833 		return libbpf_err(-EINVAL);
7834 	}
7835 
7836 	if (map->pin_path) {
7837 		if (path && strcmp(path, map->pin_path)) {
7838 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7839 				bpf_map__name(map), map->pin_path, path);
7840 			return libbpf_err(-EINVAL);
7841 		} else if (map->pinned) {
7842 			pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
7843 				 bpf_map__name(map), map->pin_path);
7844 			return 0;
7845 		}
7846 	} else {
7847 		if (!path) {
7848 			pr_warn("missing a path to pin map '%s' at\n",
7849 				bpf_map__name(map));
7850 			return libbpf_err(-EINVAL);
7851 		} else if (map->pinned) {
7852 			pr_warn("map '%s' already pinned\n", bpf_map__name(map));
7853 			return libbpf_err(-EEXIST);
7854 		}
7855 
7856 		map->pin_path = strdup(path);
7857 		if (!map->pin_path) {
7858 			err = -errno;
7859 			goto out_err;
7860 		}
7861 	}
7862 
7863 	err = make_parent_dir(map->pin_path);
7864 	if (err)
7865 		return libbpf_err(err);
7866 
7867 	err = check_path(map->pin_path);
7868 	if (err)
7869 		return libbpf_err(err);
7870 
7871 	if (bpf_obj_pin(map->fd, map->pin_path)) {
7872 		err = -errno;
7873 		goto out_err;
7874 	}
7875 
7876 	map->pinned = true;
7877 	pr_debug("pinned map '%s'\n", map->pin_path);
7878 
7879 	return 0;
7880 
7881 out_err:
7882 	cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7883 	pr_warn("failed to pin map: %s\n", cp);
7884 	return libbpf_err(err);
7885 }
7886 
7887 int bpf_map__unpin(struct bpf_map *map, const char *path)
7888 {
7889 	int err;
7890 
7891 	if (map == NULL) {
7892 		pr_warn("invalid map pointer\n");
7893 		return libbpf_err(-EINVAL);
7894 	}
7895 
7896 	if (map->pin_path) {
7897 		if (path && strcmp(path, map->pin_path)) {
7898 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7899 				bpf_map__name(map), map->pin_path, path);
7900 			return libbpf_err(-EINVAL);
7901 		}
7902 		path = map->pin_path;
7903 	} else if (!path) {
7904 		pr_warn("no path to unpin map '%s' from\n",
7905 			bpf_map__name(map));
7906 		return libbpf_err(-EINVAL);
7907 	}
7908 
7909 	err = check_path(path);
7910 	if (err)
7911 		return libbpf_err(err);
7912 
7913 	err = unlink(path);
7914 	if (err != 0)
7915 		return libbpf_err(-errno);
7916 
7917 	map->pinned = false;
7918 	pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
7919 
7920 	return 0;
7921 }
7922 
7923 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
7924 {
7925 	char *new = NULL;
7926 
7927 	if (path) {
7928 		new = strdup(path);
7929 		if (!new)
7930 			return libbpf_err(-errno);
7931 	}
7932 
7933 	free(map->pin_path);
7934 	map->pin_path = new;
7935 	return 0;
7936 }
7937 
7938 __alias(bpf_map__pin_path)
7939 const char *bpf_map__get_pin_path(const struct bpf_map *map);
7940 
7941 const char *bpf_map__pin_path(const struct bpf_map *map)
7942 {
7943 	return map->pin_path;
7944 }
7945 
7946 bool bpf_map__is_pinned(const struct bpf_map *map)
7947 {
7948 	return map->pinned;
7949 }
7950 
7951 static void sanitize_pin_path(char *s)
7952 {
7953 	/* bpffs disallows periods in path names */
7954 	while (*s) {
7955 		if (*s == '.')
7956 			*s = '_';
7957 		s++;
7958 	}
7959 }
7960 
7961 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
7962 {
7963 	struct bpf_map *map;
7964 	int err;
7965 
7966 	if (!obj)
7967 		return libbpf_err(-ENOENT);
7968 
7969 	if (!obj->loaded) {
7970 		pr_warn("object not yet loaded; load it first\n");
7971 		return libbpf_err(-ENOENT);
7972 	}
7973 
7974 	bpf_object__for_each_map(map, obj) {
7975 		char *pin_path = NULL;
7976 		char buf[PATH_MAX];
7977 
7978 		if (!map->autocreate)
7979 			continue;
7980 
7981 		if (path) {
7982 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
7983 			if (err)
7984 				goto err_unpin_maps;
7985 			sanitize_pin_path(buf);
7986 			pin_path = buf;
7987 		} else if (!map->pin_path) {
7988 			continue;
7989 		}
7990 
7991 		err = bpf_map__pin(map, pin_path);
7992 		if (err)
7993 			goto err_unpin_maps;
7994 	}
7995 
7996 	return 0;
7997 
7998 err_unpin_maps:
7999 	while ((map = bpf_object__prev_map(obj, map))) {
8000 		if (!map->pin_path)
8001 			continue;
8002 
8003 		bpf_map__unpin(map, NULL);
8004 	}
8005 
8006 	return libbpf_err(err);
8007 }
8008 
8009 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8010 {
8011 	struct bpf_map *map;
8012 	int err;
8013 
8014 	if (!obj)
8015 		return libbpf_err(-ENOENT);
8016 
8017 	bpf_object__for_each_map(map, obj) {
8018 		char *pin_path = NULL;
8019 		char buf[PATH_MAX];
8020 
8021 		if (path) {
8022 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8023 			if (err)
8024 				return libbpf_err(err);
8025 			sanitize_pin_path(buf);
8026 			pin_path = buf;
8027 		} else if (!map->pin_path) {
8028 			continue;
8029 		}
8030 
8031 		err = bpf_map__unpin(map, pin_path);
8032 		if (err)
8033 			return libbpf_err(err);
8034 	}
8035 
8036 	return 0;
8037 }
8038 
8039 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8040 {
8041 	struct bpf_program *prog;
8042 	char buf[PATH_MAX];
8043 	int err;
8044 
8045 	if (!obj)
8046 		return libbpf_err(-ENOENT);
8047 
8048 	if (!obj->loaded) {
8049 		pr_warn("object not yet loaded; load it first\n");
8050 		return libbpf_err(-ENOENT);
8051 	}
8052 
8053 	bpf_object__for_each_program(prog, obj) {
8054 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8055 		if (err)
8056 			goto err_unpin_programs;
8057 
8058 		err = bpf_program__pin(prog, buf);
8059 		if (err)
8060 			goto err_unpin_programs;
8061 	}
8062 
8063 	return 0;
8064 
8065 err_unpin_programs:
8066 	while ((prog = bpf_object__prev_program(obj, prog))) {
8067 		if (pathname_concat(buf, sizeof(buf), path, prog->name))
8068 			continue;
8069 
8070 		bpf_program__unpin(prog, buf);
8071 	}
8072 
8073 	return libbpf_err(err);
8074 }
8075 
8076 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8077 {
8078 	struct bpf_program *prog;
8079 	int err;
8080 
8081 	if (!obj)
8082 		return libbpf_err(-ENOENT);
8083 
8084 	bpf_object__for_each_program(prog, obj) {
8085 		char buf[PATH_MAX];
8086 
8087 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8088 		if (err)
8089 			return libbpf_err(err);
8090 
8091 		err = bpf_program__unpin(prog, buf);
8092 		if (err)
8093 			return libbpf_err(err);
8094 	}
8095 
8096 	return 0;
8097 }
8098 
8099 int bpf_object__pin(struct bpf_object *obj, const char *path)
8100 {
8101 	int err;
8102 
8103 	err = bpf_object__pin_maps(obj, path);
8104 	if (err)
8105 		return libbpf_err(err);
8106 
8107 	err = bpf_object__pin_programs(obj, path);
8108 	if (err) {
8109 		bpf_object__unpin_maps(obj, path);
8110 		return libbpf_err(err);
8111 	}
8112 
8113 	return 0;
8114 }
8115 
8116 static void bpf_map__destroy(struct bpf_map *map)
8117 {
8118 	if (map->inner_map) {
8119 		bpf_map__destroy(map->inner_map);
8120 		zfree(&map->inner_map);
8121 	}
8122 
8123 	zfree(&map->init_slots);
8124 	map->init_slots_sz = 0;
8125 
8126 	if (map->mmaped) {
8127 		munmap(map->mmaped, bpf_map_mmap_sz(map));
8128 		map->mmaped = NULL;
8129 	}
8130 
8131 	if (map->st_ops) {
8132 		zfree(&map->st_ops->data);
8133 		zfree(&map->st_ops->progs);
8134 		zfree(&map->st_ops->kern_func_off);
8135 		zfree(&map->st_ops);
8136 	}
8137 
8138 	zfree(&map->name);
8139 	zfree(&map->real_name);
8140 	zfree(&map->pin_path);
8141 
8142 	if (map->fd >= 0)
8143 		zclose(map->fd);
8144 }
8145 
8146 void bpf_object__close(struct bpf_object *obj)
8147 {
8148 	size_t i;
8149 
8150 	if (IS_ERR_OR_NULL(obj))
8151 		return;
8152 
8153 	usdt_manager_free(obj->usdt_man);
8154 	obj->usdt_man = NULL;
8155 
8156 	bpf_gen__free(obj->gen_loader);
8157 	bpf_object__elf_finish(obj);
8158 	bpf_object_unload(obj);
8159 	btf__free(obj->btf);
8160 	btf_ext__free(obj->btf_ext);
8161 
8162 	for (i = 0; i < obj->nr_maps; i++)
8163 		bpf_map__destroy(&obj->maps[i]);
8164 
8165 	zfree(&obj->btf_custom_path);
8166 	zfree(&obj->kconfig);
8167 	zfree(&obj->externs);
8168 	obj->nr_extern = 0;
8169 
8170 	zfree(&obj->maps);
8171 	obj->nr_maps = 0;
8172 
8173 	if (obj->programs && obj->nr_programs) {
8174 		for (i = 0; i < obj->nr_programs; i++)
8175 			bpf_program__exit(&obj->programs[i]);
8176 	}
8177 	zfree(&obj->programs);
8178 
8179 	free(obj);
8180 }
8181 
8182 const char *bpf_object__name(const struct bpf_object *obj)
8183 {
8184 	return obj ? obj->name : libbpf_err_ptr(-EINVAL);
8185 }
8186 
8187 unsigned int bpf_object__kversion(const struct bpf_object *obj)
8188 {
8189 	return obj ? obj->kern_version : 0;
8190 }
8191 
8192 struct btf *bpf_object__btf(const struct bpf_object *obj)
8193 {
8194 	return obj ? obj->btf : NULL;
8195 }
8196 
8197 int bpf_object__btf_fd(const struct bpf_object *obj)
8198 {
8199 	return obj->btf ? btf__fd(obj->btf) : -1;
8200 }
8201 
8202 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
8203 {
8204 	if (obj->loaded)
8205 		return libbpf_err(-EINVAL);
8206 
8207 	obj->kern_version = kern_version;
8208 
8209 	return 0;
8210 }
8211 
8212 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
8213 {
8214 	struct bpf_gen *gen;
8215 
8216 	if (!opts)
8217 		return -EFAULT;
8218 	if (!OPTS_VALID(opts, gen_loader_opts))
8219 		return -EINVAL;
8220 	gen = calloc(sizeof(*gen), 1);
8221 	if (!gen)
8222 		return -ENOMEM;
8223 	gen->opts = opts;
8224 	obj->gen_loader = gen;
8225 	return 0;
8226 }
8227 
8228 static struct bpf_program *
8229 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8230 		    bool forward)
8231 {
8232 	size_t nr_programs = obj->nr_programs;
8233 	ssize_t idx;
8234 
8235 	if (!nr_programs)
8236 		return NULL;
8237 
8238 	if (!p)
8239 		/* Iter from the beginning */
8240 		return forward ? &obj->programs[0] :
8241 			&obj->programs[nr_programs - 1];
8242 
8243 	if (p->obj != obj) {
8244 		pr_warn("error: program handler doesn't match object\n");
8245 		return errno = EINVAL, NULL;
8246 	}
8247 
8248 	idx = (p - obj->programs) + (forward ? 1 : -1);
8249 	if (idx >= obj->nr_programs || idx < 0)
8250 		return NULL;
8251 	return &obj->programs[idx];
8252 }
8253 
8254 struct bpf_program *
8255 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
8256 {
8257 	struct bpf_program *prog = prev;
8258 
8259 	do {
8260 		prog = __bpf_program__iter(prog, obj, true);
8261 	} while (prog && prog_is_subprog(obj, prog));
8262 
8263 	return prog;
8264 }
8265 
8266 struct bpf_program *
8267 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
8268 {
8269 	struct bpf_program *prog = next;
8270 
8271 	do {
8272 		prog = __bpf_program__iter(prog, obj, false);
8273 	} while (prog && prog_is_subprog(obj, prog));
8274 
8275 	return prog;
8276 }
8277 
8278 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8279 {
8280 	prog->prog_ifindex = ifindex;
8281 }
8282 
8283 const char *bpf_program__name(const struct bpf_program *prog)
8284 {
8285 	return prog->name;
8286 }
8287 
8288 const char *bpf_program__section_name(const struct bpf_program *prog)
8289 {
8290 	return prog->sec_name;
8291 }
8292 
8293 bool bpf_program__autoload(const struct bpf_program *prog)
8294 {
8295 	return prog->autoload;
8296 }
8297 
8298 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8299 {
8300 	if (prog->obj->loaded)
8301 		return libbpf_err(-EINVAL);
8302 
8303 	prog->autoload = autoload;
8304 	return 0;
8305 }
8306 
8307 bool bpf_program__autoattach(const struct bpf_program *prog)
8308 {
8309 	return prog->autoattach;
8310 }
8311 
8312 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
8313 {
8314 	prog->autoattach = autoattach;
8315 }
8316 
8317 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
8318 {
8319 	return prog->insns;
8320 }
8321 
8322 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
8323 {
8324 	return prog->insns_cnt;
8325 }
8326 
8327 int bpf_program__set_insns(struct bpf_program *prog,
8328 			   struct bpf_insn *new_insns, size_t new_insn_cnt)
8329 {
8330 	struct bpf_insn *insns;
8331 
8332 	if (prog->obj->loaded)
8333 		return -EBUSY;
8334 
8335 	insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
8336 	if (!insns) {
8337 		pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
8338 		return -ENOMEM;
8339 	}
8340 	memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
8341 
8342 	prog->insns = insns;
8343 	prog->insns_cnt = new_insn_cnt;
8344 	return 0;
8345 }
8346 
8347 int bpf_program__fd(const struct bpf_program *prog)
8348 {
8349 	if (!prog)
8350 		return libbpf_err(-EINVAL);
8351 
8352 	if (prog->fd < 0)
8353 		return libbpf_err(-ENOENT);
8354 
8355 	return prog->fd;
8356 }
8357 
8358 __alias(bpf_program__type)
8359 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
8360 
8361 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
8362 {
8363 	return prog->type;
8364 }
8365 
8366 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8367 {
8368 	if (prog->obj->loaded)
8369 		return libbpf_err(-EBUSY);
8370 
8371 	prog->type = type;
8372 	return 0;
8373 }
8374 
8375 __alias(bpf_program__expected_attach_type)
8376 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
8377 
8378 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
8379 {
8380 	return prog->expected_attach_type;
8381 }
8382 
8383 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
8384 					   enum bpf_attach_type type)
8385 {
8386 	if (prog->obj->loaded)
8387 		return libbpf_err(-EBUSY);
8388 
8389 	prog->expected_attach_type = type;
8390 	return 0;
8391 }
8392 
8393 __u32 bpf_program__flags(const struct bpf_program *prog)
8394 {
8395 	return prog->prog_flags;
8396 }
8397 
8398 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
8399 {
8400 	if (prog->obj->loaded)
8401 		return libbpf_err(-EBUSY);
8402 
8403 	prog->prog_flags = flags;
8404 	return 0;
8405 }
8406 
8407 __u32 bpf_program__log_level(const struct bpf_program *prog)
8408 {
8409 	return prog->log_level;
8410 }
8411 
8412 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
8413 {
8414 	if (prog->obj->loaded)
8415 		return libbpf_err(-EBUSY);
8416 
8417 	prog->log_level = log_level;
8418 	return 0;
8419 }
8420 
8421 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
8422 {
8423 	*log_size = prog->log_size;
8424 	return prog->log_buf;
8425 }
8426 
8427 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
8428 {
8429 	if (log_size && !log_buf)
8430 		return -EINVAL;
8431 	if (prog->log_size > UINT_MAX)
8432 		return -EINVAL;
8433 	if (prog->obj->loaded)
8434 		return -EBUSY;
8435 
8436 	prog->log_buf = log_buf;
8437 	prog->log_size = log_size;
8438 	return 0;
8439 }
8440 
8441 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) {			    \
8442 	.sec = (char *)sec_pfx,						    \
8443 	.prog_type = BPF_PROG_TYPE_##ptype,				    \
8444 	.expected_attach_type = atype,					    \
8445 	.cookie = (long)(flags),					    \
8446 	.prog_prepare_load_fn = libbpf_prepare_prog_load,		    \
8447 	__VA_ARGS__							    \
8448 }
8449 
8450 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8451 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8452 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8453 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8454 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8455 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8456 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8457 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8458 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8459 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8460 
8461 static const struct bpf_sec_def section_defs[] = {
8462 	SEC_DEF("socket",		SOCKET_FILTER, 0, SEC_NONE),
8463 	SEC_DEF("sk_reuseport/migrate",	SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
8464 	SEC_DEF("sk_reuseport",		SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
8465 	SEC_DEF("kprobe+",		KPROBE,	0, SEC_NONE, attach_kprobe),
8466 	SEC_DEF("uprobe+",		KPROBE,	0, SEC_NONE, attach_uprobe),
8467 	SEC_DEF("uprobe.s+",		KPROBE,	0, SEC_SLEEPABLE, attach_uprobe),
8468 	SEC_DEF("kretprobe+",		KPROBE, 0, SEC_NONE, attach_kprobe),
8469 	SEC_DEF("uretprobe+",		KPROBE, 0, SEC_NONE, attach_uprobe),
8470 	SEC_DEF("uretprobe.s+",		KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
8471 	SEC_DEF("kprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8472 	SEC_DEF("kretprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8473 	SEC_DEF("ksyscall+",		KPROBE,	0, SEC_NONE, attach_ksyscall),
8474 	SEC_DEF("kretsyscall+",		KPROBE, 0, SEC_NONE, attach_ksyscall),
8475 	SEC_DEF("usdt+",		KPROBE,	0, SEC_NONE, attach_usdt),
8476 	SEC_DEF("tc",			SCHED_CLS, 0, SEC_NONE),
8477 	SEC_DEF("classifier",		SCHED_CLS, 0, SEC_NONE),
8478 	SEC_DEF("action",		SCHED_ACT, 0, SEC_NONE),
8479 	SEC_DEF("tracepoint+",		TRACEPOINT, 0, SEC_NONE, attach_tp),
8480 	SEC_DEF("tp+",			TRACEPOINT, 0, SEC_NONE, attach_tp),
8481 	SEC_DEF("raw_tracepoint+",	RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8482 	SEC_DEF("raw_tp+",		RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8483 	SEC_DEF("raw_tracepoint.w+",	RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8484 	SEC_DEF("raw_tp.w+",		RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8485 	SEC_DEF("tp_btf+",		TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
8486 	SEC_DEF("fentry+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
8487 	SEC_DEF("fmod_ret+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
8488 	SEC_DEF("fexit+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
8489 	SEC_DEF("fentry.s+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8490 	SEC_DEF("fmod_ret.s+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8491 	SEC_DEF("fexit.s+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8492 	SEC_DEF("freplace+",		EXT, 0, SEC_ATTACH_BTF, attach_trace),
8493 	SEC_DEF("lsm+",			LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
8494 	SEC_DEF("lsm.s+",		LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
8495 	SEC_DEF("lsm_cgroup+",		LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
8496 	SEC_DEF("iter+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
8497 	SEC_DEF("iter.s+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
8498 	SEC_DEF("syscall",		SYSCALL, 0, SEC_SLEEPABLE),
8499 	SEC_DEF("xdp.frags/devmap",	XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
8500 	SEC_DEF("xdp/devmap",		XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
8501 	SEC_DEF("xdp.frags/cpumap",	XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
8502 	SEC_DEF("xdp/cpumap",		XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
8503 	SEC_DEF("xdp.frags",		XDP, BPF_XDP, SEC_XDP_FRAGS),
8504 	SEC_DEF("xdp",			XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
8505 	SEC_DEF("perf_event",		PERF_EVENT, 0, SEC_NONE),
8506 	SEC_DEF("lwt_in",		LWT_IN, 0, SEC_NONE),
8507 	SEC_DEF("lwt_out",		LWT_OUT, 0, SEC_NONE),
8508 	SEC_DEF("lwt_xmit",		LWT_XMIT, 0, SEC_NONE),
8509 	SEC_DEF("lwt_seg6local",	LWT_SEG6LOCAL, 0, SEC_NONE),
8510 	SEC_DEF("sockops",		SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
8511 	SEC_DEF("sk_skb/stream_parser",	SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
8512 	SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
8513 	SEC_DEF("sk_skb",		SK_SKB, 0, SEC_NONE),
8514 	SEC_DEF("sk_msg",		SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
8515 	SEC_DEF("lirc_mode2",		LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
8516 	SEC_DEF("flow_dissector",	FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
8517 	SEC_DEF("cgroup_skb/ingress",	CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
8518 	SEC_DEF("cgroup_skb/egress",	CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
8519 	SEC_DEF("cgroup/skb",		CGROUP_SKB, 0, SEC_NONE),
8520 	SEC_DEF("cgroup/sock_create",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
8521 	SEC_DEF("cgroup/sock_release",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
8522 	SEC_DEF("cgroup/sock",		CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
8523 	SEC_DEF("cgroup/post_bind4",	CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
8524 	SEC_DEF("cgroup/post_bind6",	CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
8525 	SEC_DEF("cgroup/bind4",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
8526 	SEC_DEF("cgroup/bind6",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
8527 	SEC_DEF("cgroup/connect4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
8528 	SEC_DEF("cgroup/connect6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
8529 	SEC_DEF("cgroup/sendmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
8530 	SEC_DEF("cgroup/sendmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
8531 	SEC_DEF("cgroup/recvmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
8532 	SEC_DEF("cgroup/recvmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
8533 	SEC_DEF("cgroup/getpeername4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
8534 	SEC_DEF("cgroup/getpeername6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
8535 	SEC_DEF("cgroup/getsockname4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
8536 	SEC_DEF("cgroup/getsockname6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
8537 	SEC_DEF("cgroup/sysctl",	CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
8538 	SEC_DEF("cgroup/getsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
8539 	SEC_DEF("cgroup/setsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
8540 	SEC_DEF("cgroup/dev",		CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
8541 	SEC_DEF("struct_ops+",		STRUCT_OPS, 0, SEC_NONE),
8542 	SEC_DEF("sk_lookup",		SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
8543 };
8544 
8545 static size_t custom_sec_def_cnt;
8546 static struct bpf_sec_def *custom_sec_defs;
8547 static struct bpf_sec_def custom_fallback_def;
8548 static bool has_custom_fallback_def;
8549 
8550 static int last_custom_sec_def_handler_id;
8551 
8552 int libbpf_register_prog_handler(const char *sec,
8553 				 enum bpf_prog_type prog_type,
8554 				 enum bpf_attach_type exp_attach_type,
8555 				 const struct libbpf_prog_handler_opts *opts)
8556 {
8557 	struct bpf_sec_def *sec_def;
8558 
8559 	if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
8560 		return libbpf_err(-EINVAL);
8561 
8562 	if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
8563 		return libbpf_err(-E2BIG);
8564 
8565 	if (sec) {
8566 		sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
8567 					      sizeof(*sec_def));
8568 		if (!sec_def)
8569 			return libbpf_err(-ENOMEM);
8570 
8571 		custom_sec_defs = sec_def;
8572 		sec_def = &custom_sec_defs[custom_sec_def_cnt];
8573 	} else {
8574 		if (has_custom_fallback_def)
8575 			return libbpf_err(-EBUSY);
8576 
8577 		sec_def = &custom_fallback_def;
8578 	}
8579 
8580 	sec_def->sec = sec ? strdup(sec) : NULL;
8581 	if (sec && !sec_def->sec)
8582 		return libbpf_err(-ENOMEM);
8583 
8584 	sec_def->prog_type = prog_type;
8585 	sec_def->expected_attach_type = exp_attach_type;
8586 	sec_def->cookie = OPTS_GET(opts, cookie, 0);
8587 
8588 	sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
8589 	sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
8590 	sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
8591 
8592 	sec_def->handler_id = ++last_custom_sec_def_handler_id;
8593 
8594 	if (sec)
8595 		custom_sec_def_cnt++;
8596 	else
8597 		has_custom_fallback_def = true;
8598 
8599 	return sec_def->handler_id;
8600 }
8601 
8602 int libbpf_unregister_prog_handler(int handler_id)
8603 {
8604 	struct bpf_sec_def *sec_defs;
8605 	int i;
8606 
8607 	if (handler_id <= 0)
8608 		return libbpf_err(-EINVAL);
8609 
8610 	if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
8611 		memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
8612 		has_custom_fallback_def = false;
8613 		return 0;
8614 	}
8615 
8616 	for (i = 0; i < custom_sec_def_cnt; i++) {
8617 		if (custom_sec_defs[i].handler_id == handler_id)
8618 			break;
8619 	}
8620 
8621 	if (i == custom_sec_def_cnt)
8622 		return libbpf_err(-ENOENT);
8623 
8624 	free(custom_sec_defs[i].sec);
8625 	for (i = i + 1; i < custom_sec_def_cnt; i++)
8626 		custom_sec_defs[i - 1] = custom_sec_defs[i];
8627 	custom_sec_def_cnt--;
8628 
8629 	/* try to shrink the array, but it's ok if we couldn't */
8630 	sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
8631 	if (sec_defs)
8632 		custom_sec_defs = sec_defs;
8633 
8634 	return 0;
8635 }
8636 
8637 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
8638 {
8639 	size_t len = strlen(sec_def->sec);
8640 
8641 	/* "type/" always has to have proper SEC("type/extras") form */
8642 	if (sec_def->sec[len - 1] == '/') {
8643 		if (str_has_pfx(sec_name, sec_def->sec))
8644 			return true;
8645 		return false;
8646 	}
8647 
8648 	/* "type+" means it can be either exact SEC("type") or
8649 	 * well-formed SEC("type/extras") with proper '/' separator
8650 	 */
8651 	if (sec_def->sec[len - 1] == '+') {
8652 		len--;
8653 		/* not even a prefix */
8654 		if (strncmp(sec_name, sec_def->sec, len) != 0)
8655 			return false;
8656 		/* exact match or has '/' separator */
8657 		if (sec_name[len] == '\0' || sec_name[len] == '/')
8658 			return true;
8659 		return false;
8660 	}
8661 
8662 	return strcmp(sec_name, sec_def->sec) == 0;
8663 }
8664 
8665 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
8666 {
8667 	const struct bpf_sec_def *sec_def;
8668 	int i, n;
8669 
8670 	n = custom_sec_def_cnt;
8671 	for (i = 0; i < n; i++) {
8672 		sec_def = &custom_sec_defs[i];
8673 		if (sec_def_matches(sec_def, sec_name))
8674 			return sec_def;
8675 	}
8676 
8677 	n = ARRAY_SIZE(section_defs);
8678 	for (i = 0; i < n; i++) {
8679 		sec_def = &section_defs[i];
8680 		if (sec_def_matches(sec_def, sec_name))
8681 			return sec_def;
8682 	}
8683 
8684 	if (has_custom_fallback_def)
8685 		return &custom_fallback_def;
8686 
8687 	return NULL;
8688 }
8689 
8690 #define MAX_TYPE_NAME_SIZE 32
8691 
8692 static char *libbpf_get_type_names(bool attach_type)
8693 {
8694 	int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
8695 	char *buf;
8696 
8697 	buf = malloc(len);
8698 	if (!buf)
8699 		return NULL;
8700 
8701 	buf[0] = '\0';
8702 	/* Forge string buf with all available names */
8703 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8704 		const struct bpf_sec_def *sec_def = &section_defs[i];
8705 
8706 		if (attach_type) {
8707 			if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
8708 				continue;
8709 
8710 			if (!(sec_def->cookie & SEC_ATTACHABLE))
8711 				continue;
8712 		}
8713 
8714 		if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
8715 			free(buf);
8716 			return NULL;
8717 		}
8718 		strcat(buf, " ");
8719 		strcat(buf, section_defs[i].sec);
8720 	}
8721 
8722 	return buf;
8723 }
8724 
8725 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
8726 			     enum bpf_attach_type *expected_attach_type)
8727 {
8728 	const struct bpf_sec_def *sec_def;
8729 	char *type_names;
8730 
8731 	if (!name)
8732 		return libbpf_err(-EINVAL);
8733 
8734 	sec_def = find_sec_def(name);
8735 	if (sec_def) {
8736 		*prog_type = sec_def->prog_type;
8737 		*expected_attach_type = sec_def->expected_attach_type;
8738 		return 0;
8739 	}
8740 
8741 	pr_debug("failed to guess program type from ELF section '%s'\n", name);
8742 	type_names = libbpf_get_type_names(false);
8743 	if (type_names != NULL) {
8744 		pr_debug("supported section(type) names are:%s\n", type_names);
8745 		free(type_names);
8746 	}
8747 
8748 	return libbpf_err(-ESRCH);
8749 }
8750 
8751 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
8752 {
8753 	if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
8754 		return NULL;
8755 
8756 	return attach_type_name[t];
8757 }
8758 
8759 const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
8760 {
8761 	if (t < 0 || t >= ARRAY_SIZE(link_type_name))
8762 		return NULL;
8763 
8764 	return link_type_name[t];
8765 }
8766 
8767 const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
8768 {
8769 	if (t < 0 || t >= ARRAY_SIZE(map_type_name))
8770 		return NULL;
8771 
8772 	return map_type_name[t];
8773 }
8774 
8775 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
8776 {
8777 	if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
8778 		return NULL;
8779 
8780 	return prog_type_name[t];
8781 }
8782 
8783 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
8784 						     size_t offset)
8785 {
8786 	struct bpf_map *map;
8787 	size_t i;
8788 
8789 	for (i = 0; i < obj->nr_maps; i++) {
8790 		map = &obj->maps[i];
8791 		if (!bpf_map__is_struct_ops(map))
8792 			continue;
8793 		if (map->sec_offset <= offset &&
8794 		    offset - map->sec_offset < map->def.value_size)
8795 			return map;
8796 	}
8797 
8798 	return NULL;
8799 }
8800 
8801 /* Collect the reloc from ELF and populate the st_ops->progs[] */
8802 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
8803 					    Elf64_Shdr *shdr, Elf_Data *data)
8804 {
8805 	const struct btf_member *member;
8806 	struct bpf_struct_ops *st_ops;
8807 	struct bpf_program *prog;
8808 	unsigned int shdr_idx;
8809 	const struct btf *btf;
8810 	struct bpf_map *map;
8811 	unsigned int moff, insn_idx;
8812 	const char *name;
8813 	__u32 member_idx;
8814 	Elf64_Sym *sym;
8815 	Elf64_Rel *rel;
8816 	int i, nrels;
8817 
8818 	btf = obj->btf;
8819 	nrels = shdr->sh_size / shdr->sh_entsize;
8820 	for (i = 0; i < nrels; i++) {
8821 		rel = elf_rel_by_idx(data, i);
8822 		if (!rel) {
8823 			pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
8824 			return -LIBBPF_ERRNO__FORMAT;
8825 		}
8826 
8827 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
8828 		if (!sym) {
8829 			pr_warn("struct_ops reloc: symbol %zx not found\n",
8830 				(size_t)ELF64_R_SYM(rel->r_info));
8831 			return -LIBBPF_ERRNO__FORMAT;
8832 		}
8833 
8834 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
8835 		map = find_struct_ops_map_by_offset(obj, rel->r_offset);
8836 		if (!map) {
8837 			pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
8838 				(size_t)rel->r_offset);
8839 			return -EINVAL;
8840 		}
8841 
8842 		moff = rel->r_offset - map->sec_offset;
8843 		shdr_idx = sym->st_shndx;
8844 		st_ops = map->st_ops;
8845 		pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
8846 			 map->name,
8847 			 (long long)(rel->r_info >> 32),
8848 			 (long long)sym->st_value,
8849 			 shdr_idx, (size_t)rel->r_offset,
8850 			 map->sec_offset, sym->st_name, name);
8851 
8852 		if (shdr_idx >= SHN_LORESERVE) {
8853 			pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
8854 				map->name, (size_t)rel->r_offset, shdr_idx);
8855 			return -LIBBPF_ERRNO__RELOC;
8856 		}
8857 		if (sym->st_value % BPF_INSN_SZ) {
8858 			pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
8859 				map->name, (unsigned long long)sym->st_value);
8860 			return -LIBBPF_ERRNO__FORMAT;
8861 		}
8862 		insn_idx = sym->st_value / BPF_INSN_SZ;
8863 
8864 		member = find_member_by_offset(st_ops->type, moff * 8);
8865 		if (!member) {
8866 			pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
8867 				map->name, moff);
8868 			return -EINVAL;
8869 		}
8870 		member_idx = member - btf_members(st_ops->type);
8871 		name = btf__name_by_offset(btf, member->name_off);
8872 
8873 		if (!resolve_func_ptr(btf, member->type, NULL)) {
8874 			pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
8875 				map->name, name);
8876 			return -EINVAL;
8877 		}
8878 
8879 		prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
8880 		if (!prog) {
8881 			pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
8882 				map->name, shdr_idx, name);
8883 			return -EINVAL;
8884 		}
8885 
8886 		/* prevent the use of BPF prog with invalid type */
8887 		if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
8888 			pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
8889 				map->name, prog->name);
8890 			return -EINVAL;
8891 		}
8892 
8893 		/* if we haven't yet processed this BPF program, record proper
8894 		 * attach_btf_id and member_idx
8895 		 */
8896 		if (!prog->attach_btf_id) {
8897 			prog->attach_btf_id = st_ops->type_id;
8898 			prog->expected_attach_type = member_idx;
8899 		}
8900 
8901 		/* struct_ops BPF prog can be re-used between multiple
8902 		 * .struct_ops as long as it's the same struct_ops struct
8903 		 * definition and the same function pointer field
8904 		 */
8905 		if (prog->attach_btf_id != st_ops->type_id ||
8906 		    prog->expected_attach_type != member_idx) {
8907 			pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
8908 				map->name, prog->name, prog->sec_name, prog->type,
8909 				prog->attach_btf_id, prog->expected_attach_type, name);
8910 			return -EINVAL;
8911 		}
8912 
8913 		st_ops->progs[member_idx] = prog;
8914 	}
8915 
8916 	return 0;
8917 }
8918 
8919 #define BTF_TRACE_PREFIX "btf_trace_"
8920 #define BTF_LSM_PREFIX "bpf_lsm_"
8921 #define BTF_ITER_PREFIX "bpf_iter_"
8922 #define BTF_MAX_NAME_SIZE 128
8923 
8924 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
8925 				const char **prefix, int *kind)
8926 {
8927 	switch (attach_type) {
8928 	case BPF_TRACE_RAW_TP:
8929 		*prefix = BTF_TRACE_PREFIX;
8930 		*kind = BTF_KIND_TYPEDEF;
8931 		break;
8932 	case BPF_LSM_MAC:
8933 	case BPF_LSM_CGROUP:
8934 		*prefix = BTF_LSM_PREFIX;
8935 		*kind = BTF_KIND_FUNC;
8936 		break;
8937 	case BPF_TRACE_ITER:
8938 		*prefix = BTF_ITER_PREFIX;
8939 		*kind = BTF_KIND_FUNC;
8940 		break;
8941 	default:
8942 		*prefix = "";
8943 		*kind = BTF_KIND_FUNC;
8944 	}
8945 }
8946 
8947 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
8948 				   const char *name, __u32 kind)
8949 {
8950 	char btf_type_name[BTF_MAX_NAME_SIZE];
8951 	int ret;
8952 
8953 	ret = snprintf(btf_type_name, sizeof(btf_type_name),
8954 		       "%s%s", prefix, name);
8955 	/* snprintf returns the number of characters written excluding the
8956 	 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
8957 	 * indicates truncation.
8958 	 */
8959 	if (ret < 0 || ret >= sizeof(btf_type_name))
8960 		return -ENAMETOOLONG;
8961 	return btf__find_by_name_kind(btf, btf_type_name, kind);
8962 }
8963 
8964 static inline int find_attach_btf_id(struct btf *btf, const char *name,
8965 				     enum bpf_attach_type attach_type)
8966 {
8967 	const char *prefix;
8968 	int kind;
8969 
8970 	btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
8971 	return find_btf_by_prefix_kind(btf, prefix, name, kind);
8972 }
8973 
8974 int libbpf_find_vmlinux_btf_id(const char *name,
8975 			       enum bpf_attach_type attach_type)
8976 {
8977 	struct btf *btf;
8978 	int err;
8979 
8980 	btf = btf__load_vmlinux_btf();
8981 	err = libbpf_get_error(btf);
8982 	if (err) {
8983 		pr_warn("vmlinux BTF is not found\n");
8984 		return libbpf_err(err);
8985 	}
8986 
8987 	err = find_attach_btf_id(btf, name, attach_type);
8988 	if (err <= 0)
8989 		pr_warn("%s is not found in vmlinux BTF\n", name);
8990 
8991 	btf__free(btf);
8992 	return libbpf_err(err);
8993 }
8994 
8995 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
8996 {
8997 	struct bpf_prog_info info;
8998 	__u32 info_len = sizeof(info);
8999 	struct btf *btf;
9000 	int err;
9001 
9002 	memset(&info, 0, info_len);
9003 	err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len);
9004 	if (err) {
9005 		pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n",
9006 			attach_prog_fd, err);
9007 		return err;
9008 	}
9009 
9010 	err = -EINVAL;
9011 	if (!info.btf_id) {
9012 		pr_warn("The target program doesn't have BTF\n");
9013 		goto out;
9014 	}
9015 	btf = btf__load_from_kernel_by_id(info.btf_id);
9016 	err = libbpf_get_error(btf);
9017 	if (err) {
9018 		pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9019 		goto out;
9020 	}
9021 	err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9022 	btf__free(btf);
9023 	if (err <= 0) {
9024 		pr_warn("%s is not found in prog's BTF\n", name);
9025 		goto out;
9026 	}
9027 out:
9028 	return err;
9029 }
9030 
9031 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9032 			      enum bpf_attach_type attach_type,
9033 			      int *btf_obj_fd, int *btf_type_id)
9034 {
9035 	int ret, i;
9036 
9037 	ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9038 	if (ret > 0) {
9039 		*btf_obj_fd = 0; /* vmlinux BTF */
9040 		*btf_type_id = ret;
9041 		return 0;
9042 	}
9043 	if (ret != -ENOENT)
9044 		return ret;
9045 
9046 	ret = load_module_btfs(obj);
9047 	if (ret)
9048 		return ret;
9049 
9050 	for (i = 0; i < obj->btf_module_cnt; i++) {
9051 		const struct module_btf *mod = &obj->btf_modules[i];
9052 
9053 		ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9054 		if (ret > 0) {
9055 			*btf_obj_fd = mod->fd;
9056 			*btf_type_id = ret;
9057 			return 0;
9058 		}
9059 		if (ret == -ENOENT)
9060 			continue;
9061 
9062 		return ret;
9063 	}
9064 
9065 	return -ESRCH;
9066 }
9067 
9068 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9069 				     int *btf_obj_fd, int *btf_type_id)
9070 {
9071 	enum bpf_attach_type attach_type = prog->expected_attach_type;
9072 	__u32 attach_prog_fd = prog->attach_prog_fd;
9073 	int err = 0;
9074 
9075 	/* BPF program's BTF ID */
9076 	if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
9077 		if (!attach_prog_fd) {
9078 			pr_warn("prog '%s': attach program FD is not set\n", prog->name);
9079 			return -EINVAL;
9080 		}
9081 		err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9082 		if (err < 0) {
9083 			pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9084 				 prog->name, attach_prog_fd, attach_name, err);
9085 			return err;
9086 		}
9087 		*btf_obj_fd = 0;
9088 		*btf_type_id = err;
9089 		return 0;
9090 	}
9091 
9092 	/* kernel/module BTF ID */
9093 	if (prog->obj->gen_loader) {
9094 		bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9095 		*btf_obj_fd = 0;
9096 		*btf_type_id = 1;
9097 	} else {
9098 		err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9099 	}
9100 	if (err) {
9101 		pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n",
9102 			prog->name, attach_name, err);
9103 		return err;
9104 	}
9105 	return 0;
9106 }
9107 
9108 int libbpf_attach_type_by_name(const char *name,
9109 			       enum bpf_attach_type *attach_type)
9110 {
9111 	char *type_names;
9112 	const struct bpf_sec_def *sec_def;
9113 
9114 	if (!name)
9115 		return libbpf_err(-EINVAL);
9116 
9117 	sec_def = find_sec_def(name);
9118 	if (!sec_def) {
9119 		pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9120 		type_names = libbpf_get_type_names(true);
9121 		if (type_names != NULL) {
9122 			pr_debug("attachable section(type) names are:%s\n", type_names);
9123 			free(type_names);
9124 		}
9125 
9126 		return libbpf_err(-EINVAL);
9127 	}
9128 
9129 	if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9130 		return libbpf_err(-EINVAL);
9131 	if (!(sec_def->cookie & SEC_ATTACHABLE))
9132 		return libbpf_err(-EINVAL);
9133 
9134 	*attach_type = sec_def->expected_attach_type;
9135 	return 0;
9136 }
9137 
9138 int bpf_map__fd(const struct bpf_map *map)
9139 {
9140 	return map ? map->fd : libbpf_err(-EINVAL);
9141 }
9142 
9143 static bool map_uses_real_name(const struct bpf_map *map)
9144 {
9145 	/* Since libbpf started to support custom .data.* and .rodata.* maps,
9146 	 * their user-visible name differs from kernel-visible name. Users see
9147 	 * such map's corresponding ELF section name as a map name.
9148 	 * This check distinguishes .data/.rodata from .data.* and .rodata.*
9149 	 * maps to know which name has to be returned to the user.
9150 	 */
9151 	if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
9152 		return true;
9153 	if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
9154 		return true;
9155 	return false;
9156 }
9157 
9158 const char *bpf_map__name(const struct bpf_map *map)
9159 {
9160 	if (!map)
9161 		return NULL;
9162 
9163 	if (map_uses_real_name(map))
9164 		return map->real_name;
9165 
9166 	return map->name;
9167 }
9168 
9169 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9170 {
9171 	return map->def.type;
9172 }
9173 
9174 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9175 {
9176 	if (map->fd >= 0)
9177 		return libbpf_err(-EBUSY);
9178 	map->def.type = type;
9179 	return 0;
9180 }
9181 
9182 __u32 bpf_map__map_flags(const struct bpf_map *map)
9183 {
9184 	return map->def.map_flags;
9185 }
9186 
9187 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9188 {
9189 	if (map->fd >= 0)
9190 		return libbpf_err(-EBUSY);
9191 	map->def.map_flags = flags;
9192 	return 0;
9193 }
9194 
9195 __u64 bpf_map__map_extra(const struct bpf_map *map)
9196 {
9197 	return map->map_extra;
9198 }
9199 
9200 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
9201 {
9202 	if (map->fd >= 0)
9203 		return libbpf_err(-EBUSY);
9204 	map->map_extra = map_extra;
9205 	return 0;
9206 }
9207 
9208 __u32 bpf_map__numa_node(const struct bpf_map *map)
9209 {
9210 	return map->numa_node;
9211 }
9212 
9213 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
9214 {
9215 	if (map->fd >= 0)
9216 		return libbpf_err(-EBUSY);
9217 	map->numa_node = numa_node;
9218 	return 0;
9219 }
9220 
9221 __u32 bpf_map__key_size(const struct bpf_map *map)
9222 {
9223 	return map->def.key_size;
9224 }
9225 
9226 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
9227 {
9228 	if (map->fd >= 0)
9229 		return libbpf_err(-EBUSY);
9230 	map->def.key_size = size;
9231 	return 0;
9232 }
9233 
9234 __u32 bpf_map__value_size(const struct bpf_map *map)
9235 {
9236 	return map->def.value_size;
9237 }
9238 
9239 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
9240 {
9241 	if (map->fd >= 0)
9242 		return libbpf_err(-EBUSY);
9243 	map->def.value_size = size;
9244 	return 0;
9245 }
9246 
9247 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
9248 {
9249 	return map ? map->btf_key_type_id : 0;
9250 }
9251 
9252 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
9253 {
9254 	return map ? map->btf_value_type_id : 0;
9255 }
9256 
9257 int bpf_map__set_initial_value(struct bpf_map *map,
9258 			       const void *data, size_t size)
9259 {
9260 	if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
9261 	    size != map->def.value_size || map->fd >= 0)
9262 		return libbpf_err(-EINVAL);
9263 
9264 	memcpy(map->mmaped, data, size);
9265 	return 0;
9266 }
9267 
9268 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize)
9269 {
9270 	if (!map->mmaped)
9271 		return NULL;
9272 	*psize = map->def.value_size;
9273 	return map->mmaped;
9274 }
9275 
9276 bool bpf_map__is_internal(const struct bpf_map *map)
9277 {
9278 	return map->libbpf_type != LIBBPF_MAP_UNSPEC;
9279 }
9280 
9281 __u32 bpf_map__ifindex(const struct bpf_map *map)
9282 {
9283 	return map->map_ifindex;
9284 }
9285 
9286 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
9287 {
9288 	if (map->fd >= 0)
9289 		return libbpf_err(-EBUSY);
9290 	map->map_ifindex = ifindex;
9291 	return 0;
9292 }
9293 
9294 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
9295 {
9296 	if (!bpf_map_type__is_map_in_map(map->def.type)) {
9297 		pr_warn("error: unsupported map type\n");
9298 		return libbpf_err(-EINVAL);
9299 	}
9300 	if (map->inner_map_fd != -1) {
9301 		pr_warn("error: inner_map_fd already specified\n");
9302 		return libbpf_err(-EINVAL);
9303 	}
9304 	if (map->inner_map) {
9305 		bpf_map__destroy(map->inner_map);
9306 		zfree(&map->inner_map);
9307 	}
9308 	map->inner_map_fd = fd;
9309 	return 0;
9310 }
9311 
9312 static struct bpf_map *
9313 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
9314 {
9315 	ssize_t idx;
9316 	struct bpf_map *s, *e;
9317 
9318 	if (!obj || !obj->maps)
9319 		return errno = EINVAL, NULL;
9320 
9321 	s = obj->maps;
9322 	e = obj->maps + obj->nr_maps;
9323 
9324 	if ((m < s) || (m >= e)) {
9325 		pr_warn("error in %s: map handler doesn't belong to object\n",
9326 			 __func__);
9327 		return errno = EINVAL, NULL;
9328 	}
9329 
9330 	idx = (m - obj->maps) + i;
9331 	if (idx >= obj->nr_maps || idx < 0)
9332 		return NULL;
9333 	return &obj->maps[idx];
9334 }
9335 
9336 struct bpf_map *
9337 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
9338 {
9339 	if (prev == NULL)
9340 		return obj->maps;
9341 
9342 	return __bpf_map__iter(prev, obj, 1);
9343 }
9344 
9345 struct bpf_map *
9346 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
9347 {
9348 	if (next == NULL) {
9349 		if (!obj->nr_maps)
9350 			return NULL;
9351 		return obj->maps + obj->nr_maps - 1;
9352 	}
9353 
9354 	return __bpf_map__iter(next, obj, -1);
9355 }
9356 
9357 struct bpf_map *
9358 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9359 {
9360 	struct bpf_map *pos;
9361 
9362 	bpf_object__for_each_map(pos, obj) {
9363 		/* if it's a special internal map name (which always starts
9364 		 * with dot) then check if that special name matches the
9365 		 * real map name (ELF section name)
9366 		 */
9367 		if (name[0] == '.') {
9368 			if (pos->real_name && strcmp(pos->real_name, name) == 0)
9369 				return pos;
9370 			continue;
9371 		}
9372 		/* otherwise map name has to be an exact match */
9373 		if (map_uses_real_name(pos)) {
9374 			if (strcmp(pos->real_name, name) == 0)
9375 				return pos;
9376 			continue;
9377 		}
9378 		if (strcmp(pos->name, name) == 0)
9379 			return pos;
9380 	}
9381 	return errno = ENOENT, NULL;
9382 }
9383 
9384 int
9385 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9386 {
9387 	return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9388 }
9389 
9390 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
9391 			   size_t value_sz, bool check_value_sz)
9392 {
9393 	if (map->fd <= 0)
9394 		return -ENOENT;
9395 
9396 	if (map->def.key_size != key_sz) {
9397 		pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
9398 			map->name, key_sz, map->def.key_size);
9399 		return -EINVAL;
9400 	}
9401 
9402 	if (!check_value_sz)
9403 		return 0;
9404 
9405 	switch (map->def.type) {
9406 	case BPF_MAP_TYPE_PERCPU_ARRAY:
9407 	case BPF_MAP_TYPE_PERCPU_HASH:
9408 	case BPF_MAP_TYPE_LRU_PERCPU_HASH:
9409 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
9410 		int num_cpu = libbpf_num_possible_cpus();
9411 		size_t elem_sz = roundup(map->def.value_size, 8);
9412 
9413 		if (value_sz != num_cpu * elem_sz) {
9414 			pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
9415 				map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
9416 			return -EINVAL;
9417 		}
9418 		break;
9419 	}
9420 	default:
9421 		if (map->def.value_size != value_sz) {
9422 			pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
9423 				map->name, value_sz, map->def.value_size);
9424 			return -EINVAL;
9425 		}
9426 		break;
9427 	}
9428 	return 0;
9429 }
9430 
9431 int bpf_map__lookup_elem(const struct bpf_map *map,
9432 			 const void *key, size_t key_sz,
9433 			 void *value, size_t value_sz, __u64 flags)
9434 {
9435 	int err;
9436 
9437 	err = validate_map_op(map, key_sz, value_sz, true);
9438 	if (err)
9439 		return libbpf_err(err);
9440 
9441 	return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
9442 }
9443 
9444 int bpf_map__update_elem(const struct bpf_map *map,
9445 			 const void *key, size_t key_sz,
9446 			 const void *value, size_t value_sz, __u64 flags)
9447 {
9448 	int err;
9449 
9450 	err = validate_map_op(map, key_sz, value_sz, true);
9451 	if (err)
9452 		return libbpf_err(err);
9453 
9454 	return bpf_map_update_elem(map->fd, key, value, flags);
9455 }
9456 
9457 int bpf_map__delete_elem(const struct bpf_map *map,
9458 			 const void *key, size_t key_sz, __u64 flags)
9459 {
9460 	int err;
9461 
9462 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9463 	if (err)
9464 		return libbpf_err(err);
9465 
9466 	return bpf_map_delete_elem_flags(map->fd, key, flags);
9467 }
9468 
9469 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
9470 				    const void *key, size_t key_sz,
9471 				    void *value, size_t value_sz, __u64 flags)
9472 {
9473 	int err;
9474 
9475 	err = validate_map_op(map, key_sz, value_sz, true);
9476 	if (err)
9477 		return libbpf_err(err);
9478 
9479 	return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
9480 }
9481 
9482 int bpf_map__get_next_key(const struct bpf_map *map,
9483 			  const void *cur_key, void *next_key, size_t key_sz)
9484 {
9485 	int err;
9486 
9487 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9488 	if (err)
9489 		return libbpf_err(err);
9490 
9491 	return bpf_map_get_next_key(map->fd, cur_key, next_key);
9492 }
9493 
9494 long libbpf_get_error(const void *ptr)
9495 {
9496 	if (!IS_ERR_OR_NULL(ptr))
9497 		return 0;
9498 
9499 	if (IS_ERR(ptr))
9500 		errno = -PTR_ERR(ptr);
9501 
9502 	/* If ptr == NULL, then errno should be already set by the failing
9503 	 * API, because libbpf never returns NULL on success and it now always
9504 	 * sets errno on error. So no extra errno handling for ptr == NULL
9505 	 * case.
9506 	 */
9507 	return -errno;
9508 }
9509 
9510 /* Replace link's underlying BPF program with the new one */
9511 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
9512 {
9513 	int ret;
9514 
9515 	ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
9516 	return libbpf_err_errno(ret);
9517 }
9518 
9519 /* Release "ownership" of underlying BPF resource (typically, BPF program
9520  * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
9521  * link, when destructed through bpf_link__destroy() call won't attempt to
9522  * detach/unregisted that BPF resource. This is useful in situations where,
9523  * say, attached BPF program has to outlive userspace program that attached it
9524  * in the system. Depending on type of BPF program, though, there might be
9525  * additional steps (like pinning BPF program in BPF FS) necessary to ensure
9526  * exit of userspace program doesn't trigger automatic detachment and clean up
9527  * inside the kernel.
9528  */
9529 void bpf_link__disconnect(struct bpf_link *link)
9530 {
9531 	link->disconnected = true;
9532 }
9533 
9534 int bpf_link__destroy(struct bpf_link *link)
9535 {
9536 	int err = 0;
9537 
9538 	if (IS_ERR_OR_NULL(link))
9539 		return 0;
9540 
9541 	if (!link->disconnected && link->detach)
9542 		err = link->detach(link);
9543 	if (link->pin_path)
9544 		free(link->pin_path);
9545 	if (link->dealloc)
9546 		link->dealloc(link);
9547 	else
9548 		free(link);
9549 
9550 	return libbpf_err(err);
9551 }
9552 
9553 int bpf_link__fd(const struct bpf_link *link)
9554 {
9555 	return link->fd;
9556 }
9557 
9558 const char *bpf_link__pin_path(const struct bpf_link *link)
9559 {
9560 	return link->pin_path;
9561 }
9562 
9563 static int bpf_link__detach_fd(struct bpf_link *link)
9564 {
9565 	return libbpf_err_errno(close(link->fd));
9566 }
9567 
9568 struct bpf_link *bpf_link__open(const char *path)
9569 {
9570 	struct bpf_link *link;
9571 	int fd;
9572 
9573 	fd = bpf_obj_get(path);
9574 	if (fd < 0) {
9575 		fd = -errno;
9576 		pr_warn("failed to open link at %s: %d\n", path, fd);
9577 		return libbpf_err_ptr(fd);
9578 	}
9579 
9580 	link = calloc(1, sizeof(*link));
9581 	if (!link) {
9582 		close(fd);
9583 		return libbpf_err_ptr(-ENOMEM);
9584 	}
9585 	link->detach = &bpf_link__detach_fd;
9586 	link->fd = fd;
9587 
9588 	link->pin_path = strdup(path);
9589 	if (!link->pin_path) {
9590 		bpf_link__destroy(link);
9591 		return libbpf_err_ptr(-ENOMEM);
9592 	}
9593 
9594 	return link;
9595 }
9596 
9597 int bpf_link__detach(struct bpf_link *link)
9598 {
9599 	return bpf_link_detach(link->fd) ? -errno : 0;
9600 }
9601 
9602 int bpf_link__pin(struct bpf_link *link, const char *path)
9603 {
9604 	int err;
9605 
9606 	if (link->pin_path)
9607 		return libbpf_err(-EBUSY);
9608 	err = make_parent_dir(path);
9609 	if (err)
9610 		return libbpf_err(err);
9611 	err = check_path(path);
9612 	if (err)
9613 		return libbpf_err(err);
9614 
9615 	link->pin_path = strdup(path);
9616 	if (!link->pin_path)
9617 		return libbpf_err(-ENOMEM);
9618 
9619 	if (bpf_obj_pin(link->fd, link->pin_path)) {
9620 		err = -errno;
9621 		zfree(&link->pin_path);
9622 		return libbpf_err(err);
9623 	}
9624 
9625 	pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
9626 	return 0;
9627 }
9628 
9629 int bpf_link__unpin(struct bpf_link *link)
9630 {
9631 	int err;
9632 
9633 	if (!link->pin_path)
9634 		return libbpf_err(-EINVAL);
9635 
9636 	err = unlink(link->pin_path);
9637 	if (err != 0)
9638 		return -errno;
9639 
9640 	pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
9641 	zfree(&link->pin_path);
9642 	return 0;
9643 }
9644 
9645 struct bpf_link_perf {
9646 	struct bpf_link link;
9647 	int perf_event_fd;
9648 	/* legacy kprobe support: keep track of probe identifier and type */
9649 	char *legacy_probe_name;
9650 	bool legacy_is_kprobe;
9651 	bool legacy_is_retprobe;
9652 };
9653 
9654 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
9655 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
9656 
9657 static int bpf_link_perf_detach(struct bpf_link *link)
9658 {
9659 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9660 	int err = 0;
9661 
9662 	if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
9663 		err = -errno;
9664 
9665 	if (perf_link->perf_event_fd != link->fd)
9666 		close(perf_link->perf_event_fd);
9667 	close(link->fd);
9668 
9669 	/* legacy uprobe/kprobe needs to be removed after perf event fd closure */
9670 	if (perf_link->legacy_probe_name) {
9671 		if (perf_link->legacy_is_kprobe) {
9672 			err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
9673 							 perf_link->legacy_is_retprobe);
9674 		} else {
9675 			err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
9676 							 perf_link->legacy_is_retprobe);
9677 		}
9678 	}
9679 
9680 	return err;
9681 }
9682 
9683 static void bpf_link_perf_dealloc(struct bpf_link *link)
9684 {
9685 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9686 
9687 	free(perf_link->legacy_probe_name);
9688 	free(perf_link);
9689 }
9690 
9691 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
9692 						     const struct bpf_perf_event_opts *opts)
9693 {
9694 	char errmsg[STRERR_BUFSIZE];
9695 	struct bpf_link_perf *link;
9696 	int prog_fd, link_fd = -1, err;
9697 
9698 	if (!OPTS_VALID(opts, bpf_perf_event_opts))
9699 		return libbpf_err_ptr(-EINVAL);
9700 
9701 	if (pfd < 0) {
9702 		pr_warn("prog '%s': invalid perf event FD %d\n",
9703 			prog->name, pfd);
9704 		return libbpf_err_ptr(-EINVAL);
9705 	}
9706 	prog_fd = bpf_program__fd(prog);
9707 	if (prog_fd < 0) {
9708 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
9709 			prog->name);
9710 		return libbpf_err_ptr(-EINVAL);
9711 	}
9712 
9713 	link = calloc(1, sizeof(*link));
9714 	if (!link)
9715 		return libbpf_err_ptr(-ENOMEM);
9716 	link->link.detach = &bpf_link_perf_detach;
9717 	link->link.dealloc = &bpf_link_perf_dealloc;
9718 	link->perf_event_fd = pfd;
9719 
9720 	if (kernel_supports(prog->obj, FEAT_PERF_LINK)) {
9721 		DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
9722 			.perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
9723 
9724 		link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
9725 		if (link_fd < 0) {
9726 			err = -errno;
9727 			pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
9728 				prog->name, pfd,
9729 				err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9730 			goto err_out;
9731 		}
9732 		link->link.fd = link_fd;
9733 	} else {
9734 		if (OPTS_GET(opts, bpf_cookie, 0)) {
9735 			pr_warn("prog '%s': user context value is not supported\n", prog->name);
9736 			err = -EOPNOTSUPP;
9737 			goto err_out;
9738 		}
9739 
9740 		if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
9741 			err = -errno;
9742 			pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
9743 				prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9744 			if (err == -EPROTO)
9745 				pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
9746 					prog->name, pfd);
9747 			goto err_out;
9748 		}
9749 		link->link.fd = pfd;
9750 	}
9751 	if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
9752 		err = -errno;
9753 		pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
9754 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9755 		goto err_out;
9756 	}
9757 
9758 	return &link->link;
9759 err_out:
9760 	if (link_fd >= 0)
9761 		close(link_fd);
9762 	free(link);
9763 	return libbpf_err_ptr(err);
9764 }
9765 
9766 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
9767 {
9768 	return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
9769 }
9770 
9771 /*
9772  * this function is expected to parse integer in the range of [0, 2^31-1] from
9773  * given file using scanf format string fmt. If actual parsed value is
9774  * negative, the result might be indistinguishable from error
9775  */
9776 static int parse_uint_from_file(const char *file, const char *fmt)
9777 {
9778 	char buf[STRERR_BUFSIZE];
9779 	int err, ret;
9780 	FILE *f;
9781 
9782 	f = fopen(file, "r");
9783 	if (!f) {
9784 		err = -errno;
9785 		pr_debug("failed to open '%s': %s\n", file,
9786 			 libbpf_strerror_r(err, buf, sizeof(buf)));
9787 		return err;
9788 	}
9789 	err = fscanf(f, fmt, &ret);
9790 	if (err != 1) {
9791 		err = err == EOF ? -EIO : -errno;
9792 		pr_debug("failed to parse '%s': %s\n", file,
9793 			libbpf_strerror_r(err, buf, sizeof(buf)));
9794 		fclose(f);
9795 		return err;
9796 	}
9797 	fclose(f);
9798 	return ret;
9799 }
9800 
9801 static int determine_kprobe_perf_type(void)
9802 {
9803 	const char *file = "/sys/bus/event_source/devices/kprobe/type";
9804 
9805 	return parse_uint_from_file(file, "%d\n");
9806 }
9807 
9808 static int determine_uprobe_perf_type(void)
9809 {
9810 	const char *file = "/sys/bus/event_source/devices/uprobe/type";
9811 
9812 	return parse_uint_from_file(file, "%d\n");
9813 }
9814 
9815 static int determine_kprobe_retprobe_bit(void)
9816 {
9817 	const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
9818 
9819 	return parse_uint_from_file(file, "config:%d\n");
9820 }
9821 
9822 static int determine_uprobe_retprobe_bit(void)
9823 {
9824 	const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
9825 
9826 	return parse_uint_from_file(file, "config:%d\n");
9827 }
9828 
9829 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
9830 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
9831 
9832 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
9833 				 uint64_t offset, int pid, size_t ref_ctr_off)
9834 {
9835 	const size_t attr_sz = sizeof(struct perf_event_attr);
9836 	struct perf_event_attr attr;
9837 	char errmsg[STRERR_BUFSIZE];
9838 	int type, pfd;
9839 
9840 	if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
9841 		return -EINVAL;
9842 
9843 	memset(&attr, 0, attr_sz);
9844 
9845 	type = uprobe ? determine_uprobe_perf_type()
9846 		      : determine_kprobe_perf_type();
9847 	if (type < 0) {
9848 		pr_warn("failed to determine %s perf type: %s\n",
9849 			uprobe ? "uprobe" : "kprobe",
9850 			libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
9851 		return type;
9852 	}
9853 	if (retprobe) {
9854 		int bit = uprobe ? determine_uprobe_retprobe_bit()
9855 				 : determine_kprobe_retprobe_bit();
9856 
9857 		if (bit < 0) {
9858 			pr_warn("failed to determine %s retprobe bit: %s\n",
9859 				uprobe ? "uprobe" : "kprobe",
9860 				libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
9861 			return bit;
9862 		}
9863 		attr.config |= 1 << bit;
9864 	}
9865 	attr.size = attr_sz;
9866 	attr.type = type;
9867 	attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9868 	attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
9869 	attr.config2 = offset;		 /* kprobe_addr or probe_offset */
9870 
9871 	/* pid filter is meaningful only for uprobes */
9872 	pfd = syscall(__NR_perf_event_open, &attr,
9873 		      pid < 0 ? -1 : pid /* pid */,
9874 		      pid == -1 ? 0 : -1 /* cpu */,
9875 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9876 	return pfd >= 0 ? pfd : -errno;
9877 }
9878 
9879 static int append_to_file(const char *file, const char *fmt, ...)
9880 {
9881 	int fd, n, err = 0;
9882 	va_list ap;
9883 
9884 	fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
9885 	if (fd < 0)
9886 		return -errno;
9887 
9888 	va_start(ap, fmt);
9889 	n = vdprintf(fd, fmt, ap);
9890 	va_end(ap);
9891 
9892 	if (n < 0)
9893 		err = -errno;
9894 
9895 	close(fd);
9896 	return err;
9897 }
9898 
9899 #define DEBUGFS "/sys/kernel/debug/tracing"
9900 #define TRACEFS "/sys/kernel/tracing"
9901 
9902 static bool use_debugfs(void)
9903 {
9904 	static int has_debugfs = -1;
9905 
9906 	if (has_debugfs < 0)
9907 		has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
9908 
9909 	return has_debugfs == 1;
9910 }
9911 
9912 static const char *tracefs_path(void)
9913 {
9914 	return use_debugfs() ? DEBUGFS : TRACEFS;
9915 }
9916 
9917 static const char *tracefs_kprobe_events(void)
9918 {
9919 	return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
9920 }
9921 
9922 static const char *tracefs_uprobe_events(void)
9923 {
9924 	return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
9925 }
9926 
9927 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
9928 					 const char *kfunc_name, size_t offset)
9929 {
9930 	static int index = 0;
9931 
9932 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
9933 		 __sync_fetch_and_add(&index, 1));
9934 }
9935 
9936 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
9937 				   const char *kfunc_name, size_t offset)
9938 {
9939 	return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
9940 			      retprobe ? 'r' : 'p',
9941 			      retprobe ? "kretprobes" : "kprobes",
9942 			      probe_name, kfunc_name, offset);
9943 }
9944 
9945 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
9946 {
9947 	return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
9948 			      retprobe ? "kretprobes" : "kprobes", probe_name);
9949 }
9950 
9951 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
9952 {
9953 	char file[256];
9954 
9955 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
9956 		 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
9957 
9958 	return parse_uint_from_file(file, "%d\n");
9959 }
9960 
9961 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
9962 					 const char *kfunc_name, size_t offset, int pid)
9963 {
9964 	const size_t attr_sz = sizeof(struct perf_event_attr);
9965 	struct perf_event_attr attr;
9966 	char errmsg[STRERR_BUFSIZE];
9967 	int type, pfd, err;
9968 
9969 	err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
9970 	if (err < 0) {
9971 		pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
9972 			kfunc_name, offset,
9973 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9974 		return err;
9975 	}
9976 	type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
9977 	if (type < 0) {
9978 		err = type;
9979 		pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
9980 			kfunc_name, offset,
9981 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9982 		goto err_clean_legacy;
9983 	}
9984 
9985 	memset(&attr, 0, attr_sz);
9986 	attr.size = attr_sz;
9987 	attr.config = type;
9988 	attr.type = PERF_TYPE_TRACEPOINT;
9989 
9990 	pfd = syscall(__NR_perf_event_open, &attr,
9991 		      pid < 0 ? -1 : pid, /* pid */
9992 		      pid == -1 ? 0 : -1, /* cpu */
9993 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
9994 	if (pfd < 0) {
9995 		err = -errno;
9996 		pr_warn("legacy kprobe perf_event_open() failed: %s\n",
9997 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9998 		goto err_clean_legacy;
9999 	}
10000 	return pfd;
10001 
10002 err_clean_legacy:
10003 	/* Clear the newly added legacy kprobe_event */
10004 	remove_kprobe_event_legacy(probe_name, retprobe);
10005 	return err;
10006 }
10007 
10008 static const char *arch_specific_syscall_pfx(void)
10009 {
10010 #if defined(__x86_64__)
10011 	return "x64";
10012 #elif defined(__i386__)
10013 	return "ia32";
10014 #elif defined(__s390x__)
10015 	return "s390x";
10016 #elif defined(__s390__)
10017 	return "s390";
10018 #elif defined(__arm__)
10019 	return "arm";
10020 #elif defined(__aarch64__)
10021 	return "arm64";
10022 #elif defined(__mips__)
10023 	return "mips";
10024 #elif defined(__riscv)
10025 	return "riscv";
10026 #elif defined(__powerpc__)
10027 	return "powerpc";
10028 #elif defined(__powerpc64__)
10029 	return "powerpc64";
10030 #else
10031 	return NULL;
10032 #endif
10033 }
10034 
10035 static int probe_kern_syscall_wrapper(void)
10036 {
10037 	char syscall_name[64];
10038 	const char *ksys_pfx;
10039 
10040 	ksys_pfx = arch_specific_syscall_pfx();
10041 	if (!ksys_pfx)
10042 		return 0;
10043 
10044 	snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
10045 
10046 	if (determine_kprobe_perf_type() >= 0) {
10047 		int pfd;
10048 
10049 		pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
10050 		if (pfd >= 0)
10051 			close(pfd);
10052 
10053 		return pfd >= 0 ? 1 : 0;
10054 	} else { /* legacy mode */
10055 		char probe_name[128];
10056 
10057 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
10058 		if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
10059 			return 0;
10060 
10061 		(void)remove_kprobe_event_legacy(probe_name, false);
10062 		return 1;
10063 	}
10064 }
10065 
10066 struct bpf_link *
10067 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
10068 				const char *func_name,
10069 				const struct bpf_kprobe_opts *opts)
10070 {
10071 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10072 	char errmsg[STRERR_BUFSIZE];
10073 	char *legacy_probe = NULL;
10074 	struct bpf_link *link;
10075 	size_t offset;
10076 	bool retprobe, legacy;
10077 	int pfd, err;
10078 
10079 	if (!OPTS_VALID(opts, bpf_kprobe_opts))
10080 		return libbpf_err_ptr(-EINVAL);
10081 
10082 	retprobe = OPTS_GET(opts, retprobe, false);
10083 	offset = OPTS_GET(opts, offset, 0);
10084 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10085 
10086 	legacy = determine_kprobe_perf_type() < 0;
10087 	if (!legacy) {
10088 		pfd = perf_event_open_probe(false /* uprobe */, retprobe,
10089 					    func_name, offset,
10090 					    -1 /* pid */, 0 /* ref_ctr_off */);
10091 	} else {
10092 		char probe_name[256];
10093 
10094 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
10095 					     func_name, offset);
10096 
10097 		legacy_probe = strdup(probe_name);
10098 		if (!legacy_probe)
10099 			return libbpf_err_ptr(-ENOMEM);
10100 
10101 		pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
10102 						    offset, -1 /* pid */);
10103 	}
10104 	if (pfd < 0) {
10105 		err = -errno;
10106 		pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
10107 			prog->name, retprobe ? "kretprobe" : "kprobe",
10108 			func_name, offset,
10109 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10110 		goto err_out;
10111 	}
10112 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10113 	err = libbpf_get_error(link);
10114 	if (err) {
10115 		close(pfd);
10116 		pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
10117 			prog->name, retprobe ? "kretprobe" : "kprobe",
10118 			func_name, offset,
10119 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10120 		goto err_clean_legacy;
10121 	}
10122 	if (legacy) {
10123 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10124 
10125 		perf_link->legacy_probe_name = legacy_probe;
10126 		perf_link->legacy_is_kprobe = true;
10127 		perf_link->legacy_is_retprobe = retprobe;
10128 	}
10129 
10130 	return link;
10131 
10132 err_clean_legacy:
10133 	if (legacy)
10134 		remove_kprobe_event_legacy(legacy_probe, retprobe);
10135 err_out:
10136 	free(legacy_probe);
10137 	return libbpf_err_ptr(err);
10138 }
10139 
10140 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
10141 					    bool retprobe,
10142 					    const char *func_name)
10143 {
10144 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
10145 		.retprobe = retprobe,
10146 	);
10147 
10148 	return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
10149 }
10150 
10151 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
10152 					      const char *syscall_name,
10153 					      const struct bpf_ksyscall_opts *opts)
10154 {
10155 	LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
10156 	char func_name[128];
10157 
10158 	if (!OPTS_VALID(opts, bpf_ksyscall_opts))
10159 		return libbpf_err_ptr(-EINVAL);
10160 
10161 	if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
10162 		/* arch_specific_syscall_pfx() should never return NULL here
10163 		 * because it is guarded by kernel_supports(). However, since
10164 		 * compiler does not know that we have an explicit conditional
10165 		 * as well.
10166 		 */
10167 		snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
10168 			 arch_specific_syscall_pfx() ? : "", syscall_name);
10169 	} else {
10170 		snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
10171 	}
10172 
10173 	kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
10174 	kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10175 
10176 	return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
10177 }
10178 
10179 /* Adapted from perf/util/string.c */
10180 static bool glob_match(const char *str, const char *pat)
10181 {
10182 	while (*str && *pat && *pat != '*') {
10183 		if (*pat == '?') {      /* Matches any single character */
10184 			str++;
10185 			pat++;
10186 			continue;
10187 		}
10188 		if (*str != *pat)
10189 			return false;
10190 		str++;
10191 		pat++;
10192 	}
10193 	/* Check wild card */
10194 	if (*pat == '*') {
10195 		while (*pat == '*')
10196 			pat++;
10197 		if (!*pat) /* Tail wild card matches all */
10198 			return true;
10199 		while (*str)
10200 			if (glob_match(str++, pat))
10201 				return true;
10202 	}
10203 	return !*str && !*pat;
10204 }
10205 
10206 struct kprobe_multi_resolve {
10207 	const char *pattern;
10208 	unsigned long *addrs;
10209 	size_t cap;
10210 	size_t cnt;
10211 };
10212 
10213 static int
10214 resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type,
10215 			const char *sym_name, void *ctx)
10216 {
10217 	struct kprobe_multi_resolve *res = ctx;
10218 	int err;
10219 
10220 	if (!glob_match(sym_name, res->pattern))
10221 		return 0;
10222 
10223 	err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long),
10224 				res->cnt + 1);
10225 	if (err)
10226 		return err;
10227 
10228 	res->addrs[res->cnt++] = (unsigned long) sym_addr;
10229 	return 0;
10230 }
10231 
10232 struct bpf_link *
10233 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
10234 				      const char *pattern,
10235 				      const struct bpf_kprobe_multi_opts *opts)
10236 {
10237 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
10238 	struct kprobe_multi_resolve res = {
10239 		.pattern = pattern,
10240 	};
10241 	struct bpf_link *link = NULL;
10242 	char errmsg[STRERR_BUFSIZE];
10243 	const unsigned long *addrs;
10244 	int err, link_fd, prog_fd;
10245 	const __u64 *cookies;
10246 	const char **syms;
10247 	bool retprobe;
10248 	size_t cnt;
10249 
10250 	if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
10251 		return libbpf_err_ptr(-EINVAL);
10252 
10253 	syms    = OPTS_GET(opts, syms, false);
10254 	addrs   = OPTS_GET(opts, addrs, false);
10255 	cnt     = OPTS_GET(opts, cnt, false);
10256 	cookies = OPTS_GET(opts, cookies, false);
10257 
10258 	if (!pattern && !addrs && !syms)
10259 		return libbpf_err_ptr(-EINVAL);
10260 	if (pattern && (addrs || syms || cookies || cnt))
10261 		return libbpf_err_ptr(-EINVAL);
10262 	if (!pattern && !cnt)
10263 		return libbpf_err_ptr(-EINVAL);
10264 	if (addrs && syms)
10265 		return libbpf_err_ptr(-EINVAL);
10266 
10267 	if (pattern) {
10268 		err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res);
10269 		if (err)
10270 			goto error;
10271 		if (!res.cnt) {
10272 			err = -ENOENT;
10273 			goto error;
10274 		}
10275 		addrs = res.addrs;
10276 		cnt = res.cnt;
10277 	}
10278 
10279 	retprobe = OPTS_GET(opts, retprobe, false);
10280 
10281 	lopts.kprobe_multi.syms = syms;
10282 	lopts.kprobe_multi.addrs = addrs;
10283 	lopts.kprobe_multi.cookies = cookies;
10284 	lopts.kprobe_multi.cnt = cnt;
10285 	lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
10286 
10287 	link = calloc(1, sizeof(*link));
10288 	if (!link) {
10289 		err = -ENOMEM;
10290 		goto error;
10291 	}
10292 	link->detach = &bpf_link__detach_fd;
10293 
10294 	prog_fd = bpf_program__fd(prog);
10295 	link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts);
10296 	if (link_fd < 0) {
10297 		err = -errno;
10298 		pr_warn("prog '%s': failed to attach: %s\n",
10299 			prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10300 		goto error;
10301 	}
10302 	link->fd = link_fd;
10303 	free(res.addrs);
10304 	return link;
10305 
10306 error:
10307 	free(link);
10308 	free(res.addrs);
10309 	return libbpf_err_ptr(err);
10310 }
10311 
10312 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10313 {
10314 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
10315 	unsigned long offset = 0;
10316 	const char *func_name;
10317 	char *func;
10318 	int n;
10319 
10320 	*link = NULL;
10321 
10322 	/* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
10323 	if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
10324 		return 0;
10325 
10326 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
10327 	if (opts.retprobe)
10328 		func_name = prog->sec_name + sizeof("kretprobe/") - 1;
10329 	else
10330 		func_name = prog->sec_name + sizeof("kprobe/") - 1;
10331 
10332 	n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
10333 	if (n < 1) {
10334 		pr_warn("kprobe name is invalid: %s\n", func_name);
10335 		return -EINVAL;
10336 	}
10337 	if (opts.retprobe && offset != 0) {
10338 		free(func);
10339 		pr_warn("kretprobes do not support offset specification\n");
10340 		return -EINVAL;
10341 	}
10342 
10343 	opts.offset = offset;
10344 	*link = bpf_program__attach_kprobe_opts(prog, func, &opts);
10345 	free(func);
10346 	return libbpf_get_error(*link);
10347 }
10348 
10349 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10350 {
10351 	LIBBPF_OPTS(bpf_ksyscall_opts, opts);
10352 	const char *syscall_name;
10353 
10354 	*link = NULL;
10355 
10356 	/* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
10357 	if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
10358 		return 0;
10359 
10360 	opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
10361 	if (opts.retprobe)
10362 		syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
10363 	else
10364 		syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
10365 
10366 	*link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
10367 	return *link ? 0 : -errno;
10368 }
10369 
10370 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10371 {
10372 	LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
10373 	const char *spec;
10374 	char *pattern;
10375 	int n;
10376 
10377 	*link = NULL;
10378 
10379 	/* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
10380 	if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
10381 	    strcmp(prog->sec_name, "kretprobe.multi") == 0)
10382 		return 0;
10383 
10384 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
10385 	if (opts.retprobe)
10386 		spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
10387 	else
10388 		spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
10389 
10390 	n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
10391 	if (n < 1) {
10392 		pr_warn("kprobe multi pattern is invalid: %s\n", pattern);
10393 		return -EINVAL;
10394 	}
10395 
10396 	*link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
10397 	free(pattern);
10398 	return libbpf_get_error(*link);
10399 }
10400 
10401 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
10402 					 const char *binary_path, uint64_t offset)
10403 {
10404 	int i;
10405 
10406 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
10407 
10408 	/* sanitize binary_path in the probe name */
10409 	for (i = 0; buf[i]; i++) {
10410 		if (!isalnum(buf[i]))
10411 			buf[i] = '_';
10412 	}
10413 }
10414 
10415 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
10416 					  const char *binary_path, size_t offset)
10417 {
10418 	return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
10419 			      retprobe ? 'r' : 'p',
10420 			      retprobe ? "uretprobes" : "uprobes",
10421 			      probe_name, binary_path, offset);
10422 }
10423 
10424 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
10425 {
10426 	return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
10427 			      retprobe ? "uretprobes" : "uprobes", probe_name);
10428 }
10429 
10430 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10431 {
10432 	char file[512];
10433 
10434 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10435 		 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
10436 
10437 	return parse_uint_from_file(file, "%d\n");
10438 }
10439 
10440 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
10441 					 const char *binary_path, size_t offset, int pid)
10442 {
10443 	const size_t attr_sz = sizeof(struct perf_event_attr);
10444 	struct perf_event_attr attr;
10445 	int type, pfd, err;
10446 
10447 	err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
10448 	if (err < 0) {
10449 		pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
10450 			binary_path, (size_t)offset, err);
10451 		return err;
10452 	}
10453 	type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
10454 	if (type < 0) {
10455 		err = type;
10456 		pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
10457 			binary_path, offset, err);
10458 		goto err_clean_legacy;
10459 	}
10460 
10461 	memset(&attr, 0, attr_sz);
10462 	attr.size = attr_sz;
10463 	attr.config = type;
10464 	attr.type = PERF_TYPE_TRACEPOINT;
10465 
10466 	pfd = syscall(__NR_perf_event_open, &attr,
10467 		      pid < 0 ? -1 : pid, /* pid */
10468 		      pid == -1 ? 0 : -1, /* cpu */
10469 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
10470 	if (pfd < 0) {
10471 		err = -errno;
10472 		pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
10473 		goto err_clean_legacy;
10474 	}
10475 	return pfd;
10476 
10477 err_clean_legacy:
10478 	/* Clear the newly added legacy uprobe_event */
10479 	remove_uprobe_event_legacy(probe_name, retprobe);
10480 	return err;
10481 }
10482 
10483 /* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */
10484 static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn)
10485 {
10486 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
10487 		GElf_Shdr sh;
10488 
10489 		if (!gelf_getshdr(scn, &sh))
10490 			continue;
10491 		if (sh.sh_type == sh_type)
10492 			return scn;
10493 	}
10494 	return NULL;
10495 }
10496 
10497 /* Find offset of function name in object specified by path.  "name" matches
10498  * symbol name or name@@LIB for library functions.
10499  */
10500 static long elf_find_func_offset(const char *binary_path, const char *name)
10501 {
10502 	int fd, i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB };
10503 	bool is_shared_lib, is_name_qualified;
10504 	char errmsg[STRERR_BUFSIZE];
10505 	long ret = -ENOENT;
10506 	size_t name_len;
10507 	GElf_Ehdr ehdr;
10508 	Elf *elf;
10509 
10510 	fd = open(binary_path, O_RDONLY | O_CLOEXEC);
10511 	if (fd < 0) {
10512 		ret = -errno;
10513 		pr_warn("failed to open %s: %s\n", binary_path,
10514 			libbpf_strerror_r(ret, errmsg, sizeof(errmsg)));
10515 		return ret;
10516 	}
10517 	elf = elf_begin(fd, ELF_C_READ_MMAP, NULL);
10518 	if (!elf) {
10519 		pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1));
10520 		close(fd);
10521 		return -LIBBPF_ERRNO__FORMAT;
10522 	}
10523 	if (!gelf_getehdr(elf, &ehdr)) {
10524 		pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1));
10525 		ret = -LIBBPF_ERRNO__FORMAT;
10526 		goto out;
10527 	}
10528 	/* for shared lib case, we do not need to calculate relative offset */
10529 	is_shared_lib = ehdr.e_type == ET_DYN;
10530 
10531 	name_len = strlen(name);
10532 	/* Does name specify "@@LIB"? */
10533 	is_name_qualified = strstr(name, "@@") != NULL;
10534 
10535 	/* Search SHT_DYNSYM, SHT_SYMTAB for symbol.  This search order is used because if
10536 	 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically
10537 	 * linked binary may not have SHT_DYMSYM, so absence of a section should not be
10538 	 * reported as a warning/error.
10539 	 */
10540 	for (i = 0; i < ARRAY_SIZE(sh_types); i++) {
10541 		size_t nr_syms, strtabidx, idx;
10542 		Elf_Data *symbols = NULL;
10543 		Elf_Scn *scn = NULL;
10544 		int last_bind = -1;
10545 		const char *sname;
10546 		GElf_Shdr sh;
10547 
10548 		scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL);
10549 		if (!scn) {
10550 			pr_debug("elf: failed to find symbol table ELF sections in '%s'\n",
10551 				 binary_path);
10552 			continue;
10553 		}
10554 		if (!gelf_getshdr(scn, &sh))
10555 			continue;
10556 		strtabidx = sh.sh_link;
10557 		symbols = elf_getdata(scn, 0);
10558 		if (!symbols) {
10559 			pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n",
10560 				binary_path, elf_errmsg(-1));
10561 			ret = -LIBBPF_ERRNO__FORMAT;
10562 			goto out;
10563 		}
10564 		nr_syms = symbols->d_size / sh.sh_entsize;
10565 
10566 		for (idx = 0; idx < nr_syms; idx++) {
10567 			int curr_bind;
10568 			GElf_Sym sym;
10569 			Elf_Scn *sym_scn;
10570 			GElf_Shdr sym_sh;
10571 
10572 			if (!gelf_getsym(symbols, idx, &sym))
10573 				continue;
10574 
10575 			if (GELF_ST_TYPE(sym.st_info) != STT_FUNC)
10576 				continue;
10577 
10578 			sname = elf_strptr(elf, strtabidx, sym.st_name);
10579 			if (!sname)
10580 				continue;
10581 
10582 			curr_bind = GELF_ST_BIND(sym.st_info);
10583 
10584 			/* User can specify func, func@@LIB or func@@LIB_VERSION. */
10585 			if (strncmp(sname, name, name_len) != 0)
10586 				continue;
10587 			/* ...but we don't want a search for "foo" to match 'foo2" also, so any
10588 			 * additional characters in sname should be of the form "@@LIB".
10589 			 */
10590 			if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@')
10591 				continue;
10592 
10593 			if (ret >= 0) {
10594 				/* handle multiple matches */
10595 				if (last_bind != STB_WEAK && curr_bind != STB_WEAK) {
10596 					/* Only accept one non-weak bind. */
10597 					pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n",
10598 						sname, name, binary_path);
10599 					ret = -LIBBPF_ERRNO__FORMAT;
10600 					goto out;
10601 				} else if (curr_bind == STB_WEAK) {
10602 					/* already have a non-weak bind, and
10603 					 * this is a weak bind, so ignore.
10604 					 */
10605 					continue;
10606 				}
10607 			}
10608 
10609 			/* Transform symbol's virtual address (absolute for
10610 			 * binaries and relative for shared libs) into file
10611 			 * offset, which is what kernel is expecting for
10612 			 * uprobe/uretprobe attachment.
10613 			 * See Documentation/trace/uprobetracer.rst for more
10614 			 * details.
10615 			 * This is done by looking up symbol's containing
10616 			 * section's header and using it's virtual address
10617 			 * (sh_addr) and corresponding file offset (sh_offset)
10618 			 * to transform sym.st_value (virtual address) into
10619 			 * desired final file offset.
10620 			 */
10621 			sym_scn = elf_getscn(elf, sym.st_shndx);
10622 			if (!sym_scn)
10623 				continue;
10624 			if (!gelf_getshdr(sym_scn, &sym_sh))
10625 				continue;
10626 
10627 			ret = sym.st_value - sym_sh.sh_addr + sym_sh.sh_offset;
10628 			last_bind = curr_bind;
10629 		}
10630 		if (ret > 0)
10631 			break;
10632 	}
10633 
10634 	if (ret > 0) {
10635 		pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path,
10636 			 ret);
10637 	} else {
10638 		if (ret == 0) {
10639 			pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path,
10640 				is_shared_lib ? "should not be 0 in a shared library" :
10641 						"try using shared library path instead");
10642 			ret = -ENOENT;
10643 		} else {
10644 			pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path);
10645 		}
10646 	}
10647 out:
10648 	elf_end(elf);
10649 	close(fd);
10650 	return ret;
10651 }
10652 
10653 static const char *arch_specific_lib_paths(void)
10654 {
10655 	/*
10656 	 * Based on https://packages.debian.org/sid/libc6.
10657 	 *
10658 	 * Assume that the traced program is built for the same architecture
10659 	 * as libbpf, which should cover the vast majority of cases.
10660 	 */
10661 #if defined(__x86_64__)
10662 	return "/lib/x86_64-linux-gnu";
10663 #elif defined(__i386__)
10664 	return "/lib/i386-linux-gnu";
10665 #elif defined(__s390x__)
10666 	return "/lib/s390x-linux-gnu";
10667 #elif defined(__s390__)
10668 	return "/lib/s390-linux-gnu";
10669 #elif defined(__arm__) && defined(__SOFTFP__)
10670 	return "/lib/arm-linux-gnueabi";
10671 #elif defined(__arm__) && !defined(__SOFTFP__)
10672 	return "/lib/arm-linux-gnueabihf";
10673 #elif defined(__aarch64__)
10674 	return "/lib/aarch64-linux-gnu";
10675 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
10676 	return "/lib/mips64el-linux-gnuabi64";
10677 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
10678 	return "/lib/mipsel-linux-gnu";
10679 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
10680 	return "/lib/powerpc64le-linux-gnu";
10681 #elif defined(__sparc__) && defined(__arch64__)
10682 	return "/lib/sparc64-linux-gnu";
10683 #elif defined(__riscv) && __riscv_xlen == 64
10684 	return "/lib/riscv64-linux-gnu";
10685 #else
10686 	return NULL;
10687 #endif
10688 }
10689 
10690 /* Get full path to program/shared library. */
10691 static int resolve_full_path(const char *file, char *result, size_t result_sz)
10692 {
10693 	const char *search_paths[3] = {};
10694 	int i, perm;
10695 
10696 	if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
10697 		search_paths[0] = getenv("LD_LIBRARY_PATH");
10698 		search_paths[1] = "/usr/lib64:/usr/lib";
10699 		search_paths[2] = arch_specific_lib_paths();
10700 		perm = R_OK;
10701 	} else {
10702 		search_paths[0] = getenv("PATH");
10703 		search_paths[1] = "/usr/bin:/usr/sbin";
10704 		perm = R_OK | X_OK;
10705 	}
10706 
10707 	for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
10708 		const char *s;
10709 
10710 		if (!search_paths[i])
10711 			continue;
10712 		for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
10713 			char *next_path;
10714 			int seg_len;
10715 
10716 			if (s[0] == ':')
10717 				s++;
10718 			next_path = strchr(s, ':');
10719 			seg_len = next_path ? next_path - s : strlen(s);
10720 			if (!seg_len)
10721 				continue;
10722 			snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
10723 			/* ensure it has required permissions */
10724 			if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
10725 				continue;
10726 			pr_debug("resolved '%s' to '%s'\n", file, result);
10727 			return 0;
10728 		}
10729 	}
10730 	return -ENOENT;
10731 }
10732 
10733 LIBBPF_API struct bpf_link *
10734 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
10735 				const char *binary_path, size_t func_offset,
10736 				const struct bpf_uprobe_opts *opts)
10737 {
10738 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10739 	char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
10740 	char full_binary_path[PATH_MAX];
10741 	struct bpf_link *link;
10742 	size_t ref_ctr_off;
10743 	int pfd, err;
10744 	bool retprobe, legacy;
10745 	const char *func_name;
10746 
10747 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
10748 		return libbpf_err_ptr(-EINVAL);
10749 
10750 	retprobe = OPTS_GET(opts, retprobe, false);
10751 	ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
10752 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10753 
10754 	if (!binary_path)
10755 		return libbpf_err_ptr(-EINVAL);
10756 
10757 	if (!strchr(binary_path, '/')) {
10758 		err = resolve_full_path(binary_path, full_binary_path,
10759 					sizeof(full_binary_path));
10760 		if (err) {
10761 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
10762 				prog->name, binary_path, err);
10763 			return libbpf_err_ptr(err);
10764 		}
10765 		binary_path = full_binary_path;
10766 	}
10767 	func_name = OPTS_GET(opts, func_name, NULL);
10768 	if (func_name) {
10769 		long sym_off;
10770 
10771 		sym_off = elf_find_func_offset(binary_path, func_name);
10772 		if (sym_off < 0)
10773 			return libbpf_err_ptr(sym_off);
10774 		func_offset += sym_off;
10775 	}
10776 
10777 	legacy = determine_uprobe_perf_type() < 0;
10778 	if (!legacy) {
10779 		pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
10780 					    func_offset, pid, ref_ctr_off);
10781 	} else {
10782 		char probe_name[PATH_MAX + 64];
10783 
10784 		if (ref_ctr_off)
10785 			return libbpf_err_ptr(-EINVAL);
10786 
10787 		gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
10788 					     binary_path, func_offset);
10789 
10790 		legacy_probe = strdup(probe_name);
10791 		if (!legacy_probe)
10792 			return libbpf_err_ptr(-ENOMEM);
10793 
10794 		pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
10795 						    binary_path, func_offset, pid);
10796 	}
10797 	if (pfd < 0) {
10798 		err = -errno;
10799 		pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
10800 			prog->name, retprobe ? "uretprobe" : "uprobe",
10801 			binary_path, func_offset,
10802 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10803 		goto err_out;
10804 	}
10805 
10806 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10807 	err = libbpf_get_error(link);
10808 	if (err) {
10809 		close(pfd);
10810 		pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
10811 			prog->name, retprobe ? "uretprobe" : "uprobe",
10812 			binary_path, func_offset,
10813 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10814 		goto err_clean_legacy;
10815 	}
10816 	if (legacy) {
10817 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10818 
10819 		perf_link->legacy_probe_name = legacy_probe;
10820 		perf_link->legacy_is_kprobe = false;
10821 		perf_link->legacy_is_retprobe = retprobe;
10822 	}
10823 	return link;
10824 
10825 err_clean_legacy:
10826 	if (legacy)
10827 		remove_uprobe_event_legacy(legacy_probe, retprobe);
10828 err_out:
10829 	free(legacy_probe);
10830 	return libbpf_err_ptr(err);
10831 }
10832 
10833 /* Format of u[ret]probe section definition supporting auto-attach:
10834  * u[ret]probe/binary:function[+offset]
10835  *
10836  * binary can be an absolute/relative path or a filename; the latter is resolved to a
10837  * full binary path via bpf_program__attach_uprobe_opts.
10838  *
10839  * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
10840  * specified (and auto-attach is not possible) or the above format is specified for
10841  * auto-attach.
10842  */
10843 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10844 {
10845 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
10846 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
10847 	int n, ret = -EINVAL;
10848 	long offset = 0;
10849 
10850 	*link = NULL;
10851 
10852 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li",
10853 		   &probe_type, &binary_path, &func_name, &offset);
10854 	switch (n) {
10855 	case 1:
10856 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
10857 		ret = 0;
10858 		break;
10859 	case 2:
10860 		pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
10861 			prog->name, prog->sec_name);
10862 		break;
10863 	case 3:
10864 	case 4:
10865 		opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
10866 				strcmp(probe_type, "uretprobe.s") == 0;
10867 		if (opts.retprobe && offset != 0) {
10868 			pr_warn("prog '%s': uretprobes do not support offset specification\n",
10869 				prog->name);
10870 			break;
10871 		}
10872 		opts.func_name = func_name;
10873 		*link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
10874 		ret = libbpf_get_error(*link);
10875 		break;
10876 	default:
10877 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
10878 			prog->sec_name);
10879 		break;
10880 	}
10881 	free(probe_type);
10882 	free(binary_path);
10883 	free(func_name);
10884 
10885 	return ret;
10886 }
10887 
10888 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
10889 					    bool retprobe, pid_t pid,
10890 					    const char *binary_path,
10891 					    size_t func_offset)
10892 {
10893 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
10894 
10895 	return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
10896 }
10897 
10898 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
10899 					  pid_t pid, const char *binary_path,
10900 					  const char *usdt_provider, const char *usdt_name,
10901 					  const struct bpf_usdt_opts *opts)
10902 {
10903 	char resolved_path[512];
10904 	struct bpf_object *obj = prog->obj;
10905 	struct bpf_link *link;
10906 	__u64 usdt_cookie;
10907 	int err;
10908 
10909 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
10910 		return libbpf_err_ptr(-EINVAL);
10911 
10912 	if (bpf_program__fd(prog) < 0) {
10913 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
10914 			prog->name);
10915 		return libbpf_err_ptr(-EINVAL);
10916 	}
10917 
10918 	if (!binary_path)
10919 		return libbpf_err_ptr(-EINVAL);
10920 
10921 	if (!strchr(binary_path, '/')) {
10922 		err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
10923 		if (err) {
10924 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
10925 				prog->name, binary_path, err);
10926 			return libbpf_err_ptr(err);
10927 		}
10928 		binary_path = resolved_path;
10929 	}
10930 
10931 	/* USDT manager is instantiated lazily on first USDT attach. It will
10932 	 * be destroyed together with BPF object in bpf_object__close().
10933 	 */
10934 	if (IS_ERR(obj->usdt_man))
10935 		return libbpf_ptr(obj->usdt_man);
10936 	if (!obj->usdt_man) {
10937 		obj->usdt_man = usdt_manager_new(obj);
10938 		if (IS_ERR(obj->usdt_man))
10939 			return libbpf_ptr(obj->usdt_man);
10940 	}
10941 
10942 	usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
10943 	link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
10944 				        usdt_provider, usdt_name, usdt_cookie);
10945 	err = libbpf_get_error(link);
10946 	if (err)
10947 		return libbpf_err_ptr(err);
10948 	return link;
10949 }
10950 
10951 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10952 {
10953 	char *path = NULL, *provider = NULL, *name = NULL;
10954 	const char *sec_name;
10955 	int n, err;
10956 
10957 	sec_name = bpf_program__section_name(prog);
10958 	if (strcmp(sec_name, "usdt") == 0) {
10959 		/* no auto-attach for just SEC("usdt") */
10960 		*link = NULL;
10961 		return 0;
10962 	}
10963 
10964 	n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
10965 	if (n != 3) {
10966 		pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
10967 			sec_name);
10968 		err = -EINVAL;
10969 	} else {
10970 		*link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
10971 						 provider, name, NULL);
10972 		err = libbpf_get_error(*link);
10973 	}
10974 	free(path);
10975 	free(provider);
10976 	free(name);
10977 	return err;
10978 }
10979 
10980 static int determine_tracepoint_id(const char *tp_category,
10981 				   const char *tp_name)
10982 {
10983 	char file[PATH_MAX];
10984 	int ret;
10985 
10986 	ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10987 		       tracefs_path(), tp_category, tp_name);
10988 	if (ret < 0)
10989 		return -errno;
10990 	if (ret >= sizeof(file)) {
10991 		pr_debug("tracepoint %s/%s path is too long\n",
10992 			 tp_category, tp_name);
10993 		return -E2BIG;
10994 	}
10995 	return parse_uint_from_file(file, "%d\n");
10996 }
10997 
10998 static int perf_event_open_tracepoint(const char *tp_category,
10999 				      const char *tp_name)
11000 {
11001 	const size_t attr_sz = sizeof(struct perf_event_attr);
11002 	struct perf_event_attr attr;
11003 	char errmsg[STRERR_BUFSIZE];
11004 	int tp_id, pfd, err;
11005 
11006 	tp_id = determine_tracepoint_id(tp_category, tp_name);
11007 	if (tp_id < 0) {
11008 		pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
11009 			tp_category, tp_name,
11010 			libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
11011 		return tp_id;
11012 	}
11013 
11014 	memset(&attr, 0, attr_sz);
11015 	attr.type = PERF_TYPE_TRACEPOINT;
11016 	attr.size = attr_sz;
11017 	attr.config = tp_id;
11018 
11019 	pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
11020 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11021 	if (pfd < 0) {
11022 		err = -errno;
11023 		pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
11024 			tp_category, tp_name,
11025 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11026 		return err;
11027 	}
11028 	return pfd;
11029 }
11030 
11031 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
11032 						     const char *tp_category,
11033 						     const char *tp_name,
11034 						     const struct bpf_tracepoint_opts *opts)
11035 {
11036 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11037 	char errmsg[STRERR_BUFSIZE];
11038 	struct bpf_link *link;
11039 	int pfd, err;
11040 
11041 	if (!OPTS_VALID(opts, bpf_tracepoint_opts))
11042 		return libbpf_err_ptr(-EINVAL);
11043 
11044 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11045 
11046 	pfd = perf_event_open_tracepoint(tp_category, tp_name);
11047 	if (pfd < 0) {
11048 		pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
11049 			prog->name, tp_category, tp_name,
11050 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11051 		return libbpf_err_ptr(pfd);
11052 	}
11053 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11054 	err = libbpf_get_error(link);
11055 	if (err) {
11056 		close(pfd);
11057 		pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
11058 			prog->name, tp_category, tp_name,
11059 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11060 		return libbpf_err_ptr(err);
11061 	}
11062 	return link;
11063 }
11064 
11065 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
11066 						const char *tp_category,
11067 						const char *tp_name)
11068 {
11069 	return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
11070 }
11071 
11072 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11073 {
11074 	char *sec_name, *tp_cat, *tp_name;
11075 
11076 	*link = NULL;
11077 
11078 	/* no auto-attach for SEC("tp") or SEC("tracepoint") */
11079 	if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
11080 		return 0;
11081 
11082 	sec_name = strdup(prog->sec_name);
11083 	if (!sec_name)
11084 		return -ENOMEM;
11085 
11086 	/* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
11087 	if (str_has_pfx(prog->sec_name, "tp/"))
11088 		tp_cat = sec_name + sizeof("tp/") - 1;
11089 	else
11090 		tp_cat = sec_name + sizeof("tracepoint/") - 1;
11091 	tp_name = strchr(tp_cat, '/');
11092 	if (!tp_name) {
11093 		free(sec_name);
11094 		return -EINVAL;
11095 	}
11096 	*tp_name = '\0';
11097 	tp_name++;
11098 
11099 	*link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
11100 	free(sec_name);
11101 	return libbpf_get_error(*link);
11102 }
11103 
11104 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
11105 						    const char *tp_name)
11106 {
11107 	char errmsg[STRERR_BUFSIZE];
11108 	struct bpf_link *link;
11109 	int prog_fd, pfd;
11110 
11111 	prog_fd = bpf_program__fd(prog);
11112 	if (prog_fd < 0) {
11113 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11114 		return libbpf_err_ptr(-EINVAL);
11115 	}
11116 
11117 	link = calloc(1, sizeof(*link));
11118 	if (!link)
11119 		return libbpf_err_ptr(-ENOMEM);
11120 	link->detach = &bpf_link__detach_fd;
11121 
11122 	pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
11123 	if (pfd < 0) {
11124 		pfd = -errno;
11125 		free(link);
11126 		pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
11127 			prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11128 		return libbpf_err_ptr(pfd);
11129 	}
11130 	link->fd = pfd;
11131 	return link;
11132 }
11133 
11134 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11135 {
11136 	static const char *const prefixes[] = {
11137 		"raw_tp",
11138 		"raw_tracepoint",
11139 		"raw_tp.w",
11140 		"raw_tracepoint.w",
11141 	};
11142 	size_t i;
11143 	const char *tp_name = NULL;
11144 
11145 	*link = NULL;
11146 
11147 	for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
11148 		size_t pfx_len;
11149 
11150 		if (!str_has_pfx(prog->sec_name, prefixes[i]))
11151 			continue;
11152 
11153 		pfx_len = strlen(prefixes[i]);
11154 		/* no auto-attach case of, e.g., SEC("raw_tp") */
11155 		if (prog->sec_name[pfx_len] == '\0')
11156 			return 0;
11157 
11158 		if (prog->sec_name[pfx_len] != '/')
11159 			continue;
11160 
11161 		tp_name = prog->sec_name + pfx_len + 1;
11162 		break;
11163 	}
11164 
11165 	if (!tp_name) {
11166 		pr_warn("prog '%s': invalid section name '%s'\n",
11167 			prog->name, prog->sec_name);
11168 		return -EINVAL;
11169 	}
11170 
11171 	*link = bpf_program__attach_raw_tracepoint(prog, tp_name);
11172 	return libbpf_get_error(link);
11173 }
11174 
11175 /* Common logic for all BPF program types that attach to a btf_id */
11176 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
11177 						   const struct bpf_trace_opts *opts)
11178 {
11179 	LIBBPF_OPTS(bpf_link_create_opts, link_opts);
11180 	char errmsg[STRERR_BUFSIZE];
11181 	struct bpf_link *link;
11182 	int prog_fd, pfd;
11183 
11184 	if (!OPTS_VALID(opts, bpf_trace_opts))
11185 		return libbpf_err_ptr(-EINVAL);
11186 
11187 	prog_fd = bpf_program__fd(prog);
11188 	if (prog_fd < 0) {
11189 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11190 		return libbpf_err_ptr(-EINVAL);
11191 	}
11192 
11193 	link = calloc(1, sizeof(*link));
11194 	if (!link)
11195 		return libbpf_err_ptr(-ENOMEM);
11196 	link->detach = &bpf_link__detach_fd;
11197 
11198 	/* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
11199 	link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
11200 	pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
11201 	if (pfd < 0) {
11202 		pfd = -errno;
11203 		free(link);
11204 		pr_warn("prog '%s': failed to attach: %s\n",
11205 			prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11206 		return libbpf_err_ptr(pfd);
11207 	}
11208 	link->fd = pfd;
11209 	return link;
11210 }
11211 
11212 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
11213 {
11214 	return bpf_program__attach_btf_id(prog, NULL);
11215 }
11216 
11217 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
11218 						const struct bpf_trace_opts *opts)
11219 {
11220 	return bpf_program__attach_btf_id(prog, opts);
11221 }
11222 
11223 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
11224 {
11225 	return bpf_program__attach_btf_id(prog, NULL);
11226 }
11227 
11228 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11229 {
11230 	*link = bpf_program__attach_trace(prog);
11231 	return libbpf_get_error(*link);
11232 }
11233 
11234 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11235 {
11236 	*link = bpf_program__attach_lsm(prog);
11237 	return libbpf_get_error(*link);
11238 }
11239 
11240 static struct bpf_link *
11241 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id,
11242 		       const char *target_name)
11243 {
11244 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts,
11245 			    .target_btf_id = btf_id);
11246 	enum bpf_attach_type attach_type;
11247 	char errmsg[STRERR_BUFSIZE];
11248 	struct bpf_link *link;
11249 	int prog_fd, link_fd;
11250 
11251 	prog_fd = bpf_program__fd(prog);
11252 	if (prog_fd < 0) {
11253 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11254 		return libbpf_err_ptr(-EINVAL);
11255 	}
11256 
11257 	link = calloc(1, sizeof(*link));
11258 	if (!link)
11259 		return libbpf_err_ptr(-ENOMEM);
11260 	link->detach = &bpf_link__detach_fd;
11261 
11262 	attach_type = bpf_program__expected_attach_type(prog);
11263 	link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts);
11264 	if (link_fd < 0) {
11265 		link_fd = -errno;
11266 		free(link);
11267 		pr_warn("prog '%s': failed to attach to %s: %s\n",
11268 			prog->name, target_name,
11269 			libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11270 		return libbpf_err_ptr(link_fd);
11271 	}
11272 	link->fd = link_fd;
11273 	return link;
11274 }
11275 
11276 struct bpf_link *
11277 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
11278 {
11279 	return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup");
11280 }
11281 
11282 struct bpf_link *
11283 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
11284 {
11285 	return bpf_program__attach_fd(prog, netns_fd, 0, "netns");
11286 }
11287 
11288 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
11289 {
11290 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
11291 	return bpf_program__attach_fd(prog, ifindex, 0, "xdp");
11292 }
11293 
11294 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
11295 					      int target_fd,
11296 					      const char *attach_func_name)
11297 {
11298 	int btf_id;
11299 
11300 	if (!!target_fd != !!attach_func_name) {
11301 		pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
11302 			prog->name);
11303 		return libbpf_err_ptr(-EINVAL);
11304 	}
11305 
11306 	if (prog->type != BPF_PROG_TYPE_EXT) {
11307 		pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
11308 			prog->name);
11309 		return libbpf_err_ptr(-EINVAL);
11310 	}
11311 
11312 	if (target_fd) {
11313 		btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
11314 		if (btf_id < 0)
11315 			return libbpf_err_ptr(btf_id);
11316 
11317 		return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace");
11318 	} else {
11319 		/* no target, so use raw_tracepoint_open for compatibility
11320 		 * with old kernels
11321 		 */
11322 		return bpf_program__attach_trace(prog);
11323 	}
11324 }
11325 
11326 struct bpf_link *
11327 bpf_program__attach_iter(const struct bpf_program *prog,
11328 			 const struct bpf_iter_attach_opts *opts)
11329 {
11330 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
11331 	char errmsg[STRERR_BUFSIZE];
11332 	struct bpf_link *link;
11333 	int prog_fd, link_fd;
11334 	__u32 target_fd = 0;
11335 
11336 	if (!OPTS_VALID(opts, bpf_iter_attach_opts))
11337 		return libbpf_err_ptr(-EINVAL);
11338 
11339 	link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
11340 	link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
11341 
11342 	prog_fd = bpf_program__fd(prog);
11343 	if (prog_fd < 0) {
11344 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11345 		return libbpf_err_ptr(-EINVAL);
11346 	}
11347 
11348 	link = calloc(1, sizeof(*link));
11349 	if (!link)
11350 		return libbpf_err_ptr(-ENOMEM);
11351 	link->detach = &bpf_link__detach_fd;
11352 
11353 	link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
11354 				  &link_create_opts);
11355 	if (link_fd < 0) {
11356 		link_fd = -errno;
11357 		free(link);
11358 		pr_warn("prog '%s': failed to attach to iterator: %s\n",
11359 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11360 		return libbpf_err_ptr(link_fd);
11361 	}
11362 	link->fd = link_fd;
11363 	return link;
11364 }
11365 
11366 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11367 {
11368 	*link = bpf_program__attach_iter(prog, NULL);
11369 	return libbpf_get_error(*link);
11370 }
11371 
11372 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
11373 {
11374 	struct bpf_link *link = NULL;
11375 	int err;
11376 
11377 	if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
11378 		return libbpf_err_ptr(-EOPNOTSUPP);
11379 
11380 	err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
11381 	if (err)
11382 		return libbpf_err_ptr(err);
11383 
11384 	/* When calling bpf_program__attach() explicitly, auto-attach support
11385 	 * is expected to work, so NULL returned link is considered an error.
11386 	 * This is different for skeleton's attach, see comment in
11387 	 * bpf_object__attach_skeleton().
11388 	 */
11389 	if (!link)
11390 		return libbpf_err_ptr(-EOPNOTSUPP);
11391 
11392 	return link;
11393 }
11394 
11395 static int bpf_link__detach_struct_ops(struct bpf_link *link)
11396 {
11397 	__u32 zero = 0;
11398 
11399 	if (bpf_map_delete_elem(link->fd, &zero))
11400 		return -errno;
11401 
11402 	return 0;
11403 }
11404 
11405 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
11406 {
11407 	struct bpf_struct_ops *st_ops;
11408 	struct bpf_link *link;
11409 	__u32 i, zero = 0;
11410 	int err;
11411 
11412 	if (!bpf_map__is_struct_ops(map) || map->fd == -1)
11413 		return libbpf_err_ptr(-EINVAL);
11414 
11415 	link = calloc(1, sizeof(*link));
11416 	if (!link)
11417 		return libbpf_err_ptr(-EINVAL);
11418 
11419 	st_ops = map->st_ops;
11420 	for (i = 0; i < btf_vlen(st_ops->type); i++) {
11421 		struct bpf_program *prog = st_ops->progs[i];
11422 		void *kern_data;
11423 		int prog_fd;
11424 
11425 		if (!prog)
11426 			continue;
11427 
11428 		prog_fd = bpf_program__fd(prog);
11429 		kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
11430 		*(unsigned long *)kern_data = prog_fd;
11431 	}
11432 
11433 	err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0);
11434 	if (err) {
11435 		err = -errno;
11436 		free(link);
11437 		return libbpf_err_ptr(err);
11438 	}
11439 
11440 	link->detach = bpf_link__detach_struct_ops;
11441 	link->fd = map->fd;
11442 
11443 	return link;
11444 }
11445 
11446 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
11447 							  void *private_data);
11448 
11449 static enum bpf_perf_event_ret
11450 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
11451 		       void **copy_mem, size_t *copy_size,
11452 		       bpf_perf_event_print_t fn, void *private_data)
11453 {
11454 	struct perf_event_mmap_page *header = mmap_mem;
11455 	__u64 data_head = ring_buffer_read_head(header);
11456 	__u64 data_tail = header->data_tail;
11457 	void *base = ((__u8 *)header) + page_size;
11458 	int ret = LIBBPF_PERF_EVENT_CONT;
11459 	struct perf_event_header *ehdr;
11460 	size_t ehdr_size;
11461 
11462 	while (data_head != data_tail) {
11463 		ehdr = base + (data_tail & (mmap_size - 1));
11464 		ehdr_size = ehdr->size;
11465 
11466 		if (((void *)ehdr) + ehdr_size > base + mmap_size) {
11467 			void *copy_start = ehdr;
11468 			size_t len_first = base + mmap_size - copy_start;
11469 			size_t len_secnd = ehdr_size - len_first;
11470 
11471 			if (*copy_size < ehdr_size) {
11472 				free(*copy_mem);
11473 				*copy_mem = malloc(ehdr_size);
11474 				if (!*copy_mem) {
11475 					*copy_size = 0;
11476 					ret = LIBBPF_PERF_EVENT_ERROR;
11477 					break;
11478 				}
11479 				*copy_size = ehdr_size;
11480 			}
11481 
11482 			memcpy(*copy_mem, copy_start, len_first);
11483 			memcpy(*copy_mem + len_first, base, len_secnd);
11484 			ehdr = *copy_mem;
11485 		}
11486 
11487 		ret = fn(ehdr, private_data);
11488 		data_tail += ehdr_size;
11489 		if (ret != LIBBPF_PERF_EVENT_CONT)
11490 			break;
11491 	}
11492 
11493 	ring_buffer_write_tail(header, data_tail);
11494 	return libbpf_err(ret);
11495 }
11496 
11497 struct perf_buffer;
11498 
11499 struct perf_buffer_params {
11500 	struct perf_event_attr *attr;
11501 	/* if event_cb is specified, it takes precendence */
11502 	perf_buffer_event_fn event_cb;
11503 	/* sample_cb and lost_cb are higher-level common-case callbacks */
11504 	perf_buffer_sample_fn sample_cb;
11505 	perf_buffer_lost_fn lost_cb;
11506 	void *ctx;
11507 	int cpu_cnt;
11508 	int *cpus;
11509 	int *map_keys;
11510 };
11511 
11512 struct perf_cpu_buf {
11513 	struct perf_buffer *pb;
11514 	void *base; /* mmap()'ed memory */
11515 	void *buf; /* for reconstructing segmented data */
11516 	size_t buf_size;
11517 	int fd;
11518 	int cpu;
11519 	int map_key;
11520 };
11521 
11522 struct perf_buffer {
11523 	perf_buffer_event_fn event_cb;
11524 	perf_buffer_sample_fn sample_cb;
11525 	perf_buffer_lost_fn lost_cb;
11526 	void *ctx; /* passed into callbacks */
11527 
11528 	size_t page_size;
11529 	size_t mmap_size;
11530 	struct perf_cpu_buf **cpu_bufs;
11531 	struct epoll_event *events;
11532 	int cpu_cnt; /* number of allocated CPU buffers */
11533 	int epoll_fd; /* perf event FD */
11534 	int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
11535 };
11536 
11537 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
11538 				      struct perf_cpu_buf *cpu_buf)
11539 {
11540 	if (!cpu_buf)
11541 		return;
11542 	if (cpu_buf->base &&
11543 	    munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
11544 		pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
11545 	if (cpu_buf->fd >= 0) {
11546 		ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
11547 		close(cpu_buf->fd);
11548 	}
11549 	free(cpu_buf->buf);
11550 	free(cpu_buf);
11551 }
11552 
11553 void perf_buffer__free(struct perf_buffer *pb)
11554 {
11555 	int i;
11556 
11557 	if (IS_ERR_OR_NULL(pb))
11558 		return;
11559 	if (pb->cpu_bufs) {
11560 		for (i = 0; i < pb->cpu_cnt; i++) {
11561 			struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
11562 
11563 			if (!cpu_buf)
11564 				continue;
11565 
11566 			bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
11567 			perf_buffer__free_cpu_buf(pb, cpu_buf);
11568 		}
11569 		free(pb->cpu_bufs);
11570 	}
11571 	if (pb->epoll_fd >= 0)
11572 		close(pb->epoll_fd);
11573 	free(pb->events);
11574 	free(pb);
11575 }
11576 
11577 static struct perf_cpu_buf *
11578 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
11579 			  int cpu, int map_key)
11580 {
11581 	struct perf_cpu_buf *cpu_buf;
11582 	char msg[STRERR_BUFSIZE];
11583 	int err;
11584 
11585 	cpu_buf = calloc(1, sizeof(*cpu_buf));
11586 	if (!cpu_buf)
11587 		return ERR_PTR(-ENOMEM);
11588 
11589 	cpu_buf->pb = pb;
11590 	cpu_buf->cpu = cpu;
11591 	cpu_buf->map_key = map_key;
11592 
11593 	cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
11594 			      -1, PERF_FLAG_FD_CLOEXEC);
11595 	if (cpu_buf->fd < 0) {
11596 		err = -errno;
11597 		pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
11598 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11599 		goto error;
11600 	}
11601 
11602 	cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
11603 			     PROT_READ | PROT_WRITE, MAP_SHARED,
11604 			     cpu_buf->fd, 0);
11605 	if (cpu_buf->base == MAP_FAILED) {
11606 		cpu_buf->base = NULL;
11607 		err = -errno;
11608 		pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
11609 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11610 		goto error;
11611 	}
11612 
11613 	if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
11614 		err = -errno;
11615 		pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
11616 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11617 		goto error;
11618 	}
11619 
11620 	return cpu_buf;
11621 
11622 error:
11623 	perf_buffer__free_cpu_buf(pb, cpu_buf);
11624 	return (struct perf_cpu_buf *)ERR_PTR(err);
11625 }
11626 
11627 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
11628 					      struct perf_buffer_params *p);
11629 
11630 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
11631 				     perf_buffer_sample_fn sample_cb,
11632 				     perf_buffer_lost_fn lost_cb,
11633 				     void *ctx,
11634 				     const struct perf_buffer_opts *opts)
11635 {
11636 	const size_t attr_sz = sizeof(struct perf_event_attr);
11637 	struct perf_buffer_params p = {};
11638 	struct perf_event_attr attr;
11639 
11640 	if (!OPTS_VALID(opts, perf_buffer_opts))
11641 		return libbpf_err_ptr(-EINVAL);
11642 
11643 	memset(&attr, 0, attr_sz);
11644 	attr.size = attr_sz;
11645 	attr.config = PERF_COUNT_SW_BPF_OUTPUT;
11646 	attr.type = PERF_TYPE_SOFTWARE;
11647 	attr.sample_type = PERF_SAMPLE_RAW;
11648 	attr.sample_period = 1;
11649 	attr.wakeup_events = 1;
11650 
11651 	p.attr = &attr;
11652 	p.sample_cb = sample_cb;
11653 	p.lost_cb = lost_cb;
11654 	p.ctx = ctx;
11655 
11656 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
11657 }
11658 
11659 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
11660 					 struct perf_event_attr *attr,
11661 					 perf_buffer_event_fn event_cb, void *ctx,
11662 					 const struct perf_buffer_raw_opts *opts)
11663 {
11664 	struct perf_buffer_params p = {};
11665 
11666 	if (!attr)
11667 		return libbpf_err_ptr(-EINVAL);
11668 
11669 	if (!OPTS_VALID(opts, perf_buffer_raw_opts))
11670 		return libbpf_err_ptr(-EINVAL);
11671 
11672 	p.attr = attr;
11673 	p.event_cb = event_cb;
11674 	p.ctx = ctx;
11675 	p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
11676 	p.cpus = OPTS_GET(opts, cpus, NULL);
11677 	p.map_keys = OPTS_GET(opts, map_keys, NULL);
11678 
11679 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
11680 }
11681 
11682 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
11683 					      struct perf_buffer_params *p)
11684 {
11685 	const char *online_cpus_file = "/sys/devices/system/cpu/online";
11686 	struct bpf_map_info map;
11687 	char msg[STRERR_BUFSIZE];
11688 	struct perf_buffer *pb;
11689 	bool *online = NULL;
11690 	__u32 map_info_len;
11691 	int err, i, j, n;
11692 
11693 	if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
11694 		pr_warn("page count should be power of two, but is %zu\n",
11695 			page_cnt);
11696 		return ERR_PTR(-EINVAL);
11697 	}
11698 
11699 	/* best-effort sanity checks */
11700 	memset(&map, 0, sizeof(map));
11701 	map_info_len = sizeof(map);
11702 	err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len);
11703 	if (err) {
11704 		err = -errno;
11705 		/* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
11706 		 * -EBADFD, -EFAULT, or -E2BIG on real error
11707 		 */
11708 		if (err != -EINVAL) {
11709 			pr_warn("failed to get map info for map FD %d: %s\n",
11710 				map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
11711 			return ERR_PTR(err);
11712 		}
11713 		pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
11714 			 map_fd);
11715 	} else {
11716 		if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
11717 			pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
11718 				map.name);
11719 			return ERR_PTR(-EINVAL);
11720 		}
11721 	}
11722 
11723 	pb = calloc(1, sizeof(*pb));
11724 	if (!pb)
11725 		return ERR_PTR(-ENOMEM);
11726 
11727 	pb->event_cb = p->event_cb;
11728 	pb->sample_cb = p->sample_cb;
11729 	pb->lost_cb = p->lost_cb;
11730 	pb->ctx = p->ctx;
11731 
11732 	pb->page_size = getpagesize();
11733 	pb->mmap_size = pb->page_size * page_cnt;
11734 	pb->map_fd = map_fd;
11735 
11736 	pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
11737 	if (pb->epoll_fd < 0) {
11738 		err = -errno;
11739 		pr_warn("failed to create epoll instance: %s\n",
11740 			libbpf_strerror_r(err, msg, sizeof(msg)));
11741 		goto error;
11742 	}
11743 
11744 	if (p->cpu_cnt > 0) {
11745 		pb->cpu_cnt = p->cpu_cnt;
11746 	} else {
11747 		pb->cpu_cnt = libbpf_num_possible_cpus();
11748 		if (pb->cpu_cnt < 0) {
11749 			err = pb->cpu_cnt;
11750 			goto error;
11751 		}
11752 		if (map.max_entries && map.max_entries < pb->cpu_cnt)
11753 			pb->cpu_cnt = map.max_entries;
11754 	}
11755 
11756 	pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
11757 	if (!pb->events) {
11758 		err = -ENOMEM;
11759 		pr_warn("failed to allocate events: out of memory\n");
11760 		goto error;
11761 	}
11762 	pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
11763 	if (!pb->cpu_bufs) {
11764 		err = -ENOMEM;
11765 		pr_warn("failed to allocate buffers: out of memory\n");
11766 		goto error;
11767 	}
11768 
11769 	err = parse_cpu_mask_file(online_cpus_file, &online, &n);
11770 	if (err) {
11771 		pr_warn("failed to get online CPU mask: %d\n", err);
11772 		goto error;
11773 	}
11774 
11775 	for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
11776 		struct perf_cpu_buf *cpu_buf;
11777 		int cpu, map_key;
11778 
11779 		cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
11780 		map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
11781 
11782 		/* in case user didn't explicitly requested particular CPUs to
11783 		 * be attached to, skip offline/not present CPUs
11784 		 */
11785 		if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
11786 			continue;
11787 
11788 		cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
11789 		if (IS_ERR(cpu_buf)) {
11790 			err = PTR_ERR(cpu_buf);
11791 			goto error;
11792 		}
11793 
11794 		pb->cpu_bufs[j] = cpu_buf;
11795 
11796 		err = bpf_map_update_elem(pb->map_fd, &map_key,
11797 					  &cpu_buf->fd, 0);
11798 		if (err) {
11799 			err = -errno;
11800 			pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
11801 				cpu, map_key, cpu_buf->fd,
11802 				libbpf_strerror_r(err, msg, sizeof(msg)));
11803 			goto error;
11804 		}
11805 
11806 		pb->events[j].events = EPOLLIN;
11807 		pb->events[j].data.ptr = cpu_buf;
11808 		if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
11809 			      &pb->events[j]) < 0) {
11810 			err = -errno;
11811 			pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
11812 				cpu, cpu_buf->fd,
11813 				libbpf_strerror_r(err, msg, sizeof(msg)));
11814 			goto error;
11815 		}
11816 		j++;
11817 	}
11818 	pb->cpu_cnt = j;
11819 	free(online);
11820 
11821 	return pb;
11822 
11823 error:
11824 	free(online);
11825 	if (pb)
11826 		perf_buffer__free(pb);
11827 	return ERR_PTR(err);
11828 }
11829 
11830 struct perf_sample_raw {
11831 	struct perf_event_header header;
11832 	uint32_t size;
11833 	char data[];
11834 };
11835 
11836 struct perf_sample_lost {
11837 	struct perf_event_header header;
11838 	uint64_t id;
11839 	uint64_t lost;
11840 	uint64_t sample_id;
11841 };
11842 
11843 static enum bpf_perf_event_ret
11844 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
11845 {
11846 	struct perf_cpu_buf *cpu_buf = ctx;
11847 	struct perf_buffer *pb = cpu_buf->pb;
11848 	void *data = e;
11849 
11850 	/* user wants full control over parsing perf event */
11851 	if (pb->event_cb)
11852 		return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
11853 
11854 	switch (e->type) {
11855 	case PERF_RECORD_SAMPLE: {
11856 		struct perf_sample_raw *s = data;
11857 
11858 		if (pb->sample_cb)
11859 			pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
11860 		break;
11861 	}
11862 	case PERF_RECORD_LOST: {
11863 		struct perf_sample_lost *s = data;
11864 
11865 		if (pb->lost_cb)
11866 			pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
11867 		break;
11868 	}
11869 	default:
11870 		pr_warn("unknown perf sample type %d\n", e->type);
11871 		return LIBBPF_PERF_EVENT_ERROR;
11872 	}
11873 	return LIBBPF_PERF_EVENT_CONT;
11874 }
11875 
11876 static int perf_buffer__process_records(struct perf_buffer *pb,
11877 					struct perf_cpu_buf *cpu_buf)
11878 {
11879 	enum bpf_perf_event_ret ret;
11880 
11881 	ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
11882 				     pb->page_size, &cpu_buf->buf,
11883 				     &cpu_buf->buf_size,
11884 				     perf_buffer__process_record, cpu_buf);
11885 	if (ret != LIBBPF_PERF_EVENT_CONT)
11886 		return ret;
11887 	return 0;
11888 }
11889 
11890 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
11891 {
11892 	return pb->epoll_fd;
11893 }
11894 
11895 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
11896 {
11897 	int i, cnt, err;
11898 
11899 	cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
11900 	if (cnt < 0)
11901 		return -errno;
11902 
11903 	for (i = 0; i < cnt; i++) {
11904 		struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
11905 
11906 		err = perf_buffer__process_records(pb, cpu_buf);
11907 		if (err) {
11908 			pr_warn("error while processing records: %d\n", err);
11909 			return libbpf_err(err);
11910 		}
11911 	}
11912 	return cnt;
11913 }
11914 
11915 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
11916  * manager.
11917  */
11918 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
11919 {
11920 	return pb->cpu_cnt;
11921 }
11922 
11923 /*
11924  * Return perf_event FD of a ring buffer in *buf_idx* slot of
11925  * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
11926  * select()/poll()/epoll() Linux syscalls.
11927  */
11928 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
11929 {
11930 	struct perf_cpu_buf *cpu_buf;
11931 
11932 	if (buf_idx >= pb->cpu_cnt)
11933 		return libbpf_err(-EINVAL);
11934 
11935 	cpu_buf = pb->cpu_bufs[buf_idx];
11936 	if (!cpu_buf)
11937 		return libbpf_err(-ENOENT);
11938 
11939 	return cpu_buf->fd;
11940 }
11941 
11942 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
11943 {
11944 	struct perf_cpu_buf *cpu_buf;
11945 
11946 	if (buf_idx >= pb->cpu_cnt)
11947 		return libbpf_err(-EINVAL);
11948 
11949 	cpu_buf = pb->cpu_bufs[buf_idx];
11950 	if (!cpu_buf)
11951 		return libbpf_err(-ENOENT);
11952 
11953 	*buf = cpu_buf->base;
11954 	*buf_size = pb->mmap_size;
11955 	return 0;
11956 }
11957 
11958 /*
11959  * Consume data from perf ring buffer corresponding to slot *buf_idx* in
11960  * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
11961  * consume, do nothing and return success.
11962  * Returns:
11963  *   - 0 on success;
11964  *   - <0 on failure.
11965  */
11966 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
11967 {
11968 	struct perf_cpu_buf *cpu_buf;
11969 
11970 	if (buf_idx >= pb->cpu_cnt)
11971 		return libbpf_err(-EINVAL);
11972 
11973 	cpu_buf = pb->cpu_bufs[buf_idx];
11974 	if (!cpu_buf)
11975 		return libbpf_err(-ENOENT);
11976 
11977 	return perf_buffer__process_records(pb, cpu_buf);
11978 }
11979 
11980 int perf_buffer__consume(struct perf_buffer *pb)
11981 {
11982 	int i, err;
11983 
11984 	for (i = 0; i < pb->cpu_cnt; i++) {
11985 		struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
11986 
11987 		if (!cpu_buf)
11988 			continue;
11989 
11990 		err = perf_buffer__process_records(pb, cpu_buf);
11991 		if (err) {
11992 			pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
11993 			return libbpf_err(err);
11994 		}
11995 	}
11996 	return 0;
11997 }
11998 
11999 int bpf_program__set_attach_target(struct bpf_program *prog,
12000 				   int attach_prog_fd,
12001 				   const char *attach_func_name)
12002 {
12003 	int btf_obj_fd = 0, btf_id = 0, err;
12004 
12005 	if (!prog || attach_prog_fd < 0)
12006 		return libbpf_err(-EINVAL);
12007 
12008 	if (prog->obj->loaded)
12009 		return libbpf_err(-EINVAL);
12010 
12011 	if (attach_prog_fd && !attach_func_name) {
12012 		/* remember attach_prog_fd and let bpf_program__load() find
12013 		 * BTF ID during the program load
12014 		 */
12015 		prog->attach_prog_fd = attach_prog_fd;
12016 		return 0;
12017 	}
12018 
12019 	if (attach_prog_fd) {
12020 		btf_id = libbpf_find_prog_btf_id(attach_func_name,
12021 						 attach_prog_fd);
12022 		if (btf_id < 0)
12023 			return libbpf_err(btf_id);
12024 	} else {
12025 		if (!attach_func_name)
12026 			return libbpf_err(-EINVAL);
12027 
12028 		/* load btf_vmlinux, if not yet */
12029 		err = bpf_object__load_vmlinux_btf(prog->obj, true);
12030 		if (err)
12031 			return libbpf_err(err);
12032 		err = find_kernel_btf_id(prog->obj, attach_func_name,
12033 					 prog->expected_attach_type,
12034 					 &btf_obj_fd, &btf_id);
12035 		if (err)
12036 			return libbpf_err(err);
12037 	}
12038 
12039 	prog->attach_btf_id = btf_id;
12040 	prog->attach_btf_obj_fd = btf_obj_fd;
12041 	prog->attach_prog_fd = attach_prog_fd;
12042 	return 0;
12043 }
12044 
12045 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
12046 {
12047 	int err = 0, n, len, start, end = -1;
12048 	bool *tmp;
12049 
12050 	*mask = NULL;
12051 	*mask_sz = 0;
12052 
12053 	/* Each sub string separated by ',' has format \d+-\d+ or \d+ */
12054 	while (*s) {
12055 		if (*s == ',' || *s == '\n') {
12056 			s++;
12057 			continue;
12058 		}
12059 		n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
12060 		if (n <= 0 || n > 2) {
12061 			pr_warn("Failed to get CPU range %s: %d\n", s, n);
12062 			err = -EINVAL;
12063 			goto cleanup;
12064 		} else if (n == 1) {
12065 			end = start;
12066 		}
12067 		if (start < 0 || start > end) {
12068 			pr_warn("Invalid CPU range [%d,%d] in %s\n",
12069 				start, end, s);
12070 			err = -EINVAL;
12071 			goto cleanup;
12072 		}
12073 		tmp = realloc(*mask, end + 1);
12074 		if (!tmp) {
12075 			err = -ENOMEM;
12076 			goto cleanup;
12077 		}
12078 		*mask = tmp;
12079 		memset(tmp + *mask_sz, 0, start - *mask_sz);
12080 		memset(tmp + start, 1, end - start + 1);
12081 		*mask_sz = end + 1;
12082 		s += len;
12083 	}
12084 	if (!*mask_sz) {
12085 		pr_warn("Empty CPU range\n");
12086 		return -EINVAL;
12087 	}
12088 	return 0;
12089 cleanup:
12090 	free(*mask);
12091 	*mask = NULL;
12092 	return err;
12093 }
12094 
12095 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
12096 {
12097 	int fd, err = 0, len;
12098 	char buf[128];
12099 
12100 	fd = open(fcpu, O_RDONLY | O_CLOEXEC);
12101 	if (fd < 0) {
12102 		err = -errno;
12103 		pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
12104 		return err;
12105 	}
12106 	len = read(fd, buf, sizeof(buf));
12107 	close(fd);
12108 	if (len <= 0) {
12109 		err = len ? -errno : -EINVAL;
12110 		pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
12111 		return err;
12112 	}
12113 	if (len >= sizeof(buf)) {
12114 		pr_warn("CPU mask is too big in file %s\n", fcpu);
12115 		return -E2BIG;
12116 	}
12117 	buf[len] = '\0';
12118 
12119 	return parse_cpu_mask_str(buf, mask, mask_sz);
12120 }
12121 
12122 int libbpf_num_possible_cpus(void)
12123 {
12124 	static const char *fcpu = "/sys/devices/system/cpu/possible";
12125 	static int cpus;
12126 	int err, n, i, tmp_cpus;
12127 	bool *mask;
12128 
12129 	tmp_cpus = READ_ONCE(cpus);
12130 	if (tmp_cpus > 0)
12131 		return tmp_cpus;
12132 
12133 	err = parse_cpu_mask_file(fcpu, &mask, &n);
12134 	if (err)
12135 		return libbpf_err(err);
12136 
12137 	tmp_cpus = 0;
12138 	for (i = 0; i < n; i++) {
12139 		if (mask[i])
12140 			tmp_cpus++;
12141 	}
12142 	free(mask);
12143 
12144 	WRITE_ONCE(cpus, tmp_cpus);
12145 	return tmp_cpus;
12146 }
12147 
12148 static int populate_skeleton_maps(const struct bpf_object *obj,
12149 				  struct bpf_map_skeleton *maps,
12150 				  size_t map_cnt)
12151 {
12152 	int i;
12153 
12154 	for (i = 0; i < map_cnt; i++) {
12155 		struct bpf_map **map = maps[i].map;
12156 		const char *name = maps[i].name;
12157 		void **mmaped = maps[i].mmaped;
12158 
12159 		*map = bpf_object__find_map_by_name(obj, name);
12160 		if (!*map) {
12161 			pr_warn("failed to find skeleton map '%s'\n", name);
12162 			return -ESRCH;
12163 		}
12164 
12165 		/* externs shouldn't be pre-setup from user code */
12166 		if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
12167 			*mmaped = (*map)->mmaped;
12168 	}
12169 	return 0;
12170 }
12171 
12172 static int populate_skeleton_progs(const struct bpf_object *obj,
12173 				   struct bpf_prog_skeleton *progs,
12174 				   size_t prog_cnt)
12175 {
12176 	int i;
12177 
12178 	for (i = 0; i < prog_cnt; i++) {
12179 		struct bpf_program **prog = progs[i].prog;
12180 		const char *name = progs[i].name;
12181 
12182 		*prog = bpf_object__find_program_by_name(obj, name);
12183 		if (!*prog) {
12184 			pr_warn("failed to find skeleton program '%s'\n", name);
12185 			return -ESRCH;
12186 		}
12187 	}
12188 	return 0;
12189 }
12190 
12191 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
12192 			      const struct bpf_object_open_opts *opts)
12193 {
12194 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
12195 		.object_name = s->name,
12196 	);
12197 	struct bpf_object *obj;
12198 	int err;
12199 
12200 	/* Attempt to preserve opts->object_name, unless overriden by user
12201 	 * explicitly. Overwriting object name for skeletons is discouraged,
12202 	 * as it breaks global data maps, because they contain object name
12203 	 * prefix as their own map name prefix. When skeleton is generated,
12204 	 * bpftool is making an assumption that this name will stay the same.
12205 	 */
12206 	if (opts) {
12207 		memcpy(&skel_opts, opts, sizeof(*opts));
12208 		if (!opts->object_name)
12209 			skel_opts.object_name = s->name;
12210 	}
12211 
12212 	obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
12213 	err = libbpf_get_error(obj);
12214 	if (err) {
12215 		pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
12216 			s->name, err);
12217 		return libbpf_err(err);
12218 	}
12219 
12220 	*s->obj = obj;
12221 	err = populate_skeleton_maps(obj, s->maps, s->map_cnt);
12222 	if (err) {
12223 		pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
12224 		return libbpf_err(err);
12225 	}
12226 
12227 	err = populate_skeleton_progs(obj, s->progs, s->prog_cnt);
12228 	if (err) {
12229 		pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
12230 		return libbpf_err(err);
12231 	}
12232 
12233 	return 0;
12234 }
12235 
12236 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
12237 {
12238 	int err, len, var_idx, i;
12239 	const char *var_name;
12240 	const struct bpf_map *map;
12241 	struct btf *btf;
12242 	__u32 map_type_id;
12243 	const struct btf_type *map_type, *var_type;
12244 	const struct bpf_var_skeleton *var_skel;
12245 	struct btf_var_secinfo *var;
12246 
12247 	if (!s->obj)
12248 		return libbpf_err(-EINVAL);
12249 
12250 	btf = bpf_object__btf(s->obj);
12251 	if (!btf) {
12252 		pr_warn("subskeletons require BTF at runtime (object %s)\n",
12253 		        bpf_object__name(s->obj));
12254 		return libbpf_err(-errno);
12255 	}
12256 
12257 	err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt);
12258 	if (err) {
12259 		pr_warn("failed to populate subskeleton maps: %d\n", err);
12260 		return libbpf_err(err);
12261 	}
12262 
12263 	err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt);
12264 	if (err) {
12265 		pr_warn("failed to populate subskeleton maps: %d\n", err);
12266 		return libbpf_err(err);
12267 	}
12268 
12269 	for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
12270 		var_skel = &s->vars[var_idx];
12271 		map = *var_skel->map;
12272 		map_type_id = bpf_map__btf_value_type_id(map);
12273 		map_type = btf__type_by_id(btf, map_type_id);
12274 
12275 		if (!btf_is_datasec(map_type)) {
12276 			pr_warn("type for map '%1$s' is not a datasec: %2$s",
12277 				bpf_map__name(map),
12278 				__btf_kind_str(btf_kind(map_type)));
12279 			return libbpf_err(-EINVAL);
12280 		}
12281 
12282 		len = btf_vlen(map_type);
12283 		var = btf_var_secinfos(map_type);
12284 		for (i = 0; i < len; i++, var++) {
12285 			var_type = btf__type_by_id(btf, var->type);
12286 			var_name = btf__name_by_offset(btf, var_type->name_off);
12287 			if (strcmp(var_name, var_skel->name) == 0) {
12288 				*var_skel->addr = map->mmaped + var->offset;
12289 				break;
12290 			}
12291 		}
12292 	}
12293 	return 0;
12294 }
12295 
12296 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
12297 {
12298 	if (!s)
12299 		return;
12300 	free(s->maps);
12301 	free(s->progs);
12302 	free(s->vars);
12303 	free(s);
12304 }
12305 
12306 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
12307 {
12308 	int i, err;
12309 
12310 	err = bpf_object__load(*s->obj);
12311 	if (err) {
12312 		pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
12313 		return libbpf_err(err);
12314 	}
12315 
12316 	for (i = 0; i < s->map_cnt; i++) {
12317 		struct bpf_map *map = *s->maps[i].map;
12318 		size_t mmap_sz = bpf_map_mmap_sz(map);
12319 		int prot, map_fd = bpf_map__fd(map);
12320 		void **mmaped = s->maps[i].mmaped;
12321 
12322 		if (!mmaped)
12323 			continue;
12324 
12325 		if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
12326 			*mmaped = NULL;
12327 			continue;
12328 		}
12329 
12330 		if (map->def.map_flags & BPF_F_RDONLY_PROG)
12331 			prot = PROT_READ;
12332 		else
12333 			prot = PROT_READ | PROT_WRITE;
12334 
12335 		/* Remap anonymous mmap()-ed "map initialization image" as
12336 		 * a BPF map-backed mmap()-ed memory, but preserving the same
12337 		 * memory address. This will cause kernel to change process'
12338 		 * page table to point to a different piece of kernel memory,
12339 		 * but from userspace point of view memory address (and its
12340 		 * contents, being identical at this point) will stay the
12341 		 * same. This mapping will be released by bpf_object__close()
12342 		 * as per normal clean up procedure, so we don't need to worry
12343 		 * about it from skeleton's clean up perspective.
12344 		 */
12345 		*mmaped = mmap(map->mmaped, mmap_sz, prot,
12346 				MAP_SHARED | MAP_FIXED, map_fd, 0);
12347 		if (*mmaped == MAP_FAILED) {
12348 			err = -errno;
12349 			*mmaped = NULL;
12350 			pr_warn("failed to re-mmap() map '%s': %d\n",
12351 				 bpf_map__name(map), err);
12352 			return libbpf_err(err);
12353 		}
12354 	}
12355 
12356 	return 0;
12357 }
12358 
12359 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
12360 {
12361 	int i, err;
12362 
12363 	for (i = 0; i < s->prog_cnt; i++) {
12364 		struct bpf_program *prog = *s->progs[i].prog;
12365 		struct bpf_link **link = s->progs[i].link;
12366 
12367 		if (!prog->autoload || !prog->autoattach)
12368 			continue;
12369 
12370 		/* auto-attaching not supported for this program */
12371 		if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12372 			continue;
12373 
12374 		/* if user already set the link manually, don't attempt auto-attach */
12375 		if (*link)
12376 			continue;
12377 
12378 		err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
12379 		if (err) {
12380 			pr_warn("prog '%s': failed to auto-attach: %d\n",
12381 				bpf_program__name(prog), err);
12382 			return libbpf_err(err);
12383 		}
12384 
12385 		/* It's possible that for some SEC() definitions auto-attach
12386 		 * is supported in some cases (e.g., if definition completely
12387 		 * specifies target information), but is not in other cases.
12388 		 * SEC("uprobe") is one such case. If user specified target
12389 		 * binary and function name, such BPF program can be
12390 		 * auto-attached. But if not, it shouldn't trigger skeleton's
12391 		 * attach to fail. It should just be skipped.
12392 		 * attach_fn signals such case with returning 0 (no error) and
12393 		 * setting link to NULL.
12394 		 */
12395 	}
12396 
12397 	return 0;
12398 }
12399 
12400 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
12401 {
12402 	int i;
12403 
12404 	for (i = 0; i < s->prog_cnt; i++) {
12405 		struct bpf_link **link = s->progs[i].link;
12406 
12407 		bpf_link__destroy(*link);
12408 		*link = NULL;
12409 	}
12410 }
12411 
12412 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
12413 {
12414 	if (!s)
12415 		return;
12416 
12417 	if (s->progs)
12418 		bpf_object__detach_skeleton(s);
12419 	if (s->obj)
12420 		bpf_object__close(*s->obj);
12421 	free(s->maps);
12422 	free(s->progs);
12423 	free(s);
12424 }
12425