1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/ring_buffer.h> 37 #include <sys/epoll.h> 38 #include <sys/ioctl.h> 39 #include <sys/mman.h> 40 #include <sys/stat.h> 41 #include <sys/types.h> 42 #include <sys/vfs.h> 43 #include <sys/utsname.h> 44 #include <sys/resource.h> 45 #include <libelf.h> 46 #include <gelf.h> 47 #include <zlib.h> 48 49 #include "libbpf.h" 50 #include "bpf.h" 51 #include "btf.h" 52 #include "str_error.h" 53 #include "libbpf_internal.h" 54 #include "hashmap.h" 55 #include "bpf_gen_internal.h" 56 #include "zip.h" 57 58 #ifndef BPF_FS_MAGIC 59 #define BPF_FS_MAGIC 0xcafe4a11 60 #endif 61 62 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 63 64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 65 * compilation if user enables corresponding warning. Disable it explicitly. 66 */ 67 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 68 69 #define __printf(a, b) __attribute__((format(printf, a, b))) 70 71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 73 74 static const char * const attach_type_name[] = { 75 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 76 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 77 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 78 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 79 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 80 [BPF_CGROUP_DEVICE] = "cgroup_device", 81 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 82 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 83 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 84 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 85 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 86 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 87 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 88 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 89 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 90 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 91 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 92 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 93 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 94 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 95 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 96 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 97 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 98 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 99 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 100 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 101 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 102 [BPF_LIRC_MODE2] = "lirc_mode2", 103 [BPF_FLOW_DISSECTOR] = "flow_dissector", 104 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 105 [BPF_TRACE_FENTRY] = "trace_fentry", 106 [BPF_TRACE_FEXIT] = "trace_fexit", 107 [BPF_MODIFY_RETURN] = "modify_return", 108 [BPF_LSM_MAC] = "lsm_mac", 109 [BPF_LSM_CGROUP] = "lsm_cgroup", 110 [BPF_SK_LOOKUP] = "sk_lookup", 111 [BPF_TRACE_ITER] = "trace_iter", 112 [BPF_XDP_DEVMAP] = "xdp_devmap", 113 [BPF_XDP_CPUMAP] = "xdp_cpumap", 114 [BPF_XDP] = "xdp", 115 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 116 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 117 [BPF_PERF_EVENT] = "perf_event", 118 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 119 [BPF_STRUCT_OPS] = "struct_ops", 120 [BPF_NETFILTER] = "netfilter", 121 }; 122 123 static const char * const link_type_name[] = { 124 [BPF_LINK_TYPE_UNSPEC] = "unspec", 125 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 126 [BPF_LINK_TYPE_TRACING] = "tracing", 127 [BPF_LINK_TYPE_CGROUP] = "cgroup", 128 [BPF_LINK_TYPE_ITER] = "iter", 129 [BPF_LINK_TYPE_NETNS] = "netns", 130 [BPF_LINK_TYPE_XDP] = "xdp", 131 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 132 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 133 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 134 [BPF_LINK_TYPE_NETFILTER] = "netfilter", 135 }; 136 137 static const char * const map_type_name[] = { 138 [BPF_MAP_TYPE_UNSPEC] = "unspec", 139 [BPF_MAP_TYPE_HASH] = "hash", 140 [BPF_MAP_TYPE_ARRAY] = "array", 141 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 142 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 143 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 144 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 145 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 146 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 147 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 148 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 149 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 150 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 151 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 152 [BPF_MAP_TYPE_DEVMAP] = "devmap", 153 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 154 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 155 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 156 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 157 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 158 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 159 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 160 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 161 [BPF_MAP_TYPE_QUEUE] = "queue", 162 [BPF_MAP_TYPE_STACK] = "stack", 163 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 164 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 165 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 166 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 167 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 168 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 169 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 170 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage", 171 }; 172 173 static const char * const prog_type_name[] = { 174 [BPF_PROG_TYPE_UNSPEC] = "unspec", 175 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 176 [BPF_PROG_TYPE_KPROBE] = "kprobe", 177 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 178 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 179 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 180 [BPF_PROG_TYPE_XDP] = "xdp", 181 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 182 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 183 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 184 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 185 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 186 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 187 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 188 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 189 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 190 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 191 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 192 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 193 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 194 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 195 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 196 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 197 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 198 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 199 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 200 [BPF_PROG_TYPE_TRACING] = "tracing", 201 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 202 [BPF_PROG_TYPE_EXT] = "ext", 203 [BPF_PROG_TYPE_LSM] = "lsm", 204 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 205 [BPF_PROG_TYPE_SYSCALL] = "syscall", 206 [BPF_PROG_TYPE_NETFILTER] = "netfilter", 207 }; 208 209 static int __base_pr(enum libbpf_print_level level, const char *format, 210 va_list args) 211 { 212 if (level == LIBBPF_DEBUG) 213 return 0; 214 215 return vfprintf(stderr, format, args); 216 } 217 218 static libbpf_print_fn_t __libbpf_pr = __base_pr; 219 220 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 221 { 222 libbpf_print_fn_t old_print_fn; 223 224 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED); 225 226 return old_print_fn; 227 } 228 229 __printf(2, 3) 230 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 231 { 232 va_list args; 233 int old_errno; 234 libbpf_print_fn_t print_fn; 235 236 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED); 237 if (!print_fn) 238 return; 239 240 old_errno = errno; 241 242 va_start(args, format); 243 __libbpf_pr(level, format, args); 244 va_end(args); 245 246 errno = old_errno; 247 } 248 249 static void pr_perm_msg(int err) 250 { 251 struct rlimit limit; 252 char buf[100]; 253 254 if (err != -EPERM || geteuid() != 0) 255 return; 256 257 err = getrlimit(RLIMIT_MEMLOCK, &limit); 258 if (err) 259 return; 260 261 if (limit.rlim_cur == RLIM_INFINITY) 262 return; 263 264 if (limit.rlim_cur < 1024) 265 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 266 else if (limit.rlim_cur < 1024*1024) 267 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 268 else 269 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 270 271 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 272 buf); 273 } 274 275 #define STRERR_BUFSIZE 128 276 277 /* Copied from tools/perf/util/util.h */ 278 #ifndef zfree 279 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 280 #endif 281 282 #ifndef zclose 283 # define zclose(fd) ({ \ 284 int ___err = 0; \ 285 if ((fd) >= 0) \ 286 ___err = close((fd)); \ 287 fd = -1; \ 288 ___err; }) 289 #endif 290 291 static inline __u64 ptr_to_u64(const void *ptr) 292 { 293 return (__u64) (unsigned long) ptr; 294 } 295 296 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 297 { 298 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 299 return 0; 300 } 301 302 __u32 libbpf_major_version(void) 303 { 304 return LIBBPF_MAJOR_VERSION; 305 } 306 307 __u32 libbpf_minor_version(void) 308 { 309 return LIBBPF_MINOR_VERSION; 310 } 311 312 const char *libbpf_version_string(void) 313 { 314 #define __S(X) #X 315 #define _S(X) __S(X) 316 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 317 #undef _S 318 #undef __S 319 } 320 321 enum reloc_type { 322 RELO_LD64, 323 RELO_CALL, 324 RELO_DATA, 325 RELO_EXTERN_LD64, 326 RELO_EXTERN_CALL, 327 RELO_SUBPROG_ADDR, 328 RELO_CORE, 329 }; 330 331 struct reloc_desc { 332 enum reloc_type type; 333 int insn_idx; 334 union { 335 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 336 struct { 337 int map_idx; 338 int sym_off; 339 int ext_idx; 340 }; 341 }; 342 }; 343 344 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 345 enum sec_def_flags { 346 SEC_NONE = 0, 347 /* expected_attach_type is optional, if kernel doesn't support that */ 348 SEC_EXP_ATTACH_OPT = 1, 349 /* legacy, only used by libbpf_get_type_names() and 350 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 351 * This used to be associated with cgroup (and few other) BPF programs 352 * that were attachable through BPF_PROG_ATTACH command. Pretty 353 * meaningless nowadays, though. 354 */ 355 SEC_ATTACHABLE = 2, 356 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 357 /* attachment target is specified through BTF ID in either kernel or 358 * other BPF program's BTF object 359 */ 360 SEC_ATTACH_BTF = 4, 361 /* BPF program type allows sleeping/blocking in kernel */ 362 SEC_SLEEPABLE = 8, 363 /* BPF program support non-linear XDP buffer */ 364 SEC_XDP_FRAGS = 16, 365 }; 366 367 struct bpf_sec_def { 368 char *sec; 369 enum bpf_prog_type prog_type; 370 enum bpf_attach_type expected_attach_type; 371 long cookie; 372 int handler_id; 373 374 libbpf_prog_setup_fn_t prog_setup_fn; 375 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 376 libbpf_prog_attach_fn_t prog_attach_fn; 377 }; 378 379 /* 380 * bpf_prog should be a better name but it has been used in 381 * linux/filter.h. 382 */ 383 struct bpf_program { 384 char *name; 385 char *sec_name; 386 size_t sec_idx; 387 const struct bpf_sec_def *sec_def; 388 /* this program's instruction offset (in number of instructions) 389 * within its containing ELF section 390 */ 391 size_t sec_insn_off; 392 /* number of original instructions in ELF section belonging to this 393 * program, not taking into account subprogram instructions possible 394 * appended later during relocation 395 */ 396 size_t sec_insn_cnt; 397 /* Offset (in number of instructions) of the start of instruction 398 * belonging to this BPF program within its containing main BPF 399 * program. For the entry-point (main) BPF program, this is always 400 * zero. For a sub-program, this gets reset before each of main BPF 401 * programs are processed and relocated and is used to determined 402 * whether sub-program was already appended to the main program, and 403 * if yes, at which instruction offset. 404 */ 405 size_t sub_insn_off; 406 407 /* instructions that belong to BPF program; insns[0] is located at 408 * sec_insn_off instruction within its ELF section in ELF file, so 409 * when mapping ELF file instruction index to the local instruction, 410 * one needs to subtract sec_insn_off; and vice versa. 411 */ 412 struct bpf_insn *insns; 413 /* actual number of instruction in this BPF program's image; for 414 * entry-point BPF programs this includes the size of main program 415 * itself plus all the used sub-programs, appended at the end 416 */ 417 size_t insns_cnt; 418 419 struct reloc_desc *reloc_desc; 420 int nr_reloc; 421 422 /* BPF verifier log settings */ 423 char *log_buf; 424 size_t log_size; 425 __u32 log_level; 426 427 struct bpf_object *obj; 428 429 int fd; 430 bool autoload; 431 bool autoattach; 432 bool mark_btf_static; 433 enum bpf_prog_type type; 434 enum bpf_attach_type expected_attach_type; 435 436 int prog_ifindex; 437 __u32 attach_btf_obj_fd; 438 __u32 attach_btf_id; 439 __u32 attach_prog_fd; 440 441 void *func_info; 442 __u32 func_info_rec_size; 443 __u32 func_info_cnt; 444 445 void *line_info; 446 __u32 line_info_rec_size; 447 __u32 line_info_cnt; 448 __u32 prog_flags; 449 }; 450 451 struct bpf_struct_ops { 452 const char *tname; 453 const struct btf_type *type; 454 struct bpf_program **progs; 455 __u32 *kern_func_off; 456 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 457 void *data; 458 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 459 * btf_vmlinux's format. 460 * struct bpf_struct_ops_tcp_congestion_ops { 461 * [... some other kernel fields ...] 462 * struct tcp_congestion_ops data; 463 * } 464 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 465 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 466 * from "data". 467 */ 468 void *kern_vdata; 469 __u32 type_id; 470 }; 471 472 #define DATA_SEC ".data" 473 #define BSS_SEC ".bss" 474 #define RODATA_SEC ".rodata" 475 #define KCONFIG_SEC ".kconfig" 476 #define KSYMS_SEC ".ksyms" 477 #define STRUCT_OPS_SEC ".struct_ops" 478 #define STRUCT_OPS_LINK_SEC ".struct_ops.link" 479 480 enum libbpf_map_type { 481 LIBBPF_MAP_UNSPEC, 482 LIBBPF_MAP_DATA, 483 LIBBPF_MAP_BSS, 484 LIBBPF_MAP_RODATA, 485 LIBBPF_MAP_KCONFIG, 486 }; 487 488 struct bpf_map_def { 489 unsigned int type; 490 unsigned int key_size; 491 unsigned int value_size; 492 unsigned int max_entries; 493 unsigned int map_flags; 494 }; 495 496 struct bpf_map { 497 struct bpf_object *obj; 498 char *name; 499 /* real_name is defined for special internal maps (.rodata*, 500 * .data*, .bss, .kconfig) and preserves their original ELF section 501 * name. This is important to be able to find corresponding BTF 502 * DATASEC information. 503 */ 504 char *real_name; 505 int fd; 506 int sec_idx; 507 size_t sec_offset; 508 int map_ifindex; 509 int inner_map_fd; 510 struct bpf_map_def def; 511 __u32 numa_node; 512 __u32 btf_var_idx; 513 __u32 btf_key_type_id; 514 __u32 btf_value_type_id; 515 __u32 btf_vmlinux_value_type_id; 516 enum libbpf_map_type libbpf_type; 517 void *mmaped; 518 struct bpf_struct_ops *st_ops; 519 struct bpf_map *inner_map; 520 void **init_slots; 521 int init_slots_sz; 522 char *pin_path; 523 bool pinned; 524 bool reused; 525 bool autocreate; 526 __u64 map_extra; 527 }; 528 529 enum extern_type { 530 EXT_UNKNOWN, 531 EXT_KCFG, 532 EXT_KSYM, 533 }; 534 535 enum kcfg_type { 536 KCFG_UNKNOWN, 537 KCFG_CHAR, 538 KCFG_BOOL, 539 KCFG_INT, 540 KCFG_TRISTATE, 541 KCFG_CHAR_ARR, 542 }; 543 544 struct extern_desc { 545 enum extern_type type; 546 int sym_idx; 547 int btf_id; 548 int sec_btf_id; 549 const char *name; 550 bool is_set; 551 bool is_weak; 552 union { 553 struct { 554 enum kcfg_type type; 555 int sz; 556 int align; 557 int data_off; 558 bool is_signed; 559 } kcfg; 560 struct { 561 unsigned long long addr; 562 563 /* target btf_id of the corresponding kernel var. */ 564 int kernel_btf_obj_fd; 565 int kernel_btf_id; 566 567 /* local btf_id of the ksym extern's type. */ 568 __u32 type_id; 569 /* BTF fd index to be patched in for insn->off, this is 570 * 0 for vmlinux BTF, index in obj->fd_array for module 571 * BTF 572 */ 573 __s16 btf_fd_idx; 574 } ksym; 575 }; 576 }; 577 578 struct module_btf { 579 struct btf *btf; 580 char *name; 581 __u32 id; 582 int fd; 583 int fd_array_idx; 584 }; 585 586 enum sec_type { 587 SEC_UNUSED = 0, 588 SEC_RELO, 589 SEC_BSS, 590 SEC_DATA, 591 SEC_RODATA, 592 }; 593 594 struct elf_sec_desc { 595 enum sec_type sec_type; 596 Elf64_Shdr *shdr; 597 Elf_Data *data; 598 }; 599 600 struct elf_state { 601 int fd; 602 const void *obj_buf; 603 size_t obj_buf_sz; 604 Elf *elf; 605 Elf64_Ehdr *ehdr; 606 Elf_Data *symbols; 607 Elf_Data *st_ops_data; 608 Elf_Data *st_ops_link_data; 609 size_t shstrndx; /* section index for section name strings */ 610 size_t strtabidx; 611 struct elf_sec_desc *secs; 612 size_t sec_cnt; 613 int btf_maps_shndx; 614 __u32 btf_maps_sec_btf_id; 615 int text_shndx; 616 int symbols_shndx; 617 int st_ops_shndx; 618 int st_ops_link_shndx; 619 }; 620 621 struct usdt_manager; 622 623 struct bpf_object { 624 char name[BPF_OBJ_NAME_LEN]; 625 char license[64]; 626 __u32 kern_version; 627 628 struct bpf_program *programs; 629 size_t nr_programs; 630 struct bpf_map *maps; 631 size_t nr_maps; 632 size_t maps_cap; 633 634 char *kconfig; 635 struct extern_desc *externs; 636 int nr_extern; 637 int kconfig_map_idx; 638 639 bool loaded; 640 bool has_subcalls; 641 bool has_rodata; 642 643 struct bpf_gen *gen_loader; 644 645 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 646 struct elf_state efile; 647 648 struct btf *btf; 649 struct btf_ext *btf_ext; 650 651 /* Parse and load BTF vmlinux if any of the programs in the object need 652 * it at load time. 653 */ 654 struct btf *btf_vmlinux; 655 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 656 * override for vmlinux BTF. 657 */ 658 char *btf_custom_path; 659 /* vmlinux BTF override for CO-RE relocations */ 660 struct btf *btf_vmlinux_override; 661 /* Lazily initialized kernel module BTFs */ 662 struct module_btf *btf_modules; 663 bool btf_modules_loaded; 664 size_t btf_module_cnt; 665 size_t btf_module_cap; 666 667 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 668 char *log_buf; 669 size_t log_size; 670 __u32 log_level; 671 672 int *fd_array; 673 size_t fd_array_cap; 674 size_t fd_array_cnt; 675 676 struct usdt_manager *usdt_man; 677 678 char path[]; 679 }; 680 681 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 682 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 683 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 684 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 685 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 686 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 687 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 688 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 689 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 690 691 void bpf_program__unload(struct bpf_program *prog) 692 { 693 if (!prog) 694 return; 695 696 zclose(prog->fd); 697 698 zfree(&prog->func_info); 699 zfree(&prog->line_info); 700 } 701 702 static void bpf_program__exit(struct bpf_program *prog) 703 { 704 if (!prog) 705 return; 706 707 bpf_program__unload(prog); 708 zfree(&prog->name); 709 zfree(&prog->sec_name); 710 zfree(&prog->insns); 711 zfree(&prog->reloc_desc); 712 713 prog->nr_reloc = 0; 714 prog->insns_cnt = 0; 715 prog->sec_idx = -1; 716 } 717 718 static bool insn_is_subprog_call(const struct bpf_insn *insn) 719 { 720 return BPF_CLASS(insn->code) == BPF_JMP && 721 BPF_OP(insn->code) == BPF_CALL && 722 BPF_SRC(insn->code) == BPF_K && 723 insn->src_reg == BPF_PSEUDO_CALL && 724 insn->dst_reg == 0 && 725 insn->off == 0; 726 } 727 728 static bool is_call_insn(const struct bpf_insn *insn) 729 { 730 return insn->code == (BPF_JMP | BPF_CALL); 731 } 732 733 static bool insn_is_pseudo_func(struct bpf_insn *insn) 734 { 735 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 736 } 737 738 static int 739 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 740 const char *name, size_t sec_idx, const char *sec_name, 741 size_t sec_off, void *insn_data, size_t insn_data_sz) 742 { 743 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 744 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 745 sec_name, name, sec_off, insn_data_sz); 746 return -EINVAL; 747 } 748 749 memset(prog, 0, sizeof(*prog)); 750 prog->obj = obj; 751 752 prog->sec_idx = sec_idx; 753 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 754 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 755 /* insns_cnt can later be increased by appending used subprograms */ 756 prog->insns_cnt = prog->sec_insn_cnt; 757 758 prog->type = BPF_PROG_TYPE_UNSPEC; 759 prog->fd = -1; 760 761 /* libbpf's convention for SEC("?abc...") is that it's just like 762 * SEC("abc...") but the corresponding bpf_program starts out with 763 * autoload set to false. 764 */ 765 if (sec_name[0] == '?') { 766 prog->autoload = false; 767 /* from now on forget there was ? in section name */ 768 sec_name++; 769 } else { 770 prog->autoload = true; 771 } 772 773 prog->autoattach = true; 774 775 /* inherit object's log_level */ 776 prog->log_level = obj->log_level; 777 778 prog->sec_name = strdup(sec_name); 779 if (!prog->sec_name) 780 goto errout; 781 782 prog->name = strdup(name); 783 if (!prog->name) 784 goto errout; 785 786 prog->insns = malloc(insn_data_sz); 787 if (!prog->insns) 788 goto errout; 789 memcpy(prog->insns, insn_data, insn_data_sz); 790 791 return 0; 792 errout: 793 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 794 bpf_program__exit(prog); 795 return -ENOMEM; 796 } 797 798 static int 799 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 800 const char *sec_name, int sec_idx) 801 { 802 Elf_Data *symbols = obj->efile.symbols; 803 struct bpf_program *prog, *progs; 804 void *data = sec_data->d_buf; 805 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 806 int nr_progs, err, i; 807 const char *name; 808 Elf64_Sym *sym; 809 810 progs = obj->programs; 811 nr_progs = obj->nr_programs; 812 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 813 814 for (i = 0; i < nr_syms; i++) { 815 sym = elf_sym_by_idx(obj, i); 816 817 if (sym->st_shndx != sec_idx) 818 continue; 819 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 820 continue; 821 822 prog_sz = sym->st_size; 823 sec_off = sym->st_value; 824 825 name = elf_sym_str(obj, sym->st_name); 826 if (!name) { 827 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 828 sec_name, sec_off); 829 return -LIBBPF_ERRNO__FORMAT; 830 } 831 832 if (sec_off + prog_sz > sec_sz) { 833 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 834 sec_name, sec_off); 835 return -LIBBPF_ERRNO__FORMAT; 836 } 837 838 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 839 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 840 return -ENOTSUP; 841 } 842 843 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 844 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 845 846 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 847 if (!progs) { 848 /* 849 * In this case the original obj->programs 850 * is still valid, so don't need special treat for 851 * bpf_close_object(). 852 */ 853 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 854 sec_name, name); 855 return -ENOMEM; 856 } 857 obj->programs = progs; 858 859 prog = &progs[nr_progs]; 860 861 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 862 sec_off, data + sec_off, prog_sz); 863 if (err) 864 return err; 865 866 /* if function is a global/weak symbol, but has restricted 867 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 868 * as static to enable more permissive BPF verification mode 869 * with more outside context available to BPF verifier 870 */ 871 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL 872 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 873 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 874 prog->mark_btf_static = true; 875 876 nr_progs++; 877 obj->nr_programs = nr_progs; 878 } 879 880 return 0; 881 } 882 883 static const struct btf_member * 884 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 885 { 886 struct btf_member *m; 887 int i; 888 889 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 890 if (btf_member_bit_offset(t, i) == bit_offset) 891 return m; 892 } 893 894 return NULL; 895 } 896 897 static const struct btf_member * 898 find_member_by_name(const struct btf *btf, const struct btf_type *t, 899 const char *name) 900 { 901 struct btf_member *m; 902 int i; 903 904 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 905 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 906 return m; 907 } 908 909 return NULL; 910 } 911 912 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 913 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 914 const char *name, __u32 kind); 915 916 static int 917 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 918 const struct btf_type **type, __u32 *type_id, 919 const struct btf_type **vtype, __u32 *vtype_id, 920 const struct btf_member **data_member) 921 { 922 const struct btf_type *kern_type, *kern_vtype; 923 const struct btf_member *kern_data_member; 924 __s32 kern_vtype_id, kern_type_id; 925 __u32 i; 926 927 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 928 if (kern_type_id < 0) { 929 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 930 tname); 931 return kern_type_id; 932 } 933 kern_type = btf__type_by_id(btf, kern_type_id); 934 935 /* Find the corresponding "map_value" type that will be used 936 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 937 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 938 * btf_vmlinux. 939 */ 940 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 941 tname, BTF_KIND_STRUCT); 942 if (kern_vtype_id < 0) { 943 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 944 STRUCT_OPS_VALUE_PREFIX, tname); 945 return kern_vtype_id; 946 } 947 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 948 949 /* Find "struct tcp_congestion_ops" from 950 * struct bpf_struct_ops_tcp_congestion_ops { 951 * [ ... ] 952 * struct tcp_congestion_ops data; 953 * } 954 */ 955 kern_data_member = btf_members(kern_vtype); 956 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 957 if (kern_data_member->type == kern_type_id) 958 break; 959 } 960 if (i == btf_vlen(kern_vtype)) { 961 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 962 tname, STRUCT_OPS_VALUE_PREFIX, tname); 963 return -EINVAL; 964 } 965 966 *type = kern_type; 967 *type_id = kern_type_id; 968 *vtype = kern_vtype; 969 *vtype_id = kern_vtype_id; 970 *data_member = kern_data_member; 971 972 return 0; 973 } 974 975 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 976 { 977 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 978 } 979 980 /* Init the map's fields that depend on kern_btf */ 981 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 982 const struct btf *btf, 983 const struct btf *kern_btf) 984 { 985 const struct btf_member *member, *kern_member, *kern_data_member; 986 const struct btf_type *type, *kern_type, *kern_vtype; 987 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 988 struct bpf_struct_ops *st_ops; 989 void *data, *kern_data; 990 const char *tname; 991 int err; 992 993 st_ops = map->st_ops; 994 type = st_ops->type; 995 tname = st_ops->tname; 996 err = find_struct_ops_kern_types(kern_btf, tname, 997 &kern_type, &kern_type_id, 998 &kern_vtype, &kern_vtype_id, 999 &kern_data_member); 1000 if (err) 1001 return err; 1002 1003 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1004 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1005 1006 map->def.value_size = kern_vtype->size; 1007 map->btf_vmlinux_value_type_id = kern_vtype_id; 1008 1009 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1010 if (!st_ops->kern_vdata) 1011 return -ENOMEM; 1012 1013 data = st_ops->data; 1014 kern_data_off = kern_data_member->offset / 8; 1015 kern_data = st_ops->kern_vdata + kern_data_off; 1016 1017 member = btf_members(type); 1018 for (i = 0; i < btf_vlen(type); i++, member++) { 1019 const struct btf_type *mtype, *kern_mtype; 1020 __u32 mtype_id, kern_mtype_id; 1021 void *mdata, *kern_mdata; 1022 __s64 msize, kern_msize; 1023 __u32 moff, kern_moff; 1024 __u32 kern_member_idx; 1025 const char *mname; 1026 1027 mname = btf__name_by_offset(btf, member->name_off); 1028 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1029 if (!kern_member) { 1030 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1031 map->name, mname); 1032 return -ENOTSUP; 1033 } 1034 1035 kern_member_idx = kern_member - btf_members(kern_type); 1036 if (btf_member_bitfield_size(type, i) || 1037 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1038 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1039 map->name, mname); 1040 return -ENOTSUP; 1041 } 1042 1043 moff = member->offset / 8; 1044 kern_moff = kern_member->offset / 8; 1045 1046 mdata = data + moff; 1047 kern_mdata = kern_data + kern_moff; 1048 1049 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1050 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1051 &kern_mtype_id); 1052 if (BTF_INFO_KIND(mtype->info) != 1053 BTF_INFO_KIND(kern_mtype->info)) { 1054 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1055 map->name, mname, BTF_INFO_KIND(mtype->info), 1056 BTF_INFO_KIND(kern_mtype->info)); 1057 return -ENOTSUP; 1058 } 1059 1060 if (btf_is_ptr(mtype)) { 1061 struct bpf_program *prog; 1062 1063 prog = st_ops->progs[i]; 1064 if (!prog) 1065 continue; 1066 1067 kern_mtype = skip_mods_and_typedefs(kern_btf, 1068 kern_mtype->type, 1069 &kern_mtype_id); 1070 1071 /* mtype->type must be a func_proto which was 1072 * guaranteed in bpf_object__collect_st_ops_relos(), 1073 * so only check kern_mtype for func_proto here. 1074 */ 1075 if (!btf_is_func_proto(kern_mtype)) { 1076 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1077 map->name, mname); 1078 return -ENOTSUP; 1079 } 1080 1081 prog->attach_btf_id = kern_type_id; 1082 prog->expected_attach_type = kern_member_idx; 1083 1084 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1085 1086 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1087 map->name, mname, prog->name, moff, 1088 kern_moff); 1089 1090 continue; 1091 } 1092 1093 msize = btf__resolve_size(btf, mtype_id); 1094 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1095 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1096 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1097 map->name, mname, (ssize_t)msize, 1098 (ssize_t)kern_msize); 1099 return -ENOTSUP; 1100 } 1101 1102 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1103 map->name, mname, (unsigned int)msize, 1104 moff, kern_moff); 1105 memcpy(kern_mdata, mdata, msize); 1106 } 1107 1108 return 0; 1109 } 1110 1111 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1112 { 1113 struct bpf_map *map; 1114 size_t i; 1115 int err; 1116 1117 for (i = 0; i < obj->nr_maps; i++) { 1118 map = &obj->maps[i]; 1119 1120 if (!bpf_map__is_struct_ops(map)) 1121 continue; 1122 1123 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1124 obj->btf_vmlinux); 1125 if (err) 1126 return err; 1127 } 1128 1129 return 0; 1130 } 1131 1132 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name, 1133 int shndx, Elf_Data *data, __u32 map_flags) 1134 { 1135 const struct btf_type *type, *datasec; 1136 const struct btf_var_secinfo *vsi; 1137 struct bpf_struct_ops *st_ops; 1138 const char *tname, *var_name; 1139 __s32 type_id, datasec_id; 1140 const struct btf *btf; 1141 struct bpf_map *map; 1142 __u32 i; 1143 1144 if (shndx == -1) 1145 return 0; 1146 1147 btf = obj->btf; 1148 datasec_id = btf__find_by_name_kind(btf, sec_name, 1149 BTF_KIND_DATASEC); 1150 if (datasec_id < 0) { 1151 pr_warn("struct_ops init: DATASEC %s not found\n", 1152 sec_name); 1153 return -EINVAL; 1154 } 1155 1156 datasec = btf__type_by_id(btf, datasec_id); 1157 vsi = btf_var_secinfos(datasec); 1158 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1159 type = btf__type_by_id(obj->btf, vsi->type); 1160 var_name = btf__name_by_offset(obj->btf, type->name_off); 1161 1162 type_id = btf__resolve_type(obj->btf, vsi->type); 1163 if (type_id < 0) { 1164 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1165 vsi->type, sec_name); 1166 return -EINVAL; 1167 } 1168 1169 type = btf__type_by_id(obj->btf, type_id); 1170 tname = btf__name_by_offset(obj->btf, type->name_off); 1171 if (!tname[0]) { 1172 pr_warn("struct_ops init: anonymous type is not supported\n"); 1173 return -ENOTSUP; 1174 } 1175 if (!btf_is_struct(type)) { 1176 pr_warn("struct_ops init: %s is not a struct\n", tname); 1177 return -EINVAL; 1178 } 1179 1180 map = bpf_object__add_map(obj); 1181 if (IS_ERR(map)) 1182 return PTR_ERR(map); 1183 1184 map->sec_idx = shndx; 1185 map->sec_offset = vsi->offset; 1186 map->name = strdup(var_name); 1187 if (!map->name) 1188 return -ENOMEM; 1189 1190 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1191 map->def.key_size = sizeof(int); 1192 map->def.value_size = type->size; 1193 map->def.max_entries = 1; 1194 map->def.map_flags = map_flags; 1195 1196 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1197 if (!map->st_ops) 1198 return -ENOMEM; 1199 st_ops = map->st_ops; 1200 st_ops->data = malloc(type->size); 1201 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1202 st_ops->kern_func_off = malloc(btf_vlen(type) * 1203 sizeof(*st_ops->kern_func_off)); 1204 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1205 return -ENOMEM; 1206 1207 if (vsi->offset + type->size > data->d_size) { 1208 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1209 var_name, sec_name); 1210 return -EINVAL; 1211 } 1212 1213 memcpy(st_ops->data, 1214 data->d_buf + vsi->offset, 1215 type->size); 1216 st_ops->tname = tname; 1217 st_ops->type = type; 1218 st_ops->type_id = type_id; 1219 1220 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1221 tname, type_id, var_name, vsi->offset); 1222 } 1223 1224 return 0; 1225 } 1226 1227 static int bpf_object_init_struct_ops(struct bpf_object *obj) 1228 { 1229 int err; 1230 1231 err = init_struct_ops_maps(obj, STRUCT_OPS_SEC, obj->efile.st_ops_shndx, 1232 obj->efile.st_ops_data, 0); 1233 err = err ?: init_struct_ops_maps(obj, STRUCT_OPS_LINK_SEC, 1234 obj->efile.st_ops_link_shndx, 1235 obj->efile.st_ops_link_data, 1236 BPF_F_LINK); 1237 return err; 1238 } 1239 1240 static struct bpf_object *bpf_object__new(const char *path, 1241 const void *obj_buf, 1242 size_t obj_buf_sz, 1243 const char *obj_name) 1244 { 1245 struct bpf_object *obj; 1246 char *end; 1247 1248 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1249 if (!obj) { 1250 pr_warn("alloc memory failed for %s\n", path); 1251 return ERR_PTR(-ENOMEM); 1252 } 1253 1254 strcpy(obj->path, path); 1255 if (obj_name) { 1256 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1257 } else { 1258 /* Using basename() GNU version which doesn't modify arg. */ 1259 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1260 end = strchr(obj->name, '.'); 1261 if (end) 1262 *end = 0; 1263 } 1264 1265 obj->efile.fd = -1; 1266 /* 1267 * Caller of this function should also call 1268 * bpf_object__elf_finish() after data collection to return 1269 * obj_buf to user. If not, we should duplicate the buffer to 1270 * avoid user freeing them before elf finish. 1271 */ 1272 obj->efile.obj_buf = obj_buf; 1273 obj->efile.obj_buf_sz = obj_buf_sz; 1274 obj->efile.btf_maps_shndx = -1; 1275 obj->efile.st_ops_shndx = -1; 1276 obj->efile.st_ops_link_shndx = -1; 1277 obj->kconfig_map_idx = -1; 1278 1279 obj->kern_version = get_kernel_version(); 1280 obj->loaded = false; 1281 1282 return obj; 1283 } 1284 1285 static void bpf_object__elf_finish(struct bpf_object *obj) 1286 { 1287 if (!obj->efile.elf) 1288 return; 1289 1290 elf_end(obj->efile.elf); 1291 obj->efile.elf = NULL; 1292 obj->efile.symbols = NULL; 1293 obj->efile.st_ops_data = NULL; 1294 obj->efile.st_ops_link_data = NULL; 1295 1296 zfree(&obj->efile.secs); 1297 obj->efile.sec_cnt = 0; 1298 zclose(obj->efile.fd); 1299 obj->efile.obj_buf = NULL; 1300 obj->efile.obj_buf_sz = 0; 1301 } 1302 1303 static int bpf_object__elf_init(struct bpf_object *obj) 1304 { 1305 Elf64_Ehdr *ehdr; 1306 int err = 0; 1307 Elf *elf; 1308 1309 if (obj->efile.elf) { 1310 pr_warn("elf: init internal error\n"); 1311 return -LIBBPF_ERRNO__LIBELF; 1312 } 1313 1314 if (obj->efile.obj_buf_sz > 0) { 1315 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1316 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1317 } else { 1318 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1319 if (obj->efile.fd < 0) { 1320 char errmsg[STRERR_BUFSIZE], *cp; 1321 1322 err = -errno; 1323 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1324 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1325 return err; 1326 } 1327 1328 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1329 } 1330 1331 if (!elf) { 1332 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1333 err = -LIBBPF_ERRNO__LIBELF; 1334 goto errout; 1335 } 1336 1337 obj->efile.elf = elf; 1338 1339 if (elf_kind(elf) != ELF_K_ELF) { 1340 err = -LIBBPF_ERRNO__FORMAT; 1341 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1342 goto errout; 1343 } 1344 1345 if (gelf_getclass(elf) != ELFCLASS64) { 1346 err = -LIBBPF_ERRNO__FORMAT; 1347 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1348 goto errout; 1349 } 1350 1351 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1352 if (!obj->efile.ehdr) { 1353 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1354 err = -LIBBPF_ERRNO__FORMAT; 1355 goto errout; 1356 } 1357 1358 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1359 pr_warn("elf: failed to get section names section index for %s: %s\n", 1360 obj->path, elf_errmsg(-1)); 1361 err = -LIBBPF_ERRNO__FORMAT; 1362 goto errout; 1363 } 1364 1365 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 1366 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1367 pr_warn("elf: failed to get section names strings from %s: %s\n", 1368 obj->path, elf_errmsg(-1)); 1369 err = -LIBBPF_ERRNO__FORMAT; 1370 goto errout; 1371 } 1372 1373 /* Old LLVM set e_machine to EM_NONE */ 1374 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1375 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1376 err = -LIBBPF_ERRNO__FORMAT; 1377 goto errout; 1378 } 1379 1380 return 0; 1381 errout: 1382 bpf_object__elf_finish(obj); 1383 return err; 1384 } 1385 1386 static int bpf_object__check_endianness(struct bpf_object *obj) 1387 { 1388 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1389 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1390 return 0; 1391 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1392 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1393 return 0; 1394 #else 1395 # error "Unrecognized __BYTE_ORDER__" 1396 #endif 1397 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1398 return -LIBBPF_ERRNO__ENDIAN; 1399 } 1400 1401 static int 1402 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1403 { 1404 if (!data) { 1405 pr_warn("invalid license section in %s\n", obj->path); 1406 return -LIBBPF_ERRNO__FORMAT; 1407 } 1408 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1409 * go over allowed ELF data section buffer 1410 */ 1411 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1412 pr_debug("license of %s is %s\n", obj->path, obj->license); 1413 return 0; 1414 } 1415 1416 static int 1417 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1418 { 1419 __u32 kver; 1420 1421 if (!data || size != sizeof(kver)) { 1422 pr_warn("invalid kver section in %s\n", obj->path); 1423 return -LIBBPF_ERRNO__FORMAT; 1424 } 1425 memcpy(&kver, data, sizeof(kver)); 1426 obj->kern_version = kver; 1427 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1428 return 0; 1429 } 1430 1431 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1432 { 1433 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1434 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1435 return true; 1436 return false; 1437 } 1438 1439 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1440 { 1441 Elf_Data *data; 1442 Elf_Scn *scn; 1443 1444 if (!name) 1445 return -EINVAL; 1446 1447 scn = elf_sec_by_name(obj, name); 1448 data = elf_sec_data(obj, scn); 1449 if (data) { 1450 *size = data->d_size; 1451 return 0; /* found it */ 1452 } 1453 1454 return -ENOENT; 1455 } 1456 1457 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1458 { 1459 Elf_Data *symbols = obj->efile.symbols; 1460 const char *sname; 1461 size_t si; 1462 1463 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1464 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1465 1466 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1467 continue; 1468 1469 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1470 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1471 continue; 1472 1473 sname = elf_sym_str(obj, sym->st_name); 1474 if (!sname) { 1475 pr_warn("failed to get sym name string for var %s\n", name); 1476 return ERR_PTR(-EIO); 1477 } 1478 if (strcmp(name, sname) == 0) 1479 return sym; 1480 } 1481 1482 return ERR_PTR(-ENOENT); 1483 } 1484 1485 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1486 { 1487 struct bpf_map *map; 1488 int err; 1489 1490 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1491 sizeof(*obj->maps), obj->nr_maps + 1); 1492 if (err) 1493 return ERR_PTR(err); 1494 1495 map = &obj->maps[obj->nr_maps++]; 1496 map->obj = obj; 1497 map->fd = -1; 1498 map->inner_map_fd = -1; 1499 map->autocreate = true; 1500 1501 return map; 1502 } 1503 1504 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1505 { 1506 long page_sz = sysconf(_SC_PAGE_SIZE); 1507 size_t map_sz; 1508 1509 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1510 map_sz = roundup(map_sz, page_sz); 1511 return map_sz; 1512 } 1513 1514 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1515 { 1516 char map_name[BPF_OBJ_NAME_LEN], *p; 1517 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1518 1519 /* This is one of the more confusing parts of libbpf for various 1520 * reasons, some of which are historical. The original idea for naming 1521 * internal names was to include as much of BPF object name prefix as 1522 * possible, so that it can be distinguished from similar internal 1523 * maps of a different BPF object. 1524 * As an example, let's say we have bpf_object named 'my_object_name' 1525 * and internal map corresponding to '.rodata' ELF section. The final 1526 * map name advertised to user and to the kernel will be 1527 * 'my_objec.rodata', taking first 8 characters of object name and 1528 * entire 7 characters of '.rodata'. 1529 * Somewhat confusingly, if internal map ELF section name is shorter 1530 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1531 * for the suffix, even though we only have 4 actual characters, and 1532 * resulting map will be called 'my_objec.bss', not even using all 15 1533 * characters allowed by the kernel. Oh well, at least the truncated 1534 * object name is somewhat consistent in this case. But if the map 1535 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1536 * (8 chars) and thus will be left with only first 7 characters of the 1537 * object name ('my_obje'). Happy guessing, user, that the final map 1538 * name will be "my_obje.kconfig". 1539 * Now, with libbpf starting to support arbitrarily named .rodata.* 1540 * and .data.* data sections, it's possible that ELF section name is 1541 * longer than allowed 15 chars, so we now need to be careful to take 1542 * only up to 15 first characters of ELF name, taking no BPF object 1543 * name characters at all. So '.rodata.abracadabra' will result in 1544 * '.rodata.abracad' kernel and user-visible name. 1545 * We need to keep this convoluted logic intact for .data, .bss and 1546 * .rodata maps, but for new custom .data.custom and .rodata.custom 1547 * maps we use their ELF names as is, not prepending bpf_object name 1548 * in front. We still need to truncate them to 15 characters for the 1549 * kernel. Full name can be recovered for such maps by using DATASEC 1550 * BTF type associated with such map's value type, though. 1551 */ 1552 if (sfx_len >= BPF_OBJ_NAME_LEN) 1553 sfx_len = BPF_OBJ_NAME_LEN - 1; 1554 1555 /* if there are two or more dots in map name, it's a custom dot map */ 1556 if (strchr(real_name + 1, '.') != NULL) 1557 pfx_len = 0; 1558 else 1559 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1560 1561 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1562 sfx_len, real_name); 1563 1564 /* sanitise map name to characters allowed by kernel */ 1565 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1566 if (!isalnum(*p) && *p != '_' && *p != '.') 1567 *p = '_'; 1568 1569 return strdup(map_name); 1570 } 1571 1572 static int 1573 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1574 1575 /* Internal BPF map is mmap()'able only if at least one of corresponding 1576 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1577 * variable and it's not marked as __hidden (which turns it into, effectively, 1578 * a STATIC variable). 1579 */ 1580 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1581 { 1582 const struct btf_type *t, *vt; 1583 struct btf_var_secinfo *vsi; 1584 int i, n; 1585 1586 if (!map->btf_value_type_id) 1587 return false; 1588 1589 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1590 if (!btf_is_datasec(t)) 1591 return false; 1592 1593 vsi = btf_var_secinfos(t); 1594 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1595 vt = btf__type_by_id(obj->btf, vsi->type); 1596 if (!btf_is_var(vt)) 1597 continue; 1598 1599 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1600 return true; 1601 } 1602 1603 return false; 1604 } 1605 1606 static int 1607 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1608 const char *real_name, int sec_idx, void *data, size_t data_sz) 1609 { 1610 struct bpf_map_def *def; 1611 struct bpf_map *map; 1612 int err; 1613 1614 map = bpf_object__add_map(obj); 1615 if (IS_ERR(map)) 1616 return PTR_ERR(map); 1617 1618 map->libbpf_type = type; 1619 map->sec_idx = sec_idx; 1620 map->sec_offset = 0; 1621 map->real_name = strdup(real_name); 1622 map->name = internal_map_name(obj, real_name); 1623 if (!map->real_name || !map->name) { 1624 zfree(&map->real_name); 1625 zfree(&map->name); 1626 return -ENOMEM; 1627 } 1628 1629 def = &map->def; 1630 def->type = BPF_MAP_TYPE_ARRAY; 1631 def->key_size = sizeof(int); 1632 def->value_size = data_sz; 1633 def->max_entries = 1; 1634 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1635 ? BPF_F_RDONLY_PROG : 0; 1636 1637 /* failures are fine because of maps like .rodata.str1.1 */ 1638 (void) map_fill_btf_type_info(obj, map); 1639 1640 if (map_is_mmapable(obj, map)) 1641 def->map_flags |= BPF_F_MMAPABLE; 1642 1643 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1644 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1645 1646 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1647 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1648 if (map->mmaped == MAP_FAILED) { 1649 err = -errno; 1650 map->mmaped = NULL; 1651 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1652 map->name, err); 1653 zfree(&map->real_name); 1654 zfree(&map->name); 1655 return err; 1656 } 1657 1658 if (data) 1659 memcpy(map->mmaped, data, data_sz); 1660 1661 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1662 return 0; 1663 } 1664 1665 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1666 { 1667 struct elf_sec_desc *sec_desc; 1668 const char *sec_name; 1669 int err = 0, sec_idx; 1670 1671 /* 1672 * Populate obj->maps with libbpf internal maps. 1673 */ 1674 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1675 sec_desc = &obj->efile.secs[sec_idx]; 1676 1677 /* Skip recognized sections with size 0. */ 1678 if (!sec_desc->data || sec_desc->data->d_size == 0) 1679 continue; 1680 1681 switch (sec_desc->sec_type) { 1682 case SEC_DATA: 1683 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1684 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1685 sec_name, sec_idx, 1686 sec_desc->data->d_buf, 1687 sec_desc->data->d_size); 1688 break; 1689 case SEC_RODATA: 1690 obj->has_rodata = true; 1691 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1692 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1693 sec_name, sec_idx, 1694 sec_desc->data->d_buf, 1695 sec_desc->data->d_size); 1696 break; 1697 case SEC_BSS: 1698 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1699 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1700 sec_name, sec_idx, 1701 NULL, 1702 sec_desc->data->d_size); 1703 break; 1704 default: 1705 /* skip */ 1706 break; 1707 } 1708 if (err) 1709 return err; 1710 } 1711 return 0; 1712 } 1713 1714 1715 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1716 const void *name) 1717 { 1718 int i; 1719 1720 for (i = 0; i < obj->nr_extern; i++) { 1721 if (strcmp(obj->externs[i].name, name) == 0) 1722 return &obj->externs[i]; 1723 } 1724 return NULL; 1725 } 1726 1727 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1728 char value) 1729 { 1730 switch (ext->kcfg.type) { 1731 case KCFG_BOOL: 1732 if (value == 'm') { 1733 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 1734 ext->name, value); 1735 return -EINVAL; 1736 } 1737 *(bool *)ext_val = value == 'y' ? true : false; 1738 break; 1739 case KCFG_TRISTATE: 1740 if (value == 'y') 1741 *(enum libbpf_tristate *)ext_val = TRI_YES; 1742 else if (value == 'm') 1743 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1744 else /* value == 'n' */ 1745 *(enum libbpf_tristate *)ext_val = TRI_NO; 1746 break; 1747 case KCFG_CHAR: 1748 *(char *)ext_val = value; 1749 break; 1750 case KCFG_UNKNOWN: 1751 case KCFG_INT: 1752 case KCFG_CHAR_ARR: 1753 default: 1754 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 1755 ext->name, value); 1756 return -EINVAL; 1757 } 1758 ext->is_set = true; 1759 return 0; 1760 } 1761 1762 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1763 const char *value) 1764 { 1765 size_t len; 1766 1767 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1768 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 1769 ext->name, value); 1770 return -EINVAL; 1771 } 1772 1773 len = strlen(value); 1774 if (value[len - 1] != '"') { 1775 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1776 ext->name, value); 1777 return -EINVAL; 1778 } 1779 1780 /* strip quotes */ 1781 len -= 2; 1782 if (len >= ext->kcfg.sz) { 1783 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 1784 ext->name, value, len, ext->kcfg.sz - 1); 1785 len = ext->kcfg.sz - 1; 1786 } 1787 memcpy(ext_val, value + 1, len); 1788 ext_val[len] = '\0'; 1789 ext->is_set = true; 1790 return 0; 1791 } 1792 1793 static int parse_u64(const char *value, __u64 *res) 1794 { 1795 char *value_end; 1796 int err; 1797 1798 errno = 0; 1799 *res = strtoull(value, &value_end, 0); 1800 if (errno) { 1801 err = -errno; 1802 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1803 return err; 1804 } 1805 if (*value_end) { 1806 pr_warn("failed to parse '%s' as integer completely\n", value); 1807 return -EINVAL; 1808 } 1809 return 0; 1810 } 1811 1812 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1813 { 1814 int bit_sz = ext->kcfg.sz * 8; 1815 1816 if (ext->kcfg.sz == 8) 1817 return true; 1818 1819 /* Validate that value stored in u64 fits in integer of `ext->sz` 1820 * bytes size without any loss of information. If the target integer 1821 * is signed, we rely on the following limits of integer type of 1822 * Y bits and subsequent transformation: 1823 * 1824 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1825 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1826 * 0 <= X + 2^(Y-1) < 2^Y 1827 * 1828 * For unsigned target integer, check that all the (64 - Y) bits are 1829 * zero. 1830 */ 1831 if (ext->kcfg.is_signed) 1832 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1833 else 1834 return (v >> bit_sz) == 0; 1835 } 1836 1837 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1838 __u64 value) 1839 { 1840 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 1841 ext->kcfg.type != KCFG_BOOL) { 1842 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 1843 ext->name, (unsigned long long)value); 1844 return -EINVAL; 1845 } 1846 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 1847 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 1848 ext->name, (unsigned long long)value); 1849 return -EINVAL; 1850 1851 } 1852 if (!is_kcfg_value_in_range(ext, value)) { 1853 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 1854 ext->name, (unsigned long long)value, ext->kcfg.sz); 1855 return -ERANGE; 1856 } 1857 switch (ext->kcfg.sz) { 1858 case 1: 1859 *(__u8 *)ext_val = value; 1860 break; 1861 case 2: 1862 *(__u16 *)ext_val = value; 1863 break; 1864 case 4: 1865 *(__u32 *)ext_val = value; 1866 break; 1867 case 8: 1868 *(__u64 *)ext_val = value; 1869 break; 1870 default: 1871 return -EINVAL; 1872 } 1873 ext->is_set = true; 1874 return 0; 1875 } 1876 1877 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1878 char *buf, void *data) 1879 { 1880 struct extern_desc *ext; 1881 char *sep, *value; 1882 int len, err = 0; 1883 void *ext_val; 1884 __u64 num; 1885 1886 if (!str_has_pfx(buf, "CONFIG_")) 1887 return 0; 1888 1889 sep = strchr(buf, '='); 1890 if (!sep) { 1891 pr_warn("failed to parse '%s': no separator\n", buf); 1892 return -EINVAL; 1893 } 1894 1895 /* Trim ending '\n' */ 1896 len = strlen(buf); 1897 if (buf[len - 1] == '\n') 1898 buf[len - 1] = '\0'; 1899 /* Split on '=' and ensure that a value is present. */ 1900 *sep = '\0'; 1901 if (!sep[1]) { 1902 *sep = '='; 1903 pr_warn("failed to parse '%s': no value\n", buf); 1904 return -EINVAL; 1905 } 1906 1907 ext = find_extern_by_name(obj, buf); 1908 if (!ext || ext->is_set) 1909 return 0; 1910 1911 ext_val = data + ext->kcfg.data_off; 1912 value = sep + 1; 1913 1914 switch (*value) { 1915 case 'y': case 'n': case 'm': 1916 err = set_kcfg_value_tri(ext, ext_val, *value); 1917 break; 1918 case '"': 1919 err = set_kcfg_value_str(ext, ext_val, value); 1920 break; 1921 default: 1922 /* assume integer */ 1923 err = parse_u64(value, &num); 1924 if (err) { 1925 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 1926 return err; 1927 } 1928 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1929 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 1930 return -EINVAL; 1931 } 1932 err = set_kcfg_value_num(ext, ext_val, num); 1933 break; 1934 } 1935 if (err) 1936 return err; 1937 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 1938 return 0; 1939 } 1940 1941 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1942 { 1943 char buf[PATH_MAX]; 1944 struct utsname uts; 1945 int len, err = 0; 1946 gzFile file; 1947 1948 uname(&uts); 1949 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1950 if (len < 0) 1951 return -EINVAL; 1952 else if (len >= PATH_MAX) 1953 return -ENAMETOOLONG; 1954 1955 /* gzopen also accepts uncompressed files. */ 1956 file = gzopen(buf, "r"); 1957 if (!file) 1958 file = gzopen("/proc/config.gz", "r"); 1959 1960 if (!file) { 1961 pr_warn("failed to open system Kconfig\n"); 1962 return -ENOENT; 1963 } 1964 1965 while (gzgets(file, buf, sizeof(buf))) { 1966 err = bpf_object__process_kconfig_line(obj, buf, data); 1967 if (err) { 1968 pr_warn("error parsing system Kconfig line '%s': %d\n", 1969 buf, err); 1970 goto out; 1971 } 1972 } 1973 1974 out: 1975 gzclose(file); 1976 return err; 1977 } 1978 1979 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1980 const char *config, void *data) 1981 { 1982 char buf[PATH_MAX]; 1983 int err = 0; 1984 FILE *file; 1985 1986 file = fmemopen((void *)config, strlen(config), "r"); 1987 if (!file) { 1988 err = -errno; 1989 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1990 return err; 1991 } 1992 1993 while (fgets(buf, sizeof(buf), file)) { 1994 err = bpf_object__process_kconfig_line(obj, buf, data); 1995 if (err) { 1996 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1997 buf, err); 1998 break; 1999 } 2000 } 2001 2002 fclose(file); 2003 return err; 2004 } 2005 2006 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2007 { 2008 struct extern_desc *last_ext = NULL, *ext; 2009 size_t map_sz; 2010 int i, err; 2011 2012 for (i = 0; i < obj->nr_extern; i++) { 2013 ext = &obj->externs[i]; 2014 if (ext->type == EXT_KCFG) 2015 last_ext = ext; 2016 } 2017 2018 if (!last_ext) 2019 return 0; 2020 2021 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2022 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2023 ".kconfig", obj->efile.symbols_shndx, 2024 NULL, map_sz); 2025 if (err) 2026 return err; 2027 2028 obj->kconfig_map_idx = obj->nr_maps - 1; 2029 2030 return 0; 2031 } 2032 2033 const struct btf_type * 2034 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2035 { 2036 const struct btf_type *t = btf__type_by_id(btf, id); 2037 2038 if (res_id) 2039 *res_id = id; 2040 2041 while (btf_is_mod(t) || btf_is_typedef(t)) { 2042 if (res_id) 2043 *res_id = t->type; 2044 t = btf__type_by_id(btf, t->type); 2045 } 2046 2047 return t; 2048 } 2049 2050 static const struct btf_type * 2051 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2052 { 2053 const struct btf_type *t; 2054 2055 t = skip_mods_and_typedefs(btf, id, NULL); 2056 if (!btf_is_ptr(t)) 2057 return NULL; 2058 2059 t = skip_mods_and_typedefs(btf, t->type, res_id); 2060 2061 return btf_is_func_proto(t) ? t : NULL; 2062 } 2063 2064 static const char *__btf_kind_str(__u16 kind) 2065 { 2066 switch (kind) { 2067 case BTF_KIND_UNKN: return "void"; 2068 case BTF_KIND_INT: return "int"; 2069 case BTF_KIND_PTR: return "ptr"; 2070 case BTF_KIND_ARRAY: return "array"; 2071 case BTF_KIND_STRUCT: return "struct"; 2072 case BTF_KIND_UNION: return "union"; 2073 case BTF_KIND_ENUM: return "enum"; 2074 case BTF_KIND_FWD: return "fwd"; 2075 case BTF_KIND_TYPEDEF: return "typedef"; 2076 case BTF_KIND_VOLATILE: return "volatile"; 2077 case BTF_KIND_CONST: return "const"; 2078 case BTF_KIND_RESTRICT: return "restrict"; 2079 case BTF_KIND_FUNC: return "func"; 2080 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2081 case BTF_KIND_VAR: return "var"; 2082 case BTF_KIND_DATASEC: return "datasec"; 2083 case BTF_KIND_FLOAT: return "float"; 2084 case BTF_KIND_DECL_TAG: return "decl_tag"; 2085 case BTF_KIND_TYPE_TAG: return "type_tag"; 2086 case BTF_KIND_ENUM64: return "enum64"; 2087 default: return "unknown"; 2088 } 2089 } 2090 2091 const char *btf_kind_str(const struct btf_type *t) 2092 { 2093 return __btf_kind_str(btf_kind(t)); 2094 } 2095 2096 /* 2097 * Fetch integer attribute of BTF map definition. Such attributes are 2098 * represented using a pointer to an array, in which dimensionality of array 2099 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2100 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2101 * type definition, while using only sizeof(void *) space in ELF data section. 2102 */ 2103 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2104 const struct btf_member *m, __u32 *res) 2105 { 2106 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2107 const char *name = btf__name_by_offset(btf, m->name_off); 2108 const struct btf_array *arr_info; 2109 const struct btf_type *arr_t; 2110 2111 if (!btf_is_ptr(t)) { 2112 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2113 map_name, name, btf_kind_str(t)); 2114 return false; 2115 } 2116 2117 arr_t = btf__type_by_id(btf, t->type); 2118 if (!arr_t) { 2119 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2120 map_name, name, t->type); 2121 return false; 2122 } 2123 if (!btf_is_array(arr_t)) { 2124 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2125 map_name, name, btf_kind_str(arr_t)); 2126 return false; 2127 } 2128 arr_info = btf_array(arr_t); 2129 *res = arr_info->nelems; 2130 return true; 2131 } 2132 2133 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2134 { 2135 int len; 2136 2137 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2138 if (len < 0) 2139 return -EINVAL; 2140 if (len >= buf_sz) 2141 return -ENAMETOOLONG; 2142 2143 return 0; 2144 } 2145 2146 static int build_map_pin_path(struct bpf_map *map, const char *path) 2147 { 2148 char buf[PATH_MAX]; 2149 int err; 2150 2151 if (!path) 2152 path = "/sys/fs/bpf"; 2153 2154 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2155 if (err) 2156 return err; 2157 2158 return bpf_map__set_pin_path(map, buf); 2159 } 2160 2161 /* should match definition in bpf_helpers.h */ 2162 enum libbpf_pin_type { 2163 LIBBPF_PIN_NONE, 2164 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2165 LIBBPF_PIN_BY_NAME, 2166 }; 2167 2168 int parse_btf_map_def(const char *map_name, struct btf *btf, 2169 const struct btf_type *def_t, bool strict, 2170 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2171 { 2172 const struct btf_type *t; 2173 const struct btf_member *m; 2174 bool is_inner = inner_def == NULL; 2175 int vlen, i; 2176 2177 vlen = btf_vlen(def_t); 2178 m = btf_members(def_t); 2179 for (i = 0; i < vlen; i++, m++) { 2180 const char *name = btf__name_by_offset(btf, m->name_off); 2181 2182 if (!name) { 2183 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2184 return -EINVAL; 2185 } 2186 if (strcmp(name, "type") == 0) { 2187 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2188 return -EINVAL; 2189 map_def->parts |= MAP_DEF_MAP_TYPE; 2190 } else if (strcmp(name, "max_entries") == 0) { 2191 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2192 return -EINVAL; 2193 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2194 } else if (strcmp(name, "map_flags") == 0) { 2195 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2196 return -EINVAL; 2197 map_def->parts |= MAP_DEF_MAP_FLAGS; 2198 } else if (strcmp(name, "numa_node") == 0) { 2199 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2200 return -EINVAL; 2201 map_def->parts |= MAP_DEF_NUMA_NODE; 2202 } else if (strcmp(name, "key_size") == 0) { 2203 __u32 sz; 2204 2205 if (!get_map_field_int(map_name, btf, m, &sz)) 2206 return -EINVAL; 2207 if (map_def->key_size && map_def->key_size != sz) { 2208 pr_warn("map '%s': conflicting key size %u != %u.\n", 2209 map_name, map_def->key_size, sz); 2210 return -EINVAL; 2211 } 2212 map_def->key_size = sz; 2213 map_def->parts |= MAP_DEF_KEY_SIZE; 2214 } else if (strcmp(name, "key") == 0) { 2215 __s64 sz; 2216 2217 t = btf__type_by_id(btf, m->type); 2218 if (!t) { 2219 pr_warn("map '%s': key type [%d] not found.\n", 2220 map_name, m->type); 2221 return -EINVAL; 2222 } 2223 if (!btf_is_ptr(t)) { 2224 pr_warn("map '%s': key spec is not PTR: %s.\n", 2225 map_name, btf_kind_str(t)); 2226 return -EINVAL; 2227 } 2228 sz = btf__resolve_size(btf, t->type); 2229 if (sz < 0) { 2230 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2231 map_name, t->type, (ssize_t)sz); 2232 return sz; 2233 } 2234 if (map_def->key_size && map_def->key_size != sz) { 2235 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2236 map_name, map_def->key_size, (ssize_t)sz); 2237 return -EINVAL; 2238 } 2239 map_def->key_size = sz; 2240 map_def->key_type_id = t->type; 2241 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2242 } else if (strcmp(name, "value_size") == 0) { 2243 __u32 sz; 2244 2245 if (!get_map_field_int(map_name, btf, m, &sz)) 2246 return -EINVAL; 2247 if (map_def->value_size && map_def->value_size != sz) { 2248 pr_warn("map '%s': conflicting value size %u != %u.\n", 2249 map_name, map_def->value_size, sz); 2250 return -EINVAL; 2251 } 2252 map_def->value_size = sz; 2253 map_def->parts |= MAP_DEF_VALUE_SIZE; 2254 } else if (strcmp(name, "value") == 0) { 2255 __s64 sz; 2256 2257 t = btf__type_by_id(btf, m->type); 2258 if (!t) { 2259 pr_warn("map '%s': value type [%d] not found.\n", 2260 map_name, m->type); 2261 return -EINVAL; 2262 } 2263 if (!btf_is_ptr(t)) { 2264 pr_warn("map '%s': value spec is not PTR: %s.\n", 2265 map_name, btf_kind_str(t)); 2266 return -EINVAL; 2267 } 2268 sz = btf__resolve_size(btf, t->type); 2269 if (sz < 0) { 2270 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2271 map_name, t->type, (ssize_t)sz); 2272 return sz; 2273 } 2274 if (map_def->value_size && map_def->value_size != sz) { 2275 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2276 map_name, map_def->value_size, (ssize_t)sz); 2277 return -EINVAL; 2278 } 2279 map_def->value_size = sz; 2280 map_def->value_type_id = t->type; 2281 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2282 } 2283 else if (strcmp(name, "values") == 0) { 2284 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2285 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2286 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2287 char inner_map_name[128]; 2288 int err; 2289 2290 if (is_inner) { 2291 pr_warn("map '%s': multi-level inner maps not supported.\n", 2292 map_name); 2293 return -ENOTSUP; 2294 } 2295 if (i != vlen - 1) { 2296 pr_warn("map '%s': '%s' member should be last.\n", 2297 map_name, name); 2298 return -EINVAL; 2299 } 2300 if (!is_map_in_map && !is_prog_array) { 2301 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2302 map_name); 2303 return -ENOTSUP; 2304 } 2305 if (map_def->value_size && map_def->value_size != 4) { 2306 pr_warn("map '%s': conflicting value size %u != 4.\n", 2307 map_name, map_def->value_size); 2308 return -EINVAL; 2309 } 2310 map_def->value_size = 4; 2311 t = btf__type_by_id(btf, m->type); 2312 if (!t) { 2313 pr_warn("map '%s': %s type [%d] not found.\n", 2314 map_name, desc, m->type); 2315 return -EINVAL; 2316 } 2317 if (!btf_is_array(t) || btf_array(t)->nelems) { 2318 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2319 map_name, desc); 2320 return -EINVAL; 2321 } 2322 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2323 if (!btf_is_ptr(t)) { 2324 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2325 map_name, desc, btf_kind_str(t)); 2326 return -EINVAL; 2327 } 2328 t = skip_mods_and_typedefs(btf, t->type, NULL); 2329 if (is_prog_array) { 2330 if (!btf_is_func_proto(t)) { 2331 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2332 map_name, btf_kind_str(t)); 2333 return -EINVAL; 2334 } 2335 continue; 2336 } 2337 if (!btf_is_struct(t)) { 2338 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2339 map_name, btf_kind_str(t)); 2340 return -EINVAL; 2341 } 2342 2343 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2344 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2345 if (err) 2346 return err; 2347 2348 map_def->parts |= MAP_DEF_INNER_MAP; 2349 } else if (strcmp(name, "pinning") == 0) { 2350 __u32 val; 2351 2352 if (is_inner) { 2353 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2354 return -EINVAL; 2355 } 2356 if (!get_map_field_int(map_name, btf, m, &val)) 2357 return -EINVAL; 2358 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2359 pr_warn("map '%s': invalid pinning value %u.\n", 2360 map_name, val); 2361 return -EINVAL; 2362 } 2363 map_def->pinning = val; 2364 map_def->parts |= MAP_DEF_PINNING; 2365 } else if (strcmp(name, "map_extra") == 0) { 2366 __u32 map_extra; 2367 2368 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2369 return -EINVAL; 2370 map_def->map_extra = map_extra; 2371 map_def->parts |= MAP_DEF_MAP_EXTRA; 2372 } else { 2373 if (strict) { 2374 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2375 return -ENOTSUP; 2376 } 2377 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2378 } 2379 } 2380 2381 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2382 pr_warn("map '%s': map type isn't specified.\n", map_name); 2383 return -EINVAL; 2384 } 2385 2386 return 0; 2387 } 2388 2389 static size_t adjust_ringbuf_sz(size_t sz) 2390 { 2391 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2392 __u32 mul; 2393 2394 /* if user forgot to set any size, make sure they see error */ 2395 if (sz == 0) 2396 return 0; 2397 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2398 * a power-of-2 multiple of kernel's page size. If user diligently 2399 * satisified these conditions, pass the size through. 2400 */ 2401 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2402 return sz; 2403 2404 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2405 * user-set size to satisfy both user size request and kernel 2406 * requirements and substitute correct max_entries for map creation. 2407 */ 2408 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2409 if (mul * page_sz > sz) 2410 return mul * page_sz; 2411 } 2412 2413 /* if it's impossible to satisfy the conditions (i.e., user size is 2414 * very close to UINT_MAX but is not a power-of-2 multiple of 2415 * page_size) then just return original size and let kernel reject it 2416 */ 2417 return sz; 2418 } 2419 2420 static bool map_is_ringbuf(const struct bpf_map *map) 2421 { 2422 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2423 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2424 } 2425 2426 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2427 { 2428 map->def.type = def->map_type; 2429 map->def.key_size = def->key_size; 2430 map->def.value_size = def->value_size; 2431 map->def.max_entries = def->max_entries; 2432 map->def.map_flags = def->map_flags; 2433 map->map_extra = def->map_extra; 2434 2435 map->numa_node = def->numa_node; 2436 map->btf_key_type_id = def->key_type_id; 2437 map->btf_value_type_id = def->value_type_id; 2438 2439 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2440 if (map_is_ringbuf(map)) 2441 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2442 2443 if (def->parts & MAP_DEF_MAP_TYPE) 2444 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2445 2446 if (def->parts & MAP_DEF_KEY_TYPE) 2447 pr_debug("map '%s': found key [%u], sz = %u.\n", 2448 map->name, def->key_type_id, def->key_size); 2449 else if (def->parts & MAP_DEF_KEY_SIZE) 2450 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2451 2452 if (def->parts & MAP_DEF_VALUE_TYPE) 2453 pr_debug("map '%s': found value [%u], sz = %u.\n", 2454 map->name, def->value_type_id, def->value_size); 2455 else if (def->parts & MAP_DEF_VALUE_SIZE) 2456 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2457 2458 if (def->parts & MAP_DEF_MAX_ENTRIES) 2459 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2460 if (def->parts & MAP_DEF_MAP_FLAGS) 2461 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2462 if (def->parts & MAP_DEF_MAP_EXTRA) 2463 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2464 (unsigned long long)def->map_extra); 2465 if (def->parts & MAP_DEF_PINNING) 2466 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2467 if (def->parts & MAP_DEF_NUMA_NODE) 2468 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2469 2470 if (def->parts & MAP_DEF_INNER_MAP) 2471 pr_debug("map '%s': found inner map definition.\n", map->name); 2472 } 2473 2474 static const char *btf_var_linkage_str(__u32 linkage) 2475 { 2476 switch (linkage) { 2477 case BTF_VAR_STATIC: return "static"; 2478 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2479 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2480 default: return "unknown"; 2481 } 2482 } 2483 2484 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2485 const struct btf_type *sec, 2486 int var_idx, int sec_idx, 2487 const Elf_Data *data, bool strict, 2488 const char *pin_root_path) 2489 { 2490 struct btf_map_def map_def = {}, inner_def = {}; 2491 const struct btf_type *var, *def; 2492 const struct btf_var_secinfo *vi; 2493 const struct btf_var *var_extra; 2494 const char *map_name; 2495 struct bpf_map *map; 2496 int err; 2497 2498 vi = btf_var_secinfos(sec) + var_idx; 2499 var = btf__type_by_id(obj->btf, vi->type); 2500 var_extra = btf_var(var); 2501 map_name = btf__name_by_offset(obj->btf, var->name_off); 2502 2503 if (map_name == NULL || map_name[0] == '\0') { 2504 pr_warn("map #%d: empty name.\n", var_idx); 2505 return -EINVAL; 2506 } 2507 if ((__u64)vi->offset + vi->size > data->d_size) { 2508 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2509 return -EINVAL; 2510 } 2511 if (!btf_is_var(var)) { 2512 pr_warn("map '%s': unexpected var kind %s.\n", 2513 map_name, btf_kind_str(var)); 2514 return -EINVAL; 2515 } 2516 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2517 pr_warn("map '%s': unsupported map linkage %s.\n", 2518 map_name, btf_var_linkage_str(var_extra->linkage)); 2519 return -EOPNOTSUPP; 2520 } 2521 2522 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2523 if (!btf_is_struct(def)) { 2524 pr_warn("map '%s': unexpected def kind %s.\n", 2525 map_name, btf_kind_str(var)); 2526 return -EINVAL; 2527 } 2528 if (def->size > vi->size) { 2529 pr_warn("map '%s': invalid def size.\n", map_name); 2530 return -EINVAL; 2531 } 2532 2533 map = bpf_object__add_map(obj); 2534 if (IS_ERR(map)) 2535 return PTR_ERR(map); 2536 map->name = strdup(map_name); 2537 if (!map->name) { 2538 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2539 return -ENOMEM; 2540 } 2541 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2542 map->def.type = BPF_MAP_TYPE_UNSPEC; 2543 map->sec_idx = sec_idx; 2544 map->sec_offset = vi->offset; 2545 map->btf_var_idx = var_idx; 2546 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2547 map_name, map->sec_idx, map->sec_offset); 2548 2549 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2550 if (err) 2551 return err; 2552 2553 fill_map_from_def(map, &map_def); 2554 2555 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2556 err = build_map_pin_path(map, pin_root_path); 2557 if (err) { 2558 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2559 return err; 2560 } 2561 } 2562 2563 if (map_def.parts & MAP_DEF_INNER_MAP) { 2564 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2565 if (!map->inner_map) 2566 return -ENOMEM; 2567 map->inner_map->fd = -1; 2568 map->inner_map->sec_idx = sec_idx; 2569 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2570 if (!map->inner_map->name) 2571 return -ENOMEM; 2572 sprintf(map->inner_map->name, "%s.inner", map_name); 2573 2574 fill_map_from_def(map->inner_map, &inner_def); 2575 } 2576 2577 err = map_fill_btf_type_info(obj, map); 2578 if (err) 2579 return err; 2580 2581 return 0; 2582 } 2583 2584 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2585 const char *pin_root_path) 2586 { 2587 const struct btf_type *sec = NULL; 2588 int nr_types, i, vlen, err; 2589 const struct btf_type *t; 2590 const char *name; 2591 Elf_Data *data; 2592 Elf_Scn *scn; 2593 2594 if (obj->efile.btf_maps_shndx < 0) 2595 return 0; 2596 2597 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2598 data = elf_sec_data(obj, scn); 2599 if (!scn || !data) { 2600 pr_warn("elf: failed to get %s map definitions for %s\n", 2601 MAPS_ELF_SEC, obj->path); 2602 return -EINVAL; 2603 } 2604 2605 nr_types = btf__type_cnt(obj->btf); 2606 for (i = 1; i < nr_types; i++) { 2607 t = btf__type_by_id(obj->btf, i); 2608 if (!btf_is_datasec(t)) 2609 continue; 2610 name = btf__name_by_offset(obj->btf, t->name_off); 2611 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2612 sec = t; 2613 obj->efile.btf_maps_sec_btf_id = i; 2614 break; 2615 } 2616 } 2617 2618 if (!sec) { 2619 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2620 return -ENOENT; 2621 } 2622 2623 vlen = btf_vlen(sec); 2624 for (i = 0; i < vlen; i++) { 2625 err = bpf_object__init_user_btf_map(obj, sec, i, 2626 obj->efile.btf_maps_shndx, 2627 data, strict, 2628 pin_root_path); 2629 if (err) 2630 return err; 2631 } 2632 2633 return 0; 2634 } 2635 2636 static int bpf_object__init_maps(struct bpf_object *obj, 2637 const struct bpf_object_open_opts *opts) 2638 { 2639 const char *pin_root_path; 2640 bool strict; 2641 int err = 0; 2642 2643 strict = !OPTS_GET(opts, relaxed_maps, false); 2644 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2645 2646 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2647 err = err ?: bpf_object__init_global_data_maps(obj); 2648 err = err ?: bpf_object__init_kconfig_map(obj); 2649 err = err ?: bpf_object_init_struct_ops(obj); 2650 2651 return err; 2652 } 2653 2654 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2655 { 2656 Elf64_Shdr *sh; 2657 2658 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2659 if (!sh) 2660 return false; 2661 2662 return sh->sh_flags & SHF_EXECINSTR; 2663 } 2664 2665 static bool btf_needs_sanitization(struct bpf_object *obj) 2666 { 2667 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2668 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2669 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2670 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2671 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2672 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2673 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2674 2675 return !has_func || !has_datasec || !has_func_global || !has_float || 2676 !has_decl_tag || !has_type_tag || !has_enum64; 2677 } 2678 2679 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2680 { 2681 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2682 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2683 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2684 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2685 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2686 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2687 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2688 int enum64_placeholder_id = 0; 2689 struct btf_type *t; 2690 int i, j, vlen; 2691 2692 for (i = 1; i < btf__type_cnt(btf); i++) { 2693 t = (struct btf_type *)btf__type_by_id(btf, i); 2694 2695 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2696 /* replace VAR/DECL_TAG with INT */ 2697 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2698 /* 2699 * using size = 1 is the safest choice, 4 will be too 2700 * big and cause kernel BTF validation failure if 2701 * original variable took less than 4 bytes 2702 */ 2703 t->size = 1; 2704 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2705 } else if (!has_datasec && btf_is_datasec(t)) { 2706 /* replace DATASEC with STRUCT */ 2707 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2708 struct btf_member *m = btf_members(t); 2709 struct btf_type *vt; 2710 char *name; 2711 2712 name = (char *)btf__name_by_offset(btf, t->name_off); 2713 while (*name) { 2714 if (*name == '.') 2715 *name = '_'; 2716 name++; 2717 } 2718 2719 vlen = btf_vlen(t); 2720 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2721 for (j = 0; j < vlen; j++, v++, m++) { 2722 /* order of field assignments is important */ 2723 m->offset = v->offset * 8; 2724 m->type = v->type; 2725 /* preserve variable name as member name */ 2726 vt = (void *)btf__type_by_id(btf, v->type); 2727 m->name_off = vt->name_off; 2728 } 2729 } else if (!has_func && btf_is_func_proto(t)) { 2730 /* replace FUNC_PROTO with ENUM */ 2731 vlen = btf_vlen(t); 2732 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2733 t->size = sizeof(__u32); /* kernel enforced */ 2734 } else if (!has_func && btf_is_func(t)) { 2735 /* replace FUNC with TYPEDEF */ 2736 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2737 } else if (!has_func_global && btf_is_func(t)) { 2738 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2739 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2740 } else if (!has_float && btf_is_float(t)) { 2741 /* replace FLOAT with an equally-sized empty STRUCT; 2742 * since C compilers do not accept e.g. "float" as a 2743 * valid struct name, make it anonymous 2744 */ 2745 t->name_off = 0; 2746 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2747 } else if (!has_type_tag && btf_is_type_tag(t)) { 2748 /* replace TYPE_TAG with a CONST */ 2749 t->name_off = 0; 2750 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2751 } else if (!has_enum64 && btf_is_enum(t)) { 2752 /* clear the kflag */ 2753 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 2754 } else if (!has_enum64 && btf_is_enum64(t)) { 2755 /* replace ENUM64 with a union */ 2756 struct btf_member *m; 2757 2758 if (enum64_placeholder_id == 0) { 2759 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 2760 if (enum64_placeholder_id < 0) 2761 return enum64_placeholder_id; 2762 2763 t = (struct btf_type *)btf__type_by_id(btf, i); 2764 } 2765 2766 m = btf_members(t); 2767 vlen = btf_vlen(t); 2768 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 2769 for (j = 0; j < vlen; j++, m++) { 2770 m->type = enum64_placeholder_id; 2771 m->offset = 0; 2772 } 2773 } 2774 } 2775 2776 return 0; 2777 } 2778 2779 static bool libbpf_needs_btf(const struct bpf_object *obj) 2780 { 2781 return obj->efile.btf_maps_shndx >= 0 || 2782 obj->efile.st_ops_shndx >= 0 || 2783 obj->efile.st_ops_link_shndx >= 0 || 2784 obj->nr_extern > 0; 2785 } 2786 2787 static bool kernel_needs_btf(const struct bpf_object *obj) 2788 { 2789 return obj->efile.st_ops_shndx >= 0 || obj->efile.st_ops_link_shndx >= 0; 2790 } 2791 2792 static int bpf_object__init_btf(struct bpf_object *obj, 2793 Elf_Data *btf_data, 2794 Elf_Data *btf_ext_data) 2795 { 2796 int err = -ENOENT; 2797 2798 if (btf_data) { 2799 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2800 err = libbpf_get_error(obj->btf); 2801 if (err) { 2802 obj->btf = NULL; 2803 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2804 goto out; 2805 } 2806 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2807 btf__set_pointer_size(obj->btf, 8); 2808 } 2809 if (btf_ext_data) { 2810 struct btf_ext_info *ext_segs[3]; 2811 int seg_num, sec_num; 2812 2813 if (!obj->btf) { 2814 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2815 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2816 goto out; 2817 } 2818 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2819 err = libbpf_get_error(obj->btf_ext); 2820 if (err) { 2821 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2822 BTF_EXT_ELF_SEC, err); 2823 obj->btf_ext = NULL; 2824 goto out; 2825 } 2826 2827 /* setup .BTF.ext to ELF section mapping */ 2828 ext_segs[0] = &obj->btf_ext->func_info; 2829 ext_segs[1] = &obj->btf_ext->line_info; 2830 ext_segs[2] = &obj->btf_ext->core_relo_info; 2831 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 2832 struct btf_ext_info *seg = ext_segs[seg_num]; 2833 const struct btf_ext_info_sec *sec; 2834 const char *sec_name; 2835 Elf_Scn *scn; 2836 2837 if (seg->sec_cnt == 0) 2838 continue; 2839 2840 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 2841 if (!seg->sec_idxs) { 2842 err = -ENOMEM; 2843 goto out; 2844 } 2845 2846 sec_num = 0; 2847 for_each_btf_ext_sec(seg, sec) { 2848 /* preventively increment index to avoid doing 2849 * this before every continue below 2850 */ 2851 sec_num++; 2852 2853 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 2854 if (str_is_empty(sec_name)) 2855 continue; 2856 scn = elf_sec_by_name(obj, sec_name); 2857 if (!scn) 2858 continue; 2859 2860 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 2861 } 2862 } 2863 } 2864 out: 2865 if (err && libbpf_needs_btf(obj)) { 2866 pr_warn("BTF is required, but is missing or corrupted.\n"); 2867 return err; 2868 } 2869 return 0; 2870 } 2871 2872 static int compare_vsi_off(const void *_a, const void *_b) 2873 { 2874 const struct btf_var_secinfo *a = _a; 2875 const struct btf_var_secinfo *b = _b; 2876 2877 return a->offset - b->offset; 2878 } 2879 2880 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2881 struct btf_type *t) 2882 { 2883 __u32 size = 0, i, vars = btf_vlen(t); 2884 const char *sec_name = btf__name_by_offset(btf, t->name_off); 2885 struct btf_var_secinfo *vsi; 2886 bool fixup_offsets = false; 2887 int err; 2888 2889 if (!sec_name) { 2890 pr_debug("No name found in string section for DATASEC kind.\n"); 2891 return -ENOENT; 2892 } 2893 2894 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 2895 * variable offsets set at the previous step. Further, not every 2896 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 2897 * all fixups altogether for such sections and go straight to sorting 2898 * VARs within their DATASEC. 2899 */ 2900 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 2901 goto sort_vars; 2902 2903 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 2904 * fix this up. But BPF static linker already fixes this up and fills 2905 * all the sizes and offsets during static linking. So this step has 2906 * to be optional. But the STV_HIDDEN handling is non-optional for any 2907 * non-extern DATASEC, so the variable fixup loop below handles both 2908 * functions at the same time, paying the cost of BTF VAR <-> ELF 2909 * symbol matching just once. 2910 */ 2911 if (t->size == 0) { 2912 err = find_elf_sec_sz(obj, sec_name, &size); 2913 if (err || !size) { 2914 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n", 2915 sec_name, size, err); 2916 return -ENOENT; 2917 } 2918 2919 t->size = size; 2920 fixup_offsets = true; 2921 } 2922 2923 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2924 const struct btf_type *t_var; 2925 struct btf_var *var; 2926 const char *var_name; 2927 Elf64_Sym *sym; 2928 2929 t_var = btf__type_by_id(btf, vsi->type); 2930 if (!t_var || !btf_is_var(t_var)) { 2931 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 2932 return -EINVAL; 2933 } 2934 2935 var = btf_var(t_var); 2936 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 2937 continue; 2938 2939 var_name = btf__name_by_offset(btf, t_var->name_off); 2940 if (!var_name) { 2941 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 2942 sec_name, i); 2943 return -ENOENT; 2944 } 2945 2946 sym = find_elf_var_sym(obj, var_name); 2947 if (IS_ERR(sym)) { 2948 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 2949 sec_name, var_name); 2950 return -ENOENT; 2951 } 2952 2953 if (fixup_offsets) 2954 vsi->offset = sym->st_value; 2955 2956 /* if variable is a global/weak symbol, but has restricted 2957 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 2958 * as static. This follows similar logic for functions (BPF 2959 * subprogs) and influences libbpf's further decisions about 2960 * whether to make global data BPF array maps as 2961 * BPF_F_MMAPABLE. 2962 */ 2963 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 2964 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 2965 var->linkage = BTF_VAR_STATIC; 2966 } 2967 2968 sort_vars: 2969 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 2970 return 0; 2971 } 2972 2973 static int bpf_object_fixup_btf(struct bpf_object *obj) 2974 { 2975 int i, n, err = 0; 2976 2977 if (!obj->btf) 2978 return 0; 2979 2980 n = btf__type_cnt(obj->btf); 2981 for (i = 1; i < n; i++) { 2982 struct btf_type *t = btf_type_by_id(obj->btf, i); 2983 2984 /* Loader needs to fix up some of the things compiler 2985 * couldn't get its hands on while emitting BTF. This 2986 * is section size and global variable offset. We use 2987 * the info from the ELF itself for this purpose. 2988 */ 2989 if (btf_is_datasec(t)) { 2990 err = btf_fixup_datasec(obj, obj->btf, t); 2991 if (err) 2992 return err; 2993 } 2994 } 2995 2996 return 0; 2997 } 2998 2999 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 3000 { 3001 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3002 prog->type == BPF_PROG_TYPE_LSM) 3003 return true; 3004 3005 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3006 * also need vmlinux BTF 3007 */ 3008 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3009 return true; 3010 3011 return false; 3012 } 3013 3014 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3015 { 3016 struct bpf_program *prog; 3017 int i; 3018 3019 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3020 * is not specified 3021 */ 3022 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3023 return true; 3024 3025 /* Support for typed ksyms needs kernel BTF */ 3026 for (i = 0; i < obj->nr_extern; i++) { 3027 const struct extern_desc *ext; 3028 3029 ext = &obj->externs[i]; 3030 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3031 return true; 3032 } 3033 3034 bpf_object__for_each_program(prog, obj) { 3035 if (!prog->autoload) 3036 continue; 3037 if (prog_needs_vmlinux_btf(prog)) 3038 return true; 3039 } 3040 3041 return false; 3042 } 3043 3044 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3045 { 3046 int err; 3047 3048 /* btf_vmlinux could be loaded earlier */ 3049 if (obj->btf_vmlinux || obj->gen_loader) 3050 return 0; 3051 3052 if (!force && !obj_needs_vmlinux_btf(obj)) 3053 return 0; 3054 3055 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3056 err = libbpf_get_error(obj->btf_vmlinux); 3057 if (err) { 3058 pr_warn("Error loading vmlinux BTF: %d\n", err); 3059 obj->btf_vmlinux = NULL; 3060 return err; 3061 } 3062 return 0; 3063 } 3064 3065 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3066 { 3067 struct btf *kern_btf = obj->btf; 3068 bool btf_mandatory, sanitize; 3069 int i, err = 0; 3070 3071 if (!obj->btf) 3072 return 0; 3073 3074 if (!kernel_supports(obj, FEAT_BTF)) { 3075 if (kernel_needs_btf(obj)) { 3076 err = -EOPNOTSUPP; 3077 goto report; 3078 } 3079 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3080 return 0; 3081 } 3082 3083 /* Even though some subprogs are global/weak, user might prefer more 3084 * permissive BPF verification process that BPF verifier performs for 3085 * static functions, taking into account more context from the caller 3086 * functions. In such case, they need to mark such subprogs with 3087 * __attribute__((visibility("hidden"))) and libbpf will adjust 3088 * corresponding FUNC BTF type to be marked as static and trigger more 3089 * involved BPF verification process. 3090 */ 3091 for (i = 0; i < obj->nr_programs; i++) { 3092 struct bpf_program *prog = &obj->programs[i]; 3093 struct btf_type *t; 3094 const char *name; 3095 int j, n; 3096 3097 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3098 continue; 3099 3100 n = btf__type_cnt(obj->btf); 3101 for (j = 1; j < n; j++) { 3102 t = btf_type_by_id(obj->btf, j); 3103 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3104 continue; 3105 3106 name = btf__str_by_offset(obj->btf, t->name_off); 3107 if (strcmp(name, prog->name) != 0) 3108 continue; 3109 3110 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3111 break; 3112 } 3113 } 3114 3115 sanitize = btf_needs_sanitization(obj); 3116 if (sanitize) { 3117 const void *raw_data; 3118 __u32 sz; 3119 3120 /* clone BTF to sanitize a copy and leave the original intact */ 3121 raw_data = btf__raw_data(obj->btf, &sz); 3122 kern_btf = btf__new(raw_data, sz); 3123 err = libbpf_get_error(kern_btf); 3124 if (err) 3125 return err; 3126 3127 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3128 btf__set_pointer_size(obj->btf, 8); 3129 err = bpf_object__sanitize_btf(obj, kern_btf); 3130 if (err) 3131 return err; 3132 } 3133 3134 if (obj->gen_loader) { 3135 __u32 raw_size = 0; 3136 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3137 3138 if (!raw_data) 3139 return -ENOMEM; 3140 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3141 /* Pretend to have valid FD to pass various fd >= 0 checks. 3142 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3143 */ 3144 btf__set_fd(kern_btf, 0); 3145 } else { 3146 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3147 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3148 obj->log_level ? 1 : 0); 3149 } 3150 if (sanitize) { 3151 if (!err) { 3152 /* move fd to libbpf's BTF */ 3153 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3154 btf__set_fd(kern_btf, -1); 3155 } 3156 btf__free(kern_btf); 3157 } 3158 report: 3159 if (err) { 3160 btf_mandatory = kernel_needs_btf(obj); 3161 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3162 btf_mandatory ? "BTF is mandatory, can't proceed." 3163 : "BTF is optional, ignoring."); 3164 if (!btf_mandatory) 3165 err = 0; 3166 } 3167 return err; 3168 } 3169 3170 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3171 { 3172 const char *name; 3173 3174 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3175 if (!name) { 3176 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3177 off, obj->path, elf_errmsg(-1)); 3178 return NULL; 3179 } 3180 3181 return name; 3182 } 3183 3184 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3185 { 3186 const char *name; 3187 3188 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3189 if (!name) { 3190 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3191 off, obj->path, elf_errmsg(-1)); 3192 return NULL; 3193 } 3194 3195 return name; 3196 } 3197 3198 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3199 { 3200 Elf_Scn *scn; 3201 3202 scn = elf_getscn(obj->efile.elf, idx); 3203 if (!scn) { 3204 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3205 idx, obj->path, elf_errmsg(-1)); 3206 return NULL; 3207 } 3208 return scn; 3209 } 3210 3211 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3212 { 3213 Elf_Scn *scn = NULL; 3214 Elf *elf = obj->efile.elf; 3215 const char *sec_name; 3216 3217 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3218 sec_name = elf_sec_name(obj, scn); 3219 if (!sec_name) 3220 return NULL; 3221 3222 if (strcmp(sec_name, name) != 0) 3223 continue; 3224 3225 return scn; 3226 } 3227 return NULL; 3228 } 3229 3230 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3231 { 3232 Elf64_Shdr *shdr; 3233 3234 if (!scn) 3235 return NULL; 3236 3237 shdr = elf64_getshdr(scn); 3238 if (!shdr) { 3239 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3240 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3241 return NULL; 3242 } 3243 3244 return shdr; 3245 } 3246 3247 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3248 { 3249 const char *name; 3250 Elf64_Shdr *sh; 3251 3252 if (!scn) 3253 return NULL; 3254 3255 sh = elf_sec_hdr(obj, scn); 3256 if (!sh) 3257 return NULL; 3258 3259 name = elf_sec_str(obj, sh->sh_name); 3260 if (!name) { 3261 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3262 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3263 return NULL; 3264 } 3265 3266 return name; 3267 } 3268 3269 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3270 { 3271 Elf_Data *data; 3272 3273 if (!scn) 3274 return NULL; 3275 3276 data = elf_getdata(scn, 0); 3277 if (!data) { 3278 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3279 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3280 obj->path, elf_errmsg(-1)); 3281 return NULL; 3282 } 3283 3284 return data; 3285 } 3286 3287 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3288 { 3289 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3290 return NULL; 3291 3292 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3293 } 3294 3295 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3296 { 3297 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3298 return NULL; 3299 3300 return (Elf64_Rel *)data->d_buf + idx; 3301 } 3302 3303 static bool is_sec_name_dwarf(const char *name) 3304 { 3305 /* approximation, but the actual list is too long */ 3306 return str_has_pfx(name, ".debug_"); 3307 } 3308 3309 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3310 { 3311 /* no special handling of .strtab */ 3312 if (hdr->sh_type == SHT_STRTAB) 3313 return true; 3314 3315 /* ignore .llvm_addrsig section as well */ 3316 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3317 return true; 3318 3319 /* no subprograms will lead to an empty .text section, ignore it */ 3320 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3321 strcmp(name, ".text") == 0) 3322 return true; 3323 3324 /* DWARF sections */ 3325 if (is_sec_name_dwarf(name)) 3326 return true; 3327 3328 if (str_has_pfx(name, ".rel")) { 3329 name += sizeof(".rel") - 1; 3330 /* DWARF section relocations */ 3331 if (is_sec_name_dwarf(name)) 3332 return true; 3333 3334 /* .BTF and .BTF.ext don't need relocations */ 3335 if (strcmp(name, BTF_ELF_SEC) == 0 || 3336 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3337 return true; 3338 } 3339 3340 return false; 3341 } 3342 3343 static int cmp_progs(const void *_a, const void *_b) 3344 { 3345 const struct bpf_program *a = _a; 3346 const struct bpf_program *b = _b; 3347 3348 if (a->sec_idx != b->sec_idx) 3349 return a->sec_idx < b->sec_idx ? -1 : 1; 3350 3351 /* sec_insn_off can't be the same within the section */ 3352 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3353 } 3354 3355 static int bpf_object__elf_collect(struct bpf_object *obj) 3356 { 3357 struct elf_sec_desc *sec_desc; 3358 Elf *elf = obj->efile.elf; 3359 Elf_Data *btf_ext_data = NULL; 3360 Elf_Data *btf_data = NULL; 3361 int idx = 0, err = 0; 3362 const char *name; 3363 Elf_Data *data; 3364 Elf_Scn *scn; 3365 Elf64_Shdr *sh; 3366 3367 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3368 * section. Since section count retrieved by elf_getshdrnum() does 3369 * include sec #0, it is already the necessary size of an array to keep 3370 * all the sections. 3371 */ 3372 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3373 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3374 obj->path, elf_errmsg(-1)); 3375 return -LIBBPF_ERRNO__FORMAT; 3376 } 3377 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3378 if (!obj->efile.secs) 3379 return -ENOMEM; 3380 3381 /* a bunch of ELF parsing functionality depends on processing symbols, 3382 * so do the first pass and find the symbol table 3383 */ 3384 scn = NULL; 3385 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3386 sh = elf_sec_hdr(obj, scn); 3387 if (!sh) 3388 return -LIBBPF_ERRNO__FORMAT; 3389 3390 if (sh->sh_type == SHT_SYMTAB) { 3391 if (obj->efile.symbols) { 3392 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3393 return -LIBBPF_ERRNO__FORMAT; 3394 } 3395 3396 data = elf_sec_data(obj, scn); 3397 if (!data) 3398 return -LIBBPF_ERRNO__FORMAT; 3399 3400 idx = elf_ndxscn(scn); 3401 3402 obj->efile.symbols = data; 3403 obj->efile.symbols_shndx = idx; 3404 obj->efile.strtabidx = sh->sh_link; 3405 } 3406 } 3407 3408 if (!obj->efile.symbols) { 3409 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3410 obj->path); 3411 return -ENOENT; 3412 } 3413 3414 scn = NULL; 3415 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3416 idx = elf_ndxscn(scn); 3417 sec_desc = &obj->efile.secs[idx]; 3418 3419 sh = elf_sec_hdr(obj, scn); 3420 if (!sh) 3421 return -LIBBPF_ERRNO__FORMAT; 3422 3423 name = elf_sec_str(obj, sh->sh_name); 3424 if (!name) 3425 return -LIBBPF_ERRNO__FORMAT; 3426 3427 if (ignore_elf_section(sh, name)) 3428 continue; 3429 3430 data = elf_sec_data(obj, scn); 3431 if (!data) 3432 return -LIBBPF_ERRNO__FORMAT; 3433 3434 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3435 idx, name, (unsigned long)data->d_size, 3436 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3437 (int)sh->sh_type); 3438 3439 if (strcmp(name, "license") == 0) { 3440 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3441 if (err) 3442 return err; 3443 } else if (strcmp(name, "version") == 0) { 3444 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3445 if (err) 3446 return err; 3447 } else if (strcmp(name, "maps") == 0) { 3448 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3449 return -ENOTSUP; 3450 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3451 obj->efile.btf_maps_shndx = idx; 3452 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3453 if (sh->sh_type != SHT_PROGBITS) 3454 return -LIBBPF_ERRNO__FORMAT; 3455 btf_data = data; 3456 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3457 if (sh->sh_type != SHT_PROGBITS) 3458 return -LIBBPF_ERRNO__FORMAT; 3459 btf_ext_data = data; 3460 } else if (sh->sh_type == SHT_SYMTAB) { 3461 /* already processed during the first pass above */ 3462 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3463 if (sh->sh_flags & SHF_EXECINSTR) { 3464 if (strcmp(name, ".text") == 0) 3465 obj->efile.text_shndx = idx; 3466 err = bpf_object__add_programs(obj, data, name, idx); 3467 if (err) 3468 return err; 3469 } else if (strcmp(name, DATA_SEC) == 0 || 3470 str_has_pfx(name, DATA_SEC ".")) { 3471 sec_desc->sec_type = SEC_DATA; 3472 sec_desc->shdr = sh; 3473 sec_desc->data = data; 3474 } else if (strcmp(name, RODATA_SEC) == 0 || 3475 str_has_pfx(name, RODATA_SEC ".")) { 3476 sec_desc->sec_type = SEC_RODATA; 3477 sec_desc->shdr = sh; 3478 sec_desc->data = data; 3479 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3480 obj->efile.st_ops_data = data; 3481 obj->efile.st_ops_shndx = idx; 3482 } else if (strcmp(name, STRUCT_OPS_LINK_SEC) == 0) { 3483 obj->efile.st_ops_link_data = data; 3484 obj->efile.st_ops_link_shndx = idx; 3485 } else { 3486 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3487 idx, name); 3488 } 3489 } else if (sh->sh_type == SHT_REL) { 3490 int targ_sec_idx = sh->sh_info; /* points to other section */ 3491 3492 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3493 targ_sec_idx >= obj->efile.sec_cnt) 3494 return -LIBBPF_ERRNO__FORMAT; 3495 3496 /* Only do relo for section with exec instructions */ 3497 if (!section_have_execinstr(obj, targ_sec_idx) && 3498 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3499 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) && 3500 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3501 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3502 idx, name, targ_sec_idx, 3503 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3504 continue; 3505 } 3506 3507 sec_desc->sec_type = SEC_RELO; 3508 sec_desc->shdr = sh; 3509 sec_desc->data = data; 3510 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 || 3511 str_has_pfx(name, BSS_SEC "."))) { 3512 sec_desc->sec_type = SEC_BSS; 3513 sec_desc->shdr = sh; 3514 sec_desc->data = data; 3515 } else { 3516 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3517 (size_t)sh->sh_size); 3518 } 3519 } 3520 3521 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3522 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3523 return -LIBBPF_ERRNO__FORMAT; 3524 } 3525 3526 /* sort BPF programs by section name and in-section instruction offset 3527 * for faster search 3528 */ 3529 if (obj->nr_programs) 3530 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3531 3532 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3533 } 3534 3535 static bool sym_is_extern(const Elf64_Sym *sym) 3536 { 3537 int bind = ELF64_ST_BIND(sym->st_info); 3538 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3539 return sym->st_shndx == SHN_UNDEF && 3540 (bind == STB_GLOBAL || bind == STB_WEAK) && 3541 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3542 } 3543 3544 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3545 { 3546 int bind = ELF64_ST_BIND(sym->st_info); 3547 int type = ELF64_ST_TYPE(sym->st_info); 3548 3549 /* in .text section */ 3550 if (sym->st_shndx != text_shndx) 3551 return false; 3552 3553 /* local function */ 3554 if (bind == STB_LOCAL && type == STT_SECTION) 3555 return true; 3556 3557 /* global function */ 3558 return bind == STB_GLOBAL && type == STT_FUNC; 3559 } 3560 3561 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3562 { 3563 const struct btf_type *t; 3564 const char *tname; 3565 int i, n; 3566 3567 if (!btf) 3568 return -ESRCH; 3569 3570 n = btf__type_cnt(btf); 3571 for (i = 1; i < n; i++) { 3572 t = btf__type_by_id(btf, i); 3573 3574 if (!btf_is_var(t) && !btf_is_func(t)) 3575 continue; 3576 3577 tname = btf__name_by_offset(btf, t->name_off); 3578 if (strcmp(tname, ext_name)) 3579 continue; 3580 3581 if (btf_is_var(t) && 3582 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3583 return -EINVAL; 3584 3585 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3586 return -EINVAL; 3587 3588 return i; 3589 } 3590 3591 return -ENOENT; 3592 } 3593 3594 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3595 const struct btf_var_secinfo *vs; 3596 const struct btf_type *t; 3597 int i, j, n; 3598 3599 if (!btf) 3600 return -ESRCH; 3601 3602 n = btf__type_cnt(btf); 3603 for (i = 1; i < n; i++) { 3604 t = btf__type_by_id(btf, i); 3605 3606 if (!btf_is_datasec(t)) 3607 continue; 3608 3609 vs = btf_var_secinfos(t); 3610 for (j = 0; j < btf_vlen(t); j++, vs++) { 3611 if (vs->type == ext_btf_id) 3612 return i; 3613 } 3614 } 3615 3616 return -ENOENT; 3617 } 3618 3619 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3620 bool *is_signed) 3621 { 3622 const struct btf_type *t; 3623 const char *name; 3624 3625 t = skip_mods_and_typedefs(btf, id, NULL); 3626 name = btf__name_by_offset(btf, t->name_off); 3627 3628 if (is_signed) 3629 *is_signed = false; 3630 switch (btf_kind(t)) { 3631 case BTF_KIND_INT: { 3632 int enc = btf_int_encoding(t); 3633 3634 if (enc & BTF_INT_BOOL) 3635 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3636 if (is_signed) 3637 *is_signed = enc & BTF_INT_SIGNED; 3638 if (t->size == 1) 3639 return KCFG_CHAR; 3640 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3641 return KCFG_UNKNOWN; 3642 return KCFG_INT; 3643 } 3644 case BTF_KIND_ENUM: 3645 if (t->size != 4) 3646 return KCFG_UNKNOWN; 3647 if (strcmp(name, "libbpf_tristate")) 3648 return KCFG_UNKNOWN; 3649 return KCFG_TRISTATE; 3650 case BTF_KIND_ENUM64: 3651 if (strcmp(name, "libbpf_tristate")) 3652 return KCFG_UNKNOWN; 3653 return KCFG_TRISTATE; 3654 case BTF_KIND_ARRAY: 3655 if (btf_array(t)->nelems == 0) 3656 return KCFG_UNKNOWN; 3657 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3658 return KCFG_UNKNOWN; 3659 return KCFG_CHAR_ARR; 3660 default: 3661 return KCFG_UNKNOWN; 3662 } 3663 } 3664 3665 static int cmp_externs(const void *_a, const void *_b) 3666 { 3667 const struct extern_desc *a = _a; 3668 const struct extern_desc *b = _b; 3669 3670 if (a->type != b->type) 3671 return a->type < b->type ? -1 : 1; 3672 3673 if (a->type == EXT_KCFG) { 3674 /* descending order by alignment requirements */ 3675 if (a->kcfg.align != b->kcfg.align) 3676 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3677 /* ascending order by size, within same alignment class */ 3678 if (a->kcfg.sz != b->kcfg.sz) 3679 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3680 } 3681 3682 /* resolve ties by name */ 3683 return strcmp(a->name, b->name); 3684 } 3685 3686 static int find_int_btf_id(const struct btf *btf) 3687 { 3688 const struct btf_type *t; 3689 int i, n; 3690 3691 n = btf__type_cnt(btf); 3692 for (i = 1; i < n; i++) { 3693 t = btf__type_by_id(btf, i); 3694 3695 if (btf_is_int(t) && btf_int_bits(t) == 32) 3696 return i; 3697 } 3698 3699 return 0; 3700 } 3701 3702 static int add_dummy_ksym_var(struct btf *btf) 3703 { 3704 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3705 const struct btf_var_secinfo *vs; 3706 const struct btf_type *sec; 3707 3708 if (!btf) 3709 return 0; 3710 3711 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3712 BTF_KIND_DATASEC); 3713 if (sec_btf_id < 0) 3714 return 0; 3715 3716 sec = btf__type_by_id(btf, sec_btf_id); 3717 vs = btf_var_secinfos(sec); 3718 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3719 const struct btf_type *vt; 3720 3721 vt = btf__type_by_id(btf, vs->type); 3722 if (btf_is_func(vt)) 3723 break; 3724 } 3725 3726 /* No func in ksyms sec. No need to add dummy var. */ 3727 if (i == btf_vlen(sec)) 3728 return 0; 3729 3730 int_btf_id = find_int_btf_id(btf); 3731 dummy_var_btf_id = btf__add_var(btf, 3732 "dummy_ksym", 3733 BTF_VAR_GLOBAL_ALLOCATED, 3734 int_btf_id); 3735 if (dummy_var_btf_id < 0) 3736 pr_warn("cannot create a dummy_ksym var\n"); 3737 3738 return dummy_var_btf_id; 3739 } 3740 3741 static int bpf_object__collect_externs(struct bpf_object *obj) 3742 { 3743 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3744 const struct btf_type *t; 3745 struct extern_desc *ext; 3746 int i, n, off, dummy_var_btf_id; 3747 const char *ext_name, *sec_name; 3748 Elf_Scn *scn; 3749 Elf64_Shdr *sh; 3750 3751 if (!obj->efile.symbols) 3752 return 0; 3753 3754 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3755 sh = elf_sec_hdr(obj, scn); 3756 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3757 return -LIBBPF_ERRNO__FORMAT; 3758 3759 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3760 if (dummy_var_btf_id < 0) 3761 return dummy_var_btf_id; 3762 3763 n = sh->sh_size / sh->sh_entsize; 3764 pr_debug("looking for externs among %d symbols...\n", n); 3765 3766 for (i = 0; i < n; i++) { 3767 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3768 3769 if (!sym) 3770 return -LIBBPF_ERRNO__FORMAT; 3771 if (!sym_is_extern(sym)) 3772 continue; 3773 ext_name = elf_sym_str(obj, sym->st_name); 3774 if (!ext_name || !ext_name[0]) 3775 continue; 3776 3777 ext = obj->externs; 3778 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3779 if (!ext) 3780 return -ENOMEM; 3781 obj->externs = ext; 3782 ext = &ext[obj->nr_extern]; 3783 memset(ext, 0, sizeof(*ext)); 3784 obj->nr_extern++; 3785 3786 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3787 if (ext->btf_id <= 0) { 3788 pr_warn("failed to find BTF for extern '%s': %d\n", 3789 ext_name, ext->btf_id); 3790 return ext->btf_id; 3791 } 3792 t = btf__type_by_id(obj->btf, ext->btf_id); 3793 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3794 ext->sym_idx = i; 3795 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3796 3797 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3798 if (ext->sec_btf_id <= 0) { 3799 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3800 ext_name, ext->btf_id, ext->sec_btf_id); 3801 return ext->sec_btf_id; 3802 } 3803 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3804 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3805 3806 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3807 if (btf_is_func(t)) { 3808 pr_warn("extern function %s is unsupported under %s section\n", 3809 ext->name, KCONFIG_SEC); 3810 return -ENOTSUP; 3811 } 3812 kcfg_sec = sec; 3813 ext->type = EXT_KCFG; 3814 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3815 if (ext->kcfg.sz <= 0) { 3816 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3817 ext_name, ext->kcfg.sz); 3818 return ext->kcfg.sz; 3819 } 3820 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3821 if (ext->kcfg.align <= 0) { 3822 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3823 ext_name, ext->kcfg.align); 3824 return -EINVAL; 3825 } 3826 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3827 &ext->kcfg.is_signed); 3828 if (ext->kcfg.type == KCFG_UNKNOWN) { 3829 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 3830 return -ENOTSUP; 3831 } 3832 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3833 ksym_sec = sec; 3834 ext->type = EXT_KSYM; 3835 skip_mods_and_typedefs(obj->btf, t->type, 3836 &ext->ksym.type_id); 3837 } else { 3838 pr_warn("unrecognized extern section '%s'\n", sec_name); 3839 return -ENOTSUP; 3840 } 3841 } 3842 pr_debug("collected %d externs total\n", obj->nr_extern); 3843 3844 if (!obj->nr_extern) 3845 return 0; 3846 3847 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3848 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3849 3850 /* for .ksyms section, we need to turn all externs into allocated 3851 * variables in BTF to pass kernel verification; we do this by 3852 * pretending that each extern is a 8-byte variable 3853 */ 3854 if (ksym_sec) { 3855 /* find existing 4-byte integer type in BTF to use for fake 3856 * extern variables in DATASEC 3857 */ 3858 int int_btf_id = find_int_btf_id(obj->btf); 3859 /* For extern function, a dummy_var added earlier 3860 * will be used to replace the vs->type and 3861 * its name string will be used to refill 3862 * the missing param's name. 3863 */ 3864 const struct btf_type *dummy_var; 3865 3866 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3867 for (i = 0; i < obj->nr_extern; i++) { 3868 ext = &obj->externs[i]; 3869 if (ext->type != EXT_KSYM) 3870 continue; 3871 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3872 i, ext->sym_idx, ext->name); 3873 } 3874 3875 sec = ksym_sec; 3876 n = btf_vlen(sec); 3877 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3878 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3879 struct btf_type *vt; 3880 3881 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3882 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3883 ext = find_extern_by_name(obj, ext_name); 3884 if (!ext) { 3885 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3886 btf_kind_str(vt), ext_name); 3887 return -ESRCH; 3888 } 3889 if (btf_is_func(vt)) { 3890 const struct btf_type *func_proto; 3891 struct btf_param *param; 3892 int j; 3893 3894 func_proto = btf__type_by_id(obj->btf, 3895 vt->type); 3896 param = btf_params(func_proto); 3897 /* Reuse the dummy_var string if the 3898 * func proto does not have param name. 3899 */ 3900 for (j = 0; j < btf_vlen(func_proto); j++) 3901 if (param[j].type && !param[j].name_off) 3902 param[j].name_off = 3903 dummy_var->name_off; 3904 vs->type = dummy_var_btf_id; 3905 vt->info &= ~0xffff; 3906 vt->info |= BTF_FUNC_GLOBAL; 3907 } else { 3908 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3909 vt->type = int_btf_id; 3910 } 3911 vs->offset = off; 3912 vs->size = sizeof(int); 3913 } 3914 sec->size = off; 3915 } 3916 3917 if (kcfg_sec) { 3918 sec = kcfg_sec; 3919 /* for kcfg externs calculate their offsets within a .kconfig map */ 3920 off = 0; 3921 for (i = 0; i < obj->nr_extern; i++) { 3922 ext = &obj->externs[i]; 3923 if (ext->type != EXT_KCFG) 3924 continue; 3925 3926 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3927 off = ext->kcfg.data_off + ext->kcfg.sz; 3928 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3929 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3930 } 3931 sec->size = off; 3932 n = btf_vlen(sec); 3933 for (i = 0; i < n; i++) { 3934 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3935 3936 t = btf__type_by_id(obj->btf, vs->type); 3937 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3938 ext = find_extern_by_name(obj, ext_name); 3939 if (!ext) { 3940 pr_warn("failed to find extern definition for BTF var '%s'\n", 3941 ext_name); 3942 return -ESRCH; 3943 } 3944 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3945 vs->offset = ext->kcfg.data_off; 3946 } 3947 } 3948 return 0; 3949 } 3950 3951 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 3952 { 3953 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3954 } 3955 3956 struct bpf_program * 3957 bpf_object__find_program_by_name(const struct bpf_object *obj, 3958 const char *name) 3959 { 3960 struct bpf_program *prog; 3961 3962 bpf_object__for_each_program(prog, obj) { 3963 if (prog_is_subprog(obj, prog)) 3964 continue; 3965 if (!strcmp(prog->name, name)) 3966 return prog; 3967 } 3968 return errno = ENOENT, NULL; 3969 } 3970 3971 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3972 int shndx) 3973 { 3974 switch (obj->efile.secs[shndx].sec_type) { 3975 case SEC_BSS: 3976 case SEC_DATA: 3977 case SEC_RODATA: 3978 return true; 3979 default: 3980 return false; 3981 } 3982 } 3983 3984 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3985 int shndx) 3986 { 3987 return shndx == obj->efile.btf_maps_shndx; 3988 } 3989 3990 static enum libbpf_map_type 3991 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3992 { 3993 if (shndx == obj->efile.symbols_shndx) 3994 return LIBBPF_MAP_KCONFIG; 3995 3996 switch (obj->efile.secs[shndx].sec_type) { 3997 case SEC_BSS: 3998 return LIBBPF_MAP_BSS; 3999 case SEC_DATA: 4000 return LIBBPF_MAP_DATA; 4001 case SEC_RODATA: 4002 return LIBBPF_MAP_RODATA; 4003 default: 4004 return LIBBPF_MAP_UNSPEC; 4005 } 4006 } 4007 4008 static int bpf_program__record_reloc(struct bpf_program *prog, 4009 struct reloc_desc *reloc_desc, 4010 __u32 insn_idx, const char *sym_name, 4011 const Elf64_Sym *sym, const Elf64_Rel *rel) 4012 { 4013 struct bpf_insn *insn = &prog->insns[insn_idx]; 4014 size_t map_idx, nr_maps = prog->obj->nr_maps; 4015 struct bpf_object *obj = prog->obj; 4016 __u32 shdr_idx = sym->st_shndx; 4017 enum libbpf_map_type type; 4018 const char *sym_sec_name; 4019 struct bpf_map *map; 4020 4021 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4022 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4023 prog->name, sym_name, insn_idx, insn->code); 4024 return -LIBBPF_ERRNO__RELOC; 4025 } 4026 4027 if (sym_is_extern(sym)) { 4028 int sym_idx = ELF64_R_SYM(rel->r_info); 4029 int i, n = obj->nr_extern; 4030 struct extern_desc *ext; 4031 4032 for (i = 0; i < n; i++) { 4033 ext = &obj->externs[i]; 4034 if (ext->sym_idx == sym_idx) 4035 break; 4036 } 4037 if (i >= n) { 4038 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4039 prog->name, sym_name, sym_idx); 4040 return -LIBBPF_ERRNO__RELOC; 4041 } 4042 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4043 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4044 if (insn->code == (BPF_JMP | BPF_CALL)) 4045 reloc_desc->type = RELO_EXTERN_CALL; 4046 else 4047 reloc_desc->type = RELO_EXTERN_LD64; 4048 reloc_desc->insn_idx = insn_idx; 4049 reloc_desc->ext_idx = i; 4050 return 0; 4051 } 4052 4053 /* sub-program call relocation */ 4054 if (is_call_insn(insn)) { 4055 if (insn->src_reg != BPF_PSEUDO_CALL) { 4056 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4057 return -LIBBPF_ERRNO__RELOC; 4058 } 4059 /* text_shndx can be 0, if no default "main" program exists */ 4060 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4061 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4062 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4063 prog->name, sym_name, sym_sec_name); 4064 return -LIBBPF_ERRNO__RELOC; 4065 } 4066 if (sym->st_value % BPF_INSN_SZ) { 4067 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4068 prog->name, sym_name, (size_t)sym->st_value); 4069 return -LIBBPF_ERRNO__RELOC; 4070 } 4071 reloc_desc->type = RELO_CALL; 4072 reloc_desc->insn_idx = insn_idx; 4073 reloc_desc->sym_off = sym->st_value; 4074 return 0; 4075 } 4076 4077 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4078 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4079 prog->name, sym_name, shdr_idx); 4080 return -LIBBPF_ERRNO__RELOC; 4081 } 4082 4083 /* loading subprog addresses */ 4084 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4085 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4086 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4087 */ 4088 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4089 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4090 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4091 return -LIBBPF_ERRNO__RELOC; 4092 } 4093 4094 reloc_desc->type = RELO_SUBPROG_ADDR; 4095 reloc_desc->insn_idx = insn_idx; 4096 reloc_desc->sym_off = sym->st_value; 4097 return 0; 4098 } 4099 4100 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4101 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4102 4103 /* generic map reference relocation */ 4104 if (type == LIBBPF_MAP_UNSPEC) { 4105 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4106 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4107 prog->name, sym_name, sym_sec_name); 4108 return -LIBBPF_ERRNO__RELOC; 4109 } 4110 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4111 map = &obj->maps[map_idx]; 4112 if (map->libbpf_type != type || 4113 map->sec_idx != sym->st_shndx || 4114 map->sec_offset != sym->st_value) 4115 continue; 4116 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4117 prog->name, map_idx, map->name, map->sec_idx, 4118 map->sec_offset, insn_idx); 4119 break; 4120 } 4121 if (map_idx >= nr_maps) { 4122 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4123 prog->name, sym_sec_name, (size_t)sym->st_value); 4124 return -LIBBPF_ERRNO__RELOC; 4125 } 4126 reloc_desc->type = RELO_LD64; 4127 reloc_desc->insn_idx = insn_idx; 4128 reloc_desc->map_idx = map_idx; 4129 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4130 return 0; 4131 } 4132 4133 /* global data map relocation */ 4134 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4135 pr_warn("prog '%s': bad data relo against section '%s'\n", 4136 prog->name, sym_sec_name); 4137 return -LIBBPF_ERRNO__RELOC; 4138 } 4139 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4140 map = &obj->maps[map_idx]; 4141 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4142 continue; 4143 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4144 prog->name, map_idx, map->name, map->sec_idx, 4145 map->sec_offset, insn_idx); 4146 break; 4147 } 4148 if (map_idx >= nr_maps) { 4149 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4150 prog->name, sym_sec_name); 4151 return -LIBBPF_ERRNO__RELOC; 4152 } 4153 4154 reloc_desc->type = RELO_DATA; 4155 reloc_desc->insn_idx = insn_idx; 4156 reloc_desc->map_idx = map_idx; 4157 reloc_desc->sym_off = sym->st_value; 4158 return 0; 4159 } 4160 4161 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4162 { 4163 return insn_idx >= prog->sec_insn_off && 4164 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4165 } 4166 4167 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4168 size_t sec_idx, size_t insn_idx) 4169 { 4170 int l = 0, r = obj->nr_programs - 1, m; 4171 struct bpf_program *prog; 4172 4173 if (!obj->nr_programs) 4174 return NULL; 4175 4176 while (l < r) { 4177 m = l + (r - l + 1) / 2; 4178 prog = &obj->programs[m]; 4179 4180 if (prog->sec_idx < sec_idx || 4181 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4182 l = m; 4183 else 4184 r = m - 1; 4185 } 4186 /* matching program could be at index l, but it still might be the 4187 * wrong one, so we need to double check conditions for the last time 4188 */ 4189 prog = &obj->programs[l]; 4190 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4191 return prog; 4192 return NULL; 4193 } 4194 4195 static int 4196 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4197 { 4198 const char *relo_sec_name, *sec_name; 4199 size_t sec_idx = shdr->sh_info, sym_idx; 4200 struct bpf_program *prog; 4201 struct reloc_desc *relos; 4202 int err, i, nrels; 4203 const char *sym_name; 4204 __u32 insn_idx; 4205 Elf_Scn *scn; 4206 Elf_Data *scn_data; 4207 Elf64_Sym *sym; 4208 Elf64_Rel *rel; 4209 4210 if (sec_idx >= obj->efile.sec_cnt) 4211 return -EINVAL; 4212 4213 scn = elf_sec_by_idx(obj, sec_idx); 4214 scn_data = elf_sec_data(obj, scn); 4215 4216 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4217 sec_name = elf_sec_name(obj, scn); 4218 if (!relo_sec_name || !sec_name) 4219 return -EINVAL; 4220 4221 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4222 relo_sec_name, sec_idx, sec_name); 4223 nrels = shdr->sh_size / shdr->sh_entsize; 4224 4225 for (i = 0; i < nrels; i++) { 4226 rel = elf_rel_by_idx(data, i); 4227 if (!rel) { 4228 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4229 return -LIBBPF_ERRNO__FORMAT; 4230 } 4231 4232 sym_idx = ELF64_R_SYM(rel->r_info); 4233 sym = elf_sym_by_idx(obj, sym_idx); 4234 if (!sym) { 4235 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4236 relo_sec_name, sym_idx, i); 4237 return -LIBBPF_ERRNO__FORMAT; 4238 } 4239 4240 if (sym->st_shndx >= obj->efile.sec_cnt) { 4241 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4242 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4243 return -LIBBPF_ERRNO__FORMAT; 4244 } 4245 4246 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4247 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4248 relo_sec_name, (size_t)rel->r_offset, i); 4249 return -LIBBPF_ERRNO__FORMAT; 4250 } 4251 4252 insn_idx = rel->r_offset / BPF_INSN_SZ; 4253 /* relocations against static functions are recorded as 4254 * relocations against the section that contains a function; 4255 * in such case, symbol will be STT_SECTION and sym.st_name 4256 * will point to empty string (0), so fetch section name 4257 * instead 4258 */ 4259 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4260 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4261 else 4262 sym_name = elf_sym_str(obj, sym->st_name); 4263 sym_name = sym_name ?: "<?"; 4264 4265 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4266 relo_sec_name, i, insn_idx, sym_name); 4267 4268 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4269 if (!prog) { 4270 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4271 relo_sec_name, i, sec_name, insn_idx); 4272 continue; 4273 } 4274 4275 relos = libbpf_reallocarray(prog->reloc_desc, 4276 prog->nr_reloc + 1, sizeof(*relos)); 4277 if (!relos) 4278 return -ENOMEM; 4279 prog->reloc_desc = relos; 4280 4281 /* adjust insn_idx to local BPF program frame of reference */ 4282 insn_idx -= prog->sec_insn_off; 4283 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4284 insn_idx, sym_name, sym, rel); 4285 if (err) 4286 return err; 4287 4288 prog->nr_reloc++; 4289 } 4290 return 0; 4291 } 4292 4293 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4294 { 4295 int id; 4296 4297 if (!obj->btf) 4298 return -ENOENT; 4299 4300 /* if it's BTF-defined map, we don't need to search for type IDs. 4301 * For struct_ops map, it does not need btf_key_type_id and 4302 * btf_value_type_id. 4303 */ 4304 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4305 return 0; 4306 4307 /* 4308 * LLVM annotates global data differently in BTF, that is, 4309 * only as '.data', '.bss' or '.rodata'. 4310 */ 4311 if (!bpf_map__is_internal(map)) 4312 return -ENOENT; 4313 4314 id = btf__find_by_name(obj->btf, map->real_name); 4315 if (id < 0) 4316 return id; 4317 4318 map->btf_key_type_id = 0; 4319 map->btf_value_type_id = id; 4320 return 0; 4321 } 4322 4323 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4324 { 4325 char file[PATH_MAX], buff[4096]; 4326 FILE *fp; 4327 __u32 val; 4328 int err; 4329 4330 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4331 memset(info, 0, sizeof(*info)); 4332 4333 fp = fopen(file, "r"); 4334 if (!fp) { 4335 err = -errno; 4336 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4337 err); 4338 return err; 4339 } 4340 4341 while (fgets(buff, sizeof(buff), fp)) { 4342 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4343 info->type = val; 4344 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4345 info->key_size = val; 4346 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4347 info->value_size = val; 4348 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4349 info->max_entries = val; 4350 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4351 info->map_flags = val; 4352 } 4353 4354 fclose(fp); 4355 4356 return 0; 4357 } 4358 4359 bool bpf_map__autocreate(const struct bpf_map *map) 4360 { 4361 return map->autocreate; 4362 } 4363 4364 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4365 { 4366 if (map->obj->loaded) 4367 return libbpf_err(-EBUSY); 4368 4369 map->autocreate = autocreate; 4370 return 0; 4371 } 4372 4373 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4374 { 4375 struct bpf_map_info info; 4376 __u32 len = sizeof(info), name_len; 4377 int new_fd, err; 4378 char *new_name; 4379 4380 memset(&info, 0, len); 4381 err = bpf_map_get_info_by_fd(fd, &info, &len); 4382 if (err && errno == EINVAL) 4383 err = bpf_get_map_info_from_fdinfo(fd, &info); 4384 if (err) 4385 return libbpf_err(err); 4386 4387 name_len = strlen(info.name); 4388 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4389 new_name = strdup(map->name); 4390 else 4391 new_name = strdup(info.name); 4392 4393 if (!new_name) 4394 return libbpf_err(-errno); 4395 4396 new_fd = open("/", O_RDONLY | O_CLOEXEC); 4397 if (new_fd < 0) { 4398 err = -errno; 4399 goto err_free_new_name; 4400 } 4401 4402 new_fd = dup3(fd, new_fd, O_CLOEXEC); 4403 if (new_fd < 0) { 4404 err = -errno; 4405 goto err_close_new_fd; 4406 } 4407 4408 err = zclose(map->fd); 4409 if (err) { 4410 err = -errno; 4411 goto err_close_new_fd; 4412 } 4413 free(map->name); 4414 4415 map->fd = new_fd; 4416 map->name = new_name; 4417 map->def.type = info.type; 4418 map->def.key_size = info.key_size; 4419 map->def.value_size = info.value_size; 4420 map->def.max_entries = info.max_entries; 4421 map->def.map_flags = info.map_flags; 4422 map->btf_key_type_id = info.btf_key_type_id; 4423 map->btf_value_type_id = info.btf_value_type_id; 4424 map->reused = true; 4425 map->map_extra = info.map_extra; 4426 4427 return 0; 4428 4429 err_close_new_fd: 4430 close(new_fd); 4431 err_free_new_name: 4432 free(new_name); 4433 return libbpf_err(err); 4434 } 4435 4436 __u32 bpf_map__max_entries(const struct bpf_map *map) 4437 { 4438 return map->def.max_entries; 4439 } 4440 4441 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4442 { 4443 if (!bpf_map_type__is_map_in_map(map->def.type)) 4444 return errno = EINVAL, NULL; 4445 4446 return map->inner_map; 4447 } 4448 4449 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4450 { 4451 if (map->obj->loaded) 4452 return libbpf_err(-EBUSY); 4453 4454 map->def.max_entries = max_entries; 4455 4456 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4457 if (map_is_ringbuf(map)) 4458 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4459 4460 return 0; 4461 } 4462 4463 static int 4464 bpf_object__probe_loading(struct bpf_object *obj) 4465 { 4466 char *cp, errmsg[STRERR_BUFSIZE]; 4467 struct bpf_insn insns[] = { 4468 BPF_MOV64_IMM(BPF_REG_0, 0), 4469 BPF_EXIT_INSN(), 4470 }; 4471 int ret, insn_cnt = ARRAY_SIZE(insns); 4472 4473 if (obj->gen_loader) 4474 return 0; 4475 4476 ret = bump_rlimit_memlock(); 4477 if (ret) 4478 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4479 4480 /* make sure basic loading works */ 4481 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4482 if (ret < 0) 4483 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4484 if (ret < 0) { 4485 ret = errno; 4486 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4487 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4488 "program. Make sure your kernel supports BPF " 4489 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4490 "set to big enough value.\n", __func__, cp, ret); 4491 return -ret; 4492 } 4493 close(ret); 4494 4495 return 0; 4496 } 4497 4498 static int probe_fd(int fd) 4499 { 4500 if (fd >= 0) 4501 close(fd); 4502 return fd >= 0; 4503 } 4504 4505 static int probe_kern_prog_name(void) 4506 { 4507 const size_t attr_sz = offsetofend(union bpf_attr, prog_name); 4508 struct bpf_insn insns[] = { 4509 BPF_MOV64_IMM(BPF_REG_0, 0), 4510 BPF_EXIT_INSN(), 4511 }; 4512 union bpf_attr attr; 4513 int ret; 4514 4515 memset(&attr, 0, attr_sz); 4516 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4517 attr.license = ptr_to_u64("GPL"); 4518 attr.insns = ptr_to_u64(insns); 4519 attr.insn_cnt = (__u32)ARRAY_SIZE(insns); 4520 libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name)); 4521 4522 /* make sure loading with name works */ 4523 ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS); 4524 return probe_fd(ret); 4525 } 4526 4527 static int probe_kern_global_data(void) 4528 { 4529 char *cp, errmsg[STRERR_BUFSIZE]; 4530 struct bpf_insn insns[] = { 4531 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4532 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4533 BPF_MOV64_IMM(BPF_REG_0, 0), 4534 BPF_EXIT_INSN(), 4535 }; 4536 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4537 4538 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL); 4539 if (map < 0) { 4540 ret = -errno; 4541 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4542 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4543 __func__, cp, -ret); 4544 return ret; 4545 } 4546 4547 insns[0].imm = map; 4548 4549 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4550 close(map); 4551 return probe_fd(ret); 4552 } 4553 4554 static int probe_kern_btf(void) 4555 { 4556 static const char strs[] = "\0int"; 4557 __u32 types[] = { 4558 /* int */ 4559 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4560 }; 4561 4562 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4563 strs, sizeof(strs))); 4564 } 4565 4566 static int probe_kern_btf_func(void) 4567 { 4568 static const char strs[] = "\0int\0x\0a"; 4569 /* void x(int a) {} */ 4570 __u32 types[] = { 4571 /* int */ 4572 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4573 /* FUNC_PROTO */ /* [2] */ 4574 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4575 BTF_PARAM_ENC(7, 1), 4576 /* FUNC x */ /* [3] */ 4577 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4578 }; 4579 4580 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4581 strs, sizeof(strs))); 4582 } 4583 4584 static int probe_kern_btf_func_global(void) 4585 { 4586 static const char strs[] = "\0int\0x\0a"; 4587 /* static void x(int a) {} */ 4588 __u32 types[] = { 4589 /* int */ 4590 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4591 /* FUNC_PROTO */ /* [2] */ 4592 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4593 BTF_PARAM_ENC(7, 1), 4594 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4595 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4596 }; 4597 4598 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4599 strs, sizeof(strs))); 4600 } 4601 4602 static int probe_kern_btf_datasec(void) 4603 { 4604 static const char strs[] = "\0x\0.data"; 4605 /* static int a; */ 4606 __u32 types[] = { 4607 /* int */ 4608 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4609 /* VAR x */ /* [2] */ 4610 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4611 BTF_VAR_STATIC, 4612 /* DATASEC val */ /* [3] */ 4613 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4614 BTF_VAR_SECINFO_ENC(2, 0, 4), 4615 }; 4616 4617 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4618 strs, sizeof(strs))); 4619 } 4620 4621 static int probe_kern_btf_float(void) 4622 { 4623 static const char strs[] = "\0float"; 4624 __u32 types[] = { 4625 /* float */ 4626 BTF_TYPE_FLOAT_ENC(1, 4), 4627 }; 4628 4629 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4630 strs, sizeof(strs))); 4631 } 4632 4633 static int probe_kern_btf_decl_tag(void) 4634 { 4635 static const char strs[] = "\0tag"; 4636 __u32 types[] = { 4637 /* int */ 4638 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4639 /* VAR x */ /* [2] */ 4640 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4641 BTF_VAR_STATIC, 4642 /* attr */ 4643 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4644 }; 4645 4646 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4647 strs, sizeof(strs))); 4648 } 4649 4650 static int probe_kern_btf_type_tag(void) 4651 { 4652 static const char strs[] = "\0tag"; 4653 __u32 types[] = { 4654 /* int */ 4655 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4656 /* attr */ 4657 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4658 /* ptr */ 4659 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4660 }; 4661 4662 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4663 strs, sizeof(strs))); 4664 } 4665 4666 static int probe_kern_array_mmap(void) 4667 { 4668 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4669 int fd; 4670 4671 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts); 4672 return probe_fd(fd); 4673 } 4674 4675 static int probe_kern_exp_attach_type(void) 4676 { 4677 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4678 struct bpf_insn insns[] = { 4679 BPF_MOV64_IMM(BPF_REG_0, 0), 4680 BPF_EXIT_INSN(), 4681 }; 4682 int fd, insn_cnt = ARRAY_SIZE(insns); 4683 4684 /* use any valid combination of program type and (optional) 4685 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4686 * to see if kernel supports expected_attach_type field for 4687 * BPF_PROG_LOAD command 4688 */ 4689 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4690 return probe_fd(fd); 4691 } 4692 4693 static int probe_kern_probe_read_kernel(void) 4694 { 4695 struct bpf_insn insns[] = { 4696 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4697 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4698 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4699 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4700 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4701 BPF_EXIT_INSN(), 4702 }; 4703 int fd, insn_cnt = ARRAY_SIZE(insns); 4704 4705 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4706 return probe_fd(fd); 4707 } 4708 4709 static int probe_prog_bind_map(void) 4710 { 4711 char *cp, errmsg[STRERR_BUFSIZE]; 4712 struct bpf_insn insns[] = { 4713 BPF_MOV64_IMM(BPF_REG_0, 0), 4714 BPF_EXIT_INSN(), 4715 }; 4716 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4717 4718 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL); 4719 if (map < 0) { 4720 ret = -errno; 4721 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4722 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4723 __func__, cp, -ret); 4724 return ret; 4725 } 4726 4727 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4728 if (prog < 0) { 4729 close(map); 4730 return 0; 4731 } 4732 4733 ret = bpf_prog_bind_map(prog, map, NULL); 4734 4735 close(map); 4736 close(prog); 4737 4738 return ret >= 0; 4739 } 4740 4741 static int probe_module_btf(void) 4742 { 4743 static const char strs[] = "\0int"; 4744 __u32 types[] = { 4745 /* int */ 4746 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4747 }; 4748 struct bpf_btf_info info; 4749 __u32 len = sizeof(info); 4750 char name[16]; 4751 int fd, err; 4752 4753 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4754 if (fd < 0) 4755 return 0; /* BTF not supported at all */ 4756 4757 memset(&info, 0, sizeof(info)); 4758 info.name = ptr_to_u64(name); 4759 info.name_len = sizeof(name); 4760 4761 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4762 * kernel's module BTF support coincides with support for 4763 * name/name_len fields in struct bpf_btf_info. 4764 */ 4765 err = bpf_btf_get_info_by_fd(fd, &info, &len); 4766 close(fd); 4767 return !err; 4768 } 4769 4770 static int probe_perf_link(void) 4771 { 4772 struct bpf_insn insns[] = { 4773 BPF_MOV64_IMM(BPF_REG_0, 0), 4774 BPF_EXIT_INSN(), 4775 }; 4776 int prog_fd, link_fd, err; 4777 4778 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4779 insns, ARRAY_SIZE(insns), NULL); 4780 if (prog_fd < 0) 4781 return -errno; 4782 4783 /* use invalid perf_event FD to get EBADF, if link is supported; 4784 * otherwise EINVAL should be returned 4785 */ 4786 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4787 err = -errno; /* close() can clobber errno */ 4788 4789 if (link_fd >= 0) 4790 close(link_fd); 4791 close(prog_fd); 4792 4793 return link_fd < 0 && err == -EBADF; 4794 } 4795 4796 static int probe_kern_bpf_cookie(void) 4797 { 4798 struct bpf_insn insns[] = { 4799 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie), 4800 BPF_EXIT_INSN(), 4801 }; 4802 int ret, insn_cnt = ARRAY_SIZE(insns); 4803 4804 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4805 return probe_fd(ret); 4806 } 4807 4808 static int probe_kern_btf_enum64(void) 4809 { 4810 static const char strs[] = "\0enum64"; 4811 __u32 types[] = { 4812 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8), 4813 }; 4814 4815 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4816 strs, sizeof(strs))); 4817 } 4818 4819 static int probe_kern_syscall_wrapper(void); 4820 4821 enum kern_feature_result { 4822 FEAT_UNKNOWN = 0, 4823 FEAT_SUPPORTED = 1, 4824 FEAT_MISSING = 2, 4825 }; 4826 4827 typedef int (*feature_probe_fn)(void); 4828 4829 static struct kern_feature_desc { 4830 const char *desc; 4831 feature_probe_fn probe; 4832 enum kern_feature_result res; 4833 } feature_probes[__FEAT_CNT] = { 4834 [FEAT_PROG_NAME] = { 4835 "BPF program name", probe_kern_prog_name, 4836 }, 4837 [FEAT_GLOBAL_DATA] = { 4838 "global variables", probe_kern_global_data, 4839 }, 4840 [FEAT_BTF] = { 4841 "minimal BTF", probe_kern_btf, 4842 }, 4843 [FEAT_BTF_FUNC] = { 4844 "BTF functions", probe_kern_btf_func, 4845 }, 4846 [FEAT_BTF_GLOBAL_FUNC] = { 4847 "BTF global function", probe_kern_btf_func_global, 4848 }, 4849 [FEAT_BTF_DATASEC] = { 4850 "BTF data section and variable", probe_kern_btf_datasec, 4851 }, 4852 [FEAT_ARRAY_MMAP] = { 4853 "ARRAY map mmap()", probe_kern_array_mmap, 4854 }, 4855 [FEAT_EXP_ATTACH_TYPE] = { 4856 "BPF_PROG_LOAD expected_attach_type attribute", 4857 probe_kern_exp_attach_type, 4858 }, 4859 [FEAT_PROBE_READ_KERN] = { 4860 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4861 }, 4862 [FEAT_PROG_BIND_MAP] = { 4863 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4864 }, 4865 [FEAT_MODULE_BTF] = { 4866 "module BTF support", probe_module_btf, 4867 }, 4868 [FEAT_BTF_FLOAT] = { 4869 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4870 }, 4871 [FEAT_PERF_LINK] = { 4872 "BPF perf link support", probe_perf_link, 4873 }, 4874 [FEAT_BTF_DECL_TAG] = { 4875 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 4876 }, 4877 [FEAT_BTF_TYPE_TAG] = { 4878 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 4879 }, 4880 [FEAT_MEMCG_ACCOUNT] = { 4881 "memcg-based memory accounting", probe_memcg_account, 4882 }, 4883 [FEAT_BPF_COOKIE] = { 4884 "BPF cookie support", probe_kern_bpf_cookie, 4885 }, 4886 [FEAT_BTF_ENUM64] = { 4887 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64, 4888 }, 4889 [FEAT_SYSCALL_WRAPPER] = { 4890 "Kernel using syscall wrapper", probe_kern_syscall_wrapper, 4891 }, 4892 }; 4893 4894 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4895 { 4896 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4897 int ret; 4898 4899 if (obj && obj->gen_loader) 4900 /* To generate loader program assume the latest kernel 4901 * to avoid doing extra prog_load, map_create syscalls. 4902 */ 4903 return true; 4904 4905 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4906 ret = feat->probe(); 4907 if (ret > 0) { 4908 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4909 } else if (ret == 0) { 4910 WRITE_ONCE(feat->res, FEAT_MISSING); 4911 } else { 4912 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4913 WRITE_ONCE(feat->res, FEAT_MISSING); 4914 } 4915 } 4916 4917 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4918 } 4919 4920 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4921 { 4922 struct bpf_map_info map_info; 4923 char msg[STRERR_BUFSIZE]; 4924 __u32 map_info_len = sizeof(map_info); 4925 int err; 4926 4927 memset(&map_info, 0, map_info_len); 4928 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len); 4929 if (err && errno == EINVAL) 4930 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 4931 if (err) { 4932 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 4933 libbpf_strerror_r(errno, msg, sizeof(msg))); 4934 return false; 4935 } 4936 4937 return (map_info.type == map->def.type && 4938 map_info.key_size == map->def.key_size && 4939 map_info.value_size == map->def.value_size && 4940 map_info.max_entries == map->def.max_entries && 4941 map_info.map_flags == map->def.map_flags && 4942 map_info.map_extra == map->map_extra); 4943 } 4944 4945 static int 4946 bpf_object__reuse_map(struct bpf_map *map) 4947 { 4948 char *cp, errmsg[STRERR_BUFSIZE]; 4949 int err, pin_fd; 4950 4951 pin_fd = bpf_obj_get(map->pin_path); 4952 if (pin_fd < 0) { 4953 err = -errno; 4954 if (err == -ENOENT) { 4955 pr_debug("found no pinned map to reuse at '%s'\n", 4956 map->pin_path); 4957 return 0; 4958 } 4959 4960 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4961 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4962 map->pin_path, cp); 4963 return err; 4964 } 4965 4966 if (!map_is_reuse_compat(map, pin_fd)) { 4967 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4968 map->pin_path); 4969 close(pin_fd); 4970 return -EINVAL; 4971 } 4972 4973 err = bpf_map__reuse_fd(map, pin_fd); 4974 close(pin_fd); 4975 if (err) 4976 return err; 4977 4978 map->pinned = true; 4979 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4980 4981 return 0; 4982 } 4983 4984 static int 4985 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4986 { 4987 enum libbpf_map_type map_type = map->libbpf_type; 4988 char *cp, errmsg[STRERR_BUFSIZE]; 4989 int err, zero = 0; 4990 4991 if (obj->gen_loader) { 4992 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 4993 map->mmaped, map->def.value_size); 4994 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 4995 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 4996 return 0; 4997 } 4998 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4999 if (err) { 5000 err = -errno; 5001 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5002 pr_warn("Error setting initial map(%s) contents: %s\n", 5003 map->name, cp); 5004 return err; 5005 } 5006 5007 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5008 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5009 err = bpf_map_freeze(map->fd); 5010 if (err) { 5011 err = -errno; 5012 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5013 pr_warn("Error freezing map(%s) as read-only: %s\n", 5014 map->name, cp); 5015 return err; 5016 } 5017 } 5018 return 0; 5019 } 5020 5021 static void bpf_map__destroy(struct bpf_map *map); 5022 5023 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5024 { 5025 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5026 struct bpf_map_def *def = &map->def; 5027 const char *map_name = NULL; 5028 int err = 0; 5029 5030 if (kernel_supports(obj, FEAT_PROG_NAME)) 5031 map_name = map->name; 5032 create_attr.map_ifindex = map->map_ifindex; 5033 create_attr.map_flags = def->map_flags; 5034 create_attr.numa_node = map->numa_node; 5035 create_attr.map_extra = map->map_extra; 5036 5037 if (bpf_map__is_struct_ops(map)) 5038 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5039 5040 if (obj->btf && btf__fd(obj->btf) >= 0) { 5041 create_attr.btf_fd = btf__fd(obj->btf); 5042 create_attr.btf_key_type_id = map->btf_key_type_id; 5043 create_attr.btf_value_type_id = map->btf_value_type_id; 5044 } 5045 5046 if (bpf_map_type__is_map_in_map(def->type)) { 5047 if (map->inner_map) { 5048 err = bpf_object__create_map(obj, map->inner_map, true); 5049 if (err) { 5050 pr_warn("map '%s': failed to create inner map: %d\n", 5051 map->name, err); 5052 return err; 5053 } 5054 map->inner_map_fd = bpf_map__fd(map->inner_map); 5055 } 5056 if (map->inner_map_fd >= 0) 5057 create_attr.inner_map_fd = map->inner_map_fd; 5058 } 5059 5060 switch (def->type) { 5061 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5062 case BPF_MAP_TYPE_CGROUP_ARRAY: 5063 case BPF_MAP_TYPE_STACK_TRACE: 5064 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5065 case BPF_MAP_TYPE_HASH_OF_MAPS: 5066 case BPF_MAP_TYPE_DEVMAP: 5067 case BPF_MAP_TYPE_DEVMAP_HASH: 5068 case BPF_MAP_TYPE_CPUMAP: 5069 case BPF_MAP_TYPE_XSKMAP: 5070 case BPF_MAP_TYPE_SOCKMAP: 5071 case BPF_MAP_TYPE_SOCKHASH: 5072 case BPF_MAP_TYPE_QUEUE: 5073 case BPF_MAP_TYPE_STACK: 5074 create_attr.btf_fd = 0; 5075 create_attr.btf_key_type_id = 0; 5076 create_attr.btf_value_type_id = 0; 5077 map->btf_key_type_id = 0; 5078 map->btf_value_type_id = 0; 5079 default: 5080 break; 5081 } 5082 5083 if (obj->gen_loader) { 5084 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5085 def->key_size, def->value_size, def->max_entries, 5086 &create_attr, is_inner ? -1 : map - obj->maps); 5087 /* Pretend to have valid FD to pass various fd >= 0 checks. 5088 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 5089 */ 5090 map->fd = 0; 5091 } else { 5092 map->fd = bpf_map_create(def->type, map_name, 5093 def->key_size, def->value_size, 5094 def->max_entries, &create_attr); 5095 } 5096 if (map->fd < 0 && (create_attr.btf_key_type_id || 5097 create_attr.btf_value_type_id)) { 5098 char *cp, errmsg[STRERR_BUFSIZE]; 5099 5100 err = -errno; 5101 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5102 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 5103 map->name, cp, err); 5104 create_attr.btf_fd = 0; 5105 create_attr.btf_key_type_id = 0; 5106 create_attr.btf_value_type_id = 0; 5107 map->btf_key_type_id = 0; 5108 map->btf_value_type_id = 0; 5109 map->fd = bpf_map_create(def->type, map_name, 5110 def->key_size, def->value_size, 5111 def->max_entries, &create_attr); 5112 } 5113 5114 err = map->fd < 0 ? -errno : 0; 5115 5116 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5117 if (obj->gen_loader) 5118 map->inner_map->fd = -1; 5119 bpf_map__destroy(map->inner_map); 5120 zfree(&map->inner_map); 5121 } 5122 5123 return err; 5124 } 5125 5126 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5127 { 5128 const struct bpf_map *targ_map; 5129 unsigned int i; 5130 int fd, err = 0; 5131 5132 for (i = 0; i < map->init_slots_sz; i++) { 5133 if (!map->init_slots[i]) 5134 continue; 5135 5136 targ_map = map->init_slots[i]; 5137 fd = bpf_map__fd(targ_map); 5138 5139 if (obj->gen_loader) { 5140 bpf_gen__populate_outer_map(obj->gen_loader, 5141 map - obj->maps, i, 5142 targ_map - obj->maps); 5143 } else { 5144 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5145 } 5146 if (err) { 5147 err = -errno; 5148 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5149 map->name, i, targ_map->name, fd, err); 5150 return err; 5151 } 5152 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5153 map->name, i, targ_map->name, fd); 5154 } 5155 5156 zfree(&map->init_slots); 5157 map->init_slots_sz = 0; 5158 5159 return 0; 5160 } 5161 5162 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5163 { 5164 const struct bpf_program *targ_prog; 5165 unsigned int i; 5166 int fd, err; 5167 5168 if (obj->gen_loader) 5169 return -ENOTSUP; 5170 5171 for (i = 0; i < map->init_slots_sz; i++) { 5172 if (!map->init_slots[i]) 5173 continue; 5174 5175 targ_prog = map->init_slots[i]; 5176 fd = bpf_program__fd(targ_prog); 5177 5178 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5179 if (err) { 5180 err = -errno; 5181 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5182 map->name, i, targ_prog->name, fd, err); 5183 return err; 5184 } 5185 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5186 map->name, i, targ_prog->name, fd); 5187 } 5188 5189 zfree(&map->init_slots); 5190 map->init_slots_sz = 0; 5191 5192 return 0; 5193 } 5194 5195 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5196 { 5197 struct bpf_map *map; 5198 int i, err; 5199 5200 for (i = 0; i < obj->nr_maps; i++) { 5201 map = &obj->maps[i]; 5202 5203 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5204 continue; 5205 5206 err = init_prog_array_slots(obj, map); 5207 if (err < 0) { 5208 zclose(map->fd); 5209 return err; 5210 } 5211 } 5212 return 0; 5213 } 5214 5215 static int map_set_def_max_entries(struct bpf_map *map) 5216 { 5217 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5218 int nr_cpus; 5219 5220 nr_cpus = libbpf_num_possible_cpus(); 5221 if (nr_cpus < 0) { 5222 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5223 map->name, nr_cpus); 5224 return nr_cpus; 5225 } 5226 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5227 map->def.max_entries = nr_cpus; 5228 } 5229 5230 return 0; 5231 } 5232 5233 static int 5234 bpf_object__create_maps(struct bpf_object *obj) 5235 { 5236 struct bpf_map *map; 5237 char *cp, errmsg[STRERR_BUFSIZE]; 5238 unsigned int i, j; 5239 int err; 5240 bool retried; 5241 5242 for (i = 0; i < obj->nr_maps; i++) { 5243 map = &obj->maps[i]; 5244 5245 /* To support old kernels, we skip creating global data maps 5246 * (.rodata, .data, .kconfig, etc); later on, during program 5247 * loading, if we detect that at least one of the to-be-loaded 5248 * programs is referencing any global data map, we'll error 5249 * out with program name and relocation index logged. 5250 * This approach allows to accommodate Clang emitting 5251 * unnecessary .rodata.str1.1 sections for string literals, 5252 * but also it allows to have CO-RE applications that use 5253 * global variables in some of BPF programs, but not others. 5254 * If those global variable-using programs are not loaded at 5255 * runtime due to bpf_program__set_autoload(prog, false), 5256 * bpf_object loading will succeed just fine even on old 5257 * kernels. 5258 */ 5259 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5260 map->autocreate = false; 5261 5262 if (!map->autocreate) { 5263 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5264 continue; 5265 } 5266 5267 err = map_set_def_max_entries(map); 5268 if (err) 5269 goto err_out; 5270 5271 retried = false; 5272 retry: 5273 if (map->pin_path) { 5274 err = bpf_object__reuse_map(map); 5275 if (err) { 5276 pr_warn("map '%s': error reusing pinned map\n", 5277 map->name); 5278 goto err_out; 5279 } 5280 if (retried && map->fd < 0) { 5281 pr_warn("map '%s': cannot find pinned map\n", 5282 map->name); 5283 err = -ENOENT; 5284 goto err_out; 5285 } 5286 } 5287 5288 if (map->fd >= 0) { 5289 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5290 map->name, map->fd); 5291 } else { 5292 err = bpf_object__create_map(obj, map, false); 5293 if (err) 5294 goto err_out; 5295 5296 pr_debug("map '%s': created successfully, fd=%d\n", 5297 map->name, map->fd); 5298 5299 if (bpf_map__is_internal(map)) { 5300 err = bpf_object__populate_internal_map(obj, map); 5301 if (err < 0) { 5302 zclose(map->fd); 5303 goto err_out; 5304 } 5305 } 5306 5307 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5308 err = init_map_in_map_slots(obj, map); 5309 if (err < 0) { 5310 zclose(map->fd); 5311 goto err_out; 5312 } 5313 } 5314 } 5315 5316 if (map->pin_path && !map->pinned) { 5317 err = bpf_map__pin(map, NULL); 5318 if (err) { 5319 zclose(map->fd); 5320 if (!retried && err == -EEXIST) { 5321 retried = true; 5322 goto retry; 5323 } 5324 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5325 map->name, map->pin_path, err); 5326 goto err_out; 5327 } 5328 } 5329 } 5330 5331 return 0; 5332 5333 err_out: 5334 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5335 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5336 pr_perm_msg(err); 5337 for (j = 0; j < i; j++) 5338 zclose(obj->maps[j].fd); 5339 return err; 5340 } 5341 5342 static bool bpf_core_is_flavor_sep(const char *s) 5343 { 5344 /* check X___Y name pattern, where X and Y are not underscores */ 5345 return s[0] != '_' && /* X */ 5346 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5347 s[4] != '_'; /* Y */ 5348 } 5349 5350 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5351 * before last triple underscore. Struct name part after last triple 5352 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5353 */ 5354 size_t bpf_core_essential_name_len(const char *name) 5355 { 5356 size_t n = strlen(name); 5357 int i; 5358 5359 for (i = n - 5; i >= 0; i--) { 5360 if (bpf_core_is_flavor_sep(name + i)) 5361 return i + 1; 5362 } 5363 return n; 5364 } 5365 5366 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5367 { 5368 if (!cands) 5369 return; 5370 5371 free(cands->cands); 5372 free(cands); 5373 } 5374 5375 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5376 size_t local_essent_len, 5377 const struct btf *targ_btf, 5378 const char *targ_btf_name, 5379 int targ_start_id, 5380 struct bpf_core_cand_list *cands) 5381 { 5382 struct bpf_core_cand *new_cands, *cand; 5383 const struct btf_type *t, *local_t; 5384 const char *targ_name, *local_name; 5385 size_t targ_essent_len; 5386 int n, i; 5387 5388 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5389 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5390 5391 n = btf__type_cnt(targ_btf); 5392 for (i = targ_start_id; i < n; i++) { 5393 t = btf__type_by_id(targ_btf, i); 5394 if (!btf_kind_core_compat(t, local_t)) 5395 continue; 5396 5397 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5398 if (str_is_empty(targ_name)) 5399 continue; 5400 5401 targ_essent_len = bpf_core_essential_name_len(targ_name); 5402 if (targ_essent_len != local_essent_len) 5403 continue; 5404 5405 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5406 continue; 5407 5408 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5409 local_cand->id, btf_kind_str(local_t), 5410 local_name, i, btf_kind_str(t), targ_name, 5411 targ_btf_name); 5412 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5413 sizeof(*cands->cands)); 5414 if (!new_cands) 5415 return -ENOMEM; 5416 5417 cand = &new_cands[cands->len]; 5418 cand->btf = targ_btf; 5419 cand->id = i; 5420 5421 cands->cands = new_cands; 5422 cands->len++; 5423 } 5424 return 0; 5425 } 5426 5427 static int load_module_btfs(struct bpf_object *obj) 5428 { 5429 struct bpf_btf_info info; 5430 struct module_btf *mod_btf; 5431 struct btf *btf; 5432 char name[64]; 5433 __u32 id = 0, len; 5434 int err, fd; 5435 5436 if (obj->btf_modules_loaded) 5437 return 0; 5438 5439 if (obj->gen_loader) 5440 return 0; 5441 5442 /* don't do this again, even if we find no module BTFs */ 5443 obj->btf_modules_loaded = true; 5444 5445 /* kernel too old to support module BTFs */ 5446 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5447 return 0; 5448 5449 while (true) { 5450 err = bpf_btf_get_next_id(id, &id); 5451 if (err && errno == ENOENT) 5452 return 0; 5453 if (err) { 5454 err = -errno; 5455 pr_warn("failed to iterate BTF objects: %d\n", err); 5456 return err; 5457 } 5458 5459 fd = bpf_btf_get_fd_by_id(id); 5460 if (fd < 0) { 5461 if (errno == ENOENT) 5462 continue; /* expected race: BTF was unloaded */ 5463 err = -errno; 5464 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5465 return err; 5466 } 5467 5468 len = sizeof(info); 5469 memset(&info, 0, sizeof(info)); 5470 info.name = ptr_to_u64(name); 5471 info.name_len = sizeof(name); 5472 5473 err = bpf_btf_get_info_by_fd(fd, &info, &len); 5474 if (err) { 5475 err = -errno; 5476 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5477 goto err_out; 5478 } 5479 5480 /* ignore non-module BTFs */ 5481 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5482 close(fd); 5483 continue; 5484 } 5485 5486 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5487 err = libbpf_get_error(btf); 5488 if (err) { 5489 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5490 name, id, err); 5491 goto err_out; 5492 } 5493 5494 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5495 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5496 if (err) 5497 goto err_out; 5498 5499 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5500 5501 mod_btf->btf = btf; 5502 mod_btf->id = id; 5503 mod_btf->fd = fd; 5504 mod_btf->name = strdup(name); 5505 if (!mod_btf->name) { 5506 err = -ENOMEM; 5507 goto err_out; 5508 } 5509 continue; 5510 5511 err_out: 5512 close(fd); 5513 return err; 5514 } 5515 5516 return 0; 5517 } 5518 5519 static struct bpf_core_cand_list * 5520 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5521 { 5522 struct bpf_core_cand local_cand = {}; 5523 struct bpf_core_cand_list *cands; 5524 const struct btf *main_btf; 5525 const struct btf_type *local_t; 5526 const char *local_name; 5527 size_t local_essent_len; 5528 int err, i; 5529 5530 local_cand.btf = local_btf; 5531 local_cand.id = local_type_id; 5532 local_t = btf__type_by_id(local_btf, local_type_id); 5533 if (!local_t) 5534 return ERR_PTR(-EINVAL); 5535 5536 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5537 if (str_is_empty(local_name)) 5538 return ERR_PTR(-EINVAL); 5539 local_essent_len = bpf_core_essential_name_len(local_name); 5540 5541 cands = calloc(1, sizeof(*cands)); 5542 if (!cands) 5543 return ERR_PTR(-ENOMEM); 5544 5545 /* Attempt to find target candidates in vmlinux BTF first */ 5546 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5547 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5548 if (err) 5549 goto err_out; 5550 5551 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5552 if (cands->len) 5553 return cands; 5554 5555 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5556 if (obj->btf_vmlinux_override) 5557 return cands; 5558 5559 /* now look through module BTFs, trying to still find candidates */ 5560 err = load_module_btfs(obj); 5561 if (err) 5562 goto err_out; 5563 5564 for (i = 0; i < obj->btf_module_cnt; i++) { 5565 err = bpf_core_add_cands(&local_cand, local_essent_len, 5566 obj->btf_modules[i].btf, 5567 obj->btf_modules[i].name, 5568 btf__type_cnt(obj->btf_vmlinux), 5569 cands); 5570 if (err) 5571 goto err_out; 5572 } 5573 5574 return cands; 5575 err_out: 5576 bpf_core_free_cands(cands); 5577 return ERR_PTR(err); 5578 } 5579 5580 /* Check local and target types for compatibility. This check is used for 5581 * type-based CO-RE relocations and follow slightly different rules than 5582 * field-based relocations. This function assumes that root types were already 5583 * checked for name match. Beyond that initial root-level name check, names 5584 * are completely ignored. Compatibility rules are as follows: 5585 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5586 * kind should match for local and target types (i.e., STRUCT is not 5587 * compatible with UNION); 5588 * - for ENUMs, the size is ignored; 5589 * - for INT, size and signedness are ignored; 5590 * - for ARRAY, dimensionality is ignored, element types are checked for 5591 * compatibility recursively; 5592 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5593 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5594 * - FUNC_PROTOs are compatible if they have compatible signature: same 5595 * number of input args and compatible return and argument types. 5596 * These rules are not set in stone and probably will be adjusted as we get 5597 * more experience with using BPF CO-RE relocations. 5598 */ 5599 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5600 const struct btf *targ_btf, __u32 targ_id) 5601 { 5602 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5603 } 5604 5605 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5606 const struct btf *targ_btf, __u32 targ_id) 5607 { 5608 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5609 } 5610 5611 static size_t bpf_core_hash_fn(const long key, void *ctx) 5612 { 5613 return key; 5614 } 5615 5616 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx) 5617 { 5618 return k1 == k2; 5619 } 5620 5621 static int record_relo_core(struct bpf_program *prog, 5622 const struct bpf_core_relo *core_relo, int insn_idx) 5623 { 5624 struct reloc_desc *relos, *relo; 5625 5626 relos = libbpf_reallocarray(prog->reloc_desc, 5627 prog->nr_reloc + 1, sizeof(*relos)); 5628 if (!relos) 5629 return -ENOMEM; 5630 relo = &relos[prog->nr_reloc]; 5631 relo->type = RELO_CORE; 5632 relo->insn_idx = insn_idx; 5633 relo->core_relo = core_relo; 5634 prog->reloc_desc = relos; 5635 prog->nr_reloc++; 5636 return 0; 5637 } 5638 5639 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5640 { 5641 struct reloc_desc *relo; 5642 int i; 5643 5644 for (i = 0; i < prog->nr_reloc; i++) { 5645 relo = &prog->reloc_desc[i]; 5646 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5647 continue; 5648 5649 return relo->core_relo; 5650 } 5651 5652 return NULL; 5653 } 5654 5655 static int bpf_core_resolve_relo(struct bpf_program *prog, 5656 const struct bpf_core_relo *relo, 5657 int relo_idx, 5658 const struct btf *local_btf, 5659 struct hashmap *cand_cache, 5660 struct bpf_core_relo_res *targ_res) 5661 { 5662 struct bpf_core_spec specs_scratch[3] = {}; 5663 struct bpf_core_cand_list *cands = NULL; 5664 const char *prog_name = prog->name; 5665 const struct btf_type *local_type; 5666 const char *local_name; 5667 __u32 local_id = relo->type_id; 5668 int err; 5669 5670 local_type = btf__type_by_id(local_btf, local_id); 5671 if (!local_type) 5672 return -EINVAL; 5673 5674 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5675 if (!local_name) 5676 return -EINVAL; 5677 5678 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5679 !hashmap__find(cand_cache, local_id, &cands)) { 5680 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5681 if (IS_ERR(cands)) { 5682 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5683 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5684 local_name, PTR_ERR(cands)); 5685 return PTR_ERR(cands); 5686 } 5687 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL); 5688 if (err) { 5689 bpf_core_free_cands(cands); 5690 return err; 5691 } 5692 } 5693 5694 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5695 targ_res); 5696 } 5697 5698 static int 5699 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5700 { 5701 const struct btf_ext_info_sec *sec; 5702 struct bpf_core_relo_res targ_res; 5703 const struct bpf_core_relo *rec; 5704 const struct btf_ext_info *seg; 5705 struct hashmap_entry *entry; 5706 struct hashmap *cand_cache = NULL; 5707 struct bpf_program *prog; 5708 struct bpf_insn *insn; 5709 const char *sec_name; 5710 int i, err = 0, insn_idx, sec_idx, sec_num; 5711 5712 if (obj->btf_ext->core_relo_info.len == 0) 5713 return 0; 5714 5715 if (targ_btf_path) { 5716 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5717 err = libbpf_get_error(obj->btf_vmlinux_override); 5718 if (err) { 5719 pr_warn("failed to parse target BTF: %d\n", err); 5720 return err; 5721 } 5722 } 5723 5724 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5725 if (IS_ERR(cand_cache)) { 5726 err = PTR_ERR(cand_cache); 5727 goto out; 5728 } 5729 5730 seg = &obj->btf_ext->core_relo_info; 5731 sec_num = 0; 5732 for_each_btf_ext_sec(seg, sec) { 5733 sec_idx = seg->sec_idxs[sec_num]; 5734 sec_num++; 5735 5736 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5737 if (str_is_empty(sec_name)) { 5738 err = -EINVAL; 5739 goto out; 5740 } 5741 5742 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5743 5744 for_each_btf_ext_rec(seg, sec, i, rec) { 5745 if (rec->insn_off % BPF_INSN_SZ) 5746 return -EINVAL; 5747 insn_idx = rec->insn_off / BPF_INSN_SZ; 5748 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5749 if (!prog) { 5750 /* When __weak subprog is "overridden" by another instance 5751 * of the subprog from a different object file, linker still 5752 * appends all the .BTF.ext info that used to belong to that 5753 * eliminated subprogram. 5754 * This is similar to what x86-64 linker does for relocations. 5755 * So just ignore such relocations just like we ignore 5756 * subprog instructions when discovering subprograms. 5757 */ 5758 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5759 sec_name, i, insn_idx); 5760 continue; 5761 } 5762 /* no need to apply CO-RE relocation if the program is 5763 * not going to be loaded 5764 */ 5765 if (!prog->autoload) 5766 continue; 5767 5768 /* adjust insn_idx from section frame of reference to the local 5769 * program's frame of reference; (sub-)program code is not yet 5770 * relocated, so it's enough to just subtract in-section offset 5771 */ 5772 insn_idx = insn_idx - prog->sec_insn_off; 5773 if (insn_idx >= prog->insns_cnt) 5774 return -EINVAL; 5775 insn = &prog->insns[insn_idx]; 5776 5777 err = record_relo_core(prog, rec, insn_idx); 5778 if (err) { 5779 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5780 prog->name, i, err); 5781 goto out; 5782 } 5783 5784 if (prog->obj->gen_loader) 5785 continue; 5786 5787 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5788 if (err) { 5789 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5790 prog->name, i, err); 5791 goto out; 5792 } 5793 5794 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5795 if (err) { 5796 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5797 prog->name, i, insn_idx, err); 5798 goto out; 5799 } 5800 } 5801 } 5802 5803 out: 5804 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5805 btf__free(obj->btf_vmlinux_override); 5806 obj->btf_vmlinux_override = NULL; 5807 5808 if (!IS_ERR_OR_NULL(cand_cache)) { 5809 hashmap__for_each_entry(cand_cache, entry, i) { 5810 bpf_core_free_cands(entry->pvalue); 5811 } 5812 hashmap__free(cand_cache); 5813 } 5814 return err; 5815 } 5816 5817 /* base map load ldimm64 special constant, used also for log fixup logic */ 5818 #define POISON_LDIMM64_MAP_BASE 2001000000 5819 #define POISON_LDIMM64_MAP_PFX "200100" 5820 5821 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 5822 int insn_idx, struct bpf_insn *insn, 5823 int map_idx, const struct bpf_map *map) 5824 { 5825 int i; 5826 5827 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 5828 prog->name, relo_idx, insn_idx, map_idx, map->name); 5829 5830 /* we turn single ldimm64 into two identical invalid calls */ 5831 for (i = 0; i < 2; i++) { 5832 insn->code = BPF_JMP | BPF_CALL; 5833 insn->dst_reg = 0; 5834 insn->src_reg = 0; 5835 insn->off = 0; 5836 /* if this instruction is reachable (not a dead code), 5837 * verifier will complain with something like: 5838 * invalid func unknown#2001000123 5839 * where lower 123 is map index into obj->maps[] array 5840 */ 5841 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx; 5842 5843 insn++; 5844 } 5845 } 5846 5847 /* unresolved kfunc call special constant, used also for log fixup logic */ 5848 #define POISON_CALL_KFUNC_BASE 2002000000 5849 #define POISON_CALL_KFUNC_PFX "2002" 5850 5851 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx, 5852 int insn_idx, struct bpf_insn *insn, 5853 int ext_idx, const struct extern_desc *ext) 5854 { 5855 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n", 5856 prog->name, relo_idx, insn_idx, ext->name); 5857 5858 /* we turn kfunc call into invalid helper call with identifiable constant */ 5859 insn->code = BPF_JMP | BPF_CALL; 5860 insn->dst_reg = 0; 5861 insn->src_reg = 0; 5862 insn->off = 0; 5863 /* if this instruction is reachable (not a dead code), 5864 * verifier will complain with something like: 5865 * invalid func unknown#2001000123 5866 * where lower 123 is extern index into obj->externs[] array 5867 */ 5868 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx; 5869 } 5870 5871 /* Relocate data references within program code: 5872 * - map references; 5873 * - global variable references; 5874 * - extern references. 5875 */ 5876 static int 5877 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5878 { 5879 int i; 5880 5881 for (i = 0; i < prog->nr_reloc; i++) { 5882 struct reloc_desc *relo = &prog->reloc_desc[i]; 5883 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5884 const struct bpf_map *map; 5885 struct extern_desc *ext; 5886 5887 switch (relo->type) { 5888 case RELO_LD64: 5889 map = &obj->maps[relo->map_idx]; 5890 if (obj->gen_loader) { 5891 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 5892 insn[0].imm = relo->map_idx; 5893 } else if (map->autocreate) { 5894 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5895 insn[0].imm = map->fd; 5896 } else { 5897 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5898 relo->map_idx, map); 5899 } 5900 break; 5901 case RELO_DATA: 5902 map = &obj->maps[relo->map_idx]; 5903 insn[1].imm = insn[0].imm + relo->sym_off; 5904 if (obj->gen_loader) { 5905 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5906 insn[0].imm = relo->map_idx; 5907 } else if (map->autocreate) { 5908 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5909 insn[0].imm = map->fd; 5910 } else { 5911 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5912 relo->map_idx, map); 5913 } 5914 break; 5915 case RELO_EXTERN_LD64: 5916 ext = &obj->externs[relo->ext_idx]; 5917 if (ext->type == EXT_KCFG) { 5918 if (obj->gen_loader) { 5919 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5920 insn[0].imm = obj->kconfig_map_idx; 5921 } else { 5922 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5923 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5924 } 5925 insn[1].imm = ext->kcfg.data_off; 5926 } else /* EXT_KSYM */ { 5927 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 5928 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 5929 insn[0].imm = ext->ksym.kernel_btf_id; 5930 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 5931 } else { /* typeless ksyms or unresolved typed ksyms */ 5932 insn[0].imm = (__u32)ext->ksym.addr; 5933 insn[1].imm = ext->ksym.addr >> 32; 5934 } 5935 } 5936 break; 5937 case RELO_EXTERN_CALL: 5938 ext = &obj->externs[relo->ext_idx]; 5939 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 5940 if (ext->is_set) { 5941 insn[0].imm = ext->ksym.kernel_btf_id; 5942 insn[0].off = ext->ksym.btf_fd_idx; 5943 } else { /* unresolved weak kfunc call */ 5944 poison_kfunc_call(prog, i, relo->insn_idx, insn, 5945 relo->ext_idx, ext); 5946 } 5947 break; 5948 case RELO_SUBPROG_ADDR: 5949 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 5950 pr_warn("prog '%s': relo #%d: bad insn\n", 5951 prog->name, i); 5952 return -EINVAL; 5953 } 5954 /* handled already */ 5955 break; 5956 case RELO_CALL: 5957 /* handled already */ 5958 break; 5959 case RELO_CORE: 5960 /* will be handled by bpf_program_record_relos() */ 5961 break; 5962 default: 5963 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 5964 prog->name, i, relo->type); 5965 return -EINVAL; 5966 } 5967 } 5968 5969 return 0; 5970 } 5971 5972 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 5973 const struct bpf_program *prog, 5974 const struct btf_ext_info *ext_info, 5975 void **prog_info, __u32 *prog_rec_cnt, 5976 __u32 *prog_rec_sz) 5977 { 5978 void *copy_start = NULL, *copy_end = NULL; 5979 void *rec, *rec_end, *new_prog_info; 5980 const struct btf_ext_info_sec *sec; 5981 size_t old_sz, new_sz; 5982 int i, sec_num, sec_idx, off_adj; 5983 5984 sec_num = 0; 5985 for_each_btf_ext_sec(ext_info, sec) { 5986 sec_idx = ext_info->sec_idxs[sec_num]; 5987 sec_num++; 5988 if (prog->sec_idx != sec_idx) 5989 continue; 5990 5991 for_each_btf_ext_rec(ext_info, sec, i, rec) { 5992 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 5993 5994 if (insn_off < prog->sec_insn_off) 5995 continue; 5996 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 5997 break; 5998 5999 if (!copy_start) 6000 copy_start = rec; 6001 copy_end = rec + ext_info->rec_size; 6002 } 6003 6004 if (!copy_start) 6005 return -ENOENT; 6006 6007 /* append func/line info of a given (sub-)program to the main 6008 * program func/line info 6009 */ 6010 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6011 new_sz = old_sz + (copy_end - copy_start); 6012 new_prog_info = realloc(*prog_info, new_sz); 6013 if (!new_prog_info) 6014 return -ENOMEM; 6015 *prog_info = new_prog_info; 6016 *prog_rec_cnt = new_sz / ext_info->rec_size; 6017 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6018 6019 /* Kernel instruction offsets are in units of 8-byte 6020 * instructions, while .BTF.ext instruction offsets generated 6021 * by Clang are in units of bytes. So convert Clang offsets 6022 * into kernel offsets and adjust offset according to program 6023 * relocated position. 6024 */ 6025 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6026 rec = new_prog_info + old_sz; 6027 rec_end = new_prog_info + new_sz; 6028 for (; rec < rec_end; rec += ext_info->rec_size) { 6029 __u32 *insn_off = rec; 6030 6031 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6032 } 6033 *prog_rec_sz = ext_info->rec_size; 6034 return 0; 6035 } 6036 6037 return -ENOENT; 6038 } 6039 6040 static int 6041 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6042 struct bpf_program *main_prog, 6043 const struct bpf_program *prog) 6044 { 6045 int err; 6046 6047 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6048 * supprot func/line info 6049 */ 6050 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6051 return 0; 6052 6053 /* only attempt func info relocation if main program's func_info 6054 * relocation was successful 6055 */ 6056 if (main_prog != prog && !main_prog->func_info) 6057 goto line_info; 6058 6059 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6060 &main_prog->func_info, 6061 &main_prog->func_info_cnt, 6062 &main_prog->func_info_rec_size); 6063 if (err) { 6064 if (err != -ENOENT) { 6065 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6066 prog->name, err); 6067 return err; 6068 } 6069 if (main_prog->func_info) { 6070 /* 6071 * Some info has already been found but has problem 6072 * in the last btf_ext reloc. Must have to error out. 6073 */ 6074 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6075 return err; 6076 } 6077 /* Have problem loading the very first info. Ignore the rest. */ 6078 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6079 prog->name); 6080 } 6081 6082 line_info: 6083 /* don't relocate line info if main program's relocation failed */ 6084 if (main_prog != prog && !main_prog->line_info) 6085 return 0; 6086 6087 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6088 &main_prog->line_info, 6089 &main_prog->line_info_cnt, 6090 &main_prog->line_info_rec_size); 6091 if (err) { 6092 if (err != -ENOENT) { 6093 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6094 prog->name, err); 6095 return err; 6096 } 6097 if (main_prog->line_info) { 6098 /* 6099 * Some info has already been found but has problem 6100 * in the last btf_ext reloc. Must have to error out. 6101 */ 6102 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6103 return err; 6104 } 6105 /* Have problem loading the very first info. Ignore the rest. */ 6106 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6107 prog->name); 6108 } 6109 return 0; 6110 } 6111 6112 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6113 { 6114 size_t insn_idx = *(const size_t *)key; 6115 const struct reloc_desc *relo = elem; 6116 6117 if (insn_idx == relo->insn_idx) 6118 return 0; 6119 return insn_idx < relo->insn_idx ? -1 : 1; 6120 } 6121 6122 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6123 { 6124 if (!prog->nr_reloc) 6125 return NULL; 6126 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6127 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6128 } 6129 6130 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6131 { 6132 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6133 struct reloc_desc *relos; 6134 int i; 6135 6136 if (main_prog == subprog) 6137 return 0; 6138 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6139 if (!relos) 6140 return -ENOMEM; 6141 if (subprog->nr_reloc) 6142 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6143 sizeof(*relos) * subprog->nr_reloc); 6144 6145 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6146 relos[i].insn_idx += subprog->sub_insn_off; 6147 /* After insn_idx adjustment the 'relos' array is still sorted 6148 * by insn_idx and doesn't break bsearch. 6149 */ 6150 main_prog->reloc_desc = relos; 6151 main_prog->nr_reloc = new_cnt; 6152 return 0; 6153 } 6154 6155 static int 6156 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6157 struct bpf_program *prog) 6158 { 6159 size_t sub_insn_idx, insn_idx, new_cnt; 6160 struct bpf_program *subprog; 6161 struct bpf_insn *insns, *insn; 6162 struct reloc_desc *relo; 6163 int err; 6164 6165 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6166 if (err) 6167 return err; 6168 6169 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6170 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6171 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6172 continue; 6173 6174 relo = find_prog_insn_relo(prog, insn_idx); 6175 if (relo && relo->type == RELO_EXTERN_CALL) 6176 /* kfunc relocations will be handled later 6177 * in bpf_object__relocate_data() 6178 */ 6179 continue; 6180 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6181 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6182 prog->name, insn_idx, relo->type); 6183 return -LIBBPF_ERRNO__RELOC; 6184 } 6185 if (relo) { 6186 /* sub-program instruction index is a combination of 6187 * an offset of a symbol pointed to by relocation and 6188 * call instruction's imm field; for global functions, 6189 * call always has imm = -1, but for static functions 6190 * relocation is against STT_SECTION and insn->imm 6191 * points to a start of a static function 6192 * 6193 * for subprog addr relocation, the relo->sym_off + insn->imm is 6194 * the byte offset in the corresponding section. 6195 */ 6196 if (relo->type == RELO_CALL) 6197 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6198 else 6199 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6200 } else if (insn_is_pseudo_func(insn)) { 6201 /* 6202 * RELO_SUBPROG_ADDR relo is always emitted even if both 6203 * functions are in the same section, so it shouldn't reach here. 6204 */ 6205 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6206 prog->name, insn_idx); 6207 return -LIBBPF_ERRNO__RELOC; 6208 } else { 6209 /* if subprogram call is to a static function within 6210 * the same ELF section, there won't be any relocation 6211 * emitted, but it also means there is no additional 6212 * offset necessary, insns->imm is relative to 6213 * instruction's original position within the section 6214 */ 6215 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6216 } 6217 6218 /* we enforce that sub-programs should be in .text section */ 6219 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6220 if (!subprog) { 6221 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6222 prog->name); 6223 return -LIBBPF_ERRNO__RELOC; 6224 } 6225 6226 /* if it's the first call instruction calling into this 6227 * subprogram (meaning this subprog hasn't been processed 6228 * yet) within the context of current main program: 6229 * - append it at the end of main program's instructions blog; 6230 * - process is recursively, while current program is put on hold; 6231 * - if that subprogram calls some other not yet processes 6232 * subprogram, same thing will happen recursively until 6233 * there are no more unprocesses subprograms left to append 6234 * and relocate. 6235 */ 6236 if (subprog->sub_insn_off == 0) { 6237 subprog->sub_insn_off = main_prog->insns_cnt; 6238 6239 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6240 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6241 if (!insns) { 6242 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6243 return -ENOMEM; 6244 } 6245 main_prog->insns = insns; 6246 main_prog->insns_cnt = new_cnt; 6247 6248 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6249 subprog->insns_cnt * sizeof(*insns)); 6250 6251 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6252 main_prog->name, subprog->insns_cnt, subprog->name); 6253 6254 /* The subprog insns are now appended. Append its relos too. */ 6255 err = append_subprog_relos(main_prog, subprog); 6256 if (err) 6257 return err; 6258 err = bpf_object__reloc_code(obj, main_prog, subprog); 6259 if (err) 6260 return err; 6261 } 6262 6263 /* main_prog->insns memory could have been re-allocated, so 6264 * calculate pointer again 6265 */ 6266 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6267 /* calculate correct instruction position within current main 6268 * prog; each main prog can have a different set of 6269 * subprograms appended (potentially in different order as 6270 * well), so position of any subprog can be different for 6271 * different main programs 6272 */ 6273 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6274 6275 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6276 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6277 } 6278 6279 return 0; 6280 } 6281 6282 /* 6283 * Relocate sub-program calls. 6284 * 6285 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6286 * main prog) is processed separately. For each subprog (non-entry functions, 6287 * that can be called from either entry progs or other subprogs) gets their 6288 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6289 * hasn't been yet appended and relocated within current main prog. Once its 6290 * relocated, sub_insn_off will point at the position within current main prog 6291 * where given subprog was appended. This will further be used to relocate all 6292 * the call instructions jumping into this subprog. 6293 * 6294 * We start with main program and process all call instructions. If the call 6295 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6296 * is zero), subprog instructions are appended at the end of main program's 6297 * instruction array. Then main program is "put on hold" while we recursively 6298 * process newly appended subprogram. If that subprogram calls into another 6299 * subprogram that hasn't been appended, new subprogram is appended again to 6300 * the *main* prog's instructions (subprog's instructions are always left 6301 * untouched, as they need to be in unmodified state for subsequent main progs 6302 * and subprog instructions are always sent only as part of a main prog) and 6303 * the process continues recursively. Once all the subprogs called from a main 6304 * prog or any of its subprogs are appended (and relocated), all their 6305 * positions within finalized instructions array are known, so it's easy to 6306 * rewrite call instructions with correct relative offsets, corresponding to 6307 * desired target subprog. 6308 * 6309 * Its important to realize that some subprogs might not be called from some 6310 * main prog and any of its called/used subprogs. Those will keep their 6311 * subprog->sub_insn_off as zero at all times and won't be appended to current 6312 * main prog and won't be relocated within the context of current main prog. 6313 * They might still be used from other main progs later. 6314 * 6315 * Visually this process can be shown as below. Suppose we have two main 6316 * programs mainA and mainB and BPF object contains three subprogs: subA, 6317 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6318 * subC both call subB: 6319 * 6320 * +--------+ +-------+ 6321 * | v v | 6322 * +--+---+ +--+-+-+ +---+--+ 6323 * | subA | | subB | | subC | 6324 * +--+---+ +------+ +---+--+ 6325 * ^ ^ 6326 * | | 6327 * +---+-------+ +------+----+ 6328 * | mainA | | mainB | 6329 * +-----------+ +-----------+ 6330 * 6331 * We'll start relocating mainA, will find subA, append it and start 6332 * processing sub A recursively: 6333 * 6334 * +-----------+------+ 6335 * | mainA | subA | 6336 * +-----------+------+ 6337 * 6338 * At this point we notice that subB is used from subA, so we append it and 6339 * relocate (there are no further subcalls from subB): 6340 * 6341 * +-----------+------+------+ 6342 * | mainA | subA | subB | 6343 * +-----------+------+------+ 6344 * 6345 * At this point, we relocate subA calls, then go one level up and finish with 6346 * relocatin mainA calls. mainA is done. 6347 * 6348 * For mainB process is similar but results in different order. We start with 6349 * mainB and skip subA and subB, as mainB never calls them (at least 6350 * directly), but we see subC is needed, so we append and start processing it: 6351 * 6352 * +-----------+------+ 6353 * | mainB | subC | 6354 * +-----------+------+ 6355 * Now we see subC needs subB, so we go back to it, append and relocate it: 6356 * 6357 * +-----------+------+------+ 6358 * | mainB | subC | subB | 6359 * +-----------+------+------+ 6360 * 6361 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6362 */ 6363 static int 6364 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6365 { 6366 struct bpf_program *subprog; 6367 int i, err; 6368 6369 /* mark all subprogs as not relocated (yet) within the context of 6370 * current main program 6371 */ 6372 for (i = 0; i < obj->nr_programs; i++) { 6373 subprog = &obj->programs[i]; 6374 if (!prog_is_subprog(obj, subprog)) 6375 continue; 6376 6377 subprog->sub_insn_off = 0; 6378 } 6379 6380 err = bpf_object__reloc_code(obj, prog, prog); 6381 if (err) 6382 return err; 6383 6384 return 0; 6385 } 6386 6387 static void 6388 bpf_object__free_relocs(struct bpf_object *obj) 6389 { 6390 struct bpf_program *prog; 6391 int i; 6392 6393 /* free up relocation descriptors */ 6394 for (i = 0; i < obj->nr_programs; i++) { 6395 prog = &obj->programs[i]; 6396 zfree(&prog->reloc_desc); 6397 prog->nr_reloc = 0; 6398 } 6399 } 6400 6401 static int cmp_relocs(const void *_a, const void *_b) 6402 { 6403 const struct reloc_desc *a = _a; 6404 const struct reloc_desc *b = _b; 6405 6406 if (a->insn_idx != b->insn_idx) 6407 return a->insn_idx < b->insn_idx ? -1 : 1; 6408 6409 /* no two relocations should have the same insn_idx, but ... */ 6410 if (a->type != b->type) 6411 return a->type < b->type ? -1 : 1; 6412 6413 return 0; 6414 } 6415 6416 static void bpf_object__sort_relos(struct bpf_object *obj) 6417 { 6418 int i; 6419 6420 for (i = 0; i < obj->nr_programs; i++) { 6421 struct bpf_program *p = &obj->programs[i]; 6422 6423 if (!p->nr_reloc) 6424 continue; 6425 6426 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6427 } 6428 } 6429 6430 static int 6431 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6432 { 6433 struct bpf_program *prog; 6434 size_t i, j; 6435 int err; 6436 6437 if (obj->btf_ext) { 6438 err = bpf_object__relocate_core(obj, targ_btf_path); 6439 if (err) { 6440 pr_warn("failed to perform CO-RE relocations: %d\n", 6441 err); 6442 return err; 6443 } 6444 bpf_object__sort_relos(obj); 6445 } 6446 6447 /* Before relocating calls pre-process relocations and mark 6448 * few ld_imm64 instructions that points to subprogs. 6449 * Otherwise bpf_object__reloc_code() later would have to consider 6450 * all ld_imm64 insns as relocation candidates. That would 6451 * reduce relocation speed, since amount of find_prog_insn_relo() 6452 * would increase and most of them will fail to find a relo. 6453 */ 6454 for (i = 0; i < obj->nr_programs; i++) { 6455 prog = &obj->programs[i]; 6456 for (j = 0; j < prog->nr_reloc; j++) { 6457 struct reloc_desc *relo = &prog->reloc_desc[j]; 6458 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6459 6460 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6461 if (relo->type == RELO_SUBPROG_ADDR) 6462 insn[0].src_reg = BPF_PSEUDO_FUNC; 6463 } 6464 } 6465 6466 /* relocate subprogram calls and append used subprograms to main 6467 * programs; each copy of subprogram code needs to be relocated 6468 * differently for each main program, because its code location might 6469 * have changed. 6470 * Append subprog relos to main programs to allow data relos to be 6471 * processed after text is completely relocated. 6472 */ 6473 for (i = 0; i < obj->nr_programs; i++) { 6474 prog = &obj->programs[i]; 6475 /* sub-program's sub-calls are relocated within the context of 6476 * its main program only 6477 */ 6478 if (prog_is_subprog(obj, prog)) 6479 continue; 6480 if (!prog->autoload) 6481 continue; 6482 6483 err = bpf_object__relocate_calls(obj, prog); 6484 if (err) { 6485 pr_warn("prog '%s': failed to relocate calls: %d\n", 6486 prog->name, err); 6487 return err; 6488 } 6489 } 6490 /* Process data relos for main programs */ 6491 for (i = 0; i < obj->nr_programs; i++) { 6492 prog = &obj->programs[i]; 6493 if (prog_is_subprog(obj, prog)) 6494 continue; 6495 if (!prog->autoload) 6496 continue; 6497 err = bpf_object__relocate_data(obj, prog); 6498 if (err) { 6499 pr_warn("prog '%s': failed to relocate data references: %d\n", 6500 prog->name, err); 6501 return err; 6502 } 6503 } 6504 6505 return 0; 6506 } 6507 6508 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6509 Elf64_Shdr *shdr, Elf_Data *data); 6510 6511 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6512 Elf64_Shdr *shdr, Elf_Data *data) 6513 { 6514 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6515 int i, j, nrels, new_sz; 6516 const struct btf_var_secinfo *vi = NULL; 6517 const struct btf_type *sec, *var, *def; 6518 struct bpf_map *map = NULL, *targ_map = NULL; 6519 struct bpf_program *targ_prog = NULL; 6520 bool is_prog_array, is_map_in_map; 6521 const struct btf_member *member; 6522 const char *name, *mname, *type; 6523 unsigned int moff; 6524 Elf64_Sym *sym; 6525 Elf64_Rel *rel; 6526 void *tmp; 6527 6528 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6529 return -EINVAL; 6530 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6531 if (!sec) 6532 return -EINVAL; 6533 6534 nrels = shdr->sh_size / shdr->sh_entsize; 6535 for (i = 0; i < nrels; i++) { 6536 rel = elf_rel_by_idx(data, i); 6537 if (!rel) { 6538 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6539 return -LIBBPF_ERRNO__FORMAT; 6540 } 6541 6542 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6543 if (!sym) { 6544 pr_warn(".maps relo #%d: symbol %zx not found\n", 6545 i, (size_t)ELF64_R_SYM(rel->r_info)); 6546 return -LIBBPF_ERRNO__FORMAT; 6547 } 6548 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6549 6550 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6551 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6552 (size_t)rel->r_offset, sym->st_name, name); 6553 6554 for (j = 0; j < obj->nr_maps; j++) { 6555 map = &obj->maps[j]; 6556 if (map->sec_idx != obj->efile.btf_maps_shndx) 6557 continue; 6558 6559 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6560 if (vi->offset <= rel->r_offset && 6561 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6562 break; 6563 } 6564 if (j == obj->nr_maps) { 6565 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6566 i, name, (size_t)rel->r_offset); 6567 return -EINVAL; 6568 } 6569 6570 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 6571 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 6572 type = is_map_in_map ? "map" : "prog"; 6573 if (is_map_in_map) { 6574 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6575 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6576 i, name); 6577 return -LIBBPF_ERRNO__RELOC; 6578 } 6579 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6580 map->def.key_size != sizeof(int)) { 6581 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6582 i, map->name, sizeof(int)); 6583 return -EINVAL; 6584 } 6585 targ_map = bpf_object__find_map_by_name(obj, name); 6586 if (!targ_map) { 6587 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 6588 i, name); 6589 return -ESRCH; 6590 } 6591 } else if (is_prog_array) { 6592 targ_prog = bpf_object__find_program_by_name(obj, name); 6593 if (!targ_prog) { 6594 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 6595 i, name); 6596 return -ESRCH; 6597 } 6598 if (targ_prog->sec_idx != sym->st_shndx || 6599 targ_prog->sec_insn_off * 8 != sym->st_value || 6600 prog_is_subprog(obj, targ_prog)) { 6601 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 6602 i, name); 6603 return -LIBBPF_ERRNO__RELOC; 6604 } 6605 } else { 6606 return -EINVAL; 6607 } 6608 6609 var = btf__type_by_id(obj->btf, vi->type); 6610 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6611 if (btf_vlen(def) == 0) 6612 return -EINVAL; 6613 member = btf_members(def) + btf_vlen(def) - 1; 6614 mname = btf__name_by_offset(obj->btf, member->name_off); 6615 if (strcmp(mname, "values")) 6616 return -EINVAL; 6617 6618 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6619 if (rel->r_offset - vi->offset < moff) 6620 return -EINVAL; 6621 6622 moff = rel->r_offset - vi->offset - moff; 6623 /* here we use BPF pointer size, which is always 64 bit, as we 6624 * are parsing ELF that was built for BPF target 6625 */ 6626 if (moff % bpf_ptr_sz) 6627 return -EINVAL; 6628 moff /= bpf_ptr_sz; 6629 if (moff >= map->init_slots_sz) { 6630 new_sz = moff + 1; 6631 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6632 if (!tmp) 6633 return -ENOMEM; 6634 map->init_slots = tmp; 6635 memset(map->init_slots + map->init_slots_sz, 0, 6636 (new_sz - map->init_slots_sz) * host_ptr_sz); 6637 map->init_slots_sz = new_sz; 6638 } 6639 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 6640 6641 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 6642 i, map->name, moff, type, name); 6643 } 6644 6645 return 0; 6646 } 6647 6648 static int bpf_object__collect_relos(struct bpf_object *obj) 6649 { 6650 int i, err; 6651 6652 for (i = 0; i < obj->efile.sec_cnt; i++) { 6653 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6654 Elf64_Shdr *shdr; 6655 Elf_Data *data; 6656 int idx; 6657 6658 if (sec_desc->sec_type != SEC_RELO) 6659 continue; 6660 6661 shdr = sec_desc->shdr; 6662 data = sec_desc->data; 6663 idx = shdr->sh_info; 6664 6665 if (shdr->sh_type != SHT_REL) { 6666 pr_warn("internal error at %d\n", __LINE__); 6667 return -LIBBPF_ERRNO__INTERNAL; 6668 } 6669 6670 if (idx == obj->efile.st_ops_shndx || idx == obj->efile.st_ops_link_shndx) 6671 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6672 else if (idx == obj->efile.btf_maps_shndx) 6673 err = bpf_object__collect_map_relos(obj, shdr, data); 6674 else 6675 err = bpf_object__collect_prog_relos(obj, shdr, data); 6676 if (err) 6677 return err; 6678 } 6679 6680 bpf_object__sort_relos(obj); 6681 return 0; 6682 } 6683 6684 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6685 { 6686 if (BPF_CLASS(insn->code) == BPF_JMP && 6687 BPF_OP(insn->code) == BPF_CALL && 6688 BPF_SRC(insn->code) == BPF_K && 6689 insn->src_reg == 0 && 6690 insn->dst_reg == 0) { 6691 *func_id = insn->imm; 6692 return true; 6693 } 6694 return false; 6695 } 6696 6697 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6698 { 6699 struct bpf_insn *insn = prog->insns; 6700 enum bpf_func_id func_id; 6701 int i; 6702 6703 if (obj->gen_loader) 6704 return 0; 6705 6706 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6707 if (!insn_is_helper_call(insn, &func_id)) 6708 continue; 6709 6710 /* on kernels that don't yet support 6711 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6712 * to bpf_probe_read() which works well for old kernels 6713 */ 6714 switch (func_id) { 6715 case BPF_FUNC_probe_read_kernel: 6716 case BPF_FUNC_probe_read_user: 6717 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6718 insn->imm = BPF_FUNC_probe_read; 6719 break; 6720 case BPF_FUNC_probe_read_kernel_str: 6721 case BPF_FUNC_probe_read_user_str: 6722 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6723 insn->imm = BPF_FUNC_probe_read_str; 6724 break; 6725 default: 6726 break; 6727 } 6728 } 6729 return 0; 6730 } 6731 6732 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6733 int *btf_obj_fd, int *btf_type_id); 6734 6735 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 6736 static int libbpf_prepare_prog_load(struct bpf_program *prog, 6737 struct bpf_prog_load_opts *opts, long cookie) 6738 { 6739 enum sec_def_flags def = cookie; 6740 6741 /* old kernels might not support specifying expected_attach_type */ 6742 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6743 opts->expected_attach_type = 0; 6744 6745 if (def & SEC_SLEEPABLE) 6746 opts->prog_flags |= BPF_F_SLEEPABLE; 6747 6748 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 6749 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 6750 6751 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 6752 int btf_obj_fd = 0, btf_type_id = 0, err; 6753 const char *attach_name; 6754 6755 attach_name = strchr(prog->sec_name, '/'); 6756 if (!attach_name) { 6757 /* if BPF program is annotated with just SEC("fentry") 6758 * (or similar) without declaratively specifying 6759 * target, then it is expected that target will be 6760 * specified with bpf_program__set_attach_target() at 6761 * runtime before BPF object load step. If not, then 6762 * there is nothing to load into the kernel as BPF 6763 * verifier won't be able to validate BPF program 6764 * correctness anyways. 6765 */ 6766 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 6767 prog->name); 6768 return -EINVAL; 6769 } 6770 attach_name++; /* skip over / */ 6771 6772 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6773 if (err) 6774 return err; 6775 6776 /* cache resolved BTF FD and BTF type ID in the prog */ 6777 prog->attach_btf_obj_fd = btf_obj_fd; 6778 prog->attach_btf_id = btf_type_id; 6779 6780 /* but by now libbpf common logic is not utilizing 6781 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 6782 * this callback is called after opts were populated by 6783 * libbpf, so this callback has to update opts explicitly here 6784 */ 6785 opts->attach_btf_obj_fd = btf_obj_fd; 6786 opts->attach_btf_id = btf_type_id; 6787 } 6788 return 0; 6789 } 6790 6791 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 6792 6793 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 6794 struct bpf_insn *insns, int insns_cnt, 6795 const char *license, __u32 kern_version, int *prog_fd) 6796 { 6797 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 6798 const char *prog_name = NULL; 6799 char *cp, errmsg[STRERR_BUFSIZE]; 6800 size_t log_buf_size = 0; 6801 char *log_buf = NULL, *tmp; 6802 int btf_fd, ret, err; 6803 bool own_log_buf = true; 6804 __u32 log_level = prog->log_level; 6805 6806 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6807 /* 6808 * The program type must be set. Most likely we couldn't find a proper 6809 * section definition at load time, and thus we didn't infer the type. 6810 */ 6811 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6812 prog->name, prog->sec_name); 6813 return -EINVAL; 6814 } 6815 6816 if (!insns || !insns_cnt) 6817 return -EINVAL; 6818 6819 load_attr.expected_attach_type = prog->expected_attach_type; 6820 if (kernel_supports(obj, FEAT_PROG_NAME)) 6821 prog_name = prog->name; 6822 load_attr.attach_prog_fd = prog->attach_prog_fd; 6823 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 6824 load_attr.attach_btf_id = prog->attach_btf_id; 6825 load_attr.kern_version = kern_version; 6826 load_attr.prog_ifindex = prog->prog_ifindex; 6827 6828 /* specify func_info/line_info only if kernel supports them */ 6829 btf_fd = bpf_object__btf_fd(obj); 6830 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 6831 load_attr.prog_btf_fd = btf_fd; 6832 load_attr.func_info = prog->func_info; 6833 load_attr.func_info_rec_size = prog->func_info_rec_size; 6834 load_attr.func_info_cnt = prog->func_info_cnt; 6835 load_attr.line_info = prog->line_info; 6836 load_attr.line_info_rec_size = prog->line_info_rec_size; 6837 load_attr.line_info_cnt = prog->line_info_cnt; 6838 } 6839 load_attr.log_level = log_level; 6840 load_attr.prog_flags = prog->prog_flags; 6841 load_attr.fd_array = obj->fd_array; 6842 6843 /* adjust load_attr if sec_def provides custom preload callback */ 6844 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 6845 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 6846 if (err < 0) { 6847 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 6848 prog->name, err); 6849 return err; 6850 } 6851 insns = prog->insns; 6852 insns_cnt = prog->insns_cnt; 6853 } 6854 6855 if (obj->gen_loader) { 6856 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 6857 license, insns, insns_cnt, &load_attr, 6858 prog - obj->programs); 6859 *prog_fd = -1; 6860 return 0; 6861 } 6862 6863 retry_load: 6864 /* if log_level is zero, we don't request logs initially even if 6865 * custom log_buf is specified; if the program load fails, then we'll 6866 * bump log_level to 1 and use either custom log_buf or we'll allocate 6867 * our own and retry the load to get details on what failed 6868 */ 6869 if (log_level) { 6870 if (prog->log_buf) { 6871 log_buf = prog->log_buf; 6872 log_buf_size = prog->log_size; 6873 own_log_buf = false; 6874 } else if (obj->log_buf) { 6875 log_buf = obj->log_buf; 6876 log_buf_size = obj->log_size; 6877 own_log_buf = false; 6878 } else { 6879 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 6880 tmp = realloc(log_buf, log_buf_size); 6881 if (!tmp) { 6882 ret = -ENOMEM; 6883 goto out; 6884 } 6885 log_buf = tmp; 6886 log_buf[0] = '\0'; 6887 own_log_buf = true; 6888 } 6889 } 6890 6891 load_attr.log_buf = log_buf; 6892 load_attr.log_size = log_buf_size; 6893 load_attr.log_level = log_level; 6894 6895 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 6896 if (ret >= 0) { 6897 if (log_level && own_log_buf) { 6898 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6899 prog->name, log_buf); 6900 } 6901 6902 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 6903 struct bpf_map *map; 6904 int i; 6905 6906 for (i = 0; i < obj->nr_maps; i++) { 6907 map = &prog->obj->maps[i]; 6908 if (map->libbpf_type != LIBBPF_MAP_RODATA) 6909 continue; 6910 6911 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 6912 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6913 pr_warn("prog '%s': failed to bind map '%s': %s\n", 6914 prog->name, map->real_name, cp); 6915 /* Don't fail hard if can't bind rodata. */ 6916 } 6917 } 6918 } 6919 6920 *prog_fd = ret; 6921 ret = 0; 6922 goto out; 6923 } 6924 6925 if (log_level == 0) { 6926 log_level = 1; 6927 goto retry_load; 6928 } 6929 /* On ENOSPC, increase log buffer size and retry, unless custom 6930 * log_buf is specified. 6931 * Be careful to not overflow u32, though. Kernel's log buf size limit 6932 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 6933 * multiply by 2 unless we are sure we'll fit within 32 bits. 6934 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 6935 */ 6936 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 6937 goto retry_load; 6938 6939 ret = -errno; 6940 6941 /* post-process verifier log to improve error descriptions */ 6942 fixup_verifier_log(prog, log_buf, log_buf_size); 6943 6944 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6945 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 6946 pr_perm_msg(ret); 6947 6948 if (own_log_buf && log_buf && log_buf[0] != '\0') { 6949 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6950 prog->name, log_buf); 6951 } 6952 6953 out: 6954 if (own_log_buf) 6955 free(log_buf); 6956 return ret; 6957 } 6958 6959 static char *find_prev_line(char *buf, char *cur) 6960 { 6961 char *p; 6962 6963 if (cur == buf) /* end of a log buf */ 6964 return NULL; 6965 6966 p = cur - 1; 6967 while (p - 1 >= buf && *(p - 1) != '\n') 6968 p--; 6969 6970 return p; 6971 } 6972 6973 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 6974 char *orig, size_t orig_sz, const char *patch) 6975 { 6976 /* size of the remaining log content to the right from the to-be-replaced part */ 6977 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 6978 size_t patch_sz = strlen(patch); 6979 6980 if (patch_sz != orig_sz) { 6981 /* If patch line(s) are longer than original piece of verifier log, 6982 * shift log contents by (patch_sz - orig_sz) bytes to the right 6983 * starting from after to-be-replaced part of the log. 6984 * 6985 * If patch line(s) are shorter than original piece of verifier log, 6986 * shift log contents by (orig_sz - patch_sz) bytes to the left 6987 * starting from after to-be-replaced part of the log 6988 * 6989 * We need to be careful about not overflowing available 6990 * buf_sz capacity. If that's the case, we'll truncate the end 6991 * of the original log, as necessary. 6992 */ 6993 if (patch_sz > orig_sz) { 6994 if (orig + patch_sz >= buf + buf_sz) { 6995 /* patch is big enough to cover remaining space completely */ 6996 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 6997 rem_sz = 0; 6998 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 6999 /* patch causes part of remaining log to be truncated */ 7000 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 7001 } 7002 } 7003 /* shift remaining log to the right by calculated amount */ 7004 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 7005 } 7006 7007 memcpy(orig, patch, patch_sz); 7008 } 7009 7010 static void fixup_log_failed_core_relo(struct bpf_program *prog, 7011 char *buf, size_t buf_sz, size_t log_sz, 7012 char *line1, char *line2, char *line3) 7013 { 7014 /* Expected log for failed and not properly guarded CO-RE relocation: 7015 * line1 -> 123: (85) call unknown#195896080 7016 * line2 -> invalid func unknown#195896080 7017 * line3 -> <anything else or end of buffer> 7018 * 7019 * "123" is the index of the instruction that was poisoned. We extract 7020 * instruction index to find corresponding CO-RE relocation and 7021 * replace this part of the log with more relevant information about 7022 * failed CO-RE relocation. 7023 */ 7024 const struct bpf_core_relo *relo; 7025 struct bpf_core_spec spec; 7026 char patch[512], spec_buf[256]; 7027 int insn_idx, err, spec_len; 7028 7029 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7030 return; 7031 7032 relo = find_relo_core(prog, insn_idx); 7033 if (!relo) 7034 return; 7035 7036 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7037 if (err) 7038 return; 7039 7040 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7041 snprintf(patch, sizeof(patch), 7042 "%d: <invalid CO-RE relocation>\n" 7043 "failed to resolve CO-RE relocation %s%s\n", 7044 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7045 7046 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7047 } 7048 7049 static void fixup_log_missing_map_load(struct bpf_program *prog, 7050 char *buf, size_t buf_sz, size_t log_sz, 7051 char *line1, char *line2, char *line3) 7052 { 7053 /* Expected log for failed and not properly guarded map reference: 7054 * line1 -> 123: (85) call unknown#2001000345 7055 * line2 -> invalid func unknown#2001000345 7056 * line3 -> <anything else or end of buffer> 7057 * 7058 * "123" is the index of the instruction that was poisoned. 7059 * "345" in "2001000345" is a map index in obj->maps to fetch map name. 7060 */ 7061 struct bpf_object *obj = prog->obj; 7062 const struct bpf_map *map; 7063 int insn_idx, map_idx; 7064 char patch[128]; 7065 7066 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7067 return; 7068 7069 map_idx -= POISON_LDIMM64_MAP_BASE; 7070 if (map_idx < 0 || map_idx >= obj->nr_maps) 7071 return; 7072 map = &obj->maps[map_idx]; 7073 7074 snprintf(patch, sizeof(patch), 7075 "%d: <invalid BPF map reference>\n" 7076 "BPF map '%s' is referenced but wasn't created\n", 7077 insn_idx, map->name); 7078 7079 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7080 } 7081 7082 static void fixup_log_missing_kfunc_call(struct bpf_program *prog, 7083 char *buf, size_t buf_sz, size_t log_sz, 7084 char *line1, char *line2, char *line3) 7085 { 7086 /* Expected log for failed and not properly guarded kfunc call: 7087 * line1 -> 123: (85) call unknown#2002000345 7088 * line2 -> invalid func unknown#2002000345 7089 * line3 -> <anything else or end of buffer> 7090 * 7091 * "123" is the index of the instruction that was poisoned. 7092 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name. 7093 */ 7094 struct bpf_object *obj = prog->obj; 7095 const struct extern_desc *ext; 7096 int insn_idx, ext_idx; 7097 char patch[128]; 7098 7099 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2) 7100 return; 7101 7102 ext_idx -= POISON_CALL_KFUNC_BASE; 7103 if (ext_idx < 0 || ext_idx >= obj->nr_extern) 7104 return; 7105 ext = &obj->externs[ext_idx]; 7106 7107 snprintf(patch, sizeof(patch), 7108 "%d: <invalid kfunc call>\n" 7109 "kfunc '%s' is referenced but wasn't resolved\n", 7110 insn_idx, ext->name); 7111 7112 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7113 } 7114 7115 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7116 { 7117 /* look for familiar error patterns in last N lines of the log */ 7118 const size_t max_last_line_cnt = 10; 7119 char *prev_line, *cur_line, *next_line; 7120 size_t log_sz; 7121 int i; 7122 7123 if (!buf) 7124 return; 7125 7126 log_sz = strlen(buf) + 1; 7127 next_line = buf + log_sz - 1; 7128 7129 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7130 cur_line = find_prev_line(buf, next_line); 7131 if (!cur_line) 7132 return; 7133 7134 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7135 prev_line = find_prev_line(buf, cur_line); 7136 if (!prev_line) 7137 continue; 7138 7139 /* failed CO-RE relocation case */ 7140 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7141 prev_line, cur_line, next_line); 7142 return; 7143 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) { 7144 prev_line = find_prev_line(buf, cur_line); 7145 if (!prev_line) 7146 continue; 7147 7148 /* reference to uncreated BPF map */ 7149 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7150 prev_line, cur_line, next_line); 7151 return; 7152 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) { 7153 prev_line = find_prev_line(buf, cur_line); 7154 if (!prev_line) 7155 continue; 7156 7157 /* reference to unresolved kfunc */ 7158 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz, 7159 prev_line, cur_line, next_line); 7160 return; 7161 } 7162 } 7163 } 7164 7165 static int bpf_program_record_relos(struct bpf_program *prog) 7166 { 7167 struct bpf_object *obj = prog->obj; 7168 int i; 7169 7170 for (i = 0; i < prog->nr_reloc; i++) { 7171 struct reloc_desc *relo = &prog->reloc_desc[i]; 7172 struct extern_desc *ext = &obj->externs[relo->ext_idx]; 7173 int kind; 7174 7175 switch (relo->type) { 7176 case RELO_EXTERN_LD64: 7177 if (ext->type != EXT_KSYM) 7178 continue; 7179 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ? 7180 BTF_KIND_VAR : BTF_KIND_FUNC; 7181 bpf_gen__record_extern(obj->gen_loader, ext->name, 7182 ext->is_weak, !ext->ksym.type_id, 7183 true, kind, relo->insn_idx); 7184 break; 7185 case RELO_EXTERN_CALL: 7186 bpf_gen__record_extern(obj->gen_loader, ext->name, 7187 ext->is_weak, false, false, BTF_KIND_FUNC, 7188 relo->insn_idx); 7189 break; 7190 case RELO_CORE: { 7191 struct bpf_core_relo cr = { 7192 .insn_off = relo->insn_idx * 8, 7193 .type_id = relo->core_relo->type_id, 7194 .access_str_off = relo->core_relo->access_str_off, 7195 .kind = relo->core_relo->kind, 7196 }; 7197 7198 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7199 break; 7200 } 7201 default: 7202 continue; 7203 } 7204 } 7205 return 0; 7206 } 7207 7208 static int 7209 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7210 { 7211 struct bpf_program *prog; 7212 size_t i; 7213 int err; 7214 7215 for (i = 0; i < obj->nr_programs; i++) { 7216 prog = &obj->programs[i]; 7217 err = bpf_object__sanitize_prog(obj, prog); 7218 if (err) 7219 return err; 7220 } 7221 7222 for (i = 0; i < obj->nr_programs; i++) { 7223 prog = &obj->programs[i]; 7224 if (prog_is_subprog(obj, prog)) 7225 continue; 7226 if (!prog->autoload) { 7227 pr_debug("prog '%s': skipped loading\n", prog->name); 7228 continue; 7229 } 7230 prog->log_level |= log_level; 7231 7232 if (obj->gen_loader) 7233 bpf_program_record_relos(prog); 7234 7235 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7236 obj->license, obj->kern_version, &prog->fd); 7237 if (err) { 7238 pr_warn("prog '%s': failed to load: %d\n", prog->name, err); 7239 return err; 7240 } 7241 } 7242 7243 bpf_object__free_relocs(obj); 7244 return 0; 7245 } 7246 7247 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7248 7249 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7250 { 7251 struct bpf_program *prog; 7252 int err; 7253 7254 bpf_object__for_each_program(prog, obj) { 7255 prog->sec_def = find_sec_def(prog->sec_name); 7256 if (!prog->sec_def) { 7257 /* couldn't guess, but user might manually specify */ 7258 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7259 prog->name, prog->sec_name); 7260 continue; 7261 } 7262 7263 prog->type = prog->sec_def->prog_type; 7264 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7265 7266 /* sec_def can have custom callback which should be called 7267 * after bpf_program is initialized to adjust its properties 7268 */ 7269 if (prog->sec_def->prog_setup_fn) { 7270 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7271 if (err < 0) { 7272 pr_warn("prog '%s': failed to initialize: %d\n", 7273 prog->name, err); 7274 return err; 7275 } 7276 } 7277 } 7278 7279 return 0; 7280 } 7281 7282 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7283 const struct bpf_object_open_opts *opts) 7284 { 7285 const char *obj_name, *kconfig, *btf_tmp_path; 7286 struct bpf_object *obj; 7287 char tmp_name[64]; 7288 int err; 7289 char *log_buf; 7290 size_t log_size; 7291 __u32 log_level; 7292 7293 if (elf_version(EV_CURRENT) == EV_NONE) { 7294 pr_warn("failed to init libelf for %s\n", 7295 path ? : "(mem buf)"); 7296 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7297 } 7298 7299 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7300 return ERR_PTR(-EINVAL); 7301 7302 obj_name = OPTS_GET(opts, object_name, NULL); 7303 if (obj_buf) { 7304 if (!obj_name) { 7305 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7306 (unsigned long)obj_buf, 7307 (unsigned long)obj_buf_sz); 7308 obj_name = tmp_name; 7309 } 7310 path = obj_name; 7311 pr_debug("loading object '%s' from buffer\n", obj_name); 7312 } 7313 7314 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7315 log_size = OPTS_GET(opts, kernel_log_size, 0); 7316 log_level = OPTS_GET(opts, kernel_log_level, 0); 7317 if (log_size > UINT_MAX) 7318 return ERR_PTR(-EINVAL); 7319 if (log_size && !log_buf) 7320 return ERR_PTR(-EINVAL); 7321 7322 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7323 if (IS_ERR(obj)) 7324 return obj; 7325 7326 obj->log_buf = log_buf; 7327 obj->log_size = log_size; 7328 obj->log_level = log_level; 7329 7330 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7331 if (btf_tmp_path) { 7332 if (strlen(btf_tmp_path) >= PATH_MAX) { 7333 err = -ENAMETOOLONG; 7334 goto out; 7335 } 7336 obj->btf_custom_path = strdup(btf_tmp_path); 7337 if (!obj->btf_custom_path) { 7338 err = -ENOMEM; 7339 goto out; 7340 } 7341 } 7342 7343 kconfig = OPTS_GET(opts, kconfig, NULL); 7344 if (kconfig) { 7345 obj->kconfig = strdup(kconfig); 7346 if (!obj->kconfig) { 7347 err = -ENOMEM; 7348 goto out; 7349 } 7350 } 7351 7352 err = bpf_object__elf_init(obj); 7353 err = err ? : bpf_object__check_endianness(obj); 7354 err = err ? : bpf_object__elf_collect(obj); 7355 err = err ? : bpf_object__collect_externs(obj); 7356 err = err ? : bpf_object_fixup_btf(obj); 7357 err = err ? : bpf_object__init_maps(obj, opts); 7358 err = err ? : bpf_object_init_progs(obj, opts); 7359 err = err ? : bpf_object__collect_relos(obj); 7360 if (err) 7361 goto out; 7362 7363 bpf_object__elf_finish(obj); 7364 7365 return obj; 7366 out: 7367 bpf_object__close(obj); 7368 return ERR_PTR(err); 7369 } 7370 7371 struct bpf_object * 7372 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7373 { 7374 if (!path) 7375 return libbpf_err_ptr(-EINVAL); 7376 7377 pr_debug("loading %s\n", path); 7378 7379 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7380 } 7381 7382 struct bpf_object *bpf_object__open(const char *path) 7383 { 7384 return bpf_object__open_file(path, NULL); 7385 } 7386 7387 struct bpf_object * 7388 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7389 const struct bpf_object_open_opts *opts) 7390 { 7391 if (!obj_buf || obj_buf_sz == 0) 7392 return libbpf_err_ptr(-EINVAL); 7393 7394 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7395 } 7396 7397 static int bpf_object_unload(struct bpf_object *obj) 7398 { 7399 size_t i; 7400 7401 if (!obj) 7402 return libbpf_err(-EINVAL); 7403 7404 for (i = 0; i < obj->nr_maps; i++) { 7405 zclose(obj->maps[i].fd); 7406 if (obj->maps[i].st_ops) 7407 zfree(&obj->maps[i].st_ops->kern_vdata); 7408 } 7409 7410 for (i = 0; i < obj->nr_programs; i++) 7411 bpf_program__unload(&obj->programs[i]); 7412 7413 return 0; 7414 } 7415 7416 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7417 { 7418 struct bpf_map *m; 7419 7420 bpf_object__for_each_map(m, obj) { 7421 if (!bpf_map__is_internal(m)) 7422 continue; 7423 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7424 m->def.map_flags &= ~BPF_F_MMAPABLE; 7425 } 7426 7427 return 0; 7428 } 7429 7430 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 7431 { 7432 char sym_type, sym_name[500]; 7433 unsigned long long sym_addr; 7434 int ret, err = 0; 7435 FILE *f; 7436 7437 f = fopen("/proc/kallsyms", "r"); 7438 if (!f) { 7439 err = -errno; 7440 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7441 return err; 7442 } 7443 7444 while (true) { 7445 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7446 &sym_addr, &sym_type, sym_name); 7447 if (ret == EOF && feof(f)) 7448 break; 7449 if (ret != 3) { 7450 pr_warn("failed to read kallsyms entry: %d\n", ret); 7451 err = -EINVAL; 7452 break; 7453 } 7454 7455 err = cb(sym_addr, sym_type, sym_name, ctx); 7456 if (err) 7457 break; 7458 } 7459 7460 fclose(f); 7461 return err; 7462 } 7463 7464 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 7465 const char *sym_name, void *ctx) 7466 { 7467 struct bpf_object *obj = ctx; 7468 const struct btf_type *t; 7469 struct extern_desc *ext; 7470 7471 ext = find_extern_by_name(obj, sym_name); 7472 if (!ext || ext->type != EXT_KSYM) 7473 return 0; 7474 7475 t = btf__type_by_id(obj->btf, ext->btf_id); 7476 if (!btf_is_var(t)) 7477 return 0; 7478 7479 if (ext->is_set && ext->ksym.addr != sym_addr) { 7480 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 7481 sym_name, ext->ksym.addr, sym_addr); 7482 return -EINVAL; 7483 } 7484 if (!ext->is_set) { 7485 ext->is_set = true; 7486 ext->ksym.addr = sym_addr; 7487 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 7488 } 7489 return 0; 7490 } 7491 7492 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7493 { 7494 return libbpf_kallsyms_parse(kallsyms_cb, obj); 7495 } 7496 7497 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7498 __u16 kind, struct btf **res_btf, 7499 struct module_btf **res_mod_btf) 7500 { 7501 struct module_btf *mod_btf; 7502 struct btf *btf; 7503 int i, id, err; 7504 7505 btf = obj->btf_vmlinux; 7506 mod_btf = NULL; 7507 id = btf__find_by_name_kind(btf, ksym_name, kind); 7508 7509 if (id == -ENOENT) { 7510 err = load_module_btfs(obj); 7511 if (err) 7512 return err; 7513 7514 for (i = 0; i < obj->btf_module_cnt; i++) { 7515 /* we assume module_btf's BTF FD is always >0 */ 7516 mod_btf = &obj->btf_modules[i]; 7517 btf = mod_btf->btf; 7518 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7519 if (id != -ENOENT) 7520 break; 7521 } 7522 } 7523 if (id <= 0) 7524 return -ESRCH; 7525 7526 *res_btf = btf; 7527 *res_mod_btf = mod_btf; 7528 return id; 7529 } 7530 7531 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7532 struct extern_desc *ext) 7533 { 7534 const struct btf_type *targ_var, *targ_type; 7535 __u32 targ_type_id, local_type_id; 7536 struct module_btf *mod_btf = NULL; 7537 const char *targ_var_name; 7538 struct btf *btf = NULL; 7539 int id, err; 7540 7541 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7542 if (id < 0) { 7543 if (id == -ESRCH && ext->is_weak) 7544 return 0; 7545 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7546 ext->name); 7547 return id; 7548 } 7549 7550 /* find local type_id */ 7551 local_type_id = ext->ksym.type_id; 7552 7553 /* find target type_id */ 7554 targ_var = btf__type_by_id(btf, id); 7555 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7556 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7557 7558 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7559 btf, targ_type_id); 7560 if (err <= 0) { 7561 const struct btf_type *local_type; 7562 const char *targ_name, *local_name; 7563 7564 local_type = btf__type_by_id(obj->btf, local_type_id); 7565 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7566 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7567 7568 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7569 ext->name, local_type_id, 7570 btf_kind_str(local_type), local_name, targ_type_id, 7571 btf_kind_str(targ_type), targ_name); 7572 return -EINVAL; 7573 } 7574 7575 ext->is_set = true; 7576 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7577 ext->ksym.kernel_btf_id = id; 7578 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7579 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7580 7581 return 0; 7582 } 7583 7584 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7585 struct extern_desc *ext) 7586 { 7587 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7588 struct module_btf *mod_btf = NULL; 7589 const struct btf_type *kern_func; 7590 struct btf *kern_btf = NULL; 7591 int ret; 7592 7593 local_func_proto_id = ext->ksym.type_id; 7594 7595 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf); 7596 if (kfunc_id < 0) { 7597 if (kfunc_id == -ESRCH && ext->is_weak) 7598 return 0; 7599 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7600 ext->name); 7601 return kfunc_id; 7602 } 7603 7604 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7605 kfunc_proto_id = kern_func->type; 7606 7607 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7608 kern_btf, kfunc_proto_id); 7609 if (ret <= 0) { 7610 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n", 7611 ext->name, local_func_proto_id, 7612 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id); 7613 return -EINVAL; 7614 } 7615 7616 /* set index for module BTF fd in fd_array, if unset */ 7617 if (mod_btf && !mod_btf->fd_array_idx) { 7618 /* insn->off is s16 */ 7619 if (obj->fd_array_cnt == INT16_MAX) { 7620 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7621 ext->name, mod_btf->fd_array_idx); 7622 return -E2BIG; 7623 } 7624 /* Cannot use index 0 for module BTF fd */ 7625 if (!obj->fd_array_cnt) 7626 obj->fd_array_cnt = 1; 7627 7628 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7629 obj->fd_array_cnt + 1); 7630 if (ret) 7631 return ret; 7632 mod_btf->fd_array_idx = obj->fd_array_cnt; 7633 /* we assume module BTF FD is always >0 */ 7634 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7635 } 7636 7637 ext->is_set = true; 7638 ext->ksym.kernel_btf_id = kfunc_id; 7639 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7640 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data() 7641 * populates FD into ld_imm64 insn when it's used to point to kfunc. 7642 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call. 7643 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64. 7644 */ 7645 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7646 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n", 7647 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id); 7648 7649 return 0; 7650 } 7651 7652 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7653 { 7654 const struct btf_type *t; 7655 struct extern_desc *ext; 7656 int i, err; 7657 7658 for (i = 0; i < obj->nr_extern; i++) { 7659 ext = &obj->externs[i]; 7660 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7661 continue; 7662 7663 if (obj->gen_loader) { 7664 ext->is_set = true; 7665 ext->ksym.kernel_btf_obj_fd = 0; 7666 ext->ksym.kernel_btf_id = 0; 7667 continue; 7668 } 7669 t = btf__type_by_id(obj->btf, ext->btf_id); 7670 if (btf_is_var(t)) 7671 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7672 else 7673 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7674 if (err) 7675 return err; 7676 } 7677 return 0; 7678 } 7679 7680 static int bpf_object__resolve_externs(struct bpf_object *obj, 7681 const char *extra_kconfig) 7682 { 7683 bool need_config = false, need_kallsyms = false; 7684 bool need_vmlinux_btf = false; 7685 struct extern_desc *ext; 7686 void *kcfg_data = NULL; 7687 int err, i; 7688 7689 if (obj->nr_extern == 0) 7690 return 0; 7691 7692 if (obj->kconfig_map_idx >= 0) 7693 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7694 7695 for (i = 0; i < obj->nr_extern; i++) { 7696 ext = &obj->externs[i]; 7697 7698 if (ext->type == EXT_KSYM) { 7699 if (ext->ksym.type_id) 7700 need_vmlinux_btf = true; 7701 else 7702 need_kallsyms = true; 7703 continue; 7704 } else if (ext->type == EXT_KCFG) { 7705 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 7706 __u64 value = 0; 7707 7708 /* Kconfig externs need actual /proc/config.gz */ 7709 if (str_has_pfx(ext->name, "CONFIG_")) { 7710 need_config = true; 7711 continue; 7712 } 7713 7714 /* Virtual kcfg externs are customly handled by libbpf */ 7715 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7716 value = get_kernel_version(); 7717 if (!value) { 7718 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 7719 return -EINVAL; 7720 } 7721 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 7722 value = kernel_supports(obj, FEAT_BPF_COOKIE); 7723 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 7724 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 7725 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 7726 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 7727 * __kconfig externs, where LINUX_ ones are virtual and filled out 7728 * customly by libbpf (their values don't come from Kconfig). 7729 * If LINUX_xxx variable is not recognized by libbpf, but is marked 7730 * __weak, it defaults to zero value, just like for CONFIG_xxx 7731 * externs. 7732 */ 7733 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 7734 return -EINVAL; 7735 } 7736 7737 err = set_kcfg_value_num(ext, ext_ptr, value); 7738 if (err) 7739 return err; 7740 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 7741 ext->name, (long long)value); 7742 } else { 7743 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 7744 return -EINVAL; 7745 } 7746 } 7747 if (need_config && extra_kconfig) { 7748 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7749 if (err) 7750 return -EINVAL; 7751 need_config = false; 7752 for (i = 0; i < obj->nr_extern; i++) { 7753 ext = &obj->externs[i]; 7754 if (ext->type == EXT_KCFG && !ext->is_set) { 7755 need_config = true; 7756 break; 7757 } 7758 } 7759 } 7760 if (need_config) { 7761 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7762 if (err) 7763 return -EINVAL; 7764 } 7765 if (need_kallsyms) { 7766 err = bpf_object__read_kallsyms_file(obj); 7767 if (err) 7768 return -EINVAL; 7769 } 7770 if (need_vmlinux_btf) { 7771 err = bpf_object__resolve_ksyms_btf_id(obj); 7772 if (err) 7773 return -EINVAL; 7774 } 7775 for (i = 0; i < obj->nr_extern; i++) { 7776 ext = &obj->externs[i]; 7777 7778 if (!ext->is_set && !ext->is_weak) { 7779 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 7780 return -ESRCH; 7781 } else if (!ext->is_set) { 7782 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 7783 ext->name); 7784 } 7785 } 7786 7787 return 0; 7788 } 7789 7790 static void bpf_map_prepare_vdata(const struct bpf_map *map) 7791 { 7792 struct bpf_struct_ops *st_ops; 7793 __u32 i; 7794 7795 st_ops = map->st_ops; 7796 for (i = 0; i < btf_vlen(st_ops->type); i++) { 7797 struct bpf_program *prog = st_ops->progs[i]; 7798 void *kern_data; 7799 int prog_fd; 7800 7801 if (!prog) 7802 continue; 7803 7804 prog_fd = bpf_program__fd(prog); 7805 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 7806 *(unsigned long *)kern_data = prog_fd; 7807 } 7808 } 7809 7810 static int bpf_object_prepare_struct_ops(struct bpf_object *obj) 7811 { 7812 int i; 7813 7814 for (i = 0; i < obj->nr_maps; i++) 7815 if (bpf_map__is_struct_ops(&obj->maps[i])) 7816 bpf_map_prepare_vdata(&obj->maps[i]); 7817 7818 return 0; 7819 } 7820 7821 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 7822 { 7823 int err, i; 7824 7825 if (!obj) 7826 return libbpf_err(-EINVAL); 7827 7828 if (obj->loaded) { 7829 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7830 return libbpf_err(-EINVAL); 7831 } 7832 7833 if (obj->gen_loader) 7834 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 7835 7836 err = bpf_object__probe_loading(obj); 7837 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7838 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7839 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7840 err = err ? : bpf_object__sanitize_maps(obj); 7841 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7842 err = err ? : bpf_object__create_maps(obj); 7843 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 7844 err = err ? : bpf_object__load_progs(obj, extra_log_level); 7845 err = err ? : bpf_object_init_prog_arrays(obj); 7846 err = err ? : bpf_object_prepare_struct_ops(obj); 7847 7848 if (obj->gen_loader) { 7849 /* reset FDs */ 7850 if (obj->btf) 7851 btf__set_fd(obj->btf, -1); 7852 for (i = 0; i < obj->nr_maps; i++) 7853 obj->maps[i].fd = -1; 7854 if (!err) 7855 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 7856 } 7857 7858 /* clean up fd_array */ 7859 zfree(&obj->fd_array); 7860 7861 /* clean up module BTFs */ 7862 for (i = 0; i < obj->btf_module_cnt; i++) { 7863 close(obj->btf_modules[i].fd); 7864 btf__free(obj->btf_modules[i].btf); 7865 free(obj->btf_modules[i].name); 7866 } 7867 free(obj->btf_modules); 7868 7869 /* clean up vmlinux BTF */ 7870 btf__free(obj->btf_vmlinux); 7871 obj->btf_vmlinux = NULL; 7872 7873 obj->loaded = true; /* doesn't matter if successfully or not */ 7874 7875 if (err) 7876 goto out; 7877 7878 return 0; 7879 out: 7880 /* unpin any maps that were auto-pinned during load */ 7881 for (i = 0; i < obj->nr_maps; i++) 7882 if (obj->maps[i].pinned && !obj->maps[i].reused) 7883 bpf_map__unpin(&obj->maps[i], NULL); 7884 7885 bpf_object_unload(obj); 7886 pr_warn("failed to load object '%s'\n", obj->path); 7887 return libbpf_err(err); 7888 } 7889 7890 int bpf_object__load(struct bpf_object *obj) 7891 { 7892 return bpf_object_load(obj, 0, NULL); 7893 } 7894 7895 static int make_parent_dir(const char *path) 7896 { 7897 char *cp, errmsg[STRERR_BUFSIZE]; 7898 char *dname, *dir; 7899 int err = 0; 7900 7901 dname = strdup(path); 7902 if (dname == NULL) 7903 return -ENOMEM; 7904 7905 dir = dirname(dname); 7906 if (mkdir(dir, 0700) && errno != EEXIST) 7907 err = -errno; 7908 7909 free(dname); 7910 if (err) { 7911 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7912 pr_warn("failed to mkdir %s: %s\n", path, cp); 7913 } 7914 return err; 7915 } 7916 7917 static int check_path(const char *path) 7918 { 7919 char *cp, errmsg[STRERR_BUFSIZE]; 7920 struct statfs st_fs; 7921 char *dname, *dir; 7922 int err = 0; 7923 7924 if (path == NULL) 7925 return -EINVAL; 7926 7927 dname = strdup(path); 7928 if (dname == NULL) 7929 return -ENOMEM; 7930 7931 dir = dirname(dname); 7932 if (statfs(dir, &st_fs)) { 7933 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7934 pr_warn("failed to statfs %s: %s\n", dir, cp); 7935 err = -errno; 7936 } 7937 free(dname); 7938 7939 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7940 pr_warn("specified path %s is not on BPF FS\n", path); 7941 err = -EINVAL; 7942 } 7943 7944 return err; 7945 } 7946 7947 int bpf_program__pin(struct bpf_program *prog, const char *path) 7948 { 7949 char *cp, errmsg[STRERR_BUFSIZE]; 7950 int err; 7951 7952 if (prog->fd < 0) { 7953 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 7954 return libbpf_err(-EINVAL); 7955 } 7956 7957 err = make_parent_dir(path); 7958 if (err) 7959 return libbpf_err(err); 7960 7961 err = check_path(path); 7962 if (err) 7963 return libbpf_err(err); 7964 7965 if (bpf_obj_pin(prog->fd, path)) { 7966 err = -errno; 7967 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7968 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp); 7969 return libbpf_err(err); 7970 } 7971 7972 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 7973 return 0; 7974 } 7975 7976 int bpf_program__unpin(struct bpf_program *prog, const char *path) 7977 { 7978 int err; 7979 7980 if (prog->fd < 0) { 7981 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 7982 return libbpf_err(-EINVAL); 7983 } 7984 7985 err = check_path(path); 7986 if (err) 7987 return libbpf_err(err); 7988 7989 err = unlink(path); 7990 if (err) 7991 return libbpf_err(-errno); 7992 7993 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 7994 return 0; 7995 } 7996 7997 int bpf_map__pin(struct bpf_map *map, const char *path) 7998 { 7999 char *cp, errmsg[STRERR_BUFSIZE]; 8000 int err; 8001 8002 if (map == NULL) { 8003 pr_warn("invalid map pointer\n"); 8004 return libbpf_err(-EINVAL); 8005 } 8006 8007 if (map->pin_path) { 8008 if (path && strcmp(path, map->pin_path)) { 8009 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8010 bpf_map__name(map), map->pin_path, path); 8011 return libbpf_err(-EINVAL); 8012 } else if (map->pinned) { 8013 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8014 bpf_map__name(map), map->pin_path); 8015 return 0; 8016 } 8017 } else { 8018 if (!path) { 8019 pr_warn("missing a path to pin map '%s' at\n", 8020 bpf_map__name(map)); 8021 return libbpf_err(-EINVAL); 8022 } else if (map->pinned) { 8023 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8024 return libbpf_err(-EEXIST); 8025 } 8026 8027 map->pin_path = strdup(path); 8028 if (!map->pin_path) { 8029 err = -errno; 8030 goto out_err; 8031 } 8032 } 8033 8034 err = make_parent_dir(map->pin_path); 8035 if (err) 8036 return libbpf_err(err); 8037 8038 err = check_path(map->pin_path); 8039 if (err) 8040 return libbpf_err(err); 8041 8042 if (bpf_obj_pin(map->fd, map->pin_path)) { 8043 err = -errno; 8044 goto out_err; 8045 } 8046 8047 map->pinned = true; 8048 pr_debug("pinned map '%s'\n", map->pin_path); 8049 8050 return 0; 8051 8052 out_err: 8053 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8054 pr_warn("failed to pin map: %s\n", cp); 8055 return libbpf_err(err); 8056 } 8057 8058 int bpf_map__unpin(struct bpf_map *map, const char *path) 8059 { 8060 int err; 8061 8062 if (map == NULL) { 8063 pr_warn("invalid map pointer\n"); 8064 return libbpf_err(-EINVAL); 8065 } 8066 8067 if (map->pin_path) { 8068 if (path && strcmp(path, map->pin_path)) { 8069 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8070 bpf_map__name(map), map->pin_path, path); 8071 return libbpf_err(-EINVAL); 8072 } 8073 path = map->pin_path; 8074 } else if (!path) { 8075 pr_warn("no path to unpin map '%s' from\n", 8076 bpf_map__name(map)); 8077 return libbpf_err(-EINVAL); 8078 } 8079 8080 err = check_path(path); 8081 if (err) 8082 return libbpf_err(err); 8083 8084 err = unlink(path); 8085 if (err != 0) 8086 return libbpf_err(-errno); 8087 8088 map->pinned = false; 8089 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8090 8091 return 0; 8092 } 8093 8094 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8095 { 8096 char *new = NULL; 8097 8098 if (path) { 8099 new = strdup(path); 8100 if (!new) 8101 return libbpf_err(-errno); 8102 } 8103 8104 free(map->pin_path); 8105 map->pin_path = new; 8106 return 0; 8107 } 8108 8109 __alias(bpf_map__pin_path) 8110 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8111 8112 const char *bpf_map__pin_path(const struct bpf_map *map) 8113 { 8114 return map->pin_path; 8115 } 8116 8117 bool bpf_map__is_pinned(const struct bpf_map *map) 8118 { 8119 return map->pinned; 8120 } 8121 8122 static void sanitize_pin_path(char *s) 8123 { 8124 /* bpffs disallows periods in path names */ 8125 while (*s) { 8126 if (*s == '.') 8127 *s = '_'; 8128 s++; 8129 } 8130 } 8131 8132 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8133 { 8134 struct bpf_map *map; 8135 int err; 8136 8137 if (!obj) 8138 return libbpf_err(-ENOENT); 8139 8140 if (!obj->loaded) { 8141 pr_warn("object not yet loaded; load it first\n"); 8142 return libbpf_err(-ENOENT); 8143 } 8144 8145 bpf_object__for_each_map(map, obj) { 8146 char *pin_path = NULL; 8147 char buf[PATH_MAX]; 8148 8149 if (!map->autocreate) 8150 continue; 8151 8152 if (path) { 8153 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8154 if (err) 8155 goto err_unpin_maps; 8156 sanitize_pin_path(buf); 8157 pin_path = buf; 8158 } else if (!map->pin_path) { 8159 continue; 8160 } 8161 8162 err = bpf_map__pin(map, pin_path); 8163 if (err) 8164 goto err_unpin_maps; 8165 } 8166 8167 return 0; 8168 8169 err_unpin_maps: 8170 while ((map = bpf_object__prev_map(obj, map))) { 8171 if (!map->pin_path) 8172 continue; 8173 8174 bpf_map__unpin(map, NULL); 8175 } 8176 8177 return libbpf_err(err); 8178 } 8179 8180 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8181 { 8182 struct bpf_map *map; 8183 int err; 8184 8185 if (!obj) 8186 return libbpf_err(-ENOENT); 8187 8188 bpf_object__for_each_map(map, obj) { 8189 char *pin_path = NULL; 8190 char buf[PATH_MAX]; 8191 8192 if (path) { 8193 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8194 if (err) 8195 return libbpf_err(err); 8196 sanitize_pin_path(buf); 8197 pin_path = buf; 8198 } else if (!map->pin_path) { 8199 continue; 8200 } 8201 8202 err = bpf_map__unpin(map, pin_path); 8203 if (err) 8204 return libbpf_err(err); 8205 } 8206 8207 return 0; 8208 } 8209 8210 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8211 { 8212 struct bpf_program *prog; 8213 char buf[PATH_MAX]; 8214 int err; 8215 8216 if (!obj) 8217 return libbpf_err(-ENOENT); 8218 8219 if (!obj->loaded) { 8220 pr_warn("object not yet loaded; load it first\n"); 8221 return libbpf_err(-ENOENT); 8222 } 8223 8224 bpf_object__for_each_program(prog, obj) { 8225 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8226 if (err) 8227 goto err_unpin_programs; 8228 8229 err = bpf_program__pin(prog, buf); 8230 if (err) 8231 goto err_unpin_programs; 8232 } 8233 8234 return 0; 8235 8236 err_unpin_programs: 8237 while ((prog = bpf_object__prev_program(obj, prog))) { 8238 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 8239 continue; 8240 8241 bpf_program__unpin(prog, buf); 8242 } 8243 8244 return libbpf_err(err); 8245 } 8246 8247 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8248 { 8249 struct bpf_program *prog; 8250 int err; 8251 8252 if (!obj) 8253 return libbpf_err(-ENOENT); 8254 8255 bpf_object__for_each_program(prog, obj) { 8256 char buf[PATH_MAX]; 8257 8258 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8259 if (err) 8260 return libbpf_err(err); 8261 8262 err = bpf_program__unpin(prog, buf); 8263 if (err) 8264 return libbpf_err(err); 8265 } 8266 8267 return 0; 8268 } 8269 8270 int bpf_object__pin(struct bpf_object *obj, const char *path) 8271 { 8272 int err; 8273 8274 err = bpf_object__pin_maps(obj, path); 8275 if (err) 8276 return libbpf_err(err); 8277 8278 err = bpf_object__pin_programs(obj, path); 8279 if (err) { 8280 bpf_object__unpin_maps(obj, path); 8281 return libbpf_err(err); 8282 } 8283 8284 return 0; 8285 } 8286 8287 static void bpf_map__destroy(struct bpf_map *map) 8288 { 8289 if (map->inner_map) { 8290 bpf_map__destroy(map->inner_map); 8291 zfree(&map->inner_map); 8292 } 8293 8294 zfree(&map->init_slots); 8295 map->init_slots_sz = 0; 8296 8297 if (map->mmaped) { 8298 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8299 map->mmaped = NULL; 8300 } 8301 8302 if (map->st_ops) { 8303 zfree(&map->st_ops->data); 8304 zfree(&map->st_ops->progs); 8305 zfree(&map->st_ops->kern_func_off); 8306 zfree(&map->st_ops); 8307 } 8308 8309 zfree(&map->name); 8310 zfree(&map->real_name); 8311 zfree(&map->pin_path); 8312 8313 if (map->fd >= 0) 8314 zclose(map->fd); 8315 } 8316 8317 void bpf_object__close(struct bpf_object *obj) 8318 { 8319 size_t i; 8320 8321 if (IS_ERR_OR_NULL(obj)) 8322 return; 8323 8324 usdt_manager_free(obj->usdt_man); 8325 obj->usdt_man = NULL; 8326 8327 bpf_gen__free(obj->gen_loader); 8328 bpf_object__elf_finish(obj); 8329 bpf_object_unload(obj); 8330 btf__free(obj->btf); 8331 btf_ext__free(obj->btf_ext); 8332 8333 for (i = 0; i < obj->nr_maps; i++) 8334 bpf_map__destroy(&obj->maps[i]); 8335 8336 zfree(&obj->btf_custom_path); 8337 zfree(&obj->kconfig); 8338 zfree(&obj->externs); 8339 obj->nr_extern = 0; 8340 8341 zfree(&obj->maps); 8342 obj->nr_maps = 0; 8343 8344 if (obj->programs && obj->nr_programs) { 8345 for (i = 0; i < obj->nr_programs; i++) 8346 bpf_program__exit(&obj->programs[i]); 8347 } 8348 zfree(&obj->programs); 8349 8350 free(obj); 8351 } 8352 8353 const char *bpf_object__name(const struct bpf_object *obj) 8354 { 8355 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8356 } 8357 8358 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8359 { 8360 return obj ? obj->kern_version : 0; 8361 } 8362 8363 struct btf *bpf_object__btf(const struct bpf_object *obj) 8364 { 8365 return obj ? obj->btf : NULL; 8366 } 8367 8368 int bpf_object__btf_fd(const struct bpf_object *obj) 8369 { 8370 return obj->btf ? btf__fd(obj->btf) : -1; 8371 } 8372 8373 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8374 { 8375 if (obj->loaded) 8376 return libbpf_err(-EINVAL); 8377 8378 obj->kern_version = kern_version; 8379 8380 return 0; 8381 } 8382 8383 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8384 { 8385 struct bpf_gen *gen; 8386 8387 if (!opts) 8388 return -EFAULT; 8389 if (!OPTS_VALID(opts, gen_loader_opts)) 8390 return -EINVAL; 8391 gen = calloc(sizeof(*gen), 1); 8392 if (!gen) 8393 return -ENOMEM; 8394 gen->opts = opts; 8395 obj->gen_loader = gen; 8396 return 0; 8397 } 8398 8399 static struct bpf_program * 8400 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8401 bool forward) 8402 { 8403 size_t nr_programs = obj->nr_programs; 8404 ssize_t idx; 8405 8406 if (!nr_programs) 8407 return NULL; 8408 8409 if (!p) 8410 /* Iter from the beginning */ 8411 return forward ? &obj->programs[0] : 8412 &obj->programs[nr_programs - 1]; 8413 8414 if (p->obj != obj) { 8415 pr_warn("error: program handler doesn't match object\n"); 8416 return errno = EINVAL, NULL; 8417 } 8418 8419 idx = (p - obj->programs) + (forward ? 1 : -1); 8420 if (idx >= obj->nr_programs || idx < 0) 8421 return NULL; 8422 return &obj->programs[idx]; 8423 } 8424 8425 struct bpf_program * 8426 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8427 { 8428 struct bpf_program *prog = prev; 8429 8430 do { 8431 prog = __bpf_program__iter(prog, obj, true); 8432 } while (prog && prog_is_subprog(obj, prog)); 8433 8434 return prog; 8435 } 8436 8437 struct bpf_program * 8438 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8439 { 8440 struct bpf_program *prog = next; 8441 8442 do { 8443 prog = __bpf_program__iter(prog, obj, false); 8444 } while (prog && prog_is_subprog(obj, prog)); 8445 8446 return prog; 8447 } 8448 8449 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8450 { 8451 prog->prog_ifindex = ifindex; 8452 } 8453 8454 const char *bpf_program__name(const struct bpf_program *prog) 8455 { 8456 return prog->name; 8457 } 8458 8459 const char *bpf_program__section_name(const struct bpf_program *prog) 8460 { 8461 return prog->sec_name; 8462 } 8463 8464 bool bpf_program__autoload(const struct bpf_program *prog) 8465 { 8466 return prog->autoload; 8467 } 8468 8469 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8470 { 8471 if (prog->obj->loaded) 8472 return libbpf_err(-EINVAL); 8473 8474 prog->autoload = autoload; 8475 return 0; 8476 } 8477 8478 bool bpf_program__autoattach(const struct bpf_program *prog) 8479 { 8480 return prog->autoattach; 8481 } 8482 8483 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 8484 { 8485 prog->autoattach = autoattach; 8486 } 8487 8488 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8489 { 8490 return prog->insns; 8491 } 8492 8493 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8494 { 8495 return prog->insns_cnt; 8496 } 8497 8498 int bpf_program__set_insns(struct bpf_program *prog, 8499 struct bpf_insn *new_insns, size_t new_insn_cnt) 8500 { 8501 struct bpf_insn *insns; 8502 8503 if (prog->obj->loaded) 8504 return -EBUSY; 8505 8506 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 8507 if (!insns) { 8508 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 8509 return -ENOMEM; 8510 } 8511 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 8512 8513 prog->insns = insns; 8514 prog->insns_cnt = new_insn_cnt; 8515 return 0; 8516 } 8517 8518 int bpf_program__fd(const struct bpf_program *prog) 8519 { 8520 if (!prog) 8521 return libbpf_err(-EINVAL); 8522 8523 if (prog->fd < 0) 8524 return libbpf_err(-ENOENT); 8525 8526 return prog->fd; 8527 } 8528 8529 __alias(bpf_program__type) 8530 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 8531 8532 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 8533 { 8534 return prog->type; 8535 } 8536 8537 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8538 { 8539 if (prog->obj->loaded) 8540 return libbpf_err(-EBUSY); 8541 8542 prog->type = type; 8543 prog->sec_def = NULL; 8544 return 0; 8545 } 8546 8547 __alias(bpf_program__expected_attach_type) 8548 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 8549 8550 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 8551 { 8552 return prog->expected_attach_type; 8553 } 8554 8555 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 8556 enum bpf_attach_type type) 8557 { 8558 if (prog->obj->loaded) 8559 return libbpf_err(-EBUSY); 8560 8561 prog->expected_attach_type = type; 8562 return 0; 8563 } 8564 8565 __u32 bpf_program__flags(const struct bpf_program *prog) 8566 { 8567 return prog->prog_flags; 8568 } 8569 8570 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 8571 { 8572 if (prog->obj->loaded) 8573 return libbpf_err(-EBUSY); 8574 8575 prog->prog_flags = flags; 8576 return 0; 8577 } 8578 8579 __u32 bpf_program__log_level(const struct bpf_program *prog) 8580 { 8581 return prog->log_level; 8582 } 8583 8584 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 8585 { 8586 if (prog->obj->loaded) 8587 return libbpf_err(-EBUSY); 8588 8589 prog->log_level = log_level; 8590 return 0; 8591 } 8592 8593 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 8594 { 8595 *log_size = prog->log_size; 8596 return prog->log_buf; 8597 } 8598 8599 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 8600 { 8601 if (log_size && !log_buf) 8602 return -EINVAL; 8603 if (prog->log_size > UINT_MAX) 8604 return -EINVAL; 8605 if (prog->obj->loaded) 8606 return -EBUSY; 8607 8608 prog->log_buf = log_buf; 8609 prog->log_size = log_size; 8610 return 0; 8611 } 8612 8613 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 8614 .sec = (char *)sec_pfx, \ 8615 .prog_type = BPF_PROG_TYPE_##ptype, \ 8616 .expected_attach_type = atype, \ 8617 .cookie = (long)(flags), \ 8618 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 8619 __VA_ARGS__ \ 8620 } 8621 8622 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8623 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8624 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8625 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8626 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8627 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8628 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8629 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8630 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8631 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8632 8633 static const struct bpf_sec_def section_defs[] = { 8634 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 8635 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 8636 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 8637 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8638 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8639 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8640 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8641 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8642 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8643 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8644 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8645 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8646 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8647 SEC_DEF("usdt+", KPROBE, 0, SEC_NONE, attach_usdt), 8648 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), 8649 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), 8650 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), 8651 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8652 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8653 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8654 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8655 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8656 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8657 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 8658 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 8659 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 8660 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 8661 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8662 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8663 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8664 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 8665 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 8666 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 8667 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 8668 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 8669 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 8670 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 8671 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 8672 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 8673 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 8674 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 8675 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 8676 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 8677 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 8678 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 8679 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 8680 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 8681 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 8682 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 8683 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 8684 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 8685 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 8686 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 8687 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 8688 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 8689 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 8690 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 8691 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 8692 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 8693 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 8694 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 8695 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 8696 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 8697 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 8698 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 8699 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 8700 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 8701 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 8702 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 8703 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 8704 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 8705 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 8706 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 8707 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 8708 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 8709 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 8710 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 8711 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 8712 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 8713 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 8714 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE), 8715 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 8716 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE), 8717 }; 8718 8719 static size_t custom_sec_def_cnt; 8720 static struct bpf_sec_def *custom_sec_defs; 8721 static struct bpf_sec_def custom_fallback_def; 8722 static bool has_custom_fallback_def; 8723 8724 static int last_custom_sec_def_handler_id; 8725 8726 int libbpf_register_prog_handler(const char *sec, 8727 enum bpf_prog_type prog_type, 8728 enum bpf_attach_type exp_attach_type, 8729 const struct libbpf_prog_handler_opts *opts) 8730 { 8731 struct bpf_sec_def *sec_def; 8732 8733 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 8734 return libbpf_err(-EINVAL); 8735 8736 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 8737 return libbpf_err(-E2BIG); 8738 8739 if (sec) { 8740 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 8741 sizeof(*sec_def)); 8742 if (!sec_def) 8743 return libbpf_err(-ENOMEM); 8744 8745 custom_sec_defs = sec_def; 8746 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 8747 } else { 8748 if (has_custom_fallback_def) 8749 return libbpf_err(-EBUSY); 8750 8751 sec_def = &custom_fallback_def; 8752 } 8753 8754 sec_def->sec = sec ? strdup(sec) : NULL; 8755 if (sec && !sec_def->sec) 8756 return libbpf_err(-ENOMEM); 8757 8758 sec_def->prog_type = prog_type; 8759 sec_def->expected_attach_type = exp_attach_type; 8760 sec_def->cookie = OPTS_GET(opts, cookie, 0); 8761 8762 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 8763 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 8764 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 8765 8766 sec_def->handler_id = ++last_custom_sec_def_handler_id; 8767 8768 if (sec) 8769 custom_sec_def_cnt++; 8770 else 8771 has_custom_fallback_def = true; 8772 8773 return sec_def->handler_id; 8774 } 8775 8776 int libbpf_unregister_prog_handler(int handler_id) 8777 { 8778 struct bpf_sec_def *sec_defs; 8779 int i; 8780 8781 if (handler_id <= 0) 8782 return libbpf_err(-EINVAL); 8783 8784 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 8785 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 8786 has_custom_fallback_def = false; 8787 return 0; 8788 } 8789 8790 for (i = 0; i < custom_sec_def_cnt; i++) { 8791 if (custom_sec_defs[i].handler_id == handler_id) 8792 break; 8793 } 8794 8795 if (i == custom_sec_def_cnt) 8796 return libbpf_err(-ENOENT); 8797 8798 free(custom_sec_defs[i].sec); 8799 for (i = i + 1; i < custom_sec_def_cnt; i++) 8800 custom_sec_defs[i - 1] = custom_sec_defs[i]; 8801 custom_sec_def_cnt--; 8802 8803 /* try to shrink the array, but it's ok if we couldn't */ 8804 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 8805 if (sec_defs) 8806 custom_sec_defs = sec_defs; 8807 8808 return 0; 8809 } 8810 8811 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 8812 { 8813 size_t len = strlen(sec_def->sec); 8814 8815 /* "type/" always has to have proper SEC("type/extras") form */ 8816 if (sec_def->sec[len - 1] == '/') { 8817 if (str_has_pfx(sec_name, sec_def->sec)) 8818 return true; 8819 return false; 8820 } 8821 8822 /* "type+" means it can be either exact SEC("type") or 8823 * well-formed SEC("type/extras") with proper '/' separator 8824 */ 8825 if (sec_def->sec[len - 1] == '+') { 8826 len--; 8827 /* not even a prefix */ 8828 if (strncmp(sec_name, sec_def->sec, len) != 0) 8829 return false; 8830 /* exact match or has '/' separator */ 8831 if (sec_name[len] == '\0' || sec_name[len] == '/') 8832 return true; 8833 return false; 8834 } 8835 8836 return strcmp(sec_name, sec_def->sec) == 0; 8837 } 8838 8839 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8840 { 8841 const struct bpf_sec_def *sec_def; 8842 int i, n; 8843 8844 n = custom_sec_def_cnt; 8845 for (i = 0; i < n; i++) { 8846 sec_def = &custom_sec_defs[i]; 8847 if (sec_def_matches(sec_def, sec_name)) 8848 return sec_def; 8849 } 8850 8851 n = ARRAY_SIZE(section_defs); 8852 for (i = 0; i < n; i++) { 8853 sec_def = §ion_defs[i]; 8854 if (sec_def_matches(sec_def, sec_name)) 8855 return sec_def; 8856 } 8857 8858 if (has_custom_fallback_def) 8859 return &custom_fallback_def; 8860 8861 return NULL; 8862 } 8863 8864 #define MAX_TYPE_NAME_SIZE 32 8865 8866 static char *libbpf_get_type_names(bool attach_type) 8867 { 8868 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8869 char *buf; 8870 8871 buf = malloc(len); 8872 if (!buf) 8873 return NULL; 8874 8875 buf[0] = '\0'; 8876 /* Forge string buf with all available names */ 8877 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8878 const struct bpf_sec_def *sec_def = §ion_defs[i]; 8879 8880 if (attach_type) { 8881 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 8882 continue; 8883 8884 if (!(sec_def->cookie & SEC_ATTACHABLE)) 8885 continue; 8886 } 8887 8888 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8889 free(buf); 8890 return NULL; 8891 } 8892 strcat(buf, " "); 8893 strcat(buf, section_defs[i].sec); 8894 } 8895 8896 return buf; 8897 } 8898 8899 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8900 enum bpf_attach_type *expected_attach_type) 8901 { 8902 const struct bpf_sec_def *sec_def; 8903 char *type_names; 8904 8905 if (!name) 8906 return libbpf_err(-EINVAL); 8907 8908 sec_def = find_sec_def(name); 8909 if (sec_def) { 8910 *prog_type = sec_def->prog_type; 8911 *expected_attach_type = sec_def->expected_attach_type; 8912 return 0; 8913 } 8914 8915 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8916 type_names = libbpf_get_type_names(false); 8917 if (type_names != NULL) { 8918 pr_debug("supported section(type) names are:%s\n", type_names); 8919 free(type_names); 8920 } 8921 8922 return libbpf_err(-ESRCH); 8923 } 8924 8925 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 8926 { 8927 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 8928 return NULL; 8929 8930 return attach_type_name[t]; 8931 } 8932 8933 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 8934 { 8935 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 8936 return NULL; 8937 8938 return link_type_name[t]; 8939 } 8940 8941 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 8942 { 8943 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 8944 return NULL; 8945 8946 return map_type_name[t]; 8947 } 8948 8949 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 8950 { 8951 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 8952 return NULL; 8953 8954 return prog_type_name[t]; 8955 } 8956 8957 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 8958 int sec_idx, 8959 size_t offset) 8960 { 8961 struct bpf_map *map; 8962 size_t i; 8963 8964 for (i = 0; i < obj->nr_maps; i++) { 8965 map = &obj->maps[i]; 8966 if (!bpf_map__is_struct_ops(map)) 8967 continue; 8968 if (map->sec_idx == sec_idx && 8969 map->sec_offset <= offset && 8970 offset - map->sec_offset < map->def.value_size) 8971 return map; 8972 } 8973 8974 return NULL; 8975 } 8976 8977 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 8978 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 8979 Elf64_Shdr *shdr, Elf_Data *data) 8980 { 8981 const struct btf_member *member; 8982 struct bpf_struct_ops *st_ops; 8983 struct bpf_program *prog; 8984 unsigned int shdr_idx; 8985 const struct btf *btf; 8986 struct bpf_map *map; 8987 unsigned int moff, insn_idx; 8988 const char *name; 8989 __u32 member_idx; 8990 Elf64_Sym *sym; 8991 Elf64_Rel *rel; 8992 int i, nrels; 8993 8994 btf = obj->btf; 8995 nrels = shdr->sh_size / shdr->sh_entsize; 8996 for (i = 0; i < nrels; i++) { 8997 rel = elf_rel_by_idx(data, i); 8998 if (!rel) { 8999 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9000 return -LIBBPF_ERRNO__FORMAT; 9001 } 9002 9003 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 9004 if (!sym) { 9005 pr_warn("struct_ops reloc: symbol %zx not found\n", 9006 (size_t)ELF64_R_SYM(rel->r_info)); 9007 return -LIBBPF_ERRNO__FORMAT; 9008 } 9009 9010 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 9011 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset); 9012 if (!map) { 9013 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 9014 (size_t)rel->r_offset); 9015 return -EINVAL; 9016 } 9017 9018 moff = rel->r_offset - map->sec_offset; 9019 shdr_idx = sym->st_shndx; 9020 st_ops = map->st_ops; 9021 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9022 map->name, 9023 (long long)(rel->r_info >> 32), 9024 (long long)sym->st_value, 9025 shdr_idx, (size_t)rel->r_offset, 9026 map->sec_offset, sym->st_name, name); 9027 9028 if (shdr_idx >= SHN_LORESERVE) { 9029 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9030 map->name, (size_t)rel->r_offset, shdr_idx); 9031 return -LIBBPF_ERRNO__RELOC; 9032 } 9033 if (sym->st_value % BPF_INSN_SZ) { 9034 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9035 map->name, (unsigned long long)sym->st_value); 9036 return -LIBBPF_ERRNO__FORMAT; 9037 } 9038 insn_idx = sym->st_value / BPF_INSN_SZ; 9039 9040 member = find_member_by_offset(st_ops->type, moff * 8); 9041 if (!member) { 9042 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9043 map->name, moff); 9044 return -EINVAL; 9045 } 9046 member_idx = member - btf_members(st_ops->type); 9047 name = btf__name_by_offset(btf, member->name_off); 9048 9049 if (!resolve_func_ptr(btf, member->type, NULL)) { 9050 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9051 map->name, name); 9052 return -EINVAL; 9053 } 9054 9055 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9056 if (!prog) { 9057 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9058 map->name, shdr_idx, name); 9059 return -EINVAL; 9060 } 9061 9062 /* prevent the use of BPF prog with invalid type */ 9063 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9064 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9065 map->name, prog->name); 9066 return -EINVAL; 9067 } 9068 9069 /* if we haven't yet processed this BPF program, record proper 9070 * attach_btf_id and member_idx 9071 */ 9072 if (!prog->attach_btf_id) { 9073 prog->attach_btf_id = st_ops->type_id; 9074 prog->expected_attach_type = member_idx; 9075 } 9076 9077 /* struct_ops BPF prog can be re-used between multiple 9078 * .struct_ops & .struct_ops.link as long as it's the 9079 * same struct_ops struct definition and the same 9080 * function pointer field 9081 */ 9082 if (prog->attach_btf_id != st_ops->type_id || 9083 prog->expected_attach_type != member_idx) { 9084 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 9085 map->name, prog->name, prog->sec_name, prog->type, 9086 prog->attach_btf_id, prog->expected_attach_type, name); 9087 return -EINVAL; 9088 } 9089 9090 st_ops->progs[member_idx] = prog; 9091 } 9092 9093 return 0; 9094 } 9095 9096 #define BTF_TRACE_PREFIX "btf_trace_" 9097 #define BTF_LSM_PREFIX "bpf_lsm_" 9098 #define BTF_ITER_PREFIX "bpf_iter_" 9099 #define BTF_MAX_NAME_SIZE 128 9100 9101 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9102 const char **prefix, int *kind) 9103 { 9104 switch (attach_type) { 9105 case BPF_TRACE_RAW_TP: 9106 *prefix = BTF_TRACE_PREFIX; 9107 *kind = BTF_KIND_TYPEDEF; 9108 break; 9109 case BPF_LSM_MAC: 9110 case BPF_LSM_CGROUP: 9111 *prefix = BTF_LSM_PREFIX; 9112 *kind = BTF_KIND_FUNC; 9113 break; 9114 case BPF_TRACE_ITER: 9115 *prefix = BTF_ITER_PREFIX; 9116 *kind = BTF_KIND_FUNC; 9117 break; 9118 default: 9119 *prefix = ""; 9120 *kind = BTF_KIND_FUNC; 9121 } 9122 } 9123 9124 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9125 const char *name, __u32 kind) 9126 { 9127 char btf_type_name[BTF_MAX_NAME_SIZE]; 9128 int ret; 9129 9130 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9131 "%s%s", prefix, name); 9132 /* snprintf returns the number of characters written excluding the 9133 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9134 * indicates truncation. 9135 */ 9136 if (ret < 0 || ret >= sizeof(btf_type_name)) 9137 return -ENAMETOOLONG; 9138 return btf__find_by_name_kind(btf, btf_type_name, kind); 9139 } 9140 9141 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9142 enum bpf_attach_type attach_type) 9143 { 9144 const char *prefix; 9145 int kind; 9146 9147 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9148 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9149 } 9150 9151 int libbpf_find_vmlinux_btf_id(const char *name, 9152 enum bpf_attach_type attach_type) 9153 { 9154 struct btf *btf; 9155 int err; 9156 9157 btf = btf__load_vmlinux_btf(); 9158 err = libbpf_get_error(btf); 9159 if (err) { 9160 pr_warn("vmlinux BTF is not found\n"); 9161 return libbpf_err(err); 9162 } 9163 9164 err = find_attach_btf_id(btf, name, attach_type); 9165 if (err <= 0) 9166 pr_warn("%s is not found in vmlinux BTF\n", name); 9167 9168 btf__free(btf); 9169 return libbpf_err(err); 9170 } 9171 9172 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9173 { 9174 struct bpf_prog_info info; 9175 __u32 info_len = sizeof(info); 9176 struct btf *btf; 9177 int err; 9178 9179 memset(&info, 0, info_len); 9180 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len); 9181 if (err) { 9182 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n", 9183 attach_prog_fd, err); 9184 return err; 9185 } 9186 9187 err = -EINVAL; 9188 if (!info.btf_id) { 9189 pr_warn("The target program doesn't have BTF\n"); 9190 goto out; 9191 } 9192 btf = btf__load_from_kernel_by_id(info.btf_id); 9193 err = libbpf_get_error(btf); 9194 if (err) { 9195 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9196 goto out; 9197 } 9198 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9199 btf__free(btf); 9200 if (err <= 0) { 9201 pr_warn("%s is not found in prog's BTF\n", name); 9202 goto out; 9203 } 9204 out: 9205 return err; 9206 } 9207 9208 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9209 enum bpf_attach_type attach_type, 9210 int *btf_obj_fd, int *btf_type_id) 9211 { 9212 int ret, i; 9213 9214 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9215 if (ret > 0) { 9216 *btf_obj_fd = 0; /* vmlinux BTF */ 9217 *btf_type_id = ret; 9218 return 0; 9219 } 9220 if (ret != -ENOENT) 9221 return ret; 9222 9223 ret = load_module_btfs(obj); 9224 if (ret) 9225 return ret; 9226 9227 for (i = 0; i < obj->btf_module_cnt; i++) { 9228 const struct module_btf *mod = &obj->btf_modules[i]; 9229 9230 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9231 if (ret > 0) { 9232 *btf_obj_fd = mod->fd; 9233 *btf_type_id = ret; 9234 return 0; 9235 } 9236 if (ret == -ENOENT) 9237 continue; 9238 9239 return ret; 9240 } 9241 9242 return -ESRCH; 9243 } 9244 9245 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9246 int *btf_obj_fd, int *btf_type_id) 9247 { 9248 enum bpf_attach_type attach_type = prog->expected_attach_type; 9249 __u32 attach_prog_fd = prog->attach_prog_fd; 9250 int err = 0; 9251 9252 /* BPF program's BTF ID */ 9253 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 9254 if (!attach_prog_fd) { 9255 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 9256 return -EINVAL; 9257 } 9258 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9259 if (err < 0) { 9260 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9261 prog->name, attach_prog_fd, attach_name, err); 9262 return err; 9263 } 9264 *btf_obj_fd = 0; 9265 *btf_type_id = err; 9266 return 0; 9267 } 9268 9269 /* kernel/module BTF ID */ 9270 if (prog->obj->gen_loader) { 9271 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9272 *btf_obj_fd = 0; 9273 *btf_type_id = 1; 9274 } else { 9275 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9276 } 9277 if (err) { 9278 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n", 9279 prog->name, attach_name, err); 9280 return err; 9281 } 9282 return 0; 9283 } 9284 9285 int libbpf_attach_type_by_name(const char *name, 9286 enum bpf_attach_type *attach_type) 9287 { 9288 char *type_names; 9289 const struct bpf_sec_def *sec_def; 9290 9291 if (!name) 9292 return libbpf_err(-EINVAL); 9293 9294 sec_def = find_sec_def(name); 9295 if (!sec_def) { 9296 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9297 type_names = libbpf_get_type_names(true); 9298 if (type_names != NULL) { 9299 pr_debug("attachable section(type) names are:%s\n", type_names); 9300 free(type_names); 9301 } 9302 9303 return libbpf_err(-EINVAL); 9304 } 9305 9306 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9307 return libbpf_err(-EINVAL); 9308 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9309 return libbpf_err(-EINVAL); 9310 9311 *attach_type = sec_def->expected_attach_type; 9312 return 0; 9313 } 9314 9315 int bpf_map__fd(const struct bpf_map *map) 9316 { 9317 return map ? map->fd : libbpf_err(-EINVAL); 9318 } 9319 9320 static bool map_uses_real_name(const struct bpf_map *map) 9321 { 9322 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9323 * their user-visible name differs from kernel-visible name. Users see 9324 * such map's corresponding ELF section name as a map name. 9325 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9326 * maps to know which name has to be returned to the user. 9327 */ 9328 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9329 return true; 9330 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9331 return true; 9332 return false; 9333 } 9334 9335 const char *bpf_map__name(const struct bpf_map *map) 9336 { 9337 if (!map) 9338 return NULL; 9339 9340 if (map_uses_real_name(map)) 9341 return map->real_name; 9342 9343 return map->name; 9344 } 9345 9346 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9347 { 9348 return map->def.type; 9349 } 9350 9351 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9352 { 9353 if (map->fd >= 0) 9354 return libbpf_err(-EBUSY); 9355 map->def.type = type; 9356 return 0; 9357 } 9358 9359 __u32 bpf_map__map_flags(const struct bpf_map *map) 9360 { 9361 return map->def.map_flags; 9362 } 9363 9364 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9365 { 9366 if (map->fd >= 0) 9367 return libbpf_err(-EBUSY); 9368 map->def.map_flags = flags; 9369 return 0; 9370 } 9371 9372 __u64 bpf_map__map_extra(const struct bpf_map *map) 9373 { 9374 return map->map_extra; 9375 } 9376 9377 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9378 { 9379 if (map->fd >= 0) 9380 return libbpf_err(-EBUSY); 9381 map->map_extra = map_extra; 9382 return 0; 9383 } 9384 9385 __u32 bpf_map__numa_node(const struct bpf_map *map) 9386 { 9387 return map->numa_node; 9388 } 9389 9390 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9391 { 9392 if (map->fd >= 0) 9393 return libbpf_err(-EBUSY); 9394 map->numa_node = numa_node; 9395 return 0; 9396 } 9397 9398 __u32 bpf_map__key_size(const struct bpf_map *map) 9399 { 9400 return map->def.key_size; 9401 } 9402 9403 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9404 { 9405 if (map->fd >= 0) 9406 return libbpf_err(-EBUSY); 9407 map->def.key_size = size; 9408 return 0; 9409 } 9410 9411 __u32 bpf_map__value_size(const struct bpf_map *map) 9412 { 9413 return map->def.value_size; 9414 } 9415 9416 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9417 { 9418 if (map->fd >= 0) 9419 return libbpf_err(-EBUSY); 9420 map->def.value_size = size; 9421 return 0; 9422 } 9423 9424 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9425 { 9426 return map ? map->btf_key_type_id : 0; 9427 } 9428 9429 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9430 { 9431 return map ? map->btf_value_type_id : 0; 9432 } 9433 9434 int bpf_map__set_initial_value(struct bpf_map *map, 9435 const void *data, size_t size) 9436 { 9437 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9438 size != map->def.value_size || map->fd >= 0) 9439 return libbpf_err(-EINVAL); 9440 9441 memcpy(map->mmaped, data, size); 9442 return 0; 9443 } 9444 9445 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9446 { 9447 if (!map->mmaped) 9448 return NULL; 9449 *psize = map->def.value_size; 9450 return map->mmaped; 9451 } 9452 9453 bool bpf_map__is_internal(const struct bpf_map *map) 9454 { 9455 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9456 } 9457 9458 __u32 bpf_map__ifindex(const struct bpf_map *map) 9459 { 9460 return map->map_ifindex; 9461 } 9462 9463 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9464 { 9465 if (map->fd >= 0) 9466 return libbpf_err(-EBUSY); 9467 map->map_ifindex = ifindex; 9468 return 0; 9469 } 9470 9471 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9472 { 9473 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9474 pr_warn("error: unsupported map type\n"); 9475 return libbpf_err(-EINVAL); 9476 } 9477 if (map->inner_map_fd != -1) { 9478 pr_warn("error: inner_map_fd already specified\n"); 9479 return libbpf_err(-EINVAL); 9480 } 9481 if (map->inner_map) { 9482 bpf_map__destroy(map->inner_map); 9483 zfree(&map->inner_map); 9484 } 9485 map->inner_map_fd = fd; 9486 return 0; 9487 } 9488 9489 static struct bpf_map * 9490 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9491 { 9492 ssize_t idx; 9493 struct bpf_map *s, *e; 9494 9495 if (!obj || !obj->maps) 9496 return errno = EINVAL, NULL; 9497 9498 s = obj->maps; 9499 e = obj->maps + obj->nr_maps; 9500 9501 if ((m < s) || (m >= e)) { 9502 pr_warn("error in %s: map handler doesn't belong to object\n", 9503 __func__); 9504 return errno = EINVAL, NULL; 9505 } 9506 9507 idx = (m - obj->maps) + i; 9508 if (idx >= obj->nr_maps || idx < 0) 9509 return NULL; 9510 return &obj->maps[idx]; 9511 } 9512 9513 struct bpf_map * 9514 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 9515 { 9516 if (prev == NULL) 9517 return obj->maps; 9518 9519 return __bpf_map__iter(prev, obj, 1); 9520 } 9521 9522 struct bpf_map * 9523 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 9524 { 9525 if (next == NULL) { 9526 if (!obj->nr_maps) 9527 return NULL; 9528 return obj->maps + obj->nr_maps - 1; 9529 } 9530 9531 return __bpf_map__iter(next, obj, -1); 9532 } 9533 9534 struct bpf_map * 9535 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9536 { 9537 struct bpf_map *pos; 9538 9539 bpf_object__for_each_map(pos, obj) { 9540 /* if it's a special internal map name (which always starts 9541 * with dot) then check if that special name matches the 9542 * real map name (ELF section name) 9543 */ 9544 if (name[0] == '.') { 9545 if (pos->real_name && strcmp(pos->real_name, name) == 0) 9546 return pos; 9547 continue; 9548 } 9549 /* otherwise map name has to be an exact match */ 9550 if (map_uses_real_name(pos)) { 9551 if (strcmp(pos->real_name, name) == 0) 9552 return pos; 9553 continue; 9554 } 9555 if (strcmp(pos->name, name) == 0) 9556 return pos; 9557 } 9558 return errno = ENOENT, NULL; 9559 } 9560 9561 int 9562 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9563 { 9564 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9565 } 9566 9567 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 9568 size_t value_sz, bool check_value_sz) 9569 { 9570 if (map->fd <= 0) 9571 return -ENOENT; 9572 9573 if (map->def.key_size != key_sz) { 9574 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 9575 map->name, key_sz, map->def.key_size); 9576 return -EINVAL; 9577 } 9578 9579 if (!check_value_sz) 9580 return 0; 9581 9582 switch (map->def.type) { 9583 case BPF_MAP_TYPE_PERCPU_ARRAY: 9584 case BPF_MAP_TYPE_PERCPU_HASH: 9585 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 9586 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 9587 int num_cpu = libbpf_num_possible_cpus(); 9588 size_t elem_sz = roundup(map->def.value_size, 8); 9589 9590 if (value_sz != num_cpu * elem_sz) { 9591 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 9592 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 9593 return -EINVAL; 9594 } 9595 break; 9596 } 9597 default: 9598 if (map->def.value_size != value_sz) { 9599 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 9600 map->name, value_sz, map->def.value_size); 9601 return -EINVAL; 9602 } 9603 break; 9604 } 9605 return 0; 9606 } 9607 9608 int bpf_map__lookup_elem(const struct bpf_map *map, 9609 const void *key, size_t key_sz, 9610 void *value, size_t value_sz, __u64 flags) 9611 { 9612 int err; 9613 9614 err = validate_map_op(map, key_sz, value_sz, true); 9615 if (err) 9616 return libbpf_err(err); 9617 9618 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 9619 } 9620 9621 int bpf_map__update_elem(const struct bpf_map *map, 9622 const void *key, size_t key_sz, 9623 const void *value, size_t value_sz, __u64 flags) 9624 { 9625 int err; 9626 9627 err = validate_map_op(map, key_sz, value_sz, true); 9628 if (err) 9629 return libbpf_err(err); 9630 9631 return bpf_map_update_elem(map->fd, key, value, flags); 9632 } 9633 9634 int bpf_map__delete_elem(const struct bpf_map *map, 9635 const void *key, size_t key_sz, __u64 flags) 9636 { 9637 int err; 9638 9639 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 9640 if (err) 9641 return libbpf_err(err); 9642 9643 return bpf_map_delete_elem_flags(map->fd, key, flags); 9644 } 9645 9646 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 9647 const void *key, size_t key_sz, 9648 void *value, size_t value_sz, __u64 flags) 9649 { 9650 int err; 9651 9652 err = validate_map_op(map, key_sz, value_sz, true); 9653 if (err) 9654 return libbpf_err(err); 9655 9656 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 9657 } 9658 9659 int bpf_map__get_next_key(const struct bpf_map *map, 9660 const void *cur_key, void *next_key, size_t key_sz) 9661 { 9662 int err; 9663 9664 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 9665 if (err) 9666 return libbpf_err(err); 9667 9668 return bpf_map_get_next_key(map->fd, cur_key, next_key); 9669 } 9670 9671 long libbpf_get_error(const void *ptr) 9672 { 9673 if (!IS_ERR_OR_NULL(ptr)) 9674 return 0; 9675 9676 if (IS_ERR(ptr)) 9677 errno = -PTR_ERR(ptr); 9678 9679 /* If ptr == NULL, then errno should be already set by the failing 9680 * API, because libbpf never returns NULL on success and it now always 9681 * sets errno on error. So no extra errno handling for ptr == NULL 9682 * case. 9683 */ 9684 return -errno; 9685 } 9686 9687 /* Replace link's underlying BPF program with the new one */ 9688 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9689 { 9690 int ret; 9691 9692 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9693 return libbpf_err_errno(ret); 9694 } 9695 9696 /* Release "ownership" of underlying BPF resource (typically, BPF program 9697 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9698 * link, when destructed through bpf_link__destroy() call won't attempt to 9699 * detach/unregisted that BPF resource. This is useful in situations where, 9700 * say, attached BPF program has to outlive userspace program that attached it 9701 * in the system. Depending on type of BPF program, though, there might be 9702 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9703 * exit of userspace program doesn't trigger automatic detachment and clean up 9704 * inside the kernel. 9705 */ 9706 void bpf_link__disconnect(struct bpf_link *link) 9707 { 9708 link->disconnected = true; 9709 } 9710 9711 int bpf_link__destroy(struct bpf_link *link) 9712 { 9713 int err = 0; 9714 9715 if (IS_ERR_OR_NULL(link)) 9716 return 0; 9717 9718 if (!link->disconnected && link->detach) 9719 err = link->detach(link); 9720 if (link->pin_path) 9721 free(link->pin_path); 9722 if (link->dealloc) 9723 link->dealloc(link); 9724 else 9725 free(link); 9726 9727 return libbpf_err(err); 9728 } 9729 9730 int bpf_link__fd(const struct bpf_link *link) 9731 { 9732 return link->fd; 9733 } 9734 9735 const char *bpf_link__pin_path(const struct bpf_link *link) 9736 { 9737 return link->pin_path; 9738 } 9739 9740 static int bpf_link__detach_fd(struct bpf_link *link) 9741 { 9742 return libbpf_err_errno(close(link->fd)); 9743 } 9744 9745 struct bpf_link *bpf_link__open(const char *path) 9746 { 9747 struct bpf_link *link; 9748 int fd; 9749 9750 fd = bpf_obj_get(path); 9751 if (fd < 0) { 9752 fd = -errno; 9753 pr_warn("failed to open link at %s: %d\n", path, fd); 9754 return libbpf_err_ptr(fd); 9755 } 9756 9757 link = calloc(1, sizeof(*link)); 9758 if (!link) { 9759 close(fd); 9760 return libbpf_err_ptr(-ENOMEM); 9761 } 9762 link->detach = &bpf_link__detach_fd; 9763 link->fd = fd; 9764 9765 link->pin_path = strdup(path); 9766 if (!link->pin_path) { 9767 bpf_link__destroy(link); 9768 return libbpf_err_ptr(-ENOMEM); 9769 } 9770 9771 return link; 9772 } 9773 9774 int bpf_link__detach(struct bpf_link *link) 9775 { 9776 return bpf_link_detach(link->fd) ? -errno : 0; 9777 } 9778 9779 int bpf_link__pin(struct bpf_link *link, const char *path) 9780 { 9781 int err; 9782 9783 if (link->pin_path) 9784 return libbpf_err(-EBUSY); 9785 err = make_parent_dir(path); 9786 if (err) 9787 return libbpf_err(err); 9788 err = check_path(path); 9789 if (err) 9790 return libbpf_err(err); 9791 9792 link->pin_path = strdup(path); 9793 if (!link->pin_path) 9794 return libbpf_err(-ENOMEM); 9795 9796 if (bpf_obj_pin(link->fd, link->pin_path)) { 9797 err = -errno; 9798 zfree(&link->pin_path); 9799 return libbpf_err(err); 9800 } 9801 9802 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9803 return 0; 9804 } 9805 9806 int bpf_link__unpin(struct bpf_link *link) 9807 { 9808 int err; 9809 9810 if (!link->pin_path) 9811 return libbpf_err(-EINVAL); 9812 9813 err = unlink(link->pin_path); 9814 if (err != 0) 9815 return -errno; 9816 9817 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9818 zfree(&link->pin_path); 9819 return 0; 9820 } 9821 9822 struct bpf_link_perf { 9823 struct bpf_link link; 9824 int perf_event_fd; 9825 /* legacy kprobe support: keep track of probe identifier and type */ 9826 char *legacy_probe_name; 9827 bool legacy_is_kprobe; 9828 bool legacy_is_retprobe; 9829 }; 9830 9831 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 9832 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 9833 9834 static int bpf_link_perf_detach(struct bpf_link *link) 9835 { 9836 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9837 int err = 0; 9838 9839 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 9840 err = -errno; 9841 9842 if (perf_link->perf_event_fd != link->fd) 9843 close(perf_link->perf_event_fd); 9844 close(link->fd); 9845 9846 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 9847 if (perf_link->legacy_probe_name) { 9848 if (perf_link->legacy_is_kprobe) { 9849 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 9850 perf_link->legacy_is_retprobe); 9851 } else { 9852 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 9853 perf_link->legacy_is_retprobe); 9854 } 9855 } 9856 9857 return err; 9858 } 9859 9860 static void bpf_link_perf_dealloc(struct bpf_link *link) 9861 { 9862 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9863 9864 free(perf_link->legacy_probe_name); 9865 free(perf_link); 9866 } 9867 9868 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 9869 const struct bpf_perf_event_opts *opts) 9870 { 9871 char errmsg[STRERR_BUFSIZE]; 9872 struct bpf_link_perf *link; 9873 int prog_fd, link_fd = -1, err; 9874 bool force_ioctl_attach; 9875 9876 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 9877 return libbpf_err_ptr(-EINVAL); 9878 9879 if (pfd < 0) { 9880 pr_warn("prog '%s': invalid perf event FD %d\n", 9881 prog->name, pfd); 9882 return libbpf_err_ptr(-EINVAL); 9883 } 9884 prog_fd = bpf_program__fd(prog); 9885 if (prog_fd < 0) { 9886 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 9887 prog->name); 9888 return libbpf_err_ptr(-EINVAL); 9889 } 9890 9891 link = calloc(1, sizeof(*link)); 9892 if (!link) 9893 return libbpf_err_ptr(-ENOMEM); 9894 link->link.detach = &bpf_link_perf_detach; 9895 link->link.dealloc = &bpf_link_perf_dealloc; 9896 link->perf_event_fd = pfd; 9897 9898 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false); 9899 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) { 9900 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 9901 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 9902 9903 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 9904 if (link_fd < 0) { 9905 err = -errno; 9906 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 9907 prog->name, pfd, 9908 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9909 goto err_out; 9910 } 9911 link->link.fd = link_fd; 9912 } else { 9913 if (OPTS_GET(opts, bpf_cookie, 0)) { 9914 pr_warn("prog '%s': user context value is not supported\n", prog->name); 9915 err = -EOPNOTSUPP; 9916 goto err_out; 9917 } 9918 9919 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 9920 err = -errno; 9921 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 9922 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9923 if (err == -EPROTO) 9924 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 9925 prog->name, pfd); 9926 goto err_out; 9927 } 9928 link->link.fd = pfd; 9929 } 9930 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9931 err = -errno; 9932 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 9933 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9934 goto err_out; 9935 } 9936 9937 return &link->link; 9938 err_out: 9939 if (link_fd >= 0) 9940 close(link_fd); 9941 free(link); 9942 return libbpf_err_ptr(err); 9943 } 9944 9945 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 9946 { 9947 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 9948 } 9949 9950 /* 9951 * this function is expected to parse integer in the range of [0, 2^31-1] from 9952 * given file using scanf format string fmt. If actual parsed value is 9953 * negative, the result might be indistinguishable from error 9954 */ 9955 static int parse_uint_from_file(const char *file, const char *fmt) 9956 { 9957 char buf[STRERR_BUFSIZE]; 9958 int err, ret; 9959 FILE *f; 9960 9961 f = fopen(file, "r"); 9962 if (!f) { 9963 err = -errno; 9964 pr_debug("failed to open '%s': %s\n", file, 9965 libbpf_strerror_r(err, buf, sizeof(buf))); 9966 return err; 9967 } 9968 err = fscanf(f, fmt, &ret); 9969 if (err != 1) { 9970 err = err == EOF ? -EIO : -errno; 9971 pr_debug("failed to parse '%s': %s\n", file, 9972 libbpf_strerror_r(err, buf, sizeof(buf))); 9973 fclose(f); 9974 return err; 9975 } 9976 fclose(f); 9977 return ret; 9978 } 9979 9980 static int determine_kprobe_perf_type(void) 9981 { 9982 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 9983 9984 return parse_uint_from_file(file, "%d\n"); 9985 } 9986 9987 static int determine_uprobe_perf_type(void) 9988 { 9989 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 9990 9991 return parse_uint_from_file(file, "%d\n"); 9992 } 9993 9994 static int determine_kprobe_retprobe_bit(void) 9995 { 9996 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 9997 9998 return parse_uint_from_file(file, "config:%d\n"); 9999 } 10000 10001 static int determine_uprobe_retprobe_bit(void) 10002 { 10003 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 10004 10005 return parse_uint_from_file(file, "config:%d\n"); 10006 } 10007 10008 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 10009 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 10010 10011 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 10012 uint64_t offset, int pid, size_t ref_ctr_off) 10013 { 10014 const size_t attr_sz = sizeof(struct perf_event_attr); 10015 struct perf_event_attr attr; 10016 char errmsg[STRERR_BUFSIZE]; 10017 int type, pfd; 10018 10019 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 10020 return -EINVAL; 10021 10022 memset(&attr, 0, attr_sz); 10023 10024 type = uprobe ? determine_uprobe_perf_type() 10025 : determine_kprobe_perf_type(); 10026 if (type < 0) { 10027 pr_warn("failed to determine %s perf type: %s\n", 10028 uprobe ? "uprobe" : "kprobe", 10029 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10030 return type; 10031 } 10032 if (retprobe) { 10033 int bit = uprobe ? determine_uprobe_retprobe_bit() 10034 : determine_kprobe_retprobe_bit(); 10035 10036 if (bit < 0) { 10037 pr_warn("failed to determine %s retprobe bit: %s\n", 10038 uprobe ? "uprobe" : "kprobe", 10039 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 10040 return bit; 10041 } 10042 attr.config |= 1 << bit; 10043 } 10044 attr.size = attr_sz; 10045 attr.type = type; 10046 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10047 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 10048 attr.config2 = offset; /* kprobe_addr or probe_offset */ 10049 10050 /* pid filter is meaningful only for uprobes */ 10051 pfd = syscall(__NR_perf_event_open, &attr, 10052 pid < 0 ? -1 : pid /* pid */, 10053 pid == -1 ? 0 : -1 /* cpu */, 10054 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10055 return pfd >= 0 ? pfd : -errno; 10056 } 10057 10058 static int append_to_file(const char *file, const char *fmt, ...) 10059 { 10060 int fd, n, err = 0; 10061 va_list ap; 10062 char buf[1024]; 10063 10064 va_start(ap, fmt); 10065 n = vsnprintf(buf, sizeof(buf), fmt, ap); 10066 va_end(ap); 10067 10068 if (n < 0 || n >= sizeof(buf)) 10069 return -EINVAL; 10070 10071 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 10072 if (fd < 0) 10073 return -errno; 10074 10075 if (write(fd, buf, n) < 0) 10076 err = -errno; 10077 10078 close(fd); 10079 return err; 10080 } 10081 10082 #define DEBUGFS "/sys/kernel/debug/tracing" 10083 #define TRACEFS "/sys/kernel/tracing" 10084 10085 static bool use_debugfs(void) 10086 { 10087 static int has_debugfs = -1; 10088 10089 if (has_debugfs < 0) 10090 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 10091 10092 return has_debugfs == 1; 10093 } 10094 10095 static const char *tracefs_path(void) 10096 { 10097 return use_debugfs() ? DEBUGFS : TRACEFS; 10098 } 10099 10100 static const char *tracefs_kprobe_events(void) 10101 { 10102 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 10103 } 10104 10105 static const char *tracefs_uprobe_events(void) 10106 { 10107 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 10108 } 10109 10110 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 10111 const char *kfunc_name, size_t offset) 10112 { 10113 static int index = 0; 10114 int i; 10115 10116 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 10117 __sync_fetch_and_add(&index, 1)); 10118 10119 /* sanitize binary_path in the probe name */ 10120 for (i = 0; buf[i]; i++) { 10121 if (!isalnum(buf[i])) 10122 buf[i] = '_'; 10123 } 10124 } 10125 10126 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 10127 const char *kfunc_name, size_t offset) 10128 { 10129 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 10130 retprobe ? 'r' : 'p', 10131 retprobe ? "kretprobes" : "kprobes", 10132 probe_name, kfunc_name, offset); 10133 } 10134 10135 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 10136 { 10137 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 10138 retprobe ? "kretprobes" : "kprobes", probe_name); 10139 } 10140 10141 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10142 { 10143 char file[256]; 10144 10145 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10146 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 10147 10148 return parse_uint_from_file(file, "%d\n"); 10149 } 10150 10151 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 10152 const char *kfunc_name, size_t offset, int pid) 10153 { 10154 const size_t attr_sz = sizeof(struct perf_event_attr); 10155 struct perf_event_attr attr; 10156 char errmsg[STRERR_BUFSIZE]; 10157 int type, pfd, err; 10158 10159 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 10160 if (err < 0) { 10161 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 10162 kfunc_name, offset, 10163 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10164 return err; 10165 } 10166 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 10167 if (type < 0) { 10168 err = type; 10169 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 10170 kfunc_name, offset, 10171 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10172 goto err_clean_legacy; 10173 } 10174 10175 memset(&attr, 0, attr_sz); 10176 attr.size = attr_sz; 10177 attr.config = type; 10178 attr.type = PERF_TYPE_TRACEPOINT; 10179 10180 pfd = syscall(__NR_perf_event_open, &attr, 10181 pid < 0 ? -1 : pid, /* pid */ 10182 pid == -1 ? 0 : -1, /* cpu */ 10183 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10184 if (pfd < 0) { 10185 err = -errno; 10186 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10187 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10188 goto err_clean_legacy; 10189 } 10190 return pfd; 10191 10192 err_clean_legacy: 10193 /* Clear the newly added legacy kprobe_event */ 10194 remove_kprobe_event_legacy(probe_name, retprobe); 10195 return err; 10196 } 10197 10198 static const char *arch_specific_syscall_pfx(void) 10199 { 10200 #if defined(__x86_64__) 10201 return "x64"; 10202 #elif defined(__i386__) 10203 return "ia32"; 10204 #elif defined(__s390x__) 10205 return "s390x"; 10206 #elif defined(__s390__) 10207 return "s390"; 10208 #elif defined(__arm__) 10209 return "arm"; 10210 #elif defined(__aarch64__) 10211 return "arm64"; 10212 #elif defined(__mips__) 10213 return "mips"; 10214 #elif defined(__riscv) 10215 return "riscv"; 10216 #elif defined(__powerpc__) 10217 return "powerpc"; 10218 #elif defined(__powerpc64__) 10219 return "powerpc64"; 10220 #else 10221 return NULL; 10222 #endif 10223 } 10224 10225 static int probe_kern_syscall_wrapper(void) 10226 { 10227 char syscall_name[64]; 10228 const char *ksys_pfx; 10229 10230 ksys_pfx = arch_specific_syscall_pfx(); 10231 if (!ksys_pfx) 10232 return 0; 10233 10234 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 10235 10236 if (determine_kprobe_perf_type() >= 0) { 10237 int pfd; 10238 10239 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 10240 if (pfd >= 0) 10241 close(pfd); 10242 10243 return pfd >= 0 ? 1 : 0; 10244 } else { /* legacy mode */ 10245 char probe_name[128]; 10246 10247 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 10248 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 10249 return 0; 10250 10251 (void)remove_kprobe_event_legacy(probe_name, false); 10252 return 1; 10253 } 10254 } 10255 10256 struct bpf_link * 10257 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 10258 const char *func_name, 10259 const struct bpf_kprobe_opts *opts) 10260 { 10261 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10262 enum probe_attach_mode attach_mode; 10263 char errmsg[STRERR_BUFSIZE]; 10264 char *legacy_probe = NULL; 10265 struct bpf_link *link; 10266 size_t offset; 10267 bool retprobe, legacy; 10268 int pfd, err; 10269 10270 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 10271 return libbpf_err_ptr(-EINVAL); 10272 10273 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 10274 retprobe = OPTS_GET(opts, retprobe, false); 10275 offset = OPTS_GET(opts, offset, 0); 10276 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10277 10278 legacy = determine_kprobe_perf_type() < 0; 10279 switch (attach_mode) { 10280 case PROBE_ATTACH_MODE_LEGACY: 10281 legacy = true; 10282 pe_opts.force_ioctl_attach = true; 10283 break; 10284 case PROBE_ATTACH_MODE_PERF: 10285 if (legacy) 10286 return libbpf_err_ptr(-ENOTSUP); 10287 pe_opts.force_ioctl_attach = true; 10288 break; 10289 case PROBE_ATTACH_MODE_LINK: 10290 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 10291 return libbpf_err_ptr(-ENOTSUP); 10292 break; 10293 case PROBE_ATTACH_MODE_DEFAULT: 10294 break; 10295 default: 10296 return libbpf_err_ptr(-EINVAL); 10297 } 10298 10299 if (!legacy) { 10300 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 10301 func_name, offset, 10302 -1 /* pid */, 0 /* ref_ctr_off */); 10303 } else { 10304 char probe_name[256]; 10305 10306 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 10307 func_name, offset); 10308 10309 legacy_probe = strdup(probe_name); 10310 if (!legacy_probe) 10311 return libbpf_err_ptr(-ENOMEM); 10312 10313 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 10314 offset, -1 /* pid */); 10315 } 10316 if (pfd < 0) { 10317 err = -errno; 10318 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 10319 prog->name, retprobe ? "kretprobe" : "kprobe", 10320 func_name, offset, 10321 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10322 goto err_out; 10323 } 10324 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10325 err = libbpf_get_error(link); 10326 if (err) { 10327 close(pfd); 10328 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 10329 prog->name, retprobe ? "kretprobe" : "kprobe", 10330 func_name, offset, 10331 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10332 goto err_clean_legacy; 10333 } 10334 if (legacy) { 10335 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10336 10337 perf_link->legacy_probe_name = legacy_probe; 10338 perf_link->legacy_is_kprobe = true; 10339 perf_link->legacy_is_retprobe = retprobe; 10340 } 10341 10342 return link; 10343 10344 err_clean_legacy: 10345 if (legacy) 10346 remove_kprobe_event_legacy(legacy_probe, retprobe); 10347 err_out: 10348 free(legacy_probe); 10349 return libbpf_err_ptr(err); 10350 } 10351 10352 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 10353 bool retprobe, 10354 const char *func_name) 10355 { 10356 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 10357 .retprobe = retprobe, 10358 ); 10359 10360 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 10361 } 10362 10363 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 10364 const char *syscall_name, 10365 const struct bpf_ksyscall_opts *opts) 10366 { 10367 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 10368 char func_name[128]; 10369 10370 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 10371 return libbpf_err_ptr(-EINVAL); 10372 10373 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 10374 /* arch_specific_syscall_pfx() should never return NULL here 10375 * because it is guarded by kernel_supports(). However, since 10376 * compiler does not know that we have an explicit conditional 10377 * as well. 10378 */ 10379 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 10380 arch_specific_syscall_pfx() ? : "", syscall_name); 10381 } else { 10382 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 10383 } 10384 10385 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 10386 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10387 10388 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 10389 } 10390 10391 /* Adapted from perf/util/string.c */ 10392 static bool glob_match(const char *str, const char *pat) 10393 { 10394 while (*str && *pat && *pat != '*') { 10395 if (*pat == '?') { /* Matches any single character */ 10396 str++; 10397 pat++; 10398 continue; 10399 } 10400 if (*str != *pat) 10401 return false; 10402 str++; 10403 pat++; 10404 } 10405 /* Check wild card */ 10406 if (*pat == '*') { 10407 while (*pat == '*') 10408 pat++; 10409 if (!*pat) /* Tail wild card matches all */ 10410 return true; 10411 while (*str) 10412 if (glob_match(str++, pat)) 10413 return true; 10414 } 10415 return !*str && !*pat; 10416 } 10417 10418 struct kprobe_multi_resolve { 10419 const char *pattern; 10420 unsigned long *addrs; 10421 size_t cap; 10422 size_t cnt; 10423 }; 10424 10425 static int 10426 resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type, 10427 const char *sym_name, void *ctx) 10428 { 10429 struct kprobe_multi_resolve *res = ctx; 10430 int err; 10431 10432 if (!glob_match(sym_name, res->pattern)) 10433 return 0; 10434 10435 err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long), 10436 res->cnt + 1); 10437 if (err) 10438 return err; 10439 10440 res->addrs[res->cnt++] = (unsigned long) sym_addr; 10441 return 0; 10442 } 10443 10444 struct bpf_link * 10445 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 10446 const char *pattern, 10447 const struct bpf_kprobe_multi_opts *opts) 10448 { 10449 LIBBPF_OPTS(bpf_link_create_opts, lopts); 10450 struct kprobe_multi_resolve res = { 10451 .pattern = pattern, 10452 }; 10453 struct bpf_link *link = NULL; 10454 char errmsg[STRERR_BUFSIZE]; 10455 const unsigned long *addrs; 10456 int err, link_fd, prog_fd; 10457 const __u64 *cookies; 10458 const char **syms; 10459 bool retprobe; 10460 size_t cnt; 10461 10462 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 10463 return libbpf_err_ptr(-EINVAL); 10464 10465 syms = OPTS_GET(opts, syms, false); 10466 addrs = OPTS_GET(opts, addrs, false); 10467 cnt = OPTS_GET(opts, cnt, false); 10468 cookies = OPTS_GET(opts, cookies, false); 10469 10470 if (!pattern && !addrs && !syms) 10471 return libbpf_err_ptr(-EINVAL); 10472 if (pattern && (addrs || syms || cookies || cnt)) 10473 return libbpf_err_ptr(-EINVAL); 10474 if (!pattern && !cnt) 10475 return libbpf_err_ptr(-EINVAL); 10476 if (addrs && syms) 10477 return libbpf_err_ptr(-EINVAL); 10478 10479 if (pattern) { 10480 err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res); 10481 if (err) 10482 goto error; 10483 if (!res.cnt) { 10484 err = -ENOENT; 10485 goto error; 10486 } 10487 addrs = res.addrs; 10488 cnt = res.cnt; 10489 } 10490 10491 retprobe = OPTS_GET(opts, retprobe, false); 10492 10493 lopts.kprobe_multi.syms = syms; 10494 lopts.kprobe_multi.addrs = addrs; 10495 lopts.kprobe_multi.cookies = cookies; 10496 lopts.kprobe_multi.cnt = cnt; 10497 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 10498 10499 link = calloc(1, sizeof(*link)); 10500 if (!link) { 10501 err = -ENOMEM; 10502 goto error; 10503 } 10504 link->detach = &bpf_link__detach_fd; 10505 10506 prog_fd = bpf_program__fd(prog); 10507 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts); 10508 if (link_fd < 0) { 10509 err = -errno; 10510 pr_warn("prog '%s': failed to attach: %s\n", 10511 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10512 goto error; 10513 } 10514 link->fd = link_fd; 10515 free(res.addrs); 10516 return link; 10517 10518 error: 10519 free(link); 10520 free(res.addrs); 10521 return libbpf_err_ptr(err); 10522 } 10523 10524 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10525 { 10526 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 10527 unsigned long offset = 0; 10528 const char *func_name; 10529 char *func; 10530 int n; 10531 10532 *link = NULL; 10533 10534 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 10535 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 10536 return 0; 10537 10538 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 10539 if (opts.retprobe) 10540 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 10541 else 10542 func_name = prog->sec_name + sizeof("kprobe/") - 1; 10543 10544 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 10545 if (n < 1) { 10546 pr_warn("kprobe name is invalid: %s\n", func_name); 10547 return -EINVAL; 10548 } 10549 if (opts.retprobe && offset != 0) { 10550 free(func); 10551 pr_warn("kretprobes do not support offset specification\n"); 10552 return -EINVAL; 10553 } 10554 10555 opts.offset = offset; 10556 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 10557 free(func); 10558 return libbpf_get_error(*link); 10559 } 10560 10561 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10562 { 10563 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 10564 const char *syscall_name; 10565 10566 *link = NULL; 10567 10568 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 10569 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 10570 return 0; 10571 10572 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 10573 if (opts.retprobe) 10574 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 10575 else 10576 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 10577 10578 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 10579 return *link ? 0 : -errno; 10580 } 10581 10582 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10583 { 10584 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 10585 const char *spec; 10586 char *pattern; 10587 int n; 10588 10589 *link = NULL; 10590 10591 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 10592 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 10593 strcmp(prog->sec_name, "kretprobe.multi") == 0) 10594 return 0; 10595 10596 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 10597 if (opts.retprobe) 10598 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 10599 else 10600 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 10601 10602 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 10603 if (n < 1) { 10604 pr_warn("kprobe multi pattern is invalid: %s\n", pattern); 10605 return -EINVAL; 10606 } 10607 10608 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 10609 free(pattern); 10610 return libbpf_get_error(*link); 10611 } 10612 10613 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 10614 const char *binary_path, uint64_t offset) 10615 { 10616 int i; 10617 10618 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 10619 10620 /* sanitize binary_path in the probe name */ 10621 for (i = 0; buf[i]; i++) { 10622 if (!isalnum(buf[i])) 10623 buf[i] = '_'; 10624 } 10625 } 10626 10627 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 10628 const char *binary_path, size_t offset) 10629 { 10630 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 10631 retprobe ? 'r' : 'p', 10632 retprobe ? "uretprobes" : "uprobes", 10633 probe_name, binary_path, offset); 10634 } 10635 10636 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 10637 { 10638 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 10639 retprobe ? "uretprobes" : "uprobes", probe_name); 10640 } 10641 10642 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10643 { 10644 char file[512]; 10645 10646 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10647 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 10648 10649 return parse_uint_from_file(file, "%d\n"); 10650 } 10651 10652 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 10653 const char *binary_path, size_t offset, int pid) 10654 { 10655 const size_t attr_sz = sizeof(struct perf_event_attr); 10656 struct perf_event_attr attr; 10657 int type, pfd, err; 10658 10659 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 10660 if (err < 0) { 10661 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 10662 binary_path, (size_t)offset, err); 10663 return err; 10664 } 10665 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 10666 if (type < 0) { 10667 err = type; 10668 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 10669 binary_path, offset, err); 10670 goto err_clean_legacy; 10671 } 10672 10673 memset(&attr, 0, attr_sz); 10674 attr.size = attr_sz; 10675 attr.config = type; 10676 attr.type = PERF_TYPE_TRACEPOINT; 10677 10678 pfd = syscall(__NR_perf_event_open, &attr, 10679 pid < 0 ? -1 : pid, /* pid */ 10680 pid == -1 ? 0 : -1, /* cpu */ 10681 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10682 if (pfd < 0) { 10683 err = -errno; 10684 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 10685 goto err_clean_legacy; 10686 } 10687 return pfd; 10688 10689 err_clean_legacy: 10690 /* Clear the newly added legacy uprobe_event */ 10691 remove_uprobe_event_legacy(probe_name, retprobe); 10692 return err; 10693 } 10694 10695 /* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */ 10696 static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn) 10697 { 10698 while ((scn = elf_nextscn(elf, scn)) != NULL) { 10699 GElf_Shdr sh; 10700 10701 if (!gelf_getshdr(scn, &sh)) 10702 continue; 10703 if (sh.sh_type == sh_type) 10704 return scn; 10705 } 10706 return NULL; 10707 } 10708 10709 /* Find offset of function name in the provided ELF object. "binary_path" is 10710 * the path to the ELF binary represented by "elf", and only used for error 10711 * reporting matters. "name" matches symbol name or name@@LIB for library 10712 * functions. 10713 */ 10714 static long elf_find_func_offset(Elf *elf, const char *binary_path, const char *name) 10715 { 10716 int i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB }; 10717 bool is_shared_lib, is_name_qualified; 10718 long ret = -ENOENT; 10719 size_t name_len; 10720 GElf_Ehdr ehdr; 10721 10722 if (!gelf_getehdr(elf, &ehdr)) { 10723 pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1)); 10724 ret = -LIBBPF_ERRNO__FORMAT; 10725 goto out; 10726 } 10727 /* for shared lib case, we do not need to calculate relative offset */ 10728 is_shared_lib = ehdr.e_type == ET_DYN; 10729 10730 name_len = strlen(name); 10731 /* Does name specify "@@LIB"? */ 10732 is_name_qualified = strstr(name, "@@") != NULL; 10733 10734 /* Search SHT_DYNSYM, SHT_SYMTAB for symbol. This search order is used because if 10735 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically 10736 * linked binary may not have SHT_DYMSYM, so absence of a section should not be 10737 * reported as a warning/error. 10738 */ 10739 for (i = 0; i < ARRAY_SIZE(sh_types); i++) { 10740 size_t nr_syms, strtabidx, idx; 10741 Elf_Data *symbols = NULL; 10742 Elf_Scn *scn = NULL; 10743 int last_bind = -1; 10744 const char *sname; 10745 GElf_Shdr sh; 10746 10747 scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL); 10748 if (!scn) { 10749 pr_debug("elf: failed to find symbol table ELF sections in '%s'\n", 10750 binary_path); 10751 continue; 10752 } 10753 if (!gelf_getshdr(scn, &sh)) 10754 continue; 10755 strtabidx = sh.sh_link; 10756 symbols = elf_getdata(scn, 0); 10757 if (!symbols) { 10758 pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n", 10759 binary_path, elf_errmsg(-1)); 10760 ret = -LIBBPF_ERRNO__FORMAT; 10761 goto out; 10762 } 10763 nr_syms = symbols->d_size / sh.sh_entsize; 10764 10765 for (idx = 0; idx < nr_syms; idx++) { 10766 int curr_bind; 10767 GElf_Sym sym; 10768 Elf_Scn *sym_scn; 10769 GElf_Shdr sym_sh; 10770 10771 if (!gelf_getsym(symbols, idx, &sym)) 10772 continue; 10773 10774 if (GELF_ST_TYPE(sym.st_info) != STT_FUNC) 10775 continue; 10776 10777 sname = elf_strptr(elf, strtabidx, sym.st_name); 10778 if (!sname) 10779 continue; 10780 10781 curr_bind = GELF_ST_BIND(sym.st_info); 10782 10783 /* User can specify func, func@@LIB or func@@LIB_VERSION. */ 10784 if (strncmp(sname, name, name_len) != 0) 10785 continue; 10786 /* ...but we don't want a search for "foo" to match 'foo2" also, so any 10787 * additional characters in sname should be of the form "@@LIB". 10788 */ 10789 if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@') 10790 continue; 10791 10792 if (ret >= 0) { 10793 /* handle multiple matches */ 10794 if (last_bind != STB_WEAK && curr_bind != STB_WEAK) { 10795 /* Only accept one non-weak bind. */ 10796 pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n", 10797 sname, name, binary_path); 10798 ret = -LIBBPF_ERRNO__FORMAT; 10799 goto out; 10800 } else if (curr_bind == STB_WEAK) { 10801 /* already have a non-weak bind, and 10802 * this is a weak bind, so ignore. 10803 */ 10804 continue; 10805 } 10806 } 10807 10808 /* Transform symbol's virtual address (absolute for 10809 * binaries and relative for shared libs) into file 10810 * offset, which is what kernel is expecting for 10811 * uprobe/uretprobe attachment. 10812 * See Documentation/trace/uprobetracer.rst for more 10813 * details. 10814 * This is done by looking up symbol's containing 10815 * section's header and using it's virtual address 10816 * (sh_addr) and corresponding file offset (sh_offset) 10817 * to transform sym.st_value (virtual address) into 10818 * desired final file offset. 10819 */ 10820 sym_scn = elf_getscn(elf, sym.st_shndx); 10821 if (!sym_scn) 10822 continue; 10823 if (!gelf_getshdr(sym_scn, &sym_sh)) 10824 continue; 10825 10826 ret = sym.st_value - sym_sh.sh_addr + sym_sh.sh_offset; 10827 last_bind = curr_bind; 10828 } 10829 if (ret > 0) 10830 break; 10831 } 10832 10833 if (ret > 0) { 10834 pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path, 10835 ret); 10836 } else { 10837 if (ret == 0) { 10838 pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path, 10839 is_shared_lib ? "should not be 0 in a shared library" : 10840 "try using shared library path instead"); 10841 ret = -ENOENT; 10842 } else { 10843 pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path); 10844 } 10845 } 10846 out: 10847 return ret; 10848 } 10849 10850 /* Find offset of function name in ELF object specified by path. "name" matches 10851 * symbol name or name@@LIB for library functions. 10852 */ 10853 static long elf_find_func_offset_from_file(const char *binary_path, const char *name) 10854 { 10855 char errmsg[STRERR_BUFSIZE]; 10856 long ret = -ENOENT; 10857 Elf *elf; 10858 int fd; 10859 10860 fd = open(binary_path, O_RDONLY | O_CLOEXEC); 10861 if (fd < 0) { 10862 ret = -errno; 10863 pr_warn("failed to open %s: %s\n", binary_path, 10864 libbpf_strerror_r(ret, errmsg, sizeof(errmsg))); 10865 return ret; 10866 } 10867 elf = elf_begin(fd, ELF_C_READ_MMAP, NULL); 10868 if (!elf) { 10869 pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1)); 10870 close(fd); 10871 return -LIBBPF_ERRNO__FORMAT; 10872 } 10873 10874 ret = elf_find_func_offset(elf, binary_path, name); 10875 elf_end(elf); 10876 close(fd); 10877 return ret; 10878 } 10879 10880 /* Find offset of function name in archive specified by path. Currently 10881 * supported are .zip files that do not compress their contents, as used on 10882 * Android in the form of APKs, for example. "file_name" is the name of the ELF 10883 * file inside the archive. "func_name" matches symbol name or name@@LIB for 10884 * library functions. 10885 * 10886 * An overview of the APK format specifically provided here: 10887 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents 10888 */ 10889 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name, 10890 const char *func_name) 10891 { 10892 struct zip_archive *archive; 10893 struct zip_entry entry; 10894 long ret; 10895 Elf *elf; 10896 10897 archive = zip_archive_open(archive_path); 10898 if (IS_ERR(archive)) { 10899 ret = PTR_ERR(archive); 10900 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret); 10901 return ret; 10902 } 10903 10904 ret = zip_archive_find_entry(archive, file_name, &entry); 10905 if (ret) { 10906 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name, 10907 archive_path, ret); 10908 goto out; 10909 } 10910 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path, 10911 (unsigned long)entry.data_offset); 10912 10913 if (entry.compression) { 10914 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name, 10915 archive_path); 10916 ret = -LIBBPF_ERRNO__FORMAT; 10917 goto out; 10918 } 10919 10920 elf = elf_memory((void *)entry.data, entry.data_length); 10921 if (!elf) { 10922 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path, 10923 elf_errmsg(-1)); 10924 ret = -LIBBPF_ERRNO__LIBELF; 10925 goto out; 10926 } 10927 10928 ret = elf_find_func_offset(elf, file_name, func_name); 10929 if (ret > 0) { 10930 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n", 10931 func_name, file_name, archive_path, entry.data_offset, ret, 10932 ret + entry.data_offset); 10933 ret += entry.data_offset; 10934 } 10935 elf_end(elf); 10936 10937 out: 10938 zip_archive_close(archive); 10939 return ret; 10940 } 10941 10942 static const char *arch_specific_lib_paths(void) 10943 { 10944 /* 10945 * Based on https://packages.debian.org/sid/libc6. 10946 * 10947 * Assume that the traced program is built for the same architecture 10948 * as libbpf, which should cover the vast majority of cases. 10949 */ 10950 #if defined(__x86_64__) 10951 return "/lib/x86_64-linux-gnu"; 10952 #elif defined(__i386__) 10953 return "/lib/i386-linux-gnu"; 10954 #elif defined(__s390x__) 10955 return "/lib/s390x-linux-gnu"; 10956 #elif defined(__s390__) 10957 return "/lib/s390-linux-gnu"; 10958 #elif defined(__arm__) && defined(__SOFTFP__) 10959 return "/lib/arm-linux-gnueabi"; 10960 #elif defined(__arm__) && !defined(__SOFTFP__) 10961 return "/lib/arm-linux-gnueabihf"; 10962 #elif defined(__aarch64__) 10963 return "/lib/aarch64-linux-gnu"; 10964 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 10965 return "/lib/mips64el-linux-gnuabi64"; 10966 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 10967 return "/lib/mipsel-linux-gnu"; 10968 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 10969 return "/lib/powerpc64le-linux-gnu"; 10970 #elif defined(__sparc__) && defined(__arch64__) 10971 return "/lib/sparc64-linux-gnu"; 10972 #elif defined(__riscv) && __riscv_xlen == 64 10973 return "/lib/riscv64-linux-gnu"; 10974 #else 10975 return NULL; 10976 #endif 10977 } 10978 10979 /* Get full path to program/shared library. */ 10980 static int resolve_full_path(const char *file, char *result, size_t result_sz) 10981 { 10982 const char *search_paths[3] = {}; 10983 int i, perm; 10984 10985 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 10986 search_paths[0] = getenv("LD_LIBRARY_PATH"); 10987 search_paths[1] = "/usr/lib64:/usr/lib"; 10988 search_paths[2] = arch_specific_lib_paths(); 10989 perm = R_OK; 10990 } else { 10991 search_paths[0] = getenv("PATH"); 10992 search_paths[1] = "/usr/bin:/usr/sbin"; 10993 perm = R_OK | X_OK; 10994 } 10995 10996 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 10997 const char *s; 10998 10999 if (!search_paths[i]) 11000 continue; 11001 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 11002 char *next_path; 11003 int seg_len; 11004 11005 if (s[0] == ':') 11006 s++; 11007 next_path = strchr(s, ':'); 11008 seg_len = next_path ? next_path - s : strlen(s); 11009 if (!seg_len) 11010 continue; 11011 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 11012 /* ensure it has required permissions */ 11013 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 11014 continue; 11015 pr_debug("resolved '%s' to '%s'\n", file, result); 11016 return 0; 11017 } 11018 } 11019 return -ENOENT; 11020 } 11021 11022 LIBBPF_API struct bpf_link * 11023 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 11024 const char *binary_path, size_t func_offset, 11025 const struct bpf_uprobe_opts *opts) 11026 { 11027 const char *archive_path = NULL, *archive_sep = NULL; 11028 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 11029 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11030 enum probe_attach_mode attach_mode; 11031 char full_path[PATH_MAX]; 11032 struct bpf_link *link; 11033 size_t ref_ctr_off; 11034 int pfd, err; 11035 bool retprobe, legacy; 11036 const char *func_name; 11037 11038 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11039 return libbpf_err_ptr(-EINVAL); 11040 11041 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11042 retprobe = OPTS_GET(opts, retprobe, false); 11043 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 11044 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11045 11046 if (!binary_path) 11047 return libbpf_err_ptr(-EINVAL); 11048 11049 /* Check if "binary_path" refers to an archive. */ 11050 archive_sep = strstr(binary_path, "!/"); 11051 if (archive_sep) { 11052 full_path[0] = '\0'; 11053 libbpf_strlcpy(full_path, binary_path, 11054 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1))); 11055 archive_path = full_path; 11056 binary_path = archive_sep + 2; 11057 } else if (!strchr(binary_path, '/')) { 11058 err = resolve_full_path(binary_path, full_path, sizeof(full_path)); 11059 if (err) { 11060 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11061 prog->name, binary_path, err); 11062 return libbpf_err_ptr(err); 11063 } 11064 binary_path = full_path; 11065 } 11066 func_name = OPTS_GET(opts, func_name, NULL); 11067 if (func_name) { 11068 long sym_off; 11069 11070 if (archive_path) { 11071 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path, 11072 func_name); 11073 binary_path = archive_path; 11074 } else { 11075 sym_off = elf_find_func_offset_from_file(binary_path, func_name); 11076 } 11077 if (sym_off < 0) 11078 return libbpf_err_ptr(sym_off); 11079 func_offset += sym_off; 11080 } 11081 11082 legacy = determine_uprobe_perf_type() < 0; 11083 switch (attach_mode) { 11084 case PROBE_ATTACH_MODE_LEGACY: 11085 legacy = true; 11086 pe_opts.force_ioctl_attach = true; 11087 break; 11088 case PROBE_ATTACH_MODE_PERF: 11089 if (legacy) 11090 return libbpf_err_ptr(-ENOTSUP); 11091 pe_opts.force_ioctl_attach = true; 11092 break; 11093 case PROBE_ATTACH_MODE_LINK: 11094 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11095 return libbpf_err_ptr(-ENOTSUP); 11096 break; 11097 case PROBE_ATTACH_MODE_DEFAULT: 11098 break; 11099 default: 11100 return libbpf_err_ptr(-EINVAL); 11101 } 11102 11103 if (!legacy) { 11104 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 11105 func_offset, pid, ref_ctr_off); 11106 } else { 11107 char probe_name[PATH_MAX + 64]; 11108 11109 if (ref_ctr_off) 11110 return libbpf_err_ptr(-EINVAL); 11111 11112 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 11113 binary_path, func_offset); 11114 11115 legacy_probe = strdup(probe_name); 11116 if (!legacy_probe) 11117 return libbpf_err_ptr(-ENOMEM); 11118 11119 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 11120 binary_path, func_offset, pid); 11121 } 11122 if (pfd < 0) { 11123 err = -errno; 11124 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 11125 prog->name, retprobe ? "uretprobe" : "uprobe", 11126 binary_path, func_offset, 11127 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11128 goto err_out; 11129 } 11130 11131 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11132 err = libbpf_get_error(link); 11133 if (err) { 11134 close(pfd); 11135 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 11136 prog->name, retprobe ? "uretprobe" : "uprobe", 11137 binary_path, func_offset, 11138 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11139 goto err_clean_legacy; 11140 } 11141 if (legacy) { 11142 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11143 11144 perf_link->legacy_probe_name = legacy_probe; 11145 perf_link->legacy_is_kprobe = false; 11146 perf_link->legacy_is_retprobe = retprobe; 11147 } 11148 return link; 11149 11150 err_clean_legacy: 11151 if (legacy) 11152 remove_uprobe_event_legacy(legacy_probe, retprobe); 11153 err_out: 11154 free(legacy_probe); 11155 return libbpf_err_ptr(err); 11156 } 11157 11158 /* Format of u[ret]probe section definition supporting auto-attach: 11159 * u[ret]probe/binary:function[+offset] 11160 * 11161 * binary can be an absolute/relative path or a filename; the latter is resolved to a 11162 * full binary path via bpf_program__attach_uprobe_opts. 11163 * 11164 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 11165 * specified (and auto-attach is not possible) or the above format is specified for 11166 * auto-attach. 11167 */ 11168 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11169 { 11170 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 11171 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11172 int n, ret = -EINVAL; 11173 long offset = 0; 11174 11175 *link = NULL; 11176 11177 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li", 11178 &probe_type, &binary_path, &func_name, &offset); 11179 switch (n) { 11180 case 1: 11181 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11182 ret = 0; 11183 break; 11184 case 2: 11185 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 11186 prog->name, prog->sec_name); 11187 break; 11188 case 3: 11189 case 4: 11190 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 11191 strcmp(probe_type, "uretprobe.s") == 0; 11192 if (opts.retprobe && offset != 0) { 11193 pr_warn("prog '%s': uretprobes do not support offset specification\n", 11194 prog->name); 11195 break; 11196 } 11197 opts.func_name = func_name; 11198 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 11199 ret = libbpf_get_error(*link); 11200 break; 11201 default: 11202 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11203 prog->sec_name); 11204 break; 11205 } 11206 free(probe_type); 11207 free(binary_path); 11208 free(func_name); 11209 11210 return ret; 11211 } 11212 11213 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 11214 bool retprobe, pid_t pid, 11215 const char *binary_path, 11216 size_t func_offset) 11217 { 11218 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 11219 11220 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 11221 } 11222 11223 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 11224 pid_t pid, const char *binary_path, 11225 const char *usdt_provider, const char *usdt_name, 11226 const struct bpf_usdt_opts *opts) 11227 { 11228 char resolved_path[512]; 11229 struct bpf_object *obj = prog->obj; 11230 struct bpf_link *link; 11231 __u64 usdt_cookie; 11232 int err; 11233 11234 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11235 return libbpf_err_ptr(-EINVAL); 11236 11237 if (bpf_program__fd(prog) < 0) { 11238 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 11239 prog->name); 11240 return libbpf_err_ptr(-EINVAL); 11241 } 11242 11243 if (!binary_path) 11244 return libbpf_err_ptr(-EINVAL); 11245 11246 if (!strchr(binary_path, '/')) { 11247 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 11248 if (err) { 11249 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11250 prog->name, binary_path, err); 11251 return libbpf_err_ptr(err); 11252 } 11253 binary_path = resolved_path; 11254 } 11255 11256 /* USDT manager is instantiated lazily on first USDT attach. It will 11257 * be destroyed together with BPF object in bpf_object__close(). 11258 */ 11259 if (IS_ERR(obj->usdt_man)) 11260 return libbpf_ptr(obj->usdt_man); 11261 if (!obj->usdt_man) { 11262 obj->usdt_man = usdt_manager_new(obj); 11263 if (IS_ERR(obj->usdt_man)) 11264 return libbpf_ptr(obj->usdt_man); 11265 } 11266 11267 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 11268 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 11269 usdt_provider, usdt_name, usdt_cookie); 11270 err = libbpf_get_error(link); 11271 if (err) 11272 return libbpf_err_ptr(err); 11273 return link; 11274 } 11275 11276 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11277 { 11278 char *path = NULL, *provider = NULL, *name = NULL; 11279 const char *sec_name; 11280 int n, err; 11281 11282 sec_name = bpf_program__section_name(prog); 11283 if (strcmp(sec_name, "usdt") == 0) { 11284 /* no auto-attach for just SEC("usdt") */ 11285 *link = NULL; 11286 return 0; 11287 } 11288 11289 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 11290 if (n != 3) { 11291 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 11292 sec_name); 11293 err = -EINVAL; 11294 } else { 11295 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 11296 provider, name, NULL); 11297 err = libbpf_get_error(*link); 11298 } 11299 free(path); 11300 free(provider); 11301 free(name); 11302 return err; 11303 } 11304 11305 static int determine_tracepoint_id(const char *tp_category, 11306 const char *tp_name) 11307 { 11308 char file[PATH_MAX]; 11309 int ret; 11310 11311 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11312 tracefs_path(), tp_category, tp_name); 11313 if (ret < 0) 11314 return -errno; 11315 if (ret >= sizeof(file)) { 11316 pr_debug("tracepoint %s/%s path is too long\n", 11317 tp_category, tp_name); 11318 return -E2BIG; 11319 } 11320 return parse_uint_from_file(file, "%d\n"); 11321 } 11322 11323 static int perf_event_open_tracepoint(const char *tp_category, 11324 const char *tp_name) 11325 { 11326 const size_t attr_sz = sizeof(struct perf_event_attr); 11327 struct perf_event_attr attr; 11328 char errmsg[STRERR_BUFSIZE]; 11329 int tp_id, pfd, err; 11330 11331 tp_id = determine_tracepoint_id(tp_category, tp_name); 11332 if (tp_id < 0) { 11333 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 11334 tp_category, tp_name, 11335 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 11336 return tp_id; 11337 } 11338 11339 memset(&attr, 0, attr_sz); 11340 attr.type = PERF_TYPE_TRACEPOINT; 11341 attr.size = attr_sz; 11342 attr.config = tp_id; 11343 11344 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 11345 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11346 if (pfd < 0) { 11347 err = -errno; 11348 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 11349 tp_category, tp_name, 11350 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11351 return err; 11352 } 11353 return pfd; 11354 } 11355 11356 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 11357 const char *tp_category, 11358 const char *tp_name, 11359 const struct bpf_tracepoint_opts *opts) 11360 { 11361 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11362 char errmsg[STRERR_BUFSIZE]; 11363 struct bpf_link *link; 11364 int pfd, err; 11365 11366 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 11367 return libbpf_err_ptr(-EINVAL); 11368 11369 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11370 11371 pfd = perf_event_open_tracepoint(tp_category, tp_name); 11372 if (pfd < 0) { 11373 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 11374 prog->name, tp_category, tp_name, 11375 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11376 return libbpf_err_ptr(pfd); 11377 } 11378 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11379 err = libbpf_get_error(link); 11380 if (err) { 11381 close(pfd); 11382 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 11383 prog->name, tp_category, tp_name, 11384 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11385 return libbpf_err_ptr(err); 11386 } 11387 return link; 11388 } 11389 11390 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 11391 const char *tp_category, 11392 const char *tp_name) 11393 { 11394 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 11395 } 11396 11397 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11398 { 11399 char *sec_name, *tp_cat, *tp_name; 11400 11401 *link = NULL; 11402 11403 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 11404 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 11405 return 0; 11406 11407 sec_name = strdup(prog->sec_name); 11408 if (!sec_name) 11409 return -ENOMEM; 11410 11411 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 11412 if (str_has_pfx(prog->sec_name, "tp/")) 11413 tp_cat = sec_name + sizeof("tp/") - 1; 11414 else 11415 tp_cat = sec_name + sizeof("tracepoint/") - 1; 11416 tp_name = strchr(tp_cat, '/'); 11417 if (!tp_name) { 11418 free(sec_name); 11419 return -EINVAL; 11420 } 11421 *tp_name = '\0'; 11422 tp_name++; 11423 11424 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 11425 free(sec_name); 11426 return libbpf_get_error(*link); 11427 } 11428 11429 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 11430 const char *tp_name) 11431 { 11432 char errmsg[STRERR_BUFSIZE]; 11433 struct bpf_link *link; 11434 int prog_fd, pfd; 11435 11436 prog_fd = bpf_program__fd(prog); 11437 if (prog_fd < 0) { 11438 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11439 return libbpf_err_ptr(-EINVAL); 11440 } 11441 11442 link = calloc(1, sizeof(*link)); 11443 if (!link) 11444 return libbpf_err_ptr(-ENOMEM); 11445 link->detach = &bpf_link__detach_fd; 11446 11447 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 11448 if (pfd < 0) { 11449 pfd = -errno; 11450 free(link); 11451 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 11452 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11453 return libbpf_err_ptr(pfd); 11454 } 11455 link->fd = pfd; 11456 return link; 11457 } 11458 11459 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11460 { 11461 static const char *const prefixes[] = { 11462 "raw_tp", 11463 "raw_tracepoint", 11464 "raw_tp.w", 11465 "raw_tracepoint.w", 11466 }; 11467 size_t i; 11468 const char *tp_name = NULL; 11469 11470 *link = NULL; 11471 11472 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 11473 size_t pfx_len; 11474 11475 if (!str_has_pfx(prog->sec_name, prefixes[i])) 11476 continue; 11477 11478 pfx_len = strlen(prefixes[i]); 11479 /* no auto-attach case of, e.g., SEC("raw_tp") */ 11480 if (prog->sec_name[pfx_len] == '\0') 11481 return 0; 11482 11483 if (prog->sec_name[pfx_len] != '/') 11484 continue; 11485 11486 tp_name = prog->sec_name + pfx_len + 1; 11487 break; 11488 } 11489 11490 if (!tp_name) { 11491 pr_warn("prog '%s': invalid section name '%s'\n", 11492 prog->name, prog->sec_name); 11493 return -EINVAL; 11494 } 11495 11496 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 11497 return libbpf_get_error(*link); 11498 } 11499 11500 /* Common logic for all BPF program types that attach to a btf_id */ 11501 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 11502 const struct bpf_trace_opts *opts) 11503 { 11504 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 11505 char errmsg[STRERR_BUFSIZE]; 11506 struct bpf_link *link; 11507 int prog_fd, pfd; 11508 11509 if (!OPTS_VALID(opts, bpf_trace_opts)) 11510 return libbpf_err_ptr(-EINVAL); 11511 11512 prog_fd = bpf_program__fd(prog); 11513 if (prog_fd < 0) { 11514 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11515 return libbpf_err_ptr(-EINVAL); 11516 } 11517 11518 link = calloc(1, sizeof(*link)); 11519 if (!link) 11520 return libbpf_err_ptr(-ENOMEM); 11521 link->detach = &bpf_link__detach_fd; 11522 11523 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 11524 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 11525 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 11526 if (pfd < 0) { 11527 pfd = -errno; 11528 free(link); 11529 pr_warn("prog '%s': failed to attach: %s\n", 11530 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11531 return libbpf_err_ptr(pfd); 11532 } 11533 link->fd = pfd; 11534 return link; 11535 } 11536 11537 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 11538 { 11539 return bpf_program__attach_btf_id(prog, NULL); 11540 } 11541 11542 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 11543 const struct bpf_trace_opts *opts) 11544 { 11545 return bpf_program__attach_btf_id(prog, opts); 11546 } 11547 11548 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 11549 { 11550 return bpf_program__attach_btf_id(prog, NULL); 11551 } 11552 11553 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11554 { 11555 *link = bpf_program__attach_trace(prog); 11556 return libbpf_get_error(*link); 11557 } 11558 11559 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11560 { 11561 *link = bpf_program__attach_lsm(prog); 11562 return libbpf_get_error(*link); 11563 } 11564 11565 static struct bpf_link * 11566 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id, 11567 const char *target_name) 11568 { 11569 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 11570 .target_btf_id = btf_id); 11571 enum bpf_attach_type attach_type; 11572 char errmsg[STRERR_BUFSIZE]; 11573 struct bpf_link *link; 11574 int prog_fd, link_fd; 11575 11576 prog_fd = bpf_program__fd(prog); 11577 if (prog_fd < 0) { 11578 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11579 return libbpf_err_ptr(-EINVAL); 11580 } 11581 11582 link = calloc(1, sizeof(*link)); 11583 if (!link) 11584 return libbpf_err_ptr(-ENOMEM); 11585 link->detach = &bpf_link__detach_fd; 11586 11587 attach_type = bpf_program__expected_attach_type(prog); 11588 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 11589 if (link_fd < 0) { 11590 link_fd = -errno; 11591 free(link); 11592 pr_warn("prog '%s': failed to attach to %s: %s\n", 11593 prog->name, target_name, 11594 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11595 return libbpf_err_ptr(link_fd); 11596 } 11597 link->fd = link_fd; 11598 return link; 11599 } 11600 11601 struct bpf_link * 11602 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 11603 { 11604 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 11605 } 11606 11607 struct bpf_link * 11608 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 11609 { 11610 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 11611 } 11612 11613 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 11614 { 11615 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 11616 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 11617 } 11618 11619 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 11620 int target_fd, 11621 const char *attach_func_name) 11622 { 11623 int btf_id; 11624 11625 if (!!target_fd != !!attach_func_name) { 11626 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 11627 prog->name); 11628 return libbpf_err_ptr(-EINVAL); 11629 } 11630 11631 if (prog->type != BPF_PROG_TYPE_EXT) { 11632 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 11633 prog->name); 11634 return libbpf_err_ptr(-EINVAL); 11635 } 11636 11637 if (target_fd) { 11638 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 11639 if (btf_id < 0) 11640 return libbpf_err_ptr(btf_id); 11641 11642 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 11643 } else { 11644 /* no target, so use raw_tracepoint_open for compatibility 11645 * with old kernels 11646 */ 11647 return bpf_program__attach_trace(prog); 11648 } 11649 } 11650 11651 struct bpf_link * 11652 bpf_program__attach_iter(const struct bpf_program *prog, 11653 const struct bpf_iter_attach_opts *opts) 11654 { 11655 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 11656 char errmsg[STRERR_BUFSIZE]; 11657 struct bpf_link *link; 11658 int prog_fd, link_fd; 11659 __u32 target_fd = 0; 11660 11661 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 11662 return libbpf_err_ptr(-EINVAL); 11663 11664 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 11665 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 11666 11667 prog_fd = bpf_program__fd(prog); 11668 if (prog_fd < 0) { 11669 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11670 return libbpf_err_ptr(-EINVAL); 11671 } 11672 11673 link = calloc(1, sizeof(*link)); 11674 if (!link) 11675 return libbpf_err_ptr(-ENOMEM); 11676 link->detach = &bpf_link__detach_fd; 11677 11678 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 11679 &link_create_opts); 11680 if (link_fd < 0) { 11681 link_fd = -errno; 11682 free(link); 11683 pr_warn("prog '%s': failed to attach to iterator: %s\n", 11684 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11685 return libbpf_err_ptr(link_fd); 11686 } 11687 link->fd = link_fd; 11688 return link; 11689 } 11690 11691 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11692 { 11693 *link = bpf_program__attach_iter(prog, NULL); 11694 return libbpf_get_error(*link); 11695 } 11696 11697 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 11698 { 11699 struct bpf_link *link = NULL; 11700 int err; 11701 11702 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 11703 return libbpf_err_ptr(-EOPNOTSUPP); 11704 11705 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 11706 if (err) 11707 return libbpf_err_ptr(err); 11708 11709 /* When calling bpf_program__attach() explicitly, auto-attach support 11710 * is expected to work, so NULL returned link is considered an error. 11711 * This is different for skeleton's attach, see comment in 11712 * bpf_object__attach_skeleton(). 11713 */ 11714 if (!link) 11715 return libbpf_err_ptr(-EOPNOTSUPP); 11716 11717 return link; 11718 } 11719 11720 struct bpf_link_struct_ops { 11721 struct bpf_link link; 11722 int map_fd; 11723 }; 11724 11725 static int bpf_link__detach_struct_ops(struct bpf_link *link) 11726 { 11727 struct bpf_link_struct_ops *st_link; 11728 __u32 zero = 0; 11729 11730 st_link = container_of(link, struct bpf_link_struct_ops, link); 11731 11732 if (st_link->map_fd < 0) 11733 /* w/o a real link */ 11734 return bpf_map_delete_elem(link->fd, &zero); 11735 11736 return close(link->fd); 11737 } 11738 11739 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 11740 { 11741 struct bpf_link_struct_ops *link; 11742 __u32 zero = 0; 11743 int err, fd; 11744 11745 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 11746 return libbpf_err_ptr(-EINVAL); 11747 11748 link = calloc(1, sizeof(*link)); 11749 if (!link) 11750 return libbpf_err_ptr(-EINVAL); 11751 11752 /* kern_vdata should be prepared during the loading phase. */ 11753 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 11754 /* It can be EBUSY if the map has been used to create or 11755 * update a link before. We don't allow updating the value of 11756 * a struct_ops once it is set. That ensures that the value 11757 * never changed. So, it is safe to skip EBUSY. 11758 */ 11759 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) { 11760 free(link); 11761 return libbpf_err_ptr(err); 11762 } 11763 11764 link->link.detach = bpf_link__detach_struct_ops; 11765 11766 if (!(map->def.map_flags & BPF_F_LINK)) { 11767 /* w/o a real link */ 11768 link->link.fd = map->fd; 11769 link->map_fd = -1; 11770 return &link->link; 11771 } 11772 11773 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL); 11774 if (fd < 0) { 11775 free(link); 11776 return libbpf_err_ptr(fd); 11777 } 11778 11779 link->link.fd = fd; 11780 link->map_fd = map->fd; 11781 11782 return &link->link; 11783 } 11784 11785 /* 11786 * Swap the back struct_ops of a link with a new struct_ops map. 11787 */ 11788 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map) 11789 { 11790 struct bpf_link_struct_ops *st_ops_link; 11791 __u32 zero = 0; 11792 int err; 11793 11794 if (!bpf_map__is_struct_ops(map) || map->fd < 0) 11795 return -EINVAL; 11796 11797 st_ops_link = container_of(link, struct bpf_link_struct_ops, link); 11798 /* Ensure the type of a link is correct */ 11799 if (st_ops_link->map_fd < 0) 11800 return -EINVAL; 11801 11802 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 11803 /* It can be EBUSY if the map has been used to create or 11804 * update a link before. We don't allow updating the value of 11805 * a struct_ops once it is set. That ensures that the value 11806 * never changed. So, it is safe to skip EBUSY. 11807 */ 11808 if (err && err != -EBUSY) 11809 return err; 11810 11811 err = bpf_link_update(link->fd, map->fd, NULL); 11812 if (err < 0) 11813 return err; 11814 11815 st_ops_link->map_fd = map->fd; 11816 11817 return 0; 11818 } 11819 11820 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 11821 void *private_data); 11822 11823 static enum bpf_perf_event_ret 11824 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 11825 void **copy_mem, size_t *copy_size, 11826 bpf_perf_event_print_t fn, void *private_data) 11827 { 11828 struct perf_event_mmap_page *header = mmap_mem; 11829 __u64 data_head = ring_buffer_read_head(header); 11830 __u64 data_tail = header->data_tail; 11831 void *base = ((__u8 *)header) + page_size; 11832 int ret = LIBBPF_PERF_EVENT_CONT; 11833 struct perf_event_header *ehdr; 11834 size_t ehdr_size; 11835 11836 while (data_head != data_tail) { 11837 ehdr = base + (data_tail & (mmap_size - 1)); 11838 ehdr_size = ehdr->size; 11839 11840 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 11841 void *copy_start = ehdr; 11842 size_t len_first = base + mmap_size - copy_start; 11843 size_t len_secnd = ehdr_size - len_first; 11844 11845 if (*copy_size < ehdr_size) { 11846 free(*copy_mem); 11847 *copy_mem = malloc(ehdr_size); 11848 if (!*copy_mem) { 11849 *copy_size = 0; 11850 ret = LIBBPF_PERF_EVENT_ERROR; 11851 break; 11852 } 11853 *copy_size = ehdr_size; 11854 } 11855 11856 memcpy(*copy_mem, copy_start, len_first); 11857 memcpy(*copy_mem + len_first, base, len_secnd); 11858 ehdr = *copy_mem; 11859 } 11860 11861 ret = fn(ehdr, private_data); 11862 data_tail += ehdr_size; 11863 if (ret != LIBBPF_PERF_EVENT_CONT) 11864 break; 11865 } 11866 11867 ring_buffer_write_tail(header, data_tail); 11868 return libbpf_err(ret); 11869 } 11870 11871 struct perf_buffer; 11872 11873 struct perf_buffer_params { 11874 struct perf_event_attr *attr; 11875 /* if event_cb is specified, it takes precendence */ 11876 perf_buffer_event_fn event_cb; 11877 /* sample_cb and lost_cb are higher-level common-case callbacks */ 11878 perf_buffer_sample_fn sample_cb; 11879 perf_buffer_lost_fn lost_cb; 11880 void *ctx; 11881 int cpu_cnt; 11882 int *cpus; 11883 int *map_keys; 11884 }; 11885 11886 struct perf_cpu_buf { 11887 struct perf_buffer *pb; 11888 void *base; /* mmap()'ed memory */ 11889 void *buf; /* for reconstructing segmented data */ 11890 size_t buf_size; 11891 int fd; 11892 int cpu; 11893 int map_key; 11894 }; 11895 11896 struct perf_buffer { 11897 perf_buffer_event_fn event_cb; 11898 perf_buffer_sample_fn sample_cb; 11899 perf_buffer_lost_fn lost_cb; 11900 void *ctx; /* passed into callbacks */ 11901 11902 size_t page_size; 11903 size_t mmap_size; 11904 struct perf_cpu_buf **cpu_bufs; 11905 struct epoll_event *events; 11906 int cpu_cnt; /* number of allocated CPU buffers */ 11907 int epoll_fd; /* perf event FD */ 11908 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 11909 }; 11910 11911 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 11912 struct perf_cpu_buf *cpu_buf) 11913 { 11914 if (!cpu_buf) 11915 return; 11916 if (cpu_buf->base && 11917 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 11918 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 11919 if (cpu_buf->fd >= 0) { 11920 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 11921 close(cpu_buf->fd); 11922 } 11923 free(cpu_buf->buf); 11924 free(cpu_buf); 11925 } 11926 11927 void perf_buffer__free(struct perf_buffer *pb) 11928 { 11929 int i; 11930 11931 if (IS_ERR_OR_NULL(pb)) 11932 return; 11933 if (pb->cpu_bufs) { 11934 for (i = 0; i < pb->cpu_cnt; i++) { 11935 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 11936 11937 if (!cpu_buf) 11938 continue; 11939 11940 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 11941 perf_buffer__free_cpu_buf(pb, cpu_buf); 11942 } 11943 free(pb->cpu_bufs); 11944 } 11945 if (pb->epoll_fd >= 0) 11946 close(pb->epoll_fd); 11947 free(pb->events); 11948 free(pb); 11949 } 11950 11951 static struct perf_cpu_buf * 11952 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 11953 int cpu, int map_key) 11954 { 11955 struct perf_cpu_buf *cpu_buf; 11956 char msg[STRERR_BUFSIZE]; 11957 int err; 11958 11959 cpu_buf = calloc(1, sizeof(*cpu_buf)); 11960 if (!cpu_buf) 11961 return ERR_PTR(-ENOMEM); 11962 11963 cpu_buf->pb = pb; 11964 cpu_buf->cpu = cpu; 11965 cpu_buf->map_key = map_key; 11966 11967 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 11968 -1, PERF_FLAG_FD_CLOEXEC); 11969 if (cpu_buf->fd < 0) { 11970 err = -errno; 11971 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 11972 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11973 goto error; 11974 } 11975 11976 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 11977 PROT_READ | PROT_WRITE, MAP_SHARED, 11978 cpu_buf->fd, 0); 11979 if (cpu_buf->base == MAP_FAILED) { 11980 cpu_buf->base = NULL; 11981 err = -errno; 11982 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 11983 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11984 goto error; 11985 } 11986 11987 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 11988 err = -errno; 11989 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 11990 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11991 goto error; 11992 } 11993 11994 return cpu_buf; 11995 11996 error: 11997 perf_buffer__free_cpu_buf(pb, cpu_buf); 11998 return (struct perf_cpu_buf *)ERR_PTR(err); 11999 } 12000 12001 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 12002 struct perf_buffer_params *p); 12003 12004 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 12005 perf_buffer_sample_fn sample_cb, 12006 perf_buffer_lost_fn lost_cb, 12007 void *ctx, 12008 const struct perf_buffer_opts *opts) 12009 { 12010 const size_t attr_sz = sizeof(struct perf_event_attr); 12011 struct perf_buffer_params p = {}; 12012 struct perf_event_attr attr; 12013 __u32 sample_period; 12014 12015 if (!OPTS_VALID(opts, perf_buffer_opts)) 12016 return libbpf_err_ptr(-EINVAL); 12017 12018 sample_period = OPTS_GET(opts, sample_period, 1); 12019 if (!sample_period) 12020 sample_period = 1; 12021 12022 memset(&attr, 0, attr_sz); 12023 attr.size = attr_sz; 12024 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 12025 attr.type = PERF_TYPE_SOFTWARE; 12026 attr.sample_type = PERF_SAMPLE_RAW; 12027 attr.sample_period = sample_period; 12028 attr.wakeup_events = sample_period; 12029 12030 p.attr = &attr; 12031 p.sample_cb = sample_cb; 12032 p.lost_cb = lost_cb; 12033 p.ctx = ctx; 12034 12035 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 12036 } 12037 12038 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 12039 struct perf_event_attr *attr, 12040 perf_buffer_event_fn event_cb, void *ctx, 12041 const struct perf_buffer_raw_opts *opts) 12042 { 12043 struct perf_buffer_params p = {}; 12044 12045 if (!attr) 12046 return libbpf_err_ptr(-EINVAL); 12047 12048 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 12049 return libbpf_err_ptr(-EINVAL); 12050 12051 p.attr = attr; 12052 p.event_cb = event_cb; 12053 p.ctx = ctx; 12054 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 12055 p.cpus = OPTS_GET(opts, cpus, NULL); 12056 p.map_keys = OPTS_GET(opts, map_keys, NULL); 12057 12058 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 12059 } 12060 12061 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 12062 struct perf_buffer_params *p) 12063 { 12064 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 12065 struct bpf_map_info map; 12066 char msg[STRERR_BUFSIZE]; 12067 struct perf_buffer *pb; 12068 bool *online = NULL; 12069 __u32 map_info_len; 12070 int err, i, j, n; 12071 12072 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 12073 pr_warn("page count should be power of two, but is %zu\n", 12074 page_cnt); 12075 return ERR_PTR(-EINVAL); 12076 } 12077 12078 /* best-effort sanity checks */ 12079 memset(&map, 0, sizeof(map)); 12080 map_info_len = sizeof(map); 12081 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len); 12082 if (err) { 12083 err = -errno; 12084 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 12085 * -EBADFD, -EFAULT, or -E2BIG on real error 12086 */ 12087 if (err != -EINVAL) { 12088 pr_warn("failed to get map info for map FD %d: %s\n", 12089 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 12090 return ERR_PTR(err); 12091 } 12092 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 12093 map_fd); 12094 } else { 12095 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 12096 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 12097 map.name); 12098 return ERR_PTR(-EINVAL); 12099 } 12100 } 12101 12102 pb = calloc(1, sizeof(*pb)); 12103 if (!pb) 12104 return ERR_PTR(-ENOMEM); 12105 12106 pb->event_cb = p->event_cb; 12107 pb->sample_cb = p->sample_cb; 12108 pb->lost_cb = p->lost_cb; 12109 pb->ctx = p->ctx; 12110 12111 pb->page_size = getpagesize(); 12112 pb->mmap_size = pb->page_size * page_cnt; 12113 pb->map_fd = map_fd; 12114 12115 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 12116 if (pb->epoll_fd < 0) { 12117 err = -errno; 12118 pr_warn("failed to create epoll instance: %s\n", 12119 libbpf_strerror_r(err, msg, sizeof(msg))); 12120 goto error; 12121 } 12122 12123 if (p->cpu_cnt > 0) { 12124 pb->cpu_cnt = p->cpu_cnt; 12125 } else { 12126 pb->cpu_cnt = libbpf_num_possible_cpus(); 12127 if (pb->cpu_cnt < 0) { 12128 err = pb->cpu_cnt; 12129 goto error; 12130 } 12131 if (map.max_entries && map.max_entries < pb->cpu_cnt) 12132 pb->cpu_cnt = map.max_entries; 12133 } 12134 12135 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 12136 if (!pb->events) { 12137 err = -ENOMEM; 12138 pr_warn("failed to allocate events: out of memory\n"); 12139 goto error; 12140 } 12141 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 12142 if (!pb->cpu_bufs) { 12143 err = -ENOMEM; 12144 pr_warn("failed to allocate buffers: out of memory\n"); 12145 goto error; 12146 } 12147 12148 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 12149 if (err) { 12150 pr_warn("failed to get online CPU mask: %d\n", err); 12151 goto error; 12152 } 12153 12154 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 12155 struct perf_cpu_buf *cpu_buf; 12156 int cpu, map_key; 12157 12158 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 12159 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 12160 12161 /* in case user didn't explicitly requested particular CPUs to 12162 * be attached to, skip offline/not present CPUs 12163 */ 12164 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 12165 continue; 12166 12167 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 12168 if (IS_ERR(cpu_buf)) { 12169 err = PTR_ERR(cpu_buf); 12170 goto error; 12171 } 12172 12173 pb->cpu_bufs[j] = cpu_buf; 12174 12175 err = bpf_map_update_elem(pb->map_fd, &map_key, 12176 &cpu_buf->fd, 0); 12177 if (err) { 12178 err = -errno; 12179 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 12180 cpu, map_key, cpu_buf->fd, 12181 libbpf_strerror_r(err, msg, sizeof(msg))); 12182 goto error; 12183 } 12184 12185 pb->events[j].events = EPOLLIN; 12186 pb->events[j].data.ptr = cpu_buf; 12187 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 12188 &pb->events[j]) < 0) { 12189 err = -errno; 12190 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 12191 cpu, cpu_buf->fd, 12192 libbpf_strerror_r(err, msg, sizeof(msg))); 12193 goto error; 12194 } 12195 j++; 12196 } 12197 pb->cpu_cnt = j; 12198 free(online); 12199 12200 return pb; 12201 12202 error: 12203 free(online); 12204 if (pb) 12205 perf_buffer__free(pb); 12206 return ERR_PTR(err); 12207 } 12208 12209 struct perf_sample_raw { 12210 struct perf_event_header header; 12211 uint32_t size; 12212 char data[]; 12213 }; 12214 12215 struct perf_sample_lost { 12216 struct perf_event_header header; 12217 uint64_t id; 12218 uint64_t lost; 12219 uint64_t sample_id; 12220 }; 12221 12222 static enum bpf_perf_event_ret 12223 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 12224 { 12225 struct perf_cpu_buf *cpu_buf = ctx; 12226 struct perf_buffer *pb = cpu_buf->pb; 12227 void *data = e; 12228 12229 /* user wants full control over parsing perf event */ 12230 if (pb->event_cb) 12231 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 12232 12233 switch (e->type) { 12234 case PERF_RECORD_SAMPLE: { 12235 struct perf_sample_raw *s = data; 12236 12237 if (pb->sample_cb) 12238 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 12239 break; 12240 } 12241 case PERF_RECORD_LOST: { 12242 struct perf_sample_lost *s = data; 12243 12244 if (pb->lost_cb) 12245 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 12246 break; 12247 } 12248 default: 12249 pr_warn("unknown perf sample type %d\n", e->type); 12250 return LIBBPF_PERF_EVENT_ERROR; 12251 } 12252 return LIBBPF_PERF_EVENT_CONT; 12253 } 12254 12255 static int perf_buffer__process_records(struct perf_buffer *pb, 12256 struct perf_cpu_buf *cpu_buf) 12257 { 12258 enum bpf_perf_event_ret ret; 12259 12260 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 12261 pb->page_size, &cpu_buf->buf, 12262 &cpu_buf->buf_size, 12263 perf_buffer__process_record, cpu_buf); 12264 if (ret != LIBBPF_PERF_EVENT_CONT) 12265 return ret; 12266 return 0; 12267 } 12268 12269 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 12270 { 12271 return pb->epoll_fd; 12272 } 12273 12274 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 12275 { 12276 int i, cnt, err; 12277 12278 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 12279 if (cnt < 0) 12280 return -errno; 12281 12282 for (i = 0; i < cnt; i++) { 12283 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 12284 12285 err = perf_buffer__process_records(pb, cpu_buf); 12286 if (err) { 12287 pr_warn("error while processing records: %d\n", err); 12288 return libbpf_err(err); 12289 } 12290 } 12291 return cnt; 12292 } 12293 12294 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 12295 * manager. 12296 */ 12297 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 12298 { 12299 return pb->cpu_cnt; 12300 } 12301 12302 /* 12303 * Return perf_event FD of a ring buffer in *buf_idx* slot of 12304 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 12305 * select()/poll()/epoll() Linux syscalls. 12306 */ 12307 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 12308 { 12309 struct perf_cpu_buf *cpu_buf; 12310 12311 if (buf_idx >= pb->cpu_cnt) 12312 return libbpf_err(-EINVAL); 12313 12314 cpu_buf = pb->cpu_bufs[buf_idx]; 12315 if (!cpu_buf) 12316 return libbpf_err(-ENOENT); 12317 12318 return cpu_buf->fd; 12319 } 12320 12321 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 12322 { 12323 struct perf_cpu_buf *cpu_buf; 12324 12325 if (buf_idx >= pb->cpu_cnt) 12326 return libbpf_err(-EINVAL); 12327 12328 cpu_buf = pb->cpu_bufs[buf_idx]; 12329 if (!cpu_buf) 12330 return libbpf_err(-ENOENT); 12331 12332 *buf = cpu_buf->base; 12333 *buf_size = pb->mmap_size; 12334 return 0; 12335 } 12336 12337 /* 12338 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 12339 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 12340 * consume, do nothing and return success. 12341 * Returns: 12342 * - 0 on success; 12343 * - <0 on failure. 12344 */ 12345 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 12346 { 12347 struct perf_cpu_buf *cpu_buf; 12348 12349 if (buf_idx >= pb->cpu_cnt) 12350 return libbpf_err(-EINVAL); 12351 12352 cpu_buf = pb->cpu_bufs[buf_idx]; 12353 if (!cpu_buf) 12354 return libbpf_err(-ENOENT); 12355 12356 return perf_buffer__process_records(pb, cpu_buf); 12357 } 12358 12359 int perf_buffer__consume(struct perf_buffer *pb) 12360 { 12361 int i, err; 12362 12363 for (i = 0; i < pb->cpu_cnt; i++) { 12364 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12365 12366 if (!cpu_buf) 12367 continue; 12368 12369 err = perf_buffer__process_records(pb, cpu_buf); 12370 if (err) { 12371 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 12372 return libbpf_err(err); 12373 } 12374 } 12375 return 0; 12376 } 12377 12378 int bpf_program__set_attach_target(struct bpf_program *prog, 12379 int attach_prog_fd, 12380 const char *attach_func_name) 12381 { 12382 int btf_obj_fd = 0, btf_id = 0, err; 12383 12384 if (!prog || attach_prog_fd < 0) 12385 return libbpf_err(-EINVAL); 12386 12387 if (prog->obj->loaded) 12388 return libbpf_err(-EINVAL); 12389 12390 if (attach_prog_fd && !attach_func_name) { 12391 /* remember attach_prog_fd and let bpf_program__load() find 12392 * BTF ID during the program load 12393 */ 12394 prog->attach_prog_fd = attach_prog_fd; 12395 return 0; 12396 } 12397 12398 if (attach_prog_fd) { 12399 btf_id = libbpf_find_prog_btf_id(attach_func_name, 12400 attach_prog_fd); 12401 if (btf_id < 0) 12402 return libbpf_err(btf_id); 12403 } else { 12404 if (!attach_func_name) 12405 return libbpf_err(-EINVAL); 12406 12407 /* load btf_vmlinux, if not yet */ 12408 err = bpf_object__load_vmlinux_btf(prog->obj, true); 12409 if (err) 12410 return libbpf_err(err); 12411 err = find_kernel_btf_id(prog->obj, attach_func_name, 12412 prog->expected_attach_type, 12413 &btf_obj_fd, &btf_id); 12414 if (err) 12415 return libbpf_err(err); 12416 } 12417 12418 prog->attach_btf_id = btf_id; 12419 prog->attach_btf_obj_fd = btf_obj_fd; 12420 prog->attach_prog_fd = attach_prog_fd; 12421 return 0; 12422 } 12423 12424 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 12425 { 12426 int err = 0, n, len, start, end = -1; 12427 bool *tmp; 12428 12429 *mask = NULL; 12430 *mask_sz = 0; 12431 12432 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 12433 while (*s) { 12434 if (*s == ',' || *s == '\n') { 12435 s++; 12436 continue; 12437 } 12438 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 12439 if (n <= 0 || n > 2) { 12440 pr_warn("Failed to get CPU range %s: %d\n", s, n); 12441 err = -EINVAL; 12442 goto cleanup; 12443 } else if (n == 1) { 12444 end = start; 12445 } 12446 if (start < 0 || start > end) { 12447 pr_warn("Invalid CPU range [%d,%d] in %s\n", 12448 start, end, s); 12449 err = -EINVAL; 12450 goto cleanup; 12451 } 12452 tmp = realloc(*mask, end + 1); 12453 if (!tmp) { 12454 err = -ENOMEM; 12455 goto cleanup; 12456 } 12457 *mask = tmp; 12458 memset(tmp + *mask_sz, 0, start - *mask_sz); 12459 memset(tmp + start, 1, end - start + 1); 12460 *mask_sz = end + 1; 12461 s += len; 12462 } 12463 if (!*mask_sz) { 12464 pr_warn("Empty CPU range\n"); 12465 return -EINVAL; 12466 } 12467 return 0; 12468 cleanup: 12469 free(*mask); 12470 *mask = NULL; 12471 return err; 12472 } 12473 12474 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 12475 { 12476 int fd, err = 0, len; 12477 char buf[128]; 12478 12479 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 12480 if (fd < 0) { 12481 err = -errno; 12482 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 12483 return err; 12484 } 12485 len = read(fd, buf, sizeof(buf)); 12486 close(fd); 12487 if (len <= 0) { 12488 err = len ? -errno : -EINVAL; 12489 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 12490 return err; 12491 } 12492 if (len >= sizeof(buf)) { 12493 pr_warn("CPU mask is too big in file %s\n", fcpu); 12494 return -E2BIG; 12495 } 12496 buf[len] = '\0'; 12497 12498 return parse_cpu_mask_str(buf, mask, mask_sz); 12499 } 12500 12501 int libbpf_num_possible_cpus(void) 12502 { 12503 static const char *fcpu = "/sys/devices/system/cpu/possible"; 12504 static int cpus; 12505 int err, n, i, tmp_cpus; 12506 bool *mask; 12507 12508 tmp_cpus = READ_ONCE(cpus); 12509 if (tmp_cpus > 0) 12510 return tmp_cpus; 12511 12512 err = parse_cpu_mask_file(fcpu, &mask, &n); 12513 if (err) 12514 return libbpf_err(err); 12515 12516 tmp_cpus = 0; 12517 for (i = 0; i < n; i++) { 12518 if (mask[i]) 12519 tmp_cpus++; 12520 } 12521 free(mask); 12522 12523 WRITE_ONCE(cpus, tmp_cpus); 12524 return tmp_cpus; 12525 } 12526 12527 static int populate_skeleton_maps(const struct bpf_object *obj, 12528 struct bpf_map_skeleton *maps, 12529 size_t map_cnt) 12530 { 12531 int i; 12532 12533 for (i = 0; i < map_cnt; i++) { 12534 struct bpf_map **map = maps[i].map; 12535 const char *name = maps[i].name; 12536 void **mmaped = maps[i].mmaped; 12537 12538 *map = bpf_object__find_map_by_name(obj, name); 12539 if (!*map) { 12540 pr_warn("failed to find skeleton map '%s'\n", name); 12541 return -ESRCH; 12542 } 12543 12544 /* externs shouldn't be pre-setup from user code */ 12545 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 12546 *mmaped = (*map)->mmaped; 12547 } 12548 return 0; 12549 } 12550 12551 static int populate_skeleton_progs(const struct bpf_object *obj, 12552 struct bpf_prog_skeleton *progs, 12553 size_t prog_cnt) 12554 { 12555 int i; 12556 12557 for (i = 0; i < prog_cnt; i++) { 12558 struct bpf_program **prog = progs[i].prog; 12559 const char *name = progs[i].name; 12560 12561 *prog = bpf_object__find_program_by_name(obj, name); 12562 if (!*prog) { 12563 pr_warn("failed to find skeleton program '%s'\n", name); 12564 return -ESRCH; 12565 } 12566 } 12567 return 0; 12568 } 12569 12570 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 12571 const struct bpf_object_open_opts *opts) 12572 { 12573 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 12574 .object_name = s->name, 12575 ); 12576 struct bpf_object *obj; 12577 int err; 12578 12579 /* Attempt to preserve opts->object_name, unless overriden by user 12580 * explicitly. Overwriting object name for skeletons is discouraged, 12581 * as it breaks global data maps, because they contain object name 12582 * prefix as their own map name prefix. When skeleton is generated, 12583 * bpftool is making an assumption that this name will stay the same. 12584 */ 12585 if (opts) { 12586 memcpy(&skel_opts, opts, sizeof(*opts)); 12587 if (!opts->object_name) 12588 skel_opts.object_name = s->name; 12589 } 12590 12591 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 12592 err = libbpf_get_error(obj); 12593 if (err) { 12594 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 12595 s->name, err); 12596 return libbpf_err(err); 12597 } 12598 12599 *s->obj = obj; 12600 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 12601 if (err) { 12602 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 12603 return libbpf_err(err); 12604 } 12605 12606 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 12607 if (err) { 12608 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 12609 return libbpf_err(err); 12610 } 12611 12612 return 0; 12613 } 12614 12615 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 12616 { 12617 int err, len, var_idx, i; 12618 const char *var_name; 12619 const struct bpf_map *map; 12620 struct btf *btf; 12621 __u32 map_type_id; 12622 const struct btf_type *map_type, *var_type; 12623 const struct bpf_var_skeleton *var_skel; 12624 struct btf_var_secinfo *var; 12625 12626 if (!s->obj) 12627 return libbpf_err(-EINVAL); 12628 12629 btf = bpf_object__btf(s->obj); 12630 if (!btf) { 12631 pr_warn("subskeletons require BTF at runtime (object %s)\n", 12632 bpf_object__name(s->obj)); 12633 return libbpf_err(-errno); 12634 } 12635 12636 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 12637 if (err) { 12638 pr_warn("failed to populate subskeleton maps: %d\n", err); 12639 return libbpf_err(err); 12640 } 12641 12642 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 12643 if (err) { 12644 pr_warn("failed to populate subskeleton maps: %d\n", err); 12645 return libbpf_err(err); 12646 } 12647 12648 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 12649 var_skel = &s->vars[var_idx]; 12650 map = *var_skel->map; 12651 map_type_id = bpf_map__btf_value_type_id(map); 12652 map_type = btf__type_by_id(btf, map_type_id); 12653 12654 if (!btf_is_datasec(map_type)) { 12655 pr_warn("type for map '%1$s' is not a datasec: %2$s", 12656 bpf_map__name(map), 12657 __btf_kind_str(btf_kind(map_type))); 12658 return libbpf_err(-EINVAL); 12659 } 12660 12661 len = btf_vlen(map_type); 12662 var = btf_var_secinfos(map_type); 12663 for (i = 0; i < len; i++, var++) { 12664 var_type = btf__type_by_id(btf, var->type); 12665 var_name = btf__name_by_offset(btf, var_type->name_off); 12666 if (strcmp(var_name, var_skel->name) == 0) { 12667 *var_skel->addr = map->mmaped + var->offset; 12668 break; 12669 } 12670 } 12671 } 12672 return 0; 12673 } 12674 12675 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 12676 { 12677 if (!s) 12678 return; 12679 free(s->maps); 12680 free(s->progs); 12681 free(s->vars); 12682 free(s); 12683 } 12684 12685 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 12686 { 12687 int i, err; 12688 12689 err = bpf_object__load(*s->obj); 12690 if (err) { 12691 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 12692 return libbpf_err(err); 12693 } 12694 12695 for (i = 0; i < s->map_cnt; i++) { 12696 struct bpf_map *map = *s->maps[i].map; 12697 size_t mmap_sz = bpf_map_mmap_sz(map); 12698 int prot, map_fd = bpf_map__fd(map); 12699 void **mmaped = s->maps[i].mmaped; 12700 12701 if (!mmaped) 12702 continue; 12703 12704 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 12705 *mmaped = NULL; 12706 continue; 12707 } 12708 12709 if (map->def.map_flags & BPF_F_RDONLY_PROG) 12710 prot = PROT_READ; 12711 else 12712 prot = PROT_READ | PROT_WRITE; 12713 12714 /* Remap anonymous mmap()-ed "map initialization image" as 12715 * a BPF map-backed mmap()-ed memory, but preserving the same 12716 * memory address. This will cause kernel to change process' 12717 * page table to point to a different piece of kernel memory, 12718 * but from userspace point of view memory address (and its 12719 * contents, being identical at this point) will stay the 12720 * same. This mapping will be released by bpf_object__close() 12721 * as per normal clean up procedure, so we don't need to worry 12722 * about it from skeleton's clean up perspective. 12723 */ 12724 *mmaped = mmap(map->mmaped, mmap_sz, prot, 12725 MAP_SHARED | MAP_FIXED, map_fd, 0); 12726 if (*mmaped == MAP_FAILED) { 12727 err = -errno; 12728 *mmaped = NULL; 12729 pr_warn("failed to re-mmap() map '%s': %d\n", 12730 bpf_map__name(map), err); 12731 return libbpf_err(err); 12732 } 12733 } 12734 12735 return 0; 12736 } 12737 12738 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 12739 { 12740 int i, err; 12741 12742 for (i = 0; i < s->prog_cnt; i++) { 12743 struct bpf_program *prog = *s->progs[i].prog; 12744 struct bpf_link **link = s->progs[i].link; 12745 12746 if (!prog->autoload || !prog->autoattach) 12747 continue; 12748 12749 /* auto-attaching not supported for this program */ 12750 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12751 continue; 12752 12753 /* if user already set the link manually, don't attempt auto-attach */ 12754 if (*link) 12755 continue; 12756 12757 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 12758 if (err) { 12759 pr_warn("prog '%s': failed to auto-attach: %d\n", 12760 bpf_program__name(prog), err); 12761 return libbpf_err(err); 12762 } 12763 12764 /* It's possible that for some SEC() definitions auto-attach 12765 * is supported in some cases (e.g., if definition completely 12766 * specifies target information), but is not in other cases. 12767 * SEC("uprobe") is one such case. If user specified target 12768 * binary and function name, such BPF program can be 12769 * auto-attached. But if not, it shouldn't trigger skeleton's 12770 * attach to fail. It should just be skipped. 12771 * attach_fn signals such case with returning 0 (no error) and 12772 * setting link to NULL. 12773 */ 12774 } 12775 12776 return 0; 12777 } 12778 12779 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 12780 { 12781 int i; 12782 12783 for (i = 0; i < s->prog_cnt; i++) { 12784 struct bpf_link **link = s->progs[i].link; 12785 12786 bpf_link__destroy(*link); 12787 *link = NULL; 12788 } 12789 } 12790 12791 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 12792 { 12793 if (!s) 12794 return; 12795 12796 if (s->progs) 12797 bpf_object__detach_skeleton(s); 12798 if (s->obj) 12799 bpf_object__close(*s->obj); 12800 free(s->maps); 12801 free(s->progs); 12802 free(s); 12803 } 12804