xref: /openbmc/linux/tools/lib/bpf/libbpf.c (revision 5fb859f7)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * Common eBPF ELF object loading operations.
5  *
6  * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7  * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8  * Copyright (C) 2015 Huawei Inc.
9  * Copyright (C) 2017 Nicira, Inc.
10  * Copyright (C) 2019 Isovalent, Inc.
11  */
12 
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/limits.h>
35 #include <linux/perf_event.h>
36 #include <linux/ring_buffer.h>
37 #include <linux/version.h>
38 #include <sys/epoll.h>
39 #include <sys/ioctl.h>
40 #include <sys/mman.h>
41 #include <sys/stat.h>
42 #include <sys/types.h>
43 #include <sys/vfs.h>
44 #include <sys/utsname.h>
45 #include <sys/resource.h>
46 #include <libelf.h>
47 #include <gelf.h>
48 #include <zlib.h>
49 
50 #include "libbpf.h"
51 #include "bpf.h"
52 #include "btf.h"
53 #include "str_error.h"
54 #include "libbpf_internal.h"
55 #include "hashmap.h"
56 #include "bpf_gen_internal.h"
57 
58 #ifndef BPF_FS_MAGIC
59 #define BPF_FS_MAGIC		0xcafe4a11
60 #endif
61 
62 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
63 
64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
65  * compilation if user enables corresponding warning. Disable it explicitly.
66  */
67 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
68 
69 #define __printf(a, b)	__attribute__((format(printf, a, b)))
70 
71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
73 
74 static const char * const attach_type_name[] = {
75 	[BPF_CGROUP_INET_INGRESS]	= "cgroup_inet_ingress",
76 	[BPF_CGROUP_INET_EGRESS]	= "cgroup_inet_egress",
77 	[BPF_CGROUP_INET_SOCK_CREATE]	= "cgroup_inet_sock_create",
78 	[BPF_CGROUP_INET_SOCK_RELEASE]	= "cgroup_inet_sock_release",
79 	[BPF_CGROUP_SOCK_OPS]		= "cgroup_sock_ops",
80 	[BPF_CGROUP_DEVICE]		= "cgroup_device",
81 	[BPF_CGROUP_INET4_BIND]		= "cgroup_inet4_bind",
82 	[BPF_CGROUP_INET6_BIND]		= "cgroup_inet6_bind",
83 	[BPF_CGROUP_INET4_CONNECT]	= "cgroup_inet4_connect",
84 	[BPF_CGROUP_INET6_CONNECT]	= "cgroup_inet6_connect",
85 	[BPF_CGROUP_INET4_POST_BIND]	= "cgroup_inet4_post_bind",
86 	[BPF_CGROUP_INET6_POST_BIND]	= "cgroup_inet6_post_bind",
87 	[BPF_CGROUP_INET4_GETPEERNAME]	= "cgroup_inet4_getpeername",
88 	[BPF_CGROUP_INET6_GETPEERNAME]	= "cgroup_inet6_getpeername",
89 	[BPF_CGROUP_INET4_GETSOCKNAME]	= "cgroup_inet4_getsockname",
90 	[BPF_CGROUP_INET6_GETSOCKNAME]	= "cgroup_inet6_getsockname",
91 	[BPF_CGROUP_UDP4_SENDMSG]	= "cgroup_udp4_sendmsg",
92 	[BPF_CGROUP_UDP6_SENDMSG]	= "cgroup_udp6_sendmsg",
93 	[BPF_CGROUP_SYSCTL]		= "cgroup_sysctl",
94 	[BPF_CGROUP_UDP4_RECVMSG]	= "cgroup_udp4_recvmsg",
95 	[BPF_CGROUP_UDP6_RECVMSG]	= "cgroup_udp6_recvmsg",
96 	[BPF_CGROUP_GETSOCKOPT]		= "cgroup_getsockopt",
97 	[BPF_CGROUP_SETSOCKOPT]		= "cgroup_setsockopt",
98 	[BPF_SK_SKB_STREAM_PARSER]	= "sk_skb_stream_parser",
99 	[BPF_SK_SKB_STREAM_VERDICT]	= "sk_skb_stream_verdict",
100 	[BPF_SK_SKB_VERDICT]		= "sk_skb_verdict",
101 	[BPF_SK_MSG_VERDICT]		= "sk_msg_verdict",
102 	[BPF_LIRC_MODE2]		= "lirc_mode2",
103 	[BPF_FLOW_DISSECTOR]		= "flow_dissector",
104 	[BPF_TRACE_RAW_TP]		= "trace_raw_tp",
105 	[BPF_TRACE_FENTRY]		= "trace_fentry",
106 	[BPF_TRACE_FEXIT]		= "trace_fexit",
107 	[BPF_MODIFY_RETURN]		= "modify_return",
108 	[BPF_LSM_MAC]			= "lsm_mac",
109 	[BPF_LSM_CGROUP]		= "lsm_cgroup",
110 	[BPF_SK_LOOKUP]			= "sk_lookup",
111 	[BPF_TRACE_ITER]		= "trace_iter",
112 	[BPF_XDP_DEVMAP]		= "xdp_devmap",
113 	[BPF_XDP_CPUMAP]		= "xdp_cpumap",
114 	[BPF_XDP]			= "xdp",
115 	[BPF_SK_REUSEPORT_SELECT]	= "sk_reuseport_select",
116 	[BPF_SK_REUSEPORT_SELECT_OR_MIGRATE]	= "sk_reuseport_select_or_migrate",
117 	[BPF_PERF_EVENT]		= "perf_event",
118 	[BPF_TRACE_KPROBE_MULTI]	= "trace_kprobe_multi",
119 };
120 
121 static const char * const link_type_name[] = {
122 	[BPF_LINK_TYPE_UNSPEC]			= "unspec",
123 	[BPF_LINK_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
124 	[BPF_LINK_TYPE_TRACING]			= "tracing",
125 	[BPF_LINK_TYPE_CGROUP]			= "cgroup",
126 	[BPF_LINK_TYPE_ITER]			= "iter",
127 	[BPF_LINK_TYPE_NETNS]			= "netns",
128 	[BPF_LINK_TYPE_XDP]			= "xdp",
129 	[BPF_LINK_TYPE_PERF_EVENT]		= "perf_event",
130 	[BPF_LINK_TYPE_KPROBE_MULTI]		= "kprobe_multi",
131 	[BPF_LINK_TYPE_STRUCT_OPS]		= "struct_ops",
132 };
133 
134 static const char * const map_type_name[] = {
135 	[BPF_MAP_TYPE_UNSPEC]			= "unspec",
136 	[BPF_MAP_TYPE_HASH]			= "hash",
137 	[BPF_MAP_TYPE_ARRAY]			= "array",
138 	[BPF_MAP_TYPE_PROG_ARRAY]		= "prog_array",
139 	[BPF_MAP_TYPE_PERF_EVENT_ARRAY]		= "perf_event_array",
140 	[BPF_MAP_TYPE_PERCPU_HASH]		= "percpu_hash",
141 	[BPF_MAP_TYPE_PERCPU_ARRAY]		= "percpu_array",
142 	[BPF_MAP_TYPE_STACK_TRACE]		= "stack_trace",
143 	[BPF_MAP_TYPE_CGROUP_ARRAY]		= "cgroup_array",
144 	[BPF_MAP_TYPE_LRU_HASH]			= "lru_hash",
145 	[BPF_MAP_TYPE_LRU_PERCPU_HASH]		= "lru_percpu_hash",
146 	[BPF_MAP_TYPE_LPM_TRIE]			= "lpm_trie",
147 	[BPF_MAP_TYPE_ARRAY_OF_MAPS]		= "array_of_maps",
148 	[BPF_MAP_TYPE_HASH_OF_MAPS]		= "hash_of_maps",
149 	[BPF_MAP_TYPE_DEVMAP]			= "devmap",
150 	[BPF_MAP_TYPE_DEVMAP_HASH]		= "devmap_hash",
151 	[BPF_MAP_TYPE_SOCKMAP]			= "sockmap",
152 	[BPF_MAP_TYPE_CPUMAP]			= "cpumap",
153 	[BPF_MAP_TYPE_XSKMAP]			= "xskmap",
154 	[BPF_MAP_TYPE_SOCKHASH]			= "sockhash",
155 	[BPF_MAP_TYPE_CGROUP_STORAGE]		= "cgroup_storage",
156 	[BPF_MAP_TYPE_REUSEPORT_SOCKARRAY]	= "reuseport_sockarray",
157 	[BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE]	= "percpu_cgroup_storage",
158 	[BPF_MAP_TYPE_QUEUE]			= "queue",
159 	[BPF_MAP_TYPE_STACK]			= "stack",
160 	[BPF_MAP_TYPE_SK_STORAGE]		= "sk_storage",
161 	[BPF_MAP_TYPE_STRUCT_OPS]		= "struct_ops",
162 	[BPF_MAP_TYPE_RINGBUF]			= "ringbuf",
163 	[BPF_MAP_TYPE_INODE_STORAGE]		= "inode_storage",
164 	[BPF_MAP_TYPE_TASK_STORAGE]		= "task_storage",
165 	[BPF_MAP_TYPE_BLOOM_FILTER]		= "bloom_filter",
166 };
167 
168 static const char * const prog_type_name[] = {
169 	[BPF_PROG_TYPE_UNSPEC]			= "unspec",
170 	[BPF_PROG_TYPE_SOCKET_FILTER]		= "socket_filter",
171 	[BPF_PROG_TYPE_KPROBE]			= "kprobe",
172 	[BPF_PROG_TYPE_SCHED_CLS]		= "sched_cls",
173 	[BPF_PROG_TYPE_SCHED_ACT]		= "sched_act",
174 	[BPF_PROG_TYPE_TRACEPOINT]		= "tracepoint",
175 	[BPF_PROG_TYPE_XDP]			= "xdp",
176 	[BPF_PROG_TYPE_PERF_EVENT]		= "perf_event",
177 	[BPF_PROG_TYPE_CGROUP_SKB]		= "cgroup_skb",
178 	[BPF_PROG_TYPE_CGROUP_SOCK]		= "cgroup_sock",
179 	[BPF_PROG_TYPE_LWT_IN]			= "lwt_in",
180 	[BPF_PROG_TYPE_LWT_OUT]			= "lwt_out",
181 	[BPF_PROG_TYPE_LWT_XMIT]		= "lwt_xmit",
182 	[BPF_PROG_TYPE_SOCK_OPS]		= "sock_ops",
183 	[BPF_PROG_TYPE_SK_SKB]			= "sk_skb",
184 	[BPF_PROG_TYPE_CGROUP_DEVICE]		= "cgroup_device",
185 	[BPF_PROG_TYPE_SK_MSG]			= "sk_msg",
186 	[BPF_PROG_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
187 	[BPF_PROG_TYPE_CGROUP_SOCK_ADDR]	= "cgroup_sock_addr",
188 	[BPF_PROG_TYPE_LWT_SEG6LOCAL]		= "lwt_seg6local",
189 	[BPF_PROG_TYPE_LIRC_MODE2]		= "lirc_mode2",
190 	[BPF_PROG_TYPE_SK_REUSEPORT]		= "sk_reuseport",
191 	[BPF_PROG_TYPE_FLOW_DISSECTOR]		= "flow_dissector",
192 	[BPF_PROG_TYPE_CGROUP_SYSCTL]		= "cgroup_sysctl",
193 	[BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE]	= "raw_tracepoint_writable",
194 	[BPF_PROG_TYPE_CGROUP_SOCKOPT]		= "cgroup_sockopt",
195 	[BPF_PROG_TYPE_TRACING]			= "tracing",
196 	[BPF_PROG_TYPE_STRUCT_OPS]		= "struct_ops",
197 	[BPF_PROG_TYPE_EXT]			= "ext",
198 	[BPF_PROG_TYPE_LSM]			= "lsm",
199 	[BPF_PROG_TYPE_SK_LOOKUP]		= "sk_lookup",
200 	[BPF_PROG_TYPE_SYSCALL]			= "syscall",
201 };
202 
203 static int __base_pr(enum libbpf_print_level level, const char *format,
204 		     va_list args)
205 {
206 	if (level == LIBBPF_DEBUG)
207 		return 0;
208 
209 	return vfprintf(stderr, format, args);
210 }
211 
212 static libbpf_print_fn_t __libbpf_pr = __base_pr;
213 
214 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
215 {
216 	libbpf_print_fn_t old_print_fn = __libbpf_pr;
217 
218 	__libbpf_pr = fn;
219 	return old_print_fn;
220 }
221 
222 __printf(2, 3)
223 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
224 {
225 	va_list args;
226 
227 	if (!__libbpf_pr)
228 		return;
229 
230 	va_start(args, format);
231 	__libbpf_pr(level, format, args);
232 	va_end(args);
233 }
234 
235 static void pr_perm_msg(int err)
236 {
237 	struct rlimit limit;
238 	char buf[100];
239 
240 	if (err != -EPERM || geteuid() != 0)
241 		return;
242 
243 	err = getrlimit(RLIMIT_MEMLOCK, &limit);
244 	if (err)
245 		return;
246 
247 	if (limit.rlim_cur == RLIM_INFINITY)
248 		return;
249 
250 	if (limit.rlim_cur < 1024)
251 		snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
252 	else if (limit.rlim_cur < 1024*1024)
253 		snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
254 	else
255 		snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
256 
257 	pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
258 		buf);
259 }
260 
261 #define STRERR_BUFSIZE  128
262 
263 /* Copied from tools/perf/util/util.h */
264 #ifndef zfree
265 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
266 #endif
267 
268 #ifndef zclose
269 # define zclose(fd) ({			\
270 	int ___err = 0;			\
271 	if ((fd) >= 0)			\
272 		___err = close((fd));	\
273 	fd = -1;			\
274 	___err; })
275 #endif
276 
277 static inline __u64 ptr_to_u64(const void *ptr)
278 {
279 	return (__u64) (unsigned long) ptr;
280 }
281 
282 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
283 {
284 	/* as of v1.0 libbpf_set_strict_mode() is a no-op */
285 	return 0;
286 }
287 
288 __u32 libbpf_major_version(void)
289 {
290 	return LIBBPF_MAJOR_VERSION;
291 }
292 
293 __u32 libbpf_minor_version(void)
294 {
295 	return LIBBPF_MINOR_VERSION;
296 }
297 
298 const char *libbpf_version_string(void)
299 {
300 #define __S(X) #X
301 #define _S(X) __S(X)
302 	return  "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
303 #undef _S
304 #undef __S
305 }
306 
307 enum reloc_type {
308 	RELO_LD64,
309 	RELO_CALL,
310 	RELO_DATA,
311 	RELO_EXTERN_VAR,
312 	RELO_EXTERN_FUNC,
313 	RELO_SUBPROG_ADDR,
314 	RELO_CORE,
315 };
316 
317 struct reloc_desc {
318 	enum reloc_type type;
319 	int insn_idx;
320 	union {
321 		const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
322 		struct {
323 			int map_idx;
324 			int sym_off;
325 		};
326 	};
327 };
328 
329 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
330 enum sec_def_flags {
331 	SEC_NONE = 0,
332 	/* expected_attach_type is optional, if kernel doesn't support that */
333 	SEC_EXP_ATTACH_OPT = 1,
334 	/* legacy, only used by libbpf_get_type_names() and
335 	 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
336 	 * This used to be associated with cgroup (and few other) BPF programs
337 	 * that were attachable through BPF_PROG_ATTACH command. Pretty
338 	 * meaningless nowadays, though.
339 	 */
340 	SEC_ATTACHABLE = 2,
341 	SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
342 	/* attachment target is specified through BTF ID in either kernel or
343 	 * other BPF program's BTF object */
344 	SEC_ATTACH_BTF = 4,
345 	/* BPF program type allows sleeping/blocking in kernel */
346 	SEC_SLEEPABLE = 8,
347 	/* BPF program support non-linear XDP buffer */
348 	SEC_XDP_FRAGS = 16,
349 };
350 
351 struct bpf_sec_def {
352 	char *sec;
353 	enum bpf_prog_type prog_type;
354 	enum bpf_attach_type expected_attach_type;
355 	long cookie;
356 	int handler_id;
357 
358 	libbpf_prog_setup_fn_t prog_setup_fn;
359 	libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
360 	libbpf_prog_attach_fn_t prog_attach_fn;
361 };
362 
363 /*
364  * bpf_prog should be a better name but it has been used in
365  * linux/filter.h.
366  */
367 struct bpf_program {
368 	char *name;
369 	char *sec_name;
370 	size_t sec_idx;
371 	const struct bpf_sec_def *sec_def;
372 	/* this program's instruction offset (in number of instructions)
373 	 * within its containing ELF section
374 	 */
375 	size_t sec_insn_off;
376 	/* number of original instructions in ELF section belonging to this
377 	 * program, not taking into account subprogram instructions possible
378 	 * appended later during relocation
379 	 */
380 	size_t sec_insn_cnt;
381 	/* Offset (in number of instructions) of the start of instruction
382 	 * belonging to this BPF program  within its containing main BPF
383 	 * program. For the entry-point (main) BPF program, this is always
384 	 * zero. For a sub-program, this gets reset before each of main BPF
385 	 * programs are processed and relocated and is used to determined
386 	 * whether sub-program was already appended to the main program, and
387 	 * if yes, at which instruction offset.
388 	 */
389 	size_t sub_insn_off;
390 
391 	/* instructions that belong to BPF program; insns[0] is located at
392 	 * sec_insn_off instruction within its ELF section in ELF file, so
393 	 * when mapping ELF file instruction index to the local instruction,
394 	 * one needs to subtract sec_insn_off; and vice versa.
395 	 */
396 	struct bpf_insn *insns;
397 	/* actual number of instruction in this BPF program's image; for
398 	 * entry-point BPF programs this includes the size of main program
399 	 * itself plus all the used sub-programs, appended at the end
400 	 */
401 	size_t insns_cnt;
402 
403 	struct reloc_desc *reloc_desc;
404 	int nr_reloc;
405 
406 	/* BPF verifier log settings */
407 	char *log_buf;
408 	size_t log_size;
409 	__u32 log_level;
410 
411 	struct bpf_object *obj;
412 
413 	int fd;
414 	bool autoload;
415 	bool mark_btf_static;
416 	enum bpf_prog_type type;
417 	enum bpf_attach_type expected_attach_type;
418 
419 	int prog_ifindex;
420 	__u32 attach_btf_obj_fd;
421 	__u32 attach_btf_id;
422 	__u32 attach_prog_fd;
423 
424 	void *func_info;
425 	__u32 func_info_rec_size;
426 	__u32 func_info_cnt;
427 
428 	void *line_info;
429 	__u32 line_info_rec_size;
430 	__u32 line_info_cnt;
431 	__u32 prog_flags;
432 };
433 
434 struct bpf_struct_ops {
435 	const char *tname;
436 	const struct btf_type *type;
437 	struct bpf_program **progs;
438 	__u32 *kern_func_off;
439 	/* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
440 	void *data;
441 	/* e.g. struct bpf_struct_ops_tcp_congestion_ops in
442 	 *      btf_vmlinux's format.
443 	 * struct bpf_struct_ops_tcp_congestion_ops {
444 	 *	[... some other kernel fields ...]
445 	 *	struct tcp_congestion_ops data;
446 	 * }
447 	 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
448 	 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
449 	 * from "data".
450 	 */
451 	void *kern_vdata;
452 	__u32 type_id;
453 };
454 
455 #define DATA_SEC ".data"
456 #define BSS_SEC ".bss"
457 #define RODATA_SEC ".rodata"
458 #define KCONFIG_SEC ".kconfig"
459 #define KSYMS_SEC ".ksyms"
460 #define STRUCT_OPS_SEC ".struct_ops"
461 
462 enum libbpf_map_type {
463 	LIBBPF_MAP_UNSPEC,
464 	LIBBPF_MAP_DATA,
465 	LIBBPF_MAP_BSS,
466 	LIBBPF_MAP_RODATA,
467 	LIBBPF_MAP_KCONFIG,
468 };
469 
470 struct bpf_map_def {
471 	unsigned int type;
472 	unsigned int key_size;
473 	unsigned int value_size;
474 	unsigned int max_entries;
475 	unsigned int map_flags;
476 };
477 
478 struct bpf_map {
479 	struct bpf_object *obj;
480 	char *name;
481 	/* real_name is defined for special internal maps (.rodata*,
482 	 * .data*, .bss, .kconfig) and preserves their original ELF section
483 	 * name. This is important to be be able to find corresponding BTF
484 	 * DATASEC information.
485 	 */
486 	char *real_name;
487 	int fd;
488 	int sec_idx;
489 	size_t sec_offset;
490 	int map_ifindex;
491 	int inner_map_fd;
492 	struct bpf_map_def def;
493 	__u32 numa_node;
494 	__u32 btf_var_idx;
495 	__u32 btf_key_type_id;
496 	__u32 btf_value_type_id;
497 	__u32 btf_vmlinux_value_type_id;
498 	enum libbpf_map_type libbpf_type;
499 	void *mmaped;
500 	struct bpf_struct_ops *st_ops;
501 	struct bpf_map *inner_map;
502 	void **init_slots;
503 	int init_slots_sz;
504 	char *pin_path;
505 	bool pinned;
506 	bool reused;
507 	bool autocreate;
508 	__u64 map_extra;
509 };
510 
511 enum extern_type {
512 	EXT_UNKNOWN,
513 	EXT_KCFG,
514 	EXT_KSYM,
515 };
516 
517 enum kcfg_type {
518 	KCFG_UNKNOWN,
519 	KCFG_CHAR,
520 	KCFG_BOOL,
521 	KCFG_INT,
522 	KCFG_TRISTATE,
523 	KCFG_CHAR_ARR,
524 };
525 
526 struct extern_desc {
527 	enum extern_type type;
528 	int sym_idx;
529 	int btf_id;
530 	int sec_btf_id;
531 	const char *name;
532 	bool is_set;
533 	bool is_weak;
534 	union {
535 		struct {
536 			enum kcfg_type type;
537 			int sz;
538 			int align;
539 			int data_off;
540 			bool is_signed;
541 		} kcfg;
542 		struct {
543 			unsigned long long addr;
544 
545 			/* target btf_id of the corresponding kernel var. */
546 			int kernel_btf_obj_fd;
547 			int kernel_btf_id;
548 
549 			/* local btf_id of the ksym extern's type. */
550 			__u32 type_id;
551 			/* BTF fd index to be patched in for insn->off, this is
552 			 * 0 for vmlinux BTF, index in obj->fd_array for module
553 			 * BTF
554 			 */
555 			__s16 btf_fd_idx;
556 		} ksym;
557 	};
558 };
559 
560 struct module_btf {
561 	struct btf *btf;
562 	char *name;
563 	__u32 id;
564 	int fd;
565 	int fd_array_idx;
566 };
567 
568 enum sec_type {
569 	SEC_UNUSED = 0,
570 	SEC_RELO,
571 	SEC_BSS,
572 	SEC_DATA,
573 	SEC_RODATA,
574 };
575 
576 struct elf_sec_desc {
577 	enum sec_type sec_type;
578 	Elf64_Shdr *shdr;
579 	Elf_Data *data;
580 };
581 
582 struct elf_state {
583 	int fd;
584 	const void *obj_buf;
585 	size_t obj_buf_sz;
586 	Elf *elf;
587 	Elf64_Ehdr *ehdr;
588 	Elf_Data *symbols;
589 	Elf_Data *st_ops_data;
590 	size_t shstrndx; /* section index for section name strings */
591 	size_t strtabidx;
592 	struct elf_sec_desc *secs;
593 	int sec_cnt;
594 	int maps_shndx;
595 	int btf_maps_shndx;
596 	__u32 btf_maps_sec_btf_id;
597 	int text_shndx;
598 	int symbols_shndx;
599 	int st_ops_shndx;
600 };
601 
602 struct usdt_manager;
603 
604 struct bpf_object {
605 	char name[BPF_OBJ_NAME_LEN];
606 	char license[64];
607 	__u32 kern_version;
608 
609 	struct bpf_program *programs;
610 	size_t nr_programs;
611 	struct bpf_map *maps;
612 	size_t nr_maps;
613 	size_t maps_cap;
614 
615 	char *kconfig;
616 	struct extern_desc *externs;
617 	int nr_extern;
618 	int kconfig_map_idx;
619 
620 	bool loaded;
621 	bool has_subcalls;
622 	bool has_rodata;
623 
624 	struct bpf_gen *gen_loader;
625 
626 	/* Information when doing ELF related work. Only valid if efile.elf is not NULL */
627 	struct elf_state efile;
628 
629 	struct btf *btf;
630 	struct btf_ext *btf_ext;
631 
632 	/* Parse and load BTF vmlinux if any of the programs in the object need
633 	 * it at load time.
634 	 */
635 	struct btf *btf_vmlinux;
636 	/* Path to the custom BTF to be used for BPF CO-RE relocations as an
637 	 * override for vmlinux BTF.
638 	 */
639 	char *btf_custom_path;
640 	/* vmlinux BTF override for CO-RE relocations */
641 	struct btf *btf_vmlinux_override;
642 	/* Lazily initialized kernel module BTFs */
643 	struct module_btf *btf_modules;
644 	bool btf_modules_loaded;
645 	size_t btf_module_cnt;
646 	size_t btf_module_cap;
647 
648 	/* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
649 	char *log_buf;
650 	size_t log_size;
651 	__u32 log_level;
652 
653 	int *fd_array;
654 	size_t fd_array_cap;
655 	size_t fd_array_cnt;
656 
657 	struct usdt_manager *usdt_man;
658 
659 	char path[];
660 };
661 
662 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
663 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
664 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
665 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
666 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
667 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
668 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
669 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
670 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
671 
672 void bpf_program__unload(struct bpf_program *prog)
673 {
674 	if (!prog)
675 		return;
676 
677 	zclose(prog->fd);
678 
679 	zfree(&prog->func_info);
680 	zfree(&prog->line_info);
681 }
682 
683 static void bpf_program__exit(struct bpf_program *prog)
684 {
685 	if (!prog)
686 		return;
687 
688 	bpf_program__unload(prog);
689 	zfree(&prog->name);
690 	zfree(&prog->sec_name);
691 	zfree(&prog->insns);
692 	zfree(&prog->reloc_desc);
693 
694 	prog->nr_reloc = 0;
695 	prog->insns_cnt = 0;
696 	prog->sec_idx = -1;
697 }
698 
699 static bool insn_is_subprog_call(const struct bpf_insn *insn)
700 {
701 	return BPF_CLASS(insn->code) == BPF_JMP &&
702 	       BPF_OP(insn->code) == BPF_CALL &&
703 	       BPF_SRC(insn->code) == BPF_K &&
704 	       insn->src_reg == BPF_PSEUDO_CALL &&
705 	       insn->dst_reg == 0 &&
706 	       insn->off == 0;
707 }
708 
709 static bool is_call_insn(const struct bpf_insn *insn)
710 {
711 	return insn->code == (BPF_JMP | BPF_CALL);
712 }
713 
714 static bool insn_is_pseudo_func(struct bpf_insn *insn)
715 {
716 	return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
717 }
718 
719 static int
720 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
721 		      const char *name, size_t sec_idx, const char *sec_name,
722 		      size_t sec_off, void *insn_data, size_t insn_data_sz)
723 {
724 	if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
725 		pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
726 			sec_name, name, sec_off, insn_data_sz);
727 		return -EINVAL;
728 	}
729 
730 	memset(prog, 0, sizeof(*prog));
731 	prog->obj = obj;
732 
733 	prog->sec_idx = sec_idx;
734 	prog->sec_insn_off = sec_off / BPF_INSN_SZ;
735 	prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
736 	/* insns_cnt can later be increased by appending used subprograms */
737 	prog->insns_cnt = prog->sec_insn_cnt;
738 
739 	prog->type = BPF_PROG_TYPE_UNSPEC;
740 	prog->fd = -1;
741 
742 	/* libbpf's convention for SEC("?abc...") is that it's just like
743 	 * SEC("abc...") but the corresponding bpf_program starts out with
744 	 * autoload set to false.
745 	 */
746 	if (sec_name[0] == '?') {
747 		prog->autoload = false;
748 		/* from now on forget there was ? in section name */
749 		sec_name++;
750 	} else {
751 		prog->autoload = true;
752 	}
753 
754 	/* inherit object's log_level */
755 	prog->log_level = obj->log_level;
756 
757 	prog->sec_name = strdup(sec_name);
758 	if (!prog->sec_name)
759 		goto errout;
760 
761 	prog->name = strdup(name);
762 	if (!prog->name)
763 		goto errout;
764 
765 	prog->insns = malloc(insn_data_sz);
766 	if (!prog->insns)
767 		goto errout;
768 	memcpy(prog->insns, insn_data, insn_data_sz);
769 
770 	return 0;
771 errout:
772 	pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
773 	bpf_program__exit(prog);
774 	return -ENOMEM;
775 }
776 
777 static int
778 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
779 			 const char *sec_name, int sec_idx)
780 {
781 	Elf_Data *symbols = obj->efile.symbols;
782 	struct bpf_program *prog, *progs;
783 	void *data = sec_data->d_buf;
784 	size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
785 	int nr_progs, err, i;
786 	const char *name;
787 	Elf64_Sym *sym;
788 
789 	progs = obj->programs;
790 	nr_progs = obj->nr_programs;
791 	nr_syms = symbols->d_size / sizeof(Elf64_Sym);
792 	sec_off = 0;
793 
794 	for (i = 0; i < nr_syms; i++) {
795 		sym = elf_sym_by_idx(obj, i);
796 
797 		if (sym->st_shndx != sec_idx)
798 			continue;
799 		if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
800 			continue;
801 
802 		prog_sz = sym->st_size;
803 		sec_off = sym->st_value;
804 
805 		name = elf_sym_str(obj, sym->st_name);
806 		if (!name) {
807 			pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
808 				sec_name, sec_off);
809 			return -LIBBPF_ERRNO__FORMAT;
810 		}
811 
812 		if (sec_off + prog_sz > sec_sz) {
813 			pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
814 				sec_name, sec_off);
815 			return -LIBBPF_ERRNO__FORMAT;
816 		}
817 
818 		if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
819 			pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
820 			return -ENOTSUP;
821 		}
822 
823 		pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
824 			 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
825 
826 		progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
827 		if (!progs) {
828 			/*
829 			 * In this case the original obj->programs
830 			 * is still valid, so don't need special treat for
831 			 * bpf_close_object().
832 			 */
833 			pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
834 				sec_name, name);
835 			return -ENOMEM;
836 		}
837 		obj->programs = progs;
838 
839 		prog = &progs[nr_progs];
840 
841 		err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
842 					    sec_off, data + sec_off, prog_sz);
843 		if (err)
844 			return err;
845 
846 		/* if function is a global/weak symbol, but has restricted
847 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
848 		 * as static to enable more permissive BPF verification mode
849 		 * with more outside context available to BPF verifier
850 		 */
851 		if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL
852 		    && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
853 			|| ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
854 			prog->mark_btf_static = true;
855 
856 		nr_progs++;
857 		obj->nr_programs = nr_progs;
858 	}
859 
860 	return 0;
861 }
862 
863 __u32 get_kernel_version(void)
864 {
865 	/* On Ubuntu LINUX_VERSION_CODE doesn't correspond to info.release,
866 	 * but Ubuntu provides /proc/version_signature file, as described at
867 	 * https://ubuntu.com/kernel, with an example contents below, which we
868 	 * can use to get a proper LINUX_VERSION_CODE.
869 	 *
870 	 *   Ubuntu 5.4.0-12.15-generic 5.4.8
871 	 *
872 	 * In the above, 5.4.8 is what kernel is actually expecting, while
873 	 * uname() call will return 5.4.0 in info.release.
874 	 */
875 	const char *ubuntu_kver_file = "/proc/version_signature";
876 	__u32 major, minor, patch;
877 	struct utsname info;
878 
879 	if (access(ubuntu_kver_file, R_OK) == 0) {
880 		FILE *f;
881 
882 		f = fopen(ubuntu_kver_file, "r");
883 		if (f) {
884 			if (fscanf(f, "%*s %*s %d.%d.%d\n", &major, &minor, &patch) == 3) {
885 				fclose(f);
886 				return KERNEL_VERSION(major, minor, patch);
887 			}
888 			fclose(f);
889 		}
890 		/* something went wrong, fall back to uname() approach */
891 	}
892 
893 	uname(&info);
894 	if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3)
895 		return 0;
896 	return KERNEL_VERSION(major, minor, patch);
897 }
898 
899 static const struct btf_member *
900 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
901 {
902 	struct btf_member *m;
903 	int i;
904 
905 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
906 		if (btf_member_bit_offset(t, i) == bit_offset)
907 			return m;
908 	}
909 
910 	return NULL;
911 }
912 
913 static const struct btf_member *
914 find_member_by_name(const struct btf *btf, const struct btf_type *t,
915 		    const char *name)
916 {
917 	struct btf_member *m;
918 	int i;
919 
920 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
921 		if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
922 			return m;
923 	}
924 
925 	return NULL;
926 }
927 
928 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
929 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
930 				   const char *name, __u32 kind);
931 
932 static int
933 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
934 			   const struct btf_type **type, __u32 *type_id,
935 			   const struct btf_type **vtype, __u32 *vtype_id,
936 			   const struct btf_member **data_member)
937 {
938 	const struct btf_type *kern_type, *kern_vtype;
939 	const struct btf_member *kern_data_member;
940 	__s32 kern_vtype_id, kern_type_id;
941 	__u32 i;
942 
943 	kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
944 	if (kern_type_id < 0) {
945 		pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
946 			tname);
947 		return kern_type_id;
948 	}
949 	kern_type = btf__type_by_id(btf, kern_type_id);
950 
951 	/* Find the corresponding "map_value" type that will be used
952 	 * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
953 	 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
954 	 * btf_vmlinux.
955 	 */
956 	kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
957 						tname, BTF_KIND_STRUCT);
958 	if (kern_vtype_id < 0) {
959 		pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
960 			STRUCT_OPS_VALUE_PREFIX, tname);
961 		return kern_vtype_id;
962 	}
963 	kern_vtype = btf__type_by_id(btf, kern_vtype_id);
964 
965 	/* Find "struct tcp_congestion_ops" from
966 	 * struct bpf_struct_ops_tcp_congestion_ops {
967 	 *	[ ... ]
968 	 *	struct tcp_congestion_ops data;
969 	 * }
970 	 */
971 	kern_data_member = btf_members(kern_vtype);
972 	for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
973 		if (kern_data_member->type == kern_type_id)
974 			break;
975 	}
976 	if (i == btf_vlen(kern_vtype)) {
977 		pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
978 			tname, STRUCT_OPS_VALUE_PREFIX, tname);
979 		return -EINVAL;
980 	}
981 
982 	*type = kern_type;
983 	*type_id = kern_type_id;
984 	*vtype = kern_vtype;
985 	*vtype_id = kern_vtype_id;
986 	*data_member = kern_data_member;
987 
988 	return 0;
989 }
990 
991 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
992 {
993 	return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
994 }
995 
996 /* Init the map's fields that depend on kern_btf */
997 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
998 					 const struct btf *btf,
999 					 const struct btf *kern_btf)
1000 {
1001 	const struct btf_member *member, *kern_member, *kern_data_member;
1002 	const struct btf_type *type, *kern_type, *kern_vtype;
1003 	__u32 i, kern_type_id, kern_vtype_id, kern_data_off;
1004 	struct bpf_struct_ops *st_ops;
1005 	void *data, *kern_data;
1006 	const char *tname;
1007 	int err;
1008 
1009 	st_ops = map->st_ops;
1010 	type = st_ops->type;
1011 	tname = st_ops->tname;
1012 	err = find_struct_ops_kern_types(kern_btf, tname,
1013 					 &kern_type, &kern_type_id,
1014 					 &kern_vtype, &kern_vtype_id,
1015 					 &kern_data_member);
1016 	if (err)
1017 		return err;
1018 
1019 	pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1020 		 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1021 
1022 	map->def.value_size = kern_vtype->size;
1023 	map->btf_vmlinux_value_type_id = kern_vtype_id;
1024 
1025 	st_ops->kern_vdata = calloc(1, kern_vtype->size);
1026 	if (!st_ops->kern_vdata)
1027 		return -ENOMEM;
1028 
1029 	data = st_ops->data;
1030 	kern_data_off = kern_data_member->offset / 8;
1031 	kern_data = st_ops->kern_vdata + kern_data_off;
1032 
1033 	member = btf_members(type);
1034 	for (i = 0; i < btf_vlen(type); i++, member++) {
1035 		const struct btf_type *mtype, *kern_mtype;
1036 		__u32 mtype_id, kern_mtype_id;
1037 		void *mdata, *kern_mdata;
1038 		__s64 msize, kern_msize;
1039 		__u32 moff, kern_moff;
1040 		__u32 kern_member_idx;
1041 		const char *mname;
1042 
1043 		mname = btf__name_by_offset(btf, member->name_off);
1044 		kern_member = find_member_by_name(kern_btf, kern_type, mname);
1045 		if (!kern_member) {
1046 			pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1047 				map->name, mname);
1048 			return -ENOTSUP;
1049 		}
1050 
1051 		kern_member_idx = kern_member - btf_members(kern_type);
1052 		if (btf_member_bitfield_size(type, i) ||
1053 		    btf_member_bitfield_size(kern_type, kern_member_idx)) {
1054 			pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1055 				map->name, mname);
1056 			return -ENOTSUP;
1057 		}
1058 
1059 		moff = member->offset / 8;
1060 		kern_moff = kern_member->offset / 8;
1061 
1062 		mdata = data + moff;
1063 		kern_mdata = kern_data + kern_moff;
1064 
1065 		mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1066 		kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1067 						    &kern_mtype_id);
1068 		if (BTF_INFO_KIND(mtype->info) !=
1069 		    BTF_INFO_KIND(kern_mtype->info)) {
1070 			pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1071 				map->name, mname, BTF_INFO_KIND(mtype->info),
1072 				BTF_INFO_KIND(kern_mtype->info));
1073 			return -ENOTSUP;
1074 		}
1075 
1076 		if (btf_is_ptr(mtype)) {
1077 			struct bpf_program *prog;
1078 
1079 			prog = st_ops->progs[i];
1080 			if (!prog)
1081 				continue;
1082 
1083 			kern_mtype = skip_mods_and_typedefs(kern_btf,
1084 							    kern_mtype->type,
1085 							    &kern_mtype_id);
1086 
1087 			/* mtype->type must be a func_proto which was
1088 			 * guaranteed in bpf_object__collect_st_ops_relos(),
1089 			 * so only check kern_mtype for func_proto here.
1090 			 */
1091 			if (!btf_is_func_proto(kern_mtype)) {
1092 				pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1093 					map->name, mname);
1094 				return -ENOTSUP;
1095 			}
1096 
1097 			prog->attach_btf_id = kern_type_id;
1098 			prog->expected_attach_type = kern_member_idx;
1099 
1100 			st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1101 
1102 			pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1103 				 map->name, mname, prog->name, moff,
1104 				 kern_moff);
1105 
1106 			continue;
1107 		}
1108 
1109 		msize = btf__resolve_size(btf, mtype_id);
1110 		kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1111 		if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1112 			pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1113 				map->name, mname, (ssize_t)msize,
1114 				(ssize_t)kern_msize);
1115 			return -ENOTSUP;
1116 		}
1117 
1118 		pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1119 			 map->name, mname, (unsigned int)msize,
1120 			 moff, kern_moff);
1121 		memcpy(kern_mdata, mdata, msize);
1122 	}
1123 
1124 	return 0;
1125 }
1126 
1127 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1128 {
1129 	struct bpf_map *map;
1130 	size_t i;
1131 	int err;
1132 
1133 	for (i = 0; i < obj->nr_maps; i++) {
1134 		map = &obj->maps[i];
1135 
1136 		if (!bpf_map__is_struct_ops(map))
1137 			continue;
1138 
1139 		err = bpf_map__init_kern_struct_ops(map, obj->btf,
1140 						    obj->btf_vmlinux);
1141 		if (err)
1142 			return err;
1143 	}
1144 
1145 	return 0;
1146 }
1147 
1148 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj)
1149 {
1150 	const struct btf_type *type, *datasec;
1151 	const struct btf_var_secinfo *vsi;
1152 	struct bpf_struct_ops *st_ops;
1153 	const char *tname, *var_name;
1154 	__s32 type_id, datasec_id;
1155 	const struct btf *btf;
1156 	struct bpf_map *map;
1157 	__u32 i;
1158 
1159 	if (obj->efile.st_ops_shndx == -1)
1160 		return 0;
1161 
1162 	btf = obj->btf;
1163 	datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC,
1164 					    BTF_KIND_DATASEC);
1165 	if (datasec_id < 0) {
1166 		pr_warn("struct_ops init: DATASEC %s not found\n",
1167 			STRUCT_OPS_SEC);
1168 		return -EINVAL;
1169 	}
1170 
1171 	datasec = btf__type_by_id(btf, datasec_id);
1172 	vsi = btf_var_secinfos(datasec);
1173 	for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1174 		type = btf__type_by_id(obj->btf, vsi->type);
1175 		var_name = btf__name_by_offset(obj->btf, type->name_off);
1176 
1177 		type_id = btf__resolve_type(obj->btf, vsi->type);
1178 		if (type_id < 0) {
1179 			pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1180 				vsi->type, STRUCT_OPS_SEC);
1181 			return -EINVAL;
1182 		}
1183 
1184 		type = btf__type_by_id(obj->btf, type_id);
1185 		tname = btf__name_by_offset(obj->btf, type->name_off);
1186 		if (!tname[0]) {
1187 			pr_warn("struct_ops init: anonymous type is not supported\n");
1188 			return -ENOTSUP;
1189 		}
1190 		if (!btf_is_struct(type)) {
1191 			pr_warn("struct_ops init: %s is not a struct\n", tname);
1192 			return -EINVAL;
1193 		}
1194 
1195 		map = bpf_object__add_map(obj);
1196 		if (IS_ERR(map))
1197 			return PTR_ERR(map);
1198 
1199 		map->sec_idx = obj->efile.st_ops_shndx;
1200 		map->sec_offset = vsi->offset;
1201 		map->name = strdup(var_name);
1202 		if (!map->name)
1203 			return -ENOMEM;
1204 
1205 		map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1206 		map->def.key_size = sizeof(int);
1207 		map->def.value_size = type->size;
1208 		map->def.max_entries = 1;
1209 
1210 		map->st_ops = calloc(1, sizeof(*map->st_ops));
1211 		if (!map->st_ops)
1212 			return -ENOMEM;
1213 		st_ops = map->st_ops;
1214 		st_ops->data = malloc(type->size);
1215 		st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1216 		st_ops->kern_func_off = malloc(btf_vlen(type) *
1217 					       sizeof(*st_ops->kern_func_off));
1218 		if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1219 			return -ENOMEM;
1220 
1221 		if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) {
1222 			pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1223 				var_name, STRUCT_OPS_SEC);
1224 			return -EINVAL;
1225 		}
1226 
1227 		memcpy(st_ops->data,
1228 		       obj->efile.st_ops_data->d_buf + vsi->offset,
1229 		       type->size);
1230 		st_ops->tname = tname;
1231 		st_ops->type = type;
1232 		st_ops->type_id = type_id;
1233 
1234 		pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1235 			 tname, type_id, var_name, vsi->offset);
1236 	}
1237 
1238 	return 0;
1239 }
1240 
1241 static struct bpf_object *bpf_object__new(const char *path,
1242 					  const void *obj_buf,
1243 					  size_t obj_buf_sz,
1244 					  const char *obj_name)
1245 {
1246 	struct bpf_object *obj;
1247 	char *end;
1248 
1249 	obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1250 	if (!obj) {
1251 		pr_warn("alloc memory failed for %s\n", path);
1252 		return ERR_PTR(-ENOMEM);
1253 	}
1254 
1255 	strcpy(obj->path, path);
1256 	if (obj_name) {
1257 		libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1258 	} else {
1259 		/* Using basename() GNU version which doesn't modify arg. */
1260 		libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1261 		end = strchr(obj->name, '.');
1262 		if (end)
1263 			*end = 0;
1264 	}
1265 
1266 	obj->efile.fd = -1;
1267 	/*
1268 	 * Caller of this function should also call
1269 	 * bpf_object__elf_finish() after data collection to return
1270 	 * obj_buf to user. If not, we should duplicate the buffer to
1271 	 * avoid user freeing them before elf finish.
1272 	 */
1273 	obj->efile.obj_buf = obj_buf;
1274 	obj->efile.obj_buf_sz = obj_buf_sz;
1275 	obj->efile.maps_shndx = -1;
1276 	obj->efile.btf_maps_shndx = -1;
1277 	obj->efile.st_ops_shndx = -1;
1278 	obj->kconfig_map_idx = -1;
1279 
1280 	obj->kern_version = get_kernel_version();
1281 	obj->loaded = false;
1282 
1283 	return obj;
1284 }
1285 
1286 static void bpf_object__elf_finish(struct bpf_object *obj)
1287 {
1288 	if (!obj->efile.elf)
1289 		return;
1290 
1291 	elf_end(obj->efile.elf);
1292 	obj->efile.elf = NULL;
1293 	obj->efile.symbols = NULL;
1294 	obj->efile.st_ops_data = NULL;
1295 
1296 	zfree(&obj->efile.secs);
1297 	obj->efile.sec_cnt = 0;
1298 	zclose(obj->efile.fd);
1299 	obj->efile.obj_buf = NULL;
1300 	obj->efile.obj_buf_sz = 0;
1301 }
1302 
1303 static int bpf_object__elf_init(struct bpf_object *obj)
1304 {
1305 	Elf64_Ehdr *ehdr;
1306 	int err = 0;
1307 	Elf *elf;
1308 
1309 	if (obj->efile.elf) {
1310 		pr_warn("elf: init internal error\n");
1311 		return -LIBBPF_ERRNO__LIBELF;
1312 	}
1313 
1314 	if (obj->efile.obj_buf_sz > 0) {
1315 		/* obj_buf should have been validated by bpf_object__open_mem(). */
1316 		elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1317 	} else {
1318 		obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1319 		if (obj->efile.fd < 0) {
1320 			char errmsg[STRERR_BUFSIZE], *cp;
1321 
1322 			err = -errno;
1323 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1324 			pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1325 			return err;
1326 		}
1327 
1328 		elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1329 	}
1330 
1331 	if (!elf) {
1332 		pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1333 		err = -LIBBPF_ERRNO__LIBELF;
1334 		goto errout;
1335 	}
1336 
1337 	obj->efile.elf = elf;
1338 
1339 	if (elf_kind(elf) != ELF_K_ELF) {
1340 		err = -LIBBPF_ERRNO__FORMAT;
1341 		pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1342 		goto errout;
1343 	}
1344 
1345 	if (gelf_getclass(elf) != ELFCLASS64) {
1346 		err = -LIBBPF_ERRNO__FORMAT;
1347 		pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1348 		goto errout;
1349 	}
1350 
1351 	obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1352 	if (!obj->efile.ehdr) {
1353 		pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1354 		err = -LIBBPF_ERRNO__FORMAT;
1355 		goto errout;
1356 	}
1357 
1358 	if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1359 		pr_warn("elf: failed to get section names section index for %s: %s\n",
1360 			obj->path, elf_errmsg(-1));
1361 		err = -LIBBPF_ERRNO__FORMAT;
1362 		goto errout;
1363 	}
1364 
1365 	/* Elf is corrupted/truncated, avoid calling elf_strptr. */
1366 	if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1367 		pr_warn("elf: failed to get section names strings from %s: %s\n",
1368 			obj->path, elf_errmsg(-1));
1369 		err = -LIBBPF_ERRNO__FORMAT;
1370 		goto errout;
1371 	}
1372 
1373 	/* Old LLVM set e_machine to EM_NONE */
1374 	if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1375 		pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1376 		err = -LIBBPF_ERRNO__FORMAT;
1377 		goto errout;
1378 	}
1379 
1380 	return 0;
1381 errout:
1382 	bpf_object__elf_finish(obj);
1383 	return err;
1384 }
1385 
1386 static int bpf_object__check_endianness(struct bpf_object *obj)
1387 {
1388 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1389 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1390 		return 0;
1391 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1392 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1393 		return 0;
1394 #else
1395 # error "Unrecognized __BYTE_ORDER__"
1396 #endif
1397 	pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1398 	return -LIBBPF_ERRNO__ENDIAN;
1399 }
1400 
1401 static int
1402 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1403 {
1404 	/* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1405 	 * go over allowed ELF data section buffer
1406 	 */
1407 	libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1408 	pr_debug("license of %s is %s\n", obj->path, obj->license);
1409 	return 0;
1410 }
1411 
1412 static int
1413 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1414 {
1415 	__u32 kver;
1416 
1417 	if (size != sizeof(kver)) {
1418 		pr_warn("invalid kver section in %s\n", obj->path);
1419 		return -LIBBPF_ERRNO__FORMAT;
1420 	}
1421 	memcpy(&kver, data, sizeof(kver));
1422 	obj->kern_version = kver;
1423 	pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1424 	return 0;
1425 }
1426 
1427 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1428 {
1429 	if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1430 	    type == BPF_MAP_TYPE_HASH_OF_MAPS)
1431 		return true;
1432 	return false;
1433 }
1434 
1435 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1436 {
1437 	Elf_Data *data;
1438 	Elf_Scn *scn;
1439 
1440 	if (!name)
1441 		return -EINVAL;
1442 
1443 	scn = elf_sec_by_name(obj, name);
1444 	data = elf_sec_data(obj, scn);
1445 	if (data) {
1446 		*size = data->d_size;
1447 		return 0; /* found it */
1448 	}
1449 
1450 	return -ENOENT;
1451 }
1452 
1453 static int find_elf_var_offset(const struct bpf_object *obj, const char *name, __u32 *off)
1454 {
1455 	Elf_Data *symbols = obj->efile.symbols;
1456 	const char *sname;
1457 	size_t si;
1458 
1459 	if (!name || !off)
1460 		return -EINVAL;
1461 
1462 	for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1463 		Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1464 
1465 		if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1466 			continue;
1467 
1468 		if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1469 		    ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1470 			continue;
1471 
1472 		sname = elf_sym_str(obj, sym->st_name);
1473 		if (!sname) {
1474 			pr_warn("failed to get sym name string for var %s\n", name);
1475 			return -EIO;
1476 		}
1477 		if (strcmp(name, sname) == 0) {
1478 			*off = sym->st_value;
1479 			return 0;
1480 		}
1481 	}
1482 
1483 	return -ENOENT;
1484 }
1485 
1486 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1487 {
1488 	struct bpf_map *map;
1489 	int err;
1490 
1491 	err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1492 				sizeof(*obj->maps), obj->nr_maps + 1);
1493 	if (err)
1494 		return ERR_PTR(err);
1495 
1496 	map = &obj->maps[obj->nr_maps++];
1497 	map->obj = obj;
1498 	map->fd = -1;
1499 	map->inner_map_fd = -1;
1500 	map->autocreate = true;
1501 
1502 	return map;
1503 }
1504 
1505 static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1506 {
1507 	long page_sz = sysconf(_SC_PAGE_SIZE);
1508 	size_t map_sz;
1509 
1510 	map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries;
1511 	map_sz = roundup(map_sz, page_sz);
1512 	return map_sz;
1513 }
1514 
1515 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1516 {
1517 	char map_name[BPF_OBJ_NAME_LEN], *p;
1518 	int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1519 
1520 	/* This is one of the more confusing parts of libbpf for various
1521 	 * reasons, some of which are historical. The original idea for naming
1522 	 * internal names was to include as much of BPF object name prefix as
1523 	 * possible, so that it can be distinguished from similar internal
1524 	 * maps of a different BPF object.
1525 	 * As an example, let's say we have bpf_object named 'my_object_name'
1526 	 * and internal map corresponding to '.rodata' ELF section. The final
1527 	 * map name advertised to user and to the kernel will be
1528 	 * 'my_objec.rodata', taking first 8 characters of object name and
1529 	 * entire 7 characters of '.rodata'.
1530 	 * Somewhat confusingly, if internal map ELF section name is shorter
1531 	 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1532 	 * for the suffix, even though we only have 4 actual characters, and
1533 	 * resulting map will be called 'my_objec.bss', not even using all 15
1534 	 * characters allowed by the kernel. Oh well, at least the truncated
1535 	 * object name is somewhat consistent in this case. But if the map
1536 	 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1537 	 * (8 chars) and thus will be left with only first 7 characters of the
1538 	 * object name ('my_obje'). Happy guessing, user, that the final map
1539 	 * name will be "my_obje.kconfig".
1540 	 * Now, with libbpf starting to support arbitrarily named .rodata.*
1541 	 * and .data.* data sections, it's possible that ELF section name is
1542 	 * longer than allowed 15 chars, so we now need to be careful to take
1543 	 * only up to 15 first characters of ELF name, taking no BPF object
1544 	 * name characters at all. So '.rodata.abracadabra' will result in
1545 	 * '.rodata.abracad' kernel and user-visible name.
1546 	 * We need to keep this convoluted logic intact for .data, .bss and
1547 	 * .rodata maps, but for new custom .data.custom and .rodata.custom
1548 	 * maps we use their ELF names as is, not prepending bpf_object name
1549 	 * in front. We still need to truncate them to 15 characters for the
1550 	 * kernel. Full name can be recovered for such maps by using DATASEC
1551 	 * BTF type associated with such map's value type, though.
1552 	 */
1553 	if (sfx_len >= BPF_OBJ_NAME_LEN)
1554 		sfx_len = BPF_OBJ_NAME_LEN - 1;
1555 
1556 	/* if there are two or more dots in map name, it's a custom dot map */
1557 	if (strchr(real_name + 1, '.') != NULL)
1558 		pfx_len = 0;
1559 	else
1560 		pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1561 
1562 	snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1563 		 sfx_len, real_name);
1564 
1565 	/* sanitise map name to characters allowed by kernel */
1566 	for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1567 		if (!isalnum(*p) && *p != '_' && *p != '.')
1568 			*p = '_';
1569 
1570 	return strdup(map_name);
1571 }
1572 
1573 static int
1574 bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map);
1575 
1576 static int
1577 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1578 			      const char *real_name, int sec_idx, void *data, size_t data_sz)
1579 {
1580 	struct bpf_map_def *def;
1581 	struct bpf_map *map;
1582 	int err;
1583 
1584 	map = bpf_object__add_map(obj);
1585 	if (IS_ERR(map))
1586 		return PTR_ERR(map);
1587 
1588 	map->libbpf_type = type;
1589 	map->sec_idx = sec_idx;
1590 	map->sec_offset = 0;
1591 	map->real_name = strdup(real_name);
1592 	map->name = internal_map_name(obj, real_name);
1593 	if (!map->real_name || !map->name) {
1594 		zfree(&map->real_name);
1595 		zfree(&map->name);
1596 		return -ENOMEM;
1597 	}
1598 
1599 	def = &map->def;
1600 	def->type = BPF_MAP_TYPE_ARRAY;
1601 	def->key_size = sizeof(int);
1602 	def->value_size = data_sz;
1603 	def->max_entries = 1;
1604 	def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1605 			 ? BPF_F_RDONLY_PROG : 0;
1606 	def->map_flags |= BPF_F_MMAPABLE;
1607 
1608 	pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1609 		 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1610 
1611 	map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
1612 			   MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1613 	if (map->mmaped == MAP_FAILED) {
1614 		err = -errno;
1615 		map->mmaped = NULL;
1616 		pr_warn("failed to alloc map '%s' content buffer: %d\n",
1617 			map->name, err);
1618 		zfree(&map->real_name);
1619 		zfree(&map->name);
1620 		return err;
1621 	}
1622 
1623 	/* failures are fine because of maps like .rodata.str1.1 */
1624 	(void) bpf_map_find_btf_info(obj, map);
1625 
1626 	if (data)
1627 		memcpy(map->mmaped, data, data_sz);
1628 
1629 	pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1630 	return 0;
1631 }
1632 
1633 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1634 {
1635 	struct elf_sec_desc *sec_desc;
1636 	const char *sec_name;
1637 	int err = 0, sec_idx;
1638 
1639 	/*
1640 	 * Populate obj->maps with libbpf internal maps.
1641 	 */
1642 	for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1643 		sec_desc = &obj->efile.secs[sec_idx];
1644 
1645 		switch (sec_desc->sec_type) {
1646 		case SEC_DATA:
1647 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1648 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1649 							    sec_name, sec_idx,
1650 							    sec_desc->data->d_buf,
1651 							    sec_desc->data->d_size);
1652 			break;
1653 		case SEC_RODATA:
1654 			obj->has_rodata = true;
1655 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1656 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1657 							    sec_name, sec_idx,
1658 							    sec_desc->data->d_buf,
1659 							    sec_desc->data->d_size);
1660 			break;
1661 		case SEC_BSS:
1662 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1663 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1664 							    sec_name, sec_idx,
1665 							    NULL,
1666 							    sec_desc->data->d_size);
1667 			break;
1668 		default:
1669 			/* skip */
1670 			break;
1671 		}
1672 		if (err)
1673 			return err;
1674 	}
1675 	return 0;
1676 }
1677 
1678 
1679 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1680 					       const void *name)
1681 {
1682 	int i;
1683 
1684 	for (i = 0; i < obj->nr_extern; i++) {
1685 		if (strcmp(obj->externs[i].name, name) == 0)
1686 			return &obj->externs[i];
1687 	}
1688 	return NULL;
1689 }
1690 
1691 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1692 			      char value)
1693 {
1694 	switch (ext->kcfg.type) {
1695 	case KCFG_BOOL:
1696 		if (value == 'm') {
1697 			pr_warn("extern (kcfg) %s=%c should be tristate or char\n",
1698 				ext->name, value);
1699 			return -EINVAL;
1700 		}
1701 		*(bool *)ext_val = value == 'y' ? true : false;
1702 		break;
1703 	case KCFG_TRISTATE:
1704 		if (value == 'y')
1705 			*(enum libbpf_tristate *)ext_val = TRI_YES;
1706 		else if (value == 'm')
1707 			*(enum libbpf_tristate *)ext_val = TRI_MODULE;
1708 		else /* value == 'n' */
1709 			*(enum libbpf_tristate *)ext_val = TRI_NO;
1710 		break;
1711 	case KCFG_CHAR:
1712 		*(char *)ext_val = value;
1713 		break;
1714 	case KCFG_UNKNOWN:
1715 	case KCFG_INT:
1716 	case KCFG_CHAR_ARR:
1717 	default:
1718 		pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n",
1719 			ext->name, value);
1720 		return -EINVAL;
1721 	}
1722 	ext->is_set = true;
1723 	return 0;
1724 }
1725 
1726 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1727 			      const char *value)
1728 {
1729 	size_t len;
1730 
1731 	if (ext->kcfg.type != KCFG_CHAR_ARR) {
1732 		pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value);
1733 		return -EINVAL;
1734 	}
1735 
1736 	len = strlen(value);
1737 	if (value[len - 1] != '"') {
1738 		pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1739 			ext->name, value);
1740 		return -EINVAL;
1741 	}
1742 
1743 	/* strip quotes */
1744 	len -= 2;
1745 	if (len >= ext->kcfg.sz) {
1746 		pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n",
1747 			ext->name, value, len, ext->kcfg.sz - 1);
1748 		len = ext->kcfg.sz - 1;
1749 	}
1750 	memcpy(ext_val, value + 1, len);
1751 	ext_val[len] = '\0';
1752 	ext->is_set = true;
1753 	return 0;
1754 }
1755 
1756 static int parse_u64(const char *value, __u64 *res)
1757 {
1758 	char *value_end;
1759 	int err;
1760 
1761 	errno = 0;
1762 	*res = strtoull(value, &value_end, 0);
1763 	if (errno) {
1764 		err = -errno;
1765 		pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1766 		return err;
1767 	}
1768 	if (*value_end) {
1769 		pr_warn("failed to parse '%s' as integer completely\n", value);
1770 		return -EINVAL;
1771 	}
1772 	return 0;
1773 }
1774 
1775 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1776 {
1777 	int bit_sz = ext->kcfg.sz * 8;
1778 
1779 	if (ext->kcfg.sz == 8)
1780 		return true;
1781 
1782 	/* Validate that value stored in u64 fits in integer of `ext->sz`
1783 	 * bytes size without any loss of information. If the target integer
1784 	 * is signed, we rely on the following limits of integer type of
1785 	 * Y bits and subsequent transformation:
1786 	 *
1787 	 *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
1788 	 *            0 <= X + 2^(Y-1) <= 2^Y - 1
1789 	 *            0 <= X + 2^(Y-1) <  2^Y
1790 	 *
1791 	 *  For unsigned target integer, check that all the (64 - Y) bits are
1792 	 *  zero.
1793 	 */
1794 	if (ext->kcfg.is_signed)
1795 		return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1796 	else
1797 		return (v >> bit_sz) == 0;
1798 }
1799 
1800 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1801 			      __u64 value)
1802 {
1803 	if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1804 		pr_warn("extern (kcfg) %s=%llu should be integer\n",
1805 			ext->name, (unsigned long long)value);
1806 		return -EINVAL;
1807 	}
1808 	if (!is_kcfg_value_in_range(ext, value)) {
1809 		pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n",
1810 			ext->name, (unsigned long long)value, ext->kcfg.sz);
1811 		return -ERANGE;
1812 	}
1813 	switch (ext->kcfg.sz) {
1814 		case 1: *(__u8 *)ext_val = value; break;
1815 		case 2: *(__u16 *)ext_val = value; break;
1816 		case 4: *(__u32 *)ext_val = value; break;
1817 		case 8: *(__u64 *)ext_val = value; break;
1818 		default:
1819 			return -EINVAL;
1820 	}
1821 	ext->is_set = true;
1822 	return 0;
1823 }
1824 
1825 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1826 					    char *buf, void *data)
1827 {
1828 	struct extern_desc *ext;
1829 	char *sep, *value;
1830 	int len, err = 0;
1831 	void *ext_val;
1832 	__u64 num;
1833 
1834 	if (!str_has_pfx(buf, "CONFIG_"))
1835 		return 0;
1836 
1837 	sep = strchr(buf, '=');
1838 	if (!sep) {
1839 		pr_warn("failed to parse '%s': no separator\n", buf);
1840 		return -EINVAL;
1841 	}
1842 
1843 	/* Trim ending '\n' */
1844 	len = strlen(buf);
1845 	if (buf[len - 1] == '\n')
1846 		buf[len - 1] = '\0';
1847 	/* Split on '=' and ensure that a value is present. */
1848 	*sep = '\0';
1849 	if (!sep[1]) {
1850 		*sep = '=';
1851 		pr_warn("failed to parse '%s': no value\n", buf);
1852 		return -EINVAL;
1853 	}
1854 
1855 	ext = find_extern_by_name(obj, buf);
1856 	if (!ext || ext->is_set)
1857 		return 0;
1858 
1859 	ext_val = data + ext->kcfg.data_off;
1860 	value = sep + 1;
1861 
1862 	switch (*value) {
1863 	case 'y': case 'n': case 'm':
1864 		err = set_kcfg_value_tri(ext, ext_val, *value);
1865 		break;
1866 	case '"':
1867 		err = set_kcfg_value_str(ext, ext_val, value);
1868 		break;
1869 	default:
1870 		/* assume integer */
1871 		err = parse_u64(value, &num);
1872 		if (err) {
1873 			pr_warn("extern (kcfg) %s=%s should be integer\n",
1874 				ext->name, value);
1875 			return err;
1876 		}
1877 		err = set_kcfg_value_num(ext, ext_val, num);
1878 		break;
1879 	}
1880 	if (err)
1881 		return err;
1882 	pr_debug("extern (kcfg) %s=%s\n", ext->name, value);
1883 	return 0;
1884 }
1885 
1886 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1887 {
1888 	char buf[PATH_MAX];
1889 	struct utsname uts;
1890 	int len, err = 0;
1891 	gzFile file;
1892 
1893 	uname(&uts);
1894 	len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1895 	if (len < 0)
1896 		return -EINVAL;
1897 	else if (len >= PATH_MAX)
1898 		return -ENAMETOOLONG;
1899 
1900 	/* gzopen also accepts uncompressed files. */
1901 	file = gzopen(buf, "r");
1902 	if (!file)
1903 		file = gzopen("/proc/config.gz", "r");
1904 
1905 	if (!file) {
1906 		pr_warn("failed to open system Kconfig\n");
1907 		return -ENOENT;
1908 	}
1909 
1910 	while (gzgets(file, buf, sizeof(buf))) {
1911 		err = bpf_object__process_kconfig_line(obj, buf, data);
1912 		if (err) {
1913 			pr_warn("error parsing system Kconfig line '%s': %d\n",
1914 				buf, err);
1915 			goto out;
1916 		}
1917 	}
1918 
1919 out:
1920 	gzclose(file);
1921 	return err;
1922 }
1923 
1924 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
1925 					const char *config, void *data)
1926 {
1927 	char buf[PATH_MAX];
1928 	int err = 0;
1929 	FILE *file;
1930 
1931 	file = fmemopen((void *)config, strlen(config), "r");
1932 	if (!file) {
1933 		err = -errno;
1934 		pr_warn("failed to open in-memory Kconfig: %d\n", err);
1935 		return err;
1936 	}
1937 
1938 	while (fgets(buf, sizeof(buf), file)) {
1939 		err = bpf_object__process_kconfig_line(obj, buf, data);
1940 		if (err) {
1941 			pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
1942 				buf, err);
1943 			break;
1944 		}
1945 	}
1946 
1947 	fclose(file);
1948 	return err;
1949 }
1950 
1951 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
1952 {
1953 	struct extern_desc *last_ext = NULL, *ext;
1954 	size_t map_sz;
1955 	int i, err;
1956 
1957 	for (i = 0; i < obj->nr_extern; i++) {
1958 		ext = &obj->externs[i];
1959 		if (ext->type == EXT_KCFG)
1960 			last_ext = ext;
1961 	}
1962 
1963 	if (!last_ext)
1964 		return 0;
1965 
1966 	map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
1967 	err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
1968 					    ".kconfig", obj->efile.symbols_shndx,
1969 					    NULL, map_sz);
1970 	if (err)
1971 		return err;
1972 
1973 	obj->kconfig_map_idx = obj->nr_maps - 1;
1974 
1975 	return 0;
1976 }
1977 
1978 const struct btf_type *
1979 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
1980 {
1981 	const struct btf_type *t = btf__type_by_id(btf, id);
1982 
1983 	if (res_id)
1984 		*res_id = id;
1985 
1986 	while (btf_is_mod(t) || btf_is_typedef(t)) {
1987 		if (res_id)
1988 			*res_id = t->type;
1989 		t = btf__type_by_id(btf, t->type);
1990 	}
1991 
1992 	return t;
1993 }
1994 
1995 static const struct btf_type *
1996 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
1997 {
1998 	const struct btf_type *t;
1999 
2000 	t = skip_mods_and_typedefs(btf, id, NULL);
2001 	if (!btf_is_ptr(t))
2002 		return NULL;
2003 
2004 	t = skip_mods_and_typedefs(btf, t->type, res_id);
2005 
2006 	return btf_is_func_proto(t) ? t : NULL;
2007 }
2008 
2009 static const char *__btf_kind_str(__u16 kind)
2010 {
2011 	switch (kind) {
2012 	case BTF_KIND_UNKN: return "void";
2013 	case BTF_KIND_INT: return "int";
2014 	case BTF_KIND_PTR: return "ptr";
2015 	case BTF_KIND_ARRAY: return "array";
2016 	case BTF_KIND_STRUCT: return "struct";
2017 	case BTF_KIND_UNION: return "union";
2018 	case BTF_KIND_ENUM: return "enum";
2019 	case BTF_KIND_FWD: return "fwd";
2020 	case BTF_KIND_TYPEDEF: return "typedef";
2021 	case BTF_KIND_VOLATILE: return "volatile";
2022 	case BTF_KIND_CONST: return "const";
2023 	case BTF_KIND_RESTRICT: return "restrict";
2024 	case BTF_KIND_FUNC: return "func";
2025 	case BTF_KIND_FUNC_PROTO: return "func_proto";
2026 	case BTF_KIND_VAR: return "var";
2027 	case BTF_KIND_DATASEC: return "datasec";
2028 	case BTF_KIND_FLOAT: return "float";
2029 	case BTF_KIND_DECL_TAG: return "decl_tag";
2030 	case BTF_KIND_TYPE_TAG: return "type_tag";
2031 	case BTF_KIND_ENUM64: return "enum64";
2032 	default: return "unknown";
2033 	}
2034 }
2035 
2036 const char *btf_kind_str(const struct btf_type *t)
2037 {
2038 	return __btf_kind_str(btf_kind(t));
2039 }
2040 
2041 /*
2042  * Fetch integer attribute of BTF map definition. Such attributes are
2043  * represented using a pointer to an array, in which dimensionality of array
2044  * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2045  * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2046  * type definition, while using only sizeof(void *) space in ELF data section.
2047  */
2048 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2049 			      const struct btf_member *m, __u32 *res)
2050 {
2051 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2052 	const char *name = btf__name_by_offset(btf, m->name_off);
2053 	const struct btf_array *arr_info;
2054 	const struct btf_type *arr_t;
2055 
2056 	if (!btf_is_ptr(t)) {
2057 		pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2058 			map_name, name, btf_kind_str(t));
2059 		return false;
2060 	}
2061 
2062 	arr_t = btf__type_by_id(btf, t->type);
2063 	if (!arr_t) {
2064 		pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2065 			map_name, name, t->type);
2066 		return false;
2067 	}
2068 	if (!btf_is_array(arr_t)) {
2069 		pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2070 			map_name, name, btf_kind_str(arr_t));
2071 		return false;
2072 	}
2073 	arr_info = btf_array(arr_t);
2074 	*res = arr_info->nelems;
2075 	return true;
2076 }
2077 
2078 static int build_map_pin_path(struct bpf_map *map, const char *path)
2079 {
2080 	char buf[PATH_MAX];
2081 	int len;
2082 
2083 	if (!path)
2084 		path = "/sys/fs/bpf";
2085 
2086 	len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map));
2087 	if (len < 0)
2088 		return -EINVAL;
2089 	else if (len >= PATH_MAX)
2090 		return -ENAMETOOLONG;
2091 
2092 	return bpf_map__set_pin_path(map, buf);
2093 }
2094 
2095 /* should match definition in bpf_helpers.h */
2096 enum libbpf_pin_type {
2097 	LIBBPF_PIN_NONE,
2098 	/* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2099 	LIBBPF_PIN_BY_NAME,
2100 };
2101 
2102 int parse_btf_map_def(const char *map_name, struct btf *btf,
2103 		      const struct btf_type *def_t, bool strict,
2104 		      struct btf_map_def *map_def, struct btf_map_def *inner_def)
2105 {
2106 	const struct btf_type *t;
2107 	const struct btf_member *m;
2108 	bool is_inner = inner_def == NULL;
2109 	int vlen, i;
2110 
2111 	vlen = btf_vlen(def_t);
2112 	m = btf_members(def_t);
2113 	for (i = 0; i < vlen; i++, m++) {
2114 		const char *name = btf__name_by_offset(btf, m->name_off);
2115 
2116 		if (!name) {
2117 			pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2118 			return -EINVAL;
2119 		}
2120 		if (strcmp(name, "type") == 0) {
2121 			if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2122 				return -EINVAL;
2123 			map_def->parts |= MAP_DEF_MAP_TYPE;
2124 		} else if (strcmp(name, "max_entries") == 0) {
2125 			if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2126 				return -EINVAL;
2127 			map_def->parts |= MAP_DEF_MAX_ENTRIES;
2128 		} else if (strcmp(name, "map_flags") == 0) {
2129 			if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2130 				return -EINVAL;
2131 			map_def->parts |= MAP_DEF_MAP_FLAGS;
2132 		} else if (strcmp(name, "numa_node") == 0) {
2133 			if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2134 				return -EINVAL;
2135 			map_def->parts |= MAP_DEF_NUMA_NODE;
2136 		} else if (strcmp(name, "key_size") == 0) {
2137 			__u32 sz;
2138 
2139 			if (!get_map_field_int(map_name, btf, m, &sz))
2140 				return -EINVAL;
2141 			if (map_def->key_size && map_def->key_size != sz) {
2142 				pr_warn("map '%s': conflicting key size %u != %u.\n",
2143 					map_name, map_def->key_size, sz);
2144 				return -EINVAL;
2145 			}
2146 			map_def->key_size = sz;
2147 			map_def->parts |= MAP_DEF_KEY_SIZE;
2148 		} else if (strcmp(name, "key") == 0) {
2149 			__s64 sz;
2150 
2151 			t = btf__type_by_id(btf, m->type);
2152 			if (!t) {
2153 				pr_warn("map '%s': key type [%d] not found.\n",
2154 					map_name, m->type);
2155 				return -EINVAL;
2156 			}
2157 			if (!btf_is_ptr(t)) {
2158 				pr_warn("map '%s': key spec is not PTR: %s.\n",
2159 					map_name, btf_kind_str(t));
2160 				return -EINVAL;
2161 			}
2162 			sz = btf__resolve_size(btf, t->type);
2163 			if (sz < 0) {
2164 				pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2165 					map_name, t->type, (ssize_t)sz);
2166 				return sz;
2167 			}
2168 			if (map_def->key_size && map_def->key_size != sz) {
2169 				pr_warn("map '%s': conflicting key size %u != %zd.\n",
2170 					map_name, map_def->key_size, (ssize_t)sz);
2171 				return -EINVAL;
2172 			}
2173 			map_def->key_size = sz;
2174 			map_def->key_type_id = t->type;
2175 			map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2176 		} else if (strcmp(name, "value_size") == 0) {
2177 			__u32 sz;
2178 
2179 			if (!get_map_field_int(map_name, btf, m, &sz))
2180 				return -EINVAL;
2181 			if (map_def->value_size && map_def->value_size != sz) {
2182 				pr_warn("map '%s': conflicting value size %u != %u.\n",
2183 					map_name, map_def->value_size, sz);
2184 				return -EINVAL;
2185 			}
2186 			map_def->value_size = sz;
2187 			map_def->parts |= MAP_DEF_VALUE_SIZE;
2188 		} else if (strcmp(name, "value") == 0) {
2189 			__s64 sz;
2190 
2191 			t = btf__type_by_id(btf, m->type);
2192 			if (!t) {
2193 				pr_warn("map '%s': value type [%d] not found.\n",
2194 					map_name, m->type);
2195 				return -EINVAL;
2196 			}
2197 			if (!btf_is_ptr(t)) {
2198 				pr_warn("map '%s': value spec is not PTR: %s.\n",
2199 					map_name, btf_kind_str(t));
2200 				return -EINVAL;
2201 			}
2202 			sz = btf__resolve_size(btf, t->type);
2203 			if (sz < 0) {
2204 				pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2205 					map_name, t->type, (ssize_t)sz);
2206 				return sz;
2207 			}
2208 			if (map_def->value_size && map_def->value_size != sz) {
2209 				pr_warn("map '%s': conflicting value size %u != %zd.\n",
2210 					map_name, map_def->value_size, (ssize_t)sz);
2211 				return -EINVAL;
2212 			}
2213 			map_def->value_size = sz;
2214 			map_def->value_type_id = t->type;
2215 			map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2216 		}
2217 		else if (strcmp(name, "values") == 0) {
2218 			bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2219 			bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2220 			const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2221 			char inner_map_name[128];
2222 			int err;
2223 
2224 			if (is_inner) {
2225 				pr_warn("map '%s': multi-level inner maps not supported.\n",
2226 					map_name);
2227 				return -ENOTSUP;
2228 			}
2229 			if (i != vlen - 1) {
2230 				pr_warn("map '%s': '%s' member should be last.\n",
2231 					map_name, name);
2232 				return -EINVAL;
2233 			}
2234 			if (!is_map_in_map && !is_prog_array) {
2235 				pr_warn("map '%s': should be map-in-map or prog-array.\n",
2236 					map_name);
2237 				return -ENOTSUP;
2238 			}
2239 			if (map_def->value_size && map_def->value_size != 4) {
2240 				pr_warn("map '%s': conflicting value size %u != 4.\n",
2241 					map_name, map_def->value_size);
2242 				return -EINVAL;
2243 			}
2244 			map_def->value_size = 4;
2245 			t = btf__type_by_id(btf, m->type);
2246 			if (!t) {
2247 				pr_warn("map '%s': %s type [%d] not found.\n",
2248 					map_name, desc, m->type);
2249 				return -EINVAL;
2250 			}
2251 			if (!btf_is_array(t) || btf_array(t)->nelems) {
2252 				pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2253 					map_name, desc);
2254 				return -EINVAL;
2255 			}
2256 			t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2257 			if (!btf_is_ptr(t)) {
2258 				pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2259 					map_name, desc, btf_kind_str(t));
2260 				return -EINVAL;
2261 			}
2262 			t = skip_mods_and_typedefs(btf, t->type, NULL);
2263 			if (is_prog_array) {
2264 				if (!btf_is_func_proto(t)) {
2265 					pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2266 						map_name, btf_kind_str(t));
2267 					return -EINVAL;
2268 				}
2269 				continue;
2270 			}
2271 			if (!btf_is_struct(t)) {
2272 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2273 					map_name, btf_kind_str(t));
2274 				return -EINVAL;
2275 			}
2276 
2277 			snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2278 			err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2279 			if (err)
2280 				return err;
2281 
2282 			map_def->parts |= MAP_DEF_INNER_MAP;
2283 		} else if (strcmp(name, "pinning") == 0) {
2284 			__u32 val;
2285 
2286 			if (is_inner) {
2287 				pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2288 				return -EINVAL;
2289 			}
2290 			if (!get_map_field_int(map_name, btf, m, &val))
2291 				return -EINVAL;
2292 			if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2293 				pr_warn("map '%s': invalid pinning value %u.\n",
2294 					map_name, val);
2295 				return -EINVAL;
2296 			}
2297 			map_def->pinning = val;
2298 			map_def->parts |= MAP_DEF_PINNING;
2299 		} else if (strcmp(name, "map_extra") == 0) {
2300 			__u32 map_extra;
2301 
2302 			if (!get_map_field_int(map_name, btf, m, &map_extra))
2303 				return -EINVAL;
2304 			map_def->map_extra = map_extra;
2305 			map_def->parts |= MAP_DEF_MAP_EXTRA;
2306 		} else {
2307 			if (strict) {
2308 				pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2309 				return -ENOTSUP;
2310 			}
2311 			pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2312 		}
2313 	}
2314 
2315 	if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2316 		pr_warn("map '%s': map type isn't specified.\n", map_name);
2317 		return -EINVAL;
2318 	}
2319 
2320 	return 0;
2321 }
2322 
2323 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2324 {
2325 	map->def.type = def->map_type;
2326 	map->def.key_size = def->key_size;
2327 	map->def.value_size = def->value_size;
2328 	map->def.max_entries = def->max_entries;
2329 	map->def.map_flags = def->map_flags;
2330 	map->map_extra = def->map_extra;
2331 
2332 	map->numa_node = def->numa_node;
2333 	map->btf_key_type_id = def->key_type_id;
2334 	map->btf_value_type_id = def->value_type_id;
2335 
2336 	if (def->parts & MAP_DEF_MAP_TYPE)
2337 		pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2338 
2339 	if (def->parts & MAP_DEF_KEY_TYPE)
2340 		pr_debug("map '%s': found key [%u], sz = %u.\n",
2341 			 map->name, def->key_type_id, def->key_size);
2342 	else if (def->parts & MAP_DEF_KEY_SIZE)
2343 		pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2344 
2345 	if (def->parts & MAP_DEF_VALUE_TYPE)
2346 		pr_debug("map '%s': found value [%u], sz = %u.\n",
2347 			 map->name, def->value_type_id, def->value_size);
2348 	else if (def->parts & MAP_DEF_VALUE_SIZE)
2349 		pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2350 
2351 	if (def->parts & MAP_DEF_MAX_ENTRIES)
2352 		pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2353 	if (def->parts & MAP_DEF_MAP_FLAGS)
2354 		pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2355 	if (def->parts & MAP_DEF_MAP_EXTRA)
2356 		pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2357 			 (unsigned long long)def->map_extra);
2358 	if (def->parts & MAP_DEF_PINNING)
2359 		pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2360 	if (def->parts & MAP_DEF_NUMA_NODE)
2361 		pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2362 
2363 	if (def->parts & MAP_DEF_INNER_MAP)
2364 		pr_debug("map '%s': found inner map definition.\n", map->name);
2365 }
2366 
2367 static const char *btf_var_linkage_str(__u32 linkage)
2368 {
2369 	switch (linkage) {
2370 	case BTF_VAR_STATIC: return "static";
2371 	case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2372 	case BTF_VAR_GLOBAL_EXTERN: return "extern";
2373 	default: return "unknown";
2374 	}
2375 }
2376 
2377 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2378 					 const struct btf_type *sec,
2379 					 int var_idx, int sec_idx,
2380 					 const Elf_Data *data, bool strict,
2381 					 const char *pin_root_path)
2382 {
2383 	struct btf_map_def map_def = {}, inner_def = {};
2384 	const struct btf_type *var, *def;
2385 	const struct btf_var_secinfo *vi;
2386 	const struct btf_var *var_extra;
2387 	const char *map_name;
2388 	struct bpf_map *map;
2389 	int err;
2390 
2391 	vi = btf_var_secinfos(sec) + var_idx;
2392 	var = btf__type_by_id(obj->btf, vi->type);
2393 	var_extra = btf_var(var);
2394 	map_name = btf__name_by_offset(obj->btf, var->name_off);
2395 
2396 	if (map_name == NULL || map_name[0] == '\0') {
2397 		pr_warn("map #%d: empty name.\n", var_idx);
2398 		return -EINVAL;
2399 	}
2400 	if ((__u64)vi->offset + vi->size > data->d_size) {
2401 		pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2402 		return -EINVAL;
2403 	}
2404 	if (!btf_is_var(var)) {
2405 		pr_warn("map '%s': unexpected var kind %s.\n",
2406 			map_name, btf_kind_str(var));
2407 		return -EINVAL;
2408 	}
2409 	if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2410 		pr_warn("map '%s': unsupported map linkage %s.\n",
2411 			map_name, btf_var_linkage_str(var_extra->linkage));
2412 		return -EOPNOTSUPP;
2413 	}
2414 
2415 	def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2416 	if (!btf_is_struct(def)) {
2417 		pr_warn("map '%s': unexpected def kind %s.\n",
2418 			map_name, btf_kind_str(var));
2419 		return -EINVAL;
2420 	}
2421 	if (def->size > vi->size) {
2422 		pr_warn("map '%s': invalid def size.\n", map_name);
2423 		return -EINVAL;
2424 	}
2425 
2426 	map = bpf_object__add_map(obj);
2427 	if (IS_ERR(map))
2428 		return PTR_ERR(map);
2429 	map->name = strdup(map_name);
2430 	if (!map->name) {
2431 		pr_warn("map '%s': failed to alloc map name.\n", map_name);
2432 		return -ENOMEM;
2433 	}
2434 	map->libbpf_type = LIBBPF_MAP_UNSPEC;
2435 	map->def.type = BPF_MAP_TYPE_UNSPEC;
2436 	map->sec_idx = sec_idx;
2437 	map->sec_offset = vi->offset;
2438 	map->btf_var_idx = var_idx;
2439 	pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2440 		 map_name, map->sec_idx, map->sec_offset);
2441 
2442 	err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2443 	if (err)
2444 		return err;
2445 
2446 	fill_map_from_def(map, &map_def);
2447 
2448 	if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2449 		err = build_map_pin_path(map, pin_root_path);
2450 		if (err) {
2451 			pr_warn("map '%s': couldn't build pin path.\n", map->name);
2452 			return err;
2453 		}
2454 	}
2455 
2456 	if (map_def.parts & MAP_DEF_INNER_MAP) {
2457 		map->inner_map = calloc(1, sizeof(*map->inner_map));
2458 		if (!map->inner_map)
2459 			return -ENOMEM;
2460 		map->inner_map->fd = -1;
2461 		map->inner_map->sec_idx = sec_idx;
2462 		map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2463 		if (!map->inner_map->name)
2464 			return -ENOMEM;
2465 		sprintf(map->inner_map->name, "%s.inner", map_name);
2466 
2467 		fill_map_from_def(map->inner_map, &inner_def);
2468 	}
2469 
2470 	err = bpf_map_find_btf_info(obj, map);
2471 	if (err)
2472 		return err;
2473 
2474 	return 0;
2475 }
2476 
2477 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2478 					  const char *pin_root_path)
2479 {
2480 	const struct btf_type *sec = NULL;
2481 	int nr_types, i, vlen, err;
2482 	const struct btf_type *t;
2483 	const char *name;
2484 	Elf_Data *data;
2485 	Elf_Scn *scn;
2486 
2487 	if (obj->efile.btf_maps_shndx < 0)
2488 		return 0;
2489 
2490 	scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2491 	data = elf_sec_data(obj, scn);
2492 	if (!scn || !data) {
2493 		pr_warn("elf: failed to get %s map definitions for %s\n",
2494 			MAPS_ELF_SEC, obj->path);
2495 		return -EINVAL;
2496 	}
2497 
2498 	nr_types = btf__type_cnt(obj->btf);
2499 	for (i = 1; i < nr_types; i++) {
2500 		t = btf__type_by_id(obj->btf, i);
2501 		if (!btf_is_datasec(t))
2502 			continue;
2503 		name = btf__name_by_offset(obj->btf, t->name_off);
2504 		if (strcmp(name, MAPS_ELF_SEC) == 0) {
2505 			sec = t;
2506 			obj->efile.btf_maps_sec_btf_id = i;
2507 			break;
2508 		}
2509 	}
2510 
2511 	if (!sec) {
2512 		pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2513 		return -ENOENT;
2514 	}
2515 
2516 	vlen = btf_vlen(sec);
2517 	for (i = 0; i < vlen; i++) {
2518 		err = bpf_object__init_user_btf_map(obj, sec, i,
2519 						    obj->efile.btf_maps_shndx,
2520 						    data, strict,
2521 						    pin_root_path);
2522 		if (err)
2523 			return err;
2524 	}
2525 
2526 	return 0;
2527 }
2528 
2529 static int bpf_object__init_maps(struct bpf_object *obj,
2530 				 const struct bpf_object_open_opts *opts)
2531 {
2532 	const char *pin_root_path;
2533 	bool strict;
2534 	int err = 0;
2535 
2536 	strict = !OPTS_GET(opts, relaxed_maps, false);
2537 	pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2538 
2539 	err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2540 	err = err ?: bpf_object__init_global_data_maps(obj);
2541 	err = err ?: bpf_object__init_kconfig_map(obj);
2542 	err = err ?: bpf_object__init_struct_ops_maps(obj);
2543 
2544 	return err;
2545 }
2546 
2547 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2548 {
2549 	Elf64_Shdr *sh;
2550 
2551 	sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2552 	if (!sh)
2553 		return false;
2554 
2555 	return sh->sh_flags & SHF_EXECINSTR;
2556 }
2557 
2558 static bool btf_needs_sanitization(struct bpf_object *obj)
2559 {
2560 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2561 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2562 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2563 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2564 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2565 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2566 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2567 
2568 	return !has_func || !has_datasec || !has_func_global || !has_float ||
2569 	       !has_decl_tag || !has_type_tag || !has_enum64;
2570 }
2571 
2572 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2573 {
2574 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2575 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2576 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2577 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2578 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2579 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2580 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2581 	int enum64_placeholder_id = 0;
2582 	struct btf_type *t;
2583 	int i, j, vlen;
2584 
2585 	for (i = 1; i < btf__type_cnt(btf); i++) {
2586 		t = (struct btf_type *)btf__type_by_id(btf, i);
2587 
2588 		if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
2589 			/* replace VAR/DECL_TAG with INT */
2590 			t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2591 			/*
2592 			 * using size = 1 is the safest choice, 4 will be too
2593 			 * big and cause kernel BTF validation failure if
2594 			 * original variable took less than 4 bytes
2595 			 */
2596 			t->size = 1;
2597 			*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2598 		} else if (!has_datasec && btf_is_datasec(t)) {
2599 			/* replace DATASEC with STRUCT */
2600 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
2601 			struct btf_member *m = btf_members(t);
2602 			struct btf_type *vt;
2603 			char *name;
2604 
2605 			name = (char *)btf__name_by_offset(btf, t->name_off);
2606 			while (*name) {
2607 				if (*name == '.')
2608 					*name = '_';
2609 				name++;
2610 			}
2611 
2612 			vlen = btf_vlen(t);
2613 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2614 			for (j = 0; j < vlen; j++, v++, m++) {
2615 				/* order of field assignments is important */
2616 				m->offset = v->offset * 8;
2617 				m->type = v->type;
2618 				/* preserve variable name as member name */
2619 				vt = (void *)btf__type_by_id(btf, v->type);
2620 				m->name_off = vt->name_off;
2621 			}
2622 		} else if (!has_func && btf_is_func_proto(t)) {
2623 			/* replace FUNC_PROTO with ENUM */
2624 			vlen = btf_vlen(t);
2625 			t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2626 			t->size = sizeof(__u32); /* kernel enforced */
2627 		} else if (!has_func && btf_is_func(t)) {
2628 			/* replace FUNC with TYPEDEF */
2629 			t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2630 		} else if (!has_func_global && btf_is_func(t)) {
2631 			/* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2632 			t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2633 		} else if (!has_float && btf_is_float(t)) {
2634 			/* replace FLOAT with an equally-sized empty STRUCT;
2635 			 * since C compilers do not accept e.g. "float" as a
2636 			 * valid struct name, make it anonymous
2637 			 */
2638 			t->name_off = 0;
2639 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2640 		} else if (!has_type_tag && btf_is_type_tag(t)) {
2641 			/* replace TYPE_TAG with a CONST */
2642 			t->name_off = 0;
2643 			t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
2644 		} else if (!has_enum64 && btf_is_enum(t)) {
2645 			/* clear the kflag */
2646 			t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
2647 		} else if (!has_enum64 && btf_is_enum64(t)) {
2648 			/* replace ENUM64 with a union */
2649 			struct btf_member *m;
2650 
2651 			if (enum64_placeholder_id == 0) {
2652 				enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
2653 				if (enum64_placeholder_id < 0)
2654 					return enum64_placeholder_id;
2655 
2656 				t = (struct btf_type *)btf__type_by_id(btf, i);
2657 			}
2658 
2659 			m = btf_members(t);
2660 			vlen = btf_vlen(t);
2661 			t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
2662 			for (j = 0; j < vlen; j++, m++) {
2663 				m->type = enum64_placeholder_id;
2664 				m->offset = 0;
2665 			}
2666                 }
2667 	}
2668 
2669 	return 0;
2670 }
2671 
2672 static bool libbpf_needs_btf(const struct bpf_object *obj)
2673 {
2674 	return obj->efile.btf_maps_shndx >= 0 ||
2675 	       obj->efile.st_ops_shndx >= 0 ||
2676 	       obj->nr_extern > 0;
2677 }
2678 
2679 static bool kernel_needs_btf(const struct bpf_object *obj)
2680 {
2681 	return obj->efile.st_ops_shndx >= 0;
2682 }
2683 
2684 static int bpf_object__init_btf(struct bpf_object *obj,
2685 				Elf_Data *btf_data,
2686 				Elf_Data *btf_ext_data)
2687 {
2688 	int err = -ENOENT;
2689 
2690 	if (btf_data) {
2691 		obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2692 		err = libbpf_get_error(obj->btf);
2693 		if (err) {
2694 			obj->btf = NULL;
2695 			pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
2696 			goto out;
2697 		}
2698 		/* enforce 8-byte pointers for BPF-targeted BTFs */
2699 		btf__set_pointer_size(obj->btf, 8);
2700 	}
2701 	if (btf_ext_data) {
2702 		struct btf_ext_info *ext_segs[3];
2703 		int seg_num, sec_num;
2704 
2705 		if (!obj->btf) {
2706 			pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2707 				 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2708 			goto out;
2709 		}
2710 		obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
2711 		err = libbpf_get_error(obj->btf_ext);
2712 		if (err) {
2713 			pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
2714 				BTF_EXT_ELF_SEC, err);
2715 			obj->btf_ext = NULL;
2716 			goto out;
2717 		}
2718 
2719 		/* setup .BTF.ext to ELF section mapping */
2720 		ext_segs[0] = &obj->btf_ext->func_info;
2721 		ext_segs[1] = &obj->btf_ext->line_info;
2722 		ext_segs[2] = &obj->btf_ext->core_relo_info;
2723 		for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
2724 			struct btf_ext_info *seg = ext_segs[seg_num];
2725 			const struct btf_ext_info_sec *sec;
2726 			const char *sec_name;
2727 			Elf_Scn *scn;
2728 
2729 			if (seg->sec_cnt == 0)
2730 				continue;
2731 
2732 			seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
2733 			if (!seg->sec_idxs) {
2734 				err = -ENOMEM;
2735 				goto out;
2736 			}
2737 
2738 			sec_num = 0;
2739 			for_each_btf_ext_sec(seg, sec) {
2740 				/* preventively increment index to avoid doing
2741 				 * this before every continue below
2742 				 */
2743 				sec_num++;
2744 
2745 				sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
2746 				if (str_is_empty(sec_name))
2747 					continue;
2748 				scn = elf_sec_by_name(obj, sec_name);
2749 				if (!scn)
2750 					continue;
2751 
2752 				seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
2753 			}
2754 		}
2755 	}
2756 out:
2757 	if (err && libbpf_needs_btf(obj)) {
2758 		pr_warn("BTF is required, but is missing or corrupted.\n");
2759 		return err;
2760 	}
2761 	return 0;
2762 }
2763 
2764 static int compare_vsi_off(const void *_a, const void *_b)
2765 {
2766 	const struct btf_var_secinfo *a = _a;
2767 	const struct btf_var_secinfo *b = _b;
2768 
2769 	return a->offset - b->offset;
2770 }
2771 
2772 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
2773 			     struct btf_type *t)
2774 {
2775 	__u32 size = 0, off = 0, i, vars = btf_vlen(t);
2776 	const char *name = btf__name_by_offset(btf, t->name_off);
2777 	const struct btf_type *t_var;
2778 	struct btf_var_secinfo *vsi;
2779 	const struct btf_var *var;
2780 	int ret;
2781 
2782 	if (!name) {
2783 		pr_debug("No name found in string section for DATASEC kind.\n");
2784 		return -ENOENT;
2785 	}
2786 
2787 	/* .extern datasec size and var offsets were set correctly during
2788 	 * extern collection step, so just skip straight to sorting variables
2789 	 */
2790 	if (t->size)
2791 		goto sort_vars;
2792 
2793 	ret = find_elf_sec_sz(obj, name, &size);
2794 	if (ret || !size) {
2795 		pr_debug("Invalid size for section %s: %u bytes\n", name, size);
2796 		return -ENOENT;
2797 	}
2798 
2799 	t->size = size;
2800 
2801 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
2802 		t_var = btf__type_by_id(btf, vsi->type);
2803 		if (!t_var || !btf_is_var(t_var)) {
2804 			pr_debug("Non-VAR type seen in section %s\n", name);
2805 			return -EINVAL;
2806 		}
2807 
2808 		var = btf_var(t_var);
2809 		if (var->linkage == BTF_VAR_STATIC)
2810 			continue;
2811 
2812 		name = btf__name_by_offset(btf, t_var->name_off);
2813 		if (!name) {
2814 			pr_debug("No name found in string section for VAR kind\n");
2815 			return -ENOENT;
2816 		}
2817 
2818 		ret = find_elf_var_offset(obj, name, &off);
2819 		if (ret) {
2820 			pr_debug("No offset found in symbol table for VAR %s\n",
2821 				 name);
2822 			return -ENOENT;
2823 		}
2824 
2825 		vsi->offset = off;
2826 	}
2827 
2828 sort_vars:
2829 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
2830 	return 0;
2831 }
2832 
2833 static int btf_finalize_data(struct bpf_object *obj, struct btf *btf)
2834 {
2835 	int err = 0;
2836 	__u32 i, n = btf__type_cnt(btf);
2837 
2838 	for (i = 1; i < n; i++) {
2839 		struct btf_type *t = btf_type_by_id(btf, i);
2840 
2841 		/* Loader needs to fix up some of the things compiler
2842 		 * couldn't get its hands on while emitting BTF. This
2843 		 * is section size and global variable offset. We use
2844 		 * the info from the ELF itself for this purpose.
2845 		 */
2846 		if (btf_is_datasec(t)) {
2847 			err = btf_fixup_datasec(obj, btf, t);
2848 			if (err)
2849 				break;
2850 		}
2851 	}
2852 
2853 	return libbpf_err(err);
2854 }
2855 
2856 static int bpf_object__finalize_btf(struct bpf_object *obj)
2857 {
2858 	int err;
2859 
2860 	if (!obj->btf)
2861 		return 0;
2862 
2863 	err = btf_finalize_data(obj, obj->btf);
2864 	if (err) {
2865 		pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err);
2866 		return err;
2867 	}
2868 
2869 	return 0;
2870 }
2871 
2872 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
2873 {
2874 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
2875 	    prog->type == BPF_PROG_TYPE_LSM)
2876 		return true;
2877 
2878 	/* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
2879 	 * also need vmlinux BTF
2880 	 */
2881 	if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
2882 		return true;
2883 
2884 	return false;
2885 }
2886 
2887 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
2888 {
2889 	struct bpf_program *prog;
2890 	int i;
2891 
2892 	/* CO-RE relocations need kernel BTF, only when btf_custom_path
2893 	 * is not specified
2894 	 */
2895 	if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
2896 		return true;
2897 
2898 	/* Support for typed ksyms needs kernel BTF */
2899 	for (i = 0; i < obj->nr_extern; i++) {
2900 		const struct extern_desc *ext;
2901 
2902 		ext = &obj->externs[i];
2903 		if (ext->type == EXT_KSYM && ext->ksym.type_id)
2904 			return true;
2905 	}
2906 
2907 	bpf_object__for_each_program(prog, obj) {
2908 		if (!prog->autoload)
2909 			continue;
2910 		if (prog_needs_vmlinux_btf(prog))
2911 			return true;
2912 	}
2913 
2914 	return false;
2915 }
2916 
2917 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
2918 {
2919 	int err;
2920 
2921 	/* btf_vmlinux could be loaded earlier */
2922 	if (obj->btf_vmlinux || obj->gen_loader)
2923 		return 0;
2924 
2925 	if (!force && !obj_needs_vmlinux_btf(obj))
2926 		return 0;
2927 
2928 	obj->btf_vmlinux = btf__load_vmlinux_btf();
2929 	err = libbpf_get_error(obj->btf_vmlinux);
2930 	if (err) {
2931 		pr_warn("Error loading vmlinux BTF: %d\n", err);
2932 		obj->btf_vmlinux = NULL;
2933 		return err;
2934 	}
2935 	return 0;
2936 }
2937 
2938 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
2939 {
2940 	struct btf *kern_btf = obj->btf;
2941 	bool btf_mandatory, sanitize;
2942 	int i, err = 0;
2943 
2944 	if (!obj->btf)
2945 		return 0;
2946 
2947 	if (!kernel_supports(obj, FEAT_BTF)) {
2948 		if (kernel_needs_btf(obj)) {
2949 			err = -EOPNOTSUPP;
2950 			goto report;
2951 		}
2952 		pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
2953 		return 0;
2954 	}
2955 
2956 	/* Even though some subprogs are global/weak, user might prefer more
2957 	 * permissive BPF verification process that BPF verifier performs for
2958 	 * static functions, taking into account more context from the caller
2959 	 * functions. In such case, they need to mark such subprogs with
2960 	 * __attribute__((visibility("hidden"))) and libbpf will adjust
2961 	 * corresponding FUNC BTF type to be marked as static and trigger more
2962 	 * involved BPF verification process.
2963 	 */
2964 	for (i = 0; i < obj->nr_programs; i++) {
2965 		struct bpf_program *prog = &obj->programs[i];
2966 		struct btf_type *t;
2967 		const char *name;
2968 		int j, n;
2969 
2970 		if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
2971 			continue;
2972 
2973 		n = btf__type_cnt(obj->btf);
2974 		for (j = 1; j < n; j++) {
2975 			t = btf_type_by_id(obj->btf, j);
2976 			if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
2977 				continue;
2978 
2979 			name = btf__str_by_offset(obj->btf, t->name_off);
2980 			if (strcmp(name, prog->name) != 0)
2981 				continue;
2982 
2983 			t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
2984 			break;
2985 		}
2986 	}
2987 
2988 	sanitize = btf_needs_sanitization(obj);
2989 	if (sanitize) {
2990 		const void *raw_data;
2991 		__u32 sz;
2992 
2993 		/* clone BTF to sanitize a copy and leave the original intact */
2994 		raw_data = btf__raw_data(obj->btf, &sz);
2995 		kern_btf = btf__new(raw_data, sz);
2996 		err = libbpf_get_error(kern_btf);
2997 		if (err)
2998 			return err;
2999 
3000 		/* enforce 8-byte pointers for BPF-targeted BTFs */
3001 		btf__set_pointer_size(obj->btf, 8);
3002 		err = bpf_object__sanitize_btf(obj, kern_btf);
3003 		if (err)
3004 			return err;
3005 	}
3006 
3007 	if (obj->gen_loader) {
3008 		__u32 raw_size = 0;
3009 		const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3010 
3011 		if (!raw_data)
3012 			return -ENOMEM;
3013 		bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3014 		/* Pretend to have valid FD to pass various fd >= 0 checks.
3015 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3016 		 */
3017 		btf__set_fd(kern_btf, 0);
3018 	} else {
3019 		/* currently BPF_BTF_LOAD only supports log_level 1 */
3020 		err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3021 					   obj->log_level ? 1 : 0);
3022 	}
3023 	if (sanitize) {
3024 		if (!err) {
3025 			/* move fd to libbpf's BTF */
3026 			btf__set_fd(obj->btf, btf__fd(kern_btf));
3027 			btf__set_fd(kern_btf, -1);
3028 		}
3029 		btf__free(kern_btf);
3030 	}
3031 report:
3032 	if (err) {
3033 		btf_mandatory = kernel_needs_btf(obj);
3034 		pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3035 			btf_mandatory ? "BTF is mandatory, can't proceed."
3036 				      : "BTF is optional, ignoring.");
3037 		if (!btf_mandatory)
3038 			err = 0;
3039 	}
3040 	return err;
3041 }
3042 
3043 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3044 {
3045 	const char *name;
3046 
3047 	name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3048 	if (!name) {
3049 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3050 			off, obj->path, elf_errmsg(-1));
3051 		return NULL;
3052 	}
3053 
3054 	return name;
3055 }
3056 
3057 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3058 {
3059 	const char *name;
3060 
3061 	name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3062 	if (!name) {
3063 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3064 			off, obj->path, elf_errmsg(-1));
3065 		return NULL;
3066 	}
3067 
3068 	return name;
3069 }
3070 
3071 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3072 {
3073 	Elf_Scn *scn;
3074 
3075 	scn = elf_getscn(obj->efile.elf, idx);
3076 	if (!scn) {
3077 		pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3078 			idx, obj->path, elf_errmsg(-1));
3079 		return NULL;
3080 	}
3081 	return scn;
3082 }
3083 
3084 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3085 {
3086 	Elf_Scn *scn = NULL;
3087 	Elf *elf = obj->efile.elf;
3088 	const char *sec_name;
3089 
3090 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3091 		sec_name = elf_sec_name(obj, scn);
3092 		if (!sec_name)
3093 			return NULL;
3094 
3095 		if (strcmp(sec_name, name) != 0)
3096 			continue;
3097 
3098 		return scn;
3099 	}
3100 	return NULL;
3101 }
3102 
3103 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3104 {
3105 	Elf64_Shdr *shdr;
3106 
3107 	if (!scn)
3108 		return NULL;
3109 
3110 	shdr = elf64_getshdr(scn);
3111 	if (!shdr) {
3112 		pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3113 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3114 		return NULL;
3115 	}
3116 
3117 	return shdr;
3118 }
3119 
3120 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3121 {
3122 	const char *name;
3123 	Elf64_Shdr *sh;
3124 
3125 	if (!scn)
3126 		return NULL;
3127 
3128 	sh = elf_sec_hdr(obj, scn);
3129 	if (!sh)
3130 		return NULL;
3131 
3132 	name = elf_sec_str(obj, sh->sh_name);
3133 	if (!name) {
3134 		pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3135 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3136 		return NULL;
3137 	}
3138 
3139 	return name;
3140 }
3141 
3142 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3143 {
3144 	Elf_Data *data;
3145 
3146 	if (!scn)
3147 		return NULL;
3148 
3149 	data = elf_getdata(scn, 0);
3150 	if (!data) {
3151 		pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3152 			elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3153 			obj->path, elf_errmsg(-1));
3154 		return NULL;
3155 	}
3156 
3157 	return data;
3158 }
3159 
3160 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3161 {
3162 	if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3163 		return NULL;
3164 
3165 	return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3166 }
3167 
3168 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3169 {
3170 	if (idx >= data->d_size / sizeof(Elf64_Rel))
3171 		return NULL;
3172 
3173 	return (Elf64_Rel *)data->d_buf + idx;
3174 }
3175 
3176 static bool is_sec_name_dwarf(const char *name)
3177 {
3178 	/* approximation, but the actual list is too long */
3179 	return str_has_pfx(name, ".debug_");
3180 }
3181 
3182 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3183 {
3184 	/* no special handling of .strtab */
3185 	if (hdr->sh_type == SHT_STRTAB)
3186 		return true;
3187 
3188 	/* ignore .llvm_addrsig section as well */
3189 	if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3190 		return true;
3191 
3192 	/* no subprograms will lead to an empty .text section, ignore it */
3193 	if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3194 	    strcmp(name, ".text") == 0)
3195 		return true;
3196 
3197 	/* DWARF sections */
3198 	if (is_sec_name_dwarf(name))
3199 		return true;
3200 
3201 	if (str_has_pfx(name, ".rel")) {
3202 		name += sizeof(".rel") - 1;
3203 		/* DWARF section relocations */
3204 		if (is_sec_name_dwarf(name))
3205 			return true;
3206 
3207 		/* .BTF and .BTF.ext don't need relocations */
3208 		if (strcmp(name, BTF_ELF_SEC) == 0 ||
3209 		    strcmp(name, BTF_EXT_ELF_SEC) == 0)
3210 			return true;
3211 	}
3212 
3213 	return false;
3214 }
3215 
3216 static int cmp_progs(const void *_a, const void *_b)
3217 {
3218 	const struct bpf_program *a = _a;
3219 	const struct bpf_program *b = _b;
3220 
3221 	if (a->sec_idx != b->sec_idx)
3222 		return a->sec_idx < b->sec_idx ? -1 : 1;
3223 
3224 	/* sec_insn_off can't be the same within the section */
3225 	return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3226 }
3227 
3228 static int bpf_object__elf_collect(struct bpf_object *obj)
3229 {
3230 	struct elf_sec_desc *sec_desc;
3231 	Elf *elf = obj->efile.elf;
3232 	Elf_Data *btf_ext_data = NULL;
3233 	Elf_Data *btf_data = NULL;
3234 	int idx = 0, err = 0;
3235 	const char *name;
3236 	Elf_Data *data;
3237 	Elf_Scn *scn;
3238 	Elf64_Shdr *sh;
3239 
3240 	/* ELF section indices are 0-based, but sec #0 is special "invalid"
3241 	 * section. e_shnum does include sec #0, so e_shnum is the necessary
3242 	 * size of an array to keep all the sections.
3243 	 */
3244 	obj->efile.sec_cnt = obj->efile.ehdr->e_shnum;
3245 	obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3246 	if (!obj->efile.secs)
3247 		return -ENOMEM;
3248 
3249 	/* a bunch of ELF parsing functionality depends on processing symbols,
3250 	 * so do the first pass and find the symbol table
3251 	 */
3252 	scn = NULL;
3253 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3254 		sh = elf_sec_hdr(obj, scn);
3255 		if (!sh)
3256 			return -LIBBPF_ERRNO__FORMAT;
3257 
3258 		if (sh->sh_type == SHT_SYMTAB) {
3259 			if (obj->efile.symbols) {
3260 				pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3261 				return -LIBBPF_ERRNO__FORMAT;
3262 			}
3263 
3264 			data = elf_sec_data(obj, scn);
3265 			if (!data)
3266 				return -LIBBPF_ERRNO__FORMAT;
3267 
3268 			idx = elf_ndxscn(scn);
3269 
3270 			obj->efile.symbols = data;
3271 			obj->efile.symbols_shndx = idx;
3272 			obj->efile.strtabidx = sh->sh_link;
3273 		}
3274 	}
3275 
3276 	if (!obj->efile.symbols) {
3277 		pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3278 			obj->path);
3279 		return -ENOENT;
3280 	}
3281 
3282 	scn = NULL;
3283 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3284 		idx = elf_ndxscn(scn);
3285 		sec_desc = &obj->efile.secs[idx];
3286 
3287 		sh = elf_sec_hdr(obj, scn);
3288 		if (!sh)
3289 			return -LIBBPF_ERRNO__FORMAT;
3290 
3291 		name = elf_sec_str(obj, sh->sh_name);
3292 		if (!name)
3293 			return -LIBBPF_ERRNO__FORMAT;
3294 
3295 		if (ignore_elf_section(sh, name))
3296 			continue;
3297 
3298 		data = elf_sec_data(obj, scn);
3299 		if (!data)
3300 			return -LIBBPF_ERRNO__FORMAT;
3301 
3302 		pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3303 			 idx, name, (unsigned long)data->d_size,
3304 			 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3305 			 (int)sh->sh_type);
3306 
3307 		if (strcmp(name, "license") == 0) {
3308 			err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3309 			if (err)
3310 				return err;
3311 		} else if (strcmp(name, "version") == 0) {
3312 			err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3313 			if (err)
3314 				return err;
3315 		} else if (strcmp(name, "maps") == 0) {
3316 			obj->efile.maps_shndx = idx;
3317 		} else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3318 			obj->efile.btf_maps_shndx = idx;
3319 		} else if (strcmp(name, BTF_ELF_SEC) == 0) {
3320 			if (sh->sh_type != SHT_PROGBITS)
3321 				return -LIBBPF_ERRNO__FORMAT;
3322 			btf_data = data;
3323 		} else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3324 			if (sh->sh_type != SHT_PROGBITS)
3325 				return -LIBBPF_ERRNO__FORMAT;
3326 			btf_ext_data = data;
3327 		} else if (sh->sh_type == SHT_SYMTAB) {
3328 			/* already processed during the first pass above */
3329 		} else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3330 			if (sh->sh_flags & SHF_EXECINSTR) {
3331 				if (strcmp(name, ".text") == 0)
3332 					obj->efile.text_shndx = idx;
3333 				err = bpf_object__add_programs(obj, data, name, idx);
3334 				if (err)
3335 					return err;
3336 			} else if (strcmp(name, DATA_SEC) == 0 ||
3337 				   str_has_pfx(name, DATA_SEC ".")) {
3338 				sec_desc->sec_type = SEC_DATA;
3339 				sec_desc->shdr = sh;
3340 				sec_desc->data = data;
3341 			} else if (strcmp(name, RODATA_SEC) == 0 ||
3342 				   str_has_pfx(name, RODATA_SEC ".")) {
3343 				sec_desc->sec_type = SEC_RODATA;
3344 				sec_desc->shdr = sh;
3345 				sec_desc->data = data;
3346 			} else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
3347 				obj->efile.st_ops_data = data;
3348 				obj->efile.st_ops_shndx = idx;
3349 			} else {
3350 				pr_info("elf: skipping unrecognized data section(%d) %s\n",
3351 					idx, name);
3352 			}
3353 		} else if (sh->sh_type == SHT_REL) {
3354 			int targ_sec_idx = sh->sh_info; /* points to other section */
3355 
3356 			if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3357 			    targ_sec_idx >= obj->efile.sec_cnt)
3358 				return -LIBBPF_ERRNO__FORMAT;
3359 
3360 			/* Only do relo for section with exec instructions */
3361 			if (!section_have_execinstr(obj, targ_sec_idx) &&
3362 			    strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3363 			    strcmp(name, ".rel" MAPS_ELF_SEC)) {
3364 				pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3365 					idx, name, targ_sec_idx,
3366 					elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3367 				continue;
3368 			}
3369 
3370 			sec_desc->sec_type = SEC_RELO;
3371 			sec_desc->shdr = sh;
3372 			sec_desc->data = data;
3373 		} else if (sh->sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) {
3374 			sec_desc->sec_type = SEC_BSS;
3375 			sec_desc->shdr = sh;
3376 			sec_desc->data = data;
3377 		} else {
3378 			pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3379 				(size_t)sh->sh_size);
3380 		}
3381 	}
3382 
3383 	if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3384 		pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3385 		return -LIBBPF_ERRNO__FORMAT;
3386 	}
3387 
3388 	/* sort BPF programs by section name and in-section instruction offset
3389 	 * for faster search */
3390 	if (obj->nr_programs)
3391 		qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3392 
3393 	return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3394 }
3395 
3396 static bool sym_is_extern(const Elf64_Sym *sym)
3397 {
3398 	int bind = ELF64_ST_BIND(sym->st_info);
3399 	/* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3400 	return sym->st_shndx == SHN_UNDEF &&
3401 	       (bind == STB_GLOBAL || bind == STB_WEAK) &&
3402 	       ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3403 }
3404 
3405 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3406 {
3407 	int bind = ELF64_ST_BIND(sym->st_info);
3408 	int type = ELF64_ST_TYPE(sym->st_info);
3409 
3410 	/* in .text section */
3411 	if (sym->st_shndx != text_shndx)
3412 		return false;
3413 
3414 	/* local function */
3415 	if (bind == STB_LOCAL && type == STT_SECTION)
3416 		return true;
3417 
3418 	/* global function */
3419 	return bind == STB_GLOBAL && type == STT_FUNC;
3420 }
3421 
3422 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3423 {
3424 	const struct btf_type *t;
3425 	const char *tname;
3426 	int i, n;
3427 
3428 	if (!btf)
3429 		return -ESRCH;
3430 
3431 	n = btf__type_cnt(btf);
3432 	for (i = 1; i < n; i++) {
3433 		t = btf__type_by_id(btf, i);
3434 
3435 		if (!btf_is_var(t) && !btf_is_func(t))
3436 			continue;
3437 
3438 		tname = btf__name_by_offset(btf, t->name_off);
3439 		if (strcmp(tname, ext_name))
3440 			continue;
3441 
3442 		if (btf_is_var(t) &&
3443 		    btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3444 			return -EINVAL;
3445 
3446 		if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3447 			return -EINVAL;
3448 
3449 		return i;
3450 	}
3451 
3452 	return -ENOENT;
3453 }
3454 
3455 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3456 	const struct btf_var_secinfo *vs;
3457 	const struct btf_type *t;
3458 	int i, j, n;
3459 
3460 	if (!btf)
3461 		return -ESRCH;
3462 
3463 	n = btf__type_cnt(btf);
3464 	for (i = 1; i < n; i++) {
3465 		t = btf__type_by_id(btf, i);
3466 
3467 		if (!btf_is_datasec(t))
3468 			continue;
3469 
3470 		vs = btf_var_secinfos(t);
3471 		for (j = 0; j < btf_vlen(t); j++, vs++) {
3472 			if (vs->type == ext_btf_id)
3473 				return i;
3474 		}
3475 	}
3476 
3477 	return -ENOENT;
3478 }
3479 
3480 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3481 				     bool *is_signed)
3482 {
3483 	const struct btf_type *t;
3484 	const char *name;
3485 
3486 	t = skip_mods_and_typedefs(btf, id, NULL);
3487 	name = btf__name_by_offset(btf, t->name_off);
3488 
3489 	if (is_signed)
3490 		*is_signed = false;
3491 	switch (btf_kind(t)) {
3492 	case BTF_KIND_INT: {
3493 		int enc = btf_int_encoding(t);
3494 
3495 		if (enc & BTF_INT_BOOL)
3496 			return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3497 		if (is_signed)
3498 			*is_signed = enc & BTF_INT_SIGNED;
3499 		if (t->size == 1)
3500 			return KCFG_CHAR;
3501 		if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3502 			return KCFG_UNKNOWN;
3503 		return KCFG_INT;
3504 	}
3505 	case BTF_KIND_ENUM:
3506 		if (t->size != 4)
3507 			return KCFG_UNKNOWN;
3508 		if (strcmp(name, "libbpf_tristate"))
3509 			return KCFG_UNKNOWN;
3510 		return KCFG_TRISTATE;
3511 	case BTF_KIND_ENUM64:
3512 		if (strcmp(name, "libbpf_tristate"))
3513 			return KCFG_UNKNOWN;
3514 		return KCFG_TRISTATE;
3515 	case BTF_KIND_ARRAY:
3516 		if (btf_array(t)->nelems == 0)
3517 			return KCFG_UNKNOWN;
3518 		if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3519 			return KCFG_UNKNOWN;
3520 		return KCFG_CHAR_ARR;
3521 	default:
3522 		return KCFG_UNKNOWN;
3523 	}
3524 }
3525 
3526 static int cmp_externs(const void *_a, const void *_b)
3527 {
3528 	const struct extern_desc *a = _a;
3529 	const struct extern_desc *b = _b;
3530 
3531 	if (a->type != b->type)
3532 		return a->type < b->type ? -1 : 1;
3533 
3534 	if (a->type == EXT_KCFG) {
3535 		/* descending order by alignment requirements */
3536 		if (a->kcfg.align != b->kcfg.align)
3537 			return a->kcfg.align > b->kcfg.align ? -1 : 1;
3538 		/* ascending order by size, within same alignment class */
3539 		if (a->kcfg.sz != b->kcfg.sz)
3540 			return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3541 	}
3542 
3543 	/* resolve ties by name */
3544 	return strcmp(a->name, b->name);
3545 }
3546 
3547 static int find_int_btf_id(const struct btf *btf)
3548 {
3549 	const struct btf_type *t;
3550 	int i, n;
3551 
3552 	n = btf__type_cnt(btf);
3553 	for (i = 1; i < n; i++) {
3554 		t = btf__type_by_id(btf, i);
3555 
3556 		if (btf_is_int(t) && btf_int_bits(t) == 32)
3557 			return i;
3558 	}
3559 
3560 	return 0;
3561 }
3562 
3563 static int add_dummy_ksym_var(struct btf *btf)
3564 {
3565 	int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
3566 	const struct btf_var_secinfo *vs;
3567 	const struct btf_type *sec;
3568 
3569 	if (!btf)
3570 		return 0;
3571 
3572 	sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
3573 					    BTF_KIND_DATASEC);
3574 	if (sec_btf_id < 0)
3575 		return 0;
3576 
3577 	sec = btf__type_by_id(btf, sec_btf_id);
3578 	vs = btf_var_secinfos(sec);
3579 	for (i = 0; i < btf_vlen(sec); i++, vs++) {
3580 		const struct btf_type *vt;
3581 
3582 		vt = btf__type_by_id(btf, vs->type);
3583 		if (btf_is_func(vt))
3584 			break;
3585 	}
3586 
3587 	/* No func in ksyms sec.  No need to add dummy var. */
3588 	if (i == btf_vlen(sec))
3589 		return 0;
3590 
3591 	int_btf_id = find_int_btf_id(btf);
3592 	dummy_var_btf_id = btf__add_var(btf,
3593 					"dummy_ksym",
3594 					BTF_VAR_GLOBAL_ALLOCATED,
3595 					int_btf_id);
3596 	if (dummy_var_btf_id < 0)
3597 		pr_warn("cannot create a dummy_ksym var\n");
3598 
3599 	return dummy_var_btf_id;
3600 }
3601 
3602 static int bpf_object__collect_externs(struct bpf_object *obj)
3603 {
3604 	struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3605 	const struct btf_type *t;
3606 	struct extern_desc *ext;
3607 	int i, n, off, dummy_var_btf_id;
3608 	const char *ext_name, *sec_name;
3609 	Elf_Scn *scn;
3610 	Elf64_Shdr *sh;
3611 
3612 	if (!obj->efile.symbols)
3613 		return 0;
3614 
3615 	scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3616 	sh = elf_sec_hdr(obj, scn);
3617 	if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
3618 		return -LIBBPF_ERRNO__FORMAT;
3619 
3620 	dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
3621 	if (dummy_var_btf_id < 0)
3622 		return dummy_var_btf_id;
3623 
3624 	n = sh->sh_size / sh->sh_entsize;
3625 	pr_debug("looking for externs among %d symbols...\n", n);
3626 
3627 	for (i = 0; i < n; i++) {
3628 		Elf64_Sym *sym = elf_sym_by_idx(obj, i);
3629 
3630 		if (!sym)
3631 			return -LIBBPF_ERRNO__FORMAT;
3632 		if (!sym_is_extern(sym))
3633 			continue;
3634 		ext_name = elf_sym_str(obj, sym->st_name);
3635 		if (!ext_name || !ext_name[0])
3636 			continue;
3637 
3638 		ext = obj->externs;
3639 		ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3640 		if (!ext)
3641 			return -ENOMEM;
3642 		obj->externs = ext;
3643 		ext = &ext[obj->nr_extern];
3644 		memset(ext, 0, sizeof(*ext));
3645 		obj->nr_extern++;
3646 
3647 		ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3648 		if (ext->btf_id <= 0) {
3649 			pr_warn("failed to find BTF for extern '%s': %d\n",
3650 				ext_name, ext->btf_id);
3651 			return ext->btf_id;
3652 		}
3653 		t = btf__type_by_id(obj->btf, ext->btf_id);
3654 		ext->name = btf__name_by_offset(obj->btf, t->name_off);
3655 		ext->sym_idx = i;
3656 		ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
3657 
3658 		ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3659 		if (ext->sec_btf_id <= 0) {
3660 			pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3661 				ext_name, ext->btf_id, ext->sec_btf_id);
3662 			return ext->sec_btf_id;
3663 		}
3664 		sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3665 		sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3666 
3667 		if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3668 			if (btf_is_func(t)) {
3669 				pr_warn("extern function %s is unsupported under %s section\n",
3670 					ext->name, KCONFIG_SEC);
3671 				return -ENOTSUP;
3672 			}
3673 			kcfg_sec = sec;
3674 			ext->type = EXT_KCFG;
3675 			ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3676 			if (ext->kcfg.sz <= 0) {
3677 				pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3678 					ext_name, ext->kcfg.sz);
3679 				return ext->kcfg.sz;
3680 			}
3681 			ext->kcfg.align = btf__align_of(obj->btf, t->type);
3682 			if (ext->kcfg.align <= 0) {
3683 				pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3684 					ext_name, ext->kcfg.align);
3685 				return -EINVAL;
3686 			}
3687 			ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3688 						        &ext->kcfg.is_signed);
3689 			if (ext->kcfg.type == KCFG_UNKNOWN) {
3690 				pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name);
3691 				return -ENOTSUP;
3692 			}
3693 		} else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3694 			ksym_sec = sec;
3695 			ext->type = EXT_KSYM;
3696 			skip_mods_and_typedefs(obj->btf, t->type,
3697 					       &ext->ksym.type_id);
3698 		} else {
3699 			pr_warn("unrecognized extern section '%s'\n", sec_name);
3700 			return -ENOTSUP;
3701 		}
3702 	}
3703 	pr_debug("collected %d externs total\n", obj->nr_extern);
3704 
3705 	if (!obj->nr_extern)
3706 		return 0;
3707 
3708 	/* sort externs by type, for kcfg ones also by (align, size, name) */
3709 	qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3710 
3711 	/* for .ksyms section, we need to turn all externs into allocated
3712 	 * variables in BTF to pass kernel verification; we do this by
3713 	 * pretending that each extern is a 8-byte variable
3714 	 */
3715 	if (ksym_sec) {
3716 		/* find existing 4-byte integer type in BTF to use for fake
3717 		 * extern variables in DATASEC
3718 		 */
3719 		int int_btf_id = find_int_btf_id(obj->btf);
3720 		/* For extern function, a dummy_var added earlier
3721 		 * will be used to replace the vs->type and
3722 		 * its name string will be used to refill
3723 		 * the missing param's name.
3724 		 */
3725 		const struct btf_type *dummy_var;
3726 
3727 		dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
3728 		for (i = 0; i < obj->nr_extern; i++) {
3729 			ext = &obj->externs[i];
3730 			if (ext->type != EXT_KSYM)
3731 				continue;
3732 			pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3733 				 i, ext->sym_idx, ext->name);
3734 		}
3735 
3736 		sec = ksym_sec;
3737 		n = btf_vlen(sec);
3738 		for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3739 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3740 			struct btf_type *vt;
3741 
3742 			vt = (void *)btf__type_by_id(obj->btf, vs->type);
3743 			ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3744 			ext = find_extern_by_name(obj, ext_name);
3745 			if (!ext) {
3746 				pr_warn("failed to find extern definition for BTF %s '%s'\n",
3747 					btf_kind_str(vt), ext_name);
3748 				return -ESRCH;
3749 			}
3750 			if (btf_is_func(vt)) {
3751 				const struct btf_type *func_proto;
3752 				struct btf_param *param;
3753 				int j;
3754 
3755 				func_proto = btf__type_by_id(obj->btf,
3756 							     vt->type);
3757 				param = btf_params(func_proto);
3758 				/* Reuse the dummy_var string if the
3759 				 * func proto does not have param name.
3760 				 */
3761 				for (j = 0; j < btf_vlen(func_proto); j++)
3762 					if (param[j].type && !param[j].name_off)
3763 						param[j].name_off =
3764 							dummy_var->name_off;
3765 				vs->type = dummy_var_btf_id;
3766 				vt->info &= ~0xffff;
3767 				vt->info |= BTF_FUNC_GLOBAL;
3768 			} else {
3769 				btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3770 				vt->type = int_btf_id;
3771 			}
3772 			vs->offset = off;
3773 			vs->size = sizeof(int);
3774 		}
3775 		sec->size = off;
3776 	}
3777 
3778 	if (kcfg_sec) {
3779 		sec = kcfg_sec;
3780 		/* for kcfg externs calculate their offsets within a .kconfig map */
3781 		off = 0;
3782 		for (i = 0; i < obj->nr_extern; i++) {
3783 			ext = &obj->externs[i];
3784 			if (ext->type != EXT_KCFG)
3785 				continue;
3786 
3787 			ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3788 			off = ext->kcfg.data_off + ext->kcfg.sz;
3789 			pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3790 				 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3791 		}
3792 		sec->size = off;
3793 		n = btf_vlen(sec);
3794 		for (i = 0; i < n; i++) {
3795 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3796 
3797 			t = btf__type_by_id(obj->btf, vs->type);
3798 			ext_name = btf__name_by_offset(obj->btf, t->name_off);
3799 			ext = find_extern_by_name(obj, ext_name);
3800 			if (!ext) {
3801 				pr_warn("failed to find extern definition for BTF var '%s'\n",
3802 					ext_name);
3803 				return -ESRCH;
3804 			}
3805 			btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3806 			vs->offset = ext->kcfg.data_off;
3807 		}
3808 	}
3809 	return 0;
3810 }
3811 
3812 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
3813 {
3814 	return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
3815 }
3816 
3817 struct bpf_program *
3818 bpf_object__find_program_by_name(const struct bpf_object *obj,
3819 				 const char *name)
3820 {
3821 	struct bpf_program *prog;
3822 
3823 	bpf_object__for_each_program(prog, obj) {
3824 		if (prog_is_subprog(obj, prog))
3825 			continue;
3826 		if (!strcmp(prog->name, name))
3827 			return prog;
3828 	}
3829 	return errno = ENOENT, NULL;
3830 }
3831 
3832 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
3833 				      int shndx)
3834 {
3835 	switch (obj->efile.secs[shndx].sec_type) {
3836 	case SEC_BSS:
3837 	case SEC_DATA:
3838 	case SEC_RODATA:
3839 		return true;
3840 	default:
3841 		return false;
3842 	}
3843 }
3844 
3845 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
3846 				      int shndx)
3847 {
3848 	return shndx == obj->efile.maps_shndx ||
3849 	       shndx == obj->efile.btf_maps_shndx;
3850 }
3851 
3852 static enum libbpf_map_type
3853 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
3854 {
3855 	if (shndx == obj->efile.symbols_shndx)
3856 		return LIBBPF_MAP_KCONFIG;
3857 
3858 	switch (obj->efile.secs[shndx].sec_type) {
3859 	case SEC_BSS:
3860 		return LIBBPF_MAP_BSS;
3861 	case SEC_DATA:
3862 		return LIBBPF_MAP_DATA;
3863 	case SEC_RODATA:
3864 		return LIBBPF_MAP_RODATA;
3865 	default:
3866 		return LIBBPF_MAP_UNSPEC;
3867 	}
3868 }
3869 
3870 static int bpf_program__record_reloc(struct bpf_program *prog,
3871 				     struct reloc_desc *reloc_desc,
3872 				     __u32 insn_idx, const char *sym_name,
3873 				     const Elf64_Sym *sym, const Elf64_Rel *rel)
3874 {
3875 	struct bpf_insn *insn = &prog->insns[insn_idx];
3876 	size_t map_idx, nr_maps = prog->obj->nr_maps;
3877 	struct bpf_object *obj = prog->obj;
3878 	__u32 shdr_idx = sym->st_shndx;
3879 	enum libbpf_map_type type;
3880 	const char *sym_sec_name;
3881 	struct bpf_map *map;
3882 
3883 	if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
3884 		pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
3885 			prog->name, sym_name, insn_idx, insn->code);
3886 		return -LIBBPF_ERRNO__RELOC;
3887 	}
3888 
3889 	if (sym_is_extern(sym)) {
3890 		int sym_idx = ELF64_R_SYM(rel->r_info);
3891 		int i, n = obj->nr_extern;
3892 		struct extern_desc *ext;
3893 
3894 		for (i = 0; i < n; i++) {
3895 			ext = &obj->externs[i];
3896 			if (ext->sym_idx == sym_idx)
3897 				break;
3898 		}
3899 		if (i >= n) {
3900 			pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
3901 				prog->name, sym_name, sym_idx);
3902 			return -LIBBPF_ERRNO__RELOC;
3903 		}
3904 		pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
3905 			 prog->name, i, ext->name, ext->sym_idx, insn_idx);
3906 		if (insn->code == (BPF_JMP | BPF_CALL))
3907 			reloc_desc->type = RELO_EXTERN_FUNC;
3908 		else
3909 			reloc_desc->type = RELO_EXTERN_VAR;
3910 		reloc_desc->insn_idx = insn_idx;
3911 		reloc_desc->sym_off = i; /* sym_off stores extern index */
3912 		return 0;
3913 	}
3914 
3915 	/* sub-program call relocation */
3916 	if (is_call_insn(insn)) {
3917 		if (insn->src_reg != BPF_PSEUDO_CALL) {
3918 			pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
3919 			return -LIBBPF_ERRNO__RELOC;
3920 		}
3921 		/* text_shndx can be 0, if no default "main" program exists */
3922 		if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
3923 			sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3924 			pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
3925 				prog->name, sym_name, sym_sec_name);
3926 			return -LIBBPF_ERRNO__RELOC;
3927 		}
3928 		if (sym->st_value % BPF_INSN_SZ) {
3929 			pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
3930 				prog->name, sym_name, (size_t)sym->st_value);
3931 			return -LIBBPF_ERRNO__RELOC;
3932 		}
3933 		reloc_desc->type = RELO_CALL;
3934 		reloc_desc->insn_idx = insn_idx;
3935 		reloc_desc->sym_off = sym->st_value;
3936 		return 0;
3937 	}
3938 
3939 	if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
3940 		pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
3941 			prog->name, sym_name, shdr_idx);
3942 		return -LIBBPF_ERRNO__RELOC;
3943 	}
3944 
3945 	/* loading subprog addresses */
3946 	if (sym_is_subprog(sym, obj->efile.text_shndx)) {
3947 		/* global_func: sym->st_value = offset in the section, insn->imm = 0.
3948 		 * local_func: sym->st_value = 0, insn->imm = offset in the section.
3949 		 */
3950 		if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
3951 			pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
3952 				prog->name, sym_name, (size_t)sym->st_value, insn->imm);
3953 			return -LIBBPF_ERRNO__RELOC;
3954 		}
3955 
3956 		reloc_desc->type = RELO_SUBPROG_ADDR;
3957 		reloc_desc->insn_idx = insn_idx;
3958 		reloc_desc->sym_off = sym->st_value;
3959 		return 0;
3960 	}
3961 
3962 	type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
3963 	sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3964 
3965 	/* generic map reference relocation */
3966 	if (type == LIBBPF_MAP_UNSPEC) {
3967 		if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
3968 			pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
3969 				prog->name, sym_name, sym_sec_name);
3970 			return -LIBBPF_ERRNO__RELOC;
3971 		}
3972 		for (map_idx = 0; map_idx < nr_maps; map_idx++) {
3973 			map = &obj->maps[map_idx];
3974 			if (map->libbpf_type != type ||
3975 			    map->sec_idx != sym->st_shndx ||
3976 			    map->sec_offset != sym->st_value)
3977 				continue;
3978 			pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
3979 				 prog->name, map_idx, map->name, map->sec_idx,
3980 				 map->sec_offset, insn_idx);
3981 			break;
3982 		}
3983 		if (map_idx >= nr_maps) {
3984 			pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
3985 				prog->name, sym_sec_name, (size_t)sym->st_value);
3986 			return -LIBBPF_ERRNO__RELOC;
3987 		}
3988 		reloc_desc->type = RELO_LD64;
3989 		reloc_desc->insn_idx = insn_idx;
3990 		reloc_desc->map_idx = map_idx;
3991 		reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
3992 		return 0;
3993 	}
3994 
3995 	/* global data map relocation */
3996 	if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
3997 		pr_warn("prog '%s': bad data relo against section '%s'\n",
3998 			prog->name, sym_sec_name);
3999 		return -LIBBPF_ERRNO__RELOC;
4000 	}
4001 	for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4002 		map = &obj->maps[map_idx];
4003 		if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4004 			continue;
4005 		pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4006 			 prog->name, map_idx, map->name, map->sec_idx,
4007 			 map->sec_offset, insn_idx);
4008 		break;
4009 	}
4010 	if (map_idx >= nr_maps) {
4011 		pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4012 			prog->name, sym_sec_name);
4013 		return -LIBBPF_ERRNO__RELOC;
4014 	}
4015 
4016 	reloc_desc->type = RELO_DATA;
4017 	reloc_desc->insn_idx = insn_idx;
4018 	reloc_desc->map_idx = map_idx;
4019 	reloc_desc->sym_off = sym->st_value;
4020 	return 0;
4021 }
4022 
4023 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4024 {
4025 	return insn_idx >= prog->sec_insn_off &&
4026 	       insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4027 }
4028 
4029 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4030 						 size_t sec_idx, size_t insn_idx)
4031 {
4032 	int l = 0, r = obj->nr_programs - 1, m;
4033 	struct bpf_program *prog;
4034 
4035 	while (l < r) {
4036 		m = l + (r - l + 1) / 2;
4037 		prog = &obj->programs[m];
4038 
4039 		if (prog->sec_idx < sec_idx ||
4040 		    (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4041 			l = m;
4042 		else
4043 			r = m - 1;
4044 	}
4045 	/* matching program could be at index l, but it still might be the
4046 	 * wrong one, so we need to double check conditions for the last time
4047 	 */
4048 	prog = &obj->programs[l];
4049 	if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4050 		return prog;
4051 	return NULL;
4052 }
4053 
4054 static int
4055 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4056 {
4057 	const char *relo_sec_name, *sec_name;
4058 	size_t sec_idx = shdr->sh_info, sym_idx;
4059 	struct bpf_program *prog;
4060 	struct reloc_desc *relos;
4061 	int err, i, nrels;
4062 	const char *sym_name;
4063 	__u32 insn_idx;
4064 	Elf_Scn *scn;
4065 	Elf_Data *scn_data;
4066 	Elf64_Sym *sym;
4067 	Elf64_Rel *rel;
4068 
4069 	if (sec_idx >= obj->efile.sec_cnt)
4070 		return -EINVAL;
4071 
4072 	scn = elf_sec_by_idx(obj, sec_idx);
4073 	scn_data = elf_sec_data(obj, scn);
4074 
4075 	relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4076 	sec_name = elf_sec_name(obj, scn);
4077 	if (!relo_sec_name || !sec_name)
4078 		return -EINVAL;
4079 
4080 	pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4081 		 relo_sec_name, sec_idx, sec_name);
4082 	nrels = shdr->sh_size / shdr->sh_entsize;
4083 
4084 	for (i = 0; i < nrels; i++) {
4085 		rel = elf_rel_by_idx(data, i);
4086 		if (!rel) {
4087 			pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4088 			return -LIBBPF_ERRNO__FORMAT;
4089 		}
4090 
4091 		sym_idx = ELF64_R_SYM(rel->r_info);
4092 		sym = elf_sym_by_idx(obj, sym_idx);
4093 		if (!sym) {
4094 			pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4095 				relo_sec_name, sym_idx, i);
4096 			return -LIBBPF_ERRNO__FORMAT;
4097 		}
4098 
4099 		if (sym->st_shndx >= obj->efile.sec_cnt) {
4100 			pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4101 				relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4102 			return -LIBBPF_ERRNO__FORMAT;
4103 		}
4104 
4105 		if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4106 			pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4107 				relo_sec_name, (size_t)rel->r_offset, i);
4108 			return -LIBBPF_ERRNO__FORMAT;
4109 		}
4110 
4111 		insn_idx = rel->r_offset / BPF_INSN_SZ;
4112 		/* relocations against static functions are recorded as
4113 		 * relocations against the section that contains a function;
4114 		 * in such case, symbol will be STT_SECTION and sym.st_name
4115 		 * will point to empty string (0), so fetch section name
4116 		 * instead
4117 		 */
4118 		if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4119 			sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4120 		else
4121 			sym_name = elf_sym_str(obj, sym->st_name);
4122 		sym_name = sym_name ?: "<?";
4123 
4124 		pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4125 			 relo_sec_name, i, insn_idx, sym_name);
4126 
4127 		prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4128 		if (!prog) {
4129 			pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4130 				relo_sec_name, i, sec_name, insn_idx);
4131 			continue;
4132 		}
4133 
4134 		relos = libbpf_reallocarray(prog->reloc_desc,
4135 					    prog->nr_reloc + 1, sizeof(*relos));
4136 		if (!relos)
4137 			return -ENOMEM;
4138 		prog->reloc_desc = relos;
4139 
4140 		/* adjust insn_idx to local BPF program frame of reference */
4141 		insn_idx -= prog->sec_insn_off;
4142 		err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4143 						insn_idx, sym_name, sym, rel);
4144 		if (err)
4145 			return err;
4146 
4147 		prog->nr_reloc++;
4148 	}
4149 	return 0;
4150 }
4151 
4152 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map)
4153 {
4154 	int id;
4155 
4156 	if (!obj->btf)
4157 		return -ENOENT;
4158 
4159 	/* if it's BTF-defined map, we don't need to search for type IDs.
4160 	 * For struct_ops map, it does not need btf_key_type_id and
4161 	 * btf_value_type_id.
4162 	 */
4163 	if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4164 		return 0;
4165 
4166 	/*
4167 	 * LLVM annotates global data differently in BTF, that is,
4168 	 * only as '.data', '.bss' or '.rodata'.
4169 	 */
4170 	if (!bpf_map__is_internal(map))
4171 		return -ENOENT;
4172 
4173 	id = btf__find_by_name(obj->btf, map->real_name);
4174 	if (id < 0)
4175 		return id;
4176 
4177 	map->btf_key_type_id = 0;
4178 	map->btf_value_type_id = id;
4179 	return 0;
4180 }
4181 
4182 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4183 {
4184 	char file[PATH_MAX], buff[4096];
4185 	FILE *fp;
4186 	__u32 val;
4187 	int err;
4188 
4189 	snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4190 	memset(info, 0, sizeof(*info));
4191 
4192 	fp = fopen(file, "r");
4193 	if (!fp) {
4194 		err = -errno;
4195 		pr_warn("failed to open %s: %d. No procfs support?\n", file,
4196 			err);
4197 		return err;
4198 	}
4199 
4200 	while (fgets(buff, sizeof(buff), fp)) {
4201 		if (sscanf(buff, "map_type:\t%u", &val) == 1)
4202 			info->type = val;
4203 		else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4204 			info->key_size = val;
4205 		else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4206 			info->value_size = val;
4207 		else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4208 			info->max_entries = val;
4209 		else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4210 			info->map_flags = val;
4211 	}
4212 
4213 	fclose(fp);
4214 
4215 	return 0;
4216 }
4217 
4218 bool bpf_map__autocreate(const struct bpf_map *map)
4219 {
4220 	return map->autocreate;
4221 }
4222 
4223 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4224 {
4225 	if (map->obj->loaded)
4226 		return libbpf_err(-EBUSY);
4227 
4228 	map->autocreate = autocreate;
4229 	return 0;
4230 }
4231 
4232 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4233 {
4234 	struct bpf_map_info info = {};
4235 	__u32 len = sizeof(info);
4236 	int new_fd, err;
4237 	char *new_name;
4238 
4239 	err = bpf_obj_get_info_by_fd(fd, &info, &len);
4240 	if (err && errno == EINVAL)
4241 		err = bpf_get_map_info_from_fdinfo(fd, &info);
4242 	if (err)
4243 		return libbpf_err(err);
4244 
4245 	new_name = strdup(info.name);
4246 	if (!new_name)
4247 		return libbpf_err(-errno);
4248 
4249 	new_fd = open("/", O_RDONLY | O_CLOEXEC);
4250 	if (new_fd < 0) {
4251 		err = -errno;
4252 		goto err_free_new_name;
4253 	}
4254 
4255 	new_fd = dup3(fd, new_fd, O_CLOEXEC);
4256 	if (new_fd < 0) {
4257 		err = -errno;
4258 		goto err_close_new_fd;
4259 	}
4260 
4261 	err = zclose(map->fd);
4262 	if (err) {
4263 		err = -errno;
4264 		goto err_close_new_fd;
4265 	}
4266 	free(map->name);
4267 
4268 	map->fd = new_fd;
4269 	map->name = new_name;
4270 	map->def.type = info.type;
4271 	map->def.key_size = info.key_size;
4272 	map->def.value_size = info.value_size;
4273 	map->def.max_entries = info.max_entries;
4274 	map->def.map_flags = info.map_flags;
4275 	map->btf_key_type_id = info.btf_key_type_id;
4276 	map->btf_value_type_id = info.btf_value_type_id;
4277 	map->reused = true;
4278 	map->map_extra = info.map_extra;
4279 
4280 	return 0;
4281 
4282 err_close_new_fd:
4283 	close(new_fd);
4284 err_free_new_name:
4285 	free(new_name);
4286 	return libbpf_err(err);
4287 }
4288 
4289 __u32 bpf_map__max_entries(const struct bpf_map *map)
4290 {
4291 	return map->def.max_entries;
4292 }
4293 
4294 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4295 {
4296 	if (!bpf_map_type__is_map_in_map(map->def.type))
4297 		return errno = EINVAL, NULL;
4298 
4299 	return map->inner_map;
4300 }
4301 
4302 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4303 {
4304 	if (map->fd >= 0)
4305 		return libbpf_err(-EBUSY);
4306 	map->def.max_entries = max_entries;
4307 	return 0;
4308 }
4309 
4310 static int
4311 bpf_object__probe_loading(struct bpf_object *obj)
4312 {
4313 	char *cp, errmsg[STRERR_BUFSIZE];
4314 	struct bpf_insn insns[] = {
4315 		BPF_MOV64_IMM(BPF_REG_0, 0),
4316 		BPF_EXIT_INSN(),
4317 	};
4318 	int ret, insn_cnt = ARRAY_SIZE(insns);
4319 
4320 	if (obj->gen_loader)
4321 		return 0;
4322 
4323 	ret = bump_rlimit_memlock();
4324 	if (ret)
4325 		pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4326 
4327 	/* make sure basic loading works */
4328 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4329 	if (ret < 0)
4330 		ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4331 	if (ret < 0) {
4332 		ret = errno;
4333 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4334 		pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4335 			"program. Make sure your kernel supports BPF "
4336 			"(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4337 			"set to big enough value.\n", __func__, cp, ret);
4338 		return -ret;
4339 	}
4340 	close(ret);
4341 
4342 	return 0;
4343 }
4344 
4345 static int probe_fd(int fd)
4346 {
4347 	if (fd >= 0)
4348 		close(fd);
4349 	return fd >= 0;
4350 }
4351 
4352 static int probe_kern_prog_name(void)
4353 {
4354 	struct bpf_insn insns[] = {
4355 		BPF_MOV64_IMM(BPF_REG_0, 0),
4356 		BPF_EXIT_INSN(),
4357 	};
4358 	int ret, insn_cnt = ARRAY_SIZE(insns);
4359 
4360 	/* make sure loading with name works */
4361 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, "test", "GPL", insns, insn_cnt, NULL);
4362 	return probe_fd(ret);
4363 }
4364 
4365 static int probe_kern_global_data(void)
4366 {
4367 	char *cp, errmsg[STRERR_BUFSIZE];
4368 	struct bpf_insn insns[] = {
4369 		BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
4370 		BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
4371 		BPF_MOV64_IMM(BPF_REG_0, 0),
4372 		BPF_EXIT_INSN(),
4373 	};
4374 	int ret, map, insn_cnt = ARRAY_SIZE(insns);
4375 
4376 	map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL);
4377 	if (map < 0) {
4378 		ret = -errno;
4379 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4380 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4381 			__func__, cp, -ret);
4382 		return ret;
4383 	}
4384 
4385 	insns[0].imm = map;
4386 
4387 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4388 	close(map);
4389 	return probe_fd(ret);
4390 }
4391 
4392 static int probe_kern_btf(void)
4393 {
4394 	static const char strs[] = "\0int";
4395 	__u32 types[] = {
4396 		/* int */
4397 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4398 	};
4399 
4400 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4401 					     strs, sizeof(strs)));
4402 }
4403 
4404 static int probe_kern_btf_func(void)
4405 {
4406 	static const char strs[] = "\0int\0x\0a";
4407 	/* void x(int a) {} */
4408 	__u32 types[] = {
4409 		/* int */
4410 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4411 		/* FUNC_PROTO */                                /* [2] */
4412 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4413 		BTF_PARAM_ENC(7, 1),
4414 		/* FUNC x */                                    /* [3] */
4415 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
4416 	};
4417 
4418 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4419 					     strs, sizeof(strs)));
4420 }
4421 
4422 static int probe_kern_btf_func_global(void)
4423 {
4424 	static const char strs[] = "\0int\0x\0a";
4425 	/* static void x(int a) {} */
4426 	__u32 types[] = {
4427 		/* int */
4428 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4429 		/* FUNC_PROTO */                                /* [2] */
4430 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4431 		BTF_PARAM_ENC(7, 1),
4432 		/* FUNC x BTF_FUNC_GLOBAL */                    /* [3] */
4433 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
4434 	};
4435 
4436 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4437 					     strs, sizeof(strs)));
4438 }
4439 
4440 static int probe_kern_btf_datasec(void)
4441 {
4442 	static const char strs[] = "\0x\0.data";
4443 	/* static int a; */
4444 	__u32 types[] = {
4445 		/* int */
4446 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4447 		/* VAR x */                                     /* [2] */
4448 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4449 		BTF_VAR_STATIC,
4450 		/* DATASEC val */                               /* [3] */
4451 		BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
4452 		BTF_VAR_SECINFO_ENC(2, 0, 4),
4453 	};
4454 
4455 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4456 					     strs, sizeof(strs)));
4457 }
4458 
4459 static int probe_kern_btf_float(void)
4460 {
4461 	static const char strs[] = "\0float";
4462 	__u32 types[] = {
4463 		/* float */
4464 		BTF_TYPE_FLOAT_ENC(1, 4),
4465 	};
4466 
4467 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4468 					     strs, sizeof(strs)));
4469 }
4470 
4471 static int probe_kern_btf_decl_tag(void)
4472 {
4473 	static const char strs[] = "\0tag";
4474 	__u32 types[] = {
4475 		/* int */
4476 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4477 		/* VAR x */                                     /* [2] */
4478 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4479 		BTF_VAR_STATIC,
4480 		/* attr */
4481 		BTF_TYPE_DECL_TAG_ENC(1, 2, -1),
4482 	};
4483 
4484 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4485 					     strs, sizeof(strs)));
4486 }
4487 
4488 static int probe_kern_btf_type_tag(void)
4489 {
4490 	static const char strs[] = "\0tag";
4491 	__u32 types[] = {
4492 		/* int */
4493 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),		/* [1] */
4494 		/* attr */
4495 		BTF_TYPE_TYPE_TAG_ENC(1, 1),				/* [2] */
4496 		/* ptr */
4497 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2),	/* [3] */
4498 	};
4499 
4500 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4501 					     strs, sizeof(strs)));
4502 }
4503 
4504 static int probe_kern_array_mmap(void)
4505 {
4506 	LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE);
4507 	int fd;
4508 
4509 	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), sizeof(int), 1, &opts);
4510 	return probe_fd(fd);
4511 }
4512 
4513 static int probe_kern_exp_attach_type(void)
4514 {
4515 	LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE);
4516 	struct bpf_insn insns[] = {
4517 		BPF_MOV64_IMM(BPF_REG_0, 0),
4518 		BPF_EXIT_INSN(),
4519 	};
4520 	int fd, insn_cnt = ARRAY_SIZE(insns);
4521 
4522 	/* use any valid combination of program type and (optional)
4523 	 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
4524 	 * to see if kernel supports expected_attach_type field for
4525 	 * BPF_PROG_LOAD command
4526 	 */
4527 	fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts);
4528 	return probe_fd(fd);
4529 }
4530 
4531 static int probe_kern_probe_read_kernel(void)
4532 {
4533 	struct bpf_insn insns[] = {
4534 		BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),	/* r1 = r10 (fp) */
4535 		BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),	/* r1 += -8 */
4536 		BPF_MOV64_IMM(BPF_REG_2, 8),		/* r2 = 8 */
4537 		BPF_MOV64_IMM(BPF_REG_3, 0),		/* r3 = 0 */
4538 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
4539 		BPF_EXIT_INSN(),
4540 	};
4541 	int fd, insn_cnt = ARRAY_SIZE(insns);
4542 
4543 	fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4544 	return probe_fd(fd);
4545 }
4546 
4547 static int probe_prog_bind_map(void)
4548 {
4549 	char *cp, errmsg[STRERR_BUFSIZE];
4550 	struct bpf_insn insns[] = {
4551 		BPF_MOV64_IMM(BPF_REG_0, 0),
4552 		BPF_EXIT_INSN(),
4553 	};
4554 	int ret, map, prog, insn_cnt = ARRAY_SIZE(insns);
4555 
4556 	map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL);
4557 	if (map < 0) {
4558 		ret = -errno;
4559 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4560 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4561 			__func__, cp, -ret);
4562 		return ret;
4563 	}
4564 
4565 	prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4566 	if (prog < 0) {
4567 		close(map);
4568 		return 0;
4569 	}
4570 
4571 	ret = bpf_prog_bind_map(prog, map, NULL);
4572 
4573 	close(map);
4574 	close(prog);
4575 
4576 	return ret >= 0;
4577 }
4578 
4579 static int probe_module_btf(void)
4580 {
4581 	static const char strs[] = "\0int";
4582 	__u32 types[] = {
4583 		/* int */
4584 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4585 	};
4586 	struct bpf_btf_info info;
4587 	__u32 len = sizeof(info);
4588 	char name[16];
4589 	int fd, err;
4590 
4591 	fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4592 	if (fd < 0)
4593 		return 0; /* BTF not supported at all */
4594 
4595 	memset(&info, 0, sizeof(info));
4596 	info.name = ptr_to_u64(name);
4597 	info.name_len = sizeof(name);
4598 
4599 	/* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4600 	 * kernel's module BTF support coincides with support for
4601 	 * name/name_len fields in struct bpf_btf_info.
4602 	 */
4603 	err = bpf_obj_get_info_by_fd(fd, &info, &len);
4604 	close(fd);
4605 	return !err;
4606 }
4607 
4608 static int probe_perf_link(void)
4609 {
4610 	struct bpf_insn insns[] = {
4611 		BPF_MOV64_IMM(BPF_REG_0, 0),
4612 		BPF_EXIT_INSN(),
4613 	};
4614 	int prog_fd, link_fd, err;
4615 
4616 	prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL",
4617 				insns, ARRAY_SIZE(insns), NULL);
4618 	if (prog_fd < 0)
4619 		return -errno;
4620 
4621 	/* use invalid perf_event FD to get EBADF, if link is supported;
4622 	 * otherwise EINVAL should be returned
4623 	 */
4624 	link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL);
4625 	err = -errno; /* close() can clobber errno */
4626 
4627 	if (link_fd >= 0)
4628 		close(link_fd);
4629 	close(prog_fd);
4630 
4631 	return link_fd < 0 && err == -EBADF;
4632 }
4633 
4634 static int probe_kern_bpf_cookie(void)
4635 {
4636 	struct bpf_insn insns[] = {
4637 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie),
4638 		BPF_EXIT_INSN(),
4639 	};
4640 	int ret, insn_cnt = ARRAY_SIZE(insns);
4641 
4642 	ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL);
4643 	return probe_fd(ret);
4644 }
4645 
4646 static int probe_kern_btf_enum64(void)
4647 {
4648 	static const char strs[] = "\0enum64";
4649 	__u32 types[] = {
4650 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8),
4651 	};
4652 
4653 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4654 					     strs, sizeof(strs)));
4655 }
4656 
4657 enum kern_feature_result {
4658 	FEAT_UNKNOWN = 0,
4659 	FEAT_SUPPORTED = 1,
4660 	FEAT_MISSING = 2,
4661 };
4662 
4663 typedef int (*feature_probe_fn)(void);
4664 
4665 static struct kern_feature_desc {
4666 	const char *desc;
4667 	feature_probe_fn probe;
4668 	enum kern_feature_result res;
4669 } feature_probes[__FEAT_CNT] = {
4670 	[FEAT_PROG_NAME] = {
4671 		"BPF program name", probe_kern_prog_name,
4672 	},
4673 	[FEAT_GLOBAL_DATA] = {
4674 		"global variables", probe_kern_global_data,
4675 	},
4676 	[FEAT_BTF] = {
4677 		"minimal BTF", probe_kern_btf,
4678 	},
4679 	[FEAT_BTF_FUNC] = {
4680 		"BTF functions", probe_kern_btf_func,
4681 	},
4682 	[FEAT_BTF_GLOBAL_FUNC] = {
4683 		"BTF global function", probe_kern_btf_func_global,
4684 	},
4685 	[FEAT_BTF_DATASEC] = {
4686 		"BTF data section and variable", probe_kern_btf_datasec,
4687 	},
4688 	[FEAT_ARRAY_MMAP] = {
4689 		"ARRAY map mmap()", probe_kern_array_mmap,
4690 	},
4691 	[FEAT_EXP_ATTACH_TYPE] = {
4692 		"BPF_PROG_LOAD expected_attach_type attribute",
4693 		probe_kern_exp_attach_type,
4694 	},
4695 	[FEAT_PROBE_READ_KERN] = {
4696 		"bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4697 	},
4698 	[FEAT_PROG_BIND_MAP] = {
4699 		"BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4700 	},
4701 	[FEAT_MODULE_BTF] = {
4702 		"module BTF support", probe_module_btf,
4703 	},
4704 	[FEAT_BTF_FLOAT] = {
4705 		"BTF_KIND_FLOAT support", probe_kern_btf_float,
4706 	},
4707 	[FEAT_PERF_LINK] = {
4708 		"BPF perf link support", probe_perf_link,
4709 	},
4710 	[FEAT_BTF_DECL_TAG] = {
4711 		"BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag,
4712 	},
4713 	[FEAT_BTF_TYPE_TAG] = {
4714 		"BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag,
4715 	},
4716 	[FEAT_MEMCG_ACCOUNT] = {
4717 		"memcg-based memory accounting", probe_memcg_account,
4718 	},
4719 	[FEAT_BPF_COOKIE] = {
4720 		"BPF cookie support", probe_kern_bpf_cookie,
4721 	},
4722 	[FEAT_BTF_ENUM64] = {
4723 		"BTF_KIND_ENUM64 support", probe_kern_btf_enum64,
4724 	},
4725 };
4726 
4727 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
4728 {
4729 	struct kern_feature_desc *feat = &feature_probes[feat_id];
4730 	int ret;
4731 
4732 	if (obj && obj->gen_loader)
4733 		/* To generate loader program assume the latest kernel
4734 		 * to avoid doing extra prog_load, map_create syscalls.
4735 		 */
4736 		return true;
4737 
4738 	if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4739 		ret = feat->probe();
4740 		if (ret > 0) {
4741 			WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4742 		} else if (ret == 0) {
4743 			WRITE_ONCE(feat->res, FEAT_MISSING);
4744 		} else {
4745 			pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4746 			WRITE_ONCE(feat->res, FEAT_MISSING);
4747 		}
4748 	}
4749 
4750 	return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4751 }
4752 
4753 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4754 {
4755 	struct bpf_map_info map_info = {};
4756 	char msg[STRERR_BUFSIZE];
4757 	__u32 map_info_len;
4758 	int err;
4759 
4760 	map_info_len = sizeof(map_info);
4761 
4762 	err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len);
4763 	if (err && errno == EINVAL)
4764 		err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
4765 	if (err) {
4766 		pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
4767 			libbpf_strerror_r(errno, msg, sizeof(msg)));
4768 		return false;
4769 	}
4770 
4771 	return (map_info.type == map->def.type &&
4772 		map_info.key_size == map->def.key_size &&
4773 		map_info.value_size == map->def.value_size &&
4774 		map_info.max_entries == map->def.max_entries &&
4775 		map_info.map_flags == map->def.map_flags &&
4776 		map_info.map_extra == map->map_extra);
4777 }
4778 
4779 static int
4780 bpf_object__reuse_map(struct bpf_map *map)
4781 {
4782 	char *cp, errmsg[STRERR_BUFSIZE];
4783 	int err, pin_fd;
4784 
4785 	pin_fd = bpf_obj_get(map->pin_path);
4786 	if (pin_fd < 0) {
4787 		err = -errno;
4788 		if (err == -ENOENT) {
4789 			pr_debug("found no pinned map to reuse at '%s'\n",
4790 				 map->pin_path);
4791 			return 0;
4792 		}
4793 
4794 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
4795 		pr_warn("couldn't retrieve pinned map '%s': %s\n",
4796 			map->pin_path, cp);
4797 		return err;
4798 	}
4799 
4800 	if (!map_is_reuse_compat(map, pin_fd)) {
4801 		pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
4802 			map->pin_path);
4803 		close(pin_fd);
4804 		return -EINVAL;
4805 	}
4806 
4807 	err = bpf_map__reuse_fd(map, pin_fd);
4808 	close(pin_fd);
4809 	if (err) {
4810 		return err;
4811 	}
4812 	map->pinned = true;
4813 	pr_debug("reused pinned map at '%s'\n", map->pin_path);
4814 
4815 	return 0;
4816 }
4817 
4818 static int
4819 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
4820 {
4821 	enum libbpf_map_type map_type = map->libbpf_type;
4822 	char *cp, errmsg[STRERR_BUFSIZE];
4823 	int err, zero = 0;
4824 
4825 	if (obj->gen_loader) {
4826 		bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
4827 					 map->mmaped, map->def.value_size);
4828 		if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
4829 			bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
4830 		return 0;
4831 	}
4832 	err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
4833 	if (err) {
4834 		err = -errno;
4835 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4836 		pr_warn("Error setting initial map(%s) contents: %s\n",
4837 			map->name, cp);
4838 		return err;
4839 	}
4840 
4841 	/* Freeze .rodata and .kconfig map as read-only from syscall side. */
4842 	if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
4843 		err = bpf_map_freeze(map->fd);
4844 		if (err) {
4845 			err = -errno;
4846 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4847 			pr_warn("Error freezing map(%s) as read-only: %s\n",
4848 				map->name, cp);
4849 			return err;
4850 		}
4851 	}
4852 	return 0;
4853 }
4854 
4855 static void bpf_map__destroy(struct bpf_map *map);
4856 
4857 static size_t adjust_ringbuf_sz(size_t sz)
4858 {
4859 	__u32 page_sz = sysconf(_SC_PAGE_SIZE);
4860 	__u32 mul;
4861 
4862 	/* if user forgot to set any size, make sure they see error */
4863 	if (sz == 0)
4864 		return 0;
4865 	/* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
4866 	 * a power-of-2 multiple of kernel's page size. If user diligently
4867 	 * satisified these conditions, pass the size through.
4868 	 */
4869 	if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
4870 		return sz;
4871 
4872 	/* Otherwise find closest (page_sz * power_of_2) product bigger than
4873 	 * user-set size to satisfy both user size request and kernel
4874 	 * requirements and substitute correct max_entries for map creation.
4875 	 */
4876 	for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
4877 		if (mul * page_sz > sz)
4878 			return mul * page_sz;
4879 	}
4880 
4881 	/* if it's impossible to satisfy the conditions (i.e., user size is
4882 	 * very close to UINT_MAX but is not a power-of-2 multiple of
4883 	 * page_size) then just return original size and let kernel reject it
4884 	 */
4885 	return sz;
4886 }
4887 
4888 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
4889 {
4890 	LIBBPF_OPTS(bpf_map_create_opts, create_attr);
4891 	struct bpf_map_def *def = &map->def;
4892 	const char *map_name = NULL;
4893 	int err = 0;
4894 
4895 	if (kernel_supports(obj, FEAT_PROG_NAME))
4896 		map_name = map->name;
4897 	create_attr.map_ifindex = map->map_ifindex;
4898 	create_attr.map_flags = def->map_flags;
4899 	create_attr.numa_node = map->numa_node;
4900 	create_attr.map_extra = map->map_extra;
4901 
4902 	if (bpf_map__is_struct_ops(map))
4903 		create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
4904 
4905 	if (obj->btf && btf__fd(obj->btf) >= 0) {
4906 		create_attr.btf_fd = btf__fd(obj->btf);
4907 		create_attr.btf_key_type_id = map->btf_key_type_id;
4908 		create_attr.btf_value_type_id = map->btf_value_type_id;
4909 	}
4910 
4911 	if (bpf_map_type__is_map_in_map(def->type)) {
4912 		if (map->inner_map) {
4913 			err = bpf_object__create_map(obj, map->inner_map, true);
4914 			if (err) {
4915 				pr_warn("map '%s': failed to create inner map: %d\n",
4916 					map->name, err);
4917 				return err;
4918 			}
4919 			map->inner_map_fd = bpf_map__fd(map->inner_map);
4920 		}
4921 		if (map->inner_map_fd >= 0)
4922 			create_attr.inner_map_fd = map->inner_map_fd;
4923 	}
4924 
4925 	switch (def->type) {
4926 	case BPF_MAP_TYPE_RINGBUF:
4927 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4928 		/* fallthrough */
4929 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4930 	case BPF_MAP_TYPE_CGROUP_ARRAY:
4931 	case BPF_MAP_TYPE_STACK_TRACE:
4932 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
4933 	case BPF_MAP_TYPE_HASH_OF_MAPS:
4934 	case BPF_MAP_TYPE_DEVMAP:
4935 	case BPF_MAP_TYPE_DEVMAP_HASH:
4936 	case BPF_MAP_TYPE_CPUMAP:
4937 	case BPF_MAP_TYPE_XSKMAP:
4938 	case BPF_MAP_TYPE_SOCKMAP:
4939 	case BPF_MAP_TYPE_SOCKHASH:
4940 	case BPF_MAP_TYPE_QUEUE:
4941 	case BPF_MAP_TYPE_STACK:
4942 		create_attr.btf_fd = 0;
4943 		create_attr.btf_key_type_id = 0;
4944 		create_attr.btf_value_type_id = 0;
4945 		map->btf_key_type_id = 0;
4946 		map->btf_value_type_id = 0;
4947 	default:
4948 		break;
4949 	}
4950 
4951 	if (obj->gen_loader) {
4952 		bpf_gen__map_create(obj->gen_loader, def->type, map_name,
4953 				    def->key_size, def->value_size, def->max_entries,
4954 				    &create_attr, is_inner ? -1 : map - obj->maps);
4955 		/* Pretend to have valid FD to pass various fd >= 0 checks.
4956 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
4957 		 */
4958 		map->fd = 0;
4959 	} else {
4960 		map->fd = bpf_map_create(def->type, map_name,
4961 					 def->key_size, def->value_size,
4962 					 def->max_entries, &create_attr);
4963 	}
4964 	if (map->fd < 0 && (create_attr.btf_key_type_id ||
4965 			    create_attr.btf_value_type_id)) {
4966 		char *cp, errmsg[STRERR_BUFSIZE];
4967 
4968 		err = -errno;
4969 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4970 		pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
4971 			map->name, cp, err);
4972 		create_attr.btf_fd = 0;
4973 		create_attr.btf_key_type_id = 0;
4974 		create_attr.btf_value_type_id = 0;
4975 		map->btf_key_type_id = 0;
4976 		map->btf_value_type_id = 0;
4977 		map->fd = bpf_map_create(def->type, map_name,
4978 					 def->key_size, def->value_size,
4979 					 def->max_entries, &create_attr);
4980 	}
4981 
4982 	err = map->fd < 0 ? -errno : 0;
4983 
4984 	if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
4985 		if (obj->gen_loader)
4986 			map->inner_map->fd = -1;
4987 		bpf_map__destroy(map->inner_map);
4988 		zfree(&map->inner_map);
4989 	}
4990 
4991 	return err;
4992 }
4993 
4994 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
4995 {
4996 	const struct bpf_map *targ_map;
4997 	unsigned int i;
4998 	int fd, err = 0;
4999 
5000 	for (i = 0; i < map->init_slots_sz; i++) {
5001 		if (!map->init_slots[i])
5002 			continue;
5003 
5004 		targ_map = map->init_slots[i];
5005 		fd = bpf_map__fd(targ_map);
5006 
5007 		if (obj->gen_loader) {
5008 			bpf_gen__populate_outer_map(obj->gen_loader,
5009 						    map - obj->maps, i,
5010 						    targ_map - obj->maps);
5011 		} else {
5012 			err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5013 		}
5014 		if (err) {
5015 			err = -errno;
5016 			pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5017 				map->name, i, targ_map->name, fd, err);
5018 			return err;
5019 		}
5020 		pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5021 			 map->name, i, targ_map->name, fd);
5022 	}
5023 
5024 	zfree(&map->init_slots);
5025 	map->init_slots_sz = 0;
5026 
5027 	return 0;
5028 }
5029 
5030 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5031 {
5032 	const struct bpf_program *targ_prog;
5033 	unsigned int i;
5034 	int fd, err;
5035 
5036 	if (obj->gen_loader)
5037 		return -ENOTSUP;
5038 
5039 	for (i = 0; i < map->init_slots_sz; i++) {
5040 		if (!map->init_slots[i])
5041 			continue;
5042 
5043 		targ_prog = map->init_slots[i];
5044 		fd = bpf_program__fd(targ_prog);
5045 
5046 		err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5047 		if (err) {
5048 			err = -errno;
5049 			pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5050 				map->name, i, targ_prog->name, fd, err);
5051 			return err;
5052 		}
5053 		pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5054 			 map->name, i, targ_prog->name, fd);
5055 	}
5056 
5057 	zfree(&map->init_slots);
5058 	map->init_slots_sz = 0;
5059 
5060 	return 0;
5061 }
5062 
5063 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5064 {
5065 	struct bpf_map *map;
5066 	int i, err;
5067 
5068 	for (i = 0; i < obj->nr_maps; i++) {
5069 		map = &obj->maps[i];
5070 
5071 		if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5072 			continue;
5073 
5074 		err = init_prog_array_slots(obj, map);
5075 		if (err < 0) {
5076 			zclose(map->fd);
5077 			return err;
5078 		}
5079 	}
5080 	return 0;
5081 }
5082 
5083 static int map_set_def_max_entries(struct bpf_map *map)
5084 {
5085 	if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5086 		int nr_cpus;
5087 
5088 		nr_cpus = libbpf_num_possible_cpus();
5089 		if (nr_cpus < 0) {
5090 			pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5091 				map->name, nr_cpus);
5092 			return nr_cpus;
5093 		}
5094 		pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5095 		map->def.max_entries = nr_cpus;
5096 	}
5097 
5098 	return 0;
5099 }
5100 
5101 static int
5102 bpf_object__create_maps(struct bpf_object *obj)
5103 {
5104 	struct bpf_map *map;
5105 	char *cp, errmsg[STRERR_BUFSIZE];
5106 	unsigned int i, j;
5107 	int err;
5108 	bool retried;
5109 
5110 	for (i = 0; i < obj->nr_maps; i++) {
5111 		map = &obj->maps[i];
5112 
5113 		/* To support old kernels, we skip creating global data maps
5114 		 * (.rodata, .data, .kconfig, etc); later on, during program
5115 		 * loading, if we detect that at least one of the to-be-loaded
5116 		 * programs is referencing any global data map, we'll error
5117 		 * out with program name and relocation index logged.
5118 		 * This approach allows to accommodate Clang emitting
5119 		 * unnecessary .rodata.str1.1 sections for string literals,
5120 		 * but also it allows to have CO-RE applications that use
5121 		 * global variables in some of BPF programs, but not others.
5122 		 * If those global variable-using programs are not loaded at
5123 		 * runtime due to bpf_program__set_autoload(prog, false),
5124 		 * bpf_object loading will succeed just fine even on old
5125 		 * kernels.
5126 		 */
5127 		if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5128 			map->autocreate = false;
5129 
5130 		if (!map->autocreate) {
5131 			pr_debug("map '%s': skipped auto-creating...\n", map->name);
5132 			continue;
5133 		}
5134 
5135 		err = map_set_def_max_entries(map);
5136 		if (err)
5137 			goto err_out;
5138 
5139 		retried = false;
5140 retry:
5141 		if (map->pin_path) {
5142 			err = bpf_object__reuse_map(map);
5143 			if (err) {
5144 				pr_warn("map '%s': error reusing pinned map\n",
5145 					map->name);
5146 				goto err_out;
5147 			}
5148 			if (retried && map->fd < 0) {
5149 				pr_warn("map '%s': cannot find pinned map\n",
5150 					map->name);
5151 				err = -ENOENT;
5152 				goto err_out;
5153 			}
5154 		}
5155 
5156 		if (map->fd >= 0) {
5157 			pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5158 				 map->name, map->fd);
5159 		} else {
5160 			err = bpf_object__create_map(obj, map, false);
5161 			if (err)
5162 				goto err_out;
5163 
5164 			pr_debug("map '%s': created successfully, fd=%d\n",
5165 				 map->name, map->fd);
5166 
5167 			if (bpf_map__is_internal(map)) {
5168 				err = bpf_object__populate_internal_map(obj, map);
5169 				if (err < 0) {
5170 					zclose(map->fd);
5171 					goto err_out;
5172 				}
5173 			}
5174 
5175 			if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5176 				err = init_map_in_map_slots(obj, map);
5177 				if (err < 0) {
5178 					zclose(map->fd);
5179 					goto err_out;
5180 				}
5181 			}
5182 		}
5183 
5184 		if (map->pin_path && !map->pinned) {
5185 			err = bpf_map__pin(map, NULL);
5186 			if (err) {
5187 				zclose(map->fd);
5188 				if (!retried && err == -EEXIST) {
5189 					retried = true;
5190 					goto retry;
5191 				}
5192 				pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5193 					map->name, map->pin_path, err);
5194 				goto err_out;
5195 			}
5196 		}
5197 	}
5198 
5199 	return 0;
5200 
5201 err_out:
5202 	cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5203 	pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5204 	pr_perm_msg(err);
5205 	for (j = 0; j < i; j++)
5206 		zclose(obj->maps[j].fd);
5207 	return err;
5208 }
5209 
5210 static bool bpf_core_is_flavor_sep(const char *s)
5211 {
5212 	/* check X___Y name pattern, where X and Y are not underscores */
5213 	return s[0] != '_' &&				      /* X */
5214 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
5215 	       s[4] != '_';				      /* Y */
5216 }
5217 
5218 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5219  * before last triple underscore. Struct name part after last triple
5220  * underscore is ignored by BPF CO-RE relocation during relocation matching.
5221  */
5222 size_t bpf_core_essential_name_len(const char *name)
5223 {
5224 	size_t n = strlen(name);
5225 	int i;
5226 
5227 	for (i = n - 5; i >= 0; i--) {
5228 		if (bpf_core_is_flavor_sep(name + i))
5229 			return i + 1;
5230 	}
5231 	return n;
5232 }
5233 
5234 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5235 {
5236 	if (!cands)
5237 		return;
5238 
5239 	free(cands->cands);
5240 	free(cands);
5241 }
5242 
5243 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5244 		       size_t local_essent_len,
5245 		       const struct btf *targ_btf,
5246 		       const char *targ_btf_name,
5247 		       int targ_start_id,
5248 		       struct bpf_core_cand_list *cands)
5249 {
5250 	struct bpf_core_cand *new_cands, *cand;
5251 	const struct btf_type *t, *local_t;
5252 	const char *targ_name, *local_name;
5253 	size_t targ_essent_len;
5254 	int n, i;
5255 
5256 	local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5257 	local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5258 
5259 	n = btf__type_cnt(targ_btf);
5260 	for (i = targ_start_id; i < n; i++) {
5261 		t = btf__type_by_id(targ_btf, i);
5262 		if (!btf_kind_core_compat(t, local_t))
5263 			continue;
5264 
5265 		targ_name = btf__name_by_offset(targ_btf, t->name_off);
5266 		if (str_is_empty(targ_name))
5267 			continue;
5268 
5269 		targ_essent_len = bpf_core_essential_name_len(targ_name);
5270 		if (targ_essent_len != local_essent_len)
5271 			continue;
5272 
5273 		if (strncmp(local_name, targ_name, local_essent_len) != 0)
5274 			continue;
5275 
5276 		pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5277 			 local_cand->id, btf_kind_str(local_t),
5278 			 local_name, i, btf_kind_str(t), targ_name,
5279 			 targ_btf_name);
5280 		new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5281 					      sizeof(*cands->cands));
5282 		if (!new_cands)
5283 			return -ENOMEM;
5284 
5285 		cand = &new_cands[cands->len];
5286 		cand->btf = targ_btf;
5287 		cand->id = i;
5288 
5289 		cands->cands = new_cands;
5290 		cands->len++;
5291 	}
5292 	return 0;
5293 }
5294 
5295 static int load_module_btfs(struct bpf_object *obj)
5296 {
5297 	struct bpf_btf_info info;
5298 	struct module_btf *mod_btf;
5299 	struct btf *btf;
5300 	char name[64];
5301 	__u32 id = 0, len;
5302 	int err, fd;
5303 
5304 	if (obj->btf_modules_loaded)
5305 		return 0;
5306 
5307 	if (obj->gen_loader)
5308 		return 0;
5309 
5310 	/* don't do this again, even if we find no module BTFs */
5311 	obj->btf_modules_loaded = true;
5312 
5313 	/* kernel too old to support module BTFs */
5314 	if (!kernel_supports(obj, FEAT_MODULE_BTF))
5315 		return 0;
5316 
5317 	while (true) {
5318 		err = bpf_btf_get_next_id(id, &id);
5319 		if (err && errno == ENOENT)
5320 			return 0;
5321 		if (err) {
5322 			err = -errno;
5323 			pr_warn("failed to iterate BTF objects: %d\n", err);
5324 			return err;
5325 		}
5326 
5327 		fd = bpf_btf_get_fd_by_id(id);
5328 		if (fd < 0) {
5329 			if (errno == ENOENT)
5330 				continue; /* expected race: BTF was unloaded */
5331 			err = -errno;
5332 			pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5333 			return err;
5334 		}
5335 
5336 		len = sizeof(info);
5337 		memset(&info, 0, sizeof(info));
5338 		info.name = ptr_to_u64(name);
5339 		info.name_len = sizeof(name);
5340 
5341 		err = bpf_obj_get_info_by_fd(fd, &info, &len);
5342 		if (err) {
5343 			err = -errno;
5344 			pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5345 			goto err_out;
5346 		}
5347 
5348 		/* ignore non-module BTFs */
5349 		if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5350 			close(fd);
5351 			continue;
5352 		}
5353 
5354 		btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5355 		err = libbpf_get_error(btf);
5356 		if (err) {
5357 			pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5358 				name, id, err);
5359 			goto err_out;
5360 		}
5361 
5362 		err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5363 				        sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5364 		if (err)
5365 			goto err_out;
5366 
5367 		mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5368 
5369 		mod_btf->btf = btf;
5370 		mod_btf->id = id;
5371 		mod_btf->fd = fd;
5372 		mod_btf->name = strdup(name);
5373 		if (!mod_btf->name) {
5374 			err = -ENOMEM;
5375 			goto err_out;
5376 		}
5377 		continue;
5378 
5379 err_out:
5380 		close(fd);
5381 		return err;
5382 	}
5383 
5384 	return 0;
5385 }
5386 
5387 static struct bpf_core_cand_list *
5388 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5389 {
5390 	struct bpf_core_cand local_cand = {};
5391 	struct bpf_core_cand_list *cands;
5392 	const struct btf *main_btf;
5393 	const struct btf_type *local_t;
5394 	const char *local_name;
5395 	size_t local_essent_len;
5396 	int err, i;
5397 
5398 	local_cand.btf = local_btf;
5399 	local_cand.id = local_type_id;
5400 	local_t = btf__type_by_id(local_btf, local_type_id);
5401 	if (!local_t)
5402 		return ERR_PTR(-EINVAL);
5403 
5404 	local_name = btf__name_by_offset(local_btf, local_t->name_off);
5405 	if (str_is_empty(local_name))
5406 		return ERR_PTR(-EINVAL);
5407 	local_essent_len = bpf_core_essential_name_len(local_name);
5408 
5409 	cands = calloc(1, sizeof(*cands));
5410 	if (!cands)
5411 		return ERR_PTR(-ENOMEM);
5412 
5413 	/* Attempt to find target candidates in vmlinux BTF first */
5414 	main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5415 	err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5416 	if (err)
5417 		goto err_out;
5418 
5419 	/* if vmlinux BTF has any candidate, don't got for module BTFs */
5420 	if (cands->len)
5421 		return cands;
5422 
5423 	/* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5424 	if (obj->btf_vmlinux_override)
5425 		return cands;
5426 
5427 	/* now look through module BTFs, trying to still find candidates */
5428 	err = load_module_btfs(obj);
5429 	if (err)
5430 		goto err_out;
5431 
5432 	for (i = 0; i < obj->btf_module_cnt; i++) {
5433 		err = bpf_core_add_cands(&local_cand, local_essent_len,
5434 					 obj->btf_modules[i].btf,
5435 					 obj->btf_modules[i].name,
5436 					 btf__type_cnt(obj->btf_vmlinux),
5437 					 cands);
5438 		if (err)
5439 			goto err_out;
5440 	}
5441 
5442 	return cands;
5443 err_out:
5444 	bpf_core_free_cands(cands);
5445 	return ERR_PTR(err);
5446 }
5447 
5448 /* Check local and target types for compatibility. This check is used for
5449  * type-based CO-RE relocations and follow slightly different rules than
5450  * field-based relocations. This function assumes that root types were already
5451  * checked for name match. Beyond that initial root-level name check, names
5452  * are completely ignored. Compatibility rules are as follows:
5453  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5454  *     kind should match for local and target types (i.e., STRUCT is not
5455  *     compatible with UNION);
5456  *   - for ENUMs, the size is ignored;
5457  *   - for INT, size and signedness are ignored;
5458  *   - for ARRAY, dimensionality is ignored, element types are checked for
5459  *     compatibility recursively;
5460  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
5461  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5462  *   - FUNC_PROTOs are compatible if they have compatible signature: same
5463  *     number of input args and compatible return and argument types.
5464  * These rules are not set in stone and probably will be adjusted as we get
5465  * more experience with using BPF CO-RE relocations.
5466  */
5467 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5468 			      const struct btf *targ_btf, __u32 targ_id)
5469 {
5470 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5471 }
5472 
5473 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5474 			 const struct btf *targ_btf, __u32 targ_id)
5475 {
5476 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5477 }
5478 
5479 static size_t bpf_core_hash_fn(const void *key, void *ctx)
5480 {
5481 	return (size_t)key;
5482 }
5483 
5484 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx)
5485 {
5486 	return k1 == k2;
5487 }
5488 
5489 static void *u32_as_hash_key(__u32 x)
5490 {
5491 	return (void *)(uintptr_t)x;
5492 }
5493 
5494 static int record_relo_core(struct bpf_program *prog,
5495 			    const struct bpf_core_relo *core_relo, int insn_idx)
5496 {
5497 	struct reloc_desc *relos, *relo;
5498 
5499 	relos = libbpf_reallocarray(prog->reloc_desc,
5500 				    prog->nr_reloc + 1, sizeof(*relos));
5501 	if (!relos)
5502 		return -ENOMEM;
5503 	relo = &relos[prog->nr_reloc];
5504 	relo->type = RELO_CORE;
5505 	relo->insn_idx = insn_idx;
5506 	relo->core_relo = core_relo;
5507 	prog->reloc_desc = relos;
5508 	prog->nr_reloc++;
5509 	return 0;
5510 }
5511 
5512 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5513 {
5514 	struct reloc_desc *relo;
5515 	int i;
5516 
5517 	for (i = 0; i < prog->nr_reloc; i++) {
5518 		relo = &prog->reloc_desc[i];
5519 		if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5520 			continue;
5521 
5522 		return relo->core_relo;
5523 	}
5524 
5525 	return NULL;
5526 }
5527 
5528 static int bpf_core_resolve_relo(struct bpf_program *prog,
5529 				 const struct bpf_core_relo *relo,
5530 				 int relo_idx,
5531 				 const struct btf *local_btf,
5532 				 struct hashmap *cand_cache,
5533 				 struct bpf_core_relo_res *targ_res)
5534 {
5535 	struct bpf_core_spec specs_scratch[3] = {};
5536 	const void *type_key = u32_as_hash_key(relo->type_id);
5537 	struct bpf_core_cand_list *cands = NULL;
5538 	const char *prog_name = prog->name;
5539 	const struct btf_type *local_type;
5540 	const char *local_name;
5541 	__u32 local_id = relo->type_id;
5542 	int err;
5543 
5544 	local_type = btf__type_by_id(local_btf, local_id);
5545 	if (!local_type)
5546 		return -EINVAL;
5547 
5548 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
5549 	if (!local_name)
5550 		return -EINVAL;
5551 
5552 	if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5553 	    !hashmap__find(cand_cache, type_key, (void **)&cands)) {
5554 		cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5555 		if (IS_ERR(cands)) {
5556 			pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5557 				prog_name, relo_idx, local_id, btf_kind_str(local_type),
5558 				local_name, PTR_ERR(cands));
5559 			return PTR_ERR(cands);
5560 		}
5561 		err = hashmap__set(cand_cache, type_key, cands, NULL, NULL);
5562 		if (err) {
5563 			bpf_core_free_cands(cands);
5564 			return err;
5565 		}
5566 	}
5567 
5568 	return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5569 				       targ_res);
5570 }
5571 
5572 static int
5573 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5574 {
5575 	const struct btf_ext_info_sec *sec;
5576 	struct bpf_core_relo_res targ_res;
5577 	const struct bpf_core_relo *rec;
5578 	const struct btf_ext_info *seg;
5579 	struct hashmap_entry *entry;
5580 	struct hashmap *cand_cache = NULL;
5581 	struct bpf_program *prog;
5582 	struct bpf_insn *insn;
5583 	const char *sec_name;
5584 	int i, err = 0, insn_idx, sec_idx, sec_num;
5585 
5586 	if (obj->btf_ext->core_relo_info.len == 0)
5587 		return 0;
5588 
5589 	if (targ_btf_path) {
5590 		obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5591 		err = libbpf_get_error(obj->btf_vmlinux_override);
5592 		if (err) {
5593 			pr_warn("failed to parse target BTF: %d\n", err);
5594 			return err;
5595 		}
5596 	}
5597 
5598 	cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5599 	if (IS_ERR(cand_cache)) {
5600 		err = PTR_ERR(cand_cache);
5601 		goto out;
5602 	}
5603 
5604 	seg = &obj->btf_ext->core_relo_info;
5605 	sec_num = 0;
5606 	for_each_btf_ext_sec(seg, sec) {
5607 		sec_idx = seg->sec_idxs[sec_num];
5608 		sec_num++;
5609 
5610 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5611 		if (str_is_empty(sec_name)) {
5612 			err = -EINVAL;
5613 			goto out;
5614 		}
5615 
5616 		pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5617 
5618 		for_each_btf_ext_rec(seg, sec, i, rec) {
5619 			if (rec->insn_off % BPF_INSN_SZ)
5620 				return -EINVAL;
5621 			insn_idx = rec->insn_off / BPF_INSN_SZ;
5622 			prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5623 			if (!prog) {
5624 				/* When __weak subprog is "overridden" by another instance
5625 				 * of the subprog from a different object file, linker still
5626 				 * appends all the .BTF.ext info that used to belong to that
5627 				 * eliminated subprogram.
5628 				 * This is similar to what x86-64 linker does for relocations.
5629 				 * So just ignore such relocations just like we ignore
5630 				 * subprog instructions when discovering subprograms.
5631 				 */
5632 				pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5633 					 sec_name, i, insn_idx);
5634 				continue;
5635 			}
5636 			/* no need to apply CO-RE relocation if the program is
5637 			 * not going to be loaded
5638 			 */
5639 			if (!prog->autoload)
5640 				continue;
5641 
5642 			/* adjust insn_idx from section frame of reference to the local
5643 			 * program's frame of reference; (sub-)program code is not yet
5644 			 * relocated, so it's enough to just subtract in-section offset
5645 			 */
5646 			insn_idx = insn_idx - prog->sec_insn_off;
5647 			if (insn_idx >= prog->insns_cnt)
5648 				return -EINVAL;
5649 			insn = &prog->insns[insn_idx];
5650 
5651 			err = record_relo_core(prog, rec, insn_idx);
5652 			if (err) {
5653 				pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5654 					prog->name, i, err);
5655 				goto out;
5656 			}
5657 
5658 			if (prog->obj->gen_loader)
5659 				continue;
5660 
5661 			err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5662 			if (err) {
5663 				pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5664 					prog->name, i, err);
5665 				goto out;
5666 			}
5667 
5668 			err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5669 			if (err) {
5670 				pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5671 					prog->name, i, insn_idx, err);
5672 				goto out;
5673 			}
5674 		}
5675 	}
5676 
5677 out:
5678 	/* obj->btf_vmlinux and module BTFs are freed after object load */
5679 	btf__free(obj->btf_vmlinux_override);
5680 	obj->btf_vmlinux_override = NULL;
5681 
5682 	if (!IS_ERR_OR_NULL(cand_cache)) {
5683 		hashmap__for_each_entry(cand_cache, entry, i) {
5684 			bpf_core_free_cands(entry->value);
5685 		}
5686 		hashmap__free(cand_cache);
5687 	}
5688 	return err;
5689 }
5690 
5691 /* base map load ldimm64 special constant, used also for log fixup logic */
5692 #define MAP_LDIMM64_POISON_BASE 2001000000
5693 #define MAP_LDIMM64_POISON_PFX "200100"
5694 
5695 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
5696 			       int insn_idx, struct bpf_insn *insn,
5697 			       int map_idx, const struct bpf_map *map)
5698 {
5699 	int i;
5700 
5701 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
5702 		 prog->name, relo_idx, insn_idx, map_idx, map->name);
5703 
5704 	/* we turn single ldimm64 into two identical invalid calls */
5705 	for (i = 0; i < 2; i++) {
5706 		insn->code = BPF_JMP | BPF_CALL;
5707 		insn->dst_reg = 0;
5708 		insn->src_reg = 0;
5709 		insn->off = 0;
5710 		/* if this instruction is reachable (not a dead code),
5711 		 * verifier will complain with something like:
5712 		 * invalid func unknown#2001000123
5713 		 * where lower 123 is map index into obj->maps[] array
5714 		 */
5715 		insn->imm = MAP_LDIMM64_POISON_BASE + map_idx;
5716 
5717 		insn++;
5718 	}
5719 }
5720 
5721 /* Relocate data references within program code:
5722  *  - map references;
5723  *  - global variable references;
5724  *  - extern references.
5725  */
5726 static int
5727 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
5728 {
5729 	int i;
5730 
5731 	for (i = 0; i < prog->nr_reloc; i++) {
5732 		struct reloc_desc *relo = &prog->reloc_desc[i];
5733 		struct bpf_insn *insn = &prog->insns[relo->insn_idx];
5734 		const struct bpf_map *map;
5735 		struct extern_desc *ext;
5736 
5737 		switch (relo->type) {
5738 		case RELO_LD64:
5739 			map = &obj->maps[relo->map_idx];
5740 			if (obj->gen_loader) {
5741 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
5742 				insn[0].imm = relo->map_idx;
5743 			} else if (map->autocreate) {
5744 				insn[0].src_reg = BPF_PSEUDO_MAP_FD;
5745 				insn[0].imm = map->fd;
5746 			} else {
5747 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5748 						   relo->map_idx, map);
5749 			}
5750 			break;
5751 		case RELO_DATA:
5752 			map = &obj->maps[relo->map_idx];
5753 			insn[1].imm = insn[0].imm + relo->sym_off;
5754 			if (obj->gen_loader) {
5755 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5756 				insn[0].imm = relo->map_idx;
5757 			} else if (map->autocreate) {
5758 				insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5759 				insn[0].imm = map->fd;
5760 			} else {
5761 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5762 						   relo->map_idx, map);
5763 			}
5764 			break;
5765 		case RELO_EXTERN_VAR:
5766 			ext = &obj->externs[relo->sym_off];
5767 			if (ext->type == EXT_KCFG) {
5768 				if (obj->gen_loader) {
5769 					insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5770 					insn[0].imm = obj->kconfig_map_idx;
5771 				} else {
5772 					insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5773 					insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
5774 				}
5775 				insn[1].imm = ext->kcfg.data_off;
5776 			} else /* EXT_KSYM */ {
5777 				if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
5778 					insn[0].src_reg = BPF_PSEUDO_BTF_ID;
5779 					insn[0].imm = ext->ksym.kernel_btf_id;
5780 					insn[1].imm = ext->ksym.kernel_btf_obj_fd;
5781 				} else { /* typeless ksyms or unresolved typed ksyms */
5782 					insn[0].imm = (__u32)ext->ksym.addr;
5783 					insn[1].imm = ext->ksym.addr >> 32;
5784 				}
5785 			}
5786 			break;
5787 		case RELO_EXTERN_FUNC:
5788 			ext = &obj->externs[relo->sym_off];
5789 			insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
5790 			if (ext->is_set) {
5791 				insn[0].imm = ext->ksym.kernel_btf_id;
5792 				insn[0].off = ext->ksym.btf_fd_idx;
5793 			} else { /* unresolved weak kfunc */
5794 				insn[0].imm = 0;
5795 				insn[0].off = 0;
5796 			}
5797 			break;
5798 		case RELO_SUBPROG_ADDR:
5799 			if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
5800 				pr_warn("prog '%s': relo #%d: bad insn\n",
5801 					prog->name, i);
5802 				return -EINVAL;
5803 			}
5804 			/* handled already */
5805 			break;
5806 		case RELO_CALL:
5807 			/* handled already */
5808 			break;
5809 		case RELO_CORE:
5810 			/* will be handled by bpf_program_record_relos() */
5811 			break;
5812 		default:
5813 			pr_warn("prog '%s': relo #%d: bad relo type %d\n",
5814 				prog->name, i, relo->type);
5815 			return -EINVAL;
5816 		}
5817 	}
5818 
5819 	return 0;
5820 }
5821 
5822 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
5823 				    const struct bpf_program *prog,
5824 				    const struct btf_ext_info *ext_info,
5825 				    void **prog_info, __u32 *prog_rec_cnt,
5826 				    __u32 *prog_rec_sz)
5827 {
5828 	void *copy_start = NULL, *copy_end = NULL;
5829 	void *rec, *rec_end, *new_prog_info;
5830 	const struct btf_ext_info_sec *sec;
5831 	size_t old_sz, new_sz;
5832 	int i, sec_num, sec_idx, off_adj;
5833 
5834 	sec_num = 0;
5835 	for_each_btf_ext_sec(ext_info, sec) {
5836 		sec_idx = ext_info->sec_idxs[sec_num];
5837 		sec_num++;
5838 		if (prog->sec_idx != sec_idx)
5839 			continue;
5840 
5841 		for_each_btf_ext_rec(ext_info, sec, i, rec) {
5842 			__u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
5843 
5844 			if (insn_off < prog->sec_insn_off)
5845 				continue;
5846 			if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
5847 				break;
5848 
5849 			if (!copy_start)
5850 				copy_start = rec;
5851 			copy_end = rec + ext_info->rec_size;
5852 		}
5853 
5854 		if (!copy_start)
5855 			return -ENOENT;
5856 
5857 		/* append func/line info of a given (sub-)program to the main
5858 		 * program func/line info
5859 		 */
5860 		old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
5861 		new_sz = old_sz + (copy_end - copy_start);
5862 		new_prog_info = realloc(*prog_info, new_sz);
5863 		if (!new_prog_info)
5864 			return -ENOMEM;
5865 		*prog_info = new_prog_info;
5866 		*prog_rec_cnt = new_sz / ext_info->rec_size;
5867 		memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
5868 
5869 		/* Kernel instruction offsets are in units of 8-byte
5870 		 * instructions, while .BTF.ext instruction offsets generated
5871 		 * by Clang are in units of bytes. So convert Clang offsets
5872 		 * into kernel offsets and adjust offset according to program
5873 		 * relocated position.
5874 		 */
5875 		off_adj = prog->sub_insn_off - prog->sec_insn_off;
5876 		rec = new_prog_info + old_sz;
5877 		rec_end = new_prog_info + new_sz;
5878 		for (; rec < rec_end; rec += ext_info->rec_size) {
5879 			__u32 *insn_off = rec;
5880 
5881 			*insn_off = *insn_off / BPF_INSN_SZ + off_adj;
5882 		}
5883 		*prog_rec_sz = ext_info->rec_size;
5884 		return 0;
5885 	}
5886 
5887 	return -ENOENT;
5888 }
5889 
5890 static int
5891 reloc_prog_func_and_line_info(const struct bpf_object *obj,
5892 			      struct bpf_program *main_prog,
5893 			      const struct bpf_program *prog)
5894 {
5895 	int err;
5896 
5897 	/* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
5898 	 * supprot func/line info
5899 	 */
5900 	if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
5901 		return 0;
5902 
5903 	/* only attempt func info relocation if main program's func_info
5904 	 * relocation was successful
5905 	 */
5906 	if (main_prog != prog && !main_prog->func_info)
5907 		goto line_info;
5908 
5909 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
5910 				       &main_prog->func_info,
5911 				       &main_prog->func_info_cnt,
5912 				       &main_prog->func_info_rec_size);
5913 	if (err) {
5914 		if (err != -ENOENT) {
5915 			pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
5916 				prog->name, err);
5917 			return err;
5918 		}
5919 		if (main_prog->func_info) {
5920 			/*
5921 			 * Some info has already been found but has problem
5922 			 * in the last btf_ext reloc. Must have to error out.
5923 			 */
5924 			pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
5925 			return err;
5926 		}
5927 		/* Have problem loading the very first info. Ignore the rest. */
5928 		pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
5929 			prog->name);
5930 	}
5931 
5932 line_info:
5933 	/* don't relocate line info if main program's relocation failed */
5934 	if (main_prog != prog && !main_prog->line_info)
5935 		return 0;
5936 
5937 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
5938 				       &main_prog->line_info,
5939 				       &main_prog->line_info_cnt,
5940 				       &main_prog->line_info_rec_size);
5941 	if (err) {
5942 		if (err != -ENOENT) {
5943 			pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
5944 				prog->name, err);
5945 			return err;
5946 		}
5947 		if (main_prog->line_info) {
5948 			/*
5949 			 * Some info has already been found but has problem
5950 			 * in the last btf_ext reloc. Must have to error out.
5951 			 */
5952 			pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
5953 			return err;
5954 		}
5955 		/* Have problem loading the very first info. Ignore the rest. */
5956 		pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
5957 			prog->name);
5958 	}
5959 	return 0;
5960 }
5961 
5962 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
5963 {
5964 	size_t insn_idx = *(const size_t *)key;
5965 	const struct reloc_desc *relo = elem;
5966 
5967 	if (insn_idx == relo->insn_idx)
5968 		return 0;
5969 	return insn_idx < relo->insn_idx ? -1 : 1;
5970 }
5971 
5972 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
5973 {
5974 	if (!prog->nr_reloc)
5975 		return NULL;
5976 	return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
5977 		       sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
5978 }
5979 
5980 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
5981 {
5982 	int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
5983 	struct reloc_desc *relos;
5984 	int i;
5985 
5986 	if (main_prog == subprog)
5987 		return 0;
5988 	relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
5989 	if (!relos)
5990 		return -ENOMEM;
5991 	if (subprog->nr_reloc)
5992 		memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
5993 		       sizeof(*relos) * subprog->nr_reloc);
5994 
5995 	for (i = main_prog->nr_reloc; i < new_cnt; i++)
5996 		relos[i].insn_idx += subprog->sub_insn_off;
5997 	/* After insn_idx adjustment the 'relos' array is still sorted
5998 	 * by insn_idx and doesn't break bsearch.
5999 	 */
6000 	main_prog->reloc_desc = relos;
6001 	main_prog->nr_reloc = new_cnt;
6002 	return 0;
6003 }
6004 
6005 static int
6006 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6007 		       struct bpf_program *prog)
6008 {
6009 	size_t sub_insn_idx, insn_idx, new_cnt;
6010 	struct bpf_program *subprog;
6011 	struct bpf_insn *insns, *insn;
6012 	struct reloc_desc *relo;
6013 	int err;
6014 
6015 	err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6016 	if (err)
6017 		return err;
6018 
6019 	for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6020 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6021 		if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6022 			continue;
6023 
6024 		relo = find_prog_insn_relo(prog, insn_idx);
6025 		if (relo && relo->type == RELO_EXTERN_FUNC)
6026 			/* kfunc relocations will be handled later
6027 			 * in bpf_object__relocate_data()
6028 			 */
6029 			continue;
6030 		if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6031 			pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6032 				prog->name, insn_idx, relo->type);
6033 			return -LIBBPF_ERRNO__RELOC;
6034 		}
6035 		if (relo) {
6036 			/* sub-program instruction index is a combination of
6037 			 * an offset of a symbol pointed to by relocation and
6038 			 * call instruction's imm field; for global functions,
6039 			 * call always has imm = -1, but for static functions
6040 			 * relocation is against STT_SECTION and insn->imm
6041 			 * points to a start of a static function
6042 			 *
6043 			 * for subprog addr relocation, the relo->sym_off + insn->imm is
6044 			 * the byte offset in the corresponding section.
6045 			 */
6046 			if (relo->type == RELO_CALL)
6047 				sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6048 			else
6049 				sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6050 		} else if (insn_is_pseudo_func(insn)) {
6051 			/*
6052 			 * RELO_SUBPROG_ADDR relo is always emitted even if both
6053 			 * functions are in the same section, so it shouldn't reach here.
6054 			 */
6055 			pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6056 				prog->name, insn_idx);
6057 			return -LIBBPF_ERRNO__RELOC;
6058 		} else {
6059 			/* if subprogram call is to a static function within
6060 			 * the same ELF section, there won't be any relocation
6061 			 * emitted, but it also means there is no additional
6062 			 * offset necessary, insns->imm is relative to
6063 			 * instruction's original position within the section
6064 			 */
6065 			sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6066 		}
6067 
6068 		/* we enforce that sub-programs should be in .text section */
6069 		subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6070 		if (!subprog) {
6071 			pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6072 				prog->name);
6073 			return -LIBBPF_ERRNO__RELOC;
6074 		}
6075 
6076 		/* if it's the first call instruction calling into this
6077 		 * subprogram (meaning this subprog hasn't been processed
6078 		 * yet) within the context of current main program:
6079 		 *   - append it at the end of main program's instructions blog;
6080 		 *   - process is recursively, while current program is put on hold;
6081 		 *   - if that subprogram calls some other not yet processes
6082 		 *   subprogram, same thing will happen recursively until
6083 		 *   there are no more unprocesses subprograms left to append
6084 		 *   and relocate.
6085 		 */
6086 		if (subprog->sub_insn_off == 0) {
6087 			subprog->sub_insn_off = main_prog->insns_cnt;
6088 
6089 			new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6090 			insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6091 			if (!insns) {
6092 				pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6093 				return -ENOMEM;
6094 			}
6095 			main_prog->insns = insns;
6096 			main_prog->insns_cnt = new_cnt;
6097 
6098 			memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6099 			       subprog->insns_cnt * sizeof(*insns));
6100 
6101 			pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6102 				 main_prog->name, subprog->insns_cnt, subprog->name);
6103 
6104 			/* The subprog insns are now appended. Append its relos too. */
6105 			err = append_subprog_relos(main_prog, subprog);
6106 			if (err)
6107 				return err;
6108 			err = bpf_object__reloc_code(obj, main_prog, subprog);
6109 			if (err)
6110 				return err;
6111 		}
6112 
6113 		/* main_prog->insns memory could have been re-allocated, so
6114 		 * calculate pointer again
6115 		 */
6116 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6117 		/* calculate correct instruction position within current main
6118 		 * prog; each main prog can have a different set of
6119 		 * subprograms appended (potentially in different order as
6120 		 * well), so position of any subprog can be different for
6121 		 * different main programs */
6122 		insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6123 
6124 		pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6125 			 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6126 	}
6127 
6128 	return 0;
6129 }
6130 
6131 /*
6132  * Relocate sub-program calls.
6133  *
6134  * Algorithm operates as follows. Each entry-point BPF program (referred to as
6135  * main prog) is processed separately. For each subprog (non-entry functions,
6136  * that can be called from either entry progs or other subprogs) gets their
6137  * sub_insn_off reset to zero. This serves as indicator that this subprogram
6138  * hasn't been yet appended and relocated within current main prog. Once its
6139  * relocated, sub_insn_off will point at the position within current main prog
6140  * where given subprog was appended. This will further be used to relocate all
6141  * the call instructions jumping into this subprog.
6142  *
6143  * We start with main program and process all call instructions. If the call
6144  * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6145  * is zero), subprog instructions are appended at the end of main program's
6146  * instruction array. Then main program is "put on hold" while we recursively
6147  * process newly appended subprogram. If that subprogram calls into another
6148  * subprogram that hasn't been appended, new subprogram is appended again to
6149  * the *main* prog's instructions (subprog's instructions are always left
6150  * untouched, as they need to be in unmodified state for subsequent main progs
6151  * and subprog instructions are always sent only as part of a main prog) and
6152  * the process continues recursively. Once all the subprogs called from a main
6153  * prog or any of its subprogs are appended (and relocated), all their
6154  * positions within finalized instructions array are known, so it's easy to
6155  * rewrite call instructions with correct relative offsets, corresponding to
6156  * desired target subprog.
6157  *
6158  * Its important to realize that some subprogs might not be called from some
6159  * main prog and any of its called/used subprogs. Those will keep their
6160  * subprog->sub_insn_off as zero at all times and won't be appended to current
6161  * main prog and won't be relocated within the context of current main prog.
6162  * They might still be used from other main progs later.
6163  *
6164  * Visually this process can be shown as below. Suppose we have two main
6165  * programs mainA and mainB and BPF object contains three subprogs: subA,
6166  * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6167  * subC both call subB:
6168  *
6169  *        +--------+ +-------+
6170  *        |        v v       |
6171  *     +--+---+ +--+-+-+ +---+--+
6172  *     | subA | | subB | | subC |
6173  *     +--+---+ +------+ +---+--+
6174  *        ^                  ^
6175  *        |                  |
6176  *    +---+-------+   +------+----+
6177  *    |   mainA   |   |   mainB   |
6178  *    +-----------+   +-----------+
6179  *
6180  * We'll start relocating mainA, will find subA, append it and start
6181  * processing sub A recursively:
6182  *
6183  *    +-----------+------+
6184  *    |   mainA   | subA |
6185  *    +-----------+------+
6186  *
6187  * At this point we notice that subB is used from subA, so we append it and
6188  * relocate (there are no further subcalls from subB):
6189  *
6190  *    +-----------+------+------+
6191  *    |   mainA   | subA | subB |
6192  *    +-----------+------+------+
6193  *
6194  * At this point, we relocate subA calls, then go one level up and finish with
6195  * relocatin mainA calls. mainA is done.
6196  *
6197  * For mainB process is similar but results in different order. We start with
6198  * mainB and skip subA and subB, as mainB never calls them (at least
6199  * directly), but we see subC is needed, so we append and start processing it:
6200  *
6201  *    +-----------+------+
6202  *    |   mainB   | subC |
6203  *    +-----------+------+
6204  * Now we see subC needs subB, so we go back to it, append and relocate it:
6205  *
6206  *    +-----------+------+------+
6207  *    |   mainB   | subC | subB |
6208  *    +-----------+------+------+
6209  *
6210  * At this point we unwind recursion, relocate calls in subC, then in mainB.
6211  */
6212 static int
6213 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6214 {
6215 	struct bpf_program *subprog;
6216 	int i, err;
6217 
6218 	/* mark all subprogs as not relocated (yet) within the context of
6219 	 * current main program
6220 	 */
6221 	for (i = 0; i < obj->nr_programs; i++) {
6222 		subprog = &obj->programs[i];
6223 		if (!prog_is_subprog(obj, subprog))
6224 			continue;
6225 
6226 		subprog->sub_insn_off = 0;
6227 	}
6228 
6229 	err = bpf_object__reloc_code(obj, prog, prog);
6230 	if (err)
6231 		return err;
6232 
6233 	return 0;
6234 }
6235 
6236 static void
6237 bpf_object__free_relocs(struct bpf_object *obj)
6238 {
6239 	struct bpf_program *prog;
6240 	int i;
6241 
6242 	/* free up relocation descriptors */
6243 	for (i = 0; i < obj->nr_programs; i++) {
6244 		prog = &obj->programs[i];
6245 		zfree(&prog->reloc_desc);
6246 		prog->nr_reloc = 0;
6247 	}
6248 }
6249 
6250 static int cmp_relocs(const void *_a, const void *_b)
6251 {
6252 	const struct reloc_desc *a = _a;
6253 	const struct reloc_desc *b = _b;
6254 
6255 	if (a->insn_idx != b->insn_idx)
6256 		return a->insn_idx < b->insn_idx ? -1 : 1;
6257 
6258 	/* no two relocations should have the same insn_idx, but ... */
6259 	if (a->type != b->type)
6260 		return a->type < b->type ? -1 : 1;
6261 
6262 	return 0;
6263 }
6264 
6265 static void bpf_object__sort_relos(struct bpf_object *obj)
6266 {
6267 	int i;
6268 
6269 	for (i = 0; i < obj->nr_programs; i++) {
6270 		struct bpf_program *p = &obj->programs[i];
6271 
6272 		if (!p->nr_reloc)
6273 			continue;
6274 
6275 		qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6276 	}
6277 }
6278 
6279 static int
6280 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6281 {
6282 	struct bpf_program *prog;
6283 	size_t i, j;
6284 	int err;
6285 
6286 	if (obj->btf_ext) {
6287 		err = bpf_object__relocate_core(obj, targ_btf_path);
6288 		if (err) {
6289 			pr_warn("failed to perform CO-RE relocations: %d\n",
6290 				err);
6291 			return err;
6292 		}
6293 		bpf_object__sort_relos(obj);
6294 	}
6295 
6296 	/* Before relocating calls pre-process relocations and mark
6297 	 * few ld_imm64 instructions that points to subprogs.
6298 	 * Otherwise bpf_object__reloc_code() later would have to consider
6299 	 * all ld_imm64 insns as relocation candidates. That would
6300 	 * reduce relocation speed, since amount of find_prog_insn_relo()
6301 	 * would increase and most of them will fail to find a relo.
6302 	 */
6303 	for (i = 0; i < obj->nr_programs; i++) {
6304 		prog = &obj->programs[i];
6305 		for (j = 0; j < prog->nr_reloc; j++) {
6306 			struct reloc_desc *relo = &prog->reloc_desc[j];
6307 			struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6308 
6309 			/* mark the insn, so it's recognized by insn_is_pseudo_func() */
6310 			if (relo->type == RELO_SUBPROG_ADDR)
6311 				insn[0].src_reg = BPF_PSEUDO_FUNC;
6312 		}
6313 	}
6314 
6315 	/* relocate subprogram calls and append used subprograms to main
6316 	 * programs; each copy of subprogram code needs to be relocated
6317 	 * differently for each main program, because its code location might
6318 	 * have changed.
6319 	 * Append subprog relos to main programs to allow data relos to be
6320 	 * processed after text is completely relocated.
6321 	 */
6322 	for (i = 0; i < obj->nr_programs; i++) {
6323 		prog = &obj->programs[i];
6324 		/* sub-program's sub-calls are relocated within the context of
6325 		 * its main program only
6326 		 */
6327 		if (prog_is_subprog(obj, prog))
6328 			continue;
6329 		if (!prog->autoload)
6330 			continue;
6331 
6332 		err = bpf_object__relocate_calls(obj, prog);
6333 		if (err) {
6334 			pr_warn("prog '%s': failed to relocate calls: %d\n",
6335 				prog->name, err);
6336 			return err;
6337 		}
6338 	}
6339 	/* Process data relos for main programs */
6340 	for (i = 0; i < obj->nr_programs; i++) {
6341 		prog = &obj->programs[i];
6342 		if (prog_is_subprog(obj, prog))
6343 			continue;
6344 		if (!prog->autoload)
6345 			continue;
6346 		err = bpf_object__relocate_data(obj, prog);
6347 		if (err) {
6348 			pr_warn("prog '%s': failed to relocate data references: %d\n",
6349 				prog->name, err);
6350 			return err;
6351 		}
6352 	}
6353 
6354 	return 0;
6355 }
6356 
6357 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6358 					    Elf64_Shdr *shdr, Elf_Data *data);
6359 
6360 static int bpf_object__collect_map_relos(struct bpf_object *obj,
6361 					 Elf64_Shdr *shdr, Elf_Data *data)
6362 {
6363 	const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6364 	int i, j, nrels, new_sz;
6365 	const struct btf_var_secinfo *vi = NULL;
6366 	const struct btf_type *sec, *var, *def;
6367 	struct bpf_map *map = NULL, *targ_map = NULL;
6368 	struct bpf_program *targ_prog = NULL;
6369 	bool is_prog_array, is_map_in_map;
6370 	const struct btf_member *member;
6371 	const char *name, *mname, *type;
6372 	unsigned int moff;
6373 	Elf64_Sym *sym;
6374 	Elf64_Rel *rel;
6375 	void *tmp;
6376 
6377 	if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6378 		return -EINVAL;
6379 	sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6380 	if (!sec)
6381 		return -EINVAL;
6382 
6383 	nrels = shdr->sh_size / shdr->sh_entsize;
6384 	for (i = 0; i < nrels; i++) {
6385 		rel = elf_rel_by_idx(data, i);
6386 		if (!rel) {
6387 			pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6388 			return -LIBBPF_ERRNO__FORMAT;
6389 		}
6390 
6391 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
6392 		if (!sym) {
6393 			pr_warn(".maps relo #%d: symbol %zx not found\n",
6394 				i, (size_t)ELF64_R_SYM(rel->r_info));
6395 			return -LIBBPF_ERRNO__FORMAT;
6396 		}
6397 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
6398 
6399 		pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
6400 			 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
6401 			 (size_t)rel->r_offset, sym->st_name, name);
6402 
6403 		for (j = 0; j < obj->nr_maps; j++) {
6404 			map = &obj->maps[j];
6405 			if (map->sec_idx != obj->efile.btf_maps_shndx)
6406 				continue;
6407 
6408 			vi = btf_var_secinfos(sec) + map->btf_var_idx;
6409 			if (vi->offset <= rel->r_offset &&
6410 			    rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6411 				break;
6412 		}
6413 		if (j == obj->nr_maps) {
6414 			pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
6415 				i, name, (size_t)rel->r_offset);
6416 			return -EINVAL;
6417 		}
6418 
6419 		is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
6420 		is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
6421 		type = is_map_in_map ? "map" : "prog";
6422 		if (is_map_in_map) {
6423 			if (sym->st_shndx != obj->efile.btf_maps_shndx) {
6424 				pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6425 					i, name);
6426 				return -LIBBPF_ERRNO__RELOC;
6427 			}
6428 			if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6429 			    map->def.key_size != sizeof(int)) {
6430 				pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6431 					i, map->name, sizeof(int));
6432 				return -EINVAL;
6433 			}
6434 			targ_map = bpf_object__find_map_by_name(obj, name);
6435 			if (!targ_map) {
6436 				pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
6437 					i, name);
6438 				return -ESRCH;
6439 			}
6440 		} else if (is_prog_array) {
6441 			targ_prog = bpf_object__find_program_by_name(obj, name);
6442 			if (!targ_prog) {
6443 				pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
6444 					i, name);
6445 				return -ESRCH;
6446 			}
6447 			if (targ_prog->sec_idx != sym->st_shndx ||
6448 			    targ_prog->sec_insn_off * 8 != sym->st_value ||
6449 			    prog_is_subprog(obj, targ_prog)) {
6450 				pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
6451 					i, name);
6452 				return -LIBBPF_ERRNO__RELOC;
6453 			}
6454 		} else {
6455 			return -EINVAL;
6456 		}
6457 
6458 		var = btf__type_by_id(obj->btf, vi->type);
6459 		def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6460 		if (btf_vlen(def) == 0)
6461 			return -EINVAL;
6462 		member = btf_members(def) + btf_vlen(def) - 1;
6463 		mname = btf__name_by_offset(obj->btf, member->name_off);
6464 		if (strcmp(mname, "values"))
6465 			return -EINVAL;
6466 
6467 		moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6468 		if (rel->r_offset - vi->offset < moff)
6469 			return -EINVAL;
6470 
6471 		moff = rel->r_offset - vi->offset - moff;
6472 		/* here we use BPF pointer size, which is always 64 bit, as we
6473 		 * are parsing ELF that was built for BPF target
6474 		 */
6475 		if (moff % bpf_ptr_sz)
6476 			return -EINVAL;
6477 		moff /= bpf_ptr_sz;
6478 		if (moff >= map->init_slots_sz) {
6479 			new_sz = moff + 1;
6480 			tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6481 			if (!tmp)
6482 				return -ENOMEM;
6483 			map->init_slots = tmp;
6484 			memset(map->init_slots + map->init_slots_sz, 0,
6485 			       (new_sz - map->init_slots_sz) * host_ptr_sz);
6486 			map->init_slots_sz = new_sz;
6487 		}
6488 		map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
6489 
6490 		pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
6491 			 i, map->name, moff, type, name);
6492 	}
6493 
6494 	return 0;
6495 }
6496 
6497 static int bpf_object__collect_relos(struct bpf_object *obj)
6498 {
6499 	int i, err;
6500 
6501 	for (i = 0; i < obj->efile.sec_cnt; i++) {
6502 		struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
6503 		Elf64_Shdr *shdr;
6504 		Elf_Data *data;
6505 		int idx;
6506 
6507 		if (sec_desc->sec_type != SEC_RELO)
6508 			continue;
6509 
6510 		shdr = sec_desc->shdr;
6511 		data = sec_desc->data;
6512 		idx = shdr->sh_info;
6513 
6514 		if (shdr->sh_type != SHT_REL) {
6515 			pr_warn("internal error at %d\n", __LINE__);
6516 			return -LIBBPF_ERRNO__INTERNAL;
6517 		}
6518 
6519 		if (idx == obj->efile.st_ops_shndx)
6520 			err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6521 		else if (idx == obj->efile.btf_maps_shndx)
6522 			err = bpf_object__collect_map_relos(obj, shdr, data);
6523 		else
6524 			err = bpf_object__collect_prog_relos(obj, shdr, data);
6525 		if (err)
6526 			return err;
6527 	}
6528 
6529 	bpf_object__sort_relos(obj);
6530 	return 0;
6531 }
6532 
6533 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6534 {
6535 	if (BPF_CLASS(insn->code) == BPF_JMP &&
6536 	    BPF_OP(insn->code) == BPF_CALL &&
6537 	    BPF_SRC(insn->code) == BPF_K &&
6538 	    insn->src_reg == 0 &&
6539 	    insn->dst_reg == 0) {
6540 		    *func_id = insn->imm;
6541 		    return true;
6542 	}
6543 	return false;
6544 }
6545 
6546 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
6547 {
6548 	struct bpf_insn *insn = prog->insns;
6549 	enum bpf_func_id func_id;
6550 	int i;
6551 
6552 	if (obj->gen_loader)
6553 		return 0;
6554 
6555 	for (i = 0; i < prog->insns_cnt; i++, insn++) {
6556 		if (!insn_is_helper_call(insn, &func_id))
6557 			continue;
6558 
6559 		/* on kernels that don't yet support
6560 		 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6561 		 * to bpf_probe_read() which works well for old kernels
6562 		 */
6563 		switch (func_id) {
6564 		case BPF_FUNC_probe_read_kernel:
6565 		case BPF_FUNC_probe_read_user:
6566 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6567 				insn->imm = BPF_FUNC_probe_read;
6568 			break;
6569 		case BPF_FUNC_probe_read_kernel_str:
6570 		case BPF_FUNC_probe_read_user_str:
6571 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6572 				insn->imm = BPF_FUNC_probe_read_str;
6573 			break;
6574 		default:
6575 			break;
6576 		}
6577 	}
6578 	return 0;
6579 }
6580 
6581 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
6582 				     int *btf_obj_fd, int *btf_type_id);
6583 
6584 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
6585 static int libbpf_prepare_prog_load(struct bpf_program *prog,
6586 				    struct bpf_prog_load_opts *opts, long cookie)
6587 {
6588 	enum sec_def_flags def = cookie;
6589 
6590 	/* old kernels might not support specifying expected_attach_type */
6591 	if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
6592 		opts->expected_attach_type = 0;
6593 
6594 	if (def & SEC_SLEEPABLE)
6595 		opts->prog_flags |= BPF_F_SLEEPABLE;
6596 
6597 	if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
6598 		opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
6599 
6600 	if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
6601 		int btf_obj_fd = 0, btf_type_id = 0, err;
6602 		const char *attach_name;
6603 
6604 		attach_name = strchr(prog->sec_name, '/');
6605 		if (!attach_name) {
6606 			/* if BPF program is annotated with just SEC("fentry")
6607 			 * (or similar) without declaratively specifying
6608 			 * target, then it is expected that target will be
6609 			 * specified with bpf_program__set_attach_target() at
6610 			 * runtime before BPF object load step. If not, then
6611 			 * there is nothing to load into the kernel as BPF
6612 			 * verifier won't be able to validate BPF program
6613 			 * correctness anyways.
6614 			 */
6615 			pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
6616 				prog->name);
6617 			return -EINVAL;
6618 		}
6619 		attach_name++; /* skip over / */
6620 
6621 		err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
6622 		if (err)
6623 			return err;
6624 
6625 		/* cache resolved BTF FD and BTF type ID in the prog */
6626 		prog->attach_btf_obj_fd = btf_obj_fd;
6627 		prog->attach_btf_id = btf_type_id;
6628 
6629 		/* but by now libbpf common logic is not utilizing
6630 		 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
6631 		 * this callback is called after opts were populated by
6632 		 * libbpf, so this callback has to update opts explicitly here
6633 		 */
6634 		opts->attach_btf_obj_fd = btf_obj_fd;
6635 		opts->attach_btf_id = btf_type_id;
6636 	}
6637 	return 0;
6638 }
6639 
6640 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
6641 
6642 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
6643 				struct bpf_insn *insns, int insns_cnt,
6644 				const char *license, __u32 kern_version, int *prog_fd)
6645 {
6646 	LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
6647 	const char *prog_name = NULL;
6648 	char *cp, errmsg[STRERR_BUFSIZE];
6649 	size_t log_buf_size = 0;
6650 	char *log_buf = NULL, *tmp;
6651 	int btf_fd, ret, err;
6652 	bool own_log_buf = true;
6653 	__u32 log_level = prog->log_level;
6654 
6655 	if (prog->type == BPF_PROG_TYPE_UNSPEC) {
6656 		/*
6657 		 * The program type must be set.  Most likely we couldn't find a proper
6658 		 * section definition at load time, and thus we didn't infer the type.
6659 		 */
6660 		pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
6661 			prog->name, prog->sec_name);
6662 		return -EINVAL;
6663 	}
6664 
6665 	if (!insns || !insns_cnt)
6666 		return -EINVAL;
6667 
6668 	load_attr.expected_attach_type = prog->expected_attach_type;
6669 	if (kernel_supports(obj, FEAT_PROG_NAME))
6670 		prog_name = prog->name;
6671 	load_attr.attach_prog_fd = prog->attach_prog_fd;
6672 	load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
6673 	load_attr.attach_btf_id = prog->attach_btf_id;
6674 	load_attr.kern_version = kern_version;
6675 	load_attr.prog_ifindex = prog->prog_ifindex;
6676 
6677 	/* specify func_info/line_info only if kernel supports them */
6678 	btf_fd = bpf_object__btf_fd(obj);
6679 	if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
6680 		load_attr.prog_btf_fd = btf_fd;
6681 		load_attr.func_info = prog->func_info;
6682 		load_attr.func_info_rec_size = prog->func_info_rec_size;
6683 		load_attr.func_info_cnt = prog->func_info_cnt;
6684 		load_attr.line_info = prog->line_info;
6685 		load_attr.line_info_rec_size = prog->line_info_rec_size;
6686 		load_attr.line_info_cnt = prog->line_info_cnt;
6687 	}
6688 	load_attr.log_level = log_level;
6689 	load_attr.prog_flags = prog->prog_flags;
6690 	load_attr.fd_array = obj->fd_array;
6691 
6692 	/* adjust load_attr if sec_def provides custom preload callback */
6693 	if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
6694 		err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
6695 		if (err < 0) {
6696 			pr_warn("prog '%s': failed to prepare load attributes: %d\n",
6697 				prog->name, err);
6698 			return err;
6699 		}
6700 		insns = prog->insns;
6701 		insns_cnt = prog->insns_cnt;
6702 	}
6703 
6704 	if (obj->gen_loader) {
6705 		bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
6706 				   license, insns, insns_cnt, &load_attr,
6707 				   prog - obj->programs);
6708 		*prog_fd = -1;
6709 		return 0;
6710 	}
6711 
6712 retry_load:
6713 	/* if log_level is zero, we don't request logs initially even if
6714 	 * custom log_buf is specified; if the program load fails, then we'll
6715 	 * bump log_level to 1 and use either custom log_buf or we'll allocate
6716 	 * our own and retry the load to get details on what failed
6717 	 */
6718 	if (log_level) {
6719 		if (prog->log_buf) {
6720 			log_buf = prog->log_buf;
6721 			log_buf_size = prog->log_size;
6722 			own_log_buf = false;
6723 		} else if (obj->log_buf) {
6724 			log_buf = obj->log_buf;
6725 			log_buf_size = obj->log_size;
6726 			own_log_buf = false;
6727 		} else {
6728 			log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
6729 			tmp = realloc(log_buf, log_buf_size);
6730 			if (!tmp) {
6731 				ret = -ENOMEM;
6732 				goto out;
6733 			}
6734 			log_buf = tmp;
6735 			log_buf[0] = '\0';
6736 			own_log_buf = true;
6737 		}
6738 	}
6739 
6740 	load_attr.log_buf = log_buf;
6741 	load_attr.log_size = log_buf_size;
6742 	load_attr.log_level = log_level;
6743 
6744 	ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
6745 	if (ret >= 0) {
6746 		if (log_level && own_log_buf) {
6747 			pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6748 				 prog->name, log_buf);
6749 		}
6750 
6751 		if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
6752 			struct bpf_map *map;
6753 			int i;
6754 
6755 			for (i = 0; i < obj->nr_maps; i++) {
6756 				map = &prog->obj->maps[i];
6757 				if (map->libbpf_type != LIBBPF_MAP_RODATA)
6758 					continue;
6759 
6760 				if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) {
6761 					cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6762 					pr_warn("prog '%s': failed to bind map '%s': %s\n",
6763 						prog->name, map->real_name, cp);
6764 					/* Don't fail hard if can't bind rodata. */
6765 				}
6766 			}
6767 		}
6768 
6769 		*prog_fd = ret;
6770 		ret = 0;
6771 		goto out;
6772 	}
6773 
6774 	if (log_level == 0) {
6775 		log_level = 1;
6776 		goto retry_load;
6777 	}
6778 	/* On ENOSPC, increase log buffer size and retry, unless custom
6779 	 * log_buf is specified.
6780 	 * Be careful to not overflow u32, though. Kernel's log buf size limit
6781 	 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
6782 	 * multiply by 2 unless we are sure we'll fit within 32 bits.
6783 	 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
6784 	 */
6785 	if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
6786 		goto retry_load;
6787 
6788 	ret = -errno;
6789 
6790 	/* post-process verifier log to improve error descriptions */
6791 	fixup_verifier_log(prog, log_buf, log_buf_size);
6792 
6793 	cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6794 	pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
6795 	pr_perm_msg(ret);
6796 
6797 	if (own_log_buf && log_buf && log_buf[0] != '\0') {
6798 		pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6799 			prog->name, log_buf);
6800 	}
6801 
6802 out:
6803 	if (own_log_buf)
6804 		free(log_buf);
6805 	return ret;
6806 }
6807 
6808 static char *find_prev_line(char *buf, char *cur)
6809 {
6810 	char *p;
6811 
6812 	if (cur == buf) /* end of a log buf */
6813 		return NULL;
6814 
6815 	p = cur - 1;
6816 	while (p - 1 >= buf && *(p - 1) != '\n')
6817 		p--;
6818 
6819 	return p;
6820 }
6821 
6822 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
6823 		      char *orig, size_t orig_sz, const char *patch)
6824 {
6825 	/* size of the remaining log content to the right from the to-be-replaced part */
6826 	size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
6827 	size_t patch_sz = strlen(patch);
6828 
6829 	if (patch_sz != orig_sz) {
6830 		/* If patch line(s) are longer than original piece of verifier log,
6831 		 * shift log contents by (patch_sz - orig_sz) bytes to the right
6832 		 * starting from after to-be-replaced part of the log.
6833 		 *
6834 		 * If patch line(s) are shorter than original piece of verifier log,
6835 		 * shift log contents by (orig_sz - patch_sz) bytes to the left
6836 		 * starting from after to-be-replaced part of the log
6837 		 *
6838 		 * We need to be careful about not overflowing available
6839 		 * buf_sz capacity. If that's the case, we'll truncate the end
6840 		 * of the original log, as necessary.
6841 		 */
6842 		if (patch_sz > orig_sz) {
6843 			if (orig + patch_sz >= buf + buf_sz) {
6844 				/* patch is big enough to cover remaining space completely */
6845 				patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
6846 				rem_sz = 0;
6847 			} else if (patch_sz - orig_sz > buf_sz - log_sz) {
6848 				/* patch causes part of remaining log to be truncated */
6849 				rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
6850 			}
6851 		}
6852 		/* shift remaining log to the right by calculated amount */
6853 		memmove(orig + patch_sz, orig + orig_sz, rem_sz);
6854 	}
6855 
6856 	memcpy(orig, patch, patch_sz);
6857 }
6858 
6859 static void fixup_log_failed_core_relo(struct bpf_program *prog,
6860 				       char *buf, size_t buf_sz, size_t log_sz,
6861 				       char *line1, char *line2, char *line3)
6862 {
6863 	/* Expected log for failed and not properly guarded CO-RE relocation:
6864 	 * line1 -> 123: (85) call unknown#195896080
6865 	 * line2 -> invalid func unknown#195896080
6866 	 * line3 -> <anything else or end of buffer>
6867 	 *
6868 	 * "123" is the index of the instruction that was poisoned. We extract
6869 	 * instruction index to find corresponding CO-RE relocation and
6870 	 * replace this part of the log with more relevant information about
6871 	 * failed CO-RE relocation.
6872 	 */
6873 	const struct bpf_core_relo *relo;
6874 	struct bpf_core_spec spec;
6875 	char patch[512], spec_buf[256];
6876 	int insn_idx, err, spec_len;
6877 
6878 	if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
6879 		return;
6880 
6881 	relo = find_relo_core(prog, insn_idx);
6882 	if (!relo)
6883 		return;
6884 
6885 	err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
6886 	if (err)
6887 		return;
6888 
6889 	spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
6890 	snprintf(patch, sizeof(patch),
6891 		 "%d: <invalid CO-RE relocation>\n"
6892 		 "failed to resolve CO-RE relocation %s%s\n",
6893 		 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
6894 
6895 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
6896 }
6897 
6898 static void fixup_log_missing_map_load(struct bpf_program *prog,
6899 				       char *buf, size_t buf_sz, size_t log_sz,
6900 				       char *line1, char *line2, char *line3)
6901 {
6902 	/* Expected log for failed and not properly guarded CO-RE relocation:
6903 	 * line1 -> 123: (85) call unknown#2001000345
6904 	 * line2 -> invalid func unknown#2001000345
6905 	 * line3 -> <anything else or end of buffer>
6906 	 *
6907 	 * "123" is the index of the instruction that was poisoned.
6908 	 * "345" in "2001000345" are map index in obj->maps to fetch map name.
6909 	 */
6910 	struct bpf_object *obj = prog->obj;
6911 	const struct bpf_map *map;
6912 	int insn_idx, map_idx;
6913 	char patch[128];
6914 
6915 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
6916 		return;
6917 
6918 	map_idx -= MAP_LDIMM64_POISON_BASE;
6919 	if (map_idx < 0 || map_idx >= obj->nr_maps)
6920 		return;
6921 	map = &obj->maps[map_idx];
6922 
6923 	snprintf(patch, sizeof(patch),
6924 		 "%d: <invalid BPF map reference>\n"
6925 		 "BPF map '%s' is referenced but wasn't created\n",
6926 		 insn_idx, map->name);
6927 
6928 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
6929 }
6930 
6931 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
6932 {
6933 	/* look for familiar error patterns in last N lines of the log */
6934 	const size_t max_last_line_cnt = 10;
6935 	char *prev_line, *cur_line, *next_line;
6936 	size_t log_sz;
6937 	int i;
6938 
6939 	if (!buf)
6940 		return;
6941 
6942 	log_sz = strlen(buf) + 1;
6943 	next_line = buf + log_sz - 1;
6944 
6945 	for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
6946 		cur_line = find_prev_line(buf, next_line);
6947 		if (!cur_line)
6948 			return;
6949 
6950 		/* failed CO-RE relocation case */
6951 		if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
6952 			prev_line = find_prev_line(buf, cur_line);
6953 			if (!prev_line)
6954 				continue;
6955 
6956 			fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
6957 						   prev_line, cur_line, next_line);
6958 			return;
6959 		} else if (str_has_pfx(cur_line, "invalid func unknown#"MAP_LDIMM64_POISON_PFX)) {
6960 			prev_line = find_prev_line(buf, cur_line);
6961 			if (!prev_line)
6962 				continue;
6963 
6964 			fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
6965 						   prev_line, cur_line, next_line);
6966 			return;
6967 		}
6968 	}
6969 }
6970 
6971 static int bpf_program_record_relos(struct bpf_program *prog)
6972 {
6973 	struct bpf_object *obj = prog->obj;
6974 	int i;
6975 
6976 	for (i = 0; i < prog->nr_reloc; i++) {
6977 		struct reloc_desc *relo = &prog->reloc_desc[i];
6978 		struct extern_desc *ext = &obj->externs[relo->sym_off];
6979 
6980 		switch (relo->type) {
6981 		case RELO_EXTERN_VAR:
6982 			if (ext->type != EXT_KSYM)
6983 				continue;
6984 			bpf_gen__record_extern(obj->gen_loader, ext->name,
6985 					       ext->is_weak, !ext->ksym.type_id,
6986 					       BTF_KIND_VAR, relo->insn_idx);
6987 			break;
6988 		case RELO_EXTERN_FUNC:
6989 			bpf_gen__record_extern(obj->gen_loader, ext->name,
6990 					       ext->is_weak, false, BTF_KIND_FUNC,
6991 					       relo->insn_idx);
6992 			break;
6993 		case RELO_CORE: {
6994 			struct bpf_core_relo cr = {
6995 				.insn_off = relo->insn_idx * 8,
6996 				.type_id = relo->core_relo->type_id,
6997 				.access_str_off = relo->core_relo->access_str_off,
6998 				.kind = relo->core_relo->kind,
6999 			};
7000 
7001 			bpf_gen__record_relo_core(obj->gen_loader, &cr);
7002 			break;
7003 		}
7004 		default:
7005 			continue;
7006 		}
7007 	}
7008 	return 0;
7009 }
7010 
7011 static int
7012 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7013 {
7014 	struct bpf_program *prog;
7015 	size_t i;
7016 	int err;
7017 
7018 	for (i = 0; i < obj->nr_programs; i++) {
7019 		prog = &obj->programs[i];
7020 		err = bpf_object__sanitize_prog(obj, prog);
7021 		if (err)
7022 			return err;
7023 	}
7024 
7025 	for (i = 0; i < obj->nr_programs; i++) {
7026 		prog = &obj->programs[i];
7027 		if (prog_is_subprog(obj, prog))
7028 			continue;
7029 		if (!prog->autoload) {
7030 			pr_debug("prog '%s': skipped loading\n", prog->name);
7031 			continue;
7032 		}
7033 		prog->log_level |= log_level;
7034 
7035 		if (obj->gen_loader)
7036 			bpf_program_record_relos(prog);
7037 
7038 		err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7039 					   obj->license, obj->kern_version, &prog->fd);
7040 		if (err) {
7041 			pr_warn("prog '%s': failed to load: %d\n", prog->name, err);
7042 			return err;
7043 		}
7044 	}
7045 
7046 	bpf_object__free_relocs(obj);
7047 	return 0;
7048 }
7049 
7050 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7051 
7052 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7053 {
7054 	struct bpf_program *prog;
7055 	int err;
7056 
7057 	bpf_object__for_each_program(prog, obj) {
7058 		prog->sec_def = find_sec_def(prog->sec_name);
7059 		if (!prog->sec_def) {
7060 			/* couldn't guess, but user might manually specify */
7061 			pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7062 				prog->name, prog->sec_name);
7063 			continue;
7064 		}
7065 
7066 		prog->type = prog->sec_def->prog_type;
7067 		prog->expected_attach_type = prog->sec_def->expected_attach_type;
7068 
7069 		/* sec_def can have custom callback which should be called
7070 		 * after bpf_program is initialized to adjust its properties
7071 		 */
7072 		if (prog->sec_def->prog_setup_fn) {
7073 			err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7074 			if (err < 0) {
7075 				pr_warn("prog '%s': failed to initialize: %d\n",
7076 					prog->name, err);
7077 				return err;
7078 			}
7079 		}
7080 	}
7081 
7082 	return 0;
7083 }
7084 
7085 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7086 					  const struct bpf_object_open_opts *opts)
7087 {
7088 	const char *obj_name, *kconfig, *btf_tmp_path;
7089 	struct bpf_object *obj;
7090 	char tmp_name[64];
7091 	int err;
7092 	char *log_buf;
7093 	size_t log_size;
7094 	__u32 log_level;
7095 
7096 	if (elf_version(EV_CURRENT) == EV_NONE) {
7097 		pr_warn("failed to init libelf for %s\n",
7098 			path ? : "(mem buf)");
7099 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7100 	}
7101 
7102 	if (!OPTS_VALID(opts, bpf_object_open_opts))
7103 		return ERR_PTR(-EINVAL);
7104 
7105 	obj_name = OPTS_GET(opts, object_name, NULL);
7106 	if (obj_buf) {
7107 		if (!obj_name) {
7108 			snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7109 				 (unsigned long)obj_buf,
7110 				 (unsigned long)obj_buf_sz);
7111 			obj_name = tmp_name;
7112 		}
7113 		path = obj_name;
7114 		pr_debug("loading object '%s' from buffer\n", obj_name);
7115 	}
7116 
7117 	log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7118 	log_size = OPTS_GET(opts, kernel_log_size, 0);
7119 	log_level = OPTS_GET(opts, kernel_log_level, 0);
7120 	if (log_size > UINT_MAX)
7121 		return ERR_PTR(-EINVAL);
7122 	if (log_size && !log_buf)
7123 		return ERR_PTR(-EINVAL);
7124 
7125 	obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7126 	if (IS_ERR(obj))
7127 		return obj;
7128 
7129 	obj->log_buf = log_buf;
7130 	obj->log_size = log_size;
7131 	obj->log_level = log_level;
7132 
7133 	btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7134 	if (btf_tmp_path) {
7135 		if (strlen(btf_tmp_path) >= PATH_MAX) {
7136 			err = -ENAMETOOLONG;
7137 			goto out;
7138 		}
7139 		obj->btf_custom_path = strdup(btf_tmp_path);
7140 		if (!obj->btf_custom_path) {
7141 			err = -ENOMEM;
7142 			goto out;
7143 		}
7144 	}
7145 
7146 	kconfig = OPTS_GET(opts, kconfig, NULL);
7147 	if (kconfig) {
7148 		obj->kconfig = strdup(kconfig);
7149 		if (!obj->kconfig) {
7150 			err = -ENOMEM;
7151 			goto out;
7152 		}
7153 	}
7154 
7155 	err = bpf_object__elf_init(obj);
7156 	err = err ? : bpf_object__check_endianness(obj);
7157 	err = err ? : bpf_object__elf_collect(obj);
7158 	err = err ? : bpf_object__collect_externs(obj);
7159 	err = err ? : bpf_object__finalize_btf(obj);
7160 	err = err ? : bpf_object__init_maps(obj, opts);
7161 	err = err ? : bpf_object_init_progs(obj, opts);
7162 	err = err ? : bpf_object__collect_relos(obj);
7163 	if (err)
7164 		goto out;
7165 
7166 	bpf_object__elf_finish(obj);
7167 
7168 	return obj;
7169 out:
7170 	bpf_object__close(obj);
7171 	return ERR_PTR(err);
7172 }
7173 
7174 struct bpf_object *
7175 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7176 {
7177 	if (!path)
7178 		return libbpf_err_ptr(-EINVAL);
7179 
7180 	pr_debug("loading %s\n", path);
7181 
7182 	return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
7183 }
7184 
7185 struct bpf_object *bpf_object__open(const char *path)
7186 {
7187 	return bpf_object__open_file(path, NULL);
7188 }
7189 
7190 struct bpf_object *
7191 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7192 		     const struct bpf_object_open_opts *opts)
7193 {
7194 	if (!obj_buf || obj_buf_sz == 0)
7195 		return libbpf_err_ptr(-EINVAL);
7196 
7197 	return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
7198 }
7199 
7200 static int bpf_object_unload(struct bpf_object *obj)
7201 {
7202 	size_t i;
7203 
7204 	if (!obj)
7205 		return libbpf_err(-EINVAL);
7206 
7207 	for (i = 0; i < obj->nr_maps; i++) {
7208 		zclose(obj->maps[i].fd);
7209 		if (obj->maps[i].st_ops)
7210 			zfree(&obj->maps[i].st_ops->kern_vdata);
7211 	}
7212 
7213 	for (i = 0; i < obj->nr_programs; i++)
7214 		bpf_program__unload(&obj->programs[i]);
7215 
7216 	return 0;
7217 }
7218 
7219 int bpf_object__unload(struct bpf_object *obj) __attribute__((alias("bpf_object_unload")));
7220 
7221 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7222 {
7223 	struct bpf_map *m;
7224 
7225 	bpf_object__for_each_map(m, obj) {
7226 		if (!bpf_map__is_internal(m))
7227 			continue;
7228 		if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
7229 			m->def.map_flags ^= BPF_F_MMAPABLE;
7230 	}
7231 
7232 	return 0;
7233 }
7234 
7235 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
7236 {
7237 	char sym_type, sym_name[500];
7238 	unsigned long long sym_addr;
7239 	int ret, err = 0;
7240 	FILE *f;
7241 
7242 	f = fopen("/proc/kallsyms", "r");
7243 	if (!f) {
7244 		err = -errno;
7245 		pr_warn("failed to open /proc/kallsyms: %d\n", err);
7246 		return err;
7247 	}
7248 
7249 	while (true) {
7250 		ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7251 			     &sym_addr, &sym_type, sym_name);
7252 		if (ret == EOF && feof(f))
7253 			break;
7254 		if (ret != 3) {
7255 			pr_warn("failed to read kallsyms entry: %d\n", ret);
7256 			err = -EINVAL;
7257 			break;
7258 		}
7259 
7260 		err = cb(sym_addr, sym_type, sym_name, ctx);
7261 		if (err)
7262 			break;
7263 	}
7264 
7265 	fclose(f);
7266 	return err;
7267 }
7268 
7269 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
7270 		       const char *sym_name, void *ctx)
7271 {
7272 	struct bpf_object *obj = ctx;
7273 	const struct btf_type *t;
7274 	struct extern_desc *ext;
7275 
7276 	ext = find_extern_by_name(obj, sym_name);
7277 	if (!ext || ext->type != EXT_KSYM)
7278 		return 0;
7279 
7280 	t = btf__type_by_id(obj->btf, ext->btf_id);
7281 	if (!btf_is_var(t))
7282 		return 0;
7283 
7284 	if (ext->is_set && ext->ksym.addr != sym_addr) {
7285 		pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n",
7286 			sym_name, ext->ksym.addr, sym_addr);
7287 		return -EINVAL;
7288 	}
7289 	if (!ext->is_set) {
7290 		ext->is_set = true;
7291 		ext->ksym.addr = sym_addr;
7292 		pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr);
7293 	}
7294 	return 0;
7295 }
7296 
7297 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7298 {
7299 	return libbpf_kallsyms_parse(kallsyms_cb, obj);
7300 }
7301 
7302 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
7303 			    __u16 kind, struct btf **res_btf,
7304 			    struct module_btf **res_mod_btf)
7305 {
7306 	struct module_btf *mod_btf;
7307 	struct btf *btf;
7308 	int i, id, err;
7309 
7310 	btf = obj->btf_vmlinux;
7311 	mod_btf = NULL;
7312 	id = btf__find_by_name_kind(btf, ksym_name, kind);
7313 
7314 	if (id == -ENOENT) {
7315 		err = load_module_btfs(obj);
7316 		if (err)
7317 			return err;
7318 
7319 		for (i = 0; i < obj->btf_module_cnt; i++) {
7320 			/* we assume module_btf's BTF FD is always >0 */
7321 			mod_btf = &obj->btf_modules[i];
7322 			btf = mod_btf->btf;
7323 			id = btf__find_by_name_kind_own(btf, ksym_name, kind);
7324 			if (id != -ENOENT)
7325 				break;
7326 		}
7327 	}
7328 	if (id <= 0)
7329 		return -ESRCH;
7330 
7331 	*res_btf = btf;
7332 	*res_mod_btf = mod_btf;
7333 	return id;
7334 }
7335 
7336 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
7337 					       struct extern_desc *ext)
7338 {
7339 	const struct btf_type *targ_var, *targ_type;
7340 	__u32 targ_type_id, local_type_id;
7341 	struct module_btf *mod_btf = NULL;
7342 	const char *targ_var_name;
7343 	struct btf *btf = NULL;
7344 	int id, err;
7345 
7346 	id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
7347 	if (id < 0) {
7348 		if (id == -ESRCH && ext->is_weak)
7349 			return 0;
7350 		pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
7351 			ext->name);
7352 		return id;
7353 	}
7354 
7355 	/* find local type_id */
7356 	local_type_id = ext->ksym.type_id;
7357 
7358 	/* find target type_id */
7359 	targ_var = btf__type_by_id(btf, id);
7360 	targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
7361 	targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
7362 
7363 	err = bpf_core_types_are_compat(obj->btf, local_type_id,
7364 					btf, targ_type_id);
7365 	if (err <= 0) {
7366 		const struct btf_type *local_type;
7367 		const char *targ_name, *local_name;
7368 
7369 		local_type = btf__type_by_id(obj->btf, local_type_id);
7370 		local_name = btf__name_by_offset(obj->btf, local_type->name_off);
7371 		targ_name = btf__name_by_offset(btf, targ_type->name_off);
7372 
7373 		pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7374 			ext->name, local_type_id,
7375 			btf_kind_str(local_type), local_name, targ_type_id,
7376 			btf_kind_str(targ_type), targ_name);
7377 		return -EINVAL;
7378 	}
7379 
7380 	ext->is_set = true;
7381 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7382 	ext->ksym.kernel_btf_id = id;
7383 	pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
7384 		 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7385 
7386 	return 0;
7387 }
7388 
7389 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
7390 						struct extern_desc *ext)
7391 {
7392 	int local_func_proto_id, kfunc_proto_id, kfunc_id;
7393 	struct module_btf *mod_btf = NULL;
7394 	const struct btf_type *kern_func;
7395 	struct btf *kern_btf = NULL;
7396 	int ret;
7397 
7398 	local_func_proto_id = ext->ksym.type_id;
7399 
7400 	kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf);
7401 	if (kfunc_id < 0) {
7402 		if (kfunc_id == -ESRCH && ext->is_weak)
7403 			return 0;
7404 		pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
7405 			ext->name);
7406 		return kfunc_id;
7407 	}
7408 
7409 	kern_func = btf__type_by_id(kern_btf, kfunc_id);
7410 	kfunc_proto_id = kern_func->type;
7411 
7412 	ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
7413 					kern_btf, kfunc_proto_id);
7414 	if (ret <= 0) {
7415 		pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n",
7416 			ext->name, local_func_proto_id, kfunc_proto_id);
7417 		return -EINVAL;
7418 	}
7419 
7420 	/* set index for module BTF fd in fd_array, if unset */
7421 	if (mod_btf && !mod_btf->fd_array_idx) {
7422 		/* insn->off is s16 */
7423 		if (obj->fd_array_cnt == INT16_MAX) {
7424 			pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
7425 				ext->name, mod_btf->fd_array_idx);
7426 			return -E2BIG;
7427 		}
7428 		/* Cannot use index 0 for module BTF fd */
7429 		if (!obj->fd_array_cnt)
7430 			obj->fd_array_cnt = 1;
7431 
7432 		ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
7433 					obj->fd_array_cnt + 1);
7434 		if (ret)
7435 			return ret;
7436 		mod_btf->fd_array_idx = obj->fd_array_cnt;
7437 		/* we assume module BTF FD is always >0 */
7438 		obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
7439 	}
7440 
7441 	ext->is_set = true;
7442 	ext->ksym.kernel_btf_id = kfunc_id;
7443 	ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
7444 	pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n",
7445 		 ext->name, kfunc_id);
7446 
7447 	return 0;
7448 }
7449 
7450 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7451 {
7452 	const struct btf_type *t;
7453 	struct extern_desc *ext;
7454 	int i, err;
7455 
7456 	for (i = 0; i < obj->nr_extern; i++) {
7457 		ext = &obj->externs[i];
7458 		if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7459 			continue;
7460 
7461 		if (obj->gen_loader) {
7462 			ext->is_set = true;
7463 			ext->ksym.kernel_btf_obj_fd = 0;
7464 			ext->ksym.kernel_btf_id = 0;
7465 			continue;
7466 		}
7467 		t = btf__type_by_id(obj->btf, ext->btf_id);
7468 		if (btf_is_var(t))
7469 			err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
7470 		else
7471 			err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
7472 		if (err)
7473 			return err;
7474 	}
7475 	return 0;
7476 }
7477 
7478 static int bpf_object__resolve_externs(struct bpf_object *obj,
7479 				       const char *extra_kconfig)
7480 {
7481 	bool need_config = false, need_kallsyms = false;
7482 	bool need_vmlinux_btf = false;
7483 	struct extern_desc *ext;
7484 	void *kcfg_data = NULL;
7485 	int err, i;
7486 
7487 	if (obj->nr_extern == 0)
7488 		return 0;
7489 
7490 	if (obj->kconfig_map_idx >= 0)
7491 		kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7492 
7493 	for (i = 0; i < obj->nr_extern; i++) {
7494 		ext = &obj->externs[i];
7495 
7496 		if (ext->type == EXT_KCFG &&
7497 		    strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7498 			void *ext_val = kcfg_data + ext->kcfg.data_off;
7499 			__u32 kver = get_kernel_version();
7500 
7501 			if (!kver) {
7502 				pr_warn("failed to get kernel version\n");
7503 				return -EINVAL;
7504 			}
7505 			err = set_kcfg_value_num(ext, ext_val, kver);
7506 			if (err)
7507 				return err;
7508 			pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver);
7509 		} else if (ext->type == EXT_KCFG && str_has_pfx(ext->name, "CONFIG_")) {
7510 			need_config = true;
7511 		} else if (ext->type == EXT_KSYM) {
7512 			if (ext->ksym.type_id)
7513 				need_vmlinux_btf = true;
7514 			else
7515 				need_kallsyms = true;
7516 		} else {
7517 			pr_warn("unrecognized extern '%s'\n", ext->name);
7518 			return -EINVAL;
7519 		}
7520 	}
7521 	if (need_config && extra_kconfig) {
7522 		err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7523 		if (err)
7524 			return -EINVAL;
7525 		need_config = false;
7526 		for (i = 0; i < obj->nr_extern; i++) {
7527 			ext = &obj->externs[i];
7528 			if (ext->type == EXT_KCFG && !ext->is_set) {
7529 				need_config = true;
7530 				break;
7531 			}
7532 		}
7533 	}
7534 	if (need_config) {
7535 		err = bpf_object__read_kconfig_file(obj, kcfg_data);
7536 		if (err)
7537 			return -EINVAL;
7538 	}
7539 	if (need_kallsyms) {
7540 		err = bpf_object__read_kallsyms_file(obj);
7541 		if (err)
7542 			return -EINVAL;
7543 	}
7544 	if (need_vmlinux_btf) {
7545 		err = bpf_object__resolve_ksyms_btf_id(obj);
7546 		if (err)
7547 			return -EINVAL;
7548 	}
7549 	for (i = 0; i < obj->nr_extern; i++) {
7550 		ext = &obj->externs[i];
7551 
7552 		if (!ext->is_set && !ext->is_weak) {
7553 			pr_warn("extern %s (strong) not resolved\n", ext->name);
7554 			return -ESRCH;
7555 		} else if (!ext->is_set) {
7556 			pr_debug("extern %s (weak) not resolved, defaulting to zero\n",
7557 				 ext->name);
7558 		}
7559 	}
7560 
7561 	return 0;
7562 }
7563 
7564 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
7565 {
7566 	int err, i;
7567 
7568 	if (!obj)
7569 		return libbpf_err(-EINVAL);
7570 
7571 	if (obj->loaded) {
7572 		pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7573 		return libbpf_err(-EINVAL);
7574 	}
7575 
7576 	if (obj->gen_loader)
7577 		bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
7578 
7579 	err = bpf_object__probe_loading(obj);
7580 	err = err ? : bpf_object__load_vmlinux_btf(obj, false);
7581 	err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7582 	err = err ? : bpf_object__sanitize_and_load_btf(obj);
7583 	err = err ? : bpf_object__sanitize_maps(obj);
7584 	err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7585 	err = err ? : bpf_object__create_maps(obj);
7586 	err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
7587 	err = err ? : bpf_object__load_progs(obj, extra_log_level);
7588 	err = err ? : bpf_object_init_prog_arrays(obj);
7589 
7590 	if (obj->gen_loader) {
7591 		/* reset FDs */
7592 		if (obj->btf)
7593 			btf__set_fd(obj->btf, -1);
7594 		for (i = 0; i < obj->nr_maps; i++)
7595 			obj->maps[i].fd = -1;
7596 		if (!err)
7597 			err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
7598 	}
7599 
7600 	/* clean up fd_array */
7601 	zfree(&obj->fd_array);
7602 
7603 	/* clean up module BTFs */
7604 	for (i = 0; i < obj->btf_module_cnt; i++) {
7605 		close(obj->btf_modules[i].fd);
7606 		btf__free(obj->btf_modules[i].btf);
7607 		free(obj->btf_modules[i].name);
7608 	}
7609 	free(obj->btf_modules);
7610 
7611 	/* clean up vmlinux BTF */
7612 	btf__free(obj->btf_vmlinux);
7613 	obj->btf_vmlinux = NULL;
7614 
7615 	obj->loaded = true; /* doesn't matter if successfully or not */
7616 
7617 	if (err)
7618 		goto out;
7619 
7620 	return 0;
7621 out:
7622 	/* unpin any maps that were auto-pinned during load */
7623 	for (i = 0; i < obj->nr_maps; i++)
7624 		if (obj->maps[i].pinned && !obj->maps[i].reused)
7625 			bpf_map__unpin(&obj->maps[i], NULL);
7626 
7627 	bpf_object_unload(obj);
7628 	pr_warn("failed to load object '%s'\n", obj->path);
7629 	return libbpf_err(err);
7630 }
7631 
7632 int bpf_object__load(struct bpf_object *obj)
7633 {
7634 	return bpf_object_load(obj, 0, NULL);
7635 }
7636 
7637 static int make_parent_dir(const char *path)
7638 {
7639 	char *cp, errmsg[STRERR_BUFSIZE];
7640 	char *dname, *dir;
7641 	int err = 0;
7642 
7643 	dname = strdup(path);
7644 	if (dname == NULL)
7645 		return -ENOMEM;
7646 
7647 	dir = dirname(dname);
7648 	if (mkdir(dir, 0700) && errno != EEXIST)
7649 		err = -errno;
7650 
7651 	free(dname);
7652 	if (err) {
7653 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7654 		pr_warn("failed to mkdir %s: %s\n", path, cp);
7655 	}
7656 	return err;
7657 }
7658 
7659 static int check_path(const char *path)
7660 {
7661 	char *cp, errmsg[STRERR_BUFSIZE];
7662 	struct statfs st_fs;
7663 	char *dname, *dir;
7664 	int err = 0;
7665 
7666 	if (path == NULL)
7667 		return -EINVAL;
7668 
7669 	dname = strdup(path);
7670 	if (dname == NULL)
7671 		return -ENOMEM;
7672 
7673 	dir = dirname(dname);
7674 	if (statfs(dir, &st_fs)) {
7675 		cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7676 		pr_warn("failed to statfs %s: %s\n", dir, cp);
7677 		err = -errno;
7678 	}
7679 	free(dname);
7680 
7681 	if (!err && st_fs.f_type != BPF_FS_MAGIC) {
7682 		pr_warn("specified path %s is not on BPF FS\n", path);
7683 		err = -EINVAL;
7684 	}
7685 
7686 	return err;
7687 }
7688 
7689 int bpf_program__pin(struct bpf_program *prog, const char *path)
7690 {
7691 	char *cp, errmsg[STRERR_BUFSIZE];
7692 	int err;
7693 
7694 	if (prog->fd < 0) {
7695 		pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
7696 		return libbpf_err(-EINVAL);
7697 	}
7698 
7699 	err = make_parent_dir(path);
7700 	if (err)
7701 		return libbpf_err(err);
7702 
7703 	err = check_path(path);
7704 	if (err)
7705 		return libbpf_err(err);
7706 
7707 	if (bpf_obj_pin(prog->fd, path)) {
7708 		err = -errno;
7709 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
7710 		pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp);
7711 		return libbpf_err(err);
7712 	}
7713 
7714 	pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
7715 	return 0;
7716 }
7717 
7718 int bpf_program__unpin(struct bpf_program *prog, const char *path)
7719 {
7720 	int err;
7721 
7722 	if (prog->fd < 0) {
7723 		pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
7724 		return libbpf_err(-EINVAL);
7725 	}
7726 
7727 	err = check_path(path);
7728 	if (err)
7729 		return libbpf_err(err);
7730 
7731 	err = unlink(path);
7732 	if (err)
7733 		return libbpf_err(-errno);
7734 
7735 	pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
7736 	return 0;
7737 }
7738 
7739 int bpf_map__pin(struct bpf_map *map, const char *path)
7740 {
7741 	char *cp, errmsg[STRERR_BUFSIZE];
7742 	int err;
7743 
7744 	if (map == NULL) {
7745 		pr_warn("invalid map pointer\n");
7746 		return libbpf_err(-EINVAL);
7747 	}
7748 
7749 	if (map->pin_path) {
7750 		if (path && strcmp(path, map->pin_path)) {
7751 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7752 				bpf_map__name(map), map->pin_path, path);
7753 			return libbpf_err(-EINVAL);
7754 		} else if (map->pinned) {
7755 			pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
7756 				 bpf_map__name(map), map->pin_path);
7757 			return 0;
7758 		}
7759 	} else {
7760 		if (!path) {
7761 			pr_warn("missing a path to pin map '%s' at\n",
7762 				bpf_map__name(map));
7763 			return libbpf_err(-EINVAL);
7764 		} else if (map->pinned) {
7765 			pr_warn("map '%s' already pinned\n", bpf_map__name(map));
7766 			return libbpf_err(-EEXIST);
7767 		}
7768 
7769 		map->pin_path = strdup(path);
7770 		if (!map->pin_path) {
7771 			err = -errno;
7772 			goto out_err;
7773 		}
7774 	}
7775 
7776 	err = make_parent_dir(map->pin_path);
7777 	if (err)
7778 		return libbpf_err(err);
7779 
7780 	err = check_path(map->pin_path);
7781 	if (err)
7782 		return libbpf_err(err);
7783 
7784 	if (bpf_obj_pin(map->fd, map->pin_path)) {
7785 		err = -errno;
7786 		goto out_err;
7787 	}
7788 
7789 	map->pinned = true;
7790 	pr_debug("pinned map '%s'\n", map->pin_path);
7791 
7792 	return 0;
7793 
7794 out_err:
7795 	cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7796 	pr_warn("failed to pin map: %s\n", cp);
7797 	return libbpf_err(err);
7798 }
7799 
7800 int bpf_map__unpin(struct bpf_map *map, const char *path)
7801 {
7802 	int err;
7803 
7804 	if (map == NULL) {
7805 		pr_warn("invalid map pointer\n");
7806 		return libbpf_err(-EINVAL);
7807 	}
7808 
7809 	if (map->pin_path) {
7810 		if (path && strcmp(path, map->pin_path)) {
7811 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7812 				bpf_map__name(map), map->pin_path, path);
7813 			return libbpf_err(-EINVAL);
7814 		}
7815 		path = map->pin_path;
7816 	} else if (!path) {
7817 		pr_warn("no path to unpin map '%s' from\n",
7818 			bpf_map__name(map));
7819 		return libbpf_err(-EINVAL);
7820 	}
7821 
7822 	err = check_path(path);
7823 	if (err)
7824 		return libbpf_err(err);
7825 
7826 	err = unlink(path);
7827 	if (err != 0)
7828 		return libbpf_err(-errno);
7829 
7830 	map->pinned = false;
7831 	pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
7832 
7833 	return 0;
7834 }
7835 
7836 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
7837 {
7838 	char *new = NULL;
7839 
7840 	if (path) {
7841 		new = strdup(path);
7842 		if (!new)
7843 			return libbpf_err(-errno);
7844 	}
7845 
7846 	free(map->pin_path);
7847 	map->pin_path = new;
7848 	return 0;
7849 }
7850 
7851 __alias(bpf_map__pin_path)
7852 const char *bpf_map__get_pin_path(const struct bpf_map *map);
7853 
7854 const char *bpf_map__pin_path(const struct bpf_map *map)
7855 {
7856 	return map->pin_path;
7857 }
7858 
7859 bool bpf_map__is_pinned(const struct bpf_map *map)
7860 {
7861 	return map->pinned;
7862 }
7863 
7864 static void sanitize_pin_path(char *s)
7865 {
7866 	/* bpffs disallows periods in path names */
7867 	while (*s) {
7868 		if (*s == '.')
7869 			*s = '_';
7870 		s++;
7871 	}
7872 }
7873 
7874 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
7875 {
7876 	struct bpf_map *map;
7877 	int err;
7878 
7879 	if (!obj)
7880 		return libbpf_err(-ENOENT);
7881 
7882 	if (!obj->loaded) {
7883 		pr_warn("object not yet loaded; load it first\n");
7884 		return libbpf_err(-ENOENT);
7885 	}
7886 
7887 	bpf_object__for_each_map(map, obj) {
7888 		char *pin_path = NULL;
7889 		char buf[PATH_MAX];
7890 
7891 		if (!map->autocreate)
7892 			continue;
7893 
7894 		if (path) {
7895 			int len;
7896 
7897 			len = snprintf(buf, PATH_MAX, "%s/%s", path,
7898 				       bpf_map__name(map));
7899 			if (len < 0) {
7900 				err = -EINVAL;
7901 				goto err_unpin_maps;
7902 			} else if (len >= PATH_MAX) {
7903 				err = -ENAMETOOLONG;
7904 				goto err_unpin_maps;
7905 			}
7906 			sanitize_pin_path(buf);
7907 			pin_path = buf;
7908 		} else if (!map->pin_path) {
7909 			continue;
7910 		}
7911 
7912 		err = bpf_map__pin(map, pin_path);
7913 		if (err)
7914 			goto err_unpin_maps;
7915 	}
7916 
7917 	return 0;
7918 
7919 err_unpin_maps:
7920 	while ((map = bpf_object__prev_map(obj, map))) {
7921 		if (!map->pin_path)
7922 			continue;
7923 
7924 		bpf_map__unpin(map, NULL);
7925 	}
7926 
7927 	return libbpf_err(err);
7928 }
7929 
7930 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
7931 {
7932 	struct bpf_map *map;
7933 	int err;
7934 
7935 	if (!obj)
7936 		return libbpf_err(-ENOENT);
7937 
7938 	bpf_object__for_each_map(map, obj) {
7939 		char *pin_path = NULL;
7940 		char buf[PATH_MAX];
7941 
7942 		if (path) {
7943 			int len;
7944 
7945 			len = snprintf(buf, PATH_MAX, "%s/%s", path,
7946 				       bpf_map__name(map));
7947 			if (len < 0)
7948 				return libbpf_err(-EINVAL);
7949 			else if (len >= PATH_MAX)
7950 				return libbpf_err(-ENAMETOOLONG);
7951 			sanitize_pin_path(buf);
7952 			pin_path = buf;
7953 		} else if (!map->pin_path) {
7954 			continue;
7955 		}
7956 
7957 		err = bpf_map__unpin(map, pin_path);
7958 		if (err)
7959 			return libbpf_err(err);
7960 	}
7961 
7962 	return 0;
7963 }
7964 
7965 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
7966 {
7967 	struct bpf_program *prog;
7968 	int err;
7969 
7970 	if (!obj)
7971 		return libbpf_err(-ENOENT);
7972 
7973 	if (!obj->loaded) {
7974 		pr_warn("object not yet loaded; load it first\n");
7975 		return libbpf_err(-ENOENT);
7976 	}
7977 
7978 	bpf_object__for_each_program(prog, obj) {
7979 		char buf[PATH_MAX];
7980 		int len;
7981 
7982 		len = snprintf(buf, PATH_MAX, "%s/%s", path, prog->name);
7983 		if (len < 0) {
7984 			err = -EINVAL;
7985 			goto err_unpin_programs;
7986 		} else if (len >= PATH_MAX) {
7987 			err = -ENAMETOOLONG;
7988 			goto err_unpin_programs;
7989 		}
7990 
7991 		err = bpf_program__pin(prog, buf);
7992 		if (err)
7993 			goto err_unpin_programs;
7994 	}
7995 
7996 	return 0;
7997 
7998 err_unpin_programs:
7999 	while ((prog = bpf_object__prev_program(obj, prog))) {
8000 		char buf[PATH_MAX];
8001 		int len;
8002 
8003 		len = snprintf(buf, PATH_MAX, "%s/%s", path, prog->name);
8004 		if (len < 0)
8005 			continue;
8006 		else if (len >= PATH_MAX)
8007 			continue;
8008 
8009 		bpf_program__unpin(prog, buf);
8010 	}
8011 
8012 	return libbpf_err(err);
8013 }
8014 
8015 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8016 {
8017 	struct bpf_program *prog;
8018 	int err;
8019 
8020 	if (!obj)
8021 		return libbpf_err(-ENOENT);
8022 
8023 	bpf_object__for_each_program(prog, obj) {
8024 		char buf[PATH_MAX];
8025 		int len;
8026 
8027 		len = snprintf(buf, PATH_MAX, "%s/%s", path, prog->name);
8028 		if (len < 0)
8029 			return libbpf_err(-EINVAL);
8030 		else if (len >= PATH_MAX)
8031 			return libbpf_err(-ENAMETOOLONG);
8032 
8033 		err = bpf_program__unpin(prog, buf);
8034 		if (err)
8035 			return libbpf_err(err);
8036 	}
8037 
8038 	return 0;
8039 }
8040 
8041 int bpf_object__pin(struct bpf_object *obj, const char *path)
8042 {
8043 	int err;
8044 
8045 	err = bpf_object__pin_maps(obj, path);
8046 	if (err)
8047 		return libbpf_err(err);
8048 
8049 	err = bpf_object__pin_programs(obj, path);
8050 	if (err) {
8051 		bpf_object__unpin_maps(obj, path);
8052 		return libbpf_err(err);
8053 	}
8054 
8055 	return 0;
8056 }
8057 
8058 static void bpf_map__destroy(struct bpf_map *map)
8059 {
8060 	if (map->inner_map) {
8061 		bpf_map__destroy(map->inner_map);
8062 		zfree(&map->inner_map);
8063 	}
8064 
8065 	zfree(&map->init_slots);
8066 	map->init_slots_sz = 0;
8067 
8068 	if (map->mmaped) {
8069 		munmap(map->mmaped, bpf_map_mmap_sz(map));
8070 		map->mmaped = NULL;
8071 	}
8072 
8073 	if (map->st_ops) {
8074 		zfree(&map->st_ops->data);
8075 		zfree(&map->st_ops->progs);
8076 		zfree(&map->st_ops->kern_func_off);
8077 		zfree(&map->st_ops);
8078 	}
8079 
8080 	zfree(&map->name);
8081 	zfree(&map->real_name);
8082 	zfree(&map->pin_path);
8083 
8084 	if (map->fd >= 0)
8085 		zclose(map->fd);
8086 }
8087 
8088 void bpf_object__close(struct bpf_object *obj)
8089 {
8090 	size_t i;
8091 
8092 	if (IS_ERR_OR_NULL(obj))
8093 		return;
8094 
8095 	usdt_manager_free(obj->usdt_man);
8096 	obj->usdt_man = NULL;
8097 
8098 	bpf_gen__free(obj->gen_loader);
8099 	bpf_object__elf_finish(obj);
8100 	bpf_object_unload(obj);
8101 	btf__free(obj->btf);
8102 	btf_ext__free(obj->btf_ext);
8103 
8104 	for (i = 0; i < obj->nr_maps; i++)
8105 		bpf_map__destroy(&obj->maps[i]);
8106 
8107 	zfree(&obj->btf_custom_path);
8108 	zfree(&obj->kconfig);
8109 	zfree(&obj->externs);
8110 	obj->nr_extern = 0;
8111 
8112 	zfree(&obj->maps);
8113 	obj->nr_maps = 0;
8114 
8115 	if (obj->programs && obj->nr_programs) {
8116 		for (i = 0; i < obj->nr_programs; i++)
8117 			bpf_program__exit(&obj->programs[i]);
8118 	}
8119 	zfree(&obj->programs);
8120 
8121 	free(obj);
8122 }
8123 
8124 const char *bpf_object__name(const struct bpf_object *obj)
8125 {
8126 	return obj ? obj->name : libbpf_err_ptr(-EINVAL);
8127 }
8128 
8129 unsigned int bpf_object__kversion(const struct bpf_object *obj)
8130 {
8131 	return obj ? obj->kern_version : 0;
8132 }
8133 
8134 struct btf *bpf_object__btf(const struct bpf_object *obj)
8135 {
8136 	return obj ? obj->btf : NULL;
8137 }
8138 
8139 int bpf_object__btf_fd(const struct bpf_object *obj)
8140 {
8141 	return obj->btf ? btf__fd(obj->btf) : -1;
8142 }
8143 
8144 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
8145 {
8146 	if (obj->loaded)
8147 		return libbpf_err(-EINVAL);
8148 
8149 	obj->kern_version = kern_version;
8150 
8151 	return 0;
8152 }
8153 
8154 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
8155 {
8156 	struct bpf_gen *gen;
8157 
8158 	if (!opts)
8159 		return -EFAULT;
8160 	if (!OPTS_VALID(opts, gen_loader_opts))
8161 		return -EINVAL;
8162 	gen = calloc(sizeof(*gen), 1);
8163 	if (!gen)
8164 		return -ENOMEM;
8165 	gen->opts = opts;
8166 	obj->gen_loader = gen;
8167 	return 0;
8168 }
8169 
8170 static struct bpf_program *
8171 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8172 		    bool forward)
8173 {
8174 	size_t nr_programs = obj->nr_programs;
8175 	ssize_t idx;
8176 
8177 	if (!nr_programs)
8178 		return NULL;
8179 
8180 	if (!p)
8181 		/* Iter from the beginning */
8182 		return forward ? &obj->programs[0] :
8183 			&obj->programs[nr_programs - 1];
8184 
8185 	if (p->obj != obj) {
8186 		pr_warn("error: program handler doesn't match object\n");
8187 		return errno = EINVAL, NULL;
8188 	}
8189 
8190 	idx = (p - obj->programs) + (forward ? 1 : -1);
8191 	if (idx >= obj->nr_programs || idx < 0)
8192 		return NULL;
8193 	return &obj->programs[idx];
8194 }
8195 
8196 struct bpf_program *
8197 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
8198 {
8199 	struct bpf_program *prog = prev;
8200 
8201 	do {
8202 		prog = __bpf_program__iter(prog, obj, true);
8203 	} while (prog && prog_is_subprog(obj, prog));
8204 
8205 	return prog;
8206 }
8207 
8208 struct bpf_program *
8209 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
8210 {
8211 	struct bpf_program *prog = next;
8212 
8213 	do {
8214 		prog = __bpf_program__iter(prog, obj, false);
8215 	} while (prog && prog_is_subprog(obj, prog));
8216 
8217 	return prog;
8218 }
8219 
8220 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8221 {
8222 	prog->prog_ifindex = ifindex;
8223 }
8224 
8225 const char *bpf_program__name(const struct bpf_program *prog)
8226 {
8227 	return prog->name;
8228 }
8229 
8230 const char *bpf_program__section_name(const struct bpf_program *prog)
8231 {
8232 	return prog->sec_name;
8233 }
8234 
8235 bool bpf_program__autoload(const struct bpf_program *prog)
8236 {
8237 	return prog->autoload;
8238 }
8239 
8240 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8241 {
8242 	if (prog->obj->loaded)
8243 		return libbpf_err(-EINVAL);
8244 
8245 	prog->autoload = autoload;
8246 	return 0;
8247 }
8248 
8249 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
8250 {
8251 	return prog->insns;
8252 }
8253 
8254 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
8255 {
8256 	return prog->insns_cnt;
8257 }
8258 
8259 int bpf_program__set_insns(struct bpf_program *prog,
8260 			   struct bpf_insn *new_insns, size_t new_insn_cnt)
8261 {
8262 	struct bpf_insn *insns;
8263 
8264 	if (prog->obj->loaded)
8265 		return -EBUSY;
8266 
8267 	insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
8268 	if (!insns) {
8269 		pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
8270 		return -ENOMEM;
8271 	}
8272 	memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
8273 
8274 	prog->insns = insns;
8275 	prog->insns_cnt = new_insn_cnt;
8276 	return 0;
8277 }
8278 
8279 int bpf_program__fd(const struct bpf_program *prog)
8280 {
8281 	if (!prog)
8282 		return libbpf_err(-EINVAL);
8283 
8284 	if (prog->fd < 0)
8285 		return libbpf_err(-ENOENT);
8286 
8287 	return prog->fd;
8288 }
8289 
8290 __alias(bpf_program__type)
8291 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
8292 
8293 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
8294 {
8295 	return prog->type;
8296 }
8297 
8298 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8299 {
8300 	if (prog->obj->loaded)
8301 		return libbpf_err(-EBUSY);
8302 
8303 	prog->type = type;
8304 	return 0;
8305 }
8306 
8307 __alias(bpf_program__expected_attach_type)
8308 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
8309 
8310 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
8311 {
8312 	return prog->expected_attach_type;
8313 }
8314 
8315 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
8316 					   enum bpf_attach_type type)
8317 {
8318 	if (prog->obj->loaded)
8319 		return libbpf_err(-EBUSY);
8320 
8321 	prog->expected_attach_type = type;
8322 	return 0;
8323 }
8324 
8325 __u32 bpf_program__flags(const struct bpf_program *prog)
8326 {
8327 	return prog->prog_flags;
8328 }
8329 
8330 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
8331 {
8332 	if (prog->obj->loaded)
8333 		return libbpf_err(-EBUSY);
8334 
8335 	prog->prog_flags = flags;
8336 	return 0;
8337 }
8338 
8339 __u32 bpf_program__log_level(const struct bpf_program *prog)
8340 {
8341 	return prog->log_level;
8342 }
8343 
8344 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
8345 {
8346 	if (prog->obj->loaded)
8347 		return libbpf_err(-EBUSY);
8348 
8349 	prog->log_level = log_level;
8350 	return 0;
8351 }
8352 
8353 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
8354 {
8355 	*log_size = prog->log_size;
8356 	return prog->log_buf;
8357 }
8358 
8359 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
8360 {
8361 	if (log_size && !log_buf)
8362 		return -EINVAL;
8363 	if (prog->log_size > UINT_MAX)
8364 		return -EINVAL;
8365 	if (prog->obj->loaded)
8366 		return -EBUSY;
8367 
8368 	prog->log_buf = log_buf;
8369 	prog->log_size = log_size;
8370 	return 0;
8371 }
8372 
8373 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) {			    \
8374 	.sec = (char *)sec_pfx,						    \
8375 	.prog_type = BPF_PROG_TYPE_##ptype,				    \
8376 	.expected_attach_type = atype,					    \
8377 	.cookie = (long)(flags),					    \
8378 	.prog_prepare_load_fn = libbpf_prepare_prog_load,		    \
8379 	__VA_ARGS__							    \
8380 }
8381 
8382 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8383 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8384 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8385 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8386 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8387 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8388 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8389 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8390 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8391 
8392 static const struct bpf_sec_def section_defs[] = {
8393 	SEC_DEF("socket",		SOCKET_FILTER, 0, SEC_NONE),
8394 	SEC_DEF("sk_reuseport/migrate",	SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
8395 	SEC_DEF("sk_reuseport",		SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
8396 	SEC_DEF("kprobe+",		KPROBE,	0, SEC_NONE, attach_kprobe),
8397 	SEC_DEF("uprobe+",		KPROBE,	0, SEC_NONE, attach_uprobe),
8398 	SEC_DEF("uprobe.s+",		KPROBE,	0, SEC_SLEEPABLE, attach_uprobe),
8399 	SEC_DEF("kretprobe+",		KPROBE, 0, SEC_NONE, attach_kprobe),
8400 	SEC_DEF("uretprobe+",		KPROBE, 0, SEC_NONE, attach_uprobe),
8401 	SEC_DEF("uretprobe.s+",		KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
8402 	SEC_DEF("kprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8403 	SEC_DEF("kretprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8404 	SEC_DEF("usdt+",		KPROBE,	0, SEC_NONE, attach_usdt),
8405 	SEC_DEF("tc",			SCHED_CLS, 0, SEC_NONE),
8406 	SEC_DEF("classifier",		SCHED_CLS, 0, SEC_NONE),
8407 	SEC_DEF("action",		SCHED_ACT, 0, SEC_NONE),
8408 	SEC_DEF("tracepoint+",		TRACEPOINT, 0, SEC_NONE, attach_tp),
8409 	SEC_DEF("tp+",			TRACEPOINT, 0, SEC_NONE, attach_tp),
8410 	SEC_DEF("raw_tracepoint+",	RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8411 	SEC_DEF("raw_tp+",		RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8412 	SEC_DEF("raw_tracepoint.w+",	RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8413 	SEC_DEF("raw_tp.w+",		RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8414 	SEC_DEF("tp_btf+",		TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
8415 	SEC_DEF("fentry+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
8416 	SEC_DEF("fmod_ret+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
8417 	SEC_DEF("fexit+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
8418 	SEC_DEF("fentry.s+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8419 	SEC_DEF("fmod_ret.s+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8420 	SEC_DEF("fexit.s+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8421 	SEC_DEF("freplace+",		EXT, 0, SEC_ATTACH_BTF, attach_trace),
8422 	SEC_DEF("lsm+",			LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
8423 	SEC_DEF("lsm.s+",		LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
8424 	SEC_DEF("lsm_cgroup+",		LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
8425 	SEC_DEF("iter+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
8426 	SEC_DEF("iter.s+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
8427 	SEC_DEF("syscall",		SYSCALL, 0, SEC_SLEEPABLE),
8428 	SEC_DEF("xdp.frags/devmap",	XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
8429 	SEC_DEF("xdp/devmap",		XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
8430 	SEC_DEF("xdp.frags/cpumap",	XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
8431 	SEC_DEF("xdp/cpumap",		XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
8432 	SEC_DEF("xdp.frags",		XDP, BPF_XDP, SEC_XDP_FRAGS),
8433 	SEC_DEF("xdp",			XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
8434 	SEC_DEF("perf_event",		PERF_EVENT, 0, SEC_NONE),
8435 	SEC_DEF("lwt_in",		LWT_IN, 0, SEC_NONE),
8436 	SEC_DEF("lwt_out",		LWT_OUT, 0, SEC_NONE),
8437 	SEC_DEF("lwt_xmit",		LWT_XMIT, 0, SEC_NONE),
8438 	SEC_DEF("lwt_seg6local",	LWT_SEG6LOCAL, 0, SEC_NONE),
8439 	SEC_DEF("sockops",		SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
8440 	SEC_DEF("sk_skb/stream_parser",	SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
8441 	SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
8442 	SEC_DEF("sk_skb",		SK_SKB, 0, SEC_NONE),
8443 	SEC_DEF("sk_msg",		SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
8444 	SEC_DEF("lirc_mode2",		LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
8445 	SEC_DEF("flow_dissector",	FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
8446 	SEC_DEF("cgroup_skb/ingress",	CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
8447 	SEC_DEF("cgroup_skb/egress",	CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
8448 	SEC_DEF("cgroup/skb",		CGROUP_SKB, 0, SEC_NONE),
8449 	SEC_DEF("cgroup/sock_create",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
8450 	SEC_DEF("cgroup/sock_release",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
8451 	SEC_DEF("cgroup/sock",		CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
8452 	SEC_DEF("cgroup/post_bind4",	CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
8453 	SEC_DEF("cgroup/post_bind6",	CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
8454 	SEC_DEF("cgroup/bind4",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
8455 	SEC_DEF("cgroup/bind6",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
8456 	SEC_DEF("cgroup/connect4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
8457 	SEC_DEF("cgroup/connect6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
8458 	SEC_DEF("cgroup/sendmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
8459 	SEC_DEF("cgroup/sendmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
8460 	SEC_DEF("cgroup/recvmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
8461 	SEC_DEF("cgroup/recvmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
8462 	SEC_DEF("cgroup/getpeername4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
8463 	SEC_DEF("cgroup/getpeername6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
8464 	SEC_DEF("cgroup/getsockname4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
8465 	SEC_DEF("cgroup/getsockname6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
8466 	SEC_DEF("cgroup/sysctl",	CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
8467 	SEC_DEF("cgroup/getsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
8468 	SEC_DEF("cgroup/setsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
8469 	SEC_DEF("cgroup/dev",		CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
8470 	SEC_DEF("struct_ops+",		STRUCT_OPS, 0, SEC_NONE),
8471 	SEC_DEF("sk_lookup",		SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
8472 };
8473 
8474 static size_t custom_sec_def_cnt;
8475 static struct bpf_sec_def *custom_sec_defs;
8476 static struct bpf_sec_def custom_fallback_def;
8477 static bool has_custom_fallback_def;
8478 
8479 static int last_custom_sec_def_handler_id;
8480 
8481 int libbpf_register_prog_handler(const char *sec,
8482 				 enum bpf_prog_type prog_type,
8483 				 enum bpf_attach_type exp_attach_type,
8484 				 const struct libbpf_prog_handler_opts *opts)
8485 {
8486 	struct bpf_sec_def *sec_def;
8487 
8488 	if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
8489 		return libbpf_err(-EINVAL);
8490 
8491 	if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
8492 		return libbpf_err(-E2BIG);
8493 
8494 	if (sec) {
8495 		sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
8496 					      sizeof(*sec_def));
8497 		if (!sec_def)
8498 			return libbpf_err(-ENOMEM);
8499 
8500 		custom_sec_defs = sec_def;
8501 		sec_def = &custom_sec_defs[custom_sec_def_cnt];
8502 	} else {
8503 		if (has_custom_fallback_def)
8504 			return libbpf_err(-EBUSY);
8505 
8506 		sec_def = &custom_fallback_def;
8507 	}
8508 
8509 	sec_def->sec = sec ? strdup(sec) : NULL;
8510 	if (sec && !sec_def->sec)
8511 		return libbpf_err(-ENOMEM);
8512 
8513 	sec_def->prog_type = prog_type;
8514 	sec_def->expected_attach_type = exp_attach_type;
8515 	sec_def->cookie = OPTS_GET(opts, cookie, 0);
8516 
8517 	sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
8518 	sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
8519 	sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
8520 
8521 	sec_def->handler_id = ++last_custom_sec_def_handler_id;
8522 
8523 	if (sec)
8524 		custom_sec_def_cnt++;
8525 	else
8526 		has_custom_fallback_def = true;
8527 
8528 	return sec_def->handler_id;
8529 }
8530 
8531 int libbpf_unregister_prog_handler(int handler_id)
8532 {
8533 	struct bpf_sec_def *sec_defs;
8534 	int i;
8535 
8536 	if (handler_id <= 0)
8537 		return libbpf_err(-EINVAL);
8538 
8539 	if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
8540 		memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
8541 		has_custom_fallback_def = false;
8542 		return 0;
8543 	}
8544 
8545 	for (i = 0; i < custom_sec_def_cnt; i++) {
8546 		if (custom_sec_defs[i].handler_id == handler_id)
8547 			break;
8548 	}
8549 
8550 	if (i == custom_sec_def_cnt)
8551 		return libbpf_err(-ENOENT);
8552 
8553 	free(custom_sec_defs[i].sec);
8554 	for (i = i + 1; i < custom_sec_def_cnt; i++)
8555 		custom_sec_defs[i - 1] = custom_sec_defs[i];
8556 	custom_sec_def_cnt--;
8557 
8558 	/* try to shrink the array, but it's ok if we couldn't */
8559 	sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
8560 	if (sec_defs)
8561 		custom_sec_defs = sec_defs;
8562 
8563 	return 0;
8564 }
8565 
8566 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
8567 {
8568 	size_t len = strlen(sec_def->sec);
8569 
8570 	/* "type/" always has to have proper SEC("type/extras") form */
8571 	if (sec_def->sec[len - 1] == '/') {
8572 		if (str_has_pfx(sec_name, sec_def->sec))
8573 			return true;
8574 		return false;
8575 	}
8576 
8577 	/* "type+" means it can be either exact SEC("type") or
8578 	 * well-formed SEC("type/extras") with proper '/' separator
8579 	 */
8580 	if (sec_def->sec[len - 1] == '+') {
8581 		len--;
8582 		/* not even a prefix */
8583 		if (strncmp(sec_name, sec_def->sec, len) != 0)
8584 			return false;
8585 		/* exact match or has '/' separator */
8586 		if (sec_name[len] == '\0' || sec_name[len] == '/')
8587 			return true;
8588 		return false;
8589 	}
8590 
8591 	return strcmp(sec_name, sec_def->sec) == 0;
8592 }
8593 
8594 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
8595 {
8596 	const struct bpf_sec_def *sec_def;
8597 	int i, n;
8598 
8599 	n = custom_sec_def_cnt;
8600 	for (i = 0; i < n; i++) {
8601 		sec_def = &custom_sec_defs[i];
8602 		if (sec_def_matches(sec_def, sec_name))
8603 			return sec_def;
8604 	}
8605 
8606 	n = ARRAY_SIZE(section_defs);
8607 	for (i = 0; i < n; i++) {
8608 		sec_def = &section_defs[i];
8609 		if (sec_def_matches(sec_def, sec_name))
8610 			return sec_def;
8611 	}
8612 
8613 	if (has_custom_fallback_def)
8614 		return &custom_fallback_def;
8615 
8616 	return NULL;
8617 }
8618 
8619 #define MAX_TYPE_NAME_SIZE 32
8620 
8621 static char *libbpf_get_type_names(bool attach_type)
8622 {
8623 	int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
8624 	char *buf;
8625 
8626 	buf = malloc(len);
8627 	if (!buf)
8628 		return NULL;
8629 
8630 	buf[0] = '\0';
8631 	/* Forge string buf with all available names */
8632 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8633 		const struct bpf_sec_def *sec_def = &section_defs[i];
8634 
8635 		if (attach_type) {
8636 			if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
8637 				continue;
8638 
8639 			if (!(sec_def->cookie & SEC_ATTACHABLE))
8640 				continue;
8641 		}
8642 
8643 		if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
8644 			free(buf);
8645 			return NULL;
8646 		}
8647 		strcat(buf, " ");
8648 		strcat(buf, section_defs[i].sec);
8649 	}
8650 
8651 	return buf;
8652 }
8653 
8654 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
8655 			     enum bpf_attach_type *expected_attach_type)
8656 {
8657 	const struct bpf_sec_def *sec_def;
8658 	char *type_names;
8659 
8660 	if (!name)
8661 		return libbpf_err(-EINVAL);
8662 
8663 	sec_def = find_sec_def(name);
8664 	if (sec_def) {
8665 		*prog_type = sec_def->prog_type;
8666 		*expected_attach_type = sec_def->expected_attach_type;
8667 		return 0;
8668 	}
8669 
8670 	pr_debug("failed to guess program type from ELF section '%s'\n", name);
8671 	type_names = libbpf_get_type_names(false);
8672 	if (type_names != NULL) {
8673 		pr_debug("supported section(type) names are:%s\n", type_names);
8674 		free(type_names);
8675 	}
8676 
8677 	return libbpf_err(-ESRCH);
8678 }
8679 
8680 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
8681 {
8682 	if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
8683 		return NULL;
8684 
8685 	return attach_type_name[t];
8686 }
8687 
8688 const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
8689 {
8690 	if (t < 0 || t >= ARRAY_SIZE(link_type_name))
8691 		return NULL;
8692 
8693 	return link_type_name[t];
8694 }
8695 
8696 const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
8697 {
8698 	if (t < 0 || t >= ARRAY_SIZE(map_type_name))
8699 		return NULL;
8700 
8701 	return map_type_name[t];
8702 }
8703 
8704 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
8705 {
8706 	if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
8707 		return NULL;
8708 
8709 	return prog_type_name[t];
8710 }
8711 
8712 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
8713 						     size_t offset)
8714 {
8715 	struct bpf_map *map;
8716 	size_t i;
8717 
8718 	for (i = 0; i < obj->nr_maps; i++) {
8719 		map = &obj->maps[i];
8720 		if (!bpf_map__is_struct_ops(map))
8721 			continue;
8722 		if (map->sec_offset <= offset &&
8723 		    offset - map->sec_offset < map->def.value_size)
8724 			return map;
8725 	}
8726 
8727 	return NULL;
8728 }
8729 
8730 /* Collect the reloc from ELF and populate the st_ops->progs[] */
8731 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
8732 					    Elf64_Shdr *shdr, Elf_Data *data)
8733 {
8734 	const struct btf_member *member;
8735 	struct bpf_struct_ops *st_ops;
8736 	struct bpf_program *prog;
8737 	unsigned int shdr_idx;
8738 	const struct btf *btf;
8739 	struct bpf_map *map;
8740 	unsigned int moff, insn_idx;
8741 	const char *name;
8742 	__u32 member_idx;
8743 	Elf64_Sym *sym;
8744 	Elf64_Rel *rel;
8745 	int i, nrels;
8746 
8747 	btf = obj->btf;
8748 	nrels = shdr->sh_size / shdr->sh_entsize;
8749 	for (i = 0; i < nrels; i++) {
8750 		rel = elf_rel_by_idx(data, i);
8751 		if (!rel) {
8752 			pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
8753 			return -LIBBPF_ERRNO__FORMAT;
8754 		}
8755 
8756 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
8757 		if (!sym) {
8758 			pr_warn("struct_ops reloc: symbol %zx not found\n",
8759 				(size_t)ELF64_R_SYM(rel->r_info));
8760 			return -LIBBPF_ERRNO__FORMAT;
8761 		}
8762 
8763 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
8764 		map = find_struct_ops_map_by_offset(obj, rel->r_offset);
8765 		if (!map) {
8766 			pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
8767 				(size_t)rel->r_offset);
8768 			return -EINVAL;
8769 		}
8770 
8771 		moff = rel->r_offset - map->sec_offset;
8772 		shdr_idx = sym->st_shndx;
8773 		st_ops = map->st_ops;
8774 		pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
8775 			 map->name,
8776 			 (long long)(rel->r_info >> 32),
8777 			 (long long)sym->st_value,
8778 			 shdr_idx, (size_t)rel->r_offset,
8779 			 map->sec_offset, sym->st_name, name);
8780 
8781 		if (shdr_idx >= SHN_LORESERVE) {
8782 			pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
8783 				map->name, (size_t)rel->r_offset, shdr_idx);
8784 			return -LIBBPF_ERRNO__RELOC;
8785 		}
8786 		if (sym->st_value % BPF_INSN_SZ) {
8787 			pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
8788 				map->name, (unsigned long long)sym->st_value);
8789 			return -LIBBPF_ERRNO__FORMAT;
8790 		}
8791 		insn_idx = sym->st_value / BPF_INSN_SZ;
8792 
8793 		member = find_member_by_offset(st_ops->type, moff * 8);
8794 		if (!member) {
8795 			pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
8796 				map->name, moff);
8797 			return -EINVAL;
8798 		}
8799 		member_idx = member - btf_members(st_ops->type);
8800 		name = btf__name_by_offset(btf, member->name_off);
8801 
8802 		if (!resolve_func_ptr(btf, member->type, NULL)) {
8803 			pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
8804 				map->name, name);
8805 			return -EINVAL;
8806 		}
8807 
8808 		prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
8809 		if (!prog) {
8810 			pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
8811 				map->name, shdr_idx, name);
8812 			return -EINVAL;
8813 		}
8814 
8815 		/* prevent the use of BPF prog with invalid type */
8816 		if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
8817 			pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
8818 				map->name, prog->name);
8819 			return -EINVAL;
8820 		}
8821 
8822 		/* if we haven't yet processed this BPF program, record proper
8823 		 * attach_btf_id and member_idx
8824 		 */
8825 		if (!prog->attach_btf_id) {
8826 			prog->attach_btf_id = st_ops->type_id;
8827 			prog->expected_attach_type = member_idx;
8828 		}
8829 
8830 		/* struct_ops BPF prog can be re-used between multiple
8831 		 * .struct_ops as long as it's the same struct_ops struct
8832 		 * definition and the same function pointer field
8833 		 */
8834 		if (prog->attach_btf_id != st_ops->type_id ||
8835 		    prog->expected_attach_type != member_idx) {
8836 			pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
8837 				map->name, prog->name, prog->sec_name, prog->type,
8838 				prog->attach_btf_id, prog->expected_attach_type, name);
8839 			return -EINVAL;
8840 		}
8841 
8842 		st_ops->progs[member_idx] = prog;
8843 	}
8844 
8845 	return 0;
8846 }
8847 
8848 #define BTF_TRACE_PREFIX "btf_trace_"
8849 #define BTF_LSM_PREFIX "bpf_lsm_"
8850 #define BTF_ITER_PREFIX "bpf_iter_"
8851 #define BTF_MAX_NAME_SIZE 128
8852 
8853 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
8854 				const char **prefix, int *kind)
8855 {
8856 	switch (attach_type) {
8857 	case BPF_TRACE_RAW_TP:
8858 		*prefix = BTF_TRACE_PREFIX;
8859 		*kind = BTF_KIND_TYPEDEF;
8860 		break;
8861 	case BPF_LSM_MAC:
8862 	case BPF_LSM_CGROUP:
8863 		*prefix = BTF_LSM_PREFIX;
8864 		*kind = BTF_KIND_FUNC;
8865 		break;
8866 	case BPF_TRACE_ITER:
8867 		*prefix = BTF_ITER_PREFIX;
8868 		*kind = BTF_KIND_FUNC;
8869 		break;
8870 	default:
8871 		*prefix = "";
8872 		*kind = BTF_KIND_FUNC;
8873 	}
8874 }
8875 
8876 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
8877 				   const char *name, __u32 kind)
8878 {
8879 	char btf_type_name[BTF_MAX_NAME_SIZE];
8880 	int ret;
8881 
8882 	ret = snprintf(btf_type_name, sizeof(btf_type_name),
8883 		       "%s%s", prefix, name);
8884 	/* snprintf returns the number of characters written excluding the
8885 	 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
8886 	 * indicates truncation.
8887 	 */
8888 	if (ret < 0 || ret >= sizeof(btf_type_name))
8889 		return -ENAMETOOLONG;
8890 	return btf__find_by_name_kind(btf, btf_type_name, kind);
8891 }
8892 
8893 static inline int find_attach_btf_id(struct btf *btf, const char *name,
8894 				     enum bpf_attach_type attach_type)
8895 {
8896 	const char *prefix;
8897 	int kind;
8898 
8899 	btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
8900 	return find_btf_by_prefix_kind(btf, prefix, name, kind);
8901 }
8902 
8903 int libbpf_find_vmlinux_btf_id(const char *name,
8904 			       enum bpf_attach_type attach_type)
8905 {
8906 	struct btf *btf;
8907 	int err;
8908 
8909 	btf = btf__load_vmlinux_btf();
8910 	err = libbpf_get_error(btf);
8911 	if (err) {
8912 		pr_warn("vmlinux BTF is not found\n");
8913 		return libbpf_err(err);
8914 	}
8915 
8916 	err = find_attach_btf_id(btf, name, attach_type);
8917 	if (err <= 0)
8918 		pr_warn("%s is not found in vmlinux BTF\n", name);
8919 
8920 	btf__free(btf);
8921 	return libbpf_err(err);
8922 }
8923 
8924 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
8925 {
8926 	struct bpf_prog_info info = {};
8927 	__u32 info_len = sizeof(info);
8928 	struct btf *btf;
8929 	int err;
8930 
8931 	err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len);
8932 	if (err) {
8933 		pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n",
8934 			attach_prog_fd, err);
8935 		return err;
8936 	}
8937 
8938 	err = -EINVAL;
8939 	if (!info.btf_id) {
8940 		pr_warn("The target program doesn't have BTF\n");
8941 		goto out;
8942 	}
8943 	btf = btf__load_from_kernel_by_id(info.btf_id);
8944 	err = libbpf_get_error(btf);
8945 	if (err) {
8946 		pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
8947 		goto out;
8948 	}
8949 	err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
8950 	btf__free(btf);
8951 	if (err <= 0) {
8952 		pr_warn("%s is not found in prog's BTF\n", name);
8953 		goto out;
8954 	}
8955 out:
8956 	return err;
8957 }
8958 
8959 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
8960 			      enum bpf_attach_type attach_type,
8961 			      int *btf_obj_fd, int *btf_type_id)
8962 {
8963 	int ret, i;
8964 
8965 	ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
8966 	if (ret > 0) {
8967 		*btf_obj_fd = 0; /* vmlinux BTF */
8968 		*btf_type_id = ret;
8969 		return 0;
8970 	}
8971 	if (ret != -ENOENT)
8972 		return ret;
8973 
8974 	ret = load_module_btfs(obj);
8975 	if (ret)
8976 		return ret;
8977 
8978 	for (i = 0; i < obj->btf_module_cnt; i++) {
8979 		const struct module_btf *mod = &obj->btf_modules[i];
8980 
8981 		ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
8982 		if (ret > 0) {
8983 			*btf_obj_fd = mod->fd;
8984 			*btf_type_id = ret;
8985 			return 0;
8986 		}
8987 		if (ret == -ENOENT)
8988 			continue;
8989 
8990 		return ret;
8991 	}
8992 
8993 	return -ESRCH;
8994 }
8995 
8996 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
8997 				     int *btf_obj_fd, int *btf_type_id)
8998 {
8999 	enum bpf_attach_type attach_type = prog->expected_attach_type;
9000 	__u32 attach_prog_fd = prog->attach_prog_fd;
9001 	int err = 0;
9002 
9003 	/* BPF program's BTF ID */
9004 	if (attach_prog_fd) {
9005 		err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9006 		if (err < 0) {
9007 			pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9008 				 attach_prog_fd, attach_name, err);
9009 			return err;
9010 		}
9011 		*btf_obj_fd = 0;
9012 		*btf_type_id = err;
9013 		return 0;
9014 	}
9015 
9016 	/* kernel/module BTF ID */
9017 	if (prog->obj->gen_loader) {
9018 		bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9019 		*btf_obj_fd = 0;
9020 		*btf_type_id = 1;
9021 	} else {
9022 		err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9023 	}
9024 	if (err) {
9025 		pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err);
9026 		return err;
9027 	}
9028 	return 0;
9029 }
9030 
9031 int libbpf_attach_type_by_name(const char *name,
9032 			       enum bpf_attach_type *attach_type)
9033 {
9034 	char *type_names;
9035 	const struct bpf_sec_def *sec_def;
9036 
9037 	if (!name)
9038 		return libbpf_err(-EINVAL);
9039 
9040 	sec_def = find_sec_def(name);
9041 	if (!sec_def) {
9042 		pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9043 		type_names = libbpf_get_type_names(true);
9044 		if (type_names != NULL) {
9045 			pr_debug("attachable section(type) names are:%s\n", type_names);
9046 			free(type_names);
9047 		}
9048 
9049 		return libbpf_err(-EINVAL);
9050 	}
9051 
9052 	if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9053 		return libbpf_err(-EINVAL);
9054 	if (!(sec_def->cookie & SEC_ATTACHABLE))
9055 		return libbpf_err(-EINVAL);
9056 
9057 	*attach_type = sec_def->expected_attach_type;
9058 	return 0;
9059 }
9060 
9061 int bpf_map__fd(const struct bpf_map *map)
9062 {
9063 	return map ? map->fd : libbpf_err(-EINVAL);
9064 }
9065 
9066 static bool map_uses_real_name(const struct bpf_map *map)
9067 {
9068 	/* Since libbpf started to support custom .data.* and .rodata.* maps,
9069 	 * their user-visible name differs from kernel-visible name. Users see
9070 	 * such map's corresponding ELF section name as a map name.
9071 	 * This check distinguishes .data/.rodata from .data.* and .rodata.*
9072 	 * maps to know which name has to be returned to the user.
9073 	 */
9074 	if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
9075 		return true;
9076 	if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
9077 		return true;
9078 	return false;
9079 }
9080 
9081 const char *bpf_map__name(const struct bpf_map *map)
9082 {
9083 	if (!map)
9084 		return NULL;
9085 
9086 	if (map_uses_real_name(map))
9087 		return map->real_name;
9088 
9089 	return map->name;
9090 }
9091 
9092 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9093 {
9094 	return map->def.type;
9095 }
9096 
9097 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9098 {
9099 	if (map->fd >= 0)
9100 		return libbpf_err(-EBUSY);
9101 	map->def.type = type;
9102 	return 0;
9103 }
9104 
9105 __u32 bpf_map__map_flags(const struct bpf_map *map)
9106 {
9107 	return map->def.map_flags;
9108 }
9109 
9110 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9111 {
9112 	if (map->fd >= 0)
9113 		return libbpf_err(-EBUSY);
9114 	map->def.map_flags = flags;
9115 	return 0;
9116 }
9117 
9118 __u64 bpf_map__map_extra(const struct bpf_map *map)
9119 {
9120 	return map->map_extra;
9121 }
9122 
9123 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
9124 {
9125 	if (map->fd >= 0)
9126 		return libbpf_err(-EBUSY);
9127 	map->map_extra = map_extra;
9128 	return 0;
9129 }
9130 
9131 __u32 bpf_map__numa_node(const struct bpf_map *map)
9132 {
9133 	return map->numa_node;
9134 }
9135 
9136 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
9137 {
9138 	if (map->fd >= 0)
9139 		return libbpf_err(-EBUSY);
9140 	map->numa_node = numa_node;
9141 	return 0;
9142 }
9143 
9144 __u32 bpf_map__key_size(const struct bpf_map *map)
9145 {
9146 	return map->def.key_size;
9147 }
9148 
9149 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
9150 {
9151 	if (map->fd >= 0)
9152 		return libbpf_err(-EBUSY);
9153 	map->def.key_size = size;
9154 	return 0;
9155 }
9156 
9157 __u32 bpf_map__value_size(const struct bpf_map *map)
9158 {
9159 	return map->def.value_size;
9160 }
9161 
9162 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
9163 {
9164 	if (map->fd >= 0)
9165 		return libbpf_err(-EBUSY);
9166 	map->def.value_size = size;
9167 	return 0;
9168 }
9169 
9170 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
9171 {
9172 	return map ? map->btf_key_type_id : 0;
9173 }
9174 
9175 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
9176 {
9177 	return map ? map->btf_value_type_id : 0;
9178 }
9179 
9180 int bpf_map__set_initial_value(struct bpf_map *map,
9181 			       const void *data, size_t size)
9182 {
9183 	if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
9184 	    size != map->def.value_size || map->fd >= 0)
9185 		return libbpf_err(-EINVAL);
9186 
9187 	memcpy(map->mmaped, data, size);
9188 	return 0;
9189 }
9190 
9191 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize)
9192 {
9193 	if (!map->mmaped)
9194 		return NULL;
9195 	*psize = map->def.value_size;
9196 	return map->mmaped;
9197 }
9198 
9199 bool bpf_map__is_internal(const struct bpf_map *map)
9200 {
9201 	return map->libbpf_type != LIBBPF_MAP_UNSPEC;
9202 }
9203 
9204 __u32 bpf_map__ifindex(const struct bpf_map *map)
9205 {
9206 	return map->map_ifindex;
9207 }
9208 
9209 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
9210 {
9211 	if (map->fd >= 0)
9212 		return libbpf_err(-EBUSY);
9213 	map->map_ifindex = ifindex;
9214 	return 0;
9215 }
9216 
9217 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
9218 {
9219 	if (!bpf_map_type__is_map_in_map(map->def.type)) {
9220 		pr_warn("error: unsupported map type\n");
9221 		return libbpf_err(-EINVAL);
9222 	}
9223 	if (map->inner_map_fd != -1) {
9224 		pr_warn("error: inner_map_fd already specified\n");
9225 		return libbpf_err(-EINVAL);
9226 	}
9227 	if (map->inner_map) {
9228 		bpf_map__destroy(map->inner_map);
9229 		zfree(&map->inner_map);
9230 	}
9231 	map->inner_map_fd = fd;
9232 	return 0;
9233 }
9234 
9235 static struct bpf_map *
9236 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
9237 {
9238 	ssize_t idx;
9239 	struct bpf_map *s, *e;
9240 
9241 	if (!obj || !obj->maps)
9242 		return errno = EINVAL, NULL;
9243 
9244 	s = obj->maps;
9245 	e = obj->maps + obj->nr_maps;
9246 
9247 	if ((m < s) || (m >= e)) {
9248 		pr_warn("error in %s: map handler doesn't belong to object\n",
9249 			 __func__);
9250 		return errno = EINVAL, NULL;
9251 	}
9252 
9253 	idx = (m - obj->maps) + i;
9254 	if (idx >= obj->nr_maps || idx < 0)
9255 		return NULL;
9256 	return &obj->maps[idx];
9257 }
9258 
9259 struct bpf_map *
9260 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
9261 {
9262 	if (prev == NULL)
9263 		return obj->maps;
9264 
9265 	return __bpf_map__iter(prev, obj, 1);
9266 }
9267 
9268 struct bpf_map *
9269 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
9270 {
9271 	if (next == NULL) {
9272 		if (!obj->nr_maps)
9273 			return NULL;
9274 		return obj->maps + obj->nr_maps - 1;
9275 	}
9276 
9277 	return __bpf_map__iter(next, obj, -1);
9278 }
9279 
9280 struct bpf_map *
9281 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9282 {
9283 	struct bpf_map *pos;
9284 
9285 	bpf_object__for_each_map(pos, obj) {
9286 		/* if it's a special internal map name (which always starts
9287 		 * with dot) then check if that special name matches the
9288 		 * real map name (ELF section name)
9289 		 */
9290 		if (name[0] == '.') {
9291 			if (pos->real_name && strcmp(pos->real_name, name) == 0)
9292 				return pos;
9293 			continue;
9294 		}
9295 		/* otherwise map name has to be an exact match */
9296 		if (map_uses_real_name(pos)) {
9297 			if (strcmp(pos->real_name, name) == 0)
9298 				return pos;
9299 			continue;
9300 		}
9301 		if (strcmp(pos->name, name) == 0)
9302 			return pos;
9303 	}
9304 	return errno = ENOENT, NULL;
9305 }
9306 
9307 int
9308 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9309 {
9310 	return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9311 }
9312 
9313 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
9314 			   size_t value_sz, bool check_value_sz)
9315 {
9316 	if (map->fd <= 0)
9317 		return -ENOENT;
9318 
9319 	if (map->def.key_size != key_sz) {
9320 		pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
9321 			map->name, key_sz, map->def.key_size);
9322 		return -EINVAL;
9323 	}
9324 
9325 	if (!check_value_sz)
9326 		return 0;
9327 
9328 	switch (map->def.type) {
9329 	case BPF_MAP_TYPE_PERCPU_ARRAY:
9330 	case BPF_MAP_TYPE_PERCPU_HASH:
9331 	case BPF_MAP_TYPE_LRU_PERCPU_HASH:
9332 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
9333 		int num_cpu = libbpf_num_possible_cpus();
9334 		size_t elem_sz = roundup(map->def.value_size, 8);
9335 
9336 		if (value_sz != num_cpu * elem_sz) {
9337 			pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
9338 				map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
9339 			return -EINVAL;
9340 		}
9341 		break;
9342 	}
9343 	default:
9344 		if (map->def.value_size != value_sz) {
9345 			pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
9346 				map->name, value_sz, map->def.value_size);
9347 			return -EINVAL;
9348 		}
9349 		break;
9350 	}
9351 	return 0;
9352 }
9353 
9354 int bpf_map__lookup_elem(const struct bpf_map *map,
9355 			 const void *key, size_t key_sz,
9356 			 void *value, size_t value_sz, __u64 flags)
9357 {
9358 	int err;
9359 
9360 	err = validate_map_op(map, key_sz, value_sz, true);
9361 	if (err)
9362 		return libbpf_err(err);
9363 
9364 	return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
9365 }
9366 
9367 int bpf_map__update_elem(const struct bpf_map *map,
9368 			 const void *key, size_t key_sz,
9369 			 const void *value, size_t value_sz, __u64 flags)
9370 {
9371 	int err;
9372 
9373 	err = validate_map_op(map, key_sz, value_sz, true);
9374 	if (err)
9375 		return libbpf_err(err);
9376 
9377 	return bpf_map_update_elem(map->fd, key, value, flags);
9378 }
9379 
9380 int bpf_map__delete_elem(const struct bpf_map *map,
9381 			 const void *key, size_t key_sz, __u64 flags)
9382 {
9383 	int err;
9384 
9385 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9386 	if (err)
9387 		return libbpf_err(err);
9388 
9389 	return bpf_map_delete_elem_flags(map->fd, key, flags);
9390 }
9391 
9392 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
9393 				    const void *key, size_t key_sz,
9394 				    void *value, size_t value_sz, __u64 flags)
9395 {
9396 	int err;
9397 
9398 	err = validate_map_op(map, key_sz, value_sz, true);
9399 	if (err)
9400 		return libbpf_err(err);
9401 
9402 	return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
9403 }
9404 
9405 int bpf_map__get_next_key(const struct bpf_map *map,
9406 			  const void *cur_key, void *next_key, size_t key_sz)
9407 {
9408 	int err;
9409 
9410 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9411 	if (err)
9412 		return libbpf_err(err);
9413 
9414 	return bpf_map_get_next_key(map->fd, cur_key, next_key);
9415 }
9416 
9417 long libbpf_get_error(const void *ptr)
9418 {
9419 	if (!IS_ERR_OR_NULL(ptr))
9420 		return 0;
9421 
9422 	if (IS_ERR(ptr))
9423 		errno = -PTR_ERR(ptr);
9424 
9425 	/* If ptr == NULL, then errno should be already set by the failing
9426 	 * API, because libbpf never returns NULL on success and it now always
9427 	 * sets errno on error. So no extra errno handling for ptr == NULL
9428 	 * case.
9429 	 */
9430 	return -errno;
9431 }
9432 
9433 /* Replace link's underlying BPF program with the new one */
9434 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
9435 {
9436 	int ret;
9437 
9438 	ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
9439 	return libbpf_err_errno(ret);
9440 }
9441 
9442 /* Release "ownership" of underlying BPF resource (typically, BPF program
9443  * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
9444  * link, when destructed through bpf_link__destroy() call won't attempt to
9445  * detach/unregisted that BPF resource. This is useful in situations where,
9446  * say, attached BPF program has to outlive userspace program that attached it
9447  * in the system. Depending on type of BPF program, though, there might be
9448  * additional steps (like pinning BPF program in BPF FS) necessary to ensure
9449  * exit of userspace program doesn't trigger automatic detachment and clean up
9450  * inside the kernel.
9451  */
9452 void bpf_link__disconnect(struct bpf_link *link)
9453 {
9454 	link->disconnected = true;
9455 }
9456 
9457 int bpf_link__destroy(struct bpf_link *link)
9458 {
9459 	int err = 0;
9460 
9461 	if (IS_ERR_OR_NULL(link))
9462 		return 0;
9463 
9464 	if (!link->disconnected && link->detach)
9465 		err = link->detach(link);
9466 	if (link->pin_path)
9467 		free(link->pin_path);
9468 	if (link->dealloc)
9469 		link->dealloc(link);
9470 	else
9471 		free(link);
9472 
9473 	return libbpf_err(err);
9474 }
9475 
9476 int bpf_link__fd(const struct bpf_link *link)
9477 {
9478 	return link->fd;
9479 }
9480 
9481 const char *bpf_link__pin_path(const struct bpf_link *link)
9482 {
9483 	return link->pin_path;
9484 }
9485 
9486 static int bpf_link__detach_fd(struct bpf_link *link)
9487 {
9488 	return libbpf_err_errno(close(link->fd));
9489 }
9490 
9491 struct bpf_link *bpf_link__open(const char *path)
9492 {
9493 	struct bpf_link *link;
9494 	int fd;
9495 
9496 	fd = bpf_obj_get(path);
9497 	if (fd < 0) {
9498 		fd = -errno;
9499 		pr_warn("failed to open link at %s: %d\n", path, fd);
9500 		return libbpf_err_ptr(fd);
9501 	}
9502 
9503 	link = calloc(1, sizeof(*link));
9504 	if (!link) {
9505 		close(fd);
9506 		return libbpf_err_ptr(-ENOMEM);
9507 	}
9508 	link->detach = &bpf_link__detach_fd;
9509 	link->fd = fd;
9510 
9511 	link->pin_path = strdup(path);
9512 	if (!link->pin_path) {
9513 		bpf_link__destroy(link);
9514 		return libbpf_err_ptr(-ENOMEM);
9515 	}
9516 
9517 	return link;
9518 }
9519 
9520 int bpf_link__detach(struct bpf_link *link)
9521 {
9522 	return bpf_link_detach(link->fd) ? -errno : 0;
9523 }
9524 
9525 int bpf_link__pin(struct bpf_link *link, const char *path)
9526 {
9527 	int err;
9528 
9529 	if (link->pin_path)
9530 		return libbpf_err(-EBUSY);
9531 	err = make_parent_dir(path);
9532 	if (err)
9533 		return libbpf_err(err);
9534 	err = check_path(path);
9535 	if (err)
9536 		return libbpf_err(err);
9537 
9538 	link->pin_path = strdup(path);
9539 	if (!link->pin_path)
9540 		return libbpf_err(-ENOMEM);
9541 
9542 	if (bpf_obj_pin(link->fd, link->pin_path)) {
9543 		err = -errno;
9544 		zfree(&link->pin_path);
9545 		return libbpf_err(err);
9546 	}
9547 
9548 	pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
9549 	return 0;
9550 }
9551 
9552 int bpf_link__unpin(struct bpf_link *link)
9553 {
9554 	int err;
9555 
9556 	if (!link->pin_path)
9557 		return libbpf_err(-EINVAL);
9558 
9559 	err = unlink(link->pin_path);
9560 	if (err != 0)
9561 		return -errno;
9562 
9563 	pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
9564 	zfree(&link->pin_path);
9565 	return 0;
9566 }
9567 
9568 struct bpf_link_perf {
9569 	struct bpf_link link;
9570 	int perf_event_fd;
9571 	/* legacy kprobe support: keep track of probe identifier and type */
9572 	char *legacy_probe_name;
9573 	bool legacy_is_kprobe;
9574 	bool legacy_is_retprobe;
9575 };
9576 
9577 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
9578 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
9579 
9580 static int bpf_link_perf_detach(struct bpf_link *link)
9581 {
9582 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9583 	int err = 0;
9584 
9585 	if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
9586 		err = -errno;
9587 
9588 	if (perf_link->perf_event_fd != link->fd)
9589 		close(perf_link->perf_event_fd);
9590 	close(link->fd);
9591 
9592 	/* legacy uprobe/kprobe needs to be removed after perf event fd closure */
9593 	if (perf_link->legacy_probe_name) {
9594 		if (perf_link->legacy_is_kprobe) {
9595 			err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
9596 							 perf_link->legacy_is_retprobe);
9597 		} else {
9598 			err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
9599 							 perf_link->legacy_is_retprobe);
9600 		}
9601 	}
9602 
9603 	return err;
9604 }
9605 
9606 static void bpf_link_perf_dealloc(struct bpf_link *link)
9607 {
9608 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9609 
9610 	free(perf_link->legacy_probe_name);
9611 	free(perf_link);
9612 }
9613 
9614 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
9615 						     const struct bpf_perf_event_opts *opts)
9616 {
9617 	char errmsg[STRERR_BUFSIZE];
9618 	struct bpf_link_perf *link;
9619 	int prog_fd, link_fd = -1, err;
9620 
9621 	if (!OPTS_VALID(opts, bpf_perf_event_opts))
9622 		return libbpf_err_ptr(-EINVAL);
9623 
9624 	if (pfd < 0) {
9625 		pr_warn("prog '%s': invalid perf event FD %d\n",
9626 			prog->name, pfd);
9627 		return libbpf_err_ptr(-EINVAL);
9628 	}
9629 	prog_fd = bpf_program__fd(prog);
9630 	if (prog_fd < 0) {
9631 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
9632 			prog->name);
9633 		return libbpf_err_ptr(-EINVAL);
9634 	}
9635 
9636 	link = calloc(1, sizeof(*link));
9637 	if (!link)
9638 		return libbpf_err_ptr(-ENOMEM);
9639 	link->link.detach = &bpf_link_perf_detach;
9640 	link->link.dealloc = &bpf_link_perf_dealloc;
9641 	link->perf_event_fd = pfd;
9642 
9643 	if (kernel_supports(prog->obj, FEAT_PERF_LINK)) {
9644 		DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
9645 			.perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
9646 
9647 		link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
9648 		if (link_fd < 0) {
9649 			err = -errno;
9650 			pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
9651 				prog->name, pfd,
9652 				err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9653 			goto err_out;
9654 		}
9655 		link->link.fd = link_fd;
9656 	} else {
9657 		if (OPTS_GET(opts, bpf_cookie, 0)) {
9658 			pr_warn("prog '%s': user context value is not supported\n", prog->name);
9659 			err = -EOPNOTSUPP;
9660 			goto err_out;
9661 		}
9662 
9663 		if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
9664 			err = -errno;
9665 			pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
9666 				prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9667 			if (err == -EPROTO)
9668 				pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
9669 					prog->name, pfd);
9670 			goto err_out;
9671 		}
9672 		link->link.fd = pfd;
9673 	}
9674 	if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
9675 		err = -errno;
9676 		pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
9677 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9678 		goto err_out;
9679 	}
9680 
9681 	return &link->link;
9682 err_out:
9683 	if (link_fd >= 0)
9684 		close(link_fd);
9685 	free(link);
9686 	return libbpf_err_ptr(err);
9687 }
9688 
9689 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
9690 {
9691 	return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
9692 }
9693 
9694 /*
9695  * this function is expected to parse integer in the range of [0, 2^31-1] from
9696  * given file using scanf format string fmt. If actual parsed value is
9697  * negative, the result might be indistinguishable from error
9698  */
9699 static int parse_uint_from_file(const char *file, const char *fmt)
9700 {
9701 	char buf[STRERR_BUFSIZE];
9702 	int err, ret;
9703 	FILE *f;
9704 
9705 	f = fopen(file, "r");
9706 	if (!f) {
9707 		err = -errno;
9708 		pr_debug("failed to open '%s': %s\n", file,
9709 			 libbpf_strerror_r(err, buf, sizeof(buf)));
9710 		return err;
9711 	}
9712 	err = fscanf(f, fmt, &ret);
9713 	if (err != 1) {
9714 		err = err == EOF ? -EIO : -errno;
9715 		pr_debug("failed to parse '%s': %s\n", file,
9716 			libbpf_strerror_r(err, buf, sizeof(buf)));
9717 		fclose(f);
9718 		return err;
9719 	}
9720 	fclose(f);
9721 	return ret;
9722 }
9723 
9724 static int determine_kprobe_perf_type(void)
9725 {
9726 	const char *file = "/sys/bus/event_source/devices/kprobe/type";
9727 
9728 	return parse_uint_from_file(file, "%d\n");
9729 }
9730 
9731 static int determine_uprobe_perf_type(void)
9732 {
9733 	const char *file = "/sys/bus/event_source/devices/uprobe/type";
9734 
9735 	return parse_uint_from_file(file, "%d\n");
9736 }
9737 
9738 static int determine_kprobe_retprobe_bit(void)
9739 {
9740 	const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
9741 
9742 	return parse_uint_from_file(file, "config:%d\n");
9743 }
9744 
9745 static int determine_uprobe_retprobe_bit(void)
9746 {
9747 	const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
9748 
9749 	return parse_uint_from_file(file, "config:%d\n");
9750 }
9751 
9752 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
9753 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
9754 
9755 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
9756 				 uint64_t offset, int pid, size_t ref_ctr_off)
9757 {
9758 	struct perf_event_attr attr = {};
9759 	char errmsg[STRERR_BUFSIZE];
9760 	int type, pfd, err;
9761 
9762 	if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
9763 		return -EINVAL;
9764 
9765 	type = uprobe ? determine_uprobe_perf_type()
9766 		      : determine_kprobe_perf_type();
9767 	if (type < 0) {
9768 		pr_warn("failed to determine %s perf type: %s\n",
9769 			uprobe ? "uprobe" : "kprobe",
9770 			libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
9771 		return type;
9772 	}
9773 	if (retprobe) {
9774 		int bit = uprobe ? determine_uprobe_retprobe_bit()
9775 				 : determine_kprobe_retprobe_bit();
9776 
9777 		if (bit < 0) {
9778 			pr_warn("failed to determine %s retprobe bit: %s\n",
9779 				uprobe ? "uprobe" : "kprobe",
9780 				libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
9781 			return bit;
9782 		}
9783 		attr.config |= 1 << bit;
9784 	}
9785 	attr.size = sizeof(attr);
9786 	attr.type = type;
9787 	attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9788 	attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
9789 	attr.config2 = offset;		 /* kprobe_addr or probe_offset */
9790 
9791 	/* pid filter is meaningful only for uprobes */
9792 	pfd = syscall(__NR_perf_event_open, &attr,
9793 		      pid < 0 ? -1 : pid /* pid */,
9794 		      pid == -1 ? 0 : -1 /* cpu */,
9795 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9796 	if (pfd < 0) {
9797 		err = -errno;
9798 		pr_warn("%s perf_event_open() failed: %s\n",
9799 			uprobe ? "uprobe" : "kprobe",
9800 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9801 		return err;
9802 	}
9803 	return pfd;
9804 }
9805 
9806 static int append_to_file(const char *file, const char *fmt, ...)
9807 {
9808 	int fd, n, err = 0;
9809 	va_list ap;
9810 
9811 	fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
9812 	if (fd < 0)
9813 		return -errno;
9814 
9815 	va_start(ap, fmt);
9816 	n = vdprintf(fd, fmt, ap);
9817 	va_end(ap);
9818 
9819 	if (n < 0)
9820 		err = -errno;
9821 
9822 	close(fd);
9823 	return err;
9824 }
9825 
9826 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
9827 					 const char *kfunc_name, size_t offset)
9828 {
9829 	static int index = 0;
9830 
9831 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
9832 		 __sync_fetch_and_add(&index, 1));
9833 }
9834 
9835 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
9836 				   const char *kfunc_name, size_t offset)
9837 {
9838 	const char *file = "/sys/kernel/debug/tracing/kprobe_events";
9839 
9840 	return append_to_file(file, "%c:%s/%s %s+0x%zx",
9841 			      retprobe ? 'r' : 'p',
9842 			      retprobe ? "kretprobes" : "kprobes",
9843 			      probe_name, kfunc_name, offset);
9844 }
9845 
9846 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
9847 {
9848 	const char *file = "/sys/kernel/debug/tracing/kprobe_events";
9849 
9850 	return append_to_file(file, "-:%s/%s", retprobe ? "kretprobes" : "kprobes", probe_name);
9851 }
9852 
9853 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
9854 {
9855 	char file[256];
9856 
9857 	snprintf(file, sizeof(file),
9858 		 "/sys/kernel/debug/tracing/events/%s/%s/id",
9859 		 retprobe ? "kretprobes" : "kprobes", probe_name);
9860 
9861 	return parse_uint_from_file(file, "%d\n");
9862 }
9863 
9864 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
9865 					 const char *kfunc_name, size_t offset, int pid)
9866 {
9867 	struct perf_event_attr attr = {};
9868 	char errmsg[STRERR_BUFSIZE];
9869 	int type, pfd, err;
9870 
9871 	err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
9872 	if (err < 0) {
9873 		pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
9874 			kfunc_name, offset,
9875 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9876 		return err;
9877 	}
9878 	type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
9879 	if (type < 0) {
9880 		err = type;
9881 		pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
9882 			kfunc_name, offset,
9883 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9884 		goto err_clean_legacy;
9885 	}
9886 	attr.size = sizeof(attr);
9887 	attr.config = type;
9888 	attr.type = PERF_TYPE_TRACEPOINT;
9889 
9890 	pfd = syscall(__NR_perf_event_open, &attr,
9891 		      pid < 0 ? -1 : pid, /* pid */
9892 		      pid == -1 ? 0 : -1, /* cpu */
9893 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
9894 	if (pfd < 0) {
9895 		err = -errno;
9896 		pr_warn("legacy kprobe perf_event_open() failed: %s\n",
9897 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9898 		goto err_clean_legacy;
9899 	}
9900 	return pfd;
9901 
9902 err_clean_legacy:
9903 	/* Clear the newly added legacy kprobe_event */
9904 	remove_kprobe_event_legacy(probe_name, retprobe);
9905 	return err;
9906 }
9907 
9908 struct bpf_link *
9909 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
9910 				const char *func_name,
9911 				const struct bpf_kprobe_opts *opts)
9912 {
9913 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
9914 	char errmsg[STRERR_BUFSIZE];
9915 	char *legacy_probe = NULL;
9916 	struct bpf_link *link;
9917 	size_t offset;
9918 	bool retprobe, legacy;
9919 	int pfd, err;
9920 
9921 	if (!OPTS_VALID(opts, bpf_kprobe_opts))
9922 		return libbpf_err_ptr(-EINVAL);
9923 
9924 	retprobe = OPTS_GET(opts, retprobe, false);
9925 	offset = OPTS_GET(opts, offset, 0);
9926 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
9927 
9928 	legacy = determine_kprobe_perf_type() < 0;
9929 	if (!legacy) {
9930 		pfd = perf_event_open_probe(false /* uprobe */, retprobe,
9931 					    func_name, offset,
9932 					    -1 /* pid */, 0 /* ref_ctr_off */);
9933 	} else {
9934 		char probe_name[256];
9935 
9936 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
9937 					     func_name, offset);
9938 
9939 		legacy_probe = strdup(probe_name);
9940 		if (!legacy_probe)
9941 			return libbpf_err_ptr(-ENOMEM);
9942 
9943 		pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
9944 						    offset, -1 /* pid */);
9945 	}
9946 	if (pfd < 0) {
9947 		err = -errno;
9948 		pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
9949 			prog->name, retprobe ? "kretprobe" : "kprobe",
9950 			func_name, offset,
9951 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9952 		goto err_out;
9953 	}
9954 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
9955 	err = libbpf_get_error(link);
9956 	if (err) {
9957 		close(pfd);
9958 		pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
9959 			prog->name, retprobe ? "kretprobe" : "kprobe",
9960 			func_name, offset,
9961 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9962 		goto err_clean_legacy;
9963 	}
9964 	if (legacy) {
9965 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9966 
9967 		perf_link->legacy_probe_name = legacy_probe;
9968 		perf_link->legacy_is_kprobe = true;
9969 		perf_link->legacy_is_retprobe = retprobe;
9970 	}
9971 
9972 	return link;
9973 
9974 err_clean_legacy:
9975 	if (legacy)
9976 		remove_kprobe_event_legacy(legacy_probe, retprobe);
9977 err_out:
9978 	free(legacy_probe);
9979 	return libbpf_err_ptr(err);
9980 }
9981 
9982 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
9983 					    bool retprobe,
9984 					    const char *func_name)
9985 {
9986 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
9987 		.retprobe = retprobe,
9988 	);
9989 
9990 	return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
9991 }
9992 
9993 /* Adapted from perf/util/string.c */
9994 static bool glob_match(const char *str, const char *pat)
9995 {
9996 	while (*str && *pat && *pat != '*') {
9997 		if (*pat == '?') {      /* Matches any single character */
9998 			str++;
9999 			pat++;
10000 			continue;
10001 		}
10002 		if (*str != *pat)
10003 			return false;
10004 		str++;
10005 		pat++;
10006 	}
10007 	/* Check wild card */
10008 	if (*pat == '*') {
10009 		while (*pat == '*')
10010 			pat++;
10011 		if (!*pat) /* Tail wild card matches all */
10012 			return true;
10013 		while (*str)
10014 			if (glob_match(str++, pat))
10015 				return true;
10016 	}
10017 	return !*str && !*pat;
10018 }
10019 
10020 struct kprobe_multi_resolve {
10021 	const char *pattern;
10022 	unsigned long *addrs;
10023 	size_t cap;
10024 	size_t cnt;
10025 };
10026 
10027 static int
10028 resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type,
10029 			const char *sym_name, void *ctx)
10030 {
10031 	struct kprobe_multi_resolve *res = ctx;
10032 	int err;
10033 
10034 	if (!glob_match(sym_name, res->pattern))
10035 		return 0;
10036 
10037 	err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long),
10038 				res->cnt + 1);
10039 	if (err)
10040 		return err;
10041 
10042 	res->addrs[res->cnt++] = (unsigned long) sym_addr;
10043 	return 0;
10044 }
10045 
10046 struct bpf_link *
10047 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
10048 				      const char *pattern,
10049 				      const struct bpf_kprobe_multi_opts *opts)
10050 {
10051 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
10052 	struct kprobe_multi_resolve res = {
10053 		.pattern = pattern,
10054 	};
10055 	struct bpf_link *link = NULL;
10056 	char errmsg[STRERR_BUFSIZE];
10057 	const unsigned long *addrs;
10058 	int err, link_fd, prog_fd;
10059 	const __u64 *cookies;
10060 	const char **syms;
10061 	bool retprobe;
10062 	size_t cnt;
10063 
10064 	if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
10065 		return libbpf_err_ptr(-EINVAL);
10066 
10067 	syms    = OPTS_GET(opts, syms, false);
10068 	addrs   = OPTS_GET(opts, addrs, false);
10069 	cnt     = OPTS_GET(opts, cnt, false);
10070 	cookies = OPTS_GET(opts, cookies, false);
10071 
10072 	if (!pattern && !addrs && !syms)
10073 		return libbpf_err_ptr(-EINVAL);
10074 	if (pattern && (addrs || syms || cookies || cnt))
10075 		return libbpf_err_ptr(-EINVAL);
10076 	if (!pattern && !cnt)
10077 		return libbpf_err_ptr(-EINVAL);
10078 	if (addrs && syms)
10079 		return libbpf_err_ptr(-EINVAL);
10080 
10081 	if (pattern) {
10082 		err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res);
10083 		if (err)
10084 			goto error;
10085 		if (!res.cnt) {
10086 			err = -ENOENT;
10087 			goto error;
10088 		}
10089 		addrs = res.addrs;
10090 		cnt = res.cnt;
10091 	}
10092 
10093 	retprobe = OPTS_GET(opts, retprobe, false);
10094 
10095 	lopts.kprobe_multi.syms = syms;
10096 	lopts.kprobe_multi.addrs = addrs;
10097 	lopts.kprobe_multi.cookies = cookies;
10098 	lopts.kprobe_multi.cnt = cnt;
10099 	lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
10100 
10101 	link = calloc(1, sizeof(*link));
10102 	if (!link) {
10103 		err = -ENOMEM;
10104 		goto error;
10105 	}
10106 	link->detach = &bpf_link__detach_fd;
10107 
10108 	prog_fd = bpf_program__fd(prog);
10109 	link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts);
10110 	if (link_fd < 0) {
10111 		err = -errno;
10112 		pr_warn("prog '%s': failed to attach: %s\n",
10113 			prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10114 		goto error;
10115 	}
10116 	link->fd = link_fd;
10117 	free(res.addrs);
10118 	return link;
10119 
10120 error:
10121 	free(link);
10122 	free(res.addrs);
10123 	return libbpf_err_ptr(err);
10124 }
10125 
10126 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10127 {
10128 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
10129 	unsigned long offset = 0;
10130 	const char *func_name;
10131 	char *func;
10132 	int n;
10133 
10134 	*link = NULL;
10135 
10136 	/* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
10137 	if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
10138 		return 0;
10139 
10140 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
10141 	if (opts.retprobe)
10142 		func_name = prog->sec_name + sizeof("kretprobe/") - 1;
10143 	else
10144 		func_name = prog->sec_name + sizeof("kprobe/") - 1;
10145 
10146 	n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
10147 	if (n < 1) {
10148 		pr_warn("kprobe name is invalid: %s\n", func_name);
10149 		return -EINVAL;
10150 	}
10151 	if (opts.retprobe && offset != 0) {
10152 		free(func);
10153 		pr_warn("kretprobes do not support offset specification\n");
10154 		return -EINVAL;
10155 	}
10156 
10157 	opts.offset = offset;
10158 	*link = bpf_program__attach_kprobe_opts(prog, func, &opts);
10159 	free(func);
10160 	return libbpf_get_error(*link);
10161 }
10162 
10163 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10164 {
10165 	LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
10166 	const char *spec;
10167 	char *pattern;
10168 	int n;
10169 
10170 	*link = NULL;
10171 
10172 	/* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
10173 	if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
10174 	    strcmp(prog->sec_name, "kretprobe.multi") == 0)
10175 		return 0;
10176 
10177 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
10178 	if (opts.retprobe)
10179 		spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
10180 	else
10181 		spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
10182 
10183 	n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
10184 	if (n < 1) {
10185 		pr_warn("kprobe multi pattern is invalid: %s\n", pattern);
10186 		return -EINVAL;
10187 	}
10188 
10189 	*link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
10190 	free(pattern);
10191 	return libbpf_get_error(*link);
10192 }
10193 
10194 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
10195 					 const char *binary_path, uint64_t offset)
10196 {
10197 	int i;
10198 
10199 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
10200 
10201 	/* sanitize binary_path in the probe name */
10202 	for (i = 0; buf[i]; i++) {
10203 		if (!isalnum(buf[i]))
10204 			buf[i] = '_';
10205 	}
10206 }
10207 
10208 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
10209 					  const char *binary_path, size_t offset)
10210 {
10211 	const char *file = "/sys/kernel/debug/tracing/uprobe_events";
10212 
10213 	return append_to_file(file, "%c:%s/%s %s:0x%zx",
10214 			      retprobe ? 'r' : 'p',
10215 			      retprobe ? "uretprobes" : "uprobes",
10216 			      probe_name, binary_path, offset);
10217 }
10218 
10219 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
10220 {
10221 	const char *file = "/sys/kernel/debug/tracing/uprobe_events";
10222 
10223 	return append_to_file(file, "-:%s/%s", retprobe ? "uretprobes" : "uprobes", probe_name);
10224 }
10225 
10226 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10227 {
10228 	char file[512];
10229 
10230 	snprintf(file, sizeof(file),
10231 		 "/sys/kernel/debug/tracing/events/%s/%s/id",
10232 		 retprobe ? "uretprobes" : "uprobes", probe_name);
10233 
10234 	return parse_uint_from_file(file, "%d\n");
10235 }
10236 
10237 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
10238 					 const char *binary_path, size_t offset, int pid)
10239 {
10240 	struct perf_event_attr attr;
10241 	int type, pfd, err;
10242 
10243 	err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
10244 	if (err < 0) {
10245 		pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
10246 			binary_path, (size_t)offset, err);
10247 		return err;
10248 	}
10249 	type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
10250 	if (type < 0) {
10251 		err = type;
10252 		pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
10253 			binary_path, offset, err);
10254 		goto err_clean_legacy;
10255 	}
10256 
10257 	memset(&attr, 0, sizeof(attr));
10258 	attr.size = sizeof(attr);
10259 	attr.config = type;
10260 	attr.type = PERF_TYPE_TRACEPOINT;
10261 
10262 	pfd = syscall(__NR_perf_event_open, &attr,
10263 		      pid < 0 ? -1 : pid, /* pid */
10264 		      pid == -1 ? 0 : -1, /* cpu */
10265 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
10266 	if (pfd < 0) {
10267 		err = -errno;
10268 		pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
10269 		goto err_clean_legacy;
10270 	}
10271 	return pfd;
10272 
10273 err_clean_legacy:
10274 	/* Clear the newly added legacy uprobe_event */
10275 	remove_uprobe_event_legacy(probe_name, retprobe);
10276 	return err;
10277 }
10278 
10279 /* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */
10280 static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn)
10281 {
10282 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
10283 		GElf_Shdr sh;
10284 
10285 		if (!gelf_getshdr(scn, &sh))
10286 			continue;
10287 		if (sh.sh_type == sh_type)
10288 			return scn;
10289 	}
10290 	return NULL;
10291 }
10292 
10293 /* Find offset of function name in object specified by path.  "name" matches
10294  * symbol name or name@@LIB for library functions.
10295  */
10296 static long elf_find_func_offset(const char *binary_path, const char *name)
10297 {
10298 	int fd, i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB };
10299 	bool is_shared_lib, is_name_qualified;
10300 	char errmsg[STRERR_BUFSIZE];
10301 	long ret = -ENOENT;
10302 	size_t name_len;
10303 	GElf_Ehdr ehdr;
10304 	Elf *elf;
10305 
10306 	fd = open(binary_path, O_RDONLY | O_CLOEXEC);
10307 	if (fd < 0) {
10308 		ret = -errno;
10309 		pr_warn("failed to open %s: %s\n", binary_path,
10310 			libbpf_strerror_r(ret, errmsg, sizeof(errmsg)));
10311 		return ret;
10312 	}
10313 	elf = elf_begin(fd, ELF_C_READ_MMAP, NULL);
10314 	if (!elf) {
10315 		pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1));
10316 		close(fd);
10317 		return -LIBBPF_ERRNO__FORMAT;
10318 	}
10319 	if (!gelf_getehdr(elf, &ehdr)) {
10320 		pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1));
10321 		ret = -LIBBPF_ERRNO__FORMAT;
10322 		goto out;
10323 	}
10324 	/* for shared lib case, we do not need to calculate relative offset */
10325 	is_shared_lib = ehdr.e_type == ET_DYN;
10326 
10327 	name_len = strlen(name);
10328 	/* Does name specify "@@LIB"? */
10329 	is_name_qualified = strstr(name, "@@") != NULL;
10330 
10331 	/* Search SHT_DYNSYM, SHT_SYMTAB for symbol.  This search order is used because if
10332 	 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically
10333 	 * linked binary may not have SHT_DYMSYM, so absence of a section should not be
10334 	 * reported as a warning/error.
10335 	 */
10336 	for (i = 0; i < ARRAY_SIZE(sh_types); i++) {
10337 		size_t nr_syms, strtabidx, idx;
10338 		Elf_Data *symbols = NULL;
10339 		Elf_Scn *scn = NULL;
10340 		int last_bind = -1;
10341 		const char *sname;
10342 		GElf_Shdr sh;
10343 
10344 		scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL);
10345 		if (!scn) {
10346 			pr_debug("elf: failed to find symbol table ELF sections in '%s'\n",
10347 				 binary_path);
10348 			continue;
10349 		}
10350 		if (!gelf_getshdr(scn, &sh))
10351 			continue;
10352 		strtabidx = sh.sh_link;
10353 		symbols = elf_getdata(scn, 0);
10354 		if (!symbols) {
10355 			pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n",
10356 				binary_path, elf_errmsg(-1));
10357 			ret = -LIBBPF_ERRNO__FORMAT;
10358 			goto out;
10359 		}
10360 		nr_syms = symbols->d_size / sh.sh_entsize;
10361 
10362 		for (idx = 0; idx < nr_syms; idx++) {
10363 			int curr_bind;
10364 			GElf_Sym sym;
10365 			Elf_Scn *sym_scn;
10366 			GElf_Shdr sym_sh;
10367 
10368 			if (!gelf_getsym(symbols, idx, &sym))
10369 				continue;
10370 
10371 			if (GELF_ST_TYPE(sym.st_info) != STT_FUNC)
10372 				continue;
10373 
10374 			sname = elf_strptr(elf, strtabidx, sym.st_name);
10375 			if (!sname)
10376 				continue;
10377 
10378 			curr_bind = GELF_ST_BIND(sym.st_info);
10379 
10380 			/* User can specify func, func@@LIB or func@@LIB_VERSION. */
10381 			if (strncmp(sname, name, name_len) != 0)
10382 				continue;
10383 			/* ...but we don't want a search for "foo" to match 'foo2" also, so any
10384 			 * additional characters in sname should be of the form "@@LIB".
10385 			 */
10386 			if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@')
10387 				continue;
10388 
10389 			if (ret >= 0) {
10390 				/* handle multiple matches */
10391 				if (last_bind != STB_WEAK && curr_bind != STB_WEAK) {
10392 					/* Only accept one non-weak bind. */
10393 					pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n",
10394 						sname, name, binary_path);
10395 					ret = -LIBBPF_ERRNO__FORMAT;
10396 					goto out;
10397 				} else if (curr_bind == STB_WEAK) {
10398 					/* already have a non-weak bind, and
10399 					 * this is a weak bind, so ignore.
10400 					 */
10401 					continue;
10402 				}
10403 			}
10404 
10405 			/* Transform symbol's virtual address (absolute for
10406 			 * binaries and relative for shared libs) into file
10407 			 * offset, which is what kernel is expecting for
10408 			 * uprobe/uretprobe attachment.
10409 			 * See Documentation/trace/uprobetracer.rst for more
10410 			 * details.
10411 			 * This is done by looking up symbol's containing
10412 			 * section's header and using it's virtual address
10413 			 * (sh_addr) and corresponding file offset (sh_offset)
10414 			 * to transform sym.st_value (virtual address) into
10415 			 * desired final file offset.
10416 			 */
10417 			sym_scn = elf_getscn(elf, sym.st_shndx);
10418 			if (!sym_scn)
10419 				continue;
10420 			if (!gelf_getshdr(sym_scn, &sym_sh))
10421 				continue;
10422 
10423 			ret = sym.st_value - sym_sh.sh_addr + sym_sh.sh_offset;
10424 			last_bind = curr_bind;
10425 		}
10426 		if (ret > 0)
10427 			break;
10428 	}
10429 
10430 	if (ret > 0) {
10431 		pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path,
10432 			 ret);
10433 	} else {
10434 		if (ret == 0) {
10435 			pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path,
10436 				is_shared_lib ? "should not be 0 in a shared library" :
10437 						"try using shared library path instead");
10438 			ret = -ENOENT;
10439 		} else {
10440 			pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path);
10441 		}
10442 	}
10443 out:
10444 	elf_end(elf);
10445 	close(fd);
10446 	return ret;
10447 }
10448 
10449 static const char *arch_specific_lib_paths(void)
10450 {
10451 	/*
10452 	 * Based on https://packages.debian.org/sid/libc6.
10453 	 *
10454 	 * Assume that the traced program is built for the same architecture
10455 	 * as libbpf, which should cover the vast majority of cases.
10456 	 */
10457 #if defined(__x86_64__)
10458 	return "/lib/x86_64-linux-gnu";
10459 #elif defined(__i386__)
10460 	return "/lib/i386-linux-gnu";
10461 #elif defined(__s390x__)
10462 	return "/lib/s390x-linux-gnu";
10463 #elif defined(__s390__)
10464 	return "/lib/s390-linux-gnu";
10465 #elif defined(__arm__) && defined(__SOFTFP__)
10466 	return "/lib/arm-linux-gnueabi";
10467 #elif defined(__arm__) && !defined(__SOFTFP__)
10468 	return "/lib/arm-linux-gnueabihf";
10469 #elif defined(__aarch64__)
10470 	return "/lib/aarch64-linux-gnu";
10471 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
10472 	return "/lib/mips64el-linux-gnuabi64";
10473 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
10474 	return "/lib/mipsel-linux-gnu";
10475 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
10476 	return "/lib/powerpc64le-linux-gnu";
10477 #elif defined(__sparc__) && defined(__arch64__)
10478 	return "/lib/sparc64-linux-gnu";
10479 #elif defined(__riscv) && __riscv_xlen == 64
10480 	return "/lib/riscv64-linux-gnu";
10481 #else
10482 	return NULL;
10483 #endif
10484 }
10485 
10486 /* Get full path to program/shared library. */
10487 static int resolve_full_path(const char *file, char *result, size_t result_sz)
10488 {
10489 	const char *search_paths[3] = {};
10490 	int i;
10491 
10492 	if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
10493 		search_paths[0] = getenv("LD_LIBRARY_PATH");
10494 		search_paths[1] = "/usr/lib64:/usr/lib";
10495 		search_paths[2] = arch_specific_lib_paths();
10496 	} else {
10497 		search_paths[0] = getenv("PATH");
10498 		search_paths[1] = "/usr/bin:/usr/sbin";
10499 	}
10500 
10501 	for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
10502 		const char *s;
10503 
10504 		if (!search_paths[i])
10505 			continue;
10506 		for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
10507 			char *next_path;
10508 			int seg_len;
10509 
10510 			if (s[0] == ':')
10511 				s++;
10512 			next_path = strchr(s, ':');
10513 			seg_len = next_path ? next_path - s : strlen(s);
10514 			if (!seg_len)
10515 				continue;
10516 			snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
10517 			/* ensure it is an executable file/link */
10518 			if (access(result, R_OK | X_OK) < 0)
10519 				continue;
10520 			pr_debug("resolved '%s' to '%s'\n", file, result);
10521 			return 0;
10522 		}
10523 	}
10524 	return -ENOENT;
10525 }
10526 
10527 LIBBPF_API struct bpf_link *
10528 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
10529 				const char *binary_path, size_t func_offset,
10530 				const struct bpf_uprobe_opts *opts)
10531 {
10532 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10533 	char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
10534 	char full_binary_path[PATH_MAX];
10535 	struct bpf_link *link;
10536 	size_t ref_ctr_off;
10537 	int pfd, err;
10538 	bool retprobe, legacy;
10539 	const char *func_name;
10540 
10541 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
10542 		return libbpf_err_ptr(-EINVAL);
10543 
10544 	retprobe = OPTS_GET(opts, retprobe, false);
10545 	ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
10546 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10547 
10548 	if (binary_path && !strchr(binary_path, '/')) {
10549 		err = resolve_full_path(binary_path, full_binary_path,
10550 					sizeof(full_binary_path));
10551 		if (err) {
10552 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
10553 				prog->name, binary_path, err);
10554 			return libbpf_err_ptr(err);
10555 		}
10556 		binary_path = full_binary_path;
10557 	}
10558 	func_name = OPTS_GET(opts, func_name, NULL);
10559 	if (func_name) {
10560 		long sym_off;
10561 
10562 		if (!binary_path) {
10563 			pr_warn("prog '%s': name-based attach requires binary_path\n",
10564 				prog->name);
10565 			return libbpf_err_ptr(-EINVAL);
10566 		}
10567 		sym_off = elf_find_func_offset(binary_path, func_name);
10568 		if (sym_off < 0)
10569 			return libbpf_err_ptr(sym_off);
10570 		func_offset += sym_off;
10571 	}
10572 
10573 	legacy = determine_uprobe_perf_type() < 0;
10574 	if (!legacy) {
10575 		pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
10576 					    func_offset, pid, ref_ctr_off);
10577 	} else {
10578 		char probe_name[PATH_MAX + 64];
10579 
10580 		if (ref_ctr_off)
10581 			return libbpf_err_ptr(-EINVAL);
10582 
10583 		gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
10584 					     binary_path, func_offset);
10585 
10586 		legacy_probe = strdup(probe_name);
10587 		if (!legacy_probe)
10588 			return libbpf_err_ptr(-ENOMEM);
10589 
10590 		pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
10591 						    binary_path, func_offset, pid);
10592 	}
10593 	if (pfd < 0) {
10594 		err = -errno;
10595 		pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
10596 			prog->name, retprobe ? "uretprobe" : "uprobe",
10597 			binary_path, func_offset,
10598 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10599 		goto err_out;
10600 	}
10601 
10602 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10603 	err = libbpf_get_error(link);
10604 	if (err) {
10605 		close(pfd);
10606 		pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
10607 			prog->name, retprobe ? "uretprobe" : "uprobe",
10608 			binary_path, func_offset,
10609 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10610 		goto err_clean_legacy;
10611 	}
10612 	if (legacy) {
10613 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10614 
10615 		perf_link->legacy_probe_name = legacy_probe;
10616 		perf_link->legacy_is_kprobe = false;
10617 		perf_link->legacy_is_retprobe = retprobe;
10618 	}
10619 	return link;
10620 
10621 err_clean_legacy:
10622 	if (legacy)
10623 		remove_uprobe_event_legacy(legacy_probe, retprobe);
10624 err_out:
10625 	free(legacy_probe);
10626 	return libbpf_err_ptr(err);
10627 }
10628 
10629 /* Format of u[ret]probe section definition supporting auto-attach:
10630  * u[ret]probe/binary:function[+offset]
10631  *
10632  * binary can be an absolute/relative path or a filename; the latter is resolved to a
10633  * full binary path via bpf_program__attach_uprobe_opts.
10634  *
10635  * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
10636  * specified (and auto-attach is not possible) or the above format is specified for
10637  * auto-attach.
10638  */
10639 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10640 {
10641 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
10642 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
10643 	int n, ret = -EINVAL;
10644 	long offset = 0;
10645 
10646 	*link = NULL;
10647 
10648 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li",
10649 		   &probe_type, &binary_path, &func_name, &offset);
10650 	switch (n) {
10651 	case 1:
10652 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
10653 		ret = 0;
10654 		break;
10655 	case 2:
10656 		pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
10657 			prog->name, prog->sec_name);
10658 		break;
10659 	case 3:
10660 	case 4:
10661 		opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
10662 				strcmp(probe_type, "uretprobe.s") == 0;
10663 		if (opts.retprobe && offset != 0) {
10664 			pr_warn("prog '%s': uretprobes do not support offset specification\n",
10665 				prog->name);
10666 			break;
10667 		}
10668 		opts.func_name = func_name;
10669 		*link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
10670 		ret = libbpf_get_error(*link);
10671 		break;
10672 	default:
10673 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
10674 			prog->sec_name);
10675 		break;
10676 	}
10677 	free(probe_type);
10678 	free(binary_path);
10679 	free(func_name);
10680 
10681 	return ret;
10682 }
10683 
10684 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
10685 					    bool retprobe, pid_t pid,
10686 					    const char *binary_path,
10687 					    size_t func_offset)
10688 {
10689 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
10690 
10691 	return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
10692 }
10693 
10694 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
10695 					  pid_t pid, const char *binary_path,
10696 					  const char *usdt_provider, const char *usdt_name,
10697 					  const struct bpf_usdt_opts *opts)
10698 {
10699 	char resolved_path[512];
10700 	struct bpf_object *obj = prog->obj;
10701 	struct bpf_link *link;
10702 	__u64 usdt_cookie;
10703 	int err;
10704 
10705 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
10706 		return libbpf_err_ptr(-EINVAL);
10707 
10708 	if (bpf_program__fd(prog) < 0) {
10709 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
10710 			prog->name);
10711 		return libbpf_err_ptr(-EINVAL);
10712 	}
10713 
10714 	if (!strchr(binary_path, '/')) {
10715 		err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
10716 		if (err) {
10717 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
10718 				prog->name, binary_path, err);
10719 			return libbpf_err_ptr(err);
10720 		}
10721 		binary_path = resolved_path;
10722 	}
10723 
10724 	/* USDT manager is instantiated lazily on first USDT attach. It will
10725 	 * be destroyed together with BPF object in bpf_object__close().
10726 	 */
10727 	if (IS_ERR(obj->usdt_man))
10728 		return libbpf_ptr(obj->usdt_man);
10729 	if (!obj->usdt_man) {
10730 		obj->usdt_man = usdt_manager_new(obj);
10731 		if (IS_ERR(obj->usdt_man))
10732 			return libbpf_ptr(obj->usdt_man);
10733 	}
10734 
10735 	usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
10736 	link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
10737 				        usdt_provider, usdt_name, usdt_cookie);
10738 	err = libbpf_get_error(link);
10739 	if (err)
10740 		return libbpf_err_ptr(err);
10741 	return link;
10742 }
10743 
10744 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10745 {
10746 	char *path = NULL, *provider = NULL, *name = NULL;
10747 	const char *sec_name;
10748 	int n, err;
10749 
10750 	sec_name = bpf_program__section_name(prog);
10751 	if (strcmp(sec_name, "usdt") == 0) {
10752 		/* no auto-attach for just SEC("usdt") */
10753 		*link = NULL;
10754 		return 0;
10755 	}
10756 
10757 	n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
10758 	if (n != 3) {
10759 		pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
10760 			sec_name);
10761 		err = -EINVAL;
10762 	} else {
10763 		*link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
10764 						 provider, name, NULL);
10765 		err = libbpf_get_error(*link);
10766 	}
10767 	free(path);
10768 	free(provider);
10769 	free(name);
10770 	return err;
10771 }
10772 
10773 static int determine_tracepoint_id(const char *tp_category,
10774 				   const char *tp_name)
10775 {
10776 	char file[PATH_MAX];
10777 	int ret;
10778 
10779 	ret = snprintf(file, sizeof(file),
10780 		       "/sys/kernel/debug/tracing/events/%s/%s/id",
10781 		       tp_category, tp_name);
10782 	if (ret < 0)
10783 		return -errno;
10784 	if (ret >= sizeof(file)) {
10785 		pr_debug("tracepoint %s/%s path is too long\n",
10786 			 tp_category, tp_name);
10787 		return -E2BIG;
10788 	}
10789 	return parse_uint_from_file(file, "%d\n");
10790 }
10791 
10792 static int perf_event_open_tracepoint(const char *tp_category,
10793 				      const char *tp_name)
10794 {
10795 	struct perf_event_attr attr = {};
10796 	char errmsg[STRERR_BUFSIZE];
10797 	int tp_id, pfd, err;
10798 
10799 	tp_id = determine_tracepoint_id(tp_category, tp_name);
10800 	if (tp_id < 0) {
10801 		pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
10802 			tp_category, tp_name,
10803 			libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
10804 		return tp_id;
10805 	}
10806 
10807 	attr.type = PERF_TYPE_TRACEPOINT;
10808 	attr.size = sizeof(attr);
10809 	attr.config = tp_id;
10810 
10811 	pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
10812 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10813 	if (pfd < 0) {
10814 		err = -errno;
10815 		pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
10816 			tp_category, tp_name,
10817 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10818 		return err;
10819 	}
10820 	return pfd;
10821 }
10822 
10823 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
10824 						     const char *tp_category,
10825 						     const char *tp_name,
10826 						     const struct bpf_tracepoint_opts *opts)
10827 {
10828 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10829 	char errmsg[STRERR_BUFSIZE];
10830 	struct bpf_link *link;
10831 	int pfd, err;
10832 
10833 	if (!OPTS_VALID(opts, bpf_tracepoint_opts))
10834 		return libbpf_err_ptr(-EINVAL);
10835 
10836 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10837 
10838 	pfd = perf_event_open_tracepoint(tp_category, tp_name);
10839 	if (pfd < 0) {
10840 		pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
10841 			prog->name, tp_category, tp_name,
10842 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
10843 		return libbpf_err_ptr(pfd);
10844 	}
10845 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10846 	err = libbpf_get_error(link);
10847 	if (err) {
10848 		close(pfd);
10849 		pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
10850 			prog->name, tp_category, tp_name,
10851 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10852 		return libbpf_err_ptr(err);
10853 	}
10854 	return link;
10855 }
10856 
10857 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
10858 						const char *tp_category,
10859 						const char *tp_name)
10860 {
10861 	return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
10862 }
10863 
10864 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10865 {
10866 	char *sec_name, *tp_cat, *tp_name;
10867 
10868 	*link = NULL;
10869 
10870 	/* no auto-attach for SEC("tp") or SEC("tracepoint") */
10871 	if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
10872 		return 0;
10873 
10874 	sec_name = strdup(prog->sec_name);
10875 	if (!sec_name)
10876 		return -ENOMEM;
10877 
10878 	/* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
10879 	if (str_has_pfx(prog->sec_name, "tp/"))
10880 		tp_cat = sec_name + sizeof("tp/") - 1;
10881 	else
10882 		tp_cat = sec_name + sizeof("tracepoint/") - 1;
10883 	tp_name = strchr(tp_cat, '/');
10884 	if (!tp_name) {
10885 		free(sec_name);
10886 		return -EINVAL;
10887 	}
10888 	*tp_name = '\0';
10889 	tp_name++;
10890 
10891 	*link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
10892 	free(sec_name);
10893 	return libbpf_get_error(*link);
10894 }
10895 
10896 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
10897 						    const char *tp_name)
10898 {
10899 	char errmsg[STRERR_BUFSIZE];
10900 	struct bpf_link *link;
10901 	int prog_fd, pfd;
10902 
10903 	prog_fd = bpf_program__fd(prog);
10904 	if (prog_fd < 0) {
10905 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
10906 		return libbpf_err_ptr(-EINVAL);
10907 	}
10908 
10909 	link = calloc(1, sizeof(*link));
10910 	if (!link)
10911 		return libbpf_err_ptr(-ENOMEM);
10912 	link->detach = &bpf_link__detach_fd;
10913 
10914 	pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
10915 	if (pfd < 0) {
10916 		pfd = -errno;
10917 		free(link);
10918 		pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
10919 			prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
10920 		return libbpf_err_ptr(pfd);
10921 	}
10922 	link->fd = pfd;
10923 	return link;
10924 }
10925 
10926 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10927 {
10928 	static const char *const prefixes[] = {
10929 		"raw_tp",
10930 		"raw_tracepoint",
10931 		"raw_tp.w",
10932 		"raw_tracepoint.w",
10933 	};
10934 	size_t i;
10935 	const char *tp_name = NULL;
10936 
10937 	*link = NULL;
10938 
10939 	for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
10940 		size_t pfx_len;
10941 
10942 		if (!str_has_pfx(prog->sec_name, prefixes[i]))
10943 			continue;
10944 
10945 		pfx_len = strlen(prefixes[i]);
10946 		/* no auto-attach case of, e.g., SEC("raw_tp") */
10947 		if (prog->sec_name[pfx_len] == '\0')
10948 			return 0;
10949 
10950 		if (prog->sec_name[pfx_len] != '/')
10951 			continue;
10952 
10953 		tp_name = prog->sec_name + pfx_len + 1;
10954 		break;
10955 	}
10956 
10957 	if (!tp_name) {
10958 		pr_warn("prog '%s': invalid section name '%s'\n",
10959 			prog->name, prog->sec_name);
10960 		return -EINVAL;
10961 	}
10962 
10963 	*link = bpf_program__attach_raw_tracepoint(prog, tp_name);
10964 	return libbpf_get_error(link);
10965 }
10966 
10967 /* Common logic for all BPF program types that attach to a btf_id */
10968 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
10969 						   const struct bpf_trace_opts *opts)
10970 {
10971 	LIBBPF_OPTS(bpf_link_create_opts, link_opts);
10972 	char errmsg[STRERR_BUFSIZE];
10973 	struct bpf_link *link;
10974 	int prog_fd, pfd;
10975 
10976 	if (!OPTS_VALID(opts, bpf_trace_opts))
10977 		return libbpf_err_ptr(-EINVAL);
10978 
10979 	prog_fd = bpf_program__fd(prog);
10980 	if (prog_fd < 0) {
10981 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
10982 		return libbpf_err_ptr(-EINVAL);
10983 	}
10984 
10985 	link = calloc(1, sizeof(*link));
10986 	if (!link)
10987 		return libbpf_err_ptr(-ENOMEM);
10988 	link->detach = &bpf_link__detach_fd;
10989 
10990 	/* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
10991 	link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
10992 	pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
10993 	if (pfd < 0) {
10994 		pfd = -errno;
10995 		free(link);
10996 		pr_warn("prog '%s': failed to attach: %s\n",
10997 			prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
10998 		return libbpf_err_ptr(pfd);
10999 	}
11000 	link->fd = pfd;
11001 	return link;
11002 }
11003 
11004 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
11005 {
11006 	return bpf_program__attach_btf_id(prog, NULL);
11007 }
11008 
11009 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
11010 						const struct bpf_trace_opts *opts)
11011 {
11012 	return bpf_program__attach_btf_id(prog, opts);
11013 }
11014 
11015 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
11016 {
11017 	return bpf_program__attach_btf_id(prog, NULL);
11018 }
11019 
11020 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11021 {
11022 	*link = bpf_program__attach_trace(prog);
11023 	return libbpf_get_error(*link);
11024 }
11025 
11026 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11027 {
11028 	*link = bpf_program__attach_lsm(prog);
11029 	return libbpf_get_error(*link);
11030 }
11031 
11032 static struct bpf_link *
11033 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id,
11034 		       const char *target_name)
11035 {
11036 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts,
11037 			    .target_btf_id = btf_id);
11038 	enum bpf_attach_type attach_type;
11039 	char errmsg[STRERR_BUFSIZE];
11040 	struct bpf_link *link;
11041 	int prog_fd, link_fd;
11042 
11043 	prog_fd = bpf_program__fd(prog);
11044 	if (prog_fd < 0) {
11045 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11046 		return libbpf_err_ptr(-EINVAL);
11047 	}
11048 
11049 	link = calloc(1, sizeof(*link));
11050 	if (!link)
11051 		return libbpf_err_ptr(-ENOMEM);
11052 	link->detach = &bpf_link__detach_fd;
11053 
11054 	attach_type = bpf_program__expected_attach_type(prog);
11055 	link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts);
11056 	if (link_fd < 0) {
11057 		link_fd = -errno;
11058 		free(link);
11059 		pr_warn("prog '%s': failed to attach to %s: %s\n",
11060 			prog->name, target_name,
11061 			libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11062 		return libbpf_err_ptr(link_fd);
11063 	}
11064 	link->fd = link_fd;
11065 	return link;
11066 }
11067 
11068 struct bpf_link *
11069 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
11070 {
11071 	return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup");
11072 }
11073 
11074 struct bpf_link *
11075 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
11076 {
11077 	return bpf_program__attach_fd(prog, netns_fd, 0, "netns");
11078 }
11079 
11080 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
11081 {
11082 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
11083 	return bpf_program__attach_fd(prog, ifindex, 0, "xdp");
11084 }
11085 
11086 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
11087 					      int target_fd,
11088 					      const char *attach_func_name)
11089 {
11090 	int btf_id;
11091 
11092 	if (!!target_fd != !!attach_func_name) {
11093 		pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
11094 			prog->name);
11095 		return libbpf_err_ptr(-EINVAL);
11096 	}
11097 
11098 	if (prog->type != BPF_PROG_TYPE_EXT) {
11099 		pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
11100 			prog->name);
11101 		return libbpf_err_ptr(-EINVAL);
11102 	}
11103 
11104 	if (target_fd) {
11105 		btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
11106 		if (btf_id < 0)
11107 			return libbpf_err_ptr(btf_id);
11108 
11109 		return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace");
11110 	} else {
11111 		/* no target, so use raw_tracepoint_open for compatibility
11112 		 * with old kernels
11113 		 */
11114 		return bpf_program__attach_trace(prog);
11115 	}
11116 }
11117 
11118 struct bpf_link *
11119 bpf_program__attach_iter(const struct bpf_program *prog,
11120 			 const struct bpf_iter_attach_opts *opts)
11121 {
11122 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
11123 	char errmsg[STRERR_BUFSIZE];
11124 	struct bpf_link *link;
11125 	int prog_fd, link_fd;
11126 	__u32 target_fd = 0;
11127 
11128 	if (!OPTS_VALID(opts, bpf_iter_attach_opts))
11129 		return libbpf_err_ptr(-EINVAL);
11130 
11131 	link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
11132 	link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
11133 
11134 	prog_fd = bpf_program__fd(prog);
11135 	if (prog_fd < 0) {
11136 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11137 		return libbpf_err_ptr(-EINVAL);
11138 	}
11139 
11140 	link = calloc(1, sizeof(*link));
11141 	if (!link)
11142 		return libbpf_err_ptr(-ENOMEM);
11143 	link->detach = &bpf_link__detach_fd;
11144 
11145 	link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
11146 				  &link_create_opts);
11147 	if (link_fd < 0) {
11148 		link_fd = -errno;
11149 		free(link);
11150 		pr_warn("prog '%s': failed to attach to iterator: %s\n",
11151 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11152 		return libbpf_err_ptr(link_fd);
11153 	}
11154 	link->fd = link_fd;
11155 	return link;
11156 }
11157 
11158 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11159 {
11160 	*link = bpf_program__attach_iter(prog, NULL);
11161 	return libbpf_get_error(*link);
11162 }
11163 
11164 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
11165 {
11166 	struct bpf_link *link = NULL;
11167 	int err;
11168 
11169 	if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
11170 		return libbpf_err_ptr(-EOPNOTSUPP);
11171 
11172 	err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
11173 	if (err)
11174 		return libbpf_err_ptr(err);
11175 
11176 	/* When calling bpf_program__attach() explicitly, auto-attach support
11177 	 * is expected to work, so NULL returned link is considered an error.
11178 	 * This is different for skeleton's attach, see comment in
11179 	 * bpf_object__attach_skeleton().
11180 	 */
11181 	if (!link)
11182 		return libbpf_err_ptr(-EOPNOTSUPP);
11183 
11184 	return link;
11185 }
11186 
11187 static int bpf_link__detach_struct_ops(struct bpf_link *link)
11188 {
11189 	__u32 zero = 0;
11190 
11191 	if (bpf_map_delete_elem(link->fd, &zero))
11192 		return -errno;
11193 
11194 	return 0;
11195 }
11196 
11197 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
11198 {
11199 	struct bpf_struct_ops *st_ops;
11200 	struct bpf_link *link;
11201 	__u32 i, zero = 0;
11202 	int err;
11203 
11204 	if (!bpf_map__is_struct_ops(map) || map->fd == -1)
11205 		return libbpf_err_ptr(-EINVAL);
11206 
11207 	link = calloc(1, sizeof(*link));
11208 	if (!link)
11209 		return libbpf_err_ptr(-EINVAL);
11210 
11211 	st_ops = map->st_ops;
11212 	for (i = 0; i < btf_vlen(st_ops->type); i++) {
11213 		struct bpf_program *prog = st_ops->progs[i];
11214 		void *kern_data;
11215 		int prog_fd;
11216 
11217 		if (!prog)
11218 			continue;
11219 
11220 		prog_fd = bpf_program__fd(prog);
11221 		kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
11222 		*(unsigned long *)kern_data = prog_fd;
11223 	}
11224 
11225 	err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0);
11226 	if (err) {
11227 		err = -errno;
11228 		free(link);
11229 		return libbpf_err_ptr(err);
11230 	}
11231 
11232 	link->detach = bpf_link__detach_struct_ops;
11233 	link->fd = map->fd;
11234 
11235 	return link;
11236 }
11237 
11238 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
11239 							  void *private_data);
11240 
11241 static enum bpf_perf_event_ret
11242 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
11243 		       void **copy_mem, size_t *copy_size,
11244 		       bpf_perf_event_print_t fn, void *private_data)
11245 {
11246 	struct perf_event_mmap_page *header = mmap_mem;
11247 	__u64 data_head = ring_buffer_read_head(header);
11248 	__u64 data_tail = header->data_tail;
11249 	void *base = ((__u8 *)header) + page_size;
11250 	int ret = LIBBPF_PERF_EVENT_CONT;
11251 	struct perf_event_header *ehdr;
11252 	size_t ehdr_size;
11253 
11254 	while (data_head != data_tail) {
11255 		ehdr = base + (data_tail & (mmap_size - 1));
11256 		ehdr_size = ehdr->size;
11257 
11258 		if (((void *)ehdr) + ehdr_size > base + mmap_size) {
11259 			void *copy_start = ehdr;
11260 			size_t len_first = base + mmap_size - copy_start;
11261 			size_t len_secnd = ehdr_size - len_first;
11262 
11263 			if (*copy_size < ehdr_size) {
11264 				free(*copy_mem);
11265 				*copy_mem = malloc(ehdr_size);
11266 				if (!*copy_mem) {
11267 					*copy_size = 0;
11268 					ret = LIBBPF_PERF_EVENT_ERROR;
11269 					break;
11270 				}
11271 				*copy_size = ehdr_size;
11272 			}
11273 
11274 			memcpy(*copy_mem, copy_start, len_first);
11275 			memcpy(*copy_mem + len_first, base, len_secnd);
11276 			ehdr = *copy_mem;
11277 		}
11278 
11279 		ret = fn(ehdr, private_data);
11280 		data_tail += ehdr_size;
11281 		if (ret != LIBBPF_PERF_EVENT_CONT)
11282 			break;
11283 	}
11284 
11285 	ring_buffer_write_tail(header, data_tail);
11286 	return libbpf_err(ret);
11287 }
11288 
11289 struct perf_buffer;
11290 
11291 struct perf_buffer_params {
11292 	struct perf_event_attr *attr;
11293 	/* if event_cb is specified, it takes precendence */
11294 	perf_buffer_event_fn event_cb;
11295 	/* sample_cb and lost_cb are higher-level common-case callbacks */
11296 	perf_buffer_sample_fn sample_cb;
11297 	perf_buffer_lost_fn lost_cb;
11298 	void *ctx;
11299 	int cpu_cnt;
11300 	int *cpus;
11301 	int *map_keys;
11302 };
11303 
11304 struct perf_cpu_buf {
11305 	struct perf_buffer *pb;
11306 	void *base; /* mmap()'ed memory */
11307 	void *buf; /* for reconstructing segmented data */
11308 	size_t buf_size;
11309 	int fd;
11310 	int cpu;
11311 	int map_key;
11312 };
11313 
11314 struct perf_buffer {
11315 	perf_buffer_event_fn event_cb;
11316 	perf_buffer_sample_fn sample_cb;
11317 	perf_buffer_lost_fn lost_cb;
11318 	void *ctx; /* passed into callbacks */
11319 
11320 	size_t page_size;
11321 	size_t mmap_size;
11322 	struct perf_cpu_buf **cpu_bufs;
11323 	struct epoll_event *events;
11324 	int cpu_cnt; /* number of allocated CPU buffers */
11325 	int epoll_fd; /* perf event FD */
11326 	int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
11327 };
11328 
11329 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
11330 				      struct perf_cpu_buf *cpu_buf)
11331 {
11332 	if (!cpu_buf)
11333 		return;
11334 	if (cpu_buf->base &&
11335 	    munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
11336 		pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
11337 	if (cpu_buf->fd >= 0) {
11338 		ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
11339 		close(cpu_buf->fd);
11340 	}
11341 	free(cpu_buf->buf);
11342 	free(cpu_buf);
11343 }
11344 
11345 void perf_buffer__free(struct perf_buffer *pb)
11346 {
11347 	int i;
11348 
11349 	if (IS_ERR_OR_NULL(pb))
11350 		return;
11351 	if (pb->cpu_bufs) {
11352 		for (i = 0; i < pb->cpu_cnt; i++) {
11353 			struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
11354 
11355 			if (!cpu_buf)
11356 				continue;
11357 
11358 			bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
11359 			perf_buffer__free_cpu_buf(pb, cpu_buf);
11360 		}
11361 		free(pb->cpu_bufs);
11362 	}
11363 	if (pb->epoll_fd >= 0)
11364 		close(pb->epoll_fd);
11365 	free(pb->events);
11366 	free(pb);
11367 }
11368 
11369 static struct perf_cpu_buf *
11370 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
11371 			  int cpu, int map_key)
11372 {
11373 	struct perf_cpu_buf *cpu_buf;
11374 	char msg[STRERR_BUFSIZE];
11375 	int err;
11376 
11377 	cpu_buf = calloc(1, sizeof(*cpu_buf));
11378 	if (!cpu_buf)
11379 		return ERR_PTR(-ENOMEM);
11380 
11381 	cpu_buf->pb = pb;
11382 	cpu_buf->cpu = cpu;
11383 	cpu_buf->map_key = map_key;
11384 
11385 	cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
11386 			      -1, PERF_FLAG_FD_CLOEXEC);
11387 	if (cpu_buf->fd < 0) {
11388 		err = -errno;
11389 		pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
11390 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11391 		goto error;
11392 	}
11393 
11394 	cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
11395 			     PROT_READ | PROT_WRITE, MAP_SHARED,
11396 			     cpu_buf->fd, 0);
11397 	if (cpu_buf->base == MAP_FAILED) {
11398 		cpu_buf->base = NULL;
11399 		err = -errno;
11400 		pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
11401 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11402 		goto error;
11403 	}
11404 
11405 	if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
11406 		err = -errno;
11407 		pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
11408 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11409 		goto error;
11410 	}
11411 
11412 	return cpu_buf;
11413 
11414 error:
11415 	perf_buffer__free_cpu_buf(pb, cpu_buf);
11416 	return (struct perf_cpu_buf *)ERR_PTR(err);
11417 }
11418 
11419 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
11420 					      struct perf_buffer_params *p);
11421 
11422 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
11423 				     perf_buffer_sample_fn sample_cb,
11424 				     perf_buffer_lost_fn lost_cb,
11425 				     void *ctx,
11426 				     const struct perf_buffer_opts *opts)
11427 {
11428 	struct perf_buffer_params p = {};
11429 	struct perf_event_attr attr = {};
11430 
11431 	if (!OPTS_VALID(opts, perf_buffer_opts))
11432 		return libbpf_err_ptr(-EINVAL);
11433 
11434 	attr.config = PERF_COUNT_SW_BPF_OUTPUT;
11435 	attr.type = PERF_TYPE_SOFTWARE;
11436 	attr.sample_type = PERF_SAMPLE_RAW;
11437 	attr.sample_period = 1;
11438 	attr.wakeup_events = 1;
11439 
11440 	p.attr = &attr;
11441 	p.sample_cb = sample_cb;
11442 	p.lost_cb = lost_cb;
11443 	p.ctx = ctx;
11444 
11445 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
11446 }
11447 
11448 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
11449 					 struct perf_event_attr *attr,
11450 					 perf_buffer_event_fn event_cb, void *ctx,
11451 					 const struct perf_buffer_raw_opts *opts)
11452 {
11453 	struct perf_buffer_params p = {};
11454 
11455 	if (!attr)
11456 		return libbpf_err_ptr(-EINVAL);
11457 
11458 	if (!OPTS_VALID(opts, perf_buffer_raw_opts))
11459 		return libbpf_err_ptr(-EINVAL);
11460 
11461 	p.attr = attr;
11462 	p.event_cb = event_cb;
11463 	p.ctx = ctx;
11464 	p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
11465 	p.cpus = OPTS_GET(opts, cpus, NULL);
11466 	p.map_keys = OPTS_GET(opts, map_keys, NULL);
11467 
11468 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
11469 }
11470 
11471 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
11472 					      struct perf_buffer_params *p)
11473 {
11474 	const char *online_cpus_file = "/sys/devices/system/cpu/online";
11475 	struct bpf_map_info map;
11476 	char msg[STRERR_BUFSIZE];
11477 	struct perf_buffer *pb;
11478 	bool *online = NULL;
11479 	__u32 map_info_len;
11480 	int err, i, j, n;
11481 
11482 	if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
11483 		pr_warn("page count should be power of two, but is %zu\n",
11484 			page_cnt);
11485 		return ERR_PTR(-EINVAL);
11486 	}
11487 
11488 	/* best-effort sanity checks */
11489 	memset(&map, 0, sizeof(map));
11490 	map_info_len = sizeof(map);
11491 	err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len);
11492 	if (err) {
11493 		err = -errno;
11494 		/* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
11495 		 * -EBADFD, -EFAULT, or -E2BIG on real error
11496 		 */
11497 		if (err != -EINVAL) {
11498 			pr_warn("failed to get map info for map FD %d: %s\n",
11499 				map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
11500 			return ERR_PTR(err);
11501 		}
11502 		pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
11503 			 map_fd);
11504 	} else {
11505 		if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
11506 			pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
11507 				map.name);
11508 			return ERR_PTR(-EINVAL);
11509 		}
11510 	}
11511 
11512 	pb = calloc(1, sizeof(*pb));
11513 	if (!pb)
11514 		return ERR_PTR(-ENOMEM);
11515 
11516 	pb->event_cb = p->event_cb;
11517 	pb->sample_cb = p->sample_cb;
11518 	pb->lost_cb = p->lost_cb;
11519 	pb->ctx = p->ctx;
11520 
11521 	pb->page_size = getpagesize();
11522 	pb->mmap_size = pb->page_size * page_cnt;
11523 	pb->map_fd = map_fd;
11524 
11525 	pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
11526 	if (pb->epoll_fd < 0) {
11527 		err = -errno;
11528 		pr_warn("failed to create epoll instance: %s\n",
11529 			libbpf_strerror_r(err, msg, sizeof(msg)));
11530 		goto error;
11531 	}
11532 
11533 	if (p->cpu_cnt > 0) {
11534 		pb->cpu_cnt = p->cpu_cnt;
11535 	} else {
11536 		pb->cpu_cnt = libbpf_num_possible_cpus();
11537 		if (pb->cpu_cnt < 0) {
11538 			err = pb->cpu_cnt;
11539 			goto error;
11540 		}
11541 		if (map.max_entries && map.max_entries < pb->cpu_cnt)
11542 			pb->cpu_cnt = map.max_entries;
11543 	}
11544 
11545 	pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
11546 	if (!pb->events) {
11547 		err = -ENOMEM;
11548 		pr_warn("failed to allocate events: out of memory\n");
11549 		goto error;
11550 	}
11551 	pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
11552 	if (!pb->cpu_bufs) {
11553 		err = -ENOMEM;
11554 		pr_warn("failed to allocate buffers: out of memory\n");
11555 		goto error;
11556 	}
11557 
11558 	err = parse_cpu_mask_file(online_cpus_file, &online, &n);
11559 	if (err) {
11560 		pr_warn("failed to get online CPU mask: %d\n", err);
11561 		goto error;
11562 	}
11563 
11564 	for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
11565 		struct perf_cpu_buf *cpu_buf;
11566 		int cpu, map_key;
11567 
11568 		cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
11569 		map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
11570 
11571 		/* in case user didn't explicitly requested particular CPUs to
11572 		 * be attached to, skip offline/not present CPUs
11573 		 */
11574 		if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
11575 			continue;
11576 
11577 		cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
11578 		if (IS_ERR(cpu_buf)) {
11579 			err = PTR_ERR(cpu_buf);
11580 			goto error;
11581 		}
11582 
11583 		pb->cpu_bufs[j] = cpu_buf;
11584 
11585 		err = bpf_map_update_elem(pb->map_fd, &map_key,
11586 					  &cpu_buf->fd, 0);
11587 		if (err) {
11588 			err = -errno;
11589 			pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
11590 				cpu, map_key, cpu_buf->fd,
11591 				libbpf_strerror_r(err, msg, sizeof(msg)));
11592 			goto error;
11593 		}
11594 
11595 		pb->events[j].events = EPOLLIN;
11596 		pb->events[j].data.ptr = cpu_buf;
11597 		if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
11598 			      &pb->events[j]) < 0) {
11599 			err = -errno;
11600 			pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
11601 				cpu, cpu_buf->fd,
11602 				libbpf_strerror_r(err, msg, sizeof(msg)));
11603 			goto error;
11604 		}
11605 		j++;
11606 	}
11607 	pb->cpu_cnt = j;
11608 	free(online);
11609 
11610 	return pb;
11611 
11612 error:
11613 	free(online);
11614 	if (pb)
11615 		perf_buffer__free(pb);
11616 	return ERR_PTR(err);
11617 }
11618 
11619 struct perf_sample_raw {
11620 	struct perf_event_header header;
11621 	uint32_t size;
11622 	char data[];
11623 };
11624 
11625 struct perf_sample_lost {
11626 	struct perf_event_header header;
11627 	uint64_t id;
11628 	uint64_t lost;
11629 	uint64_t sample_id;
11630 };
11631 
11632 static enum bpf_perf_event_ret
11633 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
11634 {
11635 	struct perf_cpu_buf *cpu_buf = ctx;
11636 	struct perf_buffer *pb = cpu_buf->pb;
11637 	void *data = e;
11638 
11639 	/* user wants full control over parsing perf event */
11640 	if (pb->event_cb)
11641 		return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
11642 
11643 	switch (e->type) {
11644 	case PERF_RECORD_SAMPLE: {
11645 		struct perf_sample_raw *s = data;
11646 
11647 		if (pb->sample_cb)
11648 			pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
11649 		break;
11650 	}
11651 	case PERF_RECORD_LOST: {
11652 		struct perf_sample_lost *s = data;
11653 
11654 		if (pb->lost_cb)
11655 			pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
11656 		break;
11657 	}
11658 	default:
11659 		pr_warn("unknown perf sample type %d\n", e->type);
11660 		return LIBBPF_PERF_EVENT_ERROR;
11661 	}
11662 	return LIBBPF_PERF_EVENT_CONT;
11663 }
11664 
11665 static int perf_buffer__process_records(struct perf_buffer *pb,
11666 					struct perf_cpu_buf *cpu_buf)
11667 {
11668 	enum bpf_perf_event_ret ret;
11669 
11670 	ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
11671 				     pb->page_size, &cpu_buf->buf,
11672 				     &cpu_buf->buf_size,
11673 				     perf_buffer__process_record, cpu_buf);
11674 	if (ret != LIBBPF_PERF_EVENT_CONT)
11675 		return ret;
11676 	return 0;
11677 }
11678 
11679 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
11680 {
11681 	return pb->epoll_fd;
11682 }
11683 
11684 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
11685 {
11686 	int i, cnt, err;
11687 
11688 	cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
11689 	if (cnt < 0)
11690 		return -errno;
11691 
11692 	for (i = 0; i < cnt; i++) {
11693 		struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
11694 
11695 		err = perf_buffer__process_records(pb, cpu_buf);
11696 		if (err) {
11697 			pr_warn("error while processing records: %d\n", err);
11698 			return libbpf_err(err);
11699 		}
11700 	}
11701 	return cnt;
11702 }
11703 
11704 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
11705  * manager.
11706  */
11707 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
11708 {
11709 	return pb->cpu_cnt;
11710 }
11711 
11712 /*
11713  * Return perf_event FD of a ring buffer in *buf_idx* slot of
11714  * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
11715  * select()/poll()/epoll() Linux syscalls.
11716  */
11717 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
11718 {
11719 	struct perf_cpu_buf *cpu_buf;
11720 
11721 	if (buf_idx >= pb->cpu_cnt)
11722 		return libbpf_err(-EINVAL);
11723 
11724 	cpu_buf = pb->cpu_bufs[buf_idx];
11725 	if (!cpu_buf)
11726 		return libbpf_err(-ENOENT);
11727 
11728 	return cpu_buf->fd;
11729 }
11730 
11731 /*
11732  * Consume data from perf ring buffer corresponding to slot *buf_idx* in
11733  * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
11734  * consume, do nothing and return success.
11735  * Returns:
11736  *   - 0 on success;
11737  *   - <0 on failure.
11738  */
11739 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
11740 {
11741 	struct perf_cpu_buf *cpu_buf;
11742 
11743 	if (buf_idx >= pb->cpu_cnt)
11744 		return libbpf_err(-EINVAL);
11745 
11746 	cpu_buf = pb->cpu_bufs[buf_idx];
11747 	if (!cpu_buf)
11748 		return libbpf_err(-ENOENT);
11749 
11750 	return perf_buffer__process_records(pb, cpu_buf);
11751 }
11752 
11753 int perf_buffer__consume(struct perf_buffer *pb)
11754 {
11755 	int i, err;
11756 
11757 	for (i = 0; i < pb->cpu_cnt; i++) {
11758 		struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
11759 
11760 		if (!cpu_buf)
11761 			continue;
11762 
11763 		err = perf_buffer__process_records(pb, cpu_buf);
11764 		if (err) {
11765 			pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
11766 			return libbpf_err(err);
11767 		}
11768 	}
11769 	return 0;
11770 }
11771 
11772 int bpf_program__set_attach_target(struct bpf_program *prog,
11773 				   int attach_prog_fd,
11774 				   const char *attach_func_name)
11775 {
11776 	int btf_obj_fd = 0, btf_id = 0, err;
11777 
11778 	if (!prog || attach_prog_fd < 0)
11779 		return libbpf_err(-EINVAL);
11780 
11781 	if (prog->obj->loaded)
11782 		return libbpf_err(-EINVAL);
11783 
11784 	if (attach_prog_fd && !attach_func_name) {
11785 		/* remember attach_prog_fd and let bpf_program__load() find
11786 		 * BTF ID during the program load
11787 		 */
11788 		prog->attach_prog_fd = attach_prog_fd;
11789 		return 0;
11790 	}
11791 
11792 	if (attach_prog_fd) {
11793 		btf_id = libbpf_find_prog_btf_id(attach_func_name,
11794 						 attach_prog_fd);
11795 		if (btf_id < 0)
11796 			return libbpf_err(btf_id);
11797 	} else {
11798 		if (!attach_func_name)
11799 			return libbpf_err(-EINVAL);
11800 
11801 		/* load btf_vmlinux, if not yet */
11802 		err = bpf_object__load_vmlinux_btf(prog->obj, true);
11803 		if (err)
11804 			return libbpf_err(err);
11805 		err = find_kernel_btf_id(prog->obj, attach_func_name,
11806 					 prog->expected_attach_type,
11807 					 &btf_obj_fd, &btf_id);
11808 		if (err)
11809 			return libbpf_err(err);
11810 	}
11811 
11812 	prog->attach_btf_id = btf_id;
11813 	prog->attach_btf_obj_fd = btf_obj_fd;
11814 	prog->attach_prog_fd = attach_prog_fd;
11815 	return 0;
11816 }
11817 
11818 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
11819 {
11820 	int err = 0, n, len, start, end = -1;
11821 	bool *tmp;
11822 
11823 	*mask = NULL;
11824 	*mask_sz = 0;
11825 
11826 	/* Each sub string separated by ',' has format \d+-\d+ or \d+ */
11827 	while (*s) {
11828 		if (*s == ',' || *s == '\n') {
11829 			s++;
11830 			continue;
11831 		}
11832 		n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
11833 		if (n <= 0 || n > 2) {
11834 			pr_warn("Failed to get CPU range %s: %d\n", s, n);
11835 			err = -EINVAL;
11836 			goto cleanup;
11837 		} else if (n == 1) {
11838 			end = start;
11839 		}
11840 		if (start < 0 || start > end) {
11841 			pr_warn("Invalid CPU range [%d,%d] in %s\n",
11842 				start, end, s);
11843 			err = -EINVAL;
11844 			goto cleanup;
11845 		}
11846 		tmp = realloc(*mask, end + 1);
11847 		if (!tmp) {
11848 			err = -ENOMEM;
11849 			goto cleanup;
11850 		}
11851 		*mask = tmp;
11852 		memset(tmp + *mask_sz, 0, start - *mask_sz);
11853 		memset(tmp + start, 1, end - start + 1);
11854 		*mask_sz = end + 1;
11855 		s += len;
11856 	}
11857 	if (!*mask_sz) {
11858 		pr_warn("Empty CPU range\n");
11859 		return -EINVAL;
11860 	}
11861 	return 0;
11862 cleanup:
11863 	free(*mask);
11864 	*mask = NULL;
11865 	return err;
11866 }
11867 
11868 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
11869 {
11870 	int fd, err = 0, len;
11871 	char buf[128];
11872 
11873 	fd = open(fcpu, O_RDONLY | O_CLOEXEC);
11874 	if (fd < 0) {
11875 		err = -errno;
11876 		pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
11877 		return err;
11878 	}
11879 	len = read(fd, buf, sizeof(buf));
11880 	close(fd);
11881 	if (len <= 0) {
11882 		err = len ? -errno : -EINVAL;
11883 		pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
11884 		return err;
11885 	}
11886 	if (len >= sizeof(buf)) {
11887 		pr_warn("CPU mask is too big in file %s\n", fcpu);
11888 		return -E2BIG;
11889 	}
11890 	buf[len] = '\0';
11891 
11892 	return parse_cpu_mask_str(buf, mask, mask_sz);
11893 }
11894 
11895 int libbpf_num_possible_cpus(void)
11896 {
11897 	static const char *fcpu = "/sys/devices/system/cpu/possible";
11898 	static int cpus;
11899 	int err, n, i, tmp_cpus;
11900 	bool *mask;
11901 
11902 	tmp_cpus = READ_ONCE(cpus);
11903 	if (tmp_cpus > 0)
11904 		return tmp_cpus;
11905 
11906 	err = parse_cpu_mask_file(fcpu, &mask, &n);
11907 	if (err)
11908 		return libbpf_err(err);
11909 
11910 	tmp_cpus = 0;
11911 	for (i = 0; i < n; i++) {
11912 		if (mask[i])
11913 			tmp_cpus++;
11914 	}
11915 	free(mask);
11916 
11917 	WRITE_ONCE(cpus, tmp_cpus);
11918 	return tmp_cpus;
11919 }
11920 
11921 static int populate_skeleton_maps(const struct bpf_object *obj,
11922 				  struct bpf_map_skeleton *maps,
11923 				  size_t map_cnt)
11924 {
11925 	int i;
11926 
11927 	for (i = 0; i < map_cnt; i++) {
11928 		struct bpf_map **map = maps[i].map;
11929 		const char *name = maps[i].name;
11930 		void **mmaped = maps[i].mmaped;
11931 
11932 		*map = bpf_object__find_map_by_name(obj, name);
11933 		if (!*map) {
11934 			pr_warn("failed to find skeleton map '%s'\n", name);
11935 			return -ESRCH;
11936 		}
11937 
11938 		/* externs shouldn't be pre-setup from user code */
11939 		if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
11940 			*mmaped = (*map)->mmaped;
11941 	}
11942 	return 0;
11943 }
11944 
11945 static int populate_skeleton_progs(const struct bpf_object *obj,
11946 				   struct bpf_prog_skeleton *progs,
11947 				   size_t prog_cnt)
11948 {
11949 	int i;
11950 
11951 	for (i = 0; i < prog_cnt; i++) {
11952 		struct bpf_program **prog = progs[i].prog;
11953 		const char *name = progs[i].name;
11954 
11955 		*prog = bpf_object__find_program_by_name(obj, name);
11956 		if (!*prog) {
11957 			pr_warn("failed to find skeleton program '%s'\n", name);
11958 			return -ESRCH;
11959 		}
11960 	}
11961 	return 0;
11962 }
11963 
11964 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
11965 			      const struct bpf_object_open_opts *opts)
11966 {
11967 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
11968 		.object_name = s->name,
11969 	);
11970 	struct bpf_object *obj;
11971 	int err;
11972 
11973 	/* Attempt to preserve opts->object_name, unless overriden by user
11974 	 * explicitly. Overwriting object name for skeletons is discouraged,
11975 	 * as it breaks global data maps, because they contain object name
11976 	 * prefix as their own map name prefix. When skeleton is generated,
11977 	 * bpftool is making an assumption that this name will stay the same.
11978 	 */
11979 	if (opts) {
11980 		memcpy(&skel_opts, opts, sizeof(*opts));
11981 		if (!opts->object_name)
11982 			skel_opts.object_name = s->name;
11983 	}
11984 
11985 	obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
11986 	err = libbpf_get_error(obj);
11987 	if (err) {
11988 		pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
11989 			s->name, err);
11990 		return libbpf_err(err);
11991 	}
11992 
11993 	*s->obj = obj;
11994 	err = populate_skeleton_maps(obj, s->maps, s->map_cnt);
11995 	if (err) {
11996 		pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
11997 		return libbpf_err(err);
11998 	}
11999 
12000 	err = populate_skeleton_progs(obj, s->progs, s->prog_cnt);
12001 	if (err) {
12002 		pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
12003 		return libbpf_err(err);
12004 	}
12005 
12006 	return 0;
12007 }
12008 
12009 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
12010 {
12011 	int err, len, var_idx, i;
12012 	const char *var_name;
12013 	const struct bpf_map *map;
12014 	struct btf *btf;
12015 	__u32 map_type_id;
12016 	const struct btf_type *map_type, *var_type;
12017 	const struct bpf_var_skeleton *var_skel;
12018 	struct btf_var_secinfo *var;
12019 
12020 	if (!s->obj)
12021 		return libbpf_err(-EINVAL);
12022 
12023 	btf = bpf_object__btf(s->obj);
12024 	if (!btf) {
12025 		pr_warn("subskeletons require BTF at runtime (object %s)\n",
12026 		        bpf_object__name(s->obj));
12027 		return libbpf_err(-errno);
12028 	}
12029 
12030 	err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt);
12031 	if (err) {
12032 		pr_warn("failed to populate subskeleton maps: %d\n", err);
12033 		return libbpf_err(err);
12034 	}
12035 
12036 	err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt);
12037 	if (err) {
12038 		pr_warn("failed to populate subskeleton maps: %d\n", err);
12039 		return libbpf_err(err);
12040 	}
12041 
12042 	for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
12043 		var_skel = &s->vars[var_idx];
12044 		map = *var_skel->map;
12045 		map_type_id = bpf_map__btf_value_type_id(map);
12046 		map_type = btf__type_by_id(btf, map_type_id);
12047 
12048 		if (!btf_is_datasec(map_type)) {
12049 			pr_warn("type for map '%1$s' is not a datasec: %2$s",
12050 				bpf_map__name(map),
12051 				__btf_kind_str(btf_kind(map_type)));
12052 			return libbpf_err(-EINVAL);
12053 		}
12054 
12055 		len = btf_vlen(map_type);
12056 		var = btf_var_secinfos(map_type);
12057 		for (i = 0; i < len; i++, var++) {
12058 			var_type = btf__type_by_id(btf, var->type);
12059 			var_name = btf__name_by_offset(btf, var_type->name_off);
12060 			if (strcmp(var_name, var_skel->name) == 0) {
12061 				*var_skel->addr = map->mmaped + var->offset;
12062 				break;
12063 			}
12064 		}
12065 	}
12066 	return 0;
12067 }
12068 
12069 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
12070 {
12071 	if (!s)
12072 		return;
12073 	free(s->maps);
12074 	free(s->progs);
12075 	free(s->vars);
12076 	free(s);
12077 }
12078 
12079 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
12080 {
12081 	int i, err;
12082 
12083 	err = bpf_object__load(*s->obj);
12084 	if (err) {
12085 		pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
12086 		return libbpf_err(err);
12087 	}
12088 
12089 	for (i = 0; i < s->map_cnt; i++) {
12090 		struct bpf_map *map = *s->maps[i].map;
12091 		size_t mmap_sz = bpf_map_mmap_sz(map);
12092 		int prot, map_fd = bpf_map__fd(map);
12093 		void **mmaped = s->maps[i].mmaped;
12094 
12095 		if (!mmaped)
12096 			continue;
12097 
12098 		if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
12099 			*mmaped = NULL;
12100 			continue;
12101 		}
12102 
12103 		if (map->def.map_flags & BPF_F_RDONLY_PROG)
12104 			prot = PROT_READ;
12105 		else
12106 			prot = PROT_READ | PROT_WRITE;
12107 
12108 		/* Remap anonymous mmap()-ed "map initialization image" as
12109 		 * a BPF map-backed mmap()-ed memory, but preserving the same
12110 		 * memory address. This will cause kernel to change process'
12111 		 * page table to point to a different piece of kernel memory,
12112 		 * but from userspace point of view memory address (and its
12113 		 * contents, being identical at this point) will stay the
12114 		 * same. This mapping will be released by bpf_object__close()
12115 		 * as per normal clean up procedure, so we don't need to worry
12116 		 * about it from skeleton's clean up perspective.
12117 		 */
12118 		*mmaped = mmap(map->mmaped, mmap_sz, prot,
12119 				MAP_SHARED | MAP_FIXED, map_fd, 0);
12120 		if (*mmaped == MAP_FAILED) {
12121 			err = -errno;
12122 			*mmaped = NULL;
12123 			pr_warn("failed to re-mmap() map '%s': %d\n",
12124 				 bpf_map__name(map), err);
12125 			return libbpf_err(err);
12126 		}
12127 	}
12128 
12129 	return 0;
12130 }
12131 
12132 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
12133 {
12134 	int i, err;
12135 
12136 	for (i = 0; i < s->prog_cnt; i++) {
12137 		struct bpf_program *prog = *s->progs[i].prog;
12138 		struct bpf_link **link = s->progs[i].link;
12139 
12140 		if (!prog->autoload)
12141 			continue;
12142 
12143 		/* auto-attaching not supported for this program */
12144 		if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12145 			continue;
12146 
12147 		/* if user already set the link manually, don't attempt auto-attach */
12148 		if (*link)
12149 			continue;
12150 
12151 		err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
12152 		if (err) {
12153 			pr_warn("prog '%s': failed to auto-attach: %d\n",
12154 				bpf_program__name(prog), err);
12155 			return libbpf_err(err);
12156 		}
12157 
12158 		/* It's possible that for some SEC() definitions auto-attach
12159 		 * is supported in some cases (e.g., if definition completely
12160 		 * specifies target information), but is not in other cases.
12161 		 * SEC("uprobe") is one such case. If user specified target
12162 		 * binary and function name, such BPF program can be
12163 		 * auto-attached. But if not, it shouldn't trigger skeleton's
12164 		 * attach to fail. It should just be skipped.
12165 		 * attach_fn signals such case with returning 0 (no error) and
12166 		 * setting link to NULL.
12167 		 */
12168 	}
12169 
12170 	return 0;
12171 }
12172 
12173 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
12174 {
12175 	int i;
12176 
12177 	for (i = 0; i < s->prog_cnt; i++) {
12178 		struct bpf_link **link = s->progs[i].link;
12179 
12180 		bpf_link__destroy(*link);
12181 		*link = NULL;
12182 	}
12183 }
12184 
12185 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
12186 {
12187 	if (!s)
12188 		return;
12189 
12190 	if (s->progs)
12191 		bpf_object__detach_skeleton(s);
12192 	if (s->obj)
12193 		bpf_object__close(*s->obj);
12194 	free(s->maps);
12195 	free(s->progs);
12196 	free(s);
12197 }
12198