1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/ring_buffer.h> 37 #include <linux/version.h> 38 #include <sys/epoll.h> 39 #include <sys/ioctl.h> 40 #include <sys/mman.h> 41 #include <sys/stat.h> 42 #include <sys/types.h> 43 #include <sys/vfs.h> 44 #include <sys/utsname.h> 45 #include <sys/resource.h> 46 #include <libelf.h> 47 #include <gelf.h> 48 #include <zlib.h> 49 50 #include "libbpf.h" 51 #include "bpf.h" 52 #include "btf.h" 53 #include "str_error.h" 54 #include "libbpf_internal.h" 55 #include "hashmap.h" 56 #include "bpf_gen_internal.h" 57 58 #ifndef BPF_FS_MAGIC 59 #define BPF_FS_MAGIC 0xcafe4a11 60 #endif 61 62 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 63 64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 65 * compilation if user enables corresponding warning. Disable it explicitly. 66 */ 67 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 68 69 #define __printf(a, b) __attribute__((format(printf, a, b))) 70 71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 73 74 static const char * const attach_type_name[] = { 75 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 76 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 77 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 78 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 79 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 80 [BPF_CGROUP_DEVICE] = "cgroup_device", 81 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 82 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 83 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 84 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 85 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 86 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 87 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 88 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 89 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 90 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 91 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 92 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 93 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 94 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 95 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 96 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 97 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 98 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 99 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 100 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 101 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 102 [BPF_LIRC_MODE2] = "lirc_mode2", 103 [BPF_FLOW_DISSECTOR] = "flow_dissector", 104 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 105 [BPF_TRACE_FENTRY] = "trace_fentry", 106 [BPF_TRACE_FEXIT] = "trace_fexit", 107 [BPF_MODIFY_RETURN] = "modify_return", 108 [BPF_LSM_MAC] = "lsm_mac", 109 [BPF_LSM_CGROUP] = "lsm_cgroup", 110 [BPF_SK_LOOKUP] = "sk_lookup", 111 [BPF_TRACE_ITER] = "trace_iter", 112 [BPF_XDP_DEVMAP] = "xdp_devmap", 113 [BPF_XDP_CPUMAP] = "xdp_cpumap", 114 [BPF_XDP] = "xdp", 115 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 116 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 117 [BPF_PERF_EVENT] = "perf_event", 118 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 119 }; 120 121 static const char * const link_type_name[] = { 122 [BPF_LINK_TYPE_UNSPEC] = "unspec", 123 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 124 [BPF_LINK_TYPE_TRACING] = "tracing", 125 [BPF_LINK_TYPE_CGROUP] = "cgroup", 126 [BPF_LINK_TYPE_ITER] = "iter", 127 [BPF_LINK_TYPE_NETNS] = "netns", 128 [BPF_LINK_TYPE_XDP] = "xdp", 129 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 130 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 131 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 132 }; 133 134 static const char * const map_type_name[] = { 135 [BPF_MAP_TYPE_UNSPEC] = "unspec", 136 [BPF_MAP_TYPE_HASH] = "hash", 137 [BPF_MAP_TYPE_ARRAY] = "array", 138 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 139 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 140 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 141 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 142 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 143 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 144 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 145 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 146 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 147 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 148 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 149 [BPF_MAP_TYPE_DEVMAP] = "devmap", 150 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 151 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 152 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 153 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 154 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 155 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 156 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 157 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 158 [BPF_MAP_TYPE_QUEUE] = "queue", 159 [BPF_MAP_TYPE_STACK] = "stack", 160 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 161 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 162 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 163 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 164 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 165 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 166 }; 167 168 static const char * const prog_type_name[] = { 169 [BPF_PROG_TYPE_UNSPEC] = "unspec", 170 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 171 [BPF_PROG_TYPE_KPROBE] = "kprobe", 172 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 173 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 174 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 175 [BPF_PROG_TYPE_XDP] = "xdp", 176 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 177 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 178 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 179 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 180 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 181 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 182 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 183 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 184 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 185 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 186 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 187 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 188 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 189 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 190 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 191 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 192 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 193 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 194 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 195 [BPF_PROG_TYPE_TRACING] = "tracing", 196 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 197 [BPF_PROG_TYPE_EXT] = "ext", 198 [BPF_PROG_TYPE_LSM] = "lsm", 199 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 200 [BPF_PROG_TYPE_SYSCALL] = "syscall", 201 }; 202 203 static int __base_pr(enum libbpf_print_level level, const char *format, 204 va_list args) 205 { 206 if (level == LIBBPF_DEBUG) 207 return 0; 208 209 return vfprintf(stderr, format, args); 210 } 211 212 static libbpf_print_fn_t __libbpf_pr = __base_pr; 213 214 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 215 { 216 libbpf_print_fn_t old_print_fn = __libbpf_pr; 217 218 __libbpf_pr = fn; 219 return old_print_fn; 220 } 221 222 __printf(2, 3) 223 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 224 { 225 va_list args; 226 227 if (!__libbpf_pr) 228 return; 229 230 va_start(args, format); 231 __libbpf_pr(level, format, args); 232 va_end(args); 233 } 234 235 static void pr_perm_msg(int err) 236 { 237 struct rlimit limit; 238 char buf[100]; 239 240 if (err != -EPERM || geteuid() != 0) 241 return; 242 243 err = getrlimit(RLIMIT_MEMLOCK, &limit); 244 if (err) 245 return; 246 247 if (limit.rlim_cur == RLIM_INFINITY) 248 return; 249 250 if (limit.rlim_cur < 1024) 251 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 252 else if (limit.rlim_cur < 1024*1024) 253 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 254 else 255 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 256 257 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 258 buf); 259 } 260 261 #define STRERR_BUFSIZE 128 262 263 /* Copied from tools/perf/util/util.h */ 264 #ifndef zfree 265 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 266 #endif 267 268 #ifndef zclose 269 # define zclose(fd) ({ \ 270 int ___err = 0; \ 271 if ((fd) >= 0) \ 272 ___err = close((fd)); \ 273 fd = -1; \ 274 ___err; }) 275 #endif 276 277 static inline __u64 ptr_to_u64(const void *ptr) 278 { 279 return (__u64) (unsigned long) ptr; 280 } 281 282 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 283 { 284 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 285 return 0; 286 } 287 288 __u32 libbpf_major_version(void) 289 { 290 return LIBBPF_MAJOR_VERSION; 291 } 292 293 __u32 libbpf_minor_version(void) 294 { 295 return LIBBPF_MINOR_VERSION; 296 } 297 298 const char *libbpf_version_string(void) 299 { 300 #define __S(X) #X 301 #define _S(X) __S(X) 302 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 303 #undef _S 304 #undef __S 305 } 306 307 enum reloc_type { 308 RELO_LD64, 309 RELO_CALL, 310 RELO_DATA, 311 RELO_EXTERN_VAR, 312 RELO_EXTERN_FUNC, 313 RELO_SUBPROG_ADDR, 314 RELO_CORE, 315 }; 316 317 struct reloc_desc { 318 enum reloc_type type; 319 int insn_idx; 320 union { 321 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 322 struct { 323 int map_idx; 324 int sym_off; 325 }; 326 }; 327 }; 328 329 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 330 enum sec_def_flags { 331 SEC_NONE = 0, 332 /* expected_attach_type is optional, if kernel doesn't support that */ 333 SEC_EXP_ATTACH_OPT = 1, 334 /* legacy, only used by libbpf_get_type_names() and 335 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 336 * This used to be associated with cgroup (and few other) BPF programs 337 * that were attachable through BPF_PROG_ATTACH command. Pretty 338 * meaningless nowadays, though. 339 */ 340 SEC_ATTACHABLE = 2, 341 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 342 /* attachment target is specified through BTF ID in either kernel or 343 * other BPF program's BTF object */ 344 SEC_ATTACH_BTF = 4, 345 /* BPF program type allows sleeping/blocking in kernel */ 346 SEC_SLEEPABLE = 8, 347 /* BPF program support non-linear XDP buffer */ 348 SEC_XDP_FRAGS = 16, 349 }; 350 351 struct bpf_sec_def { 352 char *sec; 353 enum bpf_prog_type prog_type; 354 enum bpf_attach_type expected_attach_type; 355 long cookie; 356 int handler_id; 357 358 libbpf_prog_setup_fn_t prog_setup_fn; 359 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 360 libbpf_prog_attach_fn_t prog_attach_fn; 361 }; 362 363 /* 364 * bpf_prog should be a better name but it has been used in 365 * linux/filter.h. 366 */ 367 struct bpf_program { 368 char *name; 369 char *sec_name; 370 size_t sec_idx; 371 const struct bpf_sec_def *sec_def; 372 /* this program's instruction offset (in number of instructions) 373 * within its containing ELF section 374 */ 375 size_t sec_insn_off; 376 /* number of original instructions in ELF section belonging to this 377 * program, not taking into account subprogram instructions possible 378 * appended later during relocation 379 */ 380 size_t sec_insn_cnt; 381 /* Offset (in number of instructions) of the start of instruction 382 * belonging to this BPF program within its containing main BPF 383 * program. For the entry-point (main) BPF program, this is always 384 * zero. For a sub-program, this gets reset before each of main BPF 385 * programs are processed and relocated and is used to determined 386 * whether sub-program was already appended to the main program, and 387 * if yes, at which instruction offset. 388 */ 389 size_t sub_insn_off; 390 391 /* instructions that belong to BPF program; insns[0] is located at 392 * sec_insn_off instruction within its ELF section in ELF file, so 393 * when mapping ELF file instruction index to the local instruction, 394 * one needs to subtract sec_insn_off; and vice versa. 395 */ 396 struct bpf_insn *insns; 397 /* actual number of instruction in this BPF program's image; for 398 * entry-point BPF programs this includes the size of main program 399 * itself plus all the used sub-programs, appended at the end 400 */ 401 size_t insns_cnt; 402 403 struct reloc_desc *reloc_desc; 404 int nr_reloc; 405 406 /* BPF verifier log settings */ 407 char *log_buf; 408 size_t log_size; 409 __u32 log_level; 410 411 struct bpf_object *obj; 412 413 int fd; 414 bool autoload; 415 bool mark_btf_static; 416 enum bpf_prog_type type; 417 enum bpf_attach_type expected_attach_type; 418 419 int prog_ifindex; 420 __u32 attach_btf_obj_fd; 421 __u32 attach_btf_id; 422 __u32 attach_prog_fd; 423 424 void *func_info; 425 __u32 func_info_rec_size; 426 __u32 func_info_cnt; 427 428 void *line_info; 429 __u32 line_info_rec_size; 430 __u32 line_info_cnt; 431 __u32 prog_flags; 432 }; 433 434 struct bpf_struct_ops { 435 const char *tname; 436 const struct btf_type *type; 437 struct bpf_program **progs; 438 __u32 *kern_func_off; 439 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 440 void *data; 441 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 442 * btf_vmlinux's format. 443 * struct bpf_struct_ops_tcp_congestion_ops { 444 * [... some other kernel fields ...] 445 * struct tcp_congestion_ops data; 446 * } 447 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 448 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 449 * from "data". 450 */ 451 void *kern_vdata; 452 __u32 type_id; 453 }; 454 455 #define DATA_SEC ".data" 456 #define BSS_SEC ".bss" 457 #define RODATA_SEC ".rodata" 458 #define KCONFIG_SEC ".kconfig" 459 #define KSYMS_SEC ".ksyms" 460 #define STRUCT_OPS_SEC ".struct_ops" 461 462 enum libbpf_map_type { 463 LIBBPF_MAP_UNSPEC, 464 LIBBPF_MAP_DATA, 465 LIBBPF_MAP_BSS, 466 LIBBPF_MAP_RODATA, 467 LIBBPF_MAP_KCONFIG, 468 }; 469 470 struct bpf_map_def { 471 unsigned int type; 472 unsigned int key_size; 473 unsigned int value_size; 474 unsigned int max_entries; 475 unsigned int map_flags; 476 }; 477 478 struct bpf_map { 479 struct bpf_object *obj; 480 char *name; 481 /* real_name is defined for special internal maps (.rodata*, 482 * .data*, .bss, .kconfig) and preserves their original ELF section 483 * name. This is important to be be able to find corresponding BTF 484 * DATASEC information. 485 */ 486 char *real_name; 487 int fd; 488 int sec_idx; 489 size_t sec_offset; 490 int map_ifindex; 491 int inner_map_fd; 492 struct bpf_map_def def; 493 __u32 numa_node; 494 __u32 btf_var_idx; 495 __u32 btf_key_type_id; 496 __u32 btf_value_type_id; 497 __u32 btf_vmlinux_value_type_id; 498 enum libbpf_map_type libbpf_type; 499 void *mmaped; 500 struct bpf_struct_ops *st_ops; 501 struct bpf_map *inner_map; 502 void **init_slots; 503 int init_slots_sz; 504 char *pin_path; 505 bool pinned; 506 bool reused; 507 bool autocreate; 508 __u64 map_extra; 509 }; 510 511 enum extern_type { 512 EXT_UNKNOWN, 513 EXT_KCFG, 514 EXT_KSYM, 515 }; 516 517 enum kcfg_type { 518 KCFG_UNKNOWN, 519 KCFG_CHAR, 520 KCFG_BOOL, 521 KCFG_INT, 522 KCFG_TRISTATE, 523 KCFG_CHAR_ARR, 524 }; 525 526 struct extern_desc { 527 enum extern_type type; 528 int sym_idx; 529 int btf_id; 530 int sec_btf_id; 531 const char *name; 532 bool is_set; 533 bool is_weak; 534 union { 535 struct { 536 enum kcfg_type type; 537 int sz; 538 int align; 539 int data_off; 540 bool is_signed; 541 } kcfg; 542 struct { 543 unsigned long long addr; 544 545 /* target btf_id of the corresponding kernel var. */ 546 int kernel_btf_obj_fd; 547 int kernel_btf_id; 548 549 /* local btf_id of the ksym extern's type. */ 550 __u32 type_id; 551 /* BTF fd index to be patched in for insn->off, this is 552 * 0 for vmlinux BTF, index in obj->fd_array for module 553 * BTF 554 */ 555 __s16 btf_fd_idx; 556 } ksym; 557 }; 558 }; 559 560 struct module_btf { 561 struct btf *btf; 562 char *name; 563 __u32 id; 564 int fd; 565 int fd_array_idx; 566 }; 567 568 enum sec_type { 569 SEC_UNUSED = 0, 570 SEC_RELO, 571 SEC_BSS, 572 SEC_DATA, 573 SEC_RODATA, 574 }; 575 576 struct elf_sec_desc { 577 enum sec_type sec_type; 578 Elf64_Shdr *shdr; 579 Elf_Data *data; 580 }; 581 582 struct elf_state { 583 int fd; 584 const void *obj_buf; 585 size_t obj_buf_sz; 586 Elf *elf; 587 Elf64_Ehdr *ehdr; 588 Elf_Data *symbols; 589 Elf_Data *st_ops_data; 590 size_t shstrndx; /* section index for section name strings */ 591 size_t strtabidx; 592 struct elf_sec_desc *secs; 593 int sec_cnt; 594 int maps_shndx; 595 int btf_maps_shndx; 596 __u32 btf_maps_sec_btf_id; 597 int text_shndx; 598 int symbols_shndx; 599 int st_ops_shndx; 600 }; 601 602 struct usdt_manager; 603 604 struct bpf_object { 605 char name[BPF_OBJ_NAME_LEN]; 606 char license[64]; 607 __u32 kern_version; 608 609 struct bpf_program *programs; 610 size_t nr_programs; 611 struct bpf_map *maps; 612 size_t nr_maps; 613 size_t maps_cap; 614 615 char *kconfig; 616 struct extern_desc *externs; 617 int nr_extern; 618 int kconfig_map_idx; 619 620 bool loaded; 621 bool has_subcalls; 622 bool has_rodata; 623 624 struct bpf_gen *gen_loader; 625 626 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 627 struct elf_state efile; 628 629 struct btf *btf; 630 struct btf_ext *btf_ext; 631 632 /* Parse and load BTF vmlinux if any of the programs in the object need 633 * it at load time. 634 */ 635 struct btf *btf_vmlinux; 636 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 637 * override for vmlinux BTF. 638 */ 639 char *btf_custom_path; 640 /* vmlinux BTF override for CO-RE relocations */ 641 struct btf *btf_vmlinux_override; 642 /* Lazily initialized kernel module BTFs */ 643 struct module_btf *btf_modules; 644 bool btf_modules_loaded; 645 size_t btf_module_cnt; 646 size_t btf_module_cap; 647 648 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 649 char *log_buf; 650 size_t log_size; 651 __u32 log_level; 652 653 int *fd_array; 654 size_t fd_array_cap; 655 size_t fd_array_cnt; 656 657 struct usdt_manager *usdt_man; 658 659 char path[]; 660 }; 661 662 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 663 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 664 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 665 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 666 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 667 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 668 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 669 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 670 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 671 672 void bpf_program__unload(struct bpf_program *prog) 673 { 674 if (!prog) 675 return; 676 677 zclose(prog->fd); 678 679 zfree(&prog->func_info); 680 zfree(&prog->line_info); 681 } 682 683 static void bpf_program__exit(struct bpf_program *prog) 684 { 685 if (!prog) 686 return; 687 688 bpf_program__unload(prog); 689 zfree(&prog->name); 690 zfree(&prog->sec_name); 691 zfree(&prog->insns); 692 zfree(&prog->reloc_desc); 693 694 prog->nr_reloc = 0; 695 prog->insns_cnt = 0; 696 prog->sec_idx = -1; 697 } 698 699 static bool insn_is_subprog_call(const struct bpf_insn *insn) 700 { 701 return BPF_CLASS(insn->code) == BPF_JMP && 702 BPF_OP(insn->code) == BPF_CALL && 703 BPF_SRC(insn->code) == BPF_K && 704 insn->src_reg == BPF_PSEUDO_CALL && 705 insn->dst_reg == 0 && 706 insn->off == 0; 707 } 708 709 static bool is_call_insn(const struct bpf_insn *insn) 710 { 711 return insn->code == (BPF_JMP | BPF_CALL); 712 } 713 714 static bool insn_is_pseudo_func(struct bpf_insn *insn) 715 { 716 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 717 } 718 719 static int 720 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 721 const char *name, size_t sec_idx, const char *sec_name, 722 size_t sec_off, void *insn_data, size_t insn_data_sz) 723 { 724 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 725 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 726 sec_name, name, sec_off, insn_data_sz); 727 return -EINVAL; 728 } 729 730 memset(prog, 0, sizeof(*prog)); 731 prog->obj = obj; 732 733 prog->sec_idx = sec_idx; 734 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 735 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 736 /* insns_cnt can later be increased by appending used subprograms */ 737 prog->insns_cnt = prog->sec_insn_cnt; 738 739 prog->type = BPF_PROG_TYPE_UNSPEC; 740 prog->fd = -1; 741 742 /* libbpf's convention for SEC("?abc...") is that it's just like 743 * SEC("abc...") but the corresponding bpf_program starts out with 744 * autoload set to false. 745 */ 746 if (sec_name[0] == '?') { 747 prog->autoload = false; 748 /* from now on forget there was ? in section name */ 749 sec_name++; 750 } else { 751 prog->autoload = true; 752 } 753 754 /* inherit object's log_level */ 755 prog->log_level = obj->log_level; 756 757 prog->sec_name = strdup(sec_name); 758 if (!prog->sec_name) 759 goto errout; 760 761 prog->name = strdup(name); 762 if (!prog->name) 763 goto errout; 764 765 prog->insns = malloc(insn_data_sz); 766 if (!prog->insns) 767 goto errout; 768 memcpy(prog->insns, insn_data, insn_data_sz); 769 770 return 0; 771 errout: 772 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 773 bpf_program__exit(prog); 774 return -ENOMEM; 775 } 776 777 static int 778 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 779 const char *sec_name, int sec_idx) 780 { 781 Elf_Data *symbols = obj->efile.symbols; 782 struct bpf_program *prog, *progs; 783 void *data = sec_data->d_buf; 784 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 785 int nr_progs, err, i; 786 const char *name; 787 Elf64_Sym *sym; 788 789 progs = obj->programs; 790 nr_progs = obj->nr_programs; 791 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 792 sec_off = 0; 793 794 for (i = 0; i < nr_syms; i++) { 795 sym = elf_sym_by_idx(obj, i); 796 797 if (sym->st_shndx != sec_idx) 798 continue; 799 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 800 continue; 801 802 prog_sz = sym->st_size; 803 sec_off = sym->st_value; 804 805 name = elf_sym_str(obj, sym->st_name); 806 if (!name) { 807 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 808 sec_name, sec_off); 809 return -LIBBPF_ERRNO__FORMAT; 810 } 811 812 if (sec_off + prog_sz > sec_sz) { 813 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 814 sec_name, sec_off); 815 return -LIBBPF_ERRNO__FORMAT; 816 } 817 818 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 819 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 820 return -ENOTSUP; 821 } 822 823 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 824 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 825 826 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 827 if (!progs) { 828 /* 829 * In this case the original obj->programs 830 * is still valid, so don't need special treat for 831 * bpf_close_object(). 832 */ 833 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 834 sec_name, name); 835 return -ENOMEM; 836 } 837 obj->programs = progs; 838 839 prog = &progs[nr_progs]; 840 841 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 842 sec_off, data + sec_off, prog_sz); 843 if (err) 844 return err; 845 846 /* if function is a global/weak symbol, but has restricted 847 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 848 * as static to enable more permissive BPF verification mode 849 * with more outside context available to BPF verifier 850 */ 851 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL 852 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 853 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 854 prog->mark_btf_static = true; 855 856 nr_progs++; 857 obj->nr_programs = nr_progs; 858 } 859 860 return 0; 861 } 862 863 __u32 get_kernel_version(void) 864 { 865 /* On Ubuntu LINUX_VERSION_CODE doesn't correspond to info.release, 866 * but Ubuntu provides /proc/version_signature file, as described at 867 * https://ubuntu.com/kernel, with an example contents below, which we 868 * can use to get a proper LINUX_VERSION_CODE. 869 * 870 * Ubuntu 5.4.0-12.15-generic 5.4.8 871 * 872 * In the above, 5.4.8 is what kernel is actually expecting, while 873 * uname() call will return 5.4.0 in info.release. 874 */ 875 const char *ubuntu_kver_file = "/proc/version_signature"; 876 __u32 major, minor, patch; 877 struct utsname info; 878 879 if (access(ubuntu_kver_file, R_OK) == 0) { 880 FILE *f; 881 882 f = fopen(ubuntu_kver_file, "r"); 883 if (f) { 884 if (fscanf(f, "%*s %*s %d.%d.%d\n", &major, &minor, &patch) == 3) { 885 fclose(f); 886 return KERNEL_VERSION(major, minor, patch); 887 } 888 fclose(f); 889 } 890 /* something went wrong, fall back to uname() approach */ 891 } 892 893 uname(&info); 894 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 895 return 0; 896 return KERNEL_VERSION(major, minor, patch); 897 } 898 899 static const struct btf_member * 900 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 901 { 902 struct btf_member *m; 903 int i; 904 905 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 906 if (btf_member_bit_offset(t, i) == bit_offset) 907 return m; 908 } 909 910 return NULL; 911 } 912 913 static const struct btf_member * 914 find_member_by_name(const struct btf *btf, const struct btf_type *t, 915 const char *name) 916 { 917 struct btf_member *m; 918 int i; 919 920 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 921 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 922 return m; 923 } 924 925 return NULL; 926 } 927 928 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 929 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 930 const char *name, __u32 kind); 931 932 static int 933 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 934 const struct btf_type **type, __u32 *type_id, 935 const struct btf_type **vtype, __u32 *vtype_id, 936 const struct btf_member **data_member) 937 { 938 const struct btf_type *kern_type, *kern_vtype; 939 const struct btf_member *kern_data_member; 940 __s32 kern_vtype_id, kern_type_id; 941 __u32 i; 942 943 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 944 if (kern_type_id < 0) { 945 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 946 tname); 947 return kern_type_id; 948 } 949 kern_type = btf__type_by_id(btf, kern_type_id); 950 951 /* Find the corresponding "map_value" type that will be used 952 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 953 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 954 * btf_vmlinux. 955 */ 956 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 957 tname, BTF_KIND_STRUCT); 958 if (kern_vtype_id < 0) { 959 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 960 STRUCT_OPS_VALUE_PREFIX, tname); 961 return kern_vtype_id; 962 } 963 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 964 965 /* Find "struct tcp_congestion_ops" from 966 * struct bpf_struct_ops_tcp_congestion_ops { 967 * [ ... ] 968 * struct tcp_congestion_ops data; 969 * } 970 */ 971 kern_data_member = btf_members(kern_vtype); 972 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 973 if (kern_data_member->type == kern_type_id) 974 break; 975 } 976 if (i == btf_vlen(kern_vtype)) { 977 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 978 tname, STRUCT_OPS_VALUE_PREFIX, tname); 979 return -EINVAL; 980 } 981 982 *type = kern_type; 983 *type_id = kern_type_id; 984 *vtype = kern_vtype; 985 *vtype_id = kern_vtype_id; 986 *data_member = kern_data_member; 987 988 return 0; 989 } 990 991 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 992 { 993 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 994 } 995 996 /* Init the map's fields that depend on kern_btf */ 997 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 998 const struct btf *btf, 999 const struct btf *kern_btf) 1000 { 1001 const struct btf_member *member, *kern_member, *kern_data_member; 1002 const struct btf_type *type, *kern_type, *kern_vtype; 1003 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 1004 struct bpf_struct_ops *st_ops; 1005 void *data, *kern_data; 1006 const char *tname; 1007 int err; 1008 1009 st_ops = map->st_ops; 1010 type = st_ops->type; 1011 tname = st_ops->tname; 1012 err = find_struct_ops_kern_types(kern_btf, tname, 1013 &kern_type, &kern_type_id, 1014 &kern_vtype, &kern_vtype_id, 1015 &kern_data_member); 1016 if (err) 1017 return err; 1018 1019 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1020 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1021 1022 map->def.value_size = kern_vtype->size; 1023 map->btf_vmlinux_value_type_id = kern_vtype_id; 1024 1025 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1026 if (!st_ops->kern_vdata) 1027 return -ENOMEM; 1028 1029 data = st_ops->data; 1030 kern_data_off = kern_data_member->offset / 8; 1031 kern_data = st_ops->kern_vdata + kern_data_off; 1032 1033 member = btf_members(type); 1034 for (i = 0; i < btf_vlen(type); i++, member++) { 1035 const struct btf_type *mtype, *kern_mtype; 1036 __u32 mtype_id, kern_mtype_id; 1037 void *mdata, *kern_mdata; 1038 __s64 msize, kern_msize; 1039 __u32 moff, kern_moff; 1040 __u32 kern_member_idx; 1041 const char *mname; 1042 1043 mname = btf__name_by_offset(btf, member->name_off); 1044 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1045 if (!kern_member) { 1046 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1047 map->name, mname); 1048 return -ENOTSUP; 1049 } 1050 1051 kern_member_idx = kern_member - btf_members(kern_type); 1052 if (btf_member_bitfield_size(type, i) || 1053 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1054 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1055 map->name, mname); 1056 return -ENOTSUP; 1057 } 1058 1059 moff = member->offset / 8; 1060 kern_moff = kern_member->offset / 8; 1061 1062 mdata = data + moff; 1063 kern_mdata = kern_data + kern_moff; 1064 1065 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1066 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1067 &kern_mtype_id); 1068 if (BTF_INFO_KIND(mtype->info) != 1069 BTF_INFO_KIND(kern_mtype->info)) { 1070 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1071 map->name, mname, BTF_INFO_KIND(mtype->info), 1072 BTF_INFO_KIND(kern_mtype->info)); 1073 return -ENOTSUP; 1074 } 1075 1076 if (btf_is_ptr(mtype)) { 1077 struct bpf_program *prog; 1078 1079 prog = st_ops->progs[i]; 1080 if (!prog) 1081 continue; 1082 1083 kern_mtype = skip_mods_and_typedefs(kern_btf, 1084 kern_mtype->type, 1085 &kern_mtype_id); 1086 1087 /* mtype->type must be a func_proto which was 1088 * guaranteed in bpf_object__collect_st_ops_relos(), 1089 * so only check kern_mtype for func_proto here. 1090 */ 1091 if (!btf_is_func_proto(kern_mtype)) { 1092 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1093 map->name, mname); 1094 return -ENOTSUP; 1095 } 1096 1097 prog->attach_btf_id = kern_type_id; 1098 prog->expected_attach_type = kern_member_idx; 1099 1100 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1101 1102 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1103 map->name, mname, prog->name, moff, 1104 kern_moff); 1105 1106 continue; 1107 } 1108 1109 msize = btf__resolve_size(btf, mtype_id); 1110 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1111 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1112 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1113 map->name, mname, (ssize_t)msize, 1114 (ssize_t)kern_msize); 1115 return -ENOTSUP; 1116 } 1117 1118 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1119 map->name, mname, (unsigned int)msize, 1120 moff, kern_moff); 1121 memcpy(kern_mdata, mdata, msize); 1122 } 1123 1124 return 0; 1125 } 1126 1127 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1128 { 1129 struct bpf_map *map; 1130 size_t i; 1131 int err; 1132 1133 for (i = 0; i < obj->nr_maps; i++) { 1134 map = &obj->maps[i]; 1135 1136 if (!bpf_map__is_struct_ops(map)) 1137 continue; 1138 1139 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1140 obj->btf_vmlinux); 1141 if (err) 1142 return err; 1143 } 1144 1145 return 0; 1146 } 1147 1148 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 1149 { 1150 const struct btf_type *type, *datasec; 1151 const struct btf_var_secinfo *vsi; 1152 struct bpf_struct_ops *st_ops; 1153 const char *tname, *var_name; 1154 __s32 type_id, datasec_id; 1155 const struct btf *btf; 1156 struct bpf_map *map; 1157 __u32 i; 1158 1159 if (obj->efile.st_ops_shndx == -1) 1160 return 0; 1161 1162 btf = obj->btf; 1163 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 1164 BTF_KIND_DATASEC); 1165 if (datasec_id < 0) { 1166 pr_warn("struct_ops init: DATASEC %s not found\n", 1167 STRUCT_OPS_SEC); 1168 return -EINVAL; 1169 } 1170 1171 datasec = btf__type_by_id(btf, datasec_id); 1172 vsi = btf_var_secinfos(datasec); 1173 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1174 type = btf__type_by_id(obj->btf, vsi->type); 1175 var_name = btf__name_by_offset(obj->btf, type->name_off); 1176 1177 type_id = btf__resolve_type(obj->btf, vsi->type); 1178 if (type_id < 0) { 1179 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1180 vsi->type, STRUCT_OPS_SEC); 1181 return -EINVAL; 1182 } 1183 1184 type = btf__type_by_id(obj->btf, type_id); 1185 tname = btf__name_by_offset(obj->btf, type->name_off); 1186 if (!tname[0]) { 1187 pr_warn("struct_ops init: anonymous type is not supported\n"); 1188 return -ENOTSUP; 1189 } 1190 if (!btf_is_struct(type)) { 1191 pr_warn("struct_ops init: %s is not a struct\n", tname); 1192 return -EINVAL; 1193 } 1194 1195 map = bpf_object__add_map(obj); 1196 if (IS_ERR(map)) 1197 return PTR_ERR(map); 1198 1199 map->sec_idx = obj->efile.st_ops_shndx; 1200 map->sec_offset = vsi->offset; 1201 map->name = strdup(var_name); 1202 if (!map->name) 1203 return -ENOMEM; 1204 1205 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1206 map->def.key_size = sizeof(int); 1207 map->def.value_size = type->size; 1208 map->def.max_entries = 1; 1209 1210 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1211 if (!map->st_ops) 1212 return -ENOMEM; 1213 st_ops = map->st_ops; 1214 st_ops->data = malloc(type->size); 1215 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1216 st_ops->kern_func_off = malloc(btf_vlen(type) * 1217 sizeof(*st_ops->kern_func_off)); 1218 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1219 return -ENOMEM; 1220 1221 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1222 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1223 var_name, STRUCT_OPS_SEC); 1224 return -EINVAL; 1225 } 1226 1227 memcpy(st_ops->data, 1228 obj->efile.st_ops_data->d_buf + vsi->offset, 1229 type->size); 1230 st_ops->tname = tname; 1231 st_ops->type = type; 1232 st_ops->type_id = type_id; 1233 1234 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1235 tname, type_id, var_name, vsi->offset); 1236 } 1237 1238 return 0; 1239 } 1240 1241 static struct bpf_object *bpf_object__new(const char *path, 1242 const void *obj_buf, 1243 size_t obj_buf_sz, 1244 const char *obj_name) 1245 { 1246 struct bpf_object *obj; 1247 char *end; 1248 1249 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1250 if (!obj) { 1251 pr_warn("alloc memory failed for %s\n", path); 1252 return ERR_PTR(-ENOMEM); 1253 } 1254 1255 strcpy(obj->path, path); 1256 if (obj_name) { 1257 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1258 } else { 1259 /* Using basename() GNU version which doesn't modify arg. */ 1260 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1261 end = strchr(obj->name, '.'); 1262 if (end) 1263 *end = 0; 1264 } 1265 1266 obj->efile.fd = -1; 1267 /* 1268 * Caller of this function should also call 1269 * bpf_object__elf_finish() after data collection to return 1270 * obj_buf to user. If not, we should duplicate the buffer to 1271 * avoid user freeing them before elf finish. 1272 */ 1273 obj->efile.obj_buf = obj_buf; 1274 obj->efile.obj_buf_sz = obj_buf_sz; 1275 obj->efile.maps_shndx = -1; 1276 obj->efile.btf_maps_shndx = -1; 1277 obj->efile.st_ops_shndx = -1; 1278 obj->kconfig_map_idx = -1; 1279 1280 obj->kern_version = get_kernel_version(); 1281 obj->loaded = false; 1282 1283 return obj; 1284 } 1285 1286 static void bpf_object__elf_finish(struct bpf_object *obj) 1287 { 1288 if (!obj->efile.elf) 1289 return; 1290 1291 elf_end(obj->efile.elf); 1292 obj->efile.elf = NULL; 1293 obj->efile.symbols = NULL; 1294 obj->efile.st_ops_data = NULL; 1295 1296 zfree(&obj->efile.secs); 1297 obj->efile.sec_cnt = 0; 1298 zclose(obj->efile.fd); 1299 obj->efile.obj_buf = NULL; 1300 obj->efile.obj_buf_sz = 0; 1301 } 1302 1303 static int bpf_object__elf_init(struct bpf_object *obj) 1304 { 1305 Elf64_Ehdr *ehdr; 1306 int err = 0; 1307 Elf *elf; 1308 1309 if (obj->efile.elf) { 1310 pr_warn("elf: init internal error\n"); 1311 return -LIBBPF_ERRNO__LIBELF; 1312 } 1313 1314 if (obj->efile.obj_buf_sz > 0) { 1315 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1316 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1317 } else { 1318 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1319 if (obj->efile.fd < 0) { 1320 char errmsg[STRERR_BUFSIZE], *cp; 1321 1322 err = -errno; 1323 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1324 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1325 return err; 1326 } 1327 1328 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1329 } 1330 1331 if (!elf) { 1332 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1333 err = -LIBBPF_ERRNO__LIBELF; 1334 goto errout; 1335 } 1336 1337 obj->efile.elf = elf; 1338 1339 if (elf_kind(elf) != ELF_K_ELF) { 1340 err = -LIBBPF_ERRNO__FORMAT; 1341 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1342 goto errout; 1343 } 1344 1345 if (gelf_getclass(elf) != ELFCLASS64) { 1346 err = -LIBBPF_ERRNO__FORMAT; 1347 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1348 goto errout; 1349 } 1350 1351 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1352 if (!obj->efile.ehdr) { 1353 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1354 err = -LIBBPF_ERRNO__FORMAT; 1355 goto errout; 1356 } 1357 1358 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1359 pr_warn("elf: failed to get section names section index for %s: %s\n", 1360 obj->path, elf_errmsg(-1)); 1361 err = -LIBBPF_ERRNO__FORMAT; 1362 goto errout; 1363 } 1364 1365 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1366 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1367 pr_warn("elf: failed to get section names strings from %s: %s\n", 1368 obj->path, elf_errmsg(-1)); 1369 err = -LIBBPF_ERRNO__FORMAT; 1370 goto errout; 1371 } 1372 1373 /* Old LLVM set e_machine to EM_NONE */ 1374 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1375 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1376 err = -LIBBPF_ERRNO__FORMAT; 1377 goto errout; 1378 } 1379 1380 return 0; 1381 errout: 1382 bpf_object__elf_finish(obj); 1383 return err; 1384 } 1385 1386 static int bpf_object__check_endianness(struct bpf_object *obj) 1387 { 1388 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1389 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1390 return 0; 1391 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1392 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1393 return 0; 1394 #else 1395 # error "Unrecognized __BYTE_ORDER__" 1396 #endif 1397 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1398 return -LIBBPF_ERRNO__ENDIAN; 1399 } 1400 1401 static int 1402 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1403 { 1404 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1405 * go over allowed ELF data section buffer 1406 */ 1407 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1408 pr_debug("license of %s is %s\n", obj->path, obj->license); 1409 return 0; 1410 } 1411 1412 static int 1413 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1414 { 1415 __u32 kver; 1416 1417 if (size != sizeof(kver)) { 1418 pr_warn("invalid kver section in %s\n", obj->path); 1419 return -LIBBPF_ERRNO__FORMAT; 1420 } 1421 memcpy(&kver, data, sizeof(kver)); 1422 obj->kern_version = kver; 1423 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1424 return 0; 1425 } 1426 1427 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1428 { 1429 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1430 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1431 return true; 1432 return false; 1433 } 1434 1435 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1436 { 1437 Elf_Data *data; 1438 Elf_Scn *scn; 1439 1440 if (!name) 1441 return -EINVAL; 1442 1443 scn = elf_sec_by_name(obj, name); 1444 data = elf_sec_data(obj, scn); 1445 if (data) { 1446 *size = data->d_size; 1447 return 0; /* found it */ 1448 } 1449 1450 return -ENOENT; 1451 } 1452 1453 static int find_elf_var_offset(const struct bpf_object *obj, const char *name, __u32 *off) 1454 { 1455 Elf_Data *symbols = obj->efile.symbols; 1456 const char *sname; 1457 size_t si; 1458 1459 if (!name || !off) 1460 return -EINVAL; 1461 1462 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1463 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1464 1465 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1466 continue; 1467 1468 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1469 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1470 continue; 1471 1472 sname = elf_sym_str(obj, sym->st_name); 1473 if (!sname) { 1474 pr_warn("failed to get sym name string for var %s\n", name); 1475 return -EIO; 1476 } 1477 if (strcmp(name, sname) == 0) { 1478 *off = sym->st_value; 1479 return 0; 1480 } 1481 } 1482 1483 return -ENOENT; 1484 } 1485 1486 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1487 { 1488 struct bpf_map *map; 1489 int err; 1490 1491 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1492 sizeof(*obj->maps), obj->nr_maps + 1); 1493 if (err) 1494 return ERR_PTR(err); 1495 1496 map = &obj->maps[obj->nr_maps++]; 1497 map->obj = obj; 1498 map->fd = -1; 1499 map->inner_map_fd = -1; 1500 map->autocreate = true; 1501 1502 return map; 1503 } 1504 1505 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1506 { 1507 long page_sz = sysconf(_SC_PAGE_SIZE); 1508 size_t map_sz; 1509 1510 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1511 map_sz = roundup(map_sz, page_sz); 1512 return map_sz; 1513 } 1514 1515 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1516 { 1517 char map_name[BPF_OBJ_NAME_LEN], *p; 1518 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1519 1520 /* This is one of the more confusing parts of libbpf for various 1521 * reasons, some of which are historical. The original idea for naming 1522 * internal names was to include as much of BPF object name prefix as 1523 * possible, so that it can be distinguished from similar internal 1524 * maps of a different BPF object. 1525 * As an example, let's say we have bpf_object named 'my_object_name' 1526 * and internal map corresponding to '.rodata' ELF section. The final 1527 * map name advertised to user and to the kernel will be 1528 * 'my_objec.rodata', taking first 8 characters of object name and 1529 * entire 7 characters of '.rodata'. 1530 * Somewhat confusingly, if internal map ELF section name is shorter 1531 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1532 * for the suffix, even though we only have 4 actual characters, and 1533 * resulting map will be called 'my_objec.bss', not even using all 15 1534 * characters allowed by the kernel. Oh well, at least the truncated 1535 * object name is somewhat consistent in this case. But if the map 1536 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1537 * (8 chars) and thus will be left with only first 7 characters of the 1538 * object name ('my_obje'). Happy guessing, user, that the final map 1539 * name will be "my_obje.kconfig". 1540 * Now, with libbpf starting to support arbitrarily named .rodata.* 1541 * and .data.* data sections, it's possible that ELF section name is 1542 * longer than allowed 15 chars, so we now need to be careful to take 1543 * only up to 15 first characters of ELF name, taking no BPF object 1544 * name characters at all. So '.rodata.abracadabra' will result in 1545 * '.rodata.abracad' kernel and user-visible name. 1546 * We need to keep this convoluted logic intact for .data, .bss and 1547 * .rodata maps, but for new custom .data.custom and .rodata.custom 1548 * maps we use their ELF names as is, not prepending bpf_object name 1549 * in front. We still need to truncate them to 15 characters for the 1550 * kernel. Full name can be recovered for such maps by using DATASEC 1551 * BTF type associated with such map's value type, though. 1552 */ 1553 if (sfx_len >= BPF_OBJ_NAME_LEN) 1554 sfx_len = BPF_OBJ_NAME_LEN - 1; 1555 1556 /* if there are two or more dots in map name, it's a custom dot map */ 1557 if (strchr(real_name + 1, '.') != NULL) 1558 pfx_len = 0; 1559 else 1560 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1561 1562 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1563 sfx_len, real_name); 1564 1565 /* sanitise map name to characters allowed by kernel */ 1566 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1567 if (!isalnum(*p) && *p != '_' && *p != '.') 1568 *p = '_'; 1569 1570 return strdup(map_name); 1571 } 1572 1573 static int 1574 bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map); 1575 1576 static int 1577 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1578 const char *real_name, int sec_idx, void *data, size_t data_sz) 1579 { 1580 struct bpf_map_def *def; 1581 struct bpf_map *map; 1582 int err; 1583 1584 map = bpf_object__add_map(obj); 1585 if (IS_ERR(map)) 1586 return PTR_ERR(map); 1587 1588 map->libbpf_type = type; 1589 map->sec_idx = sec_idx; 1590 map->sec_offset = 0; 1591 map->real_name = strdup(real_name); 1592 map->name = internal_map_name(obj, real_name); 1593 if (!map->real_name || !map->name) { 1594 zfree(&map->real_name); 1595 zfree(&map->name); 1596 return -ENOMEM; 1597 } 1598 1599 def = &map->def; 1600 def->type = BPF_MAP_TYPE_ARRAY; 1601 def->key_size = sizeof(int); 1602 def->value_size = data_sz; 1603 def->max_entries = 1; 1604 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1605 ? BPF_F_RDONLY_PROG : 0; 1606 def->map_flags |= BPF_F_MMAPABLE; 1607 1608 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1609 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1610 1611 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1612 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1613 if (map->mmaped == MAP_FAILED) { 1614 err = -errno; 1615 map->mmaped = NULL; 1616 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1617 map->name, err); 1618 zfree(&map->real_name); 1619 zfree(&map->name); 1620 return err; 1621 } 1622 1623 /* failures are fine because of maps like .rodata.str1.1 */ 1624 (void) bpf_map_find_btf_info(obj, map); 1625 1626 if (data) 1627 memcpy(map->mmaped, data, data_sz); 1628 1629 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1630 return 0; 1631 } 1632 1633 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1634 { 1635 struct elf_sec_desc *sec_desc; 1636 const char *sec_name; 1637 int err = 0, sec_idx; 1638 1639 /* 1640 * Populate obj->maps with libbpf internal maps. 1641 */ 1642 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1643 sec_desc = &obj->efile.secs[sec_idx]; 1644 1645 switch (sec_desc->sec_type) { 1646 case SEC_DATA: 1647 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1648 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1649 sec_name, sec_idx, 1650 sec_desc->data->d_buf, 1651 sec_desc->data->d_size); 1652 break; 1653 case SEC_RODATA: 1654 obj->has_rodata = true; 1655 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1656 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1657 sec_name, sec_idx, 1658 sec_desc->data->d_buf, 1659 sec_desc->data->d_size); 1660 break; 1661 case SEC_BSS: 1662 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1663 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1664 sec_name, sec_idx, 1665 NULL, 1666 sec_desc->data->d_size); 1667 break; 1668 default: 1669 /* skip */ 1670 break; 1671 } 1672 if (err) 1673 return err; 1674 } 1675 return 0; 1676 } 1677 1678 1679 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1680 const void *name) 1681 { 1682 int i; 1683 1684 for (i = 0; i < obj->nr_extern; i++) { 1685 if (strcmp(obj->externs[i].name, name) == 0) 1686 return &obj->externs[i]; 1687 } 1688 return NULL; 1689 } 1690 1691 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1692 char value) 1693 { 1694 switch (ext->kcfg.type) { 1695 case KCFG_BOOL: 1696 if (value == 'm') { 1697 pr_warn("extern (kcfg) %s=%c should be tristate or char\n", 1698 ext->name, value); 1699 return -EINVAL; 1700 } 1701 *(bool *)ext_val = value == 'y' ? true : false; 1702 break; 1703 case KCFG_TRISTATE: 1704 if (value == 'y') 1705 *(enum libbpf_tristate *)ext_val = TRI_YES; 1706 else if (value == 'm') 1707 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1708 else /* value == 'n' */ 1709 *(enum libbpf_tristate *)ext_val = TRI_NO; 1710 break; 1711 case KCFG_CHAR: 1712 *(char *)ext_val = value; 1713 break; 1714 case KCFG_UNKNOWN: 1715 case KCFG_INT: 1716 case KCFG_CHAR_ARR: 1717 default: 1718 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n", 1719 ext->name, value); 1720 return -EINVAL; 1721 } 1722 ext->is_set = true; 1723 return 0; 1724 } 1725 1726 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1727 const char *value) 1728 { 1729 size_t len; 1730 1731 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1732 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value); 1733 return -EINVAL; 1734 } 1735 1736 len = strlen(value); 1737 if (value[len - 1] != '"') { 1738 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1739 ext->name, value); 1740 return -EINVAL; 1741 } 1742 1743 /* strip quotes */ 1744 len -= 2; 1745 if (len >= ext->kcfg.sz) { 1746 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n", 1747 ext->name, value, len, ext->kcfg.sz - 1); 1748 len = ext->kcfg.sz - 1; 1749 } 1750 memcpy(ext_val, value + 1, len); 1751 ext_val[len] = '\0'; 1752 ext->is_set = true; 1753 return 0; 1754 } 1755 1756 static int parse_u64(const char *value, __u64 *res) 1757 { 1758 char *value_end; 1759 int err; 1760 1761 errno = 0; 1762 *res = strtoull(value, &value_end, 0); 1763 if (errno) { 1764 err = -errno; 1765 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1766 return err; 1767 } 1768 if (*value_end) { 1769 pr_warn("failed to parse '%s' as integer completely\n", value); 1770 return -EINVAL; 1771 } 1772 return 0; 1773 } 1774 1775 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1776 { 1777 int bit_sz = ext->kcfg.sz * 8; 1778 1779 if (ext->kcfg.sz == 8) 1780 return true; 1781 1782 /* Validate that value stored in u64 fits in integer of `ext->sz` 1783 * bytes size without any loss of information. If the target integer 1784 * is signed, we rely on the following limits of integer type of 1785 * Y bits and subsequent transformation: 1786 * 1787 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1788 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1789 * 0 <= X + 2^(Y-1) < 2^Y 1790 * 1791 * For unsigned target integer, check that all the (64 - Y) bits are 1792 * zero. 1793 */ 1794 if (ext->kcfg.is_signed) 1795 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1796 else 1797 return (v >> bit_sz) == 0; 1798 } 1799 1800 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1801 __u64 value) 1802 { 1803 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1804 pr_warn("extern (kcfg) %s=%llu should be integer\n", 1805 ext->name, (unsigned long long)value); 1806 return -EINVAL; 1807 } 1808 if (!is_kcfg_value_in_range(ext, value)) { 1809 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n", 1810 ext->name, (unsigned long long)value, ext->kcfg.sz); 1811 return -ERANGE; 1812 } 1813 switch (ext->kcfg.sz) { 1814 case 1: *(__u8 *)ext_val = value; break; 1815 case 2: *(__u16 *)ext_val = value; break; 1816 case 4: *(__u32 *)ext_val = value; break; 1817 case 8: *(__u64 *)ext_val = value; break; 1818 default: 1819 return -EINVAL; 1820 } 1821 ext->is_set = true; 1822 return 0; 1823 } 1824 1825 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1826 char *buf, void *data) 1827 { 1828 struct extern_desc *ext; 1829 char *sep, *value; 1830 int len, err = 0; 1831 void *ext_val; 1832 __u64 num; 1833 1834 if (!str_has_pfx(buf, "CONFIG_")) 1835 return 0; 1836 1837 sep = strchr(buf, '='); 1838 if (!sep) { 1839 pr_warn("failed to parse '%s': no separator\n", buf); 1840 return -EINVAL; 1841 } 1842 1843 /* Trim ending '\n' */ 1844 len = strlen(buf); 1845 if (buf[len - 1] == '\n') 1846 buf[len - 1] = '\0'; 1847 /* Split on '=' and ensure that a value is present. */ 1848 *sep = '\0'; 1849 if (!sep[1]) { 1850 *sep = '='; 1851 pr_warn("failed to parse '%s': no value\n", buf); 1852 return -EINVAL; 1853 } 1854 1855 ext = find_extern_by_name(obj, buf); 1856 if (!ext || ext->is_set) 1857 return 0; 1858 1859 ext_val = data + ext->kcfg.data_off; 1860 value = sep + 1; 1861 1862 switch (*value) { 1863 case 'y': case 'n': case 'm': 1864 err = set_kcfg_value_tri(ext, ext_val, *value); 1865 break; 1866 case '"': 1867 err = set_kcfg_value_str(ext, ext_val, value); 1868 break; 1869 default: 1870 /* assume integer */ 1871 err = parse_u64(value, &num); 1872 if (err) { 1873 pr_warn("extern (kcfg) %s=%s should be integer\n", 1874 ext->name, value); 1875 return err; 1876 } 1877 err = set_kcfg_value_num(ext, ext_val, num); 1878 break; 1879 } 1880 if (err) 1881 return err; 1882 pr_debug("extern (kcfg) %s=%s\n", ext->name, value); 1883 return 0; 1884 } 1885 1886 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1887 { 1888 char buf[PATH_MAX]; 1889 struct utsname uts; 1890 int len, err = 0; 1891 gzFile file; 1892 1893 uname(&uts); 1894 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1895 if (len < 0) 1896 return -EINVAL; 1897 else if (len >= PATH_MAX) 1898 return -ENAMETOOLONG; 1899 1900 /* gzopen also accepts uncompressed files. */ 1901 file = gzopen(buf, "r"); 1902 if (!file) 1903 file = gzopen("/proc/config.gz", "r"); 1904 1905 if (!file) { 1906 pr_warn("failed to open system Kconfig\n"); 1907 return -ENOENT; 1908 } 1909 1910 while (gzgets(file, buf, sizeof(buf))) { 1911 err = bpf_object__process_kconfig_line(obj, buf, data); 1912 if (err) { 1913 pr_warn("error parsing system Kconfig line '%s': %d\n", 1914 buf, err); 1915 goto out; 1916 } 1917 } 1918 1919 out: 1920 gzclose(file); 1921 return err; 1922 } 1923 1924 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1925 const char *config, void *data) 1926 { 1927 char buf[PATH_MAX]; 1928 int err = 0; 1929 FILE *file; 1930 1931 file = fmemopen((void *)config, strlen(config), "r"); 1932 if (!file) { 1933 err = -errno; 1934 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1935 return err; 1936 } 1937 1938 while (fgets(buf, sizeof(buf), file)) { 1939 err = bpf_object__process_kconfig_line(obj, buf, data); 1940 if (err) { 1941 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1942 buf, err); 1943 break; 1944 } 1945 } 1946 1947 fclose(file); 1948 return err; 1949 } 1950 1951 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1952 { 1953 struct extern_desc *last_ext = NULL, *ext; 1954 size_t map_sz; 1955 int i, err; 1956 1957 for (i = 0; i < obj->nr_extern; i++) { 1958 ext = &obj->externs[i]; 1959 if (ext->type == EXT_KCFG) 1960 last_ext = ext; 1961 } 1962 1963 if (!last_ext) 1964 return 0; 1965 1966 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 1967 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1968 ".kconfig", obj->efile.symbols_shndx, 1969 NULL, map_sz); 1970 if (err) 1971 return err; 1972 1973 obj->kconfig_map_idx = obj->nr_maps - 1; 1974 1975 return 0; 1976 } 1977 1978 const struct btf_type * 1979 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 1980 { 1981 const struct btf_type *t = btf__type_by_id(btf, id); 1982 1983 if (res_id) 1984 *res_id = id; 1985 1986 while (btf_is_mod(t) || btf_is_typedef(t)) { 1987 if (res_id) 1988 *res_id = t->type; 1989 t = btf__type_by_id(btf, t->type); 1990 } 1991 1992 return t; 1993 } 1994 1995 static const struct btf_type * 1996 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 1997 { 1998 const struct btf_type *t; 1999 2000 t = skip_mods_and_typedefs(btf, id, NULL); 2001 if (!btf_is_ptr(t)) 2002 return NULL; 2003 2004 t = skip_mods_and_typedefs(btf, t->type, res_id); 2005 2006 return btf_is_func_proto(t) ? t : NULL; 2007 } 2008 2009 static const char *__btf_kind_str(__u16 kind) 2010 { 2011 switch (kind) { 2012 case BTF_KIND_UNKN: return "void"; 2013 case BTF_KIND_INT: return "int"; 2014 case BTF_KIND_PTR: return "ptr"; 2015 case BTF_KIND_ARRAY: return "array"; 2016 case BTF_KIND_STRUCT: return "struct"; 2017 case BTF_KIND_UNION: return "union"; 2018 case BTF_KIND_ENUM: return "enum"; 2019 case BTF_KIND_FWD: return "fwd"; 2020 case BTF_KIND_TYPEDEF: return "typedef"; 2021 case BTF_KIND_VOLATILE: return "volatile"; 2022 case BTF_KIND_CONST: return "const"; 2023 case BTF_KIND_RESTRICT: return "restrict"; 2024 case BTF_KIND_FUNC: return "func"; 2025 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2026 case BTF_KIND_VAR: return "var"; 2027 case BTF_KIND_DATASEC: return "datasec"; 2028 case BTF_KIND_FLOAT: return "float"; 2029 case BTF_KIND_DECL_TAG: return "decl_tag"; 2030 case BTF_KIND_TYPE_TAG: return "type_tag"; 2031 case BTF_KIND_ENUM64: return "enum64"; 2032 default: return "unknown"; 2033 } 2034 } 2035 2036 const char *btf_kind_str(const struct btf_type *t) 2037 { 2038 return __btf_kind_str(btf_kind(t)); 2039 } 2040 2041 /* 2042 * Fetch integer attribute of BTF map definition. Such attributes are 2043 * represented using a pointer to an array, in which dimensionality of array 2044 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2045 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2046 * type definition, while using only sizeof(void *) space in ELF data section. 2047 */ 2048 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2049 const struct btf_member *m, __u32 *res) 2050 { 2051 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2052 const char *name = btf__name_by_offset(btf, m->name_off); 2053 const struct btf_array *arr_info; 2054 const struct btf_type *arr_t; 2055 2056 if (!btf_is_ptr(t)) { 2057 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2058 map_name, name, btf_kind_str(t)); 2059 return false; 2060 } 2061 2062 arr_t = btf__type_by_id(btf, t->type); 2063 if (!arr_t) { 2064 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2065 map_name, name, t->type); 2066 return false; 2067 } 2068 if (!btf_is_array(arr_t)) { 2069 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2070 map_name, name, btf_kind_str(arr_t)); 2071 return false; 2072 } 2073 arr_info = btf_array(arr_t); 2074 *res = arr_info->nelems; 2075 return true; 2076 } 2077 2078 static int build_map_pin_path(struct bpf_map *map, const char *path) 2079 { 2080 char buf[PATH_MAX]; 2081 int len; 2082 2083 if (!path) 2084 path = "/sys/fs/bpf"; 2085 2086 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 2087 if (len < 0) 2088 return -EINVAL; 2089 else if (len >= PATH_MAX) 2090 return -ENAMETOOLONG; 2091 2092 return bpf_map__set_pin_path(map, buf); 2093 } 2094 2095 /* should match definition in bpf_helpers.h */ 2096 enum libbpf_pin_type { 2097 LIBBPF_PIN_NONE, 2098 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2099 LIBBPF_PIN_BY_NAME, 2100 }; 2101 2102 int parse_btf_map_def(const char *map_name, struct btf *btf, 2103 const struct btf_type *def_t, bool strict, 2104 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2105 { 2106 const struct btf_type *t; 2107 const struct btf_member *m; 2108 bool is_inner = inner_def == NULL; 2109 int vlen, i; 2110 2111 vlen = btf_vlen(def_t); 2112 m = btf_members(def_t); 2113 for (i = 0; i < vlen; i++, m++) { 2114 const char *name = btf__name_by_offset(btf, m->name_off); 2115 2116 if (!name) { 2117 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2118 return -EINVAL; 2119 } 2120 if (strcmp(name, "type") == 0) { 2121 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2122 return -EINVAL; 2123 map_def->parts |= MAP_DEF_MAP_TYPE; 2124 } else if (strcmp(name, "max_entries") == 0) { 2125 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2126 return -EINVAL; 2127 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2128 } else if (strcmp(name, "map_flags") == 0) { 2129 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2130 return -EINVAL; 2131 map_def->parts |= MAP_DEF_MAP_FLAGS; 2132 } else if (strcmp(name, "numa_node") == 0) { 2133 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2134 return -EINVAL; 2135 map_def->parts |= MAP_DEF_NUMA_NODE; 2136 } else if (strcmp(name, "key_size") == 0) { 2137 __u32 sz; 2138 2139 if (!get_map_field_int(map_name, btf, m, &sz)) 2140 return -EINVAL; 2141 if (map_def->key_size && map_def->key_size != sz) { 2142 pr_warn("map '%s': conflicting key size %u != %u.\n", 2143 map_name, map_def->key_size, sz); 2144 return -EINVAL; 2145 } 2146 map_def->key_size = sz; 2147 map_def->parts |= MAP_DEF_KEY_SIZE; 2148 } else if (strcmp(name, "key") == 0) { 2149 __s64 sz; 2150 2151 t = btf__type_by_id(btf, m->type); 2152 if (!t) { 2153 pr_warn("map '%s': key type [%d] not found.\n", 2154 map_name, m->type); 2155 return -EINVAL; 2156 } 2157 if (!btf_is_ptr(t)) { 2158 pr_warn("map '%s': key spec is not PTR: %s.\n", 2159 map_name, btf_kind_str(t)); 2160 return -EINVAL; 2161 } 2162 sz = btf__resolve_size(btf, t->type); 2163 if (sz < 0) { 2164 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2165 map_name, t->type, (ssize_t)sz); 2166 return sz; 2167 } 2168 if (map_def->key_size && map_def->key_size != sz) { 2169 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2170 map_name, map_def->key_size, (ssize_t)sz); 2171 return -EINVAL; 2172 } 2173 map_def->key_size = sz; 2174 map_def->key_type_id = t->type; 2175 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2176 } else if (strcmp(name, "value_size") == 0) { 2177 __u32 sz; 2178 2179 if (!get_map_field_int(map_name, btf, m, &sz)) 2180 return -EINVAL; 2181 if (map_def->value_size && map_def->value_size != sz) { 2182 pr_warn("map '%s': conflicting value size %u != %u.\n", 2183 map_name, map_def->value_size, sz); 2184 return -EINVAL; 2185 } 2186 map_def->value_size = sz; 2187 map_def->parts |= MAP_DEF_VALUE_SIZE; 2188 } else if (strcmp(name, "value") == 0) { 2189 __s64 sz; 2190 2191 t = btf__type_by_id(btf, m->type); 2192 if (!t) { 2193 pr_warn("map '%s': value type [%d] not found.\n", 2194 map_name, m->type); 2195 return -EINVAL; 2196 } 2197 if (!btf_is_ptr(t)) { 2198 pr_warn("map '%s': value spec is not PTR: %s.\n", 2199 map_name, btf_kind_str(t)); 2200 return -EINVAL; 2201 } 2202 sz = btf__resolve_size(btf, t->type); 2203 if (sz < 0) { 2204 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2205 map_name, t->type, (ssize_t)sz); 2206 return sz; 2207 } 2208 if (map_def->value_size && map_def->value_size != sz) { 2209 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2210 map_name, map_def->value_size, (ssize_t)sz); 2211 return -EINVAL; 2212 } 2213 map_def->value_size = sz; 2214 map_def->value_type_id = t->type; 2215 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2216 } 2217 else if (strcmp(name, "values") == 0) { 2218 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2219 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2220 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2221 char inner_map_name[128]; 2222 int err; 2223 2224 if (is_inner) { 2225 pr_warn("map '%s': multi-level inner maps not supported.\n", 2226 map_name); 2227 return -ENOTSUP; 2228 } 2229 if (i != vlen - 1) { 2230 pr_warn("map '%s': '%s' member should be last.\n", 2231 map_name, name); 2232 return -EINVAL; 2233 } 2234 if (!is_map_in_map && !is_prog_array) { 2235 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2236 map_name); 2237 return -ENOTSUP; 2238 } 2239 if (map_def->value_size && map_def->value_size != 4) { 2240 pr_warn("map '%s': conflicting value size %u != 4.\n", 2241 map_name, map_def->value_size); 2242 return -EINVAL; 2243 } 2244 map_def->value_size = 4; 2245 t = btf__type_by_id(btf, m->type); 2246 if (!t) { 2247 pr_warn("map '%s': %s type [%d] not found.\n", 2248 map_name, desc, m->type); 2249 return -EINVAL; 2250 } 2251 if (!btf_is_array(t) || btf_array(t)->nelems) { 2252 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2253 map_name, desc); 2254 return -EINVAL; 2255 } 2256 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2257 if (!btf_is_ptr(t)) { 2258 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2259 map_name, desc, btf_kind_str(t)); 2260 return -EINVAL; 2261 } 2262 t = skip_mods_and_typedefs(btf, t->type, NULL); 2263 if (is_prog_array) { 2264 if (!btf_is_func_proto(t)) { 2265 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2266 map_name, btf_kind_str(t)); 2267 return -EINVAL; 2268 } 2269 continue; 2270 } 2271 if (!btf_is_struct(t)) { 2272 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2273 map_name, btf_kind_str(t)); 2274 return -EINVAL; 2275 } 2276 2277 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2278 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2279 if (err) 2280 return err; 2281 2282 map_def->parts |= MAP_DEF_INNER_MAP; 2283 } else if (strcmp(name, "pinning") == 0) { 2284 __u32 val; 2285 2286 if (is_inner) { 2287 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2288 return -EINVAL; 2289 } 2290 if (!get_map_field_int(map_name, btf, m, &val)) 2291 return -EINVAL; 2292 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2293 pr_warn("map '%s': invalid pinning value %u.\n", 2294 map_name, val); 2295 return -EINVAL; 2296 } 2297 map_def->pinning = val; 2298 map_def->parts |= MAP_DEF_PINNING; 2299 } else if (strcmp(name, "map_extra") == 0) { 2300 __u32 map_extra; 2301 2302 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2303 return -EINVAL; 2304 map_def->map_extra = map_extra; 2305 map_def->parts |= MAP_DEF_MAP_EXTRA; 2306 } else { 2307 if (strict) { 2308 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2309 return -ENOTSUP; 2310 } 2311 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2312 } 2313 } 2314 2315 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2316 pr_warn("map '%s': map type isn't specified.\n", map_name); 2317 return -EINVAL; 2318 } 2319 2320 return 0; 2321 } 2322 2323 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2324 { 2325 map->def.type = def->map_type; 2326 map->def.key_size = def->key_size; 2327 map->def.value_size = def->value_size; 2328 map->def.max_entries = def->max_entries; 2329 map->def.map_flags = def->map_flags; 2330 map->map_extra = def->map_extra; 2331 2332 map->numa_node = def->numa_node; 2333 map->btf_key_type_id = def->key_type_id; 2334 map->btf_value_type_id = def->value_type_id; 2335 2336 if (def->parts & MAP_DEF_MAP_TYPE) 2337 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2338 2339 if (def->parts & MAP_DEF_KEY_TYPE) 2340 pr_debug("map '%s': found key [%u], sz = %u.\n", 2341 map->name, def->key_type_id, def->key_size); 2342 else if (def->parts & MAP_DEF_KEY_SIZE) 2343 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2344 2345 if (def->parts & MAP_DEF_VALUE_TYPE) 2346 pr_debug("map '%s': found value [%u], sz = %u.\n", 2347 map->name, def->value_type_id, def->value_size); 2348 else if (def->parts & MAP_DEF_VALUE_SIZE) 2349 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2350 2351 if (def->parts & MAP_DEF_MAX_ENTRIES) 2352 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2353 if (def->parts & MAP_DEF_MAP_FLAGS) 2354 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2355 if (def->parts & MAP_DEF_MAP_EXTRA) 2356 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2357 (unsigned long long)def->map_extra); 2358 if (def->parts & MAP_DEF_PINNING) 2359 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2360 if (def->parts & MAP_DEF_NUMA_NODE) 2361 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2362 2363 if (def->parts & MAP_DEF_INNER_MAP) 2364 pr_debug("map '%s': found inner map definition.\n", map->name); 2365 } 2366 2367 static const char *btf_var_linkage_str(__u32 linkage) 2368 { 2369 switch (linkage) { 2370 case BTF_VAR_STATIC: return "static"; 2371 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2372 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2373 default: return "unknown"; 2374 } 2375 } 2376 2377 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2378 const struct btf_type *sec, 2379 int var_idx, int sec_idx, 2380 const Elf_Data *data, bool strict, 2381 const char *pin_root_path) 2382 { 2383 struct btf_map_def map_def = {}, inner_def = {}; 2384 const struct btf_type *var, *def; 2385 const struct btf_var_secinfo *vi; 2386 const struct btf_var *var_extra; 2387 const char *map_name; 2388 struct bpf_map *map; 2389 int err; 2390 2391 vi = btf_var_secinfos(sec) + var_idx; 2392 var = btf__type_by_id(obj->btf, vi->type); 2393 var_extra = btf_var(var); 2394 map_name = btf__name_by_offset(obj->btf, var->name_off); 2395 2396 if (map_name == NULL || map_name[0] == '\0') { 2397 pr_warn("map #%d: empty name.\n", var_idx); 2398 return -EINVAL; 2399 } 2400 if ((__u64)vi->offset + vi->size > data->d_size) { 2401 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2402 return -EINVAL; 2403 } 2404 if (!btf_is_var(var)) { 2405 pr_warn("map '%s': unexpected var kind %s.\n", 2406 map_name, btf_kind_str(var)); 2407 return -EINVAL; 2408 } 2409 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2410 pr_warn("map '%s': unsupported map linkage %s.\n", 2411 map_name, btf_var_linkage_str(var_extra->linkage)); 2412 return -EOPNOTSUPP; 2413 } 2414 2415 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2416 if (!btf_is_struct(def)) { 2417 pr_warn("map '%s': unexpected def kind %s.\n", 2418 map_name, btf_kind_str(var)); 2419 return -EINVAL; 2420 } 2421 if (def->size > vi->size) { 2422 pr_warn("map '%s': invalid def size.\n", map_name); 2423 return -EINVAL; 2424 } 2425 2426 map = bpf_object__add_map(obj); 2427 if (IS_ERR(map)) 2428 return PTR_ERR(map); 2429 map->name = strdup(map_name); 2430 if (!map->name) { 2431 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2432 return -ENOMEM; 2433 } 2434 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2435 map->def.type = BPF_MAP_TYPE_UNSPEC; 2436 map->sec_idx = sec_idx; 2437 map->sec_offset = vi->offset; 2438 map->btf_var_idx = var_idx; 2439 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2440 map_name, map->sec_idx, map->sec_offset); 2441 2442 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2443 if (err) 2444 return err; 2445 2446 fill_map_from_def(map, &map_def); 2447 2448 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2449 err = build_map_pin_path(map, pin_root_path); 2450 if (err) { 2451 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2452 return err; 2453 } 2454 } 2455 2456 if (map_def.parts & MAP_DEF_INNER_MAP) { 2457 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2458 if (!map->inner_map) 2459 return -ENOMEM; 2460 map->inner_map->fd = -1; 2461 map->inner_map->sec_idx = sec_idx; 2462 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2463 if (!map->inner_map->name) 2464 return -ENOMEM; 2465 sprintf(map->inner_map->name, "%s.inner", map_name); 2466 2467 fill_map_from_def(map->inner_map, &inner_def); 2468 } 2469 2470 err = bpf_map_find_btf_info(obj, map); 2471 if (err) 2472 return err; 2473 2474 return 0; 2475 } 2476 2477 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2478 const char *pin_root_path) 2479 { 2480 const struct btf_type *sec = NULL; 2481 int nr_types, i, vlen, err; 2482 const struct btf_type *t; 2483 const char *name; 2484 Elf_Data *data; 2485 Elf_Scn *scn; 2486 2487 if (obj->efile.btf_maps_shndx < 0) 2488 return 0; 2489 2490 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2491 data = elf_sec_data(obj, scn); 2492 if (!scn || !data) { 2493 pr_warn("elf: failed to get %s map definitions for %s\n", 2494 MAPS_ELF_SEC, obj->path); 2495 return -EINVAL; 2496 } 2497 2498 nr_types = btf__type_cnt(obj->btf); 2499 for (i = 1; i < nr_types; i++) { 2500 t = btf__type_by_id(obj->btf, i); 2501 if (!btf_is_datasec(t)) 2502 continue; 2503 name = btf__name_by_offset(obj->btf, t->name_off); 2504 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2505 sec = t; 2506 obj->efile.btf_maps_sec_btf_id = i; 2507 break; 2508 } 2509 } 2510 2511 if (!sec) { 2512 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2513 return -ENOENT; 2514 } 2515 2516 vlen = btf_vlen(sec); 2517 for (i = 0; i < vlen; i++) { 2518 err = bpf_object__init_user_btf_map(obj, sec, i, 2519 obj->efile.btf_maps_shndx, 2520 data, strict, 2521 pin_root_path); 2522 if (err) 2523 return err; 2524 } 2525 2526 return 0; 2527 } 2528 2529 static int bpf_object__init_maps(struct bpf_object *obj, 2530 const struct bpf_object_open_opts *opts) 2531 { 2532 const char *pin_root_path; 2533 bool strict; 2534 int err = 0; 2535 2536 strict = !OPTS_GET(opts, relaxed_maps, false); 2537 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2538 2539 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2540 err = err ?: bpf_object__init_global_data_maps(obj); 2541 err = err ?: bpf_object__init_kconfig_map(obj); 2542 err = err ?: bpf_object__init_struct_ops_maps(obj); 2543 2544 return err; 2545 } 2546 2547 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2548 { 2549 Elf64_Shdr *sh; 2550 2551 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2552 if (!sh) 2553 return false; 2554 2555 return sh->sh_flags & SHF_EXECINSTR; 2556 } 2557 2558 static bool btf_needs_sanitization(struct bpf_object *obj) 2559 { 2560 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2561 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2562 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2563 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2564 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2565 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2566 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2567 2568 return !has_func || !has_datasec || !has_func_global || !has_float || 2569 !has_decl_tag || !has_type_tag || !has_enum64; 2570 } 2571 2572 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2573 { 2574 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2575 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2576 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2577 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2578 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2579 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2580 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2581 int enum64_placeholder_id = 0; 2582 struct btf_type *t; 2583 int i, j, vlen; 2584 2585 for (i = 1; i < btf__type_cnt(btf); i++) { 2586 t = (struct btf_type *)btf__type_by_id(btf, i); 2587 2588 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2589 /* replace VAR/DECL_TAG with INT */ 2590 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2591 /* 2592 * using size = 1 is the safest choice, 4 will be too 2593 * big and cause kernel BTF validation failure if 2594 * original variable took less than 4 bytes 2595 */ 2596 t->size = 1; 2597 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2598 } else if (!has_datasec && btf_is_datasec(t)) { 2599 /* replace DATASEC with STRUCT */ 2600 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2601 struct btf_member *m = btf_members(t); 2602 struct btf_type *vt; 2603 char *name; 2604 2605 name = (char *)btf__name_by_offset(btf, t->name_off); 2606 while (*name) { 2607 if (*name == '.') 2608 *name = '_'; 2609 name++; 2610 } 2611 2612 vlen = btf_vlen(t); 2613 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2614 for (j = 0; j < vlen; j++, v++, m++) { 2615 /* order of field assignments is important */ 2616 m->offset = v->offset * 8; 2617 m->type = v->type; 2618 /* preserve variable name as member name */ 2619 vt = (void *)btf__type_by_id(btf, v->type); 2620 m->name_off = vt->name_off; 2621 } 2622 } else if (!has_func && btf_is_func_proto(t)) { 2623 /* replace FUNC_PROTO with ENUM */ 2624 vlen = btf_vlen(t); 2625 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2626 t->size = sizeof(__u32); /* kernel enforced */ 2627 } else if (!has_func && btf_is_func(t)) { 2628 /* replace FUNC with TYPEDEF */ 2629 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2630 } else if (!has_func_global && btf_is_func(t)) { 2631 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2632 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2633 } else if (!has_float && btf_is_float(t)) { 2634 /* replace FLOAT with an equally-sized empty STRUCT; 2635 * since C compilers do not accept e.g. "float" as a 2636 * valid struct name, make it anonymous 2637 */ 2638 t->name_off = 0; 2639 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2640 } else if (!has_type_tag && btf_is_type_tag(t)) { 2641 /* replace TYPE_TAG with a CONST */ 2642 t->name_off = 0; 2643 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2644 } else if (!has_enum64 && btf_is_enum(t)) { 2645 /* clear the kflag */ 2646 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 2647 } else if (!has_enum64 && btf_is_enum64(t)) { 2648 /* replace ENUM64 with a union */ 2649 struct btf_member *m; 2650 2651 if (enum64_placeholder_id == 0) { 2652 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 2653 if (enum64_placeholder_id < 0) 2654 return enum64_placeholder_id; 2655 2656 t = (struct btf_type *)btf__type_by_id(btf, i); 2657 } 2658 2659 m = btf_members(t); 2660 vlen = btf_vlen(t); 2661 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 2662 for (j = 0; j < vlen; j++, m++) { 2663 m->type = enum64_placeholder_id; 2664 m->offset = 0; 2665 } 2666 } 2667 } 2668 2669 return 0; 2670 } 2671 2672 static bool libbpf_needs_btf(const struct bpf_object *obj) 2673 { 2674 return obj->efile.btf_maps_shndx >= 0 || 2675 obj->efile.st_ops_shndx >= 0 || 2676 obj->nr_extern > 0; 2677 } 2678 2679 static bool kernel_needs_btf(const struct bpf_object *obj) 2680 { 2681 return obj->efile.st_ops_shndx >= 0; 2682 } 2683 2684 static int bpf_object__init_btf(struct bpf_object *obj, 2685 Elf_Data *btf_data, 2686 Elf_Data *btf_ext_data) 2687 { 2688 int err = -ENOENT; 2689 2690 if (btf_data) { 2691 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2692 err = libbpf_get_error(obj->btf); 2693 if (err) { 2694 obj->btf = NULL; 2695 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2696 goto out; 2697 } 2698 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2699 btf__set_pointer_size(obj->btf, 8); 2700 } 2701 if (btf_ext_data) { 2702 struct btf_ext_info *ext_segs[3]; 2703 int seg_num, sec_num; 2704 2705 if (!obj->btf) { 2706 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2707 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2708 goto out; 2709 } 2710 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2711 err = libbpf_get_error(obj->btf_ext); 2712 if (err) { 2713 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2714 BTF_EXT_ELF_SEC, err); 2715 obj->btf_ext = NULL; 2716 goto out; 2717 } 2718 2719 /* setup .BTF.ext to ELF section mapping */ 2720 ext_segs[0] = &obj->btf_ext->func_info; 2721 ext_segs[1] = &obj->btf_ext->line_info; 2722 ext_segs[2] = &obj->btf_ext->core_relo_info; 2723 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 2724 struct btf_ext_info *seg = ext_segs[seg_num]; 2725 const struct btf_ext_info_sec *sec; 2726 const char *sec_name; 2727 Elf_Scn *scn; 2728 2729 if (seg->sec_cnt == 0) 2730 continue; 2731 2732 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 2733 if (!seg->sec_idxs) { 2734 err = -ENOMEM; 2735 goto out; 2736 } 2737 2738 sec_num = 0; 2739 for_each_btf_ext_sec(seg, sec) { 2740 /* preventively increment index to avoid doing 2741 * this before every continue below 2742 */ 2743 sec_num++; 2744 2745 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 2746 if (str_is_empty(sec_name)) 2747 continue; 2748 scn = elf_sec_by_name(obj, sec_name); 2749 if (!scn) 2750 continue; 2751 2752 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 2753 } 2754 } 2755 } 2756 out: 2757 if (err && libbpf_needs_btf(obj)) { 2758 pr_warn("BTF is required, but is missing or corrupted.\n"); 2759 return err; 2760 } 2761 return 0; 2762 } 2763 2764 static int compare_vsi_off(const void *_a, const void *_b) 2765 { 2766 const struct btf_var_secinfo *a = _a; 2767 const struct btf_var_secinfo *b = _b; 2768 2769 return a->offset - b->offset; 2770 } 2771 2772 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2773 struct btf_type *t) 2774 { 2775 __u32 size = 0, off = 0, i, vars = btf_vlen(t); 2776 const char *name = btf__name_by_offset(btf, t->name_off); 2777 const struct btf_type *t_var; 2778 struct btf_var_secinfo *vsi; 2779 const struct btf_var *var; 2780 int ret; 2781 2782 if (!name) { 2783 pr_debug("No name found in string section for DATASEC kind.\n"); 2784 return -ENOENT; 2785 } 2786 2787 /* .extern datasec size and var offsets were set correctly during 2788 * extern collection step, so just skip straight to sorting variables 2789 */ 2790 if (t->size) 2791 goto sort_vars; 2792 2793 ret = find_elf_sec_sz(obj, name, &size); 2794 if (ret || !size) { 2795 pr_debug("Invalid size for section %s: %u bytes\n", name, size); 2796 return -ENOENT; 2797 } 2798 2799 t->size = size; 2800 2801 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2802 t_var = btf__type_by_id(btf, vsi->type); 2803 if (!t_var || !btf_is_var(t_var)) { 2804 pr_debug("Non-VAR type seen in section %s\n", name); 2805 return -EINVAL; 2806 } 2807 2808 var = btf_var(t_var); 2809 if (var->linkage == BTF_VAR_STATIC) 2810 continue; 2811 2812 name = btf__name_by_offset(btf, t_var->name_off); 2813 if (!name) { 2814 pr_debug("No name found in string section for VAR kind\n"); 2815 return -ENOENT; 2816 } 2817 2818 ret = find_elf_var_offset(obj, name, &off); 2819 if (ret) { 2820 pr_debug("No offset found in symbol table for VAR %s\n", 2821 name); 2822 return -ENOENT; 2823 } 2824 2825 vsi->offset = off; 2826 } 2827 2828 sort_vars: 2829 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 2830 return 0; 2831 } 2832 2833 static int btf_finalize_data(struct bpf_object *obj, struct btf *btf) 2834 { 2835 int err = 0; 2836 __u32 i, n = btf__type_cnt(btf); 2837 2838 for (i = 1; i < n; i++) { 2839 struct btf_type *t = btf_type_by_id(btf, i); 2840 2841 /* Loader needs to fix up some of the things compiler 2842 * couldn't get its hands on while emitting BTF. This 2843 * is section size and global variable offset. We use 2844 * the info from the ELF itself for this purpose. 2845 */ 2846 if (btf_is_datasec(t)) { 2847 err = btf_fixup_datasec(obj, btf, t); 2848 if (err) 2849 break; 2850 } 2851 } 2852 2853 return libbpf_err(err); 2854 } 2855 2856 static int bpf_object__finalize_btf(struct bpf_object *obj) 2857 { 2858 int err; 2859 2860 if (!obj->btf) 2861 return 0; 2862 2863 err = btf_finalize_data(obj, obj->btf); 2864 if (err) { 2865 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2866 return err; 2867 } 2868 2869 return 0; 2870 } 2871 2872 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 2873 { 2874 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 2875 prog->type == BPF_PROG_TYPE_LSM) 2876 return true; 2877 2878 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2879 * also need vmlinux BTF 2880 */ 2881 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2882 return true; 2883 2884 return false; 2885 } 2886 2887 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 2888 { 2889 struct bpf_program *prog; 2890 int i; 2891 2892 /* CO-RE relocations need kernel BTF, only when btf_custom_path 2893 * is not specified 2894 */ 2895 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 2896 return true; 2897 2898 /* Support for typed ksyms needs kernel BTF */ 2899 for (i = 0; i < obj->nr_extern; i++) { 2900 const struct extern_desc *ext; 2901 2902 ext = &obj->externs[i]; 2903 if (ext->type == EXT_KSYM && ext->ksym.type_id) 2904 return true; 2905 } 2906 2907 bpf_object__for_each_program(prog, obj) { 2908 if (!prog->autoload) 2909 continue; 2910 if (prog_needs_vmlinux_btf(prog)) 2911 return true; 2912 } 2913 2914 return false; 2915 } 2916 2917 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 2918 { 2919 int err; 2920 2921 /* btf_vmlinux could be loaded earlier */ 2922 if (obj->btf_vmlinux || obj->gen_loader) 2923 return 0; 2924 2925 if (!force && !obj_needs_vmlinux_btf(obj)) 2926 return 0; 2927 2928 obj->btf_vmlinux = btf__load_vmlinux_btf(); 2929 err = libbpf_get_error(obj->btf_vmlinux); 2930 if (err) { 2931 pr_warn("Error loading vmlinux BTF: %d\n", err); 2932 obj->btf_vmlinux = NULL; 2933 return err; 2934 } 2935 return 0; 2936 } 2937 2938 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 2939 { 2940 struct btf *kern_btf = obj->btf; 2941 bool btf_mandatory, sanitize; 2942 int i, err = 0; 2943 2944 if (!obj->btf) 2945 return 0; 2946 2947 if (!kernel_supports(obj, FEAT_BTF)) { 2948 if (kernel_needs_btf(obj)) { 2949 err = -EOPNOTSUPP; 2950 goto report; 2951 } 2952 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 2953 return 0; 2954 } 2955 2956 /* Even though some subprogs are global/weak, user might prefer more 2957 * permissive BPF verification process that BPF verifier performs for 2958 * static functions, taking into account more context from the caller 2959 * functions. In such case, they need to mark such subprogs with 2960 * __attribute__((visibility("hidden"))) and libbpf will adjust 2961 * corresponding FUNC BTF type to be marked as static and trigger more 2962 * involved BPF verification process. 2963 */ 2964 for (i = 0; i < obj->nr_programs; i++) { 2965 struct bpf_program *prog = &obj->programs[i]; 2966 struct btf_type *t; 2967 const char *name; 2968 int j, n; 2969 2970 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 2971 continue; 2972 2973 n = btf__type_cnt(obj->btf); 2974 for (j = 1; j < n; j++) { 2975 t = btf_type_by_id(obj->btf, j); 2976 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 2977 continue; 2978 2979 name = btf__str_by_offset(obj->btf, t->name_off); 2980 if (strcmp(name, prog->name) != 0) 2981 continue; 2982 2983 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 2984 break; 2985 } 2986 } 2987 2988 sanitize = btf_needs_sanitization(obj); 2989 if (sanitize) { 2990 const void *raw_data; 2991 __u32 sz; 2992 2993 /* clone BTF to sanitize a copy and leave the original intact */ 2994 raw_data = btf__raw_data(obj->btf, &sz); 2995 kern_btf = btf__new(raw_data, sz); 2996 err = libbpf_get_error(kern_btf); 2997 if (err) 2998 return err; 2999 3000 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3001 btf__set_pointer_size(obj->btf, 8); 3002 err = bpf_object__sanitize_btf(obj, kern_btf); 3003 if (err) 3004 return err; 3005 } 3006 3007 if (obj->gen_loader) { 3008 __u32 raw_size = 0; 3009 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3010 3011 if (!raw_data) 3012 return -ENOMEM; 3013 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3014 /* Pretend to have valid FD to pass various fd >= 0 checks. 3015 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3016 */ 3017 btf__set_fd(kern_btf, 0); 3018 } else { 3019 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3020 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3021 obj->log_level ? 1 : 0); 3022 } 3023 if (sanitize) { 3024 if (!err) { 3025 /* move fd to libbpf's BTF */ 3026 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3027 btf__set_fd(kern_btf, -1); 3028 } 3029 btf__free(kern_btf); 3030 } 3031 report: 3032 if (err) { 3033 btf_mandatory = kernel_needs_btf(obj); 3034 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3035 btf_mandatory ? "BTF is mandatory, can't proceed." 3036 : "BTF is optional, ignoring."); 3037 if (!btf_mandatory) 3038 err = 0; 3039 } 3040 return err; 3041 } 3042 3043 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3044 { 3045 const char *name; 3046 3047 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3048 if (!name) { 3049 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3050 off, obj->path, elf_errmsg(-1)); 3051 return NULL; 3052 } 3053 3054 return name; 3055 } 3056 3057 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3058 { 3059 const char *name; 3060 3061 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3062 if (!name) { 3063 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3064 off, obj->path, elf_errmsg(-1)); 3065 return NULL; 3066 } 3067 3068 return name; 3069 } 3070 3071 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3072 { 3073 Elf_Scn *scn; 3074 3075 scn = elf_getscn(obj->efile.elf, idx); 3076 if (!scn) { 3077 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3078 idx, obj->path, elf_errmsg(-1)); 3079 return NULL; 3080 } 3081 return scn; 3082 } 3083 3084 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3085 { 3086 Elf_Scn *scn = NULL; 3087 Elf *elf = obj->efile.elf; 3088 const char *sec_name; 3089 3090 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3091 sec_name = elf_sec_name(obj, scn); 3092 if (!sec_name) 3093 return NULL; 3094 3095 if (strcmp(sec_name, name) != 0) 3096 continue; 3097 3098 return scn; 3099 } 3100 return NULL; 3101 } 3102 3103 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3104 { 3105 Elf64_Shdr *shdr; 3106 3107 if (!scn) 3108 return NULL; 3109 3110 shdr = elf64_getshdr(scn); 3111 if (!shdr) { 3112 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3113 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3114 return NULL; 3115 } 3116 3117 return shdr; 3118 } 3119 3120 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3121 { 3122 const char *name; 3123 Elf64_Shdr *sh; 3124 3125 if (!scn) 3126 return NULL; 3127 3128 sh = elf_sec_hdr(obj, scn); 3129 if (!sh) 3130 return NULL; 3131 3132 name = elf_sec_str(obj, sh->sh_name); 3133 if (!name) { 3134 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3135 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3136 return NULL; 3137 } 3138 3139 return name; 3140 } 3141 3142 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3143 { 3144 Elf_Data *data; 3145 3146 if (!scn) 3147 return NULL; 3148 3149 data = elf_getdata(scn, 0); 3150 if (!data) { 3151 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3152 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3153 obj->path, elf_errmsg(-1)); 3154 return NULL; 3155 } 3156 3157 return data; 3158 } 3159 3160 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3161 { 3162 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3163 return NULL; 3164 3165 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3166 } 3167 3168 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3169 { 3170 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3171 return NULL; 3172 3173 return (Elf64_Rel *)data->d_buf + idx; 3174 } 3175 3176 static bool is_sec_name_dwarf(const char *name) 3177 { 3178 /* approximation, but the actual list is too long */ 3179 return str_has_pfx(name, ".debug_"); 3180 } 3181 3182 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3183 { 3184 /* no special handling of .strtab */ 3185 if (hdr->sh_type == SHT_STRTAB) 3186 return true; 3187 3188 /* ignore .llvm_addrsig section as well */ 3189 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3190 return true; 3191 3192 /* no subprograms will lead to an empty .text section, ignore it */ 3193 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3194 strcmp(name, ".text") == 0) 3195 return true; 3196 3197 /* DWARF sections */ 3198 if (is_sec_name_dwarf(name)) 3199 return true; 3200 3201 if (str_has_pfx(name, ".rel")) { 3202 name += sizeof(".rel") - 1; 3203 /* DWARF section relocations */ 3204 if (is_sec_name_dwarf(name)) 3205 return true; 3206 3207 /* .BTF and .BTF.ext don't need relocations */ 3208 if (strcmp(name, BTF_ELF_SEC) == 0 || 3209 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3210 return true; 3211 } 3212 3213 return false; 3214 } 3215 3216 static int cmp_progs(const void *_a, const void *_b) 3217 { 3218 const struct bpf_program *a = _a; 3219 const struct bpf_program *b = _b; 3220 3221 if (a->sec_idx != b->sec_idx) 3222 return a->sec_idx < b->sec_idx ? -1 : 1; 3223 3224 /* sec_insn_off can't be the same within the section */ 3225 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3226 } 3227 3228 static int bpf_object__elf_collect(struct bpf_object *obj) 3229 { 3230 struct elf_sec_desc *sec_desc; 3231 Elf *elf = obj->efile.elf; 3232 Elf_Data *btf_ext_data = NULL; 3233 Elf_Data *btf_data = NULL; 3234 int idx = 0, err = 0; 3235 const char *name; 3236 Elf_Data *data; 3237 Elf_Scn *scn; 3238 Elf64_Shdr *sh; 3239 3240 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3241 * section. e_shnum does include sec #0, so e_shnum is the necessary 3242 * size of an array to keep all the sections. 3243 */ 3244 obj->efile.sec_cnt = obj->efile.ehdr->e_shnum; 3245 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3246 if (!obj->efile.secs) 3247 return -ENOMEM; 3248 3249 /* a bunch of ELF parsing functionality depends on processing symbols, 3250 * so do the first pass and find the symbol table 3251 */ 3252 scn = NULL; 3253 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3254 sh = elf_sec_hdr(obj, scn); 3255 if (!sh) 3256 return -LIBBPF_ERRNO__FORMAT; 3257 3258 if (sh->sh_type == SHT_SYMTAB) { 3259 if (obj->efile.symbols) { 3260 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3261 return -LIBBPF_ERRNO__FORMAT; 3262 } 3263 3264 data = elf_sec_data(obj, scn); 3265 if (!data) 3266 return -LIBBPF_ERRNO__FORMAT; 3267 3268 idx = elf_ndxscn(scn); 3269 3270 obj->efile.symbols = data; 3271 obj->efile.symbols_shndx = idx; 3272 obj->efile.strtabidx = sh->sh_link; 3273 } 3274 } 3275 3276 if (!obj->efile.symbols) { 3277 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3278 obj->path); 3279 return -ENOENT; 3280 } 3281 3282 scn = NULL; 3283 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3284 idx = elf_ndxscn(scn); 3285 sec_desc = &obj->efile.secs[idx]; 3286 3287 sh = elf_sec_hdr(obj, scn); 3288 if (!sh) 3289 return -LIBBPF_ERRNO__FORMAT; 3290 3291 name = elf_sec_str(obj, sh->sh_name); 3292 if (!name) 3293 return -LIBBPF_ERRNO__FORMAT; 3294 3295 if (ignore_elf_section(sh, name)) 3296 continue; 3297 3298 data = elf_sec_data(obj, scn); 3299 if (!data) 3300 return -LIBBPF_ERRNO__FORMAT; 3301 3302 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3303 idx, name, (unsigned long)data->d_size, 3304 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3305 (int)sh->sh_type); 3306 3307 if (strcmp(name, "license") == 0) { 3308 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3309 if (err) 3310 return err; 3311 } else if (strcmp(name, "version") == 0) { 3312 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3313 if (err) 3314 return err; 3315 } else if (strcmp(name, "maps") == 0) { 3316 obj->efile.maps_shndx = idx; 3317 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3318 obj->efile.btf_maps_shndx = idx; 3319 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3320 if (sh->sh_type != SHT_PROGBITS) 3321 return -LIBBPF_ERRNO__FORMAT; 3322 btf_data = data; 3323 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3324 if (sh->sh_type != SHT_PROGBITS) 3325 return -LIBBPF_ERRNO__FORMAT; 3326 btf_ext_data = data; 3327 } else if (sh->sh_type == SHT_SYMTAB) { 3328 /* already processed during the first pass above */ 3329 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3330 if (sh->sh_flags & SHF_EXECINSTR) { 3331 if (strcmp(name, ".text") == 0) 3332 obj->efile.text_shndx = idx; 3333 err = bpf_object__add_programs(obj, data, name, idx); 3334 if (err) 3335 return err; 3336 } else if (strcmp(name, DATA_SEC) == 0 || 3337 str_has_pfx(name, DATA_SEC ".")) { 3338 sec_desc->sec_type = SEC_DATA; 3339 sec_desc->shdr = sh; 3340 sec_desc->data = data; 3341 } else if (strcmp(name, RODATA_SEC) == 0 || 3342 str_has_pfx(name, RODATA_SEC ".")) { 3343 sec_desc->sec_type = SEC_RODATA; 3344 sec_desc->shdr = sh; 3345 sec_desc->data = data; 3346 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3347 obj->efile.st_ops_data = data; 3348 obj->efile.st_ops_shndx = idx; 3349 } else { 3350 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3351 idx, name); 3352 } 3353 } else if (sh->sh_type == SHT_REL) { 3354 int targ_sec_idx = sh->sh_info; /* points to other section */ 3355 3356 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3357 targ_sec_idx >= obj->efile.sec_cnt) 3358 return -LIBBPF_ERRNO__FORMAT; 3359 3360 /* Only do relo for section with exec instructions */ 3361 if (!section_have_execinstr(obj, targ_sec_idx) && 3362 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3363 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3364 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3365 idx, name, targ_sec_idx, 3366 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3367 continue; 3368 } 3369 3370 sec_desc->sec_type = SEC_RELO; 3371 sec_desc->shdr = sh; 3372 sec_desc->data = data; 3373 } else if (sh->sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 3374 sec_desc->sec_type = SEC_BSS; 3375 sec_desc->shdr = sh; 3376 sec_desc->data = data; 3377 } else { 3378 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3379 (size_t)sh->sh_size); 3380 } 3381 } 3382 3383 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3384 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3385 return -LIBBPF_ERRNO__FORMAT; 3386 } 3387 3388 /* sort BPF programs by section name and in-section instruction offset 3389 * for faster search */ 3390 if (obj->nr_programs) 3391 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3392 3393 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3394 } 3395 3396 static bool sym_is_extern(const Elf64_Sym *sym) 3397 { 3398 int bind = ELF64_ST_BIND(sym->st_info); 3399 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3400 return sym->st_shndx == SHN_UNDEF && 3401 (bind == STB_GLOBAL || bind == STB_WEAK) && 3402 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3403 } 3404 3405 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3406 { 3407 int bind = ELF64_ST_BIND(sym->st_info); 3408 int type = ELF64_ST_TYPE(sym->st_info); 3409 3410 /* in .text section */ 3411 if (sym->st_shndx != text_shndx) 3412 return false; 3413 3414 /* local function */ 3415 if (bind == STB_LOCAL && type == STT_SECTION) 3416 return true; 3417 3418 /* global function */ 3419 return bind == STB_GLOBAL && type == STT_FUNC; 3420 } 3421 3422 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3423 { 3424 const struct btf_type *t; 3425 const char *tname; 3426 int i, n; 3427 3428 if (!btf) 3429 return -ESRCH; 3430 3431 n = btf__type_cnt(btf); 3432 for (i = 1; i < n; i++) { 3433 t = btf__type_by_id(btf, i); 3434 3435 if (!btf_is_var(t) && !btf_is_func(t)) 3436 continue; 3437 3438 tname = btf__name_by_offset(btf, t->name_off); 3439 if (strcmp(tname, ext_name)) 3440 continue; 3441 3442 if (btf_is_var(t) && 3443 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3444 return -EINVAL; 3445 3446 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3447 return -EINVAL; 3448 3449 return i; 3450 } 3451 3452 return -ENOENT; 3453 } 3454 3455 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3456 const struct btf_var_secinfo *vs; 3457 const struct btf_type *t; 3458 int i, j, n; 3459 3460 if (!btf) 3461 return -ESRCH; 3462 3463 n = btf__type_cnt(btf); 3464 for (i = 1; i < n; i++) { 3465 t = btf__type_by_id(btf, i); 3466 3467 if (!btf_is_datasec(t)) 3468 continue; 3469 3470 vs = btf_var_secinfos(t); 3471 for (j = 0; j < btf_vlen(t); j++, vs++) { 3472 if (vs->type == ext_btf_id) 3473 return i; 3474 } 3475 } 3476 3477 return -ENOENT; 3478 } 3479 3480 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3481 bool *is_signed) 3482 { 3483 const struct btf_type *t; 3484 const char *name; 3485 3486 t = skip_mods_and_typedefs(btf, id, NULL); 3487 name = btf__name_by_offset(btf, t->name_off); 3488 3489 if (is_signed) 3490 *is_signed = false; 3491 switch (btf_kind(t)) { 3492 case BTF_KIND_INT: { 3493 int enc = btf_int_encoding(t); 3494 3495 if (enc & BTF_INT_BOOL) 3496 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3497 if (is_signed) 3498 *is_signed = enc & BTF_INT_SIGNED; 3499 if (t->size == 1) 3500 return KCFG_CHAR; 3501 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3502 return KCFG_UNKNOWN; 3503 return KCFG_INT; 3504 } 3505 case BTF_KIND_ENUM: 3506 if (t->size != 4) 3507 return KCFG_UNKNOWN; 3508 if (strcmp(name, "libbpf_tristate")) 3509 return KCFG_UNKNOWN; 3510 return KCFG_TRISTATE; 3511 case BTF_KIND_ENUM64: 3512 if (strcmp(name, "libbpf_tristate")) 3513 return KCFG_UNKNOWN; 3514 return KCFG_TRISTATE; 3515 case BTF_KIND_ARRAY: 3516 if (btf_array(t)->nelems == 0) 3517 return KCFG_UNKNOWN; 3518 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3519 return KCFG_UNKNOWN; 3520 return KCFG_CHAR_ARR; 3521 default: 3522 return KCFG_UNKNOWN; 3523 } 3524 } 3525 3526 static int cmp_externs(const void *_a, const void *_b) 3527 { 3528 const struct extern_desc *a = _a; 3529 const struct extern_desc *b = _b; 3530 3531 if (a->type != b->type) 3532 return a->type < b->type ? -1 : 1; 3533 3534 if (a->type == EXT_KCFG) { 3535 /* descending order by alignment requirements */ 3536 if (a->kcfg.align != b->kcfg.align) 3537 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3538 /* ascending order by size, within same alignment class */ 3539 if (a->kcfg.sz != b->kcfg.sz) 3540 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3541 } 3542 3543 /* resolve ties by name */ 3544 return strcmp(a->name, b->name); 3545 } 3546 3547 static int find_int_btf_id(const struct btf *btf) 3548 { 3549 const struct btf_type *t; 3550 int i, n; 3551 3552 n = btf__type_cnt(btf); 3553 for (i = 1; i < n; i++) { 3554 t = btf__type_by_id(btf, i); 3555 3556 if (btf_is_int(t) && btf_int_bits(t) == 32) 3557 return i; 3558 } 3559 3560 return 0; 3561 } 3562 3563 static int add_dummy_ksym_var(struct btf *btf) 3564 { 3565 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3566 const struct btf_var_secinfo *vs; 3567 const struct btf_type *sec; 3568 3569 if (!btf) 3570 return 0; 3571 3572 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3573 BTF_KIND_DATASEC); 3574 if (sec_btf_id < 0) 3575 return 0; 3576 3577 sec = btf__type_by_id(btf, sec_btf_id); 3578 vs = btf_var_secinfos(sec); 3579 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3580 const struct btf_type *vt; 3581 3582 vt = btf__type_by_id(btf, vs->type); 3583 if (btf_is_func(vt)) 3584 break; 3585 } 3586 3587 /* No func in ksyms sec. No need to add dummy var. */ 3588 if (i == btf_vlen(sec)) 3589 return 0; 3590 3591 int_btf_id = find_int_btf_id(btf); 3592 dummy_var_btf_id = btf__add_var(btf, 3593 "dummy_ksym", 3594 BTF_VAR_GLOBAL_ALLOCATED, 3595 int_btf_id); 3596 if (dummy_var_btf_id < 0) 3597 pr_warn("cannot create a dummy_ksym var\n"); 3598 3599 return dummy_var_btf_id; 3600 } 3601 3602 static int bpf_object__collect_externs(struct bpf_object *obj) 3603 { 3604 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3605 const struct btf_type *t; 3606 struct extern_desc *ext; 3607 int i, n, off, dummy_var_btf_id; 3608 const char *ext_name, *sec_name; 3609 Elf_Scn *scn; 3610 Elf64_Shdr *sh; 3611 3612 if (!obj->efile.symbols) 3613 return 0; 3614 3615 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3616 sh = elf_sec_hdr(obj, scn); 3617 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3618 return -LIBBPF_ERRNO__FORMAT; 3619 3620 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3621 if (dummy_var_btf_id < 0) 3622 return dummy_var_btf_id; 3623 3624 n = sh->sh_size / sh->sh_entsize; 3625 pr_debug("looking for externs among %d symbols...\n", n); 3626 3627 for (i = 0; i < n; i++) { 3628 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3629 3630 if (!sym) 3631 return -LIBBPF_ERRNO__FORMAT; 3632 if (!sym_is_extern(sym)) 3633 continue; 3634 ext_name = elf_sym_str(obj, sym->st_name); 3635 if (!ext_name || !ext_name[0]) 3636 continue; 3637 3638 ext = obj->externs; 3639 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3640 if (!ext) 3641 return -ENOMEM; 3642 obj->externs = ext; 3643 ext = &ext[obj->nr_extern]; 3644 memset(ext, 0, sizeof(*ext)); 3645 obj->nr_extern++; 3646 3647 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3648 if (ext->btf_id <= 0) { 3649 pr_warn("failed to find BTF for extern '%s': %d\n", 3650 ext_name, ext->btf_id); 3651 return ext->btf_id; 3652 } 3653 t = btf__type_by_id(obj->btf, ext->btf_id); 3654 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3655 ext->sym_idx = i; 3656 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3657 3658 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3659 if (ext->sec_btf_id <= 0) { 3660 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3661 ext_name, ext->btf_id, ext->sec_btf_id); 3662 return ext->sec_btf_id; 3663 } 3664 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3665 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3666 3667 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3668 if (btf_is_func(t)) { 3669 pr_warn("extern function %s is unsupported under %s section\n", 3670 ext->name, KCONFIG_SEC); 3671 return -ENOTSUP; 3672 } 3673 kcfg_sec = sec; 3674 ext->type = EXT_KCFG; 3675 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3676 if (ext->kcfg.sz <= 0) { 3677 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3678 ext_name, ext->kcfg.sz); 3679 return ext->kcfg.sz; 3680 } 3681 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3682 if (ext->kcfg.align <= 0) { 3683 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3684 ext_name, ext->kcfg.align); 3685 return -EINVAL; 3686 } 3687 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3688 &ext->kcfg.is_signed); 3689 if (ext->kcfg.type == KCFG_UNKNOWN) { 3690 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name); 3691 return -ENOTSUP; 3692 } 3693 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3694 ksym_sec = sec; 3695 ext->type = EXT_KSYM; 3696 skip_mods_and_typedefs(obj->btf, t->type, 3697 &ext->ksym.type_id); 3698 } else { 3699 pr_warn("unrecognized extern section '%s'\n", sec_name); 3700 return -ENOTSUP; 3701 } 3702 } 3703 pr_debug("collected %d externs total\n", obj->nr_extern); 3704 3705 if (!obj->nr_extern) 3706 return 0; 3707 3708 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3709 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3710 3711 /* for .ksyms section, we need to turn all externs into allocated 3712 * variables in BTF to pass kernel verification; we do this by 3713 * pretending that each extern is a 8-byte variable 3714 */ 3715 if (ksym_sec) { 3716 /* find existing 4-byte integer type in BTF to use for fake 3717 * extern variables in DATASEC 3718 */ 3719 int int_btf_id = find_int_btf_id(obj->btf); 3720 /* For extern function, a dummy_var added earlier 3721 * will be used to replace the vs->type and 3722 * its name string will be used to refill 3723 * the missing param's name. 3724 */ 3725 const struct btf_type *dummy_var; 3726 3727 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3728 for (i = 0; i < obj->nr_extern; i++) { 3729 ext = &obj->externs[i]; 3730 if (ext->type != EXT_KSYM) 3731 continue; 3732 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3733 i, ext->sym_idx, ext->name); 3734 } 3735 3736 sec = ksym_sec; 3737 n = btf_vlen(sec); 3738 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3739 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3740 struct btf_type *vt; 3741 3742 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3743 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3744 ext = find_extern_by_name(obj, ext_name); 3745 if (!ext) { 3746 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3747 btf_kind_str(vt), ext_name); 3748 return -ESRCH; 3749 } 3750 if (btf_is_func(vt)) { 3751 const struct btf_type *func_proto; 3752 struct btf_param *param; 3753 int j; 3754 3755 func_proto = btf__type_by_id(obj->btf, 3756 vt->type); 3757 param = btf_params(func_proto); 3758 /* Reuse the dummy_var string if the 3759 * func proto does not have param name. 3760 */ 3761 for (j = 0; j < btf_vlen(func_proto); j++) 3762 if (param[j].type && !param[j].name_off) 3763 param[j].name_off = 3764 dummy_var->name_off; 3765 vs->type = dummy_var_btf_id; 3766 vt->info &= ~0xffff; 3767 vt->info |= BTF_FUNC_GLOBAL; 3768 } else { 3769 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3770 vt->type = int_btf_id; 3771 } 3772 vs->offset = off; 3773 vs->size = sizeof(int); 3774 } 3775 sec->size = off; 3776 } 3777 3778 if (kcfg_sec) { 3779 sec = kcfg_sec; 3780 /* for kcfg externs calculate their offsets within a .kconfig map */ 3781 off = 0; 3782 for (i = 0; i < obj->nr_extern; i++) { 3783 ext = &obj->externs[i]; 3784 if (ext->type != EXT_KCFG) 3785 continue; 3786 3787 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3788 off = ext->kcfg.data_off + ext->kcfg.sz; 3789 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3790 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3791 } 3792 sec->size = off; 3793 n = btf_vlen(sec); 3794 for (i = 0; i < n; i++) { 3795 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3796 3797 t = btf__type_by_id(obj->btf, vs->type); 3798 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3799 ext = find_extern_by_name(obj, ext_name); 3800 if (!ext) { 3801 pr_warn("failed to find extern definition for BTF var '%s'\n", 3802 ext_name); 3803 return -ESRCH; 3804 } 3805 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3806 vs->offset = ext->kcfg.data_off; 3807 } 3808 } 3809 return 0; 3810 } 3811 3812 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 3813 { 3814 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3815 } 3816 3817 struct bpf_program * 3818 bpf_object__find_program_by_name(const struct bpf_object *obj, 3819 const char *name) 3820 { 3821 struct bpf_program *prog; 3822 3823 bpf_object__for_each_program(prog, obj) { 3824 if (prog_is_subprog(obj, prog)) 3825 continue; 3826 if (!strcmp(prog->name, name)) 3827 return prog; 3828 } 3829 return errno = ENOENT, NULL; 3830 } 3831 3832 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3833 int shndx) 3834 { 3835 switch (obj->efile.secs[shndx].sec_type) { 3836 case SEC_BSS: 3837 case SEC_DATA: 3838 case SEC_RODATA: 3839 return true; 3840 default: 3841 return false; 3842 } 3843 } 3844 3845 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3846 int shndx) 3847 { 3848 return shndx == obj->efile.maps_shndx || 3849 shndx == obj->efile.btf_maps_shndx; 3850 } 3851 3852 static enum libbpf_map_type 3853 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3854 { 3855 if (shndx == obj->efile.symbols_shndx) 3856 return LIBBPF_MAP_KCONFIG; 3857 3858 switch (obj->efile.secs[shndx].sec_type) { 3859 case SEC_BSS: 3860 return LIBBPF_MAP_BSS; 3861 case SEC_DATA: 3862 return LIBBPF_MAP_DATA; 3863 case SEC_RODATA: 3864 return LIBBPF_MAP_RODATA; 3865 default: 3866 return LIBBPF_MAP_UNSPEC; 3867 } 3868 } 3869 3870 static int bpf_program__record_reloc(struct bpf_program *prog, 3871 struct reloc_desc *reloc_desc, 3872 __u32 insn_idx, const char *sym_name, 3873 const Elf64_Sym *sym, const Elf64_Rel *rel) 3874 { 3875 struct bpf_insn *insn = &prog->insns[insn_idx]; 3876 size_t map_idx, nr_maps = prog->obj->nr_maps; 3877 struct bpf_object *obj = prog->obj; 3878 __u32 shdr_idx = sym->st_shndx; 3879 enum libbpf_map_type type; 3880 const char *sym_sec_name; 3881 struct bpf_map *map; 3882 3883 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 3884 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 3885 prog->name, sym_name, insn_idx, insn->code); 3886 return -LIBBPF_ERRNO__RELOC; 3887 } 3888 3889 if (sym_is_extern(sym)) { 3890 int sym_idx = ELF64_R_SYM(rel->r_info); 3891 int i, n = obj->nr_extern; 3892 struct extern_desc *ext; 3893 3894 for (i = 0; i < n; i++) { 3895 ext = &obj->externs[i]; 3896 if (ext->sym_idx == sym_idx) 3897 break; 3898 } 3899 if (i >= n) { 3900 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 3901 prog->name, sym_name, sym_idx); 3902 return -LIBBPF_ERRNO__RELOC; 3903 } 3904 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 3905 prog->name, i, ext->name, ext->sym_idx, insn_idx); 3906 if (insn->code == (BPF_JMP | BPF_CALL)) 3907 reloc_desc->type = RELO_EXTERN_FUNC; 3908 else 3909 reloc_desc->type = RELO_EXTERN_VAR; 3910 reloc_desc->insn_idx = insn_idx; 3911 reloc_desc->sym_off = i; /* sym_off stores extern index */ 3912 return 0; 3913 } 3914 3915 /* sub-program call relocation */ 3916 if (is_call_insn(insn)) { 3917 if (insn->src_reg != BPF_PSEUDO_CALL) { 3918 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 3919 return -LIBBPF_ERRNO__RELOC; 3920 } 3921 /* text_shndx can be 0, if no default "main" program exists */ 3922 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 3923 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3924 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 3925 prog->name, sym_name, sym_sec_name); 3926 return -LIBBPF_ERRNO__RELOC; 3927 } 3928 if (sym->st_value % BPF_INSN_SZ) { 3929 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 3930 prog->name, sym_name, (size_t)sym->st_value); 3931 return -LIBBPF_ERRNO__RELOC; 3932 } 3933 reloc_desc->type = RELO_CALL; 3934 reloc_desc->insn_idx = insn_idx; 3935 reloc_desc->sym_off = sym->st_value; 3936 return 0; 3937 } 3938 3939 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 3940 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 3941 prog->name, sym_name, shdr_idx); 3942 return -LIBBPF_ERRNO__RELOC; 3943 } 3944 3945 /* loading subprog addresses */ 3946 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 3947 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 3948 * local_func: sym->st_value = 0, insn->imm = offset in the section. 3949 */ 3950 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 3951 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 3952 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 3953 return -LIBBPF_ERRNO__RELOC; 3954 } 3955 3956 reloc_desc->type = RELO_SUBPROG_ADDR; 3957 reloc_desc->insn_idx = insn_idx; 3958 reloc_desc->sym_off = sym->st_value; 3959 return 0; 3960 } 3961 3962 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 3963 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3964 3965 /* generic map reference relocation */ 3966 if (type == LIBBPF_MAP_UNSPEC) { 3967 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 3968 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 3969 prog->name, sym_name, sym_sec_name); 3970 return -LIBBPF_ERRNO__RELOC; 3971 } 3972 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3973 map = &obj->maps[map_idx]; 3974 if (map->libbpf_type != type || 3975 map->sec_idx != sym->st_shndx || 3976 map->sec_offset != sym->st_value) 3977 continue; 3978 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 3979 prog->name, map_idx, map->name, map->sec_idx, 3980 map->sec_offset, insn_idx); 3981 break; 3982 } 3983 if (map_idx >= nr_maps) { 3984 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 3985 prog->name, sym_sec_name, (size_t)sym->st_value); 3986 return -LIBBPF_ERRNO__RELOC; 3987 } 3988 reloc_desc->type = RELO_LD64; 3989 reloc_desc->insn_idx = insn_idx; 3990 reloc_desc->map_idx = map_idx; 3991 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 3992 return 0; 3993 } 3994 3995 /* global data map relocation */ 3996 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 3997 pr_warn("prog '%s': bad data relo against section '%s'\n", 3998 prog->name, sym_sec_name); 3999 return -LIBBPF_ERRNO__RELOC; 4000 } 4001 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4002 map = &obj->maps[map_idx]; 4003 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4004 continue; 4005 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4006 prog->name, map_idx, map->name, map->sec_idx, 4007 map->sec_offset, insn_idx); 4008 break; 4009 } 4010 if (map_idx >= nr_maps) { 4011 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4012 prog->name, sym_sec_name); 4013 return -LIBBPF_ERRNO__RELOC; 4014 } 4015 4016 reloc_desc->type = RELO_DATA; 4017 reloc_desc->insn_idx = insn_idx; 4018 reloc_desc->map_idx = map_idx; 4019 reloc_desc->sym_off = sym->st_value; 4020 return 0; 4021 } 4022 4023 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4024 { 4025 return insn_idx >= prog->sec_insn_off && 4026 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4027 } 4028 4029 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4030 size_t sec_idx, size_t insn_idx) 4031 { 4032 int l = 0, r = obj->nr_programs - 1, m; 4033 struct bpf_program *prog; 4034 4035 while (l < r) { 4036 m = l + (r - l + 1) / 2; 4037 prog = &obj->programs[m]; 4038 4039 if (prog->sec_idx < sec_idx || 4040 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4041 l = m; 4042 else 4043 r = m - 1; 4044 } 4045 /* matching program could be at index l, but it still might be the 4046 * wrong one, so we need to double check conditions for the last time 4047 */ 4048 prog = &obj->programs[l]; 4049 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4050 return prog; 4051 return NULL; 4052 } 4053 4054 static int 4055 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4056 { 4057 const char *relo_sec_name, *sec_name; 4058 size_t sec_idx = shdr->sh_info, sym_idx; 4059 struct bpf_program *prog; 4060 struct reloc_desc *relos; 4061 int err, i, nrels; 4062 const char *sym_name; 4063 __u32 insn_idx; 4064 Elf_Scn *scn; 4065 Elf_Data *scn_data; 4066 Elf64_Sym *sym; 4067 Elf64_Rel *rel; 4068 4069 if (sec_idx >= obj->efile.sec_cnt) 4070 return -EINVAL; 4071 4072 scn = elf_sec_by_idx(obj, sec_idx); 4073 scn_data = elf_sec_data(obj, scn); 4074 4075 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4076 sec_name = elf_sec_name(obj, scn); 4077 if (!relo_sec_name || !sec_name) 4078 return -EINVAL; 4079 4080 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4081 relo_sec_name, sec_idx, sec_name); 4082 nrels = shdr->sh_size / shdr->sh_entsize; 4083 4084 for (i = 0; i < nrels; i++) { 4085 rel = elf_rel_by_idx(data, i); 4086 if (!rel) { 4087 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4088 return -LIBBPF_ERRNO__FORMAT; 4089 } 4090 4091 sym_idx = ELF64_R_SYM(rel->r_info); 4092 sym = elf_sym_by_idx(obj, sym_idx); 4093 if (!sym) { 4094 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4095 relo_sec_name, sym_idx, i); 4096 return -LIBBPF_ERRNO__FORMAT; 4097 } 4098 4099 if (sym->st_shndx >= obj->efile.sec_cnt) { 4100 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4101 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4102 return -LIBBPF_ERRNO__FORMAT; 4103 } 4104 4105 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4106 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4107 relo_sec_name, (size_t)rel->r_offset, i); 4108 return -LIBBPF_ERRNO__FORMAT; 4109 } 4110 4111 insn_idx = rel->r_offset / BPF_INSN_SZ; 4112 /* relocations against static functions are recorded as 4113 * relocations against the section that contains a function; 4114 * in such case, symbol will be STT_SECTION and sym.st_name 4115 * will point to empty string (0), so fetch section name 4116 * instead 4117 */ 4118 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4119 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4120 else 4121 sym_name = elf_sym_str(obj, sym->st_name); 4122 sym_name = sym_name ?: "<?"; 4123 4124 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4125 relo_sec_name, i, insn_idx, sym_name); 4126 4127 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4128 if (!prog) { 4129 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4130 relo_sec_name, i, sec_name, insn_idx); 4131 continue; 4132 } 4133 4134 relos = libbpf_reallocarray(prog->reloc_desc, 4135 prog->nr_reloc + 1, sizeof(*relos)); 4136 if (!relos) 4137 return -ENOMEM; 4138 prog->reloc_desc = relos; 4139 4140 /* adjust insn_idx to local BPF program frame of reference */ 4141 insn_idx -= prog->sec_insn_off; 4142 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4143 insn_idx, sym_name, sym, rel); 4144 if (err) 4145 return err; 4146 4147 prog->nr_reloc++; 4148 } 4149 return 0; 4150 } 4151 4152 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 4153 { 4154 int id; 4155 4156 if (!obj->btf) 4157 return -ENOENT; 4158 4159 /* if it's BTF-defined map, we don't need to search for type IDs. 4160 * For struct_ops map, it does not need btf_key_type_id and 4161 * btf_value_type_id. 4162 */ 4163 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4164 return 0; 4165 4166 /* 4167 * LLVM annotates global data differently in BTF, that is, 4168 * only as '.data', '.bss' or '.rodata'. 4169 */ 4170 if (!bpf_map__is_internal(map)) 4171 return -ENOENT; 4172 4173 id = btf__find_by_name(obj->btf, map->real_name); 4174 if (id < 0) 4175 return id; 4176 4177 map->btf_key_type_id = 0; 4178 map->btf_value_type_id = id; 4179 return 0; 4180 } 4181 4182 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4183 { 4184 char file[PATH_MAX], buff[4096]; 4185 FILE *fp; 4186 __u32 val; 4187 int err; 4188 4189 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4190 memset(info, 0, sizeof(*info)); 4191 4192 fp = fopen(file, "r"); 4193 if (!fp) { 4194 err = -errno; 4195 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4196 err); 4197 return err; 4198 } 4199 4200 while (fgets(buff, sizeof(buff), fp)) { 4201 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4202 info->type = val; 4203 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4204 info->key_size = val; 4205 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4206 info->value_size = val; 4207 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4208 info->max_entries = val; 4209 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4210 info->map_flags = val; 4211 } 4212 4213 fclose(fp); 4214 4215 return 0; 4216 } 4217 4218 bool bpf_map__autocreate(const struct bpf_map *map) 4219 { 4220 return map->autocreate; 4221 } 4222 4223 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4224 { 4225 if (map->obj->loaded) 4226 return libbpf_err(-EBUSY); 4227 4228 map->autocreate = autocreate; 4229 return 0; 4230 } 4231 4232 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4233 { 4234 struct bpf_map_info info = {}; 4235 __u32 len = sizeof(info); 4236 int new_fd, err; 4237 char *new_name; 4238 4239 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4240 if (err && errno == EINVAL) 4241 err = bpf_get_map_info_from_fdinfo(fd, &info); 4242 if (err) 4243 return libbpf_err(err); 4244 4245 new_name = strdup(info.name); 4246 if (!new_name) 4247 return libbpf_err(-errno); 4248 4249 new_fd = open("/", O_RDONLY | O_CLOEXEC); 4250 if (new_fd < 0) { 4251 err = -errno; 4252 goto err_free_new_name; 4253 } 4254 4255 new_fd = dup3(fd, new_fd, O_CLOEXEC); 4256 if (new_fd < 0) { 4257 err = -errno; 4258 goto err_close_new_fd; 4259 } 4260 4261 err = zclose(map->fd); 4262 if (err) { 4263 err = -errno; 4264 goto err_close_new_fd; 4265 } 4266 free(map->name); 4267 4268 map->fd = new_fd; 4269 map->name = new_name; 4270 map->def.type = info.type; 4271 map->def.key_size = info.key_size; 4272 map->def.value_size = info.value_size; 4273 map->def.max_entries = info.max_entries; 4274 map->def.map_flags = info.map_flags; 4275 map->btf_key_type_id = info.btf_key_type_id; 4276 map->btf_value_type_id = info.btf_value_type_id; 4277 map->reused = true; 4278 map->map_extra = info.map_extra; 4279 4280 return 0; 4281 4282 err_close_new_fd: 4283 close(new_fd); 4284 err_free_new_name: 4285 free(new_name); 4286 return libbpf_err(err); 4287 } 4288 4289 __u32 bpf_map__max_entries(const struct bpf_map *map) 4290 { 4291 return map->def.max_entries; 4292 } 4293 4294 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4295 { 4296 if (!bpf_map_type__is_map_in_map(map->def.type)) 4297 return errno = EINVAL, NULL; 4298 4299 return map->inner_map; 4300 } 4301 4302 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4303 { 4304 if (map->fd >= 0) 4305 return libbpf_err(-EBUSY); 4306 map->def.max_entries = max_entries; 4307 return 0; 4308 } 4309 4310 static int 4311 bpf_object__probe_loading(struct bpf_object *obj) 4312 { 4313 char *cp, errmsg[STRERR_BUFSIZE]; 4314 struct bpf_insn insns[] = { 4315 BPF_MOV64_IMM(BPF_REG_0, 0), 4316 BPF_EXIT_INSN(), 4317 }; 4318 int ret, insn_cnt = ARRAY_SIZE(insns); 4319 4320 if (obj->gen_loader) 4321 return 0; 4322 4323 ret = bump_rlimit_memlock(); 4324 if (ret) 4325 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4326 4327 /* make sure basic loading works */ 4328 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4329 if (ret < 0) 4330 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4331 if (ret < 0) { 4332 ret = errno; 4333 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4334 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4335 "program. Make sure your kernel supports BPF " 4336 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4337 "set to big enough value.\n", __func__, cp, ret); 4338 return -ret; 4339 } 4340 close(ret); 4341 4342 return 0; 4343 } 4344 4345 static int probe_fd(int fd) 4346 { 4347 if (fd >= 0) 4348 close(fd); 4349 return fd >= 0; 4350 } 4351 4352 static int probe_kern_prog_name(void) 4353 { 4354 struct bpf_insn insns[] = { 4355 BPF_MOV64_IMM(BPF_REG_0, 0), 4356 BPF_EXIT_INSN(), 4357 }; 4358 int ret, insn_cnt = ARRAY_SIZE(insns); 4359 4360 /* make sure loading with name works */ 4361 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, "test", "GPL", insns, insn_cnt, NULL); 4362 return probe_fd(ret); 4363 } 4364 4365 static int probe_kern_global_data(void) 4366 { 4367 char *cp, errmsg[STRERR_BUFSIZE]; 4368 struct bpf_insn insns[] = { 4369 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4370 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4371 BPF_MOV64_IMM(BPF_REG_0, 0), 4372 BPF_EXIT_INSN(), 4373 }; 4374 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4375 4376 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL); 4377 if (map < 0) { 4378 ret = -errno; 4379 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4380 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4381 __func__, cp, -ret); 4382 return ret; 4383 } 4384 4385 insns[0].imm = map; 4386 4387 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4388 close(map); 4389 return probe_fd(ret); 4390 } 4391 4392 static int probe_kern_btf(void) 4393 { 4394 static const char strs[] = "\0int"; 4395 __u32 types[] = { 4396 /* int */ 4397 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4398 }; 4399 4400 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4401 strs, sizeof(strs))); 4402 } 4403 4404 static int probe_kern_btf_func(void) 4405 { 4406 static const char strs[] = "\0int\0x\0a"; 4407 /* void x(int a) {} */ 4408 __u32 types[] = { 4409 /* int */ 4410 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4411 /* FUNC_PROTO */ /* [2] */ 4412 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4413 BTF_PARAM_ENC(7, 1), 4414 /* FUNC x */ /* [3] */ 4415 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4416 }; 4417 4418 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4419 strs, sizeof(strs))); 4420 } 4421 4422 static int probe_kern_btf_func_global(void) 4423 { 4424 static const char strs[] = "\0int\0x\0a"; 4425 /* static void x(int a) {} */ 4426 __u32 types[] = { 4427 /* int */ 4428 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4429 /* FUNC_PROTO */ /* [2] */ 4430 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4431 BTF_PARAM_ENC(7, 1), 4432 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4433 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4434 }; 4435 4436 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4437 strs, sizeof(strs))); 4438 } 4439 4440 static int probe_kern_btf_datasec(void) 4441 { 4442 static const char strs[] = "\0x\0.data"; 4443 /* static int a; */ 4444 __u32 types[] = { 4445 /* int */ 4446 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4447 /* VAR x */ /* [2] */ 4448 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4449 BTF_VAR_STATIC, 4450 /* DATASEC val */ /* [3] */ 4451 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4452 BTF_VAR_SECINFO_ENC(2, 0, 4), 4453 }; 4454 4455 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4456 strs, sizeof(strs))); 4457 } 4458 4459 static int probe_kern_btf_float(void) 4460 { 4461 static const char strs[] = "\0float"; 4462 __u32 types[] = { 4463 /* float */ 4464 BTF_TYPE_FLOAT_ENC(1, 4), 4465 }; 4466 4467 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4468 strs, sizeof(strs))); 4469 } 4470 4471 static int probe_kern_btf_decl_tag(void) 4472 { 4473 static const char strs[] = "\0tag"; 4474 __u32 types[] = { 4475 /* int */ 4476 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4477 /* VAR x */ /* [2] */ 4478 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4479 BTF_VAR_STATIC, 4480 /* attr */ 4481 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4482 }; 4483 4484 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4485 strs, sizeof(strs))); 4486 } 4487 4488 static int probe_kern_btf_type_tag(void) 4489 { 4490 static const char strs[] = "\0tag"; 4491 __u32 types[] = { 4492 /* int */ 4493 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4494 /* attr */ 4495 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4496 /* ptr */ 4497 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4498 }; 4499 4500 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4501 strs, sizeof(strs))); 4502 } 4503 4504 static int probe_kern_array_mmap(void) 4505 { 4506 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4507 int fd; 4508 4509 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), sizeof(int), 1, &opts); 4510 return probe_fd(fd); 4511 } 4512 4513 static int probe_kern_exp_attach_type(void) 4514 { 4515 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4516 struct bpf_insn insns[] = { 4517 BPF_MOV64_IMM(BPF_REG_0, 0), 4518 BPF_EXIT_INSN(), 4519 }; 4520 int fd, insn_cnt = ARRAY_SIZE(insns); 4521 4522 /* use any valid combination of program type and (optional) 4523 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4524 * to see if kernel supports expected_attach_type field for 4525 * BPF_PROG_LOAD command 4526 */ 4527 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4528 return probe_fd(fd); 4529 } 4530 4531 static int probe_kern_probe_read_kernel(void) 4532 { 4533 struct bpf_insn insns[] = { 4534 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4535 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4536 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4537 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4538 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4539 BPF_EXIT_INSN(), 4540 }; 4541 int fd, insn_cnt = ARRAY_SIZE(insns); 4542 4543 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4544 return probe_fd(fd); 4545 } 4546 4547 static int probe_prog_bind_map(void) 4548 { 4549 char *cp, errmsg[STRERR_BUFSIZE]; 4550 struct bpf_insn insns[] = { 4551 BPF_MOV64_IMM(BPF_REG_0, 0), 4552 BPF_EXIT_INSN(), 4553 }; 4554 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4555 4556 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL); 4557 if (map < 0) { 4558 ret = -errno; 4559 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4560 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4561 __func__, cp, -ret); 4562 return ret; 4563 } 4564 4565 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4566 if (prog < 0) { 4567 close(map); 4568 return 0; 4569 } 4570 4571 ret = bpf_prog_bind_map(prog, map, NULL); 4572 4573 close(map); 4574 close(prog); 4575 4576 return ret >= 0; 4577 } 4578 4579 static int probe_module_btf(void) 4580 { 4581 static const char strs[] = "\0int"; 4582 __u32 types[] = { 4583 /* int */ 4584 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4585 }; 4586 struct bpf_btf_info info; 4587 __u32 len = sizeof(info); 4588 char name[16]; 4589 int fd, err; 4590 4591 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4592 if (fd < 0) 4593 return 0; /* BTF not supported at all */ 4594 4595 memset(&info, 0, sizeof(info)); 4596 info.name = ptr_to_u64(name); 4597 info.name_len = sizeof(name); 4598 4599 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4600 * kernel's module BTF support coincides with support for 4601 * name/name_len fields in struct bpf_btf_info. 4602 */ 4603 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4604 close(fd); 4605 return !err; 4606 } 4607 4608 static int probe_perf_link(void) 4609 { 4610 struct bpf_insn insns[] = { 4611 BPF_MOV64_IMM(BPF_REG_0, 0), 4612 BPF_EXIT_INSN(), 4613 }; 4614 int prog_fd, link_fd, err; 4615 4616 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4617 insns, ARRAY_SIZE(insns), NULL); 4618 if (prog_fd < 0) 4619 return -errno; 4620 4621 /* use invalid perf_event FD to get EBADF, if link is supported; 4622 * otherwise EINVAL should be returned 4623 */ 4624 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4625 err = -errno; /* close() can clobber errno */ 4626 4627 if (link_fd >= 0) 4628 close(link_fd); 4629 close(prog_fd); 4630 4631 return link_fd < 0 && err == -EBADF; 4632 } 4633 4634 static int probe_kern_bpf_cookie(void) 4635 { 4636 struct bpf_insn insns[] = { 4637 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie), 4638 BPF_EXIT_INSN(), 4639 }; 4640 int ret, insn_cnt = ARRAY_SIZE(insns); 4641 4642 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4643 return probe_fd(ret); 4644 } 4645 4646 static int probe_kern_btf_enum64(void) 4647 { 4648 static const char strs[] = "\0enum64"; 4649 __u32 types[] = { 4650 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8), 4651 }; 4652 4653 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4654 strs, sizeof(strs))); 4655 } 4656 4657 enum kern_feature_result { 4658 FEAT_UNKNOWN = 0, 4659 FEAT_SUPPORTED = 1, 4660 FEAT_MISSING = 2, 4661 }; 4662 4663 typedef int (*feature_probe_fn)(void); 4664 4665 static struct kern_feature_desc { 4666 const char *desc; 4667 feature_probe_fn probe; 4668 enum kern_feature_result res; 4669 } feature_probes[__FEAT_CNT] = { 4670 [FEAT_PROG_NAME] = { 4671 "BPF program name", probe_kern_prog_name, 4672 }, 4673 [FEAT_GLOBAL_DATA] = { 4674 "global variables", probe_kern_global_data, 4675 }, 4676 [FEAT_BTF] = { 4677 "minimal BTF", probe_kern_btf, 4678 }, 4679 [FEAT_BTF_FUNC] = { 4680 "BTF functions", probe_kern_btf_func, 4681 }, 4682 [FEAT_BTF_GLOBAL_FUNC] = { 4683 "BTF global function", probe_kern_btf_func_global, 4684 }, 4685 [FEAT_BTF_DATASEC] = { 4686 "BTF data section and variable", probe_kern_btf_datasec, 4687 }, 4688 [FEAT_ARRAY_MMAP] = { 4689 "ARRAY map mmap()", probe_kern_array_mmap, 4690 }, 4691 [FEAT_EXP_ATTACH_TYPE] = { 4692 "BPF_PROG_LOAD expected_attach_type attribute", 4693 probe_kern_exp_attach_type, 4694 }, 4695 [FEAT_PROBE_READ_KERN] = { 4696 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4697 }, 4698 [FEAT_PROG_BIND_MAP] = { 4699 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4700 }, 4701 [FEAT_MODULE_BTF] = { 4702 "module BTF support", probe_module_btf, 4703 }, 4704 [FEAT_BTF_FLOAT] = { 4705 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4706 }, 4707 [FEAT_PERF_LINK] = { 4708 "BPF perf link support", probe_perf_link, 4709 }, 4710 [FEAT_BTF_DECL_TAG] = { 4711 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 4712 }, 4713 [FEAT_BTF_TYPE_TAG] = { 4714 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 4715 }, 4716 [FEAT_MEMCG_ACCOUNT] = { 4717 "memcg-based memory accounting", probe_memcg_account, 4718 }, 4719 [FEAT_BPF_COOKIE] = { 4720 "BPF cookie support", probe_kern_bpf_cookie, 4721 }, 4722 [FEAT_BTF_ENUM64] = { 4723 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64, 4724 }, 4725 }; 4726 4727 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4728 { 4729 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4730 int ret; 4731 4732 if (obj && obj->gen_loader) 4733 /* To generate loader program assume the latest kernel 4734 * to avoid doing extra prog_load, map_create syscalls. 4735 */ 4736 return true; 4737 4738 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4739 ret = feat->probe(); 4740 if (ret > 0) { 4741 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4742 } else if (ret == 0) { 4743 WRITE_ONCE(feat->res, FEAT_MISSING); 4744 } else { 4745 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4746 WRITE_ONCE(feat->res, FEAT_MISSING); 4747 } 4748 } 4749 4750 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4751 } 4752 4753 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4754 { 4755 struct bpf_map_info map_info = {}; 4756 char msg[STRERR_BUFSIZE]; 4757 __u32 map_info_len; 4758 int err; 4759 4760 map_info_len = sizeof(map_info); 4761 4762 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len); 4763 if (err && errno == EINVAL) 4764 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 4765 if (err) { 4766 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 4767 libbpf_strerror_r(errno, msg, sizeof(msg))); 4768 return false; 4769 } 4770 4771 return (map_info.type == map->def.type && 4772 map_info.key_size == map->def.key_size && 4773 map_info.value_size == map->def.value_size && 4774 map_info.max_entries == map->def.max_entries && 4775 map_info.map_flags == map->def.map_flags && 4776 map_info.map_extra == map->map_extra); 4777 } 4778 4779 static int 4780 bpf_object__reuse_map(struct bpf_map *map) 4781 { 4782 char *cp, errmsg[STRERR_BUFSIZE]; 4783 int err, pin_fd; 4784 4785 pin_fd = bpf_obj_get(map->pin_path); 4786 if (pin_fd < 0) { 4787 err = -errno; 4788 if (err == -ENOENT) { 4789 pr_debug("found no pinned map to reuse at '%s'\n", 4790 map->pin_path); 4791 return 0; 4792 } 4793 4794 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4795 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4796 map->pin_path, cp); 4797 return err; 4798 } 4799 4800 if (!map_is_reuse_compat(map, pin_fd)) { 4801 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4802 map->pin_path); 4803 close(pin_fd); 4804 return -EINVAL; 4805 } 4806 4807 err = bpf_map__reuse_fd(map, pin_fd); 4808 close(pin_fd); 4809 if (err) { 4810 return err; 4811 } 4812 map->pinned = true; 4813 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4814 4815 return 0; 4816 } 4817 4818 static int 4819 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4820 { 4821 enum libbpf_map_type map_type = map->libbpf_type; 4822 char *cp, errmsg[STRERR_BUFSIZE]; 4823 int err, zero = 0; 4824 4825 if (obj->gen_loader) { 4826 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 4827 map->mmaped, map->def.value_size); 4828 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 4829 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 4830 return 0; 4831 } 4832 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4833 if (err) { 4834 err = -errno; 4835 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4836 pr_warn("Error setting initial map(%s) contents: %s\n", 4837 map->name, cp); 4838 return err; 4839 } 4840 4841 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 4842 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 4843 err = bpf_map_freeze(map->fd); 4844 if (err) { 4845 err = -errno; 4846 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4847 pr_warn("Error freezing map(%s) as read-only: %s\n", 4848 map->name, cp); 4849 return err; 4850 } 4851 } 4852 return 0; 4853 } 4854 4855 static void bpf_map__destroy(struct bpf_map *map); 4856 4857 static size_t adjust_ringbuf_sz(size_t sz) 4858 { 4859 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 4860 __u32 mul; 4861 4862 /* if user forgot to set any size, make sure they see error */ 4863 if (sz == 0) 4864 return 0; 4865 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 4866 * a power-of-2 multiple of kernel's page size. If user diligently 4867 * satisified these conditions, pass the size through. 4868 */ 4869 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 4870 return sz; 4871 4872 /* Otherwise find closest (page_sz * power_of_2) product bigger than 4873 * user-set size to satisfy both user size request and kernel 4874 * requirements and substitute correct max_entries for map creation. 4875 */ 4876 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 4877 if (mul * page_sz > sz) 4878 return mul * page_sz; 4879 } 4880 4881 /* if it's impossible to satisfy the conditions (i.e., user size is 4882 * very close to UINT_MAX but is not a power-of-2 multiple of 4883 * page_size) then just return original size and let kernel reject it 4884 */ 4885 return sz; 4886 } 4887 4888 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 4889 { 4890 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 4891 struct bpf_map_def *def = &map->def; 4892 const char *map_name = NULL; 4893 int err = 0; 4894 4895 if (kernel_supports(obj, FEAT_PROG_NAME)) 4896 map_name = map->name; 4897 create_attr.map_ifindex = map->map_ifindex; 4898 create_attr.map_flags = def->map_flags; 4899 create_attr.numa_node = map->numa_node; 4900 create_attr.map_extra = map->map_extra; 4901 4902 if (bpf_map__is_struct_ops(map)) 4903 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 4904 4905 if (obj->btf && btf__fd(obj->btf) >= 0) { 4906 create_attr.btf_fd = btf__fd(obj->btf); 4907 create_attr.btf_key_type_id = map->btf_key_type_id; 4908 create_attr.btf_value_type_id = map->btf_value_type_id; 4909 } 4910 4911 if (bpf_map_type__is_map_in_map(def->type)) { 4912 if (map->inner_map) { 4913 err = bpf_object__create_map(obj, map->inner_map, true); 4914 if (err) { 4915 pr_warn("map '%s': failed to create inner map: %d\n", 4916 map->name, err); 4917 return err; 4918 } 4919 map->inner_map_fd = bpf_map__fd(map->inner_map); 4920 } 4921 if (map->inner_map_fd >= 0) 4922 create_attr.inner_map_fd = map->inner_map_fd; 4923 } 4924 4925 switch (def->type) { 4926 case BPF_MAP_TYPE_RINGBUF: 4927 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4928 /* fallthrough */ 4929 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 4930 case BPF_MAP_TYPE_CGROUP_ARRAY: 4931 case BPF_MAP_TYPE_STACK_TRACE: 4932 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 4933 case BPF_MAP_TYPE_HASH_OF_MAPS: 4934 case BPF_MAP_TYPE_DEVMAP: 4935 case BPF_MAP_TYPE_DEVMAP_HASH: 4936 case BPF_MAP_TYPE_CPUMAP: 4937 case BPF_MAP_TYPE_XSKMAP: 4938 case BPF_MAP_TYPE_SOCKMAP: 4939 case BPF_MAP_TYPE_SOCKHASH: 4940 case BPF_MAP_TYPE_QUEUE: 4941 case BPF_MAP_TYPE_STACK: 4942 create_attr.btf_fd = 0; 4943 create_attr.btf_key_type_id = 0; 4944 create_attr.btf_value_type_id = 0; 4945 map->btf_key_type_id = 0; 4946 map->btf_value_type_id = 0; 4947 default: 4948 break; 4949 } 4950 4951 if (obj->gen_loader) { 4952 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 4953 def->key_size, def->value_size, def->max_entries, 4954 &create_attr, is_inner ? -1 : map - obj->maps); 4955 /* Pretend to have valid FD to pass various fd >= 0 checks. 4956 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 4957 */ 4958 map->fd = 0; 4959 } else { 4960 map->fd = bpf_map_create(def->type, map_name, 4961 def->key_size, def->value_size, 4962 def->max_entries, &create_attr); 4963 } 4964 if (map->fd < 0 && (create_attr.btf_key_type_id || 4965 create_attr.btf_value_type_id)) { 4966 char *cp, errmsg[STRERR_BUFSIZE]; 4967 4968 err = -errno; 4969 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4970 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 4971 map->name, cp, err); 4972 create_attr.btf_fd = 0; 4973 create_attr.btf_key_type_id = 0; 4974 create_attr.btf_value_type_id = 0; 4975 map->btf_key_type_id = 0; 4976 map->btf_value_type_id = 0; 4977 map->fd = bpf_map_create(def->type, map_name, 4978 def->key_size, def->value_size, 4979 def->max_entries, &create_attr); 4980 } 4981 4982 err = map->fd < 0 ? -errno : 0; 4983 4984 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 4985 if (obj->gen_loader) 4986 map->inner_map->fd = -1; 4987 bpf_map__destroy(map->inner_map); 4988 zfree(&map->inner_map); 4989 } 4990 4991 return err; 4992 } 4993 4994 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 4995 { 4996 const struct bpf_map *targ_map; 4997 unsigned int i; 4998 int fd, err = 0; 4999 5000 for (i = 0; i < map->init_slots_sz; i++) { 5001 if (!map->init_slots[i]) 5002 continue; 5003 5004 targ_map = map->init_slots[i]; 5005 fd = bpf_map__fd(targ_map); 5006 5007 if (obj->gen_loader) { 5008 bpf_gen__populate_outer_map(obj->gen_loader, 5009 map - obj->maps, i, 5010 targ_map - obj->maps); 5011 } else { 5012 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5013 } 5014 if (err) { 5015 err = -errno; 5016 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5017 map->name, i, targ_map->name, fd, err); 5018 return err; 5019 } 5020 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5021 map->name, i, targ_map->name, fd); 5022 } 5023 5024 zfree(&map->init_slots); 5025 map->init_slots_sz = 0; 5026 5027 return 0; 5028 } 5029 5030 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5031 { 5032 const struct bpf_program *targ_prog; 5033 unsigned int i; 5034 int fd, err; 5035 5036 if (obj->gen_loader) 5037 return -ENOTSUP; 5038 5039 for (i = 0; i < map->init_slots_sz; i++) { 5040 if (!map->init_slots[i]) 5041 continue; 5042 5043 targ_prog = map->init_slots[i]; 5044 fd = bpf_program__fd(targ_prog); 5045 5046 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5047 if (err) { 5048 err = -errno; 5049 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5050 map->name, i, targ_prog->name, fd, err); 5051 return err; 5052 } 5053 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5054 map->name, i, targ_prog->name, fd); 5055 } 5056 5057 zfree(&map->init_slots); 5058 map->init_slots_sz = 0; 5059 5060 return 0; 5061 } 5062 5063 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5064 { 5065 struct bpf_map *map; 5066 int i, err; 5067 5068 for (i = 0; i < obj->nr_maps; i++) { 5069 map = &obj->maps[i]; 5070 5071 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5072 continue; 5073 5074 err = init_prog_array_slots(obj, map); 5075 if (err < 0) { 5076 zclose(map->fd); 5077 return err; 5078 } 5079 } 5080 return 0; 5081 } 5082 5083 static int map_set_def_max_entries(struct bpf_map *map) 5084 { 5085 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5086 int nr_cpus; 5087 5088 nr_cpus = libbpf_num_possible_cpus(); 5089 if (nr_cpus < 0) { 5090 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5091 map->name, nr_cpus); 5092 return nr_cpus; 5093 } 5094 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5095 map->def.max_entries = nr_cpus; 5096 } 5097 5098 return 0; 5099 } 5100 5101 static int 5102 bpf_object__create_maps(struct bpf_object *obj) 5103 { 5104 struct bpf_map *map; 5105 char *cp, errmsg[STRERR_BUFSIZE]; 5106 unsigned int i, j; 5107 int err; 5108 bool retried; 5109 5110 for (i = 0; i < obj->nr_maps; i++) { 5111 map = &obj->maps[i]; 5112 5113 /* To support old kernels, we skip creating global data maps 5114 * (.rodata, .data, .kconfig, etc); later on, during program 5115 * loading, if we detect that at least one of the to-be-loaded 5116 * programs is referencing any global data map, we'll error 5117 * out with program name and relocation index logged. 5118 * This approach allows to accommodate Clang emitting 5119 * unnecessary .rodata.str1.1 sections for string literals, 5120 * but also it allows to have CO-RE applications that use 5121 * global variables in some of BPF programs, but not others. 5122 * If those global variable-using programs are not loaded at 5123 * runtime due to bpf_program__set_autoload(prog, false), 5124 * bpf_object loading will succeed just fine even on old 5125 * kernels. 5126 */ 5127 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5128 map->autocreate = false; 5129 5130 if (!map->autocreate) { 5131 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5132 continue; 5133 } 5134 5135 err = map_set_def_max_entries(map); 5136 if (err) 5137 goto err_out; 5138 5139 retried = false; 5140 retry: 5141 if (map->pin_path) { 5142 err = bpf_object__reuse_map(map); 5143 if (err) { 5144 pr_warn("map '%s': error reusing pinned map\n", 5145 map->name); 5146 goto err_out; 5147 } 5148 if (retried && map->fd < 0) { 5149 pr_warn("map '%s': cannot find pinned map\n", 5150 map->name); 5151 err = -ENOENT; 5152 goto err_out; 5153 } 5154 } 5155 5156 if (map->fd >= 0) { 5157 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5158 map->name, map->fd); 5159 } else { 5160 err = bpf_object__create_map(obj, map, false); 5161 if (err) 5162 goto err_out; 5163 5164 pr_debug("map '%s': created successfully, fd=%d\n", 5165 map->name, map->fd); 5166 5167 if (bpf_map__is_internal(map)) { 5168 err = bpf_object__populate_internal_map(obj, map); 5169 if (err < 0) { 5170 zclose(map->fd); 5171 goto err_out; 5172 } 5173 } 5174 5175 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5176 err = init_map_in_map_slots(obj, map); 5177 if (err < 0) { 5178 zclose(map->fd); 5179 goto err_out; 5180 } 5181 } 5182 } 5183 5184 if (map->pin_path && !map->pinned) { 5185 err = bpf_map__pin(map, NULL); 5186 if (err) { 5187 zclose(map->fd); 5188 if (!retried && err == -EEXIST) { 5189 retried = true; 5190 goto retry; 5191 } 5192 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5193 map->name, map->pin_path, err); 5194 goto err_out; 5195 } 5196 } 5197 } 5198 5199 return 0; 5200 5201 err_out: 5202 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5203 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5204 pr_perm_msg(err); 5205 for (j = 0; j < i; j++) 5206 zclose(obj->maps[j].fd); 5207 return err; 5208 } 5209 5210 static bool bpf_core_is_flavor_sep(const char *s) 5211 { 5212 /* check X___Y name pattern, where X and Y are not underscores */ 5213 return s[0] != '_' && /* X */ 5214 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5215 s[4] != '_'; /* Y */ 5216 } 5217 5218 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5219 * before last triple underscore. Struct name part after last triple 5220 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5221 */ 5222 size_t bpf_core_essential_name_len(const char *name) 5223 { 5224 size_t n = strlen(name); 5225 int i; 5226 5227 for (i = n - 5; i >= 0; i--) { 5228 if (bpf_core_is_flavor_sep(name + i)) 5229 return i + 1; 5230 } 5231 return n; 5232 } 5233 5234 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5235 { 5236 if (!cands) 5237 return; 5238 5239 free(cands->cands); 5240 free(cands); 5241 } 5242 5243 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5244 size_t local_essent_len, 5245 const struct btf *targ_btf, 5246 const char *targ_btf_name, 5247 int targ_start_id, 5248 struct bpf_core_cand_list *cands) 5249 { 5250 struct bpf_core_cand *new_cands, *cand; 5251 const struct btf_type *t, *local_t; 5252 const char *targ_name, *local_name; 5253 size_t targ_essent_len; 5254 int n, i; 5255 5256 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5257 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5258 5259 n = btf__type_cnt(targ_btf); 5260 for (i = targ_start_id; i < n; i++) { 5261 t = btf__type_by_id(targ_btf, i); 5262 if (!btf_kind_core_compat(t, local_t)) 5263 continue; 5264 5265 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5266 if (str_is_empty(targ_name)) 5267 continue; 5268 5269 targ_essent_len = bpf_core_essential_name_len(targ_name); 5270 if (targ_essent_len != local_essent_len) 5271 continue; 5272 5273 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5274 continue; 5275 5276 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5277 local_cand->id, btf_kind_str(local_t), 5278 local_name, i, btf_kind_str(t), targ_name, 5279 targ_btf_name); 5280 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5281 sizeof(*cands->cands)); 5282 if (!new_cands) 5283 return -ENOMEM; 5284 5285 cand = &new_cands[cands->len]; 5286 cand->btf = targ_btf; 5287 cand->id = i; 5288 5289 cands->cands = new_cands; 5290 cands->len++; 5291 } 5292 return 0; 5293 } 5294 5295 static int load_module_btfs(struct bpf_object *obj) 5296 { 5297 struct bpf_btf_info info; 5298 struct module_btf *mod_btf; 5299 struct btf *btf; 5300 char name[64]; 5301 __u32 id = 0, len; 5302 int err, fd; 5303 5304 if (obj->btf_modules_loaded) 5305 return 0; 5306 5307 if (obj->gen_loader) 5308 return 0; 5309 5310 /* don't do this again, even if we find no module BTFs */ 5311 obj->btf_modules_loaded = true; 5312 5313 /* kernel too old to support module BTFs */ 5314 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5315 return 0; 5316 5317 while (true) { 5318 err = bpf_btf_get_next_id(id, &id); 5319 if (err && errno == ENOENT) 5320 return 0; 5321 if (err) { 5322 err = -errno; 5323 pr_warn("failed to iterate BTF objects: %d\n", err); 5324 return err; 5325 } 5326 5327 fd = bpf_btf_get_fd_by_id(id); 5328 if (fd < 0) { 5329 if (errno == ENOENT) 5330 continue; /* expected race: BTF was unloaded */ 5331 err = -errno; 5332 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5333 return err; 5334 } 5335 5336 len = sizeof(info); 5337 memset(&info, 0, sizeof(info)); 5338 info.name = ptr_to_u64(name); 5339 info.name_len = sizeof(name); 5340 5341 err = bpf_obj_get_info_by_fd(fd, &info, &len); 5342 if (err) { 5343 err = -errno; 5344 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5345 goto err_out; 5346 } 5347 5348 /* ignore non-module BTFs */ 5349 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5350 close(fd); 5351 continue; 5352 } 5353 5354 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5355 err = libbpf_get_error(btf); 5356 if (err) { 5357 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5358 name, id, err); 5359 goto err_out; 5360 } 5361 5362 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5363 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5364 if (err) 5365 goto err_out; 5366 5367 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5368 5369 mod_btf->btf = btf; 5370 mod_btf->id = id; 5371 mod_btf->fd = fd; 5372 mod_btf->name = strdup(name); 5373 if (!mod_btf->name) { 5374 err = -ENOMEM; 5375 goto err_out; 5376 } 5377 continue; 5378 5379 err_out: 5380 close(fd); 5381 return err; 5382 } 5383 5384 return 0; 5385 } 5386 5387 static struct bpf_core_cand_list * 5388 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5389 { 5390 struct bpf_core_cand local_cand = {}; 5391 struct bpf_core_cand_list *cands; 5392 const struct btf *main_btf; 5393 const struct btf_type *local_t; 5394 const char *local_name; 5395 size_t local_essent_len; 5396 int err, i; 5397 5398 local_cand.btf = local_btf; 5399 local_cand.id = local_type_id; 5400 local_t = btf__type_by_id(local_btf, local_type_id); 5401 if (!local_t) 5402 return ERR_PTR(-EINVAL); 5403 5404 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5405 if (str_is_empty(local_name)) 5406 return ERR_PTR(-EINVAL); 5407 local_essent_len = bpf_core_essential_name_len(local_name); 5408 5409 cands = calloc(1, sizeof(*cands)); 5410 if (!cands) 5411 return ERR_PTR(-ENOMEM); 5412 5413 /* Attempt to find target candidates in vmlinux BTF first */ 5414 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5415 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5416 if (err) 5417 goto err_out; 5418 5419 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5420 if (cands->len) 5421 return cands; 5422 5423 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5424 if (obj->btf_vmlinux_override) 5425 return cands; 5426 5427 /* now look through module BTFs, trying to still find candidates */ 5428 err = load_module_btfs(obj); 5429 if (err) 5430 goto err_out; 5431 5432 for (i = 0; i < obj->btf_module_cnt; i++) { 5433 err = bpf_core_add_cands(&local_cand, local_essent_len, 5434 obj->btf_modules[i].btf, 5435 obj->btf_modules[i].name, 5436 btf__type_cnt(obj->btf_vmlinux), 5437 cands); 5438 if (err) 5439 goto err_out; 5440 } 5441 5442 return cands; 5443 err_out: 5444 bpf_core_free_cands(cands); 5445 return ERR_PTR(err); 5446 } 5447 5448 /* Check local and target types for compatibility. This check is used for 5449 * type-based CO-RE relocations and follow slightly different rules than 5450 * field-based relocations. This function assumes that root types were already 5451 * checked for name match. Beyond that initial root-level name check, names 5452 * are completely ignored. Compatibility rules are as follows: 5453 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5454 * kind should match for local and target types (i.e., STRUCT is not 5455 * compatible with UNION); 5456 * - for ENUMs, the size is ignored; 5457 * - for INT, size and signedness are ignored; 5458 * - for ARRAY, dimensionality is ignored, element types are checked for 5459 * compatibility recursively; 5460 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5461 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5462 * - FUNC_PROTOs are compatible if they have compatible signature: same 5463 * number of input args and compatible return and argument types. 5464 * These rules are not set in stone and probably will be adjusted as we get 5465 * more experience with using BPF CO-RE relocations. 5466 */ 5467 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5468 const struct btf *targ_btf, __u32 targ_id) 5469 { 5470 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5471 } 5472 5473 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5474 const struct btf *targ_btf, __u32 targ_id) 5475 { 5476 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5477 } 5478 5479 static size_t bpf_core_hash_fn(const void *key, void *ctx) 5480 { 5481 return (size_t)key; 5482 } 5483 5484 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 5485 { 5486 return k1 == k2; 5487 } 5488 5489 static void *u32_as_hash_key(__u32 x) 5490 { 5491 return (void *)(uintptr_t)x; 5492 } 5493 5494 static int record_relo_core(struct bpf_program *prog, 5495 const struct bpf_core_relo *core_relo, int insn_idx) 5496 { 5497 struct reloc_desc *relos, *relo; 5498 5499 relos = libbpf_reallocarray(prog->reloc_desc, 5500 prog->nr_reloc + 1, sizeof(*relos)); 5501 if (!relos) 5502 return -ENOMEM; 5503 relo = &relos[prog->nr_reloc]; 5504 relo->type = RELO_CORE; 5505 relo->insn_idx = insn_idx; 5506 relo->core_relo = core_relo; 5507 prog->reloc_desc = relos; 5508 prog->nr_reloc++; 5509 return 0; 5510 } 5511 5512 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5513 { 5514 struct reloc_desc *relo; 5515 int i; 5516 5517 for (i = 0; i < prog->nr_reloc; i++) { 5518 relo = &prog->reloc_desc[i]; 5519 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5520 continue; 5521 5522 return relo->core_relo; 5523 } 5524 5525 return NULL; 5526 } 5527 5528 static int bpf_core_resolve_relo(struct bpf_program *prog, 5529 const struct bpf_core_relo *relo, 5530 int relo_idx, 5531 const struct btf *local_btf, 5532 struct hashmap *cand_cache, 5533 struct bpf_core_relo_res *targ_res) 5534 { 5535 struct bpf_core_spec specs_scratch[3] = {}; 5536 const void *type_key = u32_as_hash_key(relo->type_id); 5537 struct bpf_core_cand_list *cands = NULL; 5538 const char *prog_name = prog->name; 5539 const struct btf_type *local_type; 5540 const char *local_name; 5541 __u32 local_id = relo->type_id; 5542 int err; 5543 5544 local_type = btf__type_by_id(local_btf, local_id); 5545 if (!local_type) 5546 return -EINVAL; 5547 5548 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5549 if (!local_name) 5550 return -EINVAL; 5551 5552 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5553 !hashmap__find(cand_cache, type_key, (void **)&cands)) { 5554 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5555 if (IS_ERR(cands)) { 5556 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5557 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5558 local_name, PTR_ERR(cands)); 5559 return PTR_ERR(cands); 5560 } 5561 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL); 5562 if (err) { 5563 bpf_core_free_cands(cands); 5564 return err; 5565 } 5566 } 5567 5568 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5569 targ_res); 5570 } 5571 5572 static int 5573 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5574 { 5575 const struct btf_ext_info_sec *sec; 5576 struct bpf_core_relo_res targ_res; 5577 const struct bpf_core_relo *rec; 5578 const struct btf_ext_info *seg; 5579 struct hashmap_entry *entry; 5580 struct hashmap *cand_cache = NULL; 5581 struct bpf_program *prog; 5582 struct bpf_insn *insn; 5583 const char *sec_name; 5584 int i, err = 0, insn_idx, sec_idx, sec_num; 5585 5586 if (obj->btf_ext->core_relo_info.len == 0) 5587 return 0; 5588 5589 if (targ_btf_path) { 5590 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5591 err = libbpf_get_error(obj->btf_vmlinux_override); 5592 if (err) { 5593 pr_warn("failed to parse target BTF: %d\n", err); 5594 return err; 5595 } 5596 } 5597 5598 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5599 if (IS_ERR(cand_cache)) { 5600 err = PTR_ERR(cand_cache); 5601 goto out; 5602 } 5603 5604 seg = &obj->btf_ext->core_relo_info; 5605 sec_num = 0; 5606 for_each_btf_ext_sec(seg, sec) { 5607 sec_idx = seg->sec_idxs[sec_num]; 5608 sec_num++; 5609 5610 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5611 if (str_is_empty(sec_name)) { 5612 err = -EINVAL; 5613 goto out; 5614 } 5615 5616 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5617 5618 for_each_btf_ext_rec(seg, sec, i, rec) { 5619 if (rec->insn_off % BPF_INSN_SZ) 5620 return -EINVAL; 5621 insn_idx = rec->insn_off / BPF_INSN_SZ; 5622 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5623 if (!prog) { 5624 /* When __weak subprog is "overridden" by another instance 5625 * of the subprog from a different object file, linker still 5626 * appends all the .BTF.ext info that used to belong to that 5627 * eliminated subprogram. 5628 * This is similar to what x86-64 linker does for relocations. 5629 * So just ignore such relocations just like we ignore 5630 * subprog instructions when discovering subprograms. 5631 */ 5632 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5633 sec_name, i, insn_idx); 5634 continue; 5635 } 5636 /* no need to apply CO-RE relocation if the program is 5637 * not going to be loaded 5638 */ 5639 if (!prog->autoload) 5640 continue; 5641 5642 /* adjust insn_idx from section frame of reference to the local 5643 * program's frame of reference; (sub-)program code is not yet 5644 * relocated, so it's enough to just subtract in-section offset 5645 */ 5646 insn_idx = insn_idx - prog->sec_insn_off; 5647 if (insn_idx >= prog->insns_cnt) 5648 return -EINVAL; 5649 insn = &prog->insns[insn_idx]; 5650 5651 err = record_relo_core(prog, rec, insn_idx); 5652 if (err) { 5653 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5654 prog->name, i, err); 5655 goto out; 5656 } 5657 5658 if (prog->obj->gen_loader) 5659 continue; 5660 5661 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5662 if (err) { 5663 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5664 prog->name, i, err); 5665 goto out; 5666 } 5667 5668 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5669 if (err) { 5670 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5671 prog->name, i, insn_idx, err); 5672 goto out; 5673 } 5674 } 5675 } 5676 5677 out: 5678 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5679 btf__free(obj->btf_vmlinux_override); 5680 obj->btf_vmlinux_override = NULL; 5681 5682 if (!IS_ERR_OR_NULL(cand_cache)) { 5683 hashmap__for_each_entry(cand_cache, entry, i) { 5684 bpf_core_free_cands(entry->value); 5685 } 5686 hashmap__free(cand_cache); 5687 } 5688 return err; 5689 } 5690 5691 /* base map load ldimm64 special constant, used also for log fixup logic */ 5692 #define MAP_LDIMM64_POISON_BASE 2001000000 5693 #define MAP_LDIMM64_POISON_PFX "200100" 5694 5695 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 5696 int insn_idx, struct bpf_insn *insn, 5697 int map_idx, const struct bpf_map *map) 5698 { 5699 int i; 5700 5701 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 5702 prog->name, relo_idx, insn_idx, map_idx, map->name); 5703 5704 /* we turn single ldimm64 into two identical invalid calls */ 5705 for (i = 0; i < 2; i++) { 5706 insn->code = BPF_JMP | BPF_CALL; 5707 insn->dst_reg = 0; 5708 insn->src_reg = 0; 5709 insn->off = 0; 5710 /* if this instruction is reachable (not a dead code), 5711 * verifier will complain with something like: 5712 * invalid func unknown#2001000123 5713 * where lower 123 is map index into obj->maps[] array 5714 */ 5715 insn->imm = MAP_LDIMM64_POISON_BASE + map_idx; 5716 5717 insn++; 5718 } 5719 } 5720 5721 /* Relocate data references within program code: 5722 * - map references; 5723 * - global variable references; 5724 * - extern references. 5725 */ 5726 static int 5727 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5728 { 5729 int i; 5730 5731 for (i = 0; i < prog->nr_reloc; i++) { 5732 struct reloc_desc *relo = &prog->reloc_desc[i]; 5733 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5734 const struct bpf_map *map; 5735 struct extern_desc *ext; 5736 5737 switch (relo->type) { 5738 case RELO_LD64: 5739 map = &obj->maps[relo->map_idx]; 5740 if (obj->gen_loader) { 5741 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 5742 insn[0].imm = relo->map_idx; 5743 } else if (map->autocreate) { 5744 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5745 insn[0].imm = map->fd; 5746 } else { 5747 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5748 relo->map_idx, map); 5749 } 5750 break; 5751 case RELO_DATA: 5752 map = &obj->maps[relo->map_idx]; 5753 insn[1].imm = insn[0].imm + relo->sym_off; 5754 if (obj->gen_loader) { 5755 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5756 insn[0].imm = relo->map_idx; 5757 } else if (map->autocreate) { 5758 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5759 insn[0].imm = map->fd; 5760 } else { 5761 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5762 relo->map_idx, map); 5763 } 5764 break; 5765 case RELO_EXTERN_VAR: 5766 ext = &obj->externs[relo->sym_off]; 5767 if (ext->type == EXT_KCFG) { 5768 if (obj->gen_loader) { 5769 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5770 insn[0].imm = obj->kconfig_map_idx; 5771 } else { 5772 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5773 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5774 } 5775 insn[1].imm = ext->kcfg.data_off; 5776 } else /* EXT_KSYM */ { 5777 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 5778 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 5779 insn[0].imm = ext->ksym.kernel_btf_id; 5780 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 5781 } else { /* typeless ksyms or unresolved typed ksyms */ 5782 insn[0].imm = (__u32)ext->ksym.addr; 5783 insn[1].imm = ext->ksym.addr >> 32; 5784 } 5785 } 5786 break; 5787 case RELO_EXTERN_FUNC: 5788 ext = &obj->externs[relo->sym_off]; 5789 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 5790 if (ext->is_set) { 5791 insn[0].imm = ext->ksym.kernel_btf_id; 5792 insn[0].off = ext->ksym.btf_fd_idx; 5793 } else { /* unresolved weak kfunc */ 5794 insn[0].imm = 0; 5795 insn[0].off = 0; 5796 } 5797 break; 5798 case RELO_SUBPROG_ADDR: 5799 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 5800 pr_warn("prog '%s': relo #%d: bad insn\n", 5801 prog->name, i); 5802 return -EINVAL; 5803 } 5804 /* handled already */ 5805 break; 5806 case RELO_CALL: 5807 /* handled already */ 5808 break; 5809 case RELO_CORE: 5810 /* will be handled by bpf_program_record_relos() */ 5811 break; 5812 default: 5813 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 5814 prog->name, i, relo->type); 5815 return -EINVAL; 5816 } 5817 } 5818 5819 return 0; 5820 } 5821 5822 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 5823 const struct bpf_program *prog, 5824 const struct btf_ext_info *ext_info, 5825 void **prog_info, __u32 *prog_rec_cnt, 5826 __u32 *prog_rec_sz) 5827 { 5828 void *copy_start = NULL, *copy_end = NULL; 5829 void *rec, *rec_end, *new_prog_info; 5830 const struct btf_ext_info_sec *sec; 5831 size_t old_sz, new_sz; 5832 int i, sec_num, sec_idx, off_adj; 5833 5834 sec_num = 0; 5835 for_each_btf_ext_sec(ext_info, sec) { 5836 sec_idx = ext_info->sec_idxs[sec_num]; 5837 sec_num++; 5838 if (prog->sec_idx != sec_idx) 5839 continue; 5840 5841 for_each_btf_ext_rec(ext_info, sec, i, rec) { 5842 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 5843 5844 if (insn_off < prog->sec_insn_off) 5845 continue; 5846 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 5847 break; 5848 5849 if (!copy_start) 5850 copy_start = rec; 5851 copy_end = rec + ext_info->rec_size; 5852 } 5853 5854 if (!copy_start) 5855 return -ENOENT; 5856 5857 /* append func/line info of a given (sub-)program to the main 5858 * program func/line info 5859 */ 5860 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 5861 new_sz = old_sz + (copy_end - copy_start); 5862 new_prog_info = realloc(*prog_info, new_sz); 5863 if (!new_prog_info) 5864 return -ENOMEM; 5865 *prog_info = new_prog_info; 5866 *prog_rec_cnt = new_sz / ext_info->rec_size; 5867 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 5868 5869 /* Kernel instruction offsets are in units of 8-byte 5870 * instructions, while .BTF.ext instruction offsets generated 5871 * by Clang are in units of bytes. So convert Clang offsets 5872 * into kernel offsets and adjust offset according to program 5873 * relocated position. 5874 */ 5875 off_adj = prog->sub_insn_off - prog->sec_insn_off; 5876 rec = new_prog_info + old_sz; 5877 rec_end = new_prog_info + new_sz; 5878 for (; rec < rec_end; rec += ext_info->rec_size) { 5879 __u32 *insn_off = rec; 5880 5881 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 5882 } 5883 *prog_rec_sz = ext_info->rec_size; 5884 return 0; 5885 } 5886 5887 return -ENOENT; 5888 } 5889 5890 static int 5891 reloc_prog_func_and_line_info(const struct bpf_object *obj, 5892 struct bpf_program *main_prog, 5893 const struct bpf_program *prog) 5894 { 5895 int err; 5896 5897 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 5898 * supprot func/line info 5899 */ 5900 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 5901 return 0; 5902 5903 /* only attempt func info relocation if main program's func_info 5904 * relocation was successful 5905 */ 5906 if (main_prog != prog && !main_prog->func_info) 5907 goto line_info; 5908 5909 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 5910 &main_prog->func_info, 5911 &main_prog->func_info_cnt, 5912 &main_prog->func_info_rec_size); 5913 if (err) { 5914 if (err != -ENOENT) { 5915 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 5916 prog->name, err); 5917 return err; 5918 } 5919 if (main_prog->func_info) { 5920 /* 5921 * Some info has already been found but has problem 5922 * in the last btf_ext reloc. Must have to error out. 5923 */ 5924 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 5925 return err; 5926 } 5927 /* Have problem loading the very first info. Ignore the rest. */ 5928 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 5929 prog->name); 5930 } 5931 5932 line_info: 5933 /* don't relocate line info if main program's relocation failed */ 5934 if (main_prog != prog && !main_prog->line_info) 5935 return 0; 5936 5937 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 5938 &main_prog->line_info, 5939 &main_prog->line_info_cnt, 5940 &main_prog->line_info_rec_size); 5941 if (err) { 5942 if (err != -ENOENT) { 5943 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 5944 prog->name, err); 5945 return err; 5946 } 5947 if (main_prog->line_info) { 5948 /* 5949 * Some info has already been found but has problem 5950 * in the last btf_ext reloc. Must have to error out. 5951 */ 5952 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 5953 return err; 5954 } 5955 /* Have problem loading the very first info. Ignore the rest. */ 5956 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 5957 prog->name); 5958 } 5959 return 0; 5960 } 5961 5962 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 5963 { 5964 size_t insn_idx = *(const size_t *)key; 5965 const struct reloc_desc *relo = elem; 5966 5967 if (insn_idx == relo->insn_idx) 5968 return 0; 5969 return insn_idx < relo->insn_idx ? -1 : 1; 5970 } 5971 5972 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 5973 { 5974 if (!prog->nr_reloc) 5975 return NULL; 5976 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 5977 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 5978 } 5979 5980 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 5981 { 5982 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 5983 struct reloc_desc *relos; 5984 int i; 5985 5986 if (main_prog == subprog) 5987 return 0; 5988 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 5989 if (!relos) 5990 return -ENOMEM; 5991 if (subprog->nr_reloc) 5992 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 5993 sizeof(*relos) * subprog->nr_reloc); 5994 5995 for (i = main_prog->nr_reloc; i < new_cnt; i++) 5996 relos[i].insn_idx += subprog->sub_insn_off; 5997 /* After insn_idx adjustment the 'relos' array is still sorted 5998 * by insn_idx and doesn't break bsearch. 5999 */ 6000 main_prog->reloc_desc = relos; 6001 main_prog->nr_reloc = new_cnt; 6002 return 0; 6003 } 6004 6005 static int 6006 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6007 struct bpf_program *prog) 6008 { 6009 size_t sub_insn_idx, insn_idx, new_cnt; 6010 struct bpf_program *subprog; 6011 struct bpf_insn *insns, *insn; 6012 struct reloc_desc *relo; 6013 int err; 6014 6015 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6016 if (err) 6017 return err; 6018 6019 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6020 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6021 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6022 continue; 6023 6024 relo = find_prog_insn_relo(prog, insn_idx); 6025 if (relo && relo->type == RELO_EXTERN_FUNC) 6026 /* kfunc relocations will be handled later 6027 * in bpf_object__relocate_data() 6028 */ 6029 continue; 6030 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6031 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6032 prog->name, insn_idx, relo->type); 6033 return -LIBBPF_ERRNO__RELOC; 6034 } 6035 if (relo) { 6036 /* sub-program instruction index is a combination of 6037 * an offset of a symbol pointed to by relocation and 6038 * call instruction's imm field; for global functions, 6039 * call always has imm = -1, but for static functions 6040 * relocation is against STT_SECTION and insn->imm 6041 * points to a start of a static function 6042 * 6043 * for subprog addr relocation, the relo->sym_off + insn->imm is 6044 * the byte offset in the corresponding section. 6045 */ 6046 if (relo->type == RELO_CALL) 6047 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6048 else 6049 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6050 } else if (insn_is_pseudo_func(insn)) { 6051 /* 6052 * RELO_SUBPROG_ADDR relo is always emitted even if both 6053 * functions are in the same section, so it shouldn't reach here. 6054 */ 6055 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6056 prog->name, insn_idx); 6057 return -LIBBPF_ERRNO__RELOC; 6058 } else { 6059 /* if subprogram call is to a static function within 6060 * the same ELF section, there won't be any relocation 6061 * emitted, but it also means there is no additional 6062 * offset necessary, insns->imm is relative to 6063 * instruction's original position within the section 6064 */ 6065 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6066 } 6067 6068 /* we enforce that sub-programs should be in .text section */ 6069 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6070 if (!subprog) { 6071 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6072 prog->name); 6073 return -LIBBPF_ERRNO__RELOC; 6074 } 6075 6076 /* if it's the first call instruction calling into this 6077 * subprogram (meaning this subprog hasn't been processed 6078 * yet) within the context of current main program: 6079 * - append it at the end of main program's instructions blog; 6080 * - process is recursively, while current program is put on hold; 6081 * - if that subprogram calls some other not yet processes 6082 * subprogram, same thing will happen recursively until 6083 * there are no more unprocesses subprograms left to append 6084 * and relocate. 6085 */ 6086 if (subprog->sub_insn_off == 0) { 6087 subprog->sub_insn_off = main_prog->insns_cnt; 6088 6089 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6090 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6091 if (!insns) { 6092 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6093 return -ENOMEM; 6094 } 6095 main_prog->insns = insns; 6096 main_prog->insns_cnt = new_cnt; 6097 6098 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6099 subprog->insns_cnt * sizeof(*insns)); 6100 6101 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6102 main_prog->name, subprog->insns_cnt, subprog->name); 6103 6104 /* The subprog insns are now appended. Append its relos too. */ 6105 err = append_subprog_relos(main_prog, subprog); 6106 if (err) 6107 return err; 6108 err = bpf_object__reloc_code(obj, main_prog, subprog); 6109 if (err) 6110 return err; 6111 } 6112 6113 /* main_prog->insns memory could have been re-allocated, so 6114 * calculate pointer again 6115 */ 6116 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6117 /* calculate correct instruction position within current main 6118 * prog; each main prog can have a different set of 6119 * subprograms appended (potentially in different order as 6120 * well), so position of any subprog can be different for 6121 * different main programs */ 6122 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6123 6124 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6125 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6126 } 6127 6128 return 0; 6129 } 6130 6131 /* 6132 * Relocate sub-program calls. 6133 * 6134 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6135 * main prog) is processed separately. For each subprog (non-entry functions, 6136 * that can be called from either entry progs or other subprogs) gets their 6137 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6138 * hasn't been yet appended and relocated within current main prog. Once its 6139 * relocated, sub_insn_off will point at the position within current main prog 6140 * where given subprog was appended. This will further be used to relocate all 6141 * the call instructions jumping into this subprog. 6142 * 6143 * We start with main program and process all call instructions. If the call 6144 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6145 * is zero), subprog instructions are appended at the end of main program's 6146 * instruction array. Then main program is "put on hold" while we recursively 6147 * process newly appended subprogram. If that subprogram calls into another 6148 * subprogram that hasn't been appended, new subprogram is appended again to 6149 * the *main* prog's instructions (subprog's instructions are always left 6150 * untouched, as they need to be in unmodified state for subsequent main progs 6151 * and subprog instructions are always sent only as part of a main prog) and 6152 * the process continues recursively. Once all the subprogs called from a main 6153 * prog or any of its subprogs are appended (and relocated), all their 6154 * positions within finalized instructions array are known, so it's easy to 6155 * rewrite call instructions with correct relative offsets, corresponding to 6156 * desired target subprog. 6157 * 6158 * Its important to realize that some subprogs might not be called from some 6159 * main prog and any of its called/used subprogs. Those will keep their 6160 * subprog->sub_insn_off as zero at all times and won't be appended to current 6161 * main prog and won't be relocated within the context of current main prog. 6162 * They might still be used from other main progs later. 6163 * 6164 * Visually this process can be shown as below. Suppose we have two main 6165 * programs mainA and mainB and BPF object contains three subprogs: subA, 6166 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6167 * subC both call subB: 6168 * 6169 * +--------+ +-------+ 6170 * | v v | 6171 * +--+---+ +--+-+-+ +---+--+ 6172 * | subA | | subB | | subC | 6173 * +--+---+ +------+ +---+--+ 6174 * ^ ^ 6175 * | | 6176 * +---+-------+ +------+----+ 6177 * | mainA | | mainB | 6178 * +-----------+ +-----------+ 6179 * 6180 * We'll start relocating mainA, will find subA, append it and start 6181 * processing sub A recursively: 6182 * 6183 * +-----------+------+ 6184 * | mainA | subA | 6185 * +-----------+------+ 6186 * 6187 * At this point we notice that subB is used from subA, so we append it and 6188 * relocate (there are no further subcalls from subB): 6189 * 6190 * +-----------+------+------+ 6191 * | mainA | subA | subB | 6192 * +-----------+------+------+ 6193 * 6194 * At this point, we relocate subA calls, then go one level up and finish with 6195 * relocatin mainA calls. mainA is done. 6196 * 6197 * For mainB process is similar but results in different order. We start with 6198 * mainB and skip subA and subB, as mainB never calls them (at least 6199 * directly), but we see subC is needed, so we append and start processing it: 6200 * 6201 * +-----------+------+ 6202 * | mainB | subC | 6203 * +-----------+------+ 6204 * Now we see subC needs subB, so we go back to it, append and relocate it: 6205 * 6206 * +-----------+------+------+ 6207 * | mainB | subC | subB | 6208 * +-----------+------+------+ 6209 * 6210 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6211 */ 6212 static int 6213 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6214 { 6215 struct bpf_program *subprog; 6216 int i, err; 6217 6218 /* mark all subprogs as not relocated (yet) within the context of 6219 * current main program 6220 */ 6221 for (i = 0; i < obj->nr_programs; i++) { 6222 subprog = &obj->programs[i]; 6223 if (!prog_is_subprog(obj, subprog)) 6224 continue; 6225 6226 subprog->sub_insn_off = 0; 6227 } 6228 6229 err = bpf_object__reloc_code(obj, prog, prog); 6230 if (err) 6231 return err; 6232 6233 return 0; 6234 } 6235 6236 static void 6237 bpf_object__free_relocs(struct bpf_object *obj) 6238 { 6239 struct bpf_program *prog; 6240 int i; 6241 6242 /* free up relocation descriptors */ 6243 for (i = 0; i < obj->nr_programs; i++) { 6244 prog = &obj->programs[i]; 6245 zfree(&prog->reloc_desc); 6246 prog->nr_reloc = 0; 6247 } 6248 } 6249 6250 static int cmp_relocs(const void *_a, const void *_b) 6251 { 6252 const struct reloc_desc *a = _a; 6253 const struct reloc_desc *b = _b; 6254 6255 if (a->insn_idx != b->insn_idx) 6256 return a->insn_idx < b->insn_idx ? -1 : 1; 6257 6258 /* no two relocations should have the same insn_idx, but ... */ 6259 if (a->type != b->type) 6260 return a->type < b->type ? -1 : 1; 6261 6262 return 0; 6263 } 6264 6265 static void bpf_object__sort_relos(struct bpf_object *obj) 6266 { 6267 int i; 6268 6269 for (i = 0; i < obj->nr_programs; i++) { 6270 struct bpf_program *p = &obj->programs[i]; 6271 6272 if (!p->nr_reloc) 6273 continue; 6274 6275 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6276 } 6277 } 6278 6279 static int 6280 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6281 { 6282 struct bpf_program *prog; 6283 size_t i, j; 6284 int err; 6285 6286 if (obj->btf_ext) { 6287 err = bpf_object__relocate_core(obj, targ_btf_path); 6288 if (err) { 6289 pr_warn("failed to perform CO-RE relocations: %d\n", 6290 err); 6291 return err; 6292 } 6293 bpf_object__sort_relos(obj); 6294 } 6295 6296 /* Before relocating calls pre-process relocations and mark 6297 * few ld_imm64 instructions that points to subprogs. 6298 * Otherwise bpf_object__reloc_code() later would have to consider 6299 * all ld_imm64 insns as relocation candidates. That would 6300 * reduce relocation speed, since amount of find_prog_insn_relo() 6301 * would increase and most of them will fail to find a relo. 6302 */ 6303 for (i = 0; i < obj->nr_programs; i++) { 6304 prog = &obj->programs[i]; 6305 for (j = 0; j < prog->nr_reloc; j++) { 6306 struct reloc_desc *relo = &prog->reloc_desc[j]; 6307 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6308 6309 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6310 if (relo->type == RELO_SUBPROG_ADDR) 6311 insn[0].src_reg = BPF_PSEUDO_FUNC; 6312 } 6313 } 6314 6315 /* relocate subprogram calls and append used subprograms to main 6316 * programs; each copy of subprogram code needs to be relocated 6317 * differently for each main program, because its code location might 6318 * have changed. 6319 * Append subprog relos to main programs to allow data relos to be 6320 * processed after text is completely relocated. 6321 */ 6322 for (i = 0; i < obj->nr_programs; i++) { 6323 prog = &obj->programs[i]; 6324 /* sub-program's sub-calls are relocated within the context of 6325 * its main program only 6326 */ 6327 if (prog_is_subprog(obj, prog)) 6328 continue; 6329 if (!prog->autoload) 6330 continue; 6331 6332 err = bpf_object__relocate_calls(obj, prog); 6333 if (err) { 6334 pr_warn("prog '%s': failed to relocate calls: %d\n", 6335 prog->name, err); 6336 return err; 6337 } 6338 } 6339 /* Process data relos for main programs */ 6340 for (i = 0; i < obj->nr_programs; i++) { 6341 prog = &obj->programs[i]; 6342 if (prog_is_subprog(obj, prog)) 6343 continue; 6344 if (!prog->autoload) 6345 continue; 6346 err = bpf_object__relocate_data(obj, prog); 6347 if (err) { 6348 pr_warn("prog '%s': failed to relocate data references: %d\n", 6349 prog->name, err); 6350 return err; 6351 } 6352 } 6353 6354 return 0; 6355 } 6356 6357 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6358 Elf64_Shdr *shdr, Elf_Data *data); 6359 6360 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6361 Elf64_Shdr *shdr, Elf_Data *data) 6362 { 6363 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6364 int i, j, nrels, new_sz; 6365 const struct btf_var_secinfo *vi = NULL; 6366 const struct btf_type *sec, *var, *def; 6367 struct bpf_map *map = NULL, *targ_map = NULL; 6368 struct bpf_program *targ_prog = NULL; 6369 bool is_prog_array, is_map_in_map; 6370 const struct btf_member *member; 6371 const char *name, *mname, *type; 6372 unsigned int moff; 6373 Elf64_Sym *sym; 6374 Elf64_Rel *rel; 6375 void *tmp; 6376 6377 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6378 return -EINVAL; 6379 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6380 if (!sec) 6381 return -EINVAL; 6382 6383 nrels = shdr->sh_size / shdr->sh_entsize; 6384 for (i = 0; i < nrels; i++) { 6385 rel = elf_rel_by_idx(data, i); 6386 if (!rel) { 6387 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6388 return -LIBBPF_ERRNO__FORMAT; 6389 } 6390 6391 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6392 if (!sym) { 6393 pr_warn(".maps relo #%d: symbol %zx not found\n", 6394 i, (size_t)ELF64_R_SYM(rel->r_info)); 6395 return -LIBBPF_ERRNO__FORMAT; 6396 } 6397 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6398 6399 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6400 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6401 (size_t)rel->r_offset, sym->st_name, name); 6402 6403 for (j = 0; j < obj->nr_maps; j++) { 6404 map = &obj->maps[j]; 6405 if (map->sec_idx != obj->efile.btf_maps_shndx) 6406 continue; 6407 6408 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6409 if (vi->offset <= rel->r_offset && 6410 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6411 break; 6412 } 6413 if (j == obj->nr_maps) { 6414 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6415 i, name, (size_t)rel->r_offset); 6416 return -EINVAL; 6417 } 6418 6419 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 6420 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 6421 type = is_map_in_map ? "map" : "prog"; 6422 if (is_map_in_map) { 6423 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6424 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6425 i, name); 6426 return -LIBBPF_ERRNO__RELOC; 6427 } 6428 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6429 map->def.key_size != sizeof(int)) { 6430 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6431 i, map->name, sizeof(int)); 6432 return -EINVAL; 6433 } 6434 targ_map = bpf_object__find_map_by_name(obj, name); 6435 if (!targ_map) { 6436 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 6437 i, name); 6438 return -ESRCH; 6439 } 6440 } else if (is_prog_array) { 6441 targ_prog = bpf_object__find_program_by_name(obj, name); 6442 if (!targ_prog) { 6443 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 6444 i, name); 6445 return -ESRCH; 6446 } 6447 if (targ_prog->sec_idx != sym->st_shndx || 6448 targ_prog->sec_insn_off * 8 != sym->st_value || 6449 prog_is_subprog(obj, targ_prog)) { 6450 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 6451 i, name); 6452 return -LIBBPF_ERRNO__RELOC; 6453 } 6454 } else { 6455 return -EINVAL; 6456 } 6457 6458 var = btf__type_by_id(obj->btf, vi->type); 6459 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6460 if (btf_vlen(def) == 0) 6461 return -EINVAL; 6462 member = btf_members(def) + btf_vlen(def) - 1; 6463 mname = btf__name_by_offset(obj->btf, member->name_off); 6464 if (strcmp(mname, "values")) 6465 return -EINVAL; 6466 6467 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6468 if (rel->r_offset - vi->offset < moff) 6469 return -EINVAL; 6470 6471 moff = rel->r_offset - vi->offset - moff; 6472 /* here we use BPF pointer size, which is always 64 bit, as we 6473 * are parsing ELF that was built for BPF target 6474 */ 6475 if (moff % bpf_ptr_sz) 6476 return -EINVAL; 6477 moff /= bpf_ptr_sz; 6478 if (moff >= map->init_slots_sz) { 6479 new_sz = moff + 1; 6480 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6481 if (!tmp) 6482 return -ENOMEM; 6483 map->init_slots = tmp; 6484 memset(map->init_slots + map->init_slots_sz, 0, 6485 (new_sz - map->init_slots_sz) * host_ptr_sz); 6486 map->init_slots_sz = new_sz; 6487 } 6488 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 6489 6490 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 6491 i, map->name, moff, type, name); 6492 } 6493 6494 return 0; 6495 } 6496 6497 static int bpf_object__collect_relos(struct bpf_object *obj) 6498 { 6499 int i, err; 6500 6501 for (i = 0; i < obj->efile.sec_cnt; i++) { 6502 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6503 Elf64_Shdr *shdr; 6504 Elf_Data *data; 6505 int idx; 6506 6507 if (sec_desc->sec_type != SEC_RELO) 6508 continue; 6509 6510 shdr = sec_desc->shdr; 6511 data = sec_desc->data; 6512 idx = shdr->sh_info; 6513 6514 if (shdr->sh_type != SHT_REL) { 6515 pr_warn("internal error at %d\n", __LINE__); 6516 return -LIBBPF_ERRNO__INTERNAL; 6517 } 6518 6519 if (idx == obj->efile.st_ops_shndx) 6520 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6521 else if (idx == obj->efile.btf_maps_shndx) 6522 err = bpf_object__collect_map_relos(obj, shdr, data); 6523 else 6524 err = bpf_object__collect_prog_relos(obj, shdr, data); 6525 if (err) 6526 return err; 6527 } 6528 6529 bpf_object__sort_relos(obj); 6530 return 0; 6531 } 6532 6533 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6534 { 6535 if (BPF_CLASS(insn->code) == BPF_JMP && 6536 BPF_OP(insn->code) == BPF_CALL && 6537 BPF_SRC(insn->code) == BPF_K && 6538 insn->src_reg == 0 && 6539 insn->dst_reg == 0) { 6540 *func_id = insn->imm; 6541 return true; 6542 } 6543 return false; 6544 } 6545 6546 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6547 { 6548 struct bpf_insn *insn = prog->insns; 6549 enum bpf_func_id func_id; 6550 int i; 6551 6552 if (obj->gen_loader) 6553 return 0; 6554 6555 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6556 if (!insn_is_helper_call(insn, &func_id)) 6557 continue; 6558 6559 /* on kernels that don't yet support 6560 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6561 * to bpf_probe_read() which works well for old kernels 6562 */ 6563 switch (func_id) { 6564 case BPF_FUNC_probe_read_kernel: 6565 case BPF_FUNC_probe_read_user: 6566 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6567 insn->imm = BPF_FUNC_probe_read; 6568 break; 6569 case BPF_FUNC_probe_read_kernel_str: 6570 case BPF_FUNC_probe_read_user_str: 6571 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6572 insn->imm = BPF_FUNC_probe_read_str; 6573 break; 6574 default: 6575 break; 6576 } 6577 } 6578 return 0; 6579 } 6580 6581 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6582 int *btf_obj_fd, int *btf_type_id); 6583 6584 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 6585 static int libbpf_prepare_prog_load(struct bpf_program *prog, 6586 struct bpf_prog_load_opts *opts, long cookie) 6587 { 6588 enum sec_def_flags def = cookie; 6589 6590 /* old kernels might not support specifying expected_attach_type */ 6591 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6592 opts->expected_attach_type = 0; 6593 6594 if (def & SEC_SLEEPABLE) 6595 opts->prog_flags |= BPF_F_SLEEPABLE; 6596 6597 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 6598 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 6599 6600 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 6601 int btf_obj_fd = 0, btf_type_id = 0, err; 6602 const char *attach_name; 6603 6604 attach_name = strchr(prog->sec_name, '/'); 6605 if (!attach_name) { 6606 /* if BPF program is annotated with just SEC("fentry") 6607 * (or similar) without declaratively specifying 6608 * target, then it is expected that target will be 6609 * specified with bpf_program__set_attach_target() at 6610 * runtime before BPF object load step. If not, then 6611 * there is nothing to load into the kernel as BPF 6612 * verifier won't be able to validate BPF program 6613 * correctness anyways. 6614 */ 6615 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 6616 prog->name); 6617 return -EINVAL; 6618 } 6619 attach_name++; /* skip over / */ 6620 6621 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6622 if (err) 6623 return err; 6624 6625 /* cache resolved BTF FD and BTF type ID in the prog */ 6626 prog->attach_btf_obj_fd = btf_obj_fd; 6627 prog->attach_btf_id = btf_type_id; 6628 6629 /* but by now libbpf common logic is not utilizing 6630 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 6631 * this callback is called after opts were populated by 6632 * libbpf, so this callback has to update opts explicitly here 6633 */ 6634 opts->attach_btf_obj_fd = btf_obj_fd; 6635 opts->attach_btf_id = btf_type_id; 6636 } 6637 return 0; 6638 } 6639 6640 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 6641 6642 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 6643 struct bpf_insn *insns, int insns_cnt, 6644 const char *license, __u32 kern_version, int *prog_fd) 6645 { 6646 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 6647 const char *prog_name = NULL; 6648 char *cp, errmsg[STRERR_BUFSIZE]; 6649 size_t log_buf_size = 0; 6650 char *log_buf = NULL, *tmp; 6651 int btf_fd, ret, err; 6652 bool own_log_buf = true; 6653 __u32 log_level = prog->log_level; 6654 6655 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6656 /* 6657 * The program type must be set. Most likely we couldn't find a proper 6658 * section definition at load time, and thus we didn't infer the type. 6659 */ 6660 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6661 prog->name, prog->sec_name); 6662 return -EINVAL; 6663 } 6664 6665 if (!insns || !insns_cnt) 6666 return -EINVAL; 6667 6668 load_attr.expected_attach_type = prog->expected_attach_type; 6669 if (kernel_supports(obj, FEAT_PROG_NAME)) 6670 prog_name = prog->name; 6671 load_attr.attach_prog_fd = prog->attach_prog_fd; 6672 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 6673 load_attr.attach_btf_id = prog->attach_btf_id; 6674 load_attr.kern_version = kern_version; 6675 load_attr.prog_ifindex = prog->prog_ifindex; 6676 6677 /* specify func_info/line_info only if kernel supports them */ 6678 btf_fd = bpf_object__btf_fd(obj); 6679 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 6680 load_attr.prog_btf_fd = btf_fd; 6681 load_attr.func_info = prog->func_info; 6682 load_attr.func_info_rec_size = prog->func_info_rec_size; 6683 load_attr.func_info_cnt = prog->func_info_cnt; 6684 load_attr.line_info = prog->line_info; 6685 load_attr.line_info_rec_size = prog->line_info_rec_size; 6686 load_attr.line_info_cnt = prog->line_info_cnt; 6687 } 6688 load_attr.log_level = log_level; 6689 load_attr.prog_flags = prog->prog_flags; 6690 load_attr.fd_array = obj->fd_array; 6691 6692 /* adjust load_attr if sec_def provides custom preload callback */ 6693 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 6694 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 6695 if (err < 0) { 6696 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 6697 prog->name, err); 6698 return err; 6699 } 6700 insns = prog->insns; 6701 insns_cnt = prog->insns_cnt; 6702 } 6703 6704 if (obj->gen_loader) { 6705 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 6706 license, insns, insns_cnt, &load_attr, 6707 prog - obj->programs); 6708 *prog_fd = -1; 6709 return 0; 6710 } 6711 6712 retry_load: 6713 /* if log_level is zero, we don't request logs initially even if 6714 * custom log_buf is specified; if the program load fails, then we'll 6715 * bump log_level to 1 and use either custom log_buf or we'll allocate 6716 * our own and retry the load to get details on what failed 6717 */ 6718 if (log_level) { 6719 if (prog->log_buf) { 6720 log_buf = prog->log_buf; 6721 log_buf_size = prog->log_size; 6722 own_log_buf = false; 6723 } else if (obj->log_buf) { 6724 log_buf = obj->log_buf; 6725 log_buf_size = obj->log_size; 6726 own_log_buf = false; 6727 } else { 6728 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 6729 tmp = realloc(log_buf, log_buf_size); 6730 if (!tmp) { 6731 ret = -ENOMEM; 6732 goto out; 6733 } 6734 log_buf = tmp; 6735 log_buf[0] = '\0'; 6736 own_log_buf = true; 6737 } 6738 } 6739 6740 load_attr.log_buf = log_buf; 6741 load_attr.log_size = log_buf_size; 6742 load_attr.log_level = log_level; 6743 6744 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 6745 if (ret >= 0) { 6746 if (log_level && own_log_buf) { 6747 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6748 prog->name, log_buf); 6749 } 6750 6751 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 6752 struct bpf_map *map; 6753 int i; 6754 6755 for (i = 0; i < obj->nr_maps; i++) { 6756 map = &prog->obj->maps[i]; 6757 if (map->libbpf_type != LIBBPF_MAP_RODATA) 6758 continue; 6759 6760 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 6761 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6762 pr_warn("prog '%s': failed to bind map '%s': %s\n", 6763 prog->name, map->real_name, cp); 6764 /* Don't fail hard if can't bind rodata. */ 6765 } 6766 } 6767 } 6768 6769 *prog_fd = ret; 6770 ret = 0; 6771 goto out; 6772 } 6773 6774 if (log_level == 0) { 6775 log_level = 1; 6776 goto retry_load; 6777 } 6778 /* On ENOSPC, increase log buffer size and retry, unless custom 6779 * log_buf is specified. 6780 * Be careful to not overflow u32, though. Kernel's log buf size limit 6781 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 6782 * multiply by 2 unless we are sure we'll fit within 32 bits. 6783 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 6784 */ 6785 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 6786 goto retry_load; 6787 6788 ret = -errno; 6789 6790 /* post-process verifier log to improve error descriptions */ 6791 fixup_verifier_log(prog, log_buf, log_buf_size); 6792 6793 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6794 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 6795 pr_perm_msg(ret); 6796 6797 if (own_log_buf && log_buf && log_buf[0] != '\0') { 6798 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6799 prog->name, log_buf); 6800 } 6801 6802 out: 6803 if (own_log_buf) 6804 free(log_buf); 6805 return ret; 6806 } 6807 6808 static char *find_prev_line(char *buf, char *cur) 6809 { 6810 char *p; 6811 6812 if (cur == buf) /* end of a log buf */ 6813 return NULL; 6814 6815 p = cur - 1; 6816 while (p - 1 >= buf && *(p - 1) != '\n') 6817 p--; 6818 6819 return p; 6820 } 6821 6822 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 6823 char *orig, size_t orig_sz, const char *patch) 6824 { 6825 /* size of the remaining log content to the right from the to-be-replaced part */ 6826 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 6827 size_t patch_sz = strlen(patch); 6828 6829 if (patch_sz != orig_sz) { 6830 /* If patch line(s) are longer than original piece of verifier log, 6831 * shift log contents by (patch_sz - orig_sz) bytes to the right 6832 * starting from after to-be-replaced part of the log. 6833 * 6834 * If patch line(s) are shorter than original piece of verifier log, 6835 * shift log contents by (orig_sz - patch_sz) bytes to the left 6836 * starting from after to-be-replaced part of the log 6837 * 6838 * We need to be careful about not overflowing available 6839 * buf_sz capacity. If that's the case, we'll truncate the end 6840 * of the original log, as necessary. 6841 */ 6842 if (patch_sz > orig_sz) { 6843 if (orig + patch_sz >= buf + buf_sz) { 6844 /* patch is big enough to cover remaining space completely */ 6845 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 6846 rem_sz = 0; 6847 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 6848 /* patch causes part of remaining log to be truncated */ 6849 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 6850 } 6851 } 6852 /* shift remaining log to the right by calculated amount */ 6853 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 6854 } 6855 6856 memcpy(orig, patch, patch_sz); 6857 } 6858 6859 static void fixup_log_failed_core_relo(struct bpf_program *prog, 6860 char *buf, size_t buf_sz, size_t log_sz, 6861 char *line1, char *line2, char *line3) 6862 { 6863 /* Expected log for failed and not properly guarded CO-RE relocation: 6864 * line1 -> 123: (85) call unknown#195896080 6865 * line2 -> invalid func unknown#195896080 6866 * line3 -> <anything else or end of buffer> 6867 * 6868 * "123" is the index of the instruction that was poisoned. We extract 6869 * instruction index to find corresponding CO-RE relocation and 6870 * replace this part of the log with more relevant information about 6871 * failed CO-RE relocation. 6872 */ 6873 const struct bpf_core_relo *relo; 6874 struct bpf_core_spec spec; 6875 char patch[512], spec_buf[256]; 6876 int insn_idx, err, spec_len; 6877 6878 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 6879 return; 6880 6881 relo = find_relo_core(prog, insn_idx); 6882 if (!relo) 6883 return; 6884 6885 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 6886 if (err) 6887 return; 6888 6889 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 6890 snprintf(patch, sizeof(patch), 6891 "%d: <invalid CO-RE relocation>\n" 6892 "failed to resolve CO-RE relocation %s%s\n", 6893 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 6894 6895 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 6896 } 6897 6898 static void fixup_log_missing_map_load(struct bpf_program *prog, 6899 char *buf, size_t buf_sz, size_t log_sz, 6900 char *line1, char *line2, char *line3) 6901 { 6902 /* Expected log for failed and not properly guarded CO-RE relocation: 6903 * line1 -> 123: (85) call unknown#2001000345 6904 * line2 -> invalid func unknown#2001000345 6905 * line3 -> <anything else or end of buffer> 6906 * 6907 * "123" is the index of the instruction that was poisoned. 6908 * "345" in "2001000345" are map index in obj->maps to fetch map name. 6909 */ 6910 struct bpf_object *obj = prog->obj; 6911 const struct bpf_map *map; 6912 int insn_idx, map_idx; 6913 char patch[128]; 6914 6915 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 6916 return; 6917 6918 map_idx -= MAP_LDIMM64_POISON_BASE; 6919 if (map_idx < 0 || map_idx >= obj->nr_maps) 6920 return; 6921 map = &obj->maps[map_idx]; 6922 6923 snprintf(patch, sizeof(patch), 6924 "%d: <invalid BPF map reference>\n" 6925 "BPF map '%s' is referenced but wasn't created\n", 6926 insn_idx, map->name); 6927 6928 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 6929 } 6930 6931 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 6932 { 6933 /* look for familiar error patterns in last N lines of the log */ 6934 const size_t max_last_line_cnt = 10; 6935 char *prev_line, *cur_line, *next_line; 6936 size_t log_sz; 6937 int i; 6938 6939 if (!buf) 6940 return; 6941 6942 log_sz = strlen(buf) + 1; 6943 next_line = buf + log_sz - 1; 6944 6945 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 6946 cur_line = find_prev_line(buf, next_line); 6947 if (!cur_line) 6948 return; 6949 6950 /* failed CO-RE relocation case */ 6951 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 6952 prev_line = find_prev_line(buf, cur_line); 6953 if (!prev_line) 6954 continue; 6955 6956 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 6957 prev_line, cur_line, next_line); 6958 return; 6959 } else if (str_has_pfx(cur_line, "invalid func unknown#"MAP_LDIMM64_POISON_PFX)) { 6960 prev_line = find_prev_line(buf, cur_line); 6961 if (!prev_line) 6962 continue; 6963 6964 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 6965 prev_line, cur_line, next_line); 6966 return; 6967 } 6968 } 6969 } 6970 6971 static int bpf_program_record_relos(struct bpf_program *prog) 6972 { 6973 struct bpf_object *obj = prog->obj; 6974 int i; 6975 6976 for (i = 0; i < prog->nr_reloc; i++) { 6977 struct reloc_desc *relo = &prog->reloc_desc[i]; 6978 struct extern_desc *ext = &obj->externs[relo->sym_off]; 6979 6980 switch (relo->type) { 6981 case RELO_EXTERN_VAR: 6982 if (ext->type != EXT_KSYM) 6983 continue; 6984 bpf_gen__record_extern(obj->gen_loader, ext->name, 6985 ext->is_weak, !ext->ksym.type_id, 6986 BTF_KIND_VAR, relo->insn_idx); 6987 break; 6988 case RELO_EXTERN_FUNC: 6989 bpf_gen__record_extern(obj->gen_loader, ext->name, 6990 ext->is_weak, false, BTF_KIND_FUNC, 6991 relo->insn_idx); 6992 break; 6993 case RELO_CORE: { 6994 struct bpf_core_relo cr = { 6995 .insn_off = relo->insn_idx * 8, 6996 .type_id = relo->core_relo->type_id, 6997 .access_str_off = relo->core_relo->access_str_off, 6998 .kind = relo->core_relo->kind, 6999 }; 7000 7001 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7002 break; 7003 } 7004 default: 7005 continue; 7006 } 7007 } 7008 return 0; 7009 } 7010 7011 static int 7012 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7013 { 7014 struct bpf_program *prog; 7015 size_t i; 7016 int err; 7017 7018 for (i = 0; i < obj->nr_programs; i++) { 7019 prog = &obj->programs[i]; 7020 err = bpf_object__sanitize_prog(obj, prog); 7021 if (err) 7022 return err; 7023 } 7024 7025 for (i = 0; i < obj->nr_programs; i++) { 7026 prog = &obj->programs[i]; 7027 if (prog_is_subprog(obj, prog)) 7028 continue; 7029 if (!prog->autoload) { 7030 pr_debug("prog '%s': skipped loading\n", prog->name); 7031 continue; 7032 } 7033 prog->log_level |= log_level; 7034 7035 if (obj->gen_loader) 7036 bpf_program_record_relos(prog); 7037 7038 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7039 obj->license, obj->kern_version, &prog->fd); 7040 if (err) { 7041 pr_warn("prog '%s': failed to load: %d\n", prog->name, err); 7042 return err; 7043 } 7044 } 7045 7046 bpf_object__free_relocs(obj); 7047 return 0; 7048 } 7049 7050 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7051 7052 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7053 { 7054 struct bpf_program *prog; 7055 int err; 7056 7057 bpf_object__for_each_program(prog, obj) { 7058 prog->sec_def = find_sec_def(prog->sec_name); 7059 if (!prog->sec_def) { 7060 /* couldn't guess, but user might manually specify */ 7061 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7062 prog->name, prog->sec_name); 7063 continue; 7064 } 7065 7066 prog->type = prog->sec_def->prog_type; 7067 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7068 7069 /* sec_def can have custom callback which should be called 7070 * after bpf_program is initialized to adjust its properties 7071 */ 7072 if (prog->sec_def->prog_setup_fn) { 7073 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7074 if (err < 0) { 7075 pr_warn("prog '%s': failed to initialize: %d\n", 7076 prog->name, err); 7077 return err; 7078 } 7079 } 7080 } 7081 7082 return 0; 7083 } 7084 7085 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7086 const struct bpf_object_open_opts *opts) 7087 { 7088 const char *obj_name, *kconfig, *btf_tmp_path; 7089 struct bpf_object *obj; 7090 char tmp_name[64]; 7091 int err; 7092 char *log_buf; 7093 size_t log_size; 7094 __u32 log_level; 7095 7096 if (elf_version(EV_CURRENT) == EV_NONE) { 7097 pr_warn("failed to init libelf for %s\n", 7098 path ? : "(mem buf)"); 7099 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7100 } 7101 7102 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7103 return ERR_PTR(-EINVAL); 7104 7105 obj_name = OPTS_GET(opts, object_name, NULL); 7106 if (obj_buf) { 7107 if (!obj_name) { 7108 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7109 (unsigned long)obj_buf, 7110 (unsigned long)obj_buf_sz); 7111 obj_name = tmp_name; 7112 } 7113 path = obj_name; 7114 pr_debug("loading object '%s' from buffer\n", obj_name); 7115 } 7116 7117 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7118 log_size = OPTS_GET(opts, kernel_log_size, 0); 7119 log_level = OPTS_GET(opts, kernel_log_level, 0); 7120 if (log_size > UINT_MAX) 7121 return ERR_PTR(-EINVAL); 7122 if (log_size && !log_buf) 7123 return ERR_PTR(-EINVAL); 7124 7125 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7126 if (IS_ERR(obj)) 7127 return obj; 7128 7129 obj->log_buf = log_buf; 7130 obj->log_size = log_size; 7131 obj->log_level = log_level; 7132 7133 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7134 if (btf_tmp_path) { 7135 if (strlen(btf_tmp_path) >= PATH_MAX) { 7136 err = -ENAMETOOLONG; 7137 goto out; 7138 } 7139 obj->btf_custom_path = strdup(btf_tmp_path); 7140 if (!obj->btf_custom_path) { 7141 err = -ENOMEM; 7142 goto out; 7143 } 7144 } 7145 7146 kconfig = OPTS_GET(opts, kconfig, NULL); 7147 if (kconfig) { 7148 obj->kconfig = strdup(kconfig); 7149 if (!obj->kconfig) { 7150 err = -ENOMEM; 7151 goto out; 7152 } 7153 } 7154 7155 err = bpf_object__elf_init(obj); 7156 err = err ? : bpf_object__check_endianness(obj); 7157 err = err ? : bpf_object__elf_collect(obj); 7158 err = err ? : bpf_object__collect_externs(obj); 7159 err = err ? : bpf_object__finalize_btf(obj); 7160 err = err ? : bpf_object__init_maps(obj, opts); 7161 err = err ? : bpf_object_init_progs(obj, opts); 7162 err = err ? : bpf_object__collect_relos(obj); 7163 if (err) 7164 goto out; 7165 7166 bpf_object__elf_finish(obj); 7167 7168 return obj; 7169 out: 7170 bpf_object__close(obj); 7171 return ERR_PTR(err); 7172 } 7173 7174 struct bpf_object * 7175 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7176 { 7177 if (!path) 7178 return libbpf_err_ptr(-EINVAL); 7179 7180 pr_debug("loading %s\n", path); 7181 7182 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7183 } 7184 7185 struct bpf_object *bpf_object__open(const char *path) 7186 { 7187 return bpf_object__open_file(path, NULL); 7188 } 7189 7190 struct bpf_object * 7191 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7192 const struct bpf_object_open_opts *opts) 7193 { 7194 if (!obj_buf || obj_buf_sz == 0) 7195 return libbpf_err_ptr(-EINVAL); 7196 7197 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7198 } 7199 7200 static int bpf_object_unload(struct bpf_object *obj) 7201 { 7202 size_t i; 7203 7204 if (!obj) 7205 return libbpf_err(-EINVAL); 7206 7207 for (i = 0; i < obj->nr_maps; i++) { 7208 zclose(obj->maps[i].fd); 7209 if (obj->maps[i].st_ops) 7210 zfree(&obj->maps[i].st_ops->kern_vdata); 7211 } 7212 7213 for (i = 0; i < obj->nr_programs; i++) 7214 bpf_program__unload(&obj->programs[i]); 7215 7216 return 0; 7217 } 7218 7219 int bpf_object__unload(struct bpf_object *obj) __attribute__((alias("bpf_object_unload"))); 7220 7221 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7222 { 7223 struct bpf_map *m; 7224 7225 bpf_object__for_each_map(m, obj) { 7226 if (!bpf_map__is_internal(m)) 7227 continue; 7228 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7229 m->def.map_flags ^= BPF_F_MMAPABLE; 7230 } 7231 7232 return 0; 7233 } 7234 7235 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 7236 { 7237 char sym_type, sym_name[500]; 7238 unsigned long long sym_addr; 7239 int ret, err = 0; 7240 FILE *f; 7241 7242 f = fopen("/proc/kallsyms", "r"); 7243 if (!f) { 7244 err = -errno; 7245 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7246 return err; 7247 } 7248 7249 while (true) { 7250 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7251 &sym_addr, &sym_type, sym_name); 7252 if (ret == EOF && feof(f)) 7253 break; 7254 if (ret != 3) { 7255 pr_warn("failed to read kallsyms entry: %d\n", ret); 7256 err = -EINVAL; 7257 break; 7258 } 7259 7260 err = cb(sym_addr, sym_type, sym_name, ctx); 7261 if (err) 7262 break; 7263 } 7264 7265 fclose(f); 7266 return err; 7267 } 7268 7269 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 7270 const char *sym_name, void *ctx) 7271 { 7272 struct bpf_object *obj = ctx; 7273 const struct btf_type *t; 7274 struct extern_desc *ext; 7275 7276 ext = find_extern_by_name(obj, sym_name); 7277 if (!ext || ext->type != EXT_KSYM) 7278 return 0; 7279 7280 t = btf__type_by_id(obj->btf, ext->btf_id); 7281 if (!btf_is_var(t)) 7282 return 0; 7283 7284 if (ext->is_set && ext->ksym.addr != sym_addr) { 7285 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n", 7286 sym_name, ext->ksym.addr, sym_addr); 7287 return -EINVAL; 7288 } 7289 if (!ext->is_set) { 7290 ext->is_set = true; 7291 ext->ksym.addr = sym_addr; 7292 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr); 7293 } 7294 return 0; 7295 } 7296 7297 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7298 { 7299 return libbpf_kallsyms_parse(kallsyms_cb, obj); 7300 } 7301 7302 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7303 __u16 kind, struct btf **res_btf, 7304 struct module_btf **res_mod_btf) 7305 { 7306 struct module_btf *mod_btf; 7307 struct btf *btf; 7308 int i, id, err; 7309 7310 btf = obj->btf_vmlinux; 7311 mod_btf = NULL; 7312 id = btf__find_by_name_kind(btf, ksym_name, kind); 7313 7314 if (id == -ENOENT) { 7315 err = load_module_btfs(obj); 7316 if (err) 7317 return err; 7318 7319 for (i = 0; i < obj->btf_module_cnt; i++) { 7320 /* we assume module_btf's BTF FD is always >0 */ 7321 mod_btf = &obj->btf_modules[i]; 7322 btf = mod_btf->btf; 7323 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7324 if (id != -ENOENT) 7325 break; 7326 } 7327 } 7328 if (id <= 0) 7329 return -ESRCH; 7330 7331 *res_btf = btf; 7332 *res_mod_btf = mod_btf; 7333 return id; 7334 } 7335 7336 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7337 struct extern_desc *ext) 7338 { 7339 const struct btf_type *targ_var, *targ_type; 7340 __u32 targ_type_id, local_type_id; 7341 struct module_btf *mod_btf = NULL; 7342 const char *targ_var_name; 7343 struct btf *btf = NULL; 7344 int id, err; 7345 7346 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7347 if (id < 0) { 7348 if (id == -ESRCH && ext->is_weak) 7349 return 0; 7350 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7351 ext->name); 7352 return id; 7353 } 7354 7355 /* find local type_id */ 7356 local_type_id = ext->ksym.type_id; 7357 7358 /* find target type_id */ 7359 targ_var = btf__type_by_id(btf, id); 7360 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7361 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7362 7363 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7364 btf, targ_type_id); 7365 if (err <= 0) { 7366 const struct btf_type *local_type; 7367 const char *targ_name, *local_name; 7368 7369 local_type = btf__type_by_id(obj->btf, local_type_id); 7370 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7371 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7372 7373 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7374 ext->name, local_type_id, 7375 btf_kind_str(local_type), local_name, targ_type_id, 7376 btf_kind_str(targ_type), targ_name); 7377 return -EINVAL; 7378 } 7379 7380 ext->is_set = true; 7381 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7382 ext->ksym.kernel_btf_id = id; 7383 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7384 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7385 7386 return 0; 7387 } 7388 7389 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7390 struct extern_desc *ext) 7391 { 7392 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7393 struct module_btf *mod_btf = NULL; 7394 const struct btf_type *kern_func; 7395 struct btf *kern_btf = NULL; 7396 int ret; 7397 7398 local_func_proto_id = ext->ksym.type_id; 7399 7400 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf); 7401 if (kfunc_id < 0) { 7402 if (kfunc_id == -ESRCH && ext->is_weak) 7403 return 0; 7404 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7405 ext->name); 7406 return kfunc_id; 7407 } 7408 7409 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7410 kfunc_proto_id = kern_func->type; 7411 7412 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7413 kern_btf, kfunc_proto_id); 7414 if (ret <= 0) { 7415 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n", 7416 ext->name, local_func_proto_id, kfunc_proto_id); 7417 return -EINVAL; 7418 } 7419 7420 /* set index for module BTF fd in fd_array, if unset */ 7421 if (mod_btf && !mod_btf->fd_array_idx) { 7422 /* insn->off is s16 */ 7423 if (obj->fd_array_cnt == INT16_MAX) { 7424 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7425 ext->name, mod_btf->fd_array_idx); 7426 return -E2BIG; 7427 } 7428 /* Cannot use index 0 for module BTF fd */ 7429 if (!obj->fd_array_cnt) 7430 obj->fd_array_cnt = 1; 7431 7432 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7433 obj->fd_array_cnt + 1); 7434 if (ret) 7435 return ret; 7436 mod_btf->fd_array_idx = obj->fd_array_cnt; 7437 /* we assume module BTF FD is always >0 */ 7438 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7439 } 7440 7441 ext->is_set = true; 7442 ext->ksym.kernel_btf_id = kfunc_id; 7443 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7444 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n", 7445 ext->name, kfunc_id); 7446 7447 return 0; 7448 } 7449 7450 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7451 { 7452 const struct btf_type *t; 7453 struct extern_desc *ext; 7454 int i, err; 7455 7456 for (i = 0; i < obj->nr_extern; i++) { 7457 ext = &obj->externs[i]; 7458 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7459 continue; 7460 7461 if (obj->gen_loader) { 7462 ext->is_set = true; 7463 ext->ksym.kernel_btf_obj_fd = 0; 7464 ext->ksym.kernel_btf_id = 0; 7465 continue; 7466 } 7467 t = btf__type_by_id(obj->btf, ext->btf_id); 7468 if (btf_is_var(t)) 7469 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7470 else 7471 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7472 if (err) 7473 return err; 7474 } 7475 return 0; 7476 } 7477 7478 static int bpf_object__resolve_externs(struct bpf_object *obj, 7479 const char *extra_kconfig) 7480 { 7481 bool need_config = false, need_kallsyms = false; 7482 bool need_vmlinux_btf = false; 7483 struct extern_desc *ext; 7484 void *kcfg_data = NULL; 7485 int err, i; 7486 7487 if (obj->nr_extern == 0) 7488 return 0; 7489 7490 if (obj->kconfig_map_idx >= 0) 7491 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7492 7493 for (i = 0; i < obj->nr_extern; i++) { 7494 ext = &obj->externs[i]; 7495 7496 if (ext->type == EXT_KCFG && 7497 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7498 void *ext_val = kcfg_data + ext->kcfg.data_off; 7499 __u32 kver = get_kernel_version(); 7500 7501 if (!kver) { 7502 pr_warn("failed to get kernel version\n"); 7503 return -EINVAL; 7504 } 7505 err = set_kcfg_value_num(ext, ext_val, kver); 7506 if (err) 7507 return err; 7508 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver); 7509 } else if (ext->type == EXT_KCFG && str_has_pfx(ext->name, "CONFIG_")) { 7510 need_config = true; 7511 } else if (ext->type == EXT_KSYM) { 7512 if (ext->ksym.type_id) 7513 need_vmlinux_btf = true; 7514 else 7515 need_kallsyms = true; 7516 } else { 7517 pr_warn("unrecognized extern '%s'\n", ext->name); 7518 return -EINVAL; 7519 } 7520 } 7521 if (need_config && extra_kconfig) { 7522 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7523 if (err) 7524 return -EINVAL; 7525 need_config = false; 7526 for (i = 0; i < obj->nr_extern; i++) { 7527 ext = &obj->externs[i]; 7528 if (ext->type == EXT_KCFG && !ext->is_set) { 7529 need_config = true; 7530 break; 7531 } 7532 } 7533 } 7534 if (need_config) { 7535 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7536 if (err) 7537 return -EINVAL; 7538 } 7539 if (need_kallsyms) { 7540 err = bpf_object__read_kallsyms_file(obj); 7541 if (err) 7542 return -EINVAL; 7543 } 7544 if (need_vmlinux_btf) { 7545 err = bpf_object__resolve_ksyms_btf_id(obj); 7546 if (err) 7547 return -EINVAL; 7548 } 7549 for (i = 0; i < obj->nr_extern; i++) { 7550 ext = &obj->externs[i]; 7551 7552 if (!ext->is_set && !ext->is_weak) { 7553 pr_warn("extern %s (strong) not resolved\n", ext->name); 7554 return -ESRCH; 7555 } else if (!ext->is_set) { 7556 pr_debug("extern %s (weak) not resolved, defaulting to zero\n", 7557 ext->name); 7558 } 7559 } 7560 7561 return 0; 7562 } 7563 7564 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 7565 { 7566 int err, i; 7567 7568 if (!obj) 7569 return libbpf_err(-EINVAL); 7570 7571 if (obj->loaded) { 7572 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7573 return libbpf_err(-EINVAL); 7574 } 7575 7576 if (obj->gen_loader) 7577 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 7578 7579 err = bpf_object__probe_loading(obj); 7580 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7581 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7582 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7583 err = err ? : bpf_object__sanitize_maps(obj); 7584 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7585 err = err ? : bpf_object__create_maps(obj); 7586 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 7587 err = err ? : bpf_object__load_progs(obj, extra_log_level); 7588 err = err ? : bpf_object_init_prog_arrays(obj); 7589 7590 if (obj->gen_loader) { 7591 /* reset FDs */ 7592 if (obj->btf) 7593 btf__set_fd(obj->btf, -1); 7594 for (i = 0; i < obj->nr_maps; i++) 7595 obj->maps[i].fd = -1; 7596 if (!err) 7597 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 7598 } 7599 7600 /* clean up fd_array */ 7601 zfree(&obj->fd_array); 7602 7603 /* clean up module BTFs */ 7604 for (i = 0; i < obj->btf_module_cnt; i++) { 7605 close(obj->btf_modules[i].fd); 7606 btf__free(obj->btf_modules[i].btf); 7607 free(obj->btf_modules[i].name); 7608 } 7609 free(obj->btf_modules); 7610 7611 /* clean up vmlinux BTF */ 7612 btf__free(obj->btf_vmlinux); 7613 obj->btf_vmlinux = NULL; 7614 7615 obj->loaded = true; /* doesn't matter if successfully or not */ 7616 7617 if (err) 7618 goto out; 7619 7620 return 0; 7621 out: 7622 /* unpin any maps that were auto-pinned during load */ 7623 for (i = 0; i < obj->nr_maps; i++) 7624 if (obj->maps[i].pinned && !obj->maps[i].reused) 7625 bpf_map__unpin(&obj->maps[i], NULL); 7626 7627 bpf_object_unload(obj); 7628 pr_warn("failed to load object '%s'\n", obj->path); 7629 return libbpf_err(err); 7630 } 7631 7632 int bpf_object__load(struct bpf_object *obj) 7633 { 7634 return bpf_object_load(obj, 0, NULL); 7635 } 7636 7637 static int make_parent_dir(const char *path) 7638 { 7639 char *cp, errmsg[STRERR_BUFSIZE]; 7640 char *dname, *dir; 7641 int err = 0; 7642 7643 dname = strdup(path); 7644 if (dname == NULL) 7645 return -ENOMEM; 7646 7647 dir = dirname(dname); 7648 if (mkdir(dir, 0700) && errno != EEXIST) 7649 err = -errno; 7650 7651 free(dname); 7652 if (err) { 7653 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7654 pr_warn("failed to mkdir %s: %s\n", path, cp); 7655 } 7656 return err; 7657 } 7658 7659 static int check_path(const char *path) 7660 { 7661 char *cp, errmsg[STRERR_BUFSIZE]; 7662 struct statfs st_fs; 7663 char *dname, *dir; 7664 int err = 0; 7665 7666 if (path == NULL) 7667 return -EINVAL; 7668 7669 dname = strdup(path); 7670 if (dname == NULL) 7671 return -ENOMEM; 7672 7673 dir = dirname(dname); 7674 if (statfs(dir, &st_fs)) { 7675 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7676 pr_warn("failed to statfs %s: %s\n", dir, cp); 7677 err = -errno; 7678 } 7679 free(dname); 7680 7681 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7682 pr_warn("specified path %s is not on BPF FS\n", path); 7683 err = -EINVAL; 7684 } 7685 7686 return err; 7687 } 7688 7689 int bpf_program__pin(struct bpf_program *prog, const char *path) 7690 { 7691 char *cp, errmsg[STRERR_BUFSIZE]; 7692 int err; 7693 7694 if (prog->fd < 0) { 7695 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 7696 return libbpf_err(-EINVAL); 7697 } 7698 7699 err = make_parent_dir(path); 7700 if (err) 7701 return libbpf_err(err); 7702 7703 err = check_path(path); 7704 if (err) 7705 return libbpf_err(err); 7706 7707 if (bpf_obj_pin(prog->fd, path)) { 7708 err = -errno; 7709 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7710 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp); 7711 return libbpf_err(err); 7712 } 7713 7714 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 7715 return 0; 7716 } 7717 7718 int bpf_program__unpin(struct bpf_program *prog, const char *path) 7719 { 7720 int err; 7721 7722 if (prog->fd < 0) { 7723 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 7724 return libbpf_err(-EINVAL); 7725 } 7726 7727 err = check_path(path); 7728 if (err) 7729 return libbpf_err(err); 7730 7731 err = unlink(path); 7732 if (err) 7733 return libbpf_err(-errno); 7734 7735 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 7736 return 0; 7737 } 7738 7739 int bpf_map__pin(struct bpf_map *map, const char *path) 7740 { 7741 char *cp, errmsg[STRERR_BUFSIZE]; 7742 int err; 7743 7744 if (map == NULL) { 7745 pr_warn("invalid map pointer\n"); 7746 return libbpf_err(-EINVAL); 7747 } 7748 7749 if (map->pin_path) { 7750 if (path && strcmp(path, map->pin_path)) { 7751 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7752 bpf_map__name(map), map->pin_path, path); 7753 return libbpf_err(-EINVAL); 7754 } else if (map->pinned) { 7755 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 7756 bpf_map__name(map), map->pin_path); 7757 return 0; 7758 } 7759 } else { 7760 if (!path) { 7761 pr_warn("missing a path to pin map '%s' at\n", 7762 bpf_map__name(map)); 7763 return libbpf_err(-EINVAL); 7764 } else if (map->pinned) { 7765 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 7766 return libbpf_err(-EEXIST); 7767 } 7768 7769 map->pin_path = strdup(path); 7770 if (!map->pin_path) { 7771 err = -errno; 7772 goto out_err; 7773 } 7774 } 7775 7776 err = make_parent_dir(map->pin_path); 7777 if (err) 7778 return libbpf_err(err); 7779 7780 err = check_path(map->pin_path); 7781 if (err) 7782 return libbpf_err(err); 7783 7784 if (bpf_obj_pin(map->fd, map->pin_path)) { 7785 err = -errno; 7786 goto out_err; 7787 } 7788 7789 map->pinned = true; 7790 pr_debug("pinned map '%s'\n", map->pin_path); 7791 7792 return 0; 7793 7794 out_err: 7795 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7796 pr_warn("failed to pin map: %s\n", cp); 7797 return libbpf_err(err); 7798 } 7799 7800 int bpf_map__unpin(struct bpf_map *map, const char *path) 7801 { 7802 int err; 7803 7804 if (map == NULL) { 7805 pr_warn("invalid map pointer\n"); 7806 return libbpf_err(-EINVAL); 7807 } 7808 7809 if (map->pin_path) { 7810 if (path && strcmp(path, map->pin_path)) { 7811 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7812 bpf_map__name(map), map->pin_path, path); 7813 return libbpf_err(-EINVAL); 7814 } 7815 path = map->pin_path; 7816 } else if (!path) { 7817 pr_warn("no path to unpin map '%s' from\n", 7818 bpf_map__name(map)); 7819 return libbpf_err(-EINVAL); 7820 } 7821 7822 err = check_path(path); 7823 if (err) 7824 return libbpf_err(err); 7825 7826 err = unlink(path); 7827 if (err != 0) 7828 return libbpf_err(-errno); 7829 7830 map->pinned = false; 7831 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 7832 7833 return 0; 7834 } 7835 7836 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 7837 { 7838 char *new = NULL; 7839 7840 if (path) { 7841 new = strdup(path); 7842 if (!new) 7843 return libbpf_err(-errno); 7844 } 7845 7846 free(map->pin_path); 7847 map->pin_path = new; 7848 return 0; 7849 } 7850 7851 __alias(bpf_map__pin_path) 7852 const char *bpf_map__get_pin_path(const struct bpf_map *map); 7853 7854 const char *bpf_map__pin_path(const struct bpf_map *map) 7855 { 7856 return map->pin_path; 7857 } 7858 7859 bool bpf_map__is_pinned(const struct bpf_map *map) 7860 { 7861 return map->pinned; 7862 } 7863 7864 static void sanitize_pin_path(char *s) 7865 { 7866 /* bpffs disallows periods in path names */ 7867 while (*s) { 7868 if (*s == '.') 7869 *s = '_'; 7870 s++; 7871 } 7872 } 7873 7874 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 7875 { 7876 struct bpf_map *map; 7877 int err; 7878 7879 if (!obj) 7880 return libbpf_err(-ENOENT); 7881 7882 if (!obj->loaded) { 7883 pr_warn("object not yet loaded; load it first\n"); 7884 return libbpf_err(-ENOENT); 7885 } 7886 7887 bpf_object__for_each_map(map, obj) { 7888 char *pin_path = NULL; 7889 char buf[PATH_MAX]; 7890 7891 if (!map->autocreate) 7892 continue; 7893 7894 if (path) { 7895 int len; 7896 7897 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7898 bpf_map__name(map)); 7899 if (len < 0) { 7900 err = -EINVAL; 7901 goto err_unpin_maps; 7902 } else if (len >= PATH_MAX) { 7903 err = -ENAMETOOLONG; 7904 goto err_unpin_maps; 7905 } 7906 sanitize_pin_path(buf); 7907 pin_path = buf; 7908 } else if (!map->pin_path) { 7909 continue; 7910 } 7911 7912 err = bpf_map__pin(map, pin_path); 7913 if (err) 7914 goto err_unpin_maps; 7915 } 7916 7917 return 0; 7918 7919 err_unpin_maps: 7920 while ((map = bpf_object__prev_map(obj, map))) { 7921 if (!map->pin_path) 7922 continue; 7923 7924 bpf_map__unpin(map, NULL); 7925 } 7926 7927 return libbpf_err(err); 7928 } 7929 7930 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 7931 { 7932 struct bpf_map *map; 7933 int err; 7934 7935 if (!obj) 7936 return libbpf_err(-ENOENT); 7937 7938 bpf_object__for_each_map(map, obj) { 7939 char *pin_path = NULL; 7940 char buf[PATH_MAX]; 7941 7942 if (path) { 7943 int len; 7944 7945 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7946 bpf_map__name(map)); 7947 if (len < 0) 7948 return libbpf_err(-EINVAL); 7949 else if (len >= PATH_MAX) 7950 return libbpf_err(-ENAMETOOLONG); 7951 sanitize_pin_path(buf); 7952 pin_path = buf; 7953 } else if (!map->pin_path) { 7954 continue; 7955 } 7956 7957 err = bpf_map__unpin(map, pin_path); 7958 if (err) 7959 return libbpf_err(err); 7960 } 7961 7962 return 0; 7963 } 7964 7965 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 7966 { 7967 struct bpf_program *prog; 7968 int err; 7969 7970 if (!obj) 7971 return libbpf_err(-ENOENT); 7972 7973 if (!obj->loaded) { 7974 pr_warn("object not yet loaded; load it first\n"); 7975 return libbpf_err(-ENOENT); 7976 } 7977 7978 bpf_object__for_each_program(prog, obj) { 7979 char buf[PATH_MAX]; 7980 int len; 7981 7982 len = snprintf(buf, PATH_MAX, "%s/%s", path, prog->name); 7983 if (len < 0) { 7984 err = -EINVAL; 7985 goto err_unpin_programs; 7986 } else if (len >= PATH_MAX) { 7987 err = -ENAMETOOLONG; 7988 goto err_unpin_programs; 7989 } 7990 7991 err = bpf_program__pin(prog, buf); 7992 if (err) 7993 goto err_unpin_programs; 7994 } 7995 7996 return 0; 7997 7998 err_unpin_programs: 7999 while ((prog = bpf_object__prev_program(obj, prog))) { 8000 char buf[PATH_MAX]; 8001 int len; 8002 8003 len = snprintf(buf, PATH_MAX, "%s/%s", path, prog->name); 8004 if (len < 0) 8005 continue; 8006 else if (len >= PATH_MAX) 8007 continue; 8008 8009 bpf_program__unpin(prog, buf); 8010 } 8011 8012 return libbpf_err(err); 8013 } 8014 8015 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8016 { 8017 struct bpf_program *prog; 8018 int err; 8019 8020 if (!obj) 8021 return libbpf_err(-ENOENT); 8022 8023 bpf_object__for_each_program(prog, obj) { 8024 char buf[PATH_MAX]; 8025 int len; 8026 8027 len = snprintf(buf, PATH_MAX, "%s/%s", path, prog->name); 8028 if (len < 0) 8029 return libbpf_err(-EINVAL); 8030 else if (len >= PATH_MAX) 8031 return libbpf_err(-ENAMETOOLONG); 8032 8033 err = bpf_program__unpin(prog, buf); 8034 if (err) 8035 return libbpf_err(err); 8036 } 8037 8038 return 0; 8039 } 8040 8041 int bpf_object__pin(struct bpf_object *obj, const char *path) 8042 { 8043 int err; 8044 8045 err = bpf_object__pin_maps(obj, path); 8046 if (err) 8047 return libbpf_err(err); 8048 8049 err = bpf_object__pin_programs(obj, path); 8050 if (err) { 8051 bpf_object__unpin_maps(obj, path); 8052 return libbpf_err(err); 8053 } 8054 8055 return 0; 8056 } 8057 8058 static void bpf_map__destroy(struct bpf_map *map) 8059 { 8060 if (map->inner_map) { 8061 bpf_map__destroy(map->inner_map); 8062 zfree(&map->inner_map); 8063 } 8064 8065 zfree(&map->init_slots); 8066 map->init_slots_sz = 0; 8067 8068 if (map->mmaped) { 8069 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8070 map->mmaped = NULL; 8071 } 8072 8073 if (map->st_ops) { 8074 zfree(&map->st_ops->data); 8075 zfree(&map->st_ops->progs); 8076 zfree(&map->st_ops->kern_func_off); 8077 zfree(&map->st_ops); 8078 } 8079 8080 zfree(&map->name); 8081 zfree(&map->real_name); 8082 zfree(&map->pin_path); 8083 8084 if (map->fd >= 0) 8085 zclose(map->fd); 8086 } 8087 8088 void bpf_object__close(struct bpf_object *obj) 8089 { 8090 size_t i; 8091 8092 if (IS_ERR_OR_NULL(obj)) 8093 return; 8094 8095 usdt_manager_free(obj->usdt_man); 8096 obj->usdt_man = NULL; 8097 8098 bpf_gen__free(obj->gen_loader); 8099 bpf_object__elf_finish(obj); 8100 bpf_object_unload(obj); 8101 btf__free(obj->btf); 8102 btf_ext__free(obj->btf_ext); 8103 8104 for (i = 0; i < obj->nr_maps; i++) 8105 bpf_map__destroy(&obj->maps[i]); 8106 8107 zfree(&obj->btf_custom_path); 8108 zfree(&obj->kconfig); 8109 zfree(&obj->externs); 8110 obj->nr_extern = 0; 8111 8112 zfree(&obj->maps); 8113 obj->nr_maps = 0; 8114 8115 if (obj->programs && obj->nr_programs) { 8116 for (i = 0; i < obj->nr_programs; i++) 8117 bpf_program__exit(&obj->programs[i]); 8118 } 8119 zfree(&obj->programs); 8120 8121 free(obj); 8122 } 8123 8124 const char *bpf_object__name(const struct bpf_object *obj) 8125 { 8126 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8127 } 8128 8129 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8130 { 8131 return obj ? obj->kern_version : 0; 8132 } 8133 8134 struct btf *bpf_object__btf(const struct bpf_object *obj) 8135 { 8136 return obj ? obj->btf : NULL; 8137 } 8138 8139 int bpf_object__btf_fd(const struct bpf_object *obj) 8140 { 8141 return obj->btf ? btf__fd(obj->btf) : -1; 8142 } 8143 8144 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8145 { 8146 if (obj->loaded) 8147 return libbpf_err(-EINVAL); 8148 8149 obj->kern_version = kern_version; 8150 8151 return 0; 8152 } 8153 8154 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8155 { 8156 struct bpf_gen *gen; 8157 8158 if (!opts) 8159 return -EFAULT; 8160 if (!OPTS_VALID(opts, gen_loader_opts)) 8161 return -EINVAL; 8162 gen = calloc(sizeof(*gen), 1); 8163 if (!gen) 8164 return -ENOMEM; 8165 gen->opts = opts; 8166 obj->gen_loader = gen; 8167 return 0; 8168 } 8169 8170 static struct bpf_program * 8171 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8172 bool forward) 8173 { 8174 size_t nr_programs = obj->nr_programs; 8175 ssize_t idx; 8176 8177 if (!nr_programs) 8178 return NULL; 8179 8180 if (!p) 8181 /* Iter from the beginning */ 8182 return forward ? &obj->programs[0] : 8183 &obj->programs[nr_programs - 1]; 8184 8185 if (p->obj != obj) { 8186 pr_warn("error: program handler doesn't match object\n"); 8187 return errno = EINVAL, NULL; 8188 } 8189 8190 idx = (p - obj->programs) + (forward ? 1 : -1); 8191 if (idx >= obj->nr_programs || idx < 0) 8192 return NULL; 8193 return &obj->programs[idx]; 8194 } 8195 8196 struct bpf_program * 8197 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8198 { 8199 struct bpf_program *prog = prev; 8200 8201 do { 8202 prog = __bpf_program__iter(prog, obj, true); 8203 } while (prog && prog_is_subprog(obj, prog)); 8204 8205 return prog; 8206 } 8207 8208 struct bpf_program * 8209 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8210 { 8211 struct bpf_program *prog = next; 8212 8213 do { 8214 prog = __bpf_program__iter(prog, obj, false); 8215 } while (prog && prog_is_subprog(obj, prog)); 8216 8217 return prog; 8218 } 8219 8220 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8221 { 8222 prog->prog_ifindex = ifindex; 8223 } 8224 8225 const char *bpf_program__name(const struct bpf_program *prog) 8226 { 8227 return prog->name; 8228 } 8229 8230 const char *bpf_program__section_name(const struct bpf_program *prog) 8231 { 8232 return prog->sec_name; 8233 } 8234 8235 bool bpf_program__autoload(const struct bpf_program *prog) 8236 { 8237 return prog->autoload; 8238 } 8239 8240 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8241 { 8242 if (prog->obj->loaded) 8243 return libbpf_err(-EINVAL); 8244 8245 prog->autoload = autoload; 8246 return 0; 8247 } 8248 8249 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8250 { 8251 return prog->insns; 8252 } 8253 8254 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8255 { 8256 return prog->insns_cnt; 8257 } 8258 8259 int bpf_program__set_insns(struct bpf_program *prog, 8260 struct bpf_insn *new_insns, size_t new_insn_cnt) 8261 { 8262 struct bpf_insn *insns; 8263 8264 if (prog->obj->loaded) 8265 return -EBUSY; 8266 8267 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 8268 if (!insns) { 8269 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 8270 return -ENOMEM; 8271 } 8272 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 8273 8274 prog->insns = insns; 8275 prog->insns_cnt = new_insn_cnt; 8276 return 0; 8277 } 8278 8279 int bpf_program__fd(const struct bpf_program *prog) 8280 { 8281 if (!prog) 8282 return libbpf_err(-EINVAL); 8283 8284 if (prog->fd < 0) 8285 return libbpf_err(-ENOENT); 8286 8287 return prog->fd; 8288 } 8289 8290 __alias(bpf_program__type) 8291 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 8292 8293 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 8294 { 8295 return prog->type; 8296 } 8297 8298 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8299 { 8300 if (prog->obj->loaded) 8301 return libbpf_err(-EBUSY); 8302 8303 prog->type = type; 8304 return 0; 8305 } 8306 8307 __alias(bpf_program__expected_attach_type) 8308 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 8309 8310 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 8311 { 8312 return prog->expected_attach_type; 8313 } 8314 8315 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 8316 enum bpf_attach_type type) 8317 { 8318 if (prog->obj->loaded) 8319 return libbpf_err(-EBUSY); 8320 8321 prog->expected_attach_type = type; 8322 return 0; 8323 } 8324 8325 __u32 bpf_program__flags(const struct bpf_program *prog) 8326 { 8327 return prog->prog_flags; 8328 } 8329 8330 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 8331 { 8332 if (prog->obj->loaded) 8333 return libbpf_err(-EBUSY); 8334 8335 prog->prog_flags = flags; 8336 return 0; 8337 } 8338 8339 __u32 bpf_program__log_level(const struct bpf_program *prog) 8340 { 8341 return prog->log_level; 8342 } 8343 8344 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 8345 { 8346 if (prog->obj->loaded) 8347 return libbpf_err(-EBUSY); 8348 8349 prog->log_level = log_level; 8350 return 0; 8351 } 8352 8353 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 8354 { 8355 *log_size = prog->log_size; 8356 return prog->log_buf; 8357 } 8358 8359 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 8360 { 8361 if (log_size && !log_buf) 8362 return -EINVAL; 8363 if (prog->log_size > UINT_MAX) 8364 return -EINVAL; 8365 if (prog->obj->loaded) 8366 return -EBUSY; 8367 8368 prog->log_buf = log_buf; 8369 prog->log_size = log_size; 8370 return 0; 8371 } 8372 8373 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 8374 .sec = (char *)sec_pfx, \ 8375 .prog_type = BPF_PROG_TYPE_##ptype, \ 8376 .expected_attach_type = atype, \ 8377 .cookie = (long)(flags), \ 8378 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 8379 __VA_ARGS__ \ 8380 } 8381 8382 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8383 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8384 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8385 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8386 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8387 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8388 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8389 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8390 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8391 8392 static const struct bpf_sec_def section_defs[] = { 8393 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 8394 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 8395 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 8396 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8397 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8398 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8399 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8400 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8401 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8402 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8403 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8404 SEC_DEF("usdt+", KPROBE, 0, SEC_NONE, attach_usdt), 8405 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), 8406 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), 8407 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), 8408 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8409 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8410 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8411 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8412 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8413 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8414 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 8415 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 8416 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 8417 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 8418 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8419 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8420 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8421 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 8422 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 8423 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 8424 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 8425 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 8426 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 8427 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 8428 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 8429 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 8430 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 8431 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 8432 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 8433 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 8434 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 8435 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 8436 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 8437 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 8438 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 8439 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 8440 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 8441 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 8442 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 8443 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 8444 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 8445 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 8446 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 8447 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 8448 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 8449 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 8450 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 8451 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 8452 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 8453 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 8454 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 8455 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 8456 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 8457 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 8458 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 8459 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 8460 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 8461 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 8462 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 8463 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 8464 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 8465 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 8466 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 8467 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 8468 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 8469 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 8470 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 8471 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 8472 }; 8473 8474 static size_t custom_sec_def_cnt; 8475 static struct bpf_sec_def *custom_sec_defs; 8476 static struct bpf_sec_def custom_fallback_def; 8477 static bool has_custom_fallback_def; 8478 8479 static int last_custom_sec_def_handler_id; 8480 8481 int libbpf_register_prog_handler(const char *sec, 8482 enum bpf_prog_type prog_type, 8483 enum bpf_attach_type exp_attach_type, 8484 const struct libbpf_prog_handler_opts *opts) 8485 { 8486 struct bpf_sec_def *sec_def; 8487 8488 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 8489 return libbpf_err(-EINVAL); 8490 8491 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 8492 return libbpf_err(-E2BIG); 8493 8494 if (sec) { 8495 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 8496 sizeof(*sec_def)); 8497 if (!sec_def) 8498 return libbpf_err(-ENOMEM); 8499 8500 custom_sec_defs = sec_def; 8501 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 8502 } else { 8503 if (has_custom_fallback_def) 8504 return libbpf_err(-EBUSY); 8505 8506 sec_def = &custom_fallback_def; 8507 } 8508 8509 sec_def->sec = sec ? strdup(sec) : NULL; 8510 if (sec && !sec_def->sec) 8511 return libbpf_err(-ENOMEM); 8512 8513 sec_def->prog_type = prog_type; 8514 sec_def->expected_attach_type = exp_attach_type; 8515 sec_def->cookie = OPTS_GET(opts, cookie, 0); 8516 8517 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 8518 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 8519 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 8520 8521 sec_def->handler_id = ++last_custom_sec_def_handler_id; 8522 8523 if (sec) 8524 custom_sec_def_cnt++; 8525 else 8526 has_custom_fallback_def = true; 8527 8528 return sec_def->handler_id; 8529 } 8530 8531 int libbpf_unregister_prog_handler(int handler_id) 8532 { 8533 struct bpf_sec_def *sec_defs; 8534 int i; 8535 8536 if (handler_id <= 0) 8537 return libbpf_err(-EINVAL); 8538 8539 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 8540 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 8541 has_custom_fallback_def = false; 8542 return 0; 8543 } 8544 8545 for (i = 0; i < custom_sec_def_cnt; i++) { 8546 if (custom_sec_defs[i].handler_id == handler_id) 8547 break; 8548 } 8549 8550 if (i == custom_sec_def_cnt) 8551 return libbpf_err(-ENOENT); 8552 8553 free(custom_sec_defs[i].sec); 8554 for (i = i + 1; i < custom_sec_def_cnt; i++) 8555 custom_sec_defs[i - 1] = custom_sec_defs[i]; 8556 custom_sec_def_cnt--; 8557 8558 /* try to shrink the array, but it's ok if we couldn't */ 8559 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 8560 if (sec_defs) 8561 custom_sec_defs = sec_defs; 8562 8563 return 0; 8564 } 8565 8566 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 8567 { 8568 size_t len = strlen(sec_def->sec); 8569 8570 /* "type/" always has to have proper SEC("type/extras") form */ 8571 if (sec_def->sec[len - 1] == '/') { 8572 if (str_has_pfx(sec_name, sec_def->sec)) 8573 return true; 8574 return false; 8575 } 8576 8577 /* "type+" means it can be either exact SEC("type") or 8578 * well-formed SEC("type/extras") with proper '/' separator 8579 */ 8580 if (sec_def->sec[len - 1] == '+') { 8581 len--; 8582 /* not even a prefix */ 8583 if (strncmp(sec_name, sec_def->sec, len) != 0) 8584 return false; 8585 /* exact match or has '/' separator */ 8586 if (sec_name[len] == '\0' || sec_name[len] == '/') 8587 return true; 8588 return false; 8589 } 8590 8591 return strcmp(sec_name, sec_def->sec) == 0; 8592 } 8593 8594 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8595 { 8596 const struct bpf_sec_def *sec_def; 8597 int i, n; 8598 8599 n = custom_sec_def_cnt; 8600 for (i = 0; i < n; i++) { 8601 sec_def = &custom_sec_defs[i]; 8602 if (sec_def_matches(sec_def, sec_name)) 8603 return sec_def; 8604 } 8605 8606 n = ARRAY_SIZE(section_defs); 8607 for (i = 0; i < n; i++) { 8608 sec_def = §ion_defs[i]; 8609 if (sec_def_matches(sec_def, sec_name)) 8610 return sec_def; 8611 } 8612 8613 if (has_custom_fallback_def) 8614 return &custom_fallback_def; 8615 8616 return NULL; 8617 } 8618 8619 #define MAX_TYPE_NAME_SIZE 32 8620 8621 static char *libbpf_get_type_names(bool attach_type) 8622 { 8623 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8624 char *buf; 8625 8626 buf = malloc(len); 8627 if (!buf) 8628 return NULL; 8629 8630 buf[0] = '\0'; 8631 /* Forge string buf with all available names */ 8632 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8633 const struct bpf_sec_def *sec_def = §ion_defs[i]; 8634 8635 if (attach_type) { 8636 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 8637 continue; 8638 8639 if (!(sec_def->cookie & SEC_ATTACHABLE)) 8640 continue; 8641 } 8642 8643 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8644 free(buf); 8645 return NULL; 8646 } 8647 strcat(buf, " "); 8648 strcat(buf, section_defs[i].sec); 8649 } 8650 8651 return buf; 8652 } 8653 8654 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8655 enum bpf_attach_type *expected_attach_type) 8656 { 8657 const struct bpf_sec_def *sec_def; 8658 char *type_names; 8659 8660 if (!name) 8661 return libbpf_err(-EINVAL); 8662 8663 sec_def = find_sec_def(name); 8664 if (sec_def) { 8665 *prog_type = sec_def->prog_type; 8666 *expected_attach_type = sec_def->expected_attach_type; 8667 return 0; 8668 } 8669 8670 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8671 type_names = libbpf_get_type_names(false); 8672 if (type_names != NULL) { 8673 pr_debug("supported section(type) names are:%s\n", type_names); 8674 free(type_names); 8675 } 8676 8677 return libbpf_err(-ESRCH); 8678 } 8679 8680 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 8681 { 8682 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 8683 return NULL; 8684 8685 return attach_type_name[t]; 8686 } 8687 8688 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 8689 { 8690 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 8691 return NULL; 8692 8693 return link_type_name[t]; 8694 } 8695 8696 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 8697 { 8698 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 8699 return NULL; 8700 8701 return map_type_name[t]; 8702 } 8703 8704 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 8705 { 8706 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 8707 return NULL; 8708 8709 return prog_type_name[t]; 8710 } 8711 8712 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 8713 size_t offset) 8714 { 8715 struct bpf_map *map; 8716 size_t i; 8717 8718 for (i = 0; i < obj->nr_maps; i++) { 8719 map = &obj->maps[i]; 8720 if (!bpf_map__is_struct_ops(map)) 8721 continue; 8722 if (map->sec_offset <= offset && 8723 offset - map->sec_offset < map->def.value_size) 8724 return map; 8725 } 8726 8727 return NULL; 8728 } 8729 8730 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 8731 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 8732 Elf64_Shdr *shdr, Elf_Data *data) 8733 { 8734 const struct btf_member *member; 8735 struct bpf_struct_ops *st_ops; 8736 struct bpf_program *prog; 8737 unsigned int shdr_idx; 8738 const struct btf *btf; 8739 struct bpf_map *map; 8740 unsigned int moff, insn_idx; 8741 const char *name; 8742 __u32 member_idx; 8743 Elf64_Sym *sym; 8744 Elf64_Rel *rel; 8745 int i, nrels; 8746 8747 btf = obj->btf; 8748 nrels = shdr->sh_size / shdr->sh_entsize; 8749 for (i = 0; i < nrels; i++) { 8750 rel = elf_rel_by_idx(data, i); 8751 if (!rel) { 8752 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 8753 return -LIBBPF_ERRNO__FORMAT; 8754 } 8755 8756 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 8757 if (!sym) { 8758 pr_warn("struct_ops reloc: symbol %zx not found\n", 8759 (size_t)ELF64_R_SYM(rel->r_info)); 8760 return -LIBBPF_ERRNO__FORMAT; 8761 } 8762 8763 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 8764 map = find_struct_ops_map_by_offset(obj, rel->r_offset); 8765 if (!map) { 8766 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 8767 (size_t)rel->r_offset); 8768 return -EINVAL; 8769 } 8770 8771 moff = rel->r_offset - map->sec_offset; 8772 shdr_idx = sym->st_shndx; 8773 st_ops = map->st_ops; 8774 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 8775 map->name, 8776 (long long)(rel->r_info >> 32), 8777 (long long)sym->st_value, 8778 shdr_idx, (size_t)rel->r_offset, 8779 map->sec_offset, sym->st_name, name); 8780 8781 if (shdr_idx >= SHN_LORESERVE) { 8782 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 8783 map->name, (size_t)rel->r_offset, shdr_idx); 8784 return -LIBBPF_ERRNO__RELOC; 8785 } 8786 if (sym->st_value % BPF_INSN_SZ) { 8787 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 8788 map->name, (unsigned long long)sym->st_value); 8789 return -LIBBPF_ERRNO__FORMAT; 8790 } 8791 insn_idx = sym->st_value / BPF_INSN_SZ; 8792 8793 member = find_member_by_offset(st_ops->type, moff * 8); 8794 if (!member) { 8795 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 8796 map->name, moff); 8797 return -EINVAL; 8798 } 8799 member_idx = member - btf_members(st_ops->type); 8800 name = btf__name_by_offset(btf, member->name_off); 8801 8802 if (!resolve_func_ptr(btf, member->type, NULL)) { 8803 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 8804 map->name, name); 8805 return -EINVAL; 8806 } 8807 8808 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 8809 if (!prog) { 8810 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 8811 map->name, shdr_idx, name); 8812 return -EINVAL; 8813 } 8814 8815 /* prevent the use of BPF prog with invalid type */ 8816 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 8817 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 8818 map->name, prog->name); 8819 return -EINVAL; 8820 } 8821 8822 /* if we haven't yet processed this BPF program, record proper 8823 * attach_btf_id and member_idx 8824 */ 8825 if (!prog->attach_btf_id) { 8826 prog->attach_btf_id = st_ops->type_id; 8827 prog->expected_attach_type = member_idx; 8828 } 8829 8830 /* struct_ops BPF prog can be re-used between multiple 8831 * .struct_ops as long as it's the same struct_ops struct 8832 * definition and the same function pointer field 8833 */ 8834 if (prog->attach_btf_id != st_ops->type_id || 8835 prog->expected_attach_type != member_idx) { 8836 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 8837 map->name, prog->name, prog->sec_name, prog->type, 8838 prog->attach_btf_id, prog->expected_attach_type, name); 8839 return -EINVAL; 8840 } 8841 8842 st_ops->progs[member_idx] = prog; 8843 } 8844 8845 return 0; 8846 } 8847 8848 #define BTF_TRACE_PREFIX "btf_trace_" 8849 #define BTF_LSM_PREFIX "bpf_lsm_" 8850 #define BTF_ITER_PREFIX "bpf_iter_" 8851 #define BTF_MAX_NAME_SIZE 128 8852 8853 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 8854 const char **prefix, int *kind) 8855 { 8856 switch (attach_type) { 8857 case BPF_TRACE_RAW_TP: 8858 *prefix = BTF_TRACE_PREFIX; 8859 *kind = BTF_KIND_TYPEDEF; 8860 break; 8861 case BPF_LSM_MAC: 8862 case BPF_LSM_CGROUP: 8863 *prefix = BTF_LSM_PREFIX; 8864 *kind = BTF_KIND_FUNC; 8865 break; 8866 case BPF_TRACE_ITER: 8867 *prefix = BTF_ITER_PREFIX; 8868 *kind = BTF_KIND_FUNC; 8869 break; 8870 default: 8871 *prefix = ""; 8872 *kind = BTF_KIND_FUNC; 8873 } 8874 } 8875 8876 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 8877 const char *name, __u32 kind) 8878 { 8879 char btf_type_name[BTF_MAX_NAME_SIZE]; 8880 int ret; 8881 8882 ret = snprintf(btf_type_name, sizeof(btf_type_name), 8883 "%s%s", prefix, name); 8884 /* snprintf returns the number of characters written excluding the 8885 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 8886 * indicates truncation. 8887 */ 8888 if (ret < 0 || ret >= sizeof(btf_type_name)) 8889 return -ENAMETOOLONG; 8890 return btf__find_by_name_kind(btf, btf_type_name, kind); 8891 } 8892 8893 static inline int find_attach_btf_id(struct btf *btf, const char *name, 8894 enum bpf_attach_type attach_type) 8895 { 8896 const char *prefix; 8897 int kind; 8898 8899 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 8900 return find_btf_by_prefix_kind(btf, prefix, name, kind); 8901 } 8902 8903 int libbpf_find_vmlinux_btf_id(const char *name, 8904 enum bpf_attach_type attach_type) 8905 { 8906 struct btf *btf; 8907 int err; 8908 8909 btf = btf__load_vmlinux_btf(); 8910 err = libbpf_get_error(btf); 8911 if (err) { 8912 pr_warn("vmlinux BTF is not found\n"); 8913 return libbpf_err(err); 8914 } 8915 8916 err = find_attach_btf_id(btf, name, attach_type); 8917 if (err <= 0) 8918 pr_warn("%s is not found in vmlinux BTF\n", name); 8919 8920 btf__free(btf); 8921 return libbpf_err(err); 8922 } 8923 8924 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 8925 { 8926 struct bpf_prog_info info = {}; 8927 __u32 info_len = sizeof(info); 8928 struct btf *btf; 8929 int err; 8930 8931 err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len); 8932 if (err) { 8933 pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n", 8934 attach_prog_fd, err); 8935 return err; 8936 } 8937 8938 err = -EINVAL; 8939 if (!info.btf_id) { 8940 pr_warn("The target program doesn't have BTF\n"); 8941 goto out; 8942 } 8943 btf = btf__load_from_kernel_by_id(info.btf_id); 8944 err = libbpf_get_error(btf); 8945 if (err) { 8946 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 8947 goto out; 8948 } 8949 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 8950 btf__free(btf); 8951 if (err <= 0) { 8952 pr_warn("%s is not found in prog's BTF\n", name); 8953 goto out; 8954 } 8955 out: 8956 return err; 8957 } 8958 8959 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 8960 enum bpf_attach_type attach_type, 8961 int *btf_obj_fd, int *btf_type_id) 8962 { 8963 int ret, i; 8964 8965 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 8966 if (ret > 0) { 8967 *btf_obj_fd = 0; /* vmlinux BTF */ 8968 *btf_type_id = ret; 8969 return 0; 8970 } 8971 if (ret != -ENOENT) 8972 return ret; 8973 8974 ret = load_module_btfs(obj); 8975 if (ret) 8976 return ret; 8977 8978 for (i = 0; i < obj->btf_module_cnt; i++) { 8979 const struct module_btf *mod = &obj->btf_modules[i]; 8980 8981 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 8982 if (ret > 0) { 8983 *btf_obj_fd = mod->fd; 8984 *btf_type_id = ret; 8985 return 0; 8986 } 8987 if (ret == -ENOENT) 8988 continue; 8989 8990 return ret; 8991 } 8992 8993 return -ESRCH; 8994 } 8995 8996 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 8997 int *btf_obj_fd, int *btf_type_id) 8998 { 8999 enum bpf_attach_type attach_type = prog->expected_attach_type; 9000 __u32 attach_prog_fd = prog->attach_prog_fd; 9001 int err = 0; 9002 9003 /* BPF program's BTF ID */ 9004 if (attach_prog_fd) { 9005 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9006 if (err < 0) { 9007 pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9008 attach_prog_fd, attach_name, err); 9009 return err; 9010 } 9011 *btf_obj_fd = 0; 9012 *btf_type_id = err; 9013 return 0; 9014 } 9015 9016 /* kernel/module BTF ID */ 9017 if (prog->obj->gen_loader) { 9018 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9019 *btf_obj_fd = 0; 9020 *btf_type_id = 1; 9021 } else { 9022 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9023 } 9024 if (err) { 9025 pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err); 9026 return err; 9027 } 9028 return 0; 9029 } 9030 9031 int libbpf_attach_type_by_name(const char *name, 9032 enum bpf_attach_type *attach_type) 9033 { 9034 char *type_names; 9035 const struct bpf_sec_def *sec_def; 9036 9037 if (!name) 9038 return libbpf_err(-EINVAL); 9039 9040 sec_def = find_sec_def(name); 9041 if (!sec_def) { 9042 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9043 type_names = libbpf_get_type_names(true); 9044 if (type_names != NULL) { 9045 pr_debug("attachable section(type) names are:%s\n", type_names); 9046 free(type_names); 9047 } 9048 9049 return libbpf_err(-EINVAL); 9050 } 9051 9052 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9053 return libbpf_err(-EINVAL); 9054 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9055 return libbpf_err(-EINVAL); 9056 9057 *attach_type = sec_def->expected_attach_type; 9058 return 0; 9059 } 9060 9061 int bpf_map__fd(const struct bpf_map *map) 9062 { 9063 return map ? map->fd : libbpf_err(-EINVAL); 9064 } 9065 9066 static bool map_uses_real_name(const struct bpf_map *map) 9067 { 9068 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9069 * their user-visible name differs from kernel-visible name. Users see 9070 * such map's corresponding ELF section name as a map name. 9071 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9072 * maps to know which name has to be returned to the user. 9073 */ 9074 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9075 return true; 9076 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9077 return true; 9078 return false; 9079 } 9080 9081 const char *bpf_map__name(const struct bpf_map *map) 9082 { 9083 if (!map) 9084 return NULL; 9085 9086 if (map_uses_real_name(map)) 9087 return map->real_name; 9088 9089 return map->name; 9090 } 9091 9092 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9093 { 9094 return map->def.type; 9095 } 9096 9097 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9098 { 9099 if (map->fd >= 0) 9100 return libbpf_err(-EBUSY); 9101 map->def.type = type; 9102 return 0; 9103 } 9104 9105 __u32 bpf_map__map_flags(const struct bpf_map *map) 9106 { 9107 return map->def.map_flags; 9108 } 9109 9110 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9111 { 9112 if (map->fd >= 0) 9113 return libbpf_err(-EBUSY); 9114 map->def.map_flags = flags; 9115 return 0; 9116 } 9117 9118 __u64 bpf_map__map_extra(const struct bpf_map *map) 9119 { 9120 return map->map_extra; 9121 } 9122 9123 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9124 { 9125 if (map->fd >= 0) 9126 return libbpf_err(-EBUSY); 9127 map->map_extra = map_extra; 9128 return 0; 9129 } 9130 9131 __u32 bpf_map__numa_node(const struct bpf_map *map) 9132 { 9133 return map->numa_node; 9134 } 9135 9136 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9137 { 9138 if (map->fd >= 0) 9139 return libbpf_err(-EBUSY); 9140 map->numa_node = numa_node; 9141 return 0; 9142 } 9143 9144 __u32 bpf_map__key_size(const struct bpf_map *map) 9145 { 9146 return map->def.key_size; 9147 } 9148 9149 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9150 { 9151 if (map->fd >= 0) 9152 return libbpf_err(-EBUSY); 9153 map->def.key_size = size; 9154 return 0; 9155 } 9156 9157 __u32 bpf_map__value_size(const struct bpf_map *map) 9158 { 9159 return map->def.value_size; 9160 } 9161 9162 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9163 { 9164 if (map->fd >= 0) 9165 return libbpf_err(-EBUSY); 9166 map->def.value_size = size; 9167 return 0; 9168 } 9169 9170 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9171 { 9172 return map ? map->btf_key_type_id : 0; 9173 } 9174 9175 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9176 { 9177 return map ? map->btf_value_type_id : 0; 9178 } 9179 9180 int bpf_map__set_initial_value(struct bpf_map *map, 9181 const void *data, size_t size) 9182 { 9183 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9184 size != map->def.value_size || map->fd >= 0) 9185 return libbpf_err(-EINVAL); 9186 9187 memcpy(map->mmaped, data, size); 9188 return 0; 9189 } 9190 9191 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9192 { 9193 if (!map->mmaped) 9194 return NULL; 9195 *psize = map->def.value_size; 9196 return map->mmaped; 9197 } 9198 9199 bool bpf_map__is_internal(const struct bpf_map *map) 9200 { 9201 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9202 } 9203 9204 __u32 bpf_map__ifindex(const struct bpf_map *map) 9205 { 9206 return map->map_ifindex; 9207 } 9208 9209 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9210 { 9211 if (map->fd >= 0) 9212 return libbpf_err(-EBUSY); 9213 map->map_ifindex = ifindex; 9214 return 0; 9215 } 9216 9217 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9218 { 9219 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9220 pr_warn("error: unsupported map type\n"); 9221 return libbpf_err(-EINVAL); 9222 } 9223 if (map->inner_map_fd != -1) { 9224 pr_warn("error: inner_map_fd already specified\n"); 9225 return libbpf_err(-EINVAL); 9226 } 9227 if (map->inner_map) { 9228 bpf_map__destroy(map->inner_map); 9229 zfree(&map->inner_map); 9230 } 9231 map->inner_map_fd = fd; 9232 return 0; 9233 } 9234 9235 static struct bpf_map * 9236 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9237 { 9238 ssize_t idx; 9239 struct bpf_map *s, *e; 9240 9241 if (!obj || !obj->maps) 9242 return errno = EINVAL, NULL; 9243 9244 s = obj->maps; 9245 e = obj->maps + obj->nr_maps; 9246 9247 if ((m < s) || (m >= e)) { 9248 pr_warn("error in %s: map handler doesn't belong to object\n", 9249 __func__); 9250 return errno = EINVAL, NULL; 9251 } 9252 9253 idx = (m - obj->maps) + i; 9254 if (idx >= obj->nr_maps || idx < 0) 9255 return NULL; 9256 return &obj->maps[idx]; 9257 } 9258 9259 struct bpf_map * 9260 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 9261 { 9262 if (prev == NULL) 9263 return obj->maps; 9264 9265 return __bpf_map__iter(prev, obj, 1); 9266 } 9267 9268 struct bpf_map * 9269 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 9270 { 9271 if (next == NULL) { 9272 if (!obj->nr_maps) 9273 return NULL; 9274 return obj->maps + obj->nr_maps - 1; 9275 } 9276 9277 return __bpf_map__iter(next, obj, -1); 9278 } 9279 9280 struct bpf_map * 9281 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9282 { 9283 struct bpf_map *pos; 9284 9285 bpf_object__for_each_map(pos, obj) { 9286 /* if it's a special internal map name (which always starts 9287 * with dot) then check if that special name matches the 9288 * real map name (ELF section name) 9289 */ 9290 if (name[0] == '.') { 9291 if (pos->real_name && strcmp(pos->real_name, name) == 0) 9292 return pos; 9293 continue; 9294 } 9295 /* otherwise map name has to be an exact match */ 9296 if (map_uses_real_name(pos)) { 9297 if (strcmp(pos->real_name, name) == 0) 9298 return pos; 9299 continue; 9300 } 9301 if (strcmp(pos->name, name) == 0) 9302 return pos; 9303 } 9304 return errno = ENOENT, NULL; 9305 } 9306 9307 int 9308 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9309 { 9310 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9311 } 9312 9313 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 9314 size_t value_sz, bool check_value_sz) 9315 { 9316 if (map->fd <= 0) 9317 return -ENOENT; 9318 9319 if (map->def.key_size != key_sz) { 9320 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 9321 map->name, key_sz, map->def.key_size); 9322 return -EINVAL; 9323 } 9324 9325 if (!check_value_sz) 9326 return 0; 9327 9328 switch (map->def.type) { 9329 case BPF_MAP_TYPE_PERCPU_ARRAY: 9330 case BPF_MAP_TYPE_PERCPU_HASH: 9331 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 9332 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 9333 int num_cpu = libbpf_num_possible_cpus(); 9334 size_t elem_sz = roundup(map->def.value_size, 8); 9335 9336 if (value_sz != num_cpu * elem_sz) { 9337 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 9338 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 9339 return -EINVAL; 9340 } 9341 break; 9342 } 9343 default: 9344 if (map->def.value_size != value_sz) { 9345 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 9346 map->name, value_sz, map->def.value_size); 9347 return -EINVAL; 9348 } 9349 break; 9350 } 9351 return 0; 9352 } 9353 9354 int bpf_map__lookup_elem(const struct bpf_map *map, 9355 const void *key, size_t key_sz, 9356 void *value, size_t value_sz, __u64 flags) 9357 { 9358 int err; 9359 9360 err = validate_map_op(map, key_sz, value_sz, true); 9361 if (err) 9362 return libbpf_err(err); 9363 9364 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 9365 } 9366 9367 int bpf_map__update_elem(const struct bpf_map *map, 9368 const void *key, size_t key_sz, 9369 const void *value, size_t value_sz, __u64 flags) 9370 { 9371 int err; 9372 9373 err = validate_map_op(map, key_sz, value_sz, true); 9374 if (err) 9375 return libbpf_err(err); 9376 9377 return bpf_map_update_elem(map->fd, key, value, flags); 9378 } 9379 9380 int bpf_map__delete_elem(const struct bpf_map *map, 9381 const void *key, size_t key_sz, __u64 flags) 9382 { 9383 int err; 9384 9385 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 9386 if (err) 9387 return libbpf_err(err); 9388 9389 return bpf_map_delete_elem_flags(map->fd, key, flags); 9390 } 9391 9392 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 9393 const void *key, size_t key_sz, 9394 void *value, size_t value_sz, __u64 flags) 9395 { 9396 int err; 9397 9398 err = validate_map_op(map, key_sz, value_sz, true); 9399 if (err) 9400 return libbpf_err(err); 9401 9402 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 9403 } 9404 9405 int bpf_map__get_next_key(const struct bpf_map *map, 9406 const void *cur_key, void *next_key, size_t key_sz) 9407 { 9408 int err; 9409 9410 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 9411 if (err) 9412 return libbpf_err(err); 9413 9414 return bpf_map_get_next_key(map->fd, cur_key, next_key); 9415 } 9416 9417 long libbpf_get_error(const void *ptr) 9418 { 9419 if (!IS_ERR_OR_NULL(ptr)) 9420 return 0; 9421 9422 if (IS_ERR(ptr)) 9423 errno = -PTR_ERR(ptr); 9424 9425 /* If ptr == NULL, then errno should be already set by the failing 9426 * API, because libbpf never returns NULL on success and it now always 9427 * sets errno on error. So no extra errno handling for ptr == NULL 9428 * case. 9429 */ 9430 return -errno; 9431 } 9432 9433 /* Replace link's underlying BPF program with the new one */ 9434 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9435 { 9436 int ret; 9437 9438 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9439 return libbpf_err_errno(ret); 9440 } 9441 9442 /* Release "ownership" of underlying BPF resource (typically, BPF program 9443 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9444 * link, when destructed through bpf_link__destroy() call won't attempt to 9445 * detach/unregisted that BPF resource. This is useful in situations where, 9446 * say, attached BPF program has to outlive userspace program that attached it 9447 * in the system. Depending on type of BPF program, though, there might be 9448 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9449 * exit of userspace program doesn't trigger automatic detachment and clean up 9450 * inside the kernel. 9451 */ 9452 void bpf_link__disconnect(struct bpf_link *link) 9453 { 9454 link->disconnected = true; 9455 } 9456 9457 int bpf_link__destroy(struct bpf_link *link) 9458 { 9459 int err = 0; 9460 9461 if (IS_ERR_OR_NULL(link)) 9462 return 0; 9463 9464 if (!link->disconnected && link->detach) 9465 err = link->detach(link); 9466 if (link->pin_path) 9467 free(link->pin_path); 9468 if (link->dealloc) 9469 link->dealloc(link); 9470 else 9471 free(link); 9472 9473 return libbpf_err(err); 9474 } 9475 9476 int bpf_link__fd(const struct bpf_link *link) 9477 { 9478 return link->fd; 9479 } 9480 9481 const char *bpf_link__pin_path(const struct bpf_link *link) 9482 { 9483 return link->pin_path; 9484 } 9485 9486 static int bpf_link__detach_fd(struct bpf_link *link) 9487 { 9488 return libbpf_err_errno(close(link->fd)); 9489 } 9490 9491 struct bpf_link *bpf_link__open(const char *path) 9492 { 9493 struct bpf_link *link; 9494 int fd; 9495 9496 fd = bpf_obj_get(path); 9497 if (fd < 0) { 9498 fd = -errno; 9499 pr_warn("failed to open link at %s: %d\n", path, fd); 9500 return libbpf_err_ptr(fd); 9501 } 9502 9503 link = calloc(1, sizeof(*link)); 9504 if (!link) { 9505 close(fd); 9506 return libbpf_err_ptr(-ENOMEM); 9507 } 9508 link->detach = &bpf_link__detach_fd; 9509 link->fd = fd; 9510 9511 link->pin_path = strdup(path); 9512 if (!link->pin_path) { 9513 bpf_link__destroy(link); 9514 return libbpf_err_ptr(-ENOMEM); 9515 } 9516 9517 return link; 9518 } 9519 9520 int bpf_link__detach(struct bpf_link *link) 9521 { 9522 return bpf_link_detach(link->fd) ? -errno : 0; 9523 } 9524 9525 int bpf_link__pin(struct bpf_link *link, const char *path) 9526 { 9527 int err; 9528 9529 if (link->pin_path) 9530 return libbpf_err(-EBUSY); 9531 err = make_parent_dir(path); 9532 if (err) 9533 return libbpf_err(err); 9534 err = check_path(path); 9535 if (err) 9536 return libbpf_err(err); 9537 9538 link->pin_path = strdup(path); 9539 if (!link->pin_path) 9540 return libbpf_err(-ENOMEM); 9541 9542 if (bpf_obj_pin(link->fd, link->pin_path)) { 9543 err = -errno; 9544 zfree(&link->pin_path); 9545 return libbpf_err(err); 9546 } 9547 9548 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9549 return 0; 9550 } 9551 9552 int bpf_link__unpin(struct bpf_link *link) 9553 { 9554 int err; 9555 9556 if (!link->pin_path) 9557 return libbpf_err(-EINVAL); 9558 9559 err = unlink(link->pin_path); 9560 if (err != 0) 9561 return -errno; 9562 9563 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9564 zfree(&link->pin_path); 9565 return 0; 9566 } 9567 9568 struct bpf_link_perf { 9569 struct bpf_link link; 9570 int perf_event_fd; 9571 /* legacy kprobe support: keep track of probe identifier and type */ 9572 char *legacy_probe_name; 9573 bool legacy_is_kprobe; 9574 bool legacy_is_retprobe; 9575 }; 9576 9577 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 9578 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 9579 9580 static int bpf_link_perf_detach(struct bpf_link *link) 9581 { 9582 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9583 int err = 0; 9584 9585 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 9586 err = -errno; 9587 9588 if (perf_link->perf_event_fd != link->fd) 9589 close(perf_link->perf_event_fd); 9590 close(link->fd); 9591 9592 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 9593 if (perf_link->legacy_probe_name) { 9594 if (perf_link->legacy_is_kprobe) { 9595 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 9596 perf_link->legacy_is_retprobe); 9597 } else { 9598 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 9599 perf_link->legacy_is_retprobe); 9600 } 9601 } 9602 9603 return err; 9604 } 9605 9606 static void bpf_link_perf_dealloc(struct bpf_link *link) 9607 { 9608 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9609 9610 free(perf_link->legacy_probe_name); 9611 free(perf_link); 9612 } 9613 9614 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 9615 const struct bpf_perf_event_opts *opts) 9616 { 9617 char errmsg[STRERR_BUFSIZE]; 9618 struct bpf_link_perf *link; 9619 int prog_fd, link_fd = -1, err; 9620 9621 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 9622 return libbpf_err_ptr(-EINVAL); 9623 9624 if (pfd < 0) { 9625 pr_warn("prog '%s': invalid perf event FD %d\n", 9626 prog->name, pfd); 9627 return libbpf_err_ptr(-EINVAL); 9628 } 9629 prog_fd = bpf_program__fd(prog); 9630 if (prog_fd < 0) { 9631 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 9632 prog->name); 9633 return libbpf_err_ptr(-EINVAL); 9634 } 9635 9636 link = calloc(1, sizeof(*link)); 9637 if (!link) 9638 return libbpf_err_ptr(-ENOMEM); 9639 link->link.detach = &bpf_link_perf_detach; 9640 link->link.dealloc = &bpf_link_perf_dealloc; 9641 link->perf_event_fd = pfd; 9642 9643 if (kernel_supports(prog->obj, FEAT_PERF_LINK)) { 9644 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 9645 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 9646 9647 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 9648 if (link_fd < 0) { 9649 err = -errno; 9650 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 9651 prog->name, pfd, 9652 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9653 goto err_out; 9654 } 9655 link->link.fd = link_fd; 9656 } else { 9657 if (OPTS_GET(opts, bpf_cookie, 0)) { 9658 pr_warn("prog '%s': user context value is not supported\n", prog->name); 9659 err = -EOPNOTSUPP; 9660 goto err_out; 9661 } 9662 9663 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 9664 err = -errno; 9665 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 9666 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9667 if (err == -EPROTO) 9668 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 9669 prog->name, pfd); 9670 goto err_out; 9671 } 9672 link->link.fd = pfd; 9673 } 9674 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9675 err = -errno; 9676 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 9677 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9678 goto err_out; 9679 } 9680 9681 return &link->link; 9682 err_out: 9683 if (link_fd >= 0) 9684 close(link_fd); 9685 free(link); 9686 return libbpf_err_ptr(err); 9687 } 9688 9689 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 9690 { 9691 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 9692 } 9693 9694 /* 9695 * this function is expected to parse integer in the range of [0, 2^31-1] from 9696 * given file using scanf format string fmt. If actual parsed value is 9697 * negative, the result might be indistinguishable from error 9698 */ 9699 static int parse_uint_from_file(const char *file, const char *fmt) 9700 { 9701 char buf[STRERR_BUFSIZE]; 9702 int err, ret; 9703 FILE *f; 9704 9705 f = fopen(file, "r"); 9706 if (!f) { 9707 err = -errno; 9708 pr_debug("failed to open '%s': %s\n", file, 9709 libbpf_strerror_r(err, buf, sizeof(buf))); 9710 return err; 9711 } 9712 err = fscanf(f, fmt, &ret); 9713 if (err != 1) { 9714 err = err == EOF ? -EIO : -errno; 9715 pr_debug("failed to parse '%s': %s\n", file, 9716 libbpf_strerror_r(err, buf, sizeof(buf))); 9717 fclose(f); 9718 return err; 9719 } 9720 fclose(f); 9721 return ret; 9722 } 9723 9724 static int determine_kprobe_perf_type(void) 9725 { 9726 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 9727 9728 return parse_uint_from_file(file, "%d\n"); 9729 } 9730 9731 static int determine_uprobe_perf_type(void) 9732 { 9733 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 9734 9735 return parse_uint_from_file(file, "%d\n"); 9736 } 9737 9738 static int determine_kprobe_retprobe_bit(void) 9739 { 9740 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 9741 9742 return parse_uint_from_file(file, "config:%d\n"); 9743 } 9744 9745 static int determine_uprobe_retprobe_bit(void) 9746 { 9747 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 9748 9749 return parse_uint_from_file(file, "config:%d\n"); 9750 } 9751 9752 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 9753 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 9754 9755 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 9756 uint64_t offset, int pid, size_t ref_ctr_off) 9757 { 9758 struct perf_event_attr attr = {}; 9759 char errmsg[STRERR_BUFSIZE]; 9760 int type, pfd, err; 9761 9762 if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 9763 return -EINVAL; 9764 9765 type = uprobe ? determine_uprobe_perf_type() 9766 : determine_kprobe_perf_type(); 9767 if (type < 0) { 9768 pr_warn("failed to determine %s perf type: %s\n", 9769 uprobe ? "uprobe" : "kprobe", 9770 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 9771 return type; 9772 } 9773 if (retprobe) { 9774 int bit = uprobe ? determine_uprobe_retprobe_bit() 9775 : determine_kprobe_retprobe_bit(); 9776 9777 if (bit < 0) { 9778 pr_warn("failed to determine %s retprobe bit: %s\n", 9779 uprobe ? "uprobe" : "kprobe", 9780 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 9781 return bit; 9782 } 9783 attr.config |= 1 << bit; 9784 } 9785 attr.size = sizeof(attr); 9786 attr.type = type; 9787 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9788 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 9789 attr.config2 = offset; /* kprobe_addr or probe_offset */ 9790 9791 /* pid filter is meaningful only for uprobes */ 9792 pfd = syscall(__NR_perf_event_open, &attr, 9793 pid < 0 ? -1 : pid /* pid */, 9794 pid == -1 ? 0 : -1 /* cpu */, 9795 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9796 if (pfd < 0) { 9797 err = -errno; 9798 pr_warn("%s perf_event_open() failed: %s\n", 9799 uprobe ? "uprobe" : "kprobe", 9800 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9801 return err; 9802 } 9803 return pfd; 9804 } 9805 9806 static int append_to_file(const char *file, const char *fmt, ...) 9807 { 9808 int fd, n, err = 0; 9809 va_list ap; 9810 9811 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 9812 if (fd < 0) 9813 return -errno; 9814 9815 va_start(ap, fmt); 9816 n = vdprintf(fd, fmt, ap); 9817 va_end(ap); 9818 9819 if (n < 0) 9820 err = -errno; 9821 9822 close(fd); 9823 return err; 9824 } 9825 9826 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 9827 const char *kfunc_name, size_t offset) 9828 { 9829 static int index = 0; 9830 9831 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 9832 __sync_fetch_and_add(&index, 1)); 9833 } 9834 9835 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 9836 const char *kfunc_name, size_t offset) 9837 { 9838 const char *file = "/sys/kernel/debug/tracing/kprobe_events"; 9839 9840 return append_to_file(file, "%c:%s/%s %s+0x%zx", 9841 retprobe ? 'r' : 'p', 9842 retprobe ? "kretprobes" : "kprobes", 9843 probe_name, kfunc_name, offset); 9844 } 9845 9846 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 9847 { 9848 const char *file = "/sys/kernel/debug/tracing/kprobe_events"; 9849 9850 return append_to_file(file, "-:%s/%s", retprobe ? "kretprobes" : "kprobes", probe_name); 9851 } 9852 9853 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 9854 { 9855 char file[256]; 9856 9857 snprintf(file, sizeof(file), 9858 "/sys/kernel/debug/tracing/events/%s/%s/id", 9859 retprobe ? "kretprobes" : "kprobes", probe_name); 9860 9861 return parse_uint_from_file(file, "%d\n"); 9862 } 9863 9864 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 9865 const char *kfunc_name, size_t offset, int pid) 9866 { 9867 struct perf_event_attr attr = {}; 9868 char errmsg[STRERR_BUFSIZE]; 9869 int type, pfd, err; 9870 9871 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 9872 if (err < 0) { 9873 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 9874 kfunc_name, offset, 9875 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9876 return err; 9877 } 9878 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 9879 if (type < 0) { 9880 err = type; 9881 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 9882 kfunc_name, offset, 9883 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9884 goto err_clean_legacy; 9885 } 9886 attr.size = sizeof(attr); 9887 attr.config = type; 9888 attr.type = PERF_TYPE_TRACEPOINT; 9889 9890 pfd = syscall(__NR_perf_event_open, &attr, 9891 pid < 0 ? -1 : pid, /* pid */ 9892 pid == -1 ? 0 : -1, /* cpu */ 9893 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9894 if (pfd < 0) { 9895 err = -errno; 9896 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 9897 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9898 goto err_clean_legacy; 9899 } 9900 return pfd; 9901 9902 err_clean_legacy: 9903 /* Clear the newly added legacy kprobe_event */ 9904 remove_kprobe_event_legacy(probe_name, retprobe); 9905 return err; 9906 } 9907 9908 struct bpf_link * 9909 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 9910 const char *func_name, 9911 const struct bpf_kprobe_opts *opts) 9912 { 9913 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 9914 char errmsg[STRERR_BUFSIZE]; 9915 char *legacy_probe = NULL; 9916 struct bpf_link *link; 9917 size_t offset; 9918 bool retprobe, legacy; 9919 int pfd, err; 9920 9921 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 9922 return libbpf_err_ptr(-EINVAL); 9923 9924 retprobe = OPTS_GET(opts, retprobe, false); 9925 offset = OPTS_GET(opts, offset, 0); 9926 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 9927 9928 legacy = determine_kprobe_perf_type() < 0; 9929 if (!legacy) { 9930 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 9931 func_name, offset, 9932 -1 /* pid */, 0 /* ref_ctr_off */); 9933 } else { 9934 char probe_name[256]; 9935 9936 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 9937 func_name, offset); 9938 9939 legacy_probe = strdup(probe_name); 9940 if (!legacy_probe) 9941 return libbpf_err_ptr(-ENOMEM); 9942 9943 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 9944 offset, -1 /* pid */); 9945 } 9946 if (pfd < 0) { 9947 err = -errno; 9948 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 9949 prog->name, retprobe ? "kretprobe" : "kprobe", 9950 func_name, offset, 9951 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9952 goto err_out; 9953 } 9954 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 9955 err = libbpf_get_error(link); 9956 if (err) { 9957 close(pfd); 9958 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 9959 prog->name, retprobe ? "kretprobe" : "kprobe", 9960 func_name, offset, 9961 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9962 goto err_clean_legacy; 9963 } 9964 if (legacy) { 9965 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9966 9967 perf_link->legacy_probe_name = legacy_probe; 9968 perf_link->legacy_is_kprobe = true; 9969 perf_link->legacy_is_retprobe = retprobe; 9970 } 9971 9972 return link; 9973 9974 err_clean_legacy: 9975 if (legacy) 9976 remove_kprobe_event_legacy(legacy_probe, retprobe); 9977 err_out: 9978 free(legacy_probe); 9979 return libbpf_err_ptr(err); 9980 } 9981 9982 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 9983 bool retprobe, 9984 const char *func_name) 9985 { 9986 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 9987 .retprobe = retprobe, 9988 ); 9989 9990 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 9991 } 9992 9993 /* Adapted from perf/util/string.c */ 9994 static bool glob_match(const char *str, const char *pat) 9995 { 9996 while (*str && *pat && *pat != '*') { 9997 if (*pat == '?') { /* Matches any single character */ 9998 str++; 9999 pat++; 10000 continue; 10001 } 10002 if (*str != *pat) 10003 return false; 10004 str++; 10005 pat++; 10006 } 10007 /* Check wild card */ 10008 if (*pat == '*') { 10009 while (*pat == '*') 10010 pat++; 10011 if (!*pat) /* Tail wild card matches all */ 10012 return true; 10013 while (*str) 10014 if (glob_match(str++, pat)) 10015 return true; 10016 } 10017 return !*str && !*pat; 10018 } 10019 10020 struct kprobe_multi_resolve { 10021 const char *pattern; 10022 unsigned long *addrs; 10023 size_t cap; 10024 size_t cnt; 10025 }; 10026 10027 static int 10028 resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type, 10029 const char *sym_name, void *ctx) 10030 { 10031 struct kprobe_multi_resolve *res = ctx; 10032 int err; 10033 10034 if (!glob_match(sym_name, res->pattern)) 10035 return 0; 10036 10037 err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long), 10038 res->cnt + 1); 10039 if (err) 10040 return err; 10041 10042 res->addrs[res->cnt++] = (unsigned long) sym_addr; 10043 return 0; 10044 } 10045 10046 struct bpf_link * 10047 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 10048 const char *pattern, 10049 const struct bpf_kprobe_multi_opts *opts) 10050 { 10051 LIBBPF_OPTS(bpf_link_create_opts, lopts); 10052 struct kprobe_multi_resolve res = { 10053 .pattern = pattern, 10054 }; 10055 struct bpf_link *link = NULL; 10056 char errmsg[STRERR_BUFSIZE]; 10057 const unsigned long *addrs; 10058 int err, link_fd, prog_fd; 10059 const __u64 *cookies; 10060 const char **syms; 10061 bool retprobe; 10062 size_t cnt; 10063 10064 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 10065 return libbpf_err_ptr(-EINVAL); 10066 10067 syms = OPTS_GET(opts, syms, false); 10068 addrs = OPTS_GET(opts, addrs, false); 10069 cnt = OPTS_GET(opts, cnt, false); 10070 cookies = OPTS_GET(opts, cookies, false); 10071 10072 if (!pattern && !addrs && !syms) 10073 return libbpf_err_ptr(-EINVAL); 10074 if (pattern && (addrs || syms || cookies || cnt)) 10075 return libbpf_err_ptr(-EINVAL); 10076 if (!pattern && !cnt) 10077 return libbpf_err_ptr(-EINVAL); 10078 if (addrs && syms) 10079 return libbpf_err_ptr(-EINVAL); 10080 10081 if (pattern) { 10082 err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res); 10083 if (err) 10084 goto error; 10085 if (!res.cnt) { 10086 err = -ENOENT; 10087 goto error; 10088 } 10089 addrs = res.addrs; 10090 cnt = res.cnt; 10091 } 10092 10093 retprobe = OPTS_GET(opts, retprobe, false); 10094 10095 lopts.kprobe_multi.syms = syms; 10096 lopts.kprobe_multi.addrs = addrs; 10097 lopts.kprobe_multi.cookies = cookies; 10098 lopts.kprobe_multi.cnt = cnt; 10099 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 10100 10101 link = calloc(1, sizeof(*link)); 10102 if (!link) { 10103 err = -ENOMEM; 10104 goto error; 10105 } 10106 link->detach = &bpf_link__detach_fd; 10107 10108 prog_fd = bpf_program__fd(prog); 10109 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts); 10110 if (link_fd < 0) { 10111 err = -errno; 10112 pr_warn("prog '%s': failed to attach: %s\n", 10113 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10114 goto error; 10115 } 10116 link->fd = link_fd; 10117 free(res.addrs); 10118 return link; 10119 10120 error: 10121 free(link); 10122 free(res.addrs); 10123 return libbpf_err_ptr(err); 10124 } 10125 10126 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10127 { 10128 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 10129 unsigned long offset = 0; 10130 const char *func_name; 10131 char *func; 10132 int n; 10133 10134 *link = NULL; 10135 10136 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 10137 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 10138 return 0; 10139 10140 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 10141 if (opts.retprobe) 10142 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 10143 else 10144 func_name = prog->sec_name + sizeof("kprobe/") - 1; 10145 10146 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 10147 if (n < 1) { 10148 pr_warn("kprobe name is invalid: %s\n", func_name); 10149 return -EINVAL; 10150 } 10151 if (opts.retprobe && offset != 0) { 10152 free(func); 10153 pr_warn("kretprobes do not support offset specification\n"); 10154 return -EINVAL; 10155 } 10156 10157 opts.offset = offset; 10158 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 10159 free(func); 10160 return libbpf_get_error(*link); 10161 } 10162 10163 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10164 { 10165 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 10166 const char *spec; 10167 char *pattern; 10168 int n; 10169 10170 *link = NULL; 10171 10172 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 10173 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 10174 strcmp(prog->sec_name, "kretprobe.multi") == 0) 10175 return 0; 10176 10177 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 10178 if (opts.retprobe) 10179 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 10180 else 10181 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 10182 10183 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 10184 if (n < 1) { 10185 pr_warn("kprobe multi pattern is invalid: %s\n", pattern); 10186 return -EINVAL; 10187 } 10188 10189 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 10190 free(pattern); 10191 return libbpf_get_error(*link); 10192 } 10193 10194 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 10195 const char *binary_path, uint64_t offset) 10196 { 10197 int i; 10198 10199 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 10200 10201 /* sanitize binary_path in the probe name */ 10202 for (i = 0; buf[i]; i++) { 10203 if (!isalnum(buf[i])) 10204 buf[i] = '_'; 10205 } 10206 } 10207 10208 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 10209 const char *binary_path, size_t offset) 10210 { 10211 const char *file = "/sys/kernel/debug/tracing/uprobe_events"; 10212 10213 return append_to_file(file, "%c:%s/%s %s:0x%zx", 10214 retprobe ? 'r' : 'p', 10215 retprobe ? "uretprobes" : "uprobes", 10216 probe_name, binary_path, offset); 10217 } 10218 10219 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 10220 { 10221 const char *file = "/sys/kernel/debug/tracing/uprobe_events"; 10222 10223 return append_to_file(file, "-:%s/%s", retprobe ? "uretprobes" : "uprobes", probe_name); 10224 } 10225 10226 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10227 { 10228 char file[512]; 10229 10230 snprintf(file, sizeof(file), 10231 "/sys/kernel/debug/tracing/events/%s/%s/id", 10232 retprobe ? "uretprobes" : "uprobes", probe_name); 10233 10234 return parse_uint_from_file(file, "%d\n"); 10235 } 10236 10237 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 10238 const char *binary_path, size_t offset, int pid) 10239 { 10240 struct perf_event_attr attr; 10241 int type, pfd, err; 10242 10243 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 10244 if (err < 0) { 10245 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 10246 binary_path, (size_t)offset, err); 10247 return err; 10248 } 10249 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 10250 if (type < 0) { 10251 err = type; 10252 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 10253 binary_path, offset, err); 10254 goto err_clean_legacy; 10255 } 10256 10257 memset(&attr, 0, sizeof(attr)); 10258 attr.size = sizeof(attr); 10259 attr.config = type; 10260 attr.type = PERF_TYPE_TRACEPOINT; 10261 10262 pfd = syscall(__NR_perf_event_open, &attr, 10263 pid < 0 ? -1 : pid, /* pid */ 10264 pid == -1 ? 0 : -1, /* cpu */ 10265 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10266 if (pfd < 0) { 10267 err = -errno; 10268 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 10269 goto err_clean_legacy; 10270 } 10271 return pfd; 10272 10273 err_clean_legacy: 10274 /* Clear the newly added legacy uprobe_event */ 10275 remove_uprobe_event_legacy(probe_name, retprobe); 10276 return err; 10277 } 10278 10279 /* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */ 10280 static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn) 10281 { 10282 while ((scn = elf_nextscn(elf, scn)) != NULL) { 10283 GElf_Shdr sh; 10284 10285 if (!gelf_getshdr(scn, &sh)) 10286 continue; 10287 if (sh.sh_type == sh_type) 10288 return scn; 10289 } 10290 return NULL; 10291 } 10292 10293 /* Find offset of function name in object specified by path. "name" matches 10294 * symbol name or name@@LIB for library functions. 10295 */ 10296 static long elf_find_func_offset(const char *binary_path, const char *name) 10297 { 10298 int fd, i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB }; 10299 bool is_shared_lib, is_name_qualified; 10300 char errmsg[STRERR_BUFSIZE]; 10301 long ret = -ENOENT; 10302 size_t name_len; 10303 GElf_Ehdr ehdr; 10304 Elf *elf; 10305 10306 fd = open(binary_path, O_RDONLY | O_CLOEXEC); 10307 if (fd < 0) { 10308 ret = -errno; 10309 pr_warn("failed to open %s: %s\n", binary_path, 10310 libbpf_strerror_r(ret, errmsg, sizeof(errmsg))); 10311 return ret; 10312 } 10313 elf = elf_begin(fd, ELF_C_READ_MMAP, NULL); 10314 if (!elf) { 10315 pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1)); 10316 close(fd); 10317 return -LIBBPF_ERRNO__FORMAT; 10318 } 10319 if (!gelf_getehdr(elf, &ehdr)) { 10320 pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1)); 10321 ret = -LIBBPF_ERRNO__FORMAT; 10322 goto out; 10323 } 10324 /* for shared lib case, we do not need to calculate relative offset */ 10325 is_shared_lib = ehdr.e_type == ET_DYN; 10326 10327 name_len = strlen(name); 10328 /* Does name specify "@@LIB"? */ 10329 is_name_qualified = strstr(name, "@@") != NULL; 10330 10331 /* Search SHT_DYNSYM, SHT_SYMTAB for symbol. This search order is used because if 10332 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically 10333 * linked binary may not have SHT_DYMSYM, so absence of a section should not be 10334 * reported as a warning/error. 10335 */ 10336 for (i = 0; i < ARRAY_SIZE(sh_types); i++) { 10337 size_t nr_syms, strtabidx, idx; 10338 Elf_Data *symbols = NULL; 10339 Elf_Scn *scn = NULL; 10340 int last_bind = -1; 10341 const char *sname; 10342 GElf_Shdr sh; 10343 10344 scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL); 10345 if (!scn) { 10346 pr_debug("elf: failed to find symbol table ELF sections in '%s'\n", 10347 binary_path); 10348 continue; 10349 } 10350 if (!gelf_getshdr(scn, &sh)) 10351 continue; 10352 strtabidx = sh.sh_link; 10353 symbols = elf_getdata(scn, 0); 10354 if (!symbols) { 10355 pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n", 10356 binary_path, elf_errmsg(-1)); 10357 ret = -LIBBPF_ERRNO__FORMAT; 10358 goto out; 10359 } 10360 nr_syms = symbols->d_size / sh.sh_entsize; 10361 10362 for (idx = 0; idx < nr_syms; idx++) { 10363 int curr_bind; 10364 GElf_Sym sym; 10365 Elf_Scn *sym_scn; 10366 GElf_Shdr sym_sh; 10367 10368 if (!gelf_getsym(symbols, idx, &sym)) 10369 continue; 10370 10371 if (GELF_ST_TYPE(sym.st_info) != STT_FUNC) 10372 continue; 10373 10374 sname = elf_strptr(elf, strtabidx, sym.st_name); 10375 if (!sname) 10376 continue; 10377 10378 curr_bind = GELF_ST_BIND(sym.st_info); 10379 10380 /* User can specify func, func@@LIB or func@@LIB_VERSION. */ 10381 if (strncmp(sname, name, name_len) != 0) 10382 continue; 10383 /* ...but we don't want a search for "foo" to match 'foo2" also, so any 10384 * additional characters in sname should be of the form "@@LIB". 10385 */ 10386 if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@') 10387 continue; 10388 10389 if (ret >= 0) { 10390 /* handle multiple matches */ 10391 if (last_bind != STB_WEAK && curr_bind != STB_WEAK) { 10392 /* Only accept one non-weak bind. */ 10393 pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n", 10394 sname, name, binary_path); 10395 ret = -LIBBPF_ERRNO__FORMAT; 10396 goto out; 10397 } else if (curr_bind == STB_WEAK) { 10398 /* already have a non-weak bind, and 10399 * this is a weak bind, so ignore. 10400 */ 10401 continue; 10402 } 10403 } 10404 10405 /* Transform symbol's virtual address (absolute for 10406 * binaries and relative for shared libs) into file 10407 * offset, which is what kernel is expecting for 10408 * uprobe/uretprobe attachment. 10409 * See Documentation/trace/uprobetracer.rst for more 10410 * details. 10411 * This is done by looking up symbol's containing 10412 * section's header and using it's virtual address 10413 * (sh_addr) and corresponding file offset (sh_offset) 10414 * to transform sym.st_value (virtual address) into 10415 * desired final file offset. 10416 */ 10417 sym_scn = elf_getscn(elf, sym.st_shndx); 10418 if (!sym_scn) 10419 continue; 10420 if (!gelf_getshdr(sym_scn, &sym_sh)) 10421 continue; 10422 10423 ret = sym.st_value - sym_sh.sh_addr + sym_sh.sh_offset; 10424 last_bind = curr_bind; 10425 } 10426 if (ret > 0) 10427 break; 10428 } 10429 10430 if (ret > 0) { 10431 pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path, 10432 ret); 10433 } else { 10434 if (ret == 0) { 10435 pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path, 10436 is_shared_lib ? "should not be 0 in a shared library" : 10437 "try using shared library path instead"); 10438 ret = -ENOENT; 10439 } else { 10440 pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path); 10441 } 10442 } 10443 out: 10444 elf_end(elf); 10445 close(fd); 10446 return ret; 10447 } 10448 10449 static const char *arch_specific_lib_paths(void) 10450 { 10451 /* 10452 * Based on https://packages.debian.org/sid/libc6. 10453 * 10454 * Assume that the traced program is built for the same architecture 10455 * as libbpf, which should cover the vast majority of cases. 10456 */ 10457 #if defined(__x86_64__) 10458 return "/lib/x86_64-linux-gnu"; 10459 #elif defined(__i386__) 10460 return "/lib/i386-linux-gnu"; 10461 #elif defined(__s390x__) 10462 return "/lib/s390x-linux-gnu"; 10463 #elif defined(__s390__) 10464 return "/lib/s390-linux-gnu"; 10465 #elif defined(__arm__) && defined(__SOFTFP__) 10466 return "/lib/arm-linux-gnueabi"; 10467 #elif defined(__arm__) && !defined(__SOFTFP__) 10468 return "/lib/arm-linux-gnueabihf"; 10469 #elif defined(__aarch64__) 10470 return "/lib/aarch64-linux-gnu"; 10471 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 10472 return "/lib/mips64el-linux-gnuabi64"; 10473 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 10474 return "/lib/mipsel-linux-gnu"; 10475 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 10476 return "/lib/powerpc64le-linux-gnu"; 10477 #elif defined(__sparc__) && defined(__arch64__) 10478 return "/lib/sparc64-linux-gnu"; 10479 #elif defined(__riscv) && __riscv_xlen == 64 10480 return "/lib/riscv64-linux-gnu"; 10481 #else 10482 return NULL; 10483 #endif 10484 } 10485 10486 /* Get full path to program/shared library. */ 10487 static int resolve_full_path(const char *file, char *result, size_t result_sz) 10488 { 10489 const char *search_paths[3] = {}; 10490 int i; 10491 10492 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 10493 search_paths[0] = getenv("LD_LIBRARY_PATH"); 10494 search_paths[1] = "/usr/lib64:/usr/lib"; 10495 search_paths[2] = arch_specific_lib_paths(); 10496 } else { 10497 search_paths[0] = getenv("PATH"); 10498 search_paths[1] = "/usr/bin:/usr/sbin"; 10499 } 10500 10501 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 10502 const char *s; 10503 10504 if (!search_paths[i]) 10505 continue; 10506 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 10507 char *next_path; 10508 int seg_len; 10509 10510 if (s[0] == ':') 10511 s++; 10512 next_path = strchr(s, ':'); 10513 seg_len = next_path ? next_path - s : strlen(s); 10514 if (!seg_len) 10515 continue; 10516 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 10517 /* ensure it is an executable file/link */ 10518 if (access(result, R_OK | X_OK) < 0) 10519 continue; 10520 pr_debug("resolved '%s' to '%s'\n", file, result); 10521 return 0; 10522 } 10523 } 10524 return -ENOENT; 10525 } 10526 10527 LIBBPF_API struct bpf_link * 10528 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 10529 const char *binary_path, size_t func_offset, 10530 const struct bpf_uprobe_opts *opts) 10531 { 10532 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10533 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 10534 char full_binary_path[PATH_MAX]; 10535 struct bpf_link *link; 10536 size_t ref_ctr_off; 10537 int pfd, err; 10538 bool retprobe, legacy; 10539 const char *func_name; 10540 10541 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 10542 return libbpf_err_ptr(-EINVAL); 10543 10544 retprobe = OPTS_GET(opts, retprobe, false); 10545 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 10546 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10547 10548 if (binary_path && !strchr(binary_path, '/')) { 10549 err = resolve_full_path(binary_path, full_binary_path, 10550 sizeof(full_binary_path)); 10551 if (err) { 10552 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 10553 prog->name, binary_path, err); 10554 return libbpf_err_ptr(err); 10555 } 10556 binary_path = full_binary_path; 10557 } 10558 func_name = OPTS_GET(opts, func_name, NULL); 10559 if (func_name) { 10560 long sym_off; 10561 10562 if (!binary_path) { 10563 pr_warn("prog '%s': name-based attach requires binary_path\n", 10564 prog->name); 10565 return libbpf_err_ptr(-EINVAL); 10566 } 10567 sym_off = elf_find_func_offset(binary_path, func_name); 10568 if (sym_off < 0) 10569 return libbpf_err_ptr(sym_off); 10570 func_offset += sym_off; 10571 } 10572 10573 legacy = determine_uprobe_perf_type() < 0; 10574 if (!legacy) { 10575 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 10576 func_offset, pid, ref_ctr_off); 10577 } else { 10578 char probe_name[PATH_MAX + 64]; 10579 10580 if (ref_ctr_off) 10581 return libbpf_err_ptr(-EINVAL); 10582 10583 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 10584 binary_path, func_offset); 10585 10586 legacy_probe = strdup(probe_name); 10587 if (!legacy_probe) 10588 return libbpf_err_ptr(-ENOMEM); 10589 10590 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 10591 binary_path, func_offset, pid); 10592 } 10593 if (pfd < 0) { 10594 err = -errno; 10595 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 10596 prog->name, retprobe ? "uretprobe" : "uprobe", 10597 binary_path, func_offset, 10598 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10599 goto err_out; 10600 } 10601 10602 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10603 err = libbpf_get_error(link); 10604 if (err) { 10605 close(pfd); 10606 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 10607 prog->name, retprobe ? "uretprobe" : "uprobe", 10608 binary_path, func_offset, 10609 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10610 goto err_clean_legacy; 10611 } 10612 if (legacy) { 10613 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10614 10615 perf_link->legacy_probe_name = legacy_probe; 10616 perf_link->legacy_is_kprobe = false; 10617 perf_link->legacy_is_retprobe = retprobe; 10618 } 10619 return link; 10620 10621 err_clean_legacy: 10622 if (legacy) 10623 remove_uprobe_event_legacy(legacy_probe, retprobe); 10624 err_out: 10625 free(legacy_probe); 10626 return libbpf_err_ptr(err); 10627 } 10628 10629 /* Format of u[ret]probe section definition supporting auto-attach: 10630 * u[ret]probe/binary:function[+offset] 10631 * 10632 * binary can be an absolute/relative path or a filename; the latter is resolved to a 10633 * full binary path via bpf_program__attach_uprobe_opts. 10634 * 10635 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 10636 * specified (and auto-attach is not possible) or the above format is specified for 10637 * auto-attach. 10638 */ 10639 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10640 { 10641 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 10642 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 10643 int n, ret = -EINVAL; 10644 long offset = 0; 10645 10646 *link = NULL; 10647 10648 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li", 10649 &probe_type, &binary_path, &func_name, &offset); 10650 switch (n) { 10651 case 1: 10652 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 10653 ret = 0; 10654 break; 10655 case 2: 10656 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 10657 prog->name, prog->sec_name); 10658 break; 10659 case 3: 10660 case 4: 10661 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 10662 strcmp(probe_type, "uretprobe.s") == 0; 10663 if (opts.retprobe && offset != 0) { 10664 pr_warn("prog '%s': uretprobes do not support offset specification\n", 10665 prog->name); 10666 break; 10667 } 10668 opts.func_name = func_name; 10669 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 10670 ret = libbpf_get_error(*link); 10671 break; 10672 default: 10673 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 10674 prog->sec_name); 10675 break; 10676 } 10677 free(probe_type); 10678 free(binary_path); 10679 free(func_name); 10680 10681 return ret; 10682 } 10683 10684 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 10685 bool retprobe, pid_t pid, 10686 const char *binary_path, 10687 size_t func_offset) 10688 { 10689 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 10690 10691 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 10692 } 10693 10694 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 10695 pid_t pid, const char *binary_path, 10696 const char *usdt_provider, const char *usdt_name, 10697 const struct bpf_usdt_opts *opts) 10698 { 10699 char resolved_path[512]; 10700 struct bpf_object *obj = prog->obj; 10701 struct bpf_link *link; 10702 __u64 usdt_cookie; 10703 int err; 10704 10705 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 10706 return libbpf_err_ptr(-EINVAL); 10707 10708 if (bpf_program__fd(prog) < 0) { 10709 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 10710 prog->name); 10711 return libbpf_err_ptr(-EINVAL); 10712 } 10713 10714 if (!strchr(binary_path, '/')) { 10715 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 10716 if (err) { 10717 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 10718 prog->name, binary_path, err); 10719 return libbpf_err_ptr(err); 10720 } 10721 binary_path = resolved_path; 10722 } 10723 10724 /* USDT manager is instantiated lazily on first USDT attach. It will 10725 * be destroyed together with BPF object in bpf_object__close(). 10726 */ 10727 if (IS_ERR(obj->usdt_man)) 10728 return libbpf_ptr(obj->usdt_man); 10729 if (!obj->usdt_man) { 10730 obj->usdt_man = usdt_manager_new(obj); 10731 if (IS_ERR(obj->usdt_man)) 10732 return libbpf_ptr(obj->usdt_man); 10733 } 10734 10735 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 10736 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 10737 usdt_provider, usdt_name, usdt_cookie); 10738 err = libbpf_get_error(link); 10739 if (err) 10740 return libbpf_err_ptr(err); 10741 return link; 10742 } 10743 10744 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10745 { 10746 char *path = NULL, *provider = NULL, *name = NULL; 10747 const char *sec_name; 10748 int n, err; 10749 10750 sec_name = bpf_program__section_name(prog); 10751 if (strcmp(sec_name, "usdt") == 0) { 10752 /* no auto-attach for just SEC("usdt") */ 10753 *link = NULL; 10754 return 0; 10755 } 10756 10757 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 10758 if (n != 3) { 10759 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 10760 sec_name); 10761 err = -EINVAL; 10762 } else { 10763 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 10764 provider, name, NULL); 10765 err = libbpf_get_error(*link); 10766 } 10767 free(path); 10768 free(provider); 10769 free(name); 10770 return err; 10771 } 10772 10773 static int determine_tracepoint_id(const char *tp_category, 10774 const char *tp_name) 10775 { 10776 char file[PATH_MAX]; 10777 int ret; 10778 10779 ret = snprintf(file, sizeof(file), 10780 "/sys/kernel/debug/tracing/events/%s/%s/id", 10781 tp_category, tp_name); 10782 if (ret < 0) 10783 return -errno; 10784 if (ret >= sizeof(file)) { 10785 pr_debug("tracepoint %s/%s path is too long\n", 10786 tp_category, tp_name); 10787 return -E2BIG; 10788 } 10789 return parse_uint_from_file(file, "%d\n"); 10790 } 10791 10792 static int perf_event_open_tracepoint(const char *tp_category, 10793 const char *tp_name) 10794 { 10795 struct perf_event_attr attr = {}; 10796 char errmsg[STRERR_BUFSIZE]; 10797 int tp_id, pfd, err; 10798 10799 tp_id = determine_tracepoint_id(tp_category, tp_name); 10800 if (tp_id < 0) { 10801 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 10802 tp_category, tp_name, 10803 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 10804 return tp_id; 10805 } 10806 10807 attr.type = PERF_TYPE_TRACEPOINT; 10808 attr.size = sizeof(attr); 10809 attr.config = tp_id; 10810 10811 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 10812 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10813 if (pfd < 0) { 10814 err = -errno; 10815 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 10816 tp_category, tp_name, 10817 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10818 return err; 10819 } 10820 return pfd; 10821 } 10822 10823 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 10824 const char *tp_category, 10825 const char *tp_name, 10826 const struct bpf_tracepoint_opts *opts) 10827 { 10828 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10829 char errmsg[STRERR_BUFSIZE]; 10830 struct bpf_link *link; 10831 int pfd, err; 10832 10833 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 10834 return libbpf_err_ptr(-EINVAL); 10835 10836 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10837 10838 pfd = perf_event_open_tracepoint(tp_category, tp_name); 10839 if (pfd < 0) { 10840 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 10841 prog->name, tp_category, tp_name, 10842 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10843 return libbpf_err_ptr(pfd); 10844 } 10845 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10846 err = libbpf_get_error(link); 10847 if (err) { 10848 close(pfd); 10849 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 10850 prog->name, tp_category, tp_name, 10851 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10852 return libbpf_err_ptr(err); 10853 } 10854 return link; 10855 } 10856 10857 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 10858 const char *tp_category, 10859 const char *tp_name) 10860 { 10861 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 10862 } 10863 10864 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10865 { 10866 char *sec_name, *tp_cat, *tp_name; 10867 10868 *link = NULL; 10869 10870 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 10871 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 10872 return 0; 10873 10874 sec_name = strdup(prog->sec_name); 10875 if (!sec_name) 10876 return -ENOMEM; 10877 10878 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 10879 if (str_has_pfx(prog->sec_name, "tp/")) 10880 tp_cat = sec_name + sizeof("tp/") - 1; 10881 else 10882 tp_cat = sec_name + sizeof("tracepoint/") - 1; 10883 tp_name = strchr(tp_cat, '/'); 10884 if (!tp_name) { 10885 free(sec_name); 10886 return -EINVAL; 10887 } 10888 *tp_name = '\0'; 10889 tp_name++; 10890 10891 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 10892 free(sec_name); 10893 return libbpf_get_error(*link); 10894 } 10895 10896 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 10897 const char *tp_name) 10898 { 10899 char errmsg[STRERR_BUFSIZE]; 10900 struct bpf_link *link; 10901 int prog_fd, pfd; 10902 10903 prog_fd = bpf_program__fd(prog); 10904 if (prog_fd < 0) { 10905 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10906 return libbpf_err_ptr(-EINVAL); 10907 } 10908 10909 link = calloc(1, sizeof(*link)); 10910 if (!link) 10911 return libbpf_err_ptr(-ENOMEM); 10912 link->detach = &bpf_link__detach_fd; 10913 10914 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 10915 if (pfd < 0) { 10916 pfd = -errno; 10917 free(link); 10918 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 10919 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10920 return libbpf_err_ptr(pfd); 10921 } 10922 link->fd = pfd; 10923 return link; 10924 } 10925 10926 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10927 { 10928 static const char *const prefixes[] = { 10929 "raw_tp", 10930 "raw_tracepoint", 10931 "raw_tp.w", 10932 "raw_tracepoint.w", 10933 }; 10934 size_t i; 10935 const char *tp_name = NULL; 10936 10937 *link = NULL; 10938 10939 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 10940 size_t pfx_len; 10941 10942 if (!str_has_pfx(prog->sec_name, prefixes[i])) 10943 continue; 10944 10945 pfx_len = strlen(prefixes[i]); 10946 /* no auto-attach case of, e.g., SEC("raw_tp") */ 10947 if (prog->sec_name[pfx_len] == '\0') 10948 return 0; 10949 10950 if (prog->sec_name[pfx_len] != '/') 10951 continue; 10952 10953 tp_name = prog->sec_name + pfx_len + 1; 10954 break; 10955 } 10956 10957 if (!tp_name) { 10958 pr_warn("prog '%s': invalid section name '%s'\n", 10959 prog->name, prog->sec_name); 10960 return -EINVAL; 10961 } 10962 10963 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 10964 return libbpf_get_error(link); 10965 } 10966 10967 /* Common logic for all BPF program types that attach to a btf_id */ 10968 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 10969 const struct bpf_trace_opts *opts) 10970 { 10971 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 10972 char errmsg[STRERR_BUFSIZE]; 10973 struct bpf_link *link; 10974 int prog_fd, pfd; 10975 10976 if (!OPTS_VALID(opts, bpf_trace_opts)) 10977 return libbpf_err_ptr(-EINVAL); 10978 10979 prog_fd = bpf_program__fd(prog); 10980 if (prog_fd < 0) { 10981 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10982 return libbpf_err_ptr(-EINVAL); 10983 } 10984 10985 link = calloc(1, sizeof(*link)); 10986 if (!link) 10987 return libbpf_err_ptr(-ENOMEM); 10988 link->detach = &bpf_link__detach_fd; 10989 10990 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 10991 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 10992 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 10993 if (pfd < 0) { 10994 pfd = -errno; 10995 free(link); 10996 pr_warn("prog '%s': failed to attach: %s\n", 10997 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10998 return libbpf_err_ptr(pfd); 10999 } 11000 link->fd = pfd; 11001 return link; 11002 } 11003 11004 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 11005 { 11006 return bpf_program__attach_btf_id(prog, NULL); 11007 } 11008 11009 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 11010 const struct bpf_trace_opts *opts) 11011 { 11012 return bpf_program__attach_btf_id(prog, opts); 11013 } 11014 11015 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 11016 { 11017 return bpf_program__attach_btf_id(prog, NULL); 11018 } 11019 11020 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11021 { 11022 *link = bpf_program__attach_trace(prog); 11023 return libbpf_get_error(*link); 11024 } 11025 11026 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11027 { 11028 *link = bpf_program__attach_lsm(prog); 11029 return libbpf_get_error(*link); 11030 } 11031 11032 static struct bpf_link * 11033 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id, 11034 const char *target_name) 11035 { 11036 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 11037 .target_btf_id = btf_id); 11038 enum bpf_attach_type attach_type; 11039 char errmsg[STRERR_BUFSIZE]; 11040 struct bpf_link *link; 11041 int prog_fd, link_fd; 11042 11043 prog_fd = bpf_program__fd(prog); 11044 if (prog_fd < 0) { 11045 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11046 return libbpf_err_ptr(-EINVAL); 11047 } 11048 11049 link = calloc(1, sizeof(*link)); 11050 if (!link) 11051 return libbpf_err_ptr(-ENOMEM); 11052 link->detach = &bpf_link__detach_fd; 11053 11054 attach_type = bpf_program__expected_attach_type(prog); 11055 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 11056 if (link_fd < 0) { 11057 link_fd = -errno; 11058 free(link); 11059 pr_warn("prog '%s': failed to attach to %s: %s\n", 11060 prog->name, target_name, 11061 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11062 return libbpf_err_ptr(link_fd); 11063 } 11064 link->fd = link_fd; 11065 return link; 11066 } 11067 11068 struct bpf_link * 11069 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 11070 { 11071 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 11072 } 11073 11074 struct bpf_link * 11075 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 11076 { 11077 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 11078 } 11079 11080 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 11081 { 11082 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 11083 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 11084 } 11085 11086 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 11087 int target_fd, 11088 const char *attach_func_name) 11089 { 11090 int btf_id; 11091 11092 if (!!target_fd != !!attach_func_name) { 11093 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 11094 prog->name); 11095 return libbpf_err_ptr(-EINVAL); 11096 } 11097 11098 if (prog->type != BPF_PROG_TYPE_EXT) { 11099 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 11100 prog->name); 11101 return libbpf_err_ptr(-EINVAL); 11102 } 11103 11104 if (target_fd) { 11105 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 11106 if (btf_id < 0) 11107 return libbpf_err_ptr(btf_id); 11108 11109 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 11110 } else { 11111 /* no target, so use raw_tracepoint_open for compatibility 11112 * with old kernels 11113 */ 11114 return bpf_program__attach_trace(prog); 11115 } 11116 } 11117 11118 struct bpf_link * 11119 bpf_program__attach_iter(const struct bpf_program *prog, 11120 const struct bpf_iter_attach_opts *opts) 11121 { 11122 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 11123 char errmsg[STRERR_BUFSIZE]; 11124 struct bpf_link *link; 11125 int prog_fd, link_fd; 11126 __u32 target_fd = 0; 11127 11128 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 11129 return libbpf_err_ptr(-EINVAL); 11130 11131 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 11132 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 11133 11134 prog_fd = bpf_program__fd(prog); 11135 if (prog_fd < 0) { 11136 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11137 return libbpf_err_ptr(-EINVAL); 11138 } 11139 11140 link = calloc(1, sizeof(*link)); 11141 if (!link) 11142 return libbpf_err_ptr(-ENOMEM); 11143 link->detach = &bpf_link__detach_fd; 11144 11145 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 11146 &link_create_opts); 11147 if (link_fd < 0) { 11148 link_fd = -errno; 11149 free(link); 11150 pr_warn("prog '%s': failed to attach to iterator: %s\n", 11151 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11152 return libbpf_err_ptr(link_fd); 11153 } 11154 link->fd = link_fd; 11155 return link; 11156 } 11157 11158 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11159 { 11160 *link = bpf_program__attach_iter(prog, NULL); 11161 return libbpf_get_error(*link); 11162 } 11163 11164 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 11165 { 11166 struct bpf_link *link = NULL; 11167 int err; 11168 11169 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 11170 return libbpf_err_ptr(-EOPNOTSUPP); 11171 11172 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 11173 if (err) 11174 return libbpf_err_ptr(err); 11175 11176 /* When calling bpf_program__attach() explicitly, auto-attach support 11177 * is expected to work, so NULL returned link is considered an error. 11178 * This is different for skeleton's attach, see comment in 11179 * bpf_object__attach_skeleton(). 11180 */ 11181 if (!link) 11182 return libbpf_err_ptr(-EOPNOTSUPP); 11183 11184 return link; 11185 } 11186 11187 static int bpf_link__detach_struct_ops(struct bpf_link *link) 11188 { 11189 __u32 zero = 0; 11190 11191 if (bpf_map_delete_elem(link->fd, &zero)) 11192 return -errno; 11193 11194 return 0; 11195 } 11196 11197 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 11198 { 11199 struct bpf_struct_ops *st_ops; 11200 struct bpf_link *link; 11201 __u32 i, zero = 0; 11202 int err; 11203 11204 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 11205 return libbpf_err_ptr(-EINVAL); 11206 11207 link = calloc(1, sizeof(*link)); 11208 if (!link) 11209 return libbpf_err_ptr(-EINVAL); 11210 11211 st_ops = map->st_ops; 11212 for (i = 0; i < btf_vlen(st_ops->type); i++) { 11213 struct bpf_program *prog = st_ops->progs[i]; 11214 void *kern_data; 11215 int prog_fd; 11216 11217 if (!prog) 11218 continue; 11219 11220 prog_fd = bpf_program__fd(prog); 11221 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 11222 *(unsigned long *)kern_data = prog_fd; 11223 } 11224 11225 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 11226 if (err) { 11227 err = -errno; 11228 free(link); 11229 return libbpf_err_ptr(err); 11230 } 11231 11232 link->detach = bpf_link__detach_struct_ops; 11233 link->fd = map->fd; 11234 11235 return link; 11236 } 11237 11238 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 11239 void *private_data); 11240 11241 static enum bpf_perf_event_ret 11242 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 11243 void **copy_mem, size_t *copy_size, 11244 bpf_perf_event_print_t fn, void *private_data) 11245 { 11246 struct perf_event_mmap_page *header = mmap_mem; 11247 __u64 data_head = ring_buffer_read_head(header); 11248 __u64 data_tail = header->data_tail; 11249 void *base = ((__u8 *)header) + page_size; 11250 int ret = LIBBPF_PERF_EVENT_CONT; 11251 struct perf_event_header *ehdr; 11252 size_t ehdr_size; 11253 11254 while (data_head != data_tail) { 11255 ehdr = base + (data_tail & (mmap_size - 1)); 11256 ehdr_size = ehdr->size; 11257 11258 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 11259 void *copy_start = ehdr; 11260 size_t len_first = base + mmap_size - copy_start; 11261 size_t len_secnd = ehdr_size - len_first; 11262 11263 if (*copy_size < ehdr_size) { 11264 free(*copy_mem); 11265 *copy_mem = malloc(ehdr_size); 11266 if (!*copy_mem) { 11267 *copy_size = 0; 11268 ret = LIBBPF_PERF_EVENT_ERROR; 11269 break; 11270 } 11271 *copy_size = ehdr_size; 11272 } 11273 11274 memcpy(*copy_mem, copy_start, len_first); 11275 memcpy(*copy_mem + len_first, base, len_secnd); 11276 ehdr = *copy_mem; 11277 } 11278 11279 ret = fn(ehdr, private_data); 11280 data_tail += ehdr_size; 11281 if (ret != LIBBPF_PERF_EVENT_CONT) 11282 break; 11283 } 11284 11285 ring_buffer_write_tail(header, data_tail); 11286 return libbpf_err(ret); 11287 } 11288 11289 struct perf_buffer; 11290 11291 struct perf_buffer_params { 11292 struct perf_event_attr *attr; 11293 /* if event_cb is specified, it takes precendence */ 11294 perf_buffer_event_fn event_cb; 11295 /* sample_cb and lost_cb are higher-level common-case callbacks */ 11296 perf_buffer_sample_fn sample_cb; 11297 perf_buffer_lost_fn lost_cb; 11298 void *ctx; 11299 int cpu_cnt; 11300 int *cpus; 11301 int *map_keys; 11302 }; 11303 11304 struct perf_cpu_buf { 11305 struct perf_buffer *pb; 11306 void *base; /* mmap()'ed memory */ 11307 void *buf; /* for reconstructing segmented data */ 11308 size_t buf_size; 11309 int fd; 11310 int cpu; 11311 int map_key; 11312 }; 11313 11314 struct perf_buffer { 11315 perf_buffer_event_fn event_cb; 11316 perf_buffer_sample_fn sample_cb; 11317 perf_buffer_lost_fn lost_cb; 11318 void *ctx; /* passed into callbacks */ 11319 11320 size_t page_size; 11321 size_t mmap_size; 11322 struct perf_cpu_buf **cpu_bufs; 11323 struct epoll_event *events; 11324 int cpu_cnt; /* number of allocated CPU buffers */ 11325 int epoll_fd; /* perf event FD */ 11326 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 11327 }; 11328 11329 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 11330 struct perf_cpu_buf *cpu_buf) 11331 { 11332 if (!cpu_buf) 11333 return; 11334 if (cpu_buf->base && 11335 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 11336 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 11337 if (cpu_buf->fd >= 0) { 11338 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 11339 close(cpu_buf->fd); 11340 } 11341 free(cpu_buf->buf); 11342 free(cpu_buf); 11343 } 11344 11345 void perf_buffer__free(struct perf_buffer *pb) 11346 { 11347 int i; 11348 11349 if (IS_ERR_OR_NULL(pb)) 11350 return; 11351 if (pb->cpu_bufs) { 11352 for (i = 0; i < pb->cpu_cnt; i++) { 11353 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 11354 11355 if (!cpu_buf) 11356 continue; 11357 11358 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 11359 perf_buffer__free_cpu_buf(pb, cpu_buf); 11360 } 11361 free(pb->cpu_bufs); 11362 } 11363 if (pb->epoll_fd >= 0) 11364 close(pb->epoll_fd); 11365 free(pb->events); 11366 free(pb); 11367 } 11368 11369 static struct perf_cpu_buf * 11370 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 11371 int cpu, int map_key) 11372 { 11373 struct perf_cpu_buf *cpu_buf; 11374 char msg[STRERR_BUFSIZE]; 11375 int err; 11376 11377 cpu_buf = calloc(1, sizeof(*cpu_buf)); 11378 if (!cpu_buf) 11379 return ERR_PTR(-ENOMEM); 11380 11381 cpu_buf->pb = pb; 11382 cpu_buf->cpu = cpu; 11383 cpu_buf->map_key = map_key; 11384 11385 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 11386 -1, PERF_FLAG_FD_CLOEXEC); 11387 if (cpu_buf->fd < 0) { 11388 err = -errno; 11389 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 11390 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11391 goto error; 11392 } 11393 11394 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 11395 PROT_READ | PROT_WRITE, MAP_SHARED, 11396 cpu_buf->fd, 0); 11397 if (cpu_buf->base == MAP_FAILED) { 11398 cpu_buf->base = NULL; 11399 err = -errno; 11400 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 11401 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11402 goto error; 11403 } 11404 11405 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 11406 err = -errno; 11407 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 11408 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11409 goto error; 11410 } 11411 11412 return cpu_buf; 11413 11414 error: 11415 perf_buffer__free_cpu_buf(pb, cpu_buf); 11416 return (struct perf_cpu_buf *)ERR_PTR(err); 11417 } 11418 11419 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 11420 struct perf_buffer_params *p); 11421 11422 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 11423 perf_buffer_sample_fn sample_cb, 11424 perf_buffer_lost_fn lost_cb, 11425 void *ctx, 11426 const struct perf_buffer_opts *opts) 11427 { 11428 struct perf_buffer_params p = {}; 11429 struct perf_event_attr attr = {}; 11430 11431 if (!OPTS_VALID(opts, perf_buffer_opts)) 11432 return libbpf_err_ptr(-EINVAL); 11433 11434 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 11435 attr.type = PERF_TYPE_SOFTWARE; 11436 attr.sample_type = PERF_SAMPLE_RAW; 11437 attr.sample_period = 1; 11438 attr.wakeup_events = 1; 11439 11440 p.attr = &attr; 11441 p.sample_cb = sample_cb; 11442 p.lost_cb = lost_cb; 11443 p.ctx = ctx; 11444 11445 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 11446 } 11447 11448 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 11449 struct perf_event_attr *attr, 11450 perf_buffer_event_fn event_cb, void *ctx, 11451 const struct perf_buffer_raw_opts *opts) 11452 { 11453 struct perf_buffer_params p = {}; 11454 11455 if (!attr) 11456 return libbpf_err_ptr(-EINVAL); 11457 11458 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 11459 return libbpf_err_ptr(-EINVAL); 11460 11461 p.attr = attr; 11462 p.event_cb = event_cb; 11463 p.ctx = ctx; 11464 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 11465 p.cpus = OPTS_GET(opts, cpus, NULL); 11466 p.map_keys = OPTS_GET(opts, map_keys, NULL); 11467 11468 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 11469 } 11470 11471 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 11472 struct perf_buffer_params *p) 11473 { 11474 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 11475 struct bpf_map_info map; 11476 char msg[STRERR_BUFSIZE]; 11477 struct perf_buffer *pb; 11478 bool *online = NULL; 11479 __u32 map_info_len; 11480 int err, i, j, n; 11481 11482 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 11483 pr_warn("page count should be power of two, but is %zu\n", 11484 page_cnt); 11485 return ERR_PTR(-EINVAL); 11486 } 11487 11488 /* best-effort sanity checks */ 11489 memset(&map, 0, sizeof(map)); 11490 map_info_len = sizeof(map); 11491 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 11492 if (err) { 11493 err = -errno; 11494 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 11495 * -EBADFD, -EFAULT, or -E2BIG on real error 11496 */ 11497 if (err != -EINVAL) { 11498 pr_warn("failed to get map info for map FD %d: %s\n", 11499 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 11500 return ERR_PTR(err); 11501 } 11502 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 11503 map_fd); 11504 } else { 11505 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 11506 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 11507 map.name); 11508 return ERR_PTR(-EINVAL); 11509 } 11510 } 11511 11512 pb = calloc(1, sizeof(*pb)); 11513 if (!pb) 11514 return ERR_PTR(-ENOMEM); 11515 11516 pb->event_cb = p->event_cb; 11517 pb->sample_cb = p->sample_cb; 11518 pb->lost_cb = p->lost_cb; 11519 pb->ctx = p->ctx; 11520 11521 pb->page_size = getpagesize(); 11522 pb->mmap_size = pb->page_size * page_cnt; 11523 pb->map_fd = map_fd; 11524 11525 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 11526 if (pb->epoll_fd < 0) { 11527 err = -errno; 11528 pr_warn("failed to create epoll instance: %s\n", 11529 libbpf_strerror_r(err, msg, sizeof(msg))); 11530 goto error; 11531 } 11532 11533 if (p->cpu_cnt > 0) { 11534 pb->cpu_cnt = p->cpu_cnt; 11535 } else { 11536 pb->cpu_cnt = libbpf_num_possible_cpus(); 11537 if (pb->cpu_cnt < 0) { 11538 err = pb->cpu_cnt; 11539 goto error; 11540 } 11541 if (map.max_entries && map.max_entries < pb->cpu_cnt) 11542 pb->cpu_cnt = map.max_entries; 11543 } 11544 11545 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 11546 if (!pb->events) { 11547 err = -ENOMEM; 11548 pr_warn("failed to allocate events: out of memory\n"); 11549 goto error; 11550 } 11551 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 11552 if (!pb->cpu_bufs) { 11553 err = -ENOMEM; 11554 pr_warn("failed to allocate buffers: out of memory\n"); 11555 goto error; 11556 } 11557 11558 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 11559 if (err) { 11560 pr_warn("failed to get online CPU mask: %d\n", err); 11561 goto error; 11562 } 11563 11564 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 11565 struct perf_cpu_buf *cpu_buf; 11566 int cpu, map_key; 11567 11568 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 11569 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 11570 11571 /* in case user didn't explicitly requested particular CPUs to 11572 * be attached to, skip offline/not present CPUs 11573 */ 11574 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 11575 continue; 11576 11577 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 11578 if (IS_ERR(cpu_buf)) { 11579 err = PTR_ERR(cpu_buf); 11580 goto error; 11581 } 11582 11583 pb->cpu_bufs[j] = cpu_buf; 11584 11585 err = bpf_map_update_elem(pb->map_fd, &map_key, 11586 &cpu_buf->fd, 0); 11587 if (err) { 11588 err = -errno; 11589 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 11590 cpu, map_key, cpu_buf->fd, 11591 libbpf_strerror_r(err, msg, sizeof(msg))); 11592 goto error; 11593 } 11594 11595 pb->events[j].events = EPOLLIN; 11596 pb->events[j].data.ptr = cpu_buf; 11597 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 11598 &pb->events[j]) < 0) { 11599 err = -errno; 11600 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 11601 cpu, cpu_buf->fd, 11602 libbpf_strerror_r(err, msg, sizeof(msg))); 11603 goto error; 11604 } 11605 j++; 11606 } 11607 pb->cpu_cnt = j; 11608 free(online); 11609 11610 return pb; 11611 11612 error: 11613 free(online); 11614 if (pb) 11615 perf_buffer__free(pb); 11616 return ERR_PTR(err); 11617 } 11618 11619 struct perf_sample_raw { 11620 struct perf_event_header header; 11621 uint32_t size; 11622 char data[]; 11623 }; 11624 11625 struct perf_sample_lost { 11626 struct perf_event_header header; 11627 uint64_t id; 11628 uint64_t lost; 11629 uint64_t sample_id; 11630 }; 11631 11632 static enum bpf_perf_event_ret 11633 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 11634 { 11635 struct perf_cpu_buf *cpu_buf = ctx; 11636 struct perf_buffer *pb = cpu_buf->pb; 11637 void *data = e; 11638 11639 /* user wants full control over parsing perf event */ 11640 if (pb->event_cb) 11641 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 11642 11643 switch (e->type) { 11644 case PERF_RECORD_SAMPLE: { 11645 struct perf_sample_raw *s = data; 11646 11647 if (pb->sample_cb) 11648 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 11649 break; 11650 } 11651 case PERF_RECORD_LOST: { 11652 struct perf_sample_lost *s = data; 11653 11654 if (pb->lost_cb) 11655 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 11656 break; 11657 } 11658 default: 11659 pr_warn("unknown perf sample type %d\n", e->type); 11660 return LIBBPF_PERF_EVENT_ERROR; 11661 } 11662 return LIBBPF_PERF_EVENT_CONT; 11663 } 11664 11665 static int perf_buffer__process_records(struct perf_buffer *pb, 11666 struct perf_cpu_buf *cpu_buf) 11667 { 11668 enum bpf_perf_event_ret ret; 11669 11670 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 11671 pb->page_size, &cpu_buf->buf, 11672 &cpu_buf->buf_size, 11673 perf_buffer__process_record, cpu_buf); 11674 if (ret != LIBBPF_PERF_EVENT_CONT) 11675 return ret; 11676 return 0; 11677 } 11678 11679 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 11680 { 11681 return pb->epoll_fd; 11682 } 11683 11684 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 11685 { 11686 int i, cnt, err; 11687 11688 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 11689 if (cnt < 0) 11690 return -errno; 11691 11692 for (i = 0; i < cnt; i++) { 11693 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 11694 11695 err = perf_buffer__process_records(pb, cpu_buf); 11696 if (err) { 11697 pr_warn("error while processing records: %d\n", err); 11698 return libbpf_err(err); 11699 } 11700 } 11701 return cnt; 11702 } 11703 11704 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 11705 * manager. 11706 */ 11707 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 11708 { 11709 return pb->cpu_cnt; 11710 } 11711 11712 /* 11713 * Return perf_event FD of a ring buffer in *buf_idx* slot of 11714 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 11715 * select()/poll()/epoll() Linux syscalls. 11716 */ 11717 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 11718 { 11719 struct perf_cpu_buf *cpu_buf; 11720 11721 if (buf_idx >= pb->cpu_cnt) 11722 return libbpf_err(-EINVAL); 11723 11724 cpu_buf = pb->cpu_bufs[buf_idx]; 11725 if (!cpu_buf) 11726 return libbpf_err(-ENOENT); 11727 11728 return cpu_buf->fd; 11729 } 11730 11731 /* 11732 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 11733 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 11734 * consume, do nothing and return success. 11735 * Returns: 11736 * - 0 on success; 11737 * - <0 on failure. 11738 */ 11739 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 11740 { 11741 struct perf_cpu_buf *cpu_buf; 11742 11743 if (buf_idx >= pb->cpu_cnt) 11744 return libbpf_err(-EINVAL); 11745 11746 cpu_buf = pb->cpu_bufs[buf_idx]; 11747 if (!cpu_buf) 11748 return libbpf_err(-ENOENT); 11749 11750 return perf_buffer__process_records(pb, cpu_buf); 11751 } 11752 11753 int perf_buffer__consume(struct perf_buffer *pb) 11754 { 11755 int i, err; 11756 11757 for (i = 0; i < pb->cpu_cnt; i++) { 11758 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 11759 11760 if (!cpu_buf) 11761 continue; 11762 11763 err = perf_buffer__process_records(pb, cpu_buf); 11764 if (err) { 11765 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 11766 return libbpf_err(err); 11767 } 11768 } 11769 return 0; 11770 } 11771 11772 int bpf_program__set_attach_target(struct bpf_program *prog, 11773 int attach_prog_fd, 11774 const char *attach_func_name) 11775 { 11776 int btf_obj_fd = 0, btf_id = 0, err; 11777 11778 if (!prog || attach_prog_fd < 0) 11779 return libbpf_err(-EINVAL); 11780 11781 if (prog->obj->loaded) 11782 return libbpf_err(-EINVAL); 11783 11784 if (attach_prog_fd && !attach_func_name) { 11785 /* remember attach_prog_fd and let bpf_program__load() find 11786 * BTF ID during the program load 11787 */ 11788 prog->attach_prog_fd = attach_prog_fd; 11789 return 0; 11790 } 11791 11792 if (attach_prog_fd) { 11793 btf_id = libbpf_find_prog_btf_id(attach_func_name, 11794 attach_prog_fd); 11795 if (btf_id < 0) 11796 return libbpf_err(btf_id); 11797 } else { 11798 if (!attach_func_name) 11799 return libbpf_err(-EINVAL); 11800 11801 /* load btf_vmlinux, if not yet */ 11802 err = bpf_object__load_vmlinux_btf(prog->obj, true); 11803 if (err) 11804 return libbpf_err(err); 11805 err = find_kernel_btf_id(prog->obj, attach_func_name, 11806 prog->expected_attach_type, 11807 &btf_obj_fd, &btf_id); 11808 if (err) 11809 return libbpf_err(err); 11810 } 11811 11812 prog->attach_btf_id = btf_id; 11813 prog->attach_btf_obj_fd = btf_obj_fd; 11814 prog->attach_prog_fd = attach_prog_fd; 11815 return 0; 11816 } 11817 11818 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 11819 { 11820 int err = 0, n, len, start, end = -1; 11821 bool *tmp; 11822 11823 *mask = NULL; 11824 *mask_sz = 0; 11825 11826 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 11827 while (*s) { 11828 if (*s == ',' || *s == '\n') { 11829 s++; 11830 continue; 11831 } 11832 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 11833 if (n <= 0 || n > 2) { 11834 pr_warn("Failed to get CPU range %s: %d\n", s, n); 11835 err = -EINVAL; 11836 goto cleanup; 11837 } else if (n == 1) { 11838 end = start; 11839 } 11840 if (start < 0 || start > end) { 11841 pr_warn("Invalid CPU range [%d,%d] in %s\n", 11842 start, end, s); 11843 err = -EINVAL; 11844 goto cleanup; 11845 } 11846 tmp = realloc(*mask, end + 1); 11847 if (!tmp) { 11848 err = -ENOMEM; 11849 goto cleanup; 11850 } 11851 *mask = tmp; 11852 memset(tmp + *mask_sz, 0, start - *mask_sz); 11853 memset(tmp + start, 1, end - start + 1); 11854 *mask_sz = end + 1; 11855 s += len; 11856 } 11857 if (!*mask_sz) { 11858 pr_warn("Empty CPU range\n"); 11859 return -EINVAL; 11860 } 11861 return 0; 11862 cleanup: 11863 free(*mask); 11864 *mask = NULL; 11865 return err; 11866 } 11867 11868 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 11869 { 11870 int fd, err = 0, len; 11871 char buf[128]; 11872 11873 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 11874 if (fd < 0) { 11875 err = -errno; 11876 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 11877 return err; 11878 } 11879 len = read(fd, buf, sizeof(buf)); 11880 close(fd); 11881 if (len <= 0) { 11882 err = len ? -errno : -EINVAL; 11883 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 11884 return err; 11885 } 11886 if (len >= sizeof(buf)) { 11887 pr_warn("CPU mask is too big in file %s\n", fcpu); 11888 return -E2BIG; 11889 } 11890 buf[len] = '\0'; 11891 11892 return parse_cpu_mask_str(buf, mask, mask_sz); 11893 } 11894 11895 int libbpf_num_possible_cpus(void) 11896 { 11897 static const char *fcpu = "/sys/devices/system/cpu/possible"; 11898 static int cpus; 11899 int err, n, i, tmp_cpus; 11900 bool *mask; 11901 11902 tmp_cpus = READ_ONCE(cpus); 11903 if (tmp_cpus > 0) 11904 return tmp_cpus; 11905 11906 err = parse_cpu_mask_file(fcpu, &mask, &n); 11907 if (err) 11908 return libbpf_err(err); 11909 11910 tmp_cpus = 0; 11911 for (i = 0; i < n; i++) { 11912 if (mask[i]) 11913 tmp_cpus++; 11914 } 11915 free(mask); 11916 11917 WRITE_ONCE(cpus, tmp_cpus); 11918 return tmp_cpus; 11919 } 11920 11921 static int populate_skeleton_maps(const struct bpf_object *obj, 11922 struct bpf_map_skeleton *maps, 11923 size_t map_cnt) 11924 { 11925 int i; 11926 11927 for (i = 0; i < map_cnt; i++) { 11928 struct bpf_map **map = maps[i].map; 11929 const char *name = maps[i].name; 11930 void **mmaped = maps[i].mmaped; 11931 11932 *map = bpf_object__find_map_by_name(obj, name); 11933 if (!*map) { 11934 pr_warn("failed to find skeleton map '%s'\n", name); 11935 return -ESRCH; 11936 } 11937 11938 /* externs shouldn't be pre-setup from user code */ 11939 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 11940 *mmaped = (*map)->mmaped; 11941 } 11942 return 0; 11943 } 11944 11945 static int populate_skeleton_progs(const struct bpf_object *obj, 11946 struct bpf_prog_skeleton *progs, 11947 size_t prog_cnt) 11948 { 11949 int i; 11950 11951 for (i = 0; i < prog_cnt; i++) { 11952 struct bpf_program **prog = progs[i].prog; 11953 const char *name = progs[i].name; 11954 11955 *prog = bpf_object__find_program_by_name(obj, name); 11956 if (!*prog) { 11957 pr_warn("failed to find skeleton program '%s'\n", name); 11958 return -ESRCH; 11959 } 11960 } 11961 return 0; 11962 } 11963 11964 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 11965 const struct bpf_object_open_opts *opts) 11966 { 11967 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 11968 .object_name = s->name, 11969 ); 11970 struct bpf_object *obj; 11971 int err; 11972 11973 /* Attempt to preserve opts->object_name, unless overriden by user 11974 * explicitly. Overwriting object name for skeletons is discouraged, 11975 * as it breaks global data maps, because they contain object name 11976 * prefix as their own map name prefix. When skeleton is generated, 11977 * bpftool is making an assumption that this name will stay the same. 11978 */ 11979 if (opts) { 11980 memcpy(&skel_opts, opts, sizeof(*opts)); 11981 if (!opts->object_name) 11982 skel_opts.object_name = s->name; 11983 } 11984 11985 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 11986 err = libbpf_get_error(obj); 11987 if (err) { 11988 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 11989 s->name, err); 11990 return libbpf_err(err); 11991 } 11992 11993 *s->obj = obj; 11994 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 11995 if (err) { 11996 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 11997 return libbpf_err(err); 11998 } 11999 12000 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 12001 if (err) { 12002 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 12003 return libbpf_err(err); 12004 } 12005 12006 return 0; 12007 } 12008 12009 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 12010 { 12011 int err, len, var_idx, i; 12012 const char *var_name; 12013 const struct bpf_map *map; 12014 struct btf *btf; 12015 __u32 map_type_id; 12016 const struct btf_type *map_type, *var_type; 12017 const struct bpf_var_skeleton *var_skel; 12018 struct btf_var_secinfo *var; 12019 12020 if (!s->obj) 12021 return libbpf_err(-EINVAL); 12022 12023 btf = bpf_object__btf(s->obj); 12024 if (!btf) { 12025 pr_warn("subskeletons require BTF at runtime (object %s)\n", 12026 bpf_object__name(s->obj)); 12027 return libbpf_err(-errno); 12028 } 12029 12030 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 12031 if (err) { 12032 pr_warn("failed to populate subskeleton maps: %d\n", err); 12033 return libbpf_err(err); 12034 } 12035 12036 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 12037 if (err) { 12038 pr_warn("failed to populate subskeleton maps: %d\n", err); 12039 return libbpf_err(err); 12040 } 12041 12042 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 12043 var_skel = &s->vars[var_idx]; 12044 map = *var_skel->map; 12045 map_type_id = bpf_map__btf_value_type_id(map); 12046 map_type = btf__type_by_id(btf, map_type_id); 12047 12048 if (!btf_is_datasec(map_type)) { 12049 pr_warn("type for map '%1$s' is not a datasec: %2$s", 12050 bpf_map__name(map), 12051 __btf_kind_str(btf_kind(map_type))); 12052 return libbpf_err(-EINVAL); 12053 } 12054 12055 len = btf_vlen(map_type); 12056 var = btf_var_secinfos(map_type); 12057 for (i = 0; i < len; i++, var++) { 12058 var_type = btf__type_by_id(btf, var->type); 12059 var_name = btf__name_by_offset(btf, var_type->name_off); 12060 if (strcmp(var_name, var_skel->name) == 0) { 12061 *var_skel->addr = map->mmaped + var->offset; 12062 break; 12063 } 12064 } 12065 } 12066 return 0; 12067 } 12068 12069 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 12070 { 12071 if (!s) 12072 return; 12073 free(s->maps); 12074 free(s->progs); 12075 free(s->vars); 12076 free(s); 12077 } 12078 12079 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 12080 { 12081 int i, err; 12082 12083 err = bpf_object__load(*s->obj); 12084 if (err) { 12085 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 12086 return libbpf_err(err); 12087 } 12088 12089 for (i = 0; i < s->map_cnt; i++) { 12090 struct bpf_map *map = *s->maps[i].map; 12091 size_t mmap_sz = bpf_map_mmap_sz(map); 12092 int prot, map_fd = bpf_map__fd(map); 12093 void **mmaped = s->maps[i].mmaped; 12094 12095 if (!mmaped) 12096 continue; 12097 12098 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 12099 *mmaped = NULL; 12100 continue; 12101 } 12102 12103 if (map->def.map_flags & BPF_F_RDONLY_PROG) 12104 prot = PROT_READ; 12105 else 12106 prot = PROT_READ | PROT_WRITE; 12107 12108 /* Remap anonymous mmap()-ed "map initialization image" as 12109 * a BPF map-backed mmap()-ed memory, but preserving the same 12110 * memory address. This will cause kernel to change process' 12111 * page table to point to a different piece of kernel memory, 12112 * but from userspace point of view memory address (and its 12113 * contents, being identical at this point) will stay the 12114 * same. This mapping will be released by bpf_object__close() 12115 * as per normal clean up procedure, so we don't need to worry 12116 * about it from skeleton's clean up perspective. 12117 */ 12118 *mmaped = mmap(map->mmaped, mmap_sz, prot, 12119 MAP_SHARED | MAP_FIXED, map_fd, 0); 12120 if (*mmaped == MAP_FAILED) { 12121 err = -errno; 12122 *mmaped = NULL; 12123 pr_warn("failed to re-mmap() map '%s': %d\n", 12124 bpf_map__name(map), err); 12125 return libbpf_err(err); 12126 } 12127 } 12128 12129 return 0; 12130 } 12131 12132 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 12133 { 12134 int i, err; 12135 12136 for (i = 0; i < s->prog_cnt; i++) { 12137 struct bpf_program *prog = *s->progs[i].prog; 12138 struct bpf_link **link = s->progs[i].link; 12139 12140 if (!prog->autoload) 12141 continue; 12142 12143 /* auto-attaching not supported for this program */ 12144 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12145 continue; 12146 12147 /* if user already set the link manually, don't attempt auto-attach */ 12148 if (*link) 12149 continue; 12150 12151 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 12152 if (err) { 12153 pr_warn("prog '%s': failed to auto-attach: %d\n", 12154 bpf_program__name(prog), err); 12155 return libbpf_err(err); 12156 } 12157 12158 /* It's possible that for some SEC() definitions auto-attach 12159 * is supported in some cases (e.g., if definition completely 12160 * specifies target information), but is not in other cases. 12161 * SEC("uprobe") is one such case. If user specified target 12162 * binary and function name, such BPF program can be 12163 * auto-attached. But if not, it shouldn't trigger skeleton's 12164 * attach to fail. It should just be skipped. 12165 * attach_fn signals such case with returning 0 (no error) and 12166 * setting link to NULL. 12167 */ 12168 } 12169 12170 return 0; 12171 } 12172 12173 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 12174 { 12175 int i; 12176 12177 for (i = 0; i < s->prog_cnt; i++) { 12178 struct bpf_link **link = s->progs[i].link; 12179 12180 bpf_link__destroy(*link); 12181 *link = NULL; 12182 } 12183 } 12184 12185 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 12186 { 12187 if (!s) 12188 return; 12189 12190 if (s->progs) 12191 bpf_object__detach_skeleton(s); 12192 if (s->obj) 12193 bpf_object__close(*s->obj); 12194 free(s->maps); 12195 free(s->progs); 12196 free(s); 12197 } 12198