1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/ring_buffer.h> 37 #include <sys/epoll.h> 38 #include <sys/ioctl.h> 39 #include <sys/mman.h> 40 #include <sys/stat.h> 41 #include <sys/types.h> 42 #include <sys/vfs.h> 43 #include <sys/utsname.h> 44 #include <sys/resource.h> 45 #include <libelf.h> 46 #include <gelf.h> 47 #include <zlib.h> 48 49 #include "libbpf.h" 50 #include "bpf.h" 51 #include "btf.h" 52 #include "str_error.h" 53 #include "libbpf_internal.h" 54 #include "hashmap.h" 55 #include "bpf_gen_internal.h" 56 #include "zip.h" 57 58 #ifndef BPF_FS_MAGIC 59 #define BPF_FS_MAGIC 0xcafe4a11 60 #endif 61 62 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 63 64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 65 * compilation if user enables corresponding warning. Disable it explicitly. 66 */ 67 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 68 69 #define __printf(a, b) __attribute__((format(printf, a, b))) 70 71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 73 74 static const char * const attach_type_name[] = { 75 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 76 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 77 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 78 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 79 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 80 [BPF_CGROUP_DEVICE] = "cgroup_device", 81 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 82 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 83 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 84 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 85 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 86 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 87 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 88 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 89 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 90 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 91 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 92 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 93 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 94 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 95 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 96 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 97 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 98 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 99 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 100 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 101 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 102 [BPF_LIRC_MODE2] = "lirc_mode2", 103 [BPF_FLOW_DISSECTOR] = "flow_dissector", 104 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 105 [BPF_TRACE_FENTRY] = "trace_fentry", 106 [BPF_TRACE_FEXIT] = "trace_fexit", 107 [BPF_MODIFY_RETURN] = "modify_return", 108 [BPF_LSM_MAC] = "lsm_mac", 109 [BPF_LSM_CGROUP] = "lsm_cgroup", 110 [BPF_SK_LOOKUP] = "sk_lookup", 111 [BPF_TRACE_ITER] = "trace_iter", 112 [BPF_XDP_DEVMAP] = "xdp_devmap", 113 [BPF_XDP_CPUMAP] = "xdp_cpumap", 114 [BPF_XDP] = "xdp", 115 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 116 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 117 [BPF_PERF_EVENT] = "perf_event", 118 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 119 [BPF_STRUCT_OPS] = "struct_ops", 120 [BPF_NETFILTER] = "netfilter", 121 [BPF_TCX_INGRESS] = "tcx_ingress", 122 [BPF_TCX_EGRESS] = "tcx_egress", 123 }; 124 125 static const char * const link_type_name[] = { 126 [BPF_LINK_TYPE_UNSPEC] = "unspec", 127 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 128 [BPF_LINK_TYPE_TRACING] = "tracing", 129 [BPF_LINK_TYPE_CGROUP] = "cgroup", 130 [BPF_LINK_TYPE_ITER] = "iter", 131 [BPF_LINK_TYPE_NETNS] = "netns", 132 [BPF_LINK_TYPE_XDP] = "xdp", 133 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 134 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 135 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 136 [BPF_LINK_TYPE_NETFILTER] = "netfilter", 137 [BPF_LINK_TYPE_TCX] = "tcx", 138 }; 139 140 static const char * const map_type_name[] = { 141 [BPF_MAP_TYPE_UNSPEC] = "unspec", 142 [BPF_MAP_TYPE_HASH] = "hash", 143 [BPF_MAP_TYPE_ARRAY] = "array", 144 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 145 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 146 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 147 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 148 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 149 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 150 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 151 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 152 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 153 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 154 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 155 [BPF_MAP_TYPE_DEVMAP] = "devmap", 156 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 157 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 158 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 159 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 160 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 161 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 162 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 163 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 164 [BPF_MAP_TYPE_QUEUE] = "queue", 165 [BPF_MAP_TYPE_STACK] = "stack", 166 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 167 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 168 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 169 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 170 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 171 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 172 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 173 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage", 174 }; 175 176 static const char * const prog_type_name[] = { 177 [BPF_PROG_TYPE_UNSPEC] = "unspec", 178 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 179 [BPF_PROG_TYPE_KPROBE] = "kprobe", 180 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 181 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 182 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 183 [BPF_PROG_TYPE_XDP] = "xdp", 184 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 185 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 186 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 187 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 188 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 189 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 190 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 191 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 192 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 193 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 194 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 195 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 196 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 197 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 198 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 199 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 200 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 201 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 202 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 203 [BPF_PROG_TYPE_TRACING] = "tracing", 204 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 205 [BPF_PROG_TYPE_EXT] = "ext", 206 [BPF_PROG_TYPE_LSM] = "lsm", 207 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 208 [BPF_PROG_TYPE_SYSCALL] = "syscall", 209 [BPF_PROG_TYPE_NETFILTER] = "netfilter", 210 }; 211 212 static int __base_pr(enum libbpf_print_level level, const char *format, 213 va_list args) 214 { 215 if (level == LIBBPF_DEBUG) 216 return 0; 217 218 return vfprintf(stderr, format, args); 219 } 220 221 static libbpf_print_fn_t __libbpf_pr = __base_pr; 222 223 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 224 { 225 libbpf_print_fn_t old_print_fn; 226 227 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED); 228 229 return old_print_fn; 230 } 231 232 __printf(2, 3) 233 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 234 { 235 va_list args; 236 int old_errno; 237 libbpf_print_fn_t print_fn; 238 239 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED); 240 if (!print_fn) 241 return; 242 243 old_errno = errno; 244 245 va_start(args, format); 246 __libbpf_pr(level, format, args); 247 va_end(args); 248 249 errno = old_errno; 250 } 251 252 static void pr_perm_msg(int err) 253 { 254 struct rlimit limit; 255 char buf[100]; 256 257 if (err != -EPERM || geteuid() != 0) 258 return; 259 260 err = getrlimit(RLIMIT_MEMLOCK, &limit); 261 if (err) 262 return; 263 264 if (limit.rlim_cur == RLIM_INFINITY) 265 return; 266 267 if (limit.rlim_cur < 1024) 268 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 269 else if (limit.rlim_cur < 1024*1024) 270 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 271 else 272 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 273 274 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 275 buf); 276 } 277 278 #define STRERR_BUFSIZE 128 279 280 /* Copied from tools/perf/util/util.h */ 281 #ifndef zfree 282 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 283 #endif 284 285 #ifndef zclose 286 # define zclose(fd) ({ \ 287 int ___err = 0; \ 288 if ((fd) >= 0) \ 289 ___err = close((fd)); \ 290 fd = -1; \ 291 ___err; }) 292 #endif 293 294 static inline __u64 ptr_to_u64(const void *ptr) 295 { 296 return (__u64) (unsigned long) ptr; 297 } 298 299 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 300 { 301 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 302 return 0; 303 } 304 305 __u32 libbpf_major_version(void) 306 { 307 return LIBBPF_MAJOR_VERSION; 308 } 309 310 __u32 libbpf_minor_version(void) 311 { 312 return LIBBPF_MINOR_VERSION; 313 } 314 315 const char *libbpf_version_string(void) 316 { 317 #define __S(X) #X 318 #define _S(X) __S(X) 319 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 320 #undef _S 321 #undef __S 322 } 323 324 enum reloc_type { 325 RELO_LD64, 326 RELO_CALL, 327 RELO_DATA, 328 RELO_EXTERN_LD64, 329 RELO_EXTERN_CALL, 330 RELO_SUBPROG_ADDR, 331 RELO_CORE, 332 }; 333 334 struct reloc_desc { 335 enum reloc_type type; 336 int insn_idx; 337 union { 338 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 339 struct { 340 int map_idx; 341 int sym_off; 342 int ext_idx; 343 }; 344 }; 345 }; 346 347 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 348 enum sec_def_flags { 349 SEC_NONE = 0, 350 /* expected_attach_type is optional, if kernel doesn't support that */ 351 SEC_EXP_ATTACH_OPT = 1, 352 /* legacy, only used by libbpf_get_type_names() and 353 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 354 * This used to be associated with cgroup (and few other) BPF programs 355 * that were attachable through BPF_PROG_ATTACH command. Pretty 356 * meaningless nowadays, though. 357 */ 358 SEC_ATTACHABLE = 2, 359 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 360 /* attachment target is specified through BTF ID in either kernel or 361 * other BPF program's BTF object 362 */ 363 SEC_ATTACH_BTF = 4, 364 /* BPF program type allows sleeping/blocking in kernel */ 365 SEC_SLEEPABLE = 8, 366 /* BPF program support non-linear XDP buffer */ 367 SEC_XDP_FRAGS = 16, 368 }; 369 370 struct bpf_sec_def { 371 char *sec; 372 enum bpf_prog_type prog_type; 373 enum bpf_attach_type expected_attach_type; 374 long cookie; 375 int handler_id; 376 377 libbpf_prog_setup_fn_t prog_setup_fn; 378 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 379 libbpf_prog_attach_fn_t prog_attach_fn; 380 }; 381 382 /* 383 * bpf_prog should be a better name but it has been used in 384 * linux/filter.h. 385 */ 386 struct bpf_program { 387 char *name; 388 char *sec_name; 389 size_t sec_idx; 390 const struct bpf_sec_def *sec_def; 391 /* this program's instruction offset (in number of instructions) 392 * within its containing ELF section 393 */ 394 size_t sec_insn_off; 395 /* number of original instructions in ELF section belonging to this 396 * program, not taking into account subprogram instructions possible 397 * appended later during relocation 398 */ 399 size_t sec_insn_cnt; 400 /* Offset (in number of instructions) of the start of instruction 401 * belonging to this BPF program within its containing main BPF 402 * program. For the entry-point (main) BPF program, this is always 403 * zero. For a sub-program, this gets reset before each of main BPF 404 * programs are processed and relocated and is used to determined 405 * whether sub-program was already appended to the main program, and 406 * if yes, at which instruction offset. 407 */ 408 size_t sub_insn_off; 409 410 /* instructions that belong to BPF program; insns[0] is located at 411 * sec_insn_off instruction within its ELF section in ELF file, so 412 * when mapping ELF file instruction index to the local instruction, 413 * one needs to subtract sec_insn_off; and vice versa. 414 */ 415 struct bpf_insn *insns; 416 /* actual number of instruction in this BPF program's image; for 417 * entry-point BPF programs this includes the size of main program 418 * itself plus all the used sub-programs, appended at the end 419 */ 420 size_t insns_cnt; 421 422 struct reloc_desc *reloc_desc; 423 int nr_reloc; 424 425 /* BPF verifier log settings */ 426 char *log_buf; 427 size_t log_size; 428 __u32 log_level; 429 430 struct bpf_object *obj; 431 432 int fd; 433 bool autoload; 434 bool autoattach; 435 bool mark_btf_static; 436 enum bpf_prog_type type; 437 enum bpf_attach_type expected_attach_type; 438 439 int prog_ifindex; 440 __u32 attach_btf_obj_fd; 441 __u32 attach_btf_id; 442 __u32 attach_prog_fd; 443 444 void *func_info; 445 __u32 func_info_rec_size; 446 __u32 func_info_cnt; 447 448 void *line_info; 449 __u32 line_info_rec_size; 450 __u32 line_info_cnt; 451 __u32 prog_flags; 452 }; 453 454 struct bpf_struct_ops { 455 const char *tname; 456 const struct btf_type *type; 457 struct bpf_program **progs; 458 __u32 *kern_func_off; 459 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 460 void *data; 461 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 462 * btf_vmlinux's format. 463 * struct bpf_struct_ops_tcp_congestion_ops { 464 * [... some other kernel fields ...] 465 * struct tcp_congestion_ops data; 466 * } 467 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 468 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 469 * from "data". 470 */ 471 void *kern_vdata; 472 __u32 type_id; 473 }; 474 475 #define DATA_SEC ".data" 476 #define BSS_SEC ".bss" 477 #define RODATA_SEC ".rodata" 478 #define KCONFIG_SEC ".kconfig" 479 #define KSYMS_SEC ".ksyms" 480 #define STRUCT_OPS_SEC ".struct_ops" 481 #define STRUCT_OPS_LINK_SEC ".struct_ops.link" 482 483 enum libbpf_map_type { 484 LIBBPF_MAP_UNSPEC, 485 LIBBPF_MAP_DATA, 486 LIBBPF_MAP_BSS, 487 LIBBPF_MAP_RODATA, 488 LIBBPF_MAP_KCONFIG, 489 }; 490 491 struct bpf_map_def { 492 unsigned int type; 493 unsigned int key_size; 494 unsigned int value_size; 495 unsigned int max_entries; 496 unsigned int map_flags; 497 }; 498 499 struct bpf_map { 500 struct bpf_object *obj; 501 char *name; 502 /* real_name is defined for special internal maps (.rodata*, 503 * .data*, .bss, .kconfig) and preserves their original ELF section 504 * name. This is important to be able to find corresponding BTF 505 * DATASEC information. 506 */ 507 char *real_name; 508 int fd; 509 int sec_idx; 510 size_t sec_offset; 511 int map_ifindex; 512 int inner_map_fd; 513 struct bpf_map_def def; 514 __u32 numa_node; 515 __u32 btf_var_idx; 516 __u32 btf_key_type_id; 517 __u32 btf_value_type_id; 518 __u32 btf_vmlinux_value_type_id; 519 enum libbpf_map_type libbpf_type; 520 void *mmaped; 521 struct bpf_struct_ops *st_ops; 522 struct bpf_map *inner_map; 523 void **init_slots; 524 int init_slots_sz; 525 char *pin_path; 526 bool pinned; 527 bool reused; 528 bool autocreate; 529 __u64 map_extra; 530 }; 531 532 enum extern_type { 533 EXT_UNKNOWN, 534 EXT_KCFG, 535 EXT_KSYM, 536 }; 537 538 enum kcfg_type { 539 KCFG_UNKNOWN, 540 KCFG_CHAR, 541 KCFG_BOOL, 542 KCFG_INT, 543 KCFG_TRISTATE, 544 KCFG_CHAR_ARR, 545 }; 546 547 struct extern_desc { 548 enum extern_type type; 549 int sym_idx; 550 int btf_id; 551 int sec_btf_id; 552 const char *name; 553 bool is_set; 554 bool is_weak; 555 union { 556 struct { 557 enum kcfg_type type; 558 int sz; 559 int align; 560 int data_off; 561 bool is_signed; 562 } kcfg; 563 struct { 564 unsigned long long addr; 565 566 /* target btf_id of the corresponding kernel var. */ 567 int kernel_btf_obj_fd; 568 int kernel_btf_id; 569 570 /* local btf_id of the ksym extern's type. */ 571 __u32 type_id; 572 /* BTF fd index to be patched in for insn->off, this is 573 * 0 for vmlinux BTF, index in obj->fd_array for module 574 * BTF 575 */ 576 __s16 btf_fd_idx; 577 } ksym; 578 }; 579 }; 580 581 struct module_btf { 582 struct btf *btf; 583 char *name; 584 __u32 id; 585 int fd; 586 int fd_array_idx; 587 }; 588 589 enum sec_type { 590 SEC_UNUSED = 0, 591 SEC_RELO, 592 SEC_BSS, 593 SEC_DATA, 594 SEC_RODATA, 595 }; 596 597 struct elf_sec_desc { 598 enum sec_type sec_type; 599 Elf64_Shdr *shdr; 600 Elf_Data *data; 601 }; 602 603 struct elf_state { 604 int fd; 605 const void *obj_buf; 606 size_t obj_buf_sz; 607 Elf *elf; 608 Elf64_Ehdr *ehdr; 609 Elf_Data *symbols; 610 Elf_Data *st_ops_data; 611 Elf_Data *st_ops_link_data; 612 size_t shstrndx; /* section index for section name strings */ 613 size_t strtabidx; 614 struct elf_sec_desc *secs; 615 size_t sec_cnt; 616 int btf_maps_shndx; 617 __u32 btf_maps_sec_btf_id; 618 int text_shndx; 619 int symbols_shndx; 620 int st_ops_shndx; 621 int st_ops_link_shndx; 622 }; 623 624 struct usdt_manager; 625 626 struct bpf_object { 627 char name[BPF_OBJ_NAME_LEN]; 628 char license[64]; 629 __u32 kern_version; 630 631 struct bpf_program *programs; 632 size_t nr_programs; 633 struct bpf_map *maps; 634 size_t nr_maps; 635 size_t maps_cap; 636 637 char *kconfig; 638 struct extern_desc *externs; 639 int nr_extern; 640 int kconfig_map_idx; 641 642 bool loaded; 643 bool has_subcalls; 644 bool has_rodata; 645 646 struct bpf_gen *gen_loader; 647 648 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 649 struct elf_state efile; 650 651 struct btf *btf; 652 struct btf_ext *btf_ext; 653 654 /* Parse and load BTF vmlinux if any of the programs in the object need 655 * it at load time. 656 */ 657 struct btf *btf_vmlinux; 658 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 659 * override for vmlinux BTF. 660 */ 661 char *btf_custom_path; 662 /* vmlinux BTF override for CO-RE relocations */ 663 struct btf *btf_vmlinux_override; 664 /* Lazily initialized kernel module BTFs */ 665 struct module_btf *btf_modules; 666 bool btf_modules_loaded; 667 size_t btf_module_cnt; 668 size_t btf_module_cap; 669 670 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 671 char *log_buf; 672 size_t log_size; 673 __u32 log_level; 674 675 int *fd_array; 676 size_t fd_array_cap; 677 size_t fd_array_cnt; 678 679 struct usdt_manager *usdt_man; 680 681 char path[]; 682 }; 683 684 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 685 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 686 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 687 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 688 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 689 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 690 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 691 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 692 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 693 694 void bpf_program__unload(struct bpf_program *prog) 695 { 696 if (!prog) 697 return; 698 699 zclose(prog->fd); 700 701 zfree(&prog->func_info); 702 zfree(&prog->line_info); 703 } 704 705 static void bpf_program__exit(struct bpf_program *prog) 706 { 707 if (!prog) 708 return; 709 710 bpf_program__unload(prog); 711 zfree(&prog->name); 712 zfree(&prog->sec_name); 713 zfree(&prog->insns); 714 zfree(&prog->reloc_desc); 715 716 prog->nr_reloc = 0; 717 prog->insns_cnt = 0; 718 prog->sec_idx = -1; 719 } 720 721 static bool insn_is_subprog_call(const struct bpf_insn *insn) 722 { 723 return BPF_CLASS(insn->code) == BPF_JMP && 724 BPF_OP(insn->code) == BPF_CALL && 725 BPF_SRC(insn->code) == BPF_K && 726 insn->src_reg == BPF_PSEUDO_CALL && 727 insn->dst_reg == 0 && 728 insn->off == 0; 729 } 730 731 static bool is_call_insn(const struct bpf_insn *insn) 732 { 733 return insn->code == (BPF_JMP | BPF_CALL); 734 } 735 736 static bool insn_is_pseudo_func(struct bpf_insn *insn) 737 { 738 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 739 } 740 741 static int 742 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 743 const char *name, size_t sec_idx, const char *sec_name, 744 size_t sec_off, void *insn_data, size_t insn_data_sz) 745 { 746 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 747 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 748 sec_name, name, sec_off, insn_data_sz); 749 return -EINVAL; 750 } 751 752 memset(prog, 0, sizeof(*prog)); 753 prog->obj = obj; 754 755 prog->sec_idx = sec_idx; 756 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 757 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 758 /* insns_cnt can later be increased by appending used subprograms */ 759 prog->insns_cnt = prog->sec_insn_cnt; 760 761 prog->type = BPF_PROG_TYPE_UNSPEC; 762 prog->fd = -1; 763 764 /* libbpf's convention for SEC("?abc...") is that it's just like 765 * SEC("abc...") but the corresponding bpf_program starts out with 766 * autoload set to false. 767 */ 768 if (sec_name[0] == '?') { 769 prog->autoload = false; 770 /* from now on forget there was ? in section name */ 771 sec_name++; 772 } else { 773 prog->autoload = true; 774 } 775 776 prog->autoattach = true; 777 778 /* inherit object's log_level */ 779 prog->log_level = obj->log_level; 780 781 prog->sec_name = strdup(sec_name); 782 if (!prog->sec_name) 783 goto errout; 784 785 prog->name = strdup(name); 786 if (!prog->name) 787 goto errout; 788 789 prog->insns = malloc(insn_data_sz); 790 if (!prog->insns) 791 goto errout; 792 memcpy(prog->insns, insn_data, insn_data_sz); 793 794 return 0; 795 errout: 796 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 797 bpf_program__exit(prog); 798 return -ENOMEM; 799 } 800 801 static int 802 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 803 const char *sec_name, int sec_idx) 804 { 805 Elf_Data *symbols = obj->efile.symbols; 806 struct bpf_program *prog, *progs; 807 void *data = sec_data->d_buf; 808 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 809 int nr_progs, err, i; 810 const char *name; 811 Elf64_Sym *sym; 812 813 progs = obj->programs; 814 nr_progs = obj->nr_programs; 815 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 816 817 for (i = 0; i < nr_syms; i++) { 818 sym = elf_sym_by_idx(obj, i); 819 820 if (sym->st_shndx != sec_idx) 821 continue; 822 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 823 continue; 824 825 prog_sz = sym->st_size; 826 sec_off = sym->st_value; 827 828 name = elf_sym_str(obj, sym->st_name); 829 if (!name) { 830 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 831 sec_name, sec_off); 832 return -LIBBPF_ERRNO__FORMAT; 833 } 834 835 if (sec_off + prog_sz > sec_sz) { 836 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 837 sec_name, sec_off); 838 return -LIBBPF_ERRNO__FORMAT; 839 } 840 841 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 842 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 843 return -ENOTSUP; 844 } 845 846 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 847 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 848 849 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 850 if (!progs) { 851 /* 852 * In this case the original obj->programs 853 * is still valid, so don't need special treat for 854 * bpf_close_object(). 855 */ 856 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 857 sec_name, name); 858 return -ENOMEM; 859 } 860 obj->programs = progs; 861 862 prog = &progs[nr_progs]; 863 864 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 865 sec_off, data + sec_off, prog_sz); 866 if (err) 867 return err; 868 869 /* if function is a global/weak symbol, but has restricted 870 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 871 * as static to enable more permissive BPF verification mode 872 * with more outside context available to BPF verifier 873 */ 874 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL 875 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 876 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 877 prog->mark_btf_static = true; 878 879 nr_progs++; 880 obj->nr_programs = nr_progs; 881 } 882 883 return 0; 884 } 885 886 static const struct btf_member * 887 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 888 { 889 struct btf_member *m; 890 int i; 891 892 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 893 if (btf_member_bit_offset(t, i) == bit_offset) 894 return m; 895 } 896 897 return NULL; 898 } 899 900 static const struct btf_member * 901 find_member_by_name(const struct btf *btf, const struct btf_type *t, 902 const char *name) 903 { 904 struct btf_member *m; 905 int i; 906 907 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 908 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 909 return m; 910 } 911 912 return NULL; 913 } 914 915 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 916 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 917 const char *name, __u32 kind); 918 919 static int 920 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 921 const struct btf_type **type, __u32 *type_id, 922 const struct btf_type **vtype, __u32 *vtype_id, 923 const struct btf_member **data_member) 924 { 925 const struct btf_type *kern_type, *kern_vtype; 926 const struct btf_member *kern_data_member; 927 __s32 kern_vtype_id, kern_type_id; 928 __u32 i; 929 930 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 931 if (kern_type_id < 0) { 932 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 933 tname); 934 return kern_type_id; 935 } 936 kern_type = btf__type_by_id(btf, kern_type_id); 937 938 /* Find the corresponding "map_value" type that will be used 939 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 940 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 941 * btf_vmlinux. 942 */ 943 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 944 tname, BTF_KIND_STRUCT); 945 if (kern_vtype_id < 0) { 946 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 947 STRUCT_OPS_VALUE_PREFIX, tname); 948 return kern_vtype_id; 949 } 950 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 951 952 /* Find "struct tcp_congestion_ops" from 953 * struct bpf_struct_ops_tcp_congestion_ops { 954 * [ ... ] 955 * struct tcp_congestion_ops data; 956 * } 957 */ 958 kern_data_member = btf_members(kern_vtype); 959 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 960 if (kern_data_member->type == kern_type_id) 961 break; 962 } 963 if (i == btf_vlen(kern_vtype)) { 964 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 965 tname, STRUCT_OPS_VALUE_PREFIX, tname); 966 return -EINVAL; 967 } 968 969 *type = kern_type; 970 *type_id = kern_type_id; 971 *vtype = kern_vtype; 972 *vtype_id = kern_vtype_id; 973 *data_member = kern_data_member; 974 975 return 0; 976 } 977 978 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 979 { 980 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 981 } 982 983 /* Init the map's fields that depend on kern_btf */ 984 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 985 const struct btf *btf, 986 const struct btf *kern_btf) 987 { 988 const struct btf_member *member, *kern_member, *kern_data_member; 989 const struct btf_type *type, *kern_type, *kern_vtype; 990 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 991 struct bpf_struct_ops *st_ops; 992 void *data, *kern_data; 993 const char *tname; 994 int err; 995 996 st_ops = map->st_ops; 997 type = st_ops->type; 998 tname = st_ops->tname; 999 err = find_struct_ops_kern_types(kern_btf, tname, 1000 &kern_type, &kern_type_id, 1001 &kern_vtype, &kern_vtype_id, 1002 &kern_data_member); 1003 if (err) 1004 return err; 1005 1006 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1007 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1008 1009 map->def.value_size = kern_vtype->size; 1010 map->btf_vmlinux_value_type_id = kern_vtype_id; 1011 1012 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1013 if (!st_ops->kern_vdata) 1014 return -ENOMEM; 1015 1016 data = st_ops->data; 1017 kern_data_off = kern_data_member->offset / 8; 1018 kern_data = st_ops->kern_vdata + kern_data_off; 1019 1020 member = btf_members(type); 1021 for (i = 0; i < btf_vlen(type); i++, member++) { 1022 const struct btf_type *mtype, *kern_mtype; 1023 __u32 mtype_id, kern_mtype_id; 1024 void *mdata, *kern_mdata; 1025 __s64 msize, kern_msize; 1026 __u32 moff, kern_moff; 1027 __u32 kern_member_idx; 1028 const char *mname; 1029 1030 mname = btf__name_by_offset(btf, member->name_off); 1031 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1032 if (!kern_member) { 1033 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1034 map->name, mname); 1035 return -ENOTSUP; 1036 } 1037 1038 kern_member_idx = kern_member - btf_members(kern_type); 1039 if (btf_member_bitfield_size(type, i) || 1040 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1041 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1042 map->name, mname); 1043 return -ENOTSUP; 1044 } 1045 1046 moff = member->offset / 8; 1047 kern_moff = kern_member->offset / 8; 1048 1049 mdata = data + moff; 1050 kern_mdata = kern_data + kern_moff; 1051 1052 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1053 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1054 &kern_mtype_id); 1055 if (BTF_INFO_KIND(mtype->info) != 1056 BTF_INFO_KIND(kern_mtype->info)) { 1057 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1058 map->name, mname, BTF_INFO_KIND(mtype->info), 1059 BTF_INFO_KIND(kern_mtype->info)); 1060 return -ENOTSUP; 1061 } 1062 1063 if (btf_is_ptr(mtype)) { 1064 struct bpf_program *prog; 1065 1066 prog = st_ops->progs[i]; 1067 if (!prog) 1068 continue; 1069 1070 kern_mtype = skip_mods_and_typedefs(kern_btf, 1071 kern_mtype->type, 1072 &kern_mtype_id); 1073 1074 /* mtype->type must be a func_proto which was 1075 * guaranteed in bpf_object__collect_st_ops_relos(), 1076 * so only check kern_mtype for func_proto here. 1077 */ 1078 if (!btf_is_func_proto(kern_mtype)) { 1079 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1080 map->name, mname); 1081 return -ENOTSUP; 1082 } 1083 1084 prog->attach_btf_id = kern_type_id; 1085 prog->expected_attach_type = kern_member_idx; 1086 1087 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1088 1089 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1090 map->name, mname, prog->name, moff, 1091 kern_moff); 1092 1093 continue; 1094 } 1095 1096 msize = btf__resolve_size(btf, mtype_id); 1097 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1098 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1099 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1100 map->name, mname, (ssize_t)msize, 1101 (ssize_t)kern_msize); 1102 return -ENOTSUP; 1103 } 1104 1105 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1106 map->name, mname, (unsigned int)msize, 1107 moff, kern_moff); 1108 memcpy(kern_mdata, mdata, msize); 1109 } 1110 1111 return 0; 1112 } 1113 1114 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1115 { 1116 struct bpf_map *map; 1117 size_t i; 1118 int err; 1119 1120 for (i = 0; i < obj->nr_maps; i++) { 1121 map = &obj->maps[i]; 1122 1123 if (!bpf_map__is_struct_ops(map)) 1124 continue; 1125 1126 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1127 obj->btf_vmlinux); 1128 if (err) 1129 return err; 1130 } 1131 1132 return 0; 1133 } 1134 1135 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name, 1136 int shndx, Elf_Data *data, __u32 map_flags) 1137 { 1138 const struct btf_type *type, *datasec; 1139 const struct btf_var_secinfo *vsi; 1140 struct bpf_struct_ops *st_ops; 1141 const char *tname, *var_name; 1142 __s32 type_id, datasec_id; 1143 const struct btf *btf; 1144 struct bpf_map *map; 1145 __u32 i; 1146 1147 if (shndx == -1) 1148 return 0; 1149 1150 btf = obj->btf; 1151 datasec_id = btf__find_by_name_kind(btf, sec_name, 1152 BTF_KIND_DATASEC); 1153 if (datasec_id < 0) { 1154 pr_warn("struct_ops init: DATASEC %s not found\n", 1155 sec_name); 1156 return -EINVAL; 1157 } 1158 1159 datasec = btf__type_by_id(btf, datasec_id); 1160 vsi = btf_var_secinfos(datasec); 1161 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1162 type = btf__type_by_id(obj->btf, vsi->type); 1163 var_name = btf__name_by_offset(obj->btf, type->name_off); 1164 1165 type_id = btf__resolve_type(obj->btf, vsi->type); 1166 if (type_id < 0) { 1167 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1168 vsi->type, sec_name); 1169 return -EINVAL; 1170 } 1171 1172 type = btf__type_by_id(obj->btf, type_id); 1173 tname = btf__name_by_offset(obj->btf, type->name_off); 1174 if (!tname[0]) { 1175 pr_warn("struct_ops init: anonymous type is not supported\n"); 1176 return -ENOTSUP; 1177 } 1178 if (!btf_is_struct(type)) { 1179 pr_warn("struct_ops init: %s is not a struct\n", tname); 1180 return -EINVAL; 1181 } 1182 1183 map = bpf_object__add_map(obj); 1184 if (IS_ERR(map)) 1185 return PTR_ERR(map); 1186 1187 map->sec_idx = shndx; 1188 map->sec_offset = vsi->offset; 1189 map->name = strdup(var_name); 1190 if (!map->name) 1191 return -ENOMEM; 1192 1193 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1194 map->def.key_size = sizeof(int); 1195 map->def.value_size = type->size; 1196 map->def.max_entries = 1; 1197 map->def.map_flags = map_flags; 1198 1199 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1200 if (!map->st_ops) 1201 return -ENOMEM; 1202 st_ops = map->st_ops; 1203 st_ops->data = malloc(type->size); 1204 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1205 st_ops->kern_func_off = malloc(btf_vlen(type) * 1206 sizeof(*st_ops->kern_func_off)); 1207 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1208 return -ENOMEM; 1209 1210 if (vsi->offset + type->size > data->d_size) { 1211 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1212 var_name, sec_name); 1213 return -EINVAL; 1214 } 1215 1216 memcpy(st_ops->data, 1217 data->d_buf + vsi->offset, 1218 type->size); 1219 st_ops->tname = tname; 1220 st_ops->type = type; 1221 st_ops->type_id = type_id; 1222 1223 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1224 tname, type_id, var_name, vsi->offset); 1225 } 1226 1227 return 0; 1228 } 1229 1230 static int bpf_object_init_struct_ops(struct bpf_object *obj) 1231 { 1232 int err; 1233 1234 err = init_struct_ops_maps(obj, STRUCT_OPS_SEC, obj->efile.st_ops_shndx, 1235 obj->efile.st_ops_data, 0); 1236 err = err ?: init_struct_ops_maps(obj, STRUCT_OPS_LINK_SEC, 1237 obj->efile.st_ops_link_shndx, 1238 obj->efile.st_ops_link_data, 1239 BPF_F_LINK); 1240 return err; 1241 } 1242 1243 static struct bpf_object *bpf_object__new(const char *path, 1244 const void *obj_buf, 1245 size_t obj_buf_sz, 1246 const char *obj_name) 1247 { 1248 struct bpf_object *obj; 1249 char *end; 1250 1251 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1252 if (!obj) { 1253 pr_warn("alloc memory failed for %s\n", path); 1254 return ERR_PTR(-ENOMEM); 1255 } 1256 1257 strcpy(obj->path, path); 1258 if (obj_name) { 1259 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1260 } else { 1261 /* Using basename() GNU version which doesn't modify arg. */ 1262 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1263 end = strchr(obj->name, '.'); 1264 if (end) 1265 *end = 0; 1266 } 1267 1268 obj->efile.fd = -1; 1269 /* 1270 * Caller of this function should also call 1271 * bpf_object__elf_finish() after data collection to return 1272 * obj_buf to user. If not, we should duplicate the buffer to 1273 * avoid user freeing them before elf finish. 1274 */ 1275 obj->efile.obj_buf = obj_buf; 1276 obj->efile.obj_buf_sz = obj_buf_sz; 1277 obj->efile.btf_maps_shndx = -1; 1278 obj->efile.st_ops_shndx = -1; 1279 obj->efile.st_ops_link_shndx = -1; 1280 obj->kconfig_map_idx = -1; 1281 1282 obj->kern_version = get_kernel_version(); 1283 obj->loaded = false; 1284 1285 return obj; 1286 } 1287 1288 static void bpf_object__elf_finish(struct bpf_object *obj) 1289 { 1290 if (!obj->efile.elf) 1291 return; 1292 1293 elf_end(obj->efile.elf); 1294 obj->efile.elf = NULL; 1295 obj->efile.symbols = NULL; 1296 obj->efile.st_ops_data = NULL; 1297 obj->efile.st_ops_link_data = NULL; 1298 1299 zfree(&obj->efile.secs); 1300 obj->efile.sec_cnt = 0; 1301 zclose(obj->efile.fd); 1302 obj->efile.obj_buf = NULL; 1303 obj->efile.obj_buf_sz = 0; 1304 } 1305 1306 static int bpf_object__elf_init(struct bpf_object *obj) 1307 { 1308 Elf64_Ehdr *ehdr; 1309 int err = 0; 1310 Elf *elf; 1311 1312 if (obj->efile.elf) { 1313 pr_warn("elf: init internal error\n"); 1314 return -LIBBPF_ERRNO__LIBELF; 1315 } 1316 1317 if (obj->efile.obj_buf_sz > 0) { 1318 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1319 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1320 } else { 1321 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1322 if (obj->efile.fd < 0) { 1323 char errmsg[STRERR_BUFSIZE], *cp; 1324 1325 err = -errno; 1326 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1327 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1328 return err; 1329 } 1330 1331 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1332 } 1333 1334 if (!elf) { 1335 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1336 err = -LIBBPF_ERRNO__LIBELF; 1337 goto errout; 1338 } 1339 1340 obj->efile.elf = elf; 1341 1342 if (elf_kind(elf) != ELF_K_ELF) { 1343 err = -LIBBPF_ERRNO__FORMAT; 1344 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1345 goto errout; 1346 } 1347 1348 if (gelf_getclass(elf) != ELFCLASS64) { 1349 err = -LIBBPF_ERRNO__FORMAT; 1350 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1351 goto errout; 1352 } 1353 1354 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1355 if (!obj->efile.ehdr) { 1356 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1357 err = -LIBBPF_ERRNO__FORMAT; 1358 goto errout; 1359 } 1360 1361 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1362 pr_warn("elf: failed to get section names section index for %s: %s\n", 1363 obj->path, elf_errmsg(-1)); 1364 err = -LIBBPF_ERRNO__FORMAT; 1365 goto errout; 1366 } 1367 1368 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 1369 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1370 pr_warn("elf: failed to get section names strings from %s: %s\n", 1371 obj->path, elf_errmsg(-1)); 1372 err = -LIBBPF_ERRNO__FORMAT; 1373 goto errout; 1374 } 1375 1376 /* Old LLVM set e_machine to EM_NONE */ 1377 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1378 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1379 err = -LIBBPF_ERRNO__FORMAT; 1380 goto errout; 1381 } 1382 1383 return 0; 1384 errout: 1385 bpf_object__elf_finish(obj); 1386 return err; 1387 } 1388 1389 static int bpf_object__check_endianness(struct bpf_object *obj) 1390 { 1391 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1392 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1393 return 0; 1394 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1395 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1396 return 0; 1397 #else 1398 # error "Unrecognized __BYTE_ORDER__" 1399 #endif 1400 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1401 return -LIBBPF_ERRNO__ENDIAN; 1402 } 1403 1404 static int 1405 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1406 { 1407 if (!data) { 1408 pr_warn("invalid license section in %s\n", obj->path); 1409 return -LIBBPF_ERRNO__FORMAT; 1410 } 1411 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1412 * go over allowed ELF data section buffer 1413 */ 1414 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1415 pr_debug("license of %s is %s\n", obj->path, obj->license); 1416 return 0; 1417 } 1418 1419 static int 1420 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1421 { 1422 __u32 kver; 1423 1424 if (!data || size != sizeof(kver)) { 1425 pr_warn("invalid kver section in %s\n", obj->path); 1426 return -LIBBPF_ERRNO__FORMAT; 1427 } 1428 memcpy(&kver, data, sizeof(kver)); 1429 obj->kern_version = kver; 1430 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1431 return 0; 1432 } 1433 1434 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1435 { 1436 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1437 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1438 return true; 1439 return false; 1440 } 1441 1442 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1443 { 1444 Elf_Data *data; 1445 Elf_Scn *scn; 1446 1447 if (!name) 1448 return -EINVAL; 1449 1450 scn = elf_sec_by_name(obj, name); 1451 data = elf_sec_data(obj, scn); 1452 if (data) { 1453 *size = data->d_size; 1454 return 0; /* found it */ 1455 } 1456 1457 return -ENOENT; 1458 } 1459 1460 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1461 { 1462 Elf_Data *symbols = obj->efile.symbols; 1463 const char *sname; 1464 size_t si; 1465 1466 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1467 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1468 1469 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1470 continue; 1471 1472 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1473 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1474 continue; 1475 1476 sname = elf_sym_str(obj, sym->st_name); 1477 if (!sname) { 1478 pr_warn("failed to get sym name string for var %s\n", name); 1479 return ERR_PTR(-EIO); 1480 } 1481 if (strcmp(name, sname) == 0) 1482 return sym; 1483 } 1484 1485 return ERR_PTR(-ENOENT); 1486 } 1487 1488 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1489 { 1490 struct bpf_map *map; 1491 int err; 1492 1493 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1494 sizeof(*obj->maps), obj->nr_maps + 1); 1495 if (err) 1496 return ERR_PTR(err); 1497 1498 map = &obj->maps[obj->nr_maps++]; 1499 map->obj = obj; 1500 map->fd = -1; 1501 map->inner_map_fd = -1; 1502 map->autocreate = true; 1503 1504 return map; 1505 } 1506 1507 static size_t bpf_map_mmap_sz(unsigned int value_sz, unsigned int max_entries) 1508 { 1509 const long page_sz = sysconf(_SC_PAGE_SIZE); 1510 size_t map_sz; 1511 1512 map_sz = (size_t)roundup(value_sz, 8) * max_entries; 1513 map_sz = roundup(map_sz, page_sz); 1514 return map_sz; 1515 } 1516 1517 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz) 1518 { 1519 void *mmaped; 1520 1521 if (!map->mmaped) 1522 return -EINVAL; 1523 1524 if (old_sz == new_sz) 1525 return 0; 1526 1527 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1528 if (mmaped == MAP_FAILED) 1529 return -errno; 1530 1531 memcpy(mmaped, map->mmaped, min(old_sz, new_sz)); 1532 munmap(map->mmaped, old_sz); 1533 map->mmaped = mmaped; 1534 return 0; 1535 } 1536 1537 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1538 { 1539 char map_name[BPF_OBJ_NAME_LEN], *p; 1540 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1541 1542 /* This is one of the more confusing parts of libbpf for various 1543 * reasons, some of which are historical. The original idea for naming 1544 * internal names was to include as much of BPF object name prefix as 1545 * possible, so that it can be distinguished from similar internal 1546 * maps of a different BPF object. 1547 * As an example, let's say we have bpf_object named 'my_object_name' 1548 * and internal map corresponding to '.rodata' ELF section. The final 1549 * map name advertised to user and to the kernel will be 1550 * 'my_objec.rodata', taking first 8 characters of object name and 1551 * entire 7 characters of '.rodata'. 1552 * Somewhat confusingly, if internal map ELF section name is shorter 1553 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1554 * for the suffix, even though we only have 4 actual characters, and 1555 * resulting map will be called 'my_objec.bss', not even using all 15 1556 * characters allowed by the kernel. Oh well, at least the truncated 1557 * object name is somewhat consistent in this case. But if the map 1558 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1559 * (8 chars) and thus will be left with only first 7 characters of the 1560 * object name ('my_obje'). Happy guessing, user, that the final map 1561 * name will be "my_obje.kconfig". 1562 * Now, with libbpf starting to support arbitrarily named .rodata.* 1563 * and .data.* data sections, it's possible that ELF section name is 1564 * longer than allowed 15 chars, so we now need to be careful to take 1565 * only up to 15 first characters of ELF name, taking no BPF object 1566 * name characters at all. So '.rodata.abracadabra' will result in 1567 * '.rodata.abracad' kernel and user-visible name. 1568 * We need to keep this convoluted logic intact for .data, .bss and 1569 * .rodata maps, but for new custom .data.custom and .rodata.custom 1570 * maps we use their ELF names as is, not prepending bpf_object name 1571 * in front. We still need to truncate them to 15 characters for the 1572 * kernel. Full name can be recovered for such maps by using DATASEC 1573 * BTF type associated with such map's value type, though. 1574 */ 1575 if (sfx_len >= BPF_OBJ_NAME_LEN) 1576 sfx_len = BPF_OBJ_NAME_LEN - 1; 1577 1578 /* if there are two or more dots in map name, it's a custom dot map */ 1579 if (strchr(real_name + 1, '.') != NULL) 1580 pfx_len = 0; 1581 else 1582 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1583 1584 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1585 sfx_len, real_name); 1586 1587 /* sanitise map name to characters allowed by kernel */ 1588 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1589 if (!isalnum(*p) && *p != '_' && *p != '.') 1590 *p = '_'; 1591 1592 return strdup(map_name); 1593 } 1594 1595 static int 1596 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1597 1598 /* Internal BPF map is mmap()'able only if at least one of corresponding 1599 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1600 * variable and it's not marked as __hidden (which turns it into, effectively, 1601 * a STATIC variable). 1602 */ 1603 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1604 { 1605 const struct btf_type *t, *vt; 1606 struct btf_var_secinfo *vsi; 1607 int i, n; 1608 1609 if (!map->btf_value_type_id) 1610 return false; 1611 1612 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1613 if (!btf_is_datasec(t)) 1614 return false; 1615 1616 vsi = btf_var_secinfos(t); 1617 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1618 vt = btf__type_by_id(obj->btf, vsi->type); 1619 if (!btf_is_var(vt)) 1620 continue; 1621 1622 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1623 return true; 1624 } 1625 1626 return false; 1627 } 1628 1629 static int 1630 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1631 const char *real_name, int sec_idx, void *data, size_t data_sz) 1632 { 1633 struct bpf_map_def *def; 1634 struct bpf_map *map; 1635 size_t mmap_sz; 1636 int err; 1637 1638 map = bpf_object__add_map(obj); 1639 if (IS_ERR(map)) 1640 return PTR_ERR(map); 1641 1642 map->libbpf_type = type; 1643 map->sec_idx = sec_idx; 1644 map->sec_offset = 0; 1645 map->real_name = strdup(real_name); 1646 map->name = internal_map_name(obj, real_name); 1647 if (!map->real_name || !map->name) { 1648 zfree(&map->real_name); 1649 zfree(&map->name); 1650 return -ENOMEM; 1651 } 1652 1653 def = &map->def; 1654 def->type = BPF_MAP_TYPE_ARRAY; 1655 def->key_size = sizeof(int); 1656 def->value_size = data_sz; 1657 def->max_entries = 1; 1658 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1659 ? BPF_F_RDONLY_PROG : 0; 1660 1661 /* failures are fine because of maps like .rodata.str1.1 */ 1662 (void) map_fill_btf_type_info(obj, map); 1663 1664 if (map_is_mmapable(obj, map)) 1665 def->map_flags |= BPF_F_MMAPABLE; 1666 1667 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1668 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1669 1670 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 1671 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE, 1672 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1673 if (map->mmaped == MAP_FAILED) { 1674 err = -errno; 1675 map->mmaped = NULL; 1676 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1677 map->name, err); 1678 zfree(&map->real_name); 1679 zfree(&map->name); 1680 return err; 1681 } 1682 1683 if (data) 1684 memcpy(map->mmaped, data, data_sz); 1685 1686 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1687 return 0; 1688 } 1689 1690 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1691 { 1692 struct elf_sec_desc *sec_desc; 1693 const char *sec_name; 1694 int err = 0, sec_idx; 1695 1696 /* 1697 * Populate obj->maps with libbpf internal maps. 1698 */ 1699 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1700 sec_desc = &obj->efile.secs[sec_idx]; 1701 1702 /* Skip recognized sections with size 0. */ 1703 if (!sec_desc->data || sec_desc->data->d_size == 0) 1704 continue; 1705 1706 switch (sec_desc->sec_type) { 1707 case SEC_DATA: 1708 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1709 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1710 sec_name, sec_idx, 1711 sec_desc->data->d_buf, 1712 sec_desc->data->d_size); 1713 break; 1714 case SEC_RODATA: 1715 obj->has_rodata = true; 1716 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1717 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1718 sec_name, sec_idx, 1719 sec_desc->data->d_buf, 1720 sec_desc->data->d_size); 1721 break; 1722 case SEC_BSS: 1723 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1724 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1725 sec_name, sec_idx, 1726 NULL, 1727 sec_desc->data->d_size); 1728 break; 1729 default: 1730 /* skip */ 1731 break; 1732 } 1733 if (err) 1734 return err; 1735 } 1736 return 0; 1737 } 1738 1739 1740 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1741 const void *name) 1742 { 1743 int i; 1744 1745 for (i = 0; i < obj->nr_extern; i++) { 1746 if (strcmp(obj->externs[i].name, name) == 0) 1747 return &obj->externs[i]; 1748 } 1749 return NULL; 1750 } 1751 1752 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1753 char value) 1754 { 1755 switch (ext->kcfg.type) { 1756 case KCFG_BOOL: 1757 if (value == 'm') { 1758 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 1759 ext->name, value); 1760 return -EINVAL; 1761 } 1762 *(bool *)ext_val = value == 'y' ? true : false; 1763 break; 1764 case KCFG_TRISTATE: 1765 if (value == 'y') 1766 *(enum libbpf_tristate *)ext_val = TRI_YES; 1767 else if (value == 'm') 1768 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1769 else /* value == 'n' */ 1770 *(enum libbpf_tristate *)ext_val = TRI_NO; 1771 break; 1772 case KCFG_CHAR: 1773 *(char *)ext_val = value; 1774 break; 1775 case KCFG_UNKNOWN: 1776 case KCFG_INT: 1777 case KCFG_CHAR_ARR: 1778 default: 1779 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 1780 ext->name, value); 1781 return -EINVAL; 1782 } 1783 ext->is_set = true; 1784 return 0; 1785 } 1786 1787 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1788 const char *value) 1789 { 1790 size_t len; 1791 1792 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1793 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 1794 ext->name, value); 1795 return -EINVAL; 1796 } 1797 1798 len = strlen(value); 1799 if (value[len - 1] != '"') { 1800 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1801 ext->name, value); 1802 return -EINVAL; 1803 } 1804 1805 /* strip quotes */ 1806 len -= 2; 1807 if (len >= ext->kcfg.sz) { 1808 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 1809 ext->name, value, len, ext->kcfg.sz - 1); 1810 len = ext->kcfg.sz - 1; 1811 } 1812 memcpy(ext_val, value + 1, len); 1813 ext_val[len] = '\0'; 1814 ext->is_set = true; 1815 return 0; 1816 } 1817 1818 static int parse_u64(const char *value, __u64 *res) 1819 { 1820 char *value_end; 1821 int err; 1822 1823 errno = 0; 1824 *res = strtoull(value, &value_end, 0); 1825 if (errno) { 1826 err = -errno; 1827 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1828 return err; 1829 } 1830 if (*value_end) { 1831 pr_warn("failed to parse '%s' as integer completely\n", value); 1832 return -EINVAL; 1833 } 1834 return 0; 1835 } 1836 1837 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1838 { 1839 int bit_sz = ext->kcfg.sz * 8; 1840 1841 if (ext->kcfg.sz == 8) 1842 return true; 1843 1844 /* Validate that value stored in u64 fits in integer of `ext->sz` 1845 * bytes size without any loss of information. If the target integer 1846 * is signed, we rely on the following limits of integer type of 1847 * Y bits and subsequent transformation: 1848 * 1849 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1850 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1851 * 0 <= X + 2^(Y-1) < 2^Y 1852 * 1853 * For unsigned target integer, check that all the (64 - Y) bits are 1854 * zero. 1855 */ 1856 if (ext->kcfg.is_signed) 1857 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1858 else 1859 return (v >> bit_sz) == 0; 1860 } 1861 1862 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1863 __u64 value) 1864 { 1865 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 1866 ext->kcfg.type != KCFG_BOOL) { 1867 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 1868 ext->name, (unsigned long long)value); 1869 return -EINVAL; 1870 } 1871 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 1872 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 1873 ext->name, (unsigned long long)value); 1874 return -EINVAL; 1875 1876 } 1877 if (!is_kcfg_value_in_range(ext, value)) { 1878 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 1879 ext->name, (unsigned long long)value, ext->kcfg.sz); 1880 return -ERANGE; 1881 } 1882 switch (ext->kcfg.sz) { 1883 case 1: 1884 *(__u8 *)ext_val = value; 1885 break; 1886 case 2: 1887 *(__u16 *)ext_val = value; 1888 break; 1889 case 4: 1890 *(__u32 *)ext_val = value; 1891 break; 1892 case 8: 1893 *(__u64 *)ext_val = value; 1894 break; 1895 default: 1896 return -EINVAL; 1897 } 1898 ext->is_set = true; 1899 return 0; 1900 } 1901 1902 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1903 char *buf, void *data) 1904 { 1905 struct extern_desc *ext; 1906 char *sep, *value; 1907 int len, err = 0; 1908 void *ext_val; 1909 __u64 num; 1910 1911 if (!str_has_pfx(buf, "CONFIG_")) 1912 return 0; 1913 1914 sep = strchr(buf, '='); 1915 if (!sep) { 1916 pr_warn("failed to parse '%s': no separator\n", buf); 1917 return -EINVAL; 1918 } 1919 1920 /* Trim ending '\n' */ 1921 len = strlen(buf); 1922 if (buf[len - 1] == '\n') 1923 buf[len - 1] = '\0'; 1924 /* Split on '=' and ensure that a value is present. */ 1925 *sep = '\0'; 1926 if (!sep[1]) { 1927 *sep = '='; 1928 pr_warn("failed to parse '%s': no value\n", buf); 1929 return -EINVAL; 1930 } 1931 1932 ext = find_extern_by_name(obj, buf); 1933 if (!ext || ext->is_set) 1934 return 0; 1935 1936 ext_val = data + ext->kcfg.data_off; 1937 value = sep + 1; 1938 1939 switch (*value) { 1940 case 'y': case 'n': case 'm': 1941 err = set_kcfg_value_tri(ext, ext_val, *value); 1942 break; 1943 case '"': 1944 err = set_kcfg_value_str(ext, ext_val, value); 1945 break; 1946 default: 1947 /* assume integer */ 1948 err = parse_u64(value, &num); 1949 if (err) { 1950 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 1951 return err; 1952 } 1953 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1954 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 1955 return -EINVAL; 1956 } 1957 err = set_kcfg_value_num(ext, ext_val, num); 1958 break; 1959 } 1960 if (err) 1961 return err; 1962 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 1963 return 0; 1964 } 1965 1966 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1967 { 1968 char buf[PATH_MAX]; 1969 struct utsname uts; 1970 int len, err = 0; 1971 gzFile file; 1972 1973 uname(&uts); 1974 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1975 if (len < 0) 1976 return -EINVAL; 1977 else if (len >= PATH_MAX) 1978 return -ENAMETOOLONG; 1979 1980 /* gzopen also accepts uncompressed files. */ 1981 file = gzopen(buf, "r"); 1982 if (!file) 1983 file = gzopen("/proc/config.gz", "r"); 1984 1985 if (!file) { 1986 pr_warn("failed to open system Kconfig\n"); 1987 return -ENOENT; 1988 } 1989 1990 while (gzgets(file, buf, sizeof(buf))) { 1991 err = bpf_object__process_kconfig_line(obj, buf, data); 1992 if (err) { 1993 pr_warn("error parsing system Kconfig line '%s': %d\n", 1994 buf, err); 1995 goto out; 1996 } 1997 } 1998 1999 out: 2000 gzclose(file); 2001 return err; 2002 } 2003 2004 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 2005 const char *config, void *data) 2006 { 2007 char buf[PATH_MAX]; 2008 int err = 0; 2009 FILE *file; 2010 2011 file = fmemopen((void *)config, strlen(config), "r"); 2012 if (!file) { 2013 err = -errno; 2014 pr_warn("failed to open in-memory Kconfig: %d\n", err); 2015 return err; 2016 } 2017 2018 while (fgets(buf, sizeof(buf), file)) { 2019 err = bpf_object__process_kconfig_line(obj, buf, data); 2020 if (err) { 2021 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 2022 buf, err); 2023 break; 2024 } 2025 } 2026 2027 fclose(file); 2028 return err; 2029 } 2030 2031 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2032 { 2033 struct extern_desc *last_ext = NULL, *ext; 2034 size_t map_sz; 2035 int i, err; 2036 2037 for (i = 0; i < obj->nr_extern; i++) { 2038 ext = &obj->externs[i]; 2039 if (ext->type == EXT_KCFG) 2040 last_ext = ext; 2041 } 2042 2043 if (!last_ext) 2044 return 0; 2045 2046 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2047 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2048 ".kconfig", obj->efile.symbols_shndx, 2049 NULL, map_sz); 2050 if (err) 2051 return err; 2052 2053 obj->kconfig_map_idx = obj->nr_maps - 1; 2054 2055 return 0; 2056 } 2057 2058 const struct btf_type * 2059 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2060 { 2061 const struct btf_type *t = btf__type_by_id(btf, id); 2062 2063 if (res_id) 2064 *res_id = id; 2065 2066 while (btf_is_mod(t) || btf_is_typedef(t)) { 2067 if (res_id) 2068 *res_id = t->type; 2069 t = btf__type_by_id(btf, t->type); 2070 } 2071 2072 return t; 2073 } 2074 2075 static const struct btf_type * 2076 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2077 { 2078 const struct btf_type *t; 2079 2080 t = skip_mods_and_typedefs(btf, id, NULL); 2081 if (!btf_is_ptr(t)) 2082 return NULL; 2083 2084 t = skip_mods_and_typedefs(btf, t->type, res_id); 2085 2086 return btf_is_func_proto(t) ? t : NULL; 2087 } 2088 2089 static const char *__btf_kind_str(__u16 kind) 2090 { 2091 switch (kind) { 2092 case BTF_KIND_UNKN: return "void"; 2093 case BTF_KIND_INT: return "int"; 2094 case BTF_KIND_PTR: return "ptr"; 2095 case BTF_KIND_ARRAY: return "array"; 2096 case BTF_KIND_STRUCT: return "struct"; 2097 case BTF_KIND_UNION: return "union"; 2098 case BTF_KIND_ENUM: return "enum"; 2099 case BTF_KIND_FWD: return "fwd"; 2100 case BTF_KIND_TYPEDEF: return "typedef"; 2101 case BTF_KIND_VOLATILE: return "volatile"; 2102 case BTF_KIND_CONST: return "const"; 2103 case BTF_KIND_RESTRICT: return "restrict"; 2104 case BTF_KIND_FUNC: return "func"; 2105 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2106 case BTF_KIND_VAR: return "var"; 2107 case BTF_KIND_DATASEC: return "datasec"; 2108 case BTF_KIND_FLOAT: return "float"; 2109 case BTF_KIND_DECL_TAG: return "decl_tag"; 2110 case BTF_KIND_TYPE_TAG: return "type_tag"; 2111 case BTF_KIND_ENUM64: return "enum64"; 2112 default: return "unknown"; 2113 } 2114 } 2115 2116 const char *btf_kind_str(const struct btf_type *t) 2117 { 2118 return __btf_kind_str(btf_kind(t)); 2119 } 2120 2121 /* 2122 * Fetch integer attribute of BTF map definition. Such attributes are 2123 * represented using a pointer to an array, in which dimensionality of array 2124 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2125 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2126 * type definition, while using only sizeof(void *) space in ELF data section. 2127 */ 2128 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2129 const struct btf_member *m, __u32 *res) 2130 { 2131 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2132 const char *name = btf__name_by_offset(btf, m->name_off); 2133 const struct btf_array *arr_info; 2134 const struct btf_type *arr_t; 2135 2136 if (!btf_is_ptr(t)) { 2137 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2138 map_name, name, btf_kind_str(t)); 2139 return false; 2140 } 2141 2142 arr_t = btf__type_by_id(btf, t->type); 2143 if (!arr_t) { 2144 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2145 map_name, name, t->type); 2146 return false; 2147 } 2148 if (!btf_is_array(arr_t)) { 2149 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2150 map_name, name, btf_kind_str(arr_t)); 2151 return false; 2152 } 2153 arr_info = btf_array(arr_t); 2154 *res = arr_info->nelems; 2155 return true; 2156 } 2157 2158 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2159 { 2160 int len; 2161 2162 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2163 if (len < 0) 2164 return -EINVAL; 2165 if (len >= buf_sz) 2166 return -ENAMETOOLONG; 2167 2168 return 0; 2169 } 2170 2171 static int build_map_pin_path(struct bpf_map *map, const char *path) 2172 { 2173 char buf[PATH_MAX]; 2174 int err; 2175 2176 if (!path) 2177 path = "/sys/fs/bpf"; 2178 2179 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2180 if (err) 2181 return err; 2182 2183 return bpf_map__set_pin_path(map, buf); 2184 } 2185 2186 /* should match definition in bpf_helpers.h */ 2187 enum libbpf_pin_type { 2188 LIBBPF_PIN_NONE, 2189 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2190 LIBBPF_PIN_BY_NAME, 2191 }; 2192 2193 int parse_btf_map_def(const char *map_name, struct btf *btf, 2194 const struct btf_type *def_t, bool strict, 2195 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2196 { 2197 const struct btf_type *t; 2198 const struct btf_member *m; 2199 bool is_inner = inner_def == NULL; 2200 int vlen, i; 2201 2202 vlen = btf_vlen(def_t); 2203 m = btf_members(def_t); 2204 for (i = 0; i < vlen; i++, m++) { 2205 const char *name = btf__name_by_offset(btf, m->name_off); 2206 2207 if (!name) { 2208 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2209 return -EINVAL; 2210 } 2211 if (strcmp(name, "type") == 0) { 2212 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2213 return -EINVAL; 2214 map_def->parts |= MAP_DEF_MAP_TYPE; 2215 } else if (strcmp(name, "max_entries") == 0) { 2216 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2217 return -EINVAL; 2218 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2219 } else if (strcmp(name, "map_flags") == 0) { 2220 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2221 return -EINVAL; 2222 map_def->parts |= MAP_DEF_MAP_FLAGS; 2223 } else if (strcmp(name, "numa_node") == 0) { 2224 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2225 return -EINVAL; 2226 map_def->parts |= MAP_DEF_NUMA_NODE; 2227 } else if (strcmp(name, "key_size") == 0) { 2228 __u32 sz; 2229 2230 if (!get_map_field_int(map_name, btf, m, &sz)) 2231 return -EINVAL; 2232 if (map_def->key_size && map_def->key_size != sz) { 2233 pr_warn("map '%s': conflicting key size %u != %u.\n", 2234 map_name, map_def->key_size, sz); 2235 return -EINVAL; 2236 } 2237 map_def->key_size = sz; 2238 map_def->parts |= MAP_DEF_KEY_SIZE; 2239 } else if (strcmp(name, "key") == 0) { 2240 __s64 sz; 2241 2242 t = btf__type_by_id(btf, m->type); 2243 if (!t) { 2244 pr_warn("map '%s': key type [%d] not found.\n", 2245 map_name, m->type); 2246 return -EINVAL; 2247 } 2248 if (!btf_is_ptr(t)) { 2249 pr_warn("map '%s': key spec is not PTR: %s.\n", 2250 map_name, btf_kind_str(t)); 2251 return -EINVAL; 2252 } 2253 sz = btf__resolve_size(btf, t->type); 2254 if (sz < 0) { 2255 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2256 map_name, t->type, (ssize_t)sz); 2257 return sz; 2258 } 2259 if (map_def->key_size && map_def->key_size != sz) { 2260 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2261 map_name, map_def->key_size, (ssize_t)sz); 2262 return -EINVAL; 2263 } 2264 map_def->key_size = sz; 2265 map_def->key_type_id = t->type; 2266 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2267 } else if (strcmp(name, "value_size") == 0) { 2268 __u32 sz; 2269 2270 if (!get_map_field_int(map_name, btf, m, &sz)) 2271 return -EINVAL; 2272 if (map_def->value_size && map_def->value_size != sz) { 2273 pr_warn("map '%s': conflicting value size %u != %u.\n", 2274 map_name, map_def->value_size, sz); 2275 return -EINVAL; 2276 } 2277 map_def->value_size = sz; 2278 map_def->parts |= MAP_DEF_VALUE_SIZE; 2279 } else if (strcmp(name, "value") == 0) { 2280 __s64 sz; 2281 2282 t = btf__type_by_id(btf, m->type); 2283 if (!t) { 2284 pr_warn("map '%s': value type [%d] not found.\n", 2285 map_name, m->type); 2286 return -EINVAL; 2287 } 2288 if (!btf_is_ptr(t)) { 2289 pr_warn("map '%s': value spec is not PTR: %s.\n", 2290 map_name, btf_kind_str(t)); 2291 return -EINVAL; 2292 } 2293 sz = btf__resolve_size(btf, t->type); 2294 if (sz < 0) { 2295 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2296 map_name, t->type, (ssize_t)sz); 2297 return sz; 2298 } 2299 if (map_def->value_size && map_def->value_size != sz) { 2300 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2301 map_name, map_def->value_size, (ssize_t)sz); 2302 return -EINVAL; 2303 } 2304 map_def->value_size = sz; 2305 map_def->value_type_id = t->type; 2306 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2307 } 2308 else if (strcmp(name, "values") == 0) { 2309 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2310 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2311 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2312 char inner_map_name[128]; 2313 int err; 2314 2315 if (is_inner) { 2316 pr_warn("map '%s': multi-level inner maps not supported.\n", 2317 map_name); 2318 return -ENOTSUP; 2319 } 2320 if (i != vlen - 1) { 2321 pr_warn("map '%s': '%s' member should be last.\n", 2322 map_name, name); 2323 return -EINVAL; 2324 } 2325 if (!is_map_in_map && !is_prog_array) { 2326 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2327 map_name); 2328 return -ENOTSUP; 2329 } 2330 if (map_def->value_size && map_def->value_size != 4) { 2331 pr_warn("map '%s': conflicting value size %u != 4.\n", 2332 map_name, map_def->value_size); 2333 return -EINVAL; 2334 } 2335 map_def->value_size = 4; 2336 t = btf__type_by_id(btf, m->type); 2337 if (!t) { 2338 pr_warn("map '%s': %s type [%d] not found.\n", 2339 map_name, desc, m->type); 2340 return -EINVAL; 2341 } 2342 if (!btf_is_array(t) || btf_array(t)->nelems) { 2343 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2344 map_name, desc); 2345 return -EINVAL; 2346 } 2347 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2348 if (!btf_is_ptr(t)) { 2349 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2350 map_name, desc, btf_kind_str(t)); 2351 return -EINVAL; 2352 } 2353 t = skip_mods_and_typedefs(btf, t->type, NULL); 2354 if (is_prog_array) { 2355 if (!btf_is_func_proto(t)) { 2356 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2357 map_name, btf_kind_str(t)); 2358 return -EINVAL; 2359 } 2360 continue; 2361 } 2362 if (!btf_is_struct(t)) { 2363 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2364 map_name, btf_kind_str(t)); 2365 return -EINVAL; 2366 } 2367 2368 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2369 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2370 if (err) 2371 return err; 2372 2373 map_def->parts |= MAP_DEF_INNER_MAP; 2374 } else if (strcmp(name, "pinning") == 0) { 2375 __u32 val; 2376 2377 if (is_inner) { 2378 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2379 return -EINVAL; 2380 } 2381 if (!get_map_field_int(map_name, btf, m, &val)) 2382 return -EINVAL; 2383 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2384 pr_warn("map '%s': invalid pinning value %u.\n", 2385 map_name, val); 2386 return -EINVAL; 2387 } 2388 map_def->pinning = val; 2389 map_def->parts |= MAP_DEF_PINNING; 2390 } else if (strcmp(name, "map_extra") == 0) { 2391 __u32 map_extra; 2392 2393 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2394 return -EINVAL; 2395 map_def->map_extra = map_extra; 2396 map_def->parts |= MAP_DEF_MAP_EXTRA; 2397 } else { 2398 if (strict) { 2399 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2400 return -ENOTSUP; 2401 } 2402 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2403 } 2404 } 2405 2406 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2407 pr_warn("map '%s': map type isn't specified.\n", map_name); 2408 return -EINVAL; 2409 } 2410 2411 return 0; 2412 } 2413 2414 static size_t adjust_ringbuf_sz(size_t sz) 2415 { 2416 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2417 __u32 mul; 2418 2419 /* if user forgot to set any size, make sure they see error */ 2420 if (sz == 0) 2421 return 0; 2422 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2423 * a power-of-2 multiple of kernel's page size. If user diligently 2424 * satisified these conditions, pass the size through. 2425 */ 2426 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2427 return sz; 2428 2429 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2430 * user-set size to satisfy both user size request and kernel 2431 * requirements and substitute correct max_entries for map creation. 2432 */ 2433 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2434 if (mul * page_sz > sz) 2435 return mul * page_sz; 2436 } 2437 2438 /* if it's impossible to satisfy the conditions (i.e., user size is 2439 * very close to UINT_MAX but is not a power-of-2 multiple of 2440 * page_size) then just return original size and let kernel reject it 2441 */ 2442 return sz; 2443 } 2444 2445 static bool map_is_ringbuf(const struct bpf_map *map) 2446 { 2447 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2448 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2449 } 2450 2451 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2452 { 2453 map->def.type = def->map_type; 2454 map->def.key_size = def->key_size; 2455 map->def.value_size = def->value_size; 2456 map->def.max_entries = def->max_entries; 2457 map->def.map_flags = def->map_flags; 2458 map->map_extra = def->map_extra; 2459 2460 map->numa_node = def->numa_node; 2461 map->btf_key_type_id = def->key_type_id; 2462 map->btf_value_type_id = def->value_type_id; 2463 2464 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2465 if (map_is_ringbuf(map)) 2466 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2467 2468 if (def->parts & MAP_DEF_MAP_TYPE) 2469 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2470 2471 if (def->parts & MAP_DEF_KEY_TYPE) 2472 pr_debug("map '%s': found key [%u], sz = %u.\n", 2473 map->name, def->key_type_id, def->key_size); 2474 else if (def->parts & MAP_DEF_KEY_SIZE) 2475 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2476 2477 if (def->parts & MAP_DEF_VALUE_TYPE) 2478 pr_debug("map '%s': found value [%u], sz = %u.\n", 2479 map->name, def->value_type_id, def->value_size); 2480 else if (def->parts & MAP_DEF_VALUE_SIZE) 2481 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2482 2483 if (def->parts & MAP_DEF_MAX_ENTRIES) 2484 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2485 if (def->parts & MAP_DEF_MAP_FLAGS) 2486 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2487 if (def->parts & MAP_DEF_MAP_EXTRA) 2488 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2489 (unsigned long long)def->map_extra); 2490 if (def->parts & MAP_DEF_PINNING) 2491 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2492 if (def->parts & MAP_DEF_NUMA_NODE) 2493 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2494 2495 if (def->parts & MAP_DEF_INNER_MAP) 2496 pr_debug("map '%s': found inner map definition.\n", map->name); 2497 } 2498 2499 static const char *btf_var_linkage_str(__u32 linkage) 2500 { 2501 switch (linkage) { 2502 case BTF_VAR_STATIC: return "static"; 2503 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2504 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2505 default: return "unknown"; 2506 } 2507 } 2508 2509 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2510 const struct btf_type *sec, 2511 int var_idx, int sec_idx, 2512 const Elf_Data *data, bool strict, 2513 const char *pin_root_path) 2514 { 2515 struct btf_map_def map_def = {}, inner_def = {}; 2516 const struct btf_type *var, *def; 2517 const struct btf_var_secinfo *vi; 2518 const struct btf_var *var_extra; 2519 const char *map_name; 2520 struct bpf_map *map; 2521 int err; 2522 2523 vi = btf_var_secinfos(sec) + var_idx; 2524 var = btf__type_by_id(obj->btf, vi->type); 2525 var_extra = btf_var(var); 2526 map_name = btf__name_by_offset(obj->btf, var->name_off); 2527 2528 if (map_name == NULL || map_name[0] == '\0') { 2529 pr_warn("map #%d: empty name.\n", var_idx); 2530 return -EINVAL; 2531 } 2532 if ((__u64)vi->offset + vi->size > data->d_size) { 2533 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2534 return -EINVAL; 2535 } 2536 if (!btf_is_var(var)) { 2537 pr_warn("map '%s': unexpected var kind %s.\n", 2538 map_name, btf_kind_str(var)); 2539 return -EINVAL; 2540 } 2541 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2542 pr_warn("map '%s': unsupported map linkage %s.\n", 2543 map_name, btf_var_linkage_str(var_extra->linkage)); 2544 return -EOPNOTSUPP; 2545 } 2546 2547 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2548 if (!btf_is_struct(def)) { 2549 pr_warn("map '%s': unexpected def kind %s.\n", 2550 map_name, btf_kind_str(var)); 2551 return -EINVAL; 2552 } 2553 if (def->size > vi->size) { 2554 pr_warn("map '%s': invalid def size.\n", map_name); 2555 return -EINVAL; 2556 } 2557 2558 map = bpf_object__add_map(obj); 2559 if (IS_ERR(map)) 2560 return PTR_ERR(map); 2561 map->name = strdup(map_name); 2562 if (!map->name) { 2563 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2564 return -ENOMEM; 2565 } 2566 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2567 map->def.type = BPF_MAP_TYPE_UNSPEC; 2568 map->sec_idx = sec_idx; 2569 map->sec_offset = vi->offset; 2570 map->btf_var_idx = var_idx; 2571 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2572 map_name, map->sec_idx, map->sec_offset); 2573 2574 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2575 if (err) 2576 return err; 2577 2578 fill_map_from_def(map, &map_def); 2579 2580 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2581 err = build_map_pin_path(map, pin_root_path); 2582 if (err) { 2583 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2584 return err; 2585 } 2586 } 2587 2588 if (map_def.parts & MAP_DEF_INNER_MAP) { 2589 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2590 if (!map->inner_map) 2591 return -ENOMEM; 2592 map->inner_map->fd = -1; 2593 map->inner_map->sec_idx = sec_idx; 2594 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2595 if (!map->inner_map->name) 2596 return -ENOMEM; 2597 sprintf(map->inner_map->name, "%s.inner", map_name); 2598 2599 fill_map_from_def(map->inner_map, &inner_def); 2600 } 2601 2602 err = map_fill_btf_type_info(obj, map); 2603 if (err) 2604 return err; 2605 2606 return 0; 2607 } 2608 2609 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2610 const char *pin_root_path) 2611 { 2612 const struct btf_type *sec = NULL; 2613 int nr_types, i, vlen, err; 2614 const struct btf_type *t; 2615 const char *name; 2616 Elf_Data *data; 2617 Elf_Scn *scn; 2618 2619 if (obj->efile.btf_maps_shndx < 0) 2620 return 0; 2621 2622 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2623 data = elf_sec_data(obj, scn); 2624 if (!scn || !data) { 2625 pr_warn("elf: failed to get %s map definitions for %s\n", 2626 MAPS_ELF_SEC, obj->path); 2627 return -EINVAL; 2628 } 2629 2630 nr_types = btf__type_cnt(obj->btf); 2631 for (i = 1; i < nr_types; i++) { 2632 t = btf__type_by_id(obj->btf, i); 2633 if (!btf_is_datasec(t)) 2634 continue; 2635 name = btf__name_by_offset(obj->btf, t->name_off); 2636 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2637 sec = t; 2638 obj->efile.btf_maps_sec_btf_id = i; 2639 break; 2640 } 2641 } 2642 2643 if (!sec) { 2644 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2645 return -ENOENT; 2646 } 2647 2648 vlen = btf_vlen(sec); 2649 for (i = 0; i < vlen; i++) { 2650 err = bpf_object__init_user_btf_map(obj, sec, i, 2651 obj->efile.btf_maps_shndx, 2652 data, strict, 2653 pin_root_path); 2654 if (err) 2655 return err; 2656 } 2657 2658 return 0; 2659 } 2660 2661 static int bpf_object__init_maps(struct bpf_object *obj, 2662 const struct bpf_object_open_opts *opts) 2663 { 2664 const char *pin_root_path; 2665 bool strict; 2666 int err = 0; 2667 2668 strict = !OPTS_GET(opts, relaxed_maps, false); 2669 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2670 2671 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2672 err = err ?: bpf_object__init_global_data_maps(obj); 2673 err = err ?: bpf_object__init_kconfig_map(obj); 2674 err = err ?: bpf_object_init_struct_ops(obj); 2675 2676 return err; 2677 } 2678 2679 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2680 { 2681 Elf64_Shdr *sh; 2682 2683 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2684 if (!sh) 2685 return false; 2686 2687 return sh->sh_flags & SHF_EXECINSTR; 2688 } 2689 2690 static bool btf_needs_sanitization(struct bpf_object *obj) 2691 { 2692 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2693 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2694 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2695 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2696 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2697 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2698 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2699 2700 return !has_func || !has_datasec || !has_func_global || !has_float || 2701 !has_decl_tag || !has_type_tag || !has_enum64; 2702 } 2703 2704 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2705 { 2706 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2707 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2708 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2709 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2710 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2711 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2712 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2713 int enum64_placeholder_id = 0; 2714 struct btf_type *t; 2715 int i, j, vlen; 2716 2717 for (i = 1; i < btf__type_cnt(btf); i++) { 2718 t = (struct btf_type *)btf__type_by_id(btf, i); 2719 2720 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2721 /* replace VAR/DECL_TAG with INT */ 2722 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2723 /* 2724 * using size = 1 is the safest choice, 4 will be too 2725 * big and cause kernel BTF validation failure if 2726 * original variable took less than 4 bytes 2727 */ 2728 t->size = 1; 2729 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2730 } else if (!has_datasec && btf_is_datasec(t)) { 2731 /* replace DATASEC with STRUCT */ 2732 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2733 struct btf_member *m = btf_members(t); 2734 struct btf_type *vt; 2735 char *name; 2736 2737 name = (char *)btf__name_by_offset(btf, t->name_off); 2738 while (*name) { 2739 if (*name == '.') 2740 *name = '_'; 2741 name++; 2742 } 2743 2744 vlen = btf_vlen(t); 2745 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2746 for (j = 0; j < vlen; j++, v++, m++) { 2747 /* order of field assignments is important */ 2748 m->offset = v->offset * 8; 2749 m->type = v->type; 2750 /* preserve variable name as member name */ 2751 vt = (void *)btf__type_by_id(btf, v->type); 2752 m->name_off = vt->name_off; 2753 } 2754 } else if (!has_func && btf_is_func_proto(t)) { 2755 /* replace FUNC_PROTO with ENUM */ 2756 vlen = btf_vlen(t); 2757 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2758 t->size = sizeof(__u32); /* kernel enforced */ 2759 } else if (!has_func && btf_is_func(t)) { 2760 /* replace FUNC with TYPEDEF */ 2761 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2762 } else if (!has_func_global && btf_is_func(t)) { 2763 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2764 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2765 } else if (!has_float && btf_is_float(t)) { 2766 /* replace FLOAT with an equally-sized empty STRUCT; 2767 * since C compilers do not accept e.g. "float" as a 2768 * valid struct name, make it anonymous 2769 */ 2770 t->name_off = 0; 2771 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2772 } else if (!has_type_tag && btf_is_type_tag(t)) { 2773 /* replace TYPE_TAG with a CONST */ 2774 t->name_off = 0; 2775 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2776 } else if (!has_enum64 && btf_is_enum(t)) { 2777 /* clear the kflag */ 2778 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 2779 } else if (!has_enum64 && btf_is_enum64(t)) { 2780 /* replace ENUM64 with a union */ 2781 struct btf_member *m; 2782 2783 if (enum64_placeholder_id == 0) { 2784 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 2785 if (enum64_placeholder_id < 0) 2786 return enum64_placeholder_id; 2787 2788 t = (struct btf_type *)btf__type_by_id(btf, i); 2789 } 2790 2791 m = btf_members(t); 2792 vlen = btf_vlen(t); 2793 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 2794 for (j = 0; j < vlen; j++, m++) { 2795 m->type = enum64_placeholder_id; 2796 m->offset = 0; 2797 } 2798 } 2799 } 2800 2801 return 0; 2802 } 2803 2804 static bool libbpf_needs_btf(const struct bpf_object *obj) 2805 { 2806 return obj->efile.btf_maps_shndx >= 0 || 2807 obj->efile.st_ops_shndx >= 0 || 2808 obj->efile.st_ops_link_shndx >= 0 || 2809 obj->nr_extern > 0; 2810 } 2811 2812 static bool kernel_needs_btf(const struct bpf_object *obj) 2813 { 2814 return obj->efile.st_ops_shndx >= 0 || obj->efile.st_ops_link_shndx >= 0; 2815 } 2816 2817 static int bpf_object__init_btf(struct bpf_object *obj, 2818 Elf_Data *btf_data, 2819 Elf_Data *btf_ext_data) 2820 { 2821 int err = -ENOENT; 2822 2823 if (btf_data) { 2824 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2825 err = libbpf_get_error(obj->btf); 2826 if (err) { 2827 obj->btf = NULL; 2828 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2829 goto out; 2830 } 2831 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2832 btf__set_pointer_size(obj->btf, 8); 2833 } 2834 if (btf_ext_data) { 2835 struct btf_ext_info *ext_segs[3]; 2836 int seg_num, sec_num; 2837 2838 if (!obj->btf) { 2839 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2840 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2841 goto out; 2842 } 2843 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2844 err = libbpf_get_error(obj->btf_ext); 2845 if (err) { 2846 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2847 BTF_EXT_ELF_SEC, err); 2848 obj->btf_ext = NULL; 2849 goto out; 2850 } 2851 2852 /* setup .BTF.ext to ELF section mapping */ 2853 ext_segs[0] = &obj->btf_ext->func_info; 2854 ext_segs[1] = &obj->btf_ext->line_info; 2855 ext_segs[2] = &obj->btf_ext->core_relo_info; 2856 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 2857 struct btf_ext_info *seg = ext_segs[seg_num]; 2858 const struct btf_ext_info_sec *sec; 2859 const char *sec_name; 2860 Elf_Scn *scn; 2861 2862 if (seg->sec_cnt == 0) 2863 continue; 2864 2865 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 2866 if (!seg->sec_idxs) { 2867 err = -ENOMEM; 2868 goto out; 2869 } 2870 2871 sec_num = 0; 2872 for_each_btf_ext_sec(seg, sec) { 2873 /* preventively increment index to avoid doing 2874 * this before every continue below 2875 */ 2876 sec_num++; 2877 2878 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 2879 if (str_is_empty(sec_name)) 2880 continue; 2881 scn = elf_sec_by_name(obj, sec_name); 2882 if (!scn) 2883 continue; 2884 2885 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 2886 } 2887 } 2888 } 2889 out: 2890 if (err && libbpf_needs_btf(obj)) { 2891 pr_warn("BTF is required, but is missing or corrupted.\n"); 2892 return err; 2893 } 2894 return 0; 2895 } 2896 2897 static int compare_vsi_off(const void *_a, const void *_b) 2898 { 2899 const struct btf_var_secinfo *a = _a; 2900 const struct btf_var_secinfo *b = _b; 2901 2902 return a->offset - b->offset; 2903 } 2904 2905 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2906 struct btf_type *t) 2907 { 2908 __u32 size = 0, i, vars = btf_vlen(t); 2909 const char *sec_name = btf__name_by_offset(btf, t->name_off); 2910 struct btf_var_secinfo *vsi; 2911 bool fixup_offsets = false; 2912 int err; 2913 2914 if (!sec_name) { 2915 pr_debug("No name found in string section for DATASEC kind.\n"); 2916 return -ENOENT; 2917 } 2918 2919 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 2920 * variable offsets set at the previous step. Further, not every 2921 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 2922 * all fixups altogether for such sections and go straight to sorting 2923 * VARs within their DATASEC. 2924 */ 2925 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 2926 goto sort_vars; 2927 2928 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 2929 * fix this up. But BPF static linker already fixes this up and fills 2930 * all the sizes and offsets during static linking. So this step has 2931 * to be optional. But the STV_HIDDEN handling is non-optional for any 2932 * non-extern DATASEC, so the variable fixup loop below handles both 2933 * functions at the same time, paying the cost of BTF VAR <-> ELF 2934 * symbol matching just once. 2935 */ 2936 if (t->size == 0) { 2937 err = find_elf_sec_sz(obj, sec_name, &size); 2938 if (err || !size) { 2939 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n", 2940 sec_name, size, err); 2941 return -ENOENT; 2942 } 2943 2944 t->size = size; 2945 fixup_offsets = true; 2946 } 2947 2948 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2949 const struct btf_type *t_var; 2950 struct btf_var *var; 2951 const char *var_name; 2952 Elf64_Sym *sym; 2953 2954 t_var = btf__type_by_id(btf, vsi->type); 2955 if (!t_var || !btf_is_var(t_var)) { 2956 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 2957 return -EINVAL; 2958 } 2959 2960 var = btf_var(t_var); 2961 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 2962 continue; 2963 2964 var_name = btf__name_by_offset(btf, t_var->name_off); 2965 if (!var_name) { 2966 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 2967 sec_name, i); 2968 return -ENOENT; 2969 } 2970 2971 sym = find_elf_var_sym(obj, var_name); 2972 if (IS_ERR(sym)) { 2973 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 2974 sec_name, var_name); 2975 return -ENOENT; 2976 } 2977 2978 if (fixup_offsets) 2979 vsi->offset = sym->st_value; 2980 2981 /* if variable is a global/weak symbol, but has restricted 2982 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 2983 * as static. This follows similar logic for functions (BPF 2984 * subprogs) and influences libbpf's further decisions about 2985 * whether to make global data BPF array maps as 2986 * BPF_F_MMAPABLE. 2987 */ 2988 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 2989 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 2990 var->linkage = BTF_VAR_STATIC; 2991 } 2992 2993 sort_vars: 2994 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 2995 return 0; 2996 } 2997 2998 static int bpf_object_fixup_btf(struct bpf_object *obj) 2999 { 3000 int i, n, err = 0; 3001 3002 if (!obj->btf) 3003 return 0; 3004 3005 n = btf__type_cnt(obj->btf); 3006 for (i = 1; i < n; i++) { 3007 struct btf_type *t = btf_type_by_id(obj->btf, i); 3008 3009 /* Loader needs to fix up some of the things compiler 3010 * couldn't get its hands on while emitting BTF. This 3011 * is section size and global variable offset. We use 3012 * the info from the ELF itself for this purpose. 3013 */ 3014 if (btf_is_datasec(t)) { 3015 err = btf_fixup_datasec(obj, obj->btf, t); 3016 if (err) 3017 return err; 3018 } 3019 } 3020 3021 return 0; 3022 } 3023 3024 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 3025 { 3026 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3027 prog->type == BPF_PROG_TYPE_LSM) 3028 return true; 3029 3030 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3031 * also need vmlinux BTF 3032 */ 3033 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3034 return true; 3035 3036 return false; 3037 } 3038 3039 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3040 { 3041 struct bpf_program *prog; 3042 int i; 3043 3044 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3045 * is not specified 3046 */ 3047 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3048 return true; 3049 3050 /* Support for typed ksyms needs kernel BTF */ 3051 for (i = 0; i < obj->nr_extern; i++) { 3052 const struct extern_desc *ext; 3053 3054 ext = &obj->externs[i]; 3055 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3056 return true; 3057 } 3058 3059 bpf_object__for_each_program(prog, obj) { 3060 if (!prog->autoload) 3061 continue; 3062 if (prog_needs_vmlinux_btf(prog)) 3063 return true; 3064 } 3065 3066 return false; 3067 } 3068 3069 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3070 { 3071 int err; 3072 3073 /* btf_vmlinux could be loaded earlier */ 3074 if (obj->btf_vmlinux || obj->gen_loader) 3075 return 0; 3076 3077 if (!force && !obj_needs_vmlinux_btf(obj)) 3078 return 0; 3079 3080 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3081 err = libbpf_get_error(obj->btf_vmlinux); 3082 if (err) { 3083 pr_warn("Error loading vmlinux BTF: %d\n", err); 3084 obj->btf_vmlinux = NULL; 3085 return err; 3086 } 3087 return 0; 3088 } 3089 3090 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3091 { 3092 struct btf *kern_btf = obj->btf; 3093 bool btf_mandatory, sanitize; 3094 int i, err = 0; 3095 3096 if (!obj->btf) 3097 return 0; 3098 3099 if (!kernel_supports(obj, FEAT_BTF)) { 3100 if (kernel_needs_btf(obj)) { 3101 err = -EOPNOTSUPP; 3102 goto report; 3103 } 3104 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3105 return 0; 3106 } 3107 3108 /* Even though some subprogs are global/weak, user might prefer more 3109 * permissive BPF verification process that BPF verifier performs for 3110 * static functions, taking into account more context from the caller 3111 * functions. In such case, they need to mark such subprogs with 3112 * __attribute__((visibility("hidden"))) and libbpf will adjust 3113 * corresponding FUNC BTF type to be marked as static and trigger more 3114 * involved BPF verification process. 3115 */ 3116 for (i = 0; i < obj->nr_programs; i++) { 3117 struct bpf_program *prog = &obj->programs[i]; 3118 struct btf_type *t; 3119 const char *name; 3120 int j, n; 3121 3122 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3123 continue; 3124 3125 n = btf__type_cnt(obj->btf); 3126 for (j = 1; j < n; j++) { 3127 t = btf_type_by_id(obj->btf, j); 3128 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3129 continue; 3130 3131 name = btf__str_by_offset(obj->btf, t->name_off); 3132 if (strcmp(name, prog->name) != 0) 3133 continue; 3134 3135 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3136 break; 3137 } 3138 } 3139 3140 sanitize = btf_needs_sanitization(obj); 3141 if (sanitize) { 3142 const void *raw_data; 3143 __u32 sz; 3144 3145 /* clone BTF to sanitize a copy and leave the original intact */ 3146 raw_data = btf__raw_data(obj->btf, &sz); 3147 kern_btf = btf__new(raw_data, sz); 3148 err = libbpf_get_error(kern_btf); 3149 if (err) 3150 return err; 3151 3152 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3153 btf__set_pointer_size(obj->btf, 8); 3154 err = bpf_object__sanitize_btf(obj, kern_btf); 3155 if (err) 3156 return err; 3157 } 3158 3159 if (obj->gen_loader) { 3160 __u32 raw_size = 0; 3161 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3162 3163 if (!raw_data) 3164 return -ENOMEM; 3165 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3166 /* Pretend to have valid FD to pass various fd >= 0 checks. 3167 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3168 */ 3169 btf__set_fd(kern_btf, 0); 3170 } else { 3171 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3172 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3173 obj->log_level ? 1 : 0); 3174 } 3175 if (sanitize) { 3176 if (!err) { 3177 /* move fd to libbpf's BTF */ 3178 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3179 btf__set_fd(kern_btf, -1); 3180 } 3181 btf__free(kern_btf); 3182 } 3183 report: 3184 if (err) { 3185 btf_mandatory = kernel_needs_btf(obj); 3186 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3187 btf_mandatory ? "BTF is mandatory, can't proceed." 3188 : "BTF is optional, ignoring."); 3189 if (!btf_mandatory) 3190 err = 0; 3191 } 3192 return err; 3193 } 3194 3195 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3196 { 3197 const char *name; 3198 3199 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3200 if (!name) { 3201 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3202 off, obj->path, elf_errmsg(-1)); 3203 return NULL; 3204 } 3205 3206 return name; 3207 } 3208 3209 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3210 { 3211 const char *name; 3212 3213 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3214 if (!name) { 3215 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3216 off, obj->path, elf_errmsg(-1)); 3217 return NULL; 3218 } 3219 3220 return name; 3221 } 3222 3223 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3224 { 3225 Elf_Scn *scn; 3226 3227 scn = elf_getscn(obj->efile.elf, idx); 3228 if (!scn) { 3229 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3230 idx, obj->path, elf_errmsg(-1)); 3231 return NULL; 3232 } 3233 return scn; 3234 } 3235 3236 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3237 { 3238 Elf_Scn *scn = NULL; 3239 Elf *elf = obj->efile.elf; 3240 const char *sec_name; 3241 3242 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3243 sec_name = elf_sec_name(obj, scn); 3244 if (!sec_name) 3245 return NULL; 3246 3247 if (strcmp(sec_name, name) != 0) 3248 continue; 3249 3250 return scn; 3251 } 3252 return NULL; 3253 } 3254 3255 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3256 { 3257 Elf64_Shdr *shdr; 3258 3259 if (!scn) 3260 return NULL; 3261 3262 shdr = elf64_getshdr(scn); 3263 if (!shdr) { 3264 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3265 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3266 return NULL; 3267 } 3268 3269 return shdr; 3270 } 3271 3272 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3273 { 3274 const char *name; 3275 Elf64_Shdr *sh; 3276 3277 if (!scn) 3278 return NULL; 3279 3280 sh = elf_sec_hdr(obj, scn); 3281 if (!sh) 3282 return NULL; 3283 3284 name = elf_sec_str(obj, sh->sh_name); 3285 if (!name) { 3286 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3287 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3288 return NULL; 3289 } 3290 3291 return name; 3292 } 3293 3294 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3295 { 3296 Elf_Data *data; 3297 3298 if (!scn) 3299 return NULL; 3300 3301 data = elf_getdata(scn, 0); 3302 if (!data) { 3303 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3304 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3305 obj->path, elf_errmsg(-1)); 3306 return NULL; 3307 } 3308 3309 return data; 3310 } 3311 3312 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3313 { 3314 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3315 return NULL; 3316 3317 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3318 } 3319 3320 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3321 { 3322 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3323 return NULL; 3324 3325 return (Elf64_Rel *)data->d_buf + idx; 3326 } 3327 3328 static bool is_sec_name_dwarf(const char *name) 3329 { 3330 /* approximation, but the actual list is too long */ 3331 return str_has_pfx(name, ".debug_"); 3332 } 3333 3334 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3335 { 3336 /* no special handling of .strtab */ 3337 if (hdr->sh_type == SHT_STRTAB) 3338 return true; 3339 3340 /* ignore .llvm_addrsig section as well */ 3341 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3342 return true; 3343 3344 /* no subprograms will lead to an empty .text section, ignore it */ 3345 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3346 strcmp(name, ".text") == 0) 3347 return true; 3348 3349 /* DWARF sections */ 3350 if (is_sec_name_dwarf(name)) 3351 return true; 3352 3353 if (str_has_pfx(name, ".rel")) { 3354 name += sizeof(".rel") - 1; 3355 /* DWARF section relocations */ 3356 if (is_sec_name_dwarf(name)) 3357 return true; 3358 3359 /* .BTF and .BTF.ext don't need relocations */ 3360 if (strcmp(name, BTF_ELF_SEC) == 0 || 3361 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3362 return true; 3363 } 3364 3365 return false; 3366 } 3367 3368 static int cmp_progs(const void *_a, const void *_b) 3369 { 3370 const struct bpf_program *a = _a; 3371 const struct bpf_program *b = _b; 3372 3373 if (a->sec_idx != b->sec_idx) 3374 return a->sec_idx < b->sec_idx ? -1 : 1; 3375 3376 /* sec_insn_off can't be the same within the section */ 3377 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3378 } 3379 3380 static int bpf_object__elf_collect(struct bpf_object *obj) 3381 { 3382 struct elf_sec_desc *sec_desc; 3383 Elf *elf = obj->efile.elf; 3384 Elf_Data *btf_ext_data = NULL; 3385 Elf_Data *btf_data = NULL; 3386 int idx = 0, err = 0; 3387 const char *name; 3388 Elf_Data *data; 3389 Elf_Scn *scn; 3390 Elf64_Shdr *sh; 3391 3392 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3393 * section. Since section count retrieved by elf_getshdrnum() does 3394 * include sec #0, it is already the necessary size of an array to keep 3395 * all the sections. 3396 */ 3397 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3398 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3399 obj->path, elf_errmsg(-1)); 3400 return -LIBBPF_ERRNO__FORMAT; 3401 } 3402 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3403 if (!obj->efile.secs) 3404 return -ENOMEM; 3405 3406 /* a bunch of ELF parsing functionality depends on processing symbols, 3407 * so do the first pass and find the symbol table 3408 */ 3409 scn = NULL; 3410 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3411 sh = elf_sec_hdr(obj, scn); 3412 if (!sh) 3413 return -LIBBPF_ERRNO__FORMAT; 3414 3415 if (sh->sh_type == SHT_SYMTAB) { 3416 if (obj->efile.symbols) { 3417 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3418 return -LIBBPF_ERRNO__FORMAT; 3419 } 3420 3421 data = elf_sec_data(obj, scn); 3422 if (!data) 3423 return -LIBBPF_ERRNO__FORMAT; 3424 3425 idx = elf_ndxscn(scn); 3426 3427 obj->efile.symbols = data; 3428 obj->efile.symbols_shndx = idx; 3429 obj->efile.strtabidx = sh->sh_link; 3430 } 3431 } 3432 3433 if (!obj->efile.symbols) { 3434 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3435 obj->path); 3436 return -ENOENT; 3437 } 3438 3439 scn = NULL; 3440 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3441 idx = elf_ndxscn(scn); 3442 sec_desc = &obj->efile.secs[idx]; 3443 3444 sh = elf_sec_hdr(obj, scn); 3445 if (!sh) 3446 return -LIBBPF_ERRNO__FORMAT; 3447 3448 name = elf_sec_str(obj, sh->sh_name); 3449 if (!name) 3450 return -LIBBPF_ERRNO__FORMAT; 3451 3452 if (ignore_elf_section(sh, name)) 3453 continue; 3454 3455 data = elf_sec_data(obj, scn); 3456 if (!data) 3457 return -LIBBPF_ERRNO__FORMAT; 3458 3459 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3460 idx, name, (unsigned long)data->d_size, 3461 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3462 (int)sh->sh_type); 3463 3464 if (strcmp(name, "license") == 0) { 3465 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3466 if (err) 3467 return err; 3468 } else if (strcmp(name, "version") == 0) { 3469 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3470 if (err) 3471 return err; 3472 } else if (strcmp(name, "maps") == 0) { 3473 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3474 return -ENOTSUP; 3475 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3476 obj->efile.btf_maps_shndx = idx; 3477 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3478 if (sh->sh_type != SHT_PROGBITS) 3479 return -LIBBPF_ERRNO__FORMAT; 3480 btf_data = data; 3481 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3482 if (sh->sh_type != SHT_PROGBITS) 3483 return -LIBBPF_ERRNO__FORMAT; 3484 btf_ext_data = data; 3485 } else if (sh->sh_type == SHT_SYMTAB) { 3486 /* already processed during the first pass above */ 3487 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3488 if (sh->sh_flags & SHF_EXECINSTR) { 3489 if (strcmp(name, ".text") == 0) 3490 obj->efile.text_shndx = idx; 3491 err = bpf_object__add_programs(obj, data, name, idx); 3492 if (err) 3493 return err; 3494 } else if (strcmp(name, DATA_SEC) == 0 || 3495 str_has_pfx(name, DATA_SEC ".")) { 3496 sec_desc->sec_type = SEC_DATA; 3497 sec_desc->shdr = sh; 3498 sec_desc->data = data; 3499 } else if (strcmp(name, RODATA_SEC) == 0 || 3500 str_has_pfx(name, RODATA_SEC ".")) { 3501 sec_desc->sec_type = SEC_RODATA; 3502 sec_desc->shdr = sh; 3503 sec_desc->data = data; 3504 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3505 obj->efile.st_ops_data = data; 3506 obj->efile.st_ops_shndx = idx; 3507 } else if (strcmp(name, STRUCT_OPS_LINK_SEC) == 0) { 3508 obj->efile.st_ops_link_data = data; 3509 obj->efile.st_ops_link_shndx = idx; 3510 } else { 3511 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3512 idx, name); 3513 } 3514 } else if (sh->sh_type == SHT_REL) { 3515 int targ_sec_idx = sh->sh_info; /* points to other section */ 3516 3517 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3518 targ_sec_idx >= obj->efile.sec_cnt) 3519 return -LIBBPF_ERRNO__FORMAT; 3520 3521 /* Only do relo for section with exec instructions */ 3522 if (!section_have_execinstr(obj, targ_sec_idx) && 3523 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3524 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) && 3525 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3526 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3527 idx, name, targ_sec_idx, 3528 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3529 continue; 3530 } 3531 3532 sec_desc->sec_type = SEC_RELO; 3533 sec_desc->shdr = sh; 3534 sec_desc->data = data; 3535 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 || 3536 str_has_pfx(name, BSS_SEC "."))) { 3537 sec_desc->sec_type = SEC_BSS; 3538 sec_desc->shdr = sh; 3539 sec_desc->data = data; 3540 } else { 3541 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3542 (size_t)sh->sh_size); 3543 } 3544 } 3545 3546 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3547 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3548 return -LIBBPF_ERRNO__FORMAT; 3549 } 3550 3551 /* sort BPF programs by section name and in-section instruction offset 3552 * for faster search 3553 */ 3554 if (obj->nr_programs) 3555 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3556 3557 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3558 } 3559 3560 static bool sym_is_extern(const Elf64_Sym *sym) 3561 { 3562 int bind = ELF64_ST_BIND(sym->st_info); 3563 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3564 return sym->st_shndx == SHN_UNDEF && 3565 (bind == STB_GLOBAL || bind == STB_WEAK) && 3566 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3567 } 3568 3569 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3570 { 3571 int bind = ELF64_ST_BIND(sym->st_info); 3572 int type = ELF64_ST_TYPE(sym->st_info); 3573 3574 /* in .text section */ 3575 if (sym->st_shndx != text_shndx) 3576 return false; 3577 3578 /* local function */ 3579 if (bind == STB_LOCAL && type == STT_SECTION) 3580 return true; 3581 3582 /* global function */ 3583 return bind == STB_GLOBAL && type == STT_FUNC; 3584 } 3585 3586 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3587 { 3588 const struct btf_type *t; 3589 const char *tname; 3590 int i, n; 3591 3592 if (!btf) 3593 return -ESRCH; 3594 3595 n = btf__type_cnt(btf); 3596 for (i = 1; i < n; i++) { 3597 t = btf__type_by_id(btf, i); 3598 3599 if (!btf_is_var(t) && !btf_is_func(t)) 3600 continue; 3601 3602 tname = btf__name_by_offset(btf, t->name_off); 3603 if (strcmp(tname, ext_name)) 3604 continue; 3605 3606 if (btf_is_var(t) && 3607 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3608 return -EINVAL; 3609 3610 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3611 return -EINVAL; 3612 3613 return i; 3614 } 3615 3616 return -ENOENT; 3617 } 3618 3619 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3620 const struct btf_var_secinfo *vs; 3621 const struct btf_type *t; 3622 int i, j, n; 3623 3624 if (!btf) 3625 return -ESRCH; 3626 3627 n = btf__type_cnt(btf); 3628 for (i = 1; i < n; i++) { 3629 t = btf__type_by_id(btf, i); 3630 3631 if (!btf_is_datasec(t)) 3632 continue; 3633 3634 vs = btf_var_secinfos(t); 3635 for (j = 0; j < btf_vlen(t); j++, vs++) { 3636 if (vs->type == ext_btf_id) 3637 return i; 3638 } 3639 } 3640 3641 return -ENOENT; 3642 } 3643 3644 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3645 bool *is_signed) 3646 { 3647 const struct btf_type *t; 3648 const char *name; 3649 3650 t = skip_mods_and_typedefs(btf, id, NULL); 3651 name = btf__name_by_offset(btf, t->name_off); 3652 3653 if (is_signed) 3654 *is_signed = false; 3655 switch (btf_kind(t)) { 3656 case BTF_KIND_INT: { 3657 int enc = btf_int_encoding(t); 3658 3659 if (enc & BTF_INT_BOOL) 3660 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3661 if (is_signed) 3662 *is_signed = enc & BTF_INT_SIGNED; 3663 if (t->size == 1) 3664 return KCFG_CHAR; 3665 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3666 return KCFG_UNKNOWN; 3667 return KCFG_INT; 3668 } 3669 case BTF_KIND_ENUM: 3670 if (t->size != 4) 3671 return KCFG_UNKNOWN; 3672 if (strcmp(name, "libbpf_tristate")) 3673 return KCFG_UNKNOWN; 3674 return KCFG_TRISTATE; 3675 case BTF_KIND_ENUM64: 3676 if (strcmp(name, "libbpf_tristate")) 3677 return KCFG_UNKNOWN; 3678 return KCFG_TRISTATE; 3679 case BTF_KIND_ARRAY: 3680 if (btf_array(t)->nelems == 0) 3681 return KCFG_UNKNOWN; 3682 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3683 return KCFG_UNKNOWN; 3684 return KCFG_CHAR_ARR; 3685 default: 3686 return KCFG_UNKNOWN; 3687 } 3688 } 3689 3690 static int cmp_externs(const void *_a, const void *_b) 3691 { 3692 const struct extern_desc *a = _a; 3693 const struct extern_desc *b = _b; 3694 3695 if (a->type != b->type) 3696 return a->type < b->type ? -1 : 1; 3697 3698 if (a->type == EXT_KCFG) { 3699 /* descending order by alignment requirements */ 3700 if (a->kcfg.align != b->kcfg.align) 3701 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3702 /* ascending order by size, within same alignment class */ 3703 if (a->kcfg.sz != b->kcfg.sz) 3704 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3705 } 3706 3707 /* resolve ties by name */ 3708 return strcmp(a->name, b->name); 3709 } 3710 3711 static int find_int_btf_id(const struct btf *btf) 3712 { 3713 const struct btf_type *t; 3714 int i, n; 3715 3716 n = btf__type_cnt(btf); 3717 for (i = 1; i < n; i++) { 3718 t = btf__type_by_id(btf, i); 3719 3720 if (btf_is_int(t) && btf_int_bits(t) == 32) 3721 return i; 3722 } 3723 3724 return 0; 3725 } 3726 3727 static int add_dummy_ksym_var(struct btf *btf) 3728 { 3729 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3730 const struct btf_var_secinfo *vs; 3731 const struct btf_type *sec; 3732 3733 if (!btf) 3734 return 0; 3735 3736 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3737 BTF_KIND_DATASEC); 3738 if (sec_btf_id < 0) 3739 return 0; 3740 3741 sec = btf__type_by_id(btf, sec_btf_id); 3742 vs = btf_var_secinfos(sec); 3743 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3744 const struct btf_type *vt; 3745 3746 vt = btf__type_by_id(btf, vs->type); 3747 if (btf_is_func(vt)) 3748 break; 3749 } 3750 3751 /* No func in ksyms sec. No need to add dummy var. */ 3752 if (i == btf_vlen(sec)) 3753 return 0; 3754 3755 int_btf_id = find_int_btf_id(btf); 3756 dummy_var_btf_id = btf__add_var(btf, 3757 "dummy_ksym", 3758 BTF_VAR_GLOBAL_ALLOCATED, 3759 int_btf_id); 3760 if (dummy_var_btf_id < 0) 3761 pr_warn("cannot create a dummy_ksym var\n"); 3762 3763 return dummy_var_btf_id; 3764 } 3765 3766 static int bpf_object__collect_externs(struct bpf_object *obj) 3767 { 3768 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3769 const struct btf_type *t; 3770 struct extern_desc *ext; 3771 int i, n, off, dummy_var_btf_id; 3772 const char *ext_name, *sec_name; 3773 Elf_Scn *scn; 3774 Elf64_Shdr *sh; 3775 3776 if (!obj->efile.symbols) 3777 return 0; 3778 3779 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3780 sh = elf_sec_hdr(obj, scn); 3781 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3782 return -LIBBPF_ERRNO__FORMAT; 3783 3784 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3785 if (dummy_var_btf_id < 0) 3786 return dummy_var_btf_id; 3787 3788 n = sh->sh_size / sh->sh_entsize; 3789 pr_debug("looking for externs among %d symbols...\n", n); 3790 3791 for (i = 0; i < n; i++) { 3792 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3793 3794 if (!sym) 3795 return -LIBBPF_ERRNO__FORMAT; 3796 if (!sym_is_extern(sym)) 3797 continue; 3798 ext_name = elf_sym_str(obj, sym->st_name); 3799 if (!ext_name || !ext_name[0]) 3800 continue; 3801 3802 ext = obj->externs; 3803 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3804 if (!ext) 3805 return -ENOMEM; 3806 obj->externs = ext; 3807 ext = &ext[obj->nr_extern]; 3808 memset(ext, 0, sizeof(*ext)); 3809 obj->nr_extern++; 3810 3811 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3812 if (ext->btf_id <= 0) { 3813 pr_warn("failed to find BTF for extern '%s': %d\n", 3814 ext_name, ext->btf_id); 3815 return ext->btf_id; 3816 } 3817 t = btf__type_by_id(obj->btf, ext->btf_id); 3818 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3819 ext->sym_idx = i; 3820 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3821 3822 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3823 if (ext->sec_btf_id <= 0) { 3824 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3825 ext_name, ext->btf_id, ext->sec_btf_id); 3826 return ext->sec_btf_id; 3827 } 3828 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3829 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3830 3831 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3832 if (btf_is_func(t)) { 3833 pr_warn("extern function %s is unsupported under %s section\n", 3834 ext->name, KCONFIG_SEC); 3835 return -ENOTSUP; 3836 } 3837 kcfg_sec = sec; 3838 ext->type = EXT_KCFG; 3839 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3840 if (ext->kcfg.sz <= 0) { 3841 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3842 ext_name, ext->kcfg.sz); 3843 return ext->kcfg.sz; 3844 } 3845 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3846 if (ext->kcfg.align <= 0) { 3847 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3848 ext_name, ext->kcfg.align); 3849 return -EINVAL; 3850 } 3851 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3852 &ext->kcfg.is_signed); 3853 if (ext->kcfg.type == KCFG_UNKNOWN) { 3854 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 3855 return -ENOTSUP; 3856 } 3857 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3858 ksym_sec = sec; 3859 ext->type = EXT_KSYM; 3860 skip_mods_and_typedefs(obj->btf, t->type, 3861 &ext->ksym.type_id); 3862 } else { 3863 pr_warn("unrecognized extern section '%s'\n", sec_name); 3864 return -ENOTSUP; 3865 } 3866 } 3867 pr_debug("collected %d externs total\n", obj->nr_extern); 3868 3869 if (!obj->nr_extern) 3870 return 0; 3871 3872 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3873 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3874 3875 /* for .ksyms section, we need to turn all externs into allocated 3876 * variables in BTF to pass kernel verification; we do this by 3877 * pretending that each extern is a 8-byte variable 3878 */ 3879 if (ksym_sec) { 3880 /* find existing 4-byte integer type in BTF to use for fake 3881 * extern variables in DATASEC 3882 */ 3883 int int_btf_id = find_int_btf_id(obj->btf); 3884 /* For extern function, a dummy_var added earlier 3885 * will be used to replace the vs->type and 3886 * its name string will be used to refill 3887 * the missing param's name. 3888 */ 3889 const struct btf_type *dummy_var; 3890 3891 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3892 for (i = 0; i < obj->nr_extern; i++) { 3893 ext = &obj->externs[i]; 3894 if (ext->type != EXT_KSYM) 3895 continue; 3896 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3897 i, ext->sym_idx, ext->name); 3898 } 3899 3900 sec = ksym_sec; 3901 n = btf_vlen(sec); 3902 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3903 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3904 struct btf_type *vt; 3905 3906 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3907 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3908 ext = find_extern_by_name(obj, ext_name); 3909 if (!ext) { 3910 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3911 btf_kind_str(vt), ext_name); 3912 return -ESRCH; 3913 } 3914 if (btf_is_func(vt)) { 3915 const struct btf_type *func_proto; 3916 struct btf_param *param; 3917 int j; 3918 3919 func_proto = btf__type_by_id(obj->btf, 3920 vt->type); 3921 param = btf_params(func_proto); 3922 /* Reuse the dummy_var string if the 3923 * func proto does not have param name. 3924 */ 3925 for (j = 0; j < btf_vlen(func_proto); j++) 3926 if (param[j].type && !param[j].name_off) 3927 param[j].name_off = 3928 dummy_var->name_off; 3929 vs->type = dummy_var_btf_id; 3930 vt->info &= ~0xffff; 3931 vt->info |= BTF_FUNC_GLOBAL; 3932 } else { 3933 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3934 vt->type = int_btf_id; 3935 } 3936 vs->offset = off; 3937 vs->size = sizeof(int); 3938 } 3939 sec->size = off; 3940 } 3941 3942 if (kcfg_sec) { 3943 sec = kcfg_sec; 3944 /* for kcfg externs calculate their offsets within a .kconfig map */ 3945 off = 0; 3946 for (i = 0; i < obj->nr_extern; i++) { 3947 ext = &obj->externs[i]; 3948 if (ext->type != EXT_KCFG) 3949 continue; 3950 3951 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3952 off = ext->kcfg.data_off + ext->kcfg.sz; 3953 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3954 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3955 } 3956 sec->size = off; 3957 n = btf_vlen(sec); 3958 for (i = 0; i < n; i++) { 3959 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3960 3961 t = btf__type_by_id(obj->btf, vs->type); 3962 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3963 ext = find_extern_by_name(obj, ext_name); 3964 if (!ext) { 3965 pr_warn("failed to find extern definition for BTF var '%s'\n", 3966 ext_name); 3967 return -ESRCH; 3968 } 3969 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3970 vs->offset = ext->kcfg.data_off; 3971 } 3972 } 3973 return 0; 3974 } 3975 3976 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 3977 { 3978 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3979 } 3980 3981 struct bpf_program * 3982 bpf_object__find_program_by_name(const struct bpf_object *obj, 3983 const char *name) 3984 { 3985 struct bpf_program *prog; 3986 3987 bpf_object__for_each_program(prog, obj) { 3988 if (prog_is_subprog(obj, prog)) 3989 continue; 3990 if (!strcmp(prog->name, name)) 3991 return prog; 3992 } 3993 return errno = ENOENT, NULL; 3994 } 3995 3996 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3997 int shndx) 3998 { 3999 switch (obj->efile.secs[shndx].sec_type) { 4000 case SEC_BSS: 4001 case SEC_DATA: 4002 case SEC_RODATA: 4003 return true; 4004 default: 4005 return false; 4006 } 4007 } 4008 4009 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 4010 int shndx) 4011 { 4012 return shndx == obj->efile.btf_maps_shndx; 4013 } 4014 4015 static enum libbpf_map_type 4016 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 4017 { 4018 if (shndx == obj->efile.symbols_shndx) 4019 return LIBBPF_MAP_KCONFIG; 4020 4021 switch (obj->efile.secs[shndx].sec_type) { 4022 case SEC_BSS: 4023 return LIBBPF_MAP_BSS; 4024 case SEC_DATA: 4025 return LIBBPF_MAP_DATA; 4026 case SEC_RODATA: 4027 return LIBBPF_MAP_RODATA; 4028 default: 4029 return LIBBPF_MAP_UNSPEC; 4030 } 4031 } 4032 4033 static int bpf_program__record_reloc(struct bpf_program *prog, 4034 struct reloc_desc *reloc_desc, 4035 __u32 insn_idx, const char *sym_name, 4036 const Elf64_Sym *sym, const Elf64_Rel *rel) 4037 { 4038 struct bpf_insn *insn = &prog->insns[insn_idx]; 4039 size_t map_idx, nr_maps = prog->obj->nr_maps; 4040 struct bpf_object *obj = prog->obj; 4041 __u32 shdr_idx = sym->st_shndx; 4042 enum libbpf_map_type type; 4043 const char *sym_sec_name; 4044 struct bpf_map *map; 4045 4046 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4047 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4048 prog->name, sym_name, insn_idx, insn->code); 4049 return -LIBBPF_ERRNO__RELOC; 4050 } 4051 4052 if (sym_is_extern(sym)) { 4053 int sym_idx = ELF64_R_SYM(rel->r_info); 4054 int i, n = obj->nr_extern; 4055 struct extern_desc *ext; 4056 4057 for (i = 0; i < n; i++) { 4058 ext = &obj->externs[i]; 4059 if (ext->sym_idx == sym_idx) 4060 break; 4061 } 4062 if (i >= n) { 4063 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4064 prog->name, sym_name, sym_idx); 4065 return -LIBBPF_ERRNO__RELOC; 4066 } 4067 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4068 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4069 if (insn->code == (BPF_JMP | BPF_CALL)) 4070 reloc_desc->type = RELO_EXTERN_CALL; 4071 else 4072 reloc_desc->type = RELO_EXTERN_LD64; 4073 reloc_desc->insn_idx = insn_idx; 4074 reloc_desc->ext_idx = i; 4075 return 0; 4076 } 4077 4078 /* sub-program call relocation */ 4079 if (is_call_insn(insn)) { 4080 if (insn->src_reg != BPF_PSEUDO_CALL) { 4081 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4082 return -LIBBPF_ERRNO__RELOC; 4083 } 4084 /* text_shndx can be 0, if no default "main" program exists */ 4085 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4086 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4087 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4088 prog->name, sym_name, sym_sec_name); 4089 return -LIBBPF_ERRNO__RELOC; 4090 } 4091 if (sym->st_value % BPF_INSN_SZ) { 4092 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4093 prog->name, sym_name, (size_t)sym->st_value); 4094 return -LIBBPF_ERRNO__RELOC; 4095 } 4096 reloc_desc->type = RELO_CALL; 4097 reloc_desc->insn_idx = insn_idx; 4098 reloc_desc->sym_off = sym->st_value; 4099 return 0; 4100 } 4101 4102 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4103 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4104 prog->name, sym_name, shdr_idx); 4105 return -LIBBPF_ERRNO__RELOC; 4106 } 4107 4108 /* loading subprog addresses */ 4109 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4110 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4111 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4112 */ 4113 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4114 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4115 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4116 return -LIBBPF_ERRNO__RELOC; 4117 } 4118 4119 reloc_desc->type = RELO_SUBPROG_ADDR; 4120 reloc_desc->insn_idx = insn_idx; 4121 reloc_desc->sym_off = sym->st_value; 4122 return 0; 4123 } 4124 4125 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4126 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4127 4128 /* generic map reference relocation */ 4129 if (type == LIBBPF_MAP_UNSPEC) { 4130 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4131 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4132 prog->name, sym_name, sym_sec_name); 4133 return -LIBBPF_ERRNO__RELOC; 4134 } 4135 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4136 map = &obj->maps[map_idx]; 4137 if (map->libbpf_type != type || 4138 map->sec_idx != sym->st_shndx || 4139 map->sec_offset != sym->st_value) 4140 continue; 4141 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4142 prog->name, map_idx, map->name, map->sec_idx, 4143 map->sec_offset, insn_idx); 4144 break; 4145 } 4146 if (map_idx >= nr_maps) { 4147 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4148 prog->name, sym_sec_name, (size_t)sym->st_value); 4149 return -LIBBPF_ERRNO__RELOC; 4150 } 4151 reloc_desc->type = RELO_LD64; 4152 reloc_desc->insn_idx = insn_idx; 4153 reloc_desc->map_idx = map_idx; 4154 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4155 return 0; 4156 } 4157 4158 /* global data map relocation */ 4159 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4160 pr_warn("prog '%s': bad data relo against section '%s'\n", 4161 prog->name, sym_sec_name); 4162 return -LIBBPF_ERRNO__RELOC; 4163 } 4164 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4165 map = &obj->maps[map_idx]; 4166 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4167 continue; 4168 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4169 prog->name, map_idx, map->name, map->sec_idx, 4170 map->sec_offset, insn_idx); 4171 break; 4172 } 4173 if (map_idx >= nr_maps) { 4174 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4175 prog->name, sym_sec_name); 4176 return -LIBBPF_ERRNO__RELOC; 4177 } 4178 4179 reloc_desc->type = RELO_DATA; 4180 reloc_desc->insn_idx = insn_idx; 4181 reloc_desc->map_idx = map_idx; 4182 reloc_desc->sym_off = sym->st_value; 4183 return 0; 4184 } 4185 4186 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4187 { 4188 return insn_idx >= prog->sec_insn_off && 4189 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4190 } 4191 4192 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4193 size_t sec_idx, size_t insn_idx) 4194 { 4195 int l = 0, r = obj->nr_programs - 1, m; 4196 struct bpf_program *prog; 4197 4198 if (!obj->nr_programs) 4199 return NULL; 4200 4201 while (l < r) { 4202 m = l + (r - l + 1) / 2; 4203 prog = &obj->programs[m]; 4204 4205 if (prog->sec_idx < sec_idx || 4206 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4207 l = m; 4208 else 4209 r = m - 1; 4210 } 4211 /* matching program could be at index l, but it still might be the 4212 * wrong one, so we need to double check conditions for the last time 4213 */ 4214 prog = &obj->programs[l]; 4215 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4216 return prog; 4217 return NULL; 4218 } 4219 4220 static int 4221 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4222 { 4223 const char *relo_sec_name, *sec_name; 4224 size_t sec_idx = shdr->sh_info, sym_idx; 4225 struct bpf_program *prog; 4226 struct reloc_desc *relos; 4227 int err, i, nrels; 4228 const char *sym_name; 4229 __u32 insn_idx; 4230 Elf_Scn *scn; 4231 Elf_Data *scn_data; 4232 Elf64_Sym *sym; 4233 Elf64_Rel *rel; 4234 4235 if (sec_idx >= obj->efile.sec_cnt) 4236 return -EINVAL; 4237 4238 scn = elf_sec_by_idx(obj, sec_idx); 4239 scn_data = elf_sec_data(obj, scn); 4240 4241 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4242 sec_name = elf_sec_name(obj, scn); 4243 if (!relo_sec_name || !sec_name) 4244 return -EINVAL; 4245 4246 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4247 relo_sec_name, sec_idx, sec_name); 4248 nrels = shdr->sh_size / shdr->sh_entsize; 4249 4250 for (i = 0; i < nrels; i++) { 4251 rel = elf_rel_by_idx(data, i); 4252 if (!rel) { 4253 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4254 return -LIBBPF_ERRNO__FORMAT; 4255 } 4256 4257 sym_idx = ELF64_R_SYM(rel->r_info); 4258 sym = elf_sym_by_idx(obj, sym_idx); 4259 if (!sym) { 4260 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4261 relo_sec_name, sym_idx, i); 4262 return -LIBBPF_ERRNO__FORMAT; 4263 } 4264 4265 if (sym->st_shndx >= obj->efile.sec_cnt) { 4266 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4267 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4268 return -LIBBPF_ERRNO__FORMAT; 4269 } 4270 4271 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4272 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4273 relo_sec_name, (size_t)rel->r_offset, i); 4274 return -LIBBPF_ERRNO__FORMAT; 4275 } 4276 4277 insn_idx = rel->r_offset / BPF_INSN_SZ; 4278 /* relocations against static functions are recorded as 4279 * relocations against the section that contains a function; 4280 * in such case, symbol will be STT_SECTION and sym.st_name 4281 * will point to empty string (0), so fetch section name 4282 * instead 4283 */ 4284 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4285 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4286 else 4287 sym_name = elf_sym_str(obj, sym->st_name); 4288 sym_name = sym_name ?: "<?"; 4289 4290 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4291 relo_sec_name, i, insn_idx, sym_name); 4292 4293 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4294 if (!prog) { 4295 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4296 relo_sec_name, i, sec_name, insn_idx); 4297 continue; 4298 } 4299 4300 relos = libbpf_reallocarray(prog->reloc_desc, 4301 prog->nr_reloc + 1, sizeof(*relos)); 4302 if (!relos) 4303 return -ENOMEM; 4304 prog->reloc_desc = relos; 4305 4306 /* adjust insn_idx to local BPF program frame of reference */ 4307 insn_idx -= prog->sec_insn_off; 4308 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4309 insn_idx, sym_name, sym, rel); 4310 if (err) 4311 return err; 4312 4313 prog->nr_reloc++; 4314 } 4315 return 0; 4316 } 4317 4318 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4319 { 4320 int id; 4321 4322 if (!obj->btf) 4323 return -ENOENT; 4324 4325 /* if it's BTF-defined map, we don't need to search for type IDs. 4326 * For struct_ops map, it does not need btf_key_type_id and 4327 * btf_value_type_id. 4328 */ 4329 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4330 return 0; 4331 4332 /* 4333 * LLVM annotates global data differently in BTF, that is, 4334 * only as '.data', '.bss' or '.rodata'. 4335 */ 4336 if (!bpf_map__is_internal(map)) 4337 return -ENOENT; 4338 4339 id = btf__find_by_name(obj->btf, map->real_name); 4340 if (id < 0) 4341 return id; 4342 4343 map->btf_key_type_id = 0; 4344 map->btf_value_type_id = id; 4345 return 0; 4346 } 4347 4348 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4349 { 4350 char file[PATH_MAX], buff[4096]; 4351 FILE *fp; 4352 __u32 val; 4353 int err; 4354 4355 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4356 memset(info, 0, sizeof(*info)); 4357 4358 fp = fopen(file, "re"); 4359 if (!fp) { 4360 err = -errno; 4361 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4362 err); 4363 return err; 4364 } 4365 4366 while (fgets(buff, sizeof(buff), fp)) { 4367 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4368 info->type = val; 4369 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4370 info->key_size = val; 4371 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4372 info->value_size = val; 4373 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4374 info->max_entries = val; 4375 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4376 info->map_flags = val; 4377 } 4378 4379 fclose(fp); 4380 4381 return 0; 4382 } 4383 4384 bool bpf_map__autocreate(const struct bpf_map *map) 4385 { 4386 return map->autocreate; 4387 } 4388 4389 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4390 { 4391 if (map->obj->loaded) 4392 return libbpf_err(-EBUSY); 4393 4394 map->autocreate = autocreate; 4395 return 0; 4396 } 4397 4398 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4399 { 4400 struct bpf_map_info info; 4401 __u32 len = sizeof(info), name_len; 4402 int new_fd, err; 4403 char *new_name; 4404 4405 memset(&info, 0, len); 4406 err = bpf_map_get_info_by_fd(fd, &info, &len); 4407 if (err && errno == EINVAL) 4408 err = bpf_get_map_info_from_fdinfo(fd, &info); 4409 if (err) 4410 return libbpf_err(err); 4411 4412 name_len = strlen(info.name); 4413 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4414 new_name = strdup(map->name); 4415 else 4416 new_name = strdup(info.name); 4417 4418 if (!new_name) 4419 return libbpf_err(-errno); 4420 4421 /* 4422 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set. 4423 * This is similar to what we do in ensure_good_fd(), but without 4424 * closing original FD. 4425 */ 4426 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3); 4427 if (new_fd < 0) { 4428 err = -errno; 4429 goto err_free_new_name; 4430 } 4431 4432 err = zclose(map->fd); 4433 if (err) { 4434 err = -errno; 4435 goto err_close_new_fd; 4436 } 4437 free(map->name); 4438 4439 map->fd = new_fd; 4440 map->name = new_name; 4441 map->def.type = info.type; 4442 map->def.key_size = info.key_size; 4443 map->def.value_size = info.value_size; 4444 map->def.max_entries = info.max_entries; 4445 map->def.map_flags = info.map_flags; 4446 map->btf_key_type_id = info.btf_key_type_id; 4447 map->btf_value_type_id = info.btf_value_type_id; 4448 map->reused = true; 4449 map->map_extra = info.map_extra; 4450 4451 return 0; 4452 4453 err_close_new_fd: 4454 close(new_fd); 4455 err_free_new_name: 4456 free(new_name); 4457 return libbpf_err(err); 4458 } 4459 4460 __u32 bpf_map__max_entries(const struct bpf_map *map) 4461 { 4462 return map->def.max_entries; 4463 } 4464 4465 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4466 { 4467 if (!bpf_map_type__is_map_in_map(map->def.type)) 4468 return errno = EINVAL, NULL; 4469 4470 return map->inner_map; 4471 } 4472 4473 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4474 { 4475 if (map->obj->loaded) 4476 return libbpf_err(-EBUSY); 4477 4478 map->def.max_entries = max_entries; 4479 4480 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4481 if (map_is_ringbuf(map)) 4482 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4483 4484 return 0; 4485 } 4486 4487 static int 4488 bpf_object__probe_loading(struct bpf_object *obj) 4489 { 4490 char *cp, errmsg[STRERR_BUFSIZE]; 4491 struct bpf_insn insns[] = { 4492 BPF_MOV64_IMM(BPF_REG_0, 0), 4493 BPF_EXIT_INSN(), 4494 }; 4495 int ret, insn_cnt = ARRAY_SIZE(insns); 4496 4497 if (obj->gen_loader) 4498 return 0; 4499 4500 ret = bump_rlimit_memlock(); 4501 if (ret) 4502 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4503 4504 /* make sure basic loading works */ 4505 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4506 if (ret < 0) 4507 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4508 if (ret < 0) { 4509 ret = errno; 4510 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4511 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4512 "program. Make sure your kernel supports BPF " 4513 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4514 "set to big enough value.\n", __func__, cp, ret); 4515 return -ret; 4516 } 4517 close(ret); 4518 4519 return 0; 4520 } 4521 4522 static int probe_fd(int fd) 4523 { 4524 if (fd >= 0) 4525 close(fd); 4526 return fd >= 0; 4527 } 4528 4529 static int probe_kern_prog_name(void) 4530 { 4531 const size_t attr_sz = offsetofend(union bpf_attr, prog_name); 4532 struct bpf_insn insns[] = { 4533 BPF_MOV64_IMM(BPF_REG_0, 0), 4534 BPF_EXIT_INSN(), 4535 }; 4536 union bpf_attr attr; 4537 int ret; 4538 4539 memset(&attr, 0, attr_sz); 4540 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4541 attr.license = ptr_to_u64("GPL"); 4542 attr.insns = ptr_to_u64(insns); 4543 attr.insn_cnt = (__u32)ARRAY_SIZE(insns); 4544 libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name)); 4545 4546 /* make sure loading with name works */ 4547 ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS); 4548 return probe_fd(ret); 4549 } 4550 4551 static int probe_kern_global_data(void) 4552 { 4553 char *cp, errmsg[STRERR_BUFSIZE]; 4554 struct bpf_insn insns[] = { 4555 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4556 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4557 BPF_MOV64_IMM(BPF_REG_0, 0), 4558 BPF_EXIT_INSN(), 4559 }; 4560 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4561 4562 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL); 4563 if (map < 0) { 4564 ret = -errno; 4565 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4566 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4567 __func__, cp, -ret); 4568 return ret; 4569 } 4570 4571 insns[0].imm = map; 4572 4573 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4574 close(map); 4575 return probe_fd(ret); 4576 } 4577 4578 static int probe_kern_btf(void) 4579 { 4580 static const char strs[] = "\0int"; 4581 __u32 types[] = { 4582 /* int */ 4583 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4584 }; 4585 4586 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4587 strs, sizeof(strs))); 4588 } 4589 4590 static int probe_kern_btf_func(void) 4591 { 4592 static const char strs[] = "\0int\0x\0a"; 4593 /* void x(int a) {} */ 4594 __u32 types[] = { 4595 /* int */ 4596 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4597 /* FUNC_PROTO */ /* [2] */ 4598 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4599 BTF_PARAM_ENC(7, 1), 4600 /* FUNC x */ /* [3] */ 4601 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4602 }; 4603 4604 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4605 strs, sizeof(strs))); 4606 } 4607 4608 static int probe_kern_btf_func_global(void) 4609 { 4610 static const char strs[] = "\0int\0x\0a"; 4611 /* static void x(int a) {} */ 4612 __u32 types[] = { 4613 /* int */ 4614 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4615 /* FUNC_PROTO */ /* [2] */ 4616 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4617 BTF_PARAM_ENC(7, 1), 4618 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4619 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4620 }; 4621 4622 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4623 strs, sizeof(strs))); 4624 } 4625 4626 static int probe_kern_btf_datasec(void) 4627 { 4628 static const char strs[] = "\0x\0.data"; 4629 /* static int a; */ 4630 __u32 types[] = { 4631 /* int */ 4632 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4633 /* VAR x */ /* [2] */ 4634 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4635 BTF_VAR_STATIC, 4636 /* DATASEC val */ /* [3] */ 4637 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4638 BTF_VAR_SECINFO_ENC(2, 0, 4), 4639 }; 4640 4641 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4642 strs, sizeof(strs))); 4643 } 4644 4645 static int probe_kern_btf_float(void) 4646 { 4647 static const char strs[] = "\0float"; 4648 __u32 types[] = { 4649 /* float */ 4650 BTF_TYPE_FLOAT_ENC(1, 4), 4651 }; 4652 4653 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4654 strs, sizeof(strs))); 4655 } 4656 4657 static int probe_kern_btf_decl_tag(void) 4658 { 4659 static const char strs[] = "\0tag"; 4660 __u32 types[] = { 4661 /* int */ 4662 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4663 /* VAR x */ /* [2] */ 4664 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4665 BTF_VAR_STATIC, 4666 /* attr */ 4667 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4668 }; 4669 4670 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4671 strs, sizeof(strs))); 4672 } 4673 4674 static int probe_kern_btf_type_tag(void) 4675 { 4676 static const char strs[] = "\0tag"; 4677 __u32 types[] = { 4678 /* int */ 4679 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4680 /* attr */ 4681 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4682 /* ptr */ 4683 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4684 }; 4685 4686 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4687 strs, sizeof(strs))); 4688 } 4689 4690 static int probe_kern_array_mmap(void) 4691 { 4692 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4693 int fd; 4694 4695 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts); 4696 return probe_fd(fd); 4697 } 4698 4699 static int probe_kern_exp_attach_type(void) 4700 { 4701 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4702 struct bpf_insn insns[] = { 4703 BPF_MOV64_IMM(BPF_REG_0, 0), 4704 BPF_EXIT_INSN(), 4705 }; 4706 int fd, insn_cnt = ARRAY_SIZE(insns); 4707 4708 /* use any valid combination of program type and (optional) 4709 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4710 * to see if kernel supports expected_attach_type field for 4711 * BPF_PROG_LOAD command 4712 */ 4713 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4714 return probe_fd(fd); 4715 } 4716 4717 static int probe_kern_probe_read_kernel(void) 4718 { 4719 struct bpf_insn insns[] = { 4720 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4721 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4722 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4723 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4724 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4725 BPF_EXIT_INSN(), 4726 }; 4727 int fd, insn_cnt = ARRAY_SIZE(insns); 4728 4729 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4730 return probe_fd(fd); 4731 } 4732 4733 static int probe_prog_bind_map(void) 4734 { 4735 char *cp, errmsg[STRERR_BUFSIZE]; 4736 struct bpf_insn insns[] = { 4737 BPF_MOV64_IMM(BPF_REG_0, 0), 4738 BPF_EXIT_INSN(), 4739 }; 4740 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4741 4742 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL); 4743 if (map < 0) { 4744 ret = -errno; 4745 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4746 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4747 __func__, cp, -ret); 4748 return ret; 4749 } 4750 4751 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4752 if (prog < 0) { 4753 close(map); 4754 return 0; 4755 } 4756 4757 ret = bpf_prog_bind_map(prog, map, NULL); 4758 4759 close(map); 4760 close(prog); 4761 4762 return ret >= 0; 4763 } 4764 4765 static int probe_module_btf(void) 4766 { 4767 static const char strs[] = "\0int"; 4768 __u32 types[] = { 4769 /* int */ 4770 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4771 }; 4772 struct bpf_btf_info info; 4773 __u32 len = sizeof(info); 4774 char name[16]; 4775 int fd, err; 4776 4777 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4778 if (fd < 0) 4779 return 0; /* BTF not supported at all */ 4780 4781 memset(&info, 0, sizeof(info)); 4782 info.name = ptr_to_u64(name); 4783 info.name_len = sizeof(name); 4784 4785 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4786 * kernel's module BTF support coincides with support for 4787 * name/name_len fields in struct bpf_btf_info. 4788 */ 4789 err = bpf_btf_get_info_by_fd(fd, &info, &len); 4790 close(fd); 4791 return !err; 4792 } 4793 4794 static int probe_perf_link(void) 4795 { 4796 struct bpf_insn insns[] = { 4797 BPF_MOV64_IMM(BPF_REG_0, 0), 4798 BPF_EXIT_INSN(), 4799 }; 4800 int prog_fd, link_fd, err; 4801 4802 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4803 insns, ARRAY_SIZE(insns), NULL); 4804 if (prog_fd < 0) 4805 return -errno; 4806 4807 /* use invalid perf_event FD to get EBADF, if link is supported; 4808 * otherwise EINVAL should be returned 4809 */ 4810 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4811 err = -errno; /* close() can clobber errno */ 4812 4813 if (link_fd >= 0) 4814 close(link_fd); 4815 close(prog_fd); 4816 4817 return link_fd < 0 && err == -EBADF; 4818 } 4819 4820 static int probe_kern_bpf_cookie(void) 4821 { 4822 struct bpf_insn insns[] = { 4823 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie), 4824 BPF_EXIT_INSN(), 4825 }; 4826 int ret, insn_cnt = ARRAY_SIZE(insns); 4827 4828 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4829 return probe_fd(ret); 4830 } 4831 4832 static int probe_kern_btf_enum64(void) 4833 { 4834 static const char strs[] = "\0enum64"; 4835 __u32 types[] = { 4836 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8), 4837 }; 4838 4839 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4840 strs, sizeof(strs))); 4841 } 4842 4843 static int probe_kern_syscall_wrapper(void); 4844 4845 enum kern_feature_result { 4846 FEAT_UNKNOWN = 0, 4847 FEAT_SUPPORTED = 1, 4848 FEAT_MISSING = 2, 4849 }; 4850 4851 typedef int (*feature_probe_fn)(void); 4852 4853 static struct kern_feature_desc { 4854 const char *desc; 4855 feature_probe_fn probe; 4856 enum kern_feature_result res; 4857 } feature_probes[__FEAT_CNT] = { 4858 [FEAT_PROG_NAME] = { 4859 "BPF program name", probe_kern_prog_name, 4860 }, 4861 [FEAT_GLOBAL_DATA] = { 4862 "global variables", probe_kern_global_data, 4863 }, 4864 [FEAT_BTF] = { 4865 "minimal BTF", probe_kern_btf, 4866 }, 4867 [FEAT_BTF_FUNC] = { 4868 "BTF functions", probe_kern_btf_func, 4869 }, 4870 [FEAT_BTF_GLOBAL_FUNC] = { 4871 "BTF global function", probe_kern_btf_func_global, 4872 }, 4873 [FEAT_BTF_DATASEC] = { 4874 "BTF data section and variable", probe_kern_btf_datasec, 4875 }, 4876 [FEAT_ARRAY_MMAP] = { 4877 "ARRAY map mmap()", probe_kern_array_mmap, 4878 }, 4879 [FEAT_EXP_ATTACH_TYPE] = { 4880 "BPF_PROG_LOAD expected_attach_type attribute", 4881 probe_kern_exp_attach_type, 4882 }, 4883 [FEAT_PROBE_READ_KERN] = { 4884 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4885 }, 4886 [FEAT_PROG_BIND_MAP] = { 4887 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4888 }, 4889 [FEAT_MODULE_BTF] = { 4890 "module BTF support", probe_module_btf, 4891 }, 4892 [FEAT_BTF_FLOAT] = { 4893 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4894 }, 4895 [FEAT_PERF_LINK] = { 4896 "BPF perf link support", probe_perf_link, 4897 }, 4898 [FEAT_BTF_DECL_TAG] = { 4899 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 4900 }, 4901 [FEAT_BTF_TYPE_TAG] = { 4902 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 4903 }, 4904 [FEAT_MEMCG_ACCOUNT] = { 4905 "memcg-based memory accounting", probe_memcg_account, 4906 }, 4907 [FEAT_BPF_COOKIE] = { 4908 "BPF cookie support", probe_kern_bpf_cookie, 4909 }, 4910 [FEAT_BTF_ENUM64] = { 4911 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64, 4912 }, 4913 [FEAT_SYSCALL_WRAPPER] = { 4914 "Kernel using syscall wrapper", probe_kern_syscall_wrapper, 4915 }, 4916 }; 4917 4918 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4919 { 4920 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4921 int ret; 4922 4923 if (obj && obj->gen_loader) 4924 /* To generate loader program assume the latest kernel 4925 * to avoid doing extra prog_load, map_create syscalls. 4926 */ 4927 return true; 4928 4929 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4930 ret = feat->probe(); 4931 if (ret > 0) { 4932 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4933 } else if (ret == 0) { 4934 WRITE_ONCE(feat->res, FEAT_MISSING); 4935 } else { 4936 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4937 WRITE_ONCE(feat->res, FEAT_MISSING); 4938 } 4939 } 4940 4941 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4942 } 4943 4944 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4945 { 4946 struct bpf_map_info map_info; 4947 char msg[STRERR_BUFSIZE]; 4948 __u32 map_info_len = sizeof(map_info); 4949 int err; 4950 4951 memset(&map_info, 0, map_info_len); 4952 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len); 4953 if (err && errno == EINVAL) 4954 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 4955 if (err) { 4956 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 4957 libbpf_strerror_r(errno, msg, sizeof(msg))); 4958 return false; 4959 } 4960 4961 return (map_info.type == map->def.type && 4962 map_info.key_size == map->def.key_size && 4963 map_info.value_size == map->def.value_size && 4964 map_info.max_entries == map->def.max_entries && 4965 map_info.map_flags == map->def.map_flags && 4966 map_info.map_extra == map->map_extra); 4967 } 4968 4969 static int 4970 bpf_object__reuse_map(struct bpf_map *map) 4971 { 4972 char *cp, errmsg[STRERR_BUFSIZE]; 4973 int err, pin_fd; 4974 4975 pin_fd = bpf_obj_get(map->pin_path); 4976 if (pin_fd < 0) { 4977 err = -errno; 4978 if (err == -ENOENT) { 4979 pr_debug("found no pinned map to reuse at '%s'\n", 4980 map->pin_path); 4981 return 0; 4982 } 4983 4984 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4985 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4986 map->pin_path, cp); 4987 return err; 4988 } 4989 4990 if (!map_is_reuse_compat(map, pin_fd)) { 4991 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4992 map->pin_path); 4993 close(pin_fd); 4994 return -EINVAL; 4995 } 4996 4997 err = bpf_map__reuse_fd(map, pin_fd); 4998 close(pin_fd); 4999 if (err) 5000 return err; 5001 5002 map->pinned = true; 5003 pr_debug("reused pinned map at '%s'\n", map->pin_path); 5004 5005 return 0; 5006 } 5007 5008 static int 5009 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 5010 { 5011 enum libbpf_map_type map_type = map->libbpf_type; 5012 char *cp, errmsg[STRERR_BUFSIZE]; 5013 int err, zero = 0; 5014 5015 if (obj->gen_loader) { 5016 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 5017 map->mmaped, map->def.value_size); 5018 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 5019 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 5020 return 0; 5021 } 5022 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 5023 if (err) { 5024 err = -errno; 5025 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5026 pr_warn("Error setting initial map(%s) contents: %s\n", 5027 map->name, cp); 5028 return err; 5029 } 5030 5031 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5032 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5033 err = bpf_map_freeze(map->fd); 5034 if (err) { 5035 err = -errno; 5036 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5037 pr_warn("Error freezing map(%s) as read-only: %s\n", 5038 map->name, cp); 5039 return err; 5040 } 5041 } 5042 return 0; 5043 } 5044 5045 static void bpf_map__destroy(struct bpf_map *map); 5046 5047 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5048 { 5049 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5050 struct bpf_map_def *def = &map->def; 5051 const char *map_name = NULL; 5052 int err = 0; 5053 5054 if (kernel_supports(obj, FEAT_PROG_NAME)) 5055 map_name = map->name; 5056 create_attr.map_ifindex = map->map_ifindex; 5057 create_attr.map_flags = def->map_flags; 5058 create_attr.numa_node = map->numa_node; 5059 create_attr.map_extra = map->map_extra; 5060 5061 if (bpf_map__is_struct_ops(map)) 5062 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5063 5064 if (obj->btf && btf__fd(obj->btf) >= 0) { 5065 create_attr.btf_fd = btf__fd(obj->btf); 5066 create_attr.btf_key_type_id = map->btf_key_type_id; 5067 create_attr.btf_value_type_id = map->btf_value_type_id; 5068 } 5069 5070 if (bpf_map_type__is_map_in_map(def->type)) { 5071 if (map->inner_map) { 5072 err = bpf_object__create_map(obj, map->inner_map, true); 5073 if (err) { 5074 pr_warn("map '%s': failed to create inner map: %d\n", 5075 map->name, err); 5076 return err; 5077 } 5078 map->inner_map_fd = bpf_map__fd(map->inner_map); 5079 } 5080 if (map->inner_map_fd >= 0) 5081 create_attr.inner_map_fd = map->inner_map_fd; 5082 } 5083 5084 switch (def->type) { 5085 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5086 case BPF_MAP_TYPE_CGROUP_ARRAY: 5087 case BPF_MAP_TYPE_STACK_TRACE: 5088 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5089 case BPF_MAP_TYPE_HASH_OF_MAPS: 5090 case BPF_MAP_TYPE_DEVMAP: 5091 case BPF_MAP_TYPE_DEVMAP_HASH: 5092 case BPF_MAP_TYPE_CPUMAP: 5093 case BPF_MAP_TYPE_XSKMAP: 5094 case BPF_MAP_TYPE_SOCKMAP: 5095 case BPF_MAP_TYPE_SOCKHASH: 5096 case BPF_MAP_TYPE_QUEUE: 5097 case BPF_MAP_TYPE_STACK: 5098 create_attr.btf_fd = 0; 5099 create_attr.btf_key_type_id = 0; 5100 create_attr.btf_value_type_id = 0; 5101 map->btf_key_type_id = 0; 5102 map->btf_value_type_id = 0; 5103 default: 5104 break; 5105 } 5106 5107 if (obj->gen_loader) { 5108 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5109 def->key_size, def->value_size, def->max_entries, 5110 &create_attr, is_inner ? -1 : map - obj->maps); 5111 /* Pretend to have valid FD to pass various fd >= 0 checks. 5112 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 5113 */ 5114 map->fd = 0; 5115 } else { 5116 map->fd = bpf_map_create(def->type, map_name, 5117 def->key_size, def->value_size, 5118 def->max_entries, &create_attr); 5119 } 5120 if (map->fd < 0 && (create_attr.btf_key_type_id || 5121 create_attr.btf_value_type_id)) { 5122 char *cp, errmsg[STRERR_BUFSIZE]; 5123 5124 err = -errno; 5125 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5126 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 5127 map->name, cp, err); 5128 create_attr.btf_fd = 0; 5129 create_attr.btf_key_type_id = 0; 5130 create_attr.btf_value_type_id = 0; 5131 map->btf_key_type_id = 0; 5132 map->btf_value_type_id = 0; 5133 map->fd = bpf_map_create(def->type, map_name, 5134 def->key_size, def->value_size, 5135 def->max_entries, &create_attr); 5136 } 5137 5138 err = map->fd < 0 ? -errno : 0; 5139 5140 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5141 if (obj->gen_loader) 5142 map->inner_map->fd = -1; 5143 bpf_map__destroy(map->inner_map); 5144 zfree(&map->inner_map); 5145 } 5146 5147 return err; 5148 } 5149 5150 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5151 { 5152 const struct bpf_map *targ_map; 5153 unsigned int i; 5154 int fd, err = 0; 5155 5156 for (i = 0; i < map->init_slots_sz; i++) { 5157 if (!map->init_slots[i]) 5158 continue; 5159 5160 targ_map = map->init_slots[i]; 5161 fd = bpf_map__fd(targ_map); 5162 5163 if (obj->gen_loader) { 5164 bpf_gen__populate_outer_map(obj->gen_loader, 5165 map - obj->maps, i, 5166 targ_map - obj->maps); 5167 } else { 5168 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5169 } 5170 if (err) { 5171 err = -errno; 5172 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5173 map->name, i, targ_map->name, fd, err); 5174 return err; 5175 } 5176 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5177 map->name, i, targ_map->name, fd); 5178 } 5179 5180 zfree(&map->init_slots); 5181 map->init_slots_sz = 0; 5182 5183 return 0; 5184 } 5185 5186 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5187 { 5188 const struct bpf_program *targ_prog; 5189 unsigned int i; 5190 int fd, err; 5191 5192 if (obj->gen_loader) 5193 return -ENOTSUP; 5194 5195 for (i = 0; i < map->init_slots_sz; i++) { 5196 if (!map->init_slots[i]) 5197 continue; 5198 5199 targ_prog = map->init_slots[i]; 5200 fd = bpf_program__fd(targ_prog); 5201 5202 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5203 if (err) { 5204 err = -errno; 5205 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5206 map->name, i, targ_prog->name, fd, err); 5207 return err; 5208 } 5209 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5210 map->name, i, targ_prog->name, fd); 5211 } 5212 5213 zfree(&map->init_slots); 5214 map->init_slots_sz = 0; 5215 5216 return 0; 5217 } 5218 5219 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5220 { 5221 struct bpf_map *map; 5222 int i, err; 5223 5224 for (i = 0; i < obj->nr_maps; i++) { 5225 map = &obj->maps[i]; 5226 5227 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5228 continue; 5229 5230 err = init_prog_array_slots(obj, map); 5231 if (err < 0) { 5232 zclose(map->fd); 5233 return err; 5234 } 5235 } 5236 return 0; 5237 } 5238 5239 static int map_set_def_max_entries(struct bpf_map *map) 5240 { 5241 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5242 int nr_cpus; 5243 5244 nr_cpus = libbpf_num_possible_cpus(); 5245 if (nr_cpus < 0) { 5246 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5247 map->name, nr_cpus); 5248 return nr_cpus; 5249 } 5250 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5251 map->def.max_entries = nr_cpus; 5252 } 5253 5254 return 0; 5255 } 5256 5257 static int 5258 bpf_object__create_maps(struct bpf_object *obj) 5259 { 5260 struct bpf_map *map; 5261 char *cp, errmsg[STRERR_BUFSIZE]; 5262 unsigned int i, j; 5263 int err; 5264 bool retried; 5265 5266 for (i = 0; i < obj->nr_maps; i++) { 5267 map = &obj->maps[i]; 5268 5269 /* To support old kernels, we skip creating global data maps 5270 * (.rodata, .data, .kconfig, etc); later on, during program 5271 * loading, if we detect that at least one of the to-be-loaded 5272 * programs is referencing any global data map, we'll error 5273 * out with program name and relocation index logged. 5274 * This approach allows to accommodate Clang emitting 5275 * unnecessary .rodata.str1.1 sections for string literals, 5276 * but also it allows to have CO-RE applications that use 5277 * global variables in some of BPF programs, but not others. 5278 * If those global variable-using programs are not loaded at 5279 * runtime due to bpf_program__set_autoload(prog, false), 5280 * bpf_object loading will succeed just fine even on old 5281 * kernels. 5282 */ 5283 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5284 map->autocreate = false; 5285 5286 if (!map->autocreate) { 5287 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5288 continue; 5289 } 5290 5291 err = map_set_def_max_entries(map); 5292 if (err) 5293 goto err_out; 5294 5295 retried = false; 5296 retry: 5297 if (map->pin_path) { 5298 err = bpf_object__reuse_map(map); 5299 if (err) { 5300 pr_warn("map '%s': error reusing pinned map\n", 5301 map->name); 5302 goto err_out; 5303 } 5304 if (retried && map->fd < 0) { 5305 pr_warn("map '%s': cannot find pinned map\n", 5306 map->name); 5307 err = -ENOENT; 5308 goto err_out; 5309 } 5310 } 5311 5312 if (map->fd >= 0) { 5313 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5314 map->name, map->fd); 5315 } else { 5316 err = bpf_object__create_map(obj, map, false); 5317 if (err) 5318 goto err_out; 5319 5320 pr_debug("map '%s': created successfully, fd=%d\n", 5321 map->name, map->fd); 5322 5323 if (bpf_map__is_internal(map)) { 5324 err = bpf_object__populate_internal_map(obj, map); 5325 if (err < 0) { 5326 zclose(map->fd); 5327 goto err_out; 5328 } 5329 } 5330 5331 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5332 err = init_map_in_map_slots(obj, map); 5333 if (err < 0) { 5334 zclose(map->fd); 5335 goto err_out; 5336 } 5337 } 5338 } 5339 5340 if (map->pin_path && !map->pinned) { 5341 err = bpf_map__pin(map, NULL); 5342 if (err) { 5343 zclose(map->fd); 5344 if (!retried && err == -EEXIST) { 5345 retried = true; 5346 goto retry; 5347 } 5348 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5349 map->name, map->pin_path, err); 5350 goto err_out; 5351 } 5352 } 5353 } 5354 5355 return 0; 5356 5357 err_out: 5358 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5359 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5360 pr_perm_msg(err); 5361 for (j = 0; j < i; j++) 5362 zclose(obj->maps[j].fd); 5363 return err; 5364 } 5365 5366 static bool bpf_core_is_flavor_sep(const char *s) 5367 { 5368 /* check X___Y name pattern, where X and Y are not underscores */ 5369 return s[0] != '_' && /* X */ 5370 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5371 s[4] != '_'; /* Y */ 5372 } 5373 5374 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5375 * before last triple underscore. Struct name part after last triple 5376 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5377 */ 5378 size_t bpf_core_essential_name_len(const char *name) 5379 { 5380 size_t n = strlen(name); 5381 int i; 5382 5383 for (i = n - 5; i >= 0; i--) { 5384 if (bpf_core_is_flavor_sep(name + i)) 5385 return i + 1; 5386 } 5387 return n; 5388 } 5389 5390 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5391 { 5392 if (!cands) 5393 return; 5394 5395 free(cands->cands); 5396 free(cands); 5397 } 5398 5399 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5400 size_t local_essent_len, 5401 const struct btf *targ_btf, 5402 const char *targ_btf_name, 5403 int targ_start_id, 5404 struct bpf_core_cand_list *cands) 5405 { 5406 struct bpf_core_cand *new_cands, *cand; 5407 const struct btf_type *t, *local_t; 5408 const char *targ_name, *local_name; 5409 size_t targ_essent_len; 5410 int n, i; 5411 5412 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5413 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5414 5415 n = btf__type_cnt(targ_btf); 5416 for (i = targ_start_id; i < n; i++) { 5417 t = btf__type_by_id(targ_btf, i); 5418 if (!btf_kind_core_compat(t, local_t)) 5419 continue; 5420 5421 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5422 if (str_is_empty(targ_name)) 5423 continue; 5424 5425 targ_essent_len = bpf_core_essential_name_len(targ_name); 5426 if (targ_essent_len != local_essent_len) 5427 continue; 5428 5429 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5430 continue; 5431 5432 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5433 local_cand->id, btf_kind_str(local_t), 5434 local_name, i, btf_kind_str(t), targ_name, 5435 targ_btf_name); 5436 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5437 sizeof(*cands->cands)); 5438 if (!new_cands) 5439 return -ENOMEM; 5440 5441 cand = &new_cands[cands->len]; 5442 cand->btf = targ_btf; 5443 cand->id = i; 5444 5445 cands->cands = new_cands; 5446 cands->len++; 5447 } 5448 return 0; 5449 } 5450 5451 static int load_module_btfs(struct bpf_object *obj) 5452 { 5453 struct bpf_btf_info info; 5454 struct module_btf *mod_btf; 5455 struct btf *btf; 5456 char name[64]; 5457 __u32 id = 0, len; 5458 int err, fd; 5459 5460 if (obj->btf_modules_loaded) 5461 return 0; 5462 5463 if (obj->gen_loader) 5464 return 0; 5465 5466 /* don't do this again, even if we find no module BTFs */ 5467 obj->btf_modules_loaded = true; 5468 5469 /* kernel too old to support module BTFs */ 5470 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5471 return 0; 5472 5473 while (true) { 5474 err = bpf_btf_get_next_id(id, &id); 5475 if (err && errno == ENOENT) 5476 return 0; 5477 if (err && errno == EPERM) { 5478 pr_debug("skipping module BTFs loading, missing privileges\n"); 5479 return 0; 5480 } 5481 if (err) { 5482 err = -errno; 5483 pr_warn("failed to iterate BTF objects: %d\n", err); 5484 return err; 5485 } 5486 5487 fd = bpf_btf_get_fd_by_id(id); 5488 if (fd < 0) { 5489 if (errno == ENOENT) 5490 continue; /* expected race: BTF was unloaded */ 5491 err = -errno; 5492 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5493 return err; 5494 } 5495 5496 len = sizeof(info); 5497 memset(&info, 0, sizeof(info)); 5498 info.name = ptr_to_u64(name); 5499 info.name_len = sizeof(name); 5500 5501 err = bpf_btf_get_info_by_fd(fd, &info, &len); 5502 if (err) { 5503 err = -errno; 5504 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5505 goto err_out; 5506 } 5507 5508 /* ignore non-module BTFs */ 5509 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5510 close(fd); 5511 continue; 5512 } 5513 5514 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5515 err = libbpf_get_error(btf); 5516 if (err) { 5517 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5518 name, id, err); 5519 goto err_out; 5520 } 5521 5522 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5523 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5524 if (err) 5525 goto err_out; 5526 5527 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5528 5529 mod_btf->btf = btf; 5530 mod_btf->id = id; 5531 mod_btf->fd = fd; 5532 mod_btf->name = strdup(name); 5533 if (!mod_btf->name) { 5534 err = -ENOMEM; 5535 goto err_out; 5536 } 5537 continue; 5538 5539 err_out: 5540 close(fd); 5541 return err; 5542 } 5543 5544 return 0; 5545 } 5546 5547 static struct bpf_core_cand_list * 5548 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5549 { 5550 struct bpf_core_cand local_cand = {}; 5551 struct bpf_core_cand_list *cands; 5552 const struct btf *main_btf; 5553 const struct btf_type *local_t; 5554 const char *local_name; 5555 size_t local_essent_len; 5556 int err, i; 5557 5558 local_cand.btf = local_btf; 5559 local_cand.id = local_type_id; 5560 local_t = btf__type_by_id(local_btf, local_type_id); 5561 if (!local_t) 5562 return ERR_PTR(-EINVAL); 5563 5564 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5565 if (str_is_empty(local_name)) 5566 return ERR_PTR(-EINVAL); 5567 local_essent_len = bpf_core_essential_name_len(local_name); 5568 5569 cands = calloc(1, sizeof(*cands)); 5570 if (!cands) 5571 return ERR_PTR(-ENOMEM); 5572 5573 /* Attempt to find target candidates in vmlinux BTF first */ 5574 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5575 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5576 if (err) 5577 goto err_out; 5578 5579 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5580 if (cands->len) 5581 return cands; 5582 5583 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5584 if (obj->btf_vmlinux_override) 5585 return cands; 5586 5587 /* now look through module BTFs, trying to still find candidates */ 5588 err = load_module_btfs(obj); 5589 if (err) 5590 goto err_out; 5591 5592 for (i = 0; i < obj->btf_module_cnt; i++) { 5593 err = bpf_core_add_cands(&local_cand, local_essent_len, 5594 obj->btf_modules[i].btf, 5595 obj->btf_modules[i].name, 5596 btf__type_cnt(obj->btf_vmlinux), 5597 cands); 5598 if (err) 5599 goto err_out; 5600 } 5601 5602 return cands; 5603 err_out: 5604 bpf_core_free_cands(cands); 5605 return ERR_PTR(err); 5606 } 5607 5608 /* Check local and target types for compatibility. This check is used for 5609 * type-based CO-RE relocations and follow slightly different rules than 5610 * field-based relocations. This function assumes that root types were already 5611 * checked for name match. Beyond that initial root-level name check, names 5612 * are completely ignored. Compatibility rules are as follows: 5613 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5614 * kind should match for local and target types (i.e., STRUCT is not 5615 * compatible with UNION); 5616 * - for ENUMs, the size is ignored; 5617 * - for INT, size and signedness are ignored; 5618 * - for ARRAY, dimensionality is ignored, element types are checked for 5619 * compatibility recursively; 5620 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5621 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5622 * - FUNC_PROTOs are compatible if they have compatible signature: same 5623 * number of input args and compatible return and argument types. 5624 * These rules are not set in stone and probably will be adjusted as we get 5625 * more experience with using BPF CO-RE relocations. 5626 */ 5627 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5628 const struct btf *targ_btf, __u32 targ_id) 5629 { 5630 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5631 } 5632 5633 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5634 const struct btf *targ_btf, __u32 targ_id) 5635 { 5636 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5637 } 5638 5639 static size_t bpf_core_hash_fn(const long key, void *ctx) 5640 { 5641 return key; 5642 } 5643 5644 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx) 5645 { 5646 return k1 == k2; 5647 } 5648 5649 static int record_relo_core(struct bpf_program *prog, 5650 const struct bpf_core_relo *core_relo, int insn_idx) 5651 { 5652 struct reloc_desc *relos, *relo; 5653 5654 relos = libbpf_reallocarray(prog->reloc_desc, 5655 prog->nr_reloc + 1, sizeof(*relos)); 5656 if (!relos) 5657 return -ENOMEM; 5658 relo = &relos[prog->nr_reloc]; 5659 relo->type = RELO_CORE; 5660 relo->insn_idx = insn_idx; 5661 relo->core_relo = core_relo; 5662 prog->reloc_desc = relos; 5663 prog->nr_reloc++; 5664 return 0; 5665 } 5666 5667 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5668 { 5669 struct reloc_desc *relo; 5670 int i; 5671 5672 for (i = 0; i < prog->nr_reloc; i++) { 5673 relo = &prog->reloc_desc[i]; 5674 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5675 continue; 5676 5677 return relo->core_relo; 5678 } 5679 5680 return NULL; 5681 } 5682 5683 static int bpf_core_resolve_relo(struct bpf_program *prog, 5684 const struct bpf_core_relo *relo, 5685 int relo_idx, 5686 const struct btf *local_btf, 5687 struct hashmap *cand_cache, 5688 struct bpf_core_relo_res *targ_res) 5689 { 5690 struct bpf_core_spec specs_scratch[3] = {}; 5691 struct bpf_core_cand_list *cands = NULL; 5692 const char *prog_name = prog->name; 5693 const struct btf_type *local_type; 5694 const char *local_name; 5695 __u32 local_id = relo->type_id; 5696 int err; 5697 5698 local_type = btf__type_by_id(local_btf, local_id); 5699 if (!local_type) 5700 return -EINVAL; 5701 5702 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5703 if (!local_name) 5704 return -EINVAL; 5705 5706 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5707 !hashmap__find(cand_cache, local_id, &cands)) { 5708 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5709 if (IS_ERR(cands)) { 5710 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5711 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5712 local_name, PTR_ERR(cands)); 5713 return PTR_ERR(cands); 5714 } 5715 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL); 5716 if (err) { 5717 bpf_core_free_cands(cands); 5718 return err; 5719 } 5720 } 5721 5722 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5723 targ_res); 5724 } 5725 5726 static int 5727 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5728 { 5729 const struct btf_ext_info_sec *sec; 5730 struct bpf_core_relo_res targ_res; 5731 const struct bpf_core_relo *rec; 5732 const struct btf_ext_info *seg; 5733 struct hashmap_entry *entry; 5734 struct hashmap *cand_cache = NULL; 5735 struct bpf_program *prog; 5736 struct bpf_insn *insn; 5737 const char *sec_name; 5738 int i, err = 0, insn_idx, sec_idx, sec_num; 5739 5740 if (obj->btf_ext->core_relo_info.len == 0) 5741 return 0; 5742 5743 if (targ_btf_path) { 5744 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5745 err = libbpf_get_error(obj->btf_vmlinux_override); 5746 if (err) { 5747 pr_warn("failed to parse target BTF: %d\n", err); 5748 return err; 5749 } 5750 } 5751 5752 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5753 if (IS_ERR(cand_cache)) { 5754 err = PTR_ERR(cand_cache); 5755 goto out; 5756 } 5757 5758 seg = &obj->btf_ext->core_relo_info; 5759 sec_num = 0; 5760 for_each_btf_ext_sec(seg, sec) { 5761 sec_idx = seg->sec_idxs[sec_num]; 5762 sec_num++; 5763 5764 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5765 if (str_is_empty(sec_name)) { 5766 err = -EINVAL; 5767 goto out; 5768 } 5769 5770 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5771 5772 for_each_btf_ext_rec(seg, sec, i, rec) { 5773 if (rec->insn_off % BPF_INSN_SZ) 5774 return -EINVAL; 5775 insn_idx = rec->insn_off / BPF_INSN_SZ; 5776 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5777 if (!prog) { 5778 /* When __weak subprog is "overridden" by another instance 5779 * of the subprog from a different object file, linker still 5780 * appends all the .BTF.ext info that used to belong to that 5781 * eliminated subprogram. 5782 * This is similar to what x86-64 linker does for relocations. 5783 * So just ignore such relocations just like we ignore 5784 * subprog instructions when discovering subprograms. 5785 */ 5786 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5787 sec_name, i, insn_idx); 5788 continue; 5789 } 5790 /* no need to apply CO-RE relocation if the program is 5791 * not going to be loaded 5792 */ 5793 if (!prog->autoload) 5794 continue; 5795 5796 /* adjust insn_idx from section frame of reference to the local 5797 * program's frame of reference; (sub-)program code is not yet 5798 * relocated, so it's enough to just subtract in-section offset 5799 */ 5800 insn_idx = insn_idx - prog->sec_insn_off; 5801 if (insn_idx >= prog->insns_cnt) 5802 return -EINVAL; 5803 insn = &prog->insns[insn_idx]; 5804 5805 err = record_relo_core(prog, rec, insn_idx); 5806 if (err) { 5807 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5808 prog->name, i, err); 5809 goto out; 5810 } 5811 5812 if (prog->obj->gen_loader) 5813 continue; 5814 5815 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5816 if (err) { 5817 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5818 prog->name, i, err); 5819 goto out; 5820 } 5821 5822 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5823 if (err) { 5824 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5825 prog->name, i, insn_idx, err); 5826 goto out; 5827 } 5828 } 5829 } 5830 5831 out: 5832 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5833 btf__free(obj->btf_vmlinux_override); 5834 obj->btf_vmlinux_override = NULL; 5835 5836 if (!IS_ERR_OR_NULL(cand_cache)) { 5837 hashmap__for_each_entry(cand_cache, entry, i) { 5838 bpf_core_free_cands(entry->pvalue); 5839 } 5840 hashmap__free(cand_cache); 5841 } 5842 return err; 5843 } 5844 5845 /* base map load ldimm64 special constant, used also for log fixup logic */ 5846 #define POISON_LDIMM64_MAP_BASE 2001000000 5847 #define POISON_LDIMM64_MAP_PFX "200100" 5848 5849 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 5850 int insn_idx, struct bpf_insn *insn, 5851 int map_idx, const struct bpf_map *map) 5852 { 5853 int i; 5854 5855 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 5856 prog->name, relo_idx, insn_idx, map_idx, map->name); 5857 5858 /* we turn single ldimm64 into two identical invalid calls */ 5859 for (i = 0; i < 2; i++) { 5860 insn->code = BPF_JMP | BPF_CALL; 5861 insn->dst_reg = 0; 5862 insn->src_reg = 0; 5863 insn->off = 0; 5864 /* if this instruction is reachable (not a dead code), 5865 * verifier will complain with something like: 5866 * invalid func unknown#2001000123 5867 * where lower 123 is map index into obj->maps[] array 5868 */ 5869 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx; 5870 5871 insn++; 5872 } 5873 } 5874 5875 /* unresolved kfunc call special constant, used also for log fixup logic */ 5876 #define POISON_CALL_KFUNC_BASE 2002000000 5877 #define POISON_CALL_KFUNC_PFX "2002" 5878 5879 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx, 5880 int insn_idx, struct bpf_insn *insn, 5881 int ext_idx, const struct extern_desc *ext) 5882 { 5883 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n", 5884 prog->name, relo_idx, insn_idx, ext->name); 5885 5886 /* we turn kfunc call into invalid helper call with identifiable constant */ 5887 insn->code = BPF_JMP | BPF_CALL; 5888 insn->dst_reg = 0; 5889 insn->src_reg = 0; 5890 insn->off = 0; 5891 /* if this instruction is reachable (not a dead code), 5892 * verifier will complain with something like: 5893 * invalid func unknown#2001000123 5894 * where lower 123 is extern index into obj->externs[] array 5895 */ 5896 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx; 5897 } 5898 5899 /* Relocate data references within program code: 5900 * - map references; 5901 * - global variable references; 5902 * - extern references. 5903 */ 5904 static int 5905 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5906 { 5907 int i; 5908 5909 for (i = 0; i < prog->nr_reloc; i++) { 5910 struct reloc_desc *relo = &prog->reloc_desc[i]; 5911 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5912 const struct bpf_map *map; 5913 struct extern_desc *ext; 5914 5915 switch (relo->type) { 5916 case RELO_LD64: 5917 map = &obj->maps[relo->map_idx]; 5918 if (obj->gen_loader) { 5919 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 5920 insn[0].imm = relo->map_idx; 5921 } else if (map->autocreate) { 5922 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5923 insn[0].imm = map->fd; 5924 } else { 5925 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5926 relo->map_idx, map); 5927 } 5928 break; 5929 case RELO_DATA: 5930 map = &obj->maps[relo->map_idx]; 5931 insn[1].imm = insn[0].imm + relo->sym_off; 5932 if (obj->gen_loader) { 5933 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5934 insn[0].imm = relo->map_idx; 5935 } else if (map->autocreate) { 5936 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5937 insn[0].imm = map->fd; 5938 } else { 5939 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5940 relo->map_idx, map); 5941 } 5942 break; 5943 case RELO_EXTERN_LD64: 5944 ext = &obj->externs[relo->ext_idx]; 5945 if (ext->type == EXT_KCFG) { 5946 if (obj->gen_loader) { 5947 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5948 insn[0].imm = obj->kconfig_map_idx; 5949 } else { 5950 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5951 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5952 } 5953 insn[1].imm = ext->kcfg.data_off; 5954 } else /* EXT_KSYM */ { 5955 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 5956 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 5957 insn[0].imm = ext->ksym.kernel_btf_id; 5958 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 5959 } else { /* typeless ksyms or unresolved typed ksyms */ 5960 insn[0].imm = (__u32)ext->ksym.addr; 5961 insn[1].imm = ext->ksym.addr >> 32; 5962 } 5963 } 5964 break; 5965 case RELO_EXTERN_CALL: 5966 ext = &obj->externs[relo->ext_idx]; 5967 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 5968 if (ext->is_set) { 5969 insn[0].imm = ext->ksym.kernel_btf_id; 5970 insn[0].off = ext->ksym.btf_fd_idx; 5971 } else { /* unresolved weak kfunc call */ 5972 poison_kfunc_call(prog, i, relo->insn_idx, insn, 5973 relo->ext_idx, ext); 5974 } 5975 break; 5976 case RELO_SUBPROG_ADDR: 5977 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 5978 pr_warn("prog '%s': relo #%d: bad insn\n", 5979 prog->name, i); 5980 return -EINVAL; 5981 } 5982 /* handled already */ 5983 break; 5984 case RELO_CALL: 5985 /* handled already */ 5986 break; 5987 case RELO_CORE: 5988 /* will be handled by bpf_program_record_relos() */ 5989 break; 5990 default: 5991 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 5992 prog->name, i, relo->type); 5993 return -EINVAL; 5994 } 5995 } 5996 5997 return 0; 5998 } 5999 6000 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6001 const struct bpf_program *prog, 6002 const struct btf_ext_info *ext_info, 6003 void **prog_info, __u32 *prog_rec_cnt, 6004 __u32 *prog_rec_sz) 6005 { 6006 void *copy_start = NULL, *copy_end = NULL; 6007 void *rec, *rec_end, *new_prog_info; 6008 const struct btf_ext_info_sec *sec; 6009 size_t old_sz, new_sz; 6010 int i, sec_num, sec_idx, off_adj; 6011 6012 sec_num = 0; 6013 for_each_btf_ext_sec(ext_info, sec) { 6014 sec_idx = ext_info->sec_idxs[sec_num]; 6015 sec_num++; 6016 if (prog->sec_idx != sec_idx) 6017 continue; 6018 6019 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6020 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6021 6022 if (insn_off < prog->sec_insn_off) 6023 continue; 6024 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6025 break; 6026 6027 if (!copy_start) 6028 copy_start = rec; 6029 copy_end = rec + ext_info->rec_size; 6030 } 6031 6032 if (!copy_start) 6033 return -ENOENT; 6034 6035 /* append func/line info of a given (sub-)program to the main 6036 * program func/line info 6037 */ 6038 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6039 new_sz = old_sz + (copy_end - copy_start); 6040 new_prog_info = realloc(*prog_info, new_sz); 6041 if (!new_prog_info) 6042 return -ENOMEM; 6043 *prog_info = new_prog_info; 6044 *prog_rec_cnt = new_sz / ext_info->rec_size; 6045 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6046 6047 /* Kernel instruction offsets are in units of 8-byte 6048 * instructions, while .BTF.ext instruction offsets generated 6049 * by Clang are in units of bytes. So convert Clang offsets 6050 * into kernel offsets and adjust offset according to program 6051 * relocated position. 6052 */ 6053 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6054 rec = new_prog_info + old_sz; 6055 rec_end = new_prog_info + new_sz; 6056 for (; rec < rec_end; rec += ext_info->rec_size) { 6057 __u32 *insn_off = rec; 6058 6059 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6060 } 6061 *prog_rec_sz = ext_info->rec_size; 6062 return 0; 6063 } 6064 6065 return -ENOENT; 6066 } 6067 6068 static int 6069 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6070 struct bpf_program *main_prog, 6071 const struct bpf_program *prog) 6072 { 6073 int err; 6074 6075 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6076 * supprot func/line info 6077 */ 6078 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6079 return 0; 6080 6081 /* only attempt func info relocation if main program's func_info 6082 * relocation was successful 6083 */ 6084 if (main_prog != prog && !main_prog->func_info) 6085 goto line_info; 6086 6087 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6088 &main_prog->func_info, 6089 &main_prog->func_info_cnt, 6090 &main_prog->func_info_rec_size); 6091 if (err) { 6092 if (err != -ENOENT) { 6093 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6094 prog->name, err); 6095 return err; 6096 } 6097 if (main_prog->func_info) { 6098 /* 6099 * Some info has already been found but has problem 6100 * in the last btf_ext reloc. Must have to error out. 6101 */ 6102 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6103 return err; 6104 } 6105 /* Have problem loading the very first info. Ignore the rest. */ 6106 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6107 prog->name); 6108 } 6109 6110 line_info: 6111 /* don't relocate line info if main program's relocation failed */ 6112 if (main_prog != prog && !main_prog->line_info) 6113 return 0; 6114 6115 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6116 &main_prog->line_info, 6117 &main_prog->line_info_cnt, 6118 &main_prog->line_info_rec_size); 6119 if (err) { 6120 if (err != -ENOENT) { 6121 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6122 prog->name, err); 6123 return err; 6124 } 6125 if (main_prog->line_info) { 6126 /* 6127 * Some info has already been found but has problem 6128 * in the last btf_ext reloc. Must have to error out. 6129 */ 6130 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6131 return err; 6132 } 6133 /* Have problem loading the very first info. Ignore the rest. */ 6134 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6135 prog->name); 6136 } 6137 return 0; 6138 } 6139 6140 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6141 { 6142 size_t insn_idx = *(const size_t *)key; 6143 const struct reloc_desc *relo = elem; 6144 6145 if (insn_idx == relo->insn_idx) 6146 return 0; 6147 return insn_idx < relo->insn_idx ? -1 : 1; 6148 } 6149 6150 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6151 { 6152 if (!prog->nr_reloc) 6153 return NULL; 6154 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6155 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6156 } 6157 6158 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6159 { 6160 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6161 struct reloc_desc *relos; 6162 int i; 6163 6164 if (main_prog == subprog) 6165 return 0; 6166 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6167 /* if new count is zero, reallocarray can return a valid NULL result; 6168 * in this case the previous pointer will be freed, so we *have to* 6169 * reassign old pointer to the new value (even if it's NULL) 6170 */ 6171 if (!relos && new_cnt) 6172 return -ENOMEM; 6173 if (subprog->nr_reloc) 6174 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6175 sizeof(*relos) * subprog->nr_reloc); 6176 6177 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6178 relos[i].insn_idx += subprog->sub_insn_off; 6179 /* After insn_idx adjustment the 'relos' array is still sorted 6180 * by insn_idx and doesn't break bsearch. 6181 */ 6182 main_prog->reloc_desc = relos; 6183 main_prog->nr_reloc = new_cnt; 6184 return 0; 6185 } 6186 6187 static int 6188 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6189 struct bpf_program *prog) 6190 { 6191 size_t sub_insn_idx, insn_idx, new_cnt; 6192 struct bpf_program *subprog; 6193 struct bpf_insn *insns, *insn; 6194 struct reloc_desc *relo; 6195 int err; 6196 6197 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6198 if (err) 6199 return err; 6200 6201 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6202 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6203 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6204 continue; 6205 6206 relo = find_prog_insn_relo(prog, insn_idx); 6207 if (relo && relo->type == RELO_EXTERN_CALL) 6208 /* kfunc relocations will be handled later 6209 * in bpf_object__relocate_data() 6210 */ 6211 continue; 6212 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6213 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6214 prog->name, insn_idx, relo->type); 6215 return -LIBBPF_ERRNO__RELOC; 6216 } 6217 if (relo) { 6218 /* sub-program instruction index is a combination of 6219 * an offset of a symbol pointed to by relocation and 6220 * call instruction's imm field; for global functions, 6221 * call always has imm = -1, but for static functions 6222 * relocation is against STT_SECTION and insn->imm 6223 * points to a start of a static function 6224 * 6225 * for subprog addr relocation, the relo->sym_off + insn->imm is 6226 * the byte offset in the corresponding section. 6227 */ 6228 if (relo->type == RELO_CALL) 6229 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6230 else 6231 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6232 } else if (insn_is_pseudo_func(insn)) { 6233 /* 6234 * RELO_SUBPROG_ADDR relo is always emitted even if both 6235 * functions are in the same section, so it shouldn't reach here. 6236 */ 6237 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6238 prog->name, insn_idx); 6239 return -LIBBPF_ERRNO__RELOC; 6240 } else { 6241 /* if subprogram call is to a static function within 6242 * the same ELF section, there won't be any relocation 6243 * emitted, but it also means there is no additional 6244 * offset necessary, insns->imm is relative to 6245 * instruction's original position within the section 6246 */ 6247 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6248 } 6249 6250 /* we enforce that sub-programs should be in .text section */ 6251 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6252 if (!subprog) { 6253 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6254 prog->name); 6255 return -LIBBPF_ERRNO__RELOC; 6256 } 6257 6258 /* if it's the first call instruction calling into this 6259 * subprogram (meaning this subprog hasn't been processed 6260 * yet) within the context of current main program: 6261 * - append it at the end of main program's instructions blog; 6262 * - process is recursively, while current program is put on hold; 6263 * - if that subprogram calls some other not yet processes 6264 * subprogram, same thing will happen recursively until 6265 * there are no more unprocesses subprograms left to append 6266 * and relocate. 6267 */ 6268 if (subprog->sub_insn_off == 0) { 6269 subprog->sub_insn_off = main_prog->insns_cnt; 6270 6271 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6272 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6273 if (!insns) { 6274 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6275 return -ENOMEM; 6276 } 6277 main_prog->insns = insns; 6278 main_prog->insns_cnt = new_cnt; 6279 6280 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6281 subprog->insns_cnt * sizeof(*insns)); 6282 6283 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6284 main_prog->name, subprog->insns_cnt, subprog->name); 6285 6286 /* The subprog insns are now appended. Append its relos too. */ 6287 err = append_subprog_relos(main_prog, subprog); 6288 if (err) 6289 return err; 6290 err = bpf_object__reloc_code(obj, main_prog, subprog); 6291 if (err) 6292 return err; 6293 } 6294 6295 /* main_prog->insns memory could have been re-allocated, so 6296 * calculate pointer again 6297 */ 6298 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6299 /* calculate correct instruction position within current main 6300 * prog; each main prog can have a different set of 6301 * subprograms appended (potentially in different order as 6302 * well), so position of any subprog can be different for 6303 * different main programs 6304 */ 6305 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6306 6307 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6308 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6309 } 6310 6311 return 0; 6312 } 6313 6314 /* 6315 * Relocate sub-program calls. 6316 * 6317 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6318 * main prog) is processed separately. For each subprog (non-entry functions, 6319 * that can be called from either entry progs or other subprogs) gets their 6320 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6321 * hasn't been yet appended and relocated within current main prog. Once its 6322 * relocated, sub_insn_off will point at the position within current main prog 6323 * where given subprog was appended. This will further be used to relocate all 6324 * the call instructions jumping into this subprog. 6325 * 6326 * We start with main program and process all call instructions. If the call 6327 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6328 * is zero), subprog instructions are appended at the end of main program's 6329 * instruction array. Then main program is "put on hold" while we recursively 6330 * process newly appended subprogram. If that subprogram calls into another 6331 * subprogram that hasn't been appended, new subprogram is appended again to 6332 * the *main* prog's instructions (subprog's instructions are always left 6333 * untouched, as they need to be in unmodified state for subsequent main progs 6334 * and subprog instructions are always sent only as part of a main prog) and 6335 * the process continues recursively. Once all the subprogs called from a main 6336 * prog or any of its subprogs are appended (and relocated), all their 6337 * positions within finalized instructions array are known, so it's easy to 6338 * rewrite call instructions with correct relative offsets, corresponding to 6339 * desired target subprog. 6340 * 6341 * Its important to realize that some subprogs might not be called from some 6342 * main prog and any of its called/used subprogs. Those will keep their 6343 * subprog->sub_insn_off as zero at all times and won't be appended to current 6344 * main prog and won't be relocated within the context of current main prog. 6345 * They might still be used from other main progs later. 6346 * 6347 * Visually this process can be shown as below. Suppose we have two main 6348 * programs mainA and mainB and BPF object contains three subprogs: subA, 6349 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6350 * subC both call subB: 6351 * 6352 * +--------+ +-------+ 6353 * | v v | 6354 * +--+---+ +--+-+-+ +---+--+ 6355 * | subA | | subB | | subC | 6356 * +--+---+ +------+ +---+--+ 6357 * ^ ^ 6358 * | | 6359 * +---+-------+ +------+----+ 6360 * | mainA | | mainB | 6361 * +-----------+ +-----------+ 6362 * 6363 * We'll start relocating mainA, will find subA, append it and start 6364 * processing sub A recursively: 6365 * 6366 * +-----------+------+ 6367 * | mainA | subA | 6368 * +-----------+------+ 6369 * 6370 * At this point we notice that subB is used from subA, so we append it and 6371 * relocate (there are no further subcalls from subB): 6372 * 6373 * +-----------+------+------+ 6374 * | mainA | subA | subB | 6375 * +-----------+------+------+ 6376 * 6377 * At this point, we relocate subA calls, then go one level up and finish with 6378 * relocatin mainA calls. mainA is done. 6379 * 6380 * For mainB process is similar but results in different order. We start with 6381 * mainB and skip subA and subB, as mainB never calls them (at least 6382 * directly), but we see subC is needed, so we append and start processing it: 6383 * 6384 * +-----------+------+ 6385 * | mainB | subC | 6386 * +-----------+------+ 6387 * Now we see subC needs subB, so we go back to it, append and relocate it: 6388 * 6389 * +-----------+------+------+ 6390 * | mainB | subC | subB | 6391 * +-----------+------+------+ 6392 * 6393 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6394 */ 6395 static int 6396 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6397 { 6398 struct bpf_program *subprog; 6399 int i, err; 6400 6401 /* mark all subprogs as not relocated (yet) within the context of 6402 * current main program 6403 */ 6404 for (i = 0; i < obj->nr_programs; i++) { 6405 subprog = &obj->programs[i]; 6406 if (!prog_is_subprog(obj, subprog)) 6407 continue; 6408 6409 subprog->sub_insn_off = 0; 6410 } 6411 6412 err = bpf_object__reloc_code(obj, prog, prog); 6413 if (err) 6414 return err; 6415 6416 return 0; 6417 } 6418 6419 static void 6420 bpf_object__free_relocs(struct bpf_object *obj) 6421 { 6422 struct bpf_program *prog; 6423 int i; 6424 6425 /* free up relocation descriptors */ 6426 for (i = 0; i < obj->nr_programs; i++) { 6427 prog = &obj->programs[i]; 6428 zfree(&prog->reloc_desc); 6429 prog->nr_reloc = 0; 6430 } 6431 } 6432 6433 static int cmp_relocs(const void *_a, const void *_b) 6434 { 6435 const struct reloc_desc *a = _a; 6436 const struct reloc_desc *b = _b; 6437 6438 if (a->insn_idx != b->insn_idx) 6439 return a->insn_idx < b->insn_idx ? -1 : 1; 6440 6441 /* no two relocations should have the same insn_idx, but ... */ 6442 if (a->type != b->type) 6443 return a->type < b->type ? -1 : 1; 6444 6445 return 0; 6446 } 6447 6448 static void bpf_object__sort_relos(struct bpf_object *obj) 6449 { 6450 int i; 6451 6452 for (i = 0; i < obj->nr_programs; i++) { 6453 struct bpf_program *p = &obj->programs[i]; 6454 6455 if (!p->nr_reloc) 6456 continue; 6457 6458 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6459 } 6460 } 6461 6462 static int 6463 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6464 { 6465 struct bpf_program *prog; 6466 size_t i, j; 6467 int err; 6468 6469 if (obj->btf_ext) { 6470 err = bpf_object__relocate_core(obj, targ_btf_path); 6471 if (err) { 6472 pr_warn("failed to perform CO-RE relocations: %d\n", 6473 err); 6474 return err; 6475 } 6476 bpf_object__sort_relos(obj); 6477 } 6478 6479 /* Before relocating calls pre-process relocations and mark 6480 * few ld_imm64 instructions that points to subprogs. 6481 * Otherwise bpf_object__reloc_code() later would have to consider 6482 * all ld_imm64 insns as relocation candidates. That would 6483 * reduce relocation speed, since amount of find_prog_insn_relo() 6484 * would increase and most of them will fail to find a relo. 6485 */ 6486 for (i = 0; i < obj->nr_programs; i++) { 6487 prog = &obj->programs[i]; 6488 for (j = 0; j < prog->nr_reloc; j++) { 6489 struct reloc_desc *relo = &prog->reloc_desc[j]; 6490 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6491 6492 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6493 if (relo->type == RELO_SUBPROG_ADDR) 6494 insn[0].src_reg = BPF_PSEUDO_FUNC; 6495 } 6496 } 6497 6498 /* relocate subprogram calls and append used subprograms to main 6499 * programs; each copy of subprogram code needs to be relocated 6500 * differently for each main program, because its code location might 6501 * have changed. 6502 * Append subprog relos to main programs to allow data relos to be 6503 * processed after text is completely relocated. 6504 */ 6505 for (i = 0; i < obj->nr_programs; i++) { 6506 prog = &obj->programs[i]; 6507 /* sub-program's sub-calls are relocated within the context of 6508 * its main program only 6509 */ 6510 if (prog_is_subprog(obj, prog)) 6511 continue; 6512 if (!prog->autoload) 6513 continue; 6514 6515 err = bpf_object__relocate_calls(obj, prog); 6516 if (err) { 6517 pr_warn("prog '%s': failed to relocate calls: %d\n", 6518 prog->name, err); 6519 return err; 6520 } 6521 } 6522 /* Process data relos for main programs */ 6523 for (i = 0; i < obj->nr_programs; i++) { 6524 prog = &obj->programs[i]; 6525 if (prog_is_subprog(obj, prog)) 6526 continue; 6527 if (!prog->autoload) 6528 continue; 6529 err = bpf_object__relocate_data(obj, prog); 6530 if (err) { 6531 pr_warn("prog '%s': failed to relocate data references: %d\n", 6532 prog->name, err); 6533 return err; 6534 } 6535 } 6536 6537 return 0; 6538 } 6539 6540 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6541 Elf64_Shdr *shdr, Elf_Data *data); 6542 6543 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6544 Elf64_Shdr *shdr, Elf_Data *data) 6545 { 6546 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6547 int i, j, nrels, new_sz; 6548 const struct btf_var_secinfo *vi = NULL; 6549 const struct btf_type *sec, *var, *def; 6550 struct bpf_map *map = NULL, *targ_map = NULL; 6551 struct bpf_program *targ_prog = NULL; 6552 bool is_prog_array, is_map_in_map; 6553 const struct btf_member *member; 6554 const char *name, *mname, *type; 6555 unsigned int moff; 6556 Elf64_Sym *sym; 6557 Elf64_Rel *rel; 6558 void *tmp; 6559 6560 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6561 return -EINVAL; 6562 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6563 if (!sec) 6564 return -EINVAL; 6565 6566 nrels = shdr->sh_size / shdr->sh_entsize; 6567 for (i = 0; i < nrels; i++) { 6568 rel = elf_rel_by_idx(data, i); 6569 if (!rel) { 6570 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6571 return -LIBBPF_ERRNO__FORMAT; 6572 } 6573 6574 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6575 if (!sym) { 6576 pr_warn(".maps relo #%d: symbol %zx not found\n", 6577 i, (size_t)ELF64_R_SYM(rel->r_info)); 6578 return -LIBBPF_ERRNO__FORMAT; 6579 } 6580 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6581 6582 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6583 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6584 (size_t)rel->r_offset, sym->st_name, name); 6585 6586 for (j = 0; j < obj->nr_maps; j++) { 6587 map = &obj->maps[j]; 6588 if (map->sec_idx != obj->efile.btf_maps_shndx) 6589 continue; 6590 6591 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6592 if (vi->offset <= rel->r_offset && 6593 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6594 break; 6595 } 6596 if (j == obj->nr_maps) { 6597 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6598 i, name, (size_t)rel->r_offset); 6599 return -EINVAL; 6600 } 6601 6602 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 6603 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 6604 type = is_map_in_map ? "map" : "prog"; 6605 if (is_map_in_map) { 6606 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6607 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6608 i, name); 6609 return -LIBBPF_ERRNO__RELOC; 6610 } 6611 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6612 map->def.key_size != sizeof(int)) { 6613 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6614 i, map->name, sizeof(int)); 6615 return -EINVAL; 6616 } 6617 targ_map = bpf_object__find_map_by_name(obj, name); 6618 if (!targ_map) { 6619 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 6620 i, name); 6621 return -ESRCH; 6622 } 6623 } else if (is_prog_array) { 6624 targ_prog = bpf_object__find_program_by_name(obj, name); 6625 if (!targ_prog) { 6626 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 6627 i, name); 6628 return -ESRCH; 6629 } 6630 if (targ_prog->sec_idx != sym->st_shndx || 6631 targ_prog->sec_insn_off * 8 != sym->st_value || 6632 prog_is_subprog(obj, targ_prog)) { 6633 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 6634 i, name); 6635 return -LIBBPF_ERRNO__RELOC; 6636 } 6637 } else { 6638 return -EINVAL; 6639 } 6640 6641 var = btf__type_by_id(obj->btf, vi->type); 6642 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6643 if (btf_vlen(def) == 0) 6644 return -EINVAL; 6645 member = btf_members(def) + btf_vlen(def) - 1; 6646 mname = btf__name_by_offset(obj->btf, member->name_off); 6647 if (strcmp(mname, "values")) 6648 return -EINVAL; 6649 6650 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6651 if (rel->r_offset - vi->offset < moff) 6652 return -EINVAL; 6653 6654 moff = rel->r_offset - vi->offset - moff; 6655 /* here we use BPF pointer size, which is always 64 bit, as we 6656 * are parsing ELF that was built for BPF target 6657 */ 6658 if (moff % bpf_ptr_sz) 6659 return -EINVAL; 6660 moff /= bpf_ptr_sz; 6661 if (moff >= map->init_slots_sz) { 6662 new_sz = moff + 1; 6663 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6664 if (!tmp) 6665 return -ENOMEM; 6666 map->init_slots = tmp; 6667 memset(map->init_slots + map->init_slots_sz, 0, 6668 (new_sz - map->init_slots_sz) * host_ptr_sz); 6669 map->init_slots_sz = new_sz; 6670 } 6671 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 6672 6673 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 6674 i, map->name, moff, type, name); 6675 } 6676 6677 return 0; 6678 } 6679 6680 static int bpf_object__collect_relos(struct bpf_object *obj) 6681 { 6682 int i, err; 6683 6684 for (i = 0; i < obj->efile.sec_cnt; i++) { 6685 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6686 Elf64_Shdr *shdr; 6687 Elf_Data *data; 6688 int idx; 6689 6690 if (sec_desc->sec_type != SEC_RELO) 6691 continue; 6692 6693 shdr = sec_desc->shdr; 6694 data = sec_desc->data; 6695 idx = shdr->sh_info; 6696 6697 if (shdr->sh_type != SHT_REL) { 6698 pr_warn("internal error at %d\n", __LINE__); 6699 return -LIBBPF_ERRNO__INTERNAL; 6700 } 6701 6702 if (idx == obj->efile.st_ops_shndx || idx == obj->efile.st_ops_link_shndx) 6703 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6704 else if (idx == obj->efile.btf_maps_shndx) 6705 err = bpf_object__collect_map_relos(obj, shdr, data); 6706 else 6707 err = bpf_object__collect_prog_relos(obj, shdr, data); 6708 if (err) 6709 return err; 6710 } 6711 6712 bpf_object__sort_relos(obj); 6713 return 0; 6714 } 6715 6716 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6717 { 6718 if (BPF_CLASS(insn->code) == BPF_JMP && 6719 BPF_OP(insn->code) == BPF_CALL && 6720 BPF_SRC(insn->code) == BPF_K && 6721 insn->src_reg == 0 && 6722 insn->dst_reg == 0) { 6723 *func_id = insn->imm; 6724 return true; 6725 } 6726 return false; 6727 } 6728 6729 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6730 { 6731 struct bpf_insn *insn = prog->insns; 6732 enum bpf_func_id func_id; 6733 int i; 6734 6735 if (obj->gen_loader) 6736 return 0; 6737 6738 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6739 if (!insn_is_helper_call(insn, &func_id)) 6740 continue; 6741 6742 /* on kernels that don't yet support 6743 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6744 * to bpf_probe_read() which works well for old kernels 6745 */ 6746 switch (func_id) { 6747 case BPF_FUNC_probe_read_kernel: 6748 case BPF_FUNC_probe_read_user: 6749 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6750 insn->imm = BPF_FUNC_probe_read; 6751 break; 6752 case BPF_FUNC_probe_read_kernel_str: 6753 case BPF_FUNC_probe_read_user_str: 6754 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6755 insn->imm = BPF_FUNC_probe_read_str; 6756 break; 6757 default: 6758 break; 6759 } 6760 } 6761 return 0; 6762 } 6763 6764 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6765 int *btf_obj_fd, int *btf_type_id); 6766 6767 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 6768 static int libbpf_prepare_prog_load(struct bpf_program *prog, 6769 struct bpf_prog_load_opts *opts, long cookie) 6770 { 6771 enum sec_def_flags def = cookie; 6772 6773 /* old kernels might not support specifying expected_attach_type */ 6774 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6775 opts->expected_attach_type = 0; 6776 6777 if (def & SEC_SLEEPABLE) 6778 opts->prog_flags |= BPF_F_SLEEPABLE; 6779 6780 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 6781 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 6782 6783 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 6784 int btf_obj_fd = 0, btf_type_id = 0, err; 6785 const char *attach_name; 6786 6787 attach_name = strchr(prog->sec_name, '/'); 6788 if (!attach_name) { 6789 /* if BPF program is annotated with just SEC("fentry") 6790 * (or similar) without declaratively specifying 6791 * target, then it is expected that target will be 6792 * specified with bpf_program__set_attach_target() at 6793 * runtime before BPF object load step. If not, then 6794 * there is nothing to load into the kernel as BPF 6795 * verifier won't be able to validate BPF program 6796 * correctness anyways. 6797 */ 6798 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 6799 prog->name); 6800 return -EINVAL; 6801 } 6802 attach_name++; /* skip over / */ 6803 6804 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6805 if (err) 6806 return err; 6807 6808 /* cache resolved BTF FD and BTF type ID in the prog */ 6809 prog->attach_btf_obj_fd = btf_obj_fd; 6810 prog->attach_btf_id = btf_type_id; 6811 6812 /* but by now libbpf common logic is not utilizing 6813 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 6814 * this callback is called after opts were populated by 6815 * libbpf, so this callback has to update opts explicitly here 6816 */ 6817 opts->attach_btf_obj_fd = btf_obj_fd; 6818 opts->attach_btf_id = btf_type_id; 6819 } 6820 return 0; 6821 } 6822 6823 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 6824 6825 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 6826 struct bpf_insn *insns, int insns_cnt, 6827 const char *license, __u32 kern_version, int *prog_fd) 6828 { 6829 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 6830 const char *prog_name = NULL; 6831 char *cp, errmsg[STRERR_BUFSIZE]; 6832 size_t log_buf_size = 0; 6833 char *log_buf = NULL, *tmp; 6834 int btf_fd, ret, err; 6835 bool own_log_buf = true; 6836 __u32 log_level = prog->log_level; 6837 6838 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6839 /* 6840 * The program type must be set. Most likely we couldn't find a proper 6841 * section definition at load time, and thus we didn't infer the type. 6842 */ 6843 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6844 prog->name, prog->sec_name); 6845 return -EINVAL; 6846 } 6847 6848 if (!insns || !insns_cnt) 6849 return -EINVAL; 6850 6851 load_attr.expected_attach_type = prog->expected_attach_type; 6852 if (kernel_supports(obj, FEAT_PROG_NAME)) 6853 prog_name = prog->name; 6854 load_attr.attach_prog_fd = prog->attach_prog_fd; 6855 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 6856 load_attr.attach_btf_id = prog->attach_btf_id; 6857 load_attr.kern_version = kern_version; 6858 load_attr.prog_ifindex = prog->prog_ifindex; 6859 6860 /* specify func_info/line_info only if kernel supports them */ 6861 btf_fd = bpf_object__btf_fd(obj); 6862 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 6863 load_attr.prog_btf_fd = btf_fd; 6864 load_attr.func_info = prog->func_info; 6865 load_attr.func_info_rec_size = prog->func_info_rec_size; 6866 load_attr.func_info_cnt = prog->func_info_cnt; 6867 load_attr.line_info = prog->line_info; 6868 load_attr.line_info_rec_size = prog->line_info_rec_size; 6869 load_attr.line_info_cnt = prog->line_info_cnt; 6870 } 6871 load_attr.log_level = log_level; 6872 load_attr.prog_flags = prog->prog_flags; 6873 load_attr.fd_array = obj->fd_array; 6874 6875 /* adjust load_attr if sec_def provides custom preload callback */ 6876 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 6877 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 6878 if (err < 0) { 6879 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 6880 prog->name, err); 6881 return err; 6882 } 6883 insns = prog->insns; 6884 insns_cnt = prog->insns_cnt; 6885 } 6886 6887 if (obj->gen_loader) { 6888 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 6889 license, insns, insns_cnt, &load_attr, 6890 prog - obj->programs); 6891 *prog_fd = -1; 6892 return 0; 6893 } 6894 6895 retry_load: 6896 /* if log_level is zero, we don't request logs initially even if 6897 * custom log_buf is specified; if the program load fails, then we'll 6898 * bump log_level to 1 and use either custom log_buf or we'll allocate 6899 * our own and retry the load to get details on what failed 6900 */ 6901 if (log_level) { 6902 if (prog->log_buf) { 6903 log_buf = prog->log_buf; 6904 log_buf_size = prog->log_size; 6905 own_log_buf = false; 6906 } else if (obj->log_buf) { 6907 log_buf = obj->log_buf; 6908 log_buf_size = obj->log_size; 6909 own_log_buf = false; 6910 } else { 6911 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 6912 tmp = realloc(log_buf, log_buf_size); 6913 if (!tmp) { 6914 ret = -ENOMEM; 6915 goto out; 6916 } 6917 log_buf = tmp; 6918 log_buf[0] = '\0'; 6919 own_log_buf = true; 6920 } 6921 } 6922 6923 load_attr.log_buf = log_buf; 6924 load_attr.log_size = log_buf_size; 6925 load_attr.log_level = log_level; 6926 6927 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 6928 if (ret >= 0) { 6929 if (log_level && own_log_buf) { 6930 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6931 prog->name, log_buf); 6932 } 6933 6934 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 6935 struct bpf_map *map; 6936 int i; 6937 6938 for (i = 0; i < obj->nr_maps; i++) { 6939 map = &prog->obj->maps[i]; 6940 if (map->libbpf_type != LIBBPF_MAP_RODATA) 6941 continue; 6942 6943 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 6944 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6945 pr_warn("prog '%s': failed to bind map '%s': %s\n", 6946 prog->name, map->real_name, cp); 6947 /* Don't fail hard if can't bind rodata. */ 6948 } 6949 } 6950 } 6951 6952 *prog_fd = ret; 6953 ret = 0; 6954 goto out; 6955 } 6956 6957 if (log_level == 0) { 6958 log_level = 1; 6959 goto retry_load; 6960 } 6961 /* On ENOSPC, increase log buffer size and retry, unless custom 6962 * log_buf is specified. 6963 * Be careful to not overflow u32, though. Kernel's log buf size limit 6964 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 6965 * multiply by 2 unless we are sure we'll fit within 32 bits. 6966 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 6967 */ 6968 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 6969 goto retry_load; 6970 6971 ret = -errno; 6972 6973 /* post-process verifier log to improve error descriptions */ 6974 fixup_verifier_log(prog, log_buf, log_buf_size); 6975 6976 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6977 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 6978 pr_perm_msg(ret); 6979 6980 if (own_log_buf && log_buf && log_buf[0] != '\0') { 6981 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6982 prog->name, log_buf); 6983 } 6984 6985 out: 6986 if (own_log_buf) 6987 free(log_buf); 6988 return ret; 6989 } 6990 6991 static char *find_prev_line(char *buf, char *cur) 6992 { 6993 char *p; 6994 6995 if (cur == buf) /* end of a log buf */ 6996 return NULL; 6997 6998 p = cur - 1; 6999 while (p - 1 >= buf && *(p - 1) != '\n') 7000 p--; 7001 7002 return p; 7003 } 7004 7005 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 7006 char *orig, size_t orig_sz, const char *patch) 7007 { 7008 /* size of the remaining log content to the right from the to-be-replaced part */ 7009 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 7010 size_t patch_sz = strlen(patch); 7011 7012 if (patch_sz != orig_sz) { 7013 /* If patch line(s) are longer than original piece of verifier log, 7014 * shift log contents by (patch_sz - orig_sz) bytes to the right 7015 * starting from after to-be-replaced part of the log. 7016 * 7017 * If patch line(s) are shorter than original piece of verifier log, 7018 * shift log contents by (orig_sz - patch_sz) bytes to the left 7019 * starting from after to-be-replaced part of the log 7020 * 7021 * We need to be careful about not overflowing available 7022 * buf_sz capacity. If that's the case, we'll truncate the end 7023 * of the original log, as necessary. 7024 */ 7025 if (patch_sz > orig_sz) { 7026 if (orig + patch_sz >= buf + buf_sz) { 7027 /* patch is big enough to cover remaining space completely */ 7028 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 7029 rem_sz = 0; 7030 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 7031 /* patch causes part of remaining log to be truncated */ 7032 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 7033 } 7034 } 7035 /* shift remaining log to the right by calculated amount */ 7036 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 7037 } 7038 7039 memcpy(orig, patch, patch_sz); 7040 } 7041 7042 static void fixup_log_failed_core_relo(struct bpf_program *prog, 7043 char *buf, size_t buf_sz, size_t log_sz, 7044 char *line1, char *line2, char *line3) 7045 { 7046 /* Expected log for failed and not properly guarded CO-RE relocation: 7047 * line1 -> 123: (85) call unknown#195896080 7048 * line2 -> invalid func unknown#195896080 7049 * line3 -> <anything else or end of buffer> 7050 * 7051 * "123" is the index of the instruction that was poisoned. We extract 7052 * instruction index to find corresponding CO-RE relocation and 7053 * replace this part of the log with more relevant information about 7054 * failed CO-RE relocation. 7055 */ 7056 const struct bpf_core_relo *relo; 7057 struct bpf_core_spec spec; 7058 char patch[512], spec_buf[256]; 7059 int insn_idx, err, spec_len; 7060 7061 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7062 return; 7063 7064 relo = find_relo_core(prog, insn_idx); 7065 if (!relo) 7066 return; 7067 7068 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7069 if (err) 7070 return; 7071 7072 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7073 snprintf(patch, sizeof(patch), 7074 "%d: <invalid CO-RE relocation>\n" 7075 "failed to resolve CO-RE relocation %s%s\n", 7076 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7077 7078 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7079 } 7080 7081 static void fixup_log_missing_map_load(struct bpf_program *prog, 7082 char *buf, size_t buf_sz, size_t log_sz, 7083 char *line1, char *line2, char *line3) 7084 { 7085 /* Expected log for failed and not properly guarded map reference: 7086 * line1 -> 123: (85) call unknown#2001000345 7087 * line2 -> invalid func unknown#2001000345 7088 * line3 -> <anything else or end of buffer> 7089 * 7090 * "123" is the index of the instruction that was poisoned. 7091 * "345" in "2001000345" is a map index in obj->maps to fetch map name. 7092 */ 7093 struct bpf_object *obj = prog->obj; 7094 const struct bpf_map *map; 7095 int insn_idx, map_idx; 7096 char patch[128]; 7097 7098 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7099 return; 7100 7101 map_idx -= POISON_LDIMM64_MAP_BASE; 7102 if (map_idx < 0 || map_idx >= obj->nr_maps) 7103 return; 7104 map = &obj->maps[map_idx]; 7105 7106 snprintf(patch, sizeof(patch), 7107 "%d: <invalid BPF map reference>\n" 7108 "BPF map '%s' is referenced but wasn't created\n", 7109 insn_idx, map->name); 7110 7111 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7112 } 7113 7114 static void fixup_log_missing_kfunc_call(struct bpf_program *prog, 7115 char *buf, size_t buf_sz, size_t log_sz, 7116 char *line1, char *line2, char *line3) 7117 { 7118 /* Expected log for failed and not properly guarded kfunc call: 7119 * line1 -> 123: (85) call unknown#2002000345 7120 * line2 -> invalid func unknown#2002000345 7121 * line3 -> <anything else or end of buffer> 7122 * 7123 * "123" is the index of the instruction that was poisoned. 7124 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name. 7125 */ 7126 struct bpf_object *obj = prog->obj; 7127 const struct extern_desc *ext; 7128 int insn_idx, ext_idx; 7129 char patch[128]; 7130 7131 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2) 7132 return; 7133 7134 ext_idx -= POISON_CALL_KFUNC_BASE; 7135 if (ext_idx < 0 || ext_idx >= obj->nr_extern) 7136 return; 7137 ext = &obj->externs[ext_idx]; 7138 7139 snprintf(patch, sizeof(patch), 7140 "%d: <invalid kfunc call>\n" 7141 "kfunc '%s' is referenced but wasn't resolved\n", 7142 insn_idx, ext->name); 7143 7144 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7145 } 7146 7147 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7148 { 7149 /* look for familiar error patterns in last N lines of the log */ 7150 const size_t max_last_line_cnt = 10; 7151 char *prev_line, *cur_line, *next_line; 7152 size_t log_sz; 7153 int i; 7154 7155 if (!buf) 7156 return; 7157 7158 log_sz = strlen(buf) + 1; 7159 next_line = buf + log_sz - 1; 7160 7161 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7162 cur_line = find_prev_line(buf, next_line); 7163 if (!cur_line) 7164 return; 7165 7166 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7167 prev_line = find_prev_line(buf, cur_line); 7168 if (!prev_line) 7169 continue; 7170 7171 /* failed CO-RE relocation case */ 7172 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7173 prev_line, cur_line, next_line); 7174 return; 7175 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) { 7176 prev_line = find_prev_line(buf, cur_line); 7177 if (!prev_line) 7178 continue; 7179 7180 /* reference to uncreated BPF map */ 7181 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7182 prev_line, cur_line, next_line); 7183 return; 7184 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) { 7185 prev_line = find_prev_line(buf, cur_line); 7186 if (!prev_line) 7187 continue; 7188 7189 /* reference to unresolved kfunc */ 7190 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz, 7191 prev_line, cur_line, next_line); 7192 return; 7193 } 7194 } 7195 } 7196 7197 static int bpf_program_record_relos(struct bpf_program *prog) 7198 { 7199 struct bpf_object *obj = prog->obj; 7200 int i; 7201 7202 for (i = 0; i < prog->nr_reloc; i++) { 7203 struct reloc_desc *relo = &prog->reloc_desc[i]; 7204 struct extern_desc *ext = &obj->externs[relo->ext_idx]; 7205 int kind; 7206 7207 switch (relo->type) { 7208 case RELO_EXTERN_LD64: 7209 if (ext->type != EXT_KSYM) 7210 continue; 7211 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ? 7212 BTF_KIND_VAR : BTF_KIND_FUNC; 7213 bpf_gen__record_extern(obj->gen_loader, ext->name, 7214 ext->is_weak, !ext->ksym.type_id, 7215 true, kind, relo->insn_idx); 7216 break; 7217 case RELO_EXTERN_CALL: 7218 bpf_gen__record_extern(obj->gen_loader, ext->name, 7219 ext->is_weak, false, false, BTF_KIND_FUNC, 7220 relo->insn_idx); 7221 break; 7222 case RELO_CORE: { 7223 struct bpf_core_relo cr = { 7224 .insn_off = relo->insn_idx * 8, 7225 .type_id = relo->core_relo->type_id, 7226 .access_str_off = relo->core_relo->access_str_off, 7227 .kind = relo->core_relo->kind, 7228 }; 7229 7230 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7231 break; 7232 } 7233 default: 7234 continue; 7235 } 7236 } 7237 return 0; 7238 } 7239 7240 static int 7241 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7242 { 7243 struct bpf_program *prog; 7244 size_t i; 7245 int err; 7246 7247 for (i = 0; i < obj->nr_programs; i++) { 7248 prog = &obj->programs[i]; 7249 err = bpf_object__sanitize_prog(obj, prog); 7250 if (err) 7251 return err; 7252 } 7253 7254 for (i = 0; i < obj->nr_programs; i++) { 7255 prog = &obj->programs[i]; 7256 if (prog_is_subprog(obj, prog)) 7257 continue; 7258 if (!prog->autoload) { 7259 pr_debug("prog '%s': skipped loading\n", prog->name); 7260 continue; 7261 } 7262 prog->log_level |= log_level; 7263 7264 if (obj->gen_loader) 7265 bpf_program_record_relos(prog); 7266 7267 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7268 obj->license, obj->kern_version, &prog->fd); 7269 if (err) { 7270 pr_warn("prog '%s': failed to load: %d\n", prog->name, err); 7271 return err; 7272 } 7273 } 7274 7275 bpf_object__free_relocs(obj); 7276 return 0; 7277 } 7278 7279 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7280 7281 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7282 { 7283 struct bpf_program *prog; 7284 int err; 7285 7286 bpf_object__for_each_program(prog, obj) { 7287 prog->sec_def = find_sec_def(prog->sec_name); 7288 if (!prog->sec_def) { 7289 /* couldn't guess, but user might manually specify */ 7290 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7291 prog->name, prog->sec_name); 7292 continue; 7293 } 7294 7295 prog->type = prog->sec_def->prog_type; 7296 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7297 7298 /* sec_def can have custom callback which should be called 7299 * after bpf_program is initialized to adjust its properties 7300 */ 7301 if (prog->sec_def->prog_setup_fn) { 7302 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7303 if (err < 0) { 7304 pr_warn("prog '%s': failed to initialize: %d\n", 7305 prog->name, err); 7306 return err; 7307 } 7308 } 7309 } 7310 7311 return 0; 7312 } 7313 7314 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7315 const struct bpf_object_open_opts *opts) 7316 { 7317 const char *obj_name, *kconfig, *btf_tmp_path; 7318 struct bpf_object *obj; 7319 char tmp_name[64]; 7320 int err; 7321 char *log_buf; 7322 size_t log_size; 7323 __u32 log_level; 7324 7325 if (elf_version(EV_CURRENT) == EV_NONE) { 7326 pr_warn("failed to init libelf for %s\n", 7327 path ? : "(mem buf)"); 7328 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7329 } 7330 7331 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7332 return ERR_PTR(-EINVAL); 7333 7334 obj_name = OPTS_GET(opts, object_name, NULL); 7335 if (obj_buf) { 7336 if (!obj_name) { 7337 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7338 (unsigned long)obj_buf, 7339 (unsigned long)obj_buf_sz); 7340 obj_name = tmp_name; 7341 } 7342 path = obj_name; 7343 pr_debug("loading object '%s' from buffer\n", obj_name); 7344 } 7345 7346 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7347 log_size = OPTS_GET(opts, kernel_log_size, 0); 7348 log_level = OPTS_GET(opts, kernel_log_level, 0); 7349 if (log_size > UINT_MAX) 7350 return ERR_PTR(-EINVAL); 7351 if (log_size && !log_buf) 7352 return ERR_PTR(-EINVAL); 7353 7354 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7355 if (IS_ERR(obj)) 7356 return obj; 7357 7358 obj->log_buf = log_buf; 7359 obj->log_size = log_size; 7360 obj->log_level = log_level; 7361 7362 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7363 if (btf_tmp_path) { 7364 if (strlen(btf_tmp_path) >= PATH_MAX) { 7365 err = -ENAMETOOLONG; 7366 goto out; 7367 } 7368 obj->btf_custom_path = strdup(btf_tmp_path); 7369 if (!obj->btf_custom_path) { 7370 err = -ENOMEM; 7371 goto out; 7372 } 7373 } 7374 7375 kconfig = OPTS_GET(opts, kconfig, NULL); 7376 if (kconfig) { 7377 obj->kconfig = strdup(kconfig); 7378 if (!obj->kconfig) { 7379 err = -ENOMEM; 7380 goto out; 7381 } 7382 } 7383 7384 err = bpf_object__elf_init(obj); 7385 err = err ? : bpf_object__check_endianness(obj); 7386 err = err ? : bpf_object__elf_collect(obj); 7387 err = err ? : bpf_object__collect_externs(obj); 7388 err = err ? : bpf_object_fixup_btf(obj); 7389 err = err ? : bpf_object__init_maps(obj, opts); 7390 err = err ? : bpf_object_init_progs(obj, opts); 7391 err = err ? : bpf_object__collect_relos(obj); 7392 if (err) 7393 goto out; 7394 7395 bpf_object__elf_finish(obj); 7396 7397 return obj; 7398 out: 7399 bpf_object__close(obj); 7400 return ERR_PTR(err); 7401 } 7402 7403 struct bpf_object * 7404 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7405 { 7406 if (!path) 7407 return libbpf_err_ptr(-EINVAL); 7408 7409 pr_debug("loading %s\n", path); 7410 7411 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7412 } 7413 7414 struct bpf_object *bpf_object__open(const char *path) 7415 { 7416 return bpf_object__open_file(path, NULL); 7417 } 7418 7419 struct bpf_object * 7420 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7421 const struct bpf_object_open_opts *opts) 7422 { 7423 if (!obj_buf || obj_buf_sz == 0) 7424 return libbpf_err_ptr(-EINVAL); 7425 7426 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7427 } 7428 7429 static int bpf_object_unload(struct bpf_object *obj) 7430 { 7431 size_t i; 7432 7433 if (!obj) 7434 return libbpf_err(-EINVAL); 7435 7436 for (i = 0; i < obj->nr_maps; i++) { 7437 zclose(obj->maps[i].fd); 7438 if (obj->maps[i].st_ops) 7439 zfree(&obj->maps[i].st_ops->kern_vdata); 7440 } 7441 7442 for (i = 0; i < obj->nr_programs; i++) 7443 bpf_program__unload(&obj->programs[i]); 7444 7445 return 0; 7446 } 7447 7448 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7449 { 7450 struct bpf_map *m; 7451 7452 bpf_object__for_each_map(m, obj) { 7453 if (!bpf_map__is_internal(m)) 7454 continue; 7455 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7456 m->def.map_flags &= ~BPF_F_MMAPABLE; 7457 } 7458 7459 return 0; 7460 } 7461 7462 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 7463 { 7464 char sym_type, sym_name[500]; 7465 unsigned long long sym_addr; 7466 int ret, err = 0; 7467 FILE *f; 7468 7469 f = fopen("/proc/kallsyms", "re"); 7470 if (!f) { 7471 err = -errno; 7472 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7473 return err; 7474 } 7475 7476 while (true) { 7477 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7478 &sym_addr, &sym_type, sym_name); 7479 if (ret == EOF && feof(f)) 7480 break; 7481 if (ret != 3) { 7482 pr_warn("failed to read kallsyms entry: %d\n", ret); 7483 err = -EINVAL; 7484 break; 7485 } 7486 7487 err = cb(sym_addr, sym_type, sym_name, ctx); 7488 if (err) 7489 break; 7490 } 7491 7492 fclose(f); 7493 return err; 7494 } 7495 7496 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 7497 const char *sym_name, void *ctx) 7498 { 7499 struct bpf_object *obj = ctx; 7500 const struct btf_type *t; 7501 struct extern_desc *ext; 7502 7503 ext = find_extern_by_name(obj, sym_name); 7504 if (!ext || ext->type != EXT_KSYM) 7505 return 0; 7506 7507 t = btf__type_by_id(obj->btf, ext->btf_id); 7508 if (!btf_is_var(t)) 7509 return 0; 7510 7511 if (ext->is_set && ext->ksym.addr != sym_addr) { 7512 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 7513 sym_name, ext->ksym.addr, sym_addr); 7514 return -EINVAL; 7515 } 7516 if (!ext->is_set) { 7517 ext->is_set = true; 7518 ext->ksym.addr = sym_addr; 7519 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 7520 } 7521 return 0; 7522 } 7523 7524 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7525 { 7526 return libbpf_kallsyms_parse(kallsyms_cb, obj); 7527 } 7528 7529 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7530 __u16 kind, struct btf **res_btf, 7531 struct module_btf **res_mod_btf) 7532 { 7533 struct module_btf *mod_btf; 7534 struct btf *btf; 7535 int i, id, err; 7536 7537 btf = obj->btf_vmlinux; 7538 mod_btf = NULL; 7539 id = btf__find_by_name_kind(btf, ksym_name, kind); 7540 7541 if (id == -ENOENT) { 7542 err = load_module_btfs(obj); 7543 if (err) 7544 return err; 7545 7546 for (i = 0; i < obj->btf_module_cnt; i++) { 7547 /* we assume module_btf's BTF FD is always >0 */ 7548 mod_btf = &obj->btf_modules[i]; 7549 btf = mod_btf->btf; 7550 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7551 if (id != -ENOENT) 7552 break; 7553 } 7554 } 7555 if (id <= 0) 7556 return -ESRCH; 7557 7558 *res_btf = btf; 7559 *res_mod_btf = mod_btf; 7560 return id; 7561 } 7562 7563 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7564 struct extern_desc *ext) 7565 { 7566 const struct btf_type *targ_var, *targ_type; 7567 __u32 targ_type_id, local_type_id; 7568 struct module_btf *mod_btf = NULL; 7569 const char *targ_var_name; 7570 struct btf *btf = NULL; 7571 int id, err; 7572 7573 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7574 if (id < 0) { 7575 if (id == -ESRCH && ext->is_weak) 7576 return 0; 7577 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7578 ext->name); 7579 return id; 7580 } 7581 7582 /* find local type_id */ 7583 local_type_id = ext->ksym.type_id; 7584 7585 /* find target type_id */ 7586 targ_var = btf__type_by_id(btf, id); 7587 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7588 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7589 7590 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7591 btf, targ_type_id); 7592 if (err <= 0) { 7593 const struct btf_type *local_type; 7594 const char *targ_name, *local_name; 7595 7596 local_type = btf__type_by_id(obj->btf, local_type_id); 7597 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7598 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7599 7600 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7601 ext->name, local_type_id, 7602 btf_kind_str(local_type), local_name, targ_type_id, 7603 btf_kind_str(targ_type), targ_name); 7604 return -EINVAL; 7605 } 7606 7607 ext->is_set = true; 7608 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7609 ext->ksym.kernel_btf_id = id; 7610 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7611 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7612 7613 return 0; 7614 } 7615 7616 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7617 struct extern_desc *ext) 7618 { 7619 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7620 struct module_btf *mod_btf = NULL; 7621 const struct btf_type *kern_func; 7622 struct btf *kern_btf = NULL; 7623 int ret; 7624 7625 local_func_proto_id = ext->ksym.type_id; 7626 7627 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf); 7628 if (kfunc_id < 0) { 7629 if (kfunc_id == -ESRCH && ext->is_weak) 7630 return 0; 7631 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7632 ext->name); 7633 return kfunc_id; 7634 } 7635 7636 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7637 kfunc_proto_id = kern_func->type; 7638 7639 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7640 kern_btf, kfunc_proto_id); 7641 if (ret <= 0) { 7642 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n", 7643 ext->name, local_func_proto_id, 7644 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id); 7645 return -EINVAL; 7646 } 7647 7648 /* set index for module BTF fd in fd_array, if unset */ 7649 if (mod_btf && !mod_btf->fd_array_idx) { 7650 /* insn->off is s16 */ 7651 if (obj->fd_array_cnt == INT16_MAX) { 7652 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7653 ext->name, mod_btf->fd_array_idx); 7654 return -E2BIG; 7655 } 7656 /* Cannot use index 0 for module BTF fd */ 7657 if (!obj->fd_array_cnt) 7658 obj->fd_array_cnt = 1; 7659 7660 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7661 obj->fd_array_cnt + 1); 7662 if (ret) 7663 return ret; 7664 mod_btf->fd_array_idx = obj->fd_array_cnt; 7665 /* we assume module BTF FD is always >0 */ 7666 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7667 } 7668 7669 ext->is_set = true; 7670 ext->ksym.kernel_btf_id = kfunc_id; 7671 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7672 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data() 7673 * populates FD into ld_imm64 insn when it's used to point to kfunc. 7674 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call. 7675 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64. 7676 */ 7677 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7678 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n", 7679 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id); 7680 7681 return 0; 7682 } 7683 7684 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7685 { 7686 const struct btf_type *t; 7687 struct extern_desc *ext; 7688 int i, err; 7689 7690 for (i = 0; i < obj->nr_extern; i++) { 7691 ext = &obj->externs[i]; 7692 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7693 continue; 7694 7695 if (obj->gen_loader) { 7696 ext->is_set = true; 7697 ext->ksym.kernel_btf_obj_fd = 0; 7698 ext->ksym.kernel_btf_id = 0; 7699 continue; 7700 } 7701 t = btf__type_by_id(obj->btf, ext->btf_id); 7702 if (btf_is_var(t)) 7703 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7704 else 7705 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7706 if (err) 7707 return err; 7708 } 7709 return 0; 7710 } 7711 7712 static int bpf_object__resolve_externs(struct bpf_object *obj, 7713 const char *extra_kconfig) 7714 { 7715 bool need_config = false, need_kallsyms = false; 7716 bool need_vmlinux_btf = false; 7717 struct extern_desc *ext; 7718 void *kcfg_data = NULL; 7719 int err, i; 7720 7721 if (obj->nr_extern == 0) 7722 return 0; 7723 7724 if (obj->kconfig_map_idx >= 0) 7725 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7726 7727 for (i = 0; i < obj->nr_extern; i++) { 7728 ext = &obj->externs[i]; 7729 7730 if (ext->type == EXT_KSYM) { 7731 if (ext->ksym.type_id) 7732 need_vmlinux_btf = true; 7733 else 7734 need_kallsyms = true; 7735 continue; 7736 } else if (ext->type == EXT_KCFG) { 7737 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 7738 __u64 value = 0; 7739 7740 /* Kconfig externs need actual /proc/config.gz */ 7741 if (str_has_pfx(ext->name, "CONFIG_")) { 7742 need_config = true; 7743 continue; 7744 } 7745 7746 /* Virtual kcfg externs are customly handled by libbpf */ 7747 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7748 value = get_kernel_version(); 7749 if (!value) { 7750 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 7751 return -EINVAL; 7752 } 7753 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 7754 value = kernel_supports(obj, FEAT_BPF_COOKIE); 7755 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 7756 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 7757 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 7758 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 7759 * __kconfig externs, where LINUX_ ones are virtual and filled out 7760 * customly by libbpf (their values don't come from Kconfig). 7761 * If LINUX_xxx variable is not recognized by libbpf, but is marked 7762 * __weak, it defaults to zero value, just like for CONFIG_xxx 7763 * externs. 7764 */ 7765 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 7766 return -EINVAL; 7767 } 7768 7769 err = set_kcfg_value_num(ext, ext_ptr, value); 7770 if (err) 7771 return err; 7772 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 7773 ext->name, (long long)value); 7774 } else { 7775 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 7776 return -EINVAL; 7777 } 7778 } 7779 if (need_config && extra_kconfig) { 7780 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7781 if (err) 7782 return -EINVAL; 7783 need_config = false; 7784 for (i = 0; i < obj->nr_extern; i++) { 7785 ext = &obj->externs[i]; 7786 if (ext->type == EXT_KCFG && !ext->is_set) { 7787 need_config = true; 7788 break; 7789 } 7790 } 7791 } 7792 if (need_config) { 7793 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7794 if (err) 7795 return -EINVAL; 7796 } 7797 if (need_kallsyms) { 7798 err = bpf_object__read_kallsyms_file(obj); 7799 if (err) 7800 return -EINVAL; 7801 } 7802 if (need_vmlinux_btf) { 7803 err = bpf_object__resolve_ksyms_btf_id(obj); 7804 if (err) 7805 return -EINVAL; 7806 } 7807 for (i = 0; i < obj->nr_extern; i++) { 7808 ext = &obj->externs[i]; 7809 7810 if (!ext->is_set && !ext->is_weak) { 7811 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 7812 return -ESRCH; 7813 } else if (!ext->is_set) { 7814 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 7815 ext->name); 7816 } 7817 } 7818 7819 return 0; 7820 } 7821 7822 static void bpf_map_prepare_vdata(const struct bpf_map *map) 7823 { 7824 struct bpf_struct_ops *st_ops; 7825 __u32 i; 7826 7827 st_ops = map->st_ops; 7828 for (i = 0; i < btf_vlen(st_ops->type); i++) { 7829 struct bpf_program *prog = st_ops->progs[i]; 7830 void *kern_data; 7831 int prog_fd; 7832 7833 if (!prog) 7834 continue; 7835 7836 prog_fd = bpf_program__fd(prog); 7837 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 7838 *(unsigned long *)kern_data = prog_fd; 7839 } 7840 } 7841 7842 static int bpf_object_prepare_struct_ops(struct bpf_object *obj) 7843 { 7844 int i; 7845 7846 for (i = 0; i < obj->nr_maps; i++) 7847 if (bpf_map__is_struct_ops(&obj->maps[i])) 7848 bpf_map_prepare_vdata(&obj->maps[i]); 7849 7850 return 0; 7851 } 7852 7853 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 7854 { 7855 int err, i; 7856 7857 if (!obj) 7858 return libbpf_err(-EINVAL); 7859 7860 if (obj->loaded) { 7861 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7862 return libbpf_err(-EINVAL); 7863 } 7864 7865 if (obj->gen_loader) 7866 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 7867 7868 err = bpf_object__probe_loading(obj); 7869 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7870 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7871 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7872 err = err ? : bpf_object__sanitize_maps(obj); 7873 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7874 err = err ? : bpf_object__create_maps(obj); 7875 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 7876 err = err ? : bpf_object__load_progs(obj, extra_log_level); 7877 err = err ? : bpf_object_init_prog_arrays(obj); 7878 err = err ? : bpf_object_prepare_struct_ops(obj); 7879 7880 if (obj->gen_loader) { 7881 /* reset FDs */ 7882 if (obj->btf) 7883 btf__set_fd(obj->btf, -1); 7884 for (i = 0; i < obj->nr_maps; i++) 7885 obj->maps[i].fd = -1; 7886 if (!err) 7887 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 7888 } 7889 7890 /* clean up fd_array */ 7891 zfree(&obj->fd_array); 7892 7893 /* clean up module BTFs */ 7894 for (i = 0; i < obj->btf_module_cnt; i++) { 7895 close(obj->btf_modules[i].fd); 7896 btf__free(obj->btf_modules[i].btf); 7897 free(obj->btf_modules[i].name); 7898 } 7899 free(obj->btf_modules); 7900 7901 /* clean up vmlinux BTF */ 7902 btf__free(obj->btf_vmlinux); 7903 obj->btf_vmlinux = NULL; 7904 7905 obj->loaded = true; /* doesn't matter if successfully or not */ 7906 7907 if (err) 7908 goto out; 7909 7910 return 0; 7911 out: 7912 /* unpin any maps that were auto-pinned during load */ 7913 for (i = 0; i < obj->nr_maps; i++) 7914 if (obj->maps[i].pinned && !obj->maps[i].reused) 7915 bpf_map__unpin(&obj->maps[i], NULL); 7916 7917 bpf_object_unload(obj); 7918 pr_warn("failed to load object '%s'\n", obj->path); 7919 return libbpf_err(err); 7920 } 7921 7922 int bpf_object__load(struct bpf_object *obj) 7923 { 7924 return bpf_object_load(obj, 0, NULL); 7925 } 7926 7927 static int make_parent_dir(const char *path) 7928 { 7929 char *cp, errmsg[STRERR_BUFSIZE]; 7930 char *dname, *dir; 7931 int err = 0; 7932 7933 dname = strdup(path); 7934 if (dname == NULL) 7935 return -ENOMEM; 7936 7937 dir = dirname(dname); 7938 if (mkdir(dir, 0700) && errno != EEXIST) 7939 err = -errno; 7940 7941 free(dname); 7942 if (err) { 7943 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7944 pr_warn("failed to mkdir %s: %s\n", path, cp); 7945 } 7946 return err; 7947 } 7948 7949 static int check_path(const char *path) 7950 { 7951 char *cp, errmsg[STRERR_BUFSIZE]; 7952 struct statfs st_fs; 7953 char *dname, *dir; 7954 int err = 0; 7955 7956 if (path == NULL) 7957 return -EINVAL; 7958 7959 dname = strdup(path); 7960 if (dname == NULL) 7961 return -ENOMEM; 7962 7963 dir = dirname(dname); 7964 if (statfs(dir, &st_fs)) { 7965 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7966 pr_warn("failed to statfs %s: %s\n", dir, cp); 7967 err = -errno; 7968 } 7969 free(dname); 7970 7971 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7972 pr_warn("specified path %s is not on BPF FS\n", path); 7973 err = -EINVAL; 7974 } 7975 7976 return err; 7977 } 7978 7979 int bpf_program__pin(struct bpf_program *prog, const char *path) 7980 { 7981 char *cp, errmsg[STRERR_BUFSIZE]; 7982 int err; 7983 7984 if (prog->fd < 0) { 7985 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 7986 return libbpf_err(-EINVAL); 7987 } 7988 7989 err = make_parent_dir(path); 7990 if (err) 7991 return libbpf_err(err); 7992 7993 err = check_path(path); 7994 if (err) 7995 return libbpf_err(err); 7996 7997 if (bpf_obj_pin(prog->fd, path)) { 7998 err = -errno; 7999 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 8000 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp); 8001 return libbpf_err(err); 8002 } 8003 8004 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 8005 return 0; 8006 } 8007 8008 int bpf_program__unpin(struct bpf_program *prog, const char *path) 8009 { 8010 int err; 8011 8012 if (prog->fd < 0) { 8013 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 8014 return libbpf_err(-EINVAL); 8015 } 8016 8017 err = check_path(path); 8018 if (err) 8019 return libbpf_err(err); 8020 8021 err = unlink(path); 8022 if (err) 8023 return libbpf_err(-errno); 8024 8025 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 8026 return 0; 8027 } 8028 8029 int bpf_map__pin(struct bpf_map *map, const char *path) 8030 { 8031 char *cp, errmsg[STRERR_BUFSIZE]; 8032 int err; 8033 8034 if (map == NULL) { 8035 pr_warn("invalid map pointer\n"); 8036 return libbpf_err(-EINVAL); 8037 } 8038 8039 if (map->pin_path) { 8040 if (path && strcmp(path, map->pin_path)) { 8041 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8042 bpf_map__name(map), map->pin_path, path); 8043 return libbpf_err(-EINVAL); 8044 } else if (map->pinned) { 8045 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8046 bpf_map__name(map), map->pin_path); 8047 return 0; 8048 } 8049 } else { 8050 if (!path) { 8051 pr_warn("missing a path to pin map '%s' at\n", 8052 bpf_map__name(map)); 8053 return libbpf_err(-EINVAL); 8054 } else if (map->pinned) { 8055 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8056 return libbpf_err(-EEXIST); 8057 } 8058 8059 map->pin_path = strdup(path); 8060 if (!map->pin_path) { 8061 err = -errno; 8062 goto out_err; 8063 } 8064 } 8065 8066 err = make_parent_dir(map->pin_path); 8067 if (err) 8068 return libbpf_err(err); 8069 8070 err = check_path(map->pin_path); 8071 if (err) 8072 return libbpf_err(err); 8073 8074 if (bpf_obj_pin(map->fd, map->pin_path)) { 8075 err = -errno; 8076 goto out_err; 8077 } 8078 8079 map->pinned = true; 8080 pr_debug("pinned map '%s'\n", map->pin_path); 8081 8082 return 0; 8083 8084 out_err: 8085 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8086 pr_warn("failed to pin map: %s\n", cp); 8087 return libbpf_err(err); 8088 } 8089 8090 int bpf_map__unpin(struct bpf_map *map, const char *path) 8091 { 8092 int err; 8093 8094 if (map == NULL) { 8095 pr_warn("invalid map pointer\n"); 8096 return libbpf_err(-EINVAL); 8097 } 8098 8099 if (map->pin_path) { 8100 if (path && strcmp(path, map->pin_path)) { 8101 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8102 bpf_map__name(map), map->pin_path, path); 8103 return libbpf_err(-EINVAL); 8104 } 8105 path = map->pin_path; 8106 } else if (!path) { 8107 pr_warn("no path to unpin map '%s' from\n", 8108 bpf_map__name(map)); 8109 return libbpf_err(-EINVAL); 8110 } 8111 8112 err = check_path(path); 8113 if (err) 8114 return libbpf_err(err); 8115 8116 err = unlink(path); 8117 if (err != 0) 8118 return libbpf_err(-errno); 8119 8120 map->pinned = false; 8121 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8122 8123 return 0; 8124 } 8125 8126 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8127 { 8128 char *new = NULL; 8129 8130 if (path) { 8131 new = strdup(path); 8132 if (!new) 8133 return libbpf_err(-errno); 8134 } 8135 8136 free(map->pin_path); 8137 map->pin_path = new; 8138 return 0; 8139 } 8140 8141 __alias(bpf_map__pin_path) 8142 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8143 8144 const char *bpf_map__pin_path(const struct bpf_map *map) 8145 { 8146 return map->pin_path; 8147 } 8148 8149 bool bpf_map__is_pinned(const struct bpf_map *map) 8150 { 8151 return map->pinned; 8152 } 8153 8154 static void sanitize_pin_path(char *s) 8155 { 8156 /* bpffs disallows periods in path names */ 8157 while (*s) { 8158 if (*s == '.') 8159 *s = '_'; 8160 s++; 8161 } 8162 } 8163 8164 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8165 { 8166 struct bpf_map *map; 8167 int err; 8168 8169 if (!obj) 8170 return libbpf_err(-ENOENT); 8171 8172 if (!obj->loaded) { 8173 pr_warn("object not yet loaded; load it first\n"); 8174 return libbpf_err(-ENOENT); 8175 } 8176 8177 bpf_object__for_each_map(map, obj) { 8178 char *pin_path = NULL; 8179 char buf[PATH_MAX]; 8180 8181 if (!map->autocreate) 8182 continue; 8183 8184 if (path) { 8185 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8186 if (err) 8187 goto err_unpin_maps; 8188 sanitize_pin_path(buf); 8189 pin_path = buf; 8190 } else if (!map->pin_path) { 8191 continue; 8192 } 8193 8194 err = bpf_map__pin(map, pin_path); 8195 if (err) 8196 goto err_unpin_maps; 8197 } 8198 8199 return 0; 8200 8201 err_unpin_maps: 8202 while ((map = bpf_object__prev_map(obj, map))) { 8203 if (!map->pin_path) 8204 continue; 8205 8206 bpf_map__unpin(map, NULL); 8207 } 8208 8209 return libbpf_err(err); 8210 } 8211 8212 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8213 { 8214 struct bpf_map *map; 8215 int err; 8216 8217 if (!obj) 8218 return libbpf_err(-ENOENT); 8219 8220 bpf_object__for_each_map(map, obj) { 8221 char *pin_path = NULL; 8222 char buf[PATH_MAX]; 8223 8224 if (path) { 8225 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8226 if (err) 8227 return libbpf_err(err); 8228 sanitize_pin_path(buf); 8229 pin_path = buf; 8230 } else if (!map->pin_path) { 8231 continue; 8232 } 8233 8234 err = bpf_map__unpin(map, pin_path); 8235 if (err) 8236 return libbpf_err(err); 8237 } 8238 8239 return 0; 8240 } 8241 8242 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8243 { 8244 struct bpf_program *prog; 8245 char buf[PATH_MAX]; 8246 int err; 8247 8248 if (!obj) 8249 return libbpf_err(-ENOENT); 8250 8251 if (!obj->loaded) { 8252 pr_warn("object not yet loaded; load it first\n"); 8253 return libbpf_err(-ENOENT); 8254 } 8255 8256 bpf_object__for_each_program(prog, obj) { 8257 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8258 if (err) 8259 goto err_unpin_programs; 8260 8261 err = bpf_program__pin(prog, buf); 8262 if (err) 8263 goto err_unpin_programs; 8264 } 8265 8266 return 0; 8267 8268 err_unpin_programs: 8269 while ((prog = bpf_object__prev_program(obj, prog))) { 8270 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 8271 continue; 8272 8273 bpf_program__unpin(prog, buf); 8274 } 8275 8276 return libbpf_err(err); 8277 } 8278 8279 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8280 { 8281 struct bpf_program *prog; 8282 int err; 8283 8284 if (!obj) 8285 return libbpf_err(-ENOENT); 8286 8287 bpf_object__for_each_program(prog, obj) { 8288 char buf[PATH_MAX]; 8289 8290 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8291 if (err) 8292 return libbpf_err(err); 8293 8294 err = bpf_program__unpin(prog, buf); 8295 if (err) 8296 return libbpf_err(err); 8297 } 8298 8299 return 0; 8300 } 8301 8302 int bpf_object__pin(struct bpf_object *obj, const char *path) 8303 { 8304 int err; 8305 8306 err = bpf_object__pin_maps(obj, path); 8307 if (err) 8308 return libbpf_err(err); 8309 8310 err = bpf_object__pin_programs(obj, path); 8311 if (err) { 8312 bpf_object__unpin_maps(obj, path); 8313 return libbpf_err(err); 8314 } 8315 8316 return 0; 8317 } 8318 8319 static void bpf_map__destroy(struct bpf_map *map) 8320 { 8321 if (map->inner_map) { 8322 bpf_map__destroy(map->inner_map); 8323 zfree(&map->inner_map); 8324 } 8325 8326 zfree(&map->init_slots); 8327 map->init_slots_sz = 0; 8328 8329 if (map->mmaped) { 8330 size_t mmap_sz; 8331 8332 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 8333 munmap(map->mmaped, mmap_sz); 8334 map->mmaped = NULL; 8335 } 8336 8337 if (map->st_ops) { 8338 zfree(&map->st_ops->data); 8339 zfree(&map->st_ops->progs); 8340 zfree(&map->st_ops->kern_func_off); 8341 zfree(&map->st_ops); 8342 } 8343 8344 zfree(&map->name); 8345 zfree(&map->real_name); 8346 zfree(&map->pin_path); 8347 8348 if (map->fd >= 0) 8349 zclose(map->fd); 8350 } 8351 8352 void bpf_object__close(struct bpf_object *obj) 8353 { 8354 size_t i; 8355 8356 if (IS_ERR_OR_NULL(obj)) 8357 return; 8358 8359 usdt_manager_free(obj->usdt_man); 8360 obj->usdt_man = NULL; 8361 8362 bpf_gen__free(obj->gen_loader); 8363 bpf_object__elf_finish(obj); 8364 bpf_object_unload(obj); 8365 btf__free(obj->btf); 8366 btf_ext__free(obj->btf_ext); 8367 8368 for (i = 0; i < obj->nr_maps; i++) 8369 bpf_map__destroy(&obj->maps[i]); 8370 8371 zfree(&obj->btf_custom_path); 8372 zfree(&obj->kconfig); 8373 zfree(&obj->externs); 8374 obj->nr_extern = 0; 8375 8376 zfree(&obj->maps); 8377 obj->nr_maps = 0; 8378 8379 if (obj->programs && obj->nr_programs) { 8380 for (i = 0; i < obj->nr_programs; i++) 8381 bpf_program__exit(&obj->programs[i]); 8382 } 8383 zfree(&obj->programs); 8384 8385 free(obj); 8386 } 8387 8388 const char *bpf_object__name(const struct bpf_object *obj) 8389 { 8390 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8391 } 8392 8393 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8394 { 8395 return obj ? obj->kern_version : 0; 8396 } 8397 8398 struct btf *bpf_object__btf(const struct bpf_object *obj) 8399 { 8400 return obj ? obj->btf : NULL; 8401 } 8402 8403 int bpf_object__btf_fd(const struct bpf_object *obj) 8404 { 8405 return obj->btf ? btf__fd(obj->btf) : -1; 8406 } 8407 8408 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8409 { 8410 if (obj->loaded) 8411 return libbpf_err(-EINVAL); 8412 8413 obj->kern_version = kern_version; 8414 8415 return 0; 8416 } 8417 8418 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8419 { 8420 struct bpf_gen *gen; 8421 8422 if (!opts) 8423 return -EFAULT; 8424 if (!OPTS_VALID(opts, gen_loader_opts)) 8425 return -EINVAL; 8426 gen = calloc(sizeof(*gen), 1); 8427 if (!gen) 8428 return -ENOMEM; 8429 gen->opts = opts; 8430 obj->gen_loader = gen; 8431 return 0; 8432 } 8433 8434 static struct bpf_program * 8435 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8436 bool forward) 8437 { 8438 size_t nr_programs = obj->nr_programs; 8439 ssize_t idx; 8440 8441 if (!nr_programs) 8442 return NULL; 8443 8444 if (!p) 8445 /* Iter from the beginning */ 8446 return forward ? &obj->programs[0] : 8447 &obj->programs[nr_programs - 1]; 8448 8449 if (p->obj != obj) { 8450 pr_warn("error: program handler doesn't match object\n"); 8451 return errno = EINVAL, NULL; 8452 } 8453 8454 idx = (p - obj->programs) + (forward ? 1 : -1); 8455 if (idx >= obj->nr_programs || idx < 0) 8456 return NULL; 8457 return &obj->programs[idx]; 8458 } 8459 8460 struct bpf_program * 8461 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8462 { 8463 struct bpf_program *prog = prev; 8464 8465 do { 8466 prog = __bpf_program__iter(prog, obj, true); 8467 } while (prog && prog_is_subprog(obj, prog)); 8468 8469 return prog; 8470 } 8471 8472 struct bpf_program * 8473 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8474 { 8475 struct bpf_program *prog = next; 8476 8477 do { 8478 prog = __bpf_program__iter(prog, obj, false); 8479 } while (prog && prog_is_subprog(obj, prog)); 8480 8481 return prog; 8482 } 8483 8484 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8485 { 8486 prog->prog_ifindex = ifindex; 8487 } 8488 8489 const char *bpf_program__name(const struct bpf_program *prog) 8490 { 8491 return prog->name; 8492 } 8493 8494 const char *bpf_program__section_name(const struct bpf_program *prog) 8495 { 8496 return prog->sec_name; 8497 } 8498 8499 bool bpf_program__autoload(const struct bpf_program *prog) 8500 { 8501 return prog->autoload; 8502 } 8503 8504 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8505 { 8506 if (prog->obj->loaded) 8507 return libbpf_err(-EINVAL); 8508 8509 prog->autoload = autoload; 8510 return 0; 8511 } 8512 8513 bool bpf_program__autoattach(const struct bpf_program *prog) 8514 { 8515 return prog->autoattach; 8516 } 8517 8518 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 8519 { 8520 prog->autoattach = autoattach; 8521 } 8522 8523 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8524 { 8525 return prog->insns; 8526 } 8527 8528 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8529 { 8530 return prog->insns_cnt; 8531 } 8532 8533 int bpf_program__set_insns(struct bpf_program *prog, 8534 struct bpf_insn *new_insns, size_t new_insn_cnt) 8535 { 8536 struct bpf_insn *insns; 8537 8538 if (prog->obj->loaded) 8539 return -EBUSY; 8540 8541 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 8542 /* NULL is a valid return from reallocarray if the new count is zero */ 8543 if (!insns && new_insn_cnt) { 8544 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 8545 return -ENOMEM; 8546 } 8547 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 8548 8549 prog->insns = insns; 8550 prog->insns_cnt = new_insn_cnt; 8551 return 0; 8552 } 8553 8554 int bpf_program__fd(const struct bpf_program *prog) 8555 { 8556 if (!prog) 8557 return libbpf_err(-EINVAL); 8558 8559 if (prog->fd < 0) 8560 return libbpf_err(-ENOENT); 8561 8562 return prog->fd; 8563 } 8564 8565 __alias(bpf_program__type) 8566 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 8567 8568 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 8569 { 8570 return prog->type; 8571 } 8572 8573 static size_t custom_sec_def_cnt; 8574 static struct bpf_sec_def *custom_sec_defs; 8575 static struct bpf_sec_def custom_fallback_def; 8576 static bool has_custom_fallback_def; 8577 static int last_custom_sec_def_handler_id; 8578 8579 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8580 { 8581 if (prog->obj->loaded) 8582 return libbpf_err(-EBUSY); 8583 8584 /* if type is not changed, do nothing */ 8585 if (prog->type == type) 8586 return 0; 8587 8588 prog->type = type; 8589 8590 /* If a program type was changed, we need to reset associated SEC() 8591 * handler, as it will be invalid now. The only exception is a generic 8592 * fallback handler, which by definition is program type-agnostic and 8593 * is a catch-all custom handler, optionally set by the application, 8594 * so should be able to handle any type of BPF program. 8595 */ 8596 if (prog->sec_def != &custom_fallback_def) 8597 prog->sec_def = NULL; 8598 return 0; 8599 } 8600 8601 __alias(bpf_program__expected_attach_type) 8602 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 8603 8604 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 8605 { 8606 return prog->expected_attach_type; 8607 } 8608 8609 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 8610 enum bpf_attach_type type) 8611 { 8612 if (prog->obj->loaded) 8613 return libbpf_err(-EBUSY); 8614 8615 prog->expected_attach_type = type; 8616 return 0; 8617 } 8618 8619 __u32 bpf_program__flags(const struct bpf_program *prog) 8620 { 8621 return prog->prog_flags; 8622 } 8623 8624 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 8625 { 8626 if (prog->obj->loaded) 8627 return libbpf_err(-EBUSY); 8628 8629 prog->prog_flags = flags; 8630 return 0; 8631 } 8632 8633 __u32 bpf_program__log_level(const struct bpf_program *prog) 8634 { 8635 return prog->log_level; 8636 } 8637 8638 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 8639 { 8640 if (prog->obj->loaded) 8641 return libbpf_err(-EBUSY); 8642 8643 prog->log_level = log_level; 8644 return 0; 8645 } 8646 8647 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 8648 { 8649 *log_size = prog->log_size; 8650 return prog->log_buf; 8651 } 8652 8653 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 8654 { 8655 if (log_size && !log_buf) 8656 return -EINVAL; 8657 if (prog->log_size > UINT_MAX) 8658 return -EINVAL; 8659 if (prog->obj->loaded) 8660 return -EBUSY; 8661 8662 prog->log_buf = log_buf; 8663 prog->log_size = log_size; 8664 return 0; 8665 } 8666 8667 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 8668 .sec = (char *)sec_pfx, \ 8669 .prog_type = BPF_PROG_TYPE_##ptype, \ 8670 .expected_attach_type = atype, \ 8671 .cookie = (long)(flags), \ 8672 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 8673 __VA_ARGS__ \ 8674 } 8675 8676 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8677 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8678 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8679 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8680 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8681 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8682 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8683 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8684 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8685 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8686 8687 static const struct bpf_sec_def section_defs[] = { 8688 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 8689 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 8690 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 8691 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8692 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8693 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8694 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8695 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8696 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8697 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8698 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8699 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8700 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8701 SEC_DEF("usdt+", KPROBE, 0, SEC_NONE, attach_usdt), 8702 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */ 8703 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */ 8704 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), 8705 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), 8706 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 8707 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 8708 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 8709 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8710 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8711 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8712 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8713 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8714 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8715 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 8716 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 8717 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 8718 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 8719 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8720 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8721 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8722 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 8723 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 8724 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 8725 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 8726 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 8727 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 8728 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 8729 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 8730 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 8731 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 8732 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 8733 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 8734 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 8735 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 8736 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 8737 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 8738 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 8739 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 8740 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 8741 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 8742 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 8743 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 8744 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 8745 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 8746 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 8747 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 8748 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 8749 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 8750 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 8751 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 8752 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 8753 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 8754 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 8755 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 8756 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 8757 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 8758 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 8759 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 8760 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 8761 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 8762 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 8763 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 8764 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 8765 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 8766 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 8767 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 8768 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 8769 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 8770 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 8771 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 8772 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE), 8773 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 8774 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE), 8775 }; 8776 8777 int libbpf_register_prog_handler(const char *sec, 8778 enum bpf_prog_type prog_type, 8779 enum bpf_attach_type exp_attach_type, 8780 const struct libbpf_prog_handler_opts *opts) 8781 { 8782 struct bpf_sec_def *sec_def; 8783 8784 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 8785 return libbpf_err(-EINVAL); 8786 8787 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 8788 return libbpf_err(-E2BIG); 8789 8790 if (sec) { 8791 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 8792 sizeof(*sec_def)); 8793 if (!sec_def) 8794 return libbpf_err(-ENOMEM); 8795 8796 custom_sec_defs = sec_def; 8797 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 8798 } else { 8799 if (has_custom_fallback_def) 8800 return libbpf_err(-EBUSY); 8801 8802 sec_def = &custom_fallback_def; 8803 } 8804 8805 sec_def->sec = sec ? strdup(sec) : NULL; 8806 if (sec && !sec_def->sec) 8807 return libbpf_err(-ENOMEM); 8808 8809 sec_def->prog_type = prog_type; 8810 sec_def->expected_attach_type = exp_attach_type; 8811 sec_def->cookie = OPTS_GET(opts, cookie, 0); 8812 8813 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 8814 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 8815 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 8816 8817 sec_def->handler_id = ++last_custom_sec_def_handler_id; 8818 8819 if (sec) 8820 custom_sec_def_cnt++; 8821 else 8822 has_custom_fallback_def = true; 8823 8824 return sec_def->handler_id; 8825 } 8826 8827 int libbpf_unregister_prog_handler(int handler_id) 8828 { 8829 struct bpf_sec_def *sec_defs; 8830 int i; 8831 8832 if (handler_id <= 0) 8833 return libbpf_err(-EINVAL); 8834 8835 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 8836 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 8837 has_custom_fallback_def = false; 8838 return 0; 8839 } 8840 8841 for (i = 0; i < custom_sec_def_cnt; i++) { 8842 if (custom_sec_defs[i].handler_id == handler_id) 8843 break; 8844 } 8845 8846 if (i == custom_sec_def_cnt) 8847 return libbpf_err(-ENOENT); 8848 8849 free(custom_sec_defs[i].sec); 8850 for (i = i + 1; i < custom_sec_def_cnt; i++) 8851 custom_sec_defs[i - 1] = custom_sec_defs[i]; 8852 custom_sec_def_cnt--; 8853 8854 /* try to shrink the array, but it's ok if we couldn't */ 8855 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 8856 /* if new count is zero, reallocarray can return a valid NULL result; 8857 * in this case the previous pointer will be freed, so we *have to* 8858 * reassign old pointer to the new value (even if it's NULL) 8859 */ 8860 if (sec_defs || custom_sec_def_cnt == 0) 8861 custom_sec_defs = sec_defs; 8862 8863 return 0; 8864 } 8865 8866 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 8867 { 8868 size_t len = strlen(sec_def->sec); 8869 8870 /* "type/" always has to have proper SEC("type/extras") form */ 8871 if (sec_def->sec[len - 1] == '/') { 8872 if (str_has_pfx(sec_name, sec_def->sec)) 8873 return true; 8874 return false; 8875 } 8876 8877 /* "type+" means it can be either exact SEC("type") or 8878 * well-formed SEC("type/extras") with proper '/' separator 8879 */ 8880 if (sec_def->sec[len - 1] == '+') { 8881 len--; 8882 /* not even a prefix */ 8883 if (strncmp(sec_name, sec_def->sec, len) != 0) 8884 return false; 8885 /* exact match or has '/' separator */ 8886 if (sec_name[len] == '\0' || sec_name[len] == '/') 8887 return true; 8888 return false; 8889 } 8890 8891 return strcmp(sec_name, sec_def->sec) == 0; 8892 } 8893 8894 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8895 { 8896 const struct bpf_sec_def *sec_def; 8897 int i, n; 8898 8899 n = custom_sec_def_cnt; 8900 for (i = 0; i < n; i++) { 8901 sec_def = &custom_sec_defs[i]; 8902 if (sec_def_matches(sec_def, sec_name)) 8903 return sec_def; 8904 } 8905 8906 n = ARRAY_SIZE(section_defs); 8907 for (i = 0; i < n; i++) { 8908 sec_def = §ion_defs[i]; 8909 if (sec_def_matches(sec_def, sec_name)) 8910 return sec_def; 8911 } 8912 8913 if (has_custom_fallback_def) 8914 return &custom_fallback_def; 8915 8916 return NULL; 8917 } 8918 8919 #define MAX_TYPE_NAME_SIZE 32 8920 8921 static char *libbpf_get_type_names(bool attach_type) 8922 { 8923 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8924 char *buf; 8925 8926 buf = malloc(len); 8927 if (!buf) 8928 return NULL; 8929 8930 buf[0] = '\0'; 8931 /* Forge string buf with all available names */ 8932 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8933 const struct bpf_sec_def *sec_def = §ion_defs[i]; 8934 8935 if (attach_type) { 8936 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 8937 continue; 8938 8939 if (!(sec_def->cookie & SEC_ATTACHABLE)) 8940 continue; 8941 } 8942 8943 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8944 free(buf); 8945 return NULL; 8946 } 8947 strcat(buf, " "); 8948 strcat(buf, section_defs[i].sec); 8949 } 8950 8951 return buf; 8952 } 8953 8954 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8955 enum bpf_attach_type *expected_attach_type) 8956 { 8957 const struct bpf_sec_def *sec_def; 8958 char *type_names; 8959 8960 if (!name) 8961 return libbpf_err(-EINVAL); 8962 8963 sec_def = find_sec_def(name); 8964 if (sec_def) { 8965 *prog_type = sec_def->prog_type; 8966 *expected_attach_type = sec_def->expected_attach_type; 8967 return 0; 8968 } 8969 8970 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8971 type_names = libbpf_get_type_names(false); 8972 if (type_names != NULL) { 8973 pr_debug("supported section(type) names are:%s\n", type_names); 8974 free(type_names); 8975 } 8976 8977 return libbpf_err(-ESRCH); 8978 } 8979 8980 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 8981 { 8982 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 8983 return NULL; 8984 8985 return attach_type_name[t]; 8986 } 8987 8988 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 8989 { 8990 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 8991 return NULL; 8992 8993 return link_type_name[t]; 8994 } 8995 8996 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 8997 { 8998 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 8999 return NULL; 9000 9001 return map_type_name[t]; 9002 } 9003 9004 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 9005 { 9006 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 9007 return NULL; 9008 9009 return prog_type_name[t]; 9010 } 9011 9012 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 9013 int sec_idx, 9014 size_t offset) 9015 { 9016 struct bpf_map *map; 9017 size_t i; 9018 9019 for (i = 0; i < obj->nr_maps; i++) { 9020 map = &obj->maps[i]; 9021 if (!bpf_map__is_struct_ops(map)) 9022 continue; 9023 if (map->sec_idx == sec_idx && 9024 map->sec_offset <= offset && 9025 offset - map->sec_offset < map->def.value_size) 9026 return map; 9027 } 9028 9029 return NULL; 9030 } 9031 9032 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 9033 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9034 Elf64_Shdr *shdr, Elf_Data *data) 9035 { 9036 const struct btf_member *member; 9037 struct bpf_struct_ops *st_ops; 9038 struct bpf_program *prog; 9039 unsigned int shdr_idx; 9040 const struct btf *btf; 9041 struct bpf_map *map; 9042 unsigned int moff, insn_idx; 9043 const char *name; 9044 __u32 member_idx; 9045 Elf64_Sym *sym; 9046 Elf64_Rel *rel; 9047 int i, nrels; 9048 9049 btf = obj->btf; 9050 nrels = shdr->sh_size / shdr->sh_entsize; 9051 for (i = 0; i < nrels; i++) { 9052 rel = elf_rel_by_idx(data, i); 9053 if (!rel) { 9054 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9055 return -LIBBPF_ERRNO__FORMAT; 9056 } 9057 9058 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 9059 if (!sym) { 9060 pr_warn("struct_ops reloc: symbol %zx not found\n", 9061 (size_t)ELF64_R_SYM(rel->r_info)); 9062 return -LIBBPF_ERRNO__FORMAT; 9063 } 9064 9065 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 9066 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset); 9067 if (!map) { 9068 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 9069 (size_t)rel->r_offset); 9070 return -EINVAL; 9071 } 9072 9073 moff = rel->r_offset - map->sec_offset; 9074 shdr_idx = sym->st_shndx; 9075 st_ops = map->st_ops; 9076 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9077 map->name, 9078 (long long)(rel->r_info >> 32), 9079 (long long)sym->st_value, 9080 shdr_idx, (size_t)rel->r_offset, 9081 map->sec_offset, sym->st_name, name); 9082 9083 if (shdr_idx >= SHN_LORESERVE) { 9084 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9085 map->name, (size_t)rel->r_offset, shdr_idx); 9086 return -LIBBPF_ERRNO__RELOC; 9087 } 9088 if (sym->st_value % BPF_INSN_SZ) { 9089 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9090 map->name, (unsigned long long)sym->st_value); 9091 return -LIBBPF_ERRNO__FORMAT; 9092 } 9093 insn_idx = sym->st_value / BPF_INSN_SZ; 9094 9095 member = find_member_by_offset(st_ops->type, moff * 8); 9096 if (!member) { 9097 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9098 map->name, moff); 9099 return -EINVAL; 9100 } 9101 member_idx = member - btf_members(st_ops->type); 9102 name = btf__name_by_offset(btf, member->name_off); 9103 9104 if (!resolve_func_ptr(btf, member->type, NULL)) { 9105 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9106 map->name, name); 9107 return -EINVAL; 9108 } 9109 9110 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9111 if (!prog) { 9112 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9113 map->name, shdr_idx, name); 9114 return -EINVAL; 9115 } 9116 9117 /* prevent the use of BPF prog with invalid type */ 9118 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9119 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9120 map->name, prog->name); 9121 return -EINVAL; 9122 } 9123 9124 /* if we haven't yet processed this BPF program, record proper 9125 * attach_btf_id and member_idx 9126 */ 9127 if (!prog->attach_btf_id) { 9128 prog->attach_btf_id = st_ops->type_id; 9129 prog->expected_attach_type = member_idx; 9130 } 9131 9132 /* struct_ops BPF prog can be re-used between multiple 9133 * .struct_ops & .struct_ops.link as long as it's the 9134 * same struct_ops struct definition and the same 9135 * function pointer field 9136 */ 9137 if (prog->attach_btf_id != st_ops->type_id || 9138 prog->expected_attach_type != member_idx) { 9139 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 9140 map->name, prog->name, prog->sec_name, prog->type, 9141 prog->attach_btf_id, prog->expected_attach_type, name); 9142 return -EINVAL; 9143 } 9144 9145 st_ops->progs[member_idx] = prog; 9146 } 9147 9148 return 0; 9149 } 9150 9151 #define BTF_TRACE_PREFIX "btf_trace_" 9152 #define BTF_LSM_PREFIX "bpf_lsm_" 9153 #define BTF_ITER_PREFIX "bpf_iter_" 9154 #define BTF_MAX_NAME_SIZE 128 9155 9156 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9157 const char **prefix, int *kind) 9158 { 9159 switch (attach_type) { 9160 case BPF_TRACE_RAW_TP: 9161 *prefix = BTF_TRACE_PREFIX; 9162 *kind = BTF_KIND_TYPEDEF; 9163 break; 9164 case BPF_LSM_MAC: 9165 case BPF_LSM_CGROUP: 9166 *prefix = BTF_LSM_PREFIX; 9167 *kind = BTF_KIND_FUNC; 9168 break; 9169 case BPF_TRACE_ITER: 9170 *prefix = BTF_ITER_PREFIX; 9171 *kind = BTF_KIND_FUNC; 9172 break; 9173 default: 9174 *prefix = ""; 9175 *kind = BTF_KIND_FUNC; 9176 } 9177 } 9178 9179 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9180 const char *name, __u32 kind) 9181 { 9182 char btf_type_name[BTF_MAX_NAME_SIZE]; 9183 int ret; 9184 9185 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9186 "%s%s", prefix, name); 9187 /* snprintf returns the number of characters written excluding the 9188 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9189 * indicates truncation. 9190 */ 9191 if (ret < 0 || ret >= sizeof(btf_type_name)) 9192 return -ENAMETOOLONG; 9193 return btf__find_by_name_kind(btf, btf_type_name, kind); 9194 } 9195 9196 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9197 enum bpf_attach_type attach_type) 9198 { 9199 const char *prefix; 9200 int kind; 9201 9202 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9203 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9204 } 9205 9206 int libbpf_find_vmlinux_btf_id(const char *name, 9207 enum bpf_attach_type attach_type) 9208 { 9209 struct btf *btf; 9210 int err; 9211 9212 btf = btf__load_vmlinux_btf(); 9213 err = libbpf_get_error(btf); 9214 if (err) { 9215 pr_warn("vmlinux BTF is not found\n"); 9216 return libbpf_err(err); 9217 } 9218 9219 err = find_attach_btf_id(btf, name, attach_type); 9220 if (err <= 0) 9221 pr_warn("%s is not found in vmlinux BTF\n", name); 9222 9223 btf__free(btf); 9224 return libbpf_err(err); 9225 } 9226 9227 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9228 { 9229 struct bpf_prog_info info; 9230 __u32 info_len = sizeof(info); 9231 struct btf *btf; 9232 int err; 9233 9234 memset(&info, 0, info_len); 9235 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len); 9236 if (err) { 9237 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n", 9238 attach_prog_fd, err); 9239 return err; 9240 } 9241 9242 err = -EINVAL; 9243 if (!info.btf_id) { 9244 pr_warn("The target program doesn't have BTF\n"); 9245 goto out; 9246 } 9247 btf = btf__load_from_kernel_by_id(info.btf_id); 9248 err = libbpf_get_error(btf); 9249 if (err) { 9250 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9251 goto out; 9252 } 9253 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9254 btf__free(btf); 9255 if (err <= 0) { 9256 pr_warn("%s is not found in prog's BTF\n", name); 9257 goto out; 9258 } 9259 out: 9260 return err; 9261 } 9262 9263 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9264 enum bpf_attach_type attach_type, 9265 int *btf_obj_fd, int *btf_type_id) 9266 { 9267 int ret, i; 9268 9269 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9270 if (ret > 0) { 9271 *btf_obj_fd = 0; /* vmlinux BTF */ 9272 *btf_type_id = ret; 9273 return 0; 9274 } 9275 if (ret != -ENOENT) 9276 return ret; 9277 9278 ret = load_module_btfs(obj); 9279 if (ret) 9280 return ret; 9281 9282 for (i = 0; i < obj->btf_module_cnt; i++) { 9283 const struct module_btf *mod = &obj->btf_modules[i]; 9284 9285 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9286 if (ret > 0) { 9287 *btf_obj_fd = mod->fd; 9288 *btf_type_id = ret; 9289 return 0; 9290 } 9291 if (ret == -ENOENT) 9292 continue; 9293 9294 return ret; 9295 } 9296 9297 return -ESRCH; 9298 } 9299 9300 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9301 int *btf_obj_fd, int *btf_type_id) 9302 { 9303 enum bpf_attach_type attach_type = prog->expected_attach_type; 9304 __u32 attach_prog_fd = prog->attach_prog_fd; 9305 int err = 0; 9306 9307 /* BPF program's BTF ID */ 9308 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 9309 if (!attach_prog_fd) { 9310 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 9311 return -EINVAL; 9312 } 9313 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9314 if (err < 0) { 9315 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9316 prog->name, attach_prog_fd, attach_name, err); 9317 return err; 9318 } 9319 *btf_obj_fd = 0; 9320 *btf_type_id = err; 9321 return 0; 9322 } 9323 9324 /* kernel/module BTF ID */ 9325 if (prog->obj->gen_loader) { 9326 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9327 *btf_obj_fd = 0; 9328 *btf_type_id = 1; 9329 } else { 9330 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9331 } 9332 if (err) { 9333 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n", 9334 prog->name, attach_name, err); 9335 return err; 9336 } 9337 return 0; 9338 } 9339 9340 int libbpf_attach_type_by_name(const char *name, 9341 enum bpf_attach_type *attach_type) 9342 { 9343 char *type_names; 9344 const struct bpf_sec_def *sec_def; 9345 9346 if (!name) 9347 return libbpf_err(-EINVAL); 9348 9349 sec_def = find_sec_def(name); 9350 if (!sec_def) { 9351 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9352 type_names = libbpf_get_type_names(true); 9353 if (type_names != NULL) { 9354 pr_debug("attachable section(type) names are:%s\n", type_names); 9355 free(type_names); 9356 } 9357 9358 return libbpf_err(-EINVAL); 9359 } 9360 9361 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9362 return libbpf_err(-EINVAL); 9363 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9364 return libbpf_err(-EINVAL); 9365 9366 *attach_type = sec_def->expected_attach_type; 9367 return 0; 9368 } 9369 9370 int bpf_map__fd(const struct bpf_map *map) 9371 { 9372 return map ? map->fd : libbpf_err(-EINVAL); 9373 } 9374 9375 static bool map_uses_real_name(const struct bpf_map *map) 9376 { 9377 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9378 * their user-visible name differs from kernel-visible name. Users see 9379 * such map's corresponding ELF section name as a map name. 9380 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9381 * maps to know which name has to be returned to the user. 9382 */ 9383 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9384 return true; 9385 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9386 return true; 9387 return false; 9388 } 9389 9390 const char *bpf_map__name(const struct bpf_map *map) 9391 { 9392 if (!map) 9393 return NULL; 9394 9395 if (map_uses_real_name(map)) 9396 return map->real_name; 9397 9398 return map->name; 9399 } 9400 9401 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9402 { 9403 return map->def.type; 9404 } 9405 9406 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9407 { 9408 if (map->fd >= 0) 9409 return libbpf_err(-EBUSY); 9410 map->def.type = type; 9411 return 0; 9412 } 9413 9414 __u32 bpf_map__map_flags(const struct bpf_map *map) 9415 { 9416 return map->def.map_flags; 9417 } 9418 9419 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9420 { 9421 if (map->fd >= 0) 9422 return libbpf_err(-EBUSY); 9423 map->def.map_flags = flags; 9424 return 0; 9425 } 9426 9427 __u64 bpf_map__map_extra(const struct bpf_map *map) 9428 { 9429 return map->map_extra; 9430 } 9431 9432 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9433 { 9434 if (map->fd >= 0) 9435 return libbpf_err(-EBUSY); 9436 map->map_extra = map_extra; 9437 return 0; 9438 } 9439 9440 __u32 bpf_map__numa_node(const struct bpf_map *map) 9441 { 9442 return map->numa_node; 9443 } 9444 9445 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9446 { 9447 if (map->fd >= 0) 9448 return libbpf_err(-EBUSY); 9449 map->numa_node = numa_node; 9450 return 0; 9451 } 9452 9453 __u32 bpf_map__key_size(const struct bpf_map *map) 9454 { 9455 return map->def.key_size; 9456 } 9457 9458 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9459 { 9460 if (map->fd >= 0) 9461 return libbpf_err(-EBUSY); 9462 map->def.key_size = size; 9463 return 0; 9464 } 9465 9466 __u32 bpf_map__value_size(const struct bpf_map *map) 9467 { 9468 return map->def.value_size; 9469 } 9470 9471 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size) 9472 { 9473 struct btf *btf; 9474 struct btf_type *datasec_type, *var_type; 9475 struct btf_var_secinfo *var; 9476 const struct btf_type *array_type; 9477 const struct btf_array *array; 9478 int vlen, element_sz, new_array_id; 9479 __u32 nr_elements; 9480 9481 /* check btf existence */ 9482 btf = bpf_object__btf(map->obj); 9483 if (!btf) 9484 return -ENOENT; 9485 9486 /* verify map is datasec */ 9487 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map)); 9488 if (!btf_is_datasec(datasec_type)) { 9489 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n", 9490 bpf_map__name(map)); 9491 return -EINVAL; 9492 } 9493 9494 /* verify datasec has at least one var */ 9495 vlen = btf_vlen(datasec_type); 9496 if (vlen == 0) { 9497 pr_warn("map '%s': cannot be resized, map value datasec is empty\n", 9498 bpf_map__name(map)); 9499 return -EINVAL; 9500 } 9501 9502 /* verify last var in the datasec is an array */ 9503 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 9504 var_type = btf_type_by_id(btf, var->type); 9505 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL); 9506 if (!btf_is_array(array_type)) { 9507 pr_warn("map '%s': cannot be resized, last var must be an array\n", 9508 bpf_map__name(map)); 9509 return -EINVAL; 9510 } 9511 9512 /* verify request size aligns with array */ 9513 array = btf_array(array_type); 9514 element_sz = btf__resolve_size(btf, array->type); 9515 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) { 9516 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n", 9517 bpf_map__name(map), element_sz, size); 9518 return -EINVAL; 9519 } 9520 9521 /* create a new array based on the existing array, but with new length */ 9522 nr_elements = (size - var->offset) / element_sz; 9523 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements); 9524 if (new_array_id < 0) 9525 return new_array_id; 9526 9527 /* adding a new btf type invalidates existing pointers to btf objects, 9528 * so refresh pointers before proceeding 9529 */ 9530 datasec_type = btf_type_by_id(btf, map->btf_value_type_id); 9531 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 9532 var_type = btf_type_by_id(btf, var->type); 9533 9534 /* finally update btf info */ 9535 datasec_type->size = size; 9536 var->size = size - var->offset; 9537 var_type->type = new_array_id; 9538 9539 return 0; 9540 } 9541 9542 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9543 { 9544 if (map->fd >= 0) 9545 return libbpf_err(-EBUSY); 9546 9547 if (map->mmaped) { 9548 int err; 9549 size_t mmap_old_sz, mmap_new_sz; 9550 9551 mmap_old_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 9552 mmap_new_sz = bpf_map_mmap_sz(size, map->def.max_entries); 9553 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz); 9554 if (err) { 9555 pr_warn("map '%s': failed to resize memory-mapped region: %d\n", 9556 bpf_map__name(map), err); 9557 return err; 9558 } 9559 err = map_btf_datasec_resize(map, size); 9560 if (err && err != -ENOENT) { 9561 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n", 9562 bpf_map__name(map), err); 9563 map->btf_value_type_id = 0; 9564 map->btf_key_type_id = 0; 9565 } 9566 } 9567 9568 map->def.value_size = size; 9569 return 0; 9570 } 9571 9572 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9573 { 9574 return map ? map->btf_key_type_id : 0; 9575 } 9576 9577 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9578 { 9579 return map ? map->btf_value_type_id : 0; 9580 } 9581 9582 int bpf_map__set_initial_value(struct bpf_map *map, 9583 const void *data, size_t size) 9584 { 9585 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9586 size != map->def.value_size || map->fd >= 0) 9587 return libbpf_err(-EINVAL); 9588 9589 memcpy(map->mmaped, data, size); 9590 return 0; 9591 } 9592 9593 void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9594 { 9595 if (!map->mmaped) 9596 return NULL; 9597 *psize = map->def.value_size; 9598 return map->mmaped; 9599 } 9600 9601 bool bpf_map__is_internal(const struct bpf_map *map) 9602 { 9603 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9604 } 9605 9606 __u32 bpf_map__ifindex(const struct bpf_map *map) 9607 { 9608 return map->map_ifindex; 9609 } 9610 9611 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9612 { 9613 if (map->fd >= 0) 9614 return libbpf_err(-EBUSY); 9615 map->map_ifindex = ifindex; 9616 return 0; 9617 } 9618 9619 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9620 { 9621 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9622 pr_warn("error: unsupported map type\n"); 9623 return libbpf_err(-EINVAL); 9624 } 9625 if (map->inner_map_fd != -1) { 9626 pr_warn("error: inner_map_fd already specified\n"); 9627 return libbpf_err(-EINVAL); 9628 } 9629 if (map->inner_map) { 9630 bpf_map__destroy(map->inner_map); 9631 zfree(&map->inner_map); 9632 } 9633 map->inner_map_fd = fd; 9634 return 0; 9635 } 9636 9637 static struct bpf_map * 9638 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9639 { 9640 ssize_t idx; 9641 struct bpf_map *s, *e; 9642 9643 if (!obj || !obj->maps) 9644 return errno = EINVAL, NULL; 9645 9646 s = obj->maps; 9647 e = obj->maps + obj->nr_maps; 9648 9649 if ((m < s) || (m >= e)) { 9650 pr_warn("error in %s: map handler doesn't belong to object\n", 9651 __func__); 9652 return errno = EINVAL, NULL; 9653 } 9654 9655 idx = (m - obj->maps) + i; 9656 if (idx >= obj->nr_maps || idx < 0) 9657 return NULL; 9658 return &obj->maps[idx]; 9659 } 9660 9661 struct bpf_map * 9662 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 9663 { 9664 if (prev == NULL) 9665 return obj->maps; 9666 9667 return __bpf_map__iter(prev, obj, 1); 9668 } 9669 9670 struct bpf_map * 9671 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 9672 { 9673 if (next == NULL) { 9674 if (!obj->nr_maps) 9675 return NULL; 9676 return obj->maps + obj->nr_maps - 1; 9677 } 9678 9679 return __bpf_map__iter(next, obj, -1); 9680 } 9681 9682 struct bpf_map * 9683 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9684 { 9685 struct bpf_map *pos; 9686 9687 bpf_object__for_each_map(pos, obj) { 9688 /* if it's a special internal map name (which always starts 9689 * with dot) then check if that special name matches the 9690 * real map name (ELF section name) 9691 */ 9692 if (name[0] == '.') { 9693 if (pos->real_name && strcmp(pos->real_name, name) == 0) 9694 return pos; 9695 continue; 9696 } 9697 /* otherwise map name has to be an exact match */ 9698 if (map_uses_real_name(pos)) { 9699 if (strcmp(pos->real_name, name) == 0) 9700 return pos; 9701 continue; 9702 } 9703 if (strcmp(pos->name, name) == 0) 9704 return pos; 9705 } 9706 return errno = ENOENT, NULL; 9707 } 9708 9709 int 9710 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9711 { 9712 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9713 } 9714 9715 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 9716 size_t value_sz, bool check_value_sz) 9717 { 9718 if (map->fd <= 0) 9719 return -ENOENT; 9720 9721 if (map->def.key_size != key_sz) { 9722 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 9723 map->name, key_sz, map->def.key_size); 9724 return -EINVAL; 9725 } 9726 9727 if (!check_value_sz) 9728 return 0; 9729 9730 switch (map->def.type) { 9731 case BPF_MAP_TYPE_PERCPU_ARRAY: 9732 case BPF_MAP_TYPE_PERCPU_HASH: 9733 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 9734 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 9735 int num_cpu = libbpf_num_possible_cpus(); 9736 size_t elem_sz = roundup(map->def.value_size, 8); 9737 9738 if (value_sz != num_cpu * elem_sz) { 9739 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 9740 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 9741 return -EINVAL; 9742 } 9743 break; 9744 } 9745 default: 9746 if (map->def.value_size != value_sz) { 9747 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 9748 map->name, value_sz, map->def.value_size); 9749 return -EINVAL; 9750 } 9751 break; 9752 } 9753 return 0; 9754 } 9755 9756 int bpf_map__lookup_elem(const struct bpf_map *map, 9757 const void *key, size_t key_sz, 9758 void *value, size_t value_sz, __u64 flags) 9759 { 9760 int err; 9761 9762 err = validate_map_op(map, key_sz, value_sz, true); 9763 if (err) 9764 return libbpf_err(err); 9765 9766 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 9767 } 9768 9769 int bpf_map__update_elem(const struct bpf_map *map, 9770 const void *key, size_t key_sz, 9771 const void *value, size_t value_sz, __u64 flags) 9772 { 9773 int err; 9774 9775 err = validate_map_op(map, key_sz, value_sz, true); 9776 if (err) 9777 return libbpf_err(err); 9778 9779 return bpf_map_update_elem(map->fd, key, value, flags); 9780 } 9781 9782 int bpf_map__delete_elem(const struct bpf_map *map, 9783 const void *key, size_t key_sz, __u64 flags) 9784 { 9785 int err; 9786 9787 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 9788 if (err) 9789 return libbpf_err(err); 9790 9791 return bpf_map_delete_elem_flags(map->fd, key, flags); 9792 } 9793 9794 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 9795 const void *key, size_t key_sz, 9796 void *value, size_t value_sz, __u64 flags) 9797 { 9798 int err; 9799 9800 err = validate_map_op(map, key_sz, value_sz, true); 9801 if (err) 9802 return libbpf_err(err); 9803 9804 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 9805 } 9806 9807 int bpf_map__get_next_key(const struct bpf_map *map, 9808 const void *cur_key, void *next_key, size_t key_sz) 9809 { 9810 int err; 9811 9812 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 9813 if (err) 9814 return libbpf_err(err); 9815 9816 return bpf_map_get_next_key(map->fd, cur_key, next_key); 9817 } 9818 9819 long libbpf_get_error(const void *ptr) 9820 { 9821 if (!IS_ERR_OR_NULL(ptr)) 9822 return 0; 9823 9824 if (IS_ERR(ptr)) 9825 errno = -PTR_ERR(ptr); 9826 9827 /* If ptr == NULL, then errno should be already set by the failing 9828 * API, because libbpf never returns NULL on success and it now always 9829 * sets errno on error. So no extra errno handling for ptr == NULL 9830 * case. 9831 */ 9832 return -errno; 9833 } 9834 9835 /* Replace link's underlying BPF program with the new one */ 9836 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9837 { 9838 int ret; 9839 9840 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9841 return libbpf_err_errno(ret); 9842 } 9843 9844 /* Release "ownership" of underlying BPF resource (typically, BPF program 9845 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9846 * link, when destructed through bpf_link__destroy() call won't attempt to 9847 * detach/unregisted that BPF resource. This is useful in situations where, 9848 * say, attached BPF program has to outlive userspace program that attached it 9849 * in the system. Depending on type of BPF program, though, there might be 9850 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9851 * exit of userspace program doesn't trigger automatic detachment and clean up 9852 * inside the kernel. 9853 */ 9854 void bpf_link__disconnect(struct bpf_link *link) 9855 { 9856 link->disconnected = true; 9857 } 9858 9859 int bpf_link__destroy(struct bpf_link *link) 9860 { 9861 int err = 0; 9862 9863 if (IS_ERR_OR_NULL(link)) 9864 return 0; 9865 9866 if (!link->disconnected && link->detach) 9867 err = link->detach(link); 9868 if (link->pin_path) 9869 free(link->pin_path); 9870 if (link->dealloc) 9871 link->dealloc(link); 9872 else 9873 free(link); 9874 9875 return libbpf_err(err); 9876 } 9877 9878 int bpf_link__fd(const struct bpf_link *link) 9879 { 9880 return link->fd; 9881 } 9882 9883 const char *bpf_link__pin_path(const struct bpf_link *link) 9884 { 9885 return link->pin_path; 9886 } 9887 9888 static int bpf_link__detach_fd(struct bpf_link *link) 9889 { 9890 return libbpf_err_errno(close(link->fd)); 9891 } 9892 9893 struct bpf_link *bpf_link__open(const char *path) 9894 { 9895 struct bpf_link *link; 9896 int fd; 9897 9898 fd = bpf_obj_get(path); 9899 if (fd < 0) { 9900 fd = -errno; 9901 pr_warn("failed to open link at %s: %d\n", path, fd); 9902 return libbpf_err_ptr(fd); 9903 } 9904 9905 link = calloc(1, sizeof(*link)); 9906 if (!link) { 9907 close(fd); 9908 return libbpf_err_ptr(-ENOMEM); 9909 } 9910 link->detach = &bpf_link__detach_fd; 9911 link->fd = fd; 9912 9913 link->pin_path = strdup(path); 9914 if (!link->pin_path) { 9915 bpf_link__destroy(link); 9916 return libbpf_err_ptr(-ENOMEM); 9917 } 9918 9919 return link; 9920 } 9921 9922 int bpf_link__detach(struct bpf_link *link) 9923 { 9924 return bpf_link_detach(link->fd) ? -errno : 0; 9925 } 9926 9927 int bpf_link__pin(struct bpf_link *link, const char *path) 9928 { 9929 int err; 9930 9931 if (link->pin_path) 9932 return libbpf_err(-EBUSY); 9933 err = make_parent_dir(path); 9934 if (err) 9935 return libbpf_err(err); 9936 err = check_path(path); 9937 if (err) 9938 return libbpf_err(err); 9939 9940 link->pin_path = strdup(path); 9941 if (!link->pin_path) 9942 return libbpf_err(-ENOMEM); 9943 9944 if (bpf_obj_pin(link->fd, link->pin_path)) { 9945 err = -errno; 9946 zfree(&link->pin_path); 9947 return libbpf_err(err); 9948 } 9949 9950 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9951 return 0; 9952 } 9953 9954 int bpf_link__unpin(struct bpf_link *link) 9955 { 9956 int err; 9957 9958 if (!link->pin_path) 9959 return libbpf_err(-EINVAL); 9960 9961 err = unlink(link->pin_path); 9962 if (err != 0) 9963 return -errno; 9964 9965 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9966 zfree(&link->pin_path); 9967 return 0; 9968 } 9969 9970 struct bpf_link_perf { 9971 struct bpf_link link; 9972 int perf_event_fd; 9973 /* legacy kprobe support: keep track of probe identifier and type */ 9974 char *legacy_probe_name; 9975 bool legacy_is_kprobe; 9976 bool legacy_is_retprobe; 9977 }; 9978 9979 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 9980 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 9981 9982 static int bpf_link_perf_detach(struct bpf_link *link) 9983 { 9984 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9985 int err = 0; 9986 9987 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 9988 err = -errno; 9989 9990 if (perf_link->perf_event_fd != link->fd) 9991 close(perf_link->perf_event_fd); 9992 close(link->fd); 9993 9994 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 9995 if (perf_link->legacy_probe_name) { 9996 if (perf_link->legacy_is_kprobe) { 9997 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 9998 perf_link->legacy_is_retprobe); 9999 } else { 10000 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 10001 perf_link->legacy_is_retprobe); 10002 } 10003 } 10004 10005 return err; 10006 } 10007 10008 static void bpf_link_perf_dealloc(struct bpf_link *link) 10009 { 10010 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10011 10012 free(perf_link->legacy_probe_name); 10013 free(perf_link); 10014 } 10015 10016 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 10017 const struct bpf_perf_event_opts *opts) 10018 { 10019 char errmsg[STRERR_BUFSIZE]; 10020 struct bpf_link_perf *link; 10021 int prog_fd, link_fd = -1, err; 10022 bool force_ioctl_attach; 10023 10024 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 10025 return libbpf_err_ptr(-EINVAL); 10026 10027 if (pfd < 0) { 10028 pr_warn("prog '%s': invalid perf event FD %d\n", 10029 prog->name, pfd); 10030 return libbpf_err_ptr(-EINVAL); 10031 } 10032 prog_fd = bpf_program__fd(prog); 10033 if (prog_fd < 0) { 10034 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 10035 prog->name); 10036 return libbpf_err_ptr(-EINVAL); 10037 } 10038 10039 link = calloc(1, sizeof(*link)); 10040 if (!link) 10041 return libbpf_err_ptr(-ENOMEM); 10042 link->link.detach = &bpf_link_perf_detach; 10043 link->link.dealloc = &bpf_link_perf_dealloc; 10044 link->perf_event_fd = pfd; 10045 10046 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false); 10047 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) { 10048 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 10049 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 10050 10051 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 10052 if (link_fd < 0) { 10053 err = -errno; 10054 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 10055 prog->name, pfd, 10056 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10057 goto err_out; 10058 } 10059 link->link.fd = link_fd; 10060 } else { 10061 if (OPTS_GET(opts, bpf_cookie, 0)) { 10062 pr_warn("prog '%s': user context value is not supported\n", prog->name); 10063 err = -EOPNOTSUPP; 10064 goto err_out; 10065 } 10066 10067 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 10068 err = -errno; 10069 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 10070 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10071 if (err == -EPROTO) 10072 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 10073 prog->name, pfd); 10074 goto err_out; 10075 } 10076 link->link.fd = pfd; 10077 } 10078 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10079 err = -errno; 10080 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 10081 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10082 goto err_out; 10083 } 10084 10085 return &link->link; 10086 err_out: 10087 if (link_fd >= 0) 10088 close(link_fd); 10089 free(link); 10090 return libbpf_err_ptr(err); 10091 } 10092 10093 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 10094 { 10095 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 10096 } 10097 10098 /* 10099 * this function is expected to parse integer in the range of [0, 2^31-1] from 10100 * given file using scanf format string fmt. If actual parsed value is 10101 * negative, the result might be indistinguishable from error 10102 */ 10103 static int parse_uint_from_file(const char *file, const char *fmt) 10104 { 10105 char buf[STRERR_BUFSIZE]; 10106 int err, ret; 10107 FILE *f; 10108 10109 f = fopen(file, "re"); 10110 if (!f) { 10111 err = -errno; 10112 pr_debug("failed to open '%s': %s\n", file, 10113 libbpf_strerror_r(err, buf, sizeof(buf))); 10114 return err; 10115 } 10116 err = fscanf(f, fmt, &ret); 10117 if (err != 1) { 10118 err = err == EOF ? -EIO : -errno; 10119 pr_debug("failed to parse '%s': %s\n", file, 10120 libbpf_strerror_r(err, buf, sizeof(buf))); 10121 fclose(f); 10122 return err; 10123 } 10124 fclose(f); 10125 return ret; 10126 } 10127 10128 static int determine_kprobe_perf_type(void) 10129 { 10130 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 10131 10132 return parse_uint_from_file(file, "%d\n"); 10133 } 10134 10135 static int determine_uprobe_perf_type(void) 10136 { 10137 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 10138 10139 return parse_uint_from_file(file, "%d\n"); 10140 } 10141 10142 static int determine_kprobe_retprobe_bit(void) 10143 { 10144 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 10145 10146 return parse_uint_from_file(file, "config:%d\n"); 10147 } 10148 10149 static int determine_uprobe_retprobe_bit(void) 10150 { 10151 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 10152 10153 return parse_uint_from_file(file, "config:%d\n"); 10154 } 10155 10156 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 10157 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 10158 10159 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 10160 uint64_t offset, int pid, size_t ref_ctr_off) 10161 { 10162 const size_t attr_sz = sizeof(struct perf_event_attr); 10163 struct perf_event_attr attr; 10164 char errmsg[STRERR_BUFSIZE]; 10165 int type, pfd; 10166 10167 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 10168 return -EINVAL; 10169 10170 memset(&attr, 0, attr_sz); 10171 10172 type = uprobe ? determine_uprobe_perf_type() 10173 : determine_kprobe_perf_type(); 10174 if (type < 0) { 10175 pr_warn("failed to determine %s perf type: %s\n", 10176 uprobe ? "uprobe" : "kprobe", 10177 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10178 return type; 10179 } 10180 if (retprobe) { 10181 int bit = uprobe ? determine_uprobe_retprobe_bit() 10182 : determine_kprobe_retprobe_bit(); 10183 10184 if (bit < 0) { 10185 pr_warn("failed to determine %s retprobe bit: %s\n", 10186 uprobe ? "uprobe" : "kprobe", 10187 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 10188 return bit; 10189 } 10190 attr.config |= 1 << bit; 10191 } 10192 attr.size = attr_sz; 10193 attr.type = type; 10194 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10195 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 10196 attr.config2 = offset; /* kprobe_addr or probe_offset */ 10197 10198 /* pid filter is meaningful only for uprobes */ 10199 pfd = syscall(__NR_perf_event_open, &attr, 10200 pid < 0 ? -1 : pid /* pid */, 10201 pid == -1 ? 0 : -1 /* cpu */, 10202 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10203 return pfd >= 0 ? pfd : -errno; 10204 } 10205 10206 static int append_to_file(const char *file, const char *fmt, ...) 10207 { 10208 int fd, n, err = 0; 10209 va_list ap; 10210 char buf[1024]; 10211 10212 va_start(ap, fmt); 10213 n = vsnprintf(buf, sizeof(buf), fmt, ap); 10214 va_end(ap); 10215 10216 if (n < 0 || n >= sizeof(buf)) 10217 return -EINVAL; 10218 10219 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 10220 if (fd < 0) 10221 return -errno; 10222 10223 if (write(fd, buf, n) < 0) 10224 err = -errno; 10225 10226 close(fd); 10227 return err; 10228 } 10229 10230 #define DEBUGFS "/sys/kernel/debug/tracing" 10231 #define TRACEFS "/sys/kernel/tracing" 10232 10233 static bool use_debugfs(void) 10234 { 10235 static int has_debugfs = -1; 10236 10237 if (has_debugfs < 0) 10238 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 10239 10240 return has_debugfs == 1; 10241 } 10242 10243 static const char *tracefs_path(void) 10244 { 10245 return use_debugfs() ? DEBUGFS : TRACEFS; 10246 } 10247 10248 static const char *tracefs_kprobe_events(void) 10249 { 10250 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 10251 } 10252 10253 static const char *tracefs_uprobe_events(void) 10254 { 10255 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 10256 } 10257 10258 static const char *tracefs_available_filter_functions(void) 10259 { 10260 return use_debugfs() ? DEBUGFS"/available_filter_functions" 10261 : TRACEFS"/available_filter_functions"; 10262 } 10263 10264 static const char *tracefs_available_filter_functions_addrs(void) 10265 { 10266 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs" 10267 : TRACEFS"/available_filter_functions_addrs"; 10268 } 10269 10270 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 10271 const char *kfunc_name, size_t offset) 10272 { 10273 static int index = 0; 10274 int i; 10275 10276 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 10277 __sync_fetch_and_add(&index, 1)); 10278 10279 /* sanitize binary_path in the probe name */ 10280 for (i = 0; buf[i]; i++) { 10281 if (!isalnum(buf[i])) 10282 buf[i] = '_'; 10283 } 10284 } 10285 10286 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 10287 const char *kfunc_name, size_t offset) 10288 { 10289 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 10290 retprobe ? 'r' : 'p', 10291 retprobe ? "kretprobes" : "kprobes", 10292 probe_name, kfunc_name, offset); 10293 } 10294 10295 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 10296 { 10297 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 10298 retprobe ? "kretprobes" : "kprobes", probe_name); 10299 } 10300 10301 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10302 { 10303 char file[256]; 10304 10305 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10306 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 10307 10308 return parse_uint_from_file(file, "%d\n"); 10309 } 10310 10311 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 10312 const char *kfunc_name, size_t offset, int pid) 10313 { 10314 const size_t attr_sz = sizeof(struct perf_event_attr); 10315 struct perf_event_attr attr; 10316 char errmsg[STRERR_BUFSIZE]; 10317 int type, pfd, err; 10318 10319 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 10320 if (err < 0) { 10321 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 10322 kfunc_name, offset, 10323 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10324 return err; 10325 } 10326 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 10327 if (type < 0) { 10328 err = type; 10329 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 10330 kfunc_name, offset, 10331 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10332 goto err_clean_legacy; 10333 } 10334 10335 memset(&attr, 0, attr_sz); 10336 attr.size = attr_sz; 10337 attr.config = type; 10338 attr.type = PERF_TYPE_TRACEPOINT; 10339 10340 pfd = syscall(__NR_perf_event_open, &attr, 10341 pid < 0 ? -1 : pid, /* pid */ 10342 pid == -1 ? 0 : -1, /* cpu */ 10343 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10344 if (pfd < 0) { 10345 err = -errno; 10346 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10347 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10348 goto err_clean_legacy; 10349 } 10350 return pfd; 10351 10352 err_clean_legacy: 10353 /* Clear the newly added legacy kprobe_event */ 10354 remove_kprobe_event_legacy(probe_name, retprobe); 10355 return err; 10356 } 10357 10358 static const char *arch_specific_syscall_pfx(void) 10359 { 10360 #if defined(__x86_64__) 10361 return "x64"; 10362 #elif defined(__i386__) 10363 return "ia32"; 10364 #elif defined(__s390x__) 10365 return "s390x"; 10366 #elif defined(__s390__) 10367 return "s390"; 10368 #elif defined(__arm__) 10369 return "arm"; 10370 #elif defined(__aarch64__) 10371 return "arm64"; 10372 #elif defined(__mips__) 10373 return "mips"; 10374 #elif defined(__riscv) 10375 return "riscv"; 10376 #elif defined(__powerpc__) 10377 return "powerpc"; 10378 #elif defined(__powerpc64__) 10379 return "powerpc64"; 10380 #else 10381 return NULL; 10382 #endif 10383 } 10384 10385 static int probe_kern_syscall_wrapper(void) 10386 { 10387 char syscall_name[64]; 10388 const char *ksys_pfx; 10389 10390 ksys_pfx = arch_specific_syscall_pfx(); 10391 if (!ksys_pfx) 10392 return 0; 10393 10394 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 10395 10396 if (determine_kprobe_perf_type() >= 0) { 10397 int pfd; 10398 10399 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 10400 if (pfd >= 0) 10401 close(pfd); 10402 10403 return pfd >= 0 ? 1 : 0; 10404 } else { /* legacy mode */ 10405 char probe_name[128]; 10406 10407 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 10408 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 10409 return 0; 10410 10411 (void)remove_kprobe_event_legacy(probe_name, false); 10412 return 1; 10413 } 10414 } 10415 10416 struct bpf_link * 10417 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 10418 const char *func_name, 10419 const struct bpf_kprobe_opts *opts) 10420 { 10421 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10422 enum probe_attach_mode attach_mode; 10423 char errmsg[STRERR_BUFSIZE]; 10424 char *legacy_probe = NULL; 10425 struct bpf_link *link; 10426 size_t offset; 10427 bool retprobe, legacy; 10428 int pfd, err; 10429 10430 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 10431 return libbpf_err_ptr(-EINVAL); 10432 10433 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 10434 retprobe = OPTS_GET(opts, retprobe, false); 10435 offset = OPTS_GET(opts, offset, 0); 10436 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10437 10438 legacy = determine_kprobe_perf_type() < 0; 10439 switch (attach_mode) { 10440 case PROBE_ATTACH_MODE_LEGACY: 10441 legacy = true; 10442 pe_opts.force_ioctl_attach = true; 10443 break; 10444 case PROBE_ATTACH_MODE_PERF: 10445 if (legacy) 10446 return libbpf_err_ptr(-ENOTSUP); 10447 pe_opts.force_ioctl_attach = true; 10448 break; 10449 case PROBE_ATTACH_MODE_LINK: 10450 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 10451 return libbpf_err_ptr(-ENOTSUP); 10452 break; 10453 case PROBE_ATTACH_MODE_DEFAULT: 10454 break; 10455 default: 10456 return libbpf_err_ptr(-EINVAL); 10457 } 10458 10459 if (!legacy) { 10460 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 10461 func_name, offset, 10462 -1 /* pid */, 0 /* ref_ctr_off */); 10463 } else { 10464 char probe_name[256]; 10465 10466 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 10467 func_name, offset); 10468 10469 legacy_probe = strdup(probe_name); 10470 if (!legacy_probe) 10471 return libbpf_err_ptr(-ENOMEM); 10472 10473 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 10474 offset, -1 /* pid */); 10475 } 10476 if (pfd < 0) { 10477 err = -errno; 10478 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 10479 prog->name, retprobe ? "kretprobe" : "kprobe", 10480 func_name, offset, 10481 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10482 goto err_out; 10483 } 10484 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10485 err = libbpf_get_error(link); 10486 if (err) { 10487 close(pfd); 10488 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 10489 prog->name, retprobe ? "kretprobe" : "kprobe", 10490 func_name, offset, 10491 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10492 goto err_clean_legacy; 10493 } 10494 if (legacy) { 10495 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10496 10497 perf_link->legacy_probe_name = legacy_probe; 10498 perf_link->legacy_is_kprobe = true; 10499 perf_link->legacy_is_retprobe = retprobe; 10500 } 10501 10502 return link; 10503 10504 err_clean_legacy: 10505 if (legacy) 10506 remove_kprobe_event_legacy(legacy_probe, retprobe); 10507 err_out: 10508 free(legacy_probe); 10509 return libbpf_err_ptr(err); 10510 } 10511 10512 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 10513 bool retprobe, 10514 const char *func_name) 10515 { 10516 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 10517 .retprobe = retprobe, 10518 ); 10519 10520 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 10521 } 10522 10523 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 10524 const char *syscall_name, 10525 const struct bpf_ksyscall_opts *opts) 10526 { 10527 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 10528 char func_name[128]; 10529 10530 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 10531 return libbpf_err_ptr(-EINVAL); 10532 10533 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 10534 /* arch_specific_syscall_pfx() should never return NULL here 10535 * because it is guarded by kernel_supports(). However, since 10536 * compiler does not know that we have an explicit conditional 10537 * as well. 10538 */ 10539 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 10540 arch_specific_syscall_pfx() ? : "", syscall_name); 10541 } else { 10542 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 10543 } 10544 10545 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 10546 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10547 10548 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 10549 } 10550 10551 /* Adapted from perf/util/string.c */ 10552 static bool glob_match(const char *str, const char *pat) 10553 { 10554 while (*str && *pat && *pat != '*') { 10555 if (*pat == '?') { /* Matches any single character */ 10556 str++; 10557 pat++; 10558 continue; 10559 } 10560 if (*str != *pat) 10561 return false; 10562 str++; 10563 pat++; 10564 } 10565 /* Check wild card */ 10566 if (*pat == '*') { 10567 while (*pat == '*') 10568 pat++; 10569 if (!*pat) /* Tail wild card matches all */ 10570 return true; 10571 while (*str) 10572 if (glob_match(str++, pat)) 10573 return true; 10574 } 10575 return !*str && !*pat; 10576 } 10577 10578 struct kprobe_multi_resolve { 10579 const char *pattern; 10580 unsigned long *addrs; 10581 size_t cap; 10582 size_t cnt; 10583 }; 10584 10585 struct avail_kallsyms_data { 10586 char **syms; 10587 size_t cnt; 10588 struct kprobe_multi_resolve *res; 10589 }; 10590 10591 static int avail_func_cmp(const void *a, const void *b) 10592 { 10593 return strcmp(*(const char **)a, *(const char **)b); 10594 } 10595 10596 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type, 10597 const char *sym_name, void *ctx) 10598 { 10599 struct avail_kallsyms_data *data = ctx; 10600 struct kprobe_multi_resolve *res = data->res; 10601 int err; 10602 10603 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) 10604 return 0; 10605 10606 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1); 10607 if (err) 10608 return err; 10609 10610 res->addrs[res->cnt++] = (unsigned long)sym_addr; 10611 return 0; 10612 } 10613 10614 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res) 10615 { 10616 const char *available_functions_file = tracefs_available_filter_functions(); 10617 struct avail_kallsyms_data data; 10618 char sym_name[500]; 10619 FILE *f; 10620 int err = 0, ret, i; 10621 char **syms = NULL; 10622 size_t cap = 0, cnt = 0; 10623 10624 f = fopen(available_functions_file, "re"); 10625 if (!f) { 10626 err = -errno; 10627 pr_warn("failed to open %s: %d\n", available_functions_file, err); 10628 return err; 10629 } 10630 10631 while (true) { 10632 char *name; 10633 10634 ret = fscanf(f, "%499s%*[^\n]\n", sym_name); 10635 if (ret == EOF && feof(f)) 10636 break; 10637 10638 if (ret != 1) { 10639 pr_warn("failed to parse available_filter_functions entry: %d\n", ret); 10640 err = -EINVAL; 10641 goto cleanup; 10642 } 10643 10644 if (!glob_match(sym_name, res->pattern)) 10645 continue; 10646 10647 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1); 10648 if (err) 10649 goto cleanup; 10650 10651 name = strdup(sym_name); 10652 if (!name) { 10653 err = -errno; 10654 goto cleanup; 10655 } 10656 10657 syms[cnt++] = name; 10658 } 10659 10660 /* no entries found, bail out */ 10661 if (cnt == 0) { 10662 err = -ENOENT; 10663 goto cleanup; 10664 } 10665 10666 /* sort available functions */ 10667 qsort(syms, cnt, sizeof(*syms), avail_func_cmp); 10668 10669 data.syms = syms; 10670 data.res = res; 10671 data.cnt = cnt; 10672 libbpf_kallsyms_parse(avail_kallsyms_cb, &data); 10673 10674 if (res->cnt == 0) 10675 err = -ENOENT; 10676 10677 cleanup: 10678 for (i = 0; i < cnt; i++) 10679 free((char *)syms[i]); 10680 free(syms); 10681 10682 fclose(f); 10683 return err; 10684 } 10685 10686 static bool has_available_filter_functions_addrs(void) 10687 { 10688 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1; 10689 } 10690 10691 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res) 10692 { 10693 const char *available_path = tracefs_available_filter_functions_addrs(); 10694 char sym_name[500]; 10695 FILE *f; 10696 int ret, err = 0; 10697 unsigned long long sym_addr; 10698 10699 f = fopen(available_path, "re"); 10700 if (!f) { 10701 err = -errno; 10702 pr_warn("failed to open %s: %d\n", available_path, err); 10703 return err; 10704 } 10705 10706 while (true) { 10707 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name); 10708 if (ret == EOF && feof(f)) 10709 break; 10710 10711 if (ret != 2) { 10712 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n", 10713 ret); 10714 err = -EINVAL; 10715 goto cleanup; 10716 } 10717 10718 if (!glob_match(sym_name, res->pattern)) 10719 continue; 10720 10721 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, 10722 sizeof(*res->addrs), res->cnt + 1); 10723 if (err) 10724 goto cleanup; 10725 10726 res->addrs[res->cnt++] = (unsigned long)sym_addr; 10727 } 10728 10729 if (res->cnt == 0) 10730 err = -ENOENT; 10731 10732 cleanup: 10733 fclose(f); 10734 return err; 10735 } 10736 10737 struct bpf_link * 10738 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 10739 const char *pattern, 10740 const struct bpf_kprobe_multi_opts *opts) 10741 { 10742 LIBBPF_OPTS(bpf_link_create_opts, lopts); 10743 struct kprobe_multi_resolve res = { 10744 .pattern = pattern, 10745 }; 10746 struct bpf_link *link = NULL; 10747 char errmsg[STRERR_BUFSIZE]; 10748 const unsigned long *addrs; 10749 int err, link_fd, prog_fd; 10750 const __u64 *cookies; 10751 const char **syms; 10752 bool retprobe; 10753 size_t cnt; 10754 10755 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 10756 return libbpf_err_ptr(-EINVAL); 10757 10758 syms = OPTS_GET(opts, syms, false); 10759 addrs = OPTS_GET(opts, addrs, false); 10760 cnt = OPTS_GET(opts, cnt, false); 10761 cookies = OPTS_GET(opts, cookies, false); 10762 10763 if (!pattern && !addrs && !syms) 10764 return libbpf_err_ptr(-EINVAL); 10765 if (pattern && (addrs || syms || cookies || cnt)) 10766 return libbpf_err_ptr(-EINVAL); 10767 if (!pattern && !cnt) 10768 return libbpf_err_ptr(-EINVAL); 10769 if (addrs && syms) 10770 return libbpf_err_ptr(-EINVAL); 10771 10772 if (pattern) { 10773 if (has_available_filter_functions_addrs()) 10774 err = libbpf_available_kprobes_parse(&res); 10775 else 10776 err = libbpf_available_kallsyms_parse(&res); 10777 if (err) 10778 goto error; 10779 addrs = res.addrs; 10780 cnt = res.cnt; 10781 } 10782 10783 retprobe = OPTS_GET(opts, retprobe, false); 10784 10785 lopts.kprobe_multi.syms = syms; 10786 lopts.kprobe_multi.addrs = addrs; 10787 lopts.kprobe_multi.cookies = cookies; 10788 lopts.kprobe_multi.cnt = cnt; 10789 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 10790 10791 link = calloc(1, sizeof(*link)); 10792 if (!link) { 10793 err = -ENOMEM; 10794 goto error; 10795 } 10796 link->detach = &bpf_link__detach_fd; 10797 10798 prog_fd = bpf_program__fd(prog); 10799 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts); 10800 if (link_fd < 0) { 10801 err = -errno; 10802 pr_warn("prog '%s': failed to attach: %s\n", 10803 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10804 goto error; 10805 } 10806 link->fd = link_fd; 10807 free(res.addrs); 10808 return link; 10809 10810 error: 10811 free(link); 10812 free(res.addrs); 10813 return libbpf_err_ptr(err); 10814 } 10815 10816 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10817 { 10818 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 10819 unsigned long offset = 0; 10820 const char *func_name; 10821 char *func; 10822 int n; 10823 10824 *link = NULL; 10825 10826 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 10827 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 10828 return 0; 10829 10830 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 10831 if (opts.retprobe) 10832 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 10833 else 10834 func_name = prog->sec_name + sizeof("kprobe/") - 1; 10835 10836 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 10837 if (n < 1) { 10838 pr_warn("kprobe name is invalid: %s\n", func_name); 10839 return -EINVAL; 10840 } 10841 if (opts.retprobe && offset != 0) { 10842 free(func); 10843 pr_warn("kretprobes do not support offset specification\n"); 10844 return -EINVAL; 10845 } 10846 10847 opts.offset = offset; 10848 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 10849 free(func); 10850 return libbpf_get_error(*link); 10851 } 10852 10853 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10854 { 10855 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 10856 const char *syscall_name; 10857 10858 *link = NULL; 10859 10860 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 10861 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 10862 return 0; 10863 10864 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 10865 if (opts.retprobe) 10866 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 10867 else 10868 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 10869 10870 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 10871 return *link ? 0 : -errno; 10872 } 10873 10874 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10875 { 10876 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 10877 const char *spec; 10878 char *pattern; 10879 int n; 10880 10881 *link = NULL; 10882 10883 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 10884 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 10885 strcmp(prog->sec_name, "kretprobe.multi") == 0) 10886 return 0; 10887 10888 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 10889 if (opts.retprobe) 10890 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 10891 else 10892 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 10893 10894 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 10895 if (n < 1) { 10896 pr_warn("kprobe multi pattern is invalid: %s\n", pattern); 10897 return -EINVAL; 10898 } 10899 10900 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 10901 free(pattern); 10902 return libbpf_get_error(*link); 10903 } 10904 10905 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 10906 const char *binary_path, uint64_t offset) 10907 { 10908 int i; 10909 10910 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 10911 10912 /* sanitize binary_path in the probe name */ 10913 for (i = 0; buf[i]; i++) { 10914 if (!isalnum(buf[i])) 10915 buf[i] = '_'; 10916 } 10917 } 10918 10919 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 10920 const char *binary_path, size_t offset) 10921 { 10922 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 10923 retprobe ? 'r' : 'p', 10924 retprobe ? "uretprobes" : "uprobes", 10925 probe_name, binary_path, offset); 10926 } 10927 10928 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 10929 { 10930 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 10931 retprobe ? "uretprobes" : "uprobes", probe_name); 10932 } 10933 10934 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10935 { 10936 char file[512]; 10937 10938 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10939 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 10940 10941 return parse_uint_from_file(file, "%d\n"); 10942 } 10943 10944 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 10945 const char *binary_path, size_t offset, int pid) 10946 { 10947 const size_t attr_sz = sizeof(struct perf_event_attr); 10948 struct perf_event_attr attr; 10949 int type, pfd, err; 10950 10951 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 10952 if (err < 0) { 10953 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 10954 binary_path, (size_t)offset, err); 10955 return err; 10956 } 10957 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 10958 if (type < 0) { 10959 err = type; 10960 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 10961 binary_path, offset, err); 10962 goto err_clean_legacy; 10963 } 10964 10965 memset(&attr, 0, attr_sz); 10966 attr.size = attr_sz; 10967 attr.config = type; 10968 attr.type = PERF_TYPE_TRACEPOINT; 10969 10970 pfd = syscall(__NR_perf_event_open, &attr, 10971 pid < 0 ? -1 : pid, /* pid */ 10972 pid == -1 ? 0 : -1, /* cpu */ 10973 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10974 if (pfd < 0) { 10975 err = -errno; 10976 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 10977 goto err_clean_legacy; 10978 } 10979 return pfd; 10980 10981 err_clean_legacy: 10982 /* Clear the newly added legacy uprobe_event */ 10983 remove_uprobe_event_legacy(probe_name, retprobe); 10984 return err; 10985 } 10986 10987 /* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */ 10988 static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn) 10989 { 10990 while ((scn = elf_nextscn(elf, scn)) != NULL) { 10991 GElf_Shdr sh; 10992 10993 if (!gelf_getshdr(scn, &sh)) 10994 continue; 10995 if (sh.sh_type == sh_type) 10996 return scn; 10997 } 10998 return NULL; 10999 } 11000 11001 /* Find offset of function name in the provided ELF object. "binary_path" is 11002 * the path to the ELF binary represented by "elf", and only used for error 11003 * reporting matters. "name" matches symbol name or name@@LIB for library 11004 * functions. 11005 */ 11006 static long elf_find_func_offset(Elf *elf, const char *binary_path, const char *name) 11007 { 11008 int i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB }; 11009 bool is_shared_lib, is_name_qualified; 11010 long ret = -ENOENT; 11011 size_t name_len; 11012 GElf_Ehdr ehdr; 11013 11014 if (!gelf_getehdr(elf, &ehdr)) { 11015 pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1)); 11016 ret = -LIBBPF_ERRNO__FORMAT; 11017 goto out; 11018 } 11019 /* for shared lib case, we do not need to calculate relative offset */ 11020 is_shared_lib = ehdr.e_type == ET_DYN; 11021 11022 name_len = strlen(name); 11023 /* Does name specify "@@LIB"? */ 11024 is_name_qualified = strstr(name, "@@") != NULL; 11025 11026 /* Search SHT_DYNSYM, SHT_SYMTAB for symbol. This search order is used because if 11027 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically 11028 * linked binary may not have SHT_DYMSYM, so absence of a section should not be 11029 * reported as a warning/error. 11030 */ 11031 for (i = 0; i < ARRAY_SIZE(sh_types); i++) { 11032 size_t nr_syms, strtabidx, idx; 11033 Elf_Data *symbols = NULL; 11034 Elf_Scn *scn = NULL; 11035 int last_bind = -1; 11036 const char *sname; 11037 GElf_Shdr sh; 11038 11039 scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL); 11040 if (!scn) { 11041 pr_debug("elf: failed to find symbol table ELF sections in '%s'\n", 11042 binary_path); 11043 continue; 11044 } 11045 if (!gelf_getshdr(scn, &sh)) 11046 continue; 11047 strtabidx = sh.sh_link; 11048 symbols = elf_getdata(scn, 0); 11049 if (!symbols) { 11050 pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n", 11051 binary_path, elf_errmsg(-1)); 11052 ret = -LIBBPF_ERRNO__FORMAT; 11053 goto out; 11054 } 11055 nr_syms = symbols->d_size / sh.sh_entsize; 11056 11057 for (idx = 0; idx < nr_syms; idx++) { 11058 int curr_bind; 11059 GElf_Sym sym; 11060 Elf_Scn *sym_scn; 11061 GElf_Shdr sym_sh; 11062 11063 if (!gelf_getsym(symbols, idx, &sym)) 11064 continue; 11065 11066 if (GELF_ST_TYPE(sym.st_info) != STT_FUNC) 11067 continue; 11068 11069 sname = elf_strptr(elf, strtabidx, sym.st_name); 11070 if (!sname) 11071 continue; 11072 11073 curr_bind = GELF_ST_BIND(sym.st_info); 11074 11075 /* User can specify func, func@@LIB or func@@LIB_VERSION. */ 11076 if (strncmp(sname, name, name_len) != 0) 11077 continue; 11078 /* ...but we don't want a search for "foo" to match 'foo2" also, so any 11079 * additional characters in sname should be of the form "@@LIB". 11080 */ 11081 if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@') 11082 continue; 11083 11084 if (ret >= 0) { 11085 /* handle multiple matches */ 11086 if (last_bind != STB_WEAK && curr_bind != STB_WEAK) { 11087 /* Only accept one non-weak bind. */ 11088 pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n", 11089 sname, name, binary_path); 11090 ret = -LIBBPF_ERRNO__FORMAT; 11091 goto out; 11092 } else if (curr_bind == STB_WEAK) { 11093 /* already have a non-weak bind, and 11094 * this is a weak bind, so ignore. 11095 */ 11096 continue; 11097 } 11098 } 11099 11100 /* Transform symbol's virtual address (absolute for 11101 * binaries and relative for shared libs) into file 11102 * offset, which is what kernel is expecting for 11103 * uprobe/uretprobe attachment. 11104 * See Documentation/trace/uprobetracer.rst for more 11105 * details. 11106 * This is done by looking up symbol's containing 11107 * section's header and using it's virtual address 11108 * (sh_addr) and corresponding file offset (sh_offset) 11109 * to transform sym.st_value (virtual address) into 11110 * desired final file offset. 11111 */ 11112 sym_scn = elf_getscn(elf, sym.st_shndx); 11113 if (!sym_scn) 11114 continue; 11115 if (!gelf_getshdr(sym_scn, &sym_sh)) 11116 continue; 11117 11118 ret = sym.st_value - sym_sh.sh_addr + sym_sh.sh_offset; 11119 last_bind = curr_bind; 11120 } 11121 if (ret > 0) 11122 break; 11123 } 11124 11125 if (ret > 0) { 11126 pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path, 11127 ret); 11128 } else { 11129 if (ret == 0) { 11130 pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path, 11131 is_shared_lib ? "should not be 0 in a shared library" : 11132 "try using shared library path instead"); 11133 ret = -ENOENT; 11134 } else { 11135 pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path); 11136 } 11137 } 11138 out: 11139 return ret; 11140 } 11141 11142 /* Find offset of function name in ELF object specified by path. "name" matches 11143 * symbol name or name@@LIB for library functions. 11144 */ 11145 static long elf_find_func_offset_from_file(const char *binary_path, const char *name) 11146 { 11147 char errmsg[STRERR_BUFSIZE]; 11148 long ret = -ENOENT; 11149 Elf *elf; 11150 int fd; 11151 11152 fd = open(binary_path, O_RDONLY | O_CLOEXEC); 11153 if (fd < 0) { 11154 ret = -errno; 11155 pr_warn("failed to open %s: %s\n", binary_path, 11156 libbpf_strerror_r(ret, errmsg, sizeof(errmsg))); 11157 return ret; 11158 } 11159 elf = elf_begin(fd, ELF_C_READ_MMAP, NULL); 11160 if (!elf) { 11161 pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1)); 11162 close(fd); 11163 return -LIBBPF_ERRNO__FORMAT; 11164 } 11165 11166 ret = elf_find_func_offset(elf, binary_path, name); 11167 elf_end(elf); 11168 close(fd); 11169 return ret; 11170 } 11171 11172 /* Find offset of function name in archive specified by path. Currently 11173 * supported are .zip files that do not compress their contents, as used on 11174 * Android in the form of APKs, for example. "file_name" is the name of the ELF 11175 * file inside the archive. "func_name" matches symbol name or name@@LIB for 11176 * library functions. 11177 * 11178 * An overview of the APK format specifically provided here: 11179 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents 11180 */ 11181 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name, 11182 const char *func_name) 11183 { 11184 struct zip_archive *archive; 11185 struct zip_entry entry; 11186 long ret; 11187 Elf *elf; 11188 11189 archive = zip_archive_open(archive_path); 11190 if (IS_ERR(archive)) { 11191 ret = PTR_ERR(archive); 11192 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret); 11193 return ret; 11194 } 11195 11196 ret = zip_archive_find_entry(archive, file_name, &entry); 11197 if (ret) { 11198 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name, 11199 archive_path, ret); 11200 goto out; 11201 } 11202 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path, 11203 (unsigned long)entry.data_offset); 11204 11205 if (entry.compression) { 11206 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name, 11207 archive_path); 11208 ret = -LIBBPF_ERRNO__FORMAT; 11209 goto out; 11210 } 11211 11212 elf = elf_memory((void *)entry.data, entry.data_length); 11213 if (!elf) { 11214 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path, 11215 elf_errmsg(-1)); 11216 ret = -LIBBPF_ERRNO__LIBELF; 11217 goto out; 11218 } 11219 11220 ret = elf_find_func_offset(elf, file_name, func_name); 11221 if (ret > 0) { 11222 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n", 11223 func_name, file_name, archive_path, entry.data_offset, ret, 11224 ret + entry.data_offset); 11225 ret += entry.data_offset; 11226 } 11227 elf_end(elf); 11228 11229 out: 11230 zip_archive_close(archive); 11231 return ret; 11232 } 11233 11234 static const char *arch_specific_lib_paths(void) 11235 { 11236 /* 11237 * Based on https://packages.debian.org/sid/libc6. 11238 * 11239 * Assume that the traced program is built for the same architecture 11240 * as libbpf, which should cover the vast majority of cases. 11241 */ 11242 #if defined(__x86_64__) 11243 return "/lib/x86_64-linux-gnu"; 11244 #elif defined(__i386__) 11245 return "/lib/i386-linux-gnu"; 11246 #elif defined(__s390x__) 11247 return "/lib/s390x-linux-gnu"; 11248 #elif defined(__s390__) 11249 return "/lib/s390-linux-gnu"; 11250 #elif defined(__arm__) && defined(__SOFTFP__) 11251 return "/lib/arm-linux-gnueabi"; 11252 #elif defined(__arm__) && !defined(__SOFTFP__) 11253 return "/lib/arm-linux-gnueabihf"; 11254 #elif defined(__aarch64__) 11255 return "/lib/aarch64-linux-gnu"; 11256 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 11257 return "/lib/mips64el-linux-gnuabi64"; 11258 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 11259 return "/lib/mipsel-linux-gnu"; 11260 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 11261 return "/lib/powerpc64le-linux-gnu"; 11262 #elif defined(__sparc__) && defined(__arch64__) 11263 return "/lib/sparc64-linux-gnu"; 11264 #elif defined(__riscv) && __riscv_xlen == 64 11265 return "/lib/riscv64-linux-gnu"; 11266 #else 11267 return NULL; 11268 #endif 11269 } 11270 11271 /* Get full path to program/shared library. */ 11272 static int resolve_full_path(const char *file, char *result, size_t result_sz) 11273 { 11274 const char *search_paths[3] = {}; 11275 int i, perm; 11276 11277 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 11278 search_paths[0] = getenv("LD_LIBRARY_PATH"); 11279 search_paths[1] = "/usr/lib64:/usr/lib"; 11280 search_paths[2] = arch_specific_lib_paths(); 11281 perm = R_OK; 11282 } else { 11283 search_paths[0] = getenv("PATH"); 11284 search_paths[1] = "/usr/bin:/usr/sbin"; 11285 perm = R_OK | X_OK; 11286 } 11287 11288 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 11289 const char *s; 11290 11291 if (!search_paths[i]) 11292 continue; 11293 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 11294 char *next_path; 11295 int seg_len; 11296 11297 if (s[0] == ':') 11298 s++; 11299 next_path = strchr(s, ':'); 11300 seg_len = next_path ? next_path - s : strlen(s); 11301 if (!seg_len) 11302 continue; 11303 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 11304 /* ensure it has required permissions */ 11305 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 11306 continue; 11307 pr_debug("resolved '%s' to '%s'\n", file, result); 11308 return 0; 11309 } 11310 } 11311 return -ENOENT; 11312 } 11313 11314 LIBBPF_API struct bpf_link * 11315 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 11316 const char *binary_path, size_t func_offset, 11317 const struct bpf_uprobe_opts *opts) 11318 { 11319 const char *archive_path = NULL, *archive_sep = NULL; 11320 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 11321 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11322 enum probe_attach_mode attach_mode; 11323 char full_path[PATH_MAX]; 11324 struct bpf_link *link; 11325 size_t ref_ctr_off; 11326 int pfd, err; 11327 bool retprobe, legacy; 11328 const char *func_name; 11329 11330 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11331 return libbpf_err_ptr(-EINVAL); 11332 11333 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11334 retprobe = OPTS_GET(opts, retprobe, false); 11335 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 11336 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11337 11338 if (!binary_path) 11339 return libbpf_err_ptr(-EINVAL); 11340 11341 /* Check if "binary_path" refers to an archive. */ 11342 archive_sep = strstr(binary_path, "!/"); 11343 if (archive_sep) { 11344 full_path[0] = '\0'; 11345 libbpf_strlcpy(full_path, binary_path, 11346 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1))); 11347 archive_path = full_path; 11348 binary_path = archive_sep + 2; 11349 } else if (!strchr(binary_path, '/')) { 11350 err = resolve_full_path(binary_path, full_path, sizeof(full_path)); 11351 if (err) { 11352 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11353 prog->name, binary_path, err); 11354 return libbpf_err_ptr(err); 11355 } 11356 binary_path = full_path; 11357 } 11358 func_name = OPTS_GET(opts, func_name, NULL); 11359 if (func_name) { 11360 long sym_off; 11361 11362 if (archive_path) { 11363 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path, 11364 func_name); 11365 binary_path = archive_path; 11366 } else { 11367 sym_off = elf_find_func_offset_from_file(binary_path, func_name); 11368 } 11369 if (sym_off < 0) 11370 return libbpf_err_ptr(sym_off); 11371 func_offset += sym_off; 11372 } 11373 11374 legacy = determine_uprobe_perf_type() < 0; 11375 switch (attach_mode) { 11376 case PROBE_ATTACH_MODE_LEGACY: 11377 legacy = true; 11378 pe_opts.force_ioctl_attach = true; 11379 break; 11380 case PROBE_ATTACH_MODE_PERF: 11381 if (legacy) 11382 return libbpf_err_ptr(-ENOTSUP); 11383 pe_opts.force_ioctl_attach = true; 11384 break; 11385 case PROBE_ATTACH_MODE_LINK: 11386 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11387 return libbpf_err_ptr(-ENOTSUP); 11388 break; 11389 case PROBE_ATTACH_MODE_DEFAULT: 11390 break; 11391 default: 11392 return libbpf_err_ptr(-EINVAL); 11393 } 11394 11395 if (!legacy) { 11396 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 11397 func_offset, pid, ref_ctr_off); 11398 } else { 11399 char probe_name[PATH_MAX + 64]; 11400 11401 if (ref_ctr_off) 11402 return libbpf_err_ptr(-EINVAL); 11403 11404 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 11405 binary_path, func_offset); 11406 11407 legacy_probe = strdup(probe_name); 11408 if (!legacy_probe) 11409 return libbpf_err_ptr(-ENOMEM); 11410 11411 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 11412 binary_path, func_offset, pid); 11413 } 11414 if (pfd < 0) { 11415 err = -errno; 11416 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 11417 prog->name, retprobe ? "uretprobe" : "uprobe", 11418 binary_path, func_offset, 11419 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11420 goto err_out; 11421 } 11422 11423 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11424 err = libbpf_get_error(link); 11425 if (err) { 11426 close(pfd); 11427 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 11428 prog->name, retprobe ? "uretprobe" : "uprobe", 11429 binary_path, func_offset, 11430 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11431 goto err_clean_legacy; 11432 } 11433 if (legacy) { 11434 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11435 11436 perf_link->legacy_probe_name = legacy_probe; 11437 perf_link->legacy_is_kprobe = false; 11438 perf_link->legacy_is_retprobe = retprobe; 11439 } 11440 return link; 11441 11442 err_clean_legacy: 11443 if (legacy) 11444 remove_uprobe_event_legacy(legacy_probe, retprobe); 11445 err_out: 11446 free(legacy_probe); 11447 return libbpf_err_ptr(err); 11448 } 11449 11450 /* Format of u[ret]probe section definition supporting auto-attach: 11451 * u[ret]probe/binary:function[+offset] 11452 * 11453 * binary can be an absolute/relative path or a filename; the latter is resolved to a 11454 * full binary path via bpf_program__attach_uprobe_opts. 11455 * 11456 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 11457 * specified (and auto-attach is not possible) or the above format is specified for 11458 * auto-attach. 11459 */ 11460 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11461 { 11462 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 11463 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11464 int n, ret = -EINVAL; 11465 long offset = 0; 11466 11467 *link = NULL; 11468 11469 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li", 11470 &probe_type, &binary_path, &func_name, &offset); 11471 switch (n) { 11472 case 1: 11473 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11474 ret = 0; 11475 break; 11476 case 2: 11477 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 11478 prog->name, prog->sec_name); 11479 break; 11480 case 3: 11481 case 4: 11482 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 11483 strcmp(probe_type, "uretprobe.s") == 0; 11484 if (opts.retprobe && offset != 0) { 11485 pr_warn("prog '%s': uretprobes do not support offset specification\n", 11486 prog->name); 11487 break; 11488 } 11489 opts.func_name = func_name; 11490 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 11491 ret = libbpf_get_error(*link); 11492 break; 11493 default: 11494 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11495 prog->sec_name); 11496 break; 11497 } 11498 free(probe_type); 11499 free(binary_path); 11500 free(func_name); 11501 11502 return ret; 11503 } 11504 11505 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 11506 bool retprobe, pid_t pid, 11507 const char *binary_path, 11508 size_t func_offset) 11509 { 11510 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 11511 11512 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 11513 } 11514 11515 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 11516 pid_t pid, const char *binary_path, 11517 const char *usdt_provider, const char *usdt_name, 11518 const struct bpf_usdt_opts *opts) 11519 { 11520 char resolved_path[512]; 11521 struct bpf_object *obj = prog->obj; 11522 struct bpf_link *link; 11523 __u64 usdt_cookie; 11524 int err; 11525 11526 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11527 return libbpf_err_ptr(-EINVAL); 11528 11529 if (bpf_program__fd(prog) < 0) { 11530 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 11531 prog->name); 11532 return libbpf_err_ptr(-EINVAL); 11533 } 11534 11535 if (!binary_path) 11536 return libbpf_err_ptr(-EINVAL); 11537 11538 if (!strchr(binary_path, '/')) { 11539 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 11540 if (err) { 11541 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11542 prog->name, binary_path, err); 11543 return libbpf_err_ptr(err); 11544 } 11545 binary_path = resolved_path; 11546 } 11547 11548 /* USDT manager is instantiated lazily on first USDT attach. It will 11549 * be destroyed together with BPF object in bpf_object__close(). 11550 */ 11551 if (IS_ERR(obj->usdt_man)) 11552 return libbpf_ptr(obj->usdt_man); 11553 if (!obj->usdt_man) { 11554 obj->usdt_man = usdt_manager_new(obj); 11555 if (IS_ERR(obj->usdt_man)) 11556 return libbpf_ptr(obj->usdt_man); 11557 } 11558 11559 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 11560 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 11561 usdt_provider, usdt_name, usdt_cookie); 11562 err = libbpf_get_error(link); 11563 if (err) 11564 return libbpf_err_ptr(err); 11565 return link; 11566 } 11567 11568 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11569 { 11570 char *path = NULL, *provider = NULL, *name = NULL; 11571 const char *sec_name; 11572 int n, err; 11573 11574 sec_name = bpf_program__section_name(prog); 11575 if (strcmp(sec_name, "usdt") == 0) { 11576 /* no auto-attach for just SEC("usdt") */ 11577 *link = NULL; 11578 return 0; 11579 } 11580 11581 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 11582 if (n != 3) { 11583 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 11584 sec_name); 11585 err = -EINVAL; 11586 } else { 11587 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 11588 provider, name, NULL); 11589 err = libbpf_get_error(*link); 11590 } 11591 free(path); 11592 free(provider); 11593 free(name); 11594 return err; 11595 } 11596 11597 static int determine_tracepoint_id(const char *tp_category, 11598 const char *tp_name) 11599 { 11600 char file[PATH_MAX]; 11601 int ret; 11602 11603 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11604 tracefs_path(), tp_category, tp_name); 11605 if (ret < 0) 11606 return -errno; 11607 if (ret >= sizeof(file)) { 11608 pr_debug("tracepoint %s/%s path is too long\n", 11609 tp_category, tp_name); 11610 return -E2BIG; 11611 } 11612 return parse_uint_from_file(file, "%d\n"); 11613 } 11614 11615 static int perf_event_open_tracepoint(const char *tp_category, 11616 const char *tp_name) 11617 { 11618 const size_t attr_sz = sizeof(struct perf_event_attr); 11619 struct perf_event_attr attr; 11620 char errmsg[STRERR_BUFSIZE]; 11621 int tp_id, pfd, err; 11622 11623 tp_id = determine_tracepoint_id(tp_category, tp_name); 11624 if (tp_id < 0) { 11625 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 11626 tp_category, tp_name, 11627 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 11628 return tp_id; 11629 } 11630 11631 memset(&attr, 0, attr_sz); 11632 attr.type = PERF_TYPE_TRACEPOINT; 11633 attr.size = attr_sz; 11634 attr.config = tp_id; 11635 11636 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 11637 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11638 if (pfd < 0) { 11639 err = -errno; 11640 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 11641 tp_category, tp_name, 11642 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11643 return err; 11644 } 11645 return pfd; 11646 } 11647 11648 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 11649 const char *tp_category, 11650 const char *tp_name, 11651 const struct bpf_tracepoint_opts *opts) 11652 { 11653 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11654 char errmsg[STRERR_BUFSIZE]; 11655 struct bpf_link *link; 11656 int pfd, err; 11657 11658 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 11659 return libbpf_err_ptr(-EINVAL); 11660 11661 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11662 11663 pfd = perf_event_open_tracepoint(tp_category, tp_name); 11664 if (pfd < 0) { 11665 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 11666 prog->name, tp_category, tp_name, 11667 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11668 return libbpf_err_ptr(pfd); 11669 } 11670 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11671 err = libbpf_get_error(link); 11672 if (err) { 11673 close(pfd); 11674 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 11675 prog->name, tp_category, tp_name, 11676 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11677 return libbpf_err_ptr(err); 11678 } 11679 return link; 11680 } 11681 11682 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 11683 const char *tp_category, 11684 const char *tp_name) 11685 { 11686 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 11687 } 11688 11689 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11690 { 11691 char *sec_name, *tp_cat, *tp_name; 11692 11693 *link = NULL; 11694 11695 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 11696 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 11697 return 0; 11698 11699 sec_name = strdup(prog->sec_name); 11700 if (!sec_name) 11701 return -ENOMEM; 11702 11703 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 11704 if (str_has_pfx(prog->sec_name, "tp/")) 11705 tp_cat = sec_name + sizeof("tp/") - 1; 11706 else 11707 tp_cat = sec_name + sizeof("tracepoint/") - 1; 11708 tp_name = strchr(tp_cat, '/'); 11709 if (!tp_name) { 11710 free(sec_name); 11711 return -EINVAL; 11712 } 11713 *tp_name = '\0'; 11714 tp_name++; 11715 11716 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 11717 free(sec_name); 11718 return libbpf_get_error(*link); 11719 } 11720 11721 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 11722 const char *tp_name) 11723 { 11724 char errmsg[STRERR_BUFSIZE]; 11725 struct bpf_link *link; 11726 int prog_fd, pfd; 11727 11728 prog_fd = bpf_program__fd(prog); 11729 if (prog_fd < 0) { 11730 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11731 return libbpf_err_ptr(-EINVAL); 11732 } 11733 11734 link = calloc(1, sizeof(*link)); 11735 if (!link) 11736 return libbpf_err_ptr(-ENOMEM); 11737 link->detach = &bpf_link__detach_fd; 11738 11739 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 11740 if (pfd < 0) { 11741 pfd = -errno; 11742 free(link); 11743 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 11744 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11745 return libbpf_err_ptr(pfd); 11746 } 11747 link->fd = pfd; 11748 return link; 11749 } 11750 11751 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11752 { 11753 static const char *const prefixes[] = { 11754 "raw_tp", 11755 "raw_tracepoint", 11756 "raw_tp.w", 11757 "raw_tracepoint.w", 11758 }; 11759 size_t i; 11760 const char *tp_name = NULL; 11761 11762 *link = NULL; 11763 11764 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 11765 size_t pfx_len; 11766 11767 if (!str_has_pfx(prog->sec_name, prefixes[i])) 11768 continue; 11769 11770 pfx_len = strlen(prefixes[i]); 11771 /* no auto-attach case of, e.g., SEC("raw_tp") */ 11772 if (prog->sec_name[pfx_len] == '\0') 11773 return 0; 11774 11775 if (prog->sec_name[pfx_len] != '/') 11776 continue; 11777 11778 tp_name = prog->sec_name + pfx_len + 1; 11779 break; 11780 } 11781 11782 if (!tp_name) { 11783 pr_warn("prog '%s': invalid section name '%s'\n", 11784 prog->name, prog->sec_name); 11785 return -EINVAL; 11786 } 11787 11788 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 11789 return libbpf_get_error(*link); 11790 } 11791 11792 /* Common logic for all BPF program types that attach to a btf_id */ 11793 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 11794 const struct bpf_trace_opts *opts) 11795 { 11796 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 11797 char errmsg[STRERR_BUFSIZE]; 11798 struct bpf_link *link; 11799 int prog_fd, pfd; 11800 11801 if (!OPTS_VALID(opts, bpf_trace_opts)) 11802 return libbpf_err_ptr(-EINVAL); 11803 11804 prog_fd = bpf_program__fd(prog); 11805 if (prog_fd < 0) { 11806 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11807 return libbpf_err_ptr(-EINVAL); 11808 } 11809 11810 link = calloc(1, sizeof(*link)); 11811 if (!link) 11812 return libbpf_err_ptr(-ENOMEM); 11813 link->detach = &bpf_link__detach_fd; 11814 11815 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 11816 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 11817 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 11818 if (pfd < 0) { 11819 pfd = -errno; 11820 free(link); 11821 pr_warn("prog '%s': failed to attach: %s\n", 11822 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11823 return libbpf_err_ptr(pfd); 11824 } 11825 link->fd = pfd; 11826 return link; 11827 } 11828 11829 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 11830 { 11831 return bpf_program__attach_btf_id(prog, NULL); 11832 } 11833 11834 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 11835 const struct bpf_trace_opts *opts) 11836 { 11837 return bpf_program__attach_btf_id(prog, opts); 11838 } 11839 11840 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 11841 { 11842 return bpf_program__attach_btf_id(prog, NULL); 11843 } 11844 11845 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11846 { 11847 *link = bpf_program__attach_trace(prog); 11848 return libbpf_get_error(*link); 11849 } 11850 11851 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11852 { 11853 *link = bpf_program__attach_lsm(prog); 11854 return libbpf_get_error(*link); 11855 } 11856 11857 static struct bpf_link * 11858 bpf_program_attach_fd(const struct bpf_program *prog, 11859 int target_fd, const char *target_name, 11860 const struct bpf_link_create_opts *opts) 11861 { 11862 enum bpf_attach_type attach_type; 11863 char errmsg[STRERR_BUFSIZE]; 11864 struct bpf_link *link; 11865 int prog_fd, link_fd; 11866 11867 prog_fd = bpf_program__fd(prog); 11868 if (prog_fd < 0) { 11869 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11870 return libbpf_err_ptr(-EINVAL); 11871 } 11872 11873 link = calloc(1, sizeof(*link)); 11874 if (!link) 11875 return libbpf_err_ptr(-ENOMEM); 11876 link->detach = &bpf_link__detach_fd; 11877 11878 attach_type = bpf_program__expected_attach_type(prog); 11879 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts); 11880 if (link_fd < 0) { 11881 link_fd = -errno; 11882 free(link); 11883 pr_warn("prog '%s': failed to attach to %s: %s\n", 11884 prog->name, target_name, 11885 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11886 return libbpf_err_ptr(link_fd); 11887 } 11888 link->fd = link_fd; 11889 return link; 11890 } 11891 11892 struct bpf_link * 11893 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 11894 { 11895 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL); 11896 } 11897 11898 struct bpf_link * 11899 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 11900 { 11901 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL); 11902 } 11903 11904 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 11905 { 11906 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 11907 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL); 11908 } 11909 11910 struct bpf_link * 11911 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex, 11912 const struct bpf_tcx_opts *opts) 11913 { 11914 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 11915 __u32 relative_id; 11916 int relative_fd; 11917 11918 if (!OPTS_VALID(opts, bpf_tcx_opts)) 11919 return libbpf_err_ptr(-EINVAL); 11920 11921 relative_id = OPTS_GET(opts, relative_id, 0); 11922 relative_fd = OPTS_GET(opts, relative_fd, 0); 11923 11924 /* validate we don't have unexpected combinations of non-zero fields */ 11925 if (!ifindex) { 11926 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 11927 prog->name); 11928 return libbpf_err_ptr(-EINVAL); 11929 } 11930 if (relative_fd && relative_id) { 11931 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 11932 prog->name); 11933 return libbpf_err_ptr(-EINVAL); 11934 } 11935 11936 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0); 11937 link_create_opts.tcx.relative_fd = relative_fd; 11938 link_create_opts.tcx.relative_id = relative_id; 11939 link_create_opts.flags = OPTS_GET(opts, flags, 0); 11940 11941 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 11942 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts); 11943 } 11944 11945 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 11946 int target_fd, 11947 const char *attach_func_name) 11948 { 11949 int btf_id; 11950 11951 if (!!target_fd != !!attach_func_name) { 11952 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 11953 prog->name); 11954 return libbpf_err_ptr(-EINVAL); 11955 } 11956 11957 if (prog->type != BPF_PROG_TYPE_EXT) { 11958 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 11959 prog->name); 11960 return libbpf_err_ptr(-EINVAL); 11961 } 11962 11963 if (target_fd) { 11964 LIBBPF_OPTS(bpf_link_create_opts, target_opts); 11965 11966 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 11967 if (btf_id < 0) 11968 return libbpf_err_ptr(btf_id); 11969 11970 target_opts.target_btf_id = btf_id; 11971 11972 return bpf_program_attach_fd(prog, target_fd, "freplace", 11973 &target_opts); 11974 } else { 11975 /* no target, so use raw_tracepoint_open for compatibility 11976 * with old kernels 11977 */ 11978 return bpf_program__attach_trace(prog); 11979 } 11980 } 11981 11982 struct bpf_link * 11983 bpf_program__attach_iter(const struct bpf_program *prog, 11984 const struct bpf_iter_attach_opts *opts) 11985 { 11986 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 11987 char errmsg[STRERR_BUFSIZE]; 11988 struct bpf_link *link; 11989 int prog_fd, link_fd; 11990 __u32 target_fd = 0; 11991 11992 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 11993 return libbpf_err_ptr(-EINVAL); 11994 11995 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 11996 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 11997 11998 prog_fd = bpf_program__fd(prog); 11999 if (prog_fd < 0) { 12000 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12001 return libbpf_err_ptr(-EINVAL); 12002 } 12003 12004 link = calloc(1, sizeof(*link)); 12005 if (!link) 12006 return libbpf_err_ptr(-ENOMEM); 12007 link->detach = &bpf_link__detach_fd; 12008 12009 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 12010 &link_create_opts); 12011 if (link_fd < 0) { 12012 link_fd = -errno; 12013 free(link); 12014 pr_warn("prog '%s': failed to attach to iterator: %s\n", 12015 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12016 return libbpf_err_ptr(link_fd); 12017 } 12018 link->fd = link_fd; 12019 return link; 12020 } 12021 12022 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12023 { 12024 *link = bpf_program__attach_iter(prog, NULL); 12025 return libbpf_get_error(*link); 12026 } 12027 12028 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog, 12029 const struct bpf_netfilter_opts *opts) 12030 { 12031 LIBBPF_OPTS(bpf_link_create_opts, lopts); 12032 struct bpf_link *link; 12033 int prog_fd, link_fd; 12034 12035 if (!OPTS_VALID(opts, bpf_netfilter_opts)) 12036 return libbpf_err_ptr(-EINVAL); 12037 12038 prog_fd = bpf_program__fd(prog); 12039 if (prog_fd < 0) { 12040 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12041 return libbpf_err_ptr(-EINVAL); 12042 } 12043 12044 link = calloc(1, sizeof(*link)); 12045 if (!link) 12046 return libbpf_err_ptr(-ENOMEM); 12047 12048 link->detach = &bpf_link__detach_fd; 12049 12050 lopts.netfilter.pf = OPTS_GET(opts, pf, 0); 12051 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0); 12052 lopts.netfilter.priority = OPTS_GET(opts, priority, 0); 12053 lopts.netfilter.flags = OPTS_GET(opts, flags, 0); 12054 12055 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts); 12056 if (link_fd < 0) { 12057 char errmsg[STRERR_BUFSIZE]; 12058 12059 link_fd = -errno; 12060 free(link); 12061 pr_warn("prog '%s': failed to attach to netfilter: %s\n", 12062 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12063 return libbpf_err_ptr(link_fd); 12064 } 12065 link->fd = link_fd; 12066 12067 return link; 12068 } 12069 12070 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 12071 { 12072 struct bpf_link *link = NULL; 12073 int err; 12074 12075 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12076 return libbpf_err_ptr(-EOPNOTSUPP); 12077 12078 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 12079 if (err) 12080 return libbpf_err_ptr(err); 12081 12082 /* When calling bpf_program__attach() explicitly, auto-attach support 12083 * is expected to work, so NULL returned link is considered an error. 12084 * This is different for skeleton's attach, see comment in 12085 * bpf_object__attach_skeleton(). 12086 */ 12087 if (!link) 12088 return libbpf_err_ptr(-EOPNOTSUPP); 12089 12090 return link; 12091 } 12092 12093 struct bpf_link_struct_ops { 12094 struct bpf_link link; 12095 int map_fd; 12096 }; 12097 12098 static int bpf_link__detach_struct_ops(struct bpf_link *link) 12099 { 12100 struct bpf_link_struct_ops *st_link; 12101 __u32 zero = 0; 12102 12103 st_link = container_of(link, struct bpf_link_struct_ops, link); 12104 12105 if (st_link->map_fd < 0) 12106 /* w/o a real link */ 12107 return bpf_map_delete_elem(link->fd, &zero); 12108 12109 return close(link->fd); 12110 } 12111 12112 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 12113 { 12114 struct bpf_link_struct_ops *link; 12115 __u32 zero = 0; 12116 int err, fd; 12117 12118 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 12119 return libbpf_err_ptr(-EINVAL); 12120 12121 link = calloc(1, sizeof(*link)); 12122 if (!link) 12123 return libbpf_err_ptr(-EINVAL); 12124 12125 /* kern_vdata should be prepared during the loading phase. */ 12126 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 12127 /* It can be EBUSY if the map has been used to create or 12128 * update a link before. We don't allow updating the value of 12129 * a struct_ops once it is set. That ensures that the value 12130 * never changed. So, it is safe to skip EBUSY. 12131 */ 12132 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) { 12133 free(link); 12134 return libbpf_err_ptr(err); 12135 } 12136 12137 link->link.detach = bpf_link__detach_struct_ops; 12138 12139 if (!(map->def.map_flags & BPF_F_LINK)) { 12140 /* w/o a real link */ 12141 link->link.fd = map->fd; 12142 link->map_fd = -1; 12143 return &link->link; 12144 } 12145 12146 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL); 12147 if (fd < 0) { 12148 free(link); 12149 return libbpf_err_ptr(fd); 12150 } 12151 12152 link->link.fd = fd; 12153 link->map_fd = map->fd; 12154 12155 return &link->link; 12156 } 12157 12158 /* 12159 * Swap the back struct_ops of a link with a new struct_ops map. 12160 */ 12161 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map) 12162 { 12163 struct bpf_link_struct_ops *st_ops_link; 12164 __u32 zero = 0; 12165 int err; 12166 12167 if (!bpf_map__is_struct_ops(map) || map->fd < 0) 12168 return -EINVAL; 12169 12170 st_ops_link = container_of(link, struct bpf_link_struct_ops, link); 12171 /* Ensure the type of a link is correct */ 12172 if (st_ops_link->map_fd < 0) 12173 return -EINVAL; 12174 12175 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 12176 /* It can be EBUSY if the map has been used to create or 12177 * update a link before. We don't allow updating the value of 12178 * a struct_ops once it is set. That ensures that the value 12179 * never changed. So, it is safe to skip EBUSY. 12180 */ 12181 if (err && err != -EBUSY) 12182 return err; 12183 12184 err = bpf_link_update(link->fd, map->fd, NULL); 12185 if (err < 0) 12186 return err; 12187 12188 st_ops_link->map_fd = map->fd; 12189 12190 return 0; 12191 } 12192 12193 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 12194 void *private_data); 12195 12196 static enum bpf_perf_event_ret 12197 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 12198 void **copy_mem, size_t *copy_size, 12199 bpf_perf_event_print_t fn, void *private_data) 12200 { 12201 struct perf_event_mmap_page *header = mmap_mem; 12202 __u64 data_head = ring_buffer_read_head(header); 12203 __u64 data_tail = header->data_tail; 12204 void *base = ((__u8 *)header) + page_size; 12205 int ret = LIBBPF_PERF_EVENT_CONT; 12206 struct perf_event_header *ehdr; 12207 size_t ehdr_size; 12208 12209 while (data_head != data_tail) { 12210 ehdr = base + (data_tail & (mmap_size - 1)); 12211 ehdr_size = ehdr->size; 12212 12213 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 12214 void *copy_start = ehdr; 12215 size_t len_first = base + mmap_size - copy_start; 12216 size_t len_secnd = ehdr_size - len_first; 12217 12218 if (*copy_size < ehdr_size) { 12219 free(*copy_mem); 12220 *copy_mem = malloc(ehdr_size); 12221 if (!*copy_mem) { 12222 *copy_size = 0; 12223 ret = LIBBPF_PERF_EVENT_ERROR; 12224 break; 12225 } 12226 *copy_size = ehdr_size; 12227 } 12228 12229 memcpy(*copy_mem, copy_start, len_first); 12230 memcpy(*copy_mem + len_first, base, len_secnd); 12231 ehdr = *copy_mem; 12232 } 12233 12234 ret = fn(ehdr, private_data); 12235 data_tail += ehdr_size; 12236 if (ret != LIBBPF_PERF_EVENT_CONT) 12237 break; 12238 } 12239 12240 ring_buffer_write_tail(header, data_tail); 12241 return libbpf_err(ret); 12242 } 12243 12244 struct perf_buffer; 12245 12246 struct perf_buffer_params { 12247 struct perf_event_attr *attr; 12248 /* if event_cb is specified, it takes precendence */ 12249 perf_buffer_event_fn event_cb; 12250 /* sample_cb and lost_cb are higher-level common-case callbacks */ 12251 perf_buffer_sample_fn sample_cb; 12252 perf_buffer_lost_fn lost_cb; 12253 void *ctx; 12254 int cpu_cnt; 12255 int *cpus; 12256 int *map_keys; 12257 }; 12258 12259 struct perf_cpu_buf { 12260 struct perf_buffer *pb; 12261 void *base; /* mmap()'ed memory */ 12262 void *buf; /* for reconstructing segmented data */ 12263 size_t buf_size; 12264 int fd; 12265 int cpu; 12266 int map_key; 12267 }; 12268 12269 struct perf_buffer { 12270 perf_buffer_event_fn event_cb; 12271 perf_buffer_sample_fn sample_cb; 12272 perf_buffer_lost_fn lost_cb; 12273 void *ctx; /* passed into callbacks */ 12274 12275 size_t page_size; 12276 size_t mmap_size; 12277 struct perf_cpu_buf **cpu_bufs; 12278 struct epoll_event *events; 12279 int cpu_cnt; /* number of allocated CPU buffers */ 12280 int epoll_fd; /* perf event FD */ 12281 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 12282 }; 12283 12284 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 12285 struct perf_cpu_buf *cpu_buf) 12286 { 12287 if (!cpu_buf) 12288 return; 12289 if (cpu_buf->base && 12290 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 12291 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 12292 if (cpu_buf->fd >= 0) { 12293 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 12294 close(cpu_buf->fd); 12295 } 12296 free(cpu_buf->buf); 12297 free(cpu_buf); 12298 } 12299 12300 void perf_buffer__free(struct perf_buffer *pb) 12301 { 12302 int i; 12303 12304 if (IS_ERR_OR_NULL(pb)) 12305 return; 12306 if (pb->cpu_bufs) { 12307 for (i = 0; i < pb->cpu_cnt; i++) { 12308 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12309 12310 if (!cpu_buf) 12311 continue; 12312 12313 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 12314 perf_buffer__free_cpu_buf(pb, cpu_buf); 12315 } 12316 free(pb->cpu_bufs); 12317 } 12318 if (pb->epoll_fd >= 0) 12319 close(pb->epoll_fd); 12320 free(pb->events); 12321 free(pb); 12322 } 12323 12324 static struct perf_cpu_buf * 12325 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 12326 int cpu, int map_key) 12327 { 12328 struct perf_cpu_buf *cpu_buf; 12329 char msg[STRERR_BUFSIZE]; 12330 int err; 12331 12332 cpu_buf = calloc(1, sizeof(*cpu_buf)); 12333 if (!cpu_buf) 12334 return ERR_PTR(-ENOMEM); 12335 12336 cpu_buf->pb = pb; 12337 cpu_buf->cpu = cpu; 12338 cpu_buf->map_key = map_key; 12339 12340 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 12341 -1, PERF_FLAG_FD_CLOEXEC); 12342 if (cpu_buf->fd < 0) { 12343 err = -errno; 12344 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 12345 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12346 goto error; 12347 } 12348 12349 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 12350 PROT_READ | PROT_WRITE, MAP_SHARED, 12351 cpu_buf->fd, 0); 12352 if (cpu_buf->base == MAP_FAILED) { 12353 cpu_buf->base = NULL; 12354 err = -errno; 12355 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 12356 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12357 goto error; 12358 } 12359 12360 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 12361 err = -errno; 12362 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 12363 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12364 goto error; 12365 } 12366 12367 return cpu_buf; 12368 12369 error: 12370 perf_buffer__free_cpu_buf(pb, cpu_buf); 12371 return (struct perf_cpu_buf *)ERR_PTR(err); 12372 } 12373 12374 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 12375 struct perf_buffer_params *p); 12376 12377 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 12378 perf_buffer_sample_fn sample_cb, 12379 perf_buffer_lost_fn lost_cb, 12380 void *ctx, 12381 const struct perf_buffer_opts *opts) 12382 { 12383 const size_t attr_sz = sizeof(struct perf_event_attr); 12384 struct perf_buffer_params p = {}; 12385 struct perf_event_attr attr; 12386 __u32 sample_period; 12387 12388 if (!OPTS_VALID(opts, perf_buffer_opts)) 12389 return libbpf_err_ptr(-EINVAL); 12390 12391 sample_period = OPTS_GET(opts, sample_period, 1); 12392 if (!sample_period) 12393 sample_period = 1; 12394 12395 memset(&attr, 0, attr_sz); 12396 attr.size = attr_sz; 12397 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 12398 attr.type = PERF_TYPE_SOFTWARE; 12399 attr.sample_type = PERF_SAMPLE_RAW; 12400 attr.sample_period = sample_period; 12401 attr.wakeup_events = sample_period; 12402 12403 p.attr = &attr; 12404 p.sample_cb = sample_cb; 12405 p.lost_cb = lost_cb; 12406 p.ctx = ctx; 12407 12408 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 12409 } 12410 12411 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 12412 struct perf_event_attr *attr, 12413 perf_buffer_event_fn event_cb, void *ctx, 12414 const struct perf_buffer_raw_opts *opts) 12415 { 12416 struct perf_buffer_params p = {}; 12417 12418 if (!attr) 12419 return libbpf_err_ptr(-EINVAL); 12420 12421 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 12422 return libbpf_err_ptr(-EINVAL); 12423 12424 p.attr = attr; 12425 p.event_cb = event_cb; 12426 p.ctx = ctx; 12427 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 12428 p.cpus = OPTS_GET(opts, cpus, NULL); 12429 p.map_keys = OPTS_GET(opts, map_keys, NULL); 12430 12431 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 12432 } 12433 12434 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 12435 struct perf_buffer_params *p) 12436 { 12437 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 12438 struct bpf_map_info map; 12439 char msg[STRERR_BUFSIZE]; 12440 struct perf_buffer *pb; 12441 bool *online = NULL; 12442 __u32 map_info_len; 12443 int err, i, j, n; 12444 12445 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 12446 pr_warn("page count should be power of two, but is %zu\n", 12447 page_cnt); 12448 return ERR_PTR(-EINVAL); 12449 } 12450 12451 /* best-effort sanity checks */ 12452 memset(&map, 0, sizeof(map)); 12453 map_info_len = sizeof(map); 12454 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len); 12455 if (err) { 12456 err = -errno; 12457 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 12458 * -EBADFD, -EFAULT, or -E2BIG on real error 12459 */ 12460 if (err != -EINVAL) { 12461 pr_warn("failed to get map info for map FD %d: %s\n", 12462 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 12463 return ERR_PTR(err); 12464 } 12465 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 12466 map_fd); 12467 } else { 12468 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 12469 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 12470 map.name); 12471 return ERR_PTR(-EINVAL); 12472 } 12473 } 12474 12475 pb = calloc(1, sizeof(*pb)); 12476 if (!pb) 12477 return ERR_PTR(-ENOMEM); 12478 12479 pb->event_cb = p->event_cb; 12480 pb->sample_cb = p->sample_cb; 12481 pb->lost_cb = p->lost_cb; 12482 pb->ctx = p->ctx; 12483 12484 pb->page_size = getpagesize(); 12485 pb->mmap_size = pb->page_size * page_cnt; 12486 pb->map_fd = map_fd; 12487 12488 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 12489 if (pb->epoll_fd < 0) { 12490 err = -errno; 12491 pr_warn("failed to create epoll instance: %s\n", 12492 libbpf_strerror_r(err, msg, sizeof(msg))); 12493 goto error; 12494 } 12495 12496 if (p->cpu_cnt > 0) { 12497 pb->cpu_cnt = p->cpu_cnt; 12498 } else { 12499 pb->cpu_cnt = libbpf_num_possible_cpus(); 12500 if (pb->cpu_cnt < 0) { 12501 err = pb->cpu_cnt; 12502 goto error; 12503 } 12504 if (map.max_entries && map.max_entries < pb->cpu_cnt) 12505 pb->cpu_cnt = map.max_entries; 12506 } 12507 12508 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 12509 if (!pb->events) { 12510 err = -ENOMEM; 12511 pr_warn("failed to allocate events: out of memory\n"); 12512 goto error; 12513 } 12514 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 12515 if (!pb->cpu_bufs) { 12516 err = -ENOMEM; 12517 pr_warn("failed to allocate buffers: out of memory\n"); 12518 goto error; 12519 } 12520 12521 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 12522 if (err) { 12523 pr_warn("failed to get online CPU mask: %d\n", err); 12524 goto error; 12525 } 12526 12527 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 12528 struct perf_cpu_buf *cpu_buf; 12529 int cpu, map_key; 12530 12531 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 12532 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 12533 12534 /* in case user didn't explicitly requested particular CPUs to 12535 * be attached to, skip offline/not present CPUs 12536 */ 12537 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 12538 continue; 12539 12540 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 12541 if (IS_ERR(cpu_buf)) { 12542 err = PTR_ERR(cpu_buf); 12543 goto error; 12544 } 12545 12546 pb->cpu_bufs[j] = cpu_buf; 12547 12548 err = bpf_map_update_elem(pb->map_fd, &map_key, 12549 &cpu_buf->fd, 0); 12550 if (err) { 12551 err = -errno; 12552 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 12553 cpu, map_key, cpu_buf->fd, 12554 libbpf_strerror_r(err, msg, sizeof(msg))); 12555 goto error; 12556 } 12557 12558 pb->events[j].events = EPOLLIN; 12559 pb->events[j].data.ptr = cpu_buf; 12560 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 12561 &pb->events[j]) < 0) { 12562 err = -errno; 12563 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 12564 cpu, cpu_buf->fd, 12565 libbpf_strerror_r(err, msg, sizeof(msg))); 12566 goto error; 12567 } 12568 j++; 12569 } 12570 pb->cpu_cnt = j; 12571 free(online); 12572 12573 return pb; 12574 12575 error: 12576 free(online); 12577 if (pb) 12578 perf_buffer__free(pb); 12579 return ERR_PTR(err); 12580 } 12581 12582 struct perf_sample_raw { 12583 struct perf_event_header header; 12584 uint32_t size; 12585 char data[]; 12586 }; 12587 12588 struct perf_sample_lost { 12589 struct perf_event_header header; 12590 uint64_t id; 12591 uint64_t lost; 12592 uint64_t sample_id; 12593 }; 12594 12595 static enum bpf_perf_event_ret 12596 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 12597 { 12598 struct perf_cpu_buf *cpu_buf = ctx; 12599 struct perf_buffer *pb = cpu_buf->pb; 12600 void *data = e; 12601 12602 /* user wants full control over parsing perf event */ 12603 if (pb->event_cb) 12604 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 12605 12606 switch (e->type) { 12607 case PERF_RECORD_SAMPLE: { 12608 struct perf_sample_raw *s = data; 12609 12610 if (pb->sample_cb) 12611 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 12612 break; 12613 } 12614 case PERF_RECORD_LOST: { 12615 struct perf_sample_lost *s = data; 12616 12617 if (pb->lost_cb) 12618 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 12619 break; 12620 } 12621 default: 12622 pr_warn("unknown perf sample type %d\n", e->type); 12623 return LIBBPF_PERF_EVENT_ERROR; 12624 } 12625 return LIBBPF_PERF_EVENT_CONT; 12626 } 12627 12628 static int perf_buffer__process_records(struct perf_buffer *pb, 12629 struct perf_cpu_buf *cpu_buf) 12630 { 12631 enum bpf_perf_event_ret ret; 12632 12633 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 12634 pb->page_size, &cpu_buf->buf, 12635 &cpu_buf->buf_size, 12636 perf_buffer__process_record, cpu_buf); 12637 if (ret != LIBBPF_PERF_EVENT_CONT) 12638 return ret; 12639 return 0; 12640 } 12641 12642 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 12643 { 12644 return pb->epoll_fd; 12645 } 12646 12647 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 12648 { 12649 int i, cnt, err; 12650 12651 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 12652 if (cnt < 0) 12653 return -errno; 12654 12655 for (i = 0; i < cnt; i++) { 12656 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 12657 12658 err = perf_buffer__process_records(pb, cpu_buf); 12659 if (err) { 12660 pr_warn("error while processing records: %d\n", err); 12661 return libbpf_err(err); 12662 } 12663 } 12664 return cnt; 12665 } 12666 12667 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 12668 * manager. 12669 */ 12670 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 12671 { 12672 return pb->cpu_cnt; 12673 } 12674 12675 /* 12676 * Return perf_event FD of a ring buffer in *buf_idx* slot of 12677 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 12678 * select()/poll()/epoll() Linux syscalls. 12679 */ 12680 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 12681 { 12682 struct perf_cpu_buf *cpu_buf; 12683 12684 if (buf_idx >= pb->cpu_cnt) 12685 return libbpf_err(-EINVAL); 12686 12687 cpu_buf = pb->cpu_bufs[buf_idx]; 12688 if (!cpu_buf) 12689 return libbpf_err(-ENOENT); 12690 12691 return cpu_buf->fd; 12692 } 12693 12694 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 12695 { 12696 struct perf_cpu_buf *cpu_buf; 12697 12698 if (buf_idx >= pb->cpu_cnt) 12699 return libbpf_err(-EINVAL); 12700 12701 cpu_buf = pb->cpu_bufs[buf_idx]; 12702 if (!cpu_buf) 12703 return libbpf_err(-ENOENT); 12704 12705 *buf = cpu_buf->base; 12706 *buf_size = pb->mmap_size; 12707 return 0; 12708 } 12709 12710 /* 12711 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 12712 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 12713 * consume, do nothing and return success. 12714 * Returns: 12715 * - 0 on success; 12716 * - <0 on failure. 12717 */ 12718 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 12719 { 12720 struct perf_cpu_buf *cpu_buf; 12721 12722 if (buf_idx >= pb->cpu_cnt) 12723 return libbpf_err(-EINVAL); 12724 12725 cpu_buf = pb->cpu_bufs[buf_idx]; 12726 if (!cpu_buf) 12727 return libbpf_err(-ENOENT); 12728 12729 return perf_buffer__process_records(pb, cpu_buf); 12730 } 12731 12732 int perf_buffer__consume(struct perf_buffer *pb) 12733 { 12734 int i, err; 12735 12736 for (i = 0; i < pb->cpu_cnt; i++) { 12737 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12738 12739 if (!cpu_buf) 12740 continue; 12741 12742 err = perf_buffer__process_records(pb, cpu_buf); 12743 if (err) { 12744 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 12745 return libbpf_err(err); 12746 } 12747 } 12748 return 0; 12749 } 12750 12751 int bpf_program__set_attach_target(struct bpf_program *prog, 12752 int attach_prog_fd, 12753 const char *attach_func_name) 12754 { 12755 int btf_obj_fd = 0, btf_id = 0, err; 12756 12757 if (!prog || attach_prog_fd < 0) 12758 return libbpf_err(-EINVAL); 12759 12760 if (prog->obj->loaded) 12761 return libbpf_err(-EINVAL); 12762 12763 if (attach_prog_fd && !attach_func_name) { 12764 /* remember attach_prog_fd and let bpf_program__load() find 12765 * BTF ID during the program load 12766 */ 12767 prog->attach_prog_fd = attach_prog_fd; 12768 return 0; 12769 } 12770 12771 if (attach_prog_fd) { 12772 btf_id = libbpf_find_prog_btf_id(attach_func_name, 12773 attach_prog_fd); 12774 if (btf_id < 0) 12775 return libbpf_err(btf_id); 12776 } else { 12777 if (!attach_func_name) 12778 return libbpf_err(-EINVAL); 12779 12780 /* load btf_vmlinux, if not yet */ 12781 err = bpf_object__load_vmlinux_btf(prog->obj, true); 12782 if (err) 12783 return libbpf_err(err); 12784 err = find_kernel_btf_id(prog->obj, attach_func_name, 12785 prog->expected_attach_type, 12786 &btf_obj_fd, &btf_id); 12787 if (err) 12788 return libbpf_err(err); 12789 } 12790 12791 prog->attach_btf_id = btf_id; 12792 prog->attach_btf_obj_fd = btf_obj_fd; 12793 prog->attach_prog_fd = attach_prog_fd; 12794 return 0; 12795 } 12796 12797 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 12798 { 12799 int err = 0, n, len, start, end = -1; 12800 bool *tmp; 12801 12802 *mask = NULL; 12803 *mask_sz = 0; 12804 12805 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 12806 while (*s) { 12807 if (*s == ',' || *s == '\n') { 12808 s++; 12809 continue; 12810 } 12811 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 12812 if (n <= 0 || n > 2) { 12813 pr_warn("Failed to get CPU range %s: %d\n", s, n); 12814 err = -EINVAL; 12815 goto cleanup; 12816 } else if (n == 1) { 12817 end = start; 12818 } 12819 if (start < 0 || start > end) { 12820 pr_warn("Invalid CPU range [%d,%d] in %s\n", 12821 start, end, s); 12822 err = -EINVAL; 12823 goto cleanup; 12824 } 12825 tmp = realloc(*mask, end + 1); 12826 if (!tmp) { 12827 err = -ENOMEM; 12828 goto cleanup; 12829 } 12830 *mask = tmp; 12831 memset(tmp + *mask_sz, 0, start - *mask_sz); 12832 memset(tmp + start, 1, end - start + 1); 12833 *mask_sz = end + 1; 12834 s += len; 12835 } 12836 if (!*mask_sz) { 12837 pr_warn("Empty CPU range\n"); 12838 return -EINVAL; 12839 } 12840 return 0; 12841 cleanup: 12842 free(*mask); 12843 *mask = NULL; 12844 return err; 12845 } 12846 12847 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 12848 { 12849 int fd, err = 0, len; 12850 char buf[128]; 12851 12852 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 12853 if (fd < 0) { 12854 err = -errno; 12855 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 12856 return err; 12857 } 12858 len = read(fd, buf, sizeof(buf)); 12859 close(fd); 12860 if (len <= 0) { 12861 err = len ? -errno : -EINVAL; 12862 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 12863 return err; 12864 } 12865 if (len >= sizeof(buf)) { 12866 pr_warn("CPU mask is too big in file %s\n", fcpu); 12867 return -E2BIG; 12868 } 12869 buf[len] = '\0'; 12870 12871 return parse_cpu_mask_str(buf, mask, mask_sz); 12872 } 12873 12874 int libbpf_num_possible_cpus(void) 12875 { 12876 static const char *fcpu = "/sys/devices/system/cpu/possible"; 12877 static int cpus; 12878 int err, n, i, tmp_cpus; 12879 bool *mask; 12880 12881 tmp_cpus = READ_ONCE(cpus); 12882 if (tmp_cpus > 0) 12883 return tmp_cpus; 12884 12885 err = parse_cpu_mask_file(fcpu, &mask, &n); 12886 if (err) 12887 return libbpf_err(err); 12888 12889 tmp_cpus = 0; 12890 for (i = 0; i < n; i++) { 12891 if (mask[i]) 12892 tmp_cpus++; 12893 } 12894 free(mask); 12895 12896 WRITE_ONCE(cpus, tmp_cpus); 12897 return tmp_cpus; 12898 } 12899 12900 static int populate_skeleton_maps(const struct bpf_object *obj, 12901 struct bpf_map_skeleton *maps, 12902 size_t map_cnt) 12903 { 12904 int i; 12905 12906 for (i = 0; i < map_cnt; i++) { 12907 struct bpf_map **map = maps[i].map; 12908 const char *name = maps[i].name; 12909 void **mmaped = maps[i].mmaped; 12910 12911 *map = bpf_object__find_map_by_name(obj, name); 12912 if (!*map) { 12913 pr_warn("failed to find skeleton map '%s'\n", name); 12914 return -ESRCH; 12915 } 12916 12917 /* externs shouldn't be pre-setup from user code */ 12918 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 12919 *mmaped = (*map)->mmaped; 12920 } 12921 return 0; 12922 } 12923 12924 static int populate_skeleton_progs(const struct bpf_object *obj, 12925 struct bpf_prog_skeleton *progs, 12926 size_t prog_cnt) 12927 { 12928 int i; 12929 12930 for (i = 0; i < prog_cnt; i++) { 12931 struct bpf_program **prog = progs[i].prog; 12932 const char *name = progs[i].name; 12933 12934 *prog = bpf_object__find_program_by_name(obj, name); 12935 if (!*prog) { 12936 pr_warn("failed to find skeleton program '%s'\n", name); 12937 return -ESRCH; 12938 } 12939 } 12940 return 0; 12941 } 12942 12943 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 12944 const struct bpf_object_open_opts *opts) 12945 { 12946 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 12947 .object_name = s->name, 12948 ); 12949 struct bpf_object *obj; 12950 int err; 12951 12952 /* Attempt to preserve opts->object_name, unless overriden by user 12953 * explicitly. Overwriting object name for skeletons is discouraged, 12954 * as it breaks global data maps, because they contain object name 12955 * prefix as their own map name prefix. When skeleton is generated, 12956 * bpftool is making an assumption that this name will stay the same. 12957 */ 12958 if (opts) { 12959 memcpy(&skel_opts, opts, sizeof(*opts)); 12960 if (!opts->object_name) 12961 skel_opts.object_name = s->name; 12962 } 12963 12964 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 12965 err = libbpf_get_error(obj); 12966 if (err) { 12967 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 12968 s->name, err); 12969 return libbpf_err(err); 12970 } 12971 12972 *s->obj = obj; 12973 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 12974 if (err) { 12975 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 12976 return libbpf_err(err); 12977 } 12978 12979 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 12980 if (err) { 12981 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 12982 return libbpf_err(err); 12983 } 12984 12985 return 0; 12986 } 12987 12988 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 12989 { 12990 int err, len, var_idx, i; 12991 const char *var_name; 12992 const struct bpf_map *map; 12993 struct btf *btf; 12994 __u32 map_type_id; 12995 const struct btf_type *map_type, *var_type; 12996 const struct bpf_var_skeleton *var_skel; 12997 struct btf_var_secinfo *var; 12998 12999 if (!s->obj) 13000 return libbpf_err(-EINVAL); 13001 13002 btf = bpf_object__btf(s->obj); 13003 if (!btf) { 13004 pr_warn("subskeletons require BTF at runtime (object %s)\n", 13005 bpf_object__name(s->obj)); 13006 return libbpf_err(-errno); 13007 } 13008 13009 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 13010 if (err) { 13011 pr_warn("failed to populate subskeleton maps: %d\n", err); 13012 return libbpf_err(err); 13013 } 13014 13015 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 13016 if (err) { 13017 pr_warn("failed to populate subskeleton maps: %d\n", err); 13018 return libbpf_err(err); 13019 } 13020 13021 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 13022 var_skel = &s->vars[var_idx]; 13023 map = *var_skel->map; 13024 map_type_id = bpf_map__btf_value_type_id(map); 13025 map_type = btf__type_by_id(btf, map_type_id); 13026 13027 if (!btf_is_datasec(map_type)) { 13028 pr_warn("type for map '%1$s' is not a datasec: %2$s", 13029 bpf_map__name(map), 13030 __btf_kind_str(btf_kind(map_type))); 13031 return libbpf_err(-EINVAL); 13032 } 13033 13034 len = btf_vlen(map_type); 13035 var = btf_var_secinfos(map_type); 13036 for (i = 0; i < len; i++, var++) { 13037 var_type = btf__type_by_id(btf, var->type); 13038 var_name = btf__name_by_offset(btf, var_type->name_off); 13039 if (strcmp(var_name, var_skel->name) == 0) { 13040 *var_skel->addr = map->mmaped + var->offset; 13041 break; 13042 } 13043 } 13044 } 13045 return 0; 13046 } 13047 13048 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 13049 { 13050 if (!s) 13051 return; 13052 free(s->maps); 13053 free(s->progs); 13054 free(s->vars); 13055 free(s); 13056 } 13057 13058 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 13059 { 13060 int i, err; 13061 13062 err = bpf_object__load(*s->obj); 13063 if (err) { 13064 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 13065 return libbpf_err(err); 13066 } 13067 13068 for (i = 0; i < s->map_cnt; i++) { 13069 struct bpf_map *map = *s->maps[i].map; 13070 size_t mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 13071 int prot, map_fd = bpf_map__fd(map); 13072 void **mmaped = s->maps[i].mmaped; 13073 13074 if (!mmaped) 13075 continue; 13076 13077 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 13078 *mmaped = NULL; 13079 continue; 13080 } 13081 13082 if (map->def.map_flags & BPF_F_RDONLY_PROG) 13083 prot = PROT_READ; 13084 else 13085 prot = PROT_READ | PROT_WRITE; 13086 13087 /* Remap anonymous mmap()-ed "map initialization image" as 13088 * a BPF map-backed mmap()-ed memory, but preserving the same 13089 * memory address. This will cause kernel to change process' 13090 * page table to point to a different piece of kernel memory, 13091 * but from userspace point of view memory address (and its 13092 * contents, being identical at this point) will stay the 13093 * same. This mapping will be released by bpf_object__close() 13094 * as per normal clean up procedure, so we don't need to worry 13095 * about it from skeleton's clean up perspective. 13096 */ 13097 *mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0); 13098 if (*mmaped == MAP_FAILED) { 13099 err = -errno; 13100 *mmaped = NULL; 13101 pr_warn("failed to re-mmap() map '%s': %d\n", 13102 bpf_map__name(map), err); 13103 return libbpf_err(err); 13104 } 13105 } 13106 13107 return 0; 13108 } 13109 13110 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 13111 { 13112 int i, err; 13113 13114 for (i = 0; i < s->prog_cnt; i++) { 13115 struct bpf_program *prog = *s->progs[i].prog; 13116 struct bpf_link **link = s->progs[i].link; 13117 13118 if (!prog->autoload || !prog->autoattach) 13119 continue; 13120 13121 /* auto-attaching not supported for this program */ 13122 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 13123 continue; 13124 13125 /* if user already set the link manually, don't attempt auto-attach */ 13126 if (*link) 13127 continue; 13128 13129 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 13130 if (err) { 13131 pr_warn("prog '%s': failed to auto-attach: %d\n", 13132 bpf_program__name(prog), err); 13133 return libbpf_err(err); 13134 } 13135 13136 /* It's possible that for some SEC() definitions auto-attach 13137 * is supported in some cases (e.g., if definition completely 13138 * specifies target information), but is not in other cases. 13139 * SEC("uprobe") is one such case. If user specified target 13140 * binary and function name, such BPF program can be 13141 * auto-attached. But if not, it shouldn't trigger skeleton's 13142 * attach to fail. It should just be skipped. 13143 * attach_fn signals such case with returning 0 (no error) and 13144 * setting link to NULL. 13145 */ 13146 } 13147 13148 return 0; 13149 } 13150 13151 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 13152 { 13153 int i; 13154 13155 for (i = 0; i < s->prog_cnt; i++) { 13156 struct bpf_link **link = s->progs[i].link; 13157 13158 bpf_link__destroy(*link); 13159 *link = NULL; 13160 } 13161 } 13162 13163 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 13164 { 13165 if (!s) 13166 return; 13167 13168 if (s->progs) 13169 bpf_object__detach_skeleton(s); 13170 if (s->obj) 13171 bpf_object__close(*s->obj); 13172 free(s->maps); 13173 free(s->progs); 13174 free(s); 13175 } 13176