1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/list.h> 35 #include <linux/limits.h> 36 #include <linux/perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <linux/version.h> 39 #include <sys/epoll.h> 40 #include <sys/ioctl.h> 41 #include <sys/mman.h> 42 #include <sys/stat.h> 43 #include <sys/types.h> 44 #include <sys/vfs.h> 45 #include <sys/utsname.h> 46 #include <sys/resource.h> 47 #include <tools/libc_compat.h> 48 #include <libelf.h> 49 #include <gelf.h> 50 #include <zlib.h> 51 52 #include "libbpf.h" 53 #include "bpf.h" 54 #include "btf.h" 55 #include "str_error.h" 56 #include "libbpf_internal.h" 57 #include "hashmap.h" 58 59 /* make sure libbpf doesn't use kernel-only integer typedefs */ 60 #pragma GCC poison u8 u16 u32 u64 s8 s16 s32 s64 61 62 #ifndef EM_BPF 63 #define EM_BPF 247 64 #endif 65 66 #ifndef BPF_FS_MAGIC 67 #define BPF_FS_MAGIC 0xcafe4a11 68 #endif 69 70 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 71 * compilation if user enables corresponding warning. Disable it explicitly. 72 */ 73 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 74 75 #define __printf(a, b) __attribute__((format(printf, a, b))) 76 77 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 78 static struct bpf_program *bpf_object__find_prog_by_idx(struct bpf_object *obj, 79 int idx); 80 static const struct btf_type * 81 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id); 82 83 static int __base_pr(enum libbpf_print_level level, const char *format, 84 va_list args) 85 { 86 if (level == LIBBPF_DEBUG) 87 return 0; 88 89 return vfprintf(stderr, format, args); 90 } 91 92 static libbpf_print_fn_t __libbpf_pr = __base_pr; 93 94 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 95 { 96 libbpf_print_fn_t old_print_fn = __libbpf_pr; 97 98 __libbpf_pr = fn; 99 return old_print_fn; 100 } 101 102 __printf(2, 3) 103 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 104 { 105 va_list args; 106 107 if (!__libbpf_pr) 108 return; 109 110 va_start(args, format); 111 __libbpf_pr(level, format, args); 112 va_end(args); 113 } 114 115 static void pr_perm_msg(int err) 116 { 117 struct rlimit limit; 118 char buf[100]; 119 120 if (err != -EPERM || geteuid() != 0) 121 return; 122 123 err = getrlimit(RLIMIT_MEMLOCK, &limit); 124 if (err) 125 return; 126 127 if (limit.rlim_cur == RLIM_INFINITY) 128 return; 129 130 if (limit.rlim_cur < 1024) 131 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 132 else if (limit.rlim_cur < 1024*1024) 133 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 134 else 135 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 136 137 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 138 buf); 139 } 140 141 #define STRERR_BUFSIZE 128 142 143 /* Copied from tools/perf/util/util.h */ 144 #ifndef zfree 145 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 146 #endif 147 148 #ifndef zclose 149 # define zclose(fd) ({ \ 150 int ___err = 0; \ 151 if ((fd) >= 0) \ 152 ___err = close((fd)); \ 153 fd = -1; \ 154 ___err; }) 155 #endif 156 157 #ifdef HAVE_LIBELF_MMAP_SUPPORT 158 # define LIBBPF_ELF_C_READ_MMAP ELF_C_READ_MMAP 159 #else 160 # define LIBBPF_ELF_C_READ_MMAP ELF_C_READ 161 #endif 162 163 static inline __u64 ptr_to_u64(const void *ptr) 164 { 165 return (__u64) (unsigned long) ptr; 166 } 167 168 struct bpf_capabilities { 169 /* v4.14: kernel support for program & map names. */ 170 __u32 name:1; 171 /* v5.2: kernel support for global data sections. */ 172 __u32 global_data:1; 173 /* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */ 174 __u32 btf_func:1; 175 /* BTF_KIND_VAR and BTF_KIND_DATASEC support */ 176 __u32 btf_datasec:1; 177 /* BPF_F_MMAPABLE is supported for arrays */ 178 __u32 array_mmap:1; 179 /* BTF_FUNC_GLOBAL is supported */ 180 __u32 btf_func_global:1; 181 }; 182 183 enum reloc_type { 184 RELO_LD64, 185 RELO_CALL, 186 RELO_DATA, 187 RELO_EXTERN, 188 }; 189 190 struct reloc_desc { 191 enum reloc_type type; 192 int insn_idx; 193 int map_idx; 194 int sym_off; 195 }; 196 197 /* 198 * bpf_prog should be a better name but it has been used in 199 * linux/filter.h. 200 */ 201 struct bpf_program { 202 /* Index in elf obj file, for relocation use. */ 203 int idx; 204 char *name; 205 int prog_ifindex; 206 char *section_name; 207 /* section_name with / replaced by _; makes recursive pinning 208 * in bpf_object__pin_programs easier 209 */ 210 char *pin_name; 211 struct bpf_insn *insns; 212 size_t insns_cnt, main_prog_cnt; 213 enum bpf_prog_type type; 214 215 struct reloc_desc *reloc_desc; 216 int nr_reloc; 217 int log_level; 218 219 struct { 220 int nr; 221 int *fds; 222 } instances; 223 bpf_program_prep_t preprocessor; 224 225 struct bpf_object *obj; 226 void *priv; 227 bpf_program_clear_priv_t clear_priv; 228 229 enum bpf_attach_type expected_attach_type; 230 __u32 attach_btf_id; 231 __u32 attach_prog_fd; 232 void *func_info; 233 __u32 func_info_rec_size; 234 __u32 func_info_cnt; 235 236 struct bpf_capabilities *caps; 237 238 void *line_info; 239 __u32 line_info_rec_size; 240 __u32 line_info_cnt; 241 __u32 prog_flags; 242 }; 243 244 struct bpf_struct_ops { 245 const char *tname; 246 const struct btf_type *type; 247 struct bpf_program **progs; 248 __u32 *kern_func_off; 249 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 250 void *data; 251 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 252 * btf_vmlinux's format. 253 * struct bpf_struct_ops_tcp_congestion_ops { 254 * [... some other kernel fields ...] 255 * struct tcp_congestion_ops data; 256 * } 257 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 258 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 259 * from "data". 260 */ 261 void *kern_vdata; 262 __u32 type_id; 263 }; 264 265 #define DATA_SEC ".data" 266 #define BSS_SEC ".bss" 267 #define RODATA_SEC ".rodata" 268 #define KCONFIG_SEC ".kconfig" 269 #define STRUCT_OPS_SEC ".struct_ops" 270 271 enum libbpf_map_type { 272 LIBBPF_MAP_UNSPEC, 273 LIBBPF_MAP_DATA, 274 LIBBPF_MAP_BSS, 275 LIBBPF_MAP_RODATA, 276 LIBBPF_MAP_KCONFIG, 277 }; 278 279 static const char * const libbpf_type_to_btf_name[] = { 280 [LIBBPF_MAP_DATA] = DATA_SEC, 281 [LIBBPF_MAP_BSS] = BSS_SEC, 282 [LIBBPF_MAP_RODATA] = RODATA_SEC, 283 [LIBBPF_MAP_KCONFIG] = KCONFIG_SEC, 284 }; 285 286 struct bpf_map { 287 char *name; 288 int fd; 289 int sec_idx; 290 size_t sec_offset; 291 int map_ifindex; 292 int inner_map_fd; 293 struct bpf_map_def def; 294 __u32 btf_key_type_id; 295 __u32 btf_value_type_id; 296 __u32 btf_vmlinux_value_type_id; 297 void *priv; 298 bpf_map_clear_priv_t clear_priv; 299 enum libbpf_map_type libbpf_type; 300 void *mmaped; 301 struct bpf_struct_ops *st_ops; 302 char *pin_path; 303 bool pinned; 304 bool reused; 305 }; 306 307 enum extern_type { 308 EXT_UNKNOWN, 309 EXT_CHAR, 310 EXT_BOOL, 311 EXT_INT, 312 EXT_TRISTATE, 313 EXT_CHAR_ARR, 314 }; 315 316 struct extern_desc { 317 const char *name; 318 int sym_idx; 319 int btf_id; 320 enum extern_type type; 321 int sz; 322 int align; 323 int data_off; 324 bool is_signed; 325 bool is_weak; 326 bool is_set; 327 }; 328 329 static LIST_HEAD(bpf_objects_list); 330 331 struct bpf_object { 332 char name[BPF_OBJ_NAME_LEN]; 333 char license[64]; 334 __u32 kern_version; 335 336 struct bpf_program *programs; 337 size_t nr_programs; 338 struct bpf_map *maps; 339 size_t nr_maps; 340 size_t maps_cap; 341 342 char *kconfig; 343 struct extern_desc *externs; 344 int nr_extern; 345 int kconfig_map_idx; 346 347 bool loaded; 348 bool has_pseudo_calls; 349 350 /* 351 * Information when doing elf related work. Only valid if fd 352 * is valid. 353 */ 354 struct { 355 int fd; 356 const void *obj_buf; 357 size_t obj_buf_sz; 358 Elf *elf; 359 GElf_Ehdr ehdr; 360 Elf_Data *symbols; 361 Elf_Data *data; 362 Elf_Data *rodata; 363 Elf_Data *bss; 364 Elf_Data *st_ops_data; 365 size_t strtabidx; 366 struct { 367 GElf_Shdr shdr; 368 Elf_Data *data; 369 } *reloc_sects; 370 int nr_reloc_sects; 371 int maps_shndx; 372 int btf_maps_shndx; 373 int text_shndx; 374 int symbols_shndx; 375 int data_shndx; 376 int rodata_shndx; 377 int bss_shndx; 378 int st_ops_shndx; 379 } efile; 380 /* 381 * All loaded bpf_object is linked in a list, which is 382 * hidden to caller. bpf_objects__<func> handlers deal with 383 * all objects. 384 */ 385 struct list_head list; 386 387 struct btf *btf; 388 /* Parse and load BTF vmlinux if any of the programs in the object need 389 * it at load time. 390 */ 391 struct btf *btf_vmlinux; 392 struct btf_ext *btf_ext; 393 394 void *priv; 395 bpf_object_clear_priv_t clear_priv; 396 397 struct bpf_capabilities caps; 398 399 char path[]; 400 }; 401 #define obj_elf_valid(o) ((o)->efile.elf) 402 403 void bpf_program__unload(struct bpf_program *prog) 404 { 405 int i; 406 407 if (!prog) 408 return; 409 410 /* 411 * If the object is opened but the program was never loaded, 412 * it is possible that prog->instances.nr == -1. 413 */ 414 if (prog->instances.nr > 0) { 415 for (i = 0; i < prog->instances.nr; i++) 416 zclose(prog->instances.fds[i]); 417 } else if (prog->instances.nr != -1) { 418 pr_warn("Internal error: instances.nr is %d\n", 419 prog->instances.nr); 420 } 421 422 prog->instances.nr = -1; 423 zfree(&prog->instances.fds); 424 425 zfree(&prog->func_info); 426 zfree(&prog->line_info); 427 } 428 429 static void bpf_program__exit(struct bpf_program *prog) 430 { 431 if (!prog) 432 return; 433 434 if (prog->clear_priv) 435 prog->clear_priv(prog, prog->priv); 436 437 prog->priv = NULL; 438 prog->clear_priv = NULL; 439 440 bpf_program__unload(prog); 441 zfree(&prog->name); 442 zfree(&prog->section_name); 443 zfree(&prog->pin_name); 444 zfree(&prog->insns); 445 zfree(&prog->reloc_desc); 446 447 prog->nr_reloc = 0; 448 prog->insns_cnt = 0; 449 prog->idx = -1; 450 } 451 452 static char *__bpf_program__pin_name(struct bpf_program *prog) 453 { 454 char *name, *p; 455 456 name = p = strdup(prog->section_name); 457 while ((p = strchr(p, '/'))) 458 *p = '_'; 459 460 return name; 461 } 462 463 static int 464 bpf_program__init(void *data, size_t size, char *section_name, int idx, 465 struct bpf_program *prog) 466 { 467 const size_t bpf_insn_sz = sizeof(struct bpf_insn); 468 469 if (size == 0 || size % bpf_insn_sz) { 470 pr_warn("corrupted section '%s', size: %zu\n", 471 section_name, size); 472 return -EINVAL; 473 } 474 475 memset(prog, 0, sizeof(*prog)); 476 477 prog->section_name = strdup(section_name); 478 if (!prog->section_name) { 479 pr_warn("failed to alloc name for prog under section(%d) %s\n", 480 idx, section_name); 481 goto errout; 482 } 483 484 prog->pin_name = __bpf_program__pin_name(prog); 485 if (!prog->pin_name) { 486 pr_warn("failed to alloc pin name for prog under section(%d) %s\n", 487 idx, section_name); 488 goto errout; 489 } 490 491 prog->insns = malloc(size); 492 if (!prog->insns) { 493 pr_warn("failed to alloc insns for prog under section %s\n", 494 section_name); 495 goto errout; 496 } 497 prog->insns_cnt = size / bpf_insn_sz; 498 memcpy(prog->insns, data, size); 499 prog->idx = idx; 500 prog->instances.fds = NULL; 501 prog->instances.nr = -1; 502 prog->type = BPF_PROG_TYPE_UNSPEC; 503 504 return 0; 505 errout: 506 bpf_program__exit(prog); 507 return -ENOMEM; 508 } 509 510 static int 511 bpf_object__add_program(struct bpf_object *obj, void *data, size_t size, 512 char *section_name, int idx) 513 { 514 struct bpf_program prog, *progs; 515 int nr_progs, err; 516 517 err = bpf_program__init(data, size, section_name, idx, &prog); 518 if (err) 519 return err; 520 521 prog.caps = &obj->caps; 522 progs = obj->programs; 523 nr_progs = obj->nr_programs; 524 525 progs = reallocarray(progs, nr_progs + 1, sizeof(progs[0])); 526 if (!progs) { 527 /* 528 * In this case the original obj->programs 529 * is still valid, so don't need special treat for 530 * bpf_close_object(). 531 */ 532 pr_warn("failed to alloc a new program under section '%s'\n", 533 section_name); 534 bpf_program__exit(&prog); 535 return -ENOMEM; 536 } 537 538 pr_debug("found program %s\n", prog.section_name); 539 obj->programs = progs; 540 obj->nr_programs = nr_progs + 1; 541 prog.obj = obj; 542 progs[nr_progs] = prog; 543 return 0; 544 } 545 546 static int 547 bpf_object__init_prog_names(struct bpf_object *obj) 548 { 549 Elf_Data *symbols = obj->efile.symbols; 550 struct bpf_program *prog; 551 size_t pi, si; 552 553 for (pi = 0; pi < obj->nr_programs; pi++) { 554 const char *name = NULL; 555 556 prog = &obj->programs[pi]; 557 558 for (si = 0; si < symbols->d_size / sizeof(GElf_Sym) && !name; 559 si++) { 560 GElf_Sym sym; 561 562 if (!gelf_getsym(symbols, si, &sym)) 563 continue; 564 if (sym.st_shndx != prog->idx) 565 continue; 566 if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL) 567 continue; 568 569 name = elf_strptr(obj->efile.elf, 570 obj->efile.strtabidx, 571 sym.st_name); 572 if (!name) { 573 pr_warn("failed to get sym name string for prog %s\n", 574 prog->section_name); 575 return -LIBBPF_ERRNO__LIBELF; 576 } 577 } 578 579 if (!name && prog->idx == obj->efile.text_shndx) 580 name = ".text"; 581 582 if (!name) { 583 pr_warn("failed to find sym for prog %s\n", 584 prog->section_name); 585 return -EINVAL; 586 } 587 588 prog->name = strdup(name); 589 if (!prog->name) { 590 pr_warn("failed to allocate memory for prog sym %s\n", 591 name); 592 return -ENOMEM; 593 } 594 } 595 596 return 0; 597 } 598 599 static __u32 get_kernel_version(void) 600 { 601 __u32 major, minor, patch; 602 struct utsname info; 603 604 uname(&info); 605 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 606 return 0; 607 return KERNEL_VERSION(major, minor, patch); 608 } 609 610 static const struct btf_member * 611 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 612 { 613 struct btf_member *m; 614 int i; 615 616 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 617 if (btf_member_bit_offset(t, i) == bit_offset) 618 return m; 619 } 620 621 return NULL; 622 } 623 624 static const struct btf_member * 625 find_member_by_name(const struct btf *btf, const struct btf_type *t, 626 const char *name) 627 { 628 struct btf_member *m; 629 int i; 630 631 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 632 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 633 return m; 634 } 635 636 return NULL; 637 } 638 639 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 640 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 641 const char *name, __u32 kind); 642 643 static int 644 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 645 const struct btf_type **type, __u32 *type_id, 646 const struct btf_type **vtype, __u32 *vtype_id, 647 const struct btf_member **data_member) 648 { 649 const struct btf_type *kern_type, *kern_vtype; 650 const struct btf_member *kern_data_member; 651 __s32 kern_vtype_id, kern_type_id; 652 __u32 i; 653 654 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 655 if (kern_type_id < 0) { 656 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 657 tname); 658 return kern_type_id; 659 } 660 kern_type = btf__type_by_id(btf, kern_type_id); 661 662 /* Find the corresponding "map_value" type that will be used 663 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 664 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 665 * btf_vmlinux. 666 */ 667 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 668 tname, BTF_KIND_STRUCT); 669 if (kern_vtype_id < 0) { 670 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 671 STRUCT_OPS_VALUE_PREFIX, tname); 672 return kern_vtype_id; 673 } 674 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 675 676 /* Find "struct tcp_congestion_ops" from 677 * struct bpf_struct_ops_tcp_congestion_ops { 678 * [ ... ] 679 * struct tcp_congestion_ops data; 680 * } 681 */ 682 kern_data_member = btf_members(kern_vtype); 683 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 684 if (kern_data_member->type == kern_type_id) 685 break; 686 } 687 if (i == btf_vlen(kern_vtype)) { 688 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 689 tname, STRUCT_OPS_VALUE_PREFIX, tname); 690 return -EINVAL; 691 } 692 693 *type = kern_type; 694 *type_id = kern_type_id; 695 *vtype = kern_vtype; 696 *vtype_id = kern_vtype_id; 697 *data_member = kern_data_member; 698 699 return 0; 700 } 701 702 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 703 { 704 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 705 } 706 707 /* Init the map's fields that depend on kern_btf */ 708 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 709 const struct btf *btf, 710 const struct btf *kern_btf) 711 { 712 const struct btf_member *member, *kern_member, *kern_data_member; 713 const struct btf_type *type, *kern_type, *kern_vtype; 714 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 715 struct bpf_struct_ops *st_ops; 716 void *data, *kern_data; 717 const char *tname; 718 int err; 719 720 st_ops = map->st_ops; 721 type = st_ops->type; 722 tname = st_ops->tname; 723 err = find_struct_ops_kern_types(kern_btf, tname, 724 &kern_type, &kern_type_id, 725 &kern_vtype, &kern_vtype_id, 726 &kern_data_member); 727 if (err) 728 return err; 729 730 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 731 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 732 733 map->def.value_size = kern_vtype->size; 734 map->btf_vmlinux_value_type_id = kern_vtype_id; 735 736 st_ops->kern_vdata = calloc(1, kern_vtype->size); 737 if (!st_ops->kern_vdata) 738 return -ENOMEM; 739 740 data = st_ops->data; 741 kern_data_off = kern_data_member->offset / 8; 742 kern_data = st_ops->kern_vdata + kern_data_off; 743 744 member = btf_members(type); 745 for (i = 0; i < btf_vlen(type); i++, member++) { 746 const struct btf_type *mtype, *kern_mtype; 747 __u32 mtype_id, kern_mtype_id; 748 void *mdata, *kern_mdata; 749 __s64 msize, kern_msize; 750 __u32 moff, kern_moff; 751 __u32 kern_member_idx; 752 const char *mname; 753 754 mname = btf__name_by_offset(btf, member->name_off); 755 kern_member = find_member_by_name(kern_btf, kern_type, mname); 756 if (!kern_member) { 757 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 758 map->name, mname); 759 return -ENOTSUP; 760 } 761 762 kern_member_idx = kern_member - btf_members(kern_type); 763 if (btf_member_bitfield_size(type, i) || 764 btf_member_bitfield_size(kern_type, kern_member_idx)) { 765 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 766 map->name, mname); 767 return -ENOTSUP; 768 } 769 770 moff = member->offset / 8; 771 kern_moff = kern_member->offset / 8; 772 773 mdata = data + moff; 774 kern_mdata = kern_data + kern_moff; 775 776 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 777 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 778 &kern_mtype_id); 779 if (BTF_INFO_KIND(mtype->info) != 780 BTF_INFO_KIND(kern_mtype->info)) { 781 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 782 map->name, mname, BTF_INFO_KIND(mtype->info), 783 BTF_INFO_KIND(kern_mtype->info)); 784 return -ENOTSUP; 785 } 786 787 if (btf_is_ptr(mtype)) { 788 struct bpf_program *prog; 789 790 mtype = skip_mods_and_typedefs(btf, mtype->type, &mtype_id); 791 kern_mtype = skip_mods_and_typedefs(kern_btf, 792 kern_mtype->type, 793 &kern_mtype_id); 794 if (!btf_is_func_proto(mtype) || 795 !btf_is_func_proto(kern_mtype)) { 796 pr_warn("struct_ops init_kern %s: non func ptr %s is not supported\n", 797 map->name, mname); 798 return -ENOTSUP; 799 } 800 801 prog = st_ops->progs[i]; 802 if (!prog) { 803 pr_debug("struct_ops init_kern %s: func ptr %s is not set\n", 804 map->name, mname); 805 continue; 806 } 807 808 prog->attach_btf_id = kern_type_id; 809 prog->expected_attach_type = kern_member_idx; 810 811 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 812 813 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 814 map->name, mname, prog->name, moff, 815 kern_moff); 816 817 continue; 818 } 819 820 msize = btf__resolve_size(btf, mtype_id); 821 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 822 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 823 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 824 map->name, mname, (ssize_t)msize, 825 (ssize_t)kern_msize); 826 return -ENOTSUP; 827 } 828 829 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 830 map->name, mname, (unsigned int)msize, 831 moff, kern_moff); 832 memcpy(kern_mdata, mdata, msize); 833 } 834 835 return 0; 836 } 837 838 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 839 { 840 struct bpf_map *map; 841 size_t i; 842 int err; 843 844 for (i = 0; i < obj->nr_maps; i++) { 845 map = &obj->maps[i]; 846 847 if (!bpf_map__is_struct_ops(map)) 848 continue; 849 850 err = bpf_map__init_kern_struct_ops(map, obj->btf, 851 obj->btf_vmlinux); 852 if (err) 853 return err; 854 } 855 856 return 0; 857 } 858 859 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 860 { 861 const struct btf_type *type, *datasec; 862 const struct btf_var_secinfo *vsi; 863 struct bpf_struct_ops *st_ops; 864 const char *tname, *var_name; 865 __s32 type_id, datasec_id; 866 const struct btf *btf; 867 struct bpf_map *map; 868 __u32 i; 869 870 if (obj->efile.st_ops_shndx == -1) 871 return 0; 872 873 btf = obj->btf; 874 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 875 BTF_KIND_DATASEC); 876 if (datasec_id < 0) { 877 pr_warn("struct_ops init: DATASEC %s not found\n", 878 STRUCT_OPS_SEC); 879 return -EINVAL; 880 } 881 882 datasec = btf__type_by_id(btf, datasec_id); 883 vsi = btf_var_secinfos(datasec); 884 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 885 type = btf__type_by_id(obj->btf, vsi->type); 886 var_name = btf__name_by_offset(obj->btf, type->name_off); 887 888 type_id = btf__resolve_type(obj->btf, vsi->type); 889 if (type_id < 0) { 890 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 891 vsi->type, STRUCT_OPS_SEC); 892 return -EINVAL; 893 } 894 895 type = btf__type_by_id(obj->btf, type_id); 896 tname = btf__name_by_offset(obj->btf, type->name_off); 897 if (!tname[0]) { 898 pr_warn("struct_ops init: anonymous type is not supported\n"); 899 return -ENOTSUP; 900 } 901 if (!btf_is_struct(type)) { 902 pr_warn("struct_ops init: %s is not a struct\n", tname); 903 return -EINVAL; 904 } 905 906 map = bpf_object__add_map(obj); 907 if (IS_ERR(map)) 908 return PTR_ERR(map); 909 910 map->sec_idx = obj->efile.st_ops_shndx; 911 map->sec_offset = vsi->offset; 912 map->name = strdup(var_name); 913 if (!map->name) 914 return -ENOMEM; 915 916 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 917 map->def.key_size = sizeof(int); 918 map->def.value_size = type->size; 919 map->def.max_entries = 1; 920 921 map->st_ops = calloc(1, sizeof(*map->st_ops)); 922 if (!map->st_ops) 923 return -ENOMEM; 924 st_ops = map->st_ops; 925 st_ops->data = malloc(type->size); 926 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 927 st_ops->kern_func_off = malloc(btf_vlen(type) * 928 sizeof(*st_ops->kern_func_off)); 929 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 930 return -ENOMEM; 931 932 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 933 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 934 var_name, STRUCT_OPS_SEC); 935 return -EINVAL; 936 } 937 938 memcpy(st_ops->data, 939 obj->efile.st_ops_data->d_buf + vsi->offset, 940 type->size); 941 st_ops->tname = tname; 942 st_ops->type = type; 943 st_ops->type_id = type_id; 944 945 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 946 tname, type_id, var_name, vsi->offset); 947 } 948 949 return 0; 950 } 951 952 static struct bpf_object *bpf_object__new(const char *path, 953 const void *obj_buf, 954 size_t obj_buf_sz, 955 const char *obj_name) 956 { 957 struct bpf_object *obj; 958 char *end; 959 960 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 961 if (!obj) { 962 pr_warn("alloc memory failed for %s\n", path); 963 return ERR_PTR(-ENOMEM); 964 } 965 966 strcpy(obj->path, path); 967 if (obj_name) { 968 strncpy(obj->name, obj_name, sizeof(obj->name) - 1); 969 obj->name[sizeof(obj->name) - 1] = 0; 970 } else { 971 /* Using basename() GNU version which doesn't modify arg. */ 972 strncpy(obj->name, basename((void *)path), 973 sizeof(obj->name) - 1); 974 end = strchr(obj->name, '.'); 975 if (end) 976 *end = 0; 977 } 978 979 obj->efile.fd = -1; 980 /* 981 * Caller of this function should also call 982 * bpf_object__elf_finish() after data collection to return 983 * obj_buf to user. If not, we should duplicate the buffer to 984 * avoid user freeing them before elf finish. 985 */ 986 obj->efile.obj_buf = obj_buf; 987 obj->efile.obj_buf_sz = obj_buf_sz; 988 obj->efile.maps_shndx = -1; 989 obj->efile.btf_maps_shndx = -1; 990 obj->efile.data_shndx = -1; 991 obj->efile.rodata_shndx = -1; 992 obj->efile.bss_shndx = -1; 993 obj->efile.st_ops_shndx = -1; 994 obj->kconfig_map_idx = -1; 995 996 obj->kern_version = get_kernel_version(); 997 obj->loaded = false; 998 999 INIT_LIST_HEAD(&obj->list); 1000 list_add(&obj->list, &bpf_objects_list); 1001 return obj; 1002 } 1003 1004 static void bpf_object__elf_finish(struct bpf_object *obj) 1005 { 1006 if (!obj_elf_valid(obj)) 1007 return; 1008 1009 if (obj->efile.elf) { 1010 elf_end(obj->efile.elf); 1011 obj->efile.elf = NULL; 1012 } 1013 obj->efile.symbols = NULL; 1014 obj->efile.data = NULL; 1015 obj->efile.rodata = NULL; 1016 obj->efile.bss = NULL; 1017 obj->efile.st_ops_data = NULL; 1018 1019 zfree(&obj->efile.reloc_sects); 1020 obj->efile.nr_reloc_sects = 0; 1021 zclose(obj->efile.fd); 1022 obj->efile.obj_buf = NULL; 1023 obj->efile.obj_buf_sz = 0; 1024 } 1025 1026 static int bpf_object__elf_init(struct bpf_object *obj) 1027 { 1028 int err = 0; 1029 GElf_Ehdr *ep; 1030 1031 if (obj_elf_valid(obj)) { 1032 pr_warn("elf init: internal error\n"); 1033 return -LIBBPF_ERRNO__LIBELF; 1034 } 1035 1036 if (obj->efile.obj_buf_sz > 0) { 1037 /* 1038 * obj_buf should have been validated by 1039 * bpf_object__open_buffer(). 1040 */ 1041 obj->efile.elf = elf_memory((char *)obj->efile.obj_buf, 1042 obj->efile.obj_buf_sz); 1043 } else { 1044 obj->efile.fd = open(obj->path, O_RDONLY); 1045 if (obj->efile.fd < 0) { 1046 char errmsg[STRERR_BUFSIZE], *cp; 1047 1048 err = -errno; 1049 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1050 pr_warn("failed to open %s: %s\n", obj->path, cp); 1051 return err; 1052 } 1053 1054 obj->efile.elf = elf_begin(obj->efile.fd, 1055 LIBBPF_ELF_C_READ_MMAP, NULL); 1056 } 1057 1058 if (!obj->efile.elf) { 1059 pr_warn("failed to open %s as ELF file\n", obj->path); 1060 err = -LIBBPF_ERRNO__LIBELF; 1061 goto errout; 1062 } 1063 1064 if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) { 1065 pr_warn("failed to get EHDR from %s\n", obj->path); 1066 err = -LIBBPF_ERRNO__FORMAT; 1067 goto errout; 1068 } 1069 ep = &obj->efile.ehdr; 1070 1071 /* Old LLVM set e_machine to EM_NONE */ 1072 if (ep->e_type != ET_REL || 1073 (ep->e_machine && ep->e_machine != EM_BPF)) { 1074 pr_warn("%s is not an eBPF object file\n", obj->path); 1075 err = -LIBBPF_ERRNO__FORMAT; 1076 goto errout; 1077 } 1078 1079 return 0; 1080 errout: 1081 bpf_object__elf_finish(obj); 1082 return err; 1083 } 1084 1085 static int bpf_object__check_endianness(struct bpf_object *obj) 1086 { 1087 #if __BYTE_ORDER == __LITTLE_ENDIAN 1088 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2LSB) 1089 return 0; 1090 #elif __BYTE_ORDER == __BIG_ENDIAN 1091 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2MSB) 1092 return 0; 1093 #else 1094 # error "Unrecognized __BYTE_ORDER__" 1095 #endif 1096 pr_warn("endianness mismatch.\n"); 1097 return -LIBBPF_ERRNO__ENDIAN; 1098 } 1099 1100 static int 1101 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1102 { 1103 memcpy(obj->license, data, min(size, sizeof(obj->license) - 1)); 1104 pr_debug("license of %s is %s\n", obj->path, obj->license); 1105 return 0; 1106 } 1107 1108 static int 1109 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1110 { 1111 __u32 kver; 1112 1113 if (size != sizeof(kver)) { 1114 pr_warn("invalid kver section in %s\n", obj->path); 1115 return -LIBBPF_ERRNO__FORMAT; 1116 } 1117 memcpy(&kver, data, sizeof(kver)); 1118 obj->kern_version = kver; 1119 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1120 return 0; 1121 } 1122 1123 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1124 { 1125 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1126 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1127 return true; 1128 return false; 1129 } 1130 1131 static int bpf_object_search_section_size(const struct bpf_object *obj, 1132 const char *name, size_t *d_size) 1133 { 1134 const GElf_Ehdr *ep = &obj->efile.ehdr; 1135 Elf *elf = obj->efile.elf; 1136 Elf_Scn *scn = NULL; 1137 int idx = 0; 1138 1139 while ((scn = elf_nextscn(elf, scn)) != NULL) { 1140 const char *sec_name; 1141 Elf_Data *data; 1142 GElf_Shdr sh; 1143 1144 idx++; 1145 if (gelf_getshdr(scn, &sh) != &sh) { 1146 pr_warn("failed to get section(%d) header from %s\n", 1147 idx, obj->path); 1148 return -EIO; 1149 } 1150 1151 sec_name = elf_strptr(elf, ep->e_shstrndx, sh.sh_name); 1152 if (!sec_name) { 1153 pr_warn("failed to get section(%d) name from %s\n", 1154 idx, obj->path); 1155 return -EIO; 1156 } 1157 1158 if (strcmp(name, sec_name)) 1159 continue; 1160 1161 data = elf_getdata(scn, 0); 1162 if (!data) { 1163 pr_warn("failed to get section(%d) data from %s(%s)\n", 1164 idx, name, obj->path); 1165 return -EIO; 1166 } 1167 1168 *d_size = data->d_size; 1169 return 0; 1170 } 1171 1172 return -ENOENT; 1173 } 1174 1175 int bpf_object__section_size(const struct bpf_object *obj, const char *name, 1176 __u32 *size) 1177 { 1178 int ret = -ENOENT; 1179 size_t d_size; 1180 1181 *size = 0; 1182 if (!name) { 1183 return -EINVAL; 1184 } else if (!strcmp(name, DATA_SEC)) { 1185 if (obj->efile.data) 1186 *size = obj->efile.data->d_size; 1187 } else if (!strcmp(name, BSS_SEC)) { 1188 if (obj->efile.bss) 1189 *size = obj->efile.bss->d_size; 1190 } else if (!strcmp(name, RODATA_SEC)) { 1191 if (obj->efile.rodata) 1192 *size = obj->efile.rodata->d_size; 1193 } else if (!strcmp(name, STRUCT_OPS_SEC)) { 1194 if (obj->efile.st_ops_data) 1195 *size = obj->efile.st_ops_data->d_size; 1196 } else { 1197 ret = bpf_object_search_section_size(obj, name, &d_size); 1198 if (!ret) 1199 *size = d_size; 1200 } 1201 1202 return *size ? 0 : ret; 1203 } 1204 1205 int bpf_object__variable_offset(const struct bpf_object *obj, const char *name, 1206 __u32 *off) 1207 { 1208 Elf_Data *symbols = obj->efile.symbols; 1209 const char *sname; 1210 size_t si; 1211 1212 if (!name || !off) 1213 return -EINVAL; 1214 1215 for (si = 0; si < symbols->d_size / sizeof(GElf_Sym); si++) { 1216 GElf_Sym sym; 1217 1218 if (!gelf_getsym(symbols, si, &sym)) 1219 continue; 1220 if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL || 1221 GELF_ST_TYPE(sym.st_info) != STT_OBJECT) 1222 continue; 1223 1224 sname = elf_strptr(obj->efile.elf, obj->efile.strtabidx, 1225 sym.st_name); 1226 if (!sname) { 1227 pr_warn("failed to get sym name string for var %s\n", 1228 name); 1229 return -EIO; 1230 } 1231 if (strcmp(name, sname) == 0) { 1232 *off = sym.st_value; 1233 return 0; 1234 } 1235 } 1236 1237 return -ENOENT; 1238 } 1239 1240 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1241 { 1242 struct bpf_map *new_maps; 1243 size_t new_cap; 1244 int i; 1245 1246 if (obj->nr_maps < obj->maps_cap) 1247 return &obj->maps[obj->nr_maps++]; 1248 1249 new_cap = max((size_t)4, obj->maps_cap * 3 / 2); 1250 new_maps = realloc(obj->maps, new_cap * sizeof(*obj->maps)); 1251 if (!new_maps) { 1252 pr_warn("alloc maps for object failed\n"); 1253 return ERR_PTR(-ENOMEM); 1254 } 1255 1256 obj->maps_cap = new_cap; 1257 obj->maps = new_maps; 1258 1259 /* zero out new maps */ 1260 memset(obj->maps + obj->nr_maps, 0, 1261 (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps)); 1262 /* 1263 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin) 1264 * when failure (zclose won't close negative fd)). 1265 */ 1266 for (i = obj->nr_maps; i < obj->maps_cap; i++) { 1267 obj->maps[i].fd = -1; 1268 obj->maps[i].inner_map_fd = -1; 1269 } 1270 1271 return &obj->maps[obj->nr_maps++]; 1272 } 1273 1274 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1275 { 1276 long page_sz = sysconf(_SC_PAGE_SIZE); 1277 size_t map_sz; 1278 1279 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1280 map_sz = roundup(map_sz, page_sz); 1281 return map_sz; 1282 } 1283 1284 static char *internal_map_name(struct bpf_object *obj, 1285 enum libbpf_map_type type) 1286 { 1287 char map_name[BPF_OBJ_NAME_LEN], *p; 1288 const char *sfx = libbpf_type_to_btf_name[type]; 1289 int sfx_len = max((size_t)7, strlen(sfx)); 1290 int pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, 1291 strlen(obj->name)); 1292 1293 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1294 sfx_len, libbpf_type_to_btf_name[type]); 1295 1296 /* sanitise map name to characters allowed by kernel */ 1297 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1298 if (!isalnum(*p) && *p != '_' && *p != '.') 1299 *p = '_'; 1300 1301 return strdup(map_name); 1302 } 1303 1304 static int 1305 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1306 int sec_idx, void *data, size_t data_sz) 1307 { 1308 struct bpf_map_def *def; 1309 struct bpf_map *map; 1310 int err; 1311 1312 map = bpf_object__add_map(obj); 1313 if (IS_ERR(map)) 1314 return PTR_ERR(map); 1315 1316 map->libbpf_type = type; 1317 map->sec_idx = sec_idx; 1318 map->sec_offset = 0; 1319 map->name = internal_map_name(obj, type); 1320 if (!map->name) { 1321 pr_warn("failed to alloc map name\n"); 1322 return -ENOMEM; 1323 } 1324 1325 def = &map->def; 1326 def->type = BPF_MAP_TYPE_ARRAY; 1327 def->key_size = sizeof(int); 1328 def->value_size = data_sz; 1329 def->max_entries = 1; 1330 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1331 ? BPF_F_RDONLY_PROG : 0; 1332 def->map_flags |= BPF_F_MMAPABLE; 1333 1334 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1335 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1336 1337 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1338 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1339 if (map->mmaped == MAP_FAILED) { 1340 err = -errno; 1341 map->mmaped = NULL; 1342 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1343 map->name, err); 1344 zfree(&map->name); 1345 return err; 1346 } 1347 1348 if (data) 1349 memcpy(map->mmaped, data, data_sz); 1350 1351 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1352 return 0; 1353 } 1354 1355 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1356 { 1357 int err; 1358 1359 /* 1360 * Populate obj->maps with libbpf internal maps. 1361 */ 1362 if (obj->efile.data_shndx >= 0) { 1363 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1364 obj->efile.data_shndx, 1365 obj->efile.data->d_buf, 1366 obj->efile.data->d_size); 1367 if (err) 1368 return err; 1369 } 1370 if (obj->efile.rodata_shndx >= 0) { 1371 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1372 obj->efile.rodata_shndx, 1373 obj->efile.rodata->d_buf, 1374 obj->efile.rodata->d_size); 1375 if (err) 1376 return err; 1377 } 1378 if (obj->efile.bss_shndx >= 0) { 1379 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1380 obj->efile.bss_shndx, 1381 NULL, 1382 obj->efile.bss->d_size); 1383 if (err) 1384 return err; 1385 } 1386 return 0; 1387 } 1388 1389 1390 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1391 const void *name) 1392 { 1393 int i; 1394 1395 for (i = 0; i < obj->nr_extern; i++) { 1396 if (strcmp(obj->externs[i].name, name) == 0) 1397 return &obj->externs[i]; 1398 } 1399 return NULL; 1400 } 1401 1402 static int set_ext_value_tri(struct extern_desc *ext, void *ext_val, 1403 char value) 1404 { 1405 switch (ext->type) { 1406 case EXT_BOOL: 1407 if (value == 'm') { 1408 pr_warn("extern %s=%c should be tristate or char\n", 1409 ext->name, value); 1410 return -EINVAL; 1411 } 1412 *(bool *)ext_val = value == 'y' ? true : false; 1413 break; 1414 case EXT_TRISTATE: 1415 if (value == 'y') 1416 *(enum libbpf_tristate *)ext_val = TRI_YES; 1417 else if (value == 'm') 1418 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1419 else /* value == 'n' */ 1420 *(enum libbpf_tristate *)ext_val = TRI_NO; 1421 break; 1422 case EXT_CHAR: 1423 *(char *)ext_val = value; 1424 break; 1425 case EXT_UNKNOWN: 1426 case EXT_INT: 1427 case EXT_CHAR_ARR: 1428 default: 1429 pr_warn("extern %s=%c should be bool, tristate, or char\n", 1430 ext->name, value); 1431 return -EINVAL; 1432 } 1433 ext->is_set = true; 1434 return 0; 1435 } 1436 1437 static int set_ext_value_str(struct extern_desc *ext, char *ext_val, 1438 const char *value) 1439 { 1440 size_t len; 1441 1442 if (ext->type != EXT_CHAR_ARR) { 1443 pr_warn("extern %s=%s should char array\n", ext->name, value); 1444 return -EINVAL; 1445 } 1446 1447 len = strlen(value); 1448 if (value[len - 1] != '"') { 1449 pr_warn("extern '%s': invalid string config '%s'\n", 1450 ext->name, value); 1451 return -EINVAL; 1452 } 1453 1454 /* strip quotes */ 1455 len -= 2; 1456 if (len >= ext->sz) { 1457 pr_warn("extern '%s': long string config %s of (%zu bytes) truncated to %d bytes\n", 1458 ext->name, value, len, ext->sz - 1); 1459 len = ext->sz - 1; 1460 } 1461 memcpy(ext_val, value + 1, len); 1462 ext_val[len] = '\0'; 1463 ext->is_set = true; 1464 return 0; 1465 } 1466 1467 static int parse_u64(const char *value, __u64 *res) 1468 { 1469 char *value_end; 1470 int err; 1471 1472 errno = 0; 1473 *res = strtoull(value, &value_end, 0); 1474 if (errno) { 1475 err = -errno; 1476 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1477 return err; 1478 } 1479 if (*value_end) { 1480 pr_warn("failed to parse '%s' as integer completely\n", value); 1481 return -EINVAL; 1482 } 1483 return 0; 1484 } 1485 1486 static bool is_ext_value_in_range(const struct extern_desc *ext, __u64 v) 1487 { 1488 int bit_sz = ext->sz * 8; 1489 1490 if (ext->sz == 8) 1491 return true; 1492 1493 /* Validate that value stored in u64 fits in integer of `ext->sz` 1494 * bytes size without any loss of information. If the target integer 1495 * is signed, we rely on the following limits of integer type of 1496 * Y bits and subsequent transformation: 1497 * 1498 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1499 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1500 * 0 <= X + 2^(Y-1) < 2^Y 1501 * 1502 * For unsigned target integer, check that all the (64 - Y) bits are 1503 * zero. 1504 */ 1505 if (ext->is_signed) 1506 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1507 else 1508 return (v >> bit_sz) == 0; 1509 } 1510 1511 static int set_ext_value_num(struct extern_desc *ext, void *ext_val, 1512 __u64 value) 1513 { 1514 if (ext->type != EXT_INT && ext->type != EXT_CHAR) { 1515 pr_warn("extern %s=%llu should be integer\n", 1516 ext->name, (unsigned long long)value); 1517 return -EINVAL; 1518 } 1519 if (!is_ext_value_in_range(ext, value)) { 1520 pr_warn("extern %s=%llu value doesn't fit in %d bytes\n", 1521 ext->name, (unsigned long long)value, ext->sz); 1522 return -ERANGE; 1523 } 1524 switch (ext->sz) { 1525 case 1: *(__u8 *)ext_val = value; break; 1526 case 2: *(__u16 *)ext_val = value; break; 1527 case 4: *(__u32 *)ext_val = value; break; 1528 case 8: *(__u64 *)ext_val = value; break; 1529 default: 1530 return -EINVAL; 1531 } 1532 ext->is_set = true; 1533 return 0; 1534 } 1535 1536 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1537 char *buf, void *data) 1538 { 1539 struct extern_desc *ext; 1540 char *sep, *value; 1541 int len, err = 0; 1542 void *ext_val; 1543 __u64 num; 1544 1545 if (strncmp(buf, "CONFIG_", 7)) 1546 return 0; 1547 1548 sep = strchr(buf, '='); 1549 if (!sep) { 1550 pr_warn("failed to parse '%s': no separator\n", buf); 1551 return -EINVAL; 1552 } 1553 1554 /* Trim ending '\n' */ 1555 len = strlen(buf); 1556 if (buf[len - 1] == '\n') 1557 buf[len - 1] = '\0'; 1558 /* Split on '=' and ensure that a value is present. */ 1559 *sep = '\0'; 1560 if (!sep[1]) { 1561 *sep = '='; 1562 pr_warn("failed to parse '%s': no value\n", buf); 1563 return -EINVAL; 1564 } 1565 1566 ext = find_extern_by_name(obj, buf); 1567 if (!ext || ext->is_set) 1568 return 0; 1569 1570 ext_val = data + ext->data_off; 1571 value = sep + 1; 1572 1573 switch (*value) { 1574 case 'y': case 'n': case 'm': 1575 err = set_ext_value_tri(ext, ext_val, *value); 1576 break; 1577 case '"': 1578 err = set_ext_value_str(ext, ext_val, value); 1579 break; 1580 default: 1581 /* assume integer */ 1582 err = parse_u64(value, &num); 1583 if (err) { 1584 pr_warn("extern %s=%s should be integer\n", 1585 ext->name, value); 1586 return err; 1587 } 1588 err = set_ext_value_num(ext, ext_val, num); 1589 break; 1590 } 1591 if (err) 1592 return err; 1593 pr_debug("extern %s=%s\n", ext->name, value); 1594 return 0; 1595 } 1596 1597 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1598 { 1599 char buf[PATH_MAX]; 1600 struct utsname uts; 1601 int len, err = 0; 1602 gzFile file; 1603 1604 uname(&uts); 1605 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1606 if (len < 0) 1607 return -EINVAL; 1608 else if (len >= PATH_MAX) 1609 return -ENAMETOOLONG; 1610 1611 /* gzopen also accepts uncompressed files. */ 1612 file = gzopen(buf, "r"); 1613 if (!file) 1614 file = gzopen("/proc/config.gz", "r"); 1615 1616 if (!file) { 1617 pr_warn("failed to open system Kconfig\n"); 1618 return -ENOENT; 1619 } 1620 1621 while (gzgets(file, buf, sizeof(buf))) { 1622 err = bpf_object__process_kconfig_line(obj, buf, data); 1623 if (err) { 1624 pr_warn("error parsing system Kconfig line '%s': %d\n", 1625 buf, err); 1626 goto out; 1627 } 1628 } 1629 1630 out: 1631 gzclose(file); 1632 return err; 1633 } 1634 1635 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1636 const char *config, void *data) 1637 { 1638 char buf[PATH_MAX]; 1639 int err = 0; 1640 FILE *file; 1641 1642 file = fmemopen((void *)config, strlen(config), "r"); 1643 if (!file) { 1644 err = -errno; 1645 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1646 return err; 1647 } 1648 1649 while (fgets(buf, sizeof(buf), file)) { 1650 err = bpf_object__process_kconfig_line(obj, buf, data); 1651 if (err) { 1652 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1653 buf, err); 1654 break; 1655 } 1656 } 1657 1658 fclose(file); 1659 return err; 1660 } 1661 1662 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1663 { 1664 struct extern_desc *last_ext; 1665 size_t map_sz; 1666 int err; 1667 1668 if (obj->nr_extern == 0) 1669 return 0; 1670 1671 last_ext = &obj->externs[obj->nr_extern - 1]; 1672 map_sz = last_ext->data_off + last_ext->sz; 1673 1674 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1675 obj->efile.symbols_shndx, 1676 NULL, map_sz); 1677 if (err) 1678 return err; 1679 1680 obj->kconfig_map_idx = obj->nr_maps - 1; 1681 1682 return 0; 1683 } 1684 1685 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) 1686 { 1687 Elf_Data *symbols = obj->efile.symbols; 1688 int i, map_def_sz = 0, nr_maps = 0, nr_syms; 1689 Elf_Data *data = NULL; 1690 Elf_Scn *scn; 1691 1692 if (obj->efile.maps_shndx < 0) 1693 return 0; 1694 1695 if (!symbols) 1696 return -EINVAL; 1697 1698 scn = elf_getscn(obj->efile.elf, obj->efile.maps_shndx); 1699 if (scn) 1700 data = elf_getdata(scn, NULL); 1701 if (!scn || !data) { 1702 pr_warn("failed to get Elf_Data from map section %d\n", 1703 obj->efile.maps_shndx); 1704 return -EINVAL; 1705 } 1706 1707 /* 1708 * Count number of maps. Each map has a name. 1709 * Array of maps is not supported: only the first element is 1710 * considered. 1711 * 1712 * TODO: Detect array of map and report error. 1713 */ 1714 nr_syms = symbols->d_size / sizeof(GElf_Sym); 1715 for (i = 0; i < nr_syms; i++) { 1716 GElf_Sym sym; 1717 1718 if (!gelf_getsym(symbols, i, &sym)) 1719 continue; 1720 if (sym.st_shndx != obj->efile.maps_shndx) 1721 continue; 1722 nr_maps++; 1723 } 1724 /* Assume equally sized map definitions */ 1725 pr_debug("maps in %s: %d maps in %zd bytes\n", 1726 obj->path, nr_maps, data->d_size); 1727 1728 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) { 1729 pr_warn("unable to determine map definition size section %s, %d maps in %zd bytes\n", 1730 obj->path, nr_maps, data->d_size); 1731 return -EINVAL; 1732 } 1733 map_def_sz = data->d_size / nr_maps; 1734 1735 /* Fill obj->maps using data in "maps" section. */ 1736 for (i = 0; i < nr_syms; i++) { 1737 GElf_Sym sym; 1738 const char *map_name; 1739 struct bpf_map_def *def; 1740 struct bpf_map *map; 1741 1742 if (!gelf_getsym(symbols, i, &sym)) 1743 continue; 1744 if (sym.st_shndx != obj->efile.maps_shndx) 1745 continue; 1746 1747 map = bpf_object__add_map(obj); 1748 if (IS_ERR(map)) 1749 return PTR_ERR(map); 1750 1751 map_name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, 1752 sym.st_name); 1753 if (!map_name) { 1754 pr_warn("failed to get map #%d name sym string for obj %s\n", 1755 i, obj->path); 1756 return -LIBBPF_ERRNO__FORMAT; 1757 } 1758 1759 map->libbpf_type = LIBBPF_MAP_UNSPEC; 1760 map->sec_idx = sym.st_shndx; 1761 map->sec_offset = sym.st_value; 1762 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n", 1763 map_name, map->sec_idx, map->sec_offset); 1764 if (sym.st_value + map_def_sz > data->d_size) { 1765 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n", 1766 obj->path, map_name); 1767 return -EINVAL; 1768 } 1769 1770 map->name = strdup(map_name); 1771 if (!map->name) { 1772 pr_warn("failed to alloc map name\n"); 1773 return -ENOMEM; 1774 } 1775 pr_debug("map %d is \"%s\"\n", i, map->name); 1776 def = (struct bpf_map_def *)(data->d_buf + sym.st_value); 1777 /* 1778 * If the definition of the map in the object file fits in 1779 * bpf_map_def, copy it. Any extra fields in our version 1780 * of bpf_map_def will default to zero as a result of the 1781 * calloc above. 1782 */ 1783 if (map_def_sz <= sizeof(struct bpf_map_def)) { 1784 memcpy(&map->def, def, map_def_sz); 1785 } else { 1786 /* 1787 * Here the map structure being read is bigger than what 1788 * we expect, truncate if the excess bits are all zero. 1789 * If they are not zero, reject this map as 1790 * incompatible. 1791 */ 1792 char *b; 1793 1794 for (b = ((char *)def) + sizeof(struct bpf_map_def); 1795 b < ((char *)def) + map_def_sz; b++) { 1796 if (*b != 0) { 1797 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n", 1798 obj->path, map_name); 1799 if (strict) 1800 return -EINVAL; 1801 } 1802 } 1803 memcpy(&map->def, def, sizeof(struct bpf_map_def)); 1804 } 1805 } 1806 return 0; 1807 } 1808 1809 static const struct btf_type * 1810 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 1811 { 1812 const struct btf_type *t = btf__type_by_id(btf, id); 1813 1814 if (res_id) 1815 *res_id = id; 1816 1817 while (btf_is_mod(t) || btf_is_typedef(t)) { 1818 if (res_id) 1819 *res_id = t->type; 1820 t = btf__type_by_id(btf, t->type); 1821 } 1822 1823 return t; 1824 } 1825 1826 static const struct btf_type * 1827 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 1828 { 1829 const struct btf_type *t; 1830 1831 t = skip_mods_and_typedefs(btf, id, NULL); 1832 if (!btf_is_ptr(t)) 1833 return NULL; 1834 1835 t = skip_mods_and_typedefs(btf, t->type, res_id); 1836 1837 return btf_is_func_proto(t) ? t : NULL; 1838 } 1839 1840 /* 1841 * Fetch integer attribute of BTF map definition. Such attributes are 1842 * represented using a pointer to an array, in which dimensionality of array 1843 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 1844 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 1845 * type definition, while using only sizeof(void *) space in ELF data section. 1846 */ 1847 static bool get_map_field_int(const char *map_name, const struct btf *btf, 1848 const struct btf_type *def, 1849 const struct btf_member *m, __u32 *res) 1850 { 1851 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 1852 const char *name = btf__name_by_offset(btf, m->name_off); 1853 const struct btf_array *arr_info; 1854 const struct btf_type *arr_t; 1855 1856 if (!btf_is_ptr(t)) { 1857 pr_warn("map '%s': attr '%s': expected PTR, got %u.\n", 1858 map_name, name, btf_kind(t)); 1859 return false; 1860 } 1861 1862 arr_t = btf__type_by_id(btf, t->type); 1863 if (!arr_t) { 1864 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 1865 map_name, name, t->type); 1866 return false; 1867 } 1868 if (!btf_is_array(arr_t)) { 1869 pr_warn("map '%s': attr '%s': expected ARRAY, got %u.\n", 1870 map_name, name, btf_kind(arr_t)); 1871 return false; 1872 } 1873 arr_info = btf_array(arr_t); 1874 *res = arr_info->nelems; 1875 return true; 1876 } 1877 1878 static int build_map_pin_path(struct bpf_map *map, const char *path) 1879 { 1880 char buf[PATH_MAX]; 1881 int err, len; 1882 1883 if (!path) 1884 path = "/sys/fs/bpf"; 1885 1886 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 1887 if (len < 0) 1888 return -EINVAL; 1889 else if (len >= PATH_MAX) 1890 return -ENAMETOOLONG; 1891 1892 err = bpf_map__set_pin_path(map, buf); 1893 if (err) 1894 return err; 1895 1896 return 0; 1897 } 1898 1899 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 1900 const struct btf_type *sec, 1901 int var_idx, int sec_idx, 1902 const Elf_Data *data, bool strict, 1903 const char *pin_root_path) 1904 { 1905 const struct btf_type *var, *def, *t; 1906 const struct btf_var_secinfo *vi; 1907 const struct btf_var *var_extra; 1908 const struct btf_member *m; 1909 const char *map_name; 1910 struct bpf_map *map; 1911 int vlen, i; 1912 1913 vi = btf_var_secinfos(sec) + var_idx; 1914 var = btf__type_by_id(obj->btf, vi->type); 1915 var_extra = btf_var(var); 1916 map_name = btf__name_by_offset(obj->btf, var->name_off); 1917 vlen = btf_vlen(var); 1918 1919 if (map_name == NULL || map_name[0] == '\0') { 1920 pr_warn("map #%d: empty name.\n", var_idx); 1921 return -EINVAL; 1922 } 1923 if ((__u64)vi->offset + vi->size > data->d_size) { 1924 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 1925 return -EINVAL; 1926 } 1927 if (!btf_is_var(var)) { 1928 pr_warn("map '%s': unexpected var kind %u.\n", 1929 map_name, btf_kind(var)); 1930 return -EINVAL; 1931 } 1932 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED && 1933 var_extra->linkage != BTF_VAR_STATIC) { 1934 pr_warn("map '%s': unsupported var linkage %u.\n", 1935 map_name, var_extra->linkage); 1936 return -EOPNOTSUPP; 1937 } 1938 1939 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 1940 if (!btf_is_struct(def)) { 1941 pr_warn("map '%s': unexpected def kind %u.\n", 1942 map_name, btf_kind(var)); 1943 return -EINVAL; 1944 } 1945 if (def->size > vi->size) { 1946 pr_warn("map '%s': invalid def size.\n", map_name); 1947 return -EINVAL; 1948 } 1949 1950 map = bpf_object__add_map(obj); 1951 if (IS_ERR(map)) 1952 return PTR_ERR(map); 1953 map->name = strdup(map_name); 1954 if (!map->name) { 1955 pr_warn("map '%s': failed to alloc map name.\n", map_name); 1956 return -ENOMEM; 1957 } 1958 map->libbpf_type = LIBBPF_MAP_UNSPEC; 1959 map->def.type = BPF_MAP_TYPE_UNSPEC; 1960 map->sec_idx = sec_idx; 1961 map->sec_offset = vi->offset; 1962 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 1963 map_name, map->sec_idx, map->sec_offset); 1964 1965 vlen = btf_vlen(def); 1966 m = btf_members(def); 1967 for (i = 0; i < vlen; i++, m++) { 1968 const char *name = btf__name_by_offset(obj->btf, m->name_off); 1969 1970 if (!name) { 1971 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 1972 return -EINVAL; 1973 } 1974 if (strcmp(name, "type") == 0) { 1975 if (!get_map_field_int(map_name, obj->btf, def, m, 1976 &map->def.type)) 1977 return -EINVAL; 1978 pr_debug("map '%s': found type = %u.\n", 1979 map_name, map->def.type); 1980 } else if (strcmp(name, "max_entries") == 0) { 1981 if (!get_map_field_int(map_name, obj->btf, def, m, 1982 &map->def.max_entries)) 1983 return -EINVAL; 1984 pr_debug("map '%s': found max_entries = %u.\n", 1985 map_name, map->def.max_entries); 1986 } else if (strcmp(name, "map_flags") == 0) { 1987 if (!get_map_field_int(map_name, obj->btf, def, m, 1988 &map->def.map_flags)) 1989 return -EINVAL; 1990 pr_debug("map '%s': found map_flags = %u.\n", 1991 map_name, map->def.map_flags); 1992 } else if (strcmp(name, "key_size") == 0) { 1993 __u32 sz; 1994 1995 if (!get_map_field_int(map_name, obj->btf, def, m, 1996 &sz)) 1997 return -EINVAL; 1998 pr_debug("map '%s': found key_size = %u.\n", 1999 map_name, sz); 2000 if (map->def.key_size && map->def.key_size != sz) { 2001 pr_warn("map '%s': conflicting key size %u != %u.\n", 2002 map_name, map->def.key_size, sz); 2003 return -EINVAL; 2004 } 2005 map->def.key_size = sz; 2006 } else if (strcmp(name, "key") == 0) { 2007 __s64 sz; 2008 2009 t = btf__type_by_id(obj->btf, m->type); 2010 if (!t) { 2011 pr_warn("map '%s': key type [%d] not found.\n", 2012 map_name, m->type); 2013 return -EINVAL; 2014 } 2015 if (!btf_is_ptr(t)) { 2016 pr_warn("map '%s': key spec is not PTR: %u.\n", 2017 map_name, btf_kind(t)); 2018 return -EINVAL; 2019 } 2020 sz = btf__resolve_size(obj->btf, t->type); 2021 if (sz < 0) { 2022 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2023 map_name, t->type, (ssize_t)sz); 2024 return sz; 2025 } 2026 pr_debug("map '%s': found key [%u], sz = %zd.\n", 2027 map_name, t->type, (ssize_t)sz); 2028 if (map->def.key_size && map->def.key_size != sz) { 2029 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2030 map_name, map->def.key_size, (ssize_t)sz); 2031 return -EINVAL; 2032 } 2033 map->def.key_size = sz; 2034 map->btf_key_type_id = t->type; 2035 } else if (strcmp(name, "value_size") == 0) { 2036 __u32 sz; 2037 2038 if (!get_map_field_int(map_name, obj->btf, def, m, 2039 &sz)) 2040 return -EINVAL; 2041 pr_debug("map '%s': found value_size = %u.\n", 2042 map_name, sz); 2043 if (map->def.value_size && map->def.value_size != sz) { 2044 pr_warn("map '%s': conflicting value size %u != %u.\n", 2045 map_name, map->def.value_size, sz); 2046 return -EINVAL; 2047 } 2048 map->def.value_size = sz; 2049 } else if (strcmp(name, "value") == 0) { 2050 __s64 sz; 2051 2052 t = btf__type_by_id(obj->btf, m->type); 2053 if (!t) { 2054 pr_warn("map '%s': value type [%d] not found.\n", 2055 map_name, m->type); 2056 return -EINVAL; 2057 } 2058 if (!btf_is_ptr(t)) { 2059 pr_warn("map '%s': value spec is not PTR: %u.\n", 2060 map_name, btf_kind(t)); 2061 return -EINVAL; 2062 } 2063 sz = btf__resolve_size(obj->btf, t->type); 2064 if (sz < 0) { 2065 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2066 map_name, t->type, (ssize_t)sz); 2067 return sz; 2068 } 2069 pr_debug("map '%s': found value [%u], sz = %zd.\n", 2070 map_name, t->type, (ssize_t)sz); 2071 if (map->def.value_size && map->def.value_size != sz) { 2072 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2073 map_name, map->def.value_size, (ssize_t)sz); 2074 return -EINVAL; 2075 } 2076 map->def.value_size = sz; 2077 map->btf_value_type_id = t->type; 2078 } else if (strcmp(name, "pinning") == 0) { 2079 __u32 val; 2080 int err; 2081 2082 if (!get_map_field_int(map_name, obj->btf, def, m, 2083 &val)) 2084 return -EINVAL; 2085 pr_debug("map '%s': found pinning = %u.\n", 2086 map_name, val); 2087 2088 if (val != LIBBPF_PIN_NONE && 2089 val != LIBBPF_PIN_BY_NAME) { 2090 pr_warn("map '%s': invalid pinning value %u.\n", 2091 map_name, val); 2092 return -EINVAL; 2093 } 2094 if (val == LIBBPF_PIN_BY_NAME) { 2095 err = build_map_pin_path(map, pin_root_path); 2096 if (err) { 2097 pr_warn("map '%s': couldn't build pin path.\n", 2098 map_name); 2099 return err; 2100 } 2101 } 2102 } else { 2103 if (strict) { 2104 pr_warn("map '%s': unknown field '%s'.\n", 2105 map_name, name); 2106 return -ENOTSUP; 2107 } 2108 pr_debug("map '%s': ignoring unknown field '%s'.\n", 2109 map_name, name); 2110 } 2111 } 2112 2113 if (map->def.type == BPF_MAP_TYPE_UNSPEC) { 2114 pr_warn("map '%s': map type isn't specified.\n", map_name); 2115 return -EINVAL; 2116 } 2117 2118 return 0; 2119 } 2120 2121 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2122 const char *pin_root_path) 2123 { 2124 const struct btf_type *sec = NULL; 2125 int nr_types, i, vlen, err; 2126 const struct btf_type *t; 2127 const char *name; 2128 Elf_Data *data; 2129 Elf_Scn *scn; 2130 2131 if (obj->efile.btf_maps_shndx < 0) 2132 return 0; 2133 2134 scn = elf_getscn(obj->efile.elf, obj->efile.btf_maps_shndx); 2135 if (scn) 2136 data = elf_getdata(scn, NULL); 2137 if (!scn || !data) { 2138 pr_warn("failed to get Elf_Data from map section %d (%s)\n", 2139 obj->efile.maps_shndx, MAPS_ELF_SEC); 2140 return -EINVAL; 2141 } 2142 2143 nr_types = btf__get_nr_types(obj->btf); 2144 for (i = 1; i <= nr_types; i++) { 2145 t = btf__type_by_id(obj->btf, i); 2146 if (!btf_is_datasec(t)) 2147 continue; 2148 name = btf__name_by_offset(obj->btf, t->name_off); 2149 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2150 sec = t; 2151 break; 2152 } 2153 } 2154 2155 if (!sec) { 2156 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2157 return -ENOENT; 2158 } 2159 2160 vlen = btf_vlen(sec); 2161 for (i = 0; i < vlen; i++) { 2162 err = bpf_object__init_user_btf_map(obj, sec, i, 2163 obj->efile.btf_maps_shndx, 2164 data, strict, 2165 pin_root_path); 2166 if (err) 2167 return err; 2168 } 2169 2170 return 0; 2171 } 2172 2173 static int bpf_object__init_maps(struct bpf_object *obj, 2174 const struct bpf_object_open_opts *opts) 2175 { 2176 const char *pin_root_path; 2177 bool strict; 2178 int err; 2179 2180 strict = !OPTS_GET(opts, relaxed_maps, false); 2181 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2182 2183 err = bpf_object__init_user_maps(obj, strict); 2184 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2185 err = err ?: bpf_object__init_global_data_maps(obj); 2186 err = err ?: bpf_object__init_kconfig_map(obj); 2187 err = err ?: bpf_object__init_struct_ops_maps(obj); 2188 if (err) 2189 return err; 2190 2191 return 0; 2192 } 2193 2194 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2195 { 2196 Elf_Scn *scn; 2197 GElf_Shdr sh; 2198 2199 scn = elf_getscn(obj->efile.elf, idx); 2200 if (!scn) 2201 return false; 2202 2203 if (gelf_getshdr(scn, &sh) != &sh) 2204 return false; 2205 2206 if (sh.sh_flags & SHF_EXECINSTR) 2207 return true; 2208 2209 return false; 2210 } 2211 2212 static void bpf_object__sanitize_btf(struct bpf_object *obj) 2213 { 2214 bool has_func_global = obj->caps.btf_func_global; 2215 bool has_datasec = obj->caps.btf_datasec; 2216 bool has_func = obj->caps.btf_func; 2217 struct btf *btf = obj->btf; 2218 struct btf_type *t; 2219 int i, j, vlen; 2220 2221 if (!obj->btf || (has_func && has_datasec && has_func_global)) 2222 return; 2223 2224 for (i = 1; i <= btf__get_nr_types(btf); i++) { 2225 t = (struct btf_type *)btf__type_by_id(btf, i); 2226 2227 if (!has_datasec && btf_is_var(t)) { 2228 /* replace VAR with INT */ 2229 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2230 /* 2231 * using size = 1 is the safest choice, 4 will be too 2232 * big and cause kernel BTF validation failure if 2233 * original variable took less than 4 bytes 2234 */ 2235 t->size = 1; 2236 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2237 } else if (!has_datasec && btf_is_datasec(t)) { 2238 /* replace DATASEC with STRUCT */ 2239 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2240 struct btf_member *m = btf_members(t); 2241 struct btf_type *vt; 2242 char *name; 2243 2244 name = (char *)btf__name_by_offset(btf, t->name_off); 2245 while (*name) { 2246 if (*name == '.') 2247 *name = '_'; 2248 name++; 2249 } 2250 2251 vlen = btf_vlen(t); 2252 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2253 for (j = 0; j < vlen; j++, v++, m++) { 2254 /* order of field assignments is important */ 2255 m->offset = v->offset * 8; 2256 m->type = v->type; 2257 /* preserve variable name as member name */ 2258 vt = (void *)btf__type_by_id(btf, v->type); 2259 m->name_off = vt->name_off; 2260 } 2261 } else if (!has_func && btf_is_func_proto(t)) { 2262 /* replace FUNC_PROTO with ENUM */ 2263 vlen = btf_vlen(t); 2264 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2265 t->size = sizeof(__u32); /* kernel enforced */ 2266 } else if (!has_func && btf_is_func(t)) { 2267 /* replace FUNC with TYPEDEF */ 2268 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2269 } else if (!has_func_global && btf_is_func(t)) { 2270 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2271 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2272 } 2273 } 2274 } 2275 2276 static void bpf_object__sanitize_btf_ext(struct bpf_object *obj) 2277 { 2278 if (!obj->btf_ext) 2279 return; 2280 2281 if (!obj->caps.btf_func) { 2282 btf_ext__free(obj->btf_ext); 2283 obj->btf_ext = NULL; 2284 } 2285 } 2286 2287 static bool bpf_object__is_btf_mandatory(const struct bpf_object *obj) 2288 { 2289 return obj->efile.btf_maps_shndx >= 0 || 2290 obj->efile.st_ops_shndx >= 0 || 2291 obj->nr_extern > 0; 2292 } 2293 2294 static int bpf_object__init_btf(struct bpf_object *obj, 2295 Elf_Data *btf_data, 2296 Elf_Data *btf_ext_data) 2297 { 2298 int err = -ENOENT; 2299 2300 if (btf_data) { 2301 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2302 if (IS_ERR(obj->btf)) { 2303 err = PTR_ERR(obj->btf); 2304 obj->btf = NULL; 2305 pr_warn("Error loading ELF section %s: %d.\n", 2306 BTF_ELF_SEC, err); 2307 goto out; 2308 } 2309 err = 0; 2310 } 2311 if (btf_ext_data) { 2312 if (!obj->btf) { 2313 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2314 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2315 goto out; 2316 } 2317 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, 2318 btf_ext_data->d_size); 2319 if (IS_ERR(obj->btf_ext)) { 2320 pr_warn("Error loading ELF section %s: %ld. Ignored and continue.\n", 2321 BTF_EXT_ELF_SEC, PTR_ERR(obj->btf_ext)); 2322 obj->btf_ext = NULL; 2323 goto out; 2324 } 2325 } 2326 out: 2327 if (err && bpf_object__is_btf_mandatory(obj)) { 2328 pr_warn("BTF is required, but is missing or corrupted.\n"); 2329 return err; 2330 } 2331 return 0; 2332 } 2333 2334 static int bpf_object__finalize_btf(struct bpf_object *obj) 2335 { 2336 int err; 2337 2338 if (!obj->btf) 2339 return 0; 2340 2341 err = btf__finalize_data(obj, obj->btf); 2342 if (!err) 2343 return 0; 2344 2345 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2346 btf__free(obj->btf); 2347 obj->btf = NULL; 2348 btf_ext__free(obj->btf_ext); 2349 obj->btf_ext = NULL; 2350 2351 if (bpf_object__is_btf_mandatory(obj)) { 2352 pr_warn("BTF is required, but is missing or corrupted.\n"); 2353 return -ENOENT; 2354 } 2355 return 0; 2356 } 2357 2358 static inline bool libbpf_prog_needs_vmlinux_btf(struct bpf_program *prog) 2359 { 2360 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 2361 return true; 2362 2363 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2364 * also need vmlinux BTF 2365 */ 2366 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2367 return true; 2368 2369 return false; 2370 } 2371 2372 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj) 2373 { 2374 struct bpf_program *prog; 2375 int err; 2376 2377 bpf_object__for_each_program(prog, obj) { 2378 if (libbpf_prog_needs_vmlinux_btf(prog)) { 2379 obj->btf_vmlinux = libbpf_find_kernel_btf(); 2380 if (IS_ERR(obj->btf_vmlinux)) { 2381 err = PTR_ERR(obj->btf_vmlinux); 2382 pr_warn("Error loading vmlinux BTF: %d\n", err); 2383 obj->btf_vmlinux = NULL; 2384 return err; 2385 } 2386 return 0; 2387 } 2388 } 2389 2390 return 0; 2391 } 2392 2393 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 2394 { 2395 int err = 0; 2396 2397 if (!obj->btf) 2398 return 0; 2399 2400 bpf_object__sanitize_btf(obj); 2401 bpf_object__sanitize_btf_ext(obj); 2402 2403 err = btf__load(obj->btf); 2404 if (err) { 2405 pr_warn("Error loading %s into kernel: %d.\n", 2406 BTF_ELF_SEC, err); 2407 btf__free(obj->btf); 2408 obj->btf = NULL; 2409 /* btf_ext can't exist without btf, so free it as well */ 2410 if (obj->btf_ext) { 2411 btf_ext__free(obj->btf_ext); 2412 obj->btf_ext = NULL; 2413 } 2414 2415 if (bpf_object__is_btf_mandatory(obj)) 2416 return err; 2417 } 2418 return 0; 2419 } 2420 2421 static int bpf_object__elf_collect(struct bpf_object *obj) 2422 { 2423 Elf *elf = obj->efile.elf; 2424 GElf_Ehdr *ep = &obj->efile.ehdr; 2425 Elf_Data *btf_ext_data = NULL; 2426 Elf_Data *btf_data = NULL; 2427 Elf_Scn *scn = NULL; 2428 int idx = 0, err = 0; 2429 2430 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 2431 if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL)) { 2432 pr_warn("failed to get e_shstrndx from %s\n", obj->path); 2433 return -LIBBPF_ERRNO__FORMAT; 2434 } 2435 2436 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2437 char *name; 2438 GElf_Shdr sh; 2439 Elf_Data *data; 2440 2441 idx++; 2442 if (gelf_getshdr(scn, &sh) != &sh) { 2443 pr_warn("failed to get section(%d) header from %s\n", 2444 idx, obj->path); 2445 return -LIBBPF_ERRNO__FORMAT; 2446 } 2447 2448 name = elf_strptr(elf, ep->e_shstrndx, sh.sh_name); 2449 if (!name) { 2450 pr_warn("failed to get section(%d) name from %s\n", 2451 idx, obj->path); 2452 return -LIBBPF_ERRNO__FORMAT; 2453 } 2454 2455 data = elf_getdata(scn, 0); 2456 if (!data) { 2457 pr_warn("failed to get section(%d) data from %s(%s)\n", 2458 idx, name, obj->path); 2459 return -LIBBPF_ERRNO__FORMAT; 2460 } 2461 pr_debug("section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 2462 idx, name, (unsigned long)data->d_size, 2463 (int)sh.sh_link, (unsigned long)sh.sh_flags, 2464 (int)sh.sh_type); 2465 2466 if (strcmp(name, "license") == 0) { 2467 err = bpf_object__init_license(obj, 2468 data->d_buf, 2469 data->d_size); 2470 if (err) 2471 return err; 2472 } else if (strcmp(name, "version") == 0) { 2473 err = bpf_object__init_kversion(obj, 2474 data->d_buf, 2475 data->d_size); 2476 if (err) 2477 return err; 2478 } else if (strcmp(name, "maps") == 0) { 2479 obj->efile.maps_shndx = idx; 2480 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 2481 obj->efile.btf_maps_shndx = idx; 2482 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 2483 btf_data = data; 2484 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 2485 btf_ext_data = data; 2486 } else if (sh.sh_type == SHT_SYMTAB) { 2487 if (obj->efile.symbols) { 2488 pr_warn("bpf: multiple SYMTAB in %s\n", 2489 obj->path); 2490 return -LIBBPF_ERRNO__FORMAT; 2491 } 2492 obj->efile.symbols = data; 2493 obj->efile.symbols_shndx = idx; 2494 obj->efile.strtabidx = sh.sh_link; 2495 } else if (sh.sh_type == SHT_PROGBITS && data->d_size > 0) { 2496 if (sh.sh_flags & SHF_EXECINSTR) { 2497 if (strcmp(name, ".text") == 0) 2498 obj->efile.text_shndx = idx; 2499 err = bpf_object__add_program(obj, data->d_buf, 2500 data->d_size, 2501 name, idx); 2502 if (err) { 2503 char errmsg[STRERR_BUFSIZE]; 2504 char *cp; 2505 2506 cp = libbpf_strerror_r(-err, errmsg, 2507 sizeof(errmsg)); 2508 pr_warn("failed to alloc program %s (%s): %s", 2509 name, obj->path, cp); 2510 return err; 2511 } 2512 } else if (strcmp(name, DATA_SEC) == 0) { 2513 obj->efile.data = data; 2514 obj->efile.data_shndx = idx; 2515 } else if (strcmp(name, RODATA_SEC) == 0) { 2516 obj->efile.rodata = data; 2517 obj->efile.rodata_shndx = idx; 2518 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 2519 obj->efile.st_ops_data = data; 2520 obj->efile.st_ops_shndx = idx; 2521 } else { 2522 pr_debug("skip section(%d) %s\n", idx, name); 2523 } 2524 } else if (sh.sh_type == SHT_REL) { 2525 int nr_sects = obj->efile.nr_reloc_sects; 2526 void *sects = obj->efile.reloc_sects; 2527 int sec = sh.sh_info; /* points to other section */ 2528 2529 /* Only do relo for section with exec instructions */ 2530 if (!section_have_execinstr(obj, sec) && 2531 strcmp(name, ".rel" STRUCT_OPS_SEC)) { 2532 pr_debug("skip relo %s(%d) for section(%d)\n", 2533 name, idx, sec); 2534 continue; 2535 } 2536 2537 sects = reallocarray(sects, nr_sects + 1, 2538 sizeof(*obj->efile.reloc_sects)); 2539 if (!sects) { 2540 pr_warn("reloc_sects realloc failed\n"); 2541 return -ENOMEM; 2542 } 2543 2544 obj->efile.reloc_sects = sects; 2545 obj->efile.nr_reloc_sects++; 2546 2547 obj->efile.reloc_sects[nr_sects].shdr = sh; 2548 obj->efile.reloc_sects[nr_sects].data = data; 2549 } else if (sh.sh_type == SHT_NOBITS && 2550 strcmp(name, BSS_SEC) == 0) { 2551 obj->efile.bss = data; 2552 obj->efile.bss_shndx = idx; 2553 } else { 2554 pr_debug("skip section(%d) %s\n", idx, name); 2555 } 2556 } 2557 2558 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 2559 pr_warn("Corrupted ELF file: index of strtab invalid\n"); 2560 return -LIBBPF_ERRNO__FORMAT; 2561 } 2562 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 2563 } 2564 2565 static bool sym_is_extern(const GElf_Sym *sym) 2566 { 2567 int bind = GELF_ST_BIND(sym->st_info); 2568 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 2569 return sym->st_shndx == SHN_UNDEF && 2570 (bind == STB_GLOBAL || bind == STB_WEAK) && 2571 GELF_ST_TYPE(sym->st_info) == STT_NOTYPE; 2572 } 2573 2574 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 2575 { 2576 const struct btf_type *t; 2577 const char *var_name; 2578 int i, n; 2579 2580 if (!btf) 2581 return -ESRCH; 2582 2583 n = btf__get_nr_types(btf); 2584 for (i = 1; i <= n; i++) { 2585 t = btf__type_by_id(btf, i); 2586 2587 if (!btf_is_var(t)) 2588 continue; 2589 2590 var_name = btf__name_by_offset(btf, t->name_off); 2591 if (strcmp(var_name, ext_name)) 2592 continue; 2593 2594 if (btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 2595 return -EINVAL; 2596 2597 return i; 2598 } 2599 2600 return -ENOENT; 2601 } 2602 2603 static enum extern_type find_extern_type(const struct btf *btf, int id, 2604 bool *is_signed) 2605 { 2606 const struct btf_type *t; 2607 const char *name; 2608 2609 t = skip_mods_and_typedefs(btf, id, NULL); 2610 name = btf__name_by_offset(btf, t->name_off); 2611 2612 if (is_signed) 2613 *is_signed = false; 2614 switch (btf_kind(t)) { 2615 case BTF_KIND_INT: { 2616 int enc = btf_int_encoding(t); 2617 2618 if (enc & BTF_INT_BOOL) 2619 return t->size == 1 ? EXT_BOOL : EXT_UNKNOWN; 2620 if (is_signed) 2621 *is_signed = enc & BTF_INT_SIGNED; 2622 if (t->size == 1) 2623 return EXT_CHAR; 2624 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 2625 return EXT_UNKNOWN; 2626 return EXT_INT; 2627 } 2628 case BTF_KIND_ENUM: 2629 if (t->size != 4) 2630 return EXT_UNKNOWN; 2631 if (strcmp(name, "libbpf_tristate")) 2632 return EXT_UNKNOWN; 2633 return EXT_TRISTATE; 2634 case BTF_KIND_ARRAY: 2635 if (btf_array(t)->nelems == 0) 2636 return EXT_UNKNOWN; 2637 if (find_extern_type(btf, btf_array(t)->type, NULL) != EXT_CHAR) 2638 return EXT_UNKNOWN; 2639 return EXT_CHAR_ARR; 2640 default: 2641 return EXT_UNKNOWN; 2642 } 2643 } 2644 2645 static int cmp_externs(const void *_a, const void *_b) 2646 { 2647 const struct extern_desc *a = _a; 2648 const struct extern_desc *b = _b; 2649 2650 /* descending order by alignment requirements */ 2651 if (a->align != b->align) 2652 return a->align > b->align ? -1 : 1; 2653 /* ascending order by size, within same alignment class */ 2654 if (a->sz != b->sz) 2655 return a->sz < b->sz ? -1 : 1; 2656 /* resolve ties by name */ 2657 return strcmp(a->name, b->name); 2658 } 2659 2660 static int bpf_object__collect_externs(struct bpf_object *obj) 2661 { 2662 const struct btf_type *t; 2663 struct extern_desc *ext; 2664 int i, n, off, btf_id; 2665 struct btf_type *sec; 2666 const char *ext_name; 2667 Elf_Scn *scn; 2668 GElf_Shdr sh; 2669 2670 if (!obj->efile.symbols) 2671 return 0; 2672 2673 scn = elf_getscn(obj->efile.elf, obj->efile.symbols_shndx); 2674 if (!scn) 2675 return -LIBBPF_ERRNO__FORMAT; 2676 if (gelf_getshdr(scn, &sh) != &sh) 2677 return -LIBBPF_ERRNO__FORMAT; 2678 n = sh.sh_size / sh.sh_entsize; 2679 2680 pr_debug("looking for externs among %d symbols...\n", n); 2681 for (i = 0; i < n; i++) { 2682 GElf_Sym sym; 2683 2684 if (!gelf_getsym(obj->efile.symbols, i, &sym)) 2685 return -LIBBPF_ERRNO__FORMAT; 2686 if (!sym_is_extern(&sym)) 2687 continue; 2688 ext_name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, 2689 sym.st_name); 2690 if (!ext_name || !ext_name[0]) 2691 continue; 2692 2693 ext = obj->externs; 2694 ext = reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 2695 if (!ext) 2696 return -ENOMEM; 2697 obj->externs = ext; 2698 ext = &ext[obj->nr_extern]; 2699 memset(ext, 0, sizeof(*ext)); 2700 obj->nr_extern++; 2701 2702 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 2703 if (ext->btf_id <= 0) { 2704 pr_warn("failed to find BTF for extern '%s': %d\n", 2705 ext_name, ext->btf_id); 2706 return ext->btf_id; 2707 } 2708 t = btf__type_by_id(obj->btf, ext->btf_id); 2709 ext->name = btf__name_by_offset(obj->btf, t->name_off); 2710 ext->sym_idx = i; 2711 ext->is_weak = GELF_ST_BIND(sym.st_info) == STB_WEAK; 2712 ext->sz = btf__resolve_size(obj->btf, t->type); 2713 if (ext->sz <= 0) { 2714 pr_warn("failed to resolve size of extern '%s': %d\n", 2715 ext_name, ext->sz); 2716 return ext->sz; 2717 } 2718 ext->align = btf__align_of(obj->btf, t->type); 2719 if (ext->align <= 0) { 2720 pr_warn("failed to determine alignment of extern '%s': %d\n", 2721 ext_name, ext->align); 2722 return -EINVAL; 2723 } 2724 ext->type = find_extern_type(obj->btf, t->type, 2725 &ext->is_signed); 2726 if (ext->type == EXT_UNKNOWN) { 2727 pr_warn("extern '%s' type is unsupported\n", ext_name); 2728 return -ENOTSUP; 2729 } 2730 } 2731 pr_debug("collected %d externs total\n", obj->nr_extern); 2732 2733 if (!obj->nr_extern) 2734 return 0; 2735 2736 /* sort externs by (alignment, size, name) and calculate their offsets 2737 * within a map */ 2738 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 2739 off = 0; 2740 for (i = 0; i < obj->nr_extern; i++) { 2741 ext = &obj->externs[i]; 2742 ext->data_off = roundup(off, ext->align); 2743 off = ext->data_off + ext->sz; 2744 pr_debug("extern #%d: symbol %d, off %u, name %s\n", 2745 i, ext->sym_idx, ext->data_off, ext->name); 2746 } 2747 2748 btf_id = btf__find_by_name(obj->btf, KCONFIG_SEC); 2749 if (btf_id <= 0) { 2750 pr_warn("no BTF info found for '%s' datasec\n", KCONFIG_SEC); 2751 return -ESRCH; 2752 } 2753 2754 sec = (struct btf_type *)btf__type_by_id(obj->btf, btf_id); 2755 sec->size = off; 2756 n = btf_vlen(sec); 2757 for (i = 0; i < n; i++) { 2758 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 2759 2760 t = btf__type_by_id(obj->btf, vs->type); 2761 ext_name = btf__name_by_offset(obj->btf, t->name_off); 2762 ext = find_extern_by_name(obj, ext_name); 2763 if (!ext) { 2764 pr_warn("failed to find extern definition for BTF var '%s'\n", 2765 ext_name); 2766 return -ESRCH; 2767 } 2768 vs->offset = ext->data_off; 2769 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 2770 } 2771 2772 return 0; 2773 } 2774 2775 static struct bpf_program * 2776 bpf_object__find_prog_by_idx(struct bpf_object *obj, int idx) 2777 { 2778 struct bpf_program *prog; 2779 size_t i; 2780 2781 for (i = 0; i < obj->nr_programs; i++) { 2782 prog = &obj->programs[i]; 2783 if (prog->idx == idx) 2784 return prog; 2785 } 2786 return NULL; 2787 } 2788 2789 struct bpf_program * 2790 bpf_object__find_program_by_title(const struct bpf_object *obj, 2791 const char *title) 2792 { 2793 struct bpf_program *pos; 2794 2795 bpf_object__for_each_program(pos, obj) { 2796 if (pos->section_name && !strcmp(pos->section_name, title)) 2797 return pos; 2798 } 2799 return NULL; 2800 } 2801 2802 struct bpf_program * 2803 bpf_object__find_program_by_name(const struct bpf_object *obj, 2804 const char *name) 2805 { 2806 struct bpf_program *prog; 2807 2808 bpf_object__for_each_program(prog, obj) { 2809 if (!strcmp(prog->name, name)) 2810 return prog; 2811 } 2812 return NULL; 2813 } 2814 2815 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 2816 int shndx) 2817 { 2818 return shndx == obj->efile.data_shndx || 2819 shndx == obj->efile.bss_shndx || 2820 shndx == obj->efile.rodata_shndx; 2821 } 2822 2823 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 2824 int shndx) 2825 { 2826 return shndx == obj->efile.maps_shndx || 2827 shndx == obj->efile.btf_maps_shndx; 2828 } 2829 2830 static enum libbpf_map_type 2831 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 2832 { 2833 if (shndx == obj->efile.data_shndx) 2834 return LIBBPF_MAP_DATA; 2835 else if (shndx == obj->efile.bss_shndx) 2836 return LIBBPF_MAP_BSS; 2837 else if (shndx == obj->efile.rodata_shndx) 2838 return LIBBPF_MAP_RODATA; 2839 else if (shndx == obj->efile.symbols_shndx) 2840 return LIBBPF_MAP_KCONFIG; 2841 else 2842 return LIBBPF_MAP_UNSPEC; 2843 } 2844 2845 static int bpf_program__record_reloc(struct bpf_program *prog, 2846 struct reloc_desc *reloc_desc, 2847 __u32 insn_idx, const char *name, 2848 const GElf_Sym *sym, const GElf_Rel *rel) 2849 { 2850 struct bpf_insn *insn = &prog->insns[insn_idx]; 2851 size_t map_idx, nr_maps = prog->obj->nr_maps; 2852 struct bpf_object *obj = prog->obj; 2853 __u32 shdr_idx = sym->st_shndx; 2854 enum libbpf_map_type type; 2855 struct bpf_map *map; 2856 2857 /* sub-program call relocation */ 2858 if (insn->code == (BPF_JMP | BPF_CALL)) { 2859 if (insn->src_reg != BPF_PSEUDO_CALL) { 2860 pr_warn("incorrect bpf_call opcode\n"); 2861 return -LIBBPF_ERRNO__RELOC; 2862 } 2863 /* text_shndx can be 0, if no default "main" program exists */ 2864 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 2865 pr_warn("bad call relo against section %u\n", shdr_idx); 2866 return -LIBBPF_ERRNO__RELOC; 2867 } 2868 if (sym->st_value % 8) { 2869 pr_warn("bad call relo offset: %zu\n", 2870 (size_t)sym->st_value); 2871 return -LIBBPF_ERRNO__RELOC; 2872 } 2873 reloc_desc->type = RELO_CALL; 2874 reloc_desc->insn_idx = insn_idx; 2875 reloc_desc->sym_off = sym->st_value; 2876 obj->has_pseudo_calls = true; 2877 return 0; 2878 } 2879 2880 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) { 2881 pr_warn("invalid relo for insns[%d].code 0x%x\n", 2882 insn_idx, insn->code); 2883 return -LIBBPF_ERRNO__RELOC; 2884 } 2885 2886 if (sym_is_extern(sym)) { 2887 int sym_idx = GELF_R_SYM(rel->r_info); 2888 int i, n = obj->nr_extern; 2889 struct extern_desc *ext; 2890 2891 for (i = 0; i < n; i++) { 2892 ext = &obj->externs[i]; 2893 if (ext->sym_idx == sym_idx) 2894 break; 2895 } 2896 if (i >= n) { 2897 pr_warn("extern relo failed to find extern for sym %d\n", 2898 sym_idx); 2899 return -LIBBPF_ERRNO__RELOC; 2900 } 2901 pr_debug("found extern #%d '%s' (sym %d, off %u) for insn %u\n", 2902 i, ext->name, ext->sym_idx, ext->data_off, insn_idx); 2903 reloc_desc->type = RELO_EXTERN; 2904 reloc_desc->insn_idx = insn_idx; 2905 reloc_desc->sym_off = ext->data_off; 2906 return 0; 2907 } 2908 2909 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 2910 pr_warn("invalid relo for \'%s\' in special section 0x%x; forgot to initialize global var?..\n", 2911 name, shdr_idx); 2912 return -LIBBPF_ERRNO__RELOC; 2913 } 2914 2915 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 2916 2917 /* generic map reference relocation */ 2918 if (type == LIBBPF_MAP_UNSPEC) { 2919 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 2920 pr_warn("bad map relo against section %u\n", 2921 shdr_idx); 2922 return -LIBBPF_ERRNO__RELOC; 2923 } 2924 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 2925 map = &obj->maps[map_idx]; 2926 if (map->libbpf_type != type || 2927 map->sec_idx != sym->st_shndx || 2928 map->sec_offset != sym->st_value) 2929 continue; 2930 pr_debug("found map %zd (%s, sec %d, off %zu) for insn %u\n", 2931 map_idx, map->name, map->sec_idx, 2932 map->sec_offset, insn_idx); 2933 break; 2934 } 2935 if (map_idx >= nr_maps) { 2936 pr_warn("map relo failed to find map for sec %u, off %zu\n", 2937 shdr_idx, (size_t)sym->st_value); 2938 return -LIBBPF_ERRNO__RELOC; 2939 } 2940 reloc_desc->type = RELO_LD64; 2941 reloc_desc->insn_idx = insn_idx; 2942 reloc_desc->map_idx = map_idx; 2943 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 2944 return 0; 2945 } 2946 2947 /* global data map relocation */ 2948 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 2949 pr_warn("bad data relo against section %u\n", shdr_idx); 2950 return -LIBBPF_ERRNO__RELOC; 2951 } 2952 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 2953 map = &obj->maps[map_idx]; 2954 if (map->libbpf_type != type) 2955 continue; 2956 pr_debug("found data map %zd (%s, sec %d, off %zu) for insn %u\n", 2957 map_idx, map->name, map->sec_idx, map->sec_offset, 2958 insn_idx); 2959 break; 2960 } 2961 if (map_idx >= nr_maps) { 2962 pr_warn("data relo failed to find map for sec %u\n", 2963 shdr_idx); 2964 return -LIBBPF_ERRNO__RELOC; 2965 } 2966 2967 reloc_desc->type = RELO_DATA; 2968 reloc_desc->insn_idx = insn_idx; 2969 reloc_desc->map_idx = map_idx; 2970 reloc_desc->sym_off = sym->st_value; 2971 return 0; 2972 } 2973 2974 static int 2975 bpf_program__collect_reloc(struct bpf_program *prog, GElf_Shdr *shdr, 2976 Elf_Data *data, struct bpf_object *obj) 2977 { 2978 Elf_Data *symbols = obj->efile.symbols; 2979 int err, i, nrels; 2980 2981 pr_debug("collecting relocating info for: '%s'\n", prog->section_name); 2982 nrels = shdr->sh_size / shdr->sh_entsize; 2983 2984 prog->reloc_desc = malloc(sizeof(*prog->reloc_desc) * nrels); 2985 if (!prog->reloc_desc) { 2986 pr_warn("failed to alloc memory in relocation\n"); 2987 return -ENOMEM; 2988 } 2989 prog->nr_reloc = nrels; 2990 2991 for (i = 0; i < nrels; i++) { 2992 const char *name; 2993 __u32 insn_idx; 2994 GElf_Sym sym; 2995 GElf_Rel rel; 2996 2997 if (!gelf_getrel(data, i, &rel)) { 2998 pr_warn("relocation: failed to get %d reloc\n", i); 2999 return -LIBBPF_ERRNO__FORMAT; 3000 } 3001 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 3002 pr_warn("relocation: symbol %"PRIx64" not found\n", 3003 GELF_R_SYM(rel.r_info)); 3004 return -LIBBPF_ERRNO__FORMAT; 3005 } 3006 if (rel.r_offset % sizeof(struct bpf_insn)) 3007 return -LIBBPF_ERRNO__FORMAT; 3008 3009 insn_idx = rel.r_offset / sizeof(struct bpf_insn); 3010 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, 3011 sym.st_name) ? : "<?>"; 3012 3013 pr_debug("relo for shdr %u, symb %zu, value %zu, type %d, bind %d, name %d (\'%s\'), insn %u\n", 3014 (__u32)sym.st_shndx, (size_t)GELF_R_SYM(rel.r_info), 3015 (size_t)sym.st_value, GELF_ST_TYPE(sym.st_info), 3016 GELF_ST_BIND(sym.st_info), sym.st_name, name, 3017 insn_idx); 3018 3019 err = bpf_program__record_reloc(prog, &prog->reloc_desc[i], 3020 insn_idx, name, &sym, &rel); 3021 if (err) 3022 return err; 3023 } 3024 return 0; 3025 } 3026 3027 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 3028 { 3029 struct bpf_map_def *def = &map->def; 3030 __u32 key_type_id = 0, value_type_id = 0; 3031 int ret; 3032 3033 /* if it's BTF-defined map, we don't need to search for type IDs. 3034 * For struct_ops map, it does not need btf_key_type_id and 3035 * btf_value_type_id. 3036 */ 3037 if (map->sec_idx == obj->efile.btf_maps_shndx || 3038 bpf_map__is_struct_ops(map)) 3039 return 0; 3040 3041 if (!bpf_map__is_internal(map)) { 3042 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size, 3043 def->value_size, &key_type_id, 3044 &value_type_id); 3045 } else { 3046 /* 3047 * LLVM annotates global data differently in BTF, that is, 3048 * only as '.data', '.bss' or '.rodata'. 3049 */ 3050 ret = btf__find_by_name(obj->btf, 3051 libbpf_type_to_btf_name[map->libbpf_type]); 3052 } 3053 if (ret < 0) 3054 return ret; 3055 3056 map->btf_key_type_id = key_type_id; 3057 map->btf_value_type_id = bpf_map__is_internal(map) ? 3058 ret : value_type_id; 3059 return 0; 3060 } 3061 3062 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 3063 { 3064 struct bpf_map_info info = {}; 3065 __u32 len = sizeof(info); 3066 int new_fd, err; 3067 char *new_name; 3068 3069 err = bpf_obj_get_info_by_fd(fd, &info, &len); 3070 if (err) 3071 return err; 3072 3073 new_name = strdup(info.name); 3074 if (!new_name) 3075 return -errno; 3076 3077 new_fd = open("/", O_RDONLY | O_CLOEXEC); 3078 if (new_fd < 0) { 3079 err = -errno; 3080 goto err_free_new_name; 3081 } 3082 3083 new_fd = dup3(fd, new_fd, O_CLOEXEC); 3084 if (new_fd < 0) { 3085 err = -errno; 3086 goto err_close_new_fd; 3087 } 3088 3089 err = zclose(map->fd); 3090 if (err) { 3091 err = -errno; 3092 goto err_close_new_fd; 3093 } 3094 free(map->name); 3095 3096 map->fd = new_fd; 3097 map->name = new_name; 3098 map->def.type = info.type; 3099 map->def.key_size = info.key_size; 3100 map->def.value_size = info.value_size; 3101 map->def.max_entries = info.max_entries; 3102 map->def.map_flags = info.map_flags; 3103 map->btf_key_type_id = info.btf_key_type_id; 3104 map->btf_value_type_id = info.btf_value_type_id; 3105 map->reused = true; 3106 3107 return 0; 3108 3109 err_close_new_fd: 3110 close(new_fd); 3111 err_free_new_name: 3112 free(new_name); 3113 return err; 3114 } 3115 3116 int bpf_map__resize(struct bpf_map *map, __u32 max_entries) 3117 { 3118 if (!map || !max_entries) 3119 return -EINVAL; 3120 3121 /* If map already created, its attributes can't be changed. */ 3122 if (map->fd >= 0) 3123 return -EBUSY; 3124 3125 map->def.max_entries = max_entries; 3126 3127 return 0; 3128 } 3129 3130 static int 3131 bpf_object__probe_name(struct bpf_object *obj) 3132 { 3133 struct bpf_load_program_attr attr; 3134 char *cp, errmsg[STRERR_BUFSIZE]; 3135 struct bpf_insn insns[] = { 3136 BPF_MOV64_IMM(BPF_REG_0, 0), 3137 BPF_EXIT_INSN(), 3138 }; 3139 int ret; 3140 3141 /* make sure basic loading works */ 3142 3143 memset(&attr, 0, sizeof(attr)); 3144 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3145 attr.insns = insns; 3146 attr.insns_cnt = ARRAY_SIZE(insns); 3147 attr.license = "GPL"; 3148 3149 ret = bpf_load_program_xattr(&attr, NULL, 0); 3150 if (ret < 0) { 3151 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 3152 pr_warn("Error in %s():%s(%d). Couldn't load basic 'r0 = 0' BPF program.\n", 3153 __func__, cp, errno); 3154 return -errno; 3155 } 3156 close(ret); 3157 3158 /* now try the same program, but with the name */ 3159 3160 attr.name = "test"; 3161 ret = bpf_load_program_xattr(&attr, NULL, 0); 3162 if (ret >= 0) { 3163 obj->caps.name = 1; 3164 close(ret); 3165 } 3166 3167 return 0; 3168 } 3169 3170 static int 3171 bpf_object__probe_global_data(struct bpf_object *obj) 3172 { 3173 struct bpf_load_program_attr prg_attr; 3174 struct bpf_create_map_attr map_attr; 3175 char *cp, errmsg[STRERR_BUFSIZE]; 3176 struct bpf_insn insns[] = { 3177 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 3178 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 3179 BPF_MOV64_IMM(BPF_REG_0, 0), 3180 BPF_EXIT_INSN(), 3181 }; 3182 int ret, map; 3183 3184 memset(&map_attr, 0, sizeof(map_attr)); 3185 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 3186 map_attr.key_size = sizeof(int); 3187 map_attr.value_size = 32; 3188 map_attr.max_entries = 1; 3189 3190 map = bpf_create_map_xattr(&map_attr); 3191 if (map < 0) { 3192 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 3193 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 3194 __func__, cp, errno); 3195 return -errno; 3196 } 3197 3198 insns[0].imm = map; 3199 3200 memset(&prg_attr, 0, sizeof(prg_attr)); 3201 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3202 prg_attr.insns = insns; 3203 prg_attr.insns_cnt = ARRAY_SIZE(insns); 3204 prg_attr.license = "GPL"; 3205 3206 ret = bpf_load_program_xattr(&prg_attr, NULL, 0); 3207 if (ret >= 0) { 3208 obj->caps.global_data = 1; 3209 close(ret); 3210 } 3211 3212 close(map); 3213 return 0; 3214 } 3215 3216 static int bpf_object__probe_btf_func(struct bpf_object *obj) 3217 { 3218 static const char strs[] = "\0int\0x\0a"; 3219 /* void x(int a) {} */ 3220 __u32 types[] = { 3221 /* int */ 3222 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3223 /* FUNC_PROTO */ /* [2] */ 3224 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 3225 BTF_PARAM_ENC(7, 1), 3226 /* FUNC x */ /* [3] */ 3227 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 3228 }; 3229 int btf_fd; 3230 3231 btf_fd = libbpf__load_raw_btf((char *)types, sizeof(types), 3232 strs, sizeof(strs)); 3233 if (btf_fd >= 0) { 3234 obj->caps.btf_func = 1; 3235 close(btf_fd); 3236 return 1; 3237 } 3238 3239 return 0; 3240 } 3241 3242 static int bpf_object__probe_btf_func_global(struct bpf_object *obj) 3243 { 3244 static const char strs[] = "\0int\0x\0a"; 3245 /* static void x(int a) {} */ 3246 __u32 types[] = { 3247 /* int */ 3248 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3249 /* FUNC_PROTO */ /* [2] */ 3250 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 3251 BTF_PARAM_ENC(7, 1), 3252 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 3253 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 3254 }; 3255 int btf_fd; 3256 3257 btf_fd = libbpf__load_raw_btf((char *)types, sizeof(types), 3258 strs, sizeof(strs)); 3259 if (btf_fd >= 0) { 3260 obj->caps.btf_func_global = 1; 3261 close(btf_fd); 3262 return 1; 3263 } 3264 3265 return 0; 3266 } 3267 3268 static int bpf_object__probe_btf_datasec(struct bpf_object *obj) 3269 { 3270 static const char strs[] = "\0x\0.data"; 3271 /* static int a; */ 3272 __u32 types[] = { 3273 /* int */ 3274 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3275 /* VAR x */ /* [2] */ 3276 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 3277 BTF_VAR_STATIC, 3278 /* DATASEC val */ /* [3] */ 3279 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 3280 BTF_VAR_SECINFO_ENC(2, 0, 4), 3281 }; 3282 int btf_fd; 3283 3284 btf_fd = libbpf__load_raw_btf((char *)types, sizeof(types), 3285 strs, sizeof(strs)); 3286 if (btf_fd >= 0) { 3287 obj->caps.btf_datasec = 1; 3288 close(btf_fd); 3289 return 1; 3290 } 3291 3292 return 0; 3293 } 3294 3295 static int bpf_object__probe_array_mmap(struct bpf_object *obj) 3296 { 3297 struct bpf_create_map_attr attr = { 3298 .map_type = BPF_MAP_TYPE_ARRAY, 3299 .map_flags = BPF_F_MMAPABLE, 3300 .key_size = sizeof(int), 3301 .value_size = sizeof(int), 3302 .max_entries = 1, 3303 }; 3304 int fd; 3305 3306 fd = bpf_create_map_xattr(&attr); 3307 if (fd >= 0) { 3308 obj->caps.array_mmap = 1; 3309 close(fd); 3310 return 1; 3311 } 3312 3313 return 0; 3314 } 3315 3316 static int 3317 bpf_object__probe_caps(struct bpf_object *obj) 3318 { 3319 int (*probe_fn[])(struct bpf_object *obj) = { 3320 bpf_object__probe_name, 3321 bpf_object__probe_global_data, 3322 bpf_object__probe_btf_func, 3323 bpf_object__probe_btf_func_global, 3324 bpf_object__probe_btf_datasec, 3325 bpf_object__probe_array_mmap, 3326 }; 3327 int i, ret; 3328 3329 for (i = 0; i < ARRAY_SIZE(probe_fn); i++) { 3330 ret = probe_fn[i](obj); 3331 if (ret < 0) 3332 pr_debug("Probe #%d failed with %d.\n", i, ret); 3333 } 3334 3335 return 0; 3336 } 3337 3338 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 3339 { 3340 struct bpf_map_info map_info = {}; 3341 char msg[STRERR_BUFSIZE]; 3342 __u32 map_info_len; 3343 3344 map_info_len = sizeof(map_info); 3345 3346 if (bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len)) { 3347 pr_warn("failed to get map info for map FD %d: %s\n", 3348 map_fd, libbpf_strerror_r(errno, msg, sizeof(msg))); 3349 return false; 3350 } 3351 3352 return (map_info.type == map->def.type && 3353 map_info.key_size == map->def.key_size && 3354 map_info.value_size == map->def.value_size && 3355 map_info.max_entries == map->def.max_entries && 3356 map_info.map_flags == map->def.map_flags); 3357 } 3358 3359 static int 3360 bpf_object__reuse_map(struct bpf_map *map) 3361 { 3362 char *cp, errmsg[STRERR_BUFSIZE]; 3363 int err, pin_fd; 3364 3365 pin_fd = bpf_obj_get(map->pin_path); 3366 if (pin_fd < 0) { 3367 err = -errno; 3368 if (err == -ENOENT) { 3369 pr_debug("found no pinned map to reuse at '%s'\n", 3370 map->pin_path); 3371 return 0; 3372 } 3373 3374 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 3375 pr_warn("couldn't retrieve pinned map '%s': %s\n", 3376 map->pin_path, cp); 3377 return err; 3378 } 3379 3380 if (!map_is_reuse_compat(map, pin_fd)) { 3381 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 3382 map->pin_path); 3383 close(pin_fd); 3384 return -EINVAL; 3385 } 3386 3387 err = bpf_map__reuse_fd(map, pin_fd); 3388 if (err) { 3389 close(pin_fd); 3390 return err; 3391 } 3392 map->pinned = true; 3393 pr_debug("reused pinned map at '%s'\n", map->pin_path); 3394 3395 return 0; 3396 } 3397 3398 static int 3399 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 3400 { 3401 enum libbpf_map_type map_type = map->libbpf_type; 3402 char *cp, errmsg[STRERR_BUFSIZE]; 3403 int err, zero = 0; 3404 3405 /* kernel already zero-initializes .bss map. */ 3406 if (map_type == LIBBPF_MAP_BSS) 3407 return 0; 3408 3409 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 3410 if (err) { 3411 err = -errno; 3412 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 3413 pr_warn("Error setting initial map(%s) contents: %s\n", 3414 map->name, cp); 3415 return err; 3416 } 3417 3418 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 3419 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 3420 err = bpf_map_freeze(map->fd); 3421 if (err) { 3422 err = -errno; 3423 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 3424 pr_warn("Error freezing map(%s) as read-only: %s\n", 3425 map->name, cp); 3426 return err; 3427 } 3428 } 3429 return 0; 3430 } 3431 3432 static int 3433 bpf_object__create_maps(struct bpf_object *obj) 3434 { 3435 struct bpf_create_map_attr create_attr = {}; 3436 int nr_cpus = 0; 3437 unsigned int i; 3438 int err; 3439 3440 for (i = 0; i < obj->nr_maps; i++) { 3441 struct bpf_map *map = &obj->maps[i]; 3442 struct bpf_map_def *def = &map->def; 3443 char *cp, errmsg[STRERR_BUFSIZE]; 3444 int *pfd = &map->fd; 3445 3446 if (map->pin_path) { 3447 err = bpf_object__reuse_map(map); 3448 if (err) { 3449 pr_warn("error reusing pinned map %s\n", 3450 map->name); 3451 return err; 3452 } 3453 } 3454 3455 if (map->fd >= 0) { 3456 pr_debug("skip map create (preset) %s: fd=%d\n", 3457 map->name, map->fd); 3458 continue; 3459 } 3460 3461 if (obj->caps.name) 3462 create_attr.name = map->name; 3463 create_attr.map_ifindex = map->map_ifindex; 3464 create_attr.map_type = def->type; 3465 create_attr.map_flags = def->map_flags; 3466 create_attr.key_size = def->key_size; 3467 create_attr.value_size = def->value_size; 3468 if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && 3469 !def->max_entries) { 3470 if (!nr_cpus) 3471 nr_cpus = libbpf_num_possible_cpus(); 3472 if (nr_cpus < 0) { 3473 pr_warn("failed to determine number of system CPUs: %d\n", 3474 nr_cpus); 3475 err = nr_cpus; 3476 goto err_out; 3477 } 3478 pr_debug("map '%s': setting size to %d\n", 3479 map->name, nr_cpus); 3480 create_attr.max_entries = nr_cpus; 3481 } else { 3482 create_attr.max_entries = def->max_entries; 3483 } 3484 create_attr.btf_fd = 0; 3485 create_attr.btf_key_type_id = 0; 3486 create_attr.btf_value_type_id = 0; 3487 if (bpf_map_type__is_map_in_map(def->type) && 3488 map->inner_map_fd >= 0) 3489 create_attr.inner_map_fd = map->inner_map_fd; 3490 if (bpf_map__is_struct_ops(map)) 3491 create_attr.btf_vmlinux_value_type_id = 3492 map->btf_vmlinux_value_type_id; 3493 3494 if (obj->btf && !bpf_map_find_btf_info(obj, map)) { 3495 create_attr.btf_fd = btf__fd(obj->btf); 3496 create_attr.btf_key_type_id = map->btf_key_type_id; 3497 create_attr.btf_value_type_id = map->btf_value_type_id; 3498 } 3499 3500 *pfd = bpf_create_map_xattr(&create_attr); 3501 if (*pfd < 0 && (create_attr.btf_key_type_id || 3502 create_attr.btf_value_type_id)) { 3503 err = -errno; 3504 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 3505 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 3506 map->name, cp, err); 3507 create_attr.btf_fd = 0; 3508 create_attr.btf_key_type_id = 0; 3509 create_attr.btf_value_type_id = 0; 3510 map->btf_key_type_id = 0; 3511 map->btf_value_type_id = 0; 3512 *pfd = bpf_create_map_xattr(&create_attr); 3513 } 3514 3515 if (*pfd < 0) { 3516 size_t j; 3517 3518 err = -errno; 3519 err_out: 3520 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 3521 pr_warn("failed to create map (name: '%s'): %s(%d)\n", 3522 map->name, cp, err); 3523 pr_perm_msg(err); 3524 for (j = 0; j < i; j++) 3525 zclose(obj->maps[j].fd); 3526 return err; 3527 } 3528 3529 if (bpf_map__is_internal(map)) { 3530 err = bpf_object__populate_internal_map(obj, map); 3531 if (err < 0) { 3532 zclose(*pfd); 3533 goto err_out; 3534 } 3535 } 3536 3537 if (map->pin_path && !map->pinned) { 3538 err = bpf_map__pin(map, NULL); 3539 if (err) { 3540 pr_warn("failed to auto-pin map name '%s' at '%s'\n", 3541 map->name, map->pin_path); 3542 return err; 3543 } 3544 } 3545 3546 pr_debug("created map %s: fd=%d\n", map->name, *pfd); 3547 } 3548 3549 return 0; 3550 } 3551 3552 static int 3553 check_btf_ext_reloc_err(struct bpf_program *prog, int err, 3554 void *btf_prog_info, const char *info_name) 3555 { 3556 if (err != -ENOENT) { 3557 pr_warn("Error in loading %s for sec %s.\n", 3558 info_name, prog->section_name); 3559 return err; 3560 } 3561 3562 /* err == -ENOENT (i.e. prog->section_name not found in btf_ext) */ 3563 3564 if (btf_prog_info) { 3565 /* 3566 * Some info has already been found but has problem 3567 * in the last btf_ext reloc. Must have to error out. 3568 */ 3569 pr_warn("Error in relocating %s for sec %s.\n", 3570 info_name, prog->section_name); 3571 return err; 3572 } 3573 3574 /* Have problem loading the very first info. Ignore the rest. */ 3575 pr_warn("Cannot find %s for main program sec %s. Ignore all %s.\n", 3576 info_name, prog->section_name, info_name); 3577 return 0; 3578 } 3579 3580 static int 3581 bpf_program_reloc_btf_ext(struct bpf_program *prog, struct bpf_object *obj, 3582 const char *section_name, __u32 insn_offset) 3583 { 3584 int err; 3585 3586 if (!insn_offset || prog->func_info) { 3587 /* 3588 * !insn_offset => main program 3589 * 3590 * For sub prog, the main program's func_info has to 3591 * be loaded first (i.e. prog->func_info != NULL) 3592 */ 3593 err = btf_ext__reloc_func_info(obj->btf, obj->btf_ext, 3594 section_name, insn_offset, 3595 &prog->func_info, 3596 &prog->func_info_cnt); 3597 if (err) 3598 return check_btf_ext_reloc_err(prog, err, 3599 prog->func_info, 3600 "bpf_func_info"); 3601 3602 prog->func_info_rec_size = btf_ext__func_info_rec_size(obj->btf_ext); 3603 } 3604 3605 if (!insn_offset || prog->line_info) { 3606 err = btf_ext__reloc_line_info(obj->btf, obj->btf_ext, 3607 section_name, insn_offset, 3608 &prog->line_info, 3609 &prog->line_info_cnt); 3610 if (err) 3611 return check_btf_ext_reloc_err(prog, err, 3612 prog->line_info, 3613 "bpf_line_info"); 3614 3615 prog->line_info_rec_size = btf_ext__line_info_rec_size(obj->btf_ext); 3616 } 3617 3618 return 0; 3619 } 3620 3621 #define BPF_CORE_SPEC_MAX_LEN 64 3622 3623 /* represents BPF CO-RE field or array element accessor */ 3624 struct bpf_core_accessor { 3625 __u32 type_id; /* struct/union type or array element type */ 3626 __u32 idx; /* field index or array index */ 3627 const char *name; /* field name or NULL for array accessor */ 3628 }; 3629 3630 struct bpf_core_spec { 3631 const struct btf *btf; 3632 /* high-level spec: named fields and array indices only */ 3633 struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN]; 3634 /* high-level spec length */ 3635 int len; 3636 /* raw, low-level spec: 1-to-1 with accessor spec string */ 3637 int raw_spec[BPF_CORE_SPEC_MAX_LEN]; 3638 /* raw spec length */ 3639 int raw_len; 3640 /* field bit offset represented by spec */ 3641 __u32 bit_offset; 3642 }; 3643 3644 static bool str_is_empty(const char *s) 3645 { 3646 return !s || !s[0]; 3647 } 3648 3649 static bool is_flex_arr(const struct btf *btf, 3650 const struct bpf_core_accessor *acc, 3651 const struct btf_array *arr) 3652 { 3653 const struct btf_type *t; 3654 3655 /* not a flexible array, if not inside a struct or has non-zero size */ 3656 if (!acc->name || arr->nelems > 0) 3657 return false; 3658 3659 /* has to be the last member of enclosing struct */ 3660 t = btf__type_by_id(btf, acc->type_id); 3661 return acc->idx == btf_vlen(t) - 1; 3662 } 3663 3664 /* 3665 * Turn bpf_field_reloc into a low- and high-level spec representation, 3666 * validating correctness along the way, as well as calculating resulting 3667 * field bit offset, specified by accessor string. Low-level spec captures 3668 * every single level of nestedness, including traversing anonymous 3669 * struct/union members. High-level one only captures semantically meaningful 3670 * "turning points": named fields and array indicies. 3671 * E.g., for this case: 3672 * 3673 * struct sample { 3674 * int __unimportant; 3675 * struct { 3676 * int __1; 3677 * int __2; 3678 * int a[7]; 3679 * }; 3680 * }; 3681 * 3682 * struct sample *s = ...; 3683 * 3684 * int x = &s->a[3]; // access string = '0:1:2:3' 3685 * 3686 * Low-level spec has 1:1 mapping with each element of access string (it's 3687 * just a parsed access string representation): [0, 1, 2, 3]. 3688 * 3689 * High-level spec will capture only 3 points: 3690 * - intial zero-index access by pointer (&s->... is the same as &s[0]...); 3691 * - field 'a' access (corresponds to '2' in low-level spec); 3692 * - array element #3 access (corresponds to '3' in low-level spec). 3693 * 3694 */ 3695 static int bpf_core_spec_parse(const struct btf *btf, 3696 __u32 type_id, 3697 const char *spec_str, 3698 struct bpf_core_spec *spec) 3699 { 3700 int access_idx, parsed_len, i; 3701 struct bpf_core_accessor *acc; 3702 const struct btf_type *t; 3703 const char *name; 3704 __u32 id; 3705 __s64 sz; 3706 3707 if (str_is_empty(spec_str) || *spec_str == ':') 3708 return -EINVAL; 3709 3710 memset(spec, 0, sizeof(*spec)); 3711 spec->btf = btf; 3712 3713 /* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */ 3714 while (*spec_str) { 3715 if (*spec_str == ':') 3716 ++spec_str; 3717 if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1) 3718 return -EINVAL; 3719 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 3720 return -E2BIG; 3721 spec_str += parsed_len; 3722 spec->raw_spec[spec->raw_len++] = access_idx; 3723 } 3724 3725 if (spec->raw_len == 0) 3726 return -EINVAL; 3727 3728 /* first spec value is always reloc type array index */ 3729 t = skip_mods_and_typedefs(btf, type_id, &id); 3730 if (!t) 3731 return -EINVAL; 3732 3733 access_idx = spec->raw_spec[0]; 3734 spec->spec[0].type_id = id; 3735 spec->spec[0].idx = access_idx; 3736 spec->len++; 3737 3738 sz = btf__resolve_size(btf, id); 3739 if (sz < 0) 3740 return sz; 3741 spec->bit_offset = access_idx * sz * 8; 3742 3743 for (i = 1; i < spec->raw_len; i++) { 3744 t = skip_mods_and_typedefs(btf, id, &id); 3745 if (!t) 3746 return -EINVAL; 3747 3748 access_idx = spec->raw_spec[i]; 3749 acc = &spec->spec[spec->len]; 3750 3751 if (btf_is_composite(t)) { 3752 const struct btf_member *m; 3753 __u32 bit_offset; 3754 3755 if (access_idx >= btf_vlen(t)) 3756 return -EINVAL; 3757 3758 bit_offset = btf_member_bit_offset(t, access_idx); 3759 spec->bit_offset += bit_offset; 3760 3761 m = btf_members(t) + access_idx; 3762 if (m->name_off) { 3763 name = btf__name_by_offset(btf, m->name_off); 3764 if (str_is_empty(name)) 3765 return -EINVAL; 3766 3767 acc->type_id = id; 3768 acc->idx = access_idx; 3769 acc->name = name; 3770 spec->len++; 3771 } 3772 3773 id = m->type; 3774 } else if (btf_is_array(t)) { 3775 const struct btf_array *a = btf_array(t); 3776 bool flex; 3777 3778 t = skip_mods_and_typedefs(btf, a->type, &id); 3779 if (!t) 3780 return -EINVAL; 3781 3782 flex = is_flex_arr(btf, acc - 1, a); 3783 if (!flex && access_idx >= a->nelems) 3784 return -EINVAL; 3785 3786 spec->spec[spec->len].type_id = id; 3787 spec->spec[spec->len].idx = access_idx; 3788 spec->len++; 3789 3790 sz = btf__resolve_size(btf, id); 3791 if (sz < 0) 3792 return sz; 3793 spec->bit_offset += access_idx * sz * 8; 3794 } else { 3795 pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %d\n", 3796 type_id, spec_str, i, id, btf_kind(t)); 3797 return -EINVAL; 3798 } 3799 } 3800 3801 return 0; 3802 } 3803 3804 static bool bpf_core_is_flavor_sep(const char *s) 3805 { 3806 /* check X___Y name pattern, where X and Y are not underscores */ 3807 return s[0] != '_' && /* X */ 3808 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 3809 s[4] != '_'; /* Y */ 3810 } 3811 3812 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 3813 * before last triple underscore. Struct name part after last triple 3814 * underscore is ignored by BPF CO-RE relocation during relocation matching. 3815 */ 3816 static size_t bpf_core_essential_name_len(const char *name) 3817 { 3818 size_t n = strlen(name); 3819 int i; 3820 3821 for (i = n - 5; i >= 0; i--) { 3822 if (bpf_core_is_flavor_sep(name + i)) 3823 return i + 1; 3824 } 3825 return n; 3826 } 3827 3828 /* dynamically sized list of type IDs */ 3829 struct ids_vec { 3830 __u32 *data; 3831 int len; 3832 }; 3833 3834 static void bpf_core_free_cands(struct ids_vec *cand_ids) 3835 { 3836 free(cand_ids->data); 3837 free(cand_ids); 3838 } 3839 3840 static struct ids_vec *bpf_core_find_cands(const struct btf *local_btf, 3841 __u32 local_type_id, 3842 const struct btf *targ_btf) 3843 { 3844 size_t local_essent_len, targ_essent_len; 3845 const char *local_name, *targ_name; 3846 const struct btf_type *t; 3847 struct ids_vec *cand_ids; 3848 __u32 *new_ids; 3849 int i, err, n; 3850 3851 t = btf__type_by_id(local_btf, local_type_id); 3852 if (!t) 3853 return ERR_PTR(-EINVAL); 3854 3855 local_name = btf__name_by_offset(local_btf, t->name_off); 3856 if (str_is_empty(local_name)) 3857 return ERR_PTR(-EINVAL); 3858 local_essent_len = bpf_core_essential_name_len(local_name); 3859 3860 cand_ids = calloc(1, sizeof(*cand_ids)); 3861 if (!cand_ids) 3862 return ERR_PTR(-ENOMEM); 3863 3864 n = btf__get_nr_types(targ_btf); 3865 for (i = 1; i <= n; i++) { 3866 t = btf__type_by_id(targ_btf, i); 3867 targ_name = btf__name_by_offset(targ_btf, t->name_off); 3868 if (str_is_empty(targ_name)) 3869 continue; 3870 3871 targ_essent_len = bpf_core_essential_name_len(targ_name); 3872 if (targ_essent_len != local_essent_len) 3873 continue; 3874 3875 if (strncmp(local_name, targ_name, local_essent_len) == 0) { 3876 pr_debug("[%d] %s: found candidate [%d] %s\n", 3877 local_type_id, local_name, i, targ_name); 3878 new_ids = reallocarray(cand_ids->data, 3879 cand_ids->len + 1, 3880 sizeof(*cand_ids->data)); 3881 if (!new_ids) { 3882 err = -ENOMEM; 3883 goto err_out; 3884 } 3885 cand_ids->data = new_ids; 3886 cand_ids->data[cand_ids->len++] = i; 3887 } 3888 } 3889 return cand_ids; 3890 err_out: 3891 bpf_core_free_cands(cand_ids); 3892 return ERR_PTR(err); 3893 } 3894 3895 /* Check two types for compatibility, skipping const/volatile/restrict and 3896 * typedefs, to ensure we are relocating compatible entities: 3897 * - any two STRUCTs/UNIONs are compatible and can be mixed; 3898 * - any two FWDs are compatible, if their names match (modulo flavor suffix); 3899 * - any two PTRs are always compatible; 3900 * - for ENUMs, names should be the same (ignoring flavor suffix) or at 3901 * least one of enums should be anonymous; 3902 * - for ENUMs, check sizes, names are ignored; 3903 * - for INT, size and signedness are ignored; 3904 * - for ARRAY, dimensionality is ignored, element types are checked for 3905 * compatibility recursively; 3906 * - everything else shouldn't be ever a target of relocation. 3907 * These rules are not set in stone and probably will be adjusted as we get 3908 * more experience with using BPF CO-RE relocations. 3909 */ 3910 static int bpf_core_fields_are_compat(const struct btf *local_btf, 3911 __u32 local_id, 3912 const struct btf *targ_btf, 3913 __u32 targ_id) 3914 { 3915 const struct btf_type *local_type, *targ_type; 3916 3917 recur: 3918 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 3919 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 3920 if (!local_type || !targ_type) 3921 return -EINVAL; 3922 3923 if (btf_is_composite(local_type) && btf_is_composite(targ_type)) 3924 return 1; 3925 if (btf_kind(local_type) != btf_kind(targ_type)) 3926 return 0; 3927 3928 switch (btf_kind(local_type)) { 3929 case BTF_KIND_PTR: 3930 return 1; 3931 case BTF_KIND_FWD: 3932 case BTF_KIND_ENUM: { 3933 const char *local_name, *targ_name; 3934 size_t local_len, targ_len; 3935 3936 local_name = btf__name_by_offset(local_btf, 3937 local_type->name_off); 3938 targ_name = btf__name_by_offset(targ_btf, targ_type->name_off); 3939 local_len = bpf_core_essential_name_len(local_name); 3940 targ_len = bpf_core_essential_name_len(targ_name); 3941 /* one of them is anonymous or both w/ same flavor-less names */ 3942 return local_len == 0 || targ_len == 0 || 3943 (local_len == targ_len && 3944 strncmp(local_name, targ_name, local_len) == 0); 3945 } 3946 case BTF_KIND_INT: 3947 /* just reject deprecated bitfield-like integers; all other 3948 * integers are by default compatible between each other 3949 */ 3950 return btf_int_offset(local_type) == 0 && 3951 btf_int_offset(targ_type) == 0; 3952 case BTF_KIND_ARRAY: 3953 local_id = btf_array(local_type)->type; 3954 targ_id = btf_array(targ_type)->type; 3955 goto recur; 3956 default: 3957 pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n", 3958 btf_kind(local_type), local_id, targ_id); 3959 return 0; 3960 } 3961 } 3962 3963 /* 3964 * Given single high-level named field accessor in local type, find 3965 * corresponding high-level accessor for a target type. Along the way, 3966 * maintain low-level spec for target as well. Also keep updating target 3967 * bit offset. 3968 * 3969 * Searching is performed through recursive exhaustive enumeration of all 3970 * fields of a struct/union. If there are any anonymous (embedded) 3971 * structs/unions, they are recursively searched as well. If field with 3972 * desired name is found, check compatibility between local and target types, 3973 * before returning result. 3974 * 3975 * 1 is returned, if field is found. 3976 * 0 is returned if no compatible field is found. 3977 * <0 is returned on error. 3978 */ 3979 static int bpf_core_match_member(const struct btf *local_btf, 3980 const struct bpf_core_accessor *local_acc, 3981 const struct btf *targ_btf, 3982 __u32 targ_id, 3983 struct bpf_core_spec *spec, 3984 __u32 *next_targ_id) 3985 { 3986 const struct btf_type *local_type, *targ_type; 3987 const struct btf_member *local_member, *m; 3988 const char *local_name, *targ_name; 3989 __u32 local_id; 3990 int i, n, found; 3991 3992 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 3993 if (!targ_type) 3994 return -EINVAL; 3995 if (!btf_is_composite(targ_type)) 3996 return 0; 3997 3998 local_id = local_acc->type_id; 3999 local_type = btf__type_by_id(local_btf, local_id); 4000 local_member = btf_members(local_type) + local_acc->idx; 4001 local_name = btf__name_by_offset(local_btf, local_member->name_off); 4002 4003 n = btf_vlen(targ_type); 4004 m = btf_members(targ_type); 4005 for (i = 0; i < n; i++, m++) { 4006 __u32 bit_offset; 4007 4008 bit_offset = btf_member_bit_offset(targ_type, i); 4009 4010 /* too deep struct/union/array nesting */ 4011 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 4012 return -E2BIG; 4013 4014 /* speculate this member will be the good one */ 4015 spec->bit_offset += bit_offset; 4016 spec->raw_spec[spec->raw_len++] = i; 4017 4018 targ_name = btf__name_by_offset(targ_btf, m->name_off); 4019 if (str_is_empty(targ_name)) { 4020 /* embedded struct/union, we need to go deeper */ 4021 found = bpf_core_match_member(local_btf, local_acc, 4022 targ_btf, m->type, 4023 spec, next_targ_id); 4024 if (found) /* either found or error */ 4025 return found; 4026 } else if (strcmp(local_name, targ_name) == 0) { 4027 /* matching named field */ 4028 struct bpf_core_accessor *targ_acc; 4029 4030 targ_acc = &spec->spec[spec->len++]; 4031 targ_acc->type_id = targ_id; 4032 targ_acc->idx = i; 4033 targ_acc->name = targ_name; 4034 4035 *next_targ_id = m->type; 4036 found = bpf_core_fields_are_compat(local_btf, 4037 local_member->type, 4038 targ_btf, m->type); 4039 if (!found) 4040 spec->len--; /* pop accessor */ 4041 return found; 4042 } 4043 /* member turned out not to be what we looked for */ 4044 spec->bit_offset -= bit_offset; 4045 spec->raw_len--; 4046 } 4047 4048 return 0; 4049 } 4050 4051 /* 4052 * Try to match local spec to a target type and, if successful, produce full 4053 * target spec (high-level, low-level + bit offset). 4054 */ 4055 static int bpf_core_spec_match(struct bpf_core_spec *local_spec, 4056 const struct btf *targ_btf, __u32 targ_id, 4057 struct bpf_core_spec *targ_spec) 4058 { 4059 const struct btf_type *targ_type; 4060 const struct bpf_core_accessor *local_acc; 4061 struct bpf_core_accessor *targ_acc; 4062 int i, sz, matched; 4063 4064 memset(targ_spec, 0, sizeof(*targ_spec)); 4065 targ_spec->btf = targ_btf; 4066 4067 local_acc = &local_spec->spec[0]; 4068 targ_acc = &targ_spec->spec[0]; 4069 4070 for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) { 4071 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, 4072 &targ_id); 4073 if (!targ_type) 4074 return -EINVAL; 4075 4076 if (local_acc->name) { 4077 matched = bpf_core_match_member(local_spec->btf, 4078 local_acc, 4079 targ_btf, targ_id, 4080 targ_spec, &targ_id); 4081 if (matched <= 0) 4082 return matched; 4083 } else { 4084 /* for i=0, targ_id is already treated as array element 4085 * type (because it's the original struct), for others 4086 * we should find array element type first 4087 */ 4088 if (i > 0) { 4089 const struct btf_array *a; 4090 bool flex; 4091 4092 if (!btf_is_array(targ_type)) 4093 return 0; 4094 4095 a = btf_array(targ_type); 4096 flex = is_flex_arr(targ_btf, targ_acc - 1, a); 4097 if (!flex && local_acc->idx >= a->nelems) 4098 return 0; 4099 if (!skip_mods_and_typedefs(targ_btf, a->type, 4100 &targ_id)) 4101 return -EINVAL; 4102 } 4103 4104 /* too deep struct/union/array nesting */ 4105 if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 4106 return -E2BIG; 4107 4108 targ_acc->type_id = targ_id; 4109 targ_acc->idx = local_acc->idx; 4110 targ_acc->name = NULL; 4111 targ_spec->len++; 4112 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 4113 targ_spec->raw_len++; 4114 4115 sz = btf__resolve_size(targ_btf, targ_id); 4116 if (sz < 0) 4117 return sz; 4118 targ_spec->bit_offset += local_acc->idx * sz * 8; 4119 } 4120 } 4121 4122 return 1; 4123 } 4124 4125 static int bpf_core_calc_field_relo(const struct bpf_program *prog, 4126 const struct bpf_field_reloc *relo, 4127 const struct bpf_core_spec *spec, 4128 __u32 *val, bool *validate) 4129 { 4130 const struct bpf_core_accessor *acc = &spec->spec[spec->len - 1]; 4131 const struct btf_type *t = btf__type_by_id(spec->btf, acc->type_id); 4132 __u32 byte_off, byte_sz, bit_off, bit_sz; 4133 const struct btf_member *m; 4134 const struct btf_type *mt; 4135 bool bitfield; 4136 __s64 sz; 4137 4138 /* a[n] accessor needs special handling */ 4139 if (!acc->name) { 4140 if (relo->kind == BPF_FIELD_BYTE_OFFSET) { 4141 *val = spec->bit_offset / 8; 4142 } else if (relo->kind == BPF_FIELD_BYTE_SIZE) { 4143 sz = btf__resolve_size(spec->btf, acc->type_id); 4144 if (sz < 0) 4145 return -EINVAL; 4146 *val = sz; 4147 } else { 4148 pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n", 4149 bpf_program__title(prog, false), 4150 relo->kind, relo->insn_off / 8); 4151 return -EINVAL; 4152 } 4153 if (validate) 4154 *validate = true; 4155 return 0; 4156 } 4157 4158 m = btf_members(t) + acc->idx; 4159 mt = skip_mods_and_typedefs(spec->btf, m->type, NULL); 4160 bit_off = spec->bit_offset; 4161 bit_sz = btf_member_bitfield_size(t, acc->idx); 4162 4163 bitfield = bit_sz > 0; 4164 if (bitfield) { 4165 byte_sz = mt->size; 4166 byte_off = bit_off / 8 / byte_sz * byte_sz; 4167 /* figure out smallest int size necessary for bitfield load */ 4168 while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) { 4169 if (byte_sz >= 8) { 4170 /* bitfield can't be read with 64-bit read */ 4171 pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n", 4172 bpf_program__title(prog, false), 4173 relo->kind, relo->insn_off / 8); 4174 return -E2BIG; 4175 } 4176 byte_sz *= 2; 4177 byte_off = bit_off / 8 / byte_sz * byte_sz; 4178 } 4179 } else { 4180 sz = btf__resolve_size(spec->btf, m->type); 4181 if (sz < 0) 4182 return -EINVAL; 4183 byte_sz = sz; 4184 byte_off = spec->bit_offset / 8; 4185 bit_sz = byte_sz * 8; 4186 } 4187 4188 /* for bitfields, all the relocatable aspects are ambiguous and we 4189 * might disagree with compiler, so turn off validation of expected 4190 * value, except for signedness 4191 */ 4192 if (validate) 4193 *validate = !bitfield; 4194 4195 switch (relo->kind) { 4196 case BPF_FIELD_BYTE_OFFSET: 4197 *val = byte_off; 4198 break; 4199 case BPF_FIELD_BYTE_SIZE: 4200 *val = byte_sz; 4201 break; 4202 case BPF_FIELD_SIGNED: 4203 /* enums will be assumed unsigned */ 4204 *val = btf_is_enum(mt) || 4205 (btf_int_encoding(mt) & BTF_INT_SIGNED); 4206 if (validate) 4207 *validate = true; /* signedness is never ambiguous */ 4208 break; 4209 case BPF_FIELD_LSHIFT_U64: 4210 #if __BYTE_ORDER == __LITTLE_ENDIAN 4211 *val = 64 - (bit_off + bit_sz - byte_off * 8); 4212 #else 4213 *val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8); 4214 #endif 4215 break; 4216 case BPF_FIELD_RSHIFT_U64: 4217 *val = 64 - bit_sz; 4218 if (validate) 4219 *validate = true; /* right shift is never ambiguous */ 4220 break; 4221 case BPF_FIELD_EXISTS: 4222 default: 4223 pr_warn("prog '%s': unknown relo %d at insn #%d\n", 4224 bpf_program__title(prog, false), 4225 relo->kind, relo->insn_off / 8); 4226 return -EINVAL; 4227 } 4228 4229 return 0; 4230 } 4231 4232 /* 4233 * Patch relocatable BPF instruction. 4234 * 4235 * Patched value is determined by relocation kind and target specification. 4236 * For field existence relocation target spec will be NULL if field is not 4237 * found. 4238 * Expected insn->imm value is determined using relocation kind and local 4239 * spec, and is checked before patching instruction. If actual insn->imm value 4240 * is wrong, bail out with error. 4241 * 4242 * Currently three kinds of BPF instructions are supported: 4243 * 1. rX = <imm> (assignment with immediate operand); 4244 * 2. rX += <imm> (arithmetic operations with immediate operand); 4245 */ 4246 static int bpf_core_reloc_insn(struct bpf_program *prog, 4247 const struct bpf_field_reloc *relo, 4248 int relo_idx, 4249 const struct bpf_core_spec *local_spec, 4250 const struct bpf_core_spec *targ_spec) 4251 { 4252 __u32 orig_val, new_val; 4253 struct bpf_insn *insn; 4254 bool validate = true; 4255 int insn_idx, err; 4256 __u8 class; 4257 4258 if (relo->insn_off % sizeof(struct bpf_insn)) 4259 return -EINVAL; 4260 insn_idx = relo->insn_off / sizeof(struct bpf_insn); 4261 insn = &prog->insns[insn_idx]; 4262 class = BPF_CLASS(insn->code); 4263 4264 if (relo->kind == BPF_FIELD_EXISTS) { 4265 orig_val = 1; /* can't generate EXISTS relo w/o local field */ 4266 new_val = targ_spec ? 1 : 0; 4267 } else if (!targ_spec) { 4268 pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n", 4269 bpf_program__title(prog, false), relo_idx, insn_idx); 4270 insn->code = BPF_JMP | BPF_CALL; 4271 insn->dst_reg = 0; 4272 insn->src_reg = 0; 4273 insn->off = 0; 4274 /* if this instruction is reachable (not a dead code), 4275 * verifier will complain with the following message: 4276 * invalid func unknown#195896080 4277 */ 4278 insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */ 4279 return 0; 4280 } else { 4281 err = bpf_core_calc_field_relo(prog, relo, local_spec, 4282 &orig_val, &validate); 4283 if (err) 4284 return err; 4285 err = bpf_core_calc_field_relo(prog, relo, targ_spec, 4286 &new_val, NULL); 4287 if (err) 4288 return err; 4289 } 4290 4291 switch (class) { 4292 case BPF_ALU: 4293 case BPF_ALU64: 4294 if (BPF_SRC(insn->code) != BPF_K) 4295 return -EINVAL; 4296 if (validate && insn->imm != orig_val) { 4297 pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n", 4298 bpf_program__title(prog, false), relo_idx, 4299 insn_idx, insn->imm, orig_val, new_val); 4300 return -EINVAL; 4301 } 4302 orig_val = insn->imm; 4303 insn->imm = new_val; 4304 pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n", 4305 bpf_program__title(prog, false), relo_idx, insn_idx, 4306 orig_val, new_val); 4307 break; 4308 case BPF_LDX: 4309 case BPF_ST: 4310 case BPF_STX: 4311 if (validate && insn->off != orig_val) { 4312 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LD/LDX/ST/STX) value: got %u, exp %u -> %u\n", 4313 bpf_program__title(prog, false), relo_idx, 4314 insn_idx, insn->off, orig_val, new_val); 4315 return -EINVAL; 4316 } 4317 if (new_val > SHRT_MAX) { 4318 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n", 4319 bpf_program__title(prog, false), relo_idx, 4320 insn_idx, new_val); 4321 return -ERANGE; 4322 } 4323 orig_val = insn->off; 4324 insn->off = new_val; 4325 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n", 4326 bpf_program__title(prog, false), relo_idx, insn_idx, 4327 orig_val, new_val); 4328 break; 4329 default: 4330 pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:%x, src:%x, dst:%x, off:%x, imm:%x\n", 4331 bpf_program__title(prog, false), relo_idx, 4332 insn_idx, insn->code, insn->src_reg, insn->dst_reg, 4333 insn->off, insn->imm); 4334 return -EINVAL; 4335 } 4336 4337 return 0; 4338 } 4339 4340 /* Output spec definition in the format: 4341 * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>, 4342 * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b 4343 */ 4344 static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec) 4345 { 4346 const struct btf_type *t; 4347 const char *s; 4348 __u32 type_id; 4349 int i; 4350 4351 type_id = spec->spec[0].type_id; 4352 t = btf__type_by_id(spec->btf, type_id); 4353 s = btf__name_by_offset(spec->btf, t->name_off); 4354 libbpf_print(level, "[%u] %s + ", type_id, s); 4355 4356 for (i = 0; i < spec->raw_len; i++) 4357 libbpf_print(level, "%d%s", spec->raw_spec[i], 4358 i == spec->raw_len - 1 ? " => " : ":"); 4359 4360 libbpf_print(level, "%u.%u @ &x", 4361 spec->bit_offset / 8, spec->bit_offset % 8); 4362 4363 for (i = 0; i < spec->len; i++) { 4364 if (spec->spec[i].name) 4365 libbpf_print(level, ".%s", spec->spec[i].name); 4366 else 4367 libbpf_print(level, "[%u]", spec->spec[i].idx); 4368 } 4369 4370 } 4371 4372 static size_t bpf_core_hash_fn(const void *key, void *ctx) 4373 { 4374 return (size_t)key; 4375 } 4376 4377 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 4378 { 4379 return k1 == k2; 4380 } 4381 4382 static void *u32_as_hash_key(__u32 x) 4383 { 4384 return (void *)(uintptr_t)x; 4385 } 4386 4387 /* 4388 * CO-RE relocate single instruction. 4389 * 4390 * The outline and important points of the algorithm: 4391 * 1. For given local type, find corresponding candidate target types. 4392 * Candidate type is a type with the same "essential" name, ignoring 4393 * everything after last triple underscore (___). E.g., `sample`, 4394 * `sample___flavor_one`, `sample___flavor_another_one`, are all candidates 4395 * for each other. Names with triple underscore are referred to as 4396 * "flavors" and are useful, among other things, to allow to 4397 * specify/support incompatible variations of the same kernel struct, which 4398 * might differ between different kernel versions and/or build 4399 * configurations. 4400 * 4401 * N.B. Struct "flavors" could be generated by bpftool's BTF-to-C 4402 * converter, when deduplicated BTF of a kernel still contains more than 4403 * one different types with the same name. In that case, ___2, ___3, etc 4404 * are appended starting from second name conflict. But start flavors are 4405 * also useful to be defined "locally", in BPF program, to extract same 4406 * data from incompatible changes between different kernel 4407 * versions/configurations. For instance, to handle field renames between 4408 * kernel versions, one can use two flavors of the struct name with the 4409 * same common name and use conditional relocations to extract that field, 4410 * depending on target kernel version. 4411 * 2. For each candidate type, try to match local specification to this 4412 * candidate target type. Matching involves finding corresponding 4413 * high-level spec accessors, meaning that all named fields should match, 4414 * as well as all array accesses should be within the actual bounds. Also, 4415 * types should be compatible (see bpf_core_fields_are_compat for details). 4416 * 3. It is supported and expected that there might be multiple flavors 4417 * matching the spec. As long as all the specs resolve to the same set of 4418 * offsets across all candidates, there is no error. If there is any 4419 * ambiguity, CO-RE relocation will fail. This is necessary to accomodate 4420 * imprefection of BTF deduplication, which can cause slight duplication of 4421 * the same BTF type, if some directly or indirectly referenced (by 4422 * pointer) type gets resolved to different actual types in different 4423 * object files. If such situation occurs, deduplicated BTF will end up 4424 * with two (or more) structurally identical types, which differ only in 4425 * types they refer to through pointer. This should be OK in most cases and 4426 * is not an error. 4427 * 4. Candidate types search is performed by linearly scanning through all 4428 * types in target BTF. It is anticipated that this is overall more 4429 * efficient memory-wise and not significantly worse (if not better) 4430 * CPU-wise compared to prebuilding a map from all local type names to 4431 * a list of candidate type names. It's also sped up by caching resolved 4432 * list of matching candidates per each local "root" type ID, that has at 4433 * least one bpf_field_reloc associated with it. This list is shared 4434 * between multiple relocations for the same type ID and is updated as some 4435 * of the candidates are pruned due to structural incompatibility. 4436 */ 4437 static int bpf_core_reloc_field(struct bpf_program *prog, 4438 const struct bpf_field_reloc *relo, 4439 int relo_idx, 4440 const struct btf *local_btf, 4441 const struct btf *targ_btf, 4442 struct hashmap *cand_cache) 4443 { 4444 const char *prog_name = bpf_program__title(prog, false); 4445 struct bpf_core_spec local_spec, cand_spec, targ_spec; 4446 const void *type_key = u32_as_hash_key(relo->type_id); 4447 const struct btf_type *local_type, *cand_type; 4448 const char *local_name, *cand_name; 4449 struct ids_vec *cand_ids; 4450 __u32 local_id, cand_id; 4451 const char *spec_str; 4452 int i, j, err; 4453 4454 local_id = relo->type_id; 4455 local_type = btf__type_by_id(local_btf, local_id); 4456 if (!local_type) 4457 return -EINVAL; 4458 4459 local_name = btf__name_by_offset(local_btf, local_type->name_off); 4460 if (str_is_empty(local_name)) 4461 return -EINVAL; 4462 4463 spec_str = btf__name_by_offset(local_btf, relo->access_str_off); 4464 if (str_is_empty(spec_str)) 4465 return -EINVAL; 4466 4467 err = bpf_core_spec_parse(local_btf, local_id, spec_str, &local_spec); 4468 if (err) { 4469 pr_warn("prog '%s': relo #%d: parsing [%d] %s + %s failed: %d\n", 4470 prog_name, relo_idx, local_id, local_name, spec_str, 4471 err); 4472 return -EINVAL; 4473 } 4474 4475 pr_debug("prog '%s': relo #%d: kind %d, spec is ", prog_name, relo_idx, 4476 relo->kind); 4477 bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec); 4478 libbpf_print(LIBBPF_DEBUG, "\n"); 4479 4480 if (!hashmap__find(cand_cache, type_key, (void **)&cand_ids)) { 4481 cand_ids = bpf_core_find_cands(local_btf, local_id, targ_btf); 4482 if (IS_ERR(cand_ids)) { 4483 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s: %ld", 4484 prog_name, relo_idx, local_id, local_name, 4485 PTR_ERR(cand_ids)); 4486 return PTR_ERR(cand_ids); 4487 } 4488 err = hashmap__set(cand_cache, type_key, cand_ids, NULL, NULL); 4489 if (err) { 4490 bpf_core_free_cands(cand_ids); 4491 return err; 4492 } 4493 } 4494 4495 for (i = 0, j = 0; i < cand_ids->len; i++) { 4496 cand_id = cand_ids->data[i]; 4497 cand_type = btf__type_by_id(targ_btf, cand_id); 4498 cand_name = btf__name_by_offset(targ_btf, cand_type->name_off); 4499 4500 err = bpf_core_spec_match(&local_spec, targ_btf, 4501 cand_id, &cand_spec); 4502 pr_debug("prog '%s': relo #%d: matching candidate #%d %s against spec ", 4503 prog_name, relo_idx, i, cand_name); 4504 bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec); 4505 libbpf_print(LIBBPF_DEBUG, ": %d\n", err); 4506 if (err < 0) { 4507 pr_warn("prog '%s': relo #%d: matching error: %d\n", 4508 prog_name, relo_idx, err); 4509 return err; 4510 } 4511 if (err == 0) 4512 continue; 4513 4514 if (j == 0) { 4515 targ_spec = cand_spec; 4516 } else if (cand_spec.bit_offset != targ_spec.bit_offset) { 4517 /* if there are many candidates, they should all 4518 * resolve to the same bit offset 4519 */ 4520 pr_warn("prog '%s': relo #%d: offset ambiguity: %u != %u\n", 4521 prog_name, relo_idx, cand_spec.bit_offset, 4522 targ_spec.bit_offset); 4523 return -EINVAL; 4524 } 4525 4526 cand_ids->data[j++] = cand_spec.spec[0].type_id; 4527 } 4528 4529 /* 4530 * For BPF_FIELD_EXISTS relo or when used BPF program has field 4531 * existence checks or kernel version/config checks, it's expected 4532 * that we might not find any candidates. In this case, if field 4533 * wasn't found in any candidate, the list of candidates shouldn't 4534 * change at all, we'll just handle relocating appropriately, 4535 * depending on relo's kind. 4536 */ 4537 if (j > 0) 4538 cand_ids->len = j; 4539 4540 /* 4541 * If no candidates were found, it might be both a programmer error, 4542 * as well as expected case, depending whether instruction w/ 4543 * relocation is guarded in some way that makes it unreachable (dead 4544 * code) if relocation can't be resolved. This is handled in 4545 * bpf_core_reloc_insn() uniformly by replacing that instruction with 4546 * BPF helper call insn (using invalid helper ID). If that instruction 4547 * is indeed unreachable, then it will be ignored and eliminated by 4548 * verifier. If it was an error, then verifier will complain and point 4549 * to a specific instruction number in its log. 4550 */ 4551 if (j == 0) 4552 pr_debug("prog '%s': relo #%d: no matching targets found for [%d] %s + %s\n", 4553 prog_name, relo_idx, local_id, local_name, spec_str); 4554 4555 /* bpf_core_reloc_insn should know how to handle missing targ_spec */ 4556 err = bpf_core_reloc_insn(prog, relo, relo_idx, &local_spec, 4557 j ? &targ_spec : NULL); 4558 if (err) { 4559 pr_warn("prog '%s': relo #%d: failed to patch insn at offset %d: %d\n", 4560 prog_name, relo_idx, relo->insn_off, err); 4561 return -EINVAL; 4562 } 4563 4564 return 0; 4565 } 4566 4567 static int 4568 bpf_core_reloc_fields(struct bpf_object *obj, const char *targ_btf_path) 4569 { 4570 const struct btf_ext_info_sec *sec; 4571 const struct bpf_field_reloc *rec; 4572 const struct btf_ext_info *seg; 4573 struct hashmap_entry *entry; 4574 struct hashmap *cand_cache = NULL; 4575 struct bpf_program *prog; 4576 struct btf *targ_btf; 4577 const char *sec_name; 4578 int i, err = 0; 4579 4580 if (targ_btf_path) 4581 targ_btf = btf__parse_elf(targ_btf_path, NULL); 4582 else 4583 targ_btf = libbpf_find_kernel_btf(); 4584 if (IS_ERR(targ_btf)) { 4585 pr_warn("failed to get target BTF: %ld\n", PTR_ERR(targ_btf)); 4586 return PTR_ERR(targ_btf); 4587 } 4588 4589 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 4590 if (IS_ERR(cand_cache)) { 4591 err = PTR_ERR(cand_cache); 4592 goto out; 4593 } 4594 4595 seg = &obj->btf_ext->field_reloc_info; 4596 for_each_btf_ext_sec(seg, sec) { 4597 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 4598 if (str_is_empty(sec_name)) { 4599 err = -EINVAL; 4600 goto out; 4601 } 4602 prog = bpf_object__find_program_by_title(obj, sec_name); 4603 if (!prog) { 4604 pr_warn("failed to find program '%s' for CO-RE offset relocation\n", 4605 sec_name); 4606 err = -EINVAL; 4607 goto out; 4608 } 4609 4610 pr_debug("prog '%s': performing %d CO-RE offset relocs\n", 4611 sec_name, sec->num_info); 4612 4613 for_each_btf_ext_rec(seg, sec, i, rec) { 4614 err = bpf_core_reloc_field(prog, rec, i, obj->btf, 4615 targ_btf, cand_cache); 4616 if (err) { 4617 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 4618 sec_name, i, err); 4619 goto out; 4620 } 4621 } 4622 } 4623 4624 out: 4625 btf__free(targ_btf); 4626 if (!IS_ERR_OR_NULL(cand_cache)) { 4627 hashmap__for_each_entry(cand_cache, entry, i) { 4628 bpf_core_free_cands(entry->value); 4629 } 4630 hashmap__free(cand_cache); 4631 } 4632 return err; 4633 } 4634 4635 static int 4636 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 4637 { 4638 int err = 0; 4639 4640 if (obj->btf_ext->field_reloc_info.len) 4641 err = bpf_core_reloc_fields(obj, targ_btf_path); 4642 4643 return err; 4644 } 4645 4646 static int 4647 bpf_program__reloc_text(struct bpf_program *prog, struct bpf_object *obj, 4648 struct reloc_desc *relo) 4649 { 4650 struct bpf_insn *insn, *new_insn; 4651 struct bpf_program *text; 4652 size_t new_cnt; 4653 int err; 4654 4655 if (prog->idx != obj->efile.text_shndx && prog->main_prog_cnt == 0) { 4656 text = bpf_object__find_prog_by_idx(obj, obj->efile.text_shndx); 4657 if (!text) { 4658 pr_warn("no .text section found yet relo into text exist\n"); 4659 return -LIBBPF_ERRNO__RELOC; 4660 } 4661 new_cnt = prog->insns_cnt + text->insns_cnt; 4662 new_insn = reallocarray(prog->insns, new_cnt, sizeof(*insn)); 4663 if (!new_insn) { 4664 pr_warn("oom in prog realloc\n"); 4665 return -ENOMEM; 4666 } 4667 prog->insns = new_insn; 4668 4669 if (obj->btf_ext) { 4670 err = bpf_program_reloc_btf_ext(prog, obj, 4671 text->section_name, 4672 prog->insns_cnt); 4673 if (err) 4674 return err; 4675 } 4676 4677 memcpy(new_insn + prog->insns_cnt, text->insns, 4678 text->insns_cnt * sizeof(*insn)); 4679 prog->main_prog_cnt = prog->insns_cnt; 4680 prog->insns_cnt = new_cnt; 4681 pr_debug("added %zd insn from %s to prog %s\n", 4682 text->insns_cnt, text->section_name, 4683 prog->section_name); 4684 } 4685 4686 insn = &prog->insns[relo->insn_idx]; 4687 insn->imm += relo->sym_off / 8 + prog->main_prog_cnt - relo->insn_idx; 4688 return 0; 4689 } 4690 4691 static int 4692 bpf_program__relocate(struct bpf_program *prog, struct bpf_object *obj) 4693 { 4694 int i, err; 4695 4696 if (!prog) 4697 return 0; 4698 4699 if (obj->btf_ext) { 4700 err = bpf_program_reloc_btf_ext(prog, obj, 4701 prog->section_name, 0); 4702 if (err) 4703 return err; 4704 } 4705 4706 if (!prog->reloc_desc) 4707 return 0; 4708 4709 for (i = 0; i < prog->nr_reloc; i++) { 4710 struct reloc_desc *relo = &prog->reloc_desc[i]; 4711 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 4712 4713 if (relo->insn_idx + 1 >= (int)prog->insns_cnt) { 4714 pr_warn("relocation out of range: '%s'\n", 4715 prog->section_name); 4716 return -LIBBPF_ERRNO__RELOC; 4717 } 4718 4719 switch (relo->type) { 4720 case RELO_LD64: 4721 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 4722 insn[0].imm = obj->maps[relo->map_idx].fd; 4723 break; 4724 case RELO_DATA: 4725 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 4726 insn[1].imm = insn[0].imm + relo->sym_off; 4727 insn[0].imm = obj->maps[relo->map_idx].fd; 4728 break; 4729 case RELO_EXTERN: 4730 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 4731 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 4732 insn[1].imm = relo->sym_off; 4733 break; 4734 case RELO_CALL: 4735 err = bpf_program__reloc_text(prog, obj, relo); 4736 if (err) 4737 return err; 4738 break; 4739 default: 4740 pr_warn("relo #%d: bad relo type %d\n", i, relo->type); 4741 return -EINVAL; 4742 } 4743 } 4744 4745 zfree(&prog->reloc_desc); 4746 prog->nr_reloc = 0; 4747 return 0; 4748 } 4749 4750 static int 4751 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 4752 { 4753 struct bpf_program *prog; 4754 size_t i; 4755 int err; 4756 4757 if (obj->btf_ext) { 4758 err = bpf_object__relocate_core(obj, targ_btf_path); 4759 if (err) { 4760 pr_warn("failed to perform CO-RE relocations: %d\n", 4761 err); 4762 return err; 4763 } 4764 } 4765 /* ensure .text is relocated first, as it's going to be copied as-is 4766 * later for sub-program calls 4767 */ 4768 for (i = 0; i < obj->nr_programs; i++) { 4769 prog = &obj->programs[i]; 4770 if (prog->idx != obj->efile.text_shndx) 4771 continue; 4772 4773 err = bpf_program__relocate(prog, obj); 4774 if (err) { 4775 pr_warn("failed to relocate '%s'\n", prog->section_name); 4776 return err; 4777 } 4778 break; 4779 } 4780 /* now relocate everything but .text, which by now is relocated 4781 * properly, so we can copy raw sub-program instructions as is safely 4782 */ 4783 for (i = 0; i < obj->nr_programs; i++) { 4784 prog = &obj->programs[i]; 4785 if (prog->idx == obj->efile.text_shndx) 4786 continue; 4787 4788 err = bpf_program__relocate(prog, obj); 4789 if (err) { 4790 pr_warn("failed to relocate '%s'\n", prog->section_name); 4791 return err; 4792 } 4793 } 4794 return 0; 4795 } 4796 4797 static int bpf_object__collect_struct_ops_map_reloc(struct bpf_object *obj, 4798 GElf_Shdr *shdr, 4799 Elf_Data *data); 4800 4801 static int bpf_object__collect_reloc(struct bpf_object *obj) 4802 { 4803 int i, err; 4804 4805 if (!obj_elf_valid(obj)) { 4806 pr_warn("Internal error: elf object is closed\n"); 4807 return -LIBBPF_ERRNO__INTERNAL; 4808 } 4809 4810 for (i = 0; i < obj->efile.nr_reloc_sects; i++) { 4811 GElf_Shdr *shdr = &obj->efile.reloc_sects[i].shdr; 4812 Elf_Data *data = obj->efile.reloc_sects[i].data; 4813 int idx = shdr->sh_info; 4814 struct bpf_program *prog; 4815 4816 if (shdr->sh_type != SHT_REL) { 4817 pr_warn("internal error at %d\n", __LINE__); 4818 return -LIBBPF_ERRNO__INTERNAL; 4819 } 4820 4821 if (idx == obj->efile.st_ops_shndx) { 4822 err = bpf_object__collect_struct_ops_map_reloc(obj, 4823 shdr, 4824 data); 4825 if (err) 4826 return err; 4827 continue; 4828 } 4829 4830 prog = bpf_object__find_prog_by_idx(obj, idx); 4831 if (!prog) { 4832 pr_warn("relocation failed: no section(%d)\n", idx); 4833 return -LIBBPF_ERRNO__RELOC; 4834 } 4835 4836 err = bpf_program__collect_reloc(prog, shdr, data, obj); 4837 if (err) 4838 return err; 4839 } 4840 return 0; 4841 } 4842 4843 static int 4844 load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt, 4845 char *license, __u32 kern_version, int *pfd) 4846 { 4847 struct bpf_load_program_attr load_attr; 4848 char *cp, errmsg[STRERR_BUFSIZE]; 4849 int log_buf_size = BPF_LOG_BUF_SIZE; 4850 char *log_buf; 4851 int btf_fd, ret; 4852 4853 if (!insns || !insns_cnt) 4854 return -EINVAL; 4855 4856 memset(&load_attr, 0, sizeof(struct bpf_load_program_attr)); 4857 load_attr.prog_type = prog->type; 4858 load_attr.expected_attach_type = prog->expected_attach_type; 4859 if (prog->caps->name) 4860 load_attr.name = prog->name; 4861 load_attr.insns = insns; 4862 load_attr.insns_cnt = insns_cnt; 4863 load_attr.license = license; 4864 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) { 4865 load_attr.attach_btf_id = prog->attach_btf_id; 4866 } else if (prog->type == BPF_PROG_TYPE_TRACING || 4867 prog->type == BPF_PROG_TYPE_EXT) { 4868 load_attr.attach_prog_fd = prog->attach_prog_fd; 4869 load_attr.attach_btf_id = prog->attach_btf_id; 4870 } else { 4871 load_attr.kern_version = kern_version; 4872 load_attr.prog_ifindex = prog->prog_ifindex; 4873 } 4874 /* if .BTF.ext was loaded, kernel supports associated BTF for prog */ 4875 if (prog->obj->btf_ext) 4876 btf_fd = bpf_object__btf_fd(prog->obj); 4877 else 4878 btf_fd = -1; 4879 load_attr.prog_btf_fd = btf_fd >= 0 ? btf_fd : 0; 4880 load_attr.func_info = prog->func_info; 4881 load_attr.func_info_rec_size = prog->func_info_rec_size; 4882 load_attr.func_info_cnt = prog->func_info_cnt; 4883 load_attr.line_info = prog->line_info; 4884 load_attr.line_info_rec_size = prog->line_info_rec_size; 4885 load_attr.line_info_cnt = prog->line_info_cnt; 4886 load_attr.log_level = prog->log_level; 4887 load_attr.prog_flags = prog->prog_flags; 4888 4889 retry_load: 4890 log_buf = malloc(log_buf_size); 4891 if (!log_buf) 4892 pr_warn("Alloc log buffer for bpf loader error, continue without log\n"); 4893 4894 ret = bpf_load_program_xattr(&load_attr, log_buf, log_buf_size); 4895 4896 if (ret >= 0) { 4897 if (load_attr.log_level) 4898 pr_debug("verifier log:\n%s", log_buf); 4899 *pfd = ret; 4900 ret = 0; 4901 goto out; 4902 } 4903 4904 if (errno == ENOSPC) { 4905 log_buf_size <<= 1; 4906 free(log_buf); 4907 goto retry_load; 4908 } 4909 ret = -errno; 4910 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 4911 pr_warn("load bpf program failed: %s\n", cp); 4912 pr_perm_msg(ret); 4913 4914 if (log_buf && log_buf[0] != '\0') { 4915 ret = -LIBBPF_ERRNO__VERIFY; 4916 pr_warn("-- BEGIN DUMP LOG ---\n"); 4917 pr_warn("\n%s\n", log_buf); 4918 pr_warn("-- END LOG --\n"); 4919 } else if (load_attr.insns_cnt >= BPF_MAXINSNS) { 4920 pr_warn("Program too large (%zu insns), at most %d insns\n", 4921 load_attr.insns_cnt, BPF_MAXINSNS); 4922 ret = -LIBBPF_ERRNO__PROG2BIG; 4923 } else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) { 4924 /* Wrong program type? */ 4925 int fd; 4926 4927 load_attr.prog_type = BPF_PROG_TYPE_KPROBE; 4928 load_attr.expected_attach_type = 0; 4929 fd = bpf_load_program_xattr(&load_attr, NULL, 0); 4930 if (fd >= 0) { 4931 close(fd); 4932 ret = -LIBBPF_ERRNO__PROGTYPE; 4933 goto out; 4934 } 4935 } 4936 4937 out: 4938 free(log_buf); 4939 return ret; 4940 } 4941 4942 static int libbpf_find_attach_btf_id(struct bpf_program *prog); 4943 4944 int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_ver) 4945 { 4946 int err = 0, fd, i, btf_id; 4947 4948 if (prog->type == BPF_PROG_TYPE_TRACING || 4949 prog->type == BPF_PROG_TYPE_EXT) { 4950 btf_id = libbpf_find_attach_btf_id(prog); 4951 if (btf_id <= 0) 4952 return btf_id; 4953 prog->attach_btf_id = btf_id; 4954 } 4955 4956 if (prog->instances.nr < 0 || !prog->instances.fds) { 4957 if (prog->preprocessor) { 4958 pr_warn("Internal error: can't load program '%s'\n", 4959 prog->section_name); 4960 return -LIBBPF_ERRNO__INTERNAL; 4961 } 4962 4963 prog->instances.fds = malloc(sizeof(int)); 4964 if (!prog->instances.fds) { 4965 pr_warn("Not enough memory for BPF fds\n"); 4966 return -ENOMEM; 4967 } 4968 prog->instances.nr = 1; 4969 prog->instances.fds[0] = -1; 4970 } 4971 4972 if (!prog->preprocessor) { 4973 if (prog->instances.nr != 1) { 4974 pr_warn("Program '%s' is inconsistent: nr(%d) != 1\n", 4975 prog->section_name, prog->instances.nr); 4976 } 4977 err = load_program(prog, prog->insns, prog->insns_cnt, 4978 license, kern_ver, &fd); 4979 if (!err) 4980 prog->instances.fds[0] = fd; 4981 goto out; 4982 } 4983 4984 for (i = 0; i < prog->instances.nr; i++) { 4985 struct bpf_prog_prep_result result; 4986 bpf_program_prep_t preprocessor = prog->preprocessor; 4987 4988 memset(&result, 0, sizeof(result)); 4989 err = preprocessor(prog, i, prog->insns, 4990 prog->insns_cnt, &result); 4991 if (err) { 4992 pr_warn("Preprocessing the %dth instance of program '%s' failed\n", 4993 i, prog->section_name); 4994 goto out; 4995 } 4996 4997 if (!result.new_insn_ptr || !result.new_insn_cnt) { 4998 pr_debug("Skip loading the %dth instance of program '%s'\n", 4999 i, prog->section_name); 5000 prog->instances.fds[i] = -1; 5001 if (result.pfd) 5002 *result.pfd = -1; 5003 continue; 5004 } 5005 5006 err = load_program(prog, result.new_insn_ptr, 5007 result.new_insn_cnt, license, kern_ver, &fd); 5008 if (err) { 5009 pr_warn("Loading the %dth instance of program '%s' failed\n", 5010 i, prog->section_name); 5011 goto out; 5012 } 5013 5014 if (result.pfd) 5015 *result.pfd = fd; 5016 prog->instances.fds[i] = fd; 5017 } 5018 out: 5019 if (err) 5020 pr_warn("failed to load program '%s'\n", prog->section_name); 5021 zfree(&prog->insns); 5022 prog->insns_cnt = 0; 5023 return err; 5024 } 5025 5026 static bool bpf_program__is_function_storage(const struct bpf_program *prog, 5027 const struct bpf_object *obj) 5028 { 5029 return prog->idx == obj->efile.text_shndx && obj->has_pseudo_calls; 5030 } 5031 5032 static int 5033 bpf_object__load_progs(struct bpf_object *obj, int log_level) 5034 { 5035 size_t i; 5036 int err; 5037 5038 for (i = 0; i < obj->nr_programs; i++) { 5039 if (bpf_program__is_function_storage(&obj->programs[i], obj)) 5040 continue; 5041 obj->programs[i].log_level |= log_level; 5042 err = bpf_program__load(&obj->programs[i], 5043 obj->license, 5044 obj->kern_version); 5045 if (err) 5046 return err; 5047 } 5048 return 0; 5049 } 5050 5051 static struct bpf_object * 5052 __bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz, 5053 const struct bpf_object_open_opts *opts) 5054 { 5055 const char *obj_name, *kconfig; 5056 struct bpf_program *prog; 5057 struct bpf_object *obj; 5058 char tmp_name[64]; 5059 int err; 5060 5061 if (elf_version(EV_CURRENT) == EV_NONE) { 5062 pr_warn("failed to init libelf for %s\n", 5063 path ? : "(mem buf)"); 5064 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 5065 } 5066 5067 if (!OPTS_VALID(opts, bpf_object_open_opts)) 5068 return ERR_PTR(-EINVAL); 5069 5070 obj_name = OPTS_GET(opts, object_name, NULL); 5071 if (obj_buf) { 5072 if (!obj_name) { 5073 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 5074 (unsigned long)obj_buf, 5075 (unsigned long)obj_buf_sz); 5076 obj_name = tmp_name; 5077 } 5078 path = obj_name; 5079 pr_debug("loading object '%s' from buffer\n", obj_name); 5080 } 5081 5082 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 5083 if (IS_ERR(obj)) 5084 return obj; 5085 5086 kconfig = OPTS_GET(opts, kconfig, NULL); 5087 if (kconfig) { 5088 obj->kconfig = strdup(kconfig); 5089 if (!obj->kconfig) 5090 return ERR_PTR(-ENOMEM); 5091 } 5092 5093 err = bpf_object__elf_init(obj); 5094 err = err ? : bpf_object__check_endianness(obj); 5095 err = err ? : bpf_object__elf_collect(obj); 5096 err = err ? : bpf_object__collect_externs(obj); 5097 err = err ? : bpf_object__finalize_btf(obj); 5098 err = err ? : bpf_object__init_maps(obj, opts); 5099 err = err ? : bpf_object__init_prog_names(obj); 5100 err = err ? : bpf_object__collect_reloc(obj); 5101 if (err) 5102 goto out; 5103 bpf_object__elf_finish(obj); 5104 5105 bpf_object__for_each_program(prog, obj) { 5106 enum bpf_prog_type prog_type; 5107 enum bpf_attach_type attach_type; 5108 5109 if (prog->type != BPF_PROG_TYPE_UNSPEC) 5110 continue; 5111 5112 err = libbpf_prog_type_by_name(prog->section_name, &prog_type, 5113 &attach_type); 5114 if (err == -ESRCH) 5115 /* couldn't guess, but user might manually specify */ 5116 continue; 5117 if (err) 5118 goto out; 5119 5120 bpf_program__set_type(prog, prog_type); 5121 bpf_program__set_expected_attach_type(prog, attach_type); 5122 if (prog_type == BPF_PROG_TYPE_TRACING || 5123 prog_type == BPF_PROG_TYPE_EXT) 5124 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0); 5125 } 5126 5127 return obj; 5128 out: 5129 bpf_object__close(obj); 5130 return ERR_PTR(err); 5131 } 5132 5133 static struct bpf_object * 5134 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags) 5135 { 5136 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 5137 .relaxed_maps = flags & MAPS_RELAX_COMPAT, 5138 ); 5139 5140 /* param validation */ 5141 if (!attr->file) 5142 return NULL; 5143 5144 pr_debug("loading %s\n", attr->file); 5145 return __bpf_object__open(attr->file, NULL, 0, &opts); 5146 } 5147 5148 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr) 5149 { 5150 return __bpf_object__open_xattr(attr, 0); 5151 } 5152 5153 struct bpf_object *bpf_object__open(const char *path) 5154 { 5155 struct bpf_object_open_attr attr = { 5156 .file = path, 5157 .prog_type = BPF_PROG_TYPE_UNSPEC, 5158 }; 5159 5160 return bpf_object__open_xattr(&attr); 5161 } 5162 5163 struct bpf_object * 5164 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 5165 { 5166 if (!path) 5167 return ERR_PTR(-EINVAL); 5168 5169 pr_debug("loading %s\n", path); 5170 5171 return __bpf_object__open(path, NULL, 0, opts); 5172 } 5173 5174 struct bpf_object * 5175 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 5176 const struct bpf_object_open_opts *opts) 5177 { 5178 if (!obj_buf || obj_buf_sz == 0) 5179 return ERR_PTR(-EINVAL); 5180 5181 return __bpf_object__open(NULL, obj_buf, obj_buf_sz, opts); 5182 } 5183 5184 struct bpf_object * 5185 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz, 5186 const char *name) 5187 { 5188 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 5189 .object_name = name, 5190 /* wrong default, but backwards-compatible */ 5191 .relaxed_maps = true, 5192 ); 5193 5194 /* returning NULL is wrong, but backwards-compatible */ 5195 if (!obj_buf || obj_buf_sz == 0) 5196 return NULL; 5197 5198 return bpf_object__open_mem(obj_buf, obj_buf_sz, &opts); 5199 } 5200 5201 int bpf_object__unload(struct bpf_object *obj) 5202 { 5203 size_t i; 5204 5205 if (!obj) 5206 return -EINVAL; 5207 5208 for (i = 0; i < obj->nr_maps; i++) { 5209 zclose(obj->maps[i].fd); 5210 if (obj->maps[i].st_ops) 5211 zfree(&obj->maps[i].st_ops->kern_vdata); 5212 } 5213 5214 for (i = 0; i < obj->nr_programs; i++) 5215 bpf_program__unload(&obj->programs[i]); 5216 5217 return 0; 5218 } 5219 5220 static int bpf_object__sanitize_maps(struct bpf_object *obj) 5221 { 5222 struct bpf_map *m; 5223 5224 bpf_object__for_each_map(m, obj) { 5225 if (!bpf_map__is_internal(m)) 5226 continue; 5227 if (!obj->caps.global_data) { 5228 pr_warn("kernel doesn't support global data\n"); 5229 return -ENOTSUP; 5230 } 5231 if (!obj->caps.array_mmap) 5232 m->def.map_flags ^= BPF_F_MMAPABLE; 5233 } 5234 5235 return 0; 5236 } 5237 5238 static int bpf_object__resolve_externs(struct bpf_object *obj, 5239 const char *extra_kconfig) 5240 { 5241 bool need_config = false; 5242 struct extern_desc *ext; 5243 int err, i; 5244 void *data; 5245 5246 if (obj->nr_extern == 0) 5247 return 0; 5248 5249 data = obj->maps[obj->kconfig_map_idx].mmaped; 5250 5251 for (i = 0; i < obj->nr_extern; i++) { 5252 ext = &obj->externs[i]; 5253 5254 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 5255 void *ext_val = data + ext->data_off; 5256 __u32 kver = get_kernel_version(); 5257 5258 if (!kver) { 5259 pr_warn("failed to get kernel version\n"); 5260 return -EINVAL; 5261 } 5262 err = set_ext_value_num(ext, ext_val, kver); 5263 if (err) 5264 return err; 5265 pr_debug("extern %s=0x%x\n", ext->name, kver); 5266 } else if (strncmp(ext->name, "CONFIG_", 7) == 0) { 5267 need_config = true; 5268 } else { 5269 pr_warn("unrecognized extern '%s'\n", ext->name); 5270 return -EINVAL; 5271 } 5272 } 5273 if (need_config && extra_kconfig) { 5274 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, data); 5275 if (err) 5276 return -EINVAL; 5277 need_config = false; 5278 for (i = 0; i < obj->nr_extern; i++) { 5279 ext = &obj->externs[i]; 5280 if (!ext->is_set) { 5281 need_config = true; 5282 break; 5283 } 5284 } 5285 } 5286 if (need_config) { 5287 err = bpf_object__read_kconfig_file(obj, data); 5288 if (err) 5289 return -EINVAL; 5290 } 5291 for (i = 0; i < obj->nr_extern; i++) { 5292 ext = &obj->externs[i]; 5293 5294 if (!ext->is_set && !ext->is_weak) { 5295 pr_warn("extern %s (strong) not resolved\n", ext->name); 5296 return -ESRCH; 5297 } else if (!ext->is_set) { 5298 pr_debug("extern %s (weak) not resolved, defaulting to zero\n", 5299 ext->name); 5300 } 5301 } 5302 5303 return 0; 5304 } 5305 5306 int bpf_object__load_xattr(struct bpf_object_load_attr *attr) 5307 { 5308 struct bpf_object *obj; 5309 int err, i; 5310 5311 if (!attr) 5312 return -EINVAL; 5313 obj = attr->obj; 5314 if (!obj) 5315 return -EINVAL; 5316 5317 if (obj->loaded) { 5318 pr_warn("object should not be loaded twice\n"); 5319 return -EINVAL; 5320 } 5321 5322 obj->loaded = true; 5323 5324 err = bpf_object__probe_caps(obj); 5325 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 5326 err = err ? : bpf_object__sanitize_and_load_btf(obj); 5327 err = err ? : bpf_object__sanitize_maps(obj); 5328 err = err ? : bpf_object__load_vmlinux_btf(obj); 5329 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 5330 err = err ? : bpf_object__create_maps(obj); 5331 err = err ? : bpf_object__relocate(obj, attr->target_btf_path); 5332 err = err ? : bpf_object__load_progs(obj, attr->log_level); 5333 5334 btf__free(obj->btf_vmlinux); 5335 obj->btf_vmlinux = NULL; 5336 5337 if (err) 5338 goto out; 5339 5340 return 0; 5341 out: 5342 /* unpin any maps that were auto-pinned during load */ 5343 for (i = 0; i < obj->nr_maps; i++) 5344 if (obj->maps[i].pinned && !obj->maps[i].reused) 5345 bpf_map__unpin(&obj->maps[i], NULL); 5346 5347 bpf_object__unload(obj); 5348 pr_warn("failed to load object '%s'\n", obj->path); 5349 return err; 5350 } 5351 5352 int bpf_object__load(struct bpf_object *obj) 5353 { 5354 struct bpf_object_load_attr attr = { 5355 .obj = obj, 5356 }; 5357 5358 return bpf_object__load_xattr(&attr); 5359 } 5360 5361 static int make_parent_dir(const char *path) 5362 { 5363 char *cp, errmsg[STRERR_BUFSIZE]; 5364 char *dname, *dir; 5365 int err = 0; 5366 5367 dname = strdup(path); 5368 if (dname == NULL) 5369 return -ENOMEM; 5370 5371 dir = dirname(dname); 5372 if (mkdir(dir, 0700) && errno != EEXIST) 5373 err = -errno; 5374 5375 free(dname); 5376 if (err) { 5377 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 5378 pr_warn("failed to mkdir %s: %s\n", path, cp); 5379 } 5380 return err; 5381 } 5382 5383 static int check_path(const char *path) 5384 { 5385 char *cp, errmsg[STRERR_BUFSIZE]; 5386 struct statfs st_fs; 5387 char *dname, *dir; 5388 int err = 0; 5389 5390 if (path == NULL) 5391 return -EINVAL; 5392 5393 dname = strdup(path); 5394 if (dname == NULL) 5395 return -ENOMEM; 5396 5397 dir = dirname(dname); 5398 if (statfs(dir, &st_fs)) { 5399 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 5400 pr_warn("failed to statfs %s: %s\n", dir, cp); 5401 err = -errno; 5402 } 5403 free(dname); 5404 5405 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 5406 pr_warn("specified path %s is not on BPF FS\n", path); 5407 err = -EINVAL; 5408 } 5409 5410 return err; 5411 } 5412 5413 int bpf_program__pin_instance(struct bpf_program *prog, const char *path, 5414 int instance) 5415 { 5416 char *cp, errmsg[STRERR_BUFSIZE]; 5417 int err; 5418 5419 err = make_parent_dir(path); 5420 if (err) 5421 return err; 5422 5423 err = check_path(path); 5424 if (err) 5425 return err; 5426 5427 if (prog == NULL) { 5428 pr_warn("invalid program pointer\n"); 5429 return -EINVAL; 5430 } 5431 5432 if (instance < 0 || instance >= prog->instances.nr) { 5433 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 5434 instance, prog->section_name, prog->instances.nr); 5435 return -EINVAL; 5436 } 5437 5438 if (bpf_obj_pin(prog->instances.fds[instance], path)) { 5439 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 5440 pr_warn("failed to pin program: %s\n", cp); 5441 return -errno; 5442 } 5443 pr_debug("pinned program '%s'\n", path); 5444 5445 return 0; 5446 } 5447 5448 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, 5449 int instance) 5450 { 5451 int err; 5452 5453 err = check_path(path); 5454 if (err) 5455 return err; 5456 5457 if (prog == NULL) { 5458 pr_warn("invalid program pointer\n"); 5459 return -EINVAL; 5460 } 5461 5462 if (instance < 0 || instance >= prog->instances.nr) { 5463 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 5464 instance, prog->section_name, prog->instances.nr); 5465 return -EINVAL; 5466 } 5467 5468 err = unlink(path); 5469 if (err != 0) 5470 return -errno; 5471 pr_debug("unpinned program '%s'\n", path); 5472 5473 return 0; 5474 } 5475 5476 int bpf_program__pin(struct bpf_program *prog, const char *path) 5477 { 5478 int i, err; 5479 5480 err = make_parent_dir(path); 5481 if (err) 5482 return err; 5483 5484 err = check_path(path); 5485 if (err) 5486 return err; 5487 5488 if (prog == NULL) { 5489 pr_warn("invalid program pointer\n"); 5490 return -EINVAL; 5491 } 5492 5493 if (prog->instances.nr <= 0) { 5494 pr_warn("no instances of prog %s to pin\n", 5495 prog->section_name); 5496 return -EINVAL; 5497 } 5498 5499 if (prog->instances.nr == 1) { 5500 /* don't create subdirs when pinning single instance */ 5501 return bpf_program__pin_instance(prog, path, 0); 5502 } 5503 5504 for (i = 0; i < prog->instances.nr; i++) { 5505 char buf[PATH_MAX]; 5506 int len; 5507 5508 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 5509 if (len < 0) { 5510 err = -EINVAL; 5511 goto err_unpin; 5512 } else if (len >= PATH_MAX) { 5513 err = -ENAMETOOLONG; 5514 goto err_unpin; 5515 } 5516 5517 err = bpf_program__pin_instance(prog, buf, i); 5518 if (err) 5519 goto err_unpin; 5520 } 5521 5522 return 0; 5523 5524 err_unpin: 5525 for (i = i - 1; i >= 0; i--) { 5526 char buf[PATH_MAX]; 5527 int len; 5528 5529 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 5530 if (len < 0) 5531 continue; 5532 else if (len >= PATH_MAX) 5533 continue; 5534 5535 bpf_program__unpin_instance(prog, buf, i); 5536 } 5537 5538 rmdir(path); 5539 5540 return err; 5541 } 5542 5543 int bpf_program__unpin(struct bpf_program *prog, const char *path) 5544 { 5545 int i, err; 5546 5547 err = check_path(path); 5548 if (err) 5549 return err; 5550 5551 if (prog == NULL) { 5552 pr_warn("invalid program pointer\n"); 5553 return -EINVAL; 5554 } 5555 5556 if (prog->instances.nr <= 0) { 5557 pr_warn("no instances of prog %s to pin\n", 5558 prog->section_name); 5559 return -EINVAL; 5560 } 5561 5562 if (prog->instances.nr == 1) { 5563 /* don't create subdirs when pinning single instance */ 5564 return bpf_program__unpin_instance(prog, path, 0); 5565 } 5566 5567 for (i = 0; i < prog->instances.nr; i++) { 5568 char buf[PATH_MAX]; 5569 int len; 5570 5571 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 5572 if (len < 0) 5573 return -EINVAL; 5574 else if (len >= PATH_MAX) 5575 return -ENAMETOOLONG; 5576 5577 err = bpf_program__unpin_instance(prog, buf, i); 5578 if (err) 5579 return err; 5580 } 5581 5582 err = rmdir(path); 5583 if (err) 5584 return -errno; 5585 5586 return 0; 5587 } 5588 5589 int bpf_map__pin(struct bpf_map *map, const char *path) 5590 { 5591 char *cp, errmsg[STRERR_BUFSIZE]; 5592 int err; 5593 5594 if (map == NULL) { 5595 pr_warn("invalid map pointer\n"); 5596 return -EINVAL; 5597 } 5598 5599 if (map->pin_path) { 5600 if (path && strcmp(path, map->pin_path)) { 5601 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 5602 bpf_map__name(map), map->pin_path, path); 5603 return -EINVAL; 5604 } else if (map->pinned) { 5605 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 5606 bpf_map__name(map), map->pin_path); 5607 return 0; 5608 } 5609 } else { 5610 if (!path) { 5611 pr_warn("missing a path to pin map '%s' at\n", 5612 bpf_map__name(map)); 5613 return -EINVAL; 5614 } else if (map->pinned) { 5615 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 5616 return -EEXIST; 5617 } 5618 5619 map->pin_path = strdup(path); 5620 if (!map->pin_path) { 5621 err = -errno; 5622 goto out_err; 5623 } 5624 } 5625 5626 err = make_parent_dir(map->pin_path); 5627 if (err) 5628 return err; 5629 5630 err = check_path(map->pin_path); 5631 if (err) 5632 return err; 5633 5634 if (bpf_obj_pin(map->fd, map->pin_path)) { 5635 err = -errno; 5636 goto out_err; 5637 } 5638 5639 map->pinned = true; 5640 pr_debug("pinned map '%s'\n", map->pin_path); 5641 5642 return 0; 5643 5644 out_err: 5645 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 5646 pr_warn("failed to pin map: %s\n", cp); 5647 return err; 5648 } 5649 5650 int bpf_map__unpin(struct bpf_map *map, const char *path) 5651 { 5652 int err; 5653 5654 if (map == NULL) { 5655 pr_warn("invalid map pointer\n"); 5656 return -EINVAL; 5657 } 5658 5659 if (map->pin_path) { 5660 if (path && strcmp(path, map->pin_path)) { 5661 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 5662 bpf_map__name(map), map->pin_path, path); 5663 return -EINVAL; 5664 } 5665 path = map->pin_path; 5666 } else if (!path) { 5667 pr_warn("no path to unpin map '%s' from\n", 5668 bpf_map__name(map)); 5669 return -EINVAL; 5670 } 5671 5672 err = check_path(path); 5673 if (err) 5674 return err; 5675 5676 err = unlink(path); 5677 if (err != 0) 5678 return -errno; 5679 5680 map->pinned = false; 5681 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 5682 5683 return 0; 5684 } 5685 5686 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 5687 { 5688 char *new = NULL; 5689 5690 if (path) { 5691 new = strdup(path); 5692 if (!new) 5693 return -errno; 5694 } 5695 5696 free(map->pin_path); 5697 map->pin_path = new; 5698 return 0; 5699 } 5700 5701 const char *bpf_map__get_pin_path(const struct bpf_map *map) 5702 { 5703 return map->pin_path; 5704 } 5705 5706 bool bpf_map__is_pinned(const struct bpf_map *map) 5707 { 5708 return map->pinned; 5709 } 5710 5711 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 5712 { 5713 struct bpf_map *map; 5714 int err; 5715 5716 if (!obj) 5717 return -ENOENT; 5718 5719 if (!obj->loaded) { 5720 pr_warn("object not yet loaded; load it first\n"); 5721 return -ENOENT; 5722 } 5723 5724 bpf_object__for_each_map(map, obj) { 5725 char *pin_path = NULL; 5726 char buf[PATH_MAX]; 5727 5728 if (path) { 5729 int len; 5730 5731 len = snprintf(buf, PATH_MAX, "%s/%s", path, 5732 bpf_map__name(map)); 5733 if (len < 0) { 5734 err = -EINVAL; 5735 goto err_unpin_maps; 5736 } else if (len >= PATH_MAX) { 5737 err = -ENAMETOOLONG; 5738 goto err_unpin_maps; 5739 } 5740 pin_path = buf; 5741 } else if (!map->pin_path) { 5742 continue; 5743 } 5744 5745 err = bpf_map__pin(map, pin_path); 5746 if (err) 5747 goto err_unpin_maps; 5748 } 5749 5750 return 0; 5751 5752 err_unpin_maps: 5753 while ((map = bpf_map__prev(map, obj))) { 5754 if (!map->pin_path) 5755 continue; 5756 5757 bpf_map__unpin(map, NULL); 5758 } 5759 5760 return err; 5761 } 5762 5763 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 5764 { 5765 struct bpf_map *map; 5766 int err; 5767 5768 if (!obj) 5769 return -ENOENT; 5770 5771 bpf_object__for_each_map(map, obj) { 5772 char *pin_path = NULL; 5773 char buf[PATH_MAX]; 5774 5775 if (path) { 5776 int len; 5777 5778 len = snprintf(buf, PATH_MAX, "%s/%s", path, 5779 bpf_map__name(map)); 5780 if (len < 0) 5781 return -EINVAL; 5782 else if (len >= PATH_MAX) 5783 return -ENAMETOOLONG; 5784 pin_path = buf; 5785 } else if (!map->pin_path) { 5786 continue; 5787 } 5788 5789 err = bpf_map__unpin(map, pin_path); 5790 if (err) 5791 return err; 5792 } 5793 5794 return 0; 5795 } 5796 5797 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 5798 { 5799 struct bpf_program *prog; 5800 int err; 5801 5802 if (!obj) 5803 return -ENOENT; 5804 5805 if (!obj->loaded) { 5806 pr_warn("object not yet loaded; load it first\n"); 5807 return -ENOENT; 5808 } 5809 5810 bpf_object__for_each_program(prog, obj) { 5811 char buf[PATH_MAX]; 5812 int len; 5813 5814 len = snprintf(buf, PATH_MAX, "%s/%s", path, 5815 prog->pin_name); 5816 if (len < 0) { 5817 err = -EINVAL; 5818 goto err_unpin_programs; 5819 } else if (len >= PATH_MAX) { 5820 err = -ENAMETOOLONG; 5821 goto err_unpin_programs; 5822 } 5823 5824 err = bpf_program__pin(prog, buf); 5825 if (err) 5826 goto err_unpin_programs; 5827 } 5828 5829 return 0; 5830 5831 err_unpin_programs: 5832 while ((prog = bpf_program__prev(prog, obj))) { 5833 char buf[PATH_MAX]; 5834 int len; 5835 5836 len = snprintf(buf, PATH_MAX, "%s/%s", path, 5837 prog->pin_name); 5838 if (len < 0) 5839 continue; 5840 else if (len >= PATH_MAX) 5841 continue; 5842 5843 bpf_program__unpin(prog, buf); 5844 } 5845 5846 return err; 5847 } 5848 5849 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 5850 { 5851 struct bpf_program *prog; 5852 int err; 5853 5854 if (!obj) 5855 return -ENOENT; 5856 5857 bpf_object__for_each_program(prog, obj) { 5858 char buf[PATH_MAX]; 5859 int len; 5860 5861 len = snprintf(buf, PATH_MAX, "%s/%s", path, 5862 prog->pin_name); 5863 if (len < 0) 5864 return -EINVAL; 5865 else if (len >= PATH_MAX) 5866 return -ENAMETOOLONG; 5867 5868 err = bpf_program__unpin(prog, buf); 5869 if (err) 5870 return err; 5871 } 5872 5873 return 0; 5874 } 5875 5876 int bpf_object__pin(struct bpf_object *obj, const char *path) 5877 { 5878 int err; 5879 5880 err = bpf_object__pin_maps(obj, path); 5881 if (err) 5882 return err; 5883 5884 err = bpf_object__pin_programs(obj, path); 5885 if (err) { 5886 bpf_object__unpin_maps(obj, path); 5887 return err; 5888 } 5889 5890 return 0; 5891 } 5892 5893 void bpf_object__close(struct bpf_object *obj) 5894 { 5895 size_t i; 5896 5897 if (!obj) 5898 return; 5899 5900 if (obj->clear_priv) 5901 obj->clear_priv(obj, obj->priv); 5902 5903 bpf_object__elf_finish(obj); 5904 bpf_object__unload(obj); 5905 btf__free(obj->btf); 5906 btf_ext__free(obj->btf_ext); 5907 5908 for (i = 0; i < obj->nr_maps; i++) { 5909 struct bpf_map *map = &obj->maps[i]; 5910 5911 if (map->clear_priv) 5912 map->clear_priv(map, map->priv); 5913 map->priv = NULL; 5914 map->clear_priv = NULL; 5915 5916 if (map->mmaped) { 5917 munmap(map->mmaped, bpf_map_mmap_sz(map)); 5918 map->mmaped = NULL; 5919 } 5920 5921 if (map->st_ops) { 5922 zfree(&map->st_ops->data); 5923 zfree(&map->st_ops->progs); 5924 zfree(&map->st_ops->kern_func_off); 5925 zfree(&map->st_ops); 5926 } 5927 5928 zfree(&map->name); 5929 zfree(&map->pin_path); 5930 } 5931 5932 zfree(&obj->kconfig); 5933 zfree(&obj->externs); 5934 obj->nr_extern = 0; 5935 5936 zfree(&obj->maps); 5937 obj->nr_maps = 0; 5938 5939 if (obj->programs && obj->nr_programs) { 5940 for (i = 0; i < obj->nr_programs; i++) 5941 bpf_program__exit(&obj->programs[i]); 5942 } 5943 zfree(&obj->programs); 5944 5945 list_del(&obj->list); 5946 free(obj); 5947 } 5948 5949 struct bpf_object * 5950 bpf_object__next(struct bpf_object *prev) 5951 { 5952 struct bpf_object *next; 5953 5954 if (!prev) 5955 next = list_first_entry(&bpf_objects_list, 5956 struct bpf_object, 5957 list); 5958 else 5959 next = list_next_entry(prev, list); 5960 5961 /* Empty list is noticed here so don't need checking on entry. */ 5962 if (&next->list == &bpf_objects_list) 5963 return NULL; 5964 5965 return next; 5966 } 5967 5968 const char *bpf_object__name(const struct bpf_object *obj) 5969 { 5970 return obj ? obj->name : ERR_PTR(-EINVAL); 5971 } 5972 5973 unsigned int bpf_object__kversion(const struct bpf_object *obj) 5974 { 5975 return obj ? obj->kern_version : 0; 5976 } 5977 5978 struct btf *bpf_object__btf(const struct bpf_object *obj) 5979 { 5980 return obj ? obj->btf : NULL; 5981 } 5982 5983 int bpf_object__btf_fd(const struct bpf_object *obj) 5984 { 5985 return obj->btf ? btf__fd(obj->btf) : -1; 5986 } 5987 5988 int bpf_object__set_priv(struct bpf_object *obj, void *priv, 5989 bpf_object_clear_priv_t clear_priv) 5990 { 5991 if (obj->priv && obj->clear_priv) 5992 obj->clear_priv(obj, obj->priv); 5993 5994 obj->priv = priv; 5995 obj->clear_priv = clear_priv; 5996 return 0; 5997 } 5998 5999 void *bpf_object__priv(const struct bpf_object *obj) 6000 { 6001 return obj ? obj->priv : ERR_PTR(-EINVAL); 6002 } 6003 6004 static struct bpf_program * 6005 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 6006 bool forward) 6007 { 6008 size_t nr_programs = obj->nr_programs; 6009 ssize_t idx; 6010 6011 if (!nr_programs) 6012 return NULL; 6013 6014 if (!p) 6015 /* Iter from the beginning */ 6016 return forward ? &obj->programs[0] : 6017 &obj->programs[nr_programs - 1]; 6018 6019 if (p->obj != obj) { 6020 pr_warn("error: program handler doesn't match object\n"); 6021 return NULL; 6022 } 6023 6024 idx = (p - obj->programs) + (forward ? 1 : -1); 6025 if (idx >= obj->nr_programs || idx < 0) 6026 return NULL; 6027 return &obj->programs[idx]; 6028 } 6029 6030 struct bpf_program * 6031 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj) 6032 { 6033 struct bpf_program *prog = prev; 6034 6035 do { 6036 prog = __bpf_program__iter(prog, obj, true); 6037 } while (prog && bpf_program__is_function_storage(prog, obj)); 6038 6039 return prog; 6040 } 6041 6042 struct bpf_program * 6043 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj) 6044 { 6045 struct bpf_program *prog = next; 6046 6047 do { 6048 prog = __bpf_program__iter(prog, obj, false); 6049 } while (prog && bpf_program__is_function_storage(prog, obj)); 6050 6051 return prog; 6052 } 6053 6054 int bpf_program__set_priv(struct bpf_program *prog, void *priv, 6055 bpf_program_clear_priv_t clear_priv) 6056 { 6057 if (prog->priv && prog->clear_priv) 6058 prog->clear_priv(prog, prog->priv); 6059 6060 prog->priv = priv; 6061 prog->clear_priv = clear_priv; 6062 return 0; 6063 } 6064 6065 void *bpf_program__priv(const struct bpf_program *prog) 6066 { 6067 return prog ? prog->priv : ERR_PTR(-EINVAL); 6068 } 6069 6070 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 6071 { 6072 prog->prog_ifindex = ifindex; 6073 } 6074 6075 const char *bpf_program__name(const struct bpf_program *prog) 6076 { 6077 return prog->name; 6078 } 6079 6080 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy) 6081 { 6082 const char *title; 6083 6084 title = prog->section_name; 6085 if (needs_copy) { 6086 title = strdup(title); 6087 if (!title) { 6088 pr_warn("failed to strdup program title\n"); 6089 return ERR_PTR(-ENOMEM); 6090 } 6091 } 6092 6093 return title; 6094 } 6095 6096 int bpf_program__fd(const struct bpf_program *prog) 6097 { 6098 return bpf_program__nth_fd(prog, 0); 6099 } 6100 6101 size_t bpf_program__size(const struct bpf_program *prog) 6102 { 6103 return prog->insns_cnt * sizeof(struct bpf_insn); 6104 } 6105 6106 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances, 6107 bpf_program_prep_t prep) 6108 { 6109 int *instances_fds; 6110 6111 if (nr_instances <= 0 || !prep) 6112 return -EINVAL; 6113 6114 if (prog->instances.nr > 0 || prog->instances.fds) { 6115 pr_warn("Can't set pre-processor after loading\n"); 6116 return -EINVAL; 6117 } 6118 6119 instances_fds = malloc(sizeof(int) * nr_instances); 6120 if (!instances_fds) { 6121 pr_warn("alloc memory failed for fds\n"); 6122 return -ENOMEM; 6123 } 6124 6125 /* fill all fd with -1 */ 6126 memset(instances_fds, -1, sizeof(int) * nr_instances); 6127 6128 prog->instances.nr = nr_instances; 6129 prog->instances.fds = instances_fds; 6130 prog->preprocessor = prep; 6131 return 0; 6132 } 6133 6134 int bpf_program__nth_fd(const struct bpf_program *prog, int n) 6135 { 6136 int fd; 6137 6138 if (!prog) 6139 return -EINVAL; 6140 6141 if (n >= prog->instances.nr || n < 0) { 6142 pr_warn("Can't get the %dth fd from program %s: only %d instances\n", 6143 n, prog->section_name, prog->instances.nr); 6144 return -EINVAL; 6145 } 6146 6147 fd = prog->instances.fds[n]; 6148 if (fd < 0) { 6149 pr_warn("%dth instance of program '%s' is invalid\n", 6150 n, prog->section_name); 6151 return -ENOENT; 6152 } 6153 6154 return fd; 6155 } 6156 6157 enum bpf_prog_type bpf_program__get_type(struct bpf_program *prog) 6158 { 6159 return prog->type; 6160 } 6161 6162 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 6163 { 6164 prog->type = type; 6165 } 6166 6167 static bool bpf_program__is_type(const struct bpf_program *prog, 6168 enum bpf_prog_type type) 6169 { 6170 return prog ? (prog->type == type) : false; 6171 } 6172 6173 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \ 6174 int bpf_program__set_##NAME(struct bpf_program *prog) \ 6175 { \ 6176 if (!prog) \ 6177 return -EINVAL; \ 6178 bpf_program__set_type(prog, TYPE); \ 6179 return 0; \ 6180 } \ 6181 \ 6182 bool bpf_program__is_##NAME(const struct bpf_program *prog) \ 6183 { \ 6184 return bpf_program__is_type(prog, TYPE); \ 6185 } \ 6186 6187 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER); 6188 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE); 6189 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS); 6190 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT); 6191 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT); 6192 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT); 6193 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP); 6194 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT); 6195 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING); 6196 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS); 6197 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT); 6198 6199 enum bpf_attach_type 6200 bpf_program__get_expected_attach_type(struct bpf_program *prog) 6201 { 6202 return prog->expected_attach_type; 6203 } 6204 6205 void bpf_program__set_expected_attach_type(struct bpf_program *prog, 6206 enum bpf_attach_type type) 6207 { 6208 prog->expected_attach_type = type; 6209 } 6210 6211 #define BPF_PROG_SEC_IMPL(string, ptype, eatype, is_attachable, btf, atype) \ 6212 { string, sizeof(string) - 1, ptype, eatype, is_attachable, btf, atype } 6213 6214 /* Programs that can NOT be attached. */ 6215 #define BPF_PROG_SEC(string, ptype) BPF_PROG_SEC_IMPL(string, ptype, 0, 0, 0, 0) 6216 6217 /* Programs that can be attached. */ 6218 #define BPF_APROG_SEC(string, ptype, atype) \ 6219 BPF_PROG_SEC_IMPL(string, ptype, 0, 1, 0, atype) 6220 6221 /* Programs that must specify expected attach type at load time. */ 6222 #define BPF_EAPROG_SEC(string, ptype, eatype) \ 6223 BPF_PROG_SEC_IMPL(string, ptype, eatype, 1, 0, eatype) 6224 6225 /* Programs that use BTF to identify attach point */ 6226 #define BPF_PROG_BTF(string, ptype, eatype) \ 6227 BPF_PROG_SEC_IMPL(string, ptype, eatype, 0, 1, 0) 6228 6229 /* Programs that can be attached but attach type can't be identified by section 6230 * name. Kept for backward compatibility. 6231 */ 6232 #define BPF_APROG_COMPAT(string, ptype) BPF_PROG_SEC(string, ptype) 6233 6234 #define SEC_DEF(sec_pfx, ptype, ...) { \ 6235 .sec = sec_pfx, \ 6236 .len = sizeof(sec_pfx) - 1, \ 6237 .prog_type = BPF_PROG_TYPE_##ptype, \ 6238 __VA_ARGS__ \ 6239 } 6240 6241 struct bpf_sec_def; 6242 6243 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_sec_def *sec, 6244 struct bpf_program *prog); 6245 6246 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 6247 struct bpf_program *prog); 6248 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 6249 struct bpf_program *prog); 6250 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 6251 struct bpf_program *prog); 6252 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 6253 struct bpf_program *prog); 6254 6255 struct bpf_sec_def { 6256 const char *sec; 6257 size_t len; 6258 enum bpf_prog_type prog_type; 6259 enum bpf_attach_type expected_attach_type; 6260 bool is_attachable; 6261 bool is_attach_btf; 6262 enum bpf_attach_type attach_type; 6263 attach_fn_t attach_fn; 6264 }; 6265 6266 static const struct bpf_sec_def section_defs[] = { 6267 BPF_PROG_SEC("socket", BPF_PROG_TYPE_SOCKET_FILTER), 6268 BPF_PROG_SEC("sk_reuseport", BPF_PROG_TYPE_SK_REUSEPORT), 6269 SEC_DEF("kprobe/", KPROBE, 6270 .attach_fn = attach_kprobe), 6271 BPF_PROG_SEC("uprobe/", BPF_PROG_TYPE_KPROBE), 6272 SEC_DEF("kretprobe/", KPROBE, 6273 .attach_fn = attach_kprobe), 6274 BPF_PROG_SEC("uretprobe/", BPF_PROG_TYPE_KPROBE), 6275 BPF_PROG_SEC("classifier", BPF_PROG_TYPE_SCHED_CLS), 6276 BPF_PROG_SEC("action", BPF_PROG_TYPE_SCHED_ACT), 6277 SEC_DEF("tracepoint/", TRACEPOINT, 6278 .attach_fn = attach_tp), 6279 SEC_DEF("tp/", TRACEPOINT, 6280 .attach_fn = attach_tp), 6281 SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT, 6282 .attach_fn = attach_raw_tp), 6283 SEC_DEF("raw_tp/", RAW_TRACEPOINT, 6284 .attach_fn = attach_raw_tp), 6285 SEC_DEF("tp_btf/", TRACING, 6286 .expected_attach_type = BPF_TRACE_RAW_TP, 6287 .is_attach_btf = true, 6288 .attach_fn = attach_trace), 6289 SEC_DEF("fentry/", TRACING, 6290 .expected_attach_type = BPF_TRACE_FENTRY, 6291 .is_attach_btf = true, 6292 .attach_fn = attach_trace), 6293 SEC_DEF("fexit/", TRACING, 6294 .expected_attach_type = BPF_TRACE_FEXIT, 6295 .is_attach_btf = true, 6296 .attach_fn = attach_trace), 6297 SEC_DEF("freplace/", EXT, 6298 .is_attach_btf = true, 6299 .attach_fn = attach_trace), 6300 BPF_PROG_SEC("xdp", BPF_PROG_TYPE_XDP), 6301 BPF_PROG_SEC("perf_event", BPF_PROG_TYPE_PERF_EVENT), 6302 BPF_PROG_SEC("lwt_in", BPF_PROG_TYPE_LWT_IN), 6303 BPF_PROG_SEC("lwt_out", BPF_PROG_TYPE_LWT_OUT), 6304 BPF_PROG_SEC("lwt_xmit", BPF_PROG_TYPE_LWT_XMIT), 6305 BPF_PROG_SEC("lwt_seg6local", BPF_PROG_TYPE_LWT_SEG6LOCAL), 6306 BPF_APROG_SEC("cgroup_skb/ingress", BPF_PROG_TYPE_CGROUP_SKB, 6307 BPF_CGROUP_INET_INGRESS), 6308 BPF_APROG_SEC("cgroup_skb/egress", BPF_PROG_TYPE_CGROUP_SKB, 6309 BPF_CGROUP_INET_EGRESS), 6310 BPF_APROG_COMPAT("cgroup/skb", BPF_PROG_TYPE_CGROUP_SKB), 6311 BPF_APROG_SEC("cgroup/sock", BPF_PROG_TYPE_CGROUP_SOCK, 6312 BPF_CGROUP_INET_SOCK_CREATE), 6313 BPF_EAPROG_SEC("cgroup/post_bind4", BPF_PROG_TYPE_CGROUP_SOCK, 6314 BPF_CGROUP_INET4_POST_BIND), 6315 BPF_EAPROG_SEC("cgroup/post_bind6", BPF_PROG_TYPE_CGROUP_SOCK, 6316 BPF_CGROUP_INET6_POST_BIND), 6317 BPF_APROG_SEC("cgroup/dev", BPF_PROG_TYPE_CGROUP_DEVICE, 6318 BPF_CGROUP_DEVICE), 6319 BPF_APROG_SEC("sockops", BPF_PROG_TYPE_SOCK_OPS, 6320 BPF_CGROUP_SOCK_OPS), 6321 BPF_APROG_SEC("sk_skb/stream_parser", BPF_PROG_TYPE_SK_SKB, 6322 BPF_SK_SKB_STREAM_PARSER), 6323 BPF_APROG_SEC("sk_skb/stream_verdict", BPF_PROG_TYPE_SK_SKB, 6324 BPF_SK_SKB_STREAM_VERDICT), 6325 BPF_APROG_COMPAT("sk_skb", BPF_PROG_TYPE_SK_SKB), 6326 BPF_APROG_SEC("sk_msg", BPF_PROG_TYPE_SK_MSG, 6327 BPF_SK_MSG_VERDICT), 6328 BPF_APROG_SEC("lirc_mode2", BPF_PROG_TYPE_LIRC_MODE2, 6329 BPF_LIRC_MODE2), 6330 BPF_APROG_SEC("flow_dissector", BPF_PROG_TYPE_FLOW_DISSECTOR, 6331 BPF_FLOW_DISSECTOR), 6332 BPF_EAPROG_SEC("cgroup/bind4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6333 BPF_CGROUP_INET4_BIND), 6334 BPF_EAPROG_SEC("cgroup/bind6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6335 BPF_CGROUP_INET6_BIND), 6336 BPF_EAPROG_SEC("cgroup/connect4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6337 BPF_CGROUP_INET4_CONNECT), 6338 BPF_EAPROG_SEC("cgroup/connect6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6339 BPF_CGROUP_INET6_CONNECT), 6340 BPF_EAPROG_SEC("cgroup/sendmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6341 BPF_CGROUP_UDP4_SENDMSG), 6342 BPF_EAPROG_SEC("cgroup/sendmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6343 BPF_CGROUP_UDP6_SENDMSG), 6344 BPF_EAPROG_SEC("cgroup/recvmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6345 BPF_CGROUP_UDP4_RECVMSG), 6346 BPF_EAPROG_SEC("cgroup/recvmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6347 BPF_CGROUP_UDP6_RECVMSG), 6348 BPF_EAPROG_SEC("cgroup/sysctl", BPF_PROG_TYPE_CGROUP_SYSCTL, 6349 BPF_CGROUP_SYSCTL), 6350 BPF_EAPROG_SEC("cgroup/getsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 6351 BPF_CGROUP_GETSOCKOPT), 6352 BPF_EAPROG_SEC("cgroup/setsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 6353 BPF_CGROUP_SETSOCKOPT), 6354 BPF_PROG_SEC("struct_ops", BPF_PROG_TYPE_STRUCT_OPS), 6355 }; 6356 6357 #undef BPF_PROG_SEC_IMPL 6358 #undef BPF_PROG_SEC 6359 #undef BPF_APROG_SEC 6360 #undef BPF_EAPROG_SEC 6361 #undef BPF_APROG_COMPAT 6362 #undef SEC_DEF 6363 6364 #define MAX_TYPE_NAME_SIZE 32 6365 6366 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 6367 { 6368 int i, n = ARRAY_SIZE(section_defs); 6369 6370 for (i = 0; i < n; i++) { 6371 if (strncmp(sec_name, 6372 section_defs[i].sec, section_defs[i].len)) 6373 continue; 6374 return §ion_defs[i]; 6375 } 6376 return NULL; 6377 } 6378 6379 static char *libbpf_get_type_names(bool attach_type) 6380 { 6381 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 6382 char *buf; 6383 6384 buf = malloc(len); 6385 if (!buf) 6386 return NULL; 6387 6388 buf[0] = '\0'; 6389 /* Forge string buf with all available names */ 6390 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 6391 if (attach_type && !section_defs[i].is_attachable) 6392 continue; 6393 6394 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 6395 free(buf); 6396 return NULL; 6397 } 6398 strcat(buf, " "); 6399 strcat(buf, section_defs[i].sec); 6400 } 6401 6402 return buf; 6403 } 6404 6405 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 6406 enum bpf_attach_type *expected_attach_type) 6407 { 6408 const struct bpf_sec_def *sec_def; 6409 char *type_names; 6410 6411 if (!name) 6412 return -EINVAL; 6413 6414 sec_def = find_sec_def(name); 6415 if (sec_def) { 6416 *prog_type = sec_def->prog_type; 6417 *expected_attach_type = sec_def->expected_attach_type; 6418 return 0; 6419 } 6420 6421 pr_debug("failed to guess program type from ELF section '%s'\n", name); 6422 type_names = libbpf_get_type_names(false); 6423 if (type_names != NULL) { 6424 pr_debug("supported section(type) names are:%s\n", type_names); 6425 free(type_names); 6426 } 6427 6428 return -ESRCH; 6429 } 6430 6431 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 6432 size_t offset) 6433 { 6434 struct bpf_map *map; 6435 size_t i; 6436 6437 for (i = 0; i < obj->nr_maps; i++) { 6438 map = &obj->maps[i]; 6439 if (!bpf_map__is_struct_ops(map)) 6440 continue; 6441 if (map->sec_offset <= offset && 6442 offset - map->sec_offset < map->def.value_size) 6443 return map; 6444 } 6445 6446 return NULL; 6447 } 6448 6449 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 6450 static int bpf_object__collect_struct_ops_map_reloc(struct bpf_object *obj, 6451 GElf_Shdr *shdr, 6452 Elf_Data *data) 6453 { 6454 const struct btf_member *member; 6455 struct bpf_struct_ops *st_ops; 6456 struct bpf_program *prog; 6457 unsigned int shdr_idx; 6458 const struct btf *btf; 6459 struct bpf_map *map; 6460 Elf_Data *symbols; 6461 unsigned int moff; 6462 const char *name; 6463 __u32 member_idx; 6464 GElf_Sym sym; 6465 GElf_Rel rel; 6466 int i, nrels; 6467 6468 symbols = obj->efile.symbols; 6469 btf = obj->btf; 6470 nrels = shdr->sh_size / shdr->sh_entsize; 6471 for (i = 0; i < nrels; i++) { 6472 if (!gelf_getrel(data, i, &rel)) { 6473 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 6474 return -LIBBPF_ERRNO__FORMAT; 6475 } 6476 6477 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 6478 pr_warn("struct_ops reloc: symbol %zx not found\n", 6479 (size_t)GELF_R_SYM(rel.r_info)); 6480 return -LIBBPF_ERRNO__FORMAT; 6481 } 6482 6483 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, 6484 sym.st_name) ? : "<?>"; 6485 map = find_struct_ops_map_by_offset(obj, rel.r_offset); 6486 if (!map) { 6487 pr_warn("struct_ops reloc: cannot find map at rel.r_offset %zu\n", 6488 (size_t)rel.r_offset); 6489 return -EINVAL; 6490 } 6491 6492 moff = rel.r_offset - map->sec_offset; 6493 shdr_idx = sym.st_shndx; 6494 st_ops = map->st_ops; 6495 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel.r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 6496 map->name, 6497 (long long)(rel.r_info >> 32), 6498 (long long)sym.st_value, 6499 shdr_idx, (size_t)rel.r_offset, 6500 map->sec_offset, sym.st_name, name); 6501 6502 if (shdr_idx >= SHN_LORESERVE) { 6503 pr_warn("struct_ops reloc %s: rel.r_offset %zu shdr_idx %u unsupported non-static function\n", 6504 map->name, (size_t)rel.r_offset, shdr_idx); 6505 return -LIBBPF_ERRNO__RELOC; 6506 } 6507 6508 member = find_member_by_offset(st_ops->type, moff * 8); 6509 if (!member) { 6510 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 6511 map->name, moff); 6512 return -EINVAL; 6513 } 6514 member_idx = member - btf_members(st_ops->type); 6515 name = btf__name_by_offset(btf, member->name_off); 6516 6517 if (!resolve_func_ptr(btf, member->type, NULL)) { 6518 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 6519 map->name, name); 6520 return -EINVAL; 6521 } 6522 6523 prog = bpf_object__find_prog_by_idx(obj, shdr_idx); 6524 if (!prog) { 6525 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 6526 map->name, shdr_idx, name); 6527 return -EINVAL; 6528 } 6529 6530 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6531 const struct bpf_sec_def *sec_def; 6532 6533 sec_def = find_sec_def(prog->section_name); 6534 if (sec_def && 6535 sec_def->prog_type != BPF_PROG_TYPE_STRUCT_OPS) { 6536 /* for pr_warn */ 6537 prog->type = sec_def->prog_type; 6538 goto invalid_prog; 6539 } 6540 6541 prog->type = BPF_PROG_TYPE_STRUCT_OPS; 6542 prog->attach_btf_id = st_ops->type_id; 6543 prog->expected_attach_type = member_idx; 6544 } else if (prog->type != BPF_PROG_TYPE_STRUCT_OPS || 6545 prog->attach_btf_id != st_ops->type_id || 6546 prog->expected_attach_type != member_idx) { 6547 goto invalid_prog; 6548 } 6549 st_ops->progs[member_idx] = prog; 6550 } 6551 6552 return 0; 6553 6554 invalid_prog: 6555 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 6556 map->name, prog->name, prog->section_name, prog->type, 6557 prog->attach_btf_id, prog->expected_attach_type, name); 6558 return -EINVAL; 6559 } 6560 6561 #define BTF_TRACE_PREFIX "btf_trace_" 6562 #define BTF_MAX_NAME_SIZE 128 6563 6564 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 6565 const char *name, __u32 kind) 6566 { 6567 char btf_type_name[BTF_MAX_NAME_SIZE]; 6568 int ret; 6569 6570 ret = snprintf(btf_type_name, sizeof(btf_type_name), 6571 "%s%s", prefix, name); 6572 /* snprintf returns the number of characters written excluding the 6573 * the terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 6574 * indicates truncation. 6575 */ 6576 if (ret < 0 || ret >= sizeof(btf_type_name)) 6577 return -ENAMETOOLONG; 6578 return btf__find_by_name_kind(btf, btf_type_name, kind); 6579 } 6580 6581 static inline int __find_vmlinux_btf_id(struct btf *btf, const char *name, 6582 enum bpf_attach_type attach_type) 6583 { 6584 int err; 6585 6586 if (attach_type == BPF_TRACE_RAW_TP) 6587 err = find_btf_by_prefix_kind(btf, BTF_TRACE_PREFIX, name, 6588 BTF_KIND_TYPEDEF); 6589 else 6590 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 6591 6592 return err; 6593 } 6594 6595 int libbpf_find_vmlinux_btf_id(const char *name, 6596 enum bpf_attach_type attach_type) 6597 { 6598 struct btf *btf; 6599 6600 btf = libbpf_find_kernel_btf(); 6601 if (IS_ERR(btf)) { 6602 pr_warn("vmlinux BTF is not found\n"); 6603 return -EINVAL; 6604 } 6605 6606 return __find_vmlinux_btf_id(btf, name, attach_type); 6607 } 6608 6609 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 6610 { 6611 struct bpf_prog_info_linear *info_linear; 6612 struct bpf_prog_info *info; 6613 struct btf *btf = NULL; 6614 int err = -EINVAL; 6615 6616 info_linear = bpf_program__get_prog_info_linear(attach_prog_fd, 0); 6617 if (IS_ERR_OR_NULL(info_linear)) { 6618 pr_warn("failed get_prog_info_linear for FD %d\n", 6619 attach_prog_fd); 6620 return -EINVAL; 6621 } 6622 info = &info_linear->info; 6623 if (!info->btf_id) { 6624 pr_warn("The target program doesn't have BTF\n"); 6625 goto out; 6626 } 6627 if (btf__get_from_id(info->btf_id, &btf)) { 6628 pr_warn("Failed to get BTF of the program\n"); 6629 goto out; 6630 } 6631 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 6632 btf__free(btf); 6633 if (err <= 0) { 6634 pr_warn("%s is not found in prog's BTF\n", name); 6635 goto out; 6636 } 6637 out: 6638 free(info_linear); 6639 return err; 6640 } 6641 6642 static int libbpf_find_attach_btf_id(struct bpf_program *prog) 6643 { 6644 enum bpf_attach_type attach_type = prog->expected_attach_type; 6645 __u32 attach_prog_fd = prog->attach_prog_fd; 6646 const char *name = prog->section_name; 6647 int i, err; 6648 6649 if (!name) 6650 return -EINVAL; 6651 6652 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 6653 if (!section_defs[i].is_attach_btf) 6654 continue; 6655 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 6656 continue; 6657 if (attach_prog_fd) 6658 err = libbpf_find_prog_btf_id(name + section_defs[i].len, 6659 attach_prog_fd); 6660 else 6661 err = __find_vmlinux_btf_id(prog->obj->btf_vmlinux, 6662 name + section_defs[i].len, 6663 attach_type); 6664 if (err <= 0) 6665 pr_warn("%s is not found in vmlinux BTF\n", name); 6666 return err; 6667 } 6668 pr_warn("failed to identify btf_id based on ELF section name '%s'\n", name); 6669 return -ESRCH; 6670 } 6671 6672 int libbpf_attach_type_by_name(const char *name, 6673 enum bpf_attach_type *attach_type) 6674 { 6675 char *type_names; 6676 int i; 6677 6678 if (!name) 6679 return -EINVAL; 6680 6681 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 6682 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 6683 continue; 6684 if (!section_defs[i].is_attachable) 6685 return -EINVAL; 6686 *attach_type = section_defs[i].attach_type; 6687 return 0; 6688 } 6689 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 6690 type_names = libbpf_get_type_names(true); 6691 if (type_names != NULL) { 6692 pr_debug("attachable section(type) names are:%s\n", type_names); 6693 free(type_names); 6694 } 6695 6696 return -EINVAL; 6697 } 6698 6699 int bpf_map__fd(const struct bpf_map *map) 6700 { 6701 return map ? map->fd : -EINVAL; 6702 } 6703 6704 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map) 6705 { 6706 return map ? &map->def : ERR_PTR(-EINVAL); 6707 } 6708 6709 const char *bpf_map__name(const struct bpf_map *map) 6710 { 6711 return map ? map->name : NULL; 6712 } 6713 6714 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 6715 { 6716 return map ? map->btf_key_type_id : 0; 6717 } 6718 6719 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 6720 { 6721 return map ? map->btf_value_type_id : 0; 6722 } 6723 6724 int bpf_map__set_priv(struct bpf_map *map, void *priv, 6725 bpf_map_clear_priv_t clear_priv) 6726 { 6727 if (!map) 6728 return -EINVAL; 6729 6730 if (map->priv) { 6731 if (map->clear_priv) 6732 map->clear_priv(map, map->priv); 6733 } 6734 6735 map->priv = priv; 6736 map->clear_priv = clear_priv; 6737 return 0; 6738 } 6739 6740 void *bpf_map__priv(const struct bpf_map *map) 6741 { 6742 return map ? map->priv : ERR_PTR(-EINVAL); 6743 } 6744 6745 bool bpf_map__is_offload_neutral(const struct bpf_map *map) 6746 { 6747 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 6748 } 6749 6750 bool bpf_map__is_internal(const struct bpf_map *map) 6751 { 6752 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 6753 } 6754 6755 void bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 6756 { 6757 map->map_ifindex = ifindex; 6758 } 6759 6760 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 6761 { 6762 if (!bpf_map_type__is_map_in_map(map->def.type)) { 6763 pr_warn("error: unsupported map type\n"); 6764 return -EINVAL; 6765 } 6766 if (map->inner_map_fd != -1) { 6767 pr_warn("error: inner_map_fd already specified\n"); 6768 return -EINVAL; 6769 } 6770 map->inner_map_fd = fd; 6771 return 0; 6772 } 6773 6774 static struct bpf_map * 6775 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 6776 { 6777 ssize_t idx; 6778 struct bpf_map *s, *e; 6779 6780 if (!obj || !obj->maps) 6781 return NULL; 6782 6783 s = obj->maps; 6784 e = obj->maps + obj->nr_maps; 6785 6786 if ((m < s) || (m >= e)) { 6787 pr_warn("error in %s: map handler doesn't belong to object\n", 6788 __func__); 6789 return NULL; 6790 } 6791 6792 idx = (m - obj->maps) + i; 6793 if (idx >= obj->nr_maps || idx < 0) 6794 return NULL; 6795 return &obj->maps[idx]; 6796 } 6797 6798 struct bpf_map * 6799 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj) 6800 { 6801 if (prev == NULL) 6802 return obj->maps; 6803 6804 return __bpf_map__iter(prev, obj, 1); 6805 } 6806 6807 struct bpf_map * 6808 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj) 6809 { 6810 if (next == NULL) { 6811 if (!obj->nr_maps) 6812 return NULL; 6813 return obj->maps + obj->nr_maps - 1; 6814 } 6815 6816 return __bpf_map__iter(next, obj, -1); 6817 } 6818 6819 struct bpf_map * 6820 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 6821 { 6822 struct bpf_map *pos; 6823 6824 bpf_object__for_each_map(pos, obj) { 6825 if (pos->name && !strcmp(pos->name, name)) 6826 return pos; 6827 } 6828 return NULL; 6829 } 6830 6831 int 6832 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 6833 { 6834 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 6835 } 6836 6837 struct bpf_map * 6838 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset) 6839 { 6840 return ERR_PTR(-ENOTSUP); 6841 } 6842 6843 long libbpf_get_error(const void *ptr) 6844 { 6845 return PTR_ERR_OR_ZERO(ptr); 6846 } 6847 6848 int bpf_prog_load(const char *file, enum bpf_prog_type type, 6849 struct bpf_object **pobj, int *prog_fd) 6850 { 6851 struct bpf_prog_load_attr attr; 6852 6853 memset(&attr, 0, sizeof(struct bpf_prog_load_attr)); 6854 attr.file = file; 6855 attr.prog_type = type; 6856 attr.expected_attach_type = 0; 6857 6858 return bpf_prog_load_xattr(&attr, pobj, prog_fd); 6859 } 6860 6861 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr, 6862 struct bpf_object **pobj, int *prog_fd) 6863 { 6864 struct bpf_object_open_attr open_attr = {}; 6865 struct bpf_program *prog, *first_prog = NULL; 6866 struct bpf_object *obj; 6867 struct bpf_map *map; 6868 int err; 6869 6870 if (!attr) 6871 return -EINVAL; 6872 if (!attr->file) 6873 return -EINVAL; 6874 6875 open_attr.file = attr->file; 6876 open_attr.prog_type = attr->prog_type; 6877 6878 obj = bpf_object__open_xattr(&open_attr); 6879 if (IS_ERR_OR_NULL(obj)) 6880 return -ENOENT; 6881 6882 bpf_object__for_each_program(prog, obj) { 6883 enum bpf_attach_type attach_type = attr->expected_attach_type; 6884 /* 6885 * to preserve backwards compatibility, bpf_prog_load treats 6886 * attr->prog_type, if specified, as an override to whatever 6887 * bpf_object__open guessed 6888 */ 6889 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) { 6890 bpf_program__set_type(prog, attr->prog_type); 6891 bpf_program__set_expected_attach_type(prog, 6892 attach_type); 6893 } 6894 if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) { 6895 /* 6896 * we haven't guessed from section name and user 6897 * didn't provide a fallback type, too bad... 6898 */ 6899 bpf_object__close(obj); 6900 return -EINVAL; 6901 } 6902 6903 prog->prog_ifindex = attr->ifindex; 6904 prog->log_level = attr->log_level; 6905 prog->prog_flags = attr->prog_flags; 6906 if (!first_prog) 6907 first_prog = prog; 6908 } 6909 6910 bpf_object__for_each_map(map, obj) { 6911 if (!bpf_map__is_offload_neutral(map)) 6912 map->map_ifindex = attr->ifindex; 6913 } 6914 6915 if (!first_prog) { 6916 pr_warn("object file doesn't contain bpf program\n"); 6917 bpf_object__close(obj); 6918 return -ENOENT; 6919 } 6920 6921 err = bpf_object__load(obj); 6922 if (err) { 6923 bpf_object__close(obj); 6924 return -EINVAL; 6925 } 6926 6927 *pobj = obj; 6928 *prog_fd = bpf_program__fd(first_prog); 6929 return 0; 6930 } 6931 6932 struct bpf_link { 6933 int (*detach)(struct bpf_link *link); 6934 int (*destroy)(struct bpf_link *link); 6935 bool disconnected; 6936 }; 6937 6938 /* Release "ownership" of underlying BPF resource (typically, BPF program 6939 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 6940 * link, when destructed through bpf_link__destroy() call won't attempt to 6941 * detach/unregisted that BPF resource. This is useful in situations where, 6942 * say, attached BPF program has to outlive userspace program that attached it 6943 * in the system. Depending on type of BPF program, though, there might be 6944 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 6945 * exit of userspace program doesn't trigger automatic detachment and clean up 6946 * inside the kernel. 6947 */ 6948 void bpf_link__disconnect(struct bpf_link *link) 6949 { 6950 link->disconnected = true; 6951 } 6952 6953 int bpf_link__destroy(struct bpf_link *link) 6954 { 6955 int err = 0; 6956 6957 if (!link) 6958 return 0; 6959 6960 if (!link->disconnected && link->detach) 6961 err = link->detach(link); 6962 if (link->destroy) 6963 link->destroy(link); 6964 free(link); 6965 6966 return err; 6967 } 6968 6969 struct bpf_link_fd { 6970 struct bpf_link link; /* has to be at the top of struct */ 6971 int fd; /* hook FD */ 6972 }; 6973 6974 static int bpf_link__detach_perf_event(struct bpf_link *link) 6975 { 6976 struct bpf_link_fd *l = (void *)link; 6977 int err; 6978 6979 err = ioctl(l->fd, PERF_EVENT_IOC_DISABLE, 0); 6980 if (err) 6981 err = -errno; 6982 6983 close(l->fd); 6984 return err; 6985 } 6986 6987 struct bpf_link *bpf_program__attach_perf_event(struct bpf_program *prog, 6988 int pfd) 6989 { 6990 char errmsg[STRERR_BUFSIZE]; 6991 struct bpf_link_fd *link; 6992 int prog_fd, err; 6993 6994 if (pfd < 0) { 6995 pr_warn("program '%s': invalid perf event FD %d\n", 6996 bpf_program__title(prog, false), pfd); 6997 return ERR_PTR(-EINVAL); 6998 } 6999 prog_fd = bpf_program__fd(prog); 7000 if (prog_fd < 0) { 7001 pr_warn("program '%s': can't attach BPF program w/o FD (did you load it?)\n", 7002 bpf_program__title(prog, false)); 7003 return ERR_PTR(-EINVAL); 7004 } 7005 7006 link = calloc(1, sizeof(*link)); 7007 if (!link) 7008 return ERR_PTR(-ENOMEM); 7009 link->link.detach = &bpf_link__detach_perf_event; 7010 link->fd = pfd; 7011 7012 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 7013 err = -errno; 7014 free(link); 7015 pr_warn("program '%s': failed to attach to pfd %d: %s\n", 7016 bpf_program__title(prog, false), pfd, 7017 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 7018 return ERR_PTR(err); 7019 } 7020 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 7021 err = -errno; 7022 free(link); 7023 pr_warn("program '%s': failed to enable pfd %d: %s\n", 7024 bpf_program__title(prog, false), pfd, 7025 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 7026 return ERR_PTR(err); 7027 } 7028 return (struct bpf_link *)link; 7029 } 7030 7031 /* 7032 * this function is expected to parse integer in the range of [0, 2^31-1] from 7033 * given file using scanf format string fmt. If actual parsed value is 7034 * negative, the result might be indistinguishable from error 7035 */ 7036 static int parse_uint_from_file(const char *file, const char *fmt) 7037 { 7038 char buf[STRERR_BUFSIZE]; 7039 int err, ret; 7040 FILE *f; 7041 7042 f = fopen(file, "r"); 7043 if (!f) { 7044 err = -errno; 7045 pr_debug("failed to open '%s': %s\n", file, 7046 libbpf_strerror_r(err, buf, sizeof(buf))); 7047 return err; 7048 } 7049 err = fscanf(f, fmt, &ret); 7050 if (err != 1) { 7051 err = err == EOF ? -EIO : -errno; 7052 pr_debug("failed to parse '%s': %s\n", file, 7053 libbpf_strerror_r(err, buf, sizeof(buf))); 7054 fclose(f); 7055 return err; 7056 } 7057 fclose(f); 7058 return ret; 7059 } 7060 7061 static int determine_kprobe_perf_type(void) 7062 { 7063 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 7064 7065 return parse_uint_from_file(file, "%d\n"); 7066 } 7067 7068 static int determine_uprobe_perf_type(void) 7069 { 7070 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 7071 7072 return parse_uint_from_file(file, "%d\n"); 7073 } 7074 7075 static int determine_kprobe_retprobe_bit(void) 7076 { 7077 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 7078 7079 return parse_uint_from_file(file, "config:%d\n"); 7080 } 7081 7082 static int determine_uprobe_retprobe_bit(void) 7083 { 7084 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 7085 7086 return parse_uint_from_file(file, "config:%d\n"); 7087 } 7088 7089 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 7090 uint64_t offset, int pid) 7091 { 7092 struct perf_event_attr attr = {}; 7093 char errmsg[STRERR_BUFSIZE]; 7094 int type, pfd, err; 7095 7096 type = uprobe ? determine_uprobe_perf_type() 7097 : determine_kprobe_perf_type(); 7098 if (type < 0) { 7099 pr_warn("failed to determine %s perf type: %s\n", 7100 uprobe ? "uprobe" : "kprobe", 7101 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 7102 return type; 7103 } 7104 if (retprobe) { 7105 int bit = uprobe ? determine_uprobe_retprobe_bit() 7106 : determine_kprobe_retprobe_bit(); 7107 7108 if (bit < 0) { 7109 pr_warn("failed to determine %s retprobe bit: %s\n", 7110 uprobe ? "uprobe" : "kprobe", 7111 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 7112 return bit; 7113 } 7114 attr.config |= 1 << bit; 7115 } 7116 attr.size = sizeof(attr); 7117 attr.type = type; 7118 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 7119 attr.config2 = offset; /* kprobe_addr or probe_offset */ 7120 7121 /* pid filter is meaningful only for uprobes */ 7122 pfd = syscall(__NR_perf_event_open, &attr, 7123 pid < 0 ? -1 : pid /* pid */, 7124 pid == -1 ? 0 : -1 /* cpu */, 7125 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 7126 if (pfd < 0) { 7127 err = -errno; 7128 pr_warn("%s perf_event_open() failed: %s\n", 7129 uprobe ? "uprobe" : "kprobe", 7130 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 7131 return err; 7132 } 7133 return pfd; 7134 } 7135 7136 struct bpf_link *bpf_program__attach_kprobe(struct bpf_program *prog, 7137 bool retprobe, 7138 const char *func_name) 7139 { 7140 char errmsg[STRERR_BUFSIZE]; 7141 struct bpf_link *link; 7142 int pfd, err; 7143 7144 pfd = perf_event_open_probe(false /* uprobe */, retprobe, func_name, 7145 0 /* offset */, -1 /* pid */); 7146 if (pfd < 0) { 7147 pr_warn("program '%s': failed to create %s '%s' perf event: %s\n", 7148 bpf_program__title(prog, false), 7149 retprobe ? "kretprobe" : "kprobe", func_name, 7150 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 7151 return ERR_PTR(pfd); 7152 } 7153 link = bpf_program__attach_perf_event(prog, pfd); 7154 if (IS_ERR(link)) { 7155 close(pfd); 7156 err = PTR_ERR(link); 7157 pr_warn("program '%s': failed to attach to %s '%s': %s\n", 7158 bpf_program__title(prog, false), 7159 retprobe ? "kretprobe" : "kprobe", func_name, 7160 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 7161 return link; 7162 } 7163 return link; 7164 } 7165 7166 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 7167 struct bpf_program *prog) 7168 { 7169 const char *func_name; 7170 bool retprobe; 7171 7172 func_name = bpf_program__title(prog, false) + sec->len; 7173 retprobe = strcmp(sec->sec, "kretprobe/") == 0; 7174 7175 return bpf_program__attach_kprobe(prog, retprobe, func_name); 7176 } 7177 7178 struct bpf_link *bpf_program__attach_uprobe(struct bpf_program *prog, 7179 bool retprobe, pid_t pid, 7180 const char *binary_path, 7181 size_t func_offset) 7182 { 7183 char errmsg[STRERR_BUFSIZE]; 7184 struct bpf_link *link; 7185 int pfd, err; 7186 7187 pfd = perf_event_open_probe(true /* uprobe */, retprobe, 7188 binary_path, func_offset, pid); 7189 if (pfd < 0) { 7190 pr_warn("program '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 7191 bpf_program__title(prog, false), 7192 retprobe ? "uretprobe" : "uprobe", 7193 binary_path, func_offset, 7194 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 7195 return ERR_PTR(pfd); 7196 } 7197 link = bpf_program__attach_perf_event(prog, pfd); 7198 if (IS_ERR(link)) { 7199 close(pfd); 7200 err = PTR_ERR(link); 7201 pr_warn("program '%s': failed to attach to %s '%s:0x%zx': %s\n", 7202 bpf_program__title(prog, false), 7203 retprobe ? "uretprobe" : "uprobe", 7204 binary_path, func_offset, 7205 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 7206 return link; 7207 } 7208 return link; 7209 } 7210 7211 static int determine_tracepoint_id(const char *tp_category, 7212 const char *tp_name) 7213 { 7214 char file[PATH_MAX]; 7215 int ret; 7216 7217 ret = snprintf(file, sizeof(file), 7218 "/sys/kernel/debug/tracing/events/%s/%s/id", 7219 tp_category, tp_name); 7220 if (ret < 0) 7221 return -errno; 7222 if (ret >= sizeof(file)) { 7223 pr_debug("tracepoint %s/%s path is too long\n", 7224 tp_category, tp_name); 7225 return -E2BIG; 7226 } 7227 return parse_uint_from_file(file, "%d\n"); 7228 } 7229 7230 static int perf_event_open_tracepoint(const char *tp_category, 7231 const char *tp_name) 7232 { 7233 struct perf_event_attr attr = {}; 7234 char errmsg[STRERR_BUFSIZE]; 7235 int tp_id, pfd, err; 7236 7237 tp_id = determine_tracepoint_id(tp_category, tp_name); 7238 if (tp_id < 0) { 7239 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 7240 tp_category, tp_name, 7241 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 7242 return tp_id; 7243 } 7244 7245 attr.type = PERF_TYPE_TRACEPOINT; 7246 attr.size = sizeof(attr); 7247 attr.config = tp_id; 7248 7249 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 7250 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 7251 if (pfd < 0) { 7252 err = -errno; 7253 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 7254 tp_category, tp_name, 7255 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 7256 return err; 7257 } 7258 return pfd; 7259 } 7260 7261 struct bpf_link *bpf_program__attach_tracepoint(struct bpf_program *prog, 7262 const char *tp_category, 7263 const char *tp_name) 7264 { 7265 char errmsg[STRERR_BUFSIZE]; 7266 struct bpf_link *link; 7267 int pfd, err; 7268 7269 pfd = perf_event_open_tracepoint(tp_category, tp_name); 7270 if (pfd < 0) { 7271 pr_warn("program '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 7272 bpf_program__title(prog, false), 7273 tp_category, tp_name, 7274 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 7275 return ERR_PTR(pfd); 7276 } 7277 link = bpf_program__attach_perf_event(prog, pfd); 7278 if (IS_ERR(link)) { 7279 close(pfd); 7280 err = PTR_ERR(link); 7281 pr_warn("program '%s': failed to attach to tracepoint '%s/%s': %s\n", 7282 bpf_program__title(prog, false), 7283 tp_category, tp_name, 7284 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 7285 return link; 7286 } 7287 return link; 7288 } 7289 7290 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 7291 struct bpf_program *prog) 7292 { 7293 char *sec_name, *tp_cat, *tp_name; 7294 struct bpf_link *link; 7295 7296 sec_name = strdup(bpf_program__title(prog, false)); 7297 if (!sec_name) 7298 return ERR_PTR(-ENOMEM); 7299 7300 /* extract "tp/<category>/<name>" */ 7301 tp_cat = sec_name + sec->len; 7302 tp_name = strchr(tp_cat, '/'); 7303 if (!tp_name) { 7304 link = ERR_PTR(-EINVAL); 7305 goto out; 7306 } 7307 *tp_name = '\0'; 7308 tp_name++; 7309 7310 link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 7311 out: 7312 free(sec_name); 7313 return link; 7314 } 7315 7316 static int bpf_link__detach_fd(struct bpf_link *link) 7317 { 7318 struct bpf_link_fd *l = (void *)link; 7319 7320 return close(l->fd); 7321 } 7322 7323 struct bpf_link *bpf_program__attach_raw_tracepoint(struct bpf_program *prog, 7324 const char *tp_name) 7325 { 7326 char errmsg[STRERR_BUFSIZE]; 7327 struct bpf_link_fd *link; 7328 int prog_fd, pfd; 7329 7330 prog_fd = bpf_program__fd(prog); 7331 if (prog_fd < 0) { 7332 pr_warn("program '%s': can't attach before loaded\n", 7333 bpf_program__title(prog, false)); 7334 return ERR_PTR(-EINVAL); 7335 } 7336 7337 link = calloc(1, sizeof(*link)); 7338 if (!link) 7339 return ERR_PTR(-ENOMEM); 7340 link->link.detach = &bpf_link__detach_fd; 7341 7342 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 7343 if (pfd < 0) { 7344 pfd = -errno; 7345 free(link); 7346 pr_warn("program '%s': failed to attach to raw tracepoint '%s': %s\n", 7347 bpf_program__title(prog, false), tp_name, 7348 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 7349 return ERR_PTR(pfd); 7350 } 7351 link->fd = pfd; 7352 return (struct bpf_link *)link; 7353 } 7354 7355 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 7356 struct bpf_program *prog) 7357 { 7358 const char *tp_name = bpf_program__title(prog, false) + sec->len; 7359 7360 return bpf_program__attach_raw_tracepoint(prog, tp_name); 7361 } 7362 7363 struct bpf_link *bpf_program__attach_trace(struct bpf_program *prog) 7364 { 7365 char errmsg[STRERR_BUFSIZE]; 7366 struct bpf_link_fd *link; 7367 int prog_fd, pfd; 7368 7369 prog_fd = bpf_program__fd(prog); 7370 if (prog_fd < 0) { 7371 pr_warn("program '%s': can't attach before loaded\n", 7372 bpf_program__title(prog, false)); 7373 return ERR_PTR(-EINVAL); 7374 } 7375 7376 link = calloc(1, sizeof(*link)); 7377 if (!link) 7378 return ERR_PTR(-ENOMEM); 7379 link->link.detach = &bpf_link__detach_fd; 7380 7381 pfd = bpf_raw_tracepoint_open(NULL, prog_fd); 7382 if (pfd < 0) { 7383 pfd = -errno; 7384 free(link); 7385 pr_warn("program '%s': failed to attach to trace: %s\n", 7386 bpf_program__title(prog, false), 7387 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 7388 return ERR_PTR(pfd); 7389 } 7390 link->fd = pfd; 7391 return (struct bpf_link *)link; 7392 } 7393 7394 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 7395 struct bpf_program *prog) 7396 { 7397 return bpf_program__attach_trace(prog); 7398 } 7399 7400 struct bpf_link *bpf_program__attach(struct bpf_program *prog) 7401 { 7402 const struct bpf_sec_def *sec_def; 7403 7404 sec_def = find_sec_def(bpf_program__title(prog, false)); 7405 if (!sec_def || !sec_def->attach_fn) 7406 return ERR_PTR(-ESRCH); 7407 7408 return sec_def->attach_fn(sec_def, prog); 7409 } 7410 7411 static int bpf_link__detach_struct_ops(struct bpf_link *link) 7412 { 7413 struct bpf_link_fd *l = (void *)link; 7414 __u32 zero = 0; 7415 7416 if (bpf_map_delete_elem(l->fd, &zero)) 7417 return -errno; 7418 7419 return 0; 7420 } 7421 7422 struct bpf_link *bpf_map__attach_struct_ops(struct bpf_map *map) 7423 { 7424 struct bpf_struct_ops *st_ops; 7425 struct bpf_link_fd *link; 7426 __u32 i, zero = 0; 7427 int err; 7428 7429 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 7430 return ERR_PTR(-EINVAL); 7431 7432 link = calloc(1, sizeof(*link)); 7433 if (!link) 7434 return ERR_PTR(-EINVAL); 7435 7436 st_ops = map->st_ops; 7437 for (i = 0; i < btf_vlen(st_ops->type); i++) { 7438 struct bpf_program *prog = st_ops->progs[i]; 7439 void *kern_data; 7440 int prog_fd; 7441 7442 if (!prog) 7443 continue; 7444 7445 prog_fd = bpf_program__fd(prog); 7446 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 7447 *(unsigned long *)kern_data = prog_fd; 7448 } 7449 7450 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 7451 if (err) { 7452 err = -errno; 7453 free(link); 7454 return ERR_PTR(err); 7455 } 7456 7457 link->link.detach = bpf_link__detach_struct_ops; 7458 link->fd = map->fd; 7459 7460 return (struct bpf_link *)link; 7461 } 7462 7463 enum bpf_perf_event_ret 7464 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 7465 void **copy_mem, size_t *copy_size, 7466 bpf_perf_event_print_t fn, void *private_data) 7467 { 7468 struct perf_event_mmap_page *header = mmap_mem; 7469 __u64 data_head = ring_buffer_read_head(header); 7470 __u64 data_tail = header->data_tail; 7471 void *base = ((__u8 *)header) + page_size; 7472 int ret = LIBBPF_PERF_EVENT_CONT; 7473 struct perf_event_header *ehdr; 7474 size_t ehdr_size; 7475 7476 while (data_head != data_tail) { 7477 ehdr = base + (data_tail & (mmap_size - 1)); 7478 ehdr_size = ehdr->size; 7479 7480 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 7481 void *copy_start = ehdr; 7482 size_t len_first = base + mmap_size - copy_start; 7483 size_t len_secnd = ehdr_size - len_first; 7484 7485 if (*copy_size < ehdr_size) { 7486 free(*copy_mem); 7487 *copy_mem = malloc(ehdr_size); 7488 if (!*copy_mem) { 7489 *copy_size = 0; 7490 ret = LIBBPF_PERF_EVENT_ERROR; 7491 break; 7492 } 7493 *copy_size = ehdr_size; 7494 } 7495 7496 memcpy(*copy_mem, copy_start, len_first); 7497 memcpy(*copy_mem + len_first, base, len_secnd); 7498 ehdr = *copy_mem; 7499 } 7500 7501 ret = fn(ehdr, private_data); 7502 data_tail += ehdr_size; 7503 if (ret != LIBBPF_PERF_EVENT_CONT) 7504 break; 7505 } 7506 7507 ring_buffer_write_tail(header, data_tail); 7508 return ret; 7509 } 7510 7511 struct perf_buffer; 7512 7513 struct perf_buffer_params { 7514 struct perf_event_attr *attr; 7515 /* if event_cb is specified, it takes precendence */ 7516 perf_buffer_event_fn event_cb; 7517 /* sample_cb and lost_cb are higher-level common-case callbacks */ 7518 perf_buffer_sample_fn sample_cb; 7519 perf_buffer_lost_fn lost_cb; 7520 void *ctx; 7521 int cpu_cnt; 7522 int *cpus; 7523 int *map_keys; 7524 }; 7525 7526 struct perf_cpu_buf { 7527 struct perf_buffer *pb; 7528 void *base; /* mmap()'ed memory */ 7529 void *buf; /* for reconstructing segmented data */ 7530 size_t buf_size; 7531 int fd; 7532 int cpu; 7533 int map_key; 7534 }; 7535 7536 struct perf_buffer { 7537 perf_buffer_event_fn event_cb; 7538 perf_buffer_sample_fn sample_cb; 7539 perf_buffer_lost_fn lost_cb; 7540 void *ctx; /* passed into callbacks */ 7541 7542 size_t page_size; 7543 size_t mmap_size; 7544 struct perf_cpu_buf **cpu_bufs; 7545 struct epoll_event *events; 7546 int cpu_cnt; /* number of allocated CPU buffers */ 7547 int epoll_fd; /* perf event FD */ 7548 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 7549 }; 7550 7551 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 7552 struct perf_cpu_buf *cpu_buf) 7553 { 7554 if (!cpu_buf) 7555 return; 7556 if (cpu_buf->base && 7557 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 7558 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 7559 if (cpu_buf->fd >= 0) { 7560 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 7561 close(cpu_buf->fd); 7562 } 7563 free(cpu_buf->buf); 7564 free(cpu_buf); 7565 } 7566 7567 void perf_buffer__free(struct perf_buffer *pb) 7568 { 7569 int i; 7570 7571 if (!pb) 7572 return; 7573 if (pb->cpu_bufs) { 7574 for (i = 0; i < pb->cpu_cnt && pb->cpu_bufs[i]; i++) { 7575 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 7576 7577 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 7578 perf_buffer__free_cpu_buf(pb, cpu_buf); 7579 } 7580 free(pb->cpu_bufs); 7581 } 7582 if (pb->epoll_fd >= 0) 7583 close(pb->epoll_fd); 7584 free(pb->events); 7585 free(pb); 7586 } 7587 7588 static struct perf_cpu_buf * 7589 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 7590 int cpu, int map_key) 7591 { 7592 struct perf_cpu_buf *cpu_buf; 7593 char msg[STRERR_BUFSIZE]; 7594 int err; 7595 7596 cpu_buf = calloc(1, sizeof(*cpu_buf)); 7597 if (!cpu_buf) 7598 return ERR_PTR(-ENOMEM); 7599 7600 cpu_buf->pb = pb; 7601 cpu_buf->cpu = cpu; 7602 cpu_buf->map_key = map_key; 7603 7604 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 7605 -1, PERF_FLAG_FD_CLOEXEC); 7606 if (cpu_buf->fd < 0) { 7607 err = -errno; 7608 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 7609 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 7610 goto error; 7611 } 7612 7613 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 7614 PROT_READ | PROT_WRITE, MAP_SHARED, 7615 cpu_buf->fd, 0); 7616 if (cpu_buf->base == MAP_FAILED) { 7617 cpu_buf->base = NULL; 7618 err = -errno; 7619 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 7620 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 7621 goto error; 7622 } 7623 7624 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 7625 err = -errno; 7626 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 7627 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 7628 goto error; 7629 } 7630 7631 return cpu_buf; 7632 7633 error: 7634 perf_buffer__free_cpu_buf(pb, cpu_buf); 7635 return (struct perf_cpu_buf *)ERR_PTR(err); 7636 } 7637 7638 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 7639 struct perf_buffer_params *p); 7640 7641 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 7642 const struct perf_buffer_opts *opts) 7643 { 7644 struct perf_buffer_params p = {}; 7645 struct perf_event_attr attr = { 0, }; 7646 7647 attr.config = PERF_COUNT_SW_BPF_OUTPUT, 7648 attr.type = PERF_TYPE_SOFTWARE; 7649 attr.sample_type = PERF_SAMPLE_RAW; 7650 attr.sample_period = 1; 7651 attr.wakeup_events = 1; 7652 7653 p.attr = &attr; 7654 p.sample_cb = opts ? opts->sample_cb : NULL; 7655 p.lost_cb = opts ? opts->lost_cb : NULL; 7656 p.ctx = opts ? opts->ctx : NULL; 7657 7658 return __perf_buffer__new(map_fd, page_cnt, &p); 7659 } 7660 7661 struct perf_buffer * 7662 perf_buffer__new_raw(int map_fd, size_t page_cnt, 7663 const struct perf_buffer_raw_opts *opts) 7664 { 7665 struct perf_buffer_params p = {}; 7666 7667 p.attr = opts->attr; 7668 p.event_cb = opts->event_cb; 7669 p.ctx = opts->ctx; 7670 p.cpu_cnt = opts->cpu_cnt; 7671 p.cpus = opts->cpus; 7672 p.map_keys = opts->map_keys; 7673 7674 return __perf_buffer__new(map_fd, page_cnt, &p); 7675 } 7676 7677 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 7678 struct perf_buffer_params *p) 7679 { 7680 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 7681 struct bpf_map_info map = {}; 7682 char msg[STRERR_BUFSIZE]; 7683 struct perf_buffer *pb; 7684 bool *online = NULL; 7685 __u32 map_info_len; 7686 int err, i, j, n; 7687 7688 if (page_cnt & (page_cnt - 1)) { 7689 pr_warn("page count should be power of two, but is %zu\n", 7690 page_cnt); 7691 return ERR_PTR(-EINVAL); 7692 } 7693 7694 map_info_len = sizeof(map); 7695 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 7696 if (err) { 7697 err = -errno; 7698 pr_warn("failed to get map info for map FD %d: %s\n", 7699 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 7700 return ERR_PTR(err); 7701 } 7702 7703 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 7704 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 7705 map.name); 7706 return ERR_PTR(-EINVAL); 7707 } 7708 7709 pb = calloc(1, sizeof(*pb)); 7710 if (!pb) 7711 return ERR_PTR(-ENOMEM); 7712 7713 pb->event_cb = p->event_cb; 7714 pb->sample_cb = p->sample_cb; 7715 pb->lost_cb = p->lost_cb; 7716 pb->ctx = p->ctx; 7717 7718 pb->page_size = getpagesize(); 7719 pb->mmap_size = pb->page_size * page_cnt; 7720 pb->map_fd = map_fd; 7721 7722 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 7723 if (pb->epoll_fd < 0) { 7724 err = -errno; 7725 pr_warn("failed to create epoll instance: %s\n", 7726 libbpf_strerror_r(err, msg, sizeof(msg))); 7727 goto error; 7728 } 7729 7730 if (p->cpu_cnt > 0) { 7731 pb->cpu_cnt = p->cpu_cnt; 7732 } else { 7733 pb->cpu_cnt = libbpf_num_possible_cpus(); 7734 if (pb->cpu_cnt < 0) { 7735 err = pb->cpu_cnt; 7736 goto error; 7737 } 7738 if (map.max_entries < pb->cpu_cnt) 7739 pb->cpu_cnt = map.max_entries; 7740 } 7741 7742 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 7743 if (!pb->events) { 7744 err = -ENOMEM; 7745 pr_warn("failed to allocate events: out of memory\n"); 7746 goto error; 7747 } 7748 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 7749 if (!pb->cpu_bufs) { 7750 err = -ENOMEM; 7751 pr_warn("failed to allocate buffers: out of memory\n"); 7752 goto error; 7753 } 7754 7755 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 7756 if (err) { 7757 pr_warn("failed to get online CPU mask: %d\n", err); 7758 goto error; 7759 } 7760 7761 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 7762 struct perf_cpu_buf *cpu_buf; 7763 int cpu, map_key; 7764 7765 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 7766 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 7767 7768 /* in case user didn't explicitly requested particular CPUs to 7769 * be attached to, skip offline/not present CPUs 7770 */ 7771 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 7772 continue; 7773 7774 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 7775 if (IS_ERR(cpu_buf)) { 7776 err = PTR_ERR(cpu_buf); 7777 goto error; 7778 } 7779 7780 pb->cpu_bufs[j] = cpu_buf; 7781 7782 err = bpf_map_update_elem(pb->map_fd, &map_key, 7783 &cpu_buf->fd, 0); 7784 if (err) { 7785 err = -errno; 7786 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 7787 cpu, map_key, cpu_buf->fd, 7788 libbpf_strerror_r(err, msg, sizeof(msg))); 7789 goto error; 7790 } 7791 7792 pb->events[j].events = EPOLLIN; 7793 pb->events[j].data.ptr = cpu_buf; 7794 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 7795 &pb->events[j]) < 0) { 7796 err = -errno; 7797 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 7798 cpu, cpu_buf->fd, 7799 libbpf_strerror_r(err, msg, sizeof(msg))); 7800 goto error; 7801 } 7802 j++; 7803 } 7804 pb->cpu_cnt = j; 7805 free(online); 7806 7807 return pb; 7808 7809 error: 7810 free(online); 7811 if (pb) 7812 perf_buffer__free(pb); 7813 return ERR_PTR(err); 7814 } 7815 7816 struct perf_sample_raw { 7817 struct perf_event_header header; 7818 uint32_t size; 7819 char data[0]; 7820 }; 7821 7822 struct perf_sample_lost { 7823 struct perf_event_header header; 7824 uint64_t id; 7825 uint64_t lost; 7826 uint64_t sample_id; 7827 }; 7828 7829 static enum bpf_perf_event_ret 7830 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 7831 { 7832 struct perf_cpu_buf *cpu_buf = ctx; 7833 struct perf_buffer *pb = cpu_buf->pb; 7834 void *data = e; 7835 7836 /* user wants full control over parsing perf event */ 7837 if (pb->event_cb) 7838 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 7839 7840 switch (e->type) { 7841 case PERF_RECORD_SAMPLE: { 7842 struct perf_sample_raw *s = data; 7843 7844 if (pb->sample_cb) 7845 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 7846 break; 7847 } 7848 case PERF_RECORD_LOST: { 7849 struct perf_sample_lost *s = data; 7850 7851 if (pb->lost_cb) 7852 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 7853 break; 7854 } 7855 default: 7856 pr_warn("unknown perf sample type %d\n", e->type); 7857 return LIBBPF_PERF_EVENT_ERROR; 7858 } 7859 return LIBBPF_PERF_EVENT_CONT; 7860 } 7861 7862 static int perf_buffer__process_records(struct perf_buffer *pb, 7863 struct perf_cpu_buf *cpu_buf) 7864 { 7865 enum bpf_perf_event_ret ret; 7866 7867 ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size, 7868 pb->page_size, &cpu_buf->buf, 7869 &cpu_buf->buf_size, 7870 perf_buffer__process_record, cpu_buf); 7871 if (ret != LIBBPF_PERF_EVENT_CONT) 7872 return ret; 7873 return 0; 7874 } 7875 7876 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 7877 { 7878 int i, cnt, err; 7879 7880 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 7881 for (i = 0; i < cnt; i++) { 7882 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 7883 7884 err = perf_buffer__process_records(pb, cpu_buf); 7885 if (err) { 7886 pr_warn("error while processing records: %d\n", err); 7887 return err; 7888 } 7889 } 7890 return cnt < 0 ? -errno : cnt; 7891 } 7892 7893 struct bpf_prog_info_array_desc { 7894 int array_offset; /* e.g. offset of jited_prog_insns */ 7895 int count_offset; /* e.g. offset of jited_prog_len */ 7896 int size_offset; /* > 0: offset of rec size, 7897 * < 0: fix size of -size_offset 7898 */ 7899 }; 7900 7901 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = { 7902 [BPF_PROG_INFO_JITED_INSNS] = { 7903 offsetof(struct bpf_prog_info, jited_prog_insns), 7904 offsetof(struct bpf_prog_info, jited_prog_len), 7905 -1, 7906 }, 7907 [BPF_PROG_INFO_XLATED_INSNS] = { 7908 offsetof(struct bpf_prog_info, xlated_prog_insns), 7909 offsetof(struct bpf_prog_info, xlated_prog_len), 7910 -1, 7911 }, 7912 [BPF_PROG_INFO_MAP_IDS] = { 7913 offsetof(struct bpf_prog_info, map_ids), 7914 offsetof(struct bpf_prog_info, nr_map_ids), 7915 -(int)sizeof(__u32), 7916 }, 7917 [BPF_PROG_INFO_JITED_KSYMS] = { 7918 offsetof(struct bpf_prog_info, jited_ksyms), 7919 offsetof(struct bpf_prog_info, nr_jited_ksyms), 7920 -(int)sizeof(__u64), 7921 }, 7922 [BPF_PROG_INFO_JITED_FUNC_LENS] = { 7923 offsetof(struct bpf_prog_info, jited_func_lens), 7924 offsetof(struct bpf_prog_info, nr_jited_func_lens), 7925 -(int)sizeof(__u32), 7926 }, 7927 [BPF_PROG_INFO_FUNC_INFO] = { 7928 offsetof(struct bpf_prog_info, func_info), 7929 offsetof(struct bpf_prog_info, nr_func_info), 7930 offsetof(struct bpf_prog_info, func_info_rec_size), 7931 }, 7932 [BPF_PROG_INFO_LINE_INFO] = { 7933 offsetof(struct bpf_prog_info, line_info), 7934 offsetof(struct bpf_prog_info, nr_line_info), 7935 offsetof(struct bpf_prog_info, line_info_rec_size), 7936 }, 7937 [BPF_PROG_INFO_JITED_LINE_INFO] = { 7938 offsetof(struct bpf_prog_info, jited_line_info), 7939 offsetof(struct bpf_prog_info, nr_jited_line_info), 7940 offsetof(struct bpf_prog_info, jited_line_info_rec_size), 7941 }, 7942 [BPF_PROG_INFO_PROG_TAGS] = { 7943 offsetof(struct bpf_prog_info, prog_tags), 7944 offsetof(struct bpf_prog_info, nr_prog_tags), 7945 -(int)sizeof(__u8) * BPF_TAG_SIZE, 7946 }, 7947 7948 }; 7949 7950 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info, 7951 int offset) 7952 { 7953 __u32 *array = (__u32 *)info; 7954 7955 if (offset >= 0) 7956 return array[offset / sizeof(__u32)]; 7957 return -(int)offset; 7958 } 7959 7960 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info, 7961 int offset) 7962 { 7963 __u64 *array = (__u64 *)info; 7964 7965 if (offset >= 0) 7966 return array[offset / sizeof(__u64)]; 7967 return -(int)offset; 7968 } 7969 7970 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset, 7971 __u32 val) 7972 { 7973 __u32 *array = (__u32 *)info; 7974 7975 if (offset >= 0) 7976 array[offset / sizeof(__u32)] = val; 7977 } 7978 7979 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset, 7980 __u64 val) 7981 { 7982 __u64 *array = (__u64 *)info; 7983 7984 if (offset >= 0) 7985 array[offset / sizeof(__u64)] = val; 7986 } 7987 7988 struct bpf_prog_info_linear * 7989 bpf_program__get_prog_info_linear(int fd, __u64 arrays) 7990 { 7991 struct bpf_prog_info_linear *info_linear; 7992 struct bpf_prog_info info = {}; 7993 __u32 info_len = sizeof(info); 7994 __u32 data_len = 0; 7995 int i, err; 7996 void *ptr; 7997 7998 if (arrays >> BPF_PROG_INFO_LAST_ARRAY) 7999 return ERR_PTR(-EINVAL); 8000 8001 /* step 1: get array dimensions */ 8002 err = bpf_obj_get_info_by_fd(fd, &info, &info_len); 8003 if (err) { 8004 pr_debug("can't get prog info: %s", strerror(errno)); 8005 return ERR_PTR(-EFAULT); 8006 } 8007 8008 /* step 2: calculate total size of all arrays */ 8009 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 8010 bool include_array = (arrays & (1UL << i)) > 0; 8011 struct bpf_prog_info_array_desc *desc; 8012 __u32 count, size; 8013 8014 desc = bpf_prog_info_array_desc + i; 8015 8016 /* kernel is too old to support this field */ 8017 if (info_len < desc->array_offset + sizeof(__u32) || 8018 info_len < desc->count_offset + sizeof(__u32) || 8019 (desc->size_offset > 0 && info_len < desc->size_offset)) 8020 include_array = false; 8021 8022 if (!include_array) { 8023 arrays &= ~(1UL << i); /* clear the bit */ 8024 continue; 8025 } 8026 8027 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 8028 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 8029 8030 data_len += count * size; 8031 } 8032 8033 /* step 3: allocate continuous memory */ 8034 data_len = roundup(data_len, sizeof(__u64)); 8035 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len); 8036 if (!info_linear) 8037 return ERR_PTR(-ENOMEM); 8038 8039 /* step 4: fill data to info_linear->info */ 8040 info_linear->arrays = arrays; 8041 memset(&info_linear->info, 0, sizeof(info)); 8042 ptr = info_linear->data; 8043 8044 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 8045 struct bpf_prog_info_array_desc *desc; 8046 __u32 count, size; 8047 8048 if ((arrays & (1UL << i)) == 0) 8049 continue; 8050 8051 desc = bpf_prog_info_array_desc + i; 8052 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 8053 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 8054 bpf_prog_info_set_offset_u32(&info_linear->info, 8055 desc->count_offset, count); 8056 bpf_prog_info_set_offset_u32(&info_linear->info, 8057 desc->size_offset, size); 8058 bpf_prog_info_set_offset_u64(&info_linear->info, 8059 desc->array_offset, 8060 ptr_to_u64(ptr)); 8061 ptr += count * size; 8062 } 8063 8064 /* step 5: call syscall again to get required arrays */ 8065 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len); 8066 if (err) { 8067 pr_debug("can't get prog info: %s", strerror(errno)); 8068 free(info_linear); 8069 return ERR_PTR(-EFAULT); 8070 } 8071 8072 /* step 6: verify the data */ 8073 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 8074 struct bpf_prog_info_array_desc *desc; 8075 __u32 v1, v2; 8076 8077 if ((arrays & (1UL << i)) == 0) 8078 continue; 8079 8080 desc = bpf_prog_info_array_desc + i; 8081 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 8082 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 8083 desc->count_offset); 8084 if (v1 != v2) 8085 pr_warn("%s: mismatch in element count\n", __func__); 8086 8087 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 8088 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 8089 desc->size_offset); 8090 if (v1 != v2) 8091 pr_warn("%s: mismatch in rec size\n", __func__); 8092 } 8093 8094 /* step 7: update info_len and data_len */ 8095 info_linear->info_len = sizeof(struct bpf_prog_info); 8096 info_linear->data_len = data_len; 8097 8098 return info_linear; 8099 } 8100 8101 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear) 8102 { 8103 int i; 8104 8105 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 8106 struct bpf_prog_info_array_desc *desc; 8107 __u64 addr, offs; 8108 8109 if ((info_linear->arrays & (1UL << i)) == 0) 8110 continue; 8111 8112 desc = bpf_prog_info_array_desc + i; 8113 addr = bpf_prog_info_read_offset_u64(&info_linear->info, 8114 desc->array_offset); 8115 offs = addr - ptr_to_u64(info_linear->data); 8116 bpf_prog_info_set_offset_u64(&info_linear->info, 8117 desc->array_offset, offs); 8118 } 8119 } 8120 8121 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear) 8122 { 8123 int i; 8124 8125 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 8126 struct bpf_prog_info_array_desc *desc; 8127 __u64 addr, offs; 8128 8129 if ((info_linear->arrays & (1UL << i)) == 0) 8130 continue; 8131 8132 desc = bpf_prog_info_array_desc + i; 8133 offs = bpf_prog_info_read_offset_u64(&info_linear->info, 8134 desc->array_offset); 8135 addr = offs + ptr_to_u64(info_linear->data); 8136 bpf_prog_info_set_offset_u64(&info_linear->info, 8137 desc->array_offset, addr); 8138 } 8139 } 8140 8141 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 8142 { 8143 int err = 0, n, len, start, end = -1; 8144 bool *tmp; 8145 8146 *mask = NULL; 8147 *mask_sz = 0; 8148 8149 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 8150 while (*s) { 8151 if (*s == ',' || *s == '\n') { 8152 s++; 8153 continue; 8154 } 8155 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 8156 if (n <= 0 || n > 2) { 8157 pr_warn("Failed to get CPU range %s: %d\n", s, n); 8158 err = -EINVAL; 8159 goto cleanup; 8160 } else if (n == 1) { 8161 end = start; 8162 } 8163 if (start < 0 || start > end) { 8164 pr_warn("Invalid CPU range [%d,%d] in %s\n", 8165 start, end, s); 8166 err = -EINVAL; 8167 goto cleanup; 8168 } 8169 tmp = realloc(*mask, end + 1); 8170 if (!tmp) { 8171 err = -ENOMEM; 8172 goto cleanup; 8173 } 8174 *mask = tmp; 8175 memset(tmp + *mask_sz, 0, start - *mask_sz); 8176 memset(tmp + start, 1, end - start + 1); 8177 *mask_sz = end + 1; 8178 s += len; 8179 } 8180 if (!*mask_sz) { 8181 pr_warn("Empty CPU range\n"); 8182 return -EINVAL; 8183 } 8184 return 0; 8185 cleanup: 8186 free(*mask); 8187 *mask = NULL; 8188 return err; 8189 } 8190 8191 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 8192 { 8193 int fd, err = 0, len; 8194 char buf[128]; 8195 8196 fd = open(fcpu, O_RDONLY); 8197 if (fd < 0) { 8198 err = -errno; 8199 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 8200 return err; 8201 } 8202 len = read(fd, buf, sizeof(buf)); 8203 close(fd); 8204 if (len <= 0) { 8205 err = len ? -errno : -EINVAL; 8206 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 8207 return err; 8208 } 8209 if (len >= sizeof(buf)) { 8210 pr_warn("CPU mask is too big in file %s\n", fcpu); 8211 return -E2BIG; 8212 } 8213 buf[len] = '\0'; 8214 8215 return parse_cpu_mask_str(buf, mask, mask_sz); 8216 } 8217 8218 int libbpf_num_possible_cpus(void) 8219 { 8220 static const char *fcpu = "/sys/devices/system/cpu/possible"; 8221 static int cpus; 8222 int err, n, i, tmp_cpus; 8223 bool *mask; 8224 8225 tmp_cpus = READ_ONCE(cpus); 8226 if (tmp_cpus > 0) 8227 return tmp_cpus; 8228 8229 err = parse_cpu_mask_file(fcpu, &mask, &n); 8230 if (err) 8231 return err; 8232 8233 tmp_cpus = 0; 8234 for (i = 0; i < n; i++) { 8235 if (mask[i]) 8236 tmp_cpus++; 8237 } 8238 free(mask); 8239 8240 WRITE_ONCE(cpus, tmp_cpus); 8241 return tmp_cpus; 8242 } 8243 8244 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 8245 const struct bpf_object_open_opts *opts) 8246 { 8247 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 8248 .object_name = s->name, 8249 ); 8250 struct bpf_object *obj; 8251 int i; 8252 8253 /* Attempt to preserve opts->object_name, unless overriden by user 8254 * explicitly. Overwriting object name for skeletons is discouraged, 8255 * as it breaks global data maps, because they contain object name 8256 * prefix as their own map name prefix. When skeleton is generated, 8257 * bpftool is making an assumption that this name will stay the same. 8258 */ 8259 if (opts) { 8260 memcpy(&skel_opts, opts, sizeof(*opts)); 8261 if (!opts->object_name) 8262 skel_opts.object_name = s->name; 8263 } 8264 8265 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 8266 if (IS_ERR(obj)) { 8267 pr_warn("failed to initialize skeleton BPF object '%s': %ld\n", 8268 s->name, PTR_ERR(obj)); 8269 return PTR_ERR(obj); 8270 } 8271 8272 *s->obj = obj; 8273 8274 for (i = 0; i < s->map_cnt; i++) { 8275 struct bpf_map **map = s->maps[i].map; 8276 const char *name = s->maps[i].name; 8277 void **mmaped = s->maps[i].mmaped; 8278 8279 *map = bpf_object__find_map_by_name(obj, name); 8280 if (!*map) { 8281 pr_warn("failed to find skeleton map '%s'\n", name); 8282 return -ESRCH; 8283 } 8284 8285 /* externs shouldn't be pre-setup from user code */ 8286 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 8287 *mmaped = (*map)->mmaped; 8288 } 8289 8290 for (i = 0; i < s->prog_cnt; i++) { 8291 struct bpf_program **prog = s->progs[i].prog; 8292 const char *name = s->progs[i].name; 8293 8294 *prog = bpf_object__find_program_by_name(obj, name); 8295 if (!*prog) { 8296 pr_warn("failed to find skeleton program '%s'\n", name); 8297 return -ESRCH; 8298 } 8299 } 8300 8301 return 0; 8302 } 8303 8304 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 8305 { 8306 int i, err; 8307 8308 err = bpf_object__load(*s->obj); 8309 if (err) { 8310 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 8311 return err; 8312 } 8313 8314 for (i = 0; i < s->map_cnt; i++) { 8315 struct bpf_map *map = *s->maps[i].map; 8316 size_t mmap_sz = bpf_map_mmap_sz(map); 8317 int prot, map_fd = bpf_map__fd(map); 8318 void **mmaped = s->maps[i].mmaped; 8319 8320 if (!mmaped) 8321 continue; 8322 8323 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 8324 *mmaped = NULL; 8325 continue; 8326 } 8327 8328 if (map->def.map_flags & BPF_F_RDONLY_PROG) 8329 prot = PROT_READ; 8330 else 8331 prot = PROT_READ | PROT_WRITE; 8332 8333 /* Remap anonymous mmap()-ed "map initialization image" as 8334 * a BPF map-backed mmap()-ed memory, but preserving the same 8335 * memory address. This will cause kernel to change process' 8336 * page table to point to a different piece of kernel memory, 8337 * but from userspace point of view memory address (and its 8338 * contents, being identical at this point) will stay the 8339 * same. This mapping will be released by bpf_object__close() 8340 * as per normal clean up procedure, so we don't need to worry 8341 * about it from skeleton's clean up perspective. 8342 */ 8343 *mmaped = mmap(map->mmaped, mmap_sz, prot, 8344 MAP_SHARED | MAP_FIXED, map_fd, 0); 8345 if (*mmaped == MAP_FAILED) { 8346 err = -errno; 8347 *mmaped = NULL; 8348 pr_warn("failed to re-mmap() map '%s': %d\n", 8349 bpf_map__name(map), err); 8350 return err; 8351 } 8352 } 8353 8354 return 0; 8355 } 8356 8357 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 8358 { 8359 int i; 8360 8361 for (i = 0; i < s->prog_cnt; i++) { 8362 struct bpf_program *prog = *s->progs[i].prog; 8363 struct bpf_link **link = s->progs[i].link; 8364 const struct bpf_sec_def *sec_def; 8365 const char *sec_name = bpf_program__title(prog, false); 8366 8367 sec_def = find_sec_def(sec_name); 8368 if (!sec_def || !sec_def->attach_fn) 8369 continue; 8370 8371 *link = sec_def->attach_fn(sec_def, prog); 8372 if (IS_ERR(*link)) { 8373 pr_warn("failed to auto-attach program '%s': %ld\n", 8374 bpf_program__name(prog), PTR_ERR(*link)); 8375 return PTR_ERR(*link); 8376 } 8377 } 8378 8379 return 0; 8380 } 8381 8382 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 8383 { 8384 int i; 8385 8386 for (i = 0; i < s->prog_cnt; i++) { 8387 struct bpf_link **link = s->progs[i].link; 8388 8389 if (!IS_ERR_OR_NULL(*link)) 8390 bpf_link__destroy(*link); 8391 *link = NULL; 8392 } 8393 } 8394 8395 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 8396 { 8397 if (s->progs) 8398 bpf_object__detach_skeleton(s); 8399 if (s->obj) 8400 bpf_object__close(*s->obj); 8401 free(s->maps); 8402 free(s->progs); 8403 free(s); 8404 } 8405