xref: /openbmc/linux/tools/lib/bpf/libbpf.c (revision 8a649e33f48e08be20c51541d9184645892ec370)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * Common eBPF ELF object loading operations.
5  *
6  * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7  * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8  * Copyright (C) 2015 Huawei Inc.
9  * Copyright (C) 2017 Nicira, Inc.
10  * Copyright (C) 2019 Isovalent, Inc.
11  */
12 
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/limits.h>
35 #include <linux/perf_event.h>
36 #include <linux/ring_buffer.h>
37 #include <sys/epoll.h>
38 #include <sys/ioctl.h>
39 #include <sys/mman.h>
40 #include <sys/stat.h>
41 #include <sys/types.h>
42 #include <sys/vfs.h>
43 #include <sys/utsname.h>
44 #include <sys/resource.h>
45 #include <libelf.h>
46 #include <gelf.h>
47 #include <zlib.h>
48 
49 #include "libbpf.h"
50 #include "bpf.h"
51 #include "btf.h"
52 #include "str_error.h"
53 #include "libbpf_internal.h"
54 #include "hashmap.h"
55 #include "bpf_gen_internal.h"
56 #include "zip.h"
57 
58 #ifndef BPF_FS_MAGIC
59 #define BPF_FS_MAGIC		0xcafe4a11
60 #endif
61 
62 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
63 
64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
65  * compilation if user enables corresponding warning. Disable it explicitly.
66  */
67 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
68 
69 #define __printf(a, b)	__attribute__((format(printf, a, b)))
70 
71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
73 
74 static const char * const attach_type_name[] = {
75 	[BPF_CGROUP_INET_INGRESS]	= "cgroup_inet_ingress",
76 	[BPF_CGROUP_INET_EGRESS]	= "cgroup_inet_egress",
77 	[BPF_CGROUP_INET_SOCK_CREATE]	= "cgroup_inet_sock_create",
78 	[BPF_CGROUP_INET_SOCK_RELEASE]	= "cgroup_inet_sock_release",
79 	[BPF_CGROUP_SOCK_OPS]		= "cgroup_sock_ops",
80 	[BPF_CGROUP_DEVICE]		= "cgroup_device",
81 	[BPF_CGROUP_INET4_BIND]		= "cgroup_inet4_bind",
82 	[BPF_CGROUP_INET6_BIND]		= "cgroup_inet6_bind",
83 	[BPF_CGROUP_INET4_CONNECT]	= "cgroup_inet4_connect",
84 	[BPF_CGROUP_INET6_CONNECT]	= "cgroup_inet6_connect",
85 	[BPF_CGROUP_INET4_POST_BIND]	= "cgroup_inet4_post_bind",
86 	[BPF_CGROUP_INET6_POST_BIND]	= "cgroup_inet6_post_bind",
87 	[BPF_CGROUP_INET4_GETPEERNAME]	= "cgroup_inet4_getpeername",
88 	[BPF_CGROUP_INET6_GETPEERNAME]	= "cgroup_inet6_getpeername",
89 	[BPF_CGROUP_INET4_GETSOCKNAME]	= "cgroup_inet4_getsockname",
90 	[BPF_CGROUP_INET6_GETSOCKNAME]	= "cgroup_inet6_getsockname",
91 	[BPF_CGROUP_UDP4_SENDMSG]	= "cgroup_udp4_sendmsg",
92 	[BPF_CGROUP_UDP6_SENDMSG]	= "cgroup_udp6_sendmsg",
93 	[BPF_CGROUP_SYSCTL]		= "cgroup_sysctl",
94 	[BPF_CGROUP_UDP4_RECVMSG]	= "cgroup_udp4_recvmsg",
95 	[BPF_CGROUP_UDP6_RECVMSG]	= "cgroup_udp6_recvmsg",
96 	[BPF_CGROUP_GETSOCKOPT]		= "cgroup_getsockopt",
97 	[BPF_CGROUP_SETSOCKOPT]		= "cgroup_setsockopt",
98 	[BPF_SK_SKB_STREAM_PARSER]	= "sk_skb_stream_parser",
99 	[BPF_SK_SKB_STREAM_VERDICT]	= "sk_skb_stream_verdict",
100 	[BPF_SK_SKB_VERDICT]		= "sk_skb_verdict",
101 	[BPF_SK_MSG_VERDICT]		= "sk_msg_verdict",
102 	[BPF_LIRC_MODE2]		= "lirc_mode2",
103 	[BPF_FLOW_DISSECTOR]		= "flow_dissector",
104 	[BPF_TRACE_RAW_TP]		= "trace_raw_tp",
105 	[BPF_TRACE_FENTRY]		= "trace_fentry",
106 	[BPF_TRACE_FEXIT]		= "trace_fexit",
107 	[BPF_MODIFY_RETURN]		= "modify_return",
108 	[BPF_LSM_MAC]			= "lsm_mac",
109 	[BPF_LSM_CGROUP]		= "lsm_cgroup",
110 	[BPF_SK_LOOKUP]			= "sk_lookup",
111 	[BPF_TRACE_ITER]		= "trace_iter",
112 	[BPF_XDP_DEVMAP]		= "xdp_devmap",
113 	[BPF_XDP_CPUMAP]		= "xdp_cpumap",
114 	[BPF_XDP]			= "xdp",
115 	[BPF_SK_REUSEPORT_SELECT]	= "sk_reuseport_select",
116 	[BPF_SK_REUSEPORT_SELECT_OR_MIGRATE]	= "sk_reuseport_select_or_migrate",
117 	[BPF_PERF_EVENT]		= "perf_event",
118 	[BPF_TRACE_KPROBE_MULTI]	= "trace_kprobe_multi",
119 	[BPF_STRUCT_OPS]		= "struct_ops",
120 };
121 
122 static const char * const link_type_name[] = {
123 	[BPF_LINK_TYPE_UNSPEC]			= "unspec",
124 	[BPF_LINK_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
125 	[BPF_LINK_TYPE_TRACING]			= "tracing",
126 	[BPF_LINK_TYPE_CGROUP]			= "cgroup",
127 	[BPF_LINK_TYPE_ITER]			= "iter",
128 	[BPF_LINK_TYPE_NETNS]			= "netns",
129 	[BPF_LINK_TYPE_XDP]			= "xdp",
130 	[BPF_LINK_TYPE_PERF_EVENT]		= "perf_event",
131 	[BPF_LINK_TYPE_KPROBE_MULTI]		= "kprobe_multi",
132 	[BPF_LINK_TYPE_STRUCT_OPS]		= "struct_ops",
133 	[BPF_LINK_TYPE_NETFILTER]		= "netfilter",
134 };
135 
136 static const char * const map_type_name[] = {
137 	[BPF_MAP_TYPE_UNSPEC]			= "unspec",
138 	[BPF_MAP_TYPE_HASH]			= "hash",
139 	[BPF_MAP_TYPE_ARRAY]			= "array",
140 	[BPF_MAP_TYPE_PROG_ARRAY]		= "prog_array",
141 	[BPF_MAP_TYPE_PERF_EVENT_ARRAY]		= "perf_event_array",
142 	[BPF_MAP_TYPE_PERCPU_HASH]		= "percpu_hash",
143 	[BPF_MAP_TYPE_PERCPU_ARRAY]		= "percpu_array",
144 	[BPF_MAP_TYPE_STACK_TRACE]		= "stack_trace",
145 	[BPF_MAP_TYPE_CGROUP_ARRAY]		= "cgroup_array",
146 	[BPF_MAP_TYPE_LRU_HASH]			= "lru_hash",
147 	[BPF_MAP_TYPE_LRU_PERCPU_HASH]		= "lru_percpu_hash",
148 	[BPF_MAP_TYPE_LPM_TRIE]			= "lpm_trie",
149 	[BPF_MAP_TYPE_ARRAY_OF_MAPS]		= "array_of_maps",
150 	[BPF_MAP_TYPE_HASH_OF_MAPS]		= "hash_of_maps",
151 	[BPF_MAP_TYPE_DEVMAP]			= "devmap",
152 	[BPF_MAP_TYPE_DEVMAP_HASH]		= "devmap_hash",
153 	[BPF_MAP_TYPE_SOCKMAP]			= "sockmap",
154 	[BPF_MAP_TYPE_CPUMAP]			= "cpumap",
155 	[BPF_MAP_TYPE_XSKMAP]			= "xskmap",
156 	[BPF_MAP_TYPE_SOCKHASH]			= "sockhash",
157 	[BPF_MAP_TYPE_CGROUP_STORAGE]		= "cgroup_storage",
158 	[BPF_MAP_TYPE_REUSEPORT_SOCKARRAY]	= "reuseport_sockarray",
159 	[BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE]	= "percpu_cgroup_storage",
160 	[BPF_MAP_TYPE_QUEUE]			= "queue",
161 	[BPF_MAP_TYPE_STACK]			= "stack",
162 	[BPF_MAP_TYPE_SK_STORAGE]		= "sk_storage",
163 	[BPF_MAP_TYPE_STRUCT_OPS]		= "struct_ops",
164 	[BPF_MAP_TYPE_RINGBUF]			= "ringbuf",
165 	[BPF_MAP_TYPE_INODE_STORAGE]		= "inode_storage",
166 	[BPF_MAP_TYPE_TASK_STORAGE]		= "task_storage",
167 	[BPF_MAP_TYPE_BLOOM_FILTER]		= "bloom_filter",
168 	[BPF_MAP_TYPE_USER_RINGBUF]             = "user_ringbuf",
169 	[BPF_MAP_TYPE_CGRP_STORAGE]		= "cgrp_storage",
170 };
171 
172 static const char * const prog_type_name[] = {
173 	[BPF_PROG_TYPE_UNSPEC]			= "unspec",
174 	[BPF_PROG_TYPE_SOCKET_FILTER]		= "socket_filter",
175 	[BPF_PROG_TYPE_KPROBE]			= "kprobe",
176 	[BPF_PROG_TYPE_SCHED_CLS]		= "sched_cls",
177 	[BPF_PROG_TYPE_SCHED_ACT]		= "sched_act",
178 	[BPF_PROG_TYPE_TRACEPOINT]		= "tracepoint",
179 	[BPF_PROG_TYPE_XDP]			= "xdp",
180 	[BPF_PROG_TYPE_PERF_EVENT]		= "perf_event",
181 	[BPF_PROG_TYPE_CGROUP_SKB]		= "cgroup_skb",
182 	[BPF_PROG_TYPE_CGROUP_SOCK]		= "cgroup_sock",
183 	[BPF_PROG_TYPE_LWT_IN]			= "lwt_in",
184 	[BPF_PROG_TYPE_LWT_OUT]			= "lwt_out",
185 	[BPF_PROG_TYPE_LWT_XMIT]		= "lwt_xmit",
186 	[BPF_PROG_TYPE_SOCK_OPS]		= "sock_ops",
187 	[BPF_PROG_TYPE_SK_SKB]			= "sk_skb",
188 	[BPF_PROG_TYPE_CGROUP_DEVICE]		= "cgroup_device",
189 	[BPF_PROG_TYPE_SK_MSG]			= "sk_msg",
190 	[BPF_PROG_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
191 	[BPF_PROG_TYPE_CGROUP_SOCK_ADDR]	= "cgroup_sock_addr",
192 	[BPF_PROG_TYPE_LWT_SEG6LOCAL]		= "lwt_seg6local",
193 	[BPF_PROG_TYPE_LIRC_MODE2]		= "lirc_mode2",
194 	[BPF_PROG_TYPE_SK_REUSEPORT]		= "sk_reuseport",
195 	[BPF_PROG_TYPE_FLOW_DISSECTOR]		= "flow_dissector",
196 	[BPF_PROG_TYPE_CGROUP_SYSCTL]		= "cgroup_sysctl",
197 	[BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE]	= "raw_tracepoint_writable",
198 	[BPF_PROG_TYPE_CGROUP_SOCKOPT]		= "cgroup_sockopt",
199 	[BPF_PROG_TYPE_TRACING]			= "tracing",
200 	[BPF_PROG_TYPE_STRUCT_OPS]		= "struct_ops",
201 	[BPF_PROG_TYPE_EXT]			= "ext",
202 	[BPF_PROG_TYPE_LSM]			= "lsm",
203 	[BPF_PROG_TYPE_SK_LOOKUP]		= "sk_lookup",
204 	[BPF_PROG_TYPE_SYSCALL]			= "syscall",
205 	[BPF_PROG_TYPE_NETFILTER]		= "netfilter",
206 };
207 
208 static int __base_pr(enum libbpf_print_level level, const char *format,
209 		     va_list args)
210 {
211 	if (level == LIBBPF_DEBUG)
212 		return 0;
213 
214 	return vfprintf(stderr, format, args);
215 }
216 
217 static libbpf_print_fn_t __libbpf_pr = __base_pr;
218 
219 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
220 {
221 	libbpf_print_fn_t old_print_fn;
222 
223 	old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED);
224 
225 	return old_print_fn;
226 }
227 
228 __printf(2, 3)
229 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
230 {
231 	va_list args;
232 	int old_errno;
233 	libbpf_print_fn_t print_fn;
234 
235 	print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED);
236 	if (!print_fn)
237 		return;
238 
239 	old_errno = errno;
240 
241 	va_start(args, format);
242 	__libbpf_pr(level, format, args);
243 	va_end(args);
244 
245 	errno = old_errno;
246 }
247 
248 static void pr_perm_msg(int err)
249 {
250 	struct rlimit limit;
251 	char buf[100];
252 
253 	if (err != -EPERM || geteuid() != 0)
254 		return;
255 
256 	err = getrlimit(RLIMIT_MEMLOCK, &limit);
257 	if (err)
258 		return;
259 
260 	if (limit.rlim_cur == RLIM_INFINITY)
261 		return;
262 
263 	if (limit.rlim_cur < 1024)
264 		snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
265 	else if (limit.rlim_cur < 1024*1024)
266 		snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
267 	else
268 		snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
269 
270 	pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
271 		buf);
272 }
273 
274 #define STRERR_BUFSIZE  128
275 
276 /* Copied from tools/perf/util/util.h */
277 #ifndef zfree
278 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
279 #endif
280 
281 #ifndef zclose
282 # define zclose(fd) ({			\
283 	int ___err = 0;			\
284 	if ((fd) >= 0)			\
285 		___err = close((fd));	\
286 	fd = -1;			\
287 	___err; })
288 #endif
289 
290 static inline __u64 ptr_to_u64(const void *ptr)
291 {
292 	return (__u64) (unsigned long) ptr;
293 }
294 
295 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
296 {
297 	/* as of v1.0 libbpf_set_strict_mode() is a no-op */
298 	return 0;
299 }
300 
301 __u32 libbpf_major_version(void)
302 {
303 	return LIBBPF_MAJOR_VERSION;
304 }
305 
306 __u32 libbpf_minor_version(void)
307 {
308 	return LIBBPF_MINOR_VERSION;
309 }
310 
311 const char *libbpf_version_string(void)
312 {
313 #define __S(X) #X
314 #define _S(X) __S(X)
315 	return  "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
316 #undef _S
317 #undef __S
318 }
319 
320 enum reloc_type {
321 	RELO_LD64,
322 	RELO_CALL,
323 	RELO_DATA,
324 	RELO_EXTERN_LD64,
325 	RELO_EXTERN_CALL,
326 	RELO_SUBPROG_ADDR,
327 	RELO_CORE,
328 };
329 
330 struct reloc_desc {
331 	enum reloc_type type;
332 	int insn_idx;
333 	union {
334 		const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
335 		struct {
336 			int map_idx;
337 			int sym_off;
338 			int ext_idx;
339 		};
340 	};
341 };
342 
343 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
344 enum sec_def_flags {
345 	SEC_NONE = 0,
346 	/* expected_attach_type is optional, if kernel doesn't support that */
347 	SEC_EXP_ATTACH_OPT = 1,
348 	/* legacy, only used by libbpf_get_type_names() and
349 	 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
350 	 * This used to be associated with cgroup (and few other) BPF programs
351 	 * that were attachable through BPF_PROG_ATTACH command. Pretty
352 	 * meaningless nowadays, though.
353 	 */
354 	SEC_ATTACHABLE = 2,
355 	SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
356 	/* attachment target is specified through BTF ID in either kernel or
357 	 * other BPF program's BTF object
358 	 */
359 	SEC_ATTACH_BTF = 4,
360 	/* BPF program type allows sleeping/blocking in kernel */
361 	SEC_SLEEPABLE = 8,
362 	/* BPF program support non-linear XDP buffer */
363 	SEC_XDP_FRAGS = 16,
364 };
365 
366 struct bpf_sec_def {
367 	char *sec;
368 	enum bpf_prog_type prog_type;
369 	enum bpf_attach_type expected_attach_type;
370 	long cookie;
371 	int handler_id;
372 
373 	libbpf_prog_setup_fn_t prog_setup_fn;
374 	libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
375 	libbpf_prog_attach_fn_t prog_attach_fn;
376 };
377 
378 /*
379  * bpf_prog should be a better name but it has been used in
380  * linux/filter.h.
381  */
382 struct bpf_program {
383 	char *name;
384 	char *sec_name;
385 	size_t sec_idx;
386 	const struct bpf_sec_def *sec_def;
387 	/* this program's instruction offset (in number of instructions)
388 	 * within its containing ELF section
389 	 */
390 	size_t sec_insn_off;
391 	/* number of original instructions in ELF section belonging to this
392 	 * program, not taking into account subprogram instructions possible
393 	 * appended later during relocation
394 	 */
395 	size_t sec_insn_cnt;
396 	/* Offset (in number of instructions) of the start of instruction
397 	 * belonging to this BPF program  within its containing main BPF
398 	 * program. For the entry-point (main) BPF program, this is always
399 	 * zero. For a sub-program, this gets reset before each of main BPF
400 	 * programs are processed and relocated and is used to determined
401 	 * whether sub-program was already appended to the main program, and
402 	 * if yes, at which instruction offset.
403 	 */
404 	size_t sub_insn_off;
405 
406 	/* instructions that belong to BPF program; insns[0] is located at
407 	 * sec_insn_off instruction within its ELF section in ELF file, so
408 	 * when mapping ELF file instruction index to the local instruction,
409 	 * one needs to subtract sec_insn_off; and vice versa.
410 	 */
411 	struct bpf_insn *insns;
412 	/* actual number of instruction in this BPF program's image; for
413 	 * entry-point BPF programs this includes the size of main program
414 	 * itself plus all the used sub-programs, appended at the end
415 	 */
416 	size_t insns_cnt;
417 
418 	struct reloc_desc *reloc_desc;
419 	int nr_reloc;
420 
421 	/* BPF verifier log settings */
422 	char *log_buf;
423 	size_t log_size;
424 	__u32 log_level;
425 
426 	struct bpf_object *obj;
427 
428 	int fd;
429 	bool autoload;
430 	bool autoattach;
431 	bool mark_btf_static;
432 	enum bpf_prog_type type;
433 	enum bpf_attach_type expected_attach_type;
434 
435 	int prog_ifindex;
436 	__u32 attach_btf_obj_fd;
437 	__u32 attach_btf_id;
438 	__u32 attach_prog_fd;
439 
440 	void *func_info;
441 	__u32 func_info_rec_size;
442 	__u32 func_info_cnt;
443 
444 	void *line_info;
445 	__u32 line_info_rec_size;
446 	__u32 line_info_cnt;
447 	__u32 prog_flags;
448 };
449 
450 struct bpf_struct_ops {
451 	const char *tname;
452 	const struct btf_type *type;
453 	struct bpf_program **progs;
454 	__u32 *kern_func_off;
455 	/* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
456 	void *data;
457 	/* e.g. struct bpf_struct_ops_tcp_congestion_ops in
458 	 *      btf_vmlinux's format.
459 	 * struct bpf_struct_ops_tcp_congestion_ops {
460 	 *	[... some other kernel fields ...]
461 	 *	struct tcp_congestion_ops data;
462 	 * }
463 	 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
464 	 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
465 	 * from "data".
466 	 */
467 	void *kern_vdata;
468 	__u32 type_id;
469 };
470 
471 #define DATA_SEC ".data"
472 #define BSS_SEC ".bss"
473 #define RODATA_SEC ".rodata"
474 #define KCONFIG_SEC ".kconfig"
475 #define KSYMS_SEC ".ksyms"
476 #define STRUCT_OPS_SEC ".struct_ops"
477 #define STRUCT_OPS_LINK_SEC ".struct_ops.link"
478 
479 enum libbpf_map_type {
480 	LIBBPF_MAP_UNSPEC,
481 	LIBBPF_MAP_DATA,
482 	LIBBPF_MAP_BSS,
483 	LIBBPF_MAP_RODATA,
484 	LIBBPF_MAP_KCONFIG,
485 };
486 
487 struct bpf_map_def {
488 	unsigned int type;
489 	unsigned int key_size;
490 	unsigned int value_size;
491 	unsigned int max_entries;
492 	unsigned int map_flags;
493 };
494 
495 struct bpf_map {
496 	struct bpf_object *obj;
497 	char *name;
498 	/* real_name is defined for special internal maps (.rodata*,
499 	 * .data*, .bss, .kconfig) and preserves their original ELF section
500 	 * name. This is important to be able to find corresponding BTF
501 	 * DATASEC information.
502 	 */
503 	char *real_name;
504 	int fd;
505 	int sec_idx;
506 	size_t sec_offset;
507 	int map_ifindex;
508 	int inner_map_fd;
509 	struct bpf_map_def def;
510 	__u32 numa_node;
511 	__u32 btf_var_idx;
512 	__u32 btf_key_type_id;
513 	__u32 btf_value_type_id;
514 	__u32 btf_vmlinux_value_type_id;
515 	enum libbpf_map_type libbpf_type;
516 	void *mmaped;
517 	struct bpf_struct_ops *st_ops;
518 	struct bpf_map *inner_map;
519 	void **init_slots;
520 	int init_slots_sz;
521 	char *pin_path;
522 	bool pinned;
523 	bool reused;
524 	bool autocreate;
525 	__u64 map_extra;
526 };
527 
528 enum extern_type {
529 	EXT_UNKNOWN,
530 	EXT_KCFG,
531 	EXT_KSYM,
532 };
533 
534 enum kcfg_type {
535 	KCFG_UNKNOWN,
536 	KCFG_CHAR,
537 	KCFG_BOOL,
538 	KCFG_INT,
539 	KCFG_TRISTATE,
540 	KCFG_CHAR_ARR,
541 };
542 
543 struct extern_desc {
544 	enum extern_type type;
545 	int sym_idx;
546 	int btf_id;
547 	int sec_btf_id;
548 	const char *name;
549 	bool is_set;
550 	bool is_weak;
551 	union {
552 		struct {
553 			enum kcfg_type type;
554 			int sz;
555 			int align;
556 			int data_off;
557 			bool is_signed;
558 		} kcfg;
559 		struct {
560 			unsigned long long addr;
561 
562 			/* target btf_id of the corresponding kernel var. */
563 			int kernel_btf_obj_fd;
564 			int kernel_btf_id;
565 
566 			/* local btf_id of the ksym extern's type. */
567 			__u32 type_id;
568 			/* BTF fd index to be patched in for insn->off, this is
569 			 * 0 for vmlinux BTF, index in obj->fd_array for module
570 			 * BTF
571 			 */
572 			__s16 btf_fd_idx;
573 		} ksym;
574 	};
575 };
576 
577 struct module_btf {
578 	struct btf *btf;
579 	char *name;
580 	__u32 id;
581 	int fd;
582 	int fd_array_idx;
583 };
584 
585 enum sec_type {
586 	SEC_UNUSED = 0,
587 	SEC_RELO,
588 	SEC_BSS,
589 	SEC_DATA,
590 	SEC_RODATA,
591 };
592 
593 struct elf_sec_desc {
594 	enum sec_type sec_type;
595 	Elf64_Shdr *shdr;
596 	Elf_Data *data;
597 };
598 
599 struct elf_state {
600 	int fd;
601 	const void *obj_buf;
602 	size_t obj_buf_sz;
603 	Elf *elf;
604 	Elf64_Ehdr *ehdr;
605 	Elf_Data *symbols;
606 	Elf_Data *st_ops_data;
607 	Elf_Data *st_ops_link_data;
608 	size_t shstrndx; /* section index for section name strings */
609 	size_t strtabidx;
610 	struct elf_sec_desc *secs;
611 	size_t sec_cnt;
612 	int btf_maps_shndx;
613 	__u32 btf_maps_sec_btf_id;
614 	int text_shndx;
615 	int symbols_shndx;
616 	int st_ops_shndx;
617 	int st_ops_link_shndx;
618 };
619 
620 struct usdt_manager;
621 
622 struct bpf_object {
623 	char name[BPF_OBJ_NAME_LEN];
624 	char license[64];
625 	__u32 kern_version;
626 
627 	struct bpf_program *programs;
628 	size_t nr_programs;
629 	struct bpf_map *maps;
630 	size_t nr_maps;
631 	size_t maps_cap;
632 
633 	char *kconfig;
634 	struct extern_desc *externs;
635 	int nr_extern;
636 	int kconfig_map_idx;
637 
638 	bool loaded;
639 	bool has_subcalls;
640 	bool has_rodata;
641 
642 	struct bpf_gen *gen_loader;
643 
644 	/* Information when doing ELF related work. Only valid if efile.elf is not NULL */
645 	struct elf_state efile;
646 
647 	struct btf *btf;
648 	struct btf_ext *btf_ext;
649 
650 	/* Parse and load BTF vmlinux if any of the programs in the object need
651 	 * it at load time.
652 	 */
653 	struct btf *btf_vmlinux;
654 	/* Path to the custom BTF to be used for BPF CO-RE relocations as an
655 	 * override for vmlinux BTF.
656 	 */
657 	char *btf_custom_path;
658 	/* vmlinux BTF override for CO-RE relocations */
659 	struct btf *btf_vmlinux_override;
660 	/* Lazily initialized kernel module BTFs */
661 	struct module_btf *btf_modules;
662 	bool btf_modules_loaded;
663 	size_t btf_module_cnt;
664 	size_t btf_module_cap;
665 
666 	/* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
667 	char *log_buf;
668 	size_t log_size;
669 	__u32 log_level;
670 
671 	int *fd_array;
672 	size_t fd_array_cap;
673 	size_t fd_array_cnt;
674 
675 	struct usdt_manager *usdt_man;
676 
677 	char path[];
678 };
679 
680 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
681 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
682 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
683 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
684 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
685 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
686 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
687 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
688 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
689 
690 void bpf_program__unload(struct bpf_program *prog)
691 {
692 	if (!prog)
693 		return;
694 
695 	zclose(prog->fd);
696 
697 	zfree(&prog->func_info);
698 	zfree(&prog->line_info);
699 }
700 
701 static void bpf_program__exit(struct bpf_program *prog)
702 {
703 	if (!prog)
704 		return;
705 
706 	bpf_program__unload(prog);
707 	zfree(&prog->name);
708 	zfree(&prog->sec_name);
709 	zfree(&prog->insns);
710 	zfree(&prog->reloc_desc);
711 
712 	prog->nr_reloc = 0;
713 	prog->insns_cnt = 0;
714 	prog->sec_idx = -1;
715 }
716 
717 static bool insn_is_subprog_call(const struct bpf_insn *insn)
718 {
719 	return BPF_CLASS(insn->code) == BPF_JMP &&
720 	       BPF_OP(insn->code) == BPF_CALL &&
721 	       BPF_SRC(insn->code) == BPF_K &&
722 	       insn->src_reg == BPF_PSEUDO_CALL &&
723 	       insn->dst_reg == 0 &&
724 	       insn->off == 0;
725 }
726 
727 static bool is_call_insn(const struct bpf_insn *insn)
728 {
729 	return insn->code == (BPF_JMP | BPF_CALL);
730 }
731 
732 static bool insn_is_pseudo_func(struct bpf_insn *insn)
733 {
734 	return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
735 }
736 
737 static int
738 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
739 		      const char *name, size_t sec_idx, const char *sec_name,
740 		      size_t sec_off, void *insn_data, size_t insn_data_sz)
741 {
742 	if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
743 		pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
744 			sec_name, name, sec_off, insn_data_sz);
745 		return -EINVAL;
746 	}
747 
748 	memset(prog, 0, sizeof(*prog));
749 	prog->obj = obj;
750 
751 	prog->sec_idx = sec_idx;
752 	prog->sec_insn_off = sec_off / BPF_INSN_SZ;
753 	prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
754 	/* insns_cnt can later be increased by appending used subprograms */
755 	prog->insns_cnt = prog->sec_insn_cnt;
756 
757 	prog->type = BPF_PROG_TYPE_UNSPEC;
758 	prog->fd = -1;
759 
760 	/* libbpf's convention for SEC("?abc...") is that it's just like
761 	 * SEC("abc...") but the corresponding bpf_program starts out with
762 	 * autoload set to false.
763 	 */
764 	if (sec_name[0] == '?') {
765 		prog->autoload = false;
766 		/* from now on forget there was ? in section name */
767 		sec_name++;
768 	} else {
769 		prog->autoload = true;
770 	}
771 
772 	prog->autoattach = true;
773 
774 	/* inherit object's log_level */
775 	prog->log_level = obj->log_level;
776 
777 	prog->sec_name = strdup(sec_name);
778 	if (!prog->sec_name)
779 		goto errout;
780 
781 	prog->name = strdup(name);
782 	if (!prog->name)
783 		goto errout;
784 
785 	prog->insns = malloc(insn_data_sz);
786 	if (!prog->insns)
787 		goto errout;
788 	memcpy(prog->insns, insn_data, insn_data_sz);
789 
790 	return 0;
791 errout:
792 	pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
793 	bpf_program__exit(prog);
794 	return -ENOMEM;
795 }
796 
797 static int
798 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
799 			 const char *sec_name, int sec_idx)
800 {
801 	Elf_Data *symbols = obj->efile.symbols;
802 	struct bpf_program *prog, *progs;
803 	void *data = sec_data->d_buf;
804 	size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
805 	int nr_progs, err, i;
806 	const char *name;
807 	Elf64_Sym *sym;
808 
809 	progs = obj->programs;
810 	nr_progs = obj->nr_programs;
811 	nr_syms = symbols->d_size / sizeof(Elf64_Sym);
812 
813 	for (i = 0; i < nr_syms; i++) {
814 		sym = elf_sym_by_idx(obj, i);
815 
816 		if (sym->st_shndx != sec_idx)
817 			continue;
818 		if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
819 			continue;
820 
821 		prog_sz = sym->st_size;
822 		sec_off = sym->st_value;
823 
824 		name = elf_sym_str(obj, sym->st_name);
825 		if (!name) {
826 			pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
827 				sec_name, sec_off);
828 			return -LIBBPF_ERRNO__FORMAT;
829 		}
830 
831 		if (sec_off + prog_sz > sec_sz) {
832 			pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
833 				sec_name, sec_off);
834 			return -LIBBPF_ERRNO__FORMAT;
835 		}
836 
837 		if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
838 			pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
839 			return -ENOTSUP;
840 		}
841 
842 		pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
843 			 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
844 
845 		progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
846 		if (!progs) {
847 			/*
848 			 * In this case the original obj->programs
849 			 * is still valid, so don't need special treat for
850 			 * bpf_close_object().
851 			 */
852 			pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
853 				sec_name, name);
854 			return -ENOMEM;
855 		}
856 		obj->programs = progs;
857 
858 		prog = &progs[nr_progs];
859 
860 		err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
861 					    sec_off, data + sec_off, prog_sz);
862 		if (err)
863 			return err;
864 
865 		/* if function is a global/weak symbol, but has restricted
866 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
867 		 * as static to enable more permissive BPF verification mode
868 		 * with more outside context available to BPF verifier
869 		 */
870 		if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL
871 		    && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
872 			|| ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
873 			prog->mark_btf_static = true;
874 
875 		nr_progs++;
876 		obj->nr_programs = nr_progs;
877 	}
878 
879 	return 0;
880 }
881 
882 static const struct btf_member *
883 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
884 {
885 	struct btf_member *m;
886 	int i;
887 
888 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
889 		if (btf_member_bit_offset(t, i) == bit_offset)
890 			return m;
891 	}
892 
893 	return NULL;
894 }
895 
896 static const struct btf_member *
897 find_member_by_name(const struct btf *btf, const struct btf_type *t,
898 		    const char *name)
899 {
900 	struct btf_member *m;
901 	int i;
902 
903 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
904 		if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
905 			return m;
906 	}
907 
908 	return NULL;
909 }
910 
911 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
912 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
913 				   const char *name, __u32 kind);
914 
915 static int
916 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
917 			   const struct btf_type **type, __u32 *type_id,
918 			   const struct btf_type **vtype, __u32 *vtype_id,
919 			   const struct btf_member **data_member)
920 {
921 	const struct btf_type *kern_type, *kern_vtype;
922 	const struct btf_member *kern_data_member;
923 	__s32 kern_vtype_id, kern_type_id;
924 	__u32 i;
925 
926 	kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
927 	if (kern_type_id < 0) {
928 		pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
929 			tname);
930 		return kern_type_id;
931 	}
932 	kern_type = btf__type_by_id(btf, kern_type_id);
933 
934 	/* Find the corresponding "map_value" type that will be used
935 	 * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
936 	 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
937 	 * btf_vmlinux.
938 	 */
939 	kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
940 						tname, BTF_KIND_STRUCT);
941 	if (kern_vtype_id < 0) {
942 		pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
943 			STRUCT_OPS_VALUE_PREFIX, tname);
944 		return kern_vtype_id;
945 	}
946 	kern_vtype = btf__type_by_id(btf, kern_vtype_id);
947 
948 	/* Find "struct tcp_congestion_ops" from
949 	 * struct bpf_struct_ops_tcp_congestion_ops {
950 	 *	[ ... ]
951 	 *	struct tcp_congestion_ops data;
952 	 * }
953 	 */
954 	kern_data_member = btf_members(kern_vtype);
955 	for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
956 		if (kern_data_member->type == kern_type_id)
957 			break;
958 	}
959 	if (i == btf_vlen(kern_vtype)) {
960 		pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
961 			tname, STRUCT_OPS_VALUE_PREFIX, tname);
962 		return -EINVAL;
963 	}
964 
965 	*type = kern_type;
966 	*type_id = kern_type_id;
967 	*vtype = kern_vtype;
968 	*vtype_id = kern_vtype_id;
969 	*data_member = kern_data_member;
970 
971 	return 0;
972 }
973 
974 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
975 {
976 	return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
977 }
978 
979 /* Init the map's fields that depend on kern_btf */
980 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
981 					 const struct btf *btf,
982 					 const struct btf *kern_btf)
983 {
984 	const struct btf_member *member, *kern_member, *kern_data_member;
985 	const struct btf_type *type, *kern_type, *kern_vtype;
986 	__u32 i, kern_type_id, kern_vtype_id, kern_data_off;
987 	struct bpf_struct_ops *st_ops;
988 	void *data, *kern_data;
989 	const char *tname;
990 	int err;
991 
992 	st_ops = map->st_ops;
993 	type = st_ops->type;
994 	tname = st_ops->tname;
995 	err = find_struct_ops_kern_types(kern_btf, tname,
996 					 &kern_type, &kern_type_id,
997 					 &kern_vtype, &kern_vtype_id,
998 					 &kern_data_member);
999 	if (err)
1000 		return err;
1001 
1002 	pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1003 		 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1004 
1005 	map->def.value_size = kern_vtype->size;
1006 	map->btf_vmlinux_value_type_id = kern_vtype_id;
1007 
1008 	st_ops->kern_vdata = calloc(1, kern_vtype->size);
1009 	if (!st_ops->kern_vdata)
1010 		return -ENOMEM;
1011 
1012 	data = st_ops->data;
1013 	kern_data_off = kern_data_member->offset / 8;
1014 	kern_data = st_ops->kern_vdata + kern_data_off;
1015 
1016 	member = btf_members(type);
1017 	for (i = 0; i < btf_vlen(type); i++, member++) {
1018 		const struct btf_type *mtype, *kern_mtype;
1019 		__u32 mtype_id, kern_mtype_id;
1020 		void *mdata, *kern_mdata;
1021 		__s64 msize, kern_msize;
1022 		__u32 moff, kern_moff;
1023 		__u32 kern_member_idx;
1024 		const char *mname;
1025 
1026 		mname = btf__name_by_offset(btf, member->name_off);
1027 		kern_member = find_member_by_name(kern_btf, kern_type, mname);
1028 		if (!kern_member) {
1029 			pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1030 				map->name, mname);
1031 			return -ENOTSUP;
1032 		}
1033 
1034 		kern_member_idx = kern_member - btf_members(kern_type);
1035 		if (btf_member_bitfield_size(type, i) ||
1036 		    btf_member_bitfield_size(kern_type, kern_member_idx)) {
1037 			pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1038 				map->name, mname);
1039 			return -ENOTSUP;
1040 		}
1041 
1042 		moff = member->offset / 8;
1043 		kern_moff = kern_member->offset / 8;
1044 
1045 		mdata = data + moff;
1046 		kern_mdata = kern_data + kern_moff;
1047 
1048 		mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1049 		kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1050 						    &kern_mtype_id);
1051 		if (BTF_INFO_KIND(mtype->info) !=
1052 		    BTF_INFO_KIND(kern_mtype->info)) {
1053 			pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1054 				map->name, mname, BTF_INFO_KIND(mtype->info),
1055 				BTF_INFO_KIND(kern_mtype->info));
1056 			return -ENOTSUP;
1057 		}
1058 
1059 		if (btf_is_ptr(mtype)) {
1060 			struct bpf_program *prog;
1061 
1062 			prog = st_ops->progs[i];
1063 			if (!prog)
1064 				continue;
1065 
1066 			kern_mtype = skip_mods_and_typedefs(kern_btf,
1067 							    kern_mtype->type,
1068 							    &kern_mtype_id);
1069 
1070 			/* mtype->type must be a func_proto which was
1071 			 * guaranteed in bpf_object__collect_st_ops_relos(),
1072 			 * so only check kern_mtype for func_proto here.
1073 			 */
1074 			if (!btf_is_func_proto(kern_mtype)) {
1075 				pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1076 					map->name, mname);
1077 				return -ENOTSUP;
1078 			}
1079 
1080 			prog->attach_btf_id = kern_type_id;
1081 			prog->expected_attach_type = kern_member_idx;
1082 
1083 			st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1084 
1085 			pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1086 				 map->name, mname, prog->name, moff,
1087 				 kern_moff);
1088 
1089 			continue;
1090 		}
1091 
1092 		msize = btf__resolve_size(btf, mtype_id);
1093 		kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1094 		if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1095 			pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1096 				map->name, mname, (ssize_t)msize,
1097 				(ssize_t)kern_msize);
1098 			return -ENOTSUP;
1099 		}
1100 
1101 		pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1102 			 map->name, mname, (unsigned int)msize,
1103 			 moff, kern_moff);
1104 		memcpy(kern_mdata, mdata, msize);
1105 	}
1106 
1107 	return 0;
1108 }
1109 
1110 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1111 {
1112 	struct bpf_map *map;
1113 	size_t i;
1114 	int err;
1115 
1116 	for (i = 0; i < obj->nr_maps; i++) {
1117 		map = &obj->maps[i];
1118 
1119 		if (!bpf_map__is_struct_ops(map))
1120 			continue;
1121 
1122 		err = bpf_map__init_kern_struct_ops(map, obj->btf,
1123 						    obj->btf_vmlinux);
1124 		if (err)
1125 			return err;
1126 	}
1127 
1128 	return 0;
1129 }
1130 
1131 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name,
1132 				int shndx, Elf_Data *data, __u32 map_flags)
1133 {
1134 	const struct btf_type *type, *datasec;
1135 	const struct btf_var_secinfo *vsi;
1136 	struct bpf_struct_ops *st_ops;
1137 	const char *tname, *var_name;
1138 	__s32 type_id, datasec_id;
1139 	const struct btf *btf;
1140 	struct bpf_map *map;
1141 	__u32 i;
1142 
1143 	if (shndx == -1)
1144 		return 0;
1145 
1146 	btf = obj->btf;
1147 	datasec_id = btf__find_by_name_kind(btf, sec_name,
1148 					    BTF_KIND_DATASEC);
1149 	if (datasec_id < 0) {
1150 		pr_warn("struct_ops init: DATASEC %s not found\n",
1151 			sec_name);
1152 		return -EINVAL;
1153 	}
1154 
1155 	datasec = btf__type_by_id(btf, datasec_id);
1156 	vsi = btf_var_secinfos(datasec);
1157 	for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1158 		type = btf__type_by_id(obj->btf, vsi->type);
1159 		var_name = btf__name_by_offset(obj->btf, type->name_off);
1160 
1161 		type_id = btf__resolve_type(obj->btf, vsi->type);
1162 		if (type_id < 0) {
1163 			pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1164 				vsi->type, sec_name);
1165 			return -EINVAL;
1166 		}
1167 
1168 		type = btf__type_by_id(obj->btf, type_id);
1169 		tname = btf__name_by_offset(obj->btf, type->name_off);
1170 		if (!tname[0]) {
1171 			pr_warn("struct_ops init: anonymous type is not supported\n");
1172 			return -ENOTSUP;
1173 		}
1174 		if (!btf_is_struct(type)) {
1175 			pr_warn("struct_ops init: %s is not a struct\n", tname);
1176 			return -EINVAL;
1177 		}
1178 
1179 		map = bpf_object__add_map(obj);
1180 		if (IS_ERR(map))
1181 			return PTR_ERR(map);
1182 
1183 		map->sec_idx = shndx;
1184 		map->sec_offset = vsi->offset;
1185 		map->name = strdup(var_name);
1186 		if (!map->name)
1187 			return -ENOMEM;
1188 
1189 		map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1190 		map->def.key_size = sizeof(int);
1191 		map->def.value_size = type->size;
1192 		map->def.max_entries = 1;
1193 		map->def.map_flags = map_flags;
1194 
1195 		map->st_ops = calloc(1, sizeof(*map->st_ops));
1196 		if (!map->st_ops)
1197 			return -ENOMEM;
1198 		st_ops = map->st_ops;
1199 		st_ops->data = malloc(type->size);
1200 		st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1201 		st_ops->kern_func_off = malloc(btf_vlen(type) *
1202 					       sizeof(*st_ops->kern_func_off));
1203 		if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1204 			return -ENOMEM;
1205 
1206 		if (vsi->offset + type->size > data->d_size) {
1207 			pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1208 				var_name, sec_name);
1209 			return -EINVAL;
1210 		}
1211 
1212 		memcpy(st_ops->data,
1213 		       data->d_buf + vsi->offset,
1214 		       type->size);
1215 		st_ops->tname = tname;
1216 		st_ops->type = type;
1217 		st_ops->type_id = type_id;
1218 
1219 		pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1220 			 tname, type_id, var_name, vsi->offset);
1221 	}
1222 
1223 	return 0;
1224 }
1225 
1226 static int bpf_object_init_struct_ops(struct bpf_object *obj)
1227 {
1228 	int err;
1229 
1230 	err = init_struct_ops_maps(obj, STRUCT_OPS_SEC, obj->efile.st_ops_shndx,
1231 				   obj->efile.st_ops_data, 0);
1232 	err = err ?: init_struct_ops_maps(obj, STRUCT_OPS_LINK_SEC,
1233 					  obj->efile.st_ops_link_shndx,
1234 					  obj->efile.st_ops_link_data,
1235 					  BPF_F_LINK);
1236 	return err;
1237 }
1238 
1239 static struct bpf_object *bpf_object__new(const char *path,
1240 					  const void *obj_buf,
1241 					  size_t obj_buf_sz,
1242 					  const char *obj_name)
1243 {
1244 	struct bpf_object *obj;
1245 	char *end;
1246 
1247 	obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1248 	if (!obj) {
1249 		pr_warn("alloc memory failed for %s\n", path);
1250 		return ERR_PTR(-ENOMEM);
1251 	}
1252 
1253 	strcpy(obj->path, path);
1254 	if (obj_name) {
1255 		libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1256 	} else {
1257 		/* Using basename() GNU version which doesn't modify arg. */
1258 		libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1259 		end = strchr(obj->name, '.');
1260 		if (end)
1261 			*end = 0;
1262 	}
1263 
1264 	obj->efile.fd = -1;
1265 	/*
1266 	 * Caller of this function should also call
1267 	 * bpf_object__elf_finish() after data collection to return
1268 	 * obj_buf to user. If not, we should duplicate the buffer to
1269 	 * avoid user freeing them before elf finish.
1270 	 */
1271 	obj->efile.obj_buf = obj_buf;
1272 	obj->efile.obj_buf_sz = obj_buf_sz;
1273 	obj->efile.btf_maps_shndx = -1;
1274 	obj->efile.st_ops_shndx = -1;
1275 	obj->efile.st_ops_link_shndx = -1;
1276 	obj->kconfig_map_idx = -1;
1277 
1278 	obj->kern_version = get_kernel_version();
1279 	obj->loaded = false;
1280 
1281 	return obj;
1282 }
1283 
1284 static void bpf_object__elf_finish(struct bpf_object *obj)
1285 {
1286 	if (!obj->efile.elf)
1287 		return;
1288 
1289 	elf_end(obj->efile.elf);
1290 	obj->efile.elf = NULL;
1291 	obj->efile.symbols = NULL;
1292 	obj->efile.st_ops_data = NULL;
1293 	obj->efile.st_ops_link_data = NULL;
1294 
1295 	zfree(&obj->efile.secs);
1296 	obj->efile.sec_cnt = 0;
1297 	zclose(obj->efile.fd);
1298 	obj->efile.obj_buf = NULL;
1299 	obj->efile.obj_buf_sz = 0;
1300 }
1301 
1302 static int bpf_object__elf_init(struct bpf_object *obj)
1303 {
1304 	Elf64_Ehdr *ehdr;
1305 	int err = 0;
1306 	Elf *elf;
1307 
1308 	if (obj->efile.elf) {
1309 		pr_warn("elf: init internal error\n");
1310 		return -LIBBPF_ERRNO__LIBELF;
1311 	}
1312 
1313 	if (obj->efile.obj_buf_sz > 0) {
1314 		/* obj_buf should have been validated by bpf_object__open_mem(). */
1315 		elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1316 	} else {
1317 		obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1318 		if (obj->efile.fd < 0) {
1319 			char errmsg[STRERR_BUFSIZE], *cp;
1320 
1321 			err = -errno;
1322 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1323 			pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1324 			return err;
1325 		}
1326 
1327 		elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1328 	}
1329 
1330 	if (!elf) {
1331 		pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1332 		err = -LIBBPF_ERRNO__LIBELF;
1333 		goto errout;
1334 	}
1335 
1336 	obj->efile.elf = elf;
1337 
1338 	if (elf_kind(elf) != ELF_K_ELF) {
1339 		err = -LIBBPF_ERRNO__FORMAT;
1340 		pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1341 		goto errout;
1342 	}
1343 
1344 	if (gelf_getclass(elf) != ELFCLASS64) {
1345 		err = -LIBBPF_ERRNO__FORMAT;
1346 		pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1347 		goto errout;
1348 	}
1349 
1350 	obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1351 	if (!obj->efile.ehdr) {
1352 		pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1353 		err = -LIBBPF_ERRNO__FORMAT;
1354 		goto errout;
1355 	}
1356 
1357 	if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1358 		pr_warn("elf: failed to get section names section index for %s: %s\n",
1359 			obj->path, elf_errmsg(-1));
1360 		err = -LIBBPF_ERRNO__FORMAT;
1361 		goto errout;
1362 	}
1363 
1364 	/* ELF is corrupted/truncated, avoid calling elf_strptr. */
1365 	if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1366 		pr_warn("elf: failed to get section names strings from %s: %s\n",
1367 			obj->path, elf_errmsg(-1));
1368 		err = -LIBBPF_ERRNO__FORMAT;
1369 		goto errout;
1370 	}
1371 
1372 	/* Old LLVM set e_machine to EM_NONE */
1373 	if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1374 		pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1375 		err = -LIBBPF_ERRNO__FORMAT;
1376 		goto errout;
1377 	}
1378 
1379 	return 0;
1380 errout:
1381 	bpf_object__elf_finish(obj);
1382 	return err;
1383 }
1384 
1385 static int bpf_object__check_endianness(struct bpf_object *obj)
1386 {
1387 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1388 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1389 		return 0;
1390 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1391 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1392 		return 0;
1393 #else
1394 # error "Unrecognized __BYTE_ORDER__"
1395 #endif
1396 	pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1397 	return -LIBBPF_ERRNO__ENDIAN;
1398 }
1399 
1400 static int
1401 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1402 {
1403 	if (!data) {
1404 		pr_warn("invalid license section in %s\n", obj->path);
1405 		return -LIBBPF_ERRNO__FORMAT;
1406 	}
1407 	/* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1408 	 * go over allowed ELF data section buffer
1409 	 */
1410 	libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1411 	pr_debug("license of %s is %s\n", obj->path, obj->license);
1412 	return 0;
1413 }
1414 
1415 static int
1416 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1417 {
1418 	__u32 kver;
1419 
1420 	if (!data || size != sizeof(kver)) {
1421 		pr_warn("invalid kver section in %s\n", obj->path);
1422 		return -LIBBPF_ERRNO__FORMAT;
1423 	}
1424 	memcpy(&kver, data, sizeof(kver));
1425 	obj->kern_version = kver;
1426 	pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1427 	return 0;
1428 }
1429 
1430 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1431 {
1432 	if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1433 	    type == BPF_MAP_TYPE_HASH_OF_MAPS)
1434 		return true;
1435 	return false;
1436 }
1437 
1438 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1439 {
1440 	Elf_Data *data;
1441 	Elf_Scn *scn;
1442 
1443 	if (!name)
1444 		return -EINVAL;
1445 
1446 	scn = elf_sec_by_name(obj, name);
1447 	data = elf_sec_data(obj, scn);
1448 	if (data) {
1449 		*size = data->d_size;
1450 		return 0; /* found it */
1451 	}
1452 
1453 	return -ENOENT;
1454 }
1455 
1456 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name)
1457 {
1458 	Elf_Data *symbols = obj->efile.symbols;
1459 	const char *sname;
1460 	size_t si;
1461 
1462 	for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1463 		Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1464 
1465 		if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1466 			continue;
1467 
1468 		if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1469 		    ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1470 			continue;
1471 
1472 		sname = elf_sym_str(obj, sym->st_name);
1473 		if (!sname) {
1474 			pr_warn("failed to get sym name string for var %s\n", name);
1475 			return ERR_PTR(-EIO);
1476 		}
1477 		if (strcmp(name, sname) == 0)
1478 			return sym;
1479 	}
1480 
1481 	return ERR_PTR(-ENOENT);
1482 }
1483 
1484 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1485 {
1486 	struct bpf_map *map;
1487 	int err;
1488 
1489 	err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1490 				sizeof(*obj->maps), obj->nr_maps + 1);
1491 	if (err)
1492 		return ERR_PTR(err);
1493 
1494 	map = &obj->maps[obj->nr_maps++];
1495 	map->obj = obj;
1496 	map->fd = -1;
1497 	map->inner_map_fd = -1;
1498 	map->autocreate = true;
1499 
1500 	return map;
1501 }
1502 
1503 static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1504 {
1505 	long page_sz = sysconf(_SC_PAGE_SIZE);
1506 	size_t map_sz;
1507 
1508 	map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries;
1509 	map_sz = roundup(map_sz, page_sz);
1510 	return map_sz;
1511 }
1512 
1513 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1514 {
1515 	char map_name[BPF_OBJ_NAME_LEN], *p;
1516 	int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1517 
1518 	/* This is one of the more confusing parts of libbpf for various
1519 	 * reasons, some of which are historical. The original idea for naming
1520 	 * internal names was to include as much of BPF object name prefix as
1521 	 * possible, so that it can be distinguished from similar internal
1522 	 * maps of a different BPF object.
1523 	 * As an example, let's say we have bpf_object named 'my_object_name'
1524 	 * and internal map corresponding to '.rodata' ELF section. The final
1525 	 * map name advertised to user and to the kernel will be
1526 	 * 'my_objec.rodata', taking first 8 characters of object name and
1527 	 * entire 7 characters of '.rodata'.
1528 	 * Somewhat confusingly, if internal map ELF section name is shorter
1529 	 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1530 	 * for the suffix, even though we only have 4 actual characters, and
1531 	 * resulting map will be called 'my_objec.bss', not even using all 15
1532 	 * characters allowed by the kernel. Oh well, at least the truncated
1533 	 * object name is somewhat consistent in this case. But if the map
1534 	 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1535 	 * (8 chars) and thus will be left with only first 7 characters of the
1536 	 * object name ('my_obje'). Happy guessing, user, that the final map
1537 	 * name will be "my_obje.kconfig".
1538 	 * Now, with libbpf starting to support arbitrarily named .rodata.*
1539 	 * and .data.* data sections, it's possible that ELF section name is
1540 	 * longer than allowed 15 chars, so we now need to be careful to take
1541 	 * only up to 15 first characters of ELF name, taking no BPF object
1542 	 * name characters at all. So '.rodata.abracadabra' will result in
1543 	 * '.rodata.abracad' kernel and user-visible name.
1544 	 * We need to keep this convoluted logic intact for .data, .bss and
1545 	 * .rodata maps, but for new custom .data.custom and .rodata.custom
1546 	 * maps we use their ELF names as is, not prepending bpf_object name
1547 	 * in front. We still need to truncate them to 15 characters for the
1548 	 * kernel. Full name can be recovered for such maps by using DATASEC
1549 	 * BTF type associated with such map's value type, though.
1550 	 */
1551 	if (sfx_len >= BPF_OBJ_NAME_LEN)
1552 		sfx_len = BPF_OBJ_NAME_LEN - 1;
1553 
1554 	/* if there are two or more dots in map name, it's a custom dot map */
1555 	if (strchr(real_name + 1, '.') != NULL)
1556 		pfx_len = 0;
1557 	else
1558 		pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1559 
1560 	snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1561 		 sfx_len, real_name);
1562 
1563 	/* sanitise map name to characters allowed by kernel */
1564 	for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1565 		if (!isalnum(*p) && *p != '_' && *p != '.')
1566 			*p = '_';
1567 
1568 	return strdup(map_name);
1569 }
1570 
1571 static int
1572 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map);
1573 
1574 /* Internal BPF map is mmap()'able only if at least one of corresponding
1575  * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL
1576  * variable and it's not marked as __hidden (which turns it into, effectively,
1577  * a STATIC variable).
1578  */
1579 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map)
1580 {
1581 	const struct btf_type *t, *vt;
1582 	struct btf_var_secinfo *vsi;
1583 	int i, n;
1584 
1585 	if (!map->btf_value_type_id)
1586 		return false;
1587 
1588 	t = btf__type_by_id(obj->btf, map->btf_value_type_id);
1589 	if (!btf_is_datasec(t))
1590 		return false;
1591 
1592 	vsi = btf_var_secinfos(t);
1593 	for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) {
1594 		vt = btf__type_by_id(obj->btf, vsi->type);
1595 		if (!btf_is_var(vt))
1596 			continue;
1597 
1598 		if (btf_var(vt)->linkage != BTF_VAR_STATIC)
1599 			return true;
1600 	}
1601 
1602 	return false;
1603 }
1604 
1605 static int
1606 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1607 			      const char *real_name, int sec_idx, void *data, size_t data_sz)
1608 {
1609 	struct bpf_map_def *def;
1610 	struct bpf_map *map;
1611 	int err;
1612 
1613 	map = bpf_object__add_map(obj);
1614 	if (IS_ERR(map))
1615 		return PTR_ERR(map);
1616 
1617 	map->libbpf_type = type;
1618 	map->sec_idx = sec_idx;
1619 	map->sec_offset = 0;
1620 	map->real_name = strdup(real_name);
1621 	map->name = internal_map_name(obj, real_name);
1622 	if (!map->real_name || !map->name) {
1623 		zfree(&map->real_name);
1624 		zfree(&map->name);
1625 		return -ENOMEM;
1626 	}
1627 
1628 	def = &map->def;
1629 	def->type = BPF_MAP_TYPE_ARRAY;
1630 	def->key_size = sizeof(int);
1631 	def->value_size = data_sz;
1632 	def->max_entries = 1;
1633 	def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1634 			 ? BPF_F_RDONLY_PROG : 0;
1635 
1636 	/* failures are fine because of maps like .rodata.str1.1 */
1637 	(void) map_fill_btf_type_info(obj, map);
1638 
1639 	if (map_is_mmapable(obj, map))
1640 		def->map_flags |= BPF_F_MMAPABLE;
1641 
1642 	pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1643 		 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1644 
1645 	map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
1646 			   MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1647 	if (map->mmaped == MAP_FAILED) {
1648 		err = -errno;
1649 		map->mmaped = NULL;
1650 		pr_warn("failed to alloc map '%s' content buffer: %d\n",
1651 			map->name, err);
1652 		zfree(&map->real_name);
1653 		zfree(&map->name);
1654 		return err;
1655 	}
1656 
1657 	if (data)
1658 		memcpy(map->mmaped, data, data_sz);
1659 
1660 	pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1661 	return 0;
1662 }
1663 
1664 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1665 {
1666 	struct elf_sec_desc *sec_desc;
1667 	const char *sec_name;
1668 	int err = 0, sec_idx;
1669 
1670 	/*
1671 	 * Populate obj->maps with libbpf internal maps.
1672 	 */
1673 	for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1674 		sec_desc = &obj->efile.secs[sec_idx];
1675 
1676 		/* Skip recognized sections with size 0. */
1677 		if (!sec_desc->data || sec_desc->data->d_size == 0)
1678 			continue;
1679 
1680 		switch (sec_desc->sec_type) {
1681 		case SEC_DATA:
1682 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1683 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1684 							    sec_name, sec_idx,
1685 							    sec_desc->data->d_buf,
1686 							    sec_desc->data->d_size);
1687 			break;
1688 		case SEC_RODATA:
1689 			obj->has_rodata = true;
1690 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1691 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1692 							    sec_name, sec_idx,
1693 							    sec_desc->data->d_buf,
1694 							    sec_desc->data->d_size);
1695 			break;
1696 		case SEC_BSS:
1697 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1698 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1699 							    sec_name, sec_idx,
1700 							    NULL,
1701 							    sec_desc->data->d_size);
1702 			break;
1703 		default:
1704 			/* skip */
1705 			break;
1706 		}
1707 		if (err)
1708 			return err;
1709 	}
1710 	return 0;
1711 }
1712 
1713 
1714 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1715 					       const void *name)
1716 {
1717 	int i;
1718 
1719 	for (i = 0; i < obj->nr_extern; i++) {
1720 		if (strcmp(obj->externs[i].name, name) == 0)
1721 			return &obj->externs[i];
1722 	}
1723 	return NULL;
1724 }
1725 
1726 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1727 			      char value)
1728 {
1729 	switch (ext->kcfg.type) {
1730 	case KCFG_BOOL:
1731 		if (value == 'm') {
1732 			pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
1733 				ext->name, value);
1734 			return -EINVAL;
1735 		}
1736 		*(bool *)ext_val = value == 'y' ? true : false;
1737 		break;
1738 	case KCFG_TRISTATE:
1739 		if (value == 'y')
1740 			*(enum libbpf_tristate *)ext_val = TRI_YES;
1741 		else if (value == 'm')
1742 			*(enum libbpf_tristate *)ext_val = TRI_MODULE;
1743 		else /* value == 'n' */
1744 			*(enum libbpf_tristate *)ext_val = TRI_NO;
1745 		break;
1746 	case KCFG_CHAR:
1747 		*(char *)ext_val = value;
1748 		break;
1749 	case KCFG_UNKNOWN:
1750 	case KCFG_INT:
1751 	case KCFG_CHAR_ARR:
1752 	default:
1753 		pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
1754 			ext->name, value);
1755 		return -EINVAL;
1756 	}
1757 	ext->is_set = true;
1758 	return 0;
1759 }
1760 
1761 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1762 			      const char *value)
1763 {
1764 	size_t len;
1765 
1766 	if (ext->kcfg.type != KCFG_CHAR_ARR) {
1767 		pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
1768 			ext->name, value);
1769 		return -EINVAL;
1770 	}
1771 
1772 	len = strlen(value);
1773 	if (value[len - 1] != '"') {
1774 		pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1775 			ext->name, value);
1776 		return -EINVAL;
1777 	}
1778 
1779 	/* strip quotes */
1780 	len -= 2;
1781 	if (len >= ext->kcfg.sz) {
1782 		pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
1783 			ext->name, value, len, ext->kcfg.sz - 1);
1784 		len = ext->kcfg.sz - 1;
1785 	}
1786 	memcpy(ext_val, value + 1, len);
1787 	ext_val[len] = '\0';
1788 	ext->is_set = true;
1789 	return 0;
1790 }
1791 
1792 static int parse_u64(const char *value, __u64 *res)
1793 {
1794 	char *value_end;
1795 	int err;
1796 
1797 	errno = 0;
1798 	*res = strtoull(value, &value_end, 0);
1799 	if (errno) {
1800 		err = -errno;
1801 		pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1802 		return err;
1803 	}
1804 	if (*value_end) {
1805 		pr_warn("failed to parse '%s' as integer completely\n", value);
1806 		return -EINVAL;
1807 	}
1808 	return 0;
1809 }
1810 
1811 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1812 {
1813 	int bit_sz = ext->kcfg.sz * 8;
1814 
1815 	if (ext->kcfg.sz == 8)
1816 		return true;
1817 
1818 	/* Validate that value stored in u64 fits in integer of `ext->sz`
1819 	 * bytes size without any loss of information. If the target integer
1820 	 * is signed, we rely on the following limits of integer type of
1821 	 * Y bits and subsequent transformation:
1822 	 *
1823 	 *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
1824 	 *            0 <= X + 2^(Y-1) <= 2^Y - 1
1825 	 *            0 <= X + 2^(Y-1) <  2^Y
1826 	 *
1827 	 *  For unsigned target integer, check that all the (64 - Y) bits are
1828 	 *  zero.
1829 	 */
1830 	if (ext->kcfg.is_signed)
1831 		return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1832 	else
1833 		return (v >> bit_sz) == 0;
1834 }
1835 
1836 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1837 			      __u64 value)
1838 {
1839 	if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
1840 	    ext->kcfg.type != KCFG_BOOL) {
1841 		pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
1842 			ext->name, (unsigned long long)value);
1843 		return -EINVAL;
1844 	}
1845 	if (ext->kcfg.type == KCFG_BOOL && value > 1) {
1846 		pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
1847 			ext->name, (unsigned long long)value);
1848 		return -EINVAL;
1849 
1850 	}
1851 	if (!is_kcfg_value_in_range(ext, value)) {
1852 		pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
1853 			ext->name, (unsigned long long)value, ext->kcfg.sz);
1854 		return -ERANGE;
1855 	}
1856 	switch (ext->kcfg.sz) {
1857 	case 1:
1858 		*(__u8 *)ext_val = value;
1859 		break;
1860 	case 2:
1861 		*(__u16 *)ext_val = value;
1862 		break;
1863 	case 4:
1864 		*(__u32 *)ext_val = value;
1865 		break;
1866 	case 8:
1867 		*(__u64 *)ext_val = value;
1868 		break;
1869 	default:
1870 		return -EINVAL;
1871 	}
1872 	ext->is_set = true;
1873 	return 0;
1874 }
1875 
1876 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1877 					    char *buf, void *data)
1878 {
1879 	struct extern_desc *ext;
1880 	char *sep, *value;
1881 	int len, err = 0;
1882 	void *ext_val;
1883 	__u64 num;
1884 
1885 	if (!str_has_pfx(buf, "CONFIG_"))
1886 		return 0;
1887 
1888 	sep = strchr(buf, '=');
1889 	if (!sep) {
1890 		pr_warn("failed to parse '%s': no separator\n", buf);
1891 		return -EINVAL;
1892 	}
1893 
1894 	/* Trim ending '\n' */
1895 	len = strlen(buf);
1896 	if (buf[len - 1] == '\n')
1897 		buf[len - 1] = '\0';
1898 	/* Split on '=' and ensure that a value is present. */
1899 	*sep = '\0';
1900 	if (!sep[1]) {
1901 		*sep = '=';
1902 		pr_warn("failed to parse '%s': no value\n", buf);
1903 		return -EINVAL;
1904 	}
1905 
1906 	ext = find_extern_by_name(obj, buf);
1907 	if (!ext || ext->is_set)
1908 		return 0;
1909 
1910 	ext_val = data + ext->kcfg.data_off;
1911 	value = sep + 1;
1912 
1913 	switch (*value) {
1914 	case 'y': case 'n': case 'm':
1915 		err = set_kcfg_value_tri(ext, ext_val, *value);
1916 		break;
1917 	case '"':
1918 		err = set_kcfg_value_str(ext, ext_val, value);
1919 		break;
1920 	default:
1921 		/* assume integer */
1922 		err = parse_u64(value, &num);
1923 		if (err) {
1924 			pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
1925 			return err;
1926 		}
1927 		if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1928 			pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
1929 			return -EINVAL;
1930 		}
1931 		err = set_kcfg_value_num(ext, ext_val, num);
1932 		break;
1933 	}
1934 	if (err)
1935 		return err;
1936 	pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
1937 	return 0;
1938 }
1939 
1940 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1941 {
1942 	char buf[PATH_MAX];
1943 	struct utsname uts;
1944 	int len, err = 0;
1945 	gzFile file;
1946 
1947 	uname(&uts);
1948 	len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1949 	if (len < 0)
1950 		return -EINVAL;
1951 	else if (len >= PATH_MAX)
1952 		return -ENAMETOOLONG;
1953 
1954 	/* gzopen also accepts uncompressed files. */
1955 	file = gzopen(buf, "r");
1956 	if (!file)
1957 		file = gzopen("/proc/config.gz", "r");
1958 
1959 	if (!file) {
1960 		pr_warn("failed to open system Kconfig\n");
1961 		return -ENOENT;
1962 	}
1963 
1964 	while (gzgets(file, buf, sizeof(buf))) {
1965 		err = bpf_object__process_kconfig_line(obj, buf, data);
1966 		if (err) {
1967 			pr_warn("error parsing system Kconfig line '%s': %d\n",
1968 				buf, err);
1969 			goto out;
1970 		}
1971 	}
1972 
1973 out:
1974 	gzclose(file);
1975 	return err;
1976 }
1977 
1978 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
1979 					const char *config, void *data)
1980 {
1981 	char buf[PATH_MAX];
1982 	int err = 0;
1983 	FILE *file;
1984 
1985 	file = fmemopen((void *)config, strlen(config), "r");
1986 	if (!file) {
1987 		err = -errno;
1988 		pr_warn("failed to open in-memory Kconfig: %d\n", err);
1989 		return err;
1990 	}
1991 
1992 	while (fgets(buf, sizeof(buf), file)) {
1993 		err = bpf_object__process_kconfig_line(obj, buf, data);
1994 		if (err) {
1995 			pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
1996 				buf, err);
1997 			break;
1998 		}
1999 	}
2000 
2001 	fclose(file);
2002 	return err;
2003 }
2004 
2005 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
2006 {
2007 	struct extern_desc *last_ext = NULL, *ext;
2008 	size_t map_sz;
2009 	int i, err;
2010 
2011 	for (i = 0; i < obj->nr_extern; i++) {
2012 		ext = &obj->externs[i];
2013 		if (ext->type == EXT_KCFG)
2014 			last_ext = ext;
2015 	}
2016 
2017 	if (!last_ext)
2018 		return 0;
2019 
2020 	map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
2021 	err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
2022 					    ".kconfig", obj->efile.symbols_shndx,
2023 					    NULL, map_sz);
2024 	if (err)
2025 		return err;
2026 
2027 	obj->kconfig_map_idx = obj->nr_maps - 1;
2028 
2029 	return 0;
2030 }
2031 
2032 const struct btf_type *
2033 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2034 {
2035 	const struct btf_type *t = btf__type_by_id(btf, id);
2036 
2037 	if (res_id)
2038 		*res_id = id;
2039 
2040 	while (btf_is_mod(t) || btf_is_typedef(t)) {
2041 		if (res_id)
2042 			*res_id = t->type;
2043 		t = btf__type_by_id(btf, t->type);
2044 	}
2045 
2046 	return t;
2047 }
2048 
2049 static const struct btf_type *
2050 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2051 {
2052 	const struct btf_type *t;
2053 
2054 	t = skip_mods_and_typedefs(btf, id, NULL);
2055 	if (!btf_is_ptr(t))
2056 		return NULL;
2057 
2058 	t = skip_mods_and_typedefs(btf, t->type, res_id);
2059 
2060 	return btf_is_func_proto(t) ? t : NULL;
2061 }
2062 
2063 static const char *__btf_kind_str(__u16 kind)
2064 {
2065 	switch (kind) {
2066 	case BTF_KIND_UNKN: return "void";
2067 	case BTF_KIND_INT: return "int";
2068 	case BTF_KIND_PTR: return "ptr";
2069 	case BTF_KIND_ARRAY: return "array";
2070 	case BTF_KIND_STRUCT: return "struct";
2071 	case BTF_KIND_UNION: return "union";
2072 	case BTF_KIND_ENUM: return "enum";
2073 	case BTF_KIND_FWD: return "fwd";
2074 	case BTF_KIND_TYPEDEF: return "typedef";
2075 	case BTF_KIND_VOLATILE: return "volatile";
2076 	case BTF_KIND_CONST: return "const";
2077 	case BTF_KIND_RESTRICT: return "restrict";
2078 	case BTF_KIND_FUNC: return "func";
2079 	case BTF_KIND_FUNC_PROTO: return "func_proto";
2080 	case BTF_KIND_VAR: return "var";
2081 	case BTF_KIND_DATASEC: return "datasec";
2082 	case BTF_KIND_FLOAT: return "float";
2083 	case BTF_KIND_DECL_TAG: return "decl_tag";
2084 	case BTF_KIND_TYPE_TAG: return "type_tag";
2085 	case BTF_KIND_ENUM64: return "enum64";
2086 	default: return "unknown";
2087 	}
2088 }
2089 
2090 const char *btf_kind_str(const struct btf_type *t)
2091 {
2092 	return __btf_kind_str(btf_kind(t));
2093 }
2094 
2095 /*
2096  * Fetch integer attribute of BTF map definition. Such attributes are
2097  * represented using a pointer to an array, in which dimensionality of array
2098  * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2099  * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2100  * type definition, while using only sizeof(void *) space in ELF data section.
2101  */
2102 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2103 			      const struct btf_member *m, __u32 *res)
2104 {
2105 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2106 	const char *name = btf__name_by_offset(btf, m->name_off);
2107 	const struct btf_array *arr_info;
2108 	const struct btf_type *arr_t;
2109 
2110 	if (!btf_is_ptr(t)) {
2111 		pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2112 			map_name, name, btf_kind_str(t));
2113 		return false;
2114 	}
2115 
2116 	arr_t = btf__type_by_id(btf, t->type);
2117 	if (!arr_t) {
2118 		pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2119 			map_name, name, t->type);
2120 		return false;
2121 	}
2122 	if (!btf_is_array(arr_t)) {
2123 		pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2124 			map_name, name, btf_kind_str(arr_t));
2125 		return false;
2126 	}
2127 	arr_info = btf_array(arr_t);
2128 	*res = arr_info->nelems;
2129 	return true;
2130 }
2131 
2132 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2133 {
2134 	int len;
2135 
2136 	len = snprintf(buf, buf_sz, "%s/%s", path, name);
2137 	if (len < 0)
2138 		return -EINVAL;
2139 	if (len >= buf_sz)
2140 		return -ENAMETOOLONG;
2141 
2142 	return 0;
2143 }
2144 
2145 static int build_map_pin_path(struct bpf_map *map, const char *path)
2146 {
2147 	char buf[PATH_MAX];
2148 	int err;
2149 
2150 	if (!path)
2151 		path = "/sys/fs/bpf";
2152 
2153 	err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2154 	if (err)
2155 		return err;
2156 
2157 	return bpf_map__set_pin_path(map, buf);
2158 }
2159 
2160 /* should match definition in bpf_helpers.h */
2161 enum libbpf_pin_type {
2162 	LIBBPF_PIN_NONE,
2163 	/* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2164 	LIBBPF_PIN_BY_NAME,
2165 };
2166 
2167 int parse_btf_map_def(const char *map_name, struct btf *btf,
2168 		      const struct btf_type *def_t, bool strict,
2169 		      struct btf_map_def *map_def, struct btf_map_def *inner_def)
2170 {
2171 	const struct btf_type *t;
2172 	const struct btf_member *m;
2173 	bool is_inner = inner_def == NULL;
2174 	int vlen, i;
2175 
2176 	vlen = btf_vlen(def_t);
2177 	m = btf_members(def_t);
2178 	for (i = 0; i < vlen; i++, m++) {
2179 		const char *name = btf__name_by_offset(btf, m->name_off);
2180 
2181 		if (!name) {
2182 			pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2183 			return -EINVAL;
2184 		}
2185 		if (strcmp(name, "type") == 0) {
2186 			if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2187 				return -EINVAL;
2188 			map_def->parts |= MAP_DEF_MAP_TYPE;
2189 		} else if (strcmp(name, "max_entries") == 0) {
2190 			if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2191 				return -EINVAL;
2192 			map_def->parts |= MAP_DEF_MAX_ENTRIES;
2193 		} else if (strcmp(name, "map_flags") == 0) {
2194 			if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2195 				return -EINVAL;
2196 			map_def->parts |= MAP_DEF_MAP_FLAGS;
2197 		} else if (strcmp(name, "numa_node") == 0) {
2198 			if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2199 				return -EINVAL;
2200 			map_def->parts |= MAP_DEF_NUMA_NODE;
2201 		} else if (strcmp(name, "key_size") == 0) {
2202 			__u32 sz;
2203 
2204 			if (!get_map_field_int(map_name, btf, m, &sz))
2205 				return -EINVAL;
2206 			if (map_def->key_size && map_def->key_size != sz) {
2207 				pr_warn("map '%s': conflicting key size %u != %u.\n",
2208 					map_name, map_def->key_size, sz);
2209 				return -EINVAL;
2210 			}
2211 			map_def->key_size = sz;
2212 			map_def->parts |= MAP_DEF_KEY_SIZE;
2213 		} else if (strcmp(name, "key") == 0) {
2214 			__s64 sz;
2215 
2216 			t = btf__type_by_id(btf, m->type);
2217 			if (!t) {
2218 				pr_warn("map '%s': key type [%d] not found.\n",
2219 					map_name, m->type);
2220 				return -EINVAL;
2221 			}
2222 			if (!btf_is_ptr(t)) {
2223 				pr_warn("map '%s': key spec is not PTR: %s.\n",
2224 					map_name, btf_kind_str(t));
2225 				return -EINVAL;
2226 			}
2227 			sz = btf__resolve_size(btf, t->type);
2228 			if (sz < 0) {
2229 				pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2230 					map_name, t->type, (ssize_t)sz);
2231 				return sz;
2232 			}
2233 			if (map_def->key_size && map_def->key_size != sz) {
2234 				pr_warn("map '%s': conflicting key size %u != %zd.\n",
2235 					map_name, map_def->key_size, (ssize_t)sz);
2236 				return -EINVAL;
2237 			}
2238 			map_def->key_size = sz;
2239 			map_def->key_type_id = t->type;
2240 			map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2241 		} else if (strcmp(name, "value_size") == 0) {
2242 			__u32 sz;
2243 
2244 			if (!get_map_field_int(map_name, btf, m, &sz))
2245 				return -EINVAL;
2246 			if (map_def->value_size && map_def->value_size != sz) {
2247 				pr_warn("map '%s': conflicting value size %u != %u.\n",
2248 					map_name, map_def->value_size, sz);
2249 				return -EINVAL;
2250 			}
2251 			map_def->value_size = sz;
2252 			map_def->parts |= MAP_DEF_VALUE_SIZE;
2253 		} else if (strcmp(name, "value") == 0) {
2254 			__s64 sz;
2255 
2256 			t = btf__type_by_id(btf, m->type);
2257 			if (!t) {
2258 				pr_warn("map '%s': value type [%d] not found.\n",
2259 					map_name, m->type);
2260 				return -EINVAL;
2261 			}
2262 			if (!btf_is_ptr(t)) {
2263 				pr_warn("map '%s': value spec is not PTR: %s.\n",
2264 					map_name, btf_kind_str(t));
2265 				return -EINVAL;
2266 			}
2267 			sz = btf__resolve_size(btf, t->type);
2268 			if (sz < 0) {
2269 				pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2270 					map_name, t->type, (ssize_t)sz);
2271 				return sz;
2272 			}
2273 			if (map_def->value_size && map_def->value_size != sz) {
2274 				pr_warn("map '%s': conflicting value size %u != %zd.\n",
2275 					map_name, map_def->value_size, (ssize_t)sz);
2276 				return -EINVAL;
2277 			}
2278 			map_def->value_size = sz;
2279 			map_def->value_type_id = t->type;
2280 			map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2281 		}
2282 		else if (strcmp(name, "values") == 0) {
2283 			bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2284 			bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2285 			const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2286 			char inner_map_name[128];
2287 			int err;
2288 
2289 			if (is_inner) {
2290 				pr_warn("map '%s': multi-level inner maps not supported.\n",
2291 					map_name);
2292 				return -ENOTSUP;
2293 			}
2294 			if (i != vlen - 1) {
2295 				pr_warn("map '%s': '%s' member should be last.\n",
2296 					map_name, name);
2297 				return -EINVAL;
2298 			}
2299 			if (!is_map_in_map && !is_prog_array) {
2300 				pr_warn("map '%s': should be map-in-map or prog-array.\n",
2301 					map_name);
2302 				return -ENOTSUP;
2303 			}
2304 			if (map_def->value_size && map_def->value_size != 4) {
2305 				pr_warn("map '%s': conflicting value size %u != 4.\n",
2306 					map_name, map_def->value_size);
2307 				return -EINVAL;
2308 			}
2309 			map_def->value_size = 4;
2310 			t = btf__type_by_id(btf, m->type);
2311 			if (!t) {
2312 				pr_warn("map '%s': %s type [%d] not found.\n",
2313 					map_name, desc, m->type);
2314 				return -EINVAL;
2315 			}
2316 			if (!btf_is_array(t) || btf_array(t)->nelems) {
2317 				pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2318 					map_name, desc);
2319 				return -EINVAL;
2320 			}
2321 			t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2322 			if (!btf_is_ptr(t)) {
2323 				pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2324 					map_name, desc, btf_kind_str(t));
2325 				return -EINVAL;
2326 			}
2327 			t = skip_mods_and_typedefs(btf, t->type, NULL);
2328 			if (is_prog_array) {
2329 				if (!btf_is_func_proto(t)) {
2330 					pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2331 						map_name, btf_kind_str(t));
2332 					return -EINVAL;
2333 				}
2334 				continue;
2335 			}
2336 			if (!btf_is_struct(t)) {
2337 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2338 					map_name, btf_kind_str(t));
2339 				return -EINVAL;
2340 			}
2341 
2342 			snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2343 			err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2344 			if (err)
2345 				return err;
2346 
2347 			map_def->parts |= MAP_DEF_INNER_MAP;
2348 		} else if (strcmp(name, "pinning") == 0) {
2349 			__u32 val;
2350 
2351 			if (is_inner) {
2352 				pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2353 				return -EINVAL;
2354 			}
2355 			if (!get_map_field_int(map_name, btf, m, &val))
2356 				return -EINVAL;
2357 			if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2358 				pr_warn("map '%s': invalid pinning value %u.\n",
2359 					map_name, val);
2360 				return -EINVAL;
2361 			}
2362 			map_def->pinning = val;
2363 			map_def->parts |= MAP_DEF_PINNING;
2364 		} else if (strcmp(name, "map_extra") == 0) {
2365 			__u32 map_extra;
2366 
2367 			if (!get_map_field_int(map_name, btf, m, &map_extra))
2368 				return -EINVAL;
2369 			map_def->map_extra = map_extra;
2370 			map_def->parts |= MAP_DEF_MAP_EXTRA;
2371 		} else {
2372 			if (strict) {
2373 				pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2374 				return -ENOTSUP;
2375 			}
2376 			pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2377 		}
2378 	}
2379 
2380 	if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2381 		pr_warn("map '%s': map type isn't specified.\n", map_name);
2382 		return -EINVAL;
2383 	}
2384 
2385 	return 0;
2386 }
2387 
2388 static size_t adjust_ringbuf_sz(size_t sz)
2389 {
2390 	__u32 page_sz = sysconf(_SC_PAGE_SIZE);
2391 	__u32 mul;
2392 
2393 	/* if user forgot to set any size, make sure they see error */
2394 	if (sz == 0)
2395 		return 0;
2396 	/* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2397 	 * a power-of-2 multiple of kernel's page size. If user diligently
2398 	 * satisified these conditions, pass the size through.
2399 	 */
2400 	if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2401 		return sz;
2402 
2403 	/* Otherwise find closest (page_sz * power_of_2) product bigger than
2404 	 * user-set size to satisfy both user size request and kernel
2405 	 * requirements and substitute correct max_entries for map creation.
2406 	 */
2407 	for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2408 		if (mul * page_sz > sz)
2409 			return mul * page_sz;
2410 	}
2411 
2412 	/* if it's impossible to satisfy the conditions (i.e., user size is
2413 	 * very close to UINT_MAX but is not a power-of-2 multiple of
2414 	 * page_size) then just return original size and let kernel reject it
2415 	 */
2416 	return sz;
2417 }
2418 
2419 static bool map_is_ringbuf(const struct bpf_map *map)
2420 {
2421 	return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2422 	       map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2423 }
2424 
2425 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2426 {
2427 	map->def.type = def->map_type;
2428 	map->def.key_size = def->key_size;
2429 	map->def.value_size = def->value_size;
2430 	map->def.max_entries = def->max_entries;
2431 	map->def.map_flags = def->map_flags;
2432 	map->map_extra = def->map_extra;
2433 
2434 	map->numa_node = def->numa_node;
2435 	map->btf_key_type_id = def->key_type_id;
2436 	map->btf_value_type_id = def->value_type_id;
2437 
2438 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2439 	if (map_is_ringbuf(map))
2440 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2441 
2442 	if (def->parts & MAP_DEF_MAP_TYPE)
2443 		pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2444 
2445 	if (def->parts & MAP_DEF_KEY_TYPE)
2446 		pr_debug("map '%s': found key [%u], sz = %u.\n",
2447 			 map->name, def->key_type_id, def->key_size);
2448 	else if (def->parts & MAP_DEF_KEY_SIZE)
2449 		pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2450 
2451 	if (def->parts & MAP_DEF_VALUE_TYPE)
2452 		pr_debug("map '%s': found value [%u], sz = %u.\n",
2453 			 map->name, def->value_type_id, def->value_size);
2454 	else if (def->parts & MAP_DEF_VALUE_SIZE)
2455 		pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2456 
2457 	if (def->parts & MAP_DEF_MAX_ENTRIES)
2458 		pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2459 	if (def->parts & MAP_DEF_MAP_FLAGS)
2460 		pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2461 	if (def->parts & MAP_DEF_MAP_EXTRA)
2462 		pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2463 			 (unsigned long long)def->map_extra);
2464 	if (def->parts & MAP_DEF_PINNING)
2465 		pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2466 	if (def->parts & MAP_DEF_NUMA_NODE)
2467 		pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2468 
2469 	if (def->parts & MAP_DEF_INNER_MAP)
2470 		pr_debug("map '%s': found inner map definition.\n", map->name);
2471 }
2472 
2473 static const char *btf_var_linkage_str(__u32 linkage)
2474 {
2475 	switch (linkage) {
2476 	case BTF_VAR_STATIC: return "static";
2477 	case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2478 	case BTF_VAR_GLOBAL_EXTERN: return "extern";
2479 	default: return "unknown";
2480 	}
2481 }
2482 
2483 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2484 					 const struct btf_type *sec,
2485 					 int var_idx, int sec_idx,
2486 					 const Elf_Data *data, bool strict,
2487 					 const char *pin_root_path)
2488 {
2489 	struct btf_map_def map_def = {}, inner_def = {};
2490 	const struct btf_type *var, *def;
2491 	const struct btf_var_secinfo *vi;
2492 	const struct btf_var *var_extra;
2493 	const char *map_name;
2494 	struct bpf_map *map;
2495 	int err;
2496 
2497 	vi = btf_var_secinfos(sec) + var_idx;
2498 	var = btf__type_by_id(obj->btf, vi->type);
2499 	var_extra = btf_var(var);
2500 	map_name = btf__name_by_offset(obj->btf, var->name_off);
2501 
2502 	if (map_name == NULL || map_name[0] == '\0') {
2503 		pr_warn("map #%d: empty name.\n", var_idx);
2504 		return -EINVAL;
2505 	}
2506 	if ((__u64)vi->offset + vi->size > data->d_size) {
2507 		pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2508 		return -EINVAL;
2509 	}
2510 	if (!btf_is_var(var)) {
2511 		pr_warn("map '%s': unexpected var kind %s.\n",
2512 			map_name, btf_kind_str(var));
2513 		return -EINVAL;
2514 	}
2515 	if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2516 		pr_warn("map '%s': unsupported map linkage %s.\n",
2517 			map_name, btf_var_linkage_str(var_extra->linkage));
2518 		return -EOPNOTSUPP;
2519 	}
2520 
2521 	def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2522 	if (!btf_is_struct(def)) {
2523 		pr_warn("map '%s': unexpected def kind %s.\n",
2524 			map_name, btf_kind_str(var));
2525 		return -EINVAL;
2526 	}
2527 	if (def->size > vi->size) {
2528 		pr_warn("map '%s': invalid def size.\n", map_name);
2529 		return -EINVAL;
2530 	}
2531 
2532 	map = bpf_object__add_map(obj);
2533 	if (IS_ERR(map))
2534 		return PTR_ERR(map);
2535 	map->name = strdup(map_name);
2536 	if (!map->name) {
2537 		pr_warn("map '%s': failed to alloc map name.\n", map_name);
2538 		return -ENOMEM;
2539 	}
2540 	map->libbpf_type = LIBBPF_MAP_UNSPEC;
2541 	map->def.type = BPF_MAP_TYPE_UNSPEC;
2542 	map->sec_idx = sec_idx;
2543 	map->sec_offset = vi->offset;
2544 	map->btf_var_idx = var_idx;
2545 	pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2546 		 map_name, map->sec_idx, map->sec_offset);
2547 
2548 	err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2549 	if (err)
2550 		return err;
2551 
2552 	fill_map_from_def(map, &map_def);
2553 
2554 	if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2555 		err = build_map_pin_path(map, pin_root_path);
2556 		if (err) {
2557 			pr_warn("map '%s': couldn't build pin path.\n", map->name);
2558 			return err;
2559 		}
2560 	}
2561 
2562 	if (map_def.parts & MAP_DEF_INNER_MAP) {
2563 		map->inner_map = calloc(1, sizeof(*map->inner_map));
2564 		if (!map->inner_map)
2565 			return -ENOMEM;
2566 		map->inner_map->fd = -1;
2567 		map->inner_map->sec_idx = sec_idx;
2568 		map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2569 		if (!map->inner_map->name)
2570 			return -ENOMEM;
2571 		sprintf(map->inner_map->name, "%s.inner", map_name);
2572 
2573 		fill_map_from_def(map->inner_map, &inner_def);
2574 	}
2575 
2576 	err = map_fill_btf_type_info(obj, map);
2577 	if (err)
2578 		return err;
2579 
2580 	return 0;
2581 }
2582 
2583 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2584 					  const char *pin_root_path)
2585 {
2586 	const struct btf_type *sec = NULL;
2587 	int nr_types, i, vlen, err;
2588 	const struct btf_type *t;
2589 	const char *name;
2590 	Elf_Data *data;
2591 	Elf_Scn *scn;
2592 
2593 	if (obj->efile.btf_maps_shndx < 0)
2594 		return 0;
2595 
2596 	scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2597 	data = elf_sec_data(obj, scn);
2598 	if (!scn || !data) {
2599 		pr_warn("elf: failed to get %s map definitions for %s\n",
2600 			MAPS_ELF_SEC, obj->path);
2601 		return -EINVAL;
2602 	}
2603 
2604 	nr_types = btf__type_cnt(obj->btf);
2605 	for (i = 1; i < nr_types; i++) {
2606 		t = btf__type_by_id(obj->btf, i);
2607 		if (!btf_is_datasec(t))
2608 			continue;
2609 		name = btf__name_by_offset(obj->btf, t->name_off);
2610 		if (strcmp(name, MAPS_ELF_SEC) == 0) {
2611 			sec = t;
2612 			obj->efile.btf_maps_sec_btf_id = i;
2613 			break;
2614 		}
2615 	}
2616 
2617 	if (!sec) {
2618 		pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2619 		return -ENOENT;
2620 	}
2621 
2622 	vlen = btf_vlen(sec);
2623 	for (i = 0; i < vlen; i++) {
2624 		err = bpf_object__init_user_btf_map(obj, sec, i,
2625 						    obj->efile.btf_maps_shndx,
2626 						    data, strict,
2627 						    pin_root_path);
2628 		if (err)
2629 			return err;
2630 	}
2631 
2632 	return 0;
2633 }
2634 
2635 static int bpf_object__init_maps(struct bpf_object *obj,
2636 				 const struct bpf_object_open_opts *opts)
2637 {
2638 	const char *pin_root_path;
2639 	bool strict;
2640 	int err = 0;
2641 
2642 	strict = !OPTS_GET(opts, relaxed_maps, false);
2643 	pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2644 
2645 	err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2646 	err = err ?: bpf_object__init_global_data_maps(obj);
2647 	err = err ?: bpf_object__init_kconfig_map(obj);
2648 	err = err ?: bpf_object_init_struct_ops(obj);
2649 
2650 	return err;
2651 }
2652 
2653 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2654 {
2655 	Elf64_Shdr *sh;
2656 
2657 	sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2658 	if (!sh)
2659 		return false;
2660 
2661 	return sh->sh_flags & SHF_EXECINSTR;
2662 }
2663 
2664 static bool btf_needs_sanitization(struct bpf_object *obj)
2665 {
2666 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2667 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2668 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2669 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2670 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2671 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2672 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2673 
2674 	return !has_func || !has_datasec || !has_func_global || !has_float ||
2675 	       !has_decl_tag || !has_type_tag || !has_enum64;
2676 }
2677 
2678 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2679 {
2680 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2681 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2682 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2683 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2684 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2685 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2686 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2687 	int enum64_placeholder_id = 0;
2688 	struct btf_type *t;
2689 	int i, j, vlen;
2690 
2691 	for (i = 1; i < btf__type_cnt(btf); i++) {
2692 		t = (struct btf_type *)btf__type_by_id(btf, i);
2693 
2694 		if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
2695 			/* replace VAR/DECL_TAG with INT */
2696 			t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2697 			/*
2698 			 * using size = 1 is the safest choice, 4 will be too
2699 			 * big and cause kernel BTF validation failure if
2700 			 * original variable took less than 4 bytes
2701 			 */
2702 			t->size = 1;
2703 			*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2704 		} else if (!has_datasec && btf_is_datasec(t)) {
2705 			/* replace DATASEC with STRUCT */
2706 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
2707 			struct btf_member *m = btf_members(t);
2708 			struct btf_type *vt;
2709 			char *name;
2710 
2711 			name = (char *)btf__name_by_offset(btf, t->name_off);
2712 			while (*name) {
2713 				if (*name == '.')
2714 					*name = '_';
2715 				name++;
2716 			}
2717 
2718 			vlen = btf_vlen(t);
2719 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2720 			for (j = 0; j < vlen; j++, v++, m++) {
2721 				/* order of field assignments is important */
2722 				m->offset = v->offset * 8;
2723 				m->type = v->type;
2724 				/* preserve variable name as member name */
2725 				vt = (void *)btf__type_by_id(btf, v->type);
2726 				m->name_off = vt->name_off;
2727 			}
2728 		} else if (!has_func && btf_is_func_proto(t)) {
2729 			/* replace FUNC_PROTO with ENUM */
2730 			vlen = btf_vlen(t);
2731 			t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2732 			t->size = sizeof(__u32); /* kernel enforced */
2733 		} else if (!has_func && btf_is_func(t)) {
2734 			/* replace FUNC with TYPEDEF */
2735 			t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2736 		} else if (!has_func_global && btf_is_func(t)) {
2737 			/* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2738 			t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2739 		} else if (!has_float && btf_is_float(t)) {
2740 			/* replace FLOAT with an equally-sized empty STRUCT;
2741 			 * since C compilers do not accept e.g. "float" as a
2742 			 * valid struct name, make it anonymous
2743 			 */
2744 			t->name_off = 0;
2745 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2746 		} else if (!has_type_tag && btf_is_type_tag(t)) {
2747 			/* replace TYPE_TAG with a CONST */
2748 			t->name_off = 0;
2749 			t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
2750 		} else if (!has_enum64 && btf_is_enum(t)) {
2751 			/* clear the kflag */
2752 			t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
2753 		} else if (!has_enum64 && btf_is_enum64(t)) {
2754 			/* replace ENUM64 with a union */
2755 			struct btf_member *m;
2756 
2757 			if (enum64_placeholder_id == 0) {
2758 				enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
2759 				if (enum64_placeholder_id < 0)
2760 					return enum64_placeholder_id;
2761 
2762 				t = (struct btf_type *)btf__type_by_id(btf, i);
2763 			}
2764 
2765 			m = btf_members(t);
2766 			vlen = btf_vlen(t);
2767 			t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
2768 			for (j = 0; j < vlen; j++, m++) {
2769 				m->type = enum64_placeholder_id;
2770 				m->offset = 0;
2771 			}
2772 		}
2773 	}
2774 
2775 	return 0;
2776 }
2777 
2778 static bool libbpf_needs_btf(const struct bpf_object *obj)
2779 {
2780 	return obj->efile.btf_maps_shndx >= 0 ||
2781 	       obj->efile.st_ops_shndx >= 0 ||
2782 	       obj->efile.st_ops_link_shndx >= 0 ||
2783 	       obj->nr_extern > 0;
2784 }
2785 
2786 static bool kernel_needs_btf(const struct bpf_object *obj)
2787 {
2788 	return obj->efile.st_ops_shndx >= 0 || obj->efile.st_ops_link_shndx >= 0;
2789 }
2790 
2791 static int bpf_object__init_btf(struct bpf_object *obj,
2792 				Elf_Data *btf_data,
2793 				Elf_Data *btf_ext_data)
2794 {
2795 	int err = -ENOENT;
2796 
2797 	if (btf_data) {
2798 		obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2799 		err = libbpf_get_error(obj->btf);
2800 		if (err) {
2801 			obj->btf = NULL;
2802 			pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
2803 			goto out;
2804 		}
2805 		/* enforce 8-byte pointers for BPF-targeted BTFs */
2806 		btf__set_pointer_size(obj->btf, 8);
2807 	}
2808 	if (btf_ext_data) {
2809 		struct btf_ext_info *ext_segs[3];
2810 		int seg_num, sec_num;
2811 
2812 		if (!obj->btf) {
2813 			pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2814 				 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2815 			goto out;
2816 		}
2817 		obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
2818 		err = libbpf_get_error(obj->btf_ext);
2819 		if (err) {
2820 			pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
2821 				BTF_EXT_ELF_SEC, err);
2822 			obj->btf_ext = NULL;
2823 			goto out;
2824 		}
2825 
2826 		/* setup .BTF.ext to ELF section mapping */
2827 		ext_segs[0] = &obj->btf_ext->func_info;
2828 		ext_segs[1] = &obj->btf_ext->line_info;
2829 		ext_segs[2] = &obj->btf_ext->core_relo_info;
2830 		for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
2831 			struct btf_ext_info *seg = ext_segs[seg_num];
2832 			const struct btf_ext_info_sec *sec;
2833 			const char *sec_name;
2834 			Elf_Scn *scn;
2835 
2836 			if (seg->sec_cnt == 0)
2837 				continue;
2838 
2839 			seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
2840 			if (!seg->sec_idxs) {
2841 				err = -ENOMEM;
2842 				goto out;
2843 			}
2844 
2845 			sec_num = 0;
2846 			for_each_btf_ext_sec(seg, sec) {
2847 				/* preventively increment index to avoid doing
2848 				 * this before every continue below
2849 				 */
2850 				sec_num++;
2851 
2852 				sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
2853 				if (str_is_empty(sec_name))
2854 					continue;
2855 				scn = elf_sec_by_name(obj, sec_name);
2856 				if (!scn)
2857 					continue;
2858 
2859 				seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
2860 			}
2861 		}
2862 	}
2863 out:
2864 	if (err && libbpf_needs_btf(obj)) {
2865 		pr_warn("BTF is required, but is missing or corrupted.\n");
2866 		return err;
2867 	}
2868 	return 0;
2869 }
2870 
2871 static int compare_vsi_off(const void *_a, const void *_b)
2872 {
2873 	const struct btf_var_secinfo *a = _a;
2874 	const struct btf_var_secinfo *b = _b;
2875 
2876 	return a->offset - b->offset;
2877 }
2878 
2879 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
2880 			     struct btf_type *t)
2881 {
2882 	__u32 size = 0, i, vars = btf_vlen(t);
2883 	const char *sec_name = btf__name_by_offset(btf, t->name_off);
2884 	struct btf_var_secinfo *vsi;
2885 	bool fixup_offsets = false;
2886 	int err;
2887 
2888 	if (!sec_name) {
2889 		pr_debug("No name found in string section for DATASEC kind.\n");
2890 		return -ENOENT;
2891 	}
2892 
2893 	/* Extern-backing datasecs (.ksyms, .kconfig) have their size and
2894 	 * variable offsets set at the previous step. Further, not every
2895 	 * extern BTF VAR has corresponding ELF symbol preserved, so we skip
2896 	 * all fixups altogether for such sections and go straight to sorting
2897 	 * VARs within their DATASEC.
2898 	 */
2899 	if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0)
2900 		goto sort_vars;
2901 
2902 	/* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to
2903 	 * fix this up. But BPF static linker already fixes this up and fills
2904 	 * all the sizes and offsets during static linking. So this step has
2905 	 * to be optional. But the STV_HIDDEN handling is non-optional for any
2906 	 * non-extern DATASEC, so the variable fixup loop below handles both
2907 	 * functions at the same time, paying the cost of BTF VAR <-> ELF
2908 	 * symbol matching just once.
2909 	 */
2910 	if (t->size == 0) {
2911 		err = find_elf_sec_sz(obj, sec_name, &size);
2912 		if (err || !size) {
2913 			pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n",
2914 				 sec_name, size, err);
2915 			return -ENOENT;
2916 		}
2917 
2918 		t->size = size;
2919 		fixup_offsets = true;
2920 	}
2921 
2922 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
2923 		const struct btf_type *t_var;
2924 		struct btf_var *var;
2925 		const char *var_name;
2926 		Elf64_Sym *sym;
2927 
2928 		t_var = btf__type_by_id(btf, vsi->type);
2929 		if (!t_var || !btf_is_var(t_var)) {
2930 			pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name);
2931 			return -EINVAL;
2932 		}
2933 
2934 		var = btf_var(t_var);
2935 		if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN)
2936 			continue;
2937 
2938 		var_name = btf__name_by_offset(btf, t_var->name_off);
2939 		if (!var_name) {
2940 			pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n",
2941 				 sec_name, i);
2942 			return -ENOENT;
2943 		}
2944 
2945 		sym = find_elf_var_sym(obj, var_name);
2946 		if (IS_ERR(sym)) {
2947 			pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n",
2948 				 sec_name, var_name);
2949 			return -ENOENT;
2950 		}
2951 
2952 		if (fixup_offsets)
2953 			vsi->offset = sym->st_value;
2954 
2955 		/* if variable is a global/weak symbol, but has restricted
2956 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR
2957 		 * as static. This follows similar logic for functions (BPF
2958 		 * subprogs) and influences libbpf's further decisions about
2959 		 * whether to make global data BPF array maps as
2960 		 * BPF_F_MMAPABLE.
2961 		 */
2962 		if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
2963 		    || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)
2964 			var->linkage = BTF_VAR_STATIC;
2965 	}
2966 
2967 sort_vars:
2968 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
2969 	return 0;
2970 }
2971 
2972 static int bpf_object_fixup_btf(struct bpf_object *obj)
2973 {
2974 	int i, n, err = 0;
2975 
2976 	if (!obj->btf)
2977 		return 0;
2978 
2979 	n = btf__type_cnt(obj->btf);
2980 	for (i = 1; i < n; i++) {
2981 		struct btf_type *t = btf_type_by_id(obj->btf, i);
2982 
2983 		/* Loader needs to fix up some of the things compiler
2984 		 * couldn't get its hands on while emitting BTF. This
2985 		 * is section size and global variable offset. We use
2986 		 * the info from the ELF itself for this purpose.
2987 		 */
2988 		if (btf_is_datasec(t)) {
2989 			err = btf_fixup_datasec(obj, obj->btf, t);
2990 			if (err)
2991 				return err;
2992 		}
2993 	}
2994 
2995 	return 0;
2996 }
2997 
2998 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
2999 {
3000 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
3001 	    prog->type == BPF_PROG_TYPE_LSM)
3002 		return true;
3003 
3004 	/* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
3005 	 * also need vmlinux BTF
3006 	 */
3007 	if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
3008 		return true;
3009 
3010 	return false;
3011 }
3012 
3013 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
3014 {
3015 	struct bpf_program *prog;
3016 	int i;
3017 
3018 	/* CO-RE relocations need kernel BTF, only when btf_custom_path
3019 	 * is not specified
3020 	 */
3021 	if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
3022 		return true;
3023 
3024 	/* Support for typed ksyms needs kernel BTF */
3025 	for (i = 0; i < obj->nr_extern; i++) {
3026 		const struct extern_desc *ext;
3027 
3028 		ext = &obj->externs[i];
3029 		if (ext->type == EXT_KSYM && ext->ksym.type_id)
3030 			return true;
3031 	}
3032 
3033 	bpf_object__for_each_program(prog, obj) {
3034 		if (!prog->autoload)
3035 			continue;
3036 		if (prog_needs_vmlinux_btf(prog))
3037 			return true;
3038 	}
3039 
3040 	return false;
3041 }
3042 
3043 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3044 {
3045 	int err;
3046 
3047 	/* btf_vmlinux could be loaded earlier */
3048 	if (obj->btf_vmlinux || obj->gen_loader)
3049 		return 0;
3050 
3051 	if (!force && !obj_needs_vmlinux_btf(obj))
3052 		return 0;
3053 
3054 	obj->btf_vmlinux = btf__load_vmlinux_btf();
3055 	err = libbpf_get_error(obj->btf_vmlinux);
3056 	if (err) {
3057 		pr_warn("Error loading vmlinux BTF: %d\n", err);
3058 		obj->btf_vmlinux = NULL;
3059 		return err;
3060 	}
3061 	return 0;
3062 }
3063 
3064 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3065 {
3066 	struct btf *kern_btf = obj->btf;
3067 	bool btf_mandatory, sanitize;
3068 	int i, err = 0;
3069 
3070 	if (!obj->btf)
3071 		return 0;
3072 
3073 	if (!kernel_supports(obj, FEAT_BTF)) {
3074 		if (kernel_needs_btf(obj)) {
3075 			err = -EOPNOTSUPP;
3076 			goto report;
3077 		}
3078 		pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3079 		return 0;
3080 	}
3081 
3082 	/* Even though some subprogs are global/weak, user might prefer more
3083 	 * permissive BPF verification process that BPF verifier performs for
3084 	 * static functions, taking into account more context from the caller
3085 	 * functions. In such case, they need to mark such subprogs with
3086 	 * __attribute__((visibility("hidden"))) and libbpf will adjust
3087 	 * corresponding FUNC BTF type to be marked as static and trigger more
3088 	 * involved BPF verification process.
3089 	 */
3090 	for (i = 0; i < obj->nr_programs; i++) {
3091 		struct bpf_program *prog = &obj->programs[i];
3092 		struct btf_type *t;
3093 		const char *name;
3094 		int j, n;
3095 
3096 		if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3097 			continue;
3098 
3099 		n = btf__type_cnt(obj->btf);
3100 		for (j = 1; j < n; j++) {
3101 			t = btf_type_by_id(obj->btf, j);
3102 			if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3103 				continue;
3104 
3105 			name = btf__str_by_offset(obj->btf, t->name_off);
3106 			if (strcmp(name, prog->name) != 0)
3107 				continue;
3108 
3109 			t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3110 			break;
3111 		}
3112 	}
3113 
3114 	sanitize = btf_needs_sanitization(obj);
3115 	if (sanitize) {
3116 		const void *raw_data;
3117 		__u32 sz;
3118 
3119 		/* clone BTF to sanitize a copy and leave the original intact */
3120 		raw_data = btf__raw_data(obj->btf, &sz);
3121 		kern_btf = btf__new(raw_data, sz);
3122 		err = libbpf_get_error(kern_btf);
3123 		if (err)
3124 			return err;
3125 
3126 		/* enforce 8-byte pointers for BPF-targeted BTFs */
3127 		btf__set_pointer_size(obj->btf, 8);
3128 		err = bpf_object__sanitize_btf(obj, kern_btf);
3129 		if (err)
3130 			return err;
3131 	}
3132 
3133 	if (obj->gen_loader) {
3134 		__u32 raw_size = 0;
3135 		const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3136 
3137 		if (!raw_data)
3138 			return -ENOMEM;
3139 		bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3140 		/* Pretend to have valid FD to pass various fd >= 0 checks.
3141 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3142 		 */
3143 		btf__set_fd(kern_btf, 0);
3144 	} else {
3145 		/* currently BPF_BTF_LOAD only supports log_level 1 */
3146 		err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3147 					   obj->log_level ? 1 : 0);
3148 	}
3149 	if (sanitize) {
3150 		if (!err) {
3151 			/* move fd to libbpf's BTF */
3152 			btf__set_fd(obj->btf, btf__fd(kern_btf));
3153 			btf__set_fd(kern_btf, -1);
3154 		}
3155 		btf__free(kern_btf);
3156 	}
3157 report:
3158 	if (err) {
3159 		btf_mandatory = kernel_needs_btf(obj);
3160 		pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3161 			btf_mandatory ? "BTF is mandatory, can't proceed."
3162 				      : "BTF is optional, ignoring.");
3163 		if (!btf_mandatory)
3164 			err = 0;
3165 	}
3166 	return err;
3167 }
3168 
3169 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3170 {
3171 	const char *name;
3172 
3173 	name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3174 	if (!name) {
3175 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3176 			off, obj->path, elf_errmsg(-1));
3177 		return NULL;
3178 	}
3179 
3180 	return name;
3181 }
3182 
3183 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3184 {
3185 	const char *name;
3186 
3187 	name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3188 	if (!name) {
3189 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3190 			off, obj->path, elf_errmsg(-1));
3191 		return NULL;
3192 	}
3193 
3194 	return name;
3195 }
3196 
3197 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3198 {
3199 	Elf_Scn *scn;
3200 
3201 	scn = elf_getscn(obj->efile.elf, idx);
3202 	if (!scn) {
3203 		pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3204 			idx, obj->path, elf_errmsg(-1));
3205 		return NULL;
3206 	}
3207 	return scn;
3208 }
3209 
3210 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3211 {
3212 	Elf_Scn *scn = NULL;
3213 	Elf *elf = obj->efile.elf;
3214 	const char *sec_name;
3215 
3216 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3217 		sec_name = elf_sec_name(obj, scn);
3218 		if (!sec_name)
3219 			return NULL;
3220 
3221 		if (strcmp(sec_name, name) != 0)
3222 			continue;
3223 
3224 		return scn;
3225 	}
3226 	return NULL;
3227 }
3228 
3229 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3230 {
3231 	Elf64_Shdr *shdr;
3232 
3233 	if (!scn)
3234 		return NULL;
3235 
3236 	shdr = elf64_getshdr(scn);
3237 	if (!shdr) {
3238 		pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3239 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3240 		return NULL;
3241 	}
3242 
3243 	return shdr;
3244 }
3245 
3246 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3247 {
3248 	const char *name;
3249 	Elf64_Shdr *sh;
3250 
3251 	if (!scn)
3252 		return NULL;
3253 
3254 	sh = elf_sec_hdr(obj, scn);
3255 	if (!sh)
3256 		return NULL;
3257 
3258 	name = elf_sec_str(obj, sh->sh_name);
3259 	if (!name) {
3260 		pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3261 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3262 		return NULL;
3263 	}
3264 
3265 	return name;
3266 }
3267 
3268 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3269 {
3270 	Elf_Data *data;
3271 
3272 	if (!scn)
3273 		return NULL;
3274 
3275 	data = elf_getdata(scn, 0);
3276 	if (!data) {
3277 		pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3278 			elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3279 			obj->path, elf_errmsg(-1));
3280 		return NULL;
3281 	}
3282 
3283 	return data;
3284 }
3285 
3286 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3287 {
3288 	if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3289 		return NULL;
3290 
3291 	return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3292 }
3293 
3294 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3295 {
3296 	if (idx >= data->d_size / sizeof(Elf64_Rel))
3297 		return NULL;
3298 
3299 	return (Elf64_Rel *)data->d_buf + idx;
3300 }
3301 
3302 static bool is_sec_name_dwarf(const char *name)
3303 {
3304 	/* approximation, but the actual list is too long */
3305 	return str_has_pfx(name, ".debug_");
3306 }
3307 
3308 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3309 {
3310 	/* no special handling of .strtab */
3311 	if (hdr->sh_type == SHT_STRTAB)
3312 		return true;
3313 
3314 	/* ignore .llvm_addrsig section as well */
3315 	if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3316 		return true;
3317 
3318 	/* no subprograms will lead to an empty .text section, ignore it */
3319 	if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3320 	    strcmp(name, ".text") == 0)
3321 		return true;
3322 
3323 	/* DWARF sections */
3324 	if (is_sec_name_dwarf(name))
3325 		return true;
3326 
3327 	if (str_has_pfx(name, ".rel")) {
3328 		name += sizeof(".rel") - 1;
3329 		/* DWARF section relocations */
3330 		if (is_sec_name_dwarf(name))
3331 			return true;
3332 
3333 		/* .BTF and .BTF.ext don't need relocations */
3334 		if (strcmp(name, BTF_ELF_SEC) == 0 ||
3335 		    strcmp(name, BTF_EXT_ELF_SEC) == 0)
3336 			return true;
3337 	}
3338 
3339 	return false;
3340 }
3341 
3342 static int cmp_progs(const void *_a, const void *_b)
3343 {
3344 	const struct bpf_program *a = _a;
3345 	const struct bpf_program *b = _b;
3346 
3347 	if (a->sec_idx != b->sec_idx)
3348 		return a->sec_idx < b->sec_idx ? -1 : 1;
3349 
3350 	/* sec_insn_off can't be the same within the section */
3351 	return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3352 }
3353 
3354 static int bpf_object__elf_collect(struct bpf_object *obj)
3355 {
3356 	struct elf_sec_desc *sec_desc;
3357 	Elf *elf = obj->efile.elf;
3358 	Elf_Data *btf_ext_data = NULL;
3359 	Elf_Data *btf_data = NULL;
3360 	int idx = 0, err = 0;
3361 	const char *name;
3362 	Elf_Data *data;
3363 	Elf_Scn *scn;
3364 	Elf64_Shdr *sh;
3365 
3366 	/* ELF section indices are 0-based, but sec #0 is special "invalid"
3367 	 * section. Since section count retrieved by elf_getshdrnum() does
3368 	 * include sec #0, it is already the necessary size of an array to keep
3369 	 * all the sections.
3370 	 */
3371 	if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3372 		pr_warn("elf: failed to get the number of sections for %s: %s\n",
3373 			obj->path, elf_errmsg(-1));
3374 		return -LIBBPF_ERRNO__FORMAT;
3375 	}
3376 	obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3377 	if (!obj->efile.secs)
3378 		return -ENOMEM;
3379 
3380 	/* a bunch of ELF parsing functionality depends on processing symbols,
3381 	 * so do the first pass and find the symbol table
3382 	 */
3383 	scn = NULL;
3384 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3385 		sh = elf_sec_hdr(obj, scn);
3386 		if (!sh)
3387 			return -LIBBPF_ERRNO__FORMAT;
3388 
3389 		if (sh->sh_type == SHT_SYMTAB) {
3390 			if (obj->efile.symbols) {
3391 				pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3392 				return -LIBBPF_ERRNO__FORMAT;
3393 			}
3394 
3395 			data = elf_sec_data(obj, scn);
3396 			if (!data)
3397 				return -LIBBPF_ERRNO__FORMAT;
3398 
3399 			idx = elf_ndxscn(scn);
3400 
3401 			obj->efile.symbols = data;
3402 			obj->efile.symbols_shndx = idx;
3403 			obj->efile.strtabidx = sh->sh_link;
3404 		}
3405 	}
3406 
3407 	if (!obj->efile.symbols) {
3408 		pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3409 			obj->path);
3410 		return -ENOENT;
3411 	}
3412 
3413 	scn = NULL;
3414 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3415 		idx = elf_ndxscn(scn);
3416 		sec_desc = &obj->efile.secs[idx];
3417 
3418 		sh = elf_sec_hdr(obj, scn);
3419 		if (!sh)
3420 			return -LIBBPF_ERRNO__FORMAT;
3421 
3422 		name = elf_sec_str(obj, sh->sh_name);
3423 		if (!name)
3424 			return -LIBBPF_ERRNO__FORMAT;
3425 
3426 		if (ignore_elf_section(sh, name))
3427 			continue;
3428 
3429 		data = elf_sec_data(obj, scn);
3430 		if (!data)
3431 			return -LIBBPF_ERRNO__FORMAT;
3432 
3433 		pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3434 			 idx, name, (unsigned long)data->d_size,
3435 			 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3436 			 (int)sh->sh_type);
3437 
3438 		if (strcmp(name, "license") == 0) {
3439 			err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3440 			if (err)
3441 				return err;
3442 		} else if (strcmp(name, "version") == 0) {
3443 			err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3444 			if (err)
3445 				return err;
3446 		} else if (strcmp(name, "maps") == 0) {
3447 			pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3448 			return -ENOTSUP;
3449 		} else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3450 			obj->efile.btf_maps_shndx = idx;
3451 		} else if (strcmp(name, BTF_ELF_SEC) == 0) {
3452 			if (sh->sh_type != SHT_PROGBITS)
3453 				return -LIBBPF_ERRNO__FORMAT;
3454 			btf_data = data;
3455 		} else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3456 			if (sh->sh_type != SHT_PROGBITS)
3457 				return -LIBBPF_ERRNO__FORMAT;
3458 			btf_ext_data = data;
3459 		} else if (sh->sh_type == SHT_SYMTAB) {
3460 			/* already processed during the first pass above */
3461 		} else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3462 			if (sh->sh_flags & SHF_EXECINSTR) {
3463 				if (strcmp(name, ".text") == 0)
3464 					obj->efile.text_shndx = idx;
3465 				err = bpf_object__add_programs(obj, data, name, idx);
3466 				if (err)
3467 					return err;
3468 			} else if (strcmp(name, DATA_SEC) == 0 ||
3469 				   str_has_pfx(name, DATA_SEC ".")) {
3470 				sec_desc->sec_type = SEC_DATA;
3471 				sec_desc->shdr = sh;
3472 				sec_desc->data = data;
3473 			} else if (strcmp(name, RODATA_SEC) == 0 ||
3474 				   str_has_pfx(name, RODATA_SEC ".")) {
3475 				sec_desc->sec_type = SEC_RODATA;
3476 				sec_desc->shdr = sh;
3477 				sec_desc->data = data;
3478 			} else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
3479 				obj->efile.st_ops_data = data;
3480 				obj->efile.st_ops_shndx = idx;
3481 			} else if (strcmp(name, STRUCT_OPS_LINK_SEC) == 0) {
3482 				obj->efile.st_ops_link_data = data;
3483 				obj->efile.st_ops_link_shndx = idx;
3484 			} else {
3485 				pr_info("elf: skipping unrecognized data section(%d) %s\n",
3486 					idx, name);
3487 			}
3488 		} else if (sh->sh_type == SHT_REL) {
3489 			int targ_sec_idx = sh->sh_info; /* points to other section */
3490 
3491 			if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3492 			    targ_sec_idx >= obj->efile.sec_cnt)
3493 				return -LIBBPF_ERRNO__FORMAT;
3494 
3495 			/* Only do relo for section with exec instructions */
3496 			if (!section_have_execinstr(obj, targ_sec_idx) &&
3497 			    strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3498 			    strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) &&
3499 			    strcmp(name, ".rel" MAPS_ELF_SEC)) {
3500 				pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3501 					idx, name, targ_sec_idx,
3502 					elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3503 				continue;
3504 			}
3505 
3506 			sec_desc->sec_type = SEC_RELO;
3507 			sec_desc->shdr = sh;
3508 			sec_desc->data = data;
3509 		} else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 ||
3510 							 str_has_pfx(name, BSS_SEC "."))) {
3511 			sec_desc->sec_type = SEC_BSS;
3512 			sec_desc->shdr = sh;
3513 			sec_desc->data = data;
3514 		} else {
3515 			pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3516 				(size_t)sh->sh_size);
3517 		}
3518 	}
3519 
3520 	if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3521 		pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3522 		return -LIBBPF_ERRNO__FORMAT;
3523 	}
3524 
3525 	/* sort BPF programs by section name and in-section instruction offset
3526 	 * for faster search
3527 	 */
3528 	if (obj->nr_programs)
3529 		qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3530 
3531 	return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3532 }
3533 
3534 static bool sym_is_extern(const Elf64_Sym *sym)
3535 {
3536 	int bind = ELF64_ST_BIND(sym->st_info);
3537 	/* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3538 	return sym->st_shndx == SHN_UNDEF &&
3539 	       (bind == STB_GLOBAL || bind == STB_WEAK) &&
3540 	       ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3541 }
3542 
3543 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3544 {
3545 	int bind = ELF64_ST_BIND(sym->st_info);
3546 	int type = ELF64_ST_TYPE(sym->st_info);
3547 
3548 	/* in .text section */
3549 	if (sym->st_shndx != text_shndx)
3550 		return false;
3551 
3552 	/* local function */
3553 	if (bind == STB_LOCAL && type == STT_SECTION)
3554 		return true;
3555 
3556 	/* global function */
3557 	return bind == STB_GLOBAL && type == STT_FUNC;
3558 }
3559 
3560 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3561 {
3562 	const struct btf_type *t;
3563 	const char *tname;
3564 	int i, n;
3565 
3566 	if (!btf)
3567 		return -ESRCH;
3568 
3569 	n = btf__type_cnt(btf);
3570 	for (i = 1; i < n; i++) {
3571 		t = btf__type_by_id(btf, i);
3572 
3573 		if (!btf_is_var(t) && !btf_is_func(t))
3574 			continue;
3575 
3576 		tname = btf__name_by_offset(btf, t->name_off);
3577 		if (strcmp(tname, ext_name))
3578 			continue;
3579 
3580 		if (btf_is_var(t) &&
3581 		    btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3582 			return -EINVAL;
3583 
3584 		if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3585 			return -EINVAL;
3586 
3587 		return i;
3588 	}
3589 
3590 	return -ENOENT;
3591 }
3592 
3593 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3594 	const struct btf_var_secinfo *vs;
3595 	const struct btf_type *t;
3596 	int i, j, n;
3597 
3598 	if (!btf)
3599 		return -ESRCH;
3600 
3601 	n = btf__type_cnt(btf);
3602 	for (i = 1; i < n; i++) {
3603 		t = btf__type_by_id(btf, i);
3604 
3605 		if (!btf_is_datasec(t))
3606 			continue;
3607 
3608 		vs = btf_var_secinfos(t);
3609 		for (j = 0; j < btf_vlen(t); j++, vs++) {
3610 			if (vs->type == ext_btf_id)
3611 				return i;
3612 		}
3613 	}
3614 
3615 	return -ENOENT;
3616 }
3617 
3618 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3619 				     bool *is_signed)
3620 {
3621 	const struct btf_type *t;
3622 	const char *name;
3623 
3624 	t = skip_mods_and_typedefs(btf, id, NULL);
3625 	name = btf__name_by_offset(btf, t->name_off);
3626 
3627 	if (is_signed)
3628 		*is_signed = false;
3629 	switch (btf_kind(t)) {
3630 	case BTF_KIND_INT: {
3631 		int enc = btf_int_encoding(t);
3632 
3633 		if (enc & BTF_INT_BOOL)
3634 			return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3635 		if (is_signed)
3636 			*is_signed = enc & BTF_INT_SIGNED;
3637 		if (t->size == 1)
3638 			return KCFG_CHAR;
3639 		if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3640 			return KCFG_UNKNOWN;
3641 		return KCFG_INT;
3642 	}
3643 	case BTF_KIND_ENUM:
3644 		if (t->size != 4)
3645 			return KCFG_UNKNOWN;
3646 		if (strcmp(name, "libbpf_tristate"))
3647 			return KCFG_UNKNOWN;
3648 		return KCFG_TRISTATE;
3649 	case BTF_KIND_ENUM64:
3650 		if (strcmp(name, "libbpf_tristate"))
3651 			return KCFG_UNKNOWN;
3652 		return KCFG_TRISTATE;
3653 	case BTF_KIND_ARRAY:
3654 		if (btf_array(t)->nelems == 0)
3655 			return KCFG_UNKNOWN;
3656 		if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3657 			return KCFG_UNKNOWN;
3658 		return KCFG_CHAR_ARR;
3659 	default:
3660 		return KCFG_UNKNOWN;
3661 	}
3662 }
3663 
3664 static int cmp_externs(const void *_a, const void *_b)
3665 {
3666 	const struct extern_desc *a = _a;
3667 	const struct extern_desc *b = _b;
3668 
3669 	if (a->type != b->type)
3670 		return a->type < b->type ? -1 : 1;
3671 
3672 	if (a->type == EXT_KCFG) {
3673 		/* descending order by alignment requirements */
3674 		if (a->kcfg.align != b->kcfg.align)
3675 			return a->kcfg.align > b->kcfg.align ? -1 : 1;
3676 		/* ascending order by size, within same alignment class */
3677 		if (a->kcfg.sz != b->kcfg.sz)
3678 			return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3679 	}
3680 
3681 	/* resolve ties by name */
3682 	return strcmp(a->name, b->name);
3683 }
3684 
3685 static int find_int_btf_id(const struct btf *btf)
3686 {
3687 	const struct btf_type *t;
3688 	int i, n;
3689 
3690 	n = btf__type_cnt(btf);
3691 	for (i = 1; i < n; i++) {
3692 		t = btf__type_by_id(btf, i);
3693 
3694 		if (btf_is_int(t) && btf_int_bits(t) == 32)
3695 			return i;
3696 	}
3697 
3698 	return 0;
3699 }
3700 
3701 static int add_dummy_ksym_var(struct btf *btf)
3702 {
3703 	int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
3704 	const struct btf_var_secinfo *vs;
3705 	const struct btf_type *sec;
3706 
3707 	if (!btf)
3708 		return 0;
3709 
3710 	sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
3711 					    BTF_KIND_DATASEC);
3712 	if (sec_btf_id < 0)
3713 		return 0;
3714 
3715 	sec = btf__type_by_id(btf, sec_btf_id);
3716 	vs = btf_var_secinfos(sec);
3717 	for (i = 0; i < btf_vlen(sec); i++, vs++) {
3718 		const struct btf_type *vt;
3719 
3720 		vt = btf__type_by_id(btf, vs->type);
3721 		if (btf_is_func(vt))
3722 			break;
3723 	}
3724 
3725 	/* No func in ksyms sec.  No need to add dummy var. */
3726 	if (i == btf_vlen(sec))
3727 		return 0;
3728 
3729 	int_btf_id = find_int_btf_id(btf);
3730 	dummy_var_btf_id = btf__add_var(btf,
3731 					"dummy_ksym",
3732 					BTF_VAR_GLOBAL_ALLOCATED,
3733 					int_btf_id);
3734 	if (dummy_var_btf_id < 0)
3735 		pr_warn("cannot create a dummy_ksym var\n");
3736 
3737 	return dummy_var_btf_id;
3738 }
3739 
3740 static int bpf_object__collect_externs(struct bpf_object *obj)
3741 {
3742 	struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3743 	const struct btf_type *t;
3744 	struct extern_desc *ext;
3745 	int i, n, off, dummy_var_btf_id;
3746 	const char *ext_name, *sec_name;
3747 	Elf_Scn *scn;
3748 	Elf64_Shdr *sh;
3749 
3750 	if (!obj->efile.symbols)
3751 		return 0;
3752 
3753 	scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3754 	sh = elf_sec_hdr(obj, scn);
3755 	if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
3756 		return -LIBBPF_ERRNO__FORMAT;
3757 
3758 	dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
3759 	if (dummy_var_btf_id < 0)
3760 		return dummy_var_btf_id;
3761 
3762 	n = sh->sh_size / sh->sh_entsize;
3763 	pr_debug("looking for externs among %d symbols...\n", n);
3764 
3765 	for (i = 0; i < n; i++) {
3766 		Elf64_Sym *sym = elf_sym_by_idx(obj, i);
3767 
3768 		if (!sym)
3769 			return -LIBBPF_ERRNO__FORMAT;
3770 		if (!sym_is_extern(sym))
3771 			continue;
3772 		ext_name = elf_sym_str(obj, sym->st_name);
3773 		if (!ext_name || !ext_name[0])
3774 			continue;
3775 
3776 		ext = obj->externs;
3777 		ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3778 		if (!ext)
3779 			return -ENOMEM;
3780 		obj->externs = ext;
3781 		ext = &ext[obj->nr_extern];
3782 		memset(ext, 0, sizeof(*ext));
3783 		obj->nr_extern++;
3784 
3785 		ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3786 		if (ext->btf_id <= 0) {
3787 			pr_warn("failed to find BTF for extern '%s': %d\n",
3788 				ext_name, ext->btf_id);
3789 			return ext->btf_id;
3790 		}
3791 		t = btf__type_by_id(obj->btf, ext->btf_id);
3792 		ext->name = btf__name_by_offset(obj->btf, t->name_off);
3793 		ext->sym_idx = i;
3794 		ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
3795 
3796 		ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3797 		if (ext->sec_btf_id <= 0) {
3798 			pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3799 				ext_name, ext->btf_id, ext->sec_btf_id);
3800 			return ext->sec_btf_id;
3801 		}
3802 		sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3803 		sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3804 
3805 		if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3806 			if (btf_is_func(t)) {
3807 				pr_warn("extern function %s is unsupported under %s section\n",
3808 					ext->name, KCONFIG_SEC);
3809 				return -ENOTSUP;
3810 			}
3811 			kcfg_sec = sec;
3812 			ext->type = EXT_KCFG;
3813 			ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3814 			if (ext->kcfg.sz <= 0) {
3815 				pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3816 					ext_name, ext->kcfg.sz);
3817 				return ext->kcfg.sz;
3818 			}
3819 			ext->kcfg.align = btf__align_of(obj->btf, t->type);
3820 			if (ext->kcfg.align <= 0) {
3821 				pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3822 					ext_name, ext->kcfg.align);
3823 				return -EINVAL;
3824 			}
3825 			ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3826 							&ext->kcfg.is_signed);
3827 			if (ext->kcfg.type == KCFG_UNKNOWN) {
3828 				pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
3829 				return -ENOTSUP;
3830 			}
3831 		} else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3832 			ksym_sec = sec;
3833 			ext->type = EXT_KSYM;
3834 			skip_mods_and_typedefs(obj->btf, t->type,
3835 					       &ext->ksym.type_id);
3836 		} else {
3837 			pr_warn("unrecognized extern section '%s'\n", sec_name);
3838 			return -ENOTSUP;
3839 		}
3840 	}
3841 	pr_debug("collected %d externs total\n", obj->nr_extern);
3842 
3843 	if (!obj->nr_extern)
3844 		return 0;
3845 
3846 	/* sort externs by type, for kcfg ones also by (align, size, name) */
3847 	qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3848 
3849 	/* for .ksyms section, we need to turn all externs into allocated
3850 	 * variables in BTF to pass kernel verification; we do this by
3851 	 * pretending that each extern is a 8-byte variable
3852 	 */
3853 	if (ksym_sec) {
3854 		/* find existing 4-byte integer type in BTF to use for fake
3855 		 * extern variables in DATASEC
3856 		 */
3857 		int int_btf_id = find_int_btf_id(obj->btf);
3858 		/* For extern function, a dummy_var added earlier
3859 		 * will be used to replace the vs->type and
3860 		 * its name string will be used to refill
3861 		 * the missing param's name.
3862 		 */
3863 		const struct btf_type *dummy_var;
3864 
3865 		dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
3866 		for (i = 0; i < obj->nr_extern; i++) {
3867 			ext = &obj->externs[i];
3868 			if (ext->type != EXT_KSYM)
3869 				continue;
3870 			pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3871 				 i, ext->sym_idx, ext->name);
3872 		}
3873 
3874 		sec = ksym_sec;
3875 		n = btf_vlen(sec);
3876 		for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3877 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3878 			struct btf_type *vt;
3879 
3880 			vt = (void *)btf__type_by_id(obj->btf, vs->type);
3881 			ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3882 			ext = find_extern_by_name(obj, ext_name);
3883 			if (!ext) {
3884 				pr_warn("failed to find extern definition for BTF %s '%s'\n",
3885 					btf_kind_str(vt), ext_name);
3886 				return -ESRCH;
3887 			}
3888 			if (btf_is_func(vt)) {
3889 				const struct btf_type *func_proto;
3890 				struct btf_param *param;
3891 				int j;
3892 
3893 				func_proto = btf__type_by_id(obj->btf,
3894 							     vt->type);
3895 				param = btf_params(func_proto);
3896 				/* Reuse the dummy_var string if the
3897 				 * func proto does not have param name.
3898 				 */
3899 				for (j = 0; j < btf_vlen(func_proto); j++)
3900 					if (param[j].type && !param[j].name_off)
3901 						param[j].name_off =
3902 							dummy_var->name_off;
3903 				vs->type = dummy_var_btf_id;
3904 				vt->info &= ~0xffff;
3905 				vt->info |= BTF_FUNC_GLOBAL;
3906 			} else {
3907 				btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3908 				vt->type = int_btf_id;
3909 			}
3910 			vs->offset = off;
3911 			vs->size = sizeof(int);
3912 		}
3913 		sec->size = off;
3914 	}
3915 
3916 	if (kcfg_sec) {
3917 		sec = kcfg_sec;
3918 		/* for kcfg externs calculate their offsets within a .kconfig map */
3919 		off = 0;
3920 		for (i = 0; i < obj->nr_extern; i++) {
3921 			ext = &obj->externs[i];
3922 			if (ext->type != EXT_KCFG)
3923 				continue;
3924 
3925 			ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3926 			off = ext->kcfg.data_off + ext->kcfg.sz;
3927 			pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3928 				 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3929 		}
3930 		sec->size = off;
3931 		n = btf_vlen(sec);
3932 		for (i = 0; i < n; i++) {
3933 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3934 
3935 			t = btf__type_by_id(obj->btf, vs->type);
3936 			ext_name = btf__name_by_offset(obj->btf, t->name_off);
3937 			ext = find_extern_by_name(obj, ext_name);
3938 			if (!ext) {
3939 				pr_warn("failed to find extern definition for BTF var '%s'\n",
3940 					ext_name);
3941 				return -ESRCH;
3942 			}
3943 			btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3944 			vs->offset = ext->kcfg.data_off;
3945 		}
3946 	}
3947 	return 0;
3948 }
3949 
3950 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
3951 {
3952 	return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
3953 }
3954 
3955 struct bpf_program *
3956 bpf_object__find_program_by_name(const struct bpf_object *obj,
3957 				 const char *name)
3958 {
3959 	struct bpf_program *prog;
3960 
3961 	bpf_object__for_each_program(prog, obj) {
3962 		if (prog_is_subprog(obj, prog))
3963 			continue;
3964 		if (!strcmp(prog->name, name))
3965 			return prog;
3966 	}
3967 	return errno = ENOENT, NULL;
3968 }
3969 
3970 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
3971 				      int shndx)
3972 {
3973 	switch (obj->efile.secs[shndx].sec_type) {
3974 	case SEC_BSS:
3975 	case SEC_DATA:
3976 	case SEC_RODATA:
3977 		return true;
3978 	default:
3979 		return false;
3980 	}
3981 }
3982 
3983 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
3984 				      int shndx)
3985 {
3986 	return shndx == obj->efile.btf_maps_shndx;
3987 }
3988 
3989 static enum libbpf_map_type
3990 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
3991 {
3992 	if (shndx == obj->efile.symbols_shndx)
3993 		return LIBBPF_MAP_KCONFIG;
3994 
3995 	switch (obj->efile.secs[shndx].sec_type) {
3996 	case SEC_BSS:
3997 		return LIBBPF_MAP_BSS;
3998 	case SEC_DATA:
3999 		return LIBBPF_MAP_DATA;
4000 	case SEC_RODATA:
4001 		return LIBBPF_MAP_RODATA;
4002 	default:
4003 		return LIBBPF_MAP_UNSPEC;
4004 	}
4005 }
4006 
4007 static int bpf_program__record_reloc(struct bpf_program *prog,
4008 				     struct reloc_desc *reloc_desc,
4009 				     __u32 insn_idx, const char *sym_name,
4010 				     const Elf64_Sym *sym, const Elf64_Rel *rel)
4011 {
4012 	struct bpf_insn *insn = &prog->insns[insn_idx];
4013 	size_t map_idx, nr_maps = prog->obj->nr_maps;
4014 	struct bpf_object *obj = prog->obj;
4015 	__u32 shdr_idx = sym->st_shndx;
4016 	enum libbpf_map_type type;
4017 	const char *sym_sec_name;
4018 	struct bpf_map *map;
4019 
4020 	if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
4021 		pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
4022 			prog->name, sym_name, insn_idx, insn->code);
4023 		return -LIBBPF_ERRNO__RELOC;
4024 	}
4025 
4026 	if (sym_is_extern(sym)) {
4027 		int sym_idx = ELF64_R_SYM(rel->r_info);
4028 		int i, n = obj->nr_extern;
4029 		struct extern_desc *ext;
4030 
4031 		for (i = 0; i < n; i++) {
4032 			ext = &obj->externs[i];
4033 			if (ext->sym_idx == sym_idx)
4034 				break;
4035 		}
4036 		if (i >= n) {
4037 			pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4038 				prog->name, sym_name, sym_idx);
4039 			return -LIBBPF_ERRNO__RELOC;
4040 		}
4041 		pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4042 			 prog->name, i, ext->name, ext->sym_idx, insn_idx);
4043 		if (insn->code == (BPF_JMP | BPF_CALL))
4044 			reloc_desc->type = RELO_EXTERN_CALL;
4045 		else
4046 			reloc_desc->type = RELO_EXTERN_LD64;
4047 		reloc_desc->insn_idx = insn_idx;
4048 		reloc_desc->ext_idx = i;
4049 		return 0;
4050 	}
4051 
4052 	/* sub-program call relocation */
4053 	if (is_call_insn(insn)) {
4054 		if (insn->src_reg != BPF_PSEUDO_CALL) {
4055 			pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4056 			return -LIBBPF_ERRNO__RELOC;
4057 		}
4058 		/* text_shndx can be 0, if no default "main" program exists */
4059 		if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4060 			sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4061 			pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4062 				prog->name, sym_name, sym_sec_name);
4063 			return -LIBBPF_ERRNO__RELOC;
4064 		}
4065 		if (sym->st_value % BPF_INSN_SZ) {
4066 			pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4067 				prog->name, sym_name, (size_t)sym->st_value);
4068 			return -LIBBPF_ERRNO__RELOC;
4069 		}
4070 		reloc_desc->type = RELO_CALL;
4071 		reloc_desc->insn_idx = insn_idx;
4072 		reloc_desc->sym_off = sym->st_value;
4073 		return 0;
4074 	}
4075 
4076 	if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4077 		pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4078 			prog->name, sym_name, shdr_idx);
4079 		return -LIBBPF_ERRNO__RELOC;
4080 	}
4081 
4082 	/* loading subprog addresses */
4083 	if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4084 		/* global_func: sym->st_value = offset in the section, insn->imm = 0.
4085 		 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4086 		 */
4087 		if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4088 			pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4089 				prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4090 			return -LIBBPF_ERRNO__RELOC;
4091 		}
4092 
4093 		reloc_desc->type = RELO_SUBPROG_ADDR;
4094 		reloc_desc->insn_idx = insn_idx;
4095 		reloc_desc->sym_off = sym->st_value;
4096 		return 0;
4097 	}
4098 
4099 	type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4100 	sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4101 
4102 	/* generic map reference relocation */
4103 	if (type == LIBBPF_MAP_UNSPEC) {
4104 		if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4105 			pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4106 				prog->name, sym_name, sym_sec_name);
4107 			return -LIBBPF_ERRNO__RELOC;
4108 		}
4109 		for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4110 			map = &obj->maps[map_idx];
4111 			if (map->libbpf_type != type ||
4112 			    map->sec_idx != sym->st_shndx ||
4113 			    map->sec_offset != sym->st_value)
4114 				continue;
4115 			pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4116 				 prog->name, map_idx, map->name, map->sec_idx,
4117 				 map->sec_offset, insn_idx);
4118 			break;
4119 		}
4120 		if (map_idx >= nr_maps) {
4121 			pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4122 				prog->name, sym_sec_name, (size_t)sym->st_value);
4123 			return -LIBBPF_ERRNO__RELOC;
4124 		}
4125 		reloc_desc->type = RELO_LD64;
4126 		reloc_desc->insn_idx = insn_idx;
4127 		reloc_desc->map_idx = map_idx;
4128 		reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4129 		return 0;
4130 	}
4131 
4132 	/* global data map relocation */
4133 	if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4134 		pr_warn("prog '%s': bad data relo against section '%s'\n",
4135 			prog->name, sym_sec_name);
4136 		return -LIBBPF_ERRNO__RELOC;
4137 	}
4138 	for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4139 		map = &obj->maps[map_idx];
4140 		if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4141 			continue;
4142 		pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4143 			 prog->name, map_idx, map->name, map->sec_idx,
4144 			 map->sec_offset, insn_idx);
4145 		break;
4146 	}
4147 	if (map_idx >= nr_maps) {
4148 		pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4149 			prog->name, sym_sec_name);
4150 		return -LIBBPF_ERRNO__RELOC;
4151 	}
4152 
4153 	reloc_desc->type = RELO_DATA;
4154 	reloc_desc->insn_idx = insn_idx;
4155 	reloc_desc->map_idx = map_idx;
4156 	reloc_desc->sym_off = sym->st_value;
4157 	return 0;
4158 }
4159 
4160 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4161 {
4162 	return insn_idx >= prog->sec_insn_off &&
4163 	       insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4164 }
4165 
4166 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4167 						 size_t sec_idx, size_t insn_idx)
4168 {
4169 	int l = 0, r = obj->nr_programs - 1, m;
4170 	struct bpf_program *prog;
4171 
4172 	if (!obj->nr_programs)
4173 		return NULL;
4174 
4175 	while (l < r) {
4176 		m = l + (r - l + 1) / 2;
4177 		prog = &obj->programs[m];
4178 
4179 		if (prog->sec_idx < sec_idx ||
4180 		    (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4181 			l = m;
4182 		else
4183 			r = m - 1;
4184 	}
4185 	/* matching program could be at index l, but it still might be the
4186 	 * wrong one, so we need to double check conditions for the last time
4187 	 */
4188 	prog = &obj->programs[l];
4189 	if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4190 		return prog;
4191 	return NULL;
4192 }
4193 
4194 static int
4195 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4196 {
4197 	const char *relo_sec_name, *sec_name;
4198 	size_t sec_idx = shdr->sh_info, sym_idx;
4199 	struct bpf_program *prog;
4200 	struct reloc_desc *relos;
4201 	int err, i, nrels;
4202 	const char *sym_name;
4203 	__u32 insn_idx;
4204 	Elf_Scn *scn;
4205 	Elf_Data *scn_data;
4206 	Elf64_Sym *sym;
4207 	Elf64_Rel *rel;
4208 
4209 	if (sec_idx >= obj->efile.sec_cnt)
4210 		return -EINVAL;
4211 
4212 	scn = elf_sec_by_idx(obj, sec_idx);
4213 	scn_data = elf_sec_data(obj, scn);
4214 
4215 	relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4216 	sec_name = elf_sec_name(obj, scn);
4217 	if (!relo_sec_name || !sec_name)
4218 		return -EINVAL;
4219 
4220 	pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4221 		 relo_sec_name, sec_idx, sec_name);
4222 	nrels = shdr->sh_size / shdr->sh_entsize;
4223 
4224 	for (i = 0; i < nrels; i++) {
4225 		rel = elf_rel_by_idx(data, i);
4226 		if (!rel) {
4227 			pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4228 			return -LIBBPF_ERRNO__FORMAT;
4229 		}
4230 
4231 		sym_idx = ELF64_R_SYM(rel->r_info);
4232 		sym = elf_sym_by_idx(obj, sym_idx);
4233 		if (!sym) {
4234 			pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4235 				relo_sec_name, sym_idx, i);
4236 			return -LIBBPF_ERRNO__FORMAT;
4237 		}
4238 
4239 		if (sym->st_shndx >= obj->efile.sec_cnt) {
4240 			pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4241 				relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4242 			return -LIBBPF_ERRNO__FORMAT;
4243 		}
4244 
4245 		if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4246 			pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4247 				relo_sec_name, (size_t)rel->r_offset, i);
4248 			return -LIBBPF_ERRNO__FORMAT;
4249 		}
4250 
4251 		insn_idx = rel->r_offset / BPF_INSN_SZ;
4252 		/* relocations against static functions are recorded as
4253 		 * relocations against the section that contains a function;
4254 		 * in such case, symbol will be STT_SECTION and sym.st_name
4255 		 * will point to empty string (0), so fetch section name
4256 		 * instead
4257 		 */
4258 		if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4259 			sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4260 		else
4261 			sym_name = elf_sym_str(obj, sym->st_name);
4262 		sym_name = sym_name ?: "<?";
4263 
4264 		pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4265 			 relo_sec_name, i, insn_idx, sym_name);
4266 
4267 		prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4268 		if (!prog) {
4269 			pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4270 				relo_sec_name, i, sec_name, insn_idx);
4271 			continue;
4272 		}
4273 
4274 		relos = libbpf_reallocarray(prog->reloc_desc,
4275 					    prog->nr_reloc + 1, sizeof(*relos));
4276 		if (!relos)
4277 			return -ENOMEM;
4278 		prog->reloc_desc = relos;
4279 
4280 		/* adjust insn_idx to local BPF program frame of reference */
4281 		insn_idx -= prog->sec_insn_off;
4282 		err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4283 						insn_idx, sym_name, sym, rel);
4284 		if (err)
4285 			return err;
4286 
4287 		prog->nr_reloc++;
4288 	}
4289 	return 0;
4290 }
4291 
4292 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map)
4293 {
4294 	int id;
4295 
4296 	if (!obj->btf)
4297 		return -ENOENT;
4298 
4299 	/* if it's BTF-defined map, we don't need to search for type IDs.
4300 	 * For struct_ops map, it does not need btf_key_type_id and
4301 	 * btf_value_type_id.
4302 	 */
4303 	if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4304 		return 0;
4305 
4306 	/*
4307 	 * LLVM annotates global data differently in BTF, that is,
4308 	 * only as '.data', '.bss' or '.rodata'.
4309 	 */
4310 	if (!bpf_map__is_internal(map))
4311 		return -ENOENT;
4312 
4313 	id = btf__find_by_name(obj->btf, map->real_name);
4314 	if (id < 0)
4315 		return id;
4316 
4317 	map->btf_key_type_id = 0;
4318 	map->btf_value_type_id = id;
4319 	return 0;
4320 }
4321 
4322 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4323 {
4324 	char file[PATH_MAX], buff[4096];
4325 	FILE *fp;
4326 	__u32 val;
4327 	int err;
4328 
4329 	snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4330 	memset(info, 0, sizeof(*info));
4331 
4332 	fp = fopen(file, "r");
4333 	if (!fp) {
4334 		err = -errno;
4335 		pr_warn("failed to open %s: %d. No procfs support?\n", file,
4336 			err);
4337 		return err;
4338 	}
4339 
4340 	while (fgets(buff, sizeof(buff), fp)) {
4341 		if (sscanf(buff, "map_type:\t%u", &val) == 1)
4342 			info->type = val;
4343 		else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4344 			info->key_size = val;
4345 		else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4346 			info->value_size = val;
4347 		else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4348 			info->max_entries = val;
4349 		else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4350 			info->map_flags = val;
4351 	}
4352 
4353 	fclose(fp);
4354 
4355 	return 0;
4356 }
4357 
4358 bool bpf_map__autocreate(const struct bpf_map *map)
4359 {
4360 	return map->autocreate;
4361 }
4362 
4363 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4364 {
4365 	if (map->obj->loaded)
4366 		return libbpf_err(-EBUSY);
4367 
4368 	map->autocreate = autocreate;
4369 	return 0;
4370 }
4371 
4372 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4373 {
4374 	struct bpf_map_info info;
4375 	__u32 len = sizeof(info), name_len;
4376 	int new_fd, err;
4377 	char *new_name;
4378 
4379 	memset(&info, 0, len);
4380 	err = bpf_map_get_info_by_fd(fd, &info, &len);
4381 	if (err && errno == EINVAL)
4382 		err = bpf_get_map_info_from_fdinfo(fd, &info);
4383 	if (err)
4384 		return libbpf_err(err);
4385 
4386 	name_len = strlen(info.name);
4387 	if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4388 		new_name = strdup(map->name);
4389 	else
4390 		new_name = strdup(info.name);
4391 
4392 	if (!new_name)
4393 		return libbpf_err(-errno);
4394 
4395 	new_fd = open("/", O_RDONLY | O_CLOEXEC);
4396 	if (new_fd < 0) {
4397 		err = -errno;
4398 		goto err_free_new_name;
4399 	}
4400 
4401 	new_fd = dup3(fd, new_fd, O_CLOEXEC);
4402 	if (new_fd < 0) {
4403 		err = -errno;
4404 		goto err_close_new_fd;
4405 	}
4406 
4407 	err = zclose(map->fd);
4408 	if (err) {
4409 		err = -errno;
4410 		goto err_close_new_fd;
4411 	}
4412 	free(map->name);
4413 
4414 	map->fd = new_fd;
4415 	map->name = new_name;
4416 	map->def.type = info.type;
4417 	map->def.key_size = info.key_size;
4418 	map->def.value_size = info.value_size;
4419 	map->def.max_entries = info.max_entries;
4420 	map->def.map_flags = info.map_flags;
4421 	map->btf_key_type_id = info.btf_key_type_id;
4422 	map->btf_value_type_id = info.btf_value_type_id;
4423 	map->reused = true;
4424 	map->map_extra = info.map_extra;
4425 
4426 	return 0;
4427 
4428 err_close_new_fd:
4429 	close(new_fd);
4430 err_free_new_name:
4431 	free(new_name);
4432 	return libbpf_err(err);
4433 }
4434 
4435 __u32 bpf_map__max_entries(const struct bpf_map *map)
4436 {
4437 	return map->def.max_entries;
4438 }
4439 
4440 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4441 {
4442 	if (!bpf_map_type__is_map_in_map(map->def.type))
4443 		return errno = EINVAL, NULL;
4444 
4445 	return map->inner_map;
4446 }
4447 
4448 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4449 {
4450 	if (map->obj->loaded)
4451 		return libbpf_err(-EBUSY);
4452 
4453 	map->def.max_entries = max_entries;
4454 
4455 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4456 	if (map_is_ringbuf(map))
4457 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4458 
4459 	return 0;
4460 }
4461 
4462 static int
4463 bpf_object__probe_loading(struct bpf_object *obj)
4464 {
4465 	char *cp, errmsg[STRERR_BUFSIZE];
4466 	struct bpf_insn insns[] = {
4467 		BPF_MOV64_IMM(BPF_REG_0, 0),
4468 		BPF_EXIT_INSN(),
4469 	};
4470 	int ret, insn_cnt = ARRAY_SIZE(insns);
4471 
4472 	if (obj->gen_loader)
4473 		return 0;
4474 
4475 	ret = bump_rlimit_memlock();
4476 	if (ret)
4477 		pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4478 
4479 	/* make sure basic loading works */
4480 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4481 	if (ret < 0)
4482 		ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4483 	if (ret < 0) {
4484 		ret = errno;
4485 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4486 		pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4487 			"program. Make sure your kernel supports BPF "
4488 			"(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4489 			"set to big enough value.\n", __func__, cp, ret);
4490 		return -ret;
4491 	}
4492 	close(ret);
4493 
4494 	return 0;
4495 }
4496 
4497 static int probe_fd(int fd)
4498 {
4499 	if (fd >= 0)
4500 		close(fd);
4501 	return fd >= 0;
4502 }
4503 
4504 static int probe_kern_prog_name(void)
4505 {
4506 	const size_t attr_sz = offsetofend(union bpf_attr, prog_name);
4507 	struct bpf_insn insns[] = {
4508 		BPF_MOV64_IMM(BPF_REG_0, 0),
4509 		BPF_EXIT_INSN(),
4510 	};
4511 	union bpf_attr attr;
4512 	int ret;
4513 
4514 	memset(&attr, 0, attr_sz);
4515 	attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4516 	attr.license = ptr_to_u64("GPL");
4517 	attr.insns = ptr_to_u64(insns);
4518 	attr.insn_cnt = (__u32)ARRAY_SIZE(insns);
4519 	libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name));
4520 
4521 	/* make sure loading with name works */
4522 	ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS);
4523 	return probe_fd(ret);
4524 }
4525 
4526 static int probe_kern_global_data(void)
4527 {
4528 	char *cp, errmsg[STRERR_BUFSIZE];
4529 	struct bpf_insn insns[] = {
4530 		BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
4531 		BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
4532 		BPF_MOV64_IMM(BPF_REG_0, 0),
4533 		BPF_EXIT_INSN(),
4534 	};
4535 	int ret, map, insn_cnt = ARRAY_SIZE(insns);
4536 
4537 	map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL);
4538 	if (map < 0) {
4539 		ret = -errno;
4540 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4541 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4542 			__func__, cp, -ret);
4543 		return ret;
4544 	}
4545 
4546 	insns[0].imm = map;
4547 
4548 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4549 	close(map);
4550 	return probe_fd(ret);
4551 }
4552 
4553 static int probe_kern_btf(void)
4554 {
4555 	static const char strs[] = "\0int";
4556 	__u32 types[] = {
4557 		/* int */
4558 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4559 	};
4560 
4561 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4562 					     strs, sizeof(strs)));
4563 }
4564 
4565 static int probe_kern_btf_func(void)
4566 {
4567 	static const char strs[] = "\0int\0x\0a";
4568 	/* void x(int a) {} */
4569 	__u32 types[] = {
4570 		/* int */
4571 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4572 		/* FUNC_PROTO */                                /* [2] */
4573 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4574 		BTF_PARAM_ENC(7, 1),
4575 		/* FUNC x */                                    /* [3] */
4576 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
4577 	};
4578 
4579 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4580 					     strs, sizeof(strs)));
4581 }
4582 
4583 static int probe_kern_btf_func_global(void)
4584 {
4585 	static const char strs[] = "\0int\0x\0a";
4586 	/* static void x(int a) {} */
4587 	__u32 types[] = {
4588 		/* int */
4589 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4590 		/* FUNC_PROTO */                                /* [2] */
4591 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4592 		BTF_PARAM_ENC(7, 1),
4593 		/* FUNC x BTF_FUNC_GLOBAL */                    /* [3] */
4594 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
4595 	};
4596 
4597 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4598 					     strs, sizeof(strs)));
4599 }
4600 
4601 static int probe_kern_btf_datasec(void)
4602 {
4603 	static const char strs[] = "\0x\0.data";
4604 	/* static int a; */
4605 	__u32 types[] = {
4606 		/* int */
4607 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4608 		/* VAR x */                                     /* [2] */
4609 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4610 		BTF_VAR_STATIC,
4611 		/* DATASEC val */                               /* [3] */
4612 		BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
4613 		BTF_VAR_SECINFO_ENC(2, 0, 4),
4614 	};
4615 
4616 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4617 					     strs, sizeof(strs)));
4618 }
4619 
4620 static int probe_kern_btf_float(void)
4621 {
4622 	static const char strs[] = "\0float";
4623 	__u32 types[] = {
4624 		/* float */
4625 		BTF_TYPE_FLOAT_ENC(1, 4),
4626 	};
4627 
4628 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4629 					     strs, sizeof(strs)));
4630 }
4631 
4632 static int probe_kern_btf_decl_tag(void)
4633 {
4634 	static const char strs[] = "\0tag";
4635 	__u32 types[] = {
4636 		/* int */
4637 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4638 		/* VAR x */                                     /* [2] */
4639 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4640 		BTF_VAR_STATIC,
4641 		/* attr */
4642 		BTF_TYPE_DECL_TAG_ENC(1, 2, -1),
4643 	};
4644 
4645 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4646 					     strs, sizeof(strs)));
4647 }
4648 
4649 static int probe_kern_btf_type_tag(void)
4650 {
4651 	static const char strs[] = "\0tag";
4652 	__u32 types[] = {
4653 		/* int */
4654 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),		/* [1] */
4655 		/* attr */
4656 		BTF_TYPE_TYPE_TAG_ENC(1, 1),				/* [2] */
4657 		/* ptr */
4658 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2),	/* [3] */
4659 	};
4660 
4661 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4662 					     strs, sizeof(strs)));
4663 }
4664 
4665 static int probe_kern_array_mmap(void)
4666 {
4667 	LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE);
4668 	int fd;
4669 
4670 	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts);
4671 	return probe_fd(fd);
4672 }
4673 
4674 static int probe_kern_exp_attach_type(void)
4675 {
4676 	LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE);
4677 	struct bpf_insn insns[] = {
4678 		BPF_MOV64_IMM(BPF_REG_0, 0),
4679 		BPF_EXIT_INSN(),
4680 	};
4681 	int fd, insn_cnt = ARRAY_SIZE(insns);
4682 
4683 	/* use any valid combination of program type and (optional)
4684 	 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
4685 	 * to see if kernel supports expected_attach_type field for
4686 	 * BPF_PROG_LOAD command
4687 	 */
4688 	fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts);
4689 	return probe_fd(fd);
4690 }
4691 
4692 static int probe_kern_probe_read_kernel(void)
4693 {
4694 	struct bpf_insn insns[] = {
4695 		BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),	/* r1 = r10 (fp) */
4696 		BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),	/* r1 += -8 */
4697 		BPF_MOV64_IMM(BPF_REG_2, 8),		/* r2 = 8 */
4698 		BPF_MOV64_IMM(BPF_REG_3, 0),		/* r3 = 0 */
4699 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
4700 		BPF_EXIT_INSN(),
4701 	};
4702 	int fd, insn_cnt = ARRAY_SIZE(insns);
4703 
4704 	fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4705 	return probe_fd(fd);
4706 }
4707 
4708 static int probe_prog_bind_map(void)
4709 {
4710 	char *cp, errmsg[STRERR_BUFSIZE];
4711 	struct bpf_insn insns[] = {
4712 		BPF_MOV64_IMM(BPF_REG_0, 0),
4713 		BPF_EXIT_INSN(),
4714 	};
4715 	int ret, map, prog, insn_cnt = ARRAY_SIZE(insns);
4716 
4717 	map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL);
4718 	if (map < 0) {
4719 		ret = -errno;
4720 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4721 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4722 			__func__, cp, -ret);
4723 		return ret;
4724 	}
4725 
4726 	prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4727 	if (prog < 0) {
4728 		close(map);
4729 		return 0;
4730 	}
4731 
4732 	ret = bpf_prog_bind_map(prog, map, NULL);
4733 
4734 	close(map);
4735 	close(prog);
4736 
4737 	return ret >= 0;
4738 }
4739 
4740 static int probe_module_btf(void)
4741 {
4742 	static const char strs[] = "\0int";
4743 	__u32 types[] = {
4744 		/* int */
4745 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4746 	};
4747 	struct bpf_btf_info info;
4748 	__u32 len = sizeof(info);
4749 	char name[16];
4750 	int fd, err;
4751 
4752 	fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4753 	if (fd < 0)
4754 		return 0; /* BTF not supported at all */
4755 
4756 	memset(&info, 0, sizeof(info));
4757 	info.name = ptr_to_u64(name);
4758 	info.name_len = sizeof(name);
4759 
4760 	/* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4761 	 * kernel's module BTF support coincides with support for
4762 	 * name/name_len fields in struct bpf_btf_info.
4763 	 */
4764 	err = bpf_btf_get_info_by_fd(fd, &info, &len);
4765 	close(fd);
4766 	return !err;
4767 }
4768 
4769 static int probe_perf_link(void)
4770 {
4771 	struct bpf_insn insns[] = {
4772 		BPF_MOV64_IMM(BPF_REG_0, 0),
4773 		BPF_EXIT_INSN(),
4774 	};
4775 	int prog_fd, link_fd, err;
4776 
4777 	prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL",
4778 				insns, ARRAY_SIZE(insns), NULL);
4779 	if (prog_fd < 0)
4780 		return -errno;
4781 
4782 	/* use invalid perf_event FD to get EBADF, if link is supported;
4783 	 * otherwise EINVAL should be returned
4784 	 */
4785 	link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL);
4786 	err = -errno; /* close() can clobber errno */
4787 
4788 	if (link_fd >= 0)
4789 		close(link_fd);
4790 	close(prog_fd);
4791 
4792 	return link_fd < 0 && err == -EBADF;
4793 }
4794 
4795 static int probe_kern_bpf_cookie(void)
4796 {
4797 	struct bpf_insn insns[] = {
4798 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie),
4799 		BPF_EXIT_INSN(),
4800 	};
4801 	int ret, insn_cnt = ARRAY_SIZE(insns);
4802 
4803 	ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL);
4804 	return probe_fd(ret);
4805 }
4806 
4807 static int probe_kern_btf_enum64(void)
4808 {
4809 	static const char strs[] = "\0enum64";
4810 	__u32 types[] = {
4811 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8),
4812 	};
4813 
4814 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4815 					     strs, sizeof(strs)));
4816 }
4817 
4818 static int probe_kern_syscall_wrapper(void);
4819 
4820 enum kern_feature_result {
4821 	FEAT_UNKNOWN = 0,
4822 	FEAT_SUPPORTED = 1,
4823 	FEAT_MISSING = 2,
4824 };
4825 
4826 typedef int (*feature_probe_fn)(void);
4827 
4828 static struct kern_feature_desc {
4829 	const char *desc;
4830 	feature_probe_fn probe;
4831 	enum kern_feature_result res;
4832 } feature_probes[__FEAT_CNT] = {
4833 	[FEAT_PROG_NAME] = {
4834 		"BPF program name", probe_kern_prog_name,
4835 	},
4836 	[FEAT_GLOBAL_DATA] = {
4837 		"global variables", probe_kern_global_data,
4838 	},
4839 	[FEAT_BTF] = {
4840 		"minimal BTF", probe_kern_btf,
4841 	},
4842 	[FEAT_BTF_FUNC] = {
4843 		"BTF functions", probe_kern_btf_func,
4844 	},
4845 	[FEAT_BTF_GLOBAL_FUNC] = {
4846 		"BTF global function", probe_kern_btf_func_global,
4847 	},
4848 	[FEAT_BTF_DATASEC] = {
4849 		"BTF data section and variable", probe_kern_btf_datasec,
4850 	},
4851 	[FEAT_ARRAY_MMAP] = {
4852 		"ARRAY map mmap()", probe_kern_array_mmap,
4853 	},
4854 	[FEAT_EXP_ATTACH_TYPE] = {
4855 		"BPF_PROG_LOAD expected_attach_type attribute",
4856 		probe_kern_exp_attach_type,
4857 	},
4858 	[FEAT_PROBE_READ_KERN] = {
4859 		"bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4860 	},
4861 	[FEAT_PROG_BIND_MAP] = {
4862 		"BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4863 	},
4864 	[FEAT_MODULE_BTF] = {
4865 		"module BTF support", probe_module_btf,
4866 	},
4867 	[FEAT_BTF_FLOAT] = {
4868 		"BTF_KIND_FLOAT support", probe_kern_btf_float,
4869 	},
4870 	[FEAT_PERF_LINK] = {
4871 		"BPF perf link support", probe_perf_link,
4872 	},
4873 	[FEAT_BTF_DECL_TAG] = {
4874 		"BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag,
4875 	},
4876 	[FEAT_BTF_TYPE_TAG] = {
4877 		"BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag,
4878 	},
4879 	[FEAT_MEMCG_ACCOUNT] = {
4880 		"memcg-based memory accounting", probe_memcg_account,
4881 	},
4882 	[FEAT_BPF_COOKIE] = {
4883 		"BPF cookie support", probe_kern_bpf_cookie,
4884 	},
4885 	[FEAT_BTF_ENUM64] = {
4886 		"BTF_KIND_ENUM64 support", probe_kern_btf_enum64,
4887 	},
4888 	[FEAT_SYSCALL_WRAPPER] = {
4889 		"Kernel using syscall wrapper", probe_kern_syscall_wrapper,
4890 	},
4891 };
4892 
4893 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
4894 {
4895 	struct kern_feature_desc *feat = &feature_probes[feat_id];
4896 	int ret;
4897 
4898 	if (obj && obj->gen_loader)
4899 		/* To generate loader program assume the latest kernel
4900 		 * to avoid doing extra prog_load, map_create syscalls.
4901 		 */
4902 		return true;
4903 
4904 	if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4905 		ret = feat->probe();
4906 		if (ret > 0) {
4907 			WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4908 		} else if (ret == 0) {
4909 			WRITE_ONCE(feat->res, FEAT_MISSING);
4910 		} else {
4911 			pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4912 			WRITE_ONCE(feat->res, FEAT_MISSING);
4913 		}
4914 	}
4915 
4916 	return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4917 }
4918 
4919 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4920 {
4921 	struct bpf_map_info map_info;
4922 	char msg[STRERR_BUFSIZE];
4923 	__u32 map_info_len = sizeof(map_info);
4924 	int err;
4925 
4926 	memset(&map_info, 0, map_info_len);
4927 	err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len);
4928 	if (err && errno == EINVAL)
4929 		err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
4930 	if (err) {
4931 		pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
4932 			libbpf_strerror_r(errno, msg, sizeof(msg)));
4933 		return false;
4934 	}
4935 
4936 	return (map_info.type == map->def.type &&
4937 		map_info.key_size == map->def.key_size &&
4938 		map_info.value_size == map->def.value_size &&
4939 		map_info.max_entries == map->def.max_entries &&
4940 		map_info.map_flags == map->def.map_flags &&
4941 		map_info.map_extra == map->map_extra);
4942 }
4943 
4944 static int
4945 bpf_object__reuse_map(struct bpf_map *map)
4946 {
4947 	char *cp, errmsg[STRERR_BUFSIZE];
4948 	int err, pin_fd;
4949 
4950 	pin_fd = bpf_obj_get(map->pin_path);
4951 	if (pin_fd < 0) {
4952 		err = -errno;
4953 		if (err == -ENOENT) {
4954 			pr_debug("found no pinned map to reuse at '%s'\n",
4955 				 map->pin_path);
4956 			return 0;
4957 		}
4958 
4959 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
4960 		pr_warn("couldn't retrieve pinned map '%s': %s\n",
4961 			map->pin_path, cp);
4962 		return err;
4963 	}
4964 
4965 	if (!map_is_reuse_compat(map, pin_fd)) {
4966 		pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
4967 			map->pin_path);
4968 		close(pin_fd);
4969 		return -EINVAL;
4970 	}
4971 
4972 	err = bpf_map__reuse_fd(map, pin_fd);
4973 	close(pin_fd);
4974 	if (err)
4975 		return err;
4976 
4977 	map->pinned = true;
4978 	pr_debug("reused pinned map at '%s'\n", map->pin_path);
4979 
4980 	return 0;
4981 }
4982 
4983 static int
4984 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
4985 {
4986 	enum libbpf_map_type map_type = map->libbpf_type;
4987 	char *cp, errmsg[STRERR_BUFSIZE];
4988 	int err, zero = 0;
4989 
4990 	if (obj->gen_loader) {
4991 		bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
4992 					 map->mmaped, map->def.value_size);
4993 		if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
4994 			bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
4995 		return 0;
4996 	}
4997 	err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
4998 	if (err) {
4999 		err = -errno;
5000 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5001 		pr_warn("Error setting initial map(%s) contents: %s\n",
5002 			map->name, cp);
5003 		return err;
5004 	}
5005 
5006 	/* Freeze .rodata and .kconfig map as read-only from syscall side. */
5007 	if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
5008 		err = bpf_map_freeze(map->fd);
5009 		if (err) {
5010 			err = -errno;
5011 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5012 			pr_warn("Error freezing map(%s) as read-only: %s\n",
5013 				map->name, cp);
5014 			return err;
5015 		}
5016 	}
5017 	return 0;
5018 }
5019 
5020 static void bpf_map__destroy(struct bpf_map *map);
5021 
5022 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
5023 {
5024 	LIBBPF_OPTS(bpf_map_create_opts, create_attr);
5025 	struct bpf_map_def *def = &map->def;
5026 	const char *map_name = NULL;
5027 	int err = 0;
5028 
5029 	if (kernel_supports(obj, FEAT_PROG_NAME))
5030 		map_name = map->name;
5031 	create_attr.map_ifindex = map->map_ifindex;
5032 	create_attr.map_flags = def->map_flags;
5033 	create_attr.numa_node = map->numa_node;
5034 	create_attr.map_extra = map->map_extra;
5035 
5036 	if (bpf_map__is_struct_ops(map))
5037 		create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5038 
5039 	if (obj->btf && btf__fd(obj->btf) >= 0) {
5040 		create_attr.btf_fd = btf__fd(obj->btf);
5041 		create_attr.btf_key_type_id = map->btf_key_type_id;
5042 		create_attr.btf_value_type_id = map->btf_value_type_id;
5043 	}
5044 
5045 	if (bpf_map_type__is_map_in_map(def->type)) {
5046 		if (map->inner_map) {
5047 			err = bpf_object__create_map(obj, map->inner_map, true);
5048 			if (err) {
5049 				pr_warn("map '%s': failed to create inner map: %d\n",
5050 					map->name, err);
5051 				return err;
5052 			}
5053 			map->inner_map_fd = bpf_map__fd(map->inner_map);
5054 		}
5055 		if (map->inner_map_fd >= 0)
5056 			create_attr.inner_map_fd = map->inner_map_fd;
5057 	}
5058 
5059 	switch (def->type) {
5060 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5061 	case BPF_MAP_TYPE_CGROUP_ARRAY:
5062 	case BPF_MAP_TYPE_STACK_TRACE:
5063 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5064 	case BPF_MAP_TYPE_HASH_OF_MAPS:
5065 	case BPF_MAP_TYPE_DEVMAP:
5066 	case BPF_MAP_TYPE_DEVMAP_HASH:
5067 	case BPF_MAP_TYPE_CPUMAP:
5068 	case BPF_MAP_TYPE_XSKMAP:
5069 	case BPF_MAP_TYPE_SOCKMAP:
5070 	case BPF_MAP_TYPE_SOCKHASH:
5071 	case BPF_MAP_TYPE_QUEUE:
5072 	case BPF_MAP_TYPE_STACK:
5073 		create_attr.btf_fd = 0;
5074 		create_attr.btf_key_type_id = 0;
5075 		create_attr.btf_value_type_id = 0;
5076 		map->btf_key_type_id = 0;
5077 		map->btf_value_type_id = 0;
5078 	default:
5079 		break;
5080 	}
5081 
5082 	if (obj->gen_loader) {
5083 		bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5084 				    def->key_size, def->value_size, def->max_entries,
5085 				    &create_attr, is_inner ? -1 : map - obj->maps);
5086 		/* Pretend to have valid FD to pass various fd >= 0 checks.
5087 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
5088 		 */
5089 		map->fd = 0;
5090 	} else {
5091 		map->fd = bpf_map_create(def->type, map_name,
5092 					 def->key_size, def->value_size,
5093 					 def->max_entries, &create_attr);
5094 	}
5095 	if (map->fd < 0 && (create_attr.btf_key_type_id ||
5096 			    create_attr.btf_value_type_id)) {
5097 		char *cp, errmsg[STRERR_BUFSIZE];
5098 
5099 		err = -errno;
5100 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5101 		pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
5102 			map->name, cp, err);
5103 		create_attr.btf_fd = 0;
5104 		create_attr.btf_key_type_id = 0;
5105 		create_attr.btf_value_type_id = 0;
5106 		map->btf_key_type_id = 0;
5107 		map->btf_value_type_id = 0;
5108 		map->fd = bpf_map_create(def->type, map_name,
5109 					 def->key_size, def->value_size,
5110 					 def->max_entries, &create_attr);
5111 	}
5112 
5113 	err = map->fd < 0 ? -errno : 0;
5114 
5115 	if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5116 		if (obj->gen_loader)
5117 			map->inner_map->fd = -1;
5118 		bpf_map__destroy(map->inner_map);
5119 		zfree(&map->inner_map);
5120 	}
5121 
5122 	return err;
5123 }
5124 
5125 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5126 {
5127 	const struct bpf_map *targ_map;
5128 	unsigned int i;
5129 	int fd, err = 0;
5130 
5131 	for (i = 0; i < map->init_slots_sz; i++) {
5132 		if (!map->init_slots[i])
5133 			continue;
5134 
5135 		targ_map = map->init_slots[i];
5136 		fd = bpf_map__fd(targ_map);
5137 
5138 		if (obj->gen_loader) {
5139 			bpf_gen__populate_outer_map(obj->gen_loader,
5140 						    map - obj->maps, i,
5141 						    targ_map - obj->maps);
5142 		} else {
5143 			err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5144 		}
5145 		if (err) {
5146 			err = -errno;
5147 			pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5148 				map->name, i, targ_map->name, fd, err);
5149 			return err;
5150 		}
5151 		pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5152 			 map->name, i, targ_map->name, fd);
5153 	}
5154 
5155 	zfree(&map->init_slots);
5156 	map->init_slots_sz = 0;
5157 
5158 	return 0;
5159 }
5160 
5161 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5162 {
5163 	const struct bpf_program *targ_prog;
5164 	unsigned int i;
5165 	int fd, err;
5166 
5167 	if (obj->gen_loader)
5168 		return -ENOTSUP;
5169 
5170 	for (i = 0; i < map->init_slots_sz; i++) {
5171 		if (!map->init_slots[i])
5172 			continue;
5173 
5174 		targ_prog = map->init_slots[i];
5175 		fd = bpf_program__fd(targ_prog);
5176 
5177 		err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5178 		if (err) {
5179 			err = -errno;
5180 			pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5181 				map->name, i, targ_prog->name, fd, err);
5182 			return err;
5183 		}
5184 		pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5185 			 map->name, i, targ_prog->name, fd);
5186 	}
5187 
5188 	zfree(&map->init_slots);
5189 	map->init_slots_sz = 0;
5190 
5191 	return 0;
5192 }
5193 
5194 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5195 {
5196 	struct bpf_map *map;
5197 	int i, err;
5198 
5199 	for (i = 0; i < obj->nr_maps; i++) {
5200 		map = &obj->maps[i];
5201 
5202 		if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5203 			continue;
5204 
5205 		err = init_prog_array_slots(obj, map);
5206 		if (err < 0) {
5207 			zclose(map->fd);
5208 			return err;
5209 		}
5210 	}
5211 	return 0;
5212 }
5213 
5214 static int map_set_def_max_entries(struct bpf_map *map)
5215 {
5216 	if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5217 		int nr_cpus;
5218 
5219 		nr_cpus = libbpf_num_possible_cpus();
5220 		if (nr_cpus < 0) {
5221 			pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5222 				map->name, nr_cpus);
5223 			return nr_cpus;
5224 		}
5225 		pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5226 		map->def.max_entries = nr_cpus;
5227 	}
5228 
5229 	return 0;
5230 }
5231 
5232 static int
5233 bpf_object__create_maps(struct bpf_object *obj)
5234 {
5235 	struct bpf_map *map;
5236 	char *cp, errmsg[STRERR_BUFSIZE];
5237 	unsigned int i, j;
5238 	int err;
5239 	bool retried;
5240 
5241 	for (i = 0; i < obj->nr_maps; i++) {
5242 		map = &obj->maps[i];
5243 
5244 		/* To support old kernels, we skip creating global data maps
5245 		 * (.rodata, .data, .kconfig, etc); later on, during program
5246 		 * loading, if we detect that at least one of the to-be-loaded
5247 		 * programs is referencing any global data map, we'll error
5248 		 * out with program name and relocation index logged.
5249 		 * This approach allows to accommodate Clang emitting
5250 		 * unnecessary .rodata.str1.1 sections for string literals,
5251 		 * but also it allows to have CO-RE applications that use
5252 		 * global variables in some of BPF programs, but not others.
5253 		 * If those global variable-using programs are not loaded at
5254 		 * runtime due to bpf_program__set_autoload(prog, false),
5255 		 * bpf_object loading will succeed just fine even on old
5256 		 * kernels.
5257 		 */
5258 		if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5259 			map->autocreate = false;
5260 
5261 		if (!map->autocreate) {
5262 			pr_debug("map '%s': skipped auto-creating...\n", map->name);
5263 			continue;
5264 		}
5265 
5266 		err = map_set_def_max_entries(map);
5267 		if (err)
5268 			goto err_out;
5269 
5270 		retried = false;
5271 retry:
5272 		if (map->pin_path) {
5273 			err = bpf_object__reuse_map(map);
5274 			if (err) {
5275 				pr_warn("map '%s': error reusing pinned map\n",
5276 					map->name);
5277 				goto err_out;
5278 			}
5279 			if (retried && map->fd < 0) {
5280 				pr_warn("map '%s': cannot find pinned map\n",
5281 					map->name);
5282 				err = -ENOENT;
5283 				goto err_out;
5284 			}
5285 		}
5286 
5287 		if (map->fd >= 0) {
5288 			pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5289 				 map->name, map->fd);
5290 		} else {
5291 			err = bpf_object__create_map(obj, map, false);
5292 			if (err)
5293 				goto err_out;
5294 
5295 			pr_debug("map '%s': created successfully, fd=%d\n",
5296 				 map->name, map->fd);
5297 
5298 			if (bpf_map__is_internal(map)) {
5299 				err = bpf_object__populate_internal_map(obj, map);
5300 				if (err < 0) {
5301 					zclose(map->fd);
5302 					goto err_out;
5303 				}
5304 			}
5305 
5306 			if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5307 				err = init_map_in_map_slots(obj, map);
5308 				if (err < 0) {
5309 					zclose(map->fd);
5310 					goto err_out;
5311 				}
5312 			}
5313 		}
5314 
5315 		if (map->pin_path && !map->pinned) {
5316 			err = bpf_map__pin(map, NULL);
5317 			if (err) {
5318 				zclose(map->fd);
5319 				if (!retried && err == -EEXIST) {
5320 					retried = true;
5321 					goto retry;
5322 				}
5323 				pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5324 					map->name, map->pin_path, err);
5325 				goto err_out;
5326 			}
5327 		}
5328 	}
5329 
5330 	return 0;
5331 
5332 err_out:
5333 	cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5334 	pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5335 	pr_perm_msg(err);
5336 	for (j = 0; j < i; j++)
5337 		zclose(obj->maps[j].fd);
5338 	return err;
5339 }
5340 
5341 static bool bpf_core_is_flavor_sep(const char *s)
5342 {
5343 	/* check X___Y name pattern, where X and Y are not underscores */
5344 	return s[0] != '_' &&				      /* X */
5345 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
5346 	       s[4] != '_';				      /* Y */
5347 }
5348 
5349 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5350  * before last triple underscore. Struct name part after last triple
5351  * underscore is ignored by BPF CO-RE relocation during relocation matching.
5352  */
5353 size_t bpf_core_essential_name_len(const char *name)
5354 {
5355 	size_t n = strlen(name);
5356 	int i;
5357 
5358 	for (i = n - 5; i >= 0; i--) {
5359 		if (bpf_core_is_flavor_sep(name + i))
5360 			return i + 1;
5361 	}
5362 	return n;
5363 }
5364 
5365 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5366 {
5367 	if (!cands)
5368 		return;
5369 
5370 	free(cands->cands);
5371 	free(cands);
5372 }
5373 
5374 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5375 		       size_t local_essent_len,
5376 		       const struct btf *targ_btf,
5377 		       const char *targ_btf_name,
5378 		       int targ_start_id,
5379 		       struct bpf_core_cand_list *cands)
5380 {
5381 	struct bpf_core_cand *new_cands, *cand;
5382 	const struct btf_type *t, *local_t;
5383 	const char *targ_name, *local_name;
5384 	size_t targ_essent_len;
5385 	int n, i;
5386 
5387 	local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5388 	local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5389 
5390 	n = btf__type_cnt(targ_btf);
5391 	for (i = targ_start_id; i < n; i++) {
5392 		t = btf__type_by_id(targ_btf, i);
5393 		if (!btf_kind_core_compat(t, local_t))
5394 			continue;
5395 
5396 		targ_name = btf__name_by_offset(targ_btf, t->name_off);
5397 		if (str_is_empty(targ_name))
5398 			continue;
5399 
5400 		targ_essent_len = bpf_core_essential_name_len(targ_name);
5401 		if (targ_essent_len != local_essent_len)
5402 			continue;
5403 
5404 		if (strncmp(local_name, targ_name, local_essent_len) != 0)
5405 			continue;
5406 
5407 		pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5408 			 local_cand->id, btf_kind_str(local_t),
5409 			 local_name, i, btf_kind_str(t), targ_name,
5410 			 targ_btf_name);
5411 		new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5412 					      sizeof(*cands->cands));
5413 		if (!new_cands)
5414 			return -ENOMEM;
5415 
5416 		cand = &new_cands[cands->len];
5417 		cand->btf = targ_btf;
5418 		cand->id = i;
5419 
5420 		cands->cands = new_cands;
5421 		cands->len++;
5422 	}
5423 	return 0;
5424 }
5425 
5426 static int load_module_btfs(struct bpf_object *obj)
5427 {
5428 	struct bpf_btf_info info;
5429 	struct module_btf *mod_btf;
5430 	struct btf *btf;
5431 	char name[64];
5432 	__u32 id = 0, len;
5433 	int err, fd;
5434 
5435 	if (obj->btf_modules_loaded)
5436 		return 0;
5437 
5438 	if (obj->gen_loader)
5439 		return 0;
5440 
5441 	/* don't do this again, even if we find no module BTFs */
5442 	obj->btf_modules_loaded = true;
5443 
5444 	/* kernel too old to support module BTFs */
5445 	if (!kernel_supports(obj, FEAT_MODULE_BTF))
5446 		return 0;
5447 
5448 	while (true) {
5449 		err = bpf_btf_get_next_id(id, &id);
5450 		if (err && errno == ENOENT)
5451 			return 0;
5452 		if (err) {
5453 			err = -errno;
5454 			pr_warn("failed to iterate BTF objects: %d\n", err);
5455 			return err;
5456 		}
5457 
5458 		fd = bpf_btf_get_fd_by_id(id);
5459 		if (fd < 0) {
5460 			if (errno == ENOENT)
5461 				continue; /* expected race: BTF was unloaded */
5462 			err = -errno;
5463 			pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5464 			return err;
5465 		}
5466 
5467 		len = sizeof(info);
5468 		memset(&info, 0, sizeof(info));
5469 		info.name = ptr_to_u64(name);
5470 		info.name_len = sizeof(name);
5471 
5472 		err = bpf_btf_get_info_by_fd(fd, &info, &len);
5473 		if (err) {
5474 			err = -errno;
5475 			pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5476 			goto err_out;
5477 		}
5478 
5479 		/* ignore non-module BTFs */
5480 		if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5481 			close(fd);
5482 			continue;
5483 		}
5484 
5485 		btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5486 		err = libbpf_get_error(btf);
5487 		if (err) {
5488 			pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5489 				name, id, err);
5490 			goto err_out;
5491 		}
5492 
5493 		err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5494 					sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5495 		if (err)
5496 			goto err_out;
5497 
5498 		mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5499 
5500 		mod_btf->btf = btf;
5501 		mod_btf->id = id;
5502 		mod_btf->fd = fd;
5503 		mod_btf->name = strdup(name);
5504 		if (!mod_btf->name) {
5505 			err = -ENOMEM;
5506 			goto err_out;
5507 		}
5508 		continue;
5509 
5510 err_out:
5511 		close(fd);
5512 		return err;
5513 	}
5514 
5515 	return 0;
5516 }
5517 
5518 static struct bpf_core_cand_list *
5519 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5520 {
5521 	struct bpf_core_cand local_cand = {};
5522 	struct bpf_core_cand_list *cands;
5523 	const struct btf *main_btf;
5524 	const struct btf_type *local_t;
5525 	const char *local_name;
5526 	size_t local_essent_len;
5527 	int err, i;
5528 
5529 	local_cand.btf = local_btf;
5530 	local_cand.id = local_type_id;
5531 	local_t = btf__type_by_id(local_btf, local_type_id);
5532 	if (!local_t)
5533 		return ERR_PTR(-EINVAL);
5534 
5535 	local_name = btf__name_by_offset(local_btf, local_t->name_off);
5536 	if (str_is_empty(local_name))
5537 		return ERR_PTR(-EINVAL);
5538 	local_essent_len = bpf_core_essential_name_len(local_name);
5539 
5540 	cands = calloc(1, sizeof(*cands));
5541 	if (!cands)
5542 		return ERR_PTR(-ENOMEM);
5543 
5544 	/* Attempt to find target candidates in vmlinux BTF first */
5545 	main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5546 	err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5547 	if (err)
5548 		goto err_out;
5549 
5550 	/* if vmlinux BTF has any candidate, don't got for module BTFs */
5551 	if (cands->len)
5552 		return cands;
5553 
5554 	/* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5555 	if (obj->btf_vmlinux_override)
5556 		return cands;
5557 
5558 	/* now look through module BTFs, trying to still find candidates */
5559 	err = load_module_btfs(obj);
5560 	if (err)
5561 		goto err_out;
5562 
5563 	for (i = 0; i < obj->btf_module_cnt; i++) {
5564 		err = bpf_core_add_cands(&local_cand, local_essent_len,
5565 					 obj->btf_modules[i].btf,
5566 					 obj->btf_modules[i].name,
5567 					 btf__type_cnt(obj->btf_vmlinux),
5568 					 cands);
5569 		if (err)
5570 			goto err_out;
5571 	}
5572 
5573 	return cands;
5574 err_out:
5575 	bpf_core_free_cands(cands);
5576 	return ERR_PTR(err);
5577 }
5578 
5579 /* Check local and target types for compatibility. This check is used for
5580  * type-based CO-RE relocations and follow slightly different rules than
5581  * field-based relocations. This function assumes that root types were already
5582  * checked for name match. Beyond that initial root-level name check, names
5583  * are completely ignored. Compatibility rules are as follows:
5584  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5585  *     kind should match for local and target types (i.e., STRUCT is not
5586  *     compatible with UNION);
5587  *   - for ENUMs, the size is ignored;
5588  *   - for INT, size and signedness are ignored;
5589  *   - for ARRAY, dimensionality is ignored, element types are checked for
5590  *     compatibility recursively;
5591  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
5592  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5593  *   - FUNC_PROTOs are compatible if they have compatible signature: same
5594  *     number of input args and compatible return and argument types.
5595  * These rules are not set in stone and probably will be adjusted as we get
5596  * more experience with using BPF CO-RE relocations.
5597  */
5598 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5599 			      const struct btf *targ_btf, __u32 targ_id)
5600 {
5601 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5602 }
5603 
5604 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5605 			 const struct btf *targ_btf, __u32 targ_id)
5606 {
5607 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5608 }
5609 
5610 static size_t bpf_core_hash_fn(const long key, void *ctx)
5611 {
5612 	return key;
5613 }
5614 
5615 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx)
5616 {
5617 	return k1 == k2;
5618 }
5619 
5620 static int record_relo_core(struct bpf_program *prog,
5621 			    const struct bpf_core_relo *core_relo, int insn_idx)
5622 {
5623 	struct reloc_desc *relos, *relo;
5624 
5625 	relos = libbpf_reallocarray(prog->reloc_desc,
5626 				    prog->nr_reloc + 1, sizeof(*relos));
5627 	if (!relos)
5628 		return -ENOMEM;
5629 	relo = &relos[prog->nr_reloc];
5630 	relo->type = RELO_CORE;
5631 	relo->insn_idx = insn_idx;
5632 	relo->core_relo = core_relo;
5633 	prog->reloc_desc = relos;
5634 	prog->nr_reloc++;
5635 	return 0;
5636 }
5637 
5638 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5639 {
5640 	struct reloc_desc *relo;
5641 	int i;
5642 
5643 	for (i = 0; i < prog->nr_reloc; i++) {
5644 		relo = &prog->reloc_desc[i];
5645 		if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5646 			continue;
5647 
5648 		return relo->core_relo;
5649 	}
5650 
5651 	return NULL;
5652 }
5653 
5654 static int bpf_core_resolve_relo(struct bpf_program *prog,
5655 				 const struct bpf_core_relo *relo,
5656 				 int relo_idx,
5657 				 const struct btf *local_btf,
5658 				 struct hashmap *cand_cache,
5659 				 struct bpf_core_relo_res *targ_res)
5660 {
5661 	struct bpf_core_spec specs_scratch[3] = {};
5662 	struct bpf_core_cand_list *cands = NULL;
5663 	const char *prog_name = prog->name;
5664 	const struct btf_type *local_type;
5665 	const char *local_name;
5666 	__u32 local_id = relo->type_id;
5667 	int err;
5668 
5669 	local_type = btf__type_by_id(local_btf, local_id);
5670 	if (!local_type)
5671 		return -EINVAL;
5672 
5673 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
5674 	if (!local_name)
5675 		return -EINVAL;
5676 
5677 	if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5678 	    !hashmap__find(cand_cache, local_id, &cands)) {
5679 		cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5680 		if (IS_ERR(cands)) {
5681 			pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5682 				prog_name, relo_idx, local_id, btf_kind_str(local_type),
5683 				local_name, PTR_ERR(cands));
5684 			return PTR_ERR(cands);
5685 		}
5686 		err = hashmap__set(cand_cache, local_id, cands, NULL, NULL);
5687 		if (err) {
5688 			bpf_core_free_cands(cands);
5689 			return err;
5690 		}
5691 	}
5692 
5693 	return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5694 				       targ_res);
5695 }
5696 
5697 static int
5698 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5699 {
5700 	const struct btf_ext_info_sec *sec;
5701 	struct bpf_core_relo_res targ_res;
5702 	const struct bpf_core_relo *rec;
5703 	const struct btf_ext_info *seg;
5704 	struct hashmap_entry *entry;
5705 	struct hashmap *cand_cache = NULL;
5706 	struct bpf_program *prog;
5707 	struct bpf_insn *insn;
5708 	const char *sec_name;
5709 	int i, err = 0, insn_idx, sec_idx, sec_num;
5710 
5711 	if (obj->btf_ext->core_relo_info.len == 0)
5712 		return 0;
5713 
5714 	if (targ_btf_path) {
5715 		obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5716 		err = libbpf_get_error(obj->btf_vmlinux_override);
5717 		if (err) {
5718 			pr_warn("failed to parse target BTF: %d\n", err);
5719 			return err;
5720 		}
5721 	}
5722 
5723 	cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5724 	if (IS_ERR(cand_cache)) {
5725 		err = PTR_ERR(cand_cache);
5726 		goto out;
5727 	}
5728 
5729 	seg = &obj->btf_ext->core_relo_info;
5730 	sec_num = 0;
5731 	for_each_btf_ext_sec(seg, sec) {
5732 		sec_idx = seg->sec_idxs[sec_num];
5733 		sec_num++;
5734 
5735 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5736 		if (str_is_empty(sec_name)) {
5737 			err = -EINVAL;
5738 			goto out;
5739 		}
5740 
5741 		pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5742 
5743 		for_each_btf_ext_rec(seg, sec, i, rec) {
5744 			if (rec->insn_off % BPF_INSN_SZ)
5745 				return -EINVAL;
5746 			insn_idx = rec->insn_off / BPF_INSN_SZ;
5747 			prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5748 			if (!prog) {
5749 				/* When __weak subprog is "overridden" by another instance
5750 				 * of the subprog from a different object file, linker still
5751 				 * appends all the .BTF.ext info that used to belong to that
5752 				 * eliminated subprogram.
5753 				 * This is similar to what x86-64 linker does for relocations.
5754 				 * So just ignore such relocations just like we ignore
5755 				 * subprog instructions when discovering subprograms.
5756 				 */
5757 				pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5758 					 sec_name, i, insn_idx);
5759 				continue;
5760 			}
5761 			/* no need to apply CO-RE relocation if the program is
5762 			 * not going to be loaded
5763 			 */
5764 			if (!prog->autoload)
5765 				continue;
5766 
5767 			/* adjust insn_idx from section frame of reference to the local
5768 			 * program's frame of reference; (sub-)program code is not yet
5769 			 * relocated, so it's enough to just subtract in-section offset
5770 			 */
5771 			insn_idx = insn_idx - prog->sec_insn_off;
5772 			if (insn_idx >= prog->insns_cnt)
5773 				return -EINVAL;
5774 			insn = &prog->insns[insn_idx];
5775 
5776 			err = record_relo_core(prog, rec, insn_idx);
5777 			if (err) {
5778 				pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5779 					prog->name, i, err);
5780 				goto out;
5781 			}
5782 
5783 			if (prog->obj->gen_loader)
5784 				continue;
5785 
5786 			err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5787 			if (err) {
5788 				pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5789 					prog->name, i, err);
5790 				goto out;
5791 			}
5792 
5793 			err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5794 			if (err) {
5795 				pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5796 					prog->name, i, insn_idx, err);
5797 				goto out;
5798 			}
5799 		}
5800 	}
5801 
5802 out:
5803 	/* obj->btf_vmlinux and module BTFs are freed after object load */
5804 	btf__free(obj->btf_vmlinux_override);
5805 	obj->btf_vmlinux_override = NULL;
5806 
5807 	if (!IS_ERR_OR_NULL(cand_cache)) {
5808 		hashmap__for_each_entry(cand_cache, entry, i) {
5809 			bpf_core_free_cands(entry->pvalue);
5810 		}
5811 		hashmap__free(cand_cache);
5812 	}
5813 	return err;
5814 }
5815 
5816 /* base map load ldimm64 special constant, used also for log fixup logic */
5817 #define POISON_LDIMM64_MAP_BASE 2001000000
5818 #define POISON_LDIMM64_MAP_PFX "200100"
5819 
5820 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
5821 			       int insn_idx, struct bpf_insn *insn,
5822 			       int map_idx, const struct bpf_map *map)
5823 {
5824 	int i;
5825 
5826 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
5827 		 prog->name, relo_idx, insn_idx, map_idx, map->name);
5828 
5829 	/* we turn single ldimm64 into two identical invalid calls */
5830 	for (i = 0; i < 2; i++) {
5831 		insn->code = BPF_JMP | BPF_CALL;
5832 		insn->dst_reg = 0;
5833 		insn->src_reg = 0;
5834 		insn->off = 0;
5835 		/* if this instruction is reachable (not a dead code),
5836 		 * verifier will complain with something like:
5837 		 * invalid func unknown#2001000123
5838 		 * where lower 123 is map index into obj->maps[] array
5839 		 */
5840 		insn->imm = POISON_LDIMM64_MAP_BASE + map_idx;
5841 
5842 		insn++;
5843 	}
5844 }
5845 
5846 /* unresolved kfunc call special constant, used also for log fixup logic */
5847 #define POISON_CALL_KFUNC_BASE 2002000000
5848 #define POISON_CALL_KFUNC_PFX "2002"
5849 
5850 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx,
5851 			      int insn_idx, struct bpf_insn *insn,
5852 			      int ext_idx, const struct extern_desc *ext)
5853 {
5854 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n",
5855 		 prog->name, relo_idx, insn_idx, ext->name);
5856 
5857 	/* we turn kfunc call into invalid helper call with identifiable constant */
5858 	insn->code = BPF_JMP | BPF_CALL;
5859 	insn->dst_reg = 0;
5860 	insn->src_reg = 0;
5861 	insn->off = 0;
5862 	/* if this instruction is reachable (not a dead code),
5863 	 * verifier will complain with something like:
5864 	 * invalid func unknown#2001000123
5865 	 * where lower 123 is extern index into obj->externs[] array
5866 	 */
5867 	insn->imm = POISON_CALL_KFUNC_BASE + ext_idx;
5868 }
5869 
5870 /* Relocate data references within program code:
5871  *  - map references;
5872  *  - global variable references;
5873  *  - extern references.
5874  */
5875 static int
5876 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
5877 {
5878 	int i;
5879 
5880 	for (i = 0; i < prog->nr_reloc; i++) {
5881 		struct reloc_desc *relo = &prog->reloc_desc[i];
5882 		struct bpf_insn *insn = &prog->insns[relo->insn_idx];
5883 		const struct bpf_map *map;
5884 		struct extern_desc *ext;
5885 
5886 		switch (relo->type) {
5887 		case RELO_LD64:
5888 			map = &obj->maps[relo->map_idx];
5889 			if (obj->gen_loader) {
5890 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
5891 				insn[0].imm = relo->map_idx;
5892 			} else if (map->autocreate) {
5893 				insn[0].src_reg = BPF_PSEUDO_MAP_FD;
5894 				insn[0].imm = map->fd;
5895 			} else {
5896 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5897 						   relo->map_idx, map);
5898 			}
5899 			break;
5900 		case RELO_DATA:
5901 			map = &obj->maps[relo->map_idx];
5902 			insn[1].imm = insn[0].imm + relo->sym_off;
5903 			if (obj->gen_loader) {
5904 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5905 				insn[0].imm = relo->map_idx;
5906 			} else if (map->autocreate) {
5907 				insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5908 				insn[0].imm = map->fd;
5909 			} else {
5910 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5911 						   relo->map_idx, map);
5912 			}
5913 			break;
5914 		case RELO_EXTERN_LD64:
5915 			ext = &obj->externs[relo->ext_idx];
5916 			if (ext->type == EXT_KCFG) {
5917 				if (obj->gen_loader) {
5918 					insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5919 					insn[0].imm = obj->kconfig_map_idx;
5920 				} else {
5921 					insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5922 					insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
5923 				}
5924 				insn[1].imm = ext->kcfg.data_off;
5925 			} else /* EXT_KSYM */ {
5926 				if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
5927 					insn[0].src_reg = BPF_PSEUDO_BTF_ID;
5928 					insn[0].imm = ext->ksym.kernel_btf_id;
5929 					insn[1].imm = ext->ksym.kernel_btf_obj_fd;
5930 				} else { /* typeless ksyms or unresolved typed ksyms */
5931 					insn[0].imm = (__u32)ext->ksym.addr;
5932 					insn[1].imm = ext->ksym.addr >> 32;
5933 				}
5934 			}
5935 			break;
5936 		case RELO_EXTERN_CALL:
5937 			ext = &obj->externs[relo->ext_idx];
5938 			insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
5939 			if (ext->is_set) {
5940 				insn[0].imm = ext->ksym.kernel_btf_id;
5941 				insn[0].off = ext->ksym.btf_fd_idx;
5942 			} else { /* unresolved weak kfunc call */
5943 				poison_kfunc_call(prog, i, relo->insn_idx, insn,
5944 						  relo->ext_idx, ext);
5945 			}
5946 			break;
5947 		case RELO_SUBPROG_ADDR:
5948 			if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
5949 				pr_warn("prog '%s': relo #%d: bad insn\n",
5950 					prog->name, i);
5951 				return -EINVAL;
5952 			}
5953 			/* handled already */
5954 			break;
5955 		case RELO_CALL:
5956 			/* handled already */
5957 			break;
5958 		case RELO_CORE:
5959 			/* will be handled by bpf_program_record_relos() */
5960 			break;
5961 		default:
5962 			pr_warn("prog '%s': relo #%d: bad relo type %d\n",
5963 				prog->name, i, relo->type);
5964 			return -EINVAL;
5965 		}
5966 	}
5967 
5968 	return 0;
5969 }
5970 
5971 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
5972 				    const struct bpf_program *prog,
5973 				    const struct btf_ext_info *ext_info,
5974 				    void **prog_info, __u32 *prog_rec_cnt,
5975 				    __u32 *prog_rec_sz)
5976 {
5977 	void *copy_start = NULL, *copy_end = NULL;
5978 	void *rec, *rec_end, *new_prog_info;
5979 	const struct btf_ext_info_sec *sec;
5980 	size_t old_sz, new_sz;
5981 	int i, sec_num, sec_idx, off_adj;
5982 
5983 	sec_num = 0;
5984 	for_each_btf_ext_sec(ext_info, sec) {
5985 		sec_idx = ext_info->sec_idxs[sec_num];
5986 		sec_num++;
5987 		if (prog->sec_idx != sec_idx)
5988 			continue;
5989 
5990 		for_each_btf_ext_rec(ext_info, sec, i, rec) {
5991 			__u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
5992 
5993 			if (insn_off < prog->sec_insn_off)
5994 				continue;
5995 			if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
5996 				break;
5997 
5998 			if (!copy_start)
5999 				copy_start = rec;
6000 			copy_end = rec + ext_info->rec_size;
6001 		}
6002 
6003 		if (!copy_start)
6004 			return -ENOENT;
6005 
6006 		/* append func/line info of a given (sub-)program to the main
6007 		 * program func/line info
6008 		 */
6009 		old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6010 		new_sz = old_sz + (copy_end - copy_start);
6011 		new_prog_info = realloc(*prog_info, new_sz);
6012 		if (!new_prog_info)
6013 			return -ENOMEM;
6014 		*prog_info = new_prog_info;
6015 		*prog_rec_cnt = new_sz / ext_info->rec_size;
6016 		memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6017 
6018 		/* Kernel instruction offsets are in units of 8-byte
6019 		 * instructions, while .BTF.ext instruction offsets generated
6020 		 * by Clang are in units of bytes. So convert Clang offsets
6021 		 * into kernel offsets and adjust offset according to program
6022 		 * relocated position.
6023 		 */
6024 		off_adj = prog->sub_insn_off - prog->sec_insn_off;
6025 		rec = new_prog_info + old_sz;
6026 		rec_end = new_prog_info + new_sz;
6027 		for (; rec < rec_end; rec += ext_info->rec_size) {
6028 			__u32 *insn_off = rec;
6029 
6030 			*insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6031 		}
6032 		*prog_rec_sz = ext_info->rec_size;
6033 		return 0;
6034 	}
6035 
6036 	return -ENOENT;
6037 }
6038 
6039 static int
6040 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6041 			      struct bpf_program *main_prog,
6042 			      const struct bpf_program *prog)
6043 {
6044 	int err;
6045 
6046 	/* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6047 	 * supprot func/line info
6048 	 */
6049 	if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6050 		return 0;
6051 
6052 	/* only attempt func info relocation if main program's func_info
6053 	 * relocation was successful
6054 	 */
6055 	if (main_prog != prog && !main_prog->func_info)
6056 		goto line_info;
6057 
6058 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6059 				       &main_prog->func_info,
6060 				       &main_prog->func_info_cnt,
6061 				       &main_prog->func_info_rec_size);
6062 	if (err) {
6063 		if (err != -ENOENT) {
6064 			pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6065 				prog->name, err);
6066 			return err;
6067 		}
6068 		if (main_prog->func_info) {
6069 			/*
6070 			 * Some info has already been found but has problem
6071 			 * in the last btf_ext reloc. Must have to error out.
6072 			 */
6073 			pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6074 			return err;
6075 		}
6076 		/* Have problem loading the very first info. Ignore the rest. */
6077 		pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6078 			prog->name);
6079 	}
6080 
6081 line_info:
6082 	/* don't relocate line info if main program's relocation failed */
6083 	if (main_prog != prog && !main_prog->line_info)
6084 		return 0;
6085 
6086 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6087 				       &main_prog->line_info,
6088 				       &main_prog->line_info_cnt,
6089 				       &main_prog->line_info_rec_size);
6090 	if (err) {
6091 		if (err != -ENOENT) {
6092 			pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6093 				prog->name, err);
6094 			return err;
6095 		}
6096 		if (main_prog->line_info) {
6097 			/*
6098 			 * Some info has already been found but has problem
6099 			 * in the last btf_ext reloc. Must have to error out.
6100 			 */
6101 			pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6102 			return err;
6103 		}
6104 		/* Have problem loading the very first info. Ignore the rest. */
6105 		pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6106 			prog->name);
6107 	}
6108 	return 0;
6109 }
6110 
6111 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6112 {
6113 	size_t insn_idx = *(const size_t *)key;
6114 	const struct reloc_desc *relo = elem;
6115 
6116 	if (insn_idx == relo->insn_idx)
6117 		return 0;
6118 	return insn_idx < relo->insn_idx ? -1 : 1;
6119 }
6120 
6121 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6122 {
6123 	if (!prog->nr_reloc)
6124 		return NULL;
6125 	return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6126 		       sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6127 }
6128 
6129 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6130 {
6131 	int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6132 	struct reloc_desc *relos;
6133 	int i;
6134 
6135 	if (main_prog == subprog)
6136 		return 0;
6137 	relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6138 	if (!relos)
6139 		return -ENOMEM;
6140 	if (subprog->nr_reloc)
6141 		memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6142 		       sizeof(*relos) * subprog->nr_reloc);
6143 
6144 	for (i = main_prog->nr_reloc; i < new_cnt; i++)
6145 		relos[i].insn_idx += subprog->sub_insn_off;
6146 	/* After insn_idx adjustment the 'relos' array is still sorted
6147 	 * by insn_idx and doesn't break bsearch.
6148 	 */
6149 	main_prog->reloc_desc = relos;
6150 	main_prog->nr_reloc = new_cnt;
6151 	return 0;
6152 }
6153 
6154 static int
6155 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6156 		       struct bpf_program *prog)
6157 {
6158 	size_t sub_insn_idx, insn_idx, new_cnt;
6159 	struct bpf_program *subprog;
6160 	struct bpf_insn *insns, *insn;
6161 	struct reloc_desc *relo;
6162 	int err;
6163 
6164 	err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6165 	if (err)
6166 		return err;
6167 
6168 	for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6169 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6170 		if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6171 			continue;
6172 
6173 		relo = find_prog_insn_relo(prog, insn_idx);
6174 		if (relo && relo->type == RELO_EXTERN_CALL)
6175 			/* kfunc relocations will be handled later
6176 			 * in bpf_object__relocate_data()
6177 			 */
6178 			continue;
6179 		if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6180 			pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6181 				prog->name, insn_idx, relo->type);
6182 			return -LIBBPF_ERRNO__RELOC;
6183 		}
6184 		if (relo) {
6185 			/* sub-program instruction index is a combination of
6186 			 * an offset of a symbol pointed to by relocation and
6187 			 * call instruction's imm field; for global functions,
6188 			 * call always has imm = -1, but for static functions
6189 			 * relocation is against STT_SECTION and insn->imm
6190 			 * points to a start of a static function
6191 			 *
6192 			 * for subprog addr relocation, the relo->sym_off + insn->imm is
6193 			 * the byte offset in the corresponding section.
6194 			 */
6195 			if (relo->type == RELO_CALL)
6196 				sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6197 			else
6198 				sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6199 		} else if (insn_is_pseudo_func(insn)) {
6200 			/*
6201 			 * RELO_SUBPROG_ADDR relo is always emitted even if both
6202 			 * functions are in the same section, so it shouldn't reach here.
6203 			 */
6204 			pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6205 				prog->name, insn_idx);
6206 			return -LIBBPF_ERRNO__RELOC;
6207 		} else {
6208 			/* if subprogram call is to a static function within
6209 			 * the same ELF section, there won't be any relocation
6210 			 * emitted, but it also means there is no additional
6211 			 * offset necessary, insns->imm is relative to
6212 			 * instruction's original position within the section
6213 			 */
6214 			sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6215 		}
6216 
6217 		/* we enforce that sub-programs should be in .text section */
6218 		subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6219 		if (!subprog) {
6220 			pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6221 				prog->name);
6222 			return -LIBBPF_ERRNO__RELOC;
6223 		}
6224 
6225 		/* if it's the first call instruction calling into this
6226 		 * subprogram (meaning this subprog hasn't been processed
6227 		 * yet) within the context of current main program:
6228 		 *   - append it at the end of main program's instructions blog;
6229 		 *   - process is recursively, while current program is put on hold;
6230 		 *   - if that subprogram calls some other not yet processes
6231 		 *   subprogram, same thing will happen recursively until
6232 		 *   there are no more unprocesses subprograms left to append
6233 		 *   and relocate.
6234 		 */
6235 		if (subprog->sub_insn_off == 0) {
6236 			subprog->sub_insn_off = main_prog->insns_cnt;
6237 
6238 			new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6239 			insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6240 			if (!insns) {
6241 				pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6242 				return -ENOMEM;
6243 			}
6244 			main_prog->insns = insns;
6245 			main_prog->insns_cnt = new_cnt;
6246 
6247 			memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6248 			       subprog->insns_cnt * sizeof(*insns));
6249 
6250 			pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6251 				 main_prog->name, subprog->insns_cnt, subprog->name);
6252 
6253 			/* The subprog insns are now appended. Append its relos too. */
6254 			err = append_subprog_relos(main_prog, subprog);
6255 			if (err)
6256 				return err;
6257 			err = bpf_object__reloc_code(obj, main_prog, subprog);
6258 			if (err)
6259 				return err;
6260 		}
6261 
6262 		/* main_prog->insns memory could have been re-allocated, so
6263 		 * calculate pointer again
6264 		 */
6265 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6266 		/* calculate correct instruction position within current main
6267 		 * prog; each main prog can have a different set of
6268 		 * subprograms appended (potentially in different order as
6269 		 * well), so position of any subprog can be different for
6270 		 * different main programs
6271 		 */
6272 		insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6273 
6274 		pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6275 			 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6276 	}
6277 
6278 	return 0;
6279 }
6280 
6281 /*
6282  * Relocate sub-program calls.
6283  *
6284  * Algorithm operates as follows. Each entry-point BPF program (referred to as
6285  * main prog) is processed separately. For each subprog (non-entry functions,
6286  * that can be called from either entry progs or other subprogs) gets their
6287  * sub_insn_off reset to zero. This serves as indicator that this subprogram
6288  * hasn't been yet appended and relocated within current main prog. Once its
6289  * relocated, sub_insn_off will point at the position within current main prog
6290  * where given subprog was appended. This will further be used to relocate all
6291  * the call instructions jumping into this subprog.
6292  *
6293  * We start with main program and process all call instructions. If the call
6294  * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6295  * is zero), subprog instructions are appended at the end of main program's
6296  * instruction array. Then main program is "put on hold" while we recursively
6297  * process newly appended subprogram. If that subprogram calls into another
6298  * subprogram that hasn't been appended, new subprogram is appended again to
6299  * the *main* prog's instructions (subprog's instructions are always left
6300  * untouched, as they need to be in unmodified state for subsequent main progs
6301  * and subprog instructions are always sent only as part of a main prog) and
6302  * the process continues recursively. Once all the subprogs called from a main
6303  * prog or any of its subprogs are appended (and relocated), all their
6304  * positions within finalized instructions array are known, so it's easy to
6305  * rewrite call instructions with correct relative offsets, corresponding to
6306  * desired target subprog.
6307  *
6308  * Its important to realize that some subprogs might not be called from some
6309  * main prog and any of its called/used subprogs. Those will keep their
6310  * subprog->sub_insn_off as zero at all times and won't be appended to current
6311  * main prog and won't be relocated within the context of current main prog.
6312  * They might still be used from other main progs later.
6313  *
6314  * Visually this process can be shown as below. Suppose we have two main
6315  * programs mainA and mainB and BPF object contains three subprogs: subA,
6316  * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6317  * subC both call subB:
6318  *
6319  *        +--------+ +-------+
6320  *        |        v v       |
6321  *     +--+---+ +--+-+-+ +---+--+
6322  *     | subA | | subB | | subC |
6323  *     +--+---+ +------+ +---+--+
6324  *        ^                  ^
6325  *        |                  |
6326  *    +---+-------+   +------+----+
6327  *    |   mainA   |   |   mainB   |
6328  *    +-----------+   +-----------+
6329  *
6330  * We'll start relocating mainA, will find subA, append it and start
6331  * processing sub A recursively:
6332  *
6333  *    +-----------+------+
6334  *    |   mainA   | subA |
6335  *    +-----------+------+
6336  *
6337  * At this point we notice that subB is used from subA, so we append it and
6338  * relocate (there are no further subcalls from subB):
6339  *
6340  *    +-----------+------+------+
6341  *    |   mainA   | subA | subB |
6342  *    +-----------+------+------+
6343  *
6344  * At this point, we relocate subA calls, then go one level up and finish with
6345  * relocatin mainA calls. mainA is done.
6346  *
6347  * For mainB process is similar but results in different order. We start with
6348  * mainB and skip subA and subB, as mainB never calls them (at least
6349  * directly), but we see subC is needed, so we append and start processing it:
6350  *
6351  *    +-----------+------+
6352  *    |   mainB   | subC |
6353  *    +-----------+------+
6354  * Now we see subC needs subB, so we go back to it, append and relocate it:
6355  *
6356  *    +-----------+------+------+
6357  *    |   mainB   | subC | subB |
6358  *    +-----------+------+------+
6359  *
6360  * At this point we unwind recursion, relocate calls in subC, then in mainB.
6361  */
6362 static int
6363 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6364 {
6365 	struct bpf_program *subprog;
6366 	int i, err;
6367 
6368 	/* mark all subprogs as not relocated (yet) within the context of
6369 	 * current main program
6370 	 */
6371 	for (i = 0; i < obj->nr_programs; i++) {
6372 		subprog = &obj->programs[i];
6373 		if (!prog_is_subprog(obj, subprog))
6374 			continue;
6375 
6376 		subprog->sub_insn_off = 0;
6377 	}
6378 
6379 	err = bpf_object__reloc_code(obj, prog, prog);
6380 	if (err)
6381 		return err;
6382 
6383 	return 0;
6384 }
6385 
6386 static void
6387 bpf_object__free_relocs(struct bpf_object *obj)
6388 {
6389 	struct bpf_program *prog;
6390 	int i;
6391 
6392 	/* free up relocation descriptors */
6393 	for (i = 0; i < obj->nr_programs; i++) {
6394 		prog = &obj->programs[i];
6395 		zfree(&prog->reloc_desc);
6396 		prog->nr_reloc = 0;
6397 	}
6398 }
6399 
6400 static int cmp_relocs(const void *_a, const void *_b)
6401 {
6402 	const struct reloc_desc *a = _a;
6403 	const struct reloc_desc *b = _b;
6404 
6405 	if (a->insn_idx != b->insn_idx)
6406 		return a->insn_idx < b->insn_idx ? -1 : 1;
6407 
6408 	/* no two relocations should have the same insn_idx, but ... */
6409 	if (a->type != b->type)
6410 		return a->type < b->type ? -1 : 1;
6411 
6412 	return 0;
6413 }
6414 
6415 static void bpf_object__sort_relos(struct bpf_object *obj)
6416 {
6417 	int i;
6418 
6419 	for (i = 0; i < obj->nr_programs; i++) {
6420 		struct bpf_program *p = &obj->programs[i];
6421 
6422 		if (!p->nr_reloc)
6423 			continue;
6424 
6425 		qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6426 	}
6427 }
6428 
6429 static int
6430 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6431 {
6432 	struct bpf_program *prog;
6433 	size_t i, j;
6434 	int err;
6435 
6436 	if (obj->btf_ext) {
6437 		err = bpf_object__relocate_core(obj, targ_btf_path);
6438 		if (err) {
6439 			pr_warn("failed to perform CO-RE relocations: %d\n",
6440 				err);
6441 			return err;
6442 		}
6443 		bpf_object__sort_relos(obj);
6444 	}
6445 
6446 	/* Before relocating calls pre-process relocations and mark
6447 	 * few ld_imm64 instructions that points to subprogs.
6448 	 * Otherwise bpf_object__reloc_code() later would have to consider
6449 	 * all ld_imm64 insns as relocation candidates. That would
6450 	 * reduce relocation speed, since amount of find_prog_insn_relo()
6451 	 * would increase and most of them will fail to find a relo.
6452 	 */
6453 	for (i = 0; i < obj->nr_programs; i++) {
6454 		prog = &obj->programs[i];
6455 		for (j = 0; j < prog->nr_reloc; j++) {
6456 			struct reloc_desc *relo = &prog->reloc_desc[j];
6457 			struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6458 
6459 			/* mark the insn, so it's recognized by insn_is_pseudo_func() */
6460 			if (relo->type == RELO_SUBPROG_ADDR)
6461 				insn[0].src_reg = BPF_PSEUDO_FUNC;
6462 		}
6463 	}
6464 
6465 	/* relocate subprogram calls and append used subprograms to main
6466 	 * programs; each copy of subprogram code needs to be relocated
6467 	 * differently for each main program, because its code location might
6468 	 * have changed.
6469 	 * Append subprog relos to main programs to allow data relos to be
6470 	 * processed after text is completely relocated.
6471 	 */
6472 	for (i = 0; i < obj->nr_programs; i++) {
6473 		prog = &obj->programs[i];
6474 		/* sub-program's sub-calls are relocated within the context of
6475 		 * its main program only
6476 		 */
6477 		if (prog_is_subprog(obj, prog))
6478 			continue;
6479 		if (!prog->autoload)
6480 			continue;
6481 
6482 		err = bpf_object__relocate_calls(obj, prog);
6483 		if (err) {
6484 			pr_warn("prog '%s': failed to relocate calls: %d\n",
6485 				prog->name, err);
6486 			return err;
6487 		}
6488 	}
6489 	/* Process data relos for main programs */
6490 	for (i = 0; i < obj->nr_programs; i++) {
6491 		prog = &obj->programs[i];
6492 		if (prog_is_subprog(obj, prog))
6493 			continue;
6494 		if (!prog->autoload)
6495 			continue;
6496 		err = bpf_object__relocate_data(obj, prog);
6497 		if (err) {
6498 			pr_warn("prog '%s': failed to relocate data references: %d\n",
6499 				prog->name, err);
6500 			return err;
6501 		}
6502 	}
6503 
6504 	return 0;
6505 }
6506 
6507 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6508 					    Elf64_Shdr *shdr, Elf_Data *data);
6509 
6510 static int bpf_object__collect_map_relos(struct bpf_object *obj,
6511 					 Elf64_Shdr *shdr, Elf_Data *data)
6512 {
6513 	const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6514 	int i, j, nrels, new_sz;
6515 	const struct btf_var_secinfo *vi = NULL;
6516 	const struct btf_type *sec, *var, *def;
6517 	struct bpf_map *map = NULL, *targ_map = NULL;
6518 	struct bpf_program *targ_prog = NULL;
6519 	bool is_prog_array, is_map_in_map;
6520 	const struct btf_member *member;
6521 	const char *name, *mname, *type;
6522 	unsigned int moff;
6523 	Elf64_Sym *sym;
6524 	Elf64_Rel *rel;
6525 	void *tmp;
6526 
6527 	if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6528 		return -EINVAL;
6529 	sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6530 	if (!sec)
6531 		return -EINVAL;
6532 
6533 	nrels = shdr->sh_size / shdr->sh_entsize;
6534 	for (i = 0; i < nrels; i++) {
6535 		rel = elf_rel_by_idx(data, i);
6536 		if (!rel) {
6537 			pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6538 			return -LIBBPF_ERRNO__FORMAT;
6539 		}
6540 
6541 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
6542 		if (!sym) {
6543 			pr_warn(".maps relo #%d: symbol %zx not found\n",
6544 				i, (size_t)ELF64_R_SYM(rel->r_info));
6545 			return -LIBBPF_ERRNO__FORMAT;
6546 		}
6547 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
6548 
6549 		pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
6550 			 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
6551 			 (size_t)rel->r_offset, sym->st_name, name);
6552 
6553 		for (j = 0; j < obj->nr_maps; j++) {
6554 			map = &obj->maps[j];
6555 			if (map->sec_idx != obj->efile.btf_maps_shndx)
6556 				continue;
6557 
6558 			vi = btf_var_secinfos(sec) + map->btf_var_idx;
6559 			if (vi->offset <= rel->r_offset &&
6560 			    rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6561 				break;
6562 		}
6563 		if (j == obj->nr_maps) {
6564 			pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
6565 				i, name, (size_t)rel->r_offset);
6566 			return -EINVAL;
6567 		}
6568 
6569 		is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
6570 		is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
6571 		type = is_map_in_map ? "map" : "prog";
6572 		if (is_map_in_map) {
6573 			if (sym->st_shndx != obj->efile.btf_maps_shndx) {
6574 				pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6575 					i, name);
6576 				return -LIBBPF_ERRNO__RELOC;
6577 			}
6578 			if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6579 			    map->def.key_size != sizeof(int)) {
6580 				pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6581 					i, map->name, sizeof(int));
6582 				return -EINVAL;
6583 			}
6584 			targ_map = bpf_object__find_map_by_name(obj, name);
6585 			if (!targ_map) {
6586 				pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
6587 					i, name);
6588 				return -ESRCH;
6589 			}
6590 		} else if (is_prog_array) {
6591 			targ_prog = bpf_object__find_program_by_name(obj, name);
6592 			if (!targ_prog) {
6593 				pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
6594 					i, name);
6595 				return -ESRCH;
6596 			}
6597 			if (targ_prog->sec_idx != sym->st_shndx ||
6598 			    targ_prog->sec_insn_off * 8 != sym->st_value ||
6599 			    prog_is_subprog(obj, targ_prog)) {
6600 				pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
6601 					i, name);
6602 				return -LIBBPF_ERRNO__RELOC;
6603 			}
6604 		} else {
6605 			return -EINVAL;
6606 		}
6607 
6608 		var = btf__type_by_id(obj->btf, vi->type);
6609 		def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6610 		if (btf_vlen(def) == 0)
6611 			return -EINVAL;
6612 		member = btf_members(def) + btf_vlen(def) - 1;
6613 		mname = btf__name_by_offset(obj->btf, member->name_off);
6614 		if (strcmp(mname, "values"))
6615 			return -EINVAL;
6616 
6617 		moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6618 		if (rel->r_offset - vi->offset < moff)
6619 			return -EINVAL;
6620 
6621 		moff = rel->r_offset - vi->offset - moff;
6622 		/* here we use BPF pointer size, which is always 64 bit, as we
6623 		 * are parsing ELF that was built for BPF target
6624 		 */
6625 		if (moff % bpf_ptr_sz)
6626 			return -EINVAL;
6627 		moff /= bpf_ptr_sz;
6628 		if (moff >= map->init_slots_sz) {
6629 			new_sz = moff + 1;
6630 			tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6631 			if (!tmp)
6632 				return -ENOMEM;
6633 			map->init_slots = tmp;
6634 			memset(map->init_slots + map->init_slots_sz, 0,
6635 			       (new_sz - map->init_slots_sz) * host_ptr_sz);
6636 			map->init_slots_sz = new_sz;
6637 		}
6638 		map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
6639 
6640 		pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
6641 			 i, map->name, moff, type, name);
6642 	}
6643 
6644 	return 0;
6645 }
6646 
6647 static int bpf_object__collect_relos(struct bpf_object *obj)
6648 {
6649 	int i, err;
6650 
6651 	for (i = 0; i < obj->efile.sec_cnt; i++) {
6652 		struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
6653 		Elf64_Shdr *shdr;
6654 		Elf_Data *data;
6655 		int idx;
6656 
6657 		if (sec_desc->sec_type != SEC_RELO)
6658 			continue;
6659 
6660 		shdr = sec_desc->shdr;
6661 		data = sec_desc->data;
6662 		idx = shdr->sh_info;
6663 
6664 		if (shdr->sh_type != SHT_REL) {
6665 			pr_warn("internal error at %d\n", __LINE__);
6666 			return -LIBBPF_ERRNO__INTERNAL;
6667 		}
6668 
6669 		if (idx == obj->efile.st_ops_shndx || idx == obj->efile.st_ops_link_shndx)
6670 			err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6671 		else if (idx == obj->efile.btf_maps_shndx)
6672 			err = bpf_object__collect_map_relos(obj, shdr, data);
6673 		else
6674 			err = bpf_object__collect_prog_relos(obj, shdr, data);
6675 		if (err)
6676 			return err;
6677 	}
6678 
6679 	bpf_object__sort_relos(obj);
6680 	return 0;
6681 }
6682 
6683 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6684 {
6685 	if (BPF_CLASS(insn->code) == BPF_JMP &&
6686 	    BPF_OP(insn->code) == BPF_CALL &&
6687 	    BPF_SRC(insn->code) == BPF_K &&
6688 	    insn->src_reg == 0 &&
6689 	    insn->dst_reg == 0) {
6690 		    *func_id = insn->imm;
6691 		    return true;
6692 	}
6693 	return false;
6694 }
6695 
6696 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
6697 {
6698 	struct bpf_insn *insn = prog->insns;
6699 	enum bpf_func_id func_id;
6700 	int i;
6701 
6702 	if (obj->gen_loader)
6703 		return 0;
6704 
6705 	for (i = 0; i < prog->insns_cnt; i++, insn++) {
6706 		if (!insn_is_helper_call(insn, &func_id))
6707 			continue;
6708 
6709 		/* on kernels that don't yet support
6710 		 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6711 		 * to bpf_probe_read() which works well for old kernels
6712 		 */
6713 		switch (func_id) {
6714 		case BPF_FUNC_probe_read_kernel:
6715 		case BPF_FUNC_probe_read_user:
6716 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6717 				insn->imm = BPF_FUNC_probe_read;
6718 			break;
6719 		case BPF_FUNC_probe_read_kernel_str:
6720 		case BPF_FUNC_probe_read_user_str:
6721 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6722 				insn->imm = BPF_FUNC_probe_read_str;
6723 			break;
6724 		default:
6725 			break;
6726 		}
6727 	}
6728 	return 0;
6729 }
6730 
6731 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
6732 				     int *btf_obj_fd, int *btf_type_id);
6733 
6734 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
6735 static int libbpf_prepare_prog_load(struct bpf_program *prog,
6736 				    struct bpf_prog_load_opts *opts, long cookie)
6737 {
6738 	enum sec_def_flags def = cookie;
6739 
6740 	/* old kernels might not support specifying expected_attach_type */
6741 	if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
6742 		opts->expected_attach_type = 0;
6743 
6744 	if (def & SEC_SLEEPABLE)
6745 		opts->prog_flags |= BPF_F_SLEEPABLE;
6746 
6747 	if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
6748 		opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
6749 
6750 	if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
6751 		int btf_obj_fd = 0, btf_type_id = 0, err;
6752 		const char *attach_name;
6753 
6754 		attach_name = strchr(prog->sec_name, '/');
6755 		if (!attach_name) {
6756 			/* if BPF program is annotated with just SEC("fentry")
6757 			 * (or similar) without declaratively specifying
6758 			 * target, then it is expected that target will be
6759 			 * specified with bpf_program__set_attach_target() at
6760 			 * runtime before BPF object load step. If not, then
6761 			 * there is nothing to load into the kernel as BPF
6762 			 * verifier won't be able to validate BPF program
6763 			 * correctness anyways.
6764 			 */
6765 			pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
6766 				prog->name);
6767 			return -EINVAL;
6768 		}
6769 		attach_name++; /* skip over / */
6770 
6771 		err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
6772 		if (err)
6773 			return err;
6774 
6775 		/* cache resolved BTF FD and BTF type ID in the prog */
6776 		prog->attach_btf_obj_fd = btf_obj_fd;
6777 		prog->attach_btf_id = btf_type_id;
6778 
6779 		/* but by now libbpf common logic is not utilizing
6780 		 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
6781 		 * this callback is called after opts were populated by
6782 		 * libbpf, so this callback has to update opts explicitly here
6783 		 */
6784 		opts->attach_btf_obj_fd = btf_obj_fd;
6785 		opts->attach_btf_id = btf_type_id;
6786 	}
6787 	return 0;
6788 }
6789 
6790 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
6791 
6792 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
6793 				struct bpf_insn *insns, int insns_cnt,
6794 				const char *license, __u32 kern_version, int *prog_fd)
6795 {
6796 	LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
6797 	const char *prog_name = NULL;
6798 	char *cp, errmsg[STRERR_BUFSIZE];
6799 	size_t log_buf_size = 0;
6800 	char *log_buf = NULL, *tmp;
6801 	int btf_fd, ret, err;
6802 	bool own_log_buf = true;
6803 	__u32 log_level = prog->log_level;
6804 
6805 	if (prog->type == BPF_PROG_TYPE_UNSPEC) {
6806 		/*
6807 		 * The program type must be set.  Most likely we couldn't find a proper
6808 		 * section definition at load time, and thus we didn't infer the type.
6809 		 */
6810 		pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
6811 			prog->name, prog->sec_name);
6812 		return -EINVAL;
6813 	}
6814 
6815 	if (!insns || !insns_cnt)
6816 		return -EINVAL;
6817 
6818 	load_attr.expected_attach_type = prog->expected_attach_type;
6819 	if (kernel_supports(obj, FEAT_PROG_NAME))
6820 		prog_name = prog->name;
6821 	load_attr.attach_prog_fd = prog->attach_prog_fd;
6822 	load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
6823 	load_attr.attach_btf_id = prog->attach_btf_id;
6824 	load_attr.kern_version = kern_version;
6825 	load_attr.prog_ifindex = prog->prog_ifindex;
6826 
6827 	/* specify func_info/line_info only if kernel supports them */
6828 	btf_fd = bpf_object__btf_fd(obj);
6829 	if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
6830 		load_attr.prog_btf_fd = btf_fd;
6831 		load_attr.func_info = prog->func_info;
6832 		load_attr.func_info_rec_size = prog->func_info_rec_size;
6833 		load_attr.func_info_cnt = prog->func_info_cnt;
6834 		load_attr.line_info = prog->line_info;
6835 		load_attr.line_info_rec_size = prog->line_info_rec_size;
6836 		load_attr.line_info_cnt = prog->line_info_cnt;
6837 	}
6838 	load_attr.log_level = log_level;
6839 	load_attr.prog_flags = prog->prog_flags;
6840 	load_attr.fd_array = obj->fd_array;
6841 
6842 	/* adjust load_attr if sec_def provides custom preload callback */
6843 	if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
6844 		err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
6845 		if (err < 0) {
6846 			pr_warn("prog '%s': failed to prepare load attributes: %d\n",
6847 				prog->name, err);
6848 			return err;
6849 		}
6850 		insns = prog->insns;
6851 		insns_cnt = prog->insns_cnt;
6852 	}
6853 
6854 	if (obj->gen_loader) {
6855 		bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
6856 				   license, insns, insns_cnt, &load_attr,
6857 				   prog - obj->programs);
6858 		*prog_fd = -1;
6859 		return 0;
6860 	}
6861 
6862 retry_load:
6863 	/* if log_level is zero, we don't request logs initially even if
6864 	 * custom log_buf is specified; if the program load fails, then we'll
6865 	 * bump log_level to 1 and use either custom log_buf or we'll allocate
6866 	 * our own and retry the load to get details on what failed
6867 	 */
6868 	if (log_level) {
6869 		if (prog->log_buf) {
6870 			log_buf = prog->log_buf;
6871 			log_buf_size = prog->log_size;
6872 			own_log_buf = false;
6873 		} else if (obj->log_buf) {
6874 			log_buf = obj->log_buf;
6875 			log_buf_size = obj->log_size;
6876 			own_log_buf = false;
6877 		} else {
6878 			log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
6879 			tmp = realloc(log_buf, log_buf_size);
6880 			if (!tmp) {
6881 				ret = -ENOMEM;
6882 				goto out;
6883 			}
6884 			log_buf = tmp;
6885 			log_buf[0] = '\0';
6886 			own_log_buf = true;
6887 		}
6888 	}
6889 
6890 	load_attr.log_buf = log_buf;
6891 	load_attr.log_size = log_buf_size;
6892 	load_attr.log_level = log_level;
6893 
6894 	ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
6895 	if (ret >= 0) {
6896 		if (log_level && own_log_buf) {
6897 			pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6898 				 prog->name, log_buf);
6899 		}
6900 
6901 		if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
6902 			struct bpf_map *map;
6903 			int i;
6904 
6905 			for (i = 0; i < obj->nr_maps; i++) {
6906 				map = &prog->obj->maps[i];
6907 				if (map->libbpf_type != LIBBPF_MAP_RODATA)
6908 					continue;
6909 
6910 				if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) {
6911 					cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6912 					pr_warn("prog '%s': failed to bind map '%s': %s\n",
6913 						prog->name, map->real_name, cp);
6914 					/* Don't fail hard if can't bind rodata. */
6915 				}
6916 			}
6917 		}
6918 
6919 		*prog_fd = ret;
6920 		ret = 0;
6921 		goto out;
6922 	}
6923 
6924 	if (log_level == 0) {
6925 		log_level = 1;
6926 		goto retry_load;
6927 	}
6928 	/* On ENOSPC, increase log buffer size and retry, unless custom
6929 	 * log_buf is specified.
6930 	 * Be careful to not overflow u32, though. Kernel's log buf size limit
6931 	 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
6932 	 * multiply by 2 unless we are sure we'll fit within 32 bits.
6933 	 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
6934 	 */
6935 	if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
6936 		goto retry_load;
6937 
6938 	ret = -errno;
6939 
6940 	/* post-process verifier log to improve error descriptions */
6941 	fixup_verifier_log(prog, log_buf, log_buf_size);
6942 
6943 	cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6944 	pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
6945 	pr_perm_msg(ret);
6946 
6947 	if (own_log_buf && log_buf && log_buf[0] != '\0') {
6948 		pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6949 			prog->name, log_buf);
6950 	}
6951 
6952 out:
6953 	if (own_log_buf)
6954 		free(log_buf);
6955 	return ret;
6956 }
6957 
6958 static char *find_prev_line(char *buf, char *cur)
6959 {
6960 	char *p;
6961 
6962 	if (cur == buf) /* end of a log buf */
6963 		return NULL;
6964 
6965 	p = cur - 1;
6966 	while (p - 1 >= buf && *(p - 1) != '\n')
6967 		p--;
6968 
6969 	return p;
6970 }
6971 
6972 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
6973 		      char *orig, size_t orig_sz, const char *patch)
6974 {
6975 	/* size of the remaining log content to the right from the to-be-replaced part */
6976 	size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
6977 	size_t patch_sz = strlen(patch);
6978 
6979 	if (patch_sz != orig_sz) {
6980 		/* If patch line(s) are longer than original piece of verifier log,
6981 		 * shift log contents by (patch_sz - orig_sz) bytes to the right
6982 		 * starting from after to-be-replaced part of the log.
6983 		 *
6984 		 * If patch line(s) are shorter than original piece of verifier log,
6985 		 * shift log contents by (orig_sz - patch_sz) bytes to the left
6986 		 * starting from after to-be-replaced part of the log
6987 		 *
6988 		 * We need to be careful about not overflowing available
6989 		 * buf_sz capacity. If that's the case, we'll truncate the end
6990 		 * of the original log, as necessary.
6991 		 */
6992 		if (patch_sz > orig_sz) {
6993 			if (orig + patch_sz >= buf + buf_sz) {
6994 				/* patch is big enough to cover remaining space completely */
6995 				patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
6996 				rem_sz = 0;
6997 			} else if (patch_sz - orig_sz > buf_sz - log_sz) {
6998 				/* patch causes part of remaining log to be truncated */
6999 				rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
7000 			}
7001 		}
7002 		/* shift remaining log to the right by calculated amount */
7003 		memmove(orig + patch_sz, orig + orig_sz, rem_sz);
7004 	}
7005 
7006 	memcpy(orig, patch, patch_sz);
7007 }
7008 
7009 static void fixup_log_failed_core_relo(struct bpf_program *prog,
7010 				       char *buf, size_t buf_sz, size_t log_sz,
7011 				       char *line1, char *line2, char *line3)
7012 {
7013 	/* Expected log for failed and not properly guarded CO-RE relocation:
7014 	 * line1 -> 123: (85) call unknown#195896080
7015 	 * line2 -> invalid func unknown#195896080
7016 	 * line3 -> <anything else or end of buffer>
7017 	 *
7018 	 * "123" is the index of the instruction that was poisoned. We extract
7019 	 * instruction index to find corresponding CO-RE relocation and
7020 	 * replace this part of the log with more relevant information about
7021 	 * failed CO-RE relocation.
7022 	 */
7023 	const struct bpf_core_relo *relo;
7024 	struct bpf_core_spec spec;
7025 	char patch[512], spec_buf[256];
7026 	int insn_idx, err, spec_len;
7027 
7028 	if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
7029 		return;
7030 
7031 	relo = find_relo_core(prog, insn_idx);
7032 	if (!relo)
7033 		return;
7034 
7035 	err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
7036 	if (err)
7037 		return;
7038 
7039 	spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
7040 	snprintf(patch, sizeof(patch),
7041 		 "%d: <invalid CO-RE relocation>\n"
7042 		 "failed to resolve CO-RE relocation %s%s\n",
7043 		 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
7044 
7045 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7046 }
7047 
7048 static void fixup_log_missing_map_load(struct bpf_program *prog,
7049 				       char *buf, size_t buf_sz, size_t log_sz,
7050 				       char *line1, char *line2, char *line3)
7051 {
7052 	/* Expected log for failed and not properly guarded map reference:
7053 	 * line1 -> 123: (85) call unknown#2001000345
7054 	 * line2 -> invalid func unknown#2001000345
7055 	 * line3 -> <anything else or end of buffer>
7056 	 *
7057 	 * "123" is the index of the instruction that was poisoned.
7058 	 * "345" in "2001000345" is a map index in obj->maps to fetch map name.
7059 	 */
7060 	struct bpf_object *obj = prog->obj;
7061 	const struct bpf_map *map;
7062 	int insn_idx, map_idx;
7063 	char patch[128];
7064 
7065 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7066 		return;
7067 
7068 	map_idx -= POISON_LDIMM64_MAP_BASE;
7069 	if (map_idx < 0 || map_idx >= obj->nr_maps)
7070 		return;
7071 	map = &obj->maps[map_idx];
7072 
7073 	snprintf(patch, sizeof(patch),
7074 		 "%d: <invalid BPF map reference>\n"
7075 		 "BPF map '%s' is referenced but wasn't created\n",
7076 		 insn_idx, map->name);
7077 
7078 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7079 }
7080 
7081 static void fixup_log_missing_kfunc_call(struct bpf_program *prog,
7082 					 char *buf, size_t buf_sz, size_t log_sz,
7083 					 char *line1, char *line2, char *line3)
7084 {
7085 	/* Expected log for failed and not properly guarded kfunc call:
7086 	 * line1 -> 123: (85) call unknown#2002000345
7087 	 * line2 -> invalid func unknown#2002000345
7088 	 * line3 -> <anything else or end of buffer>
7089 	 *
7090 	 * "123" is the index of the instruction that was poisoned.
7091 	 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name.
7092 	 */
7093 	struct bpf_object *obj = prog->obj;
7094 	const struct extern_desc *ext;
7095 	int insn_idx, ext_idx;
7096 	char patch[128];
7097 
7098 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2)
7099 		return;
7100 
7101 	ext_idx -= POISON_CALL_KFUNC_BASE;
7102 	if (ext_idx < 0 || ext_idx >= obj->nr_extern)
7103 		return;
7104 	ext = &obj->externs[ext_idx];
7105 
7106 	snprintf(patch, sizeof(patch),
7107 		 "%d: <invalid kfunc call>\n"
7108 		 "kfunc '%s' is referenced but wasn't resolved\n",
7109 		 insn_idx, ext->name);
7110 
7111 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7112 }
7113 
7114 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7115 {
7116 	/* look for familiar error patterns in last N lines of the log */
7117 	const size_t max_last_line_cnt = 10;
7118 	char *prev_line, *cur_line, *next_line;
7119 	size_t log_sz;
7120 	int i;
7121 
7122 	if (!buf)
7123 		return;
7124 
7125 	log_sz = strlen(buf) + 1;
7126 	next_line = buf + log_sz - 1;
7127 
7128 	for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7129 		cur_line = find_prev_line(buf, next_line);
7130 		if (!cur_line)
7131 			return;
7132 
7133 		if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7134 			prev_line = find_prev_line(buf, cur_line);
7135 			if (!prev_line)
7136 				continue;
7137 
7138 			/* failed CO-RE relocation case */
7139 			fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7140 						   prev_line, cur_line, next_line);
7141 			return;
7142 		} else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) {
7143 			prev_line = find_prev_line(buf, cur_line);
7144 			if (!prev_line)
7145 				continue;
7146 
7147 			/* reference to uncreated BPF map */
7148 			fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7149 						   prev_line, cur_line, next_line);
7150 			return;
7151 		} else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) {
7152 			prev_line = find_prev_line(buf, cur_line);
7153 			if (!prev_line)
7154 				continue;
7155 
7156 			/* reference to unresolved kfunc */
7157 			fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz,
7158 						     prev_line, cur_line, next_line);
7159 			return;
7160 		}
7161 	}
7162 }
7163 
7164 static int bpf_program_record_relos(struct bpf_program *prog)
7165 {
7166 	struct bpf_object *obj = prog->obj;
7167 	int i;
7168 
7169 	for (i = 0; i < prog->nr_reloc; i++) {
7170 		struct reloc_desc *relo = &prog->reloc_desc[i];
7171 		struct extern_desc *ext = &obj->externs[relo->ext_idx];
7172 		int kind;
7173 
7174 		switch (relo->type) {
7175 		case RELO_EXTERN_LD64:
7176 			if (ext->type != EXT_KSYM)
7177 				continue;
7178 			kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ?
7179 				BTF_KIND_VAR : BTF_KIND_FUNC;
7180 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7181 					       ext->is_weak, !ext->ksym.type_id,
7182 					       true, kind, relo->insn_idx);
7183 			break;
7184 		case RELO_EXTERN_CALL:
7185 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7186 					       ext->is_weak, false, false, BTF_KIND_FUNC,
7187 					       relo->insn_idx);
7188 			break;
7189 		case RELO_CORE: {
7190 			struct bpf_core_relo cr = {
7191 				.insn_off = relo->insn_idx * 8,
7192 				.type_id = relo->core_relo->type_id,
7193 				.access_str_off = relo->core_relo->access_str_off,
7194 				.kind = relo->core_relo->kind,
7195 			};
7196 
7197 			bpf_gen__record_relo_core(obj->gen_loader, &cr);
7198 			break;
7199 		}
7200 		default:
7201 			continue;
7202 		}
7203 	}
7204 	return 0;
7205 }
7206 
7207 static int
7208 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7209 {
7210 	struct bpf_program *prog;
7211 	size_t i;
7212 	int err;
7213 
7214 	for (i = 0; i < obj->nr_programs; i++) {
7215 		prog = &obj->programs[i];
7216 		err = bpf_object__sanitize_prog(obj, prog);
7217 		if (err)
7218 			return err;
7219 	}
7220 
7221 	for (i = 0; i < obj->nr_programs; i++) {
7222 		prog = &obj->programs[i];
7223 		if (prog_is_subprog(obj, prog))
7224 			continue;
7225 		if (!prog->autoload) {
7226 			pr_debug("prog '%s': skipped loading\n", prog->name);
7227 			continue;
7228 		}
7229 		prog->log_level |= log_level;
7230 
7231 		if (obj->gen_loader)
7232 			bpf_program_record_relos(prog);
7233 
7234 		err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7235 					   obj->license, obj->kern_version, &prog->fd);
7236 		if (err) {
7237 			pr_warn("prog '%s': failed to load: %d\n", prog->name, err);
7238 			return err;
7239 		}
7240 	}
7241 
7242 	bpf_object__free_relocs(obj);
7243 	return 0;
7244 }
7245 
7246 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7247 
7248 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7249 {
7250 	struct bpf_program *prog;
7251 	int err;
7252 
7253 	bpf_object__for_each_program(prog, obj) {
7254 		prog->sec_def = find_sec_def(prog->sec_name);
7255 		if (!prog->sec_def) {
7256 			/* couldn't guess, but user might manually specify */
7257 			pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7258 				prog->name, prog->sec_name);
7259 			continue;
7260 		}
7261 
7262 		prog->type = prog->sec_def->prog_type;
7263 		prog->expected_attach_type = prog->sec_def->expected_attach_type;
7264 
7265 		/* sec_def can have custom callback which should be called
7266 		 * after bpf_program is initialized to adjust its properties
7267 		 */
7268 		if (prog->sec_def->prog_setup_fn) {
7269 			err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7270 			if (err < 0) {
7271 				pr_warn("prog '%s': failed to initialize: %d\n",
7272 					prog->name, err);
7273 				return err;
7274 			}
7275 		}
7276 	}
7277 
7278 	return 0;
7279 }
7280 
7281 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7282 					  const struct bpf_object_open_opts *opts)
7283 {
7284 	const char *obj_name, *kconfig, *btf_tmp_path;
7285 	struct bpf_object *obj;
7286 	char tmp_name[64];
7287 	int err;
7288 	char *log_buf;
7289 	size_t log_size;
7290 	__u32 log_level;
7291 
7292 	if (elf_version(EV_CURRENT) == EV_NONE) {
7293 		pr_warn("failed to init libelf for %s\n",
7294 			path ? : "(mem buf)");
7295 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7296 	}
7297 
7298 	if (!OPTS_VALID(opts, bpf_object_open_opts))
7299 		return ERR_PTR(-EINVAL);
7300 
7301 	obj_name = OPTS_GET(opts, object_name, NULL);
7302 	if (obj_buf) {
7303 		if (!obj_name) {
7304 			snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7305 				 (unsigned long)obj_buf,
7306 				 (unsigned long)obj_buf_sz);
7307 			obj_name = tmp_name;
7308 		}
7309 		path = obj_name;
7310 		pr_debug("loading object '%s' from buffer\n", obj_name);
7311 	}
7312 
7313 	log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7314 	log_size = OPTS_GET(opts, kernel_log_size, 0);
7315 	log_level = OPTS_GET(opts, kernel_log_level, 0);
7316 	if (log_size > UINT_MAX)
7317 		return ERR_PTR(-EINVAL);
7318 	if (log_size && !log_buf)
7319 		return ERR_PTR(-EINVAL);
7320 
7321 	obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7322 	if (IS_ERR(obj))
7323 		return obj;
7324 
7325 	obj->log_buf = log_buf;
7326 	obj->log_size = log_size;
7327 	obj->log_level = log_level;
7328 
7329 	btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7330 	if (btf_tmp_path) {
7331 		if (strlen(btf_tmp_path) >= PATH_MAX) {
7332 			err = -ENAMETOOLONG;
7333 			goto out;
7334 		}
7335 		obj->btf_custom_path = strdup(btf_tmp_path);
7336 		if (!obj->btf_custom_path) {
7337 			err = -ENOMEM;
7338 			goto out;
7339 		}
7340 	}
7341 
7342 	kconfig = OPTS_GET(opts, kconfig, NULL);
7343 	if (kconfig) {
7344 		obj->kconfig = strdup(kconfig);
7345 		if (!obj->kconfig) {
7346 			err = -ENOMEM;
7347 			goto out;
7348 		}
7349 	}
7350 
7351 	err = bpf_object__elf_init(obj);
7352 	err = err ? : bpf_object__check_endianness(obj);
7353 	err = err ? : bpf_object__elf_collect(obj);
7354 	err = err ? : bpf_object__collect_externs(obj);
7355 	err = err ? : bpf_object_fixup_btf(obj);
7356 	err = err ? : bpf_object__init_maps(obj, opts);
7357 	err = err ? : bpf_object_init_progs(obj, opts);
7358 	err = err ? : bpf_object__collect_relos(obj);
7359 	if (err)
7360 		goto out;
7361 
7362 	bpf_object__elf_finish(obj);
7363 
7364 	return obj;
7365 out:
7366 	bpf_object__close(obj);
7367 	return ERR_PTR(err);
7368 }
7369 
7370 struct bpf_object *
7371 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7372 {
7373 	if (!path)
7374 		return libbpf_err_ptr(-EINVAL);
7375 
7376 	pr_debug("loading %s\n", path);
7377 
7378 	return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
7379 }
7380 
7381 struct bpf_object *bpf_object__open(const char *path)
7382 {
7383 	return bpf_object__open_file(path, NULL);
7384 }
7385 
7386 struct bpf_object *
7387 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7388 		     const struct bpf_object_open_opts *opts)
7389 {
7390 	if (!obj_buf || obj_buf_sz == 0)
7391 		return libbpf_err_ptr(-EINVAL);
7392 
7393 	return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
7394 }
7395 
7396 static int bpf_object_unload(struct bpf_object *obj)
7397 {
7398 	size_t i;
7399 
7400 	if (!obj)
7401 		return libbpf_err(-EINVAL);
7402 
7403 	for (i = 0; i < obj->nr_maps; i++) {
7404 		zclose(obj->maps[i].fd);
7405 		if (obj->maps[i].st_ops)
7406 			zfree(&obj->maps[i].st_ops->kern_vdata);
7407 	}
7408 
7409 	for (i = 0; i < obj->nr_programs; i++)
7410 		bpf_program__unload(&obj->programs[i]);
7411 
7412 	return 0;
7413 }
7414 
7415 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7416 {
7417 	struct bpf_map *m;
7418 
7419 	bpf_object__for_each_map(m, obj) {
7420 		if (!bpf_map__is_internal(m))
7421 			continue;
7422 		if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
7423 			m->def.map_flags &= ~BPF_F_MMAPABLE;
7424 	}
7425 
7426 	return 0;
7427 }
7428 
7429 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
7430 {
7431 	char sym_type, sym_name[500];
7432 	unsigned long long sym_addr;
7433 	int ret, err = 0;
7434 	FILE *f;
7435 
7436 	f = fopen("/proc/kallsyms", "r");
7437 	if (!f) {
7438 		err = -errno;
7439 		pr_warn("failed to open /proc/kallsyms: %d\n", err);
7440 		return err;
7441 	}
7442 
7443 	while (true) {
7444 		ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7445 			     &sym_addr, &sym_type, sym_name);
7446 		if (ret == EOF && feof(f))
7447 			break;
7448 		if (ret != 3) {
7449 			pr_warn("failed to read kallsyms entry: %d\n", ret);
7450 			err = -EINVAL;
7451 			break;
7452 		}
7453 
7454 		err = cb(sym_addr, sym_type, sym_name, ctx);
7455 		if (err)
7456 			break;
7457 	}
7458 
7459 	fclose(f);
7460 	return err;
7461 }
7462 
7463 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
7464 		       const char *sym_name, void *ctx)
7465 {
7466 	struct bpf_object *obj = ctx;
7467 	const struct btf_type *t;
7468 	struct extern_desc *ext;
7469 
7470 	ext = find_extern_by_name(obj, sym_name);
7471 	if (!ext || ext->type != EXT_KSYM)
7472 		return 0;
7473 
7474 	t = btf__type_by_id(obj->btf, ext->btf_id);
7475 	if (!btf_is_var(t))
7476 		return 0;
7477 
7478 	if (ext->is_set && ext->ksym.addr != sym_addr) {
7479 		pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
7480 			sym_name, ext->ksym.addr, sym_addr);
7481 		return -EINVAL;
7482 	}
7483 	if (!ext->is_set) {
7484 		ext->is_set = true;
7485 		ext->ksym.addr = sym_addr;
7486 		pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
7487 	}
7488 	return 0;
7489 }
7490 
7491 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7492 {
7493 	return libbpf_kallsyms_parse(kallsyms_cb, obj);
7494 }
7495 
7496 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
7497 			    __u16 kind, struct btf **res_btf,
7498 			    struct module_btf **res_mod_btf)
7499 {
7500 	struct module_btf *mod_btf;
7501 	struct btf *btf;
7502 	int i, id, err;
7503 
7504 	btf = obj->btf_vmlinux;
7505 	mod_btf = NULL;
7506 	id = btf__find_by_name_kind(btf, ksym_name, kind);
7507 
7508 	if (id == -ENOENT) {
7509 		err = load_module_btfs(obj);
7510 		if (err)
7511 			return err;
7512 
7513 		for (i = 0; i < obj->btf_module_cnt; i++) {
7514 			/* we assume module_btf's BTF FD is always >0 */
7515 			mod_btf = &obj->btf_modules[i];
7516 			btf = mod_btf->btf;
7517 			id = btf__find_by_name_kind_own(btf, ksym_name, kind);
7518 			if (id != -ENOENT)
7519 				break;
7520 		}
7521 	}
7522 	if (id <= 0)
7523 		return -ESRCH;
7524 
7525 	*res_btf = btf;
7526 	*res_mod_btf = mod_btf;
7527 	return id;
7528 }
7529 
7530 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
7531 					       struct extern_desc *ext)
7532 {
7533 	const struct btf_type *targ_var, *targ_type;
7534 	__u32 targ_type_id, local_type_id;
7535 	struct module_btf *mod_btf = NULL;
7536 	const char *targ_var_name;
7537 	struct btf *btf = NULL;
7538 	int id, err;
7539 
7540 	id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
7541 	if (id < 0) {
7542 		if (id == -ESRCH && ext->is_weak)
7543 			return 0;
7544 		pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
7545 			ext->name);
7546 		return id;
7547 	}
7548 
7549 	/* find local type_id */
7550 	local_type_id = ext->ksym.type_id;
7551 
7552 	/* find target type_id */
7553 	targ_var = btf__type_by_id(btf, id);
7554 	targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
7555 	targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
7556 
7557 	err = bpf_core_types_are_compat(obj->btf, local_type_id,
7558 					btf, targ_type_id);
7559 	if (err <= 0) {
7560 		const struct btf_type *local_type;
7561 		const char *targ_name, *local_name;
7562 
7563 		local_type = btf__type_by_id(obj->btf, local_type_id);
7564 		local_name = btf__name_by_offset(obj->btf, local_type->name_off);
7565 		targ_name = btf__name_by_offset(btf, targ_type->name_off);
7566 
7567 		pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7568 			ext->name, local_type_id,
7569 			btf_kind_str(local_type), local_name, targ_type_id,
7570 			btf_kind_str(targ_type), targ_name);
7571 		return -EINVAL;
7572 	}
7573 
7574 	ext->is_set = true;
7575 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7576 	ext->ksym.kernel_btf_id = id;
7577 	pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
7578 		 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7579 
7580 	return 0;
7581 }
7582 
7583 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
7584 						struct extern_desc *ext)
7585 {
7586 	int local_func_proto_id, kfunc_proto_id, kfunc_id;
7587 	struct module_btf *mod_btf = NULL;
7588 	const struct btf_type *kern_func;
7589 	struct btf *kern_btf = NULL;
7590 	int ret;
7591 
7592 	local_func_proto_id = ext->ksym.type_id;
7593 
7594 	kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf);
7595 	if (kfunc_id < 0) {
7596 		if (kfunc_id == -ESRCH && ext->is_weak)
7597 			return 0;
7598 		pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
7599 			ext->name);
7600 		return kfunc_id;
7601 	}
7602 
7603 	kern_func = btf__type_by_id(kern_btf, kfunc_id);
7604 	kfunc_proto_id = kern_func->type;
7605 
7606 	ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
7607 					kern_btf, kfunc_proto_id);
7608 	if (ret <= 0) {
7609 		pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n",
7610 			ext->name, local_func_proto_id,
7611 			mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id);
7612 		return -EINVAL;
7613 	}
7614 
7615 	/* set index for module BTF fd in fd_array, if unset */
7616 	if (mod_btf && !mod_btf->fd_array_idx) {
7617 		/* insn->off is s16 */
7618 		if (obj->fd_array_cnt == INT16_MAX) {
7619 			pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
7620 				ext->name, mod_btf->fd_array_idx);
7621 			return -E2BIG;
7622 		}
7623 		/* Cannot use index 0 for module BTF fd */
7624 		if (!obj->fd_array_cnt)
7625 			obj->fd_array_cnt = 1;
7626 
7627 		ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
7628 					obj->fd_array_cnt + 1);
7629 		if (ret)
7630 			return ret;
7631 		mod_btf->fd_array_idx = obj->fd_array_cnt;
7632 		/* we assume module BTF FD is always >0 */
7633 		obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
7634 	}
7635 
7636 	ext->is_set = true;
7637 	ext->ksym.kernel_btf_id = kfunc_id;
7638 	ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
7639 	/* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data()
7640 	 * populates FD into ld_imm64 insn when it's used to point to kfunc.
7641 	 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call.
7642 	 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64.
7643 	 */
7644 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7645 	pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n",
7646 		 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id);
7647 
7648 	return 0;
7649 }
7650 
7651 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7652 {
7653 	const struct btf_type *t;
7654 	struct extern_desc *ext;
7655 	int i, err;
7656 
7657 	for (i = 0; i < obj->nr_extern; i++) {
7658 		ext = &obj->externs[i];
7659 		if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7660 			continue;
7661 
7662 		if (obj->gen_loader) {
7663 			ext->is_set = true;
7664 			ext->ksym.kernel_btf_obj_fd = 0;
7665 			ext->ksym.kernel_btf_id = 0;
7666 			continue;
7667 		}
7668 		t = btf__type_by_id(obj->btf, ext->btf_id);
7669 		if (btf_is_var(t))
7670 			err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
7671 		else
7672 			err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
7673 		if (err)
7674 			return err;
7675 	}
7676 	return 0;
7677 }
7678 
7679 static int bpf_object__resolve_externs(struct bpf_object *obj,
7680 				       const char *extra_kconfig)
7681 {
7682 	bool need_config = false, need_kallsyms = false;
7683 	bool need_vmlinux_btf = false;
7684 	struct extern_desc *ext;
7685 	void *kcfg_data = NULL;
7686 	int err, i;
7687 
7688 	if (obj->nr_extern == 0)
7689 		return 0;
7690 
7691 	if (obj->kconfig_map_idx >= 0)
7692 		kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7693 
7694 	for (i = 0; i < obj->nr_extern; i++) {
7695 		ext = &obj->externs[i];
7696 
7697 		if (ext->type == EXT_KSYM) {
7698 			if (ext->ksym.type_id)
7699 				need_vmlinux_btf = true;
7700 			else
7701 				need_kallsyms = true;
7702 			continue;
7703 		} else if (ext->type == EXT_KCFG) {
7704 			void *ext_ptr = kcfg_data + ext->kcfg.data_off;
7705 			__u64 value = 0;
7706 
7707 			/* Kconfig externs need actual /proc/config.gz */
7708 			if (str_has_pfx(ext->name, "CONFIG_")) {
7709 				need_config = true;
7710 				continue;
7711 			}
7712 
7713 			/* Virtual kcfg externs are customly handled by libbpf */
7714 			if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7715 				value = get_kernel_version();
7716 				if (!value) {
7717 					pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
7718 					return -EINVAL;
7719 				}
7720 			} else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
7721 				value = kernel_supports(obj, FEAT_BPF_COOKIE);
7722 			} else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
7723 				value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
7724 			} else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
7725 				/* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
7726 				 * __kconfig externs, where LINUX_ ones are virtual and filled out
7727 				 * customly by libbpf (their values don't come from Kconfig).
7728 				 * If LINUX_xxx variable is not recognized by libbpf, but is marked
7729 				 * __weak, it defaults to zero value, just like for CONFIG_xxx
7730 				 * externs.
7731 				 */
7732 				pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
7733 				return -EINVAL;
7734 			}
7735 
7736 			err = set_kcfg_value_num(ext, ext_ptr, value);
7737 			if (err)
7738 				return err;
7739 			pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
7740 				 ext->name, (long long)value);
7741 		} else {
7742 			pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
7743 			return -EINVAL;
7744 		}
7745 	}
7746 	if (need_config && extra_kconfig) {
7747 		err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7748 		if (err)
7749 			return -EINVAL;
7750 		need_config = false;
7751 		for (i = 0; i < obj->nr_extern; i++) {
7752 			ext = &obj->externs[i];
7753 			if (ext->type == EXT_KCFG && !ext->is_set) {
7754 				need_config = true;
7755 				break;
7756 			}
7757 		}
7758 	}
7759 	if (need_config) {
7760 		err = bpf_object__read_kconfig_file(obj, kcfg_data);
7761 		if (err)
7762 			return -EINVAL;
7763 	}
7764 	if (need_kallsyms) {
7765 		err = bpf_object__read_kallsyms_file(obj);
7766 		if (err)
7767 			return -EINVAL;
7768 	}
7769 	if (need_vmlinux_btf) {
7770 		err = bpf_object__resolve_ksyms_btf_id(obj);
7771 		if (err)
7772 			return -EINVAL;
7773 	}
7774 	for (i = 0; i < obj->nr_extern; i++) {
7775 		ext = &obj->externs[i];
7776 
7777 		if (!ext->is_set && !ext->is_weak) {
7778 			pr_warn("extern '%s' (strong): not resolved\n", ext->name);
7779 			return -ESRCH;
7780 		} else if (!ext->is_set) {
7781 			pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
7782 				 ext->name);
7783 		}
7784 	}
7785 
7786 	return 0;
7787 }
7788 
7789 static void bpf_map_prepare_vdata(const struct bpf_map *map)
7790 {
7791 	struct bpf_struct_ops *st_ops;
7792 	__u32 i;
7793 
7794 	st_ops = map->st_ops;
7795 	for (i = 0; i < btf_vlen(st_ops->type); i++) {
7796 		struct bpf_program *prog = st_ops->progs[i];
7797 		void *kern_data;
7798 		int prog_fd;
7799 
7800 		if (!prog)
7801 			continue;
7802 
7803 		prog_fd = bpf_program__fd(prog);
7804 		kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
7805 		*(unsigned long *)kern_data = prog_fd;
7806 	}
7807 }
7808 
7809 static int bpf_object_prepare_struct_ops(struct bpf_object *obj)
7810 {
7811 	int i;
7812 
7813 	for (i = 0; i < obj->nr_maps; i++)
7814 		if (bpf_map__is_struct_ops(&obj->maps[i]))
7815 			bpf_map_prepare_vdata(&obj->maps[i]);
7816 
7817 	return 0;
7818 }
7819 
7820 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
7821 {
7822 	int err, i;
7823 
7824 	if (!obj)
7825 		return libbpf_err(-EINVAL);
7826 
7827 	if (obj->loaded) {
7828 		pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7829 		return libbpf_err(-EINVAL);
7830 	}
7831 
7832 	if (obj->gen_loader)
7833 		bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
7834 
7835 	err = bpf_object__probe_loading(obj);
7836 	err = err ? : bpf_object__load_vmlinux_btf(obj, false);
7837 	err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7838 	err = err ? : bpf_object__sanitize_and_load_btf(obj);
7839 	err = err ? : bpf_object__sanitize_maps(obj);
7840 	err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7841 	err = err ? : bpf_object__create_maps(obj);
7842 	err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
7843 	err = err ? : bpf_object__load_progs(obj, extra_log_level);
7844 	err = err ? : bpf_object_init_prog_arrays(obj);
7845 	err = err ? : bpf_object_prepare_struct_ops(obj);
7846 
7847 	if (obj->gen_loader) {
7848 		/* reset FDs */
7849 		if (obj->btf)
7850 			btf__set_fd(obj->btf, -1);
7851 		for (i = 0; i < obj->nr_maps; i++)
7852 			obj->maps[i].fd = -1;
7853 		if (!err)
7854 			err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
7855 	}
7856 
7857 	/* clean up fd_array */
7858 	zfree(&obj->fd_array);
7859 
7860 	/* clean up module BTFs */
7861 	for (i = 0; i < obj->btf_module_cnt; i++) {
7862 		close(obj->btf_modules[i].fd);
7863 		btf__free(obj->btf_modules[i].btf);
7864 		free(obj->btf_modules[i].name);
7865 	}
7866 	free(obj->btf_modules);
7867 
7868 	/* clean up vmlinux BTF */
7869 	btf__free(obj->btf_vmlinux);
7870 	obj->btf_vmlinux = NULL;
7871 
7872 	obj->loaded = true; /* doesn't matter if successfully or not */
7873 
7874 	if (err)
7875 		goto out;
7876 
7877 	return 0;
7878 out:
7879 	/* unpin any maps that were auto-pinned during load */
7880 	for (i = 0; i < obj->nr_maps; i++)
7881 		if (obj->maps[i].pinned && !obj->maps[i].reused)
7882 			bpf_map__unpin(&obj->maps[i], NULL);
7883 
7884 	bpf_object_unload(obj);
7885 	pr_warn("failed to load object '%s'\n", obj->path);
7886 	return libbpf_err(err);
7887 }
7888 
7889 int bpf_object__load(struct bpf_object *obj)
7890 {
7891 	return bpf_object_load(obj, 0, NULL);
7892 }
7893 
7894 static int make_parent_dir(const char *path)
7895 {
7896 	char *cp, errmsg[STRERR_BUFSIZE];
7897 	char *dname, *dir;
7898 	int err = 0;
7899 
7900 	dname = strdup(path);
7901 	if (dname == NULL)
7902 		return -ENOMEM;
7903 
7904 	dir = dirname(dname);
7905 	if (mkdir(dir, 0700) && errno != EEXIST)
7906 		err = -errno;
7907 
7908 	free(dname);
7909 	if (err) {
7910 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7911 		pr_warn("failed to mkdir %s: %s\n", path, cp);
7912 	}
7913 	return err;
7914 }
7915 
7916 static int check_path(const char *path)
7917 {
7918 	char *cp, errmsg[STRERR_BUFSIZE];
7919 	struct statfs st_fs;
7920 	char *dname, *dir;
7921 	int err = 0;
7922 
7923 	if (path == NULL)
7924 		return -EINVAL;
7925 
7926 	dname = strdup(path);
7927 	if (dname == NULL)
7928 		return -ENOMEM;
7929 
7930 	dir = dirname(dname);
7931 	if (statfs(dir, &st_fs)) {
7932 		cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7933 		pr_warn("failed to statfs %s: %s\n", dir, cp);
7934 		err = -errno;
7935 	}
7936 	free(dname);
7937 
7938 	if (!err && st_fs.f_type != BPF_FS_MAGIC) {
7939 		pr_warn("specified path %s is not on BPF FS\n", path);
7940 		err = -EINVAL;
7941 	}
7942 
7943 	return err;
7944 }
7945 
7946 int bpf_program__pin(struct bpf_program *prog, const char *path)
7947 {
7948 	char *cp, errmsg[STRERR_BUFSIZE];
7949 	int err;
7950 
7951 	if (prog->fd < 0) {
7952 		pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
7953 		return libbpf_err(-EINVAL);
7954 	}
7955 
7956 	err = make_parent_dir(path);
7957 	if (err)
7958 		return libbpf_err(err);
7959 
7960 	err = check_path(path);
7961 	if (err)
7962 		return libbpf_err(err);
7963 
7964 	if (bpf_obj_pin(prog->fd, path)) {
7965 		err = -errno;
7966 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
7967 		pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp);
7968 		return libbpf_err(err);
7969 	}
7970 
7971 	pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
7972 	return 0;
7973 }
7974 
7975 int bpf_program__unpin(struct bpf_program *prog, const char *path)
7976 {
7977 	int err;
7978 
7979 	if (prog->fd < 0) {
7980 		pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
7981 		return libbpf_err(-EINVAL);
7982 	}
7983 
7984 	err = check_path(path);
7985 	if (err)
7986 		return libbpf_err(err);
7987 
7988 	err = unlink(path);
7989 	if (err)
7990 		return libbpf_err(-errno);
7991 
7992 	pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
7993 	return 0;
7994 }
7995 
7996 int bpf_map__pin(struct bpf_map *map, const char *path)
7997 {
7998 	char *cp, errmsg[STRERR_BUFSIZE];
7999 	int err;
8000 
8001 	if (map == NULL) {
8002 		pr_warn("invalid map pointer\n");
8003 		return libbpf_err(-EINVAL);
8004 	}
8005 
8006 	if (map->pin_path) {
8007 		if (path && strcmp(path, map->pin_path)) {
8008 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8009 				bpf_map__name(map), map->pin_path, path);
8010 			return libbpf_err(-EINVAL);
8011 		} else if (map->pinned) {
8012 			pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8013 				 bpf_map__name(map), map->pin_path);
8014 			return 0;
8015 		}
8016 	} else {
8017 		if (!path) {
8018 			pr_warn("missing a path to pin map '%s' at\n",
8019 				bpf_map__name(map));
8020 			return libbpf_err(-EINVAL);
8021 		} else if (map->pinned) {
8022 			pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8023 			return libbpf_err(-EEXIST);
8024 		}
8025 
8026 		map->pin_path = strdup(path);
8027 		if (!map->pin_path) {
8028 			err = -errno;
8029 			goto out_err;
8030 		}
8031 	}
8032 
8033 	err = make_parent_dir(map->pin_path);
8034 	if (err)
8035 		return libbpf_err(err);
8036 
8037 	err = check_path(map->pin_path);
8038 	if (err)
8039 		return libbpf_err(err);
8040 
8041 	if (bpf_obj_pin(map->fd, map->pin_path)) {
8042 		err = -errno;
8043 		goto out_err;
8044 	}
8045 
8046 	map->pinned = true;
8047 	pr_debug("pinned map '%s'\n", map->pin_path);
8048 
8049 	return 0;
8050 
8051 out_err:
8052 	cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8053 	pr_warn("failed to pin map: %s\n", cp);
8054 	return libbpf_err(err);
8055 }
8056 
8057 int bpf_map__unpin(struct bpf_map *map, const char *path)
8058 {
8059 	int err;
8060 
8061 	if (map == NULL) {
8062 		pr_warn("invalid map pointer\n");
8063 		return libbpf_err(-EINVAL);
8064 	}
8065 
8066 	if (map->pin_path) {
8067 		if (path && strcmp(path, map->pin_path)) {
8068 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8069 				bpf_map__name(map), map->pin_path, path);
8070 			return libbpf_err(-EINVAL);
8071 		}
8072 		path = map->pin_path;
8073 	} else if (!path) {
8074 		pr_warn("no path to unpin map '%s' from\n",
8075 			bpf_map__name(map));
8076 		return libbpf_err(-EINVAL);
8077 	}
8078 
8079 	err = check_path(path);
8080 	if (err)
8081 		return libbpf_err(err);
8082 
8083 	err = unlink(path);
8084 	if (err != 0)
8085 		return libbpf_err(-errno);
8086 
8087 	map->pinned = false;
8088 	pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8089 
8090 	return 0;
8091 }
8092 
8093 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8094 {
8095 	char *new = NULL;
8096 
8097 	if (path) {
8098 		new = strdup(path);
8099 		if (!new)
8100 			return libbpf_err(-errno);
8101 	}
8102 
8103 	free(map->pin_path);
8104 	map->pin_path = new;
8105 	return 0;
8106 }
8107 
8108 __alias(bpf_map__pin_path)
8109 const char *bpf_map__get_pin_path(const struct bpf_map *map);
8110 
8111 const char *bpf_map__pin_path(const struct bpf_map *map)
8112 {
8113 	return map->pin_path;
8114 }
8115 
8116 bool bpf_map__is_pinned(const struct bpf_map *map)
8117 {
8118 	return map->pinned;
8119 }
8120 
8121 static void sanitize_pin_path(char *s)
8122 {
8123 	/* bpffs disallows periods in path names */
8124 	while (*s) {
8125 		if (*s == '.')
8126 			*s = '_';
8127 		s++;
8128 	}
8129 }
8130 
8131 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8132 {
8133 	struct bpf_map *map;
8134 	int err;
8135 
8136 	if (!obj)
8137 		return libbpf_err(-ENOENT);
8138 
8139 	if (!obj->loaded) {
8140 		pr_warn("object not yet loaded; load it first\n");
8141 		return libbpf_err(-ENOENT);
8142 	}
8143 
8144 	bpf_object__for_each_map(map, obj) {
8145 		char *pin_path = NULL;
8146 		char buf[PATH_MAX];
8147 
8148 		if (!map->autocreate)
8149 			continue;
8150 
8151 		if (path) {
8152 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8153 			if (err)
8154 				goto err_unpin_maps;
8155 			sanitize_pin_path(buf);
8156 			pin_path = buf;
8157 		} else if (!map->pin_path) {
8158 			continue;
8159 		}
8160 
8161 		err = bpf_map__pin(map, pin_path);
8162 		if (err)
8163 			goto err_unpin_maps;
8164 	}
8165 
8166 	return 0;
8167 
8168 err_unpin_maps:
8169 	while ((map = bpf_object__prev_map(obj, map))) {
8170 		if (!map->pin_path)
8171 			continue;
8172 
8173 		bpf_map__unpin(map, NULL);
8174 	}
8175 
8176 	return libbpf_err(err);
8177 }
8178 
8179 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8180 {
8181 	struct bpf_map *map;
8182 	int err;
8183 
8184 	if (!obj)
8185 		return libbpf_err(-ENOENT);
8186 
8187 	bpf_object__for_each_map(map, obj) {
8188 		char *pin_path = NULL;
8189 		char buf[PATH_MAX];
8190 
8191 		if (path) {
8192 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8193 			if (err)
8194 				return libbpf_err(err);
8195 			sanitize_pin_path(buf);
8196 			pin_path = buf;
8197 		} else if (!map->pin_path) {
8198 			continue;
8199 		}
8200 
8201 		err = bpf_map__unpin(map, pin_path);
8202 		if (err)
8203 			return libbpf_err(err);
8204 	}
8205 
8206 	return 0;
8207 }
8208 
8209 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8210 {
8211 	struct bpf_program *prog;
8212 	char buf[PATH_MAX];
8213 	int err;
8214 
8215 	if (!obj)
8216 		return libbpf_err(-ENOENT);
8217 
8218 	if (!obj->loaded) {
8219 		pr_warn("object not yet loaded; load it first\n");
8220 		return libbpf_err(-ENOENT);
8221 	}
8222 
8223 	bpf_object__for_each_program(prog, obj) {
8224 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8225 		if (err)
8226 			goto err_unpin_programs;
8227 
8228 		err = bpf_program__pin(prog, buf);
8229 		if (err)
8230 			goto err_unpin_programs;
8231 	}
8232 
8233 	return 0;
8234 
8235 err_unpin_programs:
8236 	while ((prog = bpf_object__prev_program(obj, prog))) {
8237 		if (pathname_concat(buf, sizeof(buf), path, prog->name))
8238 			continue;
8239 
8240 		bpf_program__unpin(prog, buf);
8241 	}
8242 
8243 	return libbpf_err(err);
8244 }
8245 
8246 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8247 {
8248 	struct bpf_program *prog;
8249 	int err;
8250 
8251 	if (!obj)
8252 		return libbpf_err(-ENOENT);
8253 
8254 	bpf_object__for_each_program(prog, obj) {
8255 		char buf[PATH_MAX];
8256 
8257 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8258 		if (err)
8259 			return libbpf_err(err);
8260 
8261 		err = bpf_program__unpin(prog, buf);
8262 		if (err)
8263 			return libbpf_err(err);
8264 	}
8265 
8266 	return 0;
8267 }
8268 
8269 int bpf_object__pin(struct bpf_object *obj, const char *path)
8270 {
8271 	int err;
8272 
8273 	err = bpf_object__pin_maps(obj, path);
8274 	if (err)
8275 		return libbpf_err(err);
8276 
8277 	err = bpf_object__pin_programs(obj, path);
8278 	if (err) {
8279 		bpf_object__unpin_maps(obj, path);
8280 		return libbpf_err(err);
8281 	}
8282 
8283 	return 0;
8284 }
8285 
8286 static void bpf_map__destroy(struct bpf_map *map)
8287 {
8288 	if (map->inner_map) {
8289 		bpf_map__destroy(map->inner_map);
8290 		zfree(&map->inner_map);
8291 	}
8292 
8293 	zfree(&map->init_slots);
8294 	map->init_slots_sz = 0;
8295 
8296 	if (map->mmaped) {
8297 		munmap(map->mmaped, bpf_map_mmap_sz(map));
8298 		map->mmaped = NULL;
8299 	}
8300 
8301 	if (map->st_ops) {
8302 		zfree(&map->st_ops->data);
8303 		zfree(&map->st_ops->progs);
8304 		zfree(&map->st_ops->kern_func_off);
8305 		zfree(&map->st_ops);
8306 	}
8307 
8308 	zfree(&map->name);
8309 	zfree(&map->real_name);
8310 	zfree(&map->pin_path);
8311 
8312 	if (map->fd >= 0)
8313 		zclose(map->fd);
8314 }
8315 
8316 void bpf_object__close(struct bpf_object *obj)
8317 {
8318 	size_t i;
8319 
8320 	if (IS_ERR_OR_NULL(obj))
8321 		return;
8322 
8323 	usdt_manager_free(obj->usdt_man);
8324 	obj->usdt_man = NULL;
8325 
8326 	bpf_gen__free(obj->gen_loader);
8327 	bpf_object__elf_finish(obj);
8328 	bpf_object_unload(obj);
8329 	btf__free(obj->btf);
8330 	btf_ext__free(obj->btf_ext);
8331 
8332 	for (i = 0; i < obj->nr_maps; i++)
8333 		bpf_map__destroy(&obj->maps[i]);
8334 
8335 	zfree(&obj->btf_custom_path);
8336 	zfree(&obj->kconfig);
8337 	zfree(&obj->externs);
8338 	obj->nr_extern = 0;
8339 
8340 	zfree(&obj->maps);
8341 	obj->nr_maps = 0;
8342 
8343 	if (obj->programs && obj->nr_programs) {
8344 		for (i = 0; i < obj->nr_programs; i++)
8345 			bpf_program__exit(&obj->programs[i]);
8346 	}
8347 	zfree(&obj->programs);
8348 
8349 	free(obj);
8350 }
8351 
8352 const char *bpf_object__name(const struct bpf_object *obj)
8353 {
8354 	return obj ? obj->name : libbpf_err_ptr(-EINVAL);
8355 }
8356 
8357 unsigned int bpf_object__kversion(const struct bpf_object *obj)
8358 {
8359 	return obj ? obj->kern_version : 0;
8360 }
8361 
8362 struct btf *bpf_object__btf(const struct bpf_object *obj)
8363 {
8364 	return obj ? obj->btf : NULL;
8365 }
8366 
8367 int bpf_object__btf_fd(const struct bpf_object *obj)
8368 {
8369 	return obj->btf ? btf__fd(obj->btf) : -1;
8370 }
8371 
8372 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
8373 {
8374 	if (obj->loaded)
8375 		return libbpf_err(-EINVAL);
8376 
8377 	obj->kern_version = kern_version;
8378 
8379 	return 0;
8380 }
8381 
8382 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
8383 {
8384 	struct bpf_gen *gen;
8385 
8386 	if (!opts)
8387 		return -EFAULT;
8388 	if (!OPTS_VALID(opts, gen_loader_opts))
8389 		return -EINVAL;
8390 	gen = calloc(sizeof(*gen), 1);
8391 	if (!gen)
8392 		return -ENOMEM;
8393 	gen->opts = opts;
8394 	obj->gen_loader = gen;
8395 	return 0;
8396 }
8397 
8398 static struct bpf_program *
8399 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8400 		    bool forward)
8401 {
8402 	size_t nr_programs = obj->nr_programs;
8403 	ssize_t idx;
8404 
8405 	if (!nr_programs)
8406 		return NULL;
8407 
8408 	if (!p)
8409 		/* Iter from the beginning */
8410 		return forward ? &obj->programs[0] :
8411 			&obj->programs[nr_programs - 1];
8412 
8413 	if (p->obj != obj) {
8414 		pr_warn("error: program handler doesn't match object\n");
8415 		return errno = EINVAL, NULL;
8416 	}
8417 
8418 	idx = (p - obj->programs) + (forward ? 1 : -1);
8419 	if (idx >= obj->nr_programs || idx < 0)
8420 		return NULL;
8421 	return &obj->programs[idx];
8422 }
8423 
8424 struct bpf_program *
8425 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
8426 {
8427 	struct bpf_program *prog = prev;
8428 
8429 	do {
8430 		prog = __bpf_program__iter(prog, obj, true);
8431 	} while (prog && prog_is_subprog(obj, prog));
8432 
8433 	return prog;
8434 }
8435 
8436 struct bpf_program *
8437 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
8438 {
8439 	struct bpf_program *prog = next;
8440 
8441 	do {
8442 		prog = __bpf_program__iter(prog, obj, false);
8443 	} while (prog && prog_is_subprog(obj, prog));
8444 
8445 	return prog;
8446 }
8447 
8448 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8449 {
8450 	prog->prog_ifindex = ifindex;
8451 }
8452 
8453 const char *bpf_program__name(const struct bpf_program *prog)
8454 {
8455 	return prog->name;
8456 }
8457 
8458 const char *bpf_program__section_name(const struct bpf_program *prog)
8459 {
8460 	return prog->sec_name;
8461 }
8462 
8463 bool bpf_program__autoload(const struct bpf_program *prog)
8464 {
8465 	return prog->autoload;
8466 }
8467 
8468 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8469 {
8470 	if (prog->obj->loaded)
8471 		return libbpf_err(-EINVAL);
8472 
8473 	prog->autoload = autoload;
8474 	return 0;
8475 }
8476 
8477 bool bpf_program__autoattach(const struct bpf_program *prog)
8478 {
8479 	return prog->autoattach;
8480 }
8481 
8482 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
8483 {
8484 	prog->autoattach = autoattach;
8485 }
8486 
8487 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
8488 {
8489 	return prog->insns;
8490 }
8491 
8492 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
8493 {
8494 	return prog->insns_cnt;
8495 }
8496 
8497 int bpf_program__set_insns(struct bpf_program *prog,
8498 			   struct bpf_insn *new_insns, size_t new_insn_cnt)
8499 {
8500 	struct bpf_insn *insns;
8501 
8502 	if (prog->obj->loaded)
8503 		return -EBUSY;
8504 
8505 	insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
8506 	if (!insns) {
8507 		pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
8508 		return -ENOMEM;
8509 	}
8510 	memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
8511 
8512 	prog->insns = insns;
8513 	prog->insns_cnt = new_insn_cnt;
8514 	return 0;
8515 }
8516 
8517 int bpf_program__fd(const struct bpf_program *prog)
8518 {
8519 	if (!prog)
8520 		return libbpf_err(-EINVAL);
8521 
8522 	if (prog->fd < 0)
8523 		return libbpf_err(-ENOENT);
8524 
8525 	return prog->fd;
8526 }
8527 
8528 __alias(bpf_program__type)
8529 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
8530 
8531 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
8532 {
8533 	return prog->type;
8534 }
8535 
8536 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8537 {
8538 	if (prog->obj->loaded)
8539 		return libbpf_err(-EBUSY);
8540 
8541 	prog->type = type;
8542 	prog->sec_def = NULL;
8543 	return 0;
8544 }
8545 
8546 __alias(bpf_program__expected_attach_type)
8547 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
8548 
8549 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
8550 {
8551 	return prog->expected_attach_type;
8552 }
8553 
8554 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
8555 					   enum bpf_attach_type type)
8556 {
8557 	if (prog->obj->loaded)
8558 		return libbpf_err(-EBUSY);
8559 
8560 	prog->expected_attach_type = type;
8561 	return 0;
8562 }
8563 
8564 __u32 bpf_program__flags(const struct bpf_program *prog)
8565 {
8566 	return prog->prog_flags;
8567 }
8568 
8569 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
8570 {
8571 	if (prog->obj->loaded)
8572 		return libbpf_err(-EBUSY);
8573 
8574 	prog->prog_flags = flags;
8575 	return 0;
8576 }
8577 
8578 __u32 bpf_program__log_level(const struct bpf_program *prog)
8579 {
8580 	return prog->log_level;
8581 }
8582 
8583 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
8584 {
8585 	if (prog->obj->loaded)
8586 		return libbpf_err(-EBUSY);
8587 
8588 	prog->log_level = log_level;
8589 	return 0;
8590 }
8591 
8592 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
8593 {
8594 	*log_size = prog->log_size;
8595 	return prog->log_buf;
8596 }
8597 
8598 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
8599 {
8600 	if (log_size && !log_buf)
8601 		return -EINVAL;
8602 	if (prog->log_size > UINT_MAX)
8603 		return -EINVAL;
8604 	if (prog->obj->loaded)
8605 		return -EBUSY;
8606 
8607 	prog->log_buf = log_buf;
8608 	prog->log_size = log_size;
8609 	return 0;
8610 }
8611 
8612 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) {			    \
8613 	.sec = (char *)sec_pfx,						    \
8614 	.prog_type = BPF_PROG_TYPE_##ptype,				    \
8615 	.expected_attach_type = atype,					    \
8616 	.cookie = (long)(flags),					    \
8617 	.prog_prepare_load_fn = libbpf_prepare_prog_load,		    \
8618 	__VA_ARGS__							    \
8619 }
8620 
8621 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8622 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8623 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8624 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8625 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8626 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8627 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8628 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8629 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8630 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8631 
8632 static const struct bpf_sec_def section_defs[] = {
8633 	SEC_DEF("socket",		SOCKET_FILTER, 0, SEC_NONE),
8634 	SEC_DEF("sk_reuseport/migrate",	SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
8635 	SEC_DEF("sk_reuseport",		SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
8636 	SEC_DEF("kprobe+",		KPROBE,	0, SEC_NONE, attach_kprobe),
8637 	SEC_DEF("uprobe+",		KPROBE,	0, SEC_NONE, attach_uprobe),
8638 	SEC_DEF("uprobe.s+",		KPROBE,	0, SEC_SLEEPABLE, attach_uprobe),
8639 	SEC_DEF("kretprobe+",		KPROBE, 0, SEC_NONE, attach_kprobe),
8640 	SEC_DEF("uretprobe+",		KPROBE, 0, SEC_NONE, attach_uprobe),
8641 	SEC_DEF("uretprobe.s+",		KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
8642 	SEC_DEF("kprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8643 	SEC_DEF("kretprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8644 	SEC_DEF("ksyscall+",		KPROBE,	0, SEC_NONE, attach_ksyscall),
8645 	SEC_DEF("kretsyscall+",		KPROBE, 0, SEC_NONE, attach_ksyscall),
8646 	SEC_DEF("usdt+",		KPROBE,	0, SEC_NONE, attach_usdt),
8647 	SEC_DEF("tc",			SCHED_CLS, 0, SEC_NONE),
8648 	SEC_DEF("classifier",		SCHED_CLS, 0, SEC_NONE),
8649 	SEC_DEF("action",		SCHED_ACT, 0, SEC_NONE),
8650 	SEC_DEF("tracepoint+",		TRACEPOINT, 0, SEC_NONE, attach_tp),
8651 	SEC_DEF("tp+",			TRACEPOINT, 0, SEC_NONE, attach_tp),
8652 	SEC_DEF("raw_tracepoint+",	RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8653 	SEC_DEF("raw_tp+",		RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8654 	SEC_DEF("raw_tracepoint.w+",	RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8655 	SEC_DEF("raw_tp.w+",		RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8656 	SEC_DEF("tp_btf+",		TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
8657 	SEC_DEF("fentry+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
8658 	SEC_DEF("fmod_ret+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
8659 	SEC_DEF("fexit+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
8660 	SEC_DEF("fentry.s+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8661 	SEC_DEF("fmod_ret.s+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8662 	SEC_DEF("fexit.s+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8663 	SEC_DEF("freplace+",		EXT, 0, SEC_ATTACH_BTF, attach_trace),
8664 	SEC_DEF("lsm+",			LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
8665 	SEC_DEF("lsm.s+",		LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
8666 	SEC_DEF("lsm_cgroup+",		LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
8667 	SEC_DEF("iter+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
8668 	SEC_DEF("iter.s+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
8669 	SEC_DEF("syscall",		SYSCALL, 0, SEC_SLEEPABLE),
8670 	SEC_DEF("xdp.frags/devmap",	XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
8671 	SEC_DEF("xdp/devmap",		XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
8672 	SEC_DEF("xdp.frags/cpumap",	XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
8673 	SEC_DEF("xdp/cpumap",		XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
8674 	SEC_DEF("xdp.frags",		XDP, BPF_XDP, SEC_XDP_FRAGS),
8675 	SEC_DEF("xdp",			XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
8676 	SEC_DEF("perf_event",		PERF_EVENT, 0, SEC_NONE),
8677 	SEC_DEF("lwt_in",		LWT_IN, 0, SEC_NONE),
8678 	SEC_DEF("lwt_out",		LWT_OUT, 0, SEC_NONE),
8679 	SEC_DEF("lwt_xmit",		LWT_XMIT, 0, SEC_NONE),
8680 	SEC_DEF("lwt_seg6local",	LWT_SEG6LOCAL, 0, SEC_NONE),
8681 	SEC_DEF("sockops",		SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
8682 	SEC_DEF("sk_skb/stream_parser",	SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
8683 	SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
8684 	SEC_DEF("sk_skb",		SK_SKB, 0, SEC_NONE),
8685 	SEC_DEF("sk_msg",		SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
8686 	SEC_DEF("lirc_mode2",		LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
8687 	SEC_DEF("flow_dissector",	FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
8688 	SEC_DEF("cgroup_skb/ingress",	CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
8689 	SEC_DEF("cgroup_skb/egress",	CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
8690 	SEC_DEF("cgroup/skb",		CGROUP_SKB, 0, SEC_NONE),
8691 	SEC_DEF("cgroup/sock_create",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
8692 	SEC_DEF("cgroup/sock_release",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
8693 	SEC_DEF("cgroup/sock",		CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
8694 	SEC_DEF("cgroup/post_bind4",	CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
8695 	SEC_DEF("cgroup/post_bind6",	CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
8696 	SEC_DEF("cgroup/bind4",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
8697 	SEC_DEF("cgroup/bind6",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
8698 	SEC_DEF("cgroup/connect4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
8699 	SEC_DEF("cgroup/connect6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
8700 	SEC_DEF("cgroup/sendmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
8701 	SEC_DEF("cgroup/sendmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
8702 	SEC_DEF("cgroup/recvmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
8703 	SEC_DEF("cgroup/recvmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
8704 	SEC_DEF("cgroup/getpeername4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
8705 	SEC_DEF("cgroup/getpeername6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
8706 	SEC_DEF("cgroup/getsockname4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
8707 	SEC_DEF("cgroup/getsockname6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
8708 	SEC_DEF("cgroup/sysctl",	CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
8709 	SEC_DEF("cgroup/getsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
8710 	SEC_DEF("cgroup/setsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
8711 	SEC_DEF("cgroup/dev",		CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
8712 	SEC_DEF("struct_ops+",		STRUCT_OPS, 0, SEC_NONE),
8713 	SEC_DEF("struct_ops.s+",	STRUCT_OPS, 0, SEC_SLEEPABLE),
8714 	SEC_DEF("sk_lookup",		SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
8715 	SEC_DEF("netfilter",		NETFILTER, 0, SEC_NONE),
8716 };
8717 
8718 static size_t custom_sec_def_cnt;
8719 static struct bpf_sec_def *custom_sec_defs;
8720 static struct bpf_sec_def custom_fallback_def;
8721 static bool has_custom_fallback_def;
8722 
8723 static int last_custom_sec_def_handler_id;
8724 
8725 int libbpf_register_prog_handler(const char *sec,
8726 				 enum bpf_prog_type prog_type,
8727 				 enum bpf_attach_type exp_attach_type,
8728 				 const struct libbpf_prog_handler_opts *opts)
8729 {
8730 	struct bpf_sec_def *sec_def;
8731 
8732 	if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
8733 		return libbpf_err(-EINVAL);
8734 
8735 	if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
8736 		return libbpf_err(-E2BIG);
8737 
8738 	if (sec) {
8739 		sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
8740 					      sizeof(*sec_def));
8741 		if (!sec_def)
8742 			return libbpf_err(-ENOMEM);
8743 
8744 		custom_sec_defs = sec_def;
8745 		sec_def = &custom_sec_defs[custom_sec_def_cnt];
8746 	} else {
8747 		if (has_custom_fallback_def)
8748 			return libbpf_err(-EBUSY);
8749 
8750 		sec_def = &custom_fallback_def;
8751 	}
8752 
8753 	sec_def->sec = sec ? strdup(sec) : NULL;
8754 	if (sec && !sec_def->sec)
8755 		return libbpf_err(-ENOMEM);
8756 
8757 	sec_def->prog_type = prog_type;
8758 	sec_def->expected_attach_type = exp_attach_type;
8759 	sec_def->cookie = OPTS_GET(opts, cookie, 0);
8760 
8761 	sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
8762 	sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
8763 	sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
8764 
8765 	sec_def->handler_id = ++last_custom_sec_def_handler_id;
8766 
8767 	if (sec)
8768 		custom_sec_def_cnt++;
8769 	else
8770 		has_custom_fallback_def = true;
8771 
8772 	return sec_def->handler_id;
8773 }
8774 
8775 int libbpf_unregister_prog_handler(int handler_id)
8776 {
8777 	struct bpf_sec_def *sec_defs;
8778 	int i;
8779 
8780 	if (handler_id <= 0)
8781 		return libbpf_err(-EINVAL);
8782 
8783 	if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
8784 		memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
8785 		has_custom_fallback_def = false;
8786 		return 0;
8787 	}
8788 
8789 	for (i = 0; i < custom_sec_def_cnt; i++) {
8790 		if (custom_sec_defs[i].handler_id == handler_id)
8791 			break;
8792 	}
8793 
8794 	if (i == custom_sec_def_cnt)
8795 		return libbpf_err(-ENOENT);
8796 
8797 	free(custom_sec_defs[i].sec);
8798 	for (i = i + 1; i < custom_sec_def_cnt; i++)
8799 		custom_sec_defs[i - 1] = custom_sec_defs[i];
8800 	custom_sec_def_cnt--;
8801 
8802 	/* try to shrink the array, but it's ok if we couldn't */
8803 	sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
8804 	if (sec_defs)
8805 		custom_sec_defs = sec_defs;
8806 
8807 	return 0;
8808 }
8809 
8810 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
8811 {
8812 	size_t len = strlen(sec_def->sec);
8813 
8814 	/* "type/" always has to have proper SEC("type/extras") form */
8815 	if (sec_def->sec[len - 1] == '/') {
8816 		if (str_has_pfx(sec_name, sec_def->sec))
8817 			return true;
8818 		return false;
8819 	}
8820 
8821 	/* "type+" means it can be either exact SEC("type") or
8822 	 * well-formed SEC("type/extras") with proper '/' separator
8823 	 */
8824 	if (sec_def->sec[len - 1] == '+') {
8825 		len--;
8826 		/* not even a prefix */
8827 		if (strncmp(sec_name, sec_def->sec, len) != 0)
8828 			return false;
8829 		/* exact match or has '/' separator */
8830 		if (sec_name[len] == '\0' || sec_name[len] == '/')
8831 			return true;
8832 		return false;
8833 	}
8834 
8835 	return strcmp(sec_name, sec_def->sec) == 0;
8836 }
8837 
8838 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
8839 {
8840 	const struct bpf_sec_def *sec_def;
8841 	int i, n;
8842 
8843 	n = custom_sec_def_cnt;
8844 	for (i = 0; i < n; i++) {
8845 		sec_def = &custom_sec_defs[i];
8846 		if (sec_def_matches(sec_def, sec_name))
8847 			return sec_def;
8848 	}
8849 
8850 	n = ARRAY_SIZE(section_defs);
8851 	for (i = 0; i < n; i++) {
8852 		sec_def = &section_defs[i];
8853 		if (sec_def_matches(sec_def, sec_name))
8854 			return sec_def;
8855 	}
8856 
8857 	if (has_custom_fallback_def)
8858 		return &custom_fallback_def;
8859 
8860 	return NULL;
8861 }
8862 
8863 #define MAX_TYPE_NAME_SIZE 32
8864 
8865 static char *libbpf_get_type_names(bool attach_type)
8866 {
8867 	int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
8868 	char *buf;
8869 
8870 	buf = malloc(len);
8871 	if (!buf)
8872 		return NULL;
8873 
8874 	buf[0] = '\0';
8875 	/* Forge string buf with all available names */
8876 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8877 		const struct bpf_sec_def *sec_def = &section_defs[i];
8878 
8879 		if (attach_type) {
8880 			if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
8881 				continue;
8882 
8883 			if (!(sec_def->cookie & SEC_ATTACHABLE))
8884 				continue;
8885 		}
8886 
8887 		if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
8888 			free(buf);
8889 			return NULL;
8890 		}
8891 		strcat(buf, " ");
8892 		strcat(buf, section_defs[i].sec);
8893 	}
8894 
8895 	return buf;
8896 }
8897 
8898 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
8899 			     enum bpf_attach_type *expected_attach_type)
8900 {
8901 	const struct bpf_sec_def *sec_def;
8902 	char *type_names;
8903 
8904 	if (!name)
8905 		return libbpf_err(-EINVAL);
8906 
8907 	sec_def = find_sec_def(name);
8908 	if (sec_def) {
8909 		*prog_type = sec_def->prog_type;
8910 		*expected_attach_type = sec_def->expected_attach_type;
8911 		return 0;
8912 	}
8913 
8914 	pr_debug("failed to guess program type from ELF section '%s'\n", name);
8915 	type_names = libbpf_get_type_names(false);
8916 	if (type_names != NULL) {
8917 		pr_debug("supported section(type) names are:%s\n", type_names);
8918 		free(type_names);
8919 	}
8920 
8921 	return libbpf_err(-ESRCH);
8922 }
8923 
8924 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
8925 {
8926 	if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
8927 		return NULL;
8928 
8929 	return attach_type_name[t];
8930 }
8931 
8932 const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
8933 {
8934 	if (t < 0 || t >= ARRAY_SIZE(link_type_name))
8935 		return NULL;
8936 
8937 	return link_type_name[t];
8938 }
8939 
8940 const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
8941 {
8942 	if (t < 0 || t >= ARRAY_SIZE(map_type_name))
8943 		return NULL;
8944 
8945 	return map_type_name[t];
8946 }
8947 
8948 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
8949 {
8950 	if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
8951 		return NULL;
8952 
8953 	return prog_type_name[t];
8954 }
8955 
8956 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
8957 						     int sec_idx,
8958 						     size_t offset)
8959 {
8960 	struct bpf_map *map;
8961 	size_t i;
8962 
8963 	for (i = 0; i < obj->nr_maps; i++) {
8964 		map = &obj->maps[i];
8965 		if (!bpf_map__is_struct_ops(map))
8966 			continue;
8967 		if (map->sec_idx == sec_idx &&
8968 		    map->sec_offset <= offset &&
8969 		    offset - map->sec_offset < map->def.value_size)
8970 			return map;
8971 	}
8972 
8973 	return NULL;
8974 }
8975 
8976 /* Collect the reloc from ELF and populate the st_ops->progs[] */
8977 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
8978 					    Elf64_Shdr *shdr, Elf_Data *data)
8979 {
8980 	const struct btf_member *member;
8981 	struct bpf_struct_ops *st_ops;
8982 	struct bpf_program *prog;
8983 	unsigned int shdr_idx;
8984 	const struct btf *btf;
8985 	struct bpf_map *map;
8986 	unsigned int moff, insn_idx;
8987 	const char *name;
8988 	__u32 member_idx;
8989 	Elf64_Sym *sym;
8990 	Elf64_Rel *rel;
8991 	int i, nrels;
8992 
8993 	btf = obj->btf;
8994 	nrels = shdr->sh_size / shdr->sh_entsize;
8995 	for (i = 0; i < nrels; i++) {
8996 		rel = elf_rel_by_idx(data, i);
8997 		if (!rel) {
8998 			pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
8999 			return -LIBBPF_ERRNO__FORMAT;
9000 		}
9001 
9002 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
9003 		if (!sym) {
9004 			pr_warn("struct_ops reloc: symbol %zx not found\n",
9005 				(size_t)ELF64_R_SYM(rel->r_info));
9006 			return -LIBBPF_ERRNO__FORMAT;
9007 		}
9008 
9009 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
9010 		map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset);
9011 		if (!map) {
9012 			pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
9013 				(size_t)rel->r_offset);
9014 			return -EINVAL;
9015 		}
9016 
9017 		moff = rel->r_offset - map->sec_offset;
9018 		shdr_idx = sym->st_shndx;
9019 		st_ops = map->st_ops;
9020 		pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9021 			 map->name,
9022 			 (long long)(rel->r_info >> 32),
9023 			 (long long)sym->st_value,
9024 			 shdr_idx, (size_t)rel->r_offset,
9025 			 map->sec_offset, sym->st_name, name);
9026 
9027 		if (shdr_idx >= SHN_LORESERVE) {
9028 			pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
9029 				map->name, (size_t)rel->r_offset, shdr_idx);
9030 			return -LIBBPF_ERRNO__RELOC;
9031 		}
9032 		if (sym->st_value % BPF_INSN_SZ) {
9033 			pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9034 				map->name, (unsigned long long)sym->st_value);
9035 			return -LIBBPF_ERRNO__FORMAT;
9036 		}
9037 		insn_idx = sym->st_value / BPF_INSN_SZ;
9038 
9039 		member = find_member_by_offset(st_ops->type, moff * 8);
9040 		if (!member) {
9041 			pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9042 				map->name, moff);
9043 			return -EINVAL;
9044 		}
9045 		member_idx = member - btf_members(st_ops->type);
9046 		name = btf__name_by_offset(btf, member->name_off);
9047 
9048 		if (!resolve_func_ptr(btf, member->type, NULL)) {
9049 			pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9050 				map->name, name);
9051 			return -EINVAL;
9052 		}
9053 
9054 		prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9055 		if (!prog) {
9056 			pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9057 				map->name, shdr_idx, name);
9058 			return -EINVAL;
9059 		}
9060 
9061 		/* prevent the use of BPF prog with invalid type */
9062 		if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9063 			pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
9064 				map->name, prog->name);
9065 			return -EINVAL;
9066 		}
9067 
9068 		/* if we haven't yet processed this BPF program, record proper
9069 		 * attach_btf_id and member_idx
9070 		 */
9071 		if (!prog->attach_btf_id) {
9072 			prog->attach_btf_id = st_ops->type_id;
9073 			prog->expected_attach_type = member_idx;
9074 		}
9075 
9076 		/* struct_ops BPF prog can be re-used between multiple
9077 		 * .struct_ops & .struct_ops.link as long as it's the
9078 		 * same struct_ops struct definition and the same
9079 		 * function pointer field
9080 		 */
9081 		if (prog->attach_btf_id != st_ops->type_id ||
9082 		    prog->expected_attach_type != member_idx) {
9083 			pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
9084 				map->name, prog->name, prog->sec_name, prog->type,
9085 				prog->attach_btf_id, prog->expected_attach_type, name);
9086 			return -EINVAL;
9087 		}
9088 
9089 		st_ops->progs[member_idx] = prog;
9090 	}
9091 
9092 	return 0;
9093 }
9094 
9095 #define BTF_TRACE_PREFIX "btf_trace_"
9096 #define BTF_LSM_PREFIX "bpf_lsm_"
9097 #define BTF_ITER_PREFIX "bpf_iter_"
9098 #define BTF_MAX_NAME_SIZE 128
9099 
9100 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9101 				const char **prefix, int *kind)
9102 {
9103 	switch (attach_type) {
9104 	case BPF_TRACE_RAW_TP:
9105 		*prefix = BTF_TRACE_PREFIX;
9106 		*kind = BTF_KIND_TYPEDEF;
9107 		break;
9108 	case BPF_LSM_MAC:
9109 	case BPF_LSM_CGROUP:
9110 		*prefix = BTF_LSM_PREFIX;
9111 		*kind = BTF_KIND_FUNC;
9112 		break;
9113 	case BPF_TRACE_ITER:
9114 		*prefix = BTF_ITER_PREFIX;
9115 		*kind = BTF_KIND_FUNC;
9116 		break;
9117 	default:
9118 		*prefix = "";
9119 		*kind = BTF_KIND_FUNC;
9120 	}
9121 }
9122 
9123 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
9124 				   const char *name, __u32 kind)
9125 {
9126 	char btf_type_name[BTF_MAX_NAME_SIZE];
9127 	int ret;
9128 
9129 	ret = snprintf(btf_type_name, sizeof(btf_type_name),
9130 		       "%s%s", prefix, name);
9131 	/* snprintf returns the number of characters written excluding the
9132 	 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
9133 	 * indicates truncation.
9134 	 */
9135 	if (ret < 0 || ret >= sizeof(btf_type_name))
9136 		return -ENAMETOOLONG;
9137 	return btf__find_by_name_kind(btf, btf_type_name, kind);
9138 }
9139 
9140 static inline int find_attach_btf_id(struct btf *btf, const char *name,
9141 				     enum bpf_attach_type attach_type)
9142 {
9143 	const char *prefix;
9144 	int kind;
9145 
9146 	btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
9147 	return find_btf_by_prefix_kind(btf, prefix, name, kind);
9148 }
9149 
9150 int libbpf_find_vmlinux_btf_id(const char *name,
9151 			       enum bpf_attach_type attach_type)
9152 {
9153 	struct btf *btf;
9154 	int err;
9155 
9156 	btf = btf__load_vmlinux_btf();
9157 	err = libbpf_get_error(btf);
9158 	if (err) {
9159 		pr_warn("vmlinux BTF is not found\n");
9160 		return libbpf_err(err);
9161 	}
9162 
9163 	err = find_attach_btf_id(btf, name, attach_type);
9164 	if (err <= 0)
9165 		pr_warn("%s is not found in vmlinux BTF\n", name);
9166 
9167 	btf__free(btf);
9168 	return libbpf_err(err);
9169 }
9170 
9171 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9172 {
9173 	struct bpf_prog_info info;
9174 	__u32 info_len = sizeof(info);
9175 	struct btf *btf;
9176 	int err;
9177 
9178 	memset(&info, 0, info_len);
9179 	err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len);
9180 	if (err) {
9181 		pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n",
9182 			attach_prog_fd, err);
9183 		return err;
9184 	}
9185 
9186 	err = -EINVAL;
9187 	if (!info.btf_id) {
9188 		pr_warn("The target program doesn't have BTF\n");
9189 		goto out;
9190 	}
9191 	btf = btf__load_from_kernel_by_id(info.btf_id);
9192 	err = libbpf_get_error(btf);
9193 	if (err) {
9194 		pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9195 		goto out;
9196 	}
9197 	err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9198 	btf__free(btf);
9199 	if (err <= 0) {
9200 		pr_warn("%s is not found in prog's BTF\n", name);
9201 		goto out;
9202 	}
9203 out:
9204 	return err;
9205 }
9206 
9207 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9208 			      enum bpf_attach_type attach_type,
9209 			      int *btf_obj_fd, int *btf_type_id)
9210 {
9211 	int ret, i;
9212 
9213 	ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9214 	if (ret > 0) {
9215 		*btf_obj_fd = 0; /* vmlinux BTF */
9216 		*btf_type_id = ret;
9217 		return 0;
9218 	}
9219 	if (ret != -ENOENT)
9220 		return ret;
9221 
9222 	ret = load_module_btfs(obj);
9223 	if (ret)
9224 		return ret;
9225 
9226 	for (i = 0; i < obj->btf_module_cnt; i++) {
9227 		const struct module_btf *mod = &obj->btf_modules[i];
9228 
9229 		ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9230 		if (ret > 0) {
9231 			*btf_obj_fd = mod->fd;
9232 			*btf_type_id = ret;
9233 			return 0;
9234 		}
9235 		if (ret == -ENOENT)
9236 			continue;
9237 
9238 		return ret;
9239 	}
9240 
9241 	return -ESRCH;
9242 }
9243 
9244 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9245 				     int *btf_obj_fd, int *btf_type_id)
9246 {
9247 	enum bpf_attach_type attach_type = prog->expected_attach_type;
9248 	__u32 attach_prog_fd = prog->attach_prog_fd;
9249 	int err = 0;
9250 
9251 	/* BPF program's BTF ID */
9252 	if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
9253 		if (!attach_prog_fd) {
9254 			pr_warn("prog '%s': attach program FD is not set\n", prog->name);
9255 			return -EINVAL;
9256 		}
9257 		err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9258 		if (err < 0) {
9259 			pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9260 				 prog->name, attach_prog_fd, attach_name, err);
9261 			return err;
9262 		}
9263 		*btf_obj_fd = 0;
9264 		*btf_type_id = err;
9265 		return 0;
9266 	}
9267 
9268 	/* kernel/module BTF ID */
9269 	if (prog->obj->gen_loader) {
9270 		bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9271 		*btf_obj_fd = 0;
9272 		*btf_type_id = 1;
9273 	} else {
9274 		err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9275 	}
9276 	if (err) {
9277 		pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n",
9278 			prog->name, attach_name, err);
9279 		return err;
9280 	}
9281 	return 0;
9282 }
9283 
9284 int libbpf_attach_type_by_name(const char *name,
9285 			       enum bpf_attach_type *attach_type)
9286 {
9287 	char *type_names;
9288 	const struct bpf_sec_def *sec_def;
9289 
9290 	if (!name)
9291 		return libbpf_err(-EINVAL);
9292 
9293 	sec_def = find_sec_def(name);
9294 	if (!sec_def) {
9295 		pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9296 		type_names = libbpf_get_type_names(true);
9297 		if (type_names != NULL) {
9298 			pr_debug("attachable section(type) names are:%s\n", type_names);
9299 			free(type_names);
9300 		}
9301 
9302 		return libbpf_err(-EINVAL);
9303 	}
9304 
9305 	if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9306 		return libbpf_err(-EINVAL);
9307 	if (!(sec_def->cookie & SEC_ATTACHABLE))
9308 		return libbpf_err(-EINVAL);
9309 
9310 	*attach_type = sec_def->expected_attach_type;
9311 	return 0;
9312 }
9313 
9314 int bpf_map__fd(const struct bpf_map *map)
9315 {
9316 	return map ? map->fd : libbpf_err(-EINVAL);
9317 }
9318 
9319 static bool map_uses_real_name(const struct bpf_map *map)
9320 {
9321 	/* Since libbpf started to support custom .data.* and .rodata.* maps,
9322 	 * their user-visible name differs from kernel-visible name. Users see
9323 	 * such map's corresponding ELF section name as a map name.
9324 	 * This check distinguishes .data/.rodata from .data.* and .rodata.*
9325 	 * maps to know which name has to be returned to the user.
9326 	 */
9327 	if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
9328 		return true;
9329 	if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
9330 		return true;
9331 	return false;
9332 }
9333 
9334 const char *bpf_map__name(const struct bpf_map *map)
9335 {
9336 	if (!map)
9337 		return NULL;
9338 
9339 	if (map_uses_real_name(map))
9340 		return map->real_name;
9341 
9342 	return map->name;
9343 }
9344 
9345 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9346 {
9347 	return map->def.type;
9348 }
9349 
9350 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9351 {
9352 	if (map->fd >= 0)
9353 		return libbpf_err(-EBUSY);
9354 	map->def.type = type;
9355 	return 0;
9356 }
9357 
9358 __u32 bpf_map__map_flags(const struct bpf_map *map)
9359 {
9360 	return map->def.map_flags;
9361 }
9362 
9363 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9364 {
9365 	if (map->fd >= 0)
9366 		return libbpf_err(-EBUSY);
9367 	map->def.map_flags = flags;
9368 	return 0;
9369 }
9370 
9371 __u64 bpf_map__map_extra(const struct bpf_map *map)
9372 {
9373 	return map->map_extra;
9374 }
9375 
9376 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
9377 {
9378 	if (map->fd >= 0)
9379 		return libbpf_err(-EBUSY);
9380 	map->map_extra = map_extra;
9381 	return 0;
9382 }
9383 
9384 __u32 bpf_map__numa_node(const struct bpf_map *map)
9385 {
9386 	return map->numa_node;
9387 }
9388 
9389 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
9390 {
9391 	if (map->fd >= 0)
9392 		return libbpf_err(-EBUSY);
9393 	map->numa_node = numa_node;
9394 	return 0;
9395 }
9396 
9397 __u32 bpf_map__key_size(const struct bpf_map *map)
9398 {
9399 	return map->def.key_size;
9400 }
9401 
9402 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
9403 {
9404 	if (map->fd >= 0)
9405 		return libbpf_err(-EBUSY);
9406 	map->def.key_size = size;
9407 	return 0;
9408 }
9409 
9410 __u32 bpf_map__value_size(const struct bpf_map *map)
9411 {
9412 	return map->def.value_size;
9413 }
9414 
9415 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
9416 {
9417 	if (map->fd >= 0)
9418 		return libbpf_err(-EBUSY);
9419 	map->def.value_size = size;
9420 	return 0;
9421 }
9422 
9423 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
9424 {
9425 	return map ? map->btf_key_type_id : 0;
9426 }
9427 
9428 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
9429 {
9430 	return map ? map->btf_value_type_id : 0;
9431 }
9432 
9433 int bpf_map__set_initial_value(struct bpf_map *map,
9434 			       const void *data, size_t size)
9435 {
9436 	if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
9437 	    size != map->def.value_size || map->fd >= 0)
9438 		return libbpf_err(-EINVAL);
9439 
9440 	memcpy(map->mmaped, data, size);
9441 	return 0;
9442 }
9443 
9444 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize)
9445 {
9446 	if (!map->mmaped)
9447 		return NULL;
9448 	*psize = map->def.value_size;
9449 	return map->mmaped;
9450 }
9451 
9452 bool bpf_map__is_internal(const struct bpf_map *map)
9453 {
9454 	return map->libbpf_type != LIBBPF_MAP_UNSPEC;
9455 }
9456 
9457 __u32 bpf_map__ifindex(const struct bpf_map *map)
9458 {
9459 	return map->map_ifindex;
9460 }
9461 
9462 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
9463 {
9464 	if (map->fd >= 0)
9465 		return libbpf_err(-EBUSY);
9466 	map->map_ifindex = ifindex;
9467 	return 0;
9468 }
9469 
9470 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
9471 {
9472 	if (!bpf_map_type__is_map_in_map(map->def.type)) {
9473 		pr_warn("error: unsupported map type\n");
9474 		return libbpf_err(-EINVAL);
9475 	}
9476 	if (map->inner_map_fd != -1) {
9477 		pr_warn("error: inner_map_fd already specified\n");
9478 		return libbpf_err(-EINVAL);
9479 	}
9480 	if (map->inner_map) {
9481 		bpf_map__destroy(map->inner_map);
9482 		zfree(&map->inner_map);
9483 	}
9484 	map->inner_map_fd = fd;
9485 	return 0;
9486 }
9487 
9488 static struct bpf_map *
9489 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
9490 {
9491 	ssize_t idx;
9492 	struct bpf_map *s, *e;
9493 
9494 	if (!obj || !obj->maps)
9495 		return errno = EINVAL, NULL;
9496 
9497 	s = obj->maps;
9498 	e = obj->maps + obj->nr_maps;
9499 
9500 	if ((m < s) || (m >= e)) {
9501 		pr_warn("error in %s: map handler doesn't belong to object\n",
9502 			 __func__);
9503 		return errno = EINVAL, NULL;
9504 	}
9505 
9506 	idx = (m - obj->maps) + i;
9507 	if (idx >= obj->nr_maps || idx < 0)
9508 		return NULL;
9509 	return &obj->maps[idx];
9510 }
9511 
9512 struct bpf_map *
9513 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
9514 {
9515 	if (prev == NULL)
9516 		return obj->maps;
9517 
9518 	return __bpf_map__iter(prev, obj, 1);
9519 }
9520 
9521 struct bpf_map *
9522 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
9523 {
9524 	if (next == NULL) {
9525 		if (!obj->nr_maps)
9526 			return NULL;
9527 		return obj->maps + obj->nr_maps - 1;
9528 	}
9529 
9530 	return __bpf_map__iter(next, obj, -1);
9531 }
9532 
9533 struct bpf_map *
9534 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9535 {
9536 	struct bpf_map *pos;
9537 
9538 	bpf_object__for_each_map(pos, obj) {
9539 		/* if it's a special internal map name (which always starts
9540 		 * with dot) then check if that special name matches the
9541 		 * real map name (ELF section name)
9542 		 */
9543 		if (name[0] == '.') {
9544 			if (pos->real_name && strcmp(pos->real_name, name) == 0)
9545 				return pos;
9546 			continue;
9547 		}
9548 		/* otherwise map name has to be an exact match */
9549 		if (map_uses_real_name(pos)) {
9550 			if (strcmp(pos->real_name, name) == 0)
9551 				return pos;
9552 			continue;
9553 		}
9554 		if (strcmp(pos->name, name) == 0)
9555 			return pos;
9556 	}
9557 	return errno = ENOENT, NULL;
9558 }
9559 
9560 int
9561 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9562 {
9563 	return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9564 }
9565 
9566 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
9567 			   size_t value_sz, bool check_value_sz)
9568 {
9569 	if (map->fd <= 0)
9570 		return -ENOENT;
9571 
9572 	if (map->def.key_size != key_sz) {
9573 		pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
9574 			map->name, key_sz, map->def.key_size);
9575 		return -EINVAL;
9576 	}
9577 
9578 	if (!check_value_sz)
9579 		return 0;
9580 
9581 	switch (map->def.type) {
9582 	case BPF_MAP_TYPE_PERCPU_ARRAY:
9583 	case BPF_MAP_TYPE_PERCPU_HASH:
9584 	case BPF_MAP_TYPE_LRU_PERCPU_HASH:
9585 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
9586 		int num_cpu = libbpf_num_possible_cpus();
9587 		size_t elem_sz = roundup(map->def.value_size, 8);
9588 
9589 		if (value_sz != num_cpu * elem_sz) {
9590 			pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
9591 				map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
9592 			return -EINVAL;
9593 		}
9594 		break;
9595 	}
9596 	default:
9597 		if (map->def.value_size != value_sz) {
9598 			pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
9599 				map->name, value_sz, map->def.value_size);
9600 			return -EINVAL;
9601 		}
9602 		break;
9603 	}
9604 	return 0;
9605 }
9606 
9607 int bpf_map__lookup_elem(const struct bpf_map *map,
9608 			 const void *key, size_t key_sz,
9609 			 void *value, size_t value_sz, __u64 flags)
9610 {
9611 	int err;
9612 
9613 	err = validate_map_op(map, key_sz, value_sz, true);
9614 	if (err)
9615 		return libbpf_err(err);
9616 
9617 	return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
9618 }
9619 
9620 int bpf_map__update_elem(const struct bpf_map *map,
9621 			 const void *key, size_t key_sz,
9622 			 const void *value, size_t value_sz, __u64 flags)
9623 {
9624 	int err;
9625 
9626 	err = validate_map_op(map, key_sz, value_sz, true);
9627 	if (err)
9628 		return libbpf_err(err);
9629 
9630 	return bpf_map_update_elem(map->fd, key, value, flags);
9631 }
9632 
9633 int bpf_map__delete_elem(const struct bpf_map *map,
9634 			 const void *key, size_t key_sz, __u64 flags)
9635 {
9636 	int err;
9637 
9638 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9639 	if (err)
9640 		return libbpf_err(err);
9641 
9642 	return bpf_map_delete_elem_flags(map->fd, key, flags);
9643 }
9644 
9645 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
9646 				    const void *key, size_t key_sz,
9647 				    void *value, size_t value_sz, __u64 flags)
9648 {
9649 	int err;
9650 
9651 	err = validate_map_op(map, key_sz, value_sz, true);
9652 	if (err)
9653 		return libbpf_err(err);
9654 
9655 	return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
9656 }
9657 
9658 int bpf_map__get_next_key(const struct bpf_map *map,
9659 			  const void *cur_key, void *next_key, size_t key_sz)
9660 {
9661 	int err;
9662 
9663 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9664 	if (err)
9665 		return libbpf_err(err);
9666 
9667 	return bpf_map_get_next_key(map->fd, cur_key, next_key);
9668 }
9669 
9670 long libbpf_get_error(const void *ptr)
9671 {
9672 	if (!IS_ERR_OR_NULL(ptr))
9673 		return 0;
9674 
9675 	if (IS_ERR(ptr))
9676 		errno = -PTR_ERR(ptr);
9677 
9678 	/* If ptr == NULL, then errno should be already set by the failing
9679 	 * API, because libbpf never returns NULL on success and it now always
9680 	 * sets errno on error. So no extra errno handling for ptr == NULL
9681 	 * case.
9682 	 */
9683 	return -errno;
9684 }
9685 
9686 /* Replace link's underlying BPF program with the new one */
9687 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
9688 {
9689 	int ret;
9690 
9691 	ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
9692 	return libbpf_err_errno(ret);
9693 }
9694 
9695 /* Release "ownership" of underlying BPF resource (typically, BPF program
9696  * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
9697  * link, when destructed through bpf_link__destroy() call won't attempt to
9698  * detach/unregisted that BPF resource. This is useful in situations where,
9699  * say, attached BPF program has to outlive userspace program that attached it
9700  * in the system. Depending on type of BPF program, though, there might be
9701  * additional steps (like pinning BPF program in BPF FS) necessary to ensure
9702  * exit of userspace program doesn't trigger automatic detachment and clean up
9703  * inside the kernel.
9704  */
9705 void bpf_link__disconnect(struct bpf_link *link)
9706 {
9707 	link->disconnected = true;
9708 }
9709 
9710 int bpf_link__destroy(struct bpf_link *link)
9711 {
9712 	int err = 0;
9713 
9714 	if (IS_ERR_OR_NULL(link))
9715 		return 0;
9716 
9717 	if (!link->disconnected && link->detach)
9718 		err = link->detach(link);
9719 	if (link->pin_path)
9720 		free(link->pin_path);
9721 	if (link->dealloc)
9722 		link->dealloc(link);
9723 	else
9724 		free(link);
9725 
9726 	return libbpf_err(err);
9727 }
9728 
9729 int bpf_link__fd(const struct bpf_link *link)
9730 {
9731 	return link->fd;
9732 }
9733 
9734 const char *bpf_link__pin_path(const struct bpf_link *link)
9735 {
9736 	return link->pin_path;
9737 }
9738 
9739 static int bpf_link__detach_fd(struct bpf_link *link)
9740 {
9741 	return libbpf_err_errno(close(link->fd));
9742 }
9743 
9744 struct bpf_link *bpf_link__open(const char *path)
9745 {
9746 	struct bpf_link *link;
9747 	int fd;
9748 
9749 	fd = bpf_obj_get(path);
9750 	if (fd < 0) {
9751 		fd = -errno;
9752 		pr_warn("failed to open link at %s: %d\n", path, fd);
9753 		return libbpf_err_ptr(fd);
9754 	}
9755 
9756 	link = calloc(1, sizeof(*link));
9757 	if (!link) {
9758 		close(fd);
9759 		return libbpf_err_ptr(-ENOMEM);
9760 	}
9761 	link->detach = &bpf_link__detach_fd;
9762 	link->fd = fd;
9763 
9764 	link->pin_path = strdup(path);
9765 	if (!link->pin_path) {
9766 		bpf_link__destroy(link);
9767 		return libbpf_err_ptr(-ENOMEM);
9768 	}
9769 
9770 	return link;
9771 }
9772 
9773 int bpf_link__detach(struct bpf_link *link)
9774 {
9775 	return bpf_link_detach(link->fd) ? -errno : 0;
9776 }
9777 
9778 int bpf_link__pin(struct bpf_link *link, const char *path)
9779 {
9780 	int err;
9781 
9782 	if (link->pin_path)
9783 		return libbpf_err(-EBUSY);
9784 	err = make_parent_dir(path);
9785 	if (err)
9786 		return libbpf_err(err);
9787 	err = check_path(path);
9788 	if (err)
9789 		return libbpf_err(err);
9790 
9791 	link->pin_path = strdup(path);
9792 	if (!link->pin_path)
9793 		return libbpf_err(-ENOMEM);
9794 
9795 	if (bpf_obj_pin(link->fd, link->pin_path)) {
9796 		err = -errno;
9797 		zfree(&link->pin_path);
9798 		return libbpf_err(err);
9799 	}
9800 
9801 	pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
9802 	return 0;
9803 }
9804 
9805 int bpf_link__unpin(struct bpf_link *link)
9806 {
9807 	int err;
9808 
9809 	if (!link->pin_path)
9810 		return libbpf_err(-EINVAL);
9811 
9812 	err = unlink(link->pin_path);
9813 	if (err != 0)
9814 		return -errno;
9815 
9816 	pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
9817 	zfree(&link->pin_path);
9818 	return 0;
9819 }
9820 
9821 struct bpf_link_perf {
9822 	struct bpf_link link;
9823 	int perf_event_fd;
9824 	/* legacy kprobe support: keep track of probe identifier and type */
9825 	char *legacy_probe_name;
9826 	bool legacy_is_kprobe;
9827 	bool legacy_is_retprobe;
9828 };
9829 
9830 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
9831 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
9832 
9833 static int bpf_link_perf_detach(struct bpf_link *link)
9834 {
9835 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9836 	int err = 0;
9837 
9838 	if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
9839 		err = -errno;
9840 
9841 	if (perf_link->perf_event_fd != link->fd)
9842 		close(perf_link->perf_event_fd);
9843 	close(link->fd);
9844 
9845 	/* legacy uprobe/kprobe needs to be removed after perf event fd closure */
9846 	if (perf_link->legacy_probe_name) {
9847 		if (perf_link->legacy_is_kprobe) {
9848 			err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
9849 							 perf_link->legacy_is_retprobe);
9850 		} else {
9851 			err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
9852 							 perf_link->legacy_is_retprobe);
9853 		}
9854 	}
9855 
9856 	return err;
9857 }
9858 
9859 static void bpf_link_perf_dealloc(struct bpf_link *link)
9860 {
9861 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9862 
9863 	free(perf_link->legacy_probe_name);
9864 	free(perf_link);
9865 }
9866 
9867 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
9868 						     const struct bpf_perf_event_opts *opts)
9869 {
9870 	char errmsg[STRERR_BUFSIZE];
9871 	struct bpf_link_perf *link;
9872 	int prog_fd, link_fd = -1, err;
9873 	bool force_ioctl_attach;
9874 
9875 	if (!OPTS_VALID(opts, bpf_perf_event_opts))
9876 		return libbpf_err_ptr(-EINVAL);
9877 
9878 	if (pfd < 0) {
9879 		pr_warn("prog '%s': invalid perf event FD %d\n",
9880 			prog->name, pfd);
9881 		return libbpf_err_ptr(-EINVAL);
9882 	}
9883 	prog_fd = bpf_program__fd(prog);
9884 	if (prog_fd < 0) {
9885 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
9886 			prog->name);
9887 		return libbpf_err_ptr(-EINVAL);
9888 	}
9889 
9890 	link = calloc(1, sizeof(*link));
9891 	if (!link)
9892 		return libbpf_err_ptr(-ENOMEM);
9893 	link->link.detach = &bpf_link_perf_detach;
9894 	link->link.dealloc = &bpf_link_perf_dealloc;
9895 	link->perf_event_fd = pfd;
9896 
9897 	force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false);
9898 	if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) {
9899 		DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
9900 			.perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
9901 
9902 		link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
9903 		if (link_fd < 0) {
9904 			err = -errno;
9905 			pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
9906 				prog->name, pfd,
9907 				err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9908 			goto err_out;
9909 		}
9910 		link->link.fd = link_fd;
9911 	} else {
9912 		if (OPTS_GET(opts, bpf_cookie, 0)) {
9913 			pr_warn("prog '%s': user context value is not supported\n", prog->name);
9914 			err = -EOPNOTSUPP;
9915 			goto err_out;
9916 		}
9917 
9918 		if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
9919 			err = -errno;
9920 			pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
9921 				prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9922 			if (err == -EPROTO)
9923 				pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
9924 					prog->name, pfd);
9925 			goto err_out;
9926 		}
9927 		link->link.fd = pfd;
9928 	}
9929 	if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
9930 		err = -errno;
9931 		pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
9932 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9933 		goto err_out;
9934 	}
9935 
9936 	return &link->link;
9937 err_out:
9938 	if (link_fd >= 0)
9939 		close(link_fd);
9940 	free(link);
9941 	return libbpf_err_ptr(err);
9942 }
9943 
9944 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
9945 {
9946 	return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
9947 }
9948 
9949 /*
9950  * this function is expected to parse integer in the range of [0, 2^31-1] from
9951  * given file using scanf format string fmt. If actual parsed value is
9952  * negative, the result might be indistinguishable from error
9953  */
9954 static int parse_uint_from_file(const char *file, const char *fmt)
9955 {
9956 	char buf[STRERR_BUFSIZE];
9957 	int err, ret;
9958 	FILE *f;
9959 
9960 	f = fopen(file, "r");
9961 	if (!f) {
9962 		err = -errno;
9963 		pr_debug("failed to open '%s': %s\n", file,
9964 			 libbpf_strerror_r(err, buf, sizeof(buf)));
9965 		return err;
9966 	}
9967 	err = fscanf(f, fmt, &ret);
9968 	if (err != 1) {
9969 		err = err == EOF ? -EIO : -errno;
9970 		pr_debug("failed to parse '%s': %s\n", file,
9971 			libbpf_strerror_r(err, buf, sizeof(buf)));
9972 		fclose(f);
9973 		return err;
9974 	}
9975 	fclose(f);
9976 	return ret;
9977 }
9978 
9979 static int determine_kprobe_perf_type(void)
9980 {
9981 	const char *file = "/sys/bus/event_source/devices/kprobe/type";
9982 
9983 	return parse_uint_from_file(file, "%d\n");
9984 }
9985 
9986 static int determine_uprobe_perf_type(void)
9987 {
9988 	const char *file = "/sys/bus/event_source/devices/uprobe/type";
9989 
9990 	return parse_uint_from_file(file, "%d\n");
9991 }
9992 
9993 static int determine_kprobe_retprobe_bit(void)
9994 {
9995 	const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
9996 
9997 	return parse_uint_from_file(file, "config:%d\n");
9998 }
9999 
10000 static int determine_uprobe_retprobe_bit(void)
10001 {
10002 	const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
10003 
10004 	return parse_uint_from_file(file, "config:%d\n");
10005 }
10006 
10007 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
10008 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
10009 
10010 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
10011 				 uint64_t offset, int pid, size_t ref_ctr_off)
10012 {
10013 	const size_t attr_sz = sizeof(struct perf_event_attr);
10014 	struct perf_event_attr attr;
10015 	char errmsg[STRERR_BUFSIZE];
10016 	int type, pfd;
10017 
10018 	if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
10019 		return -EINVAL;
10020 
10021 	memset(&attr, 0, attr_sz);
10022 
10023 	type = uprobe ? determine_uprobe_perf_type()
10024 		      : determine_kprobe_perf_type();
10025 	if (type < 0) {
10026 		pr_warn("failed to determine %s perf type: %s\n",
10027 			uprobe ? "uprobe" : "kprobe",
10028 			libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
10029 		return type;
10030 	}
10031 	if (retprobe) {
10032 		int bit = uprobe ? determine_uprobe_retprobe_bit()
10033 				 : determine_kprobe_retprobe_bit();
10034 
10035 		if (bit < 0) {
10036 			pr_warn("failed to determine %s retprobe bit: %s\n",
10037 				uprobe ? "uprobe" : "kprobe",
10038 				libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
10039 			return bit;
10040 		}
10041 		attr.config |= 1 << bit;
10042 	}
10043 	attr.size = attr_sz;
10044 	attr.type = type;
10045 	attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10046 	attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
10047 	attr.config2 = offset;		 /* kprobe_addr or probe_offset */
10048 
10049 	/* pid filter is meaningful only for uprobes */
10050 	pfd = syscall(__NR_perf_event_open, &attr,
10051 		      pid < 0 ? -1 : pid /* pid */,
10052 		      pid == -1 ? 0 : -1 /* cpu */,
10053 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10054 	return pfd >= 0 ? pfd : -errno;
10055 }
10056 
10057 static int append_to_file(const char *file, const char *fmt, ...)
10058 {
10059 	int fd, n, err = 0;
10060 	va_list ap;
10061 	char buf[1024];
10062 
10063 	va_start(ap, fmt);
10064 	n = vsnprintf(buf, sizeof(buf), fmt, ap);
10065 	va_end(ap);
10066 
10067 	if (n < 0 || n >= sizeof(buf))
10068 		return -EINVAL;
10069 
10070 	fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
10071 	if (fd < 0)
10072 		return -errno;
10073 
10074 	if (write(fd, buf, n) < 0)
10075 		err = -errno;
10076 
10077 	close(fd);
10078 	return err;
10079 }
10080 
10081 #define DEBUGFS "/sys/kernel/debug/tracing"
10082 #define TRACEFS "/sys/kernel/tracing"
10083 
10084 static bool use_debugfs(void)
10085 {
10086 	static int has_debugfs = -1;
10087 
10088 	if (has_debugfs < 0)
10089 		has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
10090 
10091 	return has_debugfs == 1;
10092 }
10093 
10094 static const char *tracefs_path(void)
10095 {
10096 	return use_debugfs() ? DEBUGFS : TRACEFS;
10097 }
10098 
10099 static const char *tracefs_kprobe_events(void)
10100 {
10101 	return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
10102 }
10103 
10104 static const char *tracefs_uprobe_events(void)
10105 {
10106 	return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
10107 }
10108 
10109 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
10110 					 const char *kfunc_name, size_t offset)
10111 {
10112 	static int index = 0;
10113 	int i;
10114 
10115 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
10116 		 __sync_fetch_and_add(&index, 1));
10117 
10118 	/* sanitize binary_path in the probe name */
10119 	for (i = 0; buf[i]; i++) {
10120 		if (!isalnum(buf[i]))
10121 			buf[i] = '_';
10122 	}
10123 }
10124 
10125 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
10126 				   const char *kfunc_name, size_t offset)
10127 {
10128 	return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
10129 			      retprobe ? 'r' : 'p',
10130 			      retprobe ? "kretprobes" : "kprobes",
10131 			      probe_name, kfunc_name, offset);
10132 }
10133 
10134 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
10135 {
10136 	return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
10137 			      retprobe ? "kretprobes" : "kprobes", probe_name);
10138 }
10139 
10140 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10141 {
10142 	char file[256];
10143 
10144 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10145 		 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
10146 
10147 	return parse_uint_from_file(file, "%d\n");
10148 }
10149 
10150 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
10151 					 const char *kfunc_name, size_t offset, int pid)
10152 {
10153 	const size_t attr_sz = sizeof(struct perf_event_attr);
10154 	struct perf_event_attr attr;
10155 	char errmsg[STRERR_BUFSIZE];
10156 	int type, pfd, err;
10157 
10158 	err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
10159 	if (err < 0) {
10160 		pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
10161 			kfunc_name, offset,
10162 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10163 		return err;
10164 	}
10165 	type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
10166 	if (type < 0) {
10167 		err = type;
10168 		pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
10169 			kfunc_name, offset,
10170 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10171 		goto err_clean_legacy;
10172 	}
10173 
10174 	memset(&attr, 0, attr_sz);
10175 	attr.size = attr_sz;
10176 	attr.config = type;
10177 	attr.type = PERF_TYPE_TRACEPOINT;
10178 
10179 	pfd = syscall(__NR_perf_event_open, &attr,
10180 		      pid < 0 ? -1 : pid, /* pid */
10181 		      pid == -1 ? 0 : -1, /* cpu */
10182 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
10183 	if (pfd < 0) {
10184 		err = -errno;
10185 		pr_warn("legacy kprobe perf_event_open() failed: %s\n",
10186 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10187 		goto err_clean_legacy;
10188 	}
10189 	return pfd;
10190 
10191 err_clean_legacy:
10192 	/* Clear the newly added legacy kprobe_event */
10193 	remove_kprobe_event_legacy(probe_name, retprobe);
10194 	return err;
10195 }
10196 
10197 static const char *arch_specific_syscall_pfx(void)
10198 {
10199 #if defined(__x86_64__)
10200 	return "x64";
10201 #elif defined(__i386__)
10202 	return "ia32";
10203 #elif defined(__s390x__)
10204 	return "s390x";
10205 #elif defined(__s390__)
10206 	return "s390";
10207 #elif defined(__arm__)
10208 	return "arm";
10209 #elif defined(__aarch64__)
10210 	return "arm64";
10211 #elif defined(__mips__)
10212 	return "mips";
10213 #elif defined(__riscv)
10214 	return "riscv";
10215 #elif defined(__powerpc__)
10216 	return "powerpc";
10217 #elif defined(__powerpc64__)
10218 	return "powerpc64";
10219 #else
10220 	return NULL;
10221 #endif
10222 }
10223 
10224 static int probe_kern_syscall_wrapper(void)
10225 {
10226 	char syscall_name[64];
10227 	const char *ksys_pfx;
10228 
10229 	ksys_pfx = arch_specific_syscall_pfx();
10230 	if (!ksys_pfx)
10231 		return 0;
10232 
10233 	snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
10234 
10235 	if (determine_kprobe_perf_type() >= 0) {
10236 		int pfd;
10237 
10238 		pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
10239 		if (pfd >= 0)
10240 			close(pfd);
10241 
10242 		return pfd >= 0 ? 1 : 0;
10243 	} else { /* legacy mode */
10244 		char probe_name[128];
10245 
10246 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
10247 		if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
10248 			return 0;
10249 
10250 		(void)remove_kprobe_event_legacy(probe_name, false);
10251 		return 1;
10252 	}
10253 }
10254 
10255 struct bpf_link *
10256 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
10257 				const char *func_name,
10258 				const struct bpf_kprobe_opts *opts)
10259 {
10260 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10261 	enum probe_attach_mode attach_mode;
10262 	char errmsg[STRERR_BUFSIZE];
10263 	char *legacy_probe = NULL;
10264 	struct bpf_link *link;
10265 	size_t offset;
10266 	bool retprobe, legacy;
10267 	int pfd, err;
10268 
10269 	if (!OPTS_VALID(opts, bpf_kprobe_opts))
10270 		return libbpf_err_ptr(-EINVAL);
10271 
10272 	attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
10273 	retprobe = OPTS_GET(opts, retprobe, false);
10274 	offset = OPTS_GET(opts, offset, 0);
10275 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10276 
10277 	legacy = determine_kprobe_perf_type() < 0;
10278 	switch (attach_mode) {
10279 	case PROBE_ATTACH_MODE_LEGACY:
10280 		legacy = true;
10281 		pe_opts.force_ioctl_attach = true;
10282 		break;
10283 	case PROBE_ATTACH_MODE_PERF:
10284 		if (legacy)
10285 			return libbpf_err_ptr(-ENOTSUP);
10286 		pe_opts.force_ioctl_attach = true;
10287 		break;
10288 	case PROBE_ATTACH_MODE_LINK:
10289 		if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
10290 			return libbpf_err_ptr(-ENOTSUP);
10291 		break;
10292 	case PROBE_ATTACH_MODE_DEFAULT:
10293 		break;
10294 	default:
10295 		return libbpf_err_ptr(-EINVAL);
10296 	}
10297 
10298 	if (!legacy) {
10299 		pfd = perf_event_open_probe(false /* uprobe */, retprobe,
10300 					    func_name, offset,
10301 					    -1 /* pid */, 0 /* ref_ctr_off */);
10302 	} else {
10303 		char probe_name[256];
10304 
10305 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
10306 					     func_name, offset);
10307 
10308 		legacy_probe = strdup(probe_name);
10309 		if (!legacy_probe)
10310 			return libbpf_err_ptr(-ENOMEM);
10311 
10312 		pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
10313 						    offset, -1 /* pid */);
10314 	}
10315 	if (pfd < 0) {
10316 		err = -errno;
10317 		pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
10318 			prog->name, retprobe ? "kretprobe" : "kprobe",
10319 			func_name, offset,
10320 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10321 		goto err_out;
10322 	}
10323 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10324 	err = libbpf_get_error(link);
10325 	if (err) {
10326 		close(pfd);
10327 		pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
10328 			prog->name, retprobe ? "kretprobe" : "kprobe",
10329 			func_name, offset,
10330 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10331 		goto err_clean_legacy;
10332 	}
10333 	if (legacy) {
10334 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10335 
10336 		perf_link->legacy_probe_name = legacy_probe;
10337 		perf_link->legacy_is_kprobe = true;
10338 		perf_link->legacy_is_retprobe = retprobe;
10339 	}
10340 
10341 	return link;
10342 
10343 err_clean_legacy:
10344 	if (legacy)
10345 		remove_kprobe_event_legacy(legacy_probe, retprobe);
10346 err_out:
10347 	free(legacy_probe);
10348 	return libbpf_err_ptr(err);
10349 }
10350 
10351 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
10352 					    bool retprobe,
10353 					    const char *func_name)
10354 {
10355 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
10356 		.retprobe = retprobe,
10357 	);
10358 
10359 	return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
10360 }
10361 
10362 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
10363 					      const char *syscall_name,
10364 					      const struct bpf_ksyscall_opts *opts)
10365 {
10366 	LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
10367 	char func_name[128];
10368 
10369 	if (!OPTS_VALID(opts, bpf_ksyscall_opts))
10370 		return libbpf_err_ptr(-EINVAL);
10371 
10372 	if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
10373 		/* arch_specific_syscall_pfx() should never return NULL here
10374 		 * because it is guarded by kernel_supports(). However, since
10375 		 * compiler does not know that we have an explicit conditional
10376 		 * as well.
10377 		 */
10378 		snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
10379 			 arch_specific_syscall_pfx() ? : "", syscall_name);
10380 	} else {
10381 		snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
10382 	}
10383 
10384 	kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
10385 	kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10386 
10387 	return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
10388 }
10389 
10390 /* Adapted from perf/util/string.c */
10391 static bool glob_match(const char *str, const char *pat)
10392 {
10393 	while (*str && *pat && *pat != '*') {
10394 		if (*pat == '?') {      /* Matches any single character */
10395 			str++;
10396 			pat++;
10397 			continue;
10398 		}
10399 		if (*str != *pat)
10400 			return false;
10401 		str++;
10402 		pat++;
10403 	}
10404 	/* Check wild card */
10405 	if (*pat == '*') {
10406 		while (*pat == '*')
10407 			pat++;
10408 		if (!*pat) /* Tail wild card matches all */
10409 			return true;
10410 		while (*str)
10411 			if (glob_match(str++, pat))
10412 				return true;
10413 	}
10414 	return !*str && !*pat;
10415 }
10416 
10417 struct kprobe_multi_resolve {
10418 	const char *pattern;
10419 	unsigned long *addrs;
10420 	size_t cap;
10421 	size_t cnt;
10422 };
10423 
10424 static int
10425 resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type,
10426 			const char *sym_name, void *ctx)
10427 {
10428 	struct kprobe_multi_resolve *res = ctx;
10429 	int err;
10430 
10431 	if (!glob_match(sym_name, res->pattern))
10432 		return 0;
10433 
10434 	err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long),
10435 				res->cnt + 1);
10436 	if (err)
10437 		return err;
10438 
10439 	res->addrs[res->cnt++] = (unsigned long) sym_addr;
10440 	return 0;
10441 }
10442 
10443 struct bpf_link *
10444 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
10445 				      const char *pattern,
10446 				      const struct bpf_kprobe_multi_opts *opts)
10447 {
10448 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
10449 	struct kprobe_multi_resolve res = {
10450 		.pattern = pattern,
10451 	};
10452 	struct bpf_link *link = NULL;
10453 	char errmsg[STRERR_BUFSIZE];
10454 	const unsigned long *addrs;
10455 	int err, link_fd, prog_fd;
10456 	const __u64 *cookies;
10457 	const char **syms;
10458 	bool retprobe;
10459 	size_t cnt;
10460 
10461 	if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
10462 		return libbpf_err_ptr(-EINVAL);
10463 
10464 	syms    = OPTS_GET(opts, syms, false);
10465 	addrs   = OPTS_GET(opts, addrs, false);
10466 	cnt     = OPTS_GET(opts, cnt, false);
10467 	cookies = OPTS_GET(opts, cookies, false);
10468 
10469 	if (!pattern && !addrs && !syms)
10470 		return libbpf_err_ptr(-EINVAL);
10471 	if (pattern && (addrs || syms || cookies || cnt))
10472 		return libbpf_err_ptr(-EINVAL);
10473 	if (!pattern && !cnt)
10474 		return libbpf_err_ptr(-EINVAL);
10475 	if (addrs && syms)
10476 		return libbpf_err_ptr(-EINVAL);
10477 
10478 	if (pattern) {
10479 		err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res);
10480 		if (err)
10481 			goto error;
10482 		if (!res.cnt) {
10483 			err = -ENOENT;
10484 			goto error;
10485 		}
10486 		addrs = res.addrs;
10487 		cnt = res.cnt;
10488 	}
10489 
10490 	retprobe = OPTS_GET(opts, retprobe, false);
10491 
10492 	lopts.kprobe_multi.syms = syms;
10493 	lopts.kprobe_multi.addrs = addrs;
10494 	lopts.kprobe_multi.cookies = cookies;
10495 	lopts.kprobe_multi.cnt = cnt;
10496 	lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
10497 
10498 	link = calloc(1, sizeof(*link));
10499 	if (!link) {
10500 		err = -ENOMEM;
10501 		goto error;
10502 	}
10503 	link->detach = &bpf_link__detach_fd;
10504 
10505 	prog_fd = bpf_program__fd(prog);
10506 	link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts);
10507 	if (link_fd < 0) {
10508 		err = -errno;
10509 		pr_warn("prog '%s': failed to attach: %s\n",
10510 			prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10511 		goto error;
10512 	}
10513 	link->fd = link_fd;
10514 	free(res.addrs);
10515 	return link;
10516 
10517 error:
10518 	free(link);
10519 	free(res.addrs);
10520 	return libbpf_err_ptr(err);
10521 }
10522 
10523 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10524 {
10525 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
10526 	unsigned long offset = 0;
10527 	const char *func_name;
10528 	char *func;
10529 	int n;
10530 
10531 	*link = NULL;
10532 
10533 	/* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
10534 	if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
10535 		return 0;
10536 
10537 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
10538 	if (opts.retprobe)
10539 		func_name = prog->sec_name + sizeof("kretprobe/") - 1;
10540 	else
10541 		func_name = prog->sec_name + sizeof("kprobe/") - 1;
10542 
10543 	n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
10544 	if (n < 1) {
10545 		pr_warn("kprobe name is invalid: %s\n", func_name);
10546 		return -EINVAL;
10547 	}
10548 	if (opts.retprobe && offset != 0) {
10549 		free(func);
10550 		pr_warn("kretprobes do not support offset specification\n");
10551 		return -EINVAL;
10552 	}
10553 
10554 	opts.offset = offset;
10555 	*link = bpf_program__attach_kprobe_opts(prog, func, &opts);
10556 	free(func);
10557 	return libbpf_get_error(*link);
10558 }
10559 
10560 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10561 {
10562 	LIBBPF_OPTS(bpf_ksyscall_opts, opts);
10563 	const char *syscall_name;
10564 
10565 	*link = NULL;
10566 
10567 	/* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
10568 	if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
10569 		return 0;
10570 
10571 	opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
10572 	if (opts.retprobe)
10573 		syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
10574 	else
10575 		syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
10576 
10577 	*link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
10578 	return *link ? 0 : -errno;
10579 }
10580 
10581 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10582 {
10583 	LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
10584 	const char *spec;
10585 	char *pattern;
10586 	int n;
10587 
10588 	*link = NULL;
10589 
10590 	/* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
10591 	if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
10592 	    strcmp(prog->sec_name, "kretprobe.multi") == 0)
10593 		return 0;
10594 
10595 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
10596 	if (opts.retprobe)
10597 		spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
10598 	else
10599 		spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
10600 
10601 	n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
10602 	if (n < 1) {
10603 		pr_warn("kprobe multi pattern is invalid: %s\n", pattern);
10604 		return -EINVAL;
10605 	}
10606 
10607 	*link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
10608 	free(pattern);
10609 	return libbpf_get_error(*link);
10610 }
10611 
10612 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
10613 					 const char *binary_path, uint64_t offset)
10614 {
10615 	int i;
10616 
10617 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
10618 
10619 	/* sanitize binary_path in the probe name */
10620 	for (i = 0; buf[i]; i++) {
10621 		if (!isalnum(buf[i]))
10622 			buf[i] = '_';
10623 	}
10624 }
10625 
10626 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
10627 					  const char *binary_path, size_t offset)
10628 {
10629 	return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
10630 			      retprobe ? 'r' : 'p',
10631 			      retprobe ? "uretprobes" : "uprobes",
10632 			      probe_name, binary_path, offset);
10633 }
10634 
10635 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
10636 {
10637 	return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
10638 			      retprobe ? "uretprobes" : "uprobes", probe_name);
10639 }
10640 
10641 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10642 {
10643 	char file[512];
10644 
10645 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10646 		 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
10647 
10648 	return parse_uint_from_file(file, "%d\n");
10649 }
10650 
10651 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
10652 					 const char *binary_path, size_t offset, int pid)
10653 {
10654 	const size_t attr_sz = sizeof(struct perf_event_attr);
10655 	struct perf_event_attr attr;
10656 	int type, pfd, err;
10657 
10658 	err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
10659 	if (err < 0) {
10660 		pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
10661 			binary_path, (size_t)offset, err);
10662 		return err;
10663 	}
10664 	type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
10665 	if (type < 0) {
10666 		err = type;
10667 		pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
10668 			binary_path, offset, err);
10669 		goto err_clean_legacy;
10670 	}
10671 
10672 	memset(&attr, 0, attr_sz);
10673 	attr.size = attr_sz;
10674 	attr.config = type;
10675 	attr.type = PERF_TYPE_TRACEPOINT;
10676 
10677 	pfd = syscall(__NR_perf_event_open, &attr,
10678 		      pid < 0 ? -1 : pid, /* pid */
10679 		      pid == -1 ? 0 : -1, /* cpu */
10680 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
10681 	if (pfd < 0) {
10682 		err = -errno;
10683 		pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
10684 		goto err_clean_legacy;
10685 	}
10686 	return pfd;
10687 
10688 err_clean_legacy:
10689 	/* Clear the newly added legacy uprobe_event */
10690 	remove_uprobe_event_legacy(probe_name, retprobe);
10691 	return err;
10692 }
10693 
10694 /* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */
10695 static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn)
10696 {
10697 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
10698 		GElf_Shdr sh;
10699 
10700 		if (!gelf_getshdr(scn, &sh))
10701 			continue;
10702 		if (sh.sh_type == sh_type)
10703 			return scn;
10704 	}
10705 	return NULL;
10706 }
10707 
10708 /* Find offset of function name in the provided ELF object. "binary_path" is
10709  * the path to the ELF binary represented by "elf", and only used for error
10710  * reporting matters. "name" matches symbol name or name@@LIB for library
10711  * functions.
10712  */
10713 static long elf_find_func_offset(Elf *elf, const char *binary_path, const char *name)
10714 {
10715 	int i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB };
10716 	bool is_shared_lib, is_name_qualified;
10717 	long ret = -ENOENT;
10718 	size_t name_len;
10719 	GElf_Ehdr ehdr;
10720 
10721 	if (!gelf_getehdr(elf, &ehdr)) {
10722 		pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1));
10723 		ret = -LIBBPF_ERRNO__FORMAT;
10724 		goto out;
10725 	}
10726 	/* for shared lib case, we do not need to calculate relative offset */
10727 	is_shared_lib = ehdr.e_type == ET_DYN;
10728 
10729 	name_len = strlen(name);
10730 	/* Does name specify "@@LIB"? */
10731 	is_name_qualified = strstr(name, "@@") != NULL;
10732 
10733 	/* Search SHT_DYNSYM, SHT_SYMTAB for symbol. This search order is used because if
10734 	 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically
10735 	 * linked binary may not have SHT_DYMSYM, so absence of a section should not be
10736 	 * reported as a warning/error.
10737 	 */
10738 	for (i = 0; i < ARRAY_SIZE(sh_types); i++) {
10739 		size_t nr_syms, strtabidx, idx;
10740 		Elf_Data *symbols = NULL;
10741 		Elf_Scn *scn = NULL;
10742 		int last_bind = -1;
10743 		const char *sname;
10744 		GElf_Shdr sh;
10745 
10746 		scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL);
10747 		if (!scn) {
10748 			pr_debug("elf: failed to find symbol table ELF sections in '%s'\n",
10749 				 binary_path);
10750 			continue;
10751 		}
10752 		if (!gelf_getshdr(scn, &sh))
10753 			continue;
10754 		strtabidx = sh.sh_link;
10755 		symbols = elf_getdata(scn, 0);
10756 		if (!symbols) {
10757 			pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n",
10758 				binary_path, elf_errmsg(-1));
10759 			ret = -LIBBPF_ERRNO__FORMAT;
10760 			goto out;
10761 		}
10762 		nr_syms = symbols->d_size / sh.sh_entsize;
10763 
10764 		for (idx = 0; idx < nr_syms; idx++) {
10765 			int curr_bind;
10766 			GElf_Sym sym;
10767 			Elf_Scn *sym_scn;
10768 			GElf_Shdr sym_sh;
10769 
10770 			if (!gelf_getsym(symbols, idx, &sym))
10771 				continue;
10772 
10773 			if (GELF_ST_TYPE(sym.st_info) != STT_FUNC)
10774 				continue;
10775 
10776 			sname = elf_strptr(elf, strtabidx, sym.st_name);
10777 			if (!sname)
10778 				continue;
10779 
10780 			curr_bind = GELF_ST_BIND(sym.st_info);
10781 
10782 			/* User can specify func, func@@LIB or func@@LIB_VERSION. */
10783 			if (strncmp(sname, name, name_len) != 0)
10784 				continue;
10785 			/* ...but we don't want a search for "foo" to match 'foo2" also, so any
10786 			 * additional characters in sname should be of the form "@@LIB".
10787 			 */
10788 			if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@')
10789 				continue;
10790 
10791 			if (ret >= 0) {
10792 				/* handle multiple matches */
10793 				if (last_bind != STB_WEAK && curr_bind != STB_WEAK) {
10794 					/* Only accept one non-weak bind. */
10795 					pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n",
10796 						sname, name, binary_path);
10797 					ret = -LIBBPF_ERRNO__FORMAT;
10798 					goto out;
10799 				} else if (curr_bind == STB_WEAK) {
10800 					/* already have a non-weak bind, and
10801 					 * this is a weak bind, so ignore.
10802 					 */
10803 					continue;
10804 				}
10805 			}
10806 
10807 			/* Transform symbol's virtual address (absolute for
10808 			 * binaries and relative for shared libs) into file
10809 			 * offset, which is what kernel is expecting for
10810 			 * uprobe/uretprobe attachment.
10811 			 * See Documentation/trace/uprobetracer.rst for more
10812 			 * details.
10813 			 * This is done by looking up symbol's containing
10814 			 * section's header and using it's virtual address
10815 			 * (sh_addr) and corresponding file offset (sh_offset)
10816 			 * to transform sym.st_value (virtual address) into
10817 			 * desired final file offset.
10818 			 */
10819 			sym_scn = elf_getscn(elf, sym.st_shndx);
10820 			if (!sym_scn)
10821 				continue;
10822 			if (!gelf_getshdr(sym_scn, &sym_sh))
10823 				continue;
10824 
10825 			ret = sym.st_value - sym_sh.sh_addr + sym_sh.sh_offset;
10826 			last_bind = curr_bind;
10827 		}
10828 		if (ret > 0)
10829 			break;
10830 	}
10831 
10832 	if (ret > 0) {
10833 		pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path,
10834 			 ret);
10835 	} else {
10836 		if (ret == 0) {
10837 			pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path,
10838 				is_shared_lib ? "should not be 0 in a shared library" :
10839 						"try using shared library path instead");
10840 			ret = -ENOENT;
10841 		} else {
10842 			pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path);
10843 		}
10844 	}
10845 out:
10846 	return ret;
10847 }
10848 
10849 /* Find offset of function name in ELF object specified by path. "name" matches
10850  * symbol name or name@@LIB for library functions.
10851  */
10852 static long elf_find_func_offset_from_file(const char *binary_path, const char *name)
10853 {
10854 	char errmsg[STRERR_BUFSIZE];
10855 	long ret = -ENOENT;
10856 	Elf *elf;
10857 	int fd;
10858 
10859 	fd = open(binary_path, O_RDONLY | O_CLOEXEC);
10860 	if (fd < 0) {
10861 		ret = -errno;
10862 		pr_warn("failed to open %s: %s\n", binary_path,
10863 			libbpf_strerror_r(ret, errmsg, sizeof(errmsg)));
10864 		return ret;
10865 	}
10866 	elf = elf_begin(fd, ELF_C_READ_MMAP, NULL);
10867 	if (!elf) {
10868 		pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1));
10869 		close(fd);
10870 		return -LIBBPF_ERRNO__FORMAT;
10871 	}
10872 
10873 	ret = elf_find_func_offset(elf, binary_path, name);
10874 	elf_end(elf);
10875 	close(fd);
10876 	return ret;
10877 }
10878 
10879 /* Find offset of function name in archive specified by path. Currently
10880  * supported are .zip files that do not compress their contents, as used on
10881  * Android in the form of APKs, for example. "file_name" is the name of the ELF
10882  * file inside the archive. "func_name" matches symbol name or name@@LIB for
10883  * library functions.
10884  *
10885  * An overview of the APK format specifically provided here:
10886  * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents
10887  */
10888 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name,
10889 					      const char *func_name)
10890 {
10891 	struct zip_archive *archive;
10892 	struct zip_entry entry;
10893 	long ret;
10894 	Elf *elf;
10895 
10896 	archive = zip_archive_open(archive_path);
10897 	if (IS_ERR(archive)) {
10898 		ret = PTR_ERR(archive);
10899 		pr_warn("zip: failed to open %s: %ld\n", archive_path, ret);
10900 		return ret;
10901 	}
10902 
10903 	ret = zip_archive_find_entry(archive, file_name, &entry);
10904 	if (ret) {
10905 		pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name,
10906 			archive_path, ret);
10907 		goto out;
10908 	}
10909 	pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path,
10910 		 (unsigned long)entry.data_offset);
10911 
10912 	if (entry.compression) {
10913 		pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name,
10914 			archive_path);
10915 		ret = -LIBBPF_ERRNO__FORMAT;
10916 		goto out;
10917 	}
10918 
10919 	elf = elf_memory((void *)entry.data, entry.data_length);
10920 	if (!elf) {
10921 		pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path,
10922 			elf_errmsg(-1));
10923 		ret = -LIBBPF_ERRNO__LIBELF;
10924 		goto out;
10925 	}
10926 
10927 	ret = elf_find_func_offset(elf, file_name, func_name);
10928 	if (ret > 0) {
10929 		pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n",
10930 			 func_name, file_name, archive_path, entry.data_offset, ret,
10931 			 ret + entry.data_offset);
10932 		ret += entry.data_offset;
10933 	}
10934 	elf_end(elf);
10935 
10936 out:
10937 	zip_archive_close(archive);
10938 	return ret;
10939 }
10940 
10941 static const char *arch_specific_lib_paths(void)
10942 {
10943 	/*
10944 	 * Based on https://packages.debian.org/sid/libc6.
10945 	 *
10946 	 * Assume that the traced program is built for the same architecture
10947 	 * as libbpf, which should cover the vast majority of cases.
10948 	 */
10949 #if defined(__x86_64__)
10950 	return "/lib/x86_64-linux-gnu";
10951 #elif defined(__i386__)
10952 	return "/lib/i386-linux-gnu";
10953 #elif defined(__s390x__)
10954 	return "/lib/s390x-linux-gnu";
10955 #elif defined(__s390__)
10956 	return "/lib/s390-linux-gnu";
10957 #elif defined(__arm__) && defined(__SOFTFP__)
10958 	return "/lib/arm-linux-gnueabi";
10959 #elif defined(__arm__) && !defined(__SOFTFP__)
10960 	return "/lib/arm-linux-gnueabihf";
10961 #elif defined(__aarch64__)
10962 	return "/lib/aarch64-linux-gnu";
10963 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
10964 	return "/lib/mips64el-linux-gnuabi64";
10965 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
10966 	return "/lib/mipsel-linux-gnu";
10967 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
10968 	return "/lib/powerpc64le-linux-gnu";
10969 #elif defined(__sparc__) && defined(__arch64__)
10970 	return "/lib/sparc64-linux-gnu";
10971 #elif defined(__riscv) && __riscv_xlen == 64
10972 	return "/lib/riscv64-linux-gnu";
10973 #else
10974 	return NULL;
10975 #endif
10976 }
10977 
10978 /* Get full path to program/shared library. */
10979 static int resolve_full_path(const char *file, char *result, size_t result_sz)
10980 {
10981 	const char *search_paths[3] = {};
10982 	int i, perm;
10983 
10984 	if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
10985 		search_paths[0] = getenv("LD_LIBRARY_PATH");
10986 		search_paths[1] = "/usr/lib64:/usr/lib";
10987 		search_paths[2] = arch_specific_lib_paths();
10988 		perm = R_OK;
10989 	} else {
10990 		search_paths[0] = getenv("PATH");
10991 		search_paths[1] = "/usr/bin:/usr/sbin";
10992 		perm = R_OK | X_OK;
10993 	}
10994 
10995 	for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
10996 		const char *s;
10997 
10998 		if (!search_paths[i])
10999 			continue;
11000 		for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
11001 			char *next_path;
11002 			int seg_len;
11003 
11004 			if (s[0] == ':')
11005 				s++;
11006 			next_path = strchr(s, ':');
11007 			seg_len = next_path ? next_path - s : strlen(s);
11008 			if (!seg_len)
11009 				continue;
11010 			snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
11011 			/* ensure it has required permissions */
11012 			if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
11013 				continue;
11014 			pr_debug("resolved '%s' to '%s'\n", file, result);
11015 			return 0;
11016 		}
11017 	}
11018 	return -ENOENT;
11019 }
11020 
11021 LIBBPF_API struct bpf_link *
11022 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
11023 				const char *binary_path, size_t func_offset,
11024 				const struct bpf_uprobe_opts *opts)
11025 {
11026 	const char *archive_path = NULL, *archive_sep = NULL;
11027 	char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
11028 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11029 	enum probe_attach_mode attach_mode;
11030 	char full_path[PATH_MAX];
11031 	struct bpf_link *link;
11032 	size_t ref_ctr_off;
11033 	int pfd, err;
11034 	bool retprobe, legacy;
11035 	const char *func_name;
11036 
11037 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
11038 		return libbpf_err_ptr(-EINVAL);
11039 
11040 	attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11041 	retprobe = OPTS_GET(opts, retprobe, false);
11042 	ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
11043 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11044 
11045 	if (!binary_path)
11046 		return libbpf_err_ptr(-EINVAL);
11047 
11048 	/* Check if "binary_path" refers to an archive. */
11049 	archive_sep = strstr(binary_path, "!/");
11050 	if (archive_sep) {
11051 		full_path[0] = '\0';
11052 		libbpf_strlcpy(full_path, binary_path,
11053 			       min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1)));
11054 		archive_path = full_path;
11055 		binary_path = archive_sep + 2;
11056 	} else if (!strchr(binary_path, '/')) {
11057 		err = resolve_full_path(binary_path, full_path, sizeof(full_path));
11058 		if (err) {
11059 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11060 				prog->name, binary_path, err);
11061 			return libbpf_err_ptr(err);
11062 		}
11063 		binary_path = full_path;
11064 	}
11065 	func_name = OPTS_GET(opts, func_name, NULL);
11066 	if (func_name) {
11067 		long sym_off;
11068 
11069 		if (archive_path) {
11070 			sym_off = elf_find_func_offset_from_archive(archive_path, binary_path,
11071 								    func_name);
11072 			binary_path = archive_path;
11073 		} else {
11074 			sym_off = elf_find_func_offset_from_file(binary_path, func_name);
11075 		}
11076 		if (sym_off < 0)
11077 			return libbpf_err_ptr(sym_off);
11078 		func_offset += sym_off;
11079 	}
11080 
11081 	legacy = determine_uprobe_perf_type() < 0;
11082 	switch (attach_mode) {
11083 	case PROBE_ATTACH_MODE_LEGACY:
11084 		legacy = true;
11085 		pe_opts.force_ioctl_attach = true;
11086 		break;
11087 	case PROBE_ATTACH_MODE_PERF:
11088 		if (legacy)
11089 			return libbpf_err_ptr(-ENOTSUP);
11090 		pe_opts.force_ioctl_attach = true;
11091 		break;
11092 	case PROBE_ATTACH_MODE_LINK:
11093 		if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11094 			return libbpf_err_ptr(-ENOTSUP);
11095 		break;
11096 	case PROBE_ATTACH_MODE_DEFAULT:
11097 		break;
11098 	default:
11099 		return libbpf_err_ptr(-EINVAL);
11100 	}
11101 
11102 	if (!legacy) {
11103 		pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
11104 					    func_offset, pid, ref_ctr_off);
11105 	} else {
11106 		char probe_name[PATH_MAX + 64];
11107 
11108 		if (ref_ctr_off)
11109 			return libbpf_err_ptr(-EINVAL);
11110 
11111 		gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
11112 					     binary_path, func_offset);
11113 
11114 		legacy_probe = strdup(probe_name);
11115 		if (!legacy_probe)
11116 			return libbpf_err_ptr(-ENOMEM);
11117 
11118 		pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
11119 						    binary_path, func_offset, pid);
11120 	}
11121 	if (pfd < 0) {
11122 		err = -errno;
11123 		pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
11124 			prog->name, retprobe ? "uretprobe" : "uprobe",
11125 			binary_path, func_offset,
11126 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11127 		goto err_out;
11128 	}
11129 
11130 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11131 	err = libbpf_get_error(link);
11132 	if (err) {
11133 		close(pfd);
11134 		pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
11135 			prog->name, retprobe ? "uretprobe" : "uprobe",
11136 			binary_path, func_offset,
11137 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11138 		goto err_clean_legacy;
11139 	}
11140 	if (legacy) {
11141 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11142 
11143 		perf_link->legacy_probe_name = legacy_probe;
11144 		perf_link->legacy_is_kprobe = false;
11145 		perf_link->legacy_is_retprobe = retprobe;
11146 	}
11147 	return link;
11148 
11149 err_clean_legacy:
11150 	if (legacy)
11151 		remove_uprobe_event_legacy(legacy_probe, retprobe);
11152 err_out:
11153 	free(legacy_probe);
11154 	return libbpf_err_ptr(err);
11155 }
11156 
11157 /* Format of u[ret]probe section definition supporting auto-attach:
11158  * u[ret]probe/binary:function[+offset]
11159  *
11160  * binary can be an absolute/relative path or a filename; the latter is resolved to a
11161  * full binary path via bpf_program__attach_uprobe_opts.
11162  *
11163  * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
11164  * specified (and auto-attach is not possible) or the above format is specified for
11165  * auto-attach.
11166  */
11167 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11168 {
11169 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
11170 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11171 	int n, ret = -EINVAL;
11172 	long offset = 0;
11173 
11174 	*link = NULL;
11175 
11176 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li",
11177 		   &probe_type, &binary_path, &func_name, &offset);
11178 	switch (n) {
11179 	case 1:
11180 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11181 		ret = 0;
11182 		break;
11183 	case 2:
11184 		pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
11185 			prog->name, prog->sec_name);
11186 		break;
11187 	case 3:
11188 	case 4:
11189 		opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
11190 				strcmp(probe_type, "uretprobe.s") == 0;
11191 		if (opts.retprobe && offset != 0) {
11192 			pr_warn("prog '%s': uretprobes do not support offset specification\n",
11193 				prog->name);
11194 			break;
11195 		}
11196 		opts.func_name = func_name;
11197 		*link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
11198 		ret = libbpf_get_error(*link);
11199 		break;
11200 	default:
11201 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11202 			prog->sec_name);
11203 		break;
11204 	}
11205 	free(probe_type);
11206 	free(binary_path);
11207 	free(func_name);
11208 
11209 	return ret;
11210 }
11211 
11212 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
11213 					    bool retprobe, pid_t pid,
11214 					    const char *binary_path,
11215 					    size_t func_offset)
11216 {
11217 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
11218 
11219 	return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
11220 }
11221 
11222 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
11223 					  pid_t pid, const char *binary_path,
11224 					  const char *usdt_provider, const char *usdt_name,
11225 					  const struct bpf_usdt_opts *opts)
11226 {
11227 	char resolved_path[512];
11228 	struct bpf_object *obj = prog->obj;
11229 	struct bpf_link *link;
11230 	__u64 usdt_cookie;
11231 	int err;
11232 
11233 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
11234 		return libbpf_err_ptr(-EINVAL);
11235 
11236 	if (bpf_program__fd(prog) < 0) {
11237 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
11238 			prog->name);
11239 		return libbpf_err_ptr(-EINVAL);
11240 	}
11241 
11242 	if (!binary_path)
11243 		return libbpf_err_ptr(-EINVAL);
11244 
11245 	if (!strchr(binary_path, '/')) {
11246 		err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
11247 		if (err) {
11248 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11249 				prog->name, binary_path, err);
11250 			return libbpf_err_ptr(err);
11251 		}
11252 		binary_path = resolved_path;
11253 	}
11254 
11255 	/* USDT manager is instantiated lazily on first USDT attach. It will
11256 	 * be destroyed together with BPF object in bpf_object__close().
11257 	 */
11258 	if (IS_ERR(obj->usdt_man))
11259 		return libbpf_ptr(obj->usdt_man);
11260 	if (!obj->usdt_man) {
11261 		obj->usdt_man = usdt_manager_new(obj);
11262 		if (IS_ERR(obj->usdt_man))
11263 			return libbpf_ptr(obj->usdt_man);
11264 	}
11265 
11266 	usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
11267 	link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
11268 					usdt_provider, usdt_name, usdt_cookie);
11269 	err = libbpf_get_error(link);
11270 	if (err)
11271 		return libbpf_err_ptr(err);
11272 	return link;
11273 }
11274 
11275 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11276 {
11277 	char *path = NULL, *provider = NULL, *name = NULL;
11278 	const char *sec_name;
11279 	int n, err;
11280 
11281 	sec_name = bpf_program__section_name(prog);
11282 	if (strcmp(sec_name, "usdt") == 0) {
11283 		/* no auto-attach for just SEC("usdt") */
11284 		*link = NULL;
11285 		return 0;
11286 	}
11287 
11288 	n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
11289 	if (n != 3) {
11290 		pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
11291 			sec_name);
11292 		err = -EINVAL;
11293 	} else {
11294 		*link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
11295 						 provider, name, NULL);
11296 		err = libbpf_get_error(*link);
11297 	}
11298 	free(path);
11299 	free(provider);
11300 	free(name);
11301 	return err;
11302 }
11303 
11304 static int determine_tracepoint_id(const char *tp_category,
11305 				   const char *tp_name)
11306 {
11307 	char file[PATH_MAX];
11308 	int ret;
11309 
11310 	ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11311 		       tracefs_path(), tp_category, tp_name);
11312 	if (ret < 0)
11313 		return -errno;
11314 	if (ret >= sizeof(file)) {
11315 		pr_debug("tracepoint %s/%s path is too long\n",
11316 			 tp_category, tp_name);
11317 		return -E2BIG;
11318 	}
11319 	return parse_uint_from_file(file, "%d\n");
11320 }
11321 
11322 static int perf_event_open_tracepoint(const char *tp_category,
11323 				      const char *tp_name)
11324 {
11325 	const size_t attr_sz = sizeof(struct perf_event_attr);
11326 	struct perf_event_attr attr;
11327 	char errmsg[STRERR_BUFSIZE];
11328 	int tp_id, pfd, err;
11329 
11330 	tp_id = determine_tracepoint_id(tp_category, tp_name);
11331 	if (tp_id < 0) {
11332 		pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
11333 			tp_category, tp_name,
11334 			libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
11335 		return tp_id;
11336 	}
11337 
11338 	memset(&attr, 0, attr_sz);
11339 	attr.type = PERF_TYPE_TRACEPOINT;
11340 	attr.size = attr_sz;
11341 	attr.config = tp_id;
11342 
11343 	pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
11344 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11345 	if (pfd < 0) {
11346 		err = -errno;
11347 		pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
11348 			tp_category, tp_name,
11349 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11350 		return err;
11351 	}
11352 	return pfd;
11353 }
11354 
11355 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
11356 						     const char *tp_category,
11357 						     const char *tp_name,
11358 						     const struct bpf_tracepoint_opts *opts)
11359 {
11360 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11361 	char errmsg[STRERR_BUFSIZE];
11362 	struct bpf_link *link;
11363 	int pfd, err;
11364 
11365 	if (!OPTS_VALID(opts, bpf_tracepoint_opts))
11366 		return libbpf_err_ptr(-EINVAL);
11367 
11368 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11369 
11370 	pfd = perf_event_open_tracepoint(tp_category, tp_name);
11371 	if (pfd < 0) {
11372 		pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
11373 			prog->name, tp_category, tp_name,
11374 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11375 		return libbpf_err_ptr(pfd);
11376 	}
11377 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11378 	err = libbpf_get_error(link);
11379 	if (err) {
11380 		close(pfd);
11381 		pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
11382 			prog->name, tp_category, tp_name,
11383 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11384 		return libbpf_err_ptr(err);
11385 	}
11386 	return link;
11387 }
11388 
11389 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
11390 						const char *tp_category,
11391 						const char *tp_name)
11392 {
11393 	return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
11394 }
11395 
11396 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11397 {
11398 	char *sec_name, *tp_cat, *tp_name;
11399 
11400 	*link = NULL;
11401 
11402 	/* no auto-attach for SEC("tp") or SEC("tracepoint") */
11403 	if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
11404 		return 0;
11405 
11406 	sec_name = strdup(prog->sec_name);
11407 	if (!sec_name)
11408 		return -ENOMEM;
11409 
11410 	/* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
11411 	if (str_has_pfx(prog->sec_name, "tp/"))
11412 		tp_cat = sec_name + sizeof("tp/") - 1;
11413 	else
11414 		tp_cat = sec_name + sizeof("tracepoint/") - 1;
11415 	tp_name = strchr(tp_cat, '/');
11416 	if (!tp_name) {
11417 		free(sec_name);
11418 		return -EINVAL;
11419 	}
11420 	*tp_name = '\0';
11421 	tp_name++;
11422 
11423 	*link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
11424 	free(sec_name);
11425 	return libbpf_get_error(*link);
11426 }
11427 
11428 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
11429 						    const char *tp_name)
11430 {
11431 	char errmsg[STRERR_BUFSIZE];
11432 	struct bpf_link *link;
11433 	int prog_fd, pfd;
11434 
11435 	prog_fd = bpf_program__fd(prog);
11436 	if (prog_fd < 0) {
11437 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11438 		return libbpf_err_ptr(-EINVAL);
11439 	}
11440 
11441 	link = calloc(1, sizeof(*link));
11442 	if (!link)
11443 		return libbpf_err_ptr(-ENOMEM);
11444 	link->detach = &bpf_link__detach_fd;
11445 
11446 	pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
11447 	if (pfd < 0) {
11448 		pfd = -errno;
11449 		free(link);
11450 		pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
11451 			prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11452 		return libbpf_err_ptr(pfd);
11453 	}
11454 	link->fd = pfd;
11455 	return link;
11456 }
11457 
11458 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11459 {
11460 	static const char *const prefixes[] = {
11461 		"raw_tp",
11462 		"raw_tracepoint",
11463 		"raw_tp.w",
11464 		"raw_tracepoint.w",
11465 	};
11466 	size_t i;
11467 	const char *tp_name = NULL;
11468 
11469 	*link = NULL;
11470 
11471 	for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
11472 		size_t pfx_len;
11473 
11474 		if (!str_has_pfx(prog->sec_name, prefixes[i]))
11475 			continue;
11476 
11477 		pfx_len = strlen(prefixes[i]);
11478 		/* no auto-attach case of, e.g., SEC("raw_tp") */
11479 		if (prog->sec_name[pfx_len] == '\0')
11480 			return 0;
11481 
11482 		if (prog->sec_name[pfx_len] != '/')
11483 			continue;
11484 
11485 		tp_name = prog->sec_name + pfx_len + 1;
11486 		break;
11487 	}
11488 
11489 	if (!tp_name) {
11490 		pr_warn("prog '%s': invalid section name '%s'\n",
11491 			prog->name, prog->sec_name);
11492 		return -EINVAL;
11493 	}
11494 
11495 	*link = bpf_program__attach_raw_tracepoint(prog, tp_name);
11496 	return libbpf_get_error(*link);
11497 }
11498 
11499 /* Common logic for all BPF program types that attach to a btf_id */
11500 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
11501 						   const struct bpf_trace_opts *opts)
11502 {
11503 	LIBBPF_OPTS(bpf_link_create_opts, link_opts);
11504 	char errmsg[STRERR_BUFSIZE];
11505 	struct bpf_link *link;
11506 	int prog_fd, pfd;
11507 
11508 	if (!OPTS_VALID(opts, bpf_trace_opts))
11509 		return libbpf_err_ptr(-EINVAL);
11510 
11511 	prog_fd = bpf_program__fd(prog);
11512 	if (prog_fd < 0) {
11513 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11514 		return libbpf_err_ptr(-EINVAL);
11515 	}
11516 
11517 	link = calloc(1, sizeof(*link));
11518 	if (!link)
11519 		return libbpf_err_ptr(-ENOMEM);
11520 	link->detach = &bpf_link__detach_fd;
11521 
11522 	/* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
11523 	link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
11524 	pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
11525 	if (pfd < 0) {
11526 		pfd = -errno;
11527 		free(link);
11528 		pr_warn("prog '%s': failed to attach: %s\n",
11529 			prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11530 		return libbpf_err_ptr(pfd);
11531 	}
11532 	link->fd = pfd;
11533 	return link;
11534 }
11535 
11536 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
11537 {
11538 	return bpf_program__attach_btf_id(prog, NULL);
11539 }
11540 
11541 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
11542 						const struct bpf_trace_opts *opts)
11543 {
11544 	return bpf_program__attach_btf_id(prog, opts);
11545 }
11546 
11547 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
11548 {
11549 	return bpf_program__attach_btf_id(prog, NULL);
11550 }
11551 
11552 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11553 {
11554 	*link = bpf_program__attach_trace(prog);
11555 	return libbpf_get_error(*link);
11556 }
11557 
11558 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11559 {
11560 	*link = bpf_program__attach_lsm(prog);
11561 	return libbpf_get_error(*link);
11562 }
11563 
11564 static struct bpf_link *
11565 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id,
11566 		       const char *target_name)
11567 {
11568 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts,
11569 			    .target_btf_id = btf_id);
11570 	enum bpf_attach_type attach_type;
11571 	char errmsg[STRERR_BUFSIZE];
11572 	struct bpf_link *link;
11573 	int prog_fd, link_fd;
11574 
11575 	prog_fd = bpf_program__fd(prog);
11576 	if (prog_fd < 0) {
11577 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11578 		return libbpf_err_ptr(-EINVAL);
11579 	}
11580 
11581 	link = calloc(1, sizeof(*link));
11582 	if (!link)
11583 		return libbpf_err_ptr(-ENOMEM);
11584 	link->detach = &bpf_link__detach_fd;
11585 
11586 	attach_type = bpf_program__expected_attach_type(prog);
11587 	link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts);
11588 	if (link_fd < 0) {
11589 		link_fd = -errno;
11590 		free(link);
11591 		pr_warn("prog '%s': failed to attach to %s: %s\n",
11592 			prog->name, target_name,
11593 			libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11594 		return libbpf_err_ptr(link_fd);
11595 	}
11596 	link->fd = link_fd;
11597 	return link;
11598 }
11599 
11600 struct bpf_link *
11601 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
11602 {
11603 	return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup");
11604 }
11605 
11606 struct bpf_link *
11607 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
11608 {
11609 	return bpf_program__attach_fd(prog, netns_fd, 0, "netns");
11610 }
11611 
11612 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
11613 {
11614 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
11615 	return bpf_program__attach_fd(prog, ifindex, 0, "xdp");
11616 }
11617 
11618 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
11619 					      int target_fd,
11620 					      const char *attach_func_name)
11621 {
11622 	int btf_id;
11623 
11624 	if (!!target_fd != !!attach_func_name) {
11625 		pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
11626 			prog->name);
11627 		return libbpf_err_ptr(-EINVAL);
11628 	}
11629 
11630 	if (prog->type != BPF_PROG_TYPE_EXT) {
11631 		pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
11632 			prog->name);
11633 		return libbpf_err_ptr(-EINVAL);
11634 	}
11635 
11636 	if (target_fd) {
11637 		btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
11638 		if (btf_id < 0)
11639 			return libbpf_err_ptr(btf_id);
11640 
11641 		return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace");
11642 	} else {
11643 		/* no target, so use raw_tracepoint_open for compatibility
11644 		 * with old kernels
11645 		 */
11646 		return bpf_program__attach_trace(prog);
11647 	}
11648 }
11649 
11650 struct bpf_link *
11651 bpf_program__attach_iter(const struct bpf_program *prog,
11652 			 const struct bpf_iter_attach_opts *opts)
11653 {
11654 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
11655 	char errmsg[STRERR_BUFSIZE];
11656 	struct bpf_link *link;
11657 	int prog_fd, link_fd;
11658 	__u32 target_fd = 0;
11659 
11660 	if (!OPTS_VALID(opts, bpf_iter_attach_opts))
11661 		return libbpf_err_ptr(-EINVAL);
11662 
11663 	link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
11664 	link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
11665 
11666 	prog_fd = bpf_program__fd(prog);
11667 	if (prog_fd < 0) {
11668 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11669 		return libbpf_err_ptr(-EINVAL);
11670 	}
11671 
11672 	link = calloc(1, sizeof(*link));
11673 	if (!link)
11674 		return libbpf_err_ptr(-ENOMEM);
11675 	link->detach = &bpf_link__detach_fd;
11676 
11677 	link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
11678 				  &link_create_opts);
11679 	if (link_fd < 0) {
11680 		link_fd = -errno;
11681 		free(link);
11682 		pr_warn("prog '%s': failed to attach to iterator: %s\n",
11683 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11684 		return libbpf_err_ptr(link_fd);
11685 	}
11686 	link->fd = link_fd;
11687 	return link;
11688 }
11689 
11690 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11691 {
11692 	*link = bpf_program__attach_iter(prog, NULL);
11693 	return libbpf_get_error(*link);
11694 }
11695 
11696 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
11697 {
11698 	struct bpf_link *link = NULL;
11699 	int err;
11700 
11701 	if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
11702 		return libbpf_err_ptr(-EOPNOTSUPP);
11703 
11704 	err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
11705 	if (err)
11706 		return libbpf_err_ptr(err);
11707 
11708 	/* When calling bpf_program__attach() explicitly, auto-attach support
11709 	 * is expected to work, so NULL returned link is considered an error.
11710 	 * This is different for skeleton's attach, see comment in
11711 	 * bpf_object__attach_skeleton().
11712 	 */
11713 	if (!link)
11714 		return libbpf_err_ptr(-EOPNOTSUPP);
11715 
11716 	return link;
11717 }
11718 
11719 struct bpf_link_struct_ops {
11720 	struct bpf_link link;
11721 	int map_fd;
11722 };
11723 
11724 static int bpf_link__detach_struct_ops(struct bpf_link *link)
11725 {
11726 	struct bpf_link_struct_ops *st_link;
11727 	__u32 zero = 0;
11728 
11729 	st_link = container_of(link, struct bpf_link_struct_ops, link);
11730 
11731 	if (st_link->map_fd < 0)
11732 		/* w/o a real link */
11733 		return bpf_map_delete_elem(link->fd, &zero);
11734 
11735 	return close(link->fd);
11736 }
11737 
11738 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
11739 {
11740 	struct bpf_link_struct_ops *link;
11741 	__u32 zero = 0;
11742 	int err, fd;
11743 
11744 	if (!bpf_map__is_struct_ops(map) || map->fd == -1)
11745 		return libbpf_err_ptr(-EINVAL);
11746 
11747 	link = calloc(1, sizeof(*link));
11748 	if (!link)
11749 		return libbpf_err_ptr(-EINVAL);
11750 
11751 	/* kern_vdata should be prepared during the loading phase. */
11752 	err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
11753 	/* It can be EBUSY if the map has been used to create or
11754 	 * update a link before.  We don't allow updating the value of
11755 	 * a struct_ops once it is set.  That ensures that the value
11756 	 * never changed.  So, it is safe to skip EBUSY.
11757 	 */
11758 	if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) {
11759 		free(link);
11760 		return libbpf_err_ptr(err);
11761 	}
11762 
11763 	link->link.detach = bpf_link__detach_struct_ops;
11764 
11765 	if (!(map->def.map_flags & BPF_F_LINK)) {
11766 		/* w/o a real link */
11767 		link->link.fd = map->fd;
11768 		link->map_fd = -1;
11769 		return &link->link;
11770 	}
11771 
11772 	fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL);
11773 	if (fd < 0) {
11774 		free(link);
11775 		return libbpf_err_ptr(fd);
11776 	}
11777 
11778 	link->link.fd = fd;
11779 	link->map_fd = map->fd;
11780 
11781 	return &link->link;
11782 }
11783 
11784 /*
11785  * Swap the back struct_ops of a link with a new struct_ops map.
11786  */
11787 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map)
11788 {
11789 	struct bpf_link_struct_ops *st_ops_link;
11790 	__u32 zero = 0;
11791 	int err;
11792 
11793 	if (!bpf_map__is_struct_ops(map) || map->fd < 0)
11794 		return -EINVAL;
11795 
11796 	st_ops_link = container_of(link, struct bpf_link_struct_ops, link);
11797 	/* Ensure the type of a link is correct */
11798 	if (st_ops_link->map_fd < 0)
11799 		return -EINVAL;
11800 
11801 	err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
11802 	/* It can be EBUSY if the map has been used to create or
11803 	 * update a link before.  We don't allow updating the value of
11804 	 * a struct_ops once it is set.  That ensures that the value
11805 	 * never changed.  So, it is safe to skip EBUSY.
11806 	 */
11807 	if (err && err != -EBUSY)
11808 		return err;
11809 
11810 	err = bpf_link_update(link->fd, map->fd, NULL);
11811 	if (err < 0)
11812 		return err;
11813 
11814 	st_ops_link->map_fd = map->fd;
11815 
11816 	return 0;
11817 }
11818 
11819 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
11820 							  void *private_data);
11821 
11822 static enum bpf_perf_event_ret
11823 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
11824 		       void **copy_mem, size_t *copy_size,
11825 		       bpf_perf_event_print_t fn, void *private_data)
11826 {
11827 	struct perf_event_mmap_page *header = mmap_mem;
11828 	__u64 data_head = ring_buffer_read_head(header);
11829 	__u64 data_tail = header->data_tail;
11830 	void *base = ((__u8 *)header) + page_size;
11831 	int ret = LIBBPF_PERF_EVENT_CONT;
11832 	struct perf_event_header *ehdr;
11833 	size_t ehdr_size;
11834 
11835 	while (data_head != data_tail) {
11836 		ehdr = base + (data_tail & (mmap_size - 1));
11837 		ehdr_size = ehdr->size;
11838 
11839 		if (((void *)ehdr) + ehdr_size > base + mmap_size) {
11840 			void *copy_start = ehdr;
11841 			size_t len_first = base + mmap_size - copy_start;
11842 			size_t len_secnd = ehdr_size - len_first;
11843 
11844 			if (*copy_size < ehdr_size) {
11845 				free(*copy_mem);
11846 				*copy_mem = malloc(ehdr_size);
11847 				if (!*copy_mem) {
11848 					*copy_size = 0;
11849 					ret = LIBBPF_PERF_EVENT_ERROR;
11850 					break;
11851 				}
11852 				*copy_size = ehdr_size;
11853 			}
11854 
11855 			memcpy(*copy_mem, copy_start, len_first);
11856 			memcpy(*copy_mem + len_first, base, len_secnd);
11857 			ehdr = *copy_mem;
11858 		}
11859 
11860 		ret = fn(ehdr, private_data);
11861 		data_tail += ehdr_size;
11862 		if (ret != LIBBPF_PERF_EVENT_CONT)
11863 			break;
11864 	}
11865 
11866 	ring_buffer_write_tail(header, data_tail);
11867 	return libbpf_err(ret);
11868 }
11869 
11870 struct perf_buffer;
11871 
11872 struct perf_buffer_params {
11873 	struct perf_event_attr *attr;
11874 	/* if event_cb is specified, it takes precendence */
11875 	perf_buffer_event_fn event_cb;
11876 	/* sample_cb and lost_cb are higher-level common-case callbacks */
11877 	perf_buffer_sample_fn sample_cb;
11878 	perf_buffer_lost_fn lost_cb;
11879 	void *ctx;
11880 	int cpu_cnt;
11881 	int *cpus;
11882 	int *map_keys;
11883 };
11884 
11885 struct perf_cpu_buf {
11886 	struct perf_buffer *pb;
11887 	void *base; /* mmap()'ed memory */
11888 	void *buf; /* for reconstructing segmented data */
11889 	size_t buf_size;
11890 	int fd;
11891 	int cpu;
11892 	int map_key;
11893 };
11894 
11895 struct perf_buffer {
11896 	perf_buffer_event_fn event_cb;
11897 	perf_buffer_sample_fn sample_cb;
11898 	perf_buffer_lost_fn lost_cb;
11899 	void *ctx; /* passed into callbacks */
11900 
11901 	size_t page_size;
11902 	size_t mmap_size;
11903 	struct perf_cpu_buf **cpu_bufs;
11904 	struct epoll_event *events;
11905 	int cpu_cnt; /* number of allocated CPU buffers */
11906 	int epoll_fd; /* perf event FD */
11907 	int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
11908 };
11909 
11910 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
11911 				      struct perf_cpu_buf *cpu_buf)
11912 {
11913 	if (!cpu_buf)
11914 		return;
11915 	if (cpu_buf->base &&
11916 	    munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
11917 		pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
11918 	if (cpu_buf->fd >= 0) {
11919 		ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
11920 		close(cpu_buf->fd);
11921 	}
11922 	free(cpu_buf->buf);
11923 	free(cpu_buf);
11924 }
11925 
11926 void perf_buffer__free(struct perf_buffer *pb)
11927 {
11928 	int i;
11929 
11930 	if (IS_ERR_OR_NULL(pb))
11931 		return;
11932 	if (pb->cpu_bufs) {
11933 		for (i = 0; i < pb->cpu_cnt; i++) {
11934 			struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
11935 
11936 			if (!cpu_buf)
11937 				continue;
11938 
11939 			bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
11940 			perf_buffer__free_cpu_buf(pb, cpu_buf);
11941 		}
11942 		free(pb->cpu_bufs);
11943 	}
11944 	if (pb->epoll_fd >= 0)
11945 		close(pb->epoll_fd);
11946 	free(pb->events);
11947 	free(pb);
11948 }
11949 
11950 static struct perf_cpu_buf *
11951 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
11952 			  int cpu, int map_key)
11953 {
11954 	struct perf_cpu_buf *cpu_buf;
11955 	char msg[STRERR_BUFSIZE];
11956 	int err;
11957 
11958 	cpu_buf = calloc(1, sizeof(*cpu_buf));
11959 	if (!cpu_buf)
11960 		return ERR_PTR(-ENOMEM);
11961 
11962 	cpu_buf->pb = pb;
11963 	cpu_buf->cpu = cpu;
11964 	cpu_buf->map_key = map_key;
11965 
11966 	cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
11967 			      -1, PERF_FLAG_FD_CLOEXEC);
11968 	if (cpu_buf->fd < 0) {
11969 		err = -errno;
11970 		pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
11971 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11972 		goto error;
11973 	}
11974 
11975 	cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
11976 			     PROT_READ | PROT_WRITE, MAP_SHARED,
11977 			     cpu_buf->fd, 0);
11978 	if (cpu_buf->base == MAP_FAILED) {
11979 		cpu_buf->base = NULL;
11980 		err = -errno;
11981 		pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
11982 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11983 		goto error;
11984 	}
11985 
11986 	if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
11987 		err = -errno;
11988 		pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
11989 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11990 		goto error;
11991 	}
11992 
11993 	return cpu_buf;
11994 
11995 error:
11996 	perf_buffer__free_cpu_buf(pb, cpu_buf);
11997 	return (struct perf_cpu_buf *)ERR_PTR(err);
11998 }
11999 
12000 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
12001 					      struct perf_buffer_params *p);
12002 
12003 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
12004 				     perf_buffer_sample_fn sample_cb,
12005 				     perf_buffer_lost_fn lost_cb,
12006 				     void *ctx,
12007 				     const struct perf_buffer_opts *opts)
12008 {
12009 	const size_t attr_sz = sizeof(struct perf_event_attr);
12010 	struct perf_buffer_params p = {};
12011 	struct perf_event_attr attr;
12012 	__u32 sample_period;
12013 
12014 	if (!OPTS_VALID(opts, perf_buffer_opts))
12015 		return libbpf_err_ptr(-EINVAL);
12016 
12017 	sample_period = OPTS_GET(opts, sample_period, 1);
12018 	if (!sample_period)
12019 		sample_period = 1;
12020 
12021 	memset(&attr, 0, attr_sz);
12022 	attr.size = attr_sz;
12023 	attr.config = PERF_COUNT_SW_BPF_OUTPUT;
12024 	attr.type = PERF_TYPE_SOFTWARE;
12025 	attr.sample_type = PERF_SAMPLE_RAW;
12026 	attr.sample_period = sample_period;
12027 	attr.wakeup_events = sample_period;
12028 
12029 	p.attr = &attr;
12030 	p.sample_cb = sample_cb;
12031 	p.lost_cb = lost_cb;
12032 	p.ctx = ctx;
12033 
12034 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
12035 }
12036 
12037 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
12038 					 struct perf_event_attr *attr,
12039 					 perf_buffer_event_fn event_cb, void *ctx,
12040 					 const struct perf_buffer_raw_opts *opts)
12041 {
12042 	struct perf_buffer_params p = {};
12043 
12044 	if (!attr)
12045 		return libbpf_err_ptr(-EINVAL);
12046 
12047 	if (!OPTS_VALID(opts, perf_buffer_raw_opts))
12048 		return libbpf_err_ptr(-EINVAL);
12049 
12050 	p.attr = attr;
12051 	p.event_cb = event_cb;
12052 	p.ctx = ctx;
12053 	p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
12054 	p.cpus = OPTS_GET(opts, cpus, NULL);
12055 	p.map_keys = OPTS_GET(opts, map_keys, NULL);
12056 
12057 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
12058 }
12059 
12060 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
12061 					      struct perf_buffer_params *p)
12062 {
12063 	const char *online_cpus_file = "/sys/devices/system/cpu/online";
12064 	struct bpf_map_info map;
12065 	char msg[STRERR_BUFSIZE];
12066 	struct perf_buffer *pb;
12067 	bool *online = NULL;
12068 	__u32 map_info_len;
12069 	int err, i, j, n;
12070 
12071 	if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
12072 		pr_warn("page count should be power of two, but is %zu\n",
12073 			page_cnt);
12074 		return ERR_PTR(-EINVAL);
12075 	}
12076 
12077 	/* best-effort sanity checks */
12078 	memset(&map, 0, sizeof(map));
12079 	map_info_len = sizeof(map);
12080 	err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len);
12081 	if (err) {
12082 		err = -errno;
12083 		/* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
12084 		 * -EBADFD, -EFAULT, or -E2BIG on real error
12085 		 */
12086 		if (err != -EINVAL) {
12087 			pr_warn("failed to get map info for map FD %d: %s\n",
12088 				map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
12089 			return ERR_PTR(err);
12090 		}
12091 		pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
12092 			 map_fd);
12093 	} else {
12094 		if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
12095 			pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
12096 				map.name);
12097 			return ERR_PTR(-EINVAL);
12098 		}
12099 	}
12100 
12101 	pb = calloc(1, sizeof(*pb));
12102 	if (!pb)
12103 		return ERR_PTR(-ENOMEM);
12104 
12105 	pb->event_cb = p->event_cb;
12106 	pb->sample_cb = p->sample_cb;
12107 	pb->lost_cb = p->lost_cb;
12108 	pb->ctx = p->ctx;
12109 
12110 	pb->page_size = getpagesize();
12111 	pb->mmap_size = pb->page_size * page_cnt;
12112 	pb->map_fd = map_fd;
12113 
12114 	pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
12115 	if (pb->epoll_fd < 0) {
12116 		err = -errno;
12117 		pr_warn("failed to create epoll instance: %s\n",
12118 			libbpf_strerror_r(err, msg, sizeof(msg)));
12119 		goto error;
12120 	}
12121 
12122 	if (p->cpu_cnt > 0) {
12123 		pb->cpu_cnt = p->cpu_cnt;
12124 	} else {
12125 		pb->cpu_cnt = libbpf_num_possible_cpus();
12126 		if (pb->cpu_cnt < 0) {
12127 			err = pb->cpu_cnt;
12128 			goto error;
12129 		}
12130 		if (map.max_entries && map.max_entries < pb->cpu_cnt)
12131 			pb->cpu_cnt = map.max_entries;
12132 	}
12133 
12134 	pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
12135 	if (!pb->events) {
12136 		err = -ENOMEM;
12137 		pr_warn("failed to allocate events: out of memory\n");
12138 		goto error;
12139 	}
12140 	pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
12141 	if (!pb->cpu_bufs) {
12142 		err = -ENOMEM;
12143 		pr_warn("failed to allocate buffers: out of memory\n");
12144 		goto error;
12145 	}
12146 
12147 	err = parse_cpu_mask_file(online_cpus_file, &online, &n);
12148 	if (err) {
12149 		pr_warn("failed to get online CPU mask: %d\n", err);
12150 		goto error;
12151 	}
12152 
12153 	for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
12154 		struct perf_cpu_buf *cpu_buf;
12155 		int cpu, map_key;
12156 
12157 		cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
12158 		map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
12159 
12160 		/* in case user didn't explicitly requested particular CPUs to
12161 		 * be attached to, skip offline/not present CPUs
12162 		 */
12163 		if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
12164 			continue;
12165 
12166 		cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
12167 		if (IS_ERR(cpu_buf)) {
12168 			err = PTR_ERR(cpu_buf);
12169 			goto error;
12170 		}
12171 
12172 		pb->cpu_bufs[j] = cpu_buf;
12173 
12174 		err = bpf_map_update_elem(pb->map_fd, &map_key,
12175 					  &cpu_buf->fd, 0);
12176 		if (err) {
12177 			err = -errno;
12178 			pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
12179 				cpu, map_key, cpu_buf->fd,
12180 				libbpf_strerror_r(err, msg, sizeof(msg)));
12181 			goto error;
12182 		}
12183 
12184 		pb->events[j].events = EPOLLIN;
12185 		pb->events[j].data.ptr = cpu_buf;
12186 		if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
12187 			      &pb->events[j]) < 0) {
12188 			err = -errno;
12189 			pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
12190 				cpu, cpu_buf->fd,
12191 				libbpf_strerror_r(err, msg, sizeof(msg)));
12192 			goto error;
12193 		}
12194 		j++;
12195 	}
12196 	pb->cpu_cnt = j;
12197 	free(online);
12198 
12199 	return pb;
12200 
12201 error:
12202 	free(online);
12203 	if (pb)
12204 		perf_buffer__free(pb);
12205 	return ERR_PTR(err);
12206 }
12207 
12208 struct perf_sample_raw {
12209 	struct perf_event_header header;
12210 	uint32_t size;
12211 	char data[];
12212 };
12213 
12214 struct perf_sample_lost {
12215 	struct perf_event_header header;
12216 	uint64_t id;
12217 	uint64_t lost;
12218 	uint64_t sample_id;
12219 };
12220 
12221 static enum bpf_perf_event_ret
12222 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
12223 {
12224 	struct perf_cpu_buf *cpu_buf = ctx;
12225 	struct perf_buffer *pb = cpu_buf->pb;
12226 	void *data = e;
12227 
12228 	/* user wants full control over parsing perf event */
12229 	if (pb->event_cb)
12230 		return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
12231 
12232 	switch (e->type) {
12233 	case PERF_RECORD_SAMPLE: {
12234 		struct perf_sample_raw *s = data;
12235 
12236 		if (pb->sample_cb)
12237 			pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
12238 		break;
12239 	}
12240 	case PERF_RECORD_LOST: {
12241 		struct perf_sample_lost *s = data;
12242 
12243 		if (pb->lost_cb)
12244 			pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
12245 		break;
12246 	}
12247 	default:
12248 		pr_warn("unknown perf sample type %d\n", e->type);
12249 		return LIBBPF_PERF_EVENT_ERROR;
12250 	}
12251 	return LIBBPF_PERF_EVENT_CONT;
12252 }
12253 
12254 static int perf_buffer__process_records(struct perf_buffer *pb,
12255 					struct perf_cpu_buf *cpu_buf)
12256 {
12257 	enum bpf_perf_event_ret ret;
12258 
12259 	ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
12260 				     pb->page_size, &cpu_buf->buf,
12261 				     &cpu_buf->buf_size,
12262 				     perf_buffer__process_record, cpu_buf);
12263 	if (ret != LIBBPF_PERF_EVENT_CONT)
12264 		return ret;
12265 	return 0;
12266 }
12267 
12268 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
12269 {
12270 	return pb->epoll_fd;
12271 }
12272 
12273 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
12274 {
12275 	int i, cnt, err;
12276 
12277 	cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
12278 	if (cnt < 0)
12279 		return -errno;
12280 
12281 	for (i = 0; i < cnt; i++) {
12282 		struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
12283 
12284 		err = perf_buffer__process_records(pb, cpu_buf);
12285 		if (err) {
12286 			pr_warn("error while processing records: %d\n", err);
12287 			return libbpf_err(err);
12288 		}
12289 	}
12290 	return cnt;
12291 }
12292 
12293 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
12294  * manager.
12295  */
12296 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
12297 {
12298 	return pb->cpu_cnt;
12299 }
12300 
12301 /*
12302  * Return perf_event FD of a ring buffer in *buf_idx* slot of
12303  * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
12304  * select()/poll()/epoll() Linux syscalls.
12305  */
12306 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
12307 {
12308 	struct perf_cpu_buf *cpu_buf;
12309 
12310 	if (buf_idx >= pb->cpu_cnt)
12311 		return libbpf_err(-EINVAL);
12312 
12313 	cpu_buf = pb->cpu_bufs[buf_idx];
12314 	if (!cpu_buf)
12315 		return libbpf_err(-ENOENT);
12316 
12317 	return cpu_buf->fd;
12318 }
12319 
12320 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
12321 {
12322 	struct perf_cpu_buf *cpu_buf;
12323 
12324 	if (buf_idx >= pb->cpu_cnt)
12325 		return libbpf_err(-EINVAL);
12326 
12327 	cpu_buf = pb->cpu_bufs[buf_idx];
12328 	if (!cpu_buf)
12329 		return libbpf_err(-ENOENT);
12330 
12331 	*buf = cpu_buf->base;
12332 	*buf_size = pb->mmap_size;
12333 	return 0;
12334 }
12335 
12336 /*
12337  * Consume data from perf ring buffer corresponding to slot *buf_idx* in
12338  * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
12339  * consume, do nothing and return success.
12340  * Returns:
12341  *   - 0 on success;
12342  *   - <0 on failure.
12343  */
12344 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
12345 {
12346 	struct perf_cpu_buf *cpu_buf;
12347 
12348 	if (buf_idx >= pb->cpu_cnt)
12349 		return libbpf_err(-EINVAL);
12350 
12351 	cpu_buf = pb->cpu_bufs[buf_idx];
12352 	if (!cpu_buf)
12353 		return libbpf_err(-ENOENT);
12354 
12355 	return perf_buffer__process_records(pb, cpu_buf);
12356 }
12357 
12358 int perf_buffer__consume(struct perf_buffer *pb)
12359 {
12360 	int i, err;
12361 
12362 	for (i = 0; i < pb->cpu_cnt; i++) {
12363 		struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12364 
12365 		if (!cpu_buf)
12366 			continue;
12367 
12368 		err = perf_buffer__process_records(pb, cpu_buf);
12369 		if (err) {
12370 			pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
12371 			return libbpf_err(err);
12372 		}
12373 	}
12374 	return 0;
12375 }
12376 
12377 int bpf_program__set_attach_target(struct bpf_program *prog,
12378 				   int attach_prog_fd,
12379 				   const char *attach_func_name)
12380 {
12381 	int btf_obj_fd = 0, btf_id = 0, err;
12382 
12383 	if (!prog || attach_prog_fd < 0)
12384 		return libbpf_err(-EINVAL);
12385 
12386 	if (prog->obj->loaded)
12387 		return libbpf_err(-EINVAL);
12388 
12389 	if (attach_prog_fd && !attach_func_name) {
12390 		/* remember attach_prog_fd and let bpf_program__load() find
12391 		 * BTF ID during the program load
12392 		 */
12393 		prog->attach_prog_fd = attach_prog_fd;
12394 		return 0;
12395 	}
12396 
12397 	if (attach_prog_fd) {
12398 		btf_id = libbpf_find_prog_btf_id(attach_func_name,
12399 						 attach_prog_fd);
12400 		if (btf_id < 0)
12401 			return libbpf_err(btf_id);
12402 	} else {
12403 		if (!attach_func_name)
12404 			return libbpf_err(-EINVAL);
12405 
12406 		/* load btf_vmlinux, if not yet */
12407 		err = bpf_object__load_vmlinux_btf(prog->obj, true);
12408 		if (err)
12409 			return libbpf_err(err);
12410 		err = find_kernel_btf_id(prog->obj, attach_func_name,
12411 					 prog->expected_attach_type,
12412 					 &btf_obj_fd, &btf_id);
12413 		if (err)
12414 			return libbpf_err(err);
12415 	}
12416 
12417 	prog->attach_btf_id = btf_id;
12418 	prog->attach_btf_obj_fd = btf_obj_fd;
12419 	prog->attach_prog_fd = attach_prog_fd;
12420 	return 0;
12421 }
12422 
12423 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
12424 {
12425 	int err = 0, n, len, start, end = -1;
12426 	bool *tmp;
12427 
12428 	*mask = NULL;
12429 	*mask_sz = 0;
12430 
12431 	/* Each sub string separated by ',' has format \d+-\d+ or \d+ */
12432 	while (*s) {
12433 		if (*s == ',' || *s == '\n') {
12434 			s++;
12435 			continue;
12436 		}
12437 		n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
12438 		if (n <= 0 || n > 2) {
12439 			pr_warn("Failed to get CPU range %s: %d\n", s, n);
12440 			err = -EINVAL;
12441 			goto cleanup;
12442 		} else if (n == 1) {
12443 			end = start;
12444 		}
12445 		if (start < 0 || start > end) {
12446 			pr_warn("Invalid CPU range [%d,%d] in %s\n",
12447 				start, end, s);
12448 			err = -EINVAL;
12449 			goto cleanup;
12450 		}
12451 		tmp = realloc(*mask, end + 1);
12452 		if (!tmp) {
12453 			err = -ENOMEM;
12454 			goto cleanup;
12455 		}
12456 		*mask = tmp;
12457 		memset(tmp + *mask_sz, 0, start - *mask_sz);
12458 		memset(tmp + start, 1, end - start + 1);
12459 		*mask_sz = end + 1;
12460 		s += len;
12461 	}
12462 	if (!*mask_sz) {
12463 		pr_warn("Empty CPU range\n");
12464 		return -EINVAL;
12465 	}
12466 	return 0;
12467 cleanup:
12468 	free(*mask);
12469 	*mask = NULL;
12470 	return err;
12471 }
12472 
12473 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
12474 {
12475 	int fd, err = 0, len;
12476 	char buf[128];
12477 
12478 	fd = open(fcpu, O_RDONLY | O_CLOEXEC);
12479 	if (fd < 0) {
12480 		err = -errno;
12481 		pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
12482 		return err;
12483 	}
12484 	len = read(fd, buf, sizeof(buf));
12485 	close(fd);
12486 	if (len <= 0) {
12487 		err = len ? -errno : -EINVAL;
12488 		pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
12489 		return err;
12490 	}
12491 	if (len >= sizeof(buf)) {
12492 		pr_warn("CPU mask is too big in file %s\n", fcpu);
12493 		return -E2BIG;
12494 	}
12495 	buf[len] = '\0';
12496 
12497 	return parse_cpu_mask_str(buf, mask, mask_sz);
12498 }
12499 
12500 int libbpf_num_possible_cpus(void)
12501 {
12502 	static const char *fcpu = "/sys/devices/system/cpu/possible";
12503 	static int cpus;
12504 	int err, n, i, tmp_cpus;
12505 	bool *mask;
12506 
12507 	tmp_cpus = READ_ONCE(cpus);
12508 	if (tmp_cpus > 0)
12509 		return tmp_cpus;
12510 
12511 	err = parse_cpu_mask_file(fcpu, &mask, &n);
12512 	if (err)
12513 		return libbpf_err(err);
12514 
12515 	tmp_cpus = 0;
12516 	for (i = 0; i < n; i++) {
12517 		if (mask[i])
12518 			tmp_cpus++;
12519 	}
12520 	free(mask);
12521 
12522 	WRITE_ONCE(cpus, tmp_cpus);
12523 	return tmp_cpus;
12524 }
12525 
12526 static int populate_skeleton_maps(const struct bpf_object *obj,
12527 				  struct bpf_map_skeleton *maps,
12528 				  size_t map_cnt)
12529 {
12530 	int i;
12531 
12532 	for (i = 0; i < map_cnt; i++) {
12533 		struct bpf_map **map = maps[i].map;
12534 		const char *name = maps[i].name;
12535 		void **mmaped = maps[i].mmaped;
12536 
12537 		*map = bpf_object__find_map_by_name(obj, name);
12538 		if (!*map) {
12539 			pr_warn("failed to find skeleton map '%s'\n", name);
12540 			return -ESRCH;
12541 		}
12542 
12543 		/* externs shouldn't be pre-setup from user code */
12544 		if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
12545 			*mmaped = (*map)->mmaped;
12546 	}
12547 	return 0;
12548 }
12549 
12550 static int populate_skeleton_progs(const struct bpf_object *obj,
12551 				   struct bpf_prog_skeleton *progs,
12552 				   size_t prog_cnt)
12553 {
12554 	int i;
12555 
12556 	for (i = 0; i < prog_cnt; i++) {
12557 		struct bpf_program **prog = progs[i].prog;
12558 		const char *name = progs[i].name;
12559 
12560 		*prog = bpf_object__find_program_by_name(obj, name);
12561 		if (!*prog) {
12562 			pr_warn("failed to find skeleton program '%s'\n", name);
12563 			return -ESRCH;
12564 		}
12565 	}
12566 	return 0;
12567 }
12568 
12569 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
12570 			      const struct bpf_object_open_opts *opts)
12571 {
12572 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
12573 		.object_name = s->name,
12574 	);
12575 	struct bpf_object *obj;
12576 	int err;
12577 
12578 	/* Attempt to preserve opts->object_name, unless overriden by user
12579 	 * explicitly. Overwriting object name for skeletons is discouraged,
12580 	 * as it breaks global data maps, because they contain object name
12581 	 * prefix as their own map name prefix. When skeleton is generated,
12582 	 * bpftool is making an assumption that this name will stay the same.
12583 	 */
12584 	if (opts) {
12585 		memcpy(&skel_opts, opts, sizeof(*opts));
12586 		if (!opts->object_name)
12587 			skel_opts.object_name = s->name;
12588 	}
12589 
12590 	obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
12591 	err = libbpf_get_error(obj);
12592 	if (err) {
12593 		pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
12594 			s->name, err);
12595 		return libbpf_err(err);
12596 	}
12597 
12598 	*s->obj = obj;
12599 	err = populate_skeleton_maps(obj, s->maps, s->map_cnt);
12600 	if (err) {
12601 		pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
12602 		return libbpf_err(err);
12603 	}
12604 
12605 	err = populate_skeleton_progs(obj, s->progs, s->prog_cnt);
12606 	if (err) {
12607 		pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
12608 		return libbpf_err(err);
12609 	}
12610 
12611 	return 0;
12612 }
12613 
12614 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
12615 {
12616 	int err, len, var_idx, i;
12617 	const char *var_name;
12618 	const struct bpf_map *map;
12619 	struct btf *btf;
12620 	__u32 map_type_id;
12621 	const struct btf_type *map_type, *var_type;
12622 	const struct bpf_var_skeleton *var_skel;
12623 	struct btf_var_secinfo *var;
12624 
12625 	if (!s->obj)
12626 		return libbpf_err(-EINVAL);
12627 
12628 	btf = bpf_object__btf(s->obj);
12629 	if (!btf) {
12630 		pr_warn("subskeletons require BTF at runtime (object %s)\n",
12631 			bpf_object__name(s->obj));
12632 		return libbpf_err(-errno);
12633 	}
12634 
12635 	err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt);
12636 	if (err) {
12637 		pr_warn("failed to populate subskeleton maps: %d\n", err);
12638 		return libbpf_err(err);
12639 	}
12640 
12641 	err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt);
12642 	if (err) {
12643 		pr_warn("failed to populate subskeleton maps: %d\n", err);
12644 		return libbpf_err(err);
12645 	}
12646 
12647 	for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
12648 		var_skel = &s->vars[var_idx];
12649 		map = *var_skel->map;
12650 		map_type_id = bpf_map__btf_value_type_id(map);
12651 		map_type = btf__type_by_id(btf, map_type_id);
12652 
12653 		if (!btf_is_datasec(map_type)) {
12654 			pr_warn("type for map '%1$s' is not a datasec: %2$s",
12655 				bpf_map__name(map),
12656 				__btf_kind_str(btf_kind(map_type)));
12657 			return libbpf_err(-EINVAL);
12658 		}
12659 
12660 		len = btf_vlen(map_type);
12661 		var = btf_var_secinfos(map_type);
12662 		for (i = 0; i < len; i++, var++) {
12663 			var_type = btf__type_by_id(btf, var->type);
12664 			var_name = btf__name_by_offset(btf, var_type->name_off);
12665 			if (strcmp(var_name, var_skel->name) == 0) {
12666 				*var_skel->addr = map->mmaped + var->offset;
12667 				break;
12668 			}
12669 		}
12670 	}
12671 	return 0;
12672 }
12673 
12674 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
12675 {
12676 	if (!s)
12677 		return;
12678 	free(s->maps);
12679 	free(s->progs);
12680 	free(s->vars);
12681 	free(s);
12682 }
12683 
12684 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
12685 {
12686 	int i, err;
12687 
12688 	err = bpf_object__load(*s->obj);
12689 	if (err) {
12690 		pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
12691 		return libbpf_err(err);
12692 	}
12693 
12694 	for (i = 0; i < s->map_cnt; i++) {
12695 		struct bpf_map *map = *s->maps[i].map;
12696 		size_t mmap_sz = bpf_map_mmap_sz(map);
12697 		int prot, map_fd = bpf_map__fd(map);
12698 		void **mmaped = s->maps[i].mmaped;
12699 
12700 		if (!mmaped)
12701 			continue;
12702 
12703 		if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
12704 			*mmaped = NULL;
12705 			continue;
12706 		}
12707 
12708 		if (map->def.map_flags & BPF_F_RDONLY_PROG)
12709 			prot = PROT_READ;
12710 		else
12711 			prot = PROT_READ | PROT_WRITE;
12712 
12713 		/* Remap anonymous mmap()-ed "map initialization image" as
12714 		 * a BPF map-backed mmap()-ed memory, but preserving the same
12715 		 * memory address. This will cause kernel to change process'
12716 		 * page table to point to a different piece of kernel memory,
12717 		 * but from userspace point of view memory address (and its
12718 		 * contents, being identical at this point) will stay the
12719 		 * same. This mapping will be released by bpf_object__close()
12720 		 * as per normal clean up procedure, so we don't need to worry
12721 		 * about it from skeleton's clean up perspective.
12722 		 */
12723 		*mmaped = mmap(map->mmaped, mmap_sz, prot,
12724 				MAP_SHARED | MAP_FIXED, map_fd, 0);
12725 		if (*mmaped == MAP_FAILED) {
12726 			err = -errno;
12727 			*mmaped = NULL;
12728 			pr_warn("failed to re-mmap() map '%s': %d\n",
12729 				 bpf_map__name(map), err);
12730 			return libbpf_err(err);
12731 		}
12732 	}
12733 
12734 	return 0;
12735 }
12736 
12737 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
12738 {
12739 	int i, err;
12740 
12741 	for (i = 0; i < s->prog_cnt; i++) {
12742 		struct bpf_program *prog = *s->progs[i].prog;
12743 		struct bpf_link **link = s->progs[i].link;
12744 
12745 		if (!prog->autoload || !prog->autoattach)
12746 			continue;
12747 
12748 		/* auto-attaching not supported for this program */
12749 		if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12750 			continue;
12751 
12752 		/* if user already set the link manually, don't attempt auto-attach */
12753 		if (*link)
12754 			continue;
12755 
12756 		err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
12757 		if (err) {
12758 			pr_warn("prog '%s': failed to auto-attach: %d\n",
12759 				bpf_program__name(prog), err);
12760 			return libbpf_err(err);
12761 		}
12762 
12763 		/* It's possible that for some SEC() definitions auto-attach
12764 		 * is supported in some cases (e.g., if definition completely
12765 		 * specifies target information), but is not in other cases.
12766 		 * SEC("uprobe") is one such case. If user specified target
12767 		 * binary and function name, such BPF program can be
12768 		 * auto-attached. But if not, it shouldn't trigger skeleton's
12769 		 * attach to fail. It should just be skipped.
12770 		 * attach_fn signals such case with returning 0 (no error) and
12771 		 * setting link to NULL.
12772 		 */
12773 	}
12774 
12775 	return 0;
12776 }
12777 
12778 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
12779 {
12780 	int i;
12781 
12782 	for (i = 0; i < s->prog_cnt; i++) {
12783 		struct bpf_link **link = s->progs[i].link;
12784 
12785 		bpf_link__destroy(*link);
12786 		*link = NULL;
12787 	}
12788 }
12789 
12790 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
12791 {
12792 	if (!s)
12793 		return;
12794 
12795 	if (s->progs)
12796 		bpf_object__detach_skeleton(s);
12797 	if (s->obj)
12798 		bpf_object__close(*s->obj);
12799 	free(s->maps);
12800 	free(s->progs);
12801 	free(s);
12802 }
12803